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Introduction

Financial markets are basic structures of financial theory, play the central role
among the other structures and are of the primary concern for mathematical
theory of finance.

In this thesis we consider the markets of financial instruments or securities
where one usually distinguishes underlying (primary) instruments and derivative
(secondary) instruments. Derivative securities are constructed on the basis of the
underlying instruments.

Under underlying financial instruments one usually considers the bank ac-
counts, bonds, stocks. As derivative financial instruments one considers options,
futures, contracts, warrants, swaps, combinations, etc. In more detail about fi-
nancial markets and their instruments one is referred to [60], [48], [28], [52].

The main purpose of derivative securities construction is to manipulate with
them to satisfy the natural wish of investors to raise capital and reduce risks
caused by the uncertain character of the market behavior in the future.

It is worthwhile to notice that options are very important derivative securities
in financial markets and not only. Virtually, almost all corporate securities can
be interpreted as portfolios of put and call options written on the stocks of the
firm and therefore the option pricing theory finds a use for practically all areas
in finance. So, the problem of option pricing is one of the central problems in
financial mathematics.
As call option we understand the right, without the obligation, to buy in the future
a share of stock for a guaranteed price.
As put option we understand the right, without the obligation, to sell in the future
a share of stock for a guaranteed price correspondingly.

Numerous researchers have continued to contribute to the theory of option
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Introduction

pricing already after 1900 when French mathematician Louis Bachelier derived
an option pricing formula with the assumption that underlying stock price follows
a Brownian motion. So that the theory of option pricing has been and remains
important nowadays.

Options themselves have been traded for a long time and at the same time
they have been remained as relatively vague financial instruments. It was so until
1973 when the option exchange has been introduced. And at the same 1973 the
option pricing theory underwent a revolutionary changing.

In that year Fischer Black and Myron Scholes [7] offered first satisfactory
model of option pricing. Then Robert Merton [44] extended this model in some
important ways. After these results many subsequent studies have been done. It
was shown that option pricing theory is relevant to almost every area of finance.
One should notice that the mathematical tools Black, Scholes [7] and Merton [44]
employed are quite advanced and this fact doesn’t make the underlying economics
more clear.

In 1978 Sharpe [63] has partially developed the simplified approach to op-
tion pricing and suggested the advantages of using the discrete-time approach to
option pricing.

Within this setting the fundamental economic principles of option valuation
by arbitrage methods become particularly clear.

In 1979 Cox, Ross and Rubinstein [20] presented a discrete-time option pricing
formula. Among their numerous and wholesome developed results are the model
for a call option on a stock which doesn’t pay any dividends and the explanation
that their approach includes the Black-Scholes [7] model as a special limit case.
Many other problems of option pricing don’t come out with the closed formula. To
value these more complex options numerical procedures are suggested. And again
complicated techniques are used which are not directly related to the economic
structure of the problem.

Quoting Cox, Ross and Rubinstein [20], "Our formulation, by its very con-
struction, leads to an alternative numerical procedure which is both simpler, and
for many purposes, computationally more efficient.", it is necessary to notice
that this formulation suggests itself to be extended in some ways. Madan, Milne
and Shefrin [36] considered the extension of the binomial Cox-Ross-Rubinstein
[20] model to the multinomial case. Where "economic uncertainty is modeled as
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Introduction

evolving on an (n + 1)-ary tree with branching occurring during a short interval
of time in which there is no trading." Initially, Madan et al. [36] consider the
multinomial option pricing model for an arbitrary (n+1)-ary branching tree and
then obtain the limit option value as Black-Scholes formula.

R. Merton in 1976 [45] considered the problem of option pricing when under-
lying stock returns are discontinuous.

In 1991 [57] some exotic options pricing is considered, one example of exotic
options is a compound option. The compound option is like a standard option
except that its underlying asset is itself a standard option.

Another kind of exotic options is "Russian Option", its pricing valuation is
studied in [64], [65], [21], [32].

Good review of basic aspects, statements of problems and results of financial
mathematics in connection with the option pricing theory in modern presentation
is given in [66], [67]

Mainly, the "martingale" methods of option pricing are used. The idea of mar-
tingale methods is that the underlying security process is assumed to be a mar-
tingale with respect to some measure which reflects the conception of fair game
in the market. The work of Rachev and Rüschendorf [53] should be mentioned
where all possible stock price models have been characterized, these models can
be approximated by the binomial models and the corresponding approximations
for the pricing formulas have been obtained. Also, two additional randomizations
in the binomial price models were introduced in order to find more general and
more realistic limiting models. This randomization consists of the considering
the random number of stock price changes and the assumption, that the values
of stock price jumps are random values but they do not change with time.

In 1996 Rejman and Weron [54] have employed the idea of Rachev and
Rüschendorf to generalize Cox-Ross-Rubinstein (1979) binomial model. They
have found the limiting model assuming that the stock returns follow hyperbolic
distribution.

Another generalization of Cox-Ross-Rubinstein (1979) has been done by Mo-
toczyński and Stettner in 1998. They considered the option pricing in multidi-
mensional case with a number of risky assets, which are in discrete time subject to
binomial disturbances. Also, multidimensional case was considered by Tessitore
and Zabczyk in 1991 [71]. They have derived formulaes for option prices when
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Introduction

the financial market is incomplete.
Along with these generalizations of Cox-Ross-Rubinstein model there is a big

discussion about how financial asset returns should be modeled.
The problem of stock returns data modeling is closely related to the problem

of data approximation. There are several approaches to this problem and one of
them is the distribution based approach.

The distribution based concept of stock price data approximation has been
considered by many researches and it has been continued until nowadays.

It is well known that in continuous-time modeling the normality of assets
played a central role in financial theory. Samuelson [58] introduced in 1964 the
Geometric Brownian motion, then the normality of asset returns is used in the
seminal papers by Black-Scholes [7] and Merton [44].

For some time past and as documented in considerable number of papers [1],
[2], [24], [34], [35], [40], [46], [50], [70], [29], [18] written by academics and
practitioners, both normality and continuity assumptions are contradicted by the
most of real data.

It is known that the volatility parameter serves as a variance measure of the
financial market and plays an important role in option pricing valuation. The
Black-Scholes formula was obtained under the assumptions that the volatility is
constant which in many cases does not correspond to reality and by empirical
studies it was shown that there is a phenomena of so called volatility smile when
the implied volatility in dependence on the strike price (specified guaranteed price
of a share of stock on the expiration date) of the option has a smile shape.

Since the assumptions about the normality of underlying stock price and con-
stant volatility parameter are not satisfactory, many researchers try to mend the
Black-Scholes theory adding various frictions and distortions to deduce the aris-
ing volatility smile. Or, they assume that stock returns follow some kinds of Lévy
processes.

In 1963 Mandelbrot [41] suggested to use Lévy stable distributions to model
the returns in the financial markets. In 1965 Fama [24] noted that asset returns
distributions are more leptokurtic than normal; this feature is more accentuated
when the holding period becomes shorter and becomes clear on high frequency
data.
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Introduction

There is some historical review about what kind of research has been done
concerning stock returns modeling and option pricing with respect to distribution
based conception of data approximation. From the beginning of 90th, several
families of Lévy processes with probability densities having semi-heavy, that is,
exponentially decaying tails have been used to model stock returns and price
options: Variance Gamma Processes (VGP), used by D. Madan with co-authors
[37], [38], Normal Inverse Gaussian Processes (NIG), used by O.E. Barndorff-
Nielsen’s group [3], Hyperbolic Processes and Generalized Hyperbolic Processes
(HP and GNP) used by Eberlein’s group [22], Truncated Lévy Processes (TLP),
constructed by Koponen [31], used by J.-P. Bouchaud and his group [9], [10],
[11] and extended by Boyarchenko and Levendovski [12], [13], [14] and Normal
Tempered Stable Lévy Processes (NTS Lévy Processes) [4], [5].

As it is shown, this is very important properly to approximate the data of
underlying risky security to obtain pertinent corresponding option prices. One
can expect that if the good stochastic model of approximation for stock price
process is found, then it is more likely to obtain more reasonable option prices.

It is not evident that real data should follow some certain known distribution
specified by the expert. So, we use the different approach to data approximation,
namely, we construct a model which allows to exhibit the most features of data
and minimize the distance between real and modeled data. Evidently, the stock
price follows the up and down process which has been well described by classical
random walk process. But, the option prices calculated using the classical results
of Cox et al. ( [20]) (CRR option pricing formula) and famous Black-Scholes
formula ( [7]) started to fail quite often. So, in this context, it seems to be
plausible to construct the extension of Cox-Ross-Rubinstein binomial model and
consider the possible limits of new extended model.

Mostly in practice the discrete model of option pricing is preferred. It
is explained by the fact that Black-Scholes formula is a particular limit case
of discrete binomial Cox-Ross-Rubinstein model( [20]). In other words, the
binomial model provides discrete approximations to the continuous price process
underlying in the Black-Scholes model.

The classical discrete Cox-Ross-Rubinstein model of financial market is de-
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fined by a saving account or a bond process

Bt = (1 + r)t = r̂t, ∀ t ≤ T ∗, (∗)

where r ≥ 0 is a constant rate of return and B0 = 1.
The stock price process in classical discrete Cox-Ross-Rubinstein model is given
by

St = ξt−1St−1, ∀ t ≤ T ∗, (∗∗)
where ξt, t ≤ T ∗ are independent identically distributed random variables taking
two possible values u and d with probabilities p and 1 − p respectively. And
d < 1 + r < d are given real numbers, S0 is strictly positive constant.

Since Black-Scholes model is often not satisfactory in practice anymore
and classical Cox-Ross-Rubinstein is the approximation for Black-Scholes, it is
not enough to be pleased only with classical Cox-Ross-Rubinstein model too.

So, in this thesis, we consider the following problems to solve

• (1) to construct an alternative (to binomial one) model of the underlying
security of call option which fits (approximates) data better then the bino-
mial model with respect to the values of stock price jumps having changed
with time

• (2) to obtain the generalization of Cox-Ross-Rubinstein option price with
respect to the alternative model of the stock price process

• (3) to obtain the possible limit of generalized Cox-Ross-Rubinstein option
price

The dissertation consists of four chapters, one of which contains numerical
results and corresponding graphs.
In the first chapter of dissertation we construct the generalized discrete-time
model of the underlying stock price process which can be better approximation
to the stock price process than classical random walk.

Definition 1.1.1 The model of stock price process is called generalized
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Cox-Ross-Rubinstein stock price model if S is defined as follows

St = St−1ξt−1, ∀ t ≤ T ∗, (1.1.2)

where S1 = S0ξ0, S0 is given positive constant and

ξt = Xtνt, ∀ t ≤ T ∗,

where {νt}t≤T ∗ are Bernoulli random variables taking values u and d with
corresponding probabilities p and 1 − p. Also assume that random variables
{Xt}t≤T ∗ and {νt}t≤T ∗ are mutually independent.
We also derive the corresponding generalized model for option price. The
technique used to derive the option price is the backward induction technique
which first was suggested by Sharpe in 1978 [63].

Proposition 1.5.1. The arbitrage price of a European call option at time
t = T −m is given by the following formula

CT−m = ST−m

m∑
j=0


 ∑

J∈Ij,m(ST−m)

P̄ (J (j), T )− K

r̂m

∑

J∈Ij,m(ST−m)

P (J (j), T )




(1.5.1)

for m = 0, . . . , T , where

P̄ (J (j), T ) :=
∏

k∈J

p̄T−k

∏

k/∈J

q̄T−k,

P (J (j), T ) :=
∏

k∈J

pT−k

∏

k/∈J

qT−k,

and

pT−k :=
r̂ − ξd

T−k

ξu
T−k − ξd

T−k

, p̄T−k :=
ξu
T−k

r̂
pT−k, qT−k = 1− pT−k, q̄T−k = 1− p̄.

At time t = T − m − 1 the unique replicating strategy φ is correspondingly
determined.
In the second chapter we impose specific assumptions (constrains) on the new
model of stock price process and as a result the multinomial Cox-Ross-Rubinstein
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model for option price is obtained. This model is called multinomial because the
multinomial coefficients emerge from these specific assumptions.

Proposition 2.3.1 If the condition

P {Xi ∈ Ck} = 1, ∀ i = T −m, . . . , T

is satisfied, then

C̃T−m(c) = km
m∑

j=a

∑
I(m,j,Nc1 ,...,Nck

)

(
ST−mM2k(m, p̄)− K

r̂m M2k(m, p)

)
,

∀ c = (c1, . . . , ck) ∈ Rk
+,

(2.3.1)

where
p1(c1) =

1

k

r̂ − c1d

c1(u− d)
, . . . , pk(ck) =

1

k

r̂ − ckd

ck(u− d)
,

pk+1(c1) =
1

k

c1u− r̂

c1(u− d)
, . . . p2k(ck) =

1

k

cku− r̂

ck(u− d)
,

p̄1 =
c1u

r̂
p1, . . . , p̄k =

cku

r̂
pk, p̄k+1 =

c1d

r̂
pk+1, . . . , p̄2k =

ckd

r̂
p2k

and
p1 + pk+1 = . . . = pk + p2k =

1

k
,

p̄1 + p̄k+1 = . . . = p̄k + p̄2k =
1

k
.

The quantities a = a(ST−m), M2k(m, p̄), M2k(m, p) and sets I(m, j,Nc1 , . . . , Nck
,

Ck are defined in the section 2.2
Also, we deal with so called "multinomiality parameters" in the model which

have to be estimated and they are of the main interest of discussion in chapter
four where some estimation procedure is proposed.
In the third chapter we construct asymptotic procedure and consider a limit
of multinomial Cox-Ross-Rubinstein model. As a result we obtain generalized
Black-Scholes option pricing formula dependent on the multinomiality parame-
ters.

Theorem 3.5.1. The following convergence is valid for any dyadic t ∈ [0, T ]

lim
n→∞

ĈT−m = Ĉt = StΦ(f1(St, T − t))−Ke−r(T−t)Φ(f2(St, T − t)), (3.5.1)
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where

f1(s, t) =

ln s
K

+ (T − t) ln c1...ck+k
k


 r

k
ln c1...ck+k
k∏

i=1
(ln ci+1)

+ σ2

2
ln c1...ck+k

k




σ ln c1...ck+k
k

√
T − t

, (3.5.2)

f2(s, t) = f1(s, t)− σ
ln c1 . . . ck + k

k

√
T − t (3.5.3)

and Φ stands for the standard Gaussian cumulative distribution function

Φ(x) = 1√
2π

x∫
−∞

e
u2

2 du, ∀ x ∈ R.

In the fourth chapter we describe multinomility parameters estimation
procedure and introduce numerical results with corresponding graphs showing
the advantages of new model.

We will index definitions, theorems and lemmas in the following way: the
first number will refer to the chapter and the second number will refer to the
section of the chapter and the third number will refer to their number in the
section. The same holds for numbering of equations and formulas.
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Chapter 1

Generalized Cox-Ross-Rubinstein
Model

In 1978 Sharpe [63] and in 1979 Rendleman and Bartter [55] independently
developed the two-state option pricing model. The main idea is to construct a
portfolio at time 0 which replicates the option’s terminal payoff at time T . Clas-
sical Cox-Ross-Rubinsten [20] model is based on two-state stock price process
whose dynamics is modeled by multiplicative binomial lattice.
We propose a new generalized form of Cox-Ross-Rubinstein model for the valu-
ation of European call option price at any instant t = 0, . . . , T ∗, when the risky
asset (a stock price) binomial model is naturally randomized when at each time
moment the jumps of upward and downward movements have different sizes.

1.1 Generalized Cox-Ross-Rubinstein Model of a
Stock Price

We assume that the securities market operates under conditions of "uncertainty"
which can be described in terms of probability space (Ω,F ,P). A discrete-time
model of a financial (B, S)-market during the time interval [0, T ∗] = {0, . . . T ∗}
is considered, where T ∗ is some positive natural number. It is denoted as (B, S)-
market because there are two primary traded securities at this market: a risky
asset, S, referred to as a stock and a risk-free investment, B, called a savings
account (or bond).

15



1.1 Generalized Cox-Ross-Rubinstein Model of a Stock Price

The first security is a stock whose price process is modelled as a strictly positive
discrete-time process S = (St)t≤T , it is assumed that St is Ft-adapted, i.e. random
variables St are Ft-measurable for t ∈ [0, T ], the structure of sigma algebras Ft

will be described later.
The price process of a bond (risk-free investment) is defined as

Bt = (1 + r)t, ∀ t ≤ T ∗, (1.1.1)

where r̂ = 1 + r, r is any positive real number.

Definition 1.1.1 The model of stock price process is called generalized
Cox-Ross-Rubinstein stock price model if S is defined as follows

St = St−1ξt−1, ∀ t ≤ T ∗, (1.1.2)

where S1 = S0ξ0, S0 is given positive constant and

ξt = Xtνt, ∀ t ≤ T ∗,

where {νt}t≤T ∗ are Bernoulli random variables taking values u and d with
corresponding probabilities p and 1 − p. Also assume that random variables
{Xt}t≤T ∗ and {νt}t≤T ∗ are mutually independent.

Remark 1.1.2 The following relation has to be satisfied

0 < d < 1 + r < u.

Within this model we don’t impose any additional assumptions on the sequence
of random variables {Xt}t≤T ∗ except the independence on {νt}t≤T ∗ and that
P{Xt > 0} = 1 for any t = 1, . . . , T ∗.
We can write down (1.1.2) as

St = St−1Xt−1(uηt + d(1− ηt)), t ≤ T ∗, (1.1.3)

where random variables ηt, t ≤ T ∗ are independent identically distributed
Bernoulli random variables which take values 0 and 1 with probabilities 1 − p

and p respectively. From (1.1.2) we have that

St = S0

t−1∏
i=1

ξi, t ≤ T ∗. (1.1.4)
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1.1 Generalized Cox-Ross-Rubinstein Model of a Stock Price

By assumptions have been done above random variables ξt, t ≤ T ∗ are mutu-
ally independent random variables on common probability space (Ω,F ,P) with
probability law

P{ξt = xu} = P{Xtνt = xu|Xt = x} = p = 1− P{Xtνt = xd|Xt = x}

= 1− P{ξt = xd}, ∀ t ≤ T ∗.

Notice that the stock price model (1.1.4) is equivalent to

St = S0

t−1∏
i=1

Xi exp

{
t−1∑
i=1

ζi

}
, t ≤ T ∗ (1.1.5)

where ζt, t ≤ T ∗ are independent identically distributed random variables such
that

P{ζt = ln u} = p = 1− P{ζt = ln d}, ∀ t ≤ T ∗.

Remark 1.1.3 The model (1.1.3) explains that at any time moment the stock
price is changed not only by multiplication by the factors of two possible values
u and d but due to the embedding of the process {Xt}t≤T ∗ , the changes of stock
price are modeled by variety of possible values uXt and dXt, t ≤ T ∗ according
to the assumptions on the random sequence {Xt}t≤T ∗ .

The stock price process S given by (1.1.2) generates the family of natural
σ-fields

FS
t = σ(S0, S1, . . . , St), ∀ t ≤ T,

where σ(S0, . . . , St) denotes the least σ-field with respect to which random vari-
ables S0, . . . , St are measurable. We write (FS

t )t≤T to denote the "information
flow" accessible to all participants of the market.
Throughout the chapter we use the following notations for

ξu
t := Xtu and ξd

t := Xtd. (1.1.6)

We will abbreviate Cox-Ross-Rubinstein as CRR hereinafter.

17



1.2 Finite Spot Markets. Definitions.

1.2 Finite Spot Markets. Definitions.

We consider a European call option written on one share of stock S, which doesn’t
pay any dividends during the option’s lifetime. This option is equivalent to the
claim Y with payoff at time T , T ≤ T ∗, where T denotes an exercise time of a
call, contingent on the stock price ST .

Y = (ST −K)+ def
= max{ST −K, 0}, (1.2.1)

where K is the exercise price of the option. The call option value at the expiry
time T simply equals CT = (ST −K)+. We want to evaluate the option price Ct

at any time moment t = 0, . . . , T .
First, we describe the investor’s portfolio and how the corresponding replication
strategy is constructed.

Definition 1.2.1. [60] (pp.384) A predictable stochastic sequence φ = (α, β),
where α = (αt(w))t≥0 and β = (βt(w))t≥0 with Ft−1-measurable αt(w) and βt(w)

for all t ≥ 0 (F−1 = F0) is called an investment portfolio on the (B,S)-market.

For any t ≤ T, we interpret αt as the number of stock shares held during
the period [t, t+1) and βt stands for the dollar investment in the savings account
during this period. Sometimes the investment portfolio is called an investment
or trading strategy instead.

Here the investment strategy φt has to be determined on the basis of in-
formation available before time t, which means that investor selects his portfolio
φt after observing the prices St−1.

Definition 1.2.2. [60] (pp.385) The value of an investment portfolio V at
time t is the stochastic sequence

V (φ) = (Vt(φ))t≥0,

where
Vt(φ) = αtSt + βt, (1.2.2)

and V0(φ) = α1S0 + β1. The process Vt(φ) is called the wealth of the trading
strategy φ.
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1.2 Finite Spot Markets. Definitions.

Denote as Φ a linear space of all stock-bonds portfolios φ, then consider a
security market model M = (B, S, Φ).

Definition 1.2.3. [25] (pp.210) A trading strategy φ is called self-financing if

αt−1St + βt−1r̂ = αtSt + βt, ∀ t ≤ T ∗. (1.2.3)

Intuitively, (1.2.3) means that the portfolio is recombined in such a way that
its value remains the same. When new prices are quoted at time t, the investor
adjusts his portfolio from φt−1 to φt without any withdrawals or inputs of funds
concerning the wealth of portfolio.

Definition 1.2.4. [48] (pp.15) A security pricing modelM is called arbitrage-free
if there is no portfolio φ ∈ Φ for which

V0(φ) = 0, VT (φ) ≥ 0 and P{VT (φ) > 0} > 0. (1.2.4)

A portfolio φ for which conditions (1.2.4) are satisfied is called an arbitrage
opportunity.

Definition 1.2.5. Portfolio φ for which the conditions

V0(φ) < 0, P{VT (φ) ≥ 0} = 1 (1.2.5)

are satisfied is called a strong arbitrage opportunity.

In other words, the arbitrage opportunity is a self-financing strategy with
zero initial portfolio value and which produces a non-negative terminal portfolio
value with probability one and has a positive terminal value with positive
probability.

We introduce a conception of an arbitrage price meaning that the price is
derived when no arbitrage opportunities are possible. We shall consider the
pricing of contingent claim Y of a European call option in a security market M.
By a European contingent claim Y which is paid off at time T we mean an
arbitrary FT -measurable random variable.
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1.3 Generalized CRR Arbitrage Option Pricing

Definition 1.2.6 A replicating strategy for the contingent claim Y which
is paid off at time T , is a self-financing trading strategy φ such that VT (φ) = Y

The replicating strategy can be not unique. There is usually a class of
trading strategies which replicate Y .

Definition 1.2.7 We say that a contingent claim Y is attainable in M if
it admits at least one replicating strategy.

Definition 1.2.8 A market M is called complete if any contingent claim
Y is attainable in M, or, equivalently, if for every FT -measurable random
variable Y , where T is expiration time for a claim Y , there exists at least one
trading strategy φ ∈ Φ such that VT (φ) = Y .

The completeness of the market model is very desirable property. Only
under market completeness, any European claim can be priced by arbitrage and
its price process can be replicated by means of a replicating self-financing strategy.

Definition 1.2.6. [48] (pp.15) Suppose that the security market M is
arbitrage-free. Then the rational price of Y is called the arbitrage price of Y .

1.3 Generalized CRR Arbitrage Option Pricing

To find the arbitrage price of a call option based on the model (1.1.2) defined in
Definition 1.1.1 we will use a method of backward induction [48] which shows
that if the investor properly adjusts the portfolio φt = (αt, βt), t ≤ T at the
beginning of each time period, then at every time moment it is possible to mimic
the payoff of an option at time T . This means that the contingent claim Y

defined in (1.2.1) admits a unique, dynamic, replicating, self-financing strategy.
The constant K > 0 and the fixed maturity date T , 1 ≤ T ≤ T ∗ are given.

We start the analysis by considering the last period before the expiration
date, i.e. the time interval [T − 1, T ]. Assume that a portfolio which replicates
the terminal call option payoff is determined at time T − 1 and remains
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unchangeable until the expiry date T . It means that we need to find the
composition of a portfolio φT−1 = (αT−1, βT−1) in such a way that it’s terminal
wealth VT (φ), which is defined as

VT (φ) = αT−1ST + βT−1r̂

replicates the option payoff CT , i.e. VT (φ) = CT . So,

αT−1ST + βT−1r̂ = (ST −K)+ .

According to (1.1.2) and (1.1.6) we have St = St−1ξ
u
t−1 with probability p or

St = St−1ξ
d
t−1 with probability 1− p; therefore, we can write the following system

of equations
{

αT−1ξ
u
T−1ST−1 + βT−1r̂ =

(
ξu
T−1ST−1 −K

)+

αT−1ξ
d
T−1ST−1 + βT−1r̂ =

(
ξd
T−1ST−1 −K

)+
.

(1.3.1)

This system of equations is easily solved with respect to αT−1 and βT−1

αT−1 =

(
ξu
T−1ST−1 −K

)+ − (
ξd
T−1ST−1 −K

)+

ST−1(ξu
T−1 − ξd

T−1)
,

βT−1 =
ξu
T−1

(
ξd
T−1ST−1 −K

)+ − ξd
T−1

(
ξu
T−1ST−1 −K

)+

r̂(ξu
T−1 − ξd

T−1)
.

Now we calculate the wealth of portfolio at time T − 1

VT−1(φ) = αT−1ST−1 + βT−1

=
(ξu

T−1ST−1−K)
+−(ξd

T−1ST−1−K)
+

(ξu
T−1−ξd

T−1)
+

ξu
T−1(ξd

T−1ST−1−K)
+−ξd

T−1(ξu
T−1ST−1−K)

+

r̂(ξu
T−1−ξd

T−1)

=
(ξu

T−1ST−1−K)
+

(r̂−ξd
T−1)

r̂(ξu
T−1−ξd

T−1)
− (ξd

T−1ST−1−K)
+

(r̂−ξu
T−1)

r̂(ξu
T−1−ξd

T−1)
.

We denote

pT−1 :=
r̂ − ξd

T−1

ξu
T−1 − ξd

T−1

, qT−1 :=
ξu
T−1 − r̂

ξu
T−1 − ξd

T−1

,

where qT−1 = 1− pT−1. Herefrom it follows that

VT−1(φ) =
1

r̂

[(
ξu
T−1ST−1 −K

)+
pT−1 +

(
ξd
T−1ST−1 −K

)+
qT−1

]
.
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The necessary and sufficient conditions for the absence of arbitrage in the market
are presented as

P{ξd
t < 1 + r < ξu

t } = 1, ∀ t ≤ T.

Under these assumptions the value of portfolio at time T −1 equals to the option
payoff CT−1

CT−1 =
1

r̂

[(
ξu
T−1ST−1 −K

)+
pT−1 +

(
ξd
T−1ST−1 −K

)+
qT−1

]
. (1.3.2)

Consider now the time period [T −2, T −1]. On this step we search for a portfolio
φT−2 = (αT−2, βT−2) which is created at time T − 2 in such a way that its wealth
at time T − 1 replicates option value CT−1, that is

VT−1(φ) = CT−1 = αT−2ST−1 + βT−2r̂. (1.3.3)

Since the dynamic strategy φ constructed in this way has the self-financing prop-
erty at time T − 1, then

αT−2ST−1 + βT−2r̂ = αT−1ST−1 + βT−1.

Using this property and (1.3.3) we write the system of equations
{

αT−2ξ
u
T−2ST−2 + βT−2r̂ = C

ξu
T−2

T−1

αT−2ξ
d
T−2ST−2 + βT−2r̂ = C

ξd
T−2

T−1 ,
(1.3.4)

where by virtue of (1.3.2)

C
ξu
T−2

T−1 =
1

r̂

[(
ξu
T−1ξ

u
T−2ST−1 −K

)+
pT−1 +

(
ξd
T−1ξ

u
T−2ST−1 −K

)+
qT−1

]
,

C
ξd
T−2

T−1 =
1

r̂

[(
ξu
T−1ξ

d
T−2ST−1 −K

)+
pT−1 +

(
ξd
T−1ξ

d
T−2ST−1 −K

)+
qT−1

]
.

The solutions of (1.3.4) are given by

αT−2 =
C

ξu
T−2

T−1 − C
ξd
T−2

T−1

ST−2(ξu
T−2 − ξd

T−2)
,

βT−2 =
ξu
T−2C

ξd
T−2

T−1 − ξd
T−2C

ξu
T−2

T−1

r̂(ξu
T−2 − ξd

T−2)
.
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Therefore, the wealth of portfolio VT−2(φ) can be calculated as

VT−2(φ) = αT−2ST−2 + βT−2 =
C

ξu
T−2

T−1 −C
ξd
T−2

T−1

ξu
T−2−ξd

T−2
+

ξu
T−2C

ξd
T−2

T−1 −ξd
T−2C

ξu
T−2

T−1

r̂(ξu
T−2−ξd

T−2)

=
C

ξu
T−2

T−1 (r̂−ξd
T−2)

r̂(ξu
T−2−ξd

T−2)
+

C
ξd
T−2

T−1 (ξu
T−2−r̂)

r̂(ξu
T−2−ξd

T−2)
= 1

r̂

[
C

ξu
T−2

T−1 pT−2 + C
ξd
T−2

T−1 qT−2

]
,

where we denote as

pT−2 :=
r̂ − ξd

T−2

ξu
T−2 − ξd

T−2

, qT−2 :=
ξu
T−2 − r̂

ξu
T−2 − ξd

T−2

.

Having substituted the expressions for C
ξu
T−2

T−1 and C
ξd
T−2

T−1 we obtain

VT−2(φ) = 1
r̂2

[(
ξu
T−1ξ

u
T−2ST−2 −K

)+
pT−1pT−2

+
(
ξd
T−1ξ

u
T−2ST−2 −K

)+
qT−1pT−2 +

(
ξu
T−1ξ

d
T−2ST−2 −K

)+
pT−1qT−2

+
(
ξd
T−1ξ

d
T−2ST−2 −K

)+
qT−1qT−2

]
.

(1.3.5)

The wealth of portfolio VT−2(φ) at time T − 2 replicates the arbitrage price of
the call option at time T − 2, i.e. CT−2 = VT−2(φ) and

CT−2 = 1
r̂2

[(
ξu
T−1ξ

u
T−2ST−2 −K

)+
pT−1pT−2

+
(
ξd
T−1ξ

u
T−2ST−2 −K

)+
qT−1pT−2 +

(
ξu
T−1ξ

d
T−2ST−2 −K

)+
pT−1qT−2

+
(
ξd
T−1ξ

d
T−2ST−2 −K

)+
qT−1qT−2

]
.

(1.3.6)

Implementing the same procedure for time period [T − 3, T − 2] we derive the
formula for payoff of the option at time T − 3, CT−3. It is clear that if this
procedure is repeated desired number of times, then it is possible to completely
determine the arbitrage option price at any time t = T −m, 0 ≤ m ≤ T, as well
as the unique trading strategy φ that replicates the option.

By construction of the replicating strategy, for any fixed time t random vari-
ables αt and βt which define the portfolio at time t, as well as the wealth Vt(φ)

of this portfolio, are measurable with respect to the σ-field FS
t .
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1.4 Random sets. Auxiliary results

First, introduce some notations. We denote the set Γm := {1, . . . ,m}. Moreover,
for any fixed m ∈ N and j ∈ Γm we define a set

Ij,m(x) =

{
J ⊂ Γm, |J | = j : x

∏

k∈J

ξu
T−k

∏

k∈J̄

ξd
T−k > K

}
.

Here |J | stands for the cardinality of the set J , J̄ stands for the complement of
the set J .

The set Ij,m(x) is a set of all subsets of Γm with cardinality equal to j

such that the corresponding inequality holds true. Further we describe some
properties of the set Ij,m(x).

The set Ij,m(x) is a random set, where randomness is provided by random
variables ξu

T−k and ξd
T−k, k ≤ T . And for any ω ∈ Ω and fixed j ∈ N the set

Ij,m(x) is either empty set ∅ or a set I := {all J : |J | = j} of all subsets J ⊂ Γm

of cardinality j.

Define ∆m(x) as

∆m(x) :=
1

r̂m

m∑
j=0

∑

J∈Ip
j,m(x)

∏

k∈J

pT−k

∏

k/∈J

qT−k

(
x

∏

k∈J

ξu
T−k

∏

k/∈J

ξd
T−k −K

)
,

where Ip
j,m(x) ⊆ Ij,m(x) is a subset (some part) of Ij,m(x).

Define am(x) as
am(x) := inf{j : Ij,m(x) 6= ∅}.

It follows that for any j ≥ am(x) and for any set J of cardinality j the inequality

x
∏

k∈J

ξu
T−k

∏

k∈J̄

ξd
T−k > K

holds true with probability one.
From now and later in this section the sign ” ∼= ” will stand for isomorphism of
sets.
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Lemma 1.4.1. For j ∈ Γm the following sets

Ij,m

(
ξu
T−m−1ST−m−1

) ⋃
Ij,m

(
ξd
T−m−1ST−m−1

) ∼= Ij,m+1 (ST−m−1) (1.4.1)

are isomorphic almost everywhere.
Proof. The inclusion

Ij,m

(
ξu
T−m−1ST−m−1

) ⋃
Ij,m

(
ξd
T−m−1ST−m−1

) ⊆ Ij,m+1 (ST−m−1)

is evident. To prove the inverse inclusion we find out that for any j ∈ Γm

Ij,m

(
ξu
T−m−1ST−m−1

)

=

{
J ⊂ Γm, |J | = j, j ∈ Γm : ST−m−1ξ

u
T−m−1

∏
k∈J

ξu
T−k

∏
k∈J̄

ξd
T−k > K

}

∼=
{

J∗ ⊂ Γm+1, J∗ = J
⋃{m + 1}, |J∗| = j, j ∈ Γm+1 :

ST−m−1

∏
k∈J∗

ξu
T−k

∏
k∈J̄∗

ξd
T−k > K

}
=: Ij,(m+1)+ (ST−m−1)

Also, for j ∈ Γm we show that

Ij,m

(
ξd
T−m−1ST−m−1

)

=

{
J ⊂ Γm, |J | = j, j ∈ Γm : ST−m−1ξ

d
T−m−1

∏
k∈J

ξu
T−k

∏
k∈J̄

ξd
T−k > K

}

∼=
{

J∗ ⊂ Γm+1, |J∗| = j, j ∈ Γm+1, m + 1 /∈ J∗ :

ST−m−1

∏
k∈J∗

ξu
T−k

∏
k∈J̄∗

ξd
T−k > K

}
=: Ij,(m+1)− (ST−m−1) .

This means that for any j ∈ Γm+1

Ij,m

(
ξu
T−m−1ST−m−1

) ⋃
Ij,m

(
ξd
T−m−1ST−m−1

)

∼= Ij,(m+1)+ (ST−m−1)
⋃

Ij,(m+1)− (ST−m−1) .

Consider a set J1 ∈ Ij,m+1(ST−m−1). For j ∈ Γm we have two possibilities:

25



1.5 Generalized CRR Option Pricing Formula

(1) m + 1 /∈ J1, then J1 ∈ Ij,(m+1)−(ST−m−1)

(2) m + 1 ∈ J1, then J1 ∈ Ij,(m+1)+(ST−m−1).

For j = m + 1 we have the only possibility when

m + 1 ∈ J1 and therefore J1 ∈ Ij,(m+1)+(ST−m−1).

It implies that J1 ∈ Ij,(m+1)+ (ST−m−1)
⋃

Ij,(m+1)− (ST−m−1) . The lemma is
proved. ¤.

To shorten the lengthy expressions we introduce the following notations

P̄ (J (j), T ) :=
∏

k∈J

p̄T−k

∏

k/∈J

q̄T−k, (1.4.2)

P (J (j), T ) :=
∏

k∈J

pT−k

∏

k/∈J

qT−k, (1.4.3)

Ξu,d(J (j), T ) :=
∏

k∈J

ξu
T−k

∏

k/∈J

ξd
T−k. (1.4.4)

We have to notice that P (J (j), T ) and P̄ (J (j), T ) are random variables
where randomness is provided by ξu

t and ξd
t for all t ≤ T .

1.5 Generalized CRR Option Pricing Formula

In this section we derive CRR type option price formula provided that the
underlying stock price process follows generalized CRR stock price model defined
in definition (1.1.1). Financial security marketM is assumed to be complete and
arbitrage free. Then the arbitrage generalized CRR option price is established
by the following result.

Proposition 1.5.1. The arbitrage price of a European call option at time
t = T −m is given by the following formula

CT−m = ST−m

m∑
j=0


 ∑

J∈Ij,m(ST−m)

P̄ (J (j), T )− K

r̂m

∑

J∈Ij,m(ST−m)

P (J (j), T )




(1.5.1)
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for m = 0, . . . , T , where

pT−k :=
r̂ − ξd

T−k

ξu
T−k − ξd

T−k

, p̄T−k :=
ξu
T−k

r̂
pT−k, qT−k = 1− pT−k, q̄T−k = 1− p̄.

At time t = T −m− 1 the unique replicating strategy φ is defined as

αT−m−1 =
m∑

j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P̄ (J (j), T ) +

δ∆m(ξu
T−m−1ST−m−1)

ST−m−1(ξu
T−m−1−ξd

T−m−1)
, (1.5.2)

βT−m−1 = − K
r̂m+1

m∑
j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P (J (j), T )− δξd

T−m−1∆m(ξu
T−m−1ST−m−1)

r̂(ξu
T−m−1−ξd

T−m−1)
,

(1.5.3)

where Ip
j,m

(
ξu
T−m−1ST−m−1

)
= Ij,m

(
ξu
T−m−1ST−m−1

) \Ij,m

(
ξd
T−m−1ST−m−1

)

and δ = 0 if Ip
j,m

(
ξu
T−m−1ST−m−1

)
= ∅ (otherwise δ = 1).

Proof. The right hand side of (1.5.1) due to notations (1.4.2), (1.4.3), (1.4.4) is
equivalent to

ST−m

r̂m

m∑
j=0

∑
J∈Ij,m(ST−m)

P (J (j), T )Ξu,d(J (j), T )− K
r̂m

m∑
j=0

∑
J∈Ij,m(ST−m)

P (J (j), T )

= 1
r̂m

m∑
j=0

∑
J∈Ij,m(ST−m)

P (J (j), T )
(
ST−mΞu,d(J (j), T )−K

)

= 1
r̂m

m∑
j=0

∑
J∈Ij,m(ST−m)

P (J (j), T )
(
ST−mΞu,d(J (j), T )−K

)+
.

To prove (1.5.1) we use the method of mathematical induction with respect to
number of steps back m. For the base of induction, m = 0, the option price
equals

CT = (ST −K)+ ,

which has been a payoff of the option at expiry date T . Assume that CT−m is
the arbitrage price of European call option at time T −m for which the formula
(1.5.1) holds true. We have to select a portfolio φT−m−1 = (αT−m−1, βT−m−1) for
the time period [T −m− 1, T −m) (i.e. established at time T −m− 1) in such
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a way that the portfolio’s wealth at time t = T −m replicates the value CT−m of
the option. Formally, the wealth of the portfolio (αT−m−1, βT−m−1) has to satisfy
the following relation.

CT−m = VT−m(φ), VT−m = αT−m−1ST−m + βT−m−1r̂,

so that we can derive the system of equations
{

αT−m−1ξ
u
T−m−1ST−m−1 + βT−m−1r̂ = C

ξu
T−m−1

T−m

αT−m−1ξ
d
T−m−1ST−m−1 + βT−m−1r̂ = C

ξd
T−m−1

T−m ,

where

C
ξu
T−m−1

T−m = 1
r̂m

m∑
j=0

∑
J∈Ij,m(ξu

T−m−1ST−m)

P (J (j), T )
(
ξu
T−m−1ST−m−1Ξ

u,d(J (j), T )−K
)
,

C
ξd
T−m−1

T−m = 1
r̂m

m∑
j=0

∑
J∈Ij,m(ξd

T−m−1ST−m)

P (J (j), T )
(
ξd
T−m−1ST−m−1Ξ

u,d(J (j), T )−K
)
.

Since ξd
t < ξu

t for any t ≤ T and d < u with probability one, it is clear, that

Ij,m

(
ξd
T−m−1ST−m−1

) ⊆ Ij,m

(
ξu
T−m−1ST−m−1

)
.

The number of shares held during the period [T −m− 1, T −m) is given by

αT−m−1 =
C

ξu
T−m−1

T−m −C
ξd
T−m−1

T−m

ST−m−1(ξu
T−m−1−ξd

T−m−1)
= 1

r̂ST−m−1(ξu
T−m−1−ξd

T−m−1)

×
[(

m∑
j=0

∑
J∈Ip

j,m(ξu
T−m−1ST−m−1)

ξu
T−m−1ST−m−1P (J (j), T )Ξu,d(J (j), T )−K

)

+
m∑

j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P (J (j), T )

(
ξu
T−m−1ST−m−1Ξ

u,d(J (j), T )−K
)

−
m∑

j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P (J j, T )

(
ξd
T−m−1ST−m−1Ξ

u,d(J (j), T )−K

)]

=
∆m(ξu

T−m−1ST−m−1)
ST−m−1(ξu

T−m−1−ξd
T−m−1)

+ 1
r̂m

m∑
j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P (J (j), T )Ξu,d(J j, T )
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=
∆m(ξu

T−m−1ST−m−1)
ST−m−1(ξu

T−m−1−ξd
T−m−1)

+
m∑

j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P̄ (J (j), T ).

The dollar investment at time t = T −m− 1 is equal to

βT−m−1 =
ξu
T−m−1C

ξd
T−m−1

T−m −ξd
T−m−1C

ξu
T−m−1

T−m

r̂(ξu
T−m−1−ξd

T−m−1)
= 1

r̂(ξu
T−m−1−ξd

T−m−1)

×

 ξu

T−m−1

r̂m

m∑
j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P (J (j), T )

(
ξd
T−m−1ST−m−1Ξ

u,d(J (j), T )−K
)

− ξd
T−m−1

r̂m

m∑
j=0

∑
J∈Ip

j,m(ξu
T−m−1ST−m−1)

P (J (j), T )
(
ξu
T−m−1ST−m−1Ξ

u,d(J (j), T )−K
)

− ξd
T−m−1

r̂m

m∑
j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P (J (j), T )

(
ξu
T−m−1ST−m−1Ξ

u,d(J (j), T )−K
)



= − ξd
T−m−1∆m(ξu

T−m−1ST−m−1)
r̂(ξu

T−m−1−ξd
T−m−1)

− K
r̂m+1

m∑
j=0

∑
J∈Ij,m(ξd

T−m−1ST−m−1)
P (J (j), T ).

By substituting αT−m−1 and βT−m−1 for the obtained expressions, the wealth of
portfolio at time t = T −m− 1 equals to

CT−m−1 = αT−m−1ST−m−1 + βT−m−1 = 1
r̂

(
C

ξu
T−m−1

T−m pT−m−1 + C
ξd
T−m−1

T−m qT−m−1

)

= 1
r̂m+1

m∑
j=0

∑
J∈Ij,(m+1)+ (ST−m−1)

P (J (j), T )
(
ST−m−1Ξ

u,d(J (j), T )−K
)

+ 1
r̂m+1

m∑
j=0

∑
J∈Ij,(m+1)− (ST−m−1)

P (J (j), T )
(
ST−m−1Ξ

u,d(J (j), T )−K
)

= 1
r̂m+1

m+1∑
j=0

∑
J∈Ij,m+1(ST−m−1)

P (J (j), T )
(
ST−m−1Ξ

u,d(J (j), T )−K
)+

.

The proposition is proved. ¤.

Remark 1.5.2. One should notice that the option price CT−m given by
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1.5 Generalized CRR Option Pricing Formula

formula (1.5.1) now has two sources of randomness, first it’s dependent on the
random sequence XT−m, . . . , XT and the another type of randomness is provided
by ST−m, stock price at the moment t = T − m. By other words CT−m is a
function of random variables XT−m, . . . , XT , ST−m.

CT−m = CT−m(ST−m, XT−m, . . . , XT ). (1.5.4)

In the setting of classical Cox-Ross-Rubinstein model the condition

P{XT−m = . . . = XT = 1} = 1

is satisfied and under this condition one has the classical Cox-Ross-Ruinstein [20]
binomial option price. The corresponding definitions of the set Ij,m(x), which will
not be random set anymore under the condition P{XT−m = . . . = XT = 1} = 1,
of the values ∆m(x) and am(x) look much simpler.
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Chapter 2

Conditional Generalized
Cox-Ross-Rubinstein Model

In this chapter we consider the generalized CRR option price (1.5.1) provided
that some assumptions about the distribution of the family of random variables
(Xk)

m
k=0, m = 0, . . . , T have been made. We concentrate on some specific case of

the domain of possible values of (Xk)
m
k=0, m = 0, . . . , T . Under these particular

assumptions the generalized CRR option price has been derived. It turned out
that the terminal formula is expressed via multinomial coefficients, therefore this
discrete-time option valuation formula will be referred to as multinomial CRR
model.

2.1 Conditional CRR Option Price

We work with a finite probability space (Ω,F ,P) with a finite number of points
ω, each with positive probability P{ω} > 0. Let (Xt)t≤T is a family of random
functions of discrete argument t ∈ {0, . . . , T} . We assume that the corresponding
family of measures on the real line (Pt)0≤t≤T is known. More precisely, the family
of these measures is described as follow.

Pt1(A) = P{Xt1 ∈ A}, A ∈ R1,

Pt1,t2(A) = P{(Xt1 , Xt2) ∈ A}, A ∈ R2,

. . . . . .

Pt1,...,tk(A) = P{(Xt1 , . . . , Xtk) ∈ A}, A ∈ Rk
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2.1 Conditional CRR Option Price

The family of finite-dimensional distributions satisfy the conditions of coordina-
tion, i.e.

Pt1,...,tk(A) = Pt1,...,tk,tk+1,...,tk+n
(A× Rn), ∀A ∈ Rk.

Then, due to Kolmogorov theorem (see [59]) the probability space (Ω,F ,P) and
the stochastic process X = (Xt)0≤t≤T exist and

P{w : Xt1 ≤ x1, . . . , Xtk ≤ xk} = Ft1,...,tk(x1, . . . , xk), (2.1.1)

Now we consider the mean of conditional expectation of (1.5.1), CT−m, given
random sequence XT−m, . . . , XT .

C̃T−m = E {E {CT−m|XT−m, . . . , XT}} = E (CT−m) .

To simplify lengthy expressions we introduce the following notations, which are
similar to (1.4.2), (1.4.3). For ∀ z = (zT−m, . . . , zT ) ∈ Rm

P̄ (J (j), T, z) :=
∏

k∈J

p̄T−k(zT−k)
∏

k/∈J

q̄T−k(zT−k), (2.1.2)

P (J (j), T, z) :=
∏

k∈J

pT−k(zT−k)
∏

k/∈J

qT−k(zT−k), (2.1.3)

where

pT−k(zT−k) :=
r̂ − dzT−k

uzT−k − dzT−k

, p̄T−k(zT−k) :=
uzT−k

r̂
pT−k(zT−k)

and
qT−k(zT−k) = 1− pT−k(zT−k), q̄T−k(zT−k) = 1− p̄(zT−k).

We also define the following quantities. For ∀ z = (zT−m, . . . , zT ) ∈ Rm

C̃
(1)
T−m(j) :=

∫
. . .

∫

︸ ︷︷ ︸
m integrals

∑

J∈Ij,m(ST−m,z)

P̄ (J (j), T, z)dFXT−m,...,XT (z), (2.1.4)

C̃
(2)
T−m(j) :=

∫
. . .

∫

︸ ︷︷ ︸
m integrals

∑

J∈Ij,m(ST−m,z)

P (J (j), T, z)dFXT−m,...,XT (z), (2.1.5)
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2.1 Conditional CRR Option Price

where ∀ z = (zT−m, . . . , zT ) ∈ Rm.

Ij,m(x, z) :=

{
J ⊂ Γm, |J | = j: x

∏
k∈J

uzT−k

∏
k∈J̄

dzT−k > K

}

and FXT−m,...,XT (z) = FT−m,...,T (z) is the joint distribution function of
XT−m, . . . , XT .

One should notice that ST−m is independent on XT−m, . . . , XT . So, in
general the following formula for option price holds true.

Proposition 2.1.1 The conditional generalized CRR option price is given
by the following formula

C̃T−m = ST−m

m∑
j=0

C̃
(1)
T−m(j)− K

r̂m

m∑
j=0

C̃
(2)
T−m(j). (2.1.6)

Remark 2.1.2. The corresponding conditional replicating strategies can
be derived from (1.5.2) and (1.5.3) in an analogous way as integrals with respect
to the distributions family (Ft1,...,tk)k≥0.

If all finite-dimensional distributions of the random family XT−m, . . . , XT

are known, then from (2.1.6) one can obtain specified corresponding option price.
The option price in the form (2.1.6) gives a freedom to model underlying stock
price so as it is liked.

However, in discrete-time approach the original stock price process was mod-
eled by random walk and this is the easiest and most natural way to do it. The
idea of random walk as a stock price process in financial markets stated by Burton
Malkiel ( [39]) in 1973 means that stocks take a random and unpredictable path.

While the classical random walk is defined by the sequence of two-value
independent random variables, we consider so called weighted random walk
embedding the random family (X)t≤T in the stock price process. Thus, we enrich
the set of possible values of stock price at each time moment and thereby, the
practical usage of the new model becomes more evident.
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2.2 Multinomial model. Definitions

Unlike the generalization of binomial CRR model of Rachev and Rüschendorf
[53] we set conditions for stochastic process (Xt)t≤T which has different at any
time moment values of jump sizes. So, at any time moment the change of the
stock price is determined by the value of stochastic process (Xt)t≤T at that time
moment.

As one can see, starting from (2.1.6) it is possible to impose different as-
sumptions on the family of finite-dimensional distributions for (Xt)t≤T and
calculate the corresponding option price but, due to these assumptions, the
calculations very often can be quite complicated.

Also, in many cases it might be that the stock price does not follow any
specific distributional assumptions. The problem is how to model stock price
process in order to better evaluate corresponding option prices. It should be
intuitively clear that the better the modelling of underlying stock price the
better the quality of option price valuation.

"The better" means that the modelled data look like original data and
expose most of their features. This problem of stock price modelling is related
to the issues of data approximation, specifically, financial data approximation.
In the next section we propose natural and simple assumptions about possible
values of random sequence (Xt)t≤T which certainly can be interpreted as
distributional assumptions as well.

2.2 Multinomial model. Definitions

Let (Xt)t≤T is a sequence of independent identically distributed random variables.
We define a set

Ck = {c1, . . . , ck}, k ∈ N, ci > 0, ∀ i = 1, . . . , k. (2.2.1)

Random variables Xt, t = 1, . . . , T take values in the set Ck and the events
{Xt = cj}, t = 1, . . . , T , j = 1, . . . , k are equally likely with correspondent
probabilities p1 = . . . = pk = 1

k
.
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2.2 Multinomial model. Definitions

In the setting of generalized CRR model the following condition holds
true.

P {Xi ∈ Ck} = 1, i = T −m, . . . , T. (2.2.2)

Since we consider the discrete time interval [T − m,T ], m ≤ T then it is
obvious that k < m.
Further, we will refer to the set of possible values of XT−m, . . . , XT , Ck defined
above as the set of multinomiality parameters.
The following random structures take place in the context of the constructed
model.

Definition 2.2.1 The sequence Nc1 , . . . , Nck
is a sequence of random vari-

ables, which take values in the set Γm

⋃{0} = {0, . . . , m} and satisfy the
condition Nc1 + . . . + Nck

= m. For some fixed ω ∈ Ω, Nci
(ω), i = 1, . . . , k

denotes a number of ci-s occurred in the sequence XT−m(ω), . . . , XT (ω).

Definition 2.2.2 The set

I(m, j, Nc1 , . . . , Nck
) :=





(m1, . . . , m2k) : mi ∈ Γm, i = 1, . . . , 2k;

m1 + . . . + m2k = m : m1 + . . . + mk = j,

Nc1 = m1 + mk+1, . . . , Nck
= mk + m2k





.

(2.2.3)

The set I(m, j, Nc1 , . . . , Nck
) is random due to dependence on Nc1 , . . . , Nck

.
Further, we will consider the summation over this set provided some conditions
on the values of Nc1 , . . . , Nck

are imposed. After that, accordingly to the
conditions we will have the set I(m, j, N∗

c1
, . . . , N∗

ck
), where N∗

c1
, . . . , N∗

ck
will

denote fixed constants. Virtually, one can consider a set I(m, j, Nc1 , . . . , Nck
) as

a function of the additional to m and j arguments Nc1 , . . . , Nck
.

The set I(m, j,Nc1 , . . . , Nck
) is also associated with the set of all partitions

(J1, . . . , J2k) of the set Γm = {1, . . . , m} provided that |J1| = m1, . . . , |J2k| = m2k.
We consider that |∅| = 0. The corresponding set of partitions is given as follow.
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2.2 Multinomial model. Definitions

Definition 2.2.3

Dj,m(x, c1, . . . , c2k) :=





(J1, . . . , J2k) : Ji ⊂ {1, . . . , m}, i = 1, . . . , 2k
k∑

i=1

|Ji| = j,
2k⋃
i=1

Ji = Γm,
2k∑
i=1

|Ji| = m :

x(c1u)|J1| . . . (cku)|Jk|(c1d)|Jk+1| . . . (ckd)|J2k| > K.





(2.2.4)

For any w ∈ Ω there is a surjective map from the set I(m, j, Nc1(w), . . . , Nck
(w))

to Dj,m(x, c1, . . . , c2k), so that these two sets are epimorphic.

Definition 2.2.4

Ij,m(x,Nc1 , . . . , Nck
) :=

{
J ⊂ Γm : |J | = j, xc

Nc1
1 . . . c

Nck
k ujdm−j > K

}

(2.2.5)

and
a(x) := inf{j : Ij,m(x,Nc1 , . . . , Nck

) 6= ∅}. (2.2.6)

We notice that a(x) also can be defined as
a(x) := inf{j : Dj,m(x, c1, . . . , ck) 6= ∅}. which is equivalent to (2.2.6).

From now and further we will use the following notations. For any
c = (c1, . . . , ck) ∈ Rk

+, p = (p1, . . . , p2k) ∈ R2k, p̄ = (p̄1, . . . , p̄2k) ∈ R2k

and for (m1, . . . , m2k) such that m1 + . . . + m2k = m

φ2k(m, c) := (c1u)m1 . . . (cku)mk(c1d)mk+1 . . . (ckd)m2k , (2.2.7)

M2k(m, p̄) :=
m!

m1! . . .m2k!
p̄m1

1 . . . p̄m2k
2k , (2.2.8)

M2k(m, p) :=
m!

m1! . . .m2k!
pm1

1 . . . pm2k
2k , (2.2.9)

P 2k
1 (m) := pm1

1 . . . pm2k
2k , (2.2.10)

P̄ 2k
1 (m) := p̄m1

1 . . . p̄m2k
2k , (2.2.11)

so that
M2k(m, p) =

m!

m1! . . . m2k!
P k

1 (m)P 2k
k+1(m)
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2.3 Multinomial option pricing

Sometimes we also will use this notation instead of (2.2.8), (2.2.9).

Definition 2.2.5

∆m(x, j, c) := 1
r̂m

∑
I(m,j,Nc1 ,...,Nck

)

M2k(m, p̄)
(
xφ(2k)(m, c)−K

)
. (2.2.12)

2.3 Multinomial option pricing

Consider the conditional expectation

C̃T−m(c) := C̃T−m(c1, . . . , ck) = E {CT−m|XT−m = cj1 , . . . , XT = cjk
} ,

where multinomiality parameters cji
∈ Ck, i = 1, . . . , k.

One should notice that the conditioning on the event {XT−m = cj1 , . . . , XT = cjk
}

implies that numbers Nc1 , . . . , Nck
are known. The following result for option

price is obtained.

Proposition 2.3.1 If the condition

P {Xi ∈ Ck} = 1, ∀ i = T −m, . . . , T

is satisfied, then

C̃T−m(c) = km
m∑

j=a

∑
I(m,j,Nc1 ,...,Nck

)

(
ST−mM2k(m, p̄)− K

r̂m M2k(m, p)

)
,

∀ c = (c1, . . . , ck) ∈ Rk
+,

(2.3.1)

where a = a(ST−m),

p1(c1) =
1

k

r̂ − c1d

c1(u− d)
, . . . , pk(ck) =

1

k

r̂ − ckd

ck(u− d)
,

pk+1(c1) =
1

k

c1u− r̂

c1(u− d)
, . . . p2k(ck) =

1

k

cku− r̂

ck(u− d)
,

p̄1 =
c1u

r̂
p1, . . . , p̄k =

cku

r̂
pk, p̄k+1 =

c1d

r̂
pk+1, . . . , p̄2k =

ckd

r̂
p2k

and
p1 + pk+1 = . . . = pk + p2k =

1

k
,
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2.3 Multinomial option pricing

p̄1 + p̄k+1 = . . . = p̄k + p̄2k =
1

k
.

At time t = T −m− 1 the unique replicating strategy φ is given by

αT−m−1(c) = km
m∑

j=ad

∑
I(m,j,Nc1 ,...,Nck

)

M2k(m, p̄) +
kmδ∆m(ξu

T−m−1ST−m−1,au,c)
ST−m−1(ξu

T−m−1−ξd
T−m−1)

,

(2.3.2)

βT−m−1(c) = −Kkm

r̂m+1

m∑
j=ad

∑
I(m,j,Nc1 ,...,Nck

)

M2k(m, p)− kmδ∆m(ξu
T−m−1ST−m−1,au,c)

r̂(ξu
T−m−1−ξd

T−m−1)
,

(2.3.3)

where au = a(ξu
T−m−1ST−m−1), ad = a(ξd

T−m−1ST−m−1) and δ = 0 if ad = au

(otherwise δ = 1).

Proof. Show that p̄2k = ckd
r̂

p2k.

p̄2k =
1

k
− p̄k =

1

k
− cku

r̂
pk =

1

k
− 1

k

cku(r̂ − ckd)

r̂ck(u− d)
=

1

k
− u(r̂ − ckd)

kr̂(u− d)

=
ckud− r̂d

kr̂(u− d)
=

ckd

r̂

cku− r̂

kck(u− d)
=

ckd

r̂
(1− pk) =

ckd

r̂
p2k.

Similarly p̄k = cku
r̂

pk. Therefore, according to (2.2.7) and (2.2.10)

P̄ 2k
1 =

φ2k(m, c)

r̂m
P 2k

1

So, formula (2.3.1) is equivalent to

km

r̂m

m∑
j=a

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p)(ST−mφ2k(m, c)−K)

=
km

r̂m

m∑
j=0

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p)(ST−mφ2k(m, c)−K)+

In order to prove (2.3.1) we use the method of mathematical induction with
respect to m. The base of induction is when m = 0, then we have that

C̃T = (ST −K)+

which has been a payoff of the option at expiry time T . Assume now that for any
c = (c1, . . . , ck) ∈ Rk

+, C̃T−m(c) is the arbitrage price of the option at time T −m
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2.3 Multinomial option pricing

which satisfy the formula (2.3.1). Portfolio φT−m−1(c) = (αT−m−1(c), βT−m−1(c))

for the period [T −m− 1, T −m) has to be constructed in such a way that the
portfolio’s wealth at the end of the last period t = T −m replicates option value
C̃T−m(c); that is

VT−m(c) = αT−m−1(c)ST−m + βT−m−1(c)r̂ and VT−m(c) = C̃T−m(c),

which is in turn allows us to obtain the following system of equations
{

αT−m−1(c)ξ
u
T−m−1ST−m−1 + βT−m−1(c)r̂ = C̃

ξu
T−m−1

T−m

αT−m−1(c)ξ
d
T−m−1ST−m−1 + βT−m−1(c)r̂ = C̃

ξd
T−m−1

T−m ,

where

ξu
T−m−1 =





c1u, P{XT−m−1 = c1},
...
cku, P{XT−m−1 = ck},

and

ξd
T−m−1 =





c1d, P{XT−m−1 = c1},
...
ckd, P{XT−m−1 = ck}.

One should notice that

C̃
ξu
T−m−1

T−m (c) =
km

r̂m

m∑
j=au

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p)
(
ξu
T−m−1ST−m−1φ2k(m, c)−K

)
,

C̃
ξd
T−m−1

T−m (c) =
km

r̂m

m∑

j=ad

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p)
(
ξd
T−m−1ST−m−1φ2k(m, c)−K

)
.

Now we can calculate the number of shares in the portfolio at time t = T −m−1.
For c = (c1, . . . , ck)

αT−m−1(c) =
C̃

ξu
T−m−1

T−m (c)− C̃
ξd
T−m−1

T−m (c)

ST−m−1

(
ξu
T−m−1 − ξd

T−m−1

) =
km

r̂mST−m−1

(
ξu
T−m−1 − ξd

T−m−1

)

[ ∑

I(m,au,Nc1 ,...,Nck
)

M2k(m, p)
(
ξu
T−m−1ST−m−1φ2k(m, c)−K

)

39



2.3 Multinomial option pricing

+
m∑

j=ad

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p)
(
ξu
T−m−1ST−m−1φ2k(m, c)−K

)

−
m∑

j=ad

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p)
(
ξd
T−m−1ST−m−1φ2k(m, c)−K

) ]

=
km∆m

(
ξu
T−m−1ST−m−1, a

u, c
)

ST−m−1

(
ξu
T−m−1 − ξd

T−m−1

) +
km

r̂m

m∑

j=ad

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p)φ2k(m, c)

=
km∆m

(
ξu
T−m−1ST−m−1, a

u, c
)

ST−m−1

(
ξu
T−m−1 − ξd

T−m−1

) + km

m∑

j=ad

∑

I(m,j,Nc1 ,...,Nck
)

M2k(m, p̄).

Since for any ω ∈ Ω ξd
T−m−1(ω) < ξu

T−m−1(ω) then it is evident that au < ad

almost everywhere. If to recall the definitions (2.2.5) and (2.2.6) then

au = inf
{

j : |J | = j, XT−m−1ST−m−1c
Nc1
1 . . . c

Nck
k uj+1dm−j > K

}
,

where P{XT−m−1 = c1} = . . . = P{XT−m−1 = ck} = 1
k
, then ad = au + 1 almost

everywhere. It follows from the fact that

ad = inf
{

j : |J | = j, XT−m−1ST−m−1c
Nc1
1 . . . c

Nck
k ujdm−j+1 > K

}
,

and au is a minimal number from the set Γm for which the inequality

XT−m−1ST−m−1c
Nc1
1 . . . c

Nck
k uau+1dm−au

> K

is fulfilled almost sure, so that when we try to find the minimal ad, keeping in
mind that ad > au, then the following inequality

XT−m−1ST−m−1c
Nc1
1 . . . c

Nck
k uad

dm−ad+1 > K

has to be fulfilled almost sure. The next minimal number after au is au + 1,
substituting ad in the latter inequality by au + 1 we obtain

XT−m−1ST−m−1c
Nc1
1 . . . c

Nck
k uau+1dm−au

> K
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2.3 Multinomial option pricing

which is already known as a true one. So, ad = au + 1. Now we can calculate the
number of bonds in portfolio at time t = T −m− 1. For c = (c1, . . . , ck)

βT−m−1(c) =
ξu
T−m−1C̃

ξd
T−m−1

T−m (c)−ξd
T−m−1C̃

ξu
T−m−1

T−m (c)

r̂(ξu
T−m−1−ξd

T−m−1)
= km

r̂(ξu
T−m−1−ξd

T−m−1)

[
ξu
T−m−1

r̂m

m∑
j=ad

∑
I(m,j,Nc1 ,...,Nck

)

M2k(m, p)
(
ξd
T−m−1ST−m−1φ2k(m, c)−K

)

− ξd
T−m−1

r̂m

∑
I(m,au,Nc1 ,...,Nck

)

M2k(m, p)
(
ξu
T−m−1ST−m−1φ2k(m, c)−K

)

− ξd
T−m−1

r̂m

∑
j=ad

∑
I(m,j,Nc1 ,...,Nck

)

M2k(m, p)
(
ξu
T−m−1ST−m−1φ2k(m, c)−K

) ]

= −Kkm

r̂m+1

∑
j=ad

∑
I(m,j,Nc1 ,...,Nck

)

M2k(m, p)− kmδξd
T−m−1∆m(ξu

T−m−1ST−m−1,au,c)
r̂(ξu

T−m−1−ξd
T−m−1)

.

Without loss of generality we assume that ciT−m−1
= c1, then for any

c = (c1, . . . , ck) ∈ Rk

C̃T−m−1(c) = E
{
CT−m−1|(Xi)

T
i=T−m−1 = (cji

)T
i=T−m−1, cji

∈ {c1, . . . , ck}
}

.

Here, the condition {(Xi)
T
i=T−m−1 = (cji

)T
i=T−m−1} implies that numbers

Nc2 , . . . , Nck
are the same which were involved in C̃T−m, but Nc1 has been

increased by one.

Let the set Dj,m+(x, c1, . . . , ck) denotes the set with the same properties as
Dj,m(x, c1, . . . , xk) defined by (2.2.4) but with additional condition that the ele-
ment m ∈ J1 and the set Dj,m−(x, c1, . . . , ck) is also the set with all properties of
set Dj,m(x, c1, . . . , ck), but with additional condition that the element m ∈ Jk+1.
Thus, the sets Dj,m+(x, c1, . . . , ck) and Dj,m−(x, c1, . . . , ck) are mutually exclusive.
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2.3 Multinomial option pricing

Now we can calculate

C̃T−m−1(c) = C̃
ξu
T−m−1

T−m pT−m−1 + C̃
ξd
T−m−1

T−m qT−m−1

= km+1

r̂m+1

m∑
j=au

∑
I(m,j,Nc1+1,Nc2 ,...,Nck

)

m!
m1!...m2k!

p1P
2k
1 (m) (ST−m−1c1uφ2k(m, c)−K)

+km+1

r̂m+1

m∑
j=ad

∑
I(m,j,Nc1+1,Nc2 ,...,Nck

)

m!
m1!...m2k!

P 2k
1 (m)pk+1 (ST−m−1c1dφ2k(m, c)−K)

= km+1

r̂m+1

m∑
j=0

∑
Dj,m(ST−m−1c1u,c1,...,ck)

p1P
2k
1 (m) (ST−m−1c1uφ2k(m, c)−K)+

+km+1

r̂m+1

m∑
j=0

∑
Dj,m(ST−m−1c1d,c1,...,ck)

P 2k
1 (m)pk+1 (ST−m−1c1dφ2k(m, c)−K)+ .

It follows that

C̃T−m−1(c)

= km+1

r̂m+1

m+1∑
j=0

∑
Dj,(m+1)+(ST−m−1,c1,...,ck)

P 2k
1 (m + 1) (ST−m−1φ2k(m + 1, c)−K)+

+km+1

r̂m+1

m+1∑
j=0

∑
Dj,(m+1)− (ST−m−1,c1,...,ck)

P 2k
1 (m + 1) (ST−m−1φ2k(m + 1, c)−K)+

= km+1

r̂m+1

m+1∑
j=0

∑
Dj,(m+1)(ST−m−1,c1,...,ck)

P 2k
1 (m + 1) (ST−m−1φ2k(m + 1, c)−K)+

= km+1

r̂m+1

m+1∑
j=0

∑
I(m+1,j,Nc1+1,Nc2 ,...,Nck

)

M2k(m + 1, p) (ST−m−1φ2k(m + 1, p)−K)+ .

The proposition is proved. ¤.

We give some examples in order to make clear the meaning of Proposition
2.3.1 and show that (2.3.1) is the generalization of classical Cox-Ross-Rubinstein
[20] option pricing formula.
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2.3 Multinomial option pricing

Example 2.3.2. If the condition

P{Xi ∈ C1} = 1, i = T −m, . . . , T

is satisfied, then

C̃T−m(c1) = ST−m

m∑
j=a

∑

I(m,j)

m!

m1!m2!
p̄m1

1 p̄m2
2 −K

r̂m

m∑
j=a

∑

I(m,j)

m!

m1!m2!
pm1

1 pm2
2 , (2.3.4)

where a = a(ST−m−1),

a(x) := inf{j : Ij,m(x, Nc1) 6= ∅},

where
Ij,m(x,Nc1) :=

{
J ∈ Γm : |J | = j, xc

Nc1
1 ujdm−j > K

}
,

p1(c1) =
r̂ − c1d

c1(u− d)
, p2(c2) =

c1u− r̂

c1(u− d)
,

p̄1(c1) =
c1u

r̂
p1(c1), p̄2(c2) =

c1d

r̂
p2(c2)

and p1 + p2 = 1, p̄1 + p̄2 = 1;

I(m, j) = I(m, j, Nc1) :=

{
(m1,m2) : mi ∈ Γm, i = 1, 2;

m1 + m2 = m : m1 = j, Nc1 = m1 + m2 = m

}
.

At time t = T −m− 1 the unique replicating strategy φ is given by

αT−m−1(c1) =
∑

j=ad

∑

I(m,j)

m!

m1!m2!
p̄m1

1 p̄m2
2 +

δ∆m(ξu
T−m−1ST−m−1, a

u, c1)

ST−m−1(ξu
T−m−1 − ξd

T−m−1)
, (2.3.5)

βT−m−1(c1) = − K

r̂m+1

∑

j=ad

∑

I(m,j)

m!

m1!m2!
pm1

1 pm2
2 − δ∆m(ξu

T−m−1ST−m−1, a
u, c1)

r̂(ξu
T−m−1 − ξd

T−m−1)
,

(2.3.6)

where

∆m(x, j, c1) :=
1

r̂m

∑

I(m,j)

m!

m1!m2!
p̄m1

1 p̄m2
2 (x(c1u)m1(c1d)m2 −K) ,

au = a(ξu
T−m−1ST−m−1), ad = a(ξd

T−m−1ST−m−1) and δ = 0 if au = ad (otherwise
δ = 1).
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2.3 Multinomial option pricing

Remark 2.3.3. When c1 = 1 with probability 1 then we have the classical
Cox-Ross-Rubinstein formula for option price which is given by (2.3.4). Because
of conditions on m1 and m2 the coefficient m!

m1!m2!
is a binomial coefficient. It

is important to notice that multinomial CRR (2.3.11) does not depend on the
subjective probability p. Intuitively it means that the pricing formula does not
depend on the investor’s attitudes toward risk. The only assumption about
investors is that they all prefer more wealth to less. The assumptions about
absence of arbitrage provide so called partial equilibrium approach, which is
frequently used in economical literature in relation to arbitrage pricing.

It was noticed (see e.g. [48]) that formula (2.3.4) in Example 2.3.2 can be
written as follows

CT−m = ST−mP̄{Sm > K} −Kr̂−(T−m)P∗{Sm > K}, (2.3.7)

where P̄ and P∗ are martingale measures corresponding to the choice of stock
price and bond price, respectively. The representation (2.3.7) can also be used
to derive Black-Scholes formula when stock price follows Geometric Brownian
Motion. In this case one has to use the general theory of limit distributions of
independent identically distributed random variables.

Remark 2.3.4 For the case when k = 1 we have the representation (2.3.7).
So, there are at least two possibilities to obtain the continuous-time Black-
Scholes option price formula: from discrete-time CRR model when the number
of trading periods increases, i.e. m → ∞, and from (2.3.7). One can see
that the log of stock price is represented as a sum of independent identi-
cally binomially distributed random variables, so that it is possible to derive all
possible asymptotical distributions for P̄{Sm > K} and P∗{Sm > K}, as m →∞.

In the case when k ≥ 2 there is no such representation which is analo-
gous to (2.3.7). So, one can not use the general theory of limit theorems and will
need corresponding asymptotic procedure to obtain continuous approximation
of multinomial CRR option price.
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2.3 Multinomial option pricing

We also consider here as an example the case when the condition

P{Xi ∈ {c1, c2}} = 1, i = T −m, . . . , T

is satisfied, i.e. the number of possible values of (Xt)t≤T is k = 2.

Example 2.3.4. If the sequence XT−m, . . . , XT satisfies the condition

P{Xi ∈ C2} = 1, i = T −m, . . . , T,

then

C̃T−m(c1, c2) = 2m

(
ST−m

m∑
j=a

∑
I(m,j,Nc1 ,Nc2 )

M4(m, p̄)− K
r̂m

m∑
j=a

∑
I(m,j,Nc1 ,Nc2)

M4(m, p)

)
,

(2.3.8)

where a = a(ST−m),

a(x) := inf{j : Ij,m(x,Nc1 , Nc2) 6= ∅},

where

Ij,m(x,Nc1 , Nc2) :=
{

J ∈ Γm : |J | = j, xc
Nc1
1 c

Nc2
2 ujdm−j > K

}
,

p1 =
1

2

r̂ − c1d

c1(u− d)
, p2 =

1

2

r̂ − c2d

c2(u− d)
, p3 =

1

2

c1u− r̂

c1(u− d)
, p4 =

1

2

c2u− r̂

c2(u− d)
,

p̄1 =
c1u

r̂
p1, p̄2 =

c2u

r̂
p2, p̄3 =

c1d

r̂
p1, p̄4 =

c2d

r̂
p4

and
p1 + p3 = p2 + p4 =

1

2
, p̄1 + p̄3 = p̄2 + p̄4 =

1

2
;

I(m, j, Nc1 , Nc2) :=





(m1,m2,m3,m4) : mi ∈ Γm, i = 1, . . . , 4;

m1 + m2 + m3 + m4 = m : m1 + m2 = j,

Nc1 = m1 + m3, Nc2 = m2 + m4





.

At time t = T −m− 1 the unique replicating strategy φ is given by

αT−m−1(c1, c2) = 2m
∑

j=ad

∑
I(m,j,Nc1 ,Nc2 )

M4(m, p̄) +
2mδ∆m(ξu

T−m−1ST−m−1,au,c1,c2)

ST−m−1(ξu
T−m−1−ξd

T−m−1)
,

(2.3.9)
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2.3 Multinomial option pricing

βT−m−1(c1, c2) = − 2mK
r̂m+1

∑
j=ad

∑
I(m,j,Nc1 ,Nc2 )

M4(m, p)− 2mδ∆m(ξu
T−m−1ST−m−1,au,c1,c2)

r̂(ξu
T−m−1−ξd

T−m−1)
,

(2.3.10)

where

∆m(x, j, c1, c2) := 2m

r̂m

∑
I(m,j,Nc1 ,Nc2 )

M4(m, p̄) (xφ4(m, c)−K) ,

au = a(ξu
T−m−1ST−m−1), ad = a(ξd

T−m−1ST−m−1) and δ = 0 if au = ad (otherwise
δ = 1).

Remark 2.3.5 Already in case when k = 2, the option price formula is
quite complicated and it is not clear how one could obtain this form of option
price using pure probabilistic approach.
Numerical examples and multinomiality parameters estimation procedure will
be described in Chapter 4, examples will have been obtained in the case k = 2.
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Chapter 3

Convergence of Generalized
Multinomial Option Price Model

Construction of a corresponding asymptotic procedure allowed Cox et al. [20]
to obtain the classical Black-Scholes formula [7] from their discrete-time option
pricing model. In this chapter we apply the similar approach to generalized
discrete-time multinomial option pricing model (2.3.1) and consider the limit
case of multinomial CRR option price. Discrete-time stock price process used
in classical CRR model is the approximation of Geometrical Brownian Motion
which is under certain assumptions the case in our model too. We assume that
random sequence (Xt)t≤T embedded in the generalized stock price model (1.1.2)

St = St−1Xt−1νt−1, ∀ t ≤ T,

take values in the multinomilality parameters set, Ck defined by (2.2.1) and find
conditions, under which, there is a convergence of the multinomial option price
to its continuous analog. The construction of asymptotic procedure and speci-
fication of the features of multinomiality parameters set will allow us to obtain
the generalized multinomial Black-Scholes option price formula with respect to
the generalization of the stock price model (1.1.2) when one can observe different
changes factors of jump sizes at each time moment.

It is necessary to point out that in classical binomial stock price model used
in classical CRR option price model the stock price process was modelled by
the sequence of random variables taking only two values u and d. In our model
the stock price process is modelled by the sequence of random variables which
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3.1 Averaging over all possible multinomiality parameters sets

can take more values than those two. So that the generalized Black-Scholes
formula depends on the multinomiality parameters which gives more flexibility
in the applications. The classical Black-Scholes option price can be obtained as
a consequence from the generalized multinomial option price formula accurate to
the constant when there is only one multinomiality parameter.

3.1 Averaging over all possible multinomiality pa-
rameters sets

The multinomial option price C̃t, , t ≤ T given by (2.3.1) was obtained due to
the conditioning on the values of random sequence XT−m, . . . , XT , where each
element of this sequence Xt, t = T −m, . . . , T takes values in the multinomiality
parameters set Ck, k ≤ m defined by (2.2.1). Thus, the option price is depen-
dent on the certain combination of values of random sequence Nc1 , . . . , Nck

(the
Definition 2.2.1).

In practice it is not known exactly, which combination of Nc1 , . . . , Nck
oc-

curs and hence, one should consider the averaging over all possible combinations
of Nc1 , . . . , Nck

or, which is equivalent, the averaging over all possible sequences
of multinomiality parameters (cji

)T
i=T−m, cji

∈ Ck.

For any c = (c1, . . . , ck) we consider the expectation

ĈT−m(c) := ENc1 ,...,Nck
{C̃T−m(c,Nc1 , . . . , Nck

)} = E{E {
CT−m|(Xi)

T
i=T−m ∈ Ck

}}.
(3.1.1)

Define the set of indexes sets which does not depend on Nc1 , . . . , Nck
anymore.

I(m, j) :=

{
(m1, . . . , m2k) : mi ∈ Γm, i = 1, . . . , 2k;

m1 + . . . + m2k = m : m1 + . . . + mk = j

}
, (3.1.2)

so that (3.1.1) can be written as

ĈT−m(c) = ST−m

m∑
j=a

∑
I(m,j)

M2k(m, p̄)− K
r̂m

m∑
j=a

∑
I(m,j)

M2k(m, p), (3.1.3)

where M2k(m, p) is defined by (2.2.8) and a = a(ST−m) is defined by (2.2.6).
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3.2 Asymptotic procedure

Choosing the proper sequence of (3.1.3) it is possible to obtain the corre-
sponding limit which one refers as to generalized Black-Scholes option valuation
formula.

3.2 Asymptotic procedure

Consider T > 0 is some arbitrary real number. Take any n of the form n = 2s , s

is a natural number. Then divide the interval [0, T ] into n equal subintervals Ij

of length ∆n = T
n
, namely Ij = [j∆n, (j + 1)∆n] for j = 0, . . . , n− 1.

Our purpose is to calculate the asymptotic value of the European call option price
when the number of time periods, or number of time intervals Ij, j = 0, . . . , n−1

increases, as n →∞. Assume that

t = j∆n =
jT

n
=

jT

2s

for some natural s and j, this means that t is an arbitrary dyadic number from
the interval [0, T ].

Introduce the sequence mn(t) by setting

mn(t) =
T − t

T
n, ∀ n ∈ N, (3.2.1)

where N denotes the set of natural numbers. Apparently, the sequence mn(t) has
natural values for n sufficiently large. Further, for the convenience of notations
we will denote the sequence mn(t) as mn or just m.
Moreover, T − t = mn∆n, so that mn represents the number of trading periods
in the interval [t, T ] and m →∞, as n →∞.

We examine the asymptotic properties of ĈT−m(c) defined by (3.1.3) when
the number of steps goes to infinity and, simultaneously, the size of time steps
tends to zero. We should notice that the time index in ĈT−m, T −m is natural
number. In order to construct the sequence of ĈT−m for any T > 0 and m ∈ [0, T ]

we consider T −m = n∆n −m∆n = t, t ∈ [0, T ] and t = j∆n for any natural j.

Let rn be the riskless rate of return over each interval Ij, then the risk-
free asset price process is given by

Bj∆n = (1 + rn)j, j = 0, . . . , n (3.2.2)

49



3.2 Asymptotic procedure

The stock price (risky asset) process is given by

S(j+1)∆n = ξj,nSj∆n , j = 0, . . . , n− 1 (3.2.3)

where
ξj,n = Xj,n exp {unηj + dn(1− ηj)} , j = 0, . . . , n− 1,

where random variables ηj, j = 0, . . . , n− 1 are independent identically Bernoulli
distributed random variables, i.e. ηj take values in the set {0, 1} with corre-
sponding probabilities p and 1 − p. We assume that random variables Xj,n and
ηj, j = 0, . . . , n− 1 are mutually independent.

P{ξj,n = ui,n} = P{ξj,n = xi,n exp{un}|Xj,n = xi,n}

= 1−P{ξj,n = xi,n exp{dn}|Xj,n = xi,n} = 1−P{ξj,n = di,n} = p,

j = 0, . . . , n− 1, i = 1, . . . , k.

Also, impose specific restrictions on the asymptotic behavior of quantities rn,
xne

un and xne
dn . Assume that we have a sequence of multinomiality parameters

sets Ck,n = {c1,n, . . . , ck,n}. So that, xn ∈ Ck,n.
Hence, we have that

ui,n = ci,ne
un and di,n = ci,ne

dn , i = 1, . . . , k.

Also, the corresponding sequences are represented as

r̂n = 1 + rn = er∆n , (3.2.4)

ui,n = (cie)
σ
√

∆n = e(ln ci+1)σ
√

∆n , (3.2.5)

di,n = (cie)
−σ
√

∆n = e−(ln ci+1)σ
√

∆n , i = 1, . . . , k, (3.2.6)

where r > 0 and σ > 0 are real numbers.

The values pj,n, j = 1, . . . , 2k are expressed via rn, di,n and ui,n, i = 1, . . . , k,
which we will denote as pj for the convenience of notations, and form 2k

sequences (pj,n) = (pj), j = 1, . . . , 2k.

pj,n =
1

k

r̂n − dj,n

uj,n − dj,n

, j = 1, . . . , k,

pj,n =
1

k

uj−k,n − r̂n

uj−k,n − dj−k,n

, j = k + 1, . . . , 2k.
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3.3 Multinomial CRR volatility modelling

3.3 Multinomial CRR volatility modelling

The constant r > 0 is the risk-free interest rate of return yielded by a risk-free
investment which is bond and σ > 0 is the standard deviation of the log return of
the risky investment which is stock price. In other words, σ is called a volatility
parameter of the return of stock prices. The classical Black and Scholes formula
[7] for European option price is given by

Ct = StΦ

(
ln

St
K

+(r+ 1
2
σ2)(T−t)

σ
√

T−t

)
−Ke−(T−t)Φ

(
ln

St
K

+(r− 1
2
σ2)(T−t)

σ
√

T−t

)
, t ∈ [0, T ]

(3.3.1)

where Φ(x) = 1√
2π

x∫
−∞

e−
u2

2 du, ∀ x ∈ R, T is expiry date and K is strike price.

In order to calculate the option price using discrete-time CRR option price [20]
one should know the quantities T, m, ST−m, r, σ, when the classical Black-Scholes
option price formula (3.3.1) [7] is used then one should know T, t, St, r, σ. All
quantities are observable directly except for the volatility parameter σ.

The constant volatility assumed in Black-Scholes model was not satisfactory
anymore. In 1977 Galai [26] confirmed the fact about the deviations in the
Black-Scholes model. Also, it was noticed (see [8]) that due to the model, the
options written on stocks with high (low, respectively) historical volatilities are
overpriced (underpriced, respectively). It was suggested that the effectiveness of
the model depends how good the volatility can be predicted. So, the relevant
problem is to estimate volatility parameter of the return of stock price.

Historical volatility is estimated quite straightforward and there are some
important points necessary to mention. Usually, to reduce the estimation bias
arising from the sampling error, it is natural to increase the sample size, either
using longer series of historical observations or increasing the frequency of
observations. But there is some evidence that the variance in financial data is
non-stationary and it might be that increase in sample size can make estimate
even worse. Some studies devoted to historical volatility one can find in works
[15], [51], [42], [69], [17].

The implied volatility is obtained from the observed at the market option
price. It is possible, because the Black-Scholes price of European call option is
an increasing function of the volatility ( [25] (pp.255)) and all other parameters
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3.3 Multinomial CRR volatility modelling

defining the option price are usually known. This implied volatility σt, t ∈ [0, T ]

is derived from (3.3.1) and depends on strike price K, time to maturity T − t.
An average of these implied volatilities is used as a measure of market forecasts
of return volatility. Beckers in 1981 [6] found that the implied volatility was a
better least-squared predictor of the actual volatility than the historical volatility.
Some aspects of implied volatility are discussed in [33].

In continuous-time models it was suggested that the volatility should be mod-
eled as a stochastic process. Such models are called the stochastic volatility
models and the volatility process is described by stochastic differential equation,
see e.g. [61], [62], [16].

The discrete-time approach to model stochastic volatility is based on autore-
gressive random variance models (ARV models) (see e.g. [72], [43]) and on
so-called ARCH (or GARCH) models (see e.g. [23], [49], [68]). Much more of
literature review about volatility studies one can find in [48] or [60].

The above survey about volatility parameter studies shows the importance
of that for financial markets. One should notice that originally there were no
assumptions about volatility parameter in multinomial CRR model of stock
price. After the asymptotic procedure was introduced it appeared that the
volatility parameter of stock return is modelled as stochastic process.

Theorem 3.3.1 If it is possible to construct the asymptotic procedure in that way
that there is a sequence of multinomial CRR option prices Ĉt,n(c), t = 0, . . . , T

from (3.1.1) and ∀ i = 1, . . . , k, ui,n = 1
di,n

, then the volatility process is given
by

σt = σ(ln Xt + 1), ∀ t = 0, . . . , T (3.3.2)

where Xt, t = 0, . . . , T take values in the multinomiality parameters set Ck,

defined in (2.2.1).

Proof. Due to definitions of ui,n, di,n, i = 1, . . . , k in (3.2.5) and (3.2.6)

via the volatility parameter σ and multinomiality parameters c1, . . . , ck the
statement of the theorem is the true one. ¤.
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3.4 Limit theorems for multinomial distribution.
Auxiliary results

In this section we will use the following notations

p(m1, . . . , mk) :=
m!

m1! . . . mk!
pm1

1 . . . pmk
k , ∀ k ≥ 2,

so that

p(m1 + m2, m3, . . . ,mk) =
m!

(m1 + m2)!m3! . . . mk!
(p1 + p2)

m1+m2pm3
3 . . . pmk

k ,

where
k∑

i=1

pi = 1,
k∑

i=1

mi = m.

Further, we will use the sign ” ³ ” to denote the equivalence relation as
m →∞ in the meaning that

a(m) ³ b(m) if and only if
a(m)

b(m)
−→ 1, as m →∞. (3.4.1)

When m9∞, then it is assumed that a(m) = b(m).

Lemma 3.4.1. If p1 ³ p2 ³ . . . ³ pk, k ≥ 2, then
∑

m1,m2,...,mk−1

p(m1, . . . , mk) ³
∑

m1+m2,m3,...,mk−1

p(m1 + m2,m3, . . . , mk). (3.4.2)

Proof. We apply the method of mathematical induction with respect to
k. The base of induction is the case when k = 2, then

n∑
m1=0

m!

m1!m2!
pm1

1 pm2
2 = 1 and

m!

(m1 + m2)!
(p1 + p2)

m1+m2 = 1.

The transition of induction is when we assume that the statement is true for
m1, . . . , mk−1 and the question is if the statement is true for m1, . . . ,mk−1,mk.

∑
m1,m2,...,mk

m!
m1!...mk!

pm1
1 . . . pmk

k =
∑

m1,m2,...,mk−1

m!
m1!...mk−1!

pm1
1 . . . p

mk−1

k−1

∑
mk

1
mk!

pmk
k
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=
∑

m1+m2,m3,...,mk−1

m!
(m1+m2)!m3!...mk−1!

(p1 + p2)
m1+m2pm3

3 . . . p
mk−1

k−1

∑
mk

1
mk!

pmk
k

=
∑

m1+m2,m3,...,mk

m!
(m1+m2)!m3!...mk!

(p1 + p2)
m1+m2pm3

3 . . . pmk
k .

The lemma is proved. ¤.

Returning to our model, for m = m1 + . . . + m2k, p = (p1, . . . , p2k) and
any non-negative integer number x ∈ Z+ we define the set

M2k(m, p, x) :=





(m1 + . . . + mk,mk+1, . . . , m2k) : m1 + . . . + m2k = m

x ≤ m1 + . . . + mk ≤ m(p1 + . . . + pk) + Amγ,

mpi + Amγ ≤ mi ≤ mpi + Amγ, ∀ i = k + 1, . . . , 2k





=





(mk
1,mk+1, . . . , m2k) : mk

1 + . . . + m2k = m

x ≤ mk
1 ≤ m(p1 + . . . + pk) + Amγ,

mpi + Amγ ≤ mi ≤ mpi + Amγ, ∀ i = k + 1, . . . , 2k





(3.4.3)

where A > 0 is a constant, 1
2

< γ < 2
3
, k ≤ m

2
.

Introduce the following notations

xi :=
mi −mpi√

m
i = 1, . . . , 2k

and
x̄i :=

mi −mp̄i√
m

, i = 1, . . . , 2k.

Since
2k∑
i=1

mi = m and
2k∑
i=1

pi =
2k∑
i=1

p̄i = 1 , then
2k∑
i=1

xi =
2k∑
i=1

x̄i = 0.

Define the set

X := {(x1, . . . , x2k) : |xi| ≤ Am
1
2
−β ∀ i = 1, . . . , 2k}, (3.4.4)

where A, β are positive constants and 1
3

< β < 1
2
.
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Proposition 3.4.2. For xi ∈ X, i = 1, . . . , k, as n → ∞, the following
asymptotic relation holds true

ĈT−m ³ C̆T−m = ST−m

∑
M2k(m,p,x)

1

(2π)
k
2

1√√√√
(

k∑
i=1

p̄i

)
p̄k+1...p̄2k

exp





(
k∑

i=1
x̄i

)2

k∑
i=1

p̄i

+
2k∑

i=k+1

x̄2
i

p̄i





− K
r̂m

∑
M2k(m,p̄,x)

1

(2π)
k
2

1√√√√
(

k∑
i=1

pi

)
pk+1...p2k

exp





(
k∑

i=1
xi

)2

k∑
i=1

pi

+
2k∑

i=k+1

x2
i

pi





.

(3.4.5)

Proof. The expression for ĈT−m(c) from (3.1.1) contains multinomial
probabilities with parameters (m, p), where p = (p1, . . . , p2k). Due to the limit
theorem about multinomial distribution (look [56], p.342, (2.21)) and to Lemma
3.4.1. the statement of the theorem is the true one. We just have to show that
the conditions of Lemma 3.4.1 are satisfied.

lim
n→∞

p1,n = lim
n→∞

er∆n−e−(ln c1+1)σ
√

∆n

k(e(ln c1+1)σ
√

∆n−e−(ln c1+1)σ
√

∆n)

= lim
n→∞

1+r∆n+ō(∆n)−1+σ(ln c1+1)
√

∆n−σ2(ln c1+1)2∆n
2

−ō(∆n)

k(1+σ(ln c1+1)
√

∆n+ō(
√

∆n)−1+σ(ln c1+1)
√

∆n−ō(
√

∆n))

=
σ(ln c1+1)2

√
∆n+

(
r−σ2(ln c1+1)2

2

)
∆n

2kσ(ln c1+1)
√

∆n
= 1

2k
.

Calculation of limits of the others pi,n is similar and shows that
p1 ³ . . . ³ p2k ³ 1

2k
, as n →∞. The proposition is proved. ¤.

When k = 1, then Proposition 3.2.4 is well-known Moivre-Laplace local
limit theorem adapted for the option price valuation formula. Our purpose is to
calculate the limit of ĈT−m as n →∞.
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Denote

D̄2k−2(x)

:= (2 + k)
(

k∑
i=1

x̄i

)2

+ 2k

(
2k−2∑
i=k+1

x̄2
i

)
+ 2k

(
k∑

i=1
x̄i

) (
2k−2∑
i=k+1

x̄i

)
+ k

(
2k−2∑
i=k+1

x̄i

)2

,

D2k−2(x)

:= (2 + k)
(

k∑
i=1

xi

)2

+ 2k

(
2k−2∑
i=k+1

x2
i

)
+ 2k

(
k∑

i=1
xi

) (
2k−2∑
i=k+1

xi

)
+ k

(
2k−2∑
i=k+1

xi

)2

.

R̄2k−1(x) := 4k
(

x̄2k−1 + 1
2

(
2k−2∑
i=1

x̄i

))2

, R2k−1(x) := 4k

(
x2k−1 + 1

2

(
2k−2∑
i=1

xi

))2

.

Further, we will omit x as argument of D̄2k−2, D2k−2, R̄2k−1 and R2k−1.

Lemma 3.4.3 Let p1 ³ . . . p2k ³ 1
2k
, as n → ∞, then the following rela-

tion holds true (
k∑

i=1

xi

)2

k∑
i=1

pi

+
2k∑

i=k+1

x2
i

pi

³ D2k−2 + R2k−1. (3.4.6)

Proof. The proof of this statement is straightforward calculations. Since
p1 ³ . . . p2k ³ 1

2k
, then

(x1+...+xk)2

p1+...+pk
+

x2
k+1

pk+1
+ . . . +

x2
2k

p2k
³ 2

(
k∑

i=1

xi

)2

+ 2k

(
2k−1∑
i=k+1

x2
i

)
+ 2k

(
2k−1∑
i=1

xi

)2

= 2

(
k∑

i=1

xi

)2

+ 2k

(
2k−1∑
i=k+1

x2
i

)
+ 2k

(
2k−2∑
i=1

xi

)2

+ 4k

(
2k−2∑
i=1

xi

)
x2k−1 + 2kx2

2k−1

= 2

(
k∑

i=1

xi

)2

+ 2kx2
2k−1 + 2k

(
2k−2∑
i=k+1

x2
i

)
+ 2k

(
k∑

i=1

xi

)2

+ 4k

(
k∑

i=1

xi

)(
2k−2∑
i=k+1

xi

)

+2k

(
2k−2∑
i=k+1

xi

)2

+ 4k

(
2k−2∑
i=1

xi

)
x2k−1 + 2kx2

2k−1
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= (2 + k)

(
k∑

i=1

xi

)2

+ 2k

(
2k−2∑
i=k+1

x2
i

)
+ 2k

(
k∑

i=1

xi

) (
2k−2∑
i=k+1

xi

)

+k

(
2k−2∑
i=k+1

xi

)2

+ 4k

(
x2k−1 + 1

2

(
2k−2∑
i=1

xi

))2

.

The statement of the lemma is proved. ¤.

Remark 3.4.4 As n → ∞, it follows that m → ∞ as well and the asymptotic
of option price is given by

ĈT−m ³ ST−m

∑
M2k(m,p,x)

1

(2π)
k
2

1√√√√
(

k∑
i=1

p̄i

)
p̄k+1...p̄2k

exp
{
D̄2k−2 + R̄2k−1

}

− K
r̂m

∑
M2k(m,p̄,x)

1

(2π)
k
2

1√√√√
(

k∑
i=1

pi

)
pk+1...p2k

exp {D2k−2 + R2k−1} .

(3.4.7)

3.5 Generalized Multinomial Black-Scholes op-
tion pricing formula

In the setting of asymptotic procedure, constructed in the section 3.2 we obtain
the generalized multinomial Black-Scholes option price formula. We will show
that the sequence of generalized multinomial CRR option prices ĈT−m,n from
(3.1.1) converges to some limit, as n → ∞. This limit is a generalization of
classical Black-Scholes option pricing formula [7] and depends on multinomiality
parameters c1, . . . , ck.

Theorem 3.5.1. The following convergence is valid for any dyadic t ∈ [0, T ]

lim
n→∞

ĈT−m = Ĉt = StΦ(f1(St, T − t))−Ke−r(T−t)Φ(f2(St, T − t)), (3.5.1)
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where

f1(s, t) =

ln s
K

+ (T − t) ln c1...ck+k
k


 r

k
ln c1...ck+k
k∏

i=1
(ln ci+1)

+ σ2

2
ln c1...ck+k

k




σ ln c1...ck+k
k

√
T − t

, (3.5.2)

f2(s, t) = f1(s, t)− σ
ln c1 . . . ck + k

k

√
T − t (3.5.3)

and Φ stands for the standard Gaussian cumulative distribution function

Φ(x) = 1√
2π

x∫
−∞

e
u2

2 du, ∀ x ∈ R.

Proof. Let St = s be a value of the stock price at time t. First, we
need to calculate limits of some quantities. Notice, that

lim
n→∞

(1 + rn)−mn = lim
n→∞

e−mnr∆n = e−r(T−t).

Furthermore, for every n > r2σ−2T we have

di,n =
1

ui,n

<
1

r̂n

≤ r̂n < ui,n, i = 1, . . . , k

and as it was shown in the proof of lemma 3.4.3

lim
n→∞

p1,n = . . . = lim
n→∞

pk,n = . . . = lim
n→∞

p2k,n =
1

2k
.

The following asymptotic holds true as n →∞.

pi,n ³ 1
2k

+
√

∆n

2kσ(ln ci+1)

(
r − σ2(ln ci+1)2

2

)
, i = 1, . . . , k

pi,n ³ 1
2k
−

√
∆n

2kσ(ln ci−k+1)

(
r − σ2(ln ci−k+1)2

2

)
, i = k + 1, . . . , 2k.

The limits of p̄i, i = 1, . . . , 2k are calculated in a similar way.

lim
n→∞

p̄1,n = lim
n→∞

u1,np1,n

r̂n

=
1

2k

and due to lemma 3.4.3

lim
n→∞

p̄1,n = . . . = lim
n→∞

p̄k = . . . = lim
n→∞

p̄2k =
1

2k
.
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The asymptotic for p̄i,n, i = 1, . . . , 2k as n →∞ is given by

p̄i,n ³ 1
2k

+
√

∆n

2kσ(ln ci+1)

(
r + σ2(ln ci+1)2

2

)
, i = 1, . . . , k

p̄i,n ³ 1
2k
−

√
∆n

2kσ(ln ci−k+1)

(
r + σ2(ln ci−k+1)2

2

)
, i = k + 1, . . . , 2k.

Now we calculate the value of a = a(S) = inf{j : Dj,m(S, c1, . . . , ck) 6= ∅}.

S exp{m1σ(ln c1 + 1)
√

∆n + . . . + mkσ(ln ck + 1)
√

∆n

−mk+1σ(ln c1 + 1)
√

∆n − . . .−m2kσ(ln ck + 1)
√

∆n} = K

From the conditions on the set Dj,m(S, c1, . . . , ck) it is known that
m1 + . . . + mk = j. Since m1, . . . , mk are numbers of upward jumps with val-
ues c1u, . . . , cku correspondingly and by assumptions c1, . . . , ck can occur equally
likely, so that the number of jumps of different values should be approximately
more or less the same, then we are entitled to suppose that m1 = . . . = mk = j

k

and respectively mk+1 = . . . = m2k = m−j
k

. Without loss of generality we consider
j and m− j are divisible by j. So,

j

k

(
k∑

i=1

ln ci + k

)
σ
√

∆n − m− j

k

(
k∑

i=1

ln ci + k

)
σ
√

∆n = ln
K

S
,

therefore

j =

k

(
ln K

S
+ m

k

(
k∑

i=1

ln ci + k

)
σ
√

∆n

)

2

(
k∑

i=1

ln ci + k

)
σ
√

∆n

or we write down it as

j =

k
2
ln K

S
+ m

2

(
k∑

i=1

ln ci + k

)
σ
√

∆n

(
k∑

i=1

ln ci + k

)
σ
√

∆n

.

Since under such j all conditions imposed in the definition of
the set Dj,m(S, c1, . . . , ck) (Definition 2.2.3) are fulfilled then

a =

k
2

ln K
S

+m
2

(
k∑

i=1
ln ci+k

)
σ
√

∆n

(
k∑

i=1
ln ci+k

)
σ
√

∆n

. Now, due to the proposition 3.4.2 we have
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to calculate the limit of the asymptotic expression of the option price value,
C̆T−m given by (3.4.5), as n → ∞. Further, in order to shorten notations we
will denote p1, . . . , p2k, x1, . . . , x2k without subindex n but it needs to be kept in
mind that these quantities depend on n. Calculate

x2k =
m2k −mp2k√

m
=

m−m1 − . . .−m2k−1 −mp2k√
m

=
m− x1

√
m−mp1 − . . .− x2k−1

√
m−mp2k−1 −mp2k√

m
= −(x1 + . . . + x2k−1).

From (3.4.7) we have that

C̆T−m = ST−m

∑
M(m(2k−2),p̄,a)

1
(
√

2πm)k−1

1√√√√
(

k∑
i=1

p̄i

)
p̄2k

1√
2k−2∏

i=k+1
p̄i

exp
{−1

2
D̄2k−2

}
IS2k−1

− K
r̂m

∑
M(m(2k−2),p,a)

1
(
√

2πm)k−1

1√√√√
(

k∑
i=1

pi

)
p2k

1√
2k−2∏

i=k+1
pi

exp
{−1

2
D2k−2

}
IS2k−1,

where m(2k−2) = m1 + . . .+m2k−2, since xi ∈ X (defined by (3.4.4)), i = 1, . . . , 2k,
then

IS2k−1 =
mp̄2k−1+Ō(mγ)∑

m2k−1=mp̄2k−1−Ō(mγ)

1√
2πm

1√
p̄2k−1

exp
{−1

2
R̄2k−1

}
,

IS2k−1 =
mp2k−1+Ō(mγ)∑

m2k−1=mp2k−1−Ō(mγ)

1√
2πm

1√
p2k−1

exp
{−1

2
R2k−1

}
.

The sums IS2k−1 and IS2k−1 are approximated by integrals.

IS2k−1 =
mp2k+Ō(mγ)∑

m2k−1=mp2k−1−Ō(mγ)

1√
2πm

1√
p2k−1

exp
{−1

2
R2k−1

}

≈
mp2k−1+Ō(mγ)∫
mp2k−1−Ō(mγ)

1√
2πm

1√
p2k−1

e
− 1

2


4k

(
m2k−1−mp2k−1√

m
+ 1

2

(
2k−2∑
i=1

xi

))2


dm2k−1
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=

Ō
(
mγ− 1

2

)
∫

−Ō
(
mγ− 1

2

)
1√
2π

1√
p2k−1

e
− 1

2


4k

(
y2k−1+ 1

2

(
2k−2∑
i=1

xi

))2


dy2k−1

=
bn∫

an

1√
2π

1√
4kp2k−1

e−
1
2
u2
2k−1du2k−1 = 1√

2
(Φ(bn)− Φ(an)) ,

where in last two equalities we applied the substitutions of variables

y2k−1 = m2k−1−mp2k−1√
m

and u2k−1 =
√

4k

(
y2k−1 + 1

2

(
2k−2∑
i=1

xi

))
. The integra-

tion limits an and bn are given by

an =
√

4k

(
−Ō

(
mγ− 1

2

)
+ 1

2

(
2k−2∑
i=1

xi

))
,

bn =
√

4k

(
Ō

(
mγ− 1

2

)
+ 1

2

(
2k−2∑
i=1

xi

))
.

Since xi ∈ X (the set X defined by (3.4.4)), i = 1, . . . , 2k, then∣∣∣∣
2k−2∑
i=1

xi

∣∣∣∣ ≈ Ō(m
1
2
−β), where 1

3
< β < 1

2
and from (3.4.3) we know that 1

2
< γ < 2

3
,

then it is clear that both 0 < 1
2
− β < 1

6
and 0 < γ − 1

2
< 1

6
. So that both

summands in the expressions for an and bn are of the same order. There are now
two possibilities which provide the conditions when an → −∞ and bn → +∞:

(1) if
2k−2∑
i=1

xi > 0, then it must be
2k−2∑
i=1

xi < 2Ō
(
mγ− 1

2

)
,

(2) if
2k−2∑
i=1

xi < 0, then it must be
2k−2∑
i=1

xi > −2Ō
(
mγ− 1

2

)
.

Therefore, it follows that the sum
2k−2∑
i=1

xi satisfies these conditions (1) and (2)

if and only if ∣∣∣∣∣
2k−2∑
i=1

xi

∣∣∣∣∣ < Ō
(
mγ− 1

2

)
,

which is equivalent to the conditions on m1, . . . , mk,mk+1, . . . ,m2k−2 defined in
(3.4.3) and there are no contradictions between that what we need and what
is assumed. Under these conditions, bn → +∞ and an → −∞, as n → ∞.
Therefore,

IS2k−1 ≈ 1√
2
, as n →∞.
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If k > 2 then, D2k−2, D̄2k−2 can be transformed into D2k−3 and D̄2k−3 corre-
spondingly, by extracting the x2k−2 and establishing the corresponding R2k−2

and R̄2k−2. This process can be continued until Dk, D̄k, Rk+1 and R̄k+1 are ob-
tained. Consequently, the number of sums in the option price formula (3.4.7) will
be reduced. There are k − 2 steps when it is possible to calculate the limit of
approximating integral. During next following steps the approximation is given
by

mp2k−2+Ō(mγ)∑
m2k−2=mp2k−2−Ō(mγ)

1√
2πm

1√
p2k−2

exp
{−1

2
R2k−2

} ≈
√

2√
3
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...
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2
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, as n →∞

and the (k − 2)th approximation is given by
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So that it is left to estimate
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= 2

Ō
(
mγ− 1

2

)
∫

a−m(p1+...+pk)√
m

1√
2π

e−
1
2(4y2

1)dy1 =

2Ō
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where the variables substitution has been applied twice, first one is
y1 = m1+...+mk−m(p1+...+pk)√

m
and the second one is u1 = 2y1. Now remember the

expression for a and calculate the limit
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Analogously the limit of 2(a−m(p̄1+...+p̄k))√
m

as n → ∞ has been calculated. It is
equal to

f1(S, T − t) =
ln S

K
+ (T − t) (ln c1...ck+k)

k

(
r
k
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,

and has a relation to f2 as f2(S, T − t) = f1(S, T − t)− σ (ln c1...ck+k)
k

√
T − t

The theorem is proved. ¤.

Remark 3.5.2 We obtain classical Black-Scholes option pricing formula
from (3.5.1) if it is assumed that k = 1 and c1 = 1.
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Chapter 4

Numerical Results

In this chapter we describe some numerical results. First, it is shown that gen-
eralized model (1.1.2) of the stock price process can give better approximation
to real data then binomial model. It occurs when the multinomiality parameters
c1, . . . , ck are embedded into the generalized stock price model.

We propose simple multinomiality parameters estimation procedure and
give examples of data approximation using the new stock price model with two
multinomiality parameters c1 and c2. When the generalized stock price model
with multinomiality parameters is used then we say that there is a multinomial
approximation, when the classical binomial stock price model is used, then we say
there is a binomial approximation. The embedding of only two multinomiality
parameters gives much better results with respect to corresponding measures of
approximation which are mean squared error and mean absolute error.

The mean squared errors obtained under multinomial approximation are
much smaller than those obtained under binomial one. The comparison is carried
out using the real data of stocks. The results of these empirical studies also
suggest when the multinomiality parameters should be included into stock price
modelling and when it is worthless, so that one should use the binomial model
which is easier. Correspondingly, we calculate the multinomial option prices
using the formula (2.3.8) and see how the multinomiality parameters influence
on the option price.
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4.1 Stock Price Modelling. Hull-White Algorithm

In order to simulate the stock price process using the generalized model estab-
lished in Chapter 1 by (1.1.2)

St = St−1Xt−1νt−1, ∀ t ≤ T,

provided that the values of (Xt)t≤T are contained in the multinomiality set Ck

defined by (2.2.1), one has to be able to calculate the parameters u and d as
well as c1, . . . , ck from real data. Intuitively, it is clear that these parameters are
dependent on the variance σ and mean µ of the data. So that first, one should
estimate the parameters σ and µ and then all others. The estimation of σ and µ

is standard estimation of variance and mean.
There are several methods for estimation of u and d. We describe the simple

one which is frequently used to model stock returns.

Hull-White (HW) Algorithm ( [27])
We set p = 1

2
and determine u and d from the following equations

(1) u+d
2

= 1 + µ∆t,

(2) u− d = 2σ
√

∆t,

(4.1.1)

where µ is the drift parameter or the mean, measures the average percent change
in the stock price over the time; σ is the volatility parameter or the variance,
measures the randomness of the stock price; ∆t is a time period after which we
regard the stock price. We assume

Si = νi−1Si−1, i = 1, . . . , n,

where (νk)k≤n are independent Bernoulli random variables, such that

P
{

Si

Si−1

= u

}
= P

{
Si

Si−1

= d

}
=

1

2
.

The estimates for µ∆t and σ2∆t are

Ū =
1

n

n−1∑
i=0

(νi − 1) =
1

n

n∑
i=1

(
Si

Si−1

− 1

)
(4.1.2)
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and

s2 =
1

n− 1

(
n∑

i=1

(
Si

Si−1

− 1

)2

− nŪ2

)
. (4.1.3)

The numbers Ū and s2 are the sample mean and variance that are determined
from the real stock price data S1, S2, . . . , Sn. The estimates for µ and σ are
obtained as

µ ≈ Ū

∆t
, σ ≈ s

∆t
. (4.1.4)

Solving (1) and (2) form (4.1.1) we obtain that

u = 1 + µ∆t + σ
√

∆t,

d = 1 + µ∆t− σ
√

∆t.
(4.1.5)

4.2 Stock Price Modelling. Estimation of multi-
nomiality parameters

It is assumined that multinomiality parameters c1, . . . , ck occur equally likely
with probabilities 1

k
(see section 2.2). Under these assumptions we propose to

use the following algorithm to estimate parameters c1, . . . , ck from real data.

Hull-White-Kan algorithm. The Estimation of Parameters c1, . . . , ck

First, we assume that only parameter c1 is include in the model of stock price,
then

(u + d)(1 + c1)

4
= 1 + µ∆t,

then
c1 =

4(1 + µ∆t)

u + d
− 1. (4.2.4)

The stock price model with one parameter c1 implicates the classical binomial
stock price model when c1 = 0.
If, due to real data, the embedding of one parameter c1 is not satisfactory, then
we include in the model parameter c2, which is defined as

c2 = 2− c1, (4.2.5)

we continue to determine c3 as a solution of the equation

(u + d)(1 + c1 + c2 + c3)

8
= 1 + µ∆t,
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then
c3 =

8(1 + µ∆t)

u + d
− 3. (4.2.6)

Next value of c4 we define as
c4 = 2− c3. (4.2.7)

The procedure can be continued like that until it is necessary.

One can see that the combination of the model (1.1.2) given (Xt)t≤T ∈ Ck

and of the equation (1) in HW algorithm have been used to construct the
multinomiality parameters c1, . . . , ck estimation procedure.

4.3 The Stock Price Modelling. Simulations

We consider several raw financial data sets that have been observed during some
time period, mostly these are the stock prices of different German companies.
The data were downloaded from the web site www.comdirect.de and identified
with so called WKN number. We consider the data samples of size n = 500. Also,
the data sets are classified by the value of historical volatility. More precisely,
we consider the data sets which have volatility σ < 35%, 35% < σ < 65%,
65% < σ < 100% and when σ > 100%.

Using the binomial model and the new multinomial one we want to fit the
model simulated data to the raw data and calculate the corresponding mean
squred error, which is defined as the averaged squared difference between modelled
and real observations.
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Volatility σ = 11%
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Figure 4.3.1: (a) The stock prices of SDAX Performance Index with volatility
for the period of 500 trading days σ = 11%. (b) The mean squared errors
boxplots obtained using different models.

On the Figure 4.3.1 (a) one can see the low volatile data (σ = 11%) of
SDAX Performance Index daily stock prices, on the Figure 4.3.1 (b) the boxplots
of mean squared errors obtained when different multinomial models have been
used to approximate stock price data are represented. The first boxplot marked
′0′ is the boxplot of mean squared errors of binomial approximation, further, the
marks ′2′, ′3′, . . . mean that the multinomial models with c1, c2, c1, c2, c3, and so
on multinomiality parameters have been used for approximation. It is clear from
the picture that the application of multinomial model with different number
of multinomiality parameters does not show better approximation. When the
market volatility is low, there are no much fluctuations and frictions, then it is
better to use the binomial model of stock price to fit real data.

Further, we will consider the data set with higher volatility and it will be
shown that in those cases the multinomial approximation works better than the
binomial one.
We will see that the introduction of multinomiality parameters improves the
data approximation the market is not stable and can express some spikes than
the multinomiality parameters allow us to model that better.
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Volatility σ = 49%
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Figure 4.3.2: (a) The stock prices of AVA ALLC. HANDELSGES. D.
VERBR. AGInhaber-Aktien o. N. with volatility for the period of 500 trading
days σ = 49%. (b) The mean squared errors boxplots obtained using different
models.
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Figure 4.3.3: (a) The stock prices of DAB BANK AGInhaber-Aktien o. N.
with volatility for the period of 500 trading days σ = 91%. (b) The mean
squared errors boxplots obtained using different models.
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Volatility σ = 131%
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Figure 4.3.4: (a) The stock prices of DCI DATAB COMMERCE INDUS-
TRY AGInhaber-Aktien o. N. with volatility for the period of 500 trading days
σ = 131%. (b) The mean squared errors boxplots obtained using different models.

From figures 4.3.2, 4.3.3 and 4.3.4 we can see that the data AVA ALLC.
HANDELSGES. D. VERBR. AGInhaber-Aktien o. N., DAB BANK AGInhaber-
Aktien o. N. and DCI DATAB. COMMERCE INDUSTRY AGInhaber-Aktien
o. N. show up that the multinomial model of stock price process is better than
the binomial model of stock price process. It gives smaller mean squared errors
and therefore, the data approximation is better.

All these data sets have volatility higher than 35%, which indicates that
in these cases the market is more unsettled. And this must serve as a signal
to apply the multinomial model to simulate stock prices. However, there is a
problem to determine how many multinomiality parameters have to be consid-
ered in order to obtain sufficiently good results and not to have overcomplicated
calculations.

From Figure 4.3.3, one can see that it is sufficient to use the multinomial
model with just one parameter c1 to obtain significantly better results of data
simulation. But sometimes this is not so and the problem of defining the
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4.4 Numerical option price calculation. Multinomial CRR Model

number of parameters in the multinomial model is also related to the problem of
parameters estimation.
However, it is clear, that the multinomial modelling gives significantly better
results for the approximation of highly volatile data.

4.4 Numerical option price calculation. Multino-
mial CRR Model

We use the multinomial CRR model (2.3.8) in order to calculate the option price
and to compare it with the Option Payoff (ST −K)+ (T is expiry date and K is
a strike price) and option price obtained using the classical binomial CRR model
[20].

We will consider examples with data sets of high volatility, i.e. AVA ALLC.
HANDELSGES. D. VERBR. AGInhaber-Aktien o. N. (Figure 4.3.2), DAB
BANK AGInhaber-Aktien o. N. (Figure 4.3.3) and DCI DATAB. COMMERCE
INDUSTRY AGInhaber-Aktien o. N. (Figure 4.3.4), since they are approximated
better with multinomial model. We expect that the option price calculated using
multinomial CRR option price formula (2.3.8) with parameters c1 and c2 will give
the price value which is closer to the Option Payoff than the value of option price
obtained using binomial CRR formula.

To use the multinomial CRR (2.3.8) we have to know the parameters c1 and
c2, for that we use the estimation procedure (HWK algorithm) proposed in the
section 4.2. One can take arbitrarily any two parameters from the sequence
of c1, . . . , ck obtained by the estimation procedure. We should notice that the
multinomiality parameters values by itself sometimes don’t give good results
but if to consider some range of these parameters, i.e. c1 + δ, . . . , ck + δ, where
|δ| can be small as hundredth or of smaller order, then it is possible to obtain
sufficiently good results.

In the following numerical examples we will always consider that expira-
tion time is T = 500, the time before the expiration is equal to m = 100, which
means that we estimate the option price at time t = 400, 100 days before the
expiration. Since we use the option price formula (2.3.8) we need to know the
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4.4 Numerical option price calculation. Multinomial CRR Model

number n1 of parameters c1 occurred from time t = T −m (t = 400 in our case)
until the expiry date t = T . The corresponding number n2 of parameters c2 is
equal to n2 = m − n1. We consider that n1 = 50 in order to define suitable c1

and c2, then we observe the option price when n1 and n2 change and see how
the multinomial option price changes so that we can define the optimal for the
option price values of n1 and n2.

For the calculation of binomial CRR option price [20] and multinomial
CRR option price (2.3.8) written on the same stock, we use the same values of
T , ST , K, s, r and m. So that we can compare them with the option payoff and
see which model of option price gives values closer to this payoff.
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4.4 Numerical option price calculation. Multinomial CRR Model

Example 4.4.1 (AVA ALLG. HANDELGES. D. VERBR.
AGInhaber-Aktien Figure 4.3.2 (a))
We consider the interest rate as r = 0.01, the stock price at time t = 400 is equal
to 11.6883 (i.e. s = S400 = 11.6883). Since the stock price at time T = 500 is
equal to 14.8954 (i.e. S500 = 14.8954), then we put the strike price of the call
option as K = 8, so that the option is in-the-money option, which means that it
is beneficial for a buyer to exercise the option. Consequently, the option payoff
is equal to ST − K = 6.8954. Since the volatility of the data is high enough,
σ = 49% then it is suggested to use the CRR multinomial model for option
pricing.
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Figure 4.4.1: (a) The option price in dependence on the values of the parameter
c1 (dotted line), binomial CRR option price (dashed line), option payoff at
expiry time (solid line). (b) The option price in dependence on the n1, number
of parameters c1, occurred from time t = T −m until expiry date t = T .

One can see on the Figure 4.4.1 (a) that there is one value of c1 where
the multinomial CRR option price dependent on c1 is closer to the option payoff
than the binomial CRR option price. We determine this value of c1 as c∗1 and
use it to consider further the dependence of multinomial CRR option price on
the number of the parameters c∗1 occurred from t = 400 until the expiration time
T = 500. Under zero-values we understand the non-informative results and we
do not consider these values of n1. It is shown (Figure 4.4.1 (b)) that when
n1 = 47 and n1 = 48 the multinomial CRR option price (dotted line) is closer
to the option payoff than the binomial CRR option price which is constant.
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4.4 Numerical option price calculation. Multinomial CRR Model

Example 4.4.2 (DAB BANK AG Inhaber-Aktien,Figure 4.3.3 (a))
We consider the interest rate as r = 0.01, the stock price at time t = 400 is
equal to 18.75 (i.e. s = S400 = 18.75). Since the stock price at time T = 500 is
equal to 11.3 (i.e. S500 = 11.3), then we put the strike price of the call option
as K = 8, so that the option is in-the-money option, which means that it is
beneficial for a buyer to exercise the option. Consequently, the option payoff is
equal to ST − K = 3.3. The historical volatility of the data is equal to 91%.
It is shown on the Figure 4.3.2 (b) that these stock prices are better modelled
by multinomial model. We will see how the option price is changed when the
multinomial CRR model is used.

0.90 0.92 0.94 0.96 0.98

0
5

10
15

20

(a) there are 100 values of c1, 
 c1 belongs to [0.895, 0.994] and varies in 0.001 

Op
tion

 pri
ce

0.895 0.905 0.915

0
5

10
15

20

(b) there are 15 values of c1,  c1 is 
 from [0.895, 0.920] and varies in 0.001 

Op
tion

 pri
ce

mult.op.price c1,c2
crr. op.price
op.payoff at exp.time

Figure 4.4.2: (a) The multinomial CRR option price in dependence on the
values of parameter c1. (b) The multinomial CRR option price in dependence
on the values of parameter c1 (dotted line), binomial CRR option price (dashed
line) and the option payoff (solid line).

On the Figure 4.4.2 (a) the changes of the multinomial option price in de-
pendence on the parameter c1 are shown. One can see that there are some values
of c1 which influence on the option price significantly.
From the Figure 4.4.2 (b) one can see that there is a value of c1 which provides
the value of multinomial CRR option price which is very close to the option
payoff. So that there is no necessity to consider the dependence of option price
from the number of c1 occurred. These values of multinomiality parameter c1 are
0.913, 0.912, 0.911 under which the option price is equal to 3.138, 4.558, 3.609

correspondingly and these values are very close to the option payoff which is
equal to 3.3.
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4.4 Numerical option price calculation. Multinomial CRR Model

Example 4.4.3 (DCI DATAB.COMMERCE INDUSTRY AG
Inhaber-Aktien o.N.,Figure 4.3.2 (a))
We consider the interest rate as r = 0.05, the stock price at time t = 400 is equal
to 3 (i.e. s = S400 = 3). Since the stock price at time T = 500 is equal to 1.13

(i.e. S500 = 1.13), then we put the strike price of the call option as K = 1, so that
the option is in-the-money option, which means that it is beneficial for a buyer to
exercise the option. Consequently, the option payoff is equal to ST −K = 0.13.
The data in this example have high volatility, σ = 131%.
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Figure 4.4.3: Multinomial CRR option price in dependence on the n1, number
of parameters c1, occurred during [T − m,T ] is given by dotted line, binomial
CRR option price is dashed one. The option payoff is solid line.

As one can see there are some values of n1 when the multinomial CRR
option price in dependence on n1 yields the option prices which are closer to the
option payoff than the binomial CRR option price. So that the multinomial CRR
option price model for this data set allows produce better results to estimate the
option price at time t = T −m.
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4.5 Generalized multinomial Black-Scholes for-
mula. Simulations

In this section we consider the option prices calculated by means of the classical
Black-Scholes (BS) formula [7] and the option prices calculated by means of the
generalized multinomial Black-Scholes (MBS) option pricing formula (3.5.1). It
is noticed, that multinomiality parameters c1, . . . , ck influence rather on option
prices for stocks with high volatility than for stocks with low volatility. So
that it is suggested to apply the multinomial Black-Scholes for option pricing
when the market is of high volatility. We will stick to the data sets used in
previous sections to show how the multinomial Black-Scholes formula depends
on multinomiality parameters c1, . . . , ck.

Example 4.5.1 ( AVA Allg. Handelges.D.Verbr. AGInhaber-Aktien
Figure 4.3.2 (a))
We calculate the multinomial BS option price in dependence on parameters c1

and c2 and consider the strike price K = 8, interest rate r = 0.01, the current
stock price s = S400, time τ = 100
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Figure 4.5.1: Multinomial Black-Scholes option price in dependence on the
parameter c1 (solid line) while the parameter c2 is fixed and c2 = 0.978, option
payoff (dotted line) and classical Black-Scholes option price (dashed line).
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It is shown on the Figure 4.5.1 that the option price obtained using multinomial
Black-Scholes (MBS) increases and approaches to the option payoff when the
parameter c1 increases. It is clear, that adjusting properly the value of parameter
c1 it is possible to obtain the option prices closer to the option payoff.
We should notice that there is no preferences which parameter to assign to be
fixed and which to use as adjusting the option price parameter. With the same
success one can use parameter c2 as an adjusting one and c1 as a fixed one.

Example 4.5.2 (DAB Bank AG AG Inhaber-Aktien o.N.,Figure
4.3.3 (a))
In this example we calculate the MBS option price when the strike price is
K = 8, the current stock price s0 = S400, the time until expiration is τ = 100

253
and

the interest rate is r = 0.01. Under these assumptions we calculate and compare
the multinomial Black-Scholes price, classical Black-Scholes price and the option
payoff.

(a) MBS option price 
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Figure 4.5.2: (a) Multinomial Black-Scholes option price in dependence on
the parameter c2. (b) Multinomial Black-Scholes option price in dependence on
parameter c1 given c2 (solid line), classical Black-Scholes option price (dashed
line), option payoff (dotted line).

The dependence on the parameter c2 shown on the Figure 4.5.2 (a) indi-
cates that, in general, the option price increases when c2 increases, but there is a
specific value of c2 when the option price drops down. We hold fixed this value
of c2 = c∗2 and next, consider how the option price depends on the parameter c1
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4.5 Generalized multinomial Black-Scholes formula. Simulations

given this c∗2. On the Figure 4.5.2(b) one can see the multinomial Black-Scholes
option price in dependence on the parameter c1 (solid line) given the parameter
value c∗2 is closer to the option payoff (dotted line) than the Black-Scholes option
price (dashed line).

As one can see from the Figure 4.5.2 (b) the classical Black-Scholes for-
mula and multinomial Black-Scholes model overestimate (which is usual for the
markets with high volatility) the option payoff but it is clear, that adjusting the
parameters c1 and c2 the multinomial BS model gives prices which are closer to
the payoff than BS prices.

Example 4.5.3 (DCI Datab. Commerce Industry AG Inhaber-
Aktien o.N., Figure 4.3.2 (a))
We consider that the strike price is K = 1, the current stock price is s0 = S400,
the time until expiration is τ = 100

253
and the interest rate is r = 0.05. Under such

assumptions we calculate the multinomial Black-Scholes, classical Black-Scholes
and the option payoff.

(a) MBS option price in dependence 
 on c1 parameter
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Figure 4.5.3: (a) Multinomial Black-Scholes option price in dependence on
the parameter c1. (b) Multinomial Black-Scholes option price in dependence
on parameter c2 given fixed c1 (solid line), classical Black-Scholes option price
(dashed line) and option payoff (dotted line).

It is shown on the Figure 4.5.3 (a) that there is the value of parameter
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4.5 Generalized multinomial Black-Scholes formula. Simulations

c1 = 0.366 under which the multinomial Black-Scholes option price drops while
in other cases it increases as c1 increases. Again, we hold fixed this value of c1

and see (Figure 4.5.3 (b)) how the option price changes when the parameter c2

changes. There are values of parameter c2 when the multinomial Black-Scholes
option price is closer to the option payoff then the classical Black-Scholes option
price. So that properly adjusting parameters c1 and c2 one can obtain more
accurate option prices.
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