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Chapter 1

Introduction

Constructing good tests for statistical hypotheses is an essential problem of statis-
tics. There are two main approaches to constructing test statistics. In the first
approach, roughly speaking, some measure of distance between the theoretical and
the corresponding empirical distributions is proposed as the test statistic. Classical
examples of this approach are the Cramer-von Mises and the Kolmogorov-Smirnov
statistics. Although, these tests works and are capable of giving very good results,
but each of these tests is asymptotically optimal only in a finite number of directions
of alternatives to a null hypothesis (see Appendix III for related definitions and [32]
for the general theory).

Nowadays, there is an increasing interest to the second approach of constructing
test statistics. The idea of this approach is to construct tests in such a way that
the tests would be asymptotically optimal. Test statistics constructed following this
approach are often called (efficient) score test statistics. The pioneer of this approach
was Neyman [30] and then many other works followed: [31], [10], [4], [28], [29]. This
approach is also closely related to the theory of efficient (adaptive) estimation - [3],
[16]. Score tests are asymptotically optimal in the sense of intermediate efficiency
in an infinite number of directions of alternatives (see Appendices I, II and IV
for related definitions and [18] for some theoretical results) and show good overall
performance in practice (see [23], [24]).

This thesis attempts to generalize the theory of score tests. The situation is
similar to the one in estimation theory. There is a classical estimation method based
on the use of maximum likelihood equations, and there is a more general method
of M-estimation. Our theory offers, in particular, an analogous generalization of
the theory of data-driven score tests. We introduce the notions of NT- and GNT-
tests, and other abstract concepts generalizing the concepts of Neyman’s smooth
test statistics, score tests and data-driven score tests.

The main goal of this thesis is to propose an unified theory to automatize the
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process of building NT- and GNT-tests for different statistical problems, and to
give an unified approach for proving consistency of such tests. We propose a gen-
eral method for constructing consistent data-driven tests for parametric, semi- and
nonparametric problems.

Examples in this thesis tries to show that the method is applicable also to depen-
dent data and statistical inverse problems. Moreover, for any test constructed, we
have an explicit rule to determine, for every particular alternative, whether the test
will be consistent against it. This rule allows us to describe, in a closed form, the
set of ”bad” alternatives for every NT- and GNT-test. This is an important feature
of the approach of this thesis.

The new theory generalizes some constructions and results of Cox, Choi, Hall,
Inglot, Kallenberg, Ledwina, Neyman, Schick, van der Vaart and others.

These general results are presented in Chapter 3. But before going into the
mathematical theory, we start in Chapter 2 with an important special example.

Classical hypothesis testing is concerned with testing hypotheses about random
variables X1, . . . , Xn, whose values are directly observable. But, it is important from
practical point of view to be able to construct tests for situations where X1, . . . , Xn

are corrupted or can only be observed with an additional noise term. These kind
of problems are termed statistical inverse problems. The most well-known example
here is the deconvolution problem. This problem appears when one has noisy signals
or measurements: in physics, seismology, optics and imaging, engineering.

Due to importance of the deconvolution problem, testing statistical hypotheses
related to this problem has been widely studied in the literature. But, to our knowl-
edge, only the first approach described above was implemented for the problem.

In this thesis, we treat the deconvolution problem with the second approach. In
Chapter 2, score tests and data-driven score tests for both simple and composite
deconvolution problems are constructed. This Chapter is mostly orientated towards
applied statisticians. Material in this Chapter is presented in such a way that the
tests will be easy to use, even if one do not read proofs of consistency theorems. We
tried to indicate situations when the tests are consistent and working fine, and also
those situations where the theory predicts these tests to be not very useful. Simple
and clear criterions are provided for how one can decide whether the test should be
(or should not) applied in any particular situation.

In Appendices I - IV, some auxiliary definitions, lemmas and theorems are col-
lected for the convenience of the reader. Appendices are mostly suited to provide
technical references while one reads the thesis. Section 7.2 of Appendix IV, however,
contains a discussion of some results on intermediate optimality.



7

Acknowledgements

I am grateful to my advisor, Prof. Dr. Axel Munk, for proposing the topic of
my dissertation and for helpful discussions. I wish to thank Prof. Dr. Manfred
Denker for taking the Koreferat, for organising many interesting seminars and for
his encouraging support. I also thank Prof. Dr. Andrei Borodin for teaching me
many important things about mathematical research and Prof. Dr. Mikhail Gordin
for his helpful suggestions.

During my time as a Ph.D. student I was a member of the Graduiertenkol-
leg ”Identifikation in mathematischen Modellen: Synergie stochastischer und nu-
merischer Methoden”, and I would like to thank them for their financial support. I
am grateful to all the people from the Institute for Mathematical Stochastics and
Graduiertenkolleg 1023 for providing me with an excellent working environment.

Many thanks go to Dr. Andrei Volotka and Dr.Dr. Elena Sivukhina, Dr. Janis
Valeinis and Daina Valeina, Dr. Fadoua Balabdaoui, Dr. Dmitry Zaporozhets and
Elena Tsoi, Dr. Mikhail Danilov, Dr. Ivan Yudin, Dr. Sachar Kabluchko, Dr.
Marina Schnellen, Dr. Leif Boysen, Dr. Rada Dakovic (Matic), Dr. Natalia Kan-
Dobrosky, Ta-Chao Kao, Mihaela Manescu, Razmig Dijekenjan, Olha Ivanyshin,
Anna Levina, Michael Scheuerer, Vladislav Vysotsky, Achim Wübker, Krzysztof
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Chapter 2

Deconvolution Problems

2.1 Introduction

Classical hypothesis testing deals with hypotheses about random variables X1, . . . ,
Xn, whose values are directly observable. But it is important from practical point of
view to be able to construct tests for situations where X1, . . . , Xn are corrupted or
can only be observed with an additional noise term. We call this kind of problems
statistical inverse problems. The most well known example here is the deconvolution.
It appears when one has noisy signals or measurements: in physics, seismology, op-
tics and imaging, engineering. It is a building block for many complicated statistical
inverse problems.

Due to the importance of the deconvolution problem, testing statistical hypotheses
related to this problem has been widely studied in the literature. But, to our
knowledge, all the proposed tests were based on some kind of distance (usually
a L2−type distance) between the theoretical density function and the empirical
estimate of the density (see, for example, [5], [11], [15]). Thus, only the first approach
described above was implemented for the deconvolution problem.

In this thesis, we treat the deconvolution problem with the second approach. We
construct efficient score tests for the problem. From classical hypothesis testing, it
was shown that for applications of efficient score tests, it is important to select the
right number of components in the test statistic (see [4], [12], [23], [13]). Thus, we
provide corresponding refinement of our tests. Following the solution proposed in
[22], we make our tests data-driven, i.e., the tests are capable to choose a reasonable
number of components in the test statistics automatically by the data.

In Section 2.2, we formulate the simple deconvolution problem. In Section 2.3,
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we construct the score tests for the parametric deconvolution hypothesis. In Section
2.5, we prove consistency of our tests against nonparametric alternatives. In Section
2.6, we turn to the deconvolution with an unknown error density. We derive the
efficient scores for the composite parametric deconvolution hypothesis in Section
2.7. In Section 2.8, we construct the efficient score tests for this case. In Section
2.9, we make our tests data-driven. In Section 2.10, we prove consistency of the
tests against nonparametric alternatives. Additionally, in Sections 2.5 and 2.10, we
explicitly characterize the class of nonparametric alternatives such that our tests are
inconsistent and therefore shouldn’t be used for testing against the alternatives from
this class. Some simple examples of applications of the theory are also presented in
this Chapter.

2.2 Notation and basic assumptions

The problem of testing whether i.i.d. real-valued random variables X1, . . . , Xn are
distributed according to a given density f is classical in statistics. We consider
a more difficult problem, namely the case when Xi can only be observed with an
additional noise term, i.e., instead of Xi one observes Yi, where

Yi = Xi + εi,

and ε′is are i.i.d. with a known density h with respect to the Lebesgue measure λ;
also Xi and εi are independent for each i and E εi = 0, 0 < E ε2 < ∞. For brevity
of notation say that Xi, Yi, εi have the same distribution as random variables X, Y,
ε correspondingly. Assume that X has a density with respect to λ.

Our null hypothesis H0 is the simple hypothesis that X has a known density f0

with respect to λ. The most general possible nonparametric alternative hypothesis
HA is that f 6= f0. Since this class of alternatives is too broad, first we would be
concerned with a special class of submodels of the model described above. In this
Chapter we will at first assume that all possible alternatives from HA belong to some
parametric family. Then we will propose a test that is expected to be asymptotically
optimal (in some sense) against the alternatives from this parametric family. How-
ever, we will prove that our test is consistent also against other alternatives even if
they do not belong to the initial parametric family. The test is therefore applicable
in many nonparametric problems. Moreover, the test is expected to be asymptoti-
cally optimal (in some sense) for testing against an infinite number of directions of
nonparametric alternatives (see [18]). This is the general plan for our construction.
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2.3 Score test for simple deconvolution

Suppose that all possible densities of X belong to some parametric family {fθ},
where θ is a k−dimensional Euclidean parameter, Θ ∈ Rk is a parameter set. Then
all the possible densities q (y ; θ) of Y have in such model the form

q (y ; θ) =

∫
R

fθ(s)h( y − s) ds . (2.1)

The score function l̇ is defined as

l̇ (y ; θ) =

(
q (θ)

)′
θ

q (θ)
1[q (θ)>0] , (2.2)

where q (θ) := q (y; θ) and l (θ) := l (y; θ) for brevity. The Fisher information matrix
of parameter θ is defined as

I(θ) =

∫
R

l̇ (y ; θ)l̇T (y ; θ) dQθ(y) . (2.3)

Definition 1. Call our problem a regular deconvolution problem if

〈B1〉 for all θ ∈ Θ q (y; θ) is continuously differentiable in θ

for λ− almost all y with gradient q̇ (θ)

〈B2〉
∣∣l̇ (θ)∣∣ ∈ L2(R, Qθ) for all θ ∈ Θ

〈B3〉 I(θ) is nonsingular for all θ ∈ Θ and continuous in θ .

If θ is a true parameter value, call such model GMk(θ) and denote by Qθ the proba-
bility distribution function and by Eθ the expectation corresponding to the density
q (·; θ).

If conditions 〈B1〉 − 〈B3〉 holds, then by Proposition 1, p.13 of [3] we calculate
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for all y ∈ supp q (·; θ)

l̇ (θ) = l̇ (y ; θ) =

(
q (y ; θ)

)′
θ

q (y ; θ)
=

∂
∂θ

∫
R
fθ(s)h( y − s) ds∫

R
fθ(s)h( y − s) ds

. (2.4)

Then for y ∈ supp q (·; θ) the efficient score vector for testing H0 : θ = 0 is

l∗(y) := l̇ (y ; 0) =

∂
∂θ

( ∫
R
fθ(s)h( y − s) ds

)∣∣∣
θ=0∫

R
f0(s)h( y − s) ds

. (2.5)

Set
L = {E0[l

∗(Y )]T l∗(Y )}−1
(2.6)

and

Uk =

{
1√
n

n∑
j=1

l∗(Yj)

}
L

{
1√
n

n∑
j=1

l∗(Yj)

}T

. (2.7)

Theorem 2.1. For the regular deconvolution problem the efficient score vector l∗ for
testing θ = 0 in GMk(θ) is given for all x ∈ R by (2.5). Moreover, under H0 : θ = 0
we have Uk →d χ2

k as n→∞.

Proof. (Theorem 2.1). We calculated the efficient score vector in (2.4)-(2.5). By
Proposition 1, p.13 of [3] and our regularity assumptions matrix L exists and is
positive definite and nondegenerate of rank k. Under 〈B1〉 − 〈B3〉 E0l

∗(y) = 0 (see
[3], p.15) and our statement follows.

We construct the test based on the test statistic Uk as follows: the null hypothesis
H0 is rejected if the value of Uk exceeds standard critical points for χ2

k−distribution.
Note that we do not need to estimate the scores l∗.

Corollary 2.2. If the deconvolution problem is regular and fθ(·) is differentiable in
θ for all θ ∈ Θ, then the conclusions of Theorem 2.1 are valid and the efficient score
vector for testing H0 : θ = 0 can be calculated by the formula

l∗(y) =

∫
R

(
∂
∂θ
fθ(s)

)∣∣
θ=0

h( y − s) ds∫
R
fθ(s)h( y − s) ds

. (2.8)

Example 1. Consider one important special case. Assume that each submodel of
interest is given by the following restriction: all possible densities f of X belong to
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a parametric exponential family, i.e., f = fθ for some θ, where

fθ(x) = f0(x) b(θ) exp(θ ◦ u(x)) , (2.9)

where the symbol ◦ denotes the inner product in Rk, u(x) = (u1(x), . . . , uk(x)) is a
vector of known Lebesgue measurable functions, b(θ) is the normalizing factor and
θ ∈ Θ ⊆ Rk. We assume that the standard regularity assumptions on exponential
families (see [1]) are satisfied. All the possible densities q (y ; θ) of Y have in such
model the form

q (y ; θ) =

∫
R

f0(s) b(θ) exp(θ ◦ u(s)) h( y − s) ds . (2.10)

These densities no longer need to form an exponential family. If we assume, for ex-
ample, that h > 0 λ−almost everywhere on R and the functions f0, h, u1, . . . , uk

are bounded and λ−measurable and that there exists an open subset Θ1 ⊆ Θ such
that

∣∣l̇ (y ; θ)
∣∣ ∈ L2(Qθ) and the Fisher information matrix I(Θ) is nonsingular and

continuous in θ, then conditions 〈B1〉 − 〈B3〉 are satisfied for this problem and the
previous results are applicable. The score vector for the problem is

l∗(y) =

∫
R
u(s) f0(s)h( y − s) ds∫
R
f0(s)h( y − s) ds

−
∫
R

u(s) f0(s) ds . (2.11)

In other words, if we denote by ∗ the standard convolution of functions,

l∗(y) =
(uf0) ∗ h
f0 ∗ h

(y) − E0u(X) . (2.12)

Let L be defined by (2.6) and

Vk =

{
1√
n

n∑
j=1

l∗(Yj)

}
L

{
1√
n

n∑
j=1

l∗(Yj)

}T

. (2.13)

This is the score test statistic designed to be asymptotically optimal for testing H0

against the alternatives from the exponential family (2.9). Its asymptotic distribu-
tion under the null hypothesis H0 is given by Theorem 2.1.
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2.4 Selection rule

For the use of score tests in classical hypotheses testing it was shown (see the Intro-
duction) that it is important to select the right dimension k of the space of possible
alternatives. Incorrect choice of the model dimension can substantially decrease the
power of a test. In Section 2.5 we give a theoretical explanation of this fact for
the case of deconvolution. The possible solution of this problem is to incorporate
the test statistic of interest by some procedure (called a selection rule) that chooses
a reasonable dimension of the model automatically by the data. See [22] for an
extensive discussion and practical examples. In this section we implement this idea
for testing the deconvolution hypothesis. First we give a definition of selection rule,
generalizing ideas from [19].

Denote by Mk(θ) the model described in Section 2.3 such that the true parameter
θ belongs to the parameter set, say Θk, and dim Θk = k. By a nested family of
submodels Mk(θ) for k = 1, 2, . . . we mean a sequence of these models such that for
their parameter sets it holds that Θ1 ⊂ Θ2 ⊂ . . . .

Definition 2. Consider a nested family of submodels Mk(θ) for k = 1, . . . , d, where
d is fixed but otherwise arbitrary. Choose a function π(·, ·) : N × N → R, where N
is the set of natural numbers. Assume that π(1, n) < π(2, n) < . . . < π(d, n) for all
n and π(j, n)− π(1, n) →∞ as n→∞ for every j = 2, . . . , d. Call π(j, n) a penalty
attributed to the j-th model Mj(θ) and the sample size n. Then a selection rule S for
the test statistic Uk is an integer-valued random variable satisfying the condition

S = min
{
k : 1 ≤ k ≤ d; Uk − π(k, n) ≥ Uj − π(j, n), j = 1, . . . , d

}
. (2.14)

We call US a data-driven efficient score test statistic for testing validity of the initial
model.

From Theorem 2.3 below it follows that for our problem (as well as in the clas-
sical case, see [22]) many possible penalties lead to consistent tests. So the choice
of the penalty should be dictated by external practical considerations. Our simu-
lation study is not so vast to recommend the most practically suitable penalty for
the deconvolution problem. Possible choices are, for example, Schwarz’s penalty
π(j, n) = j log n, or Akaike’s penalty π(j, n) = j.

Denote by P n
0 the probability measure corresponding to the case when X1, . . . , Xn

all have the density f0. For simplicity of notation we will further sometimes omit in-
dex ”n” and write simply P0. The main result about the asymptotic null distribution
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of US is the following

Theorem 2.3. Suppose that assumptions 〈B1〉 − 〈B3〉 holds. Then under the null
hypothesis H0 it holds that P n

0 (S > 1) → 0 and US →d χ
2
1 as n→∞.

Proof. (Theorem 2.3). Denote ∆(k, n) := π(k, n)− π(1, n). For any k = 2, . . . , d

P n
0 (S = k) ≤ P n

0

(
Uk − π(k, n) ≥ U1 − π(1, n)

)
≤ P n

0

(
Uk ≥ π(k, n)− π(1, n)

)
= P n

0

(
Uk ≥ ∆(k, n)

)
.

By Theorem 2.1 Uk →d χ2
k as n → ∞, thus for ∆(k, n) ↑ ∞ as n → ∞ we have

P n
0

(
Uk ≥ ∆(k, n)

)
→ 0 as n→∞, so for any k = 2, . . . , d we have P n

0 (S = k) → 0
as n→∞. This proves that

P n
0 (S ≥ 2) =

d∑
k=2

P n
0 (S = k) → 0, n→∞,

and so P n
0 (S = 1) → 1. Now write for arbitrary real t > 0

P n
0 (|US − U1| ≥ t) = P n

0 (|U1 − U1| ≥ t; S = 1)

+
d∑

m=2

P n
0 (|Um − U1| ≥ t; S = m)

=
d∑

m=2

P n
0 (|Um − U1| ≥ t; S = m). (2.15)

For m = 2, . . . , d we have P n
0 (S = m) → 0, so

0 ≤
d∑

m=2

P n
0 (|Um − U1| ≥ t; S = m) ≤

d∑
m=2

P n
0 (S = m) → 0

as n→∞ and thus by (2.15) it follows that US tends to U1 in probability as n→∞.
But U1 →d χ

2
1 by Theorem 2.1, so US →d χ

2
1 as n→∞.

Remark 2.4. The selection rule S can be modified in order to make it possible to
choose not only models of dimension less than some fixed d but to allow arbitrary
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large dimensions of Mk(θ) as n grows to infinity. In this case an analogue of Theorem
2.3 still holds, but the proof becomes more technical and one should take care about
the possible rates of growth of the model dimension. Though, one can argue that
even d = 10 is often enough for practical purposes (see [23]).

2.5 Consistency of tests

Let F be a true distribution function of X. Here F is not necessarily parametric and
possibly doesn’t have a density with respect to λ. Let us choose for every k ≤ d an
auxiliary parametric family {fθ}, θ ∈ Θ ⊆ Rk such that f0 from this family coincides
with f0 from the null hypothesis H0. Suppose that the chosen family {fθ} gives us
the regular deconvolution problem in the sense of Definition 1. Then one is able to
construct the score test statistic Uk defined by (2.7) despite the fact that the true
F possibly has no relation to the chosen {fθ}. One can use the exponential family
from Example 1 as {fθ}, or some other parametric family whatever is convenient.
This is our goal in this section to determine under what conditions thus build Uk

will be consistent for testing against F.

Suppose that the following condition holds

〈D1〉 there exists an integer K ≥ 1 such that K ≤ d and

EF l
∗
1 = 0, . . . , EF l

∗
K−1 = 0, EF l

∗
K = CK 6= 0 ,

where l∗i is the i−th coordinate function of l∗ and l∗ is defined by (2.5), d is the
maximal possible dimension of our model as in Definition 2 of Section 2.4, and EF

denotes the mathematical expectation with respect to F ∗ h.

Condition 〈D1〉 is a weak analog of nondegeneracy: if for all k 〈D1〉 fails, then
F is orthogonal to the whole system {l∗i }

∞
i=1, and if this system is complete, then

F is degenerate. Also 〈D1〉 is related to the identifiability of the model (see the
beginning of Section 2.10 for more details).

We start with investigation of consistency of Uk, where k is some fixed number,
1 ≤ k ≤ d. The following result shows why it is important to choose the right
dimension of the model.

Proposition 2.5. Let 〈D1〉 holds. Then for all 1 ≤ k ≤ K − 1, if F is the true
distribution function of X, then Uk →d χ

2
k as n→∞ .
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Proof. (Proposition 2.5). Follows by the multivariate Central Limit Theorem.

This result and Theorem 2.1 show that if the dimension of the model is too small,
then the test doesn’t work since it doesn’t distinguish between F and f0.

Proposition 2.6. Let 〈D1〉 holds. Then for k ≥ K, if F is the true distribution
function of X, then Uk → ∞ in probability as n→∞ .

Proof. (Proposition 2.6). We shall use the following standard lemma from linear
algebra.

Lemma 2.7. Let x ∈ Rk, and let A be a k × k positive definite matrix; if for some
real number δ > 0 we have A > δ (in the sense that the matrix (A−δ Ik×k) is positive
definite, where Ik×k is the k × k identity matrix), then for all x ∈ Rk it holds that
xAxT > δ‖x‖2.

From 〈D1〉 by the law of large numbers we get

1

n

n∑
j=1

l∗i (Yj) →P 0 for 1 ≤ i ≤ K − 1 (2.16)

1

n

n∑
j=1

l∗i (Yj) →P CK 6= 0. (2.17)

We apply Lemma 2.7 to the matrix L defined in (2.6); since all the eigenvalues of L
are positive we can choose δ to be any fixed positive number less than the smallest
eigenvalue of L. We obtain the following inequality

Uk =

{
1√
n

n∑
j=1

l∗(Yj)

}
L

{
1√
n

n∑
j=1

l∗(Yj)

}T

> δ

∥∥∥∥ 1√
n

n∑
j=1

l∗(Yj)

∥∥∥∥2

= δ n
k∑

i=1

(
1

n

n∑
j=1

l∗i (Yj)

)2

≥ δ n

(
1

n

n∑
j=1

l∗K(Yj)

)2

. (2.18)

Now by (2.16) and (2.17) we get for all s ∈ R
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P (Uk ≤ s) ≤ P

(
δ n

(
1

n

n∑
j=1

l∗K(Yj)

)2

≤ s

)

= P

((
1

n

n∑
j=1

l∗K(Yj)

)2

≤ s

δ n

)

= P

(∣∣∣∣ 1n
n∑

j=1

l∗K(Yj)

∣∣∣∣ ≤ √
s

δ n

)
→ 0 as n→∞ ,

and this proves the Proposition.

Now we turn to the data-driven statistic US. Suppose that the selection rule S is
defined as in Section 2.4. Assume that

〈S1〉 for every fixed k ≥ 1 it holds that π(k, n) = o(n) as n→∞ .

Denote by PF the probability measure corresponding to the case when X1, . . . , Xn

all have the distribution F. Consider consistency of the ”adaptive” test based on
US.

Proposition 2.8. Let 〈D1〉 and 〈S1〉 holds. If F is the true distribution function
of X, then PF (S ≥ K) → 1 and US → ∞ as n→∞ .

Proof. (Proposition 2.8). Let π(k, n) and ∆(k, n) be defined as in Section 2.4. For
any i = 1, . . . , K − 1 we have

PF (S = i) ≤ PF

(
Ui − π(i, n) ≥ UK − π(K,n)

)
= PF

(
Ui ≥ UK − (π(K,n)− π(i, n))

)
. (2.19)

By (2.17) and (2.18) we get

PF

(
UK ≥ δ

CK

2
n

)
→ 1 as n→∞ . (2.20)
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Note that

PF

(
Ui ≥ UK − (π(K,n)− π(i, n))

)
(2.21)

≤ PF

(
Ui ≥ δ

CK

2
n− (π(K,n)− π(i, n)); UK ≥ δ

CK

2
n

)
+ PF

(
UK ≤ δ

CK

2
n

)
.

Since by 〈S1〉 it holds that π(K,n)− π(i, n) = o(n), we get

PF

(
Ui ≥ δ

CK

2
n− (π(K,n)− π(i, n)); UK ≥ δ

CK

2
n

)
(2.22)

≤ PF

(
Ui ≥ δ

CK

2
n− (π(K,n)− π(i, n))

)
≤ PF

(
Ui ≥ δ

CK

2
n

)
→ 0

as n → ∞ by Chebyshev’s inequality since by Proposition 2.5 we have Ui →d

χ2
i as n → ∞ for all i = 1, . . . , K − 1. Substituting (2.20) and (2.22) to (2.21)

we get PF (S = i) → 0 as n → ∞ for all i = 1, . . . , K − 1. This means that
PF (S ≥ K) → 1 as n→∞.

Now write for t ∈ R

PF (US ≤ t) = PF (US ≤ t;S ≤ K − 1) + PF (US ≤ t;S ≥ K) =: R1 +R2.

But R1 → 0 since PF (S = i) → 0 for i = 1, . . . , K − 1 and K ≤ d < ∞. Since
Ul1 ≥ Ul2 for l1 ≥ l2, we get

R2 ≤
d∑

l=K

PF (UK ≤ t) → 0

as n→∞ by Proposition 2.6. Thus PF (US ≤ t) → 0 as n→∞ for all t ∈ R.
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The main result of this section is the following

Theorem 2.9.

1. The test based on Uk is consistent for testing against all alternative distribu-
tions F such that 〈D1〉 is satisfied with K ≤ k

2. The test based on Uk is inconsistent for testing against all alternative distri-
butions F such that 〈D1〉 is satisfied with K > k

3. If the selection rule S satisfies 〈S1〉, then test based on US is consistent against
all alternative distributions F such that 〈D1〉 is satisfied with some K.

Proof. (Theorem 2.9). Part 1 follows from Theorem 2.1 and Proposition 2.6, part
2 from Theorem 2.1 and Proposition 2.5, part 3 from Theorem 2.3 and Proposition
2.8.

2.6 Composite deconvolution

In the previous sections we treated the simplest case of the deconvolution problem.
The next sections are devoted to the more realistic case of unknown error density.
Our main ideas and constructions will be similar to the ones for the simple case. Our
goal is to modify the technics and constructions from the simple hypothesis case in
order to apply them in the new situation. In order to do this we will have to impose
on our new model additional regularity assumptions concerning uniformity. These
assumptions are quite standard in statistics. They are a necessary payment for our
ability to keep simple and general constructions for the more complicated problem.
We will have to modify the scores we used in the simple case. The modification we
will use is called efficient scores.

Despite of all the changes, we will still be able to build a selection rule for the new
problem. We will need a new and modified definition of the selection rule. Big part
of the new model uniformity assumptions will be needed not to build an efficient
score test, but to make such test data-driven (see section 2.9).

Consider the situation described in the first paragraph of Section 2.2, but with
the following complication introduced. Suppose further on that the density h of ε
is unknown.

Then the most general possible null hypothesis H0 in this setup is that f = f0

and the error ε has expectation 0 and finite variance. The most general alternative
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hypothesis HA is that f 6= f0. Since both H0 and HA are in this case too broad,
we would first consider a special class of submodels of the model described above.
At first we assume that all possible densities f of X belong to some specific and
preassigned parametric family {fθ}, i.e., f = fθ for some θ and θ is a k−dimensional
Euclidian parameter and Θ ⊆ Rk is a parameter set for θ. Our starting assumption
about the density of the error ε will be that h belongs to some specific parametric
family {hη}, where η ∈ Λ and Λ ⊆ Rm is a parameter set. Thus, η is a nuisance
parameter. The null hypothesis H0 is the following composite hypothesis: X has
particular density f0 with respect to λ.

Then we will propose a test that is expected to be asymptotically optimal (in some
sense) for testing in this parametric situation. After that we will prove that our test
is consistent also against a wide class of nonparametric alternatives. Moreover, the
test is expected to be asymptotically optimal (in some sense) for testing against an
infinite number of directions of nonparametric alternatives. This is essentially the
same plan as for the simple case.

If (θ, η) is a true parameter value, we call such submodel Mk,m(θ, η). Denote in
this case the density of Y by g(·; (θ, η)) and the corresponding expectation by E(θ,η).
Let the null hypothesis H0 be θ = θ0, where it is assumed that θ0 ∈ Θ. Then the
alternative hypothesis θ 6= θ0 is a parametric subset of the original general and
nonparametric alternative hypothesis HA.

2.7 Efficient scores

All possible densities g (y ; (θ, η)) of Y have in our model the form

g (y ; (θ, η)) =

∫
R

fθ(s)hη( y − s) ds . (2.23)

It is not always possible to identify θ or/and η in this model. Since we are concerned
with testing hypotheses and not with estimation of parameters, it is not necessary
for us to impose a restrictive assumption of identifiability on the model. We will
need only a (weaker) consistency condition to build a sensible test (see Section 2.10).

The score function for (θ, η) at (θ0, η0) is defined as (see [3], p.28):

l̇θ0,η0(y) =
(
l̇θ0(y), l̇η0(y)

)
, (2.24)
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where l̇θ0 is the score function for θ at θ0 and l̇η0 is the score function for η at η0, i.e.

l̇θ0(y) =

∂
∂θ

(
g (y ; (θ, η0))

)∣∣
θ=θ0

g (y ; (θ0, η0))
1[y: g (y ;(θ0,η0))>0] (2.25)

=

∂
∂θ

( ∫
R
fθ(s)hη0( y − s) ds

)∣∣∣
θ=θ0∫

R
fθ0(s)hη0( y − s) ds

1[y: g (y ;(θ0,η0))>0] ,

l̇η0(y) =

∂
∂η

(
g (y ; (θ0, η))

)∣∣
η=η0

g (y ; (θ0, η0))
1[y: g (y ;(θ0,η0))>0] (2.26)

=

∂
∂η

( ∫
R
fθ0(s)hη( y − s) ds

)∣∣∣
η=η0∫

R
fθ0(s)hη0( y − s) ds

1[y: g (y ;(θ0,η0))>0] .

The Fisher information matrix of parameter (θ, η) is defined as

I(θ, η) =

∫
R

l̇Tθ,η(y) l̇θ,η(y) dGθ,η(y) , (2.27)

where Gθ,η(y) is the probability measure corresponding to the density g (y ; (θ, η)).
The symbol ’T’ denotes the transposition and all vectors are supposed to be row
ones.

We assume that Mk,m(θ, η) is a regular parametric model in the sense of the
following definition.

Definition 3. Call our problem a regular deconvolution problem if

〈A1〉 for all (θ, η) ∈ Θ× Λ g (y ; (θ, η)) is continuously differentiable

in (θ, η) for λ− almost all y

〈A2〉
∣∣l̇ (θ, η)∣∣ ∈ L2(R, Gθ,η) for all (θ, η) ∈ Θ× Λ

〈A3〉 I(θ, η) is nonsingular for all (θ, η) ∈ Θ× Λ and continuous



2.7. Efficient scores 23

in (θ, η) .

This is a joint regularity condition and it is stronger than the assumption that the
model is regular in θ and η separately. Let us write I(θ0, η0) in the block matrix
form:

I(θ0, η0) =

(
I11(θ0, η0) I12(θ0, η0)
I21(θ0, η0) I22(θ0, η0)

)
, (2.28)

where I11(θ0, η0) is k×k, I12(θ0, η0) is k×m, I21(θ0, η0) is m×k, I11(θ0, η0) is m×m.
Thus, denoting for simplicity of formulas Ω := [y : g (y ; (θ0, η0)) > 0] we can write
explicitly

I11(θ0, η0) = Eθ0,η0 l̇
T
θ0
l̇θ0 =

∫
R

l̇Tθ0
(y) l̇θ0(y) dGθ0,η0(y) (2.29)

=

∫
Ω

∂
∂θ

( ∫
R
fθ(s)hη0( y − s) ds

)T ∣∣∣
θ=θ0

∂
∂θ

( ∫
R
fθ(s)hη0( y − s) ds

)∣∣∣
θ=θ0∫

R
fθ0(s)hη0( y − s) ds

dy ,

I12(θ0, η0) = Eθ0,η0 l̇
T
θ0
l̇η0 =

∫
R

l̇Tθ0
(y) l̇η0(y) dGθ0,η0(y) (2.30)

=

∫
Ω

∂
∂θ

( ∫
R
fθ(s)hη0( y − s) ds

)T ∣∣∣
θ=θ0

∂
∂η

( ∫
R
fθ0(s)hη( y − s) ds

)∣∣∣
η=η0∫

R
fθ0(s)hη0( y − s) ds

dy ,

and analogously for I21(θ0, η0) and I22(θ0, η0). The efficient score function for θ in
Mk,m(θ, η) is defined as (see [3], p.28):

l∗θ0
(y) = l̇θ0(y) − I12(θ0, η0) I

−1
22 (θ0, η0) l̇η0(y) , (2.31)

and the efficient Fisher information matrix for θ in Mk,m(θ, η) is defined as

I∗θ0
= Eθ0,η0l

∗T
θ0
l∗θ0

=

∫
R

l∗θ0
(y)T l∗θ0

(y) dGθ0,η0(y) . (2.32)
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Before closing this section we consider two simple examples.

Example 2. Suppose θ ∈ R, η ∈ R+ and, moreover, {fθ} is a family {N(θ, 1)}
of normal densities with mean θ and variance 1, and {hη} is a family {N(0, η2)}.
Then g(θ, η) = fθ ∗ hη ∼ N(θ, η2 + 1). Let θ be the parameter of interest and η the
nuisance one. Let H0 be θ = θ0. By (2.25) and (2.26) for all y

l̇θ0(y) =
y − θ0

η2
0 + 1

, l̇η0(y) =
(y − θ0)

2 η0

(η2
0 + 1)

2 − η0

η2
0 + 1

. (2.33)

By (2.30)

I12(θ, η) =

∫
R

y − θ

η2 + 1

[
(y − θ)2η

(η2 + 1)2 −
η

η2 + 1

]
dN(θ, η2 + 1)(y) = 0 ,

for all θ, η. This means that adaptive estimation of θ is possible in this model, i.e.,
we can estimate θ equally well whether we know the true η0 or not. Though, we will
not be concerned with estimation here. From (2.29) we get

(I∗θ )−1 =

∫
R

(y − θ)2

(η2 + 1)2 dN(θ, η2 + 1)(y) =
1

η2 + 1
. (2.34)

Example 3. Suppose now that we are interested in the parameter η in the situation
of Example 2 and the null hypothesis is H0 : η = η0. There is a sort of symmetry
between signal and noise: ”what is a signal for one person is a noise for the other”
(see also Remark 2.10). From Example 2 we know that the score function l̇η0 for η
at η0 is given by (2.33). Since we proved for this example I12 = I21 = 0, the efficient
score function l∗η0

for η at η0 is given by (2.33) as well. We calculate now

(I∗η0
)−1 =

∫
R

(
(y − θ)2 η0

(η2
0 + 1)

2 − η0

η2
0 + 1

)2

dN(θ, η2
0 + 1)(y) =:

1

C(η0)
. (2.35)

The constant C(η0) in (2.35) can be expressed explicitly in terms of η0, but this
is not the point of this example. By the symmetry of θ and η we have l∗η0

(y) =

l̇η0(y) − I21(θ, η0) I
−1
11 (θ, η0) l̇θ0(y) = l̇η0(y) .

Remark 2.10. Note that the problem is symmetric in θ and η in the sense that it
is possible to consider estimating and testing for each parameter, θ or η. Physically
this means that from the noisy signal one can recover some ”information” not only
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about the pure signal but also about the noise. This is actually natural since a noise
is in fact also a signal. We are observing two signals at once. The payment for this
possibility is that except for some trivial cases one can’t recover full information
about both the signal of interest as well as about the noise.

2.8 Efficient score test

Let l∗θ0
be defined by (2.31) and I∗θ0

by (2.32). Note that both l∗θ0
and I∗θ0

depends
(at least in principle) on the unknown nuisance parameter η0. Let l∗j and L be some

estimators of l∗θ0
(Yj) and (I∗θ0

)−1 correspondingly. These estimators are supposed to
depend only on the observable Y1, . . . , Yn , but not on the X1, . . . , Xn.

Definition 4. We say that l∗j is a sufficiently good estimator of l∗θ0
(Yj) if for each

(θ0, η0) ∈ Θ× Λ it holds that for every ε > 0

Gn
θ0,η0

(
1√
n

∥∥∥∥ n∑
i=1

(l∗j − l∗θ0
(Yj))

∥∥∥∥ ≥ ε

)
→ 0 as n→∞ , (2.36)

where ‖ · ‖ denotes the Euclidian norm of a given vector.

In other words, condition (2.36) means that the average 1
n

∑n
i=1 l

∗
θ0

(Yj) ≈ Eθ0,η0l
∗
θ0

is
√
n−consistently estimated. We illustrate this definition by some examples.

Example 2 (continued). We have (denoting variance of Y by σ2(Y )):

l∗θ0
(Yj) =

Yj − θ0

σ2(Y )
.

Define

l∗j :=
Yj − θ0

σ̂2
n

,

where σ̂2
n is any

√
n−consistent estimator of the variance of Y. One can take, for

example, the sample variance s2
n = s2

n(Y1, . . . , Yn) as such an estimate. Then, since
by the model assumptions σ2(Y ) > 0, thus constructed l∗j satisfies Definition 4. See
Appendix for the proof. 2

Example 3 (continued). We have in this case

l∗η0
(Yj) =

η0

η2
0 + 1

(Yj − θ0)
2 − η0

η2
0 + 1

.
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For simplicity of notations we write l∗η0
(Yj) = C1(η0)(Yj − θ0)

2 − C2(η0). Let θ̂n be

any
√
n−consistent estimate of θ0 and put l∗j := C1(η0)(Yj − θ̂n)2 − C2(η0). Then

Definition 4 is satisfied in this Example also. This is proved in Appendix. 2

Definition 4 reflects the basic idea of the method of estimated scores. This method
is widely used in statistics (see [3], [35], [16], [19] and others). These authors show
that for different problems it is possible to construct nontrivial parametric, semi-
and nonparametric estimators of scores such that these estimators will satisfy (2.36).

Definition 5. Define

Wk =

{
1√
n

n∑
j=1

l∗j

}
L̂

{
1√
n

n∑
j=1

l∗j

}T

, (2.37)

where L̂ is an estimate of (I∗θ0
)−1 depending only on Y1, . . . , Yn. Note that l∗j is a

k−dimensional vector and L̂ is a k × k matrix. We call Wk the efficient score test
statistic for testing H0 : θ = θ0 in Mk,m(θ, η). It is assumed that the null hypothesis
is rejected for large values of Wk.

Normally it should be possible to construct reasonably good estimators η̂n of η
by standard methods since at this point our construction is parametric. After that
it would be enough to plug in these estimates in (2.31) and get the desired l∗′js
satisfying (2.36).

Example 2 (continued). Let σ̂2(Y ) be any
√
n−consistent estimate of η2 +1 such

that this estimate is based on Y1, . . . , Yn. Then by (2.34), (2.33) and definition (2.37)
the efficient score test statistic for testing H0 : θ = θ0 (in the model M1,1(θ, η)) is

W1 =

(
1√
n

n∑
j=1

Yj − θ0

σ̂2
n(Y )

)2

σ̂2
n(Y ) =

1

σ̂2
n(Y )

(
1√
n

n∑
j=1

(Yj − θ0)

)2

. (2.38)

Example 3 (continued). Using any
√
n− consistent estimate θ̂ of θ, we get the

efficient score test statistic

W1 =

(
1√
n

n∑
j=1

[
(Yj − θ̂n)2 η0

(η2
0 + 1)

2 − η0

η2
0 + 1

])2

C(η0)
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=

(
1√
n

η0

(η2
0 + 1)

2

n∑
j=1

(Yj − θ̂n)2 −
√
n

η0

η2
0 + 1

)2

C(η0) . (2.39)

Remark 2.11. We make now the following remark to avoid possible confusions. For
the simple deconvolution we had the score test statistics and now we have the
efficient score test statistics. This does not mean that the statistics for simple
deconvolution is ”inefficient”. Here the word ”efficient” has a strictly technical
meaning. Because of the presence of the nuisance parameter we have to extract
information about the parameter of interest. We want to do this efficiently in some
sense. This is the explanation of the terminology.

The following theorem describes asymptotic behavior of Wk under the null hy-
pothesis.

Theorem 2.12. Assume the null hypothesis H0 : θ = θ0 holds true, 〈A1〉-〈A3〉 are

fulfilled, (2.36) is satisfied, and L̂ is any consistent estimate of (I∗θ0
)−1. Then

Wk →d χ
2
k as n→∞ ,

where χ2
k denotes a random variable with central chi-square distribution with k de-

grees of freedom.

Proof. (Theorem 2.12). Put

Vk =

{
1√
n

n∑
j=1

l∗θ0
(Yj)

}
(I∗θ0

)−1

{
1√
n

n∑
j=1

l∗θ0
(Yj)

}T

, (2.40)

where l∗θ0
is defined by (2.31) and I∗θ0

by (2.32). Of course, Vk is not a statistic since
it depends on the unknown η0. But if the true η0 is known, then because of 〈B1〉-
〈B3〉 we can apply the multivariate Central Limit Theorem and obtain Vk →d χ2

k

as n→∞ . Condition (2.36) implies that

1√
n

n∑
i=1

l∗j → 1√
n

n∑
i=1

l∗θ0
(Yj) in Gθ0,η0−probability as n→∞

and by consistency of L̂ we get the statement of the theorem by Slutsky’s Lemma.
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2.9 Selection rule

In this section we extend the construction of Section 2.4 to the case of composite
hypotheses. First we give a general definition of a selection rule.

Denote by Mk,m(θ, η) the model described in Section 2.6 and such that the true
parameter (θ, η) belongs to a parameter set, say Θk × Λ, and dim Θk = k. By a
nested family of submodels Mk,m(θ, η) for k = 1, . . . we would mean a sequence of
these models such that for their parameter sets it holds that Θ1×Λ ⊂ Θ2×Λ ⊂ . . . .

Definition 6. Consider a nested family of submodels Mk,m(θ, η) for k = 1, . . . ,
d, where d is fixed but otherwise arbitrary, and m is fixed. Choose a function
π(·, ·) : N× N → R, where N is the set of natural numbers. Assume that π(1, n) <
π(2, n) < . . . < π(d, n) for all n and π(j, n) − π(1, n) → ∞ as n → ∞ for every
j = 2, . . . , d. Call π(j, n) a penalty attributed to the j-th model Mj(θ) and the sample
size n. Then a selection rule S(l∗) for the test statistic Wk is an integer-valued
random variable satisfying the condition

S(l∗) = min
{
k : 1 ≤ k ≤ d; Wk − π(k, n) ≥ Wj − π(j, n), j = 1, . . . , d

}
. (2.41)

We call the random variable WS a data-driven efficient score test statistic for testing
validity of the initial model. We also assume that the following condition holds.

〈S1〉 for every fixed k ≥ 1 it holds that π(k, n) = o(n) as n→∞ .

Unlike the case of the simple null hypothesis, in the case of the composite hy-
potheses the selection rule depends on the estimator l∗j of the unknown values l∗θ0

(Yj)
of the efficient score function. This means that we need to estimate the nuisance
parameter η, or corresponding scores, or their sum. Surprising result follows from
Theorem 2.13 below: for our problem many possible penalties and, moreover, essen-
tially all sensible estimators plugged in Wk, give consistent selection rules. Possible
choices of penalties are, for instance, Shwarz’s penalty π(j, n) = j log n, or Akaike’s
penalty π(j, n) = j.

Denote by P n
θ0,η0

the probability measure corresponding to the case when X1, . . . ,
Xn all have the density f(θ0, η0). The main result about the asymptotic null distri-
bution of WS is the following theorem (it is proved analogously to Theorem 2.3).



2.10. Consistency of tests 29

Theorem 2.13. Under the conditions of Theorem 2.12, as n→∞ it holds that

P n
θ0,η0

(S(l∗) > 1) → 0 and WS →d χ
2
1.

Condition (2.36) is what makes this direct reference to the case of the simple hy-
pothesis possible. Estimation of the efficient score function l∗θ0

can be done by
different ways. First way is to estimate the whole expression from the right side of
(2.31). For this method of estimation condition (2.36) is natural. The second and
probably more convenient method of estimating l∗θ0

is via estimation of the nuisance
parameter η by some estimator η̂. But for this approach condition (2.36) becomes
something that have to be proved for each particular estimator. We hope that this
inconvenience is excused by the fact that we are only introducing the new test here.
It is possible to reformulate condition (2.36) explicitly in terms of conditions on η̂,
{fθ}, and {hη} (see an analogue in [17]).

Remark 2.14. The selection rule S(l∗) can be modified in order to make it possible
to choose not only models of dimension less than some fixed d, but to allow arbitrary
large dimensions of Mk,m(θ, η) as the number of observations grows. See Remark
2.4.

Remark 2.15. It is possible to modify the definition of selection rule so that both
dimensions k and m would be selected by the test from the data. A corresponding
test statistic will be of the form WS, where this time S = (S1, S2). Proofs of the
asymptotic properties for this statistic are analogous to those presented in this
Chapter. Possibly this statistic could be useful since the situation with the noise
of an unknown dimension often seems to be more realistic. On the other hand,
this statistic will also have some disadvantages. One will have to impose more
strict assumptions on both signal and noise (including an analogue of the double-
identifiability assumption). Also the final result will be weaker than the result of
this section. This will be a payment for an attempt to extract information about a
larger number of parameters from the same amount of observations Y1, . . . , Yn .

2.10 Consistency of tests

Let F be a true distribution function of X and H a true distribution of ε. Here F
and H are not necessarily parametric and possibly these distribution functions do
not have densities with respect to the Lebesgue measure λ. Let us choose for every
k ≤ d an auxiliary parametric family {fθ}, θ ∈ Θ ⊆ Rk such that f0 from this
family coincides with f0 from the null hypothesis H0. Correspondingly, let us fix an
integer m and choose an auxiliary parametric family {hη}, η ∈ Λ ⊆ Rm. Suppose
that the chosen families {fθ} and {hη} give us the regular deconvolution problem in
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the sense of Definition 3. Then one is able to construct the score test statistic Wk

defined by (2.37) despite the fact that the true F and H possibly do not have any
relation to the chosen {fθ} and {hη}. This is our goal in this section to determine
under what conditions thus build Wk will be consistent for testing against HA.

Suppose that the following condition holds

〈C1〉 there exists integer K ≥ 1 such that K ≤ d and

EF∗H l
∗
θ0(1) = 0, . . . , EF∗H l

∗
θ0(K−1) = 0, EF∗H l

∗
θ0(K) = CK 6= 0 ,

where l∗θ0(i) is the i−th coordinate function of l∗θ0
and l∗θ0

is defined by (2.31), d is
the maximal possible dimension of our model as in Definition 3 of Section 2.9, and
EF∗H denotes the mathematical expectation with respect to F ∗H.

Condition 〈C1〉 is a weak analog of nondegeneracy: if for all k 〈C1〉 fails, then
F is orthogonal to the whole system l∗θ0(i)

∞
i=1

and if this system is complete, then

F ∗ H is degenerate. Also 〈C1〉 is related to the identifiability of the model: if
the model is not identifiable, then F ∗ H = F0 ∗ H can happen and 〈C1〉 fails.
Establishing identifiability for the parametric deconvolution is not trivial (see [37],
e.g.). It is important to note also that although 〈C1〉 has something common with
both nondegeneracy and identifiability, it is in general pretty far from both these
notions.

The main result of this section is the following.

Theorem 2.16. If (2.36) is satisfied and L̂ is any consistent estimate of (I∗θ0
)−1,

then

1. the test based on Wk is consistent for testing against all alternative distribu-
tions F, H such that 〈C1〉 is satisfied with K ≤ k

2. the test based on Wk is inconsistent for testing against alternative distributions
F, H such that 〈C1〉 is satisfied with K > k

3. if the selection rule S(l∗) satisfies 〈S1〉, then test based on WS is consistent
against all alternative distributions F ∗H such that 〈C1〉 is satisfied with some
K.

Part 2 of Theorem 2.16 shows why it is important to choose the suitable model
dimension. Now we give two specific examples.
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Proof. (Theorem 2.16). Because of condition (2.36) the proof is analogous to the
proof of Theorem 2.9. Indeed, after obvious change of notations Propositions 2.5,
2.6, and 2.8 are true for Wk, WS(l∗), S(l∗) instead of Uk, US, S. Proofs of the new
versions of propositions are analogous to the proofs of the previous versions. The
only difference is that the proof of the key inequality analogous to (2.18) requires
the use of the following lemma.

Lemma 2.17. Let A be a k × k positive definite matrix and {An}∞n=1 be sequence
of k × k matrices such that An → A in the Euclidian matrix norm. Suppose that
for some real number δ > 0 we have A > δ in the sense that the matrix (A− δIk×k)
is positive definite, where Ik×k is the k× k identity matrix. Then for all sufficiently
large n it holds that An > δ.

Example 2 (continued). By Theorem 2.16 the test based on W1 is consistent if
and only if for true F and H it holds that

1

η2 + 1
EF∗H(Y − θ0) 6= 0 , i.e. EF∗H(Y ) 6= θ0 . (2.42)

For example, W1 doesn’t work when the true H is symmetric about 0 and the true
F 6= F0 has the mean equal to θ0.

Example 3 (continued). By Theorem 2.16 W1 is consistent if and only if for true
F and H it holds that

EF∗H

[
(y − θ)2 η0

(η2
0 + 1)

2 − η0

η2
0 + 1

]
6= 0 , i.e.

EF∗H (y − θ)2 6= η2
0 + 1, or equivalently V arF∗H Y 6= V arF∗H0 Y . (2.43)

Note that condition (2.42) can be interpreted as ”W1 is consistent for testing the
hypothesis about the mean in this model iff the expectation of Y under alternative
is different from the expectation under the null hypothesis” and (2.43) as ”W1 is
consistent for testing the hypothesis about the variance in this model iff the variance
of Y under alternative is different from the variance under the null hypothesis”. One
cannot expect more from such a simple test as W1. On contrary, the data-driven
test statistic WS provides a consistent testing procedure.
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2.11 Appendix

Proof. (The statement about l∗j from Example 2). Indeed,

1√
n

∣∣∣∣ n∑
i=1

(l∗j − l∗θ0
(Yj))

∣∣∣∣ =
1√
n

∣∣∣∣ n∑
i=1

(Yj − θ0)
( 1

σ2(Y )
− 1

σ̂2
n

)∣∣∣∣
=
√
n

∣∣∣∣ 1

σ2(Y )
− 1

σ̂2
n

∣∣∣∣ · 1

n

∣∣∣∣ n∑
i=1

(Yj − θ0)

∣∣∣∣.
But

1

n

∣∣∣∣ n∑
i=1

(Yj − θ0)

∣∣∣∣ =
∣∣Y − θ0

∣∣ =
∣∣Y − EY

∣∣ → 0

in Gθ0,η0−probability, therefore Definition 4 is satisfied if
√
n

∣∣ 1
σ2(Y )

− 1
σ̂2

n

∣∣ is bounded

in Gθ0,η0−probability, and this holds if σ̂2
n is a

√
n−consistent estimate of σ2(Y ).

Here Y denotes the sample mean Y = 1
n

∑n
i=1 Yj.

Proof. (The statement about l∗j from Example 3).

1√
n

∣∣∣∣ n∑
i=1

(l∗j − l∗η0
(Yj))

∣∣∣∣
=

1√
n

∣∣C1(η0)
∣∣ ∣∣∣∣ n∑

i=1

(
(Yj − θ̂n)2 − (Yj − θ0)

2
)∣∣∣∣

=
1√
n

∣∣C1(η0)
∣∣ ∣∣∣∣ n∑

i=1

(θ̂n − θ0)(−2Yj + θ̂n + θ0)

∣∣∣∣
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=
∣∣C1(η0)

∣∣ √n ∣∣θ̂n − θ0

∣∣ 1

n

∣∣∣∣ n∑
i=1

(Yj − θ̂n) +
n∑

i=1

(Yj − θ0)

∣∣∣∣
=

∣∣C1(η0)
∣∣√n ∣∣θ̂n − θ0

∣∣ ∣∣(Y − θ̂n) + (Y − θ0)
∣∣

≤
∣∣C1(η0)

∣∣√n ∣∣θ̂n − θ0

∣∣ (∣∣Y − θ̂n

∣∣+∣∣Y − θ0

∣∣) → 0

in Gθ0,η0−probability since for n→∞ it holds that
∣∣Y − θ̂n

∣∣ → 0 and
∣∣Y − θ0

∣∣ → 0,

both in Gθ0,η0−probability, and
√
n
∣∣θ̂n − θ0

∣∣ is bounded in Gθ0,η0−probability.
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Chapter 3

General Theory

3.1 Introduction.

In the previous Chapter, we constructed data-driven score goodness-of-fit tests for
the deconvolution problem. This shows that score tests can be built for statistical
inverse problems as well.

In this Chapter, we attempt to generalize the theory of score tests. The situation is
similar to the one in estimation theory. There is a classical estimation method based
on the use of maximum likelihood equations, and there is a more general method of
M-estimation. Our theory offers, in particular, an analogous generalization of the
theory of data-driven score tests. We introduce abstract concepts generalizing the
concepts of Neyman’s smooth test statistics, score tests and data-driven score tests.

The main goal of this thesis is to propose an unified theory to automatize the
process of building NT-tests for different statistical problems, and to give an unified
method for proving consistency of such tests. We propose a general method for
constructing consistent data-driven tests for parametric, semi- and nonparametric
problems. Usually, proofs of consistency for data-driven tests consisted of two parts:

1) establishing large deviation inequalities for the test statistic

2) deriving consistency of the test from these inequalities.

Our method gives the tool to pass through step 2 automatically. Additionally, in
our theorems, we allow a lot of freedom in the choice of penalties, dimension growth
rates and model regularity assumptions.

Examples in this Chapter tries to show that the method is applicable also to
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dependent data and statistical inverse problems. Moreover, for any test constructed,
we have an explicit rule to determine, for every particular alternative, whether the
test will be consistent against it. This rule allows us to describe, in a closed form,
the set of ”bad” alternatives for every NT-, SNT- and GNT-test.

In Section 3.2, we describe the framework and introduce an abstract notion of
SNT-statistic. In Section 3.3, we propose a general definition of a model selection
rule. Section 3.4 is devoted to the definition of NT-statistics. This is the main
concept of this Chapter. In Section 3.5, we study behaviour of NT-statistics for
the case when the alternative hypothesis is true, while in Section 3.6 we investigate
what happens under the null hypothesis. In the end of Section 3.6, a consistency
theorem for NT-statistics is given. Section 3.7 is devoted to some direct applications
of our method. In Section 3.8, a new notion concerning the use of quadratic forms
in statistics is introduced. In Section 3.9, we introduce a notion of GNT-statistics.
This notion generalizes the notion of score tests for composite hypotheses. We prove
a general consistency theorem for GNT-statistics.

3.2 Notation and basic assumptions.

Let X1, X2, . . . be a sequence of random variables with values in an arbitrary
measurable space X. Suppose that for every m the random variables X1, . . . , Xm

have the distribution Pm from the family of distributions Pm. Suppose there is a given
functional F acting from the direct product of the families ⊗∞m=1 Pm = (P1,P2, . . .)
to a known set Θ, and that F(P1, P2, . . .) = θ. We consider the problem of testing
the hypothesis

H0 : θ ∈ Θ0 ⊂ Θ

against the alternative
HA : θ ∈ Θ1 = Θ \Θ0

on the basis of observations Y1, . . . , Yn having their values in an arbitrary measurable
space Y (i.e. not necessarily on the basis of X1, . . . , Xm).

Here Θ can be any set, for example, a functional space; correspondingly, parame-
ter θ can be infinite dimensional. It is not assumed that Y1, . . . , Yn are independent
or identically distributed. The measurable space Y can be, for example, infinite
dimensional. This means that results of this Chapter are applicable, in principle, in
statistics for stochastic processes. Additional assumptions on Y ′

i s will be imposed
below, when it would be necessary.
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Assume that we have some hypothesis H0 to test. H0 will be specified below,
when necessary. The exact form of H0 is not important for us at this moment: H0

can be composite or simple, H0 can be about Y ′s densities or expectations, or it
can be of any other form. The important feature of our approach is that we are
able to consider the case when H0 is not about Y ′

i s, but about some other random
variables X1, . . . , Xm. This makes it possible to use our method in the case of
statistical inverse problems. Under some conditions (see Theorem 3.9) it would be
still possible to extract from Y ′

i s some information about X ′
is and build a consistent

test.

Definition 7. Consider the following (abstract) statistic of the form

Tk =
k∑

j=1

{
1√
n

n∑
i=1

lj(Yi)

}2

. (3.1)

where n is the number of available observations Y1, . . . , Yn and l1, . . . , lk, li :
Y → R, are some known Lebesgue measurable functions. We call Tk the simplified
statistic of Neyman’s type (or SNT-statistics).

Here l1, . . . , lk can be some score functions, but they can also be any other
functions, depending on the problem under consideration. We prove below that
under additional assumptions it is possible to construct consistent tests of such form
without using scores in (3.1). We will discuss different possible sets of meaningful
additional assumptions on l1, . . . , lk below (see Sections 3.5 - 3.9).

Scores (and efficient scores) are based on the notion of maximum likelihood. Our
constructions below will make it possible to use, for example, truncated, penalized
or partial likelihood to build a test. In this sense our theory generalizes score tests
theory like M-estimation generalizes classical likelihood estimation. It is even pos-
sible to use functions l1, . . . , lk such that they are totally unrelated to any kind of
a likelihood.

Example 1. Basic example of SNT-statistic is the following (see, e.g., [30] or [29]).
It is known as Neyman’s smooth test statistic for simple hypotheses. Let X1, . . . ,
Xn be i.i.d. random variables. Consider the problem of testing the simple null
hypothesis H0 that the X ′

is have the uniform distribution on [0, 1]. Let {φj} denote
the family of orthonormal Legendre polynomials on [0, 1]. Then for every k one has
the test statistic
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Tk =
k∑

j=1

{
1√
n

n∑
i=1

φj(Xi)

}2

.

We see that Neyman’s classical smooth test statistic is an SNT-statistics.

Example 2. Partial likelihood. Cox in [9] proposed the notion of partial likeli-
hood generalizing the ideas of conditional and marginal likelihood. Applications of
partial likelihood are numerous, including inference in stochastic processes. Below
we give Cox’s definition of partial likelihood and then construct SNT-statistics based
on this notion.

Consider random variable Y having density fY (y; θ). Let Y be transformed into
the sequence

(X1, S1, X2, S2, . . . , Xm, Sm), (3.2)

where the components may themselves be vectors. The full likelihood of the sequence
(3.2) is

m∏
j=1

fXj |X(j−1),S(j−1)(xj|x(j−1), s(j−1); θ)
m∏

j=1

fSj |X(j),S(j−1)(sj|x(j), s(j−1); θ), (3.3)

where x(j) = (x1, . . . , xj) and s(j) = (s1, . . . , sj). The second product is called the
partial likelihood based on S in the sequence {Xj, Sj}. The partial likelihood is useful
especially when it is substantially simpler than the full likelihood, for example when
it involves only the parameters of interest and not nuisance parameters. Cox in [9]
gives some specific examples.

Assume now for simplicity of notations that θ is just a real parameter and that
we want to test the simple hypothesis H0 : θ = θ0 against some class of alternatives.
Define for j = 1, . . . ,m functions

tj =
∂ log fSj |X(j),S(j−1)(sj|x(j), s(j−1); θ)

∂θ

∣∣∣∣
θ=θ0

, (3.4)
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and σ2
j := var(tj). If we define lj := tj/σj, we can form the SNT-test statistic

PLm =
m∑

j=1

{
1√
n

n∑
i=1

lj

}2

. (3.5)

2

Consistency theorems for SNT-statistics will follow from consistency theorems for
more general NT-statistics (they are introduced in Section 3.4). See Theorem 3.10.

Remark 3.1. There is a direct method that makes it possible to find the asymptotic
distribution of SNT-statistic, both under the null hypothesis and under alternatives.
The idea of the method is as follows. First, one approximates the quadratic form Tk

(that has the form Z2
1 + . . .+Z2

k) by the quadratic form N2
1 + . . .+N2

k , where Ni is
the Gaussian random variable with the same mean and covariance structure as Zi,
i.e. the i−th component of Tk. This approximation is possible, for example, if l(Yj)

′s
are i.i.d. random vectors with nondegenerate covariance operators and finite third
absolute moments. Then the error of approximation is of order n−1/2 and depends
on the smallest eigenvalue of the covariance of l(Y1). See [14], p. 1078 for more
details. And the asymptotic distribution and large deviations of the quadratic form
N2

1 + . . .+N2
k has been studied extensively.

3.3 Selection rule.

Since it was shown that for applications of efficient score tests it is important to
select the right number of components in the test statistic (see [4], [12], [23], [13]),
it is desirable to provide a corresponding refinement of our construction. Using the
ideas from [22], we propose a general mathematical framework for constructing a rule
to find a reasonable model dimension. We make our tests data-driven, i.e., tests are
capable to choose a reasonable number of components in test statistics automatically
by the data. Our construction offers a lot of freedom in the choice of penalties and
building blocks for statistics. A statistician could take into account specific features
of his particular problem and choose among all theoretical possibilities the most
suitable penalty and the most suitable structure of the test statistic to build a test
with desired properties.

We will not restrict possible number of components in test statistics by some
fixed number, but instead we allow this number to grow unlimitedly as the number
of observations grows. This is important because the more observations Y1, . . . , Yn

we have, the more information is available about the problem. This makes it possible
to give a more detailed description of the phenomena under investigation. In our
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case this is attainable by allowing the complexity of the model and the number of
components in test statistics to grow with n at a controlled rate.

Denote by Mk a statistical model designed for a specific statistical problem satis-
fying assumptions of Section 3.2. Assume that the true parameter value θ belongs
to the parameter set of Mk, call it Θk. We say that the family of models Mk for
k = 1, 2, . . . is nested we if for their parameter sets it holds that Θ1 ⊆ Θ2 ⊆ . . . . We
do not require Θ′

ks to be finite dimensional. We also do not require that all Θ′
ks are

different (this has some statistical meaning: see the first remark on the page 221 of
[6]).

Let Tk be an arbitrary statistic for testing validity of the model Mk on the basis of
observations Y1, . . . , Yn. The following definition applies for the sequence of statistics
{Tk}.

Definition 8. Consider a nested family of models Mk for k = 1, . . . , d(n), where
d(n) is a control sequence, giving the largest possible model dimension for the case
of n observations. Choose a function π(·, ·) : N × N → R, where N is the set
of natural numbers. Assume that π(1, n) < π(2, n) < . . . < π(d(n), n) for all n
and π(j, n) − π(1, n) → ∞ as n → ∞ for every j = 2, . . . , d(n). Call π(j, n) a
penalty attributed to jth model Mj and sample size n. Then a selection rule S for
the sequence of statistics {Tk} is an integer-valued random variable satisfying the
condition

S = min
{
k : 1 ≤ k ≤ d(n); Tk − π(k, n) ≥ Tj − π(j, n), j = 1, . . . , d(n)

}
. (3.6)

We call TS a data-driven test statistic for testing validity of the initial model.

Possible choices of penalties are, for example, Schwarz’s penalty π(j, n) = j log n, or
Akaike’s penalty π(j, n) = j. The definition is statistically meaningful, of course, only
if the sequence {Tk} is increasing in the sense that T1(Y1, . . . , Yn) ≤ T2(Y1, . . . , Yn) ≤
. . . .

Example 2 (continued). We have an interesting possibility concerning statistics
PLm. This statistic depends on the number m of components in the sequence (3.2).
Suppose now that Y can be transformed into sequences (X1, S1), or (X1, S1, X2, S2),
or even (X1, S1, X2, S2, . . . , Xm, Sm) for any natural m. If we are free to choose the
partition number m, then which m is the best choice? If m is too small, one can
loose a lot of information about the problem; and if m is too big, then the re-
sulting partial likelihood can be as complicated as the full one. Definition 8 gives
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some solution of this problem. The adaptive statistic PLS is capable to choose the
reasonable number of components in partial likelihood automatically by the data. 2

Example 3 (Gaussian model selection). Birge and Massart in [6] proposed
a method of model selection in a framework of Gaussian linear processes. This
framework is quite general and includes as special cases a Gaussian regression with
fixed design, Gaussian sequences and the model of Ibragimov and Has’minskii. In
this example we briefly describe the construction (for details see the original paper)
and then discuss the relations with our results.

Given a linear subspace S of some Hilbert space H we call Gaussian linear process
on S with mean s ∈ H and variance ε2 any process Y indexed by S of the form

Y (t) = 〈s, t〉+ εZ(t),

for all t ∈ S, and where Z denotes a linear isonormal process indexed by S (i.e. Z
is a centered and linear Gaussian process with covariance structure E[Z(t)Z(u)] =
〈t, u〉). Birgé and Massart considered estimation of s in this model.

Let S be a finite dimensional subspace of S and set γ(t) = ‖t‖2−2Y (t). One defines
the projection estimator on S to be the minimizer of γ(t) with respect to t ∈ S.Given
a finite or countable family {Sm}m∈M of finite dimensional linear subspaces of S, the
corresponding family of projection estimators ŝm, built for the same realization of
process Y, and given a nonnegative function pen defined on M, Birgé and Massart
estimated s by a penalized projection estimator s̃ = ŝm̂, where m̂ is any minimizer
with respect to m ∈M of the penalized criterion

crit(m) = −‖ŝm‖2 + pen(m) = γ(ŝm) + pen(m).

They proposed some specific penalties pen such that the penalized projection esti-
mator has the optimal order risk with respect to a wide class of loss functions. The
method of model selection I use has close relations with the one of [6].

In the model of Birgé and Massart γ(t) is the least squares criterion and ŝm is the
least squares estimator of s, which is in this case the maximum likelihood estima-
tor. Therefore ‖ŝm‖2 is the Neyman score for testing the hypothesis s = 0 within
this model. Risk-optimizing penalties pen proposed in [6] satisfy the conditions of
Definition 8 (after the change of notations pen(m) = π(m,n); for the explicit ex-
pressions of pen′s see the original paper). Therefore, ‖ŝm̂‖2 is, in our terminology,
the data-driven SNT-statistics. As follows from the consistency Theorem 3.9 below,
‖ŝm̂‖2 can be used for testing s = 0 and has a good range of consistency.
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3.4 NT-statistics.

Now we introduce the main concept of this Chapter. Suppose that we are under the
general setup of Section 3.2.

Definition 9. Suppose we have n random observations Y1, . . . , Yn with values in
a measurable space Y. Let k be a fixed number and l = (l1, . . . , lk) be a vector-
function, where li : Y → R for i = 1, . . . , k are some known Lebesgue measurable
functions. We assume that Y ′

i s and l′is are as general as in Definition 7. Set

L = {E0[l(Y )]T l(Y )}−1
, (3.7)

where the mathematical expectation E0 is taken with respect to P0, and P0 is the
distribution function of some (fixed and known in advance) random variable Y,
where Y is assuming its values in the space Y. Assume that E0 l(Y ) = 0 and L is
well defined in the sense that all its elements are finite. Put

Tk =

{
1√
n

n∑
j=1

l(Yj)

}
L

{
1√
n

n∑
j=1

l(Yj)

}T

. (3.8)

We call Tk the statistic of Neyman’s type (or NT-statistics).

If, for example, Y ′
i s are equally distributed, then the natural choice for P0 is their

distribution function under the null hypothesis. Thus, L will be the inverse to the
covariance matrix of the vector l(Y ); in classical score tests theory one had an anal-
ogous situation. However, our definitions allow us to use a reasonable substitution
instead of the covariance matrix. This possibility can help for testing in a semi-
or nonparametric case, where instead of finding a complicated covariance in a non-
parametric situation one could use P0 from a much simpler parametric family, thus
getting a reasonably working test and avoiding a considerable amount of technical-
ities. Of course, this P0 will have to satisfy consistency conditions, but after that
we get the consistent test regardless of the unusual choice of P0. Consistency condi-
tions put a serious restriction on possible P0; they are in some sense a mathematical
formalization of the idea how P0 should be connected to Y ′

i s.

Example 2 (continued). It is possible to define by the formula (3.8) a version
of the partial likelihood statistic PLm for the case when θ is multidimensional or
even infinite dimensional. In [9] it is shown that under additional regularity assump-
tions E(tj) = 0. In this case PLm will be an NT-statistic (but not an SNT-statistic).
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Example 3. If for SNT-statistic Tk defined by (3.1) additionally E0 l(Y ) = 0, then
Tk is obviously NT-statistic also. Therefore, in most situations of interest the notion
of NT-statistics is more general than the one of SNT-statistics. The first reason for
introducing SNT-statistics as a special class is that for this special case there is
a well-developed theory for finding distributions of corresponding quadratic forms,
and therefore there could be some asymptotic results and rates for SNT-statistics
such that they are stronger than the corresponding results for NT-statistics (see
Remark 3.1). The second reason is that there exist SNT-statistics of interest such
that they are not NT-statistics. Though, they will not be studied in this thesis.

Example 4. Statistical inverse problems. The most well known example here is
the deconvolution problem. It appears when one has noisy signals or measurements:
in physics, seismology, optics and imaging, engineering. It is a building block for
many complicated statistical inverse problems. In Chapter 2 we constructed data-
driven score tests for the problem.

The problem is formulated as follows. Suppose that instead of Xi one observes
Yi, where

Yi = Xi + εi,

and ε′is are i.i.d. with a known density h with respect to the Lebesgue measure λ;
also Xi and εi are independent for each i and E εi = 0, 0 < E ε2 <∞. Assume that
X has a density with respect to λ. Our null hypothesis H0 is the simple hypothesis
that X has a known density f0 with respect to λ. Let us choose for every k ≤ d(n)
an auxiliary parametric family {fθ}, θ ∈ Θ ⊆ Rk such that f0 from this family
coincides with f0 from the null hypothesis H0. The true F possibly has no relation
to the chosen {fθ}. Set

l(y) =

∂
∂θ

( ∫
R
fθ(s)h( y − s) ds

)∣∣∣
θ=0∫

R
f0(s)h( y − s) ds

(3.9)

and define the corresponding test statistic Uk by the formula (3.8). Under regularity
conditions from Chapter 2 all conditions of Definition 9 are satisfied and Uk is an
NT-statistic.

Example 5. Rank Tests for Independence. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d.
random variables with the distribution function D and the marginal distribution
functions F and G for X1 and Y1. Assume that F and G are continuous, but un-
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known. It is the aim to test the null hypothesis of independence

H0 : D(x, y) = F (x)G(y), x, y ∈ R, (3.10)

against a wide class of alternatives. The following construction was proposed in [25].

Let bj denote the j−th orthonormal Legendre polynomial (i.e., b1(x) =
√

3(2x− 1),
b2(x) =

√
5(6x2 − 6x+ 1), etc.). The score test statistic from [25] is

Tk =
k∑

j=1

{
1√
n

n∑
i=1

bj

(
Ri − 1/2

n

)
bj

(
Si − 1/2

n

)}2

, (3.11)

where Ri stands for the rank of Xi among X1, . . . , Xn and Si for the rank of Yi

among Y1, . . . , Yn. Thus defined Tk satisfies Definition 9 of NT-statistics: put

Zi = (Z
(1)
i , Z

(2)
i ) :=

(
Ri − 1/2

n
,
Si − 1/2

n

)
and lj(Zi) := bj(Z

(1)
i ) bj(Z

(2)
i ). We see here why we need so much generality in

the definition of NT-statistics. New Zi depends on the original (Xi, Yi)
′s in a very

nontrivial way, but still contains some information about the pair of interest. Under
the null hypothesis Lk = Ek×k, and E0l(Z) = 0. Thus, Tk is an NT-statistic.

The selection rule proposed in [25] to choose the number of components k in Tk was

S = min
{
k : 1 ≤ k ≤ d(n); Tk − k log n ≥ Tj − j log n, j = 1, 2, . . . , d(n)

}
. (3.12)

This selection rule satisfies Definition 8, and so the data-driven statistic TS from
[25] is a data-driven NT-statistics. 2

Yet even a more general definition can be useful. The following notion is a com-
plete generalization of the notion of SNT-statistics.

Definition 10. Suppose we have n random observations Y1, . . . , Yn. Let k be fixed
number and l = (l1, . . . , lk) be a vector-function, where li : Y → R for i = 1, . . . , k
are some known Lebesgue measurable functions. We assume that Y ′

i s and l′is are as
general as in Definition 7. Let L be some (fixed and known in advance) symmetric
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k × k matrix. Put

CTk =

{
1√
n

n∑
j=1

l(Yj)

}
L

{
1√
n

n∑
j=1

l(Yj)

}T

. (3.13)

We call CTk the complicated statistic of Neyman’s type (or CNT-statistics).

3.5 Alternatives.

Now we shall investigate consistency of tests based on data-driven NT-statistics. In
this section we study the behavior of NT-statistics under alternatives.

We impose additional assumptions on the abstract model of Section 3.2. First, we
assume that Y1, Y2, . . . are identically distributed. We do not assume that Y1, Y2, . . .
are independent. It is possible that the sequence of interest X1, X2, . . . consists of
dependent and nonidentically distributed random variables. What is important in
our theory is that the new (possibly obtained by a complicated transformation)
sequence Y1, Y2, . . . obeys the conditions of consistency theorems of this Chapter.
Then it is possible to build consistent tests of some hypotheses about X ′

is. The
reason for this is that, even after a complicated transformation, the transformed se-
quence still can contain some part of the information about the sequence of interest.
However, if the transformed sequence Y1, Y2, . . . is not chosen reasonably, then test
can be meaningless: it can be (formally) consistent but against an empty or almost
empty set of alternatives.

Let P denote the alternative distribution of Y ′
i s. Suppose that EP l(Y ) exists.

Another assumption we impose is that l(Yi)
′s satisfy both the law of large numbers

and the multivariate central limit theorem, i.e. that for the vectors l(Y1), . . . , l(Yn)
it holds that

1

n

n∑
j=1

l(Yj) → EP l(Y ) in P − probability as n→∞,

n−1/2

n∑
j=1

(l(Yj)− EP l(Y )) →d N (0, L−1) , (3.14)

where L is defined by (3.7) and N (0, L−1) denotes the k−dimensional normal dis-
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tribution with mean 0 and covariance matrix L−1.

These assumptions put a serious restriction on the choice of the function l and leave
us with a uniquely determined P0. Because of that in consistency theorems of this
Chapter we are not using the full generality of Definition 9. But random variables of
interest X1, . . . , Xn are still allowed to be arbitrarily dependent and nonidentically
distributed, and their transformed counterparts Y1, . . . , Yn are still allowed to be
dependent.

Now we formulate the following consistency condition:

〈C〉 there exists integer K = K(P ) ≥ 1 such that

EP l1(Y ) = 0, . . . , EP lK−1(Y ) = 0, EP lK = CP 6= 0 ,

where l1, . . . , lk are as in Definition 9.

We assume additionally (without loss of generality) that

lim
n→∞

d(n) = ∞ . (3.15)

Remark 3.2. Assumption (3.15) is the most interesting case. It is not very important
from statistical point of view to include the possibility that d(n) is non-monotone.
And the case when d(n) is nondecreasing and bounded from above by some constant
D can be handled analogously to the method of this Chapter, only the proofs will
be shorter.

Let λ1 ≥ λ2 ≥ . . . ≥ λk be the ordered eigenvalues of L, where L is as in
Definition 9. To avoid possible confusion with the statement of the next theorem,
we have to modify our notations a little bit. We remind that in Definition 9 L is a
k × k−matrix. Below we will sometimes need to denote it by Lk in order to stress
the model dimension. Accordingly, ordered eigenvalues of Lk will be denoted by
λ

(k)
1 ≥ λ

(k)
2 ≥ . . . ≥ λ

(k)
k . We have the sequence of matrices {Lk}∞k=1 and each matrix

has its own eigenvalues. That is why below we will use a more precise notation.
When it will be possible, we will use the simplified notation from Definition 9.

Theorem 3.3. Let 〈C〉 and (3.15) holds and

lim
n→∞

sup
k≤d(n)

π(k, n)

nλ
(k)
k

= 0 . (3.16)
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Then

lim
n→∞

P (S ≥ K) = 1 .

Remark 3.4. Condition (3.16) means that not only n tends to infinity, but that it is
also possible for k to grow infinitely, but at the controlled rate.

Proof. (Theorem 3.3). By the law of large numbers, as n→∞ ,

1

n

n∑
i=1

lK(Yi) →P CP 6= 0. (3.17)

By Lemma 2.7

TK =

{
1√
n

n∑
i=1

−→
l (Yi)

}
Lk

{
1√
n

n∑
i=1

−→
l (Yi)

}T

≥ λ
(k)
K

∥∥∥∥ 1√
n

n∑
i=1

−→
l (Yi)

∥∥∥∥2

≥ λ
(k)
K · 1

n

( n∑
i=1

lK(Yi)

)2

. (3.18)

By (3.17)

TK − π(K,n) ≥ nλ
(k)
K ·

( 1

n

n∑
i=1

lK(Yi)
)2
− π(K,n)

= nλ
(k)
K

(
C2

K + oP (1)CK

)
− π(K,n)

= nλ
(k)
K C2

K + oP

(
nλ

(k)
K

)
− π(K,n) ,

and because K, CK are constants determined by fixed P, condition (3.16) yields

TK − π(K,n) →P ∞ as n→∞ . (3.19)

On the other hand, by (3.14)
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(
1√
n

n∑
i=1

l1(Yi), . . . ,
1√
n

n∑
i=1

lK−1(Yi),

)
→P N ,

whereN is a (K−1)−dimensional multivariate normal distribution with expectation
vector equal to zero. This implies that Tk = OP (1) for all k = 1, 2, . . . , K−1 because

Tk ≤ λ
(k)
1

∥∥∥∥1

n

n∑
i=1

l(Yi)

∥∥∥∥2

= λ
(k)
1 OP (1) = OP (1)

and λ
(1)
1 , λ

(2)
1 , . . . , λ

(K−1)
1 are constants and K <∞. Now by (3.19)

lim
n→∞

K−1∑
k=1

P
(
Tk − π(k, n) ≥ TK − π(K,n)

)
= 0 .

But for d(n) ≥ K

P (S < K) ≤
K−1∑
k=1

P
(
Tk − π(k, n) ≥ TK − π(K,n)

)
,

and the theorem follows.

Now suppose that the alternative distribution P is such that 〈C〉 is satisfied and
that there exists a sequence {rn}∞n=1 such that limn→∞ rn = ∞ and

〈A〉 P

(
1

n

∣∣∣∣ n∑
i=1

[
lK(Yi)− EP lK(Yi)

]∣∣∣∣ ≥ y

)
= O

(
1

rn

)
.

Note that in 〈A〉 we do not require uniformity in y, i.e. rn gives us the rate, but
the exact bound can depend on y. In some sense condition 〈A〉 is a way to make the
weak law of large numbers for lK(Yi)

′s more precise. As an illustration, we prove
the next lemma (see Appendix).

Lemma 3.5. Let lK(Yi)
′s be bounded i.i.d. random variables with finite expectation

and variance σ2. Then condition 〈A〉 is satisfied with rn = exp(ny2/2σ).

Therefore, one can often expect exponential rates in condition 〈A〉, but even a much
slower rate is not a problem. The main theorem of this section is
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Theorem 3.6. Let 〈A〉, 〈C〉, (3.15) and (3.16) holds and

d(n) = o(rn) as n→∞ . (3.20)

Then TS →P ∞ as n→∞ .

Proof. (Theorem 3.6). Let x > 0. Since Tj > TK if j > K and (3.15) holds, we get
by Theorem 3.3 that

P (TS ≤ x) =

d(n)∑
j=K

P (Tj ≤ x, S = j) + o(1)

≤ d(n)P (TK ≤ x) + o(1)

≤ d(n)P

(
λK

1

n

( n∑
i=1

lK(Yi)

)2

≤ x

)
+ o(1)

= d(n)P

(∣∣∣∣ 1n
n∑

i=1

lK(Yi)

∣∣∣∣ ≤ √
x

λKn

)
+ o(1) .

Now by Lemma 3.21 and (3.20) we get

P (TS ≤ x) = O

(
d(n)

rn

)
+ o(1) = o(1) .

3.6 The null hypothesis.

Now we study the asymptotic behavior of NT-statistics under the null hypothesis.
We need one more abstract definition first.

Definition 11. Let {Tk} be a sequence of NT-statistics and S be a selection rule
for it. Suppose that λ1 ≥ λ2 ≥ . . . are ordered eigenvalues of L, where L is defined
by (3.7). We say that the penalty π(k, n) in S is of proper weight, if the following
conditions holds:

1. there exists sequences of real numbers {s(k, n)}∞k,n=1 , {t(k, n)}∞k,n=1 , such that
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(a)

lim
n→∞

sup
k≤un

s(k, n)

nλ
(k)
k

= 0 ,

where {un}∞n=1 is some real sequence such that limn→∞ un = ∞.

(b) limn→∞ t(k, n) = ∞ for every k ≥ 2

limk→∞ t(k, n) = ∞ for every fixed n.

2. s(k, n) ≤ π(k, n)− π(1, n) ≤ t(k, n) for all k, n

3.

lim
n→∞

sup
k≤mn

π(k, n)

nλ
(k)
k

= 0 ,

where {mn}∞n=1 is some real sequence such that limn→∞mn = ∞.

For notational convenience we define for l = (l1, . . . , lk) from Definition 9

lj :=
1

n

n∑
i=1

lj(Yi) , (3.21)

l := (l1, l2, . . . , lk) (3.22)

and, using notation L from Definition 9, a quadratic form

Qk(l) = (l1, l2, . . . , lk)L (l1, l2, . . . , lk)
T
. (3.23)

The first reason for the new notation is that Tk = Qk(l), where Tk is the statistic
from Definition 9. It is more convenient to formulate and prove Theorem 3.7 below
using the quadratic form Qk rather than Tk itself. And the main value of introducing
Qk will be seen in Section 3.8, where Qk is the central object.

Below we use the notation of Definitions 9 and 11.

Definition 12. Let S be a penalty of proper weight. Assume that there exists a
Lebesgue measurable function ϕ(·, ·) : R × R → R, such that ϕ is monotonically
decreasing in the second argument and monotonically nondecreasing in the first one,
and assume that

1. (B2) for every ε > 0 there exists K = Kε such that for every n > n(ε)
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un∑
k=Kε

ϕ(k; s(k, n)) < ε ,

where {un}∞n=1 is as in Definition 11.

2. (B)
P0 (nQk(l) ≥ y) ≤ ϕ(k; y)

for all k ≥ 1 and y ∈ [s(k, n); t(k, n)] , where P0 is as in Definition 11.

We call ϕ a proper majorant for (large deviations of) the statistic Tk. Equivalently,
we say that (large deviations of) the statistic Tk are properly majorated by ϕ.

To prove consistency of a test based on some test statistic, usually it is required
to use some large deviations inequality for the test statistic of interest. NT-statistics
are no exception from this. In order to prove consistency of an NT-test, one has to
choose some specific inequality to use in the proof. In the consistency theorem part
of the regularity assumptions on the model and the value of d(n) are determined
by this choice. If one would like to use another inequality, the proof of consistency
should be started anew.

In our method it is easier to prove different types of consistency theorems for
the problem. Sometimes it can be more desirable to have a better rate for d(n)
by the cost of more restrictive regularity assumptions determined by the use of a
strong probabilistic inequality, and sometimes it is better to use simple inequality
that puts less restrictions on the applicability of the test but gives worse rate for
d(n). The meaning of Definitions 11 and 12 and Theorem 3.9 below is that one can
be sure in advance that whatever inequality he choose, he will succeed in proving
consistency theorem, provided that the chosen inequality satisfies conditions (B)
and (B2). Moreover, once an inequality is chosen, the rate of d(n) is obtained from
Theorem 3.9.

Some of the previously published proofs of consistency of data-driven tests relied
heavily on the use of Prohorov’s inequality. For many test statistics this inequality
can’t be used to estimate the large deviations. This is usually the case for more
complicated models where the matrix L is not diagonal. This is typical for statistical
inverse problems and even for such a basic problem as the deconvolution. Our
method helps to surpass this difficulty. It is possible to use, for example, inequalities
of Chebyshev, Prohorov, or Dvoretzky-Kiefer-Wolfowitz for dependent data, or other
large deviations inequalities.
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Theorem 3.7. Let {Tk} be a sequence of NT-statistics and S be a selection rule
for it. Assume that the penalty in S is of proper weight and that large deviations of
statistics Tk are properly majorated. Suppose that

d(n) ≤ min{un ,mn} . (3.24)

Then S = OP0(1) and TS = OP0(1).

Proof. (Theorem 3.7). If S ≥ K, then Tk − T1 ≥ π(k, n) − π(1, n) for some K ≤
k ≤ d(n) and so, equivalently,

{
1√
n

n∑
i=1

l(Yi)

}
L

{
1√
n

n∑
i=1

l(Yi)

}T

−
{

1√
n

n∑
i=1

l1(Yi)

}2

{E0[l1(Y )]T l1(Y )}−1 ≥ π(k, n)− π(1, n) (3.25)

for some K ≤ k ≤ d(n), where l = (l1, l2, . . . , lk). We can rewrite (3.25) in terms of
the notation (3.21)-(3.23) as follows:

(
√
n l1, . . . ,

√
n lk)L (

√
n l1, . . . ,

√
n lk)

T
(3.26)

= n (l1, . . . , lk)L (l1, . . . , lk)
T ≥ n l1

2

E0 l1
2 +

(
π(k, n)− π(1, n)

)
,

for some K ≤ k ≤ d(n). Denote ∆(k, n) := π(k, n)− π(1, n); then with the help of
(3.23) we rewrite (3.26) as

nQk(l) ≥ ∆(k, n) +
n l1

2

E0 l1
2 , (3.27)

for some K ≤ k ≤ d(n). Clearly,

P0(S ≥ K) ≤ P0

(
(3.25) holds for some K ≤ k ≤ d(n)

)
= P0

(
(3.27) holds for some K ≤ k ≤ d(n)

)
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≤ P0

(
nQk(l) ≥ ∆(k, n) for some K ≤ k ≤ d(n)

)
.

But now by condition (B) we have

P0(S ≥ K) ≤ P0

(
nQk(l) ≥ ∆(k, n) for some K ≤ k ≤ d(n)

)
≤

d(n)∑
k=K

P0

(
nQk(l) ≥ ∆(k, n)

)

≤
d(n)∑
k=K

ϕ
(
k; ∆(k, n)

)
, (3.28)

if only d(n) ≤ min{un,mn} (see Definition 11). Thus, because of the Condition (B)
for each ε > 0 there existsK = Kε such that for all n > n(ε) we have P0(S ≥ K) ≤ ε,
i.e. S = OP0(1).

Now by standard inequalities it is possible to show that TS = OP0(1). Let us write
for an arbitrary real t > 0

P0(|TS| ≥ t) =
Kε∑

m=1

P0(|Tm| ≥ t; S = m)

+

d(n)∑
m=Kε+1

P0(|Tm| ≥ t; S = m)

≤
Kε∑

m=1

P0(|Tm| ≥ t) +

d(n)∑
m=Kε+1

P0(S = m)

=
Kε∑

m=1

P0(|Tm| ≥ t) + P0(S ≥ Kε + 1)

≤
Kε∑

m=1

P0(|Tm| ≥ t) + ε

=: R(t) + ε.

For t → ∞ we have P0(|Tm| ≥ t) → 0 for every fixed m, so R(t) → 0 as t → ∞.
Now it follows that for arbitrary ε > 0
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lim
t→∞

P0(|TS| ≥ t) ≤ ε,

therefore
lim
t→∞

P0(|TS| ≥ t) = 0

and
lim
t→∞

P0(|TS| ≥ t) = 0.

This completes the proof.

Remark 3.8. In Definition 12 we need s(k, n) to be sure that the penalty π is not
”too light”, i.e. that the penalty somehow affects the choice of the model dimension
and protects us from choosing a ”too complicated” model. In nontrivial cases it
follows from (B2) that s(k, n) → ∞ as k → ∞. But t(k, n) is introduced for the
reason of statistical sense. Practically, the choice of t(k, n) is dictated by the form of
inequality (B) established for the problem. Additionally, one can drop assumptions 1
and 3 in Definition 11 and still prove a modified version of Theorem 3.7. But usually
it happens that if the penalty does not satisfy all the conditions of Definitions 11 and
12, then TS has the same distribution under both alternative and null hypotheses
and the test is inconsistent. Then, formally, the conclusions of Theorem 3.7 holds
but this has no statistical meaning.

Now we formulate the general consistency theorem for NT-statistics. We under-
stand consistency of the test based on TS in the sense that under the null hypothesis
TS is bounded in probability, while under fixed alternatives TS →∞ in probability.

Theorem 3.9. Let {Tk} be a sequence of NT-statistics and S be a selection rule
for it. Assume that the penalty in S is of proper weight. Assume that conditions
(A), (3.15) and (3.16) are satisfied and that d(n) = o(rn), d(n) ≤ min{un,mn}.
Then the test based on TS is consistent against any (fixed) alternative distribution
P satisfying condition (C).

Proof. (Theorem 3.9). Follows from Theorems 3.3, 3.6 and 3.7 and our definition of
consistency.

As the first application we have the following result.

Theorem 3.10. Let {Tk} be a family of SNT-statistics and S a selection rule for
the family. Assume that Y1, . . . , Yn are i.i.d.. Let E l(Y1) = 0 and assume that for
every k the vector (l1(Yi), . . . , lk(Yi)) has the unit covariance matrix. Suppose that
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‖(l1(Y1), . . . , lk(Y1))‖k ≤ M(k) a.e., where ‖ · ‖k is the norm of the k−dimensional
Euclidean space. Assume π(k, n)− π(1, n) ≥ 2k for all k ≥ 2 and

lim
n→∞

M(d(n))π(d(n), n)√
n

= 0. (3.29)

Then S = OP0(1) and TS = OP0(1).

Proof. (Theorem 3.10) The SNT-statistic TS is an NT-statistic with Lk = Ek×k

and λ
(k)
1 = . . . = λ

(k)
k = 1. Therefore Theorem 3.7 is applicable. Put (in Theorem

3.7) s(k, n) =
√

2k, t(k, n) =
√
nM(k)−1. The Prohorov inequality is applicable if

M(k)π(k, n) ≤
√
n and M2(k)π(k, n) ≤ n for all k ≤ d(n); therefore assumption

(3.29) guarantees that the Prohorov inequality is applicable and, moreover, that (B)
holds with

ϕ(k; y) =
150210

Γ(k/2)

(
y2

2

) k−1
2

exp

{
− y2

2

(
1− M(k) y√

n

)}
. (3.30)

Since ϕ is exponentially decreasing in y under (3.29), it is a matter of simple calcu-
lations to prove that (B2) is satisfied with un = d(n) for any sequence {d(n)} such
that (3.29) holds.

3.7 Applications.

Example 1 (continued). As a simple corollary, we derive the following theorem
that slightly generalizes Theorem 3.2 from [22].

Theorem 3.11. Let TS be the Neyman’s smooth data-driven test statistic for the
case of simple hypothesis of uniformity. Assume that π(k, n)− π(1, n) ≥ 2k for all
k ≥ 2 and that for all k ≤ d(n)

lim
n→∞

d(n)π(d(n), n)√
n

= 0.

Then S = OP0(1) and TS = OP0(1).

Proof. It is enough to note that in this case M(k) =
√

(k − 1)(k + 3) and apply
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Theorem 3.10.

Theorem 3.10 can be also be applied to other statistical problems.

Remark 3.12. In my point of view, the rate at which d(n) tends to infinity is not
crucial for many practical applications. Typical rates such as d(n) = o(log n) or
d(n) = o(n1/3) are not better for applications with n = 50 than, say, just d(n) ≡ 10.
I think that an applied statistician should not try too much to increase d(n) as much
as possible for each n.

Example 5 (continued). In [25] the following consistency result was established.

Theorem 3.13. Suppose that d(n) = o
({

n
log n

}1/10)
. Let P be an alternative and let

F and G be the marginal distribution functions of X and Y under P. Let

EP bj(F (X))bj(G(Y )) 6= 0 (3.31)

for some j. If d(n) → ∞, then TS → ∞ as n → ∞ when P applies (i.e. TS is
consistent against P).

Let us take a look at this result in view of the theory of NT-statistics. Consistency
condition 〈C〉 requires that there exists K = KP such that EP lK 6= 0, i.e.

EP bj

(
Ri − 1/2

n

)
bj

(
Si − 1/2

n

)
6= 0. (3.32)

For continuous F and G (3.32) is asymptotically equivalent to (3.31) since both
F (X) and G(Y ) are distributed as U [0, 1] and

Ri − 1/2

n
→ U [0, 1],

Si − 1/2

n
→ U [0, 1].

We see that Theorem 3.6 is applicable to get a result similar to Theorem 3.13. We
do not go into technical details here. 2

3.8 Quadratic forms of P-type.

Now we introduce another abstract notion concerning quadratic forms.
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Definition 13. Let Z1, Z2, . . . , Zn be identically distributed (not necessarily inde-
pendent) random vectors with k components each. Denote their common distribu-
tion function by F. Let Q be a k×k symmetric matrix. Then Q(x) := xQxT defines
a quadratic form, for x ∈ Rk. We say that Q(x) is a quadratic form of Prohorov’s
type (or just P−type) for the distribution F, if for some {s(k, n)}∞k,n=1 , {t(k, n)}∞k,n=1

satisfying (B1) it holds that for all k, and for all y ∈ [s(k, n); t(k, n)]

PF

(
nQ

(
Z1 + Z2 + . . .+ Zn

n
− EFZ1

)
≥ y

)
≤ ϕ(k; y) , (3.33)

with ϕ being a proper majorant for PF and of the form

ϕ(k; y) = C1 ϕ1(k)ϕ2(λ1, λ2, . . . , λk) y
k−1 exp

{
− y2

C2

}
, (3.34)

where λ1, λ2, . . . , λk are the eigenvalues of matrix Q, and C1, C2 are uniform in the
sense that they do not depend on y, k, n. We will sometimes shortly say that Q(x)
is of P−type for Z ′is.

If Z1, . . . , Zn are i.i.d. and Q is a diagonal positive definite matrix, then Q(x) is
of P-type because of the Prohorov inequality. Definition 13 is meant to incorporate
all the cases when Prohorov’s inequality or some of its variations holds. Thus,
Definition 13 is just some specification of the general condition (B) from Theorem
3.7. It is useful in the sense that it shows which kind of majorating functions ϕ
could (and typically would) occur in condition (B).

As an example we state the following theorem that is a direct consequence of
Theorem 3.9 .

Theorem 3.14. Suppose that for TS condition 〈A〉 holds, L is of P-type for the
distribution function of the vector {(l1(Y1), . . . , lk(Y1))}n

i=1 and that the penalty in S
is of proper weight. Then the test based on TS is consistent against any alternative
P satisfying (C).

In general, there is no simple sufficient conditions for L to be of P-type. But there
is a method that makes it possible to establish P-type property in many particular
situations. This method consists of two steps. On the first step, one approximates
the quadratic form Q(l(Y )) by a much simpler quadratic form Q(N), where N is
the Gaussian random variable with the same mean and covariance structure as l(Y ).
This approximation is possible, for example, under conditions given in [2] or [14].
These authors gave the rate of convergence for such approximation. Then the second
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step is to establish a large deviation result for the quadratic form Q(N); this form
has a more predictable distribution.

On the side note, most of the conditions for the existence of such approximation
of Q(l(Y )) are rather technical and very specific on the structure of L (e.g., imposing
sometimes assumptions on the 5 largest eigenvalues of L). See series of papers by
Gotze, Bentkus, Tikhomirov and references therein.

3.9 GNT-statistics.

The notion of NT-statistics is helpful if the null hypothesis is simple. However, for
composite hypotheses it is not always possible to find a suitable L from Definition
9. Therefore the concept of NT-statistics needs to be modified to be applicable in
case of composite hypotheses. The following definition can be helpful.

Definition 14. Suppose we have n random observations Y1, . . . , Yn assuming values
in a measurable space Y. For simplicity of presentation assume they are identically
distributed. Let k be a fixed number and l = (l1, . . . , lk) be a vector-function,
where li : Y → R for i = 1, . . . , k are some (maybe unknown) Lebesgue measurable
functions. Set

L(0) = {E0[l(Y )]T l(Y )}−1
. (3.35)

where the expectation E0 is taken w.r.t. P0, and P0 is (possibly unknown) distribu-
tion function of Y ′s under the null hypothesis. Assume that E0l(Y ) = 0 and that
L(0) is well-defined in the sense that all of its elements are finite. Let Lk denote for
every k a k×k symmetric positive definite matrix with finite elements such that for
the sequence {Lk} it holds that

∥∥Lk − L(0)
∥∥ = oP0(1) . (3.36)

Let l∗1, . . . , l
∗
n be sufficiently good estimators of l(Y1), . . . , l(Yn) with respect to P0

in the sense that for every ε > 0

P n
0

(
1√
n

∥∥∥∥ n∑
i=1

(l∗j − l(Yj))

∥∥∥∥ ≥ ε

)
→ 0 as n→∞ , (3.37)
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where ‖ · ‖ denotes the Euclidian k−norm of a given vector. Set

GTk =

{
1√
n

n∑
j=1

l∗j

}
Lk

{
1√
n

n∑
j=1

l∗j

}T

. (3.38)

We call GTk the generalized statistic of Neyman’s type (or GNT-statistic). Let
selection rule S satisfy Definition 9. We call GTS the data-driven GNT-statistic.

Remark 3.15. Now it is not obligatory to know functions l1, . . . , lk explicitly (in
Definition 9 we assumed that we knew those functions). It is only important that we
should be able to choose reasonably good L and l∗j ’s. In classical theory of efficient
testing we had efficient score test statistics with estimated scores. Definition 14
generalizes this idea.

Remark 3.16. Establishing (3.37) in parametric problems is usually not difficult and
can be done if a

√
n−consistent estimate of the nuisance parameter is available

(see examples in Chapter 2). In semiparametric models finding estimators of score
function satisfying (3.37) is more difficult and not always possible, but there exist
effective methods for constructing such estimates. Often sample splitting technic
is helpful. See, e.g., [35], [36], [27] for general results related to the topic. Some
authors (e.g., [19]) constructed efficient score tests with estimated scores for some
semiparametric problems. See Example 9 below.

Example 7. If Y1, . . . , Yn are equally distributed and Tk is an NT-statistic,
then Tk is also a GNT-statistic. Indeed, put in Definition 14 L := L(0) and
l∗j (Y1, . . . , Yn) := lj(Y1).

Example 8. Let X1, . . . Xn be i.i.d. random variables with density f(x). Consider
testing the composite hypothesis

H0 : f(x) ∈ {f(x; β), β ∈ B},

where B ⊂ Rq and {f(x; β), β ∈ B} is a given family of densities. In [17] the
data-driven score test for testing H0 was constructed using score test for composite
hypotheses from [10]. Here we briefly describe the construction from [17]. Let F be
the distribution function corresponding to f and set

Yn(β) = n−1

n∑
i=1

(φ1(F (Xi; β)), . . . , φj(F (Xi; β)))T
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with j depending on the context. Let I be the k × k identity matrix. Define

Iβ =
{
− Eβ

∂

∂βt

φj(F (Xi; β))
}

t=1,...,q; j=1,...,k
,

Iββ =
{
− Eβ

∂2

∂βt∂βu

log f(X; β)
}

t=1,...,q; u=1,...,q
,

R(β) = IT
β (Iββ − IβI

T
β )Iβ .

Let β̂ denotes the maximum likelihood estimator of β under H0. Then the score
statistic is given by

Wk(β̂) = nY T
n (β̂){I +R(β̂)}Yn(β̂). (3.39)

As follows from the results of [10], Section 9.3, pp.323-324, in a regular enough sit-

uation Wk(β̂) satisfies Definition 14 and is a GNT-statistic. Practically useful sets
of such regularity assumptions are given in [17].

Example 9. Consider the problem described in Example 4, but with the following
complication introduced. Suppose that the density h of ε is unknown. The score
function for (θ, η) at (θ0, η0) is (see Chapter 2):

l̇θ0,η0(y) =
(
l̇θ0(y), l̇η0(y)

)
, (3.40)

where l̇θ0 is the score function for θ at θ0 and l̇η0 is the score function for η at η0, i.e.

l̇θ0(y) =

∂
∂θ

( ∫
R
fθ(s)hη0( y − s) ds

)∣∣∣
θ=θ0∫

R
fθ0(s)hη0( y − s) ds

1[y: g (y ;(θ0,η0))>0] , (3.41)

l̇η0(y) =

∂
∂η

( ∫
R
fθ0(s)hη( y − s) ds

)∣∣∣
η=η0∫

R
fθ0(s)hη0( y − s) ds

1[y: g (y ;(θ0,η0))>0] . (3.42)
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The Fisher information matrix of parameter (θ, η) is

I(θ, η) =

∫
R

l̇Tθ,η(y) l̇θ,η(y) dGθ,η(y) , (3.43)

where Gθ,η(y) is the probability measure corresponding to the density g (y ; (θ, η)).
Let us write I(θ0, η0) in the block matrix form:

I(θ0, η0) =

(
I11(θ0, η0) I12(θ0, η0)
I21(θ0, η0) I22(θ0, η0)

)
, (3.44)

where I11(θ0, η0) = Eθ0,η0 l̇
T
θ0
l̇θ0 , I12(θ0, η0) = Eθ0,η0 l̇

T
θ0
l̇η0 , and analogously for

I21(θ0, η0) and I22(θ0, η0). The efficient score function for θ in this model is (see
Chapter 2):

l∗θ0
(y) = l̇θ0(y) − I12(θ0, η0) I

−1
22 (θ0, η0) l̇η0(y) , (3.45)

and the efficient Fisher information matrix for θ is

I∗θ0
= Eθ0,η0l

∗T
θ0
l∗θ0

=

∫
R

l∗θ0
(y)T l∗θ0

(y) dGθ0,η0(y) . (3.46)

Then the efficient score test statistics for the composite deconvolution problem from
Chapter 2 is

Wk =

{
1√
n

n∑
j=1

l̂∗θ0
(Yi)

}
(Î∗θ0

)−1

{
1√
n

n∑
j=1

l̂∗θ0
(Yi)

}T

.

This is a GNT-statistics if plugged estimators satisfy (3.36) and (3.37).

Example 10. The following semiparametric example belongs to [19]. Let Z =
(X, Y ) denote a random vector in I × R, I = [0, 1]. We would like to test the null
hypothesis

H0 : Y = β[v(X)]T + ε,

where X and ε are independent, E ε = 0, E ε2 < ∞, β ∈ Rq a vector of unknown
real valued parameters, v(x) = (v1(x), . . . , vq(x)) is a vector of known functions.
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Suppose X has an unknown density f, and ε an unknown density f with respect to
Lebesgue measure λ.

Choose some real functions u1(x), u2(x), . . . . Set

l∗(z) = l∗(x, y) := −
[
f ′

f
(y − v(x)βT )

]
[ũ(x)− ṽ(x)V −1M ]+

+
1

τ
[y − v(x)βT ][m1 −m2V

−1M ],

where

m1 = Egu(X), m2 = Egv(X), m = (m1,m2),

w̃(x) = (ũ(x), ṽ(x)), ũ(x) = u(x)−m1, ṽ(x) = v(x)−m2,

while M and V are blocks in

W =

(
U MT

M V

)
=

1

4

{
J · Eg[w̃(X)]T [w̃(X)] +

1

τ
mTm

}
,

where J = J(f) =
∫

R
[f ′(y)]2

f(y)
dλ(y). Finally set

W 11 = (U −MTV −1M)−1, L =
1

4
W 11,

then the efficient score statistic is

Wk =

{
1√
n

n∑
j=1

l̂∗(Zi)

}
L̂

{
1√
n

n∑
j=1

l̂∗(Zi)

}T

,

where l̂∗(·) is an estimator of l∗, while L̂ is an estimator of L. Inglot and Ledwina
proposed, under additional regularity assumptions on the model, certain estimators
for these quantities such that conditions (3.36) and (3.37) are satisfied, therefore
Wk becomes a GNT-statistic and its asymptotic properties can be studied by the
method of this thesis. 2

A general consistency theorem for GNT-statistics is required. Sometimes in sta-
tistical literature authors do not prove consistency of their tests. They just study the
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null distribution and show simulated examples were the test performs well. One of
the reasons for this is, probably, that without a general consistency theorem one has
to perform a proof of consistency anew for every particular problem. This becomes
difficult in such cases where sample splitting, tricky estimators and huge formulae
are involved. Therefore, in my opinion, for most of the semi- and nonparametric
problems general consistency theorems are the most convenient tool for proving con-
sistency of NT- and GNT-tests. If one has a general consistency theorem analogous
to Theorem 3.9 for NT-statistics, then at least some consistency result will follow
automatically.

Now we prove consistency theorems for GNT-statistics. First, note that Defi-
nitions 11 and 12 are meaningful for a sequence of GNT-statistics {GTk}, if only
instead of L we use in Definition 11 and in (3.23) the matrix L(0) from Definition
14.

Theorem 3.17. Let {GTk} be a sequence of GNT-statistics and S be a selection
rule for it. Assume that the penalty in S is of proper weight (for Rk) and that large
deviations of GTk are properly majorated. Suppose that d(n) ≤ min{un,mn}. Then
under the null hypothesis it holds that S = OP0(1) and GTS = OP0(1).

Proof. (Theorem 3.17). Consider the auxiliary random variable

Rk =

{
1√
n

n∑
j=1

l(Yj)

}
L(0)

{
1√
n

n∑
j=1

l(Yj)

}T

. (3.47)

This is not a test statistic, but formally this random variable satisfies Definition
9. Therefore Theorem 3.7 is applicable for Rk. Since under the null hypothesis
GTk → Rk and GTS → RS in P0−probability by Definition 14, we get the statement
of the theorem by the Slutsky lemma.

To ensure consistency of GTS against some alternative distribution P, it is neces-
sary and sufficient to show that under P it holds that GTS →∞ in P−probability as
n→∞. There are different possible additional sets of assumptions on the construc-
tion that make it possible to prove consistency against different sets of alternatives.
For example, suppose that

〈C1〉
∥∥L− L(0)

∥∥ = oP (1) (3.48)

and that l∗1, . . . , l
∗
n are sufficiently good estimators of l(Y1), . . . , l(Yn) with respect
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to P, i.e. that for every ε > 0

P n

(
1√
n

∥∥∥∥ n∑
i=1

(l∗j − l(Yj))

∥∥∥∥ ≥ ε

)
→ 0 as n→∞ . (3.49)

These assumptions mean that the estimators plugged in GTk are not only good at
one point P0, but that they also possess some ”globally” good quality.

Theorem 3.18. Let {GTk} be a sequence of GNT-statistics and S be a selection
rule for it. Assume that the penalty in S is of proper weight (for Rk). Assume
that conditions 〈A〉, (3.15) and (3.16) are satisfied and that d(n) = o(rn), d(n) ≤
min{un,mn}. Then the test based on TS is consistent against any (fixed) alternative
distribution P satisfying 〈C〉, 〈C1〉 and (3.49).

Proof. (Theorem 3.18). Consider the random variable Rk defined in the proof of
Theorem 3.17. Theorems 3.3, 3.6 and 3.7 are valid for the random variable RS.
Under assumptions of the theorem GTS → RS in P−probability, and we get the
statement of the theorem by the Slutsky lemma.

Remark 3.19. Some relaxation of assumptions (3.48) and (3.49) should be possible.
Indeed, these assumptions ensure us not only that GTS →∞, but also that GTS →
RS under P, where R is defined by (3.47). This is stronger than required for our
purposes, since for us GTS →∞ is enough and the order of growth is not important
for proving consistency.

Remark 3.20. Sometimes in the literature on nonparametric testing authors consider
the number of observations n tending to infinity and alternatives (of specific form)
that tend to the null hypothesis at some speed. For such alternatives some kind of
minimax rate for testing can be established. The hardness of the testing problem can
be measured by this rate. See [20], [38], e.g.. We do not consider rates at this stage
of the development of our theory, but it is possible to consider local alternatives in
this general setup as well. This remains to be investigated.

3.10 Appendix

Proof. (Lemma 3.5) We will use Sloane’s asymptotic expansion for the standard
normal distribution function Φ : for x→∞

Φ(x) = 1− (2π)−1/2 exp(−x2/2)(x−1 + o(x−1)).
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From this expansion and the CLT it follows that

P

(
1

n

n∑
i=1

[
lK(Yi)− EP lK(Yi)

]
≥ y

)

= P

(
1√
n

n∑
i=1

lK(Yi)− EP lK(Yi)

σ
≥ y

√
n

σ

)
= 1− P

(
1√
n

n∑
i=1

lK(Yi)− EP lK(Yi)

σ
<
y
√
n

σ

)
= 1− Φ(y

√
n/σ)

∼ (2π)−1/2 σ

y
√
n

exp
(
− 1

2

ny2

σ2

)
,

and we see that rn = exp(ny2/2σ) is even more than enough.

Because of assumption 〈A〉 we can prove the following lemma.

Lemma 3.21.

P

(∣∣∣∣ 1n
n∑

i=1

lK(Yi)

∣∣∣∣ ≤ √
x

λKn

)
= O

(
1

rn

)
.

Proof. Denote xn :=
√

x
λKn

and remember that by 〈C〉 we have EP lK(Yi) = CK .

Obviously, xn → 0 as n→∞. We have

P

(∣∣∣∣ 1n
n∑

i=1

lK(Yi)

∣∣∣∣ ≤ xn

)
= P

(
− xn ≤ 1

n

n∑
i=1

lK(Yi) ≤ xn

)

= P

(
− xn − CK ≤ 1

n

n∑
i=1

(
lK(Yi)− EP lK(Yi)

)
≤ xn − CK

)
.

Here we get two cases. First, suppose CK > 0. Then we continue as follows:

P

(
− xn − CK ≤ 1

n

n∑
i=1

(
lK(Yi)− EP lK(Yi)

)
≤ xn − CK

)
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≤ P

(
1

n

n∑
i=1

(
lK(Yi)− EP lK(Yi)

)
≤ xn − CK

)
≤ P

(∣∣∣∣ 1n
n∑

i=1

(
lK(Yi)− EP lK(Yi)

)∣∣∣∣ ≥∣∣xn − CK

∣∣)

(for all n ≥ some nK)

≤ P

(∣∣∣∣ 1n
n∑

i=1

(
lK(Yi)− EP lK(Yi)

)∣∣∣∣ ≥ CK

2

)
= O

(
1

rn

)

by 〈A〉, and so we proved the lemma for the case CK > 0. In case if CK < 0, we
write

P

(
− xn − CK ≤ 1

n

n∑
i=1

(
lK(Yi)− EP lK(Yi)

)
≤ xn − CK

)

≤ P

(
1

n

n∑
i=1

(
lK(Yi)− EP lK(Yi)

)
≥ −xn − CK

)

and then we proceed analogously to the previous case.

In the proof of Theorem 3.10 we use the following theorem from [33].

Theorem 3.22. Let Z1, . . . , Zn be i.i.d. random vectors with values in Rk. Let
EZi = 0 and let the covariance matrix of Zi be equal to the identity matrix. Assume
‖Z1‖k ≤ L a.e. Then, for 2k ≤ y2 ≤ nL−2, we have

Pr

(
‖n−1/2

n∑
i=1

Zi‖k ≥ y

)
≤ 150210

Γ(k/2)

(
y2

2

) k−1
2

exp

{
− y2

2

(
1− ηn

)}
,

where 0 ≤ ηn ≤ Lyn−1/2.



Chapter 4

Appendix I. Score tests

In this Appendix we list some basic definitions and theorems related to efficient
estimation and score tests. We start with basic definitions related to regular para-
metric models and scores. We mainly follow here the classical book [3]. The reader
interested in more general treatment of the topic and stronger results should consult
another classical book [16].

Let µ be a fixed σ−finite measure on (X,B), and let Mµ be all probability mea-
sures on (X,B) dominated by µ. Suppose that we have have the parametrization map
θ → Pθ and that θ ∈ Θ ⊆ Rk, where Θ is the parameter set. Let P = {Pθ, θ ∈ Θ}.

We introduce the following two important parametrization maps p and s as fol-
lows:

p ≡ dP

dµ
, s ≡ √

p, p(θ) → s(θ) .

The map p serves as an embedding of P into L1(µ) and the map s is an embedding
of P into L2(µ).

Definition 15. θ0 is a regular point of the parametrization θ → Pθ if θ0 is an interior
point of Θ, and

(1) The map θ → s(θ) from Θ to L2(µ) is Frechet differentiable at θ0

(2) The k × k matrix
∫
ṡ(θ0)ṡ

T (θ0) dµ is nonsingular.

Definition 16. A parametrization θ → Pθ is regular if

(1) Every point of Θ is regular
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(2) The map s→ ṡi(θ) is continuous from Θ to L2(µ) for i = 1, . . . , k.

We call P a regular parametric model if it has a regular parametrization.

Note that (1) of the last definition implies that Θ is open.

Definition 17. Define the score function l̇ of an observation by

l̇(θ) = 2
ṡ(θ)

s(θ)
1[s(θ)>0] =

ṗ(θ)

p(θ)
1[p(θ)>0] . (4.1)

Define the Fisher information matrix of θ by

I(θ) = 4

∫
ṡ(θ)ṡT (θ) dµ =

∫
l̇(θ)l̇T (θ) dPθ . (4.2)

Proposition 4.1. Suppose Θ is open and for all θ :

(1) p(x, θ) is continuously differentiable in θ for µ−almost all x with gradient ṗ(θ)

(2) |l̇(θ)| ∈ L2(Pθ)

(3) I(θ) is nonsingular and continuous in θ.

Then, if we define

ṡ(θ) =
1

2
p−1/2(θ)ṗ(θ) 1[p(θ)>0] , (4.3)

the parametrization θ → Pθ is regular with ṡ(θ) from (5.32) as Frechet derivative of
s(θ).

Regularity of θ is enough to guarantee a score function identity which is basic to
the Cramer - Rao information bound calculation:

∫
l̇(θ) dPθ = 0 . (4.4)

Definition 18. The log-likelihood of (X1, . . . , Xn) is defined by

Ln(θ) =
n∑

i=1

l(Xi, θ) (4.5)
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and the score function of (X1, . . . , Xn) by

Sn(θ) =
1√
n

n∑
i=1

l̇(Xi, θ) . (4.6)

Here one has some inconsistency in standard terminology, since one has two dif-
ferent definitions of score function: one for single observation Xi and another for
(X1, . . . , Xn).

Proposition 4.2. Suppose that P = {Pθ, θ ∈ Θ} is a regular parametric model.
Then uniformly in θ ∈ K for compact K ⊂ Θ it holds

Lθ(Sn(θ)) → N (0, I(θ)) , (4.7)

where N is the multivariate normal distribution and the sign Lθ means convergence
in law for the case when θ is the true parameter value.

Now let ν : P → Rm be a Euclidean parameter, where P is a general (not
necessarily parametric) model.

Definition 19. T is an asymptotically linear estimate of ν if there exists

Ψ : X×P → Rm

such that for all P ∈ P

|Ψ(·, P )| ∈ L2(P ), (4.8)

∫
Ψ(x, P ) dP = 0, (4.9)

Tn = ν(P ) + n−1

n∑
i=1

Ψ(Xi, P ) + oP (n−1/2). (4.10)

We call Ψ(·, P ) the influence function of T.

We can identify parameter ν with the parametric function q : Θ → Rm defined
by
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q(θ) = ν(Pθ).

Definition 20. Fix P = Pθ and suppose q has a total differential matrix q̇m×k

at θ. Define I−1(P |ν,P) = q̇(θ)I−1(θ)q̇T (θ) to be the information bound for ν and

l̃(·, P |ν,P) = q̇(θ)I−1(θ)l̇(θ) to be the efficient influence function for ν.

The notation of the previous definition is confusing, but it still remains to find a
better one.

Information inequality. If T is uniformly Gaussian regular, then

Σ(Pθ, T ) ≥ I−1(Pθ|ν,P) (4.11)

in the order on nonnegative definite matrices. Equality holds if and only if T is
uniformly efficient. 2

Asymptotic optimality theorem. If T is uniformly regular and l is a bowl-shaped
loss function, then

lim inf
n→∞

Eθl(
√
n(Tn − q(θ))) ≥ El(Zθ), (4.12)

where Zθ ∼ N (0, I−1(Pθ|ν,P)).

This theorem has a broad range of applications. It covers such important special
cases as quadratic loss function and zero-one loss function, for example.

The next proposition (from [3], p.39) is important for proving efficiency of esti-
mators.

Proposition 4.3. Suppose that Tn is an asymptotically linear estimator at θ0 of
ν(Pθ) = q(θ) with influence function ψ where q : Θ → Rm. Then

A. Tn is (Gaussian) regular at θ0 iff q(θ) is differentiable at θ0 with derivative

q̇(θ0) and, with l̃ ≡ l̃(·, Pθ0|ν,P),

(∗) ψ − l̃ ⊥ Ṗ = [l̇1, l̇2],

where (∗) is equivalent to

E0ψl̇
T = q̇(θ0).
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B. If Tn is regular, then ψ ∈ Ṗm iff

ψ = l̃ = q̇(θ0)I
−1(θ0)l̇(θ0).
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Chapter 5

Appendix II. Neyman’s smooth
tests

This Appendix contains some basic definitions related to the data-driven Neyman’s
smooth tests of fit. We mainly cite below [18].

When testing H0 against HA w.l.o.g. attention can be restricted to i.i.d. X1, . . . ,
Xn with values in [0, 1], with the null hypothesis being that the Xi are uniform on
[0, 1]. Suppose an alternative is from the standard exponential family, i.e. has the
form

gk(x; θ) = exp

{
k∑

j=1

θjφj(x)− ψk(θ)

}
, (5.1)

where φ′js are orthonormal in L2[0, 1] with φ0 ≡ 1 and ψk(θ) is a normalizing con-
stant. Then Neyman’s smooth test statistic with k components is then given by

Nk =
k∑

j=1

{
1√
n

n∑
i=1

φj(Xi)

}2

. (5.2)

Note that this Neyman’s statistic is a special case of the score statistic defined in
Appendix I.

Inglot, Kallenberg and Ledwina in used in their papers selection rule S in order
to automatically select ”good” model dimension k. The correspondingly modified
test NS is called Neman’s smooth data-driven goodness-of-fit test. In this Thesis we
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sometimes use the abbreviation ”DDN-test”.

Consider now another testing problem when in the setup above the alternative
hypothesis HA is just a simple hypothesis, i.e. we are testing hypothesis P = P0

against the only possible alternative P = PA, where P0 and PA are some distribution
functions. Suppose these distributions have densities, and denote them by p0 and
pA correspondingly.

Definition 21. The statistic

NPn =
{
nV arP0 log pA(X)

}−1/2

{
k∑

j=1

[
log pA(Xi)− EP0 log pA(X)

]}
(5.3)

is a standardized version of the logarithm of the Neyman-Pearson test statistic for
P0 against PA.



Chapter 6

Appendix III. Basic definitions
related to Asymptotic Efficiency

6.1 Historical remarks.

Here we say only a couple of words concerning the history of the notion of efficiency.
For more details see the classical book [32] by Nikitin.

It was pointed out by Kendall and Stuart [26] that the notion of asymptotic
efficiency of tests is more complicated than the asymptotic efficiency of estimates.
Various approaches to this notion were identified only in the late forties and early
fifties, i.e. 20 years later than for the estimation theory.

6.2 Basic classical definitions.

The definitions of this section are formulated following the way Nikitin does in his
book. However, I omitted some definitions from Nikitin’s book, and so this section
is not self-contained and can be used only as a brief reminder. I collected only basic
classical definitions of AREs in this section.

Let X1, X2, . . . be a sequence of i.i.d. random variables having the distribution
Pθ from some parametric family determined by parameter θ taking on values in
a parametric set Θ. Here Θ is not necessarily finite dimensional space, but it can
also be a functional space or any other set. The situation is therefore essentially
nonparametric. We assume in addition that Θ is a topological space.
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Consider the problem of testing the hypothesis

H : θ ∈ Θ0 ⊂ Θ

against the alternative
A : θ ∈ Θ1 = Θ \Θ0

on the basis of observations X1, X2, . . . , Xn.

Suppose we use a sequence of statistics {Tn}, where Tn = Tn(X1, X2, . . . , Xn), and
assume large values of Tn to be significant.

Define for any β ∈ (0, 1) and θ ∈ Θ1 a real sequence cn := cn(β, θ) such that the
following inequality holds

Pθ(Tn > cn) ≤ β ≤ Pθ(Tn ≥ cn). (6.1)

Then

αn(β, θ) := sup{Pθ′ (Tn ≥ cn) : θ
′ ∈ Θ0}

is the minimal size of the test based on {Tn} for which the power at the point θ is
not less than β. Now we can define for any level of significance α, 0 < α < β, the
positive integer

NT (α, β, θ) := min{n : αn(β, θ) ≤ α for all m ≥ n}.

We see that NT (α, β, θ) is the minimal sample size necessary for the test at a level
α, based on {Tn}, to have the power not less than β at the point θ.

Definition 22. Suppose that for testing H against A we have two sequences of
test statistics {Tn} and {Vn}. Define by eV,T (α, β, θ) the relative efficiency of the
sequence {Vn} with respect to {Tn} in the following way:

eV,T (α, β, θ) := NT (α, β, θ)/NV (α, β, θ). (6.2)

A value eV,T (α, β, θ) larger than 1 means that for given α, β, θ the sequence {Vn}
is better to use than {Tn} because the first sequence requires less observations for
reaching the power β for the level α and the alternative value θ. Therefore relative
efficiency is a meaningful statistical notion. However, eV,T (α, β, θ) depends on 3
parameters and two sequences of statistics, which makes it too difficult to calculate
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relative efficiency in most cases. Lucky enough, in many cases different limiting
values of eV,T (α, β, θ) still provide us useful statistical information. Therefore we
introduce the following three fundamental definitions.

Definition 23. If for β ∈ (0, 1) and θ ∈ Θ1 there exists the limit

eB
V,T (β, θ) := lim

α↓0
eV,T (α, β, θ), (6.3)

it is called the Bahadur ARE of the sequence {Vn} with respect to {Tn}.

Definition 24. If for α ∈ (0, 1) and θ ∈ Θ1 there exists the limit

eHL
V,T (β, θ) := lim

β↑1
eV,T (α, β, θ), (6.4)

it is called the Hodges-Lehmann ARE of the sequence {Vn} with respect to {Tn}.

Definition 25. If for 0 < α < β < 1 and θ → θ0 ∈ ∂Θ0 (in a certain topology on
Θ) there exists the limit

eP
V,T (β, θ) := lim

θ→θ0

eV,T (α, β, θ), (6.5)

it is called the Pitman ARE of the sequence {Vn} with respect to {Tn}.

It is also difficult to calculate these three types of ARE, but it is still much easier
than to deal with the definition 21. There also exist the intermediate approaches
to measuring the ARE not coinciding with the above ones. For example, Chernoff
ARE (see [8]), intermediate (or Kallenberg) ARE (see [21], and also Appendix IV).
For other definitions see Rubin and Sethuraman [34], and Borovkov and Mogulskii
[7]. It seems that it is much less proven about these intermediate AREs than about
the fundamental notions.
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Chapter 7

Appendix IV. Intermediate
Efficiency and Optimality

7.1 Intermediate efficiency.

In this section we give for the ease of reference some basic definitions related to the
intermediate (or Kallenberg) efficiency and formulate several important theorems
about intermediate optimality of the DDN-test (see Appendix II).

Consider a probability space (X,B). Let S = (X1, X2, . . .) be a sequence of i.i.d.
random variables having the distribution Pθ from some parametric family deter-
mined by parameter θ taking on values in a parametric set Θ.

Consider the problem of testing the hypothesis

H : θ ∈ Θ0 ⊂ Θ

against the alternative
A : θ ∈ Θ1 = Θ \Θ0

on the basis of observations X1, X2, . . . , Xn.

Definition 26. A family {φN ;α;N ∈ N, 0 < α < 1} is called a family of (ran-
domized) tests of H0, if for each N ∈ N and 0 < α < 1 the function φN ;α(s) =
φN ;α((x1, x2, . . .)) is a measurable function of x1, x2, . . . , xN only, with values in
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[0, 1], satisfying

sup
θ0∈Θ0

Eθ0φN ;α(s) ≤ α. (7.1)

The next definition was introduced by Kallenberg (see [21]). Let αn be a sequence
of levels such that αn > 0 and for some 0 ≤ τ < 1

lim
n→∞

αn = lim
n→∞

n−τ logαn = 0. (7.2)

Let {θn} be a sequence of alternatives with

lim
n→∞

H(θn,Θ0) = 0, lim
n→∞

nH2(θn,Θ0) = ∞. (7.3)

Here H(θ,Θ0) = infθ0∈Θ0 H(θ, θ0) and H(θ, θ0) denotes the Hellinger distance be-

tween the probability measures Pθ and Pθ0 . Let V
(i)
n , i = 1, 2 be some test statistics

and let φ
(i)
n;αn be a sequence of test functions for H0 against A, rejecting H0 for large

values of V
(i)
n (see Definition 25). Assume additionally that

0 < lim inf
n→∞

Eθnφ
(2)
n;αn

≤ lim sup
n→∞

Eθnφ
(2)
n;αn

< 1. (7.4)

Define

NV (2),V (1)(n, θn) = inf{N : Eθnφ
(1)
N+k;αn

≥ Eθnφ
(2)
n;αn

for all k ≥ 0} (7.5)

and set

eV (2),V (1) = lim
n→∞

NV (2),V (1)(n, θn)

n
. (7.6)

Definition 27. In the notations above, if the limit eV (2),V (1) exists and doesn’t
depend on {θn} and {αn}, we say that the asymptotic τ intermediate efficiency of
V (2) with respect to V (1) equals eV (2),V (1) .
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7.2 Intermediate optimality.

The next definition applies only in the setup of Appendix II. We use the notation
of that Appendix as well.

Definition 28. We shall say that a test statistic Vn is asymptotically τ efficient if its
asymptotic τ intermediate efficiency with respect to the Neyman-Pearson test exists
and is equal 1. If Vn is τ efficient for some τ, we shall say that Vn is asymptotically
(intermediate) optimal.

It is usually said in statistical folklore that ”the DDN-test is asymptotically op-
timal against essentially all alternatives” and that ”intermediate efficiency fills the
gap between Pitman’s and Bahadur’s efficiencies”. Now we formulate the full the-
orem about intermediate optimality of the DDN-test. We cite this theorem from
[18].

The following additional conditions on the model of Appendix II are imposed.

∫ 1

0

φj(x) dx = 0, j = 1, 2, . . . . (7.7)

sup
x
|φj(x)| <∞. (7.8)

max
1≤j≤k

sup
x
|φj(x)| = O(kω) for some ω ≥ 0. (7.9)

For some r such that r > ω + 3/2, let {mn} be a sequence such that for n→∞

mn →∞ and mn = O(n1/(2r+1)). (7.10)

Assume {Pn} is a sequence of distributions on [0, 1] possessing densities pn with
respect to λ. By P0 we denote throughout this section the uniform distribution on
[0, 1].

Suppose that there exists M such that, for sufficiently large n,

e−M ≤ pn(x) ≤ eM , x ∈ [0, 1].

Now set φ = (φ1, . . . , φmn) and let ◦ stand for the inner product in Rmn . We assume
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that there exists θ = (θ1, . . . , θmn) such that

γmn = ‖ log pn − θ ◦ φ‖∞ is bounded, (7.11)

∆mn = ‖ log pn − θ ◦ φ‖2 = O

(
1

mr
n

)
, (7.12)

where ‖ · ‖∞ denotes the supremum norm and ‖ · ‖2 is the L2[0, 1] norm.

Additionally we suppose that, as n→∞,

H(pn, p0) → 0 and mr
nH(pn, p0) →∞, (7.13)

where H denotes the Hellinger distance.

A set of {pn}′s satisfying the three above assumptions shall be denoted by Pm,r.

For a given alternative pn set

e0,n = EP0 log pn(X), v2
0,n =

∫ 1

0

log2 pn(x) dx.

Define

Yn,i = v−1
0,n{log pn(Xi)− e0,n}.

Assume now that there exist positive constants B, C ′, C ′′ such that for all complex
h, |h| < B and for all n

C ′ ≤ |EP0 exp(hYn,1)| ≤ C ′′. (7.14)

Define P∗m,r to be the subset of Pm,r for which γmn → 0 as n → ∞ and (7.14) is
satisfied. We will be concerned with a smaller set of the form

D(µ, ν) =
{
{pn} ∈ P∗m,r : nµH2(pn, p0) → 0 and nνH2(pn, p0) →∞

}
.

Now we are finally ready to finish the formulation of the theorem.

Theorem 7.1. Assume that r is a fixed number satisfying the above conditions.
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Take mn = Cn1/η, where η ≥ 2r + 1 and C is an arbitrary constant. Let µ, ν be
any numbers satisfying (3 + 2ω)/η < µ < ν < 2r/η. Then, for testing against all
sequences of alternatives from D(µ, ν) and τ = (η− 2ω− 1)/η, the DDN-statistic is
asymptotically optimal in the intermediate sense.

Inglot, Kallenberg and Ledwina proved other theorems on the topic as well, but
I think this one already gives an impression about this type of results. The set
P∗m,r consists of alternatives which obey a set of restrictions concerning growth of
their Fourier coefficients. It can be argued if these restrictions are strong or not,
but anyway there exist an infinite number of directions of alternatives which are not
covered by this theorem. For example, one can construct an infinite-dimensional
set of such ”bad” alternatives even using only contamination alternatives of the
form pn(x) = 1 + n−ξg(x), where g is bounded. It is enough to choose g′s with
Fourier coefficients growing faster than the optimality theorem allows. It is even
easier to construct such an example using theorem 4.6 from [22], which is somewhat
analogous to the above optimality theorem but deals specifically with contamination
alternatives.

It will be an interesting task to give an estimate of how big is a subset of alter-
natives for which some intermediate optimality result holds, in comparison with all
possible alternatives of interest. More specifically, if one takes only contamination
alternatives mentioned above and the optimality theorem 4.6 from [22], how big is
actually the set of ”good” g′s in comparison with the Sobolev space W 1

2 (even if we
do not care about the speed parameter ξ)?

I think one shouldn’t say ”the DDN-test is asymptotically optimal against essen-
tially all alternatives” and that ”intermediate efficiency fills the gap between Pit-
man’s and Bahadur’s efficiencies” while the above question remains unanswered.
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[16] I. A. Ibragimov and R. Z. Has′minskĭı. Statistical estimation, volume 16 of
Applications of Mathematics. Springer-Verlag, New York, 1981. Asymptotic
theory, Translated from the Russian by Samuel Kotz. 5, 26, 67

[17] T. Inglot, W. C. M. Kallenberg, and T. Ledwina. Data driven smooth tests for
composite hypotheses. Ann. Statist., 25(3):1222–1250, 1997. 29, 59, 60

[18] T. Inglot and T. Ledwina. Asymptotic optimality of data-driven Neyman’s
tests for uniformity. Ann. Statist., 24(5):1982–2019, 1996. 5, 10, 73, 81

[19] T. Inglot and T. Ledwina. Asymptotic optimality of new adaptive test in
regression model. Ann. Inst. H. Poincaré Probab. Statist., 42(5):579–590, 2006.
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