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Chapter 1

Introduction

This work is concerned with a new type of almost sure behavior which was introduced
by Erdös and Rényi in 1970 and which is called Erdös-Rényi law or new law of large
numbers since then. They found that the maxima of partial sums of independent and
identically distributed random variables summed over blocks of length rn converge almost
surely after appropriate norming to some non-zero value. This value strongly depends
on the growth rate of rn and is determined by the Laplace transform of the distribution.
Moreover sometimes this value and the distribution of X1 determined each other, provided
that the growth rate of rn has order of logarithm.
A natural question is to generalize the result to more general averages. This is the main
goal of this thesis.
To be more precise, suppose thatX,X1, X2, ... is a sequence of independent and identically
distributed (i.i.d.) random variables defined on a probability space (E,F , P ). To avoid
trivialities, assume in addition that the X ′

is are nondegenerate, i.e. P (Xi = x) < 1 for all
x, with distribution function F (x) = P (X < x). Let Sn :=

∑n
i=1Xi denote a partial sum

of X ′
is, with the convention that S0 = 0. We are concerned with the almost sure (a.s.)

limiting behavior of

Tn(rn) := (Sn+rn − Sn), (1.1)

Dn(rn) := max
0≤k≤n−rn

(Sk+rn − Sk), (1.2)

Wn(rn) := max
0≤k≤n−rn

max
1≤j≤rn

(Sk+j − Sk), (1.3)
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Rn(rn) := Sn − Sn−rn , and R̃n(rn) := max
0≤k≤rn

(Sn+k − Sn), (1.4)

where rn is any nondecreasing sequence of natural numbers taking values between 1 and
n. The exact form of rn will be specified later. The classical problems are as follows:
Problem (A): Under which conditions on the moments of Xi and the growth rate of rn,
does there exists a norming sequence of constants qn such that with probability one

lim
n→∞

Dn(rn)

qn
→ α or lim sup

n→∞

Dn(rn)

qn
= α, (1.5)

where α is a positive constant?
Furthermore, under the same conditions on the moment of Xi and rn, does the formula
(??) still holds true, when we replace Dn(rn) by Wn(rn) or Tn(rn) or Rn(rn)? Obviously
Wn(rn) ≥ Dn(rn) ≥ Rn(rn) and Wn(rn) ≥ R̃n(rn) ≥ Tn(rn).

Results of type (??) are important in many cases. For instance, in many practical situ-
ations, such as roulette or manufacturing, when observations are taken sequentially and
each observation classified as success or failure. For these cases, it is possible to use (??)
to test the hypothesis that the success probability is p. On the other hand (??) can be
used to recognize pattern of unusually long runs of successes or failure, (see Arratia and
Waterman [?]). Furthermore, such results and methods can be also used to study the
asymptotic behavior of several statistics based on increments. For example, statistics of
type Dn(rn) are applicable in actuarial and financial analysis which require estimates of
possible losses or gains over time subinterval, (see, Bingswanger and Embrechts [?]).
These results are also used in investigating the asymptotic of increments of renewal
processes, compound sum processes and other processes associated with sums Sn, (see,
Steinebach [?], and Deheuvels and Steinebach 1989).
Moreover, such results are interesting from a probabilistic as well as statistical point of
view since, on one hand, asymptotic properties of increments of certain stochastic pro-
cesses can be characterized with probability one and, on the other hand, such properties
even determine the whole underlying distribution in several cases, which is of definite
statistical interest, (see e.g., [?], [?]).

Note that if rn grows as fast as n, then Dn(n) = Rn(n) = Sn, Wn(n) = max1≤k≤n Sk, and
if rn does not grow at all, say rn = 1, then Dn(n) = Wn(n) = max1≤k≤nXk. Hence, the
theory of sums of random variables as well as the extreme value theory are parts of the
general theory of statistics (??)− (??).
The a.s. asymptotic behavior of Dn(rn), Wn(rn) and functionals of this type crucially
depend on the growth rate of rn. In the sequel we will distinguish between two kinds of
increments:
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• Short increments, i.e., we let rn in the definition of the statistics defined by (??)−
(??) be any nondecreasing sequence of natural numbers such that

rn = O(log n)

holds. We will see in the next chapters that, the norming sequence qn in the theo-
rems for short increments depends on the full distribution of X, and it sometimes
characterizes this distribution. This observation has been made by Erdös and Rényi
[?]. The case of short increments has been considered in a series of papers after the
fundamental work of Erdös and Rényi. Various strong and weak limit theorems for
short increments have been obtained by [?], [?, ?, ?], [?], [?, ?], [?], [?, ?], and [?].
The behavior of short increments has been studied earlier in 1964 by Shepp [?],
where he introduced the statistic Tn. In fact D. J. Newman initiated the work re-
lated to the statistic Tn, where he consider the following situation:
Let {Xi : i ≥ 1} be independent and identically distributed Bernoulli trials with suc-
cess probability p ∈ (0, 1). Let Nn be the number of consecutive successes beginning
at trial n+ 1:

{ω : Nn = j} = {ω : Xn+1 = 1, Xn+2 = 1, ..., Xn+j = 1, Xn+j+1 = 0} .

D. J. Newman proved that (see, e.g., [?] p. 61),

lim sup
n→∞

Nn

log1/p n
= 1 a.s.

The results for short increments are called Erdös-Rényi and Shepp laws.

• Large increments, i.e. the sequence rn grow faster than log n. It satisfies

rn
log n

→∞.

The norming sequence of theorems of large increments is relatively universal and
it coincides with that for the Gaussian distribution. In 1979 Csörgö and Révéz [?]
obtained the first result of this type by an application of the Komlós-Major-Tusnády
strong approximation and results on asymptotics of large increments of a Wiener
process (see, [?]). Frolov [?] has generalized these results to the case of one-sided
moment assumption. These results are called the Csörgö-Révéz law. Thus, the
asymptotic behavior of statistics (??)− (??) varies from strong noninvariance, like
in Erdös-Rényi and Shepp laws to strong invariance, as in Csörgö-Révéz law.

An important role in modern probability theory and mathematical statistics is played
by von Mises functionals and U-statistics, introduced by von Mises [?] and by Hoeffding
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respectively. The origin of U-Statistic can be traced back to the fundamental work of
Hoeffding in 1948, as a generalization of the sample mean. Hoeffding proved the central
limit theorem for U-statistics. His work was influenced by Halmos [?] and was also closely
related to von Mises. Of particular interest is the fact that many estimate and statis-
tics for tests of hypotheses can be represented as von Mises functionals and U-statistics.
The use of U-statistics is an effective way to obtain an unbiased estimator. In nonpara-
metric problems, U-statistics are often uniformly minimum variance unbiased estimators
(UMVUE), where as in parametric problems, U-statistics can be used as initial estima-
tors to derive more efficient estimators. In addition to numerous articles, there are several
monographs devoted to properties of U-statistics (see, Denker [?], Lee [?], Borovskikh [?]
or Serfling [?] chapter 5− 6).

The limit theorems for increments of sums of i.i.d. random variables as introduced above
are well understood in the sense that there are necessary and sufficient analytic conditions
under which the Problem (A) is completely solved. As U-statistics generalize the concept
of usual mean of a sequence of independent and identically distributed random variables,
they still need to be developed in that sense. Towards that goal we extend Erdös-Rényi
and Shepp laws as well as Csörgö-Révéz law for U-statistics in our thesis. Precisely we
would like to do the following:

For a nondecreasing sequence of natural numbers rn so that m ≤ rn ≤ n, we introduce
two different types of statistics based on increments of U-statistics of degree m,

D̂n(rn) = max
0≤k≤n−rn

{(k + rn)(Uk+rn(h)− ϑ)− k(Uk(h)− ϑ)} , (1.6)

and

Dn(rn) := max
0≤k≤n−rn

Uk+rn
1+k := max

0≤k≤n−rn

∑
1+k≤i1<...<im≤k+rn

h(Xi1 , ..., Xim). (1.7)

• Observe that if m = 1 and ϑ := Eh(X1) = 0, then

Dn(rn) = D̂n(rn) = max
0≤k≤n−rn

{
n+rn∑
j=1

h(Xj)−
k∑
j=1

h(Xj)

}
.

Thus the statistics Dn(rn) and D̂n(rn) coincide with the statistic Dn(rn) introduced
by Erdös and Rényi. Therefore, in the sequel we will consider the case that m ≥ 2.
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• Observe that if rn take the extreme values, then

Dn(n) =

(
n

m

)
Un(h), Dn(m) = max

0≤k≤n−m
h(Xk+1, ..., Xk+m)

and
D̂n(m) = max

0≤k≤n−m
{(k + 1)(Uk+1(h)− ϑ)− k(Uk(h)− ϑ)} ,

D̂n(n) = n(Un(h)− ϑ).

• Let m = 2 and h be given by h(x, y) = (x+ y)/2 with Eh = ϑ = 0, then

D̂n(rn) := max
0≤k≤n−rn

(Sk+rn − Sk), Dn(rn) := max
0≤k≤n−rn

(Sk+rn − Sk)/(rn − 1).

Hence, the theory of sums of U-statistics, the extreme value theory for m dependent ran-
dom variables as well as the statistics (??) given by Erdös and Rényi are parts of the
general theory of statistics (??), (??). In fact we go further than statistics (??) and (??)
in the sequel and call them functionals of type D̂n(rn) or Dn(rn).

After defining statistics (??) − (??), the main object in our thesis is to find a norming
sequence cn and sufficient conditions on the moments of h, which stabilize the statistics
(??)−(??) non trivially with probability one. Formally, we want to find norming sequence
cn and sufficient conditions on h implies that

lim
n→∞

D̂n(rn)

cn
→ α, (1.8)

and

lim
n→∞

Dn(rn)

cn
→ α, (1.9)

where α is a positive number and α, cn in (??), (??) are not necessary the same. We
replace lim by lim sup, if the lim in (??) and (??) does not exist. In fact, in the case
m ≥ 2 this problem become significantly more complicated, and no general results in this
area until recently.
The organization of this thesis is the following:
In Chapter ?? we briefly review some basic facts of U-statistics and fix our notations.
In particular, we remark the martingale property of Uk+rn

1+k , which will be essential for
proving the upper limit of Csörgö-Révéz law for U-statistics in Chapter ??.

In Chapter ??, under suitable conditions on h, we prove statement (??) for D̂n(rn)
and for other functionals of type D̂n(rn) defined in this chapter (see, Corollaries ?? and
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??). Our analysis is based on the upper limit for the statistics T̂n(rn) which is stated
in Proposition ??. Taking h(x) = x we note that D̂n(rn) reduces to Dn(rn) defined by
(??). Hence we recover the result by Frolov. For the sake of completeness we have stated
Frolov’s result in Theorem ??. It is well known that Frolov’s theorem implies the Erdös-
Rényi and Shepp laws as well as Csörgö-Révéz law, and we show in section ?? that these
property also hold for kernels with dimension greater than or equal 2. In Subsection
?? we give an application of Corollary ?? including Erdös-Rényi and Shepp type laws,
the Csörgö-Révéz law and the law of iterated logarithm for nondegenerate U-statistics.
Mason’s theorem also holds partly for these statistics. Thus we can get Erdös-Rényi and
Shepp type laws, Csörgö-Révéz law and the Mason theorem as a by-product. For the
reader’s convenience we state these known results in the first three sections.

In Chapter ?? we recall some well known results from large deviations theory for U-
statistics and derived from them some corollaries as well as we proved some axillary
lemmas, which will play an important role in describing the a.s. asymptotic behavior of
the statistics Dn(rn) and functionals of this type in Chapter ??.

In Chapter ?? we prove another type of Erdös-Rényi law for arbitrary U-statistics with
kernel of degree m = 2 (Theorem ??). Thus we solve statement (??) partly, in the sense
that, the a.s. asymptotic behavior of the statistics Dn(rn) defined by (??) is described
only for sequences rn such that rn = [c log n]. Hence, by definition of Dn(rn) in (??),
Theorem ?? generalize Theorem ?? given by Erdös-Rényi 1970. Furthermore we extend
Theorem ?? to describe the a.s. asymptotic behavior of the statistics Dn(rn) defined by
(??) considering increments of length (log n)p for p > 1. Thus we solve statement (??) for
rn = (log n)p for p > 1. This is done in Theorem ?? and Theorem ??. These theorems hold
only for nondegenerate U-statistics with kernel of degree m ≥ 2 and generalize Theorem
?? given by Book [?]. Hence Theorem ?? together with Theorem ?? solve statement (??)
for rn = (log n)p with p ≥ 1 completely.

However we are only able to give the lower limit of Csörgö-Révéz law for nondegenerate
U-statistics, and the upper limit of Csörgö-Révéz law for arbitrary U-statistics. This is
done in Lemma ?? and Lemma ?? respectively. These lemmas generalizes Theorem ??
given by Frolov [?] partly. That means the statement (??) is solved for (log n) ≤ rn ≤ n
partly.

Finally to solve statement (??) completely, we describe the a.s. asymptotic behavior of
the statistics Dn(rn) defined by (??) considering increments rn such that rn

logn
→ 0 partly,

i.e., we give only the upper limit. This is done for arbitrary U-statistics with kernel of
degree m and given by Lemma ??. Thus we generalizes Theorem ?? given by Mason [?]
partly. We also partly extend Theorem Theorem ?? for arbitrary U-statistics with kernel
of degree m ≥ 2 and given by Lemma ??.
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Chapter ?? contains a short summary and discussion of open problems to be considered
in further investigations. We give also a few references, which may be helpful for further
extension of our results.
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Chapter 2

Basic General Facts

In this chapter, we give a brief overview on some properties of U-statistics needed in the
sequel. We base the terminology of the general theory of U-statistics on Denker [?], Lee
[?] or Borovskikh [?]. See also Serfling [?] chapter 5 − 6. Hoeffding decomposition and
U-statistics with its Martingale property are represented in the first section. In the second
section of this chapter notations from large deviation theory for sums of i.i.d. random
variables are introduced. We give a few examples corresponding to the notations.

2.1 Basic Definition

Following [?], we introduce the necessary notations. Suppose that X,X1, X2, ... is a se-
quence of i.i.d. random variables defined on a probability space (E,F , P ). For an arbitrary
measurable space (E,F) we denote by P the family of all probability measures on F and
P0 ⊂ P. Based on this notation, the functional ϑ : P0 → IR is called regular or estimable
with respect to P0, if there exists an integer m ≥ 1 and a measurable map h : Em → IR
such that

Eh =

∫
h dPm = ϑ(P ),

for all P ∈ P0, where Pm is the m-fold Cartesian product of P . Based on the regular
function ϑ(P ) := ϑ, we are able to give the following

Definition 2.1.1. Let h : Em → IR be a measurable map and symmetric in its arguments.
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Then the map

Un(h) =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , Xi2 , ..., Xim), (2.1)

is called a U-statistics with kernel h of degree m. The map

Vn(h) = n−m
∑

1≤i1,...,im≤n

h(Xi1 , Xi2 , ..., Xim) (2.2)

is known as V-statistics or von Mises-statistics with kernel h of degree m.

Notice that in the above definition, we can always assume that h is symmetric in its
arguments. This follows from the fact that when h defines an unbiased estimator of ϑ(P ),
then the function

h?(x1, x2, ..., xm) =
1

m!

∑
τ∈Per.

h(xτ(1), xτ(2), ..., xτ(m))

is symmetric in its arguments and is also unbiased estimator of ϑ(P ), where the sum
extends over all permutations of {1, ...,m}. Since h and h? have the same expectation
under P , one can replace h by h?.

Un(h) can be regarded as the unbiased variant of Vn(h). Well known examples of U-
statistics are the empirical kth moment, Gini´s mean differences, one-sample Wilcoxon
statistic, etc.

2.1.1 Hoeffding Decomposition and Representation of U-Statistics

A U-statistics by construction is an average of dependent observations except in the trivial
case where m = 1. However, a U-statistic can be represented as average of dependent
averages of i.i.d. random variables, i.e.

Un(h)− ϑ =
1

n!

∑
Per.

W (Xi1 , ..., Xin), (2.3)

where
∑

Per. denotes summation over all permutations (i1, ..., in) of (1, ..., n) and

W (X1, ..., Xn) = [n/m]−1

[n/m]∑
p=1

h(Xmp−m+1, ..., Xmp).
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The representation in formula (??) is called Hoeffding representation, due to Hoeffding
(1963).

Definition 2.1.2. Suppose that h : Em −→ IR is an unbiased estimator of ϑ, then we
call h degenerate kernel with respect to P ∈ P0 if∫

h(x1, x2, ..., xm) dP (x1) = 0, ∀ x2, ..., xm.

For a given kernel h : Em → IR and a fixed probability measure P ∈ P0 satisfying the
condition

∫
|h(x1, ..., xm)| dP (x1)... dP (xm) <∞, consider the functions

h̃c(x1, ..., xc) := E (h(X1, ..., Xm)|X1 = x1, ..., Xc = xc) (2.4)

and

hc(x1, ..., xc) :=
c∑

k=0

(−1)c−k
∑

K⊆{1,...,c},|K|=k

h̃k(xK) (2.5)

where xK = (xi1 , ..., xik) ∈ Ek such that {i1 < ... < ik} ⊆ {1, ..., c} for c = 0, 1, ...,m.
According to Definition ?? one can know easily that the functions hc(x1, ..., xc) are de-
generate and symmetric. Furthermore, we will see later how the functions h̃c and hc play
an important rule in establishing limit theorems for U-statistics.

Definition 2.1.3. Let the kernel h(x1, ..., xm) satisfy Eh2(x1, ..., xm) < ∞. For c =
1, ...,m, define ζ2

c := V ar(h̃c(x1, ..., xc)). Then, we say that the kernel h or the U-statistics
Un(h) possess a degeneracy of order c if ζj = 0 a.s. for j ≤ c and ζc+1 > 0.

In what follows, we will make use of the following. For a given i.i.d. random variables
X1, X2, ... with a probability distribution F , let h(x, y) be symmetric, square integrable,
i.e. ∫ ∫

h2(x, y) dF (x) dF (y) <∞,

and degenerate, i.e.
∫
h(x, y) dF (x) = 0 for all y. Let L2 be the space of all square

integrable functions with respect to F ⊗ F . Then (see e.g. Serfling [?] p. 193), we see
that the kernel h induces a bounded linear operator Th : L2 → L2 defined by Thf(x) :=
Eh(X1, x)f(X1), which has eigenvalues βi and the corresponding eigenfunctions ψi(X)
satisfying the properties:

Eψi(X1) = 0, Eψ2
i (X1) = 1, Eψi(X1)ψj(X1) = 0

for i 6= j, i, j ≥ 1 and Eh(X1, x)ψi(X1) = βiψi(x). Moreover, for each i, j with i 6= j the
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expansion

lim
n→∞

E

(
h(Xi, Xj)−

n∑
p=1

βpψp(Xi)ψp(Xj)

)2

= 0, (2.6)

holds. We remark that the operator Th is Hilbert- Schmidt operator.

For the sake of completeness, we next introduce a theorem, derived by Hoeffding in 1961.
Its importance lies on the fact that any kernel h of degree m can be written as a sum of
degenerate kernels hc of degrees c = 0, 1, ...,m, where the terms Un(hc) are uncorrelated
with variances of decreasing order in n.

Theorem 2.1.1. (H-decomposition Theorem).
Let h : Em −→ IR be symmetric unbiased estimator of ϑ. Then for any P ∈ P0 there exist
degenerate symmetric kernels hc : Ec −→ IR of degree c = 0, 1, ...,m. Moreover Un(h)
admits the representation

Un(h)− ϑ =
m∑
c=1

(
m

c

)
Un(hc),

where Un(hc) is U-statistics based on a degenerate kernel of degree c.

2.1.2 Martingale Property of U-Statistics

In this subsection we will mention several lemmas of martingale property of U-statistics
needed in the next chapter. In 1961 Hoeffding derived the following lemma, and in fact,
used it to establish the strong law of large numbers for U-statistics.

Lemma 2.1.1. Let h be a degenerate kernel of degree m, based on the sequence {Xn : n ≥
m} of i.i.d. random variables. Then

{(
n
m

)
Un(h) : n ≥ m

}
is a martingale with respect to

the filtration Fn := σ
(
X1, X2, ..., Xn

)
.

Berk [?] proved that Un(h) can also be viewed as a reverse martingale with respect to

the filtration Fn = σ
(
X(n), Xn+1, Xn+2, ...

)
, where X(n) := (X(1), ..., X(n)) is a vector of

ordered statistic for n random variables. He used this property together with a reverse
martingale convergence theorem to give a new proof of SLLN for U-statistics.

Lemma 2.1.2. Let {Un(h) : n ≥ m} be a sequence of U-statistics and suppose that
the condition E|h(X1, X2, ....., Xm)| < ∞ holds. Then {Un(h) : n ≥ m} is a reverse

martingale adapted to the σ- algebras Fn = σ
(
X(n), Xn+1, Xn+2, ...

)
.
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Remark 2.1.1. Let rn be a nondecreasing sequence of natural numbers such that m ≤
rn ≤ n. Then

{
Uk+rn

1+k : 0 ≤ k ≤ n− rn
}

is a reverse martingale adapted to the σ- algebras

Fk := σ
(
U j+k+rn
j+k : j ≥ 1

)
, where Uk+rn

1+k defined by (??). The proof of this fact is similar

to that given by Berk [?].

Lemma 2.1.3. Let cn, n ≥ m, be a nondecreasing sequence of positive numbers and
suppose that Eh2(x1, ..., xm) <∞. Then

P
{

max
n≤p≤N

cp |Up(h)| ≥ λ
}
≤ λ−2

(
c2nV ar(Un(h)) +

N∑
n=p+1

(c2p − c2p−1)V ar(Up(h))

)
,

for all m ≤ n ≤ N and λ > 0. If the series on the right hand side is convergent,then
maxn≤p≤N and N can be replaced by supp≥n and ∞ respectively.

2.2 Notations and Examples.

Assumptions (A): Throughout this thesis we have the following assumptions and no-
tations for our convenience:

• We suppose that X,X1, X2, ... is a sequence of i.i.d. random variables defined on a
probability space (E,F , P ).

• When we mention that the sequence X,X1, X2, ... satisfies the condition (H), we are
referring to the following three conditions:

1. 0 ≤ E(X) <∞,

2. X is nondegenerate, i.e., for all x, P (X1 = x) < 1, (H)

3. t0 := sup
{
t : E(etX) <∞

}
> 0.

For such random variables a collection of basic functions and constants are intro-
duced and their properties are investigated, which play an essential role in describing
the asymptotic limiting behavior of the statistics (??)− (??). For 0 < t ≤ t0, define
the following:

ϕ(t) := E(etX), m(t) :=
ϕ′(t)

ϕ(t)
, σ2(t) := m′(t). (2.7)

A := lim
t↗t0

m(t), f(t) := tm(t)− logϕ(t),
1

c0
= lim

t↗t0
f(t). (2.8)
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ξ(α) := sup
t∈IR

{tα− logϕ(t) : ϕ(t) <∞} , ω := ess supX,

− log ρ(α) := ξ(α), γ(x) := sup {α : ξ(α) ≤ x} . (2.9)

The functions m(t) and σ2(t) are well known from the theory of large deviations.
They are mean and variance of the Cramér transformation of X respectively. The
function ξ(x) is called Legendre transform of cumulant generating function logEetX1

or rate function. The computation of the function γ(x) is difficult in general, and
closed-form expression are only known for special distributions.

• an will stand for a nondecreasing sequence of natural numbers such that 1 ≤ an ≤ n.
In addition to an we assume that there exists a nondecreasing function of real
numbers a(x) such that the following three conditions holds

1. an/a(n) → 1,

2. 1 ≤ a(x) ≤ x, and

3. x/a(x) is nondecreasing.

• βn will always be given by βn := log(n/an) + log log n.

• bn will stand for a nondecreasing sequence of numbers given by

bn := anγ

(
βn
an

)
, (2.10)

and its associated nondecreasing function

b(x) := a(x)γ

(
β(x)

a(x)

)
with β(x) := log(x/a(x)) + log log x.

• [x] will stand for the integer part of x.

The following lemma characterizes the properties of the function defined by (??)−(??),
and its proof can be found in Deheuvels et. al [?], Mason [?] and Petrov [?].

Lemma 2.2.1. For a given random variable X satisfying condition (H), we have the
following results:

1. m(0) = EX, m(t) is strictly increasing on [0, t0) and continuously differentiable on
(0, t0).

2. For any t ∈ [0, t0), we have m(t) ∈ [EX,A), conversely for any α ∈ (EX,A), there
exist a unique t̄ := t(α) ∈ (0, t0) such that m(t̄) = α.
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3. For any c ∈ (c0,∞), there exists a unique α ∈ (EX,A) such that c = c(α).

4. For any α ∈ (EX,A), ρ(α) = e−1/c = ϕ(t̄)e−αt̄ and c ∈ (c0,∞).

5. σ2(t) > 0 and σ2(0) = E(X − EX)2.

6. f(t) is a nondecreasing (↗) in (0, 1/c0), f(0) = 0 and limt↗t0 f(t) = 1/c0.

7. ξ(z) is a nondecreasing convex function such that ξ(EX) = 0 and if A < ∞ then
ξ(z) = ∞ for all z > A.

8. γ(x) is a nondecreasing for x < 1/c0, concave, if c0 = 0 then γ(x) → ω as x → ∞
and if c0 > 0 then γ(x) = ω for x > 1/c0.

9. The functions m(t), f(t), ξ(z) and γ(x) satisfy the following relations:

ξ(z) = f(m−1(z)) for z ∈ [EX,A), (2.11)

γ(x) = m(f−1(x)) for x ∈ [0, 1/c0), (2.12)

where m−1(z) and f−1(x) are the inverse functions of m(t) and f(t) respectively.

Remark 2.2.1.

• If we take an := [c log n] with c > 0, then bn = [c log n]γ(1/c).

• Assume that the random variable satisfies condition (H) together with EX = 0 and
σ2 = EX2 <∞. Let an

logn
→∞. In this case, as t→ 0, the following holds

ϕ(t) = 1 +
σ2t2

2
(1 + o(1)), m(t) = σ2t(1 + o(1)) (2.13)

σ2(t) = σ2(1 + o(1)), f(t) =
σ2t2

2
(1 + o(1)). (2.14)

From (??), (??) and (??), we get γ(x)√
2xσ2

→ 1, as x→ 0. Hence, bn ∼ b̄n, where

b̄n =
(
2σ2anβn

)1/2
. (2.15)

This b̄n indicate the asymptotic formula of bn and will be used in few theorems in our
thesis.

We have precise information about the constant c0 defined by (??) in the following
lemma.
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Lemma 2.2.2. For a given random variable X satisfying condition (H), we have c0 = 0
in all cases except the following:

1. A < ∞, t0 < ∞. This covers all distributions with ess supX < ∞. In this case,
c0 = 1/(At0 − logϕ(t0)).

2. A < ∞, and t0 = ∞. This occurs if and only if ess supX = ∞. In this case,
A = ess supX1, P (X = A) > 0 and c0 = −1/ log(P (X1 = A)).

Proof: (see [?], p. 211) �

The following examples explain the functions and the constants presented in formulas
(??)− (??).

Example 2.2.1. Let X ∼ N(0, 1). Then ϕ(t) = et
2/2,

t0 = sup {t : ϕ(t) <∞} = ∞
m(t) = ϕ′(t)

ϕ(t)
= tet2/2

et2/2
= t, σ2(t) = m′(t) = 1, A = limt↗t0 m(t) = ∞,

f(t) = tm(t)− logϕ(t) = t2

2
, 1
c0

= limt↗t0 f(t) = ∞, therefore c0 = 0.

ξ(z) = sup
t∈IR

{zt− logϕ(t) : ϕ(t) <∞} = sup
t≥0

{
zt− t2

2
: ϕ(t) <∞

}
=
z2

2
.

ρ(z) = e−z
2/2, and γ(x) = sup {z : ξ(z) ≤ x} = sup

{
z : z2 ≤ 2x

}
= (2x)1/2.

Example 2.2.2. Let X ∼ B(p), then ϕ(t) = pet+1−p, w = ∞, t0 = ∞, m(t) = pet

pet+1−p ,

σ2(t) = pet

pet+1−p − ( pet

pet+1−p)
2, f(t) = t pet

pet+1−p − log(pet + 1 − p), A = 1, 1
c0

= − log p,

γ(x) = sup {z : ξ(z) < x}, where ξ(z) is given by;

ξ(z) =

{
z log( z

p
) + (1− z) log(1−z

1−p) if 0 ≤ z ≤ 1,

∞ otherwise,

In this example observe that the function γ(x) is difficult to compute.



Chapter 3

Strong Laws for Increments of Sums
of i.i.d. Random Variables

Beside the statistic

D̂n(rn) = max
0≤k≤n−rn

{(k + rn)(Uk+rn(h)− ϑ)− k(Uk(h)− ϑ)} , (3.1)

we introduce functionals of this type or simply the following statistics:

T̂n(rn) = (n+ rn)(Un+rn(h)− ϑ)− n(Un(h)− ϑ), (3.2)

R̂n(rn) = n(Un(h)− ϑ)− (n− rn)(Un−rn(h)− ϑ), (3.3)

Ŵn(rn) = max
0≤k≤n−rn

max
1≤j≤rn

{(k + j)(Uk+j(h)− ϑ)− k(Uk(h)− ϑ)} , (3.4)

where rn is a nondecreasing sequence of natural numbers such that m ≤ rn ≤ n.

• Note that, D̂n(n) = R̂n(n) = n(Un(h)− ϑ) and Ŵn(n) = maxm≤j≤n j(Uj(h)− ϑ), if
an = n.

• Let the kernel h given by h(x1, x2) := x1+x2

2
and assume that ϑ := Eh(X1, X2) = 0.

Then D̂n(an) = max2≤k≤n−rn(Sk+rn − Sk). Which is the same statistic as given by
Erdös and Rényi [?].

The main goal of this chapter is to describe the a.s. asymptotic behavior of the statistics
(??) − (??), but before doing that for the reader’s convenience. We give an overview
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of the strong laws for increments of length rn for sums of independent and identically
distributed random variables. We recall some well known results in this direction, which
cover all sizes of increments with length rn such that 1 ≤ rn ≤ n. Among the authors,
who studied these laws, we will focus our attention to the following ones:

• Erdös and Rényi [?], where they consider increments of length rn := [c log n], for
positive number c ≥ c0.

• Book [?] extend [?] by considering increments of length rn := (log n)p, for p > 1.

• Deheuvels and Devroye [?] consider increments of length rn := [c log n] for positive
numbers c ∈ (0, c0) to cover all distributions characterized by Lemma ??.

• Csörgö and Révéz [?] extend [?] considering increments of length (log n)a ≤ rn ≤ n,
for some positive number a > 1.

• Mason [?] extend [?] considering increments of length 1 ≤ rn ≤ kn, where kn is a
nondecreasing sequence of natural numbers satisfying kn/ log n→ 0.

• Finally we mention Frolov [?, ?, ?], who considered increments of arbitrary length
between 1 and n with some restriction on the growth rate of rn.

We will generalize these results to the case of U-statistics. In the first section of this
chapter, almost sure behavior of short increments for sums of i.i.d. random variables
are explained including the results by Erdös-Rényi and Shepp and their extensions given
by Deheuvels et. al. [?], [?], Mason [?], and Book [?]. The second section includes the
Csörgö-Révéz law [?]. The third section deals with a generalization to the case of arbitrary
increments of length rn such that 1 ≤ rn ≤ n, given by Frolov [?, ?]. The chapter ends
with establishing strong laws for increments, described by the statistics (??)− (??), of a
nondegenerate U-statistics and some examples, which motivates our consideration.

3.1 Erdös-Rényi and Shepp Laws

Let us consider the Problem (A) given in formula (??) in the following special case:
Consider a gambler who may play a sequence of games, in each of which he either wins
or loses with probability 1/2. For j = 1, 2, ... interpret the event Xj = 1 respectively
Xj = −1 as the event that the gambler wins, respectively loses the jth game. Then,
Dn(rn) describes the maximal gain over time subinterval of length rn and from the theory
of sums of independent random variables, we obtain the following:
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1. Set in (??) rn = qn = n. We get by the strong law of large numbers that

lim
n→∞

Dn(rn)

qn
= lim

n→∞

1

n

n∑
j=1

Xj = EX1 = 0 a.s. (3.5)

2. Set in (??) rn = qn = 1. By Borel-Cantelli lemma we obtain that

lim
n→∞

Dn(rn)

qn
= lim

n→∞
max
1≤i≤n

Xi = ess supX1 = 1 a.s. (3.6)

3. Set in (??) rn = n and qn =
√

2n log log n. Thus, we get by the law of iterated
logarithm (LIL) that

lim sup
n→∞

Dn(rn)

qn
= lim sup

n→∞

Sn√
2n log log n

= 1 a.s. (3.7)

Hence assertion (??) tells us that in a long series X1, X2, . . . , Xn of trials, the empirical
mean with probability one approximates the expected value of a single trial, which is 0 in
our case. While assertion (??) tells us again and again that at least one trial is successful.
Therefore, Problem(A) is reduced to the following problem: What will happen if one
considers only subseries like Xk+1+. . .+Xk+rn of length rn, which may be short compared
to the long series X1 +X2 + . . .+Xn?

3.1.1 Erdös-Rényi law

Erdös and Rényi [?] answered Problem (A), and in fact they introduced the statistics
Dn(rn) defined by formula (??). They proved that the maximal average gain is asymp-
totically between EX1 = 0 and ω := ess supX1 = 1, which can be attained in a subseries
of suitable length rn depending upon n with probability one. They called their result as
a new law of large numbers. More precisely, they proved that for positive number c,

lim
n→∞

Dn([c log n])

[c log n]
= α a.s., (3.8)

where α depending on c and determined via the equation

ρ(α) := inf
t

{
et + e−t

2
e−tα

}
= e−1/c.

Note that if α ∈ (EX1, ω), then the above equation has a unique solution for c ≥ 1. In fact
the assertion (??) is a special form of the so-called Erdös-Rényi law, which is presented
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in the next theorem (see, Assumption (A) on p. 11).

Theorem 3.1.1. (Erdös-Rényi law for sums of i.i.d. random variables)
Consider a sequence X1, X2, . . . satisfying condition (H). Set rn = [c log n]. Then, for all
c > c0, we have:

lim
n→∞

Dn([c log n])

[c log n]
= γ(1/c) a.s.,

where γ(1/c) is defined in (??).

Under the same assumptions as in Theorem ?? the following statement holds:

lim
n→∞

Wn([c log n])

[c log n]
= γ(1/c) a.s.,

whereWn(rn) defined in (??). This was not given by Erdös and Rényi, but can be obtained
in a similar way (see e.g., Steinebach [?]).

Remark 3.1.1. 1. The functional dependence between c and α determines the distri-
bution function of the random variable X1, provided that the moment generating
function of X1, ϕ(t) <∞ for some |t| < t0. In fact, Erdös and Rényi were the first
to point out such a connection between increments of processes and the underlying
distribution in the case of partial sum sequences.

2. If ϕ(t) = ∞ for all t > 0, then Steinebach [?] proved that for every positive constant
c we have

lim sup
n→∞

Dn([c log n])

[c log n]
= ∞ a.s.

3. By virtue of Lemma ??, c0 is not always 0, (see Example ??). Therefore, Theorem
?? gives us no information about the problem (A) if c ∈ (0, c0). The answer of this
problem was given by Deheuvels and Devroye [?]. Their results will be stated below.

4. Erdös and Rényi gave an application of their new law of large numbers to the so-
called stochastic geyser problem.

Example 3.1.1. Let {Xi : i ≥ 1} be i.i.d. standard normally distributed random vari-
ables. Then c0 = 0 and γ(1/c) =

√
2/c, (see Example ??). Hence, Theorem ?? assert

that, for all c > 0,

max
0≤k≤n−[c logn]

Sk+[c logn] − Sk
[c log n]

→
(

2

c

)1/2

a.s.
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Example 3.1.2. Let {X,X1, X2, ...} be i.i.d. Bernoulli trials with success probability
p = 1/2. Then c0 = 1/ log(2) and Theorem ?? implies that, for all c > 1/ log(2),

max
0≤k≤n−[c logn]

Sk+[c logn] − Sk
[c log n]

→ γ(1/c) a.s.

We mentioned in Example ?? already that the computation of γ(1/c) is difficult, but using

Erdös-Rényi Theorem, we can estimate it with probability one by the ratio Dn([c logn])
[c logn]

,
which is of interest from the large deviations point of view.

Theorem ?? has an extension to nondegenerate U-statistics by an application of Corol-
lary ??. However we only are able to extend Theorem ?? for arbitrary U-statistics with
kernel h of degree m = 2 which is given in Theorem ??. We give also the upper limit
for arbitrary kernel h of degree m ≥ 2 in Lemma ??. The same thing can be said for
Theorem ??, which will be stated below.

3.1.2 Shepp law

In 1964 Shepp introduced the statistics,

Tn(f(n)) = (Sn+f(n) − Sn), (3.9)

where he developed lim supn→∞
Tn(f(n))
f(n)

in terms of the moment generating function ϕ(t)

and the radius of convergence of
∑
xf(n), denoted by R.

Theorem 3.1.2. (Shepp law for sums of i.i.d. random variables)
Let X1, X2, ..., be a sequence of i.i.d. random variables such that ϕ(t) < ∞ for some
t > 0. Let f(n) be a nondecreasing sequence of positive integer values tending to infinity.
Then we have

lim sup
n→∞

Tn(f(n))

f(n)
=


ω if 0 ≤ R ≤ P (X1 = ω)
αR if P (X1 = ω) < R < 1
EX1 if R = 1,

where α := αR is the unique solution of the equation ρ(α) = R for α ∈ (EX1, ω) and
ω := ess supX1.

Considering the sequence −Xi leads to the analogue theorem with lim inf replaced by
lim sup. If f(n) is strictly increasing then R = 1. The existence of limn→∞ Tn(f(n)) is
assumed if and only if R = 1, whence limn→∞ Tn(f(n)) = EX1, a.s., −∞ < EX1 <∞.

Remark 3.1.2. 1. If we take f(n) := [c log n], c > 0 in Theorem ??, then R = e−1/c.
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2. If ϕ(t) = ∞ for all t > 0, then Lynch [?] proved that lim supn→∞
Tn(f(n))
f(n)

= ∞, for

all subsequences f(n) for which R < 1.

Example 3.1.3. Let {X,X1, X2, ...} be i.i.d. Bernoulli trials with success probability
p ∈ (0, 1). Then

ρ(α) := min
t
ϕ(t)e−tα =

( p
α

)α( 1− p

1− α

)1−α

.

Hence, Shepp law guarantees that

lim sup
n→∞

Tn(f(n))

f(n)
=

{
α for p ≤ R ≤ 1
1 for 0 ≤ R ≤ p

where α is the unique solution of the equation, R =
(
p
α

)α ( 1−p
1−α

)1−α
. Set f(n) := [c log n]

and p = 1/2, then Theorem ?? together with Remark ?? implies that,

lim sup
n→∞

Tn([c log n])

[c log n]
=

{
α for c > 1/ log(2)
1 for 0 < c ≤ 1/ log(2)

where α is the unique solution of the equation e−1/c = 1
2

(
1
α

)α ( 1
1−α

)1−α
.

3.1.3 Full form of Erdös-Rényi law

In Remark ??, we observed that Theorem ?? provides no information about the asymp-
totic behavior of Dn([c log n]) when c ∈ (0, c0). Also the asymptotic behavior for the
statistics Wn([c log n]) is not included in that theorem. In this section, we discuss the
asymptotic behavior of Dn([c log n]) and Wn([c log n]), when c ∈ (0, c0). This corresponds
to the so-called full form of Erdös-Rényi law due to Deheuvels and Devroye [?].

The following theorem due to Deheuvels and Devroye (see, [?], p. 1374), which covers
specific distributions characterized in Lemma ??.

Theorem 3.1.3. Consider a sequence X1, X2, . . . that satisfies condition (H). Set rn =
[c log n] for 0 < c ≤ c0. Then we have

lim
n→∞

Dn([c log n])

[c log n]
= lim

n→∞

Wn([c log n])

[c log n]
= A+

1

t0

(
1

c
− 1

c0

)
a.s.,

where c0 and A are defined in (??).

Theorem ?? has an extension to nondegenerate U-statistics with kernel h of degree
m ≥ 2 by an application of Corollary ??.
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3.1.4 Extended Erdös-Rényi law

Let X1, X2, ... be a sequence of i.i.d. N(0,1) distributed random variables. Then EetX1 <
∞ for all t ∈ IR. For c < 1/2, we have EecX

2
1 < ∞, and EecX

2
1 = ∞, for c ≥ 1/2.

Consequently, for c ≥ 1/2 we get eX
2
1/2 > n infinitely often. Hence, |Xn| >

√
2 log n

infinitely. Thus lim sup Xn√
2 logn

≥ 1. On the other hand, put c = 1/2− ε, where we choose

ε to be a very small number. Then we eventually obtain |Xn| ≤
√

2.001 log n. Thus,
lim sup Xn√

2 logn
≤ 1.001. Hence, lim sup Xn√

2 logn
= 1.

In 1989 Mason [?] extended the Erdös and Rényi Theorem ?? considering increments
of length rn in the definition of the statistic Dn(rn) such that c(n) := logn

rn
→ ∞. He

found a norming sequence qn, which depends on the full distribution of X1. His theorem
(see [?]) makes the following assertion.

Theorem 3.1.4. (Extended Erdös-Rényi law for sums of i.i.d. random variables)
Let X1, X2, ... be a sequence of i.i.d. random variables satisfying condition (H).
(a) If 0 < ω <∞, then for all sequences rn such that c(n) = logn

rn
→∞,

lim
n→∞

max
0≤k≤n−rn

Sk+rn − Sk
rnγ(c(n))

= lim
n→∞

max
0≤k≤n−rn

Sk+rn − Sk
ωrn

= 1 a.s.

(b) If ω = ∞, then for all sequences c(n) such that c(n) = logn
rn

→∞, we have

lim sup
n→∞

max
0≤k≤n−rn

Sk+rn − Sk
γ(c(n))rn

= 1 a.s. (3.10)

Moreover, lim sup in (b) can be replaced by lim for all such sequences rn if and only if

lim
x→∞

γ(− log(1− F (x)))

x
= 1 (3.11)

if and only if

lim
n→∞

max
1≤m≤n

Xm

γ(log n)
= 1 a.s. (3.12)

which in turn is equivalent to (??) with rn = 1.

Remark 3.1.3. Some examples of distributions which satisfy (??) are normal, geometric,
poisson and Weibull with shape parameter a ≥ 1.

Theorem ?? has an extension to nondegenerate U-statistics by an application of Corol-
lary ?? partly. However we are only able to give the upper limit for arbitrary U-statistics
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with kernel h of degree m ≥ 2 which is given in Lemma ?? or Lemma ??.

Book proved various generalizations of the Erdös-Rényi law for weighted sum and non-
identically distributed random variables. Among them we state the following theorem
due to Book in 1975, which arises from the extended strong law of large number given
by Marcinkiewics and Zygmund, where increments or blocks of length approximately
(c log n)p for p > 1 are considered.

Theorem 3.1.5. (Generalized Erdös-Rényi law for sums of i.i.d. random variables)
Let X1, X2, ... be a sequence of i.i.d. random variables satisfying EX1 = 0 and V ar(X1) =
1. Assume that ϕ(t) <∞ for |t| < B, where 0 < B ≤ ∞. Let 1 < p < 2, β := (2− p)/p
and for every α > 0, set rn := [( 2

α2 log n)1/β]. Then we have

Dn(rn)

r
1/p
n

→ α a.s.

1. The constant 2α−2 depends only on α and is independent of the distribution of X1

contrary to Erdös and Rényi result, where α depends on the distribution of X1.

2. If X1 ∼ N(0, 1), then the conclusion of Theorem (??) holds for 1 ≤ p < 2, since by
Theorem ??, for every α > 0, we have c = 2/α2.

We give two extensions of Theorem ?? to U-statistics. Theorem ?? for general kernels and
Theorem ?? for product kernels. These theorems are proved by an application of Corollary
??. In fact we are only able to prove these results for nondegenerate U-statistics. However
we give the upper limit for arbitrary U-statistics with kernel h of degree m ≥ 2 which is
given in Lemma ??.

3.2 Csörgö -Révéz Law

In this section we consider the asymptotic behavior of statistics (??) − (??), when the
increments are large. Using analogous results for increments of a Wiener processes and
the Komlós-Major-Tusnády strong approximation (see [?], p. 107) Csörgö and Révéz
[?] extend the Erdös-Rényi law for sums of i.i.d. random variables considering large
increments.

Theorem 3.2.1. (Csörgö -Révéz Law)
Let W (t), 0 ≤ t < ∞ be a standard Wiener process. Let aT , T ≥ 0, be a nondecreasing
function of T for which
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1. 0 < aT ≤ T ,

2. T/aT is nondecreasing.

are satisfied. Then

lim sup
T→∞

sup
0≤t≤T−aT

1

b̄T
|W (t+ aT )−W (t)| = lim sup

T→∞
sup

0≤s≤aT

1

b̄T
|W (T + s)−W (T )| = 1 a.s.,

and

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

1

b̄T
|W (t+ s)−W (t)| = lim sup

T→∞

1

b̄T
|W (T + aT )−W (T )| = 1 a.s.,

where b̄T = (2aT (log(T/aT ) + log log T ))1/2. If additionally aT satisfies

lim
T→∞

log(T/aT )

log log T
= ∞,

then

lim
T→∞

sup
0≤t≤T−aT

1

b̄T
|W (t+aT )−W (t)| = lim

T→∞
sup

0≤t≤T−aT

sup
0≤s≤aT

1

b̄T
|W (t+s)−W (t)| = 1 a.s.

Remark 3.2.1.

1. By symmetry of W , if we replace lim sup by lim inf and sup by inf in Theorem ??,
then the assertion above will be true with -1 instead of 1.

2. Choosing aT as c log T and dT for 0 < d ≤ 1, we get Erdös-Rényi law and Strassen’s
law of iterated logarithm for the standard Wiener process respectively.

3. Let X1, X2, ... be i.i.d. random variables satisfying EX1 = 1, V ar(X1) = 1 and
EetX < ∞, for |t| < t0. Then Theorem ?? and the strong invariance principle
of Komlós-Major-Tusnády imply the so-called Csörgö -Révéz law for sums of i.i.d.
random variables, i.e, with probability one the following holds.

lim sup
n→∞

Dn(an)

b̄n
= lim sup

n→∞

Wn(an)

b̄n
= lim sup

n→∞

Rn(an)

b̄n
= lim sup

n→∞

Tn(an)

b̄n
= 1, (3.13)

and (??) will be true, if we replace lim sup by lim inf, sup by inf and 1 by -1.

If additionally an satisfies

lim
n→∞

log(n/an)

log log n
= ∞,
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then

lim
n→∞

Dn(an)

b̄n
= lim

n→∞

Wn(an)

b̄n
= 1 a.s.

Steinebach [?] and Lynch [?] proved that if the moment generation function ϕ(t) = ∞
for all t > 0, then the strong laws for short increments of sums of i.i.d. random variables
are not more available. On the contrary, Csörgö and Révéz present a theorem analogues
to Theorem ?? in the case of large increments assuming only the existence of a finite
number of moments of X1. Instead of mentioning their results, we state its generalization
given by Frolov [?].

3.2.1 One-Sided Strong Laws for Increments of Sums of i.i.d.
Random Variables

Frolov [?] studied the asymptotic behavior of statistics given in formulas (??) − (??) of
large increments when the trajectories of sum Sn have large jumps only in one direction.
It arises, for example, for the case where the random variable X1 is in the domain of
attraction of a completely asymmetric stable law. Then (??) and the other case do
not hold together, rather only one of them can hold. In this case, Sn can not be well
approximated by a wiener process but large deviations techniques are used. His theorem
make the following assertion.

Theorem 3.2.2. Let {X,X1, X2, ...} be i.i.d. random variables with EX = 0 and
V ar(X) = 1. Set rn = an, where an satisfies the assumptions (A). Suppose that one
of the following two conditions holds:

1.
∫∞

0
etx

b
dF (x) <∞, for some t > 0 and 0 < b ≤ 1, and an

(logn)
2
b
−1
→∞ as n→∞.

2.
∫∞

0
xp dF (x) < ∞, for some p > 2, log n

∫ −n
−∞ x

2 dF (x) → 0, and an >
cn2/p

logn
> 0

for some c > 0 and all large n.

Then we have

lim sup
n→∞

Dn(an)

b̄n
= lim sup

n→∞

Wn(an)

b̄n
= lim sup

n→∞

R̃n(an)

b̄n
= lim sup

n→∞

Tn(an)

b̄n
= 1 a.s.

If in addition limn→∞
log( n

an
)

log logn
= ∞ is satisfied, then

lim
n→∞

Dn(an)

b̄n
= lim

n→∞

Wn(an)

b̄n
= 1 a.s.
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Proof: (see [?]) �

Remark 3.2.2. Let the assumptions of Theorem ?? are satisfied for both Xi and −Xi.
If we replace lim sup by lim inf and sup by inf in the definition of statistics given by
(??)− (??), then the assertion of Theorem ?? holds true with -1 instead of 1.

Theorem ?? has an extension to the statistics (??) − (??), where only nondegenerate
U-statistics with kernel h of degree m ≥ 2 are considered. This is given in Corollary ??. In
Lemma ?? we extend Theorem ?? partly, where we obtain the lower limit for the statistics
(??)−(??) considering nondegenerate U-statistics with kernel h of degree m ≥ 2. We also
obtain the upper limit for the statistics (??) and (??) considering arbitrary U-statistics
in Lemma ??.

3.3 Strong Laws for Increments of Sums of i.i.d. Ran-

dom Variables

Frolov [?] found a universal formula for the norming sequence in strong limit theorems
for increments of sums of i.i.d. random variables, provided that the random variable
X1 satisfying the condition (H). By this formula, we can calculate norming sequences in
SLLN, LIL, Erdös-Rényi and Shepp law, and Csörgö -Révéz law. This norming sequence
denoted by bn and given in (??), where γ(x) is defined by (??).

Depending on the constants t0, A and c0, there are five classes of distributions (see,
assumption (A) on p. 13):

• (I) t0 = ∞, A <∞, c0 = 0. In this case ω = A.

• (II) t0 = ∞, A <∞, c0 > 0. In this case ω = A, c0 = −1/ logP (X = A).

• (III) t0 = ∞, A = ∞. In this case ω = ∞, c0 = 0.

• (IV) t0 <∞, A = ∞. In this case ω = ∞, c0 = 0.

• (V) t0 <∞, A <∞. In this case ω = ∞, c0 = (t0A− logϕ(t0))
−1 > 0.

For example, the uniform, Bernoulli, normal, exponential and the distribution with
density function p(x) = Cx−3e−x, x ≥ 1 belong to the classes I-V respectively.
The following theorem is due to Frolov [?], which contain all of the preceding results
(Erdös-Rényi Theorem ??, Shepp Theorem ??, Deheuvels and Devroye Theorem ??, part
of Mason Theorem ?? and Frolov Theorem ??) as special case.
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Theorem 3.3.1. Let X,X1, X2, ... be a sequence of i.i.d. random variables satisfying
condition (H).
A) Assume that there exists a function g(θ), θ ∈ (1, θ0), such that g(θ) → 1 as θ → 1 and
b(xθ)
b(x)

≤ g(θ) for all sufficiently large x. Suppose that one of the following two conditions
is satisfied:
(i) log an

logn
→ 0.

(ii) For every ε > 0, there exists q ∈ (0, 1) such that

P (Si ≥ −εbn) ≥ q (3.14)

holds for all i ≤ In := min {[(1 + ε)an], n} and for all sufficiently large n. Then

lim sup
n→∞

Wn(an)

bn
≤ 1 a.s.

B) Further for ε ∈ (0, 1), set

t? = f−1

(
1− ε

an
(log

n

an
+ log log n)

)
,

and assume that one of the following conditions is satisfied:

1.) t? < t0 and for all sufficiently small ε ∈ (0, 1),

t?σ(t?) = o((an)
1/2f(t?)) (3.15)

2.) F ∈ KI and t? →∞

3.) F ∈ KII and log(n/an)+log logn
an

≥ 1/c0

4.) F ∈ KIII or F ∈ KV , t
? →∞ and ∀τ > 0, δ > 0 and all sufficiently large t;

P (X ≥ (1− τ)m(t)) ≥ exp {−(1 + δ)f(t)} (3.16)

5.) F ∈ KIV , t
? ↗ t0 and the inequality (??) holds ∀τ > 0, δ > 0 and for all t

sufficiently close to t0;

6.) F ∈ KV , t
? ≥ t0 and t? does not depend on n.

Then,

lim sup
n→∞

Rn(an)

bn
≥ 1 a.s.,

C) Furthermore, if two conditions, one from A) and the other from B), are satisfied,
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then a.s.,

lim sup
n→∞

Wn(an)

bn
= lim sup

n→∞

Dn(an)

bn
= lim sup

n→∞

Rn(an)

bn
= lim sup

n→∞

Tn(an)

bn
= 1. (3.17)

If, in addition, log log n = o(log n
an

), then

lim
n→∞

Wn(an)

bn
= lim

n→∞

Dn(an)

bn
= 1 a.s. (3.18)

Proof: (see [?]) �

Remark 3.3.1. 1. If |In+1 − In| ≤ C, for a constant C and for all sufficiently large
n and bn → ∞, then it is sufficient to check condition (??) just for i = In. In
particular, if an = [a(n)], then |In+1 − In| ≤ 3.

2. If the distribution function of X belongs to class KI or KII and log an = o(log n),
then the assertion (A) of the theorem becomes trivial by noting that ω < ∞ and
bn ∼ ωan.

3.4 Strong Laws for Increments for Nondegenerate

U-Statistics

In this section, we establish the strong laws for increments, described by the statistics
(??) − (??), of a nondegenerate U-statistics. The strong laws for increments of sums of
i.i.d. random variables discussed in the last three sections can be summarizes in two results
due to Frolov [?, ?, ?]. They are Theorem ?? if the moment generating function does not
exists and Theorem ?? if moment generating function exists in a right neighborhood of
zero. Therefore we focus our attention to generalize Theorem ?? and Theorem ?? to the
statistics (??)− (??). To that aim we use H-decomposition Theorem ??, i.e. we write

Un(h)− ϑ = mUn(h1) +R∗n, (3.19)

where R∗n :=
∑m

d=2

(
m
d

)
Un(hd). It is already known that R∗n is a reverse martingale (see

e.g., [?] p. 188). More precise our idea is to rewrite the statistics (??)− (??) in the form
(??) and prove that R∗n normalized by appropriate sequence of positive numbers has no
effect on the asymptotic behavior of them with probability 1. For example, let us consider
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the statistics T̂n(an):

T̂n(an) := (n+ an)(Un+an(h)− ϑ)− n(Un(h)− ϑ)

= (n+ an)mUn+an(h1) + (n+ an)
m∑
d=2

(
m

d

)
Un(hd)−mnUn(h1)− n

m∑
d=2

(
m

d

)
Un(hd)

= m

n+an∑
i=1

h1(Xi) + (n+ an)R
∗
n+an

−m

n∑
i=1

h1(Xi)− nR∗n

= m

n+an∑
i=n+1

h1(Xi) + (n+ an)R
∗
n+an

− nR∗n (3.20)

Note that the first term in (??) is a sum of i.i.d. random variables, therefore we can used
the previous results for our aim.

Throughout this section, we say that a kernel h : IRm → IR satisfy condition (H1), if it
satisfies

1. h is nondegenerate, i.e, ζ2
1 := V ar(h1(Xi)) > 0.

2. t0 := sup
{
t : φ(t) = Eeth1(X) <∞

}
> 0. (H1)

3. Eh2 <∞.

For the kernel h satisfying the condition (H1) and t ≤ t0, we define the collection of
constants and functions

ϕh1(t), mh1(t), σ
2
h1

(t), fh1(t), ωh1 , ξh1(α) and γh1(x),

by (??)− (??) with X replaced by h1(X1).

We are now in the position to generalize Theorem ?? applied to U-statistics, with other
words, the following corollary describe the a.s. asymptotic behavior of the statistics
(??)− (??) depending on the growth rate of the sequence an.

Corollary 3.4.1. Consider a nondegenerate U-statistics Un(h) based on a kernel h of
degree m satisfying the condition (H1). Assume that the assumptions of Theorem ?? with
X replaced by h1(X1) are satisfied. Then

lim sup
n→∞

Ŵn(an)

b̂n
= lim sup

n→∞

D̂n(an)

b̂n
= lim sup

n→∞

R̂n(an)

b̂n
= lim sup

n→∞

T̂n(an)

b̂n
= 1 a.s. (3.21)
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If in addition, log log n = o(log n
an

), then

lim
n→∞

Ŵn(an)

b̂n
= lim

n→∞

D̂n(an)

b̂n
= 1 a.s., (3.22)

where b̂n := anγh1(
βn

an
).

Proof: The proof follows by Theorem ?? and the following Proposition ?? (given
below) via the representation (??). �

Proposition 3.4.1. Suppose that the kernel h satisfies Eh2(X1, ..., Xm) <∞. Then

n

b̂n
R∗n → 0 a.s., (3.23)

with appropriate choice of an.

Proof: Since R∗n is a reverse martingale and the sequence n/b̂n is non-decreasing, it
follows by using Lemma ?? that

P (sup
n≥p

n

b̂n
|R∗n| > ε) ≤ ε−2

∞∑
n=p

n2

(b̂n)2
E(R∗2n −R∗2n+1)

< C
∞∑
n=p

n2

(b̂n)2
n−3 = C

∞∑
n=p

1

n(b̂n)2
,

which converge by appropriate choice of an as p → ∞, hence the statement follows by
Borel-Canteli lemma. �

Notice that for a suitable choice of an the relation (??) implies that

max
0≤k≤n−an

k

b̂n
R∗k → 0 a.s., as n→∞. (3.24)

3.4.1 Application of Corollary ?? to Strong Limit Theorem of
U-Statistics

• Consider the increments given by Erdös-Rényi and Shepp, i.e. an = [c log n] with c >
0, then b̂n = [c log n]γh1(1/c) and therefore the series in Proposition ?? converges.

Since log[c logn]
logn

→ 0, the condition (i) of Theorem ?? related to Corollary ?? is
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satisfied. Furthermore for c > c0, we have

1− ε

an
(log

n

an
+ log log n) <

1− ε

c
<

1

c0
, for all c > c0,

then by Lemma ??, f−1
h1

exists in (0, 1/c0) and t? ≤ f−1
h1

(1−ε
c

) < t0. Note also

t?σh1(t
?) = f−1

h1
(
1− ε

c
)σh1(f

−1
h1

(
1− ε

c
)) = o(

√
anfh1(t

?)).

Hence condition 1.) of Theorem ?? related to Corollary ?? is satisfied. If c < c0,
then we need first to know about the type of the distribution function of h1(X1) to
check the suitable condition of Theorem ?? related to Corollary ??. By observing
that log log n = o(log n

an
) Corollary ?? implies

lim
n→∞

Ŵn([c log n])

[c log n]
= lim

n→∞

D̂n([c log n])

[c log n]
= lim sup

n→∞

T̂n([c log n])

[c log n]
= mγh1(1/c) a.s.

Which may be called the full form of the Erdös-Rényi and Shepp laws for nonde-
generate U-statistics.

• Consider the increments given by Csörgö- Révéz, i.e. an satisfy the relation, an

logn
→

∞. Then to calculate the norming sequence b̂n, we observe that βn

an
→ 0. Therefore

we calculate the asymptotic formula of b̂n. As t→ 0, the following holds true:

ϕh1(t) = 1 +
ζ2
1 t

2

2
(1 + o(1)), mh1(t) = ζ2

1 t(1 + o(1)) (3.25)

σ2
h1

(t) = ζ2
1 (1 + o(1)), fh1(t) =

ζ2
1 t

2

2
(1 + o(1)) (3.26)

In this case condition 1.) of Theorem ?? related to Corollary ?? is satisfied. From
(??), (??) and the definition of γh1(x), we obtain

γh1(x)√
2xζ2

1

→ 1 as x→ 0.

Thus

b̂n =
(
2ζ2

1an(log(n/an) + log log n)
)1/2

. (3.27)

Now it is easy to see that the series in Proposition ?? converges. In fact the condition
(ii) of Theorem ?? related to Corollary ?? is satisfied. Indeed using Chebyshev’s
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inequality to get for all ε > 0 and In := min {[(1 + ε)an], n} that,

P (
In∑
j=1

h1(Xj) ≥ −εb̂n) ≥ 1− Inζ
2
1

(εb̂n)2
→ 1 as n→∞.

Hence Corollary ?? implies that

lim sup
n→∞

Ŵn(an)

b̂n
= lim sup

n→∞

D̂n(an)

b̂n
= lim sup

n→∞

T̂n(an)

b̂n
= mγh1(1/c) a.s.

If in addition the sequence an satisfy the relation log log n = o(log n
an

), then

lim
n→∞

Ŵn(an)

b̂n
= lim

n→∞

D̂n(an)

b̂n
= mγh1(1/c) a.s.

which may be called Csörgö- Révéz law for increments of nondegenerate U-statistics.

• Note that if an = n, then from (??) of Theorem ?? related to Corollary ?? we obtain
the law of the iterated logarithm for nondegenerate U-statistics, i.e.,

lim sup
n→∞

n(Un(h)− ϑ)√
2nm2ζ2

1 log log n
= lim sup

n→∞
max
m≤k≤n

k(Uk(h)− ϑ)√
2nm2ζ2

1 log log n
= 1 a.s.

• If an satisfy the condition log(n/an)
log logn

→ c ≥ 0, this occur for example when an =

n/(log n)c, then

b̂n =
n

(log n)c
γh1

(
(log n)c

n

(
log

(
n(log n)c

n

)
+ log log n

))
=

n

(log n)c
γh1

(
(log n)c(c+ 1) log log n

n

)
∼

√
2ζ2

1 (c+ 1)n log log n.

Thus from (??) of Theorem ?? related to Corollary ?? we get the following form of
the law of iterated logarithm for increments:

lim sup
n→∞

Ŵn(an)√
2nm2 log log n

= lim sup
n→∞

D̂n(an)√
2nm2 log log n

= ζ1
√

1 + c.

• Finally consider the increments given by Mason, i.e. assume that an = o(log n).
It is already seen that the condition (i) of Theorem ?? related to Corollary ?? is
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satisfied. The sequence b̂n take the form, b̂n = anγh1(
logn
an

). Since log log n = o( logn
an

),
it follows from condition (??) of Theorem ?? related to Corollary ?? that

lim
n→∞

Ŵn(an)

anmγh1(
logn
an

)
= lim

n→∞

D̂n(an)

anmγh1(
logn
an

)
= 1 a.s.,

provided the series in Proposition ?? converges. This is a part of the extended
Erdös-Rényi law for U-statistics, which generalize the extended Erdös-Rényi law for
sums of i.i.d. random variables obtained by Mason [?].

So far the a.s. asymptotic behavior of the statistics (??)−(??) normalized by b̂n is obtained
up to the growth rate of the sequence an. For example, suppose that the distribution
function of h1(X1) is a normal with mean zero and variance ζ2

1 <∞. On one hand, if the
sequence an does not grows at all, i.e. an=c for a positive number c, then may be the
series in Proposition ?? fail to converge in general. In this case, we have that

b̂n = anγh1(
log n

an
) ∼

√
2cζ2

1 log n.

Hence, the series in Proposition ?? does not converges, and therefore Corollary ?? is not
applied. On the other hand, if an = log log n, then

b̂2n ∼ 2ζ2
1 (log log n)2(log n).

Hence, the series in Proposition ?? converge and Corollary ?? implies that,

lim
n→∞

Ŵn(log log n)√
2m2ζ2

1 (log log n)2 log n
= lim

n→∞

D̂n(log log n)√
2m2ζ2

1 (log log n)2 log n
= 1 a.s.,

This is in fact, what we means by the word partly.

In many situations the moment generating function of h1(X1) does not exists, but one
sided power moments exists, then based on Proposition ??, we generalize Theorem ?? in
the following

Corollary 3.4.2. Consider a nondegenerate U-statistics Un(h) based on a kernel h of
degree m with Eh2(X1, ..., Xm) < ∞. Furthermore suppose that one of the following two
conditions is satisfied:

1.
∫∞

0
eth

b
1(x) dF (x) <∞, for some t > 0 and 0 < b ≤ 1, and an

(logn)
2
b
−1
→∞ as n→∞.

2.
∫∞

0
hp1(x) dF (x) < ∞, for some p > 2, log n

∫ −n
−∞ h

2
1(x) dF (x) → 0, and an >

cn2/p

logn
> 0 for some c > 0 and all large n.
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Then we have

lim sup
n→∞

D̂n(an)

b̂n
= lim sup

n→∞

Ŵn(an)

b̂n
= lim sup

n→∞

R̂n(an)

b̂n
= lim sup

n→∞

T̂n(an)

b̂n
= 1 a.s.

If in addition limn→∞
log( n

an
)

log logn
= ∞ is satisfied, then

lim
n→∞

D̂n(an)

b̂n
= lim

n→∞

Ŵn(an)

b̂n
= 1 a.s.,

where b̂n defined in (??).

Proof: In this case the series in Proposition ?? converge and the proof follows then by
Theorem ?? and proposition ?? via the representation (??). �

Remark 3.4.1. Let the assumptions of Corollary ?? are satisfied for both h1(Xi) and
−h1(Xi). Then the assertion of Corollary ?? holds with -1 instead of 1, if we replace
lim sup by lim inf and sup by inf in the definition of statistics given by (??)− (??).

3.4.2 Examples

In the following example we give a nontrivial kernel h, which indicate that the statis-
tics introduced by (??)− (??) generalize the statistics given by Erdös-Rényi, Shepp and
Csörgö-Révéz.

Example 3.4.1. Consider a U-statistics Un(h) based on a kernel h given by h(x1, x2) :=
x1+x2

2
and w.l.o.g assume that ϑ := Eh(X1, X2) = 0. Then

D̂n(an) := max
2≤k≤n−an

{(k + an)(Uk+an(h)− ϑ)− k(Uk(h)− ϑ)}

= max
2≤k≤n−an

{
k + an(
k+an

2

) ∑
1≤i<j≤k+an

(Xi +Xj)/2−
k(
k
2

) ∑
1≤i<j≤k

(Xi +Xj)/2

}
= max

2≤k≤n−an

(Sk+an − Sk).

Which is the same statistic given by Erdös and Rényi [?].

Example 3.4.2. Let {Xi : i ≥ 1} be i.i.d. standard normally distributed random vari-
ables. Let h : IR2 → IR given by h(x1, x2) := x1+x2

2
, and set an = [c log n] for positive
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number c. Then h is nondegenerate and the assumptions of Corollary ?? are satisfied.
Hence

D̂n([c log n])

[c log n]
→ 2γh1(1/c) a.s. ∀ c > 0.

Let us now find 2γh1(1/c) and compare it with the limit found by Erdös-Rényi. In this
example we have h1(x1) = x1

2
, therefore ϕh1(t) := E(eth1) = et

2/8, c0 = 0 and ξh1(z) =
supt∈IR {zt− logϕh1(t) : ϕh1(t) <∞} = 2z2, hence

2γh1(1/c) = 2 sup {z : ξh1(z) ≤ 1/c} = 2 sup
{
z : 2z2 ≤ 1/c

}
= 2
√

1/2c =
√

2/c,

which is the same limit given by Erdös and Rényi law for a sequence of i.i.d. N(0, 1)
random variables .

Example 3.4.3. Let {Xi : i ≥ 1}, be i.i.d. N(0, 1) random variables. For the U-statistics

corresponding to the sample variance, one used the kernel h given by h(x1, x2) := (x−y)2
2

.
Then according to Corollary ?? with an = [c log n], we obtain

D̂n([c log n])

[c log n]
→ 2γh1(1/c) a.s. ∀ c > c0.

Here we have h1(x) = x2−1
2

, hence ϕh1(t) = e−t/2
√

1−t , t < 1 and mh1(t) = t
2(1−t) , A =

∞, c0 = 0 and ξh1(z) = supt<1

{
zt− log( e

−t/2
√

1−t)
}

= z(2z+1)
2z−1

+ 1
2
log(1− 2z). and therefore

2γh1(1/c) = 2 sup {z : ξh1(z) ≤ 1/c}.

Example 3.4.4. Let {Xi : i ≥ 1}, be i.i.d. N(µ, σ2) random variables. Let h : IR2 → IR
given by h(x1, x2) := x1x2, and let EX1 = µ 6= 0. Then according to Corollary ?? we
have,

D̂n([c log n])

[c log n]
→ 2γh1(1/c) a.s. ∀ c > c0.

Here we have φh1(t) = eµ
2σ2t2/2 and

ξh1(z) = supt∈IR {zt− logϕh1(t) : ϕh1(t) <∞} = z2/2µ2σ2. Therefore,
γh1(1/c) = sup {z : ξh1(z) ≤ 1/c} = µσ(2/c)1/2. Hence,

max
2≤k≤n−an

{
2

k + an − 1

∑
2≤i<j≤k+an

(XiXj − µ2)− 2

k − 1

∑
2≤i<j≤k

(XiXj − µ2)

}

converge to 2µσ(2/c)1/2 a.s. for all c > c0 as n→∞.



Chapter 4

Large Deviations for U-Statistics

To describe the a.s. asymptotic behavior of the statistics Dn(rn) given by (??) and other
functional of type Dn(rn), we need certain theory. However Erdös and Rényi based their
proof on Bahadur-Rao [?] which is the refinement of Chernoff [?] large deviation theorem.
A similar theorem like Bahadur-Rao is not available for U-statistics. But Csörgö and
Révéz [?] proved that Bahadur-Rao large deviation theorem is not necessary for their
proof. In fact, Csörgö and Révéz proved that Chernoff theorem can be used to achieve
the Erdös-Rényi and Shepp laws. Their approach motives us to extend Erdös-Rényi and
Shepp laws for U-statistics. Moreover the proof of all results in the first three section of
Chapter ?? share the use of exponential properties of certain large deviation probabilities.

In fact large deviation theory is a part of probability theory that deals with the descrip-
tion of events where a random quantity deviates from its mean by more than a normal
amount, for example beyond what is described by central limit theorem.

Therefore we state some known results from large deviations theory relevant to our
purpose and derive from them exponential inequalities, which we need to describe the a.s.
asymptotic behavior of the statistics Dn(rn) given by (??) in the next chapter. In the
first section we proof new forms of large deviation results for a nondegenerate U-statistics.
In the last section we derive a few results related to large deviation theory for arbitrary
U-statistics.

4.1 Moderate Large Deviation Theorem for U-Statistics

Consider a U-statistics Un(h) as defined in (??). If Un(h) is nondegenerate, then by
the theory of U-statistics under some conditions on moments of the kernel h, the cen-
tral limit theorem applies. More precisely, suppose Eh(X1, ..., Xm) = 0 and 0 < ζ2

1 :=
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V ar(h̃(X1)) <∞. Then under finite second moments assumption on h, we have

P ((mζ1)
−1n1/2Un(h) > x) → (1− Φ(x)), (4.1)

uniformly in x, as n → ∞. Usually on a moderate large deviation, we are interested in
the relative error of

P ((mζ1)
−1n1/2Un(h) > xn) = (1− Φ(xn))(1 + o(1)), (4.2)

as xn tends to ∞ together with n. Malevich and Abdalimov [?] proved that the relation
(??) holds for xn = O(

√
log n) under the condition that E|h(X1, ..., Xm)|k ≤ Ckkγk,

k = 1, 2, ..., for some constants C > 0 and γ ≥ 0. For more details on this problem, we
refer the interested reader to the works done by, Aleskevicienė, [?, ?], Borovskikh and
Weber [?, ?], Keener et. al. [?], Vandemaele [?, ?]. Among all results of this type, we
will consider the works done by Aleskeviciene, [?], and Borovskikh and Weber [?, ?]. The
following theorem due to Aleskeviciene [?].

Theorem 4.1.1. Consider a nondegenerate U-statistics Un(h) with Eh(X1, ..., Xm) = 0
and 0 < ζ2

1 <∞. If there exist a constants C > 0 and λ ≥ 2 such that, for all k = 2, 3, ...,

E|h(X1, ..., Xm)|k ≤ Ck(k!)λ. (4.3)

Then as n→∞,

P

(√
n

mζ1
Un(h) ≥ x

)
= (1− Φ(x))

(
1 +O

(
1 + x3 + x log n√

n

))
,

P

(√
n

mζ1
Un(h) < −x

)
= Φ(−x)

(
1 +O

(
1 + x3 + x log n√

n

))
, (4.4)

for all x from the range 0 ≤ x ≤ cλn
1/(4λ−2), where

cλ = min

{
1

2
,

ζ1
3m43C(2.7)λ

, (3C1/λ)−λ/(2λ−1)

}
.

Remark 4.1.1. The condition (??) is equivalent to the condition that there exists a

constant t0 > 0 such that Eet|h(X1,...,Xm)|1/λ
< ∞ for t ∈ [−t0, t0]. In particular if λ = 2,

then the estimates in (??) holds for all x from the range 0 ≤ x ≤ c2n
1/6 with c2 =

min
{

1/2, ζ1/3m
43C(2.7)2, (3

√
C)−2/3

}
, provided that Eet|h(X1,...,Xm)|1/2

<∞.

Theorem ?? yields the following large deviation result, which play an important role
in establishing the lower limit of the Csörgö -Révéz law for nondegenerate U-statistics in
the next chapter (see, Lemma ??).
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Corollary 4.1.1. Consider a nondegenerate kernel h of degree m satisfying the assump-
tions of Theorem ??. Furthermore consider a nondecreasing sequence of natural numbers
an ≤ n such that an

(logn)2λ−1 → ∞. Set b̂n :=
√

2m2ζ2
1an(log(n/an) + log log n). Then for

all δ > 0, n large enough and any positive number β, we have

P
(
anUan(h) > βb̂n

)
≥
(

an
n log n

)β2(1+δ)

. (4.5)

Proof: Set dn := 2 log( n
an

log n), then an application of Theorem ?? with x =
√
dn

gives

P
(
anUan(h) > βb̂n

)
= P

(√
anUan(h)

mζ1
> β

√
2(log(n/an) + log log n)

)
=
(
1− Φ(

√
dn

)(
1 +O

(
1 + d3

n + dn log n
√
an

))
using (??)

=
e−β

2dn/2

β
√

2πdn
(1 + o(1))

≥ 1

2
√

4πβ2 log((n/an) log n)
e−β

2 log((n/an) logn) for n large enough

≥
(
n

an
log n

)−δβ2 (
n

an
log n

)−β2

(∗)

=

(
an

n log n

)β2(1+δ)

,

where we use the fact that 1 − Φ(x) = e
−x2

2

x
√

2π
(1 + o(1)) as x→∞ and in (*) we take n

large enough such that
(
16πβ2 log( n

an
log n)

)−1/2

≥
(
n
an

log n
)−δβ2

holds. �

Keener, Robinson, and Weber [?] proposed a contraction technique for establishing
Cramer-type large deviation theorems for U-statistics. Their approach is a natural gen-
eralization of the classical methods of Cramer. Instead of stating their results, we state
its generalization given by Borovskikh and Weber [?]. For this purpose, some notations
are needed. Define

c(x) := (Eh2(X1, ..., Xm−1, x))
1/2, x ∈ E and ||c|| := (Ec2(x))1/2.

For some a > 0, denote d := (Eeac(X))1/2 and λ =
(

152md(1+d2)
aζ1

)(
1 + 8d2||c||

aζ21

)
.

Finally logl n := log(logl−1 n) with log0 n = n.



40 4. Large Deviations for U-Statistics

Theorem 4.1.2. Consider a U-statistics of the form

Un :=
n

m
Un(h) =

(m− 1)...2.1

(n− 1)...(n−m+ 1)

∑
1≤i1<...<im≤n

h(Xi1 , ..., Xim). (4.6)

Assume that Un(h) is a nondegenerate U-statistics. Further assume that h satisfies the
Cramér condition, i.e., φ(t) := Eea|h(X1,...,Xm)| < ∞ for some a > 0. Then for x =

O(
√
n

logl n
), where l ≥ 1 is any fixed integer, we have,

P (Un > xζ1
√
n)

1− Φ(x)
= exp

{
x3

√
n
λm

(
x√
n

)}
(1 +O

(
1 + x√
n

)
(4.7)

with the Cramér series

λm(u) =
∞∑
k=0

λmku
k, (4.8)

where |λmk| ≤ λk+3, k = 0, 1, ..., and the power series in (??) converge for |u| < λ−1.
Furthermore, if Eea0h2(X1,...,Xm) <∞ then (??) is also satisfied in the region

O(
√
n

logl n
) ≤ x ≤ o(

√
n) for some constant a0 > 0.

The next theorem is also due to Borovskikh and Weber [?], which handle the product
kernel.

Theorem 4.1.3. Consider a U-statistics Un(h). Suppose that the kernel h is given by
h(x1, ..., xm) = Πm

i=1xi. Assume that EX1 6= 0, 0 < σ2 = V ar(X1) <∞, and Eea|X1| <∞
for some a > 0 are satisfied. Then for x = o(

√
n) and any fixed integer m ≥ 1,

P
(
Un(h)− µm > x√

n
mσ|µ|m−1

)
1− Φ(x)

= exp

{
x3

√
n
λm

(
x√
n

)}
(1 +O

(
1 + x√
n

)
, (4.9)

with the Cramér series λm(u) =
∑∞

k=0 λmku
k, which converges for 0 ≤ u ≤ η, where η is

a small positive number.

The following two corollaries expresses the large deviation result in the form needed
for establishing the extended Erdös-Rényi law for nondegenerate U-statistics of degree m
in the next chapter (see, Theorems ?? and ??, p....).

Corollary 4.1.2. Consider a nondegenerate U-statistics Un as defined in formula (??).
Suppose that the kernel h satisfies the assumptions of Theorem ??. Then for 0 < α < 1,
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β > 0, and n large enough

P (Un > ζ1βn
α+1

2 ) =
e
−β2nα

2
(1−βn

α−1
2 λm(βn

α−1
2 ))√

2πβ2nα
(1 + o(1)) (4.10)

Proof: Using the fact that 1− Φ(x) = e
−x2

2

x
√

2π
(1 + o(1)) as x→∞ and an application

of Theorem ?? with x = βnα/2, we obtain

P (Un > ζ1βn
α+1

2 ) = P (Un > βn
α
2 ζ1
√
n)

= (1− Φ(βn
α
2 ))eβ

3n
3α−1

2 λm(βn
α−1

2 )(1 +O(n
α−1

2 ))

=
e
−β2nα

2 eβ
3n

3α−1
2 λm(βn

α−1
2 )√

2πβ2nα
(1 + o(1))

=
e
−β2nα

2
(1−βn

α−1
2 λm(βn

α−1
2 ))√

2πβ2nα
(1 + o(1)).

Corollary 4.1.3. Let the assumptions of Theorem ?? are satisfied. Then for all β > 0
and all sufficiently large n, there exists a sequence of numbers ηn := ηn(λm, φ) depending
on λm and φ(t) such that ηn → 0 as n → ∞, and the following estimate for 0 < α < 1
holds,

e
−β2nα

2
(1+|ηn|)

2
√

2πβ2nα
≤ P (Un > ζ1βn

α+1
2 ) ≤ 3e

−β2nα

2
(1−|ηn|)

2
√

2πβ2nα
(4.11)

Proof: The proof is an easy consequence of Corollary ?? by noting that the Cramér
series λm(u) converges for all sufficiently small u. Since 0 < α < 1, the sequence n

α−1
2

converges to 0 as n→∞, we can take ηn = βn
α−1

2 λm(βn
α−1

2 ) and choose n large enough
such that 1/2 < 1 + o(1) < 3/2. �

4.2 Large Deviation for arbitrary U-Statistics

The problem treated in this section is quite different and more difficult from the previous
one. It is of interest to determine the limit

lim
n→∞

1

n
logP (Un(h) > β) = −g(β), (4.12)
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for any number β > Eh(X1, ..., Xm), and the limit function g(β) is in a perfect situation
continuous. To solve this problem, one of the techniques is like this: one writes a V-
statistics Vn(h) as defined in (??) in terms of empirical measure then applies Sanov’s
theorem or its generalization, and finally uses the contraction principle if the limit is
continuous. More details on this problem is found in Eichelsbacher and Löwe [?, ?].

Remark 4.2.1. It has been already known that large deviation theorems of this type for
Vn(h) is the same as Un(h) (see Eichelsbacher and Löwe [?, ?]).

4.2.1 Some Inequalities for arbitrary U-Statistics

In the sequel, we will say that the kernel h(X1, ..., Xm) satisfies the condition (H2), if it
satisfies the following conditions

1. 0 ≤ Eh(X1, ..., Xm) <∞,

2. For all x ∈ IR, let P (h(X1, ..., Xm) = x) < 1, (H2)

3. t0 := sup
{
t : φ(t) = Eeth(X1,...,Xm) <∞

}
> 0.

If the kernel h satisfying the condition (H2), then for t < t0, we define a collection of basic
functions and constants

ϕh(t), mh(t), σ
2
h(t), fh(t), ωh, ξh(α) and γh(x), (4.13)

by (??)− (??) with X replaced by h(X1, ..., Xm).
Their properties may be derived in a similar way as given in Lemma ??. We will see that
this collection of the basic functions and constants play an essential role in describing the
asymptotic limiting behavior of statistics introduced in the next chapter.

Lemma 4.2.1. Let Eeth(X1,...,Xm) < ∞ for some t > 0 and a positive integer m < n.
Then for all x ≥ 0, we have

lim sup
n→∞

1

n
logP (Un(h) ≥ x) ≤ −1

m
ξh(x).
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Proof.

P (Un(h) ≥ x) = P

((
n

m

)−1 ∑
1≤i1<...<im≤n

[n/m]h(Xi1 , ..., Xim)) > x[n/m]

)
≤ e−tx[n/m]EetUn([n/m]h)

= e−tx[n/m]Ee
1
n!

∑
Per t[n/m]W (Xi1

,...,Xin )

≤ e−tx[n/m] 1

n!

∑
Per

Eet[n/m]W (Xi1
,...,Xin )

= e−tx[n/m]Eet[n/m] 1
[n/m]

∑[n/m]
p=1 h(Xpm−m+1,...,Xpm)

= e−tx[n/m]
(
Eeth(X1,...,Xm)

)[n/m]
,

where we used Hoeffeding representation given in formula (??) and the convexity property
of the exponential function. Therefore we have,

P (Un(h) ≥ x) ≤
(
inf
t
e−txEeth(X1,...,Xm)

)[n/m]

= e[
−n
m

] supt(tx−logEeth(X1,...,Xm)).

Hence, the lemma is proved by taking logarithm and lim sup as n→∞ for both side. �

The following proposition play an important role in establishing the upper limit of the
Csörgö -Révéz law for arbitrary U-statistics of degree m in the next chapter (see, Lemma
??, p....).

Proposition 4.2.1. Let Eeth(X1,...,Xm) < ∞ for some t > 0 and a positive integer m.
Furthermore, let Eh(X1, ..., Xm) = 0 and 0 < ζ2

m := Eh2(X1, ..., Xm) <∞. Set

b̃n =
√

2β2mζ2
man(log(n/an) + log log n).

Then, for all β > 0, δ > 0 and an with an

logn
→∞, we have

P
(
anUan(h) > βb̃n

)
≤
(

an
n log n

)β2(1−δ)

(4.14)

Proof: By Lemma ?? we have

P
(
anUan(h) ≥ βb̃n

)
= P

(
Uan(h) ≥

√
2β2mζ2

m(log(n/an) + log log n)/an

)
≤ e

−an
m

ξh(
√

2β2mζ2m log( n
an

logn)/an). (4.15)
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Since an

logn
→∞, then the sequence

2β2mζ2m log( n
an

logn)

an
→ 0. Therefore, we want to find an

asymptotic formula of ξh(x). A second order expansion of the logarithm function yields

c(t) := logEeth(X1,...,Xm)

= c(0) + tc′(0) +
t2

2!
c′′(0) +O(t3)

= c(0) + tEh(X1, ..., Xm) +
t2

2!
Eh2(X1, ..., Xm) +O(t3)

=
ζ2
m

2
t2 +O(t3) (as t→ 0).

Hence, as x approaches 0, we obtain

ξh(x) := sup
t
{tx− c(t)} =

x2

2ζ2
m

+O(x3). (4.16)

Therefore for n large enough we get,

an
m
ξh

(√
2β2mζ2

m(log(n/an) + log log n)/an

)
=

=
an
m

(
2β2mζ2

m

2ζ2
man

log

(
n

an
log n

))
+
an
m
O

((
2β2mζ2

m log(
n log n

an
)

)3/2

/a3/2
n

)

= β2 log

(
n

an
log n

)
+O

((
2β2ζ2

m log(
n log n

an
)

)3/2

/
√
an

)

= β2 log

(
n

an
log n

)(
1 +O(

√
(log(n/an) + log log n)/an)

)
≥ β2(1− δ) log

(
n

an
log n

)
for all δ > 0 and n large enough.

We complete the proof by replacing the last inequality in (??). �

The following proposition is essential in establishing the upper limit of the extended
Erdös-Rényi law given by Mason [?], and Erdös-Rényi and Shepp laws for arbitrary U-
statistics of degree m (see, Lemma ?? and Lemma ?? p....).

Proposition 4.2.2. For any number β > 0 and integer n ≥ m, we have

P

(
Uan(h) ≥ mβγh

(
βn
an

))
≤ e−ββn .
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Proof. This follows from an application of Lemma ?? with x = mβγh(βn/an), and
using the fact that ξh() is a convex function. Thus by the definition of convexity, we have
ξh(v) ≤ w−v

w−uξh(u) + v−u
w−uξh(w), for u < v < w. By choosing u = 0, v = γh(βn/an) and

w = mβγh(βn/an) and noting that ξh(0) = 0. These facts together imply that

P (Un(h) ≥ mβγh(βn/an)) ≤ e
−an

m
ξh(mβγh(βn/an))

≤ e
−an

m
mβξh(γh(βn

an
))

≤ e−ββn .

The last inequality follows by the definition of γh() and by observing that
ξh(γh(βn/an)) ≥ βn/an. �

Consider a U-statistics Un(h) based on a kernel h of degree 2. Then by using the H-
decomposition Theorem ??, and the expansion given in formula (??). We rewrite Un(h)
as follows,

Un(h) = ϑ+
2

n

n∑
i=1

h1(Xi) +

(
n

2

)−1 ∑
1≤i<j≤n

h2(Xi, Xj)

=
1

n

n∑
i=1

(2h1(Xi) + ϑ) +
∞∑
p=1

(
n

2

)−1 ∑
1≤i<j≤n

νpψp(Xi)ψp(Xj)

=
1

n

n∑
i=1

(2h1(Xi) + ϑ) +
∞∑
p=1

νp(n
−1

n∑
i=1

ψp(Xi))
2 −

−
∞∑
p=1

νpn
−2

n∑
i=1

ψ2
p(Xi). (4.17)

Theorem 4.2.1. (Arcones (1992))
Consider a U-statistics Un(h) based on a kernel h of degree m = 2, and assume that the
kernel h admits the representation as given in formula (??). Furthermore suppose that,
for each t > 0, the following condition holds

Eet(
∑∞

p=0 |νp|ψ2
p(X))

1/2

<∞,

where ν0 = 1 and ψ0 = 2h1(Xi) + ϑ. For x ∈ l2, where

l2 :=

{
x = (x0, x1, ...) :

∞∑
p=0

x2
p <∞

}
,
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r ∈ IR and A ⊂ IR define

λ1(x) := sup
ξ∈l2

{
∞∑
p=0

ξpxp − logEe
∑∞

p=0 ξpνpψp(X)

}
, for x ∈ l2,

λ(r) := inf

{
λ1(x) : x0 +

∞∑
p=1

sign(νp)x
2
p = r

}
, for r ∈ IR, and

Λ(A) := inf {λ(r) : r ∈ A} .

Then for any closed set F and any open set G in IR the following holds

−Λ(F ) ≥ lim sup
n→∞

1

n
logP (Un(h) ∈ F ) and

−Λ(G) ≤ lim inf
n→∞

1

n
logP (Un(h) ∈ G).

Corollary 4.2.1. Under the assumption of Theorem ??, for ε > 0 and n large enough,
we have

e−n(Λ(A)+ε) ≤ P (Un(h) ≥ α) ≤ e−n(Λ(Ā)−ε). (4.18)

Proof: Set A = (α, ωh) and Ā = [α, ωh], where ωh := ess suph(X1, ..., Xm). Then, the
assertion follows immediately from Theorem ??. �

Example 4.2.1. Let {Xi : i ≥ 1}, be i.i.d. N(0, σ2) random variables. Suppose that
the kernel h given by h(x, y) = xy. Then h1(x1) = Eh(x1, X2) = x1EX2 = 0 and
h2(x1, x2) = x1x2. Hence, ν0 = 0, ν1 = σ2, νp = ψp(x) = 0 for all p ≥ 2, ψ0 = 0, and
ψ1(x) = x/σ. Therefore, we write h(x, y) as

xy = β1ψ1(x)ψ1(y) = σ2x

σ

y

σ
.

Let us calculate the functionals defined on Theorem ??.

λ1(x) = sup
ξ∈l2

{
∞∑
p=0

ξpxp − logEeσ
2ξ1

X1
σ

}
= sup

ξ∈l2

{
∞∑
p=0

ξpxp −
1

2
σ2ξ2

1

}
=

x2
1

2σ2
.

λ(r) = inf
x∈l2

{
x2

1

2σ2
: x0 + σ2x2

1 = r

}
=

r

4σ2
.

Finally

Λ(A) = inf
r∈(α,ωh)

λ(r) =
α

4σ2
.



Chapter 5

Strong Laws for Increments of
U-Statistics

This chapter contains strong laws for increments for U-statistics, which also generalize the
strong laws for increments of partial sums given in the first three sections of Chapter ??.
The proof heavily depend on the results explained in Chapter ??. For any nondecreasing
sequence of natural numbers m ≤ rn ≤ n set

Uk+rn
1+k :=

∑
1+k≤i1<...<im≤k+rn

h(Xi1 , ..., Xim). (5.1)

With the statistic

Dn(rn) := max
0≤k≤n−rn

Uk+rn
1+k , (5.2)

we define functionals or statistics of this type as follows:

Tn(rn) := Un+rn
1+n , (5.3)

Wn(rn) := max
0≤k≤n−rn

max
m≤j≤rn

Uk+j
1+k and (5.4)

Rn(rn) := Un
1+n−rn , and R̃n(rn) := max

m≤k≤rn
Un+k

1+n . (5.5)

First of all, let us look at some special cases of the statistics (??)− (??).

• Let m = 2 and h be given by h(x, y) = (x + y), then the statistics (??) − (??) are
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the same as statistics (??)− (??) multiplied with rn − 1.

• Let rn = n. Then

Dn(n) =

(
n

m

)
Un(h) and Wn(n) = max

m≤j≤n

(
j

m

)
Uj(h).

• Let rn = m. Then

Dn(m) = Wn(m) = max
0≤k≤n−2

h(Xk+1, Xk+2, ..., Xk+m).

Hence, the statistics given by (??) − (??), the theory of sums of U-statistics, and
the extreme value theory for m-dependent random variables are parts of the general
theory of statistics (??)− (??).

5.1 Erdös-Rényi and Shepp Laws for U-Statistics

In this section, we describe the a.s. asymptotic behavior of the statistics Dn(rn) defined in
(??) considering increments of length [c log n] with positive number c. Thus, we generalize
the Erdös-Rényi law for sums of i.i.d. random variables Theorem ??. The following
theorem holds for arbitrary kernel of degree m = 2 satisfying some moment condition, no
restriction on the degeneracy of h is made. We use the notations from Theorem ??.

Theorem 5.1.1. (Erdös-Rényi Law for arbitrary U-Statistics with m = 2)
Consider a U-statistics Un(h) based on a kernel h of degree m = 2. Assume that Un(h)
admits the representation (??). Furthermore suppose that, for each t > 0,

φ(t) := Eet(
∑∞

p=0 |νp|ψ2
p(X))

1/2

<∞,

holds. Let α ∈ (ϑ, ωh) and set Bα := [α, ωh], where ωh := ess suph(X1, ..., Xm). For a
positive number c > 0, set rn = [c log n]. Then the rate function Λ(Bα) exists and if it is
in addition strictly increasing in α. Then

lim
n→∞

Dn(rn)(
rn
2

) = Γ(c) a.s.,

where Γ(c) := sup {α : Λ(Bα) ≤ 1/c}.
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Proof. Let δ > 0 such that (Γ(c) + δ) ∈ (ϑ, ωh), then

P

{
Dn(rn) ≥

(
rn
2

)
(Γ(c) + δ)

}
= P

{
max

0≤k≤n−rn
Uk+rn

1+k ≥
(
rn
2

)
(Γ(c) + δ)

}
≤

n−rn∑
k=0

P

{
Uk+rn

1+k ≥
(
rn
2

)
(Γ(c) + δ)

}
≤ nP (Urn(h) ≥ Γ(c) + δ)

≤ ne−rn(Λ(BΓ(c)+δ)−ε),

where the last inequality follows by using Corollary ?? for n sufficiently large. Making
use of the increasing sequence of integers, nl := max {n : [c log n] = l}.
Then for l sufficiently large

P

(
Dnl

(rnl
) ≥

(
rnl

2

)
(Γ(c) + δ)

)
≤ nle

−rnl
(Λ(BΓ(c)+δ)−ε)

≤ e
l+1

c e−l(Λ(BΓ(c)+δ)−ε) ≤ e1/ce−l(
−1
c

+ 1
c
+δ0) for some δ0 := δ0(c, δ, ε) > 0

= e1/ce−lδ0 .

In the above estimation first of all, we may increase l to make ε small enough. Also note
that by the definition of Γ(c) and the strict monotony assumption on Λ(.), there exists
δ0 > 0 depending on c, δ and ε such that Λ(BΓ(c)+δ)− ε ≥ 1

c
+ δ0. Therefore, we have by

the integral test that,

∞∑
l=M0

P

(
Dnl

(rnl
) ≥

(
rnl

2

)
(Γ(c) + δ)

)
<∞.

Notice that, for nl−1 < n ≤ nl, we have [c log n] = l and Dn(rn) ≤ Dnl
(rnl

). Thus,
Borel-Cantelli lemma implies that

lim sup
n→∞

(
rn
2

)−1

Dn(rn) ≤ lim sup
l→∞

(
rnl

2

)−1

Dnl
(rnl

) ≤ Γ(c) a.s.,

since δ > 0 can be taken arbitrary small.
To complete the proof of the theorem, we we need only to show

lim inf
n→∞

(
rn
2

)−1

Dn(rn) ≥ Γ(c) a.s.
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For n sufficiently large and δ > 0, we have

P

(
Dn(rn) ≤

(
rn
2

)
(Γ(c)− δ)

)
:= P

(
max

0≤k≤n−rn
Uk+rn

1+k ≤ (Γ(c)− δ)

(
rn
2

))
≤ P

(
max

k=1,...,[ n
rn

]
Ukrn

1+(k−1)rn
≤ (Γ(c)− δ)

(
rn
2

))
= (1− P (Urn(h) > Γ(c)− δ))[ n

rn
] by independence of Ukrn

1+(k−1)rn

≤
(
1− e−rn(Λ(BΓ(c)−δ)+ε)

)[ n
rn

]
by using Corollary ??.

Since Λ(B(Γ(c)−δ)) < 1/c, for any δ > 0 and c > 0, there exists δ1 := δ1(ε, δ, c) > 0 such
that Λ(BΓ(c)−δ) + ε ≤ 1−δ1

c
. It follows that

P

(
Dn(rn) ≤

(
rn
2

)
(Γ(c)− δ)

)
≤

(
1− e−rn(

1−δ1
c

)
)[ n

rn
]

≤ exp
{
−[n/rn]e

−(c logn)(
1−δ1

c
)
}

≤ exp

{
− n

rn
n−c(

1−δ1
c

)

}
≤ e−

nδ1
log n for some δ1 > 0.

By integral test for all n > N1, where N1 large enough, we obtain

∞∑
n=N1

P

((
rn
2

)−1

Dn(rn) ≤ Γ(c)− δ

)
<∞.

Hence, Borel-Cantelli lemma implies that with probability one

lim inf
n→∞

(
rn
2

)−1

Dn(rn) ≥ Γ(c)− δ.

Let δ ↓ 0 and obtain that

lim inf
n→∞

(
rn
2

)−1

Dn(rn) ≥ Γ(c) a.s.,

which complete the proof of the theorem. �
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5.1.1 Generalized Erdös-Rényi Law for U-Statistics

We are going to prove the following theorem, which describe the a.s. asymptotic behavior
of the statistics Dn(rn). The theorem cover only nondegenerate kernel of degree m ≥ 2
and the increments are of length approximately [(log n)q], for q > 1. It generalize Theorem
?? given by Book [?].

Theorem 5.1.2. (Generalized Erdös-Rényi law for nondegenerate U-Statistics)
Consider a nondegenerate U-statistics Un(h) and without loss of generality assume that

Eh(X1, ..., Xm) = 0. For β > 0 set rn =
[
(2β−2 log n)

1/α
]
. Let the kernel h satisfy the

Cramér condition Eet|h(X1,...,Xm)| <∞ for some t > 0. Then for each 0 < α < 1

lim
n→∞

(
rn
m

)−1
Dn(rn)

mζ1r
α−1

2
n

= β a.s.

Proof: Let ε > 0 and set An :=
{
Dn(rn) > (1 + ε)β

(
rn
m

)
r

α−1
2

n mζ1

}
. Then

P (An) := P

{
max

0≤k≤n−rn
Uk+rn

1+k > (1 + ε)β

(
rn
m

)
r

α−1
2

n mζ1

}
≤

n−rn∑
k=0

P

{
rn
m

(
rn
m

)−1

Uk+rn
1+k > β(1 + ε)ζ1r

α+1
2

n

}
≤ n.P

{
Urn > ζ1β(1 + ε)r

α+1
2

n

}
≤ n.

3e
−β2(1+ε)2rα

n
2

(1−|ηrn |)

2β
√

2πrαn
using (??).

Notice that
(

rn
1+rn

)α
→ 1. Thus for all n ≥ N1, we have

(
rn

1+rn

)α
> 1 − δ1. Also

(1− |ηrn|) → 1, which implies that for all n ≥ N2, we have 1− |ηrn| > 1− δ2. Hence, for
all n ≥ N0 := max(N1, N2), the following estimates holds.

β2

2
(1 + ε)2rαn(1− |ηrn|) =

1

2
β2(1 + ε)2

(
rn

1 + rn

)α
(1 + rn)

α(1− |ηrn|)

≥ β2

2
(1 + ε)2

(
rn

1 + rn

)α(
1 +

(
2 log n

β2

)1/α

− 1

)α

(1− |ηrn|)

≥ β2

2
(1 + ε)2(1− δ1)

(
2 log n

β2

)
(1− δ2)

≥ (1 + ε/2) log n, (∗)
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where we increase N0, if necessarily to guarantee the validity of (∗). Therefore for all
n ≥ N0, we obtain

P (An) ≤
3n

2β

e−(1+δ0) logn√
4π logn
β2

< 3n−ε/2.

Using the increasing sequence of integers, nj := max
{
n : [(2β−2 log n)1/α] = j

}
.

Notice that, for nj−1 < n ≤ nj, we have [(2β−2 log n)1/α] = j and Dn(rn) ≤ Dnj
(rnj

).
Thus,

P (An i.o. in n) ≤ P (Anj
i.o. in j). (5.6)

So, for all n ≥ N0, we obtain by the integral test

∞∑
j=N2

P (Anj
) ≤

∞∑
j=N0

3n
−ε/2
j ≤ 3

∞∑
j=N0

e−εj
α/2 <∞.

Therefore, Borel-Canteli lemma implies that P (Anj
(ε) i.o. in j) = 0. Let ε ↓ 0 and recall

the relation (??), we conclude that

P

{
lim sup
n→∞

(
rn
m

)−1
Dn(rn)

mζ1r
α−1

2
n

≤ β

}
= 1.

To complete the proof, we need to show that

P

{
lim inf
n→∞

(
rn
m

)−1
Dn(rn)

mζ1r
α−1

2
n

≥ β

}
= 1.

For that, set Ãn :=
{
Dn(rn) ≤ (1− ε)β

(
rn
m

)
r

α−1
2

n mζ1

}
. Then

P (Ãn) = P

{
Dn(rn) ≤ (1− ε)β

(
rn
m

)
r

α−1
2

n mζ1

}
= P

{
max

0≤k≤n−rn
Uk+rn

1+k ≤ (1− ε)β

(
rn
m

)
r

α−1
2

n mζ1

}

≤ P


[ n
rn

]⋂
k=1

Ukrn
1+(k−1)rn

≤ (1− ε)β

(
rn
m

)
r

α−1
2

n mζ1


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=

(
P

{
rn
m

(
rn
m

)−1

U rn
1 ≤ (1− ε)βζ1r

α+1
2

n

})[ n
rn

]

=
(
P (Urn ≤ β(1− ε)ζ1r

α+1
2

n )
)[ n

rn
]

Using Corollary ??, we obtain

P (Urn ≤ β(1− ε)ζ1r
α+1

2
n ) = 1− P (Urn > β(1− ε)ζ1r

α+1
2

n )

≤ 1− e
−β2(1−ε)2rα

n
2

(1+|ηrn |)

2β(1− ε)
√

2πrαn
. (5.7)

Since the sequence ηrn → 0 and rαn ≤
(

2 logn
β2

)
, we have for all n ≥ N3

β2

2
(1− ε)2rαn(1 + |ηrn|) ≤

β2

2
(1− ε)2

(
2 log n

β2

)
(1 + |ηrn|)

≤ β2

2
(1− ε)2

(
2 log n

β2

)
(1 + δ3)

≤ (1− 3ε) log n, (∗∗)

where we increase N3, if necessary to guarantee (∗∗). Therefore

P (Urn ≤ β(1− ε)ζ1r
α+1

2
n ) ≤ 1− (2β)−1(

4π log n

β2
)−1/2n−(1−3ε)

≤ 1− (16π log n)−1/2n−(1−3ε)

≤ 1− n−(1−2ε) ≤ e−n
−(1−2ε)

,

where we increase N3 if necessary, so that (16π log n)−1/2 ≥ n−ε. It follows that for all
n ≥ N3

P (Ãn) ≤ e−[ n
rn

]n−(1−2ε)

≤ e−n
ε

,

where we take N3 large enough so that rn ≤ nε and [ n
rn

] ≥ n1−ε. Then we obtain

∞∑
n=N3

P (Ãn) ≤
∞∑

n=N3

e−n
ε

<∞.
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Hence, Borel-Canteli lemma implies that

P

{
lim inf
n→∞

1

mζ1
r
−(α−1)

2
n

(
rn
m

)−1

Dn(rn) ≥ β(1− ε)

}
= 1

Since ε > 0 is arbitrary, consequently as ε ↓ 0

P

{
lim inf
n→∞

1

mζ1
r
−(α−1)

2
n

(
rn
m

)−1

Dn(rn) ≥ β

}
= 1

which completes the proof of the theorem. �

Note that Theorem ?? assumed the validity of the condition Eea|h(X1,...,Xm)| < ∞ for
some positive number a. In many cases such a condition does not holds, but under some
restriction on the kernel h, such a condition can be relaxed. In fact we can formulate and
proof the following theorem.

Consider the statistics

D∗
n(rn) := max

0≤k≤n−rn

∑
k+1≤i1<...<im≤k+rn

(Xi1 . · · · .Xim − µm). (5.8)

Theorem 5.1.3. (Generalized Erdös-Rényi law for nondegenerate U-Statistics with prod-
uct kernels) Consider a U-statistics based on the kernel h given by h(x1, ..., xm) = Πm

i=1xi.
Assume that EX1 6= 0 and Eet|X1| <∞ for some t > 0. Let rn =

[
(2β−2 log n)1/α

]
, where

0 < α < 1. Then, for each β > 0

D∗
n(rn)(

rn
m

)
r

α−1
2

n mσ|µ|m−1
→ β a.s. (5.9)

Proof: The proof is identical to the proof of Theorem ??. �

Notice that, in Theorem ??, if m = 1 and σ2 = 1, then we get Book Theorem ??.
Thus, Theorem ?? contain ?? as a special case.

5.2 Strong laws for large increments of U statistics

In this section, we are going to describe the a.s. asymptotic behavior of the statistics
introduced by (??)− (??) considering large increments, i.e., the sequence rn in the defini-
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tion of these statistics satisfying the relation rn
logn

→∞. We give several lemmas towards
that goal. That is, we extend Csörgö -Révéz law for U-statistics partly, which generalizes
the Csörgö -Révéz law for sums of i.i.d. random variables Theorem ?? given by Frolov [?].
The proof is heavily depending on Corollary ?? for the nondegenerate U-statistics, and
Proposition ?? together with the martingale property of Uk+rn

1+k for arbitrary U-statistics.

Lemma 5.2.1. Consider a nondegenerate U-statistics Un(h) with Eh(X1, ..., Xm) = 0
and 0 < ζ2

1 <∞. Suppose that

Eet|h(X1,...,Xm)|1/λ

<∞ for λ ≥ 2 and t ∈ [−t0, t0]. (5.10)

Furthermore consider a nondecreasing sequence of natural numbers an ≤ n such that
an

(logn)2λ−1 →∞. Set b̂n :=
√

2m2ζ2
1an(log(n/an) + log log n) and B̂n :=

(
an

m

)
b̂n
an

. Then

lim sup
n→∞

Wn(an)

B̂n

≥ lim sup
n→∞

R̃n(an)

B̂n

≥ lim sup
n→∞

Tn(an)

B̂n

≥ 1 a.s. (5.11)

If in addition (i) limn→∞
log( n

an
)

log logn
= ∞ is satisfied. Then

lim inf
n→∞

Wn(an)

B̂n

≥ lim inf
n→∞

Dn(an)

B̂n

≥ 1 a.s. (5.12)

Proof. Let ε > 0 be arbitrary and set β = (1− ε) in Corollary ??. Define

An :=
{
Un+an
n+1 ≥ (1− ε)B̂n

}
, then

P (An(ε)) = P

(
an

(
an
m

)−1 ∑
n+1≤i1<...<im≤n+an

h(Xi1 , ..., Xim) ≥ (1− ε)b̂n

)
= P (anUan(h) ≥ (1− ε)b̂n)

≥
(

an
n log n

)(1+δ)(1−ε)2

using (??)

≥
(

an
n log n

)(1−ε/2)

,

for all large n, whenever δ is small enough. First suppose that, an/n→ τ ∈ [0, 1). Define
the nondecreasing sequence np as follows:
Choose a natural number N0 such that an+1

n
< ρ, where ρ ∈ (τ, 1). Set n1 = N0 and for

p = 1, 2, ... set np+1 := min {n : n ≥ np + an}. Making use of the inequality − log(1−x) ≤
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Cρx for x ∈ (0, ρ) and a constant Cρ. Fix a natural number k, then it follows

k∑
p=2

P (Anp) ≥
k∑
p=2

(
anp

np log np

)(1−ε/2)

≥ (log nk)
ε
2
−1

k∑
p=2

(
anp

np

)

≥ (log nk)
ε
2
−1

k∑
p=2

(
anp + 1

2np

)

≥ (1/2Cρ)(log nk)
ε
2
−1

k∑
p=2

− log

(
1−

anp + 1

np

)

= (1/2Cρ)(log nk)
ε
2
−1

k∑
p=2

log

(
np

np − anp − 1

)

≥ (1/2Cρ)(log nk)
ε
2
−1

k∑
p=2

log

(
np
np−1

)
since np − anp − 1 < np−1

≥ C(log nk)
ε
2
−1 log

k∏
p=2

np
np−1

≥ (log nk)
ε
2
−1 log nk

= C(log nk)
ε/2 →∞, as k →∞.

Since the events Anp are independent, the assertion of (??) in this case follows by the
second Borel-Canteli lemma.
Finally suppose that, an/n→ 1 as n→∞. Then for n large we have

P (An) ≥ (1/2)1−ε/2(log n)
ε
2
−1.

Set np = [θp], where θ > 3. It follows that

k∑
p=2

P (Anp) ≥ (1/2)1−ε/2
k∑
p=2

((log np)
ε
2
−1

≥ (1/2)1−ε/2
k∑
p=2

(p log θ)
ε
2
−1 →∞,

as k → ∞. Since np+1 − np ≥ 2θp > ank
, then the events Anp are independent. An

application of the second Borel-Canteli lemma completes the assertion of (??) of the
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lemma. To prove the assertion of (??), let ε > 0 be arbitrary and set β = (1 − ε) in
Corollary ??. Define the events

Ãn :=

{
max

0≤k≤n−an

Uk+an
k+1 ≤ (1− ε)B̂n

}
. Then,

P (Ãn) ≤ P

[n/an]⋂
k=1

an

(
an
m

)−1

Ukan

1+(k−1)an
≤ (1− ε)b̂n


=

(
P (anUan(h) ≤ (1− ε)b̂n)

)[ n
an

]

=
(
1− P (anUan > (1− ε)b̂n)

)[ n
an

]

≤

(
1−

(
an

n log n

)(1+δ)(1−ε)2
)[ n

an
]

using (??)

≤ e−[ n
an

]( an
n log n)

1−ε/2

≤ e(−n/an)(n/an)−1+ε/2(logn)−1+ε/2

≤ e−C(n/an)ε/2(logn)−1+ε/2

≤ e−C1(logn)1+ε/2

= O(n−2),

where we choose δ in Corollary ?? to be small enough such that (1+ δ)(1− ε)2 ≥ 1− ε/2.
The last inequality follows by using (i). Hence Borel-Canteli lemma implies the result. �

Remark 5.2.1. If we are able to prove that lim supn→∞
Wn(an)

B̂n
≤ 1, then we get equality

in (??) and (??). Observe that the equality in (??) will contradict the equality in (??)
(see Lemma ?? below). However we expect that equality in (??) can be achieved but limit
point in Lemma ?? may be zero.

Lemma 5.2.2. Consider a U-statistics Un(h) with kernel h(X1, ..., Xm) satisfying the
condition (H2) and 0 < ζ2

m := Eh2(X1, ..., Xm) < ∞. Furthermore consider a nonde-
creasing sequence of natural numbers an ≤ n such that an

logn
→∞. Set

b̃n :=
√

2mζ2
man(log(n/an) + log log n) and B̃n :=

(
an

m

)
b̃n
an

. Then

lim sup
n→∞

Rn(an)

B̃n

≤ lim sup
n→∞

Dn(an)

B̃n

≤ 1 a.s. (5.13)
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Proof. Let ε > 0 be arbitrary and in Proposition ?? set β = (1 + ε). Define An :={
max0≤k≤n−an U

k+an
k+1 ≥ (1 + ε)B̃n

}
. Then,

P (An) = P

(
max

0≤k≤n−an

Uk+an
k+1 ≥ (1 + ε)B̃n

)
= P

(
max

0≤k≤n−an

(
an
m

)−1 ∑
k+1≤i1<...<im≤k+an

h(Xi1 , ..., Xim) ≥ (1 + ε)
b̃n
an

)
≤ e−t(1+ε) b̃n

anEetUan (h) since Uan(h) is reverse martingale (t > 0)

≤ e−[ n
m

] sups(s(1+ε) b̃n
an
−logEesh(X1,...,Xm)), by using same arguments in Lemma ??

= e−[ n
m

]ξh((1+ε)b̃n/an) where ξh() defined in (??)

≤
(

an
n log n

)(1+ε)2(1−δ)

, by using Proposition ??

≤
(

an
n log n

)(1+ε/2)

≤ (log n)−(1+ε/2),

where we choose δ in Proposition ?? to be small enough such that (1−δ)(1+ε)2 ≤ (1+ε/2)
and using the fact that an ≤ n. Let θ > 1 and for p = 1, 2, ... set np := [θp]. Then

∞∑
p=1

P (Anp) =
∞∑
p=1

(log[θp])−(1+ε/2) <∞ for all ε > 0.

Therefore by Borel-Canteli lemma, we get

lim sup
p→∞

Dnp(anp)

B̃np

≤ 1 a.s.

The properties of an and the definition of B̃n implies that B̃np ≤ B̃np+1 ≤ θB̃np . Hence,
whenever np ≤ n < np+1, it follows that

Dnp(anp)

θB̃np

≤ Dn(an)

B̃n

≤ θ
Dnp+1(anp+1)

B̃np+1

.

Since θ may be chosen arbitrary close to 1, the assertion of the lemma follows. �
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5.2.1 Extended Erdös-Rényi Law for U-statistics

In this subsection, we are interested in studying the a.s. asymptotic behavior of (??)−(??)
when the increments are very short in the sense that rn in the definition of statistics
(??) − (??) satisfies the relation rn/ log n → 0. Thus, we will derive a result for U-
statistics, which contain Theorem ?? of Mason (1989) as a special case. For this purpose
recall the notation given by (??).

Lemma 5.2.3. Assume that, the kernel h satisfies the condition (H2). Then for any
nondecreasing sequence kn such that cn := logn

kn
→∞, we have

lim sup
n→∞

Dn(kn)

m
(
kn

m

)
γh(cn)

≤ 1 a.s.,

where γh(cn) := sup {z : ξh(z) ≤ cn} .

Proof. For any integer i ≥ 1, let Ωi := {n : kn = i} and for any integer j ≥ 0, let
Γj := {n : 2j ≤ n < 2j+1}. Furthermore, let Ei,j = Ωi ∩ Γj and βj :=

∑∞
i=1 11{Ei,j 6=φ}. If

Ei,j 6= φ, let βi,j := min {n ∈ Ei,j}. Notice that if Ei,j 6= φ, then

P

(
max
n∈Ei,j

(
i

m

)−1
Dn(i)

mγh(
logn
i

)
≥ 1 + ε

)
=

= P

(
max
n∈Ei,j

max
0≤p≤n−i

(
i

m

)−1

(mγh(
log n

i
))−1

∑
1+p≤i1<...<im≤p+i

h(Xi1 , ..., Xim) ≥ 1 + ε

)

≤ P

(
max

0≤p≤2j+1−i

(
i

m

)−1 ∑
1+p≤i1<...<im≤p+i

h(Xi1 , ..., Xim) ≥ m(1 + ε)γh(
log βi,j
i

)

)

≤ 2j+1P

((
i

m

)−1 ∑
1≤i1<...<im≤i

h(Xi1 , ..., Xim) ≥ m(1 + ε)γh(
log βi,j
i

)

)

= 2j+1P (Ui(h) ≥ m(1 + ε)γh(
log βi,j
i

)

≤ 2j+1e−(1+ε) log βi,j by using Proposition ??

≤ 2j+1e−(1+ε) log 2j

by definition of βi,j

Therefore, by the above estimate we get

P

(
max
n∈Γj

(
kn
m

)−1
Dn(kn)

mγh(cn)
≥ 1 + ε

)
=
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= P

(
max

n∈∪∞i=1Ei,j

(
kn
m

)−1
Dn(kn)

mγh(cn)
≥ 1 + ε

)
≤ βj2

j+1e−(1+ε)j log 2

= 2βj2
−εj ≤ (2(j + 1) log 2)2−εj

This is because βj ≤ k2j+1 and, thus, cn →∞ implies βj ≤ (j + 1) log 2 for all sufficiently
large j. Hence, Borel-Cantelli lemma completes the proof. �

Recall the definition of the sequences an, a(x), βn and bn. Set Bn :=
(
an

m

)
Λ(βn

an
). Based

on this notation, we are going to prove the following lemma, which describe the upper
limit of (??)− (??) for all sequences an so that log an

logn
→ 0.

Lemma 5.2.4. Let the kernel h satisfying condition (H2). Assume that there exists a

function g(θ), θ ∈ (1, θ0), such that g(θ) → 1 as θ → 1 and B(xθ)
B(x)

≤ g(θ) for all sufficiently
large x. Then

lim sup
n→∞

Rn(an)

mBn

≤ lim sup
n→∞

Dn(an)

mBn

≤ lim sup
n→∞

Wn(an)

mBn

≤ 1 a.s.

Proof: Write βn := log(n/an) + log log n. Then

P {Wn(an) ≥ m(1 + ε)Bn} =

= P

{
max

0≤j≤n−an

max
m≤k≤an

∑
1+j≤i1<...<im≤k+j

h(Xi1 , ..., Xim) ≥ m(1 + ε)

(
an
m

)
γh

(
βn
an

)}

≤ nP

{
max

m≤k≤an

∑
1≤i1<...<im≤k

h(Xi1 , ..., Xim) >

(
an
m

)
m(1 + ε)γh

(
βn
an

)}

≤ n
an∑
k=m

P

{ ∑
1≤i1<...<im≤k

h(Xi1 , ..., Xim) ≥
(
k

m

)
m(1 + ε)γh

(
βn
k

)}

≤ n

an∑
k=m

e−(1+ε)βn using Proposition ??

= nan

(
n

an

)−(1+ε)

(log n)−(1+ε)

= n−εa2+ε
n (log n)−(1+ε) ≤ (log n)−(1+δ) (∗) for some δ > 0.
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Making use of the sequence nk := [θk], it follows from (∗) and Borel-Canteli lemma that,

lim sup
k→∞

Wnk
(ank

)

mBnk

≤ 1 a.s.

Further since Bnk
≤ Bnk+1

≤ Bnk
g(θ) for all sufficiently large k, also because Wn(an) is

nondecreasing, it follows that

lim sup
n→∞

Wn(an)

mBn

≤ g(θ) a.s.

Now if we take the limit when θ → 1 and observe that Rn(an) ≤ Dn(an) ≤ Wn(an), we
get the desired assertion. �

Notice that, if we can prove that lim supn→∞
Tn(an)
mBn

≥ 1 a.s., then a.s. the asymptotic
behavior of (??)− (??) for all such an.
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Chapter 6

Summary and Open Questions

This thesis presented a brief historical overview of the strong law for increments of sums
of i.i.d. random variables including the famous two laws, the Erdös-Rényi law and the
Csörgö-Révéz law. We developed these laws to more general situation by considering
increments of U-statistics and obtained the Erdös-Rényi law as well as the Csörgö-Révéz
law for U-statistics. We introduced two different types of statistics based on increments
of U-statistics in (??), (??) and we defined also other functionals of these types. Taking
h(x, y) = (x+y)/2 and h(x) = x we got the statistics defined by Erdös and Rényi, Shepp,
and Csörgö and Révéz as a special case of our more general Statistics defined in (??) and
(??) respectively.

• In Section ?? we described the a.s. asymptotic behavior of the statistic D̂n(an)
and other functionals of this type (defined in (??) and (??) − (??)) considering
increments of length an. In fact, an has to grow at most as n, and at least as
(log log n)2 or

√
(log n)1+δ depending on the distribution function of h1(X1). We

did that only for nondegenerate U-statistics.
Open questions to be further investigated:
(1) Determine the a.s. asymptotic behavior of the statistic D̂n(rn), where m ≤
rn <

√
(log n)1+δ for all n and δ > 0 for nondegenerate U-statistics. This is very

important from extreme value theory point of view.
(2) Describe the a.s. asymptotic behavior of the statistic D̂n(rn), when the U-
statistics under consideration are degenerate, and rn be any nondecreasing sequence
of natural numbers such that m ≤ rn ≤ n for all n.
(3) Find the rate of convergence of the statistic D̂n(rn). To this problem, we may
use our methods as given in Section ?? together with the result given by Deheuvels
et. al. [?], if rn = [c log n] for some positive number c and if rn chosen such that
rn

(logn)2
, then using the results of Csörgö and Steinebach [?] to answer such problem,

provided the U-statistics are nondegenerate.
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• in Section ?? Lemma ?? we proved that

lim sup
n→∞

1

n
logP (Un(h) ≥ x) ≤ −1

m
∆(x),

and used it to established the upper limit of Erdös-Rényi law as well as Csörgö-
Révéz law for arbitrary U-statistics of degree m. It is very important in further
investigation to prove the following statement

lim inf
n→∞

1

n
logP (Un(h) ≥ x) ≥ −C

m
∆(x),

where C is positive constant. Such a statement will enable us to give a direct proof,
if we want to study the a.s. asymptotic behavior of the statistic Dn(rn) and the
other functionals of this type defined in (??) and (??)− (??) respectively, (see the
proof of Theorem ??).
Remarkable results in this direction are given by Nikitin and Ponikarov [?, ?] where
their theorem cover bounded kernel (degenerate and nondegenerate) for both one-
and two samples U-statistics. Also some results in that direction given by Eichels-
bacher and Löwe [?] or Eichelsbacher [?] or Shuya Kanagawa [?]. All of these result
may be used in describing the a.s. asymptotic behavior of the statistic Dn(rn) and
the other functionals of this type as well as to give the rate of convergence.
In subsection ?? Lemma ?? we extended Mason Theorem ?? partly, that means
we proved only the upper limit for the statistic Dn(rn) with rn

logn
→ 0. From the

viewpoint of extreme value theory for m dependent random variables it is of interest
to investigate the lower limit.
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