
UML-based Test Specification for
Communication Systems

- A Methodology for the use of MSC and IDL in Testing -

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Michael Ebner

aus Titisee-Neustadt

Göttingen 2004

Diese Dissertation ist elektronisch veröffentlicht und unter
http://webdoc.sub.gwdg.de/diss/2004/ebner/ebner.pdf archiviert.

This dissertation is published electronically and available via
http://webdoc.sub.gwdg.de/diss/2004/ebner/ebner.pdf.

D7

Referent: Prof. Dr. Dieter Hogrefe

Korreferent: Prof. Dr. Jens Grabowski

Tag der mündlichen Prüfung: 29. März 2004

ii

http://webdoc.sub.gwdg.de/diss/2004/ebner/ebner.pdf
http://webdoc.sub.gwdg.de/diss/2004/ebner/ebner.pdf

Abstract

Nowadays, the complexity of modern telecommunication systems has in-
creased significantly and the requirement for thorough and systematic
testing is undisputed. The Testing and Test Control Notation (version
3) (TTCN-3) is an universal and standardised language for the specifica-
tion and implementation of tests for communication systems. Many sys-
tems and in particular object-oriented systems are described using the Uni-
fied Modeling Language (UML). Therefore, UML models are an import-
ant source for test development and in particular for manual test purpose
specification and automatic test generation. Thus, usage of UML from a
test perspective is considered.

UML models provide interface information by class diagramms and de-
scription of scenarios by sequence diagrams respectively Message Sequence
Charts (MSCs). Most UML tools permit conversion of class diagrams into
Interface Definition Language (IDL) which widens applicability. The com-
bination of TTCN-3 and UML by MSC and IDL is a new approach. Thus,
new mappings for MSC and IDL to TTCN-3 have been worked out. Ad-
ditionally, to widen usability and applicability, the deficiency of object-
orientation in TTCN-3 is inspected and a proposal for an object-oriented
revision is given.

iii

iv

Zusammenfassung

Die Komplexität moderner, verteilter Kommunikationssysteme hat sich er-
heblich gesteigert und die Notwendigkeit gründlichen und systematischen
Testens ist unbestritten. Die Testing and Test Control Notation (version
3) (TTCN-3) ist eine universelle und standardisierte Sprache zur Spezifi-
kation und Implementierung von Tests für verteilte Systeme. Viele Systeme,
insbesondere objekt-orientierte Systeme, werden heutzutage mittels der
Unified Modeling Language (UML) beschrieben und deshalb sind UML-
Modelle eine wichtige Quelle für die Testentwicklung und insbesondere
für die manuelle Testzweckspezifikation und die automatische Testgene-
rierung. Folglich wird die Verwendung von UML aus der Testperspektive
heraus betrachtet.

UML-Modelle bieten Informationen über Schnittstellen durch Klassen-
diagramme und Szenarienbeschreibungen durch Sequenzdiagramme be-
ziehungsweise Message Sequence Charts (MSCs) an. Die meisten UML-
Werkzeuge erlauben die Konvertierung der Klassendiagramme in die In-
terface Definition Language (IDL), wodurch die Anwendbarkeit erweitert
wird. Die Kombination von TTCN-3 und UML durch MSC und IDL ist
ein neuer Ansatz. Deshalb wurden Abbildungen von MSC und IDL nach
TTCN-3 ausgearbeitet. Um eine verbesserte Bedienbarkeit und Anwend-
barkeit zu erreichen, wird zusätzlich die Verwendung von Objektorientie-
rung in TTCN-3 untersucht und ein Vorschlag für eine objektorientierte
Überarbeitung gegeben.

v

vi

Acknowledgements

Firstly, I like to thank my supervisor Prof. Dr. Hogrefe for his kind support
and the possibility to research under excellent conditions. The work at the
Institute for Telematics in Lübeck and Telematics Group in Göttingen has
been a very positive experience.

I would also like to thank my former colleagues in Lübeck and my
current colleagues in Göttingen who have accompanied me through the
years. It was always a pleasure to work with them. Special thanks go to
Prof. Dr. Jens Grabowski, Helmut Neukirchen, and Dr. Michael Schmitt
with whom I shared a lot of discussions and debates. It has been a very
nice and interesting time.

This thesis would not be in its current shape without the comments of
numerous people. Thus, I truly appreciate the efforts of Zhen Ru Dai,
Helmut Neukirchen, Dr. Michael Schmitt, Rene Soltwisch, and Edith
Werner.

I am also grateful to Prof. Dr. Jochen Seitz who has encouraged me to
prepare a doctoral thesis. In addition, I like to thank Carmen and Barbara
for their continuous motivation to finish this thesis.

Finally, I have to thank my parents for providing so much support for
my unusual career path throughout the years.

vii

viii

Contents

1. Introduction 1

2. Fundamentals of Testing 5
2.1. Dynamic Testing Concepts 5
2.2. Problems of Object-Orientation for Testing 10
2.3. Test Generation . 14
2.4. Testing and Test Control Notation 19
2.5. Summary . 37

3. UML-based Testing 39
3.1. Unified Modeling Language 39
3.2. Suitability of UML for Testing 41
3.3. UML-based Test Specification 43
3.4. Message Sequence Chart 45
3.5. Interface Definition Language 53
3.6. Summary and Outlook . 58

4. Mapping of MSC to TTCN-3 61
4.1. Fundamental Concept . 62
4.2. MSC Documents and Comments 64
4.3. Basic Message Sequence Charts 65
4.4. Structural Concepts . 69
4.5. High-Level Message Sequence Charts 75
4.6. Summary and Outlook . 76

5. Mapping of IDL to TTCN-3 79
5.1. Fundamental Concept . 79
5.2. Lexical Conventions and Preprocessing 80
5.3. Structural Elements . 82
5.4. Data Types . 85
5.5. Communication Declaration 96
5.6. Names and Scoping . 102
5.7. Summary and Outlook . 103

ix

Contents

6. Object-Oriented Enhancements for TTCN-3 107
6.1. Object-Orientation in TTCN-3 107
6.2. Object-Oriented Revision of TTCN-3 113
6.3. Summary and Outlook . 116

7. Conclusion 119

A. IDL Mapping Summary 121
A.1. Conceptual IDL to TTCN-3 Mapping 121
A.2. Comparison of IDL, ASN.1, TTCN-2, and TTCN-3 Data

Types . 122
A.3. Examples . 124

B. The TTCN-3 Inres Protocol Module 133

Acronyms 139

Bibliography 141

List of Figures 151

List of Tables 153

x

1. Introduction

The complexity of modern telecommunication systems has increased sig-
nificantly and the necessity for thorough and systematic testing is undis-
puted. For instance, conformance and functional testing is widely used in
the telecommunication area. However, testing is an expensive and time-
consuming task. Before concrete tests can be carried out on a system,
much effort has to be spent on specifying what and how to test and on ob-
taining the test descriptions in a format that is accepted by the test equip-
ment.

Testing of distributed systems based on Internet technologies has not
matured that much. However, testing becomes more and more important
if we consider the increasing amount of provided services and transfered
data with Internet-based technologies. Furthermore, traditional telecom-
munication systems develop to Internet-based services to provide more
powerful systems and to create new services. Testing of these new Internet-
based applications is as crucial for their success as in the telecommunica-
tion area.

Testing has to be integrated into the development process. Therefore,
to reduce testing effort tests should be generated from system specification
which is named Computer Aided Test Generation (CATG). Manual test
generation is error-prone wherefore test generation must be automated to
be effective and repeatable. However, test generation based on state space
exploration is helpful but generates frequently inefficient tests, lacks to
cover specific parts, or may not be possible because of an incomplete or
missing specification. Thus, scenario-based, manual test specification is
interesting where the test designer can focus on specific elements in the
System Under Test (SUT) and requires no test specific knowledge like the
used test language.

In the telecommunication area, the Tree and Tabular Combined Nota-
tion (TTCN) is used as a standardised test description language. Tree and
Tabular Combined Notation (version 2) (TTCN-2) (ISO/IEC 1998b) has
been applied successfully to functional testing of communication proto-
cols for years. Testing and Test Control Notation (version 3) (TTCN-3)
has been especially designed to test CORBA-based systems to satisfy the
demand for testing Internet-based distributed systems (ETSI 2002a). Com-

1

1. Introduction

UML

Interfaces (IDL) Scenarios (MSC)

Tests (TTCN-3) Object-
Orientation

use

map

use

map

enhance

Figure 1.1.: Fundamental concept of the thesis

mon Object Request Broker Architecture (CORBA) is a standard architec-
ture for distributed object systems and standardised by the Object Man-
agement Group (OMG) (OMG 2001b). Many systems and in particular
object-oriented systems can be described using the Unified Modeling Lan-
guage (UML) which is also defined by the OMG (OMG 2003c). Thus,
UML models are an important source for test development and using UML
from a test perspective has to be considered. Additionally, there is ongoing
work on an UML Testing Profile (UTP) which can be mapped to TTCN-3.

Scope

UML provides sequence diagrams which are very similar to Message Se-
quence Charts (MSCs). Thus, they are used to specify test scenarios.
Most UML tools permit generation of Interface Definition Language (IDL)
wherefore it is used to provide interface information (see Figure 1.1). In
addition, it widens application because IDL is very common. For in-
stance, CORBA systems are using IDL to describe their object interfaces
and there exist mappings to different languages like Abstract Syntax Nota-
tion One (ASN.1) and Web Services Description Language (WSDL). Us-
ing TTCN as test description language is quite natural because of its suc-
cessful application in the telecommunication area by using automatic test
generation, and the possible usage of TTCN-3 with UML via the UML
Testing Profile (UTP). In addition, it was successfully applied for testing
CORBA-based systems. The combination of TTCN-3, UML sequence dia-
grams substituted by MSCs, and IDL to provide scenario-based, manual
test specification is a new approach. Thus, new mappings for IDL and
MSC to TTCN-3 have to be worked out which can be seen in chapter 4
and chapter 5 (see Figure 1.1).

2

To widen usability and applicability of TTCN-3, the object-oriented
concepts in TTCN-3 are inspected and a proposal for an object-oriented
revision is made (see Figure 1.1).

Outline

The remainder of this thesis is structured as follows. Chapter 2 intro-
duces some fundamentals on testing with focus on object-orientation and
test generation and then introduces the test description language TTCN-3.
Chapter 3 discusses the usage of UML for testing of systems and explains
the concept of scenario-based testing with UML. Furthermore, it intro-
duces MSC and IDL. Chapter 4 deals with a mapping of MSCs to TTCN-3
to allow test generation based on scenarios defined in UML. In chapter 5,
a mapping of IDL to TTCN-3 is detailed to use interface information for
test generation. The deficiency of object-orientation in TTCN-3 and an
object-oriented revision are discussed in chapter 6. Finally, conclusions
are given.

3

4

2. Fundamentals of Testing

Testing is an important part of the analytical quality control of inform-
ation technology systems and hence, is part of each software/hardware
engineering process to assure functionality and reliability (Balzert 1998;
Kaner et al. 1999). Test methods aim at detecting faults whereas verifica-
tion methods try to show the formal correctness against the specification,
and validation methods try to confirm the suitability of systems or system
components for the application purpose.

There are static and dynamic test methods. Static methods like inspec-
tion, review, and walkthrough analyse the source code while dynamic
methods execute the system and provide concrete input data (Myers 2001).
Static testing methods are especially useful in early stages of programming
and for finding structural problems.

Dynamic testing allows testing in the environment1 of the system but
cannot prove the absence of faults because the selected test input data
does not cover all cases. Testing all cases would be the same like formal
verification which mostly is too difficult for modern systems. However,
when it comes to the later development stages, in which systems get larger
and more complex, dynamic testing is a way to get a better coverage of the
system as it can be done with static testing. Hence, a better confidence in
the system is possible. In this thesis, only dynamic testing for distributed,
object-oriented systems is considered.

The testing area is divided into many fields wherefore some classific-
ations are given first. Afterwards, some remarks on problems in testing
object-oriented systems and test generation are given. Furthermore, the
test description language TTCN-3 gets explained. Finally, the chapter is
summarised.

2.1. Dynamic Testing Concepts

The dynamic testing area is divided into many fields with different meth-
ods, procedures, and objectives depending on the application area. Some
characteristics to classify dynamic testing are

1It is quite common to simulate the environment.

5

2. Fundamentals of Testing

• the implementation type (target platform),

• the place in the development cycle,

• the knowledge about the underlying system,

• the test objective,

• the test data selection, and

• the test result authority.

Below, these characteristics are explained in more detail (Balzert 1998;
Kaner et al. 1999; Myers 2001).

Type of Implementation

Testing depends on the target platform which can be hardware, software,
or both. Hardware testing is done on the physical level with signal input
and output. This concerns physical elements such as transistors, gates,
and circuits, or functional elements like busses. Software testing is done
on the logical layer where the hardware is assumed to be correct. In the
following, we only consider software testing.

Development Cycle

Faults can occur in each phase of the software development cycle. There-
fore, the phase influences the kind of test such as module test, integration
test, system test, or approval test as shown in Figure 2.1. Thus, the tester
considers which piece of software to test which can be just a single func-
tion (method), a complete class, a collection of functions or classes (lib-
rary), or a whole application with its internal and graphical interfaces. For
instance, integration testing checks the communication between different
modules to ensure that they interwork correctly.

System Knowledge

The amount of knowledge about the underlying system determines which
kind of test and test architecture can be used. There are three distinguish-
able testing types:

6

2.1. Dynamic Testing Concepts

Requirement
definition

Approval test

Rough design System test

Fine design Integration
test

Module im-
plementation

Module test

Figure 2.1.: The V process model for software development (Balzert 1998, page 101)

Black-box testing is applied to systems about which no internal know-
ledge is available. Only the interfaces to the environment are access-
ible. In addition, the specification is available from which tests can
be generated. Hence, test data can be given as input and the output
data can be evaluated against the specification. Black-box testing is
mainly done in the later development stages.

Grey-box testing is used if some internal knowledge is available. The
knowledge is used to improve code coverage for black-box testing.

White-box testing, also called glass-box or structural testing, is used if
full knowledge about the implementation is available. For instance,
the source code is available. Hence, the information can be used
to center testing, to control code coverage, to check value boundar-
ies, and to do algorithmic specific testing. Furthermore, knowledge
about control flow and data integrity can be used to design tests.
White-box testing is mainly done in the implementation phase.

Test Objectives

The application area influences the requirements which have to be fulfilled.
Thus, there are also different kinds of tests.

Functional testing is used to check the behaviour with regard to the func-
tional requirements. Test data are sent to the system and the received
output is checked against the specification. The term functional test-
ing is sometimes used as synonym for black-box testing.

7

2. Fundamentals of Testing

Performance testing is used to check non-functional requirements like re-
sponse time or memory usage in normal or overload situations.
There are three special cases:

Real-time testing checks some real-time requirements. They can be
divided into hard and soft requirements. Hard requirements
concern definite time boundaries which have to be fulfilled.
Soft requirements describe time boundaries or some variances
which may be violated within a definite range.

Load testing checks the behaviour when heavy load is generated.
For instance, the response time is checked.

Stress testing checks the behaviour under unusual conditions by, for
instance, sending inopportune or malformed data.

Portability testing is used to check the portability to other environments
like other hardware or software platforms. For example, operation
system derivates have to be checked against the different environ-
ments.

Penetration testing is used to check the vulnerability of a system like
whether it is possible to get unauthorised rights, wrong configura-
tions can lead to successful attacks, or are there any known bugs in
used software.

Usability testing checks (graphical) user interfaces with regard to criteria
such as adequacy, simplicity, clarity, and consistency. Typically, us-
ability tests are performed by recording and evaluating the beha-
viour of an external test person interacting with the system (gestures,
response times, eye movement, etc.).

Test Data Selection

Testing is always concerned with feeding a system with input and evaluat-
ing the output. Hence, the method to choose the test data is important.

Exhaustive testing means to enter all possible data on each possible input
request. This would be a complete test regarding the claimed in-
put but it is only applicable for small amounts of input requests or
possible test data because of the increasing complexity for a bigger
amount.

8

2.1. Dynamic Testing Concepts

Partition testing segments the input domains into sub-domains without
overlapping. For instance, boundary testing to check boundaries
and extreme values.

Random testing refers to the random choice of test data from the whole
set of data.

Mutation testing is based on the approach that many different system ver-
sions, called mutations, are generated. Each mutation is the result
of a small modification like removing or modifying statements. Test
data have to be selected in such a way that all modifications are de-
tected. Hence, the probability could increase to get good test data
for the original system.

Authority for Test Results

Another criterion for classifying tests is the authority which is used as
reference to decide whether a system passes a test successfully.

Conformance testing checks the underlying system against its specifica-
tion. This implies black-box testing.

Interoperability testing or compatibility testing checks the interworking
of different implementations of the same specification. For instance,
protocol implementations from different companies. Conformance
to the specification does not ensure interoperability because the spe-
cification can be, for instance, incomplete and hence interpretable.
Likewise, interoperability does not ensure conformance to the spe-
cification, because both implementations could misinterpret the spe-
cification in the same way.

There are two kinds of tests, namely active and passive interworking
tests. Passive tests check only valid behaviour whereas active tests
allow to introduce errors, wrong behaviour, wrong data, etc.

Regression testing is used if a part of a system has been modified and the
behaviour of the whole system has to be tested. To detect side effects
of the modifications, only outputs have to be considered which differ
in comparison to output from the old system.

Comparison testing compares the output of different systems which are
based on the same specification. The aim is to find output differ-
ences.

9

2. Fundamentals of Testing

2.2. Problems of Object-Orientation for Testing

The main idea of object-orientation is to bind data and belonging methods
together and encapsulate them in classes. Additionally, to provide more
expressive mechanisms like inheritance and polymorphism to enhance re-
usability. It was believed that the new paradigm also leads to less faulty
systems and is easier for system testing because of more compact code.
However, object-oriented software is still produced in the same imperfect
way as before. For instance, with the same humans and similar developing
methods. Despite of the expectations the object-oriented paradigm has its
own kinds of pitfalls because of powerful concepts like inheritance, poly-
morphism, late binding, and encapsulation. Consequently, the advantages
of object-orientation with regard to development are disadvantages for
testing. Therefore, testing object-oriented systems is still necessary and ef-
fective testing requires special attention to object-oriented pitfalls (Binder
2000; Kung et al. 1998; McGregor & Sykes 2001).

The test model and consequently the test strategy depends on the test
aim (ISO/IEC 1994). For instance, a system crash must not be a reason
to fail a functional test but it would be a reason for a fault directed test.
Nevertheless, knowledge about object-oriented faults is useful for both
cases. The paradigms like encapsulation, object composition, and com-
plex runtime behaviour by polymorphism are an obstacle for testing. Test
case design and coverage analysis are difficult wherefore automatic gen-
eration tools have to provide special support for object-orientation. In-
teraction is described by a complex set of message sequences and states.
Polymorphism and dynamic binding increase number of execution paths.
Furthermore, objects and consequently object states are distributed over
the whole system which makes state control difficult. Inheritance has the
effect that correctness of a superclass does not lead to correctness of a sub-
class of it. Additionally, reusability of a class requires careful testing and
retesting in each new context. Interfaces are used quite a lot wherewith
more interface faults occur.

An error and a failure list and a method scope fault taxonomy is given
in Binder (2000, section 4.2.7). Some language-specific hazards for C++,
Smalltalk, and Java are also given in Binder (2000, section 4.3). Some
details of the above mentioned problems are detailed now.

10

2.2. Problems of Object-Orientation for Testing

Encapsulation

Information hiding and modularity are achieved by encapsulation of data
and methods in classes where access is controlled. Therefore, dependencies
and global access are prevented by hiding implementation. Encapsulation
is not directly related to faults but it is a obstacle for testing because ab-
stract and concrete states have to be influenced by testing. However, direct
access to states by, for instance, get and set methods is often not possible.

Inheritance

An essential aim of object-orientation is to support reusability by using
elements of a common entity. For instance, types and subtypes with ex-
tensibility can be defined. If inheritance can be mirrored in the test suite,
the test effort for a subclass can be reduced. Inheritance can be a very
powerful means but some weaknesses and misuses can lead to a lot of
trouble:

• deep (hierarchy of subclasses) and wide (usage in many classes) in-
heritance,

• inheritance weakens encapsulation because subclasses can get direct
access to superclass elements (hence, contract of superclass could be
violated by subclass),

• participation in implicit control mechanism for dynamic binding be-
cause of unanticipated bindings or misinterpretation of correct us-
age,

• abuse by using as macro expansion mechanism, and

• as a model of hierarchy where no sharing or using is done.

Thus, faults by side effects, inconsistencies, and incorrect behaviour have
to be considered.

Incorrect initialisation of objects by missing initialisation in the super-
class, modified super initialisation, or forgotten overwrite of methods like
copy and isequal lead to faults. Especially in retesting modified methods/al-
gorithms, the dependencies between classes have to be considered. Mix-
ing problem domain relationships and shared implementation features are
problematic. For instance, class/subclass and type/subtype relationships
require careful handling. A subtype has a specification relationship and a
subclass has an implementation relationship. Subclasses have to be tested

11

2. Fundamentals of Testing

against their specifications and against the specification of the superclass.
Reuse is difficult if it was not intended initially because of assumptions or
optimisations specific to the original application. Identically named meth-
ods from different classes can produce faults because of incorrect dynamic
binding or when used from another class. Scoping rules influence binding
wherefore usage in subclasses may fail.

Abstract and generic classes require the creation of a concrete class to
get tested. For generic classes, the interaction between class and used type
has to be tested. However, an exhaustive testing of all types for a generic
class is not feasible and would be equal with formal verification.

Polymorphism

Binding a reference to more than one possible object or method allows for
compact, elegant, and extensible code and is called polymorphism. Bind-
ing and type checking at compile time is called static polymorphism. At
runtime, it is called dynamic polymorphism respectively dynamic binding.

Semantics, syntax, and binding search mechanisms to select a method
at runtime differ between programming languages. Polymorphism makes
code difficult to understand and error-prone because behaviour is not pre-
dictable by a static analysis and the code is hard to read. Thus, wrong
method binding has to be excluded by testing. Many variables, which
influence polymorphic methods, are not visible in source so that it is dif-
ficult to understand all possible interactions with all bindings. Depend-
encies among polymorphic methods are stronger than for normal meth-
ods because of their wider application. Therefore, method specification
modifications have more influence and unmodified classes lead to faults.
Method redeclaration in subclasses is dangerous especially in the context
of polymorphism.

Consequently, usage of polymorphism can be fault-prone. Common
mistakes are ignoring responsibility, independent revision of its definition
and usage, contract inconsistency, not provided method, method misuse,
or incorrect interface signature.

Interaction

Classes are collections of methods and states and they interact by call-
ing methods where interpretation depends on the current state. However,
which are correct sequences of method calls? A corrupt state can be oc-
cur by faulty method interworking or method implementation. Method

12

2.2. Problems of Object-Orientation for Testing

interworking may be faulty by overlapping responsibilities or if there is a
concrete sequence pattern to produce a corrupt state. For instance, over-
lapping responsibility is given if an internal variable is modified by several
methods without considering the implications. Method implementation
may be faulty by using a corrupt algorithm or giving an incorrect output.
Furthermore, a method implementation can be overridden, for instance,
by bad inheritance, or a wrong contract is implemented.

In case where sequences lead to the same result, an equivalent sequence
set is found. If different instances do not produce the same result, a fault is
found. State rules of objects have to be considered and thus, illegal method
calls in definite states are forbidden. This is necessary to prevent wasting
computation time and to provide a stable system. However, a defensive
system design should consider wrong method calls and forbidden method
calls have to be tested. Methods have to be tested in cooperation because
testing a method alone is not enough. A fault could occur later during
using another message.

Services

There are services provided by the programming language and used com-
piler respectively which have also to be considered for testing. Default
services like providing default constructor, deconstructor, or copy con-
structor are supported. Runtime conversion services for classes, which
are similar to type conversion, are used to convert superclass objects to
subclass objects and vice versa. Garbage collection services could cause
problems under high loads. Providing an object identity during run-time
to distinguish types, subtypes, and objects is only done for subclasses by
the programmer itself (via copy and isequal methods).

Summary

To sum up, static testing is less effective for object-oriented systems be-
cause of dynamic effects like late binding and coding complexity like in-
heritance and polymorphism. An effective test process for object-oriented
systems has to consider these problems (Binder 2000; Kung et al. 1998;
McGregor & Sykes 2001) and thus,

• design for testability in all phases is important,

• testing must adapt to iterative and incremental development,

13

2. Fundamentals of Testing

• test design has to consider methods, classes, and clusters at the same
time because testing a cluster of classes and not a class alone is ne-
cessary to consider the environment of a class,

• test suite structure should correspond to SUT structure which en-
hances readability, maintenance, and automatic generation.

Thus, black-box testing like component testing is not enough because
specific bugs of object-oriented systems are missed and methods using code
coverage analysis have to consider object-orientation, too.

2.3. Test Generation

As discussed before, testing has to be integrated into the development pro-
cess. Therefore, to reduce testing effort tests (test purposes and test cases)
should be generated from system specification which is named CATG.

Manual test generation is error-prone wherefore test generation must
be automated to be effective and repeatable. Efficiency allows a quick val-
idation which speeds up debugging. Repeatability, through usage of test
cases once more, enables more often testing wherefore minor system modi-
fications can be validated immediately. Furthermore, automation leads to
consistent test results which eases test result analysis. The uniform test
process is independent of the responsible person for testing. Using auto-
mation enables better productivity because test staff can concentrate on
test design and not test execution and test suite maintenance. The selec-
tion of test method and tools for automation depends on test experience,
test goals, budget, used software process, kind of application under devel-
opment, particulars of the development and target environment, etc.

Automated testing can permit test execution of long and complex tests,
automate comparison for many test outputs to evaluate test results, and
automatic adaptation to different versions of the SUT. For instance, re-
gression testing benefits a lot from automation. Automatic testing involves
running test suites without manual intervention and generation of test in-
puts and expected results.

However, manual test generation is also useful if, for instance, many
user interaction is necessary, no repeat is necessary, automatic generation
is too expensive, or full automatic generation is not possible or not effect-
ive. Skilled testers with good knowledge of SUT can develop good but
limited test cases where focus is mostly on specific scenarios. Thereby,
combining manual and automated testing is quite common. Thus, it is an

14

2.3. Test Generation

advantage if manual tests are written in the same language or languages as
the system specification. It provides seamless integration between manual
and automatic test generation and improves maintenance and readability.

In the section remainder some remarks to the tools Autolink and Test-
Composer are given which provide manual and automatic test generation
facilities (Schmitt et al. 2000). Firstly, an introduction is given. Secondly,
an overview about the test generation process is given. Lastly, scenario-
based testing by direct translation of MSCs is described. Test purpose
based testing and test case generation with Autolink are described in
Koch (2001) and automatic test generation using state space explora-
tion with Autolink based on formal specifications is described in Schmitt
(2003).

Autolink and TestComposer

In many cases, a formal specification of the SUT is given in the Specific-
ation and Description Language (SDL) (Ellsberger et al. 1997; ITU-T
1999). SDL not only allows to describe the structure and behaviour of
a communicating system in a semi-graphical way; there also exist tools
for dynamic analysis of SDL specifications by means of simulation and
validation. Hence, a reasonable approach is to generate test cases auto-
matically based on a given SDL specification. In addition to an increased
efficiency in terms of both time and cost, automatic test generation ensures
consistency between the formal specification and the test cases applied to
an implementation.

For that reason, the two major SDL tool vendors Telelogic and former
Verilog have integrated automatic test generation tools into their soft-
ware development environments.2 Telelogic complemented its TAU tool
suite with Autolink in 1997. Autolink has been developed at the In-
stitute for Telematics, Medical University of Lübeck (Koch 2001; Schmitt
2003) and is based on the former work of the SaMsTaG project (Grabow-
ski et al. 1997). In 1998, Verilog extended ObjectGeode with Test-
Composer. Similar to Autolink, it has its root in the research area as it
is based on TGV and TVEDA which were developed at IRISA/Verimag
and France Telecom/CNET (Kerbrat et al. 1999).

Both tools share the same basic concepts. For example, they apply state
space exploration techniques to search for suitable test sequences. In addi-
tion, they support the second edition of the standardised TTCN (ISO/IEC

2In December 1999, the two companies have merged.

15

2. Fundamentals of Testing

1998b) as a common output language. Nevertheless, many concepts are
realised differently in TestComposer and Autolink. Moreover, the two
tools put their focus onto different steps of the test generation process.
The strengths of TestComposer are in the flexible specification of test
purposes whereas Autolink has its strong points when it comes to the
customisation of the generated TTCN test suites.

TestComposer and Autolink have been described separately in detail
in former publications (Grabowski et al. 1999; Kerbrat et al. 1999; Koch
et al. 1998). A short introduction to the overall process of test generation
is given in order to make the reader familiar with the general approach.

Overview

Autolink and TestComposer are tightly integrated into their corres-
ponding development environments. TestComposer is built on top of
the ObjectGeode Simulator; Autolink is part of the TAU Validator. In
this way, the tools can make use of the functionalities of their underly-
ing applications. The Simulator as well as the Validator are used to find
dynamic errors and inconsistencies in SDL specifications. They provide
roughly the same basic features with state space exploration as their fun-
damental concept.

Test generation with TestComposer and Autolink follows a three-
stage process. An overview is given in Figure 2.2. In the diagram, actions
are represented by rounded boxes. Data structures and files are depicted in
rectangles. Finally, configuration scripts that influence the test generation
are indicated by hexagons.

In a first step, the user has to specify a set of test purposes. Each test pur-
pose defines a specific aspect of the behaviour of the implementation that
is intended to be tested. With regard to TestComposer and Autolink, a
test purpose is considered to be a sequence of input and output events that
are to be exchanged between the given SDL system and its environment.
Test purposes are developed either manually by using, e.g., an MSC editor,
interactively by stepwise simulation of the SDL system, or fully automat-
ically.

There are different representations for test purposes: Autolink uses
Message Sequence Chart-1996 (MSC-96) (ITU-T 1996) as an uniform
format. TestComposer uses MSC-96 as well but also creates scripts in a
proprietary format that can be handled by ObjectGeode more efficiently
than MSCs. Both tools support observer processes which are similar to

16

2.3. Test Generation

Test environment

Automatic
computation

Interactive
simulation

Manual
specification

Script files MSCs Observer
processes

State space
exploration

Direct
translation

Test cases Constraints Constraint
modification

Application Programming Interface/
Production modules Test architecture

User defined
output format

TTCN test suite Test suite
structure

Figure 2.2.: Test generation with TestComposer and Autolink

regular SDL processes. They run in parallel with the actual SDL system
and allow to inspect and control its simulation.

Based on a set of test purposes, test case generation takes place. Nor-
mally, a generation engine computes a test case based on state space ex-
ploration of the SDL system. By this, it can determine additional valid in-
teractions between the tester and the SUT which are not already specified
in the test purpose description. However, sometimes it is not possible to
simulate a test purpose. For these cases, Autolink provides a way to
translate test purposes directly into test cases.

All test case descriptions along with their constraints, i.e. the definitions
of the data values exchanged between the tester and the SUT, are stored
in an internal data structure. Autolink allows to save and reload gen-
erated test cases to disk such that the user can suspend and continue the
generation of a full test suite.

In a final step, Autolink produces a test suite in TTCN-2 format.
TestComposer provides an Application Programming Interface (API)
(which is public) that allows customers to adapt the tool to any arbitrary
test specification language. In addition to the internal test case repres-

17

2. Fundamentals of Testing

entations, the API provides access to general information about timers,
signal types, etc. and Point of Control and Observation (PCO). Test-
Composer already includes a module that produces test suites for second
edition TTCN. In the following, only TTCN will be considered for output
as many features of the tools are related closely to this notation.

Test generation with Autolink and TestComposer is influenced by
a number of configuration settings. For example, when generating test
purposes (semi-) automatically, the developer has to provide the simulator
with information on the test environment of the system, i.e. reasonable
input values. The look of the test suite can also be controlled by various
options. In Autolink, constraints can be named and parameterised by
user-defined rules. In addition, test cases can be combined in a hierarchy
of test groups to express their relationships. Last but not least, the test
architecture has a great impact on the final test descriptions. A test case
that is executed on a monolithic tester will look differently from a test case
that is designed for a distributed test system.

Scenario-based Testing

If a test purpose defined as MSC covers certain aspects of a protocol spe-
cification which are not represented in the corresponding SDL model or if
a SDL model is missing completely, it is obviously not possible to generate
a test case by state space exploration. To handle these cases, Autolink
provides direct translation of MSCs into TTCN test cases with consistency
checks regarding the SDL system interface definitions. Hence, an SDL sys-
tem has to be provided which at least defines the channels to the system
environment in order to identify the PCO and the signals sent via these
channels.

Direct translation of MSCs into TTCN test cases has to be applied with
caution. There is no guarantee that the MSCs and hence the test cases
describe valid traces of the specification or the implementation, respect-
ively. Instead, Autolink relies on the developer that the test cases are
valid. Furthermore, it is not possible to compute test events which lead
to an inconclusive test result, meaning any deviation from the behaviour
described in the MSC is considered to be false.

On the other hand, there are good reasons to specify MSC test pur-
poses instead of directly writing TTCN test cases. Firstly, test cases typ-
ically span trees with several tree leaves because of the partial order of
test events. In MSCs, the partial order is expressed inherently due to the
semantics of MSC. While it is arduous for a test suite developer to write

18

2.4. Testing and Test Control Notation

down a complete TTCN test case, Autolink automatically computes all
valid permutations of test events for a given MSC.

Secondly, since Autolink always translates MSCs into an intermediate
internal test case representation, test cases generated by an MSC to TTCN
translation can be merged with test cases generated by state space explora-
tion. This leads to uniform and compact test suites with a reduced number
of constraints.

2.4. Testing and Test Control Notation

The Tree and Tabular Combined Notation (TTCN) is the third part of
the Conformance Testing Methodology and Framework (CTMF) (ISO/IEC
1994) standard for the specification of test suites for conformance testing.
In May 2001, the new version of TTCN, called Testing and Test Control
Notation (version 3) (TTCN-3), was finally standardised (ETSI 2002a).
The TTCN-3 (ETSI 2002a) is a universal and standardised language for
the specification and implementation of tests for distributed systems.

TTCN-3 is the target language for test generation within the scope of
this thesis. TTCN is widely accepted in the area of testing telecommu-
nication protocols. Contrary to existing programming or scripting lan-
guages like C and the DejaGNU GNU Testing Framework (Savoye 2001)
or test frameworks like XUnit, the TTCN-3 provides an appropriate level
of abstraction, high-level testing concepts, and control structures. Hence,
writing abstract and implementation independent test suites gets possible
which widens the application area. It is also easier to read and write tests
and to provide standardised test suites for standardised protocols. Further-
more, test engineers have to learn only one test language and can mostly
use the same testing tool set. TTCN-3 tools are offered, for instance, by
Telelogic, Testing Technologies, and Da Vinci Communications
which support editing, compilation, debugging, and execution of TTCN-3
modules.

Improvements

TTCN-3 is called the successor of TTCN-2 (ISO/IEC 1998b) but it was re-
designed from scratch and uses another style. TTCN-3 improves concepts
of TTCN-2 and introduces new concepts to support a broad spectrum of
testing types, e.g., conformance and interoperability testing, and its com-
munication mechanisms allow for testing various platforms such as the
CORBA or Internet-based protocols. An important feature of TTCN-3

19

2. Fundamentals of Testing

Other Types
& Valuesn

IDL Types
& Values

ASN.1 Types
& Valuesn

TTCN-3

Core
Language

Presentation
formatn

Graphical
format

Tabular
format

TTCN-3

User

Figure 2.3.: User’s view of TTCN-3 core language, presentation formats, and imported types

is the enhanced communication concept which now supports procedure-
based communication to provide synchronous communication, as well as
the asynchronous message-based communication. Additionally, a test ex-
ecution control part, a module and grouping concept, and new data types
are introduced to provide better control and grouping mechanisms.

TTCN-2 was designed to test networks which are conform to the Inter-
national Organisation for Standardisation (ISO) Open Systems Intercon-
nection (OSI) reference model. The OSI terminology and concepts like Ab-
stract Service Primitive (ASP) and Packet Data Unit (PDU) and conform-
ance testing peculiarities have been removed as far as required to widen
applicability of TTCN-3. Additionally, constraint handling was replaced
by templates which provide parameterisation and matching mechanisms.
Use of data types defined via ASN.1 is also possible in TTCN-2. Ho-
wever, TTCN-3 has integrated some ASN.1 data types into the language
itself and allows import of ASN.1 data types.

As the name TTCN states, a tabular form was used in TTCN-2. Ho-
wever, TTCN-3 abandons the tabular form and uses instead a text-based
language which is comparable to an implementation language like C. This
new core language is used as base for document interchange and also for a
tabular presentation format defined in ETSI (2001). A graphical presenta-
tion format is also defined in ETSI (2002b) (see Figure 2.3) which is called
TTCN-3 Graphical Presentation Format (GFT).

The remaining part of this section shall describe some basic concepts
of TTCN-3 itself to set a base for the following chapters. This includes
the module and group concept, the data concept, communication, test

20

2.4. Testing and Test Control Notation

configuration, templates, and behaviour description. The Inres example
gets described first.

2.4.1. Inres Case Study

The concepts of TTCN-3 are illustrated by test suites for Inres, a service
and protocol designed for educational purposes (Hogrefe 1989). It is also
used in section 3.4 for the description of the formal specification language
MSC.

Inres – which stands for INitiator-RESponder – is a reliable, asymmetric
and connection-oriented service on the OSI data link layer that ensures the
safe transmission of data over an unreliable medium. For that purpose, a
sequence number is transmitted along with each data. The responder pro-
tocol entity must acknowledge each data packet by the correct sequence
number.

The Inres service comprises the three phases connection establishment,
data transfer, and connection release. The message exchange that takes
place when a service user A transmits one data packet to some service
user B is shown in the MSC in Figure 2.4.

The main features of TTCN-3 are illustrated by test suites for testing the
conformance of Initiator protocol entity implementations. The local test
method of the CTMF is chosen, i.e., both upper and lower tester reside
inside the test system. The upper tester takes the role of Service User
A and exchanges Inres ASPs with the SUT via Inres service access point
ISAP1. The lower tester simulates the behaviour of a Responder protocol
entity and communicates with the SUT via service access point MSAP2
of the Medium service provider. The conceptual architecture is shown in
Figure 2.5.

In the following sections, only simplified extracts are presented. A com-
plete test suite can be found in Appendix B (Schmitt 2003).

2.4.2. Structuring

Modules are the top-level structuring element in TTCN-3 and a TTCN-3
document is composed of one or more modules. Each module represents
either a complete executable test suite or a library. It consists of defini-
tions and an optional control part that guides the execution of test cases.
Modules support usage of parameters to permit the re-use of modules in
different test environments. A module can import definitions from other

21

2. Fundamentals of Testing

Service User
User A

Protocol Entity
Initiator

Service Provider
Medium

Protocol Entity
Responder

Service User
User B

disconnected

ICONreq
MDATreq(CR)

MDATind(CR)
ICONind

waiting ICONresp
MDATreq(CC)

MDATind(CC)
ICONconf

connected

IDATreq(data)
MDATreq(DT,no,data)

MDATind(DT,no,data)
IDATind(data)

sending MDATreq(AK,no)

MDATind(AK,no)

connected

IDISreq
MDATreq(DR)

MDATind(DR)
IDISindIDISind

disconnected

msc Inres

Figure 2.4.: The Inres service and protocol

modules but it cannot import their control parts. Unfortunately, modules
cannot be nested.

Definitions in the definitions part include constants, data types, com-
munication data such as messages, signatures, and templates, test config-
uration elements like ports and components, and dynamic behaviour by
definition of test cases, altsteps, and functions. The declaration of vari-
ables in the definition part is not supported whereby no global variables,
timers, etc. are available.

Definitions can be combined into groups, but a group does not define
a new scope and has no semantics purpose except when definitions are
imported by another module. Groups are used to structure test data in a
logical manner and to enhance readability.

In the module control part test case execution and their execution order
is given why it can be seen as the main method respectively program of
the module. Test case execution order can be controlled by dependencies
from results of other test cases or timers, for example.

In Listing 2.1, a TTCN-3 module for testing conformance of an Inres
Initiator protocol entity is presented. Its definition part starts with an

22

2.4. Testing and Test Control Notation

Test System System Under Test

UpperTester
Main Test Component

MainTC

TCP
CP CoordinationPoint

LowerTester
Parallel Test Component

ParallelTC

PCO MSAP2
Medium-ASPs

(MDATreq, MDATind)

IUT
Initiator

Inres-ASPs
(ICONreq, ICONconf, etc.)

PCO ISAP1

Service-Provider Medium

Figure 2.5.: The local test method applied to Inres

import statement (line 2–5) to adopt data type UserPDU and constant
someUserPDU from an external module called ServiceUser. All data type
definitions that are required to describe an Inres PDU are combined in
group BasicDefinitions (lines 7–17). Thereafter, global constant maxTest-
CaseTime is declared in line 19. Module TestsForInres includes many
more definitions. For better readability and comprehension, these defini-
tions are presented separately in Listings 2.2–2.8.

In the module control part (lines 23–29), test case SingleDataTransfer
is executed first. Depending on whether its execution has been successful
(test verdict is pass) and module parameter testInopportuneEvents equals
true, a second test case (DataLoss) is invoked.

2.4.3. Data Concepts

TTCN-3 provides its own data type model which was inspired by ASN.1
and programming languages. The types are listed in Table 2.1. Most basic
types such as integer, char (see ISO/IEC 1990), universal char (see ISO/IEC
1993), and boolean are well known from programming languages. The
basic string types differ only in the used character set where charstring
and universal charstring are based on the same character sets as char and

23

2. Fundamentals of Testing

Listing 2.1: TTCN-3 Module TestsForInres

1 module TestsForInres(integer maxRepetitions, boolean testInopportuneEvents) {
2 import from ServiceUser language "ASN.1:1997" {
3 type UserPDU;
4 const someUserPDU;
5 }
6

7 group BasicDefinitions {
8 type UserPDU InresSDU;
9 type enumerated InresPDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };

10 type enumerated SequenceNumber { zero(0), one(1) };
11 type record InresPDU {
12 InresPDUType iPDUType,
13 SequenceNumber seqNo optional,
14 InresSDU iSDU optional
15 }
16 type InresPDU MediumSDU;
17 } with { encode "PER−BASIC−UNALIGNED:1997" } // apply Packed Encoding Rules
18

19 const float maxTestCaseTime := 50;
20

21 . . . further definitions . . .
22

23 control {
24 var verdicttype overallVerdict := pass;
25 overallVerdict := execute(SingleDataTransfer (), maxTestCaseTime);
26 if (overallVerdict == pass and testInopportuneEvents == true) {
27 overallVerdict := execute(DataLoss());
28 }
29 }
30 } with { encode "BER:1997" } // apply Basic Encoding Rules by default

universal char. The TTCN-3 special basic type verdicttype is used to handle
test verdicts where only the five distinguished values pass, fail, inconc, none,
and error are available for it. Type objid is used as object identifier and is
imported from ASN.1.

Available structured base types are enumerated, record, set, union, and
array. The type record is an ordered type whereas set is an unordered type
which is important in case of data encoding. Apart from order, both are
equal and provide optional fields. In case of using only a single type, the
types record of and set of are available. They can be considered similar to
an ordered and unordered array respectively.

In case of handling data of unknown type the data can be assigned
to type anytype which is shorthand for the union of all known types in
a TTCN-3 module. The anytype was especially introduced to provide a
better mapping of IDL (see chapter 5) which was proposed by the author.

TTCN-3 provides three special configuration types where type address

24

2.4. Testing and Test Control Notation

Table 2.1.: Overview of TTCN-3 types

Class of Type Type (Keyword)

Simple basic integer

char

universal char

float

boolean

objid

verdicttype

Basic string bitstring

hexstring

octetstring

charstring

universal charstring

Class of Type Type (Keyword)

Structured record

record of

set

set of

enumerated

union

Special data anytype

Special configuration address

port

component

Special default default

is used to address entities inside the SUT. Test configuration is organ-
ised via type component, and type port is used to handle communication
between components which is described in more detail in subsection 2.4.5
on page 31.

Lastly, the type default is mentioned which is used to handle default
behaviour defined by altsteps which is described in detail on page 35.

The test specifier may define own types by sub-typing of types. The set
of valid values of basic and structured types can be restricted by usage
of value ranges, lists of values, and length restrictions. The data model
defines no dynamic types why no pointers are available. However, recurs-
ive data structures can be used, instead.

A set of predefined functions is available to support data value con-
version like integer to string, to get the number respectively length of re-
cords, sets, and strings, to check the presence of optional fields, to check
the chosen type in unions, to retrieve substrings, and to generate random
numbers (ETSI 2002a, appendix C).

Attributes

TTCN-3 provides assigning of attributes to statements to provide, for in-
stance, additional information for compilers or other tools like graphical
editors or viewers. The provided attributes are display, encode, variant, and
extension. Attribute display is used for presentation purposes and attrib-

25

2. Fundamentals of Testing

Table 2.2.: Overview of TTCN-3 type variants respectively useful types

Base Type Variant Useful Type

integer 8 bit byte

unsigned 8 bit unsignedbyte

16 bit short

unsigned 16 bit unsignedshort

32 bit long

unsigned 32 bit unsignedlong

64 bit longlong

unsigned 64 bit unsignedlonglong

float IEEE754 float IEEE754float

IEEE754 double IEEE754double

IEEE754 extended float IEEE754extfloat

IEEE754 extended double IEEE754extdouble

universal UTF-8 utf8string

charstring UTF-16 utf16string

UCS-2 bmpstring

8 bit iso8859string

record IDL:fixed FORMAL/01-12-01 v.2.6 IDLfixed

ute extension is used for user-defined extensions. The encoding attributes
encode and variant define encoding rules and encoding variants respect-
ively.

Especially the encoding attributes are important for data types because
encoding is important for data transmission and variants are important to
specify well defined sub-types. TTCN-3 itself specifies no such implement-
ation specific information.

There is a set of predefined variant attributes available. The usage of
these variants to define useful types is shown in ETSI (2002a, appendix E)
and is listed in Table 2.2. They were proposed by the author to improve
mapping of IDL (see chapter 5).

Type Import

Sometimes it is useful to import existing type and data definitions from
other sources like the SUT implementation or specification. Therefore,
TTCN-3 provides the possibility of importing definitions defined in an-
other language than TTCN-3. Until now, only import rules for ASN.1 are
supported (ETSI 2002a, appendix D). ASN.1 is heavily used in telecom-

26

2.4. Testing and Test Control Notation

munication applications it was also supported in TTCN-2. There exist
many SDL specifications for telecommunication applications and there-
fore, usage of SDL is also interesting. However, until now there are no
import rules defined.

Nevertheless, for system specifications using IDL the author has defined
explicit mapping rules which can be seen in chapter 5 and in ETSI (2003).

2.4.4. Communication

TTCN-3 distinguishes between message-based and procedure-based com-
munication which could also be called asynchronous and synchronous
communication respectively. Communication is used between test system
and SUT and within the test system itself.

Message-based communication is done by send and receive operations
and is based on asynchronous message exchange where only the receiver
gets blocked (see Figure 2.6). The transferred data can be defined by any
type but typically records are used.

Procedure-based communication is used to call procedures in remote
entities like it is done in Remote Procedure Call (RPC), CORBA, and Dis-
tributed Common Object Model (DCOM). On caller side the communica-
tion is handled by operations call, getreply, and catch and on callee side by
operations getcall, reply, and raise. Procedure calls in general may block
on the calling and called side (see Figure 2.6). In TTCN-3 the called side
gets always blocked and blocking on the caller side is adjustable. Non-
blocking procedure calls marked by the keyword noblock have some limit-
ations because no values can be transmitted from the called side in context
of the procedure call. Furthermore, blocking of procedure calls marked by
keyword nowait may be ignored any time whereas continuing is possible
at all times. In contrast to noblock procedure calls, nowait procedure calls
have no limitations because a possible response may be handled after-
wards.

Signatures

The information to be transmitted or to be received in sending or receiv-
ing operations for procedure-calls are defined by (inline) signatures. Using
signatures enables semantics checking of corresponding communication
operations. Signatures consist of a parameter list, return value, exception
list, and blocking characteristic (default is blocking), as demonstrated be-
low. The signature parameter list includes identifier, type, and direction as

27

2. Fundamentals of Testing

Sender

send

Receiver

receive or trigger
Message

Caller

call

getreply or
catch exception

Callee

getcall

reply or
raise exception

Procedure

Figure 2.6.: Message- and blocking procedure-based communication

used in IDL (see subsection 3.5.5). Parameters with direction type in have
call-by-value semantics and parameters with direction types inout and out
have call-by-reference semantics.

TTCN-3

signature MyBlockingProcedure (in integer par1, inout float par2, out float par3)
return integer exception (Excep1, Excep2);

signature MyNonblockingProcedure (in integer par1) noblock;

Templates

Templates handle distinct values to be sent or received. They are used
to organise and re-use test data by providing a structure to define them.
Templates can also be used inline to enhance readability and to avoid un-
necessary expense in case of empty templates or templates with only few
fields. Signature templates are used for procedure-based communication
and type templates are used for message-based communication.

Templates provide parameterising, referencing by using other templates,
and modification by extending templates. Values, value ranges, and match-
ing mechanisms can be used in templates. At time of sending, templates
have to define concrete values why ranges and matching expressions have
to be fully resolved. If used in receive operations, received data is tested
against the used template where templates with value ranges and matching
mechanism simplify testing. Hence, templates are very powerful, but the
matching expressions could be improved as described in Schmitt & Ebner
(2003). Type templates are mostly used together with records where all
required values are defined.

28

2.4. Testing and Test Control Notation

Listing 2.2: TTCN-3 Templates

1 template MDATind ConnectionRequest := {
2 mSDU := { iPDUType := CR, seqNo := omit, iSDU := omit }
3 }
4

5 template MediumSDU ConnectionConfirmation := { // this template is used with
6 iPDUType := CC, seqNo := omit, iSDU := omit // template ’MediumDataRequest’
7 }
8

9 template MDATreq MediumDataRequest(template MediumSDU data) := {
10 mSDU := data
11 }
12

13 template MDATind DataTransfer(InresSDU data) := {
14 mSDU := { iPDUType := DT, seqNo := ?, iSDU := data }
15 }

In Listing 2.2, various templates are defined that are used in function
MediumAccess (see Listing 2.7). Template ConnectionRequest (lines 1–3)
specifies a message of type MDATind where the fields mSDU.seqNO and
mSDU.iSDU shall have no value. It is used in combination with a receive
statement in Listing 2.7, line 6.

The two templates ConnectionConfirmation and MediumDataRequest
(Listing 2.2, lines 5–11) illustrate the dynamic chaining of templates. Me-
diumDataRequest is parameterised by a template of type InresPDU. In
Listing 2.7, line 8, it is instantiated with template ConnectionConfirma-
tion as actual parameter. Template DataTransfer (lines 13–15) makes use
of a simple matching mechanism. Operator “?” states that any value for
seqNo is acceptable in an incoming message.

Many templates are defined inline in test case SingleDataTransfer (List-
ing 2.6, lines 17, 18, 25, 26, 32, and 33) and function MediumAccess
(Listing 2.7, lines 13, 25, 26, and 28). In particular, many messages ex-
changed with the SUT via port ISAP1 are distinguished by their type only.
Hence, there is no need for template definitions whose bodies would only
consist of empty brackets syntactically.

Ports

Communication under TTCN-3 is characterised by communication end-
points which are called ports. Each communication operation is directed
to a port and not to a connection. For each port there is a list defined
where all allowed message types and procedures including their direction

29

2. Fundamentals of Testing

are given. A port allowing message- and procedure-based communication
is of port type mixed and of type message or procedure respectively if only
one communication type is allowed. Each message type or procedure has
one of the three directions in, inout, or out defined. Hence, fine control of
communication directions is possible which was not defined in TTCN-2.

Ports are modelled as an infinite FIFO queue where all incoming mes-
sages or procedure calls are stored until explicitly consumed or removed
by the owner of the port. Since there is no automatic removing, each in-
coming calls have to be handled. Hence, specified tests have to consider
all incoming calls and if a call is not necessary for the test result it has to
be explicitly ignored by removing.

There are several operations available to control ports. The top element
of a port queue can be checked without removing it. Port queues can be
cleared, started, and stopped during execution of a test. The receiving op-
erations receive, getcall, getreply, and catch consume the top corresponding
element of the port queue if matching was successful. Despite the receive
operation the trigger operation consumes each incoming message even in
case of a mismatch. In case of a match it works like a receive operation.
Hence, searching or waiting for a specific message gets easily possible.

In Listing 2.3, definitions for message-based communication are presen-
ted. ICONreq and IDATreq (lines 1 and 2) are – among others – two
messages (ASPs) that can be sent to the Initiator entity of the Inres pro-
tocol. A port type definition is given in lines 4–7. The keywords out and in
indicate that messages ICONreq, IDATreq, and IDISreq can be sent and
ICONconf and IDISind can be received by a corresponding port instance.
For communication with the Medium, similar definitions are made in lines
9–15. A concrete message exchange is described in the test case shown in
Listing 2.6. In lines 17, 18, 22, 32, and 33 various messages are sent and
received at port ISAP1 which is of type InitiatorSAP.

A simple example of procedure-based communication is introduced in
Listing 2.4. In line 1, procedure acknowledgmentSent is defined which
has neither a parameter nor a return value. It is used for coordination
between the components of the tester. Conceptionally, it resides at the
MTC. 3 Two contrary port types are defined for it: PortAtMTC (lines 3–
5) accepts incoming calls, whereas PortAtPTC (lines 7–9) is used to invoke
the remote procedure. A concrete procedure call is realised in Listing 2.6,
lines 25 and 26, and Listing 2.7, lines 25 and 26.

3Please note that the procedure is not implemented as such. Instead, only its invocation and
termination is modeled by the MTC by getcall and reply operations. The procedure-based
communication in the given example is only made for illustration purposes.

30

2.4. Testing and Test Control Notation

Listing 2.3: TTCN-3 Message-based Com-
munication

1 type record ICONreq {};
2 type record IDATreq { InresSDU iSDU };
3

4 type port InitiatorSAP message {
5 out ICONreq, IDATreq, IDISreq;
6 in ICONconf, IDISind;
7 }
8

9 type record MDATreq { MediumSDU mSDU };
10 type record MDATind { MediumSDU mSDU };
11

12 type port MediumSAP message {
13 in MDATind;
14 out MDATreq;
15 }

Listing 2.4: TTCN-3 Procedure-based
Communication

1 signature acknowledgementSent();
2

3 type port PortAtMTC procedure {
4 in acknowledgementSent;
5 }
6

7 type port PortAtPTC procedure {
8 out acknowledgementSent;
9 }

10

11

12

13

14

15

2.4.5. Test Configuration

TTCN was designed for functional, black-box testing and to describe Ab-
stract Test Suites (ATSs) which are independent of concrete test platforms.
Therefore, special interfaces between SUT and ATS are required to make
a test suite executable. Furthermore, a distributed and concurrent test ar-
chitecture is used and TTCN-3 additionally supports dynamic test config-
uration, whereby test configuration can be modified during test execution.

Test configuration in TTCN-3 is structured by test components which
are interconnected by well-defined communication endpoints called ports
(in TTCN-2 via Communication Points (CPs)). There is exactly one Main
Test Component (MTC) which controls all other test components called
Parallel Test Components (PTCs). PTCs can be dynamically created where-
as the MTC is created automatically at each test case execution. The PTCs
are independent of each other. Termination of the MTC automatically
terminates all PTCs. A test component terminates by leaving its function
or testcase respectively, executing a stop command, or getting terminated
by another test component. Test components can have local timers, vari-
ables, and constants. Ports are allowed to have one-to-many connections
to support multicast connections.

The environment of the test system is defined by an Abstract Test Sys-
tem Interface (ATSI) which specifies all communication endpoints to the
SUT in an implementation independent manner. Hence, communication

31

2. Fundamentals of Testing

System Under Test

Real Test System Interface

Abstract Test System Interface

Mapped PortsMapped Ports

MTC

Test System

PTC

Connected Ports
IN

IN

OUT

OUT

INOUTINOUT

Figure 2.7.: Conceptual view of a typical TTCN-3 test configuration

between test components and the test system is also done via ports. Be-
side, the Real Test System Interface (RTSI) defines the implementation
dependent adaptation between ATSI and SUT (see Figure 2.7). The ac-
cess respectively communication points between ATS and SUT were called
PCO in TTCN-2.

Test case execution is defined in the module control part and may be
structured by functions. A testcase is used to initiate a test case where
the MTC is automatically created. Using the runs on and system clause for
testcase the MTC and ATSI can be given. Functions are used to structure
PTC behaviour. Some available operations are

• create to create a component,

• connect to connect ports between components,

• map to connect ports between components and the test system inter-
face,

• running to check if a component is still running, and

• done to wait for the termination of a component.

In Figure 2.5, a conceptual view of the test configuration used in the
Inres example is given. The tester consists of two test components called
MainTC and ParallelTC. They communicate with each other via a connec-
tion established between the ports CoordinationPTC and Coordination-
MTC. In addition, one port in each test component, namely ISAP1 and

32

2.4. Testing and Test Control Notation

Listing 2.5: TTCN-3 Test configuration – Component type definition

1 type component MainTC {
2 port InitiatorSAP ISAP1;
3 port PortAtMTC CoordinationPTC;
4 timer supervisionTimer;
5 }
6

7 type component ParallelTC {
8 port MediumSAP MSAP2;
9 port PortAtPTC CoordinationMTC;

10 }
11

12 type component TestSystem {
13 port InitiatorSAP ISAP1;
14 port MediumSAP MSAP2;
15 }

MSAP2, is mapped to a port with the same name of the ATSI. TTCN-3
abstracts from implementation issues such as encoding. Therefore, con-
ceptionally the ports of the tester are not directly linked with the SUT
itself. Instead, it is assumed that interaction with the SUT is realised by a
RTSI which is outside the scope of TTCN-3 (see Figure 2.7).

In Listing 2.5, TTCN-3 test component definitions are presented for
MainTC, ParallelTC, and the abstract test system (TestSystem) which is
defined just like a common test component type. In addition to an arbit-
rary number of ports, a TTCN-3 test component can have its own set of
local timers, variables, and constants. For example, any component of
type MainTC has a supervisionTimer at its disposal (line 4).

2.4.6. Behaviour Description

Functional and dynamic behaviour of components over ports is described
by functions, test cases, alternatives, and altsteps and executed in module
control parts. Test cases are used for the behaviour description of MTCs.
Functions are used to structure and specify test behaviour, to organise
test execution, and to structure computation in a module. For instance,
functions can be used to organise behaviour of PTCs.

In the following these concepts are described in more detail. Examples
of a test case, function, and altstep definition are given in Listings 2.6, 2.7,
and 2.8.

33

2. Fundamentals of Testing

Listing 2.6: TTCN-3 Test case SingleDataTransfer

1 testcase SingleDataTransfer () runs on MainTC system TestSystem {
2 var ParallelTC ptc;
3 var default def1, def2;
4

5 ptc := ParallelTC .create ;
6

7 map(self : ISAP1, system:ISAP1);
8 map(ptc:MSAP2, system:MSAP2);
9

10 connect(self :CoordinationPTC, ptc:CoordinationMTC);
11

12 ptc. start (MediumAccess());
13

14 def1 := activate (MTCFailure());
15 def2 := activate (ReceptionIDISind(inconc));
16

17 ISAP1.send(ICONreq : {}); // connection request
18 ISAP1.receive(ICONconf : {}); // connection confirmation
19

20 supervisionTimer. start (maxTransferTime); // restrict time for data transfer
21

22 ISAP1.send(InresDataRequest(someUserPDU)); // data transfer
23

24 // delay disconnection request until ’ptc’ has received and acknowledged the data
25 CoordinationPTC.getcall(acknowledgementSent : {});
26 CoordinationPTC.reply(acknowledgementSent : {});
27

28 supervisionTimer.stop; // cancel timer to avoid a timeout in the following
29

30 deactivate(def2); // a disconnection indication is no undesirable event any longer
31

32 ISAP1.send(IDISreq : {}); // disconnection request
33 ISAP1.receive(IDISind : {}); // disconnection indication
34

35 all component.done;
36

37 setverdict (pass);
38 }

Control Structure

Behaviour is described in sequential order by basic control structures like
while, for, do...while, and if...else and alternative behaviour statements like
alt and interleave. Furthermore, usage of goto with labels is possible to
support conversion of TTCN-2 test cases to TTCN-3.

The alt statement describes a set of alternative behaviour depending on
the reception and handling of communication, timer events, and PTC ter-
mination which are called reception statements. Each alternative consists
of the three parts boolean expression, guard, and statement block. The
statement block of an alternative gets executed if the corresponding guard

34

2.4. Testing and Test Control Notation

can be executed which has to be a reception statement. The boolean ex-
pression has to evaluate to true or has to be empty to enable a guard. It
is possible to provide as last alternative an optional else part which gets
executed if no alternative matched.

To evaluate guards a snapshot semantics is defined. Entering an altern-
ative statement activates the snapshot mechanism where the state of all
relevant components, port queues, and timers are frozen to allow undis-
turbed evaluation of the boolean expressions and guards. The evaluation
order is given by the order of the alternatives. If no guard can be executed,
a new snapshot is taken and evaluation starts from the beginning until one
guard can be executed. However, an alternative is called blocked if all
guards can never be fulfilled which must lead to a test error. There is the
repeat statement to initiate a re-evaluation of an alt statement where a new
snapshot is taken and evaluation starts again from the first alternative.

If exact order of receiving messages or procedures is not predictable or
not important, an interleaved handling is possible by the interleave state-
ment. Thus, writing down all possible combinations of alternatives is not
necessary. Interleaves are structured like alternatives with empty boolean
expressions and with no else clause. Furthermore, usage of control state-
ments, functions, and communication operations inside interleaves is re-
stricted.

Altsteps

Beside structuring behaviour by functions it is especially possible to struc-
ture alt statements by usage of altstep where a collection of alternatives
can be defined. Additionally, default behaviour can be defined via alt-
steps. Altsteps provide local definitions and own parameters including a
runs on clause. The body of altsteps is structured by a set of alternatives
like in alt statements.

There is a default mechanism for alternatives in TTCN-3 where altsteps
can be activated by default. Defaults are stored in a default list and can
be activated and deactivated any time by operations activate and deactivate
respectively. The deactivate operation requires a default reference which
is delivered by the activate operation and which can be stored in a default
type. A default reference gets necessary because an altstep can be activ-
ated with different parameters. The default list is called if no alternative
of an alt statement can be executed. The default altsteps and their altern-
atives are evaluated step by step until an alternative can be executed. If

35

2. Fundamentals of Testing

Listing 2.7: TTCN-3 Function MediumAccess

1 function MediumAccess() runs on ParallelTC {
2 var integer receipt ;
3 var default def := activate (PTCFailure());
4 var MDATind indication ;
5

6 MSAP2.receive(ConnectionRequest);
7 receipt := 1; // first (received) connection request of the initiator
8 MSAP2.send(MediumDataRequest(ConnectionConfirmation));
9

10 alt {
11 [receipt <= maxRepetitions] MSAP2.receive(ConnectionRequest) {
12 receipt := receipt + 1;
13 MSAP2.send(MediumDataRequest({ CC, omit, omit }));
14 repeat;
15 }
16 [receipt > maxRepetitions] MSAP2.receive(ConnectionRequest) {
17 setverdict (fail);
18 stop;
19 }
20 [] MSAP2.receive(DataTransfer(someUserPDU)) −> value indication { /* empty */ }
21 }
22

23 MSAP2.send(DataAcknowledgement(indication.mSDU.seqNo));
24

25 CoordinationMTC.call(acknowledgementSent : {});
26 CoordinationMTC.getreply(acknowledgementSent : {});
27

28 MSAP2.receive(MDATind : { mSDU := { DR, omit, omit } });
29 setverdict (pass); // disconnection request
30 }

there is no executable alternative found in the default list then the default
mechanism will return back where it has been invoked.

In Listing 2.8, altsteps MTCFailure and ReceptionIDISind are defined.
Altstep MTCFailure makes test execution fail if a message is received at
port ISAP1 that is not handled elsewhere or a timer expires. Altstep Re-
ceptionIDISind illustrates the definition of a parameterised altstep. De-
pending on variable result, the reception of message IDISind leads to dif-
ferent test verdicts.

Timer

TTCN-3 supports usage of timers. Local timers declared in component
type definitions are running on the component. There are operations to
control and evaluate timers. The start and stop operation are used for
control of timers. The elapsed time after starting a timer can be retrieved
by the read operation. The status of a timer can be get by the running

36

2.5. Summary

Listing 2.8: TTCN-3 Altsteps MTCFailure and ReceptionIDISind

1 altstep MTCFailure() runs on MainTC {
2 [] ISAP1.receive {
3 setverdict (fail);
4 stop;
5 }
6 [] any timer.timeout {
7 setverdict (fail);
8 stop;
9 }

10 }
11

12 altstep ReceptionIDISind(verdicttype result) runs on MainTC {
13 [] ISAP1.receive(IDISind : {}) {
14 setverdict (result);
15 stop;
16 }
17 }

operation which delivers a boolean to express if the timer is still running.
The timeout operation can be used in guards of alternatives to check if
a timer has expired or is used as stand-alone operation. A stand-alone
timeout operation blocks execution until the timer expires.

Verdicts

The TTCN-3 special basic type verdicttype is used to handle test verdicts.
Only the five distinguished values pass, fail, inconc, none, and error are
available as verdicts. Test verdicts are delivered by test cases and depend
on the local verdict of each component of a test case. After termination
of a component the test case verdict gets updated. Component verdicts
can be set and read by the setverdict and getverdict operations respectively.
Verdicts can only be downgraded why it is not permitted to revise a verdict
from fail to pass, for instance. Test verdict setting does not stop test case
execution.

2.5. Summary

In the first section of this chapter dynamic testing concepts have been clas-
sified to provide an overview and motivation about different kinds of dy-
namic tests. The classification distinguishes between type of implementa-
tion, phase in development cycle, system knowledge, test objectives, test
data selection, and authority for test results.

37

2. Fundamentals of Testing

The second section explained why testing object-oriented systems is dif-
ferent from testing of other systems and why static testing is not sufficient.
The object-oriented concepts encapsulation, inheritance, and polymorph-
ism as well as method interaction and language and compiler services
make testing more difficult.

Thirdly, manual and automatic test generation were discussed. Some
remarks about the test generation tools Autolink and TestComposer
were given.

Fourthly, the test description language TTCN-3 was described which
permits the specification and implementation of tests for distributed sys-
tems in an implementation language independent manner. Important to
mention is the possibility of importing data specifications from other lan-
guages, the introduction of procedure-based communication, and dynamic
test configuration.

38

3. UML-based Testing

As explained in the preceding chapter, testing requires automation and
interworking between system and test development. Nowadays, many
(object-oriented) systems are described using the UML which is defined
by the OMG (OMG 2003c). Thus, UML models are an important source
for test development why using UML from a test perspective has to be
considered. Additionally, there is ongoing work on an UML Testing Pro-
file (UTP) (Schieferdecker et al. 2003) and an improved version of UML,
namely Unified Modeling Language 2.0 (UML 2.0) (Jeckle et al. 2004;
OMG 2003b).

The automatic test generation process approach based on SDL, MSC,
and TTCN as described in section 2.3 is used as inspiration for UML-
based scenario testing. Scenario-based testing, manual as automatic, is
applicable for black-box and specific white-box testing for communica-
tion protocols and distributed systems like CORBA-based systems. In
particular, manual scenario-based testing is often used by test designers
to test specific parts of the SUT which are interesting or not covered by
an automatic test generation process. Furthermore, there is a discussion
of TTCN-3 Graphical Presentation Format (GFT) in context of MSC and
UML in Schieferdecker & Grabowski (2003) available where the close re-
lation between all three standards is detailed.

This chapter is structured as follows. Firstly, some remarks to UML
and its diagram types are given. Secondly, suitability of UML models for
testing is discussed. Thirdly, scenario-based testing with UML is explained.
Fourthly, MSCs are explained. Fifthly, the IDL will be described. Finally,
a summary and an outlook are given.

3.1. Unified Modeling Language

Unified Modeling Language (UML) is a model with focus on structure and
behaviour definition for object-oriented systems for which several diagram
types are defined (OMG 2003c). It defines only the notational syntax and
informal semantics for object-oriented models but there is no methodo-
logy given. Some model elements can be used in several diagrams. Each

39

3. UML-based Testing

diagram has its own usage and point of view on the system why the sys-
tem can be described from many different perspectives. Hence, system
developers can choose the right view to describe a specific system struc-
ture or behaviour. There are several tools which support drawing UML
models and code generation for different languages like C++, Java, and
IDL.

The following diagram types are available in UML version1.5:

Usecase diagrams are used to describe in an abstract way the system re-
sponse to external inputs given by some external actor, normally
humans. Mainly used for specifying system requirements.

Class diagrams describe the class or interface structure including their at-
tributes, methods, and relationships. Class diagrams are used to
describe distribution of data and behaviour to classes.

Behaviour diagram types are used for describing dynamic issues.

Activity diagrams or object flow charts show sequences of activities
(processes not states) where concurrent execution is possible.
They are mainly used to model human work flow and may be
associated to a usecase or class diagram.

Collaboration diagrams describe interactions among objects in con-
text or a limited role under emphasis of relationship between
objects and their topography. Mainly used to explain or to
document sequences.

Sequence diagrams are used to describe sequences of message ex-
changes between objects in a time limited situation with em-
phasis on the temporal order. Can be used to describe neces-
sary collaborations to implement a use case.

State diagrams show the sequential control requirements of objects
by sequences of states depending on external stimuli (finite
state machines).

Implementation diagram types are used to describe implementation issues.

Component diagrams show dependency relationships between com-
ponents which have their own identity and a defined interface.
Components define boundaries and groups and organise ele-
ments.

40

3.2. Suitability of UML for Testing

Deployment diagrams represent objects and components on nodes
like hardware, software, or network architecture and their com-
munication associations. Deployment diagrams are useful for
integration planning.

Sequence diagrams and collaboration diagrams are describing the same
issue. Contrary to sequence diagrams, where the temporal order is the
focus, collaboration diagrams are focussed on the working relationship.
Diagrams can be grouped and organised into hierarchical packages where
package dependencies can be described. This kind of diagram is realised
as a special case of class diagrams.

3.2. Suitability of UML for Testing

Using a system specification defined in UML to generate, maybe automat-
ically, and to specify test cases the applicability of UML and its diagram
types has to be inspected first (Binder 2000, chapter 8).

Using UML as a test model requires unambiguousness to support auto-
matic production and relation to probable faults to provide a test design
why identification, analysis, and demonstration of relationship is required.
UML provides only a notational syntax where no prescription of result,
technique, or process is given. Furthermore, UML is very flexible because
only restrictions on usage of notation are given. However, models can be
fragmentary, incomplete, inconsistent, and ambiguous without violating
UML. Additionally, the models are indifferent to testability because com-
binational logic and domain definitions are missing which requires much
hand work to produce tests. Thus, automatic test code generation is not
possible. Nevertheless, the models are still an important source for test
development. Responsibility and architecture of SUT can be modelled and
partly automatic test generation may be possible if models are complete,
correct, and consistent.

Usecase diagrams use input and output variables without providing any
definition and conditions are missing to determine basic and alternate
flows (Miga et al. 2001; Mulvihill 2003). They can be instantly mapped
onto sequence diagrams. However, usecase testing alone is not enough
because of incomplete system coverage. Class diagrams are the main re-
source for structural information like types, methods, and attributes and
therefore, are very important for test specification. For instance, inform-
ation missing in other diagram types like usecases can be obtained from
class diagrams. Furthermore, test cases could be generated to test mutual

41

3. UML-based Testing

constraints and dependencies defined by associations, correct create and
destroy of aggregated objects, and correct usage of generalisation. Activ-
ity diagrams could be used to develop test models by control flow where,
for instance, decision tables and composite control flow graphs for a col-
lection of sequence diagrams are usable. Control flow graphs at method
state could be used for analysing path coverage. Furthermore, structuring
test cases can be modelled by activity diagrams, especially in conjunction
with associated usecase or class diagrams.

Collaboration diagrams show all required methods for a complete inter-
action. They are usable for structuring an implementation and for specify-
ing a method implementation, all methods in a class, or an usecase. Only a
small slice in comparison to the whole system is described wherefore cover-
age analysis is limited to this slice. The method call hierarchy must not be
a tree why it is ambiguous. However, transformation into several sequence
diagrams with resolved ambiguities is possible. Sequence diagrams show
how the collaboration via message exchange is done in the temporal di-
mension to implement, for instance, a usecase. A sequence diagram cannot
describe all possible paths why several sequence diagrams are necessary to
get all paths. Sequence diagrams are less expressive in the selection and it-
eration notation, the conditional and delayed message distinction is weak,
and dynamic binding and unique superclass/subclass behaviour cannot be
shown. Using the round-trip scenario test pattern a sequence diagram is
used as test purpose where each possible path can be used for test case
generation. The intention of the test approach is to “extract a control
flow model from a UML Sequence Diagram and develop a path set that
provides minimal branch and loop coverage” (Binder 2000, page 579).
State diagrams describe possible states and transitions of objects by usage
of finite state machines but the provided notation is less expressive and
lacks a well defined semantic. Thus, state diagrams are very important for
automatic test generation by coverage analysis but due to their shortcom-
ings usage for testing is difficult. However, using usecase and sequence
diagrams could partially replace state-based testing. In (Binder 2000,
chapter 7) usage of state models like UML state charts, Object Modeling
Technique (OMT) dynamic model, and Real-time Object-Oriented Mod-
eling (ROOM) statechart are discussed to test object-oriented systems. In
Mellor & Balcer (2002), using executable UML is described.

Component diagrams describe distribution and dependencies of com-
ponents with own interfaces (implementation entities) like classes from a
physical point of view which is used, for instance, to describe concrete
distribution into libraries. Thus, component diagrams provide structural

42

3.3. UML-based Test Specification

information which can be used to identify method call paths. The paths
found can be expressed in sequence diagrams to allow test case specifica-
tion and generation. Deployment diagrams represent distribution of ob-
jects and components on nodes and communication associations between
nodes. Nodes are used for execution. Depending on the number of shown
details in deployment diagrams they can be used for dependency analysis
and for integration planning especially.

Hence, existing diagrams from the specification can be used directly for
test generation such as sequence diagrams, if fully defined. Additional dia-
grams, especially for scenario-based testing, can be specified, too (Amyot
& Eberlein 2003). Thus, automatic and manual test case generation and
specification are together possible. Test case generation based on test pur-
poses specified by sequence diagrams where each possible complete path
gets a test case is usable, but usage of test coverage analysis is difficult.
Overall, UML is missing a well defined semantics to be well applicable for
automatic test generation (Binder 2000, chapter 18). See Binder (2000,
chapter 9) for test strategies and test patterns. A coverage model for
object-oriented systems is given in Binder (2000, section 4.4).

3.3. UML-based Test Specification

As discussed in the section before, existing system specifications done via
UML could be used for test generation. However, some diagram types
could be used for test purpose or test case specification especially. Thus,
scenario-based, manual test specification with UML is more interesting
where the test designer can focus on specific elements in the SUT and re-
quires no test specific knowledge like the used test language.

One diagram type does not provide enough information to specify and
generate a complete test case, and responsibility and architecture of a SUT
can only be modelled if the used models are complete, correct, and con-
sistent. However, if we take a look into test suites defined via TTCN-3
we can find a partitioning into a statical and dynamic part. The stat-
ical part contains elements like type, test data, method signature, and test
configuration definitions, whereas the dynamical part contains elements
like method calls and their order, response evaluation, test configuration
set up, and test result handling. Thus, usage of class diagrams for static
information and sequence diagrams for dynamic information to generate
test cases is quite enough. Furthermore, other UML diagrams can be used
to generate class or sequence diagrams (see Figure 3.1).

43

3. UML-based Testing

Component

Usecase,
Activity, State,
Collaboration,
Deployment

Class Sequence UTP

IDL

Test Suite
(TTCN-3)

Figure 3.1.: UML-based test specification

Information from component diagrams can be translated into class dia-
grams and usecase, activity, state, and collaboration diagrams can be used
to generate sequence diagrams. More information about generation of
sequence diagrams are given in Binder (2000). For instance, activity dia-
grams are associated to class and usecase diagrams, a usecase or collabor-
ation diagram can be used instantly to generate several sequence diagrams.
Activity diagrams can also be used to control test case execution order as
can be done with High-Level Message Sequence Charts (HMSCs) (see sec-
tion 4.5).

The concept of using static and dynamic information from different
sources and its applicability and usefulness was shown earlier by usage
of SDL as static source and MSC as dynamic source as described in sec-
tion 2.3. SDL is a very expressive state-based specification language and
MSCs are used to describe message exchanges like in sequence diagrams.
Despite its good results in testing communication protocols, tool vendors
like Telelogic with ist tool TAU G2 shift from SDL and MSC to UML to
reach a wider audience. Due to this shift a combination of SDL and MSC
with UML or at least the integration of well-defined and widely used con-
cepts of SDL and MSC into UML is wished to enhance UML with more
exact semantics. Thus, automatic test generation from UML would be
more expressive. Additionally, there is ongoing work to define the UML
Testing Profile (UTP) which allows test suite specification and presentation
inside UML (Schieferdecker et al. 2003). There is ongoing work on ITU
– Telecommunications Standardisation Sector (ITU-T) standard Z.149 to
define a mapping of UTP to TTCN-3. Hence, UTP specifications could be
used to provide a more complete test suite.

44

3.4. Message Sequence Chart

TTCN-3 is a well established testing environment and therefore, usage
of TTCN-3 for test suite specification is used in this thesis where only
class and sequence diagrams have to be mapped to TTCN-3. Missing
parts to provide a full TTCN-3 test suite can be integrated by using UTP,
and generated test cases from class and sequence diagrams may be used in
UTP, too. Most UML tools support conversion from class diagrams into
IDL where all required information for test generation are still available.
Hereby, IDL can be used instead of class diagrams to widen application
(see Figure 3.1). Mapping sequence diagrams and IDL to TTCN-3 is de-
scribed in chapter 4 and chapter 5 respectively.

3.4. Message Sequence Chart

Sequence charts like UML sequence diagrams (OMG 2003c) and Message
Sequence Charts (MSCs) (ITU-T 2001) are used to specify and describe
communication behaviour by message interchange including procedure
calls between several distributed entities in a temporal order. Since UML
sequence diagrams do not provide well defined semantics in contrary to
MSCs, MSCs are more expressive than sequence diagrams. MSCs are well
used for test purpose and test case specification and MSCs support most
functionality of sequence diagrams, so MSCs are used to discuss usage of
sequence charts to specify test cases (see chapter 4). Furthermore, there
is ongoing work which introduces MSC concepts into UML 2.0 which
leads to the convergence of sequence diagrams to MSCs (Jeckle et al. 2004;
OMG 2003b).

MSC is a graphical specification language standardised by ITU-T as Re-
commendation Z.120 (ITU-T 2001). It is a scenario language to describe
communication behaviour between system entities and their environment.
There is a textual and a graphical notation available whereat the textual
notation is mainly used by tools to store and interchange charts and the
graphical notation is used for intuitive representation of charts. Three
types of charts are provided by MSC. Namely, (basic) MSC to describe
concrete events in a temporal ordering, High-Level Message Sequence
Chart (HMSC) to illustrate how to combine MSCs, and MSC documents
which serve as a summary of belonging charts. The current version of
MSC is called Message Sequence Chart-2000 (MSC-2000) (ITU-T 2001)
and provides better support, in comparison to its predecessor MSC-96
(ITU-T 1996), for real-time systems, object-oriented systems, and sequen-

45

3. UML-based Testing

mscdoc MyDeclarations

MSC_A MSC_B MSC_C

Pattern_A

Figure 3.2.: MSC document example

tial programs by added concepts for data, time, control flow, and object-
orientation on MSC documents.

In the following MSC-2000 will be detailed by document structure, ba-
sic elements, structural elements, and HMSCs.

3.4.1. MSC Documents and Comments

MSC documents are used to provide an associated collection of MSCs (set
of traces) and define all kinds of instances used in the MSCs. In the defin-
ition part, available MSCs are defined, and the utility part is used to de-
scribe patterns of MSCs which can be used by MSCs in the definition part
(see Figure 3.2). The relation to documents like TTCN, SDL, and UML
documents can be given by the keyword related to. Instance definitions
can use inheritance concepts to describe among others decomposition of
instances.

MSC supports three kinds of comments. The note is only available in
textual notation, the comment is used for informal explanations associated
with symbols or text, and the text is used for global comments associated
to a chart.

3.4.2. Basic Message Sequence Charts

Basic MSCs are used to specify and describe the communication flow
between system entities where the concept of instances and messages is
used. Communication with the environment can be described and usage
of gates to compose MSCs is supported. Actions are used to describe
internal behaviour of entities and conditions are used to restrict number
of traces. Timers are available to express time limits for execution. In-
stances can be dynamically created and terminated. Basic MSCs are now
explained in detail.

46

3.4. Message Sequence Chart

block
Station_Ini

block
Medium

disconnected

idle

ICONreq

counter:=1

T,5
MDATreq(CR)

MDATind(CR)

idle

MDATreq(CC)

MDATind(CC)

idle

ICONconf

connected

msc ConnectionEstablishment

(a) Basic MSC

env
ISAP1

IniBlock
decomposed as IniProcs

Initiator
block

Medium
env

MSAP2

ICONreq MDATind(CR)

ICONconf MDATreq(CC)ConnectionEstablishment

IDATreq(42)

MDATreq(DT,one,42)

loop <4,4>

IDISind

MDATreq(DT,one,42)

MDATind(DT,one,42)

MDATreq(AK,one)

MDATind(AK,one)

IDISreq

IDISind

MDATreq(DR)

MDATind(DR)

alt

msc DataTransfer

(b) MSC Expressions, Coregions, and Gates

Figure 3.3.: Basic MSCs for the Inres protocol

In Figure 3.3(a) an MSC with two instances, Station_Ini and Medium,
is shown that are displayed as vertical lines with an additional rectangle
for the instance header and a horizontal bar for denoting the instance end.
Instance Station_Ini is a block that represents an Inres protocol instance
at the sender (initiator) side (see subsection 2.4.1). Instance Medium rep-
resents an underlying medium over which data are exchanged with some
imaginary responder. The MSC describes the typical scenario of a con-
nection establishment: If Station_Ini receives message ICONreq (repres-
ented by the annotated arrow pointing from the diagram border to the
instance axis), the connection request is forwarded via the medium (mes-
sages MDATreq(CR) and MDATind(CR)). Provided that the other party
responds with a confirmation (MDATreq(CC) and MDATind(CC)), a con-
firmation message (ICONconf) is sent by Station_Ini. Typically, the de-

47

3. UML-based Testing

scription of an instance finishes with a special end symbol. However, this
symbol does not mean that the instance actually terminates.

Instances, Messages, and Control Flow

The base elements of basic MSCs are instances and messages. Instances
represent system entities which exchange messages with each other and
the environment. Instances have a name and can have a type, and mes-
sages have a name and optional parameters. Message interchanges are
divided into asynchronous events, where in events are used for receiving
a message and out events for sending a message. If there is only an in
event available an unknown sender message can be described and if there
is only an out event used a lost message is described. Messages have an
optional time attribute wherewith delay of message sending and receiving
can be specified. The textual representation of MSCs may be ordered by
instances or events where an event order describes a valid execution trace.

Temporal ordering of exchanged messages is defined by a total temporal
ordering on instance axis and a partial order between instances where only
the order is defined but no concrete timing. Hence, it is nonrelevant if a
message arrow is directed up or down because a message has to be send
first to get consumed. However, in case where unrelated events on different
instances have to be ordered a general ordering can be defined explicitly.
Furthermore, in case ordering on a instance axis is not important it can
be suspend by coregions for a part of the axis. Nevertheless, the usage of
general ordering in coregions is possible.

Apart from message interchange, MSC supports synchronous message
exchange by means of calls and replies. Calls are like remote method
invocations where the result is returned by the reply. The call name rep-
resents the named unit of behaviour inside an instance. The reply uses
the same name as the corresponding call. Calls can be distinguished into
blocking and non-blocking calls. In case of a blocking call the caller
enters a suspension region where the caller is waiting for a reply and no
other events may happen, whereas in case of a non-blocking call the caller
may proceed further. Non-blocking calls are called asynchronous whereas
blocking calls are called synchronous.

Environment and Gates

The environment is represented by the rectangular frame of each MSC
(see Figure 3.3(a)). Communication between instances and environment

48

3.4. Message Sequence Chart

is permitted by message interchange. Each in and out message with the
environment is assigned to a gate (interface to environment) which allows
to compose MSCs in conjunction with usage of MSC references inside an
MSC. The environment provides no total ordering for messages why in-
stances should be used as environment if gates are not required or ordering
is required.

Actions

Beside message exchange, internal actions of instances can be given by
informal text or formal data statements which can be used to modify in-
ternal states or counters, for instance. Actions are an atomic element and
are represented by a rectangular symbol. For instance, in Figure 3.3(a) the
variable counter of instance Station_Ini is set to one.

Conditions

Conditions are used to restrict valid traces or the composition of MSC
references in HMSCs. Conditions can be used for one, several, or all in-
stances. There are two kinds of conditions, namely setting and guarding
conditions. A setting condition defines a state of an instance where the
state is given by a state name. If all instances are involved, it describes a
global state. A guarding condition, depending on a boolean expression,
restricts the following event execution. The boolean expression can be
given in the data language or by an active state which was set in a former
condition.

Timers

Beside the temporal order of messages, the usage of timers is possible to
express duration dependencies (see Figure 3.3(a)). Timers are described by
the three events start, timeout, and stop and corresponding events have to
be attached on the same instance. Timer duration for timeout is settable
by lower and upper bounds. There is a global clock assumed but global
timers are not supported.

Instance Creation and Termination

Apart from static creation, instances can be dynamically created by other
instances. Instance termination is done by instances itself. Instance cre-
ation is represented by a dashed arrow beginning at the creating instance

49

3. UML-based Testing

and ending at the new instance head. Instance termination is represented
by a cross. Since all instances, static and dynamic, have to be explicitly
shown, the creation of an unknown number of instances is not possible.
This may be a hard restriction but it is sufficient for scenario description
which is the purpose of MSCs.

3.4.3. Structural Concepts

Beside basic MSCs the structural concepts coregions, MSC references, in-
stance decomposition, and inline expressions are supported which will be
described in the following.

Coregion

Total ordering on instance axes can be suspended by coregions where or-
dering gets changed to allow any event order. For instance, sending or
receiving several messages may be interchanged. Suspending total event
ordering can be useful to describe higher-level systems, too. Ordering in
coregions can still be ordered or limited respectively by usage of the gen-
eral ordering mechanisms. Coregions are graphically marked by a dashed
instance axis as done in Figure 3.3(b) on instance Initiator.

Inline Expressions

Inline operators are used for easier definition of event structures. The
operators alt, par, seq, opt, exc, and loop are available to define alternative,
parallel, and sequential composition, optional regions, exceptions, and
iterations.

Alternative composition is used to define alternative execution traces
of an MSC whereby only one trace gets executed. The choice between
different traces has to be done after executing the common part of the
possible traces. Parallel composition represents parallel execution of all
defined sections whereas event order within each section gets preserved.
Sequential composition represents the weak sequencing operation. Op-
tional events can be defined by an optional region which is equal to an
alternative with an empty MSC as second operand. Exceptional cases can
be handled by the exception operator which is equal to an alternative with
the remaining MSC as second operator. Thus, if the exception part gets
executed the MSC terminates. The option and exception operator are very
similar except continuation or termination of the MSC after operator exe-
cution. As last operator the loop operator is provided to define iterations.

50

3.4. Message Sequence Chart

Number of loop executions are defined by a lower and upper boundary in
which usage of the keyword inf is supported to express an infinite bound-
ary.

An alternative and loop expression is shown in (see Figure 3.3(b)).

MSC References

Due to structure MSCs an MSC can reference other MSCs of the MSC
document. All instances used in a referenced MSC must also appear in the
calling MSC. Events can be send to and received from a referenced MSC
by gates. References may have parameters which have to match with the
corresponding MSC parameter declaration. MSC reference expressions
can be defined by the operators alt, par, seq, loop, opt, and exc as defined
by inline expressions before. Therefore, several MSCs can be referenced.

At the beginning in Figure 3.3(b) a reference to MSC ConnectionEstab-
lishment is given.

Instance Decomposition

In addition to MSC references instances can be decomposed to structure
charts as done with instance Initiator in Figure 3.3(b). Instance decompos-
ition can be used to control level of detail where interaction is described.
Behaviour and internal structure of decomposed instances are defined by
an own MSC document which uses the instance kind name as document
name. The behaviour is described by an MSC and the structure by used
instances. A hierarchy of decomposed instances may be used.

3.4.4. High-Level Message Sequence Charts

Apart from MSC documents and basic MSCs there are High-Level Mes-
sage Sequence Charts (HMSCs) available as another structuring type. They
are directed graphs which describe how to combine a set of MSCs. Thus,
HMSCs provide a higher description and structuring level by abstracting
from concrete message exchanges.

Each node in an HMSC can be either a start or end node, an MSC ref-
erence, a condition, a connection point, or a parallel frame. Nodes are
connected by flow lines and flow lines can be connected by connection
points. MSC references may use reference expressions to reference to sev-
eral charts. Conditions are used for describing system states, guards, or
restrictions as similarly done by conditions in basic MSCs. Parallel frames

51

3. UML-based Testing

loop <0,inf> ConnectionFailure

ConnectionSuccess

connected

TransmissionSuccess

ConnectionRelease

TransmissionFailure

disconnected

hmsc HMSC Example

Figure 3.4.: HMSC example

contain smaller HMSCs which are part of a parallel operator and hence,
are executed in parallel and events from different smaller HMSCs can be
interleaved. An HMSC example is given in Figure 3.4.

52

3.5. Interface Definition Language

3.5. Interface Definition Language

There exist several standards which define an Interface Definition Lan-
guage (IDL). However, the IDL standard defined and used in the CORBA
is the most popular one and others are mostly derived from it (ISO/IEC
1999; ITU-T 1997a; OMG 2001b). Furthermore, we are in particular in-
terested in using it for CORBA-based systems and if the IDL standard is
imprecise or lacking some information, the CORBA standard can be used
as reference. Therefore, only CORBA IDL is mentioned here.

The IDL is a language to describe interfaces in an implementation lan-
guage independent manner and can also be used by other systems than
CORBA. It does not support the description of implementation character-
istics like behaviour, instances, or relationships.

For better understanding of IDL, the CORBA gets explained first. After-
wards, IDL is explained in detail by the object model, data types, modules
and interfaces, and attributes and operations.

3.5.1. Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA), defined by
the OMG, is a standard architecture for distributed object systems. The
heart of CORBA is the Object Request Broker (ORB) which is the commu-
nication infrastructure for the distributed environment. The ORB provides
a mechanism for transparently communicating client requests to target ob-
ject implementations. It simplifies distributed programming by decoupling
the client from the details of the method invocations, and hence, makes
client requests appear to be local procedure calls. The ORB consists of
the ORB core and some interfaces on top of it. The ORB core provides
the basic representation of objects and means for the communication of
requests.

The technology used in the ORB core is hidden by the public interfaces
layered on top of it. There are the IDL Stub and Skeletons which present
the language mapping and support the static invocation of requests to
objects, the Dynamic Invocation Interface (DII) and the Dynamic Skeleton
Interface (DSI) which allow dynamic creation and invocation of requests
to objects at run-time, and the Interface Repository (IR) that provides
storage of object interface definitions which are accessible by applications
at run-time (see Figure 3.5).

53

3. UML-based Testing

IDL
Stubs

DII

DSI
Static IDL
Skeleton

Object
Adapter

Object Request Broker

Client Object Implementation

Figure 3.5.: The CORBA architecture

3.5.2. Object Model

To understand IDL, one must know the object model of CORBA. All fea-
tures of the object model must be captured by IDL because it shall describe
these features. Therefore, the object model and IDL can be described to-
gether. All that is valid for the object model should be valid for IDL and
vice versa except the special restrictions of a model and a language. An
example for this exceptions is the module and data type concept of IDL.

The object model of CORBA is the elementary part of the whole stand-
ard. It describes the view, called interface, on each object. This view is
described using the IDL of the OMG for CORBA (OMG 2001b, chapter
3). It is a language to describe interfaces in an implementation language
independent manner. It shall not describe implementation characteristics
like behaviour, instances, or relationships. Therefore, the following con-
structs are defined:

Constants to assist with type declarations,

Data type declarations to use for parameter typing,

Attributes which allow getting and setting of a value of a particular type,

Operations which take parameters and return values,

Interfaces which group data type, attribute, and operation declarations,

Modules for name space separation.

54

3.5. Interface Definition Language

Thus, each client can invoke remote operations on an object without
knowing about the implementation details. The communication between
objects per default is peer-to-peer and synchronous in an at-most-once
manner. Asynchronous communication is only available in using one-way
and best-effort manner.

The IDL is a base of the whole CORBA standard and an important
point in developing distributed systems with CORBA. It allows the reuse
and interoperability of objects in a system. A mapping between IDL and
a programming language is defined in the CORBA standard. IDL is very
similar to C++ in containing pre-processor directives (include, comments,
etc.), grammar as well as constant, type, and operation declarations. There
are no programming language features like, e.g., if-statements.

The most important part of IDL are operation specifications. The oper-
ations are a part of interfaces for an object. Interfaces may be summarised
to modules. This leads to hierarchical composition with naming scopes.
The next sections explain the data types, module and interface concept,
and operation declarations.

3.5.3. Data Types

IDL supports the most basic data types from C++, but there are no ref-
erences in IDL. Instead, the types string, boolean, and any are available.
Some data types have a different specification, like char which is a type of
its own in CORBA. The constructed types enum, struct, array, and union
are similar to the ones in C++. The template type sequence is a variable
length array of elements of one, but any, IDL type. The type string is like
sequence but only supports ASCII ISO-LATIN characters. Type any is like
type Object in Java a placeholder for any possible IDL type (see Table 3.1).
A code example is given in Listing 3.1.

3.5.4. Modules and Interfaces

The main concept behind IDL consists of interfaces. Each interface may
contain constants, types, attributes, exceptions, and operations for one
object. A module is a method to separate name spaces and may contain
any IDL construct. Each IDL construct is automatically public according
to the object-orientated concept. (Multiple-) Inheritance is only permitted
for interfaces, not for modules. Forward declarations of interfaces permit
their use before their definition. The concepts can be seen in Listing 3.2
which illustrates an interface hierarchy structure.

55

3. UML-based Testing

Table 3.1.: Overview of IDL types

Class of Type Type (Keyword)

Basic short, long

long long

unsigned short

unsigned long

unsigned long long

float, double

long double

char, wchar

boolean

octet

any

Class of Type Type (Keyword)

Object reference Object

Constructed struct

union

enum

Template sequence

string, wstring

fixed

Complex arrays

Native native

Concrete language mappings between C, C++, SmallTalk, Cobol,
Ada, Java, and IDL can be found in the CORBA standard (OMG 2001b).

3.5.5. Attributes and Operations

Each client knows the IDL interface specification of each object contain-
ing all information about the object. Attributes are like variable definitions
but they behave like operations in CORBA. Each read-write attribute gets
a set- and a get-function and each read-only attribute gets a get-function.
The main part of an interface is based on operations. An operation declar-
ation consists of

• an operation attribute that specifies the invocation semantics,

• the type of the operation result,

• the operation name,

• a parameter list,

• optional exceptions, and

• optional context expressions.

The default operation attribute is synchronous invocation and one-way
stands for asynchronous invocation. Each operation may return exactly
one value or must be void. The parameter list contains the direction, type,

56

3.5. Interface Definition Language

Listing 3.1: IDL data type example

1 const long number = 017; // 017 == 0xF == 15
2 const float decimal = 15.7;
3 const char letter = ’A’;
4 const boolean isValid = TRUE;
5 const octet anOctet = 0x55; // limited to 8 bit
6 const string myName = "my name";
7

8 union MyUnion switch(long) {
9 case 0 : boolean b; case 1 : char c; case 2 : octet o; case 3 : short s ;

10 };
11

12 enum NotFoundReason { missing_node, not_context, not_object };
13

14 typedef sequence <NameComponent> Key;
15 typedef fixed<12,7> Fix;
16 typedef long NumberList[100];
17 typedef struct NC { MyString id; MyString kind; } NameComponent;

Listing 3.2: IDL structure example

1 module InheritanceExample {
2 interface A { . . . };
3

4 interface B : A { . . . };
5 };

and name of each operation parameter (see Listing 3.3). The direction in-
formation tells the direction in which the parameter is to be passed where
the following directions are supported:

in to pass the parameter from client to server,

out to pass the parameter from server to client, and

inout to pass the parameter in both directions.

Listing 3.3: Structure of an IDL operation declaration

1 returnValue operationName(in Type1 par1, inout Type2 par2, out Type3 par3)
2 raises (AnException)
3 context ("ContextInformation");

57

3. UML-based Testing

Listing 3.4: IDL interface example

1 interface NamingContext {
2 attribute string object_type;
3 readonly attribute Key external_form_id;
4

5 exception NotFound { NotFoundReason why; Name rest_of_name; };
6

7 MyString bind(in Name n, inout Object obj, out Object myObj)
8 raises (NotFound)
9 context ("Hostname");

10

11 oneway void rebind(in Name n, in Object obj);
12 };

Exceptions are especially used to handle errors caused by the network
environment like connection failures. The context expression allows the
client to transfer context specific information, like security context inform-
ation for the security service.

An example containing declarations of interfaces with operations and
attributes is given in Listing 3.4. It was taken from the NamingService of
the CORBAservices (OMG 1997).

3.6. Summary and Outlook

Summary

In this chapter first, the different diagram types of UML were shortly ex-
plained. Afterwards, suitability of UML models for automatic test gener-
ation and usage for test case specification were discussed. UML models
until now are not suitable for automatic test generation because of short-
comings in its semantics and missing features as described in section 3.2
(Binder 2000).

Test case specification is possible wherefore MSCs, as substitute for se-
quence diagrams, are best suitable from all UML diagrams. Some other
diagram types, for instance usecase diagrams, can be mapped to MSCs as
discussed in section 3.3 (Miga et al. 2001). In addition to MSCs, class
diagrams are used to provide static information used in MSCs. Therefore,
more complete test suites can be specified.

Sequence diagrams are detailed by MSC which are partly introduced
into sequence diagrams of UML 2.0. MSC provides, for instance, descrip-
tion of message- and procedure-based communication, usage of timer, in-

58

3.6. Summary and Outlook

line expressions to describe, for instance, alternatives, and HMSCs to de-
scribe sequences of MSC execution. The new data and time concept to
describe usage of an external data language and time dependencies was
not detailed because it is not introduced into UML until now.

The IDL was introduced which permits the specification of software
interfaces. The interfaces are independent of the programming language
or the platform which is used and can be automatically generated from
UML class diagrams.

If TTCN-3 is used for testing systems with interfaces specified by IDL,
these interface definitions can be used as ATSI. Therefore, the mapping
suggestion which will be given in chapter 5 can be used to generate the
static ATS parts automatically. This would effect definitions like data types
and signatures for procedures. Hence, interface modifications could be
seamlessly introduced into the static part of TTCN-3 test suites which
would improve consistence and allow simplified test specification via UML
models or testing of CORBA-based systems.

Outlook

The progress of UML to UML 2.0 will enhance support for automatic test
generation because of more semantics information and more expressive
diagrams like sequence diagrams which are enhanced by MSC features
and state diagrams wich are enhanced by SDL features. For instance, tool
support for UML 2.0 is given by second generation of Telelogic TAU
tools.

Furthermore, in conjunction with the new approach Model Driven Ar-
chitecture (MDA) (OMG 2001a) the UML and XML Metadata Interchange
(XMI) is used to specify systems where full automatic code generation,
simulation, and validation gets possible. It is thought to use them for de-
scribing standards, too (Koch 2001). MDA separates system specification
from implementation specification on a specific technology platform by
specifying, for instance, architectures for models and a set of guidelines to
structure specification by models.

To use MDA for specific application areas UML profiles may be defined.
Thus, UTP gets introduced which will widen usage of UML for testing.
Especially, in conjunction with the mapping of UTP to TTCN-3 as it will
be defined in ITU-T Recommendation Z.149. A case study can be seen in
Dai et al. (2004). Automatic code generation using MDA increases the de-
mand for conformance testing, certification, and branding. Using TTCN-3
in conjunction with eXtensible Markup Language (XML) is shown, for in-

59

3. UML-based Testing

stance, in Schieferdecker & Stepien (2003). Additionally, usage of IDL for
different application areas is detailed in section 5.7.

In particular, automatic test generation and full test specification can be
simplified through better semantics, more expressive features, and combin-
ation with TTCN-3. The approach described in this thesis is a first step in
this new direction but focusses more on test case specification instead of a
full test suite.

60

4. Mapping of MSC to TTCN-3

CATG based on state space exploration, as described in section 2.3 on
page 14, generates frequently inefficient test cases. Therefore, it is desir-
able to use, for instance, graphical test purposes, for CATG which are also
more suitable for a test designer. Test case generation and specification
using MSCs were formerly done for TTCN-2 by using MSC-96 and is
provided, for instance, with Autolink in the TAU tool set from Telelo-
gic (see section 2.3 on page 15). Hence, a mapping from MSC to TTCN-3
(see section 2.4) gets defined to allow definition of graphical test purposes
for TTCN-3, too (Ebner 2004).

The focus is on timed order of message exchanges and test suite details
are hidden. This distinguishes this concept in contrary to UTP where a test
suite is represented in more detail. Thus, specification of scenario-based
test cases gets simplified. Furthermore, usage of a given specification by
MSCs or UML diagrams which can be converted into MSCs is possible. As
stated in section 3.4 the MSC-2000 is used as substitute for UML sequence
charts. UML activity diagrams can be converted to HMSC which is used to
define test execution order (see Figure 4.1). Thus, MSC is used to generate
TTCN-3 test cases and control parts.

MSC is also used for real-time testing and MSC concepts have been used
to develop GFT and UTP. The introduction of new concepts for real-time
testing with TTCN-3 and MSC is discussed in Dai et al. (2002, 2003);
Neukirchen (2004). The GFT in context of MSC and UML is discussed in
Schieferdecker & Grabowski (2003). The deployment of UTP is detailed
in Schieferdecker et al. (2003) where a UML-based specification of test
descriptions is explained.

The mapping starts with a description of the used concept to motivate
the following parts which are structured similar to the MSC specification
document (ITU-T 2001) to provide easy access to the mapping of each
MSC element. Therefore, mapping of the MSC documents and comments,
basic MSCs, structural concepts, and HMSCs are explained. Finally, a
summary and an outlook are given.

61

4. Mapping of MSC to TTCN-3

UML

Sequence Chart Activity Diagram

Basic MSC HMSC

TTCN-3
Test Case

TTCN-3 Module
Control Part

Test Suite

Figure 4.1.: Basic MSC to TTCN-3 mapping concept

4.1. Fundamental Concept

Contrary to the TTCN-3 presentation format GFT (ETSI 2002b) and
UML test specification via UTP (Schieferdecker et al. 2003) which are in-
spired by MSC the concept here uses MSC to manually specify test pur-
poses and cases. However, the concept is also not using the full MSC
semantics because some restrictions and adaptations respectively have to
be done to permit test case specification via MSC. Thus, MSC semantics is
overwritten by an own MSC to TTCN-3 semantics which is as near as pos-
sible to the MSC semantics without introducing new graphical elements.
Hence, seamless use by test designer familiar with MSC is supported.

Requirements

There are some requirements which are desirable to provide good support
for TTCN-3 with MSC and to widen usability and acceptance:

Structure It should be feasible to control the TTCN-3 test case generation
process to get a desired test suite structure. For instance, the MSC
document structure can be used.

Aliases Use of aliases is important to write easily test cases via MSCs
wherefore usage of TTCN-3 templates has to be supported.

Statements Support insertion of TTCN-3 statements (program code) in
MSC, for instance, insertion of setverdict(pass) at the end of an MSC
diagram.

62

4.1. Fundamental Concept

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

msc Structure Example

Figure 4.2.: Basic instance structure to specify test cases via MSC

Defaults Usage of predefined TTCN-3 defaults must be possible.

Concurrency Support concurrent and non-concurrent TTCN-3 wherefore
non-concurrent should be a special case of concurrent TTCN-3.

Basic Structure

In order to use MSC for generating TTCN-3 the test architecture and com-
munication has to be mapped first (see subsection 2.4.4 on page 29 and
subsection 2.4.5 on page 31). Static information like types and data has
to be given by other sources as shown in chapter 5. Test architecture
and communication is based on components and ports whereby ports are
the element which connects both together. Furthermore, usage of com-
ponents would be too abstract for scenario-based testing. Therefore, MSC
instances are mapped to ports. At least the static MTC and SUT ports have
to be used to specify test cases (see Figure 4.2). Dynamic PTCs can be rep-
resented by instance creation. In order to distinguish ports by components
the instance head provides the component name in addition. Hereby, an
own test case for each component can be generated in case of concurrent
TTCN. In case of non-concurrent TTCN usage of PTCs is forbidden and
component name MTC is optional and only test case(s) for the MTC are
generated.

In case where an MSC is ambiguous in sense of a TTCN-3 test case sev-
eral test cases will be generated to comply the ambiguities. Nevertheless,
an ambiguous test case specification in sense of this concept cannot be
seen as a test purpose in its proper meaning because traces have not to be
completed. Ambiguous test cases can appear by using sending messages in
front of alternative inline expressions and must appear by using HMSCs.

63

4. Mapping of MSC to TTCN-3

Restrictions and Adaptations

As stated before, some restrictions and adaptations are made to use MSC
in conjunction with TTCN-3:

Configuration file A configuration file has to provide the used data types,
templates (constraints), and configuration information like defini-
tion of ports and their types and components (for create, connect,
visibility) which can be provided by a SDL or IDL specification, for
instance.

The configuration file has to be a correct TTCN-3 module. A ref-
erence to the configuration file can be given via a text comment in
the MSC because the generated test case will be inside a TTCN-3
module, too.

Synchronisation At the border of inline expressions synchronisation is
always assumed to prevent cases of interleave and to permit loop
abortion in loop expressions. MSC references are synchronised per
component.

Synchronise conditions and local synchronise rules will be used and
hence, no global synchronisation and global references are available.

Message type In an inline expression the first message has to be type lim-
ited to make sense in TTCN-3. Therefore, only receive messages
and receive statements respectively are permitted as first message in
an alternative, optional, and exceptional inline expression.

4.2. MSC Documents and Comments

MSC documents are used to structure test cases in a TTCN-3 module
wherefore the MSC document name is used as module name and the ref-
erenced MSCs are converted to appropriate test cases inside the module.
The document relation is used to bind a configuration file to the MSCs
where static information are provided.

The three comment types note, comment, and text are used to insert
TTCN-3 statements and comments. Notes occur only in the textual syn-
tax and therefore, may be used in comment types comment or text to
insert TTCN-3 comments. Comments are associated with a symbol or
comment type text why they can be used to insert TTCN-3 statements at

64

4.3. Basic Message Sequence Charts

special positions. Text is used for global TTCN-3 comments and state-
ments which have to be set at the beginning of the generated TTCN test
case. For instance, defaults can be activated in text comments.

4.3. Basic Message Sequence Charts

The conversion concepts for basic MSC are given below. Instances, mes-
sages, and control flow is discussed first and the ordering and synchron-
isation of events gets explained afterwards. At the end the conversion of
environment and gates, actions, timers, and dynamic instances is detailed.

Each chart contains a chart name which gets the test case name which
may include used parameters.

4.3.1. Instances, Messages, and Control Flow

Instances and communication by message exchange and procedure invoc-
ation are the basic parts of MSCs. According to the concept mentioned be-
fore instances are used as ports and PCO respectively where the corrspond-
ing component is mentioned, too. Instance name is used as port name and
instance kind without denominator is used as corresponding component
name (see Figure 4.3).

The instance definition itself provides no further information but at-
tached elements are considered to belong to the port or component re-
spectively. Hence, attached messages and procedure invocations belong
to the given port and all others to the component why all elements are
put into the same component test case(s). The used port type like message,
procedure, or mixed may be given in the instance name but is only necessary
if semantic checks will be done without further available configuration in-
formation or because of consistency for test designer. The concrete port
definitions are given by the separate static information in the configuration
file as also done for the component definition.

If no architecture information beside ports and SUT is given a heuristic
can be used or only a MTC is assumed. It is indicated which ports be-
long to the SUT. Message interchange, where no SUT instance is involved,
indicates use of a PTC as far as the MTC sends no message to itself. For
instance, in case of concurrent TTCN-3 synchronisation between compon-
ents is done via synchronisation coordination messages. Furthermore, test
cases are focussed on communication with the SUT why SUT instances are
mostly involved in message interchange. However, usage of such heuristics
is up to tool vendors because they have no influence to the mapping itself.

65

4. Mapping of MSC to TTCN-3

An MSC message and procedure consists of a relation between an out-
put and input event from and to an environment or instance. These can
be matched to send and receive operations in TTCN-3. Output message
events can only be matched to send and output procedure events to call,
reply, or raise operations whereas input message events can be matched to
receive, trigger, and check and input procedure events to getcall, getreply,
and catch operations. It is possible to provide a TTCN-3 statement at-
tached to an event by a comment to force its conversion to a specific
communication operation. The default conversion converts to send and
receive for messages and call and reply for procedures if a statement is
missing. Value assignments and optional parameters can also be provided
in comments to a communication event. One-to-many connections are not
supported until now by MSC and therefore, are not considered here.

Procedure calls in TTCN-3 have a blocking characteristic to state whet-
her test case execution is blocked or not until the call has returned by a
response or exception. Thus, MSC asynchronous and synchronising calls
are mapped to TTCN-3 non-blocking and blocking calls.

The message and procedure names represent either the used type (mes-
sage type or procedure) or template (message or signature template). In
case of a template without parameters no parameter list is given. Oth-
erwise, the parameter list is used to provide the necessary parameters.
TTCN-3 templates and their arguments provide easier usage of comm-
unciation operations because there are no further information necessary.
Inline templates for matching receiving events can be used, too. Thus, test
cases get more understandable and maintainable.

4.3.2. Ordering and Synchronisation

To specify and implement test case generation from MSC the specification
of the underlying event ordering is fundamental. Using MSC event order-
ing implies generation of test cases for each possible trace through a chart.
However, intention of using sequence diagrams by test designer directly is
control of generated test cases. Thus, a limited MSC event ordering gets
used. In the following only non-concurrent TTCN-3 is mentioned to keep
explanation simpler. Concurrent TTCN-3 differs mainly in generation of
test cases for each component which can be easily adopted by considering
involved instances only (Grabowski et al. 1999).

Event ordering in MSC is defined by

• total ordering on instance axis,

66

4.3. Basic Message Sequence Charts

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

IDATreq(0)

IDATind(0)

Synchronisation

IDATreq(55)

IDATind(55)

IDISreq

IDISind

msc BaseExample testcase BaseExample() runs on syminres {
ISAP1.send(ICONreq)
ISAP2.receive(ICONind)
ISAP2.send(ICONresp)
ISAP1.receive(ICONconf)
ISAP1.send(IDATreq (0))
ISAP2.receive(IDATind (0))
ISAP1.send(IDATreq (55))
ISAP2.receive(IDATind (55))
ISAP2.send(IDISreq)
ISAP1.receive(IDISind)

}

(a) MSC (b) TTCN-3

Figure 4.3.: MSC to TTCN-3 base mapping

• partial ordering between instances,

• a general ordering mechanism, and

• coregions.

Total ordering on instance axis is also used because event order on a port
has to be ordered totally by default. If another behaviour is wished the
ordering has to be modified explicitly by using corresponding elements.
Partial ordering between instances can enable several permitted traces of
a chart which prevents exact test case design because of unwished traces.
Thus, partial ordering is limited by synchronisation points, send events are
executed as early as possible, and graphical order is used to decide about
used trace if necessary. Graphical order means ordering is given by the
order from left to right and top to bottom in the MSC until the end or a
synchronisation point.

Synchronisation points are used to provide a well defined point where
all send and receive events have been executed. Event execution before is
forced and no event after can be moved before a synchronisation point.
Due to the limitation of the partial ordering between instances and the
preference of the graphical order the general ordering mechanism is not
necessary but can be used for additional, more precise, and explicit order

67

4. Mapping of MSC to TTCN-3

information. Coregions are used to override explicitly any ordering by
all permutations of the involved events which is done by the interleave
statement in TTCN-3. If the above mentioned rules for ordering can be
widen by automatic detection of interleave cases like reception of two
consecutive events at the SUT an interleave statement shall be used for
it.

Synchronisation can be forced by using conditions (see Figure 4.3). It
is assumed around all inline expressions and actions. MSC references are
synchronised per component. Since synchronise conditions and local syn-
chronise rules like described before are used, no global synchronisation
and global references are available.

4.3.3. Miscellaneous

Mapping of environment, actions, conditions, timers, and dynamic in-
stances gets described in the following.

Environment and Gates

Support of external message exchange can be designed similar to the nor-
mal message exchange by handling the environment like another instance.
Gates require no special mapping rules because they are only used for bet-
ter organisation of charts.

Actions

An action describes an internal activity of an instance and hence, it can be
used to insert comments and TTCN-3 statements directly into test cases
depending on an instance.

Conditions

Conditions are only used for synchronisation which requires coordination
messages if concurrent TTCN-3 is used.

Timers and Time Constraints

Timers can be started and stopped according their position in the MSC
and global timers are considered. Timer time out can be catched by using
the default behaviour statement of TTCN-3 where the test case verdict can

68

4.4. Structural Concepts

be set to fail and a log message can be written. There is no stop after the
verdict to allow ending in a defined state.

Instance Creation and Termination

Dynamic instances are mapped like static instances but are created and
started only during test case execution and not at the begin of a test case
like it is done for MTC and SUT. However, dynamic instances make only
sense if a new component is used. Information for connecting and map-
ping of ports to each other can be taken from exchanged messaged. In-
stance termination is mapped to the stop component operation but can
only be inserted if no other port of the component is in use.

4.4. Structural Concepts

Conversion of coregions, references, instance decomposition, and inline
expressions, which are all summarised as structural concepts in MSC, are
detailed now.

4.4.1. Coregions

Coregions are used to override explicitly the total ordering of an instance
axis by unordered events. In sense of a test case description best mapping
is done by using all permutations of the involved events which is done by
the interleave statement in TTCN-3, as well. This was mentioned earlier
in subsection 4.3.2.

Usage of coregions is limited on message exchange among components
and between SUT and a component. Overlapping of coregions on differ-
ent instance axes for the same component has to be prevented. The first
event must be always a receive event. In case of non-concurrent TTCN-3
coregions are only used on SUT axes.

4.4.2. MSC References

MSC references provide usage to import other charts which easies decom-
position and reuse. However, test cases cannot be decomposed into other
test cases and therefore, references are converted to function calls. Never-
theless, test case decomposition is done by HMSCs which is described in
section 4.5 on page 75. To allow correct behaviour of function calls by

69

4. Mapping of MSC to TTCN-3

references they have to be synchronised per test component. Several func-
tion calls can be provided in one reference by usage of the seq operator for
references.

The sequential MSC reference expression seq is used to call several func-
tions in sequential order. The alternative and optional expression alt and
opt is used to generate a test case for each possible alternative. Loop
expressions are converted according done for MSC inline expressions in
HMSCs (see section 4.5).

4.4.3. Instance Decomposition

Instance decomposition is used to replace an instance axis by a detailed
chart. The instance axis can be seen as the environment from the detailed
chart. Therefore, instance decomposition has only to be resolved during
conversion wherefore no further special conversion concept is required.

4.4.4. Inline Expressions

In order to structure charts inline expressions are provided which allow
alternatives, loops, and parallel execution.

An appropriate mapping requires synchronisation before and after each
inline expression to prevent cases of interleave which cannot be solved
easily. In addition, handling concurrent TTCN-3 gets better. From MSC
point of view events before and after an inline expression may influence the
expression behaviour but for test case design this behaviour is not wished
because it makes test case design more complicated by loosing control
about the number of generated test cases. To provide a good mapping to
TTCN-3 alternative and loop statements synchronisation is required, as
well. Especially, good support of loop expressions by using TTCN-3 loop
statements is also wished.

The inline expressions alternative, option, exception, and loop are de-
tailed below. Inline expression parallel will not be mentioned because
there is no appropriate mapping available.

Alternative

The alternative expression is directly mapped to the alternative behaviour
statement of TTCN-3. Therefore, the first element of each alternative
part has to be a reception statement according the specification of the alt
statement (see subsection 2.4.6 on page 34). For each alternative of an

70

4.4. Structural Concepts

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

IDATreq

IDATind

IDISind

ICONreq

ICONind

ICONresp

ICONconf

IDATreq

IDATind

alt

IDISreq

IDISind

msc Inline Alternative testcase Inline_Alternative () runs on syminres {
ISAP1.send(ICONreq)
ISAP2.receive(ICONind)
ISAP2.send(ICONresp)
ISAP1.receive(ICONconf)
ISAP2.send(IDISreq)
ISAP1.send(IDATreq)
alt {

[] ISAP2.receive(IDATind)
{
}

[] ISAP1.receive(IDISind)
{

ISAP1.send(ICONreq)
ISAP2.receive(ICONind)
ISAP2.send(ICONresp)
ISAP1.receive(ICONconf)
ISAP1.send(IDATreq)
ISAP2.receive(IDATind)

}

}

ISAP2.send(IDISreq)
ISAP1.receive(IDISind)

}

(a) MSC (b) TTCN-3

Figure 4.4.: MSC to TTCN-3 alternative mapping

alternative expression containing a send event as first event another test
case containing this alternative is generated. In worst case an own test case
gets generated for each alternative. Of course, all events in alternatives are
restricted by the alt statement semantic (see Figure 4.4).

Optional

The optional expression can be seen as a special case of the alternative
expression with an additional empty alternative part. The empty altern-
ative part gets realised by an else guarded empty alternative part (see Fig-
ure 4.5).

Exception

The exception expression is a special case of the alternative expression
where the last alternative part is the remainder of the MSC (see Figure 4.6).

71

4. Mapping of MSC to TTCN-3

ISAP1
SUT

syminres ISAP2

ICONreq

IDISind

ICONreq

opt

IDISind

ICONreq

opt

ICONind

ICONresp

ICONconf

IDATreq

IDATind

msc Inline Optional testcase Inline_Optional () runs on syminres {
ISAP1.send(ICONreq)
alt {

[] ISAP1.receive(IDISind)
{

ISAP1.send(ICONreq)
}

[else]
{
}

}

alt {
[] ISAP1.receive(IDISind)

{
ISAP1.send(ICONreq)

}

[else]
{
}

}

ISAP2.receive(ICONind)
ISAP2.send(ICONresp)
ISAP1.receive(ICONconf)
ISAP1.send(IDATreq)
ISAP2.receive(IDATind)

}

(a) MSC (b) TTCN-3

Figure 4.5.: MSC to TTCN-3 optional mapping

Loop

The loop expression can be converted onto the for and while loop state-
ments of TTCN-3 whereby infinite loops are best mapped to while loops
(see Figure 4.7) and finite loops to for loops (see Figure 4.8). In contrary to
the alternative expression there is no special first event necessary. Instead,
loop operations require an abortion criteria if lower and upper bound-
ary are not equal. Equal boundaries impose exact number of loop passes
where no abortion criteria is required. The abortion criteria from MSC
point of view is the next receive event after the loop expression. There-
fore, a receive message has to be given after each loop expression. The
receive message gets checked inside the loop and concrete message con-
sumption is done after loop execution.

72

4.4. Structural Concepts

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

IDATreq

IDISind

IDISreq

IDISind

exc

IDATind

IDISreq

IDISind

msc Inline Exception testcase Inline_Exception () runs on syminres {
ISAP1.send(ICONreq)
ISAP2.receive(ICONind)
ISAP2.send(ICONresp)
ISAP1.receive(ICONconf)
ISAP1.send(IDATreq)
alt {

[] ISAP1.receive(IDISind)
{

ISAP2.send(IDISreq)
ISAP1.receive(IDISind)

}

[else]
{

ISAP2.receive(IDATind)
ISAP2.send(IDISreq)
ISAP1.receive(IDISind)

}
}

}

(a) MSC (b) TTCN-3

Figure 4.6.: MSC to TTCN-3 exception mapping

ISAP1
SUT

syminres ISAP2

ICONreq

IDISind

ICONreq

loop <1,3>

ICONind

ICONresp

ICONconf

msc Inline Loop 1 testcase Inline_Loop1() runs on syminres {
ISAP2.send(ICONresp)
ISAP1.send(ICONreq)
while (true) {

alt {
[] ISAP1.receive(IDISind)

{
ISAP1.send(ICONreq)

}

[iterator__1 >= 0] ISAP2.receive(ICONind)
{

goto iterator__1_label
}

}

iterator__1 := iterator__1 + 1;
}

label iterator__1_label ;

ISAP1.receive(ICONconf)
}

(a) MSC (b) TTCN-3

Figure 4.7.: MSC to TTCN-3 loop mapping 1

73

4. Mapping of MSC to TTCN-3

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

IDATreq

IDATind

IDATreq

loop <1,3>

IDATind

msc Inline Loop 2 testcase Inline_Loop2() runs on syminres {
ISAP1.send(ICONreq)
ISAP2.receive(ICONind)
ISAP2.send(ICONresp)
ISAP1.receive(ICONconf)
ISAP1.send(IDATreq)
var integer iterator__1 := 0;
for (iterator__1 := 0; iterator__1 < 3;

iterator__1 := iterator__1 + 1) {
alt {

[] ISAP2.receive(IDATind)
{

ISAP1.send(IDATreq)
}

[iterator__1 >= 1] ISAP2.receive(IDATind)
{

goto iterator__1_label
}

}
}
label iterator__1_label ;

}

(a) MSC (b) TTCN-3

Figure 4.8.: MSC to TTCN-3 loop mapping 2

74

4.5. High-Level Message Sequence Charts

4.5. High-Level Message Sequence Charts

HMSCs are thought to describe possible combinations of MSCs. As men-
tioned in section 3.3, UML activity diagrams are comparable with HMSCs.
If they are seen as a kind of test suite decomposition they can be used to
specify test case execution order. Therefore, HMSCs are used to describe
test case execution in the module control part of TTCN-3.

loop <10,10> ConnectionFailure

exc ConnectionSuccess

connected

TransmissionSuccess

ConnectionRelease

TransmissionFailure

disconnected

hmsc Mapping Example module {

function testExecution1() {
verdicttype verdict ;
integer i ;

for (i :=10; i>0; i := i−1)
execute ConnectionFailure ();

verdict = execute ConnectionSuccess();
if (verdict == false)

return ;

execute TransmissionSuccess ();
execute ConnectionRelease();

}

function testExecution2() {
verdicttype verdict ;
integer i ;

for (i :=10; i>0; i := i−1)
execute ConnectionFailure ();

verdict = execute ConnectionSuccess();
if (verdict == false)

return ;

execute TransmissionFailure ();
}

control {
testExecution1 ();
testExecution2 ();

}
}

(a) HMSC (b) TTCN-3

Figure 4.9.: MSC to TTCN-3 mapping of HMSCs

MSC references including reference expression in HMSCs are conver-
ted to corresponding test case execution calls and conditions and parallel
frames are ignored. Each execution trace of a HMSC gets collected in an
own function and all functions are called in the control part. No back-
ward loops are allowed and there are only reference expression loops with
same finite lower and upper boundary allowed because data concept is
not introduced into UML and thus, not considered here. Alternative and

75

4. Mapping of MSC to TTCN-3

optional expressions lead to several traces only. Exception expressions are
used to stop further trace execution if the test case fails. An example is
given in Figure 4.9.

4.6. Summary and Outlook

Summary

The chapter describes a mapping of MSC elements to TTCN-3 statements
in order to use UML sequence charts to define test cases and test case
execution order in TTCN-3.

A conceptual mapping list is given in Table 4.1. Usage of comments
for introducing direct TTCN-3 statements is used especially for TTCN-3
defaults. One-to-many connections are not supported until now by MSC
and therefore, are not considered. Apart from mapping chart elements the
ordering semantics of events had to be defined which differs from the ori-
ginal semantics of MSC to be adequate for test specification. For instance,
default synchronisation points were introduced for references and inline
expressions.

Procedural communication is represented by flow control concept and
mapped to call and getreply statements. However, alternative handling
of reception events by usage of alternative statement in a blocked call
or a getreply statement is not supported until now. Data and time con-
cepts of MSC-2000 have not been considered because they are not used
in UML 2.0, until now. Nevertheless, in context of TIMEDTTCN-3 it has
been shown that is possible to translate real-time information contained
in MSC to TIMEDTTCN-3 (Dai et al. 2002, 2003; Grabowski 2002; Neuk-
irchen 2004). Data support was not considered but can be easily used to
enhance expressiveness and integration into TTCN-3.

A prototype was implemented to demonstrate feasibility. A first version
was demonstrated on the TTCN-3 launching event in October 2000 at
European Telecommunications Standards Institute (ETSI). Most examples
in this chapter are converted with it. The prototype is based on the MSC
parser developed at the Institute for Telematics, University Luebeck, Ger-
many. The parser was implemented via ANother Tool for Language Re-
cognition (ANTLR) which “is a language tool that provides a framework
for constructing recognizers, compilers, and translators from grammatical
descriptions containing Java, C#, or C++ actions” (http://www.antlr.org).
The MSC parser is used to build an Abstract Syntax Tree (AST) first which
will be given to a tree parser. The tree parser parses the AST and generates

76

http://www.antlr.org

4.6. Summary and Outlook

Table 4.1.: Conceptual list of MSC to TTCN-3 mapping

MSC TTCN-3

basic MSC test case

HMSC module control part

instance axis represents a port

note comment

comment insert statements directly at element position

text comment insert statements directly at beginning

chart name test case name

instance name port name

instance kind component name or SUT

message send or receive statement

flow control call or getreply statement

action insert statements directly

condition marks a synchronisation point

timer time start, stop, or timeout statement

instance creation create componenent

coregion interleave statement

reference function call or test case execution call (depending on MSC or HMSC)

alt,exc, or opt expression alt statement or function calls (depending on MSC or HMSC)

loop expression for or while statement

par expression not used

TTCN-3 code by using C++ inline code. The prototype shares code with
the IDL to TTCN-3 converter prototype mentioned in chapter 5.

Outlook

In further work the prototype should support concurrent TTCN-3 and
HMSC which have been explained but not implemented until now. A
discussion of concurrent TTCN-2 and MSC can be found in Koch (2001).
Usage of TTCN-3 as data language has also to be considered. There is
a prototype enhancement available which supports the time concept as
described by TIMEDTTCN-3 (Dai et al. 2003; Neukirchen 2004). Industrial
interest on the prototype has been shown.

77

78

5. Mapping of IDL to TTCN-3

In conjunction with UML-based manual test purpose specification, as de-
scribed in chapter 4, the usage of static information like types and inter-
faces for test specification was mentioned in section 3.3. The IDL (see sec-
tion 3.5) was selected as intermediate format to provide a transition from
UML class diagrams to TTCN-3 (see section 2.4). IDL is well supported
by UML tools and widens applicability because of the wide usage of IDL
or similarities with IDL. For instance, IDL is used in CORBA, is similar
with Simple Object Definition Language (SODL), and a mapping between
WSDL and IDL exists.

Usage of IDL for TTCN-3 is described by a mapping of IDL elements
to corresponding TTCN-3 elements. Each mapping consists of rules to
map an IDL element and rules which have to be considered in the IDL
definition to prevent conflicts with TTCN-3 rules. Furthermore, there
could be suggestions how to use a provided feature of IDL in TTCN-3.
For example, the possibility of raising an exception and the exception type
definition is defined in IDL but not catching of exceptions itself.

The mapping described here is based on some recent work in Ebner
(2001a, b); Ebner et al. (2002); Yin (2001); Yin et al. (2001). and is also
summarised as ETSI Technical Specification 102 219 (ETSI 2003).

Firstly, a description of the used approach gets described. Secondly, the
mapping of the lexical conventions and preprocessing is explained. After-
wards, the mapping of the IDL structuring elements and types is detailed.
Fifthly, communication declaration mapping is shown. Sixthly, mapping
of names and scoping are described. Finally, a summary and an outlook
are given.

5.1. Fundamental Concept

Two different approaches can be followed: either using the implicit or the
explicit mapping. The implicit mapping makes use of the import mechan-
ism of TTCN-3, denoted by the keywords language and import. It facil-
itates the immediate use of data specified in other languages. Therefore,
the definition of a specific data interface for each of these languages is re-
quired. Currently, ASN.1 data can be used besides the native TTCN-3

79

5. Mapping of IDL to TTCN-3

types. The data interface for IDL types and values is still a topic of on-
going research. The work presented here follows the approach of explicit
mapping, that is IDL data are converted into appropriate TTCN-3 data.
Only those TTCN-3 data are used further in the test specification.

There are former mappings for TTCN-2, but TTCN-3 provides new
features as stated before (Li 1998; Mednonogov 2000; Mednonogov et al.
2000; Schieferdecker et al. 1998). The old mapping of IDL to TTCN-2
has to be redesigned to make use of these new features. It was inten-
ded to describe a mapping which is independent of implementation details
wherewith it can be used in general. For instance, in conjunction with
CORBA it is assumed that a CORBA/TTCN-3 gateway executes the con-
crete mapping between the TTCN-3 test suite and the CORBA-based SUT.
Furthermore, it was not intended to map IDL to ASN.1 data as it was used
in Mednonogov (2000); Mednonogov et al. (2000).

5.2. Lexical Conventions and Preprocessing

The lexical conventions of IDL define comment, identifier, keyword, and
literal conventions which are described below. Thereafter, some comments
to the preprocessing support of IDL are given.

Comments

Comments can be defined in IDL and TTCN-3 by using the pair “/*” and
“*/” for comment blocks or “//” for end of line comments like defined in
ISO C++ (ISO/IEC 1998c).

Identifiers

Identifiers in IDL and TTCN-3 consist of alphabetic, digit, and underscore
characters where the first character must be an alphabetic character and all
characters are significant. However, there is no case distinction in IDL but
the spelling has to be consistent throughout the whole definition. TTCN-3
uses case sensitive identifiers and therefore, the IDL rule defines a subset
of the TTCN-3 rule.

Keywords

It has to be made sure that no TTCN-3 keywords (see ETSI 2002a, ap-
pendix A.1.5) are used as identifiers in the IDL definition if a seamless

80

5.2. Lexical Conventions and Preprocessing

Table 5.1.: IDL to TTCN-3 literal mapping

Literal IDL Convention TTCN-3 Convention

Integer no "0" as first digit no "0" as first digit

Octet "0" as first digit ’FF96’O1

Hex "0X" or "0x" as first digits ’AB01D’H

Floating 1222.44E5 (Base 10) 1222.44E5 (Base 10)

Char ’t’ "t"

Boolean TRUE, FALSE true, false

String "text" "text"

Wide string "text" "text"

Fixed point 12.34D 12.34

identifier mapping is wished. However, identifiers can be renamed, for
example, by appending a special prefix or suffix in case of a conflict with
keywords in TTCN-3. Concrete identifier mapping is left to tool vendors.

Literals

The definition of literals differ slightly between IDL and TTCN-3 why
some changes have to be made. In Table 5.1 a mapping for each lit-
eral type is given. IDL uses the ISO Latin-1 character set for string and
wide string literals and TTCN-3 uses ISO/IEC 646 for string literals and
ISO/IEC 10646 for wide string literals (ISO/IEC 1990, 1993, 1998a).

Preprocessing

IDL preprocessing is defined by the ISO C++ standard (ISO/IEC 1998c).
TTCN-3 does not support preprocessing wherefore only the include state-
ment could be supported directly. The include preprocessor statement of
IDL could be mapped onto the import statement of TTCN-3 to use defin-
itions from other files. Furthermore, users could use IDL definitions by
importing it and using the language option as shown here

TTCN-3

import all from IDLSpecification language "IDL";

1Octet literals require an even number of hexadecimal digits as given by the octetstring defin-
ition.

81

5. Mapping of IDL to TTCN-3

However, this is not always possible because import allows only import
of types if the module is written in another language as TTCN-3 (ETSI
2002a, section 7.5.10). This would prevent, for instance, use of constants.
Nevertheless, because of providing only an explicit mapping the import
mechanism is not supported. Thus, it has to be rolled out.

All other preprocessor statements, which are mostly text replacements,
are not mapped to TTCN-3 because the IDL specification should be used
after preprocessing it.

5.3. Structural Elements

IDL specifications consist of type, constant, exception, interface, mod-
ule, and value declarations. Beside basic and constructed data types IDL
provides the object-oriented types interface and valuetype. This object-
oriented types cannot be mapped straight forward because they contain
structural information which have to be considered in the TTCN-3 con-
figuration architecture.

The mappings of modules, interfaces, values, and constants are de-
scribed now. The data type and exception mappings as well as the bodies
of interfaces are described later.

5.3.1. Module Declaration

IDL uses modules as main grouping and scoping unit. TTCN-2 mappings
use modules to define nested test groups whereas TTCN-3 owns an own
module concept. For this, the module concept of TTCN-3 is used.

IDL

module identifier { body }

TTCN-3

module identifier { body }

5.3.2. Interface Declaration

Interfaces describe objects with all their access methods by using opera-
tions and attributes. Additionally, interfaces can contain local type defin-
itions like exceptions and constants which can be used by its operations
and attributes. A mapping for interfaces should provide a similar scop-
ing and grouping mechanism as well as an appropriate handling under
TTCN-3 as in IDL. Since lacking an object model in TTCN-3, the group
construct is used to retain the scoping information and interfaces have

82

5.3. Structural Elements

to be flattened. Hence, import of single interface definitions from other
modules via the importing group statement gets possible. Using module
would not be appropriate because the module concept from IDL has to be
considered as well as the module concept of TTCN-3.

The test configuration concept of TTCN-3 requires use of component
and port respectively PCO. According to the TTCN-2 mappings, an in-
terface is best mapped to a PCO. Hence, they are mapped to ports in
TTCN-3. They are associated with signatures converted from attributes
and operations of the interface (see subsection 5.5.1). Hereby, compon-
ents are used as a collection of interfaces respectively objects.

IDL

interface NamingContext { body }

TTCN-3

group NamingContextInterface {
type port NamingContext

procedure { ... }
}

address NamingContextType ?????

For the specification of object interfaces IDL type Object is used. The
interface types for application objects inherit from Object. Interface defin-
itions contain structural information which have to be considered in the
TTCN-3 configuration architecture. Furthermore, object references asso-
ciated with instances of interface implementations can be passed over op-
eration invocations. Since the port reference cannot be used as operation
parameter or inside signature definitions respectively, another mechanism
has to be used to represent the interface reference. TTCN-2 mappings use
stringified Interoperable Object References (IORs) or integers. TTCN-3
does not provide special support for it but there is an address type avail-
able which is used to address entities in the SUT. Therefore, Object is
generally mapped to address in TTCN-3 and each interface gets an address
type declared in the data part.

Interfaces can make use of inheritance from other interfaces which can
also be abstract. TTCN-3 provides no object-oriented concepts which
provide inheritance wherefore all inherited elements have to be rolled out.
Thus, they have to be handled as defined in the interface itself. In case of
multiple inheritance elements have to be inherited only once.

Forward references of interfaces respectively ports can also be used in
TTCN-3. Local interfaces require no further special mapping wherefore
they can be treated as normal interfaces.

One interface can be instantiated many times but it can only be executed

83

5. Mapping of IDL to TTCN-3

properly if the corresponding port is connected to a component. There-
fore, whenever a component gets created all corresponding ports respect-
ively interfaces respectively objects are instantiated, too. Furthermore, it is
not possible to dynamically change the number of objects for a component
wherefore a new component has to be created. The instantiation location
depends on the component which has to be matched properly by the test
system. A further discussion of this problem can be found in the TTCN-2
mappings (Mednonogov 2000; Mednonogov et al. 2000).

It does not make a difference for the mapping if requested1 or provided2

interfaces are required by the test system and SUT. Hence, TTCN-3 can
be used on client and server side without modifications to the mapping
rules.

The concrete mapping of interface operations, attributes, and excep-
tions are described in section 5.5. A summary of interface mapping inclus-
ive operation, attribute, and exception mapping can be found in Table 5.7
on page 102. General type mapping gets detailed in section 5.4 on page 85
and constant mappings are described in subsection 5.3.4 on page 85.

5.3.3. Value Declaration

The type valuetype is local like a struct but contains also operations and
attributes and provides inheritance like by interface (OMG 2001b, chapter
5). If valuetype is used as parameter it will be passed as object-by-value
wherefore it can be seen as an interface which is passed by value. In con-
trary to type interface, the IDL type valuetype has local operations that
are not used outside the object, and are therefore not relevant from the
functional testing point of view. However, since the public attributes of
valuetype instances are used to communicate object states, we suggest to
map the IDL valuetype types to record types in TTCN-3. Inheritance is
treated by rolling it out as it is also defined for interfaces and given oper-
ations are mapped to external functions. If there is only one variable for
valuetype, it can be mapped like given by the type mapping with a special
attribute, the variant attribute, for this type as described in section 5.6 on
page 102. Type valuetype was not mentioned in the TTCN-2 mappings.

The following example shows how to map valuetype and were used from
(OMG 2001b, section 5.3, section 5.2.5.2).

1test system requires interface which is provided by SUT
2test systems provides interface which is required by SUT

84

5.4. Data Types

IDL

valuetype StringValue string ;

valuetype EmployeeRecord {
private string name;
private string email;
private string SSN;

factory init (
in string name,
in string SSN

);

};

TTCN-3

type iso8859string StringValue with {
encode "IDL:valuetype and IDL:string"}

group EmployeeRecordValuetype {
type record EmployeeRecord {

iso8859string name,
iso8859string email,
iso8859string SSN

}

external function EmployeeRecord_init(
iso8859string name,
iso8859string SSN);

}

It is interesting to remark that there is no language mapping defined
to the non object-oriented language C and there is no intention to do so.
Furthermore, support of type valuetype by the only existing ORB using C,
namely ORBit, is not done or only for special cases. It is not intended to
add better support because there is no user requirement for it.

5.3.4. Constant Declaration

Constant declarations can be easily converted to TTCN-3 by use of literal
(see Table 5.1) and operator mapping for floating-point and integer values
(see Table 5.2).

IDL

const long number = 017; // 017 == 0xF == 15
const long size = ((number << 3) % 0x1F) & 0123;

TTCN-3

const long number := ’17’O;
const long size := ((number << 3) mod ’1F’H) and4b ’0123’O;

5.4. Data Types

IDL provides type declarations for constant (see subsection 5.3.4), ba-
sic, constructor, template, and complex data types. Beside these data
types IDL provides the object-oriented types interface (see subsection 5.3.2)

85

5. Mapping of IDL to TTCN-3

Table 5.2.: IDL and TTCN-3 operators for constant expressions

Operator IDL TTCN-3

Unary floating-point

positive + +

negative − −

Binary floating-point

addition + +

subtraction − −

multiplication ∗ ∗
division / /

Unary integer

positive + +

negative − −

bit-complement ~ not4b

Operator IDL TTCN-3

Binary integer

addition + +

subtraction − −

multiplication ∗ ∗
division / /

modulo % mod

shift left << <<

shift right >> >>

bitwise and & and4b

bitwise or | or4b

bitwise xor ˆ xor4b

and valuetype (see subsection 5.3.3) which have been discussed before.
This object-oriented types cannot be mapped straight forward because
they contain structural information which have to be considered in the
TTCN-3 configuration architecture.

TTCN-3 provides more predefined types than TTCN-2, for which a
better mapping can be constructed. Nevertheless, the fixed type and the
constructed types union and any have required special treatment to get
mapped properly.

A construct for naming data types and defining new types by using the
keyword typedef is provided by IDL. This can be done under TTCN-3 via
the keyword type, too.

Type Extension

To enhance readability and to provide a clear distinction, mapped IDL
data types under TTCN-3 may get the prefix IDL. Additionally, to get
the same semantic meaning under TTCN-3 as given by IDL, the types
get a variant attribute containing the source IDL type name. Therefore,
a compiler or interpreter can detect the IDL dependency and can react
accordingly like executing semantic checks. This includes encoding, too.
This feature provides a flexible way of extending the TTCN-3 type system

86

5.4. Data Types

and was among others introduced to simplify the IDL mapping. Use of
the variant attribute is discussed further in section 5.6 on page 102.

Furthermore, based on the above discussion a library of useful types
(see Table 2.2 on page 26) was introduced into TTCN-3 (ETSI 2002a,
appendix E), too. For instance, the IDL float types float and double have
a range limitation whereas the TTCN-3 float type has no such restriction.
Thus, a correct mapping would be difficult but the type system extension
solves this problem. The same can be done for the integer types as shown
below.

TTCN-3

type integer IDLshort with { variant "IDL:short FORMAL/01−12−01 v2.6" };
type float IDLdouble with { variant "IDL:double FORMAL/01−12−01 v2.6" };

The data type mapping will be shown in the following subsections. In
order to focus on the important aspects of a mapping and to preserve
readability of code examples the variant attribute will be omitted.

5.4.1. Basic Types

Mapping IDL basic data types to TTCN-3 data types is straight forward
because they are similar to ASN.1 data types which are used as data type
base in TTCN-3, too (ITU-T 1997b; Open Group 2000). For example, the
boolean and enumeration types are identical in IDL and TTCN-3. Never-
theless, TTCN-3 provides more predefined types than TTCN-2 wherefore
a better mapping can be provided. Their mapping is detailed below and
summarised in Table 5.3 on page 91.

Integer and Floating-Point Types

All IDL integer and floating point types can be mapped to the TTCN-3
integer and floating point types which have no size limitations. To get a
better corresponding for integers the range limitation according to the IDL
specification is used to define the IDL types in TTCN-3 more closer.

TTCN-3

type integer IDLShort (−32768 .. 32767);
type integer IDLLong (−2147483648 .. 2147483647);
type integer IDLLongLong (−9223372036854775808 .. 9223372036854775807);

type integer IDLUnsignedShort (0 .. 65535);
type integer IDLUnsignedLong (0 .. 4294967295);
type integer IDLUnsignedLongLong (0 .. 18446744073709551615);

87

5. Mapping of IDL to TTCN-3

TTCN-2 has no float type wherefore floats could only be mapped onto
the ASN.1 real type. In TTCN-3 there is now an unlimited float type
available where float, double, and long double from IDL can be mapped
on. However, there is still no range limitation available wherefore the
range limitations have to be kept in mind. Thus, the variant attribute is
elementary for mapping float types.

TTCN-3

type float IDLfloat with { variant "IEEE754 float" };
type float IDLdouble with { variant "IEEE754 double" };
type float IDLlongdouble with { variant "IEEE754 extended double" };

Because of this mapping the types are now available as useful types in
TTCN-3 (ETSI 2002a, appendix E). The available integer types includ-
ing their unsigned types are byte, short, long, and longlong and the float
types are IEEE754float, IEEE754double, IEEE754extfloat, and IEEE754extdouble
(see Table 2.2 on page 26). In the remainder the useful types are preferred.

Char and Wide Char Type

The IDL types char and wchar represent a single and wide character.3

TTCN-3 introduces the character types char and universal char wherefore
IDL char and wchar can now be mapped properly on it. However, TTCN-3
uses ISO/IEC 646 as character set for type char and ISO/IEC 10646 for
type universal char. Therefore, the IDL specification has to be limited to
ISO/IEC 646 respectively ISO/IEC 10646 or an appropriate conversion
has to be used (ISO/IEC 1990, 1993).

IDL

const char letter = ’A’;
const wchar wideLetter = ’A’;

TTCN-3

const char letter := "A";
const universal char wideLetter := "A";

Boolean Type

The IDL boolean type can be mapped directly to the TTCN-3 boolean type.

IDL

const boolean isValid = TRUE;

TTCN-3

const boolean isValid = true ;

3Any character set can be used for type wide char

88

5.4. Data Types

Octet Type

Type octet, an 8-bit quantity, is not mapped onto an integer type because
it has the special feature that it will not change its internal ordering if
transfered between different system architectures. To represent it octet is
mapped to octetstring.

IDL

const octet data = 0x55;

TTCN-3

const octetstring data = ‘‘55 ’ ’H

Any Type

In IDL it is possible to represent each possible IDL type with the any
type. There was no corresponding type in TTCN-3 available but based on
the following discussion an anytype was introduced into TTCN-3 (ETSI
2002a, section 6.4). The TTCN-3 anytype is a shorthand for the union of
all known types in a TTCN-3 module.

One possible way is to use an union type to store all possible data types.
The union type comprises all required types whereas these types have to
be known in advance. In order to avoid this restriction an union type
for all possible types in TTCN-3 used by the IDL mapping rules could
be defined. However, it is only possible to use basic data types and well
defined constructed types wherefore no generic constructed types for set,
record, union, etc. are supported. For instance, it is not possible to provide
entries for all possible kinds of type set by using a generic set type. Hence,
the user could define his own restricted any type in TTCN-3 by using a
union type containing only all possible types of the concrete application
and not all thinkable types. This new any type has to be mapped to a full
any type by the test system. However, this requires a careful handling of
any types because some type definitions could be missing.

The mapping for TTCN-2 is bound to ASN.1 and therefore, it encoun-
ters problems in distinguishing types which are mapped onto the same
ASN.1 type (Mednonogov et al. 2000). There is no support of the any
type given but the use of the design pattern decorator is suggested if any
type is used. Another mapping provides only basic types for the any type
and leaves structured types open for further study (Li et al. 1999). The
use of type variant as described on page 86 is not appropriate to solve the
any type problem, neither. This is because of the TTCN-3 type handling
which makes it impossible to handle types which are not known before-

89

5. Mapping of IDL to TTCN-3

hand. CORBA provides use of a dynamic management of any values but
it is not appropriate to use this concept for a mapping of the any type here
because it would not be a general mapping (OMG 2001b, chapter 9).

Since data types used by the test system are usually already known at
compile time as it is now the case in TTCN-3, it is suggested to use an
union type for data that are communicated to/over the SUT by the IDL any
type. The union type must cover all data types, either basic or derived, that
are converted from the IDL specification used by the test system. An any
type for basic types could look like the one below where the type kind is
stored in a separate variable.

TTCN-3 helper data type for IDL any type
(1)

type record IDLAny {
IDLTCKind kind,
IDLAnyValueHelper value_ }

type union IDLAnyValueHelper {
short short_,
long long_,
longlong longLong_,
unsignedshort ushort_,
unsignedlong ulong_,
unsignedlonglong ulongLong_,

IEEE754float float_ ,
IEEE754double double_,
IEEE754extdouble longdouble_,

octetstring octet_,
boolean boolean_,

char char_,
universal char wchar_
}

TTCN-3 helper data type for IDL any type
(2)

type enumerated IDLTCKind {
tk_null , tk_void,

tk_short , tk_ushort,
tk_long, tk_ulong,
tk_longlong, tk_ulonglong,

tk_float , tk_double, tk_longdouble,

tk_char, tk_wchar,
tk_string , tk_wstring,

tk_octet , tk_boolean,
tk_any, tk_objref ,

tk_struct , tk_union, tk_sequence,
tk_enum, tk_array, tk_fixed

tk_alias , tk_except, tk_TypeCode,
tk_Principal , tk_value, tk_value_box,
tk_native , tk_none, tk_abstract_interface
}

However, using any in an interface can nowadays be seen as a gap in a
good system and interface specification. Thus, use of the any type should
be prevented what is also done in ASN.1 (ITU-T 1997b, appendix E.3).
Therefore, the any type should not occur because, if tests via TTCN-3 are
executed, the interfaces should be quite stable without use of the any type.
Nevertheless, there are scenarios where the any type has to be used. A
quite common example is an application with a graphical user interface
which forwards data without looking into it.

90

5.4. Data Types

Table 5.3.: IDL to TTCN-3 mapping for basic types

IDL TTCN-2/ASN.1 TTCN-3

short, long, longlong INTEGER integer with range limitation

float, double, long double — float

boolean BOOLEAN boolean

octet OCTET STRING octetstring

char GraphicString,
IA5String(SIZE(1))

char

wchar GraphicString, BMP-
String(SIZE(1))

universal char

any CHOICE anytype (respectively union)

The basic type mappings are summarised in Table 5.3.

5.4.2. Constructed Types

IDL provides the three constructed types struct, union, and enum. Recurs-
ive construction of types is only permitted with the sequence template type
(see section 5.4.3).

There is no fundamental difference between mapping to TTCN-2 and
TTCN-3 for most constructed types given because the new data types in
TTCN-3 are directly introduced from ASN.1. Hence, only a closer map-
ping to this new data types gets necessary. This concerns, for example,
sequence, sequence of, enumerated, and choice which are used as record,
record of, enumeration, and union. Hence, TTCN-2 mapping can mostly
be used for TTCN-3. Their mapping is detailed below and summarised in
Table 5.4 on page 93.

Struct

Type struct is used to collect data in one place. Because of the importance
of ordering inside struct, it is always mapped to ASN.1 sequence. This
ordering is until now not mentioned in the IDL specification but it is in-
directly mentioned in the CORBA standard, for instance, in the Internet
Inter-ORB Protocol (I IOP) specification and type code specification (OMG
2001b, chapter 15). Therefore, mapping onto the new data type record in
TTCN-3 is used.

91

5. Mapping of IDL to TTCN-3

IDL

typedef struct NC {
string id ;
string kind;

} NameComponent;

TTCN-3

type record NameComponent {
string id ,
string kind

}

Discriminated Union

Unions can store different types in one place but only one at the same time.
In IDL, unions are discriminated to determine the actual type. Therefore,
a record type is used, which contains two members. The first one stores
the discriminator information using an enumeration type. The second
member is a TTCN-3 union type whose members are defined according to
the specified IDL union members.

IDL

union MyUnion switch(long) {
case 0 : boolean b;
case 1 : char c;
case 2 : octet o;
case 3 : short s ;

};

TTCN-3

type union MyUnionType {
boolean b, iso8859string c,
octetstring o, short s }

type enumerated MyUnionEnumType {
boolean_b, iso8859string_c,
octetstring_o , short_s }

type record MyUnion {
MyUnionEnumType kind,
MyUnionType value_ }

Enumerations

In both languages enumerations can be used on the same way.

IDL

enum NotFoundReason {
missing_node,
not_context,
not_object

};

TTCN-3

type enumerated NotFoundReason {
missing_node,
not_context,
not_object

}

The constructed type mappings are summarised in Table 5.4.

92

5.4. Data Types

Table 5.4.: IDL to TTCN-3 mapping for constructed types

IDL TTCN-2/ASN.1 TTCN-3

struct SEQUENCE record

enum ENUMERATED enumerated

union SEQUENCE record with union and enumerated

5.4.3. Template Types

IDL supports the template types sequence, string, wide string, and fixed
type. Their mapping is detailed below and summarised in Table 5.5 on
page 95.

Sequence

IDL sequence is used to provide support for one-dimensional arrays with a
fixed maximum size and a defined length. In contradiction to fixed arrays
(see subsection 5.4.4 on page 95) only the valid sequence entries will be
transmitted and the empty entries will not. Therefore, use of unbounded
sequences is also possible. This makes a mapping onto arrays in TTCN-3
impossible wherefore only set of and record of are available. To keep the
ordering of sequences the type record of has to be chosen to provide an
appropriate mapping to TTCN-3.

IDL

typedef sequence<NameComponent> Name;

TTCN-3

type record of NameComponent Name;

String and Wstring

Types string and wstring are sequences of char and wchar. In TTCN-2, sev-
eral different predefined character string types were defined which are all
replaced in TTCN-3 by the two types charstring and universal charstring.
As character encoding charstring uses ISO/IEC 646 and universal charstring
uses ISO/IEC 10646. Since the introduction of useful types the charstring
mapping can be more exact by using useful type iso8859string (see Table 2.2
on page 26). Therefore, string and wstring are mapped to iso8859string and
universal charstring.

93

5. Mapping of IDL to TTCN-3

IDL

const string name = "My String";
const wstring wideName = "My String";

TTCN-3

const iso8859string name := "My String";
const universal charstring

wideName := "My String";

Fixed Type

The fixed type represents a fixed-point decimal number. There was no
corresponding type in TTCN-3 available but based on the following dis-
cussion an IDLfixed useful type was introduced into TTCN-3 (ETSI 2002a,
appendix E.2.3.0).

If we use a float with an extension attribute containing the digit and
scale the user cannot use this information in his program. Since the sim-
ilarities between TTCN-3 and C the solution of the C language mapping
of IDL (OMG 1999, section 1.14) is used. It maps the type fixed to a
type struct which stores the number in a char array and the digit and scale
number in extra variables. In TTCN-3, this can be realised by a record con-
taining a charstring to store the number, and two integers for the digit and
scale. Hence, the user can access scale and digit, too. A record is preferred
against a set because of the initialiser notation for records which makes
the use of fixed types under TTCN-3 more convenient. See the definition
of IDLUnsignedShort and IDLShort on page 88.

IDL

typedef fixed<12,7> Fix;

TTCN-3

type record IDLFixed {
IDLUnsignedShort digits,
IDLShort scale ,
charstring value_

}

var IDLfixed fix :=
{ 12, 7, "12345.1234567" };

The template type mappings are summarised in Table 5.5.

5.4.4. Complex Types

The last kind of type declarators are the complex types array and native.
Their mapping is detailed below and summarised in Table 5.6 on page 95.

1Mapping of this type was not considered.

94

5.4. Data Types

Table 5.5.: IDL to TTCN-3 mapping for template types

IDL TTCN-2/ASN.1 TTCN-3

sequence SEQUENCE OF record of

string GraphicString, iso8859string

IA5String

wstring GraphicString, universal charstring

BMPString

fixed —1 record

Arrays

IDL array can be mapped directly to the TTCN-3 array type because they
provide the same functionality.

IDL

typedef long NumberList[100];

TTCN-3

var long NumberList[100];

Native Types

The native type is used to allow implementation dependent types. TTCN-3
provides the type address to address entitities inside a SUT. Hence, address
can be used for mapping of native and concrete implementation is left to
the user. However, this type should not be used in service and application
interfaces. It is mainly designed for internal use in CORBA itself.

IDL

native MyNativeVariable;

TTCN-3

address MyNativeVariable;

The complex type mappings are summarised in Table 5.6.

Table 5.6.: IDL to TTCN-3 mapping for complex types

IDL TTCN-2/ASN.1 TTCN-3

array SEQUENCE SIZE(n) OF array

native —1 address

1Mapping of this type was not considered.

95

5. Mapping of IDL to TTCN-3

5.5. Communication Declaration

The main purpose of IDL is the description of object interfaces where-
fore the provided attributes and methods, in IDL called operations, are
described. Each operation may raise exceptions. Operations, attributes,
and exceptions are the only way provided by IDL to communicate with
an object. Thus, operations and attributes can only be defined in inter-
faces. Exceptions can only be used by operations but can also be defined
outside of interfaces. Their mapping is detailed below and summarised in
Table 5.7 on page 102.

5.5.1. Operations

Apart from attributes, operations are the main part of interface definitions
in IDL (see subsection 5.3.2) and are used, for instance, in the CORBA
scheme as procedures which can be called by clients. Procedure calls in
general are supported by TTCN-3 by means of synchronous communic-
ation operations which are used in combination with ports. In TTCN-3
procedures are defined by signatures (see subsection 2.4.4). Operations
under IDL consist of an invocation semantics by an operation attribute,
return results, an identifier, a parameter list, an optional exception ex-
pression, and an optional context expression. The mapping of all this
parts to TTCN-3 will be described now.

Operation Attribute

IDL supports an optional oneway attribute for operations which implies
best-effort invocation semantics without a guarantee of delivery but with
a most-once invocation semantics. Oneway operations have to provide no
out parameters and the return type void. Furthermore, no raise expressions
are allowed but standard exceptions can still be raised. If no attribute is
given the invocation semantics is at-most-once in case of an exception and
exactly-once if it returns successfully.

Messages or procedures could be used for oneway operations because
both would be a valid mapping from IDL perspective. However, the use of
procedure-based ports for oneway operations is recommended because the
IDL specification does not guarantee that oneway calls are non-blocking
or asynchronous. Furthermore, CORBA implements oneway operations
by synchronous communication, too.

96

5.5. Communication Declaration

Hence, best mapping of both kind of operations is given by use of syn-
chronous communication wherefore no distinction for oneway operations
gets necessary. However, it is not the same for CORBA wherefore the
IDL information in the interface repository could be used to detect one-
way operations and to handle them appropriate. However, this is only for
CORBA-based SUTs possible. Furthermore, the variant attribute could be
used to mark oneway operations which should be preferred.

By the way, CORBA supports also the Asynchronous Method Invoca-
tion (AMI) to provide non-blocking requests. This is realised by a client-
side mapping which requires no or only small server side modifications.
Therefore, special methods will be produced in addition to provide the
new functionality. This new methods still use the synchronous communic-
ation mechanism wherefore no modifications in IDL have been necessary.
However, there was a new IDL introduced called implied IDL which is
generated from the IDL specification with the additional operations for
the client side and is used to generate the client implementation stubs.

Introduction of AMI leads to the fact that a client is also a server if
the callback model is used. This model requires a reply handler which is
invoked by the server. Hence, mapping of IDL to TTCN-3 gets necessary
from client and server perspective. Therefore, operation exceptions, as
defined in subsection 5.5.3, can also be raised by the tester.

To sum up, oneway operations are best mapped to procedures and
marked as oneway operation by a variant attribute. Based on the discus-
sion above the noblock attribute for procedures has been introduced into
TTCN-3 (ETSI 2002a, section 13.1) to support non-blocking procedure
calls. Use of non-blocking or blocking procedures for oneway operations
is left to the user.

Parameter Declarations

The parameter attributes in, inout, and out describe the transmission dir-
ection of parameters and can be mapped directly to the communication
parameter attributes in TTCN-3 because they have exactly the same se-
mantics.

The return, out, and inout parameters of operations have to be catched by
a getreply statement in TTCN-3 which should be given in the call context.

97

5. Mapping of IDL to TTCN-3

Raises Expressions

A raise expression specifies all exceptions which can be thrown by an op-
eration. It can be mapped directly to TTCN-3 because it can be indicated
by the procedure signature definition by specifying an exception. Never-
theless, each operation can trigger a standard exception.

Context Expressions

A context expression provides access to local properties of the called oper-
ation. These properties consist of a name and a string value. The context
expression can be mapped by redefining the operation with the context
parameters included in the operation parameters (OMG 2001b, section
4.6). This is done in a TTCN-2 mapping by introducing an additional
array parameter (Mednonogov 2000; Mednonogov et al. 2000). The ad-
ditional parameter should be of type array containing a type record for each
context parameter. The record itself contains two variables of type string
for the context name and value.

An example mapping is demonstrated below. The TTCN-3 mapping
part is divided into an operation definition and usage part. The defini-
tion part illustrates the mapping and the usage part is only introduced to
demonstrate the usefulness of the mapping.

IDL

// not found exception is defined in section ‘‘ exception declaration ’’

string remoteProc1(in long Par11, out long Par12, inout string name1)
raises (NotFound) context(‘‘ MyContext1’’);

// oneway procedure: no return value and no inout or out allowed!!!
oneway void remoteProc2(in long Par21, in long Par22, in string name2);

TTCN-3

Operation definition

type record IDLContextElement {
iso8859string name,
iso8859string value_

}

type record of IDLContextElement IDLContext;

signature RemoteProcSignature1(
in long Par11, out long Par12,

98

5.5. Communication Declaration

inout iso8859string name1, in IDLContext context)
return iso8859string
exception(NotFoundException);

signature RemoteProcSignature2(
in long Par21, in long Par22, in iso8859string name2)

with { variant "IDL:oneway FORMAL/01−12−01 v.2.6" };

type port RemoteProcPort procedure {
out RemoteProcSignature1;
out RemoteProcSignature2

}

type component SUT {
port RemoteProcPort PCO

}

Operation usage

// not found exception is defined in section ‘‘ exception declaration ’’

var IDLContextElement contextElement := {
name := "MyContext1", value_ := "MyContextValue" };

var IDLContext idlContext := { contextElement };

template RemoteProcSignature1 RemoteProcTemplate1 := {
Par11 := 0,
Par12 := 1,
name1 := "my name",
context := idlContext

}

template RemoteProcSignature2 RemoteProcTemplate2 := {
Par21 := 2,
Par22 := 3,
name2 := "my other name"

}

var SUT myCorbaSystem := SUT.create;
connect(self :myPCO, MyCorbaSystem:PCO);
myCorbaSystem.start;

myPCO.call(RemoteProcTemplate1) {
[] myPCO.getreply(RemoteProcSignature1:{−,*,*} value *) −> value MyResult1

param(MyPar12, MyName1) sender MySender1 {}
[] myPCO.catch(RemoteProcSignature1,

MyNotFoundExceptionTemplate) {
verdict .set(fail);
stop;

}
}

99

5. Mapping of IDL to TTCN-3

myPCO.call(RemoteProcTemplate2);

// raising an exception can be done on this way but it is not used
// because only the SUT should raise this exception!!!
var NotFoundException myNotFoundException := {
why := missing_node,
rest_of_name := "noname"

}

myPCO.raise(RemoteProcSignature1, myNotFoundException);

5.5.2. Attributes

An interface attribute is like a set- and get-operation pair to access a value.
If an attribute is marked as readonly, the get-operation is used only. There-
fore, attribute mapping can be done by the operation mapping as described
in subsection 5.5.1 on page 96.

IDL

attribute string object_type;

TTCN-3

signature RemoteAttribGetSignature() return iso8859string ;
signature RemoteAttribSetSignature(in iso8859string object_type);

type port RemoteProcPort procedure {
out RemoteAttribGetSignature;
out RemoteAttribSetSignature

}

type component SUT {
port RemoteProcPort PCO

}

var SUT myCorbaSystem := SUT.create;
connect(self :myPCO, myCorbaSystem:PCO);
myCorbaSystem.start();

// get
myPCO.call() {

[] myPCO.getreply(value *) −> value MyResult {}

// catch all exceptions
[] myPCO.catch {

100

5.5. Communication Declaration

verdict .set(fail);
stop;

}
}

// set
template RemoteAttribSetSignature RemoteAttribSetSignatureTemplate := {

object_type := "my name"
}

myPCO.call(RemoteAttribSetSignatureTemplate);
}

5.5.3. Exceptions

In IDL, exceptions are used in conjunction with operations to handle ex-
ceptional conditions during an operation call. Thus, a special struct-like
exception type is provided which has to be associated with each operation
that can trigger this exception. TTCN-3 also supports the use of excep-
tions with procedure calls by binding it to signature definitions. However,
it does not provide a special exception type. Hence, exceptions are defined
as struct by using record. TTCN-2 has no support of exceptions. Thus,
it is realised by using an PCO with asynchronous communication to get
exception information from the test system.

The part exception definition is shown in the following example and
use of exception binding in signature definitions and exception catching is
shown in context of operation declaration in subsection 5.5.1 on page 98.

IDL

exception NotFoundException { NotFoundReason why; Name rest_of_name; };

TTCN-3

// definition of an exception type
type record NotFoundException { NotFoundReason why, Name rest_of_name }

// definition of a template for the defined exception type
template NotFoundException NotFoundExceptionTemplate (

NotFoundReason par1, Name name) := {
why := missing_node,
rest_of_name := name

}

The interface mapping inclusive operations, attributes, and exceptions
is summarised in Table 5.7.

101

5. Mapping of IDL to TTCN-3

Table 5.7.: IDL to TTCN-3 mapping for interface elements

IDL TTCN-2/ASN.1 TTCN-3

operation ASP signature

attribute ASP pair signature pair

readonly ASP signature

raise expression CHOICE signature exception option

context expression — additional signature parameter

interface name space group

parameter IA5String address

communication PCO port

5.6. Names and Scoping

The name definition scheme of IDL does not collide with the name defin-
ition in TTCN-3. Scoping is more restrictive in IDL than in TTCN-3
wherefore the IDL scoping rules have to be mapped appropriately to allow
seamless mapping. IDL uses nested scopes for modules, interfaces, struc-
tures, unions, operations, and exceptions. Identifiers are scoped in types,
constants, enumeration values, exceptions, interfaces, attributes, and op-
erations. The hierarchical scopes in TTCN-3 are module, control part
of module, function, testcase, and statement blocks within control part of
module, function, and testcase .

Furthermore, TTCN-3 does not support overloading of identifiers so
that no identifier name can be used more than once in a scope hierarchy.
However, IDL allows redefinition of self defined types if defined inside a
module, interface, or valuetype. Hence, identifiers have to be mapped by
using their path name including all interface and valuetype names as des-
ignated in IDL and TTCN-3. The use of module names is not necessary
because they are reflected by the TTCN-3 module structure. An under-
score is used as a separator and existing underscores are doubled. Use of
path names was also suggested by the TTCN-2 mappings.

To indicate the special treatment of all TTCN-3 statements derived from
IDL, TTCN-2 mappings were using special naming schemes. This simpli-
fies coding and type differentiation. TTCN-3 provides a new mechanism
to attach attributes to language elements. The use of attributes makes
code more readable and requires no special naming scheme. Therefore,
the variant attribute can be used to indicate derivation of types from IDL

102

5.7. Summary and Outlook

and special treatment for encoding by the test system. This was explicitly
mentioned in section 5.4 on page 86 for data types because they require al-
ways correct encoding mechanism. This is used in TTCN-3 for the useful
type IDLfixed:

TTCN-3

type record IDLfixed {
unsignedshort digits ,
short scale ,
charstring value_ } with { variant "IDL:fixed FORMAL/01−12−01 v.2.6" };

An own naming scheme to tag all types is required. It was suggested
to use the type name and if necessary add special attributes like valuetype
via the keyword and. However, among others the discussion here led to
the introduction of the variant attribute and a naming scheme for the IDL
mapping was introduced by defining the useful type IDLfixed. Hence, the
naming scheme for variants uses the word IDL, the statement type, and a
standard reference with a version number as shown before.

Names of new types which are specially defined for the IDL mapping
and their use in conjunction with IDL shall always begin with the word
IDL to provide better distinction.

5.7. Summary and Outlook

Summary

The chapter is primarily focused on the definition of a set of OMG IDL
to TTCN-3 mapping rules, in order to support adequate testing based on
given UML class diagram specifications. The presented mapping rules have
been used to implement a converter to achieve semi-automated develop-
ment of test data specifications. To support automated generation of the
dynamic part in an ATS, additional formalised behavioural descriptions,
e.g. sequence diagrams, have to be considered as shown in chapter 4. The
mapping is based on some recent work in Ebner (2001a, b); Ebner et al.
(2002); Yin (2001); Yin et al. (2001). It is also summarised in the ETSI
Technical Specification 102 219 (ETSI 2003). A concept mapping list is
given in Table A.1 on page 121. A comparison of IDL, ASN.1, TTCN-2,
and TTCN-3 data types is given in Table A.2 on page 123.

It was not always possible to provide satisfiable mappings because map-
ping for interface and valuetype is not powerful enough in order to use all
IDL features in a proper way. Nevertheless, this is no limitation in usage

103

5. Mapping of IDL to TTCN-3

but a matter of convenience. Furthermore, some mappings could not be
very exact because of lacking support in TTCN-3, for instance, double and
long double. The latter ones can only be mapped to type float which has no
exact size definitions. Thus, only the variant attribute contains the map-
ping information. Operations, attributes, and exceptions can be mapped
well to TTCN-3 because synchronous communication was introduced es-
pecially for this purpose.

To provide a better mapping of IDL and to enhance usability of TTCN-3
some elements have been especially introduced or extended as proposed by
the author:

• The variant attribute, inclusive a set of predefined variants, was in-
troduced. They are used to define useful types for integers, floats,
strings, fixed, etc. as shown in ETSI (2002a, appendix E) and listed
in Table 2.2 on page 26.

• The anytype was especially introduced for an exact mapping.

• Non-blocking procedure calls have been added.

Implementation specific parts like variable handling if used as inout
parameters are not considered in TTCN-3 because it should be done by
the compiler or interpreter and/or the underlying test system. Neverthe-
less, if IDL is not precise enough, e.g., the oneway attribute for operations,
the CORBA specification was used as reference.

There was no discussion about technical implementation details like
memory management, size limitations, and transmission by value or ref-
erence. However, it has been proven that TTCN-2 is generally applic-
able to the testing of CORBA-based systems (Li et al. 1999; Mednono-
gov 2000; Mednonogov et al. 2000; Schieferdecker et al. 1998). Further-
more, TTCN-3 gives support for synchronous communication wherefore
implementing test suites gets easier, too. Hence, the implementation of the
above mapping is feasible. If TTCN-3 is used to test CORBA systems, the
language mapping of TTCN-3 should be equivalent to the IDL language
mapping. In contrast to TTCN-2, mapping to TTCN-3 is more comfort-
able and powerful.

The IDL mapping is also useful in conjunction with UML and XML. In
context of UML the mapping is useful because many UML tools provide
exporting facilities to convert data from UML models to IDL. Further-
more, XMI (OMG 2003e) supports transfer of UML models and IDL by
usage of XML. A mapping of IDL to WSDL respectively Simple Object Ac-
cess Protocol (SOAP) and vice versa can be found in OMG (2003a, d). In

104

5.7. Summary and Outlook

OMG (2003f) a description is given to create a data structure of XML doc-
uments to pass it in CORBA interface operations. The SODL is an XML
IDL DTD which allows objects to be described in compatibility with IDL
used in Component Object Model (COM) and CORBA. SODL is used in
XML Metadata Object Persistence (XMOP) which is an object serialisa-
tion mechanism.

Outlook

Future work should address an adaptation to the newest IDL standard.
The support of XML by TTCN-3 gets important wherefore this direction
also has to be followed.

The presence of object-orientation was missed during developing the
mapping. Thus, some improvements to TTCN-3 could be made if inherit-
ance and abstraction as given by object-oriented concepts gets introduced.
This would improve maintenance and handling of test suites and the map-
ping of IDL could be much clearer (see chapter 6).

105

106

6. Object-Oriented Enhancements for TTCN-3

Although TTCN-3 has reached a certain stage of maturity since its first
release in 2001, its language elements are still lacking support of object-
orientation. It is believed that object-orientation would ease its usage and
make it more expressive and applicable. Especially in conjunction with
object-oriented languages, platforms, or models like C++ and Java, the
CORBA, and the UML.

Until now, TTCN-3 is not intended to support object-orientation except
the support for synchronous communication for CORBA-based systems.
However, object-oriented concepts have been missed during developing
the IDL to TTCN-3 mapping as described in chapter 5. Especially, inher-
itance and abstraction concepts have been missed. They would improve
maintenance and handling of test suites and simplify the mapping of IDL.
There is ongoing work on the integration of TTCN-3 and UML by UTP
(Schieferdecker et al. 2003) and a mapping of UTP to TTCN-3 by ITU-T
standard Z.149. The deficiency of object-orientation in TTCN-3 is also
mentioned in Schmitt (2003, page 41).

It is not intended to detail how to test object-oriented systems but the
necessities to make TTCN-3 itself object-oriented. Testing object-oriented
systems are discussed in section 2.2 and, for instance, in Binder (2000).

The remainder of this chapter is structured as follows. Firstly, TTCN-3
is inspected to take stock object-oriented concepts or systems like them
and where it would be useful to have those concepts. Secondly, a concept
of an object-oriented revision of TTCN-3 is suggested which is based on
the preceding inspection. Finally, a summary and an outlook are given.

6.1. Object-Orientation in TTCN-3

Proposing an object-oriented enhancement of TTCN-3 requires an inspec-
tion to take stock object-oriented approaches. Furthermore, the deficiency
of object-orientation and where it would be useful have to be identified.
Not directly related object-oriented concepts will be mentioned anyhow
if they can still be improved. Based on the inspection an enhancement is
worked out which is given in section 6.2.

107

6. Object-Oriented Enhancements for TTCN-3

TTCN-3 was not especially designed to support object-oriented con-
cepts or to test object-oriented systems wherefore no direct support is
given. Nevertheless, the application of testing CORBA-based platforms is
explicitly mentioned, but it is only supported in sense of communication
operations such as procedure-based communication with the well known
parameter attributes in, inout, and out from CORBA resp. IDL.

Furthermore, TTCN-3 uses the term object (see ETSI 2002a, section
5.4) and an object-oriented syntax like the well known dot notation to
access operations, although there is no object concept given.

The used object-oriented concepts, the influence of object-oriented lan-
guages, and the deficiency of object-orientation will be shown in detail
below. Furthermore, we mention among others the exception and goto
concept.

Scope and Identifier

Scoping is used for module, control part of modules, component types,
function, altstep, testcase, and statement blocks in compound statements.
However, groups and types other than component have no own scoping
wherefore only a little data encapsulation is provided. Hence, structuring
test suites on a syntactical level is provided which can be used only by the
test suite user. However, group attributes are forwarded to all statements
in the group. What can be seen as a kind of inheritance. Group identifiers
require not to be globally unique.

Nevertheless, the usage of local variables, constants, timers, and ports
that are declared in a component type definition is interesting. To use
these elements in a function, the runs on clause is required to state that
this function can only operate in the given component. Hence, an explicit
declaration has to be made to get access to the component scope.

Identifier shall be unique in a scope hierarchy wherefore no local vari-
able with the same identifier as a global variable can be used. Hence, it is
not allowed to overwrite global variables by local variables. Identifiers for
fields of structured types require not to be globally unique.

Parameters

In TTCN-3, the type of parameter passing is defined by additional attrib-
utes. For this purpose, the parameter attributes in, inout, and out from
CORBA resp. IDL are used. The attribute in means passing by value resp.

108

6.1. Object-Orientation in TTCN-3

call by value and the attributes inout and out mean passing by reference
resp. call by reference.

Attributes

The support of attributes to language elements can be seen as an exten-
sion or specialisation why it is comparable to the concept of inheritance
from a basic language element which provides this attributes. However,
the concept of object-orientation is applied to types and not intended for
language elements wherefore only the attributes encode and variant could
be replaced by using an object-oriented concept.

Modules and Groups

Modules are the top-level structuring element in TTCN-3 and they consist
of a definition and control part.

The definition part is comparable to a class where all definitions are
given. In the control part, test case execution order is given why it can
be seen as the main method of the module. Modules can import defini-
tions from other modules which allows to provide a kind of inheritance.
Nevertheless, there are no global variables, timers, etc. available. Hence,
modules are like packages in Java or name spaces in C++ but on the other
hand they work like classes.

Groups are used to structure test data. To access elements in the group
hierarchy the dot notation is used. There are no language constructs avail-
able to control the execution of test cases within groups.

Unfortunately, modules cannot be nested. Definitions can be combined
into groups but a group does not define a new scope and has no se-
mantic purpose except when definitions are imported by another module.
Moreover, TTCN-3 assumes that the entire test execution is controlled
exclusively by the control part of the current module and some auxiliary
functions. Thus, test cases structured by groups cannot be explicitly com-
bined with their execution order. Hence, its control part seems to be too
inflexible for complex and large-scale test suites.

Test case execution inside a module can only be structured by cascading
function calls. Thus, for each module and group, that has to be structured,
one function has to be defined to control test case execution of all test cases
inside (Schmitt & Ebner 2003).

109

6. Object-Oriented Enhancements for TTCN-3

Data Types

Many TTCN-3 data types are based on ASN.1 data types (ITU-T 1997c)
as was done before in TTCN-2. The ASN.1 data type objid uses the term
object but it can only be used to store ASN.1 object identifiers and has
nothing to do with any TTCN-3 type. Hence, it is not the general object
type which is necessary in each object-oriented language.

The fields of the structured types record and set are referenced by the dot
notation as by objects. They can be seen as a kind of a public class type
like the well known struct type. The union type uses also the dot notation
to access its fields.

There is no class type resp. object type defined in TTCN-3 and con-
sequently, there are only the structured types (record, record of, set, set of,
enumerated, and union) available to structure data (see ETSI 2002a, sec-
tion 6.3). Furthermore, the pre-defined functions for handling and con-
verting basic types are stand-alone functions which are not bound to their
corresponding types (see ETSI 2002a, appendix C). Hence, better struc-
turing of data and predefined functions could be provided by usage of
classes.

Signatures

TTCN-3 especially supports procedure-based communication to be ap-
plicable for object-oriented systems. For procedure-based communica-
tion, the definition of procedure signatures is required which comprises
the blocking characteristic, parameters (see page 108), a return value, and
exceptions.

Due to the requirement of TTCN-3 to support testing of CORBA-based
systems the non-blocking characteristic was introduced. This was based
on the discussion in subsection 5.5.1 on page 96. CORBA resp. IDL allow
the definition of oneway procedures which do not block execution because
they return immediately after invocation (see ETSI 2003, chapter 10).

Templates

Templates are used to organise and to re-use test data. They can be seen as
instances of classes which provide concrete values for sending data to the
SUT or which provide matching mechanisms for testing against received
data. Templates provide the possibility to use a simple form of inheritance
and they can be parametrised. Furthermore, in TTCN-3 the concept of
inheritance is realised in templates only.

110

6.1. Object-Orientation in TTCN-3

Test Configuration

TTCN-3 is used to test implementations. The object being
tested is known as the Implementation Under Test or IUT
(ETSI 2002a, section 8.3).

Hence, it is common to see the SUT resp. Implementation Under Test
(IUT) as an object which has to be tested. However, the model describing
the configuration is motivated by the view that is used in the CTMF and
consequently, in TTCN-2, too. The model uses components and ports to
arrange tests and to describe the communication.

Components have local constants, variables, and timers and ports are
described by signatures. Polymorphism can be realised by usage of op-
tional fields in templates to send data and by usage of matching mechan-
ism to receive data. Hence, they have object-oriented characteristics but
there is no inheritance and no own scope available. There is a component
reference available in TTCN-3 but it can only be used to bind communic-
ation statements to a concrete component and it is not allowed to use it
as a parameter for communication operations. Ports cannot be used as a
parameter, too.

TTCN-3 provides the open type address to access entities inside the SUT.
The actual data representation of type address can be left open or can be
set by an explicit type definition. However, it is not very convenient to use
it for object references because it is not possible to directly call a method
of the referenced object. Furthermore, if an object has to be send to or
received by the IUT it has to be masked, for instance, by a record type
containing the values of the public variables inside the object.

Hence, usage of object references would be very useful for TTCN-3 it-
self and to easier definition of ATSIs to test object-oriented systems. Con-
crete problem descriptions can be seen in the mapping of IDL to TTCN-3
as done in chapter 5.

Function, Altstep, and Testcase

Functions, altsteps, and testcases can have the optional attribute runs on to
state the dependency of a component. Hence, the runs on clause is a means
to separate the definition of a component and its depending functions,
altsteps, and testcases. Consequently, they should be defined or at least
declared together as it is done with classes to state this dependency more
clearly.

111

6. Object-Oriented Enhancements for TTCN-3

Table 6.1.: Corresponding data types for operations in TTCN-3

Operations Corresponding Type

Configuration component

Communication port

Timer timer

Verdict component

There is no explicit polymorphism for functions, altsteps, and testcases
available as is the case for signatures. However, it can still be realised by
the usage of type record and templates but an explicit solution would be
more expressive and much clearer.

Altsteps provide local variables, parameters, and a kind of inheritance.
Furthermore, they can be activated at the beginning of a test case and they
will automatically be used in each following altstep statement. Therefore,
altsteps are very good candidates to provide an own class for it.

Program Statements

The usage of program statements is not directly related to object-orien-
tation but it is also useful for the application of TTCN-3. Hence, it is
discussed here, too.

Although exceptions can be used in signatures for procedure-based com-
munication the usage of exceptions in the test cases themselves is not pos-
sible. It might be that the program complexity of test cases is not that high
but nevertheless it could be useful.

The usage of label and goto makes reading of test cases more difficult
and produces well known problems. Thus, it should be replaced.

Operations

All configuration, communication, timer, and test verdict operations are
bound to an instance of the corresponding types (see Table 6.1). For op-
eration calls the dot notation is used. Therefore, all the types can be seen
as a kind of class with given methods.

Configuration The configuration operations mtc and system return a com-
ponent reference wherefore they can be seen as class variables. The stand-
alone operation self is bind implicitly to the component in which it is

112

6.2. Object-Oriented Revision of TTCN-3

called. Therefore, self works like the keyword this in Java and C++ which
returns the self reference, too.

Communication The operation call can deliver replies, timeouts, and ex-
ceptions. In case of non-blocking procedure-based communication they
have to be handled in following alternative statements. For blocking
procedure-based communication, an alternative statement is directly at-
tached to the call statement. In conjunction with default handling via
altsteps, an expressive way to handle timeouts and exceptions is provided
for a test case. It is not only locally but also globally usable. However,
exceptions are only available for call operations.

The feature to retrieve variable values from receive, getcall, and getreply
operations is also interesting. In receive operations the received message
value and sender address can be retrieved by assigning it to variables. The
same can be done in getcall and getreply operations for the sender address
and parameter values of a received call or reply. This is done in an optional
assignment part of the operators and looks very similar to the component
initialisation list of constructors in C++. The intention of TTCN-3 is to
keep the necessary data only if required for further test case execution
because many times the matching result itself is sufficient enough to make
a decision.

Verdicts Each test component and test case provides a verdict object and
the test case verdict depends on the component verdicts in the test case.
TTCN-3 uses the explicit term object for the component verdict but it is
not further defined and hence, left to the implementation. Furthermore,
there is a type verdicttype where verdicts can be stored but the overwrit-
ing rules for verdicts are not valid for it. The overwriting rules are only
used by the setverdict operation to set local verdicts. Hence, a variable of
type verdicttype can contain any verdict at any time independent of former
values and is mainly used to allow computation depending on verdicts.

6.2. Object-Oriented Revision of TTCN-3

As we could see in the inspection before, TTCN-3 provides expressive
parameter passing (see page 108) and procedure-based communication
mechanisms (see page 110). However, there is only simple support for in-
heritance (see pages 109 and 110) and polymorphism (see page 110) avail-
able. The structure of depending elements, like components and testcases,

113

6. Object-Oriented Enhancements for TTCN-3

could be improved by using classes, for instance. Furthermore, the type
system provides no support for object-orientation, there are no hierarch-
ical modules, and there are only a few matching mechanism for structured
types available.

The object-oriented concepts mainly discussed below are encapsulation,
inheritance, and polymorphism. The main revision purposes are to im-
prove handling of TTCN-3 language elements itself and mapping of SUT
structure and their communication description. Based on the preceding
inspection a suggestion of a concept for an object-oriented revision of
TTCN-3 gets presented now.

6.2.1. Data Types

For data types, no support for object-orientation is given and to provide
seamless integration into TTCN-3 existing types will not be touched here.
We introduce classes, which can be seen in the next subsection, and an
object type to store instance references of classes. Hereby, the handling
of class instances has to be considered, especially in context of parameter
passing.

Class instances could be handled by references, pointers, or objects itself
as it is possible in C++. However, to provide a seamless integration, using
pointers is declined and references are preferred as intended by TTCN-3.
The difference between a reference and an object itself is, for instance,
noticeable by assignments or if used as a parameter (see page 108). As
mentioned before, objects have to be interpreted as references if used as
inout or out parameter and as object itself if used as in parameter. To test
the validity of an object reference variable the literal null gets introduced
which stands for no reference assigned. In addition, the keyword this gets
introduced to get the self reference of an object.

Furthermore, supporting corresponding classes is suggested to collect
pre-defined functions and permit the usage of basic types as objects. Addi-
tionally, sub-typing of basic types can also be realised by usage of inherit-
ance. This concerns the types integer, float, char, universal char, verdicttype,
and union. For all string types a common class string shall be defined. An
own class for handling the useful type IDLfixed is suggested, too.

6.2.2. Classes

As stated before, classes get introduced into TTCN-3 to provide encap-
sulation, inheritance, and polymorphism which are basic concepts from

114

6.2. Object-Oriented Revision of TTCN-3

Table 6.2.: Class element accessibility by access attributes

Attribute Accessibility

private class

protected class and subclasses

public all (class, subclasses, and environment)

object-oriented languages. The new keyword class is used in defining a
class. The three concepts will be discussed in detail below.

Encapsulation

With classes, it is possible to associate data and algorithms. Thus, an own
scope and local constants, variables, and timers are provided as done by
the type component (see page 111), too. Classes combine functionality
from groups and types (see page 108) and could be seen as an extension of
the type component. Furthermore, definitions of types, signature, template,
function, altstep, and testcase in classes are supported. In case of altstep
and testcase using the runs on clause gets redundant if a class is used as
component. A class can be used as component if ports are given as class
attributes. Hence, the dependency between a component and their corres-
ponding function, altstep, and testcase definitions gets possible as deman-
ded earlier (see page 111).

All definitions and declarations inside a class can get an access attribute
private, protected, or public (default) to define the visibility to the envir-
onment and subclasses as shown in Table 6.2. Hence, type component
is a special case of class where only ports and local constants, variables,
and timers are allowed and all are declared public. This is comparable to
types struct and class in C++. Access to class elements like attributes and
functions shall be given by the dot notation (as used in C++) if the access
attributes permit it.

To a class definition itself an access attribute private (default) or public
can be given to state the visibility to the modul environment. Private
classes are only visible inside the modul whereas public classes can be
used from other modules. Classes imported by the import statement are
considered as defined in the module itself.

In Schmitt (2003) and Schmitt & Ebner (2003) the replacement of the
module control part by control functions was suggested. A control function

115

6. Object-Oriented Enhancements for TTCN-3

inside a class could be used to control execution of all defined test cases of
the class.

Inheritance

Reuse can be achieved by inheritance where a class can inherit from other
classes. In TTCN-3 the concept of inheritance is used by groups, modules,
and templates. Inheritance for classes can supplement or even replace
these existing concepts. Class inheritance is done by the new keyword
extends and a comma separated list of classes from which the class inherits
elements.

Attributes can be used for classes whereby the same inheritance mechan-
ism as for groups is used. The usage of classes for import statements is the
same as for other types. Nevertheless, using class inheritance and nested
modules can make import statements obsolet. Inheritance for components
respectively classes enables the support of generic component types which
would improve structuring test suites. Additionally, abstract classes are
introduced to support generic components or classes more clearly. Hence,
the keyword abstract gets introduced to mark base classes which can only
be used by inheritance and not by instantiation.

6.3. Summary and Outlook

Summary

The chapter discusses improving of object-orientation in TTCN-3 to wid-
en its expressiveness and applicableness. TTCN-3 provides an object-
oriented approach by using operations, signatures, and templates. It uses
some object-oriented syntax like the dot notation, too. However, the con-
cepts have to be improved and if we take a look on data types, object-
orientation is still missing.

It was shown how basic object-orientation can be seamless and expli-
citly introduced to improve clarity of existing concepts and to widen the
capabilities of TTCN-3. Therefore, the new type object, the keyword this,
the literal null, and classes, including class attributes, have been intro-
duced.

116

6.3. Summary and Outlook

Outlook

In conjunction with hierarchical modules and a control function instead
of a control part, as mentioned in Schmitt & Ebner (2003), the object-
oriented revision of TTCN-3 could be given as proposal. Furthermore,
the inspection and revision suggestion can be used to get a new view on
TTCN-3, to use it as a basic work for the next generation of TTCN, and
for the usage of TTCN-3 together with UML.

Nevertheless, beside an explicit syntax a deeper discussion about usage
of the new object-oriented context has to be worked out. Especially in
context of IDL and UML. Another further step would be a new object-
oriented test description language which can be easily used in corporation
with UML.

117

118

7. Conclusion

This thesis treated Computer Aided Test Generation based on manual
graphical test purposes due to overcome limits of automatic test gener-
ation. Test case generation based on state space exploration is helpful but
produces frequently inefficient test cases, lacks to cover specific parts, or
may not be possible because of an incomplete or missing specification.
Hence, manually defined graphical test purposes by MSC are desirable.
Using UML for test purpose specification provides the advantage to use a
well known language and to integrate given system specifications with test
specification. In addition, given information like used types or interfaces
by IDL are used for the static part of a test suite. Thus, a more complete
test suite can be defined using UML and integration with automatic test
generation is given. The industrial interest on the MSC to TTCN-3 proto-
type and the ETSI Technical Specification of the IDL to TTCN-3 mapping
have shown the need of this thesis. The practicability was shown by pro-
totypes which implement the mappings of MSC and IDL to TTCN-3.

An object-oriented extension of TTCN-3 was only indicated and should
be considered for further improvements of TTCN-3 to widen its usability.

119

120

A. IDL Mapping Summary

A.1. Conceptual IDL to TTCN-3 Mapping

Table A.1 lists the mapping of keywords and concepts of IDL to TTCN-3
keywords or concepts. Literal mapping can be seen in Table 5.1 on page 81
and operator mapping in Table 5.2 on page 86.

Table A.1.: Conceptual list of IDL mapping

IDL TTCN-3

FALSE false

Object address

TRUE true

abstract has to be rolled out

any anytype

array array

attribute get (and set) operation

boolean boolean

char iso8859char

(self defined type)

const const

context additional procedure

parameter of type record

enum enumerated

exception record

fixed IDLfixed

float IEEE754float

double IEEE754double

long double IEEE754extdouble

in in

inout inout

interface group, port

local —

long long

long long longlong

IDL TTCN-3

module module

native address

octet octetstring

oneway operation with

variant attribute

operation signature for procedure

out out

raises exception

readonly only a get operation

for the attribute

sequence record of

short short

string iso8859string

struct record

typedef type

union record, enumerated, union

unsigned long unsignedlong

unsigned long long unsignedlonglong

unsigned short unsignedshort

valuetype record

wchar universal char

wstring universal charstring

121

A. IDL Mapping Summary

A.2. Comparison of IDL, ASN.1, TTCN-2, and TTCN-3 Data Types

Table A.2 lists a comparison of IDL, ASN.1, TTCN-2, and TTCN-3 data
types and is based on the documents (Li 1998; Mednonogov 2000; Med-
nonogov et al. 2000; Open Group 2000) and is also summarised in ETSI
(2003).

1Mapping of this type was not considered.
2superseded in ASN.1 from 1997 (ITU-T 1997b)

122

A.2. Comparison of IDL, ASN.1, TTCN-2, and TTCN-3 Data Types

Table A.2.: Comparison of IDL, ASN.1, TTCN-2, and TTCN-3 data types

IDL ASN.1 TTCN-2 TTCN-3

Object ObjectInstance IA5String address

(X.500 Distinguished name)

any ANY DEFINED BY2 or CHOICE anytype

SEQUENCEtypecode, anyValue

array SEQUENCE OF (with SEQUENCE SIZE(n) OF array

sizeConstraint subtype)

boolean BOOLEAN BOOLEAN boolean

char GraphicString GraphicString or iso8859char

IA5String(SIZE(1)) (self defined type)

enum ENUMERATED ENUMERATED enumerated

exception SPECIFIC ERRORS SEQUENCE record

fixed —1 —1 IDLfixed

float REAL —1 IEEE754float

double REAL —1 IEEE754double

long double REAL —1 IEEE754extdouble

long INTEGER INTEGER long

long long INTEGER INTEGER longlong

native —1 —1 address

octet OCTET STRING OCTET STRING (SIZE(1)) octetstring

sequence SEQUENCE OF (with SEQUENCE OF record of

optional sizeConstraint
subtype for IDL bounds)

short INTEGER INTEGER short

string GraphicString GraphicString iso8859string

struct SEQUENCE SEQUENCE record

union, switch, CHOICE SEQUENCE record, union,

case (with ASN.1 TAGS) enumerated

unsigned long INTEGER INTEGER unsignedlong

unsigned long long INTEGER INTEGER unsignedlonglong

unsigned short INTEGER INTEGER unsignedshort

valuetype —1 —1 record

wchar —1 GraphicString or universal char

BMPString(SIZE(1))

wstring —1 GraphicString universal charstring

123

A. IDL Mapping Summary

A.3. Examples

A completion of all examples used in chapter 5 is given here. Some parts
are used from the CORBA Naming Service with slight modifications to
cover more IDL elements. The first part of the module definition part
was generated by the implemented IDL to TTCN-3 converter. The second
part demonstrates how the first part definitions can be used for test case
definitions.

124

A.3. Examples

A.3.1. Given IDL Specification

1 module NamingServiceExample
2 {
3 // ***********
4 // Basic Types
5 // ***********
6 const long number = 017; // 017 == 0xF == 15
7 const long size = ((number << 3) % 0x1F) & 0123;
8 const float decimal = 15.7;
9

10 const char letter = ’A’;
11 const wchar wideLetter = ’A’;
12

13 const boolean isValid = TRUE;
14 const octet anOctet = 0x55; // limited to 8 bit
15

16 const string myName = "my name";
17 const wstring wideMyName = "my name";
18

19

20 typedef string MyString;
21

22 // *****************
23 // Constructed Types
24 // *****************
25 typedef struct NC {
26 MyString id;
27 MyString kind;
28 } NameComponent;
29

30 union MyUnion switch(long) {
31 case 0 : boolean b;
32 case 1 : char c;
33 case 2 : octet o;
34 case 3 : short s ;
35 };
36

37 enum NotFoundReason { missing_node,
38 not_context,
39 not_object };
40

41 // **************
42 // Template Types
43 // **************
44 typedef sequence <NameComponent> Name;
45

46 typedef sequence <NameComponent> Key;
47

48 typedef fixed<12,7> Fix;
49

125

A. IDL Mapping Summary

50 // ******************
51 // Complex Declarator
52 // ******************
53 typedef long NumberList[100];
54

55 native MyNativeVariable;
56

57 // ********************
58 // Valuetype Definition
59 // ********************
60

61 valuetype StringValue string ;
62

63 valuetype EmployeeRecord {
64 // note this is not a CORBA::Object
65 // state definition
66 private string name;
67 private string email;
68 private string SSN;
69

70 // initializer
71 factory init (in string name, in string SSN);
72 };
73

74 // ********************
75 // Interface Definition
76 // ********************
77 interface NamingContext {
78 attribute string object_type;
79 readonly attribute Key external_form_id;
80

81 exception NotFound {
82 NotFoundReason why;
83 Name rest_of_name;
84 };
85

86 MyString bind(in Name n,
87 inout Object obj,
88 out Object myObj)
89 raises (NotFound)
90 context ("Hostname");
91

92 oneway void rebind(in Name n,
93 in Object obj);
94

95 }; // end of interface NamingContext
96

97 }; // end of module

126

A.3. Examples

A.3.2. Mapped TTCN-3 Specification

Generated Part

1 // **
2 // Generated by the IDL to TTCN−3 translator
3 //
4 // Copyright (c) 2003
5 // Institute for Informatics , University of Goettingen
6 // 37083 Goettingen, Germany
7 //
8 // All Rights Reserved
9 //

10 // **
11

12 module NamingServiceExample() {
13 const long number := ’17’O;
14

15 const long size := ((number << 3) mod ’1F’H) and4b ’0123’O;
16

17 const float decimal := 15.7;
18

19 const iso8859char letter := "A";
20

21 const universal char wideLetter := "A";
22

23 const boolean isValid := true ;
24

25 const octetstring anOctet := ’55’H;
26

27 const iso8859string myName := "my name";
28

29 const universal charstring wideMyName := "my name";
30

31 type iso8859string MyString;
32

33 // struct
34 type record NC {
35 MyString id,
36 MyString kind
37 };
38 type NC NameComponent;
39 // end struct
40

41 // union
42 type union MyUnionType {
43 boolean b,
44 iso8859char c,
45 octetstring o,
46 short s
47 }

127

A. IDL Mapping Summary

48 type enumerated MyUnionEnumType {
49 boolean_b,
50 iso8859char_c,
51 octetstring_o ,
52 short_s
53 }
54 type record MyUnion {
55 MyUnionEnumType kind,
56 MyUnionType value
57 }
58 // end union
59

60 // enum
61 type enumerated NotFoundReason {
62 missing_node,
63 not_context,
64 not_object
65 };
66 // end enum
67

68 type record of NameComponent Name;
69

70 type record of NameComponent Key;
71

72 type IDLfixed Fix ;
73 template IDLfixed FixTemplate := { 12, 7, ? };
74

75 type long NumberList[100];
76

77 address MyNativeVariable;
78

79 group NamingContextInterface {
80 signature object_type ()
81 return iso8859string ;
82 signature object_type (in iso8859string _object_type);
83

84

85 signature external_form_id ()
86 return Key;
87

88

89 // exception
90 type record NotFound {
91 NotFoundReason why,
92 Name rest_of_name
93 };
94 template NotFound NotFoundTemplate (
95 NotFoundReason _why, Name _rest_of_name) := {
96 why := _why,
97 rest_of_name := _rest_of_name
98 };

128

A.3. Examples

99 // end exception
100

101 signature bind (
102 inout Name n,
103 inout address obj,
104 out address myObj
105)
106 return MyString
107 exception(NotFound);
108

109 signature rebind (
110 inout Name n,
111 inout address obj
112) noblock;
113

114 type port NamingContext
115 procedure {
116 object_type,
117 external_form_id,
118 bind,
119 rebind
120 }
121 type address NamingContextObject;
122 } // group NamingContextInterface
123

124 } // module NamingServiceExample
125

126 // **
127 // End of generated TTCN−3 code
128 // **

129

A. IDL Mapping Summary

Test Case Example

1 module NamingServiceExample() {
2

3 // somewhere has MyMTC to be defined
4

5 type record IDLContextElement {
6 iso8859string name,
7 iso8859string value_
8 }
9

10 type record of IDLContextElement IDLContext;
11

12 // *******************
13 // Testcase Definition
14 // *******************
15 testcase MyNamingServiceTestCase() runs on MyMTC system CorbaSystemInterface {
16

17 // examples to show how above defintions can be used inside a
18 // testcase definition
19

20 var CorbaSystemInterface myCorbaSystem := CorbaSystemInterface.create;
21 connect(self :NamingContextPCO, myCorbaSystem:PCO);
22 myCorbaSystem.start;
23

24 //
25 // Fixed Type
26 //
27 var IDLfixed fix := { 12, 7, "12345.1234567" };
28

29 //
30 // Array
31 //
32 var integer numberList[100];
33

34 //
35 // Native
36 //
37 var address MyNativeVariable;
38

39

40 //
41 // Procedure Calls
42 //
43 var iso8859string myResult1;
44 var Key myResult2;
45 var MyString myResult3;
46 var iso8859string object , myObject, resultObject, resultMyObject;
47

48 var IDLContextElement contextElement := {
49 name := "Hostname",

130

A.3. Examples

50 value_ := "disen"
51 }
52

53 var IDLContext contextParameter := { contextElement };
54

55 //
56 // procedure get object_type
57 //
58 NamingContextPCO.call(ObjectTypeGetSignature)
59 {
60 [] NamingContextPCO.getreply(ObjectTypeGetSignature value *)
61 −> value myResult1 {}
62 }
63

64 //
65 // procedure set object_type
66 //
67 NamingContextPCO.call(ObjectTypeSetSignatureTemplate);
68

69

70 //
71 // procedure get external_from_id
72 //
73 NamingContextPCO.call(ExternalFormIdGetSignature)
74 {
75 [] NamingContextPCO.getreply(ExternalFormIdGetSignature value *)
76 −> value MyResult2 {}
77 }
78

79

80 //
81 // procedure bind (with template)
82 //
83 NamingContextPCO.call(BindTemplate(object, contextParameter))
84 {
85 [] NamingContextPCO.getreply(BindTemplate(*) value *)
86 −> value myResult3
87 param(resultObject, resultMYObject) sender mySender {}
88

89 [] NamingContextPCO.catch(BindSignature,
90 NotFoundExceptionTemplate)
91 {
92 verdict .set(fail);
93 stop;
94 }
95

96 }
97

98

99 //
100 // procedure bind (without template)

131

A. IDL Mapping Summary

101 //
102 NamingContextPCO.call(
103 BindSignature:{ myName, object, myObject, contextParameter })
104 {
105 [] NamingContextPCO.getreply(BindSignature:{ −, *, myObject }
106 value *) −> value myResult3
107 param(resultObject, resultMYObject) sender mySender {}
108 }
109

110 //
111 // procedure rebind
112 //
113 NamingContextPCO.call(RebindSignature:{ myName, object});//or use a template
114

115

116 //
117 // raising an exception
118 //
119

120 // this would be used to raise an exception inside of procedure bind
121 // if defined by TTCN−3 (if used on server side).
122 var NotFoundException myNotFoundException := {
123 why := missing_node,
124 rest_of_name := "noname"
125 }
126

127 NamingContextPCO.raise(BindSignature, myNotFoundException);
128

129 } // end of testcase MyNamingServiceTestCase
130

131 } // end of module

132

B. The TTCN-3 Inres Protocol Module

Below a directly defined TTCN-3 module for the Inres protocol is given
(Schmitt 2003).1

1 /*
2 * TTCN−3 module for the ’Inres’ protocol
3 *
4 * Copyright (C) 2002 Michael Schmitt <Michael.Schmitt@teststep.org>
5 *
6 * Date: 2002/09/10 18:47:37
7 */
8

9 module TestsForInres(integer maxRepetitions, boolean testInopportuneEvents) {
10 import from ServiceUser language "ASN.1:1997" {
11 type UserPDU;
12 const someUserPDU;
13 }
14

15 group BasicDefinitions {
16 type UserPDU InresSDU; // the PDU on layer n+1 becomes an SDU on layer n
17

18 type enumerated InresPDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };
19

20 type enumerated SequenceNumber { zero(0), one(1) };
21

22 type record InresPDU {
23 InresPDUType iPDUType,
24 SequenceNumber seqNo optional,
25 InresSDU iSDU optional
26 }
27

28 type InresPDU MediumSDU; // the PDU on layer n becomes an SDU on layer n−1
29 } with { encode "PER−BASIC−UNALIGNED:1997" } // apply Packed Encoding Rules
30

31 const float maxTestCaseTime := 50; // max. execution time for a single test case
32 const float maxTransferTime := 30; // max. execution time for a single data transfer
33

34 group CommunicationWithInitiator {
35 type record ICONreq {};
36 type record ICONconf {};
37 type record IDATreq { InresSDU iSDU };
38 type record IDISreq {};

1Copy permission was thankfully granted by Dr. Michael Schmitt.

133

B. The TTCN-3 Inres Protocol Module

39 type record IDISind {};
40

41 type port InitiatorSAP message {
42 out ICONreq, IDATreq, IDISreq; // sent to SUT
43 in ICONconf, IDISind; // received from SUT
44 }
45 }
46

47 group CommunicationWithMedium {
48 type record MDATreq { MediumSDU mSDU };
49 type record MDATind { MediumSDU mSDU };
50

51 type port MediumSAP message {
52 in MDATind; // received from SUT
53 out MDATreq; // sent to SUT
54 }
55 }
56

57 group CommunicationBetweenTestComponents {
58 signature acknowledgementSent();
59

60 type port PortAtMTC procedure {
61 in acknowledgementSent;
62 }
63

64 type port PortAtPTC procedure {
65 out acknowledgementSent;
66 }
67 }
68

69 group ComponentDefinitions {
70 type component MainTC {
71 port InitiatorSAP ISAP1;
72 port PortAtMTC CoordinationPTC;
73 timer supervisionTimer;
74 }
75

76 type component ParallelTC {
77 port MediumSAP MSAP2;
78 port PortAtPTC CoordinationMTC;
79 }
80

81 type component TestSystem {
82 port InitiatorSAP ISAP1;
83 port MediumSAP MSAP2;
84 }
85 }
86

87 group TemplateDefinitions {
88 template IDATreq InresDataRequest(InresSDU data) := {
89 iSDU := data

134

90 }
91

92 template MDATind ConnectionRequest := {
93 mSDU := { iPDUType := CR, seqNo := omit, iSDU := omit }
94 }
95

96 template MediumSDU ConnectionConfirmation := { // this template is used with
97 iPDUType := CC, seqNo := omit, iSDU := omit // template ’MediumDataRequest’
98 }
99

100 template MDATreq MediumDataRequest(template MediumSDU data) := {
101 mSDU := data
102 }
103

104 template MDATind DataTransfer(InresSDU data) := {
105 mSDU := { iPDUType := DT, seqNo := ?, iSDU := data }
106 }
107

108 template MDATreq DataAcknowledgement(SequenceNumber number) := {
109 mSDU := { iPDUType := AK, seqNo := number, iSDU := omit }
110 }
111 }
112

113 altstep MTCFailure() runs on MainTC {
114 [] ISAP1.receive {
115 setverdict (fail);
116 stop;
117 }
118 [] any timer.timeout {
119 setverdict (fail);
120 stop;
121 }
122 }
123

124 altstep PTCFailure() runs on ParallelTC {
125 [] MSAP2.receive {
126 setverdict (fail);
127 stop;
128 }
129 }
130

131 altstep ReceptionIDISind(verdicttype result) runs on MainTC {
132 [] ISAP1.receive(IDISind : {}) {
133 setverdict (result);
134 stop;
135 }
136 }
137

138 function MediumAccess() runs on ParallelTC {
139 var integer receipt ;
140 var default def := activate (PTCFailure());

135

B. The TTCN-3 Inres Protocol Module

141 var MDATind indication ;
142

143 MSAP2.receive(ConnectionRequest);
144 receipt := 1; // first (received) connection request of the initiator
145

146 MSAP2.send(MediumDataRequest(ConnectionConfirmation));
147

148 alt {
149 [receipt <= maxRepetitions] MSAP2.receive(ConnectionRequest) {
150 // connection confirmation got lost probably due
151 // to a malfunction of the medium; resend it
152 receipt := receipt + 1;
153 MSAP2.send(MediumDataRequest({ CC, omit, omit }));
154 repeat;
155 }
156 [receipt > maxRepetitions] MSAP2.receive(ConnectionRequest) {
157 // even over an unreliable medium, the initiator
158 // shall not resend its requests that often
159 setverdict (fail);
160 stop;
161 }
162 [] MSAP2.receive(DataTransfer(someUserPDU)) −> value indication {
163 /* empty */
164 }
165 }
166

167 MSAP2.send(DataAcknowledgement(indication.mSDU.seqNo));
168

169 // inform the main test component that
170 // the data have been received and acknowledged
171 CoordinationMTC.call(acknowledgementSent : {});
172 CoordinationMTC.getreply(acknowledgementSent : {});
173

174 alt {
175 [] MSAP2.receive(MDATind : { mSDU := { DR, omit, omit } }) {
176 setverdict (pass); // disconnection request
177 }
178 [] MSAP2.receive(DataTransfer(someUserPDU)) {// data acknowl. got lost
179 setverdict (inconc);
180 }
181 }
182 }
183

184 testcase SingleDataTransfer () runs on MainTC system TestSystem {
185 var ParallelTC ptc;
186 var default def1, def2;
187

188 ptc := ParallelTC .create ;
189

190 map(self: ISAP1, system:ISAP1);
191 map(ptc:MSAP2, system:MSAP2);

136

192

193 connect(self :CoordinationPTC, ptc:CoordinationMTC);
194

195 ptc. start (MediumAccess());
196

197 def1 := activate (MTCFailure());
198 def2 := activate (ReceptionIDISind(inconc));
199

200 ISAP1.send(ICONreq : {}); // connection request
201 ISAP1.receive(ICONconf : {}); // connection confirmation
202

203 supervisionTimer. start (maxTransferTime); // restrict time for data transfer
204

205 ISAP1.send(InresDataRequest(someUserPDU)); // data transfer
206

207 // delay disconnection request until ’ptc’ has received and acknowledged the data
208 CoordinationPTC.getcall(acknowledgementSent : {});
209 CoordinationPTC.reply(acknowledgementSent : {});
210

211 supervisionTimer.stop; // cancel timer to avoid a timeout in the following
212

213 deactivate(def2); // a discon. indication is no undesirable event any longer
214

215 ISAP1.send(IDISreq : {}); // disconnection request
216 ISAP1.receive(IDISind : {}); // disconnection indication
217

218 all component.done;
219

220 setverdict (pass);
221 }
222

223 testcase DataLoss() runs on MainTC system TestSystem {
224 // ...
225 }
226

227 control {
228 var verdicttype overallVerdict := pass;
229

230 overallVerdict := execute(SingleDataTransfer (), maxTestCaseTime);
231

232 if (overallVerdict == pass and testInopportuneEvents == true) {
233 overallVerdict := execute(DataLoss());
234 }
235 }
236 } with { encode "BER:1997" } // apply Basic Encoding Rules by default

137

138

Acronyms

A

AMI . Asynchronous Method Invocation
ASN.1 . Abstract Syntax Notation One
ASP . Abstract Service Primitive
ATS . Abstract Test Suite
ATSI . Abstract Test System Interface

C

CATG . Computer Aided Test Generation
CCITT . Consultative Committee for International Telegraph

and Telephone (now ITU-T)
CORBA . Common Object Request Broker Architecture
CTMF . Conformance Testing Methodology and Framework

E

ETSI . European Telecommunications Standards Institute

F

FIFO . First In First Out

G

GFT . TTCN-3 Graphical Presentation Format

H

HMSC . High-Level Message Sequence Chart

I

IDL . Interface Definition Language
IEC . International Electrotechnical Commission
I IOP . Internet Inter-ORB Protocol
IOR . Interoperable Object Reference
ISO . International Organisation for Standardisation
ITU . International Telecommunication Union
ITU-T ITU – Telecommunications Standardisation Sector (formerly CCITT)
IUT . Implementation Under Test

139

Acronyms

M

MSC . Message Sequence Chart
MTC . Main Test Component

O

OMG . Object Management Group
ORB . Object Request Broker
OSI . Open Systems Interconnection

P

PCO . Point of Control and Observation
PDU . Packet Data Unit
POA . Portable Object Adaptor
PTC . Parallel Test Component

R

RTSI . Real Test System Interface

S

SAP . Service Access Point
SDL . Specification and Description Language
SOAP . Simple Object Access Protocol
SODL . Simple Object Definition Language
SUT . System Under Test

T

TTCN . Tree and Tabular Combined Notation
TTCN-2 . Tree and Tabular Combined Notation (version 2)
TTCN-3 . Testing and Test Control Notation (version 3)

U

UML . Unified Modeling Language
UTP . UML Testing Profile

W

WSDL . Web Services Description Language

X

XMI . XML Metadata Interchange
XML . eXtensible Markup Language

140

Bibliography

Amyot, D. & A. Eberlein, 2003. An Evaluation of Scenario Notations
and Construction Approaches for Telecommunication Systems Devel-
opment. Telecommunications Systems, volume 24(1):pages 61–94.
ISSN 1018-4864. Kluwer Academic Publishers.

Balzert, H., 1998. Lehrbuch der Software-Technik: Software-
Management, Software-Qualitätssicherung, Unternehmensmodellier-
ung, volume 2. Spektrum Akademie Verlag, 1 edition. ISBN 3-8274-
0065-1.

Binder, R., 2000. Testing Object-Oriented Systems: Models, Patterns,
and Tools. Object Technology Series. Addison-Wesley. ISBN 0-201-
80938-9.

Dai, Z., J. Grabowski, & H. Neukirchen, 2002. TIMEDTTCN-3 – A Real-
Time Extension for TTCN-3. In Proceedings of the IFIP TC6/WG6.1
14thInternational Conference on Testing of Communicating Sys-
tems, (TestCom 2002), Berlin, Germany, edited by I. Schieferdecker,
H. König, & A. Wolisz, pages 407–424. The International Federation
for Information Processing, IFIP, Kluwer Academic Publishers. ISBN
0-7923-7695-1.

Dai, Z., J. Grabowski, & H. Neukirchen, 2003. TIMEDTTCN-3 Based
Graphical Real-Time Test Specification. In Proceedings of the IFIP
TC6/WG6.1 15thInternational Conference on Testing of Communic-
ating Systems, (TestCom 2003), Sophia-Antipolis, France, edited by
D. Hogrefe & A. Wiles, volume 2644 of Lecture Notes in Computer
Science, (LNCS), pages 110–127. The International Federation for In-
formation Processing, IFIP, Springer Verlag. ISBN 3-540-40123-7.
ISSN 0302-9743.

Dai, Z. R., J. Grabowski, H. Neukirchen, & H. Pals, 2004. From Design
to Test with UML – Applied to a Roaming Algorithm for Bluetooth
Devices. In Proceedings of the IFIP TC6/WG6.1 16thInternational
Conference on Testing of Communicating Systems, (TestCom 2004),
Oxford, United Kingdom, Lecture Notes in Computer Science,

141

Bibliography

(LNCS). The International Federation for Information Processing,
IFIP, Springer Verlag.

Ebner, M., 2001a. A Mapping of OMG IDL to TTCN-3. SIIM
Technical Report SIIM-TR-A-01-11, Institute for Telematics, Uni-
versity of Lübeck, Germany. Schriftenreihe der Institute für
Informatik\Mathematik, (SIIM).

Ebner, M., 2001b. Mapping CORBA IDL to TTCN-3 based on IDL
to TTCN-2 mappings. In Proceedings of the 11th GI/ITG Technical
Meeting on Formal Description Techniques for Distributed Systems,
Bruchsal, Germany, 21.-22. June 2001. International University in
Germany. URL http://www.i-u.de/fbt2001/.

Ebner, M., 2004. TTCN-3 Test Case Generation from Message Sequence
Charts. In ISSRE04 Workshop on Integrated-reliability with Telecom-
munications and UML Languages (ISSRE04:WITUL), 2. November
2004, IRISA Rennes, France. The Institute of Electrical and Electronics
Engineers, IEEE. The 15th IEEE International Symposium on Software
Reliability Engineering, (accepted paper, to be appear).

Ebner, M., A. Yin, & M. Li, 2002. Definition and Utilisation of OMG
IDL to TTCN-3 Mappings. In Proceedings of the IFIP TC6/WG6.1
14thInternational Conference on Testing of Communicating Sys-
tems, (TestCom 2002), Berlin, Germany, edited by I. Schieferdecker,
H. König, & A. Wolisz, pages 443–458. The International Federation
for Information Processing, IFIP, Kluwer Academic Publishers. ISBN
0-7923-7695-1.

Ellsberger, J., D. Hogrefe, & A. Sarma, 1997. SDL — Formal Object-
oriented Language for Communicating Systems. Prentice Hall Europe.
ISBN 0-13-621384-7.

ETSI, 2001. Methods for Testing and Specification (MTS) — The Test-
ing and Test Control Notation version 3 — Part 2: TTCN-3 Tabular
Presentation Format (TPF). European Standard ETSI ES 201 873-
2 v.2.2.0, ETSI, European Telecommunications Standards Institute,
Sophia-Antipolis, France.

ETSI, 2002a. Methods for Testing and Specification (MTS) — The Test-
ing and Test Control Notation version 3 — Part 1: TTCN-3 Core Lan-
guage. European Standard ETSI ES 201 873-1 v2.2.1, ETSI, European
Telecommunications Standards Institute, Sophia-Antipolis, France.

142

http://www.i-u.de/fbt2001/

Bibliography

ETSI, 2002b. Methods for Testing and Specification (MTS) — The Test-
ing and Test Control Notation version 3 — Part 3: TTCN-3 Graph-
ical Presentation Format (GFT). Technical Report ETSI TR 101 873-
3 v.1.1.2, ETSI, European Telecommunications Standards Institute,
Sophia-Antipolis, France.

ETSI, 2003. Methods for Testing and Specification (MTS) — The IDL to
TTCN-3 Mapping. Technical Specification ETSI TS 102 219 v1.1.1,
ETSI, European Telecommunications Standards Institute, Sophia-
Antipolis, France.

Grabowski, J., 2002. Specification Based Testing of Real-Time Distrib-
uted Systems. habilitation thesis, Universität zu Lübeck, Germany.

Grabowski, J., B. Koch, M. Schmitt, & D. Hogrefe, 1999. SDL and MSC
Based Test Generation for Distributed Test Architectures. In SDL ’99
The next Millenium – Proceedings of the Nineth SDL Forum, edited
by D. R, G. v. Bochmann, & Y. Lahav. Elsevier, Montreal, Canada.

Grabowski, J., R. Scheurer, Z. Dai, & D. Hogrefe, 1997. Applying SAM-
STAG to the B-ISDN protocol SSCOP. In Proceedings of the IFIP
TC6/WG6.1 10thInternational Workshop on Testing of Communic-
ating Systems, (IWTCS 1997), Cheju Island, Korea, edited by M. Kim,
S. Kang, & K. Hong. The International Federation for Information
Processing, IFIP, Chapman & Hall.

Hogrefe, D., 1989. Estelle, LOTOS und SDL. Standard-Spezifikations-
sprachen für verteilte System. Springer Verlag. ISBN 3-540-50477-X.

ISO/IEC, 1990. Information Technology — ISO 7-bit coded character
set for information exchange. International Standard 646, ISO, In-
ternational Organisation for Standardisation and IEC, International
Electrotechnical Commission.

ISO/IEC, 1993. Information Technology — Universal Multiple Octet-
Coded Character Set (UCS). International Standard 10646, ISO, In-
ternational Organisation for Standardisation and IEC, International
Electrotechnical Commission.

ISO/IEC, 1994. Information Technology — Open Systems Interconnec-
tion — Conformance Testing Methodology and Framework — Part 1:
General Concepts. International Standard 9646-1, ISO, International
Organisation for Standardisation and IEC, International Electrotech-
nical Commission.

143

Bibliography

ISO/IEC, 1998a. Information Technology — 8-bit single-byte coded
graphic character sets — Part 1: Latin alphabet No. 1. International
Standard 8859-1, ISO, International Organisation for Standardisation
and IEC, International Electrotechnical Commission.

ISO/IEC, 1998b. Information Technology — Open Systems Interconnec-
tion — Conformance Testing Methodology and Framework — Part 3:
The Tree and Tabular Combined Notation (Second Edition). Interna-
tional Standard 9646-3, ISO, International Organisation for Standard-
isation and IEC, International Electrotechnical Commission.

ISO/IEC, 1998c. Information Technology — Programming Languages —
C++. International Standard 14882, ISO, International Organisation
for Standardisation and IEC, International Electrotechnical Commis-
sion.

ISO/IEC, 1999. Information Technology — Open Distributed Processing
— Interface Definition Language. International Standard DIS 14750,
ISO, International Organisation for Standardisation and IEC, Interna-
tional Electrotechnical Commission.

ITU-T, 1996. Recommendation: Message Sequence Chart (MSC). Inter-
national Standard Z.120 (10/96), ITU-T, International Telecommunic-
ation Union — Telecommunication Standardisation Sector SG 10.

ITU-T, 1997a. Recommendation: Information Technology — Open
Distributed Processing — Interface Definition Language (IDL). Inter-
national Standard X.920, ITU-T, International Telecommunication
Union — Telecommunication Standardisation Sector.

ITU-T, 1997b. Recommendation: Information Technology – Abstract
Syntax Notation One (ASN.1): Specification of Basic Notation. In-
ternational Standard X.680, ITU-T, International Telecommunication
Union — Telecommunication Standardisation Sector.

ITU-T, 1997c. Recommendation: Information Technology – Abstract
Syntax Notation One (ASN.1): Specification of Basic Notation. In-
ternational Standard X.680, ITU-T, International Telecommunication
Union — Telecommunication Standardisation Sector.

ITU-T, 1999. Recommendation: Specification and Description Language
(SDL). International Standard Z.100 (11/99), ITU-T, International
Telecommunication Union — Telecommunication Standardisation
Sector SG 10.

144

Bibliography

ITU-T, 2001. Recommendation: Message Sequence Chart (MSC). Inter-
national Standard Z.120 (11/99) with Corrigendum 1, ITU-T, Interna-
tional Telecommunication Union — Telecommunication Standardisa-
tion Sector SG 10.

Jeckle, M., C. Rupp, J. Hahn, B. Zengler, & S. Queins, 2004. UML 2
glasklar. Hanser, 1 edition. ISBN 3-446-22575-7.

Kaner, C., J. Falk, & H. Nguyen, 1999. Testing Computer Software.
Wiley Computer Publishing, 2 edition. ISBN 0-471-35846-0.

Kerbrat, A., T. Jéron, & R. Groz, 1999. Automated test generation from
SDL specifications. In SDL ’99 The Next Millenium, Proceedings
of the Ninth SDL Forum, Montréal, Québec, Canada, 21–25 Hune,
1999, edited by R. Dssouli, G. v. Bochmann, & Y. Lahav, pages 135–
151. Elsevier.

Koch, B., 2001. Test-purpose-based Test Generation for Distributed Test
Architectures. doctoral thesis, Universität zu Lübeck, Germany.

Koch, B., J. Grabowski, D. Hogrefe, & M. Schmitt, 1998. Autolink – A
Tool for Automatic Test Generation from SDL Specifications. In IEEE
International Workshop on Industrial Strength Formal Specification
Techniques (WIFT’98). Boca Raton, Florida.

Kung, D., P. Hsia, & J. Gao (editors), 1998. Testing Object-Oriented
Software. IEEE Computer Society. ISBN 0-8186-8520-4.

Li, M., 1998. Testing Computational Interfaces of CORBA Service us-
ing TTCN and CORBA. Diplomarbeit, Fachgebiet Telekommunika-
tionsnetze, Fachbereich Elektrotechnik, Technische Universität Berlin,
Germany.

Li, M., I. Schieferdecker, & A. Rennoch, 1999. Testing the TINA Retailer
Reference Points. In 4th Int. Symposium on Autonomous Decentral-
ized Systems (ISADS’99), Tokyo, Japan, Mar. 1999.

McGregor, J. & D. Sykes, 2001. Practical Guide to Testing Object-
Oriented Software. Object Technology Series. Addison-Wesley. ISBN
0-201-32564-0.

Mednonogov, A., 2000. Calypso Gateway specification, version 0.07.
Technical report, Telecommunications Software and Multimedia
Laboratory, Helsinki University of Technology, Finland.

145

Bibliography

Mednonogov, A., H. Kari, O. Martikainen, & J. Malinen, 2000.
Conformance Testing of CORBA Services using Tree and Tabu-
lar Combined Notation. In Proceedings of the IFIP TC6/WG6.1
13thInternational Conference on Testing of Communicating Systems,
(TestCom 2000), August 29.–September 1., 2000, Ottawa, Canada,
edited by H. Ural, R. Probert, & G. Bochmann, pages 193–208. The
International Federation for Information Processing, IFIP, Kluwer
Academic Publishers.

Mellor, S. J. & M. J. Balcer, 2002. Executable UML: A Foundation for
Model-Driven Architecture. Object Technology Series. Addison-Wes-
ley. ISBN 0-201-74804-5.

Miga, A., D. Amyot, F. Bordeleau, C. Cameron, & M. Woodside, 2001.
Deriving Message Sequence Charts from Use Case Maps Scenario Spe-
cifications. In Proceedings of the SDL 2001: Meeting UML. 10th In-
ternational SDL Forum Copenhagen, Denmark, June 27–29, 2001,
edited by R. Reed & J. Reed, number 2078 in Lecture Notes in Com-
puter Science, (LNCS), pages 268–287. SDL Forum Society, Springer
Verlag. ISBN 3-540-42281-1.

Mulvihill, B., 2003. Generation of TTCN Test Cases from Use Case
Map Scenarios. Graduate student report, School of Information Tech-
nology and Engineering, University of Ottawa, Canada. Supervisor:
Daniel Amyot, URL http://www.site.uottawa.ca/~damyot/students/
BryanMulvihillRep.pdf.

Myers, G., 2001. Methodisches Testen von Programmen. Oldenbourg,
7 edition. ISBN 3-486-25634-3. (original title: The Art of Software
Testing).

Neukirchen, H., 2004. Languages, Tools and Patterns for the Specific-
ation of Distributed Real-Time Tests. doctoral thesis, Georg-August-
Universität Göttingen, Germany.

OMG, 1997. CORBAservices - Naming Service. Technical Report
formal/97-12-10, OMG, Object Management Group.

OMG, 1999. C Language Mapping Specification. OMG Formal Docu-
ment formal/99-07-35, OMG, Object Management Group.

OMG, 2001a. Model Driven Architecture. Technical report, OMG,
Object Management Group.

146

http://www.site.uottawa.ca/~damyot/students/BryanMulvihillRep.pdf
http://www.site.uottawa.ca/~damyot/students/BryanMulvihillRep.pdf

Bibliography

OMG, 2001b. The Common Object Request Broker — Architecture and
Specification. OMG Formal Document formal/01-02-01, OMG, Object
Management Group. Version 2.4.2.

OMG, 2003a. CORBA to WSDL/SOAP Interworking Specification.
OMG Formal Document formal/03-11-02, OMG, Object Management
Group. Version 1.0.

OMG, 2003b. Unified Modeling Language 2.0: Superstructure. OMG
Final Adopted Specification ptc/03-08-02, OMG, Object Management
Group.

OMG, 2003c. Unified Modeling Language Specification. OMG Formal
Document formal/03-03-01, OMG, Object Management Group. Ver-
sion 1.5.

OMG, 2003d. WSDL-SOAP to CORBA Interworking. OMG Draft Ad-
opted Specification ptc/03-07-04, OMG, Object Management Group.

OMG, 2003e. XML Metadata Interchange (XMI) Specification. OMG
Formal Document formal/03-05-02, OMG, Object Management
Group. Version 2.0.

OMG, 2003f. XML/Valuetype Language Mapping. OMG Formal Doc-
ument formal/03-04-01, OMG, Object Management Group. Version
1.1.

Open Group, 2000. Inter-Domain Management: Specification & Inter-
action Translation. Technical Standard C802, Open Group. URL
http://www.jidm.org.

Savoye, R., 2001. DejaGNU — The GNU Testing Framework. Free
Software Foundation, 1.4.1 revision 0.6.1 edition.

Schieferdecker, I., Z. Dai, J. Grabowski, & A. Rennoch, 2003. The UML
2.0 Testing Profile and its Relation to TTCN-3. In Proceedings of the
IFIP TC6/WG6.1 15thInternational Conference on Testing of Com-
municating Systems, (TestCom 2003), Sophia-Antipolis, France, edited
by D. Hogrefe & A. Wiles, volume 2644 of Lecture Notes in Com-
puter Science, (LNCS), pages 79–94. The International Federation for
Information Processing, IFIP, Springer Verlag. ISBN 3-540-40123-7.
ISSN 0302-9743.

147

http://www.jidm.org

Bibliography

Schieferdecker, I. & J. Grabowski, 2003. The Graphical Format of
TTCN-3 in the Context of MSC and UML. In Proceedings of the
3th International Workshop on SDL and MSC (SAM 2002), Tele-
communications and beyond: The Broader Applicability of SDL and
MSC, Aberystwyth, UK, June 24.-26., 2002. Revised Papers, edited
by E. Sherratt, volume 2599 of Lecture Notes in Computer Science,
(LNCS), pages 233–252. Springer Verlag. ISBN 3-540-00877-2. ISSN
0302-9743.

Schieferdecker, I., M. Li, & A. Hoffmann, 1998. Conformance Testing
of TINA Service Components — The TTCN/CORBA Gateway. In
Proceedings of the 5th International Conference on Intelligence and
Services in Networks, IS&N’98, Antwerp, Belgium, May 25–28, 1998,
edited by S. Trigila, A. Mullery, M. Campolargo, H. Vanderstraeten,
& M. Mampaey, volume 1430 of Lecture Notes in Computer Science,
(LNCS), pages 393–408. Springer Verlag. ISBN 3-540-64598-5.

Schieferdecker, I. & B. Stepien, 2003. Automated Testing of XML/SOAP
based Web Services. In 13th Fachkonferenz der Gesellschaft für In-
formatik (GI) Fachgruppe "Kommunikation in verteilten Systemen"
(KiVS), Leipzig, 26.–28. Febr., 2003, edited by K. Irmscher & K. Fäh-
nrich. Springer Verlag. ISBN 3-540-00365-7.

Schmitt, M., 2003. Automatic Test Generation Based on Formal Spe-
cifications — Practical Procedures for Efficient State Space Explor-
ation and Improved Representation of Test Cases. doctoral thesis,
Georg-August-Universität Göttingen, Germany. URL http://webdoc.
sub.gwdg.de/diss/2003/schmitt/schmitt.pdf.

Schmitt, M. & M. Ebner, 2003. The TTCN-3 module and template con-
cepts revisited. Technical Report IFI-TB-2003-02, Institut für Inform-
atik, Georg-August-Universität Göttingen, Germany. ISSN 1611-1044.

Schmitt, M., M. Ebner, & J. Grabowski, 2000. Test Generation with
Autolink and TestComposer. In Proceedings of the 2nd Workshop
of the SDL Forum Society on SDL and MSC (SAM’2000), Grenoble,
France, June 26.–28., 2000, pages 218–232.

Yin, A., 2001. Testing Operation-Based Interfaces — Exemplified for
CORBA with ADL and TTCN-3. Diplomarbeit, Telecommunication
Network Group, Faculty of Electrical Engineering and Computer Sci-
ence, Technical University Berlin, Germany.

148

http://webdoc.sub.gwdg.de/diss/2003/schmitt/schmitt.pdf
http://webdoc.sub.gwdg.de/diss/2003/schmitt/schmitt.pdf

Bibliography

Yin, A., I. Schieferdecker, & M. Li, 2001. Mapping of IDL to TTCN-
3. Technical report, Fraunhofer Institute for Open Communication
Systems (FOKUS), Germany.

149

150

List of Figures

1.1. Fundamental concept of the thesis 2

2.1. The V process model for software development (Balzert
1998, page 101) . 7

2.2. Test generation with TestComposer and Autolink . . . 17
2.3. User’s view of TTCN-3 core language, presentation form-

ats, and imported types . 20
2.4. The Inres service and protocol 22
2.5. The local test method applied to Inres 23
2.6. Message- and blocking procedure-based communication . 28
2.7. Conceptual view of a typical TTCN-3 test configuration . 32

3.1. UML-based test specification 44
3.2. MSC document example 46
3.3. Basic MSCs for the Inres protocol 47
3.4. HMSC example . 52
3.5. The CORBA architecture 54

4.1. Basic MSC to TTCN-3 mapping concept 62
4.2. Basic instance structure to specify test cases via MSC . . . 63
4.3. MSC to TTCN-3 base mapping 67
4.4. MSC to TTCN-3 alternative mapping 71
4.5. MSC to TTCN-3 optional mapping 72
4.6. MSC to TTCN-3 exception mapping 73
4.7. MSC to TTCN-3 loop mapping 1 73
4.8. MSC to TTCN-3 loop mapping 2 74
4.9. MSC to TTCN-3 mapping of HMSCs 75

151

152

List of Tables

2.1. Overview of TTCN-3 types 25
2.2. Overview of TTCN-3 type variants respectively useful

types . 26

3.1. Overview of IDL types . 56

4.1. Conceptual list of MSC to TTCN-3 mapping 77

5.1. IDL to TTCN-3 literal mapping 81
5.2. IDL and TTCN-3 operators for constant expressions . . 86
5.3. IDL to TTCN-3 mapping for basic types 91
5.4. IDL to TTCN-3 mapping for constructed types 93
5.5. IDL to TTCN-3 mapping for template types 95
5.6. IDL to TTCN-3 mapping for complex types 95
5.7. IDL to TTCN-3 mapping for interface elements 102

6.1. Corresponding data types for operations in TTCN-3 . . . 112
6.2. Class element accessibility by access attributes 115

A.1. Conceptual list of IDL mapping 121
A.2. Comparison of IDL, ASN.1, TTCN-2, and TTCN-3

data types . 123

153

154

	Title
	Contents
	1 Introduction
	2 Fundamentals of Testing
	2.1 Dynamic Testing Concepts
	2.2 Problems of Object-Orientation for Testing
	2.3 Test Generation
	2.4 Testing and Test Control Notation
	2.5 Summary

	3 UML-based Testing
	3.1 Unified Modeling Language
	3.2 Suitability of UML for Testing
	3.3 UML-based Test Specification
	3.4 Message Sequence Chart
	3.5 Interface Definition Language
	3.6 Summary and Outlook

	4 Mapping of MSC to TTCN-3
	4.1 Fundamental Concept
	4.2 MSC Documents and Comments
	4.3 Basic Message Sequence Charts
	4.4 Structural Concepts
	4.5 High-Level Message Sequence Charts
	4.6 Summary and Outlook

	5 Mapping of IDL to TTCN-3
	5.1 Fundamental Concept
	5.2 Lexical Conventions and Preprocessing
	5.3 Structural Elements
	5.4 Data Types
	5.5 Communication Declaration
	5.6 Names and Scoping
	5.7 Summary and Outlook

	6 Object-Oriented Enhancements for TTCN-3
	6.1 Object-Orientation in TTCN-3
	6.2 Object-Oriented Revision of TTCN-3
	6.3 Summary and Outlook

	7 Conclusion
	A IDL Mapping Summary
	A.1 Conceptual IDL to TTCN-3 Mapping
	A.2 Comparison of IDL, ASN.1, TTCN-2, and TTCN-3 Data Types
	A.3 Examples

	B The TTCN-3 Inres Protocol Module
	Acronyms
	Bibliography
	List of Figures
	List of Tables
	Curriculum Vitae

