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Algorithms and data structures for modeling and analysis of real-time systems

Abstract:

This document is intended to contribute to the area of validation and verification of com-

municating real time systems, with emphasis put on parametric reachability analysis of

systems modeled using timed automata.

Reachability analysis is a crucial aspect of validation and verification of software and

hardware systems. The reachability analysis for real time systems is area that is studied by

many researchers in academic and industrial communities. However, not much work has

been done for systems, where temporal constraints are expressed using parameters. This is

serious disproportion with real world, where specifications of most of the communication

protocols or embedded software and hardware systems are indeed parameterized.

This thesis presents a complete framework for forward and backward parametric reachabil-

ity analysis. The solution presented here can be used as a base of algorithms for validation

and verification of software and hardware real-time systems, modeled as timed automata

with parameters. The results of the thesis can be easily applied to model checking or test

generation tools and algorithms.

The core idea of the thesis is a concept of Extended Difference Bound Matrix (EDBM).

This is a data structure that stores relations between all system’s clocks and parameters.

In contrast to Parametric DBM, that is the state-of-the-art data structure for parametric

analysis, EDBM does not require storing constraints on clocks and constraints on parame-

ters separately. This leads to significant benefits regarding memory consumption and time

necessary to perform basic operations for symbolic analysis.

The maturity of the solution was proven by implementation of a proof-of-concept tool and

by experiments performed with modern communication protocol. The results show that

even complex systems can be efficiently handled by the framework.

Keywords: timed automata, Difference Bound Matrix, embedded systems, real time sys-

tems, parameterized verification, model checking, test generation
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1 Introduction

1.1 Formal methods

The recent technological revolution resulted in rapid expansion of Internet, communication

systems and embedded applications in different fields of human life. Not more than 20 years

ago, using computer was a privilege of small amount of specialist. Nowadays, our interac-

tion with some kind of computational-based device is unavoidable. Consumer electronics,

vehicles, telecommunication systems, medical equipment – these are only few examples of

domains where the impact of the revolution in electronics cannot be overestimated.

A malfunctioning system may have different consequences. It may be as meaningless as

irritation, when a pocket audio player does not want to handle a playlist correctly, or it

may be as catastrophic as an explosion in a nuclear plant. For many of such systems, it is

crucial that they provide a correct and efficient service. In order to gain confidence that

such devices satisfy standards of service, it has been recognized that formal analysis has

to be carried out as part of their development.

Formal Methods are mathematically rigorous techniques and tools for the specification,

design and verification of software and hardware systems. The phrase "mathematically

rigorous" means that the specifications used in formal methods are well-formed statements

in a mathematical logic and that the formal verifications are rigorous deductions in that

logic (i.e. each step follows from a rule of inference and hence can be checked by a me-

chanical process). The value of formal methods is that they provide means to symbolically

examine digital design (either hardware or software). There is a growing set of success sto-

ries in applying formal methods to real applications in automotive industry [73, 60], space

industry [35, 79] or medicine [15, 40]. This work aims to contributing in the following of

the formal methods:
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2 Chapter 1. Introduction

• Formal verification, as the act of proving or disproving the correctness of intended

algorithms underlying in a system with respect to a certain formal specification or

property. Verification is done by providing a formal proof on an abstract mathematical

model of the system, while the correspondence between the mathematical model

and the nature of the system being otherwise known by construction. There can be

distinguished two approaches to formal verification:

– Logical inference – The property is verified by mathematical reasoning about

the system, usually using automated proof checking software, like the family of

HOL proof checkers [84, 85], or their successor family Isabelle [66]. The overview

and comparison of proof checking tools is done in [83].

– Model checking – The properties are verified by exhaustive analysis of the reach-

ability space of the system states. Model checking is described in more details

in the Section 4.1.

• Testing – In general, testing may be considered as a process of comparing behavior of

implemented system to its specification. Testing may be considered in many aspects.

For example conformance testing is based on checking whether a developed system

conforms to its specification. It is done by observing system’s implementation and

comparing its behavior to a reference specification. Conformance testing may be done

in active or passive way. Passive testing is done by deducing conformance of a system

to its specification basing on monitoring system’s behavior without any interaction

between tester and the system under test (SUT). In case of active testing, a tester

stimulates a system under test according to a test case that was derived using system

formal specification. System’s responses are then compared to the specification to

check their conformance. Testing methods can be traditionally divided according to

the accessability of the tester to internal structure of the SUT:

– Black box testing : a tester have access only to an external interface of a tested

system, with no direct access to its internal structure. This imposes that knowl-

edge about currently occupied system state (values of variables etc.) or per-

formed interaction between system’s components must be deduced basing on

observation of the interface.

– White box testing : a tester may fully access and observe internal structure of a

tested system (e.g. may stimulate interfaces between system’s components, read
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values of variables etc.)

– Grey box testing : this is an intermediate case between black and white box

testing. In this case the tester has limited approach to the internal structure of

SUT, e.g. may read the values of variables but is not allowed to see the interface

between components, or may see them but is not allowed to stimulate them.

General constraints and methodology for conformance testing has been standardized

by International Organization for Standardization (ISO) in [52].

1.2 Real time systems

The formal reasoning about systems becomes more complicated, if a description of the

system’s behavior, apart from sequences of events, contain also constraints on timing of

those events. Such systems are referred to as real time systems (RTS). Examples of such

systems may include:

• Automotive safety critical systems, e.g. ABS. Correct working of such a system de-

pends on following strict constraints on how often and for how long the brakes of

the car should be released in order to stop the car while preventing it from becom-

ing uncontrollable. Violating those constraints may have catastrophic results: if the

brakes are locked for too long, the car is locked and may not succeed in omitting an

obstacle. If the brakes are released for too long, the car may not succeed in stopping

and then hits an obstacle.

• Communication protocols. Functioning of many protocols (e.g. [74, 44]) depends on

timing of messages from communicating nodes. Some other protocols (e.g. [53, 26, 34])

have time-triggered character, which means that performing node’s actions depends

on a state of its clock. Formal analysis of communication protocol may be an alter-

native or complement to analysis done by means of simulation (see [31, 30, 4]).

• An assembly line. This is a manufacturing process in which parts (usually inter-

changeable parts) are added to a product in a sequential manner to create a finished

product much faster than with handcrafting-type methods. Scheduling this process

in optimal way according to timing of performing each task may let performing many

task in parallel and boosting the whole manufacturing process.
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1.2.1 Models of real time systems

Modeling real time systems derives from methods used for untimed systems. Many models

used with untimed systems have been extended for handling real time constraints. Ex-

amples of such models may be Timed Petri Nets [16], Timed Transition Systems [48] or

Finite State Machines extended with Action Durations and Time-Outs [64]. There are also

extensions of specification languages widely used for industrial purposes, like SDL-RT [3]

or Real Time Profile for UML [46]. Behavior of real time systems may be also described

using algebra notations [80, 86, 72].

This work concentrates on using Timed Automata [5] as a model of real time system. In the

original theory of timed automata, a timed automaton is a finite state Büchi automaton

extended with a set of real-valued variables modeling clocks. Constraints on the clock

variables are used to restrict the behavior of an automaton, and Büchi accepting conditions

are used to enforce progress properties. Due to its simplicity and power of expression, Timed

Automata has been adopted in several verification tools, like UppAal [58], Spin [50] or

Kronos [38, 38]. Those tools have been successfully used in industrial case studies, e.g.

[11, 21].

The success of timed automata has been driving force for extending the theory to match

new purposes. The examples may be probabilistic and stochastic automata [13, 36], hybrid

automata [47, 49] or hierarchical timed automata [37].

1.2.2 Parametric real-time reasoning

Traditional approaches to the algorithmic verification of real-time systems are limited to

checking program correctness with respect to concrete timing properties (i.e. time con-

straints are defined with concrete values – reals or integers). More realistic and more

ambitious approach is when those constraints may be parameterized. In this case the con-

straints are defined with parameters. Value of a parameter is chosen from a predefined

range at initial state and is fixed for entire execution. Such an approach reflects realistic

scenario, where a system may behave in different ways, according to its configuration (e.g.

the acknowledgement time-out in a radio transceiver may be configured differently accord-

ing to specific radio conditions). The design of a robust system requires the verification of

the desired behavior of the system without concrete values for parameters. Indeed, when
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studying the literature on real-time protocols, one sees that the desired timing properties

for protocols are almost invariably parametric [82, 12], because concrete timing constraints

make sense only in the context of a given concrete environment. Using parametric reason-

ing, it is possible to either verify that a system satisfies a given property for all possible

values of parameters, or to find constraints on the parameters that define the set of all

possible values for which the the property is satisfied. The foundations of the theory of

parametric reasoning about real time systems has been done in [6]. This work has been

continued in [8] or [51].

1.3 Motivation of the thesis

The research work on the parametric verification and test case derivation for real time

systems was motivated by a study on the FlexRay protocol [29]. FlexRay is a protocol

designed for in-car communication purposes. It is based on distributed synchronization

mechanisms and time triggered medium access control scheme, therefore fulfilling strict

time constraints is critical for correct functioning of the protocol. FlexRay is designed to

be scalable and flexible in configuration, what is manifested for example in freedom regard-

ing definition of network topology, or in allowing user (that is usually a car manufacturer)

to arbitrary allocate available bandwidth to network’s nodes. This approach has conse-

quences in plenitude of parameters that were used in the protocol specification. Most of

the time constraints (e.g. length of communication time slot, duration of network idle time

following transmition etc.) are defined using parameters. Verification of such a protocol

or even efficient derivation of test suite able to cover most of the specification requires

data structures that efficiently and compactly considers multiplicity of options that are

introduced by plentifulness of parameters used in specification. Currently used approaches

(discussed in Chapter 5) suffer explosion in terms of memory consumption and time cost

in case of systems with many parameters that can take values from wide ranges.

The goal of this thesis is to design a data structure for symbolic analysis of parameterized

system. The thesis introduce a compact structure that is extension of Difference Bound

Matrix [20] and allows to constraint clocks and parameters within the same structure.

Although initially bigger than other data structures, it remains in the same size during

entire analysis, when other structures may grow into unmanageable sizes. This feature
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simplifies basic operations for symbolic analysis what boosts the entire process. Other

advantage of the new structure is that it extends expressiveness of guards over transitions.

Standard structures, like PDBM (see chapter 5) allow constraining single clock or difference

of two clocks, while the solution proposed in this thesis allow constraining difference of two

sums of clocks.

The solution described in the thesis has been implemented in a proof-of-concept tool and

successfully used for generating test cases for the FlexRay MAC process.

1.4 Structure of the thesis

The thesis is structured in 8 chapters.

The Chapter 2 introduces mathematical foundations of the concepts that were defined in

later chapters. In the first section it presents the notation that will be used in predicate

logic formulae or algorithms. Next sections recalls basic ideas of the set theory, graphs and

dense spaces. Those concepts will have crucial meaning in the definition of the main thesis

subjects.

The Chapter 3 covers basic ideas of modeling real time systems as timed automata. It

introduces the basic model of a timed automaton and later shows possible extensions that

improve expressibility of the model. Later part of this chapter shows modeling approaches

for systems composed of concurrently working elements.

Symbolic analysis of systems defined with timed automata is described in Chapter 4. The

basic concepts of model checking are introduced. Then the chapter describes in detailed

way concepts of forward and backward symbolic path analysis. The last section of the

chapter introduces the Difference Bound Matrix – a data structure widely used in many

model checking tools for symbolic representation and manipulation of system state.

The Chapter 5 induces the concept of parametric verification. Starting from the parametric

extension of timed automata it goes through the analysis methods for such sort of mod-

els. Later sections in this chapter present the state-of-the-art of data structures used in

parametric reasoning.

The core of the thesis and the main innovation is presented in the Chapter 6. Here an

Extended Difference Bound Matrix, the new data structure for parametric verification, is
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presented. The chapter describes algorithms for manipulating this structure and compares

them to the currently used techniques. Last section of the chapter shows methods for

forward and backward symbolic path analysis that is crucial part of the model checking

process.

An implementation of a proof-of-concept of the newly designed structure is reported in the

Chapter 7. The chapter shows how the EDBM structure can be efficiently implemented

together with basic manipulating operations. The structure’s implementation was used in

a toy-tool for analysis and simulation of real time systems – SMART. Later sections of

the chapter describe the tool’s architecture and document its input format. The chapter

concludes with report on experiments that were done with specification of the FlexRay

MAC process.

The last chapter contains conclusion of the thesis and perspectives for future work in this

area.
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2 Formalities

The chapter covers basics of mathematical concepts that are used in the thesis. After

introducing the notation that will be used throughout the thesis in the Section 2.1, it goes

through the fundamentals of the set theory (Section 2.2), graphs (Section 2.3) and dense

spaces (Section 2.4). Familiarity with those domains is crucial for understanding the theory

that is covered by further chapters.

Contents

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Predicate logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Algorithm notation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Sets, multisets and sequences . . . . . . . . . . . . . . . . . . . 11

2.2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Fundamental definitions . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Minimal and positive graphs . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Graph transformations . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.5 Minimization algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Dense spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Numerical bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.4 Constraint graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.5 Canonical form of a polyhedron . . . . . . . . . . . . . . . . . . . 22

9



10 Chapter 2. Formalities

2.4.6 Minimal constraint system . . . . . . . . . . . . . . . . . . . . . . 24

2.4.7 Operations on polyhedra . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Notation

2.1.1 Numbers

Throughout the document following notation is used for numerical domains:

• N denotes set of naturals with 0,

• N+ denotes set of positive naturals,

• Z denotes set of integers,

• R denotes set of reals,

• R≥0 denotes set of non-negative reals,

2.1.2 Predicate logic

As usually, the symbols ∀, ∃ and ∄ will denote universal quantification (“for all”), existential

quantification (“there exists”) and negation of existential quantification (“there does not

exist”). The symbol “ |” will mean “such that”, while “ :” will mean “following is true:”.

For example the predicate

∀n ∈ N | n > 2 : ∄x, y, z ∈ Z | xn + yn = zn

should be read in the following way: “for all natural n such that n > 2 following is

true: there do not exist integers x, y and z such that xn + yn = zn.

The symbols ∧ and ∨ will denote logical ”and“ and logical ”or“ respectively.

2.1.3 Algorithm notation

The algorithms are written using pseudocode. Sometimes the notation is derived from

existing programming languages, but is kept rather intuitive. For example statement i++

denotes increment of the variable i.
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The statements break and continue used in loops are derived form corresponding state-

ments in C language. The command break means: ”stop executing the loop and go to the

first line after the loop“. The command continue means: ”stop executing only this iteration

of the loop; proceed with next iteration“.

The statement return A exits the algorithm and returns the value A.

2.2 Sets, multisets and sequences

2.2.1 Sets

A set is an unordered collection of distinct objects that are called elements. Sets are noted

by surrounding its elements with curly brackets: {· · · }. Let A = {a, b, c} and B = {b, c, d}.

The notation of basic operations on sets is following:

• union - A ∪ B = {a, b, c, d},

• intersection - A ∩B = {b, c},

• complement - A \B = {a},

• cardinality - |A| = 3,

• cartesian product - A×B = {(a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d)}.

In the reminder of this document, the set-builder notation will be used whenever it is more

convenient than traditional notation. The set-builder notation has following form:

A = {x | Φ(x)}

which means: “A is a set that contains all elements x such that x satisfies predicates defined

by Φ(x)”.

Equivalence

Two sets are equivalent if they contain exactly the same elements. For example sets A =

{a, b, c} and B = {a, c, b} are equivalent, however sets {a, b, c} and {a, b} are not.
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Subsets

A subset of set A is such a set B that contains only such elements that belong to the set

A. The following notation is used to denote subsets:

• B ⊂ A means that B is a proper subset of A, i.e. B 6= A,

• B ⊆ A means that either B is a proper subset of A, or B = A.

Powersets

A powerset of a set A, noted by 2A, is a set of all subsets of A. Formally:

2A = {B | B ⊆ A}

The number elements of a powerset of the set A is equal to 2|A|.

2.2.2 Multisets

A multiset is a generalization of a set. An element of a multiset can have more than one

membership in a multiset. Formally a multiset is defined as a pair B = (A,mB), where A

is the underlying set of elements of the multiset B and mB : A 7→ N+ is a multiplicity

function that for each element a ∈ A assigns its multiplicity in B (number of occurrences

of a in B).

In the remainder of this document multisets are noted in the following way: A =

{m1a1, · · · , mnan} such that mi ∈ N+ is the multiplicity of element ai in the multiset

A. For example multiset {a, b, b, c, c} will be noted by {a, 2b, 2c}.

Let A = {a, 2b} andB = {b, c, d} be two multisets. Following notation is used for operations

on multisets:

• union - A ∪ B = {a, 2b, c, d},

• sum - A ⊎B = {a, 3b, c, d},

• intersection - A ∩B = {b},

• complement - A \B = {a, b},
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• cardinality - |A| = 3,

• cartesian product - A×B = {(a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (b, b), (b, c), (b, d)}.

Two multisets A and B are equivalent if, and only if, they contain exactly the same elements

occurring in both sets exactly the same number of times.

A multiset A is a proper subset of a multiset B, written A ⊂ B, if and only if multiplicity

of all elements in A is lower than multiplicity of the same elements in B. Notation A ⊆ B

means that the multiset A is either equal to multiset B or is its proper subset.

2.2.3 Sequence

A sequence is an ordered collection of elements. Sequences are noted using square brackets:

a = [a1, a2, a3]. Unless explicitly stated otherwise, ai will denote the ith element of the

sequence a. A length of a sequence is the number of its elements. [1..n] will denote an

increasing sequence of subsequent naturals from 1 to n.

For sequences a = [a1, · · · , an] and b = [b1, · · · , bn] notation a.b denotes concatenation of

the two sequences: a.b = [a1, · · · , an, b1, · · · , bn].

2.3 Graphs

2.3.1 Fundamental definitions

Definition 1. (Oriented graph) An oriented graph G is a pair (N,E), where N is a

finite set of elements (n1, n2, · · · , nk) called nodes and E is a finite set of elements of the

cartesian product N × N called edges. A element (ni, nj) ∈ E, noted ni → nj, represents

an edge with source in ni and destination in nj.

For an oriented graph G following operations are defined:

– src : E 7→ N defined by: src(ni → nj) = ni,

– dest : E 7→ N defined by: dest(ni → nj) = nj ,

– out : N 7→ 2E defined by: out(ni) = {e ∈ E|src(e) = ni},

– in : N 7→ 2E defined by: in(ni) = {e ∈ E|dest(e) = ni},
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– •̄ : E 7→ E defined by: (ni, nj) = (nj , ni).

Intuitively, operation src(e) (resp. dest(e)) returns the source (resp. destination) node of

the edge e. Operation out(ni) (resp. in(ni)) returns all edges of G that have source (resp.

destination) in ni. The operation e returns an inverse edge to e.

Definition 2. The graph G is labeled by alphabet L if there exists a labeling function

λG : E 7→ L. In this case G is noted G = (N, λG, E).

From now the notation ni
l∈L
−−→ nj ∈ E will denote an edge with source in ni, destination

in nj and labeled with l. If L is an ordered and additive set, l is called weight of the edge

ni
l
−→ nj. The graph G = (N, λG, E) is then called weighted. For weighted graphs, the

labeling function λG will be noted by ωG.

Definition 3. The graph G is complete, if for all pairs ni, nj ∈ N, ni 6= nj there exists an

edge (ni, nj) ∈ E.

2.3.2 Path

A path p of the graph G = (N,ωG, E) (finite or infinite) is a sequence [e1, e2, · · · , en(, · · · )]

where ei ∈ E is an edge of G, such that ∀ei ∈ p : dest(ei) = src(ei+1). From now paths(G)

will denote set of all paths of the graph G.

For a finite path p = [e1, · · · , en], src(p) = src(e1) and dest(p) = dest(en). A path p

traverses node n if there exist an edge e ∈ p such that dest(e) = n. Therefore a path p

with source in the node n not necessarily traverses n.

Let e ∈ E. Then pathG(e) will denote set of paths of the graph G such that src(p) = src(e)

and dest(p) = dest(e). A cycle of node n is a path with source and destination in n. An

elementary cycle is a cycle that does not traverse the same node more than once.

If G is weighted, a weight of a path is the sum of the weights of all edges in this path:

ωG(p) =
∑

i∈[1,n] ωG(pi).

2.3.3 Minimal and positive graphs

Definition 4. (Positive graph) Let G = (N,ω,E) be a weighted graph with real weights.

G is said to be positive if and only if weights of all its cycles are not lower than zero.
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Figure 1: Complete and weighted graphs

Property 1. A graph is positive if and only if weights of all its elementary cycles are

non-negative.

Proof. It is enough to say that if c is a cycle there exists a finite set (eci)i∈[1,n] of elementary

cycles such that:

ω(c) =
n∑

i=1

ω(eci)

By consequence, if ∀i ∈ [1, n] : ω(eci) ≥ 0 then ω(c) ≥ 0.

Definition 5. (Minimal graph) Let Gc = (N,ω,E) be a complete weighted graph. G is

said to be minimal if and only if ∀e ∈ E, p ∈ pathG(e) : ω(e) ≤ ω(p)

In other words, the graph G is minimal if and only if weight of each edge e of G is not

higher than weight of any path connecting the same nodes that e.

Exemple 2.1. Figure 1 shows two complete and weighted graphs with N = {n0, n1, n2}. It

can be noticed that:

• Weights of all elementary cycles of G and G′ are non-negative. This means that both

G and G′ are positive.

• ωG(n2 → n1) > ωG(n2 → n0 → n1) which means that the graph G is not minimal.

• The graph G′ is minimal.

Property 2. Only positive graphs can be minimal.
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Proof. Assume that graph G = (N,ω,E) is not positive. It means that there exists a cycle

c such that ω(c) < 0. By consequence it is possible to find a path p between any two nodes

of G such that ω(p) < k for any k ∈ R just by traversing the cycle c enough many times.

Therefore it is not possible to find a weight for any edge that could satisfy the definition

of minimal graph.

2.3.4 Graph transformations

The function minimal(G) transforms a complete weighted graph G = (N,ωG, E) into

minimal graph G′ = (N,ωG′, E) such that:

∀e ∈ E : ωG′(e) = min({ωG(p)|p ∈ pathG(e)})

In other words, weights of edges with source and destination respectively in ni and nj in

the graph G′ correspond to minimal weight of all paths in G from ni to nj. Note that the

operation minimal() is unambiguous which means that for given graph G there is only one

graph G′ that can be result of operation minimal(G).

Exemple 2.2. Consider again graphs from the Figure 1. The graph G′ is the result of

operation minimal(G). As effect, G′ differs from G in weight of the edges n2 → n1 and

n1 → n3. Note that ωG′(n2 → n1) = ωG(n2 → n3 → n1) = min(ωG(p)|p ∈ path(n2 → n1))

and ωG′(n1 → n3) = ωG(n1 → n2 → n3) = min(ωG(p)|p ∈ path(n1 → n3)).

2.3.5 Minimization algorithm

The algorithm for transforming weighted graph into minimal graph (Floyd-Warschall short-

est path algorithm) was given by [43]. It is presented by Algorithm 2.1.

The resulting graph G′ has a property that weight of each edge e ∈ E is equal to minimal

weight of any path p ∈ path(e) such that p traverses each node at most once. Therefore if

the graph G is positive then the graph G′ is minimal.

Proof. Let s(k, i, j) denote the shortest path (path with minimal weight) between nodes

ni and nj , from all paths that traverse nodes from the set {n1 · · ·nk} (not necessary all

of them). Let Φk denotes following invariant: after kth iteration of the outer loop of the
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Algorithm 2.1 Floyd-Warschall shortest path algorithm

Input: complete, oriented and weighted graph G = (N,ω,E)

Output: G′ = minimal(G)

G′ = G

for all nk ∈ N do

for all ni ∈ N do

for all nj ∈ N do

ωG′(ni → nj) = min
(
ωG′(ni → nj), ωG′(ni → nk) + ωG′(nk → nj)

)

end for

end for

end for

return G′

algorithm, the weight of all edges ni → nj is equal to ω
(
s(k, i, j)

)
. It is obvious that Φ1

holds, because after the first iteration, all weights ω(ni → nj) were either not changed,

or changed to ω(ni → n1) + ω(n1 → nj). Thus, to prove correctness of Floyd-Warshall

algorithm, it is enough to prove that if Φk−1 holds, Φk holds as well.

After k − 1 iterations ω(ni → nj) = ω
(
s(k − 1, i, j)

)
, ω(ni → nk) = ω

(
s(k − 1, i, k)

)

and ω(nk → nj) = ω
(
s(k − 1, k, j)

)
. If s(k, i, j) traverses the node nk, its weight equals

ω
(
s(k − 1, i, k)

)
+ ω

(
s(k − 1, k, j)

)
and this weight will be assigned to ni → nj at kth

iteration. Otherwise the weight will not be altered. In any case ω(ni → nj) will equal to

the shortest path between ni and nj that traverse nodes from the set {n1 · · ·nk}.

After the outer loop ends, the invariant Φn holds which means that the weight of any

edge ni → nj equals the weight of the shortest path between ni and nj of all paths from

path(ni → nj).

Property 3. If the shortest path between nodes ni and nj goes through nodes nk and nl,

then the section of the path between nk and nl defines the shortest path between those nodes.

The consequence of Property 3 is that if the shortest path of path(ni → nj) contains edge

nx → ny then the shortest path of path(nx → ny) does not contain the edge ni → nj .
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Property 4. The graph G is positive if there is no elementary cycle ec of length 2 in

G′ = minimal(G), such that ωG′(ec) < 0.

Proof. Let ec = {e, ē}. It is known, that for any p in path(e), such that p does not contain

a cycle, ωG′(e) ≤ ωG′(p). Also, for any p̄ in path(ē), such that p̄ does not contain a cycle,

ωG′(ē) ≤ ωG′(p̄). This means that ωG′(e) + ωG′(ē) ≤ ωG′(p) + ωG′(p̄). Because p.p̄ is an

elementary cycle, it means that if ωG′(e) + ωG′(ē) ≥ 0 then ωG′(p.p̄) ≥ 0 and according to

Property 1 the graph is positive.

2.4 Dense spaces

2.4.1 Valuations

Let V = {x1, x2, · · · , xn} be a finite set of variables ranged over R≥0 and let V0 = {x0, V }

be the set V extended with a variable x0 which is always equal to 0. A valuation ν(V ) is

function ν : V 7→ R≥0 that assigns value to each element of V . In the following ν(x) will

denote a valuation of single variable x ∈ V . V(V ) will denote the space of all valuations

over V . In the remaining, unless stated otherwise, ν will denote ν(V ).

Let X ⊆ V , d ∈ R and ν ∈ V(V ). Then ν[X := 0] and ν + d are also valuations, defined

respectively by:

- ν[X := 0](x) = ν(x) if x /∈ X, and ν[X := 0](x) = 0 otherwise.

- (ν + d)(x) = ν(x) + d for all variables x ∈ V .

In other words, ν[X := 0] sets each variable in X to 0 and leaves the rest unchanged; by

operation ν + d a value d is added to each variable.

2.4.2 Polyhedra

An atomic constraint is an comparison of a variable or difference of variables to a constant.

Atomic constraints over V are an expressions of a form:

x ⊲⊳ n or x− y ⊲⊳ m with (x, y) ∈ V 2, (n,m) ∈ R and ⊲⊳∈ {<,≤, =, ≥>}
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Constraints in the form x− y ⊲⊳ m are called diagonal constraints.

A set of valuations that satisfy finite conjunction of atomic constraints is called a poly-

hedron1. Ω(V) will denote set of all polyhedra on V(V ). From now false will denote an

empty polyhedron, true will denote a polyhedron constrained by
∧

x∈V

x ≥ 0 and zero will

denote a polyhedron constrained by
∧

x∈V

x = 0.

By convention Z can be described by following set of constraints:

Z =
∧

xi,xj∈V0,xi 6=xj

xi − xj ≺ li,j

where li,j ∈ R is a constant and ≺∈ {<,≤}. Indeed, a constraint in the form xi ≻ n can be

noted as x0 − xi ≺ n, xi = n can be noted as xi − x0 ≤ n ∧ x0 − xi ≤ −n. If a polyhedron

does not define a constraint on xi − xj it may be defined as xi − xj ≤ ∞. If definition of

polyhedron contains more than one constraint on the same variable only the tightest one

is considered.

Exemple 2.3. Let V = {x1, x2} and Z = (x1 ≥ 3) ∧ (x2 < 5) ∧ (x1 − x2 ≤ 4) be a

polyhedron. Note that the constraint x1 ≥ 3 can be written as x0 − x1 ≤ −3. Therefore Z

can be defined as follows:

Z =





x0 − x1 ≤ −3

x0 − x2 ≤ 0

x1 − x0 < ∞

x1 − x2 ≤ 4

x2 − x0 < 5

x2 − x1 < ∞

We say that a polyhedron Z ∈ Ω(V ) is bounded if there exists such a d ∈ R that ∀ν ∈ Z :

ν + d /∈ Z.

Intersection of polyhedra

Intersecting two polyhedra is intuitive. Formally for polyhedra Z and Z ′:

1Note that polyhedra are always convex
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Figure 2: Intersection of two polyhedra

Z ∩ Z ′ = {ν : ν ∈ Z ∧ ν ∈ Z ′}

This operation is illustrated in the Figure 2.

2.4.3 Numerical bounds

A numerical bound b is a pair in form (m,≺) where m ∈ R∪∞ and ≺∈ {<,≤}. Set of all

bounds will be noted by B. Formally, the set B is defined by:

B = (R × {<,≤}) ∪ (−∞, <) ∪ (∞, <)

Ordering of bounds

Operators ‘ < ‘ and ‘ ≤ ‘ are strictly ordered. The order is defined by “<” < “≤”. The

ordering of bounds is defined as follows:

(n1,≺1) ≤ (n2,≺2) ⇔

{
n1 < n2, or

(n1 = n2) ∧ (≺2= “ ≤′′)

(n1,≺1) < (n2,≺2) ⇔

{
n1 < n2, or

(n1 = n2) ∧ (≺2=
′<′) ∧ (≺2=

′≤′)
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Operations on bounds

Let b1 = (n1,≺1) and b2 = (n2,≺2). The sum of two bounds is defined in the following

way:

b1 + b2 = (n1 + n2, min(≺1,≺2))

The function min(b1, b2) returns lower of two bounds and is defined by

min(b1, b2) =

{
b1 , if b1 ≤ b2

b2 , otherwise

The multiplication operation of a real and a bound is defined as follows:

k · (n,≺) = (k · n,≺)

2.4.4 Constraint graph

A polyhedron Z ∈ Ω(V) can be represented by a constraint graph. This is a directed,

complete and weighted graph, where nodes are labelled with variables of V0 and weights

of edges define bounds of difference of variables labelling nodes connected by the edge.

Formally:

Definition 6. (Constraint graph) Let Z be a polyhedron defined by:

Z =
∧

xi,xj∈V0,xi 6=xj

xi − xj ≺i,j mi,j

A constraint graph associated to Z is a directed, complete and weighted graph G =

(V0, ω, E), such that ω : E 7→ B, where each edge xj

(mi,j ,≺i,j)
−−−−−−→ xi represent the constraint

xi − xj ≺i,j mi,j from the definition of Z.

A constraint graph for the polyhedron from Example 2.3 is presented in the Figure 3.

Later in the document, names of variables will be used to refer to the nodes labelled with

those variables in a constraint graph.

A constraint graph represents set of constraints that define polyhedron. Each edge

xi

(b,≺)
−−−→ xj represent constraint xj − xj ≺ b. Thus, the path xi

(bi,≺i)
−−−−→ xi+1

(bi+1,≺i+1)
−−−−−−→

xi+2 · · ·xk−1
(bk−1,≺k−1)
−−−−−−−→ xk in fact represents the following set of constraints:
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Figure 3: Constraint graph





xi+1 − xi ≺i bi

xi+2 − xi+1 ≺i+1 bi+2

· · ·

xk − xk−1 ≺k−1 bk−1

Adding those constraints by sides will give following result:

xk − xi ≺ bi + bi+1 + · · · + bk−1

with ≺=≤ if ∀i ∈ [1..k−1] : ≺i= ‘ ≤ ‘. Otherwise ≺= ‘ < ‘. Therefore the actual constraint

on xj − xi is determined by the weight of the shortest path from the set path(ni → nj).

From now, expr(p) will denote the actual expression for which the path p ∈ paths(G)

determine constraint. For example, for a path p = xi → · · · → xj , expr(p) = xj − xi.

2.4.5 Canonical form of a polyhedron

It is possible that two polyhedra defined by different sets of constraints represent the same

portion of the space V(V ). It is useful to define a canonical form of a polyhedron which

defines the “tightest” set of constraint for a given polyhedron. Formally:

Definition 7. (Canonical form) Let Z be a polyhedron defined by following set of con-

straints: ∧

xi,xj∈V0,xi 6=xj

xi − xj ≺i,j mi,j
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Figure 4: Minimal graph for polyhedron from Example 2.3

Z is in canonical form if and only if:

∀xi, xj : ∄(m,≺) < (mi,j,≺i,j) | Z ∩ (xi − xj ≺ m) = Z

Intuitively, Z is in its canonical form if the constraints that define it cannot be tightened

without changing Z.

In a constraint graph for polyhedron Z, the actual bound of difference xi−xj is determined

by the shortest path of path(xj → xi). If there exists p ∈ path(xj → xi), such that

ω(p) < ω(xj → xi) it means that constraint on xi − xj is in fact determined by ω(p) and

not ω(xj → xi). This means that ω(xj → xi) can be lowered as long as it is not lower than

ω(p), without any consequence on the shape of Z.

On the other hand, if the constraint graph is minimal, weight of any edge e is not higher

than weight of any p ∈ path(e). The actual bound of the difference between variables

represented by nodes connected by e is than determined by ω(e). Thus, lowering weight of

e will cause that content of Z will change as well.

Corollary 1. A polyhedron is in canonical form if and only if its constraint graph is

minimal.

Exemple 2.4. Let us consider polyhedron defined in Example 2.3 with constraint graph

depicted in the Figure 3. Note that the graph is not minimal, since ω(x0 → x1) > ω(x0 →

x2 → x1) and ω(x1 → x2) > ω(x1 → x0 → x2). The minimal graph for Z is depicted in

the Figure 4.

Therefore, the canonical form of Z is following:
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cf(Z) =





x0 − x1 ≤ −3

x0 − x2 ≤ 0

x1 − x0 < 9

x1 − x2 ≤ 4

x2 − x0 < 5

x2 − x1 < 2

Theorem 1. (Emptiness test) The polyhedron Z is not empty (Z ≁ false) if and only

if its constraint graph is positive.

A polyhedron does not represent an empty portion of space only if its constraint graph does

not contain negative cycles. Therefore, according to Property 4 emptiness of the polyhedron

may be tested by checking weights of cycles of lengths 2 of its minimal constraint graph.

Proof. Z is not empty if and only if the constraints that define it are not contradicting.

Assume that a constraint graph G = (N,ω,E) that represents Z is negative. It means that

there exist a cycle c = xi → · · · → xi that has a weight (b,≺) such that (b,≺) ≤ (0,≤).

The weight of the cycle c determines the bound of xi−xi, so it determines in fact bound of

0. The negative weight of c leads to following inequality: 0 ≺ b that is contradicting when

(b,≺) ≤ (0,≤). Therefore any negative cycle determines that Z is empty.

2.4.6 Minimal constraint system

A set of constraints defining a polyhedron may be redundant in the sense that some of

the constraint may be derived from others. For example for a set of constraints (x − y ≤

2) ∧ (y − z ≤ 5) ∧ (x − z ≤ 7) the latter constraint is obviously redundant, since it may

be derived from the first two. It is desirable to know the set of non-redundant constraints

that define a polyhedron.

It is known, e.g. from [57], that for each polyhedron there is a minimal constraint system

with the same solution set. Computing this minimal form for all polyhedra and storing

them in memory using a sparse representation can reduce the memory consumption. This

problem has been thoroughly investigated in [57], [68] and [59].

To define an algorithm for finding redundant constraints it is necessary to define zero cycle
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as a cycle in a constraint graph which weight is zero. If a graph does not have zero cycles,

finding the redundant constraints is trivial: an edge of a constraint graph represents a

redundant constraint if its weight is equal to weight of any path with source and destination

of given edge. Further, if the input graph is in minimal form all redundant edges can be

located by considering alternative paths of length two. The Algorithm 2.2 defines a function

reduce∗() which removes redundant edges from a zero cycle free constraint graph and has

O(n3) complexity.

Algorithm 2.2 reduce∗(G)

Input: constraint graph G without zero cycles

Output: reduced graph

for all i ∈ [1, n] do

for all j ∈ [1, n] do

for all k ∈ [1, n] do

if ωG(ni → nj) ≤ ωG(ni → nk) + ωG(nk → nj) then

Mark edge ni → nj as redundant;

end if

end for

end for

end for

Remove all edges marked as redundant;

The problem is more complex, however, in case of graphs with zero cycles. The reason is

that the set of redundant edges in a graph with zero-cycles is not unique. This is illustrated

by Example 2.5 [22].

Exemple 2.5. Consider the graph from Figure 5(a). Applying the reasoning for the graphs

without zero cycles would remove edge x0
(3,≤)
−−−→ x2 basing on path x0

(−2,≤)
−−−−→ x1

(5,≤)
−−−→ x2,

but also it would remove edge x1
(5,≤)
−−−→ x2 basing on path x1

(2,≤)
−−−→ x0

(3,≤)
−−−→ x2. If both of

those edges are removed it will not be possible to construct a path leading to x2. There is a

dependence between edges x0
(3,≤)
−−−→ x2 and x1

(5,≤)
−−−→ x2 so only one of them can be considered

redundant.

The solution to this problem is to partition the nodes according to zero-cycles and build a
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x0 x1

x2

(−2,≤)

(2,≤)

(3,≤)
(3,≤) (5,≤)

(1,≤)

(a)

x0 x1

x2

(−2,≤)

(2,≤)

(3,≤)
(3,≤)

(b)

Figure 5: Constraints graph with zero cycle and its reduced version

super-graph where each node is a partition. The graph from Figure 5 has two partitions, one

containing x1 and x2 and the other containing x3. To compute the edges in the super-graph

one representative for each partition must be picked and the edges between the partitions

inherit the weights from edges between the representatives. The super-graph is zero-cycle

free and can be reduced using Algorithm 2.2. The relation between the nodes within a

partition is uniquely defined by the zero-cycle and all other edges may be removed. The

reduced super-graph is connected to the reduced partitions. Figure 5(b) shows the reduced

version of graph from the Figure 5(a). Pseudo-code for the reduce() function is cited after

[22] in Algorithm 2.3.

2.4.7 Operations on polyhedra

Let ν↑ (resp. ν↓) be an operation that for valuation ν returns a polyhedron containing all

valuations ν ′ such that ν ′ = ν + d (resp. ν ′ = ν − d) for all d ∈ R≥0.

The operation [X := 0]ν returns a polyhedron containing valuations ν ′ such that ν ′[X :=

0] = ν.

Intuitively, ν↑ (resp ν↓) contains all valuations that can be obtained by adding (resp.

subtracting) the same value to all elements of ν. [X := 0]ν results in such a polyhedron that

assigning 0 to variables in X for all valuations in this polyhedron will result in obtaining
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Algorithm 2.3 reduce(G)

Input: constraint graph G

Output: reduced graph G′

for all i ∈ [1, n] do

if ni is not in a partition then

Eqi = ∅;

for all j ∈ [i, n] do

if ω(ni → nj) + ω(nj → ni) = (0,≤) then

Eqi = Eqi ∪ ni;

end if

end for

end if

end for

Let G′ be a graph without nodes;

for all Eqi do

Pick one representative node ni ∈ Eqi;

Add ni to G′;

Connect ni to all nodes in G′ using weights of G

end for

reduce∗(G′)

for all Eqi do

Add one zero cycle containing all nodes in Eqi to G′;

end for
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Figure 6: Operations on valuations
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Figure 7: Operations on polyhedra

polyhedron containing only valuation ν. The operations ν↑, ν↓ and [X := 0]ν are illustrated

in the Figure 6

Having defined operations on valuations, corresponding operations may be defined for

polyhedra. The operations Z↑, Z↓, Z[X := 0] and [X := 0]Z are defined in the following

way:

Z↑ = {ν↑ | ν ∈ Z},

Z↓ = {ν↓ | ν ∈ Z},

Z[X := 0] = {ν[X := 0] | ν ∈ Z},

[X := 0]Z = {[X := 0]ν | ν ∈ Z}.

Examples of operations on polyhedra are shown in the Figure 7.

Property 5. If Z is a polyhedron and X ⊆ V , then Z↑, Z↓, Z[X := 0] and [X := 0]Z are

also polyhedra.



3 Modeling Real Time Systems

This chapter concentrates on modeling real time systems using timed automata. The Sec-

tion 3.1 presents the background information about clocks and alphabets that need to

be understood before introducing timed automata. The model is presented in the Section

3.2, together with some of its extensions. Finally, the Section 3.3 shows two approaches

for modeling systems that are composed from more than one communicating real time

elements.
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Figure 8: Behavior of a clock

3.1 Background

3.1.1 Clocks

Clocks are variables that measure time. The basic feature of a clock is that its value

increases with the same tempo that all other clocks in the system. It means that within

fixed period of time value of all system clocks will increase with the same value.

Two allowed operations on clock are comparing its value to a real constant and reset. By

reset, a clock’s value is set to 0. A behavior of a clock is illustrated in the Figure 8. A value

of the clock increases with the same rate that the global time. The clock is reset at two

moments: when a value of the global time reached 1 and 3.

3.1.2 Alphabets and timed sequence

Let Σ be a finite alphabet of symbols. Σ∗ will denote the set of finite sequences of symbols

from Σ and ǫ ∈ Σ∗ is an empty sequence. τ will denote an event not in Σ and Στ is the set

Σ ∪ {τ}.

A timed event over Σ is a pair u = (a, d) such that a ∈ Σ and d ∈ R≥0. a is interpreted to

denote an event occurrence and d is interpreted as the timestamp of the occurrence of a.

event(u) will denote the untimed event a associated to u and time(u) the real d.

A timed sequence σ = [(a1, d1)...(an, dn)] over Σ is an element of (Σ×R≥0)∗ such that the

sequence of timestamps is monotonically increasing. For example, σ = [(a1, 3), (a2, 5)] is a

timed sequence, however σ′ = [(a1, 3), (a2, 2)] is not. The set of timed sequences over Σ is

noted TS(Σ).
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For X ⊆ Σ, σ|X is the sequence obtained by erasing from σ all timed events u, such that

event(u) /∈ X (projection on X).

3.2 Timed Automata

3.2.1 Syntax and semantics of TA

Definition 8. A Timed Automaton (TA) over an alphabet Σ is a 5-tuple A =

(L, l0,Σ, C,→), where:

• L is a set of locations,

• l0 is an initial location,

• Σ is an alphabet of events,

• C is a set of clocks,

• →⊆ L× Ω(C) × Στ × 2C × L is a set of transitions.

Each transition t ∈→ of a TA has following form: t = (l, Z, a, r, l′) noted l
Z,a,r
−−−→ l′. The

l and l′ are source and destination locations respectively. Z is a guard of transition that

is defined by conjunction of atomic constraints on system clocks. a is an event associated

with the transition. r denotes set of clocks reset to 0 when the transition is executed. From

now, src(t) and dest(t) will denote source and destination locations of the transition t.

Exemple 3.1. An exemplary TA is presented in the Figure 9. The automaton has three

locations – the initial location l0, and two other locations: l1 and l2. The alphabet of events

Σ consists of three events: a, b and c. There are two clocks used: x and y.

Semantics of Timed Automaton

The semantics of TA A = (L, l0,Σ, C,→) is defined by a transition system [55, 69] QA =

(S, s0,Γ,→A). A state s of QA is defined by a pair s = (l, ν) where l is current system’s

location and ν denotes values of all system’s clocks. The initial state q0 is defined by

(l0, zero). The alphabet Γ is defined by Γ = Στ ∪ {ǫ(d)|d ∈ R≥0}.

There are two possible kinds of transitions between states: delay transition and action

transition:
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Figure 9: Example of Timed Automaton

• delay transition when a state is changed due to passage of time: for a state (l, ν) and

d ∈ R≥0 (l, ν)
ǫ(d)
−→ (l, ν + d),

• discrete transition for a state (l, ν) and a transition t = (l, Z, a, r, l′), (l, ν)
t
−→

(l′, ν[r := 0]) if ν ∈ Z.

3.2.2 Computation

Let A = (L, l0,Σ, C,→) be a TA and σ be a timed sequence, such that |σ| = n. A

computation r of A over σ, noted (s̄, ν̄) is a finite sequence defined in following form:

r : (l0, ν0)
σ1−→ (l1, ν1)...(ln−1, νn−1)

σn−→ (ln, νn)

with li ∈ L and ν ∈ V(C), satisfying following conditions:

1. Initiation: for all x ∈ C : ν0(x) = 0

2. Succession: for all i ∈ [1, n] there exists a transition ti in A, such that ti =

(li−1, Zi, event(σi), ri, li) and:

• νi−1 + (time(σi) − time(σi−1)) ∈ Zi,

• νi = νi−1 + (time(σi) − time(σi−1))[ri := 0]

Intuitively, the initial state is defined by (l0, zero). When a transition ti+1 is executed, val-

uations of clocks equal νi plus the time interval between events event(σi) and event(σi+1).

This valuation is checked against the transition guard for ti+1. The valuation of clocks

when entering location li+1 must be equal to the valuation at the moment of executing ti+1

but with all clocks in ri+1 reset to 0.
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Exemple 3.2. Consider TA from the Figure 9 and following timed sequence σ:

σ = [(a, 2.4), (b, 3), (c, 3.8)]

The corresponding computation for σ is presented below:

r : (l0, [0, 0])
(a,2.4)
−−−→ (l1, [2.4, 0])

(b,3)
−−→ (l2, [1.8, 0.6])

(c,3.8)
−−−→ (l0, [0, 0])

For the same automaton computation over sequence σ′ would not be possible:

σ′ = [(a, 2.4), (b, 3.2), (c, 4.0)]

A set of timed sequences that allow computation of A is noted by Runs(A) and is defined

by:

Runs(A) = {σ ∈ TS | A allows computation over σ}

The projection of all elements of Runs(A) onto alphabet Σ is called timed traces and noted

by TTrace(A). Formally:

TTrace(A) = {σ′ | ∃σ ∈ Runs(A) | σ′ = σ|Σ}

Finally, TTrace(A, n) denotes all elements of TTrace(A) of length n.

3.2.3 Invariants

The specification of TA may be extended with invariants. In TA with invariants each

location is associated with a polyhedron describing clock constraints which must be fulfilled

to let the automaton reside in given location. Formally TA with invariants is defined as

follows:

Definition 9. (TA with invariants) A timed automaton with invariants is a 6-tuple

(L, l0,Σ, C, Inv,→), where:

- (L, l0,Σ, C,→) is a TA in classical meaning
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Figure 10: Example of a TA with invariants - light controller

- Inv : L 7→ Ω(C) is the function associating each location with an invariant in form

of a polyhedron.

The semantics of TA with invariants is the same as semantics for classical TA with a little

difference regarding the possible types of transition:

- Delay transition – state is changed due to passage of time: for a state (l, ν) and

d ∈ R≥0 (l, ν)
ǫ(d)
−→ (l, ν + d), if for all 0 < d′ < d, ν + d′ ∈ Inv(l)

- Discrete transition – for a state (l, ν) and an edge t = (l, Z, a, r, l′), (l, ν)
t
−→ (l′, ν[r :=

0]), if ν ∈ Z and ν[r := 0] ∈ Inv(l′).

Exemple 3.3. An example of TA with invariants is presented in the Figure 10. It is a

classical example of light controller. The initial location of the automaton is off. Note that

this location is associated with an invariant defined by true what means that the automaton

may stay there for any time. If the automaton receives signal turn_on from the environment

it goes to the location on and resets the clock x. The location on may be occupied only if

the value of the clock x is lower or equal to 60 time units. If event turn_on is received

within this period of time the clock x is reset. If it reaches value 60 the automaton switches

off the light (by switch_off event) and goes to the location labelled with off.

3.2.4 Urgent locations

In the tool UppAal, locations may be labelled as urgent. The time is not allow to pass in

urgent locations - when the automaton enters such a location it must leave it immediately

[19]. Semantically, urgent locations are equivalent to:
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- adding an extra clock x, that is reset on every transition with destination in the

urgent location, and

- adding an invariant x ≤ 0 to the location. [18]

3.2.5 Time Input Output Automata

The basic model of TA does not allow distinction between emission and reception of action.

It may be sometimes necessary to distinct, whether a transition of TA is executed due to

stimulation from system’s environment (input), or it was initiated by the system itself

(output). To allow analysis of real time systems from this point of view, the extension

of TA was proposed – Time Input/Output Automata (TIOA) [54]. TIOA is a TA over

alphabet Στ = ΣI ∪ ΣO ∪ τ , where:

- ΣI is a set of input actions (emitted by the environment)

- ΣO is a set of output actions (emitted by the automaton)

- τ is an internal, unobservable event of the automaton.

The automaton A = (L, l0,Σ, C,→) is said to be input complete if it accepts every input

in all states, i.e ∀l ∈ L, a ∈ ΣI : ∃t ∈→ | src(t) = l ∧ action(t) = a, where action(t)

denotes the action associated with transition t.

3.2.6 Extended TIOA

Most of the specifications of real systems apart clocks use also variables. Modeling such

systems is possible with Extended TIOA [65]. Formally, an Extended TIOA A is a tuple

A = (L, l0,Σ, C, V, V0,→), where L, l0, Σ and C are defined in the same way that for

standard TIOA, and additionally:

• V is a set of variables (reals, integers, booleans etc.),

• V0 is a set of initial values of variables from V ,

• transitions in → have form: (l, Z, a, Upd, l′) such that:

– l and l′ are source and destination locations respectively,

– a ∈ Σ is an action associated with the transition,
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– Z is a guard of the transition in form conjunction of atomic constraints in the

form:

xi − xj ≺ f(V ) or f1(V ) ⊲⊳ f2(V )

– Upd is a set of updates in form:
{
x := 0 if x ∈ C

x := f(V ) if x ∈ V

where f(V ), f1(V ) and f2(V ) are linear functions over variables of V .

The semantics of Extended TIOA A is defined by a transition system TS(A) = QA =

(S, s0,Γ,→A). A state of QA is defined by a triple (l, ν, ϑ), where l denotes currently

occupied location, ν is a valuation of system’s clocks and ϑ is valuation of variables of V .

The initial state is defined by (l0, zero, V0). The alphabet Γ is defined as in case of standard

TA by Γ = Στ ∪ {ǫ(d)|d ∈ R≥0}.

There are two possible kinds of transitions between states: delay transition and action

transition:

• delay transition as described in the Section 3.2.1 for standard TA,

• discrete transition for a state (l, ν, ϑ) and a transition t = (l, Z, a, Upd, l′), (l, ν, ϑ)
t
−→

(
l′, ν[r := 0], Upd(ϑ)

)
if ν, ϑ ∈ Z.

3.3 Modeling parallel systems

TA or TIOA allow to model behavior of single entity communicating with its environment.

They do not allow to model parallel execution and communication of two or more entities.

This is handled by a new, higher level modeling structures.

For needs of UppAal a network of TIOA has been defined [22]. It allows to model several

automata executed in parallel, however all of them on the same topological level - networks

do not allow modeling nested structures.

Nested structures are possible using the model of Communicating System (CS) defined in

[24]. A CS defines a communication topology for set of automata in the system. Viewed

from outside, a CS has the same interface as TIOA, so it may communicate with them and

can be nested in CSs of higher levels.
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3.3.1 Networks of TIOA

A network of TIOA is a set N = {A1, ..., An} of timed input output automata, called

processes. Synchronous communication between the processes is done by hand-shake syn-

chronization using input and output events - an output event of one process may be asso-

ciated with an input event of some other process (here noted a‖b for events a and b) in the

network.

Events that are not associated with any other event in a network define an interface of the

network. Interface of a network N will be denoted as if(N). By definition τ /∈ if(N).

A state of N is a pair s = (l, ν), where l is a vector of locations occupied by all network’s

processes and ν is a valuation of all clocks in the network. A network may perform two

types of transitions: a delay transition and discrete transition. The rule for delay transitions

is similar that rule for delay transitions of single TIOA. There are, however two rules

for discrete transitions of N . The first case is when a single process of N performs a

transition that is associated with unobservable event τ or with an event that belongs to

the interface of N . The second type of transition is when two processes synchronize and

move simultaneously. In the second case one of processes performs a discrete transition

with an output event that is associated to an input event of the transition performed by

the other process.

Let l[l′i/li] stand for a vector l where li has been substituted with l′i. Inv(l) means an

intersection of all invariants of elements of l. ti ‖ tj denotes that event of transition ti

is an output event associated with input event of transition tj. Then, all three types of

transitions of N can be described as follows:

- delay transition: for a state (l, ν) and d ∈ R≥0 (l, ν)
ǫ(d)
−→A (l, ν+d), if for all 0 ≤ d′ ≤ d,

ν + d′ ∈ I(l),

- local action transition: for a state (l, ν) and an edge t = (li, Z, a, r, l
′
i),

(l, ν)
t

−→ (l[l′i/li], ν
′)

if ν ∈ Z, ν ′ = ν[r := 0] ∈ I(l[l′i/li]) and a ∈ if(N) ∪ τ ,

- synchronization transition: for a state (l, ν) and edges t1 = (li, Z1, a1, r1, l
′
i) and t2 =

(lj, Z2, a2, r2, l
′
j)

(l, ν)
t1‖t2
−→ (l[l′i/li][l

′
j/lj ], ν

′)
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if ν ∈ Z1 ∩ Z2, ν
′ = ν[r1 := 0][r2 := 0] ∈ I(l[l′i/li][l

′
j/lj]).

Committed locations

The concept of committed locations increase expressiveness in modeling networks of au-

tomata in UppAal. Labelling location as committed has sense only, if the network consists

of more than one process. If any process of a network is in a committed location, the next

step must involve a transition from one of the committed locations. Furthermore, com-

mitted locations, similarly to urgent locations freeze time, which means that committed

location must be left at the same time it was entered.

Committed locations are useful for creating atomic sequences and for encoding synchro-

nization between more than two components. Notice that if several processes are in a

committed location at the same time, then they will interleave.

3.3.2 Communicating System

Topology of communication

The topology of communication for set of automata is a model of communication between

them. It describes dynamic system configuration and possible synchronizations between

system’s processes in any possible system configuration. The definition of topology is in-

spired by definition of synchronization vectors [10] and work of [17].

A topology defines channels for events exchanged by automata in the system. The channel

has a form of a vector of events that define the synchronization. Such a vector is associated

with one additional event that is seen by the entities outside the CS. Due to this features,

topology has the same interace as TIOA and can communicate with its environment.

Definition 10. (Topology) The topology of communication Top for set of automata

N = {A1, .., An} is defined by a 3-tuple (ΣG,Σ, T r). The ΣG is a finite set of global actions,

Σ = {Σ1, ...,Σn} is set of alphabets of automata. The Tr is an automaton, for which

the alphabet of events ΣTr is defined by a set of vectors of n + 1 elements in the form

< ag, a1, ..., an >, where:

• ag ∈ ΣG is the global action assigned to the synchronization,
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• ∀i ∈ [1, n] : ai ∈ Σi ∪ {idle}

The synchronization vectors define for each automaton an action that must be performed

in the synchronization. If the action for an automaton is idle it means that this certain

automaton does not take part in the synchronization. The global action ag is the action

that is seen from the environment point of view.

If the automaton Tr has only one location, the topology is called static, otherwise it

is called dynamic. In static topologies, all synchronizations are enabled regardles what

happened in the past. The dynamic topologies allow to model more advanced systems,

where communication channels are opened and closed depending on the system’s history.

The form of the synchronization vectors allow to model broadcast, unicast or multicast

character of communication between processes.

Definition of Communicating System

In [23] a CS is defined using set of TIOA. In this work the definition of CS will be

extended such that it may be composed of either primitive processes that are TIOA or it

may contain also other CSs of lower level. By this it is possible to model nested structures

of many layers.

Definition 11. (Communicating System) A Communicating System is a 3-tuple

{M,SC,Top}, where:

- M is a set of modules that can be either TIOA or CS,

- CS is a set of shared clocks that are visible for all modules in M ,

- Top is a topology of communication for elements of M .

If a CS contains a shared clock it must be also a shared clock for all its modules if they

are defined as CS of lower level.

Semantics of CS

Semantics of communication system CS = {M,SC, (ΣG,Σ, T r)} is defined by a TIOA

ξ(CS) = {Lξ, lξ0,Σ
ξ, Cξ,→ξ}, such that:
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y < 3y := 0
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Top < A1, CS2 >

Top < A2, A3 >

SC = {x, y}

Figure 11: Example of a Communicating System

- Lξ = {< lTr, l1, ..., ln > | lTr ∈ L(Tr), ∀i ∈ [1, n] : li ∈ L(Mi)} is set of locations of

all modules. L(Mi) denotes set of locations of Mi and L(Tr) denotes set of locations

in the CS’s topology,

- lξ0 = {lTr
0 , l10, ..., l

n
0} is a vector of initial locations of the topology and modules of CS,

- Σξ = Σ is the alphabet of CS

- Cξ = SC(CS)∪C(Mi), i ∈ [1, n], where SC(CS) denotes set of shared clocks of CS

and C(Mi) is set of clocks of module Mi,

- →ξ= {(lTr, l1, ..., ln)
a∈Σξ,Z∈Ω(Cξ),r∈Cξ

−−−−−−−−−−−−→ (l′Tr, l
′
1, ..., l

′
n) is set of transitions between lo-

cations in Lξ.

Exemple 3.4. Let us consider the communicating system CS1 from the Figure 11. It

consists of another communicating system CS2 and an automaton A1. Those two modules

share access to the clock x. The communication between CS2 and A1 is described by the

topology Top < A1, CS2 >. The module CS2 consists of two primitive processes A2 and

A3 which share access to the clock y. The communication between them is described by

Top < A2, A3 >.
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The Top < A1, CS2 > defines three possible synchronizations for CS1. All of them are asso-

ciated with global event τ , which means that they cannot be observed from the environment

of CS1. First synchronization is when CS2 performs local action that is associated with τ .

Process A1 does not perform any action then. Other possibilities are when A1 synchronizes

with CS2 by pairs of actions b!‖b? and c?‖c!.

Within CS2 three possible synchronizations are defined as well. A2 can synchronize with A3

by pair of actions a?‖a!. Processes A2 and A3 can also synchronize with the environment

(which is A1 in that case) by events b? and c! respectively.

The communication system CS1 has defined one shared clock x. Because one of the modules

of CS1 is communication system CS2, the clock x is shared also within this module. CS2

defines also second shared clock y. This clock, however, is not seen and cannot be reset

outside of CS2.

3.3.3 Summary

Both CS and automata networks are a way to model communicating systems without

necessity of explicitly deriving a parallel composition which may lead to state explosion.

The CS however allow to model nested and hierarchical systems while networks of TIOA

allow to define only a flat structure of communicating automata. On the other hand com-

mitted states introduced for networks of TIOA enable modeling more complex processes

that would be very difficult to model using even very advanced dynamic topologies.
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4 Symbolic Analysis of Timed

Automata

This chapter covers symbolic methods for analysis of timed automata. The Section 4.1

introduces the fundamentals of model checking. The symbolic approach for state represen-

tation and reachability analysis is covered by the Section 4.2. The last section introduces

a Difference Bound Matrix – a standard data structure for symbolic state representation.
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4.1 Model checking

Model checking is the most successful approach that has emerged for verifying requirements.

Pioneering work in the model checking of temporal logic formulae was done in [42, 70]. A

comprehensive review about model checking of timed and untimed systems is done in

[14]. Model checking is a formal verification technique which allows for desired behavioral

properties of a given system to be verified on the basis of a suitable model of the system

through systematic inspection of all states of the model in a brute-force manner. In this

43
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Figure 12: Model checking process

way, it can be shown that a system, represented by a given model truly satisfies a certain

property:

system |= requirements

The model checking process is symbolically presented in the Figure 12. A model checking

tool is provided with a formal system model (e.g. communicating system of timed au-

tomata) and a property to verify that is expressed by formal logic language (e.g. Timed

Computation Tree Logic [41] or Timed Temporal Logic [27]). The model checker by analyz-

ing entire reachability tree of the modelled system returns a verdict whether the property

is satisfied and (optionally) a counterexample or a diagnostic trace.

The attractiveness of model checking comes from the fact that it is completely automatic,

i.e. the learning curve for a user is very gentle and that it offers counterexamples in case a

model fails to satisfy a property serving as indispensable debugging information. On top of

this, the performance of model-checking tools has long since proved mature as witnessed

by a large number of successful industrial applications (e.g. [81, 45]).

The main difficulty of the model-checking of real-time systems defined as timed automata

is that uncountably many states have to be analyzed, since the semantics of the time

automata is defined by an infinite transition system, say TS(TA). A naive graph analysis

in the state graph of TS(TA) is therefore not feasible. Instead, the basic idea is to consider

a finite quotient of this transition system, the so-called region transition system. The states

in the region transition system are equivalence classes of states in TS(TA) that all satisfy
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the same atomic clock constraints, and from which “similar” time-divergent paths emanate.

As the number of equivalence classes is finite, this provides a basis for model checking.

In practice, the equivalence classes are calculated “on-the-fly”, during symbolic reachability

analysis. Symbolic reachability analysis is a powerful paradigm for verification of infinite-

state systems. Symbolic reachability analysis uses finite structures to represent infinite sets

of configurations (see [39, 57]), and iterative exploration procedures to compute the set of

all reachable configurations, or an upper approximation of this set. This technique is used

for verification of infinite systems like time systems are.

4.2 Symbolic Path

4.2.1 Path

A path ρ = [t0, ..., tn] of TA A = (L, l0, C,Σ,→) is a sequence of transitions ti ∈→ such

that:

src(ti) =




l0 if i = 0

dest(ti−1) otherwise

4.2.2 Zones

A zone of TA A = (L, l0, C,Σ,→) is a pair (l, Z) where l ∈ L is the system location and

Z is a polyhedron containing possible valuations of system’s clocks. For zones H = (l, Z)

and H ′ = (l′, Z ′) operations of inclusion and intersection are defined in the following way:

H ⊆ H ′ ⇔ l = l′ ∧ Z ⊆ Z ′

H ∩H ′ =

{
(l, Z ∩ Z ′) , if (l = l′) ∧ (Z ∩ Z ′ 6= ∅)

∅ , otherwise
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l′, true

t = (l, a, Zt, {y}, l
′)

l, Inv(l)

(a) automaton A

y

Z

Z↑

x

Inv(l)

(b) Z↑ ∩ Inv(l)

x

y

Zt

Z↑ ∩ Φ(l)

(Z↑ ∩ Φ(l) ∩ Zt)[y := 0]

(c) post((l, Z), t)

Figure 13: The post operation

4.2.3 Symbolic operations on zones

Let H = (l, Z) be a zone and t = (l, Z, a, r, l′) be a transition of TA (with invariants)

A = (L, l0, C,Σ, Inv,→).

Operation post()

The operation post(H, t) returns a zone that contains all states that can be occupied by A

after it performes transition t from zone H . Operation post(H, t) is defined as follows:

post(H, t) =

(
l′,

((
Z↑ ∩ Inv(l)

)
[r := 0]

)
∩ Inv(l′)

)

Exemple 4.1. Consider the automaton A from Figure 13(a) being in a zone (l, Z) (Z

is depicted in 13(b)) performing transition l
Zt,a,{y}
−−−−→ l′. The polyhedron Z↑ illustrates all

valuations that can be reached from Z by time elapse. However A can stay in the location

l only when the valuations of it’s clocks satisfy the invariant Inv(l). The transition t may

be performed only, if the clocks’ valuations belongs to the polyhedron Zt; this means that at

the moment of executing t possible valuations are defined by intersection of all valuations

that could be reached from Z in the location l (Z↑ ∩ Inv(l)) with the guard Zt (see Figure

13(c)). At the moment of executing t the clock y is reset, what is symbolically represented

by performing forward clock reset operation. Since the invariant for l′ is expressed by true,

the zone reached directly after performing t is defined by (Z↑ ∩ Inv(l) ∩ Zt)[y := 0].
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y

xZ ′

[y := 0]Z ′

Zt

Inv(l)

(a) [y := 0]Z ′ ∩ Zt ∩ I(l)

y

x

[y := 0]Z ′ ∩ Zt ∩ Φ(l)

([y := 0]Z ′ ∩ Zt ∩ Φ(l))↓

Inv(l)

(b) pred((l′, Z ′), t)

Figure 14: The pred operation

Operation pred()

The operation pred(H, t) is a reverse operation to post(). For an automaton that is in a

zone H = (l′, Z ′) and a transition t = (l, Zt, a, r, l
′) the operation pred(H, t) returns a zone

that could be occupied before performing the transition t such that execution of t results

in a state in H . The operation pred(H, t) is defined as follows:

pred(H, t) =
(
[r := 0]Z ∩ Zt ∩ Inv(l)

)↓
∩ Inv(l)

Exemple 4.2. Consider again the automaton A from Figure 13(a) this time in the zone

H ′ = (l′, Z ′). The operation [y := 0]Z ′ returned all valuations that could be occupied before

reseting clock y (see Figure 14(a)). The valuations at the moment of executing t must

have belonged to the guard polyhedron Zt and to invariant of l, which is expressed by

[y := 0]Z ′ ∩ Zt ∩ Inv(l). Applying backward time elapse operation on this polyhedron will

return polyhedron containing all valuations from which [y := 0]Z ′ ∩ Zt ∩ Inv(l) could be

reached by waiting some time (see Figure 14(a)). Finally the invariant of l must be used

again to make the resulting polyhedron contain only valuations valid in l.

post-pred stability

Let H = (l, Z), H1 and H2 be three zones and t1 = (l1, Z1, a1, r1, l) and t2 = (l, Z2, a2, r2, l2)

be two transitions of an TA A. Assume that H = post(H1, t1) and H = pred(H2, t2). Then:

• pred stability of the post operation: For all q = (l, ν) ∈ H , there exist q1 = (l1, ν1) ∈

H1, and d1 ≥ 0 such that ν1 + d1 ∈ Z1 and ν = (ν1 + d1)[r1 := 0]. We say that H is

pred-stable to H1 by t1. q1 is called predecessor state of q.
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• post stability of the pred operation: For all q = (l, ν) ∈ H , there exist q2 = (l2, ν2) ∈

H2, and d2 ≥ 0 such that ν2 + d2 ∈ Z2 and (ν + d2)[r2 := 0] = ν2. We say that H is

post-stable to H2 by t2. q2 is called successor state of q.

Intuitively, post-pred stability means that for all states (l, ν) ∈ H , there must be a state

in H1 that allows reaching (l, ν) by performing transition t1. Also for any state (l, ν) ∈ H

it is possible to reach a state in H2 by performing a transition t2.

4.2.4 Symbolic path analysis

Let ρ = [t1, · · · , tn] be a sequence of transitions of an automaton A such that ti =

(li−1, Zi, ai, ri, li), for all i ∈ [1, n] and let C be a set of clocks of A.

Forward path analysis

For all i ∈ [0, n]:




Hi = (l0, zero) , if i = 0

Hi = post(Hi−1, ti) , otherwise

Intuitively, the initial state of the system (H0) is the initial location with all clocks set to

0. Then next zones Hi are obtained by post() operation and are pred-stable to Hi−1 by ti.

Exemple 4.3. Consider following path:

ρ : l0
x≤2,y:=0
−−−−−→ l1

y≤1,x:=0
−−−−−→ l2

By forward analysis of ρ we define:





H0 = (l0, zero)

H1 = post(H0, t1) = (l1, x ≤ 2 ∧ y = 0)

H2 = post(H1, t2) = (l2, x = 0 ∧ y ≤ 1)

The following corollary arises from the definition of the post() operation:



4.2. Symbolic Path 49

Corollary 2. The final location ln of the path ρ is reachable if and only if the zone Hn is

not empty.

A symbolic path S+(ρ) associated with path ρ is a sequence of zones obtained by forward

analysis of ρ:

S+(ρ) : H0
t1−→ H1 · · ·Hn−1

tn−→ Hn

Backward analysis

For all i ∈ [0, n]:




Hi =

(
ln, Inv(ln)

)
, if i = n

Hi = pred(Hi+1, ti+1) , otherwise

Exemple 4.4. Consider following path:

ρ : l0
x≤2,y:=0
−−−−−→ l1

y≤1,x:=0
−−−−−→ l2

The zones obtained by backward analysis:





H2 = (l0, true)

H1 = pred(H2, t2) = (l1, x ≥ 0 ∧ y ≤ 1)

H0 = pred(H1, t1) = (l0, x ≤ 2 ∧ y ≥ 0)

Corollary 3. The final location ln of the path ρ is reachable if and only if H0 ∩ (l0, zero)

is not empty.

A symbolic path S−(ρ) associated with a path ρ is a sequence of zones obtained by backward

analysis of ρ:

S−(ρ) : H0
t1−→ H1 · · ·Hn−1

tn−→ Hn
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Forward-backward analysis

The pred-stability property of the post() guarantee that each state q ∈ Hi has a predecessor

in Hi−1. On the other hand it does not guarantee that from all q ∈ Hi the successor in

Hi+1 can be reached. The latter is guaranteed by the post-stability property of the pred()

operation. Therefore operations post() and pred() can be combined in order to formulate

forward-backward analysis of the path ρ:

For all i ∈ [0, n]:




Hi = (l0, zero) , if i = 0

Hi = post(Hi−1, ti) , otherwise

and:




H ′

i = Hi , if i = n

H ′
i = Hi ∩ pred(H

′
i+1, ti+1) , otherwise

By this, each H ′
i verifies the post/pred stability property for all i ∈ [0, n].

Exemple 4.5. Consider following path:

ρ : l0
y:=0
−−→ l1

y=1∧x≤3
−−−−−→ l2

By forward analysis of ρ we get:





H0 = (l0, zero)

H1 = post(H0, t1) = (l1, x ≥ 0 ∧ y = 0)

H2 = post(H1, t2) = (l2, x ≤ 3 ∧ y = 1)

Notice that although the state (l1, [x = 3, y = 0]) has a predecessor in H0 it does not have

a successor in H2. Applying backward analysis to the path gives following result:
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H ′
2 = H2 = (l2, x ≤ 3 ∧ y = 1)

H ′
1 = H1 ∩ pred(H

′
2, t2) =

(
l1, (x ≥ 0 ∧ y = 0) ∩ (x ≤ 3 ∧ y ≤ 1 ∧ x− y ≤ 2)

)
=

=
(
l1, (x ≤ 2, y = 0)

)

H ′
0 = H0 ∩ pred(H1, t1) = (l0, zero)

Corollary 4. For each state (l, ν) ∈ H ′
i there exists a computation r : (l̄, ν̄) over a timed

sequence σ such that: li = l and νi = ν.

In other words, corollary 4 says that for each state in zone obtained by forward-backward

analysis of path σ there exist a computation over σ that covers this state.

Finally a symbolic path S+
−(ρ) is defined as a sequence of zones obtained by forward-

backward analysis of ρ:

S+
−(ρ) : H ′

0
t1−→ H ′

1 · · ·H
′
n−1

tn−→ H ′
n

4.3 Difference Bounds Matrix

A Difference Bounds Matrix (DBM) is a data structure used for storing and processing

polyhedra which are represented by a constraint graph.

Definition 12. A Difference Bound Matrix (DBM) is a square matrix, where each row and

each column is labelled with a clock xi ∈ C. One additional row and column represent the

reference clock x0 always equal to 0. Elements Mi,j of DBM define bounds of the difference

xi − xj such that xi is a clock labelling row i and xj labells the column j.

Later row(i) (resp. column(i)) will denote the clock labelling ith row (resp. ith column)

of a DBM. length(M) will denote number of rows of DBM M . By convention DBMs are

organized in the way that rows and columns with the same index are labelled with the

same clock (∀i ∈ [1..length(M)] : row(i) = column(i)). The first row and column is

labelled with the reference clock x0.

The Figure 15 shows the constraint graph from Example 2.4 and its corresponding DBM.
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x0

x1 x2

(0,≤)
(5, <)

(4,≤)

(2, <)

(9, <)
(−3,≤) M =




x0 x1 x2

x0 (0,≤) (−3,≤) (0,≤)

x1 (9,≤) (0,≤) (4,≤)

x2 (5,≤) (2,≤) (0,≤)




Figure 15: Constraint graph and its corresponding DBM

4.3.1 Minimal DBMs

Minimal DBM is such a DBM that the constraint graph that it represents is minimal.

The Algorithm 4.1 defines function minimal(M) that for a DBM M returns DBM that is

minimal and represents canonical form of a polyhedron represented by M . The algorithm

is implementation of Floyd-Warschall shortest path algorithm.

Algorithm 4.1 minimal(M)

Arguments: DBM M

Returned value: DBM that is minimal

for all k ∈ [1..length(M)] do

for all i ∈ [1..length(M)] do

for all j ∈ [1..length(M)] do

Mi,j = min(Mi,j ,Mi,k +Mk,j);

end for

end for

end for

return M ;

Property 6. A polyhedron represented by DBM M is not empty if and only if the diagonal

of minimal(M) contains only bounds not lower than (0,≤).

The Property 6 is a consequence of the Property 4 about graphs with non-negative cycles.
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The diagonal of DBM that is result of operation minimal() contains weights of loops of

the constraint graph. Therefore if any element of diagonal is negative it means that the

graph contains negative cycles.

4.3.2 Operations on DBM

The operations on DBM can be divided into two classes:

1. Property checking: this class includes operations that check emptiness of polyhedron

represented by DBM, inclusion between two polyhedra and whether a polyhedron

represented by the DBM satisfies a given constraint.

2. DBM transformation: this class contains operations transforming the polyhedron

represented by the DBM. This includes intersection, time elapse and clock reset.

In following of this section we assume that the input matrices for the operations are minimal

and they represent non-empty polyhedra. The algorithms for DBM processing are based

on those described in [22].

Property checking

empty(M) The operation empty(M) returns a boolean value indicating whether the

polyhedron represented by M is empty. According to the Property 6 to check it, it is

enough to check whether the diagonal contains bounds lower than (0,≤). The operation

empty(M) is implemented by the Algorithm 4.2.

includes(M,M′) The function includes(M,M ′) checks inclusion relation for DBMs M

and M ′. It returns true if all valuations that belong to polyhedron represented by M belong

also to the polyhedron represented by M ′. In other words, if M represents polyhedron Z

and M ′ represents Z ′, the function includes(M,M ′) returns:

{
true if Z ⊆ Z ′

false otherwise

If M and M ′ are in minimal form it is enough to check whether all bounds defining M

are lower or equal than corresponding bounds defined by M ′. This test is implemented by
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Algorithm 4.2 empty(M)

Arguments: DBM M that is minimal

Returned value: a boolean value indicating whether M represents empty portion of space

for all i ∈ [1..length(M)] do

if Mi,i < (0,≤) then

return true

end if

end for

return false

Algorithm 4.3

Algorithm 4.3 includes(M,M ′)

Arguments: DBMs M and M ′ that are minimal

Returned value: a boolean value indicating whether polyhedron represented by M is

included by polyhedron represented by M ′.

for all i ∈ [1..length(M)] do

for all j ∈ [1..length(M)] do

if Mi,j > M ′
i,j then

return false;

end if

end for

end for

return true;

satisfies(M,xi − xj ≺ m) This function checks whether a polyhedron defined by M sat-

isfies a constraint vi − vj ≺ m. In other words it checks, whether adding the constraint

vi − vj ≺ m to the polyhedron defined by M will not result in an empty polyhedron. Note

that adding the constraint vi − vj ≺ m to polyhedron represented by M will cause chang-

ing element Mi,j to min
(
Mi,j, (m,≺)

)
. Thus, to verify whether the resulting polyhedron

will not be empty, it is enough to check whether (0,≤) ≤ (m,≺) +Mj,i. The operation is
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implemented by the Algorithm 4.4.

Algorithm 4.4 satisfies(M,M ′)

Arguments: Minimal DBM M and constraint xi − xj ≺ m

Returned value: a boolean value indicating whether polyhedron represented by M after

adding the constraint xi − xj ≺ m is not empty.

if (0,≤) ≤Mj,i + (m,≺) then

return true

else

return false

end if

Transformations

and(M,xi − xj ≺ m) Operation and(M,xi − xj ≺ m) represent adding the constraint

xi − xj ≺ m to a polyhedron represented by M . The basic step for this operation is to

check whether (m,≺) < Mi,j and if so, replacing Mi,j with (m,≺). If the element Mi,j has

been changed, the matrix must be minimized again. It can be done using the minimal()

function, however it is possible to derive an algorithm that takes advantage of the fact that

only one bound was altered and has O(n2) complexity. The pseudocode is illustrated by

the Algorithm 4.5.

To prove that the Algorithm 4.5 is correct it is more convenient to use constraints graphs.

Adding constraint xi − xj ≺ m to the polyhedron represented by graph G = (N,ω,E)

is equivalent to replacing weight of the edge xi → xj with the bound (m,≺). Note, that

this means that the weight of each edge in the graph is now equal to the weight of the

shortest from all paths between nodes nx and ny that traverse all nodes except ni and nj .

This is analogical situation to Floyd-Warschall algorithm when the paths that traverse all

nodes except xi and xj have been checked. Therefore it is enough to perform only two

iterations of the outer loop of Floyd-Warschall algorithm to check paths traversing nodes

of the altered edge.
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Algorithm 4.5 and(M,xi − xj ≺ m)

Arguments: DBMs M and that is minimal and a bound of xi − xj

Returned value: Minimal DBM M ′ that represents intersection of M and the bound.

if Mj,i + (m,≺) < (0,≤) then

M0,0 = (−1,≺) ;

else if (m,≺) < Mi,j then

Mi,j = (m,≺)

for all k ∈ {i, j} do

for all x ∈ [1..length(M)] do

for all y ∈ [1..length(M)] do

Mx,y = min(Mx,y,Mx,k +Mk,y)

end for

end for

end for

end if

return M
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intersection(M,M′) Intersecting two polyhedra is after minimization, the most often

performed operation on DBMs. Intersecting of two DBMs is basically the same that inter-

secting each bound of the DBMs. Therefore to obtain a matrix that represent a polyhedron

that is a result of intersection it is enough to build a matrix where each element is the lower

element of two intersected matrices. This will not however preserve the canonical form, so

the matrix needs to be minimized after that. For pseudocode for intersection(M,M ′) see

Algorithm 4.6.

Algorithm 4.6 intersection(M,M ′)

Arguments: DBMs M and M ′ that are minimal

Returned value: A DBM that represents polyhedron that is intersection of M and M ′.

for all i ∈ [1..length(M)] do

for all j ∈ [1..length(M)] do

if M ′
i,j < Mi,j then

Mi,j = M ′
i,j;

end if

end for

end for

return M

Very often one of the intersected matrices is known and fixed during the analysis. For

example all DBMs that represent transition guards or invariants are defined before the

symbolic analysis and do not change. Then it is more efficient to offline (in advance to

the analysis) extract the minimal constraint system for the polyhedron represented by the

matrix (see Section 2.4.6) and perform and() operation for each non-redundant constraint.

future(M) For a DBM M representing polyhedron Z, the operation future(M) returns

a DBM that represents polyhedron Z↑, i.e. all valuations that can be reached by valuations

in Z by delay.

Algorithmically future(M) is computed by removing the upper bounds of all individual

clocks, which is done by replacing all elements in the first column of M by (∞, <). the

property that all clocks proceed with the same speed is ensured by keeping the constraints

on the differences between clocks unchanged.
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The operation preserves the minimal form of M . The pseudo-code for future(M) is pre-

sented in Algorithm 4.7.

Algorithm 4.7 future(M)

Arguments: Minimal DBMs M that is representation of polyhedron Z

Returned value: Minimal DBM M ′ that represents Z↑.

for all i ∈ [1..length(M)] do

Mi,0 = (∞, <)

end for

return M

past(M) For a DBM M representing a polyhedron Z, the operation past(M) results with

a matrix M ′ representing a polyhedron Z↓, i.e. polyhedron containing all the valuations

that can reach Z by delay.

Algorithmically, operation past(M) can be done by assigning (0,≤) to all elements of the

first column of M . This may result in a DBM that is not minimal. The pseudocode for

past(M) that returns a matrix that is minimal is presented by Algorithm 4.8.

Algorithm 4.8 past(M)

Arguments: Minimal DBMs M that is representation of polyhedron Z

Returned value: Minimal DBM that represents Z↓.

for all i ∈ [1..length(M)] do

M0,i = (0,≤);

for all j ∈ [1..length(M)] do

if Mj,i < M0,i then

M0,i = Mj,i;

end if

end for

end for

return M
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reset(M,X) For a matrix M that represents a polyhedron Z, operation reset(M,X)

returns a matrix that represent polyhedron Z[X := 0]. The reset operation can be simply

applied by changing the elements Mi,0 and M0,i to (0,≤) for all i such that row(i) ∈ X

and remove (i.e. replace with (∞, <)) all other bounds in row and column labelled with

the reset clock. However, this will result in a DBM that is not minimal. Instead it is more

efficient to replace rows and columns representing the reset clocks with row and column

labelled with the reference clock (first row and column). The pseudocode for this operation

is illustrated by the Algorithm 4.9.

Algorithm 4.9 reset(M,X)

Arguments: Minimal DBMs M representing Z and set of reset clocks X

Returned value: Minimal DBM that represents Z[X := 0].

for all i ∈ [1..length(M)] do

if row(i) ∈ X then

for all j ∈ [1..length(M)] do

Mi,j = M0,j ;

Mj,i = Mj,0;

end for

end if

end for

return M

unreset(M,X) This is the most unintuitive operation. If the matrix M represents poly-

hedron Z, the operation unreset(M,X) will return a matrix that represents [X := 0]Z

– a polyhedron that contains all valuations that after assigning 0 to clocks in X will end

up as valuations of Z. This operation is simple, if M represents a polyhedron containing

only such valuations ν that ν(x) = 0 for all x ∈ X. In that case it is enough to replace

all constraints on xi − xj where xi ∈ X with (∞, <). This corresponds to filling the row i

with (∞, <).

The situation is a bit more complicated if Z contains valuations ν, such that ν(x) > 0 for

some x ∈ X. Then, the polyhedron Z must be reduced to such a polyhedron that contains

only those valuations ν for which ν(x) = 0 for all x ∈ X. This is done by applying the
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operation and(M,xi − x0 ≤ 0) for all xi such that upper constraint on xi is bigger than

(0,≤). Note that if the lower bound on xi is different than (0,≤) this operation will result

in DBM representing empty polyhedron, which is rather intuitive.

The pseudocode for this operation is by the Algorithm 4.10.

Algorithm 4.10 unreset(M,X)

Arguments: Minimal DBMs M representing Z and set X of clocks to be unreset

Returned value: Minimal DBM that represents [X := 0]Z.

for all i ∈ [1..length(M)] do

if row(i) ∈ X then

if Mi,0 6= (0,≤) then

and(M,xi − x0 ≤ 0);

end if

for all j ∈ [1..length(M)] do

Mi,j = (∞, <);

end for

end if

end for

return M
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This chapter is a state-of-the-art report on approaches for parametric analysis of real-time

systems. The background is presented in the Section 5.1. Then, the Section 5.2 introduces

Parametric Timed Automata (PTA) – an extension of TA for parametric modeling of real

time systems. The section 5.3 discuss parametric DBM – the current framework used in

symbolic parametric analysis of PTA. The last section summarizes the chapter.
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5.1 Parametric reasoning

Verification of timed automata with parameters is generally undecidable. However, it is

decidable for some restricted classes of parametric systems. Moreover, many practical sys-

tems outside these classes may be successfully verified using semi-algorithms. Analysis of

such systems depends on the efficient data structures that are used to express dynamic

behavior of the system. There are currently several tools that can do analysis of parame-

terized timed systems: HyTech [49], LPCM [75], TReX [9], TGSE [24] and an extension

of UppAal [51, 7]. Some of them, like TReX use constrained Parametric DBM for sym-

bolic state representation. Other tools, like TGSE, use external applications (e.g. lp_solve)

61



62 Chapter 5. Parameterized systems

for solving parameterized linear constraint systems.

There are several works where existing tools for parametric verification have been com-

pared. In [33] the tools mentioned above (without TGSE) have been confronted in realistic

case study on IEEE 1394 protocol. [62] compares HyTech, UppAal and TReX in a study

on the PGM protocol.

This chapter explores current data structures that are used for modeling and analysis of

parameterized timed systems. In the next chapter a new data structure that enhances and

boosts possibilities of analysis and verification of parametric systems is presented.

5.2 Parametric Timed Automata

5.2.1 Preliminaries

Let C be a set of clocks, P be a set of parameters and let AT (P) define set of algebraic

expressions with parameters in P. The set of all possible configurations of values of pa-

rameters will be denoted by V(P). The parameterized atomic constraint is an expression

in the form:

xi − xj ⊲⊳ t

such that xi, xj ∈ C, ⊲⊳∈ (<,≤,=,≥, >) and t ∈ AT (P).

A set of finite conjunction of parameterized constraints will be noted as Ω(C,P). Elements

of Ω(C,P) are called parameterized polyhedra.

A parameterized bound is a pair b = (t,≺) that is used as a limit for a parameterized

atomic constraint of a type xi − xj ≺ t. The set of parameterized bounds is defined by:

PB = (AT (P) × {<,≤}) ∪ (−∞, <) ∪ (∞, <)

In order to limit the set of values taken by parameters, the notion of a constrained param-

eterized bound was defined: b̃ = (b, ϕ) where b is a parameterized bound and ϕ ∈ Φ(P) is

a set of constraints that should be satisfied by the parameters. ϕ is a set of formulas over
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P given by the grammar:

ϕ ::= t1 ≤ t2 | ϕ | ϕ ∧ ϕ

with t1, t2 ∈ AT (P).

The set of constrained parameterized bounds is defined by:

P̃B = PB × Φ(P)

Inclusion relation

Let b̃1 = (b1, ϕ1) and b̃2 = (b2, ϕ2) be two constrained parameterized bounds.

b̃1 ⊆ b̃2 if and only if for any possible values of parameters that satisfy constraints ϕ1 ∧ ϕ2

the relation b1 ≤ b2 is true. The bound (∞, <) satisfies all b̃ ∈ P̃B i.e. b̃ ⊆
(
(∞, <), true

)

for any b̃ ∈ P̃B.

The strict relation ⊂ is similar. We say that b̃1 ⊂ b̃2 if and only if for any possible values

of parameters that satisfy constraints ϕ1 ∧ ϕ2 the relation b1 < b2 is true.

Bounds b̃1 and b̃1 are equal if and only if b̃1 ⊆ b̃2 ∧ b̃2 ⊆ b̃1.

Operator ⊕

Operator ⊕ : P̃B × P̃B 7→ P̃B on parameterized bounds is defined as follows.

Let b̃1 =
(
(t1,≺1), ϕ1

)
and b̃2 =

(
(t2,≺2) ϕ2

)
be two constrained parameterized bounds.

Then:

b̃1 ⊕ b̃2 =
((
t1 + t2, min(≺1,≺2)

)
, ϕ1 ∧ ϕ2

)

By definition for all t ∈ AT (P):

t+ ∞ = ∞

t+ (−∞) = −∞

∞ + ∞ = ∞

∞ + (−∞) = ∞

(−∞) + (−∞) = −∞
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The bound (0, true) is an neutral element for operator ⊕:

∀b̃ ∈ P̃B : b̃⊕ (0, true) = b̃

The bound (∞, false) is an absorbing element element for operator ⊕:

∀b̃ ∈ P̃B : b̃⊕ (∞, false) = (∞, false)

Operator ⊗

Before defining operator ⊗ it is necessary to define the minimum between two constrained

bounds. For this following formulae need to be defined:

Φ≤ ≡ ∃p ∈ V(P) | ϕ1 ∧ ϕ2 ∧ t1 ≤ t2

Φ≥ ≡ ∃p ∈ V(P) | ϕ1 ∧ ϕ2 ∧ t1 ≥ t2

Intuitively, the formula Φ≤ (resp. Φ≥) means: there exists such a configuration of values

of parameters from P, that all the expression ϕ1 ∧ ϕ2 ∧ t1 ≤ t2 (resp. ϕ1 ∧ ϕ2 ∧ t1 ≥ t2) is

true.

Operator ⊗ : P̃B × P̃B 7→ 2
gPB is defined by: b̃1 ⊗ b̃2 = min(b̃1, b̃2), where the function

min(b̃1, b̃2) is defined in the following way:

min(b̃1, b̃2) = min≤(b̃1, b̃2,Φ≤) ∪min≥(b̃1, b̃2,Φ>)

with

min≤(b̃1, b̃2,Φ≤) =

{ (
(t1,≺1), ϕ1 ∧ ϕ2 ∧ (t1 ≤ t2)

)
, if Φ≤

∅ , otherwise

min≥(b̃1, b̃2,Φ≥) =

{ (
(t2,≺2), ϕ1 ∧ ϕ2 ∧ (t1 ≥ t2)

)
, if Φ≥

∅ , otherwise

The operation b̃1 ⊗ b̃2 may return one or two constrained parameterized bounds. The

combination depends on satisfiability of Φ≤ and Φ≥. The neutral element for ⊗ is
(
(∞, <

), true
)
: ∀b̃ ∈ P̃B : b̃⊗

(
(∞, <), true

)
= b̃
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Exemple 5.1. Let b̃1 =
(
(p1, <), p1 ≥ 2∧ p1 ≤ 6

)
and b̃2 =

(
(p1 + p2,≤), p1 ≥ 4∧ p2 ≤ 8)

)

be two constrained parameterized bounds such that p1, p2 ∈ P. The operations of b̃1 ⊕ b̃2

and b̃1 ⊗ b̃2 give following results:

b̃1 ⊕ b̃2 =
(
(2p1 + p2, <), p1 ≥ 4 ∧ p1 ≤ 6 ∧ p2 ≤ 8

)

The result of b̃1 ⊗ b̃2 is an union of min≤(b̃1, b̃2,Φ≤), and min≥(b̃1, b̃2,Φ≥), where:

min≤(b̃1, b̃2,Φ≤) =
(
(p1, <), p1 ≥ 4 ∧ p1 ≤ 6 ∧ p2 ≤ 8 ∧ p2 ≥ 0

)

min≥(b̃1, b̃2,Φ≥) =
(
(p1 + p2,≤), p1 ≥ 4 ∧ p1 ≤ 6 ∧ p2 ≤ 0

)

5.2.2 Definition of PTA

Parametric TA (PTA) is a TA that is extended with parameters. Transition guards and

invariants of PTA may have form of conjunction of parameterized atomic constraints. The

following definition of PTA was inspired by [8]:

Definition 13. Parametric Timed Automaton A Parametric Timed Automaton

(PTA) is a tuple
(
L, l0,Σ, C,P, ϕ, Inv,→

)
, where:

• L is a finite set of locations,

• l0 is an initial location,

• Σ is an alphabet of events,

• C is a finite set of clocks,

• P is a finite set of parameters,

• ϕ is a conjunction of initial constraints on parameters,

• Inv : L 7→ Ω(C,P) is a function that assigns invariants to locations,

• →⊆ L×Σ×Ω(C,P) × 2C × L is a set of transitions in the form (l, a, Z, r, l′), where

l and l′ are source and initial locations respectively, a ∈ Στ is an action associated

with the transition, Z ∈ Ω(C,P) is a transition guard and r ∈ 2C is a set of clocks

reset with the transition.



66 Chapter 5. Parameterized systems
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off

x := 0

true

switch off

turn on

turn on

x := 0

x := 0

on

x < ∞

x ≤ α

x < α

x = α

ϕ :

{
α ≥ 45
α ≤ 75

Figure 16: Example of Parametric Timed Automaton

Exemple 5.2. Figure 16 shows an example of PTA. It is modification of the automaton

from Example 3.1, so that some constants in the guards and invariants have been replaced

with a parameter α. The parameter α is explicitly constrained so it can have any value

between 45 and 75.

5.3 Parametric DBM

It has been shown in [6] that the reachability problem for timed automata with parameters

is undecidable. However, in [8] authors propose a semi-algorithmic approach that allows

to deal with parametric timed systems. They define a new symbolic representation called

Parametric DBMs (PDBMs) for use in reachability analysis, and provide a technique for

computing representations of their sets of reachable configurations. In following the defini-

tion of parameterized DBM and processing methods for this structure are presented.

5.3.1 Definition of PDBM

PDBM is a symbolic data structure that is used to represent interpretation of variables

during system analysis. PDBMs – in comparison to DBMs – were designed to work with

parameters. PDBMs were successfully implemented in verification tool TReX [9].

Definition 14. A Parametric Difference Bound Matrix is a square matrix of parameterized

bounds where rows and columns are labelled with clocks, the first row and the first column are
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labelled with the reference clock always equal to 0. Elements Mi,j of PDBM are parametric

bounds of the difference of clock labelling the row i and clock labelling the column j.




x0 x y

x0 (0,≤) (α,<) (0,≤)

x (β − α+ 1,≤) (0,≤) (γ,<)

y (3,≤) (−1, <) (0,≤)




Figure 17: An example PDBM

A PDBM is a matrix that encodes constraints in form xi − xj ≺ t where xi and xj

are clocks and t is an arithmetical expression with parameters. An example of PDBM is

presented in the Figure 17.

A Constrained PDBM is a pair M̃ = (M,ϕ), where M is a PDBM and φ is conjunction

of atomic constraints on parameters. The Figure 18 illustrates an example constrained

PDBM .




x0 x y

x0 (0,≤) (−α,<) (0,≤)

x (β − α + 1,≤) (0,≤) (γ,<)

y (3,≤) (−1, <) (0,≤)




,
ϕ =





0 ≤ α

α ≤ 9

6 ≤ β

2 ≤ γ

γ ≤ 3

Figure 18: An example constrained PDBM

5.3.2 Operations on constrained PDBMs

The constrained PDBMs are used for symbolic state representation. Therefore it is nec-

essary to define all operations required for symbolic reachability analysis to work with

constrained PDBMs. This section covers definitions of the methods for property checking

(inclusion, non emptiness), minimization and symbolic operations of forward and backward

clock reset and time elapse.
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Minimization

The canonical form for parametric DBMs is defined in the analogical way to standard

(non-parameterized) DBMs. The parametric DBM is canonical if the graph it represents

has a property that weight of each edge is lower than any path that connects the nodes

connected by the edge. In case of PDBMs, however, since the weights of edges have form of

parametric bounds it is not possible to decide the relation between weights using classical

operators of sum and “less or equal” relation (+ and ≤) as it is in the case of standard

DBMs. Instead the operators of ⊕ and ⊆ are used respectively.

Formally, a constrained PDBM (M̃,Φ) is canonical if and only if following condition is

satisfied:

∀i, j, k ∈ [1, n] : (M̃i,j ,Φ) ⊆ (M̃i,k,Φ) ⊕ (M̃k,j,Φ)

The minimization algorithm for parametric DBMs follows the same principles that the

classical Floyd-Warschall algorithm for non-parametric case. During a computation, the

algorithm needs to determine minimums between terms. For that, the algorithm assumes

each of the two possible cases and checks their consistency with respect to the parameter

constraints: given two terms t1 and t2, it considers the case where min(t1, t2) = t1, resp.

t2, and adds t1 < t2, resp. t1 ≥ t2 to the parameter constraints. Because both variants

are possible it may be necessary to consider both of them by splitting the DBM into two

matrices, each for one variant. Since such a split may be required for each comparison

operation, it is possible that the minimization algorithm will return n3 matrices. The cost

of minimization may be even O(2n3

), however usually it is not so high. For more details

on the implementation issues for minimization algorithm see [51].

Exemple 5.3. Consider the constrained PDBM M̃ and its corresponding parameterized

constraints graph from the Figure 19.

The graph is not minimal, since the relations (M̃2,1, φ) ⊆ (M̃2,3, φ) ⊕ (M̃3,1, φ) and

(M̃3,1, φ) ⊆ (M̃3,2, φ)⊕(M̃2,1, φ) are not true. Indeed, the relation (M̃2,1, φ) ⊆ (M̃2,3, φ)⊕

(M̃3,1, φ) for p1 > p2 is false and relation (M̃3,1, φ) ⊆ (M̃3,2, φ) ⊕ (M̃2,1, φ) is false as

well for p1 < p2. Therefore the relation between parameters p1 and p2 must be considered

for constructing the canonical form of the PDBM. Consequently canonicalization process

will lead to creating two PDBMs, each for one case, as it is seen in the Figure 20.

In order to check the consistency of each of the possible cases when computing the minimum
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M̃ =




0 x y

0 0 0 0

x p1 0 0

y p2 0 0



, φ =

{
p1 ≥ 0

p2 ≥ 0

y x

0

p1
0p2

0

0

0

Figure 19: Constrained PDBM with corresponding parameterized constraints graph

M̃1 =




0 x y

0 (0,≤) (0,≤) (0,≤)

x (p1,≤) (0,≤) (0,≤)

y (p1,≤) (0,≤) (0,≤)



, φ =

{
0 ≤ p2

p1 ≤ p2

M̃2 =




0 x y

0 (0,≤) (0,≤) (0,≤)

x (p2,≤) (0,≤) (0,≤)

y (p2,≤) (0,≤) (0,≤)



, φ =

{
0 ≤ p1

p2 ≤ p1

Figure 20: Canonical constrained PDBMs
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between two bounds, the satisfiability of formulas ϕ of the form

φ ∧ t1 ≺ t2

where ≺∈ {<,≤} and φ is a conjunction of parameters constraints must be tested. If φ

contains linear constraints or all parameters are real, then the test is decidable [8]. If φ is

nonlinear formula mixing integer and real parameters, this test is undecidable. Nevertheless,

it is possible to test the satisfiability of φ under the assumption that all parameters are

reals. Further details are covered by [32].

Inclusion test

The inclusion test M̃ ⊆ M̃ ′ for constrained PDBMs M̃ = (M, ϕ) and M̃ ′(M ′, ϕ′) verifies

whether all valuations that belong to polyhedron defined by M̃ belong to polyhedron

defined by M̃ ′ for all possible parameters setting allowed by ϕ and ϕ′.

To decide the inclusion of M̃ in M̃ it is necessary to compare each pair of corresponding

constraints in M and M ′, and to find out whether the bound defined by M is lower than

the bound defined by M ′ for all parameters allowed by ϕ and ϕ′.

Formally:

M̃ ⊆ M̃ ′ ⇔ ∀i, j ∈ [1, n] :
(
Mi,j , ϕ ∧ ϕ′

)
⊆

(
M ′

i,j, ϕ ∧ ϕ′
)

where n is number of rows and columns of M̃1 and M̃2.

For inclusion test the compared PDBMs must be in the canonical form.

Intersection

The intersection for constrained parameterized bounds is already defined using operator

⊗. This method can be extended to matrices.

The intersection consists of computing the minimum for every i, j between two bounds

M1(i, j) and M2(i, j) under the parameter constraints ϕ1∧ϕ2. This is done by splitting and

checking the consistency of each case, as in the construction of canonical representation.

For every two bounds one or two constrained parameterized bounds may be obtained,
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depending on the satisfiability of formulas Φ≤ or Φ≥. The result of intersection of two

constrained PDBMs will be a set of constrained PDBMs as shown in the following example:

Exemple 5.4. Let x be a clock and P = {α, β, γ, δ} be parameters. Let two control states

of the transition graph be given by conjunction of constrained parameterized bounds that

are represented by following PDBMs:

M̃1 =




0 x

0 (0,≤) (α,≤)

x (β,≤) (0,≤)


 ,

{
α ≥ 0

β ≥ 0
M̃1 =




0 x

0 (0,≤) (γ,≤)

x (δ,≤) (0,≤)


 ,

{
γ ≥ 0

δ ≥ 0

The intersection M̃1 ⊗ M̃2 will result in four matrices:

M̃1 ⊗ M̃2 =







0 x

0 (0,≤) (α,≤)

x (β,≤) (0,≤)


 ,





α ≥ 0

β ≥ 0

γ ≥ 0

δ ≥ 0

α ≤ γ

β ≤ δ




∪







0 x

0 (0,≤) (α,≤)

x (δ,≤) (0,≤)


 ,





α ≥ 0

β ≥ 0

γ ≥ 0

δ ≥ 0

α ≤ γ

δ ≤ β




∪







0 x

0 (0,≤) (γ,≤)

x (β,≤) (0,≤)


 ,





α ≥ 0

β ≥ 0

γ ≥ 0

δ ≥ 0

γ ≤ α

β ≤ δ




∪







0 x

0 (0,≤) (γ,≤)

x (δ,≤) (0,≤)


 ,





α ≥ 0

β ≥ 0

γ ≥ 0

δ ≥ 0

γ ≤ α

δ ≤ β




Intersection is based on comparing corresponding elements of two PDBMs. Whenever the

result is unambiguos, the matrix is duplicated to consider two possible cases of compari-

son. It might be then assumed, that parameterized element in one of intersected matrices
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will cause the duplication. Therefore, for simplicity it might be assumed that each single

parameter used in PDBM doubles the size of the matrix. The memory consumption cost

in this case is expressed by:

memory_cost = 2p · n2

where p is number of parameters in the system. Note, that this is optimistic scenario,

because the same parameter can be used in more than one element of a PDBM.

The operational costs of intersecting two constrained PDBMs may be considered in two

aspects.The first one is the number of comparisons that must be done for the operation.

This value does not change comparing to intersecting two standard DBMs in the sense

that all corresponding elements must be compared once (this results in n2 comparisons).

More important is the second aspect, however. This is the cost of all operations that come

out from the fact that results may be unambiguous, i.e. cost of duplicating the matrix and

the cost of verifying that the constraints of the parameters are solvable. Due to this fact,

the operational cost of intersection may be expressed by:

operational_cost = no_of_comparisons+ no_of_copying + solve_constraints

For the number of copying operations it might be assumed as above, that each parameter

causes one duplication of the matrix. Therefore, the matrix is duplicated as many times as

there are parameters in the intersected matrices. Finally, each duplication causes that there

are separate constraints defined for each copy of duplicated matrices. This constraints have

form of system of inequalities involving used parameters that must be solved in order to

decide whether the copy of PDBM is consistent (i.e. it has solutions). Summing up all the

costs, the operational cost of intersection is expressed by:

operational_cost = n2 · comp+ p · n2 · copy + p · solve_constraints

where n2 is the initial size of the PDBM, p is the number of parameters that cause am-

biguous results of comparisons and solve_constraints is the average operational cost of

solving single system of constraints of one copy of duplicated PDBM. comp is a cost of

single comparison operation and copy is a cost of copying single element of PDBM.
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Time elapse

The forward and backward time elapse is defined in the same way than for standard DBMs.

Elapsing time is applied by removing upper bounds of the clocks which corresponds to

replacing the bounds in the first column of PDBM by (∞, <) (except the bound M0,0 which

is always equal to (0,≤)). The set of constraints on parameters is not changed during the

operation. As in case of normal DBM, the canonical form of PDBM is preserved.

The backward time elapse is done by replacing the bounds in the first row by (0,≤).

Because the operation does not preserve the minimal form, the PDBM must be minimized

again.

Clock reset

The application of the forward clock reset is done in the same way than applying forward

clock reset to standard DBM – the row and column for the reset clock is replaced by the

row and column for the variable v0.

The most costly operation is the backward clock reset which requires applying intersection,

minimization and finally replacing the bounds in the row representing the unreset clock by

(∞, <).

5.4 Summary

The main drawback of PDBM is that parameters are constrained separately, outside of

the main data structure used for constraining the allowed values of system clock. The

consequence of this fact is that whenever constraints on parameters are ambiguous, the

main structure must be duplicated in order to consider all cases that come out from the

constraints. This drastically increases cost of the operations on a structure used for for-

ward and backward analysis, especially minimization and intersection, where parameterized

constraints must be frequently compared. Also, what has equally important meaning, the

memory consumption of such a structure is unpredictable at the beginning of the simula-

tion.

The next chapter introduces new data structure that can be used for parametric analysis
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of real time systems. It was inspired by the observation that in symbolic representation,

clocks and parameters have many common features. Most of all, the exact value of both

are not precisely defined, instead it is constrained by set of inequalities. This means that

if the format of constraints of clocks and parameters is unified, both can be constrained

within the same data structure.



6 Extended Difference Bound Matrix

This chapter introduces Extended Difference Bounds Matrix (EDBM) – a new framework

for processing parameterized automata. It allows to process constraints on clocks together

with constraints on parameters.

The main innovation of the EDBM is that the elements of the matrix represent bounds of

expressions in form A−B, such that A and B are defined by sums γ1 + γ2 · · ·+ γn where

γi may be either clock or a parameter. All the elements of EDBM are numerical bounds –

this allows much more economic processing than in case of PDBMs from the memory and

time consumption point of view.

The EDBM as a data structure is introduced in the Section 6.1. The Section 6.2 discusses

challenges and solution for finding a canonical form of a given EDBM. Other operations

over EDBM that are required for symbolic analysis are covered by the Section 6.3. Finally,

the section 6.4 shows how the traditional approach for symbolic forward and backward

path analysis can be extended for EDBM.
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6.1 Definition of Extended DBM

Let Ai = {γ1, · · · , γn} such that γi ∈ C ∪ P, i.e Ai ⊆ C ∪ P, and let
∑
Ai = γ1 + · · · + γn.

Definition 15. And Extended Difference Bound Matrix (EDBM) is a square matrix, where

rows columns are labeled by sets Ai ⊆ C ∪ P. Elements Mi,j of the matrix are numerical

bounds (mi,j,≺i,j) that define constraint in form
∑
Ai −

∑
Aj ≺i,j mi,j such that row i

and column j are labeled with sets Ai and Aj respectively.

Notice, that EDBM defined as above can store parameterized constraints on clocks and

difference of clocks together with numerical constraints on expressions with parameters.

For example a constraint x1−x2 ≤ α, where x1 and x2 are clocks and α is a parameter can

be transformed to the form x1−(x2 +α) ≤ 0 and stored in EDBM as element Mi,j = (0,≤)

where i and j are indexes of row and column labelled with {x1} and {x2, α} respectively.

EDBMs can be represented by Extended Constraints Graphs (ECG). Extended constraint

graphs are extensions of classical constraints graphs, such that each node ni is labelled

by set Ai ⊆ C ∪ P and weights of edges ni → nj define bounds (m,≺) of expressions
∑
Ai −

∑
Aj ≺ m.

By convention, rows and columns with the same index i are labeled with the same set Ai.

The first row and column are labeled with ∅ (note that
∑

∅ = 0), From now, label(i) will

denote the set labelling the row and column i. When referring to an extended constraint

graph, label(ni) will denote the set labelling the node ni. The function expr(i, j) will return

the expression that is bounded by element Mi,j (i.e. expr(i, j) =
∑
label(i) −

∑
label(j)).

Exemple 6.1. Let x, y ∈ C and α ∈ P. Then, let Z be a parameterized polyhedron defined

by following set of constraints: (1 ≤ x ≤ 5)∧ (1 ≤ y ≤ 5)∧ (x−y ≤ α−4)∧ (y−x ≤ α+1)

with 1 ≤ α ≤ 6. This polyhedron is represented by the constrained PDBM M̃ :

M̃ =




0 x y

0 (0,≤) (−1,≤) (−1,≤)

x (5,≤) (0,≤) (α− 4,≤)

y (5,≤) (α+ 1,≤) (0,≤)



,

{
α ≥ 1

α ≤ 6

The polyhedron for α = 2 is depicted in the Figure 21.

Note that the constraint x − y ≤ α − 4 can be expressed as x − (y + α) ≤ −4. Also the
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x

y

α = 2

1

Figure 21: A parameterized polyhedron

constraint y − x ≤ α+ 1 can be expressed as y − (x+ α) ≤ 1. Storing constraints defining

Z in a EDBM will result in a matrix M presented below:

M =




∅ {x} {y} {α} {x, α} {y, α}

∅ (0,≤) (−1,≤) (−1,≤) (−1,≤) (∞, <) (∞, <)

{x} (5,≤) (0,≤) (∞, <) (∞, <) (∞, <) (−4,≤)

{y} (5,≤) (∞, <) (0,≤) (∞, <) (1,≤) (∞, <)

{α} (6,≤) (∞, <) (∞, <) (0,≤) (∞, <) (∞, <)

{x, α} (∞, <) (∞, <) (∞, <) (∞, <) (0,≤) (∞, <)

{y, α} (∞, <) (∞, <) (∞, <) (∞, <) (∞, <) (0,≤)




Z may be also represented by extended constraint graph G, presented in the Figure 22. For

better view, only the edges with weight different than (∞, <) were labelled. The other edges

are colored gray to keep the figure readable.

The polyhedron represented by EDBM M may be shown in three dimensions, as in the

Figure 23. Intersecting the polyhedron with a plane parallel to the plane xy will return a

2 dimensional polyhedron containing values of x and y allowed for given value of α. For

example intersecting this polyhedron with a plane parallel to xy that intersects the α-axis

at the point α = 2 will give the polyhedron from the Figure 21.

6.1.1 Equivalent elements and equivalence classes

It is possible that two elements of an EDBM are redundant in the sense that they define

a bound of the same expression. For example in matrix M from example 6.1 both entries

M6,3 (expr(6, 3) = (y + α) − y) and M4,1 (expr(4, 1) = α − 0) represent bound of α. Such
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∅

{x}

{y}

{α}

{x, α}

{y, α}
5
−1

5
−1

6 −1

−4

−1

Figure 22: An extended constraint graph

Figure 23: Polyhedron represented by M

elements will be called equivalent :

Definition 16. Two elements Mi,j and Mm,n of an EDBM M are equivalent if and only

if expr(i, j) = expr(m,n).
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Set of equivalent elements will be called equivalence class. The function equivalent(Mi,j)

will return the equivalence class to which the element Mi,j belongs. The function

classes(M) will return all equivalence classes of the matrixM . The corresponding functions

are also defined for extended constraint graphs.

A ECG corresponding to matrix M with edges belonging to the same equivalence class

marked with distinct color is depicted in the Figure 24. For better view weights of the

edges are not marked.

∅

{x}

{y}

{α}

{x, α}

{y, α}

Figure 24: Graph with equivalent edges (grey edges are not equivalent with any other edges)

It is desirable that all the equivalent elements have the same value. A matrix, where all

equivalent elements have the same value will be called consistent. To make the EDBM

consistent without changing the content of polyhedron represented by the matrix, value of

all elements within an equivalence class must be changed to the lowest value within the

class. The Algorithm 6.1 define function consistent(M) that brings the matrix M to the

consistent form:

The consisten version of matrix M from example 6.1 has following form:
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Algorithm 6.1 consistent(M): bringing EDBM to a consistent form

Arguments: EDBM M

Output: consistent version of M

for all ǫ ∈ classes(M) do

min = (∞, <);

for all Mi,j ∈ ǫ do

if Mi,j < min then

min = Mi,j ;

end if

end for

for all Mi,j ∈ ǫ do

Mi,j = min;

end for

end for

return M

consistent(M) =




∅ {x} {y} {α} {x, α} {y, α}

∅ (0,≤) (−1,≤) (−1,≤) (−1,≤) (∞, <) (∞, <)

{x} (5,≤) (0,≤) (∞, <) (∞, <) (∞, <) (−4,≤)

{y} (5,≤) (∞, <) (0,≤) (∞, <) (1,≤) (−1,≤)

{α} (6,≤) (∞, <) (∞, <) (0,≤) (−1,≤) (−1,≤)

{x, α} (∞, <) (6,≤) (∞, <) (5,≤) (0,≤) (∞, <)

{y, α} (∞, <) (∞, <) (6,≤) (5,≤) (∞, <) (0,≤)




The operation consistent(M) does not necessarily preserve the minimal form of the matrix.

Note that because of existence of equivalent edges in extended constraints graphs it is

possible that a positive graph that is not consistent may become negative when the graph

is made consistent.

Corollary 5. A Polyhedron Z represented by extended constraints graph G is not empty

if and only if consistent form of G is positive.

Exemple 6.2. Consider the graph G from the Figure 25(a). The graph is positive, however
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it is not consistent, since the edges ∅ → {y} and {x} → {x,y} although equivalent have

different weights. The consistent version of the graph is presented in the Figure 25(b). In

this case the graph is not positive, because for example the weight of the cycle {y} → ∅ →

{x,y} → {x} → {y} is negative.

∅ {x}

{y} {x,y}

4

−1

4 −1
0

0
4 −2

4

−1

3

3

(a) G

∅ {x}

{y} {x,y}

4

−1

4 −2
0

0
4 −2

4

−1

3

3

(b) consistent(G)

Figure 25: Extended constraint graphs

6.2 Canonicalization of EDBM

Bringing EDBM to a canonical form is the most important and also most complicated op-

eration on EDBMs. One of the biggest issues is that a minimal EDBM does not necessarily

define a canonical form of a polyhedron. As an example, consider the matrix M from the

Figure 26. Although M is minimal and consistent, it does not define canonical form of a

polyhedron. Indeed, some constraints may still be tightened without changing the set of

valuations defined by M . Note that the constraints x− (y + α) ≤ −4 and y − (x+ α) ≤ 1

implicitly define constraint −2α ≤ −3. This means that the value of M1,4 can be changed

to −1.5 without consequences for the shape of Z.

The reason, why the EDBM M did not define canonical form of a polyhedron is that there

is no path in the extended constraint graph corresponding to M that would consider the
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M =




∅ {x} {y} {α} {x, α} {y, α}

∅ (0,≤) (−1,≤) (−1,≤) (−1,≤) (−2,≤) (−5,≤)

{x} (5,≤) (0,≤) (2,≤) (1,≤) (−1,≤) (−4,≤)

{y} (5,≤) (4,≤) (0,≤) (4,≤) (1,≤) (−1,≤)

{α} (6,≤) (5,≤) (5,≤) (0,≤) (−1,≤) (−1,≤)

{x, α} (11,≤) (6,≤) (8,≤) (5,≤) (0,≤) (2,≤)

{y, α} (11,≤) (10,≤) (6,≤) (5,≤) (4,≤) (0,≤)




Figure 26: Example of minimal EDBM that does not define canonical form of a polyhedron

sum of bounds of x− (y + α) and y − (x+ α). Therefore after minimization the bound of

−α will not considered the sum of the bounds of x− (y + α) and y − (x+ α).

6.2.1 Linear DBM

To calculate canonical form of a EDBM it is necessary to introduce a new structure: Linear

DBM (LDBM). LDBM is generalization of EDBM such that rows and columns are labeled

with multisets Ai = {γ1, · · · , γ1, · · · , γn, · · · , γn} = {k1γ1, · · · , knγn} such that ki ∈ N and

γi ∈ C ∪ P. Similarly to EDBMs,
∑
Ai = k1γ1 + · · · + knγn.

Definition 17. Linear Difference Bound Matrix is a square matrix where ith row and ith

column are labelled with multiset Ai = {k1γ1, · · · , knγn}. The elements Mi,j are numerical

bounds of expressions
∑
Ai −

∑
Aj, such that Ai and Aj are multisets labelling row and

column i and j respectively.

LDBM allow to store bounds of expressions that can be any linear combination of clocks

and parameters with integer coefficients. The graphical representation of LDBM is linear

constraint graph (LCG).

Consistency of LDBM

Because elements of LDBM represent bounds of expressions where coefficient are not lim-

ited to −1 or 1, the definition of equivalence classes for LDBM must be extended to cover
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new type of equivalence.

For example consider LDBM M with rows and columns labelled with ∅, {x}, {y}, {2x}

and {2y}:

M =




∅ {x} {y} {2x} {2y}

∅

{x} M2,3

{y}

{2x} M4,5

{2y}




The elements M4,5 and M2,3 represent bound of the same expression, but in case of M4,5

multiplied by 2. The definition of consistency and equivalence for LDBMs must consider

such cases. In general two elements of a LDBM are equivalent if they represent bound of

the same expression multiplied with a positive constant.

To formally define equivalence for LDBM it is necessary to introduce operation basis().

This operation for linear expression expr(i, j) returns linear expression expr′ = expr(i,j)
ϕ

where ϕ ∈ N+ is the biggest natural such that coefficients of expr′ are integers. The value

of ϕ will be called equivalence factor of Mi,j noted by ϕ(i, j). The matrix of equivalence

factors for elements of the EDBM M above is following:

ϕ(M) =




∅ {x} {y} {2x} {2y}

∅ 1 1 1 2 2

{x} 1 1 1 1 1

{y} 1 1 1 1 1

{2x} 2 1 1 1 2

{2y} 2 1 1 2 1




With function basis() the definition of equivalent elements of LDBM looks as follows:

Definition 18. Two elements Mi,j and Mk,l of LDBM M are equivalent if and only if

basis
(
expr(i, j)

)
= basis

(
expr(k, l)

)

The basis of an equivalence class is the basis of its elements.
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A LDBM is said to be consistent only if all elements that are in the same equivalence class

have the same value with respect to their equivalence factors, i.e values of all elements in

equivalence class divided by their equivalence factor are the same.

6.2.2 Closure of EDBM

To calculate a canonical form of a polyhedron Z represented by EDBM M it is necessary

to construct such a LDBM M ′ that the LCG corresponding to M ′ will contain all paths

that represent sum of constraints defined in M that can impact the canonical form of Z.

In other words if two or more elements of M implicitly impact value of some other element

of M they must be considered as a path in LCG corresponding to M ′.

As an example consider again the matrix M from the figure 26:

M =




∅ {x} {y} {α} {x, α} {y, α}

∅ (0,≤) (−1,≤) (−1,≤) (−1,≤) (−2,≤) (−5,≤)

{x} (5,≤) (0,≤) (2,≤) (1,≤) (−1,≤) (−4,≤)

{y} (5,≤) (4,≤) (0,≤) (4,≤) (1,≤) (−1,≤)

{α} (6,≤) (5,≤) (5,≤) (0,≤) (−1,≤) (−1,≤)

{x, α} (11,≤) (6,≤) (8,≤) (5,≤) (0,≤) (2,≤)

{y, α} (11,≤) (10,≤) (6,≤) (5,≤) (4,≤) (0,≤)




The elements M2,6 and M3,5 define constraints x − (y + α) ≤ −4 and y − (x + α) ≤ 1

respectively. Summing up those constraints will return the constraint −2α ≤ 4 ≡ −α ≤

−1.5, therefore the sum of elements M2,6 and M3,5 impact the canonical form of polyhedron

represented by M . There is, however, no path in the ECG G corresponding to M that

would consist of two edges representing bounds of expressions x− (y+α) and y− (x+α).

Such a path can be enabled by adding a node labelled with {2α, x}. Then the edges

{2α, x} → {y, α} and {x, α} → {y} would be equivalent. Since the edges {2α, x} → {x}

and {α} → ∅ are also equivalent, weight of the path {2α, x} → {y, α} → {x} can be

considered to calculate bound of −α during minimization.

A LDBM (or LCG) that can be used to calculate canonical form of polyhedron represented

by EDBM M (or ECG G) will be called closure of M (or G).

Let ψ be a set of edges of ECG and expr(ψ) return an expression obtained by adding all
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∅

{x} {y}

{x, y}

(a) G

∅

{x}

{y}

{x, y}

{2x}

{2y}

(b) G′

Figure 27: An extended constraint graph and its closure

expressions bounded by edges of ψ. Formally the closure for extended constraint graphs is

defined as follows:

Definition 19. Let G = (N,ω,E) be an extended constraint graph and G′ = (N ′, ω′, E ′)

be linear constraint graph. G′ is said to be closure of G if and only if for any set of edges

ψ ∈ 2E such that ∃e ∈ E | basis
(
expr(ψ)

)
= expr(e) there is a path p ∈ paths(G′) that

consists of edges equivalent to edges in ψ.

Exemple 6.3. The Figure 27 shows two graphs: extended constraint graph G = (N,ω,E)

and linear constraint graph G′ = (N ′, ω′, E ′). In the power set 2E there are four combina-

tions of edges that can define bound of such an expression that its basis is represented by

some edge in E:

• ψ1 =
{
{y} → {x}, ∅ → {x, y}

}
that define bound of 2x (basis of 2x is represented by

edge ∅ → {x}),

• ψ2 =
{
{x} → {y}, ∅ → {x, y}

}
that define bound of 2y (basis of 2y is represented by

edge ∅ → y),

• ψ3 =
{
{y} → {x}, {x, y} → ∅)

}
that define bound of −2y (basis of −2y is represented

by edge {y} → ∅) and

• ψ4 =
{
{x} → {y}, {x, y} → ∅)

}
that define bound of −2x (basis of −2x is represented

by edge {x} → ∅).

Note that all of those dependencies may be represented by paths of G′:
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• ∅ → {x, y} → {2x} represent the constraint defined by {{y} → {x}, ∅ → (x+ y)},

• ∅ → {x, y} → {2y} represent the constraint defined by {{x} → {y}, ∅ → {x, y}},

• {2x} → {x, y} → ∅ represent the constraint defined by {{x} → {y}, {x, y} → ∅} and

• {2y} → {x, y} → ∅ represent the constraint defined by {{y} → {x}, {x, y} → ∅}.

Therefore G′ is closure of G.

To obtain a LCG G′ that is closure of ECG G = (N,ω,E) it is necessary to follow following

steps:

1. Find all combinations of edges ψ ∈ 2E such that expr(ψ) is an expression equivalent

to expression bounded by some edge e ∈ E, i.e. basis
(
expr(ψ)

)
= expr(e).

2. Define paths that represent identified combinations,

3. Add new nodes to G, so that construction of the paths identified above is possible,

4. Connect the nodes with the rest of the graph and make the resulting graph consistent.

Combinations of edges that can impact canonical form

In general to find all combinations of constraints represented by edges of G = (N,ω,E)

that can determine the canonical form of polyhedron represented by G, all combinations

ψ ∈ 2E need to be checked. For a fully connected graph with n nodes, there are n(n − 1)

edges, so the set 2E has 2n(n−1) elements that must be considered.

Checking all 2n(n−1) combinations from the set 2E is very costly operation. The cost may

be reduced by removing some combinations without checking. Those combinations are:

1. Combinations that contain edges that create a path. For example instead checking

combination {∅ → {x, α}, {α} → {y}, {y} → {x}} it is enough to check combination

{∅ → {x, α}, {α} → {x}}, because combinations
{
{α} → {y}, {y} → {x}

}
and

{
{α} → {x}

}
define bound of the same expression.

2. Combinations that are union of two or more combinations that are already con-

firmed to potentially impact canonical form. For example if ψ1 and ψ2 are already

selected combinations, the combination {ψ1, ψ2} is already represented in the graph

by edges representing basis
(
expr(ψ1)

)
and basis

(
expr(ψ2)

)
. This in fact means that
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after confirming that any combination ψ must be considered in the LCG, no other

combinations that contain all edges of ψ need to be checked.

As an example consider combination of edges ψ =
{
∅ → {x, y}, {x} → {y}, ∅ →

{y, α}, {y} → {α}
}
. Assume that the constraint graph contains also an edge ∅ →

{x, α}. Theoretically the combination ψ potentially defines bound of 2x+ 2α which

impact the weight of edge ∅ → {x, α}, however the combinations
{
∅ → {x, y}, {x} →

{y}
}

and
{
∅ → {y, α}, {y} → {α}

}
separately define bounds of 2x and 2α, so

they impact weights of edges ∅ → {x} and {x} → {x, α} respectively, that create

a path from ∅ to {x, α}. Therefore the combination
{
∅ → {x, y}, {x} → {y}, ∅ →

{y, α}, {y} → {α}
}

is already considered and it does not have to be checked explicitly.

3. Combinations that define bound on expression, such that its basis is represented

by an edge in the combination. For example the combination
{
{∅ → {x, y}, {y} →

{x}
}
, ∅ → {x} define bound of 3x, however it contains already an edge ∅ → {x} that

defines bound of x, so it must not be considered.

4. Combinations that consist of edges opposite to edges of already checked combination.

5. Combinations that consist of edges equivalent to edges in already checked combina-

tion.

The function combinations(G) defined by the Algorithm 6.2 returns all set of combinations

of constraints defined by edges of ECG G that may affect the canonical form of polyhedron

represented by G.

The working of the Algorithm 6.2 is as follows. The input of the algorithm is the set E of

edges of an extended constraint graph G. Initially the set S is defined by E and the set

Ψ is empty. In each iteration of the while loop, the algorithm checks the combinations of

E × S excluding those combinations whose subsets are already in Ψ or contain edges that

create paths. If the basis of an expression represented by the combination is represented

also by some other edge in E, the combination is added to the set Ψ that is returned at

the end. Otherwise the combination is added to the set S ′ and will be used in the next

iteration by combining with other edges of E. At the end of each iteration S ′ replaces S,

so in the next step elements of E × S have incremented length. In the first iteration all

possible combinations of two edges are checked, then combination of 3 edges and so on.

Exemple 6.4. Let G = (N,ω,E) represent EDBM M from the Figure 26. The nodes of
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Algorithm 6.2 combinations(G)

Input: G = (N,ω,E) - Extended constraint graph that represent polyhedron Z

Output: Ψ - set of combinations of elements of E that can affect the canonical form of Z

S = E;

Ψ = ∅;

Restrict the set E such that it contains only one edge from each equivalence class;

while S 6= ∅ do

S ′ = ∅;

for all e ∈ E do

for all s ∈ S do

if (e ∈ s) ∨
(
∃e′ ∈ S |

(
dst(e) = src(e′) ∨ dst(e′) = src(e)

))
then

continue;

end if

s = s ∪ e;

if (∃ψ ∈ Ψ | ψ ∈ 2s) then

continue;

end if

if ∃e ∈ E | basis
(
expr(s)

)
= expr(e) then

Ψ = Ψ ∪ s;

else

S ′ = S ′ ∪ s;

end if

end for

end for

S = S ′;

end while

return Ψ
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G are labelled with: ∅, {x}, {y}, {α}, {x, α} and {y, α}. The set E of edges that is input

for Algorithm 6.2 is defined by (some edges equivalent to those in E are omitted):

E =
{
∅ → {x}, {x} → ∅, ∅ → {y}, {y} → ∅, ∅ → {α}, {α} → ∅, ∅ → {x, α}, {x, α} →

∅, ∅ → {y, α}, {y, α} → ∅, {x} → {y}, {y} → {x}, {x} → {y, α}, {y, α} → {x}, {y} →

{x, α}, {x, α} → {y}
}

The set Ψ returned by function combinations(G) is presented in the Table 1.

ψ ∈ combinations(G) expr(ψ) e ∈ E | expr(e) = basis
(
expr(ψ)

)
{
{α} → {x}, ∅ → {x, α}

}
2x ∅ → {x}

{
{α} → {y}, ∅ → {y, α}

}
2y ∅ → {y}

{
{x} → {α}, ∅ → {x, α}

}
2α ∅ → {α}

{
{y} → {α}, ∅ → {y, α}

}
2α ∅ → {α}

{
{y} → {x, α}, {x} → {y, α}

}
2α ∅ → {α}

{
∅ → {x}, {y} → {x, α}, ∅ → {y, α}

}
2x+ 2α ∅ → {x, α}

{
{y} → {x}, {y} → {α}, ∅ → {x, α}

}
2x+ 2α− 2y {y} → {x, α}

{
∅ → {y}, ∅ → {x, α}, {x} → {y, α}

}
2y + 2α ∅ → {y, α}

{
{x} → {y}, {x} → {α}, ∅ → {y, α}

}
2y + 2α− 2x {x} → {y, α}

{
{x} → {α}, {y} → {x, α}, ∅ → {y, α}

}
3α ∅ → {α}

{
{y} → {α}, {x} → {y, α}, ∅ → {x, α}

}
3α ∅ → {α}

All combinations containing inverse edges

Table 1: Result of the function Ψ = combinations(E)

Identifying path for given combination of edges

To create a linear constraint graph that contains paths of edges equivalent to edges in

combinations discovered by function combinations(G), it is necessary to add some ad-

ditional nodes to the graph G, so that the paths can be constructed. For example, let

ψ =
{
{x} → {α}, {y} → {x, α}, ∅ → {y, α}

}
. Because expr(ψ) = 3α, ψ can determine

bound of α. To consider ψ in the graph, nodes representing for example {2α, x} and {3α}

can be added to the graph G. Then the path ∅ → {y, α} → {2α, x} → {3α} consist of

edges equivalent to edges in ψ and can determine weight of the edge ∅ → {3α} that is

equivalent to edge ∅ → {α}.
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In general, the same combination of edges may be considered in the graph by adding

different set of nodes. For example the following combination of edges:
{
{x} → {α}, {y} →

{x, α}, ∅ → {y, α}
}

may be represented by adding nodes representing {2α, x} and {3α},

but also nodes for {2α, y} and {3α, x}. In the latter case, the edges in ψ will be represented

by the path {x} → {α} → {2α, y} → {3α, x}.

The actual set of nodes that are added to the graph to represent given combination depends

on the sequence of the edges in combination. Let ψ = [A1 → B2, · · · , An → Bn] be a

permutation of edges of ψ ∈ combinations(G), such that Ai and Bi are sets labelling nodes

of G. The Algorithm 6.3 defines function nodes(ψ) that returns set of nodes necessary to

construct a path of edges equivalent to edges in ψ in order given by ψ.

Algorithm 6.3 nodes(p)

Input: ψ = [A1 → B1, · · · , An → Bn] - sequence of edges that does not contain a path

Output: set of nodes in path that consists of edges equivalent to those in ψ

n0 = A1;

for all i ∈ [1..length(ψ)] do

if Ai * ni−1 ⊎ Bi then

STOP HERE - this permutation cannot be represented as a path;

return

else

ni = (ni−1 ⊎Bi) \ Ai;

end if

end for

return {n0, ..., nn};

Not every sequence can be represented by a path. As example consider the following se-

quence: [∅ → {x}, {α} → {x, y}, ∅ → {y, α}]. This sequence defines bound of 2x+ 2y that

potentially impacts the weight of the edge ∅ → {x, y}. It is not possible to construct a

path that contains edges equivalent to edges in this sequence with given order. Instead,

sequence [∅ → {y, α}, ∅ → {x}, {α} → {x, y}] of the same set of edges may be represented

as a path ∅ → {y, α} → {x, y, α} → {2x, 2y}.
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Updating LCG with new nodes

In general it is desirable that a LCG contains minimal number of nodes, so that its

minimization has the lowest possible complexity. Therefore when constructing an LCG

that is closure to some ECG G the biggest possible number of nodes should be reused.

To illustrate this, consider following sets of edges:
{
∅ → {α, x}, {x} → {α}

}
and

{∅ → {y, α}, {y} → {α}
}
. The both sets potentially define bound of 2α. The first set

of edges may be represented by either of the following two paths:

1. ∅ → {x, α} → {2α}

2. {x} → {α} → {2α, x}

while the second by any of those:

1. ∅ → {y, α} → {2α}

2. {y} → {α} → {2α, y}

Adding node labelled with {2α} enables creating paths consisting of edges equivalent to

both sets:
{
∅ → {α, x}, {x} → {α}

}
and

{
∅ → {y, α}, {y} → {α}

}
. If instead, for the first

set of edges the second path is chosen, it results with adding to the constraint graph node

labelled with {2α, x}. This node cannot be reused for creating a path that corresponds to

the second set of edges – it is necessary to add another node labelled either with {2α} or

{2α, y}.

In general, the sequences of edges for creating paths should be chosen in the way that they:

1. reuse as many existing nodes as possible,

2. when they add nodes to the graph, the nodes should have biggest chance to be reused

by other sequences.

The first condition can be fulfilled easily. It is enough for each set of edges to choose such

permutation that adds the lowest number of nodes to the graph. It is more complicated

however, to predict which of added nodes will be most usefull for the other sequences. In

general, a node can be used by more sequences, if its label involves less variables. In the

example above the node that involved only α was used by two sequences: ∅ → {x, α} →

{2α} and ∅ → {y, α} → {2α}, when nodes that involved two variables could be used for

representing only one sequence.
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The Algorithm 6.4 defines function closure() which returns a LCG that is closure of an

ECG G provided as argument, such that LCG has minimal possible number of nodes. It uses

the function permutations(ψ) which returns all possible sequences that are permutations

of elements in ψ and the function elements(n) that returns number of distinct elements

used in the label of the node n (the cardinality of the underlying set of elements of the

label of n).

For each set of combinations of edges returned by function combinations(G) the algorithm

calculates all possible sequences (permutations of edges in the combination). Each sequence

defines set of nodes that must be used for its construction. The algorithm promotes those

sequences that adds lowest possible number of nodes (by incrementing score1 with every

node that is reused) and those that add nodes that involve the least possible number of

variables (by using score2 that is number of variables in nodes’ labells). The nodes added

to the graph are connected with all other nodes. At the end the graph is made consistent.

Exemple 6.5. Consider again the matrix M from Figure 26 and its corresponding ECG

G. Result of the function combinations(G) was presented in the Table 1. The LCG obtained

by function closure(G), has following set of nodes:

N ′ =
{
{0}, {x}, {y}, {α}, {x, α}, {y, α}, {2x}, {2y}, {2α}, {y, 2α}, {x, y, α}, {2x, 2α},

{2y, 2α}, {y, 3α}, {3α}
}

The Table 2 shows paths that can be used to consider each combination of edges from the

Table1.

6.2.3 Minimization of LDBM

Minimization of LCG that is closure of ECG G defines constraints of the canonical form

of polyhedron represented by G.

In case of classical constraint graphs, the canonical form of a represented polyhedron was

obtained by minimization using the Floyd-Warschall algorithm. The canonical form of a

polyhedron that is represented by ECG can be obtained by minimizing its closure. Due to

existence of equivalent edges in LCG the classical Floyd-Warschall shortest path algorithm

will not work. The reason for this is that bringing a LCG to a minimal form with Floyd-

Warschall algorithm will not preserve its consistency. Then, making the graph consistent

may not preserve the minimal form, as shown in the Example 6.2.
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Algorithm 6.4 closure(G)

Input: G = (N,ω,E) extended constraint graph with nodes in N and edges in E

Output: LCG G′ that is closure of G and has minimal possible set of nodes

N ′ = N ;

E ′ = E;

Ψ = combinations(G);

for all ψ ∈ Ψ do

max_score1 = −∞;

min_score2 = ∞;

for all ψ ∈ permutations(ψ) do

Nodes = nodes(ψ);

if ψ cannot be represented by a path then

continue;

end if

score1 = 0;

score2 = 0;

for all n ∈ Nodes do

if n ∈ N then

score1 + +;

end if

score2+ = variables(n);

end for

if (score1 > max_score1) ∨
(
(score1 = max_score1) ∧ (score2 < min_score2)

)

then

NewNodes = Nodes;

end if

end for

N ′ = N ′ ∪NewNodes;

add edges to E ′ so that nodes in NewNodes are connected with all other nodes in N ′;

end for

consistent(G′);
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ψ ∈ combinations(G) path in G′ that represents ψ

(consists of edges equivalent with those in ψ)
{
{α} → {x}, ∅ → {x, α}

}
∅ → {x, α} → {2x}

{
{α} → {y}, ∅ → {y, α}

}
∅ → {y, α} → {2y}

{
{x} → {α}, ∅ → {x, α}

}
∅ → {x, α} → {2α}

{
{y} → {α}, ∅ → {y, α}

}
∅ → {y, α} → {2α}

{
{y} → {x, α}, {x} → {y, α}

}
{y} → {x, α} → {2α, y}

{
∅ → {x}, {y} → {x, α}, ∅ → {y, α}

}
∅ → {x} → {x, y, α} → {2x, 2α}

{
{y} → {x}, {y} → {α}, ∅ → {x, α}

}
{2y} → {x, y} → {x, α} → {2x, 2α}

{
∅ → {y}, ∅ → {x, α}, {x} → {y, α}

}
∅ → {y} → {x, y, α} → {2y, 2α}

{
{x} → {y}, {x} → {α}, ∅ → {y, α}

}
{2x} → {x, y} → {yα} → {2y, 2α}

{
{x} → {α}, {y} → {x, α}, ∅ → {y, α}

}
{y} → {x, α} → {2α} → {3α, y}

{
{y} → {α}, {x} → {y, α}, ∅ → {x, α}

}
∅ → {x, α} → {2α, y} → {3α}

All inverse paths

Table 2: Paths in closure{G} that represent sum of expressions returned by combinations{G}

One solution to overcome this problem could be subsequently repeating operations of min-

imization and bringing the graph to consistent form unless it is minimal and consistent.

However, checking consistency and minimality can be done only by applying the opera-

tion consistent() and minimal() to the LDBM representing the graph and then checking

whether it was changed by the operation. This would result in a complexity overhead, since

the last iteration from the computational point of view would be redundant.

The same result that is obtained by subsequently minimizing LDBM and making it con-

sistent can be obtained by using function minimalL(G) presented by the Algorithm 6.5.

Let G = (N,ω,E) be a linear constraint graph corresponding to LDBM M and G′ =

(N,ω′, E) be a LCG corresponding to the matrix that is obtained by the function

minimalL(M). Then the following is true:

1. ∀e ∈ E : ω′(e) ≤ min
(
ω(p) | p ∈ path(e)

)
.

2. G′ is consistent.

3. In each equivalence class there exists at least one edge e ∈ E such that ω′(e) =
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Algorithm 6.5 minimalL(G): minimization of LCG

Arguments: Consistent LDBM M

Output: minimal and consistent version of M

for all k ∈ [1..length(M)] do

for all i ∈ [1..length(M)] do

for all j ∈ [1..length(M)] do

if Mi,k +Mk,j < Mi,j then

for all Mx,y ∈ E(Mi,j) do

Mx,y = (Mi,k +Mk,j) ·
ϕx,y

ϕi,j

;

end for

end if

end for

end for

end for

return M

min
(
ω
(
path(e)

))

The first property means that each edge e ∈ E ′ has weight not higher than any of the

paths from path(e) in graph G. This is the actual condition that the graph G′ is minimal.

Because the graph is also consistent, it implies that weight of each edge e ∈ E ′ is not only

lower or equal that weight of any path p ∈ path(e) but is also lower or equal (with respect

to the equivalence factor) that any path p ∈ path(e′) for all edges e′ that are equivalent

with e. The last property means that in each equivalence group there is at least one edge

e whose weight was calculated using the weight of the shortest path from path(e). This

means that the constraint defined by e is the tightest constraint for expression represented

by all edges in the equivalence group. This property implies that G′ defines canonical form

of a polyhedron represented by graphs for which G′ is a closure.

Proof. The correctness of the Algorithm 6.5 can be proved by induction. Let pathk(e)

denote all paths that connect the same nodes that are connected by edge e and traverse

nodes with index less than k. Now let Φk denote the property that after kth iteration of

the outer loop all of conditions below are satisfied:
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Φ1
k : ∀e ∈ E : ωG′(e) ≤ ω

(
min

(
pathk(e)

))
,

Φ2
k : G′ is consistent,

Φ3
k : In each equivalence class of G′ there exists an edge e such that ω′(e) =

min
(
ω(p)|p ∈ pathk(e)

)
.

The initial assumption is that before start of the first loop the graph G is consistent. It

means that weights of all edges in each equivalence class equals the weight of the lightest

edge in the class with respect to the equivalence factors. In the first iteration a weight

of each edge ni → nj is compared to weight of a path ni → n1 → nj . If the latter is

lower, weights of all edges nx → ny equivalent to ni → nj are changed to the weight of the

path ni → n1 → nj with respect to equivalence factors ϕx,y and ϕi,j. Because the graph

was consistent before, it means that weights of all those edges are now lower than before.

Therefore after entire iteration the property Φ1
1 is satisfied. Since the weight of ni → nj is

also changed, the property Φ3
1 is satisfied as well. Also, because weight of all edges within

equivalence class are always changed together, the graph is still consistent (property Φ2
1).

In kth step, weights of edges ni → nk and nk → nj are lower or equal to any path from

pathk(ni → nk) and pathk(nk → nj) respectively. Than, if ω(ni → nk) + ω(nk → nj) <

ω(ni → nj) the weights of all edges equivalent to ni → nj are changed. Because before

the graph was consistent it means that the new weight is lower than weight of any edge in

the equivalence class (property Φ1
k). Naturally, the graph is consistent after kth iteration,

because the same set of paths was compared for each edge within given equivalence class

(Φ2
k). Φ3

k is satisfied as well. This means that satisfaction of Φk−1 implies satisfaction of Φk

and the algorithm is correct.

The canonical form of the matrix M from the Figure 26 has following form:



6.3. Operations on EDBM 97

M =




∅ {x} {y} {α} {x, α} {y, α}

∅ (0,≤) (−1,≤) (−1,≤) (−1.5,≤) (−2.5,≤) (−5,≤)

{x} (5,≤) (0,≤) (2,≤) (1,≤) (−1.5,≤) (−4,≤)

{y} (5,≤) (4,≤) (0,≤) (3.5,≤) (1,≤) (−1.5,≤)

{α} (6,≤) (5,≤) (5,≤) (0,≤) (−1,≤) (−1,≤)

{x, α} (11,≤) (6,≤) (8,≤) (5,≤) (0,≤) (2,≤)

{y, α} (11,≤) (10,≤) (6,≤) (5,≤) (4,≤) (0,≤)




6.3 Operations on EDBM

Since the elements of a EDBM are numerical bounds, the property checking operations

do not differ from corresponding operations on the standard DBM. On the other hand

the transformation operations must be reconsidered, since the elements of EDBM define

bounds of expressions involving clocks and parameters and the parameters do not change

in time.

Below all the matrices that are subject of the operations are assumed to be in canonical

form. MA,B will represent element of the EDBM in row labelled with A and column labelled

with B, that define bound on expression
∑
A −

∑
B such that A = {γA1, · · · , γAn} and

B = {γB1, · · · , γBn}. Mi,• and M•,i will denote ith row and ith column of the matrix M

respectively.

6.3.1 Property checking

emptyE(M) Testing whether a polyhedron represented by EDBM M is empty is done by

checking whether the elements on diagonal are lower than (0,≤). The operation emptyE(M)

is implemented by the Algorithm 6.6.

includesE(M,M′) The function includesE(M,M ′) checks inclusion relation for EDBMs

M and M ′. It returns true if all valuations that belong to polyhedron represented by M

belong also to the polyhedron represented by M ′.

If M and M ′ are in minimal and consistent form it is enough to check whether all bounds
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Algorithm 6.6 emptyE(M)

Arguments: canonical EDBM M

Returned value: a boolean value indicating whether M representing non-empty portion

of space

for all i ∈ [1..length(M)] do

if Mi,i < (0,≤) then

return false;

end if

end for

return true;

defining M are lower or equal than corresponding bounds defined by M ′. This test is

implemented by Algorithm 6.7

Algorithm 6.7 includesE(M,M ′))

Arguments: canonical EDBMs M and M ′

Returned value: a boolean value indicating whether polyhedron represented by M is

included by polyhedron represented by M ′.

for all i ∈ [1..length(M)] do

for all j ∈ [1..length(M)] do

if M ′
i,j < Mi,j then

return false

end if

end for

end for

return true

satisfies(M, (
∑

A −
∑

B ≺ m)) This function verifies whether there are valuations in

polyhedron represented by M that satisfy the constraint
∑
A −

∑
B ≺ m, where A and

B are sets represented by some row and column of M . As in case of standard DBM it is

enough to find out whether (0,≤) ≤ (m,≺) +MB,A. Since the matrix M is assumed to be
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consistent, there is no need to check elements equivalent to MA,B.

6.3.2 Transformations

andE(M,
∑

A −
∑

B ≺ m) Operation andE(M,
∑
A−

∑
B ≺ m) represent adding the

constraint
∑
A−

∑
B ≺ m to the polyhedron represented by M . As in case of DBMs the

basic step for this operation is to replace element MA,B and all equivalent elements, with

the bound (m,≺) in case it is lower than current bound at MA,B. To check whether the

matrix is still positive, the sum (m,≺) + MB,A must be positive. Because the EDBM is

assumed to be consistent, respective sums of other elements in the equivalence classes are

also positive and do not have to be checked.

Since the resulting matrix may be not minimal, it must be minimized using LDBM that

is closure of the EDBM M . The cost of the minimization may be reduced, by taking

advantage of the fact that only element MA,B and its equivalent elements were changed.

For the ECG corresponding to M it means that weights of all edges in the graph are equal

to weights of shortest paths that do not traverse nodes that are source or destination of

altered edges. Therefore, only those paths that traverse those nodes must be checked in

order to re-canonicalize the matrix. Those nodes in the matrix are represented by rows and

columns that contain altered elements. This approach is implemented by the Algorithm

6.8.

The complexity of Algorithm 6.8 depends on the size of equivalence class of the altered

element. In the best case, this size equals 1, which means that in fact the algorithm behaves

exactly as the Algorithm 4.5 for standard DBMs and has complexity O(n2). The size of

biggest equivalence class depends on the number of rows and columns labelled with a set

containing the same variable. In general, the order of magnitude of the size of equivalence

classes equals n, so the entire operation andE() has maximum complexity O(n3). Note,

that n is the size of closure of the altered EDBM, so it can be much bigger than size of the

EDBM.

Exemple 6.6. Let Z be a polyhedron over the clock x and parameter α, depicted in the

Figure 28. Z is described by EDBM M :
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Algorithm 6.8 andE(M,
∑
A−

∑
B ≺ m))

Arguments: Canonical EDBM M ; constraint
∑
A−

∑
B ≺ m

Returned value: Canonical EDBM that represents intersection of M and the constraint
∑
A−

∑
B ≺ m.

if includes(M,
∑
A−

∑
B ≺ m) then

M0,0 = (−1,≺);

return M ;

end if

for all i, j : Mi,j ∈ equivalent(MA,B) do

Mi,j = (m,≺) ·
ϕi,j

ϕA,B

;

end for

M ′ = closure(M);

for all k such that M ′
k,• or M ′

•,k contain element equivalent to M ′
A,B do

for all i ∈ [1 : length(M ′) do

for all j ∈ [1 : length(M ′) do

M ′
i,j = min(M ′

i,j ,M
′
i,k + (M ′

k,j))

end for

end for

end for

for all i ∈ [1..length(M)] do

for all j ∈ [1..length(M)] do

Mi,j = M ′
i,j ;

end for

end for

return M
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M =




∅ {x} {α} {x, α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤)

{x} (3,≤) (0,≤) (1,≤) (−1,≤)

{α} (4,≤) (3,≤) (0,≤) (0,≤)

{x, α} (6,≤) (4,≤) (3,≤) (0,≤)




x

α

Figure 28: Parametric polyhedron

The example will show procedure for intersecting Z with the constraint x ≤ 1, which is done

by function andE(M,x ≤ 1). First step is checking whether introducing this constraint will

not make M negative. Because the constraint for x is represented by element M2,1 it must

be checked whether (0,≤) ≤ (1,≤) +M1,2. Since yes, the resulting matrix will be positive.

To calculate the canonical form of the new polyhedron it is necessary to use LDBM that is

closure of M . It has two additional rows and columns, labelled with {2x} and {2α}. The

minimal form of closure(M) has following form:

M ′ =




∅ {x} {α} {x, α} {2x} {2α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤) (0,≤) (−2,≤)

{x} (3,≤) (0,≤) (1,≤) (−1,≤) (0,≤) (0,≤)

{α} (4,≤) (3,≤) (0,≤) (0,≤) (3,≤) (−1,≤)

{x, α} (6,≤) (4,≤) (3,≤) (0,≤) (3,≤) (1,≤)

{2x} (4,≤) (3,≤) (4,≤) (1,≤) (0,≤) (2,≤)

{2α} (8,≤) (7,≤) (4,≤) (3,≤) (6,≤) (0,≤)




Changing element M2,1 must have consequences in changing all equivalent elements, in this

case M5,1 (with ϕ5,1 = 2) and M5,2. Since the altered elements in the LCG corresponding to

M ′ represent edges ∅ → {x}, ∅ → {2x} and {x} → {2x}, weights of all paths that traverse
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nodes ∅, {x} and {2x} must be calculated again. This nodes are represented respectively

by first, second and fifth row and column of M ′, so k in the Algorithm 6.8 will take values

from the set {1, 2, 5}. The minimized LDBM M ′ has following form:

minimal(M ′) =




∅ {x} {α} {x, α} {2x} {2α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤) (0,≤) (−2,≤)

{x} (1,≤) (0,≤) (0,≤) (−1,≤) (0,≤) (−1,≤)

{α} (4,≤) (3,≤) (0,≤) (0,≤) (3,≤) (−1,≤)

{x, α} (5,≤) (4,≤) (1,≤) (0,≤) (2,≤) (1,≤)

{2x} (2,≤) (1,≤) (1,≤) (0,≤) (0,≤) (0,≤)

{2α} (8,≤) (7,≤) (4,≤) (3,≤) (6,≤) (0,≤)




The polyhedron represented by EDBM that is result of operation andE(M,x ≤ 1) is depicted

in the Figure 29

x

α

Z ∩ (x ≤ 1)

Figure 29: Polyhedron represented by result of operation andE(M,x ≤ 1)

intersectionE(M,M′) Intersecting two polyhedra represented by EDBMs M and M ′

can be done as in case of DBMs by taking for each element lower value from M or M ′. The

resulting EDBM is not canonical. To reduce the cost of re-canonicalization, the constraint

graph representing M ′ may be reduced using Algorithm 2.3. Then the intersection may be

calculated using the and(M,
∑
A−

∑
B ≺ m), for all non-redundant constraints of M ′.

futureE(M) In standard DBMs where all rows and columns represent clocks forward time

elapse is implemented by removing upper constraints on all clocks, which is equivalent to

replacing all elements of the first column with (∞, <) (except element M0,0).
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This operation is a little bit more complex in case of EDBM, since the rows and columns of

EDBM represent not only clocks, but also parameters or sum of clocks and/or parameters.

The forward time elapse of valuations in polyhedron Z is represented by extending Z with

all valuations that can be reached from Z in the future, assuming that all clocks proceed

with the same tempo. In general, all valuations of Z satisfy set of constraints in form
∑
A−

∑
B ≺ m. If A contains more clocks than B, the difference

∑
A−

∑
B will grow

with each second, going to infinity. Therefore implementation of operation futureE() is

done by assigning the bound (∞, <) to all elements of EDBM MA,B for which the set A

contains more clocks than B.

The function futureE(M) is implemented by the Algorithm 6.9. The canonical form of

EDBM is preserved by this operation.

Algorithm 6.9 futureE(M)

Input: EDBM M in minimal and consistent form representing polyhedron Z

Output: EDBM representing Z↑

M↑ = M ;

for all i ∈ [1..n] do

if |
(
label(i) ∩ C

)
| > 0 then

for all j ∈ [1..n] do

if |
(
label(j) ∩ C

)
| < |

(
label(i) ∩ C

)
| then

Mi,j = (∞, <);

end if

end for

end if

end for

return M↑;

For matrix M from Example 6.6 the operation futureE(M) will return following matrix:
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futureE(M) =




∅ {x} {α} {x, α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤)

{x} (∞, <) (0,≤) (∞, <) (−1,≤)

{α} (4,≤) (3,≤) (0,≤) (0,≤)

{x, α} (∞, <) (4,≤) (∞, <) (0,≤)




The polyhedron represented by futureE(M) is depicted in the Figure 30.

x

α

Z↑

Figure 30: Polyhedron represented by futureE(M)

pastE(M) The backward time elapse represents extending polyhedron Z with those valu-

ations that can reach Z by forward time elapse. In DBMs this was implemented by replacing

lower bounds of individual clocks by (0,≤).

Let expression bounded by element MA,B be written as
∑
A−

∑
B = (

∑
AC −

∑
BC) +

(
∑
AP −

∑
BP ), such that sets AC and BC contain only clocks and sets AP and BP contain

only parameters. When time runs backwards, the bound of the difference
∑
A−

∑
B grows

only, if A contains less clocks than B. Remind that values of individual clocks may not

be lower than 0. This means that if B contains only clocks and A is empty, the element

MA,B must be changed to (0,≤) (this concerns also lower bounds of all individual clocks,

i.e. where A = ∅ and B is labelled with a single clock). Other elements MA,B such that

|BC | > |AC | and |A| > 0 must be changed to (∞, <). The pseudocode for backward time

elapse is presented by the Algorithm 6.10.

Note that this operation does not preserve the canonical form of the matrix.

For matrix M from Example 6.6 the operation pastE(M) will return following matrix:
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Algorithm 6.10 pastE(M)

Input: EDBM M in minimal and consistent form representing a polyhedron Z

Output: EDBM representing Z↓

M↓ = M ;

for all i ∈ [1..n] do

for all j ∈ [1..n] do

if |
(
label(i) ∩ C

)
| < |

(
label(j) ∩ C

)
| then

if |label(i)| > 0 then

Mi,j = (0,≤);

else

Mi,j = (∞, <);

end if

end if

end for

end for

return M↓;
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pastE(M) =




∅ {x} {α} {x, α}

∅ (0,≤) (0,≤) (−1,≤) (−1,≤)

{x} (3,≤) (0,≤) (1,≤) (−1,≤)

{α} (4,≤) (4,≤) (0,≤) (0,≤)

{x, α} (6,≤) (4,≤) (3,≤) (0,≤)




The polyhedron represented by pastE(M) is depicted in the Figure 31.

x

α

Figure 31: Polyhedron represented by pastE(M)

resetE(M,X) The clock reset may be implemented by setting the values of Mx,1 and

M1,x to (0,≤) for all x ∈ X and other elements in rows and columns where x is involved

to (∞, <). The resulting matrix will not remain the canonical form then.

It is possible to define the operation resetE() in the way that the EDBM remains in its

canonical form, however it depends on the content of the matrix. Let MA+x,B denote an

element representing bound of the expression
∑
A+x−

∑
B, such that x ⊆ X. Assigning

0 to all clocks in x means that the bound of
∑
A + x −

∑
B becomes in fact the bound

of the expression
∑
A −

∑
B, which is represented by the element MA,B. Thus, entire

row MA+x,• can be replaced by the row MA,•. For the columns the situation is analogical:

reseting clocks in x means that the bound of
∑
A−(

∑
B+x) becomes equivalent to bound

of
∑
A −

∑
B, what means that the column M•,B+x must be replaced with the column

M•,B. It may happen, that the EDBM M does not contain row and column representing A

and B. In that case the all elements in row MA+x,• and column M•,B+x must be replaced

with (∞, <) and the matrix M must be recanonicalized.

The operation resetE(M,X) is implemented by the Algorithm 6.11.

The result of operation resetE(M,x) for matrix M from Example 6.6 is following:
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Algorithm 6.11 resetE(M,X)

Arguments: canonical EDBM M , representing polyhedron Z; Set of reset clocks X

Output: EDBM representing Z[X := 0]

canonical = true;

for all i ∈ [1..n] do

x = label(i) ∩X

if x 6= ∅ then

if ∃k | label(k) = label(i) \ x then

for all j ∈ [1..n] do

Mi,j = Mk,j;

Mj,i = Mj,k;

end for

else

for all j ∈ [1..n] do

Mi,j = (∞, <);

Mj,i = (∞, <);

canonical = false

end for

end if

end if

end for

if canonical = false then

M = canonical(M);

end if

return M ;
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resetE(M,x) =




∅ {x} {α} {x, α}

∅ (0,≤) (0,≤) (−1,≤) (−1,≤)

{x} (0,≤) (0,≤) (−1,≤) (−1,≤)

{α} (4,≤) (4,≤) (0,≤) (0,≤)

{x, α} (4,≤) (4,≤) (0,≤) (0,≤)




The polyhedron represented by resetE(M,x) is depicted in the Figure 32.

x

α

Figure 32: Polyhedron represented by resetE(M,x)

unresetE(M,X) As in case of standard DBM the first step for operation unresetE(M,X)

is to restrict polyhedron represented by M to those valuations that can be result of reset

clocks in X. This is done by operation andE(M,x ≤ 0) for all clocks x ∈ X. Then the

constraints on clocks in X are released.

Releasing constraints on clocks in X is analogical to the operation futureE(M) where only

elements of X are considered as clocks. All the parameters and clocks not in X do not

change their values. Therefore, to implement it, it is enough to replace all elements MA,B,

such that A contains more elements of X than B, with (∞, <).

The operation unresetE(M,X) is implemented by Algorithm 6.12.

Since operations andE() and futureE() return canonical matrices, the result of

unresetE(M,X) is also canonical.

Result of unresetE(M,x) for matrix M from Example 6.6 is following:



6.3. Operations on EDBM 109

Algorithm 6.12 unreset(M,X)

Arguments:EDBM M representing polyhedron Z; set of unreset clocks X

Output: EDBM M ′ representing [X := 0]Z

for all x ∈ X do

M = and(M,x ≤ 0);

end for

if ¬empty(M) then

for all i ∈ [1..n] do

for all j ∈ [1..n] do

if |label(i) ∩X| > |label(j) ∩X| then

Mi,j = (∞, <);

end if

end for

end for

end if

return M
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unresetE(M,x) =




∅ {x} {α} {x, α}

∅ (0,≤) (0,≤) (−2,≤) (−2,≤)

{x} (∞, <) (0,≤) (∞, <) (−2,≤)

{α} (3,≤) (3,≤) (0,≤) (0,≤)

{x, α} (∞, <) (3,≤) (∞, <) (0,≤)




The resulting polyhedron is depicted in the Figure 33.

x

α

Figure 33: Polyhedron represented by unresetE(M,x)

6.4 Symbolic analysis using EDBM

Symbolic forward and backward analysis of parameterized timed automata can be done by

applying EDBM operations to the definitions of post() and pred() operations.

Recall that for zones H = (l, Z) and H ′ = (l′, Z ′) and transition t = (l, a, ZG, r, l
′) the

post() and pred() operations are defined by:

post(H, t) = (l′, ((Z↑ ∩ Inv(l))[r := 0])Inv(l′))

pred(H ′, t) = ([r := 0]Z ∩ Zt ∩ Inv(l))
↓ ∩ Inv(l)

Let Z, Inv(l), ZG and Inv(l′) be represented by matrices M , MInv(l), MG and MInv(l′).

The operations post() and pred() can be implemented as:

• post(l, Z) = (l′, Z ′)

• pred(l′, Z ′) = (l, Z ′′)
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Algorithm 6.13 postE(M, t)

M = futureE(M);

M = intersect(M,MInv(l));

M = canonicalE(M);

M = resetE(M, r);

M = intersect
(
M,MInv(l′)

)
;

M = canonicalE(M);

return M ;

Algorithm 6.14 predE(M, t)

M = unresetE(M, r);

M = intersect(M,MInv(l));

M = intersect(M,MG);

M = canonicalE(M);

M = pastE(M);

M = intersect
(
M,MInv(l)

)
;

M = canonicalE(M);

return M ;
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such that Z ′ and Z ′′ are represented by EDBMs M ′ and M ′′ obtained in the way described

by Algorithms 6.13 and 6.14 respectively.

Due to the fact that an EDBM defines values of clocks and parameters, the EDBM repre-

senting an initial state must define the values of clocks to 0 and the values of parameters

according to initial constraints defined for the analyzed system.

Exemple 6.7. Consider the following path, where x and y are clocks and α is parameter

defined by the constraint 0 ≤ α ≤ 10:

l0 l1 l2 l3

{
x ≥ 1

x ≤ α

y := 0





y ≥ 1

y ≤ α + 3

y − x ≤ α− 3

x ≥ α

x := 0





x ≥ 2

x ≤ 6

y ≥ 2

y ≤ α + 3

Since constraints in the transition guards are defined for x, y, x− y and x+α, the EDBM

used for analysis of the path need to define rows and columns labelled with ∅, {x}, {y}, {α}

and {x, α}. Additionally, the LDBM used for canonicalization must have rows and columns

labelled with {2x}, {2y}, {2α}, {y, α} and {2x, 2α}. The initial state of the symbolic path

is defined by H0 = (l0, Z0) where Z0 is described by the EDBM M0:

M0 =




∅ {x} {y} {α} {x, α}

∅ (0,≤) (0,≤) (0,≤) (0,≤) (0,≤)

{x} (0,≤) (0,≤) (0,≤) (0,≤) (0,≤)

{y} (0,≤) (0,≤) (0,≤) (0,≤) (0,≤)

{α} (10,≤) (10,≤) (10,≤) (0,≤) (0,≤)

{x, α} (10,≤) (10,≤) (10,≤) (0,≤) (0,≤)




The first step is applying operation futureE(M0), what gives following result:
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future(M0) =




∅ {x} {y} {α} {x, α}

∅ (0,≤) (0,≤) (0,≤) (0,≤) (0,≤)

{x} (∞, <) (0,≤) (0,≤) (∞, <) (0,≤)

{y} (∞, <) (0,≤) (0,≤) (∞, <) (0,≤)

{α} (10,≤) (10,≤) (10,≤) (0,≤) (0,≤)

{x, α} (∞, <) (10,≤) (10,≤) (∞, <) (0,≤)




The resulting matrix must be intersected with constraints x ≥ 1 and x ≤ α what is done

by subsequent applying operations and(M,−x ≤ 1) and and(M,x − α ≤ 0). The result is

presented below:

and
(
and

(
future(M0),−x ≤ −1

)
, x− α ≤ 0

)
=




∅ {x} {y} {α} {x, α}

∅ (0,≤) (−1,≤) (−1,≤) (−1,≤) (−2,≤)

{x} (10,≤) (0,≤) (0,≤) (0,≤) (−1,≤)

{y} (10,≤) (0,≤) (0,≤) (0,≤) (−1,≤)

{α} (10,≤) (9,≤) (9,≤) (0,≤) (−1,≤)

{x, α} (20, <) (10,≤) (10,≤) (10,≤) (0,≤)




Finally, to complete the operation postE(Z0, t0 → t1) the operation resetE(M,x) must be

applied:

M1 = post(M0, t1 → t2) =




∅ {x} {y} {α} {x, α}

∅ (0,≤) (−1,≤) (0,≤) (−1,≤) (−2,≤)

{x} (10,≤) (0,≤) (10,≤) (0,≤) (−1,≤)

{y} (0,≤) (−1,≤) (0,≤) (−1,≤) (−2,≤)

{α} (10,≤) (9,≤) (10,≤) (0,≤) (−1,≤)

{x, α} (20, <) (10,≤) (20,≤) (10,≤) (0,≤)




The remaining matrices that represent polyhedra that are results of forward analysis done

by applying post() operations are as follows:
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M2 = post(M1, l1 → l2) =




∅ {x} {y} {α} {x, α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤) (−2,≤)

{x} (0,≤) (0,≤) (−1,≤) (−2,≤) (−2,≤)

{y} (9,≤) (9,≤) (0,≤) (−1,≤) (−1,≤)

{α} (10,≤) (10,≤) (9,≤) (0,≤) (0,≤)

{x, α} (10,≤) (10,≤) (9,≤) (0,≤) (0,≤)




M3 = post(M2, l2 → l3) =




∅ {x} {y} {α} {x, α}

∅ (0,≤) (−2,≤) (−3,≤) (−2,≤) (−4,≤)

{x} (6,≤) (0,≤) (−1,≤) (2,≤) (−2,≤)

{y} (13,≤) (9,≤) (0,≤) (3,≤) (−1,≤)

{α} (10,≤) (8,≤) (7,≤) (0,≤) (−2,≤)

{x, α} (16,≤) (10,≤) (9,≤) (6,≤) (0,≤)




The EDBMs obtained by backward analysis have following form:

M ′
3 = M3

M ′
2 = intersect

(
M2, pred(M

′
3, t2 → t3)

)
=




∅ {x} {y} {α} {x, α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤) (−2,≤)

{x} (0,≤) (0,≤) (−1,≤) (−2,≤) (−2,≤)

{y} (9,≤) (9,≤) (0,≤) (−1,≤) (−1,≤)

{α} (10,≤) (10,≤) (9,≤) (0,≤) (0,≤)

{x, α} (10,≤) (10,≤) (9,≤) (0,≤) (0,≤)




,

M ′
1 = intersect

(
M1, pred(M

′
2, t1 → t2)

)
=
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∅ {x} {y} {α} {x, α}

∅ (0,≤) (−1,≤) (0,≤) (−2,≤) (−3,≤)

{x} (9,≤) (0,≤) (9,≤) (0,≤) (−2,≤)

{y} (0,≤) (−1,≤) (0,≤) (−2,≤) (−3,≤)

{α} (10,≤) (9,≤) (10,≤) (0,≤) (−1,≤)

{x, α} (19, <) (10,≤) (19,≤) (9,≤) (0,≤)




,

M ′
0 = intersect

(
M0, pred(M

′
1, l0 → l1)

)
=




∅ {x} {y} {α} {x, α}

∅ (0,≤) (0,≤) (0,≤) (−2,≤) (−2,≤)

{x} (0,≤) (0,≤) (0,≤) (−2,≤) (−2,≤)

{y} (0,≤) (0,≤) (0,≤) (−2,≤) (−2,≤)

{α} (10,≤) (10,≤) (10,≤) (0,≤) (0,≤)

{x, α} (10,≤) (10,≤) (10,≤) (0,≤) (0,≤)




The polyhedra represented by EDBMs obtained by forward backward analysis are depicted

in the Figure 34. Note that despite that the allowed values of the parameter α were in the

range [0, 10] the path is executable only, when the value of α is in the range [2, 10].

6.5 Summary

EDBM presented in this chapter is a compact data structure that allows symbolic repre-

sentation of both clocks and paraeters within one matrix. Although the size of EDBM is

bigger than initial size of constrained PDBM, the latter may grow during the analysis to

unpredictable and unmanagable sizes.

To understand benefits of using EDBM let assume that adding one parameter to a specifi-

cation of system with n clocks will result in one ambiguous result of comparison operation

(e.g. during intersection of two matrices). Note that this is rather optimistic assumption.

Such duplication will cause that the memory consumed by PDBM will grow from n2 to

2n2 (the growth in this case is n2). Considering the same parameter in EDBM will result

in growing the matrix from n2 to (n + 1)2 (in this case the net growth equals to 2n + 1).
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(a) M ′
0

(b) M ′
1

(c) M ′
2

(d) M ′
3

Figure 34: Polyhedra representing symbolic states obtained by forward and backward analysis

Using EDBM is beneficial then, if n2 > 2n+ 1 what is true for all n ≥ 3.

Situation gets more complicated if constraints in the specification requires EDBM to have

rows and columns labelled with sets containing more than one element. In this case the

size of LDBM that is a closure of given EDBM may drastically grow. Experiments with

implementation of the Algorithm 6.4 showed that each row that is labeled with set of two
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elements causes that the length of EDBM’s closure roughly doubles. However, as shown

later in the Section 7.1 efficient implementation causes that the memory consumption in

this case does not to be so high as it comes from the size of the closure matrix.
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7 Implementation and experiments

The implementation of the framework proposed in the previous chapter is documented

here. The Section 7.1 shows some tips for efficient implementation of the EDBM data

structure. The Section 7.2 shows how implementation of EDBM was embedded in a toy-

tool for analysis of real time systems modeled as communicating systems of TA. The format

of input files of this tool is documented by the Section 7.3. The Section 7.4 describes a few

test generation algorithms that have been implemented on the top of the tool, finally the

Section 7.5 reports experiments with generating test cases for the FlexRay MAC process.
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7.1 Implementation of EDBM and LDBM

7.1.1 Implementation of bound

Bound is a class that defines elements of an EDBM. The class defines two attributes:

double value;

bool closure;

The two attributes define value of the bound and its closure. The value attribute is a

real value whereas the closure is boolean indicating whether the bounding element is “≤”

(true) or “<” (false).

The class defines binary operators that allow summing two bounds and multiplying a

bound and real value. Apart from that, all possible comparison operators are also defined.

All public methods of the Bound class are presented below:

Bound(const double, const bool);

Bound(const Bound&);

void operator+(const Bound&);

void operator*(const double);

bool operator<(const Bound&);

bool operator<=(const Bound&);

bool operator==(const Bound&);

bool operator!=(const Bound&);

bool operator>(const Bound&);

bool operator>=(const Bound&);

7.1.2 EDBM class implementation

Implementing EDBM (and LDBM) as a matrix of bounds would be inefficient, due to exis-

tence of equivalent elements. It is more convenient and sensible to implement the structure

using an associative container where the bounds are associated with expressions that they

limit. For example an element in a row labelled with {x, y} and a column labelled with {y}

would be represented by the same bound that element of a row labelled with {x} and a
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column labelled with {∅}. Apart from reducing memory consumption such approach facil-

itates operations like intersection or canonicalization, since the EDBM and LDBM stored

in this way are always consistent.

EDBM has been implemented in C++ as EDBM class, using elements of standard library

(STL) and boost library [1].

Attributes of the EDBM class

The attributes of the EDBM class are declared as follows:

std::vector<std::string> variables_defs;

std::vector<bool> clocks;

RowDefinition edbm_row_definition;

RowDefinition ldbm_row_definition;

std::map<Expression, Bound> values;

where RowDefinition and Expression are types defined by:

typedef boost::numeric::ublas::vector<int> Expression;

typedef std::vector<Expression> RowDefinition;

The attribute variables_defs is a vector that contains labels of clocks and parameters

that are used for labelling rows and columns of the EDBM matrix. The attribute clocks is a

boolean vector that indicate which of the elements of the vector variables_defs are clocks.

The next two attributes, namely edbm_row_definition and ldbm_row_definition, define

how each row and column of EDBM and its closure are labelled (it is assumed that rows and

columns are labelled in the same order, i.e. row i is labelled with the same set that column

i). Technically these attributes are vectors of boolean vectors. The attribute values is a

table that contains all values of the EDBM and corresponding closure (note that EDBM

is entirely contained in its closure). It is implemented as a map, where key is a vector

defining bounded expression and the value is a bound of this expression. The values store

only bounds for expression for which the equivalence factor equals 1 – other values can be

derived from them.

Exemple 7.1. Consider following EDBM:
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M =




∅ {x} {α} {x, α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤)

{x} (3,≤) (0,≤) (1,≤) (−1,≤)

{α} (4,≤) (3,≤) (0,≤) (0,≤)

{x, α} (6,≤) (4,≤) (3,≤) (0,≤)




Its corresponding LDBM has following form:

M ′ =




∅ {x} {α} {x, α} {2x} {2α}

∅ (0,≤) (0,≤) (−1,≤) (−2,≤) (0,≤) (−2,≤)

{x} (3,≤) (0,≤) (1,≤) (−1,≤) (0,≤) (0,≤)

{α} (4,≤) (3,≤) (0,≤) (0,≤) (3,≤) (−1,≤)

{x, α} (6,≤) (4,≤) (3,≤) (0,≤) (3,≤) (1,≤)

{2x} (4,≤) (3,≤) (4,≤) (1,≤) (0,≤) (2,≤)

{2α} (8,≤) (7,≤) (4,≤) (3,≤) (6,≤) (0,≤)




Rows and column of those matrices are labelled with expressions involving clock x and

parameter α. Thus, the vector variables_defs will have form:

variables_defs = [x, α]

Since only x is a clock, the clocks vector will look in the following way:

clocks = [true, false]

The labels of rows and columns of EDBM and LDBM will be defined using vectors of two

integers. For example the first row, labelled with ∅ will be represented by vector [0, 0]. The

row labelled with {x, α} will be labelled by [1, 1]. The entire definitions of edbm and ldbm

rows labels are as follows:

edbm_row_definition =
[
[0, 0], [1, 0], [0, 1], [1, 1]

]

ldbm_row_definition =
[
[0, 0], [1, 0], [0, 1], [1, 1], [2, 0], [0, 2]

]
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The attribute values stores bounds for all expressions bounded by LDBM. Those expres-

sions are represented by vectors of integers that are obtained by subtracting vector labelling

column of LDBM from vector that labells row of LDBM. In this example, the attribute

values will have following form:

values =




[0, 0] → (0,≤)

[−1, 0] → (0,≤)

[0,−1] → (−1,≤)

[−1,−1] → (−2,≤)

[1, 0] → (1,≤)

[1,−1] → (1,≤)

[1,−2] → (0,≤)

[0, 1] → (4,≤)

[−1, 1] → (3,≤)

[−2, 1] → (3,≤)

[1, 1] → (6,≤)

[2,−1] → (0,≤)

[−1, 2] → (7,≤)




Thus, with this implementation approach, instead storing 36 values of LDBM matrix it is

enough to store only 13.

Methods of the EDBM class

Constructors The EDBM class is equipped with set of constructors that may be used

depending on how many information about the constructed EDBM is available. The basic

form of the constructor takes three arguments that are a vector that contains labels of

clocks and parameters used for labelling rows and labels of EDBM, a vector of booleans

indicating which of the elements of the first argument are clocks and a definition of EDBM’s

row. Its declaration has following form:

EDBM(const std::vector<std::string>, const std::vector<bool>,

const RowDefinition);
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The function calculates form of LDBM that is a closure of this EDBM and fills it with

(0,≤) bounds.

Since calculating form of LDBM that is closure of given EDBM is very time consuming

process, the class EDBM provides additional constructor that uses LDBM provided by

user, so once calculated closure can be used many times. This constructor has following

declaration:

EDBM(const std::vector<std::string>, const std::vector<bool>,

const RowDefinition, const RowDefinition);

Note, that the correctness of the closure is not verified, so the results of system analysis

may be misleading when wrong closure is provided.

Apart from those two constructors, the class provides standard copy constructor:

EDBM(const EDBM&);

Getter and setter methods The class EDBM provides two getter methods for its ele-

ments:

Bound getBound(const unsigned int row, const unsigned int column) const;

Bound getBound(const Expression expr) const;

The first one takes indexes of row and column of the required bound. The second as

argument takes the expression that is bounded by required bound. This expression is

represented by vector of integers, where each one determines multiplicity of subsequent

variables in the expression (like in RowDefninition). The methods access the values table

and provide the required bound already multiplied with the equivalence factor. Note that

the getter method may return all bounds of the LDBM defined as closure of the EDBM

that the class represents.

The setter methods are analogical to getter methods, and are declared by:

Bound setBound(const unsigned int row, const unsigned int column);

Bound setBound(const Expression expr);
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Those methods update the values table considering the equivalence factor of updated

bound. Oppositely to getter methods it is only possible to set bounds that belong to

EDBM. Requiring change of the bounds that are elements of LDBM and are not in EDBM

results in run-time error. Setting values of bounds is not followed by canonicalization of

the EDBM.

Apart from the methods described above the class provides diagnostic methods to get the

size and form of EDBM and LDBM matrices:

unsigned int getEdbmSize() const;

RowDefinition getEdbmRowDefinition() const;

unsigned int getLdbmSize() const;

RowDefinition getLdbmRowDefinition() const;

Property checking methods The property checking methods implement algorithms de-

fined in 6.3.1. They are declared in the following way:

bool empty() const;

bool includes(const EDBM&) const;

bool satisfies(const Expr&, const Bound&) const;

bool satisfies(const int, const int, const Bound&) const;

The operation empty() checks whether values on a diagonal (that are represented by a sin-

gle bound in the values table) are positive. The operation includes(EDBM) checks whether

all bounds in EDBM provided as the argument are lower than corresponding bounds in

the values table. The operation satisfies test satisfiability of individual bounds. There

are two overloaded versions of this function: one takes requested expression as argument

while second takes indexes of the tested bound in the matrix.

Transformation methods The transformation methods implement operation of canon-

icalization and operations from section 6.3.2. Canonicalization is implemented by the

method declared as:

void canonicalize();
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and is done by minimizing the LDBM. Due to the internal structure of the EDBM class the

cost of this operation is O(n3), where n is the length of the LDBM matrix (number of its

rows).

Intersection and the andE(M,
∑
A−

∑
B ≺ m) operations are implemented by following

methods:

bool intersect(const EDBM);

bool and(const Expression, const Bound);

bool and(const unsigned int, const unsigned int, const Bound);

All those functions perform re-canonicalization at the end and returns an indicator whether

the resulting matrix is not empty. The two versions of the and() function a arguments take

either the expression that is to be restricted or indexes of the restricted element.

Forward and backward time elapse is implemented by following functions:

void future();

void past();

They are implemented according to Algorithm 6.9 and Algorithm 6.10 respectively. Their

complexity is linear with respect to a size of the values table.

The forward and backward clock resets are implemented by methods:

void reset(const std::vector<bool>);

void unreset(const std::vector<bool>);

The argument of those function is a vector that indicates positions of reset or unreset

clocks in the variables_defs vector. These vectors may point only those elements of

variables_defs that are clocks. Otherwise the method will generate run-time error. The

complexity of reset() is linear in terms of size of ldbm_row_definition. Unreset is

implemented with O(n2) cost, where n is length of the LDBM (because of involved and()

operation).
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Figure 35: SMART architecture

7.2 The SMART tool

SMART (Simulation Modeling and Analysis of Real Time systems) is an open platform

implemented in C++ for modeling and analysis of real time systems using Communicating

Systems of TIOA extended with variables and parameters. It has layered and modular

structure, what provides freedom in implementing methods for system manipulation.

The overall structure of SMART is presented in the Figure 35. The tool is implemented

as a library that provides an API for definition of algorithms for model checking, test

generation etc. Each of the module of the tool may be replaced by user defined module as

long as it provides required interface.

The tool provides a parser in the module System Definition Parser that reads systems

definition provided as a set of text files. This text file may be created manually, or obtained

using some graphical editing tool e.g. CALIFE [76]. CALIFE is an open source platform

that can be used to interface tools working on automata. The CALIFE platform works on

several automata models (transition systems, timed automata, counter automata,...) and

allows to define new models and interface new tools. A timed-automata system modelled

under the CALIFE System Editor can be exported to a XML format that can be parsed
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by SMART. The parsing operations are available via the ParserOperations interface.

However, since the CALIFE cannot be used to model nested communicating systems, it

has been decided to create new system description language, that allows to model nested

structures of automata. Text files with description of communicating system are parsed by

the System Definition Parser component of the SMART platform.

During an analysis, a system definition is stored by the System Definition component.

This component provides definition of classes that represent modules of CS (automata

and other CSs) and their communication rules (topologies). It provides interface for the

System Definition Parser, so the system definition can be initialized at the beginning of the

analysis. It also provides an interface for the Simulation Engine component, that allows

accessing a system definition when needed.

The Simulation Engine component is the heart of the SMART platform. It is accessed by

the user via API. The API provides operations that can be used for definition of user’s

algorithm for system analysis. This includes checking currently available transitions, per-

forming forward or backward synchronizations by post() and pred() operations or taking

system’s state snapshot. The API allows the system to be returned to any previous state

(by storing an execution tree) or to move to any arbitrary state by providing a system

state snapshot. The simulation engine accesses SystemDefinitionAccess methods provided

by the System Definition component. It also uses the SymbolicStateManipulation interface

provided by the component Symbolic State Representation Engine.

The next component is the Symbolic State Representation Engine. This is collection of

classes that store the actual system’s symbolic state. The main part of it is the imple-

mentation of the EDBM framework. Apart from it, the component stores the vector of

occupied locations by the processes and values of variables. The component provides the

SymbolicStateManipulation interface to the Simulation Engine that defines methods for

symbolic operations on polyhedra (future, past, reset, and etc.). It also provides methods

for snapshoting the system’s state and setting it to any value.

The last component that is part of the platform is Global Definitions component. It is set

of classes, macros and global definitions that are used by the entire tool.

The User Defined Algorithms component is not an integral part of the SMART platform,

but set of algorithms implemented by the user using the SMART’s API. The algorithms
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may be compiled either to executable files to a library that is used for other algorithms of

higher level.

7.2.1 Global Definitions

This package contains definitions of classes and types that are used by all other modules in

the tool. Two most important of these classes are Variable class and AlgebraicExpression.

Apart from those two, the Global Definitions package contains also definitions of classes

that store information about system that is exchanged between other packages.

Variable

There are five types of variables that can be used in SMART. Two of them represent prim-

itive types: Int and Double, two of them represent associative containers: Vector and Stack

and finally one type represents user defined structure: Struct, that is collection of variables

of all of the types (but not other structures). Variables in SMART are implemented by

Variable class. This is an abstract class, from which classes for each of five types inherit.

The inheritance diagram for the class Variable is depicted in the Figure 36.

The base class defines function that allows checking the variable’s type. It also declares the

abstract functions for duplicate and getting the value of variable.

The primitive types Double and Int represent real and integer variables respectively. Their

classes define basic binary operations: sum, difference, multiplication and division plus all

comparison operators.

Vector is a type that allows storing an array of variables of the same type (Int or Double).

Access to vector’s elements is done via providing index of requested variable in square

brackets. A vector can be extended with new elements by using the push() operation

and providing a value of the new element. The new element will be added to the end of

the vector. By operation pop() it is possible to remove last element of the vector. The

operation size() returns the length of the vector. Finally clear() removes all vector’s

elements.

The Stack class provides access only to the element that was recently put on it. Initially

it is empty. Putting a new element on a stack is done by push() operator. An element on
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Figure 36: Inheritance diagram of the Variable class
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a top of a stack is removed by operator pop(). The operation top() returns reference to

the element on the top (without removing it). clear() and size() work analogously to

the operations defined for Vector. The operation isEmpty() returns true if the size of the

stack is 0.

Finally, the Struct class is implemented as a dictionary, where the key is member label

and the value is a object of Variable type. The access to members of a struct is done by

providing the string representing member’s label in square brackets.

AlgebraicExpression

Algebraic expressions are mostly used to define invariants and guards in the system loca-

tions and transitions. Sometimes they may also be used to define an index of an element

of a vector that is updated during a transition. The SMART tool can recognize and store

any expression composed with labels and constants separated by one of operators for sum,

difference, multiplication and division. Elements of expression may be grouped with paren-

theses. The strings Inf represents infinity, so it may not be used as a label of a variable in

an expression. The example below can be considered as algebraic expression for SMART:

2 * x + (1 - x * x) + y

however the following cannot:

2x + 1

Expressions are read from right to left, without prioritizing operators, so for example the

evaluation of this expression:

3 * 2 + 2

would be 12 instead 8. This drawback can be overtaken by using parentheses, for example

the expression

(3 * 2) + 2

will be evaluated to 8.

The minus sign is recognized by SMART according to context, so it is possible to write:

-(1 + x) * y

instead
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(-1 - x) * y

Expressions may be defined using elements of vectors. In this case the index of the referred

element may be expressed as an expression as well, for example:

(2 * v[2]) + v[x + 2]

Finally, it is possible to use container size and the top element of a Stack variable as element

of expression:

vec.size() + stack.top()

Algebraic expressions are implemented in SMART as a recursive binary tree of objects of

AlgebraicExpression class. Main elements of the class declaration are presented below:

class AlgebraicExpression{

public:

AlgebraicExpression* operator+(const AlgebraicExpression*);

AlgebraicExpression* operator-(const AlgebraicExpression*);

AlgebraicExpression* operator*(const AlgebraicExpression*);

AlgebraicExpression* operator/(const AlgebraicExpression*);

bool operator==(const AlgebraicExpression*);

bool operator!=(const AlgebraicExpression*);

AlgebraicExpression reduce();

...

protected:

std::string main_element;

AlgebraicExpression* index;

AlgebraicExpression* child_left;

AlgebraicExpression* child_right;

}

Leafs of trees representing expressions are objects representing numerical value or a label.

In this case the main_element stores the value or the label as a string. In case when the

label represents element of a vector variable, the index pointed by index. For more complex

expressions, nodes that are not leafs contain a symbol of binary operator as main_element

and the left_child and right_child pointers point to objects representing expressions



7.2. The SMART tool 133

+

x ∗

1 −

5 2
(a)

∗

+ −

x 1 5 2

(b)

Figure 37: Trees representing algebraic expressions
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Figure 38: Reduced expression tree from the Figure 37(b)

at left and right side of the operand.

For example, following expression:

x + 1 * 5 - 2

would be represented by the tree in the Figure 37(a). The modified version of this expres-

sion:

(x + 1) * (5 - 2)

would be represented by the tree from the Figure 37(b).

The class AlgebraicExpression implements algebraic operators for sum, difference, multi-

plication and division that allow to merge two expressions.

An useful function of AlgebraicExpression class is reduce(), that allows reducing expres-

sions by evaluating its numerical parts. For example, the expression (x + 1) * (5 - 2)

represented by the tree in the Figure 37(b) can be reduced to (x+1) * 3 that corresponds

to the tree in the Figure 38.

The reduction of expression tree is done in three phases:
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1. Numerical reduction: All sub-expressions that contain only operations on numeric

values are resolved. The result replaces the node that previously represented the

operation.

2. Tree reduction: This phase reduces all numeric leafs of expression tree that are con-

nected by the same type of operations (additive or multiplicative). For example, the

expression (1 + (a + 1)) can be reduced to (2 + a). Actually this phase reduces

the expression to (2 + (a + 0)). The result of reducing operation is stored in left

operand and right is replaced by 0 (for additive operations) or 1 (for multiplicative

operations). So for another example, expression (16 * (a / 4)) will be replaced by

(4 * (a / 1)).

3. Tree restructuring: This phase restructures the expression tree by removing neu-

tral operations (0 for additive and 1 for multiplicative operations). For example the

operation (1 * (a + b)) would be replaced by (a + b). For operations ’−’ and ’/’

the tree is reduced only if the neutral operand is “right standing”, e.g. the expression

(0 - (a + b)) will not be reduced.

The procedure is recursive, so it proceeds until no sub-tree can be reduced any more.

7.2.2 Parser

The parser of SMART is implemented by Parser class using the lex/yacc tandem, or rather

their GNU Open Source versions flex and bison.

flex is a tool for generating scanners. A scanner is a program which recognizes lexical

patterns in text. The flex program reads the given input files for a description of a scanner

to generate. The description is in the form of pairs of regular expressions and C code, called

rules. flex generates as output a C source file, lex.yy.c by default, which defines a routine

yylex(). This file can be compiled and linked with the flex runtime library to produce an

executable. When the executable is run, it analyzes its input for occurrences of the regular

expressions. Whenever it finds one, it executes the corresponding C code [78].

GNU bison is a parser generator that is part of the GNU project. Bison converts a gram-

mar description for a context-free grammar into a C or C++ program which can parse a

sequence of tokens that conforms to that grammar (a LALR parser). It can also produce

"Generalized Left-to-right Rightmost" (GLR) parsers for ambiguous grammars [2].
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The Parser module reads the set of input text files with system definition and using the set

of constructors of System Definition module sets the appropriate system definition. The

module provides an interface to the Simulation Engine that allows requesting parsing the

system.

This interface contains one public method: parseSystem(). The method takes one ar-

gument that is filename of the file containing the top-level system description, i.e. the

description of the CS at the highest topological level. Default name for such a file is

“system.sys”. The method reads the input file and builds the system definition using the

interface provided by the System Definition Handler component.

7.2.3 System Definition

The system definition module stores the definition of system and its processes. It provides

interface for Simulation Engine module that allows accessing system and its components

definition.

The basic class of the system hierarchy is Module. This is an abstract class that can be

instantiated as System or Automaton. The simplified inheritance class diagram for the

Module class is depicted in the Figure 39. Each instantiation of Module class contains list

of module clocks, variables and parameters. In case when the module is instantiated as

object of System class, those elements are global to all its submodules. The class provides

also getter methods to access the lists. Another method of the class is a function that

returns type of the module.

The instantiation of System class contains list of modules that constitute the system and

definition of topology of communication of the system’s modules.

The top-level module of a system must be instantiation of System class, so even if a sys-

tem contains only a single process, it must be encapsulated within System. The methods

getForwardSync() and getBackwardSync() return list of potentially possible synchro-

nizations of the system’s modules that can be performed forward or backward respectively.

The argument of those functions is a vector of locations occupied by system’s modules.

The returned list of possible synchronizations contains all transitions that can be per-

formed forward or backward basing only on topological rules and not on satisfying guard

conditions.
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Figure 39: Inheritance diagram of the Module class
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The System class defines also a getter function to its modules. The returned value of this

method is implemented as a map where a key is defined by a label of system’s submodule

and a value is a pointer to the definition of its type. The last public method provided by

System class is getModuleDefinition(). This function takes label of the module type as

argument and return the pointer to the module definition.

The Automaton class contains lists of locations and transitions of defined automaton plus

getter mathods for these lists. The functions getInputs() and getOutputs() provide lists

of input and output events respectively. The functions getIncomingTransitions() and

getOutgoingTransitions() return lists of transitions that enter or leave the location,

which id has been provided as argument. Finally, the functions getAcceptingForward()

and getAcceptingBackward() as arguments take location id and event label and return

list of transition that respectively leave or enter given location and are associated with

given event.

For System Parser, the classes provide set of constructors that can be used to instantiate

system definition.

7.2.4 Simulation Engine

The Simulation Engine is the module directly accessed by the user via API. The API

is a set of functions that allow user to perform forward and backward system analysis,

simulation etc. It also provides useful functions that allow moving the system to any state

(without checking whether this state is really reachable). The system evaluation history is

permanently stored and available to user, so the system may be turned back to any state

that was occupied in the past at any moment.

The top class of the Simulation Engine package is the SystemEngine class. This class has

following public interface:

class SystemEngine{

public:

SystemEngine(const std::string);

const System& getSystemDefinition() const;

const SystemState& getCurrentState() const;

const std::list<Sync> getPossibleForwardSync() const;
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const std::list<Sync> getPossibleBackwardSync() const;

const SystemState& synchronizeForward(const Sync&);

const SystemState& synchronizeBackward(const Sync&);

const SystemState& reset(const unsigned int);

const SystemState& reset();

const SystemState& stepBack(const unsigned int);

void goToState(const SystemState&);

SystemHistory& getSystemHistory();

protected:

SystemState current_state;

SystemHistory history;

...

}

Its constructor method as the argument takes a string that is a link to the file containing

definition of the top-level system module. The system is then instantiated and initialized

to its initial state, where all clocks are at 0, all variables have their initial value and allowed

ranges for all parameters are defined in the input file.

The class contains attribute current_state that contains actual location of all the sys-

tem’s modules, actual values of all variables and an EDBM defining relations between all

clocks and parameters. There is also getter method defined for the attribute. The attribute

history is implemented as a structure that contains system’s initial state and a stack of

performed operations and subsequently occupied states. The class SystemEngine defines

a getter method for this attribute as well.

The method getSystemDefinition() returns a reference to definition of the top-level

system module. Using the interfaces of Module, System and Automaton classes, the user

can fully explore the system definition. The method getCurrentState() returns the actual

system state, that is actual location of all the modules, actual values of all variables and

an EDBM defining relations between all clocks and parameters.

The methods getPossibleForwardSync() and getPossibleBackwardSync() returns lists

of enabled forward and backward synchronization definitions according to currently occu-

pied state. The synchronization definition has form of a map, where a key is defined by

unique id identifying each of system’s module and the value defines transition that the
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module performs for this synchronization.

The functions synchronizeForward() and synchronizeBackward() as arguments

take elements of a list returned by function getPossibleForwardSync() or

getPossibleBackwardSync(). It changes the value of current_state and logs this oper-

ation in the history variable.

There are two functions reset() defined. First one as the argument takes id of a system’s

module (it can be either system or a process) and performs reset of this module. If the

reset module is a system then all of its sub-modules are reset. This operation is logged in

the system’s history. The other function reset() does not take any argument. It brings

the system back to its initial state and clears the history.

The function stepBack() as argument takes an integer n that denotes a number of per-

formed synchronizations that will be cancelled. The operation brings system to a state that

was occupied n synchronizations before. The top n synchronizations are removed from the

history attribute. The function goToState() moves the system to a state provided in

argument without checking whether the requested state is reachable. It is logged in the

history as a special transition.

7.2.5 Symbolic State Handler

The module is implemented by SymbolicState class. It handles the symbolic state and

implements all operations that are performed for symbolic system analysis. It contains

instantiation of EDBM that stores relations between all systems clocks and parameters

and implements operations for forward and backward analysis.

Apart from instantiation of EDBM it contains a list of all system variables with current

values and list of currently occupied location by all of the modules in the system. Both of

these lists may be accessed by SimulationEngine via getter and setter methods.
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7.3 SMART input files

In general there are two types of files used for system description: files describing timed

automata, as basic component of the communicating system and files describing communi-

cating systems itself - either as a top level structure of the system or as a nested component

of another system.

7.3.1 Automata description

Files that contain description of a single automaton have following structure:

AUTOMATON label{

//the order of three first sections is not strict; they are also optional

VARIABLES:

... //list of local variables

CLOCKS:

... //list of local clocks

PARAMETERS

... //list of local parameters

STATES:

... //list of locations of automaton

TRANSITIONS:

... //list of transitions

}

The file must begin with a keyword AUTOMATON followed by a label of the automaton. The

label of automaton must be unique within whole system. It is used in the system description

file as a type. So if a system contains many processes of the same type, the type must be

defined only once. The label is a string that contains letters, digits and the underscore sign

(“_”). It must not start with a digit.

The actual definition of the automaton is contained within brackets. It consists of five

sections of which three are optional. These three optional sections define local clocks,
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variables and parameters. The order of them is not strict, however they must appear before

last two sections which define locations and transitions of automaton. These sections are

obligatory and must appear after definition of clocks, variables and parameters. The section

with states must appear before the section with transitions.

Clocks

The section with clocks declarations begins with a keyword CLOCKS followed by a colon.

Then labels of all local clocks of the automaton are listed using a comma as a separator.

The last clock is followed by a semicolon, for example:

CLOCKS: clock1, clock2, clock3;

The labels of clocks do not have to be unique in the system, however it is not recommended

to use labels that have been used for global clock that may be accessed by instantiation of

the automaton. In this case the label will refer to the local clock, so accessing the global

clock with the same name will not be possible.

Variables

The section with variables definitions begins with keyword VARIABLES and a colon. To

define a variable of a basic type (Int or Double) it is necessary to declare the type (with

a keyword Int or Double) and then define a label or labels separated with comma. Last

label must be followed by a semicolon. After each label, the initial value must be provided

in parentheses, for example:

Int int1(0), int2(5);

Double double1(0), double2(-3.14);

Double double3(2.71);

To declare a vector it is necessary to use a type keyword Vector and a label that is followed

with a type of elements of the vector in angle brackets, then initial size of the vector in

square brackets andfinally the initial value of vector elements in parentheses, for example:

Vector v1<Int>[5](0), v2<Double>[3](2.71);

Vector v3>Int>[2](1);



142 Chapter 7. Implementation and experiments

Stack is declared by keyword Stack, the label of the stack and the type of stack variable

in angle brackets. Since the initial size of a stack is 0 it is not necessary to initialize it, for

example:

Stack s1<Int>, s2<Double>;

Stack s3<Double>;

Finally, structures are defined with keyword Struct. The label of the struct is followed

by its definition in brackets. The definition of a structure has the same grammar than

definition of a variables section. The labels of structure members may collide with names

of other variables. That is because structures define their own namespaces. For example:

Struct str1{Int i(0); Double d(23.1);};

Struct str2{Int i1(0), i2(1);}, str3{Double d(1); Int i1(0); Int i2(4);};

Struct str3{Vector v<Int>[3](0); Int i2(1);};

Parameters

Section containing parameters begin with a keyword PARAMETERS and a colon. After that,

all parameters are listed with the allowed range in square brackets. Declaring a parameter’s

type is not necessary, since parameters may be only real. Parameters are separated by

commas and the last parameter is followed by semicolon, for example:

PARAMETERS: max_delay[1,50], window_size[5,20];

Definition of locations

Each location is declared in separate line. A declaration of a location is contained within

angle bracket. It has following grammar:

<location_id, label, {invariant}, {attributes}>

The only obligatory element is location_id. All other elements are optional. They can

be skipped by replacing them with # or by not listing them. Leaving empty brackets for

definition of invariant or attributes semantically also means skipping this element.
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The location_id is a integer number, unique among all locations of this automaton. The

location with id 0 is the initial location of the automaton. Label of a location is a string

defined in the same way that other labels (clocks, variables etc.). Because locations are

identified by their ids, labels do not have to be unique. It is also not necessary to define

labels for each location – putting # in the place of label means that the location is not

labelled.

Invariants are defined by set of constraints on clocks separated by commas. Each constraint

has following form:

expression lower_bound_limit min_value , max_value upper_bound_limit

The expression is defined by a difference of two sums of clocks, parameters and real

values. It is possible to use parentheses to define expression. The bounds limits can be

chosen from “[” or “(” for lower limit and “]” or “)” for upper limit. Square brackets

mean closed bounds and parentheses mean open bound. min_value and max_value define

bounds of the range defining the invariant. They can be any algebraic expressions defined

with variables and real numbers (plus Inf and -Inf denoting plus and minus infinity).

Expressions used as lower and upper limits must be evaluable to a value at any time of the

simulation, so they may contain neither clocks nor parameters.

There are special methods for accessing non-primitive types of variables, i.e. vectors stacks

and structures.

The elements of vector type may be accessed by giving the position in square parentheses. It

is also possible to refer to a vector element by an expression, for example: vector_label[1]

or vector_label[integer_label1+(2*integer_label2)]. It is also possible to get size

of vector by using method size(), for example vector_label.size(). The top element of

a stack may be called using top() function, e.g. stack_label.top(). Also, it is possible to

use size of a stack as element of algebraic expression (e.g. stack_label.size()). Elements

of structures are called by using the label of the structure followed by label of requested

member in square brackets (e.g. struct_label[member_label]).

Finally, list of attributes is just a list of labels assigned to the location. Two reserved

keywords for attributes are COMMITTED and URGENT that define committed and urgent

locations (see Section 3.2). Other attributes do not semantically impact the automaton,

however they may be used for algorithms definition, etc.
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An example state definition may look as shown below:

< 1, state1,{x[0,20], (x+y)-par_1[-Inf,10]}, {COMMITTED, dont_cover} >

Definition of transitions

Transitions, similarly to locations are defined one per line. The definition is also contained

within angle brackets. In general a grammar for transition definition looks as follows:

< src_id, dest_id, event, {guard}, {updates}, {attributes} >

The src_id and dest_id define ids of source and destination locations of the transition

respectively. event is a label of event associated with the transition. Output and input

events begin with ! and ? respectively. The internal events are noted by ∼.

Transition guards are defined as list of constraints separated by commas. A constraint have

general form as it is shown below:

expression lower_bound_limit min_value , max_value upper_bound_limit

There are two allowed forms of expression. It may be difference of two sums of clocks,

parameters and real numbers, as in case of location invariants, or it may be any algebraic

expression defined with variables and reals. lower_bound_limit, min_value, max_value

and upper_bound_limit have the same meaning that for specifying invariants.

updates is the list of updates performed during execution of the transition separated by

commas. Each update has a form:

updated_element (new_value)

updated_element refers to the element that is updated. It may be a label of a clock or

variable, or it may be specification of action performed on container (vector or stack).

If updated_element is a label of a clock, the new_value in parentheses may be only

0 (reseting is the only operation allowed on clocks). If it is a variable, then new_value

may be any algebraic expression evaluated to a value (containing neither parameters nor

clocks). When updated_element is an element of a vector, its index must follow vectors

label in square brackets (index may be expressed as any evaluable algebraic expression),
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e.g. label[1] or label[label.size() - 1]. When it is an element of struct, the label of

the element must follow the label of struct in square brackets, e.g. struct[element].

Additionally there are possible actions defined for containers like vector or stack. It is

possible to add new value to end of a vector or top of stack (label.push(expr), where expr

is evaluable algebraic expression), remove the top value from stack or vector (label.pop())

or remove all values from a stack label.clear().

An example update fragment for a transition may look as follows:

{clock1(0), var1(var1+1), vect.push(stack1.top()), stack1.pop()}

Finally, the list of attributes is defined by list of labels that may not be words URGENT or

COMMITTED. Labels do not change semantics of the transition and may freely used by user.

A simple transition may have following form:

<0, 1, !begin, {x[0,5], x-(y+a)(2, 2+var1)}, {x(0), var1(var1-1)}, {BLUE}>

7.3.2 System description

The grammar of the description of the system of the highest level does not differ for descrip-

tion of its sub-systems. Thanks to this it is possible to analyze stand-alone communicating

system and then to analyze the same system in some wider context.

The general structure of file containing system description is following:

SYSTEM{

GLOBAL_CLOCKS:

... //optional list of global clocks

GLOBAL_VARIABLES:

... //optional list of global variables

GLOBAL_PARAMETERS

... //optional list of global parameters

TYPES:

... //declarations of types of instantiated modules

MODULES:
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... //list instantiated modules of the types declared above

TOPOLOGY:

... //definition of communication rules for system’s modules

}

The first three sections define clocks, variables and parameters that are global for the

automaton. They are optional and the order of them is not strict. The grammar of this

sections is exactly the same as grammar for analogical sections in automata description.

Labels of global clocks, variables or parameters defined at this level may be covered by the

same label defined for one of its modules. For example, if a system defines global clock x

and one of it subsystems defines a clock with the same name, any operation on the clock

x by given subsystem will concern its local clock.

Declaration of modules’ types

The section TYPES contains paths to files with definitions of types of system’s modules.

Each path is followed by a semicolon, e.g.:

TYPES:

./subsystem1.sys;

./subsystem2.sys;

./automaton1.aut;

Definition of modules

Section MODULES defines instantiations of system’s modules. Modules may be of a type

defined in one of files provided in the section TYPES. A module is instantiated by providing

a label of its type followed by a colon and listing labels of the instantiations separated by

commas. The last label is followed by a semicolon:

MODULES:

System1: sys1, sys2;

AutomatonType1: aut1, aut2;

AutomatonType1: aut3, aut4;
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It is possible to define a concrete value of a parameter of an instantiated module by pro-

viding this value in parentheses after a label of the module. In this case the parameter has

fixed value and can be used as variables in evaluable expressions. It is possible to concretize

parameters of only some instantiations of the same type, leaving the rest undefined, for

example:

MODULES:

System1: sys1(par1 = 5), sys2;

AutomatonType1: aut1(par2 = 1, par3 = 0), aut2(par2 = 2);

AutomatonType1: aut3, aut4;

Definition of communication topology

In the current version of SMART it is possible to define only static topologies. A topology

may be defined manually or automatically. To manually define communication topology,

all communication channels must be listed in the file with system description. Automatic

topology is constructed by the system parser using labels of events associated with transi-

tions of system’s modules.

Manual topology definition To define a topology manually, the keyword TOPOLOGY

must be followed by a keyword MANUAL and a colon. Then all communication channels

must be defined. Channels are defined by associating output events of system modules with

input events of other modules. The general structure of manual topology definition is as

follows:

TOPOLOGY MANUAL:

module_label_1:

!output_event->input_events->visibility;

...

module_label_n:

!output_event->input_events->visibility;
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The module_label_i declares a label of the module for which the rules are defined.

!output_event is a label of output event of this module. input_events is a list of in-

put events of other modules separated with commas, associated with given output event of

module labelled with module_label_i. Such an input event is defined by label of module,

a question mark and label of the input event. visibility is an optional label of event (in-

put or output) that denotes how the synchronization is seen from outside of this system.

Visible transitions create system’s interface and are subject of topological rules of systems

of higher levels, unless this system is on the top-level of the defined hierarchy.

Additionally there are rules created for non-synchronizing transitions of single modules.

The visibility of such transitions is intuitive. Transitions associated with internal event τ

are not seen outside the system. Transitions associated with interface event are seen under

label of given event.

A simple manual communication topology definition could look as follows:

TOPOLOGY MANUAL:

module_1:

!event_1->module_2.?event_1->!event_1;

!event_1->module_2.?event_1, module_3.event_1->!event_1;

!event_2->module_2.?event_2,module_3.?something_else;

module_2:

!event_3->module_1.?event_3;

module_3:

!some_event->module1.?some_event->?some_other_event;

Such topology would define following synchronization rules:

• module_1 performs transition associated with !event_1, while module_2 performs

transition associated with ?event_1. This synchronization is seen outside the system

as output !event_1.

• module_1 performs transition associated with !event_1, while module_2 andmod-

ule_3 perform transitions associated with ?event_1. Outside the system this is seen

as output event !event_1.

• module_1 performs transition associated with !event_2, while module_2 performs

transition associated with ?event_2 and module_3 performs transition associated
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with event ?something_else. This synchronization is not seen from outside of the

system.

• module_2 performs transition associated with event event_3 while module_2 per-

forms transition associated with ?event_3. This synchronization is not seen outside

the system.

• module_3 performs transition associated with event !some_event while module_2

performs transition associated with ?some_event. Outside the system this is seen as

input event ?some_other_event

Automatic topology definition There are two possible options for automatic topology

definition: unicast or broadcast.

An unicast topology means that there will be separate channel defined for each pair of

input and output events with the same label. For example if there is one module (say

A) that has transition associated with event !e and four modules (say B1, B2, B3 and

B4) with transitions associated with event ?e, there will be four communication channels

defined, corresponding to following definition:

A.!e->B1.?e;

A.!e->B2.?e;

A.!e->B3.?e;

A.!e->B4.?e;

When a module A performs transition associated with !e, only one of the four other modules

will synchronize with it by executing transition associated with ?e.

This is different in case of broadcast topology. This time only one channel will be created:

when module A performs transition associated with !e, the four other modules will synchro-

nize with it by executing their transitions associated with ?e. However, this synchronization

may be performed only when it is enabled for all modules, i.e. there is a transition leav-

ing current locations of all modules associated with ?e and the guard conditions of those

transitions are satisfied. This corresponds to following definition:

A.!e->B1.?e, B2.?e, B3.?e, B4.?e;
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In both cases, synchronization transition are not seen from outside of the system, i.e. there

is no event associated with synchronization that is emitted to or accepted from outside of

the system.

An automatically created communication topology is defined by putting in the system

description files what follows:

TOPOLOGY AUTOMATIC: UNICAST

in case of unicast topology, or

TOPOLOGY AUTOMATIC: BROADCAST

for broadcast topology.

7.4 Generating test cases with SMART

7.4.1 Test selection using coloring coverage criterion

One way to deal with the explosion of the number of test cases is to consider test purposes

which are properties to be checked in the tested system [77, 61, 56]. In other approach, a

tester may also adopt a strategy to derive test cases according to a defined coverage criteria,

what is described in details in [67]. This approach increase the user confidence in the system

being tested. A coverage criterion may deal with locations, transitions, variables and paths.

The choose of one of these criteria has a direct consequence on the corresponding generation

algorithm. That implies that a testing tool offering, for example, locations and variables

coverage implements one algorithm for each criterion which increases the complexity of the

tool and its suitability for the final user. In [25], a new formalism, namely coloring coverage

criterion and its corresponding generation methodology was introduced.

Coloring coverage criterion is defined using coloring function. This is a function that assigns

to states and transitions of automata a pair (c, n) that consists of label named color and a

natural number. The friend function for each used color associates a group of other used

colors that are friendly for given color. A test suite TS is said to satisfy the coverage

criterion for color c if:
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• each element of system that is labelled with c is covered by a executable test case of

TS,

• all colors covered by a single test case are friendly to each other

• if an element labelled with a pair (c1, n1) appears in a test case before an element

labelled with (c2, n2) then n1 ≤ n2.

Using coloring coverage criterion it is possible to express other kinds of coverage criteria,

like location, transition or variable coverage. Also it is possible to define more sophisticated

criteria, like definition-use coverage [71].

The coloring coverage criterion allows to extend the existing criteria and offers an unified

model for coverage, allowing the reuse of algorithm for different coverage criteria.

7.4.2 Test generation algorithms

As a proof of concept three algorithms for generating test cases according to coloring

coverage criterion have been implemented on the top of SMART platform, using its API.

They use different search strategies for reachability space exploration and selection of

execution trace to follow.

The jump algorithm

The jump algorithm explores the reachability tree to some user defined depth. Then choose

from the tree a path that covers the biggest number of unvisited elements (locations or

transitions) marked with desired color. If more than one path covers the same number of

unvisited desired elements it chooses the one that “hits” a such an element earlier. Desired

elements are those covered with a color that the test suite is to cover and having weight

bigger or equal than the biggest weight in the set of already covered elements. If no new

desired element can be hit within defined depth algorithm chooses one path according to

user defined strategy. This strategy can be RANDOM (the random path is chosen) or

FRESH (the path which transitions have been traversed the least number of times). After

the path is chosen, the algorithm performs the jump - go through entire path at once, and

marks all the new elements it covers as visited.
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The walk algorithm

The algorithm walk is very similar to jump. It also chooses the optimal path with the same

criteria then jump, however after the path is chosen it does not jump, but makes only

the first step from the optimal path and marks a new desired element as visited if it was

hit. Then the search operation is repeated. In theory generation of test suite according to

this algorithm should take more time, however generated test suite should be shorter than

suites generated by the previous algorithm (assuming the same depth).

The hit-or-jump algorithm

The Hit-Or-Jump algorithm was proposed in [28]. In this case the reachability tree is

searched as long as the first uncovered desired element is found. If so the algorithm moves

system to that state and mark element as hit. If the tree is explored (within the defined

depth) without hit, the algorithm chooses a path with defined length (length equals the

depth) according to the defined strategy (RANDOM or FRESH) and jumps over the path.

The algorithm used here should create test suites relatively within the shortest period of

time, but they should be theoretically the longest from test suites generated by all of the

algorithms presented above.

7.5 Experiments

All of the algorithms described above have been compiled as a single executable file testgen.

The optional arguments are (in this strict order): path to a file with top-level system

description (default path is ./system.sys) and path to a file with configuration parameters

(by default ./testgen.cfg). The configuration file defines following parameters:

• ALGORITHM – WALK, JUMP or HOJ (for Hit-Or-Jump).

• DEPTH – The depth of reachability tree constructed during the test case generation.

• MAX_WITHOUT_HIT – The number of system transitions that does not cover new de-

sired element after which system is reset.

• MAX_RESET – Number of system resets after which the test generation is stopped,

regardless whether the coverage criterion was satisfied.
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• STRATEGY – RANDOM or FRESH

The case study was done on the Media Access Control (MAC) process of the FlexRay

protocol [34]. FlexRay is a modern, high speed, data link layer protocol for in-car com-

munication systems. It has been developed by the FlexRay consortium in the year 2004.

The FlexRay MAC process combines static time division multiplexing with dynamic band-

width allocation. The original specification of FlexRay is available as SDL charts, but with

a few modifications it has been modeled as TA, such that its functionality is mapped 1:1

with original specification. The model of the process contains 29 locations, 55 transitions,

8 clocks, 9 parameters used in clock constraints and 3 integer variables. An EDBM con-

structed to handle this example had 18 rows and columns, its closuring LDBM had 39 rows

and columns. The most complicated guard had form:

tDynSegOffset + gdMinislotActPointOffset - gdActPointOffset == 0

where tDynSegOffset was a clock and gdMinislotActPointOffset and

gdActPointOffset were parameters. The rest of constraints had form x ≺ p, such

that x was a clock and p was a single parameter. Because of the clock constraints that

have been defined using sum of a clock and a parameter, this example perfectly can

illustrate the power of EDBM for processing parameterized systems.

As an experiment test suites covering all system’s locations and transitions have been

defined using all the test generation algorithms defined above. Additionally, they used

different path selection strategies (FRESH or RANDOM) and search depth (1, 5 or 8).

The parameters MAX_RESET and MAX_WITHOUT_HIT were defined to resp. 5 and 100. For all

configurations required test suites have been produced 10 times to get average results. The

Table 3 shows average results obtained for test generation.

The algorithm columns contains the algorithms that were used to generate tests. depth is

the depth of reachability tree build at each step. # test cases is the number of test cases in

the generated test suite. total length is the total number of steps (executed transitions) in all

test cases in the generated test suite. gen. time [s] is the time that was spent for generating

the test case in seconds. For the last three columns two results are given: obtained for

RANDOM and FRESH strategy (respectively columns RND and FR). Finally, the last

columns shows the obtained coverage of the test suite. In all the cases the algorithms were

able to generate test suites covering entire specification.
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algorithm depth # test cases total length gen. time [s] coverage [%]

RND FR RND FR RND FR

WALK 1 6 4.5 612.6 564 9.33 9 100

WALK 5 2 2 229.7 226.2 26 29.25 100

WALK 8 2 2 158 164.2 256 271.25 100

JUMP 1 5 5.33 561.6 537.6 9.66 12 100

JUMP 5 2.25 2.66 370 260.6 10 9 100

JUMP 8 2 2 226 231.7 29.75 25 100

HOJ 1 4.5 4.5 455.5 444.5 9 5.5 100

HOJ 5 2 2 383.5 340.5 6 4.5 100

HOJ 8 2.25 2 272 297.2 7.75 11.25 100

Table 3: Results of experiments with SMART and FlexRay protocol

As it could be expected the fastest algorithm is Hit-Or-Jump, however it generates the

longest test suites. On the other hand, test suites generated by “walk” algorithm are even

50% shorter, but only when bigger search depth is considered. In this cases test generation

may take even 27 times more than generation of test suites with Hit-Or-Jump algorithm

using the same depth. The algorithm “jump” seems to be good compromise: it generates

test cases 3–4 times longer than Hit-Or-Jump with the same search depth, however they are

considerably shorter (up to 40%). It is noticeable that path selection strategy (RANDOM

or FRESH) has no significant impact on the performance and length of generated tests.
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8.1 Conclusions

The aim of the thesis was to explore common data structures used for parametric verifica-

tion of real timed systems modeled as timed automata and to propose new structure that

facilitates symbolic verification of parameterized automata and increases expressiviness of

operations over transitions of such automata. The proposed solution – Extended Difference

Bound Matrix fulfills both of those requirements.

What distinguish EDBM from other structures used for parametric verification is that all

the bounds stored in the structure are purely numerical. This feature highly facilitates all

the operations that requires comparing two elements of the matrix. In the case of param-

eterized bounds that are always present in competitive solutions the result of comparison

may be ambiguous what has consequences in a necessity of duplicating the structure to

consider all possible cases, what results with high costs of operations in terms of time and

memory consumption. Since elements of EDBM are always numerical bounds, results of the

comparison are always unambiguous. As result, the size of the matrix is constant during

entire analysis what facilitates and boosts all operations over the structure.

Another advantage of EDBM is that structurally it does not differ very much from the

solutions that are currently implemented in model checking tools. In fact, migration from

tools that use DBM (like UppAal) to EDBM requires only changing the way how the

bounds are stored and slight modification of the operations over the structure. Since the

bound representation of EDBM and standard DBM is the same, most of the code may

remain unchanged. Also the interface of the EDBM class is derived from the standard

interface of DBM, what can simplify making the tool engine work with the new structure.

The final advantage over other data structures is extended expressiviness in terms of forms

155
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of expressions that can be bounded by the structure. Note, that only those kind of expres-

sions may be used as transition guards in the automata modeling analyzed systems. The

standard approach – Parametric DBM allows to store bounds of expressions that represent

a single clock or difference of two clocks. The Parametric Hypercubes, a solution proposed

in [63] extend set of expressions that can be bounded to sum of arbitrary number of clocks.

The solution proposed in this thesis allows to bound even wider set of expressions: all

expressions that are difference of two sums of clocks may be handled be EDBM.

Of course everything must have its price. Bounding more complicated expressions has

also negative consequences. One of them is that form of all expressions that are used in

transition guards or invariants of the analyzed automata must be known a priori to the

analysis. It means that before the analysis may start, all the model must be scanned in

order to find out what expressions are used in it. Other approaches do not require this.

Second drawback, more serious, is the necessity of calculating the closure of the EDBM

used for the system analysis. The cost of calculating closure depends exponentially on the

number of clocks and parameters and also on the complexity of used expressions. This

complexity is expressed in a size of sets labelling rows and columns of EDBM, what is

corresponding to number of clocks and parameters in expression guarding transitions of

the automata. Fortunately, in practice, those expressions are not two complicated and

usually have form of x ≺ p, where x is a clock and p is a parameter. In such cases, there

is no necessity of calculating the closure.

8.2 Future perspectives

Although in theory the superiority of EDBM over alternative solutions has been demon-

strated, no practical comparison between EDBM and other structures has been done. This

is mainly because due to lack of time and resources no mature implementation of a tool

using EDBM has been built. The implementation of SMART was intended more as a proof-

of-concept than as a tool with a practical merit. It is sure that the code of the tool could

be much optimized and then compared to its competitive alternatives. Therefore a plan

for the nearest future is to build an optimized and technically mature implementation that

can fully use the advantages of EDBM over other structures.

Other improvement that can be done to the EDBM is speeding up the process of calculating
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closure of EDBM. The solution presented in the thesis is based by brute force checking of

all combinations of the expressions represented by EDBM elements. The number of those

combinations grows exponentially with the number of clocks and parameters used in the

system and with complexity of the bounded expressions. Therefore, for complex systems,

calculating closure may take too long what makes using EDBM inconvenient. Therefore

finding analytical way for determining EDBM’s closure is a target for a research work in

the future.
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[81] Libor Waszniowski and Zdenĕk Hanzálek. Formal verification of multitasking appli-

cations based on timed automata model. Real-Time Syst., 38(1):39–65, 2008.

[82] Henri B. Weinberg and Lenore D. Zuck. Timed ethernet: Real-time formal specification

of ethernet. In CONCUR ’92: Proceedings of the Third International Conference on

Concurrency Theory, pages 370–385, London, UK, 1992. Springer-Verlag.

[83] Freek Wiedijk. Comparing mathematical provers. In Proc. MKM 03, volume 2594 of

LNCS, pages 188–202. Springer, 2003.

[84] Wai Wong. Recording and checking HOL proofs. In Phillip J. Windley E. Thomas Shu-

bert and James Alves-Foss, editors, Higher Order Logic Theorem Proving and Its

Applications: 8th International Workshop, volume 971 of Lecture Notes in Computer

Science, pages 353–368. Springer-Verlag, 1995.

[85] Wai Wong. A proof checker for HOL. Technical Report 389, University of Cambridge

Computer Laboratory, March 1996.

[86] Wang Yi. Ccs + time = an interleaving model for real time systems. In Proceedings

of the 18th international colloquium on Automata, languages and programming, pages

217–228, New York, NY, USA, 1991. Springer-Verlag New York, Inc.


	Introduction
	Formal methods
	Real time systems
	Models of real time systems
	Parametric real-time reasoning

	Motivation of the thesis
	Structure of the thesis
	Acknowledgements

	Formalities
	Notation
	Numbers
	Predicate logic
	Algorithm notation

	Sets, multisets and sequences
	Sets
	Multisets
	Sequence

	Graphs
	Fundamental definitions
	Path
	Minimal and positive graphs
	Graph transformations
	Minimization algorithm

	Dense spaces
	Valuations
	Polyhedra
	Numerical bounds
	Constraint graph
	Canonical form of a polyhedron
	Minimal constraint system
	Operations on polyhedra


	Modeling Real Time Systems
	Background
	Clocks
	Alphabets and timed sequence

	Timed Automata
	Syntax and semantics of TA
	Computation
	Invariants
	Urgent locations
	Time Input Output Automata
	Extended TIOA

	Modeling parallel systems
	Networks of TIOA
	Communicating System
	Summary


	Symbolic Analysis of Timed Automata
	Model checking
	Symbolic Path
	Path
	Zones
	Symbolic operations on zones
	Symbolic path analysis

	Difference Bounds Matrix
	Minimal DBMs
	Operations on DBM


	Parameterized systems
	Parametric reasoning
	Parametric Timed Automata
	Preliminaries
	Definition of PTA

	Parametric DBM
	Definition of PDBM
	Operations on constrained PDBMs

	Summary

	Extended Difference Bound Matrix
	Definition of Extended DBM
	Equivalent elements and equivalence classes

	Canonicalization of EDBM
	Linear DBM
	Closure of EDBM
	Minimization of LDBM

	Operations on EDBM
	Property checking
	Transformations

	Symbolic analysis using EDBM
	Summary

	Implementation and experiments
	Implementation of EDBM and LDBM
	Implementation of bound
	EDBM class implementation

	The SMART tool
	Global Definitions
	Parser
	System Definition
	Simulation Engine
	Symbolic State Handler

	SMART input files
	Automata description
	System description

	Generating test cases with SMART
	Test selection using coloring coverage criterion
	Test generation algorithms

	Experiments

	Conclusions and future work
	Conclusions
	Future perspectives


