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Introduction

This dissertation is concerned with exponential sums of the form

Sy(f.c) —m%x(a:)e (f(g”)) , (1

Cc

for ¢ in the ring of integers R of a number field &, f a rational function, y a character modulo
c and e(z) = exp(2im Try/g(z)). They are finite sums, where x runs through the finite set of
representative of R/cR and where we agree to write z (¢) instead of = (mod c¢). Historically,
a first motivation for the study of these sums arises from the diophantine analysis, where many
problems are reduced to the evaluation of such sums. For example, Hilbert’s Eleventh Problem
asks about the representability of integers in a number field by an integral quadratic form. For the
special case of diagonal forms, the ’circle method’ was introduced by Hardy and Littlewood to
study asymptotically the number of solutions of

Flx) =2t +a3+...+22=m, for s > 5.

In 1926, Kloosterman ([21]]) studied this problem over Q for s = 4, and was led to introduce the
so-called Kloosterman sums

» -1
K(m.n,c) = Z exp (QZw(mern:c ))7 )

C

z,z* (c)
zxz*=1(c)

defined for m, n, c € Z. He succeeded in obtaining the non trivial individual estimate

|K (m,n,p)| < Ep*/4, 3)

which allowed him to solve the problem for diagonal forms in four variables. Besides the signifi-
cance of individual bound as (3) for Kloosterman sums, it is expected that bound on average are
equally important. Around 1960, working on some additive problems, Linnik introduced a ’dis-
persion method’ in which Kloosterman sums play a fundamental role, and he conjectured ([28]])
a cancellation among these sums. At the same time, in his seminal work on Fourier coefficients
of modular forms ([40]), Selberg studied the zeta function associated to Kloosterman sums and
formulated the same conjecture, which asserts that

K
3 Klmn.o) o ipee yes 4)
Ve

The major breakthrough in this problem came from Kuznetsov in 1979 ([26]), who proved it for
any ¢ > 1/6. These is the kind of problems we shall be interested in, for some special sums

Sx(f, ).

c<X



Introduction

A further motivation comes from the cohomological interpretation of the Sato-Tate conjecture
about elliptic curves without complex multiplication. For an elliptic curve E over Q, if a,(E) is
defined by a,(F) = §E(F,) — 1 — p, where §E(IF,,) is the number of points on E over F,,, then
the Hasse upper bound asserts that

|ap(E)| < 2P (5)
According to (5), we define a family of angles 6,(E) by

ap(E)

2b
and the question is, if these angles are uniformly distributed for some measure. In the late 1940s,
the Weil conjectures about the Hasse-Weil zeta function attached to a variety gave the key to the
uniform distribution of the angles 6,(E) when E has complex multiplication, since a result of
Deuring asserts that in this case, the Hasse-Weil zeta function is expressed in terms of Hecke
L-function about which we know enough analytic results. Around 1960, Sato and Tate arrived
independently to the conjecture that such a uniform distribution measure also exists for elliptic
curves without multiplication, and is given by

= cosO,(E),

Hs—1 = 2 /sin2 6do on [0, 7. 6)
T

By a cohomological approach, Serre (see [41], I-25, I-26) proved that one can deduce distribution
results from knowledge about the analytic continuation of the L-function attached to £. Coming
back to Kloosterman sums, the proof by Weil from the Riemann hypothesis for curves led him to
improve the individual bound (3) for Kloosterman sum to

|K (m,n,p)| < Ep'/?, (7)

which is the best possible. Within the cohomological framework, N. Katz (see [18]], conj. 1.2.5)
formulated the uniform distribution of the angles of Kloosterman sums according to the Sato-Tate
law, a *folklore conjecture’ which arose in the 1970s. More precisely, if

K(1,a,p)
2/p

then it was conjectured that forany 0 < a < 6 < 7,

=cosbp, (0<0,q <), (8)

)

{p : X <p<2X,a<6b,1 <S5} N 2 /ﬁsinQHde, as X — 400, ©)
Hp : X <p<2X} T Ja

Notice that in the angles that we consider, both the parameter p and the other parameter (either
or a) can vary. We shall distinguish these cases by speaking from the "horizontal’ case and from
the ’vertical’ one, respectively. As well as the numerous numerical verifications supporting the
horizontal conjecture, one other reason to believe in the Sato-Tate conjecture for elliptic curves
or for Kloosterman sums came from Birch ([[1]) and Katz ([19] Ex. 13.6), who proved the vertical
case of this conjecture, respectively for elliptic curves and for Kloosterman sums. Finally, the
Sato-Tate conjecture for curves was proved in 2006 by Clozel, Harris, Shepherd-Barron & Taylor
under the condition that j(F') is not an integer.

We come now to our object of interest. Actually in [[1], after proving the vertical asymp-
totic behaviour for elliptic curves, Birch conjectured the same ’vertical’ result for the cubic sums

6
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S(aX 340X, ¢); this conjecture was latter proved by Livné ([29] and [30]). The same dichotomy
as the one between elliptic curves with or without complex multiplication occurs for cubic sums,
and, as a matter of fact, a uniform distribution over the primes in the case where b = 0, i.e. for
the sums S(aX?,p), was proved by Heath-Brown and Patterson ([15]]). This parallel with Hecke’s
work leads naturally to conjecture the horizontal Sato-Tate law for cubic sums with b # 0. For
both cases, i.e. for Kloosterman sums or for cubic sums, even though the ’vertical’ question
was solved, the "horizontal’ one remains still open. We shall be here mostly interested in cubic
sums, and we shall present some progress towards the cancellation and the uniform distribution
of such sums over the Eisenstein integers, i.e. the integers of the Eisenstein ring Z[w], where
w = exp(2im/3). Another object of interest will be the twisted Kloosterman sums. These are
analogues of the classical Kloosterman sums when, in the definition (1), we choose the character
X to be the Legendre-Jacobi symbol of order j. By this we mean that these sums, that we shall

denote by K, are given by S( ) (X;H , c), ie.

clj

Kj(m,n,c)= Y. (%)J e (<M)> . (10)

z,x* (c)
zz*=1(c)

We shall study the cases where j = 2 or j = 3, and speak about quadratic and cubic Kloosterman
sums, respectively. We remark that the Kloosterman sums defined in (2) correspond to the case
where j = 1, and therefore, we shall call K (m,n, c) the classical Kloosterman sum. The reason
for studying the case where 7 = 3 is that there exists a close relation between the cubic exponential
sum S(aX? + bX,c) and the cubic Kloosterman sum K3(m,n, c). The study of the case where
j = 2 follows the same general steps as for the cubic case, although the techniques used are easier
to deal with.

Let us present the method that we follow: The problem of asymptotic behaviour of Kloost-
erman sums was undertaken by Kuznetsov, along the lines described by Selberg in [40]. This is
based on the theory of automorphic forms. We shall parallel this, and combine spectral proper-
ties of automorphic forms with properties of the zeta function attached to the sums K;(m,n,c)
to obtain a summation formula for the sums K;(m, n, c). We shall then naturally be confronted
to the minimal eigenvalue problem which brings into play theta functions. For j = 2 these theta
functions are the classical ones, namely the twists by Dirichlet characters of the function

0(z) = Z exp (imn’z).

ne’l

For j = 3, we shall work with the cubic analogues of #(z), which are metaplectic forms con-
structed as residues of Eisenstein series; these functions are described in [32]. Our work aims at
improving the results of Livné and Patterson (Theorem 1.1 of [31]]) about the asymptotic behaviour
of the cubic Kloosterman sums; we shall also give the quadratic analogue result. As for the uniform
distribution problems over primes, it is believed that one acquires a better understanding by work-
ing first with integers and then by applying a sieve argument. Actually, the uniform distribution
of Ka(m,n,c) is already proved (in [17] over the integers, and in [3] over the primes), but such
results are not known for S(aX?3 + bX, c); more surprisingly, even the problem of distribution of
the signs of the Kloosterman sums K (m, n, ¢) remains open. Notice that a result of uniform distri-
bution implies the asymptotic distribution in absolute value; for example, the horizontal Sato-Tate
conjecture for Kloosterman sums implies by partial summation
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[ 4 X
2/p 37 log X~

Indeed, upper bound and lower bound of this kind, i.e. with absolute value, are possible to derive
([1Q]), but the small improvements gained compared with the trivial estimation show that the
cancellation expected among Kloosterman sums is more due to the change of sign than to the
smallness of the norm. A way was found by Fouvry and Michel ([11]]) to prove that this change of
signs occurs for K (m, n, ¢), at least for ¢ being almost prime, i.e. when the number of primes of ¢
is bounded. Our goal is to adapt their method to the cubic exponential sums, and one of the main
result is to show that the sum of cubic exponential sums can actually be considered as a rest term.
We prove this fact by using the theory of metaplectic forms, but, as in [[15]], one could expect a bias
toward the S(aX?+bX, c) having a main term due to the existence of an exceptional eigenvalue of
the Laplacian. This exceptional term comes from the cubic theta functions, but can be controlled
in average over the level, leading to some non-trivial estimate. More precisely, it is expected that
the classical Kloosterman sums satisfy

p<X

1 X1/2
{p< X : K(m,n,p) >O}=§7r(X) + O g X |’ (11)

the same being true for the Kloosterman sums of negative sign, and one could conjecture that the
cubic exponential sums satisfy

{p< X :SaX®+bX )>O}—1(X)+C’X5/6+(’) X1 (12)
PS4 one P -7 log X logX |~

This kind of behaviour was already speculated in [31]] p. 108-109.

We now describe the content of the thesis in more detail. In Chapter[T]we study the asymptotic
distribution of K2(m,n,c). The summation formula over Q is presented in its simple form, i.e.
without making explicit the contribution of the whole spectrum; In this way, we obtain quickly a
formula for the asymptotic constant. In Chapter 2] we give all necessary results about automorphic
forms as well as a more complete summation formula over Q(w), where all the spectrum of the
Laplacian occurs. In Chapter we study the asymptotic constant of K3(m,n, c), i.e. we look at
the basis problem for cubic theta functions. This should lead us, in a future work, to the determina-
tion of the constant C' appearing in (12). In Chapter we develop some sieve argument to obtain
an upper bound for S(aX?3 + bX, c); a fundamental role is played by the the complete summation
formula of Chapter Nevertheless, as for the Kloosterman sums K (m, n, ¢), the remainder term
is of the order of m, and hides the contribution of the theta term. We then use the ver-
tical Sato-Tate law for S(aX® + bX, ¢) to obtain a lower bound, and conclude to the change of
signs when c is almost prime.
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Notations
Unless otherwise stated, we make the following convention:

- The inverse of « modulo a given integer will be denoted by x*. Therefore, we shall write

the sum
mx + nx* X mx + nx*
> e (M) a S wwe (M),

z,z* (mod c) T (C)
zz*=1 (mod c)

where the star means the restriction to the representatives x coprime with c.

- For any complex number z, the complex conjugate will be written z.

- For any matrix g = <: g), we define a(g) = a, b(g) = (3, c(g9) = vy and d(g) = ¢.
- The symbol § will be the Kronecker delta symbol, i.e.

1 ifa=0,
6a,b:

0 ifa##b,

and similarly,

1 if the assertion P is true,
op =
0 otherwise.

- We shall denote the sign of a real number = by sgn(z).






1 Asymptotic behaviour of K5(m,n, c)

The quadratic Kloosterman sums K (m, n, ¢) appear in the work of Salié (see [38]], (54) p. 102),
where the following relation is proved:

m umx
K2<m7m7p) = (> 8pp Z exp ( > )
P /s b

z2=4m?2 (p)

where ey = 1ifd =1 (mod 4) and ¢4 = i id d = 3 (mod 4). This formula can be generalized,
see for example (38) p. 438 of [5].

In this chapter, we study the asymptotic behaviour of the sum Ks(m,n,c). We shall use
the spectral theory of Maal} forms to obtain the asymptotic formula, and the theta functions to
construct an explicit basis of the space of automorphic forms for which the eigenvalue of the
Laplace operator is minimal. Our main goal in this chapter will be to prove the following theorem.

Theorem 1.1. Let f be an odd positive integer and let x be a primitive Dirichlet character of
conductor f. Let D be an odd positive integer. Let m,n € Z. Then for any € > 0, we have

Z Ky(m,n,c)g: x (%) = C(D,x,m,n) X% 4+ 0 (X5/4+€) )

c=0 (D), 2/{/c
c<X

with
For C = 0, if f is not square-free, or if the square-free parts of m and n are not equal and
divisible by f.

If these conditions are met, then m and n have to be of the form
m=tfs*m? n=tfs’n?
for some
- square-free t coprime with f such that t3|D,

- some s such that 52|t% and p|s = p|t,

- some m',n’ coprime with t.

Then, if

B X0s2X?, with X, square-free and X coprime with ¢
and if

U = {Hp : p| X, ordy(ged(X, m',n')) < ordp(X)},
then

11



1 Asymptotic behaviour of Ky(m,n, c)

C(D,x,m,n) = 32 t3/2 H (m'n’) ged(X, m’,n’) U
y X5 T, D |Dfp+1 Xt ) ’ QO(U,)

In Section[I.T]and in Section[I.2] we shall work in the general context of a discrete subgroup G
of SLy(Z), a real weight k and a multiplicative system associated to k. In Sectionthe theory of
automorphic forms will be developed, and in Section[I.2] we shall present an argument introduced
by Goldfeld and Sarnak, which will enable us to derive the asymptotic formula in a simpler way
as the one developed by Kuznetsov in [26]. Namely, such an asymptotic formula as the one from
Theorem(I.1] is classically deduced by methods from analytic number theory once one has enough
analytic properties of the associated zeta function. The main contribution of Goldfeld and Sarnak
is, precisely, to obtain the polynomial growth of the Kloosterman-Selberg zeta function in the
critical vertical strip. In Section[I.3] we shall restrict ourselves to the congruence subgroups A and
To(V) of SLy(Z), fix the weight & = 1/2, and study the theta functions, following the work of
Serre and Stark [42]. Finally, we will see in Section[I.4/how the results of Section[I.3] will allow
us to come back to our arithmetical problem, i.e. to prove the formula on the asymptotic constant
of Theorem[L 1l

12



1.1 Automorphic forms on the upper half-plane

1.1 Automorphic forms on the upper half-plane

In this section, we shall first recall the definitions and properties of modular forms and Maaf}
forms, and then study the Poincaré series. Let us define the angle of a complex number as a real
number in [0, 27[. In particular, for any o € R, we have

2% = |z|* e ¥e®) vz e C, arg(z) € [0, 2.
We shall use the notation ¢'(z) = (cz + d) ™2, where g = (¢ %) € SLy(R).
Definition 1.1. Let k be a real number. The factor system of weight k is the application

Of - SLQ(R) X SLQ(R) — (C*,
(g, h) = (gh)'(2)¥/2 g’ (h(2)) "% W' (z)7F/2.

The following property holds (See [35]], §2):
Uk:(av b) Uk’<abv C) =0k (aa bC) Ok (ba C)'

Definition 1.2. Let k € R and let G be a discrete subgroup of SLa(R). A multiplicative system
for G of weight k is an application ¢ : G — C satisfying

Y(g192) = ¥ (91) ¥ (92) ok (91, 92) , Vg1, 92 € G.

Remark 1.1. Let g, h € SLa(Z). If a function f defined on H satisfies

g () f(9(2) = ¥(9) f(2)
W ()" f (h(2)) = ¥ (h) £(2)
for two constants Cy and C}, then one deduces that f satisfies

S f (s(2) =9(s) f(2), Vs € (g.h),

where (g, h) is the group generated by g and h, and that the application s +— 1(s) is a multiplica-
tive system for the group (g, h) of weight k.

Let us define

jg(z) = . (1.1.1)
Then, considering the equality |(gh)'(2)*| = |¢'(h(2))*| |W/(2)*|, one shows that

Ggn(2)¥/2 = g (h(2))*"? jn(2)¥/2 a1 (g, h). (1.12)

It it possible to determine oy, explicitly. Let us consider g = (‘é g), h = (‘cl,' Z’,) and gh =
(a” b.). Then o (g, h) is defined by

c// d//

k/2

("2 +a") ) = ((ch(z) - d)72) v (= +d)72)"" on(g, h).

Defining for any complex number z the factor

13



1.1 Automorphic forms on the upper half-plane

e*Tif 0 < arg(z) < T,
w(z) = < ¥k if 1 < arg(2) < 27,
1 ifarg(z) =0,
one can shows that
(Z_Q)k/2 = 27" w(2).

We obtain

e—ikarg(c”z+d”) w(cllz + d/l) _ e—ikarg(ch(z)+d) w(ch(z) + d) e—ikarg(c’z+d’) w(c/z + d/) Uk(g, h)

One sees that arg(¢”’z +d”) —arg(ch(z) +d) —arg(c'z+d’) is 0 when (¢, ¢ > 0) or when (¢c’ < 0
and ¢’ < 0), and it is —27 otherwise. The cases ¢ = 0, ¢’ = 0 and ¢”” = 0 have to be considered
separately. Define z(~y) by

c, if ¢ # 0, a b
= , fory = . 1.1.3
v(7) {_d’ oot = (4 0) (1.13)

Then we obtain the following table:

sign(x(g)) | sign(x(h)) | sign(x(gh)) | o(g,h)
+ + + e~ tkm
+ + - 1
+ - + 1
+ _ _ e—iknr
- + + 1
- + - —ikm
- - + —ikm
- - - 1

1.1.1 MaaB forms and modular forms

The Poincaré upper half plane is H = R x R%.. If g = (2 %) € GLj (R), the action of g on H is
given by
_az+b
9(2) = cz+d’

A point s € RU {oo} is a cusp of G if it is fixed by some parabolic element of G. Then G acts on
HU{cusps of G}. We say that z; and z, are G-equivalent if there is some element g of GG such that
21 = g(z2). As {00} is SL2(Z)-equivalent to Q, any cusp s of G can be written as s = o~ (00)
for some 0! € SLy(Z). When working with cusps, we will assume that we work with equivalent
classes, i.e. if 0~ !(c0) and 77 !(c0) are two given cusps, which are G-equivalent, then we take
o=T.

We make the assumption that —Id € G and that ¢)(—Id) = 1. Let us now define the width of a
cusp 01 (oc0) of G, with o € SLy(Z), as the smallest positive integer g, such that o~ *T% o € G,
where G, is the stabiliser of 0~ 1(00). Define also », € [0, 1[ by

14



1.1 Automorphic forms on the upper half-plane

) e

With these notations, for any g, € G, and for any multiplicative system 1), one has ¥ (g,) =
(—g,). We also have

W(go) = e(—n30)Tr(0,g0)s  if go =0 " (1 "%>a. (114)

Definition 1.3 (modular forms). Let G be a discrete subgroup of SLa(R) and 1 a multiplicative
system for G of weight k. A modular form is a function f : H — C, holomorphic on H and at
the cusps of G which satisfies

9@ f9(=) =v(9) f(z)  VzeH VgeC.
The space of modular forms is denoted by Mod (G, k, ).

Here, the condition that f is holomorphic at the cusps of G means that there exists some o > 0
such that for any o € SLa(R),

(071)/ (Z)k/2 f (071(2)) =0 (S(2)%), as 2 — o0.
If @ = 0, then f is said to be a cusp form. The Fourier expansion of f is given by

(@Y f (o7 (=) = Y aplon)e (<n - J“’) z) . (1.1.5)

—1 q0
neqy 7

It can be shown that the condition that f is holomorphic to the cusps of G is equivalent with
af(o,n) = 0 for n — s, < 0 and that the condition that f is a cusp form is equivalent with
af(o,n) =0 forn — », < 0, for every cusp o1 (c0).

For any real number k£, the Laplacian is defined by
0? 0? 0
A=y | =+ — ) —iky—.
Y <8:c2 * 8y2> " D

Definition 1.4 (Maal} forms). A Maayf; form is a function f : H — C on H of polynomial growth
at each cusp of G, eigenvalue of the Laplacian, and which satisfies

o) f(9(2)) = ¥(9) f(2) VzeH,geG.
The space of Maaf3 forms is denoted by Maal} (G, 1, k).
Writing z = x + iy, one sees that a Maal} form f € MaaB (G, k, 1) has a Fourier expansion

@21 @) = X Feme((n-2) ),

9s
neq; 7

where



1.1 Automorphic forms on the upper half-plane

This is shown in [37] §2. In the case of a MaaB form f, we know that F'(n,¢) is a multiple of a
Bessel function. More precisely if the eigenvalue A satisfies A = s(1 — s), where s is called the
spectral parameter, there exists (see [37] p.301) coefficients p(o,n) € C such that,

(477 ’n — X
o

prlom) Wy i oy y) ifn#0,
Flo,n)(y) = sen(n—52 ) o172 )

07(0,0) y° + ps(0,0) y1=* ifn = 0.

(1.1.7)

For modular forms, a scalar product is defined by
—— pdxdy
(k)= [ ARG S
G\H Yy

Similarly, for Maal} forms, a scalar product is defined by

ot = [ LIOTE

The subspace of modular forms which are square integrable is Ll%,lod (G, 1, k) and the subspace of
MaaB forms which are square integrable is LY., (G, ), k). It is the sum over the eigenvalues \ of
the subspaces L3 (G, v, k) of forms such that (A + \) f = 0. Moreover, if f € L. (G, k,¢),
then p¢(o,0)" = 0, in the Fourier expansion (I.1.7). It is conjectured that eigenvalues A = s(1 —
s) < i do not occur, i.e. that the spectral parameters s lie all on the vertical line % + it. For a
given weight k, what one knows is the following lower bound

k k
A2 5 (1—2>. (1.1.8)

The bound (1.1.8)) is derived from the results of Roelcke (see Satz 5.4 of [37], or [39] Prop. 1.2).

Proposition 1.1. Let k = % Let G be given and let 1 be a multiplicative system of weight %

relative to G. Then there is a bijection

L (GVBL 0.5 ) =12 (G0 5 ).

16

£(2) =y f(2).

1
If the Fourier expansion of f is given as in (1.1.5) and if the Fourier expansion of y* f is given as
in (1.1.7), then

PN
n—— ) , Vn # 0.
qo

Proof. Every modular form f of weight k gives a MaaB form g(z) := f(z) y¥/2 of weight k and
of eigenvalue % (1 — %), and this holds a fortiori over the square integrable forms. In the opposite
direction, the condition for a Maal} form g of minimal eigenvalue to be sent on a modular form
f through f(2) := g(z) y~*/2 is that the constant term of g should be of the shape p(0, o) y*/2.
Combined with the condition for g to be square integrable, we see that a Maal3 form g of eigenvalue
s (1 — s) with R(s) > 1/2 gives rise to a modular form f(z) := g(z) y~*/? if and only if 1 — s =

k/2,i.e. k < 1. In particular, for k = % there is a bijection

pslo,n) = as(o,n) <4F

16



1.1 Automorphic forms on the upper half-plane

Ll%/lod <G\H wv

1
2
I

) o Lz% (G\H,w, ;) :
2) oyt f(2).
Suppose that f is given by

fle™(z)) = (0_1)/ (z)"1/4 (af(a, 0) + Zaf(cr, n) e(nz)) ,

then

Fo  2)S(0 )V = i ()4 (af(a, 0)y'/* + Z ag(o, n)y*/* e(nz)) . (1.1.9)

On the other side, from the formula

Y175 W gy 2 () = €72, (1.1.10)

1
4

we obtain, for any Maal} form g,

— . — 1
g(O' 1(2)) :]0—1(2) 1/4 pg(o-ﬂo)y4 + Z pg(o-’n) Wisgn(n),fi(élﬂ-’n‘y)e(nlj)
0#n€Z

—1/4

=

+ Z pg(o,n) [4mny| /4 e~ 2™ e(nx)
0#n€eZ

= Jo-1(2) pg(a,0)y

= jo1(2) 7V | pg(0,0) T + (dmy) /YT pgloyn) [V e(nz) | . (1111)
0#n€Z

Since the two expressions in 9) and (I.1.TT)) are equal, we arrive to the relation

af(a,n) = ps(a,n) (4xln)/4, ¥n #0.

1.1.2 Poincaré series

As analogues of the non holomorphic Poincaré series known since Petersson, we present here
the Poincaré series as they were introduced by Selberg in [40]. Let oc~'(oc0) be a cusp of G,
o=t € SLy(Z). Form € q,'7Z — {0} one defines

Jmo(z,8) =ye <(m - Z’) x) exp (—271'

The Poincaré series associated to m and to the cusp o~ !(o0) is given by

m — —
4o

s y) . (1.1.12)

= > 0(9)or(0,9) Jog(2)"? fmo (09(2),5), z€H,s€eC.

geGN\G
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1.1 Automorphic forms on the upper half-plane

One verifies that these series are well defined using (I.1.4). As a function of s, P, (2, s) is
holomorphic in #(s) > 1 and as a function of z, Py, 5(z, s) satisfies

Jg(2)¥2 f(g(2)) = ¥(g) f(z) VzeH, Vgeaq.

Moreover it lies in L2, but it is not an eigenfunction of A. Actually, it satisfies

[A+5(1—5)] Pnolz,s) =—4mm(s — g) Po(z,s+1). (1.1.13)

As the discrete spectrum of the Laplacian intersects [1/2, 1] in a finite set, (1) is holomor-
phic in R(s) > 1/2 with at most a finite number of poles in [1/2, 1]. This shows the analytic con-
tinuation of Py, »(z, s) to R(s) > % with a finite number of poles, which are the spectral parame-
ters of A. Inherited from those of P, »(z, s), Ress—s, P (%, s) posses the properties of transfor-
mation according to G and to be square integrable. Moreover, Ress—, P, - (2, s) is an eigenfunc-
tion of the Laplacian for the spectral parameter s;. Thus Ress—s, P, o (2,5) € L%\i (G\H, 9, k),
which means that if {u} forms an orthonormal basis of it, then

ReSs—s, Pro(2,8) = Y (Rese—s, Prng(2,8),u(2)) u(2) = > ReSe—s, (P o(2, ), u(2)) u(2).

u

Proposition 1.2. Let f € L3 (G\H, 9, k), with A = s¢(1 — sf). Let 0~ (00) be an essential cusp
of G. Let the Fourier expansion of f be given by

Fo71(2)) =jor(2) 7> (ﬂf(@ 0)y' %+

Ao
n— 22

o

O#;AA pr(om) Wg sen ("7 %) Sl (47T

Then

Ao
m— =2
do

>1—s (s —57)T(s+57—1)
F(s—%sgn(m—%))

and if B; denotes an orthonormal basis of L?\i (G\H, v, k), with \; = s;(1 — s;) for a spectral
parameter s;, then

(Pano (-1 8), f) = do e *p1(oym) <47T

Ao
m— =2
9o

ReSs—s, P (2,8) = ¢ etk <47r

1= I(2s; —1) S
S pulo ().
) T (s~ Ssen (m - 2))

% 5 Sgn ueB;
(1.1.14)
where py(0,-) is the Fourier coefficient of u at o~ (c0).

It is known that twisted Kloosterman sums arise as Fourier coefficients of Poincaré series. To
show this, we need to define a geometric analogue of the Kloosterman sums Ka(m,n, c).

Definition 1.5. Let 0~ 1(c0) and 771(c0) be two essential cusps of G. Let m € A} — {0} and
n € A —{0}. Then, for any c € Z, we define

18



1.1 Automorphic forms on the upper half-plane

Ko (m,n,c) =

Z U(g) ox(o,g) op(og, 7 1) e (mft};f) a(ogr) . (nfg) d(ogr)

C C
9€Gs\G/Gr
c(ogr—)=c

Remark 1.2. The sum K, -(m,n,c) will be the geometrical analogue of the sums Ko(m,n, c),
once we have chosen a suitable multiplicative system ¢ and a convenient group G. We shall use
the same notation in Chapter and in Chapter for the analogue of the sum Ks3(m,n, c), but the
context should make clear to which we refer.

Proposition 1.3. Let 01 (00) and 771 (c0) be two essential cusps of G. Let m € A} — {0}. The
Poincaré series Py, (2, 8) possesses at 7~1(00) a Fourier expansion

(T ()2 Pro(r7 (2),8) = Y Fln,)(y)e <<n—%) ;L«) (1.1.15)

nEqilZ 4
) +
) 1 () 6—ikarg(t+i) 2 ¢
eRmyl=s N "B K (myn, ) — / —e - m—- =
Y Z 077( )QT —00 (tg + 1>8 45 ) 2 Yy (t2 + 1)

c>0
1 »”r
c2y<t2+1>) ‘ (‘ <”‘qT> yt) -

Proposition 1.4. Let 0~ (c0) and 771(00) be two essential cusps of G. Let m,n € A} — {0}.
Let s,t € C with R(s),R(t) > 1. Then the scalar product of the two Poincaré series Py, 5(z,s)
and Py, ;(z,t) is given by

with

Ho
m— —

qo

F(n? T)(y) = 50,7‘ 5m,n eikﬂ ys exp <—27T

ez
m — —

X exp <—27T
4o

1—s—t
s _
<Pm,0'(,$),Pn77—<,t)> 60,7—5m,nQT <27r<'m_ +' —qT>> F(t+s—1) +
o T
K oo -
Z aT(TZ,n,C) / yt s—1 exp (—27ry n—ﬁ > I(m,j,c,y)dy,
c>0 ¢ 0 dr
with
I(m7j7 C;?J) =
00 e—ikarg(u+i) —U (m — ?) =27 |m — ? p
- e e (= (n =T du.
/_oo @+ “\ ey | TP Ty ) ( <” q)y“> ‘
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1.2 The Goldfeld-Sarnak method

1.2 The Goldfeld-Sarnak method

In this section we still work with a discrete subgroup G of SLs(R) and a multiplicative system
1 of weight k. The goal is to obtain a first formula for the asymptotic behaviour of the function
K, +(m,n,c). In analytic number theory, one possibility to prove the asymptotic behaviour for
an arithmetic function ¢(c), is to use the analytic properties of its zeta function ) ¢(c) ¢~*. In our
case, the difficulty comes from the lack of information about the Selberg-Kloosterman zeta func-
tion Z,, ,(s). However, the Kuznetsov formula for Kloosterman sums (which led to the formula
(4) of Introduction), can also be developed for twisted Kloosterman sums and, as consequence of
the complete summation formula, one obtains the asymptotic behaviour. All details were given by
Proskurin in [36]. Nevertheless, it is possible to derive the desired properties of Z,, ,,(s), the most
difficult being the growth condition in vertical strip; this was achieved by Goldfeld and Sarnak in a
short and elegant paper (see [12])). In the case of the sums K3(m,n, c), it is still possible to apply
such a method (see [31]]) but since we shall need all spectral information, we shall have to deal
with the complete formula. In the first part of this section we shall summarize the ideas of [12]; it
consists in an estimate for the Laplacian, as well as the classical machinery build on the Poincaré
series. In the second part, the asymptotic formula is derived in Theorem|I.2]

1.2.1 The Kloosterman-Selberg zeta function

In the formula of Proposition[I.4] the integral on the right side is given by

oo
/ Yy exp <—27ry
0
oo o0
:/ / vy 5 exp <—27Ty
0 —00

—u(m—ﬁ> —27 |m — Z= 2
xel|l—n T/ exp S R Y . yu | dudy
Ayu?+1) Ay (u?+1) qr

Ar
n— -~
qr

) I(m,j,c,y)dy

Ar
n— -~

e—ikzarg(u—i—i)
)

WA

0o 0o —ikarg(u+t)
:/ / yt_s_l exp <—27Ty n— s ) 6273
—Uu (m-%) —QW‘m_% ”
x|l —m a || ooy | L €<_<n_T>yu> ey
y(u?+1) Ay (u? +1) Gr
(1.2.1)
0o poo 2 e—ikarg(u+i) Py
+ t—s—1 ex <_2ﬂ. n_T> 6(- <n—T> u) du dy.
/0 /ooy p Yy P (u2+1)5 @ Yy Yy
(1.2.2)

Denoting by I (c) the first double integral (1.2.1)) and by I the second double integral (1.2.2)),
independent of c. We have shown that
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1.2 The Goldfeld-Sarnak method

c>0 ¢
(1.2.3)
The estimation of I is easy to handle.
Lemma 1.1. Ift =35+ 2, then
P —2 gikm/2 2725 (2s + 1)
qr

4 I‘(s+§sgn(n—’;—:>> P(s+2—§sgn(n—%))'

The goal is then to find an upper bound for [; (¢), which makes the sum over the ¢’s in (1.2.3)
converge. In (T.2.1)), we make appear the dependance in ¢ by using the estimate exp(z 1) — 1 <
2~ whenever z > 1. Thus, introducing a constant o > 0 which we shall choose later, we have

I (c)| <
< /_Oo(u2 + 1)‘5/0 y' (ucz_q;)ég:;l)> -1

oo o _ 00 t—s—1 —27ry(n o %2)
< w+1)7° / 2y My + / Y ex ( > dy » du
/_Oo( ) {0 y R R v . y

7 00 00 0o -9 _
<2 O% i / (u? +1)"*du + 02/ (u® + 1)787% / Y2 exp <7Ty(n%2)> dy du.
-8 o q

— 00 —0o0
The first integral converges for R(s) > 1 and the second integral for R(¢ — s) > 1. From this we
obtain that

exp (—2i7r

_9 _
exp <7TZ/(Z%2)> dy du

1 _
L(e) € ———— (B9 4 72) .
1(c) §R(s)—% (a +c )

We choose o = ¢! and, as in the Lemmall.1]above, ¢ = 5+ 2; combined with the trivial estimate
for Kloosterman sums, it shows that

c>0

is holomorphic in R(s) >  and is bounded by (%(s) — 1)~1. We can reformulate this as follows:

2T (s+sgn(n)%) I'(s+2—sgn(n)k)
225 (25 1 1)

A

qr

Zyr(25) — 4w e*™/2 | — (P (-, 8), Por(-5+2))

is holomorphic in %(s) > % and bounded by (R(s) — 1)~!. Therefore the possible poles of
Zy+(s) are located at s = 2s;, for s; an exceptional spectral parameter. Moreover, for R(s) > 3,
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1.2 The Goldfeld-Sarnak method

P, +(-,5 + 2) is bounded, thus one will have all necessary properties of Z, -(m,n,c) once we
possess an upper bound for the Poincaré series in the vertical strip % < R(s) < 1. This is proved
in [12], using the property (I.1.13). Namely, from the upper bound

1
Ry < — ;
[l distance(\, spectrum(A)

IBno(z.5)] = O ((m) - ;)2> .

The above discussion is gathered in the following proposition:

one obtains

Proposition 1.5. Let 0 < k < 1 and let G, ¢, o, T, m,n as above. Then The Kloosterman-Selberg
zeta function Z, ;(s) defined by

has the following properties:
- holomorphy in R(s) > 2,

- meromorphy in R(s) > 1, with polynomial growth

o0 ().

- poles at s = 2s;, with residue

A
n— —

) 41—81-
_ ikm/2
Ress—as; ZO',T(S) =e 47_[_251,71/2 4o 4r < @

Ao
m — —

4o

>3/4—5i
T'(s; + sgn(n)%) au(o.m) ay(r.n
> almamn),

ueB(Mod)

F@si—1) I'(s; — sgn(m)

where B(Mod) is an orthonormal basis of L{y,q (D\H, k, ).

Proof. Everything has been already proved above, except the last statement about the residues,
that we prove using Proposition(l.2{and Propositon|l.1 0

1.2.2 Asymptotic behaviour

The goal of this section is to derive an asymptotic formula for the function K, -(m,n, ¢) from the
analytic properties of its zeta function Z,, ,,(s). This argument can be found in [12] or in [31] in
the case of cubic Kloosterman sums K3(m,n, c). We write the exceptional spectral parameters as
S1> 82> ... > 3.

Theorem 1.2. Let 0 < k < 1 and let G, i, o, T, m,n as above. Then for any € > 0,

Z KU,T(ma n, C) N ReSs:281Za',T(S) X251—ﬂ + 0 (Xmax(252,5/4+£)—ﬁ) )

g _
0<e<X ¢ 251 - P
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1.2 The Goldfeld-Sarnak method

Proof. Leta €]0,1[and letw; > a+1 and we > «+2; consider the counterclockwise integral of
Z(s—a) % around the rectangle with vertices wy — 71", wy +it, wa +¢1" and we —¢1". From the

Phragmén-Lindelh6f Theorem and Proposition one has Z, -(s) = O (%(s)‘b(s)), for a linear
function @ satisfying ®(1 + ) = 1 and ®(2 + £) = 0. On the one side, as 7" goes to infinity, it
remains the integral on the vertical lines (w1 ) and (w2). On the other side, by the Cauchy theorem,
this is equal to ESZ, R;. Thus,

1 Xe X?2sito 1 Xs
— | Z(s—a)———ds=> R, — | Z(s—a) ———
207 J () (s=a) s(s—1) y ; r (2s; + @) (28 + o — 1) + 2 /(wl) (s—a) s(s—1)

ds,

where the sum on the right hand side is taken over the exceptional spectral parameter s; > s2 >
...>si>...>%and
R,L' = ReSS:23i+a ( Zo-;,-(s — a)) .

As wg > a + 2, the left hand side converges, and we can interchange integral and summation. We
obtain

X 1 (X/c)?
a Z(s — N = KO'T s 1y o o
2w /(w) (s —a) s(s—1) ds Z rlmm,c)e 2im /(ﬁ) s(s—1 ds

0<c
K, (m,n,c)
- Z cl—o (X - C)'
0<e<X

On the right side, the integral over (w;) is bounded by X“*. Comparing both sides of the equality
gives

X25i+a

Z Kahaz (ma n, C)

cl—e (X =)= Zs: i (28 + ) (2si +a — 1) X X)

0<ce<X
We now differentiate this equation. Let 1 << AX << X. Substracting (X) from (X + AX), we
obtain

S Kawlmnd y oy Kaammd o ny

Cl—a cl—a
0<ce<X X<e<X+AX

+ O (X*1).

_ ZR (X T AX)2Si+a o XQSH_Q
= (2sita)(2sita—1)

The second sum on the link hand side is bounded by O (X a=1/2(AX )2) The term corresponding
to each s; in the right hand side is equal to

Ri 2s: _ . _
X S;+a 1AX O X2SZ+CV 2 AX 2 .
2s;, +a—1 + ( ( ) )

Dividing by A X, we obtain

Z Ka170121(_7n‘7n7 C) _ Rl X251+a—1+O(Xo¢—1/2AX)_|_O (X282+a—1 + leAX—l) )
0tk ct—« 2s1+a—1
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1.2 The Goldfeld-Sarnak method

Choose w1 = a + 1 + ¢; then AX has to be chosen equal to X3/4 and, writing 8 = 1 — a, we
obtain

Z Ka1,oc2 (m7 n, C) _ Ry X2517B +0 (Xmax(252,5/4+8)76>
cf 2s1 — (0 )
0<e<X

This finishes the proof of Theorem(I.2] O

Remark 1.3. We know that some spectral gap occurs in the exceptional spectrum. For example,
Goldfeld and Sarnak (see [139], Theorem 3.6) proved that when G = T'g(4N), k = % and ) is the
multiplicative factor associated to the theta function (see next section) then sa < %.
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1.3 Theta functions of half-integral weight

1.3 Theta functions of half-integral weight

In this section, we shall restrict ourselves to congruence subgroups I'g(N) of SLa(R), to the
weight £ = %, and to factor systems 1 of the shape xy, where & is defined in (1.3.5) and y is a
primitive Dirichlet character. Under these conditions, we shall give an explicit orthonormal basis
of the modular forms, i.e. of the minimal eigenspace of Maal} forms; this will then allow us to
determine explicitly the right hand side of the formula in Theorem[[.2] The main ingredient will
be the classical theta function, and we start with some facts about it.

It is known that the function 6(z) = > ™% satisfies (always with the choice of the
argument of a complex number in [0, 27[)

0(z+2) =06(2) (1.3.1)
0(z) = 29 (j) . (13.2)

By Remark|1.1|of Section this implies a modularity property of @ for the group A = (T2, S),

where
11 0 —1
(0w s ).
Proposition 1.6. Let v € A. There exists a function kg on A such that

V()Y (v(2)) = k() 0(z)  Vz e H,y € A. (1.3.3)

Because of kg(—Id) = 1, kg is determined by its values on the elements v = (%) € A, with

d > 0; on such an element, it holds

(/20 , ife>0
<) €4 ! 1 ¢ for ceven and b # 0,
d )y 1 ife<O0
o if 0
! 1 ¢ for cevenand b = 0,
ko(7y) = 1 ife<O (1.3.4)
i 2
e <a> Ec for ¢ odd and a # 0,
¢ /2
et for c odd and a = 0,

where e, = 1lifx =1 (mod 4) and e, =i if v = 3 (mod 4).
Proof. This property of kg on A was proved by Kubota in [25]. This result is in fact considerably
older; actually, it was proved by Hermite (see [16]) and then by Weber (see [44] § 23 - § 28). Our

result is different from the result of [23]], because of the choice of the branch of ¢’ (z)l/ 4, ]

This makes from 6 a modular form of weight % for the group A. For convenience, we wish to
work in the context of congruence subgroups; for it we define

¥(z) = 0(2z).
If we define, for an element v = ( a 3), an element y; by v; = ( C‘/Lt t;), then
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1.3 Theta functions of half-integral weight

V() (7(2) = 5(22)1 0 (12(22)) Vv € To(4)
= ko(2) ¥(2) because 2 € A.

One sees then that v — kg(72) =: k(7y) is a multiplicative system for the group I'y(4) and for the
weight % The result of the last proposition gives then, for v € T'g(4),

b . ife>0
(d) €d {Z 1 ¢ for ceven and b # 0,
2

1 ife<O0
=90 0 (1.3.5)
! 1 ¢ for ceven and b = 0.
1 ife<O0

Thus 9 is an element of L ; (To(4N),1/2, kx). By Proposmonl 1.1] of Section|1.1.1} we know
that y/4 ¥ is a non cuspidal MaaB form of eigenvalue 3 /16, which is the smallest poss1ble by the

formula (I.1.§).

Recall also that for any Dirichlet character xy modulo 4N, k) can be made as a multiplicative
system for I'g(4NV), by defining x(v) as x(d), if v = (¢ }%). This is in particular true with any
Dirichlet character y modulo f, with f|N. The main result of the last section, Theorem can
be applied in this context. It gives the following theorem:

Theorem 1.3. Let x be a primitive Dirichlet character modulo f. Let 0~'(occ0) and 771 (00) be
two essential cusps of To(4N), and let m € A7 — {0} and n € A7 — {0}. Let K, +(m,n,c) be
the Kloosterman sum associated to the multiplicative system kx. Then, if N is an integer so that
fIN, we have

—sgn(m) .
21 NZs if sgn(m) = sgn(n) -
3/2 ZKO'T m n, C NgiQU(IT au(a,m)au(r,n),
= VT 1 if sgn(m) # sgn(n)
where u belongs to an orthonormal basis of the space L1 4 (To(4N),1/2,kx) and ay(-,-) are

defined by (I.1.3).

The rest of this section is devoted to find an orthonormal basis of L4 (T0(4N),1/2, kx).
We introduce theta function twisted by a Dirichlet character,

z) = Zx(n) e (n?z

We remark that, with the notations of (I.1.5), ay, (/d, 0) = 0. This will be needed latter on.

1.3.1 A result of Serre and Stark

One of the main results of Serre and Stark ([42]) is the fact that, for any Dirichlet character y, the
space of modular forms Mod (T'y (4cond(x)?) , X, ) only contains one newform, 1. From this,
they deduce that there exists a basis of Mod (FO (4N), x, %) formed by theta functions. Before to
state this result, let us introduce some notations.
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1.3 Theta functions of half-integral weight

In the theory of half-integral modular forms, one has non trivial Hecke operators, not for any
prime p, but for squares p?. The Hecke operators 7}z are a defined on Mod (o (4N)\H, £, &, x).
Their action on a modular form

F(z) =) as(n)e(nz)
n=0

is given by
T2 f(2) =Y be(n)e(nz),
n=0
with
b () af(np?) if p|2N,
f\n)= 2 .
ap(np?) + X2 (2) as(n) + P ap(n/p?) ifp[2N.

A useful property of the Hecke operators is that '(p)T},2 is hermitian; if p f2/N, then

(fI T2 9) = X* () (f, 9| T;2)-
The function 6, is an eigenfunction of any operator T},2 for p /2NN of eigenvalue x(p) (1 +p~1).
For t odd, the Kronecker symbol ; is the Dirichlet character n +— (%)2 of conductor t or 4t
according to whether t = 1 (mod 4) ort = 3 (mod 4). Now let us define an operator

1 1
V;ﬁ : Mod (FO (4N) » X 2) — Mod (FO (4Nt) » XXt 2) .

f(2) = f(t2).

Then, V; and T},> commute if p ft.

To any Dirichlet character y of modulus /V, there is an associated primitive Dirichlet character
X’ of modulus the conductor of x, written f; for two Dirichlet characters x; and 2, when we
write x1x2 we always mean the primitive Dirichlet character associated to the product of x; and
X2-

Finally, we recall the definition of newform and oldform. Let f € Mod (F0(4N )\H, %, nx)
be an eigenform of all but finitely many 7,,2. We say that f is an oldform if there exists some prime
p|N such that, either f € Mod (Io(4N/p)\H, 3, X), or f = Vj,g, for some g € Mod (T'o(4N/p)\H, 3, £xXp);
if f is not an oldform, it is said to be a newform. Let New (I'o(4N)\H, %, mx) be the space
spanned by newform. Then Serre and Stark proved ([42]], Theorem 3) that New (I'g(4cond(x))\H, %, kX)
is one dimensional, generated by ¢,.. This allowed them to prove that any modular form of half-
integral weight is a combination of theta series.

Theorem 1.4. Let N € N. Let x be a primitive Dirichlet character modulo N. A basis of the
space Mod (To(4N)\H, 1, kx) is given by the family

Vauz Oy »

where d and u are submitted to the conditions
d square-free and f(d)2d| N (D),

U2|% (Dg) -
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1.3 Theta functions of half-integral weight

Proof. This is a reformulation of Theorem A of [42]], which states that a basis of the space Mod (T'o(4N)\H, xx, )
is given by the family {V} 19¢}( .1)» Where

(7) 1 is a primitive Dirichlet character,

(13)  Yxt =X, (as group homomorphisms on I'g(4NV)),
(id)  (fy)* tIN.

Replacing the condition (ii) by 1) = x x:, we see that (iii) is equivalent with ( fXXt)2 t|N. Let
us decompose ¢ = du?, with d square-free; then y; = xq, and as x is now fixed, we simplify
notations by writing f(t) for f,,, the conductor of xx;. O

Corollary 1.1. Let D, f be odd positive integers. Let x be a primitive Dirichlet character of
conductor f. The space Mod (I'o(4D f), kX, %) is non-empty only if x = x s with f =1 (mod 4).
Any d satisfying (D) has to be a multiple of f, say d = ft, and xxt5 = Xt

Proof. Let f =] plf !, p; odd. Let d be such that 4 cond(xx4)2d|4D f. Then d has to be odd. We
then use the product decomposition

x=1]x

with y; a character of conductor pzf i, Also, we have

1),

pld

where € is the trivial character if d = 1 (mod 4) and e is the non trivial character modulo 4 if
d =3 (mod 4). Then,

xxa=¢[[x [

pi pld

If some p; does not divide d, then plf ‘|cond(xx4) and therefore p?f “divides D f; but f; = ord,, (f)
ordy, (D f). Thus all p; divide d. Moreover, cond(x; Xp;) = pzf ', except if y; = xp, and we obtain
the same contradiction as previously, if some x; # Xy, thus, x = xy. In particular, f is square-
free and f divides d. As we work with even characters, we need f = 1 (mod 4). Let us write
d = ft, with ¢ square-free and ged(t, f) = 1. Then,

xxa=¢[Ixi T x I x

Pi pld,plf  pld,plt

and the primitive character associated to x g4 is

XXd =€ H Xp7
pld, plt

but as the conductor has to be odd, weneed d = 1 (mod 4)i.e.t= f =1 (mod 4). One obtains
therefore xxq = X, of conductor ¢. O

We remark that the argument used in this proof is no more valid if we consider the larger space
Mod (To(4Df%), kx, 3 ), for some i > 2.
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1.3 Theta functions of half-integral weight

1.3.2 Orthonormalisation of theta functions

Among the set of theta functions V2 ¥, forming a basis of Mod (Fo (4N)\H, %, mx) (see The-
orem[I.4), some are orthogonal and some are not. The following lemmas describe precisely the
scalar product of two theta functions.

Lemma 1.2. Ler d and d’ satisfy (D), and let u and u' satisfy (Dg) and (Dy), respectively.
Assume d # d'. Then (Va2 Oyxy, Varwz Uxxy) = 0.

Proof. Since d and d’ are square-free, we can choose p /2N such that x4(p) # xa (p). We use
the fact that ¥, belongs to New(4f(d)?, xx4), and is an eigenfunction of T2 with eigenvalue
xxd(p)(1 + p~'). The operators Vy,2 and T,> commute, thus V2 ¥y, is an eigenfunction of
sz, for the same eigenvalue. Then,

Y(p) XXd(p) (1 + pil) <Vvdu2 ﬁxxd’ Vd’u’2 ﬁxx'd> = <Tp2Y(p)Vduﬂ9xxd7 Vd’u’zﬁxxi)
:<Vdu219XXd7 Tp2y<p)vd’u’ﬂ9xx;> = X(p)XXd’ (p) (1 + p_l) <Vdu279XXd7 Vd’u’ﬂ?xxf)'

On the one side, X(p) xxda(p) = Xd(p), and on the other side, x(p)xXXa'(p) = xa'(P) # Xa(p),
as xa(p) is real. (One remarks that we used three different Hecke operators 7}z, each one being

defined according to a different character.) 0

Let now d be a fixed integer, satisfying the condition (D). We study the set of functions
Vigu2 Oyxq» Where u satisfies the condition (Dg) and compute the scalar product by the following
lemma.

Lemma 1.3 (Rankin-Selberg). Let I be a subgroup of SLy(Z). Let E(z,s) = 3 cp_\r S(72)™
Let f,g € Mod(T', k, x), and denote by ay(n) and aq(n) their Fourier coefficients at co. Assume
that af(0) ag(0) = 0. Then

<fng('73)>:F<s+k_1> Zm

n>0
Proof. 1t is the usual unfolding method, once one remarks that f(z) g(z) S(z) is [-invariant. []

Define % = X, and define a divisor X, of X as Xy = Hp”f(d) p;’, where X = []p{";
X will be said to be the divisor of X supported by f(d).

Lemma 1.4. With the notations as above, let d satisfy Condition (D) and let u and u’ satisfy
Condition (Dy), i.e. u?|X and u'?|X. Denote by s and s', the divisors of u and v/, respectively,
supported by f(d). Then

0 if s #£ 5,
<Vdu2 19XXd (Z)v Viur2 ﬁXXd(Z» {

C(N,d) xxd (%) Ya (&) e e —

where we defined the constant

TN p+1 p—1
C(N,d) = 11 11 .
2Vd P L P
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1.3 Theta functions of half-integral weight

Proof. Lemma applied with k = § and I = ['g(4NN) gives

1) Z a(n)a'(n)

2 1

(Va2 Dxxar Vau? Uxxq E(.,s))=T(s— 1
()3

with

xxa (722) ifn e du?Z?, xxd (/32=) ifn e du7?

a(n) = and a'(n) = '
0 otherwise, 0 otherwise.

Let g = ged(u, u'); then n has to belong to d “2—%’2 72, and we obtain

1) ZXXd( ) XXd (%)

<Vdu2 ﬁXXd’ Viaur2 ﬁXXd E(" S)> = F(S o 5 s—1

92
1 u U Arduu?\ Y xxa(n XXd xxa(n)
= F —_ = J— YVY g — -
(s 2)XXd<g> X <g) ( 92 ) Z )52
1 u/ u Arduu\ V8 1
-y () v (g) (F5) |
53 g g g ; (n2)°z
(n,f(d))=1

Taking the residue at s = 1, we get

(Va2 Fvoxa> Vaw2 Oy )

_ W\ ___ (u g 1
— (Res,c1 (%)) ™! xxa () XX <> T N s
g 9/ 2uwVd (nfdy=1 ()72

ot () ki JL 5

g plf(d)
Let s, s’ and g4 be the divisors of u, v’ and g, respectively, with support in f(d). Then, xxq (%) XXd <%) %

0 if and only if gg = s = s’. Moreover, xxq4 ( ) XXd ( ) = xxd(v'/s") Xxa(u/s). Finally, one
shows that

Ress—1E(z,s) = mResg—1 Z #(c)

CQs
(c,AN)=1
TR H 1—p2 1 P
= —— RE€S5— = .
AN T 1—pl-2s 2N Lly4
p fAN pIN

30



1.3 Theta functions of half-integral weight

Let d satisfy (D) and write X = (d)z 7

let X4 be the divisor of X supported by f(d) and

write X/, = X/X,. Let now s satisfy the condition (Dg), with s supported by f(d), i.e. s*|Xg.

Let finally u and v satisfy u?, v?| X /. Then the preceding lemma gives

L gcd(u, v
(Vasza2 Dxexa (2), Vaszo2 Uyxa (2)) = C(N,d) xxa(v) Xxa(w) s(uv)
This leads to define
_ 1
196117&%& = C(N’ d) 1/2 S2U XXd(u) Vis2u2 ﬁXXd‘
These functions satisfy
(V.60 Vi) = ged(u, v), for any u, v so that u?, v%| X.

For a couple (d,s) as above, we have to orthogonalise the set {9}, 1}, with u?| X},

achieved by the Mobius formula

S (%) = o) = 1w = ot

Jlu jlu

Let us define the function

Q_‘b—l
\:

Vd,su = —1/2 ZM 5,4

Jlu

(1.3.6)

(1.3.7)
This is

(1.3.8)

(1.3.9)

Lemma 1.5. Let d satisfy (D). Let s satisfy (Dg) and assume that s is supported by f(d). Let u,v

satisfy (Dg) and assume ged(u, f(d)) = ged(v, f(d)) = 1. Then

1 ifu=w,

v suaﬂ s,w) =
Pas V) i)ﬁu¢u

Proof. By definition of 94 , ,,, the equality to be proven is equivalent to

1 ifu=vw
1/2 ’19 u = ’
ZM s Vo) {0 ifu # v,

Jlu

that we rewrite as

12 fy =
Z,u 79(15 u ﬁdsv> = QP(U) 1 B o
i 0 if u # v.

By choosing

o(x)/? ifr=v,

F&) = Phouass)  and g(x)z{o e

in the Mobius formula (1.3.8)), (1.3.10) is equivalent to

. 1/2 . .
J sij =w,
<§§75,u,q9d7870> _ Z {«p( )

T sij #w.

(1.3.10)

(1.3.11)
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1.3 Theta functions of half-integral weight

By the definition (1.3.9) of ¥4 ; ,,, and by evaluating the right hand side of (I.3.TT), the equality of
Lemmall.5|is equivalent to

P(0) 2 37 ) (Db O ) =

Jlv

p(0)/? sivlu,
0 si v fu,

what we reformulate as

Z M(]) <19(11,s,u’ 19}1,5,?) =

Jlv

p(v) sivlu,
0 sivfu.

We apply the Mobius formula with

o(x) if z|u,
f@) = (VgsuVasa)  and  g(z) = :
0 if z fu.
Lemmall.5]is then proved if and only if
) it sl
9L gl oy = o) i 13.12
< d,s,u d,s,v> Z {0’ si ]/{/u ( )
Jlv
The right hand side is equal to
> el) = eged(u,v),
Jlged(u,v)
therefore (1.3.12)) is verified and the lemma is proved. O

Theorem 1.5. Let N € N. Let x be a primitive Dirichlet character modulo f. Denote by f(d) the
conductor of the primitive Dirichlet character associated to the product of the characters x and
Xd- Define the following constant:

2Vd p P 1 ~1/2
C(N, d,s,u) = W Im H ﬁ §2 QO(’U,) . (1313)
pIN plf(d)

Then an orthonormal basis of Mod (4N X %) is given by the set of functions Vg s ,,(2) defined in
(L.3.9), where the parameters d, s, u satisfy

(i) dsquare-free, f(d)d|N,

() gz SuPRLs) C supp(/ (@),
(i5d) 2| f(;\;g - ged(u, (d) = 1

Their Fourier expansions at infinity are given by

Yasu(2) = c(N,d, s,u) Z agsu(Id, m)e(mz)
meEZ
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1.3 Theta functions of half-integral weight

with Fourier coefficients
if m ¢ ds*Z?,

0
adsu(ld,m) = o) .
Xt (M) 2251wy (5> j ifm=ds*m™.

Proof. As before, write X = % and decompose X = Xy X/, with X supported by d. It
remains to study the Fourier expansion of ¥4 5 ,,. By (1.3.6) and (I.3.9), on a

Vagsu=C(N,d)” 1/2 43 o(u —1/2 ZM XXd (J) Vaas2(u/5)2Vxxa
Jlu

N d,s,u ZM( > JXXd( )Vds2j279x><d'

Jlu

By the definition of ¥, ,, we obtain

Dt 5,u(2) —CdSUZM<>JXXd ZXXCI (n*ds?j?z)
(NdSUZXXd Zu( )]XXd()(2d5 2)

Jlu
=c(N,d, s,u) Z ame(m?ds®z),

where

= Y xxa(m/in < >Jx><d(J)

Jl(u,m)

Since u?| X/, then ged(u, f(d)) =

Thus
am = xxa(m) Y n <u> j.

ilwm) N

(m/j) = xxa(m)xxa(j)-

O]

Corollary 1.2. Let D, f be odd positive integers, gcd(D, f) = 1. Let x be a primitive character
of conductor f. The space Mod (Fg(4Df), KX, %) is non-empty if and only if f = 1 (mod 4)
and x = J; = Xy, in which case an orthonormal basis of it is given by the V5 5 .(2), for t3|D,
t =1 (mod 4), 52|t%, s supported by t, UQ‘%, gcd(u,t) = 1. For such parameter t, we have
XXt = Jt = x¢

Proof. Recall that from Corollary[l.1] we know that d = 0 (mod f), for any d satisfying (D).
Writing d = ft and translating the conditions of Theorem[I.5]we get the result as stated. O

33



1.4 Determination of the constant

1.4 Determination of the constant

We are now in a position to determine explicitly both sides of the formula of Theorem[I.3] and
then to prove Theorem[I.I] We assume that D, f are odd, for simplicity. We choose the group
['o(4Df), for which the results of the previous section with N = D f will be used. We still work

with weight £ = 1/2.

1.4.1 Choice of the cusps and of the level

We choose the two cusps to be 0~ (o0) and 771 (o0) with 771 = I'd and

_ a 0
"1_(1) 4f>

with a > 0, a even and 3 odd. One verifies that A, = 4fZ, A, = Z and », = s, = 0.

Proposition 1.7. The geometric Kloosterman sum appearing in the left hand side of the formula

of Theorem|I.3)is given by

0 ifc£0 (mod D) orif cis even,
gD (%)2 g.Ka(m,n,c) ifc=0 (mod D) andif cis odd.

Ky +(m,n,c) =

We remark that for an odd integer c,
g. Ka(m,n,c) € R.

Proof. Let c > 0 be a fixed integer. By definition,

(m — %) a(ogr™1) (n —

K, -(m,n,c) = Z ¥(g) ox(o,9) or(ocg, 77 1)e e

9€Go\G/Gr
clogr—l)=%c

We replace og7~! by the matrix (Z 2) ; this gives

K, (m,n,c) =

sl )l @ )l ¢ o)

0*1(‘; g)TeGU\G/GT

. ((m) )(() )

If g is replaced by g, g g, with g, = 0 'T* € G, and g, = 77 'T* 7 € G, then (¢

)

ogt~!is replaced by o (O'_ITA”O') g (T_IT’\TT) =T (‘; fl) T>7. Thus a is defined modulo

Agc and d modulo Arc. It is easy to see that oy, ((¢5), Id) = 1, thus
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1.4 Determination of the constant

a b a b ma+nd
K(m,n,c) = I€X<O'_1< >T> O'k<0',0'_1< >T> e<).
a(4§d(c) ¢ d ¢ d ¢

o1 (‘é Z)TGFO(ALDf)

The condition

ot <‘C‘ Z) € To(4DJ)

means aD + 4cf = 0 (mod 4Df), thus a = 0 (mod 4f) (which implies ¢ odd) and ¢ = 0

(mod D). Remark that 0! (i Z) € To(4fD), thus 0=15(-9) (Z Z) € I'o(4f); since

o~ 1S € Tg(4f), so does —S <z Z) Finally, as  x is a multiplicative system, we have

(o ¢ (e ) - mleracn s ) sl )
et Cs(c D)n(rsos(c ) escn ()
= 7x7 (071S) ”xy (—S (Z Z)) 5% (0,07'5) 7% <S, —S (Z Z)) .

Assume now that ¢ > 0. Then 073(0 O'_IS) Fk(S -5 (‘; g)) = 1. The choice ¢ > 0 and
a,d >0 gives b = “d L > 0, and by the formula (T.3.3)),

()= (e 5) = (0 3)
-(7),2=(5). ),

Since ad — bc = 1, be = —1 (mod 4), and thus & (71)2 i = e.. It follows

w(-5(2 )= (5).5= (),

Since a > 0, a = 0 (mod 4) and bc = —1 (mod a), it holds (ﬁ)Q = <_i1>2 = 1, thus
(%), = (2),. Finally, we have the following:

w9 -o(( 5))=+((h 3) -G

o8 =x(-D). x5 (4 5N =xv
Thus, if c = 0 (mod D),
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1.4 Determination of the constant

« a ma+nd
Kartmnd = 3 (5), o0 (5),cxt-Dixp e (211,
5
ad=1 (c)
a=0 (4f)

daf =1 (mod D), x is a character of conductor f, and a =0 (mod f). This can be written as

et =ep (), stomos (), 32 (e (")

C
a(c) d(c)
4fad=1(c)
() - T mx+nd
(B s B (2),o(22)
€D Ec (D 2X( )x(e) > o)y € -
s

From Corollary we know that y = x s, for some square-free f, f =1 (mod 4). This finishes
the proof of Proposition|1.7] d

In order to make explicit the right side of the formula of Theorem[I.3] we need the Fourier
expansion of the theta functions 9 5, (z) defined in (T.3.9) at both, 771 (c0) and 0! (00). While
the former is given by Theorem we give here the latter. The cusp o~ !(00) is of width 4f.
Recall that

D) = DS tfos,0) Do (5) S i) v (o7 8 7:2),
s N
so that the first step is to study ¥y, (tf s> j%2) at 07 1(c0). Recall that t = 1 (mod 4). More
generally, we replace x; by 1/ and tfs2j2 by t. Let r be the conductor of . The condition that
t3fs%4% divides D f becomes now r?t|Df. Let r = rpry and t = tpts. Let ¢p,1bs be the
associated characters to 1. (For us, ¢)p = x; and 1)y = 1; moreover, rp = cond(x;) =t, 7y = 1,
tp =ts*j% ty = f).

Proposition 1.8. Let 1) be a character of conductor r. Let t be such that r*t|D f. Let ), 1) r be the
associated characters to ). Let] € N—{0}. Then, the "™ Fourier coefficient of (c1) (2)1/4 0, (to=1(2))
in the expansion

2tpz
(U_l)/(z)1/4 6y (ta_l(z)) = Zb(l) e (%) ,

>0

is given by

it (), oo (00 + 0 (=1)0(-D) Yo(277E7) br(~DEpl) G 1)

Proof. We shall use a more general theta function. Let ¢, &’ € R. Define

(c.c.2) :%e(; (n+5)") e ((e+2)5): (14.1)
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1.4 Determination of the constant

Then if v = (‘cl g) € SLy(Z), z € Hete, &' € R we have ([8], Theorem 1.11 p. 81):
0(c, ', v(2)) = c(e, €', 7) (cz 4+ d)/? O(ae + ce’ — ac,be + de’ + bd, 2),
with a constant c(e, ', y) satisfying

/ 2 2 2 /
ce.en) = o <_ (ae +4C€ )bd  (abe” + cclig + 2bcee )> ¢(0.0,7).

The particular case ¢’ = 0 gives

0(e,0,7(z)) = c(e,0,7) (cz + d)/? 8(ae — ac, be + bd, 2), (1.4.2)
with
2
c(e,0,7) = e (-*ﬂbd - (“I;s )> ¢(0,0,7). (1.4.3)

Assume that v € A; Then ac and bd are even, and we have

1 ae —ac\ > 1 age — ac
0(a5—ac,b5+bd,z)—26<2<n+ 5 >z>e<2<n+ 5 ><b€+bd)>

neZ

S (A G ) (A (e E) e v

ne”L

—c (e ) S5 (n+ %) 5) e (gue).

ne”L

and introducing this in (I.4.2) gives

0(c,0,7(2)) = e <W’8€2)> ¢(0,0,7) (cz+d)"? e (; (n + %)2 z) e (;nbe> . (L44)

ne’

Notice (p.81 of [8]), the authors work with arg(z) € [0,2n[. Thus the constant K (0,0,7) is
defined, in the case v € A, as

0(0,0,7(2)) = ¢(0,0,7) (cz + d)*/26(0,0, 2).
Since 6(0, 0, z) = 6(z), we have
c(0,0,7) (cz + d)"/? = ko(y) 7/ (2) /. (1.4.5)
We finally have

be? 1 2 1
0(,0,7(2)) =€ ((a; )> ko (y) ()4 %e (2 (n + %6) z> e <2nbe> . (1.4.6)
Before starting the evaluation of the terms b(!), we merely remark that

5 2r?ctfoz r%tDﬁ
D/r3tp 4f/27“]20tf
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1.4 Determination of the constant

is an element of A and satisfies

2r’to 1 (z) = 5(2), with 2/

Now,

i =Y v(n)e(nto ' (z) =) ( 2ta (z))
h(r) nEZ

neL

=2 Z(;(n”) )%w ( 0.5())

nel
and by the formula (T.4.4),
2ahrsts\2 2 nBhrpt
-1 _ (= ~1/4 . ftf DiD
Pl ) = @ ) 3 vt ) e <( # 2 2) (")
h(r) nez
e 14, z nBhrptp
h(’r‘) nEZ
— (5 1/4 b <
@Y= Z < 2TD>
1>0

Assume now that [ # 0, then

=YY e (22

he) ke &
(2ah'rf f+k7‘D)2 =2

=YY v <kﬁh”’t]3> D ¢(h)e<7‘€5h”ﬂf3).

h(’l‘) keZ ( ) kEZ Tf
2o¢h7‘ftf+k7‘D:l 2cxh'rf f+krD:7l

h has to satisfy 2ahr ¢ty = +1 (mod rp), in which case there exists k € Z satisfying the condi-
tion, and one can replace krp by an expression in terms of h; thus

)= X wme (IR S e (PRI 2

h () Tf h (r) Tf
}LElW(TD) hE—lW(T‘D)
Bhtpl Bhtpl
= > w(h)e ( + ) whe(-
h(r) s h(r) s
h=13ar ;i (rp) h=—12ar i} (rp)

We now decompose ¢ as 1) = ¢ p1py, and we recall that the Gauss sum G (m) = 31 (1mod 1) x(k)eimmk/r,
for x primitive modulo r, 7 > 1 satisfies G (m) = Xx(m) Gy (1). We obtain
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1.4 Determination of the constant

N Bhtpl N
b(l) = pp(I2arsty) > Vy(h)e ( TfD +¢p(—12arsty) > Yi(h)e
h(r) h (r)
}LEZW(T'D) hzle(TD)

= v 3 vrwye (P2 up(-maryty) 3 wstee (-20)

z (ry) x(ry) s

= WD) + ¥ (-1)n(-0) Vo) 3 vrio)e (P21
z(ry)

— (60) + 6y (—1n(~) bp(ZarEy) T (5tol) Gu, (1)

= (Yp(l) + s (=1)bp(=1)) p(2frsts) s (—Dipl) Gy, (1).

We finally verify that

7ﬁhtDl
Tf

(1Y)

TFA/2tf

(GY() " =

and

. tro
~ 4 /
ko(0) = et/ <DtD>2 EDtp s

and this finishes the proof of the Proposition[I.8] O

Proposition 1.9. Let o be as above. Let f be an odd square free integer, f > 0, f =1 (mod 4)
and let x = xt. Let D be odd, and let ¥,y s ,, be an element of the base of Mod (Fo (4Df), xk, %)
Then

() 0l () = Y agsulo,m)e(ms),
me(4f)~1Z

where

0 ifm ¢ %22,

atfsu(o,m) =19 . N s
o {6 / \/%5D xt(2) e(Df,tf, s, u) xe(m') Zﬂ(um/) H (3) g oifm = WIQ%-

Proof. From the definition of the functions ¥, s ,, and the previous proposition, using the fact that
t =1 (mod 4), we have

2 2,2
@) gl @) = 7 2 ep @ DL tF50) Y (1) i S ewe (H522)
jlu >0

) 2
= el R o @ eDs s S bmre (M2

neL
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1.4 Determination of the constant

where

0 if n ¢ 72,

b(n) = ) . .
S () ) S o xall) iEn =m0

We can see that, for n = m?,

o= 3 (j) Jxed) xe(m /)
“im 3 (%)

Therefore we obtain

0'(2) 1psu(0 M 2) = Y. arpsulo,m)e(m2),
me(4f)~1Z

where

. ﬁ 2
(Itfvsﬂt(o-; m) = Oz‘ﬂ./4 2 / u . lfm ¢ 4f/2Zts;
e \/;5D Xt(2) c(Df,tf,s,u) xe(m') 225 umry B (;) Joifm=m=F.

O

1.4.2 Proof of Theorem[1.1]

First of all, let us rewrite both types of Fourier expansion needed here. Let m,n € Z, m,n
positive. One is, from Theorem[I.5]

0 ifn & tfs272,

(1.4.7)
c(Df,tf,s,u)xe(n') 2y 1 <%) j ifn=tfs*n?.

at s (7-7 n) -

The other is obtained by Proposition Asm € Zand m = m/ 2%, m’ has to be a multiple of
2f, say m’ = 2fm”. Then, m = m/’? fts? and

atfsu(o,m) = eim/4 \/?ED c(Df,tf,s,u) xe(f) xe(m”) Z i (u) j.

ilzfmry N

Since ged(2f, u) = 1, we reformulate this as
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1.4 Determination of the constant

0 if m & tfs?72,

atf:&ﬂ(“ m) = /a2 , o 212
e ﬁepc(Df,tf,s,u)Xt(f)Xt(m) Zj‘(u’m,)u<?> j ifm=tfs*m'.

(1.4.8)

From (1.4.7) and (I.4.8), one sees that Gz 75 (0, m) Gt s (T, 1) is non-zero only if the square-free

m

part of m and n are both equal to ¢ f for some integer ¢t = 1 (mod 4) such that ¢3|D. Then, , /7 7

and , / % has to be divisible by s, for some integer s supported by ¢ and such that s t%. Therefore,

we need

m = tfs*m'? and n = tfs’n'?.

As the factor x;(m'n’) appears, m’ and n’ have to be coprime with ¢. Thus, only the parameter u
is not determined by m and n; it has to satisfy u2\t23 and to be coprime with ¢. Denote this set by
U. Recall that ¢(D f,tf, s,u) is defined in Theorem If m and n are as above, the right side of
the formula of Theorem[I.3]is now completely determined; it is equal to

(1+1) 2—7{ l;Uatf,s,u(a, m) @y su(T,n)

16 . u\ . (AN
= YT ) ) Y eDf s Y u(.>J 3 u(.>3
™ A il J

uel 3l (um’) il(un’)
32 Vits 1—[ P P
- 372 D 1 -1
i T R TR
_ _ u . u .
x2p xe(f) xa(m'n') Y p(w)™h > M() iy u<) j.
= T\j) T = T\
u€l 31w’ il (un’)

We remark that a(m)b(n) = a(n)b(m).

Let X be the square-free part of t% and write t% = XoX?; then u € U if and only if u|X. If
some u € U divides m, then the corresponding sum over the divisors of (u,m) is simply o (u).
We set

U' = {Hp : ordy, (ged(m’,n’, X)) < ord,(X)}.
plX

Introduce the notation min, = min(ord,(m'),ord,(n’)) for p|U’. Define the subsets of U’ as
follows:
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1.4 Determination of the constant

p|U’
Upin = H min, = ord,(m’) = ord,(n’)
plU’

The presence of the Mobius function implies that any v € U can be uniquely written as u =
[T pmine Ly with o/ |U7, ged(u”,u') = 1 and u”|ged(X, m/,n’). We obtain, for a given u =
u'u”, that

gcd(u,m’) — " H pminp H pminp+1‘

plu’ plu’
P/{/Uh p|UL,
Therefore,
u " [T p™ !
. . i Uy, .
SRTOFEWICAEE | P SR (e .
y / ‘7 > 1 ‘7 / . ming 41 j
]\(u,m) j|u plu ]‘Hp\u’ pP
p/{/Ué p|UY,
=) [[ n@e™™ ] ™ »-1).
plu’ plu’
P/{/Uﬁ p|U},

The same holds for the second inner sum and we obtain

S <u> i (u> j=pu")? Hmei“" I #e®-2.

plu!
p/{/U’
m,n

Finally,
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1.4 Determination of the constant

S u<?>jj|(%)u(?>j

-1

=Y > e[| e I[P ] ) (-1

UI‘U, u//|(X,'m/,n/) p|u’ plu/ p\u’
(/ u)=1 p fUlnm
=> o) ™™ I -p) D e
' |U’ plu ol u'|(X,m,n)
D
=ged(X,m/;n/) > @@h) T D p(ub).
u) ‘lefn,,n ub| Uéjn/,n

This shows that Uy, ,, has to be equal to U’, and concludes the proof.
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2 Cubic metaplectic forms

In this chapter we present the theory of metaplectic forms, in the classical setting over SLy(Z|w])
in Section[2.1] and in the representation theoretic context in Section[2.3] Each point of view allow
us to state interesting results that will be used in the next chapters.

More precisely, in Section[2.2] we present two general summation formulas for cubic Kloost-
erman sums; they relate sums of cubic Kloosterman sums with the spectral theory of the meta-
plectic forms developed in Section[2.1} we first obtain the so-called spectral summation formula
in Theorem[2.4] and derive some consequences of it on the spectrum of the metaplectic group in
Proposition[2.5] We finally obtain the so-called Kloosterman summation formula in Theorem[2.6]
and derive some approximations formula for the inverse Bessel Transform in Proposition[2.6|

In Section[2.4] we give some relations between metaplectic forms and classical automorphic
forms; they are consequences of the cubic Shimura correspondence, which relates genuine ir-
reducible representations of the metaplectic group GLa (k) with irreducible representations of
GLa(ky). Some special feature of the theory of metaplectic representations appear to be specific
to the cubic metaplectic forms; it is an explanation of the fact that the determination of the explicit
constant in the asymptotic behaviour of the twisted Kloosterman sums of order j

Kimane) =3 () e (") forg 21
z ()

can only be done in the quadratic case, i.e. for 7 = 2, and in the cubic case, i.e. for j = 3. The
former was treated in Chapter[T|and the latter will be treated in Chapter[3]
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2.1 Metaplectic forms on SLs (Z[w])

2.1 Metaplectic forms on Sl (Z[w])

Let k = Q(w), where w = €27/3, We define A = 1 — w; it is the only prime in R = Z[w] which
divides 3. Any other prime in R has a unique associated, i.e. a multiple by a unit of R, which is
congruent to 1 modulo 3. Such a prime will be called primary. Recall that the group of units in R

isU = {1, +w, +w?}.

Let m be a prime in R coprime with 3. Let a be an integer of R, coprime with 7. As the

multiplicative group (R/mR)* is of order N'(7) — 1, it holds

N1 =1 (mod 7).
As N(m) =1 (mod 3), it exists a unique cubic root of 1, say «, such that

N(m)—1
3

a =oa (mod ).

We define the cubic Legendre symbol by

(5o

Let now ¢ be an integer of R coprime with 3a; it has a decomposition ¢ = [], 77", withn € U.

We define the Jacobi symbol by
a a\“
<E>3 N H <771)3 .

The Jacobi symbol is multiplicative in a and ¢, and satisfies

Property (2.1.2)) implies

(9) —1  ifaceZ
c/3
The main property of the Legendre-Jacobi symbol is the reciprocity law:

Theorem 2.1. Let 71, my € Z|w| be two primary primes. Then
(=)= ()
T2 /3 1 /3 ’
This theorem is completed by the complementary reciprocity laws:

Proposition 2.1. Let 7 be a primary prime, 7 = 1 + 3(m + nw). Then
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2.1 Metaplectic forms on SLs (Z[w])

D) (%)3 —1.

Theorem[2.1] was proved by Eisenstein in [6] with the supplementary condition N () # N (72).
The remaining case, as well as he complementary reciprocity laws, were then proved by the same
author in [[7].

The three-dimensional hyperbolic space is usually represented as the half—space H = CxR}.
We can embed it in the Hamiltonian quatermons by identifying v/—1 € C with ¢ and w = (x +
iy,v) € H with x + yz + vk where 1,1, 7, k are the standard unit quaternions. We shall use the
same letter H as in Chapter[I} but this should not cause confusion since the upper-half plane is
used in this thesis only in Chapter The group SL2(C) acts on H by

<Ccl Z) w = (aw +b) (cw +d) "

Explicitly, this action is given by

a b (2,0) = (az + b)(cz + d) + acv? v
c d) 7 lcz +d|2 +|c|2v2 ez +d|)?+|c]2v? ]

The Laplace-Beltrami operator is given by

A_ 2 8724_872_’_872 _ 2
U \a2 T a2 Ta) T Vo

and the SLy(C)-invariant measure is dV (w) = v~3dm(z)dv, where d(m(z) is the standard
Lebesgue measure on C.

Recall the Iwasawa decomposition of G = SLo(C). We start by defining

H = {huu € C - {0} where = (2.,
N={nl, zeC) where nlz)= (§ 7).

A={al 7 > 0) where als] = (V7 01)

K = SU() withetements (e 9) = (% 7).

With the Euler angles ¢, 8,1 € R, we have
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2.1 Metaplectic forms on SLs (Z[w])

kla, 5] = h [ew/z] klcos 6/2,isin8/2] h [eim} .
Then the Iwasawa decomposition states that

G = NAK,

which allows us to decompose any element g of G as ¢ = nak = n[z]a[v]k[a, 5]. The Haar
measure on N, A and K are given by

dn=d,z, da=v"'dv and dk= (167%)"" sinfd¢df di).
We define, for v € C, the character y,, on N by

YXu(n) = e(uz), if n = n[z]. (2.1.4)

Of first importance for us will be the subgroups of SLa(Z|w] defined by

'y = {y € SLy(Z[w]) : 3g € SL2(Z), y =g (mod 3)}, (2.1.5)
' ={yeSLy(Zw]) : y=1 (mod 3)}, (2.1.6)
Igd)={yeTl1:¢c(y)=0 (modd)}. (2.1.7)

The Kubota symbol x can now be introduced. It is defined on I'; by

£), ifc#0
k(y) = ( )3 , where v = <a 2) erly.
1 ifc=0 ¢

This definition is then extended to I'y, the subgroup of SLa(Z[w]) generated by I'; and SL(Z),
by defining « trivially on SLo(Z). More precisely, for any v, € T's, there exists some g € SLo(Z)
and ~y; € I'y such that v = g 1, and we define

K(y2) = k(1)

The starting point of the theory of metaplectic forms originates from the short and significant paper
of Kubota ([22])), in which he proved that x is a group homomorphism on I';. Actually, Kubota
proved that  is a morphism on the subgroup of I'; consisting in matrices congruent to 1 modulo
9, but this last condition can be dropped, and it can be proved that the definition of x on I'g extend
K to a group homomorphism from I'e into the cubic roots of unity (see [32], p.127). A fundamen-
tal point in this theory is that the kernel of x does not contains a congruence subgroup. This is
equally proved in [22], and leads to complications which do not usually appear in the theory of
automorphic forms. We shall come back to this in Section[2.3.1]

Let I be a subgroup of I's and let x : I' — C be a group homomorphism. Inside the space
of functions f : H — C such that

f(y(w)) = rx(y) f(w)  Vyerl, (2.1.8)

we distinguish two subspaces, the one formed by the square integrable function on I'\ H with re-
spect to dV (w), denoted by L? (I'\H, ) and the one of functions f with (A + s(2 —s)) f =0
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2.1 Metaplectic forms on SLs (Z[w])

for some s € C, denoted by M (I'\H, xx, s).

In this section, we will deal with automorphic forms not only invariant by a subgroup of
SLo(Z[w]) but more generally by a subgroup of G = SLy(C). As G = NAK and H = NA,
this amounts to deal with general K -types (Section[2.1.1)); these functions generalize the classical
holomorphic functions on the upper half-plane, and are needed in order to achieve a complete
summation formula for Kloosterman sums. Then, we shall present in Section[2.1.2] the spectral
theory of L? (I'\H, x). Finally, we define the Poincaré series in Section and, as we did in
Chapter we shall make appear the cubic Kloosterman sums K3(m, n, ¢) as Fourier coefficients
of these Poincaré series.

2.1.1 K-types and metaplectic forms

We need some facts about the Lie algebra of G and K; we simply excerpt them from Sec-
tion3 of [4]. The real Lie algebra s[(2) of G is a six dimensional real vector space generated
by {Hl, HQ, Vl, VQ, Wl, WQ}, where

1/1 0 1(0 1 1
Hl_z(o —1>’ V1_2<1 0>’ Wi=3

1(i 0 1
H2_2<0 —i>’ V2=3

The Casimir elements are defined by

1 . . ;
Qr = 3 ((Hy FiH)? + (Vi FiW2)? — (W1 Filk)?).

The center Z(s((2)) of the universal covering U (s[(2)) of sls is the polynomial ring C[Q24, Q_].
The real Lie algebra su(2) of K is generated by Ho, W7 and Wo; its complexification is
sl3(C). The Casimir element is defined by

-1
e=—- (H5 + Wi +W3).
The center Z(su(2)) of the universal covering U (su(2)) of slz(C) is the polynomial ring C[€2].
We shall use this to give results about the irreducible unitary representations of K, the goal
being to study the Hilbert space L?(K) of functions on K which are square-integrable over K
with respect to the Haar measure dk. First recall that finite dimensional representations of GG are
given by (T}, V;,), for n € N, where V,, is the space of polynomial in one variable of degree at
most n, and T}, : G — Aut(V,,) is a homomorphism given by

az +c
T, = (bz+d)" .
W) ) = 0+ £ ()
Write n = 2[ and define o; as the restriction of T5; to K. Then [ € %N, and any element of V5
is of the form z/~%; g has to satisfy the conditions |q| < /and ¢ = [ (mod 1), which ensures that
I — g € N. The representation oy is irreducible, and we can rewrite the action of K on the element
2179 of Vy; as
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2.1 Metaplectic forms on SLs (Z[w])

a1 (k) (z’—q) —(az—B) 1Bz +a) T e Vy,  fork=k(a,p),
and its expansion in Vo is of the form
k) (277) = D2 o glk) 27,
Ip|<!

where the functions gzﬁp g Withl >0, |p[ <1, |¢| <landp =g =1 (mod 1), are functions on K.
Actually, the gbﬁL , form an orthogonal basis of L?(K) and satisfy

. 1
H2 ¢lp7q = —1q Qsé,q ) Qf ¢lp7q = _§(l2 + l) d);ln,q
—1

o= ——— (2 ) (%)
UK al+1\l-p) \l—q

Moreover, all irreducible unitary representations of K are obtained in this way. From this discus-
sion, we obtain the following decomposition of L2(K):

LQ(K): @ L2(K,1,q), K7lvq @ C(béq

l,q IpI<t
lql<t p=l(1)
q=1(1)

We can see L?(K, 1, q) as the set of functions f on L?(K) satisfying

(x) uf=-(+1)/2f
(#x) Ho f = —iqf.

More generally, a function f of a space V' is said to be of K-type (I, q) if K acts on V and if f
satisfies (%) and (*x). This concept correspond to the weight in the theory of modular forms on
the upper half plane (see Chapter. The functions qbéw are examples of functions of type (I, q).
Another example is the function ¢; 4(s,p) : G — C, defined by

orq(s,p)(g) =v' ¢l (), if g =n[z]a[v]k.

The function ¢ (s, p) satisfies

Qi prg(s,p) = = ((s = Fp)* — 1) @r4(s,p).

0| =

The spaces

H (s, p) = { finite linear combinations of ¢; 4(s, p)}

will be seen as models for irreducible subspaces of the space of square-integrable metaplectic
forms, that we are now able to define.

We conclude this section by giving the definition of metaplectic forms, and showing which
part the function ¢ 4(s, p) plays in their Fourier expansions.
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2.1 Metaplectic forms on SLs (Z[w])

Definition 2.1. Let I be a discrete subgroup of I's. Define by A; ,(I'\G, k, (s,p)) the subspace of
smooth functions f on G satisfying

f(vg) =x() flg)
Qifzé((s;p)Q—Uf (2.1.9)

fis of type (1, q).

An element f of A o(I'\G, K, (s, p)) is called a metaplectic form for I of type (1, q) and of spectral
parameter (S, D).

Remark 2.1. In particular, if —Id € T and f € A 4(T'\G, K, (s,p)), we see from the defini-
tion that, on one side, f(—g) = x(—1d)f(g) = f(g), and that, on the other side, f(—g) =
oi(—1d)f(g) = €*™ f(qg). The only possible types (l,q) are then the ones with l,q,p € Z.
As we will see in Remark[2.2] p.[61} an extra condition appears in the spectral sum formula if
there exist spectral parameters (s,p) with p € % + Z. This justifies that we consider the group
'y = (I'1 NTo(d), —Id) rather than T'{(d) = I'1 N T'o(d) considered in [31].

According to this remark, it is reasonable to define
' ={yeSLy(Z[w]) : y==%1 (mod 3)}. (2.1.10)

Lemma 2.1. Let I be any discrete subgroup of I'| containing —1d, and let I, be the stabilizator
in T of the cusp 0~ 1(c0), where o € SLa(R). Then there exists some lattice A, in R, Ay C (3),

such that
_ -1 1 Aa -1 -1 Aa
I's =0 <0 1)e Uo 0 _1 0.

Let I" be a subgroup of I'; . If a function f satisfies f(yg) = () f(g), forally € T', then f
has a Fourier expansion

[ = 3 Frlo,m)(g).

meA)

with Fourier coefficients

Fy(o,m)(g) = /F _I\N%(n)f(ng) dn.

Let W, 4 (s, p, m) be the space

W4 (s,p,m) ={h € C®(G) : h(ng) = xm(n)h(g), his of K-type (I, q) and of spectral parameter (s, p)},

with x;,, as in . If m = 0, then dim (W, (s, p, m)) = 2 and one has
7q

VVl,q(Sapa 0) = (C(pl,q(svp) %) C@l,q(—sa _p)a if (S’p) 7é (0’0)

I/Vl,q(a 07 0) = C(pl,q(()?()) P (Casgpl,q(sapNS:O-
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2.1 Metaplectic forms on SLs (Z[w])

If f e A4\G,k,(s,p)), one sees that Fr(o,m) € Wi, (s,p,m). Actually, for any m #
0, Wy 4 (s,p,m) is of dimension 2, and contains as one dimensional subspace, the subspace

V[/lp;’1 (s, p, m) of functions of polynomial growth. If a metaplectic form f is of polynomial growth,

i.e. f(na[v]k) < v®, then its Fourier coefficients inherit this growth property, and are multiple of
the generator of T/legl (s,p,m). This generator is known; see Section 5 of [4]. For it we need to
define the operator A,,,, on the space of functions f € C'°°(G) such that, for some o > 0,

f(navlk) =0 (vH’”) , asv — 0.
It is defined by

.Amfuﬂ——/;meﬂJTwng%ﬂh

Then, one proves that, for any spectral parameter (s, p), if m # 0, I/legl (s,p, m) is generated by
Am@l,q(s’p)‘

Proposition 2.2. Let f be a square-integrable metaplectic form of spectral parameter (s,p). Let
T be a subgroup of T'| and let 0~1(c0) be a cusp of T. Then,

flo7lg) = > pr(m) Ameprg(s,p)(9)-
meA)

The function f is said to be a cuspform if pf(o, 0) = 0 for all cusps 0~ 1(00) of . The space
L2cuP (I'\G, k) generated by the cuspforms is a subspace of L? (T'\G, ).

2.1.2 Eisenstein series, theta functions and the spectral decomposi-
tion theorem
LetI' C I'7. A cusp o~ 1(c0) of I', with 0! € SLg(Z[w]), is called essential if x|, = 1. The

set of I'-inequivalent essential cusps will be denoted by C(I"). Eisenstein series are defined for
essential cusps.

Definition 2.2. Let 0! (00) be an essential cusp of T. Let p,1,q € Z,
(mod 1). For R(s) > 1, the Eisenstein series E(s,p,l,q; g) is

pllgl <l andp=1l=q

Eo(s,p,1,q9) = Y (V) rg(s,p) (079) -
YELAT

It admits a Fourier expansion at any cusp of I', but for simplicity, we will only work with
essential cusps. If 771(00) is an essential cusp of I, then

Ea(s,p, L q; T_lg) = 50,7'90l,q(57p)(g)

(=P~ Pl T4+ 1—38)T(]p| + )

) Vo,7(5,0,p) 01.4(—5,—p)(9)

Vol(A,) T(+1+s)D(|p|+1-s @.111)
1
oy 2o Yer(sman) Angra(s)(9)

0#meA)

whose Fourier coefficients ¢, - (s, m, p) are Dirichlet series formed by Gauss sums, i.e.
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2.1 Metaplectic forms on SLs (Z[w])

VYor(s,m,p) = Z/\/’ —(1+s) (Icl>2pa > ;-;(o—‘l (CCL Z>T>e(nzd>

(“g>7’€ o\I'/T+

The properties needed for our applications are listed below. Consider E, (s, p, [, ¢; g) as a function
of the variable s. Then

(i) E,(s,p,l,q;qg) possesses a meromorphic continuation to C and a functional equation relat-
il’lg EIO'(1 + S, D, la q; g) and EO'(l —S5PD, l7 q; g)’

(ii)) E,(s,p,l,q;g) is holomorphic if p # 0,

(iii) Eo(s,p,l,q;g) haspolesats = =, L if p =0,
The last property is new, when compared to the classical theory of automorphic forms whose
automorphic factor is a Dirichlet character. Actually, taking the residue of Eisenstein series give
some square-integrable non cuspidal automorphic forms. They are eigenfunction of the Laplacian
with eigenvalue 1 — s2. This is the minimal eigenvalue of the Laplacian, and in our case it is

1—s%=38/9.

Definition 2.3. In the half-plane R(s) > 0, the theta function associated to the essential cusp
o0 ~1(00) is defined as

00’((l7 Q)7g) = Ress:l/S (EO'($707 l7 Q7g)>

It is a square integrable non cuspidal metaplectic forms of spectral parameter ( %, 0) and of K -type

(1, q)-

From the Fourier expansion of E,(s,p,(,q; g), one gets

7w  D(+2/3)0(1/3)
Vol(A,) T(I +4/3)T(2/3) "

0o ((1,q).7""g) = 0, (7,0) ¢1,4(—=1/3,0)(9)

1
R , 2, P 7 Amal1/3,0)6)

where
po, (T.m) = Res,y 3 (Yor(5.m,0) ).

We refer to Section[3.1.2] of Chapter[3|for more details on the function p.

Let L2 (I'\G, k) be the space generated by the theta series 6, ((l,q),g), forl € N, q € Z,
|| < 1and 0~!(c0) an essential cusp of I'.

Theorem 2.2. Let L>%5¢ (T\G, k) be the direct sum of the invariant irreducible subspaces of
L2 (T\G, k). Then L2%5¢(T\G, k) is the direct sum of L>™ (T'\G, k) and L>***? (I'\G, ), and
we have

L2 (T\G, k) = L™ (I\G, k) ® L>P (I\G, k) @ L>°" (I\G, k) . (2.1.12)
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2.1 Metaplectic forms on SLs (Z[w])

2.1.3 Poincaré series

Let us define C*° (N\G,m) as the set of smooth functions on G such that f(ng) = xm(n) f(9)
for any n € N. This kind of functions will be used as generating function for the Poincaré series.
All results of this section are classical, and are proved in Section 2 for the case SLa(R). Therefore
we refer to the literature for the proofs.

The following two growth conditions for a function f on G will be useful in the sequel:

(©) {f(nak:) < vltoo, as v tends to 0, for some o9 > 0

f(nak) < v1=9<_  aswv tends to oo, for some ooy > 0

Poincaré series can be defined for any cusp, essential or not, but for simplicity, we shall work only
with essential cusp.

Definition 2.4. Let o € SLo(R) such that 0~'(00) is an essential cusp of T'. Let m € A} — {0}
and f € C*° (N\G,m). The Poincaré series generated by f is

Pi(o,9) = Y F(Y) flov9).
~vyel\I'

For example, we can take for f(g) the function

fm(g) = fm(n[z]a[v]k) = Xm(n) exp(—dm[m|v) v°.
In this case, we find the Poincaré series used in [31]; it is defined for R(s) > 2 and decreases

exponentially at 0.

Definition 2.5. Let 07!, 77! € SLy (Z[w]) and let m € A} and n € A). Then we define the
Kloosterman sum at ¢ € Z|w] — {0} by

Kostmme)— 3 %(7)e<ma(0771)+nd(0'yr1)>'

C
YELG\T'/T'r
c(oyr—1)=c

This definition is equivalent to

K, (m,n,c) = Z R (a_l (CCL Z) 7‘> e (maz—nd) : (2.1.13)

a(Ag),d(Ar)
0*1(2 :;)TEF

The Kloosterman sums satisfy the Weil upper bound

| Koz (m, n,c)| < 27N (ged(m, n, ¢)) N(c)'/?,
where v(c) is the number of prime divisors of c. (See [31], Prop. 5.1)
Proposition 2.3. Let 0~ (00) be an essential cusp of T, m € Al — {0}, and f € C* (N\G,m)

verifying the conditions (C) for some oo > 1. Then Py (o, g) belongs to L>(I'\G, ). The Fourier
expansion of P(c, g) at an essential cusp 7~ (00) is given by

Pi(o,77'g) = Y Fro(rn)(g),

neAl

where
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2.1 Metaplectic forms on SLs (Z[w])

Ff,U(Tu n)(g) = 50,7’ 5m,n f(g) + A(T)_l Z Ka,‘r(m’ n,c) Anll/cf(g)v
c#0

with the operator A, defined as in Section2.1.1| and where . is the operator defined on f by
lef(g9) = f(hlclg)-

Proof. See [31]] Proposition 4.2 for the case of trivial K-type and [[13]] (7.16) for the general
case, under the conditions 0 = 7 = Id. We adapt these proofs to our situation by doing simple
changes. O

Proposition 2.4. Let f,m,o as in Proposition Assume moreover that f is of type (1, q). If
¢ € C= (I'\G,1,q) is such that g — Py (o, g) $(g) is integrable on I'\G, then

(Pp(a,-),¢()rva = Alo) (f(), Fs(o,m) () ma

where ¢(g) has the Fourier expansion at o~ (00)

d(olg) = Y Fylo,m)(g).

meA)

Proof. 1t is again a classical result. See [[13]] Lemma 7.3.1, for the case ¢ = Id. The adaptation to
our situation is again easy to handle. O

Corollary 2.1.

(Pr(-50), Pf’('ﬂ 7)) = o7 Omn A(T) (f, f/>N\G + ZKU,T(m,n, c) <Anll/cfa f,>N\G’
c#0
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2.2 Summation formulae of Kuznetsov type

2.2 Summation formulae of Kuznetsov type

In this section we come back to the case G = SLy(C). We introduce two formulae, the so called
Kuznetsov type formulae, which give relations between Kloosterman sums and the spectrum of
the metaplectic group. They originated in the context of SLo(Z), in the work of Kuznetsov [26]],
and were generalized in [36] to any discrete subgroup of SLa(R).

For an imaginary quadratic field &, analogue formulae can be derived. Although the line of
thought for the case SLy (k) follows the same steps as in the real case, the ingredients needed here
are more sophisticated; they are mostly taken from a recent article of Bruggeman and Motohashi
([4]) which is itself the result of a series of works developed along the last twenty years by Brugge-
man, Goodman, Miatello, Motohashi, Pacharoni and Wallach. The results in [4] are proved for the
field & = Q(7), but a generalization to any imaginary quadratic field is clearly possible; this has
been recently done in [13]] and we refer to it every time it is needed.

In Section[2.2.1| we shall define an analogue of the Lebedev transform, having A, ¢; 4(s, p)
as kernel; the expected properties are then derived, and we obtain a first sum formula, with the
test function on the spectral side. This formula will be called spectral sum formula, and the
Kloosterman sum formula (see Section[2.2.3]) will refer to a sum formula where the test function is
on the geometric side, where Kloosterman sums occur. We insert in Section[2.2.2]some estimations
on the exceptional and non-exceptional spectrum of the metaplectic group.

2.2.1 Lebedev transform and the spectral sum formula

In this paragraph I" will be any subgroup of I']" containing —/d; our reason will become clear
in Remark2.2] For m € Z[w] — {0}, define P, (N\G,m) as the subset of C*° (N\G,m), of
functions satisfying the condition (C') (see p. [54) and which are of type ([, ¢). The goal is to seek
some nice elements of P, , (N\G,m) to generate Poincaré series.

For o > 0 and [ € N, define 7 as the set of functions 7 which are defined on {|R(s)| < o} x
{—1 < p <1} C C x Z and which satisfy the conditions

(i) n(-,p) is holomorphic in some neighborhood of the strip |R(s)| < o,

Wl

(i) n(s,p) < e~ 218G (14 |S(s)|)~ forall a > 0,
(111) 77(3713) - 77(_3, _p)
The aim now is to construct an analogue M of the classical Lebedev transform, such that

M ﬂﬁpl,q(N\Gﬂn)'

Definition 2.6. Let 1 < 0, m € Z[w] and l, q a K-type. The transform M, from T! to the space
of functions on G, is defined for the element 1 € ’]?,l by

1 —i)P i
Mian(9) = 5— M / n(s,p) 27[m|) S T(1+145) Amprg(s,p)(g) s sinws ds,
q 24T i< U ||d)p7q||K (0)

with €(0) = 1 and e(p) = —1 if p # 0.
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2.2 Summation formulae of Kuznetsov type

All expected properties of /\/l}"q hold; in particular there exist some kind of inverse operator £{’”§1
such that:

L+ Prg (N\G,m) — {functions on C x Z}.

Definition 2.7. Let f € P, , (N\G,m), and let cg > 0 be the parameter controlling its growth at
0 (see the condition (C') p. . The transform Lj, f of f is defined as the function on {|R(s)| <
oo} X {p € Z, |p| <1} given by

o) = S B iy v 1 -9) [ 10) T T s

Theorem 2.3. Let m, 1, q be as above.

(i) Letn € T}. Then MTyn belongs to P4 (N\G,m) and, for any 0 < o < 1, we have in the
strip |R(s)| < o that

9 gem+1 !

Ly My (s,p) = P (7% — s*) n(s,p).
j=1

(ii) Letn,6 € T with some 1 < o < 3. Then

. . 1 _ g2e(p)+1 L P
<Ml,qnaMl,q9>N\G - 34 E /(0) 77(&?) 9(3717) pg _ 2 H(j - ) ds.
IpI<l J=1

This is Theorem 7.1 and Lemma 7.1 of [4], generalized by Theorem 9.1.4 and Lemma 9.1.5 of [13].

We come now to the kernel of the Bessel transform. For it, we need to define a new Bessel
function as product of two classical Bessel functions.

Definition 2.8. Define

js,p(z) = Jsfp(z) Js+p(§)

e () (=)™ (2/2)"" (2/2)™"
2 |2| ymin!T(s—p+m+1)T(s+p+n+1)
and
Kop() = (T s 5(2) ~ Topl2)).

Letm,n,c € C. Toanyn € 7:,1 we associate the function k(m,n, c)n defined by
k(m,n,c)n: (v,p) — Ky p(dme/mn) n(v, p). (2.2.1)
Because Js 5 (2) = J—s,—p(2) When s, p € Z, KCs ,(2) is holomorphic as function of s.
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2.2 Summation formulae of Kuznetsov type

Lemma 2.2. Let m,n,c € Zw), let (1,q) be a K-type, and let ¢ > 1. Then, for any n € T, the
following equality between functions on G holds:

ApleM'yn = e M s(myn,e)n.
This is Lemma 7.2 of [4], and Lemma 9.1.8 of [13]].

The proofs of the above results actually use the explicit generator of the subspace VVZ " P(s,p,m)
of Wi 4(s,p, m) con31st1ng in functions which are of exponential growth. We saw in Sectlon-

that its complement, W} p (s, p,m) is generated by A, 4(s,p). The Goodman-Wallch opera-

tor By, is defined in Section6 of [4]; it generates Wy ;" (s, p,m). We shall not go into details
here, nevertheless, one shows that A,,,¢; 4(s, p) is expressed as combination of B,,,¢; 4(s,p) and
Bniq(—s, —p); this is (6.15) of [4], from which one obtains the following formula, valid for
a>0:

Minto) = = 57 CRRED [ ) o) T+ 1-4-) B )o) s

\p|<l H(I)p,qHK
+ B(1) Bmpr(1,0)(g) + O (v°) .

The Goodman-Wallach operator satisfies the property

BmSDZ,q(S,p) (9) < pl TR ) if g = nafvlk,

and we obtain the estimate

Mn(g) = O (v + 0% +0°).

Comparing with the condition (C) p. [54} one sees that, as v — 0, the term B,,,¢0; 4(1, 0)(g) causes
problem with convergence. The key is to introduce a smooth function with compact support p,
wich shifts the convergence issue to p(g)Bm i 4(s,0)(g), whose properties are then

(@) (vl+§R(s)) r—0,
P(9)Bmpiq(s,0)(g) =

0 r — 00.

For R(s) > 1, the condition (C') is satisfied, and the associated Poincaré series Ppgqu(s,p) (9) €

L2 (T\G, k). Then, one has to make use of analytic continuation of this Poincaré series, as function
of s, to the entire plane, with poles at spectral parameters. In our case, no poles occur in |1/3, 1];
this is a consequence of the cubic Shimura correspondence (see Section[2.4)). The next result is to
prove that the Poincaré series are square-integrable function, in our case until %(s) > 1/3. This
gives sense to B} 1 4(1,0)(g), and thereby to the Poincaré series Ppagn y: all details can be found
in [[13]], Section 9 2 Taking these considerations into account, one proves the expected formula:

(Pr(-,0),0(:)) = Alo) (f(-), Fg(m, -, 0))nc- (2.2.2)

We now come to the spectral sum formula. Let us define the Bessel transform which will
appear in the next theorem:

Definition 2.9. Let H,, be the set of functions defined on {s € C : |R(s)| < a} X Z such that
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2.2 Summation formulae of Kuznetsov type

(i) h(s,p) = h(=s,=p),
(ii) h is holomorphic on |R(s)| < o,

(iii) h(s,p) < (14 [s])~ (1 + |p|)~°, for some A,b > 0.

Let a €)%, 1] and let h € H,. Define Bh on C by

1
Bh(z) = i Ks.p(2) h(s,p) (p* — 5%) ds.
e (m
pEZ

This converges absolutely for a > 2 and b > 3.

The spectral sum formula is a statement independent of the K -type ([, q), that we had to carry
until now. Recall that I';” was defined in (2.1.4).

Theorem 2.4. Let o E]%, 1[ and let h € H,, witha > 2 and b > 3. Let I a subgroup of T'], and
assume that —Id € T. Let m,n € Z|w]. Then,

Z m”03h<w> Sor ng/ ) (p? — ) ds

c#0 PEZ

= ZZﬁf(a,m)pf(T,n)h Z Z/ Vo,0:(8, M, D) Yr o, (5,m, D) (5, p) ds,

(s;p) f UZEC(F) peEZ

where the first sum in the right side is taken over the spectral parameters (s,p), and for a given
(s,p), the sum over f is taken over an orthonormal basis of the proper subspace of L2 (I'\SLy(C), k)
corresponding to the spectral parameter (s,p). The sum over the o;’s, means the sum over all es-
sential cusps of the group T'.

Proof. The proof goes in two steps. The first version of the spectral sum formula is obtained in
a classical way, by computing the scalar product of two Poincaré series in two different manners.
The generating functions of these Poincaré series are Lebedev transforms Mﬁn. To obtain the
final version, a further step is required, namely an extension method.

In order to prove a first version of the theorem, we have to introduce the following function:

.
M(s,p) =TI +1+s)T(I+1—s) (?2“_(25))2 §26(P), (2.2.3)

Let h € H,. The case where h is of the form h = 16 ); for some 7,6 € 7! is obtained by the

usual methods above, using the formula (2.2.2)). The Fourier expansion of the Poincaré series and
the above properties allow us to evaluate the product of two Poincaré series.
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2.2 Summation formulae of Kuznetsov type

<PM"’I7<'7 7—)7 P./Vl'”@(‘a U)> = <Mn777 FPMmg(-,U) (Tl, K T)>

= Z KO’J’(ma n, C) <Mn77? Angl/cMm9>

= ZK(,’T(m,n,c) ‘%‘2 (M, M"Kk(n,m,1/c)d)

_7722 O—T;TQnCZ/ n(s,p) Kk nml/c)spp_SQHj—s

Ip| <l j=1
Tmnc 47r _
_722 2 MQ Z/ Sp ) (SP)QSP 32 HJ —5?
Ip| <l

Let us carry out the same scalar product, using the spectral decomposition. The formula (2.2.2)
gives, for a function f of type ([, ¢) with spectral parameter (s, p)

(Prng (7). f) = M™n, pr(n, 7)) ma
= Pf(n)<Mn77= Antpl,qm\g by Proposition[2.2]

KA

— N7t N LA Definiti
F(l+1+§)’0f(n)£ M"n by De nltlon@]

—_— _, sin7s
= ||<I>fJHKaT( )T(l+1-75) fp?n by Theorem[2.3]

Multiplying by the conjugate, we get

(Prtnn (1), ) {fs Pramo(-5 0)) =

12[1*ps (n, T)ps(m, )T (1 +1 = 5)T(l + 1~ 5)

SlIl2 TS —

(32 - p)2n9

We then do the same with Eisenstein series, and replace, for principal series and for the con-
tinuous spectrum, (s € iIR) 'l +1—-35)T'(l+1—s)by 'l + 1+ s)I'(l + 1 — s), and for the
complementary series, I'(I +1 —3)T'(I +1 — s) by ['(I + 1 — s)2. This closes the first case, and
it remains to show that the theorem is true for any function / as specified.

We finish the proof using an extension method; it consists in proving Theorem[2.4] for any
h € H,, from functions of the shape h = (s, p) (s, p) Ai(s, p) for which the theorem has been
already proved. One shows that under some convergence hypothesis, if the Theorem is true for
for a sequence f,, of functions which converges to f, then the theorem is valid for the function f.
Then, one defines
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2.2 Summation formulae of Kuznetsov type

Ai(s,p) ifn <l
0 ifn>1

An(s,p)7" f(s,p)es/™ if[p| < n
Nn(s,p) = (5:2)7" f(5.7) . i
0 if [p| >n

2
e/ if |pl < n
Qn(s,p) = . ’ |
0 if [p| > b
Let f, = n, 0, A,; then the sequence {fn} tends to f and the theorem is true for each f,,. This
finishes the proof of Theorem[2.4] O

Remark 2.2. The reason why we set the condition —Id &€ T is that otherwise we have to deal with
K-types with | odd. This implies also p odd, and in this case one actually shows that the function
(s, p) is given by

sin” T('(S - p) 2¢(p)

(s2 — p?)2
This corresponds to our definition of \((s, p) for p even, but causes the apparition of a pole of the
function A for p odd. This has then to be corrected by adding a complementary condition on
the zeros of h. Nevertheless, Theorem is valid, but with the extra condition that h has a double
zero at :l:%.

Xi(s,p) =T(1+1+s)T'(l+1-5)

2.2.2 On the spectrum of the metaplectic group

In this section, we derive from the spectral sum formula some consequences on the spectrum of
L2 (T'\SLz(C), %). This is done by choosing a suitable function / in Theorem[2.4]of Section[2.2.1]
and by estimating the J-term and the Kloosterman term. The first one will be evaluated directly,
and the second one will be estimated through the Weil upper bound. In order to have an explicit
result, one has to come back to the arithmetical setting, i.e. to fix the group I' and the two cusps
o071(00) and 771(00). Let d € Z[w] be coprime with 3. Then we choose d primary, i.e. d = 1
(mod 3); according to this, we shall work with the group

I'y= <F1, —Id> N Fo(d)
(2.2.4)
={y € SLy (Z[w]) : y==+Id (mod 3), andc(y) =0 (mod d)}.

Ford = 1 ord = 2, T'; is not equal to the group defined in (2Z.1.3) and (2.1.2)) of Section[2.1] but
this should not cause confusion.

We shall also work with the matrices

1 (10 1 (d—=1 d-2
o _<O 1) and T —< d d—1)" (2.2.5)

We remark that for any primary d, 0! (oc0) and 77! (00) are not I'g-equivalent essential cusps of
T,
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2.2 Summation formulae of Kuznetsov type

Lemma 2.3. With the notations of (2.2.4) and (2.2.4)), the geometric Kloosterman sums defined in
Definition|2.5] of Section verify

Ks(m,n,c) ifc==+1 (mod3)andc=0 (mod d),
(1) K, (m,n,c) =

0 otherwise,
(i7) Ko o(m,n,c) = K;(m,n,c) =0 if cis not divisible by d.

Proof. We use the formula (2.1.13). We have A, = A, = 3Z|w]. Then,

a x\ (D-1 2—-D ma + nd
Korlmme)= 3, ¥ <<c d) ( -D D~ 1>> ‘ <c> |
a(ci’)cl,d(?:c)
(c d)TEF
With our choice of I, the condition (¢ })7 € 'means ¢ = d = 0 (mod 3), ¢ = £1 (mod 3)
and ¢ = 0 (mod D). Then, from the definition of x on I'y, one knows that x(7y) = x(v'7), for all

v € I'y,7" € SLa(Z); using this, one shows that

_f(fa * D-1 2-D B (g)
w c d -D D-1 T \ehl
This proves (). The proof of (i7) is similar. O

Let (07 %(c0), 771(c0)) be a couple of essential cusps of I'y, and let m and n be some fixed

integers in Z|w| — {0}. Define, for d € Z|w] and for a spectral parameter (s,p) € C x Z,
A o o(dis,p) = > pulm, o) puln, 7), (2.2.6)
UEBd(S,p)

where By(s, p) is an orthonormal basis of the intersection of L2 (I'y\G, ) with the eigenspace of
A of spectral parameter (s, p); similarly, define then for (s, p) € iR X Z,

A (dys,p) = > Y5 (m,s,p) T (n, s, p). 2.2.7)
a,GC(Fd)

Proposition 2.5. Let d € SLy (Z[w)]) be a primary integer. Let 0—' be one of the two matrices

defined in (2.2.5)). Then,
(i) Let a > 2 and b > 2. Then, for X < 1,

> Adse  (dys,p) (1+[s) ™ (14 |p|)~ +Z/ AgSe o o (dys,p) (14 [s)) ™ (1+ [p]) " ds < 1.

(s,p)
s€iR

(ii) Let S be a subset of the exceptional spectrum of A in L? (T'\G, k). Then, for x > 1/2,

Y A 0o (dsp, p) N(@) < N(d)* ! 7(d) log* (W (d)).

SjES
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2.2 Summation formulae of Kuznetsov type

Proof. For (i), we apply Theorem[2.4] with the special choice

h(s,p) = (L+s)) ™ (1 + |p]) ™"
Theorem[2.4] gives

ZAfifinm d,s,p)(L+[s) ™ (L4 p) "+ 5= > (1 +p|) / A oo (dys,p) (14 |s]) " ds
pGZ

(m,m,c 4mm
Z/ sppfs ds+2 Bh(c>.

pEZL c#0

Evaluation of the first integral:

t2
Z/ (s,p) (p —s)ds—2(1+|p|)b/ s dt <1, ifa>4andb > 3.
0

PEZL pEZ (1 + )

Evaluation of the Kloosterman term: We begin by the transform BA(z). Recall that, by definition
of Bh and KC; p(2),

= 5 3 Kol hs.p) 0 = %) s
2 .2

= 12/ Tsp(2) h(s,p)wd&
e peZ (O) SIN 7S

There is a pole at 0 for p # 0, and by the residue theorem we have, for % <o <1,

MZ/ Tsp(z )(:Hms)ds + 7219 Jop(2) h(0, p).

p=0 p>1
(We have used the fact that h(s,p) = h(s,—p).) We are working with z belonging to some

. . . R(s) . . .
compact, in which case the estimate J4(z) < ﬁ (%) is valid. For the residue term, this
leads to

2p
P> Jop(z) (1 +p) " < p* (14p)~" (‘Z(‘p/jg,

and by Stirling’s formula we obtain

2 2 n(0 1 b (lz]e i
2SR asno.n < Lpa+n (57

p>1 p#0

For the integral over (o), the same estimate as above leads to Js ,(2) < |2/ 2/ (s + p+
1)7'T'(s—p+1)~!, which is equal to \2/2]2‘%(5 L(s+p+1)~t (—7) tsin(n(s —p)) T(p—s).
Thus we obtain
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2.2 Summation formulae of Kuznetsov type

Jsn(2) am(s) |L(p—s)| om(s) (=) J — sl
2 _ 2
sin s <=2 IC(s+p+1)| ==/ IT(s )|\s+p|H|]+s|
R(—s) 2R(s)
< |z/2R® (sl/e) 12/] , by Stirling’s formula, for $(s) > 0

s+l (Isl/e)™ s +p]
Using this estimate in the above integral gives
’|

(82 —p2) / \z’QU " X ’82 p
S 9 - . 1 1 -,
j’p(z) h(s p) " ds < - |2U ( + |8|) ( +p) ]s | ds

(o)

< (1 +p)b]z\2"/ (14 js)a L2 40

o |57

Since we assumed 1 — 20 < 0, we have (|s| + p) |s| 72 < 0727(0 + p); the remaining integral
converges because a > 1 and finally, combining this estimation with the one on the residue term,
we obtain

)<Y 1+p)~" (E‘) v (c+p)+> pA+p)° (’;;)2]3

p=0 p>1
2 1-b 2 10 [ 12] € 2p-1)
<27 (14+p) P+ 2P 1+ )t <2> < N(z), forb>3.
p>0 p>1 p

The Kloosterman term can now be estimated, using Weil’s upper bound. From Lemma[2.3] the ¢’s
have to be divisible by d. Then,

R ()« Bl

¢=0(d)

< D NN ()N ()™ < N(m) N (d) 32T,

c¢=0(d)

This proves (i). We now come to the exceptional spectrum. Note that we do not use any result as
the Selberg estimate.

For (ii), we use again Theorem[2.4]and choose, for some L > 0,

sin(—iLs) _
h(s,p) = ( Ls ) p=0 (2.2.8)
0 p#0

As in the proof of (i), we obtain an upper estimate, dealing with the two terms separately.
Evaluation of the 6-term: It contributes in
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2.2 Summation formulae of Kuznetsov type

/ h(s O)SQdS:/OO sin(Lt) 4t2dt

=L / sin® (L)t 2dt = O (L7%).
0

Evaluation of the Kloosterman term: We start as before, but because p = 0, there is no residue of
Js p(2), thus

/ Tso(z ) ( )Sds<<\z]2" 2"/ h(s,0)ds,
(o)

and we obtain

* /sin(—iL(o +1 4
Bh(z)<<\z\2‘7012"/0 ( (L(fi;r) t”) dt.

We use the following upper bound

1 A .
|Sin(—iL(0’—|—’it))| _ |§ (eL(U+Zt) _ e—L(U+Zt)> | < elo + e~ Lo < Lo
(4

to get

00 in(—ilL it 4 00 4Lo 4Lo
/ sin(~i (U+Z)) dt <</ 1 62 22dlf<<e4 3
0 L(o + it) o L*(o%+t?) Lio

Using the Weil bound, one obtains the upper bound

4Lo
ZA%S%JJ (d,s,p) h(s,p) < L3 + Z MN(m)aN—(C)—J gl—20 64 .
(s,p) =0 (d) N(C) Lo
7 c#0
e4LU
< L3+ iz N(m)°® Z () N (e)~ /27,
c¢=0 (d)
c#0

We estimate the last sum by

Y TNV L (N @)Y () N(e) P

c=0 (d) c
c#0
2
=N @0 (540 ) < TN @ (0= 1)

and we finally get
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2.2 Summation formulae of Kuznetsov type

4Lo 1 -2
5 Ao p) Hssp) < 172 L N ) e M@ (o 1)
(s,p)
We look now at a lower estimate; this is simply
Y Aeo(d s, p) h(s,p) > LY AR, o (d,s.p) et
(s:p) 8j
Bringing together the lower estimate and the upper estimate gives
: 1
> oAl o(dys,p) et < L+ e 0N (m)7 r(d) N (d) T2 (o - 5)—2.

Sj

Choose now o = 1 + log™ (V(d)); this gives
ZA?,‘:ﬁnw (d,s,p) et < L + *F N(m)'/2 2/ 108N (D) () N/ (d) ! log?(N(d)).

If L =4+ xlog(N(d)), z > 1/2, one gets

Yo Ance(d s, p) N(@) < N(m) 2N (@)* ! 7(d) log? (N (d)).

s;€]0,1/3[

This proves assertion (ii) of the proposition.

2.2.3 Bessel transform and the Kloosterman sum formula

In this section we give the Kloosterman sum formula, that is, we invert the transform B of Theo-
rem[2.4) by a transform T called inverse Bessel transform. We then study some properties of this
new Bessel transform T that will be needed later on, in Chapter[d}

One obtains the Kloosterman sum formula by inverting the Bessel transform B on one side;
actually B is not two-sided invertible. (See [13]], p. 140)

Theorem 2.5. Let the transform K be defined by

(s,p) / Ksp(u) f(w) [u| =2 du.
Then, for any compactly supported function f on C*, Kf € Hqa, o > 1, and
2t BKf = f.
Moreover, the delta-term built up on K f vanishes, see Proposition 12.3.1 of [13]].

As a consequence, substituting » by Kf in Theorem[2.4] gives us the following result:
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2.2 Summation formulae of Kuznetsov type

Theorem 2.6. Let T' be a subgroup of T'| containing —Id. Let 0~'(0c0) and 771 (c0) be two

(
essential cusps of I and 0 # m,n € Ay, A; respectively. Let f € C2°(C*). Then

Z mncf(47r\£rﬁ):

disc - cont
ZAanTdsp)Kfsp +2m Z Z AanT (d,s,p)Kf(s,p)ds.
(»,s) 0,€C(T") pEZ

This is the final step which enabled Bruggeman and Motohashi to get their result on the fourth
moment of the Dedekind zeta function. For our purpose, we shall need to estimate this transform;
we possess an integral representation of the Bessel function I, ,,(z) given in the formula (12.1) of

(4]

i O\ — 2p
) 0o B yezﬂ (yeze) 1 . o
s = (-1)P - 2s—1 - - J 0 4 =11 g 2.2.
Ksp(z) = (-1) /0 Y <|yeze + (yele)*1| 2p (r lye (ye™) \) y, (2.2.9)

where we write z = re?. The estimation at infinity Jo(z) < z~/2 implies that this formula
is valid for any complex number s with |R(s)| < 1, and by the cubic Shimura correspondence,
we know that, except for the theta term corresponding to the spectral parameter (%, 0), any other
exceptional parameter satisfies s < %.
Suppose that f satisfies
a+b f

96 Hra (Teie) < flloo ™ (2.2.10)

Proposition 2.6. Ler X < 1. Let f be a compactly supported function with support [a X, 3X]
and assume f satisfies (2.2.10).

(i) Let a > 2,b > 2 be some given positive integers and let sy > 0. Then for (s,p) € iR x Z
or (s,p) € [0,1] x {0} with s > sg, we have

Kf(s,p) < || flloo X™) (14 |s) ™ (1 + |p])

(ii) Forany (0 < s < 1/4,
Kf(s,0) < || flloc X

Proof. For the proof of (i) we start with the expression of J5(z) as entire series.

i <||> Tle) =[] (H) Ts-pl(2) Toip(2)

_ (=22/4)™ (=7%/4)
N Z mn!T(s—p+m+1)T(s+p+n+1)

m,n =0
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2.2 Summation formulae of Kuznetsov type

We assume R(s) > 0. Then,

dz
en = [ 16T

Jox $G) 51 (i)™ =2 2

_m%;O mn!T(s—p+m+ 1) (s+p+n+1)

s+m+n z —2p=mtn) z
4~ (s+m-n) (—1)ptmtn f(CX f(2) |z’2( +m+n) (m) dz

=2 TG
m,n>0 m!n!T(s—p+m+ 1T (s+p+n+1)
Z 4—(s+m+n) (_1)p+m+nMcf(S+m+n,p—m—|—n)

2.2.11
m!n!T(s—p+m+1)I'(s+p+n+1) ( )

m,n>0

where M. f is the complex Mellin transform of f, defined by
Mef(s.0) = [ £ (/) o]

It is related to the classical Mellin transform M by

2
Mef(s,p) = 20 M,(25), whete fy(r) = - [ 1 (re") 2% ao.
T Jo

Assume now that f is radial; then f,(r) = dp—0 f(r). We need an estimate on the Mellin
transform; we have, for a,b > 1,

- 0o s—1+a
B s—1 _(_1\a (a) "
_/0 f(r)r*="dr = (-1) /0 f (T)s...(s—l-Fa)dr

VAX
< oot / Pl dr <o [fllse e XRC)/2,
A 1sDe Jyax ’ )l

Here we defined the product s, of a terms by s, = s(s+1) ... (s+a — 1), fora > 1. Inserting
this estimate in (2.2.11)) with f radial gives, because of the supplementary condition p—m+n = 0,
the estimate for Jf (s, p)

QWZ ~(sHPH20) AL £(2(s + [p| + 2n))
\PHH 'Il(s+n+1)T(s+|p|+n+1)

n=0

< Ifl (X)%”"’ (X?/16)" T(s + n+ )7 T(s + [pl + 0+ 1)~
oo \ =~ (Ip| + n)'nl|(2(s + [p| + 2n))a|

(2.2.12)

We can conclude the proof of (i) in the case when |s| is big, i.e. when s = it for ¢ big. In this case,
the Stirling formula gives

s +n+1)T(s+pl +n+1) = ()nt1T(s) (8) pln+1 ()

(s) 1H \WS
. > s (14 1)* W FeT s (14 )2 e,
—s) sin(ms) s ‘

= (S)nJrl (S)\pl—i-n-‘rl SF(
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2.2 Summation formulae of Kuznetsov type

and the sum in (2.2.12) is estimated by

el el

SPa+ee S Aphra+e

Z (X2/16)n eﬂ'ltl
< [p|tn! (1 + )2nFlPHL (1 4 J¢])e

In the case when |s| is small, the term corresponding to n = 0 in the sum (2.2.12) has a pole at
s = 0if p = 0. Assuming p # 0, we can still bring out from the sum

P (s + [pl +2n)a) " < (L+ )P L+ s)) ™ < 1+ [p) 70 (1 + |s])~ e,

We have then proved (i) except in the case p = 0 and |s| small; we shall now prove it, together
with (ii), using the formula (2.2.9) on the function KC; ,(2).
Proof of (ii) and the remaining case of (i). The integral formula for /s ,,(z) gives

K760 = [ Kool 1) 1),

[

27 10
/ / 25— 1/ JO( |y619 4 (yei€)71|) f(T@ ) dr d@dy
0 r

On the one hand, the estimation Jy(z) < 1, for z < 1, gives

oo ’ oy re VBX gy
| utrlue® + e 10 G oo [ s Il
0 T \/7 '

aX

On the other hand, a better estimate can be derived from the integral representation of the classical
Bessel function

Jo(z) = 2 /Uoo sin(z ch(t)) dt,

s

which leads us to

[ et ey =2 i (e + 060 enty) L0 drar

0
_2/ / cos (r |ye” + (ye') "' ch(t)) <f(7'ei9>)/drdt

lye? + (yei?)=1| ch(t) r

= : Of (. ioy,—1 . i0 i0\—1
2 e o (Beer s £ o (e + ety ent)) ar

< I/l /OO ! Fl
“Jo o lye? + (ye?) 7 chft) F r?

—dr| dt

fllo 1 At , HfHooX’l/?
VX |ye? + (ye?)7t Jo ch(®) T |y —yl

Inserting both estimates in the integral representation of Kf (s, 0) above, one obtains

00 o 1 ] X—1/2
Kf(s,0) <ap || flloo / Y min | 1, ———— | dy.
0 ly —y~1

<La,8
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2.2 Summation formulae of Kuznetsov type

In the interval [1/2, 3/2], if we assume X < 4,9, one verifies that X ~1/2|y~1 —y|~! > 1. On
[0,1/2] and [3/2, co[, we have that min (1, %) is bounded respectively by min (1, X—1/2y)
and min (1, X ~%/2y~1). Finally,

K 1/2 3/2 oo
f(s,0) Cas / 2> U min(1, y X~ Y2)dy +/ 25 ldy +/ 21 min(1, X~ Y2y~ L) dy
[l flloo 0 1/2 3/2

VX 1/2 X—1/2 oo
— X—1/2 / yQS dy + / y2s—1 dy + 0(1) + / y25—1 dy + X—1/2 / y28—2 dy
0 VX 3/2 X-1/2

Kap XPHO0(1)+X7° Ko X%, as X KL

We observe that this proves (ii) and this proves also Kf(s,0) < || f||c for s = it; for ¢ small, this
is in agreement with (i), what was the remaining case to be proved. O
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2.3 Metaplectic group and metaplectic representations

In this section and in the next one, we shall replace the theory of metaplectic forms in the setting
of representation theory, where most of the general results have been put forward (see [20]]). In
this section and in Section[2.4] we shall use the notation G = GLs.

2.3.1 Kubota symbol and metaplectic group

We start by recalling the process of adelization of an automorphic form f on a number field k. Let
k., be the local field associated to k at the place v, and R, be its ring of integers. For each place v,
we have a maximal compact subgroup K, of G(R,). Let ky be the global field.

In the classical theory of automorphic forms, we usually use the fact that

To(N) = GLa(k) N GLa(koo) ™ H KN

what, according to the strong multiplicity principle, leads us to automorphic forms on G(kp).
One of the most important facts related to metaplectic forms is that the kernel of the Kubota sym-
bol does not contain a congruence subgroup (see [22]). This is due to the fact that the Legendre
symbol can always be interpreted as the character of a cubic extension of the number field k.
A more precise statement concerning the kernel of the Kubota symbol will be given in Proposi-
tion[2.7] Consequently, it is no more expected to translate metaplectic forms as representation of
the adelic group GL2 (ks ) and we shall have to deal with automorphic forms on a covering group
of GLy(ka); this covering group will be defined by a cocycle suitable for our arithmetical situ-
ation. This explains, through the theory of automorphic forms, why the existence of a covering
group is linked with the existence of a non congruence subgroup.

A general construction for the 2-cocycle mentioned above is done in [20], in the case of the
n-fold covering of GL(r). For r = 2, one obtains the cocycle described earlier by Kubota in [24].
Let v be a place of k. One needs the Hilbert symbol (-, -), : k, X k, — u3(C), whose properties
are:

i) (a,bb), = (a,b)y (a,b), et (ad’,b)y, = (a,b), (a’,b)y
(ii)
(iif)

(iv) (a,a)y =

a,b)y (bya), =1
a,—1), =

(
(
(
(

Similarly as in Chapterp. we define for g = (2 %) € GLa(k,), the number z(g) by z(g) = ¢
ifc#0and z(g) = dif c = 0. Let g, h € GLy(k,); the cocycle is now explicitly given by

o= (S50 ()

(9)
Now, related to the Kubota symbol x we define

d . a b
Ko(g) = (Ca W)v’ ifg= <c d> . (2.3.2)

Then outside the place A, the cocycle a splits over K, i.e. for g1, go € K,, one has

ay (g1, 92) = k(1) Ku(g2) Fo(g192) " (2.3.3)
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2.3 Metaplectic group and metaplectic representations

Actually, this formula holds for any place, under some more restrictive conditions (See [24]). In
the general case, it holds at least for g1, g2 € K, such that g; = 1 (mod n?)}. In the cubic case,
we can even reduce the condition to g; = 1 (mod 3); see Theorem 2 of [24].

We define a new cocycle b locally by

bv : GLQ(I%) X GLQ(kU) — C
(2.3.4)
(91, 92) = by(g1, 92) = av(g1, 92)ku(g1) " kul(g2) ™" kul(g192),

and globally by

bA : GLQ(kA) X GLQ(kA) — C

(2.3.5)
(gla 92) = H by (91,1;,92,1;) .

v

Formula (2.3.3) can be reformulated as

by(g1,92) =1 for almost all v ,

so that the global object bs (g1, g2) has a well-defined meaning. This leads us to the notion of
metaplectic group, as it was defined by Kubota. In order to simplify notations, we fix an isomor-
phism e from p3(k,) into C, which allows us to identify u3(k,) with its image in C; let us denote
these groups by 3.

Definition 2.10. The local metaplectic group is a topological central extension

1 —> pg —> GLo(ky) — GLa(ky) — 1,

with the law of multiplication for two elements (g,&) and (¢', &) Ofér\L/Q(k?v) given by

(9.6 (d',€) = (99',6& bu(9,9")) -

The global metaplectic group is a topological central extension
1 — p3 — GLy(ky) — GLy(ks) — 1,

with the law of multiplication for two elements (g,€) and (¢', &) of(/}\fg(kA) given by

(9,6 (9".€") = (99", €€ balg. ) -
We call (/}i/g(k‘v) and GAL/Q(kA) the local and global metaplectic group of order 3, respectively.

As maximal compact subgroup of GLa(k,), we choose K, = GLy(R,) if |3], = 1. A spe-
cial choice has to be made in the case |3|, < 1; one choose K3 = {g € GL2(Ry) : g = Id
(mod 3)}. For the infinite place v, we choose K, = SU(2). Then GLa(ky) is the group of ele-
ments in the direct product of all the GL2(k,) whose components are in K, for almost all places
v of k. Firstly, the compact group K = [], K, and the group GL2(C) have a natural injection
in (/}i;(kA) given by g — (g, 1). Thus we shall identify these groups (and the elements of these

groups) with their image in GLa(ky). Secondly, there is an isomorphism = — (z, k4 (x)) be-
tween GLy(k) and its image in GLa(ky ), image which we shall denote as GLa(k). Accordingly,
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2.3 Metaplectic group and metaplectic representations

for g € GLa(k), we define an element § = (g, sa(g)) € (/}i/g(k‘A). Finally, we the group of cubic

roots of the unity is embbeded in GLo (ks ) through & — (Id,§); we denote such an element by

i(€). Then, GLa(ky)/KoGLa (ko) is discrete, and GLa (k) is a discrete subgroup of GLa (k4 ).
We state some properties of the metaplectic group.

Proposition 2.7. (i) The covering GVLQ(ICA) — GLqo(ky) is not trivial ([23]]).

(ii) Let k be the Kubota symbol. With our choice of the compact subgroup K, if v € GLa(k) N
KoGoo, then k5 (7y) = k() ([24] Proposition 1).

(iii) The kernel of the Kubota symbol k is given by (/}ig(k) N KoGy = 1&(?) ([24|] Proposi-
tion 3).

Properties (i) and (iii) express the fact that the existence of a non-congruence subgroup of fi-
nite index is equivalent to the existence of a non-trivial cavering of GLo(ky ).

Finally, we recall that by the strong approximation theorem, we have

GLs(ks) = GLa(k) K GL4(C).

For the metaplectic group, one has (see [24] Proposition 4 p. 25)

GLo (k) K GL5(C) i(p3) = GLa(k) K GLy(C). (2.3.6)

We can check that (2.3.6) leads to automorphic forms on GLa (k) with respect to the Kubota
symbol x, if we define

Foo(goo) = faldek goo),  with gy € GLa(k), k € K, goo € GLa (ko). (2.3.7)

Namely,

T (195) = fa (56777 - (Vok 7900 ) » with i7" € G, (K)ok € K
Ger T+ (Nok 1900 ) = fa (G754 (7)) - (1) K g)
= fa (gk (Id,sa(7™") “k goo) = fa (G ki(k(v™)) goo)
= fA (gAk kgoo) /i(’yil))il = E(V) f(goo)'
From all this we can deduce (Proposition 5 of [24]):

Proposition 2.8. There is a bijection between functions fa on é\fg(k)\él\lg(k)KOGLg(koo) /Ki(us)
satisfying fa(grgk€) = fa(g) €' and functions f on H satisfying f (y(w)) = k(7) f(w).
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2.3.2 Metaplectic and automorphic representations

A metaplectic representation is an automorphic representation of the metaplectic group. Let € :
w3 — C be fixed. Since p3 is the kernel of p : GLa(k,) — GL2(k, ), and since we are interested in
the representations of é\fg(kﬁv) which do not factorise through p, i.e. such that p3 acts injectively,
we are led to make the following definition. We say that a representation 7 of a subgroup H of
GLy(ky) is genuine if T1(Eh) = €(§) w(h), forall h € H and £ € ps.

In this section we shall describe the genuine metaplectic representations as well as the au-
tomorphic representations. The notations used here will be 7, 7, 7, and 7, for automorphic
representations respectively on G(k ), G(k,), G(ka) and G(k,). R, will be the valuation ring of
k,, for any finite place v.

Definition 2.11. A representation of GLa(k,) or (f}fg(k‘v) in some vector space V' is said to be
unramified if it contains a K,-fixed vector in V.

First of all, we recall that 7, is of one of the following types:

- principal unramified (not square integrable), i.e. m, = p(n), with n = (n1,12) a couple of
unramified characters of kX such that p # (1/| - [F1/2,¢/| - |[F1/2),

- principal ramified (not square integrable), i.e. m, = p(n), with n = (n1,72) a couple
of characters of £, with at least one of the two characters which is ramified, such that

v

0n# (|- [5120| - [F12),

- special (ramified and square integrable) i.e. T, = o(n), with n = (/| - [F/2, /| - [F/?) a
couple of characters of k.. o(n) is then defined as the irreducible subspace or subquotient
of p(n); its complement is a one dimensional representation, unramified if 7 is unramified,

- supercuspidal (ramified and square integrable).

We now study the different types of representations 7, of the group G (ky). We shall focus
on principal metaplectic representations. For it, we briefly recall the construction of these repre-
sentations, as described in [20]]. Let H, the group of diagonal matrices of GG,, N, the group of
unipotent upper triangular matrices, and Z, the group of scalar matrices. If

p:Gky) = G(ky), (9, — g,

we write p~1(H,), p~1(N,) and p~1(Z,) by H,, N, and Z, and s(N) by N*.
Then H3Z, is the center of H,,. Let H. +,» be a maximal abelian subgroup of H, and consider a

quasicharacter ¢ of H3Z,, such that coi = . We extend c to a quasicharacter ¢’ of H, , and extend

c to B::} = ﬁ;)N * by defining it trivial on N*. Finally, define ;x on H by, u (( hi 0 )) =

0 hy
by |1/2

h1

, and extend it to E*vv by u(hn) := u(p(h)).

Under action by right translation, we define the representation (7(c’), V(¢’)) as the space of
functions f : G, — C such that

- f(bg) = (cn)(b) f(9) Vb€ By,
- dKy C évv, f is right K y-invariant.

It is an admissible representation of CTU
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2.3 Metaplectic group and metaplectic representations

Definition 2.12. For c as above, we define
-3 H—C, byc3(h) :=c (s(h?’)), and
- ke — C by ci(x) = ((§ $91 ))-
Then c is said unramified if ¢ is trivial on H N GLg(Oy, ).
Proposition 2.9. ([20], cor. 1.2.8) If ¢3 # | - |£', then V (') is irreducible.

When ¢} = | - |,,, then V(¢’) admits one irreducible subquotient.

Definition 2.13. A quasicharacter c such that ¢; = | - |, is called exceptional. The irreducible
subquotient of V () is called the exceptional representation and is denoted by V().

We obtain that 7, is of one of the following types:
- principal (not square integrable), i.e. T, = V (c), with ¢ non exceptional ,

- exceptional (ramified and square integrable) i.e. T, = Vy(c), with ¢ exceptional. Vj(c) is
defined as the irreducible sub-quotient of V'(c),

- supercuspidal (ramified and square integrable).

Actually, the exceptional representation will appear to be of first importance for us. One of
the results we shall need is due to the study in [20] of the Whittaker model of the exceptional
representation.

Let e be a fixed non trivial continuous character of k,, and let V* be the algebraic dual of V,

P

where (7, V') is some given irreducible representation of GL2(k,). The dual representation 7* is
defined by

(™ (9) - A) (v) =A(7(g7") - v), forv € Vand A € V*.
The Whittaker space of 7 is the subspace of V* defined by

Wh(m,e) ={AeV* : 7*(n)-A=e(n)"' \, Vn € N}
={AeV*: A(n(n) -v) =e(n)A\(v), Yo € V,n € N}.

There is another way of seeing Wh(mw,e); if C*> ((Efg(kv), C, e) denotes the space of smooth

functions f from G/(fg(k‘v) to C satisfying f(ng) = e(n) f(g), then each A € Wh(, e) gives rise
to an injection, called a Whittaker model for T,

tA:V—C™ ((E\Iig(kv),c,e)

v—ty(v) g — A(r(g)-v).

In the case of an irreducible representation of GL,, one knows that the Whittaker space of 7 is
one-dimensional, or equivalently, that the whittaker model is unique; one consequence of this is
the local multiplicity one theorem. This unicity fails for most of the genuine metaplectic represen-
tations, and more precisely, we have:
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2.3 Metaplectic group and metaplectic representations

Theorem 2.7. The dimension of the Whittaker space of an irreducible genuine metaplectic repre-
sentation of GLa(k,) is

(i) finite dimensional,
(ii) non-zero if 7 is supercuspidal,
(iii) equal to one if T is exceptional.

Remark 2.3. Points (i) and (ii) are true in a more genral context; they are proved for an n-fold
covering of GLg in [20] (Theorem 1.5.2). In this situation, point (iii) is valid if and only if r = n
orr =n — 1 (Corollary 1.3.6 of [20]). Since we are only concerned here with GLo, this means
that the Whittaker model of the exceptional representation is unique only in the cases of the 2-fold
cover or 3-fold cover of GLa. The degree of the covering being the order of the Legendre symbol,
we have unicity of the Whittaker model of an exceptional representation in the quadratic case
(treated in Chapter[l)) and in the cubic case (treated in Section[2.1)and Section[2.2| of this chapter
and in Chapter[3).

We finish this section by describing more precisely Vp(c). Let v be a fixed place of &, not
dividing 3. Let K, be the subgroup of K = GL2(R,) defined by

Ky = {(CCL Z) € GLo(Ry) : ord(c) > m}.
The space of K,-fixed vectors of a representation (7, V') with central character p is defined as

VEn —{v eV n(k)-v=puk)v}.

The vectors of Vm correspond in some sense to automorphic forms with respect to I'o(7™),
where 7 is the prime of Z[w] corresponding to the place v. Then,

dim (Vo(c)*m) =1 ifm=0o0rm=1. (2.3.8)

This statement is proved in [20], Theorem 1.2.9 f) and Proposition 1.4.4.
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2.4 Shimura correspondence

The goal is to present a correspondence, in a sens which will be made precise latter, between
metaplctic forms f € L2 (I'\H, «,3) and automorphic forms f € L2 (I'\H, s), and to precise
some characteristics of f in terms of those of f

Recall that the group I'; was defined p. Let I' be a subgroup of 'y and let y : ' — C be
a group homomorphism. Inside the space of functions f : H — C such that

f(y(w)) = rwx(y) f(w)  VyeT, (2.4.1)

we distinguish two subspaces, the one formed by the f with || f|| < oo, denoted by L2 (T'\H, xx)
and the one of functions f with (A +5(2 —5)) f = 0 for some s € C, denoted by M (I'\H, k, S).
Likewise, in the space of functions f : I — C such that

f(y(w)) =x() flw)  Vyerl, (2.4.2)

we distinguish two subspaces, tho one consisting of functions f such that || f|| < oo, denoted by
L2 (I'\H, x) and the one consisting in functions f such that (A + s(2 — s)) f = 0, denoted by
A (T\H, x, s).
The spaces which are of interest for us are, on the one hand, the intersection of L2 (I'\H, x)
and M (I'\H, kY, 5), denoted by L? (I'\H, Y, ), and on the other hand the intersection of L (I'\H, x)
and A (I'\H, v, s), denoted by L? (I'\H, y, ).

2.4.1 Definitions and results

The notion used to define the correspondence is that of character of a representation. Let G be
a locally compact group and let (7, V') be an admissible representation of G. One can extend
the action of G on V to an action of H(G), the space of locally constant functions with compact
support, by

w(f) v= /Gf(g)Tr(g) -vdg, VfeH(G),veV. (2.4.3)

The representation (7, V') being admissible, we have that 7(f) is an operator with finite rank for
any f € H(G) and thus the trace of 7( f) make sense.

Recall that a distribution on a topological group G is a linear form on the space H(G). The
character of w is then the distribution on G,

f=Te(w(f)),

for all f € H(G). We remark that the character of 7 is an invariant distribution, i.e. Tr (7 (f)) =
Tr (7(f9)),Vg € G, where f9(z) := f(grg~!'),Vz € G.

In many cases, the character of a representation 7 of G can be given by a function on G, that
we shall call again character of 7. In our case, we refer to Theorem 7.7 of Jacquet-Langlands for
the non metaplectic group, and to Lemma 2.3.1 of Flicker ([9]) for a square integrable representa-
tion of GLa(k,). Moreover, the case of supercuspidal representations of GLy(k,), is done in [2]
p. 52, with a proof independent of the trace formula.

From this discussion we make the,

Definition 2.14. The character of 7 is the local integrable function x on G such that

T (n(f)) = /G 7(9) xe(9) do.

77



2.4 Shimura correspondence

—_——

The preceding definition, valid for GL(2) and GL(2), enable us to characterise the irreducible

—_—

admissible representations of GL(2) and the genuine irreducible representations of GL(2) by the
value of their character on the regular elements. Moreover, one shows ([2]], prop. 1.1 p. 49, 2°) )

that for a regular element g € GL(2), xz(g) # 0 only if g3 is regular. We are now in position to
define the local correspondence. Define

(a—b)2 [

ab

Alg) = (2.4.4)

Definition 2.15. Let T a genuine irreducible representation of é\/LQ(k'U) with character xz, and
let ™ be an admissible irreducible representationof GLa(k,) with character xr. We say that
correspond to T if. for any regular element g of G of the shape g = h>, it holds

Ag) xz ((9:5(9) ) = D Ah) xx(h). (2.4.5)

h3=g
We then define the global correspondence analogously.

Theorem 2.8 (Flicker). Let v be a place of k = Q(w), and let 7, be a genuine irreducible
representation of G(k,). Then m, corresponds to some irreducible representation of G (k).

(2.1) This application is an injection (thm 5.2 and cor. 5.2 of [9]).
(2.2) (m, supercuspidal) = (7, supercuspidal) (thm 5.2 of [|9])
(2.3) (m, special) = (7, special) (thm 5.2 of [19])

(2.4) (m, supercuspidal) = (7, supercuspidal) (cor.5.2 of [19])
(2.5) (7, unramified) = (7, ) unramified). (cor 5.2)

(2.6) (7, € L?) = (m, € L?)

Remark 2.4. In this theorem we used the fact that 3 is odd. Namely, the correspondence is proved
in [9] for an n-fold covering group, but some of the above properties hold only if n is odd.

2.4.2 Classical interpretation

The proof of the correspondence (See [9], Section 1.4) shows that the central character p of 7, is
related to the central character fi of 7, through p = 3. This is equally true at the archimedean
place, although, as the Hilbert symbol is trivial on C, the metaplectic group GLy(C) is isomorphic
to the direct product GLo(C) X ps.

Theorem 2.9. Let f € L2 (I\H, x, 3). Then,

(i) There exists some congruence subgroup I and some f € L2 (I"\H, k, s), such that the
representation T corresponds to the representation 7y, and the following relation holds

3(s—1)=s—1.

(ii) If s = 4/3, then the Whittaker model of T is one-dimensional and, with the notations of

the spectral decomposition theorem, f € L2Res,
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2.4 Shimura correspondence

When working wiht GLo, (#¢) of Theorem[2.9|amounts to say that the quadratic case n = 2
and the cubic case n = 3 are the only one whithout theoretic obstruction to the computation of the
Fourier coefficients of the theta functions. We recall that, as we saw in Chapter[I|and as we shall
see in Chapter[3] theta functions are the key ingredients to tackle the problem of the asymptotic
distribution of the twisted Kloosterman sum.

Since there is only one theta function for I'y ([32]), we deduce from (4¢) that for I';(D) with
(D, 3) = 1, the dimension of the space generated by the metaplectic forms of minimal eigenvalue
is given by

H dimVfmo where m,, = ord, (D).
v|D
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3 Asymptotic behaviour of K3(m,n,c)

In this chapter, we try to understand the behaviour of the constant appearing in the asymptotic
behaviour of the cubic Kloosterman sums. More precisely, as it will be recalled latter, we have,
for any € > 0, that

Z KB(m,TL,C) = C(D,m’n) X4/3 _|_O<X5/4+a) ,
N(e)<X
c=0 (D)
c=1(3)

and we are interested in determining the constant C'(D, m, n) explicitly, and in understanding its
dependence with the parameter DD. This has been done by Livné and Patterson in [31], Theo-
rem 1.1, for a square-free parameter, D. We aim at improving this theorem of Livné and Patterson
by weakening the condition on the level D.

Before exposing the results, let us make some comments on this formula and recall some
notation. First of all, the condition ¢ = 1 (mod 3) is natural, since it only means that the sum is
taken over the class of integers in R = Z|[w] which are not divisible by A = 1 — w, the only prime
dividing 3. By taking the class we mean to take for any of such integers, its unique associated
integer, i.e. one of its multiples by a unit in I/ = {41, +w, +w?}, which is congruent to 1 modulo
3. This is the equivalent condition to "c odd", in the quadratic case over Z. That c has to be
coprime with 3 comes from the definition

Ks(m,n,e)= Y (%)3 e <m"’“"+cm> : (3.0.1)
z (c)

since the Legendre symbol (;)3 is defined only for N'(7) = 1 (mod 3). We recall that in the

notations (3.0.1), we mean actually

=3 (2 e(720),

z,z* (c)
zz*=1 (mod c)

From the general Kloosterman summation formula described in Chapter[2] Theorem[2.6] we see
that the asymptotic constant is given by the sum over a orthonormal basis of the metaplectic forms
with minimal eigenvalue of their m™ and n™ Fourier coefficients. The problem is to determine an
orthonormal basis and to be able to describe the Fourier coefficients of all elements of this basis.
That this second point is possible is not clear since we work with metaplectic groups, for which
the Whittaker models associated to an automorphic representation is a priori not one dimensional.

In Section[3.1] where we recall the theory of Eisenstein series and cubic theta functions, and

explain what is the basis problem. Our method to deal with this problem in presented in Section[3.2]
where, after some technical results, we give the relations between all theta functions. These results
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allow us to derive some explicit examples in Section[3.3]
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3.1 The Kubota—Patterson theta function

3.1 The Kubota—Patterson theta function

This section expands the Section[2.1.2] of Chapter[2] where Eisenstein series and theta functions
have been defined. Section[3.1.1]takes the point of view of Kubota, and defines Eisenstein series
and gives their Fourier expansion. The Fourier coefficient are Dirichlet series whose coefficients
are Gaul} sums. Finally we give the MaaB3-Selberg relations. The Section[3.1.2]is the heart of the
matter, where cubic theta functions are defined, always following Kubota, and where their prop-
erties are given, following Patterson [32]]. We finally explain how the Shimura correspondence
simplifies the problem, and reformulates the problem of the asymptotic behaviour of cubic Kloost-
erman sums.

Unless otherwise stated, the symbol § will be the Kronecker symbol. We recall that a cusp
o0~ 1(oc0) of a group I' C SLy (Z[w]), with o € SLg (Z[w)), is said to be essential with respect to
the group homomorphism x if its stabilizor ', = {y € T' : v (07!(00)) = 071 (c0)} satisfies
I, C ker(xx). The groups we shall be interested in latter on are subgroups of

I ={y€SLy(Z[w]) : =1 (mod 3)}.
We define

and Ay = 37MX(=260) B \where ¢ = ord,(c).

3.1.1 The MaaB- Selberg relations

In this section, we consider some subgroup I' of SLa(R), and a character y on I'. A point in
H is written w = (z,v), and define v : I — R by v((21,v1)) = v;. Eisenstein series have
already been introduced in Section[2.1.2]of Chapter[2] but as we work here with trivial K-type, the
notations simplify significantly, and we take advantage of this opportunity to give the details of
the Fourier expansion of Eisenstein series.

We shall use the following Bessel function:

K,(z) = / (J2* + 1) 77 e(—x2) d. (3.1.1)
C
Remark 3.1. Recall that e(z) = exp(2inTry, q(2)). The relation with the classical Bessel func-
tion is
2 S
Ki(z) = (2m) "7t Ko_1(4n|z|), forz € C,z #0.
I'(s)
Moreover, we have, for s € R, s > 1,
T
K, (0) = .
5(0) s—1
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3.1 The Kubota—Patterson theta function

Definition 3.1. Let 0~ 1(c0) be an essential cusp of T. The Eisenstein series associated to o is
defined by

Es(w,s)= > x(y)vley(w))®,  forR(s) > 2.

YELAT

We prove the formula giving its Fourier expansion. This is a special case of the one proved for
any K-type, as treated in[2.1.2]of Chapter[2}

Proposition 3.1. At an essential cusp 77 (00), E,(w, s) has the Fourier expansion

Eo(r™(w), 8) = 870"+ 3, 07" Ka(u) s (1, 8) e(p2),
pEAR

where its coefficient is the Dirichlet series

Vol s) = AT D fel™ x(cr(d))(“d)

0#ceR d (mod Arc)
—1(ab
o (Cd)TEF

Proof. We start by splitting

Ey (17 (w), s) = 1 + o, (3.1.2)

where the sum X1 (respectively Ys) is the sum of the terms x(7) v(oy7~!(w))?® taken over the
v € T, \I such that c(oy7~1) = 0 (respectively c(oy7 1) # 0).

Lemma 3.2. ¥ = 6, ,v°.

Proof. 1f an element -y such that c¢(oy7 1) = 0 exists, then necessarily o7~ (c0) = oo, what can
be written as (77! (00)) = 0~ !(c0). The cusps are then equivalent and we recall that in this case,
we make the choice 0 = 7. Let us now assume that ¢ = 7, and consider some element v € I" such
that c(oyo~!) = 0. Then oyo~" stabilizes infinity, which means that y(c~!(c0)) = o~ 1(c0),
i.e. 7 € I',. Hence, there is only one left coset that we choose to be the one of the identity. It
follows that ¥1 = x(Id) v(c Id o~ (w))* = v°. O

Let us come back to the sum 9, and rearrange it as

So= Y, x()vlorrH(w))®
YET\T
c(oyr—1)%0

= > > x() v(ey v (w)’

'el's\I'/T vyr €l
YA/ C(Uv’;—'rjl)io

From Lemma write 7, = 77} ((1) )‘17) 7. Then the condition c¢(o7y'y,771) # 0 becomes
c(oy/771) # 0. The same idea gives v(o7/7, 7~ (w)) = v(ay'77 (2 + A, v)), and we obtain

Yo = Z x(v) Z v (oyr Hw + Ar))°.

YELG\I'/T'r ArEAL
c(oyr—1)#£0
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3.1 The Kubota—Patterson theta function

Definition 3.2. Ler A be a lattice in C. Let g € SLa(R). Define

e;\(w,s) = Zv(g(w +2)°, weH, seC.
AEA

As usual, one has the double decomposition lemma, which asserts that the set of representatives y
of I';\I'/T'; with c(oy7~!) # 0 is equal to set set of matrices o (2 %) 7 € I with ¢ # 0 and d
(mod Arc)*. We have then proved that

T 1(ab)\ .\ Ar
= > Y X 1(‘23)7)6(”)(%8),
O;ﬁcER d (mod Arc) d
—1(g3> er
and it remains to prove the Fourier expansion of e} (w, s), for some g = (2 }).

Lemma 3.3. Let |A| be the area of A\C. Then

Muw,s) = (AT S 02 o2 (’“‘) Ko(0) e(12).

HEAN
Proof. Being A-invariant, the function eg\(-, s) possesses a Fourier expansion at co of the form
= 3 ) euz
HEAN

where the Fourier coefficient f(u) is defined by

[A[ f(p /A (g(w+ X))’ e(—pz)dz

\C AEA

/ g(z+\v)e(—u(z+N)dz, since p € A"
MC xea

— [ wlale))* e-pz) s
C

= / v® (|ez 4 d)? + |c*v?) 7 e(—pz) dz
C

=v'e <Mcd> /(|cz|2 + [e|*v?) "% e(uz) dz
C

2 pd z |2 -
=v %] el — / - +1 e(—uz) dz.
C C v
One concludes with a change of variable. O
By this lemma, the proposition is proved. O

Definition 3.3. Let A > 0. We say that A is big if, for any g € SLa(R),
g(C(A)NC(A) #0 <= g(o0) = oo.
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3.1 The Kubota—Patterson theta function

According to this definition, let us modify the function v by defining

(w) = v ifo(w) <A
va(w) = 0 ifv(w)>A

Definition 3.4. Let A be big. Then

EA(w s) = Eq(w,s) if w & Ur essential T_l(C(A))
’ Ey(w,5) = 6ppv® ifw € 771(C(A))

)

that is to say
E,(w,s) ifw ¢ o~ 1(C(A))

A _
Folns) = {Ea(w,s) —v* ifweo HCO(A)

Lemma 3.4.

Elw,s)= Y x(7) valoy(w))*.

vl \I'

Proof. We have to treat two cases. (i) If w ¢ o~1(C(A)) then, by the dynamic in fuchsian groups,
y(w) € o71(C(A)), ¥y € I. Thus oy(w) ¢ C(A), and we can replace v(ay(w)) by v (oy(w)).
Then,

EaA(w, s) = Ey(w, s)

= > X v(ev(w))?

YET\T

= Y x(3) valoy(w))®.

~eT N\

(i) Now, if w € 071 (C(A)), setw = o1 (w'), w’ € C(A), and by Proposition[3.1]

Ef(w,s)= Y o(w)* 7 Ky(po(w')) dor (1, 5) e(pz(w)),

HEAR
what is, with the notations of (3.1.2)), equal to X5. But by definition,

Sr= Y XA vlore W)y
YET\T
c(oyo—1)#0

= Z x(7) va(oyo~t(w'))*,  since A is big,
YET s\
c(oyo—1)#0

= Z x(7) va(oyo (W) + Z x(7) va(oyo L (w'))®, since the second sum is 0,

YETF\T yels\I'
c(oyo—1)#0 c(oyo—1)=0
= Y () valor(w)’. 0
YT\
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3.1 The Kubota—Patterson theta function

The sense of introducing these series is that, for R(s), R(t) > 2, EX(w,s) EA(w,t) is

I'—invariant and integrable on I'\ H. We shall now calculate

EXw,s) EA(w,t) dw, for R(s) < R(¢).
T\H

This is equal to (1) + (I3), with
(1) = / (B2 (w, 5) — Ey(w,5)] BA(w, Odu,
I\H

(I2) = E,(w,s) EA(w, t) dw.
I\H

Calculation of (I1): The support of E2(w, s) — E,(w, s) is, as we have seen already, o~ (C'(A)).
By taking the quotient, what is left is

(L) = / [E}(w,s) — Eqg(w,s)] EA(w, t)dw
To\o=1(C(A))

= / [EXNo™ (w), s) — Ex(0™H(w),s)] BEA(o—(w),t)dw
A, \C(A)

:/ / v® EA(o~1(w), t)dw.
A Jas\C

Only the constant term of E2 (o' (w), ) contributes. By the definition of EA(o~!(w),t) and the

Proposition[3.1] it remains

() = — /A /A U\CUSUQ—fKt(O)¢T,0(o,t)dw

= — |As| Ki(0) ¥r5(0, 1) / o524 34y
A

s—t

A _
= |As| Ki(0) Y7 (0, 1) > since s < t.
5 —

Calculation of (I2): By the Rankin unfolding method,
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3.1 The Kubota—Patterson theta function

(I) = /F\H E,(w,s) EA(w,t) dw

FAT\H

= / va(w)! Eg(t7Hw),s)dw since va(w) = 0ifw € C(A)
La-\H-C(4)

A
= |A;] / 0" {05-0% + 02 K (0))5.-(0,8) } v 3dv
0

As+272 Affs
:AT 507f AT Ks o,m\Y,
A8 g + A K0 (0,5) 2

From this, we have derived the following theorem:

Theorem 3.1. Let 0! (c0) and 771 (00) be two essential cusps of T. Let s,t > 2. Then,

- AsTt—2
on'q(wa S) E‘llfl(wv t) dw = ‘AT| 50’,7’ I
\H s+t—2
s—t t—s

A
i + |AT| KS(O) wU,T(()? S) I *
s—t t—s

+ ‘A0'| K (0) ¢’T,O'(O? t)

3.1.2 Properties of the cubic theta functions

The theta functions have been defined in Section[2.1.2] of Chapter[2] for any essential cusp of a
given group I' C I'y. They are non-cuspidal, square-integrable metaplectic forms.

Definition 3.5. The theta space O(T') is the space generated by the theta functions 0,, where
071 (00) runs through a set of essential cusps of T.

Theta functions are non cuspidal square integrable metaplectic forms, and thus we always have
the inclusion ©(T') C L2 (I'\H, ). For example, in the quadratic case, § functions defined by a
character not totally even are cuspidal (see Serre and Stark, Theorem B p. 36). What it is not
clear, but necessary for us, is whether the equality holds. We recall here part (i) of Theorem
of Section[2.4.2] of Chapter[2}
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3.1 The Kubota—Patterson theta function

Proposition 3.2. The subspace of the discrete spectrum of L? (T'\H, x) corresponding to the min-
imal eigenvalue is

L2 <F\H, K, S) = o).

We can now recall the asymptotic formula of the geometric cubic Kloosterman sums:

Theorem 3.2. Let o, T be two essential cusps of I'. Then

Z K, (m,n,c) ~ c X3 Z po(o,m) pg(T,n),
N()<X 9eB(T)

where B(T') is an orthonormal basis of the theta space O(T'), and pg(o,m) is the m™ Fourier
coefficient of O(w) at the cusp o~ (cc). Here the constant C'is given by

T/ AL
2(2m)%/3 N (mn)1/6°

Proof. Let us emphasize that the asymptotic formula can be derived from the Kloosterman sum-
mation formula of Theorem[2.6]of Chapter[2] in the same way as Kuznetsov did (see [26], proof of
theorem 3). Moreover, it can also be derived following the method described in Chapter[I] adapt-
ing the argument of Goldfeld and Sarnak. This was done in details in [31]], Theorem 4.5, and for
that reason we shall not prove it here. Both methods lead to

C

Z Kyr(m,n,c) ~C X3 Z pu(o,m) py(T,n),
N(e)<X ueB(T)

where B(I) is an orthonormal basis of the space L2 (F\H, K, %). The proof is then concluded by
Proposition[3.2] O

As in [31]], having in mind our arithmetical application, the groups of importance to us are the
groups

The link between the arithmetic cubic Kloosterman sums K3(m, n, ¢) and the geometric Klooster-
man sums K, -(m, n, c) is given in Lemma[2.3in Section[2.2.2] of Chapter[2] Let D, D’ in Z[w],
D,D' =1 (mod 3). If T =T{(DD'), then it is possible to choose two essential cusps o1 (c0)
and 7! (c0) so that the left hand side of the formula of Theorem is given by

> Ks(m,n,c) (3.1.3)

N(e)<X
c=0(d)
(¢,D')=1

We saw in Section[2.3.2] of Chapter[)] that in general there is not unicity of the Whittaker
model for an irreducible metaplectic representation, but (iii) of Theorem[2.7]says that however, the
unicity occurs in the quadratic case and in the cubic case, and only in these cases. It is therefore
theoretically possible to obtain a complete description of the Fourier coefficients p(1m) of the cubic
theta functions in terms of known functions. This had been already achieved by Patterson in [32],
where it was proved that p(m) is actually a cubic Gauss sum. More precisely, the space O(1) is
one dimensional, spanned by the function

O3(w) = v*/> +v Z m3(m) Ky /3(4n|mlv) e(mz), (3.1.4)
me(3Z[w])N
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3.1 The Kubota—Patterson theta function

where 73 is the function defined on Q(w) — {0} by

2g(\ ‘d} 3n/2 if m = £\ led?

26*2”’/9§(wz\2, c) ‘%} 372 ifm = w3 led?

3(m) = < 2e27/9G(wIA2, ¢) [£] 32 if m = WA Led® (3.1.5)
29(1,c) | 4] 37/2 if m = £A33cd?
0 otherwise.

\

Actually we can be more precise about the number of Fourier coefficients of theta functions
that we need. The periodicity theorem ([20]], Theorem 1.2.9 e)), combined with Hecke theory,
allows us to obtain the following properties of a theta function

ZP m) Ky 3(4m[m[v) e(mz).

Theorem 3.3. Let c be an integer coprime with a prime 7. Then,

p(r’c) = N () p(c),
N(m) G(r) p(c),

p(me)
p(r?e) = 0.

Let D, D' € Z|w] be two integers, coprime with 3. We conclude this section with a discussion
on the constant ¢(D, D’) appearing in the asymptotic formula

Z Ks(m,n,c) ~c(D,D',m,n) X483

N(c)<X
(¢,D')=1c=1(3)

derived from Theorem[3.2 by (3-1.3). By Theorem[3.3] C(D, D', m,n) can be explicitly deter-
mined once we know B (I'§(DD")). For example, when D and D’ are square-free, ¢(D, D', m, n)
is given by Theorem 1.1 of [31]]; in this case, © (I';(DD")) is of dimension 1, generated by the
cubic theta function 3. What has to be done to treat the general case, is to study relations between
theta functions.

From the MaaB-Selberg relations, we deduce that the scalar product between two theta func-
tions 6, and 6 associated to two essential cusps of a group I is given by

<90,97>:37TRess:4/3< oo > ﬁ(a—l(gg)ﬂ). (3.1.6)

0#ceR d (mod Arc)
- b
1 ( g d ) Tel
To prove this, it suffices to take the residue at s = 4/3 and t = % in the formula of the Theorem
Formula ((3.1.6) has to be worked out in details, to give precise relations between theta functions.
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3.2 Relations between theta functions

3.2 Relations between theta functions

To simplify notations, we write ©(D) for © (I';(D)) and B(D) for B(I';(D)). In this section, we
study the space O(D) and look for an orthonormal basis B(D) of ©(D), when D is a prime power
D = x", for h > 1. Here 7 is a prime in R, that we assume different from the prime A\ and from
the prime 2, and that, as such, we can and do choose such that 7 = 1 (mod 3). After some pre-
liminary results in Section[3.2.1] the relations between theta functions are given in Section[3.2.2]
Some examples of B(D) will be provided in Sectionin the cases h = 1, 2, 3.

3.2.1 Auxiliary results

Equation (3.1.6) of Section[3.1.2] will be our main tool for the evaluation of the scalar product of
theta functions. In this section, we make this formula easier to evaluate by giving some simple
lemmas that will be used latter on. Since we have attached a theta function to each essential cusp
of a group I' C Iy, the next step will be to determine all I'j (ﬂ'h) -inequivalent essential cusps. We
achieve this in Lemma[3.5] In Lemma[3.6] we work out the summation condition appearing in the
formula (3.1.6), then in Lemma([3.7] we deal with some GauB sums similar to those appearing in
the inner sum of (3.1.6) and finally, in Lemma[3.8] we evaluate a Dirichlet series.

For 0 < ¢ < h, let us define P, as

1 if £ =0,
Pe=< (R/n"'R)" if1<I<h—1, (3.2.1)
1 if £ = h.

Since we assume m # A, we shall assume that the elements of P, are chosen congruent to 1

modulo 3. Besides, for a given m € R specified in the context, we shall use the notation = for

a representative of the inverse modulo m of an element x coprime with m. Finally, we define
— (1 — (1

T = (1 9) and T = () 7).

Lemma 3.5. A set of essential cusps (not necessarily inequivalent) of ' (7Th) is given by

7TZ1/

1 1
{a ) :ae{:l:l,3},0<€<h,1/€73g} U {—1 : 0<€<h,ue734}.
T

Proof. Let P = 2 be a cusp of I (7"), with a,c € Z[w], ged(a,c) = 1. Since (,1.]) €
I (7"), the cusp P is equivalent to the cusp (14 ) (P) = 37iare» and this allow us to assume
that ord, (c) < h. According to this, we define j = ord,(c), 0 < j < h. First of all, we determine

the three types of cusps of I' (7Th) , and then rule out some of them which are not essential.

Case 1: m|c and A fa. Multiplying by some unit of Z|w] if necessary, we assume that ¢ = 1
(mod A2). Let b,d, 1 such that ad — beA*r! = 1, for a parameter [ > 0 to be chosen latter on.
Then, we remark that d = 1 (mod 3) and that

a b\l
d

) € SLo (R) .
Define
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- arepresentative o of the class of ¢ modulo A\? such that « is coprime to 7,

- arepresentative v of the class of @cr—/a modulo 7"~/ such that v = 1 (mod 3).

Then 2 l+j 2,1
a—ab\ Iy b w1 0
YT _omiv = ( c— adriy d ) = (0 1) (HlOd 3),
and ¢ — adrlv = ¢ — cad (mod 7"); but ¢ — cad = ¢(1 — ad) = —bc?A\%x!, and thus

ord,(c — cad) = 2j + . We now choose I > h — 2;j and conclude that yT 5, € T (7").
Therefore, we have that P = ¢ = y(o0) = v1_ 4, (T, (00)) is equivalent to T, 5, (c0) =
(amiv)~L,

Case 2: 7|c et A|a. Multiplying by some unit if necessary, we assume that ¢ = 1 (mod A?). Let
b, d be such that ad — bc = 1 and d = 1 (mod 3). Then we remark that « —b = 1 (mod 3) and
that

v = <CCL Z) € SLa(R).

Define v to be a representative of the class of ¢ 77 d modulo 7"/, then

a—briy b\ (1 b
Vv = (c—dTer d) - (0 1> (mod 3),
and ¢ — dm/v = 0 (mod 7"). Let u be the unit of R representative of the class of b modulo 3;
then yT_.;, T~ € T (n") and thus P = y(00) = v T, T~ (T"Ty;,(00)) is equivalent to
(77v)~! 4 u. Finally we remark that b = a — 1 (mod 3), thus if a is divisible by A2, we have

u = —1, and otherwise (since a is at least divisible by \) we have u = —w or = —w?.

Case 3: 7 fcand \ fa. As before, assume a = 1 (mod \?). Let « be a representative of ¢ modulo
3 such that « is coprime with 7. Consider b, d such that ad — bcA?> = 1 and such that d = ac
(mod 7). Thend =1 (mod 3), v := (2 ?**) € SLy(R) and

a—bal? bA?

and c — ad =0 (mod 7"). Thus yT_o € T§ (7") and P = y(c0) = yT-q (Ta(00)) is equiva-
lentto L.
(03

Case 4: 7 fc and \|a. Assume ¢ = —1 (mod A?). Let a be a representative of —a modulo 3, and
consider b, d such that adw"A\? — bc = 1. Then b =1 (mod 3), v := (%, },,) € SLa(R) and

b —a\ _ (1 «

Finally, P = vST~ (T*S(0)) is equivalent to c.
Define the set C = {£1, 4w, +w?, £),3} of representatives modulo 3. From the previous
discussion, we conclude that a cusp P belongs to one of the following types:
type 1, if P ~ ﬁ, with0 < ¢ < h—1,v € Py, and a € C, (case 1 and case 3),

type 2,if P ~ u + 7#% with0 </ < h—1,v€Prandu € {—1, —w, —w?} (case 2),

92



3.2 Relations between theta functions

type 3, if P ~ «, with € {£\, 3} (case 4).

We now have to specify which of these cusps are essential. Recall that 0~ !(c0) is an essen-
tial cusp if x (y,) = 1, for all 7, € I',; we saw in Lemma[3.1] that such ~, can be written as
Vo =01 ((1) Af)awith Ao € Ay C 3R.

If 071 (c0) is of type 1, ie. 071 = (19), with ¢ = ar’v, the condition for o~!(c0) to be

essential is )
A
( A ):1, Y € Ao
3

By periodicity we have

A\, (el =cho—1)\ c
l—c)\g3_ 1—chy 3_ 1—chs )y

. . l i
Now, write o« = +w!\! € Cand 7'v = ¢, i.e. ¢ = +w!\i¢. Then (ﬁ)g = (ﬁ% (ﬁ)i,,
by reciprocity. We also write ¢ = ¢; + wca, as well as A, = 3r, with r = r; 4+ wro. Then
1—cAy = 14 3(core — c111 +w(care — 172 — cor1)) and by the complementary reciprocity law

(see Theorem[2.1| of Chapter[2), we obtain

02)\‘7 _ 7l(2627'27617’17617‘27027‘1) i(CQTQ*ClTl)

=w w . (3.2.2)
1—cAs /g

This expression has to be 1 for any choice of 7. Taking r; =0 (mod 3) andre =1 (mod 3), we

obtain w2z Heticez and taking 71 = 1 (mod 3) and 75 = 0 (mod 3), we obtain w!e2tler—icr,

and taking the quotient, we obtain the condition w*(¢11¢2) = 1,

If i # 0 (ie. € {£A,3}), then we need ¢; +c2 = 0 (mod 3), condition under which (3.2.2))
simplifies in wi©2("1+72) _Since r; and o are free parameters, we conclude ¢; = ¢ = 0 (mod 3),
i.e. a = 3. Itis also clear that for ¢ = 0 (mod 3), the right side of (3.2.2)) is equal to 1.

If i = 0, then (3.2.2) is equal to w!(~2c2raterriterratears) — llertea)(mtra) I | £ 0
(mod 3) (i.e. @ = Fw, +w?), then ¢; + c2 = 0 (mod 3), and as above we conclude that ¢ = 0
(mod 3), which contradicts i = 0. Thus [ = 0 (i.e. @« = £1), which is a sufficient condition. We
conclude that a cusp ﬁ of the first type is essential if and only if o € {£1, 3}.

If o~ (c0) is of type 2,ie. o=t = (J ¥) (5, Y) withu € {1, —w, —w?}, the condition for

2020
177TJZ)\0(1+7rjuu)
r =1 (mod 3), we obtain the condition

071 (00) to be essential is ( )3 = 1forall \, € A,. By choosing A\, = A\?r with

w22y A2 1
(17rjl/)\a(1+7rjl/u)>3 <17rj1/)\a(1+7rjyu))3 -

which, by reciprocity law, amounts to ( = 1, and by the complementary reci-

m)?)
procity law, we need 1 +u = x1 + wzg, with 21 = 0 (mod 3); among the set —1, —w, —w?, only
u = —1 satisfies this condition.

If 01 (c0) is of type 3, ie. 07! = (¢ ') with o € C, then 6! (00) is essential if and only
if (13\03\0 >3 = 1 for any A\, € A,. We have (1:\&’)\0 )3 = <173)\0 )j (ﬁgﬁg )3 = (ﬁ)j
For o € {£\, 3}, one sees that this expression is equal to one only in the case where ov = 3.

To finish the proof of Lemma[3.5] we merely have to notice that the only essential cusp of the
third type, namely P = 3, is equivalent to the cusp P = 0, which correspond to the cusp of second
type (7‘v)~! — 1 for £ = 0. O
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3.2 Relations between theta functions

After having determined the set of essential cusps of the group I'fy (7") = I'y N T (7", and
before coming back to our initial problem, i.e. to work out the scalar product of two theta functions,
let us define some new notations. To any parameter { = (¢,v) with 0 < ¢ < hand v € Py (as
defined in (3.2.1))), correspond four essential cusps as defined in Lemma[3.6] and associated to
them four theta functions, namely

1 0
Oae = 0g, where o = <aﬂ_£y 1) , for « € {£1, 3} (3.2.3)
and
;o (1 -1 1 0
O == 05, where o = <7T£V 1 > <a7r£1/ 1) (3.2.4)

Therefore, a generating system of the space © (wh) is given by

V(7)) = {0, 0_¢, 03¢, 0. - €= (L) with0 << handv e Py,
3 13 IFIES

The method for extracting a basis from this set is to come to simple relations between theta func-
tions, using the formula (3.1.6) of Section[3.1.2] This will be achieved in various steps; at the
present, we give some useful results that we shall apply in the next section. We have seen that the
lattice A, associated to the cusp o~ *(occ) only depends on ord, (c(c)). In particular, it is the same
for all four theta functions attached to some couple (¢, v) in (3.2.3) and (3.2.4). More precisely,
we showed in Lemma(3.1| of Sectionthat Ay = 3aMx(0h=20 R

Lemma 3.6. Let oy, a9 € {£1,3}, 01,05 € Z such that 0 < 1,05 < h, and vy € Py, va € Py,.
Assume that {1 < Uy. Then

() <¢9a17r€11/1a(9a27r[21/2> = Ress:4/3< ZI N(C)_s Z(*) (2)3) ’

c=az—aq (3) d(Agyc)
d=1(3)
. ' —S$ (*) C
(i1) (0 re1,, 9;51,,1> = Res,—y/3 ( Z N(e) Z (d)3> ’
c=1(3) d(Agye)
d=-1(3)

where () means
¢ # aqd,

if {1 = ly = 0, and otherwise, i.e. (¢102) # (0,0), (x) means the conditions

lo—

Zl min(él,hffl))

ord.(c) > £, and dasve®™8 —doqvy = e (mod m
Moreover, the first condition is an equality, i.e. ord,(c) = {1, in the case where {1 < (5.
Proof. Let 0~ !(o0) and 77! (c0) be two essential cusps. We start by proving that

R~ (207 = (5)
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3.2 Relations between theta functions

The computation of the Kubota symbol is easy, since one can assume (see Lemma([3.5) that o, 7 €
I'y. Moreover o1 (‘; Z) 7€' CI'y CI'y, and since k is a group homomorphism on I'y, we

have
(o (2 D)) ten (0 )t

To show that x(c~1) = 1, we have to prove it for the four possible choice of o, whenever a given
couple (£, v) is given. Write £ = 7v.
Ifo~! = (315 (1)), then 0! € T'; and by definition of x on 'y, (0_1) = <¥)3 =1.

Ifo~! = (ilé ?), theno~! = (4H9) (iél;l ?). The first matrix belongs to SLo(Z) and the
second to I'y, thus, by definition of s on I'y, £ (071) = & (( :I:glqzl ?)) = 1, € being or not equal
to 1.

If finally, o' = (§31) (¢9) = (971) (11 7). by definition of  on I'y, one obtains
K (0_1) = 1. The same is true for x(7) and it remains to show that x ((g g)) = 1 under the
conditions of the cases (i) and (ii) of the lemma. We have v = o 7~! (mod 3), with either
o7 (o0) = (aqm )~ and 771 (00) = (agm®212) 7L, in the case (i) of the lemma, or 0! (00) =
(mv)~! and 77 (00) = (7'v)~! — 1, in the case (ii) of the lemma. In case (i), v = (19)
(mod 3), with o € {0, %1} and in case (i), y = ({ Z]) (mod 3). We recall thatif y = (24) €
Iz, then (5)3 = (

It (21) = (]

If(¢5) = (

(D) +(C DE )
() ()0

This proves the result about the Kubota symbol. We now have to interpret the summation condition
in (3.1.6).

Let ¢ # 0, and (d, ¢) = 1. Write 3; = oy, for i = 1,2 and look at the formula (3.1.6). In (i)
the condition on (¢, d) is

1 0\ (a b 1 0 N
<,6’17r£1 1) (c d> <ﬁ27‘(’£2 1) €T (Wh)’

a — bfr" b «(_h
<c +afimht — dByrle — b Forite d bﬁlwh) e (n").

(Z Z) - <a2 i o (D (mod 3)

c+ afm’t — dBem?? — b Bor1 T2 = 0 (mod 7")

i.e.

i.e.
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3.2 Relations between theta functions

Similarly, in (ii) the condition is

1 0\ (a b 10\ (1 1\ _ (n
(ﬂmfl 1) <c d) (—ﬂmfl 1) (0 1)€F0 ().
i.e.

a— bpmh b+a—bpyrh c T (M)
c+ aﬂmrfl - dﬂﬂrzl - bﬁ%ﬂ% d+ b[317r£1 +ec+afimh —dprh — bﬁ%w%1 0 ’

(0)= (0 2) e

c+afir’t —dpir — B =0 (mod 7"

i.e.

Thus (¢, d) has to satisfy ¢ = ag — @1 (mod 3) and d = 1 (mod 3), in the case (i), or ¢ = 1
(mod 3) and d = —1 (mod 3), in the case (ii). Since gcd(w,3) = 1, the chinese remainder
theorem asserts that we only have to study the congruence condition modulo 7”. Let ag, by such
that agd — boc = 1. Then (a, b) is of the form (ag + kc, by + kd), and we ask if there exists k such
that

c+ apfimtt — dBor’® — by B Bor 2 4+ kBT (¢ — dBoer™) =0 (mod 7). (3.2.5)
This is the equation in case (ii), but for 31 = 35 and {1 = {5, this corresponds to case (i).

If /1 = {5 = 0, this equation has a solution if and only if ¢ — d3; Z 0 (mod ), i.e. ¢ Z aad
(mod ), because Py, = Py, = {1}).
If (£1,4) # (0,0), we see from (3.2.3)) that c = 0 (mod 7%1), and (3.2.3)) becomes

en ™l + apfBr — dﬂzﬂéz_el — boﬁlﬂzﬂéz + /ﬂﬁlﬂel (Cﬂ'_el - dﬁQ?TZQ_El) =0 (mod Wh_zl).
(3.2.6)
We remark that if /; < /o, then er % (1 4+ kB17%) + apB1 = 0 (mod ), what shows that
ord,(c) = ¢4, since otherwise m|ag, what contradicts apd — bpc = 1.

Now (3.2.6) implies cm 1 + agB; — dfBor®=4 = 0 (mod 7™"(1h=6)) "and we claim that
this is sufficient to prove the existence of k. Actually, if /1 < 5, then 7 divides dBymt2~4 but not
e thus en ™% — dBym?2~4 is invertible, and if ¢; = ¢5 > 0, then 7|e, thus apd = 1 (mod )
and apf; # 0 (mod ), and in view of cm % + aof — dBem®?~ =0 (mod wmi“(elvh_zl)) we
also get cr 1 — dBon®2~ £ 0 (mod 7). O

We are now interested in the GauB3 sum relative to the integer 37°c with some extra congruence
conditions.

Lemma 3.7. Let ¢ € R and define ¢ = ¢ N (\) "N Og=0dn(e) Lot k. e € Z withk > 1 and
£>0. Let o« € {0,%1}, and let v € R be some integer.

Ifc=0 (mod 3) and o # 0, then
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3.2 Relations between theta functions

QD(C,) (L)g N (ﬂ_)max(e—i-ordw(c)—k,()) N ()\)ordk(c) if Cﬂ-—Ordw(C) is a cube,

MY (5)3 = et

d(3n€c) 0 otherwise.
d=a (3)
d=v (Trk)
c p(c) N ()€ (mrdn () N (X)) if s a cube,
> (G- .
d(3ncc) 3 0 otherwise.
d=a (3)

Ifc = =£1 (mod 3), then

SO(C/) ($)5 N (W)max(s+ordﬂ(c)—k,0) if Cﬂ_—ordﬂ(c) — 4+ isa cube,

(iii) Z <Ccl>3 _ P )

d (37€c) 0 otherwise.
d=a (3)
d=v (7Fk)
(iv) Z <d> o(d)YN(m)p (ﬂOrd“(c)) if cis a cube,
iv -] =
d(ameey NC/3 0 otherwise.
d=a (3)
Proof. We write ¢ = uX\‘n/c with u € U, ged(nA, ) = 1and ¢ = 1 (mod 3). We start by

proving (i) and (ii). We introduce a parameter k£’ > 0 which will be k& if £’ > 0 and study the sum

3 (2)3 C fora= +1.

d (N2+Figeticl)
d=a (3)
d=v (Wk/)
Let m,n such that mA?>T® + na®ti¢ = 1. Then d can be written as dymA>T* + adonm®tic,
where d; varies modulo 77/ ¢’ and dy varies modulo A\i*2. Remark that n = 1 (mod 3), thus the
condition d = o (mod 3) is replaced by dy = 1 (mod 3). Likewise, d = v (mod 7*') becomes
dy = v (mod gMin(E+iA)) e

C 7TjC/ u}\l
Z (&)3 N Z Z (dlm)\z‘” + adonmetic >3 <d1m)\2+i + adonmetic >3 '

d (A\2+igeticl) dq (m€ticl) do (A112)
d=a (33 dy=v (ﬂ_min(5+j,k/)) do=1(3)
d=v (7rk )

For the first factor, we use the reciprocity law, and for the second, the hypothesis ¢ > 2 allows us
to use the consequence of the complementary reciprocity law. We obtain that

c dymM2Ti U\
¥ G- X (w >3 2 (W>3

d(\2tigeticl) dy (w€ticl) dg (A1+2)
d=a (3) _ i i k! do=1(3
d=v (xk) d=o (D) =@
= ") x ¥ .
7
d(neticl) e /s a(xi+2) d /3
d=v (ﬂ_min(a-‘rj,k/)) d=1(3)
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3.2 Relations between theta functions

It is easy to see that the second sum is 3%, if i = 0 (mod 3) and v = +1, and 0 otherwise. For the
first sum, we use again the chinese remainder theorem. Let m, n such that mm*7 4+ nc’ = 1. We
replace d modulo 7%/ ¢’ by d = dymn®™? + daonc’, where dy varies modulo ¢/, and do modulo

7€t7. Then (%)3 = (%)3 (%)3 and

> G-z oz (3

d(w€ticl) dg (w€17)
d=v (wmi“(5+j7k/)) do=v (Wmin(erj,k/))

The first sum is equal to ¢(c’) if ¢ is a cube and to 0 otherwise. The second sum depends on £’. If
k' = 0, i.e. in the case (ii), it is ¢(7°77) if j = 0 (mod 3) and 0 otherwise. If ¥’ > 0, i.e. in the
case (i) with k' = k, itis (%) N ()max(EHi=k0),

Proof of (iii) and (iv). With the same choice of k as above, we have, for a € {0, £1},

d a+3d
> (5 - X (%)
d(A\2neticl) d(w€ticl)

d=a (3) ad-3d=yv (xmin(e+3,k")
P +3d= ( etj )

As above, let m, n, such that mn®t7 +nc’ = 1 and replace d by dymn®t7 +danc’, with d; modulo
¢ and dy modulo 7€1J. Then

d a+ 3dymmcti o + 3dand
> (G- oz () (S
3 3 3

d(\2neticl) dy (C/) do (n€t+7)
d=a (3 — min(e+7,k’
d=v (;k)w at3dy=o (mn(HIRD)
d1 d2
-Y (%)« T (%)
3 j 3
di () dg (wet+7)
do=v (ﬂ_min(a-&-j,k/))
We conclude the proof of (iii) and (iv) as we concluded the proof of (i) and (ii). ]

Let f € R be an integer and let x be a primitive character modulo f. The Dirichlet series
associated to x is

sy —1
Lix,s) =[] (1= x(mN(m@)™) "
ﬂXf
This series has no pole in R(s) > 0 if x is not trivial. If y = 1, then (, s) = (x(s) has a pole at
s = 1 with residue a.

Lemma 3.8. Let x be a character with conductor f, let g € R and letn € Z, n > 1. Then

"ns—n — " (7 r)ns)
Z X(Cn)/\/'(cn)—s go(c”): LL(X > ) H{ 1-x ( )N( ) }

c=1(3) (x*,ns —n+1) 1 — x"(m) N (mr)n—1-ns)

god(c, fg)=1 g
In particular,
o N(m) : n __
Res,_111/n Z X(E) N ()5 () | = { 7@ [njpg oz i X = 1,
c=1(3) 0 otherwise.
ged(e, fg)=1
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3.2 Relations between theta functions

Proof. Since we take the sum over the ¢ = 1 (mod 3), we can write themas ¢ = > [[ 7",
T # A, w being primary, i.e. # =1 (mod 3). Then

Yo XN el = TT D x@™™ N ()= p(x™)

c=1(3) >0
cedle f )1 ™[ fg™=

= Wi(m) - 1) TN (ryrm(=s) U 1 — X" ()N (m)r—1=ns
ngg 1+ N(r %X( )N (7) Wl}}g{ 1_ Xn(W)N(Tr)n(l—s) }

= L(x",ns —n) L(x",ns —n+1)"" || {

1 — ()N ()"
e i

1— Xn(ﬁ)./\/’(ﬂ)n—l—ns

If x™ = 1, then

Res,—141/n (L(X”, ns —n) L(x",ns —n+1)71 H { |

7lg

S aesd)

s (I T )

ﬂ/rf mlg
Cp(ins —n 1—N(m)r—ns ! N(m
= Ress:1+1/n <() H ( 2717713 — H ( ) ]
Ce(ns —n+1) -0 11— N(m) nGe(2) 1o N(m) +1
O
Lemma 3.9. Let 5 € {0,+1}. Then
Y N =1
u==+1 >0
uA3=4 (3)
Proof. 1f 8 = 0, the left hand side is equal to
Y NN =2 Zi—1 =1
; — 3 ’
u==1i>1 >0
and if § = %1, it is equal to
)I)IUNREE
u=0 =0
and the lemma is proved. O

3.2.2 Scalar product of theta functions

As in Section , we still work with the group I') (wh) for a fixed integer h > 1. Recall that
to any given parameter { = (¢,v) with 0 < ¢ < h and v € Py (defined in (3.2.1))) correspond the
four theta functions

95 s 9_5 s 935 and 9% s
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3.2 Relations between theta functions

which were defined in (3.2.3)) and (3.2.4). The lattice corresponding to any of these four functions
only depends on ¢; we write it Ay, and recall that A, = 3rMax(0.h=20) 1 relation to this, we
define

M(¢) = Max(0,h —2¢) and m(¢) =min(¢,h — {). (3.2.7)

We are now able to work out the scalar product of two theta functions, from the general formula

We shall deal with the following exponential sums:

2

sy =" <x ”W_ 1)3 and o)=Y <m7r_m>3. (3.2.8)

z () z ()

Then, defining the characters 2 = (%), and x3 = (%), one has

™ w/3°

t(v) = <E>2J(X37X3) + (E>2 (3) J(x3, x3X2),

™/2

where J(x, 1) is the Jacobi sum

TO6e) =Y x(@) (e —1). (32.9)

z ()

Proposition 3.3. Let £ = ({,v) be given. Then the functions 0¢ and 02 are equal. Moreover, if
m = m(¢) and M = M () are defined by (3.2.7), then

2 @ N (m)i+1 ep
el = 36,@) Mo 1 re=o

|2 = 2@ N (m)yM=m=t/3+1 [ N () — N (7r)A-m)/3
I6ell” = 3¢k(2)  N(m)2-1 N3 1

. {éR ((2),t(1)) if£=0 (mod 3) )
FWN(m) = 1) +R((4),s(1)) if€£0 (mod 3)

ifl1<l<h—1,

6% N(ﬂ')l_l—h/g-‘

16l = 3Ce(2) N(m) +1

if ¢ =h.

Proof. Denote simply by A the lattice A, associated to any of the four theta functions correspond-
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3.2 Relations between theta functions

ing to £. The formula (3.1.6)) of Section[3.1.2] gives then

(Be, 6¢) ResZN 3 n(e (1)) <Z Z) (-15 (1))) (3.2.10)

d(Ac)

(eD)(Ea)(Let)er

oomrayver 3 ({90 () 6)

(3.2.11)

N (R [ [T

(3.2.12)

Recall that T = (§1). Since TTT~' = T, we already have [|0¢|| = [|f]|. It remains to show
that 6¢ and 6} are proportional, what we shall prove by the Cauchy-Schwarz criterion, by proving

that (6¢,0:) = (O¢, 9’5>, i.e. by proving that (3.2.10) = (3.2.11). By Lemma this equality is
equivalent to the equality

Res 3 N((0) Y (5), = Res IR (5), (3.2.13)

d(Ac) =1 (mod 3) d(Ac)

c
c=0 (3)

where (x), as in Lemma(3.6] means that
- ¢c#d (mod m),if £ =0,

- ¢=0 (mod 7%) and en ¢ — dv = —vagy (mod 7™MEA=0) if 1 < £ < h.

We start with the case £ = 0. We have to prove that

Ressz4/3(c%N<c>—s > (5),) ~Reseus( X w0 X (5),)

d (3nhe) c=1(3) d (3nhe)
d=1(3) d=-1(3)
dZc (m) d#c (7)

For a given ¢ = 1 (mod 3) we have

SE-TE-Z 6@ o

d (3nhe) d(3nhe) d (3nhe)
d=—1(3) d=—1(3) d=—1(3)
d#e () d=c (m)

Write ¢ = 7/¢/ with ged(¢/,7) = 1. Then, according to Lemma about Gauf} sums, this

expression is not 0 only if ¢ is a cube, in which case we obtain
. c 5
Ot (5) ).

7

. Thus if ¢ is a cube,
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3.2 Relations between theta functions

Z { =0 N(ﬂ' (ph(ﬂ'j) it; >0
1 e

d(3whe) N(m N ) ifj =0

d=—1(3)

dZc (m)

TP I YN (r) —1) ifj=0 (mod 3),
otherwise.

The same argument holds fora ¢ = 0 (mod 3). We deduce that the equality (3.2.13)) is equivalent
to

Res( Y X% Z NN () MO N ()57 (N ) = 1)

ue{£1} 21 j20c=1(

= Res,_ 4/3< Z Z N ( )N(w)h+3j—1(j\/(7r)—1)>.

j20c=1(3)

That this equality holds comes from Lemma[3.9] In particular, we proceed with the evaluation of
the right side of the last equation, and we obtain that

<eg,9g>—Ress_4/3<N<w>h W=D Y 3 Nl >N<7r>3f)
e

ZN(W)h_lReSs—4/3< > N(C3)_sso(c3)> Wi(m) = 1) Y N(m)™

e=1(3) >0
(e,m)=1
Lemmal[3.§| finally gives
« N( )h—i—l
(Oe, ) = :
3Ck(2) N(m) +1

This concludes the proof of Proposition[3.3]in the case ¢ = 0.

For the case ¢ # 0, we have seen in (3.2.13) that the following equality has to be proven:

Res Z/ N((c)~® Z* (5)3 = Res Zl N((e)~® Z* <§)3,
d(Ac) ¢ (A

CES(B) c=1 (mod 3) d C)

where () means that ¢ = 0 (mod 7) and e~ — dv = —vag (mod 7™"¢h=0) We replace

the last condition by introducing the sum over the x in (R/7™R)™ satisfying the same condition,
and then summing over the d’s congruent to z modulo 7. Thus, our claim is that the following
equality holds:

R T3 M0 5 (3)) R X3 w0 3 (5))

) c¢=0(3) d (37Mc) ) c=1(3 d(3nMc)
c=0 (nf) d=1(3) c=0 (rf) d=—-1(3)

Z =zv—zv (7M) d=x (™) ﬂ_—Z:z]/ zv (M) d=zx (™)
(3.2.15)
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3.2 Relations between theta functions

Lemmal3.7] about GauB sums requires to know if m = min(¢,h — ¢) = 0 or not. Since we
assume ¢ # 0, the only possibility is ¢ = h, therefore we shall treat both cases separately. Notice
that ord,(c) + max(0,h — 2¢) > ¢ + max(¢,h — ¢) — ¢ > min(¢,h — £). Let us first assume
1 <4< h—1. Then by Lemma[3.§] is equivalent to

Res5_4/3< YTY VY 3 N (uN3imd 3) =5 o (c3) (”?)3N(7T)M+j—m/v(x)3i>

]
x (™) ue{xl} =1 j>¢ o e=1(3)
uX3igi—€c3=gy—7zv (7 M)

= Ressz4/3< ZX Z Z N (7)) P p(cd) (£>3 N(W)M+j_m) )

7
z(mm) j=20 c=1(3)

ri—€c3=gv—7V (£ ™M)
This equality holds, by Lemmaﬂ 3.9, and we now compute the norm of 6. Remark that for j big
enough, i.e. j > ¢ + m, then the condition 7/ ~*c? = 2zv — TV (mod 7™) becomes 22 = 1

(mod 7™), but for the remaining 5’s,i.e. £ < j < £+m — 1, it becomes 22> = 1 (mod 7/~*) and
S =v(z —T)r U9 (mod 7™~ U=Y). This leads to

l+m—1

(0c, b¢) :ReSs4/3< Z Z S NI (e )<7rj>3/\/(7f)M+j_m

x () c=1 (3), ged(e,m)=1
@2=1(n=0) Bz=zv—zv (zm—(I—0)

F YT T N (S )

mJ
J2ltm @ (xm)  e=1(3)
z2=1 (xm) (c,m)=1)

Notice that the fact that we assume ¢ # h ensures m = min(¢, h — ¢) > 1, so that the first sum
is not empty. To evaluate the inner sum of the first term, we remove the congruence condition
introducing a character sum. More precisely, we have

ST N (2)

i
z (7™) c=1(3), ged(e,m)=1
2221 (20 —4) B=gv—zv (xm— (1))

= ( —(=0) ) Z Z Z ((z —T)ve*) N(ric®) ™% p(c?) ( x.)g.

i
x (mM) m—(j—£)) c¢=1(3)
z2=1 (Trj_e) X (71' ) ged(e,m)=1

In applying Lemma we see that, taking the residue at s = %, only cubic characters will give a
non trivial contribution. We thus obtain

o N(m x
0609 =gy W 7V (X S e ()

Jl+m @ (=)

z2=1(7™M)

l+m—1 _ « ‘
S (o) T Y wele-mN P (5))
=t 2@y (am—(i—0)

z2=1 (nd—4) x3=1
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3.2 Relations between theta functions

The only cubic characters modulo 7~ U~ are the powers of the cubic Legendre symbol modulo
7. But for £ + 1 < j < £+ m — 1, the condition > = 1 (77~¢) implies  — T = 0 (), thus all
terms x (v(z — T)) with x # 1 vanish. We isolate the term corresponding to j = ¢ and obtain

o N () x
e.08) =32 35 My -1 < > X M@ ()

j=>l4m (™)

z2=1(x™M)

Feem e o () - (7)) G

(m™)

- z()N<> > ()

=011 @ (xm)
! 22=1(xi—t)
In the first term, only x = 1 and z = —1 contribute; in the second term, the dependence is in x

(mod 7). Taking into account all these considerations, we now conclude that

a N(m ‘
060 = 55 3y 1V (2 2

j=l+m
RSV vt G Y (o Y (e
+ N N(m)™= +|(————
N(r)—1 ()" 9%; 3 T ; T ;
£— LM f ()L ;
+ Y M N N o).
j=t+1

For m > 2, the third sum is not empty, and takes the value
) N(W)I—Z/?) (1 _ N(W)(l—m)/S)
W (m) =) NV (m)/8—1)
Since this expression is 0 for m = 1, we do not need to specify whether m > 2 or not. This proves

Proposition[3.3]if 1 < ¢ < h — 1, and it remains to treat the case £ = h, in which the equality to
be shown is

Res$4/3( _ZO:(B) N(e)™® % <;)3> :Res54/3< ;3 N(e)™ %;) (2)3)

c=0 (nh) d=1(3) c=0 (zh) d=—-1(3)

From Lemma[3.8] this equality is equivalent to

Ress:4/3< Z Z Z Z N33 c3) 5o (c )(p(7r3j)N()\)3i>

u==x1i>1 3j>h c= 1(3

(e,m)=

—Res,ys( 330 NI (o) ).

3j2h c=1(3)
(e,m)=1
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3.2 Relations between theta functions

This is clear from Lemma[3.9] and thus we obtain

o« N (r) _ ;
e 06 = 55,@) Nim 1 2 V0o
o N(@) -1 L a N(@)ms
76@ Nm+12= N7 = 5e s Nm T

O]

Proposition 3.4. Let £ = (¢,v). Then if { = 0 or if £ = h, the four theta functions associated to £
are equal.

Proof. We already saw that 0 = 02 in Proposition It remains to show that for £ = 0 or
0 = h,0n,¢ = Oa¢, for any o, an € {£1,3}. For that purpose, we shall show that the expres-
sion (O, ¢, a,e) is independent of cy and ap. Let us start with £ = 0. Then, using the same
decomposition of the Gaufl sum as in (3.2.14) we obtain by Lemma[3.7]that

(Oag, Ope) ZReSs4/3< Z NCREDY (2)3)

c=az—aq (3) d (37he)

dage (v)

:Res54/3< > > Z N @A) o(c*) N (V)

e{+1 120
“ { }11)\37'—(12 —aq (3)

{0 () Wi - 5 (H57) wimrenr ).

=0 j=0

Lemma shows the independence in a;; and ap. Similarly, in the case ¢ = h, we have

O lue) =Ress X Mo X (5))

c=ag—aq (3) d (3c)
=0 (xh) d=1(3)
:Ressz4/3< Z Z Z Z N (u\33r37)=s (3)90(7r3j)/\/(>\)3i>.
we{=1} i>0 35>h c=1(3)

uNdi=ag—aq (3)

Again, Lemma[3.9]allows us to finish the proof of Proposition[3.4] O

Proposition 3.5. Let 1 < ¢ < h — 1, and let m(¢) and M ({) be defined as in (3.2.7) p. Let
ay, a0 € {£1,3} and let vy, vo € Py. Then
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3.2 Relations between theta functions

3¢k(2) N ()™= M= (1) = 1) (B menns Oimtny) =

2«

Q

V)

(2120), s ((arvn) Lagen) + (222)2 5(arvi(azrs) ™) if£=1 (mod 3)
(21)2 5 ((anvn) Laamn) + (222), s(aqvi(agrs) ™) if€=—1 (mod 3)

N(m) =1+ 2R ((A2), t (nai(reaz)™)) if{=0 (mod 3)

¥ (W): ((W): N ()3 - 1) _1<N(7r) — N ()t (W)fj .

Here, § is equal to 1 lf(o‘l”l )2 = (%)2 and 6 = 0 otherwise.

Corollary 3.1. Let { be fixed and letvj, j = 1, ..., 6, be some elements of Py such that (%)3 (%)2 =+
(ﬁ)3 (%)2 ifi # j or, equivalently, {v;};=1,. ¢ is a set of representative of

™

{z € R, (x,7) = 1}/ker (¢),

where ¢(x) = (ﬁ)g (%)2 Then 0., , ... ,0.4,, is a generator system of the space generated by

s

{971.2,,,9,7,2,,,9371.51, NS 'Pe}.

Proof. (of Proposition[3.5)
Let1 < ¢ < h—1befixed. Let & = (¢,11 and & = (4, 12); recall that the lattice associated to
both cusps (a17fv1) ! and (agmfve)~tis A = Ay = 37M R. By Lemma

(Oarers Oone,) = Ress4/3< Z, N(e)™ Z (;)3)

c=ag—aq (3) d(Ac)
c=0 (nf) _d=1 (3) .
dagry—dajv1=-5 (7™)
s

e TS e s ()

in(¢,h—¢ c=ag—aq (3 d (Ac)
v (Wmm( >) CEQO (77%)( ) d=1(3)

%Ewagug—f&lul (m™m) d=z ()
)

Since we assume 1 < ¢ < h — 1, it holds m = min(¢,h — £) > 1; in particular, we can use
Lemmal[3.8] and evaluate the inner sum by

<9041€1 ) 90c2§2> =

Ress4/3< Z >y oy Y N(Ariet) s e )(;)3N(7T)M_m+j/\/'()\)3i>.

m +1 i>0 >0 c=1(3)
z (™) uef } Az al(d)] o
uA3igd— Zc3—aca21/2 ZTaqvy (7)

For j big enough, i.e. j > £ + m, the condition u\377~¢¢c® = rasvy — Tayv; (1) becomes
22 = oquiagiis (mod ™), but for £ < j < £ +m — 1, it becomes 22 = oy anrz (mod m—¢)
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3.2 Relations between theta functions

and uN¥c® = 7= U=0 (zagry — Tayvy) (mod 7~ U=9). According to this, we split the sum
over the j’s and obtain

N(W)m_M<9a17TZV1 ) 90417r21/2> = Ress:4/3 <

3 I Y N IE) T () (%) N () N ()3
(j<lhm—1 = (x™)  u=%1 _ >0 c=1(3) s

z2=aqvagry (ri—F) uA3iEa2—afl'(:’?) ) (c,m)=1 .
ur3icB=x—(=0) (zaguy—Tajuy) (xm—(1=0))

x i x , y
3i,_5 3\—s 3 all i 31
XY LTS N el () M),
ji=m-+L x (7) u==1 - @20 c=1(3)
z2=aqviagvy (M) urdi=ag—aq (3) (c,7)=1

We replace the congruence condition over the ¢’s by the introduction of a characters sum; more
precisely,

E N (U371 3) 7 ()
c=1(3)
(c,m)=1
w3t C3ETF7(J‘7[) (zagrg—Taqvy) (7M™ (3—2) )

= (ﬂm*(jfg)) - Z Z X (u)\3ic37r*(j*£) (xagry — Ealyl)) N (uX377 3) 75 ().

X (ﬂ-mf(jff)) c=1(3)

(c,m)=1

By Lemma(3.9, only cubic characters contribute non trivially, but the only cubic characters modulo
7=0=0) are the powers of the cubic Legendre symbol. Therefore, we apply Lemma with
g = m and with, either f = 1 or f = «. Thus

N(ﬂ-)miM<9a17r£V179a1ﬂ'eug> =
a N (r) ( Gy ! y
@\
GORCESI WP N G BN VD DR DR

x3=1 z2=a v agvy (I =) u3l=ag—aq (3)

X (Wﬂ_(j_@ (zagry — falul)) N (uX3igd)—1/3 (i)?)

7
X C x€x
+ E g E E N (uX3igd)=1/3 (7) )
T
jEmtl e G™ u=xl 0 3
w?=aqviagry (7) uX3i=ag—ay (3)

Since we deal only with cubic characters we have x(u\3) = 1, and by Lemma we are left
with
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3.2 Relations between theta functions

e _ o N x i3 (&
N(ﬂ') M<9a1§1,9a2§2> - 3Ck(2) N(ﬂ_) +1 <J;re ac(wzm) N(TF) 3 (ﬂj){}

m25a1 viagug ()

POY ()T Y (M) i (5)).

7
L<j<m—1+4 x (xm=(i—0)) x (7M)

x3=1 12Ea1u1a2u2 (77.7‘*[)

(3.2.16)

We remark that except for the term corresponding to j = ¢, all the other terms vanish if a1 a5
is not a square modulo 7. Assuming that ayvianv; = y2 (mod 7™) and because Y is defined
modulo 7, we have

ZX TOlVy — TO1V] ( x ) ZX 7( ) x2a21/2 — a1l ( x )
i X mi—t i /3 ) XTI X mi—t /3

z2=aqviagvy (w3 —%) z2=ajviagvy (wd—%)

Writing = 4y + 2’77~ with 2/ modulo 7™~ (=0 and because x is defined modulo 7, we have
X(@) = X(W)s (&), = (&%), and 2%agvy — anv = 2y2'7 ¢ (mod 7). Taking the sum
over 2/ modulo 7™~ (—%) shows that x has to be trivial whenever £ + 1 < j < £ + m — 1. The

resulting term in (3.2.16) for one of those j’s is then

N(ﬂ)_j/fﬂgp(ﬂ.m—(j—l))*l ZX (i)g . (a2y2m>j N ()1-i/3

T
x ()
=ajvagvg (v F)

22
and, under the condition m > 2, the sum over £ + 1 < j < £+ m — 1 in (3.2.16) makes sense,
and, if ajviaars = y? (mod 7™), it is given by

¢ _ . m-1 _ -1
ovgarry \ ' N (m) =43 Qo] (1—m)/3 QU100 1/3
() Ny (1 (), v ) () e -

(3.2.17)
Since this expression vanishes for m = 1, we do not need to specify whether m > 2 or not. (Recall

that our assumption on ¢ implies m > 1 always.) In (3.2.16)), it remains to treat the sum over the
j’s bigger than ¢ + m and to treat the single term corresponding to j = ¢. The former is equal to

—\ {+m-1 ol -1
0 (ozmozm) N () A=t=m)/3 <<‘11V1‘12V2> N ()3 - 1) , (3.2.18)
3 3

s s

and the latter is given by
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3.2 Relations between theta functions

- (Z:X X(zagre — fozlyl)/\/(ﬂ)*fﬁ (%)3

X ()

:(%E:;PTZ) ./\/‘(Tr)*é/3 N(ﬂ')"“l ZX (1 4 (xOQVQ ;falVl )3 i <550421/2 ;50617/1 >3> (%)3

z ()

B N (m)~/3 X [T x (2 vy — 2oy x (22 agyy — 220101
ICESTIPINEIRDY ( ™ >3 i < ™ >3
z () z () z ()
(“;”1 )3 s (arranry) + (O‘Qﬁ”2 )3 s(aqriagrn)  if£=1 (mod 3)
D A P— " o
:(N(ﬂ') — 1) ( ;1)3 S (alylagyg) + ( 12)5 S(Oélylang) if¢ =-1 (mod 3)
N(m) — 1—1—23‘8((”16”)3 t(rionaas)) if{=0 (mod 3)

(3.2.19)

We conclude the proof of the Proposition[3.5|by putting together (3.2.17), (3.2.18) and (3.2.19) in
the equation (3.2.16). O

Proposition 3.6. Let {1 < {3 and let vy € Py, and v € Py,. Then

o N(W)M(fz)-i-l—m(fl)—ﬁl/i% 1 0
3¢(2) N(m)+1 (?)3 '

Proof. Assume first that /1 > 0. Let m = min(¢1,h — ¢1) and M = Max(0,h — 2¢3). By
Lemma[3.6, we have

<07T[11/1707T£2V2> =

O > JIP el o )

(ﬂm) c=0(3) d (/\2+i7‘,]\/1+él )
ordy (¢)=£1 d=1(3)
en—l1 Ezu27r22721 —zvy (7M) d=z (ﬂ,min(Zl ,h—Zl))

We use Lemma[3.7]and, introducing a characters sum, this is equal to

./\/’(7T)M—m—€1/3ResS:4/3 ( Z ( ) Z Z Z N(UA3i63)_5(p(c3)N(A)3i)
x (™) u=F1yA3¢=0 (3 c= 1(3)
(em)=

u)\37'c3511/27re2 él —zvq (7™)

= N (m)M—m=t/3p( Z Res,_ 4/3<Z ( ) > > X

(7m) u=+1y\3i=0 (3) =10)

ﬂ-'m
(c,m)=1

X x (u)\3icg(xugﬂé2_el —EV1)> N(u)\sic3)sg0(63)/\/(/\)3i>.

By Lemma[3.8]and Lemma[3.9] we obtain
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3.2 Relations between theta functions

1 N(F)M—2m—£1/3+2
3C(2) N(m)?2-1

4y

Z ZX (%)3 Y($V2W£2_£1 — Tuy)

X (™) g ()
x3=1

1 N(W>M72mf£1/3+2

“3,@)  N@E-1 Y S (), e

X(ﬂm) z ()
X 3=1

NWM—m—El/S—i-l x 7\ % ra\L o
:34,3(2) (/\)f(ﬂ)Q—l (Z )+ () B (7:

z () z ()

1 N(W)M—m—€1/3+1 v\ O
T 3G(2) N(m)+1 (?)

If /1 = 0, then

/ s c
(97TZ1 V1 7971"62 1/2> = Re88:4/3 ( Z N(C) Z 3

¢=0(3) d(A2+igMcly
ordr (¢)=0 d=1(3)
M
S WP CRRONEDYRY
c=0 (3)
ordyr (¢)=0

c cube

= N (m)MRes,_ 4/3< Z Z Z N(uX¥c

u==1 u)\SL:()(g) c=1(3)

(c,m)=1

1 N’(ﬂ.)M—i—l
3CR)N(@) +1°
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3.3 Some conclusions

3.3 Some conclusions

Recall that the space of theta functions has been defined at p.[88] and we later simplified the no-
tations at p.[01] From Proposition[3.3] Proposition[3.4] and Proposition[3.5] of the previous section,
one deduces that

dim (@ (Trh)) <246(h—1). 3.3.1)
In the special case h = 1, one verifies by Proposition[3.3] Proposition[3.6] and the Cauchy-
Schwarz criterion that 61 and 6, are linearly dependent. This means that
dim (O (r)) = 1. (3.3.2)
and a generator is the cubic theta function 63(w) defined in (3.1.4) of Section|3.1.2]

We now study the cases h = 2 and h = 3.We define v;, j = 1,...,6, such that v; = 1
(mod 3) and

z | (3 | (B
141 1 1
12 w 1
vy | w? 1
V4 1 —1
Vs w —1
v | w? -1

Define the constant c¢(¢) = (3¢(2))'/2 N(W)%(m(e)_M(é)_lM/?’) VN () + 1. We make a linear
combination of the theta functions as follows:
h.

8° = ¢(0) 6y, and 0" =c(h)#f

™

Forl1 </<h—-1,

0t = C((f) (Oen, 4 Oty + Oty + Orey, + 00, + 020, ),
04 = C((f) (Orey, + W0ty + WOty + Oty + w00, + WOt
05 = 0(6[) (Ot + WOty + w0ty + 0,0, + wWOie,. +w?0,0,,.)
0" = 6(65) (Ot + Oty + Oy — Oty — Oty — 0,0, )
0% = 6(66) (Ot + W20ty + WOty — 00, — W00, — w05
05 = ‘36@ (Ot + Wby, + w00, — 00y — wWOe, — w200, -

Write n = (N(7) — 1)~ and J = n J(x3, x2), according to (3.2.9). For the case h = 2, we
need the table of scalar products between theta functions for £ = 1, and in the case h = 3, we need
the tables corresponding to ¢ = 1 and ¢ = 2; in both cases, one remarks that m(¢) = 1. We obtain
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3.3 Some conclusions

() 01 0 |03 0; ZG
01 | nN(m)/3 -n 0 0 0 0
03 -n nN (m)?/3 0 0 0 0
03 0 0 n 0 0 0
0} 0 0 0 | nN(m)l/3 J(m) 0
03 0 0 0 J(r) nN(m)23 | 0
0 0 0 0 0 0 n

and

() 07 03 03 i 0 0
02 | nN (T3] 0 —n 0 0 0
03 0 n 0 0 0 0
02 —n 0 | nN(m)'/3 0 0 0
02 0 nN (7)?/3 0 J ()
02 0 0 n 0
02 0 0 J(T) 0 | nN(m)/3

From Proposition one sees that #° belongs to the space spanned by 61 and 6. More precisely,

16° — N(m) /361 — N () 1263 = 0,

We also remark that in both cases h = 2 or h = 3, #" belongs to the space spanned by 9{‘_1, 93_1
and 9:'}_1. More precisely,

16 = N (m)~1/201 - 63]| = 0,
16° = N () ~1/36F — N () /363 = 0.
Moreover, from Proposition[3.6]

g [NET iD= @),

1977 X
0 otherwise.

Remark 3.2. Since |J(7)|?> = n? N (r), by the Cauchy-Schwarz criterion, we deduce that 0} and
0% are proportional, as well as 02 and 0%.

Actually, the remaining functions are independent, and after some linear combinations of
them, one can show that

Proposition 3.7. The space © (7r2) is of dimension 5; an orthonomal basis of it is given by

B(2) = {V/N(m) = 1N(@) 001, /N(x)—163,
N(m) = 1N (@) Vo0r,  VN(m)—165, N(m) Y00l +N(n)'/Cal)

112



3.3 Some conclusions

Proposition 3.8. The space © (7r3) is of dimension 10; an orthonomal basis of it is given by

B3) = {VN(m) —1N(@)~ 06,  VN(r)-16;,
VN(m) = 1IN (@0 0p, VN - 16,
VN TN, N 168,
N(@m)~0 0l + N(m)V0 03, /N(x) —163
N(m) ™8 63 + N(m)Y3 68 N(m) ™Y 0} + A () 0 — N (m)V° 62}

The results of Section[3.2.2]provide enough information to achieve an orthonormal basis of the
space © (7Th) for any h > 1; this is the subject for a future work, as well as an interpretation, as
it was shown in Chapter[I] of this results as an explicit constant in the asymptotic behaviour of the
cubic Kloosterman sums K3(m,n, ¢).
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4 Cancellation of S(aX"> + bX, ¢), for ¢
allmost prime

In this chapter, we work with the cubic exponential sum

3
S(aX?®+bX,c) = Ze <a:17—|—bx) ,

C
z (c)

where e(z) = exp(2im(Try(2)) = exp(2im(z + Z)), and z runs through a representative set
of R/cR. We consider this sum as a function of the parameter ¢, with ¢ belonging to the ring of
integers R of the field k.

We have already broached the horizontal Sato-Tate conjecture for the cubic exponential sums
S(aX?3 + bX, c) in the Introduction. This conjecture has its origins in the parallel which can be
made beetwen the cubic exponential sums S(aX? + bX,c) with b # 0 and the elliptic curves
without complex multiplication, for which the Sato-Tate conjecture has been recently proved, un-
der some mild additional condition. We find also this similarity beetwen cubic exponential sums
with b = 0 and elliptic curves with complex multiplication, where uniform distribution has been
proved in both cases. For cubic exponential sums with b = 0, it is a consequence of the resolution
by Heath-Brown and Patterson of the Kummer conjecture about cubic GauB3 sums (see [[15]]).

In our situation, i.e. when b # 0, the cubic Gaul} sums are "replaced" by cubic Kloosterman
sums, what is far from being insignificant, since we do not know how to make appear moments of
order bigger than one for cubic Kloosterman sums, while this is achieved easily for cubic Gauss
sums. In this sense, the cubic Kloosterman sums K3(m, n, ¢), or equivalently the cubic exponen-
tila sums S(aX? + bX,¢), are more difficult to handle. The belief in the horizontal Sato-Tate
conjecture relies mostly on the vertical Sato-Tate conjecture, which holds, both for the classical
Kloosterman sums K (m, n, ¢) and for the cubic exponential sums (see Livné [30] and Katz [18]).

In all these aspects, we may consider S(aX? + bX, c) and K (m, n, c) as being similar one to
the other, and expect that the recent results of Fouvry and Michel (see [11]) about the distribution
of the signs of Kloosterman sums over almost prime integers can be adapted to cubic exponen-
tial sums. This problem is within reach of what can be achieved by combining analytic number
theoretic methods with the theory of automorphic forms and with algebraic geometric methods.
More precisely, we shall present some sieve argument in Section|4.2] and apply it to the sums
S(aX? + bX,c) in Section|4.3] using the essential fact, proved in Section that these sums ac-
tually behave like a remainder term. This allows us to prove the following theorem in Sectionf4.3}

Theorem 4.1. Let g : R — R be a smooth function with compact support in [1,2] and let X > 1.
Then, there exists a constant C(g) depending only on g and a non-negative function h decreasing
to 0 such that, for any 3 < u,
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4 Cancellation of S(aX? + bX, c), for ¢ allmost prime

S S(XP+3X,0)g <N§C)> < Cl(g) 10§X <h(u) L0 (%)) .

wle=> N (m) =X 1/u

The second part of the work is made in Section4.4] where we use the vertical Sato-Tate law to
obtain a lower bound for the sums S(aX? + bX, c):

Theorem 4.2. Let g : R — R be a smooth function with compact support in [1,2] and let X > 1.
Then, there exists a constant C(g), such that, for any 3 < u,

> Iseesaxolo(N2) 2

log X~
mle=N () =X/ 8

We remark here that it is only necessary to prove this for u = 3; the other cases follow at once.
Comparing Theorem4.1I]and Theorem[d.2] we obtain the following result:

Theorem 4.3. Let g : R — R be a smooth function with compact support in [1,2]. Let X > 1.
There exists an effectively computable constant u such that

> S(X3+3X,¢)g <N)((C)> < > |S(X? +3X,¢)| g <N)((C)> .

mle=N(m) 2 X1/ =N (m) =X/

Moreover, for such u,

X
# {N(c) < X : chas less than u prime factors and S(X* + 3X,c) > 0} > Tog X’

# {N(c) < X : chas less than u prime factors and S(X® 4+ 3X,c) < 0} > o X"
og

Theorem is a step towards the expected formula (12) of the introductory chapter of this
thesis. As we mentioned below formula (12) page one should be able to give explicitely the
contribution due to the "theta term", according to the calculations done in Chapter[3} this shall be
done in a future work.

The theory of automorphic forms that we need has been presented in Chapter[2} since this the-
ory started with the fact that the Kubota symbol was a group morphism on some special subgroup
of SLy(Z[w]), all results so far were over the Eisenstein integers, which explains why we do not
work over Z. The particular case where b = 0 is different in many ways of the case b # 0; namely,
the cubic Gaul3 sums are defined by

e = 3 (2), ().

T (C

and, for any rational prime p = 1 (mod 3) splitting as p = 7, 7 in Z[w], they satisfy
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4.1 A non-trivial estimate in average

We do not have such a simple relation for the sums S(a.X? + bX, c) with b # 0.

Finally, it should be pointed out that Theorem[4.2] does not gives a bound dependent on the
parameter u, while Theorem[4.T|does. It is actually possible to improve Theorem[.2]in this sense,
by the use of algebraic geometric methods, and to obtain efficient bounds, leading to some explicit
value of u. For example, in the case of the Kloosterman sums K (m,n, c¢), the value u = 23 has
been obtained in [[L1]], and was latter improved by Sivak in [43] to u = 22, the improvement being
realised in the sieve argument. Therefore, possibilities to improve the accuracy of Theorem.3]
exist, either for the classical Kloosterman sums or for the cubic exponential sums; in the latter
case, this is a work in progress.

4.1 A non-trivial estimate in average

In Chapter[2] and in Chapter[3] we have been working with essential cusps; this was actually only
necessarily in Chapter[3] since Eisenstein series are defined only at essential cusps. In Chapter[2] it
was assumed for simplicity, since, as it was shown in Chapter[I] Poincaré series can be defined at
any cusp.

Let X be a positive real number. Let g : R — R be a given function satisfying

geC™,

g(t) #0 < te1,2]. (4.1.1)

Theorem 4.4. Let m,n € Z[w] — {0}. Then, for any A > 0, there exist some B > 0 such that

K3 m,n,c N(e) _a
Z Z c)1/2 9( X < X log™"* X,
N(d)<x1/2 1og*BX c=0 (d)
ged(d,3)= c=1(3)

where the sum is taken over the primary integers d of Z|w).

Proof. We shall use the results of Chapter[2] There, for a primary integer d, we defined I'; to be
the group generated by I'(d) and —Id. Let o~ ! = (dgl g:%) and 771 = Id. We recall the
convention that o = 7 if they are equivalent modulo I'y, so either o and 7 have to be inequivalent
for any I'y, or they have to be equal. Then for all 7,4, the cusps o~ !(c0) and 77! (00) are two
essential cusps, not I'g-equivalent. Such a choice of o and 7 implies that K, -(m,n, c) is well
defined for any I'y.

Recall that, for d € Z[w] and for a spectral parameter (s,p) € C x Z, we defined in Sec-
tion[2.2.2] of Chapter[2] the quantities

A?‘rl;?n,O'T(dasap) = Z m(g’m) pu(7—7n)’
uEBd(Svp)

where By(s, p) is an orthonormal basis of the intersection of L? (I';\G, ) with the eigenspace of
A of spectral parameter (s, p); similarly, define then for (s, p) € iR x Z,

AignéoT(d S p Z wo'za s, m p) ¢017T(S n p)

gj 6C(Fd)
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4.1 A non-trivial estimate in average

Let f : C — R be the smooth function defined by
_ /\/(mn)l/Q —1/2 1/2
fz)=9g ( N() X N(z) N (v/mn)*/=.

Then f is aradial function with compact support in [./\/'(mn)l/Q/(2X) N(mn)l/Q/X] and || f |l oo <mn
l9ls0 X'/2. We start with Theorem[2.6|of Section[2.2.3|of Chapterl It gives

S (%7) = R ()

= Z Kf(s,p) A% (d,s,p) + Z/ Kf(s,p) A7 (d, s, p) ds.

S,p pEZ

4.1.2)

—
=

From Cauchy-Schwarz we have, for * representing either the discrete case or the continuous case,

A% o (d5,D)| < (Al oo (ds 5:0)) 2 (Alsrr(dy5,0)) 2

We shall have to separate the exceptional and non-exceptional spectrum. For the latter, we use (i)
of Proposition of Chapter [2| for Kf (s, p), and we obtain that the non-exceptional part of the
right hand side of (.1.2) is bounded by

> Kf(s,p) A% (d,s,p) + Z/ K/ (s,p) A5t (d, 5,p) ds

(s,p) pEZ
seiR

< flloo S+ [sD) ™ (14 [p)) P (A%, o (dos.p) P (AS(d,s,p)) "

(s:p)
s€iR

Ff e S / (14 s (14 [p]) ™" (AL, o(d,5,p)) "> (AL (d, s,p))"* ds
PEL

Again, by Cauchy-Schwarz, we obtain the upper bound

1/2 1/2
X1/ Z A0 (s 5,7) 3 Adise  (d,s,p)
S (L IsD (L +Ip])° 2 (1 + [s])e (1+ [p])?
s€iR e
t 1/2 ; 1/2
Acon d S Acon d s,
+ X172 Z/ mmoa ) ds Z/ nnTT P) ds ’
1+’S 1+\p|) 1+‘8‘ 1+|p’)

what is bounded by
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4.1 A non-trivial estimate in average

1/2
Adl%c d787 A%(lméloo' d737
X1/2 Z . mmo'o( p)b +Z/ . ( p)de
g?ﬂg( +lsDe (D> L Sy L+ s (1 + [pD)
1/2
Adisc d s Acont d s,
> Z n,n,TT( p Z/ nnTT p) . dS
2 [T+ s (L+ o) o) (L+ [s)e (1 + [p])
s€iR

By the part (i) of Propostion[2.5|of Chapter 2] we conclude that the non-exceptional part is bounded
by O(X1/2).

For the exceptional spectrum, we still can use the same estimate (i) of Proposition[2.6|of Chap-
ter[2] for Kf(s,p) at s = 1/3, but we have to use the weaker estimate (ii) of Proposition[2.6] of
Chapterl 2| for Kf(s,p) in the remaining exceptional spectrum; as we do not control the expres-
sion A?,‘f% o (d,1/3,0) as the level d varies, we simply remark that the former estimate X —1/3 s
bounded by the latter estimate X'/, and therefore we can keep the theta term with the rest of the

exceptional spectrum. In the same way as above, we obtain

Y KA A )|

(s:p)
0<s<1/3

<l Y X5 (AS (dosp) ' (ASS (d,s,p))

(s,p)
0<s<1/3

1/2 1/2
< X1/2( > XSZA%M(d,s,pQ < > XslA‘,i‘“ﬁTT(d,&ID)) :

(s,p) (s,p)
0<s<1/3 0<s<1/3

Each of both sums can be estimated as

> Xs"A‘iiSC(d,Si70)<<(N,€fi)2> D N(d)*AS(d, 5;,0),

0<s;<1/3 5i<1/3

whenever AV (d)? < X. If such condition is fulfiled, the sum over the i’s is controlled by part (ii)
of Proposition [2.5] of Chapter [2] giving

. X \%
> XTAR(d, 5,0) < (W) 7(d) log? N'(d) < X*1 log? X N(d)~2 7(d),
0<s;<1/3 (d)
the last estimation coming from the fact that we kept the theta term included in the whole excep-

tional spectrum. We conclude that for a given level d and for X big enough, i.e. N'(d)? < X, we
have

ZN”I/Q (N( )) <O <X1/2 + X2 Jog? X N (d)™ QSIT(d)).
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4.2 Sieve argument on Z[w]

With our choice of o and 7, we apply Lemma[2.3] It remains to take the sum over the d’s such
that N'(d) < @, for @ = X/2 log~® X. One obtains finally

Z Z m172 C g <N)§PC)> < X1/2+51 10g2X Z Nz(d§251 (413)

N(<Q ¢ N(d)<@Q

At this point it is useful to remark that contrary to the non metaplectic case, where the maximal
exceptional spectral parameter s; could be 1/2, we do not here to improve on Selberg’s estimate
(compare with (2.3) p. 11 of [11]); actually the value s; = 1/3 corresponding through the Shimura
correspondence to the value s = 2 is already strictly smaller than 1/2. It follows that the sum on
the right hand side of is O (QI_Q/ 3). Finally, with the value of @ that we have chosen, it

is O <X1/2*1/3 log=B(1-2/3) X). We have therefore proved that

K:HTLTLC N(c) 2-B/3
>y SE g<X < X log? B3 x

N(@d)<Q =0
(d)<Q =0 (D

This finishes the proof of the theorem, taking B > 3A + 6. O

Theorem can be interpreted in terms of cubic exponential sums. Let m,n € %Z[w] and let
A, B, cbe in Z[w]. Then, if gcd(A, ¢) = ged(B, ¢) = 1 and if 27mnA + B3 = 0, we have

2
K3(m,n,¢) = S(AX® + BX, ¢) (mc” ) .
3

As c varies, the condition that B should be coprime to ¢ complicates the situation; therefore, we

shall simply make the choice m = n = 1. Our preceding result in this particular case gives:

Corollary 4.1. Let g be a compactly supported smooth function with support in [1,2]. Let X > 1
Then, for any A > 0, there exists B > 0, such that

3
3 3 S +f’/§ 9 <N)((C)> < X log 4 X.

12 c=0(d)
(d)\l};BX c=1(3)

4.2 Sieve argument on Z|w]

In this section, we present a particular sieve argument, the so called crible étrange, developed
by Fouvry and Michel in [11]. It will permit us latter to obtain un upper bound for the sum of
cubic exponential sums having less than a given number of prime factors. Adopting the classical
notations used in sieve theory, the variable z will always be a positive real number. As we work
with the Eisenstein’s integers, we shall denote a prime integer by 7, and any integer by c. The
symbol (a, b) will represent the greatest common divisor, and [a, b] the least common multiple.
First of all, we define

Hn

N(m)<z

Now we consider a totally multiplicative function p on Z[w], satisfying
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4.2 Sieve argument on Z|w]

0< p(m) < A< N(m), for all 7, for some absolute constant A,
)1 4.2.1)
Z plm) log N () =2log X + O(1).
N ()
N(m)<X
By partial summation, such a function p satisfies
Z N ) =2 loglog X + O(1). (4.2.2)

N ()

Then, we consider a sequence of real positive integers A = (a.) cezlw]- Let us define, for any
d € Z|w], the subsequence A4 of A by

Ag={a. € A: c=0 (modd)}.

Then A; = A. The sums of the terms of each sequence .4, is given by

’Ad|: Z A,

ac€Ay

and the quantity we are interested in is

S(A,z) = Z a. = Z Ge.

ac€A-Uy pAx (rle)=(N(m)>=2)

The hypothesis that usually appears concerning the sequence A4 is that the order of each local sum
Ay is determined by p(d), i.e

pld)
Ad = s ¥+ (),
for some Y € R and some term 7(d) behaving like a rest. The situation in which we shall later
need to apply a sieve argument will be more complicated, in the sense that we shall consider the
hypothesis: there exist Y, Z € R such that for any d € Z|w] holds

|Ad| = /f/((dd)) Y — /f/((il)) log N (d) Z + r(d). (4.2.3)

Related to the function p it is convenient to introduce the totally multiplicative function p* defined
on the primes by

as well as the function

p(d) p*(d)~' if d square free,

g(d) =
0 otherwise.
Finally we introduce the sums
Go(X)= ) gld) (4.2.4)
(d,c)=1
N(d)<X
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4.2 Sieve argument on Z[w]

and

Go(X,2)= > g(d) (4.2.5)

d|P(z), (d,c)=1
N(d)<X

We shall denote G1(X) and G1(X, z) by G(X) and G(X, z) respectively. Then

<G(X) ifz<X,
G.(X, 2)
—G(X) ifz> X

The following estimates will be usefull in the sequel:

> g(m) log N(r) =2 log X + O(1). (4.2.6)
N(m)<X

Ge(X,z) = O (log*2) . 4.2.7)

The first estimate is proved using the decomposition g(7) = /’\)/((7;3) + ﬁf(?) g(m), the upper bound

g(m) < ﬁ and (@.2.T)). For the second estimate, one simply notices that

Ge(X,2)< Y gld)=exp| Y 1°g<(1_/<)f((7r7r))>_>

N(d)<z N(m)<z

_ p(m) 1 _
= exp N%@ N ) +0 (N(?T)2> = exp (2loglogz + O(1)),

and one uses (#.2.2).

4.2.1 The Selberg sieve

In this section, we develop the sieve of Fouvry and Michel over the ring of Eisenstein integers
Z|w]; we shall prove the following theorem:

Theorem 4.5. Let D > 1. Let A be a sequence of positive real numbers satisfying the condition

#B2.3) p. for a totally multiplicative function p satisfying @.2.1), and for some Y € R and
Z € R. Then,

S(A,z) <YG(D,2) ' + ZG(D,z)™? Z /)(77*7N(27r)
N(m)<z P (ﬂ-)

Y ),

d|P
N(d)< D2

~—

10gN(7T)G7T< D ,z>

where r(d) is the quantity defined in (H).

122



4.2 Sieve argument on Z|w]

Proof. Selberg’s method is the simplest to implement, and gives very good upper bound. We in-
troduce a sequence of real number (\;)4>; normalised such that \; = 1 and Ay = 0 whenever
dfP(z) or N(d) > D. The parameter D is the support of \; It will be chosen later on, sufficiently
small, to restrict the number of terms in the last sum, so that it behaves like an error term.

From now on, we write P for P(z). We have to find an upper bound for

if (c, P(2)) # 1,
if (¢, P(2)) = 1.

S(A,z) = Z Zac X

(e,P(2))=

Selberg’s observation is that

[\

>0 if(c,P)#1,

DY

d|(c,P) =1 lf(C,P) :1,
and therefore, we get
2
S(.A,Z) < Zac Z Ad = Zac Z Z )‘dl )‘d2

d|(c,P) c di|(c,P) dz2|(c,P)

ST SRVEVED SETED SEVEVE SYAD D

c dl,dz‘P [d1,d2”c dl,dQ c [dl,dgﬂc
= D A My D e =Y Ay Ay [ Ay 4] -
dl,dg‘P [dl,dQHC dl,d2

Using the sieve hypothesis (H ) for |Ajg, 4,)|, we obtain

<3 M A < ([[621”?2]])) y - _/f/(([[ciill:%j])) log/\/'([dl,dz])Z+r([d1,d2],X)> ,

d1,dz
i.e.
_ p([d1, ds)) B p([d1, ds))
S(.A, Z) =Y dzd: m)‘ch /\d2 Zd: d]_,d2 logN([dla dZ]) /\dl )‘dz
=:Q1(N) =:Q2(N) 42.8)
+ Z [di,da], X) Ag, A -
d1,dz
= R(\)

The method used by Fouvry and Michel to minimise S(.A, z) is firstly to minimise ()1()), and
then to transfer the value of X in Q2(). The quantities that we shall meet are
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4.2 Sieve argument on Z[w]

B p(d)
- Ed NG Nad » (4.2.9)
B p(d)
_§d NG log N (d) Ag (4.2.10)

Reformulation of Q1(\) and Q2(\):
Remark that if ab| P, then (a,b) = 1, and by the multipicativity of p we obtain

Aab # 0 = p(ab) = p(a) p(b).
Then,

dy,d pladid:
QN =) M A Aa = YD /\/((d’dz’)) Aad,, Aad,

df,db a
(df,dh)=1
p(a) p(dy) p(dy)
= 2 X Aad; Nad
N (ad! db) 1 ady
d’l,d’2 a 1
(df,d5)=1

As usual, the condition of coprimality is replaced by the introduction of the M&bius function.

I MD WNICE SR

a d,dlb|(d},dj)

p(bdy) p(bd
=22 > ab;d)wl() N

a b di,ds
? p(da) p(da)
= Aabdy Aa
Z Z Z abzdldg) bdy bds
a b d1 do

_ p(a) p(b)? p(dy) p(d2)
- za:zb::u(b) N(abg) %: N(dl) )‘abd1 %: N(dg) >‘abd2
a 2

— Z f\)/((dd)) z(d)? Z Mb),/()[(bb))’ since (a,b) # 1 = 2(ab) = 0.
d bld

This finishes the transformation of Q1 (\). The first lines adapt to Q2(\), taking into account the
apparition of log MV (ad}d}) = log N (a) + log N'(d}) + log N'(d}), and following the same steps

as above, we obtain
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4.2 Sieve argument on Z|w]

a 2
B e i £

a b

p(dz)
+ za:zb::u(b) p( ZN logN bdl abdy ZN 2) abda

+ ZZu(b) p( ZNdl - ZN log N (bd2) Mabd,
a b

and decomposing the log N/(bd;), we get

ZZ# pj(& )log/\f z(ab)? +2ZZM pﬁ\‘; )log/\/() (ab)?

d bld
N D e b o) b
= 2 K@y N @ 3200 gy + 2 3 iy 7D D 2 w07
Y @ X ul e lorN )
d bld
Since all the d’s are square-free, we have
) e\ _yrpeir) _ prd)
! (- %5) %) = vy
In conclusion, we have shown that
d) p*(d
Q1(\) = ; ”w(’;)g ):c(d)2 4.2.11)
and
Q@ =Y"" (/dv) (’g)(j) log N(d) 2(d)? + 2 zd: p (f\l/) (’C’;)(?d) 2(d) ' (d)
d
(4.2.12)
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4.2 Sieve argument on Z[w]

We remark that Q1 (x(d)) is a diagonal quadratic form in z(d).

Optimisation of \ with respect to Q1

Recall that according to (| , in order that z(d) # 0, we need A\gy # 0 and in particular we
need N'(d) < D and d]P P( ). Moreover, one can inverse the formula (4.2.9) giving z(d) in
terms of \;:

p(c) B p(c) p(d')
ZM(C)N(C) m(dc) - ;M(C)N(C) ; N(d/) /\dcd’

C

p(h)
:Z/\/'(h thM 1) Ag = Aa-
h
From this last expression, we shall make appear the term ()1 (). Namely, we have shown that

Ad_zﬂ d’

and in particular, for d = 1, we obtain

oy pld)
1=\ ;u(d) N (d).

Then, by Cauchy-Schwarz, we finally obtain
@ .\
p
1= d d
(o {8 )
2

d) /p(d) p*(d) p
%};u p*(d N(d ) z(d) %};
N(d)<D

z(dd'),

Remark that both hypothesis on p, namely p(d) > 0 and p*(d) > 0 have been used. Now, denoting
by A°P! the value of A\ minimising Q1, we see that it is determined by

oy [ Y A9

apena< P @

what amounts to
-1
Q1 (XY = > ,o*(cil) = G(D,2) (4.2.13)
d|P ()N (d)<D pr(d)

where G(D, z) has been defined in (4.2.4) p. Still, we miss the explicit value of A\°P', or equiv-
alently of the corresponding (d). For it, it suffices to find (d) such that Q1()\) = G(D, z)~!
Writing z(d) = “(ZZ%@ gives x(d)? = '/O\,{((Z%z and Q1(\) = > p’i((dd)) = G(D,z). Thus A"
corresponds to
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4.2 Sieve argument on Z|w]

p*(d)

0 otherwise.

{u(d)/\/(d) G(D,z)~' ifd|P = P(z), N(d) < D,
2P(d) = (4.2.14)

The inversion formula

=Yty B )

d'|P,N(d')<D

gives finally as optimale value of A

)\opt _ Z M(d/) p(d,) M(dd/)N(dd/) G(D,Z)il

! * !
dd'|P,N'(d')<D/N(d) N(d) pr(dd’)

_ -1 A N(d) D
= G(D,>2) 1 Gy (N(d)’ > . (4.2.15)

Before going further, let us prove a usefull property of A°P: Let d € Z[w] be a square-free integer,
d|P = P(z), (d) < D. Then,

GD.z)= Y gd)=) > gd)

d'|P lld (d,d)=l
N(d)<D da'|P
N(@@dH<D
, D
=> 9) D g(d) = g(l)Gq 2
N(d)
l|d (d',d)=1 ld
d'|p
N (d')</DN(1)

Since 37, 9(1) = N(d) p* (d)~*, we obtain from (#.2.13) that

AP < 1L (4.2.16)
Evaluation of Qg (\°P):
Recall that (see equation (4.2.12)))
Q2,1 Q2,2
d) p*(d d) p*(d ,
@0 = ¥ PO g N @atap +2 AL ol @
d d

(4.2.17)

p(d) p(b)
+ ) N—x(d)2 % u(b)N(b) log N (b) .

/

Q2,3

The expression (@.2.13) of A°P" is not easy to handle, but in view of (#.2.17), we shall only need
the expressions z(d) and x*(d) corresponding to A°"'. Denote them by x°P'(d) and 2*°P'(d). Then,
x°PY(d) is given in @.2.14). For x*°P'(d), we remark that x(d) and z*(d) are related as follows:
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4.2 Sieve argument on Z[w]

=3

(d") Naar

ZN > log N () Aaar = ZZN”CZ log N () Adar

w|d’ T qr

:;ﬁ% ZN Mdzh& )(d).

There exist a simple relation between Q21 (A\°") and Q22 (A\°P'). First of all, writing 2/(d) in
terms on x(d) as above, we have

Q22 = ¥ 20 st o)

_ N A p(d) p*(d)
_;N(W) log N () d N(d? x(d) z(wd).

Recall that x(d) is non-zero for d square free, and thus, z(7wd) is non-zero only if (7,d) = 1.
Using now the expression x°P'(d), we obtain

ot () — HEDN(d) ooy
€T P (7Td) - (ﬂ'd) G(Dv )
_ MONENG o o N
T rme@ (P T e
Replacing z°P'(d) in terms of x°P'(7d), we obtain
0 t ) 2 P* (77)
Q22 (A7) = md)
22 ( Z N () : N ()

— oy Ard)ptnd) (7;\‘2 :;;Zd) w(rd)?* 3 log N ()
d T

—Zp Zlog/\f

p(d) p*(d)

d)? log N (d) = —Q21 (AP (4.2.18)
For ()2 3, we start with the inner sum
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4.2 Sieve argument on Z|w]

Replacing the inner sum by the product

(e 26 (- 28) I )

™

gives us

0 N2 i (1 2D (o)
210 7y Vs ) = %Nﬁﬂgw>@ Nm>7mo i)

bld

Inserting this expression in () 3 leads to

p*(d) p(T)
Q2,3(A ZN QN(d) ;p*(ﬂ) log V()
_ p(d) " 2 p*(d) p(m) o - 1o -
—gmawnggmﬂywmlwu
_ e pd) p(d) () N (7) e N
- zd: N(d)? (d) %; (%) log V() + Q2,1 (4.2.19)

Putting together (4.2.17), @.2.18) and @.2.19) gives finally

)\opt _ p opt d)2 Z/\:(ﬂ-) 10gN(7T)
P

p p opt(d)Q

d, r|d d
N(d)gD
p(m) p(d) p*(d) opt; o
=— Z log NV () 5 P (md)
N(m)<z N(m) N(@)<x N(d)
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4.2 Sieve argument on Z[w]

We know that 2°P'(7d)? = N (nd)? p*(wd) =2 G(D, z) 2, when wd| P, i.e. (m,d) = 1, and there-
fore,

QZ()\Opt) _ G(D, z)—2 Z p(ﬂg(.i\r/;gﬂ) log/\/(ﬂ) Z p*((dd))
N(m)<z N(d)g% P
(m,d)=1
G N PON@ (D
=—-G(D,2)* ) )2 log V() Gy (N(w)’ ) (4.2.20)

N(m)<z

End of the proof:
It remains to bring together the relations (4.2.8)), (4.2.13) and (.2.20) to get the estimation of the
main term. To finish the proof of Theorem it remains to deal with the remainder term. Since

|Aal < 1 (see (4.2.16))), we have

IR(AP)] =Y Mgy Aayr ([di,da))| < D Ir([da,da]) [ = > 3% |r(a)]. O

dy,d2 di,d2 d|P
N(d)< D2

4.2.2 Precise estimates

This section deals with the sum G.(X, z) appearing in Theorem Associated to X and z, one
usually defines the parameter

log X
T = .
log =

If necessary, we shall denote 7 by 7x, when X will be changing. For us, the case of interest is
when z = Xl/“, i.e. 7 > 1 fixed.

When p satisfies (@.2.T)) p.[121] it is known that the sum G(X, z) over Z is closely related to
the function o9 defined by

oo (u) = u? if 0 <wu<?2, (4.2.21)

(w2 og(u)) = —2u"3 og(u — 2) if u > 2, (4.2.22)

with o5 required to be continuous at u = 2. It is a non-negative increasing function with lim,,_,»c o2(u) =
1. If we define o3 by

o3(u) = / “ oty t,

then, one proves that
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4.2 Sieve argument on Z|w]

2y
73 (u) = 62—4 W3, ifo<u<2, (4.2.23)
o3 oa(u — 2

oo(u) = 3 0215”) _9 Uz(uu ) uso (4.2.24)
- - v —tor
7(2uz) _ %22u) / ZIC . T (4.225)

t4
U uy u1l

We show that the sum G.(X, z) over Z[w] can also be determined asymptotically by o9. It is
convenient to introduce the analogue of 3 for G.(X, z), namely we define

X
T4 = [ G T
1 t
Lemma 4.1.
X -3
log X Go(X,2) =3T,(X,2) — 2T, —,2z) + O (log™° X) .
V4

Proof. We start with the following simple relation: Let 7w|P(z), 7 fc fixed; then

Go(X,2)= Y gld= > g(d)+ > g(wd')

N(d)<X,d|P(z N(d)<X,d|P(z X >

= Ger(X, 2) + g(7) Ger (/\/')(ir)’ z> .

that we formulate as

Gern(X,2) = Go(X, 2) — g(m) Ger <X), z) . (4.2.26)

We start with the following sum:

Yo 9dlgN(d= Y g(d) )Y logN(n)

N(d)<X,d|P(z) N(d)<X,d|P(z) w|d
(d,c)=1 (d,e)=1

= > lgN(m Y. gld= Y gmlegNm Y. g(d)

N(m)<z N(d)<X\Zid‘P(z> N(m)<z N(@)< 57y dIP)
e (dl):l ”/rc (d,em)=1
X
= Z g(ﬂ') log./\/‘(ﬂ') Gcﬂ— <_/\/’(7r)’ Z> y
N(m)<z

T /e

and from @.2.26) with X /N (7) instead of X, this is equal to
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4.2 Sieve argument on Z[w]

> am) os N Ge (g52) = X 90 e N () Gor (521

N(m)<z N(m)<z

™ c TI'XC

= > g(m) logN(m) > g(d) — D g(m)* log N () > g(d)
N(m)<z N(d)<N)((T),d\P(z) N(m)<z N(d)<7N()fr>2,d\P(z)
"/{/C (d,c)=1 W/{/c (em,d)=1

=Y @ Y g leeN () -

N(d)(;i(),:le(z) N(7r)<min(z, )((d) )

e

Y. 9@ > g(m)logN(m).
N(d)(i)c(),:d\lP(z) N(W)<min(z,\/%>

(m,d)=1

T Ac

(4.2.27)

The first term of the right hand side of is

d>ooogd) > gmlogN(m) + > gld) Y g(x) logN(m).
) X

N(d)<X,d|P(z) N(m)<z N(d)<X,d|P(z)
N(d<X x fe N@zX
(d,c)=1 (d,e)=1

Using (@.2.6), we reorganise it as

2 Y g(d) 10gN)((d) -2 > g(d)log (%) +0 > g

N(d)<X,d|P(z) N(d)<§,d\P(z) N(d)<X,d|P(z)
(d,e)=1 (d,c)=1 (d,e)=1

For the second term of the right hand side of (4.2.27)), we remark that the hypothesis (4.2.1)) implies
that

Zg( log V() < Z logN

In conclusion, (#.2.27)) can be written as

X
Z 9(d) log N'(d) = 2 Z g9(d) IOgm
N(d)<X,d|P(z) N(d)<X,d|P(z)
(d,c)=1 (d,e)=1
(4.2.28)
X
-2 ) gld)log ) T © > g(d)
N(d)<X, d|P(z) N(d)<X, d|P(z)
(d,c)=1 (d,c)=1
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4.2 Sieve argument on Z|w]

The left hand side of (4.2.28)) is equal to

X
Z g(d)log X — Z g(d)log ——.
N(d)<X,d|P(z) N(d)<X,d|P(z) N(d)
(d,c)=1 (d,e)=1

Now by partial summation, we have

Z g(d)log —— / G.(t,z) T.(X, z).
N(d)<X,d|P(z) N
(d,c)=1
We conclude the proof of the lemma using (4.2.7). ]
Proposition 4.1.
log® X
T.(X,2) = Co3(2r) logd 2 + O < o8 T3>
log 2z

with

0_026271_[(1—1)21_[(14- (7))
— : N(m) ; g

Proof. (i) Dividing the equation of Lemma by X log* X and integrating from X to X» gives

/X2 Ge(t,z)dt 5 /X2 T(t,2)dt /X2 T.(t)z,z)dt L0 ( 1

. 4.2.29
x, tlogdt x, tloght X, t log*t log® X1> ( )

As the derivative of Tlg(gtgzt) is tho(;fz tTTOth +» @2:29) becomes
T.(X To(X X2 T (¢ dt 1
C( 272) _ C( laz) _9 / C( /Z72> +O< ) ’ (4230)

log® X log® X1 x, tlogt log X1

which is the analogous of (.2.22) for 3. It remains to prove that the quantity R.(X,z) =
T.(X,z) — C53(27) log® 2 behaves like a rest. Using @2.23), R.(X, ) satisfies

(X (X1, *2 Re(t/2 1
R(SQ,@:R(glz)_Q/ Relt/z,2) dt 0< ) (4231
log® X» log® X1 X, t log*t log X

(ii) From Lemmal4.1|with X = z, one derives the asymptotic formula for 7;.(X) (as in [14] p.
149-151). Some simple modifications have to be done, leading to

T.(X) = Ogl;[ <1 - Nér))Q 1;([(1+g(7r))log3X <1+(’) (IO;X» .

m™AC

(iii) From (ii) we show that R.(X,z) = O (73 %). Assume X < z; then, from (ii) and
from @.2.23)), we have that

R.(X,2) = T.(X, z) — Coz(27) log® X = O(log? X), for X < z. (4.2.32)

Combining (#.2.31) for Xo = X and X; = z with (¢.2.32), one obtains the desired result for the
range z < X < 2%, i.e. for 1 < 7 < 2. An iterative argument on the range of X concludes the
proof of the proposition. O
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4.3 An upper bound for S(aX? + bX, c)

We now give a corollary giving the estimates we shall need later. Note that this results are
usefull for 7 bounded from above.

Corollary 4.2. Let » < X and let T = lﬁ)gg )Z( . Then, for any integer c,

Cu(X.2) = o & 1;[ (1 _ N%ﬂ))z 1} <1 _ j@(&)})_l 03(27) log? 2 (1 L0 <IOT;Z>> ,

m™AC

Ge(X,2) t=a2e 2 1;[ (1 - /\/iﬂ) - 5[ (1 — f;g%) o2(27) ! log™? 2 (1 +0 <10T;z>> .

m™AC

Proof. From Lemmal4.T|and Propositionf. 1] we get

log X Go(X,z) = 3C3(27) log® 2z — 2C75(2(T — 1)) log® 2
+0 (76 log? z2)+0((r— 1)% log? z)+0 (log2 X).

Since 7 > 1, dividing by log X = 7 log z, and using property (4.2.24)) of the function &3, one
obtains

— — _ _1)6
G(X,z2) = 30M log? 2 — 20M log? z + O (7’5 log z + (r=1) log 2z +Tlogz>
T T T
= 30072(27) log? 2 — 20w logZz+ 0O (7’5 logz)
2 5 2 7
=2Coy(27) log? 2+ O (7° log 2) = 2Clog” z O (0’2(27‘) + c logz> .
O
4.3 An upper bound for S(aX? + bX, c)
Recall that the parameter « is
o = Resszlq@(w)(s). (4.3.1)
we shall use the notation
Ce(s) = (s = 1)% (G (9)- (4.3.2)

Our result concerning the cubic exponential sums S(aX? + bX, ¢) is Theorem/.1| stated in
the introduction of this chapter:

Theorem 4.6. Let g : R — R a smooth function with compact support [1,2] and let u; > 0 be
fixed. Then there exists c(g) and a non-negative function h with lim,,_.  », h(u) = 0 such that, for
any u < uq,
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4.3 An upper bound for S(aX? + bX, ¢)

T ()

c€Z[w]
7r|c:>N(7r)2X1/u

Assume that A et B are chosen such that S(A, B, ¢) € R. Recall that

P=Pi)= ][ =~

N(m)<z

A priori, one would consider the sequence

N(@) S(A, B, c)

A = (ac)cez)w) » where a. =g ( e NI

and the sub-sequences

Ag={a.€ A:c=0 (modd)}, definedforanyd € Z[w].

The quantities we are interested in are
|Ag| = Z ac and S(A,z) = Z a. = Z ac -
ac€Ay ac€A-Ur pAx wle=N(m) 22

The problem is that the sign of the elments of the sequence A changes, and a sieve argument
in this case requires to work with the sums of type II

> ad,c dase, (4.3.3)
C

but as it is not known how to make appear these sums, one has to modify them and work with
positive sequences. For it we use the weil upper bound in the case gcd(A, B, ¢) = 1:

IS(A, B, c)| < 2" N (c) /2,

where v(c) is the number of prime factors of ¢ (see [31]], prop. 5.1).
The idea is to transform the sequence A in two positive sequences. The following inequality
holds,

S(A,B,C) Q(c)
23 206 L 90() 5,
Nz

where Q(c) is the number of prime divisors of ¢ counted with multiplicity. It is, contrary to
the function v, €, a totally multiplicative function. Following Fouvry and Michel ([11]]), we
reformulate Theorem[.6] as

Z 9 <N)((C)> <iW + 2Q(C)> _ Z g (N)((C)> 20(e)

c€Z[w] cE€Z[w]
rle=N(m)>al/u mle=N(m)>zl/u

X loglog X
log X (h(“)+o< log X ))

4.34)
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4.3 An upper bound for S(aX? + bX, c)

Define now

N(C) Q(C) 1 N(C) S(AvB7C) 1
g 2 if A\ fc +g +b. ifAfe
be = ( * ) 16 md ot ( X ) Ny / (4.3.5)
0 if Ac 0 if Ale

and according to this define the sequences

B=(b)ecgy and AT =(aF

- )ceZM . (4.3.6)

The quantities we are interested in are

S(AF,z)= > af and S(B,z)= > b

c c
Tle=>N(m)22 Tle=>N(m)22

Let § be the Mellin transform of g. Then, Theorem[.6] and thereby Theorem[@. 1| of the intro-
duction, is a consequence of the following:

Theorem 4.7. Let 3 < u. We use the notations (4.3.3) and [@.3.0). There exists an absolute
constant Cy,s and a positive function h decreasing to 0, such that

‘S(Ai,xl/“) —S(B, X1/

. X 1
< Cabs §(1) log X <h(“) + Oy u (loglogX)) .

Both sequences .A™ and B are now positive (remark that they depend on X). Theorem is
proved if one can shows that

. X loglog X
‘S(A e (hl(u)—f—ogm <logX ))
and
X log log X
[5(B, X1/ < Cu (1) o X (hQ(uHOg,u (logX ))

with hq(u), ha(u) — 0 as u — +o0. The problem is that we shall show that

X 1
S(B, X'") = Cus §(1) g X hs(w) <+O <1ogX>) , (4.3.7)

for some function hg(u) such that hg(u) — 400, as u — oo. Fortunately, one can be more
precise, and prove that

ha(u) = (u? + 2u) (1 + ha(u)), u?hy(u) — 0.

Therefore, to prove Theorem[.7] one has to show that the contribution of  in the main term of
S(B, X1/} is corrected by the one of u in the main term of S(A*, X'/*), i.e one must prove that

X loglog X
S(AE, X") < Cuans §(1) g X (u® + 2u) (1 + h5(u)) <+0 (Oigoi» . (438)
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4.3 An upper bound for S(aX? + bX, ¢)

for some function hs5(u) such that u?hs(u) — 0, as u — oo. Then, substracting (#.3.8)) from

(@3.7) proves Theorem[4.7} with h(u) = (u? + 2u) max(hs(u), ha(u)).

In Section #.3.1] we shall prove the upper bound (4.3.8), combining two topics: Firstly, the
results issued from the theory of automorphic forms which were presented in Section [4.1] and
secondly, the sieve argument of Section In Section the equality is proved, by
classical analytic methods.

4.3.1 An upper bound for A*

In this section, we prove that the sequence A* satisfies the conditions of Theorem}4.5| of Sec-
tiond.2.1] then apply Theorem[d.5| and use the estimates of Corollary[.2] to obtain a first upper
bound in the direction of (4.3.8). Then, Corollary[d.1] of Sectiond.1] allows us to deal with the
remainder term and to conclude the proof of (4.3.8).

Recall that
SB.z)= > b and  [Bgl=) b (4.3.9)
(c,P(2))=1
Since we avoid the prime A, we shall work with primes of norm bigger than 4. Denote by g the
Mellin transform. It is defined by

&° 1
g(s) = / g(t)t*"1dt and has inverse g(t) = / g(s)t™ % ds.
0 217T (o)

We need to introduce another notation. Let ¢ € Z[w]; then we define the product

1
Fe(s) = 75[ (1 T NV 2)> , (4.3.10)

and write F(s) for Fi(s).
Lemma 4.2. Let g be as given in TheoremHd.1|and let € > 0. Then

S(B,4) =X log X a®§(1) F(1) + X d(g) + O (X',
with d(g) a real constant depending only on the function g.

Proof. In the domain of absolute convergence, we have

She= 32 (B) = o 2o [ g0 ()

)\/{/c )\/Yc )\/{/C
- 2 Z2Q(C ( >_ ds
(@) )\/{/c
1 28(c)
= — Xsd
21 J (o) ()g(:CN( po e
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4.3 An upper bound for S(aX? + bX, c)

Define

and transform it as

LEDY TEN
Then,
1
D obe=g— | 9(9) () (1-37)" Fals) X*ds
)\/{/c (o)
1 ~ —S8 S ~ —S S
“5r ) 3(5) By(s) (1—37%) Fa(s) X* ds + Resy (g(s) Boy(s) (1-37) Fa(s) X ) .

4.3.11)

We start with the residue, writing (. (s) = Cé(w)(s)(s —1)?,

Res_1 (g(s) Cow)(s) (1=37%)° Fy(s) X3> — limy_, ((C*(s) (s) (1—37)% Fy(s) XS)'
= Xd(g) + X log X a?§(1) ; Fa(1),

for some real constant d(g) depending on the function g. In (4.3.T1)), the contribution in X of the
integral is less than the one of the residue, and therefore we obtain

4
> be=Xd(g)+ X log X a® §(1) s Hh+0o (X179,
)x/rc
what proves the Lemma[4.2] O

With the notations of Lemmaf4.2] we define the real constants Y = Y (X, g) and Z = Z(X, g)
by

4
Y = X log X o? 5 (1) Fx(1) + X d(g) ,

A (4.3.12)
Z=Xa? 5 g(1) Fx(1).
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4.3 An upper bound for S(aX? + bX, ¢)

Corollary 4.3. Let ¢ > 0 and let d € Z|w)] such that \ Jd. Let A* be the sequence defined in
@.3.3) and [@.3.6). Then, withY and Z defined by (4.3.12), we have

+ = 2Q(d)Y 29@1 N(d)Z

where rx (d) satisfies

(=Y iS%i)t/ZX’C)g () + o0 (W) (%) H> |

c=0 (d)
Afe

Proof. Lemma4.2] applied with X /N (d) instead of X, allows us to evaluate locally the sequence
B. We have

i = Y b= 320 g ()

d|c )\/{/c
1—e€
_ 90(d) {,/\/')(id) d(g) + N)((d) log <N)((d)> azgﬁ(l) F\(1)+ 0 ((J\/')((d)) ) }

From this we deduce the local behaviour of the sequence A*:

+S aX3+b c Nc
|Ad Z Z 1/2 : ( )(()> +§:bc
)(c A fe

i X {1osX @ §a B ~ g N @) o? {20 B() +dlo) |

+5(aX3+bX,c) (N(c)
v o)

rx(d)
]

It is worthy of attention that the local behaviour of the sequence A expressed in Lemma

is an unsual sieve hypothesis. But, as it will become clear in this section, while the term rx (d) will
be proven to be a real error term, the same will clearly not be the case for the "extra" term attached
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4.3 An upper bound for S(aX? + bX, c)

to log N'(d). This situation is the same as the one appearing in [[11]], for which Fouvry and Michel
developed a new sieving process, namely the "crible étrange” presented in Section4.2.1

Before to apply Theorem[d.5]of Section[d.2.1] let us reformulate Corollary[.2]of Section4.2.2]
in our situation. For it, we remark from Corollary 4.3|that our function p is the one defined by

2 ifw # )
p(m) = 4.3.13)
0 ifr=A\
Since we have (see [27] (67) p. 115)
1
Z log N'(p) =log X + O(1),

N(p)

N(m)<X

the hypothesis (#.2.1)) p.of Section is satisfied. Then, if 7 = lﬁ)ggi) and (¢, \) = 1, Corol-
lary[4.2) of Section[#.2.2] gives

5
G(D, 2) = o g & B[] (1 - N?m) 2(27) log? 2 (1 +0 <1ngz)> . (4.3.14)
wle

T T
Ge(D,2)™ = a7 % e R ] Nj(vﬂ()zz 02(27) " log™? 2 <1 0 <logz)> '

(4.3.15)

In particular, for a prime 7 # A such that '(7) < D, we have 7 — % = O(7), and thus

o.(52) - #n0 o- )

5
X 09 QT—QM log?z (140 T .
log 2z log 2z

We obtain now from Theorem of Section applied to the sequence A* with p given by
@#313), Y and Z given by (#.3.12)) and rx (d) given by Corollary [4.3] that

(4.3.16)

iz 271 272 & 0 T D z

THEA

+ Y 3D px(a)l,
)

d|P(z
N (d)< D2

for a parameter D that still has to be chosen conveniently. As z and D will be chosen so that
z < D, we can apply the estimate (4.3.16)), and obtain
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4.3 An upper bound for S(aX? + bX, ¢)

S(A%,2) < Y G(D,2)™ !

2062%627F>\(1)ZG(D,2)_2 log? = <1+(’) < )) Z logN <2T_210g/\f(7r)>
9 log z Noes log 2z
LN

+ Y 3% rx(a)

d|P(z)
N(d)< D2

=Y G(D,2)"" + 022(2ZT) G(D,z)" (1 o) (logz>> Z log./\/ (27 - 2w>

N(ﬁ)<z
THEN

+ > 3% rx(d)]

d|P(z)
N(d)<D?

by (@.3.13), using the fact that % — 0, as z — oo. Then, the property (#.2.22)) p.|130| of o
allows to make a partial integration and an easy calculation shows that

log NV (7r) ( log NV ()
Sl Nl | (o HloeN(m)
Mo N(m)—2 log 2

) =log zo2(27) + O(1).

Thus, as 7 > 1,

S(A%,2) < YG(D,2) ' +2ZG(D,z) ! log 2 <1+o<

S

d|P(z)
N(d)< D2

= G(D,2) ' (Y +2Zlogz) + G(D,2) ' 0 (2Z7°) + > 3% Djrx(d)] .

d| P(z)
N (d)< D2

Now we see from (#.3.12)) that

Y +2Z logz = o gg(l) F\(1) X (log X +2log z) (14 O(log™! 2)) = O(X log X)

and thus, from {.3.15)), we have

B o §(1) log X 2 70 Xlog X
G( ’ Z) ( + Og Z) € 0_2(27_) log2 2 + log z + log z 10g2 z

This last estimate gives finally

G X X75log X
s, <o L (18X 4 2 ) 4o (AT0EX) 5 500 gy,

o2(27) log?z logz log® 2 70
N(d)<D?
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4.3 An upper bound for S(aX? + bX, c)

Guided by (@.3.7)), we have to make disappear the factor oo(27). At this point, we now make the
choice of z and D. According to Corollary of Section we choose D = X4 log™® X, for
a free parameter B, and according to our goal, we choose z = X /%, where u is the variable we
are most intersted in. We shall simply write P for P(X 1/ “). Then,

u loglog X
T=—-——B——7"—,
4 log X

and the Taylor expansion of o at 5 reads

1 1 loglogX))
= 1 +0—=—— .
o2(21) 02 (%) ( < log X

With this choice of z and D, we have obtained

274(1) X X loglog X

+ yvl/u e (1) 2 0g log Q(d)

A X < 2 wl|l ———— g d)|.
S( ’ ) oa(u/2) log X (w+2u)+ Op, log? X * 377 Irx ()]

d|P
N(d)<X1/210g—B x

Since

D 1O ((9/) |

we have

102()( (u? + 2u) (1 +0 ((i) _t/4>>

X loglog X Q(d)
+ Opu (> + 3 lrx (d)].
log? X ;

N(d)<Xx1/210g=B x

(4.3.17)

The last step to prove Inequality (4.3.8)) is to show that rx (d) behaves like an error term. We
shall not make use of the condition d| P, and we simply drop it. We start with Corollary which
gives, for any € > 0, the following order of growth:

Q(d) _ Q(d) +£S(aX?+bX,¢) (N(c)
dz,; 3D (@) = > 3 C:zoj(d) v 9x

dlP X fd
N(@)<Xx1/210g—B x ! /l/

N(d)<X1/210g—B x /\/llc

+o< G <@>1>

d\PA/l/d
N(d)<X1/210g—B x

(4.3.18)

Firstly, an application of Cauchy-Schwarz inequality gives
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4.3 An upper bound for S(aX? + bX, ¢)

Q(d) +S(aX3 +bX,c) (N(c)
R A (CLa N
diPxfd =

N(d)<X1/210g—B X A e

1/2
+5(aX? +bX,c) N(e)
Q(d) )
b 2 ’ _Z Nz I ( X
A/{/d c=0(d)
N(D<x1/210g—B x Afe
+5( aX 1oX,e) (NN |
‘ Z Z c)1/2 I\ ~x
*Xd ¢=0 (d)

N(d)<x1/210g—B x A/rc

Then, from the upper Weil bound applied to the terms S(aX?3 4+ bX, c) of the first factor we obtain

+S(aX?+bX,c N(c
T 390 3 (,/\/'(c)—il_/Q )g( )(())

A/{/d c=0(d)
N(d)<X1/210g=B x X e
1/2 1/2
+5( aX3 +bX,c) N(e)
Q(d) Q(c)
< Z 18 Z 27 Z Z 1/2 g X
A fa oy <N < %y =0 (d)
N@<X/ 2 10g=B X /\/{/c /\/(d)<xl/2 log=B x  Me¢
(4.3.19)
We recall the formula
) X' logh 1 X ifs#1,
<
N(@<X N(d)® logl’C X if s =1.

A/{/d

From this formula applied in (4.3.19) we obtain

1/2

Z 3 |rx (d)] < X2 1og!® X
d|P
N(d)<X1/210g—B x

Z 3 +5(aX3 —|1—/I;X ) . <N )(;))

c=0(d)
)\Xc

N(d)<X1/2 log—B X
+ (’)(leE/Q log®~ B¢ X) .

At this point we use the gain of the negative power of log X proved in the non trivial estimate in
average of the cubic exponential sums. Corollary[4.T| of Section {f.T|applied with A > 24 provides
some B > 0, such that

> 3@ rx(d)] < X log™ X. (4.3.20)

da|p
N(d)<Xx/210g—B x
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4.3 An upper bound for S(aX? + bX, c)

This proves that the contribution of rx (d) is small enough to be considered as a rest, and (4.3.20)
inserted in (4.3.17)), gives

) o X £\ 4 X loglog X
S (A%, X1) <e 5(1) o (W+2u) (HO ((4) >> + OB <log2X> ’

and concludes the proof of (4.3.8).

4.3.2 An upper bound for

Here we prove (#3.7). The sequence B = (b,), wherev b, = 2(¢) ¢ ( (e )> can be sieved exactly.

For z = X1/%, the sum

Z 2Q(c)

N()LX
wle=>N(m)>2

is close to the sum

>, 0= ), 2

N(e)<X N(cp)€X N(eg)<X
Tle=N(m)>2 wlep=>N(m)22 7r|c2:N(‘rr)/N(c

The number of integers of norm less than X having their prime factors of norm bigger than z is
known; for z = Z'/*, it is given by uw(u)X log~! X + O(X log~2 X). One then shows that

© = u(2w(u wkw)(u X R
> 2 ) + o)y +0 (g )

N()<X
mle=>N(m) =22
Moreover,
%y (2 u\ —u/4
u@ww+W*ww»:evw+moQ+O(Q) ))
Therefore,

S(B, X" = > 2%y <N)((c)> =— ) 2% /Noj)g’ (;) %

mle=N(r) =X/ wle=N ()= X1/w

> t\ dt
X 2m®j<x>_x
0 N(o)<t
‘rr|c?j\f(7r)>X1/“‘

and from above, one obtains

S(B, XYY = —(u? + 2u) ( +0 (<4>_u/4>> /OOO IO‘;{;t (1+O <log1Xt>> g(t)dt
=—(u’ +2u) <1+0 (( ) M)) logX/ l—i—logt/logX <1+O<log(1Xt)>) dt
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4.4 A lower bound for S(aX? + bX, c)

Since g has compact support, the integral is

/Oootg’(t) dt+ O (IO;X) =—g(1)+ 0O (long> :

This proves {.3.7), stated at the begin of Sectiond.3] and thereby concludes the proof of Theo-
rem[4.7] as well as Theorem[4.1] stated at the begin of Chapter[d]

4.4 A lower bound for S(aX? + X, c)

In this section, we prove Theorem[d.2]stated at the begin of Chapter[d]

4.4.1 Sato-Tate vertical law
If a,b € R, then

b

3 i 2inT 3 4 ba)T
S(aX? +bX,7) = Ze<a$+bx> ZZexp< it Tryo((az® + x)7r)>

:Zex <2m ax +pba;)(7r+7r))

= Sy (2aR(m) X3 + 26 R(7) X, p) ,

where Sz (f(X), p) denotes the exponential sum
0
= Z exp (ZW f(x)> .
= (@) P

The integer 7 + 7 is coprime with p. In particular, as a varies in (Z/pZ)™, we have,

{S(aX®+aX,7) : a€ (R/7R)*} = {Sz(aX®+aX,p) :a=1,...,p—1}.

One of the advantages of such equality is that Sz (a, a, p) belongs to the class of exponential sums
which satisfy the vertical Sato-Tate conjecture (see [[10]] p. 7). Let s be the sato-tate measure.

Proposition 4.2. For any arithmetical function f such that f(c) = 0 if N'(¢) > N, and for g as
before, one has as P — oo,

> Y ies(M ) curm ¥ Y s (M)

PSN(m)<2P , °.7 PN (m)<2P ¢

o (pwisp+pr2 (i) ”).

This proposition is a consequence of the vertical Sato-Tate law; one proves it using the Large
sievve inequality, exactly as in [[10], Proposition 4.1.
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4.4 A lower bound for S(aX? + bX, c)

4.4.2 Absolute lower bound

For any k£ < u, from the twisted multiplicity, we can bound the sum from below by considering
only ¢ being a square-free integer having exactly k prime factors. Then,

> 1S(X%+3X,¢)| g (N)((C)>

mle=N ()= X1/

> D ‘S(X3+3X7771---7Tk)‘9<w>

Nm)2XVe  N(mg) =X/

= D ) SXP X, m)] L [Sk(XP 83X, ™) (4.4.1)
N(m)z2XVe  N(mp)=X1/u

where S;(X? + 3X,m;) = S ((m1...mj—1mjq1 ... m) H(X? 4+ X),7;), and 2! denotes an
inverse of £ modulo the number given by the context.

In order to apply Proposition|4.2] we need to restrict the range of each variable ;. this can be
realized for example by defining

1 29 -1
w2 397
and, for j = 2, ...k, the sets
Pj = {Xakfj M > O,Xak,j on < X+l
Then

X% < Py < X9+, VP eP;.
Moreover, if we consider only the Sj(X? + 3X, 7;) whose angle 6; belongs to Z = [0,&] U [7 —
&, ], then we have
S;(X3 43X, ;)
N (mj)1/?

To simplify notations, write

wen=Y Y X g<w> (4.4.3)

T Po<me<2 Po P < <2 Py,
0]'6.'[

=3 ... 3 g<N(7”X7”“)> (4.4.4)

T Po<me<2 P P <mp <2 Py,

Then, from ({.4.T)), we obtain

=2 costj > 2 cos¢, Vj. 4.4.2)

and

> }S(X3+3X,c)\g(N)((c)> > ) D uan..n&)

mle=N () =X /v PePs Py ePy

> )0 > (&) &) — (= 1)u() . (4.4.5)

PrePo PrePy,
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4.4 A lower bound for S(aX? + bX, c)

We shall estimate the quantity ;(£) by the prime number theorem, and the (&;) by Proposi-
tion[4.2}

MO =Y P S (M) =Y Y o (YY) s

T Po<me<2 Py P <7 <2 Py 1, 7
0;€Z m,c€

where we define

f(c):Card({(m,...,wk) 1 c=1my...7 and P, gm<2Piv2<i<k}).

When applying Proposition one sees that the rest term is bounded by X log=2 X as soon as
k > 3. Actually, considering large k£ do not improve the result. Therefore, assuming v > 3, we fix
k = 3, and obtain from Proposition4.2

X
) = nse(@) ) + 0 5z ) @46
Inserting in gives
N X
> lseeesxolo(N0) 2 ¥ Gusr@ -2 u©+0 (o)
e N ()2 X 1/ PEP; P3Py 08

The prime number theorem and a partial summation give

DWCES D S DT .

PrePy P3ePs3 1 X2 Lme<2 X¥3 X3 Lmz<2 X ¥4

= D > 9 N(m)J\/’)(irs) log X (HO(loiX))'

X2 Ko <2 X3 X3 Kmy<2 X4

Finally, the formula (see [27], (15) p. 150)

1
Z =loglog X + O(1)
N(m<X N(m)
shows that
N (e . X
Z ‘S(X3+3X,c)‘g< )E,)> > (Busr(Z) —2) G(1) g X'

mle=N(m) =X/

By choosing ¢ such that pgp(Z) = 2 fog sin? 6 df > %, one concludes the proof of Theorem

o

p.[116} thereby we have proved our main theorem of this chapter, namely Theorem[.3|p.[116]
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Abstract

In this thesis work, we study the problem of the equidistribution of finite exponential sums. These
sums possess an individual bound, and it is therefore natural to study the distribution of the nor-
malized sums. More precisely, we deal with the case of Kloosterman sums twisted by the Legendre
symbol of order 2 and 3. The first case leads to the so-called Sali¢ sums, and the second case leads
to cubic exponential sums. We use the theory of metaplectic forms to study the behavior of these
sums, and analyze in detail the contribution due to the cubic theta functions. We generalize the
work of Livné and Patterson in two directions; the first problem is to obtain a trace formula and
the second to work with metaplectic forms of any level. Then we develop a sieve method to study
the problem of the equidistribution of cubic exponential sums over the almost prime Eisenstein
integers. We are able to prove that the sign of these sums changes infinitely often, which is a result
in direction of the Sato-Tate conjecture.
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