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Introduction

This dissertation is concerned with exponential sums of the form

Sχ(f, c) =
∑
x (c)

χ(x) e
(
f(x)
c

)
, (1)

for c in the ring of integers R of a number field k, f a rational function, χ a character modulo
c and e(z) = exp(2iπ Trk/Q(z)). They are finite sums, where x runs through the finite set of
representative of R/cR and where we agree to write x (c) instead of x (mod c). Historically,
a first motivation for the study of these sums arises from the diophantine analysis, where many
problems are reduced to the evaluation of such sums. For example, Hilbert’s Eleventh Problem
asks about the representability of integers in a number field by an integral quadratic form. For the
special case of diagonal forms, the ’circle method’ was introduced by Hardy and Littlewood to
study asymptotically the number of solutions of

F (x) = x2
1 + x2

2 + . . .+ x2
s = m, for s > 5.

In 1926, Kloosterman ([21]) studied this problem over Q for s = 4, and was led to introduce the
so-called Kloosterman sums

K(m,n, c) =
∑

x,x∗ (c)
x x∗≡1 (c)

exp
(

2iπ (mx+ nx−1)
c

)
, (2)

defined for m,n, c ∈ Z. He succeeded in obtaining the non trivial individual estimate

|K(m,n, p)| 6 E p3/4, (3)

which allowed him to solve the problem for diagonal forms in four variables. Besides the signifi-
cance of individual bound as (3) for Kloosterman sums, it is expected that bound on average are
equally important. Around 1960, working on some additive problems, Linnik introduced a ’dis-
persion method’ in which Kloosterman sums play a fundamental role, and he conjectured ([28])
a cancellation among these sums. At the same time, in his seminal work on Fourier coefficients
of modular forms ([40]), Selberg studied the zeta function associated to Kloosterman sums and
formulated the same conjecture, which asserts that∑

c<X

K(m,n, c)√
c

� X1/2+ε, ∀ε > 0. (4)

The major breakthrough in this problem came from Kuznetsov in 1979 ([26]), who proved it for
any ε > 1/6. These is the kind of problems we shall be interested in, for some special sums
Sχ(f, c).
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Introduction

A further motivation comes from the cohomological interpretation of the Sato-Tate conjecture
about elliptic curves without complex multiplication. For an elliptic curve E over Q, if ap(E) is
defined by ap(E) = ]E(Fp) − 1 − p, where ]E(Fp) is the number of points on E over Fp, then
the Hasse upper bound asserts that

|ap(E)| 6 2
√
p. (5)

According to (5), we define a family of angles θp(E) by

ap(E)
2
√
p

= cos θp(E),

and the question is, if these angles are uniformly distributed for some measure. In the late 1940s,
the Weil conjectures about the Hasse-Weil zeta function attached to a variety gave the key to the
uniform distribution of the angles θp(E) when E has complex multiplication, since a result of
Deuring asserts that in this case, the Hasse-Weil zeta function is expressed in terms of Hecke
L-function about which we know enough analytic results. Around 1960, Sato and Tate arrived
independently to the conjecture that such a uniform distribution measure also exists for elliptic
curves without multiplication, and is given by

µS−T =
2
π

∫
sin2 θ dθ on [0, π]. (6)

By a cohomological approach, Serre (see [41], I-25, I-26) proved that one can deduce distribution
results from knowledge about the analytic continuation of the L-function attached to E. Coming
back to Kloosterman sums, the proof by Weil from the Riemann hypothesis for curves led him to
improve the individual bound (3) for Kloosterman sum to

|K(m,n, p)| 6 E p1/2, (7)

which is the best possible. Within the cohomological framework, N. Katz (see [18], conj. 1.2.5)
formulated the uniform distribution of the angles of Kloosterman sums according to the Sato-Tate
law, a ’folklore conjecture’ which arose in the 1970s. More precisely, if

K(1, a, p)
2
√
p

= cos θp,a (0 6 θp,a 6 π), (8)

then it was conjectured that for any 0 6 α < β 6 π,

|{p : X 6 p < 2X, α 6 θp,1 6 β}|
|{p : X 6 p < 2X}|

−→ 2
π

∫ β

α
sin2 θ dθ, as X → +∞. (9)

Notice that in the angles that we consider, both the parameter p and the other parameter (either E
or a) can vary. We shall distinguish these cases by speaking from the ’horizontal’ case and from
the ’vertical’ one, respectively. As well as the numerous numerical verifications supporting the
horizontal conjecture, one other reason to believe in the Sato-Tate conjecture for elliptic curves
or for Kloosterman sums came from Birch ([1]) and Katz ([19] Ex. 13.6), who proved the vertical
case of this conjecture, respectively for elliptic curves and for Kloosterman sums. Finally, the
Sato-Tate conjecture for curves was proved in 2006 by Clozel, Harris, Shepherd-Barron & Taylor
under the condition that j(E) is not an integer.

We come now to our object of interest. Actually in [1], after proving the vertical asymp-
totic behaviour for elliptic curves, Birch conjectured the same ’vertical’ result for the cubic sums
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S(aX3 + bX, c); this conjecture was latter proved by Livné ([29] and [30]). The same dichotomy
as the one between elliptic curves with or without complex multiplication occurs for cubic sums,
and, as a matter of fact, a uniform distribution over the primes in the case where b = 0, i.e. for
the sums S(aX3, p), was proved by Heath-Brown and Patterson ([15]). This parallel with Hecke’s
work leads naturally to conjecture the horizontal Sato-Tate law for cubic sums with b 6= 0. For
both cases, i.e. for Kloosterman sums or for cubic sums, even though the ’vertical’ question
was solved, the ’horizontal’ one remains still open. We shall be here mostly interested in cubic
sums, and we shall present some progress towards the cancellation and the uniform distribution
of such sums over the Eisenstein integers, i.e. the integers of the Eisenstein ring Z[ω], where
ω = exp(2iπ/3). Another object of interest will be the twisted Kloosterman sums. These are
analogues of the classical Kloosterman sums when, in the definition (1), we choose the character
χ to be the Legendre-Jacobi symbol of order j. By this we mean that these sums, that we shall
denote by Kj , are given by S( ·c)j

(
X2+1
X , c

)
, i.e.

Kj(m,n, c) =
∑

x,x∗ (c)
xx∗≡1 (c)

(x
c

)
j
e

((
mx+ nx∗

c

))
. (10)

We shall study the cases where j = 2 or j = 3, and speak about quadratic and cubic Kloosterman
sums, respectively. We remark that the Kloosterman sums defined in (2) correspond to the case
where j = 1, and therefore, we shall call K1(m,n, c) the classical Kloosterman sum. The reason
for studying the case where j = 3 is that there exists a close relation between the cubic exponential
sum S(aX3 + bX, c) and the cubic Kloosterman sum K3(m,n, c). The study of the case where
j = 2 follows the same general steps as for the cubic case, although the techniques used are easier
to deal with.

Let us present the method that we follow: The problem of asymptotic behaviour of Kloost-
erman sums was undertaken by Kuznetsov, along the lines described by Selberg in [40]. This is
based on the theory of automorphic forms. We shall parallel this, and combine spectral proper-
ties of automorphic forms with properties of the zeta function attached to the sums Kj(m,n, c)
to obtain a summation formula for the sums Kj(m,n, c). We shall then naturally be confronted
to the minimal eigenvalue problem which brings into play theta functions. For j = 2 these theta
functions are the classical ones, namely the twists by Dirichlet characters of the function

θ(z) =
∑
n∈Z

exp
(
iπn2z

)
.

For j = 3, we shall work with the cubic analogues of θ(z), which are metaplectic forms con-
structed as residues of Eisenstein series; these functions are described in [32]. Our work aims at
improving the results of Livné and Patterson (Theorem 1.1 of [31]) about the asymptotic behaviour
of the cubic Kloosterman sums; we shall also give the quadratic analogue result. As for the uniform
distribution problems over primes, it is believed that one acquires a better understanding by work-
ing first with integers and then by applying a sieve argument. Actually, the uniform distribution
of K2(m,n, c) is already proved (in [17] over the integers, and in [5] over the primes), but such
results are not known for S(aX3 + bX, c); more surprisingly, even the problem of distribution of
the signs of the Kloosterman sumsK(m,n, c) remains open. Notice that a result of uniform distri-
bution implies the asymptotic distribution in absolute value; for example, the horizontal Sato-Tate
conjecture for Kloosterman sums implies by partial summation
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∑
p6X

∣∣∣∣K(1, 1, p)
2
√
p

∣∣∣∣ ∼ 4
3π

X

logX
.

Indeed, upper bound and lower bound of this kind, i.e. with absolute value, are possible to derive
([10]), but the small improvements gained compared with the trivial estimation show that the
cancellation expected among Kloosterman sums is more due to the change of sign than to the
smallness of the norm. A way was found by Fouvry and Michel ([11]) to prove that this change of
signs occurs for K(m,n, c), at least for c being almost prime, i.e. when the number of primes of c
is bounded. Our goal is to adapt their method to the cubic exponential sums, and one of the main
result is to show that the sum of cubic exponential sums can actually be considered as a rest term.
We prove this fact by using the theory of metaplectic forms, but, as in [15], one could expect a bias
toward the S(aX3+bX, c) having a main term due to the existence of an exceptional eigenvalue of
the Laplacian. This exceptional term comes from the cubic theta functions, but can be controlled
in average over the level, leading to some non-trivial estimate. More precisely, it is expected that
the classical Kloosterman sums satisfy

{p 6 X : K(m,n, p) > 0} =
1
2
π(X) + O

(
X1/2

logX

)
, (11)

the same being true for the Kloosterman sums of negative sign, and one could conjecture that the
cubic exponential sums satisfy

{
p 6 X : S(aX3 + bX, p) > 0

}
=

1
2
π(X) + C

X5/6

logX
+ O

(
X1/2

logX

)
. (12)

This kind of behaviour was already speculated in [31] p. 108-109.

We now describe the content of the thesis in more detail. In Chapter 1 we study the asymptotic
distribution of K2(m,n, c). The summation formula over Q is presented in its simple form, i.e.
without making explicit the contribution of the whole spectrum; In this way, we obtain quickly a
formula for the asymptotic constant. In Chapter 2 we give all necessary results about automorphic
forms as well as a more complete summation formula over Q(ω), where all the spectrum of the
Laplacian occurs. In Chapter 3, we study the asymptotic constant of K3(m,n, c), i.e. we look at
the basis problem for cubic theta functions. This should lead us, in a future work, to the determina-
tion of the constant C appearing in (12). In Chapter 4 we develop some sieve argument to obtain
an upper bound for S(aX3 + bX, c); a fundamental role is played by the the complete summation
formula of Chapter 2. Nevertheless, as for the Kloosterman sums K(m,n, c), the remainder term
is of the order of X

logX log logX , and hides the contribution of the theta term. We then use the ver-
tical Sato-Tate law for S(aX3 + bX, c) to obtain a lower bound, and conclude to the change of
signs when c is almost prime.
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Notations

Unless otherwise stated, we make the following convention:

- The inverse of x modulo a given integer will be denoted by x∗. Therefore, we shall write
the sum ∑

x,x∗ (mod c)
xx∗≡1 (mod c)

χ(x) e
(
mx+ nx∗

c

)
as

∑×

x (c)

χ(x) e
(
mx+ nx∗

c

)
,

where the star means the restriction to the representatives x coprime with c.

- For any complex number z, the complex conjugate will be written z.

- For any matrix g =
(
α β
γ δ

)
, we define a(g) = α, b(g) = β, c(g) = γ and d(g) = δ.

- The symbol δ will be the Kronecker delta symbol, i.e.

δa,b =

1 if a = b,

0 if a 6= b,

and similarly,

δP =

1 if the assertion P is true,

0 otherwise.

- We shall denote the sign of a real number x by sgn(x).
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1 Asymptotic behaviour of K2(m, n, c)

The quadratic Kloosterman sums K2(m,n, c) appear in the work of Salié (see [38], (54) p. 102),
where the following relation is proved:

K2(m,m, p) =
(
m

p

)
2

εp p
∑

x2≡4m2 (p)

exp
(

2iπx
p

)
,

where εd = 1 if d ≡ 1 (mod 4) and εd = i id d ≡ 3 (mod 4). This formula can be generalized,
see for example (38) p. 438 of [5].

In this chapter, we study the asymptotic behaviour of the sum K2(m,n, c). We shall use
the spectral theory of Maaß forms to obtain the asymptotic formula, and the theta functions to
construct an explicit basis of the space of automorphic forms for which the eigenvalue of the
Laplace operator is minimal. Our main goal in this chapter will be to prove the following theorem.

Theorem 1.1. Let f be an odd positive integer and let χ be a primitive Dirichlet character of
conductor f . Let D be an odd positive integer. Let m,n ∈ Z. Then for any ε > 0, we have∑

c≡0 (D), 2 6 |c
c6X

K2(m,n, c) εc χ
( c
D

)
= C(D,χ,m, n)X3/2 + O

(
X5/4+ε

)
.

with
For C = 0, if f is not square-free, or if the square-free parts of m and n are not equal and

divisible by f .
If these conditions are met, then m and n have to be of the form

m = tfs2m′2 n = tfs2n′2

for some

- square-free t coprime with f such that t3|D,

- some s such that s2|D
t3

and p|s⇒ p|t,

- some m′, n′ coprime with t.

Then, if
D

t3
= X0s

2X2,with X0 square-free and X coprime with t

and if
U ′ =

{∏
p : p|X, ordp(gcd(X,m′, n′)) < ordp(X)

}
,

then
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1 Asymptotic behaviour of K2(m, n, c)

C(D,χ,m, n) =
32

3π2

t3/2 s

ϕ(t)D

∏
p|Df

p

p+ 1
χt(f)χt(m′n′) gcd(X,m′, n′)

U ′

ϕ(U ′)

In Section 1.1 and in Section 1.2, we shall work in the general context of a discrete subgroupG
of SL2(Z), a real weight k and a multiplicative system associated to k. In Section 1.1 the theory of
automorphic forms will be developed, and in Section 1.2 we shall present an argument introduced
by Goldfeld and Sarnak, which will enable us to derive the asymptotic formula in a simpler way
as the one developed by Kuznetsov in [26]. Namely, such an asymptotic formula as the one from
Theorem 1.1, is classically deduced by methods from analytic number theory once one has enough
analytic properties of the associated zeta function. The main contribution of Goldfeld and Sarnak
is, precisely, to obtain the polynomial growth of the Kloosterman-Selberg zeta function in the
critical vertical strip. In Section 1.3, we shall restrict ourselves to the congruence subgroups Λ and
Γ0(N) of SL2(Z), fix the weight k = 1/2, and study the theta functions, following the work of
Serre and Stark [42]. Finally, we will see in Section 1.4 how the results of Section 1.3 will allow
us to come back to our arithmetical problem, i.e. to prove the formula on the asymptotic constant
of Theorem 1.1.
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1.1 Automorphic forms on the upper half-plane

1.1 Automorphic forms on the upper half-plane
In this section, we shall first recall the definitions and properties of modular forms and Maaß
forms, and then study the Poincaré series. Let us define the angle of a complex number as a real
number in [0, 2π[. In particular, for any α ∈ R, we have

zα = |z|α eiαarg(z), ∀z ∈ C, arg(z) ∈ [0, 2π[.

We shall use the notation g′(z) = (cz + d)−2, where g =
(
a b
c d

)
∈ SL2(R).

Definition 1.1. Let k be a real number. The factor system of weight k is the application

σk : SL2(R)× SL2(R) −→ C∗,

(g, h) 7→ (gh)′(z)k/2 g′ (h(z))−k/2 h′(z)−k/2.

The following property holds (See [35], §2):

σk(a, b)σk(ab, c) = σk(a, bc)σk(b, c).

Definition 1.2. Let k ∈ R and let G be a discrete subgroup of SL2(R). A multiplicative system
for G of weight k is an application ψ : G −→ C satisfying

ψ(g1g2) = ψ(g1)ψ(g2)σk(g1, g2) , ∀g1, g2 ∈ G.

Remark 1.1. Let g, h ∈ SL2(Z). If a function f defined on H satisfies

g′(z)k/2 f (g(z)) = ψ(g) f(z)

h′(z)k/2 f (h(z)) = ψ(h) f(z)

for two constants Cg and Ch, then one deduces that f satisfies

s′(z)k/2 f (s(z)) = ψ(s) f(z), ∀s ∈ 〈g, h〉,

where 〈g, h〉 is the group generated by g and h, and that the application s 7→ ψ(s) is a multiplica-
tive system for the group 〈g, h〉 of weight k.

Let us define

jg(z) =
g′(z)
|g′(z)|

. (1.1.1)

Then, considering the equality |(gh)′(z)k| = |g′(h(z))k| |h′(z)k|, one shows that

jgh(z)k/2 = jg (h(z))k/2 jh(z)k/2 σk(g, h). (1.1.2)

It it possible to determine σk explicitly. Let us consider g =
(
a b
c d

)
, h =

(
a′ b′

c′ d′

)
and gh =(

a′′ b′′

c′′ d′′

)
. Then σk(g, h) is defined by

(
(c′′z + d′′)−2

)k/2 =
(
(ch(z) + d)−2

)k/2 (
(c′z + d′)−2

)k/2
σk(g, h).

Defining for any complex number z the factor

13



1.1 Automorphic forms on the upper half-plane

ω(z) =


eikπ if 0 < arg(z) 6 π,

e2ikπ if π < arg(z) 6 2π,

1 if arg(z) = 0,

one can shows that (
z−2
)k/2 = z−k ω(z).

We obtain

e−ikarg(c′′z+d′′) ω(c′′z + d′′) = e−ikarg(ch(z)+d) ω(ch(z) + d) e−ikarg(c′z+d′) ω(c′z + d′)σk(g, h).

One sees that arg(c′′z+d′′)−arg(ch(z)+d)−arg(c′z+d′) is 0 when (c, c′ > 0) or when (cc′ < 0
and c′′ < 0), and it is −2π otherwise. The cases c = 0, c′ = 0 and c′′ = 0 have to be considered
separately. Define x(γ) by

x(γ) =

{
c, if c 6= 0,
−d, if c = 0,

, for γ =
(
a b
c d

)
. (1.1.3)

Then we obtain the following table:

sign(x(g)) sign(x(h)) sign(x(gh)) σ(g, h)
+ + + e−ikπ

+ + - 1
+ - + 1
+ - - e−ikπ

- + + 1
- + - e−ikπ

- - + e−ikπ

- - - 1

1.1.1 Maaß forms and modular forms
The Poincaré upper half plane is H = R × R∗+. If g =

(
a b
c d

)
∈ GL+

2 (R), the action of g on H is
given by

g(z) =
a z + b

c z + d
.

A point s ∈ R∪ {∞} is a cusp of G if it is fixed by some parabolic element of G. Then G acts on
H∪{cusps of G}. We say that z1 and z2 areG-equivalent if there is some element g ofG such that
z1 = g(z2). As {∞} is SL2(Z)-equivalent to Q, any cusp s of G can be written as s = σ−1(∞)
for some σ−1 ∈ SL2(Z). When working with cusps, we will assume that we work with equivalent
classes, i.e. if σ−1(∞) and τ−1(∞) are two given cusps, which are G-equivalent, then we take
σ = τ .

We make the assumption that−Id ∈ G and that ψ(−Id) = 1. Let us now define the width of a
cusp σ−1(∞) ofG, with σ ∈ SL2(Z), as the smallest positive integer qσ such that σ−1T qσσ ∈ Gσ,
where Gσ is the stabiliser of σ−1(∞). Define also κσ ∈ [0, 1[ by

14



1.1 Automorphic forms on the upper half-plane

ψ

(
σ−1

(
1 qσ
0 1

)
σ

)
= e(−κσ).

With these notations, for any gσ ∈ Gσ and for any multiplicative system ψ, one has ψ(gσ) =
ψ(−gσ). We also have

ψ(gσ) = e(−nκσ)σk(σ, gσ), if gσ = σ−1

(
1 nqσ
0 1

)
σ. (1.1.4)

Definition 1.3 (modular forms). Let G be a discrete subgroup of SL2(R) and ψ a multiplicative
system for G of weight k. A modular form is a function f : H −→ C, holomorphic on H and at
the cusps of G which satisfies

g′(z)k/2 f (g(z)) = ψ(g) f(z) ∀z ∈ H, ∀g ∈ G.

The space of modular forms is denoted by Mod (G, k, ψ).

Here, the condition that f is holomorphic at the cusps of G means that there exists some α > 0
such that for any σ ∈ SL2(R),(

σ−1
)′ (z)k/2 f (σ−1(z)

)
= O (=(z)α) , as z →∞.

If α = 0, then f is said to be a cusp form. The Fourier expansion of f is given by

(σ−1)′(z)k/2 f
(
σ−1(z)

)
=

∑
n∈q−1

σ Z

af (σ, n) e
((

n− κσ
qσ

)
z

)
. (1.1.5)

It can be shown that the condition that f is holomorphic to the cusps of G is equivalent with
af (σ, n) = 0 for n − κσ < 0 and that the condition that f is a cusp form is equivalent with
af (σ, n) = 0 for n− κσ 6 0, for every cusp σ−1(∞).

For any real number k, the Laplacian is defined by

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
− iky

∂

∂x
.

Definition 1.4 (Maaß forms). A Maaß form is a function f : H −→ C on H of polynomial growth
at each cusp of G, eigenvalue of the Laplacian, and which satisfies

jg(z)k/2 f (g(z)) = ψ(g) f(z) ∀z ∈ H, g ∈ G.

The space of Maaß forms is denoted by Maaß (G,ψ, k).

Writing z = x+ iy, one sees that a Maaß form f ∈ Maaß (G, k, ψ) has a Fourier expansion

jσ−1(z)k/2 f
(
σ−1(z)

)
=

∑
n∈q−1

σ Z

F (σ, n)(y) e
((

n− κσ
qσ

)
x

)
,

where

F (σ, n)(y) =
1
qσ

∫ qσ

0
jσ−1(z)k/2 f

(
σ−1(z)

)
e

(
−
(
n− κσ

qσ

)
x

)
dx. (1.1.6)
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1.1 Automorphic forms on the upper half-plane

This is shown in [37] §2. In the case of a Maaß form f , we know that F (n, σ) is a multiple of a
Bessel function. More precisely if the eigenvalue λ satisfies λ = s(1 − s), where s is called the
spectral parameter, there exists (see [37] p.301) coefficients ρf (σ, n) ∈ C such that,

F (σ, n)(y) =

ρf (σ, n)W k
2

sgn
“
n−κσ

qσ

”
,s−1/2

(
4π
∣∣∣n− κσ

qσ

∣∣∣ y) if n 6= 0,

ρf (σ, 0)′ ys + ρf (σ, 0) y1−s if n = 0.
(1.1.7)

For modular forms, a scalar product is defined by

〈f1, f2〉 =
∫
G\H

f1(z) f2(z) yk
dx dy
y2

.

Similarly, for Maaß forms, a scalar product is defined by

〈f1, f2〉 =
∫
G\H

f1(z) f2(z)
dx dy
y2

.

The subspace of modular forms which are square integrable is L2
Mod (G,ψ, k) and the subspace of

Maaß forms which are square integrable is L2
Maaß (G,ψ, k). It is the sum over the eigenvalues λ of

the subspaces L2
λ (G,ψ, k) of forms such that (∆ + λ) f = 0. Moreover, if f ∈ L2

Maaß (G, k, ψ),
then ρf (σ, 0)′ = 0, in the Fourier expansion (1.1.7). It is conjectured that eigenvalues λ = s(1 −
s) 6 1

4 do not occur, i.e. that the spectral parameters s lie all on the vertical line 1
2 + it. For a

given weight k, what one knows is the following lower bound

λ >
k

2

(
1− k

2

)
. (1.1.8)

The bound (1.1.8) is derived from the results of Roelcke (see Satz 5.4 of [37], or [39] Prop. 1.2).

Proposition 1.1. Let k = 1
2 . Let G be given and let ψ be a multiplicative system of weight 1

2
relative to G. Then there is a bijection

L2
Mod

(
G\H, ψ, 1

2

)
∼= L2

3
16

(
G\H, ψ, 1

2

)
,

f(z) 7→ y
1
4 f(z).

If the Fourier expansion of f is given as in (1.1.5) and if the Fourier expansion of y
1
4 f is given as

in (1.1.7), then

ρf (σ, n) = af (σ, n)
(

4π
∣∣∣∣n− κσ

qσ

∣∣∣∣)−1/4

, ∀n 6= 0.

Proof. Every modular form f of weight k gives a Maaß form g(z) := f(z) yk/2 of weight k and
of eigenvalue k

2

(
1− k

2

)
, and this holds a fortiori over the square integrable forms. In the opposite

direction, the condition for a Maaß form g of minimal eigenvalue to be sent on a modular form
f through f(z) := g(z) y−k/2 is that the constant term of g should be of the shape ρ(0, σ) yk/2.
Combined with the condition for g to be square integrable, we see that a Maaß form g of eigenvalue
s (1− s) with <(s) > 1/2 gives rise to a modular form f(z) := g(z) y−k/2 if and only if 1− s =
k/2, i.e. k < 1. In particular, for k = 1

2 , there is a bijection
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1.1 Automorphic forms on the upper half-plane

L2
Mod

(
G\H, ψ, 1

2

)
∼= L2

3
16

(
G\H, ψ, 1

2

)
,

f(z) 7→ y
1
4 f(z).

Suppose that f is given by

f(σ−1(z)) =
(
σ−1

)′ (z)−1/4
(
af (σ, 0) +

∑
af (σ, n) e(nz)

)
,

then

f(σ−1(z))=(σ−1(z))1/4 = jσ−1(z)1/4
(
af (σ, 0)y1/4 +

∑
af (σ, n)y1/4 e(nz)

)
. (1.1.9)

On the other side, from the formula

|y|−
1
4 W 1

4
sgn(y), 1

4
(|y|) = e−y/2, (1.1.10)

we obtain, for any Maaß form g,

g
(
σ−1(z)

)
= jσ−1(z)−1/4

ρg(σ, 0) y
1
4 +

∑
0 6=n∈Z

ρg(σ, n) W 1
4

sgn(n),− 1
4
(4π|n|y) e(nx)



= jσ−1(z)−1/4

ρg(σ, 0) y
1
4 +

∑
0 6=n∈Z

ρg(σ, n) |4πny|1/4 e−2πny e(nx)



= jσ−1(z)−1/4

ρg(σ, 0) y
1
4 + (4πy)1/4

∑
0 6=n∈Z

ρg(σ, n) |n|1/4 e(nz)

 . (1.1.11)

Since the two expressions in (1.1.9) and (1.1.11) are equal, we arrive to the relation

af (σ, n) = ρf (σ, n) (4π|n|)1/4, ∀n 6= 0.

1.1.2 Poincaré series
As analogues of the non holomorphic Poincaré series known since Petersson, we present here
the Poincaré series as they were introduced by Selberg in [40]. Let σ−1(∞) be a cusp of G,
σ−1 ∈ SL2(Z). For m ∈ q−1

σ Z− {0} one defines

fm,σ(z, s) = ys e

((
m− κσ

qσ

)
x

)
exp

(
−2π

∣∣∣∣m− κσ
qσ

∣∣∣∣ y) . (1.1.12)

The Poincaré series associated to m and to the cusp σ−1(∞) is given by

Pm,σ(z, s) =
∑

g∈Gσ\G

ψ(g)σk(σ, g) jσg(z)k/2 fm,σ (σg(z), s) , z ∈ H, s ∈ C.
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1.1 Automorphic forms on the upper half-plane

One verifies that these series are well defined using (1.1.4). As a function of s, Pm,σ(z, s) is
holomorphic in <(s) > 1 and as a function of z, Pm,σ(z, s) satisfies

jg(z)k/2 f (g(z)) = ψ(g) f(z) ∀ z ∈ H, ∀ g ∈ G.

Moreover it lies in L2, but it is not an eigenfunction of ∆. Actually, it satisfies

[
∆ + s(1− s)

]
Pm,σ(z, s) = −4πm

(
s− k

2
)
Pm,σ(z, s+ 1). (1.1.13)

As the discrete spectrum of the Laplacian intersects [1/2, 1] in a finite set, Rs(1−s) is holomor-
phic in <(s) > 1/2 with at most a finite number of poles in [1/2, 1]. This shows the analytic con-
tinuation of Pm,σ(z, s) to <(s) > 1

2 , with a finite number of poles, which are the spectral parame-
ters of ∆. Inherited from those of Pm,σ(z, s), Ress=siPm,σ(z, s) posses the properties of transfor-
mation according to G and to be square integrable. Moreover, Ress=siPm,σ(z, s) is an eigenfunc-
tion of the Laplacian for the spectral parameter si. Thus Ress=siPm,σ(z, s) ∈ L2

λi
(G\H, ψ, k),

which means that if {u} forms an orthonormal basis of it, then

Ress=siPm,σ(z, s) =
∑
u

〈 Ress=siPm,σ(z, s), u(z)〉u(z) =
∑
u

Ress=si〈Pm,σ(z, s), u(z)〉u(z).

Proposition 1.2. Let f ∈ L2
λ (G\H, ψ, k), with λ = sf (1− sf ). Let σ−1(∞) be an essential cusp

of G. Let the Fourier expansion of f be given by

f(σ−1(z)) =jσ−1(z)−k/2
(
ρf (σ, 0) y1−sf +

∑
0 6=n∈Λ∧σ

ρf (σ, n)W k
2

sgn
“
n−κσ

qσ

”
, 1
2
−sf

(
4π
∣∣∣∣n− κσ

qσ

∣∣∣∣ y) e

((
n− κσ

qσ

)
x

))
.

Then

〈Pm,σ(·, s), f〉 = qσ e
−ikπρf (σ,m)

(
4π
∣∣∣∣m− κσ

qσ

∣∣∣∣)1−s Γ(s− sf ) Γ(s+ sf − 1)

Γ
(
s− k

2 sgn
(
m− κσ

qσ

))
and if Bi denotes an orthonormal basis of L2

λi
(G\H, ψ, k), with λi = si(1 − si) for a spectral

parameter si, then

Ress=siPm,σ(z, s) = qσ e
−ikπ

(
4π
∣∣∣∣m− κσ

qσ

∣∣∣∣)1−si Γ(2 si − 1)

Γ
(
si − k

2 sgn
(
m− κσ

qσ

)) ∑
u∈Bi

ρu(σ,m)u(z).

(1.1.14)
where ρu(σ, ·) is the Fourier coefficient of u at σ−1(∞).

It is known that twisted Kloosterman sums arise as Fourier coefficients of Poincaré series. To
show this, we need to define a geometric analogue of the Kloosterman sums K2(m,n, c).

Definition 1.5. Let σ−1(∞) and τ−1(∞) be two essential cusps of G. Let m ∈ Λ∧σ − {0} and
n ∈ Λ∧τ − {0}. Then, for any c ∈ Z, we define
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1.1 Automorphic forms on the upper half-plane

Kσ,τ (m,n, c) =

∑
g∈Gσ\G/Gτ
c(σgτ−1)=c

ψ(g)σk(σ, g)σk(σg, τ−1) e


(
m− κσ

qσ

)
a(σgτ−1)

c

 e


(
n− κτ

qτ

)
d(σgτ−1)

c

 .

Remark 1.2. The sum Kσ,τ (m,n, c) will be the geometrical analogue of the sums K2(m,n, c),
once we have chosen a suitable multiplicative system ψ and a convenient group G. We shall use
the same notation in Chapter 2 and in Chapter 3, for the analogue of the sum K3(m,n, c), but the
context should make clear to which we refer.

Proposition 1.3. Let σ−1(∞) and τ−1(∞) be two essential cusps of G. Let m ∈ Λ∧σ − {0}. The
Poincaré series Pm,σ(z, s) possesses at τ−1(∞) a Fourier expansion

(τ−1)′(z)k/2 Pm,σ(τ−1(z), s) =
∑

n∈q−1
τ Z

F (n, τ)(y) e
((

n− κτ
qτ

)
x

)
(1.1.15)

with

F (n, τ)(y) = δσ,τ δm,n e
ikπ ys exp

(
−2π

∣∣∣∣m− κσ
qσ

∣∣∣∣ y) +

eikπy1−s
∑
c>0

c−2sKσ,τ (m,n, c)
1
qτ

∫ ∞

−∞

e−ikarg(t+i)

(t2 + 1)s
e

(
−
(
m− κσ

qσ

)
t

c2 y (t2 + 1)

)

× exp
(
−2π

∣∣∣∣m− κσ
qσ

∣∣∣∣ 1
c2 y (t2 + 1)

)
e

(
−
(
n− κτ

qτ

)
yt

)
dt.

Proposition 1.4. Let σ−1(∞) and τ−1(∞) be two essential cusps of G. Let m,n ∈ Λ∧σ − {0}.
Let s, t ∈ C with <(s),<(t) > 1. Then the scalar product of the two Poincaré series Pm,σ(z, s)
and Pn,τ (z, t) is given by

〈Pm,σ(·, s), Pn,τ (·, t)〉 = δσ,τ δm,n qτ

(
2π
(∣∣∣∣m− κσ

qσ

∣∣∣∣+ ∣∣∣∣n− κτ
qτ

∣∣∣∣))1−s−t
Γ
(
t+ s− 1

)
+

∑
c>0

Kσ,τ (m,n, c)
c2s

∫ ∞

0
yt−s−1 exp

(
−2πy

∣∣∣∣n− κτ
qτ

∣∣∣∣) I(m, j, c, y) dy,

with

I(m, j, c, y) =∫ ∞

−∞

e−ikarg(u+i)

(u2 + 1)s
e

−u
(
m− κσ

qσ

)
c2 y (u2 + 1)

 exp

−2π
∣∣∣m− κσ

qσ

∣∣∣
c2 y (u2 + 1)

 e

(
−
(
n− κτ

qτ

)
yu

)
du.
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1.2 The Goldfeld-Sarnak method

1.2 The Goldfeld-Sarnak method

In this section we still work with a discrete subgroup G of SL2(R) and a multiplicative system
ψ of weight k. The goal is to obtain a first formula for the asymptotic behaviour of the function
Kσ,τ (m,n, c). In analytic number theory, one possibility to prove the asymptotic behaviour for
an arithmetic function t(c), is to use the analytic properties of its zeta function

∑
t(c) c−s. In our

case, the difficulty comes from the lack of information about the Selberg-Kloosterman zeta func-
tion Zm,n(s). However, the Kuznetsov formula for Kloosterman sums (which led to the formula
(4) of Introduction), can also be developed for twisted Kloosterman sums and, as consequence of
the complete summation formula, one obtains the asymptotic behaviour. All details were given by
Proskurin in [36]. Nevertheless, it is possible to derive the desired properties of Zm,n(s), the most
difficult being the growth condition in vertical strip; this was achieved by Goldfeld and Sarnak in a
short and elegant paper (see [12]). In the case of the sums K3(m,n, c), it is still possible to apply
such a method (see [31]) but since we shall need all spectral information, we shall have to deal
with the complete formula. In the first part of this section we shall summarize the ideas of [12]; it
consists in an estimate for the Laplacian, as well as the classical machinery build on the Poincaré
series. In the second part, the asymptotic formula is derived in Theorem 1.2.

1.2.1 The Kloosterman-Selberg zeta function

In the formula of Proposition 1.4, the integral on the right side is given by

∫ ∞

0
yt−s−1 exp

(
−2πy

∣∣∣∣n− κτ
qτ

∣∣∣∣) I(m, j, c, y) dy

=
∫ ∞

0

∫ ∞

−∞
yt−s−1 exp

(
−2πy

∣∣∣∣n− κτ
qτ

∣∣∣∣) e−ikarg(u+i)

(u2 + 1)s

× e

−u
(
m− κσ

qσ

)
c2 y (u2 + 1)

 exp

−2π
∣∣∣m− κσ

qσ

∣∣∣
c2 y (u2 + 1)

 e

(
−
(
n− κτ

qτ

)
yu

)
du dy

=
∫ ∞

0

∫ ∞

−∞
yt−s−1 exp

(
−2πy

∣∣∣∣n− κτ
qτ

∣∣∣∣) e−ikarg(u+i)

(u2 + 1)s

×

e
−u

(
m− κσ

qσ

)
c2 y (u2 + 1)

 exp

−2π
∣∣∣m− κσ

qσ

∣∣∣
c2 y (u2 + 1)

− 1

 e

(
−
(
n− κτ

qτ

)
yu

)
du dy

(1.2.1)

+
∫ ∞

0

∫ ∞

−∞
yt−s−1 exp

(
−2πy

∣∣∣∣n− κτ
qτ

∣∣∣∣) e−ikarg(u+i)

(u2 + 1)s
e

(
−
(
n− κτ

qτ

)
yu

)
du dy.

(1.2.2)

Denoting by I1(c) the first double integral (1.2.1) and by I2 the second double integral (1.2.2),
independent of c. We have shown that
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1.2 The Goldfeld-Sarnak method

〈Pm,σ(·, s), Pn,τ (·, t)〉 = δσ,τ δm,n qτ

(
2π
(∣∣∣∣m− κσ

qσ

∣∣∣∣+ ∣∣∣∣n− κτ
qτ

∣∣∣∣))1−s−t
Γ
(
t+ s− 1

)
+
∑
c>0

Kσ,τ (m,n, c)
c2s

I1(c) + I2 Zσ,τ (m,n, s).

(1.2.3)

The estimation of I2 is easy to handle.

Lemma 1.1. If t = s+ 2, then

I2 =
∣∣∣∣n− κτ

qτ

∣∣∣∣−2 e−ikπ/2

4π
2−2s Γ(2s+ 1)

Γ
(
s+ k

2 sgn
(
n− κτ

qτ

))
Γ
(
s+ 2− k

2 sgn
(
n− κτ

qτ

)) .
The goal is then to find an upper bound for I1(c), which makes the sum over the c’s in (1.2.3)

converge. In (1.2.1), we make appear the dependance in c by using the estimate exp(z−1)− 1 �
z−1 whenever z � 1. Thus, introducing a constant α > 0 which we shall choose later, we have

|I1(c)| 6

6
∫ ∞

−∞
(u2 + 1)−s

∫ ∞

0
yt−s−1

∣∣∣∣exp
(
−2iπ

(u− i)(m− κ1)
c2qy(u2 + 1)

)
− 1
∣∣∣∣ exp

(
−2πy(n− κ2)

q

)
dy du

6
∫ ∞

−∞
(u2 + 1)−s

{∫ α

0
2 yt−s−1 dy +

∫ ∞

α

yt−s−1

c2 y
√
u2 + 1

exp
(
−2πy(n− κ2)

q

)
dy

}
du

6 2
αt− s

t− s

∫ ∞

−∞
(u2 + 1)−s du + c−2

∫ ∞

−∞
(u2 + 1)−s−

1
2

∫ ∞

α
yt−s−2 exp

(
−2πy(n− κ2)

q

)
dy du.

The first integral converges for <(s) > 1
2 and the second integral for <(t− s) > 1. From this we

obtain that

I1(c) �
1

<(s)− 1
2

(
α<(t−s) + c−2

)
.

We choose α = c−1 and, as in the Lemma 1.1 above, t = s+2; combined with the trivial estimate
for Kloosterman sums, it shows that ∑

c>0

Kσ,τ (m,n, c)
c2s

I1(c)

is holomorphic in <(s) > 1
2 and is bounded by (<(s)− 1

2)−1. We can reformulate this as follows:

Zσ,τ (2s) − 4π eikπ/2
∣∣∣∣n− κτ

qτ

∣∣∣∣2 Γ
(
s+ sgn(n)k2

)
Γ
(
s+ 2− sgn(n)k2

)
2−2s Γ(2s+ 1)

〈Pm,σ(·, s), Pn,τ (·, s+ 2)〉

is holomorphic in <(s) > 1
2 and bounded by (<(s) − 1

2)−1. Therefore the possible poles of
Zσ,τ (s) are located at s = 2si, for si an exceptional spectral parameter. Moreover, for <(s) > 1

2 ,
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1.2 The Goldfeld-Sarnak method

Pn,τ (·, s + 2) is bounded, thus one will have all necessary properties of Zσ,τ (m,n, c) once we
possess an upper bound for the Poincaré series in the vertical strip 1

2 < <(s) < 1. This is proved
in [12], using the property (1.1.13). Namely, from the upper bound

|Rλ| 6
1

distance(λ, spectrum(∆)
,

one obtains

‖Pm,σ(z, s)‖ = O

((
<(s)− 1

2

)−2
)
.

The above discussion is gathered in the following proposition:

Proposition 1.5. Let 0 < k < 1 and letG, ψ, σ, τ , m,n as above. Then The Kloosterman-Selberg
zeta function Zσ,τ (s) defined by

Zσ,τ (s) =
∑
c>0

Kσ,τ (m,n, c)
cs

has the following properties:

- holomorphy in <(s) > 2,

- meromorphy in <(s) > 1, with polynomial growth

Zσ,τ (s) = O
(

|s|
<(s)− 1

)
,

- poles at s = 2si, with residue

Ress=2siZσ,τ (s) =eikπ/2
41−si

π2si−1/2
qσ qτ

(∣∣∣∣n− κτ
qτ

∣∣∣∣ ∣∣∣∣m− κσ
qσ

∣∣∣∣)3/4−si

Γ(2si − 1)
Γ(si + sgn(n)k2 )

Γ(si − sgn(m)k2 )

∑
u∈B(Mod)

au(σ,m) au(τ, n),

where B(Mod) is an orthonormal basis of L2
Mod (Γ\H, k, ψ).

Proof. Everything has been already proved above, except the last statement about the residues,
that we prove using Proposition 1.2 and Propositon 1.1.

1.2.2 Asymptotic behaviour
The goal of this section is to derive an asymptotic formula for the function Kσ,τ (m,n, c) from the
analytic properties of its zeta function Zm,n(s). This argument can be found in [12] or in [31] in
the case of cubic Kloosterman sums K3(m,n, c). We write the exceptional spectral parameters as
s1 > s2 > . . . > 1

2 .

Theorem 1.2. Let 0 < k < 1 and let G, ψ, σ, τ , m,n as above. Then for any ε > 0,

∑
0<c<X

Kσ,τ (m,n, c)
cβ

∼ Ress=2s1Zσ,τ (s)
2s1 − β

X2s1−β + O
(
Xmax(2s2,5/4+ε)−β

)
.
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1.2 The Goldfeld-Sarnak method

Proof. Let α ∈]0, 1[ and let ω1 > α+1 and ω2 > α+2; consider the counterclockwise integral of
Z(s−α) Xs

s(s−1) around the rectangle with vertices ω1−iT , ω1+it, ω2+iT and ω2−iT . From the

Phragmén-Lindelhöf Theorem and Proposition 1.5, one has Zσ,τ (s) = O
(
=(s)Φ(s)

)
, for a linear

function Φ satisfying Φ(1 + ε) = 1 and Φ(2 + ε) = 0. On the one side, as T goes to infinity, it
remains the integral on the vertical lines (ω1) and (ω2). On the other side, by the Cauchy theorem,
this is equal to

∑
si
Ri. Thus,

1
2iπ

∫
(ω2)

Z(s−α)
Xs

s(s− 1)
ds =

∑
si

Ri
X2si+α

(2si + α) (2si + α− 1)
+

1
2iπ

∫
(ω1)

Z(s−α)
Xs

s(s− 1)
ds,

where the sum on the right hand side is taken over the exceptional spectral parameter s1 > s2 >
. . . > si > . . . > 1

2 and
Ri = Ress=2si+α ( Zσ,τ (s− α)) .

As ω2 > α+ 2, the left hand side converges, and we can interchange integral and summation. We
obtain

1
2iπ

∫
(ω2)

Z(s− α)
Xs

s(s− 1)
ds =

∑
0<c

Kσ,τ (m,n, c) cα
1

2iπ

∫
(β)

(X/c)s

s(s− 1
ds

=
∑

0<c6X

Kσ,τ (m,n, c)
c1−α

(X − c).

On the right side, the integral over (ω1) is bounded by Xω1 . Comparing both sides of the equality
gives

∑
0<c<X

Kα1,α2(m,n, c)
c1−α

(X − c) =
∑
si

Ri
X2si+α

(2si + α) (2si + α− 1)
+Xω1 . (X)

We now differentiate this equation. Let 1 << ∆X << X . Substracting (X) from (X + ∆X), we
obtain

∑
0<c<X

Kα1,α2(m,n, c)
c1−α

∆X +
∑

X≤c<X+∆X

Kα1,α2(m,n, c)
c1−α

(X + ∆X − c)

=
∑
si

Ri
(X + ∆X)2si+α −X2si+α

(2si + α) (2si + α− 1)
+ O (Xω1) .

The second sum on the link hand side is bounded byO
(
Xα−1/2(∆X)2

)
. The term corresponding

to each si in the right hand side is equal to

Ri
2si + α− 1

X2si+α−1∆X +O
(
X2si+α−2(∆X)2

)
.

Dividing by ∆X , we obtain

∑
0<c<X

Kα1,α2(m,n, c)
c1−α

=
R1

2s1 + α− 1
X2s1+α−1+O(Xα−1/2∆X)+O

(
X2s2+α−1 +Xω1∆X−1

)
.
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1.2 The Goldfeld-Sarnak method

Choose ω1 = α + 1 + ε; then ∆X has to be chosen equal to X3/4, and, writing β = 1 − α, we
obtain ∑

0<c<X

Kα1,α2(m,n, c)
cβ

=
R1

2s1 − β
X2s1−β +O

(
Xmax(2s2,5/4+ε)−β

)
.

This finishes the proof of Theorem 1.2.

Remark 1.3. We know that some spectral gap occurs in the exceptional spectrum. For example,
Goldfeld and Sarnak (see [39], Theorem 3.6) proved that when G = Γ0(4N), k = 1

2 and ψ is the
multiplicative factor associated to the theta function (see next section) then s2 6 5

8 .
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1.3 Theta functions of half-integral weight

1.3 Theta functions of half-integral weight
In this section, we shall restrict ourselves to congruence subgroups Γ0(N) of SL2(R), to the
weight k = 1

2 , and to factor systems ψ of the shape κχ, where κ is defined in (1.3.5) and χ is a
primitive Dirichlet character. Under these conditions, we shall give an explicit orthonormal basis
of the modular forms, i.e. of the minimal eigenspace of Maaß forms; this will then allow us to
determine explicitly the right hand side of the formula in Theorem 1.2. The main ingredient will
be the classical theta function, and we start with some facts about it.

It is known that the function θ(z) =
∑

n∈Z e
iπn2z satisfies (always with the choice of the

argument of a complex number in [0, 2π[)

θ(z + 2) = θ(z) (1.3.1)

θ(z) =

√
i

z
θ

(
−1
z

)
. (1.3.2)

By Remark 1.1 of Section 1.1, this implies a modularity property of θ for the group Λ = 〈T 2, S〉,
where

T =
(

1 1
0 1

)
et S =

(
0 −1
1 0

)
.

Proposition 1.6. Let γ ∈ Λ. There exists a function κθ on Λ such that

γ′(z)1/4 θ (γ(z)) = κθ(γ) θ(z) ∀z ∈ H, γ ∈ Λ. (1.3.3)

Because of κθ(−Id) = 1, κθ is determined by its values on the elements γ =
(
a b
c d

)
∈ Λ, with

d > 0; on such an element, it holds

κθ(γ) =



(
2b
d

)
2

εd

{
i if c > 0
1 if c ≤ 0

for c even and b 6= 0,{
i if c > 0
1 if c ≤ 0

for c even and b = 0,

e
iπ
4

(
2a
c

)
2

εc for c odd and a 6= 0,

e
iπ
4 for c odd and a = 0,

(1.3.4)

where εx = 1 if x ≡ 1 (mod 4) and εx = i if x ≡ 3 (mod 4).

Proof. This property of κθ on Λ was proved by Kubota in [25]. This result is in fact considerably
older; actually, it was proved by Hermite (see [16]) and then by Weber (see [44] § 23 - § 28). Our
result is different from the result of [25], because of the choice of the branch of g′(z)1/4.

This makes from θ a modular form of weight 1
2 for the group Λ. For convenience, we wish to

work in the context of congruence subgroups; for it we define

ϑ(z) = θ(2z).

If we define, for an element γ =
(
a b
c d

)
, an element γt by γt =

(
a tb
c/t d

)
, then
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1.3 Theta functions of half-integral weight

γ′(z)1/4 ϑ (γ(z)) = γ′2(2z)
1/4 θ (γ2(2z)) ∀γ ∈ Γ0(4)

= κθ(γ2)ϑ(z) because γ2 ∈ Λ.

One sees then that γ 7→ κθ(γ2) =: κ(γ) is a multiplicative system for the group Γ0(4) and for the
weight 1

2 . The result of the last proposition gives then, for γ ∈ Γ0(4),

κ(γ) =



(
b

d

)
2

εd

{
i if c > 0
1 if c ≤ 0

for c even and b 6= 0,{
i if c > 0
1 if c ≤ 0

for c even and b = 0.

(1.3.5)

Thus ϑ is an element of L2
Mod (Γ0(4N), 1/2, κχ). By Proposition 1.1 of Section 1.1.1, we know

that y1/4 ϑ is a non cuspidal Maaß form of eigenvalue 3/16, which is the smallest possible, by the
formula (1.1.8).

Recall also that for any Dirichlet character χ modulo 4N , κχ can be made as a multiplicative
system for Γ0(4N), by defining χ(γ) as χ(d), if γ =

(
a b
c d

)
. This is in particular true with any

Dirichlet character χ modulo f , with f |N . The main result of the last section, Theorem 1.2, can
be applied in this context. It gives the following theorem:

Theorem 1.3. Let χ be a primitive Dirichlet character modulo f . Let σ−1(∞) and τ−1(∞) be
two essential cusps of Γ0(4N), and let m ∈ Λ−1

σ −{0} and n ∈ Λ−1
τ −{0}. Let Kσ,τ (m,n, c) be

the Kloosterman sum associated to the multiplicative system κχ. Then, if N is an integer so that
f |N , we have

X−3/2
∑
c6X

Kσ,τ (m,n, c) ∼
2
3

1 + i√
π
qσ qτ


√
π
−sgn(m) if sgn(m) = sgn(n)

1 if sgn(m) 6= sgn(n)

∑
u

au(σ,m) au(τ, n) ,

where u belongs to an orthonormal basis of the space L2
Mod (Γ0(4N), 1/2, κχ) and au(·, ·) are

defined by (1.1.5).

The rest of this section is devoted to find an orthonormal basis of L2
Mod (Γ0(4N), 1/2, κχ).

We introduce theta function twisted by a Dirichlet character,

ϑχ(z) =
∑
n

χ(n) e
(
n2z
)

We remark that, with the notations of (1.1.5), aϑχ(Id, 0) = 0. This will be needed latter on.

1.3.1 A result of Serre and Stark
One of the main results of Serre and Stark ([42]) is the fact that, for any Dirichlet character χ, the
space of modular forms Mod

(
Γ0

(
4cond(χ)2

)
, χ, 1

2

)
only contains one newform, ϑχ. From this,

they deduce that there exists a basis of Mod
(
Γ0 (4N) , χ, 1

2

)
formed by theta functions. Before to

state this result, let us introduce some notations.
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1.3 Theta functions of half-integral weight

In the theory of half-integral modular forms, one has non trivial Hecke operators, not for any
prime p, but for squares p2. The Hecke operators Tp2 are a defined on Mod

(
Γ0(4N)\H, 1

2 , κ, χ
)
.

Their action on a modular form

f(z) =
∞∑
n=0

af (n) e(nz)

is given by

Tp2f(z) =
∞∑
n=0

bf (n) e(nz),

with

bf (n) =

af (np
2) if p|2N,

af (np2) + χ(p)
p

(
n
p

)
af (n) + χ2(p)

p af (n/p2) if p 6 |2N.

A useful property of the Hecke operators is that χ(p)Tp2 is hermitian; if p 6 |2N , then

〈f |Tp2 , g〉 = χ2(p) 〈f, g|Tp2〉.
The function θχ is an eigenfunction of any operator Tp2 for p 6 |2N of eigenvalue χ(p) (1 + p−1).

For t odd, the Kronecker symbol χt is the Dirichlet character n 7→
(
t
n

)
2

of conductor t or 4t
according to whether t ≡ 1 (mod 4) or t ≡ 3 (mod 4). Now let us define an operator

Vt : Mod
(

Γ0 (4N) , χ,
1
2

)
−→ Mod

(
Γ0 (4Nt) , χχt,

1
2

)
.

f(z) 7→ f(tz).

Then, Vt and Tp2 commute if p 6 |t.
To any Dirichlet character χ of modulusN , there is an associated primitive Dirichlet character

χ′ of modulus the conductor of χ, written fχ; for two Dirichlet characters χ1 and χ2, when we
write χ1χ2 we always mean the primitive Dirichlet character associated to the product of χ1 and
χ2.

Finally, we recall the definition of newform and oldform. Let f ∈ Mod
(
Γ0(4N)\H, 1

2 , κχ
)

be an eigenform of all but finitely many Tp2 . We say that f is an oldform if there exists some prime
p|N such that, either f ∈ Mod

(
Γ0(4N/p)\H, 1

2 , κχ
)
, or f = Vpg, for some g ∈ Mod

(
Γ0(4N/p)\H, 1

2 , κχχp
)
;

if f is not an oldform, it is said to be a newform. Let New
(
Γ0(4N)\H, 1

2 , κχ
)

be the space
spanned by newform. Then Serre and Stark proved ([42], Theorem 3) that New

(
Γ0(4cond(χ))\H, 1

2 , κχ
)

is one dimensional, generated by ϑχ. This allowed them to prove that any modular form of half-
integral weight is a combination of theta series.

Theorem 1.4. Let N ∈ N. Let χ be a primitive Dirichlet character modulo N . A basis of the
space Mod

(
Γ0(4N)\H, 1

2 , κχ
)

is given by the family

Vdu2 ϑχχd
,

where d and u are submitted to the conditionsd square-free and f(d)2d|N (D) ,

u2| N
f(d)2d

(Dd) .
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1.3 Theta functions of half-integral weight

Proof. This is a reformulation of Theorem A of [42], which states that a basis of the space Mod
(
Γ0(4N)\H, κχ, 1

2

)
is given by the family {Vt ϑψ}(ψ,t), where

(i) ψ is a primitive Dirichlet character,

(ii) ψχt = χ, (as group homomorphisms on Γ0(4N)),

(iii) (fψ)2 t|N.

Replacing the condition (ii) by ψ = χχt, we see that (iii) is equivalent with (fχχt)
2 t|N . Let

us decompose t = du2, with d square-free; then χt = χd, and as χ is now fixed, we simplify
notations by writing f(t) for fχχt , the conductor of χχt.

Corollary 1.1. Let D, f be odd positive integers. Let χ be a primitive Dirichlet character of
conductor f . The space Mod

(
Γ0(4Df), κχ, 1

2

)
is non-empty only if χ = χf with f ≡ 1 (mod 4).

Any d satisfying (D) has to be a multiple of f , say d = ft, and χχtf = χt.

Proof. Let f =
∏
pfi
i , pi odd. Let d be such that 4 cond(χχd)2d|4Df . Then d has to be odd. We

then use the product decomposition

χ =
∏

χi,

with χi a character of conductor pfi
i . Also, we have

χd = ε
∏
p|d

(
·
p

)
2

,

where ε is the trivial character if d ≡ 1 (mod 4) and ε is the non trivial character modulo 4 if
d ≡ 3 (mod 4). Then,

χχd = ε
∏
pi

χi
∏
p|d

χp.

If some pi does not divide d, then pfi
i |cond(χχd) and therefore p2fi

i dividesDf ; but fi = ordpi(f) =
ordpi(Df). Thus all pi divide d. Moreover, cond(χi χpi) = pfi

i , except if χi = χpi , and we obtain
the same contradiction as previously, if some χi 6= χpi ; thus, χ = χf . In particular, f is square-
free and f divides d. As we work with even characters, we need f ≡ 1 (mod 4). Let us write
d = ft, with t square-free and gcd(t, f) = 1. Then,

χχd = ε
∏
pi

χi
∏

p|d, p|f

χp
∏
p|d, p|t

χp

and the primitive character associated to χχd is

χχd = ε
∏
p|d, p|t

χp,

but as the conductor has to be odd, we need d ≡ 1 (mod 4) i.e. t ≡ f ≡ 1 (mod 4). One obtains
therefore χχd = χt, of conductor t.

We remark that the argument used in this proof is no more valid if we consider the larger space
Mod

(
Γ0(4Df i), κχ, 1

2

)
, for some i > 2.
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1.3 Theta functions of half-integral weight

1.3.2 Orthonormalisation of theta functions
Among the set of theta functions Vdu2 ϑχχd

forming a basis of Mod
(
Γ0(4N)\H, 1

2 , κχ
)

(see The-
orem 1.4), some are orthogonal and some are not. The following lemmas describe precisely the
scalar product of two theta functions.

Lemma 1.2. Let d and d′ satisfy (D), and let u and u′ satisfy (Dd) and (Dd′), respectively.
Assume d 6= d′. Then 〈Vdu2 ϑχχd

, Vd′u′2 ϑχχd′ 〉 = 0.

Proof. Since d and d′ are square-free, we can choose p 6 |2N such that χd(p) 6= χd′(p). We use
the fact that ϑχχd

belongs to New(4f(d)2, χχd), and is an eigenfunction of Tp2 with eigenvalue
χχd(p)(1 + p−1). The operators Vdu2 and Tp2 commute, thus Vdu2 ϑχχd

is an eigenfunction of
Tp2 , for the same eigenvalue. Then,

χ(p)χχd(p) (1 + p−1) 〈Vdu2ϑχχd
, Vd′u′2ϑχχ′d〉 = 〈Tp2χ(p)Vdu2ϑχχd

, Vd′u′2ϑχχ′d〉

=〈Vdu2ϑχχd
, Tp2χ(p)Vd′u′2ϑχχ′d〉 = χ(p)χχd′(p) (1 + p−1) 〈Vdu2ϑχχd

, Vd′u′2ϑχχ′d〉.

On the one side, χ(p)χχd(p) = χd(p), and on the other side, χ(p)χχd′(p) = χd′(p) 6= χd(p),
as χd(p) is real. (One remarks that we used three different Hecke operators Tp2 , each one being
defined according to a different character.)

Let now d be a fixed integer, satisfying the condition (D). We study the set of functions
Vdu2 θχχd

, where u satisfies the condition (Dd) and compute the scalar product by the following
lemma.

Lemma 1.3 (Rankin-Selberg). Let Γ be a subgroup of SL2(Z). Let E(z, s) =
∑

γ∈Γ∞\Γ=(γz)s.
Let f, g ∈ Mod(Γ, k, χ), and denote by af (n) and ag(n) their Fourier coefficients at ∞. Assume
that af (0) ag(0) = 0. Then

〈f, g E(·, s)〉 = Γ(s+ k − 1)
∑
n>0

a(n) b(n)
(4πn)k+s−1

.

Proof. It is the usual unfolding method, once one remarks that f(z) g(z)=(z) is Γ-invariant.

Define N
f(d)2 d

= X , and define a divisor Xd of X as Xd =
∏
pi|f(d) p

ei
i , where X =

∏
pei
i ;

Xd will be said to be the divisor of X supported by f(d).

Lemma 1.4. With the notations as above, let d satisfy Condition (D) and let u and u′ satisfy
Condition (Dd), i.e. u2|X and u′2|X . Denote by s and s′, the divisors of u and u′, respectively,
supported by f(d). Then

〈Vdu2 ϑχχd
(z), Vdu′2 ϑχχd

(z)〉 =

{
0 if s 6= s′,

C(N, d)χχd
(
u′

s′

)
χχd

(
u
s

) gcd(u,u′)
uu′ if s = s′,

where we defined the constant

C(N, d) =
πN

2
√
d

∏
p|N

p+ 1
p

∏
p|f(d)

p− 1
p

.
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1.3 Theta functions of half-integral weight

Proof. Lemma 1.3 applied with k = 1
2 and Γ = Γ0(4N) gives

〈Vdu2 ϑχχd
, Vdu′2 ϑχχd

E(·, s)〉 = Γ(s− 1
2
)
∑
n

a(n) a′(n)

(4πn)s−
1
2

,

with

a(n) =

χχd
(√

n
du2

)
if n ∈ du2Z2,

0 otherwise,
and a′(n) =

{
χχd

(√
n
du′2

)
if n ∈ du′2Z2

0 otherwise.

Let g = gcd(u, u′); then n has to belong to d u2u′2

g2
Z2, and we obtain

〈Vdu2 ϑχχd
, Vdu′2 ϑχχd

E(·, s)〉 = Γ(s− 1
2
)
∑
m

χχd

(
u′m
g

)
χχd

(
um
g

)
(

4πdm2u2u′2

g2

)s− 1
2

= Γ(s− 1
2
) χχd

(
u′

g

)
χχd

(
u

g

) (
4πdu2u′2

g2

)1/2−s ∑
n

χχd(n)χχd(n)

(n2)s−
1
2

= Γ(s− 1
2
) χχd

(
u′

g

)
χχd

(
u

g

) (
4πdu2u′2

g2

)1/2−s ∑
n>0

(n,f(d))=1

1

(n2)s−
1
2

.

Taking the residue at s = 1, we get

〈Vdu2 ϑχχd
, Vdu′2 ϑχχd

〉

= (Ress=1E(z, s))−1 χχd

(
u′

g

)
χχd

(
u

g

)
g

2uu′
√
d

Ress=1

 ∑
(n,f(d))=1

1

(n2)s−
1
2


= (Ress=1E(z, s))−1 χχd

(
u′

g

)
χχd

(
u

g

)
g

4uu′
√
d

∏
p|f(d)

p− 1
p

.

Let s, s′ and gd be the divisors of u, u′ and g, respectively, with support in f(d). Then, χχd
(
u′

g

)
χχd

(
u
g

)
6=

0 if and only if gd = s = s′. Moreover, χχd
(
u′

g

)
χχd

(
u
g

)
= χχd(u′/s′)χχd(u/s). Finally, one

shows that

Ress=1E(z, s) = π Ress=1

 ∑
(c,4N)=1

ϕ(c)
c2s



=
π

4N
Ress=1

 ∏
p6 |4N

1− p−2s

1− p1−2s

 =
1

2πN

∏
p|N

p

p+ 1
.
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1.3 Theta functions of half-integral weight

Let d satisfy (D) and write X = N
f(d)2 d

; let Xd be the divisor of X supported by f(d) and
write X ′

d = X/Xd. Let now s satisfy the condition (Dd), with s supported by f(d), i.e. s2|Xd.
Let finally u and v satisfy u2, v2|X ′

d. Then the preceding lemma gives

〈Vds2u2 ϑχχd
(z), Vds2v2 ϑχχd

(z)〉 = C(N, d)χχd(v)χχd(u)
gcd(u, v)
s u v

.

This leads to define

ϑ1
d,s,u = C(N, d)−1/2 s

1
2 uχχd(u)Vds2u2 ϑχχd

. (1.3.6)

These functions satisfy

〈ϑ1
d,s,u, ϑ

1
d,s,v〉 = gcd(u, v), for any u, v so that u2, v2|X ′

d. (1.3.7)

For a couple (d, s) as above, we have to orthogonalise the set {ϑ1
d,s,u}, with u2|X ′

d. This is
achieved by the Möbius formula

∑
j|u

µ(j) f
(
u

j

)
= g(u) ⇐⇒ f(u) =

∑
j|u

g(j). (1.3.8)

Let us define the function

ϑd,s,u = ϕ(u)−1/2
∑
j|u

µ(j)ϑ1
d,s,u

j
. (1.3.9)

Lemma 1.5. Let d satisfy (D). Let s satisfy (Dd) and assume that s is supported by f(d). Let u, v
satisfy (Dd) and assume gcd(u, f(d)) = gcd(v, f(d)) = 1. Then

〈ϑd,s,u, ϑd,s,v〉 =

{
1 if u = v,

0 if u 6= v.

Proof. By definition of ϑd,s,u, the equality to be proven is equivalent to

ϕ(u)−1/2
∑
j|u

µ(j) 〈ϑ1
d,s,u

j
, ϑd,s,v〉 =

{
1 if u = v,

0 if u 6= v,

that we rewrite as

∑
j|u

µ(j) 〈ϑ1
d,s,u

j
, ϑd,s,v〉 =

{
ϕ(u)1/2 if u = v,

0 if u 6= v.
(1.3.10)

By choosing

f(x) = 〈ϑ1
d,s,x, ϑd,s,v〉 and g(x) =

{
ϕ(x)1/2 if x = v,

0 if x 6= v,

in the Möbius formula (1.3.8), (1.3.10) is equivalent to

〈ϑ1
d,s,u, ϑd,s,v〉 =

∑
j|u

{
ϕ(j)1/2 si j = v,

0 si j 6= v.
(1.3.11)
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By the definition (1.3.9) of ϑd,s,v, and by evaluating the right hand side of (1.3.11), the equality of
Lemma 1.5 is equivalent to

ϕ(v)−1/2
∑
j|v

µ(j) 〈ϑ1
d,s,u, ϑ

1
d,s, v

j
〉 =

{
ϕ(v)1/2 si v|u,
0 si v 6 |u,

what we reformulate as

∑
j|v

µ(j) 〈ϑ1
d,s,u, ϑ

1
d,s, v

j
〉 =

{
ϕ(v) si v|u,
0 si v 6 |u.

We apply the Möbius formula with

f(x) = 〈ϑ1
d,s,u, ϑ

1
d,s,x〉 and g(x) =

{
ϕ(x) if x|u,
0 if x6 |u.

Lemma 1.5 is then proved if and only if

〈ϑ1
d,s,u, ϑ

1
d,s,v〉 =

∑
j|v

{
ϕ(j) if j|u
0, si j 6 |u.

(1.3.12)

The right hand side is equal to ∑
j|gcd(u,v)

ϕ(j) = gcd(u, v),

therefore (1.3.12) is verified and the lemma is proved.

Theorem 1.5. Let N ∈ N. Let χ be a primitive Dirichlet character modulo f . Denote by f(d) the
conductor of the primitive Dirichlet character associated to the product of the characters χ and
χd. Define the following constant:

c(N, d, s, u) =

2
√
d

π N

∏
p|N

p

p+ 1

∏
p|f(d)

p

p− 1

1/2

s
1
2 ϕ(u)−1/2. (1.3.13)

Then an orthonormal basis of Mod
(
4N,χ, 1

2

)
is given by the set of functions ϑd,s,u(z) defined in

(1.3.9), where the parameters d, s, u satisfy

(i) d square-free, f(d)2d|N,

(ii) s2| N

f(d)2d
, supp(s) ⊆ supp(f(d)),

(iii) u2| N

f(d)2d
, gcd(u, f(d)) = 1.

Their Fourier expansions at infinity are given by

ϑd,s,u(z) = c(N, d, s, u)
∑
m∈Z

ad,s,u(Id,m) e(mz)
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with Fourier coefficients

ad,s,u(Id,m) =

{
0 if m /∈ ds2Z2,

χt(m′)
∑

j|(u,m′) µ
(
u
j

)
j if m = ds2m′2.

Proof. As before, write X = N
f(d)2 d

and decompose X = XdX
′
d, with Xd supported by d. It

remains to study the Fourier expansion of ϑd,s,u. By (1.3.6) and (1.3.9), on a

ϑd,s,u = C(N, d)−1/2 s
1
2 ϕ(u)−1/2

∑
j|u

µ(j)
u

j
χχd

(
u

j

)
Vds2(u/j)2ϑχχd

= c(N, d, s, u)
∑
j|u

µ

(
u

j

)
j χχd(j)Vds2j2ϑχχd

.

By the definition of ϑχχd
, we obtain

ϑd,s,u(z) = c(d, s, u)
∑
j|u

µ

(
u

j

)
j χχd(j)

∑
n

χχd(n)e(n2ds2j2z)

= c(N, d, s, u)
∑
n

χχd(n)
∑
j|u

µ

(
u

j

)
j χχd(j) e(n2ds2j2z)

= c(N, d, s, u)
∑
m

ame(m2ds2z),

where

am =
∑

j|(u,m)

χχd(m/j)µ
(
u

j

)
j χχd(j).

Since u2|X ′
d, then gcd(u, f(d)) = 1, and therefore, for any j|u, we have χχd(m/j) = χχd(m)χχd(j).

Thus

am = χχd(m)
∑

j|(u,m)

µ

(
u

j

)
j.

Corollary 1.2. Let D, f be odd positive integers, gcd(D, f) = 1. Let χ be a primitive character
of conductor f . The space Mod

(
Γ0(4Df), κχ, 1

2

)
is non-empty if and only if f ≡ 1 (mod 4)

and χ = Jf = χf , in which case an orthonormal basis of it is given by the ϑtf,s,u(z), for t3|D,
t ≡ 1 (mod 4), s2|D

t3
, s supported by t, u2|D

t3
, gcd(u, t) = 1. For such parameter t, we have

χχtf = Jt = χt.

Proof. Recall that from Corollary 1.1, we know that d ≡ 0 (mod f), for any d satisfying (D).
Writing d = ft and translating the conditions of Theorem 1.5 we get the result as stated.
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1.4 Determination of the constant
We are now in a position to determine explicitly both sides of the formula of Theorem 1.3 and
then to prove Theorem 1.1. We assume that D, f are odd, for simplicity. We choose the group
Γ0(4Df), for which the results of the previous section with N = Df will be used. We still work
with weight k = 1/2.

1.4.1 Choice of the cusps and of the level
We choose the two cusps to be σ−1(∞) and τ−1(∞) with τ−1 = Id and

σ−1 =
(
α β
D 4f

)
with α > 0, α even and β odd. One verifies that Λσ = 4fZ, Λτ = Z and κσ = κτ = 0.

Proposition 1.7. The geometric Kloosterman sum appearing in the left hand side of the formula
of Theorem 1.3 is given by

Kσ,τ (m,n, c) =

0 if c 6≡ 0 (mod D) or if c is even,

εD

(
c
f

)
2
εcK2(m,n, c) if c ≡ 0 (mod D) and if c is odd.

We remark that for an odd integer c,

εcK2(m,n, c) ∈ R.

Proof. Let c > 0 be a fixed integer. By definition,

Kσ,τ (m,n, c) =
∑

g∈Gσ\G/Gτ
c(σgτ−1)=±c

ψ(g)σk(σ, g)σk(σg, τ−1) e


(
m− κσ

qσ

)
a(σgτ−1)

c

 e


(
n− κτ

qτ

)
d(σgτ−1)

c

 .

We replace σgτ−1 by the matrix
(
a b
c d

)
; this gives

Kσ,τ (m,n, c) =

∑
σ−1

“
a b
c d

”
τ∈Gσ\G/Gτ

κχ

(
σ−1

(
a b
c d

)
τ

)
σk

(
σ, σ−1

(
a b
c d

)
τ

)
σk

(
σσ−1

(
a b
c d

)
τ, τ−1

)

× e

((
m− κσ

qσ

)
a

c

)
e

((
n− κτ

qτ

)
d

c

)
.

If g is replaced by gσ g gτ , with gσ = σ−1T λσ ∈ Gσ and gτ = τ−1T λτ τ ∈ Gτ , then
(
a b
c d

)
=

σgτ−1 is replaced by σ
(
σ−1T λσσ

)
g
(
τ−1T λτ τ

)
τ1 = T λσ

(
a b
c d

)
T λτ . Thus a is defined modulo

Λσc and d modulo Λτc. It is easy to see that σk
((

a b
c d

)
, Id
)

= 1, thus
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1.4 Determination of the constant

K(m,n, c) =
∑

a (4fc), d (c)

σ−1
„
a b
c d

«
τ∈Γ0(4Df)

κχ

(
σ−1

(
a b
c d

)
τ

)
σk

(
σ, σ−1

(
a b
c d

)
τ

)
e

(
ma+ nd

c

)
.

The condition

σ−1

(
a b
c d

)
∈ Γ0(4Df)

means aD + 4cf ≡ 0 (mod 4Df), thus a ≡ 0 (mod 4f) (which implies c odd) and c ≡ 0

(mod D). Remark that σ−1

(
a b
c d

)
∈ Γ0(4fD), thus σ−1S(−S)

(
a b
c d

)
∈ Γ0(4f); since

σ−1S ∈ Γ0(4f), so does −S
(
a b
c d

)
. Finally, as κχ is a multiplicative system, we have

κχf

(
σ−1

(
a b
c d

))
σk

(
σ, σ−1

(
a b
c d

))
= κχf

(
σ−1S(−S)

(
a b
c d

))
σk

(
σ, σ−1S(−S)

(
a b
c d

))

= κχf
(
σ−1S

)
κχf

(
−S

(
a b
c d

))
σk

(
σ−1S,−S

(
a b
c d

))
σk

(
σ, σ−1S(−S)

(
a b
c d

))

= κχf
(
σ−1S

)
κχf

(
−S

(
a b
c d

))
σk
(
σ, σ−1S

)
σk

(
S,−S

(
a b
c d

))
.

Assume now that a > 0. Then σk
(
σ, σ−1S

)
σk
(
S,−S

(
a b
c d

))
= 1. The choice c > 0 and

a, d > 0 gives b = ad−1
c > 0, and by the formula (1.3.5),

κ

(
−S

(
a b
c d

))
= κ

((
c d
−a −b

))
:= κ

((
−c −d
a b

))

=
(
−d
b

)
2

εb i =
(
−1
b

)
2

(
d

b

)
2

εb i .

Since ad− bc = 1, bc ≡ −1 (mod 4), and thus εb
(−1
b

)
2
i = εc. It follows

κ

(
−S

(
a b
c d

))
=
(
d

b

)
2

εc =
(a
b

)
2
εc.

Since a > 0, a ≡ 0 (mod 4) and bc ≡ −1 (mod a), it holds
(
a
bc

)
2

=
(
a
−1

)
2

= 1, thus(
a
b

)
2

=
(
a
c

)
2
. Finally, we have the following:

κ(σ−1S) = κ

((
β −α
4f −D

))
:= κ

((
−β α
−4f D

))
=
( α
D

)
2
εD

χ(σ−1S) = χ(−D) , χ(−S
(
a b
c d

)
) = χ(−b)

Thus, if c ≡ 0 (mod D),
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Kσ,τ (m,n, c) =
∑

a (4fc)
d (c)

ad≡1 (c)
a≡0 (4f)

( α
D

)
2
εD

(a
c

)
2
εc χ(−D)χ(−b) e

(
ma+ nd

c

)
.

4αf ≡ 1 (mod D), χ is a character of conductor f , and a ≡ 0 (mod f). This can be written as

Kσ,τ (m,n, c) = εD

(
f

D

)
2

χ(−D)χ(c) εc

(
4f
c

)
2

∑
a (c) d (c)
4fad≡1 (c)

(a
c

)
2
e

(
m 4fa+ nd

c

)

= εD εc

(
f

D

)
2

χ(−D)χ(c)
∑

x (c) d (c)
xd≡1 (c)

(x
c

)
2
e

(
mx+ nd

c

)
.

From Corollary 1.2, we know that χ = χf , for some square-free f , f ≡ 1 (mod 4). This finishes
the proof of Proposition 1.7.

In order to make explicit the right side of the formula of Theorem 1.3, we need the Fourier
expansion of the theta functions ϑtf,s,u(z) defined in (1.3.9) at both, τ−1(∞) and σ−1(∞). While
the former is given by Theorem 1.5, we give here the latter. The cusp σ−1(∞) is of width 4f .
Recall that

ϑtf,s,u(z) = c(Df, tf, s, u)
∑
j|u

µ

(
u

j

)
j χt(j)ϑχt(tf s

2 j2 z),

so that the first step is to study ϑχt(tf s2 j2 z) at σ−1(∞). Recall that t ≡ 1 (mod 4). More
generally, we replace χt by ψ and tfs2j2 by t. Let r be the conductor of ψ. The condition that
t3fs2j2 divides Df becomes now r2t|Df . Let r = rDrf and t = tDtf . Let ψD, ψf be the
associated characters to ψ. (For us, ψD = χt and ψf = 1; moreover, rD = cond(χt) = t, rf = 1,
tD = t s2 j2, tf = f ).

Proposition 1.8. Let ψ be a character of conductor r. Let t be such that r2t|Df . Let ψD, ψf be the
associated characters toψ. Let l ∈ N−{0}. Then, the lth Fourier coefficient of (σ−1)′(z)1/4 θψ

(
tσ−1(z)

)
in the expansion

(σ−1)′(z)1/4 θψ
(
tσ−1(z)

)
=
∑
l>0

b(l) e

(
l2 tD z

4r2f tf

)
,

is given by

eiπ/4
1

rf
√

2tf

(
tfα

DtD

)
2

εDtD (ψD(l) + ψf (−1)ψD(−l)) ψD(2frf tf )ψf (−DtDl)Gψf
(1)

Proof. We shall use a more general theta function. Let ε, ε′ ∈ R. Define

θ
(
ε, ε′, z

)
=
∑
n∈Z

e

(
1
2

(
n+

ε

2

)2
z

)
e

((
n+

ε

2

) ε′
2

)
. (1.4.1)
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Then if γ =
(
a b
c d

)
∈ SL2(Z), z ∈ H et ε, ε′ ∈ R we have ([8], Theorem 1.11 p. 81):

θ(ε, ε′, γ(z)) = c(ε, ε′, γ) (cz + d)1/2 θ(aε+ cε′ − ac, bε+ dε′ + bd, z),

with a constant c(ε, ε′, γ) satisfying

c(ε, ε′, γ) = e

(
−(aε+ cε′)bd

4
− (abε2 + cdε′2 + 2bcεε′)

8

)
c(0, 0, γ).

The particular case ε′ = 0 gives

θ(ε, 0, γ(z)) = c(ε, 0, γ) (cz + d)1/2 θ(aε− ac, bε+ bd, z), (1.4.2)

with

c(ε, 0, γ) = e

(
−εabd

4
− (abε2)

8

)
c(0, 0, γ). (1.4.3)

Assume that γ ∈ Λ; Then ac and bd are even, and we have

θ(aε− ac, bε+ bd, z) =
∑
n∈Z

e

(
1
2

(
n+

aε− ac

2

)2

z

)
e

(
1
2

(
n+

aε− ac

2

)
(bε+ bd)

)

=
∑
n∈Z

e

(
1
2

(
n+

aε

2

)2
z

)
e

(
1
2

(
n+

aε

2

)
(bε+ bd)

)

= e
(aε

4
(bε+ bd)

) ∑
n∈Z

e

(
1
2

(
n+

aε

2

)2
z

)
e

(
1
2
nbε

)
,

and introducing this in (1.4.2) gives

θ(ε, 0, γ(z)) = e

(
(abε2)

8

)
c(0, 0, γ) (cz+d)1/2

∑
n∈Z

e

(
1
2

(
n+

aε

2

)2
z

)
e

(
1
2
nbε

)
. (1.4.4)

Notice (p.81 of [8]), the authors work with arg(z) ∈ [0, 2π[. Thus the constant K(0, 0, γ) is
defined, in the case γ ∈ Λ, as

θ(0, 0, γ(z)) = c(0, 0, γ) (cz + d)1/2 θ(0, 0, z).

Since θ(0, 0, z) = θ(z), we have

c(0, 0, γ) (cz + d)1/2 = κθ(γ) γ′(z)−1/4. (1.4.5)

We finally have

θ(ε, 0, γ(z)) = e

(
(abε2)

8

)
κθ(γ) γ′(z)−1/4

∑
n∈Z

e

(
1
2

(
n+

aε

2

)2
z

)
e

(
1
2
nbε

)
. (1.4.6)

Before starting the evaluation of the terms b(l), we merely remark that

σ̃ =
(

2r2f tfα r2DtDβ

D/r2DtD 4f/2r2f tf

)
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is an element of Λ and satisfies

2r2tσ−1(z) = σ̃(z′), with z′ =
r2D tD
2r2f tf

z.

Now,

ϑψ
(
tσ−1(z)

)
=
∑
n∈Z

ψ(n) e
(
n2tσ−1(z)

)
=
∑
h (r)

ψ(h)
∑
n∈Z

e

((
n+

h

r

)2

r2tσ−1(z)

)

=
∑
h (r)

ψ(h)
∑
n∈Z

e

(
1
2

(
n+

h

r

)2

σ̃(z′)

)
=
∑
h (r)

ψ(h) θ
(

2h
r
, 0, σ̃(z′)

)

and by the formula (1.4.4),

ϑψ
(
tσ−1(z)

)
= (σ̃)′(z′)−1/4 κθ(σ̃)

∑
h (r)

ψ(h)
∑
n∈Z

e

((
n+

2αhrf tf
rD

)2 z′

2

)
e

(
nβhrDtD

rf

)

= (σ̃)′(z′)−1/4 κθ(σ̃)
∑
h (r)

ψ(h)
∑
n∈Z

e

(
(nrD + 2αhrf tf )

2 z′

2r2D

)
e

(
nβhrDtD

rf

)

= (σ̃)′(z′)−1/4 κθ(σ̃)
∑
l>0

b(l) e
(
l2

z′

2r2D

)
.

Assume now that l 6= 0, then

b(l) =
∑
h (r)

∑
k∈Z

(2αhrf tf +krD)2=l2

ψ(h)e
(
kβhrDtD

rf

)

=
∑
h (r)

∑
k∈Z

2αhrf tf +krD=l

ψ(h) e
(
kβhrDtD

rf

)
+
∑
h (r)

∑
k∈Z

2αhrf tf +krD=−l

ψ(h) e
(
kβhrDtD

rf

)
.

h has to satisfy 2αhrf tf ≡ ±l (mod rD), in which case there exists k ∈ Z satisfying the condi-
tion, and one can replace krD by an expression in terms of h; thus

b(l) =
∑
h (r)

h≡l2αrf tf (rD)

ψ(h) e
(
βhtD(l − 2αhrf tf )

rf

)
+

∑
h (r)

h≡−l2αrf tf (rD)

ψ(h) e
(
βhtD(−l − 2αhrf tf )

rf

)

=
∑
h (r)

h≡l2αrf tf (rD)

ψ(h) e
(
βhtDl

rf

)
+

∑
h (r)

h≡−l2αrf tf (rD)

ψ(h) e
(
−βhtDl

rf

)

We now decomposeψ asψ = ψDψf , and we recall that the Gauss sumGχ(m) =
∑

k (mod r) χ(k)e2iπmk/r,
for χ primitive modulo r, r > 1 satisfies Gχ(m) = χ(m)Gχ(1). We obtain

38



1.4 Determination of the constant

b(l) = ψD(l2αrf tf )
∑
h (r)

h≡l1/2 αrf tf (rD)

ψf (h) e
(
βhtDl

rf

)
+ ψD(−l2αrf tf )

∑
h (r)

h≡−l1/2 αrf tf (rD)

ψf (h) e
(
−βhtDl

rf

)

= ψD(l2αrf tf )
∑
x (rf )

ψf (x) e
(
βxtDl

rf

)
+ ψD(−l2αrf tf )

∑
x (rf )

ψf (x) e
(
−βxtDl

rf

)

= (ψD(l) + ψf (−1)ψD(−l)) ψD(2αrf tf )
∑
x (rf )

ψf (x) e
(
βxtDl

rf

)
= (ψD(l) + ψf (−1)ψD(−l)) ψD(2αrf tf )ψf (βtDl)Gψf

(1)

= (ψD(l) + ψf (−1)ψD(−l)) ψD(2frf tf )ψf (−DtDl)Gψf
(1).

We finally verify that

(σ̃)′(z′)−1/4 =
(σ−1)′(z)−1/4

rf
√

2tf

and

κθ(σ̃) = eiπ/4
(
tf α

D tD

)
2

εD tD ,

and this finishes the proof of the Proposition 1.8.

Proposition 1.9. Let σ be as above. Let f be an odd square free integer, f > 0, f ≡ 1 (mod 4)
and let χ = χf . Let D be odd, and let ϑtf,s,u be an element of the base of Mod

(
Γ0(4Df), χκ, 1

2

)
.

Then

σ′(z)−
1
4 ϑtf,s,u(σ−1(z)) =

∑
m∈(4f)−1Z

atf,s,u(σ,m) e (mz) ,

where

atf,s,u(σ,m) =

0 if m 6∈ ts2

4f Z2,

eiπ/4
√

2
f εD χt(2) c(Df, tf, s, u)χt(m′)

∑
j|(u,m′) µ

(
u
j

)
j if m = m′2 ts2

4f .

Proof. From the definition of the functions ϑtf,s,u and the previous proposition, using the fact that
t ≡ 1 (mod 4), we have

σ′(z)−
1
4 ϑtf,s,u(σ−1(z)) = eiπ/4

√
2
f
εD χt(2) c(Df, tf, s, u)

∑
j|u

µ

(
u

j

)
j χt(j)

∑
l>0

χt(l) e
(
l2 ts2j2 z

4f

)

= eiπ/4
√

2
f
εD χt(2) c(Df, tf, s, u)

∑
n∈Z

b(n) e
(
nts2z

4f

)
,
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where

b(n) =

0 if n /∈ Z2,∑
j|u µ

(
u
j

)
j χt(j)

∑
l>0

lj=m
χt(l) if n = m2,m > 0.

We can see that, for n = m2,

b(n) =
∑

j|(u,m)

µ

(
u

j

)
j χt(j)χt(m/j)

= χt(m)
∑

j|(u,m)

µ

(
u

j

)
j.

Therefore we obtain

σ′(z)−
1
4 ϑtf,s,u(σ−1(z)) =

∑
m∈(4f)−1Z

atf,s,u(σ,m) e (mz) ,

where

atf,s,u(σ,m) =

0 if m 6∈ ts2

4f Z2,

eiπ/4
√

2
f εD χt(2) c(Df, tf, s, u)χt(m′)

∑
j|(u,m′) µ

(
u
j

)
j if m = m′2 ts2

4f .

1.4.2 Proof of Theorem 1.1
First of all, let us rewrite both types of Fourier expansion needed here. Let m,n ∈ Z, m,n
positive. One is, from Theorem 1.5,

at,s,u(τ, n) =

0 if n 6∈ tfs2Z2,

c(Df, tf, s, u)χt(n′)
∑

j|(u,n′) µ
(
u
j

)
j if n = tfs2n′2.

(1.4.7)

The other is obtained by Proposition 1.9. As m ∈ Z and m = m′2 ts2
4f , m′ has to be a multiple of

2f , say m′ = 2fm′′. Then, m = m′′2fts2 and

atf,s,u(σ,m) = eiπ/4
√

2
f
εD c(Df, tf, s, u)χt(f)χt(m′′)

∑
j|(u,2fm′′)

µ

(
u

j

)
j.

Since gcd(2f, u) = 1, we reformulate this as

40



1.4 Determination of the constant

atf,s,u(σ,m) =

0 if m 6∈ tfs2Z2,

eiπ/4
√

2
f εD c(Df, tf, s, u)χt(f)χt(m′)

∑
j|(u,m′) µ

(
u
j

)
j if m = tfs2m′2.

(1.4.8)
From (1.4.7) and (1.4.8), one sees that atf,s,u(σ,m) atf,s,u(τ, n) is non-zero only if the square-free
part of m and n are both equal to tf for some integer t ≡ 1 (mod 4) such that t3|D. Then,

√
m
tf

and
√

n
tf has to be divisible by s, for some integer s supported by t and such that s2| d

t3
. Therefore,

we need

m = tfs2m′2 and n = tfs2n′2.

As the factor χt(m′n′) appears, m′ and n′ have to be coprime with t. Thus, only the parameter u
is not determined by m and n; it has to satisfy u2|D

t3
and to be coprime with t. Denote this set by

U . Recall that c(Df, tf, s, u) is defined in Theorem 1.5. If m and n are as above, the right side of
the formula of Theorem 1.3 is now completely determined; it is equal to

(1 + i)
8 f
3π

∑
u∈U

atf,s,u(σ,m) atf,s,u(τ, n)

=
16
√
f

3π
εD χt(f)χt(m′ n′)

∑
u∈U

c(Df, tf, s, u)2
∑

j|(u,m′)

µ

(
u

j

)
j
∑

j|(u,n′)

µ

(
u

j

)
j

=
32

3π2

√
t s

D

∏
p|Df

p

p+ 1

∏
p|t

p

p− 1

×εD χt(f)χt(m′ n′)
∑
u∈U

ϕ(u)−1
∑

j|(u,m′)

µ

(
u

j

)
j
∑

j|(u,n′)

µ

(
u

j

)
j.

We remark that a(m)b(n) = a(n)b(m).

Let X0 be the square-free part of D
t3

and write D
t3

= X0X
2; then u ∈ U if and only if u|X . If

some u ∈ U divides m, then the corresponding sum over the divisors of (u,m) is simply ϕ(u).
We set

U ′ = {
∏
p|X

p : ordp
(
gcd(m′, n′, X)

)
< ordp(X)}.

Introduce the notation minp = min(ordp(m′), ordp(n′)) for p|U ′. Define the subsets of U ′ as
follows:
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U ′m =

∏
p|U ′

: minp = ordp(m′) < ordp(n′)


U ′n =

∏
p|U ′

: minp = ordp(n′) < ordp(m′)


U ′m,n =

∏
p|U ′

: minp = ordp(m′) = ordp(n′)

 .

The presence of the Möbius function implies that any u ∈ U can be uniquely written as u =∏
p|u′ p

minp+1u′′ with u′|U ′, gcd(u′′, u′) = 1 and u′′|gcd(X,m′, n′). We obtain, for a given u =
u′u′′, that

gcd(u,m′) = u′′
∏
p|u′

p 6 |U′n

pminp
∏
p|u′
p|U′n

pminp+1.

Therefore,

∑
j|(u,m′)

µ

(
u

j

)
j =

∑
j|u′′

µ

(
u′′

j

)
j
∏
p|u′

p 6 |U′n

µ(p)pminp
∑

j|
Q

p|u′
p|U′n

pminp+1

µ


∏

p|u′
p|U′n

pminp+1

j

 j

= ϕ(u′′)
∏
p|u′

p 6 |U′n

µ(p)pminp
∏
p|u′
p|U′n

pminp (p− 1).

The same holds for the second inner sum and we obtain

∑
j|(u,m′)

µ

(
u

j

)
j
∑

j|(u,n′)

µ

(
u

j

)
j = ϕ(u′′)2

∏
p|u′

p2minp
∏
p|u′

p 6 |U′m,n

µ(p) (p− 1).

Finally,
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∑
u∈U

ϕ(u)−1
∑

j|(u,m′)

µ

(
u

j

)
j
∑

j|(u,n′)

µ

(
u

j

)
j

=
∑
u′|U ′

∑
u′′|(X,m′,n′)

(u′,u′′)=1

ϕ

∏
p|u′

pminp+1 u′′

−1

ϕ(u′′)2
∏
p|u′

p2minp
∏
p|u′

p 6 |U′m,n

µ(p) (p− 1)

=
∑
u′|U ′

ϕ(u′)−1
∏
p|u′

pminp
∏
p|u′

p 6 |U′m,n

(1− p)
∑

u′′|(X,m,n)

(u′,u′′)=1

ϕ(u′′)

= gcd(X,m′, n′)
∑

u′1|U ′m,n

ϕ(u′1)
−1

∑
u′2|

U′
U′m,n

µ(u′2).

This shows that U ′m,n has to be equal to U ′, and concludes the proof.
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2 Cubic metaplectic forms

In this chapter we present the theory of metaplectic forms, in the classical setting over SL2(Z[ω])
in Section 2.1, and in the representation theoretic context in Section 2.3. Each point of view allow
us to state interesting results that will be used in the next chapters.

More precisely, in Section 2.2, we present two general summation formulas for cubic Kloost-
erman sums; they relate sums of cubic Kloosterman sums with the spectral theory of the meta-
plectic forms developed in Section 2.1; we first obtain the so-called spectral summation formula
in Theorem 2.4 and derive some consequences of it on the spectrum of the metaplectic group in
Proposition 2.5. We finally obtain the so-called Kloosterman summation formula in Theorem 2.6
and derive some approximations formula for the inverse Bessel Transform in Proposition 2.6.

In Section 2.4, we give some relations between metaplectic forms and classical automorphic
forms; they are consequences of the cubic Shimura correspondence, which relates genuine ir-
reducible representations of the metaplectic group G̃L2(kA) with irreducible representations of
GL2(kA). Some special feature of the theory of metaplectic representations appear to be specific
to the cubic metaplectic forms; it is an explanation of the fact that the determination of the explicit
constant in the asymptotic behaviour of the twisted Kloosterman sums of order j

Kj(m,n, c) =
∑
x (c)

(x
c

)
j
e

(
mx+ nx∗

c

)
, for j > 1

can only be done in the quadratic case, i.e. for j = 2, and in the cubic case, i.e. for j = 3. The
former was treated in Chapter 1 and the latter will be treated in Chapter 3.
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2.1 Metaplectic forms on SL2 (Z[ω])

Let k = Q(ω), where ω = e2iπ/3. We define λ = 1 − ω; it is the only prime in R = Z[ω] which
divides 3. Any other prime in R has a unique associated, i.e. a multiple by a unit of R, which is
congruent to 1 modulo 3. Such a prime will be called primary. Recall that the group of units in R
is U = {±1,±ω,±ω2}.

Let π be a prime in R coprime with 3. Let a be an integer of R, coprime with π. As the
multiplicative group (R/πR)× is of order N (π)− 1, it holds

aN (π)−1 ≡ 1 (mod π).

As N (π) ≡ 1 (mod 3), it exists a unique cubic root of 1, say α, such that

a
N (π)−1

3 ≡ α (mod π).

We define the cubic Legendre symbol by (a
π

)
3

= α.

Let now c be an integer of R coprime with 3a; it has a decomposition c = η
∏
i π

ei
i , with η ∈ U .

We define the Jacobi symbol by

(a
c

)
3

=
∏
i

(
a

πi

)ei

3

.

The Jacobi symbol is multiplicative in a and c, and satisfies

(a
c

)
3

=
(
b

c

)
3

if a ≡ b (mod c), (2.1.1)

(a
c

)
3

=
(
a

c

)
3

if gcd(a, c) = 1. (2.1.2)

Property (2.1.2) implies (a
c

)
3

= 1 if a, c ∈ Z (2.1.3)

The main property of the Legendre-Jacobi symbol is the reciprocity law:

Theorem 2.1. Let π1, π2 ∈ Z[ω] be two primary primes. Then(
π1

π2

)
3

=
(
π2

π1

)
3

.

This theorem is completed by the complementary reciprocity laws:

Proposition 2.1. Let π be a primary prime, π = 1 + 3(m+ nω). Then
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(i)
(ω
π

)
3

= ω−m−n ,

(ii)
(
λ

π

)
3

= ωm ,

(iii)
(π
π

)
3

= 1 .

Theorem 2.1 was proved by Eisenstein in [6] with the supplementary condition N (π1) 6= N (π2).
The remaining case, as well as he complementary reciprocity laws, were then proved by the same
author in [7].

The three-dimensional hyperbolic space is usually represented as the half-space H = C×R×+.
We can embed it in the Hamiltonian quaternions by identifying

√
−1 ∈ C with î and w = (x +

iy, v) ∈ H with x + yî + vk̂, where 1, î, ĵ, k̂ are the standard unit quaternions. We shall use the
same letter H as in Chapter 1, but this should not cause confusion since the upper-half plane is
used in this thesis only in Chapter 1. The group SL2(C) acts on H by(

a b
c d

)
w = (aw + b) (cw + d)−1.

Explicitly, this action is given by(
a b
c d

)
(z, v) =

(
(az + b)(cz + d) + acv2

|cz + d|2 + |c|2v2
,

v

|cz + d|2 + |c|2v2

)
.

The Laplace-Beltrami operator is given by

∆ = v2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂v2

)
− v

∂

∂v
,

and the SL2(C)-invariant measure is dV (w) = v−3 dm(z)dv, where d(m(z) is the standard
Lebesgue measure on C.

Recall the Iwasawa decomposition of G = SL2(C). We start by defining

H = {h[u]u ∈ C− {0} where h[u] =
(
u 0
0 u−1

)
,

N = {n[z], z ∈ C} where n[z] =
(

1 z
0 1

)
,

A = {a[r], r > 0} where a[r] =
(√

r 0
0

√
r
−1

)
,

K = SU(2) with elements k(α, β) =
(
α β

−β α

)
.

With the Euler angles φ, θ, ψ ∈ R, we have
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2.1 Metaplectic forms on SL2 (Z[ω])

k[α, β] = h
[
eiφ/2

]
k[cos θ/2, i sin θ/2]h

[
eiψ/2

]
.

Then the Iwasawa decomposition states that

G = N AK,

which allows us to decompose any element g of G as g = nak = n[z]a[v]k[α, β]. The Haar
measure on N , A and K are given by

dn = d+z, da = v−1 dv and dk = (16π2)−1 sin θ dφ dθ dψ.

We define, for u ∈ C, the character χu on N by

χu(n) = e(uz), if n = n[z]. (2.1.4)

Of first importance for us will be the subgroups of SL2(Z[ω] defined by

Γ2 = {γ ∈ SL2(Z[ω]) : ∃g ∈ SL2(Z), γ ≡ g (mod 3)}, (2.1.5)

Γ1 = {γ ∈ SL2(Z[ω]) : γ ≡ 1 (mod 3)}, (2.1.6)

Γ∗0(d) = {γ ∈ Γ1 : c(γ) ≡ 0 (mod d)}. (2.1.7)

The Kubota symbol κ can now be introduced. It is defined on Γ1 by

κ(γ) =


(
c
a

)
3

if c 6= 0

1 if c = 0
, where γ =

(
a b
c d

)
∈ Γ1.

This definition is then extended to Γ2, the subgroup of SL2(Z[ω]) generated by Γ1 and SL2(Z),
by defining κ trivially on SL2(Z). More precisely, for any γ2 ∈ Γ2, there exists some g ∈ SL2(Z)
and γ1 ∈ Γ1 such that γ2 = g γ1, and we define

κ(γ2) := κ(γ1).

The starting point of the theory of metaplectic forms originates from the short and significant paper
of Kubota ([22]), in which he proved that κ is a group homomorphism on Γ1. Actually, Kubota
proved that κ is a morphism on the subgroup of Γ1 consisting in matrices congruent to 1 modulo
9, but this last condition can be dropped, and it can be proved that the definition of κ on Γ2 extend
κ to a group homomorphism from Γ2 into the cubic roots of unity (see [32], p.127). A fundamen-
tal point in this theory is that the kernel of κ does not contains a congruence subgroup. This is
equally proved in [22], and leads to complications which do not usually appear in the theory of
automorphic forms. We shall come back to this in Section 2.3.1.

Let Γ be a subgroup of Γ2 and let χ : Γ −→ C be a group homomorphism. Inside the space
of functions f : H −→ C such that

f (γ(w)) = κχ(γ) f(w) ∀γ ∈ Γ, (2.1.8)

we distinguish two subspaces, the one formed by the square integrable function on Γ\H with re-
spect to dV (w), denoted by L2 (Γ\H, κχ) and the one of functions f with (∆ + s(2− s)) f = 0
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for some s ∈ C, denoted by M (Γ\H, κχ, s).

In this section, we will deal with automorphic forms not only invariant by a subgroup of
SL2(Z[ω]) but more generally by a subgroup of G = SL2(C). As G = NAK and H ∼= NA,
this amounts to deal with general K-types (Section 2.1.1); these functions generalize the classical
holomorphic functions on the upper half-plane, and are needed in order to achieve a complete
summation formula for Kloosterman sums. Then, we shall present in Section 2.1.2 the spectral
theory of L2 (Γ\H, κχ). Finally, we define the Poincaré series in Section 2.1.3 and, as we did in
Chapter 1, we shall make appear the cubic Kloosterman sums K3(m,n, c) as Fourier coefficients
of these Poincaré series.

2.1.1 K-types and metaplectic forms
We need some facts about the Lie algebra of G and K; we simply excerpt them from Sec-
tion 3 of [4]. The real Lie algebra sl(2) of G is a six dimensional real vector space generated
by {H1,H2, V1, V2,W1,W2}, where

H1 =
1
2

(
1 0
0 −1

)
, V1 =

1
2

(
0 1
1 0

)
, W1 =

1
2

(
0 1
−1 0

)

H2 =
1
2

(
i 0
0 −i

)
, V2 =

1
2

(
0 i
−i 0

)
, W2 =

1
2

(
0 i
i 0

)
.

The Casimir elements are defined by

Ω± =
1
8
(
(H1 ∓ iH2)2 + (V1 ∓ iW2)2 − (W1 ∓ iV2)2

)
.

The center Z(sl(2)) of the universal covering U(sl(2)) of sl2 is the polynomial ring C[Ω+,Ω−].
The real Lie algebra su(2) of K is generated by H2, W1 and W2; its complexification is

sl2(C). The Casimir element is defined by

Ωk =
−1
2
(
H2

2 +W 2
1 +W 2

2

)
.

The center Z(su(2)) of the universal covering U(su(2)) of sl2(C) is the polynomial ring C[Ωk].

We shall use this to give results about the irreducible unitary representations of K, the goal
being to study the Hilbert space L2(K) of functions on K which are square-integrable over K
with respect to the Haar measure dk. First recall that finite dimensional representations of G are
given by (Tn, Vn), for n ∈ N, where Vn is the space of polynomial in one variable of degree at
most n, and Tn : G −→ Aut(Vn) is a homomorphism given by

Tn(g) (f(z)) = (bz + d)n f
(
az + c

bz + d

)
.

Write n = 2l and define σl as the restriction of T2l to K. Then l ∈ 1
2N, and any element of V2l

is of the form zl−q; q has to satisfy the conditions |q| 6 l and q ≡ l (mod 1), which ensures that
l− q ∈ N. The representation σl is irreducible, and we can rewrite the action of K on the element
zl−q of V2l as
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σl(k)
(
zl−q

)
= (αz − β)l−q (βz + α)l+q ∈ V2l, for k = k(α, β),

and its expansion in V2l is of the form

σl(k)
(
zl−q

)
=
∑
|p|6l

φlp,q(k) z
l−p,

where the functions φlp,q, with l > 0, |p| 6 l, |q| 6 l and p ≡ q ≡ l (mod 1), are functions on K.
Actually, the φlp,q form an orthogonal basis of L2(K) and satisfy

H2 φ
l
p,q = −i q φlp,q , Ω` φ

l
p,q = −1

2
(l2 + l)φlp,q

‖φlp,q‖K =
1√

2l + 1

(
2l
l − p

) 1
2
(

2l
l − q

)−1
2

.

Moreover, all irreducible unitary representations of K are obtained in this way. From this discus-
sion, we obtain the following decomposition of L2(K):

L2(K) =
⊕

l,q
|q|6l

q≡l (1)

L2(K, l, q), L2(K, l, q) =
⊕
|p|6l

p≡l (1)

Cφlp,q.

We can see L2(K, l, q) as the set of functions f on L2(K) satisfying

(∗) Ωl f = −(l2 + 1)/2 f

(∗∗) H2 f = −iq f.

More generally, a function f of a space V is said to be of K-type (l, q) if K acts on V and if f
satisfies (∗) and (∗∗). This concept correspond to the weight in the theory of modular forms on
the upper half plane (see Chapter 1). The functions φlp,q are examples of functions of type (l, q).
Another example is the function ϕl,q(s, p) : G −→ C, defined by

ϕl,q(s, p)(g) = v1+sφlp,q(k), if g = n[z]a[v]k.

The function ϕl,q(s, p) satisfies

Ω± ϕl,q(s, p) =
1
8
(
(s−∓p)2 − 1

)
ϕl,q(s, p).

The spaces

H(s, p) = { finite linear combinations of ϕl,q(s, p)}

will be seen as models for irreducible subspaces of the space of square-integrable metaplectic
forms, that we are now able to define.

We conclude this section by giving the definition of metaplectic forms, and showing which
part the function ϕl,q(s, p) plays in their Fourier expansions.
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Definition 2.1. Let Γ be a discrete subgroup of Γ2. Define byAl,q(Γ\G, κ, (s, p)) the subspace of
smooth functions f on G satisfying

f (γ g) = κ(γ) f(g)

Ω± f =
1
8
(
(s∓ p)2 − 1

)
f

f is of type (l, q).

 (2.1.9)

An element f ofAl,q(Γ\G, κ, (s, p)) is called a metaplectic form for Γ of type (l, q) and of spectral
parameter (s, p).

Remark 2.1. In particular, if −Id ∈ Γ and f ∈ Al,q(Γ\G, κ, (s, p)), we see from the defini-
tion that, on one side, f(−g) = χ(−Id)f(g) = f(g), and that, on the other side, f(−g) =
σl(−Id)f(g) = e2iqπf(g). The only possible types (l, q) are then the ones with l, q, p ∈ Z.
As we will see in Remark 2.2 p. 61, an extra condition appears in the spectral sum formula if
there exist spectral parameters (s, p) with p ∈ 1

2 + Z. This justifies that we consider the group
Γd = 〈Γ1 ∩ Γ0(d),−Id〉 rather than Γ∗0(d) = Γ1 ∩ Γ0(d) considered in [31].

According to this remark, it is reasonable to define

Γ−1 = {γ ∈ SL2(Z[ω]) : γ ≡ ±1 (mod 3)}. (2.1.10)

Lemma 2.1. Let Γ be any discrete subgroup of Γ−1 containing −Id, and let Γσ be the stabilizator
in Γ of the cusp σ−1(∞), where σ ∈ SL2(R). Then there exists some lattice Λσ in R, Λσ ⊆ (3),
such that

Γσ = σ−1

(
1 Λσ
0 1

)
σ ∪ σ−1

(
−1 Λσ
0 −1

)
σ.

Let Γ be a subgroup of Γ−1 . If a function f satisfies f(γg) = κ(γ) f(g), for all γ ∈ Γ, then f
has a Fourier expansion

f(σ−1g) =
∑
m∈Λ∧σ

Ff (σ,m)(g),

with Fourier coefficients

Ff (σ,m)(g) =
∫
σΓσσ−1\N

χm(n) f(ng) dn.

Let Wl,q (s, p,m) be the space

Wl,q (s, p,m) = {h ∈ C∞(G) : h(ng) = χm(n)h(g), h is of K-type (l, q) and of spectral parameter (s, p)} ,

with χm as in (2.1.4). If m = 0, then dim (Wl,q (s, p,m)) = 2 and one has

Wl,q(s, p, 0) = Cϕl,q(s, p) ⊕ Cϕl,q(−s,−p), if (s, p) 6= (0, 0)

Wl,q(, 0, 0) = Cϕl,q(0, 0) ⊕ C ∂sϕl,q(s, p)|s=0.
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2.1 Metaplectic forms on SL2 (Z[ω])

If f ∈ Al,q(Γ\G, κ, (s, p)), one sees that Ff (σ,m) ∈ Wl,q (s, p,m). Actually, for any m 6=
0, Wl,q (s, p,m) is of dimension 2, and contains as one dimensional subspace, the subspace
W

pol
l,q (s, p,m) of functions of polynomial growth. If a metaplectic form f is of polynomial growth,

i.e. f(na[v]k) � vα, then its Fourier coefficients inherit this growth property, and are multiple of
the generator of W pol

l,q (s, p,m). This generator is known; see Section 5 of [4]. For it we need to
define the operator Am, on the space of functions f ∈ C∞(G) such that, for some σ > 0,

f(na[v]k) = O
(
v1+σ

)
, as v → 0.

It is defined by

Amf(g) =
∫
N
χm(n) f(wng) dn.

Then, one proves that, for any spectral parameter (s, p), if m 6= 0, W pol
l,q (s, p,m) is generated by

Amϕl,q(s, p).

Proposition 2.2. Let f be a square-integrable metaplectic form of spectral parameter (s, p). Let
Γ be a subgroup of Γ−1 and let σ−1(∞) be a cusp of Γ. Then,

f(σ−1g) =
∑
m∈Λ∧σ

ρf (m)Amϕl,q(s, p)(g).

The function f is said to be a cuspform if ρf (σ, 0) = 0 for all cusps σ−1(∞) of Γ. The space
L2,cusp (Γ\G, κ) generated by the cuspforms is a subspace of L2 (Γ\G, κ).

2.1.2 Eisenstein series, theta functions and the spectral decomposi-
tion theorem

Let Γ ⊂ Γ−1 . A cusp σ−1(∞) of Γ, with σ−1 ∈ SL2(Z[ω]), is called essential if κ|Γσ = 1. The
set of Γ-inequivalent essential cusps will be denoted by C(Γ). Eisenstein series are defined for
essential cusps.

Definition 2.2. Let σ−1(∞) be an essential cusp of Γ. Let p, l, q ∈ Z, |p|, |q| 6 l, and p ≡ l ≡ q
(mod 1). For <(s) > 1, the Eisenstein series Eσ(s, p, l, q; g) is

Eσ(s, p, l, q; g) =
∑

γ∈Γσ\Γ

κ(γ)ϕl,q(s, p) (σγg) .

It admits a Fourier expansion at any cusp of Γ, but for simplicity, we will only work with
essential cusps. If τ−1(∞) is an essential cusp of Γ, then

Eσ(s, p, l, q; τ−1g) = δσ,τϕl,q(s, p)(g)

+
π (−1)p−|p|

Vol(Λτ )
Γ(l + 1− s) Γ(|p|+ s)

Γ(l + 1 + s) Γ(|p|+ 1− s)
ψσ,τ (s, 0, p)ϕl,q(−s,−p)(g)

+
1

Vol(Λτ )

∑
0 6=m∈Λ∧τ

ψσ,τ (s,m, p)Amϕl,q(s, p)(g),

(2.1.11)

whose Fourier coefficients ψσ,τ (s,m, p) are Dirichlet series formed by Gauss sums, i.e.
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2.1 Metaplectic forms on SL2 (Z[ω])

ψσ,τ (s,m, p) =
∑
c 6=0

N (c)−(1+s)

(
c

|c|

)2p ∑
σ−1

“
a b
c d

”
τ∈Γσ\Γ/Γτ

κ

(
σ−1

(
a b
c d

)
τ

)
e

(
md

c

)
.

The properties needed for our applications are listed below. Consider Eσ(s, p, l, q; g) as a function
of the variable s. Then

(i) Eσ(s, p, l, q; g) possesses a meromorphic continuation to C and a functional equation relat-
ing Eσ(1 + s, p, l, q; g) and Eσ(1− s, p, l, q; g),

(ii) Eσ(s, p, l, q; g) is holomorphic if p 6= 0,

(iii) Eσ(s, p, l, q; g) has poles at s = −1
3 ,

1
3 if p = 0,

The last property is new, when compared to the classical theory of automorphic forms whose
automorphic factor is a Dirichlet character. Actually, taking the residue of Eisenstein series give
some square-integrable non cuspidal automorphic forms. They are eigenfunction of the Laplacian
with eigenvalue 1 − s2. This is the minimal eigenvalue of the Laplacian, and in our case it is
1− s2 = 8/9.

Definition 2.3. In the half-plane <(s) > 0, the theta function associated to the essential cusp
σ−1(∞) is defined as

θσ((l, q), g) = Ress=1/3

(
Eσ(s, 0, l, q; g)

)
.

It is a square integrable non cuspidal metaplectic forms of spectral parameter (1
3 , 0) and ofK-type

(l, q).

From the Fourier expansion of Eσ(s, p, l, q; g), one gets

θσ((l, q), τ−1g) =
π

Vol(Λτ )
Γ(l + 2/3) Γ(1/3)
Γ(l + 4/3) Γ(2/3)

ρθσ(τ, 0)ϕl,q(−1/3, 0)(g)

+
1

Vol(Λτ )

∑
0 6=m∈Λ∧τ

ρθσ(τ,m)Amϕl,q(1/3, 0)(g),

where
ρθσ(τ,m) = Ress=1/3

(
ψσ,τ (s,m, 0)

)
.

We refer to Section 3.1.2 of Chapter 3 for more details on the function ρ.

Let L2,res (Γ\G, κ) be the space generated by the theta series θσ((l, q), g), for l ∈ N, q ∈ Z,
|q| 6 l and σ−1(∞) an essential cusp of Γ.

Theorem 2.2. Let L2,disc (Γ\G, κ) be the direct sum of the invariant irreducible subspaces of
L2 (Γ\G, κ). Then L2,disc (Γ\G, κ) is the direct sum of L2,res (Γ\G, κ) and L2,cusp (Γ\G, κ), and
we have

L2 (Γ\G, κ) = L2,res (Γ\G, κ)⊕ L2,cusp (Γ\G, κ)⊕ L2,cont (Γ\G, κ) . (2.1.12)
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2.1 Metaplectic forms on SL2 (Z[ω])

2.1.3 Poincaré series
Let us define C∞ (N\G,m) as the set of smooth functions on G such that f(ng) = χm(n) f(g)
for any n ∈ N . This kind of functions will be used as generating function for the Poincaré series.
All results of this section are classical, and are proved in Section 2 for the case SL2(R). Therefore
we refer to the literature for the proofs.

The following two growth conditions for a function f on G will be useful in the sequel:

(C)

{
f(nak) � v1+σ0 , as v tends to 0, for some σ0 > 0
f(nak) � v1−σ∞ , as v tends to ∞, for some σ∞ > 0

Poincaré series can be defined for any cusp, essential or not, but for simplicity, we shall work only
with essential cusp.

Definition 2.4. Let σ ∈ SL2(R) such that σ−1(∞) is an essential cusp of Γ. Let m ∈ Λ∧σ − {0}
and f ∈ C∞ (N\G,m). The Poincaré series generated by f is

Pf (σ, g) =
∑

γ∈Γσ\Γ

κ(γ) f(σγg).

For example, we can take for f(g) the function

fm(g) = fm(n[z]a[v]k) = χm(n) exp(−4π|m|v) vs.

In this case, we find the Poincaré series used in [31]; it is defined for <(s) > 2 and decreases
exponentially at 0.

Definition 2.5. Let σ−1, τ−1 ∈ SL2 (Z[ω]) and let m ∈ Λ∧σ and n ∈ Λ∧τ . Then we define the
Kloosterman sum at c ∈ Z[ω]− {0} by

Kσ,τ (m,n, c) =
∑

γ∈Γσ\Γ/Γτ
c(σγτ−1)=c

κ(γ) e
(
ma(σγτ−1) + nd(σγτ−1)

c

)
.

This definition is equivalent to

Kσ,τ (m,n, c) =
∑

a (Λσ), d (Λτ )

σ−1(a ∗c d )τ∈Γ

κ

(
σ−1

(
a ∗
c d

)
τ

)
e

(
ma+ nd

c

)
. (2.1.13)

The Kloosterman sums satisfy the Weil upper bound

|Kσ,τ (m,n, c)| 6 2ν(c)N (gcd(m,n, c)) N (c)1/2,

where ν(c) is the number of prime divisors of c. (See [31], Prop. 5.1)

Proposition 2.3. Let σ−1(∞) be an essential cusp of Γ, m ∈ Λ∧σ − {0}, and f ∈ C∞ (N\G,m)
verifying the conditions (C) for some σ0 > 1. Then Pf (σ, g) belongs to L2(Γ\G, κ). The Fourier
expansion of Pf (σ, g) at an essential cusp τ−1(∞) is given by

Pf (σ, τ−1g) =
∑
n∈Λ∧τ

Ff,σ(τ, n)(g),

where
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Ff,σ(τ, n)(g) = δσ,τ δm,n f(g) +A(τ)−1
∑
c 6=0

Kσ,τ (m,n, c) Anl1/cf(g),

with the operator An defined as in Section 2.1.1, and where lc is the operator defined on f by
lcf(g) = f(h[c]g).

Proof. See [31] Proposition 4.2 for the case of trivial K-type and [13] (7.16) for the general
case, under the conditions σ = τ = Id. We adapt these proofs to our situation by doing simple
changes.

Proposition 2.4. Let f,m, σ as in Proposition 2.3. Assume moreover that f is of type (l, q). If
φ ∈ C∞ (Γ\G, l, q) is such that g 7→ Pf (σ, g)φ(g) is integrable on Γ\G, then

〈Pf (σ, ·), φ(·)〉Γ\G = A(σ) 〈f(·), Fφ(σ,m)(·)〉N\G,

where φ(g) has the Fourier expansion at σ−1(∞)

φ(σ−1g) =
∑
m∈Λ∧σ

Fφ(σ,m)(g).

Proof. It is again a classical result. See [13] Lemma 7.3.1, for the case σ = Id. The adaptation to
our situation is again easy to handle.

Corollary 2.1.

〈Pf (·, σ), Pf ′(·, τ)〉 = δσ,τ δm,nA(τ) 〈f, f ′〉N\G +
∑
c 6=0

Kσ,τ (m,n, c) 〈Anl1/cf, f ′〉N\G
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2.2 Summation formulae of Kuznetsov type
In this section we come back to the case G = SL2(C). We introduce two formulae, the so called
Kuznetsov type formulae, which give relations between Kloosterman sums and the spectrum of
the metaplectic group. They originated in the context of SL2(Z), in the work of Kuznetsov [26],
and were generalized in [36] to any discrete subgroup of SL2(R).

For an imaginary quadratic field k, analogue formulae can be derived. Although the line of
thought for the case SL2(k) follows the same steps as in the real case, the ingredients needed here
are more sophisticated; they are mostly taken from a recent article of Bruggeman and Motohashi
([4]) which is itself the result of a series of works developed along the last twenty years by Brugge-
man, Goodman, Miatello, Motohashi, Pacharoni and Wallach. The results in [4] are proved for the
field k = Q(i), but a generalization to any imaginary quadratic field is clearly possible; this has
been recently done in [13] and we refer to it every time it is needed.

In Section 2.2.1 we shall define an analogue of the Lebedev transform, having Amϕl,q(s, p)
as kernel; the expected properties are then derived, and we obtain a first sum formula, with the
test function on the spectral side. This formula will be called spectral sum formula, and the
Kloosterman sum formula (see Section 2.2.3 ) will refer to a sum formula where the test function is
on the geometric side, where Kloosterman sums occur. We insert in Section 2.2.2 some estimations
on the exceptional and non-exceptional spectrum of the metaplectic group.

2.2.1 Lebedev transform and the spectral sum formula
In this paragraph Γ will be any subgroup of Γ−1 containing −Id; our reason will become clear
in Remark 2.2. For m ∈ Z[ω] − {0}, define Pl,q (N\G,m) as the subset of C∞ (N\G,m), of
functions satisfying the condition (C) (see p. 54) and which are of type (l, q). The goal is to seek
some nice elements of Pl,q (N\G,m) to generate Poincaré series.

For σ > 0 and l ∈ N, define T lσ as the set of functions η which are defined on {|<(s)| 6 σ}×
{−l 6 p 6 l} ⊂ C× Z and which satisfy the conditions

(i) η(·, p) is holomorphic in some neighborhood of the strip |<(s)| 6 σ,

(ii) η(s, p) � e−
π
2
|=(s)| (1 + |=(s)|)−a for all a > 0,

(iii) η(s, p) = η(−s,−p).

The aim now is to construct an analogue M of the classical Lebedev transform, such that

M : T lσ −→ Pl,q (N\G,m) .

Definition 2.6. Let 1 6 σ, m ∈ Z[ω] and l, q a K-type. The transformMm
l,q, from T lσ to the space

of functions on G, is defined for the element η ∈ T lσ by

Mm
l,qη(g) =

1
2iπ

∑
|p|6l

(−i)p (m/|m|)p

π2 ‖φlp,q‖K

∫
(0)
η(s, p) (2π|m|)−s Γ(l+1+s)Amϕl,q(s, p)(g) sε(p) sinπs ds ,

with ε(0) = 1 and ε(p) = −1 if p 6= 0.
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All expected properties of Mm
l,q hold; in particular there exist some kind of inverse operator Lml,q

such that:

Lml,q : Pl,q (N\G,m) −→ {functions on C× Z}.

Definition 2.7. Let f ∈ Pl,q (N\G,m), and let σ0 > 0 be the parameter controlling its growth at
0 (see the condition (C) p. 54). The transform Lml,qf of f is defined as the function on {|<(s)| 6
σ0} × {p ∈ Z, |p| 6 l} given by

Lml,qf(s, p) =
(−i)−p (m/|m|)−p

π2 ‖φlp,q‖K
(2π|m|)s Γ(l + 1− s)

∫
N\G

f(g)Amϕl,q(−s, p)(g) dg.

Theorem 2.3. Let m, l, q be as above.

(i) Let η ∈ T lσ . Then Mm
l,qη belongs to Pl,q (N\G,m) and, for any 0 < α < 1, we have in the

strip |<(s)| < α that

Lml,qMm
l,qη (s, p) =

2
π

sε(p)+1

p2 − s2

l∏
j=1

(j2 − s2) η(s, p).

(ii) Let η, θ ∈ T lσ with some 1 < σ < 3
2 . Then

〈Mm
l,qη,Mm

l,qθ〉N\G =
1
π3i

∑
|p|6l

∫
(0)
η(s, p) θ(s, p)

s2ε(p)+1

p2 − s2

l∏
j=1

(j2 − s2) ds.

This is Theorem 7.1 and Lemma 7.1 of [4], generalized by Theorem 9.1.4 and Lemma 9.1.5 of [13].

We come now to the kernel of the Bessel transform. For it, we need to define a new Bessel
function as product of two classical Bessel functions.

Definition 2.8. Define

Js,p(z) = Js−p(z) Js+p(z)

=
∣∣∣z
2

∣∣∣2s ( z

|z|

)−2p ∑
m,n>0

(−1)m+n (z/2)2m (z/2)2n

m1n! Γ(s− p+m+ 1) Γ(s+ p+ n+ 1)

and

Ks,p(z) =
1

sinπs
(J−s,−p(z)− Js,p(z)) .

Let m,n, c ∈ C. To any η ∈ T lσ we associate the function κ(m,n, c)η defined by

κ(m,n, c)η : (ν, p) 7→ Kν,p(4πc
√
mn) η(ν, p). (2.2.1)

Because Js,p(z) = J−s,−p(z) when s, p ∈ Z, Ks,p(z) is holomorphic as function of s.
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Lemma 2.2. Let m,n, c ∈ Z[ω], let (l, q) be a K-type, and let σ > 1. Then, for any η ∈ T lσ , the
following equality between functions on G holds:

Am`cMn
l,q η = |πc|2 Mm

l,q κ(m,n, c)η .

This is Lemma 7.2 of [4], and Lemma 9.1.8 of [13].

The proofs of the above results actually use the explicit generator of the subspaceW exp
l,q (s, p,m)

of Wl,q(s, p,m) consisting in functions which are of exponential growth. We saw in Section 2.1.1
that its complement, W pol

l,q (s, p,m) is generated by Amϕl,q(s, p). The Goodman-Wallch opera-
tor Bm is defined in Section 6 of [4]; it generates W exp

l,q (s, p,m). We shall not go into details
here, nevertheless, one shows that Amϕl,q(s, p) is expressed as combination of Bmϕl,q(s, p) and
Bmϕl,q(−s,−p); this is (6.15) of [4], from which one obtains the following formula, valid for
α > 0:

Mm
l,qη(g) =

i

π

∑
|p|6l

(im/|m|)−p

‖Φl
p,q‖K

∫
(α)

η(s, p) (2π|m|)s Γ(l + 1 + s)Bmϕl,q(s, p)(g) ds

+B(η)Bmϕl,q(1, 0)(g) +O
(
v3
)
.

The Goodman-Wallach operator satisfies the property

Bmϕl,q(s, p)(g) � v1+<(s), if g = na[v]k,

and we obtain the estimate

Mm
l,qη(g) = O

(
v1+α + v2 + v3

)
.

Comparing with the condition (C) p. 54, one sees that, as v → 0, the term Bmϕl,q(1, 0)(g) causes
problem with convergence. The key is to introduce a smooth function with compact support ρ,
wich shifts the convergence issue to ρ(g)Bmϕl,q(s, 0)(g), whose properties are then

ρ(g)Bmϕl,q(s, 0)(g) =

O
(
v1+<(s)

)
r → 0,

0 r →∞.

For <(s) > 1, the condition (C) is satisfied, and the associated Poincaré series PρBm
l,qϕl,q(s,p)(g) ∈

L2 (Γ\G, κ). Then, one has to make use of analytic continuation of this Poincaré series, as function
of s, to the entire plane, with poles at spectral parameters. In our case, no poles occur in ]1/3, 1];
this is a consequence of the cubic Shimura correspondence (see Section 2.4). The next result is to
prove that the Poincaré series are square-integrable function, in our case until <(s) > 1/3. This
gives sense to Bml,qϕl,q(1, 0)(g), and thereby to the Poincaré series PMm

l,qη
; all details can be found

in [13], Section 9.2. Taking these considerations into account, one proves the expected formula:

〈Pf (·, σ), φ(·)〉 = A(σ) 〈f(·), Fφ(m, ·, σ)〉N\G. (2.2.2)

We now come to the spectral sum formula. Let us define the Bessel transform which will
appear in the next theorem:

Definition 2.9. Let Hα be the set of functions defined on {s ∈ C : |<(s)| 6 α} × Z such that
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(i) h(s, p) = h(−s,−p),

(ii) h is holomorphic on |<(s)| 6 α,

(iii) h(s, p) � (1 + |s|)−a (1 + |p|)−b, for some A, b > 0.

Let α ∈]13 , 1[ and let h ∈ Hα. Define Bh on C by

Bh(z) =
1

2πi

∑
p∈Z

∫
(0)
Ks,p(z)h(s, p) (p2 − s2) ds.

This converges absolutely for a > 2 and b > 3.
The spectral sum formula is a statement independent of the K-type (l, q), that we had to carry

until now. Recall that Γ−1 was defined in (2.1.4).

Theorem 2.4. Let α ∈]12 , 1[ and let h ∈ Hα, with a > 2 and b > 3. Let Γ a subgroup of Γ−1 , and
assume that −Id ∈ Γ. Let m,n ∈ Z[ω]. Then,

∑
c 6=0

Kσ,τ (m,n, c)
N (c)

Bh
(

4π
√
mn

c

)
+ δσ,τδm,n

∑
p∈Z

∫
(0)
h(s, p) (p2 − s2) ds

=
∑
(s,p)

∑
f

ρf (σ,m) ρf (τ, n)h(s, p) +
1

2iπ

∑
σi∈C(Γ)

∑
p∈Z

∫
(0)
ψσ,σi(s,m, p)ψτ,σi(s,m, p)h(s, p) ds,

where the first sum in the right side is taken over the spectral parameters (s, p), and for a given
(s, p), the sum over f is taken over an orthonormal basis of the proper subspace of L2 (Γ\SL2(C), κ)
corresponding to the spectral parameter (s, p). The sum over the σi’s, means the sum over all es-
sential cusps of the group Γ.

Proof. The proof goes in two steps. The first version of the spectral sum formula is obtained in
a classical way, by computing the scalar product of two Poincaré series in two different manners.
The generating functions of these Poincaré series are Lebedev transforms Mm

l,qη. To obtain the
final version, a further step is required, namely an extension method.

In order to prove a first version of the theorem, we have to introduce the following function:

λl(s, p) = Γ(l + 1 + s) Γ(l + 1− s)
sin2(πs)

(s2 − p2)2
s2ε(p). (2.2.3)

Let h ∈ Hα. The case where h is of the form h = η θ λl for some η, θ ∈ T lα is obtained by the
usual methods above, using the formula (2.2.2). The Fourier expansion of the Poincaré series and
the above properties allow us to evaluate the product of two Poincaré series.
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〈PMnη(·, τ), PMmθ(·, σ)〉 = 〈Mnη, FPMmθ(·,σ)(n, ·, τ)〉

=
∑
c

Kσ,τ (m,n, c) 〈Mnη,An`1/cMmθ〉

=
∑
c

Kσ,τ (m,n, c)
∣∣∣π
c

∣∣∣2 〈Mnη,Mnκ(n,m, 1/c)θ〉

= π2
∑
c

Kσ,τ (m,n, c)
|c|2

∑
|p|6l

∫
(0)
η(s, p)κ(n,m, 1/c)θ(s, p)

s

p2 − s2

l∏
j=1

(j2 − s2) ds

= π2
∑
c

Kσ,τ (m,n, c)
|c|2

∑
|p|6l

∫
(0)
Ks,p(

4π
c

√
nm) η(s, p) θ(s, p)

s

p2 − s2

l∏
j=1

(j2 − s2) ds.

Let us carry out the same scalar product, using the spectral decomposition. The formula (2.2.2)
gives, for a function f of type (l, q) with spectral parameter (s, p)

〈PMnη(·, τ), f〉 = 〈Mnη, ρf (n, τ)〉N\G

= ρf (n)〈Mnη,Anϕl,q〉N\G by Proposition 2.2

=
‖Φl

q‖K
Γ(l + 1 + s)

ρf (n)LnMnη by Definition 2.6

= ‖Φl
q‖Kaτ (n) Γ(l + 1− s)

sinπs
s2 − p2

η by Theorem 2.3.

Multiplying by the conjugate, we get

〈PMnη(·, τ), f〉 〈f, PMmθ(·, σ)〉 =

‖Φ‖2ρf (n, τ)ρf (m,σ)Γ(l + 1− s) Γ(l + 1− s)
sin2 πs

(s2 − p2)2
ηθ.

We then do the same with Eisenstein series, and replace, for principal series and for the con-
tinuous spectrum, (s ∈ iR) Γ(l + 1 − s) Γ(l + 1 − s) by Γ(l + 1 + s) Γ(l + 1 − s), and for the
complementary series, Γ(l + 1− s) Γ(l + 1− s) by Γ(l + 1− s)2. This closes the first case, and
it remains to show that the theorem is true for any function h as specified.

We finish the proof using an extension method; it consists in proving Theorem 2.4 for any
h ∈ Hα, from functions of the shape h = η(s, p) θ(s, p)λl(s, p) for which the theorem has been
already proved. One shows that under some convergence hypothesis, if the Theorem is true for
for a sequence fn of functions which converges to f , then the theorem is valid for the function f .
Then, one defines
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2.2 Summation formulae of Kuznetsov type

Λn(s, p) =

{
λl(s, p) if n 6 l

0 if n > l

ηn(s, p) =

{
Λn(s, p)−1 f(s, p) es

2/n if |p| 6 n

0 if |p| > n

θn(s, p) =

{
es

2/n if |p| 6 n

0 if |p| > b

Let fn = ηn θn Λn; then the sequence {fn} tends to f and the theorem is true for each fn. This
finishes the proof of Theorem 2.4.

Remark 2.2. The reason why we set the condition−Id ∈ Γ is that otherwise we have to deal with
K-types with l odd. This implies also p odd, and in this case one actually shows that the function
λl(s, p) is given by

λl(s, p) = Γ(l + 1 + s) Γ(l + 1− s)
sin2 π(s− p)
(s2 − p2)2

s2ε(p).

This corresponds to our definition of λl(s, p) for p even, but causes the apparition of a pole of the
function Λ−1

n for p odd. This has then to be corrected by adding a complementary condition on
the zeros of h. Nevertheless, Theorem 2.4 is valid, but with the extra condition that h has a double
zero at ±1

2 .

2.2.2 On the spectrum of the metaplectic group
In this section, we derive from the spectral sum formula some consequences on the spectrum of
L2 (Γ\SL2(C), κ). This is done by choosing a suitable function h in Theorem 2.4 of Section 2.2.1,
and by estimating the δ-term and the Kloosterman term. The first one will be evaluated directly,
and the second one will be estimated through the Weil upper bound. In order to have an explicit
result, one has to come back to the arithmetical setting, i.e. to fix the group Γ and the two cusps
σ−1(∞) and τ−1(∞). Let d ∈ Z[ω] be coprime with 3. Then we choose d primary, i.e. d ≡ 1
(mod 3); according to this, we shall work with the group

Γd = 〈Γ1,−Id〉 ∩ Γ0(d)

= {γ ∈ SL2 (Z[ω]) : γ ≡ ±Id (mod 3), and c(γ) ≡ 0 (mod d)} .
(2.2.4)

For d = 1 or d = 2, Γd is not equal to the group defined in (2.1.5) and (2.1.2) of Section 2.1, but
this should not cause confusion.

We shall also work with the matrices

σ−1 =
(

1 0
0 1

)
and τ−1 =

(
d− 1 d− 2
d d− 1

)
. (2.2.5)

We remark that for any primary d, σ−1(∞) and τ−1(∞) are not Γd-equivalent essential cusps of
Γd.
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2.2 Summation formulae of Kuznetsov type

Lemma 2.3. With the notations of (2.2.4) and (2.2.4), the geometric Kloosterman sums defined in
Definition 2.5 of Section 2.1.3 verify

(i) Kσ,τ (m,n, c) =

K3(m,n, c) if c ≡ ±1 (mod 3) and c ≡ 0 (mod d),

0 otherwise,

(ii) Kσ,σ(m,n, c) = Kτ,τ (m,n, c) = 0 if c is not divisible by d.

Proof. We use the formula (2.1.13). We have Λσ = Λτ = 3Z[ω]. Then,

Kσ,τ (m,n, c) =
∑

a (3c), d(3c)

(a ∗c d )τ∈Γ

κ

((
a ∗
c d

) (
D − 1 2−D
−D D − 1

))
e

(
ma+ nd

c

)
.

With our choice of Γ, the condition ( a ∗c d ) τ ∈ Γ means a ≡ d ≡ 0 (mod 3), c ≡ ±1 (mod 3)
and c ≡ 0 (mod D). Then, from the definition of κ on Γ2, one knows that κ(γ) = κ(γ′γ), for all
γ ∈ Γ2, γ

′ ∈ SL2(Z); using this, one shows that

κ

((
a ∗
c d

) (
D − 1 2−D
−D D − 1

))
=
(a
c

)
3
.

This proves (i). The proof of (ii) is similar.

Let (σ−1(∞), τ−1(∞)) be a couple of essential cusps of Γd, and let m and n be some fixed
integers in Z[ω]− {0}. Define, for d ∈ Z[ω] and for a spectral parameter (s, p) ∈ C× Z,

Adisc
m,n,σ,τ (d, s, p) =

∑
u∈Bd(s,p)

ρu(m,σ) ρu(n, τ), (2.2.6)

where Bd(s, p) is an orthonormal basis of the intersection of L2 (Γd\G, κ) with the eigenspace of
∆ of spectral parameter (s, p); similarly, define then for (s, p) ∈ iR× Z,

Acont
m,n,σ,τ (d, s, p) =

∑
σi∈C(Γd)

ψσi
σ (m, s, p)ψσi

τ (n, s, p). (2.2.7)

Proposition 2.5. Let d ∈ SL2 (Z[ω]) be a primary integer. Let σ−1 be one of the two matrices
defined in (2.2.5). Then,

(i) Let a > 2 and b > 2. Then, for X � 1,

∑
(s,p)
s∈iR

Adisc
n,n,σ,σ(d, s, p) (1 + |s|)−a (1 + |p|)−b +

∑
p

∫
(0)
Adisc
n,n,σ,σ(d, s, p) (1 + |s|)−a (1 + |p|)−b ds � 1.

(ii) Let S be a subset of the exceptional spectrum of ∆ in L2 (Γ\G, κ). Then, for x > 1/2,

∑
sj∈S

Adisc
n,n,σ,σ(d, sj , p)N (d)4xsj � N (d)2x−1 τ(d) log2(N (d)).
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2.2 Summation formulae of Kuznetsov type

Proof. For (i), we apply Theorem 2.4 with the special choice

h(s, p) = (1 + |s|)−a (1 + |p|)−b.

Theorem 2.4 gives

∑
(s,p)

Adisc
m,m,σ,σ(d, s, p)(1 + |s|)−a (1 + |p|)−b +

1
2iπ

∑
p∈Z

(1 + |p|)−b
∫

(0)
Acont
m,m,σ,σ(d, s, p) (1 + |s|)−a ds

=
∑
p∈Z

∫
(0)
h(s, p) (p2 − s2) ds +

∑
c 6=0

Kσ,σ(m,m, c)
N (c)

Bh
(

4πm
c

)
.

Evaluation of the first integral:

∑
p∈Z

∫
(0)
h(s, p) (p2 − s2) ds =

∑
p∈Z

(1 + |p|)−b
∫ ∞

0

p2 + t2

(1 + t)a
dt� 1, if a > 4 and b > 3.

Evaluation of the Kloosterman term: We begin by the transform Bh(z). Recall that, by definition
of Bh and Ks,p(z),

Bh(z) =
1

2πi

∑
p∈Z

∫
(0)
Ks,p(z)h(s, p) (p2 − s2) ds

=
1
πi

∑
p∈Z

∫
(0)
Js,p(z)h(s, p)

(s2 − p2)
sinπs

ds.

There is a pole at 0 for p 6= 0, and by the residue theorem we have, for 1
2 < σ < 1,

Bh(z) =
2
πi

∑
p>0

∫
(σ)
Js,p(z)h(s, p)

(s2 − p2)
sinπs

ds +
2
πi

∑
p>1

p2 J0,p(z)h(0, p).

(We have used the fact that h(s, p) = h(s,−p).) We are working with z belonging to some

compact, in which case the estimate Js(z) � 1
Γ(s+1)

(
|z|
2

)<(s)
is valid. For the residue term, this

leads to

p2 J0,p(z) (1 + p)−b � p2 (1 + p)−b
(|z|/2)2p

(p!)2
,

and by Stirling’s formula we obtain

2
πi

∑
p>1

p2 J0,p(z)h(0, p) �
∑
p6=0

p (1 + p)−b
(
|z| e
2 p

)2p

.

For the integral over (σ), the same estimate as above leads to Js,p(z) � |z/2|2<(s) Γ(s + p +
1)−1 Γ(s− p+1)−1, which is equal to |z/2|2<(s) Γ(s+ p+1)−1 (−π)−1 sin(π(s− p)) Γ(p− s).
Thus we obtain
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2.2 Summation formulae of Kuznetsov type

Js,p(z)
sinπs

� |z/2|2<(s) |Γ(p− s)|
|Γ(s+ p+ 1)|

= |z/2|2<(s) |Γ(−s)|
|Γ(s)| |s+ p|

p−1∏
i=0

|j − s|
|j + s|

� |z/2|2<(s) (|s|/e)<(−s)

|s+ p| (|s|/e)<(s)
� |z/s|2<(s)

|s+ p|
, by Stirling’s formula, for <(s) > 0.

Using this estimate in the above integral gives

∫
(σ)
Js,p(z)h(s, p)

(s2 − p2)
sinπs

ds�
∫

(σ)

|z|2σ

|s|2σ
(1 + |s|)−a (1 + p)−b

|s2 − p2|
|s+ p|

ds

� (1 + p)−b |z|2σ
∫

(σ)
(1 + |s|)−a (|s|+ p)

|s|2σ
ds.

Since we assumed 1 − 2σ < 0, we have (|s| + p) |s|−2σ 6 σ−2σ(σ + p); the remaining integral
converges because a > 1 and finally, combining this estimation with the one on the residue term,
we obtain

Bh(z) �
∑
p>0

(1 + p)−b
(
|z|
σ

)2σ

(σ + p) +
∑
p>1

p (1 + p)−b
(
|z| e
2 p

)2p

� |z|2σ
∑
p>0

(1 + p)1−b + |z|2
∑
p>1

(1 + p)1−b
(
|z| e
2 p

)2(p−1)

� N (z) , for b > 3.

The Kloosterman term can now be estimated, using Weil’s upper bound. From Lemma 2.3, the c’s
have to be divisible by d. Then,

∑
c≡0 (d)

Kσ,σ(m,m, c)
N (c)

Bh
(

4πm
c

)
�

∑
c≡0 (d)

N (c)−1/2+ε Bh
(

4πm
c

)

�
∑

c≡0 (d)

N (c)−1/2+εN (m)N (c)−1 � N (m)N (d)−3/2+ε.

This proves (i). We now come to the exceptional spectrum. Note that we do not use any result as
the Selberg estimate.

For (ii), we use again Theorem 2.4 and choose, for some L > 0,

h(s, p) =


(

sin(−iLs)
Ls

)4
p = 0

0 p 6= 0
(2.2.8)

As in the proof of (i), we obtain an upper estimate, dealing with the two terms separately.
Evaluation of the δ-term: It contributes in
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∫
(0)
h(s, 0) s2 ds =

∫ ∞

0

(
sin(Lt)
iLt

)4

t2 dt

= L−4

∫ ∞

0
sin4(Lt) t−2 dt = O

(
L−3

)
.

Evaluation of the Kloosterman term: We start as before, but because p = 0, there is no residue of
Js,p(z), thus ∫

(σ)
Js,0(z)h(s, 0)

(s2)
sinπs

ds� |z|2σ σ1−2σ

∫
(σ)
h(s, 0) ds,

and we obtain

Bh(z) � |z|2σ σ1−2σ

∫ ∞

0

(
sin(−iL(σ + it))

L(σ + it)

)4

dt.

We use the following upper bound

| sin(−iL(σ + it))| = | 1
2i

(
eL(σ+it) − e−L(σ+it)

)
| ≤ eLσ + e−Lσ � eLσ

to get

∣∣∣∣∣
∫ ∞

0

(
sin(−iL(σ + it))

L(σ + it)

)4

dt

∣∣∣∣∣�
∫ ∞

0

e4Lσ

L4 (σ2 + t2)2
dt� e4Lσ

L4σ3
.

Using the Weil bound, one obtains the upper bound

∑
(s,p)

Adisc
m,m,σ,σ(d, s, p)h(s, p) � L−3 +

∑
c≡0 (d)

c 6=0

Kσ,τ (m,n, c)
N (c)

N (m)σN (c)−σ σ1−2σ e
4Lσ

L4σ3

� L−3 +
e4Lσ

L4
N (m)σ

∑
c≡0 (d)

c 6=0

τ(c)N (c)−1/2−σ.

We estimate the last sum by

∑
c≡0 (d)

c 6=0

τ(c)N (c)−1/2−σ � τ(d)N (d)−1/2−σ
∑
c

τ(c)N (c)−1/2−σ

= τ(d)N (d)−1/2−σ ζ2
Q(ω)

(
1
2

+ σ

)
� τ(d)N (d)−1/2−σ

(
σ − 1

2

)−2

,

and we finally get
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∑
(s,p)

Adisc
m,m,σ,σ(d, s, p)h(s, p) � L−3 +

e4Lσ

L4
N (m)σ τ(d)N (d)−1/2−σ

(
σ − 1

2

)−2

.

We look now at a lower estimate; this is simply

∑
(s,p)

Adisc
m,m,σ,σ(d, s, p)h(s, p) � L−4

∑
sj

Adisc
m,m,σ,σ(d, s, p) e

4Lsj .

Bringing together the lower estimate and the upper estimate gives

∑
sj

Adisc
m,m,σ,σ(d, s, p) e

4Lsj � L + e4LσN (m)σ τ(d)N (d)−1/2−σ (σ − 1
2
)−2.

Choose now σ = 1
2 + log−1(N (d)); this gives

∑
sj

Adisc
m,m,σ,σ(d, s, p) e

4Lsj � L + e2LN (m)1/2 e4L/ log(N (d)) τ(d)N (d)−1 log2(N (d)).

If L = 4 + x log(N (d)), x > 1/2, one gets∑
sj∈]0,1/3[

Adisc
m,m,σ,σ(d, s, p)N (d)4xsj � N (m)1/2N (d)2x−1 τ(d) log2(N (d)).

This proves assertion (ii) of the proposition.

2.2.3 Bessel transform and the Kloosterman sum formula
In this section we give the Kloosterman sum formula, that is, we invert the transform B of Theo-
rem 2.4 by a transform T called inverse Bessel transform. We then study some properties of this
new Bessel transform T that will be needed later on, in Chapter 4.

One obtains the Kloosterman sum formula by inverting the Bessel transform B on one side;
actually B is not two-sided invertible. (See [13], p. 140)

Theorem 2.5. Let the transform K be defined by

Kf(s, p) =
∫

C×
Ks,p(u) f(u) |u|−2 du.

Then, for any compactly supported function f on C×, Kf ∈ Hα, α > 1, and

2π BKf = f.

Moreover, the delta-term built up on Kf vanishes, see Proposition 12.3.1 of [13].

As a consequence, substituting h by Kf in Theorem 2.4 gives us the following result:
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Theorem 2.6. Let Γ be a subgroup of Γ−1 containing −Id. Let σ−1(∞) and τ−1(∞) be two
essential cusps of Γ and 0 6= m,n ∈ Λσ,Λτ respectively. Let f ∈ C∞c (C×). Then

∑
c

Kσ,τ (m,n, c)
N (c)

f

(
4π
√
mn

c

)
=

∑
(p,s)

Adisc
m,n,σ,τ (d, s, p) Kf(s, p) +

1
2iπ

∑
σi∈C(Γ)

∑
p∈Z

∫
(0)
Acont
m,n,σ,τ (d, s, p) Kf(s, p) ds.

This is the final step which enabled Bruggeman and Motohashi to get their result on the fourth
moment of the Dedekind zeta function. For our purpose, we shall need to estimate this transform;
we possess an integral representation of the Bessel functionKs,p(z) given in the formula (12.1) of
[4]

Ks,p(z) = (−1)p
2
π

∫ ∞

0
y2s−1

(
yeiθ + (yeiθ)−1

|yeiθ + (yeiθ)−1|

)2p

J2p

(
r |yeiθ + (yeiθ)−1|

)
dy, (2.2.9)

where we write z = reiθ. The estimation at infinity J0(x) � x−1/2 implies that this formula
is valid for any complex number s with |<(s)| < 1

4 , and by the cubic Shimura correspondence,
we know that, except for the theta term corresponding to the spectral parameter (1

3 , 0), any other
exceptional parameter satisfies s 6 1

6 .
Suppose that f satisfies

∂a+bf

∂θb ∂ra
(reiθ) 6 ‖f‖∞ r−a. (2.2.10)

Proposition 2.6. Let X � 1. Let f be a compactly supported function with support [αX, βX]
and assume f satisfies (2.2.10).

(i) Let a > 2, b > 2 be some given positive integers and let s0 > 0. Then for (s, p) ∈ iR × Z
or (s, p) ∈ [0, 1]× {0} with s > s0, we have

Kf(s, p) � ‖f‖∞X<(s) (1 + |s|)−a (1 + |p|)−b.

(ii) For any 0 < s < 1/4,

Kf(s, 0) � ‖f‖∞X−s.

Proof. For the proof of (i) we start with the expression of Js(z) as entire series.

∣∣∣z
2

∣∣∣−2s
(
z

|z|

)2p

Js,p(z) =
∣∣∣z
2

∣∣∣−2s
(
z

|z|

)2p

Js−p(z) Js+p(z)

=
∑
m,n>0

(−z2/4)m (−z2/4)n

m!n! Γ(s− p+m+ 1) Γ(s+ p+ n+ 1)
.
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We assume <(s) > 0. Then,

Jf(s, p) =
∫

C×
f(z)Js,p(z)

dz

|z|2

=
∑
m,n>0

∫
C× f(z)

∣∣ z
2

∣∣2s ( iz
|z|

)−2p
(−z2/4)m (−z2/4)n dz

|z|2

m!n! Γ(s− p+m+ 1) Γ(s+ p+ n+ 1)

=
∑
m,n>0

4−(s+m+n) (−1)p+m+n
∫

C× f(z) |z|2(s+m+n)
(
z
|z|

)−2(p−m+n)
dz
|z|2

m!n! Γ(s− p+m+ 1) Γ(s+ p+ n+ 1)

=
∑
m,n>0

4−(s+m+n) (−1)p+m+nMcf(s+m+ n, p−m+ n)
m!n! Γ(s− p+m+ 1) Γ(s+ p+ n+ 1)

(2.2.11)

where Mcf is the complex Mellin transform of f , defined by

Mcf(s, p) =
∫

C∗
f(u) |u|2s (u/|u|)−2p |u|−2du.

It is related to the classical Mellin transform M by

Mcf(s, p) = 2πMfp(2s), where fp(r) =
1
2π

∫ 2π

0
f
(
reiθ

)
e−2piθ dθ.

Assume now that f is radial; then fp(r) = δp=0 f(r). We need an estimate on the Mellin
transform; we have, for a, b > 1,

Mf(s) =
∫ ∞

0
f(r) rs−1 dr = (−1)a

∫ ∞

0
f (a)(r)

rs−1+a

s . . . (s− 1 + a)
dr

� ‖f‖∞
1

(1 + |s|)a

∫ √
βX

√
αX

rs−1 dr �α,β ‖f‖∞
1

|(s)a|
X<(s)/2.

Here we defined the product sa of a terms by sa = s (s+ 1) . . . (s+ a− 1), for a > 1. Inserting
this estimate in (2.2.11) with f radial gives, because of the supplementary condition p−m+n = 0,
the estimate for Jf(s, p)

Jf(s, p) = 2π
∑
n>0

4−(s+|p|+2n)Mf(2(s+ |p|+ 2n))
(|p|+ n)!n! Γ(s+ n+ 1) Γ(s+ |p|+ n+ 1)

� ‖f‖∞
(
X

4

)<(s)+|p| ∑
n>0

(X2/16)n Γ(s+ n+ 1)−1 Γ(s+ |p|+ n+ 1)−1

(|p|+ n)!n! |(2(s+ |p|+ 2n))a|
.

(2.2.12)

We can conclude the proof of (i) in the case when |s| is big, i.e. when s = it for t big. In this case,
the Stirling formula gives

Γ(s+ n+ 1) Γ(s+ |p|+ n+ 1) = (s)n+1 Γ(s) (s)|p|+n+1 Γ(s)

= (s)n+1 (s)|p|+n+1
Γ(s)

sΓ(−s) sin(πs)
� s (1 + t)2n+|p|

∣∣ s
e

∣∣<(s)∣∣ s
e

∣∣<(−s) e
−πt � (1 + t)2n+|p|+1 e−πt,
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and the sum in (2.2.12) is estimated by

∑
n>0

(X2/16)n eπ|t|

|p|!n! (1 + t)2n+|p|+1 (1 + |t|)a
� eπ|t|

|p|! (1 + |t|)a
� eπ|t|

(1 + |p|)b (1 + |t|)a
.

In the case when |s| is small, the term corresponding to n = 0 in the sum (2.2.12) has a pole at
s = 0 if p = 0. Assuming p 6= 0, we can still bring out from the sum

(p! (s+ |p|+ 2n)a)
−1 � (1 + |p|)−b (1 + |s|)−a � (1 + |p|)−b (1 + |s|)−a eπ|t|.

We have then proved (i) except in the case p = 0 and |s| small; we shall now prove it, together
with (ii), using the formula (2.2.9) on the function Ks,p(z).

Proof of (ii) and the remaining case of (i). The integral formula for Ks,p(z) gives

Kf(s, 0) =
∫

C×
Ks,0(z)

f(z)
|z|2

dz

=
∫ ∞

0

∫ 2π

0
y2s−1

∫ ∞

0
J0(r|yeiθ + (yeiθ)−1|) f(reiθ)

r
dr dθdy.

On the one hand, the estimation J0(x) � 1, for x� 1, gives∫ ∞

0
J0(r|yeiθ + (yeiθ)−1|) f(reiθ)

r
dr � ‖f‖∞

∫ √
βX

√
αX

dr

r
�α,β ‖f‖∞.

On the other hand, a better estimate can be derived from the integral representation of the classical
Bessel function

J0(x) =
2
π

∫ ∞

0
sin(x ch(t)) dt,

which leads us to∫ ∞

0
J0(r|yeiθ + (yeiθ)−1|) f(reiθ)

r
dr =

2
π

∫ ∞

0

∫ ∞

0
sin
(
r|yeiθ + (yeiθ)−1| ch(t)

) f(reiθ)
r

drdt

=
−2
π

∫ ∞

0

∫ ∞

0

cos
(
r |yeiθ + (yeiθ)−1| ch(t)

)
|yeiθ + (yeiθ)−1| ch(t)

(
f(reiθ)
r

)′
dr dt

=
−2
π

∫ ∞

0

1
|yeiθ + (yeiθ)−1| ch(t)

∫ √
βX

√
αX

(
∂f

∂r
(reiθ)r−1 +

f

r2

)
cos
(
r|yeiθ + (yeiθ)−1| ch(t)

)
dr dt

� ‖f‖∞
∫ ∞

0

1
|yeiθ + (yeiθ)−1| ch(t)

∣∣∣∣∣
∫ √

βX

√
αX

1
r2
dr

∣∣∣∣∣ dt
�α,β

‖f‖∞√
X

1
|yeiθ + (yeiθ)−1|

∫ ∞

0

dt

ch(t)
�α,β

‖f‖∞X−1/2

|y − y−1|
.

Inserting both estimates in the integral representation of Kf(s, 0) above, one obtains

Kf(s, 0) �α,β ‖f‖∞
∫ ∞

0
y2s−1 min

(
1,

X−1/2

|y − y−1|

)
dy.
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In the interval [1/2, 3/2], if we assumeX < 4/9, one verifies thatX−1/2 |y−1−y|−1 > 1. On
[0, 1/2] and [3/2,∞[, we have that min

(
1, X

−1/2

|y−y−1|

)
is bounded respectively by min

(
1, X−1/2y

)
and min

(
1, X−1/2y−1

)
. Finally,

Kf(s, 0)
‖f‖∞

�α,β

∫ 1/2

0
y2s−1 min(1, yX−1/2)dy +

∫ 3/2

1/2
y2s−1dy +

∫ ∞

3/2
y2s−1 min(1, X−1/2y−1)dy

= X−1/2

∫ √
X

0
y2s dy +

∫ 1/2

√
X
y2s−1 dy + O(1) +

∫ X−1/2

3/2
y2s−1 dy + X−1/2

∫ ∞

X−1/2

y2s−2 dy

�α,β Xs +O(1) +X−s �α,β X
−s, as X � 1.

We observe that this proves (ii) and this proves also Kf(s, 0) � ‖f‖∞ for s = it; for t small, this
is in agreement with (i), what was the remaining case to be proved.
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2.3 Metaplectic group and metaplectic representations
In this section and in the next one, we shall replace the theory of metaplectic forms in the setting
of representation theory, where most of the general results have been put forward (see [20]). In
this section and in Section 2.4, we shall use the notation G = GL2.

2.3.1 Kubota symbol and metaplectic group
We start by recalling the process of adelization of an automorphic form f on a number field k. Let
kv be the local field associated to k at the place v, and Rv be its ring of integers. For each place v,
we have a maximal compact subgroup Kv of G(Rv). Let kA be the global field.

In the classical theory of automorphic forms, we usually use the fact that

Γ0(N) = GL2(k) ∩GL2(k∞)+
∏
v

KN
v

what, according to the strong multiplicity principle, leads us to automorphic forms on G(kA).
One of the most important facts related to metaplectic forms is that the kernel of the Kubota sym-
bol does not contain a congruence subgroup (see [22]). This is due to the fact that the Legendre
symbol can always be interpreted as the character of a cubic extension of the number field k.
A more precise statement concerning the kernel of the Kubota symbol will be given in Proposi-
tion 2.7. Consequently, it is no more expected to translate metaplectic forms as representation of
the adelic group GL2(kA) and we shall have to deal with automorphic forms on a covering group
of GL2(kA); this covering group will be defined by a cocycle suitable for our arithmetical situ-
ation. This explains, through the theory of automorphic forms, why the existence of a covering
group is linked with the existence of a non congruence subgroup.

A general construction for the 2-cocycle mentioned above is done in [20], in the case of the
n-fold covering of GL(r). For r = 2, one obtains the cocycle described earlier by Kubota in [24].
Let v be a place of k. One needs the Hilbert symbol (·, ·)v : kv × kv → µ3(C), whose properties
are:

(i) (a, bb′)v = (a, b)v (a, b′)v et (aa′, b)v = (a, b)v (a′, b)v

(ii) (a, b)v (b, a)v = 1

(iii) (a,−1)v = 1

(iv) (a, a)v = 1

Similarly as in Chapter 1 p. 14, we define for g =
(
a b
c d

)
∈ GL2(kv), the number x(g) by x(g) = c

if c 6= 0 and x(g) = d if c = 0. Let g, h ∈ GL2(kv); the cocycle is now explicitly given by

av(g, h) =
(
x(gh)
x(g)

,
x(gh)
x(h)

)
v

(
|g|, x(gh)

x(g)

)
v

. (2.3.1)

Now, related to the Kubota symbol κ we define

κv(g) =
(
c,

d

det(g)

)
v

, if g =
(
a b
c d

)
. (2.3.2)

Then outside the place λ, the cocycle a splits over Kv, i.e. for g1, g2 ∈ Kv, one has

av(g1, g2) = κv(g1)κv(g2)κv(g1g2)−1. (2.3.3)
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2.3 Metaplectic group and metaplectic representations

Actually, this formula holds for any place, under some more restrictive conditions (See [24]). In
the general case, it holds at least for g1, g2 ∈ Kv, such that gi ≡ 1 (mod n2)}. In the cubic case,
we can even reduce the condition to gi ≡ 1 (mod 3); see Theorem 2 of [24].

We define a new cocycle b locally by

bv : GL2(kv)×GL2(kv) → C

(g1, g2) 7→ bv(g1, g2) = av(g1, g2)kv(g1)−1 kv(g2)−1 kv(g1g2),
(2.3.4)

and globally by

bA : GL2(kA)×GL2(kA) → C

(g1, g2) 7→
∏
v

bv (g1,v, g2,v) .
(2.3.5)

Formula (2.3.3) can be reformulated as

bv(g1, g2) = 1 for almost all v ,

so that the global object bA(g1, g2) has a well-defined meaning. This leads us to the notion of
metaplectic group, as it was defined by Kubota. In order to simplify notations, we fix an isomor-
phism ε from µ3(kv) into C, which allows us to identify µ3(kv) with its image in C; let us denote
these groups by µ3.

Definition 2.10. The local metaplectic group is a topological central extension

1 −→ µ3 −→ G̃L2(kv) −→ GL2(kv) −→ 1,

with the law of multiplication for two elements (g, ξ) and (g′, ξ′) of G̃L2(kv) given by

(g, ξ) (g′, ξ′) =
(
g g′, ξ ξ′ bv(g, g′)

)
.

The global metaplectic group is a topological central extension

1 −→ µ3 −→ G̃L2(kA) −→ GL2(kA) −→ 1,

with the law of multiplication for two elements (g, ξ) and (g′, ξ′) of G̃L2(kA) given by

(g, ξ) (g′, ξ′) =
(
g g′, ξ ξ′ bA(g, g′)

)
.

We call G̃L2(kv) and G̃L2(kA) the local and global metaplectic group of order 3, respectively.

As maximal compact subgroup of GL2(kv), we choose Kv = GL2(Rv) if |3|v = 1. A spe-
cial choice has to be made in the case |3|v < 1; one choose K3 = {g ∈ GL2(Rλ) : g ≡ Id
(mod 3)}. For the infinite place v, we choose Kv = SU(2). Then GL2(kA) is the group of ele-
ments in the direct product of all the GL2(kv) whose components are in Kv for almost all places
v of k. Firstly, the compact group K =

∏
vKv and the group GL2(C) have a natural injection

in G̃L2(kA) given by g 7→ (g, 1). Thus we shall identify these groups (and the elements of these
groups) with their image in G̃L2(kA). Secondly, there is an isomorphism x 7→ (x, κA(x)) be-
tween GL2(k) and its image in G̃L2(kA), image which we shall denote as ĜL2(k). Accordingly,
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2.3 Metaplectic group and metaplectic representations

for g ∈ GL2(k), we define an element ĝ = (g, sA(g)) ∈ G̃L2(kA). Finally, we the group of cubic
roots of the unity is embbeded in G̃L2(kA) through ξ 7→ (Id, ξ); we denote such an element by
i(ξ). Then, G̃L2(kA)/K0GL2(k∞) is discrete, and ĜL2(k) is a discrete subgroup of G̃L2(kA).

We state some properties of the metaplectic group.

Proposition 2.7. (i) The covering G̃L2(kA) → GL2(kA) is not trivial ([23]).

(ii) Let κ be the Kubota symbol. With our choice of the compact subgroup K, if γ ∈ GL2(k) ∩
K0G∞, then κA(γ) = κ(γ) ([24] Proposition 1).

(iii) The kernel of the Kubota symbol κ is given by ĜL2(k) ∩K0G∞ = k̂er(κ) ([24] Proposi-
tion 3).

Properties (i) and (iii) express the fact that the existence of a non-congruence subgroup of fi-
nite index is equivalent to the existence of a non-trivial cavering of GL2(kA).

Finally, we recall that by the strong approximation theorem, we have

GL2(kA) = GL2(k)K GL2(C).

For the metaplectic group, one has (see [24] Proposition 4 p. 25)

ĜL2(k)K GL2(C) i(µ3) = ˆGL2(k)K GL2(C). (2.3.6)

We can check that (2.3.6) leads to automorphic forms on GL2(k∞) with respect to the Kubota
symbol κ, if we define

f∞(g∞) = fA(ĝk k g∞), with ĝk ∈ ĜL2(k), k ∈ K, g∞ ∈ GL2(k∞). (2.3.7)

Namely,

f (γ g∞) = fA

(
ĝkγ−1 · (γ)0k · γg∞

)
, with gkγ−1 ∈ Gk, (k)0k ∈ K

= fA

(
ĝkγ̂−1 · (γ)0k · γg∞

)
= fA

(
ĝk(γ−1, sA(γ−1)) · (γ) · k g∞

)
= fA

(
ĝk (Id, sA(γ−1) · k g∞

)
= fA

(
ĝk k i(κ(γ−1)) g∞

)
= fA (ĝk k g∞) κ(γ−1))−1 = κ(γ) f(g∞).

From all this we can deduce (Proposition 5 of [24]):

Proposition 2.8. There is a bijection between functions fA on G̃L2(k)\ĜL2(k)K0GL2(k∞)/Ki(µ3)
satisfying fA(ĝkgkξ) = fA(g) ξ−1 and functions f on H satisfying f (γ(w)) = κ(γ) f(w).
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2.3 Metaplectic group and metaplectic representations

2.3.2 Metaplectic and automorphic representations
A metaplectic representation is an automorphic representation of the metaplectic group. Let ε :
µ3 → C be fixed. Since µ3 is the kernel of p : G̃L2(kv) → GL2(kv), and since we are interested in
the representations of G̃L2(kv) which do not factorise through p, i.e. such that µ3 acts injectively,
we are led to make the following definition. We say that a representation π̃ of a subgroup H of
G̃L2(kv) is genuine if π̃(ξh) = ε(ξ) π̃(h), for all h ∈ H and ξ ∈ µ3.

In this section we shall describe the genuine metaplectic representations as well as the au-
tomorphic representations. The notations used here will be π, πv, π̃, and π̃v for automorphic
representations respectively on G(kA), G(kv), G̃(kA) and G̃(kv). Rv will be the valuation ring of
kv, for any finite place v.

Definition 2.11. A representation of GL2(kv) or G̃L2(kv) in some vector space V is said to be
unramified if it contains a Kv-fixed vector in V .

First of all, we recall that πv is of one of the following types:

- principal unramified (not square integrable), i.e. πv = ρ(η), with η = (η1, η2) a couple of
unramified characters of k×v such that η 6= (η′| · |±1/2, η′| · |∓1/2),

- principal ramified (not square integrable), i.e. πv = ρ(η), with η = (η1, η2) a couple
of characters of k×v , with at least one of the two characters which is ramified, such that
η 6= (η′| · |±1/2, η′| · |∓1/2),

- special (ramified and square integrable) i.e. πv = σ(η), with η = (η′| · |±1/2, η′| · |∓1/2) a
couple of characters of k×v . σ(η) is then defined as the irreducible subspace or subquotient
of ρ(η); its complement is a one dimensional representation, unramified if η is unramified,

- supercuspidal (ramified and square integrable).

We now study the different types of representations π̃v of the group G̃(kv). We shall focus
on principal metaplectic representations. For it, we briefly recall the construction of these repre-
sentations, as described in [20]. Let Hv the group of diagonal matrices of Gv, Nv the group of
unipotent upper triangular matrices, and Zv the group of scalar matrices. If

p : G̃(kv) → G(kv), (g, ξ) 7→ g,

we write p−1(Hv), p−1(Nv) and p−1(Zv) by H̃v, Ñv and Z̃v and s(N) by N∗.
Then H̃3

v Z̃v is the center of H̃v. Let H̃∗,v be a maximal abelian subgroup of H̃v and consider a
quasicharacter c of H̃3

v Z̃v, such that c◦i = ε. We extend c to a quasicharacter c′ of H̃∗,v and extend

c′ to B̃∗,v := H̃∗,vN
∗ by defining it trivial on N∗. Finally, define µ on H by, µ

((
h1 0
0 h2

))
=∣∣∣h2

h1

∣∣∣1/2
v

, and extend it to B̃∗,v by µ(hn) := µ (p(h)).

Under action by right translation, we define the representation (π(c′), V (c′)) as the space of
functions f : G̃v −→ C such that

- f(bg) = (cµ)(b) f(g) ∀b ∈ B̃∗,v,

- ∃Kf ⊂ G̃v, f is right Kf -invariant.

It is an admissible representation of G̃v.
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2.3 Metaplectic group and metaplectic representations

Definition 2.12. For c as above, we define

- c3 : H −→ C, by c3(h) := c
(
s(h3)

)
, and

- c3v : kv −→ C, by c3v(x) := c3
((

x 0
0 x−1

))
.

Then c is said unramified if c3 is trivial on H ∩GL2(Okv).

Proposition 2.9. ([20], cor. 1.2.8) If c3v 6= | · |±1
v , then V (c′) is irreducible.

When c3v = | · |v, then V (c′) admits one irreducible subquotient.

Definition 2.13. A quasicharacter c such that c3v = | · |v is called exceptional. The irreducible
subquotient of V (c′) is called the exceptional representation and is denoted by V0(c′).

We obtain that π̃v is of one of the following types:

- principal (not square integrable), i.e. π̃v = V (c), with c non exceptional ,

- exceptional (ramified and square integrable) i.e. π̃v = V0(c), with c exceptional. V0(c) is
defined as the irreducible sub-quotient of V (c),

- supercuspidal (ramified and square integrable).

Actually, the exceptional representation will appear to be of first importance for us. One of
the results we shall need is due to the study in [20] of the Whittaker model of the exceptional
representation.

Let e be a fixed non trivial continuous character of kv, and let V ∗ be the algebraic dual of V ,
where (π, V ) is some given irreducible representation of G̃L2(kv). The dual representation π∗ is
defined by

(π∗(g) · λ) (v) = λ
(
π(g−1) · v

)
, forv ∈ V and λ ∈ V ∗.

The Whittaker space of π is the subspace of V ∗ defined by

Wh(π, e) = {λ ∈ V ∗ : π∗(n) · λ = e(n)−1 λ, ∀n ∈ N}

= {λ ∈ V ∗ : λ (π(n) · v) = e(n)λ(v), ∀v ∈ V, n ∈ N}.

There is another way of seeing Wh(π, e); if C∞
(
G̃L2(kv),C, e

)
denotes the space of smooth

functions f from G̃L2(kv) to C satisfying f(ng) = e(n) f(g), then each λ ∈ Wh(π, e) gives rise
to an injection, called a Whittaker model for π,

tλ : V −→ C∞
(
G̃L2(kv),C, e

)
v 7→ tλ(v) : g 7→ λ (π(g) · v) .

In the case of an irreducible representation of GLn one knows that the Whittaker space of π is
one-dimensional, or equivalently, that the whittaker model is unique; one consequence of this is
the local multiplicity one theorem. This unicity fails for most of the genuine metaplectic represen-
tations, and more precisely, we have:
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Theorem 2.7. The dimension of the Whittaker space of an irreducible genuine metaplectic repre-
sentation of G̃L2(kv) is

(i) finite dimensional,

(ii) non-zero if π is supercuspidal,

(iii) equal to one if π is exceptional.

Remark 2.3. Points (i) and (ii) are true in a more genral context; they are proved for an n-fold
covering of GL2 in [20] (Theorem I.5.2). In this situation, point (iii) is valid if and only if r = n
or r = n − 1 (Corollary I.3.6 of [20]). Since we are only concerned here with GL2, this means
that the Whittaker model of the exceptional representation is unique only in the cases of the 2-fold
cover or 3-fold cover of GL2. The degree of the covering being the order of the Legendre symbol,
we have unicity of the Whittaker model of an exceptional representation in the quadratic case
(treated in Chapter 1) and in the cubic case (treated in Section 2.1 and Section 2.2 of this chapter
and in Chapter 3).

We finish this section by describing more precisely V0(c). Let v be a fixed place of k, not
dividing 3. Let Km be the subgroup of K = GL2(Rv) defined by

Km =
{(

a b
c d

)
∈ GL2(Rv) : ord(c) > m

}
.

The space of Km-fixed vectors of a representation (π, V ) with central character µ is defined as

V Km = {v ∈ V : π(k) · v = µ(k) v} .

The vectors of V Km correspond in some sense to automorphic forms with respect to Γ0(πm),
where π is the prime of Z[ω] corresponding to the place v. Then,

dim
(
V0(c)Km

)
= 1 if m = 0 or m = 1. (2.3.8)

This statement is proved in [20], Theorem I.2.9 f) and Proposition I.4.4.
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2.4 Shimura correspondence
The goal is to present a correspondence, in a sens which will be made precise latter, between
metaplctic forms f̃ ∈ L2 (Γ\H, κ, s̃) and automorphic forms f ∈ L2 (Γ\H, s), and to precise
some characteristics of f in terms of those of f̃ .

Recall that the group Γ2 was defined p. 48. Let Γ be a subgroup of Γ2 and let χ : Γ −→ C be
a group homomorphism. Inside the space of functions f : H −→ C such that

f (γ(w)) = κχ(γ) f(w) ∀γ ∈ Γ, (2.4.1)

we distinguish two subspaces, the one formed by the f with ‖f‖ <∞, denoted by L2 (Γ\H, κχ)
and the one of functions f with (∆ + s̃(2− s̃)) f = 0 for some s ∈ C, denoted byM (Γ\H, κχ, s̃).
Likewise, in the space of functions f : H −→ C such that

f (γ(w)) = χ(γ) f(w) ∀γ ∈ Γ, (2.4.2)

we distinguish two subspaces, tho one consisting of functions f such that ‖f‖ < ∞, denoted by
L2 (Γ\H, χ) and the one consisting in functions f such that (∆ + s(2− s)) f = 0, denoted by
A (Γ\H, χ, s).

The spaces which are of interest for us are, on the one hand, the intersection of L2 (Γ\H, κχ)
andM (Γ\H, κχ, s̃), denoted by L2 (Γ\H, κχ, s̃), and on the other hand the intersection of L2 (Γ\H, χ)
and A (Γ\H, χ, s), denoted by L2 (Γ\H, χ, s).

2.4.1 Definitions and results
The notion used to define the correspondence is that of character of a representation. Let G be
a locally compact group and let (π, V ) be an admissible representation of G. One can extend
the action of G on V to an action of H(G), the space of locally constant functions with compact
support, by

π(f) · v =
∫
G
f(g)π(g) · v dg, ∀f ∈ H(G), v ∈ V. (2.4.3)

The representation (π, V ) being admissible, we have that π(f) is an operator with finite rank for
any f ∈ H(G) and thus the trace of π(f) make sense.

Recall that a distribution on a topological group G is a linear form on the space H(G). The
character of π is then the distribution on G,

f 7→ Tr (π(f)) ,

for all f ∈ H(G). We remark that the character of π is an invariant distribution, i.e. Tr (π(f)) =
Tr (π(fg)) ,∀g ∈ G, where fg(x) := f(gxg−1),∀x ∈ G.

In many cases, the character of a representation π of G can be given by a function on G, that
we shall call again character of π. In our case, we refer to Theorem 7.7 of Jacquet-Langlands for
the non metaplectic group, and to Lemma 2.3.1 of Flicker ([9]) for a square integrable representa-
tion of G̃L2(kv). Moreover, the case of supercuspidal representations of G̃L2(kv), is done in [2]
p. 52, with a proof independent of the trace formula.

From this discussion we make the,

Definition 2.14. The character of π is the local integrable function χπ on G such that

Tr (π(f)) =
∫
G
f(g)χπ(g) dg.
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The preceding definition, valid for GL(2) and G̃L(2), enable us to characterise the irreducible

admissible representations of GL(2) and the genuine irreducible representations of G̃L(2) by the
value of their character on the regular elements. Moreover, one shows ([2], prop. 1.1 p. 49, 2o) )

that for a regular element g ∈ G̃L(2), χeπ(g) 6= 0 only if g3 is regular. We are now in position to
define the local correspondence. Define

∆(g) =
∣∣∣∣(a− b)2

ab

∣∣∣∣1/2 . (2.4.4)

Definition 2.15. Let π̃ a genuine irreducible representation of G̃L2(kv) with character χeπ, and
let π be an admissible irreducible representationof GL2(kv) with character χπ. We say that π
correspond to π̃ if, for any regular element g of G of the shape g = h3, it holds

∆(g)χeπ ((g, s(g)−1
))

=
∑
h3=g

∆(h)χπ(h). (2.4.5)

We then define the global correspondence analogously.

Theorem 2.8 (Flicker). Let v be a place of k = Q(ω), and let π̃v be a genuine irreducible
representation of G̃(kv). Then π̃v corresponds to some irreducible representation of G(kv).

(2.1) This application is an injection (thm 5.2 and cor. 5.2 of [9]).

(2.2) (πv supercuspidal) ⇒ (π̃v supercuspidal) (thm 5.2 of [9])

(2.3) (πv special) ⇒ (π̃v special) (thm 5.2 of [9])

(2.4) (π̃v supercuspidal) ⇒ (πv supercuspidal) (cor .5.2 of [9])

(2.5) (π̃v unramified) ⇒ (πv) unramified). (cor 5.2)

(2.6) (π̃v ∈ L2) ⇒ (πv ∈ L2)

Remark 2.4. In this theorem we used the fact that 3 is odd. Namely, the correspondence is proved
in [9] for an n-fold covering group, but some of the above properties hold only if n is odd.

2.4.2 Classical interpretation
The proof of the correspondence (See [9], Section 1.4) shows that the central character µ of πv is
related to the central character µ̃ of π̃v through µ = µ̃3. This is equally true at the archimedean
place, although, as the Hilbert symbol is trivial on C, the metaplectic group G̃L2(C) is isomorphic
to the direct product GL2(C)× µ3.

Theorem 2.9. Let f̃ ∈ L2 (Γ\H, κ, s̃). Then,

(i) There exists some congruence subgroup Γ′ and some f ∈ L2 (Γ′\H, κ, s), such that the
representation πffA

corresponds to the representation πfA , and the following relation holds

3 (s̃− 1) = s− 1.

(ii) If s̃ = 4/3, then the Whittaker model of πffA
is one-dimensional and, with the notations of

the spectral decomposition theorem, f̃ ∈ L2Res.
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2.4 Shimura correspondence

When working wiht GL2, (ii) of Theorem 2.9 amounts to say that the quadratic case n = 2
and the cubic case n = 3 are the only one whithout theoretic obstruction to the computation of the
Fourier coefficients of the theta functions. We recall that, as we saw in Chapter 1 and as we shall
see in Chapter 3, theta functions are the key ingredients to tackle the problem of the asymptotic
distribution of the twisted Kloosterman sum.

Since there is only one theta function for Γ1 ([32]), we deduce from (ii) that for Γ∗0(D) with
(D, 3) = 1, the dimension of the space generated by the metaplectic forms of minimal eigenvalue
is given by ∏

v|D

dimV Kmv
v where mv = ordv(D).
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3 Asymptotic behaviour of K3(m, n, c)

In this chapter, we try to understand the behaviour of the constant appearing in the asymptotic
behaviour of the cubic Kloosterman sums. More precisely, as it will be recalled latter, we have,
for any ε > 0, that ∑

N (c)6X
c≡0 (D)
c≡1 (3)

K3(m,n, c) = C(D,m, n)X4/3 +O
(
X5/4+ε

)
,

and we are interested in determining the constant C(D,m, n) explicitly, and in understanding its
dependence with the parameter D. This has been done by Livné and Patterson in [31], Theo-
rem 1.1, for a square-free parameter, D. We aim at improving this theorem of Livné and Patterson
by weakening the condition on the level D.

Before exposing the results, let us make some comments on this formula and recall some
notation. First of all, the condition c ≡ 1 (mod 3) is natural, since it only means that the sum is
taken over the class of integers in R = Z[ω] which are not divisible by λ = 1− ω, the only prime
dividing 3. By taking the class we mean to take for any of such integers, its unique associated
integer, i.e. one of its multiples by a unit in U = {±1,±ω,±ω2}, which is congruent to 1 modulo
3. This is the equivalent condition to "c odd", in the quadratic case over Z. That c has to be
coprime with 3 comes from the definition

K3(m,n, c) =
∑×

x (c)

(x
c

)
3
e

(
mx+ nx∗

c

)
, (3.0.1)

since the Legendre symbol
( ·
π

)
3

is defined only for N (π) ≡ 1 (mod 3). We recall that in the
notations (3.0.1), we mean actually

K3(m,n, c) =
∑

x,x∗ (c)
xx∗≡1 (mod c)

(x
c

)
3
e

(
mx+ nx∗

c

)
.

From the general Kloosterman summation formula described in Chapter 2, Theorem 2.6, we see
that the asymptotic constant is given by the sum over a orthonormal basis of the metaplectic forms
with minimal eigenvalue of their mth and nth Fourier coefficients. The problem is to determine an
orthonormal basis and to be able to describe the Fourier coefficients of all elements of this basis.
That this second point is possible is not clear since we work with metaplectic groups, for which
the Whittaker models associated to an automorphic representation is a priori not one dimensional.

In Section 3.1, where we recall the theory of Eisenstein series and cubic theta functions, and
explain what is the basis problem. Our method to deal with this problem in presented in Section 3.2
where, after some technical results, we give the relations between all theta functions. These results
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3 Asymptotic behaviour of K3(m, n, c)

allow us to derive some explicit examples in Section 3.3.
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3.1 The Kubota–Patterson theta function

3.1 The Kubota–Patterson theta function
This section expands the Section 2.1.2 of Chapter 2 where Eisenstein series and theta functions
have been defined. Section 3.1.1 takes the point of view of Kubota, and defines Eisenstein series
and gives their Fourier expansion. The Fourier coefficient are Dirichlet series whose coefficients
are Gauß sums. Finally we give the Maaß-Selberg relations. The Section 3.1.2 is the heart of the
matter, where cubic theta functions are defined, always following Kubota, and where their prop-
erties are given, following Patterson [32]. We finally explain how the Shimura correspondence
simplifies the problem, and reformulates the problem of the asymptotic behaviour of cubic Kloost-
erman sums.

Unless otherwise stated, the symbol δ will be the Kronecker symbol. We recall that a cusp
σ−1(∞) of a group Γ ⊂ SL2 (Z[ω]), with σ ∈ SL2 (Z[ω]), is said to be essential with respect to
the group homomorphism χκ if its stabilizor Γσ = {γ ∈ Γ : γ

(
σ−1(∞)

)
= σ−1(∞)} satisfies

Γσ ⊂ ker(χκ). The groups we shall be interested in latter on are subgroups of

Γ1 = {γ ∈ SL2 (Z[ω]) : γ ≡ 1 (mod 3)}.

We define

Γ∗0(D) =
{
γ =

(
a b
c d

)
∈ Γ1 : c ≡ 0 (mod D)

}
.

Lemma 3.1. Let Γ = Γ∗0
(
πh
)
, and let σ =

(
a b
c d

)
. Then

Γσ = σ−1

(
1 Λσ
0 1

)
σ,

and Λσ = 3πMax(h−2`,0)R, where ` = ordπ(c).

3.1.1 The Maaß- Selberg relations
In this section, we consider some subgroup Γ of SL2(R), and a character χ on Γ. A point in
H is written w = (z, v), and define v : H → R+

∗ by v((z1, v1)) = v1. Eisenstein series have
already been introduced in Section 2.1.2 of Chapter 2, but as we work here with trivial K-type, the
notations simplify significantly, and we take advantage of this opportunity to give the details of
the Fourier expansion of Eisenstein series.

We shall use the following Bessel function:

Ks(x) =
∫

C

(
|z|2 + 1

)−s
e(−xz) dz. (3.1.1)

Remark 3.1. Recall that e(z) = exp(2iπTrk/Q(z)). The relation with the classical Bessel func-
tion is

Ks(x) =
(2π)s

Γ(s)
|x|s−1Ks−1(4π|x|), for x ∈ C, x 6= 0.

Moreover, we have, for s ∈ R, s > 1,

Ks(0) =
π

s− 1
.
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3.1 The Kubota–Patterson theta function

Definition 3.1. Let σ−1(∞) be an essential cusp of Γ. The Eisenstein series associated to σ is
defined by

Eσ(w, s) =
∑

γ∈Γσ\Γ

χ(γ) v(σγ(w))s, for <(s) > 2.

We prove the formula giving its Fourier expansion. This is a special case of the one proved for
any K-type, as treated in 2.1.2 of Chapter 2.

Proposition 3.1. At an essential cusp τ−1(∞), Eσ(w, s) has the Fourier expansion

Eσ(τ−1(w), s) = δσ,τv
s +

∑
µ∈Λ∧τ

v2−s Ks(µv)ψσ,τ (µ, s) e(µz),

where its coefficient is the Dirichlet series

ψσ,τ (µ, s) = |Λτ |−1
∑

0 6=c∈R
|c|−2s

∑
d (mod λτ c)

σ−1
„
a b
c d

«
τ∈Γ

χ(σ−1
(
a b
c d

)
τ) e

(
µd

c

)
.

Proof. We start by splitting

Eσ(τ−1(w), s) = Σ1 + Σ2, (3.1.2)

where the sum Σ1 (respectively Σ2) is the sum of the terms χ(γ) v(σγτ−1(w))s taken over the
γ ∈ Γσ\Γ such that c(σγτ−1) = 0 (respectively c(σγτ−1) 6= 0).

Lemma 3.2. Σ1 = δσ,τv
s.

Proof. If an element γ such that c(σγτ−1) = 0 exists, then necessarily σγτ−1(∞) = ∞, what can
be written as γ(τ−1(∞)) = σ−1(∞). The cusps are then equivalent and we recall that in this case,
we make the choice σ = τ . Let us now assume that σ = τ , and consider some element γ ∈ Γ such
that c(σγσ−1) = 0. Then σγσ−1 stabilizes infinity, which means that γ(σ−1(∞)) = σ−1(∞),
i.e. γ ∈ Γσ. Hence, there is only one left coset that we choose to be the one of the identity. It
follows that Σ1 = χ(Id) v(σ Id σ−1(w))s = vs.

Let us come back to the sum Σ2, and rearrange it as

Σ2 =
∑

γ∈Γσ\Γ
c(σγτ−1) 6=0

χ(γ) v(σγτ−1(w))s

=
∑

γ′∈Γσ\Γ/Γτ

∑
γτ∈Γτ

c(σγ′γτ τ−1) 6=0

χ(γ′γτ ) v(σγ′γττ−1(w))s.

From Lemma 3.1, write γτ = τ−1
(

1 λτ
0 1

)
τ . Then the condition c(σγ′γττ−1) 6= 0 becomes

c(σγ′τ−1) 6= 0. The same idea gives v(σγ′γττ−1(w)) = v(σγ′τ−1(z + λτ , v)), and we obtain

Σ2 =
∑

γ∈Γσ\Γ/Γτ
c(σγτ−1) 6=0

χ(γ)
∑
λτ∈Λτ

v
(
σγτ−1(w + λτ )

)s
.
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3.1 The Kubota–Patterson theta function

Definition 3.2. Let Λ be a lattice in C. Let g ∈ SL2(R). Define

eΛg (w, s) =
∑
λ∈Λ

v(g(w + λ))s, w ∈ H, s ∈ C.

As usual, one has the double decomposition lemma, which asserts that the set of representatives γ
of Γσ\Γ/Γτ with c(σγτ−1) 6= 0 is equal to set set of matrices σ−1

(
a b
c d

)
τ ∈ Γ with c 6= 0 and d

(mod Λτc)×. We have then proved that

Σ2 =
∑

0 6=c∈R

∑
d (mod Λτ c)

σ−1
„
a b
c d

«
τ∈Γ

χ(σ−1
(
a b
c d

)
τ) eΛτ“

a b
c d

”(w, s),

and it remains to prove the Fourier expansion of eΛg (w, s), for some g =
(
a b
c d

)
.

Lemma 3.3. Let |Λ| be the area of Λ\C. Then

eΛg (w, s) = |Λ|−1
∑
µ∈Λ∧

v2−s |c|−2s e

(
µd

c

)
Ks(µv) e(µz).

Proof. Being Λ-invariant, the function eΛg (·, s) possesses a Fourier expansion at ∞ of the form

eΛg (w, s) =
∑
µ∈Λ∧

f(µ) e(µz),

where the Fourier coefficient f(µ) is defined by

|Λ| f(µ) =
∫

Λ\C

∑
λ∈Λ

v(g(w + λ))s e(−µz) dz

=
∫

Λ\C

∑
λ∈Λ

v(g(z + λ, v))s e(−µ(z + λ)) dz , since µ ∈ Λ∧

=
∫

C
v(g(z, v))s e(−µz) dz

=
∫

C
vs (|cz + d|2 + |c|2v2)−s e(−µz) dz

= vs e

(
µd

c

) ∫
C
(|cz|2 + |c|2v2)−s e(µz) dz

= v−s |c|−2s e

(
µd

c

) ∫
C

(∣∣∣z
v

∣∣∣2 + 1
)−s

e(−uz) dz.

One concludes with a change of variable.

By this lemma, the proposition is proved.

Definition 3.3. Let A > 0. We say that A is big if, for any g ∈ SL2(R),

g (C(A)) ∩ C(A) 6= ∅ ⇐⇒ g(∞) = ∞.
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3.1 The Kubota–Patterson theta function

According to this definition, let us modify the function v by defining

vA(w) =

{
v if v(w) ≤ A

0 if v(w) > A
.

Definition 3.4. Let A be big. Then

EAσ (w, s) =

{
Eσ(w, s) if w /∈ ∪τ essential τ

−1(C(A))
Eσ(w, s)− δσ,τv

s if w ∈ τ−1(C(A))
,

that is to say

EAσ (w, s) =

{
Eσ(w, s) if w /∈ σ−1(C(A))
Eσ(w, s)− vs if w ∈ σ−1(C(A))

.

Lemma 3.4.
EAσ (w, s) =

∑
γ∈Γσ\Γ

χ(γ) vA(σγ(w))s.

Proof. We have to treat two cases. (i) If w /∈ σ−1(C(A)) then, by the dynamic in fuchsian groups,
γ(w) 6∈ σ−1(C(A)), ∀γ ∈ Γ. Thus σγ(w) 6∈ C(A), and we can replace v(σγ(w)) by vA(σγ(w)).
Then,

EAσ (w, s) = Eσ(w, s)

=
∑

γ∈Γσ\Γ

χ(γ) v(σγ(w))s

=
∑

γ∈Γσ\Γ

χ(γ) vA(σγ(w))s.

(ii) Now, if w ∈ σ−1(C(A)), set w = σ−1(w′), w′ ∈ C(A), and by Proposition 3.1

EAσ (w, s) =
∑
µ∈Λ∧τ

v(w′)2−s Ks(µv(w′))ψσ,τ (µ, s) e(µz(w′)),

what is, with the notations of (3.1.2), equal to Σ2. But by definition,

Σ2 =
∑

γ∈Γσ\Γ
c(σγσ−1) 6=0

χ(γ) v(σγσ−1(w′))s

=
∑

γ∈Γσ\Γ
c(σγσ−1) 6=0

χ(γ) vA(σγσ−1(w′))s, since A is big,

=
∑

γ∈Γσ\Γ
c(σγσ−1) 6=0

χ(γ) vA(σγσ−1(w′))s +
∑

γ∈Γσ\Γ
c(σγσ−1)=0

χ(γ) vA(σγσ−1(w′))s, since the second sum is 0,

=
∑

γ∈Γσ\Γ

χ(γ) vA(σγ(w))s.
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3.1 The Kubota–Patterson theta function

The sense of introducing these series is that, for <(s),<(t) > 2, EAσ (w, s)EAτ (w, t) is
Γ−invariant and integrable on Γ\H. We shall now calculate

∫
Γ\H

EAσ (w, s)EAτ (w, t) dw, for <(s) < <(t).

This is equal to (I1) + (I2), with

(I1) =
∫

Γ\H

[
EAσ (w, s)− Eσ(w, s)

]
EAτ (w, t)dw,

(I2) =
∫

Γ\H
Eσ(w, s)EAτ (w, t) dw.

Calculation of (I1): The support of EAσ (w, s)−Eσ(w, s) is, as we have seen already, σ−1(C(A)).
By taking the quotient, what is left is

(I1) =
∫

Γσ\σ−1(C(A))

[
EAσ (w, s)− Eσ(w, s)

]
EAτ (w, t)dw

=
∫

ΓΛσ\C(A)

[
EAσ (σ−1(w), s)− Eσ(σ−1(w), s)

]
EAτ (σ−1(w), t)dw

= −
∫ ∞

A

∫
Λσ\C

vsEAτ (σ−1(w), t)dw.

Only the constant term of EAτ (σ−1(w), t) contributes. By the definition of EAτ (σ−1(w), t) and the
Proposition 3.1, it remains

(I1) = −
∫ ∞

A

∫
Λσ\C

vs v2−t Kt(0)ψτ,σ(0, t)dw

= − |Λσ|Kt(0) ψτ,σ(0, t)
∫ ∞

A
vs−t+2 v−3dv

= |Λσ|Kt(0) ψτ,σ(0, t)
As−t

s− t
, since s < t.

Calculation of (I2): By the Rankin unfolding method,
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3.1 The Kubota–Patterson theta function

(I2) =
∫

Γ\H
Eσ(w, s)EAτ (w, t) dw

=
∫

Γ\H

∑
Γτ\Γ

χ(γ) vA(τγ(w))tEσ(γ(w), s)χ(γ) dw

=
∫

Γτ\H
vA(τ(w))tEσ(w, s) dw

=
∫

ΓΛτ \H
vA(w)tEσ(τ−1(w), s) dw

=
∫

ΓΛτ \H−C(A)
vA(w)tEσ(τ−1(w), s) dw since vA(w) = 0 if w ∈ C(A)

= |Λτ |
∫ A

0
vt
{
δσ,τv

s + v2−sKs(0)ψσ,τ (0, s)
}
v−3dv

= |Λτ | δσ,τ
As+t−2

s+ t− 2
+ |Λτ |Ks(0)ψσ,τ (0, s)

At−s

t− s
.

From this, we have derived the following theorem:

Theorem 3.1. Let σ−1(∞) and τ−1(∞) be two essential cusps of Γ. Let s, t > 2 . Then,

∫
Γ\H

EAσ (w, s)EAτ (w, t) dw = |Λτ | δσ,τ
As+t−2

s+ t− 2

+ |Λσ| Kt(0) ψτ,σ(0, t)
As−t

s− t
+ |Λτ | Ks(0) ψσ,τ (0, s)

At−s

t− s
.

3.1.2 Properties of the cubic theta functions
The theta functions have been defined in Section 2.1.2 of Chapter 2, for any essential cusp of a
given group Γ ⊆ Γ2. They are non-cuspidal, square-integrable metaplectic forms.

Definition 3.5. The theta space Θ(Γ) is the space generated by the theta functions θσ, where
σ−1(∞) runs through a set of essential cusps of Γ.

Theta functions are non cuspidal square integrable metaplectic forms, and thus we always have
the inclusion Θ(Γ) ⊆ L2 (Γ\H, κ). For example, in the quadratic case, θ functions defined by a
character not totally even are cuspidal (see Serre and Stark, Theorem B p. 36). What it is not
clear, but necessary for us, is whether the equality holds. We recall here part (ii) of Theorem 2.9
of Section 2.4.2 of Chapter 2:
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3.1 The Kubota–Patterson theta function

Proposition 3.2. The subspace of the discrete spectrum of L2 (Γ\H, κ) corresponding to the min-
imal eigenvalue is

L2

(
Γ\H, κ, 8

9

)
= Θ(Γ).

We can now recall the asymptotic formula of the geometric cubic Kloosterman sums:

Theorem 3.2. Let σ, τ be two essential cusps of Γ. Then∑
N (c)6X

Kσ,τ (m,n, c) ∼ C X4/3
∑

θ∈B(Γ)

ρθ(σ,m) ρθ(τ, n) ,

where B(Γ) is an orthonormal basis of the theta space Θ(Γ), and ρθ(σ,m) is the mth Fourier
coefficient of θ(w) at the cusp σ−1(∞). Here the constant C is given by

C =
Γ(1/3)2

2(2π)5/3
|Λσ| |Λτ |
N (mn)1/6

.

Proof. Let us emphasize that the asymptotic formula can be derived from the Kloosterman sum-
mation formula of Theorem 2.6 of Chapter 2, in the same way as Kuznetsov did (see [26], proof of
theorem 3). Moreover, it can also be derived following the method described in Chapter 1, adapt-
ing the argument of Goldfeld and Sarnak. This was done in details in [31], Theorem 4.5, and for
that reason we shall not prove it here. Both methods lead to∑

N (c)6X

Kσ,τ (m,n, c) ∼ C X4/3
∑

u∈B(Γ)

ρu(σ,m) ρu(τ, n) ,

where B(Γ) is an orthonormal basis of the space L2
(
Γ\H, κ, 8

9

)
. The proof is then concluded by

Proposition 3.2.

As in [31], having in mind our arithmetical application, the groups of importance to us are the
groups

Γ∗0(D) = Γ1 ∩ Γ0(D).

The link between the arithmetic cubic Kloosterman sumsK3(m,n, c) and the geometric Klooster-
man sums Kσ,τ (m,n, c) is given in Lemma 2.3 in Section 2.2.2 of Chapter 2. Let D,D′ in Z[ω],
D,D′ ≡ 1 (mod 3). If Γ = Γ∗0(DD

′), then it is possible to choose two essential cusps σ−1(∞)
and τ−1(∞) so that the left hand side of the formula of Theorem 3.2 is given by∑

N (c)6X
c≡0 (d)

(c,D′)=1

K3(m,n, c) (3.1.3)

.
We saw in Section 2.3.2 of Chapter 2 that in general there is not unicity of the Whittaker

model for an irreducible metaplectic representation, but (iii) of Theorem 2.7 says that however, the
unicity occurs in the quadratic case and in the cubic case, and only in these cases. It is therefore
theoretically possible to obtain a complete description of the Fourier coefficients ρ(m) of the cubic
theta functions in terms of known functions. This had been already achieved by Patterson in [32],
where it was proved that ρ(m) is actually a cubic Gauss sum. More precisely, the space Θ(1) is
one dimensional, spanned by the function

θ3(w) = v2/3 + v
∑

m∈(3Z[ω])∧

τ3(m)K1/3(4π|m|v) e(mz), (3.1.4)
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3.1 The Kubota–Patterson theta function

where τ3 is the function defined on Q(ω)− {0} by

τ3(m) =



2g(λ2, c)
∣∣d
c

∣∣ 3n/2 if m = ±λ3n−1cd3

2e−2iπ/9g(ωλ2, c)
∣∣d
c

∣∣ 3n/2 if m = ±ωλ3n−1cd3

2e2iπ/9g(ω2λ2, c)
∣∣d
c

∣∣ 3n/2 if m = ±ω2λ3n−1cd3

2g(1, c)
∣∣d
c

∣∣ 3n/2 if m = ±λ3n−3cd3

0 otherwise.

(3.1.5)

Actually we can be more precise about the number of Fourier coefficients of theta functions
that we need. The periodicity theorem ([20], Theorem I.2.9 e)), combined with Hecke theory,
allows us to obtain the following properties of a theta function

θ(w) =
∑
m

ρ(m)K1/3(4π|m|v) e(mz).

Theorem 3.3. Let c be an integer coprime with a prime π. Then,

ρ(π3c) = N (π) ρ(c),

ρ(πc) = N (π)G(π) ρ(c),

ρ(π2c) = 0.

Let D,D′ ∈ Z[ω] be two integers, coprime with 3. We conclude this section with a discussion
on the constant c(D,D′) appearing in the asymptotic formula∑

N (c)6X

(c,D′)=1 c≡1 (3)

K3(m,n, c) ∼ c(D,D′,m, n)X4/3 ,

derived from Theorem 3.2 by (3.1.3). By Theorem 3.3, C(D,D′,m, n) can be explicitly deter-
mined once we know B (Γ∗0(DD

′)). For example, when D and D′ are square-free, c(D,D′,m, n)
is given by Theorem 1.1 of [31]; in this case, Θ(Γ∗0(DD

′)) is of dimension 1, generated by the
cubic theta function θ3. What has to be done to treat the general case, is to study relations between
theta functions.

From the Maaß-Selberg relations, we deduce that the scalar product between two theta func-
tions θσ and θτ associated to two essential cusps of a group Γ is given by

〈θσ, θτ 〉 = 3π Ress=4/3

( ∑
0 6=c∈R

|c|−2s
∑

d (mod λτ c)

σ−1
„
a b
c d

«
τ∈Γ

κ(σ−1
(
a b
c d

)
τ)
)
. (3.1.6)

To prove this, it suffices to take the residue at s = 4/3 and t = 4
3 in the formula of the Theorem 3.1.

Formula (3.1.6) has to be worked out in details, to give precise relations between theta functions.

90



3.2 Relations between theta functions

3.2 Relations between theta functions
To simplify notations, we write Θ(D) for Θ(Γ∗0(D)) and B(D) for B(Γ∗0(D)). In this section, we
study the space Θ(D) and look for an orthonormal basis B(D) of Θ(D), whenD is a prime power
D = πh, for h > 1. Here π is a prime in R, that we assume different from the prime λ and from
the prime 2, and that, as such, we can and do choose such that π ≡ 1 (mod 3). After some pre-
liminary results in Section 3.2.1, the relations between theta functions are given in Section 3.2.2.
Some examples of B(D) will be provided in Section 3.3 in the cases h = 1, 2, 3.

3.2.1 Auxiliary results
Equation (3.1.6) of Section 3.1.2 will be our main tool for the evaluation of the scalar product of
theta functions. In this section, we make this formula easier to evaluate by giving some simple
lemmas that will be used latter on. Since we have attached a theta function to each essential cusp
of a group Γ ⊂ Γ2, the next step will be to determine all Γ∗0

(
πh
)
-inequivalent essential cusps. We

achieve this in Lemma 3.5. In Lemma 3.6, we work out the summation condition appearing in the
formula (3.1.6), then in Lemma 3.7 we deal with some Gauß sums similar to those appearing in
the inner sum of (3.1.6) and finally, in Lemma 3.8 we evaluate a Dirichlet series.

For 0 6 ` 6 h, let us define P` as

P` =


1 if ` = 0,(
R/πh−`R

)× if 1 6 l 6 h− 1,
1 if ` = h.

(3.2.1)

Since we assume π 6= λ, we shall assume that the elements of P` are chosen congruent to 1
modulo 3. Besides, for a given m ∈ R specified in the context, we shall use the notation x for
a representative of the inverse modulo m of an element x coprime with m. Finally, we define
Tm = ( 1 0

m 1 ) and Tm = ( 1 m
0 1 ).

Lemma 3.5. A set of essential cusps (not necessarily inequivalent) of Γ∗0
(
πh
)

is given by{
1

απ` ν
: α ∈ {±1, 3}, 0 6 ` 6 h, ν ∈ P`

}
∪
{

1
π` ν

− 1 : 0 6 ` 6 h, ν ∈ P`
}
.

Proof. Let P = a
c be a cusp of Γ∗0

(
πh
)
, with a, c ∈ Z[ω], gcd(a, c) = 1. Since

(
1 0

3πh 1

)
∈

Γ∗0
(
πh
)
, the cusp P is equivalent to the cusp

(
1 0

3πh 1

)
(P ) = a

3πha+c
, and this allow us to assume

that ordπ(c) 6 h. According to this, we define j = ordπ(c), 0 6 j 6 h. First of all, we determine
the three types of cusps of Γ∗0

(
πh
)
, and then rule out some of them which are not essential.

Case 1: π|c and λ 6 |a. Multiplying by some unit of Z[ω] if necessary, we assume that a ≡ 1
(mod λ2). Let b, d, l such that ad − bcλ2πl = 1, for a parameter l > 0 to be chosen latter on.
Then, we remark that d ≡ 1 (mod 3) and that

γ :=
(
a bλ2πl

c d

)
∈ SL2(R).

Define
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3.2 Relations between theta functions

- a representative α of the class of c modulo λ2 such that α is coprime to π,

- a representative ν of the class of αcπ−ja modulo πh−j such that ν ≡ 1 (mod 3).

Then

γ T−απjν =
(
a− αbλ2πl+jν bλ2πl

c− αdπjν d

)
≡
(

1 0
0 1

)
(mod 3),

and c − αdπjν ≡ c − cad (mod πh); but c − cad = c(1 − ad) = −bc2λ2πl, and thus
ordπ(c − cad) = 2j + l. We now choose l > h − 2j and conclude that γ T−απjν ∈ Γ∗0

(
πh
)
.

Therefore, we have that P = a
c = γ(∞) = γ T−απjν (Tαπjν(∞)) is equivalent to Tαπjν(∞) =

(απj ν)−1.

Case 2: π|c et λ|a. Multiplying by some unit if necessary, we assume that c ≡ 1 (mod λ2). Let
b, d be such that ad− bc = 1 and d ≡ 1 (mod 3). Then we remark that a− b ≡ 1 (mod 3) and
that

γ :=
(
a b
c d

)
∈ SL2(R).

Define ν to be a representative of the class of c π−j d modulo πh−j , then

γ T−πjν =
(
a− bπjν b
c− dπjν d

)
≡
(

1 b
0 1

)
(mod 3),

and c − dπjν ≡ 0 (mod πh). Let u be the unit of R representative of the class of b modulo 3;
then γ T−πjν T

−u ∈ Γ∗0
(
πh
)

and thus P = γ(∞) = γ T−πjν T
−u (T uTπjν(∞)) is equivalent to

(πjν)−1 + u. Finally we remark that b ≡ a − 1 (mod 3), thus if a is divisible by λ2, we have
u = −1, and otherwise (since a is at least divisible by λ) we have u = −ω or = −ω2.

Case 3: π 6 |c and λ 6 |a. As before, assume a ≡ 1 (mod λ2). Let α be a representative of c modulo
3 such that α is coprime with π. Consider b, d such that ad − bcλ2 = 1 and such that d ≡ αc
(mod πh). Then d ≡ 1 (mod 3), γ :=

(
a bλ2

c d

)
∈ SL2(R) and

γ T−α =
(
a− bαλ2 bλ2

c− dα d

)
∈ Γ1,

and c− αd ≡ 0 (mod πh). Thus γ T−α ∈ Γ∗0
(
πh
)

and P = γ(∞) = γ T−α (Tα(∞)) is equiva-
lent to 1

α .

Case 4: π 6 |c and λ|a. Assume c ≡ −1 (mod λ2). Let α be a representative of −a modulo 3, and
consider b, d such that adπhλ2 − bc = 1. Then b ≡ 1 (mod 3), γ :=

(
a b
c dπhλ2

)
∈ SL2(R) and

γS =
(

b −a
dπhλ2 −c

)
≡
(

1 α
0 1

)
(mod 3).

Finally, P = γST−α (TαS(∞)) is equivalent to α.

Define the set C = {±1,±ω,±ω2,±λ, 3} of representatives modulo 3. From the previous
discussion, we conclude that a cusp P belongs to one of the following types:

type 1, if P ∼ 1
απ`ν

, with 0 6 ` 6 h− 1, ν ∈ P`, and α ∈ C, (case 1 and case 3),

type 2, if P ∼ u+ 1
π`ν

, with 0 6 ` 6 h− 1, ν ∈ P` and u ∈ {−1,−ω,−ω2} (case 2),
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3.2 Relations between theta functions

type 3, if P ∼ α, with α ∈ {±λ, 3} (case 4).

We now have to specify which of these cusps are essential. Recall that σ−1(∞) is an essen-
tial cusp if κ (γσ) = 1, for all γσ ∈ Γσ; we saw in Lemma 3.1 that such γσ can be written as
γσ = σ−1

(
1 λσ
0 1

)
σ with λσ ∈ Λσ ⊆ 3R.

If σ−1(∞) is of type 1, i.e. σ−1 = ( 1 0
c 1 ), with c = απ`ν, the condition for σ−1(∞) to be

essential is (
c2λσ

1− cλσ

)
3

= 1, ∀λσ ∈ λσ.

By periodicity we have(
c2λσ

1− cλσ

)
3

=
(
−c(1− cλσ − 1)

1− cλσ

)
3

=
(

c

1− cλσ

)
3

.

Now, writeα = ±ωlλi ∈ C and π`ν = c′, i.e. c = ±ωlλic′. Then
(

c
1−cλσ

)
3

=
(

ω
1−cλσ

)l
3

(
λ

1−cλσ

)i
3
,

by reciprocity. We also write c = c1 + ωc2, as well as λσ = 3r, with r = r1 + ωr2. Then
1− cλσ = 1+3(c2r2− c1r1 +ω(c2r2− c1r2− c2r1)) and by the complementary reciprocity law
(see Theorem 2.1 of Chapter 2), we obtain(

c2λσ
1− cλσ

)
3

= ω−l(2c2r2−c1r1−c1r2−c2r1) ωi(c2r2−c1r1). (3.2.2)

This expression has to be 1 for any choice of r. Taking r1 ≡ 0 (mod 3) and r2 ≡ 1 (mod 3), we
obtain ω−2lc2+lc1+ic2 , and taking r1 ≡ 1 (mod 3) and r2 ≡ 0 (mod 3), we obtain ωlc2+lc1−ic1 ,
and taking the quotient, we obtain the condition wi(c1+c2) = 1.

If i 6= 0 (i.e. α ∈ {±λ, 3}), then we need c1 +c2 ≡ 0 (mod 3), condition under which (3.2.2)
simplifies in ωic2(r1+r2). Since r1 and r2 are free parameters, we conclude c1 ≡ c2 ≡ 0 (mod 3),
i.e. α = 3. It is also clear that for c ≡ 0 (mod 3), the right side of (3.2.2) is equal to 1.

If i = 0, then (3.2.2) is equal to ωl(−2c2r2+c1r1+c1r2+c2r1) = ωl(c1+c2)(r1+r2). If l 6≡ 0
(mod 3) (i.e. α = ±ω,±ω2), then c1 + c2 ≡ 0 (mod 3), and as above we conclude that c ≡ 0
(mod 3), which contradicts i = 0. Thus l = 0 (i.e. α = ±1), which is a sufficient condition. We
conclude that a cusp 1

απ`ν
of the first type is essential if and only if α ∈ {±1, 3}.

If σ−1(∞) is of type 2, i.e. σ−1 = ( 1 u
0 1 )

(
1 0
πjν 1

)
with u ∈ {−1,−ω,−ω2}, the condition for

σ−1(∞) to be essential is
(

π2jν2λσ

1−πjνλσ(1+πjνu)

)
3

= 1 for all λσ ∈ Λσ. By choosing λσ = λ2r with

r ≡ 1 (mod 3), we obtain the condition(
π2jν2r

1− πjνλσ(1 + πjνu)

)
3

(
λ2

1− πjνλσ(1 + πjνu)

)
3

= 1,

which, by reciprocity law, amounts to
(

λ
1+3πjνr(1+πjνu)

)
3

= 1, and by the complementary reci-

procity law, we need 1+u = x1 +ωx2, with x1 ≡ 0 (mod 3); among the set −1,−ω,−ω2, only
u = −1 satisfies this condition.

If σ−1(∞) is of type 3, i.e. σ−1 =
(
α −1
1 0

)
with α ∈ C, then σ−1(∞) is essential if and only

if
(

λσ
1−αλσ

)
3

= 1 for any λσ ∈ Λσ. We have
(

λσ
1−αλσ

)
3

=
(

α
1−αλσ

)2

3

(
λσα

1−αλσ

)
3

=
(

α
1−αλσ

)2

3
.

For α ∈ {±λ, 3}, one sees that this expression is equal to one only in the case where α = 3.
To finish the proof of Lemma 3.5, we merely have to notice that the only essential cusp of the

third type, namely P = 3, is equivalent to the cusp P = 0, which correspond to the cusp of second
type (π`ν)−1 − 1 for ` = 0.
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After having determined the set of essential cusps of the group Γ∗0
(
πh
)

= Γ1 ∩ Γ0

(
πh
)
, and

before coming back to our initial problem, i.e. to work out the scalar product of two theta functions,
let us define some new notations. To any parameter ξ = (`, ν) with 0 6 ` 6 h and ν ∈ P` (as
defined in (3.2.1)), correspond four essential cusps as defined in Lemma 3.6, and associated to
them four theta functions, namely

θαξ := θσ, where σ =
(

1 0
απ`ν 1

)
, for α ∈ {±1, 3} (3.2.3)

and

θ′ξ := θσ, where σ =
(

1 −1
π`ν 1

) (
1 0

απ`ν 1

)
. (3.2.4)

Therefore, a generating system of the space Θ
(
πh
)

is given by

V
(
πh
)

:=
{
θξ, θ−ξ, θ3ξ, θ

′
ξ : ξ = (`, ν) with 0 6 ` 6 h and ν ∈ P`

}
.

The method for extracting a basis from this set is to come to simple relations between theta func-
tions, using the formula (3.1.6) of Section 3.1.2. This will be achieved in various steps; at the
present, we give some useful results that we shall apply in the next section. We have seen that the
lattice Λσ associated to the cusp σ−1(∞) only depends on ordπ(c(σ)). In particular, it is the same
for all four theta functions attached to some couple (`, ν) in (3.2.3) and (3.2.4). More precisely,
we showed in Lemma 3.1 of Section 3.1 that Λ` = 3πMax(0,h−2`)R.

Lemma 3.6. Let α1, α2 ∈ {±1, 3}, `1, `2 ∈ Z such that 0 6 `1, `2 6 h, and ν1 ∈ P`1 , ν2 ∈ P`2 .
Assume that `1 6 `2. Then

(i) 〈θα1π`1ν1
, θα2π`2ν2

〉 = Ress=4/3

( ∑′

c≡α2−α1 (3)

N (c)−s
∑(∗)

d (Λ`2
c)

d≡1 (3)

( c
d

)
3

)
,

(ii) 〈θπ`1ν1
, θ′
π`1ν1

〉 = Ress=4/3

( ∑′

c≡1 (3)

N (c)−s
∑(∗)

d (Λ`1
c)

d≡−1 (3)

( c
d

)
3

)
,

where (∗) means
c 6≡ α2d,

if `1 = `2 = 0, and otherwise, i.e. (`1`2) 6= (0, 0), (∗) means the conditions

ordπ(c) > `1 and dα2ν2π
`2−`1 − dα1ν1 ≡ cπ−`1 (mod πmin(`1,h−`1)).

Moreover, the first condition is an equality, i.e. ordπ(c) = `1, in the case where `1 < `2.

Proof. Let σ−1(∞) and τ−1(∞) be two essential cusps. We start by proving that

κ
(
σ−1

(
a b
c d

)
τ
)

=
( c
d

)
3
.
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The computation of the Kubota symbol is easy, since one can assume (see Lemma 3.5) that σ, τ ∈
Γ2. Moreover σ−1

(
a b
c d

)
τ ∈ Γ ⊆ Γ1 ⊂ Γ2, and since κ is a group homomorphism on Γ2, we

have

κ

(
σ−1

(
a b
c d

)
τ

)
= κ

(
σ−1

)
κ

((
a b
c d

))
κ (τ) .

To show that κ(σ−1) = 1, we have to prove it for the four possible choice of σ, whenever a given
couple (`, ν) is given. Write ξ = π`ν.

If σ−1 =
(

1 0
3ξ 1

)
, then σ−1 ∈ Γ1 and by definition of κ on Γ1, κ

(
σ−1

)
=
(

3ξ
1

)
3

= 1.

If σ−1 =
(

1 0
±ξ 1

)
, then σ−1 =

(
1 0
±1 1

) (
1 0

±ξ∓1 1

)
. The first matrix belongs to SL2(Z) and the

second to Γ1, thus, by definition of κ on Γ2, κ
(
σ−1

)
= κ

((
1 0

±ξ∓1 1

))
= 1, ξ being or not equal

to 1.
If finally, σ−1 =

(
1 −1
0 1

) (
1 0
ξ 1

)
=
(

0 −1
1 1

) (
1 0
ξ−1 1

)
, by definition of κ on Γ2, one obtains

κ
(
σ−1

)
= 1. The same is true for κ(τ) and it remains to show that κ

((
a b
c d

))
= 1 under the

conditions of the cases (i) and (ii) of the lemma. We have γ ≡ σ τ−1 (mod 3), with either
σ−1(∞) = (α1π

`1ν1)−1 and τ−1(∞) = (α2π
`2ν2)−1, in the case (i) of the lemma, or σ−1(∞) =

(π`ν)−1 and τ−1(∞) = (π`ν)−1 − 1, in the case (ii) of the lemma. In case (i), γ ≡ ( 1 0
α 1 )

(mod 3), with α ∈ {0,±1} and in case (ii), γ ≡
(

0 −1
1 −1

)
(mod 3). We recall that if γ =

(
a b
c d

)
∈

Γ2, then
(
c
a

)
3

=
(
c
d

)
3
.

If
(
a b
c d

)
≡ ( 1 0

0 1 ) (mod 3), κ
((

a b
c d

))
=
(
c
a

)
3

=
(
c
d

)
3
.

If
(
a b
c d

)
≡
(

1 0
±1 1

)
(mod 3),

κ

((
a b
c d

))
= κ

((
1 0
±1 1

)(
1 0
∓1 1

)(
a b
c d

))

= κ

((
a b

c∓ a d∓ b

))
=
(
c∓ a

a

)
3

=
( c
d

)
3
.

If
(
a b
c d

)
≡
(

0 −1
1 −1

)
(mod 3),

κ

((
a b
c d

))
= κ

((
0 −1
1 −1

)(
−1 1
−1 0

)(
a b
c d

))

= κ

((
c− a d− b
−a −b

))
=
(
−a
c− a

)
3

=
(
d

c

)
3

=
( c
d

)
3
.

This proves the result about the Kubota symbol. We now have to interpret the summation condition
in (3.1.6).

Let c 6= 0, and (d, c) = 1. Write βi = αiνi, for i = 1, 2 and look at the formula (3.1.6). In (i)
the condition on (c, d) is(

1 0
β1π

`1 1

)(
a b
c d

)(
1 0

−β2π
`2 1

)
∈ Γ∗0

(
πh
)
,

i.e. (
a− bβ2π

`2 b
c+ aβ1π

`1 − dβ2π
`2 − bβ1β2π

`1+`2 d+ bβ1π
`1

)
∈ Γ∗0

(
πh
)
,

i.e. 
(
a b
c d

)
≡
(

1 0
α2 − α1 1

)
(mod 3)

c+ aβ1π
`1 − dβ2π

`2 − bβ1β2π
`1+`2 ≡ 0 (mod πh)

.
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Similarly, in (ii) the condition is(
1 0

β1π
`1 1

)(
a b
c d

)(
1 0

−β1π
`1 1

)(
1 1
0 1

)
∈ Γ∗0

(
πh
)
,

i.e.(
a− bβ1π

`1 b+ a− bβ1π
`1

c+ aβ1π
`1 − dβ1π

`1 − bβ2
1π

2`1 d+ bβ1π
`1 + c+ aβ1π

`1 − dβ1π
`1 − bβ2

1π
2`1

)
∈ Γ∗0

(
πh
)
,

i.e. 
(
a b
c d

)
≡
(

0 −1
1 −1

)
(mod 3)

c+ aβ1π
`1 − dβ1π

`1 − bβ2
1π

2`1 ≡ 0 (mod πh)

.

Thus (c, d) has to satisfy c ≡ α2 − α1 (mod 3) and d ≡ 1 (mod 3), in the case (i), or c ≡ 1
(mod 3) and d ≡ −1 (mod 3), in the case (ii). Since gcd(π, 3) = 1, the chinese remainder
theorem asserts that we only have to study the congruence condition modulo πh. Let a0, b0 such
that a0d− b0c = 1. Then (a, b) is of the form (a0 + kc, b0 + kd), and we ask if there exists k such
that

c+ a0β1π
`1 − dβ2π

`2 − b0β1β2π
`1+`2 + kβ1π

`1(c− dβ2π
`2) ≡ 0 (mod πh). (3.2.5)

This is the equation in case (ii), but for β1 = β2 and `1 = `2, this corresponds to case (i).

If `1 = `2 = 0, this equation has a solution if and only if c− dβ2 6≡ 0 (mod π), i.e. c 6≡ α2d
(mod π), because P`1 = P`2 = {1}).

If (`1, `2) 6= (0, 0), we see from (3.2.5) that c ≡ 0 (mod π`1), and (3.2.5) becomes

cπ−`1 + a0β1 − dβ2π
`2−`1 − b0β1β2π

`2 + kβ1π
`1(cπ−`1 − dβ2π

`2−`1) ≡ 0 (mod πh−`1).
(3.2.6)

We remark that if `1 < `2, then cπ−`1 (1 + kβ1π
`1) + a0β1 ≡ 0 (mod π), what shows that

ordπ(c) = `1, since otherwise π|a0, what contradicts a0d− b0c = 1.
Now (3.2.6) implies cπ−`1 + a0β1 − dβ2π

`2−`1 ≡ 0 (mod πmin(`1,h−`1)), and we claim that
this is sufficient to prove the existence of k. Actually, if `1 < `2, then π divides dβ2π

`2−`1 but not
cπ−`1 , thus cπ−`1 − dβ2π

`2−`1 is invertible, and if `1 = `2 > 0, then π|c, thus a0d ≡ 1 (mod π)
and a0β1 6≡ 0 (mod π), and in view of cπ−`1 + a0β1 − dβ2π

`2−`1 ≡ 0 (mod πmin(`1,h−`1)) we
also get cπ−`1 − dβ2π

`2−`1 6≡ 0 (mod π).

We are now interested in the Gauß sum relative to the integer 3πεc with some extra congruence
conditions.

Lemma 3.7. Let c ∈ R and define c′ = cN (λ)−ordλ(c)π−ordπ(c). Let k, ε ∈ Z with k > 1 and
ε > 0. Let α ∈ {0,±1}, and let v ∈ R be some integer.

If c ≡ 0 (mod 3) and α 6= 0, then
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(i)
∑

d (3πεc)
d≡α (3)

d≡v (πk)

( c
d

)
3

=

ϕ(c′)
(

v
πordπ(c)

)
3
N (π)max(ε+ordπ(c)−k,0) N (λ)ordλ(c) if cπ−ordπ(c) is a cube,

0 otherwise.

(ii)
∑

d (3πεc)
d≡α (3)

( c
d

)
3

=

ϕ(c′) N (π)ε ϕ
(
πordπ(c)

)
N (λ)ordλ(c) if c is a cube,

0 otherwise.

If c ≡ ±1 (mod 3), then

(iii)
∑

d (3πεc)
d≡α (3)

d≡v (πk)

(
d

c

)
3

=

ϕ(c′)
(

v
πordπ(c)

)
3
N (π)max(ε+ordπ(c)−k,0) if cπ−ordπ(c) = ±c′ is a cube,

0 otherwise.

(iv)
∑

d (3πεc)
d≡α (3)

(
d

c

)
3

=

ϕ(c′) N (π)ε ϕ
(
πordπ(c)

)
if c is a cube,

0 otherwise.

Proof. We write c = uλiπjc′ with u ∈ U , gcd(πλ, c′) = 1 and c′ ≡ 1 (mod 3). We start by
proving (i) and (ii). We introduce a parameter k′ > 0 which will be k if k′ > 0 and study the sum∑

d (λ2+iπε+jc′)
d≡α (3)

d≡v (πk′ )

( c
d

)
3
, for α = ±1.

Let m,n such that mλ2+i + nπε+jc′ = 1. Then d can be written as d1mλ
2+i + αd2nπ

ε+jc′,
where d1 varies modulo πε+jc′ and d2 varies modulo λi+2. Remark that n ≡ 1 (mod 3), thus the
condition d ≡ α (mod 3) is replaced by d2 ≡ 1 (mod 3). Likewise, d ≡ v (mod πk

′
) becomes

d1 ≡ v (mod πmin(ε+j,k′)), i.e.∑
d (λ2+iπε+jc′)

d≡α (3)

d≡v (πk′ )

( c
d

)
3

=
∑

d1 (πε+jc′)
d1≡v (πmin(ε+j,k′))

∑
d2 (λi+2)
d2≡1 (3)

(
πjc′

d1mλ2+i + αd2nπε+jc′

)
3

(
uλi

d1mλ2+i + αd2nπε+jc′

)
3

.

For the first factor, we use the reciprocity law, and for the second, the hypothesis i > 2 allows us
to use the consequence of the complementary reciprocity law. We obtain that

∑
d (λ2+iπε+jc′)

d≡α (3)

d≡v (πk′ )

( c
d

)
3

=
∑

d1 (πε+jc′)
d1≡v (πmin(ε+j,k′))

(
d1mλ

2+i

πjc′

)
3

∑
d2 (λi+2)
d2≡1 (3)

(
uλi

αd2nπε+jc′

)
3

=
∑

d (πε+jc′)
d≡v (πmin(ε+j,k′))

(
d

πjc′

)
3

×
∑

d (λi+2)
d≡1 (3)

(
uλi

d

)
3

.
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It is easy to see that the second sum is 3i, if i ≡ 0 (mod 3) and u = ±1, and 0 otherwise. For the
first sum, we use again the chinese remainder theorem. Let m,n such that mπε+j + nc′ = 1. We
replace d modulo πε+jc′ by d = d1mπ

ε+j + d2nc
′, where d1 varies modulo c′, and d2 modulo

πε+j . Then
(

d
πjc′

)
3

=
(
d2
πj

)
3

(
d1
c′

)
3

and

∑
d (πε+jc′)

d≡v (πmin(ε+j,k′))

(
d

πjc′

)
3

=
∑
d1 (c′)

(
d1

c′

)
3

∑
d2 (πε+j)

d2≡v (πmin(ε+j,k′))

(
d2

πj

)
3

.

The first sum is equal to ϕ(c′) if c′ is a cube and to 0 otherwise. The second sum depends on k′. If
k′ = 0, i.e. in the case (ii), it is ϕ(πε+j) if j ≡ 0 (mod 3) and 0 otherwise. If k′ > 0, i.e. in the
case (i) with k′ = k, it is

(
v
πj

)
N (π)max(ε+j−k,0).

Proof of (iii) and (iv). With the same choice of k as above, we have, for α ∈ {0,±1},∑
d (λ2πε+jc′)

d≡α (3)

d≡v (πk′ )

(
d

c

)
3

=
∑

d (πε+jc′)
α+3d≡v (πmin(ε+j,k′))

(
α+ 3d
πjc′

)
3

.

As above, letm,n, such thatmπε+j+nc′ = 1 and replace d by d1mπ
ε+j+d2nc

′, with d1 modulo
c′ and d2 modulo πε+j . Then

∑
d (λ2πε+jc′)

d≡α (3)

d≡v (πk′ )

(
d

c

)
3

=
∑
d1 (c′)

∑
d2 (πε+j)

α+3d2≡v (πmin(ε+j,k′))

(
α+ 3d1mπ

ε+j

c′

)
3

(
α+ 3d2nc

′

πj

)
3

=
∑
d1 (c′)

(
d1

c′

)
3

×
∑

d2 (πε+j)

d2≡v (πmin(ε+j,k′))

(
d2

πj

)
3

.

We conclude the proof of (iii) and (iv) as we concluded the proof of (i) and (ii).

Let f ∈ R be an integer and let χ be a primitive character modulo f . The Dirichlet series
associated to χ is

L(χ, s) =
∏
π 6 |f

(
1− χ(π)N (π)−s

)−1
.

This series has no pole in <(s) > 0 if χ is not trivial. If χ = 1, then (χ, s) = ζk(s) has a pole at
s = 1 with residue α.

Lemma 3.8. Let χ be a character with conductor f , let g ∈ R and let n ∈ Z, n ≥ 1. Then

∑
c≡1 (3)

gcd(c,fg)=1

χ(cn) N (cn)−s ϕ(cn) =
L(χn, ns− n)

L(χn, ns− n+ 1)

∏
π|g

{
1− χn(π)N (π)n−ns)

1− χn(π)N (π)n−1−ns)

}
.

In particular,

Ress=1+1/n

( ∑
c≡1 (3)

gcd(c,fg)=1

χ(cn) N (cn)−s ϕ(cn)

)
=

{
α

nζk(2)

∏
π|fg

N (π)
N (π)+1 if χn = 1,

0 otherwise.
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Proof. Since we take the sum over the c ≡ 1 (mod 3), we can write them as c =
∑

m

∏
π π

m,
π 6= λ, π being primary, i.e. π ≡ 1 (mod 3). Then∑

c≡1 (3)
gcd(c,fg)=1

χ(cn)N (cn)−sϕ(cn) =
∏
π 6 |fg

∑
m≥0

χ(πnm)N (π)−nmsϕ(πnm)

=
∏
π 6 |fg

1 +
(N (π)− 1)
N (π)

∑
m≥1

χ(πnm)N (π)nm(1−s)

 =
∏
π 6 |fg

{
1− χn(π)N (π)n−1−ns

1− χn(π)N (π)n(1−s)

}

= L(χn, ns− n) L(χn, ns− n+ 1)−1
∏
π|g

{
1− χn(π)N (π)n−ns

1− χn(π)N (π)n−1−ns

}
.

If χn = 1, then

Ress=1+1/n

(
L(χn, ns− n) L(χn, ns− n+ 1)−1

∏
π|g

{
1− χn(π)N (π)n−ns

1− χn(π)N (π)n−1−ns

})

= Ress=1+1/n

(∏
π 6 | f

1−N (π)n−1−ns

1−N (π)n−ns
∏
π|g

{
1−N (π)n−ns

1−N (π)n−1−ns

})

= Ress=1+1/n

(
ζk(ns− n)

ζk(ns− n+ 1)

∏
π|fg

{
1−N (π)n−ns

1−N (π)n−1−ns

})
=

α

n ζk(2)

∏
π|fg

N (π)
N (π) + 1

.

Lemma 3.9. Let β ∈ {0,±1}. Then∑
u=±1

∑
i≥0

uλ3i≡β (3)

N (λ)−i = 1.

Proof. If β = 0, the left hand side is equal to

∑
u=±1

∑
i≥1

N (λ)−i = 2

∑
i≥0

1
3i
− 1

 = 1 ,

and if β = ±1, it is equal to ∑
u=β

∑
i=0

N (λ)−i = 1 ,

and the lemma is proved.

3.2.2 Scalar product of theta functions
As in Section 3.2.1, we still work with the group Γ∗0

(
πh
)

for a fixed integer h > 1. Recall that
to any given parameter ξ = (`, ν) with 0 6 ` 6 h and ν ∈ P` (defined in (3.2.1)) correspond the
four theta functions

θξ , θ−ξ , θ3ξ and θ′ξ ,
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which were defined in (3.2.3) and (3.2.4). The lattice corresponding to any of these four functions
only depends on `; we write it Λ`, and recall that Λ` = 3πMax(0,h−2`)R. In relation to this, we
define

M(`) = Max(0, h− 2`) and m(`) = min(`, h− `). (3.2.7)

We are now able to work out the scalar product of two theta functions, from the general formula
(3.1.6).
We shall deal with the following exponential sums:

s(v) =
∑×

x (π)

(
x2v − 1

π

)
3

and t(v) =
∑×

x (π)

(
xv − x

π

)
3

. (3.2.8)

Then, defining the characters χ2 =
( ·
π

)
2

and χ3 =
( ·
π

)
3
, one has

s(v) =
( v
π

)
2
, J(χ3, χ2) − 1,

t(v) =
( v
π

)2

3
J(χ3, χ3) +

( v
π

)2

3

( v
π

)
2
J(χ3, χ3χ2),

where J(χ, ψ) is the Jacobi sum

J(χ, ψ) =
∑
x (π)

χ(x)ψ(x− 1). (3.2.9)

.

Proposition 3.3. Let ξ = (`, ν) be given. Then the functions θξ and θ′ξ are equal. Moreover, if
m = m(`) and M = M(`) are defined by (3.2.7), then

‖θξ‖2 =
α

3ζk(2)
N (π)h+1

N (π) + 1
if ` = 0,

‖θξ‖2 =
2α

3ζk(2)
N (π)M−m−`/3+1

N (π)2 − 1

(
N (π)−N (π)(1−m)/3

N (π)1/3 − 1

+

{
<
((

ν
π

)
3
t(1)

)
if ` ≡ 0 (mod 3)

1
2 (N (π)− 1) + <

((
ν
π

)
3
s(1)

)
if ` 6≡ 0 (mod 3)

) if 1 6 ` 6 h− 1,

‖θξ‖2 =
α

3ζk(2)
N (π)1−dh/3e

N (π) + 1
if ` = h.

Proof. Denote simply by Λ the lattice Λ` associated to any of the four theta functions correspond-
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ing to ξ. The formula (3.1.6) of Section 3.1.2 gives then

〈θξ, θξ〉 = Res
∑′

c

N (c)−s
∑
d (Λc)„

1 0
ξ 1

«„
a b
c d

«„
1 0
−ξ 1

«
∈Γ

κ

((
1 0
ξ 1

)(
a b
c d

)(
1 0
−ξ 1

))
, (3.2.10)

〈θξ, θ′ξ〉 = Res
∑′

c

N (c)−s
∑
d (Λc)„

1 0
ξ 1

«„
a b
c d

«„
1 0
−ξ 1

«
( 1 1
0 1 )∈Γ

κ

((
1 0
ξ 1

)(
a b
c d

)(
1 0
−ξ 1

)(
1 1
0 1

))
,

(3.2.11)

〈θ′ξ, θ′ξ〉 = Res
∑′

c

N (c)−s
∑
d (Λc)„

1 −1
0 1

«„
1 0
ξ 1

«„
a b
c d

«„
1 0
−ξ 1

«
( 1 1
0 1 )∈Γ

κ

((
1 −1
0 1

)(
1 0
ξ 1

)(
a b
c d

)(
1 0
−ξ 1

)(
1 1
0 1

))
.

(3.2.12)

Recall that T = ( 1 1
0 1 ). Since T ΓT−1 = Γ, we already have ‖θξ‖ = ‖θ′ξ‖. It remains to show

that θξ and θ′ξ are proportional, what we shall prove by the Cauchy-Schwarz criterion, by proving
that 〈θξ, θξ〉 = 〈θξ, θ′ξ〉, i.e. by proving that (3.2.10) = (3.2.11). By Lemma 3.7, this equality is
equivalent to the equality

Res
∑′

c
c≡0 (3)

N ((c)−s
∑∗

d (Λc)

( c
d

)
3

= Res
∑′

c
c≡1 (mod 3)

N ((c)−s
∑∗

d (Λc)

( c
d

)
3
, (3.2.13)

where (∗), as in Lemma 3.6, means that

- c 6≡ d (mod π), if ` = 0,

- c ≡ 0 (mod π`) and cπ−` − dν ≡ −νa0 (mod πmin(`,h−`)), if 1 6 ` 6 h.

We start with the case ` = 0. We have to prove that

Ress=4/3

( ∑′

c≡0 (3)

N (c)−s
∑

d (3πhc)
d≡1 (3)
d 6≡c (π)

( c
d

)
3

)
= Ress=4/3

( ∑′

c≡1 (3)

N (c)−s
∑

d (3πhc)
d≡−1 (3)
d 6≡c (π)

( c
d

)
3

)
.

For a given c ≡ 1 (mod 3) we have∑
d (3πhc)
d≡−1 (3)
d 6≡c (π)

( c
d

)
3

=
∑

d (3πhc)
d≡−1 (3)

( c
d

)
3
−

∑
d (3πhc)
d≡−1 (3)
d≡c (π)

( c
d

)
3
. (3.2.14)

Write c = πjc′ with gcd(c′, π) = 1. Then, according to Lemma 3.7 about Gauß sums, this
expression is not 0 only if c′ is a cube, in which case we obtain

ϕ(c′)
(
δj≡0 (3)N (π)h ϕ(πj)−

( c
πj

)
3
N (π)h+j−1

)
.

Remark that j > 0 means π|c, and then the second term vanishes. Thus if c′ is a cube,
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∑
d (3πhc)
d≡−1 (3)
d 6≡c (π)

( c
d

)
3

= ϕ(c′)

{
δj≡0 (3)N (π)h ϕ(πj) if j > 0
N (π)h −N (π)h−1 if j = 0

= ϕ(c′)

{
N (π)h+j−1(N (π)− 1) if j ≡ 0 (mod 3),
0 otherwise.

The same argument holds for a c ≡ 0 (mod 3). We deduce that the equality (3.2.13) is equivalent
to

Ress=4/3

( ∑
u∈{±1}

∑
i>1

∑
j>0

∑′

c≡1 (3)

N (uλ3iπ3jc3)−s ϕ(c3)N (λ)3iN (π)h+3j−1 (N (π)− 1)
)

= Ress=4/3

( ∑
j>0

∑′

c≡1 (3)

N (π3jc3)−sϕ(c3)N (π)h+3j−1(N (π)− 1)
)
.

That this equality holds comes from Lemma 3.9. In particular, we proceed with the evaluation of
the right side of the last equation, and we obtain that

〈θξ, θξ〉 = Ress=4/3

(
N (π)h−1(N (π)− 1)

∑
j≥1

∑
c≡1 (3)
(c,π)=1

N (c3π3j)−sϕ(c3)N (π)3j
)

= N (π)h−1 Ress=4/3

( ∑
c≡1 (3)
(c,π)=1

N (c3)−sϕ(c3)
) (N (π)− 1)

∑
j≥0

N (π)−j

 .

Lemma 3.8 finally gives

〈θξ, θξ〉 =
α

3ζk(2)
N (π)h+1

N (π) + 1
.

This concludes the proof of Proposition 3.3 in the case ` = 0.

For the case ` 6= 0, we have seen in (3.2.13) that the following equality has to be proven:

Res
∑′

c
c≡0 (3)

N ((c)−s
∑∗

d (Λc)

( c
d

)
3

= Res
∑′

c
c≡1 (mod 3)

N ((c)−s
∑∗

d (Λc)

( c
d

)
3
,

where (∗) means that c ≡ 0 (mod π`) and cπ−` − dν ≡ −νa0 (mod πmin(`,h−`)). We replace
the last condition by introducing the sum over the x in (R/πmR)× satisfying the same condition,
and then summing over the d’s congruent to x modulo πm. Thus, our claim is that the following
equality holds:

Ress=4/3

( ∑×

x (πm)

∑′

c≡0 (3)

c≡0 (π`)
c

π`
≡xν−xν (πm)

N (c)−s
∑

d (3πM c)
d≡1 (3)

d≡x (πm)

( c
d

)
3

)
= Ress=4/3

( ∑×

x (πm)

∑′

c≡1 (3

c≡0 (π`)
c

π`
≡xν−xν (πm)

N (c)−s
∑

d (3πM c)
d≡−1 (3)
d≡x (πm)

( c
d

)
3

)
.

(3.2.15)
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Lemma 3.7 about Gauß sums requires to know if m = min(`, h − `) = 0 or not. Since we
assume ` 6= 0, the only possibility is ` = h, therefore we shall treat both cases separately. Notice
that ordπ(c) + max(0, h − 2`) > ` + max(`, h − `) − ` > min(`, h − `). Let us first assume
1 6 ` 6 h− 1. Then by Lemma 3.8, (3.2.15) is equivalent to

Ress=4/3

( ∑×

x (πm)

∑
u∈{±1}

∑
i>1

∑
j>`

∑
c≡1 (3)

uλ3iπj−`c3≡xν−xν (πm)

N (uλ3iπjc3)−sϕ(c3)
( x
πj

)
3
N (π)M+j−mN (λ)3i

)

= Ress=4/3

( ∑×

x (πm)

∑
j>`

∑
c≡1 (3)

πj−`c3≡xν−xν (πm)

N (πjc3)−sϕ(c3)
( x
πj

)
3
N (π)M+j−m

)
.

This equality holds, by Lemma 3.9, and we now compute the norm of θξ. Remark that for j big
enough, i.e. j > ` + m, then the condition πj−`c3 ≡ xν − xν (mod πm) becomes x2 ≡ 1
(mod πm), but for the remaining j’s, i.e. ` 6 j 6 `+m−1, it becomes x2 ≡ 1 (mod πj−`) and
c3 ≡ ν(x− x)π−(j−`) (mod πm−(j−`)). This leads to

〈θξ, θξ〉 = Ress=4/3

( `+m−1∑
j=`

∑×

x (πm)

x2≡1 (πj−`)

∑
c≡1 (3), gcd(c,π)=1

c3≡xν−xν (πm−(j−`))

N (πjc3)−sϕ(c3)
( x
πj

)
3
N (π)M+j−m

+
∑

j>`+m

∑×

x (πm)

x2≡1 (πm)

∑
c≡1 (3)
(c,π)=1)

N (πjc3)−sϕ(c3)
( x
πj

)
3
N (π)M+j−m

)
.

Notice that the fact that we assume ` 6= h ensures m = min(`, h − `) > 1, so that the first sum
is not empty. To evaluate the inner sum of the first term, we remove the congruence condition
introducing a character sum. More precisely, we have

∑×

x (πm)

x2≡1 (πj−`)

∑
c≡1 (3), gcd(c,π)=1

c3≡xν−xν (πm−(j−`))

N (πjc3)−s ϕ(c3)
( x
πj

)
3

= ϕ
(
πm−(j−`)

)−1 ∑×

x (πm)

x2≡1 (πj−`)

∑
χ (πm−(j−`))

∑
c≡1 (3)

gcd(c,π)=1

χ
(
(x− x)νc3

)
N (πjc3)−s ϕ(c3)

( x
πj

)
3
.

In applying Lemma 3.9, we see that, taking the residue at s = 4
3 , only cubic characters will give a

non trivial contribution. We thus obtain

〈θξ, θξ〉 =
α

3ζk(2)
N (π)

N (π) + 1
N (π)M−m

( ∑
j>`+m

∑×

x (πm)

x2≡1 (πm)

N (π)−j/3
( x
πj

)
3

+
`+m−1∑
j=`

ϕ
(
πm−(j−l)

)−1 ∑×

x (πm)

x2≡1 (πj−`)

∑
χ (πm−(j−`))

χ3=1

χ (ν(x− x))N (π)−j/3
( x
πj

)
3

)
.
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The only cubic characters modulo πm−(j−`) are the powers of the cubic Legendre symbol modulo
π. But for ` + 1 6 j 6 ` +m − 1, the condition x2 ≡ 1 (πj−`) implies x − x ≡ 0 (π), thus all
terms χ (ν(x− x)) with χ 6= 1 vanish. We isolate the term corresponding to j = ` and obtain

〈θξ, θξ〉 =
α

3ζk(2)
N (π)

N (π) + 1
N (π)M−m

( ∑
j>`+m

∑×

x (πm)

x2≡1 (πm)

N (π)−j/3
( x
πj

)
3

+ ϕ (πm)−1N (π)−`/3
∑×

x (πm)

{
1 +

(
ν(x− x

π

)
3

+
(
ν(x− x

π

)
3

}( x
π`

)
3

+
`−1+m∑
j=`+1

ϕ
(
πm−(j−l)

)−1
N (π)−j/3

∑×

x (πm)

x2≡1 (πj−`)

( x
πj

)
3

)
.

In the first term, only x = 1 and x = −1 contribute; in the second term, the dependence is in x
(mod π). Taking into account all these considerations, we now conclude that

〈θξ, θξ〉 =
α

3ζk(2)
N (π)

N (π) + 1
N (π)M−m

(
2
∑

j>`+m

N (π)−j/3

+
N (π)1−m

N (π)− 1
N (π)−`/3N (π)m−1

∑×

x (π)

{(
x`

π

)
3

+
(
ν(x2`+1 − x2`−1

π

)
3

+
(
ν(x`+1 − x`−1

π

)
3

}

+
`−1+m∑
j=`+1

N (π)−m−`+j+1

N (π)− 1
N (π)−j/3 2N (π)m−(j−`)

)
.

For m > 2, the third sum is not empty, and takes the value

2
N (π)1−`/3

(
1−N (π)(1−m)/3

)
(N (π)− 1) (N (π)1/3 − 1)

.

Since this expression is 0 form = 1, we do not need to specify whetherm > 2 or not. This proves
Proposition 3.3 if 1 6 ` 6 h − 1, and it remains to treat the case ` = h, in which the equality to
be shown is

Ress=4/3

( ∑′

c≡0 (3)

c≡0 (πh)

N (c)−s
∑
d (3c)

d≡1 (3)

( c
d

)
3

)
= Ress=4/3

( ∑′

c≡1 (3

c≡0 (πh)

N (c)−s
∑
d (3c)

d≡−1 (3)

( c
d

)
3

)
.

From Lemma 3.8, this equality is equivalent to

Ress=4/3

( ∑
u=±1

∑
i≥1

∑
3j>h

∑
c≡1 (3)
(c,π)=1

N (uλ3iπ3jc3)−sϕ(c3)ϕ(π3j)N (λ)3i
)

= Ress=4/3

( ∑
3j>h

∑
c≡1 (3)
(c,π)=1

N (π3jc3)−sϕ(c3)ϕ(π3j)
)
.
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This is clear from Lemma 3.9, and thus we obtain

〈θξ, θξ〉 =
α

3 ζk(2)
N (π)

N (π) + 1

∑
3j>h

N (π)−4jϕ(π3j)

=
α

3 ζk(2)
N (π)− 1
N (π) + 1

∑
3j>h

N (π)−j =
α

3 ζk(2)
N (π)1−dh/3e

N (π) + 1
.

Proposition 3.4. Let ξ = (`, ν). Then if ` = 0 or if ` = h, the four theta functions associated to ξ
are equal.

Proof. We already saw that θξ = θ′ξ in Proposition 3.3. It remains to show that for ` = 0 or
` = h, θα1ξ = θα2ξ, for any α1, α2 ∈ {±1, 3}. For that purpose, we shall show that the expres-
sion 〈θα1ξ, θα2ξ〉 is independent of α1 and α2. Let us start with ` = 0. Then, using the same
decomposition of the Gauß sum as in (3.2.14) we obtain by Lemma 3.7 that

〈θαξ, θβξ〉 =Ress=4/3

( ∑′

c≡α2−α1 (3)

N (c)−s
∑

d (3πhc)
d≡1 (3)

d 6≡α2c (π)

( c
d

)
3

)

=Ress=4/3

( ∑
u∈{±1}

∑
i>0

uλ3i≡α2−α1 (3)

∑
c≡1 (3)

N (uλ3ic3)−s ϕ(c3)N (λ)3i

{∑
j>0

ϕ
(
π3j+h

)
N (π)−3js −

∑
j>0

(
uλic3πj

πj

)
3

N (π)−jsN (π)h+j−1

})
.

Lemma 3.9 shows the independence in α1 and α2. Similarly, in the case ` = h, we have

〈θα1πh , θα2πh〉 = Ress=4/3

( ∑′

c≡α2−α1 (3)

c≡0 (πh)

N (c)−s
∑
d (3c)

d≡1 (3)

( c
d

)
3

)

= Ress=4/3

( ∑
u∈{±1}

∑
i>0

uλ3i≡α2−α1 (3)

∑
3j>h

∑
c≡1 (3)

N (uλ3ic3π3j)−s ϕ(c3)ϕ(π3j)N (λ)3i
)
.

Again, Lemma 3.9 allows us to finish the proof of Proposition 3.4.

Proposition 3.5. Let 1 6 ` 6 h − 1, and let m(`) and M(`) be defined as in (3.2.7) p. 100. Let
α1, α2 ∈ {±1, 3} and let ν1, ν2 ∈ P`. Then
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3 ζk(2)
2α

N (π)m−M−1+`/3(N (π)2 − 1) 〈θα1π`ν1 , θα1π`ν2〉 =



(
α1ν1
π

)
3
s
(
(α1ν1)−1α2ν2

)
+
(
α2ν2
π

)2
3
s(α1ν1(α2ν2)−1) if ` ≡ 1 (mod 3)(

α1ν1
π

)2
3
s
(
(α1ν1)−1α2ν2

)
+
(
α2ν2
π

)
3
s(α1ν1(α2ν2)−1) if ` ≡ −1 (mod 3)

N (π)− 1 + 2<
((

ν1α1
π

)
3
t
(
ν1α1(ν2α2)−1

))
if ` ≡ 0 (mod 3)

+δ
(
α2ν2(α1ν1)−1

π

)`
3

((
α2ν2(α1ν1)−1

π

)2

3

N (π)1/3 − 1

)−1(
N (π)−N (π)(1−m)/3

(
α2ν2(α1ν1)−1

π

)m−1

3

)
.

Here, δ is equal to 1 if
(
α1ν1
π

)
2

=
(
α2ν2
π

)
2

and δ = 0 otherwise.

Corollary 3.1. Let ` be fixed and let νj , j = 1, . . . , 6, be some elements ofP` such that
(
νi
π

)
3

(
νi
π

)
2
6=(νj

π

)
3

(νj

π

)
2

if i 6= j or, equivalently, {νj}j=1,...,6 is a set of representative of

{x ∈ R, (x, π) = 1}/ker (φ) ,

where φ(x) =
(
x
π

)
3

(
x
π

)
2
. Then θπ`ν1 , . . . , θπ`ν6 is a generator system of the space generated by

{θπ`ν , θ−π`ν , θ3π`ν : ν ∈ P`}.

Proof. (of Proposition 3.5)
Let 1 6 ` 6 h − 1 be fixed. Let ξ1 = (`, ν1 and ξ2 = (`, ν2); recall that the lattice associated to
both cusps (α1π

`ν1)−1 and (α2π
`ν2)−1 is Λ = Λ` = 3πMR. By Lemma 3.7,

〈θα1ξ1 , θα1ξ2〉 = Ress=4/3

( ∑′

c≡α2−α1 (3)

c≡0 (π`)

N (c)−s
∑
d (Λc)

d≡1 (3)

dα2ν2−dα1ν1≡
c

π`
(πm)

( c
d

)
3

)

= Ress=4/3

( ∑×

x (πmin(`,h−`))

∑′

c≡α2−α1 (3)

c≡0 (π`)
c

π`
≡xα2ν2−xα1ν1 (πm)

N (c)−s
∑
d (Λc)

d≡1 (3)
d≡x (πm)

( c
d

)
3

)
.

Since we assume 1 6 ` 6 h − 1, it holds m = min(`, h − `) > 1; in particular, we can use
Lemma 3.8, and evaluate the inner sum by

〈θα1ξ1 , θα2ξ2〉 =

Ress=4/3

( ∑×

x (πm)

∑
u∈{±1}

∑
i>0

uλ3i≡α2−α1 (3)

∑
j>`

∑
c≡1 (3)

gcd(c,π)=1

uλ3iπj−`c3≡xα2ν2−xα1ν1 (πm)

N (uλ3iπjc3)−s ϕ(c3)
( x
πj

)
3
N (π)M−m+j N (λ)3i

)
.

For j big enough, i.e. j > `+m, the condition uλ3iπj−`c3 ≡ xα2ν2 − xα1ν1 (πm) becomes
x2 ≡ α1ν1α2ν2 (mod πm), but for ` 6 j 6 `+m− 1, it becomes x2 ≡ α1ν1α2ν2 (mod πj−`)
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and uλ3ic3 ≡ π−(j−`)(xα2ν2 − xα1ν1) (mod πm−(j−`)). According to this, we split the sum
over the j’s and obtain

N (π)m−M 〈θα1π`ν1 , θα1π`ν2〉 = Ress=4/3

(
∑

`6j6`+m−1

∑×

x (πm)

x2≡α1ν1α2ν2 (πj−`)

∑
u=±1

∑
i>0

uλ3i≡α2−α1 (3)

∑
c≡1 (3)
(c,π)=1

uλ3ic3≡π−(j−`)(xα2ν2−xα1ν1) (πm−(j−`))

N (uλ3iπjc3)−s ϕ(c3)
( x
πj

)
3
N (π)j N (λ)3i

+
∑

j>m+`

∑×

x (πm)

x2≡α1ν1α2ν2 (πm)

∑
u=±1

∑
i>0

uλ3i≡α2−α1 (3)

∑
c≡1 (3)
(c,π)=1

N (uλ3iπjc3)−s ϕ(c3)
( x
πj

)
3
N (π)j N (λ)3i

)
.

We replace the congruence condition over the c’s by the introduction of a characters sum; more
precisely,

∑
c≡1 (3)
(c,π)=1

uλ3ic3≡π−(j−`)(xα2ν2−xα1ν1) (πm−(j−`))

N (uλ3iπjc3)−s ϕ(c3)

= ϕ
(
πm−(j−`)

)−1 ∑
χ (πm−(j−`))

∑
c≡1 (3)
(c,π)=1

χ
(
uλ3ic3π−(j−`)(xα2ν2 − xα1ν1)

)
N (uλ3iπjc3)−s ϕ(c3).

By Lemma 3.9, only cubic characters contribute non trivially, but the only cubic characters modulo
πm−(j−`) are the powers of the cubic Legendre symbol. Therefore, we apply Lemma 3.8 with
g = π and with, either f = 1 or f = π. Thus

N (π)m−M 〈θα1π`ν1 , θα1π`ν2〉 =

α

(3 ζ(2)
N (π)

N (π) + 1

( ∑
`6j6m−1+`

ϕ
(
πm−(j−l)

)−1 ∑
χ (πm−(j−`))

χ3=1

∑×

x (πm)

x2≡α1ν1α2ν2 (πj−`)

∑
u=±1

∑
i>0

uλ3i≡α2−α1 (3)

χ
(
uλ3iπ−(j−`)(xα2ν2 − xα1ν1)

)
N (uλ3iπj)−1/3

( x
πj

)
3

+
∑

j>m+`

∑×

x (πm)

x2≡α1ν1α2ν2 (πm)

∑
u=±1

∑
i>0

uλ3i≡α2−α1 (3)

N (uλ3iπj)−1/3
( x
πj

)
3

)

Since we deal only with cubic characters we have χ(uλ3i) = 1, and by Lemma 3.9, we are left
with
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N (π)m−M 〈θα1ξ1 , θα2ξ2〉 =
α

3 ζk(2)
N (π)

N (π) + 1

( ∑
j>m+`

∑×

x (πm)

x2≡α1ν1α2ν2 (πm)

N (π)−j/3
( x
πj

)
3

+
∑

`6j6m−1+`

ϕ
(
πm−(j−l)

)−1 ∑
χ (πm−(j−`))

χ3=1

∑×

x (πm)

x2≡α1ν1α2ν2 (πj−`)

χ

(
xα2ν2 − xα1ν1

πj−`

)
N (π)−j/3

( x
πj

)
3

)
.

(3.2.16)

We remark that except for the term corresponding to j = `, all the other terms vanish if α1ν1α2ν2

is not a square modulo π. Assuming that α1ν1α2ν2 ≡ y2 (mod πm) and because χ is defined
modulo π, we have

∑×

x (πm)

x2≡α1ν1α2ν2 (πj−`)

χ

(
xα2ν2 − xα1ν1

πj−`

) ( x
πj

)
3

=
∑×

x (πm)

x2≡α1ν1α2ν2 (πj−`)

χ(x)χ
(
x2α2ν2 − α1ν1

πj−`

) ( x
πj

)
3

Writing x = ±y + x′πj−` with x′ modulo πm−(j−`) and because χ is defined modulo π, we have
χ(x) = χ(y),

(
x
πj

)
3

=
( y
πj

)
3

and x2α2ν2 − α1ν1 ≡ 2yx′πj−` (mod πj−`+1). Taking the sum
over x′ modulo πm−(j−`) shows that χ has to be trivial whenever ` + 1 6 j 6 ` + m − 1. The
resulting term in (3.2.16) for one of those j’s is then

N (π)−j/3 ϕ
(
πm−(j−l)

)−1 ∑×

x (πm)

x2≡α1ν1α2ν2 (πj−`)

( x
πj

)
3

= 2
(
α2ν2α1ν1

π

)j N (π)1−j/3

N (π)− 1
,

and, under the condition m > 2, the sum over ` + 1 6 j 6 ` + m − 1 in (3.2.16) makes sense,
and, if α1ν1α2ν2 ≡ y2 (mod πm), it is given by

2
(
α2ν2α1ν1

π

)` N (π)1−`/3

N (π)− 1

(
1−

(
α2ν2α1ν1

π

)m−1

3

N (π)(1−m)/3

)((
α1ν1α2ν2

π

)
3

N (π)1/3 − 1
)−1

.

(3.2.17)
Since this expression vanishes form = 1, we do not need to specify whetherm > 2 or not. (Recall
that our assumption on ` implies m > 1 always.) In (3.2.16), it remains to treat the sum over the
j’s bigger than `+m and to treat the single term corresponding to j = `. The former is equal to

2
(
α2ν2α1ν1

π

)`+m−1

3

N (π)(1−`−m)/3

((
α1ν1α2ν2

π

)
3

N (π)1/3 − 1
)−1

, (3.2.18)

and the latter is given by
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ϕ (πm)−1
∑

χ (πm)

χ3=1

∑×

x (πm)

χ(xα2ν2 − xα1ν1)N (π)−`/3
( x
π`

)
3

=
N (π)1−m

(N (π)− 1)
N (π)−`/3N (π)m−1

∑×

x (π)

(
1 +

(
xα2ν2 − xα1ν1

π

)
3

+
(
xα2ν2 − xα1ν1

π

)
3

)( x
π`

)
3

=
N (π)−`/3

(N (π)− 1)

∑×

x (π)

( x
π`

)
3
+
∑×

x (π)

(
x`+1α2ν2 − x`−1α1ν1

π

)
3

+
∑×

x (π)

(
x2`+1α2ν2 − x2`−1α1ν1

π

)
3



=
N (π)−`/3

(N (π)− 1)



(
α1ν1
π

)
3
s (α1ν1α2ν2) +

(
α2ν2
π

)
3
s(α1ν1α2ν2) if ` ≡ 1 (mod 3)(

α1ν1
π

)
3
s (α1ν1α2ν2) +

(
α2ν2
π

)
3
s(α1ν1α2ν2) if ` ≡ −1 (mod 3)

N (π)− 1 + 2<
((

ν1α1
π

)
3
t (ν1α1ν2α2)

)
if ` ≡ 0 (mod 3)

(3.2.19)

We conclude the proof of the Proposition 3.5 by putting together (3.2.17), (3.2.18) and (3.2.19) in
the equation (3.2.16).

Proposition 3.6. Let `1 < `2 and let ν1 ∈ P`1 and ν2 ∈ P`2 . Then

〈θπ`1ν1
, θπ`2ν2

〉 =
α

3ζ(2)
N (π)M(`2)+1−m(`1)−`1/3

N (π) + 1

(ν1

π

)`1
3
.

Proof. Assume first that `1 > 0. Let m = min(`1, h − `1) and M = Max(0, h − 2`2). By
Lemma 3.6, we have

〈θπ`1ν1
, θπ`2ν2

〉 = Ress= 4
3

( ∑×

x (πm)

∑′

c≡0 (3)
ordπ(c)=`1

cπ−`1≡xν2π`2−`1−xν1 (πm)

N (c)−s
∑

d (λ2+iπM+`1c′)
d≡1 (3)

d≡x (πmin(`1,h−`1))

( c
d

)
3

We use Lemma 3.7 and, introducing a characters sum, this is equal to

N (π)M−m−`1/3Ress=4/3

( ∑×

x (πm)

(x
π

)`1
3

∑
u=±1

∑
uλ3i≡0 (3)

∑
c≡1 (3)
(c,π)=1

uλ3ic3≡xν2π`2−`1−xν1 (πm)

N (uλ3ic3)−sϕ(c3)N (λ)3i
)

= N (π)M−m−`1/3ϕ (πm)−1
∑
χ (πm)

Ress=4/3

( ∑×

x (πm)

(x
π

)`1
3

∑
u=±1

∑
uλ3i≡0 (3)

∑
c≡1 (3)
(c,π)=1

× χ
(
uλ3ic3(xν2π`2−`1 − xν1)

)
N (uλ3ic3)−sϕ(c3)N (λ)3i

)
.

By Lemma 3.8 and Lemma 3.9, we obtain
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1
3ζk(2)

N (π)M−2m−`1/3+2

N (π)2 − 1

∑
χ (πm)

χ3=1

∑×

x (πm)

(x
π

)`1
3
χ(xν2π

`2−`1 − xν1)

=
1

3ζk(2)
N (π)M−2m−`1/3+2

N (π)2 − 1
N (π)m−1

∑
χ (πm)

χ3=1

∑×

x (π)

(x
π

)`1
3
χ(xν1)

=
1

3ζk(2)
N (π)M−m−`1/3+1

N (π)2 − 1

∑×

x (π)

(x
π

)`1
3

+
∑×

x (π)

(x
π

)`1+1

3

(
ν1

π

)
3

+
∑×

x (π)

(x
π

)`1−1

3

(ν1

π

)
3


=

1
3ζk(2)

N (π)M−m−`1/3+1

N (π) + 1

(ν1

π

)`1
3

If `1 = 0, then

〈θπ`1ν1
,θπ`2ν2

〉 = Ress=4/3

( ∑′

c≡0 (3)
ordπ(c)=0

N (c)−s
∑

d (λ2+iπM c′)
d≡1 (3)

( c
d

)
3

)

= Ress=4/3

( ∑′

c≡0 (3)
ordπ(c)=0

c cube

N (c)−sϕ(c′)N (π)MN (λ)i
)

= N (π)MRess=4/3

( ∑
u=±1

∑
uλ3i≡0 (3)

∑
c≡1 (3)
(c,π)=1

N (uλ3ic3)−sϕ(c3)N (λ)3i
)

=
1

3ζ(2)
N (π)M+1

N (π) + 1
.

110



3.3 Some conclusions

3.3 Some conclusions
Recall that the space of theta functions has been defined at p. 88, and we later simplified the no-
tations at p. 91. From Proposition 3.3, Proposition 3.4 and Proposition 3.5 of the previous section,
one deduces that

dim
(
Θ
(
πh
))

6 2 + 6 (h− 1). (3.3.1)

In the special case h = 1, one verifies by Proposition 3.3, Proposition 3.6 and the Cauchy-
Schwarz criterion that θ1 and θπh are linearly dependent. This means that

dim (Θ (π)) = 1. (3.3.2)

and a generator is the cubic theta function θ3(w) defined in (3.1.4) of Section 3.1.2.

We now study the cases h = 2 and h = 3.We define νj , j = 1, . . . , 6, such that νj ≡ 1
(mod 3) and

x
(
x
π

)
3

(
x
π

)
2

ν1 1 1
ν2 ω 1
ν3 ω2 1
ν4 1 −1
ν5 ω −1
ν6 ω2 −1

Define the constant c(`) = (3ζ(2))1/2N (π)
1
2
(m(`)−M(`)−1+`/3)

√
N (π) + 1. We make a linear

combination of the theta functions as follows:

θ0 = c(0) θ1, and θh = c(h) θπh .

For 1 6 ` 6 h− 1,

θ`1 =
c(`)
6

(
θπ`ν1 + θπ`ν2 + θπ`ν3 + θπ`ν4 + θπ`ν5 + θπ`ν6

)
,

θ`2 =
c(`)
6

(
θπ`ν1 + ω2θπ`ν2 + ωθπ`ν3 + θπ`ν4 + ω2θπ`ν5 + ωθπ`ν6

)
,

θ`3 =
c(`)
6

(
θπ`ν1 + ωθπ`ν2 + ω2θπ`ν3 + θπ`ν4 + ωθπ`ν5 + ω2θπ`ν6

)
,

θ`4 =
c(`)
6

(
θπ`ν1 + θπ`ν2 + θπ`ν3 − θπ`ν4 − θπ`ν5 − θπ`ν6

)
,

θ`5 =
c(`)
6

(
θπ`ν1 + ω2θπ`ν2 + ωθπ`ν3 − θπ`ν4 − ω2θπ`ν5 − ωθπ`ν6

)
,

θ`6 =
c(`)
6

(
θπ`ν1 + ωθπ`ν2 + ω2θπ`ν3 − θπ`ν4 − ωθπ`ν5 − ω2θπ`ν6

)
.

Write n = (N (π)− 1)−1 and J = nJ(χ3, χ2), according to (3.2.9). For the case h = 2, we
need the table of scalar products between theta functions for ` = 1, and in the case h = 3, we need
the tables corresponding to ` = 1 and ` = 2; in both cases, one remarks that m(`) = 1. We obtain
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〈· , ·〉 θ1
1 θ1

2 θ1
3 θ1

4 θ1
5 θ1

6

θ1
1 nN (π)1/3 −n 0 0 0 0
θ1
2 −n nN (π)2/3 0 0 0 0

θ1
3 0 0 n 0 0 0

θ1
4 0 0 0 nN (π)1/3 J(π) 0

θ1
5 0 0 0 J(π) nN (π)2/3 0

θ1
6 0 0 0 0 0 n

and

〈· , ·〉 θ2
1 θ2

2 θ2
3 θ2

4 θ2
5 θ2

6

θ2
1 nN (π)2/3 0 −n 0 0 0
θ2
2 0 n 0 0 0 0

θ2
3 −n 0 nN (π)1/3 0 0 0

θ2
4 0 0 0 nN (π)2/3 0 J(π)

θ2
5 0 0 0 0 n 0

θ2
6 0 0 0 J(π) 0 nN (π)1/3

From Proposition 3.6, one sees that θ0 belongs to the space spanned by θ1
1 and θ1

2. More precisely,

‖θ0 −N (π)1/3θ1
1 −N (π)−1/3θ1

2‖ = 0,

We also remark that in both cases h = 2 or h = 3, θh belongs to the space spanned by θh−1
1 , θh−1

2

and θh−1
3 . More precisely,

‖θ2 −N (π)−1/3θ1
1 − θ1

2‖ = 0,

‖θ3 −N (π)−1/3θ2
1 −N (π)1/3θ2

3‖ = 0.

Moreover, from Proposition 3.6,

〈θ1
i , θ

2
j 〉 =

N (π)−1/3 if (i, j) = (2, 1),

0 otherwise.

Remark 3.2. Since |J(π)|2 = n2N (π), by the Cauchy-Schwarz criterion, we deduce that θ1
4 and

θ1
5 are proportional, as well as θ2

4 and θ2
6.

Actually, the remaining functions are independent, and after some linear combinations of
them, one can show that

Proposition 3.7. The space Θ
(
π2
)

is of dimension 5; an orthonomal basis of it is given by

B(2) =
{√

N (π)− 1 N (π)−1/6 θ1
1 ,

√
N (π)− 1 θ1

3 ,√
N (π)− 1 N (π)−1/6 θ1

4 ,
√
N (π)− 1 θ1

6 , N (π)−1/6 θ1
1 +N (π)1/6 θ1

2

}
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Proposition 3.8. The space Θ
(
π3
)

is of dimension 10; an orthonomal basis of it is given by

B(3) =
{√

N (π)− 1 N (π)−1/6 θ1
1 ,

√
N (π)− 1 θ1

3 ,√
N (π)− 1 N (π)−1/6 θ1

4 ,
√
N (π)− 1 θ1

6 ,√
N (π)− 1 N (π)−1/3 θ2

4 ,
√
N (π)− 1 θ2

5 ,

N (π)−1/6 θ1
1 +N (π)1/6 θ1

2 ,
√
N (π)− 1 θ2

2

N (π)−1/3 θ2
1 +N (π)1/3 θ2

3 N (π)−1/6 θ1
1 +N (π)1/6 θ1

2 −N (π)1/6 θ2
1

}

The results of Section 3.2.2 provide enough information to achieve an orthonormal basis of the
space Θ

(
πh
)

for any h > 1; this is the subject for a future work, as well as an interpretation, as
it was shown in Chapter 1, of this results as an explicit constant in the asymptotic behaviour of the
cubic Kloosterman sums K3(m,n, c).
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4 Cancellation of S(aX3 + bX, c), for c
allmost prime

In this chapter, we work with the cubic exponential sum

S(aX3 + bX, c) =
∑
x (c)

e

(
ax3 + bx

c

)
,

where e(z) = exp(2iπ(Trk/Q(z)) = exp(2iπ(z + z)), and x runs through a representative set
of R/cR. We consider this sum as a function of the parameter c, with c belonging to the ring of
integers R of the field k.

We have already broached the horizontal Sato-Tate conjecture for the cubic exponential sums
S(aX3 + bX, c) in the Introduction. This conjecture has its origins in the parallel which can be
made beetwen the cubic exponential sums S(aX3 + bX, c) with b 6= 0 and the elliptic curves
without complex multiplication, for which the Sato-Tate conjecture has been recently proved, un-
der some mild additional condition. We find also this similarity beetwen cubic exponential sums
with b = 0 and elliptic curves with complex multiplication, where uniform distribution has been
proved in both cases. For cubic exponential sums with b = 0, it is a consequence of the resolution
by Heath-Brown and Patterson of the Kummer conjecture about cubic Gauß sums (see [15]).

In our situation, i.e. when b 6= 0, the cubic Gauß sums are "replaced" by cubic Kloosterman
sums, what is far from being insignificant, since we do not know how to make appear moments of
order bigger than one for cubic Kloosterman sums, while this is achieved easily for cubic Gauss
sums. In this sense, the cubic Kloosterman sums K3(m,n, c), or equivalently the cubic exponen-
tila sums S(aX3 + bX, c), are more difficult to handle. The belief in the horizontal Sato-Tate
conjecture relies mostly on the vertical Sato-Tate conjecture, which holds, both for the classical
Kloosterman sums K(m,n, c) and for the cubic exponential sums (see Livné [30] and Katz [18]).

In all these aspects, we may consider S(aX3 + bX, c) and K(m,n, c) as being similar one to
the other, and expect that the recent results of Fouvry and Michel (see [11]) about the distribution
of the signs of Kloosterman sums over almost prime integers can be adapted to cubic exponen-
tial sums. This problem is within reach of what can be achieved by combining analytic number
theoretic methods with the theory of automorphic forms and with algebraic geometric methods.
More precisely, we shall present some sieve argument in Section 4.2, and apply it to the sums
S(aX3 + bX, c) in Section 4.3, using the essential fact, proved in Section 4.1, that these sums ac-
tually behave like a remainder term. This allows us to prove the following theorem in Section 4.3:

Theorem 4.1. Let g : R → R be a smooth function with compact support in [1, 2] and let X > 1.
Then, there exists a constant C(g) depending only on g and a non-negative function h decreasing
to 0 such that, for any 3 6 u,
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4 Cancellation of S(aX3 + bX, c), for c allmost prime

∣∣∣∣∣∣
∑

π|c⇒N (π)>X1/u

S(X3 + 3X, c) g
(
N (c)
X

)∣∣∣∣∣∣ 6 C(g)
X

logX

(
h(u) +O

(
log logX

logX

))
.

The second part of the work is made in Section 4.4, where we use the vertical Sato-Tate law to
obtain a lower bound for the sums S(aX3 + bX, c):

Theorem 4.2. Let g : R → R be a smooth function with compact support in [1, 2] and let X > 1.
Then, there exists a constant C(g), such that, for any 3 6 u,∑

π|c⇒N (π)>X1/u

∣∣S(X3 + 3X, c)
∣∣ g(N (c)

X

)
> C ′(g)

X

logX
.

We remark here that it is only necessary to prove this for u = 3; the other cases follow at once.
Comparing Theorem 4.1 and Theorem 4.2, we obtain the following result:

Theorem 4.3. Let g : R → R be a smooth function with compact support in [1, 2]. Let X > 1.
There exists an effectively computable constant u such that

∣∣∣∣∣∣
∑

π|c⇒N (π)>X1/u

S(X3 + 3X, c) g
(
N (c)
X

)∣∣∣∣∣∣ <
∑

π|c⇒N (π)>X1/u

∣∣S(X3 + 3X, c)
∣∣ g(N (c)

X

)
.

Moreover, for such u,

]
{
N (c) 6 X : c has less than u prime factors and S(X3 + 3X, c) > 0

}
� X

logX
,

]
{
N (c) 6 X : c has less than u prime factors and S(X3 + 3X, c) < 0

}
� X

logX
.

Theorem 4.3 is a step towards the expected formula (12) of the introductory chapter of this
thesis. As we mentioned below formula (12) page 8, one should be able to give explicitely the
contribution due to the "theta term", according to the calculations done in Chapter 3; this shall be
done in a future work.

The theory of automorphic forms that we need has been presented in Chapter 2; since this the-
ory started with the fact that the Kubota symbol was a group morphism on some special subgroup
of SL2(Z[ω]), all results so far were over the Eisenstein integers, which explains why we do not
work over Z. The particular case where b = 0 is different in many ways of the case b 6= 0; namely,
the cubic Gauß sums are defined by

g3(m, c) =
∑
x (c)

(x
c

)
3
e
(mx
c

)
,

and, for any rational prime p ≡ 1 (mod 3) splitting as p = π, π in Z[ω], they satisfy

2< (g3(a, π)) =
p−1∑
x=0

exp
(

2iπ
ax3

p

)
.
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4.1 A non-trivial estimate in average

We do not have such a simple relation for the sums S(aX3 + bX, c) with b 6= 0.

Finally, it should be pointed out that Theorem 4.2 does not gives a bound dependent on the
parameter u, while Theorem 4.1 does. It is actually possible to improve Theorem 4.2 in this sense,
by the use of algebraic geometric methods, and to obtain efficient bounds, leading to some explicit
value of u. For example, in the case of the Kloosterman sums K(m,n, c), the value u = 23 has
been obtained in [11], and was latter improved by Sivak in [43] to u = 22, the improvement being
realised in the sieve argument. Therefore, possibilities to improve the accuracy of Theorem 4.3
exist, either for the classical Kloosterman sums or for the cubic exponential sums; in the latter
case, this is a work in progress.

4.1 A non-trivial estimate in average
In Chapter 2 and in Chapter 3, we have been working with essential cusps; this was actually only
necessarily in Chapter 3, since Eisenstein series are defined only at essential cusps. In Chapter 2 it
was assumed for simplicity, since, as it was shown in Chapter 1, Poincaré series can be defined at
any cusp.

Let X be a positive real number. Let g : R −→ R be a given function satisfying
g ∈ C∞,

g(t) 6= 0 ⇐⇒ t ∈ [1, 2].
(4.1.1)

Theorem 4.4. Let m,n ∈ Z[ω]− {0}. Then, for any A > 0, there exist some B > 0 such that

∑
N (d)6X1/2 log−B X

gcd(d,3)=1

∑
c≡0 (d)
c≡1 (3)

K3(m,n, c)
N (c)1/2

g

(
N (c)
X

)
� X log−AX,

where the sum is taken over the primary integers d of Z[ω].

Proof. We shall use the results of Chapter 2. There, for a primary integer d, we defined Γd to be
the group generated by Γ∗0(d) and −Id. Let σ−1 =

(
d−1 d−2
d d−1

)
and τ−1 = Id. We recall the

convention that σ = τ if they are equivalent modulo Γd, so either σ and τ have to be inequivalent
for any Γd, or they have to be equal. Then for all γd, the cusps σ−1(∞) and τ−1(∞) are two
essential cusps, not Γd-equivalent. Such a choice of σ and τ implies that Klσ,τ (m,n, c) is well
defined for any Γd.

Recall that, for d ∈ Z[ω] and for a spectral parameter (s, p) ∈ C × Z, we defined in Sec-
tion 2.2.2 of Chapter 2 the quantities

Adisc
m,n,σ,τ (d, s, p) =

∑
u∈Bd(s,p)

ρu(σ,m) ρu(τ, n),

where Bd(s, p) is an orthonormal basis of the intersection of L2 (Γd\G, κ) with the eigenspace of
∆ of spectral parameter (s, p); similarly, define then for (s, p) ∈ iR× Z,

Acont
m,n,σ,τ (d, s, p) =

∑
σi∈C(Γd)

ψσi,σ(s,m, p)ψσi,τ (s, n, p).

117



4.1 A non-trivial estimate in average

Let f : C −→ R be the smooth function defined by

f(z) = g

(
N (mn)1/2

N (z)X

)
N (z)−1/2N (

√
mn)1/2.

Then f is a radial function with compact support in
[
N (mn)1/2/(2X),N (mn)1/2/X

]
and ‖f‖∞ �m,n

‖g‖∞X1/2. We start with Theorem 2.6 of Section 2.2.3 of Chapter 2. It gives

∑
c

Kσ,τ (c)
N (c)1/2

g

(
N (c)
X

)
=
∑
c

Kσ,τ (c)
N (c)

f

(√
mn

c

)

=
∑
(s,p)

Kf(s, p)Adisc
m,n(d, s, p) +

∑
p∈Z

∫
(0)

Kf(s, p)Acont
m,n(d, s, p) ds.

(4.1.2)

From Cauchy-Schwarz we have, for ∗ representing either the discrete case or the continuous case,

∣∣A∗m,n,σ,τ (d, s, p)∣∣ 6 (A∗m,m,σ,σ(d, s, p))1/2 (A∗n,n,τ,τ (d, s, p))1/2 .
We shall have to separate the exceptional and non-exceptional spectrum. For the latter, we use (i)
of Proposition 2.6 of Chapter 2 for Kf(s, p), and we obtain that the non-exceptional part of the
right hand side of (4.1.2) is bounded by

∣∣∣∣∣∣∣
∑
(s,p)
s∈iR

Kf(s, p)Adisc
m,n(d, s, p) +

∑
p∈Z

∫
(0)

Kf(s, p)Acont
m,n(d, s, p) ds

∣∣∣∣∣∣∣
≤ ‖f‖∞

∑
(s,p)
s∈iR

(1 + |s|)−a (1 + |p|)−b
(
Adisc
m,m,σ,σ(d, s, p)

)1/2 (
Adisc
n,n,τ,τ (d, s, p)

)1/2

+ ‖f‖∞
∑
p∈Z

∫
(0)

(1 + |s|)−a (1 + |p|)−b
(
Acont
m,m,σ,σ(d, s, p)

)1/2 (
Acont
n,n,τ,τ (d, s, p)

)1/2
ds

Again, by Cauchy-Schwarz, we obtain the upper bound

X1/2

∑
(s,p)
s∈iR

Adisc
m,m,σ,σ(d, s, p)

(1 + |s|)a (1 + |p|)b


1/2∑

(s,p)
s∈iR

Adisc
n,n,τ,τ (d, s, p)

(1 + |s|)a (1 + |p|)b


1/2

+X1/2

∑
p∈Z

∫
(0)

Acont
m,m,σ,σ(d, s, p)

(1 + |s|)a (1 + |p|)b
ds

1/2∑
p∈Z

∫
(0)

Acont
n,n,τ,τ (d, s, p)

(1 + |s|)a (1 + |p|)b
ds

1/2

,

what is bounded by
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X1/2

∑
(s,p)
s∈iR

Adisc
m,m,σ,σ(d, s, p)

(1 + |s|)a (1 + |p|)b
+
∑
p∈Z

∫
(0)

Acont
m,m,σ,σ(d, s, p)

(1 + |s|)a (1 + |p|)b
ds


1/2

×

∑
(s,p)
s∈iR

Adisc
n,n,τ,τ (d, s, p)

(1 + |s|)a (1 + |p|)b
+
∑
p∈Z

∫
(0)

Acont
n,n,τ,τ (d, s, p)

(1 + |s|)a (1 + |p|)b
ds


1/2

.

By the part (i) of Propostion 2.5 of Chapter 2, we conclude that the non-exceptional part is bounded
by O(X1/2).

For the exceptional spectrum, we still can use the same estimate (i) of Proposition 2.6 of Chap-
ter 2 for Kf(s, p) at s = 1/3, but we have to use the weaker estimate (ii) of Proposition 2.6 of
Chapter 2 for Kf(s, p) in the remaining exceptional spectrum; as we do not control the expres-
sion Adisc

m,n,σ,τ (d, 1/3, 0) as the level d varies, we simply remark that the former estimate X−1/3 is
bounded by the latter estimate X1/3, and therefore we can keep the theta term with the rest of the
exceptional spectrum. In the same way as above, we obtain

∣∣∣∣ ∑
(s,p)

0<s61/3

Kf(s, p)Adisc
m,n(d, s, p)

∣∣∣∣
≤ ‖f‖∞

∑
(s,p)

0<s61/3

Xsi
(
Adisc
m,m,σ,σ(d, s, p)

)1/2 (
Adisc
n,n,τ,τ (d, s, p)

)1/2

≤ X1/2

( ∑
(s,p)

0<s61/3

Xsi Adisc
m,m,σ,σ(d, s, p)

)1/2 ( ∑
(s,p)

0<s61/3

Xsi Adisc
n,n,τ,τ (d, s, p)

)1/2

.

Each of both sums can be estimated as

∑
0<si61/3

XsiAdisc
∗ (d, si, 0) �

(
X

N (d)2

)s1 ∑
si61/3

N (d)2siAdisc
∗ (d, si, 0),

whenever N (d)2 ≤ X . If such condition is fulfiled, the sum over the i’s is controlled by part (ii)
of Proposition 2.5 of Chapter 2, giving∑

0<si61/3

XsiAdisc
∗ (d, si, 0) �

(
X

N (d)2

)s1
τ(d) log2N (d) � Xs1 log2X N (d)−2s1 τ(d),

the last estimation coming from the fact that we kept the theta term included in the whole excep-
tional spectrum. We conclude that for a given level d and for X big enough, i.e. N (d)2 ≤ X , we
have

∑
c

Kσ,τ (c)
N (c)1/2

g

(
N (c)
X

)
� O

(
X1/2 +X1/2+s1 log2XN (d)−2s1 τ(d)

)
.
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4.2 Sieve argument on Z[ω]

With our choice of σ and τ , we apply Lemma 2.3. It remains to take the sum over the d’s such
that N (d) 6 Q, for Q = X1/2 log−B X . One obtains finally

∑
N (d)6Q

∑
c

Kσ,τ (m,n, c)
N (c)1/2

g

(
N (c)
X

)
� X1/2+s1 log2X

∑
N (d)6Q

τ(d)
N (d)2s1

. (4.1.3)

At this point it is useful to remark that contrary to the non metaplectic case, where the maximal
exceptional spectral parameter s1 could be 1/2, we do not here to improve on Selberg’s estimate
(compare with (2.3) p. 11 of [11]); actually the value s1 = 1/3 corresponding through the Shimura
correspondence to the value s = 2 is already strictly smaller than 1/2. It follows that the sum on
the right hand side of (4.1.3) is O

(
Q1−2/3

)
. Finally, with the value of Q that we have chosen, it

is O
(
X1/2−1/3 log−B(1−2/3)X

)
. We have therefore proved that

∑
N (d)6Q

∑
c≡0 (d)
c≡1 (3)

K3(m,n, c)
N (c)1/2

g

(
N (c)
X

)
� X log2−B/3X.

This finishes the proof of the theorem, taking B > 3A+ 6.

Theorem 4.4 can be interpreted in terms of cubic exponential sums. Let m,n ∈ 1
λZ[ω] and let

A,B, c be in Z[ω]. Then, if gcd(A, c) = gcd(B, c) = 1 and if 27mnA+B3 = 0, we have

K3(m,n, c) = S(AX3 +BX, c)
(
mn2

c

)
3

.

As c varies, the condition that B should be coprime to c complicates the situation; therefore, we
shall simply make the choice m = n = 1. Our preceding result in this particular case gives:

Corollary 4.1. Let g be a compactly supported smooth function with support in [1, 2]. Let X > 1.
Then, for any A > 0, there exists B > 0, such that

∑
N (d)6 X1/2

logB X

∑
c≡0 (d)
c≡1 (3)

S(X3 + 3X, c)
N (c)1/2

g

(
N (c)
X

)
� X log−AX.

4.2 Sieve argument on Z[ω]

In this section, we present a particular sieve argument, the so called crible étrange, developed
by Fouvry and Michel in [11]. It will permit us latter to obtain un upper bound for the sum of
cubic exponential sums having less than a given number of prime factors. Adopting the classical
notations used in sieve theory, the variable z will always be a positive real number. As we work
with the Eisenstein’s integers, we shall denote a prime integer by π, and any integer by c. The
symbol (a, b) will represent the greatest common divisor, and [a, b] the least common multiple.
First of all, we define

P = P (z) =
∏

N (π)<z

π.

Now we consider a totally multiplicative function ρ on Z[ω], satisfying
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4.2 Sieve argument on Z[ω]


0 6 ρ(π) 6 A < N (π), for all π, for some absolute constant A,

∑
N (π)6X

ρ(π) logN (π)
N (π)

= 2 logX +O(1).
(4.2.1)

By partial summation, such a function ρ satisfies∑
N (π)<X

ρ(π)
N (π)

= 2 log logX +O(1). (4.2.2)

Then, we consider a sequence of real positive integers A = (ac)c∈Z[ω]. Let us define, for any
d ∈ Z[ω], the subsequence Ad of A by

Ad = {ac ∈ A : c ≡ 0 (mod d)}.

Then A1 = A. The sums of the terms of each sequence Ad is given by

|Ad| =
∑
ac∈Ad

ac,

and the quantity we are interested in is

S(A, z) =
∑

ac∈A−∪π|PAπ

ac =
∑

(π|c)⇒(N (π)>z)

ac.

The hypothesis that usually appears concerning the sequence A is that the order of each local sum
Ad is determined by ρ(d), i.e.

|Ad| =
ρ(d)
N (d)

Y + r(d),

for some Y ∈ R and some term r(d) behaving like a rest. The situation in which we shall later
need to apply a sieve argument will be more complicated, in the sense that we shall consider the
hypothesis: there exist Y, Z ∈ R such that for any d ∈ Z[ω] holds

|Ad| =
ρ(d)
N (d)

Y − ρ(d)
N (d)

logN (d)Z + r(d). (4.2.3)

Related to the function ρ it is convenient to introduce the totally multiplicative function ρ∗ defined
on the primes by

ρ∗(π) = N (π)− ρ(π),

as well as the function

g(d) =

ρ(d) ρ
∗(d)−1 if d square free,

0 otherwise.

Finally we introduce the sums

Gc(X) =
∑

(d,c)=1
N (d)6X

g(d) (4.2.4)
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and

Gc(X, z) =
∑

d|P (z), (d,c)=1
N (d)6X

g(d). (4.2.5)

We shall denote G1(X) and G1(X, z) by G(X) and G(X, z) respectively. Then

Gc(X, z)

6 Gc(X) if z < X,

= Gc(X) if z > X.

The following estimates will be usefull in the sequel:

∑
N (π)6X

g(π) logN (π) = 2 logX +O(1). (4.2.6)

Gc(X, z) = O
(
log2 z

)
. (4.2.7)

The first estimate is proved using the decomposition g(π) = ρ(π)
N (π) + ρ(π)

N (π) g(π), the upper bound
g(π) � 1

N (π) and (4.2.1). For the second estimate, one simply notices that

Gc(X, z) 6
∑

N (d)<z

g(d) = exp

 ∑
N (π)<z

log

((
1− ρ(π)

N (π)

)−1
)

= exp

 ∑
N (π)<z

ρ(π)
N (π)

+O
(

1
N (π)2

) = exp (2 log log z +O(1)) ,

and one uses (4.2.2).

4.2.1 The Selberg sieve
In this section, we develop the sieve of Fouvry and Michel over the ring of Eisenstein integers
Z[ω]; we shall prove the following theorem:

Theorem 4.5. Let D > 1. Let A be a sequence of positive real numbers satisfying the condition
(4.2.3) p. 121, for a totally multiplicative function ρ satisfying (4.2.1), and for some Y ∈ R and
Z ∈ R. Then,

S(A, z) 6 Y G(D, z)−1 + Z G(D, z)−2
∑

N (π)<z

ρ(π)N (π)
ρ∗(π)2

logN (π)Gπ

(
D

N (π)
, z

)

+
∑
d|P

N (d)6D2

3Ω(d) |r(d)| ,

where r(d) is the quantity defined in (H).
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4.2 Sieve argument on Z[ω]

Proof. Selberg’s method is the simplest to implement, and gives very good upper bound. We in-
troduce a sequence of real number (λd)d>1 normalised such that λ1 = 1 and λd = 0 whenever
d 6 |P (z) orN (d) > D. The parameterD is the support of λ; It will be chosen later on, sufficiently
small, to restrict the number of terms in the last sum, so that it behaves like an error term.

From now on, we write P for P (z). We have to find an upper bound for

S(A, z) =
∑

(c,P (z))=1

ac =
∑

ac

0 if (c, P (z)) 6= 1,

1 if (c, P (z)) = 1.

Selberg’s observation is that  ∑
d|(c,P )

λd

2 > 0 if (c, P ) 6= 1,

= 1 if (c, P ) = 1,

and therefore, we get

S(A, z) 6
∑

ac

 ∑
d|(c,P )

λd

2

=
∑
c

ac
∑

d1|(c,P )

∑
d2|(c,P )

λd1 λd2

=
∑
c

ac
∑

d1,d2|P

λd1 λd2
∑

[d1,d2]|c

1 =
∑
d1,d2

λd1 λd2
∑
c

ac
∑

[d1,d2]|c

1

=
∑

d1,d2|P

λd1 λd2
∑

[d1,d2]|c

ac =
∑
d1,d2

λd1 λd2 |A[d1,d2]| .

Using the sieve hypothesis (H) for |A[d1,d2]|, we obtain

S(A, z) 6
∑
d1,d2

λd1 λd2

(
ρ([d1, d2])
N ([d1, d2])

Y − ρ([d1, d2])
N ([d1, d2])

logN ([d1, d2])Z + r([d1, d2], X)
)
,

i.e.

S(A, z) = Y
∑
d1,d2

ρ([d1, d2])
N ([d1, d2])

λd1 λd2︸ ︷︷ ︸
=: Q1(λ)

− Z
∑
d1,d2

ρ([d1, d2])
N ([d1, d2])

logN ([d1, d2])λd1 λd2︸ ︷︷ ︸
=: Q2(λ)

+
∑
d1,d2

r([d1, d2], X)λd1 λd2︸ ︷︷ ︸
=: R(λ)

.

(4.2.8)

The method used by Fouvry and Michel to minimise S(A, z) is firstly to minimise Q1(λ), and
then to transfer the value of λ in Q2(λ). The quantities that we shall meet are
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x(a) =
∑
d

ρ(d)
N (d)

λad , (4.2.9)

x∗(a) =
∑
d

ρ(d)
N (d)

logN (d)λad. (4.2.10)

Reformulation of Q1(λ) and Q2(λ):
Remark that if ab|P , then (a, b) = 1, and by the multipicativity of ρ we obtain

λab 6= 0 ⇒ ρ(ab) = ρ(a) ρ(b).

Then,

Q1(λ) =
∑ ρ([d1, d2])

N ([d1, d2])
λd1 λd2 =

∑
d′1,d′2

(d′1,d′2)=1

∑
a

ρ(ad′1d
′
2)

N (ad′1d
′
2)
λad′1 λad′2

=
∑
d′1,d′2

(d′1,d′2)=1

∑
a

ρ(a) ρ(d′1) ρ(d
′
2)

N (ad′1d
′
2)

λad′1 λad′2 .

As usual, the condition of coprimality is replaced by the introduction of the Möbius function.

Q1(λ) =
∑
a

∑
d′1,d

′
2

∑
b|(d′1,d′2)

µ(b)
ρ(a) ρ(d′1) ρ(d

′
2)

N (ad′1d
′
2)

λad′1 λad′2

=
∑
a

∑
b

∑
d1,d2

µ(b)
ρ(a) ρ(bd1) ρ(bd2)
N (ab2d1d2)

λabd1 λabd2

=
∑
a

∑
b

∑
d1,d2

µ(b)
ρ(a) ρ(b)2 ρ(d1) ρ(d2)

N (ab2d1d2)
λabd1 λabd2

=
∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)

∑
d1

ρ(d1)
N (d1)

λabd1
∑
d2

ρ(d2)
N (d2)

λabd2

=
∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)
x(ab)2

=
∑
d

ρ(d)
N (d)

x(d)2
∑
b|d

µ(b)
ρ(b)
N (b)

, since (a, b) 6= 1 ⇒ x(ab) = 0.

This finishes the transformation of Q1(λ). The first lines adapt to Q2(λ), taking into account the
apparition of logN (ad′1d

′
2) = logN (a) + logN (d′1) + logN (d′2), and following the same steps

as above, we obtain
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Q2(λ) =
∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)
logN (a)

∑
d1

ρ(d1)
N (d1)

λabd1
∑
d2

ρ(d2)
N (d2)

λabd2

+
∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)

∑
d1

ρ(d1)
N (d1)

logN (bd1)λabd1
∑
d2

ρ(d2)
N (d2)

λabd2

+
∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)

∑
d1

ρ(d1)
N (d1)

λabd1
∑
d2

ρ(d2)
N (d2)

logN (bd2)λabd2 ,

and decomposing the logN (bdi), we get

Q2(λ) =
∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)
logN (a)x(ab)2 + 2

∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)
logN (b)x(ab)2

+ 2
∑
a

∑
b

µ(b)
ρ(a) ρ(b)2

N (ab2)
x(ab)

∑
d

ρ(d)
N (d)

logN (d)λabd

=
∑
d

ρ(d)
N (d)

x(d)2
∑
b|d

µ(b)
ρ(b)
N (b)

logN
(
d

b

)
+ 2

∑
d

ρ(d)
N (d)

x(d)x′(d)
∑
b|d

µ(b)
ρ(b)
N (b)

+ 2
∑
d

ρ(d)
N (d)

x(d)2
∑
b|d

µ(b)
ρ(b)
N (b)

logN (b)

=
∑
d

ρ(d)
N (d)

logN (d)x(d)2
∑
b|d

µ(b)
ρ(b)
N (b)

+ 2
∑
d

ρ(d)
N (d)

x(d)x′(d)
∑
b|d

µ(b)
ρ(b)
N (b)

+
∑
d

ρ(d)
N (d)

x(d)2
∑
b|d

µ(b)
ρ(b)
N (b)

logN (b).

Since all the d’s are square-free, we have

∑
b|d

µ(b)
ρ(b)
N (b)

=
∏
π|d

(
1− ρ(π)

N (π)

)
=
∏
π|d

ρ∗(π)
N (π)

=
ρ∗(d)
N (d)

.

In conclusion, we have shown that

Q1(λ) =
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)2 (4.2.11)

and

Q2(λ) =
∑
d

ρ(d) ρ∗(d)
N (d)2

logN (d)x(d)2 + 2
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)x′(d)

+
∑
d

ρ(d)
N (d)

x(d)2
∑
b|d

µ(b)
ρ(b)
N (b)

logN (b) .
(4.2.12)
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We remark that Q1(x(d)) is a diagonal quadratic form in x(d).

Optimisation of λ with respect to Q1:
Recall that according to (4.2.9), in order that x(d) 6= 0, we need λdd′ 6= 0 and in particular we
need N (d) 6 D and d|P = P (z). Moreover, one can inverse the formula (4.2.9) giving x(d) in
terms of λd:

∑
c

µ(c)
ρ(c)
N (c)

x(dc) =
∑
c

µ(c)
ρ(c)
N (c)

∑
d′

ρ(d′)
N (d′)

λdcd′

=
∑
h

ρ(h)
N (h)

λdh
∑
c|h

µ(c) = ρ(1)λd = λd.

From this last expression, we shall make appear the term Q1(λ). Namely, we have shown that

λd =
∑
d′

µ(d′)
ρ(d′)
N (d′)

x(dd′) ,

and in particular, for d = 1, we obtain

1 = λ1 =
∑
d

µ(d)
ρ(d)
N (d)

x(d).

Then, by Cauchy-Schwarz, we finally obtain

1 =

(∑
d

µ(d)
ρ(d)
N (d)

x(d)

)2

=

∑
d|P

µ(d)

√
ρ(d)√
ρ∗(d)

√
ρ(d) ρ∗(d)
N (d)

x(d)

2

6 Q1(λ)
∑
d|P

N (d)6D

ρ(d)
ρ∗(d)

.

Remark that both hypothesis on ρ, namely ρ(d) > 0 and ρ∗(d) > 0 have been used. Now, denoting
by λopt the value of λ minimising Q1, we see that it is determined by

1 = Q1

(
λopt)  ∑

d|P (z),N (d)6D

ρ(d)
ρ∗(d)

 ,

what amounts to

Q1

(
λopt) =

 ∑
d|P (z),N (d)6D

ρ(d)
ρ∗(d)

−1

= G(D, z)−1, (4.2.13)

whereG(D, z) has been defined in (4.2.4) p. 121. Still, we miss the explicit value of λopt, or equiv-
alently of the corresponding x(d). For it, it suffices to find x(d) such that Q1(λ) = G(D, z)−1.
Writing x(d) = µ(d)N (d)

ρ∗(d) gives x(d)2 = N (d)2

ρ∗(d)2 and Q1(λ) =
∑ ρ(d)

ρ∗(d) = G(D, z). Thus λopt

corresponds to
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xopt(d) =


µ(d)N (d)
ρ∗(d) G(D, z)−1 if d|P = P (z), N (d) < D,

0 otherwise.
(4.2.14)

The inversion formula

λd =
∑

d′|P,N (d′)6D

µ(d′)
ρ(d′)
N (d′)

x(dd′)

gives finally as optimale value of λ

λ
opt
d =

∑
dd′|P,N (d′)6D/N (d)

µ(d′)
ρ(d′)
N (d′)

µ(dd′)N (dd′)
ρ∗(dd′)

G(D, z)−1

= G(D, z)−1 µ(d)N (d)
ρ∗(d)

Gd

(
D

N (d)
, z

)
. (4.2.15)

Before going further, let us prove a usefull property of λopt: Let d ∈ Z[ω] be a square-free integer,
d|P = P (z), (d) 6 D. Then,

G(D, z) =
∑
d′|P

N (d′)6D

g(d′) =
∑
l|d

∑
(d′,d)=l

d′|P
N (d′)6D

g(d′)

=
∑
l|d

g(l)
∑

(d′,d)=1

d′|P
N (d′)6/DN (l)

g(d′) >
∑
l|d

g(l)Gd

(
D

N (d)
, z

)
.

Since
∑

l|d g(l) = N (d) ρ∗(d)−1, we obtain from (4.2.15) that

|λopt
d | 6 1. (4.2.16)

Evaluation of Q2 (λopt):
Recall that (see equation (4.2.12))

Q2(λ) =

Q2,1︷ ︸︸ ︷∑
d

ρ(d) ρ∗(d)
N (d)2

logN (d)x(d)2 +2

Q2,2︷ ︸︸ ︷∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)x′(d)

+
∑
d

ρ(d)
N (d)

x(d)2
∑
b|d

µ(b)
ρ(b)
N (b)

logN (b)

︸ ︷︷ ︸
Q2,3

.

(4.2.17)

The expression (4.2.15) of λopt is not easy to handle, but in view of (4.2.17), we shall only need
the expressions x(d) and x∗(d) corresponding to λopt. Denote them by xopt(d) and x∗opt(d). Then,
xopt(d) is given in (4.2.14). For x∗opt(d), we remark that x(d) and x∗(d) are related as follows:
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x′(d) =
∑
d′

ρ(d′)
N (d′)

logN (d′)λdd′

=
∑
d′

ρ(d′)
N (d′)

∑
π|d′

logN (π)λdd′ =
∑
π

∑
d′′

ρ(πd′′)
N (πd′′)

logN (π)λdπd′′

=
∑
π

ρ(π)
N (π)

logN (π)
∑
d′

ρ(d′)
N (d′)

λdπd′ =
∑
π

ρ(π)
N (π)

logN (π)x(πd).

There exist a simple relation between Q2,1 (λopt) and Q2,2 (λopt). First of all, writing x′(d) in
terms on x(d) as above, we have

Q2,2(λ) =
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)x′(d)

=
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)
∑
π

ρ(π)
N (π)

logN (π)x(πd)

=
∑
π

ρ(π)
N (π)

logN (π)
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)x(πd).

Recall that x(d) is non-zero for d square free, and thus, x(πd) is non-zero only if (π, d) = 1.
Using now the expression xopt(d), we obtain

xopt(πd) =
µ(πd)N (πd)

ρ∗(πd)
G(D, z)−1

= −µ(d)N (π)N (d)
ρ∗(π) ρ∗(d)

G(D, z)−1 = −N (π)
ρ∗(π)

xopt(d).

Replacing xopt(d) in terms of xopt(πd), we obtain

Q2,2

(
λopt) = −

∑
π

ρ(π)
N (π)

logN (π)
∑
d

ρ(d) ρ∗(d)
N (d)2

x(πd)2
ρ∗(π)
N (π)

= −
∑
d

ρ(πd) ρ∗(πd)
N (πd)2

x(πd)2
∑
π

logN (π)

= −
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)2
∑
π|d

logN (π)

= −
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)2 logN (d) = −Q2,1

(
λopt) . (4.2.18)

For Q2,3, we start with the inner sum
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∑
b|d

µ(b)
ρ(b)
N (b)

logN (b) =
∑
b|d

µ(b)
ρ(b)
N (b)

∑
π|b

logN (π)

=
∑
π|d

logN (π)
∑
π|b|d

µ(b)
ρ(b)
N (b)

=
∑
π|d

logN (π)
∑
d′| d

π

µ(πd′)
ρ(πd′)
N (πd′)

= −
∑
π|d

ρ(π)
N (π)

logN (π)
∑
d′| d

π

µ(d′)
ρ(d′)
N (d′)

.

Replacing the inner sum by the product

∏
π′| d

π

(
1− ρ(π′)

N (π′)

)
=
(

1− ρ(π)
N (π)

)−1 ∏
π′|d

(
1− ρ(π′)

N (π′)

)
,

gives us

∑
b|d

µ(b)
ρ(b)
N (b)

logN (b) = −
∑
π|d

ρ(π)
N (π)

logN (π)
(

1− ρ(π)
N (π)

)−1 ∏
π′|d

(
1− ρ(π′)

N (π′)

)

= −ρ
∗(d)
N (d)

∑
π|d

ρ(π)
ρ∗(π)

logN (π).

Inserting this expression in Q2,3 leads to

Q2,3(λ) = −
∑
d

ρ(d)
N (d)

x(d)2
ρ∗(d)
N (d)

∑
π|d

ρ(π)
ρ∗(π)

logN (π)

= −
∑
d

ρ(d)
N (d)

x(d)2
ρ∗(d)
N (d)

∑
π|d

(
ρ(π)
ρ∗(π)

+ 1
)

logN (π)− logN (π)

= −
∑
d

ρ(d) ρ∗(d)
N (d)2

x(d)2
∑
π|d

N (π)
ρ∗(π)

logN (π) +Q2,1. (4.2.19)

Putting together (4.2.17), (4.2.18) and (4.2.19) gives finally

Q2

(
λopt) = −

∑
d

ρ(d) ρ∗(d)
N (d)2

xopt(d)2
∑
π|d

N (π)
ρ∗(π)

logN (π)

= −
∑

N (π)<z

N (π)
ρ∗(π)

logN (π)
∑
d, π|d

N (d)6D

ρ(d) ρ∗(d)
N (d)2

xopt(d)2

= −
∑

N (π)<z

ρ(π)
N (π)

logN (π)
∑

N (d)6 D
N (π)

ρ(d) ρ∗(d)
N (d)2

xopt(πd)2.
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We know that xopt(πd)2 = N (πd)2 ρ∗(πd)−2G(D, z)−2, when πd|P , i.e. (π, d) = 1, and there-
fore,

Q2(λopt) = −G(D, z)−2
∑

N (π)<z

ρ(π)N (π)
ρ∗(π)2

logN (π)
∑

N (d)6 D
N (π)

(π,d)=1

ρ(d)
ρ∗(d)

= −G(D, z)−2
∑

N (π)<z

ρ(π)N (π)
ρ∗(π)2

logN (π)Gπ

(
D

N (π)
, z

)
. (4.2.20)

End of the proof:
It remains to bring together the relations (4.2.8), (4.2.13) and (4.2.20) to get the estimation of the
main term. To finish the proof of Theorem 4.5, it remains to deal with the remainder term. Since
|λd| 6 1 (see (4.2.16)), we have

∣∣R (λopt)∣∣ =
∣∣∣∣∣∣
∑
d1,d2

λd1 λd2 r ([d1, d2])

∣∣∣∣∣∣ 6
∑
d1,d2

|r ([d1, d2]) | =
∑
d|P

N (d)6D2

3Ω(d) |r(d)| .

4.2.2 Precise estimates
This section deals with the sum Gc(X, z) appearing in Theorem 4.5. Associated to X and z, one
usually defines the parameter

τ =
logX
log z

.

If necessary, we shall denote τ by τX , when X will be changing. For us, the case of interest is
when z = X1/u, i.e. τ > 1 fixed.

When ρ satisfies (4.2.1) p. 121, it is known that the sum G(X, z) over Z is closely related to
the function σ2 defined by

σ2(u) =
e−2γ

8
u2 if 0 6 u 6 2, (4.2.21)

(u−2 σ2(u))′ = −2u−3 σ2(u− 2) if u > 2, (4.2.22)

with σ2 required to be continuous at u = 2. It is a non-negative increasing function with limu→∞ σ2(u) =
1. If we define σ2 by

σ2(u) =
∫ u

o
σ2(t) dt,

then, one proves that
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σ2(u) =
e−2γ

24
u3, if 0 6 u 6 2, (4.2.23)

σ2(u) = 3
σ2(u)
u

− 2
σ2(u− 2)

u
, u > 2, (4.2.24)

σ2(2u2)
u3

2

=
σ2(2u1)
u3

1

− 2
∫ u2

u1

σ2(2t− 2)
t4

dt, if 1 6 u1 6 u2. (4.2.25)

We show that the sum Gc(X, z) over Z[ω] can also be determined asymptotically by σ2. It is
convenient to introduce the analogue of σ2 for Gc(X, z), namely we define

Tc(X, z) =
∫ X

1
Gc(t, z)

dt

t
.

Lemma 4.1.

logX Gc(X, z) = 3Tc(X, z)− 2Tc

(
X

z
, z

)
+O

(
log−3X

)
.

Proof. We start with the following simple relation: Let π|P (z), π 6 |c fixed; then

Gc(X, z) =
∑

N (d)<X, d|P (z)
(d,c)=1

g(d) =
∑

N (d)<X, d|P (z)
(d,cπ)=1

g(d) +
∑

N (d′)< X
N (π)

, d′|P (z)

(d′,cπ)=1

g(πd′)

= Gcπ(X, z) + g(π)Gcπ

(
X

N (π)
, z

)
.

that we formulate as

Gcπ(X, z) = Gc(X, z)− g(π)Gcπ

(
X

N (π)
, z

)
. (4.2.26)

We start with the following sum:

∑
N (d)<X, d|P (z)

(d,c)=1

g(d) logN (d) =
∑

N (d)<X, d|P (z)
(d,c)=1

g(d)
∑
π|d

logN (π)

=
∑

N (π)<z

π 6 |c

logN (π)
∑

N (d)<X, d|P (z)
π|d

(d,c)=1

g(d) =
∑

N (π)<z

π 6 |c

g(π) logN (π)
∑

N (d)< X
N (π)

, d|P (z)

(d,cπ)=1

g(d)

=
∑

N (π)<z

π 6 |c

g(π) logN (π)Gcπ

(
X

N (π)
, z

)
,

and from (4.2.26) with X/N (π) instead of X , this is equal to
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∑
N (π)<z

π 6 |c

g(π) logN (π)Gc

(
X

N (π)
, z

)
−

∑
N (π)<z

π 6 |c

g(π)2 logN (π)Gcπ

(
X

N (π)2
, z

)

=
∑

N (π)<z

π 6 |c

g(π) logN (π)
∑

N (d)< X
N (π)

, d|P (z)

(d,c)=1

g(d) −
∑

N (π)<z

π 6 |c

g(π)2 logN (π)
∑

N (d)< X
N (π)2

, d|P (z)

(cπ,d)=1

g(d)

=
∑

N (d)<X, d|P (z)
(d,c)=1

g(d)
∑

N (π)<min
„

z, X
N (d)

«
π 6 |c

g(π) logN (π) −

∑
N (d)<X, d|P (z)

(d,c)=1

g(d)
∑

N (π)<min
„

z,

r
X
N (d)

«
(π,d)=1

π 6 |c

g(π)2 logN (π).
(4.2.27)

The first term of the right hand side of (4.2.27) is

∑
N (d)<X, d|P (z)

N (d)< X
z

(d,c)=1

g(d)
∑

N (π)<z

π 6 |c

g(π) logN (π) +
∑

N (d)<X, d|P (z)

N (d)> X
z

(d,c)=1

g(d)
∑

N (π)< X
N (d)

π 6 |c

g(π) logN (π).

Using (4.2.6), we reorganise it as

2
∑

N (d)<X, d|P (z)
(d,c)=1

g(d) log
X

N (d)
− 2

∑
N (d)< X

z , d|P (z)

(d,c)=1

g(d) log
(

X

zN (d)

)
+O

 ∑
N (d)<X, d|P (z)

(d,c)=1

g(d)

 .

For the second term of the right hand side of (4.2.27), we remark that the hypothesis (4.2.1) implies
that

∑
g(π)2 logN (π) �

∑ logN (π)
N (π)2

<∞.

In conclusion, (4.2.27) can be written as

∑
N (d)<X, d|P (z)

(d,c)=1

g(d) logN (d) = 2
∑

N (d)<X, d|P (z)
(d,c)=1

g(d) log
X

N (d)

− 2
∑

N (d)< X
z , d|P (z)

(d,c)=1

g(d) log
(

X

zN (d)

)
+ O

 ∑
N (d)<X, d|P (z)

(d,c)=1

g(d)

 .

(4.2.28)
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The left hand side of (4.2.28) is equal to∑
N (d)<X, d|P (z)

(d,c)=1

g(d) logX −
∑

N (d)<X, d|P (z)
(d,c)=1

g(d) log
X

N (d)
.

Now by partial summation, we have

∑
N (d)<X, d|P (z)

(d,c)=1

g(d) log
X

N (d)
=
∫ X

1
Gc(t, z)

dt

t
= Tc(X, z).

We conclude the proof of the lemma using (4.2.7).

Proposition 4.1.

Tc(X, z) = C σ2(2τ) log3 z +O
(

log3X

log z
τ3

)
.

with

C =
α2

2
e2γ

∏
π

(
1− 1

N (π)

)2 ∏
π 6 |c

(1 + g(π))

Proof. (i) Dividing the equation of Lemma 4.1 by X log4X and integrating from X1 to X2 gives

∫ X2

X1

Gc(t, z) dt
t log3 t

= 3
∫ X2

X1

Tc(t, z) dt
t log4 t

− 2
∫ X2

X1

Tc(t/z, z) dt
t log4 t

+O

(
1

log3X1

)
. (4.2.29)

As the derivative of Tc(t,z)

log3 t
is Gc(t,z)

t log3 t
− 3Tc(t,z)

t log4 t
, (4.2.29) becomes

Tc(X2, z)
log3X2

=
Tc(X1, z)
log3X1

− 2
∫ X2

X1

Tc(t/z, z) dt
t log4 t

+O

(
1

logX1

)
, (4.2.30)

which is the analogous of (4.2.22) for σ2. It remains to prove that the quantity Rc(X, z) =
Tc(X, z)− C σ2(2τ) log3 z behaves like a rest. Using (4.2.25), Rc(X, z) satisfies

Rc(X2, z)
log3X2

=
Rc(X1, z)
log3X1

− 2
∫ X2

X1

Rc(t/z, z) dt
t log4 t

+O

(
1

logX1

)
. (4.2.31)

(ii) From Lemma 4.1 with X = z, one derives the asymptotic formula for Tc(X) (as in [14] p.
149-151). Some simple modifications have to be done, leading to

Tc(X) =
α2

6

∏
π

(
1− 1

N (π)

)2 ∏
π 6 |c

(1 + g(π)) log3X

(
1 +O

(
1

logX

))
.

(iii) From (ii) we show that Rc(X, z) = O
(
τ3 log3X

log z

)
. Assume X < z; then, from (ii) and

from (4.2.23), we have that

Rc(X, z) = Tc(X, z)− Cσ2(2τ) log3X = O(log2X), for X < z. (4.2.32)

Combining (4.2.31) for X2 = X and X1 = z with (4.2.32), one obtains the desired result for the
range z 6 X < z2, i.e. for 1 6 τ < 2. An iterative argument on the range of X concludes the
proof of the proposition.
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We now give a corollary giving the estimates we shall need later. Note that this results are
usefull for τ bounded from above.

Corollary 4.2. Let z 6 X and let τ = logX
log z . Then, for any integer c,

Gc(X, z) = α2 e2γ
∏
π

(
1− 1

N (π)

)2 ∏
π 6 |c

(
1− ρ(π)

N (π)

)−1

σ2(2τ) log2 z

(
1 +O

(
τ5

log z

))
,

Gc(X, z)−1 = α−2 e−2γ
∏
π

(
1− 1

N (π)

)−2 ∏
π 6 |c

(
1− ρ(π)

N (π)

)
σ2(2τ)−1 log−2 z

(
1 +O

(
τ5

log z

))
.

Proof. From Lemma 4.1 and Proposition 4.1, we get

logX Gc(X, z) = 3C σ2(2τ) log3 z − 2C σ2(2(τ − 1)) log3 z

+O
(
τ6 log2 z

)
+O

(
(τ − 1)6 log2 z

)
+O

(
log2X

)
.

Since τ > 1, dividing by logX = τ log z, and using property (4.2.24) of the function σ2, one
obtains

Gc(X, z) = 3C
σ2(2τ)
τ

log2 z − 2C
σ2(2(τ − 1))

τ
log2 z +O

(
τ5 log z +

(τ − 1)6

τ
log z + τ log z

)

= 3C
σ2(2τ)
τ

log2 z − 2C
σ2(2τ − 2)

τ
log2 z +O

(
τ5 log z

)
= 2Cσ2(2τ) log2 z +O

(
τ5 log z

)
= 2C log2 z O

(
σ2(2τ) +

τ5

C log z

)
.

4.3 An upper bound for S(aX3 + bX, c)

Recall that the parameter α is

α = Ress=1ζQ(ω)(s). (4.3.1)

we shall use the notation

ζ∗(s) = (s− 1)2 ζ2
Q(ω)(s). (4.3.2)

Our result concerning the cubic exponential sums S(aX3 + bX, c) is Theorem 4.1 stated in
the introduction of this chapter:

Theorem 4.6. Let g : R −→ R a smooth function with compact support [1, 2] and let u1 > 0 be
fixed. Then there exists c(g) and a non-negative function h with limu→+∞ h(u) = 0 such that, for
any u 6 u1,
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∣∣∣∣∣ ∑
c∈Z[ω]

π|c⇒N (π)>X1/u

g

(
N (c)
X

)
S(A,B, c)
N (c)1/2

∣∣∣∣∣ 6 c(g)
X

logX

(
h(u) +Og,u1

(
log logX

logX

))
.

Assume that A et B are chosen such that S(A,B, c) ∈ R. Recall that

P = P (z) =
∏

N (π)<z

π.

A priori, one would consider the sequence

A = (ac)c∈Z[ω] , where ac := g

(
N (c)
X

)
S(A,B, c)
N (c)1/2

,

and the sub-sequences

Ad = {ac ∈ A : c ≡ 0 (mod d)} , defined for any d ∈ Z[ω].

The quantities we are interested in are

|Ad| =
∑
ac∈Ad

ac and S(A, z) =
∑

ac∈A−∪π|PAπ

ac =
∑

π|c⇒N (π)>z

ac .

The problem is that the sign of the elments of the sequence A changes, and a sieve argument
in this case requires to work with the sums of type II∑

c

ad1c ad2c, (4.3.3)

but as it is not known how to make appear these sums, one has to modify them and work with
positive sequences. For it we use the weil upper bound in the case gcd(A,B, c) = 1:

|S(A,B, c)| 6 2ν(c)N (c)1/2,

where ν(c) is the number of prime factors of c (see [31], prop. 5.1).
The idea is to transform the sequence A in two positive sequences. The following inequality

holds,

± S(A,B, c)
N (c)1/2

+ 2Ω(c) > 0, (4.3.4)

where Ω(c) is the number of prime divisors of c counted with multiplicity. It is, contrary to
the function ν, Ω, a totally multiplicative function. Following Fouvry and Michel ([11]), we
reformulate Theorem 4.6 as

∑
c∈Z[ω]

π|c⇒N (π)>x1/u

g

(
N (c)
X

) (
±S(A,B, c)
N (c)1/2

+ 2Ω(c)

)
−

∑
c∈Z[ω]

π|c⇒N (π)>x1/u

g

(
N (c)
X

)
2Ω(c)

6 c(g)
X

logX

(
h(u) +O

(
log logX

logX

))
.
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Define now

bc =

g
(
N (c)
X

)
2Ω(c) if λ 6 |c

0 if λ|c
and a±c =

±g
(
N (c)
X

)
S(A,B,c)

N (c)1/2 + bc if λ 6 |c

0 if λ|c
(4.3.5)

and according to this define the sequences

B = (bc)c∈Z[ω] and A± =
(
a±c
)
c∈Z[ω]

. (4.3.6)

The quantities we are interested in are

S(A±, z) =
∑

c
π|c⇒N (π)>z

a±c and S(B, z) =
∑

c
π|c⇒N (π)>z

bc.

Let ĝ be the Mellin transform of g. Then, Theorem 4.6, and thereby Theorem 4.1 of the intro-
duction, is a consequence of the following:

Theorem 4.7. Let 3 6 u. We use the notations (4.3.5) and (4.3.6). There exists an absolute
constant Cabs and a positive function h decreasing to 0, such that

∣∣∣S(A±, X1/u)− S(B,X1/u)
∣∣∣ 6 Cabs ĝ(1)

X

logX

(
h(u) +Og,u

(
1

log logX

))
.

Both sequences A± and B are now positive (remark that they depend on X). Theorem 4.7 is
proved if one can shows that∣∣∣S(A±, X1/u)

∣∣∣ 6 Cabs ĝ(1)
X

logX

(
h1(u) +Og,u

(
log logX

logX

))
,

and ∣∣∣S(B,X1/u)
∣∣∣ 6 Cabs ĝ(1)

X

logX

(
h2(u) +Og,u

(
log logX

logX

))
,

with h1(u), h2(u) → 0 as u→ +∞. The problem is that we shall show that

S(B, X1/u) = Cabs ĝ(1)
X

logX
h3(u)

(
+O

(
1

logX

))
, (4.3.7)

for some function h3(u) such that h3(u) → +∞, as u → ∞. Fortunately, one can be more
precise, and prove that

h3(u) = (u2 + 2u) (1 + h4(u)), u2h4(u) → 0.

Therefore, to prove Theorem 4.7, one has to show that the contribution of u in the main term of
S(B, X1/u) is corrected by the one of u in the main term of S(A±, X1/u), i.e one must prove that

S(A±, X1/u) 6 Cabs ĝ(1)
X

logX
(u2 + 2u) (1 + h5(u))

(
+O

(
log logX

logX

))
, (4.3.8)
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for some function h5(u) such that u2h5(u) → 0, as u → ∞. Then, substracting (4.3.8) from
(4.3.7) proves Theorem 4.7, with h(u) = (u2 + 2u) max(h5(u), h4(u)).

In Section 4.3.1, we shall prove the upper bound (4.3.8), combining two topics: Firstly, the
results issued from the theory of automorphic forms which were presented in Section 4.1, and
secondly, the sieve argument of Section 4.2. In Section 4.3.2, the equality (4.3.7) is proved, by
classical analytic methods.

4.3.1 An upper bound for A±

In this section, we prove that the sequence A± satisfies the conditions of Theorem 4.5 of Sec-
tion 4.2.1, then apply Theorem 4.5 and use the estimates of Corollary 4.2 to obtain a first upper
bound in the direction of (4.3.8). Then, Corollary 4.1 of Section 4.1 allows us to deal with the
remainder term and to conclude the proof of (4.3.8).

Recall that
S(B, z) =

∑
(c,P (z))=1

bc and |Bd| =
∑
d|c

bc. (4.3.9)

Since we avoid the prime λ, we shall work with primes of norm bigger than 4. Denote by ĝ the
Mellin transform. It is defined by

ĝ(s) :=
∫ ∞

0
g(t) ts−1 dt and has inverse g(t) =

1
2iπ

∫
(σ)
g(s) t−s ds.

We need to introduce another notation. Let c ∈ Z[ω]; then we define the product

Fc(s) =
∏
π 6 |c

(
1 +

1
N (π)s(N (π)s − 2)

)
, (4.3.10)

and write F (s) for F1(s).

Lemma 4.2. Let g be as given in Theorem 4.1 and let ε > 0. Then

S(B, 4) = X logX α2 ĝ(1)F (1) + X d(g) + O
(
X1−ε) ,

with d(g) a real constant depending only on the function g.

Proof. In the domain of absolute convergence, we have

∑
λ6 |c

bc =
∑
λ6 |c

2Ω(c) g

(
N (c)
X

)
=

1
2iπ

∑
λ6 |c

2Ω(c)

∫
(σ)
ĝ(s)

(
N (c)
X

)−s
ds

=
1

2iπ

∫
(σ)
ĝ(s)

∑
λ6 |c

2Ω(c)

(
N (c)
X

)−s
ds

=
1

2iπ

∫
(σ)
ĝ(s)

∑
λ6 |c

2Ω(c)

N (c)s
Xs ds.
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Define

L(s) :=
∑
λ6 |c

2Ω(c)

N (c)s
=
∏
π 6=λ

(
1− 2

N (π)s

)−1

,

and transform it as

L(s) =
∏
π 6=λ

(
1− 2

N (π)s

)−1

=
∏
π 6=λ

N (π)s

N (π)s − 2
=
∏
π 6=λ

N (π)2s

(N (π)s − 1)2
(N (π)s − 1)2

N (π)s(N (π)s − 2)

=
∏
π 6=λ

(
1− 1

N (π)s

)−2 ∏
π 6=λ

(
1 +

1
N (π)s(N (π)s − 2)

)
= ζ2

Q(ω)(s)
(
1− 3−s

)2
Fλ(s).

Then,

∑
λ6 |c

bc =
1

2iπ

∫
(σ)
ĝ(s) ζ2

Q(ω)(s)
(
1− 3−s

)2
Fλ(s)Xs ds

=
1

2iπ

∫
(1−ε)

ĝ(s) ζ2
Q(ω)(s)

(
1− 3−s

)2
Fλ(s)Xs ds+ Ress=1

(
ĝ(s) ζ2

Q(ω)(s)
(
1− 3−s

)2
Fλ(s)Xs

)
.

(4.3.11)

We start with the residue, writing ζ∗(s) = ζ2
Q(ω)(s)(s− 1)2,

Ress=1

(
ĝ(s) ζQ(ω)(s)

(
1− 3−s

)2
Fλ(s)Xs

)
= lims→1

(
(ζ∗(s) ĝ(s)

(
1− 3−s

)2
Fλ(s)Xs

)′
= X d(g) +X logX α2 ĝ(1)

4
9
Fλ(1),

for some real constant d(g) depending on the function g. In (4.3.11), the contribution in X of the
integral is less than the one of the residue, and therefore we obtain

∑
λ6 |c

bc = X d(g) +X logX α2 ĝ(1)
4
9
Fλ(1) +O

(
X1−ε) ,

what proves the Lemma 4.2.

With the notations of Lemma 4.2, we define the real constants Y = Y (X, g) and Z = Z(X, g)
by

Y = X logX α2 4
9
ĝ(1)Fλ(1) +X d(g) ,

Z = X α2 4
9
ĝ(1)Fλ(1).

 (4.3.12)
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Corollary 4.3. Let ε > 0 and let d ∈ Z[ω] such that λ 6 |d. Let A± be the sequence defined in
(4.3.5) and (4.3.6). Then, with Y and Z defined by (4.3.12), we have

∣∣A±d ∣∣ =
2Ω(d)

N (d)
Y − 2Ω(d)

N (d)
logN (d)Z + rX(d).

where rX(d) satisfies

rX(d) =
∑

c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

)
+ O

(
2Ω(d)

(
X

N (d)

)1−ε
)
.

Proof. Lemma 4.2, applied with X/N (d) instead of X , allows us to evaluate locally the sequence
B. We have

|Bd| =
∑
d|c

bc =
∑
λ6 |c

2Ω(dc) g

(
N (c)

X/N (d)

)

= 2Ω(d)

{
X

N (d)
d(g) +

X

N (d)
log
(

X

N (d)

)
α2 4

9
ĝ(1)Fλ(1) +O

((
X

N (d)

)1−ε
)}

=
2Ω(d)

N (d)
X

{
logX α2 4

9
ĝ(1)Fλ(1)− logN (d)α2 4

9
ĝ(1)Fλ(1) + d(g)

}

+O

(
2Ω(d)

(
X

N (d)

)1−ε
)

︸ ︷︷ ︸
=: r′(d,X)

.

From this we deduce the local behaviour of the sequence A±:

|A±d | =
∑
d|c

a±c =
∑
d|c

λ 6 |c

±S(aX3 + b, c)
N (c)1/2

g

(
N (c)
X

)
+
∑
d|c

λ 6 |c

bc

=
2Ω(d)

N (d)
X

{
logX α2 4

9
ĝ(1)Fλ(1)− logN (d)α2 4

9
ĝ(1)Fλ(1) + d(g)

}

+ r′(d, c) +
∑
d|c

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

)
︸ ︷︷ ︸

rX(d)

.

It is worthy of attention that the local behaviour of the sequence A± expressed in Lemma 4.2
is an unsual sieve hypothesis. But, as it will become clear in this section, while the term rX(d) will
be proven to be a real error term, the same will clearly not be the case for the "extra" term attached
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to logN (d). This situation is the same as the one appearing in [11], for which Fouvry and Michel
developed a new sieving process, namely the "crible étrange" presented in Section 4.2.1.

Before to apply Theorem 4.5 of Section 4.2.1, let us reformulate Corollary 4.2 of Section 4.2.2
in our situation. For it, we remark from Corollary 4.3 that our function ρ is the one defined by

ρ(π) =

2 if π 6= λ,

0 if π = λ.
(4.3.13)

Since we have (see [27] (67) p. 115)

∑
N (π)6X

logN (p)
N (p)

= logX +O(1),

the hypothesis (4.2.1) p. 121 of Section 4.2 is satisfied. Then, if τ = logD
log z and (c, λ) = 1, Corol-

lary 4.2 of Section 4.2.2 gives

Gc(D, z) = α2 4
9
e2γ Fλ(1)

∏
π|c

(
1− 2

N (π)

)
σ2(2τ) log2 z

(
1 +O

(
τ5

log z

))
, (4.3.14)

Gc(D, z)−1 = α−2 9
4
e−2γ Fλ(1)−1

∏
π|c

N (π)
N (π)− 2

σ2(2τ)−1 log−2 z

(
1 +O

(
τ5

log z

))
.

(4.3.15)

In particular, for a prime π 6= λ such that N (π) 6 D, we have τ − logN (π)
log z = O(τ), and thus

Gπ

(
D

N (π)
, z

)
= α2 4

9
e2γ Fλ(1)

(
1− 2

N (π)

)

× σ2

(
2τ − 2

logN (π)
log z

)
log2 z

(
1 +O

(
τ5

log z

))
.

(4.3.16)

We obtain now from Theorem 4.5 of Section 4.2.1, applied to the sequence A± with ρ given by
(4.3.13), Y and Z given by (4.3.12) and rX(d) given by Corollary 4.3, that

S(A±, z) 6 Y G(D, z)−1 + 2Z G(D, z)−2
∑

N (π)<z
π 6=λ

N (π)
(N (π)− 2)2

logN (π)Gπ

(
D

N (π)
, z

)

+
∑

d|P (z)

N (d)6D2

3Ω(d) |rX(d)| ,

for a parameter D that still has to be chosen conveniently. As z and D will be chosen so that
z < D, we can apply the estimate (4.3.16), and obtain
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S(A±, z) 6 Y G(D, z)−1 +

2α2 4
9
e2γ Fλ(1)Z G(D, z)−2 log2 z

(
1 +O

(
τ5

log z

)) ∑
N (π)<z

π 6=λ

logN (π)
N (π)− 2

σ2

(
2τ − 2

logN (π)
log z

)

+
∑

d|P (z)

N (d)6D2

3Ω(d) |rX(d)|

=Y G(D, z)−1 +
2Z

σ2(2τ)
G(D, z)−1

(
1 +O

(
τ5

log z

)) ∑
N (π)<z

π 6=λ

logN (π)
N (π)− 2

σ2

(
2τ − 2

logN (π)
log z

)

+
∑

d|P (z)

N (d)6D2

3Ω(d) |rX(d)| ,

by (4.3.15), using the fact that τ5

log z → 0, as z → ∞. Then, the property (4.2.22) p. 130 of σ2

allows to make a partial integration and an easy calculation shows that∑
N (π)<z

π 6=λ

logN (π)
N (π)− 2

σ2

(
2τ − 2

logN (π)
log z

)
= log z σ2(2τ) +O(1).

Thus, as τ > 1,

S(A±, z) 6 Y G(D, z)−1 + 2Z G(D, z)−1 log z
(

1 +O
(

τ5

log z

))
+

∑
d|P (z)

N (d)6D2

3Ω(d) |rX(d)|

= G(D, z)−1 (Y + 2Z log z) +G(D, z)−1O
(
2Z τ5

)
+

∑
d|P (z)

N (d)6D2

3Ω(d) |rX(d)| .

Now we see from (4.3.12) that

Y + 2Z log z = α2 4
9
ĝ(1)Fλ(1)X (logX + 2 log z) (1 +O(log−1 z)) = O(X logX)

and thus, from (4.3.15), we have

G(D, z)−1 (Y+2Z log z) = e−2γ ĝ(1)
σ2(2τ)

X

(
logX
log2 z

+
2

log z

) (
1 +O τ5

log z

)
= O

(
X logX
log2 z

)
.

This last estimate gives finally

S(A±, z) 6 e−2γ ĝ(1)
σ2(2τ)

X

(
logX
log2 z

+
2

log z

)
+O

(
Xτ5 logX

log3 z

)
+

∑
d|P (z)

N (d)6D2

3Ω(d) |rX(d)| .
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Guided by (4.3.7), we have to make disappear the factor σ2(2τ). At this point, we now make the
choice of z and D. According to Corollary 4.1 of Section 4.1 we choose D = X1/4 log−B X , for
a free parameter B, and according to our goal, we choose z = X1/u, where u is the variable we
are most intersted in. We shall simply write P for P (X1/u). Then,

τ =
u

4
−B

log logX
logX

,

and the Taylor expansion of σ2 at u2 reads

1
σ2(2τ)

=
1

σ2

(
u
2

) (1 + O
(

log logX
logX

))
.

With this choice of z and D, we have obtained

S
(
A±, X1/u

)
6
e−2γ ĝ(1)
σ2(u/2)

X

logX
(u2+2u) +OB,u

(
X log logX

log2X

)
+

∑
d|P

N (d)6X1/2 log−B X

3Ω(d) |rX(d)| .

Since

1
σ2(1)

= 1 +O

((
t

2

)−t/2)
,

we have

S
(
A±, X1/u

)
6 e−2γ ĝ(1)

X

logX
(u2 + 2u)

(
1 +O

((
t

4

)−t/4))

+ OB,u
(
X log logX

log2X

)
+

∑
d|P

N (d)6X1/2 log−B X

3Ω(d) |rX(d)| .
(4.3.17)

The last step to prove Inequality (4.3.8) is to show that rX(d) behaves like an error term. We
shall not make use of the condition d|P , and we simply drop it. We start with Corollary 4.3, which
gives, for any ε > 0, the following order of growth:

∑
d|P

N (d)6X1/2 log−B X

3Ω(d) |rX(d)| =
∑

d|P λ6 |d
N (d)6X1/2 log−B X

3Ω(d)
∑

c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

)

+ O

( ∑
d|P λ6 |d

N (d)6X1/2 log−B X

6Ω(d)

(
X

N (d)

)1−ε
)
.

(4.3.18)

Firstly, an application of Cauchy-Schwarz inequality gives
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∑
d|P λ6 |d

N (d)6X1/2 log−B X

3Ω(d)
∑

c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

)

�

∣∣∣∣∣ ∑
λ 6 |d

N (d)6X1/2 log−B X

9Ω(d)
∑

c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

) ∣∣∣∣∣
1/2

·

∣∣∣∣∣ ∑
λ 6 |d

N (d)6X1/2 log−B X

∑
c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

) ∣∣∣∣∣
1/2

.

Then, from the upper Weil bound applied to the terms S(aX3 + bX, c) of the first factor we obtain

∑
λ 6 |d

N (d)6X1/2 log−B X

3Ω(d)
∑

c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

)

�

∣∣∣∣∣ ∑
λ 6 |d

N (d)6X1/2 log−B X

18Ω(d)
∑

X
N (d)

<N (c)6 2X
N (d)

λ 6 |c

2Ω(c)

∣∣∣∣∣
1/2

·

∣∣∣∣∣ ∑
λ 6 |d

N (d)6X1/2 log−B X

∑
c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

) ∣∣∣∣∣
1/2

.

(4.3.19)

We recall the formula

∑
N (d)6X

λ 6 |d

kΩ(d)

N (d)s
�

X
1−s logk−1X if s 6= 1,

logkX if s = 1.

From this formula applied in (4.3.19) we obtain

∑
d|P

N (d)6X1/2 log−B X

3Ω(d) |rX(d)| � X1/2 log10X

∣∣∣∣∣ ∑
λ 6 |d

N (d)6X1/2 log−B X

∑
c≡0 (d)

λ 6 |c

±S(aX3 + bX, c)
N (c)1/2

g

(
N (c)
X

) ∣∣∣∣∣
1/2

+ O
(
X1−ε/2 log5−BεX

)
.

At this point we use the gain of the negative power of logX proved in the non trivial estimate in
average of the cubic exponential sums. Corollary 4.1 of Section 4.1 applied with A > 24 provides
some B > 0, such that ∑

d|P
N (d)6X1/2 log−B X

3Ω(d) |rX(d)| � X log−2X. (4.3.20)
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This proves that the contribution of rX(d) is small enough to be considered as a rest, and (4.3.20)
inserted in (4.3.17), gives

S
(
A±, X1/u

)
6 e−2γ ĝ(1)

X

logX
(u2+2u)

(
1 +O

((
t

4

)−t/4))
+ OB,u

(
X log logX

log2X

)
,

and concludes the proof of (4.3.8).

4.3.2 An upper bound for B
Here we prove (4.3.7). The sequence B = (bc), wherev bc = 2Ω(c) g

(
N (c)
X

)
can be sieved exactly.

For z = X1/u, the sum ∑
N (c)6X

π|c⇒N (π)>z

2Ω(c)

is close to the sum ∑
N (c)6X

π|c⇒N (π)>z

τ(c) =
∑

N (c1)6X
π|c1⇒N (π)>z

∑
N (c2)6X

π|c2⇒N (π)> z
N (c1

The number of integers of norm less than X having their prime factors of norm bigger than z is
known; for z = Z1/u, it is given by uω(u)X log−1X +O(X log−2X). One then shows that

∑
N (c)6X

π|c⇒N (π)>z

2Ω(c) = u(2ω(u) + (ω ∗ ω)(u))
X

logX
+O

(
X

log2X

)
.

Moreover,

u (2ω(u) + (ω ∗ ω)(u)) = e−2γ (u2 + 2u)
(

1 +O
((u

4

)−u/4))
Therefore,

S(B, X1/u) =
∑

π|c⇒N (π)>X1/u

2Ω(c) g

(
N (c)
X

)
= −

∑
π|c⇒N (π)>X1/u

2Ω(c)

∫ ∞

N (c)
g′
(
t

X

)
dt

X

= −
∫ ∞

0

∑
N (c)6t

π|c⇒N (π)>X1/u

2Ω(c) g′
(
t

X

)
dt

X

and from above, one obtains

S(B, X1/u) = −(u2 + 2u)
(

1 +O
((u

4

)−u/4))∫ ∞

0

Xt

logXt

(
1 +O

(
1

logXt

))
g′(t) dt

= −(u2 + 2u)
(

1 +O
((u

4

)−u/4)) X

logX

∫ ∞

0

tg′(t)
1 + log t/ logX

(
1 +O

(
1

log(Xt)

))
dt
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Since g has compact support, the integral is∫ ∞

0
t g′(t) dt+O

(
1

logX

)
= −ĝ(1) +O

(
1

logX

)
.

This proves (4.3.7), stated at the begin of Section 4.3, and thereby concludes the proof of Theo-
rem 4.7, as well as Theorem 4.1, stated at the begin of Chapter 4.

4.4 A lower bound for S(aX3 + bX, c)

In this section, we prove Theorem 4.2 stated at the begin of Chapter 4.

4.4.1 Sato-Tate vertical law
If a, b ∈ R, then

S(aX3 + bX, π) =
∑
x (π)

e

(
ax3 + bx

π

)
=

p−1∑
x=0

exp

(
2iπTrk/Q((ax3 + bx)π)

p

)

=
p−1∑
x=0

exp
(

2iπ(ax3 + bx)(π + π)
p

)

= SZ
(
2a<(π)X3 + 2b<(π)X, p

)
,

where SZ(f(X), p) denotes the exponential sum

SZ(f(X), p) =
∑
x (p)

exp
(

2iπ f(x)
p

)
.

The integer π + π is coprime with p. In particular, as a varies in (Z/pZ)×, we have,

{
S(aX3 + aX, π) : a ∈ (R/πR)×

}
=
{
SZ(aX3 + aX, p) : a = 1, . . . , p− 1

}
.

One of the advantages of such equality is that SZ(a, a, p) belongs to the class of exponential sums
which satisfy the vertical Sato-Tate conjecture (see [10] p. 7). Let µST be the sato-tate measure.

Proposition 4.2. For any arithmetical function f such that f(c) = 0 if N (c) > N , and for g as
before, one has as P →∞,

∑
P6N (π)<2P

∑
c

θp,c∈I

f(c) g
(
N (π)N (c)

X

)
= µST (I)

∑
P6N (π)<2P

∑
c

f(c) g
(
N (π)N (c)

X

)

+ O
(
P (N/P + P )1/2

(∑
|f(c)|2

)1/2
)
.

This proposition is a consequence of the vertical Sato-Tate law; one proves it using the Large
sievve inequality, exactly as in [10], Proposition 4.1.
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4.4.2 Absolute lower bound
For any k 6 u, from the twisted multiplicity, we can bound the sum from below by considering
only c being a square-free integer having exactly k prime factors. Then,

∑
π|c⇒N (π)>X1/u

∣∣S(X3 + 3X, c)
∣∣ g(N (c)

X

)

>
∑

N (π1)>X1/u

. . .
∑

N (πk)>X1/u

∣∣S(X3 + 3X,π1 . . . πk)
∣∣ g(N (π1 . . . πk)

X

)

=
∑

N (π1)>X1/u

. . .
∑

N (πk)>X1/u

∣∣S1(X3 + 3X,π1)
∣∣ . . . ∣∣Sk(X3 + 3X,πk)

∣∣ , (4.4.1)

where Sj(X3 + 3X,πj) = S
(
(π1 . . . πj−1πj+1 . . . πk)−1(X3 +X), πj

)
, and x−1 denotes an

inverse of x modulo the number given by the context.
In order to apply Proposition 4.2, we need to restrict the range of each variable πj . this can be

realized for example by defining

αj =
1
u 2j

+
2j − 1
3 2j

,

and, for j = 2, . . . k, the sets

Pj = {Xαk−j 2n : n > 0, Xαk−j 2n 6 Xαk−j+1 .

Then

Xαj 6 Pj 6 Xαj+1 , ∀Pj ∈ Pj .
Moreover, if we consider only the Sj(X3 + 3X,πj) whose angle θj belongs to I = [0, ξ] ∪ [π −
ξ, π], then we have

Sj(X3 + 3X,πj)
N (πj)1/2

= 2 cos θj > 2 cos ξ, ∀j. (4.4.2)

To simplify notations, write

µ(ξj) =
∑
π1

∑
P26π2<2P2

. . .
∑

Pk6πk<2 Pk
θj∈I

g

(
N (π1 . . . πk)

X

)
, (4.4.3)

and

µ(ξ) =
∑
π1

∑
P26π2<2P2

. . .
∑

Pk6πk<2Pk

g

(
N (π1 . . . πk)

X

)
. (4.4.4)

Then, from (4.4.1), we obtain

∑
π|c⇒N (π)>X1/u

∣∣S(X3 + 3X, c)
∣∣ g(N (c)

X

)
>
∑
P2∈P2

. . .
∑
Pk∈Pk

µ(ξ1 ∩ . . . ∩ ξk)

>
∑
P2∈P2

. . .
∑
Pk∈Pk

(µ(ξ1) + . . . µ(ξk)− (k − 1)µ(ξ)) . (4.4.5)
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We shall estimate the quantity µ(ξ) by the prime number theorem, and the µ(ξj) by Proposi-
tion 4.2:

µ(ξj) =
∑
π1

∑
P26π2<2P2

. . .
∑

Pk6πk<2 Pk
θj∈I

g

(
N (π1 . . . πk)

X

)
=
∑
π1

∑
c

θπ1,c∈I

g

(
N (π1 c)
X

)
f(c),

where we define

f(c) = Card ({(π2, . . . , πk) : c = π2 . . . πk and Pi 6 πi < 2Pi ∀2 6 i 6 k}) .

When applying Proposition 4.2, one sees that the rest term is bounded by X log−2X as soon as
k > 3. Actually, considering large k do not improve the result. Therefore, assuming u > 3, we fix
k = 3, and obtain from Proposition 4.2

µ(ξj) = µST (I)µ(ξ) +O
(

X

log2X

)
. (4.4.6)

Inserting (4.4.6) in (4.4.5) gives

∑
π|c⇒N (π)>X1/u

∣∣S(X3 + 3X, c)
∣∣ g(N (c)

X

)
>
∑
P2∈P2

∑
P3∈P3

(3µST (I)− 2) µ(ξ) +O
(

X

log2X

)
.

The prime number theorem and a partial summation give

∑
P2∈P2

∑
P3∈P3

µ(ξ) =
∑
π1

∑
Xα26π2<2Xα3

∑
Xα36π3<2Xα4

g

(
N (π1 . . . πk)

X

)

=
∑

Xα26π2<2Xα3

∑
Xα36π3<2Xα4

ĝ(1)
X

N (π2)N (π3) logX

(
1 +O

(
logX
X

))
.

Finally, the formula (see [27], (15) p. 150)∑
N (π)6X

1
N (π)

= log logX +O(1)

shows that ∑
π|c⇒N (π)>X1/u

∣∣S(X3 + 3X, c)
∣∣ g(N (c)

X

)
� (3µST (I)− 2) Ĝ(1)

X

logX
.

By choosing ξ such that µST (I) = 2
π

∫ ξ
0 sin2 θ dθ > 2

3 , one concludes the proof of Theorem 4.2
p. 116; thereby we have proved our main theorem of this chapter, namely Theorem 4.3 p. 116.
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Abstract

In this thesis work, we study the problem of the equidistribution of finite exponential sums. These
sums possess an individual bound, and it is therefore natural to study the distribution of the nor-
malized sums. More precisely, we deal with the case of Kloosterman sums twisted by the Legendre
symbol of order 2 and 3. The first case leads to the so-called Salié sums, and the second case leads
to cubic exponential sums. We use the theory of metaplectic forms to study the behavior of these
sums, and analyze in detail the contribution due to the cubic theta functions. We generalize the
work of Livné and Patterson in two directions; the first problem is to obtain a trace formula and
the second to work with metaplectic forms of any level. Then we develop a sieve method to study
the problem of the equidistribution of cubic exponential sums over the almost prime Eisenstein
integers. We are able to prove that the sign of these sums changes infinitely often, which is a result
in direction of the Sato-Tate conjecture.
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