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Abstract

Accurate virus genotyping and the detection of recombinant strains are of crucial impor-
tance for understanding viral evolution as well as the design of potential vaccines and treat-
ment strategies. A very accurate tool for detecting recombinations in genomic HIV-1 se-
quences is JpHMM (jumping profile Hidden Markov Model). For a given sequence, it
predicts recombination breakpoints and assigns a parental subtype to each segment in be-
tween two breakpoints. In this thesis, modifications and extensions of jpHMM are carried
out to improve the reliability of the recombination prediction, to reduce the runtime of the
program and to allow the analysis of recombinations in circular genomes.

As incorrect subtype assignments or recombination predictions may lead to wrong con-
clusions in epidemiological or vaccine research, it is important to assess the reliability of
the predicted recombination in a particular sequence. For this reason, the output of jJpHMM
is extended to include a tagging of regions where the model is uncertain about the predicted
subtype and an interval estimate for each predicted breakpoint. It is shown that this exten-
sion strongly improves the reliability of the recombination prediction.

To allow an efficient application of jpHMM to large data sets or species with a large
number of subtypes, the complex architecture of the model is substantially modified. Eval-
uation on HIV-1 as well as hepatitis B virus (HBV) data shows that these modifications
lead to a considerable reduction of the runtime of the program.

Furthermore, an extension of jpHMM to detect recombinations in viruses with circu-
lar genomes such as HBV is introduced. Recombination analysis in circular genomes is
usually done on artificially linearized sequences using linear models. Since these models
are normally unable to model dependencies between nucleotides at the 5° and 3’ end of
a sequence, this can result in inaccurate predictions of breakpoints and thus in incorrect
classifications of circular genomes. In contrast, the circular jpHMM takes into account the
circularity of the genome. Its accuracy is evaluated on a large set of recombinant HBV
sequences. Additionally, about 3000 full-length HBV sequences are studied to detect so-
called circulating recombinant forms (CRF). For this, certain criteria for classifying recom-

binant HBV sequences are proposed. Based on these criteria, 17 CRFs can be identified.
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Chapter 1
Introduction

Many of the severest and most infectious diseases are caused by viruses. A well-known
example is the Aquired Immuno Deficiency Syndrome (AIDS) that is caused by the human
immunodeficiency virus (HIV). It is estimated that the global AIDS pandemic has claimed
25 million deaths world-wide [100] since AIDS has been reported for the first time in 1981
[13]. The estimated number of people living with HIV in 2008 was 33.4 million, among
whom about 2.7 million have become infected in 2008. Up to now, no effective vaccine
against HIV has been found. The development of antiretroviral drugs to slow down the
course of the disease has lead to a decline of the morbidity and mortality of HIV infections
[70] but the number of people dying because of AIDS-related illnesses is still very high
(about two million in 2008 [100]).

One of the major obstacles for the design of antiviral drugs and vaccines is the high
genetic variability of viruses [38]. Besides mutation, viral evolution is driven by recombi-
nation of viruses from different clades or subtypes. Recombination can occur as a conse-
quence of a superinfection with at least two different subtypes and lead to so-called inter-

subtype recombinants [24].

Recombination in HIV and HBV

Two types of HIV, named HIV-1 and HIV-2, are known to exist. HIV-1 is classified into
several groups that arose due to independent cross-species transmissions from chimpanzees
and gorillas (section 2.1). One of these groups, called group M, is mainly responsible for
the global HIV pandemic. It is divided into nine genetically distinct subtypes, A-D, F-
H, J and K, whereas some of them have been further subdivided into sub-subtypes [80].
Recombination among these subtypes is very common [32]. A recombinant form that has

been identified in at least three epidemiological unlinked individuals is called a circulating

1



2 Chapter 1. Introduction

recombinant form (CRF). Up to now, 48 CRFs have been identified [49] and the number is
increasing rapidly. It is estimated that about 18 % of all infections worldwide are associated
with CRFs [30]. In addition to CRFs, a large number of recombinant forms identified in
only one individual exists. These recombinant forms are called unique recombinant forms
(URF).

Besides HIV, we study recombinations in genomic sequences of the hepatitis B virus
(HBV). Chronic hepatitis B infection can lead to serious illness, such as liver cirrhosis
and hepatocellular carcinoma, as well as death. It is estimated that more than two billion
people worldwide have been infected with HBV [102], among whom about 360 million
are chronically infected. For HBV, eight different genotypes, A-H, have been classified
(section 2.1). For most of them, several subgenotypes have been defined. Recently, two
further putative genotypes, tentatively named I and J, have been identified, which are still
subject of debate. Also in HBV, recombination among genotypes is very common. In
contrast to HIV-1, recombinants are incorporated in the classification system of genotypes
and subgenotypes on the basis of sequence similarity [17, 96, 1]. Thus, recombinant forms
are not distinguished from pure (sub)genotypes which confounds the exact definition of

pure genotypes.

Importance of accurate genotyping and recombination detection

HIV subtypes and HBV genotypes (Figs. 2.1 and 2.2, section 2.1) are unevenly distributed
throughout the world [58, 48]. For example, HIV-1 subtype C accounts for about 50% of
HIV infections worldwide [30]. In some geographic regions even recombinant forms, such
as CRF02_AG, arecombinant of subtypes A and G, have become the most prevalent strains.
Possible reasons for this uneven distribution may lie in the "fitness" of viral strains, such
as, for example, replicative fitness, transmissibility, or fitness in terms of disease progres-
sion and sensitivity to antiretroviral therapy [99, 65, 76]. How subtypes or recombination
exactly influence such biological features has, however, not yet been understood.

Also in HBV, the understanding of the role of genotypes and recombination in the out-
come of a HBV infection is limited. Some genotypes, for example, appear to be associated
with a higher risk of developing hepatocelluar carcinoma or a higher severity of chronic
HBYV than others [52, 59]. In Germany, HBV genotyping is recommended before starting
a certain antiviral therapy [16].

Thus, accurate genotyping and the detection of recombinant strains are of crucial im-
portance for getting insights into molecular epidemiology and viral evolution as well as for

understanding the influence of genetic diversity on clinical outcomes.



Recombination detection in viral sequences with jpHMM

A large variety of programs for recombination analysis in viruses has been developed dur-
ing the last years [78] (section 2.2). One of the most accurate methods in detecting recom-
bination breakpoints in HIV-1 sequences is jJpHMM [87, 109]. jpHMM (jumping profile
Hidden Markov Model) is a probabilistic model that we developed during my diploma the-
sis [84] to compare single nucleotide sequences to a given multiple alignment of a sequence
family. It was applied to detect recombinations in genomic sequences from HIV as well as
hepatitis C virus (HCV).

A detailed description of the jpHMM approach can be found in section 2.2. According
to this, given a partition of the multiple sequence alignment into subclasses, called subtypes,
each subtype is modeled as a profile Hidden Markov Model (profile HMM) [43, 21]. In
addition to the usual transitions within a profile HMM, transitions, called jumps, between
the profile HMMs for different subtypes are allowed (for more details see section 2.2 and
Figs. 2.3 and 2.4). To these jumps, a jump probability is assigned. As for other HMMs,
the alignment of a query sequence to the given sequence family is then defined by the most
probable path through the model generating the sequence, allowing jumps between the
different subtypes. This alignment is called the jumping alignment of the query sequence
to the given alignment. The most probable path is called the Viterbi path [101] and is
determined with the well-known Viterbi algorithm. Positions of jumps between different
subtypes define recombination breakpoints.

JpHMM was evaluated on real virus genome sequences as well as simulated recombined
genome sequences [87]. Comparing single representative HIV-1 sequences, the recombi-
nation breakpoints identified by jpHMM were found to be significantly more accurate than

breakpoints defined by methods that are traditionally used.

Aims of this thesis

The aim of this thesis is to improve the jJpHMM recombination prediction in terms of the
reliability of the predicted subtypes and breakpoints. Furthermore, the program should be
modified and extended to reduce the runtime and to make it applicable to other kinds of

species. In the following, a broad outline of the concepts is given.
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Reliability of the recombination prediction

As incorrect subtype assignments or recombination predictions may lead to wrong conclu-
sions in epidemiological or vaccine research, it is always important to know how reliable
the predicted parental subtypes and breakpoint positions in a particular sequence or a par-
ticular region of a sequence are. For example, a breakpoint that is located in a conserved
genomic region cannot be determined precisely by JpHMM. The position of the predicted
breakpoint within this conserved region is chosen somehow arbitrarily by the model. Ad-
ditionally, it is possible that, in a certain region of the sequence, two different subtypes
are equally likely to be the parental subtype. But, since only one of the subtypes can be
predicted with the model, one of the potential parental subtypes remains undetected. For
this reason, the output of jpHMM is extended to include a tagging of regions where the
model is uncertain about the predicted parental subtype and an interval estimate for each

predicted breakpoint in addition to predicting its precise position (section 3.1).

Reduction of the runtime of jpHMM

Currently, more than 2, 300 full-length and more than 330, 000 fragmental HIV-1 sequences
are available in the Los Alamos HIV sequence database [49] and the number is increasing
rapidly. These sequences are subject of systematic resubtyping to enable a better under-
standing of the dynamics of the global HIV-1 epidemic and the role of recombination.
Leading HIV experts from the Los Alamos National Laboratory (LANL) already ana-
lyzed, in close collaboration with us, more than 9,400 HIV-1 sequences from three epi-
demically important regions using jpHMM among other tools [108]. For 4.9% of these
sequences, subtype assignments were different from the ones published in the original lit-
erature, demonstrating that a careful reclassification is necessary. Also for other viruses or
species, the amount of data will increase rapidly due to advanced sequencing techniques.
The current average jJpHMM runtime on a desktop PC for HIV-1 sequences is > 10
minutes per sequence [87] being a consequence of the very large number of states in the
underlying HMM. This is too time-consuming for such large-scale studies. Therefore, a
method is developed that restricts the search space of the Viterbi algorithm and thus reduces

the runtime and memory of JpHMM (section 3.2).

Application of jpHMM to other species

During the development of JpHMM, researchers from other fields approached us with the
request to adapt jpHMM to other species. Two major concerns were the identification of



chimeras in 16S rRNA and the recombination detection in circular genomes such as HBV.

Sequence families with many subtypes - modification of the model architecture

Comparative analysis of 16S rRNA is the ’gold-standard’ for the identification and phylo-
genetic classification of bacteria ([25], reviewed in [105]). But in case of studying mixed
bacterial populations, the analysis of 16S rRNA can be hampered by chimeric artifacts of
different species that can be generated during PCR amplification [51, 39]. To avoid false
identification of chimeric sequences as novel taxa [28] or other distortions in bacteria pop-
ulation studies, the detection of these chimeric sequences is very important. Also, it is
important to identify the "parental” species a chimeric sequence is composed of. But, de-
pending on the examined taxonomic rank, e.g. phyla or families, the number of parental
species taken into consideration can be very large, even comprising several hundreds. The
current version of JpHMM is not applicable to such big sequence families due to the com-
plexity of the model which is determined by the number of jumps between subtypes in the
model. In the current implementation, the number of jumps per column is quadratic in
terms of the number of subtypes. In section 3.3, a modification of the jpHMM architec-
ture that reduces the number of jumps in the model to be linear in terms of the number of
subtypes instead of being quadratic is presented. This modification can also be useful in
other applications such as the detection of recombinations between sub-subtypes, of which
the number can be very high as one can see for HBV where 35 subgenotypes have been

identified up to now.

Recombination detection in circular genomes

Sequence analysis of circular genomes differs from the analysis of linear genomes. In
linearized sequences of circular genomes, dependencies between the 5’ and the 3’ end of
the sequence exist. Such dependencies cannot be modeled with a /inear model like jpHMM
as linear models artificially introduce a breakpoint at a certain position in the genome that
does not exist in reality. This problem also affects recombination detection in circular
genomes: If a breakpoint is located very close to the 5’ or the 3’ end of the sequence the
recombination segment at the end of the sequence may be too short to provide enough
information for a clear distinction of the subtypes. In this case, the breakpoint would
probably be missed since the information about the nucleotide composition at the other
end of the sequence is not taken into account. Additionally, such a breakpoint is predicted
implicitly at the chosen origin for the sequence coordinates if the two subtypes predicted

at both ends of the sequence are different. In section 3.4, an extension of jpHMM for
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its application to viruses with circular genomes is presented. It predicts recombinations
without assuming a particular origin for the sequence coordinates and thus is not biased
against recombination breakpoints near the chosen origin. To our knowledge, this is the first
approach for recombination detection in circular genomes explicitly taking into account the

circularity of the genome.

Proposal for a classification system for recombinant forms of HBV

For HIV-1 and HCV, a well-defined nomenclature exists, clearly distinguishing between
pure subtypes and recombinant forms [80, 46]. For HBV, the current classification system
is only based on sequence similarity resulting in the classification of recombinant forms
as genotypes or subgenotypes. But, for recombination detection tools, a clear definition
of pure genotypes is necessary to detect further recombinant forms of known genotypes.
Assigning a recombinant form of two genotypes as a subgenotype of one of these genotypes
makes it impossible for these tools to distinguish between these two genotypes in further
analyses.

In a large-scale study, about 3000 complete HBV genome sequences are evaluated with
the circular version of jJpHMM to define circulating recombinant forms of HBV (section
5.7.4). The aim is to identify recombinant forms that stem from independent recombination
events and have been established in the population. For this purpose, certain criteria for

classifying recombinant sequences are proposed.

Revision of the jpHMM source code

In addition to all modifications of jpHMM, main parts of the original jpHMM source code
have been rewritten to provide an object-oriented C++ program that is easy to use and to
be modified or extended by other users (section 4.1). Furthermore, webserver enquiries are

now managed using the resource management system Sun Grid Engine (SGE) [26].



Structure of this thesis

In chapter 2, first, an overview of the biological background on HIV and HBV, including
the genetic variability and recombination mechanisms, is given (section 2.1). Then, existing
recombination detection tools are presented and the jJpHMM approach is described (section
2.2).

In chapter 3, the methods that have been conceived during this thesis are described,
starting with the extension of the jpHMM output to include a tagging of regions with un-
certain parental subtype predictions and interval estimates for breakpoints (section 3.1).
This is followed by a description of the restriction of the search space of the Viterbi algo-
rithm in jJpHMM (section 3.2). The modification of the jpHMM architecture that reduces
the number of jumps in the model to be linear instead of quadratic in terms of the number of
subtypes is described in section 3.3. In section 3.4, a jpHMM for recombination prediction
in circular genomes is presented.

The new implementation of jpHMM and its extensions are described in chapter 4, in-
cluding the input and output format as well as the webserver.

In chapter 5, the results of the methods developed in this thesis are presented and dis-
cussed. First, the selection of a suitable background alignment (section 5.1) and the esti-
mation of the jJpHMM parameters for the application of jpHMM to HBV genomes (section
5.2) are described. The accuracy of the jpHMM recombination prediction including uncer-
tainty regions and breakpoint intervals is evaluated in section 5.3. In sections 5.4 and 5.5,
the quality of different modifications of jJpHMM is assessed. The runtime of all jpHMM
versions is compared in section 5.6. In section 5.7, first, the accuracy of the circular ver-
sion of jJpHMM for HBV is evaluated. Then, this method is applied to classify all available
complete genome sequences of HBV, and CRFs of HBV are defined.

The criteria that we propose to classify recombinant forms of HBV and conceivable ap-
proaches to answer the question when the recombination takes place during the replication

cycle of HBV are discussed in chapter 6.






Chapter 2

Background

2.1 Viruses

This section will give an overview of the biological background of two viruses that have
been examined in this thesis, HIV (subsection 2.1.1) and HBV (subsection 2.1.2). Besides
a short introduction into the structure of the genomes and the life cycles, the genetic diver-
sity of the viruses is presented and current discussions about the classification system and

nomenclature for these viruses are portrayed.

2.1.1 HIV

HIV belongs to the genus Lentivirus in the family of Retroviridae. The estimated number
of people living with HIV in 2008 was 33.4 million [100], among whom about 2.7 million
have become infected in 2008. HIV causes the Aquired Immuno Deficiency Syndrome
(AIDS) and it is estimated that in 2008 two million people worldwide died due to AIDS-
related illnesses. The most heavily affected region by HIV is Sub-Saharan Africa where
about 71 % of all new HIV infections in 2008 occurred, and about 22.4 million people are
estimated to be infected with HIV. In some African countries like Botswana, Lesotho and

Swaziland, the estimated HIV prevalence is higher than 20 %.

2.1.1.1 Genome

The HIV genome is a single-stranded RNA genome that has a length of approximately
9,500 nucleotides (nt). It encodes nine proteins: two structural proteins called gag and
env, an enzymatic protein called pol, two regulatory proteins called tat and rev, and four
accessory proteins called vif, vpr, vpu and nef. The structure of the HIV genome can be

seen in Figure 4.3 (p. 73).
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2.1.1.2 Replication

Retroviruses replicate via reverse transcription of their RNA genome. After entering the
cell, the single-stranded RNA genome is transcribed into a double-stranded DNA using the
reverse transcriptase (reviewed in [64]). This double-stranded DNA is then integrated into
the host genome and replicated as a part of it. New genomic RNAs are synthesized from
this integrated DNA.

2.1.1.3 Types, groups, subtypes and sub-subtypes

Two types of HIV, named HIV-1 and HIV-2, are known. HIV-2 is restricted primarily to
West Africa [79]. HIV-1 is phylogenetically divided into three groups, called M (main),
O (outlier) and N (non-M/non-0O), that arose due to independent transmissions of simian
immunodeficiency virus (SIV) from chimpanzees and gorillas into humans [89]. Recently,
a new HI virus has been identified. It is closely related to gorilla SIV and it is proposed to
designate a new HIV-1 group P [73].

Viruses of group M dominate the global HIV epidemic and are divided into 9 geneti-
cally distinct subtypes, A-D, F-H, J and K, whereas some of them have been further sub-
divided into sub-subtypes (A1, A2, F1, F2) [80]. This classification system is based on the
phylogenetic distance of the viruses and has grown historically. For example, subtypes B
and D have been defined as two different subtypes, but their phylogenetic distance corre-
sponds rather to that of two sub-subtypes [80]. CRFO1_AE (see section 2.1.1.4 "Genetic re-
combination" for the description of CRFs) was initially classified as subtype E, but later its
recombinant structure was detected. Up to now, no complete genome sequence of subtype
E has been detected, so CRFO1_AE contains the only information of subtype E (http://
www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html#CRFO01).

2.1.1.4 Genetic recombination

Among these subtypes, recombination is very common [32]. Recombinant forms with
an identical mosaic structure that have been identified in at least three epidemiological
unlinked individuals, define a circulating recombinant form (CRF). Up to now, 48 CRFs
and a large number of unique recombinant forms (URF), i.e. recombinant forms that have
only been identified in one individual, have been identified. A list of known CRFs can be
found at the LANL HIV sequence database [49] at
http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html.


http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html#CRF01
http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html#CRF01
http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html
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2.1.1.5 Mechanism of recombination

Each retroviral particle contains two copies of the genomic RNA. If a cell is infected with
two different HIV strains, two genetically different RNA copies can be co-packaged in one
virion. If this heterozygous virion subsequently infects a new cell, strand-switching of the
reverse transcriptase between these two RNA templates during the DNA synthesis can lead

to a recombination of two subtypes (reviewed in [64]).

2.1.1.6 Geographic distribution of subtypes and CRFs

The HIV-1 subtypes and CRFs are unevenly distributed throughout the world (Figure 2.1).
For example, the most prevalent subtype in Europe and North America is subtype B, while
in South-East Asia subtypes B and C and B/C recombinants are predominant [58]. The
highest genetic diversity can be found in Central West Africa, where all subtypes and many
CREFs exist. In this geographic region, CRF02_AG is the most prevalent strain.

Subtypes A, B, C, and D, and the two CRFs CRFO1_AE and CRF02_AG dominate
the global epidemic. Hemelaar er al. [30] estimated that in 2004, subtype C accounted
for about 50 % of all HIV-1 infections worldwide, and that about 18 % of all infections
worldwide are associated with CRFs. Subtypes F and G have a low global prevalence but
they are involved in circulating recombinant forms such as CRF12_BF and CRF13_BG or
CRF02_AG [58].

2.1.1.7 Recombinants versus subtypes

The HIV classification system of subtypes and CRFs has grown historically. Recently,
Abecasis et al. [2] has hypothesized that subtype G is a circulating recombinant form in-
cluding subtypes A and J and a putative subtype G parent instead of being a pure subtype.
They also found no evidence for recombination within CRF02_AG which was originally
classified as a CRF. This hypothesis was refuted in [108] on the basis of large-scale subtyp-
ing analysis. This discussion shows that the classification of HIV sequences into subtypes
and CRFs has not been completed yet and that accurate HIV classification methods are

needed to understand the evolutionary history of HIV.
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Figure 2.1: Geographic distribution and prevalence of HIV subtypes and CRFs. From
[58].

2.1.2 HBV

HBYV belongs to the genus Orthohepadnavirus in the family Hepadnaviridiae. 1t is esti-
mated that more than two billion people worldwide have been infected with HBV [102],
among whom about 360 millions are chronically infected with HBV. Chronic hepatitis B
infection can lead to serious illness, such as liver cirrhosis and hepatocellular carcinoma, as
well as death. A mathematical model developed by Goldstein et al. [27] estimated 620.000
deaths by HBV-related diseases for the year 2000.

2.1.2.1 Genome

The hepatitis B virus has a partially double-stranded, circular DNA genome with a length
of approximately 3,200 bp. The exact length of the genome depends on the genotype
(section 2.1.2.3, "HBV genotypes") and ranges from 3, 182 bp (genotype D) [68] to 3, 248
bp (genotype G) [95]. The genome encodes four partially overlapping open reading frames:
the surface (S), the core (C), the polymerase (P) and the X (X) gene.
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2.1.2.2 Replication

Similar to many retroviruses like HIV, HBV replicates through reverse transcription of a
RNA intermediate which is called pregenomic RNA (pgRNA) [97]. After the infection of
a hepatocyte, the partially double-stranded genome is transported to the nucleus where it
is repaired to form a covalently closed circular DNA (cccDNA) by completing the partial
plus strand. The cccDNA is then transcribed by the RNA polymerase and the pgRNA is
produced. In the cytoplasm, the pgRNA is encapsidated along with the viral polymerase.
Within this nucleocapsid, reverse transcription of the pgRNA takes place producing the
minus strand of the DNA. The partially double-stranded genome is then generated by the
synthesis of the plus strand from the minus strand. From these nucleocapsids, either new
virions can be formed, that can infect new cells, or the genome is delivered to amplify the
pool of cccDNA in the nucleus [88, 7, 36].

2.1.2.3 Genotypes and subgenotypes

Eight genotypes of HBV, named alphabetically A-H, have been identified. The classifi-
cation of HBV viruses into genotypes is based on the divergence of complete nucleotide
genomes. In Okamoto ef al. [68], firstly the four genotypes A, B, C and D were defined
on the basis of a sequence divergence of at least 8.0 %. The threshold of 8.0 % sequence
divergence became standard for genotype classification, and four further genotypes, E and
F [67, 66, 63], G [95] and H [6] have been identified. In 2008, Kramvis ef al. demon-
strated, on the basis of phylogenetic analysis and pairwise comparisons of 670 complete
HBV genomes, that a nucleotide divergence > 7.5 % can be used as a criterion for the
classification of HBV genotypes [41].

Recently, two further putative genotypes, tentatively named I and J, have been identi-
fied. Sequences of genotype I have been identified as recombinants of genotypes A and C
[29, 107] or A, C and G [34, 69], and are defined as a new genotype on the basis of the
mentioned criterion of a sequence divergence > 7.5 %. Until now genotype J has only been
isolated in one patient from Japan [98].

For genotypes A - D and F, several subgenotypes (A1-AS, B1-B7, C1-C5, D1-D5
and F1-F4) have been identified (Reviewed in [48]) on the basis of a nucleotide diver-
gence higher than 4 % and lower than 7.5 %. This number is still increasing, e.g. recently,
subgenotypes B8, C6 and C7, D6, D7 and D8 [62, 12, 55, 60, 1] have been proposed.
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2.1.2.4 Genetic recombination

Recombination among HBV genotypes or subgenotypes is very common. It probably oc-
curs during coinfection with different HBV genotypes, but the exact mechanism of recom-
bination is not yet known.

Up to now, recombinants have been observed among all genotypes except genotype
H. A study of Simmonds and Midgley [90] on all published complete genome sequences
of HBV, available in October 2004, revealed 24 phylogenetically independent recombinant
forms. All detected recombinant forms are recombinations of two genotypes. Most of them
have two recombination breakpoints, but also four and six breakpoints have been observed.
Additionally, recombinations with unknown genotypes as well as recombinations between

human and primate sequences have been found.

2.1.2.5 Mechanism of recombination

The mechanism of intergenotype recombination has not been understood yet. Several hy-
potheses are conceivable [61]. If recombination takes place during replication, it might
occur during reverse transcription of the pregenomic RNA as a result of a jump of the viral
polymerase from one molecule to another. But, unlike retroviruses such as HIV, the re-
verse transcription of HBV takes place inside the nucleocapsid and it is thought that only
one pregenomic RNA and the viral polymerase are encapsidated at the same time. Recom-
binant strains could also arise from homologous recombination [3] between two cccDNA
molecules from different HBV genotypes, or during the synthesis of the pregenomic RNA
by a jump of the RNA polymerase from one cccDNA molecule to another.

Therefore, it is not yet known if recombination occurs when the HBV genome is present
in a circular (as cccDNA or partially double-stranded DNA) or in a linear form (as prege-
nomic RNA). Homologous recombination would always lead to two recombination break-
points, whereas recombination during the synthesis or the reverse transcription of the prege-
nomic RNA results in an artificial recombination breakpoint at the end of the pregenomic
RNA (in the case that an odd number of breakpoints is introduced), and thus at the position
in the circular genome where both ends of the minus strand are linked. See Figure 2 in [7]

for the organization of the HBV genome.

2.1.2.6 Geographic distribution of (sub)genotypes

The HBV genotypes are distributed in distinct geographic regions (Figure 2.2). In Eastern
Africa, genotype A predominates HBV infections with a prevalence of 93 % whereas in

Western Asia, it is genotype D with a prevalence of 94.8 % [48]. In all other regions, a
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variety of genotypes can be found. In Europe and North America, all eight genotypes A-H
have been identified, with A and D being the predominant genotypes in Europe. In East
and South-East Asia, genotypes B and C are the most prevalent genotypes.

In some geographic regions, recombinant forms have become the predominant strain.
For example, in Tibet, the dominant HBV strain is a recombinant form of genotypes C and
D, defined as a subgenotype of genotype C [17]. One of the most wide-spread recombinant
forms is a recombinant of genotypes B and C circulating in East Asia which is defined as
subgenotype B2 [9, 96].

i
‘
GQA

HBsAg HBV/A 1 HBV/E
>8% HBV/B [l HBV/F
2-7%|| Il HBV/C I HBV/H
>2% ||[CJHBV/D Wl HBV/G

Figure 2.2: Geographic distribution of HBV genotypes. From [48].

2.1.2.7 Problematic genotype definition

Genotyping based on certain genomic regions instead of complete genomes Geno-
typing of HBV sequences (e.g. [15]) and the definition of new subgenotypes of HBV (e.g.
[62, 55]) is often based on phylogenetic analysis of the S gene and/or the precore/core
gene instead of the complete genome sequence. This had been suggested by Norder et al.
[67] in 1992, as their results of a classification based on the S gene were consistent with
the results of a previous classification on the basis of complete genome sequences. But,
depending on the location of recombination breakpoints, genotyping methods that target
only a certain genomic region may fail to detect recombinations [42]. This can lead to an
incorrect prediction of recombinant sequences as pure (sub)genotypes. Or more complex

recombinants may remain undetected.
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Recombinants versus (sub)genotypes In contrast to the nomenclature for HIV, the def-
inition of circulating recombinant forms in HBV is not common. New recombinant forms
are usually defined as new subgenotypes of a known genotype, e.g. subgenotype D8 which
is a recombinant of genotypes D and E detected in Niger [1], or the widespread subgeno-
type B2, a recombinant of genotypes B and C [96]. Or they are defined as a new genotype

as in the above-mentioned case of genotype I.

Nomenclature The current classification system of HBV genotypes and subgenotypes
has already been subject of debate [47, 48, 83]. For example, it was proposed that new
(sub)genotypes should only be defined on the basis of complete genome sequences and
that recombinant forms should be defined as new subgenotypes instead of new genotypes
as it happened in the case of genotype I. Also, in contrast to HIV, there is no criterion for
the number of epidemiologically unlinked sequences required to define a new genotype or
subgenotype.

Purdy et al. [75] proposed a different classification system which includes the clustering
of genotypes into three higher-order hierarchical groups: group I comprising genotypes A-
E and G, group II comprising genotypes F and H, and a hypothetical group III. They also
postulate genotype G being a recombinant instead of a pure genotype. This hypothesis is
supported by Simmonds and Midgley [90] as well.

An accurate classification of HBV sequences into genotypes and recombinants is in-
dispensable for future analysis. The definition of recombinants as (sub)genotypes, as, for
example, in the case of subgenotype B2 or genotype I, may lead to several problems for
recombination detection tools such as jpHMM. E.g. in the precore/core region of the HBV
genome, it might be impossible for these tools to distinguish between genotype C and
subgenotype B2, i.e. between genotypes C and B, if B2 is part of the analysis.



2.2. Methods for recombination detection 17

2.2 Methods for recombination detection

The accurate classification of viral genomes and the identification of recombinants, includ-
ing precise breakpoint definitions, is important in many aspects, such as for epidemiological
monitoring, as well as the design of potential vaccines and treatment strategies. For this
challenging task, a wide variety of programs for recombination analysis in viruses has been

developed during the last years [78].

2.2.1 Overview

The most widely used tool is Simplot [53], which has been applied to many viruses such as
HIV-1 and HBV. For a query sequence it provides a graph reflecting the similarity of the se-
quence to a panel of reference sequences and predicts recombination breakpoints. Simplot
is only available for Windows. RIP 3.0 (http://www.hiv.lanl.gov/content/
sequence/RIP/RIP.html) is a program for detecting recombinations in HIV-1 se-
quences that was developed at the Los Alamos National Laboratory. It identifies recombi-
nation in a query sequence by calculating its similarity to a background alignment of HIV-1
sequences of different subtypes in a sliding window. Depending on how significantly bet-
ter the "best matching’ background sequence is than the second best match, "uncertainty
regions’ in the recombination prediction can be defined. RDP3 [56] is another program
developed for Windows that is often used for recombination analysis in different viruses.
It uses a range of recombination detection tools to identify recombinant sequences within
a given set of aligned sequences. Besides the location of breakpoints, parental sequences
of recombinants are determined among the given sequences. A very good visualization
tool for locating recombination breakpoints (or breakpoint intervals) in a query sequence is
provided by Recco [57]. It identifies the parental sequences within a given set of sequences
and indicates robust sequence positions.

jpHMM [87, 109] is a method that we developed during my Diploma thesis [84] to
compare a query sequence to a given multiple alignment of a sequence family divided into
different subfamilies. It turned out to be a very accurate tool for recombination detection
in HIV-1 and hepatitis C virus (HCV) genomes. Based on comparing single representative
HIV-1 sequences, it has been shown that recombination breakpoints identified with jpHMM
are far more accurate than breakpoints predicted with methods that are traditionally used
such as Simplot and RDP [87].


http://www.bioinf.manchester.ac.uk/recombination/programs.shtml
http://www.hiv.lanl.gov/content/sequence/RIP/RIP.html
http://www.hiv.lanl.gov/content/sequence/RIP/RIP.html
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222 jpHMM

In the following section, a short introduction of jpHMM will be given. A detailed descrip-

tion can be found in

A.-K. Schultz, M. Zhang, T. Leitner, C. Kuiken, B. Korber, B. Morgenstern, M. Stanke

A Jumping Profile Hidden Markov Model and Applications to Recombination Sites in HIV
and HCV Genomes

BMC Bioinformatics 2006, 7:265

doi:10.1186/1471-2105-7-265

2.2.2.1 Model

jpHMM is a probabilistic generalization of the jumping alignment algorithm (JALI) pro-
posed by [92, 93] for protein classification and the detection of remote homologs. For
each database sequence, JALI determines the similarity to a given protein family by a local
alignment of the database sequence to a given multiple alignment of the sequence family.
In contrast to other methods like profile hidden Markov models (profile HMMs) [21], JALI
hereby does not take into account the amino acid composition of the single columns in the
alignment but aligns each position of the query sequence locally to one sequence in the
multiple alignment, the so-called reference sequence. The reference sequence can change
within this alignment. Such a change of the reference sequence is called a jump and the re-
sulting local alignment of the query sequence to the multiple sequence alignment a jumping
alignment.

In a profile HMM, each column in the given multiple sequence alignment is modeled
by a match state, that can emit the symbols of the underlying alphabet, e.g. nucleotides,
with a certain probability. For each two successive columns, an insert state exists, allowing
for insertions between the two columns, by emitting symbols of the given alphabet with a
certain probability. Additionally, for each column a mute delete state exists, that does not
emit any symbols, allowing for the deletion of the respective column. States of two suc-
cessive columns are connected by transitions. To these transitions transition probabilities
are assigned. Each query sequence is thought to be generated by a path through the model,
beginning with a special begin state and ending with a special end state. The best known
implementation of profile HMMs is HMMER [31, 21] and the theory behind profile HMMs
1s well described in [20].

In contrast to profile HMMs, JALI takes into account the horizontal information given

in an alignment. By the pairwise alignment of the query sequence to a reference sequence,


http://hmmer.org/
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the relation of neighboring amino acids in a sequence as well as conserved patterns within a
subfamily of sequences are taken into account. Additionally, by jumps within the alignment
information about amino acids in other sequences at the respective position, i.e. vertical
information, is considered. But, nevertheless and in contrast to profile HMMs, vertical
information in terms of the conservation of alignment columns is missing. For example,
mismatches of the query sequence to conserved columns are penalized in the same way
as mismatches to variable columns in the alignment. jpHMM combines the advantages of
both approaches: Assuming that the given sequence alignment is subdivided into different
subfamilies, called subtypes, each subtype in the alignment is modeled as a profile HMM
(described in [20]).

Figure 2.3: Simplified topology of a jpHMM. Each of the k subtypes is modeled as a
profile HMM (dashed box). For clarity, only match states are shown. Transitions within a
subtype and jumps between different subtypes are shown by arrows. From [87].

That is, each column in a subtype, that is a consensus column for this subtype, is mod-
eled as a match state. A match state allows the alignment of a base in the query sequence
to the corresponding column in the subtype with a certain probability. This probability
is called emission probability, and is calculated based on the frequency of the observed
nucleotides in the corresponding column. For each match state, an insert and a delete
state exist allowing for the insertion of a nucleotide between the corresponding and the
successive consensus column and the deletion of the corresponding consensus column, re-
spectively. The emission probabilities of the insert states are also calculated on the basis

of observed nucleotide frequencies. Delete states are mute states and do not emit any nu-
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cleotides. The states are connected by transitions as in standard profile HMMs, to which
transition probabilities are assigned. In addition to these state transitions within a profile
HMM, transitions, called jumps, between the different profile HMMs are allowed at almost
any position in the alignment (Figure 2.3). Thus, the model can jump between states cor-
responding to different subtypes, depending on which subtype is locally most similar to
the query sequence. The model that is achieved by the connection of the different profile
HMMs by jumps is called a jumping profile HMM (jpHMM, Figure 2.4). In addition to
the standard match, insert and delete states, the model has a begin and an end state and
two single insert and delete states at both ends, respectively, allowing for local alignments
(section 3.2.1). In the special case that each subtype consists of exactly one sequence, a
jpHMM corresponds to JALL.

G-
T

G-

Figure 2.4: A toy example of a jpHMM for a multiple sequence alignment with two
subtypes. The first subtype consists of four consensus columns, the second subtype con-
sists of five consensus columns. With each match and insert state a vector is associated
for the emission probability values corresponding to the nucleotides A, C, G and T. Fat
arrows indicate high transition probabilities, thin arrows correspond to low probabilities.
For clarity, some transitions are omitted. From [87].

2.2.2.2 Viterbi algorithm

Like in other HMMs, each sequence S is generated by the model with a certain probability
P(S). Usually, more than one path () through the model, i.e. a sequence of states connected

by transitions, beginning with the begin state and ending with the end state, can generate S.
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The most probable path that generates S is called the Viterbi path and can be determined
with the well-known Viterbi algorithm [101]. The Viterbi path maximizes the conditional
probability P(Q)|.S) which is equivalent to maximizing the joint probability P(Q, S):

Let S = s1,...,s be a query sequence. For each position ¢ = 1,...,[ of the query

sequence S and for each state ¢ in the model

9i(q) is defined as the probability of the prefix sq, ..., s; of S and the most
probable path through the model ending in state ¢ and emitting s, . . ., s;.

9;(q) is called the Viterbi variable of position 7 and state g. Let ¢, , be the probability of a
transition from state ¢’ to state ¢ and e, 5, the probability of emitting nucleotide s; in state g.
The Viterbi variables for all sequence positions 7 = 1, ..., [ and for all states are calculated

recursively:

max 0;,1(¢")tq 4, if q is a delete state,
q/

51 (q) = 2.1)
#(@) €q,51, Max 0;(q' )ty 4, otherwise.
q/

The probability of the most probable path through the model generating .S is

0; = max §;(q). (2.2)
q
The most probable path (Q* through the model that generates S, and thus the jumping
alignment of S to A, is determined by backtracking.

2.2.2.3 Recombination prediction

The jumping alignment of a query sequence S to the given multiple sequence alignment
A determined with the Viterbi algorithm defines the recombination prediction for S: since
each query sequence position is generated by exactly one state of the model and each state
of the model only belongs to one profile HMM, each query sequence position is assigned
to exactly one profile HMM, and thus to exactly one subtype. Positions of jumps between

different subtypes define recombination breakpoints.

2.2.2.4 Runtime and beam-search algorithm

For a query sequence of length [, k£ subtypes in the alignment and 7 states in the model, the
complexity of the Viterbi algorithm is O(lkn) in time and O(In) in space. Obviously, the
number of states in the model, n, depends on the number of subtypes, k. In general, for
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each column, in each subtype three states exist. Thus, for an alignment with m columns,
the model has roughly n = 3km states. Assuming that the length of a full-length query
sequence and the number of columns in the alignment are almost equal, i.e. m =~ [, the
complexity of the Viterbi algorithm can also be described by O(/2k?) in time and O(I*k) in
space. For large genomes, this may exceed the capacity of current computer hardware and
especially require too much runtime [87].

To reduce the search space of the Viterbi algorithm and thus to speed-up the runtime,
the beam-search algorithm was applied [54, 74]. This algorithm is based on the idea to
restrict the search space of the Viterbi algorithm to promising paths and to exclude possible
irrelevant paths. This is achieved by the definition of active states for each query sequence
position. For each position s;, a modified Viterbi variable &;(q) < 6;(¢) is calculated and
stored only for those states ¢ whose modified Viterbi variable is not much lower than the
optimal local solution J; = max, d;(¢). These states are called active states for s; and the

set A; of active states at position ¢ is defined by

Ai = {q|dl(q) > B§},0 < B< 1. (2.3)

The modified Viterbi variable d; (i + 1) at step 7 + 1 needs now only be calculated for
states that can be reached by a transition from a state in A;, i.e. for successor states of states
in A;:

max 0;,1(¢')tyq,  if qis a delete state,
Sia(g) = T4 (2.4)

€q,5e1 TAX 0:(¢ )ty .4, otherwise.

The Viterbi variables of inactive states are set to 0 and do not need to be saved. B is
called the beam-width. It has been set to B = 1072°, which allows for a high accuracy of
JjpHMM as well as a relatively efficient algorithm. On a Linux PC with 3 GB RAM and 3.2
GHz the CPU time for the tested full-length HIV-1 genomic sequences was between 7.2
min (sequence of CRF 12, length = &8, 760 nt) and 13.6 min (sequence of CRF 11, length =
9, 768 nt). The memory the program required was between 1 GB and 1.5 GB.

For fragmental sequences, such a restriction of the Viterbi search space with the above
beam-search algorithm is hardly possible. The reason is that a jpHMM is built for an
alignment of full-length genomic sequences and each path through the model generating a
query sequence must start in the begin state and end in the end state. To allow an alignment
of short fragments that are located at the end of the genome at least one (long) path of
deletes through the model up to the first match of the query sequence to the alignment must
be active in the Viterbi algorithm. Since the probability of such a long path of deletes is

usually very low compared to other paths through the model the beam-search restriction
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cannot be applied in this case because otherwise such a path would be inactive leading
to incorrect alignments of such short sequences. Thus, depending on the length of the
sequence, for short sequences, a much lower beam-width B is chosen allowing a larger
search space of the Viterbi algorithm. For example, the beam-width for HIV-1 sequences
of length < 500 nt has been set to B = 107%,

2.2.2.5 Parameters

A jpHMM has a large number of parameters. For each state in the model, the probabilities
of the transitions to all successor states, i.e. transitions within a profile HMM and jumps
to other profile HMMs, need to be specified. Additionally, for match and insert states,
the emission probabilities of all four nucleotides need to be calculated. The emission and
transition probabilities within a profile HMM are calculated on the basis of observed nu-
cleotides and transitions in the given input alignment respectively. For a match state, the
observed nucleotides in the corresponding column in the respective subtype are taken into
account, for an insert state, the observed nucleotides in the columns between the corre-
sponding and the successive consensus column.

Also, transitions can be observed in the given alignment. Each sequence in the align-
ment defines a unique path through the model. These paths give rise to observed transition
frequencies. For example, two bases in a sequence aligned to two successive consensus
columns define a transition from the match state corresponding to the first of these con-
sensus columns to the successive match state. Pseudocounts are added to all observed
frequencies to avoid probabilities equal to 0:

Let7i = (nq,...,n,) be a vector of observed nucleotides (or transitions) out of a certain
state, with r being the number of emissions (or transitions) and n;, = = 1,...,r, the ob-
served frequency of the ith emission (or transition). Let & = (ay, . . ., a;) be the respective
pseudocounts. Then the probability of the ith emission (or transition) out of this state is

calculated by
n; + o

il + lal

i (2.5)

Jump probabilities cannot be calculated on the basis of observed frequencies, since
jumps cannot be observed in the given multiple sequence alignment. Therefore, a fixed,
empirically derived jump probability jp is used. Since each jump from a state to another
subtype is considered as being equally likely, the probability of such a jump is jp/K, if
jumps to K other subtypes are possible.

The estimation of the JpHMM parameters for HIV-1 is described in detail in [87] and
[84]. The resulting parameters are:
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Pseudocounts for transition probabilities The pseudocounts for the transition proba-

bilities, vyqans, are taken from [104]:

Oltrans  += (OZMM7 amr1, OMD, O, Aar, OpM, aDD)

= (0.794,0.95,0.005,0.333,0.667,0.278, 0.222) (2.6)

Each entry in the vector represents the pseudocount for a certain type of transition, de-
scribed by the indices. For example, ayy is the pseudocount for the calculation of the
transition probability from a match (M) state to an insert (I) state and apy the pseudocount

for the calculation of the transition probability from a delete (D) state to a match (M) state.

Pseudocounts for emission probabilities The pseudocounts for the calculation of the
emission probabilities are estimated as described in [91]. The estimated pseudocounts for

the emission probabilities of the match (M) and the insert (I) states are:

Match states:  demm = (ama, OM.Cy MG, OMT)

—  (0.09,0.05,0.06,0.05) 2.7)
Insert states:  @emy = (aqa, uc, G, QIT)

= (1.01,1.01,1.01,1.01) (2.8)

Here, the indices describe the type of state (M or I) and the nucleotide (A, C, G or T) that

is emitted.

Jump probability The jump probability jp was empirically derived on the basis of re-
combination breakpoints of published CRFs
(http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html):

jp=107° (2.9)

2.2.2.6 Accuracy

jpHMM was evaluated on real virus genome sequences as well as simulated recombined
genome sequences [87]. It has been demonstrated that jpHMM is far more accurate than
competing methods such as Simplot [53] for phylogenetic breakpoint detection. Comparing
single representatives, the recombination breakpoints identified by jpHMM were found to
be significantly more accurate than breakpoints defined by methods that are traditionally

used.


http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html
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2.2.2.7 Availability

For HIV-1 genomes, jpHMM is available online at http: // jphmm. gobics.de [109].
The user can paste or upload either full-length HIV-1 genomic sequences or fragments. In
addition, a command line version of jJpHMM can be downloaded, which can be used for
any virus or other data, if a multiple sequence alignment subdivided into different subtypes

is available. The parameters of the model are provided for HIV-1 and HCV.

The web server has been described in

M. Zhang, A.-K. Schultz, C. Calef, C. Kuiken, T. Leitner, B. Korber, B. Morgenstern,
M. Stanke

jpHMM at GOBICS: a web server to detect genomic recombinations in HI'V-1

Nucleic Acids Research 2006 34:W463-W465

doi:10.1093/nar/gkl255


http://jphmm.gobics.de




Chapter 3

Improvements, extensions and
modifications of jpHMM

jpHMM has been proven to be a very efficient and accurate tool for predicting recombina-
tions in viral genomes. Nevertheless, it is important to develop and improve the model
further. One main aspect is the reliability of the predicted recombination. In section
3.1, a method to verify the predicted parental subtypes and the location of recombination
breakpoints, and, in case, to present alternative solutions, is described. A disadvantage of
jpHMM (section 2.2.2) is the complexity of the Viterbi algorithm. In section 3.2, a method
is described that restricts the search space of the Viterbi algorithm and thus the runtime
of jJpHMM. A modification of the original jJpHMM architecture that reduces the number
of jumps in the model to be linear in terms of the number of subtypes instead of being
quadratic is presented in section 3.3. In section 3.4, a jpHMM for circular viral genomes
is described. Recombination detection in circular genomes is a challenge due to several

reasons. These reasons and possible solutions are demonstrated.

3.1 Uncertainty regions in recombination prediction and

breakpoint intervals

The predicted recombination for a query sequence S is defined by the most probable path
through the model generating S, the Viterbi path. But, since incorrect subtype assignment
or recombination prediction may lead to wrong conclusions in epidemiological or vaccine
research, it is necessary to introduce a measure of the reliability of the predicted recombi-
nation breakpoints and parental subtypes.

A suitable measure for this is the so-called posterior probability for each base of the

27
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query sequence S and each subtype in the given alignment. This quantity denotes that the
base belongs to the subtype in the model. The posterior probabilities are calculated using
the well-known Forward and Backward algorithms. Based on these probabilities, regions
in the query sequence where the model is uncertain about the predicted parental subtype
are tagged and an interval estimate for each predicted breakpoint, i.e. an interval where the
breakpoint can be expected to be located, is defined. These regions are called uncertainty

regions and breakpoint intervals respectively.

Posterior probabilities have also been used in other sequence analysis tools to repre-
sent the degree of confidence in the respective output. For example, in HMMER3, the
latest version of the protein sequence analysis tool HMMER [31, 21], for each sequence
alignment, posterior probabilities are calculated to decide which parts of the alignment are

well-determined or not.
This part of the thesis is published in

A.-K. Schultz, M. Zhang, 1. Bulla, T. Leitner, B. Korber, B. Morgenstern, M. Stanke.
jpHMM: Improving the reliability of recombination prediction in HIV-1

Nucleic Acids Research 2009 37:-W647-W651

doi:10.1093/nar/gkp371

3.1.1 Forward and backward variables

As in other HMMs, a sequence S = sy, ...,s; is generated by the model with a certain
probability P(S). In general, a sequence S can be generated by more than one path )
through the model. For each position © = 1,... [ of the query sequence S and for each

state ¢ in the model

a;(q)  is defined as the probability of emitting the prefix sq,...s; of S
by any path through the model ending in state g at position 7,
«;(q) is called the Forward variable of position i in S and state ¢

Bi(q)  is defined as the probability of emitting the suffix s;,1,...s; of S
by any path through the model starting in state g at position ¢,

Bi(q) is called the Backward variable of position ¢ in S and state ¢


http://hmmer.org
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Then, P(S) = Z a;(q) is the probability of emitting s1, ..., s; by any path through the
q

model.

Both types of variables are calculated with a dynamic programming algorithm, the well-
known Forward and Backward algorithm, respectively. In jpHMM, the Forward variables
are calculated along with the Viterbi algorithm and, to accelerate the computation and
to restrict the search space as described in section 2.2.2.4 for the Viterbi algorithm, the
Forward variables are also only calculated for those states that are defined as active states
by the beam-search algorithm (Eq. (2.3)). That is, for each query sequence position s;, a
modified Forward variable o (i) < (i) is calculated and stored only for states g in the
set A; of active states, determined with the beam-search algorithm. The modified Forward
variable of an inactive state is set to 0 and must not be saved. For position i+ 1, the modified
Forward variable o/, (¢) of a state ¢ is then only calculated for states that are successors

of states in A; (A;,1 if ¢ is a delete state):

Z &y 1(q)tyq,  if qis a delete state,
'€ A;
(9) = Zqﬁi;l Z a(q')ty 4o otherwise. G-
qEA;

The Backward variables are calculated in a separate algorithm and are only required
for the calculation of the posterior probabilities (section 3.1.2). Due to the definition of the
posterior probabilities (Def. (3.3)), the posterior probability of a certain state at a certain
query sequence position is 0, if the Forward or the Backward variable of the respective
position and state is 0. Therefore, the posterior probabilities can only be calculated for
states that are active in the Forward as well as in the Backward algorithm. Thus, for each
query sequence position the Backward variables are only calculated for those states that
are defined as active states for this position in the Viterbi/Forward algorithm. Analogous
to the Forward algorithm, for each position i, a modified Backward variable 3, (i) < 3,(i)
is calculated only for states ¢ € A;, and the modified Backward variables of inactive states
are set to 0. For position i, the modified Backward variable [3/(¢q) of a state ¢ is then only

calculated for states that are predecessors of states in .4, (predecessors of delete states in

AZ)

ﬁ;(Q) = Z tq,q’ﬁz{(q/) + Z tq7q’€q’78i+1ﬁz{+1 (q/) (3.2)

q €A, q € Aiya,
q’ is delete state q’ is non-delete state
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3.1.2 Posterior probabilities
3.1.2.1 Posterior probability of a state

As for other HMMSs, the posterior probability Py i(q) of position ¢ in S and a state q is
the probability that s; is emitted by state g given that the query sequence S is emitted by a
path through the model. That is the probability that the prefix sq, ..., s; is emitted by any
path through the model ending in state ¢, i.e. a;(¢) multiplied by the probability that the
suffix s;,1,...,s;1s emitted by any path through the model, starting in state g at position 7,
i.e. 0;(q), divided by the probability of generating S, P(.S):

ai(q) - Bi(q)

PS) (3.3)

P post,i(Q) -
Using modified Forward and Backward variables (Def. (3.1) and (3.2)) in jpHMM, the

modified posterior probability P, ;(q) of position i in S and a state q € A; is defined by

post,i

_oi(q) - Biq)
> al(q) - Bilg)

qeA;

(3.4)

Obviously, the modified posterior probability of a certain state ¢ at a certain query
sequence position i is 0 if o/ (q) or 3/(q) is 0. Therefore, for all states that are not active
for a certain query sequence position, the modified posterior probability is 0, and thus the
modified posterior probabilities must only be calculated for states in the respective set of

active states.

3.1.2.2 Posterior probability of a subtype

We define the posterior probability Py ;(S) of position i in S and a subtype S as the
probability that s; belongs to subtype S, i.e. s; is emitted by a state belonging to the profile
HMM of S (profile HMM(S)), given that the query sequence S is emitted by a path through
the model. Thus, the posterior probability of a position ¢ in .S and a subtype S is the sum
of the posterior probabilities of all states belonging to the profile HMM of S at position ¢
of S:

Paosi(S) =" Y Puoxild) (3.5)

g€ profile HMM(S)



3.1. Uncertainty regions and breakpoint intervals 31

3.1.3 Uncertainty regions and breakpoint intervals

For each query sequence position and each subtype in the given alignment, the posterior
probability is calculated. Based on these probabilities, firstly uncertainty regions (UR)
in the predicted recombination for the query sequence and secondly interval estimates of
breakpoints, called breakpoint intervals (BPI), are defined (Workflow 3.1).

3.1.3.1 Uncertainty region

If at a certain position i of a query sequence S the posterior probability of the subtype
predicted by jpHMM for this position is lower than a certain threshold 0 < tyr < 1
the prediction for this position is marked as uncertain (Figure 3.1 a). This classification
accounts for the fact that there is a significant (> 1 — tyr) probability that the predicted
subtype is wrong according to the probabilistic model.

a) post. p. b) post. p.
1

tUR

qp
. 1)
2) e— — 2)

Figure 3.1: Two examples for uncertainty regions in predicted recombinations. In both
figures, for each query sequence position (qp), the posterior probabilities (post. p.) of
three subtypes are plotted. tyr marks the posterior probability threshold for the definition
of uncertainty regions. Vertical dashed lines define the extent of uncertainty regions. The
first bar (1) below the plot of the posterior probabilities shows the original recombination
prediction with precise breakpoint positions. The second bar (2) shows the predicted
recombination including uncertainty regions (hatched regions). In a) an uncertainty region
is defined because the posterior probability of the predicted subtype (red) is below tygr. In
b) the region around the predicted breakpoint is not defined as a breakpoint interval since
the posterior probability of a third subtype (blue) is higher than the posterior probabilities
of the subtypes predicted to the left (green) and to the right (red) of the breakpoint.

For uncertainty regions, no parental strain can confidently be determined. But both a
text file with the posterior probabilities for all query sequence positions and all subtypes as
well as a graph of the posterior probabilities are part of the new jpHMM output (see chapter
4, Implementation). Thus, information about which subtypes are most closely related in

these regions is given.
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3.1.3.2 Breakpoint interval

For each predicted breakpoint position (defined by the Viterbi path) the corresponding
breakpoint interval is defined by the interval around the predicted breakpoint position,
where the posterior probabilities of the two subtypes predicted to the left and the right
of the breakpoint are lower than a certain threshold 0 < tgp; < 1, but higher than the
posterior probabilities of all other subtypes (Figure 3.2). The maximum extent of such a
breakpoint interval is limited by the position of the preceding and the successive predicted
breakpoint (if one of the breakpoints does not exist the maximum extent is restricted by
the corresponding sequence end). Therefore, if the posterior probability of the subtype pre-
dicted to the left (to the right, resp.) of the breakpoint does not reach the threshold ¢gp; at
any position within between the preceding and the current breakpoint (between the current
and the successive breakpoint, resp.), the whole interval is defined as an uncertainty region.
This also happens if the posterior probability of a third subtype is higher than the posterior
probability of one of the two predicted subtypes in this region (Figure 3.1 b), to indicate
the possibility of an undetected recombination segment. If the predicted breakpoint is lo-
cated outside of the breakpoint interval defined by the posterior probabilities (Figure 3.2 b)
) the breakpoint is extended to include the predicted breakpoint. The length of a predicted

post. p. post. p.
1

tBPI

Figure 3.2: Two examples for breakpoint intervals in predicted recombinations. In both
figures, for each query sequence position (qp), the posterior probabilities (post. p.) of two
subtypes are plotted. ¢gp; marks the posterior probability threshold for the definition of
breakpoint intervals. Vertical dashed lines define the extent of breakpoint intervals. The
first bar (1) below the plot of the posterior probabilities shows the original recombination
prediction with precise breakpoint positions. The second bar (2) shows the predicted re-
combination including breakpoint intervals (two-color region). In a) a breakpoint interval
around the predicted breakpoint is defined by the region where the posterior probability of
the predicted subtypes (green and red) is below ¢gpy. In b) the original left end (dotted line)
of the breakpoint interval defined by the posterior probabilities of the predicted subtypes
is moved to the left (dashed line) to include the predicted breakpoint position.
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breakpoint interval indicates how precisely the breakpoint can be located reliably. A large
interval, for example, is the consequence of the uncertainty of the model to locate the exact
breakpoint position between two subtypes.

Regions that are initially defined as uncertainty regions (e.g. often close to predicted
breakpoint positions) and secondly defined as breakpoint intervals, are regarded as break-
point intervals and not as uncertainty regions. Due to the order of defining uncertainty
regions and breakpoint intervals (Workflow 3.1), it is appropriate to define tgp; < tyr. The

chosen thresholds are given in chapter 5, Results, section 5.3.
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Workflow 3.1 (Definition of uncertainty regions and breakpoint intervals)

Let S = s1,...,s be aquery sequence. Let S be the set of subtypes and st = st[1,1], st; €
S,i € [1,1], the predicted sequence of subtypes for S. A recombination breakpoint is
usually located between two successive query sequence positions, €.g. ¢ and 7 + 1, which
is notated as i/i + 1. Here, a breakpoint b; describes the breakpoint b; / b; + 1, 1i.e. b;is
the position to the left of the breakpoint. Let B = {by,...,bs, } be the set of all predicted

recombination breakpoints in S.
1. Definition of uncertainty regions

2. Definition of breakpoint intervals:

for each breakpoint b;/b; + 1 define the surrounding breakpoint interval:

(a) definition of the left boundary of the breakpoint interval:
let st[b;] be the subtype predicted to the left of the breakpoint.
Define the position s, bj—1 < 4 < b; in the query sequence where the
posterior probability of st[b;] reaches the threshold ¢gpy,

i.e. Phostiw (5t[bj]) > tgpr, decreasing ijq and starting with e, = b;.

(b) definition of the right boundary of the breakpoint interval:
let st[b; + 1] be the subtype predicted to the right of the breakpoint.
Define the position irgn, b; < irgne < bj41 in the query sequence where the
posterior probability of st[b; + 1] reaches the threshold ¢gpy,

i.e. Pyostigan (5[0 + 1]) > tppr, increasing g and starting with dggne = b; + 1.

IF  (one of these positions djf OF isen cannot be found)
the region remains defined as uncertainty region.
ELSE
check the posterior probabilities of all other subtypes within [if, irigm] :
IF (asubtype S,S # st[b;] and S # st[b; + 1], exists
that has a higher posterior probability than the two predicted subtypes, i.e.
Poost,i(9) 2> Poost.i(5t[bj]) and Poost,i(S) = Ppost,i(st[b; + 1]))

the region is also defined as uncertainty region.
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3.2 Restriction of the search space of the Viterbi algorithm

In the original jJpHMM program, the beam-search algorithm was chosen as method to re-
strict the search space for the Viterbi algorithm. The average runtime of jpHMM including
the beam-search algorithm is about ten minutes for nearly full-length HIV-1 sequences.
For fragmental sequences, the runtime is much higher since the beam-search algorithm has
almost no effect on the search space restriction (section 2.2.2, p. 21).

In the Los Alamos HIV sequence database [49], currently more than 2,300 full-length
and more than 330,000 fragmental HIV-1 genomic sequences are available. There is a
need to reclassify all the available HIV-1 sequences to enable a better understanding of
the dynamics of the global HIV-1 epidemic and the role of recombination. Leading HIV
experts from the Los Alamos National Laboratory already analyzed, in close collabpration
with us, more than 9,400 sequences from three epidemically important regions [108]. For
4.9% of these sequences, subtype assignments were different from the ones published in
the original literature, demonstrating that a careful reclassification of the whole database is
necessary. With the current jJpHMM version, this would obviously take too much time, even
if the program parallely runs on several computers. Therefore, a further acceleration of the
program is necessary. For fragmental sequences, this can relatively easily be achieved by
determining the location of the sequence(s) relative to the reference genome. This will be
described in the following section 3.2.1. In section 3.2.2, an approach for the reduction of
the runtime for full-length as well as fragmental sequences is presented. By a pre-alignment
of the sequence(s) to the given multiple sequence alignment, the search space of the Viterbi

algorithm can be restricted considerably.

3.2.1 Location of the input sequence relative to the reference genome

For fragmental sequences, a reduction of the runtime can be achieved by determining the
location of the query sequence relative to the reference genome. For HIV sequences, this
is done with the HIV Sequence Locator (http://www.hiv.lanl.gov/content/
sequence/LOCATE/locate.html), a tool that finds the start and end position of the
query sequence relative to the reference strain HXB2 (HIV reference genome, GenBank
accession number K03455) [40]. The HIV Sequence Locator is implemented in the web
server application of JpHMM.

Since the HXB2 sequence is included in the HIV-1 multiple sequence alignment, the
start and end position of a query sequence based on HXB2 numbering can easily be mapped
onto alignment columns. The alignment columns corresponding to the start and end po-

sition of the query sequence in the reference genome define the region in the multiple se-


http://www.hiv.lanl.gov/content/sequence/LOCATE/locate.html
http://www.hiv.lanl.gov/content/sequence/LOCATE/locate.html
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quence alignment the query sequence can be aligned to. Such a local alignment is allowed
by two special delete states at the beginning and the end of the HMM, respectively (Figure
2.4). The delete state immediately after the begin state allows for transitions to each match
state in the model, the delete state immediately before the end state can be reached from
each match state. Therefore, a transition from the begin state to each match state and a
transition from each match state to the end state is possible.

In the Viterbi algorithm only states within the given columns are set to be active, i.e.
the Viterbi path that defines the predicted recombination is the most probable path through
this local HMM, beginning in the begin state and ending in the end state, generating the
query sequence. Therefore, for short sequences, this local alignment can result in an im-
mense reduction of runtime and memory, but for full-length sequences no improvement is
achieved. Additionally, within the given start and end position of the query sequence based
on HXB2 numbering, all alignments are possible, including long insertions or deletions.
L.e. each query sequence position is allowed to be aligned to any column in the alignment
(certainly taking into account the preceding and successive sequence positions). This is
not necessary since the approximate position in the alignment can be determined for each
query sequence position. The following heuristic approach is implemented to reduce the
runtime and the memory of the Viterbi algorithm in jpHMM for query sequences of any

length.

3.2.2 Definition of active states in the Viterbi algorithm

In general, each query sequence position can be aligned to each column in the given align-
ment, i.e. it can be emitted by each (non-mute) state in the model. If the query sequence
and the alignment (or the respective region) have the same length, this leads to a complexity
of the Viterbi algorithm of O(/%k?) in time (section 2.2.2.4, p. 21) with [ being the length
of the query sequence and k the number of subtypes. Thus, the complexity of the Viterbi
algorithm is quadratic in the length of the query sequence.

For sequences that share a certain degree of similarity with the sequences included in
the multiple sequence alignment, the complexity of the Viterbi algorithm can be reduced
considerably. By a pre-alignment of the query sequence to the multiple alignment (see
the following subsection 3.2.2.1), it is possible to map each query sequence position to
a certain column (or a certain region) in the alignment. This column (or region) defines
the part of the alignment to which the respective query sequence position is allowed to
be aligned with jJpHMM. Thus, for each query sequence position, the search space of the
Viterbi algorithm is restricted to states corresponding to the respective assigned column
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(or region). Depending on the size of the assigned region, the complexity of the Viterbi

algorithm can even be reduced to be linear in the length of the query sequence, i.e. O(lk?).

3.2.2.1 Definition of active alignment columns

In order to reduce the search space of the Viterbi algorithm, the query sequence is compared
to a set of selected sequences from the alignment. It is aligned to each of these sequences
pairwisely so that each query sequence position is mapped to a certain set of alignment
columns. These columns define a certain region (Workflow 3.5) in the alignment to which
the respective sequence position is allowed to be aligned with jpHMM. Since most of the
columns in the alignments we study are reasonably conserved, the size of these regions is
very short, usually.

As pairwise alignment tool, the BLAST-like alignment tool (BLAT) [37] is chosen.
It 1s shortly described in the following paragraph. Since only alignments of nucleotide

sequences are taken into account in this thesis, this overview is focused on DNA sequences.

BLAT BLAT is a very fast and accurate tool for mRNA/DNA and cross-species protein
alignments with an easy-to-use output. In many aspects, BLAT is very similar to the Basic
Local Alignment Search Tool (BLAST) that was developed in 1990 by Altschul et al. [4, 5]
as a method to search DNA and protein sequence databases for local similarities between
sequences. BLAST is based on the idea that homologous sequences share (short) regions of
very high similarity. For DNA sequences, a list of all contiguous K -mers (words) occurring
in the query sequence is compiled. After removing "uninformative" words (for example,
repeats [4]) the database sequences are scanned to identify word pairs (matches) in the
query and the database sequence whose aligned score is greater than a certain threshold.
Each such ’hit’ is extended in both directions, allowing gaps in the alignment, until the
score of the current alignment has dropped more than a certain value below the maximum
score yet seen. Then, the BLAST output comprises all alignments with a score above a
certain threshold.

In the main workflow, BLAT [37] is very similar to BLAST. In an initial step, the so-
called search stage, regions in the two sequences that are likely to be homologous are iden-
tified. In a second alignment stage, the previously defined homologous regions are aligned,
extended as far as possible allowing no mismatches, and stitched together. But in several
points the two programs differ significantly. One of the main differences can be found in the
search stage: in contrast to BLAST, that builds an index of the query sequence and scans
linearly through the database, BLAT builds an index of all non-overlapping K -mers in the
database and then scans linearly through the query sequence in order to find homologous
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regions. This is mainly responsible for the enormous speed-up of BLAT compared to other
programs. Additionally, BLAT allows two alternative search methods: instead of requiring
perfect matches of a database sequence with a /K{-mer to initiate an alignment, hits with
one mismatch are allowed or multiple perfect matches near each other are required. Both
alternatives reduce the runtime of the alignment stage significantly. The default option for
nucleotide alignments is the "two perfect 11-mer match criterion". At DNA level, BLAT
works well for sequences with a similarity greater than or equal to 90 %. More divergent
alignments might be missed but BLAT is able to align sequences that include large inserts.

We chose BLAT for the following reasons: Most parts of the HIV-1 as well as the HBV
genome are very conserved and show a genetic divergence lower than 10 %. Only few
regions with a higher genetic variability are included. For example, the highest genetic
divergence between different HIV-1 subtypes can be observed in the env and the gag re-
gion with a maximum divergence of ~ 35 % and 14 % respectively. Genotypes of HBV are
distinguished on the basis of a genetic divergence of at least 8 %. Thus, in some regions in
the HBV genome, the genetic divergence may also exceed 10 %. In these regions, poor or
even no alignments will be produced with BLAT. But, since most of the genomic regions
show a much lower genetic divergence and as we are only interested in reliable alignments,
only alignments in conserved regions are taken into account anyway. In variable regions,
the whole region is assigned to the respective query sequence position (Workflow 3.5, step
4), and the beam-search algorithm is applied to restrict the search space of the Viterbi al-
gorithm. Thus, BLAT is a suitable tool which will also be proven in section 5.4.2 (p. 96).
Additionally, the BLAT strategy of building an index of the database, here the given align-
ment sequences, and scanning through the query sequence is beneficial for our application,
especially when a great number of query sequences is examined. The program builds an
index of the chosen alignment sequences only once, and then scans linearly through any

number of query sequences.

Workflow for definition of active alignment columns The following workflow 3.5 de-
scribes how a query sequence is aligned to a certain set of sequences in the given multiple
sequence alignment, and the following assignment of alignment columns to each query
sequence position. An example for such a workflow is given in Figure 3.3. First, a few

definitions will be introduced that will be helpful in the description of the workflow:

Definition 3.2 (Conserved alignment column) A column in a multiple sequence align-
ment A is called a conserved column, if a certain nucleotide is observed in at least C'% of

the sequences in A.
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Definition 3.3 (Gap alignment column) A column in a multiple sequence alignment A is
called a gap column, if a gap is observed in at least G % of the sequences in A. So, a

non-gap column is a column in which less than G % of the sequences have a gap.

Definition 3.4 (Active alignment column) A column in a multiple sequence alignment A

is called an active column, if it is
* a conserved column (Def. 3.2) and
* a non-gap column (Def. 3.3) and

* has a certain number of adjacent conserved non-gap columns to the left and to the

right.
Workflow 3.5

Let S = (s1,...,5) be a query sequence of length [ and A the given multiple sequence

alignment, subdivided into subtypes.

1. Definition of database D for BLAT alignment:
N sequences are selected randomly from A, equally distributed on all subtypes. The
raw sequences, i.e. without gaps, build the database D for the BLAT alignments.
The subset of these sequences builds the subalignment Ap of the database sequences
in A. For each database sequence, each position is mapped to the corresponding

column in Ap.
2. Definition of active columns in the subalignment A, of A:

2.1. definition of conserved columns in Ap
2.2. definition of non-gap columns in Ap
2.3. definition of active columns in Ap

3. Alignment of query sequence S to database D with BLAT:
S is aligned to each database sequence with BLAT. Thus, each base s; is aligned
to a certain number R of bases in the database sequences (BLAT allows gaps in the
alignment, so the number R of aligned sequences can be lower than V). Since each

base in a database sequence corresponds to a certain column in Ap, each base s; is

aligned to a certain number R of columns in Ap: Let
x(s;) = (71, 72,...,7g), =1 <73 < ... <R, (3.6)

be the sorted list of columns in Ap, s; is aligned to.
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4. Definition of active alignment column intervals for each base in S:

for each query sequence position s;,

I(si) = [Li(s:), In(s0)], 3.7)

denotes the interval of active alignment columns in A, i.e. the columns in A, s; can

be aligned to. Such an interval is called active alignment column interval and will be
defined below:

4.1.

4.2.

4.3.

Definition of (temporary) active alignment column intervals:
for all positions s; that are aligned to at least 7' % of the N database sequences,
the interval /(s;) of active alignment columns is defined by the interquartile

range of the aligned columns:

* let ); be the lower and ()3 the upper quartile of the sorted list of aligned
columns, z(s;) = (x1,...,2zr); then the active alignment column interval
for s; is

I(5i> = [Qh Q3]

For all other sequence positions, the active alignment column interval is defined

by the active intervals of preceding and successive positions:

* let j < ¢ be the preceding, most right, and £ > ¢ the successive, most left

query sequence position that is aligned to > 7'/100 - N sequences; then

I(si) = [Li(s;), Ir(s1)]

The threshold 7" has been introduced to avoid active alignment column intervals

defined on the basis of only a few pairwise BLAT alignments.

Extension of active alignment column intervals:

each active alignment column interval has to include at least one active align-
ment column; if not, it is extended in both directions until this requirement is
fulfilled. Additionally, each interval is extended by a certain number K > 0 of

active alignment columns
I(s;) = [L(si) — K, I(si) + K]

Concatenation of two successive active alignment column intervals:

if a gap between the active alignment column intervals of two successive query
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sequence positions is observed, i.e. [;(s;) > I,(s;—1) + 1, these two intervals
are merged:
IZ<S,‘) = [l(si—l) and Ir(si—l) = Ir(si)

5. Adjustment of active alignment column intervals to the jpHMM:
each active alignment column interval is extended such that each subtype has at least

M match states, i.e. M consensus columns, within the interval.

pairwise ALs of
query and each subtype:

TTAAAAGGGTCGTA 2%
/ TTAA GG TCGT
[ [ 1 [
[ [ I [
TTAAAAGGGTCGTA 1 '
subtype 1 { TTaraacceTCCTA o P
TTAAAAGGCT-GTA . TTAAAAGGCT-GTA 3x
subtype 2 { TTAAAAGGCT-GTA TT AAGGCT GT
TTAAAAGGCT-GTA 0 D
TTAAAAGGGTCGTT 1 [ |
subtype 3 { TTAAAAGGGTCGTT \ H reonon
conserved col: cceceeeee ¢ ce TTAAAAGGGTCGTT 2%
gap col: g TTAA GG TCGTT
active col: aaaaaa . PR
:: // i query positions aligned to
1 rro >= T% of AL sequences (T=80)
' I
1 A
query sequence: TTAAGGCTCGTT TTAAGGCTCGTT
aligned column: 12 78 101213
T T A A G G CTCGTT
assigned active intervals: [1,1]1[2,2][2,14]([2,14][6,14][6,14]...

Figure 3.3: Definition of active columns in the pre-alignment with BLAT: In the left part
of the figure in an alignment with three subtypes (each consisting of two or three identi-
cal sequences) conserved (c), gap (g) and active columns (col) are defined. For the given
query sequence, in the right part a pairwise alignment (AL) to one sequence of each sub-
type is shown. For positions in the query sequence that are aligned to at least 7" = 80 % of
the alignment sequences, the aligned columns/intervals are determined (e.g. column 1 for
position 1, column 7 for position 5, etc.). These intervals are extended such that they com-
prise at least a certain number (here 1) of active (see ’a’ on the left) alignment columns.
For positions that are not aligned to at least T = 80 % of the alignment sequences, the
active interval is determined by the active intervals for the preceding and successive posi-
tion. The resulting active intervals are, for example, [1,1] for position 1, [2,2] for position
2, [2,14] for positions 3 and 4, etc..
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3.2.2.2 Definition of active states in the Viterbi algorithm

For each query sequence position s;, the active alignment column interval /(s;) is the region
in the multiple sequence alignment s; can be aligned to with jpHMM. This interval is active
for all subtypes in the alignment. To align s; to a column in the interval (s;), s; must be
emitted by a state in the model corresponding to a column within this interval. Therefore,
for each s; the Viterbi path is forced to pass a state that is assigned to a column in /(s;).

Let S = s1,...,5 be a query sequence of length [ and I(s;) = [[;(s;), [-(s:)],0 =
1,...,[, the active alignment column interval for s;. Let ¢ be a state in the model and
col(q) the column in the multiple sequence alignment state ¢ is assigned to.

Analogous to the beam-search algorithm (section 2.2.2, p. 21), for each query sequence
position s;, a modified Viterbi variable d; (i) < d,(7) is calculated and stored only for a
subset 4; of states, namely those states ¢ that are assigned to columns in the multiple
sequence alignment lying within /;,. These states are called active states, and the set of

active states for a certain position s; is given by

A; i ={q|col(q) € I(s;) = [I;(s:), I (s:)] } - (3.8)

The modified Viterbi variable of an inactive state is set to 0 and must not be saved. So,
the modified Viterbi variable 6, ,(q) of a state ¢ in step 7 4 1 is only calculated for states

q € A, that are successors of states in .4;, or in .4;,; for a mute state ¢, respectively:

o q%2x1{5§+1(q’)tq/,q}, if q is a delete state,
0i41(q) = "

o . (3.9)
€q,sii1 (%%{Q(q )ty q), otherwise.

Combination of BLAT and beam-search algorithm In certain cases the active align-
ment column interval for a query sequence position can be very large, leading to a slow-
down of the runtime of the Viterbi algorithm and an increase in memory. Possible reasons

are:

variable regions in the multiple sequence alignment
* (sequencing) errors in the given multiple sequence alignment or the query sequence

* incorrect or missing BLAT alignments, e.g. in case of inserts, deletions or repeats in

the query sequence

* sequences of other species or other non-matching sequences, uploaded erroneously
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These aspects require a further restriction of the search space of the Viterbi algorithm based
on the BLAT alignment. Therefore, the beam-search algorithm, described in section 2.2.2,
is applied to the active alignment column intervals defined with BLAT:

Let B be the beam width, 0 < B < 1. The set of active states .A; at query sequence
position s; now comprises those states ¢ with col(q) € I,,, whose modified Viterbi value is

not much lower than the optimal local solution

67 = maxd;(q). (3.10)

q

Thus, the set .4; of active states of step ¢ is determined by
A; = {q|col(q) € I(s;) = [Ii(s:), I(s;)] and 0.(q) > Bd}, 0<B<1l.  (3.11)

The modified Viterbi variable d; (i 4 1) at step i + 1 is now calculated by recursion (3.9),
with A; defined in (3.11). Let

B; = min col(q), max col(q) (3.12)
be the interval of columns in the multiple sequence alignment A for position s; defined by
the most left and the most right active state in .4;. Within this interval, not all columns must
be active. This depends on the modified Viterbi variables of the corresponding states. Also,
the application of the beam-search algorithm to the active alignment column interval [(s;)
can have varying degrees of influence on the different subtypes, resulting in active intervals

of different lengths for different subtypes.

Problems The beam-search condition can have such a strong impact on the length of an
interval /(s;), that no transition from a state in .4; to a state assigned to a column within
the interval [(s;;1) for the successive position s;, is possible. This is demonstrated by
an example in Figure 3.4: if s; is emitted by a state in A4; and B(s;) = [By(s;), B.(si)]
is the interval in the alignment defined by the most left and the most right active state in
A;, s;+1 can only be emitted by a successor state of a state in 4;, i.e. a state assigned to
a column within the interval [By(s;), B,.(s;) + max ks + 1], with kg being the number of
non-consensus columns between B, (s;) and the successive consensus column in subtype

S. The reason is:

1. each insert state is a successor of itself. So, if the insert state assigned to column
B(s;) is active for position s;, it can also be active for position s;, ; as a successor of

itself. Thus, B;(s;) can be the most left active column for a state emitting ;1.
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2. a match state that is a successor of a state assigned to a column c, is assigned to the
successive consensus column in one of the subtypes, which is at least c + 1. If ina
certain subtype S column c is followed by ks non-consensus columns, the successive
consensus column in this subtype is ¢ + ks + 1. Therefore, all emitting (match and
insert) states that can be active at position s;,; must be assigned to a column lower

or equal to B,(s;) + max ks + 1.

Delete states do not emit any symbols. The Viterbi variable of a delete state at step ¢ is

calculated from the Viterbi variables of predecessors at the same step 7 (Equation (3.9)).

Ii(s;) \ L(s;)
§; —i " i
B(s;) B(s))
i ; L(s;,) L(s;,0)
Sin i ' - .

Figure 3.4: Example for non-overlapping alignment intervals determined with BLAT
and the beam-search algorithm: For two successive query sequence positions s; and s;1,
intervals of active columns (red) are marked in the given alignment (represented by a
vertical line). I(s;) := [[;(s;), I(s;)] and I(si+1) = [L1(Si+1), Ir(si+1)] are the active
alignment column intervals for s; and s; 41, resp., determined with BLAT (see Workflow
3.5). B(s;) := [Bji(si), Br(s;)] is the interval of active alignment columns within I(s;)
resulting from the application of the beam-search algorithm. Only successors of states
assigned to a column in B(s;) can be active for s; 1, demonstrated by dotted lines. The
interval of corresponding alignment columns is marked in green in the second line. Obvi-

ously, it does not overlap with 7(s;41).

If the intervals [By(s;), B.(s;) + max ks + 1] and [I;(si+1), I(Si+1)] do not overlap
(Figure 3.4), a transition from a state corresponding to a column in B(s;) to a state in
I(s;11) is not possible. Therefore, in recursion (3.9) for all states ¢ assigned to a column
in the interval 1(s;41) (col(q) € I(s;+1)), the transition probability ¢, , for all ¢’ € A, is 0,
and consequently

A = 0. (3.13)

Since each path through the model generating a query sequence must start in the begin state

and end in the end state, in this case no path can be found that emits the query sequence, and
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thus neither an alignment of the query sequence to the given multiple sequence alignment
nor a recombination prediction is possible. Therefore, if such a "gap" between the active
alignment intervals of two successive query sequence positions occurs due to the beam-
search algorithm, the Viterbi variables are calculated based on the active alignment intervals
of which the left boundary is determined by the beam-search condition (Algorithm 3.6,
Recursion 2.2.). The right boundary is still determined by the right boundary of I(s;), if
this interval is located to the right of the interval determined by the beam-search condition.

Otherwise, the beam-search algorithm is applied disregarding any right boundary.

Algorithm 3.6 (Viterbi including beam-search algorithm on BLAT intervals)
Let A be a multiple sequence alignment with m columns and S = sy,...,$ a query

sequence of length /. Let 0 < B < 1 be the beam-width in the beam-search algorithm.

1. Initialization:

1. Let B be the begin state with 6y(B) :=1 (= 465 =1);
and [y := [[;(s1), I.(s1)] the active alignment column interval for deletes in front of s;
2. Viterbi recursion for delete states q with col(q) € I,

sorted by the assigned columns in A, starting with the left-most state:
do(q) = max  {30(q)tgq}

q':q’=B or col(q’' )€y

= Ay := {B} U{q| q s delete state with col(q) € Iy and &,(q) > B}
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2. Recursion:

FORi=1,...,1,
1. Let 1I(s;) = [Li(s;),1.(s;)] be the active alignment column interval for s;,

and B(s;_1) = [Bi(si-1), By (si—1)] = [qglAi_n COl(q)’quI}ag)fl col(q)]

i—1
and succs(B,(s;—1)) the successive consensus column of B,(s;_1) in subtype S and

B = MaX _SUCC(S,B,(si-1)} the maximum of these columns;
subtype

= each successor of a state ¢ € A;_; is assigned to a column in B* := [B;(s;_1), B;]
2.1F (B*NI(s;) == () (the intervals do not overlap) )
I.(s;), if I,(s;) > Bi(si-1)

m, otherwise

[l(si) = Bl(Sifl) and Ir(si) = {
3. Viterbi recursion for match and insert states q with col(q) € I(s;) :
0i(a) = e, max {0 1(¢)ya}
¢ = max 3(q)
q
= temporary set of active states A, = {q | col(q) € I(s;) and 0,(q) > BS;}
4. Viterbi recursion for delete states ¢ with col(q) € I(s;),
sorted by the assigned columns in A, starting with the most left state:
8i(q) = m%{ég(q’)tq/,q} (since ¢ € A; and ty, <0 6; does not change)
qEA;
IF (d;(q) > Bd;)
Ai = A U{q}

3.2.2.3 Forward and Backward variables and posterior probabilities

As described in sections 3.1.1 and 3.1.2, the Forward and Backward variables, and thus
the posterior probabilities, are only calculated for states ¢ in the respective set .A; of active
states, here defined by the beam-search algorithm on the basis of the active alignment
columns intervals defined with BLAT (Algorithm 3.6).
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3.3 A modified jpHMM architecture with mute jump states

The jpHMM architecture is obviously very complex which is a consequence of the large
number of transitions, i.e. jumps, between different profile HMMs. Usually, for each col-
umn, a jump from each profile HMM to any other profile HMM in the model is possible.
Thus, the number of jumps in each column is quadratic in terms of the number of profile
HMMEs, i.e. the number of subtypes (Figure 3.5).

In the current applications of jpHMM (to HIV-1 and HBV), the number of subtypes
is very limited (14 and 8, resp., see section 5.1) and therefore recombination prediction
with jJpHMM can be carried out with an appropriate amount of memory and time in these
cases. But, it is also conceivable to apply jpHMM to larger sets of subtypes. Possible
applications are recombination detection with regard to subgenotypes (e.g. up to now 35
HBYV subgenotypes have been identified) or CRFs, and chimera detection in 16S rRNA
sequences. Comparative analysis of 16S rRNA is the ’gold-standard’ for bacterial clas-
sification and identification ([25], reviewed in [105]) but it can be hampered by chimeric
artifacts of different species generated during PCR amplification [51, 39] when mixed bac-
terial populations are studied, for example in metagenomic projects. To avoid distortions in
bacteria population studies and false identification of chimeric sequences as novel taxa [28]
it is important to detect these chimeric sequences. For this purpose, a subdivision of known
16S rRNA sequences into subtypes, i.e. into different phyla, families etc., is necessary. De-
pending on the examined taxonomic rank, the number of subtypes can be very large, even
comprising several hundreds. Such a large number of subtypes would result in millions of
possible jumps (depending on the length of the sequences) in the current model and the
storage of all these jumps alone would already require several hundred megabyte. There-
fore, a modification of the current jpHMM architecture to reduce the number of jumps in

the model is introduced.

3.3.1 Number of jumps in a (simple) jpHMM

For clarity, insert and delete states are neglected in this section and it is assumed that each
column in each subtype is a consensus column and that the model only consists of match
states. Then, from each match state, a jump to the match state in the successive column of
all subtypes is possible. Therefore, in a jpHMM with £ subtypes for each column, k& — 1
jumps (plus a transition within each profile HMM) exist, resulting in & - (k — 1) jumps per
column. In Figure 3.5, all possible jumps and transitions between two successive columns
are plotted. For an alignment with [ columns, this results in (I — 1) - k- (k—1) jumps (I — 1

since no jumps are possible for the last column).
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Figure 3.5: Jumps (in red) between two columns in a jpHMM with six subtypes consisting
only of match states and consensus columns. In a), all jumps for one match state are shown
and in b) the jumps for the match states of all subtypes. Broken arrows mark transitions
within profile HMMs.

3.3.2 A modified (simple) jpHMM with a reduced number of jumps

The number of jumps can be reduced enormously by the introduction of an additional mute
jump state for each column. This mute jump state is labeled Dj;. A mute jump state Dy,
is assigned to each column in the alignment . Replacing the original jumps by jumps from
each match state in a certain column to the corresponding mute jump state, and from the
mute jump state to all match states in the successive column (Figure 3.6), the number of
jumps per column in a jpHMM with k subtypes is reduced to 2k. Thus, the number of
jumps in a jpHMM for an alignment with [ columns is reduced to 2k(I — 1). Obviously,
this model also allows "jumps" from one subtype to the same subtype via Dj,;. But, since
the transition probabilities within each profile HMM are usually much higher than the jump
probabilities these "jumps" do not pose a problem. In this section, this new model with a
linear number of jumps in terms of the number of subtypes is named jpHMM _linear and,
for comparison, the original model jpHMM _orig.

In Table 3.1, a comparison of the number of jumps per columns is shown for different
numbers of subtypes. The chosen numbers correspond to the number of subtypes in current
jpHMM applications like HBV (8 subtypes) and HIV-1 (14 subtypes). 100 subtypes could
be an appropriate number of subtypes for an application of jJpHMM to chimera detection
in 16S rRNA. For example, for a 16S rRNA alignment with 100 subfamilies, the original
model contains 9, 900 jumps per column, whereas the number of jumps in the new model
is only a fraction of this number, namely 200 jumps per column, which is about 2% of the

original number of jumps. For an alignment with 1, 500 columns (which is the length of
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16S rRNA sequences), this means that the number of jumps in the whole model can be
reduced from 15 million to only 300, 000.

Figure 3.6: Jumps (in red) between two columns in the new model jpHMM_linear) with
six subtypes consisting only of match states and consensus columns. The introduction of
a mute jump state Dy reduces the number of jumps in a jpHMM from k - (k — 1) to 2k
per column if & is the number of subtypes in the model. Broken arrows mark transitions
within profile HMMs.

Table 3.1: Comparison of the number of jumps per column in the original model
(jpHMM_orig, column 3) and the new model (jpHMM_linear, column 4) for different
example species (column 1) with different numbers & (column 2) of subtypes (ST).

Number of jumps per column in

Species # ST  jpHMM _orig  jpHMM_linear
e.g. k k(k—1) 2k
HBV 8 56 16
HIV-1 14 182 28
16S rRNA 100 9,900 200

3.3.3 A modified jpHMM including all state types

In the previous sections, a simple model only consisting of match states has been examined.

Now it will be described how jumps between other state types in the original model can be



50 Chapter 3. Improvements, extensions and modifications of jpHMM

modeled in the new model (jpHMM _linear) using mute jump states. In the original model,
in addition to the jumps from match to match states jumps from delete and insert states to
match states and jumps from match to delete states are possible [87]. Jumps from insert to
delete states and vice versa were not allowed to reduce the number of transitions within the
model and to follow the Plan 7 architecture of HMMER [31, 21] .

3.3.3.1 Jumps from insert and delete states to match states

Jumps from delete and insert states to match states can be modeled by a jump from each
delete and each insert state in a certain column to the corresponding mute jump state D,
which is a predecessor of the match states in the successive column. Therefore, for each
column, 2k jumps from the delete and insert states to D), are necessary in addition to the
k jumps from the match states to Dj;. This results in 3k + k& jumps per column, 3k jumps
from match, insert and delete states to D), and k jumps from D), to the successive match

states.

3.3.3.2 Jumps from match to delete states

Jumps from match to delete states can also be modeled by the introduced mute jump state
Dy but if a jump from the mute jump state D), to a delete state is allowed implicitly jumps
from insert to delete states are allowed. In principle, such transitions between insert and
delete states are also possible, but in order to model only transitions and jumps that were
possible in the original model the introduction of a second mute jump state is necessary to
model jumps from match to delete states. This mute jump state is labeled Dp. A mute jump
state Dp is assigned to each column in the alignment. From each match state a jump to
Dp in the corresponding column and a jump from D, to all delete states in the successive
column is allowed. Thus, additionally, for each column £ jumps from the match states to
Dp and k jumps from Dp to the delete states in the successive column (Figure 3.7) are

necessary to model jumps from match to delete states.

3.3.3.3 Number of jumps in the modified jpHMM including all state types

In total, the new model (jpHMM_linear) with &k subtypes contains 4% jumps via D), and
2k jumps via Dp per column. In the original model, the number of jumps is composed of
3k(k — 1) jumps to match states and k(k — 1) jumps to delete states per column. Thus,
the number of jumps per column in the new model is 6k compared to 4k(k — 1) jumps per

column in the original model.
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Figure 3.7: Jumps between two successive columns in the new model (jpHMM_linear)
with three subtypes including all state types. In a), all possible jumps from one subtype to
all other subtypes are shown. Jumps regarding Dy, i.e. jumps from all state types to match
states, are shown in red. Jumps regarding Dp, i.e. jumps from match to delete states, are
shown in green. In b), all possible jumps between all subtypes are shown. Broken arrows
mark transitions within profile HMM:s.

3.3.4 Memory required for storing the jumps in a jpHMM

In the current C++ implementation of a jpHMM, for each jump (and transition), a pointer
to the state where the jump is initiated, a pointer to the state the jump is directed to, and
the probability of this jump have to be stored. The storage needed for a pointer is 4 bytes.
Using double precision numbers, 8 bytes are needed to store the transition probability.
Thus, each jump requires 16 bytes. On the basis of the number of jumps calculated for
different example data (Table 3.1) the memory required to store all jumps (including jumps
regarding match, insert and delete states) in the original (jpHMM_orig) and the new model
(jJpHMM_linear) is compared in Table 3.2. As one can see, in the original model about
900 MB are needed to store only the jumps. With the introduction of mute jump states the
required memory can be reduced by 98% to only 18.3 MB in the new model.
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Table 3.2: Comparison of the memory (in MB) required to store the jumps in a model only
consisting of match states (column 4 and 6) and to store all jumps for all state types (col-
umn 5 and 7) in the original model jpHMM_orig, column 4 and 5) with the corresponding
memory required in the new model (jpHMM_linear, column 6 and 7). This comparison
is provided for different example species (column 1) with different numbers & (column 2)
of subtypes (ST) and length [ (column 3). Additionally, the required memory for jumps in
both models is compared by indicating the amount of reduction (in %, column 8) achieved
with the new model compared to the original model.

Species # ST Length Memory required (in MB) for jumps in

k [ jpHMM_orig jpHMM_linear Reduction
HBV 8 3,200 10.93 312 71.45%
HIV-1 14 10,000 111.07 17.09 84.61%
16SrRNA 100 1,500 905.77 18.30  97.98%

3.3.5 Complexity of the Viterbi algorithm

The Viterbi algorithm of a jpHMM has a complexity of O(lkn) in time, if [ is the length of
the query sequence, % the number of subtypes and n the number of states in the model. As
described in section 2.2.2 (p. 21), for a query sequence and an alignment of equal length,
namely [, the Viterbi algorithm has a complexity of O(I*k?) in time.

Explicitly, the Viterbi variable of a certain state ¢ at a certain position of a query se-
quence is calculated by an iteration over all predecessor states of ¢ (section 2.2.2.2, p. 20).
The number of predecessors differs for different state types: A match state has three prede-
cessors in its corresponding profile HMM and three predecessors (match, insert and delete
state) in each of the other subtypes. Thus, a match state has 3% predecessors. An insert and
a delete state has two predecessors in the corresponding profile HMM (match and insert or
match and delete, resp.). Additionally, a delete state has one predecessor (match) in each
of the other subtypes. Thus, in total, (4k + 3)[ iterations are needed to calculate the Viterbi
variables for all states at a certain query sequence position, and (4k? + 3k)I? iterations for
the calculation of the whole Viterbi table.

Obviously this number is reduced enormously by the introduction of mute jump states.
In addition to the predecessors in the corresponding profile HMM described above, in the
new model jpHMM_linear), each match state has one mute D, jump state as predecessor
and a delete state has a mute Dp jump state as predecessor (Figure 3.7). Each mute D),

jump state has three and each mute Dp jump state has one predecessor in each subtype.
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Thus, the number of iterations needed to calculate the Viterbi variables of all states for a
certain query sequence position is 13k/, and the number of iterations the Viterbi algorithm
comprises in total is 13k[2. So, the complexity of the Viterbi algorithm in time can be
reduced to O(kl?) in the new model. In Table 3.3, a comparison of the number of iter-
ations in the Viterbi algorithm in the original model (jpHMM_orig) and the new model
(GgpHMM _linear) is given for different species with different number of subtypes. As it can
be seen, for a model with eight genotypes, the number of iterations is more than halved us-
ing the new model. For a model with 14 subtypes, it is reduced to a quarter of the number
of iterations in the original model, and for a model with 100 subtypes, it is even reduced
to about 3.2% of the original amount. An explicit comparison of the runtime of the two
models for several alignments with different lengths and different number of subtypes is
carried out in the Results chapter (section 5.5, p. 101).

Table 3.3: Comparison of the number of iterations in the Viterbi algorithm for each query
sequence position (qp) in the original model (jpHMM_orig, column 3) and the new model
(GpHMM_linear, column 4) for different example species (column 1) with different num-
bers k (column 2) of subtypes (ST).

Number of iterations in Viterbi for each qp

Species # ST  jpHMM orig JpHMM_linear

k (4k* + 3k) 13k
HBV 8 280 104
HIV-1 14 826 182
16S rRNA 100 40, 300 1,300

3.3.6 Jumps in case of non-consensus columns

In the previous sections, we assumed that each column in the alignment is a consensus
column which means that each column in the alignment is modeled as a match state in each
subtype. For this case, all jumps in the original model can be modeled in the new model by
introducing mute jump states D), and Dp. But this is different for alignments including
non-consensus columns. In this case, not every column in the alignment is represented in
every subtype as a match state and the picture of jumps is more complicated. In Figure
3.8, an example jJpHMM with six subtypes and match states modeled at different columns

is given. For the states in the first column, all possible jumps are shown, using different
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colors for different subtypes.

Figure 3.8: Jumps in the original model with six subtypes are shown in the case of gaps
in the alignment. Only match states are shown. Broken arrows mark transitions within
profile HMMs. For the state in the first column, all possible jumps are depicted. For
different subtypes different colors have been chosen.

Originally, several rules have been imposed for jumps between subtypes to reduce the
number of possible transitions in the model as well as to ensure that no insertions or dele-
tions are introduced during a jump without using insert or delete states [87]. Besides the
rule that jumps are only allowed from match, insert and delete states to match states, and
from match states to delete states, the following two rules are valid: From a state in column

¢ in subtype S,,, named 7, ;, a jump to another subtype S,

rl is possible to the left-most state in S, that is strictly to the right of T, ;

r2 is not possible to a state in S, that is to the right of the successive consensus column

of 7 in &, (this is usually ¢ + 1 in case of non-gap columns, i.e. to the right of 7, ;).

In case of non-consensus columns, in different subtypes this can result in only a few
possible jumps for certain subtypes as it can be seen in Figure 3.8: For example, from state
M5 in the second subtype only one jump, namely a jump to the sixth subtype, is possible.

For jumps from this state to all other subtypes, rule r2 is not satisfied.

3.3.6.1 Adaption to a jpHMM with a modified architecture

In the previous sections, jumps in the new model were modeled by a jump to one of the

mute jump states DDy, or Dp followed by a jump from the mute jump state to a state in the
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successive column. In case that not every column in the alignment is a consensus column
in every subtype, with this imprecise definition only the jumps modeled in Figure 3.9 are
possible. In this figure, the blue arrow labeled with a question mark marks a jump that is

possible in the original model but not in the new model (jpHMM_linear). Thus, to model

Figure 3.9: Jumps in the new model (jpHMM_linear) in case of gaps, if from the mute
jump state Dp; only jumps to the next column are possible. Only match states are shown.
Broken arrows mark transitions within profile HMMs. Red arrows show all possible
jumps. The blue arrow labeled with a question mark marks a jump that is possible in
the original model but not in the new model in its current form.

jumps between subtypes in case of a model containing non-consensus columns in different

subtypes the following rule is imposed:

r3 for each column i, from the corresponding mute jump states Dy, and Dp a jump is

possible to the left-most state in each subtype that is strictly to the right of .

Thus, in the new model, a jump from each subtype (in case that this column is repre-
sented by a match state in this subtype) to all other subtypes is possible for each column.
In Figure 3.10, all jumps corresponding to the first column that obey rule 3 are shown with
red arrows. The blue arrows, labeled with an exclamation mark, do not depict real jumps,
they exemplary point out jumps modeled by the mute jump state D), that were not possible
in the original model. As described above in Figure 3.8, in the original model from state

M5 in the second subtype, only one jump to the sixth subtype is possible due to rule r2.
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Now, in the new model, four additional jumps, namely to the first, the third, the fourth and

the fifth subtype, are possible.

Figure 3.10: Jumps in the new model (jpHMM_linear) in case of gaps. Only match
states are shown. Broken arrows mark transitions within profile HMMs. Red arrows show
all possible jumps. Blue arrows labeled with an exclamation mark show jumps that are
possible (indirectly) in the new model but not in the original model.

It is possible to build a model that models exactly the jumps which are allowed in the
original model, but not with an appropriate amount of jump states. For example, for state
M in the first subtype, a jump to all other subtypes is possible in contrast to M in the
second subtype where only one jump to the sixth subtype is possible (Figure 3.8). These
jumps must be distinguished which is only possible with different types of jump states. The
number of these additional jump states depends on the length of the respective gap. But,
since the aim of this project is to reduce the complexity of the model by decreasing the
number of jumps, such a model is not desirable.

In the Results chapter (section 5.5, p. 101), the new model jpHMM_linear) is com-
pared to the original model (jpHMM_orig) in terms of the location of predicted breakpoint

positions and especially in terms of runtime.
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34 A jpHMM for recombination prediction in circular

genomes

The genomes of most viruses such as HIV and HCV are linear but a multitude of viruses
with a circular genome (like many bacteria) exists. This includes RNA as well as DNA
viruses. Besides HBV (partially double-stranded DNA), examples are the hepatitis delta
virus (HDV) (single-stranded RNA) and the human papillomavirus (HPV) (double-stranded
DNA). Naturally, sequences of viruses with a circular genome are uploaded to GenBank [8]
in a linear form. But, in contrast to real linear genomes, in these sequences, dependencies
between the nucleotides at the 5° and the 3’ end of the sequences exist. Such dependencies
cannot be modeled with a linear model like jpHMM since they require a transition from
the end of the model back to the beginning. Allowing such transitions in jpHMM, endless
paths through the model are possible. Thus, breakpoints at or near the 5* or 3’ end of the
sequence cannot be detected with jpHMM either since they require a jump from the subtype
predicted for the last sequence position back to the subtype predicted for the first position,
1.e. a jJump back to the beginning of the model. Also, such jumps cannot be modeled by the
Viterbi algorithm due to its structure: In the case that the most probable path through the
model generating a certain sequence has been determined and the predicted parental sub-
types for the first and the last sequence position are different, the cost for a jump between
the two subtypes should be added by multiplying the probability of the most probable path
with the jump probability. But in this way, the probability of the path is decreased and
the structure of the Viterbi algorithm does not allow an answer to the upcoming question
whether the former most probable path is still the most probable path or if the probability
of other paths is higher now. Additionally, using jJpHMM in its current form to predict

recombinations in viruses with a circular genome, can have the following implications:

Breakpoints close to the sequence ends are not detected A recombination breakpoint
close to the chosen origin for sequence coordinates (see Figure 3.11) is not detected with
JjpHMM if the probability of a jump to the correct subtype is too low compared to a small
number (depending on the distance of the true breakpoint to the chosen origin) of mis-

matches to the incorrect subtype. As a consequence,

1. the breakpoint is implicitly predicted at the chosen origin for the sequence coordi-

nates. This, of course, only holds for nearly full-length genomes.

2. as parental subtype for the segment between the real breakpoint and the chosen origin

for the sequence coordinates the subtype of the preceding segment is (incorrectly)
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predicted.

chosen origin

Figure 3.11: Example for the location of breakpoints in the annotated linear sequence
(bottom) depending on the chosen origin for sequence coordinates in the circular genome
(top). A recombination of two subtypes (green and red) with two breakpoints is shown.
One breakpoint is close to the chosen origin for sequence coordinates and thus close to
the end of the linearized sequence.

Erroneously predicted recombination segments at the sequence ends In circular ge-
nomes, usually, two breakpoints are necessary to introduce a recombination segment in
the recombination prediction. But, a recombination segment at the end of a linearized
sequence requires the introduction of only one breakpoint. IL.e. for the cost of only one

jump, a recombination segment can be introduced. Therefore,

1. for circular genomes, the cost of introducing a recombination segment strongly de-
pends on the chosen origin for the sequence coordinates leading to a bias towards

recombination segments at the sequence ends;

2. for arelatively low cost, depending on the similarity of the subtypes, a recombination
segment can be introduced erroneously, which would not happen if the model was
forced to make a second jump back to the first subtype, i.e. to add the cost for a
second jump.

To summarize, on the one hand, the application of jpHMM to linearized sequences
of circular genomes can lead to a shift of the real breakpoint to the chosen origin of the
sequence coordinates to avoid the cost for a jump. On the other hand it can lead to the
introduction of a recombination segment at the 5° or 3’ end of the sequence, since only one
breakpoint is required for a recombination segment at the end of the genome instead of two.

Therefore, it is not possible to apply jpHMM in its current form to viruses with a circular
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genome. This, of course, only holds for full-length sequences. The 5° and the 3’ end of
a fragmental sequence do not correspond to the same position in the circular genome and,
consequently, no dependencies between both sequence ends must be taken into account in
the recombination prediction.

In the following section, an extension of the model is presented that allows for recom-
bination detection in viruses with circular genomes. To our knowledge, this is the first
approach for recombination detection in circular genomes that explicitly takes into account

the circularity of the genome.

3.4.1 Extension of query sequence and multiple sequence alignment

To overcome the problems of an accurate recombination prediction at the 5’ and 3’ end
of full-length sequences mentioned above, each full-length query sequence is extended:
The prefix of a certain length of the query sequence is copied and concatenated to the
end of the query sequence, and, analogously, the suffix of the original sequence is copied
and concatenated to the beginning of the sequence (Figure 3.12). Naturally, instead of
an extension of the query sequence at the 5’ and the 3 end of the sequence, a (longer)
extension of the query sequence at only one end of the sequence is conceivable. But to
simplify the post-processing, i.e. the determination of the recombination prediction for the

original query sequence, an extension at both ends of the sequence is preferred.

prefix suffix
o, o,
query: N P
N s
N s
~ P
~ P
~ P
>
7 ~
7 ~
7 ~N
7 ~
7 ~
7 ~
7 ~
A A

query extended at both ends:

Figure 3.12: For circular genomes, each full-length query sequence is extended by copy-
ing and concatenating the prefix of a certain length of the query sequence (red) to the
end of the query, and, analogously, copying and concatenating the suffix of the original
sequence (green) to the beginning of the sequence. Both processes are demonstrated by
dashed arrows.

By this extension of the query sequence, depending on the length of the copied regions,

breakpoints close to the original 5’ and 3’ end of the sequence must be explicitly predicted
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and the cost for introducing recombination segments in the original sequence does not de-
pend on the chosen origin for the sequence coordinates. Thus, a recombination prediction
for such extended sequences is not biased against recombination breakpoints near the cho-

sen origin.

To enable an alignment of an extended, full-length query sequence to the given multiple
sequence alignment, it is necessary to extend the multiple alignment at the 5’ and the 3’
end as well. Even for full-length sequences with a different chosen origin for the sequence
coordinates than that of the sequences in the alignment (EcoR1 cleavage site for HBYV,
section 5.1.2.2), such an extension is sufficient. It is necessary to just cut the sequence at
the respective genomic position and concatenate both parts in reverse order before applying
jpHMM. But for fragmental sequences, such a reordering is not possible since the 5 and the
3’ end of the sequence do not correspond to the same position in the genome. Therefore, the
given multiple sequence alignment is extended in the following way: It is duplicated, i.e.
an identical copy of the alignment is concatenated to its end, and a prefix of the alignment,
that has at least the length of the extended region in the query sequences, is copied and
concatenated to the end of the duplicated alignment (Figure 3.13). A jpHMM built on the
basis of this extended alignment allows the alignment of fragmental as well as extended,
full-length sequences to the multiple sequence alignment, regardless of the chosen origin

for the sequences’ coordinates.

_________________

duplicated and extended 1:
multiple sequence alignment: I
[
[

fragmental query sequence:
ext. ext.

extended, full-length query sequence: -- --

Figure 3.13: For circular genomes, the given multiple sequence alignment (roughly
sketched by the black rectangle) is duplicated and extended by copying a prefix of the
alignment to the end (dashed rectangles). By this extension, alignments of fragmental as
well as extended, full-length query sequences independently from any chosen origin for

sequence coordinates are allowed.
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3.4.2 Pre-alignment of extended query to extended alignment with
BLAT

Applying jJpHMM to an extended query sequence and to an extended multiple sequence
alignment in its original form, i.e. with no further restrictions of the search space than
the beam-search algorithm, would result in an unnecessary waste of runtime and memory,
since each query sequence can be nearly completely aligned to two different regions in the
given multiple sequence alignment. For this reason, it is useful to define the location of
the given extended query sequence in the multiple sequence alignment before jpHMM is
applied. As described in section 3.2.2, for this purpose each (extended) query sequence is
initially aligned to the extended multiple sequence alignment with BLAT, resulting in an

interval of active alignment columns for each sequence position.

Problem Fragmental sequences can be aligned to two regions in the extended multiple
sequence alignment. In general, BLAT produces more than one pairwise alignment of a
query sequence and a database sequence, which have different scores. Usually, the align-
ment with the highest score is chosen. But, if, for example, for half of the database se-
quences the alignment of the query sequence to the first part of the extended alignment has
the highest score, and for the other half the alignment to the second part of the extended
alignment, the resulting intervals of active alignment columns comprise both parts and are
thus very large. This problem is solved by forcing the algorithm to use always the most left
alignment of the query sequence and the database sequence, if the respective score differs
from the highest score only by a certain value. The chosen thresholds are given in chapter

5, section 5.7.

3.4.3 Recombination prediction with jpHMM based on pre-alignment

For circular genomes, the jpHMM is built on the extended multiple sequence alignment.
The active alignment columns defined with BLAT for each query sequence position rep-
resent the active states in the jpHMM that are allowed to emit the corresponding query
sequence position. Based on these active states, the Viterbi path of the (extended) query
sequence through the model is determined with the Viterbi algorithm, including the beam-
search algorithm as described in Algorithm 3.6. So, for nearly full-length query sequences,
a recombination prediction is made for the extended query sequence (for fragments the
recombination is predicted for the original query sequence). This extended recombination
prediction is cut at the original start and end position of the query sequence such that the

output comprises only the predicted recombination for the original query sequence.
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If different subtypes are predicted at both ends of the sequence, the chosen origin for

the sequence coordinates represents a breakpoint.

3.4.4 Uncertainty regions and breakpoint intervals in circular genomes

For each position in the (extended) query sequence, the posterior probabilities of all sub-
types are calculated with the Forward and Backward algorithm (section 3.1.2), on the basis
of the active states defined by the BLAT alignments and the beam-search algorithm. Based
on these probabilities, uncertainty regions in the predicted recombination (for the origi-
nal, not extended query sequence) and breakpoint intervals are determined as described in

section 3.1.3, but with one difference at both ends of the sequence:

In linear genomes, the extent of a breakpoint interval around a certain predicted break-
point is limited by the preceding and successive breakpoint, which can be, if necessary,
the first or last position, respectively, in the query sequence. In linearized, full-length se-
quences of circular genomes, the 5’ and 3’ end represent an artificial origin for the sequence
coordinates that should not restrict the extent of a breakpoint interval. For example, for the
left-most predicted breakpoint in the given linearized sequence, the preceding breakpoint
can either be the chosen origin for the sequence coordinates if the two subtypes predicted
at the sequence ends differ, or, due to the original circularity of the genome, the right-most
predicted breakpoint in the given linearized sequence if the two subtypes agree. Therefore,
for the definition of a breakpoint interval around one of the breakpoints predicted most
closely to one of the sequence ends, it is necessary to take into account the behavior of the
posterior probabilities at the other end of the sequence as well if the predicted subtypes at
both sequence ends agree.

Thus, it can happen that regions in a query sequence that are defined as uncertainty
regions in linear genomes, are predicted as breakpoint intervals in circular genomes. For
example, if the posterior probability of the subtype predicted to the left of the left-most
predicted breakpoint is lower than the threshold ¢gp; at all positions upstream of this break-
point, the whole region is marked as uncertain in linear genomes. In circular genomes,
this region is defined as a breakpoint interval, if the posterior probability of the respective
subtype reaches the threshold at any position at the other end of the sequence, downstream

of the right-most predicted breakpoint.

Additionally, breakpoints defined by the chosen origin for the sequence coordinates if
the predicted subtypes at both ends of the sequence differ, have be taken into account for

the definition of breakpoint intervals.
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3.4.5 Workflow for the recombination prediction in circular genomes

The following workflow gives an overview of the recombination prediction with jpHMM

in circular genomes, described in detail in the previous sections.

Workflow 3.7

1.

Extension of the given multiple sequence alignment
by duplication and concatenation of its prefix to the end of the alignment (section
34.1)

. Extension of each nearly full-length query sequence

by concatenation of its prefix and suffix to the end and the beginning of the sequence

respectively (section 3.4.1)

. Alignment of each (extended) query sequence to the extended alignment with

BLAT

Definition of active alignment column intervals for each sequence position

. Definition of active states in the model for each sequence position

Recombination prediction for each (extended) query sequence

on the basis of the active states defined for each query sequence position

Determination of uncertainty regions and breakpoint intervals
on the basis of the calculated posterior probabilities taking into account the circularity

of full-length sequences (section 3.4.3)

. Graphical visualization and output of the predicted recombination including

uncertainty regions and breakpoint intervals in a circular form

using Circos [44], a software package for visualizing data and information in a circu-
lar layout (e.g. Figure 4.2). For further information, e.g. alternative parental subtypes
in uncertainty regions, the posterior probabilities are plotted and the location of genes

in the reference genome is presented.






Chapter 4
Implementation

The main jpHMM source code is written in C++ [94] comprising several classes such as
for reading the input alignment and query sequences, generating a profile HMM for each
subtype, combining the profile HMMs to one jpHMM, searching the Viterbi path and cal-
culating the posterior probabilities. The program was compiled under Linux with the g++
(gcc, version 4.4) compiler. For the application of jpHMM to query sequences pre-aligned
with BLAT [37], a Perl script was written that uses the BLAT output to determine active
alignment columns for each query sequence position (section 3.2.2, p. 37). Uncertainty
regions and breakpoint intervals in the predicted recombination are determined with a Perl
script evaluating the posterior probabilities of the subtypes. The posterior probabilities of
all subtypes at each query sequence position are plotted with a script written in the pro-
gramming language R [77] using the ’seqinr’ package [14]. The predicted recombination
for HBV genomes is visualized in a circular form using the software package Circos [44].

All scripts are called consecutively in a pipeline in a Perl script.

4.1 Revision of the source code

The original JpHMM source code was already implemented during my diploma thesis [84].
Due to constant modifications and extensions of jpHMM the source code became difficult
to read or extend, especially for other users. Additionally, features of object-oriented pro-
gramming have hardly been taken into account. Therefore, during this thesis main parts
of the original jJpHMM source code have been revised to provide an object-oriented C++
program that is easy to be used and to be modified by other users. Furthermore, some bugs
in the code could be detected and fixed. Especially the Viterbi algorithm has been imple-
mented in a different way, which can lead to slightly different recombination prediction

results than those of the original jpHMM version. The reason is that several paths through
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the model generating the query sequence can have the same probability. In this case, the

selection of one of these paths as Viterbi path only depends on the order of the calculation

of the Viterbi variables in the Viterbi recursion. Changing the order in which the Viterbi

variables of the states are calculated can slightly change the results of the original recom-

bination prediction. But both results are correct.

4.2 Program workflow

1. jpHMM: main C++ program:

(a)

(b)

(c)

(d)

(e)

For circular genomes, a Perl script is called that extends the given multiple
sequence alignment and each full-length query sequence as described in section
34.1, p. 59.

A jpHMM is generated on the basis of the (extended) multiple sequence align-
ment subdivided into several subtypes using the given pseudocounts for the

estimation of the emission and transition probabilities (section 2.2.2, p. 18).

Optionally, a Perl script is called for defining active alignment columns for
each query sequence position by pre-aligning each query sequence to the given
multiple sequence alignment with BLAT (section 3.2.2, p. 37).

For each given query sequence, the Viterbi path through the model and thus its
recombination of the given subtypes is determined (section 2.2.2, p. 21, section
3.2.2, p. 42, and section 3.4, p. 61).

The posterior probabilities (section 3.1.2, p. 30) are calculated using the For-
ward and Backward algorithm (section 3.1.1, p. 28).

2. Uncertainty regions and breakpoint intervals:

A Perl script determines uncertainty regions and breakpoint intervals in the predicted

recombination on the basis of the posterior probabilities (section 3.1.3, p. 31).

3. Graphical output:

(a)
(b)

The posterior probabilities are plotted with a R script (Fig. 4.1).

For circular genomes, the predicted recombination including uncertainty re-
gions and breakpoint intervals is visualized in a circular form with a Perl script
(Fig. 4.2).
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4.3 Input

1. for the main jpHMM C++ program:
As input the main jpHMM program requires a file containing the query sequence(s) in
FASTA [72] format and a file containing the multiple sequence alignment subdivided
into subtypes in a FASTA-like format: Each subtype must be labeled with ">>"
followed by the name of the subtype. For each subtype, the assigned sequences
are then stored in the successive lines satisfying the FASTA format. Additionally,
two files containing the pseudocounts for the calculation of the emission and the
transition probabilities (section 2.2.2.5, p. 23) are required and certain parameters

(for all of them default values are defined) can be specified:

* the jump probability jp (default is 10~ for HIV and 10~7 for HBV),

* the beam-width B3 defining the degree of restriction of the Viterbi search space
(B = 107% is the default for full-length sequences),

* the type of virus (e.g. HIV or HBV) determining the input files (e.g. the pseu-
docounts) and parameters (e.g. the jump probability) if no further specifications

are given, and the output format (e.g. in a circular form for HBV),
* the type of genome (circular (e.g. for HBV) or non-circular (e.g. for HIV)),

* the program version (the original jpHMM version (default) or the version using

BLAT for a pre-alignment of the query sequence to the multiple alignment),

* the kind of jumps (jumps are possible between all subtypes as in the original
jpHMM version (default) or mute jump states are introduced to reduce the num-

ber of jumps being linear in terms of the number of subtypes in the model).

2. for the Perl script extending circular genomes:
A query sequence file in FASTA and an alignment file in FASTA-like format (de-
scribed above) are required. The length of the segment (default is 500) each query
sequence is extended by at both ends can be specified. The alignment is duplicated
and further extended by a certain factor 0 < e < 1 (default is 0.25) that can also be
specified by the user (section 3.4.1, p. 59). This script is called by the main jpHMM

program.

3. for the Perl script defining active alignment columns:
As input this script requires the path of the directory containing the BLAT program,
the alignment and the query sequence file as described above, and the name of the
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output file for the active alignment columns determined. If circular genomes are

examined this must be specified. This script is called by the main jpHMM program.

4. for the Perl script determining uncertainty regions and breakpoint intervals:
This script evaluates the output of the main jpHMM program. As input files it re-
quires the ones containing the predicted recombination and the posterior probabili-
ties. As parameters the posterior probability thresholds for defining uncertainty re-
gions and breakpoint intervals can be specified (the default thresholds are tyg =
tgpr = 0.99).

5. for the scripts generating the plots:

(a) The R script for plotting the posterior probabilities requires the file including
the posterior probabilities and a text file with a list of the predicted subtypes
(see [84]). Both files are output files of the main jpHMM program.

(b) The Perl script for visualizing circular genomes requires the path of the direc-
tory containing the parameter files for the Circos program, the original and the
predicted recombination file including uncertainty regions and breakpoint in-
tervals, the file specifying the alignment columns each query sequence position
is aligned to with the Viterbi path, a file mapping each alignment column to the
position in the virus reference sequence, and the name of the output directory

for the files generated with the Circos program.

4.4 Output

The predicted recombination for a query sequence is given in text as well as GFF formats
(http://www.sanger.ac.uk/resources/software/gff/)thathave been de-
scribed in my diploma thesis [84]. The new, extended jpHMM output comprises the fol-
lowing additional files:

Posterior probabilities of the subtypes The posterior probabilities of all subtypes at
each query sequence position are given as a matrix where the rows describe the query se-
quence positions and the columns the subtypes. Additionally, the posterior probabilities of
the two insert states at the beginning and the end of the model (called 5°’- and 3’-Insertion)
are given. As an example, an excerpt of the posterior probabilities file for an example HIV
sequence is shown:

#example: 5’-Insertion Al A2 B C D F1 F2 G H J K 01_AE O CPZ 3’'-Insertion
1 8.90756e-152 1.83172e-148 5.71244e-144 4.23826e-153 [...] O


http://www.sanger.ac.uk/resources/software/gff/
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e e e e e
e e e

.26923e-151 3.02008e-148 6.0755e-144 8.23412e-153
.9677e-151 5.22868e-148 6.74151e-144 1.59489e-152
.25153e-149 1.50665e-146 3.32052e-141 2.46842e-150
.3418e-148 3.68265e-146 8.51565e-141 6.31376e-150
.34493e-148 3.78236e-146 8.51866e-141 6.34861e-150
.35068e-148 3.96152e-146 8.52417e-141 6.41342e-150
.36128e-148 4.28799e-146 8.53429%9e-141 6.53294e-150

[...
[...
[...
[...

The posterior probabilities are plotted with a R script using the ’seqinr’ package. For

each subtype, the posterior probabilities at all query sequence positions are plotted in a

different color. In Figure 4.1, the posterior probabilities are plotted for an example HIV-1

sequence.
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Figure 4.1: Posterior probabilities for an example HIV-1 sequence.

As additional information for each query sequence position the subtype with the highest

posterior probability is determined:

>example

1 789 5’ -Insertion

790 1521
1522
1797
3306
3549
5089
5388
6898
7165

1796
3305
3548
5088
5387
6897
7164
8060

Fl
B
Fl
B
Fl
B
Fl
B
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Uncertainty regions and breakpoint intervals The predicted recombination including
uncertainty regions and breakpoint intervals is given in text format. As an example, the re-
combination prediction including uncertainty regions and breakpoint intervals for a thresh-
old of tygr = tgpr = 0.99 is shown for an example HIV sequence:

>example

1 789 N/A
790 1500 B

1501 1530 B/F1
1531 1749 Fl
1750 1832 F1/B
1833 3286 B
3287 3589 ?/B
3590 5076 B
5077 5116 B/F1
5117 5367 Fl
5368 5404 F1/B
5405 6882 B
6883 6918 B/F1
6919 7152 Fl
7153 7171 F1/B
7172 8060 B

Additionally, the uncertainty regions and breakpoint intervals are given in a separate
text file:

>example

# uncertainty regions:

3287 3589 ?/B
# breakpoint intervals:
1501 1530 B/F1
1750 1832 F1/B
5077 5116 B/F1
5368 5404 F1/B
6883 6918 B/F1
7153 7171 F1/B

Alignment of the query sequence to the given multiple alignment For each query
sequence, the alignment to the given multiple sequence alignment, defined by the Viterbi
path, is provided by indicating the aligned column for each query sequence position. This
column corresponds to the state in the Viterbi path that emits the respective query sequence
position. As an example, an excerpt of this file for an example HIV sequence is shown:

>example
501 502 503 504 505 506 507 508 509 510 511 512 513 514 [...] 13314
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Graphical output for circular genomes For species with a circular genome, the pre-

dicted recombination is visualized in a circular form with a Perl script using the software
package Circos [44] (Fig. 4.2).
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Figure 4.2: Circos plot of the recombination for a sample HBV sequence predicted with
jpHMM. At the outer circle the predicted recombination is plotted based on reference
sequence numbering. Striped regions mark breakpoint intervals between two subtypes.
The exact position and length of each breakpoint interval is given by bold numbers. In
the following circle the posterior probabilities of all subtypes are plotted for each query
sequence position. A legend for the colors of the subtypes is given in the center of the

plot. Additionally, the position of genes in the reference genome are given. DR1 and DR2
mark special regions that are important in the HBV replication cycle.

4.5 Runtime

The jJpHMM runtime is evaluated in the Results chapter 5 by comparing the runtime of
different jpHMM versions developed in this thesis.
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4.6 Availability

jpHMM is available online as a webserver [109] at http:// jphmm.gobics.de/ and
as a command-line tool. The use of the command-line version is described above in sections
4.2 - 44. The program, including all C++, Perl and R scripts described above, and a

detailed documentation can be downloaded from the web page.

4.6.1 Webserver

The webserver was originally implemented by Ming Zhang. During this thesis it was modi-
fied to incorporate information about uncertainty regions and breakpoint intervals [85]. The
new webserver output for a sample HIV-1 sequence is shown in Figure 4.3. Additionally,

the webserver is now available for HBV and provides an output in circular form (Fig. 4.2).

4.6.1.1 Input and output

As input, up to five full-length genomic sequences or fragments in FASTA format are ac-
cepted at a time. The jpHMM results are stored on the server for seven days, and a hyperlink
to them is sent to the user by e-mail. For each input sequence, the predicted recombination,
now including information about uncertainty regions and breakpoint intervals, is provided
in text format and the posterior probabilities of the subtypes are plotted. The thresholds
specified for the definition of uncertainty regions and breakpoint intervals are the default
thresholds tyr = tgpr = 0.99. The predicted recombination pattern and the location of the
sequence within the reference genome are represented graphically, for HIV-1 in a linear
and for HBV in a circular form. Uncertainty regions and breakpoint intervals are marked
by an interfingering of two colors, white for uncertainty regions and the color(s) of the pre-
dicted subtype(s). All jpHMM output files such as the predicted recombination including
precise breakpoint positions as well as uncertainty regions and breakpoint intervals, and

the posterior probabilities are provided for download.

4.6.1.2 Management of enquiries

Webserver enquiries are now managed using the resource management system Sun Grid
Engine (SGE) [26]. Submitted jobs are queued and worked off one after the other depend-
ing on the available resources. This prevents the server from crashing if too many jobs are

submitted at the same time.
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University of Géttingen | Faculty of Bioclogy | Institute of Microbiology and Genetics | Dept. of Bioinformatics

jPHMM-HIV [Result]

Input data:

e sequence file
jpHMM result:

Sequence #1: >BF1 AX032749 EU446022

This sequence Is related to subtype(s); B F1

Fragment Fragment Fragment
Start Position End Position Subtype

Position in the original sequence [pred recombination], [recombination_incl UR_and_BPI], [UR_and_BPI]

1 = = 789 N/A
790 - 1501 - 1530 1530 B
1531 = 1750 - 1832 1808 F1
1809 3287 - 3589 5077 - 5116 5095 B
5096 - 5368 - 5404 5397 F1
5398 - 6883 - 6918 6899 B
6900 - 7153 - 7171 7165 F1
7166 - - 8060 B

Position based on HXB2 numbering [pred recombination] [recombination_incl UR_and BPI][UR_and BPI]

1 - - 789 N/A
790 - 1501 - 1530 1530 B
1531 - 1750 - 1832 1808 F1
1809 3287 - 3589 5077 - 5116 5095 B
5096 - 5368 - 5404 5397 F1
5398 - 6893 - 6928 6909 B
6910 = 7169 - 7184 7178 Fl
7179 - - 8073 B

Genome map (based on HXB2 numbering)
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* Numbers in the abowve figure denote intervals for recombination breakpoints based on HXB2 numbering.
» The uncolored regions denote missing information due to input fragment sequence.

* The gray regions denote missing infomation due to uninformative subtype models (subtype: N/A).

* The sequence regions of less than 10 nucleotides long are too short to be mapped onto the genome map

Posterior probabilities of the subtypes (based on HXB2 numbering)
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Sequence position | len=8060 ) based on reference sequence [based on jpHMM output): 1 - 8073

Posterior probabilities of the subtypes at each sequence position (original sequence pasitions) calculated by jpHMM: [text

Alignment of the query sequences to the HXB2 sequence determined by jpHMM: guery to_ref alignments.txt

Figure 4.3: Screenshot of the new webserver output for an example HIV-1 recombinant
including uncertainty regions and breakpoint intervals.






Chapter 5
Results and discussion

In this chapter, the methods developed in chapter 3 are applied to HIV-1 and HBV se-
quences and the results are discussed. First, the datasets (section 5.1) and the jpHMM
parameters (section 5.2) that are used are described. Then, the accuracy of the jJpHMM re-
combination prediction including uncertainty regions and breakpoint intervals is assessed
on the basis of HIV-1 sequences (section 5.3). In section 5.4, the accuracy of jpHMM
based on pre-defined active alignment column intervals is evaluated. It is also shown that
BLAT is a suitable program for defining such active alignment column intervals to restrict
the search space of the Viterbi algorithm in jpHMM. The accuracy of the modified jpHMM
including mute jump states is compared to the accuracy of the original jpHMM in section
5.5. The runtime of all jpHMM versions developed in this thesis is analyzed in section
5.6. In section 5.7, first, the circular jpHMM version is applied to HBV sequences and its
accuracy is evaluated. Then, several criteria for classifying recombinant forms of HBV are

proposed.

5.1 Data

The HIV-1 and HBV datasets that are used in this thesis are presented in the following

subsections. This includes the background alignments as well as training and test datasets.

5.1.1 HIV

All HIV-1 sequences studied in this thesis were downloaded from the HIV Sequence Database
from the Los Alamos National Laboratory (LANL, http://www.hiv.lanl.gov/).
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5.1.1.1 Multiple sequence alignment

The input multiple sequence alignment for jJpHMM is built on the basis of the so-called
"2007 multiple sequence alignment" from LANL [45]. This alignment was published in
2007 and includes near full-length sequences of all HIV-1 (sub-) subtypes Al, A2, B, C, D,
F1, F2, G, H, J and K, of all CRFs, from group N and O and CPZ (chimpanzee) sequences.
It was generated automatically using HMMER [31, 21] and edited manually afterwards.
For the jpHMM input alignment, only the sequences of the (sub-) subtypes, CRFO1_AE,
group O and CPZ in this alignment are chosen. CRFO1_AE is included in the alignment
because it contains the only information of subtype E. Disadvantageously, some of the
sequences in the alignment are not complete at the sequence ends. Therefore, the multiple
sequence alignment is frayed and less informative at both ends, which can lead to problems

in the recombination prediction in these regions, which will be discussed later.

5.1.1.2 Training data

Since the parameters of the jJpHMM have already been determined during my diploma
thesis [84] (described in [87]), no training datasets are needed.

5.1.1.3 Test data

In lack of real recombinant sequences with exactly known breakpoint positions, as test
dataset for HIV-1 40 semi-artificial near full-length inter-subtype HIV-1 recombinant se-
quences with artificially introduced breakpoints were created. Each of the test sequences
is a recombination of two ’real-world’ parental sequences from two different HIV-1 (sub-)
subtypes or circulating recombinant forms. To simulate the case with previously unob-
served sequences that also differ by mutations from the known sequences, the parental
sequences of all test sequences are not contained in the multiple sequence alignment we
use to build the model. Since for the (sub-) subtypes A2, F2, H, J and K only a few se-
quences are available, of which all are included in the multiple sequence alignment, only
every possible pair of the subtypes A1, B, C, D, F1, G and CRF_01 was chosen as parental
subtypes.

The parental sequence pairs were used in three different datasets D1_HIV, D2_HIV
and D3_HIV, differing by the position of artificially introduced recombination breakpoints.
Hereby, the positions of breakpoints are given relatively to the HIV reference genome,
called HXB2 sequence (GenBank [8] accession number K03455), that has a length of 9719

nt.
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Dataset D1_HIV Segments of length 1000 nt from one subtype are interrupted by seg-
ments of length 1000 nt from another subtype. Introducing a breakpoint at every 1000th
position based on HXB2 numbering results in nine recombination breakpoints at positions
1000, 2000, 3000, . . ., 8000, 9000.

Dataset D2_HIV Alternating long segments of length 1500 nt from one subtype are in-
terrupted by short segments of length 500 nt from another subtype. So, the breakpoint
positions based on HXB2 numbering are 1500, 2000, 3500, 4000, . . ., 8000 and 9500. Due
to the length of some parental sequences in seven test sequences the breakpoint at position

9500 is missing.

Dataset D3_HIV Alternating long segments of length 1500 nt from one subtype are in-
terrupted by short segments of length 300 nt from another subtype, resulting in sequences
with 10 recombination breakpoints at positions 1500, 1800, 3300, 3600, . . . , 8700 and 9000.

So, in total, 120 artificial recombinant sequences were evaluated, each having eight to

ten recombination breakpoints.

5.1.2 HBV

The HBV sequences studied here comprise all nearly full-length (> 3000 nt) HBV genomic
sequences available in December 2009 from GenBank [8]. As presented in chapter 2, HBV
sequences are classified into different genotypes instead of subtypes (for HIV). Therefore,

we use this notation as well.

5.1.2.1 Reference genome

For a consistent representation of sequence positions, e.g. positions of breakpoints, in the
HBYV genome, all sequence position numbers are given relative to a reference strain. As ref-
erence genome the sequence with the GenBank accession number AM282986 was chosen.
AM?282986 is a well-annotated sequence [71] that belongs to genotype A. With a length of
3221 nt, genotype A is one of the genotypes with the largest number of nucleotides. Using
a sequence of a shorter genotype as reference genome could, for example, result in accu-
mulating breakpoint positions relative to the reference genome if the evaluated sequence
has a large insertion compared to the reference genome. A sequence of genotype G, that

even has a length of 3248 nt, was not chosen as reference genome since this larger size of
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genotype G, compared to all other genotypes, results from an insertion that is only present

in this genotype.

5.1.2.2 Multiple sequence alignment

Sequences for the HBV multiple sequence alignment that is used to build the jpHMM have
been chosen from all sequences that were published as pure genotypes. The published
genotype composition of the sequences has been rechecked with jpHMM, based on an ini-
tial multiple sequence alignment of clearly identified pure genotype sequences. For this
test, a high jump probability (jp = 10~2) was used to ensure that the sequences really rep-
resent pure genotypes. From this set of verified pure genotype sequences, certain sequences

have been selected for the multiple alignment, taking into account the following aspects:
1. only full-length genomic sequences were chosen for each genotype
2. the global variety of each genotype should be represented
3. identical or nearly identical sequences should not be contained in the alignment

4. the number of sequences in the alignment is limited due to restrictions of multiple

sequence alignment methods

These aspects led to the decision that for each genotype about 50 representative sequences
should be chosen, which would lead to about 400 sequences in the whole alignment.

The sequences for each of the eight HBV genotypes A-H were clustered with CD-HIT-
EST, a very fast and widely used program of the CD-HIT Suite [50, 33] for clustering
DNA sequence datasets: on the basis of a certain sequence identity threshold, the input
sequences are clustered and a database of representative sequences is generated. As for
genotypes H and G less than 50 sequences were available, only 100 % identical sequences
have been removed from the dataset, resulting in 16 representative sequences for genotype
G and 24 representative sequences for genotype H. Sequences of genotype C were clustered
using a sequence identity threshold of 97 %, since a great many of sequences was available.
To all other genotypes a threshold of 99 % was applied to achieve about 50 clusters, i.e.
50 representative sequences. For genotypes with more than 50 clusters, 50 clusters were
chosen randomly. For genotype F 49 clusters were built. The representative sequences of all
eight genotypes were aligned with Muscle [22]. The genotype classification of the aligned
sequences was rechecked by using each aligned sequence as query sequence for jpHMM
with the given multiple sequence alignment as input alignment (removing the respective

query sequence from the alignment) and a very high jump probability of 1073,
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Later, one sequence of genotype F was removed from the given multiple sequence
alignment because of a long deletion in the sequence that had a large influence to the

parameter estimation. Thus, the final HBV alignment contains 339 sequences.

5.1.2.3 Training data

As for HIV-1, semi-artificial recombinants from real pure genotype HBV genomic se-
quences with artificially introduced breakpoints were created. Each of these recombi-
nants is a recombination of two ’real-world’ parental sequences from two different HBV
genotypes. As parental sequences, sequences from the multiple sequence alignment were
chosen, since these sequences are confirmed pure genotype sequences satisfying a certain
minimum of pairwise distance. To simulate previously unobserved sequences, for each re-
combinant the two respective parental sequences were removed from the alignment that is

used to build the jpHMM in the respective evaluation.

Dataset DO_HBYV For each pair of genotypes A-H 10 semi-artificial recombinants were
created and the corresponding 2 - 10 parental sequences were chosen randomly from the
given set of sequences. The number of artificially introduced breakpoints ng,, ny, €
{0,...,4}, as well as the breakpoint positions were chosen randomly. Therefore, also
pure genotype sequences (1, = 0) and recombinants with segments of length as low as 1
were possible. In total, 280 semi-artificial recombinant sequences with known breakpoint
positions were created. (Later, one sequence of genotype F was removed from the given
multiple sequence alignment because of a long deletion in the sequence that had a large
influence to the parameter estimation. Artificial recombinants including this F sequence

were removed from the set of training sequences, resulting in 276 sequences.)

5.1.2.4 Test data

Semi-artificial test recombinants were created from the sequences in the multiple sequence
alignment as described in the previous subsection for the training data (section 5.1.2.3)
only the difference is is that the breakpoints were introduced at fixed positions relative to
the HBV reference genome as it was also done for the sequences in the HIV-1 test dataset
(section 5.1.1.3).

Dataset D1_HBV Segments of length 1000 nt from one genotype are interrupted by seg-
ments of length 1000 nt from another genotype resulting in three recombination breakpoints
at positions 1000, 2000 and 3000.
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Dataset D2_HBV  Alternating short segments of length 500 nt from one genotype are in-
terrupted by long segments of length 1500 nt from another genotype. Thus, the breakpoints

are located at positions 500, 2000 and 2500 in the reference genome.

Dataset D3_HBV Alternating short segments of length 300 nt from one genotype are
interrupted by long segments of length 1500 nt from another genotype. This also results
in sequences with three recombination breakpoints at positions 300, 1800 and 2100 in the

reference genome.

In total, 840 artificial recombinant sequences were evaluated. In case that the test se-
quences are treated as circular sequences (section 5.7), each test sequence contains a fourth

breakpoint at the sequence end.

5.1.2.5 Real-world HBV genomic sequences

To evaluate the genetic diversity of all published real-world HBV strains all nearly full-
length (> 3000 nt) HBV genomic sequences available in GenBank in December 2009 were
downloaded. After removing eight sequences with a long stretch (> 50 nt) of non-specified

nucleotides (/V’s) this dataset comprised 2918 sequences.
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5.2 jpHMM parameter estimation

In this section, the estimation of the jpHMM parameters for the application to HBV se-

quences is described. For HIV-1, the original parameters are used.

5.2.1 HIV-1

As parameters for the jJpHMM for recombination prediction in HIV-1 the parameters given
in section 2.2.2 (p. 23) and described in [87] are used.

5.2.2 HBV

For the jpHMM for HBV, the pseudocounts for the emission probabilities of the insert
states were set to 1, since they do not have much influence on the results of the recombi-
nation prediction. As pseudocounts for the transition probabilities the same values as for
HIV-1 (see (2.6), p. 24) were chosen (described in [104]).

The jump probability jp and the pseudocounts & for the emission probabilities of the
match states were estimated on the basis of HBV training sequences (dataset DO_HBYV,
section 5.1.2.3). They were estimated jointly, assuming identical pseudocounts « for the

emission probabilities of all nucleotides. The tested pairs of parameters are
0 := (jp,a) € {107°,...,107*°} x {0.5,0.1,0.09, ...,0.01,0.009,...0.001}. (5.1)

As training data, the dataset DO_HBYV (section 5.1.2.3, p. 79), that consists of 276 semi-
artificial recombinant sequences with breakpoints introduced at random positions, was
used. The parameter pair ©* = (jp*, o) that maximized the accuracy of predicted break-
point intervals and genotypes in these training sequences was chosen as the optimal pair of
parameters for the application of jpHMM to HBV sequences.

There are several possibilities to measure the accuracy of recombination prediction. For
example, the accuracy of predicted breakpoint intervals can be measured by the number
of predicted breakpoint intervals that contain a real breakpoint (specificity, Def. 5.1) and
by the number of real breakpoints that can be detected with the predicted breakpoint inter-
vals (sensitivity, Def. 5.2). To measure the accuracy of predicted genotypes, it can, for
example, be taken into account if the genotypes are predicted correctly, regardless of the
predicted order (set of predicted genotypes, Def. 5.7), or if the genotypes are predicted in
the correct order (predicted recombination pattern, Def. 5.8). It is also possible to count

the number of sequence positions that are assigned to the correct genotype (Def. 5.9).
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These five criteria were taken into account to assess the accuracy of the recombination

prediction for the training sequences for different pairs of parameters (see (5.1)). On the

basis of the obtained values, the optimal pair of parameters was determined.

5.2.2.1 Definitions

Let © = (jp, ) be a pair of parameters (see (5.1)).

Definition 5.1 (Specificity of breakpoint intervals)

1. The specificity of predicted breakpoint intervals is defined as the ratio of the number

of predicted breakpoint intervals (BPI) that contain a real breakpoint (BP) having the
same preceding and successive genotype to the total number of predicted breakpoint

intervals: ) )
# predicted BPIs that contain a real BP

# predicted BPIs

spec 1= (5.2)

. spec? denotes the specificity of breakpoint intervals of fixed length i around pre-

dicted breakpoints for the parameter pair ©.

. The average specificity of breakpoint intervals of fixed lengths ki, ..., k, for © is

defined by

o o
o _specy, + ...+ specy
av_specy, . =

(5.3)
n

Definition 5.2 (Sensitivity of breakpoint intervals)

1. The sensitivity of predicted breakpoint intervals is defined as the ratio of the num-

ber of real breakpoints (BP) that are located in a predicted breakpoint interval(BPI)
having the same preceding and successive genotype to the total number of real break-

points:

# real BPs located in a predicted BPI
sens := 5.4
o # real BPs '

2. sens? denotes the sensitivity of breakpoint intervals of fixed length i around pre-

dicted breakpoints for the parameter pair ©.

3. The average sensitivity of breakpoint intervals of fixed lengths ki, ..., k, for © is
defined by
e e
sens,. + ...+ sens
av_sensgh.__’kn = u o (5.5)

n

Example 5.3

For example, the average specificity and sensitivity of breakpoint intervals of fixed length
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10, 20, etc. up to length 100, are

o Q) o
specy, + Specy, + . .. + Specyy,

) —
av_specyp,ao,...,100 = 10 (5.6)
and o o o
sens;, + sens,; + ...+ sens )
av_sens%,gom100 = 10 2(10 100 respectively. (5.7)

Definition 5.4 (Set of predicted genotypes)
The set of predicted genotypes for a query sequence is the unique set of genotypes predicted

for at least one base in the sequence regardless of the order of the predicted genotypes.

Definition 5.5 (Predicted recombination pattern)
The predicted recombination pattern of a query sequence is defined as the sequence of pre-
dicted genotypes, not taking into account the location of predicted breakpoints or break-

point intervals.

Example 5.6 (Example for predicted recombination patterns and set of genotypes)

Let S1 and S2 be query sequences with the following predicted recombinations:

>S1 >S2
1 500 A 1 1500 A
501 1000 B 1501 2000 B
1001 1500 A 2001 2500 C
1501 2000 C 2501 3200 A
2001 2500 A
2501 3000 B
3001 3200 A

1. The set of predicted genotypes is identical for both sequences, namely ABC.

2. The predicted recombination pattern of S; is ABACABA, of Sy ABCA.

Definition 5.7 (Accuracy of set of predicted genotypes)
The accuracy accgr g Of sets of predicted genotypes for a certain pair © of parameters is
defined as the ratio of the number of sequences with a correctly predicted set of genotypes

to the total number of sequences:

e 7 sequences with correctly predicted set of genotypes
aCCST_set T

5.8
# sequences (5:8)
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Definition 5.8 (Accuracy of predicted recombination pattern)
The accuracy acCrecomb_patern Of predicted recombination patterns for a certain pair © of
parameters is defined as the ratio of the number of sequences with a correctly predicted

recombination pattern to the total number of sequences:

o # sequences with correctly predicted recombination pattern
acc =

recomb_pattern * # sequences (5 9)

Definition 5.9 (Accuracy of predicted genotypes at each sequence position))

The accuracy accpq_st Of predicted genotypes for a certain pair © of parameters is defined
by the ratio of the number of sequence positions, located outside of uncertainty regions
(UR) and breakpoint intervals (BPI), that are assigned to the correct genotype to the total

number of sequence positions:

6 # sequence positions ¢ {UR, BPI} assigned to correct genotype
aCCpred ST = . . (5‘10)
- # sequence positions
5.2.2.2 Parameter estimation
For each parameter pair © = (jp, ), the five scores
s = acc(saT_Set (5.11)
e e
802 = aCcrecomb_pattern (512)
503@ = av_spec%20 _____ 100 (5.13)
SC5 = ACC st (5.15)
were determined. Thus, for eachi € {1,...,5}, a set of scores was obtained. Let
sci = (sc2t, ..., s¢9m), sc? << s, (5.16)

be the sorted list of the scores for each i € {1,...,5} with ©y,...,©,, being the tested

pairs of parameters. Then, for a certain pair of parameters ©, the rank of sc? in sc;,
)
rank,,, (sc; ), (5.17)

defines the position of the score sc? in the sorted list sc; of scores (5.16) determined for i,
ie{l,...,5} (see (5.11) to (5.15)).
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The score sc® of the parameter pair © = (jp, ) is then defined by the sum of the five

ranks determined for ©:

=5
s¢® =) " rank(sc?) (5.18)
=1

The pair ©* = (jp*, a*) of parameters that maximizes this score was chosen as parameter

pair for the jpHMM for recombination detection in HBV genomes:

Definition 5.10 (Optimal pair of parameters)

0" = (jp*,a*) = arg max sc° (5.19)
0=(jp,a)

5.2.2.3 Results

As the training sequences contain breakpoints at randomly chosen positions, also very short
recombination segments are included in the sequences. Thus, high jump probabilities and
very small pseudo counts gave the best results. But, a jpHMM using such parameters tends
to produce a lot of jumps on the basis of only one or a few matches resulting in short
predicted recombination segments. Therefore, in a first step, all pairs of parameters with a
score not much lower than the score of the best pair of parameters were accepted as possible
JpHMM parameters.

In the next step, for all these remaining pairs of parameters, the jpHMM recombination
predictions for real-world HBV recombinants were compared. Pairs of parameters leading
to obviously incorrect jumps (e.g. a jump to genotype F for only a few bases within a re-
combinant of genotypes A and B) were removed from the set of possible parameter pairs.
Additionally, the results of the recombination prediction were compared to the recombina-
tion patterns of 24 independent recombinant forms published in [90]. This study is one of
the first studies that defines independent recombinant forms among HBV sequences on the
basis of all publicly available full-length HBV sequences (in October 2004).

After this extensive evaluation the following pair of parameters was chosen as optimal

pair of parameters for the application of jJpHMM to recombination detection in HBV:

0" = (jp*,a*) = (1077,0.009) (5.20)
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5.3 Uncertainty regions and breakpoint intervals

As customary, and in lack of real recombinant sequences with exactly known breakpoint
positions, the accuracy of the jpHMM recombination prediction including uncertainty re-
gions and breakpoint intervals (section 3.1, p. 27) is evaluated on recombinant sequences of
real HIV-1 sequences with artificially introduced breakpoints. It is measured by the accu-
racy of the predicted recombination patterns (section 5.3.1), the sensitivity of the predicted
breakpoint intervals (section 5.3.2) and the accuracy of the predicted parental subtypes at
positions outside uncertainty regions and breakpoint intervals (section 5.3.3). As test data
the datasets D1_HIV, D2_HIV and D3_HIV, described in section 5.1.1 (p. 76) are used.
The accuracy of the jpHMM recombination prediction for HBV is evaluated in section 5.7

when a jJpHMM for species with circular genomes like HBV is presented.
The major results for HIV-1 of this section have previously been published in

A.-K. Schultz, M. Zhang, I. Bulla, T. Leitner, B. Korber, B. Morgenstern, M. Stanke.
jpHMM: Improving the reliability of recombination prediction in HIV-1

Nucleic Acids Research 2009 37:-W647-W651

doi:10.1093/nar/gkp371

5.3.1 Accuracy of predicted recombination patterns

In a first step, the accuracy of the recombination patterns predicted by jpHMM is evaluated.
In this case, the predicted recombination pattern is the sequence of predicted subtypes, not
taking into account the location of predicted breakpoints or breakpoint intervals. There-
fore, the recombination pattern of a sequence can be predicted correctly, even if not all
breakpoints are detected (Def. 5.11). For example, if the predicted position of a breakpoint
interval is shifted compared to the true breakpoint position, so that the breakpoint interval
does not contain the true breakpoint, the predicted recombination pattern is still correct.
For the three datasets D1_HIV, D2_HIV and D3_HIV, the following results were obtained:

Dataset D1_HIV For 39 of the 40 sequences, the recombination pattern was predicted
correctly. In one of the 40 sequences one recombinant segment was not identified, i.e. one

jump from one subtype to the second subtype and back was missing.

Dataset D2_HIV For 33 of the 40 sequences, one short segment (500 nt) at the sequence
end was not assigned to the correct subtype, since jpHMM was not able to assign any sub-



88 Chapter 5. Results and discussion

type in this region. This is a consequence of the ’frayed’ ends of the multiple sequence
alignment. Sequence positions that are located within or near these genomic regions of-
ten cannot be assigned to any subtype by jpHMM. Apart from these 33 breakpoints, the

predicted recombination pattern was correct.

Dataset D3_HIV For 32 of the 40 sequences, the recombination pattern was predicted
correctly. In the remaining eight sequences one short segment (300 nt) was not assigned to
the correct subtype. Three of these eight segments could not be identified as a recombinant
segment but were predicted to have the same subtype as their neighbor segments. The other
five segments were classified as uncertainty regions. A possible reason for this incorrect
classification is that for the currently used jump probability of 10~?, jpHMM is often not
able to detect short recombinant segments. Higher jump probabilities might solve this
problem but would also lead to a higher rate of false positive recombinant segments, i.e.

regions that are incorrectly predicted as recombinant segments.

5.3.2 Sensitivity of predicted breakpoint intervals

The accuracy of the predicted breakpoint intervals is measured in terms of the sensitivity
of the predicted breakpoint intervals, i.e. the number of real breakpoints detected by the

predicted breakpoint intervals. The following definition holds:

Definition 5.11 A breakpoint is defined as detected when the predicted breakpoint inter-
val contains the breakpoint and, when the two subtypes to the left and to the right of the

breakpoint interval are predicted correctly.

Different thresholds ¢gp; are used to define breakpoint intervals based on the posterior
probabilities:
tgpr € {0.75,0.85,0.9,0.95,0.99,0.9999} (5.21)

For each of these thresholds, the number of detected breakpoints is determined. The accu-
racy of the predicted breakpoint intervals is compared to the results of a naive approach,
explained below in subsection 5.3.4. In Table 5.1, for each threshold given in (5.21), the
percentage of real breakpoints detected with the corresponding breakpoint intervals is pre-
sented (column 4). As additional information the average (column 2), the minimum (col-

umn 3) and the maximum length (column 3) of the predicted breakpoint intervals are given.
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Table 5.1: Comparison of the accuracy of predicted breakpoint intervals and breakpoint
intervals of fixed length for the three tested datasets. The table for dataset D1_HIV
(1000nt/1000 nt) was originally published in [86]. In column 1 the threshold ¢gpy for the
posterior probabilities to define breakpoint intervals (BPI) is given. The average length
of the predicted breakpoint intervals defined by t¢gpy is given in column 2, the minimum
(Min.) and maximum length (Max.) in column 3. The percentage of real breakpoints
(BPs) detected with the predicted breakpoint intervals (using the posterior probabilities
(Ppost)) and with the naive approach (using breakpoint intervals of fixed length around
each predicted breakpoint (Fixed BPI length)) are shown in column 4 and 5. The length
of the breakpoint intervals of fixed length in the naive approach corresponds to the aver-
age length of the predicted breakpoint intervals. For each threshold, the highest value is
marked in bold face.

Dataset D1_HIV (1000/1000 nt)

Threshold BPI length Percentage of detected BPs using
tBPI Average  Min. / Max. Poost Fixed BPI length
0.75 16.12 0/113  54.17 59.44

0.85 22.46 0/121  68.06 66.67

0.90 26.89 2/135  74.72 69.72

0.95 34.05 2/202  81.11 75.56

0.99 48.58 5/233 9250 82.78

0.9999 84.77 11/492  98.06 92.50

Dataset D2_HIV (1500/500 nt)

Threshold BPI length Percentage of detected BPs using
tBPI Average  Min. / Max. Poost Fixed BPI length
0.75 14.56 0/84 47.88 45.61

0.85 20.10 0/109 59.21 55.24

0.90 23.73 2/115 65.16 59.49

0.95 30.11 2/202 7252 64.59

0.99 43773 5/233 82.72 69.97

0.9999 76.30 11/268 88.10 80.45

Dataset D3_HIV (1500/300 nt)

Threshold BPI length Percentage of detected BPs using
tBpI Average  Min. / Max. Poost Fixed BPI length
0.75 13.75 1/105 53.75 49.50

0.85 18.85 1/111 67.25 59.25

0.90 22.29 1/114 73.25 63.50

0.95 28.36 1/123  80.00 69.25

0.99 41.24 1/143  87.50 80.50

0.9999 71.40 5/245 9175 89.75
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5.3.3 Accuracy of predicted subtypes

Another measure for the accuracy of predicted uncertainty regions and breakpoint intervals
is the accuracy of predicted subtypes at positions outside uncertainty regions and break-
point intervals. In Table 5.2, for all tested thresholds and using tyg := tgp; as posterior
probability threshold for the uncertainty regions, the percentage of positions outside un-
certainty regions and breakpoint intervals that were assigned to a subtype and classified
correctly (column 2) is presented. Additionally, the percentage of unclassified positions at
the sequence ends (column 3) is determined. Unclassified positions are positions that are
emitted by one of the two special insert states at the beginning and the end of the model
and therefore are not assigned to any subtype. For each dataset, the number of unclassified
positions is the same for all tested thresholds (e.g. 6.74 % for dataset D1_HIV).

On the basis of the percentage of unclassified and correctly classified positions, the per-
centage of positions that were classified incorrectly is calculated (column 4). This percent-
age is compared to the percentage of incorrectly predicted sequence positions with the orig-
inal JpHMM version using the Viterbi algorithm and point estimates of breakpoints only
(Table 5.3). For dataset D1_HIV, the percentage of incorrectly predicted positions is only
0.58 — 0.82 % compared to 1.51 % for the original jpHMM version. For dataset D2_HIV
and D3_HIV, these percentages are 0.66 — 0.99 % compared to 1.55 % and 0.75 — 1.08 %
compared to 1.97%, respectively.

5.3.4 Comparison to a naive approach

The most obvious and naive method to define breakpoint intervals around predicted break-
point positions, if no further information is provided, is to define a symmetric interval
of fixed length, centered around the predicted breakpoint position. In Table 5.1, column
5, the accuracy of such breakpoint intervals of fixed lengths is given and compared to the
accuracy of breakpoint intervals defined by the posterior probabilities. For a direct compar-
ison, the fixed breakpoint interval length corresponds to the average length of the predicted
breakpoint intervals defined by the posterior probabilities (column 2), rounded to the near-
est even number. The results show that for all posterior probability thresholds evaluated
(except tgpr = 0.75 for dataset D1_HIV), especially for high thresholds, the percentage of
breakpoints detected with breakpoint intervals defined by the posterior probabilities (col-
umn 4) is much higher than the percentage achieved with the naive approach, i.e. using
breakpoint intervals of fixed length (column 5). For the default threshold i, = 0.99, the
results are again summarized in Table 5.4. For dataset D1_HIV, the sensitivity of the ex-

tended jpHMM version predicting uncertainty regions in the recombination prediction and
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Table 5.2: For different posterior probability thresholds, tyr = tppr, the percentage of
sequence positions located outside of breakpoint intervals and uncertainty regions that are
classified correctly, unclassified and classified incorrectly is given. Unclassified positions
are positions at both ends of the sequences that were not assigned to any subtype by the
Viterbi path. For each dataset, the number of unclassified positions is the same for all
tested thresholds.

dataset D1_HIV (1000/1000 nt)

Threshold Percentage of positions

tur = tgpr  Classified correctly  Unclassified  Classified incorrectly

0.75 92.44 6.74 0.82
0.85 92.56 6.74 0.70
0.90 92.61 6.74 0.65
0.95 92.65 6.74 0.61
0.99 92.68 6.74 0.58
0.9999 92.54 6.74 0.72

dataset D2_HIV (1500/500 nt)

Threshold Percentage of positions

tur = tgpr  Classified correctly  Unclassified  Classified incorrectly

0.75 92.27 6.74 0.99
0.85 92.38 6.74 0.88
0.90 92.42 6.74 0.84
0.95 92.49 6.74 0.77
0.99 92.59 6.74 0.67
0.9999 92.60 6.74 0.66

dataset D3_HIV (1500/300 nt)

Threshold Percentage of positions

tur = tgpr  Classified correctly  Unclassified  Classified incorrectly

0.75 92.15 6.77 1.08
0.85 92.24 6.77 0.99
0.90 92.34 6.77 0.89
0.95 92.45 6.77 0.78
0.99 92.48 6.77 0.75

0.9999 92.37 6.77 0.86
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Table 5.3: Comparison of the percentage of sequence positions classified incorrectly with
JpHMM including uncertainty regions (UR) and breakpoint intervals (BPI) in the recom-
bination prediction (columns 2 and 3) and with the original jpHMM version using point
estimates of breakpoints only (Orig. jpHMM, column 4). For the recombination predic-
tion including uncertainty regions, different posterior probability thresholds have been
used and the results are shown in Table 5.2. Here, only the minimum (Min., column 2)
and maximum (Max., column 3) of the achieved percentages are given for the comparison.

Dataset Percentage of positions classified incorrectly based on
JpHMM incl. UR/BPI Orig. jpHMM
Min. Max.

DI_HIV  0.58 0.82 1.51

D2_HIV  0.66 0.99 1.55

D3_HIV  0.75 1.08 1.97

interval estimates of breakpoints is up to 9.72 percentage points higher than the sensitiv-
ity of the naive method. For dataset D2_HIV, the sensitivity is even increased by 12.75
percentage points, and for dataset D3_HIV by 7.0 percentage points.

Table 5.4: Summary of the comparison of the accuracy of predicted breakpoint intervals
(BPI) for the default posterior probability threshold tgpy = 0.99 (Ppost) and breakpoint
intervals of the corresponding fixed length (Fixed BPI length) for the three tested datasets.

Dataset Percentage of detected BP using

Proost Fixed BPI length
DI_HIV  92.50 82.78
D2_HIV  82.72 69.97
D3_HIV  87.50 80.50

5.3.5 Default posterior probability threshold for breakpoint intervals

Obviously, the higher the thresholds for the posterior probabilities the higher the accuracy
of the predicted breakpoint intervals. But this increase is accompanied by an enormous
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enlargement of the predicted breakpoint intervals. Weighing up the size of the predicted
breakpoint intervals against their accuracy,
o, = 0.99

is chosen as default threshold #iL,; for the definition of breakpoint intervals. For this thresh-
old, 92.50% of the real breakpoints in dataset D1_HIV were able to be detected (Table 5.1,
column 4). The average length of the corresponding predicted breakpoint intervals is 48.58
nt, with a minimum length of 5 nt and a maximum length of 233 nt. In dataset D2_HIV
only 82.72% (Table 5.1, column 4) of the real breakpoints were able to be detected (with an
average breakpoint interval length of 43.73 nt). But, as described above in subsection 5.3.1,
9.35% (33 out of 353) of the real breakpoints were not able to be detected, because they
were located within an unclassified region. So, only 7.93 % of the real breakpoints were
predicted at incorrect positions in the genome. The average length of predicted breakpoint
intervals in dataset D3_HIV for ¢tgp; = 0.99, is 41.24 nt. 87.50 % (Table 5.1, column 4) of

the real breakpoints were able to be detected.

5.3.6 Discussion

The results show that the definition of uncertainty regions and breakpoint intervals strongly
improves the reliability of the recombination prediction with jpHMM. Breakpoint intervals
defined on the basis of posterior probabilities are much more accurate than breakpoint
intervals of fixed length since their length depends on how precisely jpHMM can locate
the breakpoint reliably. A large interval is the consequence of the uncertainty of the model
to locate the exact breakpoint position between two subtypes. For example, breakpoints
located in conserved genomic regions cannot be determined precisely by the model. Such
a breakpoint could be predicted at any position within this region. Predicting breakpoint
intervals on the basis of posterior probabilities allows the user to see which breakpoints can
be located relatively precisely or which breakpoints are approximate.

The definition of uncertainty regions increases the reliability of predicted subtypes out-
side of these regions. For the default posterior probability threshold, less than 0.8 % of the
positions located outside of breakpoint intervals and uncertainty regions were assigned to
the incorrect subtype. For uncertainty regions, no parental strain can confidently be de-
termined. But the graph of the posterior probabilities provides information about which

subtypes are most closely related in these regions.
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5.4 Restriction of the search space of the Viterbi algorithm

In section 3.2 (p. 35), a restriction of the search space of the Viterbi algorithm in jpHMM
was presented in addition to the beam-search algorithm. As a first and very simple ap-
proach the determination of the start and end position of each query sequence in the ref-
erence genome (section 3.2.1, p. 35) was proposed. These positions define the region in
the multiple sequence alignment the query sequence can be aligned to. This restriction of
the search space of the Viterbi algorithm results in a reduction of the runtime of jpHMM,
but only for fragmental sequences. Therefore, and since the results are identical to those
of the original jpHMM without knowing the genome position this approach is not further
evaluated in this section.

The focus of this section is on the second approach, proposed in section 3.2.2 (p. 36),
namely the restriction of the Viterbi search space achieved by a pre-alignment of each
query sequence to the given multiple sequence alignment: A set of sequences is selected
from the multiple alignment and the query sequence is aligned to each of these sequences
pairwisely using the alignment program BLAT [37]. Thus, each query sequence position
is mapped to a certain set of columns in the alignment. These columns define a certain
region in the alignment, called active alignment column interval, to which the respective
sequence position can be aligned. Then, each sequence position can only be emitted by a
state corresponding to a column within the active alignment column interval assigned to
the respective sequence position.

In the following subsections, first, the parameters for the definition of active alignment
column intervals are defined. Second, the accuracy of the BLAT alignments for HIV-1 and
HBYV sequences is evaluated and it is shown that BLAT is a suitable program for defin-
ing active alignment column intervals to restrict the search space of the Viterbi algorithm
in jJpHMM. Third, the accuracy of jJpHMM based on these pre-defined active alignment
column intervals is evaluated.

The runtime of jpHMM on the basis of pre-defined active alignment column intervals
is analyzed in section 5.6 (p. 105) in which the runtime of all jJpHMM versions developed

in this thesis is compared.

5.4.1 Parameters

The workflow 3.5 in section 3.2.2 (p. 38) describes how active alignment column intervals
are determined for each query sequence position. In this workflow, several parameters were

described that will be specified in the following:
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* Definition of active columns in the given multiple sequence alignment:
According to Def. 3.4 (p. 39), an alignment column is an active column if it is a
conserved (Def. 3.2, p. 38) and non-gap column (Def. 3.3, p. 38) with a certain
number of adjacent conserved non-gap columns to the left and to the right. A column
is a conserved column if a certain nucleotide is observed in this column in at least
C' = 80% of the sequences in the alignment. For a non-gap column, less than G =
20% of the sequences are allowed to show a gap. The number of required adjacent

conserved non-gap columns to the left and to the right is 2.

* Definition of active alignment column intervals:
N = 100 sequences were selected randomly from the alignment to build the database
D for the BLAT alignments. An active alignment column interval is only assigned
to a certain query sequence position if this position is aligned to at least 7" = 50% of

the database sequences.

* Extension of active alignment column intervals determined with BLAT:
Each active alignment interval determined with BLAT is extended by K = 3 active

alignment columns if possible. At sequence ends such an extension is not required.

The parameters described in the first two items are estimated on the given HIV-1 align-
ment (section 5.1.1, p. 75) my maximizing the number of correctly aligned sequence po-
sitions in the test described below in section 5.4.2 (p. 96). For the extension of the active
alignment column intervals determined with BLAT (item 3), several extension parameters
K, K =0,...,3, have been tested. For ' = 3, the number of correctly aligned sequence
positions was 100% on the basis of the given HBV alignment. This percentage could not

be achieved for the HIV-1 sequences as it will also be described below.

5.4.2 Accuracy of pre-defined active alignment column intervals

Firstly, the accuracy of the pre-alignment of query sequences to the given multiple sequence
alignment with BLAT was evaluated on the sequences in the multiple alignment. Each se-
quence in the multiple alignment, called query sequence here, was aligned to each selected
database sequence with BLAT. For the sake of fairness, query sequences contained in the
database were temporarily removed from the database. On the basis of these pairwise align-
ments, active alignment column intervals were defined for each query sequence position,
as described in section 3.2.2 (p. 37).

The accuracy of the pre-alignment with BLAT was measured by the number of correctly

aligned query sequence positions, i.e. query sequence positions for which the assigned
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active alignment column interval contains the original column of the position in the multiple

sequence alignment.

Definition 5.12 (Correctly aligned sequence position)
A position of a sequence in the multiple sequence alignment is called correctly aligned
with the workflow 3.2.2.1 described in section 3.2.2 (p. 37) if the assigned active alignment

column interval contains the original column of the sequence position in the alignment.

Definition 5.13 (Accuracy of active alignment column intervals)
The accuracy of active alignment column intervals, accaacy determined with the workflow
3.2.2.1 described in section 3.2.2 (p. 37), is given by the percentage of correctly aligned
sequence positions:

# correctly aligned sequence positions

accaact = — (5.22)
# sequence positions

The accuracy of the active alignment column intervals determined with BLAT was eval-
uated for the sequences in the given HIV-1 and HBV alignment. For the chosen parameters
(section 5.4.1, p. 95), the assigned active alignment column interval contained the orig-
inal position in the alignment (Table 5.5) for 100% of the HBV sequence positions and
99.95% of the HIV-1 sequence positions. In Table 5.5, for each virus type, the average, the

minimum and the maximum length of the active alignment column intervals is given.

Table 5.5: Accuracy of the active alignment column intervals determined with BLAT
for HIV-1 and HBV sequences. Additionally, for each virus type, the average and the
minimum (Min.) and maximum (Max.) length of the active alignment column intervals is

given.
HIV-1 HBV
Accuracy Interval length Accuracy Interval length
Average  Min. / Max. Average  Min. / Max.
99.95% 81 7171551 100 % 24 6/79

The intervals for the HIV-1 sequences are larger than those for the HBV sequences
since the HIV-1 alignment contains large regions of insertions or deletions where no active
alignment column can be found. For example, both ends of the alignment are frayed with a

large number of gaps so that a proper alignment is not possible. The minimum length of the
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intervals must be seven nucleotides due to the criterion that each active alignment column
interval is extended by three active alignment columns. In HBV, the minimum length is
determined by the positions at the sequence ends where such an extension is not possible.
This is not the case for HIV-1 due to the large regions of gaps at the sequence ends.

The 0.05% of the HIV-1 sequence positions that were not able to be correctly aligned
are located either in insert regions or are part of repeats of which one corresponds to an
insertion in the alignment. Due to the criterion for active alignment columns (conserved
and non-gap), an alignment for these positions is not possible. Besides, these positions
showed up regions that were poorly aligned in the original alignment. Editing these regions
in the original HIV-1 alignment could improve the results of the jpHMM recombination
prediction for HIV-1.

5.4.3 Accuracy of jpHMM on the basis of pre-defined active align-

ment column intervals

For each query sequence position, the assigned active alignment column interval defines the
columns in the alignment to which this sequence position is allowed to be aligned to. That
is, the corresponding states in the model are allowed to emit the respective query sequence
position. To guarantee that each active alignment column interval includes active states
of all subtypes each active alignment column interval is extended such that each subtype
contains at least a certain number M of consensus columns within this interval. A small
number M of required consensus columns for each subtype strongly reduces the runtime of
the Viterbi algorithm whereas larger values may guarantee better alignments. Taking into
account both aspects M was set to 3.

On the basis of these pre-defined active alignment column intervals and with the beam-
search algorithm (section 3.2.2.2, p. 42) as further restriction of the Viterbi search space,
jpHMM was applied to all HIV-1 and HBV datasets described in section 5.1 (p. 75). Here,
the HBV sequences were treated as linear genomes. The results of the recombination pre-
diction were compared to the results of the original jpHMM version. For all sequences, the

results of both methods were identical.

5.4.4 Discussion

The accuracy of the active alignment column intervals shows that BLAT is a suitable pro-
gram for pre-aligning HIV-1 and HBV sequences to restrict the search space of the Viterbi
algorithm in JpHMM. Additionally, it is a very fast program with an output that is easy
to evaluate and incorporate in the jpHMM pipeline. Since the recombination prediction
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results of a jJpHMM on the basis of these active alignment column intervals are identical
to the results of the original model and as the runtime of the program is strongly reduced

(section 5.6, p. 105), such a restriction of the Viterbi search space is recommended.
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5.5 A modified jpHMM architecture with mute jump states

In section 3.3 (p. 47), a modification of the original jJpHMM architecture
(GgpHMM _linear) was presented. By the introduction of mute jump states in the model, the
number of jumps in the model was reduced to be linear in terms of the number of subtypes
instead of being quadratic. Such a modification of the jpHMM architecture was necessary
to allow the application of jpHMM to species with a large number of subtypes. A possible
application is, for example, the detection of chimera in 16S rRNA sequences which will be
a future project. In this section, the modified jpHMM including mute jump states will be
applied to the HIV-1 and HBV sequences examined in this thesis. It will be shown that the
accuracy of this new jJpHMM version is comparable to the accuracy of the original jpHMM.

The runtime of jpHMM with a modified architecture (jpHMM_linear) and in combina-
tion with a pre-alignment of each query sequence to the given multiple sequence alignment
is compared to the runtime of the original jJpHMM in section 5.6. In that section, the run-
time of all jpHMM versions developed in this thesis is evaluated.

Additionally, the runtime of jpHMM for an example alignment subdivided into a large
number of subtypes is evaluated to demonstrate the necessity of the reduction of the number

of jumps in the model for such applications.

5.5.1 Accuracy of the modified jpHMM with mute jump states

To compare the accuracy of the original jJpHMM with that of the newly developed jpHMM,
JpHMM_linear, a few modifications in the original model are necessary. In the original
jpHMM, from each match state two types of jumps to another subtype are possible, namely
a jump to the match state and a jump to the delete state in the successive column (section
2.2.2, Fig. 2.4). The ratio of the probabilities of these two jumps is determined by the ratio
of the probabilities of the respective transitions within the subtype the jump leads to. For
example, for the match state M ; in column 7 in subtype Sy, let ¢/ be the transition
probability from M, ; to the match state M, ;. in the successive column ¢ + 1 and ¢,,p the
transition probability from M ; to the respective delete state Dy, ;. ;. Then, the ratio of the
probability of a jump from M}, ; to the match state M; ;1 in column 741 in subtype S; to the
probability of a jump from M, ; to the respective delete state D, ;; corresponds to the ratio
of tpyrar to tpp. This can lead to the fact that jumps from a match state in a subtype to match
states in two different subtypes are not equally likely. Such jump probabilities cannot be
modeled in the modified jpHMM since from a match state jumps are only possible to the
two mute jump states Dy, and Dp which allow for jumps to match and delete states, resp..

Thus, to compare the two jpHMM versions, in both models, the jump probabilities from
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match states to match and delete states are set to be equal. This choice of jump probabilities
will be discussed later again. But despite this adaption of the original model, the transition
and jump probabilities in both models do not have to be equal for all columns. The reasons

are
* the unequal number of jumps out of a certain state in both models,

* the fact that in the new model, the probability of a jump from one subtype to another
is the product of the probability of a jump to a mute jump state and the probability of

a jump from the mute jump state to the other subtype,

* the condition that the probabilities of all transitions and jumps out of a state must

sum up to one.

Here, this will not be explained more detailed, since these facts do not have a big influence
on the results (shown below). Additionally, as described in section 3.3.6 (p. 53), in regions
where not all subtypes have consensus columns, in the original model, less jumps are pos-
sible than in the new model where in each column, a jump from each subtype to any other
subtype is possible.

The accuracy of the new jpHMM, jpHMM_linear, was evaluated on the HIV-1 and
HBYV datasets described in section 5.1 (p. 75) and compared to the original jpHMM ver-
sion (with parameters adapted to the new version). In total, 120 HIV-1 sequences (1113
breakpoints) and 1,116 HBV sequences (4303 breakpoints) were evaluated. For HBV, the
JjpHMM version for circular genomes (section 3.4, p. 57) was applied.

For all tested datasets, the sensitivity and specificity of breakpoint intervals predicted
with the original model based on the posterior probabilities of the subtypes were able to be
reached with the new jpHMM. Thus, all breakpoints identified with the original jpHMM
with parameters adapted to the new version (explained above) could be detected with the
new jpHMM. But, some of them were predicted at different positions compared to the po-
sitions predicted with the original model. In total, the predicted position of 43 breakpoints
was shifted. One reason for this shift is that in the original model, jumps at positions in the
genome regions where some subtypes do not contain consensus columns are favoured due
to a higher jump probability as explained above. This is not the case for the new model
where at each position a jump to all subtypes is possible. Thus, for seven of the predicted
breakpoints a shift of the breakpoint position to such non-consensus regions could be ob-
served in the original model compared to the new model. The other shifted breakpoints are
located in conserved regions, where a breakpoint cannot be predicted properly. The reason

for this shift is that the probabilities of transitions and jumps out of a state are not identical
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in both models for all positions, as described above. The largest breakpoint shift comprised
50 positions and was located within a variable genome region with many insertions and

deletions. Most of the shifts only comprised one or two sequence positions.

5.5.2 Accuracy of the modified jpHMM with mute jump states in com-
bination with a pre-alignment with BLAT

The modified jpHMM containing mute jump states was applied to HBV using the circular
version of the program. This circular jJpHMM version is based on a pre-alignment of each
query sequence to the given multiple sequence alignment with BLAT. Thus, the results
of the previous subsection 5.5.1 show that the pre-definition of active alignment column
intervals with BLAT to reduce the search space of the Viterbi algorithm is also applicable
to the modified jpHMM architecture. This was also confirmed by its application to HIV-
1. The recombination prediction results achieved by the new jpHMM combined with a
restriction of the Viterbi search space on the basis of active alignment column intervals

were identical to those of the new JpHMM without any further search space restriction.

5.5.3 Discussion

On the basis of the evaluated sequences, the new jpHMM with a modified architecture
containing mute jump states appears to be a promising approach for datasets with a large
number of subtypes as well as for the given HIV-1 and HBV datasets. The accuracy of
the original and the new model is comparable, and the runtime is decreased enormously
(section 5.6). A disputed point is the ratio of the jump probability from a match state to
the mute jump state Dy, which allows for jumps to match states and the probability of a
jump to the mute jump state Dp which allows for jumps to delete states. Setting this ratio
to one as it was done in this evaluation decreases the sensitivity and specificity of predicted
breakpoint intervals by up to nine percentage points compared to the accuracy of the origi-
nal model. Additionally, transitions between match states usually have a higher probability
than transitions from match to delete states. Thus, choosing equally high probabilities for
these two types jumps is not the best choice. One possibility is to adapt this ratio to the
ratio of the respective transition probabilities within the respective subtype. But this would
also result in unequal jump probabilities for different subtypes in the same column. The es-
timation of the jump probabilities for different types of jumps is subject of future analyses
and the results must be carefully compared to the results of the original model. Probably, a

modification of the jump probabilities in the original model so that the jump probabilities
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are equal for all subtypes will give better results with respect to the accuracy of predicted
breakpoints.

One main difference between the two models is that in the new model jumps to all
subtypes are allowed at any column. In case of non-consensus columns in certain subtypes,
this is not possible in the original model. It is very possible that once a suitable ratio of the
probabilities of jumps to match and delete states is found, the new model is more accurate

in predicting breakpoint positions than the original model.
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5.6 Comparison of the runtime of different jpHMM ver-

sions

In this section, the runtime of the newly developed jpHMM versions, i.e. the restriction of
the Viterbi search space by a pre-alignment with BLAT (section 3.2, p. 36) and the modi-
fication of the jJpHMM architecture (section 3.3, p. 47), is compared to that of the original
jpHMM. First, the runtime is compared for the HIV-1 and HBV datasets presented in this
thesis (section 5.1, p. 75). Then, in the second part, the runtime for datasets with a large
number of subtypes is compared to show that a modification of the jpHMM architecture is

necessary to apply jpHMM to such large datasets in the future.

5.6.1 Comparison of the runtime of different jpHMM versions

The runtime of the original jJpHMM and the two approaches for restricting the search space
of the Viterbi algorithm and reducing the complexity of the model were compared for HIV-

1 as well as HBV sequences. The compared methods are again
1. the original jJpHMM (section 2.2.2),

2. a jJpHMM on the basis of predefined active states determined with BLAT (section
3.2.2),

3. ajpHMM with a modified architecture such that the number of jumps per column is

linear in terms of the number of subtypes in the model (section 3.3) ,

4. the jJpHMM with a modified architecture (3) on the basis of predefined active states
determined with BLAT (combination of 2 and 3).

In all four approaches, the beam-search algorithm (section 2.2.2.4) was used as further
restriction of the Viterbi search space. The results of the comparison are given in Table 5.6.

For HIV-1, the average jpHMM runtime for all sequences included in the three datasets
D1, D2 and D3 (section 5.1.1.3) was determined. Thus, the evaluation comprised 120
nearly full-length (~ 9,500 nt) HIV-1 genomes. As input alignment, the alignment de-
scribed in section 5.1.1.1 was taken. It contains 14 subtypes with a length of about 10, 000
nt For HBV, the circular version of jpHMM was used. This version first extends the given
multiple sequence alignment and query sequences as described in section 3.4. As test data,
all sequences included in the datasets described in section 5.1.2.3 and 5.1.2.4 were taken,

comprising 1116 sequences. The extended sequences had an average length of 4, 200 nt.
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The input alignment is the extended HBV alignment described in section 5.1.2.2. It has a
length of 7,371 nt and consists of eight genotypes.

For HBV, only the runtime of the jpHMM versions on the basis of a pre-alignment with
BLAT is compared, since such an alignment is necessary for applying jpHMM to circular
genomes. As the original jJpHMM version, the reimplemented jpHMM version including
only the beam-search algorithm was used.

First, it can be seen in Table 5.6 that the average runtime of jpHMM for full-length
HIV-1 sequences can be reduced from > 10 minutes to about seven minutes due to the
reimplementation of the source code. This runtime can be reduced by more than half by
a restriction of the Viterbi search space by a pre-alignment with BLAT. For the jpHMM
with a modified architecture, this restriction of the Viterbi search space does not have such
a large effect, the runtime can be reduced by 98 seconds. But, compared to the original
jpHMM, the average runtime for full-length HIV-1 sequences can be reduced by two-thirds
to only 141 seconds. For HBV sequences, the modification of the jpHMM architecture
does not have a big influence on the runtime of the program which may be the result of the

small number of subtypes and the relatively short length of the sequences.

Table 5.6: Comparison of the runtime of four different jpHMM versions: 1.) the original
jpHMM (jpHMM_orig), 2.) a jpHMM on the basis of predefined active states determined
with BLAT (jpHMM_blat), 3.) a jpHMM with a modified architecture such that the num-
ber of jumps per column is linear in terms of the number of subtypes (jpHMM_linear),
and 4.) a jpHMM with a modified architecture on the basis of predefined active states
determined with BLAT (jpHMM_linear_blat). For each approach, the average runtime for
all test sequences is given. For HBV, the jpHMM version for circular genomes is used.
Thus, for HBV, only the jpHMM versions on the basis of a pre-alignment with BLAT are

compared.
# Subtypes Runtime of
JjpHMM _orig jpHMM_blat jpHMM . linear jpHMM_linear_blat
HIV-1 14 7m18s 3m26s 3m59s 2m21s
HBV 8 - Im21s - Im9s

5.6.2 Runtime for datasets with a large number of subtypes

In this section, the necessity of a modification of the model architecture for the application

of jJpHMM to species with a large number of subtypes like bacteria is shown on the basis
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of the runtime of the different jpHMM versions. In lack of well-defined alignments for
species with a large number of subtypes, such as for 16S rRNA sequences, semi-artificial
datasets with a large number of subtypes were created. For this purpose, the given HBV
alignment was further subdivided into a larger number of subtypes. Additionally, only a
certain part of the alignment with a length of 1, 500 nt was chosen. This length corresponds
to the length of 16S rRNA sequences.

On the basis of this alignment, it will be shown that the modification of the jpHMM
architecture to include mute jump states is suitable for the application of jpHMM to species
with a large number of subtypes. In Table 5.7, the runtime of the different jpHMM versions
is shown for such an alignment divided into n = 35, 70 and 100 subtypes. The compared
methods are the original jpHMM (jpHMM_orig), the jpHMM with a restriction of the
Viterbi search space with BLAT (jpHMM_blat) and the jpHMM with a linear number of
jumps in terms of the number of subtypes jpHMM_linear).

Table 5.7: Comparison of the average runtime of the original jpHMM (jpHMM_orig), of
a jJpHMM on the basis of a pre-alignment with BLAT to restrict the Viterbi search space
(GjpHMM_blat) and of a jpHMM with a linear number of jumps in terms of the number of
subtypes (jpHMM_linear) for sequences of length 1,500 nt and different numbers (n =
35,70, 100) of subtypes.

# Subtypes Runtime of

jpHMM _orig  jpHMM_blat  jpHMM_linear

35 4m47s 1m37s 49s
70 21m10s 6ms5Ss 1m54s
100 45m38s 13m?25s 3m06s

As it can be seen in Table 5.7, the runtime of the original jJpHMM increases immensely
with a growing number of subtypes. For an alignment consisting of 100 subtypes, the aver-
age runtime for a sequence of length 1, 500 nt is more than 45 minutes. While the definition
of active alignment column intervals based on a pre-alignment with BLAT already reduces
the original runtime to a third, the effect of modifying the jpHMM architecture such that the
number of jumps is linear instead of quadratic in terms of the number of subtypes is even

much higher. The average runtime of 45 minutes can be reduced to only three minutes.
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5.6.3 Discussion

The results show that a reduction of the runtime of jpHMM is necessary to apply the pro-
gram to species with many subgroups. 45 minutes as average runtime for sequences of
length 1, 500 nt is far too much to evaluate large datasets. As both modifications, the defi-
nition of active alignment columns as well as the modification of the jpHMM architecture,
provide an accuracy that is comparable or even identical to that of the original method, the

application of both (combined) modifications is highly recommended for future projects.
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5.7 A jpHMM for circular genomes and its application to
HBV

In section 3.4, a method for the application of jpHMM to recombination prediction in
viruses with circular genomes was developed. The main idea behind this approach was to
extend full-length query sequences at both sequence ends to allow a recombination pre-
diction that takes into account dependencies between nucleotides at the 5* and the 3’ end
of the linearized sequences of circular genomes and is not biased against recombination
breakpoints in these regions.

The hepatitis B virus is such a virus with a circular genome. This virus replicates
via a pregenomic RNA, that is present in a linear form, using reverse transcription. The
mechanism of recombination during replication has not been completely understood yet.
Several hypotheses are possible as described in section 2.1.2 (p. 12). The main question
is whether the recombination takes place when the genome is present in its linear or in its
circular form. Applying the circular version of jpHMM to HBV sequences implies that we
assume that recombination in HBV takes place when the genome is present in its circular
form. This hypothesis was chosen to avoid the problems mentioned in section 3.4 (p. 57)
for the application of a linear model to circular genomes, such as being biased towards
recombination segments at the sequence ends and implicitly predicting breakpoints at the
chosen origin for the sequence coordinates. In the case that this hypothesis is not true, the
circular approach is not appropriate. Small recombinant segments at one end of the linear
genome may not be detected due to the fact that in the circular version two breakpoints
instead of one are required for the detection of such a segment. On the basis of the results
of the recombination prediction, this will be discussed again at the end of this section.

First, the use of BLAT (section 3.2.2, p. 37) for aligning extended query sequences
to the extended input alignment is discussed. Then, the accuracy of the circular jpHMM
version for predicting recombinations in HBV sequences is evaluated on the basis of semi-
artificial recombinant sequences. With this knowledge, the circular jpHMM is applied
to all nearly full-length HBV sequences available from GenBank in December 2009. The
frequency of pure genotypes and recombinants among these tested sequences is determined
and the recombinants are further evaluated to identify circulating recombinant forms that

have arisen from independent recombination events.
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5.7.1 Settings

As described in chapter 3, section 3.4 (p. 57), the application of jpHMM to viruses with
circular genomes starts with an extension of each full-length query sequence and the given
multiple sequence alignment (Fig. 3.12 and Fig. 3.13, p. 59). The number n of nucleotides
by which a query sequence is extended at both ends, was set to n = 500. This value was
determined empirically but seems to be enough for a precise prediction of recombination
breakpoints near the original sequence ends. The length of the prefix by which each se-
quence in the alignment is extended after the duplication of the alignment is also set to
500 nt. This extension is necessary to allow a complete alignment of an extended query
sequence to the extended alignment if the chosen origin for the query sequence ends is
identical to that of the sequences in the alignment.

In the next step, the extended query sequences are aligned to the sequences in the ex-
tended alignment with BLAT to define active alignment column intervals for each query
sequence position (section 3.2.2, p. 36). Due to the duplication of the alignment (Fig. 3.13,
p. 60) usually two alignments of a query sequence to a certain sequence in the alignment
are possible. These two alignments are also contained in the BLAT output. Usually, the
alignment with the highest score is chosen for further evaluation. But it may happen that
for a certain sequence S1 in the alignment, the alignment of the query sequence to the first
part of S1 has the highest score whereas for another sequence S2 in the alignment, the
highest score is given by the alignment to the second part of S2. In this case, a certain
query sequence position is, for example, aligned to column x in S1 and to column x + [ in
S2, if [ is the length of the alignment. Thus, the length of the interval of aligned columns
corresponds to the length of the alignment, and consequently, no restriction of the Viterbi
search space is achieved. To avoid such problems for each pair of aligned sequences, the
left-most pairwise alignment with respect to the given multiple sequence alignment is cho-
sen if the score of this pairwise alignment is not much lower than the highest alignment
score achieved for this pair of sequences. In case that this condition is not fulfilled and the
assigned active alignment column intervals are very large, still the beam-search algorithm
is applied to reduce the Viterbi search space (section 3.2.2, p. 42).

As input alignment the extended HBV alignment described in section 5.1.2 (p. 77) is
used. The jpHMM parameters are the parameters estimated in section 5.2.2 (p. 85, Eq.
(5.20)) on the basis of this alignment.



5.7. A jpHMM for circular genomes and its application to HBV 111

5.7.2 Accuracy

The accuracy of the recombination prediction of the circular jpHMM version for HBV was
measured by the accuracy of the predicted breakpoint intervals and the accuracy of the
predicted genotypes at each sequence position. The accuracy of the predicted breakpoint
intervals was assessed by the sensitivity (Def. 5.2, p. 82), i.e. the number of true break-
points that could be detected with the predicted breakpoint intervals, and the specificity of
the predicted breakpoint intervals (Def. 5.1, p. 82), i.e. the number of breakpoint intervals
that contain a true breakpoint. The accuracy of the predicted genotypes at each sequence
position was measured by the ratio of the sequence positions that were assigned to the cor-
rect genotype to the total number of sequence positions. Only sequence positions located
outside of breakpoint intervals and uncertainty regions were taken into account. Breakpoint
intervals and uncertainty regions were defined on the basis of the posterior probabilities for
different thresholds tgp; = tyr € {0.9,0.95,0.99,0.9999}.

For the evaluation of the accuracy of the recombination prediction, different datasets
were examined. First, the accuracy for dataset DO_HBYV (section 5.1.1, p. 76) that com-
prises semi-artificial recombinants with breakpoints at randomly chosen positions was de-
termined. This is the dataset the jpHMM parameters for HBV have been estimated on as
described in section 5.2.2 (p. 81). The results are given in Table 5.8. Second, the accu-
racy was evaluated for the datasets D1_HBYV, D2_HBYV and D3_HBV (section 5.1.1, p.
76), comprising semi-artificial recombinants with fixed breakpoint positions (D1: at every
1000th position, D2: alternately at every 500th and 1500th position, D3: alternately at
every 300th and 1500th position). The results for these datasets are given in Table 5.9.

As for HIV-1 (section 5.3, p. 87), as default threshold ¢gp; = tyr = 0.99 is chosen since
it provides the best trade-off between the average length and the accuracy of the predicted
breakpoint intervals. For this default threshold, the specificity of the predicted breakpoint
intervals is at least 98 % for all tested datasets. For the datasets with fixed breakpoint posi-
tions (D1, D2 and D3), the sensitivity is about as high as the specificity for this threshold.
But for dataset DO_HBV with breakpoints at random positions the sensitivity of the pre-
dicted breakpoint intervals differs from the specificity considerably (Table 5.8). Taking into
account only breakpoints that are located outside of uncertainty regions the sensitivity can
be increased to 83.04 % for the default threshold. But this value is still much lower than the
specificity (99.12 %). The reason is that in some sequences of this dataset recombination
segments of a very short length (the shortest segment has a length of 2 nt) exist. Using the
currently chosen jump probability jp = 107%7, jpHMM is not able to detect segments of
such short length. But a higher jump probability may lead to a higher sensitivity, but also
to a frequent jumping within the model which could result in a decreased specificity. The
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Table 5.8: For different thresholds ¢gp; (column 1), the accuracy of the predicted break-
point intervals for dataset DO_HBYV is given in terms of the sensitivity (column 4) and
specificity (column 5) of the breakpoint intervals. Additionally, the percentage of se-
quence positions outside of uncertainty regions and breakpoint intervals that are classified
correctly, i.e. assigned to the correct subtype, is determined (column 6). For each thresh-
old, the average (column 2) as well as the minimum and maximum length (column 3) of
the breakpoint intervals is shown.

Dataset DO_HBYV (breakpoints at random positions in the genome)

Threshold BPI length Accuracy % Positions
tpr Average  Min. /Max. Sens. Spec  Correctly classified
0.90 22.50 1/159 71.98  90.20 99.81

0.95 26.58 1/172 77.52  95.61 99.84

0.99 33.26 1/200 80.09 99.12 99.86
0.9999 51.76 1/292 78.95  99.82 99.87

results for the datasets with fixed breakpoint positions show that for sequences that do not
contain very short recombination segments the sensitivity and the specificity of the pre-
dicted breakpoint intervals is very high. Additionally, the percentage of sequence positions
located outside of uncertainty regions and breakpoint intervals is very high. For the default
threshold, < 0.15 % of the positions are classified incorrectly, which corresponds to only 5

nt in a sequence of length 3, 200 nt.

5.7.3 Application to real-world HBV genomic sequences

The high accuracy of the recombination prediction for semi-artificial recombinants demon-
strates that the circular version of jpHMM is a suitable and powerful tool for recombination
prediction in HBV sequences. Therefore, it was applied to all nearly full-length (> 3, 000
nt) HBV genomic sequences that were available in GenBank in December 2009. In to-
tal, 2918 sequences were evaluated of which 339 were used to build the input alignment
(section 5.1.2, p. 78).

5.7.3.1 Number of recombinants and pure genotypes in GenBank

588 of the 2918 sequences were predicted as recombinant sequences, the rest as pure geno-
types. Thus, about 20 % of the full-length HBV sequences stored at GenBank are recombi-
nant sequences. For 54 of the 588 predicted recombinant sequences, at least one uncertainty
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Table 5.9: For different thresholds ¢gpy (column 1), the accuracy of the predicted break-
point intervals for dataset D1_HBYV, D2_HBYV and D3_HBY, is given in terms of the sen-
sitivity (column 4) and specificity (column 5) of the breakpoint intervals. Additionally, the
percentage of sequence positions outside of uncertainty regions and breakpoint intervals
that are classified correctly, i.e. assigned to the correct subtype, is determined (column 6).
For each threshold, the average (column 2) as well as the minimum and maximum length
(column 3) of the breakpoint intervals is shown.

Dataset D1_HBV (1000/1000 nt)

Threshold BPI length Accuracy % Positions
tgpr Average  Min. /Max. Sens. Spec  Correctly classified
0.90 22.64 1/408 82.50 84.46 99.89

0.95 27.34 1/422 90.18  90.18 99.95

0.99 34.86 2/432 08.84  98.84 100

0.9999 52.43 57476 100 100 100

Dataset D2_HBYV (500/1500 nt)

Threshold BPI length Accuracy % Positions
tepr Average  Min. /Max. Sens.  Spec  Correctly classified
0.90 25.30 1/297 80.63  82.32 99.85

0.95 30.73 1/358 89.20  89.20 99.91

0.99 39.98 1/429 98.13  98.13 99.99
0.9999 58.49 1/482 100 100 100

Dataset D3_HBYV (300/1500 nt)

Threshold BPI length Accuracy % Positions
tgpr Average  Min. /Max.  Sens. Spec  Correctly classified
0.90 23.16 1/196 90.36  94.05 99.67

0.95 27.44 1/243 95.09 96.82 99.80

0.99 33.80 1/338 97.05 98.82 99.85

0.9999 53.03 41427 98.21 100 99.94
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region was defined in the predicted recombination. These recombinants were excluded
from further analysis of the recombinant sequences.

The most strongly represented pure genotype is genotype C with 1182 sequences which
corresponds to 40.51 % of all tested real-world HBV sequences (Table 5.10). The genotype
with the lowest number of sequences is genotype G with 21 sequences which corresponds
to only 0.72 % of the tested sequences. The frequency of all genotypes is presented in Table
5.10.

All genotypes but genotype H are involved in the recombination events detected with
JjpHMM. The predicted recombinant sequences will be analyzed and discussed in the fol-

lowing subsection 5.7.4.

Table 5.10: The number of sequences for each genotype and their percentage among all
tested HBV sequences.

Genotype  # Sequences in %

A 400 13.71
B 70 240
C 1182  40.51
D 399  13.67
E 176 6.03
F 58 1.99
G 21 0.72
H 24 0.82
> 2330  79.85

5.7.3.2 Runtime of the circular jpHMM

The average runtime of the circular jpHMM for the tested, nearly full-length HBV se-
quences was 47.8 seconds.
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5.7.4 Proposal for a classification system for recombinant forms of
HBYV

Many of the predicted recombinant HBV sequences share the same recombination pattern
and almost identical positions of recombination breakpoints. The aim of this section is to
group together recombinant sequences that may stem from the same recombination event
in order to identify recombinant forms (Def. 5.14, p. 116) that are very likely to have
arisen from independent recombination events. Such recombinant forms that have been
established in the population will be called circulating recombinant forms (CRF) of HBV.
Here, the main focus of interest is on the definition of really independent recombinant

forms rather than the identification of all existing recombinant forms.

In contrast to HIV, for HBV, a classification system including the definition of circu-
lating recombinant forms does not exist. Usually, recombinant forms are defined as new
subgenotypes based on the sequence similarity (section 2.1.2, p. 13). This can confound
recombination detection tools like jJpHMM to such a degree that they are unable to distin-
guish between two genotypes, if one of the genotypes is included as a recombinant form in
a subgenotype of the other genotype. Also, such a mixing of genotypes and recombinants
of them will make it more difficult to understand the viral evolution and epidemiology.
Therefore, a classification system that clearly distinguishes pure genotypes from recombi-
nant forms is necessary. In the following section a classification system for recombinant
forms is proposed: Initially, the predicted recombinants are scanned for identical recombi-
nation patterns and similar locations of recombination breakpoints to cluster recombinants
that may stem from the same recombination event. Subsequently, for each remaining re-
combinant form, the corresponding sequences are compared in order to identify sequences
from epidemiologically unlinked samples among them. Recombinant forms that are rep-
resented by at least two unrelated samples define a circulating recombinant form of HBV
(Def. 5.20). The condition of at least two unrelated samples accounts for the fact that only
recombinant forms that are able to survive are of interest. Recombinant forms that occur
only once or only in related samples, can, for example, be a result of incorrect sequenc-
ing or a lacking survival fitness compared to other recombinant forms. These recombinant
forms are called unique recombinant forms (URF).

The problem of identifying independent recombinant forms has also been addressed by
a few other studies [90, 23, 106] but apparently none of these studies took into account the

circularity of the genome. These studies are presented below in subsection 5.7.6.

In the following, all sequence information such as genomic positions and recombination

patterns is given based on reference genome numbering (section 5.1.2, p. 77).
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5.7.4.1 Clustering of recombinant forms

The 534 predicted recombinant HBV sequences were clustered by the recombinant forms
(Def. 5.14) they represent in order to identify recombinant forms among them that stem
from independent recombination events. For this purpose, first, the set of recombinant

sequences was searched for equivalent recombinant forms using the following definitions:

Definition 5.14 (Recombinant form)
A recombinant form RF' is a recombination pattern (Def. 5.5) with recombination break-
points at certain positions (or in certain intervals) in the (reference) genome that has been

observed in at least one genomic sequence.

Definition 5.15 (Equivalent recombinant forms)

Two recombinant forms RF, and RF; are called equivalent, if

1. their recombination patterns are identical and

2. for each breakpoint interval B in RF in between two genotypes S, and Ss, a break-
point interval in RF, exists that has the same preceding (S1) and successive genotype

(S2) and borders on or overlaps with B by at least one base, and vice versa.

Two equivalent recombinant forms RF, and RF; are notated

RF, ~ RF,. (5.23)
A BPI B
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Figure 5.1: Four example recombinants R1, ..., R4 of genotypes A (red) and B (green)
with identical recombination patterns and partly overlapping breakpoint intervals (BPI).

Second, recombinants that represent equivalent recombinant forms were filtered out
iteratively from the set of recombinants and clustered such that each remaining recombi-
nant sequence represents a set of recombinants with equivalent recombinant forms. This

iteration is described in Algorithm 5.16.
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Algorithm 5.16 (Algorithm for filtering out equivalent recombinant forms of HBV)
Let R = { Ry, ..., Ry} be the set of predicted recombinants, k£ = 534, and RF; := RF(R;)

the recombinant form represented by R;.

FORi=1,...,k
IFR;, € R
define cluster Crp, := {R;}
FORj=1i+1,....k
IF R; € R and RF; ~ RF;
1. remove R; fromR: R =R\ R,
2. add R; to cluster Crp, defined by the recombinant form RF; :
Crr, = Crr, U{R,}

Obviously, the result of this iterative algorithm, i.e. the clustering of the recombinants,
depends on the order of comparing the predicted recombinant forms. For example, com-
paring iteratively the four recombinant sequences shown in Figure 5.1, can result in the

following clusters:

1. Crr, = {R1, R2, R3, R4}, comparing the sequences in the order R3, R4, R2, R1, or

2. Crr, = {R1, R2}, Cgrr, = {R3, R4}, comparing them in the order R4, R3, R2, R1.

In the second case, the recombinants RF1 and R2 and the recombinants 23 and R4 are
clustered respectively although R1 and R2 are both equivalent to R3. The reason is that
R4 is not equivalent to R1 and R2 respectively. Hence, albeit being sensitive to the order
of comparing the recombinant forms, algorithm 5.16 ensures that in every two clusters
Ci # C;, there are two recombinant forms R, € C; and R, € C; such that R, and R,
are not equivalent. This is also shown in Figure 5.2. In this example, at least two clusters
of recombinants, e.g. Crr, = {R1, R2, R3} and Crr, = {R4, R5}, are built even if all
recombinants seem to be very similar and possibly stem from the same recombination

event.

A further comparison of the identified clusters is necessary to analyze if, for example,
R1 and R5 in Figure 5.2 or R1 and R4 in Figure 5.1 can be clustered or if the distance of

their breakpoint intervals is significant.
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Figure 5.2: Five example recombinants R1,..., R5 of genotypes A (red) and B (green)

with identical recombination patterns and partly overlapping breakpoint intervals (BPI).

5.7.4.2 Evaluation of clusters of recombinant forms

In this section, recombinants representing different clusters of equivalent recombinant forms
that share the same recombination pattern (Def. 5.5, p. 83) but do not fulfill the criterion of
overlapping breakpoint intervals (Def. 5.15, p. 116) for at least one breakpoint interval are
reevaluated. For each pair of such recombinants and each pair of non-overlapping, but pos-
sibly corresponding breakpoint intervals, the segments in the genomic region between the
two shifted breakpoint intervals are examined in both recombinants to decide whether it is
possible that the two breakpoint intervals have arisen from the same recombination event.
This scenario is shown in Figure 5.3. Two recombinant sequences have the same recombi-
nation pattern (AB) but the breakpoint intervals in both sequences do not overlap. The two
segments in-between the two breakpoint intervals are labeled s1 in the first sequence and
s2 in the second sequence. sl is assigned to genotype B and s2 to genotype A.

For both segments, the distance to all sequences included in both genotypes (Def. 5.17)
involved in the two compared recombination events, genotype A and B in this example, as
well as the distance to each of the two genotype as a whole (Def. 5.18) are calculated in the

respective genomic region.

Definition 5.17 (Distance sequence-sequence) Let S1 and S2 be two nucleotide sequences
and A(S1, 52) = (aij)1<i<2,1<j<i a pairwise alignment of S1 and S2 with length .
The distance d(S1, 52) of S1 to S2 is defined as the number of mismatches in A(S1,52):

d(S1,82) = #{column a; | a;; # asj,1 < j <} (5.24)
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S
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Figure 5.3: Comparison of segments s1 and s2 in between two breakpoint intervals in two
different recombinants. Genotype A is represented by red and genotype B by green color.

Definition 5.18 (Distance sequence-genotype) Ler S be a nucleotide sequence and S =
{S1, ..., Sk} be a genotype consisting of sequences Sy, . .., S.
The distance d(S,S) of S to S is defined as the average distance of S to all sequences in S

(Def. 5.17):
k

> (S, S)

As,8) = —

k (5.25)

Then, the two breakpoint intervals are defined as having arisen from the same recombi-

nation event if, for one of the two segments,

1. the distance to the genotype that was assigned to this segment is higher than the

distance to the second genotype, or

2. in the genotype that was not assigned to this segment, a sequence exists of which the
distance to this genotype is as high as the distance of the respective segment to this
genotype.

For the given example this means that the two breakpoint intervals are considered as
having arisen from the same recombination event if the distance of sl to genotype B is
higher than the distance to genotype A (or vice versa for segment s2), or if in genotype A a
sequence exists of which the distance to genotype A is higher than the distance of sl to A
(or the same for genotype B and s2).

The given criteria are chosen for the following reasons. In case that condition 1 holds,
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one can assume that the genotype assignment of jpHMM may be incorrect for this segment.
If condition 2 is fulfilled the distance of a sequence to the genotype it belongs to can be a
hint that also the examined segment can be assigned to this genotype even if it was assigned
to the other genotype by jpHMM. If one of these conditions holds for all breakpoint inter-
vals in the two compared sequences, these sequences are defined as equivalent recombinant
forms and are clustered. For each remaining cluster, a representative sequence is chosen.
These representative recombinants are considered to define recombinant forms that arose

from independent recombination events.

5.7.4.3 Definition of circulating recombinant forms of HBV

Each of the representative recombinants for the clusters of equivalent recombinant forms
defined in the two previous clustering steps may represent a circulating recombinant form
(CRF), i.e. a recombinant form that has been established in the population. Only recom-
binant forms that are represented by at least two unrelated samples are accepted as CRFs
(Def. 5.20). In lack of information whether two samples are related or not, we assume that
two sequences are not directly epidemiologically related if they differ by at least 0.5% of
their positions. Such two sequences will be termed unrelated sequences in this thesis (Def.
5.19).

Definition 5.19 (Unrelated HBV genomic sequences)
Two HBV genomic sequence S1 and S2 are termed unrelated if the number of mismatches
and gaps introduced in S1 in the pairwise alignment of S1 and S2 comprise at least 0.5%

of the length of S1. (The lengths of gaps are not taken into account.)

Definition 5.20 (Circulating recombinant form of HBV)
A circulating recombinant form of HBV is a recombinant form that is represented by at

least two unrelated (Def. 5.19) HBV genomic sequences.

Recombinant forms that do not define a CRF are called unique recombinant forms to
accentuate that they have been observed, up to now, in only one or in several related sam-
ples. This condition is similar to the condition for the definition of a CRF in HIV where
a recombinant form must be observed in at least three full-length sequences or two full-
length sequences and a fragmental sequence obtained from epidemiological unlinked pa-
tients [80]. Since the genotypes presented in a fragment of a sequence do not need to reflect
the whole variety of genotypes involved in the full-length sequence the presence of a third
fragmental sequence is neglected and only two full-length sequences representing the same

recombinant form are required for the definition of a CRF.
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5.7.4.4 Results

Among the 534 recombinant sequences 17 CRFs and 28 URFs are defined. The number
of sequences assigned to each CRF varies greatly (Table 5.11). Six of the CRFs are only
represented by two sequences. The CRF with the largest number of assigned sequences, a
recombination of genotypes B and C, contains 385 sequences. The predicted recombination
pattern for the representative sequence for this CRF (D00330) is plotted in Figure 5.4. In
Table 5.11, the predicted recombination patterns of all CRFs are presented. The sequence of
genotypes is given based on reference genome numbering, which means that, for example,
AGA could be AG using a different start position in the genome. For each recombination
pattern listed in the table, the number of CRFs that share this recombination pattern is given,
and for each of these CRFs, the GenBank accession number of the chosen representative

sequence and the number of sequences assigned to this CRF are indicated.

Table 5.11: Predicted recombination patterns for CRFs of HBV based on reference
genome numbering. For each predicted recombination pattern (column 1), the number
of CRFs sharing this pattern (column 2), the reference sequence(s) of the respective CRFs
(column 3) and the number of sequences included in the CRF (column 4), are given.

Pattern Frequency  Reference sequence(s) # Sequences
AC! 1 AB231908 3
ADA 1 AF418674 4
ADADADA 1 AF418685 8
AG! 1 EF464099 2
BCBCB 1 FJ386674 5
BCB 2 D00330, EU939627 385,2
CA 1 AY057947 2
CBC 2 EU796069, EU939628 26,4
DAD 3 AF418681, AY236161, X80925 6,2,2
DC! 2 AY057948, AF461043 6, 40
DCD 1 FJ562223 3
GFG 1 EF464097 2

502
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In the identified CRFs, all HBV genotypes but genotypes E and H have been involved.
All CRFs are recombinants of two genotypes. Most of them contain two recombination
breakpoints but in the CRF represented by sequence FJ386674, four breakpoints and in the

"breakpoint interval around origin of reference genome
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CREF represented by sequence AF418685, six breakpoints have been observed.

Most URFs were observed only in one sequence but two of the 28 URFs are repre-
sented by two and four sequences respectively that do not satisfy our definition for being
considered as epidemiologically unrelated sequences. As an example for a URF, the pre-
dicted recombination for sequence DQ078791, a recombination of genotypes A, C and G,
is given in Figure 5.5.

The 17 CRFs and the 28 URFs identified with jpHMM in the set of all nearly full-length

HBYV genomic sequences downloaded from GenBank in December 2009 are published at
http://jphmm.gobics.de/hbv_recombinant_forms.html
and
http://Jjphmm.gobics.de/hbv_unique_recombinant_forms.html.

For each CRF and URF, the recombination of the representative sequence predicted
with jJpHMM is plotted using the software package Circos [44] and a list of sequences

clustered with this sequence is provided.
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Figure 5.4: Plot of the predicted recombination for the representative sequence D00330
for the CRF with the largest number (N=385) of assigned sequences.
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Figure 5.5: Plot of the predicted recombination for the URF represented by sequence
DQO78791.

5.7.5 Comparison to other studies

Independent or circulating recombinant forms of HBV have also been identified in a few
other studies. In 2005, Simmonds et al. [90] defined 24 phylogenetically independent
recombinant forms on the basis of different genotype compositions or distinct breakpoints.
But these recombinant forms also include recombinant forms that are only represented by
one sequence because circulating recombinant forms were not distinguished from unique
recombinant forms. In the PhD thesis of Fang Fang [23], which apparently was never
published in a scientific journal, about 380 sequences were tested for recombination and
nine CRFs were identified. Both studies are based on linearized genomes and the circularity
of the genome has not been taken into account. Very recently, Lin et al. [106] evaluated
791 full-length HBV sequences. 61 recombinants from nine putative recombination events
were identified but only two of the recombination events are represented by more than one
sequence. In this study, RDP3 [56] and Simplot [53] were used as recombination detection
tools. In the publication it is mentioned that for RDP3, the default parameters are used

except when sequences were circular. This description is very unclear and no evidence



124 Chapter 5. Results and discussion

could be found that all sequences have been treated as circular genomes. Additionally, in
the RDP3 manual, no description of the method for circular genomes could be found. Thus,
it is not clear whether the method used for circular genomes is different from that for linear
genomes or if only the sequence ends are predicted as breakpoints if the two genotypes
predicted at both ends of a sequence are different.

For most of the recombinants that were included in our as well as in one of the datasets
in the presented publications, the recombinant forms predicted with jpHMM correspond
to the published recombinant forms. For two recombinants published in [23], the number
of predicted breakpoints was different and for five sequences, an additional genotype was
predicted in [23] compared to our prediction (e.g. CAB instead of CB). Two of these five
sequences were predicted as pure genotypes in our analysis. Compared to the recombi-
nant forms published in [90] and [106], for one sequence, two instead of four breakpoints
were predicted, and for another sequence, the recombination pattern BACB was predicted
instead of BCBCB. Both recombinant forms were defined as unique recombinant forms.
Additionally, in both publications, the sequence AY161146 (and AY161145 in [106]) was
clustered with the sequence AY161141. In our evaluation, AY161145 and AY 161146 rep-
resent the same URF and AY161141 is part of a CRF. The recombination patterns of both
recombinant forms are very similar but do not fulfill the criterion (introduced above) for

being clustered as one CRF. These results will be discussed below in subsection 5.7.6.

5.7.6 Discussion

The results of the jpHMM recombination prediction for semi-artificial HBV recombinants
show that circular jpHMM is a very accurate tool for recombination detection in HBV
sequences. With a runtime of only about 45 seconds, it is also applicable in large-scale
studies. These facts and an output of the predicted recombination in a circular form makes
it a recombination detection tool that HBV researchers will highly benefit from.

The differences between the results of the jpHMM recombination prediction and those
published in [90, 23, 106] may be explained by the fact that in our study a method was
used that explicitly takes into account the circularity of the genome (it is not clear how or
if the circularity was taken into account in [23]). Recombinant segments that were missing
in our prediction compared to the published results may be a consequence of the fact that
small recombinant segments at one end of the linearized genome cannot be detected with
the circular model. Using a linear model, only one breakpoint is necessary to predict such
a segment whereas in the circular model a second breakpoint at the sequence end has to

be predicted. Depending on the jump probability and the number of mismatches between
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the two genotypes involved, such a segment may not be detected with the circular version
of JpHMM. As a consequence, the circular jpHMM may tend to predict pure genotypes
or recombinants with less breakpoints compared to the linear model. On the other hand,
short recombination segments at sequence ends in the published predictions that were not
predicted with jJpHMM can be a result of the usage of a linear method for recombination
prediction in circular genomes as described in section 3.4. Such a recombination prediction
is biased towards (incorrect) recombination segments at the sequence ends. These discrep-
ancies must be further analyzed. A first approach can be the application of the original,
linear version of JpHMM to linearized sequences followed by a comparison of the results
of both jpHMM versions.

The main goal of this section was to evaluate the genetic diversity of HBV and to iden-
tify circulating recombinant forms (CRFs) that have arisen from independent recombina-
tion events. About 20% of the sequences published in the GenBank database were predicted
as recombinants. Among these recombinants, 17 CRFs and 28 URFs have been identified.
The CRF with the largest number of sequences is represented by sequence D00330 (Fig.
5.4). It contains 385 sequences which corresponds to about 72% of the recombinants (that
do no include an uncertainty region).

The sequences clustered into one CRF most probably have arisen from the same recom-

bination event. But, as it can be seen at
http://jphmm.gobics.de/hbv_recombinant_forms.html,

some of the CRFs and URFs share the same recombination pattern and similar locations
of breakpoints, but were nevertheless defined as independent recombinant forms. For these
sequences, it must be reevaluated if the shifted, non-overlapping breakpoint intervals really
define distinct recombination events. This evaluation will be carried out in close collabora-
tion with Prof. Paul Dény from INSERM in Lyon, France, since more biological expertise

is necessary to answer these questions.


http://jphmm.gobics.de/hbv_recombinant_forms.html




Chapter 6
Conclusions

Accurate genotyping methods that are able to identify recombination breakpoints are needed
for monitoring the molecular epidemiology of viruses and tracking the viral evolution. Dur-
ing the last years, a large variety of tools for recombination analysis in viruses has been
developed [78]. One of the most accurate methods in detecting recombination breakpoints
in HIV-1 sequences is jJpHMM [87, 109] which can be accessed by an easy-to-use web
interface at http://jphmm.gobics.de. On the basis of comparing single represen-
tative HIV-1 sequences, recombination breakpoints identified by jpHMM were found to be
significantly more accurate than breakpoints defined by methods that are traditionally used.
The extension of jpHMM described in this thesis includes interval estimates of break-
points and a tagging of regions in which the model is uncertain about the predicted sub-
type. This extension improved the reliability of the predicted recombination immensely
[85]. Less than 1% of all positions outside uncertainty regions and breakpoint intervals
were classified incorrectly. The definition of uncertainty regions may also help researchers
to avoid drawing wrong conclusions based on doubtful, uninformative regions, such as the
postulation of a new CRF. Additionally, the graph of the posterior probabilities provides
information about which subtypes are most closely related in these regions. The length of
predicted breakpoint intervals shows how precisely jpHMM can locate the breakpoint. For
example, in conserved genomic regions, a precise prediction of breakpoint positions is im-
possible. Breakpoints located within such regions can be predicted at any position within
this region which is reflected by a large breakpoint interval comprising the whole region.
Due to its high accuracy, jJpHMM became a widely used tool for recombination detec-
tion in HIV-1 sequences. It was used in several studies such as subtype prevalence studies
[35, 82], the detection and analysis of intersubtype recombinants [11, 103, 19, 10, 18] and
even the definition of a new CRF [81]. Leading HIV experts from the Los Alamos Na-

tional Laboratory used, in close collaboration with us, jpHMM, among other tools, in a
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large-scale resubtyping analysis [108] of the Los Alamos HIV Sequence Database [49].
Also, some of the reference breakpoints in known CRFs presented at this database were
determined with jJpHMM.

During this thesis, two modifications of jpHMM were achieved to reduce the runtime
of the program. First, each query sequence is aligned to the given alignment sequences
with BLAT defining the respective genomic position of each query sequence position. Sec-
ond, a modification of the model architecture reduces the number of jumps within the
model to be linear instead of quadratic in terms of the number of subtypes in the align-
ment. The realization of both modifications in combination with a reimplementation of
the jJpHMM source code lead to a reduction of the average runtime for nearly full-length
HIV-1 sequences from > 10 minutes to only 2 minutes and 21 seconds. This reduction is
considerable. But as mentioned in the introduction, currently more than 2, 300 full-length
and more than 330, 000 fragmental HIV-1 sequences are available in the Los Alamos HIV
Sequence Database and the number is increasing rapidly. With the newly implemented
jpHMM version, the runtime alone for all 2, 300 full-length sequences is already 90 hours.
Even when running jpHMM simultaneously on several computers the runtime for all se-

quences including fragmental sequences could be too long for large-scale analyses.

To further reduce the runtime of the program, additional modifications of the model are
conceivable. For example, in the current model, each column in the alignment corresponds
to up to k match states, if £ is the number of subtypes. Each of these states represents
the nucleotide composition of the corresponding column in the respective subtype. In the
case of (nearly) uninformative sites, which are represented by (nearly) identical nucleotide
compositions of the respective column(s) in all subtypes, such a distinction of the subtypes
in the model is not necessary. Additionally, at uninformative sites like conserved genomic
regions, a precise prediction of recombination breakpoints is not possible and not even de-
sirable. Therefore, at an uninformative site, only one match state or, if, for example, one
subtype differs significantly from the other subtypes, two match states are needed to model
the alignment of the query sequence to the given alignment at this position. Such a reduc-
tion of the number of models to be distinguished at uninformative sites could considerably

reduce the number of states in the model.

But, nevertheless, the reduction of the runtime as well as the memory of the program
that is achieved by the reduction of the number of jumps within the model, is large enough
to enable the application of jpHMM to species with a large number of subtypes as it is
shown in section 5.6. A prospective project is the application of jJpHMM to chimera detec-
tion in 16S rRNA sequences. Chimeric artifacts of 16S rRNA sequences can be generated

during PCR amplification when mixed bacterial populations are studied, for example in
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metagenomic projects. To avoid distortions in bacteria population studies and false identi-
fication of novel taxa, an accurate detection of such chimeric sequences is very important.
The accuracy of JpHMM in predicting recombinants of HIV-1 and HBV subtypes justifies
the attempt of applying jpHMM to this important issue.

In this thesis, an extension of jJpHMM to predict recombinations in viruses with circu-
lar genomes such as HBV was developed. To our knowledge, this is the first approach for
recombination detection that explicitly takes into account the circularity of genomes. It al-
lows a recombination prediction that takes into account dependencies between nucleotides
at the 5" and 3’ end of the sequence and is not biased against recombination breakpoints
in these regions. Additionally, the output of the predicted recombination in a circular form
makes it a recombination detection tool that HBV researchers will highly benefit from.

With a runtime of only about 45 seconds, it is also applicable in large-scale studies.

The circular version of jpHMM was applied to recombination detection in HBV as-
suming that the recombination in HBV takes place during the replication cycle when the
genome is present in a circular form. In the case that the recombination takes place while
the genome is present in a linear form - the mechanism of recombination has not been
completely understood yet - this might not be an appropriate approach. It might happen
that, with our approach, small recombinant segments at one end of the linear genome are
not detected due to the fact that in the circular version two breakpoints are required for the
detection of such a segment instead of one. To get more insights into this problem, the
original linear jJpHMM should be applied to all available HBV sequences and the results of
the recombination prediction should be compared to the ones of the new circular version
achieved during this thesis. Nevertheless, the circular jpHMM offers an alternative to the

currently used linear recombination detection tools.

The location of recombination breakpoints in the genome can possibly give some indi-
cation when the recombination during the replication cycle takes place. If the recombina-
tion takes place when the genome is present in a linear form an odd number of breakpoints
always leads to different genotypes at both ends of the linear sequence. In this case, after
the synthesis of the partially double-stranded circular genome, an "artificial" breakpoint
can be observed at the position corresponding to the origin of the linear sequence. Natu-
rally, in the case of an even number of breakpoints, such an artificial breakpoint cannot be
observed. A recombination event that takes place during the circular state of the genome
always leads to two recombination breakpoints. Thus, a hotspot of recombination break-
points in the genomic region that corresponds to the origin of the linear sequence can be a
hint to the fact that recombination takes place when the genome is present in a linear form.

Since the linear version of jpHMM is biased against recombination breakpoints close to the
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sequence ends, which would lead to an overrepresentation of artificial breakpoints at the
origin of the linear form of the genome, the circular jpHMM version is necessary for this
evaluation.

To avoid an overrepresentation of breakpoints in similar recombinant forms that all stem
from the same recombination event, recombinants should be grouped to identify indepen-
dent recombination events. For each of these recombination events, only one representative
sequence should be taken into account for the determination of recombination hotspots.
The evaluation of recombination hotspots is subject of a future project. To start with, in
this thesis, a classification system to identify circulating recombinant forms that are very
likely to have arisen from independent recombination events is proposed. In contrast to
HIV, such a classification system including the definition of CRFs does not exist for HBV.
Usually, recombinant forms are defined as new subtypes of genotypes. Such a mixing of
genotypes and recombinants can confound recombination detection tools such as jJpHMM
so that they are unable to distinguish, for example, two genotypes if a recombinant of both
genotypes is included as a subgenotype in one of them. Since an accurate classification of
HBYV genotypes is indispensable to understand the viral evolution, a classification system
for HBV sequences that clearly distinguishes pure genotypes from recombinant forms is
necessary.

In our study, 17 CRFs and 28 unique recombinant forms (URFs), i.e. recombinant forms
that were observed only once or only in related samples, are defined. Some of these CRFs
or URFs share the same recombination pattern and similar locations of breakpoints, but
are defined as independent recombinant forms. Further analysis of biological experts will
be necessary to find out whether these breakpoints really define distinct recombination
events. But, nevertheless, the criteria for the definition of CRFs proposed in this thesis will

hopefully help to establish a classification system for recombinant forms of HBV.
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