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Chapter 1

Introduction

Nowadays, many fields in natural sciences, engineering, and economics are hardly imaginable without
the computer aided numerical simulation of scientific phenomena. The area of scientific computing,
that adresses the computational solution of these problems, has become a subject of its own. Its
approach is to gain understanding, mainly through the analysis of mathematical models, implemented
on computers. Among these models, partial differential equations play an important role in modelling
physical, chemical, biological or even financial processes.

Giving an explicit solution of these equations is however not always possible in many cases of
interest. For example the central problem in computational fluid dynamics, the Navier-Stokes equa-
tions, that describe the movement of liquids and gases, are more than 160 years old, and it is still
not known, if global solutions exist in the general, three-dimensional case. It is one of seven open
mathematical problems, for which the Clay Mathematics Institute in the year 2000 anounced a prize
of 1 million dollars (the Millenium Prize problems, [Fef00]). Dropping the requirements for solutions
in the classical sense, Jean Leray ([Ler34]) in 1934 showed, that weak solutions exists for reasonable
small time intervalls and small inital conditions.

Weak solutions in general lead to approximation methods, like finite elements or finite volumes,
that calculate the solution on discrete grid points. These discretizations produce large and sparse
linear systems, that can be solved with numerical linear algebra methods. For this purpose, however,
exact methods like Gaussian elimination or LU decomposition are only viable if the dimension number
n of the matrix is not too large, since their run-time complexity is about O(n?). Although there have
been several efforts to devise exact algorithms, that e.g. exploit the special sparsity structure of
the matrix (like SuperLU, [DEGT99)], or UMFPACK [DD99]), the usage of these methods on current
workstations and personal computers, nevertheless is limited to dimensions n lying between 10000 and
100000, depending on the sparse matrix structure. This is the reason for applying iterative methods
instead.

The order of magnitude of typical matrix sizes can be illustrated by looking at a characteristic
number of the Navier-Stokes equations. In this context, the Reynolds numbe@ Re is usually defined

as

L
Req = 1oL

and gives a measure for the relation of the amount of viscosity v to the velocity u of the flow. The
variable L is the characteristic length of the considered domain €2, thus L = diam €2 gives an average
over the whole domain.

For the direct numerical simulation (DNS), the accuracy of the solution mainly depends on the
number of unknowns, the degrees of freedom of the mesh. Thus, the problem size increases with the
degree of the required accuracy — it is known that the number of mesh points needed to resolve all
flow structures is of order O(Reg/ 1) in 3D, due to Kolmogorov’s theory of turbulence, which predicts

!Osborne Reynolds (1842 - 1912), was a British physicist and engineer, who pioneered the study of conditions in
which the flow of fluids transitions from laminar to turbulent.
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small scale flow structures down to the size of O(Re_3/ 4). Many industrial applications however (e.g.
the flow around an aircraft), exhibit Reynolds numbers greater than 107, resulting in turbulent flows.

Over the years, several ways out of this dilemma have been explored. Turbulence models, like large
eddy simulation or the Reynolds-averaged Navier Stokes model simulate the smaller structures in the
flow, and thus reduce the number of unknowns. Domain decomposition methods split the problem
area into several smaller parts, offering a way of parallelization for distributed computing. Adaptive
mesh refinement techniques are intended to increase the number of unknowns in the grid only in those
areas, where the solution changes rapidly.

But in the end, the inversion of sparse (and in most cases unsymmetric and extremely ill-conditioned)
matrices in the core of the numerical software, is the most time consuming part of the computation.
While Krylov subspace methods tend to reduce the run-time complexity to an order of O(n?), the class
of multigrid methods often exhibits a nearly optimal O(n) behaviour. However, multigrid is anything
but a black-box solver — if it shall contribute a substantial acceleration of the solution process, all
components have to be chosen with great care and must be adapted to the concrete mathematical
problem. And especially, in complex geometrical situations and unsmooth data, one observes also
convergence problems. Therefore, in the 1980’s, several algebraic multigrid methods (AMG) have been
devised to overcome these problems and the adaption of algebraic multigrid to flow problems is a
central topic in this thesis.

The conventional approach of applying AMG to the linearized Navier-Stokes equations, namely
the Oseen equations

—vAu+ (b-V)u+ Vp+cu=f,
V-u:g,

was based on decoupling schemes, that used Schur-complement methods to decouple the equations
for the velocity u and the pressure p. An AMG solver was then simply used to invert the Schur
complement or the part of the equation that corresponds to a convection-diffusion problem.

Our approach will be to develop an algebraic multigrid variant, that is applied to the whole coupled
linear system. Earlier work in this area was contributed e.g. by [Raw9h] and [Web(1] for the finite
volume approach. One of the few fully coupled AMG variants for the Oseen equation using finite
element discretizations was presented in [Wab03] for the so-called unknown approach. There, the
variables, that belong to one physical quantity, are grouped together, equation by equation:

(5 @) ()= ()
By C)\p 9)
In contrast to that, we propose a method which is based on the point-wise approach. Here, the

variables belonging to one grid point are grouped together, leading to a sparse matrix that has small
dense block matrices as entries:

F11 FlM T bl

We construct a way of defining a strong coupling between these small blocks F;;, as an analogon to
the scalar case, based on the convection-diffusion part. According interpolation weights are suggested,
in order to define prolongation and restriction operators for the coarse grid correction.

Another issue in scientific computing is the optimal utilization of the computer hardware archi-
tecture. A naive implementation with inefficient data structures is capable of spoiling the run-time
behaviour of the fastest algorithm. Modern programming methods can help to implement highly
sophisticated numerical algorithms and efficiently integrate them into a software system. It was dur-
ing the 1990’s that the scientific community discovered C++ for the purpose of scientific computing.



Intrinsic language features such as templates, inlining, overloading, specialization and new develop-
ments, like expression templates, static polymorphism, and compile time algorithms contributed to
reaching the performance of Fortran and C libraries, in some cases even outperforming them. Todd
Veldhuizen’s Blitz++ library is a good example in this context ([Vel98]).

Today, we have the situation, that the increasing complexity of numerical algorithms, like e.g. alge-
braic multigrid, also have an increasing requirement for equally complex (and efficient) data structures,
like e.g. various efficient matrix types. Therefore, a heavy focus in this thesis will lie on the software
design aspects, the programming methods and benefits, C4++ can offer in order to build efficient (in
terms of run-time and memory consumption), highly flexible, and reusable software components for
the application in numerical linear algebra.

The two central topics in this thesis, generic type construction in C++ from computer science,
and algebraic multigrid from numerical mathematics, are organized into three parts. The aim of the
first part is to optimize existing and explore and apply new data structures for linear systems under
the employment of modern programming techniques. We try to transfer some of the ideas of (object-
oriented) software design into the area of scientific computing, hence the title scientific programming.
An abstract representation of matrix types, as a generalization of sparse and dense matrices is devel-
oped in the first chapter. In the second chapter, we extend the mizin layer programming approach
and suggest a solution for the according object construction problem for a generic matrix type library.
A performance comparison with a C library finally shows the competitiveness of the chosen approach.

The second part introduces algebraic multigrid for scalar convection-diffusion-reaction equations.
Here we analyze the classical AMG, following the ideas of John Ruge and Klaus Stiiben, and leveraging
some of the requirements needed for the convergence theory with respect to unsymmetric problems.
Afterwards, we exemplarily study the effects of coarsening and relaxation on two examples, one in 2D
and one in 3D.

In the third part, the ideas of the middle part are transferred and adapted to the linearized Navier-
Stokes equations. We were able to successfully apply a fully coupled AMG method to the 2D Stokes
and Oseen equations. Here, the problem was discretized using stabilized equal-order (P;-P;-stab)
elements, and the a point-wise ordering of the unknowns. As the numerical experiments suggest,
this point-wise coupled AMG method turns out to be a nearly optimal (O(N)) solver for the Stokes
problem. The Oseen problems, especially for decreasing viscosity parameter v, need longer iteration
times, but the observed h-dependency is by far less dramatic than for the considered Krylov solvers
that are used for comparison.
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Scientific Programming






Chapter 2

Generic programming for scientific
computing

In the area of numerical mathematics a wide range of algorithms uses linear algebra methods in one
way or the other, be it to solve rather large stiffness matrices stemming from finite element methods, be
it to compute the mapping of a geometric transformation in a CAD program. The field of applications
is so immense that each problem domain has a need for special matrix types and algorithms operating
on them.

Although the mathematical parts (II and III) of this thesis are concerned with problems and
algorithms for scientific computing — numerical linear algebra methods and finite element methods —
the matrix types and components introduced in this first part are intended to be applied in a much
wider range of mathematical problems.

Furthermore, the methods of software construction that are presented in Chapter B are certainly
applicable to the area of software design in general.

In this chapter, in Sections EX1l and 22 we first analyze what a modern numerical linear algebra
software has to provide. Then, in Section 4], we give a short introduction of some programming
methods that are special to C++ and that will be important for the library design. They are further
deepened in Chapter Bl

Section 4] gives an (admittedly not complete) overview of existing libraries. Afterwards, in the
last Section, we develop a classification of matrix types and a basic storage concept as a foundation
of the matrix library design presented in the next chapter.

2.1 Aspects of scientific computing

A finite element code for problems like the convection-diffusion equation (Section Bl in Part II) or
the Navier-Stokes equation (Section [l in Part III) consists of a great number of components: the
mesh-generator, the discretizer, maybe an error-estimator for adaptivity, a time-stepping-procedure
for time-dependent problems, and a linear-algebra-solver just to mention a few.

There are of course several strategies to generate an approximate solution to the problem. A
successful solver strategy must face many different aspects of the problem, including mathematical,
numerical and programming issues. In order to achieve a satisfying runtime behaviour, one should
keep in mind the following aspects:

e Reducing the number of unknowns. Always try to avoid unnecessary mesh points where possible,
for example by using adaptive mesh refinement. Where the solution promises to change quickly,
more points/elements are needed, whereas in areas where the solution exhibits small gradients,
less points are needed. This is especially important in a 3-dimensional problem setting.

e Using the appropriate solver for the problem. There is no solver that is optimal for all problems,
so taking the right solver, that exploits the mathematical properties of the problem can reduce

7
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the computing time further.

e Parallelizing the code. Many tasks can be executed in parallel, many approaches have been
devised (e.g. domain decomposition methods) for massive-parallel machines as well as for work-
station clusters in a local area network.

e Optimizing the implementation. Taking advantage of cache architectures and vectorization.
Modern computer languages such as C++ can help generate code that may not only be faster
but also better to maintain and to reuse than Fortran or C code. The best numerical algorithm
may be unacceptably slow in a naive implementation.

Besides the mathematical difficulties of the underlying problem (and the mathematical methods
used to overcome this problem) the complexity of the software components and their interaction should
not be underestimated.

2.2 Requirements for a modern matrix library

From a computer scientists point of view, we have the following requirements for numerical software.

1. Efficiency. The code should be fast and use the hardware resources (memory, CPU) as efficiently
as possible. This means that modern hardware concepts like cache and pipelining should be taken
care of.

2. Reusability. The software should be designed such that the methods can be applied to other
problems and data structures as well without rewriting great amounts of code.

3. Fasy maintenance. The complexity of the code should be easy to handle, even by users and
programmers which are not identical to the original author.

Early numerical codes were written in Fortran [BHZ54], which was the first high-level programming
language that offered convenient language features to describe mathematical algorithms as well as high
execution speed of the compiled programs. With the success of UNIX since the 1970’s, many libraries
have been ported to, or newly created for the C [Rif75] programming language.

These codes mostly satisfied the first requirement but hardly the other two. However for the next
generation of numerical software, we are dealing with an increasing number of mathematical methods
to be integrated into the solution process. This increasing mathematical complexity can be overcome
by modern programming methods that a programming language like C++ ([Stx97)) provides.

One might object that the first requirement is incommensurate with the other two, i.e. that
efficiency can only be achieved by messy, hand-optimized Fortran or C code. However, our aim is
to show that modern C++ code can not only compete with these libraries, but also offers greater
flexibility.

In the following subsections, we would like to discuss in detail the requirements of a modern
numerical linear algebra library (with respect to algebraic multigrid).

2.2.1 General linear algebra

Our intention is to create an open and easily extendable library for numerical linear algebra that can
deal with a wide range of different matrix types and supplies the user with an efficient interface to the
data structures. A matrix library has to offer at least

e data structures that can represent different types of matrices (e.g. dense, sparse, diagonal, etc.)
in arbitrary dimensions without unnecessary memory overhead,

e vector types in arbitrary dimensions and appropriate functions/methods to add, subtract and
scale vectors.
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Furthermore, numerical algebra methods rely on speed efficient data structures for the matrices.
Traditionally, they require

e a quick random access on the matrix entries for manipulating the matrix itself (mainly for dense
matrix computations, like LU or QR decomposition) or

e a fast interface to apply the effect of a matrix on a vector (matrix-vector multiplication, applied
widely in e.g. Krylov methods)

2.2.2 Algebraic multigrid

Matrix types for algebraic multigrid (AMG) need a few further properties. But also other methods
(e.g. Jacobi iteration) can benefit from feature like:

e random access on the rows of the matrix,

e a direct access to the diagonal entries,

e the ability to create subsets of matrix rows (or subsets of the matrix in general).
A very important AMG-specific algorithm that is hardly found in any matrix library is

e the ability to perform a multiplication of two sparse matrices.

2.2.3 Block matrix types for discretized PDEs

Various mathematical problems lead to matrices that can be organized into blocks. For example, the
special structure of linear systems arising from the discretization of partial differential equations in
computational fluid dynamics (e.g. Navier-Stokes, Oseen), demand for special matrix types, that can
store the additional structural information.

A library should be able to provide us with certain block matrix types, meaning that the matrix
is or can be separated in several rectangular blocks. Especially, the library should be able to handle
these cases:

e Dense block matrices, that have in turn sparse matrices as entries. Typically this type is used if
we discretize a PDE that consists of several equations. Each equation is discretized separately
and the number of equations equals the dense (vertical) dimension of the matrix. For example,
a two-dimensional Oseen problem, discretized with P»-P; Taylor-Hood finite elements without
pressure stabilization would result in a matrix

A A Agg
A=Ay Axp Ay
Az Az 0

because of two equations for the velocity and one for the pressure. The matrices A11, Ags € R™*™,
Aqs, Az, AL AL, € R™™ with n > m in turn have a sparse structure, that directly corresponds
to the underlying discretization mesh.

e Sparse block matrices, that have small dense matrices as entries. This type is required when
discretizing the above problem with equal-order elements, for example P;-P;-stab, but this time
reordering the entries such that values for different components of the equation that belong to
one mesh-point are grouped together. This time A has the structure

All te Aln
A= (2.1)
Anl o Ann
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Now A has a sparse structure representing the mesh information and A;; are small, dense 3 x 3
matrices, most of which are zero (cf. Section B2). That this type of structure has major
advantages concerning the memory requirements as well as the execution speed of iterative
solvers was e.g. demonstrated in [DLHO0].

e Sparse block matrices, that have sparse matrices as entries. In bio-chemical problems describing a
reaction between particles (e.g. coupled Poisson-Boltzmann equations) we obtain a sparse matrix
like in (ZJI) whose sparsity structure represents the geometry/mesh information as supplied
before. However the matrix entries A;; are now also sparse — they embody the structure of the
reaction graph.

The cases mentioned above refer to problems where the block matrix structure is a direct conse-
quence of the geometrical /physical nature of the underlying problem. Special mathematical algorithms
can exploit this structure, e.g. Schur complement methods, incomplete block factorizations, block SOR
methods, etc., thus it seems reasonable to store theses blocks separately. But also from a software
engineering standpoint, it is advantageous to let these blocks be own matrix types/classes again, since
then the according algorithms access the data structures via a uniform matrix interface. Generic
programming and polymorphism ensure that the correct algorithms are called recursively.

2.2.4 General block matrix types

In general, it should be possible to construct arbitrary block matrices, meaning matrices, that have
other matrices as entries, regardless of the type of the entries. There exist at least two good reasons
— that have their origin in computer hardware issues — for subdividing matrices in blocks:

e The memory architecture of modern computers is a hierarchical design, it consists of the main
RAM and several cache levelsﬂ. Calculations that can run fully in a cache without adressing
the slower main memory (because of the locality and the small size of the participating data
structures) are carried out comparatively fast. The sparse matrix-vecor vector product, widely
used in iterative solution schemes like Krylov subspace methods, however is a computation
where the indirection of the sparse matrix storage (and the irregularity of the access pattern)
subsequently causes cache misses for large data structures, slowing down the overall performance.
Studies have shown, that appropriate blocking (see e.g. [[Y0I] and [NVDY04]) can speed up the

performance significantly.

e Another way of reducing the computation time is to distribute the workload on several processors
and /or computers. For numerical linear algebra methods, the parallelization of the matrix-vector
or matrix-matrix product, e.g., requires the matrix to be partitioned into as many stripes as there
are processing units. If we consider a shared memory multiprocessing system, the easiest way is
to define these stripes as rectangular block matrices that are assigned to the according threads.
Especially since multicore CPUs become more and more popular, even for desktop computers,
the software developers should take this possibility into account.

These two aspects can be combined with the block matrix types mentioned in the previous section.
Furthermore they are not restricted to matrices stemming from discretized PDE’s or other physical
problems. For example, sparse matrices also arise in the data mining or web search engine context.
There, one also would like to be able to use the above acceleration techniques.

2.3 C++ Techniques and Scientific Programming

In the early years of C++, it seemed that this language wasn’t well suited for high performance
numerical computing. Even if the main framework of the software was written in C++ to take

'For example the DEC/Compaq Alpha CPU family and the Intel Xeon and Ttanium CPU series support up to three
cache levels.
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advantage of the possibilities of object-oriented design, the time critical parts were still written in
Fortran.

However, in the past years many efforts were made to overcome the problems with performance
issues that appeared when C++ was used in scientific computing (see e.g. [V.I97]).

In this section we would like to present an overview of some of the classic performance (and design)
problems and recent techniques that seem to be promising to solve these problems.

2.3.1 Expression templates

The lack of performance of C++ was evident when evaluating e.g. vector expressions like z=w+x+y
because of the pairwise evaluation of the overloaded + operator and because of the needed tempo-
rary variables. This problem was overcome through the expression templates technique (see also the
description of Blitz++ in Subsection E2I).

In our library, we use a special expression template technique for the evaluation of sparse matrix
expressions (see Section B).

2.3.2 Static polymorphism

Another obstacle is the excessive use of virtual functions . Run time polymorphism may be advan-
tageous for a small number of relatively large objects. However, if one applies virtual functions to a
large number of objects of a relatively small size (e.g. in a long loop), then we observe a significant
performance breakdown. Because the compiler does not know in advance which function to call for
such an object — the one in the base class or the one in a derived class — it cannot optimize the
according function calls. Therefore, virtual functions should be avoided for these cases and compile
time polymorphism (also called static polymorphism) be applied instead.

The idea behind this method is to exploit the template facilities of C++ for generic programming.
For writing a generic algorithm (i.e., an algorithm that doesn’t work on a special data type, but rather
on a type T that is given to the algorithm as a parameter) we need to impose certain properties on
the parameter type T. In EIFFEL, e.g., this can be done by requiring the class T to be conform to a
certain base class B, meaning that T derives from B. Since we don’t have this mechanism in C—i——l—E, we
regard every type T that offers the required interface (a superset of the interface of B) to be valid as
a parameter type for our algorithm, dropping the requirement of T being a subclass of B. As long as
the parameter type is known at compile time, the compiler can do all optimizations for the specified
type, and can even use specialized /overloaded versions of the algorithm.

2.3.3 Callback inlining

Callback functions are used widely (not only) in numerical software. A classical field of application is
the numerical integration or the assemblation of a stiffness matrix. In general, a certain method has
to be applied to a large number of elements (objects) in a container.

The typical solution in C is to provide a pointer to a function. However this often leads to a poor
performance, since these function calls mostly cannot be inlined and optimized by the compiler.

In C++ one should use function objects (functors) (see BZIIl) instead. The function object is
passed as a template argument and thus can be inlined by the compiler. Another approach would be
to pass function pointers as template arguments.

Since the functor approach is the more general one, we use it throughout our library.

2.4 An overview of existing numerical linear algebra libraries

A great number of libraries for linear algebra have been developed during the last decades. One of
the first ones were the Basic Linear Algebra Subprograms (BLAS), [LRKKTY], for dense matrices and

2although there are efforts to emulate this conformity relationship in C+-+, see [MSO0)]
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vectors in Fortran (and later on in C). BLAS is optimized for sazpy (scalar alpha x plus y) operations
like
z:=ar+y, a€R,xzy 2R, (2.2)

or gazpy (generalized A x plus y) where « is replaced by a n x n matrix A. Sparse matrix libraries like
the NIST Sparse BLAS, [RP] for C and SPARSKIT [Saa9()] for Fortran were the next step of evolution.
They offer compressed storage formats for sparse matrices and several numerical methods based upon
these data structures. The Fortran package SMMP [BD93] e.g. even offers sparse matrix-matrix
multiplication for the compressed row storage format.

These libraries were built for special purposes, and their performance can hardly be beat by other
approaches. However, they are not suitable for all applications, because of their rather monolithic
design, and their algorithms being restricted to a single type of data structure only. Extensions and
modifications were difficult and hardly possible without rewriting large parts of the code.

For example, the CBLAS library, which is an implementation of BLAS for C, comes with nearly
every source file in four variants: one for single precision real values, one for double precision real
values, one for single precision complex values and one for double precision complex values. This
replication of source text bloats up the code and is prone to errors. Mind also that changes to just
one algorithm that is equivalent for all these types (whether it be single or double, real or complex)
must be made in each of those files. This is of course due to the lack of native generic programming
in C, which in C++4 simply can be realized by templates.

In the 1990’s, with the appearance of C+4 and its great success, also new numerical libraries have
been devised. Packages like LAPACK++ (Linear Algebra PACKage in C++, [DPW93)), SparseLib++
[DLNF94] and MV++ [Pazd7] were the first steps towards object-oriented numerics. However, they
mostly were mere translations from their C predecessors, only encapsulating the functionality in C+-+
classes. Hardly any of these made use of the new C++ features like templates, operator overloading
or iterators.

It was only the next generation of numerical linear algebra libraries that incorporated these tech-
niques. Some of them shall be presented in the following.

Blitz++

The Blitz++ library [Vel98], [Vel0T] offers multidimensional arrays, including vectors, matrices and
tensors. It is restricted to dense arrays, so sparse matrices are not supported. Nevertheless it imple-
ments a very interesting approach to handle arbitrary expressions of arrays, such as

Z;:_av+w—x+ﬁy, Oé,ﬂeR,an,xay>zeRn‘ (23)

Carrying out this operation with normal BLLAS operations would consume three consecutive calls to
a saxpy function like in [Z) or a specialized function. In C++ with overloading the operators *, +
and - we were able to write without any further circumstances

z = —alpha * v + w - X + beta * y;

However, this would result in the need for five temporary vectors, and five loops being generated.
This is the reason why conventional approaches in C++ are so slow compared to Fortran. The
classical solution to this problem (in Fortran and C) would need specialized functions for each possible
expression. This is the reason, why in Blitz++ the expression template technique is used.

The idea is that the result of an operation like x+y is not a vector, but an instance of a new
type, a class template that models a vector expression. This type just stores the expression tree and
provides a member function like operator[] (int i), which evaluates the expression at entry i. No
assignment and no computation is done until the program execution reaches the assignment operator
=. Then only one loop is generated, which iterates over all entries i of the expression calling the
operator [] each time. Obviously, no temporary vectors need to be introduced.
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Expression templates were pioneered by Todd Veldhuizen [Vel95] and have proved to be nearly as
fast as Fortran codes, sometimes (for small vector sizes) even faster. In any case, this programming
technique offers a greater flexibility.

The lack of sparse matrix formats forbids the use of Blitz++ for our intention of implementing
algebraic multigrid. However, it provides an easy interface and powerful data structures for finite
differences and structured grids (stencils). This is due to the simplifications that can be applied in
these cases. Several other libraries and packages like EXPDE (see [PH01]) or POOMA go in the same
direction.

POOMA

POOMA [OId07] is a toolkit that was developed at the Los Alamos National Library, and which, like
Blitz++ targets dense vector, matrix and tensor computations. It also offers data structures that
contain grids for finite difference methods. Sparse matrix formats and linear algebra methods are not
directly supported.

Its main benefit however is the easy and automatic parallelization. Containers (for vectors, etc.)
can be split into patches and then be distributed over several processors.

POOMA also uses intensively techniques like template metaprogramming to supply the compiler
with as much information as possible already at compile time. The included Portable Ezxpression
Template Engine framework (PETE, [CCHT]) implements expression templates for POOMA’s data
structures. PETE can also be used to add expression template functionality to other array/vector
classes.

TNT

The Template Numerical Toolkit (TNT, [Poz02]) is intended to be the successor of LAPACK++ and
SparseLib+-+. It offers some dense matrix and vector formats, whereas the support for sparse matrices
is only rudimentary yet. Until now, templates were used only for specifying the entry type, and since no
iterators were used for abstraction, algorithms have to be written for every container type separately.
Moreover, sparse matrix-matrix multiplication is not supported.

MTL

The Matriz Template Library (MTL, [Sie99]) by Jeremy Siek surely is one of the most modern matrix
libraries available. It offers several types of matrices, including dense, banded and sparse. The user
can choose the type of matrix by specifying four template parameters: element type, shape, storage
and orientation. For example, the line

typedef matrix<double,rectangle<>,compressed<>,rowmajor>::type SparseMatrix;

defines SparseMatrix to be a type that stores a rectangular sparse matrix with double precision real
entries which are stored in the classical compressed row storage format.

Since the element type can be chosen via template parameter, and the data structure does not
have any requirements concerning the element type, one is not restricted to simple scalar types like
double or complex<double>, one may also use a matrix type here, which would lead to a matrix of
matrices.

As Blitz++, the MTL makes intensive use of template metaprogramming which can be seen as
an own language on template level, and which allows the user to specify every option that is known
at compile time, and then in turn allows the compiler to optimize the according data structures and
algorithms, see also Section

Furthermore, the MTL consequently separates data structures and algorithms, using iterators as
an intermediate abstraction layer.
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With the MTL comes the Iterative Template Library (ITL) that supplies the user with several
numerical linear algebra methods like Conjugate Gradient, GMRES, BiCGStab, etc.

Having all these advantages in mind, there are a few things to criticize. The construction of the
matrix classes with generators and the choice of several parameters shadows that, for example the
compressed row/column format is mainly implemented by the generic_comp2D<> class which in turn
is quite large and monolithic and seems to be built only for this single purpose, and is therefore hardly
reusable.

Another issue is the lack of possibilities to add additional functionality to existing data structures.
For example, we would like to add a view of the matrix that in row ¢ only gives us the strong neighbours
S; (see Definition BZ27).

Furthermore, the sparse matrix-matrix multiplication that the MTL provides is not suited for our
purposes, since it requires the size of the resulting matrix to be known in advance. Otherwise it returns
an error, at least in the current implementation.

Boost uBLAS

The Boost [Bad] project was started by members of the C++ Standards Committee Library Working
Group as an extension of the Standard Template Library (STL). Nowadays, according to their web
site, thousands of programmers contribute to it. It is a collection of several libraries that are built for
a wide range of purposes, among which are e.g. graph data structures and algorithms, quarternions,
regular expressions, etc. The focus of Boost is however the generic programming paradigm — most
libraries intensively use the template facilities of C++.

The Boost library for numerical linear algebra is the uBLAS [uBI] library. It was mainly designed
to implement the BLAS functionality on C++ level, with extensions such as several matrix types (such
as sparse, symmetric, banded, triangular matrices, etc.). Expression templates are used to efficiently
evaluate vector and matrix expressions.

However, its algorithms only allow matrices and vectors to be filled with scalar values. The
according traits only cooperate with the C/C++ builtin types and refuse to work when matrices or
vectors are in turn used as entry types.

Looking at uBLAS from a software design standpoint, one still observes very little code reusage.
For example, iterator classes are defined for each matrix class separately. Moreover, every matrix type
is an own class repeating standard member functions.

2.5 A classification of matrix types

A great amount of different storage formats has been devised in the past in order to represent the
mathematical properties of the matrices. The main reason was of course, to save space by leaving out
the zero elements. But also storing and accessing the matrix entries in a certain order, e.g. row-wise,
column-wise or diagonal-wise was useful for some algorithms. A good overview is presented e.g. in
[Saad0).

As we want to lay out the design for a new matrix library, we intend to investigate what these
storage formats have in common in order to identify orthogonal, independent and reusable components
which can be used to build matrix data structures.

2.5.1 Basic assumptions

We would like to formulate certain properties and interrelations of matrices in terms of the language
normally used for weighted and directed graphs.

First of all, we define graphs and mappings between graphs and matrices. Normally, a graph g is
defined as a tupel (V, E) of a set of vertices (or nodes) V and a set of edges E bewteen these vertices.
Here we use an only slightly different approach:
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Definition 2.5.1 (Graphs). Let K be a set of weight/entry values (usually, but not necessarily, a
field). Furthermore, let V;, be a set of vertices (or nodes) with cardinality #[Vn] =n € N.

1. A graph g is defined as a tupel (V,,, E) of a set of vertices V,, and a set of edges E bewteen these
vertices. An edge e € E from a vertex x € V, to a vertex y € V,, is denoted as (x,y) = e.

2. A directed graph or digraph is a graph where the edges have a direction, i.e. (x,y) # (y,z) for
r,y €V, £ y.

3. A weighted graph /digraph consists of edges E that also have a weight o € K. Its edges will be
denoted as e = (x,y, a).

4. Then we define Gy, := G(V,,,K) as the set of possible weighted digraphs with n vertices and where
each vertex x € V,, has at most one edge to another vertex.

5. The set B, := E(V,,K) is the set of possible weighted edges (x,y, ) with vertices x,y € V,, and
weight o € K.

A graph g € G(V,,K) is thus fully characterized by its set of edges E = E(g) C E(V,,,KK). A set
of edges E C E(V,,,K) on the other hand fully describes a graph g € G(V,,,K), which is why there
is an isomorphic mapping between the sets G(V,,,K) and E(V,,,IK). Thus, for our purposes, we will
identify a graph with its set of edges.

Remark 2.5.2. In the previous definition, the case x = y is explicitly allowed, i.e. there may be edges
(x,z) that point from one vertex x to itself. Thus for g € G,, we have for the cardinality of E(g) :

0 < #[E(g)] <n’

For n € IN let the index set I, = {1,...,n} denote the set of rows (columns) of (any) matrix
A € K™ We now use I, also as an index set for V,, : {v1,...,v,} and define the isomorhism

v:V,— I,
v; —o(i) =1, for wv; €V,.
We then introduce the mapping
®: GV, K) — K",
g— A, geGV,,K), A= (aij)ijl € K",
which maps g, or equivalently — because of the isomorphism between the sets G(V,,, K) and E(V,,, K)
— the edges of g, onto the matrix entries of A. It consists of the components &y, k= 1,...,# [E(g)}
with:
(I)k(($,y, Oé)) = Q=1 Ay(x)0(y) for (w,y,a) S E(g)
This mapping is only well-defined if restricted to the subset
D(Vm]K) = {g € G(Vm]K) ’ #[E(g)] = TLQ},

(also known as complete graphs), resulting in | D(V,,K) being an isomorphism. The mapping between
the remaining set

GV, K)\ D(V;,,K) = {g € G(V;,, K) | #[E(9)] < n*} =: S(V,,, K)
and IK™*™ has to be extended to be well-defined, using now the components

<I>(x, y) = Qy(x),0(y)
with

_Ja (z,y,a) € E(g),
o) oly) = 0 else.
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Remark 2.5.3. The sets D(V,,,K) and S(V,,,K) form the bridge between mathematics and computer
science. D(Vy,,K) corresponds to dense matrices i.e. matriz data structures, that store each matriz
entry, whether it be zero or not. The set S(V,,K) corresponds to sparse matrices, i.e. matriz data
structures, that avoid to store entries that are zero (assuming all entries that are not stored to be zero).

Definition 2.5.4 (Initial and terminal vertex). If e € E is an edge with e = (x,y), (or e = (z,y,®)
for weighted graphs) we define

source(e) 1= z,

target(e) :=y
we say that x is the initial vertex or source node of e, and j is its terminal vertex or target node.

With nnzy = # [E] we will denote the number of edges (nonzero entries). For reasons of simplicity
we will often identify a node z; € V,, with its index 4, and the set of nodes V,, with the set of indices
I, C IN.

Remark 2.5.5. We can extend this view to arbitrary rectangular matrices A € R™ ™ by considering
two sets, the set of source nodes Vg := {s1,...,8,} and the set of target nodes Vp := {ty,... ty,}. For
n < m we have Vg C Vr, for n > m we have Vi C V. For square matrices, the sets are equal.

Assumption 2.5.6. Furthermore we demand E(g) to have some ordering, such that the edge infor-
mation can be stored in one sequence. This implies an ordering of the matriz entries of the associated
matriz ®(g).

We haven’t specified an order of the sequence of edges yet, since any reasonable order is possible,
as long as we interprete it in the correct way. This means, as long as we are able to identify the
position (i, 7) of an edge e while iterating through the sequence of edges, the ordering is considered to
be valid. However, for the moment, we will restrict ourselves to the following ordering:

Assumption 2.5.7 (Row major ordering). H 7he edges in E are ordered ascendingly by their source
nodes such that edges with the same source node are ordered ascendingly by their target node. This
means, for elements e;, ej from the sequence of edges with i # j and

€; = (.%',y) Tesp. (m,y,a)

e; = (v,w) resp. (u,w, )

we have:

i<j <= (r<u) or (r=u and y<w).

Of course, other orderings may be possible, for example the column major ordering of A which is
equivalent to row major ordering of the matrix A”. Another common way is the ordering by diagonals,
which is suitable e.g. for band matrices.

An example for the row major ordering is illustrated by the graph in Figure Il and its adjacency

matrix in Figure 22 Once the nodes are numbered, the edges have an unequivocal ordering, shown
in Table Z11

3This determination is arbitrary, and only to illustrate the idea in what follows. A column major ordering would be
just as fine. Later on we will relax this restriction to include other orderings.
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Figure 2.2: Adjacency matrix

Figure 2.1: Graph

edge number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
source 11 1 1 2 2 2 3 3 3 4 4 4 4
target 12 3 4 1 2 4 1 3 4 1 2 3 4

Table 2.1: Edge sequence

We can now define the neighbourhood of a node in the graph context.

Definition 2.5.8 (Neighbourhood). The full neighbourhood of a node i € Vs consists of all nodes
7 € Vi to which there is an edge that has © as a source node:

N; =1{j € Vr| Je € E : target(e) = j A source(e) =i},
whereas the pure neighbourhood Nj; of i will be defined without the node i itself:
N; = N\ {i}. (2.4)

Remark 2.5.9. The reason for the definitions of the two different neighbourhood sets Nj and Nj is
that in Section [23, in the AMG context, we will use merely ([2-4)), which is equivalent to Definition
[ZZ71d However, for many considerations, it is more reasonable to work with the full neighbourhood,
therefore the term Nj is introduced here, to achieve a consistent notation.

From these assumptions and observations, we now want to abstract a storage format for general
matrix types.

2.5.2 Basic storage concept

Looking at what storage formats (for a summary see [Saad(]) like the Compressed Row Storage (CRS,
also referred to as Compressed Sparse Row, CRS or the Yale sparse matrix format), the Modified
Compressed Row Storage or the Block Compressed Row Storage have in common with (row major)
dense matrices, we observe that the entries are ordered row-wise, eventually leaving out all (or most
of) the zero entries. Again the entries might be stored in only one sequence, row by row.

The Symmetric Sparse Skyline Storage is equivalent to storing either only the lower or only the
upper part of a symmetric matrix in the Compressed Row Storage.
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The Symmetric Skyline Storage is similar to the last format, except, that it stores the dense rows
with varying lengths. For every row, from the first nonzero entry to the diagonal (respectively from
the diagonal to the last entry) everything is stored. This of course might lead to storing some zero
entries, however it makes indexing easier since the according column indices don’t need to be stored,
except for the first one.

A scheme like the Coordinate Storage, although usually not ordered in the sense of Assumption
57 might be reordered and then interpreted in the above way.

The Nonsymmetric Skyline Storage and the Unsymmetric Sparse Skyline Storage differ from the
symmetric versions by storing the (strict) lower part in the Symmetric (Sparse) Skyline Storage and
the upper part in a column oriented Symmetric (Sparse) Skyline Format (i.e. storing the transpose of
the upper part in the Symmetric (Sparse) Skyline Storage).

Orthogonal properties

From the differences and common properties of the above storage formats we deduce now an abstract
formulation of matrix formats. Basically, it is a generalization of the CRS (and similar) formats. It is
characterized by the following properties:

1. The type of the matrix entries. This is typically a type for simple scalar values like double
or float. But we might want to store a matrix which again has matrices as entries e.g. in
applications where the whole matrix has a block substructure like mentioned in Sections
and ZZ4] and as introduced in Chapter [

2. The type of the indices. This is usually some common signed or unsigned integer type like short,
int, long int, etc.

3. The vertical dimension and whether it is fized at compile time (and thus equal for all objects of
this class), constant at run time (different objects of this class can have different dimensions) or
variable (the dimension of a matrix object can be changed during run time).

4. The horizontal dimension with the same three options as for the vertical dimension.

5. The type of sequence of the index j; € Vp of the first target node of a source node ¢ € Vg. The
Jji’s may vary with ¢ (sparse formats) or be constant (dense format) independently of 7. If it is
constant we may want to distinguish a constant already known at compile time (we will call this
fized) from one not known before run time. If it varies, we may want to distinguish between the
type of variation: it might be computable out of i, or it might be completely random (we will
call this arbitrary).

6. The number of target nodes € V of a source node i € Vg, i.e. the cardinality of A;. Again we
have the choice of constant, fized, computable and arbitrary.

7. The type of numbering of the target nodes. This may be consecutive, meaning an integer interval
(in a dense matrix or the Skyline Storage format) or arbitrary (in a usual sparse matrix).

8. The values of the weights. These are of course usually arbitrary, but we might think of cases
when they are constant (e.g. Hadamard matrices) or fized (e.g. permutation matrices, adjacency
or incidence matrices). One may also consider matrices that have entries that are computable
out of i € Vg and j € Vp (e.g. Hilbert matrices).

Remark 2.5.10. As one can easily see, the above properties do not influence each other, in the sense
that the choice of one concrete property doesn’t restrict the choice of the other properties. Thus we
will call these properties orthogonal.
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These 8 properties form the basis of our domain specific language (DSL). A DSL is the language that
provides a set of terms to describe a certain field of interest under the aspect of software engineering
(see e.g. [Ben8O] or [CENN]). We will use the DSL as an input to a type generator (see Section B to
construct a desired type — in our case a specific matrix type.

2.5.3 Resulting matrix types

Let A € R™*" and the number of a source node (= row index) be denoted with i € Vg. Then # [,/\_/Z]
denotes the number of target nodes of 7. f is some simple function with

Ve —=Vp, f(i) — #[Ni].

. arbitrary numbering of target consecutive numbering of
target node size
nodes target nodes
arbitrar number
Y e general sparse matrix e variable band matrix
of target mnodes: )
(compressed row storage) (skyline storage)

# [./\_/Z] = const

e Hessenberg matrix,

e dense lower triangular

f
computable out of i matrix (f(i) = 1),

#[Ni] = f(i) # const
e dense strict upper triangular
matrix (f(i) =n — 1)

constant number

of target nodes: e matrices arising from e dense matrix (k = n),
#[N;] =keN,Vie ﬁr.nte dlﬁ.‘ere.nce methods e band matrix (k < n),

I (only known at with periodic boundary

run time) conditions e diagonal matrix (k = 1)
fized number of tar-

get nodes: # [M] = e permutation matrix (k = 1), e small dense matrices like
ke INVi € [ local point stiffness matrices
(known at compile e incidence matrix (k = 2) as in (1)

time)

Table 2.2: Resulting matrix types

Table now shows some examples of the matrix types that can be constructed when combining
different types of target node numbering and different target node sizes. Note that, the matrix types in
the right column of the table are not fully characterized by simply stating that they have a consecutive
target node numbering — they need a first target index for each node ¢ (cf. property H above).
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As one can see in this table, many different formats which are suitable for specially structured
matrices already arise from the storage concept presented in the last section. But the table shows only
one slice of the combinatorial possibilities. Looking only at the orthogonal properties 3 to 8 in Section
we get the theoretically number of 3-3-4-4-2-4 = 1152 possible matrix types. However, it is
not claimed that all of them might be sensible or useful, which is why not all fields in Table EZ2 can
filled with an according matrix type.

2.5.4 Additional properties

Afar from the resulting types described above, this should not be the end of the possibilities. For
example we would possibly like to have a feature like in the Modified Row Storage, that allows us to
directly access the diagonal entries of the matrix.

For some types, we might want to have a random access on matrix entries, or we might want to
distinguish different ways to traverse with an iterator through the elements of the matrix.

Maybe, we would like to have a view on the matrix that gives us access to a submatrix only, or to
an arbitrary subset of the matrix entries (for example only the strong negative neighbourhood §; for
every row index ).

To be exact we would like to have the following features:

9. Random Access. Choices: true or false.

10. One dimensional iterator access. Conceives the matrix as a linear sequence of data, providing
one iterator to access all (physically) nonzero elements in a specific order defined by a basic
definition like Assumption 57 Choices: true or false.

11. Two dimensional iterator access. Provides a two dimensional view on the matrix by interpreting
it as a sequence of sequences (n rows with nonzero entries). Choices: true or false.

12. Diagonal access. Provides an iterator that traverses only through the diagonal entries. Choices:
true or false.

13. Orientation. Choices: row-wise or column-wise.



Chapter 3

Software components for numerical
linear algebra

In this chapter, the library Matriz Layers and Templates for Object-oriented Numerics (MiLTON) is
introduced, as well as the components it is made of (see Figure Bl). MiLTON is designed to supply
diverse matrix data types. They are assembled out of various smaller components, which we refer
to as layers (cf. Sections and B3)). These in turn use several simpler data structures (sequences,
functors and iterators), which are outlined in Section Bl
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Figure 3.1: Library structure

In Section B4l we describe the object construction mechanism. The metaprogramming constructs

21
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and traits are depicted in Section Afterwards in Section we show how to assemble the types
and give type generation rules. Section deals with the expression templates concept for matrix
expressions (products and sums). The last section takes a look on the matrix-vector operations and
its performance behaviour in comparison with another matrix library.

3.1 Simple data structures

The layers from which the actual matrix types are assembled, are built on top of simple data structures
like sequences, functors, and iterators. Many of these classes seem to be trivial — and some of them
are indeed. However, they are indispensible for our software construction purposes. Another reason
for building these small classes, is that the smaller or simpler a class is, the easier it is also to adhere
to the programming by contract paradigm. In contrast the syntax of a large class is often hard to
maintain (and to understand).

Since many of these simple types didn’t exist (at least not in that combination and with the desired
properties) in a standard library, we had to provide them. These classes constitute the atoms of our
library. They may however be replaced easily with standard components or classes from other libraries
— as long as they provide the according interface — if these promise a better performance, for example.

The UML diagram in Bl already gives a short overview of the library structure. Roughly speaking,
the more to the top a type is plotted, the higher is its level of complexity. The description of the
library will follow the diagram roughly from the bottom to the top.

3.1.1 Functors

Functors or function objects were already described e.g. in [Six97], Section 18.4, and are an essential
part of the STL. Functors are usually simple (small) objects, that provide

result_type operator() (argument_type_1 al,..., argument_typen an)

as a member function. They are used for specifying a method for other functions (e.g. modifying
sequence functions like for_each() from the STL). In C, this was usually done with function pointers.
The advantage of a function object however is that its class can even be passed as an argument for a
template class, since it is known at compile time.

The STL provides some predefined functors like plus, multiplies, negate, etc. in the functional
header file. However these are not sufficient for our purposes. For our library we supply the following
functor classes:

Name: template <class A>
class identity;
derived from: wunary_function<A,A>

supplies: const A operator() (const A% i) const
purpose: operator () (i) delivers i for every i of type A
Name: template <class A, class R>

class linear;

derived from: wunary_function<A,R>

supplies: const R operator() (const A% i) const

purpose: operator () (i) delivers factor * i for every i of type A.
The value of factor is supplied with the contructor.
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Name:

derived from:

template <class A, class R, A factor>
class fixed_ linear;
unary_function<A,R>

supplies: const R operator() (const A& i) const

purpose: operator () (1) delivers factor * i for every i of type A.
The value of factor is supplied as a template argument.

Name: template <class A>

derived from:

class constant;
unary_function<A,A> binary_function<A,A,A>

supplies: const R operator() (const A& i) const
const R operator() (const A% i, const A% j) const
purpose: operator () (i) and operator() (i, j) deliver value for every i,j
of type A. The value of value is supplied with the contructor.
Name: template <class A, A value>

derived from:

class fixed_constant;
unary_function<A,A> binary_function<A,A,A>

supplies: const R operator() (const A& i) const
const R operator() (const A& i, const A& j) const
purpose: operator () (i) and operator() (i, j) deliver value for every i,j
of type A. The value of value is supplied as a template argument.
Name: template <class Al, class A2, class A3, class R>

derived from:

class addmul;
trinary function<Al,A2,A3,R>

supplies: const R& operator() (const Al& a, const A2& x, A3& y) const
purpose: operator () (a,x,y) computesy = y + (a * x).
Name: template <class Al, class A2, class A3, class R>

derived from:

supplies:
purpose:

class submul;

trinary function<Al,A2,A3,R>

const R& operator() (const Al& a, const A2& x, A3& y) const
operator () (a,x,y) computesy = y - (a * x).

Functors can be conceived as be a generalization of functions and objects. They have a type that

can be passed as a template argument to other classes or template functions. They can be instantiated
as an object. And the () operator can be called on them like a function call.

This is the reason for the existance of such simple functors like identity and linear.

3.1.2 Sequences

We use the term sequence for data structures, that offer a linear access to their data, i.e. that can be
traversed linearly (with an iterator). Thus, vectors (arrays), lists, stacks and queues are sequences.
But with this term, we explicitly would like to include mathematical sequences as well. This leads to
a unified approach because mathematical sequences then can be also supplied as a genuine C++ type.
The idea of sequences can be seen as a design pattern.
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Sequence information types

In Section Z52 we have distinguished between different types of information that is stored in a
sequence. This is due to the fact, that we have abstracted from the view of a sequence as a mere array
of data. Besides being traversable (with, e.g. an iterator), we define sequences to be data structures
that have

e an index type (for the size and random access by an index)
e a value type for the entries,
e a length/size,

e and an information type.

While the first three are self-explanatory, we mean by the fourth property the way, the information
is stored (or gained). It can have the following values:

e constant: the value at a certain position 7 is a constant value ¢, independently of 7. The value
of ¢ is not known at compile time.

e fized: the value at position i is a constant value ¢ independently of i. The value of ¢ is already
known at compile time.

e computable: the value at position ¢ can be computed by a function f out of .

e arbitrary: the value at position ¢ cannot be computed by a function, and thus must be stored
explicitly (e.g. in an array).

One might argue, that at least constant values are a special case of computable values (with the
special function f(i) := ¢, Vi. This is indeed correct, but the constant property type is provided for
convenience in this library.

Note that sequences of the first three types are of course read-only, whereas the arbitrary type is
the only sequence where information can be overwritten.

The sequences implented in this library are further described in the Appendix

3.1.3 Iterators

The concept of iterators is a powerful abstraction, a design pattern, that was created as a medium
layer between a container/data structure and an algorithm operating on this container. An iterator
itself is a data type that allows (indirect) access to the containers’ data.

In the STL, some of the iterators are implemented as classes (e.g. the std::1list and std::map
iterators) some are only pointers (the one from std::vector). A main philosophy in designing C++
was to give iterators the same interface as pointers, in order to use them exchangeably in generic
algorithms.

Within our library, every iterator that is exported in the interface, is implemented as a class,
except for iterators that originate from the arbitrary data sequences. Moreover, for the small helper
data structures that are used internally we need appropriate iterators.

In order to do so, we need to extend the classical iterator concept and introduce a further ab-
straction. An iterator is not anymore a simple pointer to an existing block of data somewhere in the
computers’ memory. It may not point to any position in the heap (or stack) at all. If we have an
iterator for a constant value sequence, the constant value is, of course, stored only once and not in an
array with the same value in every position. Incrementing the iterator now only means to increment
an internal index, but no real position in the memory.
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All these iterators are constructed with a starting index (which defaults to zero in the default
constructor) in order to implement the indexed iterator pattern.

Furthermore, as we want to give searching algorithms a hint, what kind of sequence they are
treating, we extended the iterator categories.

3.2 Mixin Programming

The method of our choice to implement the functionality indicated by the orthogonal properties de-
scribed in Section is influenced by a technique called mixin layers. Mixins are a programming
style that was originally introduced by Flavors [Dav86], an extension of the Lisp programming lan-
guage. Later on it was adapted to the C+4 programming language (cf. [SBI§], [SBO0]).

In this section we would like to introduce the concept of layer based programming in contrast to
the classical object-oriented software construction.

3.2.1 Multiple inheritance

In the traditional object-oriented software design, the subject of interest is modelled with classes.
Relationships between theses classes are modelled by inheritance or aggregation. This leads to a strict
hierarchy in a software model.

For example, we construct data structures by writing classes which are subclasses of one or more
other classes. If we want to accumulate functionality in a class, we need to specify all base classes
(directly or indirectly) when we write this class. Thus, the inheritane tree is fixed and cannot be
changed without rewriting the classes as we see in the example UML diagram in Figure B2

Figure 3.2: Classical multiple inheritance

Multiple inheritance is supported for example by C+-+ and EIFFEL. However, not all object-
oriented programming languages support the inheritance from multiple base classes. The designers of
Java, for example, decided to restrict the language to only single inheritance, meaning that a class
can inherit from only one base class. The reason for this restriction lies in two main problems which
can arise when using multiple inheritance:

e Ambiguous methods in two or more base classes. A subclass intends to call a method, that is
defined in more than one base class, cf. Figure This type of error however, can be reported
by the compiler. In EIFFEL, this problem is solved by redefining the according methods in
the subclass. In C++, name conflicts are resolved by calling a member explicitly with the
classname: :membername convention (qualified call).
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A

+ method1() : vqid

+ method1() : void

Cc

+ method1() : void

D

D::method2()
+ method2() : void {

method1();
}

Figure 3.3: Ambiguous methods

e Diamond inheritance, cf. Figure B4l If A is a virtual base class of B and C (that means, there
is only one copy of A included in D), we have the situation that A::method() is called twice
when we invoke D: :method(). There may be cases where this is not the desired behaviour (cf.

[PSM97).

A

+ method1() : void

/ \/

+ method1() : vqid

Cc

+ method1() :7void

D

+ method2() : void

D::method2()

{
B::method1();
C::method1();

}

Figure 3.4: Diamond inheritance

Although there are individual solutions to the above described problems, multiple inheritance stays
a source of programming flaws, and every programmer has to use it with great care in his design. Thus,
efforts were being made to linearize the inheritance, e.g. the phunctor approach in [PSM97]. Another
approach are mixins.
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3.2.2 Mixins

The problems with multiple inheritance are not the only drawbacks of classical inheritance in object-
oriented programming languages. Another one is that a subclass cannot be defined without specifying
its base class. This is overcome by the mizin programming construct (also referred to as abstract
subclasses in [BCI0]). The class a mixin inherits from, is specified at the place of instantiation, rather
than at the place of definition of the mixin class.

Mixins classes are most commonly implemented using parameterized inheritance. The idea is now
to specify the base class as a (template) parameter. This concept is indicated in the UML diagram in
Figure The classes A_1, A2, ..., A.n are now designed as mixin layers. They are not a part of a
larger class hierarchy and thus can be written independently of other classes. The user/programmer
now can linearly combine the components to bigger data structures that unite their functionality. In
order to terminate the inheritance tree at the top, we need some normal base class at the end.

L /TT L
\

Base T 1 T2 T3 Tn

>/
(98
>
=

1 A2

Figure 3.5: Mixin components

Remark 3.2.1. We would like to point out on this occasion, that UML class diagrams are not able
to describe the mizin layer paradigm to the full extent. For example, UML doesn’t have a feature to
clearly indicate that a class inherits from its template parameter. And especially for the possibilities
of C++ concerning the implementation of mixin layers, it has no graphical analogon. Nevertheless,
we try to illustrate the idea of mizins with example diagrams wherever it seems possible.

In C++ a mixin can be defined using template classes:

Mixin in C++

template <class T_1>
class A_1 : public T_1
{
... \\ class A_1 definition
3

Mixins basically are intended to combine two solutions of modern object oriented software con-
struction problems. On the one hand, the linearization of inheritance supersedes multiple inheritance,
and on the other hand they allow the reuse of single software components without changing the class
hierachy.
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Base A 1 A2 A n-1

Base

2
Figure 3.6: Example mixin composition

3.2.3 Mixin layers

Mixins layers are a variant of the mixin technique, intended for constructing arbitrary complex data
structures out of small components. These components might be assembled in (nearly) any combina-
tion and order. Mixin layers were proposed in [SBI§| as an implementation technique for collaboration
based designs. Collaborations are a method to describe interdependencies of objects in an object-
oriented design. A set of objects and protocol of interaction form a collaboration. The part of an
object that satisfies a protocol of a certain collaboration is called the object’s role in the collaboration.

An object can now participate in different collaborations as well as different objects can participate
in the same collaboration. A whole software product is then defined as the composition of different
(ideally) independent collaborations

In [SB0OZ] it was suggested to implement mixin layers in C++ using nested classes to represent the
different roles:

Mixin layer

template <class BaseLayer>
class Layer : public Baselayer

{
public:
class FirstClass : public Baselayer::FirstClass

{
s
class SecondClass : public Baselayer::SecondClass

{

};

3.3 Functional layers

In our library we extend the approach that was described in the previous section. Here the nested
class is parameterized with the type from the bottom of the inheritance tree (which is reduced to a



3.3. FUNCTIONAL LAYERS 29

mere inheritance list). The whole functionality of the layer is implemented in the nested class Type.

Functional layer

template <class BaseLayer>

class Layer

{

public:
template <class Final>
class Type : public Baselayer::template Type<Final>
{

};
};

The idea is to (nearly) arbitrarily combine and accumulate data and functionality. If we need our
matrix type to fulfill a certain interface, we simply add the according layer(s) to the type.

In order to construct a complete class, it is necessary to have a (rather simple) base class at the
top to start with, and a class at the bottom to finalize the whole type. These classes are referred to
as the Base layer and the Final layer.

This ensures that the complete type is known at each layer of the composition and e.g. a function
that wants to return a reference to the current object (*this) can do this by calling the according
function from the Base layer.

3.3.1 The base layer

The Base layer resides at the top of the inheritance list. Each nested class in each layer inherits from
the according class in the Base layer.

Base layer

struct Base
{
template <class Final_>
class Type
{
public:
Type O
{r
template <typename Arg_>
Type(Arg_& arg)
{3
typedef Final_ Final;
Final & final()
{
return *static_cast<Final*>(this);
}
Final const & final() const
{
return *static_cast<Final const*>(this);
}
};
};
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The empty templatized constructor is embodied in this class since it is part of the main constructor
mechanism. Each layer has got such a constructor (besides the default constructor), it is a part of the
solution to the constructor problem in mixin-based programming.

The constructor mechanism for our matrix types and the associated parameter aggregates are
described in more detail in section B4l

Using the default constructor is always possible for our matrix types. All data members are then
initialized to their default values. Depending on the used layers and their configuration we then might
have an empty 0 x 0 matrix (usually for sparse matrix types) or a n x m matrix with nnz entries (if
n,m,nnz are known at compile time).

3.3.2 The final layer

The Final layer resides at the bottom of each inheritance list. It is needed to finalize the type and
to pass this finalized type through the complete hierarchy to the Base layer at the top. In addition
to that, it encompasses functions that are essential for the expression templates (see Section B con-
struct (the functions compute () and deleteTmp () as well as the operators += and =).

Final layer

template <class Base_>
struct Final
{
class Type : public Base_::template Type<Type>
{
private:
typedef typename Base_::template Type<Type> BaseType_;
public:
Type() : BaseType_Q)
{3
template <typename Arg_>
Type(Arg_& arg) : BaseType_(arg)
{
s
+;

3.3.3 Layer configuration

The following classes are the layers that actually implement the orthogonal properties mentioned in
Remark EER.T0l There is no real one-to-one mapping of properties to layers, since e.g. is not possible
(and not sensible) to separate the value of the vertical dimension of a matrix (say, 100) from its type
(say, int) in the implementation. However it is possible, through the template mechanisms of C++, to
specify them independently. The type, of course, has to be specified at compile time already, whereas
for the value we have the choice of definition at compile or run time.

These options are passed to the layer class by using the matrix layer configuration construct. This
can be any class that contains at least the subtypes ContainerType and MemoryClass. Our library
offers two types of configuration classes, FixedConfig for compile-time constants and LayerConfig
for any other storage type (mainly run-time automatic variables, pointers, and classes with static
interfaces).

Layer configuration

template <class ContainerType_,
class MemoryClass_=Value,
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class WeightMemoryType_=Value>
struct LayerConfig
{
typedef ContainerType_ ContainerType;
typedef MemoryClass_ MemoryClass;
typedef WeightMemoryType_ WeightMemoryType;
I

Fixed value configuration

template <class T, T i>

struct FixedConfig

{
typedef T ContainerType;
typedef Fixed MemoryClass;
static const T member = ij;

};

ContainerType specifies in which kind of data structure the data of the layer is stored. For a dimen-
sion this would be e.g. unsigned int. For the matrix entries this could be e.g. std: :vector<double>
or an array of a fixed length (however it can’t be a C-type array like double a[100] since this is not
an own type). The MemoryClass subtype determines how the type is stored in the layer. Here we have
the choices of Value, Pointer, Reference, Static or Fixed. However the last choice only makes sense
in combination with the FixedConfig struct, which is simply an implementation of a singleton design
pattern. There, we have a compile time constant, stored in the configuration class. This concept
enables the Member layer to access the data by

e a normal automatic variable,
e a pointer,

e a reference,

static functions ,
e or as a compile time constant

(see Section BAl). More about the WeightMemoryType subtype can be found at the description of the
WeightValuesLayer.

3.3.4 Layer data storage concept

The goal of this concept is to separate the storage of the data from the functionality and the algorithms.

We can achieve this by using an additional class that stores the data member in one of the five
ways mentioned above. It is realized by the Member template class.

There are basically two ways to make use of the stored data in the Member class. They are based
on the prerequisites the according data type complies with. If it is just a variable of a type not
further specified, we may simply want to encapsulate it. If it is a sequence (container) we may want
to encapsulate its functionality.
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Layer name tags

In order to store and to retrieve data with this standardized Member layer, we need to attach a tag to
it. This is just an empty struct with an appropriate name. If we intend to store some data with the
name VariableName we need to define the tag

Layer name tag

struct VariableName {};

for the layer VariableNameLayer. Adressing classes or functions via such name tags is a simple
but indispensable metaprogramming technique, since the value of a tag is evaluated during compile
time.

The Member layer

Whenever a layer needs to store data to implement its functionality, it needs an accompanying Member
layer. In this case, the Member layer is made the direct base class of the funtionality layer.

Standard Member layer

template <class BaseType_,

class Config,

class MemberName,

class SizeType,

class MemoryClass=Value>
class Member : public BaseType_

{
private:
typedef typename Config::ContainerType MemberType;
public:
typedef BaseType_ BaseType;
private:
mutable MemberType member;
public:
Member () : BaseType(), member ()
{3

template <typename Arg_>
Member (const MemberType& member_, Arg & arg) : BaseType(arg)
{
SizeType size = arg.getSize(MemberName());
if (size == 0)
member = member_;
else
member = MemberType(size);
}
const MemberType& getMember () const
{
return member;
}

void setMember (const MemberType& member_)

{

member = member_;
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}

template <class OtherType>

void setMember (OtherType& othermember)
{

member = othermember;

};

This template class is specialized for the several memory types mentioned in Section B33l Here
we just show some excerpts from the specializations for Static and Fixed.

Member layer for static functions

template <class BaseType, class Config, class MemberName, class SizeType>
class Member<BaseType,Config,MemberName,SizeType,Static> : public BaseType
{

private:

typedef typename Config::ContainerType MemberType;
public:

Member () : BaseType()

{}

template <typename Arg_>
Member (const MemberType& member_, Arg & arg) : BaseType(arg)

{}
static const MemberType getMember ()
{
return typename Config::member();
¥
static const SizeType getMemberSize ()
{
return Config: :member::size();
¥
static typename Config::member::iterator begin()
{
return Config: :member: :begin();
}
static typename Config::member::iterator end()
{
return Config: :member: :begin();
}

};

Member layer for fixed values

template <class BaseType, class Config, class MemberName, class SizeType>
class Member<BaseType,Config,MemberName,SizeType,Fixed> : public BaseType
{
private:

typedef typename Config::ContainerType MemberType;

public:
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Member () : BaseType()
{3
template <typename Arg >
Member (const MemberType& member_, Arg_& arg) : BaseType(arg)
{3
static const MemberType getMember ()
{
return Config::member;
}
3

3.3.5 Variable encapsulation

By encapsulation of a variable we mean that only the variable itself is of interest, rather than its
member functions. This variable is referred to directly. If e.g. the variable to be stored has the name
VariableName, it can be accessed via the function getVariableName (). This type of storage merely
makes sense for small, simple types such as built-in types or small-sized containers.

The template parameter Base_ specifies the preceding layer and is passed as a parameter to the
Member layer whereas the Config parameter defines which specialization is going to be used.

Variable encapsulation

template <class Base_, class Config>
struct VariableNameLayer
{
template <class Final_>
class Type : public Member<typename Base_::template Type<Final_>,
Config,
VariableName ,
typename Config::ContainerType,
typename Config::MemoryClass>
{
public:
typedef typename Config::ContainerType VariableNameType;
typedef VariableNameType size_type;
private:
typedef typename Base_::template Type<Final_> Baselayer;
typedef Member<Baselayer,
Config,
VariableName ,
size_type,
typename Config::MemoryClass> BaseType_;
typedef Data<typename Baselayer::DataType,
VerticalDimension,
VerticalDimensionType,
size_type,
Value> ParameterType;
typedef Type<Final_> Type_;
public:
Type() : BaseType_Q)
{3
template <typename Arg_>
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} .

};

)

Type(Arg_& arg) : BaseType_(arg.getValue(VariableName()) ,arg)
{3
void setVariableName (VariableNameType d)
{
BaseType_: :setMember(d) ;
}
VariableNameType getVariableName ()

{
return BaseType_::getMember();

Examples for variable encapsulation in our library are:

VerticalDimensionLayer: This layer is responsible for storing the vertical dimension, i.e. the
number of rows of the matrix. It has getVerticalDimension() as the only accessor function
delivering of course what its name suggests.

HorizontalDimensionLayer: It obviously does the same as the previous one, just for the hori-
zontal dimension, i.e. the number of columns.

EncapsulationLayer: The encapsulation layer is a special variant of variable encapsulation.
Where all other layers are intended to be built on top of another layer (which is yet an incomplete
type), the encapsulation layer is used to add functionality to an existing, complete (matrix) type.
If e.g. an algorithm has certain requirements for a data structure (concerning the functionality)
that the current one doesn’t fulfill, then the type can be encapsulated in this layer and extended
with other layers that implement the desired interface.

Note that the setVariableName () member function is only accessible (and sensible), if MemoryClass
is not Fixed. Trying to instantiate that member function would result in a compile time error, since
the specialization of Member for fixed values doesn’t have an according member function.

3.3.6 Sequence encapsulation

If the stored data is known to be a sequence, then we are interested in encapsulating its functionality,
meaning its member functions. For that purpose, we revert to a small set of member functions that
are also widely used by the STL containers.

Sequence encapsulation

{

template <class Base_, class Config>
struct SequenceNameLayer

template <class Final_>
class Type : public Member<typename Base_::template Type<Final_ >,

{

public:

Config,

SequencelName SequencelName ,

typename Config::ContainerType: :size_type,
typename Config::MemoryClass>

typedef typename Base_::template Type<Final_> Baselayer;
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typedef typename Config::ContainerType SequenceNameContainerType;

typedef typename SequenceNameContainerType::iterator
SequenceNameIterator;

typedef typename SequencelNameContainerType::const_iterator
ConstSequenceNameIterator;

typedef typename SequenceNameContainerType::value_type value_type;

typedef typename SequenceNameContainerType::size_type size_type;

typedef SequenceName LayerName;

typedef Config LayerConfig;

private:
typedef Member<Baselayer,
Config,
SequencelName ,

size_type,
typename Config::MemoryClass> BaseType_;
typedef Type<Final_> Type_;

public:
typedef Data<typename Baselayer::DataType,
SequencelName ,
SequencelNameContainerType,
size_type,
typename Config::MemoryClass> ParameterType;
public:
Type() : BaseType_Q)
{3

template <typename Arg_>
Type(Arg_& arg) : BaseType_(arg.getValue(SequenceName ()) ,arg)

{3
SequenceNameIterator SequencelName _begin()
{
return BaseType_::begin();
}
SequenceNameIterator SequenceName _end()
{
return BaseType_::end();
}
ConstSequenceNameIterator SequenceName_begin() const
{
return BaseType_::begin();
}
ConstSequenceNameIterator SequenceName_end() const
{
return BaseType_::end();
}
s
+;
In addition to the iterator delivering ...begin() and ...end() functions, each layer may define

other member functions that offer valuable information about the sequence, like e.g. the length.

Examples for sequence encapsulation in our library include:
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e EdgeTargetsLayer: The layer of edge targets is responsible for storing the numbers/indices of
the targets of the edges (very much like the bottom row in Table EZI) consecutively. The order
of theses edge targets is not fixed - it depends on how the surrounding layers interprete them.
But normally we have row-by-row or column-by-column ordering.

The additional accessor function number0OfEdges () delivers the total number of edges (i.e. the
number of nonzero entries in the matrix) that can be stored. The EdgeTargets begin() and
EdgeTargets_end() member functions deliver STL-like iterators that iterate through the se-
quence of edge targets.

This layer is only of importance for sparse matrix types, i.e. matrix types where the numbering
of the neighbouring targets is arbitrary (not consecutive and not even computable). Thus for
dense matrices we need a different approach with the FirstTargetsLayer.

e NeighbourhoodStartsLayer: The neighbourhood starts layer is devised to give a sequence that
stores information about where in the ordered sequence of edges a new neighbourhood begins. For
sparse matrices, NeighbourhoodStarts_begin() [i] gives the index where the neighbourhood
of node (variable) i starts in edge target sequence (and in the weight value sequence).

In order to make use of this information, the sequence of edge targets from the EdgeTargetsLayer
doesn’t even need to exist. For every matrix NeighbourhoodStarts begin() [i] states the num-
ber of edges (nonzero entries) that are stored before A;. Thus

NeighbourhoodStarts begin() [i+1] - NeighbourhoodStarts begin() [i]
gives the cardinality of NV (i.e. the length of the i-th row/column).

e WeightValuesLayer: This layer stores the weights of the edges (i.e. the values of the matrix
entries) in one long sequence of type Config::ContainerType, which must provide an STL
type iterator. Thus, in the Member layer, a variable of type Config: :ContainerType stores all
nonzero elements of the matrix.

The only accessor functions that this layer adds to the matrix type are WeightValues begin()
and WeightValues_end (), which yield an iterator that point to the start, respectively behind
the end of the weight sequence.

e FirstTargetsLayer: The layer for the first targets sequence is needed for dense matrix types.
Dense matrices differ from sparse matrices in the type of sequence they store their index infor-
mation. The numbering of their neighbourhood is consecutive and not arbitrary, thus, we could
use a function value sequence, see Section [AZ2 for that purpose.

However, it would be cumbersome to construct one long sequence containing all targets of all
nodes like it is provided in the edge targets layer, since in this case we somehow had to combine
multiple sequences into one.

Instead, we provide a layer, that stores the first target index for each node. For full dense
matrices, this sequence would be a constant (or even fixed) value sequence with the value 0
(since we have zero based indices). Banded matrices may use a function value sequence at this
point.

The information in the first target sequence is used by other layers later in the hierarchy in order
e.g. to construct appropriate row-wise iterators.

e SliceLayer: The slice layer can be used to indicate a subset of the matrix. More precisely, it
defines one target node for each source node. It may be used e.g. to store the indices of the
diagonal entries of a matrix.
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e StrongNeighbourhoodLayer: The strong neighbourhood layer is capable of computing and

storing the strong neighbourhood of a variable (cf. Sections and resp. BZ7).

The member function computeStrongNeighbours() triggers the computation. Afterwards, the
sequence of strong neighbourhoods can be accessed via the StrongNeighbourhood begin() and
StrongNeighbourhood_end () member functions.

SplittingLayer: This layer offers to generate a splitting based on the previously computed
strong neighbourhoods of the nodes/variables. After a call to computeSplitting(), the splitting
sequence can be traversed by using the Splitting begin() and Splitting end() functions.

If 7 is a C-variable, then the according entry in the splitting sequence is 1, and 0 otherwise. In
other words
Splitting begin()[i] == 1 <+ ieC

and
Splitting begin() [i] == 0 <= i€ F.

With getCoarseDimension() the cardinality of C' (i.e. the dimension of the coarse system) can
be queried.

CoarselevelMappinglLayer: Functionality for computing the mapping beween the fine level
and the coarse level varibles is provided in this layer. With computeCoarseLevelMapping()
the mapping is computed, and CoarseLevelMapping begin() and CoarselLevelMapping end()
allow accessing it.

If ¢ is a C-variable, then CoarseLevelMapping begin() [i] gives its index in the next, the
coarser level. If else 7 is an F-variable, the value at the i-th position is undefined (these variable
are to be interpolated through the surrounding C-variables).

NeighbourhoodStartsPartitionLayer: Imposes a view on the matrix that restricts the access
on a certain interval of rows (or columns, depending on how the matrix is interpreted via the
RowWiseLayer or the ColumnWiseLayer). More precisely, an iterator over a section of the orig-
inal edge target starts sequence is provided. An existing NeighbourhoodStartsLayer with its
types is shadowed, its functions overwritten. Thus, using this layer merely makes sense when
encapsulating a given matrix with the EncapsulationLayer.

PartitionLayer: This layer provides an iterator to a sequence of partitions of a matrix. The
value_type of this iterator is in turn a full matrix type, providing a row wise / column wise
view on a certain part of the matrix. The NeighbourhoodStartsPartitionLayer is used to
construct this entry type of the sequence.

The PartitionLayer is mainly intended for parallelization in symmetric multiprocessing (SMP)
environments with shared memory. On such machines, matrix-vector or matrix-matrix multipli-
cations can be executed in parallel, thereby distributing the tasks associated with multiplying a
partition, to an according number of threads.

3.3.7 Layers without data storage

Some layers don’t need to store any data themself, they are able to offer their functionlity by simply
using the appropriate information out of other (previous) layers and combining it in a new way.

Layers that purely offer functionality

Since there is no requirement for any data storage, these layers can do without an additional Member
layer. Therefore, their basic declaration is much easier:
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Functionality layer

template <class Base_>
struct FunctionalitylNamelayer

{
template <class Final_>
class Type
: public Base_::template Type<Final_>
{
public:
typedef typename Base_::template Type<Final_> BaseType_;
typedef Type<Final_> Type_;
typedef FunctionalityName LayerName;
public:
Type() : BaseType_Q)
{}
template <typename Arg_>
Type(Arg_& arg) : BaseType_(arg)
{}
s
+;

The majority of layers without own data storage are more or less designed to increase the useability
of the type, to offer a more comfortable interface. Included are the following layers:

e EdgeLayer: This layer offers iterators that point to a sequence representing the edges (without
weights) of the graph associated with the matrix. The iterator type EdgeIterator has member
functions node () and neighbour (), that provide the according neighbourhood information.

e WeightedEdgeLayer: This layer behaves exactly like the EdgeLayer, with additional access to
the weights of the edges, available through the operator*() member function of the
WeightedEdgelterator type.

e RowWiseLayer: The row wise layer gives the matrix an orientation. By using this layer, it is
defined that the entries are ordered increasingly row by row. A member type Orientation is
publicly defined as RowWise and serves as a tag for algorithms that need this information (see
e.g. the matrix-matrix multiplication in Section BI72).

The functions RowWise begin() and RowWise_end() return iterators of type RowIterator that
traverse through the rows of the matrix, and each such iterator in turn has begin() and end ()
functions that iterate through the current row. We refer to this concept as a two-dimensional
iterator.

Both iterator types, RowIterator and RowIterator: :iterator are indexed iterators, i.e. they
supply the function index() wich delivers the row number for the first type, respectively the
column index for the second type.

Additionally a type named MajorIterator is defined as RowIterator to ensure that an orien-
tation associated iterator type is defined.

e ColumnWiseLayer: The column wise layer does the same as the row wise layer but with a
column wise interpretation of the matrix data. Note that of course in each layer hierarchy only
one orientation layer should be used. The MajorIterator type is defined as ColumnIterator
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SourceNodesLayer: The source nodes layer offers nearly the same information as the EdgeLayer,
however this time the edges are grouped together by their source node. A two-dimensional itera-
tor is offered like in the RowWiseLayer or ColumnWiseLayer, that provides the edge information
without the weight.

e ConsecutiveSourceNodesLayer: This layer does for dense matrices what SourceNodesLayer
does for sparse matrices.

e ConsecutiveRowWiseLayer: The row wise orientation layer for dense matrices.

ConsecutiveColumnWiseLayer: The column wise orientation layer for dense matrices.

DiagonalLayer: The diagonal layer makes use of the slice layer. The Diagonal begin() and
Diagonal end() functions return indexed iterators that point to the diagonal entries of the
matrix.

RandomAccessLayer: This layer adds a random access function to the matrix type. It is built
on top of an orientation layer. The

operator () (const size type i, const size_type j)

function returns a MajorIterator: :iterator that points to the desired entry if it exists, or to
the end of the row/column if it doesn’t.

The reason for the operator() function to deliver an iterator is that we would like to have
only one common random access interface for each type of matrix, especially for sparse and
dense. Since dereferencing the iterator is available at no additional cost, there is no time or
space overhead.

If one is unsure whether the entry exists, one can check if the returned iterator is equal to
RowWise begin() [i] .end () or ColumnWise begin() [j].end () respectively.

e AssignmentLayer: The assignment layer is intended as a pool for gathering functions that allow
assignment from various types. Especially the assignment from the matrix expression classes

(cf. Section BT) is handled here.

Whenever we want to be able to assign values using the = operator, we have to include this layer
in our type.

3.4 Aggregates

In this section, we would like to lay out our approach to the solution of the constructor problem in
mixin based programming.

That there lies a problem, was first mentioned in [SBO0J: If a type is constructed with various
mixins, it is not a priori clear, how many and which parameters the constructor in a specific mixin
class has to take in its definition. Writing constructors for each possible combination of mixins e.g.
would increase the code basis more than exponentially.

A solution technique was proposed in [EBCO0], using generic parameter classes (implemented as
type lists), configuration repositories and parameter adapters. However it still needs a specific order of
the parameters in the constructor, which is not evident from the DSL that the generator is provided
with. Furthermore it needs configuration structures for every combination of mixins.

We use a different approach with aggregated parameter data structures that are used internally.
Parameters for a constructor are then specified in a special call convention, see Sections and

BZ4
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3.4.1 The parameter aggregate

The purpose for the Data aggregate is to store the parameters for the construction of a layered type.
The aggregate itself is assembled out of small and simple layers that have accessor functions to get
and set variables.

A specific data of type T, associated with the tag DataName, is stored in the aggregate using the

setValue (DataName m, const T& t_)
function. The according data is retrieved using the
getValue (DataName m)

member function.
Function calls concerning data that is not associated with the DataName tag are dispatched to the
aggregated object b of type Base.

Data aggregate

template <class Base,

class DatalName,

class T,

class SizeType,

class MemoryClass=Value>
class Data

{

public:
typedef Base BaseType;
typedef T StoredType;

typedef DataName NameType;
typedef StoredType MemoryType;
typedef SizeType size_type;
typedef MemoryClass StorageType;
private:
BaseType b;
size_type size;
NameDataTupel<NameType,T> t;
public:
Data() : size(0)
{}
Data(const Data& d) : b(d.b), size(d.size), t(d.t)
{}
Data(const T& t_, const Base& b_) : b(b_), size(0), t(t_)
{}
void setSize(NameType m, size_type size_)
{
size = size_;
b
template <class OtherName, class MemberSizeType>
void setSize(OtherName m, MemberSizeType size_)
{
b.setSize(m,size_);
3
size_type getSize(NameType m) const
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{
return size;
b
const T& getValue(NameType m)
{
return t;
b
void setValue(NameType m, const StoredType& t_)
{
t = t_;
b

template <class MemberNameType, class MemberStoredType>
void setValue(MemberNameType m, const MemberStoredType& t_)
{
b.setValue(m, t_);
3
+;

The dispatch for the retrieval of data is a bit more tricky than the setting of the data, since in this
case the return type for this function is not known apriori in the current layer. In order to get the
correct return type, we have to make use of a template metaprogramming mechanism which we call
stored type lookup, cf. Section The according member functions to retrieve data that is stored in
another layer are described there.

This data aggregate can now be arbitrarily assembled to any size and with any type. We need
an emtpy type at the top to terminate the structure and to enable StoredTypeLookup to determine
whether a type is contained in the structure or not.

Empty type
struct EmptyType {};

We also have a specialization for storing pointers, which is especially useful when used as a pa-
rameter structure for the construction of objects, since it is cheaper in most cases to copy a pointer
than to copy a whole data structure.

At last, we also have getSequence and setSequence member functions. These can be used instead
of getValue, if the according layer needs to store a sequence.

3.4.2 A simple construction mechanism

As we have seen in Section B3l every layer that stores data has a definition of a ParameterType.
An object of a concrete matrix type, e.g. named MatrixType, can now be constructed like in the
following example.

Object construction example 1

MatrixType: :ParameterType parameter;
parameter.setValue (HorizontalDimension () ,5000) ;
parameter.setValue(VerticalDimension(),10000) ;
parameter.setSize (NeighbourhoodStarts(),10001);
parameter.setSize (EdgeTargets(),100000) ;
parameter.setSize (WeightValues(),100000) ;
MatrixType A(parameter);
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The above example constructs a rectangular 10000 x 5000 sparse matrix with free space for 100000
nonzero entries, by setting the values of the dimensions and the sizes of the according sequences.

In the next example, we can see, that it is possible through the setSequence member functions of
Data, to import data out of existing sequences.

Object construction example 2

DataSequence<size_t,size_t> weights(1000) ;
DataSequence<size_t,size_t> targets(1000);
DataSequence<double,size_t> starts(101);

MatrixType: :ParameterType parameter;
parameter.setValue (HorizontalDimension(),100) ;
parameter.setValue(VerticalDimension(),100);
parameter.setSequence (NeighbourhoodStarts() ,starts);
parameter.setSequence (EdgeTargets () ,targets);
parameter.setSequence (WeightValues() ,weights) ;
MatrixType B(parameter);

However this way of constructing an object is clumsy and cumbersome for the user of the library.
Instantiating a parameter object, initializing it and then creating the actual object is not what we
are used in object-oriented programming. In the following, we present an advanced solution which
combines aspects from [EBCO0] with the above data aggregate.

3.4.3 Parameter constructor and adapter classes

Our intention is to supply a construction interface for objects of arbitrary type that allows to specify
the initial data in different ways and in any order.

We prescribe the following format for constructor arguments. Every parameter in a constructor
call has to be specified as follows:

e a name tag indicating the layer,
e a construction tag specifying the way the data is constructed in the end,
e the parameter itself.

More precisely, the name tag (e.g. HorizontalDimension()) acts as an instruction, where to insert
the data in the layer hierarchy, and therefore declares the role the parameter plays in the whole data
structure. The construction tag, which can be one of the types Size, Value, Sequence indicates the
way the object in the MemberLayer is constructed. Using Value simply copies the parameter object.
For sequences, we have the choice of constructing the member by using the size constructor, or, if we
have an already constructed sequence, than we indicate with the tag Sequence, that we would like
to use this extern source of data. The sequence is then either copied or a handle (pointer) to this
sequence is stored, depending on how the type was assembled.

This concept is realized with a parameter constructor class and a parameter adapter class, that
have generic constructors for up to n parameters (t1,...,tn) given by a total of 3n arguments.

Parameter constructor class

template <class MatrixType>
class ParameterConstructor
{

public:
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typename MatrixType::DataType p;
ParameterConstructor ()
{3
template <class Namel, class C1l, class T1>
ParameterConstructor(const Namel& nl, const Cl& cl, const T1& t1)
{
p-setMember(nl,cl,tl);
}
template <class Namel, class Cl, class T1,
class Name2, class C2, class T2>
ParameterConstructor(const Namel& nl, const C1& c1, const T1& ti,
const Name2& n2, const C2& c2, const T2& t2)
{
p-setMember(nl,cl,tl);
p.setMember (n2,c2,t2);
}
template <class Namel, class Cl, class T1,
class Name2, class C2, class T2,
class Name3, class C3, class T3>
ParameterConstructor (const Namel& nl, const C1& c1, const T1& ti,
const Name2& n2, const C2& c2, const T2& t2,
const Name3& n3, const C3& c3, const T3& t3)
{
p.setMember(nl,cl,tl);
p-setMember (n2,c2,t2);
p.setMember (n3,c3,t3);
}
//...
};

A drawback of this approach is that we have to supply n templatized constructors. However these
constructors only vary in the number of arguments and can therefore be implemented using macros
or other automatic code generation tools.

Parameter adapter class

template <class MatrixType>
class ParameterAdapter : public MatrixType
{
typedef ParameterConstructor<MatrixType> Parameter;
public:
template <class Namel, class C1l, class T1>
ParameterAdapter(const Namel& nl, const C1& cl, const T1& t1)
: MatrixType(Parameter(nl,cl,t1))
{3
template <class Namel, class Cl, class T1,
class Name2, class C2, class T2>
ParameterAdapter(const Namel& nl, const Cl& cl, const T1& ti,
const Name2& n2, const C2& c2, const T2& t2)
: MatrixType(Parameter(nl,cl,t1,n2,c2,t2))
{3

template <class Namel, class Cl, class T1,
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class Name2, class C2, class T2,
class Name3, class C3, class T3>
ParameterAdapter(const Namel& nl, const C1& cl, const T1& ti,
const Name2& n2, const C2& c2, const T2& t2,
const Name3& n3, const C3& c3, const T3& t3)
: MatrixType(Parameter(nl,cl,t1,n2,c2,t2,n3,c3,t3))
{3
//...
};

An existing type Type can now be decorated with these constructors by defining e.g. MatrixType as
ParameterAdapter<MatrixType>.

3.4.4 Advanced construction mechanism

Now we are able to construct the objects from Section B-ZZ in the following way:

Object construction example 3

MatrixType A(HorizontalDimension(),Value(),5000,
VerticalDimension(),Value(), 10000,
NeighbourhoodStarts(),Size(),10001,
EdgeTargets () ,Size(),100000,
WeightValues(),Size(),100000) ;

Existing data can be used like this:

Object construction example 4

DataSequence<size_t,size_t> weights(1000) ;
DataSequence<size_t,size_t> targets(1000);
DataSequence<double,size_t> starts(101);

MatrixType B(HorizontalDimension(),Value(),100,
VerticalDimension(),Value(), 100,
NeighbourhoodStarts() ,Sequence(),starts,
EdgeTargets () ,Sequence() ,targets,
WeightValues(),Sequence() ,weights);

3.5 Template Metaprogramming

Metaprogramming with C++ templates (see e.g. [AGO4] for an overview) is a powerful method to
express and generate types with respect to certain dependencies. It allows certain computations to
be carried out already at compile time and even complete instruction flow control structures can be
incorporated.

That template metaprogramming is possible was first discovered in 1994 by Erwin Unruh with
his prime number compile time computation program (see [Unr94] or [V.J03]) during the San Diego
Meeting of C++ Standardization.

The possibilities of C++ templates lead to the conclusion that they form a language of its own,
and indeed, it was proven, that they are Turing complete ([Vel03]). Nowadays metaprogramming
techniques are used more and more in modern C++ libraries, since their compile time evaluation
allows more decisions and optimizations by the compiler.
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In generic programming, template metaprogramming techniques are used for mainly three pur-
poses:

1. choosing or constructing a type in dependence of other types,
2. determining which properties a type has,
3. choosing an appropriate algorithm for a certain type.

In traditional object-oriented design, the first item was impossible at compile time while the latter two
issues were treated with run time polymorphism. However as mentioned in Section 232 this approach
often lacks performance. If we use static polymorphism for generic programming, we somehow must
retrieve information about the type we are using, e.g. in order to choose a specialized algorithm and
its return type.

Those constructs that compute compile-time information are also called traits. They can be seen
as functions on the template level, which get types or compile-time constants as input parameters and
generate types or compile-time constants as output.

Since metaprogramming hasn’t found its way into the C+-+ Standard yet, we use our own imple-
mentation of simple control structures like Equal and IfElse. In addition to that, we show how we
use metaprogramming to get compile time type information.

3.5.1 Conditional structures

In order to realize simple control structure elements, we use the following metaprogramming classes.
First of all the Equal class struct for checking whether two types are the same:

Equal template for distinct types

template <class FirstType, class SecondType>
struct Equal
{

static const bool value = false;

};

Equal template for equal types

template <class FirstType>
struct Equal<FirstType,FirstType>
{

static const bool value = true;

};

Then we need a construct to choose between (at last two) types, depending upon a condition (a
boolean value). This is implemented with the IfElse class struct:

If-then-else construct for true condition

template <bool condition, class FirstType, class SecondType>
struct IfElse
{
typedef FirstType type;
3
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If-then-else construct for false condition

template <class FirstType, class SecondType>
struct IfElse<false,FirstType,SecondType>
{

typedef SecondType type;

};

These constructs are used throughout the whole library.

3.5.2 Stored type lookup

Looking back at Section BTl we were faced with the problem to determine the return type of the
get member functions. Here, we present the type lookup mechanism of the aggregate, that solves this
problem.

Fach Data layer class must export at least the types BaseType, MemoryType, NameType and
size_type, then the StoredTypeLookup struct recursively ascends the encapsulated data layers until
it matches the desired NameType. Then the member types memory_type, size_type and storage_type
are defined.

Stored type lookup

template <class T, class NameType>
struct StoredTypeLookup
{
typedef typename
IfElse<Equal<typename T::NameType,NameType>::value,
typename T::MemoryType,
typename StoredTypelLookup<typename T::BaseType,
NameType>: :memory_type>: :type
memory_type;

typedef typename
IfElse<Equal<typename T::NameType,NameType>::value,
typename T::size_type,
typename StoredTypelLookup<typename T::BaseType,
NameType>: :size_type>::type
size_type;

typedef typename
IfElse<Equal<typename T::NameType,NameType>::value,
typename T::StorageType,
typename StoredTypelLookup<typename T::BaseType,
NameType>: :storage_type>::type
storage_type,;
I

If NameType is not found in the whole data aggregate, the StoredTypeLookup is at the top of the
hierarchy, and so we have a specialization for EmptyType (see Section BZT]) which defines the three
member types as ErrorType. Trying to get (or set) values in the data aggregate that are associated
with a NameType that is not contained in the aggegate leads to a compile time error.
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Stored type lookup for empty type

template <class NameType>

struct StoredTypelLookup<EmptyType,NameType>
{

typedef ErrorType size_type;

typedef ErrorType memory_type;

typedef ErrorType storage_type;

3

The according get member functions now can use the type lookup to resolve the correct return
type. All these lookups are done during the compilation time, so they don’t increase the runtime of
the program.

Data aggregate get functions

template <class OtherName>
typename StoredTypelLookup<Data,OtherName>::size_type
getSize(OtherName m) const
{
return b.getSize(m);
b
template <class OtherName>
typename StoredTypelLookup<Data,OtherName>::memory_type
getValue (OtherName m)
{
return b.getValue(m);
3
+;

3.5.3 Layer and layer config lookup

Sometimes, when we are dealing with a layered type, it can be useful to know which layers the type
consist of, or at least, if a certain layer is included. If we know, that any type T is assembled using
a layer L (maybe among others), then we know that T has the functionality implemented in L. The
construct that was devised for this purpose is called LayerLookup:

Layer lookup

template <class MatrixType, class Layer>
struct LayerLookup
{
typedef typename
IfElse<Equal<typename MatrixType::LayerName,Layer>::value,
MatrixType: :LayerName,
typename LayerLookup<typename MatrixType: :BaselLayer,
Layer>::type>::type type;
I

To terminate the structure we need a specialization for the empty type. Algorithms can now check
in advance, if a layer is included. If not, the return type is ErrorType, otherwise the layer name type
is returned.
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Layer lookup for empty type

template <class Layer>

struct LayerLookup<EmptyType,Layer>
{

typedef ErrorType type;

I

In certain situations, it is desirable to directly have access to the according layer config structs,
that the type was built of, e.g. in the product matrix type generator (see Section BZZZl). Especially,
if the struct is a FixedConfig, one is interested to gain access to the encapsulated fixed constant.

The LayerConfigLookup seeks the Layer tag in the whole given MatrixType using the LayerLookup
trait, and, if it exists, exports the according LayerConfig type in the member type Config. Otherwise,
ErrorType is exported.

Layer config lookup

template <class MatrixType, class Layer>
struct LayerConfiglookup
{
typedef typename LayerLookup<MatrixType,Layer>::layer HasLayer;
typedef typename IfElse<Equal<HasLayer,ErrorType>::value,
ErrorType,
typename HasLayer::LayerConfig>::type Config;
+;

3.5.4 Various matrix traits

For determining whether a certain matrix type is sparse (or dense or fixed), we need according compile-
time functions that deliver the desired information.

To test if a type is a dense matrix (i.e. has its entries stored consecutively) we simply look up
whether it contains the DenseWeightedEdgeSources layer.

IsDense trait

template <class MatrixType>
struct IsDense
{
static const bool value =
Equal<typename LayerLookup<MatrixType,
DenseWeightedEdgeSources>: :type,
DenseWeightedEdgeSources>: :value;

};

For determining if a type is a fixed (dense) matrix, we have to take a closer look at the data
categories of its layers.

IsFixed trait

template <class MatrixType>
struct IsFixed
{
typedef typename LayerLookup<MatrixType,FirstTargets>::type
HasFirstTargets;
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typedef typename LayerLookup<MatrixType,NeighbourhoodStarts>::type
HasNeighbourhoodStarts;

typedef typename FirstTargetsDataCategory<MatrixType,

HasFirstTargets>::type

HasFirstTargetssDataCategory;

typedef typename NeighbourhoodStartsDataCategory<MatrixType,

HasNeighbourhoodStarts>: :type

HasNeighbourhoodStartsDataCategory;

typedef typename NeighbourhoodStartsFunctorCategory<MatrixType,

HasNeighbourhoodStartsDataCategory>::type

HasNeighbourhoodStartsFunctorCategory;

static const bool value =
Equal<HasFirstTargetssDataCategory,fixed_tag>::value
&& (Equal<HasNeighbourhoodStartsDataCategory,functor_tag>::value
| | Equal<HasNeighbourhoodStartsDataCategory,static_tag>::value)
&& Equal<HasNeighbourhoodStartsFunctorCategory,fixed_linear_tag>::value;
3

3.5.5 Matrix expression chooser

The matrix expression chooser is a construct that determines the return type for product, sum and
difference expressions (in arbitrary combinations). The matrix expressions are explained in more de-
tail in Section B

Matrix expression chooser

template <class Left,
class Right,
template <class,class,class> class SparseExpression,
template <class,class,class> class DenseExpression,
template <class,class,class,class> class SparseFunctor_,
template <class,class,class,class> class DenseFunctor_,
template <class,class,class,class> class FixedFunctor_>
struct MatrixExpressionChooser
{
typedef typename Left::0rientation Orientation;
typedef typename Left::WeightMemoryType WeightMemoryType;
typedef FixedFunctor_<Left,Right,Orientation,WeightMemoryType> FixedFunctor;
typedef DenseFunctor_<Left,Right,Orientation,WeightMemoryType> DenseFunctor;
typedef SparseFunctor_<Left,Right,Orientation,WeightMemoryType> SparseFunctor;
typedef DenseExpression<Left,
FixedFunctor,
Right> FixedResultExpression;
typedef DenseExpression<Left,
DenseFunctor,
Right> DenseResultExpression;
typedef SparseExpression<Left,
SparseFunctor,
Right> SparseResultExpression;
typedef typename IfElse<IsDense<Left>::value && IsDense<Right>::value,
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typename IfElse<IsFixed<Left>::value
&& IsFixed<Right>::value,
FixedResultExpression,
DenseResultExpression
>::type,
typename IfElse<IsDense<Right>::value,
DenseResultExpression,
typename IfElse<IsDense<Left>::value,
DenseResultExpression,
SparseResultExpression
>::type
>::type
>::type type;

3.6 Type construction and generators

The intention of programming with layers is to offer a greater flexibility for the user of data structures,
to avoid the redundancy of code (as well as that of computer memory) and to always have the most
efficient implementation for a special purpose.

However, for users that are not familiar with mixin layers and the special concept of layer assembly
it might be cumbersome to construct the type they want to use.

For this reason, we would like to have a type generator, that can automatically assemble a desired
type. Before we introduce this template metaprogramming construct, we would like to describe how
types are assembled manually.

3.6.1 Rules of type construction

The type construction underlies certain rules and restrictions, since not every layer combination makes
sense, although it would be technically possible. In the following, we would like to give an outline of
these rules and implications.

Rules concerning the order of assembly

Besides starting with the Base layer, we have the following precedence rules:

e First of all it should be stated, that the dimension layers are so essential that they should
be included immediately after the Base layer. Which dimension layer comes first is however
unimportant.

e NeighbourhoodStartsLayer, EdgeTargetsLayer, WeightValuesLayer and FirstTargetsLayer
contain the basic data of a matrix type and should be used directly after the dimension layers.
In any case, they must be used prior to any of the other layers, since they usually depend on
the data provided here.

e The EdgeLayer requires the NeighbourhoodStartsLayer and the EdgeTargetsLayer.

e The WeightedEdgeLayer requires the NeighbourhoodStartsLayer, the EdgeTargetsLayer and
the WeightValuesLayer.

e The (sparse) SourceNodesLayer requires the NeighbourhoodStartsLayer and the
EdgeTargetsLayer.



52

CHAPTER 3. SOFTWARE COMPONENTS FOR NUMERICAL LINEAR ALGEBRA
The (sparse) RowWiseLayer and ColumnWiseLayer require the NeighbourhoodStartsLayer, the
EdgeTargetsLayer and the WeightValuesLayer.

The ConsecutiveSourceNodesLayer requires the NeighbourhoodStartsLayer and the
FirstTargetsLayer.

The ConsecutiveRowWiseLayer and ConsecutiveColumnWiseLayer require the
NeighbourhoodStartsLayer, the FirstTargetsLayer and the WeightValuesLayer.

The RandomAccessLayer requires exactly one of RowWiseLayer, ColumnWiseLayer,
ConsecutiveRowWiseLayer or ConsecutiveColumnWiseLayer.

The SliceLayer syntactically doesn’t need any other layer although its data refer to the weighted
edges stored in the WeightValuesLayer.

The DiagonalLayer needs the SlicelLayer.

Rules concerning the combination of layers

e The FirstTargetsLayer and the EdgeTargetsLayers must be used mutually exclusive. The

edge targets sequence only makes sense for matrices, where the edge targets numbering is not
consecutive (a matrix with this property is usually called sparse).

Also, when adding an orientation to the matrix type, one has to choose between either the
RowWiseLayer or the ColumnWiseLayer. Using both, (although technically possible) would lead
to overwriting and shadowing the types (and functions) of the first layer by the second layer in
the hierarchy, disabling the first layer’s functionality.

Accordingly, the ConsecutiveRowWiseLayer and the ConsecutiveColumnWiseLayer are mutu-
ally exclusive.

Of course, the layers designed for sparse matrices don’t make any sense in a dense matrix type,
and vice versa.

3.6.2 Type examples

In order to illustrate the rules of the type construction, we give a few example types. First, a simple
sparse matrix that offer a row wise access to its data.

Sparse matrix type

typedef DataSequence<unsigned int,unsigned int> IVT;

typedef DataSequence<double,unsigned int> WVT;

typedef NormalConfig<unsigned int,Value> DimConfig;

typedef NormalConfig<IVT,Value> IndexConfig;
typedef WeightConfig<WVT,Value,Value> WeightValuesConfig;
typedef VerticalDimensionLayer<Base,DimConfig> VDLayer;

typedef HorizontalDimensionlLayer<VDLayer,DimConfig> DLayer;
typedef NeighbourhoodStartsLayer<DLayer,IndexConfig> ETSLayer;

typedef EdgeTargetsLayer<ETSLayer,IndexConfig> ETLayer;
typedef WeightValuesLayer<ETLayer,WeightValuesConfig> WVLayer;
typedef RowWiselLayer<WVLayer> RWLayer;

typedef Final<RWLayer>::Type RowWiseSparseMatrix;
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Now we show, how a row wise oriented dense matrix type with random access can be assembled.

Dense matrix type

typedef FunctionSequence<linear<unsigned int,unsigned int> > LST;

typedef FixedValueSequence<unsigned int,unsigned int,0> FST;

typedef DataSequence<double,unsigned int> WVT;

typedef NormalConfig<unsigned int,Value> DimConfig;

typedef NormalConfig<LST,Value> LinearConfig;
typedef NormalConfig<FST,Value> FirstZeroConfig;
typedef WeightConfig<WVT,Value,Value> WeightValuesConfig;
typedef VerticalDimensionLayer<Base,DimConfig> VDLayer;
typedef HorizontalDimensionLayer<VDLayer,DimConfig> DLayer;

typedef NeighbourhoodStartsLayer<DLayer,LinearConfig> DenseETSLayer;

typedef FirstTargetsLayer<DenseETSLayer,FirstZeroConfig> DenseFTLayer;
typedef WeightValuesLayer<DenseFTLayer,WeightValuesConfig> DenseWVLayer;

typedef ConsecutiveSourcesNodesLayer<DenseWVLayer> DenseSNLayer;
typedef ConsecutiveRowWiseLayer<DenseSNLayer> DenseRWLayer;
typedef RandomAccessLayer<DenseRWLayer> DenseRALayer;
typedef Final<DenseRALayer>::Type DenseMatrix;

Such a type as the above assembled dense matrix type is reasonable, if we don’t know the size of
the matrix at compile time (i.e. we would like to be able to change it at run time). In the other case,
if the matrix size is completely fixed at compile time, we would have wasted memory for the edge
target starts and first target sequences and the dimensions for each object. Especially when storing
large amounts of such objects this would lead to a great memory overhead.

A solution is again closely related to the singleton design pattern (cf. [GH.IV94]). Those properties
that are common to all objects of a type should also be instantiated only once. This is achieved by
declaring the according data as static (see also the treatment of fixed values in Section BZ33).

As an example, we want to construct a 3 x 3 dense matrix type. First, we replace the type
DataSequence with FixedLengthDataSequence, leaving the rest unchanged:

A fixed length for the weight values sequence

#define DIM 3
typedef FixedLengthDataSequence<double,unsigned int,DIM*DIM> WVT;

We do this in order to have all the data "owned” by an object of the according type. The
DataSequence type only includes a size variable and a pointer to a memory block in the heap. This
however could turn out badly when applying an algorithm to a very long sequence of such matrix
objects. An example for this kind of algorithm is the matrix-vector multiplication for block matrices
as they appear in Chapter ll. The DataSequence type then requires not only to store the pure matrix
entries (in this case 9 doubles) but also a pointer.

Furthermore, dereferencing this pointer would lead to an address somewhere in the heap, not
necessarily directly after the preceding matrix object. In other words, we would have a fragmented
memory that e.g. wouldn’t benefit from the pipelining techniques of modern microprocessors, and it
would mislead any caching strategy.

Another advantageous side effect is that the default constructor of FixedLengthDataSequence
already constructs the object with the correct size, which is extremely comfortable when allocating
an array of such objects.
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When determining the size in bytes of this data type, with e.g.

int main(void)

{
cout << "sizeof (double) : " << sizeof (double) << endl;
cout << "sizeof (WVT) ¢ " << sizeof (WVT) << endl;
cout << "sizeof (DenseMatrix) : " << sizeof(DenseMatrix) << endl;
}

we get the output

sizeof (double) : 8
sizeof (WVT) 1 72
sizeof (DenseMatrix) : 92

on a Linux 32 bit Pentium 4 machine. Now we aim to reduce the size of the dense matrix type
to the size of the pure data array WVT which is 9 times the size of a double precision floating point
variable. We use the following defnitions:

typedef

typedef

typedef
typedef
typedef
typedef

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

Fixed size matrix type

FixedLengthStaticFunctionSequence<fixed_linear<unsigned int,
unsigned int,
unsigned int,
DIM>,unsigned
int,DIM+1> > FLST;

FixedValueFixedLengthSequence<unsigned int,

unsigned int,0,DIM> FZST;

FixedConfig<unsigned int,DIM> FDimConfig;
NormalConfig<FLST,Static> FLinearConfig;
NormalConfig<FZST,Static> FFirstZeroConfig;
WeightConfig<WVT,Value,Value> FLengthValueConfig;
VerticalDimensionlLayer<Base,FDimConfig> FixedVDLayer;
HorizontalDimensionLayer<FixedVDLayer,FDimConfig> FixedDLayer;

NeighbourhoodStartsLayer<FixedDLayer,FLinearConfig> FixedETSLayer;
FirstTargetsLayer<FixedETSLayer,FFirstZeroConfig> FixedFTLayer;
WeightValuesLayer<FixedFTLayer,FLengthValueConfig> FixedWVLayer;

ConsecutiveSourcesNodesLayer<FixedWVLayer> FixedSNLayer;
ConsecutiveRowWiseLayer<FixedSNLayer> FixedRWLayer;
RandomAccessLayer<FixedWESLayer> FixedRALayer;
Final<FixedRALayer>: :Type FixedMatrix;

Now this FixedMatrix type has the desired property, and an according program yields:
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sizeof (FixedMatrix) : 72

Specifying sizes at compile time also has other advantages. Generic algorithms can determine
(with traits — see Section — at compile-time!) which data structure they have have to deal with
and then dispatch a specialized variant of the algorithm (see e.g. Section BIZ3).

3.6.3 A simple type generator
As we have seen in the previous examples, for constructing a type, it is necessary to

e define appropriate sequences,

e define appropriate config structs,

e and pass the config structs to the according layers and assemble them in the correct order.

This might seem as a circuituos way to gain a type, however, since we have so many possible combi-
nations, we must somehow offer this functionality to the user. The philosophy is not so much

”The required sequences are a consequence of the properties of the desired type.”
but rather
”The resulting type is a consequence of the utilized sequences.”

Therefore, at the moment, we only supply a low level type generator, that merely relieves the user of
caring about the order of assemby.

Low level matrix type generator

template <class VerticalDimensionConfig, // 1.
class HorizontalDimensionConfig, // 2.
class NeighbourhoodStartsConfig, // 3.
class FirstTargetsConfig, // 4.
class EdgeTargetsConfig, // 5.
class EdgeConfig, // 6.
class WeightValuesConfig, /] T.
class WeightedEdgeConfig, // 8.
class ConsecutiveSourceNodesConfig, // 9.
class ConsecutiveRowWiseConfig, // 10.
class ConsecutiveColumnWiseConfig, // 11.
class SourceNodesConfig, // 12.
class RowWiseConfig, // 13.
class ColumnWiseConfig, // 14.
class RandomAccessConfig, // 15.
class AssignmentConfig> // 16.
struct LowLevelMatrixGenerator
{
typedef Base LayerO;
//...
typedef typename Final<Layer16>::Type type;
3

The typedef’s in between have the form
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typedef typename IfElse<Equal<LayerNameConfig,EmptyType>::value,
Layern,
LayerNameLayer<Layern ,LayerNameConfig> >::type Layern+1;

if the layer LayerName has an own storage, and

typedef typename IfElse<Equal<LayerNameConfig,EmptyType>::value,
Layern,
LayerNamelLayer<Layern> >::type Layern+1;

if it doesn’t store own data. The syntactic usage of the generator is based on specifying the config
structs, for the layers we want to include, as template arguments. If a template parameter is equal to
EmptyType, the according layer is not inluded.

This generator is intended to offer the greatest flexibility for the type construction. For a more
user-friendly type generation, one can add specialized generators, e.g. a sparse matrix type generator,
a dense matrix type generator etc.

For the gcc 3.4.1 however, we experienced problems when using the above generator for block
matrix types. The generator was used to build a dense matrix type with fixed dimensions, and this
type was used as an entry type for generating a block sparse matrix. The latter however failed, the
compiler crashed. Since increasing the maximum instantiation depth for template classes with the
switch ~ftemplate-depth-n also didn’t fix the problem, we used the manual type construction from
Section as a workaround in this case.

3.7 Expression templates for matrix types

Originally invented for efficiently evaluating arbitrary vector expressions, we use an expression tem-
plate technique for computing (sparse) matrix expressions like

A=B-C-D+E-F-G, (3.1)

with B € RF*!, ¢ € R*™, D € R™*", E € RFJ, F € R7*", and G € R**" being arbitrary (not
necessarily quadratic) matrices.
The need for these type of matrix expressions arise in at least 3 places in our library:

1. The coarse level matrices A; 1 have to be computed via the Galerkin product, see also formula

ET8): Ay = RiAR.
A BT
r=(5 %)

2. For matrices like
we would like to be able to easily computeﬂ the Schur complement S = BABT — C.
3. Generally, we would like to be able to calculate a block matrix product AB,
Ay oo A By -+ By
A= : : B = I )
Aml . Amn B, - Bnk

where A;; and B;; are again matrices. In this case, the matrix-matrix multiplication algorithm
needs a += operator.

!For many methods like Uzawa or pressure correction schemes, usually the Schur complement is not explicitly com-
puted, because Krylov methods don’t need the matrix to be explicitly available. Instead, it is sufficient to be able to
compute the effect of the four matrices B, A,BT, and C, applied to a vector. However this approach makes it impossible
to apply a standard preconditioning method, nor does it allow an algebraic multigrid method. Therefore, it might be
desirable to compute S explicitly.
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3.7.1 Sparse matrix expression templates concept

The problem with (sparse) matrix expressions like (BI) is that we have to compute intermediate
results like C'D before we can compute B(C'D) and we have to compute EF before we can compute
EF + G etc. However, these temporary matrices can be much bigger (if m > n) or much smaller (if
m < n) than the result matrix A.

What comes more is, that for a sparse matrix-matrix multiplication we don’t know about the
sparsity structure of the result matrix in advance. Thus for evaluating an expression like [BII) we
can’t provide one object in the beginning that can hold all temporary results in between. This of
course, is a major drawback, because it is one main idea behind expression templates. Against this
have have no remedy, since it is mathematically unavoidable to compute the auxiliary results.

Allocating enough memory in advance turns out to be difficult. If too generously, it may result in
waste of memory, or, if too tight, lead to frequent reallocating, which decreases the performance.

But there is no need to construct a complete matrix object for all these matrices in between.
Instead we build a MatrixExpression object, which holds the sparsity structure and the values of the
result, which may be a sum, a difference or a product of two matrices.

The distinction between a MatrixExpression object and a normal matrix object is that the former
uses its own data structures independently of the implementation of the matrix objects’s class. More
precisely, it contains an vector of STL maps, which are nothing but (weighted) red-black trees (see also
Section B32). This vector is used to store the result row entries and the according column indices.
In the n-the component of this vector the n-the row of the result matrix is stored.

A (sparse) matrix object usually stores its data in a compressed format like the CRS (see Subsection
52, with three arrays containing all the matrix data (cf. Table ).

However the (sparse) matrix-matrix multiplication routine implemented in our library doesn’t im-
mediately compute the complete CRS for the matrix product, since this would require the computation
of the sparsity pattern in advance before applying the actual numeric operations. This would result
not only in memory overhead, but also in several loops over the same data for each matrix-matrix
product, which should be avoided. Instead the sparsity pattern and the matrix entries are computed
on the fly and then stored in the maps. Several numerical experiments seem to support that this
approach is beneficial.

Furthermore, we dispense with the allocation of memory for the intermediate matrix objects and
copying data to them. We only work with the temporary data structures the MatrixExpression class
provides. This has at least two benefits: We save at least some unnecessary memory alloctations and
copying, and of course we have the possibility to write aribtrary long matrix expressions in a simple
notation. Only at the end, when the whole matrix expression is evaluated, the resulting data is copied
into the result matrix object, which is responsible of the appropriate copying/conversion method.

However, for the time being, the user is responsible for determining an appropriate result type.
For sparse matrices, this is rather uncritical, since in the rare cases, where two sparse matrices are
multiplied, it is sufficient to have one standard sparse result type. However, there may be cases, where
the resulting matrix type differs from the participating types of the two factors. For example, when
one type is sparse an the other is dense, or when multiplying two rectangular matrices with fixed
dimension.

Thus, the optimal solution would be a general product matrix type generator, however, at the
current state of development, the library offers no such general solution to this problem. Instead we
do the following:

e If both factors are sparse (i.e. contain an EdgeTargetsLayer), we suggest to use again a standard
(row-wise) sparse matrix.

e If one factor is sparse and the other is not (i.e. has a FirstTargetsLayer). This is a very rare
case, however if it occurs, the resulting sparse matrix structure would be dense in most cases.
However, in general, this is unpredictable, thus we have left this decision to the user.
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e For expression of two dense matrix types, we have incorporated a product matrix type generator,
that generates an appropriate product matrix type for most type combinations (see Section

Ba).
If we write a code like:
MatrixType A,B,C,D,E,F;

A = B*CxD + ExF - G;

the expression tree shown in Figure B will be built by the operators -, + and *. It will be evaluated
when the = operator (a member of the MatrixType class) is called. The compute() method of the
MatrixExpression object on the right side of the = sign is called and the expression tree is traversed
from its root to its leaves, descending first to the right and then to the left (this is a pure and arbitrary
implementation decision, of course it could have been done also first to the left and then to the right).
If the algorithm descend to a leaf, nothing is done, if it descends to an operator op, the result of the
expression ’left child op right child’ is computed.

+/ \G
\*
* E/ \F
B/ \*
c/ \D

Figure 3.7: Expression tree

3.7.2 Participating classes and operators
The MatrixExpression class
First and foremost, we have the MatrixExpression class, that is intended to represent the matrix

expressions.

Matrix expression class

template <class Left, class Op, class Right>

class MatrixExpression

{

public:
typedef typename Left::VerticalDimensionType VerticalDimensionType;
typedef typename Right::HorizontalDimensionType HorizontalDimensionType;
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typedef RowWise Orientation;
typedef typename Left::index_type index_type;
typedef typename Right::value_type value_type;
typedef typename Right::WeightMemoryType WeightMemoryType;
private:
typedef typename vector<map<index_type,value_type> > TmpWeightValuesContainer;
typedef typename TmpWeightValuesContainer::iterator
TmpWeightValuesIterator;
public:
typedef typename
two_dim_map_indexed_iterator_adapter<TmpWeightValuesIterator> Rowlterator;
private:
Left& left;
Right& right;
bool computed;
bool  providememory;
TmpWeightValuesContainer* tmpvalues;
public:
MatrixExpression(Left& 1, Right& r)
left(l), right(r), computed(false), providememory(false), tmpvalues(0)
{}
+;

Within this class, the public types were defined in order to ensure that MatrixExpression can
behave like a normal matrix class. Note that MatrixExpression is yet only designed to hold results
which are row wise oriented.

The class stores references to the two involved operands of type Left and Right. The member
TmpWeightValuesContainer is a pointer to the temporary data structure mentioned in Section BTl

If the stored values in the matrix type are not pointers, then the normal procedure would be
the following: the = assignment operator of the matrix class calls the compute() function of the
MatrixExpression class. This in turn computes the expression from the leaves of the expression tree
recursively to its root. Then the values are copied from the root expression object by using the member
functions TmpWeightValues begin() and TmpWeightValues_end(). Thereafter, the deleteTmp ()
member function is called and frees the allocated memory for the temporary expression(s).

The boolean variable providememory is only of interest when computing expressions with block
matrices, or more precisely, if the WeightMemoryType is of type Pointer. If the member function
useMemory () is called, providememory is set to true. This has the consequence that (in the root expres-
sion object) the allocated memory to which the pointers in the vectors of TmpWeightValuesContainer
point to, won’t be destroyed by the deleteTmp() function. The reason for this mechanism is that in
this case, there is no need to physically copy the already allocated submatrices from the root expression
object into the result matrix object. Instead, only the pointers are copied.

In addition to the publicly defined types, the member functions Row_begin (), Row_end (), vertical-
Dimension(), and horizontalDimension (), were defined in order to provide a matrix interface to the
involved operator given by the class Op. Table Bl gives a summary of the publicly provided member
functions.
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return type function name

void compute ()

void deleteTmp ()

void useMemory ()
TmpWeightValuesIterator TmpWeightValues begin() const
TmpWeightValuesIterator TmpWeightValues end() const
Left::VerticalDimensionType verticalDimension() const
Right::HorizontalDimensionType horizontalDimension() const
RowIterator Row_begin() const

RowIterator Row_end() const

Table 3.1: Member functions of class MatrixExpression

The matrix product functor structure

The matrix_product structure acts as a functor that is given to the MatrixExpression class by the
'x’ operator.

Matrix product functor

template <class Matrix1Type, class Matrix2Type,
class Orientation, class WeightMemoryType>
struct matrix_product
{
template<class RowIterator>
static void computeResult(Matrixl1Type& A, Matrix2Type& B, RowIterator it)
{
matrix_product (A.Row_begin(), A.Row_end(),
B.Row_begin(), it, WeightMemoryType());
b
+;

The matrix_product functor, as well as the matrix_sum and the matrix_difference functor solely
has the static member function computeResult. It calls the template function matrix_product, that
computes the sparse structure of the product and the new matrix entries on the fly by storing them
in the according vector of STL maps (the auxiliary *tmpvalues in MatrixExpression).

In this default version, the functor implements a sparse matrix-matrix multiplication in which
the two operands are row wise oriented. If at least one operand is oriented column wise, we need a
specialization. Any combination of column wise and row wise oriented matrices would require an own
specialization with an own algorithm, since the direction of traversal through the matrix is different
each time. Thus, not all combinations are yet implemented. Table gives an overview of the
implemented algorithms.

2. operand row wise | 2. operand column wise

1. operand row wise implemented not implemented

1. operand column wise | implemented not implemented

Table 3.2: Implemented combinations of sparse matrix-matrix multiplication

The specialization for the variant with the first operand being column wise oriented is declared as
follows:
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Matrix product functor

template <class Matrix1Type, class Matrix2Type, class WeightMemoryType>
struct matrix_product<Matrix1Type,Matrix2Type,

ColumnWise,WeightMemoryType>
{

//...
};

The transposed matrix_product template function is used instead to calculate the result within this
implemenation.

The matrix_sum functor structure

The matrix_sum structure is a functor that is given to the MatrixExpression class by the + operator.

Matrix sum functor

template <class Matrix1Type, class Matrix2Type,
class Orientation, class WeightMemoryType>
struct matrix_sum

{
//...
}

The generateResultStructure member function uses the generateMatrixSumPositions template

function to compute the sparsity pattern of the matrix sum A+B. The template function matrix_sum

then computes the actual values of the sum and is used by the computeResult member function.
Again, we have restricted the implemented combinations of the row wise/column wise algorithms,

see Table

2. operand row wise | 2. operand column wise
1. operand row wise implemented not implemented
1. operand column wise | not implemented partly implemented

Table 3.3: Implemented combinations of sparse matrix-matrix addition

Note that the column wise/column wise matrix addition algorithm is the same as the row wise/row
wise version. However, since the MatrixExpression class up to now only supports row wise result
matrices, there would have to be at least a conversion routine from column wise to row wise somewhere
in the functor structure or in the MatrixExpression class.

The matrix_sum template function makes use of a template metaprogramming technique. Its dec-
laration looks like the following.

Matrix sum function template

template <class MlIterator, class M2Iterator, class M3Iterator,
class WeightMemoryType, class Positive2ndOperand>
inline void matrix_sum(MlIterator matrixl_begin,
MiIterator matrixl_end,
M2Iterator matrix2_begin,
M3Iterator matrix3_begin,
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WeightMemoryType wt,
Positive2ndOperand positivesecond) ;

Depending now on the type of Positive2ndOperand respectively the positivesecond parameter it
chooses different helper functions inside the function body. If Positive2ndOperand is of type True,
then an addition is performed (by calling functions that do an addition of two values or assign a
positive value). The function call looks like this:

Call from matrix sum functor

matrix_sum(A.Row_begin(), A.Row_end(), B.Row_begin(), cit,
WeightMemoryType (), True());

If Positive2ndOperand is of type False, then the 2nd operand is formally negated and a sub-
traction is performed (by calling functions that do a subtraction of two values or assign a negative
value). Now since the type of positivesecond is known at compile time, the according functions can
be inlined and optimized by the compiler.

The matrix_difference functor structure

The matrix_difference structure is a functor that is given to the MatrixExpression class by the -
operator.

Matrix difference functor

template <class Matrix1Type, class Matrix2Type,
class Orientation, class WeightMemoryType>
struct matrix_difference
{
/7. ..
b

Here we can reuse the generateMatrixSumPositions template function for computing the sparsity
pattern of the matrix difference since it is the same as for the sum.

The computeResult member function uses the matrix_sum template function as described above.
It is called by

Call from matrix difference functor

matrix_sum(A.Row_begin(), A.Row_end(), B.Row_begin(), cit,
WeightMemoryType (), False());

The table of implemented row wise/column wise combinations is the same as for the matrix_sum
functor.

The operators +, - and *

The operators +, - and * are implemented as template functions. Their purpose is to instantiate an
object of the class MatrixExpression with the according template arguments for the left and right
operand type and the operator type.

At this point we have to take care of the possible combinations of types that can instantiate
a binary expression. Let op be an arbitrary operator type, MatrixTypel and MatrixType2 some
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arbitrary matrix types, and MatrixExpressionl and MatrixExpression?2 some arbitrary expression
types then there are the possibilities

e MatrixTypel op MatrixType2
e MatrixExpressionl op MatrixType2
e MatrixTypel op MatrixExpression2

e MatrixExpressionl op MatrixExpression2

For the * operator and the third possibility e.g., the implementation looks like this:

The operator* for MatrixType * MatrixExpression

template <class Left, class Op, class Right, class RightRight>
MatrixExpression<Left,
matrix_product<Left,
MatrixExpression<Right,Op,RightRight>,
typename Left::0Orientation,
typename Left::WeightMemoryType>,
MatrixExpression<Right,Op,RightRight> >
operator*(Left& A, MatrixExpression<Right,Op,RightRight> B)
{
typedef typename Left::0rientation Orientation;
typedef typename Left::WeightMemoryType WeightMemoryType;
return MatrixExpression<Left,
matrix_product<Left,
MatrixExpression<Right,Op,RightRight>,
Orientation,
WeightMemoryType>,
MatrixExpression<Right,Op,RightRight> >(A,B);

For the implementation of the other operators we refer to the library code for further details.

The assignment layer

To the sparse matrix expression template framework of course also belongs an assignment opera-
tor = which has to be a member function of the according matrix type. It is implemented in the
AssignmentLayer which is described in Section B:317

3.7.3 Dense matrix expression templates

In order to provide the same framework as for the sparse matrix types also for dense matrix expressions,
we have a introduced a dense matrix expression class. For the enabling of loop unrolling, we also have
implemented some special operators and functions for matrix types of fixed dimension.

However, for the time being, we only support the computation of binary/trinary dense matrix
expressions like:

e C = A+B
e C += A

e C += A+B
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e C = AxB
e C += A%*B
e C x= A
e C *x= A+B

e and C *x= Ax*B.

The reason for this restriction lies in the problem of allocation of memory for temporary results.
When looking at the product of arbitrary rectangular matrices, if more than two factors are involved,
we come across different dimensioned results in between. Moreover, these temporaries depend on the
order of computation. For example consider the product

D = ABC with A ¢ RIOOOX?) Be RBXIOOO Cc R1000X4.

The product D is € R!90%4 however because of the associativity (AB)C = A(BC), we can either
have a temporary AB in R1000%1000 o BC in R3*4, depending on the order of calculation. Regarding
that the computational cost for multiplying an n x m with an m x k matrix, is O(nmk) we would have
a total effort of 7000000 floating point operations in the first case contrasting to 24000 in the second
case.

Thus, a complete expression templates library would have to incorporate an algorithm for dense
matrix product expressions that minimized the temporary results. For matrix types where all di-
mensions are known at compile time, this would result in the need for a template metaprogramming
optimization algorithm, which is beyond the scope of this thesis.

Furthermore, the result types for arbitrary combination of matrix types should be taken into
account. Here certain rules have to be applied, e.g. the result of a sparse/dense product is again
sparse, etc.

However, one can say that matrix products with more than two operands are relatively rare in
numerical computing, and therefore we can get along with the above restrictions.

The dense matrix expression class very much resembles the sparse matrix expression class, with
the exception that it hasn’t got own memory to store temporary results.

Dense matrix expression class

template <class Left, class Op, class Right>
class DenseMatrixExpression

{

public:
typedef typename Left::VerticalDimensionType VerticalDimensionType;
typedef typename Right::HorizontalDimensionType HorizontalDimensionType;
typedef RowWise Orientation;
typedef typename Left::index_type index_type;
typedef typename Right::value_type value_type;
typedef typename Right::WeightMemoryType WeightMemoryType;

private:

const Left& 1left;
const Right& right;
public:
DenseMatrixExpression(const Left& 1, const Right& r)
left (1), right(r)
{3
+;
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3.7.4 Dense product matrix type generator

For dense matrix types the struct ProductTypeGenerator can generate an appropriate result matrix
type for the product of two matrix types, say Typel and Typel that include the FirstTargetsLayer
in their layer hierarchy. The result type then is defined in the member type called result_type.

Dense product matrix generator

template <class Typel, class Type2>
struct ProductTypeGenerator

{

typedef ... result_type;

3

This means, that
LayerLookup<Typel,FirstTargets>::name and LayerLookup<Type2,FirstTargets>::name

must be equal to FirstTargets, otherwise the result type is ErrorType. The LayerConfigLookup
trait is used to determine the layer config structs for the two dimension layers, the first targets, the
neighbourhood starts and the weight values layer of both types. A trait called

DenseProductSequenceConfig

chooses all the according sequences in dependence on these config structs, such that the resulting
matrix type can accomodate the matrix product. Finally, the matrix type is assembled using the
LowLevelMatrixGenerator (cf. Section BG3]). For further details, we refer to the library class text,
file ” Generators.hh”.

3.8 Matrix-vector operation

A major operation in numerical linear algebra is the matrix-vector multiplication. It is used intensively
in Krylov subspace methods like Conjugate Gradient or GMRES (see [Saa(3]).

Let us first describe shortly the architecture for matrix-vector operations in our library. Afterwards
we give a performance measurement in comparison with a C library.

3.8.1 Concept

Two major matrix-vector operations are supplied: addmul and submul. The function addmul computes
y := y+Ax, where x and y are vectors and A is a matrix, whereas submul does the same for y := y— Ax.
The template function below is the entry point for addmul. From here, it is dispatched to the according
functions, in dependence on the involved types.

Additive matrix vector product entry point

template <class Matrix, class InVector, class OutVector>
inline void addmul(const Matrix& A, const InVector& x, OutVector& y)
{
typedef numericalfunctors::_addmul<typename Matrix::value_type,
typename InVector::value_type,
typename OutVector::value_type,
typename OutVector::value_type>
AddMulFunctor;
typedef typename LayerLookup<Matrix,Partition>::name HasPartition;
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typedef typename IfElse<IsFixed<Matrix>::value,Fixed,ErrorType>::type FixType;
matrix_vector_dispatch(A,x,y,AddMulFunctor () ,HasPartition() ,FixType());
X

If the matrix type is partitioned, the parallel variant of matrix vector_dispatch is called. It uses
as many threads as there are partitions (stripes) in the matrix. If there are no partitions and the
matrix size is not fixed, the standard matrix-vector operation with the _addmul functor is called:

Standard matrix vector product dispatch

template <class Matrix, class InVector, class OutVector, class Functor>

inline void matrix_vector_dispatch(const Matrix& A,
const InVector& x,
OutVector& y,

const Functor& f,
const ErrorType& nothread,
const ErrorType& notfixed)
{
typedef typename MatrixTraits<Matrix>::0Orientation Orientation;
matrix_vector_operation(A,x,y,f,0rientation());

}

The actual algorithm is implemented in matrix vector_operation, here shown for row-wise ori-
ented matrices. It works for sparse and dense matrices.

Standard matrix vector operation

template <class Matrix, class InVector, class OutVector, class Functor>
inline void matrix_vector_operation(const Matrix& A,
const InVector& x,

OutVector& y,
const Functor& £,
RowWise r)

typedef typename Matrix::ConstMajorIterator ConstMajorIterator;
typedef typename ConstMajorIterator::const_iterator const_iterator;
for (ConstMajorIterator cit = A.Row_begin(); cit != A.Row_end(); ++cit)
{
for (const_iterator rit = cit.begin(); rit != cit.end(); ++rit)
f(xrit,x[rit.index()],y[cit.index()]);

The addmul and submul functors are provided to increase the code reusability — the matrix vector
operation algorithm above is the same for both operations.

The Functor type specifies what the algorithm in matrix vector_operation has to do with the
matrix and vector entries. For example, the _addmul functor by default assumes that the entries are
again matrices/vectors:
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addmul functor

template <class Argumentl, class Argument2, class Argument3, class Result>
struct _addmul
{
Result& operator() (const Argumentl& a, const Argument2& x, Argument3& y) const
{
return addmul(a,x,y);
¥
+;

Only the specialized functor for scalar double entries directly carries out a computation:

Specialized addmul functor

template <class Argument2, class Argument3, class Result>
struct _addmul<double,Argument2,Argument3,Result>
{
ResultType& operator() (const double& a, const Argument2& x, Argument3& y) const
{
return y += a * Xx;
3
+;

This fine grained function architecture ensures flexibility when using different matrix types, espe-
cially each thinkable block-matrix type is supported. That it also delivers high performance is shown
in the next section.

3.8.2 Benchmark

In the following, we apply the addmul operation to a block stiffness matrix stemming from the dis-
cretization of a 2D Stokes problem as described in The according matrix sizes are displayed in
Table B4l Note that at any time, 9 double nonzero entries are grouped together in a 3 x 3 matrix.

h 1/64 1/128 1/256

overall matrix dimension | 12675 49923 198147
overall nonzeros 261513 | 1039113 | 4142601
nonzero 3 x 3 blocks 29057 | 115457 | 460289

Table 3.4: Matrix properties for the Stokes problem

We compare the run times for a loop over a 10000 calls to addmul with the according function
blancmv.mul from the BLANC library (Blockwise Linear Algebra and Numerical Computations in
C, see [Pr196]), which is a highly tuned library written in C for numerical linear algebra (and which is
one of the few libraries available that is capable of dealing with such a matrix format).

Figure compares the CPU run times for the different test cases that are listed in Table
First of all, we can see that the common unspecialized version of addmul that works for all types of
matrices is relatively slow, compared to the BLANC routines. However when using the specialized
version for fixed sized matrices (which is only used where such a matrix type is encountered by the

dispatcher function matrix_vector_dispatch) we can see, that our C++ library is nearly on par with
the C code.
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Figure 3.8: Test cases for the GNU compiler
h=1/64 | h=1/128 | h=1/256
library test case operation compiler | switches 3 .
time 1n sec.
BLANC(1) blanc mv_mul gee G1 12.6 50.3 227
BLANC(2) blanc_mv_mul gee G2 13.7 54.5 234
MiLTON(1) universal addmul g++ Gl 24.3 99.2 394
MiLTON(2) universal addmul g++ G2 24.2 98.7 368
MiLTON(3) specialized addmul g++ Gl 14.2 56.4 224
MiLTON(4) specialized addmul g++ G2 14.1 56.2 223
MiLTON(5) specialized addmul g++ G3 7.6 29.7 118

Table 3.5: CPU times for 10000 matrix-vector multiplications

The speedup is due to the possibilities for the compiler to

enforce loop unrolling for loops with

a small constant number of iterations, which is enabled by the -funroll-loops compiler switch for the

GNU compiler (see Table BH).

G1

G2

G3

-03

switches

-03
-funroll-loops

-fpeel-loops

-03

-funroll-loops
-fpeel-loops
-finline-limit=400

Table 3.6: Utilized compiler switches



3.8. MATRIX-VECTOR OPERATION 69

If one looks at the BLANC library and the code for blanc mv mul, one could question why our
approach couldn’t be even faster, because BLANC doesn’t set the dimension of the 3 x 3 block matrix
entries to be fixed at compile time. Thus, for the compiler, loop unrolling and vectorization would be
easier to do in MiLTON.

The reason for this lies in the inlining strategies of the compiler. One has to ensure that really
small functions are inlined, however we have to make sure, that the assembled functions are not too
big for the CPU cache. Adjusting now the inline-limit to a value between 200 and 600 finally generates
a code that is twice as fast as the original BLANC C code.

15

10—

time []

| ]
1000 1500

inline limit [pseudo instructions]

|
0} 500

Figure 3.9: Running times in dependence of the inline limit

The -finline-limit switch controls a threshold value (measured in pseudo instructions) that deter-
mines the size of functions, that are inlined. The optimal value however depends on the hardware,
the cache and register sizes. The above was carried out on a Pentium 4 machine (cf. Appendix [Bl),
but one can a observe similar behaviour e.g. on AMD Athlon machines.

In Figure B we have plotted the execution times for the smallest matrix (h = 1/64), for different
values of the inline limit. According to the gcc manual, the default value is 600, however it makes a
difference, if one supplies the switch -finline-limit=600 or leaves it out.
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AMG for scalar problems
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Chapter 4

Scalar partial differential equations

The numerical solution of partial differential equations is still one of the most challenging problems in
scientific computing. They arise from a wide range of real-world-problems in areas such as meteorology,
aerodynamics, nuclear physics and even economic topics like capital markets. Thus, they are the
motivation for developing fast numerical algorithms in order to provide more detailed simulations of
mathematical models and to give a better understanding or even to allow forecasts for the underlying
scientific problem.

In the following we introduce elliptic partial differential equations and describe the difficulties
and strategies to solve them. Especially — in the next chapter — we will investigate the behaviour of
algebraic multigrid, applied to linear systems arising from the finite element discretizations of scalar

boundary value problems
(Lu)(z) = f(z), z€QCRY,

where u, f :  — R, and L is a linear elliptic differential operator, and d € IN is the space dimension.

4.1 Convection-diffusion-reaction equations

A typical elliptic scalar partial differential equation is the stationary convection (or advection) diffusion
reaction equation.

Definition 4.1.1 (Convection-diffusion-reaction problem). Find u : RY — R, such that
—vAu+b-Vu+cu=f in QecR? (4.1)
with0<veR, b:Q—=RY, ¢c: Q- R, f:Q— R and appropriate boundary conditions on 0.

It can be transformed into a weak formulation by multiplying the equation with test functions
veV = VVO1 2(Q) and integrating over the domain 2. The according variational formulation for
homogenous Dirichlet boundary conditions then consists of finding w € V' such that

a(u,v) = f(v), V veV (4.2)
with

a(u,v) :=v(Vu, Vo) + (b - Vu,v) + (cu,v), (4.3)
fv) = (f,v), (4.4)

using the standard scalar products

ou Ov
(u,v) = (u,v)LQ(Q) ::/qudm, (Vu, Vo) = Z/ oz, Oz, dx

73
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This scalar problem can be interpreted as a model for describing the concentration (or the tem-
perature) u of a substance in a liquid, which is contained in a reservoir €2, under the influence of a
certain amount of diffusion v, a convection field b, and a chemical reaction indicated by c¢. Often,
the problem occurs without the reaction term, then it is simply referred to as the convection-diffusion
problem.

For the existence and uniqueness of a solution, a(-,-) has to satisfy the conditions of the famous
theorem of Lax-Milgram.

Definition 4.1.2 (Coercivity). The bilinear form a : V. x V. — R is called V -elliptic or coercive, if
there exists a v > 0 with
a(v,v) > Al ¥V veV. (4.5)

Theorem 4.1.3 (Lax-Milgram Lemma). Let a(-,) : V xV — R be a bounded, coercive bilinear
form in the Hilbert space V, and f : V — R a bounded linear form. Then the variational formulation
#3) has a unique solution u € V.

Lemma 4.1.4. Let
be L®Q)¢, ceL>®(Q), felL*Q),

then a(-,-) is a bounded bilinear form in Wol’Q(Q) X Wol’Q(Q) and f(-) is a bounded linear form in
Wol’2(Q). Furthermore, a(-,-) is coercive in VVOI’2 under the conditions

1
VbeL®()?  and c— 5V b>0,

when homogenous Dirichlet boundary conditions are applied.

Proof. The coercivity can be shown by partial integration of the convection part and using the equiv-
alence of the seminorm |-|y1,2 and ||-||y12 in WOI’Q(Q). A complete proof can be found e.g. in [QVI7],
where also other boundary conditions are considered. U

The Lax-Milgram theorem now ensures the solvability of ([2). It is also possible to extend the
above result to inhomogenous boundary conditions.
4.2 Standard Galerkin approximation

In order to give a numerical solution to ([E2), we introduce a discrete approximation by the standard
Galerkinﬂ approach. Given a finite-dimensional subspace V}, C V., we restrict the problem to the
following discrete formulation. Find wuy € Vj, such that

a(up,vn) = f(vn), ¥V wp € V. (4.6)

Let now n := dim V}, and {¢1, ..., ¢, } be a basis of V},, then ([H) is equivalent to the linear system

Au="f, (4.7)
with u = (v;)]; € R" and
A= (aij)zr'szl € R"™",  ai; = a(d;, ¢i) (4.8)
f=(fi)ic, € RY, fi=1(9).

Note that the condition (LX) guarantees, that A is positive definite, and therefore (1) has a
unique solution u. The choice of V}, and its basis functions is crucial for the structure of A. Ideal
would be a orthonomal basis of V}, with respect to a(-,-), which however isn’t trivial for @2) and

'Named after Boris Grigorievich Galerkin (1871-1945), Belarussian engineer and mathematician.
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arbitrary domains 2. Functions with a small support however at least lead to a sparse matrix A. The
according discrete subspaces are the finite element spaces.

In our program system PN'S, we use a triangulation of Q, meaning a set 7, = {Ty,...,Tas} of M
disjoint triangles (d = 2) or tetrahedrons (d = 3) T; with

M
Ur==a (4.10)
=1

and piecewise linear (Pj) finite elements to discretize the problem.

4.3 Stabilization of convection diffusion problems

For absent reaction (¢ = 0) and decreasing diffusion (v — 0) the problem ([Z) becomes convection
dominated and looses its elliptic property, resulting in a nearly singular discrete problem, since the
positive definiteness is solely grounded on v. Problems with iterative solvers are the consequence,
because their convergence rates directly depend on the condition of the matrix. Furthermore, the
resulting discrete solutions then exhibit strong oscillations. Therefore, for practical applications, one
needs to apply a stabilization method, that strengthens the ellipticity of the bilinear form.

Let in the following [3) - [4]) be again discretized using a finite element space V;, C V, with an
according triangulation 7y, leading to a discrete problem as in (EG).

The Streamline Diffusion/SUPG stabilization method (originally introduced in [HB79]), for exam-
ple, adds artificial diffusion only in the direction of the convection b.

Definition 4.3.1 (SUPG method). The streamline upwind Petrov Galerkin (SUPG) or streamline
diffusion method is defined as finding up € V3, such that

asvpG(un,vn) = fsupa(vn), Vo ovp € Vi,
with
M
aSUp(;(uh, Uh) = a(uh, Uh) + Z 5Tz.(—1/Auh +0b-Vuy + cup,b- Vvh)Ti, (4.11)
=1
M
fsupa(on) = f(on) + > _(f,b- Vop)r, (4.12)
=1

Here (-,-)7, is the local L%-scalar product on the triangle/tetrahedron T}:

(u,v)1, == (u,v) 2(1y) :/ uv dx.
T;

Especially for piece linear elements, where we have vanishing second order derivatives, and for ¢ = 0
we see, that the SUPG method adds a small diffusive part to the variational formulation.

In the Galerkin least-squares method (see [HEHSY]), the stabilization term is tested not only with
the convection part but with the whole differential operator.

Definition 4.3.2 (GLS method). The Galerkin least squares (GLS) method is defined as finding
up, € Vi, such that

agrs(un,vn) = fars(vn), V. wvp € Vp,
with
M
agrs(up,vp) = alup,vy) + Z o1, (—vAup + b - Vuy, + cup, —vAvy, + b - Vup, + cop) 1, (4.13)
y i=1
fars(vn) == f(vn) + D _(f,—vAvy +b- Voy, + cop)r, (4.14)

i=1
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Both of the above methods enhance the diffusive part of the bilinear form and therefore strengthen
the positive definiteness of the stiffness matrix A. In PNS the stabilization parameter for both
methods is chosen as

hZ,
S, = —(1+ Pk )2, (4.15)
2v ‘
where hr, := diam(7;) and
hr,
Per; == [|blloo,1; VT (4.16)

is the local Peclet number on element T;. The Peclet number can be seen as a measure for the relation
of convection and diffusion. A possible definition for the whole equation could be the following:

Definition 4.3.3. Problem (1) is called

purely convection dominated if rlninM Per, > 1 (4.17)
i=1,...,
purely diffusion dominated if  max Per, <1. (4.18)

1=1,..

Of course, mixtures of these types can occur, since Per, is only a local measure, that can vary over
the domain. For stability proofs and error estimations of the above stabilization methods, we refer to

[RST9G).



Chapter 5

Algebraic multilevel methods

Since algebraic multigrid is heavily inspired by the concept of geometric multigrid and uses many
terms thereof, it is hardly possible to describe the idea behind the former without first presenting the
idea of the latter. But we will keep things as short as possible.

This chapter will give a brief overview first of geometric multigrid and then introduce the approach
of algebraic multigrid.

5.1 Geometric multigrid

The foundations of (geometric) multilevel or multigrid methods were laid by Fedorenkdl [Fed61] and
Bakhvalov [Bak66] in the 1960’s and further developed by Brandt (e.g. in [BraZ73]) in the 1970’s.
It was only in the 1980’s when they became more popular since increasing CPU speed and larger
memories then allowed to tackle bigger problems.

The motivation of geometric multigrid arose from the observation that simple solvers — splitting
methods like Jacobi or GauB-Seidel (see Section BZTl) — have a smoothing effect on the error of the
approximate solution.

5.1.1 Smoothing

Let # = A~'b denote the exact solution and z(*) the approximation at step k. Remember that the
according iteration reads

2 ®) = (I — M~ A)zF + M,
and thus, if e®) := 2(*®) — 2 is the error in the k-th step we have for step k + 1:
eW ) = (4D _ g — ob o MY (AR —b) = (I — M A)e",

So the error components are damped with the iteration matrix I — M ~'A. Looking, for example, at
a simple boundary value problem like the 2-dimensional Poisson equation

—Au=f, inQ:=(0,1) x(0,1) (5.1)
u=0, ondf),

' Radii Petrovich Fedorenko, a Russian mathematician at the Keldysh Institute for Applied Mathematics, is always
cited as the inventor of multi-level methods. Interestingly however in an article by Saad [Sv(0], it is mentioned that the
British engineer and mathematician Richard Vynne Southwell (1888-1970) in 1935 [Sou35| already had the the basic
idea of a two-level method.

7
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discretized using finite differences on a structured (N x N) grid produces a linear system Az = b with
a symmetric positive definite stiffness matrix

Tn —In
1| =
A= In , (5.3)
—Iy
—IN TN
with h = ﬁ and
4 -1
-1 4
Solving this linear system with the (damped) J acobi A method using the relaxation parameter w = %
yields the iteration
1 1
) = (1 — §D_1A)x(k) + 5D—lb, (5.4)

As the component u;; of the discrete solution at grid point (7,7), i,j = 1,..., N corresponds to the
n-th component of the solution vector = (with n =i % N + j) we have

uj = x, for n=1ix N+ j.

Analogously, we get f;; = b, for n =i * N + j. Hence, for the n-th component of the vector z*F+1) in

E2) we get

k 1) L owy 1, & k k k 1
z D = uz(‘j = 5“1(3‘) + g(uz(‘—)l,j + “z(‘+)1,j + uz(,j)—l + uz(,j)—f—l) + gthija
and for the n-th component of the error x%kﬂ):
k1 k+1) Lo Lk k k k
elb+l) — uz(j —uij = 5 <e§j) + Z(eﬁju + e§+)17j + e;j),l + eéj)ﬂ)). (5.5)

In (B3) the new component of the error vector is formed by the (weighted) average over the neighbour-
ing points — this means that small oscillations are reduced quickly. The local information transport is
very quick, whereas the global information transport (if N is very large) is quite slow — which is why
this method is a good smoother, but a poor solver.

Remark 5.1.1. Another approach is to look at the eigenvectors of the iteration matriz I — M™LA.
They are the same as those of A which in turn correspond to the discrete points of the eigenfunctions
of the boundary value problem (1) — [(Z3). Now the low and middle-frequent eigenfunctions (and
thus the eigenvectors) belong to eigenvalues of I — M~YA which are close to 1 in contrast to the high
frequent eigenvectors belonging to eigenvalues which are close to zero.

As a consequence of this, we only need to find a way to smooth the lower frequencies of the error
as well, to have a good solver.

2Originally, the German mathematician Carl Gustav Jacob Javobi (1804-1851) in [Iac4h] invented this iterative
method, because the exact Gaussian elimination method was tedious and error-prone for large linear systems.
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5.1.2 Coarse grid correction

Since partial differential equations are posed on a geometric domain € they are usually discretized
using a grid of a certain mesh width, say h. Now it lies near to approximate the lower frequencies of
the error with a dicretization on a coarser level, for instance on a grid of width 2h. On that level the
same type of smoothing as above can be applied, and its low frequencies in turn can be smoothed on
coarser grids recursively, which gives the classic multigrid method.

Precisely, we need a hierarchy of grids

Qe € pi—1 C -2 Ty C 1,

where Q; C ; means that (2, includes all points of €2;. On each level [ the problem is discretized
using the finite element space V; which consists of the according polynomial elements defined on grid
;, so we get a sequence of linear systems

Ajxp=1b, with A€ Rnlxnl,nl =dimV; (5.6)

where b; € R™ is the dicrete version of the right hand side f and z; € R™ the discrete approximation
of u on level [. Especially we set A = Agy, b = by and = = x.

Since fine grids are often generated through the refinement of a simpler coarse grid, such hierarchies
may be produced at no extra costs, if some rules are heeded.
Between the grids we need of course appropriate transfer operators for the interpolation.

Definition 5.1.2 (Restriction, Prolongation). The restriction from a finer level | to the coarser level
[+ 1 is denoted by
Ry Vi — Vi,

while the reverse mapping from level [l + 1 to level |
PiVig — Vi,
which has to be some suitable interpolation, is called the prolongation.

Usually we have R; € R™+1%™ P € R™*™+1 and R; = ¢(P)T with some constant c¢. Generally the
prolongation is chosen such that a point p € €); is interpolated through its neighbouring points which
lie in 2741.

Remark 5.1.3. When the domain ) has a simple geometry like a rectangle and is discretized using
structured grids with regular refinement, all works very nicely. But if the domain is more complex
and if we have unstructured grids generated by an adaptive refinement, then the construction of proper
transfer operators is anything but trivial.

5.1.3 The algorithm

Let S; be the smoother on level | and the sequence of linear equations as in (&) be given. Then,

after k iterations with Sj, the error is el(k) = xl(k) —r = x = xl(k) — el(k) and thus el(k) would be the

optimal correction for our current approximation xl(k). Since now for the residual rl(k) the following
relation holds

Tl(k) = Alxl(k) - bl = Alel(k) (5'7)

we approximate el(k) now by restricting rl(k) on the coarser level [ + 1:

Ti41 = Rﬂ“l(k), (5.8)
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where we solve the equation

Apprerr = 141 (5.9)
The result e,y is prolongated again to level [ and then used to update our current solution xl(k):
S L T (5.10)

As this simple coarse-grid correction does not automatically guarantee convergence, additional smooth-
ing is required after the correction (post-smoothing) or before (pre-smoothing).

Definition 5.1.4 (Two-grid-cycle, Multigrid-cycle). The process described above is called two-grid-
cycle if only two levels are involved and the system on the coarsest level is solved exactly. If this process
is again used recursively to solve (&4), it is called a multigrid-cycle.

Finally we can summarize these ideas in the following general multigrid algorithm. The parameters
v1, o control the number of pre- and post-smoothing steps, while 4; determines the recursion pattern
of the cycle:

=1 : V-cycle,
=2 : W-cycle,
v =1 : F-cycle.

Furthermore, let Smoother;(A;, z;,b;) be a function that applies the smoother S; once to the System
Ajxp = by

Algorithm 1: MGCycle;(A;,x;,b;)
Input: Matrix A;, vector b;, smoother S;, parameters vy, va, 7,
initial approximation x;
Output: An approximation x; to Al_lbl
if | = lpnax then
€Iy < Al_lbl
else
fori =1 to vy do
Xy Smootherl(Al,xl,bl)
end
rip1 — Ripa (A — by)
1 ey 0
for i =1 to 7y do
er+1 + MGCycle1(Ary1,€141,7141)
end

xp — 1 — Peg
for i =1 to vy do
X < Smootherl(Al,xl,bl)
end
end

Remark 5.1.5. Algorithm[ is the basic algorithm for all multigrid methods — even algebraic multigrid
methods rely on this procedure since it is the core principle of every multigrid idea.

Remark 5.1.6. The runtime complexity of one multigrid-cycle is proportional to the total number of
unknowns on the finest mesh, ng, if

lmax

Z ny < Cny,, (5.11)
=0
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with a constant C' independent of ng. This is because the number of nonzeros in A is O(ng) when A
comes from some discretization (FEM, FDM, FVM) of a PDE. The above equation is a reasonable
condition, since the meshsize on a level [ + 1 should be significantly smaller than on level I.

Remark 5.1.7. To get a sensible solving algorithm, we apply several multigrid-cycles,
2 .= MGCycley (A, 21 b)

until zF) satisfies some stopping criterion. In order to improve the initial value 20 we might use the
so-called nested iterations: The system is solved directly on the coarsest level, i.e. x;,, = Al_mlax bl s
then prolongated to the next level (I = lyax — 1), where some smoothing steps are applied, then again
prolongated, and so on, until we get some z(©) on the finest level, where the normal multigrid solving

algorithm can be started as above.

5.1.4 Convergence results

In order to show the convergence of a multigrid method, one needs to ensure that the smoother S
really reduces the high-frequent error and that the error can be approximated on the coarser level as
decribed through equations (8) — (I0). The standard convergence theory for geometric multigrid
is based on the following two properties.

Definition 5.1.8 (Smoothing property). The condition
| AS M| < Con(vi)h™“, (5.12)
with some function n with n(vy1) — 0 for v1 — 0o and a > 0 is called smoothing property.

Definition 5.1.9 (Approximation property). The condition
1A = PAZ Rl < Cah™® (5.13)
is called approximation property.

For symmetric scalar problems there are already convergence results available as e.g. in [Hac85]
or [Man88]. Fewer results are available for nonsymmetric scalar problems like the convection-diffusion
equation. For this type of problem Reusken was one of the first to show convergence for the the two-
grid method and the W-cycle with damped Jacobi and Gauss-Seidel smoothing for finite differences
[Reu00]. A similar result for a finite element discretization is given in [OR03|.

Derived originally for elliptic problems, the (geometric) multigrid method delivers good results as
well for other types of problems. For many cases, it only needs a constant number of multigrid-cycles
to converge, independently of the meshsize h, which results in an overall runtime complexity of O(nyg).

5.1.5 Disadvantages

Geometric multigrid are however not the optimal method in every case. For example, they show a
lack of performance if the data of the underlying boundary value problem is not smooth enough. This
is mainly due to the construction of the prolongation, which simply interpolates between points, and
does not take into account the special properties of the (discretized) differential operator which forms
the stiffness matrix A. As a first remedy, operator-dependend transfer operators have been developed
by e.g. Alcouffe et al. [ABDPSI] and de Zeeuw [dZ90].

In addition, as mentioned above, multigrid methods are not easy to implement independently of
the problem. The interpolation is a crucial point, especially if we deal with complex geometries and
unstructured grids. Adaptive mesh refinement with green refinement e.g. yields meshes that are not
hierarchical and so are not applicable to the above approach.

Generally we need geometrical information about the underlying problem which can be missing
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e because our software doesn’t allow access to the geometry information for some reason, maybe
it’s because we have a legacy system whose mesh-generator is not capable of providing us with
hierarchical grids or it is a third party product for which we don’t even have the source code

e or because the linear system does not stem from a discretized PDE at all, so we have no finite
element spaces and no mesh information - e.g. optimization problems.

Speaking now in terms of computer science for geometric multigrid, the interface between the
solver and the FEM-software doesn’t only consist of the linear system Az = b, but also contains the
meshes g, ..., . . Thus, a geometrical multigrid method is no black box solver.

5.2 Algebraic multigrid for scalar problems

As we have seen from the last section there is a need for purely algebraic black-box solvers and
indeed several methods have been developed over the last twenty years. We will subsume them under
the term algebraic multilevel methods. All these methods have in common, that they try to give an
approximation to the solution of the linear system

Ar=b, A=Ay¢c Cnxn’ b="byec C" (5.14)

by reducing the coefficient matrix Ay to a significantly smaller matrix A; € C™*™ with m < n (and
appropriate smaller right-hand side by). This is then repeated recursively leading to different levels
Ajz; = by of equations (thus the name).

Various methods fall under this category, among which are the following main variants:

e The "classical” AMG, that was first introduced by the work of Brandt et al. [BMR84] and
Ruge/Stueben [RS87]. It is based on partitioning the variables on each level into two sets by
using strong connection relations imposed by the matrix.

e Algebraic multigrid merely based on graph information ([Bec99)], [KicO8]).

o Aggregation based AMG ([VMB94], [SS95)]), were the variables are seperated into several ag-
gregates, which are then represented by one coarse level variable. An improvement hereof is the
smoothed aggregation ([VMB95]) that includes a smoothing step into the construction of the
coarse level operators.

e AMGe based on element agglomeration ([IV0I]) uses element stiffness matrices to generate a
better measure for the coarsening of the variables.

e Algebraic multilevel incomplete factorizations e.g. ARMS ([SS02]), AMLP ([Kra(4]), AMLI
(JALSS]), ILU-MG ([BS99]) where the original matrix is reordered and approximately factorized
into block matrices.

In this thesis however, we will concentrate on the classical AMG approach and investigate its
application to nonysmmetric problems. For A € C"*" D = diag(A), and = € C" we will use

2]l := v/]z* Ax]
[z]|lp == V/|z* Dl
]l := V/]a*A* D=1 Az)],

which are proper norms if A and D are positive definite (semi-norms if they are positive semi-definite).
Furthermore, if A € R"*", A = (aij)ijl we refer to its positive or the negative entries by writing

_ {aij if ajj < 0 + {0 if Qjj <0

a.. = and al =
0 else a;; else

ij ij
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5.2.1 Towards geometry independent multigrid

Algorithm [[] doesn’t make use of any mesh information, so the main goal of an algebraic multigrid
algorithm is to generate a hierarchical system of levels as in (i) and corresponding transfer matrices —
without using multiple grids. Given these sequence of equations, and of course appropriate smoothers,
the multigrid cycle can be applied without any modification.

Prior to the multgrid cycle iteration, the AMG preprocess now is responsible for generating the
coarser levels:

Definition 5.2.1 (AMG preprocess).
Repeat for level | =0, ... until the linear system on level | is small enough to use an exact solver:

1. Generate a C/F-Splitting : Given a level | with matriz A; € C™*™ we identify those variables
i€ Q :={1,...,n} that should be approximated by other (neighbouring) variables on a coarser
level. These variables are gathered in o set Fj, while the rest, which are going to be the next
coarse level variables, are put into a set Cy := Q; \ F; and thus the dimension of the next level is

ni = #[C).

2. Define the weighted interpolation P, € C™+1*™ gqs the prolongation operator in dependency of
the entries in A;. Then the restriction will be set to

R = (P)". (5.15)
3. Finally compute the next coarse level matriz with the Galerkin principle (Galerkin product) :
Al+1 = RlAlPl- (516)

Assuming we have a given C'/F-splitting, we can re-order the variables and equations of (B4,
such that the variables belonging to F' are sorted before the ones belonging to C'. Then we can also
use the following notation:

Arp AFC> <$F> (bF>
i (ACF Acc ) \zc bc (5.17)
as well as
_ (Prc _
P = (Pcc> , Ri=(Rcr Rcc),

where Poc = Roc = I is the identity matrix. With Dpp we will denote the diagonal of App, with
De¢ the diagonal of Ace.

The above construction in Definition (iZJl) has some advantages especially when dealing with
symmetric (Hermitian) positive definite matrices, as the following lemmas state.

Lemma 5.2.2. Let A = Ay € C"™", and the coarse level matrices be formed by (ZIA) for | =
0vr o Lo

1. If A is Hermitian, and the relation [2I3) holds, then A; is again Hermitian for 1 =1,... lnax-

2. If A=Y exists and the prolongation (and restriction) matrices on each level have full rank (i.e.
rank(F;) = rank(R;) = nj41), then Al_1 exists for | = 1,... lmax- Especially, if A is positive
definite A; is positive definite again for all l.

Proof. Clearly, if A; is Hermitian, A;,; is again Hermitian. The second proposition follows from
rank(P;) = nj41, and thus we have dim(Range(F))) = nj41 = dim(Null(P)) = 0 = rank(A;11) =
ni4+1. In particular, the positive definiteness of A; implies that of A; ;. O

Hence, it is reasonable assuming R; = (FP;)* to have maximal rank in the following.
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Lemma 5.2.3. Let A, A~ € C"¥™,
1. The coarse level correction operator for a two-level cycle

T, := I, — PAZ \RiA (5.18)

on each level | is a projection.

2. Moreover, if A is also Hermitian, T} is an orthogonal projection with respect to the bilinear form

('7 ')Al'
Proof. T} is a projection:

TP = (I, — PALL (P)*A)?

[+1
=1, - 2P AL (P) A + PAZY (P) AP AZL (P)* A
l+1( ) l+1( ) 1+1( )

=Ain
=1, — PAZL(P)* A =T).
If A= A* we get
TP A = (I — PBAZL (P) A)* A

= A~ ATPA(P) A

= A(I, - PAZL (P)*A) = AT,
and therefore 7} is self-adjoint with respect to (-,-)4,. Thus, for u,w € C} we have
(I = T, Tiw) 4, = (Ti(L — T)u, w) 4, = (Tiu — Tyu), w) 4, = 0.

Furthermore, because (I; — T}) = PAY (P)*A; and

I+1
Range(PlAljrll(Pl)*Al) = Range(P,), (5.19)
it follows that
Range(l; — T;) = Range(P;) = Null(7}) L Range(1;). (5.20)

O

Lemma 5.2.4. Let A be positive definite and the coarse levels be defined as in (IA). Then for any
two consecutive levels | and | + 1 and any w € C'T the following equation holds:

[Pwlla, = [Jwlla,, - (5.21)
Proof. This follows immediately from

1Pl = w* (P)" AP w = [|w]%, -
—

=A4
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5.2.2 Convergence theory for symmetric problems

Typical convergence results exploit the orthogonality of 7; and thus are only available for the symmetric
(Hermitian) case.

Definition 5.2.5. An iterative method for [5-I3) that produces an approximation z* D) 4o the exact
solution = in the k — th step out of a previous approzimation z*) is said to have the convergence
factor n € [0,1) if

lz — 2| < iz — 2.

The following theorem now motivates further definitions and shows a simple convergence result
for the V-cycle.

Theorem 5.2.6. Let A = Ay € C™™" be Hermitian positive definite and let the prolongation (and
restriction) matrices as defined in (IA) on each level have full rank. For the smoothers S; and all e;
the following conditions may hold

ISieal%, < lledllh, — oullTied |, (5.22)
ISieallh, < lledll%, = S2llTiSien |, (5.23)
for all levels | =0, ..., lmax with some constants d1,09 > 0 being independent of e; and [. Assume that

at least one pre-smoothing step as well as one post-smoothing step is carried out. Then d1,d00 < 1 and
if smoothing on the coarsest level has the convergence factor n < 1 then for the convergence factor n
of the V-cycle on level | the following inequality holds:

1-96
m =< max(n, \/ T(i) (5.24)

Proof. As the start of the induction, we see that the proposition is true for Iy ,x. Assume now, that
the convergence factor for the V-cycle on level [ + 1 is 1 € [0,1). For level [ we now denote the
V-cycle coarse level correction operator with 7;. The V-cycle approximate solution (on level I + 1) of
(1) will be named ¢€;1 and the exact solution of (&3 is denoted with e;y;. Then the error on level
[ after a V-cycle coarse level correction is

Tier = ey — Piéry1 = e — Pepyr + Pi(err1 — €41) = Tier + Pi(err — €41). (5.25)

Now because of (2Zl) we have

P11 — €r)lla, = llertr — €gallay < mallertalla, = miallPeal a,
since €11 = él(i)l and él(?r)l = 0 (see also line [l in algorithm [l). Due to (EI9) and (B20) we can now
state

I Tiedl%, = [ Tell, + 1 Prlerer — e,
< | Tierl%, + niall Prera ||,
= |Tiedlla, + i (ledll, — [ Tell,)-
Applying the first assumption ([LZZ) and then the last estimation to Sje; instead of e; yields
ISiTiSiedllh, < 1 TiSiedl%, — SlTiTSien%, = 1TiSiedl%, — ol|TiSiel,

(5.26)
< TiSielllh, + i (1Sel, — 1TSielld,) — sl TiSedl%,

because from (20l and (B20) follows T;7; = T;. Substituting now ||1}Slel\|?4l/\|slel\|?4l = o in (B2Z0)
and applying the second assumption (EZ3) leads to
ISiTSien]l, < (@1 =iy = 61) + i) [ Siell,

< a(l - 7712+1 —01) + 77l2+1
- 1+ adsy

lelI%,-
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Since T is a projection, we have HTlSlelH?Al < HSlelHil = « < 1. So for the convergence factor 7; on
level [ we get
_ a(l —nfy —61) + iy,
M = max
0<a<l 1+ ads

1—51>‘

= max (7712+1, m

A similar result for the W-cycle is presented in [Man§§].

5.2.3 Algebraic smoothness for nonsymmetric problems

The conditions (B2Z2) and ([2Z3)) of the last theorem show us the dependence between smoothing and
coarse grid correction and lead to a characterization of smooth error in the algebraic sense. An error ¢
for which || T;e;]| 4, < ||e1] 4, is obviously well approximated on the coarser level I+ 1 but the smoother
S fails to reduce e; significantly, as we still have ||Sje;||a, =~ ||e;]| 4, Thus, errors with Sje; ~ ¢; will
be called algebraically smooth — they mainly consist of eigenvectors corresponding to eigenvalues of S
which are close to one.

Remark 5.2.7. Here lies a major difference between geometric and algebraic multigrid. In geometric
multigrid, the coarse levels are fixed — they emerge from given discretizations, and smoothing and
interpolation is chosen accordingly. In algebraic multigrid the smoothing is fived, and the coarse
levels (i.e. the interpolations) have to be constructed such that algebraically smooth errors can be
approximated well on them.

Obviously, the conditions

1Sied%, < lledllE, — eallledl, (5.27)

1 Tredl%, < Ballledll, (5.28)
and

ISiellE, < lledl, — ealllSiedl|, (5.29)

| Tiel|%, < Bellledl, (5.30)

imply ([22Z2) respectively (23] with 1 = a1/61 and dy = as/Fs.

Definition 5.2.8 (Algebraic smoothing and approximation property). In the algebraic multigrid con-
text, condition [5-27) respectively [Z3) will be called smoothing property, while [2Z3) and -30)

will be referred to as approximation property.

In [RSKT|, Theorem 4.2 and 4.4, it is shown that Gauss-Seidel as well as Jacobi relaxation satisfy
the conditions (B217) and (2Z9) for symmetric positive definite matrices.
In order to characterize smooth error we first state the following lemma.

Lemma 5.2.9. Let A € C"*™. Ifa;; >0,i=1,...,n then
lel% < llellplllellla, Ve e €™ (5.31)
Proof. Using the Cauchy-Schwarz inequality, we get:
* [P . | 1 _1
el = |e* Ae| = |e* Dz D™= Ae| < || D2el|2[| D72 Ae|2 = [le|[pllle]l] a-
O

If now e = ¢ is a smooth error with ||Se[a ~ |le]|a we have 0 =~ ||Se|} — [lel|} < —ailllel]} =
l[le]l|} & 0. For a relatively large error e, this means |||e[||4 < ||e/|4, and combined with Lemma BE2Z3,
it yields |le]|a < |lel|p-
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Smooth error in the real case

Looking at the consequences this property has for real matrices, for arbitrary A € R™*" with a;; > 0
fori=1,...,n, we get

%anzn:(—azj)(ei ¢j) Z(Z%JFZGJZ)e =¢' e

i=1 j=1 i=1 j=1
< le" Ae| = [le% (5.32)

n
< lellp = Z%’e?-
i=1

In the case when the row and column sums are negligible, or at least not negative, i.e. Z?Zl ai; +
> j=1a4i 2 0, this simplifies to

- Z Z —a;j)(e; — e;) ?« Z aies, (5.33)

i=1 j=1
and if we further assume a;; < 0 for ¢ = 1,...,n and every j # i, we get on the average for each
variable i:
aw ej)2
= Z < 1. (5.34)
l
J#l

This, of course, is a heuristic approach, but it triggers the observation that if == is quite large, the
difference between the i-th and the j-th error component has to be relatively small The circumstance,
that — f] is large (compared to other entries in the row i) is often referred to as a large negative
connection from i to Jj (cf. Definition BE2Z22)).

Remark 5.2.10. The above assumptions are certainly true for M-matrices, and if A is also symmetric,
one only has to ensure that the row sums are > 0. Note that the matriz from [23) has this property as
well as many other stiffness matrices arising from finite difference and finite element schemes. Note
also, that A doesn’t need to be symmetric nor positive definite to derive this inequality.

Smooth error in the complex case

Regarding the complex matrix A € C"*", we need also to take into account the matrix A. If A, 1=
%(A + A*) is the Hermitian part of A, we define A := Ap., + Aper and we get similarly to the above:

1 n n X n n . . _
2 ZZ _aij‘ei o ej’2 + Z(Z aij)‘eiF =" Apere + " Agere

i=1 j=1 i=1 j=1
i 2 2
< |e" Anere| + €" Anere| = [lelldy,, + llellF,
n
< 2lellp =2 aiileil?,
i=1
with
R 1 _ _
Qjj = §(aij + aij + aj; + a]‘i). (5.35)
Again positive diagonal elements were assumed. Since a;; € R, we look at the case 2?21 a;; 2 0 and
a;; < 0fori,j=1,...,n and j # 7, using the mean value for each variable i:
1~ —ay lei — ¢l
— — < L 5.36
4 ]Z; (0773 |€i|2 < ( )

J#i



88 CHAPTER 5. ALGEBRAIC MULTILEVEL METHODS

Essentially positive type matrices

A generalization of matrices with only negative off-diagonal entries (such as M-matrices) are matrices
of essentially positive type introduced in [Bra86].

Definition 5.2.11 (Essentially positive type). A matriz A = (aij)ijl € R™™ is called of essentially
positive type if there is a constant ¢ > 0 such that for all e € R",

DY (—a)ei—e)? = e Y (—a;)(ei—e)’ (5.37)

i=1 j=1 i=1 j=1

This type of matrices can be characterized as perturbed M-matrices with positive off-diagonal
elements which are small compared to the negative entries. If now (B37) is applied to ([E33)) we can
still see, that smooth error varies slowly in the direction of large negative connections.

5.2.4 Interpolation for nonsymmetric problems

Considering now the prolongation and restriction operators P, and Ry, it follows from the above
remarks, that they should be chosen such that the approximation properties (28] and (BE30) are
fulfilled by the operator 7;. As in [RS87] we would like the prolongation to be of the following form.

Definition 5.2.12 (Prolongation matrix). Assume that we have a C/F-Splitting (cf. Definition[Z1)
given on level l. Let ¢ : C; — Q1 :={1,...,n41} be a mapping that renumbers the marked coarse
variables for the next level. The general prolongation matriz P, = (p) € C™+1X™ from level [ + 1 to
level | is defined as

wi if 1€ F; and @fl(k)epf
Pik = 1 if i€C; and o Yk)=1i (5.38)

0 else

with the according interpolation weights w;, € C,w;, # 0 and the interpolation variables Pf C
which contribute to the interpolation of i.

It is evident, that this kind of prolongation matrix has the full rank n;4;. The importance of the
correct interpolation is shown in the next statements concerning the two-level convergence.

Lemma 5.2.13. Let A; € C™*™ have positive diagonal elements. For e; € C™ the interpolation P
may satisfy
min es — Prera[3, < 7l (5.39)
+

with T being independent of e;. Then for the operator Ty holds the following:
I Tixl%, < Tl Tl (5.40)
for all x € C™.

Proof. First let e; € Range(7}). This means that there is a € C™ with Tjz = ¢;. Hence we have for
arbitrary e;; € C™+!

(e = Prev1)* Aver| = lef Aver — ey (P) AT
= lej Aver = ef1 ((P)* A = (R)* AP A (P)F Ay
~——

=Ain

= lef Arer| = |le]|%,-
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By applying now the Cauchy-Schwarz inequality, we get

letl%, = (et ~ Pret1)* D7 Dy * Avel
< D (e1 — Pieren)|l2 D] * Arerl
= ller = Perallpy[lledll|a, -
Using now the assumption (39) yields (BZ0). 0
This directly leads to a convergence result for the two-level cycle with post-smoothing only.

Theorem 5.2.14 (Two-level convergence). Let A; € C™*™ have only positive diagonal elements and
let the property ([5-27) be satisfied for the smoother S; with o := oy > 0. If T} satisfies the conditions

I Tiell%, < 7l Tielll, (5.41)
(5.42)

-
1 Tel| 4, =:v <
T— o

with 7 > 0 independent of e € C™, then T > « and the two-level (algebraic) multigrid cycle involving
the levels | and I+ 1 converges with a convergence factor of \/v(1 — «/T) when using post-smoothing.

Proof. With the same argumentation as in [Sti199], Theorem 4.1 we immediately get for e € C™

« (0%
ISiTell, < | Tiel%, — enll|Tiell[, < (1~ ;)HTzeHil <(1- ;)’VHGH%L-
O

Remark 5.2.15. Note that for Lemma [2ZT3 and Theorem [5-2.14] we didn’t need the symmetry nor
the positive definiteness of A;. Instead, the critical condition is now the boundedness of || 11| a, in
©73). If A; is symmetric, T} is an orthogonal projection (cf. LemmaZ3) and we have ||Tj||4, = 1,
which permits the proofs usually found in the literature.

The crucial question is the decision, whether a variable ¢ might be interpolated by neighbouring
variables, so that it can be neglected on a coarser level. Since we don’t have access to the mesh,
we only have the matrix as the source of information about our problem. But if A was assembled
as a stiffness matrix from a finite element method (or FDM, FVM), all the geometrical information
is represented somehow in the matrix. The neighbourhood of a variable i is therefore formulated in
terms of matrix entries. Let in the following A € C"*" be a matrix with entries (a;;);;_;-

Definition 5.2.16 (Neighbourhood). The neighbourhood of a variablei € Q = {1,...,n} with respect
to a matriv A € R™*" is defined as

Ni(A) = {j € Qi # j, a;; # O}

If it is unambiguous, which matriz is meant, we simply write Nj. The elements of N; are called
neighbours of i. Accordingly, we define the sets of negative and positive neighbours, N~ and J\/i+, as

N = {j € N; | ay; < 0}, N = {j € N | ay > 0}.

Note that the property ”is neighbour of” is only symmetric if the sparse pattern M(A) is symmetric,
which is the case for FEM (FDM,FVM) discretizations.
Definition 5.2.17 (Sparse pattern). The sparse pattern M(A) = (my;);;_; € {0,1}"*" of A is a

matriz whose entries are defined as

{1 if aij #0,
mij:

0 else.
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Direct interpolation

A first type of interpolation for matrices A € R™*" with a;; < 0,7 # j, and a; > 0,7 =1,...,nis
defined in [Sf1199] as follows

Definition 5.2.18 (Direct interpolation). The interpolation weights in 238 are chosen as

— Qi ’ Z -
Wik 1= Su with o = I EN: T

Qg Zkepi Ak

with P; C C NN;.
In the following, we show, that this interpolation satisfies the approximation property ([&39).

Theorem 5.2.19. Let A € R™" with a;; <0,1# j, and a;; >0, i=1,...,n, as well as

n n
0; Zaﬂ > Z a;j with some 6; > 1 for each i€ F (5.43)
j=1 j=1
and
n
ZaijZO for i=1,...,n. (5.44)
j=1

Furthermore, assume there is a C'/F-Splitting with a p > 2 such that, for each i € F, there is a set

0 #P; C CNN; with
2
> law] > p > laggl. (5.45)

keP; JEN;
Then the direct interpolation satisfies property (39) with T := pdmax,
Omax = max d;. (5.46)

i=1,...,n

Proof. First of all, let ¢; € R™. For the C'/F-Splitting we choose a permutation matrix IT € R"*"
such that the F-variables are sorted before the C-variables as in (BI7)) and set

Ile; .= <6F> ,
ec
resulting in

2
e P
let = Prec, = [Tiey - TPrec|3, = H( F) - ( FC) e

= |ler — Prcecp,.,

ec Pee D,

Now we can estimate

. 2
min e — Perallp, < ller — Preec|b,, = § aii (e — E wiker,)
+

i€F keP;

= Zan’(z wi(e; —eg) + (1 — Z wik)ei)2
i€l keP; keP;

< Za”(z wir(e; —e)? + (1 — Z wip)er),  (5.47)
i€l keP; keP;

using Jensen’s Inequality and regarding

n
0<wy <1 and aii(l—Zwik):ZaUZO — 0<1—Zwik§1.
keP; j=1 keP;
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Condition (B0 now is equivalent to 7 > 2c;, and remembering that a;w;;, = —a;a;,, we have
a;iwi, < 5(—ai). Using now (BZ3) and then (E32), we get

BT < Y(3 G — e + Y aaed)
i€F keP; k=1

< TZ(Z %(—aik)(ei —ep)? + % Z(aik + aki)e?)

ieF kep =1
< MémaXHeH?éx-

Note that this result holds even for nonsymmetric matrices, as long as (BZ3) is fulfilled.

Remark 5.2.20. One can show that for example convection diffusion reaction problems discretized
with finite differences yield stiffness matrices, that have the above property (5.43). For example on
Q = (0,1) x (0,1) using an equidistant grid with mesh width h, constant v, b = (by,b2)T > 0, ¢, the
according matriz fulfills [573) with

2||bllooh
Omax < 1+ ——. 5.48
max = L+ 2 + ch? (5-48)
General interpolation
If we choose now the general interpolation with
- -
. Q.. . a;
o = 72‘76/\/’2 Z_] and ﬁz = 72‘76/\/’2 :'_]7 (549)
2 kep; Yk 2 kep; Gik
setting the interpolation weights to
—aja;p/ay;  for ke P
wi =14 i/ i | (5.50)
—ﬁiaik/a“ for ke P@

it is shown in [Sf1199], Theorem 4.6, that if A is symmetric, this satisfies assumption ([39) of Lemma
2. T3 and thus guaranties at least the two-level convergence. The concrete choice of the interpolation
variable set P; is deferred until the end of the next subsection.

5.2.5 Strong couplings and coarse variable selection

In order to give a criterion that allows us to decide which variables are more important and which can
be neglected (in the sense that they can be interpolated by the others) we look again at the estimates
(33) and ([34) for the real case, A € R™*". If —a;; is relatively large, compared to other entries
in row 7, the error in the i-th component differs only slightly from that in the j-th component. This
motivates the following definition of strong (negative) connections between variables.

Definition 5.2.21 (Strong negative coupling). Let A € R™*™. A wvariable i € Q = {1,...,n} is said
to be strongly negatively coupled (or connected) to another variable j, if

—a;; >0 max |laik],
k=1,...,n
where 6 is threshold value between 0 and 1 (we will also refer to it as the coupling or coarsening
parameter ).
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For complex matrices we suggest to consider

—a;; >0 filgi ik,

k=1,...,n

where @;; is defined as in (30). Note that the relationship of ¢ being strongly negatively connected
to j is normally not symmetric, not even for symmetric matrices. Therefore, another useful definition
is

Definition 5.2.22 (Strong neighbourhood). The strong (negative) neighbourhood of a variable i €
Q=A{1,...,n} is defined as

S = 8,9 :={j € N; | iis strongly negatively coupled to j}.

The elements of S; will also be called strong (negative) neighbours of i. The strong transpose (neg-
ative) neighbourhood of a variable i is the set of variables which are strongly negatively connected to
i:

S={jeqQ:icS;}.

Since the coarsening parameter 0 is fized for the whole matriz (and indeed mostly even fized for the
whole coarsening process), we will normally omit it.

We should keep in mind the equivalence
jeSH «=ics;

The idea of coarsening is now the following. Assume that we have chosen a variable i to become a
coarse level variable. Then all variables that are strongly negatively connected to ¢ will get F'-variables.
Then the next C-variable is chosen and so on. To ensure a uniform distribution of C- and F-variables
a measure \; was introduced in [Stii99 to indicate how valuable a variable i is as a C-variable:

N = #[S] nU]| +2#[ST N F] (5.51)

where U is the set of variables which are not yet inserted into C' or F. It tries to measure the
importance of i for the set C, by first considering how many F-variables (namely # [SZT NnU ]) it would
yield, but then also even stronger taking into account the F' to F' connectivity it would produce. This
concrete measure is a mere heuristical approach, other definitions are possible, like

N = #[S]] + #[S] nF] (5.52)

which was used in [GNRIR]. However, #[S] N U] is a more realistic value than #[S]| which gives
no information about how many F-variables i would yield currently. But on the other hand, (B52) is
easier to implement, since it requires fewer update loops than (h]l). We summarize the ideas in the
following algorithm.
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Algorithm 2: Splitting process
Input: Q= {1,...,m}, S;, S fori=1,...,n
Output: A splitting of the variables with ;= FUC, FNC =&
F—o
C+—o
U—
fori € U do
Compute the measures \;
end
1 while U # @ do
2 Choose i with \; = maxpey Ak
C —CU {Z}
U —U\{i}
3 foerH::SiTﬂUdo
F — FuU{j}
end
U—U\H
for k € (S;UUjep Sj)NU do
Update the measures Ay
end

end

Note that for the measure (E52) it would be sufficient to update only the A\; with
ke lJsnU
JjeEH
Now we are able to define the set P, of interpolation variables as
P =CNS,. (5.53)

For M+ = () we set 73:_ =0 and B; =0. If J\/Zf" is not empty, but only contains relatively small entries
(compared to the absolute values of the negative entries) we again set P;r = 0, B; = 0 and modify
(BEX0) by adding these positive entries to the diagonal before computing w;y:

Qi Qijf
@i + D jen; O
with o defined as in (BZ)). This interpolation reflects the properties of essential positive type matrices

(cf. [Stii99) showing that this type of interpolation satifies the approximation property (E39)). If N
contains large positive elements, i.e. the set

S ={jeNila;>06" I}ﬁliﬂazﬂ}

Wik = s (5.54)

with 7 > 0 is not empty, then we have to modify the splitting such that each F-variable that has
both strong negative and positive couplings is interpolated from both types of connections in C. That
is, we have to ensure, that C' N S;L # () for these points 7.

However, in most cases of interest here, (BB is sufficient for an accurate interpolation.

5.2.6 An example

We would now like to look on an example of the scalar convection diffusion problem EJ) in order to
show the effect of the AMG coarsening especially under the influence of convection. For this we take

—vAu+b-Vu=f inQ:=(0,1)x(0,1)
u=0 on 09,
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and set f = 1 and b = (by,by)”7 € R?, with the constants by,by > 0. For the simplicity of the
presentation we discretize this problem with finite differences, on an equidistant grid with mesh width
h =1/(N + 1), using backward (upwind) differences.

This leads to the matrix

TN —viy

1 —(l/—{—hbg)IN

with

c RN2xN2

—V[N

—(l/—|— hbg)IN TN

Ty = tridiag(— (v + hby), 4v + h(by + by), —v) € RV*V,

++¢++¢++¢++¢¢+¢+¢¢¢+¢+¢¢¢+4¢+4¢
##0#########0#####0####00######
##0#########0#####0####00######
.+0++0+++++¢¢++¢+¢¢++¢+¢¢++¢++¢
##0#########0#####0####00######
##0#########0#####0####00######
++¢++¢++¢++¢¢+¢+¢¢¢+¢+¢¢¢+4¢+4¢
##0#########0#####0####00######
##0#########0#####0####00######
++¢++¢++¢++¢¢+¢+¢¢¢+¢+¢¢¢+4¢+4¢
##0#########0#####0####00######
&4###0#¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

+¢++¢++¢++¢¢+¢¢+¢+¢¢¢+¢+¢+¢+4¢
##0#########0#####0####00######
##0#########0#####0####00######
++¢++¢++¢++¢¢+¢+¢¢¢+¢+¢¢¢+4¢+4¢
##########¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
##0#########0#####0####00######
###############################
++¢++¢++¢++¢¢+¢+¢¢¢+¢+¢¢¢+4¢+4¢
##0#########0#####0####00######
###############################
++¢++¢++¢++¢¢+¢+¢¢¢+¢+¢¢¢+4¢+4¢
##0#########0#####0####00######
##0#########0#####0####00######
.+0++0+++++¢¢++¢+¢¢++¢+¢¢++¢++¢
##0#########0#####0####00######
##0#########0#####0####00######
++¢++¢++¢++¢¢+¢+¢¢¢+¢+¢¢¢+4¢+4¢
##0#########0#####0####00######
##0#########0#####0####00######

Figure 5.1: Diagonal convection, v =1
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Figure 5.2: Diagonal convection, v = 107°

Figures Bl and illustrate the different behaviour of the coarsening strategy in dependance of
the amount of diffusion. The intensity of the color of the points indicate on wich level they still reside.
The white points are coarsened away on the first level, becoming F-points. The darkest points are
the remaining variables on the coarsest level. Here, 3 levels were generated, with 6 = 0.5.

For both computations we have set b = (1,1), h = 1/33, f = 1. For v = 1 the diffusion part
dominates the equation and yields a uniform coarsening in all directions, whereas for v = 1076, we
have a dominant convection resulting in a coarsening along the streamlines.

Taking a closer look at the coarsening process for the convection dominated problem, we see now
that the sets S; and S are chosen in the following way:
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{2, N + 1} i=1
,— 1 =2,...,N

S, = {Z ! Z Y upstream direction
{i— N} t=kN+1, k=1,...,N -1

{i—1,i— N} else.

{2,1+N} =1
{1,3,2+ N} i=2

, + N , =kN, k=1,... N -1
S@'T = {H_ ) Z ’ Y downstream direction
{i+1} i=N?-N+1,...,N2 -1
0 i= N?

{i+1,i+ N} else.

The numbering of the grid starts with 1 in the lower left corner, N is at the lower right corner,
and so on, ending with N2 — N + 1 in the upper left and N? in the upper right corner.

One now can easily see that Algorithm Bl coarsens in the downstream direction of the convection
field b when the coarsening parameter 6 is bounded as in (E55). On the other hand, it groups together
those points which lie orthogonal to the streamlines induced by b. These are the points which carry
the important information to interpolate the other points.

This approach can be applied also if we loosen the restriction of positive vector fields b € R2.
Arbitrary constant convection fields and even non constant vector fields b = b(z,y) (using forward
differences where the according convection component b; is negative) yield similar results.

The actual solving/iteration process consists of standard V-cycles with SSOR smoothing (w = 1.0).
The stopping criterion was the reduction of the residual by a factor of 1075,

Note that for the convection dominated problem with b = (1,1)7 AMG turns out to be nearly an
exact solver - it only needs one V-cycle step to reduce the residual by more than 1072, This is due
to the fact, that in this case, the lexicographical ordering of the unknowns is optimal for SOR/SSOR-
type smoothers. A convection field b that points in the opposite direction or is not constant at all,
may considerably slow down the performance of the algorithm. For those cases, we suggest to apply
a downwind numbering algorithm from e.g. [BWO93)] or [HP97] in a preprocess before we apply the
actual splitting algorithm, in order to find a numbering which is more suited for the smoother.

For the diffusion dominated case, the direction of coarsening is not that easy to detect for the
algorithm, resulting in a need for more multigrid cycles in order to reduce the residual by the same
amount as in the convection dominated case. However for constant vector fields b = (by,be)” € R2,
b1,bs # 0 we can enforce the coarsening along the streamlines (at least for the first level) even in this
case, by choosing 6 between the following bounds:

v < V + bmin

LA , 5.55
v+ bmin TV + bmax ( )

where byax = max{|bi|,|b2]}, bmin := min{|b1]|, |b2|}. Especially for small h this choice turns out to
be advantageous as one sees in Table B.1]
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h 0=025|60=05]|60=0.55

setup time [s] 1.55 1.62 2.64

= solve time [s] 6.13 3.18 1.18
cycles 46 22 5

setup time [s] 6.3 7.0 12.0

5= solve time [s] | 53.46 24.75 6.3
cycles 93 39 6

setup time [s] | 25.63 27.3 44.14

=15 solve time [s] | 378.25 | 138.57 30.93
cycles 163 55 8

Table 5.1: The effect of § on diffusion dominated problems, v = 1

5.3 Complexity of the AMG preprocess

In this section we would like to investigate the time and memory complexity of the AMG specific
algorithms. This includes especially the coarse variable selection and the multiplication of sparse
matrices which are essential ingredients of the AMG preprocess (cf. Definition B2ZT]).

5.3.1 (/F-Splitting process

First we take a closer look at the coarsening process and its involved components.

Definition 5.3.1. For the level | let

n:i=n be the dimension of the current matriz A;,
T = F# [J\/Z] the number of nonzero entries in its i-th row,
¢ the number of nonzero entries in its i-th column,

Si = #[SZ] the number of strong (negative) neighbours of i,
siT = # [SZT] the number of variables which have i as a strong neighbour.
Furthermore, rq, = Z?Zl r;/n denotes the average number of nonzero entries in its rows and Tmax =

max;—i,.. n 7 the mazimal number of entries in a row. Similarly we define cmax; Smax; sl etc.

Preliminaries

We will use the symbols and notation of Section 2 Before we can apply Algorithm B we have to
compute the sets S; and SiT for every i in Q = {1,...,n}. Note that both sets can be computed in
the same loop with )" | 2r; = 2nr,, comparisons (and as many assignments in the worst case).

Concerning the coarsening algorithm itself, first the weights A; (cf. ([&2Il)) have to be computed.
Since in the beginning, it is U = Q and F = (), we have \; = #[SZT], for ¢ = 1,...,n, requiring n
assignments only, since the cardinality of the sets SiT should be computed on the fly by the above
procedure. The first maximal ); is obtained while setting the initial weights.

Generating the C'/F-Splitting and updating the weights

Setting ¢ as a C-variable and all j € SZT as F-variables should require not more than 1 + #[SZT ]
assignments if an array v of length n is held for storing the splitting, e.g. like:

] true” 1€ C,
vli] = .
” false” i€ F.
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After assigning the new C- and F-variables, the according weights must be updated. Of course
only the weights for which \; has changed must be treated. If i,,.x is the variable chosen to be the
new C-Variable (in line B of Algorithm B)) and H;,,, := 8. NU (cf. line 3 of the algorithm) the
weights for all variables ¢ with

P€ T = (Sin U |J S)NU (5.56)
jeHitr)ax

have to be computed newly. Let )\gk) be the weight of variable i and U®), F®*) the according sets
after the k-th iteration of the while loop beginning in line 1 of algorithm Pl Then the weights after
the (k 4 1)-th iteration of the loop are:

)\EkJrl) #[ST U(k+1)] + 2#[8? N F(k+1)]

We are now looking for an update formula to compute AEkH) in terms of U®), F() rather than U *+1)
and F* 1 This is evaluated in the following lemma.

k+1)

Lemma 5.3.2. For the weights )\Z( , 1 € Q) the following relation holds:

)\Z(kJrl) = )\Ek) + # [ST M ST N U(k)] - Ui(imax)a

Tmax

with | iegT
. €o;,
oi(j) = {0 ilse. '
Proof. First we look at the according sets and observe:
(i)
SENUEH = SE0 (UM (S, U {imax})

- ST ( N\ ((SE NUB) U fimar}) )

= (ST U\ (8], N UP) U {imax})

= (ST AU\ (87 0 (8], NUP) U fima)) )

= (SI'nu® 2\((5 nst nu®)yu(sn {z’max})>.

=:4; =:B;

Since B; is a subset of A; and SiT N {imax} consists only of iyax if imax € SiT and is empty
otherwise, we can write the cardinality of the set as

#[SENUED] = #[STnU®] — #[STNSE  nUP] — 04 (imax)-

Tmax

(ii.)
SEnFE) = ST (F® U (SE nu®y)
= (S nF®Yu(SI NS nu®)
=:D; =B;

The sets B; and D; are disjoint (because F' (%) and Sgﬂ L NU () are disjoint), and thus we can
write

#[SiT N F(k+1)] — #[SiT N F(k)] + #[ST ns?T n U(k)].

Tmax
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Combining now (i.) and (ii.) completes the proof. O

In the worst case, all variables whose weights have to updated, are yet undecided. Thus, for the
cardinality of T;_  we have

max

(T < #[Sim) + D #[Si] < Smax + ShaxSmaxs (5.57)
JEH 0y
since
#[Hinae) < #[S] ] < Smaxe (5.58)

Now for each i € T; . we have to compute # [SZT N Sgnax N U(k)] — 0 (imax). This can be done with at
most 2(# [SZT ] + # [Simax]) + 1 operations. Therefore, the computational cost of one iteration of the
while loop is bounded by

4(3maxsgax + SmaX(sﬁax)Q) + Smax + Smaxsgax- (5.59)

Now the number of variables erased from U at each loop iteration is at least 1 and at most 1 + Sax.
Thus, the number of loop iterations is bounded above by n and below by n/(1 + Smax). Summarizing
the results, we can state the following

Lemma 5.3.3. The computational cost for updating the weights during the splitting process is bounded
above by
n(Smax + 5SmaxS ook + 4Smax (55 ax)?)- (5.60)

Finding the next variable with maximal weight

The last problem, we have to deal with, is to find the next variable with maximal weight Apa.x. That
this can be a problem might become clear if we claim two requirements for the C'/ F-Splitting process:

e Setting/accessing a weight \; must be possible in constant time O(1).

e Finding a maximal weight Apax = max;ey A; must be possible in a time significantly smaller

than O(n).

Just storing the A;’s in an array fulfills the first requirement, but not the second. If we use a data
structure like a priority queue, where updating a weight automatically causes the variable ¢ to move
up/down in the queue (according to its new weight), then we can fulfill the second requirement, but
not the first.

As a way out of this dilemma, we propose a kind of combination of both data structures. This is
possible due to the observation that the values for the weights have the upper bound

N <2sL 0 VieQ, (5.61)
and therefore many variables have the same weight. Thus, first of all, we store the weight of each
variable ¢ in an array A of length n (with A[i] = \;). Then we group together all variables that have
the same weight in an own linked list. Since there can be maximal 2s. 4+ 1 of such lists (including
zero weight), we store them in an array, say w, which we address by the weights A[i], meaning that at
w[A[7]] we find all variables with the according weight.

Accessing and updating the weight for a vaiable ¢ in the array A can now be done in constant time
(Al7] == AP**). Updating the weight for i in w now consists of accessing the linked list w[\;] (constant
time), finding the variable i (we will get to this immediately), then removing ¢ out of this list (constant
time) and finally inserting it into the list w[A?“"] (constant time).

Finding the variable i in the list w[\;] would normally be of time O(n) or O(logn) if we keep it
sorted, unless we use an auxiliary data array p of length n that stores a pointer (or iterator in modern
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programming languages) to the element i. So p[i] indicates the position of ¢ in w[\;], which can thus
be located in constant time.

Now we have shown that accessing and updating a weight can be realized in O(1) time complexity
(and O(n) memory complexity). Finding a maximal new weight now simply consists of finding (any)
element from the topmost non-empty list in w, which can be done in a maximal time of O(2sL . +1).

Of course, one has to point out, that variables ¢, which are marked as C' or F variables, are removed
from their according list in w. Their weight in A[i] might then be set to a negative value to indicate

this.

Complexity of the C/F-Splitting process

Concludingly, we have proven the following theorem, which is an extension of Lemma

Theorem 5.3.4 (Complexity of the C'/F-Splitting process). The time complexity of the splitting
procedure described in Algorithm @ is

n(smax + 5Smaxsgax + 45max(sgax)2 + 25£1ax + 1) (562)

Since in the FEM context, the number of neighbours of a node depends only on the degree of the
used elements and not on the mesh width h, the values of ry.x and ¢pax are independent of n (indeed,
they are equal for structured meshes). Furthermore, we note that smax < rmax and sgax < Cmax and
therefore we have a linear complexity of the splitting procedure which we want to note down in a

corollary.

Corollary 5.3.5. For matrices arizing from finite element discretizations, the time complexity of the
C'/ F-Splitting procedure is bounded above by

O(n(3rmax + 5(Tmax)? + 4(rmax)® + 1)) = O(n(rmax)®) = O(n). (5.63)

Moreover, the memory consumption is also of order O(n).

5.3.2 Sparse matrix-matrix multiplication

Since it is a rarely found routine in matrix libraries, we shortly want to look at the way the product
of two sparse matrices is computed in our library as well as the according time and space complexity.

Let A € R™™, B € R™** be arbitrary sparse matrices. As it is exposed in Section BZZ2 the
sparsity structure of AB, is computed and stored in a temporary data structure.

Generation of the product sparsity pattern

The algorithm for multiplying two sparse matrices depends on their ordering and orientation. For
example, for two row wise oriented matrices, we just need random access on the rows of B, then the
most efficient ordering of the loops is depicted in Algorithm Bl

Algorithm 3: Sparse matrix multiplication for two row-wise oriented matrices

Input: Row wise oriented sparse matrices A € R"*™, B € R™*k
Output: Sets A;(C), i =1,...,n, representing the sparsity pattern of the product AB
fori=1,...,ndo
for j € N;(A) do
for I € N;(B) do
1 N;(C) :== N;(C) U
2 cit += ¢+ ai;bj
end
end

end
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The problems with, respectively the requirements for, the set N;(C) in line 1 are the following:
1. We don’t know in advance how big the set is going to be.

2. The data structure that implements the set has to ensure that it doesn’t store dublicates of an
index [ (stemming from different rows j of B).

3. At the end of the procedure, the indices in the data structure for A;(C) should be ordered
increasingly.

Two possibilities come into question. One would be to use linked lists with ordered inserting:
the new insert position is determined by a binary search, leading to inserting costs of approximately
O(log(#[N;(C)])). Another would be to use red-black trees.

We made the decision for the latter one, since the run-time for inserting is approximately the
same as for linked listﬂ, however it promised to be easier to implement, since we can directly use a
std::set resp. std::map from the C+4 STL . These data structures are implemented as red-black
trees, and thus inserting a variable [ into the set N;(C) costs O(log(# [Ni(C)])). The operator[1()
of std: :map allows us to combine the two lines 1 and 2 in Algorithm Bl into one line of code.

In the worst case, the sets N;(B) are disjoint for all j € A;(A). Then the number of variables
added to N;(C) will be

Lemma 5.3.6. The time complexity of Algorithm[3 is bounded above by
O(log(IT_;m;!)). (5.64)

Proof. With m; being the number variables added in the two inner loops for each row i of A, we
immediately have:

S 00g(7) = 3 Olog(my)) = OClog([ [ mit).
=1 j=1 1=1 1=1

O

Note that the space requirement is O(>""" | m;) integer values.

In this thesis we are especially interested in the complexity of the Galerkin product PT AP (cf.
Definition [ZT]), where A € R™ ™ is a matrix stemming from a finite element discretization and
P € R™* k < n, the according prolongation matrix.

From now on, we abbreviate Nj := N;(4), C; := C NN and Fj :== F NNj. If we consider direct
interpolation only, then we have that P; C /\7} for j € F'. For j € C the set P; even only consists of
one element. If the splitting Algorithm Bl was applied successfully, i.e. after its termination, the set U
is empty, then all F-variables are strongly negative coupled with at least one C-variable. In any case,
since F-variables are interpolated through surrounding C-variables, we have that

# NG (P)] = #[Ps] < #[Nj].
Moreover, it is P; = CNS; C Cj = Nj \ F. Defining

Pmax = max #[P;] < max #[C;] =:re,
and

rp = max #|Fj],

®The according costs (tree rotations included) are of order O(log(#[Ni(C)])), see e.g. [CLESOI]
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yields
m; = #[Cz] + Z #[PJ] < 1o+ TFPmax < o +TETC < Tmax + Trznax'
JEF;

Inserting this in the result from the last lemma leads to an amount of

O(TL log((rmax + Tr%lax)!)) (565)

for an upper bound. Taking a closer look on m; and setting 7 := ry.x + € = ro + rp, with some £ > 0
we might also estimate

re+rpre =7q+ (7)(q = ¢) < (7 + (7)*)a,
with ¢ = “€. In practice, we often have 7 ~ rp.c and the quotient ¢ then is an indicator for the
amount of coarsening. In this case, (2G0)) becomes

O(n1og(((rmax + Tmax)2)!)) = O(nplog p). (5.66)
with the constant
p = (Tmax + TﬁlaX)Q- (5.67)

Now we would like to take a look on the product PT B, where B = AP is already computed. Since
we store the transpose of P as a column wise oriented matrix, we first examine the general algorithm
for generating such a sparsity pattern. In order to formulate the method, we use the transpose

neighbourhood (cf. B2ZT0).

Definition 5.3.7 (Transpose neighbourhood). For A € R™™ we define the transpose neighbourhood
of a variable i € Q = {1,...,m} as

N = NT(A) = {j € {1,....n} | a0 0},

It is of course NiF'(A) = N;(AT). The following prodedure varies only in the way it exploits the
iteration directions of its matrices — mathematically it is the same as the last one.

Algorithm 4: Sparse matrix multiplication for column-wise/row-wise oriented matrices

Input: One column wise oriented sparse matrix A € R™*™,
one row wise oriented sparse matrix B € R™**
Output: Sets ./\_/j(C), j=1,...,n, representing the sparsity pattern of the product C' = AB
fori=1,...,mdo
for j € NF'(A) do
for | € N;(B) do
N;(C) = N (C) U1
it = ¢y + aijbj
end
end

end

As said above, similar considerations as for Algorithm Bllead to the same costs for this algorithm
since merely the loops are interchanged. If we assume, that the left matrix has at least one entry in
every row, then for PT B, B = AP, this leads to a complexity of

k
> Oflog(k!))  with k= > #[N;(AP)].
i=1

JENT(P)

The question now is, how big is the set N (P) = N;(PT) ? Closely related is: how many F-
variables interpolate from ¢ ? This number is bounded above by rr. Thus we have

./\_/ZT(P)ng—i-l,
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and therefore
ki = Z m; < (rp+1)(rc +rpre) = (re +1)*r¢.
JENG(P)

And so the complexity is of order
O(klog(((rr + 1)%ro))),

or in terms of 7 and ¢:
O(klog(r'")), with = (F(1 — q) + 1)%¢F.

And because of
r <P(1-(1-q)%),

we have the following result

Lemma 5.3.8. The time complexity of Algorithm [ for generating the matriz product PTB with
B = AP, A € R™" where P € R"** is a prolongation matriz, is bounded above by

O(kplog p). (5.68)

with the constant p = 73(1 — (1 — q)3).

C .
Since ¢ <1 and k=n- #[ ] ] , we can summarize the results in

#|C]+#|F

Proposition 5.3.9 (Complexity of the Galerkin product). The complexity of the Galerkin product
PTAP as defined in (ZId), with A € R™™ and P € R™* is of order

O(nilog 7). (5.69)



Chapter 6

Numerical Results

6.1 The AMG method

Let us first specify the AMG method we apply for the practical computations. The AMG solver
system is implemented on the base of the MiLTON matrix library. Though different other smoothers
like Jacobi, Gauss-Seidel, SOR are available, we only use the SSOR method for smoothing since it
offers a greater stability and better convergence properties for our scalar problems. First attempts
with Jacobi and simple Gauss-Seidel smoothers didn’t lead to satisfying results. In all cases for the
scalar problems, exactly one post-smoothing and one pre-smoothing step is applied.

Furthermore, we choose the direct interpolation as described in Section B2Z4], with the modification
of Formula (2Bl). For convection diffusion reaction problems covered in this chapter, this type of
interpolation has turned out to be sufficient.

We generate 5 levels for each problem size and then use a SuperLU (cf. [DEGT99)]) exact sparse
LU decomposition to solve the equation on the coarsest level.

For the numerical tests and parameter search, we use nested iterations to compute a first approx-
imation xg of the solution. Hereof, a start residual rg := Axg — b is computed, which is then reduced
with standard V-cycles until ||r||2/]|roll2 < 1076.

6.2 Convection diffusion problems

In this section the behaviour of AMG applied to convection diffusion equations shall be studied. We
will start with two-dimensional problems, investigating the effect of convection on the solution process.
Afterwards we will also take a look on a three-dimensional example.

We use the PA'S (cf. the manual in [AMOG99]) program system for the finite element discretiza-
tion.

6.2.1 2D examples
First of all, we consider the problem:
Find u(z,y) : R> — R, such that
—~vAu+b-Vu=f in Q€ R? (6.1)

with v € {1,1072,10~4, 107},

_ (-1~ (22-1)%
b(z,y) := < y4y(236 -1y -1) > ’ (6.2)

and f(z,y) := 0. The domain €2 is set to the unit square = (0,1) x (0,1). Furthermore we prescribe
the following dirichlet boundary conditions:

103
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u=—0.5 on {(Oy)T:OSygl}
u= 0.5 on {(ly)T:0<y<1}

u = 0 else.

Figure 6.3: Solution for v = 10~* Figure 6.4: Solution for v = 107°

The plots in Figures (&1l to (&) show the discrete solution at h = 1/32 for the different values
of v. With dominating diffusion at ¥ = 1 and v = 1/100 the fullfilment of the boundary conditions
doesn’t cause bigger problems. As the diffusion decreases (v = 107* and v = 107% ) we observe
oscillations at x =0 and x = 1.
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The reason for this behaviour becomes clearer if we look at solution of the reduced problem (v = 0)
b-Vw = f, (6.3)

in Q, which is a constant zero for f = 0. For ¢ — 0 one would expect that the solution w of ([E3)
converges to the solution w of ([E). However, at = 0 and x = 1 this leads to problems, since the
boundary conditions need to be satisfied.

Therefore, for e — 0 we observe parabolic boundary layers (see e.g. [RST90]) at x =0 and x = 1,
because the convection field b is constructed in such a way that it runs everywhere parallel to the
boundary.

The convection dominated problems, especially at v = 1079, are a serious challenge for every
numerical solver, since the condition of the system matrix increases as v and h are getting smaller.
Without according stabilization schemes like SUPG or GLS, that strengthen the positive definite part
of the matrix, such discrete problems are hardly solvable — most iterative solvers heavily depend on
the matrix condition number.

Thus, besides discretizing the problem with linear (P;) finite elements, we use GLS (cf. Section
E3) as a stabilization method. For all problems, we have chosen the stabilization parameter g,
simply as suggested in formula (T3] in Chapter @l Some properties of the resulting stiffness matrices
generated by the PN S-system for different mesh widths are depicted in Table We will treat the
problem with different mesh widths on structured grids and investigate the convergence rates and
h-dependency of the AMG solver.

h | 1/8 | 1716 | 1732 | 1764 | 17128 | 17256 | 17512 | 171024
number of variables | 81 | 289 | 1089 | 4225 | 16641 | 66049 | 263169 | 1050625

Table 6.1: mesh widths and matrix dimensions for the structured grids

The effect of the strong coupling parameter ¢ on the coarsening process

First of all and before looking at the convergence and performance of the overall solution process,
we investigate the influence of the parameters on the AMG preprocess. On the following pages, we
would like to study the impact of the coupling parameter # on the generated hierarchy of levels. The
parameter 6 is varied in the range of

J..
@:z{@é(O,l)]@zE;]:2,...,8}. (6.4)
m— de— ——
theta=0.2 theta=0.3 theta=0.4 theta=0.5 theta=0.6 theta=0.7 theta=0.8

Figure 6.5: Legend

The colours in Figure are used to distinguish the curves for different 8. We examplarily show
the properties of the coarse level hierarchies for the mesh width A = 1/1024 and the four diffusion
parameters from v = 1 to v = 1079 in the Figures —EB3 The lower set of curves in these figure
shows the dimensions of the generated matrices on the level ¢ = 1,...,5, where level 0 is the base
stiffness matrix assembled by PN'S. The upper set of curves indicates the nonzero entries of the
according matrices.
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Looking back at Definition BZZZI, # = 0 would mean to choose every (negative) coupling to be
included in §;p and thus SiTe would also be the biggest possible set (for non-negative #). For M-

matrices for example, we would have Sg:o = S;0. Generally, for arbitrary A € R™*", 1 < i < n,
01,92 € R, 61 < (92, we have
Sio € Sip, and Sly €Sy

= 1,01 = <1

The other extremal case, § > 1, would lead to S; and S} being empty. Between these two
extremes, the coarsening algorithm generates the C/F-splitting. Because of line 3 in Algorithm
(Section B2ZHl), we can predict a tendency to generate a stronger coarsening (at least in terms of
dimension reduction), meaning a smaller set C'(#), the smaller the value for 6 isll And indeed, we can
recognize this behaviour in the diagrams, especially for the diffusion dominated cases in the Figures
and B4 At this point however, we must keep in mind that for a matrix A; on level [ and different
01 # 02 (= C(01) # C(62)) we have from then on different coarse level matrices Ay for k£ > [. Thus
the levels are not directly comparable.

For the overall runtime of the AMG solver however, not only the dimension of the matrix is
important, but also the amount of nonzero entries, and its relation to the dimension, i.e. the sparsity
of the matrix, since this directly influences the matrix-matrix-multiplication algorithm. Therefore
have included in the Tables to B3 the average number of nozero row entries

l
1 o= MNZ;
= , 6.5
Tavg lmax +1 Zzg n; ( )

"Here, with C(0), we denote the set C' that results from Algorithm B using the coarsening parameter 0.
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as well as the amount of time, the whole AMG setup process needs for computing all five levels and
the sparse LU decomposition of the matrix on the coarsest level via the SuperLU (see [DEGT99])
method.

For structured meshes (regular triangulization) like the ones used here, each point has six neigh-
bours in the inner part of the domain, thus we have 7 row entries (with the diagonal entry), left alone
at the boundary.

We see that for diffusion dominated problems (Figures and and Tables and B3)) first of
all the reduction from the first to the second level is nearly the same for every problem. This is because
no value for # can really identify an upstream direction, since the convection is too weak compared
with the diffusion. From the second level on, the coarsening, especially the dimension reduction is
more drastically, the smaller 6 is. We can see this also at the extreme form of this type of equation,
the Poisson problem. A small 0 leads to a coarsening in all directions, however also to bigger sets
P;, because an F-variable is then also interpolated from all directions. Therefore we also have more
entries in the prolongation matrix P and thus more entries in the next coarse level matrix, which
means (many) more connections than the 7 on the initial finite element mesh.

On the other hand, a great number of these new neighbours can be coarsened away easily — the
more, the smaller 6 is. And indeed, we can see, that the number of variables on level 1 is about half
of the number of variables on level 0. For small 8, the number of variables on level 2 is even only a
quarter of the number of variables on level 1. Here, bigger values for 0 lead to a weaker reduction of
the unknowns, resulting in a longer setup time.

For convection dominated problems (Figures B8 and 3 and Tables B4l and B.H), there is however a
different picture. First of all, this type of equation, with nearly absent diffusion, produces off-diagonal

h=1/32 h =1/64 h=1/128 | h=1/256 h=1/512 h=1/1024
0 | Tavg time | rgyg  time | rgyg  time | rgug  time | rguy  time | 7y time
0.2 85 0.04|10.2 0.13] 114 0.56 | 123 2.28 | 126 9.30 | 12.8 38.12
03] 86 0.03|104 0.13]11.3 0.50 | 124 2.04 | 13.1 835|133 33.78
041 9.2 0.03|12.0 0.13] 129 0.52 | 13.7 2.09 | 14.1 861 | 14.3 34.78
0.5 ] 11.0 0.03 | 14.0 0.13 | 155 0.56 | 19.0 2.37 | 20.5 995 | 20.6  42.25
0.6 | 184 0.04 | 22.7 0.17 | 249 0.77 | 25.9 3.38 | 26.5 15.52 | 26.7 133.19
0.7 | 184 0.04 | 22.7 0.18 | 249 0.78 | 25.9 3.38 | 26.5 15.49 | 26.7 104.58
0.8 184 0.04 | 227 0.17]24.9 0.77 259 3.37|26.5 16.00 | 26.7 130.89

Table 6.2: AMG setup times [s| for the 2D problem, v =1

h=1/32 h=1/64 h=1/128 | h=1/256 h=1/512 =1/1024
0 | ravg time | rgyg time | rgy  time | rgyy  time | rgyy  time | 74y  time
0.2 ]11.0 0.03 |11.3 0.12| 129 055|124 228 | 13.1 941 | 13.5 38.05
03] 96 0.02|122 0.11] 133 051|133 2.09 | 131 842 | 13.6 33.75
041114 0.03 134 0.13]13.6 051|149 213|141 860 | 15.2 35.07
05] 98 0.03|13.0 0.12]13.8 054|169 235|189 10.01 | 21.6 43.61
06| 97 003|114 0.11 | 147 0.56 | 189 2.78 | 23.8 13.81 | 26.3 86.49
071 89 0.03 104 0.10] 13.0 0.51]16.5 2.60 | 21.4 13.00 | 25.5 80.21
081 79 0.02| 93 0.09|11.1 043 ] 14.1 224|182 11.52 | 23.0 65.52

Table 6.3: AMG setup times [s] for the 2D problem, v = 1072
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h=1/32 h=1/64 h=1/128 | h=1/256 h=1/512 | h=1/1024

0 Tapg TIME | Tqyg tiMe | Tgpg time | 1y time | 749  time | 74  time
0.2]125 0.03 181 0.14 | 214 0.61 |22.0 273|221 1297 | 21.1 64.07
0.3 11.8 0.03 |16.8 0.12 199 0.54|20.8 236|209 11.21 199 56.62
04119 0.03 151 0.12|16.2 0.52 (177 217|182 10.04 | 17.6 47.85
0.5]104 0.03 |13.1 0.10 | 140 0.43 | 14.7 1.85 | 15.0 838 | 15.1 38.48
06| 95 003|104 0.10|10.7 039|114 1.57 119 6.85 | 12.3 30.16
07| 77 002] 90 0.09] 93 035] 96 142 | 98 587 | 10.0 24.96
0.8 75 0.02] 81 0.08]| 86 033 | 88 131 8.9 5.51 9.1 23.31

Table 6.4: AMG setup times [s] for the 2D problem, v = 1074

h=1/32 h=1/64 h=1/128 | h=1/256 h=1/512 | h=1/1024

0 Tapg TIME | Tqyg tiMe | Tgpg  time | rgyg  time | 749  time | 74  time
0.2]112.5 0.03 183 0.13|20.2 0.62|22.0 2.80 220 14.77 |22.2 94.73
0.3 | 11.7 0.03 | 17.1 0.12 | 19.7 0.55 | 21.3 241 | 21.4 12.00 | 22.0 73.19
041120 0.03 151 0.11 | 16.3 0.50 | 18.2 2.18 | 19.0 10.16 | 19.1 56.93
0.51]10.3 0.03 131 0.11 | 140 044|146 1.85 | 152 825|154 4241
06| 91 0.03|10.1 0.09]| 107 038 ]11.2 1.61 | 11.4 6.72 | 11.6 28.42
07] 82 002 89 008| 92 034 ] 94 142| 95 58| 9.6 24.26
0.8 75 0.02] 82 0.08]| 85 032 87 132 | 88 547 | 89 2227

Table 6.5: AMG setup times [s] for the 2D problem, v = 10~°

entries, that vary stronger in their order of magnitude. As in the FDM context (see Section .20,
the strong negative connections lie more in the upstream direction. The SUPG or GLS stabilization
even enhances this, it adds positive portions to the diagonal and negative values to the off-diagonal
entries. The smaller now the value for 0 is, the bigger are the sets S;, however they don’t include the
neighbours that lie in downstream direction unless # = O(v). This the reason, why the dimension
reduction doesn’t differ much between the considered values out of © from (G4)).

In this situation, a value for 6 that is close to 1 causes the algorithm to select only the maximal
negative neighbour to be in §;, which thus is the one that lies the most clearly in the upstream direction
(within the restrictions of the underlying grid). Consequently, if the vector field b doesn’t change too
much locally (which is certainly true for constant or sufficiently smooth b, if h is small enough) the S;
consists only of the downstream nodes. This extreme coarsening might have the slight drawback, that
most F-variables are interpolated from only one C-variable, however it has the advantage that the
arising coarse levels are more sparse and the according SOR/SSOR smoother is better able to reduce
the error, last but not least, because of the better numbering of the variables.

The effect of relaxation on the solution process

On the next two pages, in Tables — Table B we can see the effect of the relaxation parameter
w € (0,2) of the SSOR smoother and the coupling parameter 6 € (0,1) from the AMG coarsening
preprocess on the amount of multigrid-cycles the algorithm needs to reduce the first residual by a
factor of 107,
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Table 6.6: SSOR smoothing for v =1,1072, h = =, ..., L
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Table 6.7: SSOR smoothing for v = 1074,1076, h = % [ S
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The relaxation was restricted to the discrete set

J .
|w:1—0,j:1,...,19} (6.6)

{w € (0,2)
In the tables, from the left to the right, the diffusion parameter varies from v = 1 to v = 1075,
and from the bottom to the top of the page, the mesh width changes form h = 1/128 to h = 1/1024.

First of all, we can see, that diffusion-dominated problems (v = 1, v = 1072) exhibit a relatively
good-natured convergence behaviour. The method converges for a relatively wide range of values for
w (Table BE6).

Although the optimal relaxtion parameter wgy; is in most cases greater than 1, which would mean
an over-relaxation, we still have the convergence for w = 1 in all cases, meaning that a standard
symmetric Gauss-Seidel smoother would also be sufficient. Furthermore the choice of 6 doesn’t seem
to be critic, we observe convergence for all considered values.

For convection dominated problems (v = 107%, v = 107%) however, the situation is different. First
of all, the range of possible values for w is slightly smaller, or at least, the spectrum is shifted to the
left in the diagrams, resulting in the need for an explicit under-relaxation, with wgy; lying between
0.6 and 0.9. This aligns with the fact, that convection dominated problems require under-relaxation
when treated with a stand-alone SOR or SSOR solver (see e.g. [Pridf]).

Especially if w is chosen too large, then there isn’t any value for 6 that the method converges with.
The standard symmetric Gauss-Seidel smoothing can’t always guarantee convergence for convection
dominated problems. These problems are also more sensitive to changes of 6, we can observe big
differences in the convergence speed (Table E7]). However, we see that smoothing is possible for the
convection-dominated problems, if the relaxation parameter is chosen properly.

Convergence speed of the AMG method

In order to judge the performance of the AMG method we first compare it to a Krylov subspace
method that is widely used in this context, a GMRES(m) solver, with restart length m = 20, in
combination with a SSOR preconditioner (w = 0.7). It is implemented in the BLANC library, which
is the sparse matrix numerical linear algebra library used by PN'S.

It should be mentioned, that the ILU(0) preconditioner exhibited a worse convergence rate in
connection with the GMRES solver. This is the reason for using the SSOR preconditioner instead.

For the measurement of the residual r € R™ we use the norm

I7ll 2 =

I,
E;ri. (6.7)

In Figures and we exemplarily see the convergence rate of the two methods for v = 1076
at the two finest mesh-widths, h = 5% and h = W124' We have plotted the relative residual norm
lrkllz2/llrollL2, where ¢ is the initial residual and 7 the residual after the k-th iteration step. The
setup cost of the GMRES solver and the SSOR preconditioner are relatively cheap, such that the
iteration starts nearly immediately (red curves). The AMG setup timeﬁ however is comparatively

1 1

high, roughly 4 sec. for h = 5 and 15 sec. at h = 155;. Thus its iteration starts later, but then with

a better convergence rate (green curve).

2Note that in contrast to Table B here, 6 levels were generated, resulting in a smaller matrix on the coarsest level
and therefore smaller setup costs for the SuperLU decomposition.
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Figure 6.12: Calculation speed for the 2D problem

Furthermore, the AMG solver only exhibits its superior convergence rates over GMRES with
decreasing h. This is first of all due to the setup costs, which are relatively high compared to the
iteration time for small matrices. On the other hand, the convergence rate of Krylov methods often
depend on the condition of the matrix, which is higher, the smaller h is.

In Figure BT we see the AMG computation speed for the 2D problem for each diffusion parameter
v shown in 4 different curves. For the mesh widths h = 1/16,...,1/1024 the number of variables
relative to the overall solution time is displayed on the y-axis. The overall solution time includes the
AMG-setup time as well as the iteration time for the V-cycles. We observe, that the efficiency of the
method even increases for small v and h.
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6.2.2 A 3D example

We would like to test the AMG performance also in a three dimensional setting. We examine a 3D
rotation flow, which is described by the following problem:

Find u(z,y, ) : R®> — R, such that

—vAu+b-Vu=f in QeR3 (6.8)
with v € {1,1072,10~4, 107},
-y
b(l’,y, Z) = xT 5 (69)
0

and f(x,y,z) := 0. For the domain © we use the unit cube Q = (0,1) x (0, 1)

x (0,1). We prescribe
the following mixed boundary conditions:

n-Vu=0 for =0 (Neumann)
1 f =0N03<2<0.7TA03<2<0.7
u = o =T= == (Dirichlet)
0 else.

This problem is discretized on a structured 3D grid (tetrahedrons) using linear elements und GLS
stabilization.

For all problems with v € {1,1072,1074,1075}, the stabilization parameter §7. was chosen as in
formula ([EZTH) in Chapter H

The vector field b (see Figure GI4l) induces a circular convection around the z-axis. This convection
drags the solution profile of the inflow boundary (Figure BI3) at y = 0 through the whole domain

and transports it to the outflow boundary at x = 0. Slice plots of the three-dimensional solution are
shown in the next four subsections.
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Figure 6.13: Solution profile at the inflow border
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h 14| 18 | 1716 | 1732 | 164 | 17120
inner points (= matrix dimension) | 36 | 392 | 3600 | 30752 | 254016 | 2064512
nonzero entries 290 | 4174 | 42662 | 382294 | 3230390 | 26547574

Table 6.8: mesh widths and matrix properties for the 3D problem

In Table we see the properties of the stiffness matrices resulting from a P; discretization on a
structured mesh in PNS.

e

/ \ / \ u
0.938
/ \ / \ 0.875
/ \ / \ 0.813
q 0.750
s _ / \ 0.688
0.625
1 0.562
0.500
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0.375
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0.250
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0.062

Figure 6.15: Solution profile at the outflow bor-
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Figure 6.17: Solution profile at the outflow bor- Figure 6.18: Solution profile at z = 0.5, v =
der, v = 1072 102

The profile at the outflow boundary is determined by the amount of diffusion controlled by the vis-
cosity parameter v. For v = 1 the diffusion dominates over the convection, the information stemming
from the inflow boundary is transported slowly in every space dimension (nearly) uniformly (Figure
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ET0). The convection is comparably weak, such that the solution at the outflow boundary is nearly
zero (Figure BIH). At v = 1072, more of the input profile is transported into the direction of the
outflow boundary, however blurred by the diffusion (Figures EI1 and BI).
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Figure 6.19: Solution profile at the outflow bor- Figure 6.20: Solution profile at z = 0.5, v =

der, v =1074 104
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Figure 6.21: Solution profile at the outflow bor- Figure 6.22: Solution profile at z = 0.5, v =
der, v =107 1076

With diminishing diffusion, at ¥ = 107* and v = 1075, we see that the sharp input profile is
transported through the whole domain (Figures and BE22) to the output boundary (Figures BT
and [E2T]) nearly without any losses.
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The effect of the strong coupling parameter 6 on the coarsening process

Again we would like to look on the way the strong coupling determinates the generated levels. The
coarsening parameter 6 is again chosen out of the set © from (Ed]). The according setup times are
shown in Tables to Using the legend from Figure we display the data of the generated
levels in the Figures to for the four values of v, exemplarily for mesh width h = 1/65. The
upper curves again show the nonzeros of the matrices, the lower curves indicate their dimension.

As we can see in Tables to BET2, the time factor from a mesh size h to % is at best about 9 to
10. This is somewhat bigger than the factor 8 that the problem sizes differ (cf. Table B8). However,
since the number of generated levels is in all cases restricted to five, the SuperLLU inverter has to treat
a relatively large matrix on the coarsest level.

0 |h=1 h=% h=4% h=4 0 |h=1 h=% h=2% h=4
0.2 | 0.02 0.31 3.31 34.22 0.2 | 0.02 0.17 1.68 17.1
0.3 | 0.02 0.21 2.09 18.82 0.3 | 0.02 0.17 1.7 15.53
0.4 | 0.02 0.21 2.08 18.89 04| 0.01 0.18 1.55 13.43
0.5 | 0.02 0.23 2.18 19.36 0.5 | 0.02 0.16 1.34 13.92
0.6 | 0.02 0.24 2.29 20.44 0.6 | 0.01 0.14 1.63 17.5
0.7 | 0.02 0.22 2.36 234 0.7 | 0.02 0.15 1.65 19.58
0.8 | 0.02 0.24 2.26 21.86 0.8 | 0.01 0.14 1.5 21.49

Table 6.9: AMG setup times [s], v =1

Table 6.10: AMG setup times [s], v = 1072

0 |h=4% n=4 h=4 n=4g 0 |h=4% n=4 h=4 n=4g
0.2 002 023 253 2339 0.2 002 023 271 2511
03] 002 021 214 2086 03| 002 021 21 2032
04| 001 02 202 19.74 04| 002 021 21 2014
0.5| 0.02 018 175  16.76 0.5 002 017 174  16.71
0.6 0.0l 017 162  16.09 0.6| 002 017 1.6  16.12
0.7] 0.02 014 133  13.59 0.7| 001 014 139 1332
0.8 001 013 124 1269 0.8 002 012 122 1174

Table 6.11: AMG setup times [s], v = 1074 Table 6.12: AMG setup times [s], v = 1076

For the diffusion dominated problems, we see that values between 0.3 and 0.5 for 6 are optimal
because they not only reduce the C variables, but also the nonzero entries. This is the same effect
as mentioned in the 2D context, at first the levels doesn’t differ much, lower values for # introduce
more nonzeros in the coarse level matrix, but this increased neighbourhood is likely to be coarsened
drastically in the next step.

For convection dominated problems, values between 0.5 and 0.8 seem to be more appropriate,
since they result in a stronger reduction of the nonzero entries. Again, as in the two-dimensional
setting, bigger values for 6 decrease the elements in the set of interpolation variables P;, therefore
yielding prolongation and coarse level matrices with a smaller number of nonzero entries. This is also
supported by the setup times listed in the Tables below. However, this effect is not so evident as for
the 2D problem.

In the three dimensional setting, as for the two dimension case, we observe, that the number of
variables from level to level is about halved in each step, independent of the space dimension. Since
it takes into account also the direction of the stream, this type of coarsening is also referred to as
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directional coarsening or semi-coarsening. In the AMG context, this is simply a byproduct of the
strong neighbourhood relationship and the C'/F-splitting.

For geometric multigrid, the factor from a fine level to a coarse level dimension is normally 1/4
in 2D and 1/8 in 3D, which results in a lesser computational complexity. However, for anisotropic
grids or strong convection, the semi-coarsening approach often has superior convergence properties
(cf. [Mul89]).

Nevertheless, in 3D, semi-coarsening has the drawback, that the overall complexity is not reduced
strong enough, the AMG setup phase takes significantly longer than in the 2D case. A remedy can
be to apply agressive coarsening as introduced in [Sfi199], where not only direct connections, but also
indirect connections (i.e. neighbours of neighbours) are considered.

The effect of relaxation on the solution process

For the 3D problem, we seek the optimal relaxation parameter(s). Again, w is taken from (EH). As
we see in the Tables and B.T4 the algorithm converges over a wide range of values for diffusion
dominated problem.

However, the smaller v is, the more important becomes the underrelaxation of the smoother. In
fact, many AMG level hierarchies (for different ) didn’t yield convergence in the convection dominated
case for w > 1. This sustains the fact that underrelaxation is inevitable for these types of problem.
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Table 6.13: SSOR smoothing for v = 1,1072, h = %, cees 6_14
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Convergence speed of the AMG method

Again, we compare the AMG method with a GMRES(m) Krylov solver, using a restart length of
m = 20, in combination with a SSOR preconditioner (with the optimal relaxation parameter w = 0.7).
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Figure 6.27: Convergence of GMRES vs. AMG  Figure 6.28: Convergence of GMRES vs. AMG
for h = 6L4 for h = ﬁ

In Figures and we exemplarily see the convergence of the residual in the L?-norm (1)

for the strongly convection-dominated problem with v = 1076 at h = 6%1 and h = 1—58, the two finest

mesh-widths, that were possible in 3D on a single workstation with 4GB of memory.

In order to shorten the setup time for the AMG solver, we increase the number of levels generated
to 7 for h = 6%1 and 8 for h = 1—58. Since we have hardly any setup cost for the GMRES solver and the
SSOR preconditioner, the Krylov solver has a headstart (red curves). The AMG setup time is much

higher, roughly 5 sec. for h = 6—14 and 38 sec. at h = i

128°
13000
11000 [~
© 9000
c -
Q
8 L
Q I
@« L
g 7000
[%]
I L
= L
8 3
@ 5000
g "
B —@®— nu=1
B nu=0.01
3000 b o nu=0.0001
- ——— nu =0.000001
L IR | IR | R |
1000=5 10 ] 10* 10°
variables

Figure 6.29: Calculation speed for the 3D problem
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We can see, that the GMRES solver is clearly superior on the coarser mesh-width. At this problem
size, the stiffness matrix’ condition number is small enough to allow the Krylov solver to converge
quickly. Also, the convection field and the boundary conditions are comparatively simple, and thus
doesn’t cause the problems with boundary layers as in the 2D example.

Only at the finer mesh-width, the AMG solver shows a more typical multigrid behaviour, it can
compete with (and even outperform) the Krylov solver. Although the convergence curves doesn’t
differ much, we see that the scaling of AMG between the problem sizes is very much better (150 sec.
to 16 sec. versus 160 sec to 4 sec.).

The diagram in Figure finally shows the calculation speeds on the different problem sizes.
Here the optimal parameters from the previous empirical studiess were used. In contrast to the 2D
case, however, we observe a degradation of the speed for small h. The computational effort due to
the increased densitity of the matrices slows down the setup (cf. Proposition B3] as well as the
multigrid iteration.
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AMG for mixed problems
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Chapter 7

Mixed problems in computational fluid
dynamics

The physical discipline of fluid dynamics is the study of fluids (that is liquids and gases) in motion.
Its fundamental mathematical model, that describes continuous flows, is given by the Navier-Stokes
equatz’onsﬂ. Since a general solution can’t be derived in closed form, one is dependent upon numerical
approximations that the scientific area of computational fluid dynamics (CFD) is trying to give.

In this Chapter, we shortly describe the (incompressible) Navier-Stokes problem, its linearization,
the finite element discretization and the Oseen equation which emerges in this connection. Finally,
we introduce the stabilization methods that needs to be applied for a successful computation.

7.1 The Navier-Stokes equations

We start with the definition of the main CFD problem, which is the background and reason for our
research on numerical methods.

Definition 7.1.1 (Navier-Stokes problem). One of the most important and difficult problems in com-
putational fluid dynamics consists of the evolutionary incompressible Navier-Stokes equations, which
describes the flow and the pressure of a fluid in motion. More exactly, we are interested in the distri-
bution of the pressure p(t,z) and the velocity u(t,z) = (u1,...,uq)’ (t,x) in the time-space cylinder
Qr := (0,T) x Q with respect to a given source-term £(t,x) = (f1,..., fa)' (t,z):

0
a—?t‘—mu+(u-v>u+vp:f in Qr, (7.1)
V-u=0 in Qr, (7.2)
with inital and boundary conditions
u(0,2) = u’(a), (7.3)
u=0 on (0,T) x 002 (7.4)

where 0 < v < 1, (t,z) € Qr, and Q C R?, d € {1,2,3}. The scalar v > 0 is the viscosity
parameter while equation ([7.3) is the incompressibility constraint.

A main obstacle in solving these equations is the nonlinearity, which prevents us from giving an
analytical solution in the classical sense for arbitrary space dimension d. Leray ([Ler34]) in 1934
showed, that weak solutions exist under certain conditions. However, even if a weak solution exists,

!'Named after Claude-Louis Navier (1785-1836), French engineer and physicist, and George Gabriel Stokes (1819
1903), Irish mathematician and physicist.
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its uniqueness can not be guaranteed, especially in the three-dimensional case and for arbitrary large
time-intervals (0, 7). Therefore, one is interested in computing a discrete numerical approximation in
order to be able to simulate practical industrial applications.

This is usually achieved by the discretization in time and space, leading to systems of linear equa-
tions with a relatively high dimension number. Solving these linear systems, most Navier-Stokes solvers
spend the biggest amount of time during the whole computing process. Here, efficient algorithms and
a thorough implementation have to be applied.

Consequently, each component of the CFD software has to be chosen with care. An important
topic, beside the mesh generation, is the discretization in time and space.

e The spatial (semi-) discretization on the domain 2 is usually done by using finite element (or
finite difference or finite volume) methods.

e For the discretization of the time interval (0,7") we normally use a time-stepping method like a
single-step 0-scheme.

We will apply the time discretization before the space discretization, resulting in an outer time
loop, which seems to be a quite natural approach to an instationary problem, however other methods
are also common. In each time step a stationary Navier-Stokes type of equation in the form of a
(discrete) nonlinear and indefinite saddle point problem has to be solved.

A closer look at the corresponding discretization methods will be taken in the Subsections [LT1]
and

Now to solve the arising nonlinear problems, we have basically two alternatives:

e First treat the nonlinearity by a linearization technique for the whole problem like Newton or
a fixed point iteration which leads to linear subproblems. These can be solved by using a fully
coupled or a decoupled approach.

e Another possibility is to first split the problem into equations for the velocity and the pres-
sure components, which then in turn can be treated with a linearization method for nonlinear
problems.

We will focus on the first approach, using a fully coupled AMG solver for the linear problems (see
Chapter [). Decoupling methods, such as Schur complement methods, will shortly be discussed in
Chapter

In any case, our CFD-software is forced to calculate a solution to a linear system with a large-
dimensional sparse matrix in the end. Mainly two variants of solver algorithms are eligible for this
task:

e Krylov subspace methods like GMRES, BICGSTAB, etc. are usually reliable methods. Though
they need an appropriate preconditioning.

e Multigrid methods, especially when adapted to the concrete problem, promise even better per-
formance.

Geometric multigrid however, is not trivial to implement, especially the interpolation for abitrary
unstructured, anisotropic meshes. Also, for decreasing v these methods often show degraded conver-
gence rates. Instead, the focus of this work will lie on the implementation and application of algebraic
multigrid methods for saddle point problems, to which Chapter @l is dedicated.

7.1.1 Time discretization

For treating the time interval (0,7") numerically, we need a time-stepping method, partitioning it into
time levels t,, n = 0,..., N, and computing the solution at time ¢,,, using the results from the previous
time level(s).
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The single-step 6-schemes are widely and successively used methods, they will be the methods of
our choice. If applied to the problem in ([l) — ([CZ2), using the partition 0 =tg < t; < -+ <tpy =T
with the time step size 7, := t;,41 — t,, the parameter 6 € [0, 1] ,and the notation

pythi=0p" (1 - 0)p", p

"= p(tn)
£ =0t 4 (1 - 0)F", 7= f(ty,)
it delivers the following problem:
un+1 —u”
- 4 9(—1/Au"+1 + (un+1 X v)unJrl) + vpgwrl _ gnJrl, (75)
Tn
V-u"tt =0 (7.6)
with the right hand side
gt = fen+1 —(1=6)(—vAu" 4 (u" - V)u"). (7.7)

The implicit Euler method
For 6 = 1 we get the implicit or backward Euler scheme, and formula () simplifies to the following:

Definition 7.1.2 (Implicit Euler). For every time step 7,, solve

un+1

+ (—yAu"'H + (un—I—l . v)un-i-l) + VPn+1 — fn+1 + 11_’ (78)

Tn Tn
V-u"tl =0 (7.9)
where the right hand side £+ 4 % is known by the previous step.

In order to solve the nonlinear equation ([L§), we could use a Newton method, or a linearization
which approximates

("t Viu"t! x (u" - V)urth (7.10)
The convergence rate of the implicit Euler scheme is of first order, thus the error is bounded by
O(7). Furthermore, this is not changed by the linearization.
The Crank-Nicholson method
Setting 6 = % leads to the Crank-Nicholson scheme:

Definition 7.1.3 (Crank-Nicholson). For every time step 7,, solve

n+1 1 n 1
+ 5(—1/Au"+1 + (" V)t vptt = £t g L 5(—yAu" + (u"-V)u"), (7.11)
3 Tn

V-u'tl =0, (7.12)

u

Tn

Again, the right hand side of [7.11)) is known from the previous step.

Since the convergence rate of this scheme is of second order (bounded by O(72)), an appropriate
linearization should preserve this. The desired result is obtained by replacing

3 1
(un+1 . v)un+1 with <§un _ §un1> . vunJrl’

see e.g. [SSI1].



128 CHAPTER 7. MIXED PROBLEMS IN COMPUTATIONAL FLUID DYNAMICS

7.1.2 Weak formulation and spatial discretization

The problems which arise in each time step are now transformed into a variational formulation, using
the spaces

(),
2 ()
5 ={q e L*(Q) : (¢. 1)

H:=1?
V=W, (velocity space),
Q=L — 0}

(pressure space)

with the scalar products

d
(u,v)g := ZZ;/QuzvZ dzx, (Vu,Vv) := Z(VUZ,VUZ o = Z /

Exemplarily done for the implicit Euler method, linearized with ([ZI0), and setting u := u
w := u” and the new right hand side f := f"*! + ‘T‘—:, one gets

ou; (%Z
Ox; 8::3 j

n+1
)

Definition 7.1.4 (Weak formulation of the linearized Navier-Stokes equations). Find u € H, p € Q
such that

1

—(u,v)g + (w-Vu,v)g

Tn

+v(Vu,Vv) — (p,V-vig=(f,vig YwveV (7.13)

(V-u,qu=0, VgqeQ. (7.14)

This linearization method is also referred to as the Picard iteration.

7.2 The Oseen equations

The last formula, in turn, with ¢ = 7,1, b = w, is equivalent to the weak formulation of the generalized

stationary Oseen equatzonﬂ which reads

Definition 7.2.1 (Oseen problem). Find u:R% — R?, and p : R* — R such that

—vAu+ (b-V)u+Vp+cu=£f in Q (7.15)
V-ou=g in Q, (7.16)
u=0 on 0, (7.17)
with the data ¢ € L™(Q), ¢ >0, be Wy*(Q)?, f e LA2(Q)%, g € L*(Q).

In fact, the Oseen equations are a problem, that probably exclusively arises as a linearization of
the Navier-Stokes equations. It is a steady state model of a flow u and the pressure p of a fluid under
the force b, with according boundary conditions on 9€2. In contrast the latter, it is a linear problem
for which already a great amount of analysis and a series of discretization methods exists.

An even more basic problem are the Stokes equations, that in contrast to the former have no
convection term. It is a model of highly viscous flow, where the convection can be neglected. Since it
is the simplest mixed problem, but also exhibits the typical difficulties of saddle point problems, it is
worthwhile to study.

Definition 7.2.2 (Stokes problem). Let f € L?(Q)%, g € L?>(Q). Findu: R — RY, and p: RY - R

such that
—Au+Vp=f in Q (7.18)
V-u=g in Q, (7.19)
u=0 on . (7.20)

2This equation was suggested in [Osell] by the Swedish theoretical physicist Carl Wilhelm Oseen (1879-1944), in
order to overcome certain paradoxes of the Stokes equations.
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For the discrete approximation, we choose a finite element method. At this point, other methods
like finite difference (FDM, on a staggered grid) and the finite volume methods (FVM) may also be
applied instead. However, we are interested in a special ordering of the discrete linear system, which
can be delivered by our FEM code PN'S. We choose a triangulation 7, = {T}, ..., Ty} of the domain
as in the scalar case and define the basis functions of our discrete subspaces only on these triangles
(tetrahedrons).

Defining now the bilinear forms

a(,-) : VxV —R: a(u,v):=c(u,v)u+ ((b-V)u,v)g +v(Vu,Vv)

b(., ) 'V x Q — R: b(u, q) = _(V -u, Q)H (7.21)

and the linear forms

f():V—R: [f(v):=(f,v)u

g() :Q — R: g(q) e (g7 q)L2(Q)7 (7.22)

and then

A() W xW —TR: AU,V):=a(u,v)+b(v,p) — b(u,q)
F(): W —R: F(V):= f(v)+g(q)

with W:=V x Q and U = {u,p} € W, V = {v,q} € W, the discrete problem can be formulated:

Definition 7.2.3 (Standard Galerkin discrete approximation). For the discrete approximation of
(713) - (714), we choose finite-dimensional subspaces Vi, C 'V and Qp C Q and search for Uy =
{up,pn} € Vi X Qp, such that

A(Un, Vo) = F(Vi) YVi ={Vh,qn} € Vi X Qh. (7.23)

The stiffness matrix is computed by inserting the basis functions {®;}i—1, . v and {¥;};—1 . ar of Vj,
and @), into the bilinear forms:

A= (aij)%‘ﬂ eRVN, a5 = a(®;, ®)), (7.24)
B = (b)) € RN by = b(Dy, 05), (7.25)

whereas the right hand side is assembled as
fi=(f)X, eRY,  fi:= f(D)), (7.26)
g:=(g)iL, e RM, g;:=g(¥y), (7.27)

leading to a linear system of the form
T
A BT (u) _ (T (7.28)
B 0 P g

One immediately verifies that the above matrix is indefinite if the matrix A is positive definite,
which is why this type of problem is referrred to as a saddle point problem.
7.2.1 Relationship with the convection-diffusion equation

The Oseen equation is closely related with the weak formulation of the convection-diffusion-reaction
problem from Section EZIl For the Oseen problem, we have u = (ug,...,uq)"
v = (v1,...,vq)T. Defining now u; = (0,...,0,u;,0,...,0)” and v; respectively, we have

d d
u = E u;, vV = E V.
=1 i=1

and test functions
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Hence, the bilinear form a(-,-) from [ZZI) can be written as

a(u,v) = Z a(ug, vy).

i=1

Obviously now those parts of a(-,-) which refer to a(u;,v;) are of the type [E3). Thus, the block
matrices on the diagonal of the stiffness matrix of the discrete Oseen problem are nothing but discrete
convection-diffusion-reaction problems. As a consequence of this, one has to be able to (somehow)
invert such a kind of problem in order to provide a successful discrete Navier-Stokes/Oseen solver.

7.2.2 LBB stability

Concerning the solvability of equation [ZZH]), we need, beside the ellipticity of a(,-), that the discrete
LBB condition holds for b(-,-) :

Definition 7.2.4 (LBB condition). The finite element spaces Vi, C V and Qp C Q fullfill the discrete
Ladyshenskaja—Babuska—BrezziE(LBB ) condition, if there exists a constant 3 > 0, such that

b Vh,4h
sup V) 5 gy (7.29)
VREV) ”UhHH

Defining the space

Vi(g) :=={vn € Vi : b(vn,qn) = (9,an)u ¥ an € Qn},

we are able to state a result like the following, which can be found for example in [GR86] (Theorem

I1.1.1) or in [BE9]:

Theorem 7.2.5. Assume that the following is true:

1. the bilinear form a(-,-) is coercive, i.e. there exists a constant a > 0 such that

a(vy,vn) > alloply YV on € Vi(0),

2. the bilinear form b(-,-) satifies the LBB condition ([7.29).
Then problem (7.23) has a unique solution Uy = {up,pr} € Vi(g9) X Qp.

Note that in general, we have V,(g) ¢ V}, which results in a non conformal approximation. The
Py 11/ Py elements from the Taylor-Hood family, where the polynomial order of the velocity space
is one degree higher than that of the pressure space, are the classical case of LBB-stable elements
(i.e. finite elements, that fulfill the LBB condition). If the LBB condition is not satisfied (e.g. for
equal-order elements), extra stabilization is needed, as we will see in the next section.

7.3 Stabilization techniques

It is known, that for large Reynolds numbers, the standard Galerkin approximation fails, if the grid
isn’t fine enough. As the viscosity coefficient v goes to zero, the ellipticity of the bilinear form
a(+,-) can no longer be ensured and oscillations occur in the discrete solution, similar to the discrete
convection-diffusion equation (see Section in Part II).

3The Russian mathematician Olga Ladyzhenskaya (1922 - 2004), the Czech mathematician Ivo Babuska and the
Italian mathematician Franco Brezzi discovered this result independently from each other. It layed the foundations of a
solvability theory for finite elements and especially for the discrete approximations of the Navier-Stokes equations.
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Looking for a remedy for this problem, we have mainly two possibilities. One is the brute force
attack by simply increasing the number of mesh points where it is necessary, in order to better
approximate large gradients. However, this increases the problem size dramatically.

The other, more practicable way, is to introduce a stabilization scheme like the Streamline Upwind
Petrov-Galerkin (SUPG) method or the Galerkin Least-Squares (GLS) method.

Another issue is the requirement for the finite element spaces to fulfill the LBB condition ([LZA4]).
However, discrete spaces for velocity and pressure of equal polynomial degree, which are widely used,
do not have this property. Using these spaces with the standard Galerkin FEM approach would result
in a singular matrix. Instead, at least a grad-div stabilization scheme has to be applied.

7.3.1 Stabilization schemes for LBB-unstable elements

Assuming that the approximation is done on a triangulation 7;, = {T1,..., T} of Q, we use the local
L? inner product of an element T; and denote it by (-, )7, := (+,) 2 (1;)» as well as the according local
norm || - [loz; := || - [[L2(7;). It is assumed that the inverse inequalities

1Avsloz, < Crhg Vonllozs,  [Vanllor, < CThzlanllo.r,

hold for v, € Vy, qn € Qp, and all @ = 1,..., M, see e.g. [Ciadl]. Furthermore, we define the
differential operator L as

LWU):=vAu+ (b-V)u+ Vp+ cu,

which allows us to write the standard full stabilization scheme as

Definition 7.3.1 (Full stabilization). Find Uy = {up,pn} € Wp, =V}, x Qp, such that

Astar(Un, Vi) = Fatap(Va) V' Vi = {vih,qn} € Wy, (7.30)
with
M M
Aab(U, V) = AU V) + Y (V- 0,V -v)g + > (L), 61,9(V))z, (7.31)
Mzzl =1
Fsap(V) := F(V) + Z(’YTZ-Q, Vvt + (£, 0r,9(V)r (7.32)
=1

where vy, and 07, are the stabilization parameters which can be chosen for each element T; € Ty,
accordingly.

(V) ‘ method ‘ references
(b-V)v + Vg SUPG/PSPG [HEBR6] [RST96), [LO0Z|
v GLS [FIFST [

—L*(V) algebraic subgrid scale [Cod0T]

Table 7.1: Choices of 1 for different stabilization methods

The operator ¢ : W — W, has to be chosen accordingly to get the desired stabilization method.
Table [Tl gives an overview of the resulting methods. The adjoint operator of £ is denoted with L£*.
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SUPG/PSPG stabilization

For example, the choice
(V) = (b-V)v+Vq
leads to the SUPG/PSPG method. The following lemma ensures, that the resulting discrete bilinear

form Agygp fulfills an LBB condition, with respect to the norm || - [|sypg, defined as

M M
Willdvpe = vIvilia + IVeval§ o + Y onll(b- V)vi + Vaulldr, + Y o lIV - valdr,
=1 i=1

with some constants a7, > 0,7 =1,..., M.

Lemma 7.3.2 (Stability of the SUPG/PSPG method). Let (V) := (b-V)v 4+ Vq.

1. The discrete bilinear form Agyap(-,-) is coercive on W, = Vp, x Qp, with the norm || - [|supa, i-e.
for all Vi, € Wy, the inequality

1
Astay(Vi, Vi) = 5’]Vh”%UPG’
holds.
2. If there are positive constants g, 0, a and ag such that

L 1w
20(C¥)2° 2¢7 Q(CP)Q’QV(C“)

0<,U'Oh%“i§5Ti§5§min< >, OSOéT,-SOéSOCOVhQTi

as well as

CrVL <\/2_0 - hT"H\%“’Ti> <\F+ Crve + CF'@“ “) :

then there exists a constant Bg > 0 independent of h and v, such that

Astap(Up, Vi)

inf  sup > Ba
UneWn v,ew,, [|1UnlllsupallValllsupa ’
with the norm ||| - |||supc being defined as
IValll3upe = Valldupe + 1l anlld o-

Proof. See [Mil01], Lemma 10.6. A further discussion on how to choose the constants can also be
found there. O

In PN'S we set the above parameters as

hi, o, |blloo.
op, = L <1+(M)2>

2v v

v1, := h1,||b|ls.0-
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Defining now the discrete bilinear forms

Astab(Up, Vi) = a(uy,vi) + Y 5, (V - up, Vv, (7.33)
T;
+ > or(—vAuy, + (b V)u, + cup, (b V)vp)r,, (7.34)
T;
b(Vh,pr) = — (Pn, V- vp)m,

kstab(Viopn) =Y 01,(Vpn, (b - V)va)r;,
T;

ltab(Wn, qn) = > 61, (—vAuy, + (b V)uy, + cuy, Vau)1;,
T;

Cstab(Phs@n) = > 61,(Vpn, Vau)T;,
T;

we can assemble the according matrices Agzap, B, Kstabs Lstap, Cstap using the finite set of basis functions
O, eVy,i=1,...,.Nand V; € Qp, j=1,..., M as in (L) and (ZZ3) The linear forms
Fstan(vi) = F(v) + D 75 (9,V - vi)r + > 65, (F, (b V)vi)r,,

T; T;

gstan(an) = g(a) + > 61,(f, Van)z.-
T;

then lead to the according right hand side vectors fg,, and ggrqp- Thus the whole linear system has

the form
( Astab (B + Kstab)T> <u> = (fgtab> . (7.35)
—B+ Lguw Cstab P Sstab

GLS stabilization

By choosing
(V) =—vAvy,+ (b-V)v + +cvy, + Vg,

the Galerkin least-squares scheme adds even more terms to the bilinear form A in ([Z31]). It leads to
the discrete bilinear forms

tatab(Wn, Vi) = a(up,vi) + > 5 (V -, Vevi)r (7.36)
T;
+ Z 6Ti(—1/Auh + (b . V)uh + cuy,, —VAVy, + (b . V)Vh + CVh)Tia (737)
T;
b(vh,pn) == — (Pn, V- vi)H,

Kstab(Viopn) == Y 61,(Vpn, —vAVy + (b V)i + evi)z,
T;

Lstab(Wn, qn) = Y 67, (—vAuy + (b V)uy, + cup, Vo)1,
T;

Cstab(Dhs qn) = o, (Von, Van) 1,
T;

and the linear forms
Fstan(vi) = F(vn) + Y 59,V - vi)n + > 65, (F, —vAvh + (b V)vi + evi)1;,

T; T;

gstan(an) = g(a) + > 61,(f, Van)r,.
T;
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defining now the linear system in ([Z33). A stability result similar to Lemma can be found in
[Fra93]. Note that the GLS stabilization as introduced here doesn’t preserve symmetry for symmetric
problems like the Stokes equation. It is also referred to as the GLS— scheme, in contrast to the
(original) variant GLS+, that leads to a symmetric matrix, however at the price of indefinitenes (see

[BBGS04]). The GLS— scheme is also utilized in PN'S.



Chapter 8

Numerical linear algebra for saddle
point problems

In this chapter, we will shortly describe the arising linear systems of the form

()= D6)-C) w

and give an overview of some usual iterative solution methods. Furthermore, the two different orderings
of the unknowns are introduced, and the consequences for the solution methods, especially Krylov-
methods and the preconditioning, are discussed. These are however only the preliminaries for the
(algebraic) multi-level methods, which are described in the next chapter.

8.1 Unknown based ordering

The widely used standard (or classical) ordering of variables, consists of grouping together those
degrees of freedom, which belong to one unknown of the original partial differential equation. Here,
an unknown is a function, that is to be approximated, usually a physical quantity. For example for
the 2D Oseen equation, the vector entries belonging to the z-direction of the velocity (uy) come first,
then the components belonging to the y-direction (uz) , and then the vector entries belonging to the
pressure (p).

The linear systems in ([[L28) respectively ([Z30)) then have the form

Ape Ay BT\ [ 1
Ap Ay Bl luw | =15 (8.2)
Bopz Bapy Cpp p 9

with Agg, Agys Ayes Ay € RN/ZN2 By By o Ba ey Bayy € RM*N/2 and €, € RM*M being
sparse matrices.

The advantage of this ordering clearly is that it can be used with any combination of finite elements
for the velocity and the pressure space, particularly for equal-order elements as well as for elements
with different polynomial degrees (like the LBB-stable Taylor-Hood elements).

Basically two typical alternatives of numerical linear algebra methods are possible to solve this
type of equation:

1. We can treat the whole coupled system as one with an iterative solver such as a Krylov subspace
method (GMRES, BiCGStab, etc.) with an appropriate preconditioning.

2. The other variant, under the assumption, that A~! exists, is to use a pressure Schur complement
method which decouples the velocity and the pressure component. These methods are based on

135



136 CHAPTER 8. NUMERICAL LINEAR ALGEBRA FOR SADDLE POINT PROBLEMS

the block inverse of F' in (BIl):

- AP+ ATIBTS 1 BoA™Y —ATIB S
Fl= R iR : (8.3)
—S71ByA S

with S := C — BoA™' BT being the Schur complement. This leads to the decoupled system
Sp=g—BA7'f
Au = f — Bip.

For this scheme, only A and S have to be inverted, where A is a convection-diffusion-reaction
type of matrix. Various update schemes for v and p lead to diverse methods, such as pressure
correction methods, Uzawa iterations ([Uzal2]) or SIMPLE ([PS72]). The Schur complement
mostly can’t be computed explicitly, especially for big problems, thus for inverting S, Krylov
methods can be used, because they only require the effect of S on a vector. This however has the
drawback, that traditional preconditioners (like SSOR or ILU) cannot be applied. Therefore,
another approach is to compute S only approximately, using e.g. a preconditioner for A, instead

of A7L.
Often Krylov methods are combined with Schur complement methods as a preconditioner, since
the usual standard methods like Jacobi, SOR, or ILU exhibit poor convergence behaviour when simply

applied to the whole matrix F'. A good overview on numerical methods for saddle point problems is
given in the article of Benzi, Golub and Liesen, see [BGLOS].

8.2 Point based ordering

The node (or point) based ordering is a variant that is only possible with equal-order elements, like
Py-Pj-stab, which is used in PN'S. Here, those variables that belong to the same degree of freedom
(but different physical quantities) are grouped together. The new stiffness matrix F™ can be derived
from F' by applying an according permutation matrix II:

Fy =17 Frm? <“> =17 (f ) = b, (8.4)
p g

with F™ = IITFII € RE*K K = 3M. Looking at the example from above, the 2D Oseen problem
would have the form:

Fn . FlM X bl
: : =1 (8.5)
Fyi ... Fywm TM by
with
(Aze)ij  (Aay)ij  (Bi,)is (ug); fz)i
_ 3x3 _ 3 o 3
Fy= | (Aw)i;  (Ay)iy By | €R”Y wi=| (uy) | €R% bi=|[(f,): | €R”
(Bapz)ij  (Bopyy,  (Cpplig (p)i (9)i

Note that (Ay.)i; = 0 and (Azy)i; = 0 for inner points of €, if the bilinear form agyq is defined
as in (C34) or [L3D). This type of ordering is also referred to as Vanka-type of ordering. However,
the original method in [Van86] consisted of an element-wise ordering, in contrast to the point-wise
ordering used here.

Basically one has the possibility to solve the arising systems with iterative solvers such as Krylov
methods, since the point based ordering obviously inhibits Schur complement methods. However, this
type of ordering also has some advantages. For example, the data structure for the sparse matrix F™
doesn’t need to store the indices of all single scalar entries but only the indicesﬂ of each 3 x 3-block

lsee Section in Chapter Pl about sparse storage formats
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(4 x 4-block in 3D).

Numerically, a Krylov method would lead to more or less the same result for ([B2) as well as for
([®3) — except for the permutation.

However, since the size of the blocks is known in advance, the matrix-vector multiplication can
be better optimized and vectorized by the compiler (cf. Section B]). This has direct consequences
for most Krylov subspace methods, which are strongly based on this operation. Thus, one and the
same Krylov method for and would exhibit a greater execution speed for the latter (see also
[DLH).

Furthermore, we are able to use specialized block versions of numerical algorithms, as we show in
the following.

8.2.1 Simple iteration and preconditioning methods for the point based ordering

In order to increase the convergence speed of iterative methods, one is interested in a preconditioner
M € REXE for F™ (or F), such that M ~'F™ ~ I or F™M~' ~ I. Generally, M is some approximation
to F'™. Traditional preconditioners arise from splitting methods, which split the matrix F™ additively
into F™ = M — N where M is easy to invert. Usual choices are

M =D (Jacobi),
M=w'D (damped Jacobi),
M=L+D (GauB-Seidel),
M =w Y (wL+ D) (SOR),

where L is the strict lower triagonal part L, D is the diagonal part and w € (0,2) some relaxation
parameter. Because of their slow convergence rate, they are of course outdated as a pure solver when
compared to e.g. Krylov methods, but still are important as a smoother for multigrid methods (cf.
chapter H).

For saddle point problems however, these traditional iteration schemes above show comparatively
poor convergence rates, regardless of the ordering of the unknowns. This changes when exploiting the
block structure of the matrix.

Generalized SOR

The relaxed GauB-Seidel or SOR (Successive Over-Relazation) algorithm can be formulated as a
generalized version for block matrices of the following form. Let A € RV*¥ be partitioned into n - n
submatrices such that

n
A= (Aij)tjm, Ay €R™M, ny, . ny €N, Y ny=N. (8.6)

Then we can formulate the generalized SOR method for block matrices like this:

Following the generic programming paradigm, Algorithm Bl is parameterized with invert, which
shall depict an appropriate solution method, that determines or approximates Ai_ilyi. It might be
chosen different types of solvers for different diagonal entries, for example exact solvers like an LU-
decomposition if A;; is relatively small, or some iterative solver again, if A;; is relatively large and
sparse, leading to a hybrid method. For A;; € R it is the simple inversion of a real number, leading
to the standard SO

For the point based ordering with P; elements for each unknown, we have n; = ... =n,, = 3 for a
2D problem (4 in 3D), in any case a small constant number, such that a direct solver can be employed.

2Using SOR again for the inversion of the diagonal blocks would result in method that is mathematically equivalent
to the standard SOR that simply is applied to the whole matrix A.
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Algorithm 5: Generalized SOR

Input: Matrix A € R"*", vector b € R", initial approximation 2° € R"
Output: An approximation z* to A~1b
repeat
1 fori=1ton do
2 yi — by — Y5y Ajak — 37T Agyai !
2i — invert(Aii,yi)
of — wizi (I, — wi)xffl
end
until convergence

In BLANC and in our library MiLTON, we directly compute the inverses of all A;; in advance, since
it obviously can be reused during the iteration. We will refer to this method also as block SOR.

The relaxation weights w; € R™*™ are now matrices instead of scalars, however in BLANC, they
are restricted to diagonal matrices. Numerical experiments show that it is important to be able to
vary the relaxation parameters for different physical quantities, see [Mil01]. Experimental studies
support that the choice of w,e > 1 (overrelaxation of the velocity part) and w, < 1 (underrelaxation
of the pressure part), with the relaxation weight

Woel
w = Wyel (8 7)

Wp

is beneficial for the 2D Oseen equation.

Backward SOR, SSOR

In Algorithm B, the components of 2* are updated from x’f to 2¥. Therefore, the inner loop starting
at line Bl it is also called a forward SOR step. If the directions of the outer loop in line [ and of the
summation in line [ are reversed, such that the components of z* are updated from xﬁ to x’f it is
called a backward SOR step.

Combing these two alternating steps together leads to the SSOR method, which exhibits greater
stability for convection dominated problems in practical computations. It is used as a smoother for
our algebraic multigrid methods throughout this thesis.

Block ILU

Another class of methods that are widely used as preconditioners (and sometimes as multigrid smoothers)
are the incomplete factorizations, the most famous being the ILU (Incomplete LU) decomposition.
For matrices like B0 ILU and its variants can be formulated as block algorithms (often referred to
as BILU) if ny = ... = n,. Since the inverses of the diagonal entries have to be computed explicitly,
the dimension of the submatrices cannot be arbitrarily high.

However, simple ILU(0) preconditioners often fail, especially when applied to indefinite systems
as described in [Saa92]. Our own experience with ILU supports this observation, even when an ILU
decomposition is feasible, it often shows a much worse convergence behaviour than e.g. an SSOR
preconditioner. Variants of ILU, that allow fill-in (ILU(p), or that employ pivoting (ILUP), drop-
tolerance (ILUT), or that add entries to the diagonal instead of dropping them (MILU), however seem
to promise better convergence, see e.g. [CS97]. A short but comprehensive overview of these methods

is given in [CvdV94].



Chapter 9

Algebraic multigrid for systems of
equations

The methods introduced in Chapter Bl are well suited for scalar elliptic problems like the Poisson
equation or the general (stabilized) advection diffusion reaction equation. However they become rather
ineffective when applied to a matrix arising from a system of equations like a coupled Poisson, an
Oseen or Navier-Stokes problem in two or three dimensions. Here, the classical AMG algorithm could
find connectivity between physical quantities where there is none. Our own numerical computations
support this — the standard AMG method from Section applied to an Oseen problem may still
converge (in simple cases) but the convergence rate heavily slows downﬂ. A smoother may still work
as a solver, but then the smooth error components (consisting of eigenvectors of S; that belong to
large eigenvalues) are not well enough approximated on the next coarser level.

For saddle point problems like Oseen or Stokes, there is another difficulty: the incompressibility
constraint ([C2) causes the indefiniteness of the system matrix for most of the standard discretizations.
Only with according pressure stabilization schemes, a positive definite matrix can be gained.

So there is obviously a demand for adapted algebraic multigrid multigrid methods for saddle point
problems. One of the first adaptions of algebraic multigrid ideas for the Navier-Stokes equations (for
a finite volume discretization) was presented in [Raw95], where a Additive Correction Multigrid was
used to construct the prologation and restriction operators. In [Web(1] the smoothed and unsmoothed
aggregation approaches where applied.

Furthermore there also exist hybrid methods, based on Schur complement iteration schemes, which
use AMG only for inverting the Schur complement or the velocity part (see e.g. [EHST02] or [GNROIS]).

In the following two sections, we present customized, fully coupled, algebraic multigrid methods
for mixed problems. These methods basically differ in the ordering of the unknowns, that were
introduced in the previous chapter. All of these methods however, are mainly based on the classical
AMG approach presented by Ruge and Stiiben in [RS87].

9.1 Algebraic multigrid for the unknown based ordering

An algebraic multigrid method for systems of equations that are assembled into a matrix using un-
known based ordering as in ([BZ) was already suggested in [RS87. At least, it is recommended to
prolongate and restrict the physical quantities separately, using a block-diagonal prolongation operator
like
P 0
pPYT = , (9.1)

0 P,

!This deterioration of convergence was e.g. also reported in [Oel(1] for coupled Laplace equations.
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with n = 3 for the two-dimensional Oseen problem (n = 4 in 3D). The prolongation matrices Py, ..., P3
are constructed like in the scalar case out of Ay, Ayy, Cpp.

Problems then arise in the detail. Since equal-order elements are not LBB-stable, mixed problems
are often discretized using P, — Py_1 (Taylor-Hood) elements. Different polynomial degrees however
lead to different dimensions for Cp, and the rest of the matrices on the diagonal. This leads to
problems when no pressure stabilization matrix is assembled (how to construct P, in this case?).
Even if Cp,, # 0, and P, could be constructed out of it, it is not ensured, that P, coarsens away
(geometrical) points of the underlying mesh, that Py,..., P,—; don’t. This could lead to a situation,
where the velocity variables on the coarse levels would live on totally different points than the pressure
variables.

Another issue is the correct choice of the smoother. Standard SOR or SSOR smoothing has little
effect on these equations. One suggestion is therefore to employ one step of a Schur complement
method, such as the Braess-Sarazin smoother [BS97.

Various (successful) suggestions to overcome these problems are explored in [Wab03] for the Navier-
Stokes, respectively the Oseen and Stokes equation. The method for P»-P; elements introduced there
however uses additional geometrical information to construct the coarser levels, therefore it is not
purely algebraic.

9.2 Algebraic multigrid for the point based ordering

If we have the situation, that each equation of a problem like (1) — (ZZ) or (ZID) - (ZIQ) is
discretized on the same grid, we may reformulate the method by sorting all those variables together
that depend on one point p; € 0, giving a linear system like in (&3).

The AMG approach presented in this section will be referred to as point-wise coupled AMG or
point-wise block AMG. Algebraic multigrid for point based orderings is not restricted to saddle point
problems like the Oseen or Stokes problem, in fact, point-wise coupled AMG formally can be applied
to many types of equations, given that all quantities/equations are discretized using the same finite
elements on the same mesh. It was originally proposed already in [RS87] and was successfully applied
to coupled Laplace/diffusion equations and linear elasticity problems in [Oel01]. So first we would like
to formulate the general AMG approach for matrices arising from systems of equations and then later
on describe the special treatment of saddle point problems.

In the following, we consider linear system Ax = b, where A consists of small equally sized dense
matrices and the whole system has the shape

Ay Aim Ty by
Az = o : =1 | =0b (9.2)
Ama Amm Tm bm
with A;; € CF*F x;,b; € CF 4,5 =1,...,m. The number of grid points is m, so that the total number

of variables is n = km and the local dimension k would be for example equal to d + 1 for (1) — ([Z2).
The entries A;; in A will be referred to as blocks.

In the following let D, L and U denote the block diagonal, block lower and block upper part of A,
such that A=L+ D+ U:

0 Ap - Aip 0
An 0 . . )

>
I

I~
I

<
I

0 Aml Am,mfl 0
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For x € C" and A € C"*" the adjoint (= transposed and complex conjugated) vector respectively
matrix will be denoted with
z* =71 resp. A*:=AT.

Furthermore, if D is positive definite, we now additionally use the norms

l2]lp = v/]z*Dxl,
llzll|a = \/|zA*D ™" A,

Note that A is required to have full rank for the last one to be a norm, otherwise (or if D is not
positive definite) it only defines a semi-norm.

We reformulate the approach from Section 2Tl Instead of coarsening the set of variables, we now
speak of coarsening the set of points. The set of points are the grid points Q = {p1,...,pn} where on

(1) (®)

each point p; the k variables x;,...,z;" are defined.

Definition 9.2.1 (Pointwise block AMG preprocess).
Repeat for level | = 0,...,lmae until the linear system on level | is small enough to use an exact
solver:

1. Generate a C/F-Splitting : On a level | with matriz A; € CF™>F™ e separate coarse level
points Cy from those points p; € == {p1,...,pm,} that can be interpolated by the coarser level
points. The latter are gathered in a set F; := Qi \ C; and with my1q = #[Cl] the dimension of
the next coarse level is kmyyq.

2. Define the weighted interpolation P"°% = P, € CFmur1xkm g the prolongation operator in
dependency of the block entries in A;. Then the restriction will be set to

Ry = (P)". (9-3)

3. Finally compute the next coarse level matrix with the Galerkin product :

A1 = RIAP. : (9.4)

Of course, many results from Section BZT] simply carry over to this approach, especially the
Lemmas and We would just like to point out, that if the right stabilization (SUPG or
GLS) is used, the matrix Ay is positive definite, and therefore all following coarse level matrices A;
are again positive definite.

9.2.1 Algebraic smoothness

The goal is to derive an AMG method in a point blockwise sense — all variables connected to one point
i are prolongated, relaxed and restricted together. Instead of conditions ([27) to (B3M), we will use
now

ISteal%, < lleall, — eallledl (9.5)

1 Tiedl%, < BalllellZ, (9.6)
and

1Siell, < lledllh, — ezl SiedllZ, (9.7)

| Tiedl%, < Bollledll, (9.8)

with aq, a9, 81, f2 > 0, and which imply ([22Z2) and ([23). If it is clear, which level is meant, we will
leave out the index I.

Next we would like to show that the block SOR has the above smoothing properties (@) and
@3). For this we need some axiliary results gathered in the following lemmas.
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Lemma 9.2.2. Let A and D be Hermitian positive definite, and let S € C™"*™ be of the form
S=1-Q'A,
with some nonsingular matriz Q, then the inequalities (ZA) and (97) are equivalent to
nz*Q*D7IQr < 2*(Q+Q* —A)x YzeC

and

r (A - Q)D N A-Qr <2 (Q+ Q" —A)x Vzel"
respectively.

Proof. For the energy norm of Se, e € C" we have
ISell = [I(1 = Q7" A)elh = e"Ae — [ A+ e"AQ™"Q — " AQ ™" AJQ™ ! Ae
= [lelli — " AQ7(Q + Q" — A)Q ™ Ae.
Therefore, ([@H) is equivalent to
arlflellli < " AQTHQ + Q" — A)Q ™" Ae,
which is equivalent to
z*Q*D7Qxr < 2 (Q + Q* — A)x, with z:=Q 'Ae.

The inequality (@) is equivalent to

asl[lSelfi < € AQTHQ + Q" = A)Q ™ e,
which is equivalent to

oz (Q* — A)DHQ — Az < 2*(Q + QF — A)x, again with z:= Q 'Ae.
O

Lemma 9.2.3. Let A € C"*" be an arbitrary matriz and B € C"*"™ be Hermitian positive definite,
furthermore let a > 0 be some real number, then

t*Az <azr*Bx VreC' <+ p(B'A)<a. (9.9)

Proof. B is Hermitian positive definite <= there exists a decomposition B = P*DP with unitary P
and a diagonal matrix chor}sisting of the eigenvalues of B and which, in turn, can ]loe decomposed
into root matrices D = D2 D2. This means that the proposition (@), with z = P* D™ 2w substituted,
is equivalent to

w*D"2 PAP*D 2w

w*w

<a YweC'w#0.

Further, the above is equivalent to

1 1
*D 2 PAP*D ™2
max — : g p(DiéPAP*Dfé) < a.
wfg)" w*w

The proposition now follows from the observation that the matrices DféPAP*Dfé, D7 'PAP* and
P*D~'PA = B! A have the same characteristic polynomial. O
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We are now able to verify the smoothing property of the block SOR method. For reasons of simplicity,
we choose w € R instead of R¥** as proposed in Section BZIl

Theorem 9.2.4 (Smoothing property of the block SOR). Let A and D be Hermitian positive definite,
and for an arbitrary vector w = (w;)"y € R™ with w; >0, i=1,...,m be

1 «— _
= max (= ijuA CAll)s e = max (<3 wllA7 Ag).

[N} ZZIy"'vm wz ..
Jj=t+1

with some matriz norm |- in C**k. Then the block SOR method satisfies (@A) and [T4) with

2—w - 2—w
) a2 =~ — — .
w(l+7-)(1+74) w2t + oy )(L 4 4y)

o <

Proof. For the block SOR method we have S =1 — Q1A with @ = Q(w) = 1 (wL + D) and

Q+@ -4=(> -1D.

Therefore, we are able to apply both Lemma and then Lemma to each of the inequalities
@) and @D). This leads to [@IH) being equivalent to

2
a17*Q*D'Qx < (= — 1)z*Dx  Vx € C",
w

<~
IR 2—w
p(D7'Q*D7'Q) < (9.10)
W
and (@) being equivalent to
* w—1 —1 * w—1 2 * n
ar*(L+ (——)D)D™ (L + (——)D)z < (= —1)z"Dz Yz € C",
w w w
<~
DL+ e+ (D)) < 22 (9.11)
P\ w T T w T aw '
For (@I0) and to (II) hold, it is sufficient that
- 2-w
a] = — — )
WD IDQ
respectively
2-w
2 S —1 w—1 T (7% 4 (w1
w| DL+ () D)D(L2+ (457 ) D)
with some matrix norm |[|-|| in C"*". With the norm ||-|| = ||-||w,
Al = max (= ijnAmnk)
we get the above proposition. O

The proof can easily be extended for relaxation weights w € R¥**, being diagonal matrices. A
similar proof can be given for the backward SOR step with L being replaced with R and these results
can be used to show an according property of the SSOR method. However, all these properties need
the matrix A to be Hermitian positive definite.



144 CHAPTER 9. ALGEBRAIC MULTIGRID FOR SYSTEMS OF EQUATIONS

9.2.2 Smooth error in the block AMG variant

Similar to [RS87 and Section BZH we want to find a definition of strong connection — this time
between points in the grid, identified with k x k block matrices.

First we observe a similar property of the norms ||-||p and |||z|||4 as in Lemma B20
Lemma 9.2.5. Let A € C™>™k_If D is Hermitian positive definite then
lel% < llellplllellla, e e €. (9.12)

Proof. The proof is the same as that of Lemma B2 with D being replaced by D (for which there is
also a root matrix Q% if D is Hermitian positive definite). ]

e € 1S a smooth error wit e ~ |e the smoothing propert lelds 0 =~
If cm g h ith ||.S ?4 124, h hing property yields 0
1Sell% = llell% < —alllell|; == llle]||% = 0. For a still relatively large global error, we have then

llellla < flell (9-13)

and the last lemma gives

lella < [lell - (9.14)

Definition 9.2.6 (Block transpose, block symmetric). For a matriz A € C™ ™ like in [@3) let A
be defined as

A= - - . (9.15)
Alm Amm

A will be called block transpose of A. If the equality
A=A (9.16)
holds, then we will say that A is block symmetric.

Definition 9.2.7 (Block M-matrix). For a matriz A € C™**™* [ike in (@A) let the diagonal entries
Aj; be positive definite, and the off-diagonal entries A;j, i # j be negative semi-definite. Then we will
call this type of matriz a block M-matrix.

Note that, if A is a block M-matrix, A is also.

Lemma 9.2.8. For arbitrary A € C" ™k and its block transpose A the following equality holds for
every e € CF:

R(e* Ae) + R(e* Ae) = — f: fj(e; — ) ( Ay + AL (e — ¢)) + m( 'm e (f: Ay + A;})ei>, (9.17)

=1 j=1 i=1 J=1

where e; € CF, e* = (ef,... e%).
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Proof. Let e € C™F be given, then one verifies easily:

1 1
R(e*Ae) + R(e* Ae) —e*§(A+A*)€+€*§(A+A*)e
1 & * * *
:izzelm + AL+ Aji + A)
i=1 j=1
L ) ) 1M . .
:52261(14 +A ) +§ZZ€J(AU+A@])€Z
i=1 j=1 7=11i=1
l e
:_izzez{(/lzj +Azj)el e:(AZ]—i_AZ(]) (A +A* )€Z+€ (AZ]+A )
i=1 j=1
L omm ) ) 1. . .
+ 522% (Al] +Azj)ei+ §ZZGJ(AU +A”)6]
i=1 j—=1 =1 j=1
1 & e (S
= — 5 ZZ(BZ - 6_])(AZJ + AZ])(eZ 6.7) + §R< € <Z AZ] * AJZ) el>
Pt i=1 Jj=1

Let’s now explore the real case, A € R™>*™k TLet A and A be positive definite with symmetric
block diagonal D. If (@H) is fulfilled by A with «; and by A with 5419 we have, as a consequence of
Lemma for smooth error e:

lella +llell ; << 2llelln- (9.18)

Assume now again zero row and column sums (see also Equation (BE33) for the scalar case), or at least
the positive semi-definiteness of the i-th row- and column-sum:

m
GZT (Z Aij + A]z) e, >0, Ve € Rk, 1=1,...,m, (919)
=1

we get the estimate, using Lemma

Z Z D) (A + Al (e — ) < 2 Z e; Aiiei. (9.20)
=1 i=1
i

l\')l»—\

=17

In the following, we assume A to be a real block M-matrix. For y € R, we have yTA”y = yTAZ Y
and therefore

T T
v (=(Ay + Ay = IIZ 4, 4 ary = 2MlY1Z 4, (9.21)
Then ||-||4,, defines a semi-norm and in the left sum of (I2) we only have summands that are

greater or equal zero. The same heuristic averaging argument as in the scalar case (Section BZ3)
leads to

INHNGE
2O —

7j=1
K

We interprete this inequality as follows: if ||—A;;|| is relatively large, the contribution of |le; — e;]|* Ay
has to be rather small. In other words, the i-th component of the error varies only slightly in the

2Note that if A = A* e.g. the block SOR always also has the smoothing property with respect to the I]| 4 and the
[I|-]| 4 norm, since in this case, A is also symmetric positive definite.
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direction of the j-th component if —A;; is large in some sense, compared to the other entries in the
i-th row. In general this would be the case if

—yTAl-jy > 0yl Ay, VYyeRF VE=1,....m, k#i.

Again, 6 € (0,1) is some threshold parameter. Because of Lemma L2 this is equivalent to

9.2.3 General block strong couplings

In order to build up a coarsening strategy as in the scalar case, we need a practical definition of strong
couplings between these small blocks.

For a natural matrix norm ||-||x we have P(Ai_lez'k) < HAZ_JlAzka < HAZ_lekHAlka So it would
be sufficient to compare the norm of Ai_j1 with the other matrix norms.

Definition 9.2.9 (Block inverse norm strong coupling). Two components i and j are strongly coupled
in the block inverse morm sense, if

1
max O Aillr < ———-
k:,%;;m HAilek
On the other hand, this criterion would result in the need of computing the inverse of each and every
block matrix entry in the sparse block matrix, which is not only time consuming but also not always
possible in the general case where we can have these entries to be nearly singular (at least sometimes
very ill-conditioned). Thus, a faster, but less accurate method, would be to restrict ourselves to the
norm of A;; instead of Al-_jl.

Definition 9.2.10 (Block strong coupling). Two components i and j are strongly coupled in the block
wise sense, if

Jmax O Aig i < A k-
ki
Another possibility is to restrict the coupling to the diagonal entries of A;;, trusting that the
diagonal is a good approximation of the spectrum.

Definition 9.2.11 (Diagonal block strong coupling). For 1 < i,j < n, let D;; := diag(A;;) be the
diagonal of A;j. Then two components ¢ and j are strongly coupled in the diagonal block sense, if

| uax O Dixllx < 1| Dij |-

k#i

Considering only the diagonal elements has the advantage, that it reduces the computational effort.
However it is mainly reasonable, if the coupling between the different equations/physical quantities is
not too large.

In search of definitions that are easier to apply, one could also just inspect the single entries in
each small block matrix and compare them one by one, taking the according maxima. This however
is not further investigated in this context.

With these definitions the strong neighbourhood S; can be defined exactly as in Definition
and the splitting process (algorithm BI) can be applied without a change.
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9.2.4 Block strong couplings for stabilized saddle point problems

Since stiffness matrices arising from unstabilized saddle point problems are indefinite, they are un-
suitable for a direct application of this AMG method. Instead we require a stabilization (Section [3]),
yielding a positive definite matrix. A direct consequence hereof is that all entries Aqq,..., Amnm are
positive definite.

Lemma 9.2.12. Let A € R™>*™k be g positive definite block matriz with a structure like in Equation
(@3). Then all its entries Ay, 1 < i < m on the block-diagonal D are in turn positive definite
k X k-matrices.

Proof. If A is positive definite, it is
vTAv>0 YV veR™ v£0.

We conceive the vectors v € R™ as block vectors that have m entries vy, ..., v, with v; € R,
1<j<m. Letnowi € {1,...,m}, and 2 € R¥ be an arbitrary vector with 2 # 0. Then we define
the block vector v(?) (z), which has all being entries zero, except for the i-th component:

) O f . .
’U(l)(x) = (U]);nzl c Rmk’ with v; = or j 7é ) .

x for j=1
Then especially for this vector, the following inequality holds:
0 < v®(2)T A0 (2) = 2T Az,
Since & was chosen arbitrarily from R*, A;; is positive definite. O

However, the straightforward application of Definition BEZT0l or B2ZTTl didn’t lead to satisfying
results in our numerical tests. First of all, those definitions may lead to an unphysical coupling
between the velocity and the pressure where there is none. Second, we have to ensure that on each
level [ the according matrix A; € RF¥™ >k ig invertable, which is true e.g., if each level fulfills the
LBB-condition. In [Wab03|] e.g. a property, which is a consequence of the LBB-condition, is shown
for the variable based approach, however at the expense of a violation of the Galerkin equation (@A),
since the pressure block of a new level A;; is scaled after the computation with the Galerkin product.

Looking back at Section B2, we see that the entries A;; have the form

Avv AYP
A= 79 T ) withAY € R¥9, A" € R™¥, APV € R, AP € R. (9.23)
J APV APP o “ " “

1) 1)

We will call Afjv the wvelocity block, A;}]p and AI;;) mixed block, AZP the pressure part.

Albeit an LBB condition couldn’t be shown for each level, this isn’t necessary either. It is sufficient
if the inital level is LBB-stable and that the smoothing and the approximation property hold. At least,
due to the Lemmas and B.Z72, we are able to state, that all the level’s matrices and their block
diagonal entries are positive definite again. However, we must pay attention, that the matrices don’t
degenerate to nearly positive semi-definiteness. We observed this case in numerical experiments where
the pressure block nearly vanished. Looking back at how the SUPG/PSPG or GLS stabilization was
defined in Section [[Z30] we observe that the pressure part is of order O(h?), so if the AMG levels are
the approximation of a geometrical setting, this entry should instead increase as the overall dimension
m; decreases.

Another desirable property of an AMG method is the coarsening along the streamlines for con-
vection dominated problems as we have learned in the scalar case (see e.g. Section BZH0)). Thus we
suggest the following definitions of the strong coupling, that only depend on the velocity blocks.
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Definition 9.2.13 (Velocity block strong coupling). Two components i and j are strongly coupled in
the velocity block sense, if
max O A [[k-1 < | 477 lk-1-
k=1,...m
ki

And equivalent to Definition @Z2ZTTl, the diagonally restricted variant:

Definition 9.2.14 (Diagonal velocity block strong coupling). For 1 <i,j <n, let Dj} := diag(4}})
be the diagonal of A;’]p. Then two components i and j are strongly coupled in the diagonal velocity
block sense, if

(o BD - < DY -

20ty

ki

For practical implementations, we consider the row-sum norm |||, or the column-sum norm ||-||;
for ||-||z—1, because of the ease of their implementation. Both norms worked well in this context for
the Stokes and Oseen equation.

9.2.5 General block interpolation

The interpolation that was defined in the scalar case in Section B2 can now be adapted to the
point-wise block AMG. This leads to the block direct interpolation.

If the splitting algorithm was applied successfully, we have two disjoint sets C; and F; and the
dimension on the next level is km;y1 with myy = #[C’l]. The prolongation matrix for the point
based approach

Pande — Pnode — (Pz‘j)Z;'li?lH c Ckmz+1><kmz (9‘24)

from level [ + 1 to level [ is defined as

Wi if i€F and ¢ (k)€ P
Pj:=S1, if ieC and ¢ '(k)=i (9.25)

0 else

with I, being the k-dimensional unity matrix, the according interpolation weights W;; € CF** and
the interpolation variables P; C Cj, from which the variables at the i-th point are interpolated. The
set P; is chosen as P, = C; N S;.

For algebraically smooth error e, remembering [II3)) and (@I, the residual r = Ae is relatively
small compared to e, namely we have the relation ||r|| -1 < el'r < |le||p. Thus, especially for a point
i € F, we can assume the i-th component of the residual vector to be nearly zero:

r; = Aye; + Z Ajpen = 0. (9.26)
neN;

Furthermore, if enough strong neighbours are included in P;, we can approximate:

(Y 45) Y Aues = (EA; A) ;A (9.27)

JEP; JEP;

Inserting (I27)) into (I26) now gives a method for determining the interpolation weights Wj;, that
will be referred to as direct interpolation in accordance with [Oel01] and [Sti199).

Definition 9.2.15 (Block direct interpolation). The interpolation weights of the block direct inter-

polation are defined as
1

Wiy = =A7 (D A ) (D Ain) Ay (9.28)

neN; nep;
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In [Oel01]], it was shown, that the above interpolation satifies an approximation property similar
to (B39) if A is a symmetric positive definite block M-matrix, in which the block matrices in each row
are pairwise commutating.

The according version for the diagonal block strong coupling consists of considering only the
diagonals.

Definition 9.2.16 (Diagonal block direct interpolation). For 1 <i,j <n, let D;; := diag(A;;) be the
diagonal of A;j. The interpolation weights of the diagonal block direct interpolation are defined as

Wij = —D;! ( 3 Dm) (Z Dm)flplj (9.29)

neN; neP;

It should be mentioned that the diagonal block interpolation corresponds to the prolongation (&.1I)
that was proposed for the variable based AMG approach. It is mathematically the same as when we
first apply the scalar direct interpolation to each of the diagonal blocks in ([B2)), and then transform
it with the permutation matrices II from Equation (84l in Section More precisely, if II; and I1;14
are the according permutation matrices on the consecutive levels [ and [ + 1, the following relation
holds:

d T T T T T
AP = Mg AP T = gy (B77) 7 1L T AP I T PP T, (9-30)
:(Plnode)T :Alnode :P}:ode

when we use the notation Ay := F, A#°% := F™ for the matrices from (&4).

9.2.6 Block interpolation for stabilized saddle point problems

Because of the issues mentioned in Section we also need to adapt the interpolation to the saddle
point case. If we define the strong connection by only considering the velocity part, we need to
decouple the pressure by choosing an appropriate shape of the interpolation weight.

For an interpolation weight W;; € RF*k with k = d 4+ 1 we suggest the following form:

Wi = Wi 0 , with W e R, (9.31)
0 Cp

and where ¢, € R is some constant > 0 that just uniformly transports the pressure from level to level,
without a mixture with velocity components. Based on this special shape for saddle point problems,
we adapt the two basic interpolations from the last Section.

Definition 9.2.17 (Velocity block direct interpolation). The interpolation weights of the velocity
block direct interpolation are computed as

Wi = -4 (2 an) (X an) Ay (9.32)

neN; nep;

The according diagonal block version of the direct interpolation even decouples the velocity com-
ponents.

Definition 9.2.18 (Diagonal velocity block direct interpolation). For 1 < 4,5 < n, let D;; =
diag(A;j) be the diagonal of A;j. The interpolation weights of the diagonal block direct interpola-
tion are computed as

Wi =) (X o) (30 o) oy (9.3

neN; nep;
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Note, that for Oseen problems, at the inner points, the off-diagonal entries of Afjv are zero anyway,
thus the above diagonal velocity block version of the interpolation should be sufficient.

For diffusion dominated problems, we observed the entries in W' to differ enourmously, especially
from the 2nd and 3rd level on. For fine mesh widths h < 1/128 this deteriorates the performance of
the solver. Therefore, in this cases, we suggest an equilibration of the diagonal entries. More precisely,
let deliver a weight

w1
Wq
and let
Wnin = _rrllind|wl-|, Wmax 1= Max |w;|. (9.35)
i=1,..., =1,...,
Then we adaptively replace Wi’ with
w1 d )
P — R 3 (9.36)

|w;| else

Although this averaging is only considered as a workaround, however, choosing ¢ in the order of the
viscosity parameter v yields very proper results, as we will see in the next chapter.



Chapter 10

Numerical Results

10.1 The AMG method

In this chapter, we investigate the convergence behaviour of the point-wise AMG for saddle point
systems, which was introduced in the last chapter. The solver is again implemented using the MiLTON
matrix library, whereas the PN'S finite element program system was used to generate the linear
systems with the point based ordering approach.

For the practical implementation, we have used only the diagonal velocity block strong coupling
from Definition and the according interpolation from Definition The preprocess follows
the Definition using the standard splitting algorithm Bl Again, as in the scalar case, the effect
of varying the coarsening parameter # will be investigated.

This coarsening process is now used to generate four coarse level matrices, giving a total of five
levels, which in most cases yields a matrix on the coarsest level, that is small enough to be treated
with a direct solver. At this place, we use the SuperLU (ﬂmm decomposition method again,
as for the scalar problems. Note that this involves time and memory consuming format conversions
(from block and row-wise to single value and column-wise), which increases the setup-time.

The smoother for all our computations will be the block SSOR method (cf. Section B2ZTl), where
we however increase the number of smoothing steps compared to the scalar case. We will apply
between one and five pre- and post-smoothing steps, depending on the problem.

For the first problem, we work with default values for the relaxation weight w, which has the form
&). It turned out, that wy,e = 1 and w, = 0.2 deliver sufficient convergence rates for many problems.
However, this was not the case for the second Oseen problem, and since no theoretical work is available
that investigates optimal relaxation parameters for these problems, it is considered under variation of
the velocity and pressure relaxation, wye and wp.

We choose the vector )
=—(1,..., )T eRr" 10.1

as an initial solution to the problem on the finest level, where n is the dimension of the first level. The
iteration consists of standard V-cycles (W-cycles didn’t improve the convergence, on the contrary),
until the start residual ro := Awzg — b is reduced by six orders of magnitude, ||rg||2/|70ll2 < 107%, or if
the count of 50 V-cycles is reached.

Finally, AMG for selected problems (with small A and v) is compared with Krylov subspace
methods from the BLANC library, in order to compare the h-dependency of the methods. Note, that
the AMG solver is always used as a stand-alone solver, without the acceleration by a Krylov method.

10.2 A Stokes problem

As a first and simple type of saddle-point problems, we apply the point block AMG solver to a Stokes
problem. More precisely, we consider

151
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Find u(z) : R? — R?, and p(z) : R? — R such that
~Au+Vp=f in QecR? (10.2)
V-u=0 in QeR? (10.3)

with © = (0,1) x (0,1) again being the unit square. The right hand side is set to f := (0,0)7, and the
boundary 0f2 is set to have the following Dirichlet conditions

u(z,y) = (ul(:c,y)> = (—y) , for (z,y)T € oQ.
us(z,y) x

The equation was discretized with the FEM code PN'S (Parallel Navier Stokes, [AMOG99]) using
Py elements for the velocity as well as for the pressure and SUPG/PSPG with grad-div stabilization
(see Section [L3T]). The boundary conditions are imposed strongly.

Within this software, the matrix entries that belong to one mesh point are grouped together. This
means that if we have a two-dimensional problem like above, the entries of the stiffness matrix are in
turn (dense) 3 x 3 matrices, because we have two components for the velocity and one for the pressure
per grid point.

Table M1 shows the sizes of the generated matrices. Note that overall nonzeros counts all scalar
entries (double values in C/C++) in the whole matrix. Since the 3 x 3 matrix blocks are stored in a
dense format, we have some memory overhead in storing zero entries, which is however unavoidable
in this approach.

h 1/16 | 1/32 1/64 1/128 1/256 1/512

mesh points 289 1089 4225 16641 66049 263169

matrix dimension | 867 3267 | 12675 49923 198147 789507
overall nonzeros | 17001 | 66249 | 261513 | 1039113 | 4142601 | 16542729

Table 10.1: mesh widths and matrix dimensions for the structured grids

For the AMG setup procedure, we chose the coarsening parameter § = 0.5, which led to reasonable
setup times for all considered mesh sizes. In Table [[L2] the setup times are listed together with the
average number of nonzero entries per row

l
1 o= N2

(10.4)

Tavg *= lmax + 1 — Ny ‘

=0
In contrast to () this value counts the number of nonzero R3**3 matrices as entries. We can see that
the AMG preprocess increases the relation of nonzero entries to the dimension of the coarse levels: the
initial ratio of a FEM matrix originating from structured triangulation is nnzy/ng ~ 7, however the
average number for all levels is nearly twice as high. This is due to the diffusive nature of the Stokes
equation: the part A;’]p from ([IZ3) is essentially the same as for a Poisson equation plus stabilization
terms.

h 1/16 | 1/32 | 1/64 | 1/128 | 1/256 | 1/512

AMG setup time [s] 0.02 | 0.08 | 0.28 | 1.09 | 4.71 | 19.8
Tavg 13.9 | 13.7 | 13.8 | 13.8 13.7 13.8
SuperLU setup time [s] | 0.01 | 0.01 | 0.02 | 0.11 | 0.95 | 4.93

Table 10.2: AMG setup times and average row entries
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The consequence is, that all off-diagonal entries are of nearly equal size, giving large sets S; and SZT
(and thus PZ-T ). Therefore, the according prolongation operators have many nonzero entries for i € F
resulting in a denser coarse level matrix. We see, that the AMG setup times increase (as the problem
size) by a factor of nearly 4. The SuperLU sparse LU decompostion, though, has an increasing portion
of the overall setup time, because we have restricted the setup process to the generation of constantly
four levels independent of h. For a more efficient method, one would adaptively choose l,.x such that
the coarsest matrix is so small, that its exact inversion is not too expensive. However here we must
find a compromise between a small (and thus easy to invert) coarse level matrix, and the quality of
the coarse level correction, that is of course the better, the bigger the coarse level matrix is.

h 1/16 | 1/32 | 1/64 | 1/128 | 1/256 | 1/512

AMG solver time [s] 0.09 | 0.3 | 1.06 | 3.96 16.3 65.3
BiCGStab solver time [s] | 0.02 | 0.07 | 0.52 | 3.23 | 19.11 | 255.69
GMRES solver time [s] | 0.03 | 0.16 | 1.12 | 5.82 | 64.57 | >500

Table 10.3: Solver times for the Stokes equation

Table now shows the overall solution times for different solvers. For the AMG solver, we used
one SSOR pre- and postsmoothing step with the standard setting of w,e; := 1.0 for the velocity and an
underrelaxation of w), := 0.2 for the pressure, which led to satisfying convergence results. Both Krylov
solvers are preconditioned with SSOR, however only extreme over-relaxation of w,e := 1.95 for the
velocity and w) := 0.05 for the pressure yielded convergence for all mesh sizes h. For h = 1/512, the
choice of wy,e 1= 1.975 and w), := 0.025 reduces the BiCGStab time to 166 seconds, which is however
still twice and a half as long as the AMG solver’s time.

The block ILU(0) preconditioner couldn’t improve the convergence of the BiCGStab nor the GM-
RES solver, on the contrary, for h = 1/256 and h = 1/512 one could observe a stagnation of the
residual reduction.

For small mesh sizes, the AMG method cannot compete with Krylov methods (but then exact
sparse LU decomposition methods, such as SuperLU are even faster!). However, with decreasing h,
AMG is ahead of these methods, and it is expected that this discrepancy is even more distinct for
h < 1/512.

The iteration times of the AMG solver suggest that we have a nearly optimal method, with
complexity in the order of O(N), where N ~ 1/h%. This is what one usually expects from a multigrid
method: A convergence rate, that is independent of the mesh size. This behaviour also was observed
for other right hand sides f and other boundary conditions.

10.3 Oseen problems

In this section we will take a closer look at two Oseen problems. These problems, although rather
academic, still give an impression of the AMG solvers’ capabilities.

10.3.1 Channel flow

We consider an idealized flow through a channel (here the unit square) where we have walls at y = 0
and y = 1 and a convection field, that is running parallel to these walls. This is modelled with the
following equations:

Find a velocity u(z,y) : R? — R?, and pressure p(z,y) : R? — R such that

—vAu+ (b-V)u+cu+Vp=f in Q€ R? (10.5)
V-u=g in Qe€R? (10.6)
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with ©Q := (0,1) x (0,1). The reaction term is assumed to be a constant ¢ € R — in our numerical
experiments we will consider the cases ¢ = 0 and ¢ = 1. The velocity field b ist set to

Y —(-y)
b(z,y) = (bl(w,y)> :: (1 —e ﬁo—e Ve ) 7 (10.7)

which gives a flow parallel to the walls, with the largest amount of velocity in the middle between
them. For decreasing viscosity, v < 1, the velocity is nearly zero at the walls. We will determine the
right hand side f and the boundary by inserting the velocity u := b and the pressure

—(1-vy)

p@,y) = im(e Ve )

into the equation ([ILH). Inserting b into ([IH) gives g = 0, an incompressible flow. For (z,y)” € 0Q
the following Dirichlet boundary conditions are applied:

—eVv for y=0vy=1,
ul(x,y) = oy —(-y) ’
l—e Vv —e W for x=0vz=1

us(z,y) :=0.

Furthermore we will vary the viscosity parameter v as we did for the scalar convection-diffusion
equations:

ve{l,1072,107%,107°}.

Concerning the discretization, the same as was said for the Stokes equation in the last Section
also applies to the Oseen problem. In the Tables [Tl — M4 the first component of the exact solution
u = (uy,us)” is plotted (since the second component is 0, it is not shown).

Figure 10.1: Exact solution for v =1 Figure 10.2: Exact solution for v = 1072
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Figure 10.3: Exact solution for v = 10~* Figure 10.4: Exact solution for v = 1076

The effect of velocity block strong coupling on the coarsening process

First we take a closer look on the AMG setup process, and how the coarsening parameter 6 influences
the splitting. Since for the Oseen problems, we discovered, that the convergence of the method for
convection dominated problems can only be ensured, if 6 is close to one, we restricted the range of
values © depending on v.

In Tables MIZHITOTT we see the setup times, as well as the average row numbers rq,, for the
different problems. Note that (G3) now refers to the number of block matrices € R3*3.

The diagrams in Figures to [Tl show the results of the coarsening preprocess: the lower
curves represent the dimensions, the upper curves the nonzero entries of each level. The legend in
Figure [0 — [ indicates which color is used to distinguish the curves for different 6.

fe— he— ———
theta=0.2 theta=0.3 theta=0.4 theta=0.5 theta=0.6 theta=0.7 theta=0.8

Figure 10.5: Legend for v =1

fe— h— ———
theta=0.3 theta=0.4 theta=0.5 theta=0.6 theta=0.7 theta=0.8 theta=0.9

Figure 10.6: Legend for v = 1072
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m— be—
theta=0.6 theta=0.7

theta=0.95 theta=0.975  theta=0.9875

Figure 10.7: Legend for v = 10~% and 1076

We observe that the diffusion dominated case (Tables [0, [0, LY, and ) profits from small
to moderate values for theta, which resembles the scalar case very much (cf. Section B2). Since
only the convection-diffusion part (cf. Section [LZTI) is considered in the coarsening, the coarse level
hierarchy is similar. In Figure ([TLY) we see the structured criss cross mesh, that we have used in
PNS. Figure shows the coarsening that has been generated for v =1, c=0at h = 3% using the

coarsening parameter 6 = 0.2.

Figure 10.8: Criss-cross mesh, h =
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Figure 10.9: Coarsening structure, v = 1, § =
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00000

F-variable on level 0
F-variable on level 1
F-variable on level 2
F-variable on level 3

C-variable on level 3

Figure 10.10: Legend for the level coloring

The legend in Figure specifies how to interprete the pictures, that show the coarse level
hierarchy. The darker a point is, the later it is coarsened away by the C/F splitting procedure.
Figure exhibits a coarsening in all space directions, exactly as we observed in the scalar case (cf.
Figure Bl in Section B20) for diffusion dominated problems. Because the nature of diffusion is the
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information transport in all directions, this is the desired coarsening strategy, since no direction can
be preferred over another.

Note that choosing a coarsening parameter 0 bigger than 0.2 doesn’t give a picture, that is much
different from Figure Only for [ > 3 the coarse levels begin to differ significantly (see Figure
[OT3), yielding smaller sets Fj, which is due to similar effects as described in Section Since the
average number of neighbours for v = 1 lies between 10 and 14 (which is up to twice the number of
neighbours in the inital matrix on level [ = 0) we have also bigger sets S; and S! for decreasing 6.
This means, that on subsequent levels, many neighbours (points) are coarsened away if 6 is not too
large.

Thus, for dominating diffusion, the reduction of points is rather strong, it is between 1/2 and 1/4
the size of the previous level, which more resembles the uniform coarsening known from geometric
multigrid.
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For the convection dominated case (Tables [, M0 MOT0, and [LTT) the coarsening parameter
plays a more important role. In the Figures [LT] and we see the difference in the coarsening
structure for v = 107%, ¢ = 0, once with # = 0.6 on the left and once with # = 0.95 on the right. The
vector field b in (7)) induces a convection only in z-direction and the greater value for 6 yields a
coarsening nearly only in the direction of this streamlines, whereas for smaller 6, the algorithm cannot
identify such a general coarsening direction.

The larger 6 doesn’t only reduce the setup time (20.9 sec. for # = 0.95 versus 88.6 sec. for § = 0.6
at the finest mesh width, h = 1/512), it leads to a restriction to those components, which can be
smoothed better on the next level: the coarse level hierachy generated by 6 = 0.95 needs another
47 seconds to reduce the residual by 6 orders of magnitude, while the method with the coarse levels
constructed with 0 = 0.6 didn’t converge after 400 seconds.

Again, as we have seen in the scalar convection-diffusion examples for v = 1076 and v = 1074,
the reduction rates from level to level are about 1/2. Therefore, we can speak of a semi-coarsening
property also for this type of AMG variant.
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h=1/16 h=1/32 h=1/64 h=1/128 | h=1/256 h=1/512
0 Tapg TIME | Tqyg time | 7gyg  time | 74y time | rgyy  time | 74  time
0.2 10.9 0.02 | 11.5 0.07 | 11.6 0.2 11.9 0.9 124 3.8 12.4 15.4
0.3 11.4 0.03 | 11.5 0.07 | 12.0 0.2 12.2 0.9 12.7 3.8 13.1 15.8
0.4 12.8 0.02 | 13.1 0.08 | 13.2 0.3 134 1.0 13.2 3.9 13.0 15.8
0.5 13.3 0.02 | 13.9 0.08 | 14.2 0.3 14.0 1.1 13.7 4.6 13.8 20.0
0.6 13.3 0.02 | 13.8 0.11 | 14.0 0.3 139 1.1 13.6 4.6 13.3 20.0
0.7 11.9 0.02 | 12.5 0.08 | 13.2 0.3 134 1.1 13.6 4.4 13.8 21.4
0.8 11.8 0.02 | 12.6 0.08 | 13.5 0.3 14.2 1.1 14.8 4.8 15.2 23.7

Table 10.4: AMG setup times [s] for the Oseen channel flow, v =1, ¢ =0

h=1/16 h=1/32 h =1/64 h=1/128 | h=1/256 h =1/512
0 Tavg tiMe | Tqyg time | rgyy  time | 74y time | rgyg  time | 74,9  time
0.3 9.8 0.01 | 11.9 0.06 | 12.3 0.2 124 0.9 12.7 3.9 12.8 15.7
0.4 10.3 0.02 | 11.6 0.07 | 13.1 0.2 129 1.0 13.1 4.0 13.5 16.9
0.5 9.7 0.01 | 11.1 0.07 | 12.5 0.2 129 1.0 13.4 4.2 13.5 17.2
0.6 9.0 0.01 | 11.4 0.08 | 12.2 0.3 134 1.1 13.3 44 13.2 17.7
0.7 7.8 0.01 | 10.0 0.05 | 124 0.2 12.8 1.1 13.2 4.3 14.7 219
0.8 6.9 0.01 7.5 0.06 | 11.9 0.2 13.6 1.1 13.3 4.4 13.6 19.6
0.9 6.0 0.01 6.7 0.05 8.0 0.2 11.5 1.0 13.5 5.0 13.3 24.3

Table 10.5: AMG

setup times [s] for the Oseen channel flow, v = 1072, ¢ = 0

h=1/16 h=1/32 h =1/64 h=1/128 | h=1/256 h =1/512
0 Tavg tiMe | Tqyg time | rgyy  time | 74y time | rgyg  time | 74,9  time
0.6 87 0.02 | 10.2 0.06 | 12.2 0.2 14.0 1.3 15.1 8.6 126 27.1
0.7 7.3 0.01 9.0 0.05 1] 10.6 0.2 121 1.1 13.0 9.2 13.4 109.8
0.8 7.0 0.01 8.1 0.06 9.7 0.2 10.6 0.9 13.0 9.0 13.1  98.3
0.9 6.2 0.01 6.5 004 | 6.7 0.1 7.0 0.6 72 28 7.3 18.3
0.95 6.0 0.01 6.4 0.03 6.6 0.1 6.8 0.6 6.9 2.5 7.0 13.2
0.975 6.0 0.01 6.4 004 | 6.6 0.1 6.8 0.6 6.8 2.6 6.9 13.9
0.9875| 5.9 0.01 6.3 004 | 6.5 0.1 6.7 0.6 6.8 2.6 6.9 13.8

Table 10.6: AMG

setup times [s] for the Oseen channel flow, v = 1074, ¢ = 0

h=1/16 h=1/32 h =1/64 h=1/128 | h=1/256 h =1/512
0 Tavg tiMe | Tqyg time | rgyy  time | 749 time | rgyy  time | 74 time
0.6 87 0.01 | 10.2 0.06 | 124 0.3 14.0 1.3 15.1 8.7 15.8 88.6
0.7 7.3 0.02 8.8 0.05 | 10.5 0.2 12.0 1.2 13.0 9.8 13.8 99.6
0.8 7.0 0.01 8.0 0.04] 94 0.2 104 0.9 11.1 54 12.3  56.0
0.9 6.2 0.01 6.6 0.04 7.0 0.1 7.3 0.7 7.5 3.3 7.6 20.9
0.95 6.0 0.01 6.4 004 | 6.7 0.1 6.8 0.6 6.9 2.6 6.9 12.9
0.975 6.0 0.01 6.4 004 | 6.6 0.1 6.8 0.6 6.9 2.7 6.9 13.1
0.9875| 5.9 0.01 6.3 004 | 6.5 0.1 6.7 0.6 6.8 2.6 6.9 13.7

Table 10.7: AMG setup times [s] for the Oseen channel flow, v = 1075, ¢ = 0
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h=1/16 | h=1/32 | h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tavg UIME | Tqyg time | rgyg  time | 7449 time | rgyy  time | 74,9 time
0.2 109 0.02 | 11.5 0.07 | 11.6 0.2 11.9 0.9 12.4 3.8 124 154
0.3 11.3 0.02 | 11.5 0.06 | 12.0 0.2 12.2 0.9 12.7 3.8 13.1 15.8
0.4 12.8 0.02 | 13.1 0.08 | 13.2 0.3 134 1.0 13.2 4.0 13.0 15.7
0.5 13.3 0.03 | 13.9 0.09 | 14.2 0.3 14.0 1.1 13.7 4.6 13.8  20.0
0.6 13.3 0.02 | 13.8 0.08 | 14.0 0.3 139 1.1 13.6 4.5 13.3 19.8
0.7 11.9 0.02 | 126 0.08 | 13.1 0.3 134 1.1 13.6 4.4 13.8 214
0.8 11.8 0.02 | 126 0.09 | 13.5 0.3 142 1.1 14.8 4.8 15.2  23.7
Table 10.8: AMG setup times [s] for the Oseen channel flow, v =1, c =1
h=1/16 | h=1/32 | h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tavg tiMe | Tqyg time | rgyy  time | 749 time | rgyy  time | 74 time
0.3 9.7 002|119 0.08 | 124 0.2 12.4 09 12.7 3.9 12.8 15.8
0.4 9.9 002|115 0.06 | 13.1 0.3 129 1.0 13.1 4.1 13,5 17.0
0.5 104 0.02 | 11.3 0.07 | 124 0.2 13.0 1.0 13.2 4.1 13,5 17.3
0.6 9.2 0.01 | 11.4 0.07 | 12.2 0.3 134 1.1 13.3 4.4 13.2 174
0.7 8.0 0.01 ] 104 0.06| 124 0.2 12.8 1.1 13.2 4.3 14.7  21.6
0.8 6.9 0.01 7.5 0.05 | 12.1 0.2 13.6 1.1 13.3 44 13.7 19.1
0.9 6.0 001] 67 0.04] 80 02 |11.5 1.0 | 135 5.0 | 135 25.6
Table 10.9: AMG setup times [s] for the Oseen channel flow, v = 1072, ¢ = 1
h=1/16 | h=1/32 | h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tavg tiMe | Tqyg time | rgyg  time | 7449 time | rgyg  time | 74,9  time
0.6 8.4 0.01 | 10.1 0.06 | 12.1 0.2 14.1 1.3 15.1 9.0 13.0 29.6
0.7 7.1 0.02 8.8 0.06 | 10.6 0.2 12.1 1.3 13.0 9.3 13.5 110.1
0.8 70 001 81 0.05| 96 02 |10.6 09 | 128 88 | 131 99.0
0.9 6.2 001] 66 0.05| 69 0.2 7.0 0.6 72 28 73 174
0.95 6.0 001] 64 0.04| 66 0.1 6.8 0.6 6.9 2.5 7.0 134
0.975 6.0 001] 64 0.04| 66 0.1 6.8 0.6 6.9 2.6 6.9 14.2
0.9875| 6.0 0.01 | 6.3 0.056| 6.6 0.2 6.7 0.6 6.8 2.7 6.9 14.0
Table 10.10: AMG setup times [s] for the Oseen channel flow, v = 1074, c =1
h=1/16 | h=1/32 | h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tavg tiMe | Tqyg time | rgyy  time | 749 time | rgyy  time | 74, time
0.6 8.4 0.02 102 0.06 | 12.4 0.3 14.0 1.3 15.2 8.5 15.8 88.1
0.7 7.1 0.01 8.6 0.06 | 104 0.2 11.8 1.3 12.7 10.2 | 13.8 1014
0.8 70 001 | 81 0.05| 93 02 |10.1 09 |109 51 | 123 57.6
0.9 6.2 001] 66 0.04| 69 0.1 73 0.7 7.5 3.2 7.6 220
0.95 6.0 001| 64 0.04| 66 0.2 6.8 0.6 6.9 26 6.9 13.2
0.975 6.0 002] 63 0.04| 66 0.1 6.8 0.6 6.9 2.6 6.9 13.0
0.9875| 59 0.01| 63 0.04| 6.6 0.2 6.8 0.6 6.9 2.7 6.9 139

Table 10.11: AMG setup times [s] for the Oseen channel flow, v = 1076, c =1
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Note for the Oseen type of problem, we yet don’t have a special method to treat the (Dirichlet)
boundary points. For the scalar problems, we could eliminate them from the matrix, however this is
impossible for the point based approach, since we have no boundary condition for the pressure. Because
the according convection diffusion part is the unity matrix on the diagonal and zero otherwise:

Ay =1 and AP =0, for i#j,

these points don’t have any neighbours according to the splitting algorithm, and consequently, they
stay C-points until the end. This is the reason for the boundary being darker than the inner region
in the above pictures. Exceptions can occur, because a boundary point 7 can be included in the set
SJT of an inner point j.

Convergence speed of the AMG method

In the following diagrams, we can see the overall solution times of the AMG solver, plotted for the
mesh widths
h e {1/64,1/128,1/256,1/512},

(from the bottom to the top) and the different viscosities

ve{1,107%,107*,1075},
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(from left to right) for each of the two reaction coefficients ¢ = 0 (Tables and [ILT3) and ¢ =1
(Tables M4 and [IIH). In each figure, the setup time is plotted in blue, while the actual iteration
time (consisting of V-cycles) is plotted in green for several values of 6.

For all these numerical computations, we have used the SSOR smoother with 2 pre- and 2 post
smoothing steps. The relaxtion was used with the fixed values wye; = 1 and w, = 0.2 which led to a
comparatively robust convergence, independently of the mesh size and the viscosity. We didn’t inves-
tigate whether this is the optimum, but single numerical tests seem to promise, that the performance
can be slightly improved, however not by an order of magnitude.

First of all, we can see that the diffusion dominated case v = 1 in the left half of Tables and
T4 causes the least problems regarding the dependency of the coarsening parameter, it converges
over a wide range of values for §. However, in contrast to the Stokes problem, the solution times from
h to the finer h/2 increase more than the factor 4.

For the moderate convection dominant case, v = 1072, we observe a degradation of the solution
times, being considerably higher than for v = 1. Furthermore, the #-dependency doesn’t give a clear
picture. The convergence behaviour is improved however, by a non-vanishing reaction term c, as we
see in the right half of Table ML T4l This is a persistent effect, since a positive reaction term increases
the diagonal dominance of the matrix, and thus improves the convergence behaviour of the SSOR
smoother.

Looking finally at the convection-dominated cases for v = 10™* and v = 1075, in the figures in
Table and [[LTHl we can see, that the choice of 8 does play a more important role. Not only the
setup times, but also the iteration times are reduced by choosing 6 close to 1. Also, we can see, that
the scaling factor between two consecutive mesh-widths h and h/2 is nearly optimal (close to 4).

Finally, we would like to examplarily compare our AMG method with some Krylov subspace
methods for this example. In the Figures [LT7 to [L20} we see some convergence diagrams for the
convection dominated case at v = 1075 on the two finest meshs considered: h = 1/256 and h = 1/512.
We have used the BiCGStab and the GMRES(m) solvers out of the BLANC library, in comparison
with our AMG method.

For the GMRES solver, a restart length of m = 40 was used. Both methods have been precondi-
tioned with the block SSOR, using the relaxation parameters wye = wp = 1, which turned out to be
a good choice.

For the AMG method, we used wye; = 1.1 and wj, = 0.3 for the block SSOR smoother, two smothing
steps, and a coarsening parameter of § = 0.975 for h = 1/256, and 6 = 0.9875 for h = 1/512. For the
finer mesh width, 6 levels were generated, whereas for h = 1/256, only 4 levels were generated.

All start vectors for the initial solution were initialized according to (L), ensuring the same
starting conditions for all methods. This time, the iteration was stopped, if the residual was reduced
by 10 orders of magnitude.

We see that the AMG method converges in all cases better than the Krylov methods, especially
for the fine grids. AMG exhibits a much better scaling between the two different h: approximately
from 35 sec. to 170 sec. for ¢ = 0 and from 30 sec. to 150 sec. for ¢ = 1. This factor of about 5
is definitely more than an optimal method would have, however, the Krylov methods are even worse,
with a factor of about 9 and higher.
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For v = 107 one can even observe a scaling factor that is close to 4. However, it should be
mentioned, that another choice of parameters may even improve the performance of the AMG as well
as the Krylov methods, although, not by a large amount.
Concludingly, we should remark, that this example heavily profits from the special structure of
the problem, that only has streamlines in one direction, which can be detected easily. The AMG
coarsening then leads to a coarse level hierarchy, that is well-tailored for the smoother.
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10.3.2 Polynomial drift
Here, we start with looking at the problem (cf. Definition [[Z1]):
Find u(z,y) : R? — R?, and p(z,y) : R? — R such that

—Au+(b-V)u+cu+Vp=Ff in Q€ R? (10.8)
V-u=0 in QeR? (10.9)

with the domain 2 again being the unit square. The velocity field b ist set to

b= <b1(x’y)> = < + > . (10.10)
ba(z,y) —2xy

Again, we choose ¢ to be constant and study the cases ¢ = 0 and ¢ = 1. The right hand side f is

_ (f=y)) _ [(2+ cx? + 223
fo(z,y) 222y — 2cxy

We impose the following Dirichlet boundary conditions for (z,y)? € 9€:

chosen as

0 for =0 0 for =0

2?2 for y=0 0 for y=0
u(z,y) = us(z,y) =

1 for z=1 —y for xz=1

22 for y=1 —x for y=1

The vector field b depicts a kind of "drift” through the unit square, its streamlines are shown in

Figure [0.2T1
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The effect of velocity block strong coupling on the coarsening process

The C/F-splitting algorithm is of course always restricted to the underlying grid. It cannot detect
a coarsening direction, when there is no edge into that direction in the according graph imposed by
the matrix. Thus, for a vector field b from ([[II0), Figure MIZIl where the convection changes its
direction slightly from the left border to the right border, the coarse level hierarchy doesn’t give such
a clear picture as in the last example.
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Figure 10.22: Coarsening structure, v =1, 0 = Figure 10.23: Coarsening structure, v = 1079,
0.6 0 =0.95

This is especially true for the convection dominated problem in Figure [[L2Z3 However, one could
at least observe, that the coarse level structure changes its behaviour from the left to the right half
of the domain. In the left half, the coarsening is more along the y-direction, and this is shifted a bit
more to the z-direction in the right half.

Another difficulty of this flow is the fact, that the amount of convection changes over the domain,
even if v is small. For v = 1076 e.g., the local Reynolds number for elements close to (0,0)7 is nearly
zero, while at the top right corner, it is about 2 - 10° - h. This means, that the problem varies from
diffusion dominated to convection dominated over the whole domain, and thus a specific coarsening
direction cannot be detected in every part of the domain.

For the diffusion dominated flow however, there is the usual coarsening in all directions, as we see
in Figure 22 since in this case the convection doesn’t play an important role.

Nevertheless, this problem again corroborates the observation, that rather large coarsening pa-
rameters 6 (close to 1) are suited for convection dominated problems, while rather moderate values
(between 0.5 and 0.7) are required for the diffusion dominated case.

Again, the coarse level properties are also plotted in Figures to using the legend from
Figure [ for v = 1 and 102 and Figure [ for » = 10~4 and 1075,

e ——

theta=0.5 theta=0.6 theta=0.7 theta=0.8 theta=0.9 theta=0.95 theta=0.975

Figure 10.24: Legend for the 2. Oseen problem, v = 1 and 102
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h=1/16 h=1/32 h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tapg tiMe | Tqyg time | rgyy  time | 749 time | rgyy  time | 74, time
0.5 | 145 0.04 | 13.8 0.08 | 13.9 0.3 14.0 1.1 13.8 4.9 13.8 21.3
0.6 | 12.9 0.03 | 13.5 0.09 | 13.7 0.3 13.8 1.1 13.6 4.6 13.3  20.0
0.7 | 11.9 0.03 | 12.6 0.08 | 13.1 0.3 13.3 1.1 13.5 4.6 13.8 22.2
0.8 | 10.9 0.04 | 12.6 0.09 | 13.5 0.3 14.2 1.2 14.8 5.0 15.2  24.5
0.9 | 125 0.02 | 153 0.12 | 18.0 0.5 | 20.1 2.6 | 21.5 184 | 224 186.1
0.95 | 11.0 0.03 | 145 0.10 | 176 0.5 | 20.0 24 | 21.5 185 | 224 176.7
Table 10.16: AMG setup times [s] for the Oseen rotation flow, v =1, ¢ =0
h=1/16 h=1/32 h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tapg UIME | Tqyg time | rgyg  time | 749 time | rgyg  time | 74,9 time
0.5 | 12.3 0.03 | 13.3 0.08 | 13.2 0.3 13.6 1.1 129 44 | 12.7 19.5
0.6 | 12.0 0.02 | 15.0 0.09 | 13.9 0.3 132 1.1 13.1 4.3 13.2 174
0.7 | 11.4 0.02 | 14.0 0.08 | 16.6 0.4 | 135 1.1 13.2 4.3 13.1 17.7
0.8 | 10.3 0.01 | 12.3 0.07 | 15.1 0.3 14.3 1.2 135 44 | 135 19.5
0.9 7.7 0.01 9.8 0.06 | 11.4 0.3 14.6 1.4 13.9 5.3 14.0 22.2
095 | 6.7 0.02| 80 0.06 | 93 0.2 11.1 1.0 14.2 6.9 13.7  39.6
Table 10.17: AMG setup times [s] for the Oseen rotation flow, v = 1072, ¢ = 0
h=1/16 h=1/32 h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tavg tMe | Tqyg time | rgyy  time | 749 time | rqyy  time | 74,y time
0.7 9.9 0.01 | 11.3 0.07 | 13.2 0.3 15.5 1.8 18.3 15.8 | 20.7 183.7
0.8 8.5 0.01 | 10.1 0.06 | 11.5 0.3 135 14 | 158 11.8 | 17.1 107.7
0.9 83 0.03] 85 0.06 | 9.8 0.2 11.2 1.3 12.7 10.6 | 12.8 76.1
0.95 7.1 0.02 7.8 0.05| 86 0.2 9.8 1.1 10.5 6.9 10.8 47.6
0.975 6.3 0.01 71 004 | 78 0.2 8.5 0.9 9.0 44 9.4 30.8
0.9875 | 6.1 0.02| 6.6 0.04| 7.1 0.2 76 0.8 8.1 4.0 8.4 264
Table 10.18: AMG setup times [s] for the Oseen rotation flow, v = 1074, ¢ =0
h=1/16 h=1/32 h=1/64 | h=1/128 | h=1/256 | h=1/512
0 Tavg tiMe | Tqyg time | rgyg  time | 7449 time | rgqyg  time | 74,y time
0.7 9.9 0.02 | 11.4 0.06 | 13.2 0.3 14.3 1.6 15.1 123 | 159 121.8
0.8 8.8 0.02 | 10.1 0.07 | 11.3 0.3 12.2 1.3 12.6 9.0 13.1 88.7
0.9 85 0.02 | 9.1 0.07| 9.6 0.2 10.1 1.3 10.5 8.5 10.7 71.1
0.95 71 002 81 0.06| 85 0.2 8.9 1.0 9.2 6.1 9.4 43.1
0.975 6.7 0.02 73 004 | 78 0.2 8.0 0.9 8.3 4.5 8.5 28.8
0.9875 | 6.1 0.02 | 6.8 0.04| 7.3 0.2 7.5 0.8 7.7 4.0 7.8 22.0

Table 10.19: AMG setup times [s] for the Oseen rotation flow, v = 1076, ¢ = 0
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h=1/16 h=1/32 h=1/64 h=1/128 | h=1/256 | h=1/512

0 Tapg tiMe | Tqyg time | rgyy  time | 749 time | rgyy  time | 74, time
0.5 | 145 0.03 | 13.8 0.09 | 13.9 0.3 14.0 1.1 13.8 4.9 13.8 21.3
0.6 | 13.1 0.02 | 13.5 0.09 | 13.7 0.3 13.8 1.1 13.6 4.6 13.3 19.8
0.7 | 12.0 0.03 | 12.6 0.08 | 13.1 0.3 134 1.1 13.6 4.7 13.8 22.0
0.8 | 10.5 0.03 | 12.6 0.08 | 13.5 0.3 14.2 1.2 14.8 5.0 15.2  24.5

0.9 | 125 0.03 | 15.3 0.11 | 18.0 0.5 20.1 2.6 21.5 183 | 224 185.0

0.95 | 11.0 0.03 | 145 0.10 | 17.6 0.5 20.0 24 21.5 182 | 224 176.5

Table 10.20: AMG setup times [s] for the Oseen rotation flow, v =1, c=1

h=1/16 h=1/32 h=1/64 h=1/128 | h=1/256 | h=1/512

0 Tapg tIME | Tgyg time | rgyg  time | 749 time | rgyg  time | 74 time
0.5 | 12.8 0.03 | 13.6 0.09 | 13.5 0.3 13.2 1.1 12.9 4.5 13.0 19.0
0.6 | 12.6 0.02 | 15.0 0.09 | 13.9 0.3 13.0 1.1 13.3 4.3 12.9 17.3
0.7 | 11.5 0.02 | 14.2 0.08 | 17.1 04 13.7 1.1 13.5 4.5 12.9 17.6
0.8 | 10.6 0.02 | 12.7 0.08 | 15.2 0.3 14.1 1.2 13.6 4.5 13.6 19.7
0.9 7.8 0.02 9.6 0.07 | 11.4 0.3 145 14 13.9 5.5 13.8 224
0.95 6.7 0.02 8.2 0.05 9.4 0.2 11.1 1.0 14.2 6.7 13.8 35.9

Table 10.21: AMG setup times [s] for the Oseen rotation flow, v = 1072, ¢ =1

h=1/16 h=1/32 h=1/64 h=1/128 | h=1/256 | h=1/512

0 Tavg tiMe | Tqyg time | rgyy  time | 7449 time | rgyy  time | 74, time

0.7 9.2 0.02 | 11.1 0.08 | 13.2 0.3 154 1.7 184 16.5 | 20.6 183.8
0.8 84 0.01 | 10.0 0.06 | 11.2 0.3 13.3 14 156 11.9 | 17.1 91.3
0.9 7.7 0.02 8.7 0.06 9.8 0.2 11.1 14 12.5 11.1 | 12.7 69.8
0.95 6.7 0.01 7.9 0.06 8.5 0.2 9.7 1.1 104 74 10.7 47.6
0.975 6.3 0.01 6.9 0.04 7.7 0.2 84 09 9.0 5.2 9.4 33.1
0.9875 | 6.1 0.01 6.7 0.04 7.1 0.2 7.6 0.7 8.1 3.9 8.4 23.2

Table 10.22: AMG setup times [s] for the Oseen rotation flow, v = 1074, ¢ =1

h=1/16 h=1/32 h=1/64 h=1/128 | h=1/256 | h=1/512

0 Tavg tiMeE | Tqyg time | rgyg  time | 7449 time | rgyy  time | 749 time

0.7 8.8 0.02 | 10.8 0.07 | 12.8 0.3 14.1 1.6 149 11.8 | 16.0 121.8
0.8 8.1 0.02 9.9 0.06 | 109 0.3 12.0 1.2 12.5 8.2 13.1 80.2
0.9 7.6 0.02 8.6 0.06 9.3 0.2 10.0 1.2 10.6 8.1 10.8 64.0
0.95 6.7 0.02 7.5 0.06 8.3 0.2 8.7 1.0 9.2 6.0 9.4 47.6
0.975 6.3 0.02 6.8 0.04 7.5 0.2 7.9 0.8 8.1 4.3 8.5 28.6
0.9875 6.2 0.01 6.6 0.05 7.0 0.2 7.4 0.8 7.6 3.7 7.8 23.1

Table 10.23: AMG setup times [s] for the Oseen rotation flow, v = 1076, ¢ =1
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The effect of relaxation

For this Oseen example, we finally would like to examine how the variation of the relaxation parameter
influences the convergence behaviour of the V-cycle iteration, as we did for the scalar case.

Thus, for problem ([ILF)), () we try out several values for w,e; and wy,. Since we didn’t to try
every combination, we restricted the pressure relaxation to the set

w, € {0.1,0.2,0.3}, (10.11)

since we observed, that in the majority of the cases, bigger values resulted in a fast divergence of the
method. These values were combined with

wyer € {0.1,0.2,...,1.8,1.9} (10.12)

for the velocity relaxation. Out of these combinations, those values w), that converged best with the
set (LIZ) are given in Table [I.28 and the according number of iterations are plotted in the figures
in Tables [[.24] to MOL27]
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h v=1|v=102%2|v=10*|v=106
1/16 | 0.3 0.3 0.3 0.3
1/32 | 0.2 0.3 0.3 0.3
1/64 | 0.1 0.3 0.3 0.3
1/128 | 0.1 0.3 0.3 0.3
1/256 | 0.1 0.2 0.2 0.3
1/512 | 0.1 0.2 0.2 0.2

Table 10.28: Optimal pressure relaxation

First of all, we can state again, that the diffusive problems, i.e. v = 1 in the left columns of
Table and doesn’t cause bigger problems concerning the choice of w,;. This is also true
independent of the reaction term. Furthermore, the coarsening parameter doesn’t have much influence
on the convergence speed (however, it is crucial for the setup, as we have seen in the last section).

The moderate convection dominated case v = 1072 in the right columns of Table and
benefits more from a distinct over-relaxation (1.2 < wye < 1.8). Also, this problem is more sensible
to changes of 6.

For the convection dominated cases in Tables and one can observe a stronger tendency
towards under-relaxation. However, for v = 107 and decreasing h, the smoothing deteriorates, and
the convergence rates heavily slow down.

Convergence speed of the AMG method

In the Figures to MI32], we have exemplarily plotted the convergence histories for a convection-
dominated problem at v = 10~%, for the two finest mesh widths h = 1/256 and h = 1/512, with and
without reaction term.
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Figure 10.29: Convergence of AMG and Krylov Figure 10.30: Convergence of GMRES vs. AMG

methods for v = 1074, ¢ =0, h = ﬁ forv=10"%¢=0, h= 5%
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Concerning the parameters of the AMG method, we have used 6 = 0.95 for h = 1/256, 6 = 0.975
for h = 1/513, ¢ = 1, and 6 = 0.9875 for h = 1/513, ¢ = 0. In all cases, we have used the SSOR
smoother with wye = 1.1, wye; = 0.2, and two pre- and two post-smoothing steps.

For h = 1/256, five levels were generated, for h = 1/513 we found, that seven generated levels
were an optimal compromise between setup-runtime and accuracy of the coarsest level. The Krylov
solvers were used with the same parameters as in the last Oseen example.

Compared with the first Oseen problem, we see, that the convergence rates of both AMG and
Krylov methods are deteriorated, which is basically due to the strongly varying local Reynolds number.
This complicates the choice of the coarse levels.

Though, we observed, that the AMG coarse level correction still contributes to the error reduction,
which is an indicator, that it is not the interpolation that fails. Obviously, in this context, the smoother
is the weakest component in the AMG framework.

What we can however state again, is the better h-scaling of the AMG method. While h is getting
smaller, the condition number of the matrix increases, which directly degrades the convergence of the
Krylov methods, but at the same time increases the gap to AMG.

10.4 Conclusion and Outlook

In the last two chapters, we have introduced and applied an algebraic multigrid method for discrete
Stokes and Oseen problems under a specific point-wise ordering of the variables. For several examples,
we could demonstrate the efficiency of the method. Especially, with decreasing h, we often observe an
almost mesh independent convergence, in contrast to Krylov solvers.

Only for extremely small values of v and strongly varying convection fields, we experienced a
degradation of the method, if not optimal coarsening and relaxation parameters are chosen. As
mentioned, this is to a large extent also a matter of smoothing, thus it seems to be necessary to
apply and investigate other smoothers. Since the SOR and SSOR methods are known to be sensible
to changes of the numbering of the unknowns, we suggest to use adapted methods, that changes
the ordering of relaxation. This can be done either by applying a downwind numbering before the
coarsening, or by first relaxing the C and then the F points (as it is suggested in [St1i99]). Also the
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point block versions of ILU and its several variants (cf. Section BZZTl) can be employed as smoothers.
Another possibility is to use a true Vanka smoother, that in contrast to the SOR, does an element-wise
relaxation, instead of a point-wise.

Another issue in the finite element context are higher order elements. Although the point-wise
AMG approach is not applicable to e.g. Taylor-Hood elements, it is — at least in principle — not
restricted to P;-P; elements, but could also be used for higher equal order elements.

Yet, for higher-order elements, other difficulties have to be overcome. Not only that the according
matrices have much more nonzero entries, they are also ill-conditioned for usual equidistant grids and
nodal bases. Recent research showed, that the type of basis functions, and the node locations play an
important role, when applying AMG to higher order discretizations ([HMMOO5]).

The application of the point-wise coupled AMG method to three-dimensional problems is straight-
forward. However, as for the scalar 3D problems in Section B2Z32, we have to deal with the increased
operator complexity, and therefore longer setup-times. Here, a stronger coarsening, that also considers
the indirect connections (agressive coarsening) may lead to more sparse coarse level operators.

Generally, it has to be said, that the acceleration of the AMG with a Krylov method surely can
improve the convergence compared to the stand-alone approach. Acceleration here simply means, that
AMG serves as a preconditioner for the Krylov method. Especially since the residual reduction of
AMG within the first few steps is immense, the combination of both methods seems to be promising.

Concerning the convergence theory, we admit, that a general convergence statement, especially
for unsymmetric problems, is out of reach. However, at least, it should be possible, to transfer a
proposition like Theorem to the vector-valued context of the point-wise approach. A smoothing
property of usual splitting methods, such as Gauss-Seidel and SSOR, however is still not verified for
unsymmetric matrices.

Finally we would like to conclude with a few words about parallelization. Of course the sparse
matrix-matrix multiplication required for the setup, and the matrix-vector multiplications for the
multigrid cycles, can be easily split up into several parts, that can be executed by as many threads
as there are CPU’s in the system. Parallel versions of the according functions exist in MiLTON,
utilizing the PartitionLayer and POSIX threads. Here, the crucial point however is indeed a parallel
smoother. Classical smoothers, from Gauss-Seidel to SSOR, and nearly all ILU methods, however are
highly recursive in nature. Jacobi methods can easily be parallelized, but have a lack of robustness.
Instead, multi-color SOR methods ([AO82]) or sparse approximate inverses (SPAI, [GHI97]) are more
likely to be used in a parallel environment.
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Appendix A

Simple data structures

A.1 TIterators

Constant value iterators

This iterator template is mainly devised for the constant value sequences (Section [AZ2)). The value
of the constant is only known at run time. It is a random access iterator since constant_tag inher-
its from std::random access_iterator_tag. Note that the default constructor can only be used, if

ValueType has a default constructor.

Constant value iterator

template <class ValueType, class DifferenceType>
class constant_value_iterator
{
public:
typedef ValueType value_type;
typedef DifferenceType difference_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef constant_tag iterator_category;
private:
value_type X;
difference_type j;
public:
constant_value_iterator(const DifferenceType j_=0) : j(j_)
{}

constant_value_iterator(const value_type& x_, const difference_type j_)

sox(x2), (30
{3
const value_type& operator*()
{
return x;
}
constant_value_iterator& operator++()
{
++3;

return *this;
}
};

181
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Here, only a few features of the class are displayed. The rest of the implementation is straight-
forward and can be viewed in the class text in the file ”Baselterators.hh”.

Fixed value iterators

The fixed value iterators are designed for sequences which store one value that is known at compile
time already (cf. Section [A22)). The fixed value must be given as a template parameter. However,
the type of ValueType is restricted to integer types, because floating-point types are not yet allowed
by the C++ Standard ([Six97]). This may be only possible in the future, which is proposed in ([\.I03]).

fixed value iterator

template <class ValueType, class DifferenceType, ValueType x>
class fixed_value_iterator
{
public:
typedef fixed_tag iterator_category;
private:
difference_type j;
public:
static const value_type value=x;
public:
fixed_value_iterator(const difference_type j_=0) : j(j_)
{}
fixed_value_iterator(const fixed_value_iterator& other) : j(other.j)
{}
const value_type operator*()
{
return Xx;
b
3

Function value iterators

The class template function_value_iterator implements the iterator belonging to the function value
sequence. It generates the value at position i using the according functor £.

Function value iterator

template <class Functor>
class function_value_iterator
{
public:
typedef typename Functor::result_type value_type;
typedef typename Functor::argument_type difference_type;
typedef value_type reference;
typedef value_type* pointer;
typedef functor_tag iterator_category;
private:
Functor f;
difference_type j;
public:
function_value_iterator(const difference_type j_=0) : j(j_)
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{3
function_value_iterator(const Functor& f_, const difference_type j_=0)
D fCED), J(50)
{3
const value_type operator*()
{
return f£(j);
}
+;
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A.2 Sequences

Constant value sequence

A sequence with run time constant value is implemented as follows (for the complete code we refer to

the library source code):

Constant value sequence

template <class ValueType, class SizeType>
class ConstantValueSequence
{
public:
typedef ValueType value_type;
typedef SizeType size_type;
typedef constant_value_iterator<ValueType,SizeType> iterator;
private:
size_type dataSize;
value_type X;
public:
ConstantValueSequence(const size_type n, const value_type& x_)
: dataSize(n), x(x_)
{}
size_type size() const
{
return dataSize;
b
iterator begin()
{
return iterator(x,0);
3
iterator end()
{
return iterator(x,dataSize);
3
3

This of course is a quite simple piece of code, however we needed this in order to provide e.g. an
according first row index sequence for the first targets layer (se the according item in Section BZ30l).

Since this type of container didn’t exist we had to create it.
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Fixed value sequence
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We mainly present the differences to the constant value sequence:

Fixed value sequence

{

};

template <class ValueType, class DifferenceType, ValueType x>

class FixedValueSequence

public:
typedef fixed_value_iterator<ValueType,DifferenceType,x> iterator;
public:

FixedValueSequence() : dataSize(0)
{3

FixedValueSequence(const size_type n) : dataSize(n)

{3
iterator begin()
{
return iterator(0);
}
iterator end()
{
return iterator(dataSize);

}

It is also possible to think of a version with a fixed length (known at compile time), since it is
important for small data structures whether an additional integer variable has to be stored or not:

{

};

template <class ValueType, class DifferenceType,

Fixed value sequence with fixed length

ValueType x, DifferenceType dataSize>

class FixedValueFixedLengthSequence

public:

FixedValueFixedLengthSequence ()
{3
static const size_type size()

{

return dataSize;

}
static iterator begin()
{
return iterator(0);
}
static iterator end()
{

return iterator(dataSize);

¥
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Function value sequence

The function value sequence was originally intended for matrix types, where index information can
be computed out of other information. For example, the column index of the first nonzero entry of
row i in a diagonal matrix is f(i) = ¢. The computation is done by an appropriate functor. Similar
applications are e.g. band matrices.

But also the value of the matrix entries may be computable completely out of the indices, e.g. if
we think of Hilbert matrices, where we have

HeRY™ Hyjw=(+j-1)"" ij=1...,n

Since we intend to store the matrix entries in our data structures in one long sequence, we somehow
need a mapping from the position in the edge sequence to the (i, j) position. Let e € E(g) be the k-th
edge of g = ®~(H), we would have the indices

i(e) := |k/n], and j(k):=k modn
for a (row wise ordered) full dense Hilbert matrix H. The according functor would be

7€) = B(i(e),j(e)) == ([k/n] + (k mod n) — 1)~

for the entry value of e.

Function value sequence

template <class FunctionType>
class FunctionSequence
{
public:
typedef typename FunctionType::argument_type size_type;
typedef typename FunctionType::result_type value_type;
typedef function_value_iterator<FunctionType> iterator;
private:
FunctionType £f;
public:
FunctionSequence(const size_type n=0) : dataSize(n)
{}
FunctionSequence(const size_type n, const FunctionType& f_)
: dataSize(n), f(f_.)
{}
iterator begin()
{
return iterator(f,0);
b
iterator end()
{
return iterator(f,dataSize);
3
+;

Arbitrary value sequence

The arbitrary value sequence very much resembles the std: :vector class. It is implemented in the
DataSequence class template. The main difference to the vector class in the STL is one assignment
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operator, that allows to assign values from any other sequence. However it would be sufficient in many
cases to simply use std: :vector.

Arbitrary value sequence

template <class ValueType, class SizeType>
class DataSequence
{
public:
typedef ValueType value_type;
typedef SizeType size_type;
typedef value_type* iterator;
typedef value_type& reference;
private:
size_type dataSize;
value_type* dataStore;
public:
DataSequence(const size_type n=0)
: dataSize(n), dataStore(new value_typel[n])
{}
DataSequence(const size_type n, const value_type& initvalue)
: dataSize(n), dataStore(new value_typel[n])
{
std::fill_n(dataStore,n,initvalue);
b
“DataSequence ()
{
delete[] dataStore;
b
template <class Sequence>
DataSequence& operator=(Sequence& other)
{
delete[] dataStore;
dataStore = new value_typel[other.size()];
copy (other.begin(), other.end(), dataStore);
dataSize = other.size();
return *this;
b
iterator begin()
{
return dataStore;
b
iterator end()
{
return dataStore+dataSize;
3
+;

Of more importance (especially for small data structures) is the fixed length variant, since there
is no appropriate class in the STL.
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Arbitrary value sequence with fixed length

template <class ValueType, class SizeType, SizeType dataSize>
class FixedLengthDataSequence
{
//...
private:
value_type dataStore[dataSize];
public:
FixedLengthDataSequence() : dataStore()
{}
FixedLengthDataSequence(const value_type& initvalue)
{
std::fill_n(dataStore,dataSize,initvalue);
3
static const size_type size()
{
return dataSize;
b
3
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Appendix B

Test platform

All numerical experiments and benchmarks were carried out on the following hardware/software plat-
forms:

e processor: Intel Pentium 4E 3.0 GHz

e main memory: between 2 GB and 4 GB on different machines
e level 1 cache: 16 KB

e level 2 cache: 1 MB

e operating system: SUSE Linux 9.3, kernel 2.6.11

e GNU compiler 3.4.1
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Glossary

AMG

Algebraic MultiGrid, originally AMG refers to the numerical method developed by John Ruge
and Klaus Stiiben. The main idea is based on constructing the coarse levels solely algebraically
(by using linear algebra operations) out of the initial matrix, instead of exploiting geometrical
information. Meanwhile, several variants have been developed (AMGe, smoothed aggregation).

BLANC

Blockwise Linear Algebra and Numerical Computations in C' is a numerical library, written in
C by Andreas Priesnitz in 1996 at the Institute for Numerical and Applied Mathematics in
Gottingen, that offers vectors and (sparse) matrix data formats as well as a great number of
iterative solvers for linear algebra equations. A special feature is the storage of and operation
with block matrices for all algorithms (e.g. block-wise ILU and SSOR).

CFD

Computational Fluid Dynamics, is a subdiscipline of fluid dynamics, a scientific research area that
investigates the physical and mathematical behaviour of motions in gases and liquids. Instead of
building a model and testing it in a wind channel, the intention in CFD is to simulate these flows
in the computer. Important issues are for example the prediction of turbulences and instabilities
that can occur at the wings of an aeroplane, or climate models for the weather forecast.

FEM

Finite Element Method, a so-called Galerkin method that is intended to solve variational prob-
lems (which arise e.g. from differential or integral equations) by approximating continuous
quantities as a set of quantities at discrete points.

Generative Programming

Generative Programming is a programming paradigm, that is based on assembling arbitrary
complex data structures out of small parts. A generator is responsible for constructing and
choosing the best data structure according to the user’s request.

Generic Programming

Generic programming is a technique that enables the software developer to parameterize a class
or an algorithm with another class. Along with polymorphism, and the iterator design pattern it
is an important object-oriented technique that helps to decouple algorithms and data structures.
Languages like C++ (through templates), EIFFEL and Ada supported it from the start, while
Java only recently (since Version 1.5) offers so-called generics.

MiLTON

Matriz Library of Templates for Object oriented Numerics is a C++ temlate library developed
for this dissertation that investigates several modern programming techniques. It offers a wide
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PNS

Glossary

range of matrix data structures (sparse, dense, block, etc.), that can be constructed out of
smaller parts (layers). Template metaprogramming is used for internal decision making and
optimization of the data structures and algorithms at compile time. The AMG solvers for scalar
and mixed problems described in this thesis are built on top of these data structures.

Parallelized solution of Navier-Stokes equations is a finite element research software developed
in C by Andreas Auge, Hans Miiller and Frank-Christian Otto (among others) at the Institute
for Numerical and Applied Mathematics in Gottingen. It is capable of solving scalar problems
like convection-diffusion problems as well as systems of PDE’s, especially mixed problems such
as the Navier-Stokes equation. Time-dependent and stationary problems can be treated, and
various stabilization schemes be applied. Domain-decomposition methods and the pvm library
are used to parallelize the computation.

PVM

STL

Parallel Virtual Machine is a free C library that realizes a message passing interface to enable
cluster computing in heterogeneous networks. It is maintained by the Computer Science and
Mathematics Division at the Oak Ridge National Laboratory.

The Standard Template Library is a collection of template classes and functions, that offers
various very useful data structures and algorithms. It provides solutions to many standard
problems in computer science. Originally, it was implemented at Hewlett-Packard Research Labs
by Alexander Stepanov and Meng Lee and included in the C++ standard in 1994. Although
the methods and solutions encorporated in the STL were showing the way for modern library
developers, there are many efforts to enhance or overcome it, the most promising of which is
Boost.

SuperLU

SuperLU is a C library written by Xiaoye Li, James Demmel, and John Gilbert, that performs
a very fast sparse LU decomposition of arbitrary nonsymmetric matrices. It is maintained at
the Computational Research Division of the Lawrence Berkeley National Laboratory.

Template Metaprogramming

Template Metaprogramming can be viewed as a meta language, that is executed by the compiler
during the compilation. FErwin Unruh was one of the first to discover that C+4 templates
(originally intended for generic programming) have this ability. However generic programming
capabilities doesn’t automatically allow metaprogramming, as the examples of EIFFEL and Java
show. The speciality of C++ is, that each template is compiled as an own class (or function).
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