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Chapter 1

The gelation transition

1.1 Introduction

Charles Goodyear’s discovery of the vulcanization of rubber in 1839 has probably given
the initial impetus to what has become an independent research area of physics in the mean-
time, namely soft matter physics. Goodyear observed that adding a sufficient amount of
sulfur to a liquid cis-polyisoprene melt yields a peculiar, “soft”, solid-state material: rub-
ber. In more contemporary terms, Goodyear discovered a special example of system which
exhibit a sol-gel or gelation transition: If a liquid macromolecular system is subjected to a
chemical reaction mechanism, crosslinking, which gradually and randomly joins the con-
stituents to form larger and larger macromolecules, the system undergoes a transition from
a complex fluid (sol-phase) to a solid state (gel-phase) (see Fig. 1.1). If the crosslinking im-
poses a permanent constraint on the degrees of freedom the gelation process is referred to
as chemical or strong gelation. Permanent crosslinks are formed by chemical bonds which
are energetically stable when subjected to thermal fluctuations. For chemical crosslinks the
gelation transition is an equilibrium, second-order thermodynamic phase transition from a
complex liquid to an amorphous solid state. The transition is controlled by a parameter,
the number density of crosslinks c. In contrast, in physical or weak gels the energy of the
bonds is of order of the thermal energy kBT . Thermal fluctuations cause breaking and re-
formation of the crosslinks and prevent the system from exhibiting a true phase transition.
In the following, exclusively chemical gels are considered.

If a gelling system is sufficiently close to its critical point ccrit the upcoming transition
is signalled by striking static and dynamical critical phenomena. One of the most fun-
damental, dynamic signatures in the liquid phase is the divergence of the shear viscosity
η ∼ (ccrit − c)−k when the critical density is approached from below. It signals the pres-
ence of increasing solid-like regions in the fluid and may be regarded as the precursor of
another signature, which is actually static in nature, the emergence of shear rigidity in the
gel phase. A nonzero shear modulus G ∼ (ccrit − c)µ emerges continuously in the gel
phase when the critical crosslink density is increased above its critical value. The situation
is schematically depicted in Fig. 1.2. The soft and sloppy nature of the rubbery phase is
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2 CHAPTER 1. THE GELATION TRANSITION

PSfrag replacements add

Figure 1.1: Gelation transition from a complex, macromolecular fluid (sol phase) to an
amorphous solid (gel phase) by random crosslinking (indicated by red circles)

ccrit c

Sol Phase

Shear viscosity

Gel phase

Shear modulus

Figure 1.2: Schematic depiction of the shear viscosity and the shear modulus as functions
of the crosslink density c in the vicinity of gelation transition.

due to the entropic elasticity of the macromolecular building blocks.
This solidification transition bears some fundamental differences to a first order liquid-

solid phase transition of simple fluids and is, to some extent, reminiscent of the glass tran-
sition. In the sol phase as well as in supercooled liquids correlation functions no longer
decay exponentially in time. Instead, a critical slowing down is observed which is reflected
by a stretched exponential (Kohlrausch-William-Watts) decay of time dependent correla-
tion functions such as the incoherent scattering function S(q, t) ∼ exp(−(t/tq)

α), with
α < 1. Such a slowing down is commonly related to the presence of a broad distribution
of relaxation times which reflects distinctly relaxing spatial domains. However, the issue
of identifying these domains allows for a clear-cut distinction between the gelation tran-
sition and the glass transition. Within gelation the identification of thermal and quenched
degrees of freedom is unambiguous: Monomers equilibrate in the presence of crosslinks
which constitute well defined quenched degrees of freedom. Slowly relaxing domains
are then easily identified as large clusters. In contrast, when lowering the temperature in
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structural glasses the identification of quenched degrees of freedom is neither simple nor
unique. Moreover, it is still being questioned if there is an underlying equilibrium phase
transition at all.

A further remarkable feature of a gelling system is the absence of critical opalescence
at the critical point. This is contrast to to e.g. the first order liquid-vapor transition of a
simple fluid or to the second order phase-separation transition of a binary fluid. The latter
examples do exhibit critical, macroscopic density fluctuations and hence large fluctuations
in the refractive index of the material which is easily revealed by light scattering exper-
iments. Macroscopic concentration fluctuations are associated with a diverging spatial
correlation length. Gelling systems do not exhibit critical opalescence and hence, fluctu-
ations of the monomer density must remain short ranged throughout the transition. It is
rather the divergence of a more subtle correlation length which gives rise to long-ranged
correlations, the connectivity correlation length. Therefore, the characterization of connec-
tivity properties amounts to one of the fundamental tasks for a theoretical description of
gelling systems.

1.2 Connectivity properties near the gel point

For a characterization of connectivity properties of a gelling system, the gelling system
may be regarded as a population of macromolecules which consist of identical building
blocks, the monomers. The system may be characterized by its mass distribution τn which
is the number of clusters (per monomer) which consist of n monomers. It is customary to
use the term size for the number of monomers in a cluster and τn is commonly referred to
as the cluster size distribution. The quantity nτn is the fraction of monomers which belong
to clusters of size n.

The cluster size distribution of a gelling system depends on the process of cluster for-
mation in the reaction bath which is a complicated, dynamic process. Basically, there exist
two main theoretical frameworks which aim at the characterization of the cluster size dis-
tribution for gelation, kinetic gelation and equilibrium gelation (see [MaAd91] or Ch. 6 in
[RuCo03]).

The main purpose of kinetic gelation is the prediction of the evolution of cluster growth.
It emphasizes the fact that crosslinking is not an instantaneous process. A heuristic Smolu-
chowski equation for the cluster sizes τn is proposed. This equation is governed by reaction
kernels Kn,m which describe the rates of cluster-cluster aggregation processes, i.e. the for-
mation of an (n+m)-cluster from the reaction of an n-cluster with anm-cluster. By ad-hoc
assumptions for the functional form of Kn,m this approach allows predicting generic fea-
tures of gelation such as the cluster size distribution τn, a gel point, which is a point tgel
in time, and a diverging average cluster size nw. Moreover, the kinetic approach can pre-
dict time regimes with characteristic features of diffusion-limited cluster growth and time
regimes in which cluster growth is reaction-limited. However, kinetic gelation is not able
to predict the internal structure of the clusters, i.e. the nature of connectedness.

In contrast, the equilibrium gelation approach is motivated by the idea that the gelation
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transition is the signature of an underlying percolation transition. Equilibrium gelation
completely ignores kinetic aspects of cluster growth and might be interpreted as if cross-
links were instantaneously established between neighboring macromolecules. A (bond)
percolation transition [StAh95, BuHa96] is a connectivity transition between points, called
vertices or sites with fixed positions in space. The points are to be connected by edges or
bonds with certain probability p. This process gives rise to a population of cluster sizes.
The connection to gelation is then established by identifying the bonds with crosslinks and
the vertices with monomers.

1.2.1 Classical theory

The simplest percolation type approach to gelation constitutes the so-called classical theory
of gelation which was initiated by Flory [Flo41a, Flo41b, Flo41c] and Stockmayer [Sto43,
Sto44] and is at heart a tree approximation of connectivity. The classical theory assumes
that a system of identical f -functional units are to be crosslinked, randomly and covalently,
within the following three assumptions: First, only those aggregations are allowed which
lead to treelike structures. Second, all unreacted monomers have the same reactivity. Third,
the reaction probability is simply proportional to the mean concentration of reactant. As a
consequence of these assumptions, the model amounts to a mean field approach of gelation
and is equivalent to percolation on a Bethe-lattice or Cayley-tree (see Fig. 1.3). This simple
percolation problem can be solved exactly and thereby reveals essential features of the
percolation transition. The cluster size distribution

τn ∼ n−5/2 exp{−n/n∗} (1.1)

obeys a scaling form in the scaling variable n/n∗. It decays algebraically for cluster sizes
smaller than the cutoff cluster size n∗, which is effectively the largest cluster size in the
system since clusters with size n > n∗ are exponentially rare. The largest cluster size
diverges with vanishing distance ε := |pc − p|/pc to the critical point as n∗ ∼ ε−2. For the
diluted Bethe lattice with functionalityϕ the critical point is simply given by pcrit = 1/(ϕ−
1). Above the critical point the Flory-Stockmayer theory predicts that a finite fraction of
monomers belongs to an infinite cluster, the gel-fraction or the macroscopic cluster. It is
the order parameter of percolation and for the Bethe-lattice it vanishes continuously,

S∞ ∼ ε1 . (1.2)

However, the predictions of the Flory–Stockmayer theory for the exponents in (1.1)
and (1.2) turned out to apply only for very special conditions: the crosslinking of long
polymer chains in dense melts. This was first understood by de Gennes [Gen77]. Long
polymer chains in the dense state highly overlap and a particular monomer is surrounded
by a very high (mean field like) number of other monomers. Only within a very narrow,
critical region whose width is inversely proportional to the length of the chains where the
Flory–Stockmayer fails. Likewise it fails for systems with smaller building blocks in any
case. Against this background Stauffer and de Gennes [Gen75, Sta76, StCo82] proposed
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Figure 1.3: Examples for percolation. Gelation of three-functional monomers (left), remi-
niscent of percolation on the Bethe lattice and percolation on the square lattice (right).

percolation on a three dimensional hypercubic lattice as a model for gelation. This per-
colation process implicitly takes correlations between crosslinks into account, since the
number of possible crosslinks emanating from one monomer is bounded according to the
coordination number of a point in the regular lattice. This should somehow reflect the
bounded number of neighboring monomers in a typical, irregular configuration of a three
dimensional gelling fluid. In fact, the Flory–Stockmayer theory, i.e. percolation on a Bethe-
lattice turns out to be the limit of infinite spatial dimensionality of lattice percolation and
it has the same critical exponents as lattice bond percolation at and above its upper critical
dimension d = 6.

1.2.2 Bond-percolation

Bond percolation is the connectivity transition on the hypercubic lattice
� d if neighbor-

ing lattice points are independently connected by a bond with probability p and remain
disconnected with probability 1 − p. Similar to other phase transitions it is convenient to
allow for a varying spatial dimension d, even if experiments are restricted to d = 3. In the
following, a detailed description of bond percolation is given since it is important for later
purposes. Introductions to percolation theory and its applications can be found, e.g. , in
[StAh95, Sah94, BuHa96].

It is a well-established fact of the scaling description of bond percolation [StAh95] that
the cluster size distribution of finite clusters obeys a scaling law

τn = n−τ f(n/n∗) (1.3)

in the vicinity of the of the critical probability ccrit which is non-universal and depends on
the dimensionality d and details of the lattice. The scaling function f(x) decays exponen-
tially for large arguments [Gri89, Ch. 5.3] and approaches a nonzero constant for small
arguments. The cutoff cluster size n∗ ∼ ε−1/σ diverges with a critical exponent σ. By
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Connectivity properties Spatial arrangement

β = (τ − 2)/σ ν = β/(d− d
(H)
f )

γ = (3 − τ)/σ ν = 1/(σd
(H)
f )

β = ν
2
(d− 2 + η̃)

Table 1.1: Important scaling relations of percolation. As a consequence, there are only two

independent exponents among τ, σ, β, γ, ν, d
(H)
f , η̃.

means of the cluster size distribution one can compute the weight-averaged cluster size. It
diverges at the transition

nw =
∞∑

n=1

n2τn∼ε−γ (1.4)

with a critical exponent γ. This can be easily understood by replacing the sum in (1.4)
by an integral which enables one to express γ in terms of the exponents σ and τ by the
scaling relation γ = (3 − τ)/σ. Note that the weight-averaged cluster size nw diverges
with a different exponent as the cutoff cluster-size n∗, the latter often being referred to as
the z-averaged cluster size in polymer physics. It is given by n∗ =

∑∞
i=1 n

3τn/
∑∞

i=1 n
2τn.

The order parameter of percolation, the gel fraction S∞ is the fraction of vertices which
belong to the infinite cluster. It vanishes continuously when the transition is approached
from above,

S∞∼εβ . (1.5)

Since each vertex belongs either to a finite cluster or to the infinite cluster one has∑∞
n=1 nτn + S∞ = 1, where the summation extends over all arbitrarily large, but finite

clusters. This equality implies the normalization
∑∞

n=1 nτn = 1 of the cluster size distri-
bution below the threshold c < ccrit and the scaling relation β = (τ − 2)/σ between the
critical exponents.

Up to this point only the connectivity properties of the percolation ensemble have been
characterized. The quantities (1.3), (1.5), (1.4) and the corresponding exponents β, γ, τ, σ
do not refer to the spatial arrangement of the points. The associated scaling relations among
the critical exponents which solely describe the connectivity are summarized in Tab. 1.1.

It is the fact that the positions of all points are rigidly fixed on the lattice
� d which al-

lows establishing relations between the connectivity properties and the spatial arrangement
of the points. The connectedness correlation function g(r) is proportional to the probability
that two vertices which belong to the same cluster are separated by the Euclidean distance
r. Its scaling form

g(r) ∼ r−(d−2+η̃) e−r/ξ (1.6)

is governed by a single, characteristic length scale, the correlation length ξ. This is the
connectivity counterpart of the concentration fluctuation length in thermal phase transitions
mentioned in the introduction. If the transition is approached, connectivity correlations
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τ σ β γ d
(H)
f ν

d = 3 2.18 0.45 0.41 1.80 2.53 0.88
d = 6 5/2 1/2 1 1 4 1/2

Table 1.2: Numerical values of percolation exponents in spatial dimension d = 3 and in the
mean field limit d = 6. (taken from [StAh95])

become increasingly long-ranged which is indicated by the divergence

ξ2 :=

∑
r∈ � d r2 g(r)∑

r∈ � d g(r)
∼ε−2ν . (1.7)

The divergence of the correlation length has important consequences on the homogeneity
of the ensemble. At the critical point the system is a self-similar “fractal” collection of
clusters which lacks any characteristic length scale. The radius of gyration R2

n of clusters
with n sites follows a power law which defines the Hausdorff-fractal dimension d(H)

f ,

R2
n ∼ n2/d

(H)
f . (1.8)

Likewise, the Hausdorff fractal dimension characterizes the mass n(r) of the infinite cluster

in a sphere of radius r via n(r) ∼ rd
(H)
f . Slightly above the critical point the system can be

regarded as self similar only on spatial length scales r < ξ. For larger r the infinite cluster
is homogeneous and the size-mass relation takes the usual form n(r) ∼ rd. Hence, the
probability that an arbitrary vertex within a sphere of radius r < ξ above the critical point
belongs to the infinite cluster is given by the ratio S∞ = rd

(H)
f /rd, that is, the mass fraction

of the infinite cluster in the sphere divided by the total mass of the sphere. The limiting
case r = ξ yields the scaling relation β = ν(d − d

(H)
f ). This relation is an example for a

hyperscaling relation since it involves the spatial dimension d explicitly.

The correlation length ξ is can be regarded as the radius of the largest cluster of size n∗

and therefore, by (1.8), one gets another, useful scaling relation 1/σ = νd
(H)
f .

As a consequence of all scaling relations there remain only two independent exponents
which characterize the critical properties of lattice bond percolation completely. The scal-
ing relation are summarized in Tab. 1.1. The exponents depend on the dimensionality d.
Bond percolation has an upper critical dimension duc = 6 which means that for d ≥ 6 the
exponents are given by their mean field values. Precisely at d = 6 the mean field scaling is
influenced by logarithmic corrections. Numerical values for the percolation exponents in
d = 3 and in the mean field limit d = 6 are summarized in Tab. 1.2.
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1.3 Dynamical properties near the gel point

1.3.1 Scaling assumption of critical rheology

Beside characterizing the connectivity properties of the gelling systems by the percolation
picture, the main goal is indeed the prediction of critical behaviour of static and dynamical
physical quantities. The most prominent examples of physical quantities are the afore-
mentioned shear viscosity η ∼ ε−k and the shear modulus G ∼ εµ. Both quantities are
rheological quantities.

The rheological behaviour of a material is quite generally described by the frequency
dependent, complex shear modulus Ĝ(ω) = Ĝ′(ω) + iĜ′′(ω) (see Ch. 1 [Fer61]) where
i =

√
−1 denotes the imaginary unit. The real part Ĝ′(ω) is the storage modulus which

measures the energy storage per cycle in an oscillatory shear excitation at frequency ω. The
imaginary part Ĝ′′(ω) is the loss modulus which measures the energy dissipation per cycle.
The complex modulus is defined, such that the viscosity is recoverd by the low frequency
behaviour according to η := limω→0 Ĝ(ω)/(iω) = limω→0 Ĝ

′′(ω)/ω and likewise the shear
modulus G := limω→0 Ĝ(ω) = limω→0 Ĝ

′(ω).
In the vicinity of the transition it is reasonable to assume that the complex modulus Ĝ

obeys a scaling form [DuDe87, GoGo92]

Ĝ(ω) ∼ (iω)∆F (±)
bG (iω/ω∗) (1.9)

with a characteristic frequency ω∗ which is the inverse characteristic time scale t∗ of the
gelling system. The critical slowing down suggest a divergence of the time scale

t∗ ∼ 1/ω∗ ∼ tmicε
−z , (1.10)

with a critical exponent z which is referred to as the dynamic exponent and a microscopic
time scale tmic. The scaling functions F (±)

bG are allowed to differ in the fluid phase (−) and
in the gel phase (+).

In order to obtain a well defined viscosity for ω ↓ 0 the scaling function must have
the functional form F (−)

bG (w) ∼ w1−∆ for w ↓ 0 in order to cancel out the prefactor. This
implies a divergence η ∼ (t∗)1−∆ for the viscosity and hence the viscosity exponent k can
be related to the exponents of the complex shear modulus via k = z(1 − ∆). Likewise,
a finite shear modulus above the critical point requires F (+)

bG (w) ∼ w−∆ which implies
G ∼ (t∗)∆ and the scaling relation µ = z∆.

At finite, intermediate frequencies ω∗ � ω � t−1
mic the complex modulus is expected

to be finite for ε ↓ 0. Therefore, both scaling functions must approach a constant for
|w| → ∞ and the complex modulus obeys a power law

Ĝ(ω) ∼ (iω)∆ , (1.11)

which is also the behavior at the critical point for all frequencies ω � t−1
mic.
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In summary, the scaling assumption (1.9) for the complex modulus gives rise to the
fundamental scaling relations between the exponents of critical rheology

z = k + µ ∆ =
µ

k + µ
, (1.12)

i.e. critical viscoelastic behavior is also described by two independent exponents. However,
this scaling approach only provides relations among the exponents rather than estimating
their numerical values. For that purpose further assumptions are required.

1.3.2 Scaling arguments for critical exponents

A suitable starting point for estimating critical exponents of viscoelasticity is to examine
typical time scales of the gelling system. In the absence of kinetic aspects of cluster forma-
tion, the most fundamental time scale associated with a typical percolation cluster of size
n is the diffusive time tn it takes to diffuse a distance of its own radius Rn, viz

tn =
R2

n

Dn
. (1.13)

The cluster’s diffusion constant is denoted by Dn. Since the cluster is a fractal object its
radius Rn can be related to a fractal dimension Rn ∼ n1/df . This fractal dimension df of a
cluster is not necessarily given by the Hausdorff fractal dimension d(H)

f (1.8) of percolation
clusters on the lattice. This is due to the fact that the spatial configuration of the cluster in
the fluid depends on all interactions with the surrounding medium. For instance, it is well
known that the presence of a good solvent causes swelling of the clusters [DoEd88, Ch.
2.5] and hence a decrease of the fractal dimension df < d

(H)
f . The fundamental problem of

estimating time scales in (1.13) has now been shifted to the problem of estimating diffusion
constants.

If solvent effects are believed to be relevant for the dynamics results from the Zimm
model for linear polymer chains are generalized to percolation clusters. The Zimm model
describes dynamics of polymers with dominant hydrodynamic interactions. The charac-
teristic feature of the Zimm model is the prediction Dn ∼ 1/Rn for the diffusion constant
[DoEd88]. This dependence on the radius is easily understood by the following simple
scaling argument which uses the well known Einstein relation for the diffusion constant
of a Brownian particle in terms of its friction constant: The diffusion constant Dn is then
taken to be proportional to the inverse friction coefficient ζn of that cluster, Dn ∼ kBT/ζn.
By regarding the cluster as a spherical object the friction constant is estimated by Stokes’
law of friction, ζn ∼ 6πηsRn, where ηs denotes the viscosity of the solvent. The com-
bination of these arguments yields the so called Stokes–Einstein relation for the diffusion
constant of a cluster of size n,

Dn ∼ R−1
n . (1.14)

If the Stokes friction is generalized to d spatial dimensions via ζn ∼ Rd−2
n [MaAd89], the

scaling of the typical relaxation time of a cluster of size n with dominant hydrodynamic
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interactions becomes
tn ∼ Rd

n ∼ nd/df (Zimm) . (1.15)

The longest time scale t∗ of the gelling system is now related to the time scale tn∗ of the
largest cluster with size n∗ ∼ ε−1/σ. This implies t∗ := tn∗ ∼ ε−d/(σdf ) which gives
rise to the prediction z = d/(σdf) of the dynamic exponent with dominant hydrodynamic
interactions [MaAd89].

In dense melts percolation is believed to be applicable directly as far as geometrical
properties are concerned. In the absence of solvent the swelling of the clusters is sup-
pressed and the fractal dimension of percolation clusters in dense melts is given by the
Hausdorff fractal dimension d(H)

f . The dynamics in dense melts in the absence of hydrody-
namic interactions is assumed to be described by the Rouse model since the Rouse model
has the characteristic feature that all monomers experience the same frictional force. Thus
the friction coefficient ζn of a cluster of size n is simply proportional to the number of
monomers, Dn ∼ n−1. This simple behavior of the diffusion constant can be accommo-
dated with the Stokes–Einstein formula by introducing a size dependent viscosity ηs(n)
[Gen79b, MaAd89] which is assumed to describe the screening of hydrodynamic interac-
tions. The typical relaxation time tn of a Rouse cluster of size n is then given by

tn ∼ nR2
n ∼ n2/d

(H)
f +1 (Rouse) , (1.16)

and likewise the characteristic, divergent relaxation time scale by t∗ = tn∗ ∼ ε−(2ν+1/σ),
where the percolation scaling relation ν = 1/(σd

(H)
f ) has been employed. In fact, the

majority of theoretical approaches to gelation are based on the assumptions (1.15,1.16) for
the relaxation times.

The viscosity can be estimated from the relaxation times by dimensional analysis. The
contribution of the excess viscosity of a cluster of size n is proportional to the relaxation
time tn. More precisely, ηn ∼ tn/n is the energy which is dissipated by one monomer of a
typical cluster of size n in the entire volume during the time tn. This implies

ηn ∼ nd/df−1 (1.17)

for dominant hydrodynamic interactions in dilute solutions. A scaling relation like (1.17)
which relates the viscosity of clusters to its size n is referred to as Mark–Houwink rela-
tion (cf. Sec. 1.7.3 in [RuCo03]). The form (1.17) has been proposed by several authors
[StCo82, Cat85, Mut85]. By weighting these contributions with the cluster size distri-
bution η =

∑∞
n=1 τn tn one gets the prediction k = (1 − τ + d/df)/σ for the viscosity

exponent in dilute solutions. The other rheological exponents ∆ and µ can be obtained by
k and z = d/(σdf) from the scaling relations (1.12).

A similar calculation for the viscosity from the Rouse relaxation time leads to a critical
exponent k = 2ν − β. This exponent has been proposed originally by de Gennes [Gen78].
Likewise, this exponent can be obtained by a different argument from dimensional analysis.
It states that the viscosity is the product of the longest relaxation time t∗ and the modulusG
on that time scale [CoGi93]. The exponent µ for the shear modulus is easily obtained by the
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k µ ∆ z

Rouse 1.32 2.70 0.66 4.0
electrical Analogy 0.75 1.90 0.72 2.65

Table 1.3: Numerical values of the exponents of critical rheology. Comparison of the so
called Rouse exponents with the exponents obtained by the electrical analogy.

following argument. In the absence of a solvent, energy is solely transported via elastically
active bonds of the cluster. Since the modulus is an energy density, equipartition predicts
G ∼ kBT/ξ

d per correlation volume. Percolation theory (see Eq. (1.7)) yields ξd ∼ ε−νd

and thus G ∼ εµ with µ = dν. The remaining rheological exponents are obtained from the
scaling relations.

There is another, famous argument for the critical, rheological exponents which is
worth mentioning, the so-called electrical analogy proposed by de Gennes. The argu-
ment is based on an analogy of the mechanical problem to an electrical one. The viscos-
ity is suggested to diverge as the conductivity Σ in a conductor/superconductor transition
[Gen78]: If between neighboring vertices of a lattice superconducting bonds are intro-
duced with probability p and normal conducting bonds with probability 1 − p then the
material is a normal conductor for p < ccrit and the conductivity diverges with an exponent
Σ ∼ (ccrit − p)−s. The proposal is then k = s for the viscosity exponent. The exponent for
the shear modulus is obtained from an insulator/conductor transition [Gen76a]: If neigh-
boring vertices are connected by a normal conductor with probability p and by an insulator
with probability 1 − p then the material is a conductor for p > ccrit and the conductivity
vanishes according to Σ̃ ∼ (p − ccrit)

s̃. The proposal is then µ = s̃ for the shear modulus
exponent.

In the absence of hydrodynamic interactions, the so called Rouse predictions and the
predictions from the electrical analogy are almost always used as competing theoretical
predictions for the dynamics in melts. Due to their rather distinct numerical values (see
1.3) experimental findings are either assigned to the first or the latter.

1.4 Experimental overview

1.4.1 Chemical synthesis

There are different mechanisms of synthesizing chemically crosslinked macromolecular
systems. The common feature of these polymerization-processes is the reaction of identi-
cal polyfunctional building blocks, the monomers, to dimers, trimers, oligomers, and en-
ventually polymers. If macromolecules are polymerized from distinct types of monomers,
the term co-polymerization is preferred. A detailed introduction to the classification of
polymerization processes can be found in Flory’s textbook [Flo92], Ch. II.

The simplest polymerization process is the reaction of two-functional monomers to
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Figure 1.4: Example of a condensation reaction.

linear polymers. Typical examples are polyethylene, polystyrene, polyvenylchlorid (PVC),
PMMA, polyurethane. The number of repeating units is referred to as the the degree of
polymerization.

However, for gelation it is important that the monomers have functionality greater than
two such that polymerization processes lead to branched or nonlinear polymers and even-
tually to three dimensional space filling networks. A typical example are silica gels, see
Fig. 1.4.

A commonly adopted classification scheme subdivides the polymerization processes
into two main categories, addition polymerization and condensation polymerization.

Simply speaking, addition polymerization are those processes where the molecular for-
mula for the repeating unit is identical to that of the monomer from which it is derived. An
example is provided by polyethylene. The monomer CH2 =CH2 is activated and then re-
acts with a second ethylene. Eventually, the polyethylene is characterized by its repeating
unit [−CH2−CH2−]x. In general, the center of activation at the end of the polymer may be a
free radical, a carbocation (carbonium) or a carboanion, coining the terms radical, cationic
or anionic polymerization. Other examples of addition polymerization which are used in
gelation experiments are e.g. polymethylmethacrylate (PMMA) or cis-polyisoprene (natu-
ral rubber).

In contrast, condensation polymerization refers to processes where monomers react by
eliminating by-products of low molecular weight, often water. Thus, the molecular formula
of the repeating unit lacks certain atoms present in the monomer. An important example
for the sol gel transition are silica gels, see Fig. 1.4. The reaction of another Si(OH)4

can occur at each of the hydroxyl groups leading to a nonlinear, branched topology of the
network. A further example relevant for gelation are polyurethane gels.

As mentioned before, one particular polymerization process plays an important role
for gelation: If the building blocks are themselves polymers of high molecular weight
then the polymerization process is referred to as vulcanization. One distinguishes between
end-linking, where solely endpoints of the chains are able to form (multiple) crosslinks
and random crosslinking, where crosslinks can be established at different points along the
contour length of the polymer. In these terms Goodyear’s crosslinking of cis-polyisoprene
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by sulfur is classified as vulcanization by random crosslinking.

1.4.2 Important experimental results

Experiments on gelling systems have been done for a variety of chemical realizations by
means of different techniques. The fundamental task is the determination of the gel point
in order to measure quantities as a function of the distance ε to the critical point. For an
overview of detection methods see [WiMo97] and references therein. Then, the gelation
process has to be quenched at a prescribed distance to the critical point. Alternatively,
some authors perform continuous measurements in the course of time [AdDe85], and the
extent of the reaction is then assumed to be proportional to the reaction time. The accuracy
of the critical exponents is determined by the accuracy of the estimate of ε. Therefore, it
is often advantageous to measure exponent ratios in order to get rid of the ε dependence.
For example, by measuring the viscosity as a function of the largest cluster size n∗ or the
weight-averaged cluster size nw the ratios k/σ or k/γ are obtained, respectively.

The first experiments on gelling systems focused on the determination of the cluster
size distribution which is usually achieved by size-exclusion chromatography with subse-
quent low angle light scattering experiments (see [AdLa96] and references therein). Light
scattering experiments provide a powerful method for investigating statics and dynami-
cal properties of polymer solutions. A comprehensive overview is given in the textbook
[Bro93]. However, light scattering experiments require the dilution of the gelling systems
in order to produce a difference in molecular polarizability. As a consequence the fractal
dimension df which is measured in the diluted state, and likewise other static and dynamic
properties differ from those of the dense state due to the aforementioned swelling of the
clusters. Thus, static and dynamic properties of the dense reaction bath cannot be accessed
directly.

Rheological experiments are carried out in rheometers. The most prominent geometries
for shear flows are rotational rheometers, such as parallel disks, concentric cylinders (Cou-
ette viscometer) or the cone-and-plate rheometer (see [BiCu87, Ch. 10]). In a rheometer
the sample is subjected to a macroscopic, small-amplitude strain in order to avoid rupture
of the fragile network. Usually, oscillatory strains are used which provide direct access to
Ĝ(ω).

The major experimental results which have been obtained in the last two decades can
be summarized as follows (see [AdLa96] and references therein).

1. It has been confirmed for a variety of chemical gelation processes, that the exponents
which characterize the connectivity properties in gelling systems are well described
by the predictions of three dimensional lattice percolation.

2. The fractal dimension of swollen percolation clusters is roughly given by df ≈ 2 and
differs from the fractal dimension of percolation clusters. In one case the hyperscal-
ing law df/d = τ − 1 has been verified [AdLa91], which implies df ≈ d

(H)
f , i.e. the

Hausdorff fractal dimension is valid in the dense state.
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3. The scaling assumption for Ĝ(ω) has been verified in several cases [LuMo95,
AxKo90, LuMo95].

4. Dynamic exponents scatter significantly. For instance the viscosity exponent scatters
over a range of [0.2 . . . 1.5].

1.5 Scope of this work

1.5.1 Motivation

The agreement of theoretical predictions with experimental results is far from being sat-
isfactory. Scaling arguments provide a powerful tool to understand fundamental aspects
of statics and dynamics of gelling systems, but still bear some fundamental conceptual
drawbacks. For example, the role of thermal fluctuations of macromolecules is completely
neglected within an a priori application of geometric properties of percolation. It is by no
means clear why the radius of gyration of a cluster in the reaction bath, which is subjected
to thermal fluctuations and connectivity fluctuations, can be described by lattice percola-
tion which only accounts for the connectivity fluctuations. Moreover, scaling theory is not
able to answer particular questions concerning dynamical aspects of gelation such as the
wide scatter of the exponent of the shear viscosity.

Therefore, in addition to scaling theory, it is useful to consider semi-microscopic mod-
els. Some striking features of the gelation transition have been revealed within a sta-
tistical mechanics approach of randomly crosslinked polymers which was introduced in
[GoGo87, GoGo89a, GoGo89b] and explored in detail in [GoCa96]. For a less techni-
cal overview see [ZiGo97]. The model describes flexible, self-avoiding polymer chains
which are subjected to a crosslinking mechanism which avoids an a priori imposition of
percolation statistics. Crosslinks are rather established on the basis of nearest neighbor
correlations of the monomers in the uncrosslinked fluid. This type of crosslink statistics
was introduced by Deam and Edwards in [DeEd76, BaEd80] and is therefore referred to
as Deam–Edwards distribution. It has the advantage of being easily incorporated into the
field-theoretic treatment of the Edwards-Hamiltonian [DeEd76] of self-avoiding polymer
chains. The advantage of this statistical mechanics approach is the possible analysis of
thermal degrees of freedom in the presence of quenched degrees of freedom. An exact
mean field theory reveals striking physical features which cannot be deduced from the
percolation picture: At the critical point the system’s symmetry of translational invari-
ance is spontaneously broken due to the localization of a finite fraction of particles in
space, the gel. The emergence of a nonzero shear modulus can be deduced quite generally
from Goldstone excitations which are associated with the broken, continuous symmetry
of translational invariance [MuGo04]. Moreover, a renormalization group approach re-
veals that those geometric properties which have a direct counterpart in percolation, e.g.
the pair connectedness function, gel fraction etc lie in the percolation universality class
[PeGo00, JaSt01, PeGo01].
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In principle it would be desirable to have a dynamic formulation of the aforementioned
model. Since the technical realization of a dynamic formulation is presently unfeasible,
the present work starts from the simplest, semi-microscopic, dynamical models, the Rouse
[Rou53] and the Zimm model [Zim56]. These models describe phantom rather than self
avoiding macromolecules and provide the starting point of almost all dynamical theories
of polymers, [DoEd88, BiCu87].

1.5.2 Outline

In the next, the second chapter the general theoretical framework for a dynamical descrip-
tion of macromolecules in solution is provided. By specifying this general framework
to phantom clusters the Rouse and Zimm model of gelation is obtained being the basis
for the present work. The third chapter introduces relevant physical observables which
are suitable to detect critical behavior of gelling systems. In the fourth chapter the solu-
tion of the equations of motion of the Rouse and the Zimm model is presented and the
observables are computed within these models. The fifth chapter provides the methods
which are employed to compute the critical behavior of the observables. The results are
presented in the sixth chapter. In the last chapter, the results are summarized and dis-
cussed afterwards by referring to experiments and scaling theories which have been pre-
sented here in the introduction. Most results presented in this work have been published in
[BrLo01a, BrLo01b, KuLo03, LoMu04].
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Chapter 2

Dynamical Model of gelling liquids

2.1 Static properties of macromolecules

A suitable starting point for a semi-microscopic description of static configurations of poly-
mers is the concept of a Gaussian macromolecule which is a coarse grained description,
neglecting chemical details. Consider for instance a sketch of a realistic polymer, the
so-called freely rotating chain (see Fig. 2.1) where the details of the chemical bonding be-
tween neighboring monomers is such that the bond bs+1 is allowed to rotate freely around
the bond bs at a fixed angle ϑ. In this case the orientational correlations between two
bond vectors along the chain decay exponentially as a function of the number of bonds in
between [DoEd88, Ch. 2.1.2]. Accordingly, if the number of chemical units, that is the
chemical monomers between R1 and R2 is sufficiently large the extension (R2 − R1)
between the endpoints is effectively described by a (locally stiff) random walk and thus
determined by a Gaussian probability distribution. Equivalently, one may replace the sub-
units by an entropic spring with spring potential proportional to kBT/a

2. The parameter
a, the persistence length covers the chemical details, i.e. ϑ, the microscopic bond lengths
and the number of microscopic subunits. The resulting mesoscopic unit is also known as
a Kuhn segment (see Ch. 2 in [DoEd88] or Ch. 11 in [BiCu87]). The mesoscopic length
scale of these segments is an intermediate scale between the size of a single chemical unit
and and the size of the whole macromolecule.

As a consequence, on these mesoscopic length scales the interactions between
monomers are described by effective interactions. Consider a collection of N monomers
which are characterized by their position vectors Ri, i = 1, . . . , N , in three-dimensional
Euclidean space

� 3. The potential energy U({R}) is then assumed to consist solely of
two-body contributions. Here the shorthand notation {R} := {R1,R2, . . . ,RN} for the
configuration is used. A minimal model for macromolecules is the Edwards-Hamiltonian
which assumes the potential energy to be composed of two different terms

U({R}) = Ucon({R}) + Uev({R}). (2.1)

The entropic, harmonic term Ucon({R}) ensures that the molecules connectivity is pre-
served according to its coarse grained molecular topology. It applies to dimers, trimers,

17
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Figure 2.1: Coarse graining procedure for a segment of a “real” polymer, the freely rotating
chain. A sufficiently large number of monomers in the segment implies Gaussian statistics for
the distance vector (R2 − R1) which is then replaced by an entropic spring.

linear chains, large crosslinked gelation clusters and all kinds of macromolecular topolo-
gies. The second term Uev({R}) in (2.1) accounts for a short range repulsive interaction,
the excluded volume interation which prevents monomers from occupying the same posi-
tion in space.

2.2 Dynamics of macromolecules in solution

A common starting point for a dynamical description of macromolecules is to regard
monomers as classical Brownian particles which are immersed in a solvent and interact
via the potential (2.1). The solvent is described by the velocity field u(r, t) and assumed
to be incompressible which suffices to compute low frequency polymer dynamics. The
motion of the fluid couples to the trajectories Ri(t) of the monomers by dissipative forces.
Whenever the velocity of monomer i deviates from the velocity u(Ri(t), t) of the fluid
at the monomer’s position, it experiences a frictional force exerted by the solvent. This
friction is characterized by a bare friction constant ζ . For instance, if monomers were hard
spheres, then the bare friction constant would be given by Stokes law ζ = 6πηsrm in terms
of the solvent viscosity ηs and the radius of the sphere rm.

Here, the viscosity ηs of the solvent is supposed to be large, so that inertial forces on
the monomers are small when compared to the frictional forces and therefore commonly
neglected. In this case, the equation of motion for the monomers’ positions is purely
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relaxational and given by

0 = −ζ
(

d

dt
Ri(t) − u(Ri(t), t)

)
− ∂U({R(t)})

∂Ri(t)
+ ξi(t). (2.2)

Here ξi(t) models the fluctuating Brownian force on monomer i exerted by the solvent
molecules. Usually, this random force is assumed to be Gaussian white noise with zero
mean and co-variance

ξi(t)ξj(t′)† = 2ζ kBT δi,jδ(t− t′)1 (2.3)

according to the fluctuation dissipation theorem. As usual, δi,j denotes the Kronecker
symbol and δ(t− t′) Dirac’s delta function. The three-dimensional unit matrix is denoted
by 1.

The dynamical evolution of the velocity field u(r, t) couples to the the monomers’
positions due to the friction between particles and solvent. The presence of N
monomers give rise to additional stresses due to the presence of potential forces Fi(t) =
−∂U

(
{R(t)}

)
/∂Ri(t) on monomer i at time t. The dynamics of the flow field is de-

scribed by fluctuating hydrodynamics for an incompressible fluid which is governed by
the Navier-Stokes equation [WaFr88, OeRa89]

ρs

[
∂u(r, t)

∂t
+ u(r, t)∇u(r, t)

]
= ηs∆u(r, t) −∇p(r, t) (2.4)

−
N∑

i=1

∂U({R(t)})
∂Rj(t)

δ(r − Ri(t)) + f(r, t).

Here ρs and ηs denote the density and the viscosity of the fluid, respectively and ∆ is
the three dimensional Laplace operator. The gradient ∇ of the pressure p(r, t) can be
eliminated by the incompressibility condition ∇ · u(r, t) = 0. The fluctuating force field
f(r, t) is chosen to be a zero-mean, Gaussian field with second moment

f(r, t)f †(r′, t′) = −2ηskBT∆δ(r − r′)δ(t− t′)1. (2.5)

The closed set of equations (2.2,2.4) describe the coupled motion of monomers and
solvent. For many applications it useful to allow for an external flow field uext(r, t) in
order to calculate the response of the coupled system to the external flow. The velocity field
is assumed to be a solution of (2.4) in the absence of the monomers. The most important
flow situation is a simple shear flow (see Fig. 2.6). The velocity uext(r, t) is in the rx-
direction, increasing linearly with ry, i.e.

uext(r, t) := γ̇(t)r, γ̇(t) =




0 γ̇(t) 0,
0 0 0
0 0 0


 . (2.6)

Here, the velocity gradient tensor γ̇(t) is characterized by the time-dependent shear rate
γ̇(t).
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Figure 2.2: Simple shear flow, characterized by the shear rate γ̇(t).

Since one is interested in dynamic properties of the macromolecules the coupled equa-
tions are condensed to a single equation for the polymers. This is, of course, only possible
by employing some approximations. First, the nonlinear advection term u(r, t)∇u(r, t)
in (2.4) is omitted assuming a sufficiently large solvent viscosity and correspondingly low
Reynolds number. The resulting linear equation for the velocity field can be solved by
Fourier transformation, as shown in [OeRa89]. The solution as presented in detail in App.
A is based on a separation of time scales, which is referred to as the Markovian assump-
tion: The solvent relaxation times τ(k) = ρs/(ηs k

2) are assumed to be (infinitely) small
when compared to the polymer relaxation times. This assumption indeed breaks down for
relaxation times of perturbations on large spatial scales, corresponding to small k. How-
ever, the dynamics of the macromolecule is affected on spatial scales which ranges from
the Kuhn length a to the radius of gyrationRgyr. The solvent relaxation on the largest scale
is given by τs,max = ρsR

2
gyr/ηs. It will turn out, as already suggested by the discussion of

the polymer relaxation time tn from Eq. (1.13) that the relaxation times on length scales
Rgyr are much larger. Even for the, less interesting, mesoscopic length scales which are
associated with the persistence length a of the Kuhn segment this separation of time scales
still holds. For typical conditions, the (bare) relaxation time of the segment ∼ ζa2/(kT )
is still by a factor 103 − 104 larger than the solvent relaxation time ρsa

2/ηs [WaFr88].
Within the Markovian approximation the description of a polymer by the dynamical equa-
tions (2.2), (2.4) is equivalent (see e.g. [WaFr88, OeRa89]) to Kirkwood’s kinetic theory
approach [Kir54] to polymer dynamics which directly assumes Oseen like perturbations of
the velocity field.

As a result of the linearity of the Navier-Stokes equation, the overall velocity field
u(r, t) (2.7) is a linear superposition of the applied external flow field uext(r, t) and the
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contribution induced by the monomers which is given by the solution of (2.4) within the
Markovian approximation. The validity of this linear superposition indeed requires weak
flows, i.e. γ̇ � τ−1

s,max. Otherwise, the Oseen tensor is to be modified by terms stemming
from the external flow [PuSc86]. Accordingly, the velocity field is given by

u(r, t) = uext(r, t) +
N∑

i=1

Ω
(
r − Ri(t)

)
Fi(t) + uf(r, t). (2.7)

The monomer-induced perturbation of the external flow field in (2.7) is a mobility term, i.e.
it depends linearly on the forces Fi. It is characterized by the Oseen tensor [Ose10, KiRi48]

Ω(r) :=
1

8πηsr
(1 + r̂r̂†) . (2.8)

The Oseen tensor also determines the strength of the fluctuations of the random contribu-
tion uf(r, t) in (2.7) which has zero mean and covariance

〈uf(r, t)uf(r
′, t′)〉 = 2kBTΩ(r − r′) δ(t− t′). (2.9)

The desired equation of motion for the polymers is now obtained by inserting (2.7)
in (2.2). Unfortunately, the velocity field (2.7) evaluated at the position of monomer i is
infinite due to the singularity of the Oseen tensor. This hydrodynamic self interaction stems
from the fact that particles are regarded as point-like objects which is in contradiction with
the assumption of a finite frictional force between particles and solvent. Hydrodynamic self
interactions are commonly avoided (see [DoEd88], Ch. 3.6) by forbidding the term j = i
when evaluating the velocity field (2.7) at the position Ri of monomer i, or equivalently,
setting Ω(r) = 0.

It is convenient to define the mobility matrix

Hi,j(r) := δi,j 1 + (1 − δi,j) ζ Ω(r) . (2.10)

by means of which the resulting stochastic differential equation is given by

ζ

(
d

dt
Ri(t) − γ̇(t)Ri

)
= −

N∑

j=1

Hi,j

(
Ri(t) − Rj(t)

)∂U({R(t)})
∂Ri(t)

+ ηi(Ri, t) . (2.11)

The random force field ηi(r, t) := ξi(t)+ ζuf(r, t) is a sum of two independent Gaussian
white noises (see. App. A). It has zero mean and covariance

ηi(r, t) η
†
j(r

′, t′) = 2 ζkBT Hi,j(r − r′) δ(t− t′) (2.12)

according to (2.3) and (2.9), which is consistent with the fluctuation dissipation theorem.
Here the overbar indicates the average over all realizations of η.

Equation (2.11) is the common starting point for studying dynamics of polymers in so-
lution under the influence of an external flow (see Ch. 3,4 in [DoEd88], Ch. 15 in [BiCu87],
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Ch. 4 in [Oet96a]. It is a stochastic differential equation for the time evolution of the
monomers’ positions Ri(t) which is nonlinear due to the nonlinear dependence of the mo-
bility matrix and the excluded volume interactions on the particles’ positions.

It is often convenient to employ an alternative formulation of the Langevin dynam-
ical equation (2.11): the equivalent Fokker–Planck equation for the probability density
p({R}, t) of finding the configuration {R} at time t, provided the system was in the con-
figuration {R0} at time t0 [Oet96a, Ch. 3.3.3]. Here, the common usage is adopted and
the equation for the time evolution of the probability density p for the positions is com-
monly referred to as Smoluchowski equation, whereas the term Fokker–Planck equation is
reserved for an equation for positions and momenta. The Smoluchowski equation is given
by (see Eq. (3.121) in [DoEd88])

∂p({R}, t)
∂t

= −
N∑

j=1

∂

∂Rj
· γ̇(t)Rj p({R}, t)

+
1

ζ

N∑

i,j=1

∂

∂Ri
· Hi,j(Ri − Rj)

[
kBT

∂p({R}, t)
∂Ri

+ p({R}, t) ∂U({R})
∂Ri

]
. (2.13)

There is a well known problem related to Eqs. (2.11), (2.13). The left hand side in
(2.12) is by definition a positive matrix. However, the Oseen tensor does not give rise to a
positive-definite mobility matrix Hi,j(Ri − Rj) for all possible spatial configurations of
monomers [ArJh81]. For configurations where monomers are very close to each other the
mobility matrix gives rise to negative eigenvalues. This is a serious problem since a covari-
ance matrix being not positive definite is physically meaningless. Likewise, the problem
arises in numerical integration schemes of the Langevin equation (2.11) since stability of
these Brownian dynamics algorithms rely on the positive definiteness of Hi,j(Ri−Rj) for
all {R}. In numerical applications this problem is commonly circumvented by using a dif-
ferent hydrodynamic interaction tensor instead, the Rotne–Prager tensor [RoPr69, Yam70].
The derivation of the tensor [RoPr69] is based on a variational principle for the energy dis-
sipation rate of a sphere with finite radius rm due to the motion of the suspending fluid. As
a result, the Rotne–Prager tensor

Ω(r) =
1

8πηsr





[
1 + 1

6

(
2rm

r

)2
]
1 +

[
1 − 1

2

(
2rm

r

)2
]

r̂r̂†, r ≥ 2rm

[
8
3

(
r

2rm

)
− 3

2

(
r

2rm

)2
]
1 + 1

2

(
r

2rm

)2

r̂r̂†, r < 2rm

(2.14)

is shown to be a positive definite approximation to the true hydrodynamic interaction tensor
for all configurations {R}. If two monomers are at a large distance, the expression (2.14)
coincides with the Oseen tensor (2.8) for r/rm → ∞, whereas for configurations r . 2rm

in which monomers are very close to each other the singular behavior of the Oseen tensor
is regularized in (2.14).

Even within the approximations made so far, the resulting equation of motion (2.11) is
still analytically hardly feasible due to the nonlinear dependence of the hydrodynamic and
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excluded volume interactions on the monomers’ positions. For a single, regular connected,
self-avoiding macromolecule such as a linear polymer or a two dimensional membrane
Eq. (2.11) can be addressed analytically by means of a renormalization group approach
[Wie98a, Wie98b]. In the next sections the most important approximations to equation
(2.11) are discussed.

2.3 Dynamic model of phantom clusters

The most important and simplest approximations of Eq. (2.11), namely the Rouse and
the Zimm model [Rou53, Zim56] are obtained by neglecting excluded volume interac-
tions. In the absence of excluded volume interactions the polymers are said to be ideal
or phantom-like. This appears to be a crude approximation but for linear polymers it has
been recognized that there are indeed specific experimental situations where the polymers
behave ideally. First, in dense melts the excluded volume interaction is screened [Gen79a,
Ch. II.1]. Second, if the polymers are immersed in a good solvent it is possible to tune
the quality of the solvent and thereby the second virial coefficient of monomer-monomer
interactions. The temperature where the second virial coefficient vanishes is referred to as
theta temperature [DoEd88, Ch. 2.5].

Before turning to the dynamics of phantom clusters, it is helpful to examine the char-
acteristics of static properties of phantom clusters first.

2.3.1 Statics of phantom clusters

Without excluded volume interactions the potential energy (2.1) consists solely of the con-
nectivity term. The connectivity of the macromolecules is guaranteed by permanently
formed bonds or crosslinks which constrain M randomly chosen pairs of particles (ie, je),
e = 1, . . . ,M . Crosslinks are modeled by entropic Hookean springs, giving rise to a
potential energy

U({R}) :=
3kBT

2a2

M∑

e=1

(
Rie − Rje

)2
=:

3kBT

2a2

N∑

i,j=1

Ri · Γi,j Rj . (2.15)

The persistence length a > 0 plays the role of an inverse crosslink strength. A given
crosslink configuration � = {ie, je}M

e=1 which can be regarded as a graph is specified by
its N × N -connectivity matrix Γ ( � ). The matrix elements are indexed by the monomers
or vertices of the graph � . In graph theory the matrix Γ is referred to as Laplacian matrix
(see e.g. Ch. 13 in [GoRo01]). The Laplacian matrix is the difference between the diagonal
matrix of vertex degrees and the adjacency matrix of the graph. The off diagonal elements
Γi,j are equal to −1 if monomers i and j are adjacent, i.e. connected by a crosslink or edge
and zero otherwise. The diagonal element Γi,i is the vertex degree of monomer i, i.e. the
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number of crosslinks or edges emanating from monomer i. One has

Γi,j =

{
−1, i 6= j, and i adjacent to j

−
∑N

k 6=i,k=1 Γi,k, i = j
. (2.16)

and hence by definition the row and column sums of Γ vanish,
∑N

j=1 Γi,j = 0. The simplest
example of a connectivity matrix is provided by the linear polymer chain consisting of n
monomers

Γ ( � n) =




1 −1 0 . . . 0

−1 2 −1
...

0
. . . 0

... −1 2 −1
0 . . . 0 −1 1



. (2.17)

The matrix (2.17) is nothing but the discretized Laplacian operator on a finite interval on
�

with Neumann boundary conditions.
The connectivity matrix Γ is of major importance in the Rouse model. Therefore it

is necessary to examine some of its mathematical properties and their physical relevance.
First of all, it is a positive semi-definite matrix, which follows directly from the nonnegative
potential energy (2.15). The zero eigenvalues of Γ stem from the symmetry of U({R})
under translations of individual clusters, that is its maximal pathwise connected compo-
nents. This is a consequence of pair interactions in (2.15), which imply that no forces act
on the centers of mass of individual clusters. To clarify this connection between the centers
of mass of the clusters and the zero eigenvalues of Γ , the graph � is decomposed into its
clusters according to

� =
K⋃

k=1

�
k . (2.18)

Hence, the connectivity matrix is block diagonal

Γ ( � ) =
K⊕

k=1

Γ (
�

k) , (2.19)

where one block is the connectivity matrix of one cluster. A simple example of the cluster
decomposition and the used notation is given in Fig. 2.3.1. The size of a block Γ (

�
k) is

equal to the number Nk of monomers in the kth cluster
�

k, where the cluster sizes must
add up to

∑K
k=1Nk = N . Furthermore it is convenient to denote the cluster of monomer i

by
�

(i) and its size by N(i).
The subspace of zero eigenvalues is spanned by the vectors which are constant when

restricted to any one cluster since the row sums of Γ vanish according to (2.16). Hence, the
number of zero eigenvalues, i.e. the dimension of the null space of Γ , is equal to the number
of clusters K. Denoting by E0(

�
k) the projector onto the null space of the connectivity



2.3. Dynamic model of phantom clusters 25

4

5

3
1

2

PSfrag replacements

�
1

�
2

� =
�

1 ∪
�

2

Γ ( � ) =

(

Γ ( � 1) 0
0 Γ ( � 2)

)

=

















1 −1 0
−1 2 −1
0 −1 1



 0

0

(

1 −1
−1 1

)













E0( � ) =

(

E0( � 1) 0
0 E0( � 2)

)

=













1

3





1 1 1
1 1 1
1 1 1



 0

0 1

2

(

1 1
1 1

)













Figure 2.3: Example of the cluster decomposition and the associated notation. On the left,
a graph or crosslink configuration � with N = 5 monomers or vertices, is decomposed into
its K = 2 clusters � 1, � 2 with cluster sizes N1 = 3 and N2 = 2. The connectivity matrix
Γ ( � ) consists of two blocks, Γ ( � 1) and Γ ( � 2) which are the connectivity matrices of the
clusters. In this example Γ ( � ) has K = 2 zero eigenvalues and the corresponding projector
E0( � ) onto the null space is given. It is easy to see that Γ ( � )E0( � ) = 0.

matrix Γ (
�

k) of a cluster its matrix element are given explicitly by

[E0(
�

k)]i,j =
1

Nk
(2.20)

(see App. B.1). Therefore, the center of mass of the cluster of monomer i, that is
�

(i),
can be written in the following form

Rcm

( �
(i)
)

=

N∑

j=1

[E0( � )]i,j Rj . (2.21)

It will be helpful to keep in mind that the projector E0 is related to the centers of mass.
The connectivity matrix completely determines the static conformations of phantom

clusters via the potential energy (2.15) in the Boltzmann weight ∼ e−U({R})/kBT . How-
ever, in the computation of equilibrium averages care has to be taken of the zero eigen-
values of Γ . To this end the potential (2.15) is regularized by adding a confining term
3ω/(2a2)

∑N
i=1 Ri · Ri with ω > 0 and taking the limit ω ↓ 0 subsequently. In this way

it is shown in App. D.1 that the distribution of mutual distance vectors 〈(Ri − Rj)〉eq of
monomers i and j within the same clusters is a Gaussian distribution

pi,j(r) : = 〈δ ((Ri − Rj) − r)〉eq (2.22)

=

(
3

2π � i,ja2

)3/2

exp

{
− 3r2

2 � i,ja2

}
. (2.23)

It is characterized by the mean squared distance

� i,j :=

[ � − E0

Γ

]

i,i

+

[ � − E0

Γ

]

j,j

− 2

[ � − E0

Γ

]

i,j

(2.24)
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which is determined by the matrix elements of the Moore–Penrose inverse (
� − E0)/Γ

of the connectivity matrix, where
�

denotes the N -dimensional unit matrix. The Moore–
Penrose inverse is a particular pseudo- or generalized inverse of a matrix [Alb72] which
is uniquely defined even for singular matrices. The Moore–Penrose inverse of Γ is the
inverse restricted to the subspace of nonzero eigenvalues which is most easily revealed by
the spectral decomposition of Γ (App. B.1).

Using the pair distribution (2.22), it is then straightforward to compute static properties,
such as the squared radius of gyration of a cluster

�
k. It is given by

R2
gyr(

�
k) :=

〈
1

2N2
k

∑

i,j∈ � k

(Ri − Rj)
2

〉

eq

=
a2

2N2
k

∑

i,j∈ � k

� i,j (2.25)

and hence characterized by the Moore–Penrose inverse of Γ via (2.24). After this brief
intermezzo of static properties of phantom clusters the dynamics is addressed in the next
section.

2.3.2 Rouse model: Free draining approximation

In the Rouse model [Rou53] hydrodynamic interactions are neglected. Formally, this is
achieved by setting Hi,j = δi,j1 in (2.11. This means that the velocity field u(r, t) is
not perturbed by the monomers and simply given by the externally imposed velocity field
uext(r, t) (2.6). These conditions are most likely met in dense melts in the absence of a
solvent.

Both, the simple shear flow (2.6) and the gradient of the potential energy (2.15) are
linear functions of the coordinates {R}, hence the equation of motion reduces to the linear,
stochastic differential equation

ζ

(
d

dt
Ri(t) − γ̇(t)Ri

)
= −

N∑

j=1

∂U({R})
∂Ri(t)

+ ξi(t) . (2.26)

The co-variance of the white noise is now given by

ξi(t) ξ
†
j(t

′) = 2ζkBT δi,j δ(t− t′) 1 . (2.27)

In the absence of hydrodynamic interactions all monomers exhibit the same frictional
force, independent of their positions within the macromolecule. The cluster is said to be
freely drained by the flow. Individual clusters move independently in the Rouse model
which follows from the block diagonal structure of Γ .

2.3.3 Zimm model: Preaveraged hydrodynamic interactions

In dilute solution it is important to account for the influence of the solvent. But even in the
absence of excluded volume interactions the incorporation of hydrodynamic interactions in
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equation (2.11) is analytically unfeasible due to the nonlinear dependence of the mobility
matrix on the monomers’ positions. The simplest approximation which can be applied to
(2.11) is the so-called preaveraging approximation. This was first introduced by Kirkwood
and Risemann [KiRi48] and Zimm [Zim56]. Within the preaveraging approximation the
mobility matrix (2.10) is replaced by its equilibrium expectation value, which is computed
with the equilibrium distribution function, the Boltzmann weight ∼ e−U({R})/kBT . Due to
rotational invariance of the potential energy (2.15) the preaveraged mobility matrix (2.10)
is a multiple of the identity matrix

〈Hi,j(Ri − Rj)〉eq = δi,j1 + (1 − δi,j)ζ 〈Ω(Ri − Rj)〉eq
=: Hi,j 1 . (2.28)

This result is independent of the choice of the hydrodynamic interaction tensor Ω(Ri −
Rj). As presented in App. D.2 the equilibrium average of Ω(Ri−Rj) for the Oseen- (2.8)
and the Rotne–Prager tensor (2.14) can be computed by using the pair distribution (2.22).
As a result, the preaveraged mobility matrix H shows correlations of different particles
only if these particles are in the same cluster, in other words H is block-diagonal. Within
one block or cluster, the matrix element Hi,j depends only on the mean squared distance

� i,j between monomers i and j and is given by

Hi,j = δi,j + (1 − δi,j) h

(
κ2π

� i,j

)
. (2.29)

The choice of the function h depends on the choice of the hydrodynamic interaction tensor.
For the Oseen tensor one has

h(x) =
√
x/π (2.30)

whereas for the Rotne–Prager tensor (cf. [Fix83b])

h(x) = erf(x) − (1 − exp(−x2)/(π1/2x)) . (2.31)

The latter involves the error function erf(x) and reduces to the former as x ↓ 0.
The preaveraged mobility matrix (2.29) involves a parameter

κ :=

√
6

π

ζ

6πηsa
(2.32)

which plays the role of the coupling constant of the hydrodynamic interactions. Formally
setting κ = 0 in (2.29) yields Hi,j = δi,j , and the Zimm model for gelation reduces to the
Rouse model for crosslinked monomers (2.26) [BrGo97, BrLo99, BrLo01a].

By replacing the mobility matrix in (2.11) with the preaveraged mobility matrix (2.29),
the Zimm model for crosslinked monomers in solution is obtained

ζ

(
d

dt
Ri(t) − γ̇(t)R(t)

)
= −

N∑

j=1

Hi,j
∂U

∂Rj(t)
+ ηj(t) . (2.33)
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The co-variance of the thermal noise is then characterized by

ηi(t) η
†
j(t

′) = 2kBTζ Hi,j δ(t− t′)1 . (2.34)

The Zimm equation (2.33) is linear, hence it can be solved exactly. Since the connectivity
matrix Γ as well as the mobility matrix H are block-diagonal, it follows that clusters move
independently, since there is no force on the center of mass of a cluster. However, in the
presence of hydrodynamic interactions, it is not the center of mass which diffuses freely, it
is rather the hydrodynamic center of resistance ([Oet96a] Ch. 4.2.2, [BiCu87] Ch. 15.4)

Rcr :=

∑
i,j[H

−1]i,jRi

Tr(E0H−1)
. (2.35)

It is defined such that it coincides with the center of mass when hydrodynamic interactions
are neglected.

For the sake of completeness it is pointed out that a different preaveraging procedure
has been proposed by Öttinger, namely the self consistent averaging [Oet87a] method. The
mobility matrix H(r) in (2.11) is replaced by an a priori unknown mobility matrix H av

which is independent of r. This yields a solution Ri(t) of the resulting linear equation
which is a function of the unknown matrix elements of H av. The mobility matrix is then
determined a posteriori self consistently from the condition that H av

i,j is equal to the av-
erage of H(Ri(t) − Rj(t)) over the realizations of the solution Ri(t). As a result Hav

depends on the shear rate. The zeroth order contribution agrees with the equilibrium preav-
eraged H1 of the Zimm model. The incorporation of higher order corrections to the Zimm
approximation becomes important, if shear rate dependent material functions are consid-
ered. It is common to all preaveraging procedures that the resulting equations are linear
and can thus be solved exactly.

2.4 Crosslink statistics

2.4.1 Disorder averages

In order to determine the dynamic models of phantom clusters completely, the probability
distribution P ( � ) of crosslinks configurations � needs to be specified. All observables
A( � ) considered throughout this work are expected to be self-averaging quantities, that is,
in the macroscopic limit they are independent of the realization of the crosslink configura-
tion. However, from a technical point of view it is advantageous to compute the average of
observables over the probability distribution in the macroscopic limit which is denoted by

A := 〈A( · )〉 :=
∑

�

P ( � )A( � ) . (2.36)

The average 〈•〉 includes the macroscopic limit M → ∞, N → ∞ with fixed crosslink
concentration c := M/N .
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Experimental results suggest that three dimensional percolation is an adequate choice
for characterizing the probability distribution P ( � ). Here, in fact any percolation ensem-
ble could be considered which is amenable to a scaling description in the vicinity of the
percolation threshold, giving rise to a cluster size distribution

τn ∼ n−τ f(−n/n∗) (2.37)

for ε � 1 and n → ∞ with a typical cluster size n∗(ε) ∼ ε−1/σ that diverges as ε → 0.
Here, ε = |c − ccrit|/ccrit denotes the distance to the critical point. Special attention is
turned to two crosslink ensembles, three dimensional bond percolation and Erdős-Rényi
random graphs which is a mean field distribution of crosslinks lacking any correlations
between crosslinks.

2.4.2 Crosslink distributions

2.4.2.1 Bond Percolation

The most interesting ensemble is bond percolation on the three dimensional cubic lattice
� 3

as defined in Sec. 1.2.2. Nearest-neighbor bonds are present with probability p := c/(2d)
and absent with probability 1 − p. The bonds are interpreted as crosslinks, while the
lattice points are identified with monomers. Here, the probability p is defined such that the
average number of crosslinks is given by M = cN .

Note that only connectivity properties of lattice percolation are adopted by requiring
that the scaling relations in Tab. 1.1, which characterize the connectivity without referring
to spatial arrangement, remain valid. In contrast, scaling properties which describe the
spatial correlations in three dimensional Euclidean space are not given by (1.7,1.1). Spatial
correlations are rather determined by the interactions (2.15) and the dynamical evolution
(2.11).

From a different point of view, one may think of a preparation state which somehow
guarantees that the crosslink distribution is chosen according to three dimensional bond
percolation. The physics of the preparation of the clusters is not accounted for in this
approach, only the output of the preparation is used for further analysis.

2.4.2.2 Erdős-Rényi random graphs

In the simplest distribution all pairs of monomers are equally likely to be crosslinked and
no correlations between crosslinks are taken into account. Identifying the monomers and
crosslinks with the vertices and edges of a graph, the statistical properties of such clusters
have been studied extensively in the theory of random graphs, as developed by Erdős and
Rényi in [ErRe60]. A survey of random graphs is given in the textbook [Bol85].

Strictly speaking, the ensemble of Erdős-Rényi random graphs [ErRe60] is the ensem-

ble of labelled graphs consisting of N vertices, M = cN edges and each of the
(

(N
2 )
M

)

possible graphs with the same likelihood of occurence. In principle, this implies that mul-
tiple edges between two vertices or self-loops are forbidden. However, this restriction may
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be dropped in the macroscopic limit. This may be understood by comparing the number
�

(N) of possibilities to realize a self-loop or double edge in � with the number
�

(N 2) of
possibilities to choose a different monomer.

This ensemble of random graphs exhibits a percolation transition at c = ccrit = 1/2.
For c < ccrit there are almost surely no clusters with an extensive number of monomers
in the macroscopic limit. All monomers belong to tree clusters without loops, see Thms.
5d,e in Ref. [ErRe60]. Moreover, according to Eq. (2.18) in Ref. [ErRe60], the cluster size
distribution, that is the average number of trees of size n per monomer is exactly given by

τn =
nn−2

2c n!
(2c e−2c)n . (2.38)

By applying Stirling’s formula for large n, Eq. (2.38) can be rewritten according to

τn ∼ 1

2c
√

2π
n−5/2e−n/n∗

ER(c) , (2.39)

with n∗
ER(c) := (2c−1− ln(2c))−1. This implies n∗

ER(c) ∼ (ccrit−c)−2 for c ↑ ccrit. Thus,
Erdős-Rényi random graphs resemble the scaling properties of mean field percolation on a
d−dimensional hypercubic lattice for d ≥ 6. In contrast to the latter, it has the advantage
that analytic expressions for the cluster size distribution are known.
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Dynamical signatures of the gelation
transition

3.1 Stress relaxation

3.1.1 Stress tensor

Quite generally, the rheological properties of fluids are determined by the constitutive
equation which enables to compute the stress tensor (field) σα,β(r, t) for a given veloc-
ity gradient tensor (field) ∂α uβ(r, t), where α, β = x, y, z. The constitutive equation
serves as the closure condition for the Navier–Stokes equation. For Newtonian liquids the
constitutive equation is simply given by Newton’s law of viscosity which assumes a linear
relationship between the stress and the gradient of the velocity field

σα,β(r, t) = −p δα,β + ηs (∂α uβ(r, t) + ∂β uα(r, t)) . (3.1)

Here, ηs and p denote the shear viscosity and the pressure of the the fluid, respectively.
Note, that Eq. (3.1) is not the most general linear relation between two tensors of rank two.
It pertains to incompressible fluids where the dilatational viscosity vanishes [LaLi59, Ch.
II ]. In the following exclusively homogeneous flows are considered, that is, the velocity
gradient tensor and accordingly the stress tensor are assumed to be independent of spatial
position r.

In the presence of macromolecules the constitutive equation (3.1) for simple fluids
fails. The fluids are referred to as complex fluids and the determination of the constitutive
equation is rather difficult since the macroscopic stress at time t may depend on higher
order derivatives of the velocity field u(r, t) and it may also depend on the complete history
of the velocity gradient tensor for times t′ < t. If the flow field is specified to be the simple
shear flow ux(t) = γ̇y the stress tensor must have the following form

σ = −p1 +




σx,x σx,y 0
σx,y σy,y 0
0 0 σz,z


 . (3.2)

31
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This is a consequence of the isotropy and the invariance with respect to 180°-rotations
about the z−axis. A further simplification can be made. In incompressible fluids the
variation of pressure has no influence on the dynamics of the fluid. Therefore, isotropic
contributions to the stress can always be subsumed in the pressure term. As a consequence,
beside the uninteresting isotropic contribution, there remain only three independent quan-
tities in (3.2), which characterize the stress tensor of an incompressible fluid in shear flow
completely. These material functions are the shear stress σx,y and the first and second nor-
mal stress differences σx,x −σy,y and σy,y −σz,z. These quantities may depend nonlinearly
on the shear rate γ̇. The dependence of the material functions on the shear rate gives rise
to peculiar rheological behavior of complex fluids, such as shear thinning, which refers to
the generally observed decrease of the shear viscosity with increasing shear rate.

For vanishing shear rate, the material functions vanish since in the absence of external
fields the equilibrium state of the fluid is characterized by an isotropic stress tensor. For
small shear rates the stress tensor is characterized by the so called zero-shear material
functions, namely, the static, zero-shear viscosity

η := lim
γ̇↓0

σx,y

ρmγ̇
(3.3)

and the first and second, static, zero-shear normal stress coefficients

Ψ(1) := lim
γ̇↓0

σx,x − σy,y

ρmγ̇2
, Ψ(2) := lim

γ̇↓0

σy,y − σz,z

ρmγ̇2
. (3.4)

Here ρm denotes the number density of monomers. For simplicity the quantities (3.3) and
(3.4) are simply referred to as the shear viscosity and the first and second normal stress
coefficients hereafter.

3.1.2 Linear viscoelasticity

A straightforward approach to rheology of complex fluids can be given in the limit of
small velocity gradients. Then the stress tensor (3.2) may be expanded in terms of the
velocity gradient tensor and is given by a linear response relation. In the simple shear flow
ux(t) = γ̇(t)y this amounts to

σx,y(t) =

∫ t

−∞
dt′ G(t− t′) γ̇(t) (3.5)

for the shear stress which still includes the complete history of flow. The memory function
G(t) is referred to as the stress relaxation function. A characterization of the fluid by Eq.
(3.5) pertains to the so called regime of linear viscoelasticity. Various phenomenological
constitutive equations for polymeric liquids have been proposed, which mainly base on
analogies with mechanical models. A comprehensive overview is given in ([Lar88]).

The equation (3.5) is now applied to predict the shear stress as a function of common
experimental flow situations (see. Ch. 7.3 in [DoEd88]). In experiments the stresses are
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often measured as a function of the strains. By defining the shear strain γ(t) :=
∫ t

0
dt′ γ̇(t′)

measured from the reference state t = 0, the constitutive equation (3.5) can be integrated
by parts

σx,y =

∫ t

−∞
dt′

∂G(t− t′)

∂t′
(
γ(t) − γ(t′)

)
(3.6)

which relates the stress to the strain.

3.1.2.1 Steady shear flow

The simplest flow situation is a steady shear flow with a shear rate being constant in time
γ̇(t) = γ̇. Then Eq. (3.5) predicts a constant shear stress

σx,y = γ̇

∫ ∞

0

dt G(t) . (3.7)

The shear viscosity (3.3) is then simply given by the integral over the stress relaxation
function

η =
1

ρm

∫ ∞

0

dt G(t) . (3.8)

3.1.2.2 Oscillatory shear

Commonly small amplitude, oscillatory shear strains γ(t) = γ0Re (exp{iωt}) are applied
to the sample in experiments. Here Re(•) denotes the real part of a complex number. If
the sinusoidal shear strain is inserted into Eq. (3.5) the stress

σx,y(t) = γ0 Re
(
Ĝ(ω) e iωt

)
(3.9)

is given in terms of the complex shear relaxation function which is defined by the Laplace
transform

Ĝ(ω) : = iω

∫ ∞

0

dt G(t) e−iωt (3.10)

=: Ĝ′(ω) + iĜ′′(ω) . (3.11)

The prefactor iω is commonly included in the definition of Ĝ(ω). The real and imaginary
parts Ĝ′, Ĝ′′ denote the storage and loss modulus respectively which are the contribution
of the stress which are in phase and out of phase with the strain, respectively. From the
complex modulus the shear viscosity can be retrieved in the limit of small ω. By comparing
(3.8) with (3.10) one has

η = lim
ω↓0

1

ρm

Ĝ(ω)

iω
. (3.12)
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3.1.2.3 Creep flow

In creep flow experiments a constant shear stress σx,y = σ0 is applied at time t = 0 and the
shear strain γ(t) :=

∫ t

0
dt′ γ̇(t′) is measured as a function of time. The strain vanishes for

t < 0 whereas for t > 0 it is determined by the integral equation [DoEd88]

σ0 =

∫ t

0

dt′ G(t− t′) γ̇(t′) (3.13)

which is easily solved by Laplace transformation in terms of Ĝ(ω) for large t. By neglect-
ing contributions of order

�
(ω3) in Ĝ(ω) the Laplace inversion can be easily calculated

and gives

γ(t) = σ0

(
t

η
+ J

)
(3.14)

for the asymptotic behavior of the shear strain for t → ∞. Thereby, the zero-shear recov-
erable compliance

J :=
1

η2

∫ ∞

0

dt t G(t) (3.15)

is defined. Equation (3.14) nicely displays the main characteristics of a viscoelastic
medium: For large but finite times it contains the constitutive equation γ(t) = σ0J of
an elastic (Hookean) solid with a shear modulus G = 1/J , whereas for terminal times it
recovers the constitutive equation γ̇(t) = σ0/η of a viscous (Newtonian) fluid. In other
words the recoverable compliance is the shear modulus of the material on large but finite
time scales. This elastic behavior is transient, the material remains fluid-like unless the
viscosity becomes infinite.

3.1.3 Microscopic expression for stress tensor

The main goal of molecular polymer dynamics is the derivation of a constitutive equation
for the simple shear flow instead of assuming the linear viscoelastic model (3.5) with a
phenomenological ansatz for G(t). To this end a microscopic expression for the stress
tensor in terms of the flow field is required. Here solely the excess stress due to the presence
of the monomers is considered. The excess stress stems from the potential forces per unit
area exerted by the monomers (for a sketch of the situation see Fig. 3.1) Following Ch. 3 in
Ref. [DoEd88] or Ch. 16.3 in Ref. [BiCu87] the excess stress due to interacting monomers
is given by

σ(t) =

〈
−ρm

N

N∑

i=1

Fi(t)R
†
i (t)

〉

st

. (3.16)

Here Fi(t) := −∂U/∂Ri(t) is the force acting on monomer i at time t. The average 〈•〉st,
indicates an average over all monomer configurations in the steady state. Expression (3.16)
is the shear stress in terms of the force per unit area, exerted by the monomers. It is simply
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Figure 3.1: Additional stresses from the spring potentials

the potential part of the usual microscopic expression of the stress tensor for a collection
of N classical particles interacting via potential forces (see Ch. 2.5 in Ref. [BoYi91]).

Besides the excess contribution (3.16) from the monomers, there is also a solvent con-
tribution. Commonly, it is assumed (see Ch. 3 in Ref. [DoEd88] or Ch. 16.3 in Ref.
[BiCu87]) that the overall stress of the polymer-solvent mixture is simply given by the
sum of (3.16) and a contribution of the Newtonian solvent in the absence of the polymers

σs(t) = ηs

(
γ̇(t) + γ̇†(t)

)
. (3.17)

However, as pointed out in [OeRa89] this simple superposition of the stresses turns out to
be inconsistent. The superposition is based on the assumption that the averaged solvent
contribution to the stress is simply given by the gradient of the externally imposed velocity
field γ̇. This would imply that the contribution of the monomers to the velocity field u(r, t)
vanish when averaged over the monomer configurations. However, this is not correct. If
the solvent contribution to the stress is computed from the gradient of the velocity field
u(r, t) by averaging over the monomer configurations an additional contribution arises
which has been examined in [ScOt84].

3.2 Density fluctuations

3.2.1 Dynamic light scattering

Besides rheological properties which are probed by an external flow the critical behavior
of a gelling system can also be revealed by microscopic density fluctuations in the absence
of an external field. Microscopic density fluctuations can be measured directly by dynamic
light or neutron scattering techniques.

In a solution of identical scattering units the electric field Ei(t) of an incident light
beam with polarization vector ni induces a dipole moment µ(t) which depends on the
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Figure 3.2: Scattering geometry

polarizability tensor α of the scattering unit

µ(t) = αE(t). (3.18)

As shown in [BePe76], the contribution of the electric field Ef(q, t) from monomer j
measured at detector at large distance is proportional to αif exp{iqRj(t)}, where

αif = nf · αni (3.19)

is characterized by the polarization vectors ni,nf of the incoming and the scattered electric
field, respectively. The scattering vector q = ki − kf , or vector of momentum transfer, is
defined by the difference of the wave vectors of the incoming and scattered field. If the
scattering units are weakly coupled such that electronic states are only weakly perturbed
by neighboring monomers the total electric field is proportional to the sum of independent
contributions

Ef(q, t) ∝ αif

N∑

j=1

e iq·Rj(t) . (3.20)

Equation (3.20) is of particular importance since it provides a direct relation between the
electric field and fluctuations in the local density of monomers in the solution. This can be
seen by considering the time-dependent, local number density of monomers per particle,
as defined by

ρ0(r, t) :=
1

N

N∑

i=1

δ
(
r − Ri(t)

)
. (3.21)

It is convenient to write the density as the sum of the mean density per particle V −1 and
time-dependent fluctuations δρ0(r, t), viz ρ0(r, t) = V −1 + δρ0(r, t). The Fourier trans-
form of the density is then given by

∫

V

d3r ρ0(r, t) e−iq·r = δq,0 + (1 − δq,0) δρ0(q, t) (3.22)
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with

δρ0(q, t) =
1

N

N∑

j=1

e−iq·Rj(t). (3.23)

Hence, the electric field Ef(q, t) (3.20) at the detector with scattering vector q 6= 0 is
proportional to the spatial Fourier component δρ0(q, t) of fluctuations in the local density
at wave vector q.

3.2.2 Coherent and incoherent scattering function

The correlation functions which can be measured in a scattering experiment depend on the
apparatus which processes the incoming electric field (3.20).

In the homodyne or self beating technique only the scattered light impinges on the
photomultiplier which measures the intensity I(q, t) = Ef(q, t)E

∗
f (q, t). If the signal is is

passed into an autocorrelator subsequently, the intensity autocorrelation function or more
precisely, its time average

gI(q, t) := 〈If(q, 0)If(q, t)〉eq ∼ N4
〈
|δρ(q, 0)|2|δρ(q, t)|2

〉
eq

(3.24)

is measured. For ergodic systems the time average is equal to an average 〈•〉eq over the
equilibrium distribution of the macromolecules in solution.

In the heterodyne method the scattered electric field is mixed with a portion of unscat-
tered laser light such that the photomultiplier measures the intensity of the sum of both
signals. If the scattered and the unscattered electric fields are statistically independent and
if the magnitude of the unscattered electric field is large when compared to the magnitude
of the scattered field the heterodyne method provides access to the auto-correlation func-
tion of the electric field rather than its intensity by using a spectrum analyzer [BePe76, Ch.
4.3]. This procedure yields the correlation function

gE(q, t) := 〈E∗
f (q, 0)Ef(q, t)〉eq ∼ N2 〈δρ∗(q, t) δρ(q, 0)〉eq ,

where the asterisk denote complex conjugation. It is often convenient to define an intensive
quantity, that is the coherent scattering function

Scoh(q, t) : = N−1 gE(q, t)

=
1

N

N∑

i,j=1

〈
e iq·[Ri(t)−Rj (0)]

〉
eq
. (3.25)

If the system is in equilibrium at t = 0, then Scoh(q, 0) is the static structure factor.
In general, the heterodyne and the homodyne correlation function measure different

correlations. However, they can be related to each other in the special case if the electric
field is a Gaussian random variable. This Gaussian approximation is valid if the scatter-
ing volume can be divided into a large number of sufficiently large subvolumes such that
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the motion of the subsystems can be regarded as independent. Then the electric field at
the detector is a sum over independent contributions of the subregions, and according to
the central limit theorem obeys Gaussian statistics. In experimental situations it is often
stressed that this Gaussian approximation applies. For Gaussian statistics the four point
correlation function gI(q, t) can be written in terms of the two point correlation function
gE(q, t) according to (see App. 4.C in [BePe76])

gI(q, t) = |gE(q, 0)|2 + |gE(q, t)|2 (3.26)

As pointed out by de Gennes [Gen79b] and Martin et al [MaWi91] it suffices to con-
sider the self contributions from the coherent scattering function in (3.25). This defines the
intermediate, incoherent scattering function

S(q, t) :=

〈
1

N

N∑

i=1

e iq·[Ri(t)−Ri(0)]

〉

eq

.

(3.27)

However, the incoherent scattering function can be measured directly only in neutron scat-
tering experiments.

3.2.3 Cluster diffusion

The simplest dynamical process which should contribute to density fluctuations at long
times is the diffusion of clusters as a whole. The diffusion constant of a cluster is defined by
the long time behavior of the mean squared displacement of the center of mass according
to

D := lim
t→∞

1

6t

〈[
RCM(t) − RCM(0)

]2〉
eq
. (3.28)

Beside the diffusion constant of a single cluster it is convenient to define an effective dif-
fusion constant for the gelling system by the time integral over the incoherent scattering
function

D−1
eff := lim

q→0
q2

∫ ∞

0

dt S(q, t) (3.29)

which defines an effective time scale. For the special case of a single Brownian particle
which is described by a Gaussian process the exponent in the incoherent scattering func-
tion (3.27) is basically given by the mean squared displacement (3.28) of the particle for
long times. This yields an exponential decay exp{−Dq2t} of the scattering function and
therefore the effective diffusion constant (3.29) coincides with (3.28).

3.2.4 Nonlinear dynamic susceptibility

In the long time limit for t → ∞ the incoherent scattering function approaches its static
limit. For long times the average 〈 • 〉eq in (3.27) is expected to factorize since the state at
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time t is uncorrelated with that at time t = 0. This implies

S∞(q) : = lim
t→∞

S(q, t)

=
1

N

N∑

j=1

〈
e iq·Rj

〉
eq

〈
e−iq·Rj

〉
eq
. (3.30)

In fact, S∞(q) serves as an order parameter for the solidification transition to the amor-
phous solid state. This is in close analogy to the (temperature driven) spin glass transition
in a system of spins σi = ±1 with random interactions: In the high temperature phase the
system is paramagnetic. Below a critical temperature the ensemble averaged magnetization
1/N

∑N
i=1 〈σi〉eq = 0 still lacks a preferred direction but in contrast the Edwards–Anderson

order parameter 1/N
∑N

i=1 〈σi〉eq 〈σi〉eq 6= 0 becomes nonzero, reflecting the subtle order
of the spin glass phase.

For the gelation transition the situation is quite similar. Here, the transition cannot
be revealed by equilibrium fluctuations of the density. The density remains constant
throughout the transition and the particles localize around randomly and homogeneously
distributed positions in space. Therefore, the Fourier transforme of the static density fluc-
tuations

〈δρ(q)〉eq =
1

N

N∑

i=1

〈
e iq·Rj

〉
eq

= 0 (3.31)

amounts to a sum of random phase factors and vanishes. In contrast the higher order
density correlation S∞(q) becomes nonzero.

The statistical mechanics approach to the vulcanization transition [GoCa96] admits
to compute a simple but illustrative form of the order parameter in an exact mean field
approach. Within this model the order parameter can be written as

S∞(q) =

{
0, c < ccrit

S∞
∫∞
0

dx π(x) e−(q ξ)2/x, c > ccrit
(3.32)

in the vicinity of the transition, where q = |q|. The order parameter is zero in the sol-
phase and acquires a nonzero value in the gel phase. It is determined by the fraction
S∞ ∼ (c − ccrit) of localized particles and by the distribution π(x) of squares of inverse
square localization lengths [CaGo94] which characterize the excursions of the localized
particles around their mean positions. The length scale ξ ∼ |c − ccrit|−1/2 diverges when
the transition is approached and plays the role of the correlation length.

Quite generally one would expect to observe precursors of the long range (connectiv-
ity) correlations in the liquid state when the transition is approached. Within the aforemen-
tioned model the built up of long ranged correlations is signalled by higher order correla-
tions of density fluctuations, the divergence of the static nonlinear susceptibility

χ∞(q) :=
1

N

N∑

i,j=1

〈
e iq·[Ri−Rj ]

〉
eq

〈
e−iq·[Ri−Rj ]

〉
eq

(3.33)
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in the limit of q ↓ 0.
In an analogous manner as the order parameter S∞(q) is accessible via the long time

decay of S(q, t), the static nonlinear susceptibility is the long time limit of a dynamic
quantity χ∞(q) := limt→∞ χ(q, t), the nonlinear dynamic susceptibility

χ(q, t) :=

〈
1

N

N∑

i,j=1

e iq·[Ri(t)−Rj (t)]e−iq·[Ri(0)−Rj (0)]

〉

eq

. (3.34)



Chapter 4

Solution of the Rouse-Zimm model

This chapter provides the exact solution of the equations of motion of the Rouse and the
Zimm model where the generalization to random clusters requires some caution. Subse-
quently, the observables introduced in the previous chapter are computed from the solution
of the Rouse–Zimm model.

4.1 Solution of the equation of motion

Due to the linearity of the equations of motion it is straightforward to obtain the solutions
of the Langevin equations (2.26,2.33) governing the Rouse and the Zimm model in simple
shear flow [Rou53, Zim56],[DoEd88, Ch. 4],[BiCu87, Ch. 15]. In fact, the Rouse model
is included in the Zimm model as the special case of vanishing hydrodynamic interaction
parameter κ = 0. Some observables like the diffusion constant are defined in the absence
of external shear flow γ̇ = 0 whereas the computation of the shear stress requires the
presence of the flow, γ̇ 6= 0. Thus, obtaining the solution of the Zimm equation (2.33)
in the presence of shear flow suffices to discuss all required cases by varying κ and γ̇.
Nonetheless, before addressing the most general case κ 6= 0, γ̇ 6= 0, the special case
κ = 0, γ̇ = 0 is examined which pertains to Rouse dynamics without shear flow. For this
special case it is easier to demonstrate the relevance of the connectivity matrix Γ for the
dynamical evolution and to discuss the essential features of the solution.

4.1.1 The simplest case: Rouse model without external flow

The Rouse equation in the absence of shear flow is formally an equation of motion for
a system of coupled, overdamped, harmonic oscillators with the stochastic force as an
inhomogeneity. Hence, it can be solved by standard methods. If the potential energy (2.15)
is inserted into (2.26) the system of N linear, first order, stochastic differential equations
takes the familiar form

d

dt
Ri(t) = −3kBT

ζa2

N∑

j=1

Γi,jRj(t) +
1

ζ
ξi(t) , (4.1)

41



42 Chapter 4. Solution of the Rouse-Zimm model

where ξ is characterized by (2.27) and the initial data R(t0) is fixed at time t0. The solution
of the stochastic equation (4.1) can formally be obtained, as if ξi(t) were a deterministic
force [Arn92]

Ri(t) =

N∑

j=1

[
e−3Γ (t−t0)/tmic

]
i,j

Rj(t0) +
1

ζ

∫ t

t0

dt′
[
e−3Γ (t−t′)/tmic

]
i,j

ξj(t
′) . (4.2)

Here, the microscopic time scale

tmic :=
ζa2

kBT
(4.3)

is defined in terms of the bare model parameters. In principle, the familiar procedure of
transforming the solution (4.2) onto a basis of eigenvectors of the matrix Γ is now applica-
ble which would then yield the independent time evolution of the normal modes. The time
scale associated with a normal mode is given by the corresponding inverse eigenvalue of
Γ . Thus, the characteristic time scales in the Rouse model in units of tmic are determined
by the eigenvalues of Γ .

The time evolution of the monomers’ positions as given by the solution (4.2) is not
deterministic. Due to the linear dependence on the Gaussian process ξi(t), Ri(t) is itself a
Gaussian process and thus completely characterized by its first two moments. If the initial
condition R(t0) is stochastically independent of ξi(t), the first moment can be computed
from the solution (4.2) by employing the vanishing mean of ξi(t). This gives

Ri(t) =

N∑

j=1

[
e−3Γ (t−t0)/tmic

]
i,j

Rj(t0) . (4.4)

The second moment is computed by using the covariance (2.27), this yields

Ri(t)R
†
j(t

′) =
N∑

m,n=1

[
e−3Γ (t−t0)/tmic

]
i,m

Rm(t0)R
†
n(t0)

[
e−3Γ (t−t0)/tmic

]
n,j

+
2 kBT

ζ

∫ min(t,t′)

t0

dt′′
[
e−3Γ (t−t′−2t′′)/tmic

]
i,j

1 . (4.5)

The Langevin equation (4.1) is designated to describe dynamics of the macromolecules
in equilibrium if the initial condition is fixed in the infinite past t0 → −∞ and transient
behavior has died out. However, one cannot expect that equilibrium characteristics can
be obtained by simply taking the limit t0 → −∞ of the first and second moment (4.4)
and (4.5). This is due to the fact that the vector Ri(t) describes the absolute position of
monomer i which is influenced by the motion of the center of mass of the cluster

�
(i)

which i belongs to

Rcm

( �
(i)
)

:=
1

N(i)

∑

j∈ � (i)

Rj . (4.6)
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The position of the center of mass is a degree of freedom which cannot be equilibrated
since it diffuses freely. This is easily seen by summing the Rouse equation (4.1) over all
j ∈ �

(i) and dividing by the number N(i) of monomers in that cluster. This yields a
simple diffusion equation for the center of mass

d

dt
Rcm

(
t| �

(i)
)

=
1

ζN(i)

∑

j∈ � (i)

ξj(t) (4.7)

with a diffusion constant which is inversely proportional to the size of the cluster. Thus,
only position vectors relative to the centers of mass are expected to reach equilibrium for
t0 → −∞. In order to see how this is encoded in the first and second moment (4.4) and
(4.5) one observes that in the limit t0 → −∞,

lim
t0→−∞

e−3Γ (t−t0)/tmic = E0 , (4.8)

only the projector E0 onto the nullspace of Γ survives. A fact which is mathematically
easily understood by means of the spectral decomposition of the matrix Γ as shown in
App. B.7. Equation (4.8) implies that equilibrium can only be reached for coordinates in
the subspace (

� −E0)
� N × � 3 which is spanned by position vectors relative to the centers

of mass. To see this explicitly, the position vector of monomer i relative to the center of
mass of its cluster

�
(i) is expressed in terms of (

� − E0) via

Ri − Rcm

( �
(i)
)

= Ri −
1

N(i)

∑

j∈ � (i)

Rj =

N∑

j=1

[
� − E0( � )]i,j Rj , (4.9)

which follows (see also Eq. (2.21)).
For observables which reach equilibrium for t0 → −∞, additionally the limit t → ∞

can be considered. This corresponds to the static limit. Averages for t → ∞ coincide
with averages over the Boltzmann distribution. For instance the mean squared distance
(Ri−Rj)

2 between two monomers i and j belonging to the same cluster can be computed
in either way

lim
t→∞

lim
t0→−∞

(
Ri(t) − Rj(t)

)2
=
〈
(Ri − Rj)

2
〉
eq

= a2 � i,j . (4.10)

4.1.2 Rouse–Zimm model with shear flow

Next, the most general case of the Rouse–Zimm equations (2.33) is considered, that is
nonvanishing hydrodynamic interactions κ 6= 0 and nonvanishing shear rate γ̇ 6= 0. To this
end the initial condition R(t0) is again fixed at time t0 and the coordinate transformation

Ri(t) =:

N∑

j=1

[
H

1
2

]
i,j

Xj(t) (4.11)
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is applied to the Zimm equation (2.33). This yields

ζ

(
d

dt
Xi(t) − γ̇(t)Xi

)
= −

N∑

j=1

Γ̃i,j Xj(t) + ξi(t) , (4.12)

where the transformed white noise ξi(t) is characterized by zero mean and co-variance

ξi(t) ξ
†
j(t

′) = 2 kBT ζ δi,j δ(t− t′) 1 . (4.13)

In writing down (4.12) a generalized connectivity matrix

Γ̃ := H
1
2 Γ H

1
2 (4.14)

has been defined. The resulting equation (4.12) of motion for the coordinates Xi coincides
formally with the equation in the Rouse model (2.26) for crosslinked monomers [BrGo97,
BrLo99, BrLo01a], but with a formal connectivity matrix Γ̃ which plays the analogous
role for the Zimm model as Γ does for the Rouse model: The inverse eigenvalues of
Γ̃ determine the relaxation times in the Zimm model. The matrix Γ̃ is a positive semi-
definite matrix and the dimension of the null space is given by the number of clusters. The
projector on the subspace of zero eigenvalues of Γ̃ is denoted by Ẽ0 and an explicit form
can be given in terms of the projector E0 of Γ

Ẽ0 =
H− 1

2E0H
− 1

2

Tr(H−1E0)
. (4.15)

Here Tr(•) denotes the trace of a N ×N matrix. The spectral properties of Γ̃ are charac-
terized in App. B.7.

When Zimm dynamics is addressed in the literature, it is common to decouple Eq.
(2.33) by a transformation to normal coordinates of the nonsymmetric matrix HΓ . Here,
the transformation involving the symmetric matrix Γ̃ is preferred since spectral decom-
positions of symmetric matrices are easier to handle. Indeed, both transformations are
equivalent and the relations amongst their spectral properties are shown in App. B.2.

The solution of the the linear stochastic differential equation (4.12) is obtained by
standard methods (see, e.g. Ch. 8 in [Arn92]). The solution for transformed initial data
Xi(t0) =

∑N
j=1[H

− 1
2 ]i,jRj(t0) is given by (cf. Section II.C. in [BrLo01a])

Xi(t) =
N∑

j=1

Ui,j(t− t0) T (t, t0) Xj(t0) +
1

ζ

∫ t

t0

dt′ Ui,j(t− t′) T (t, t′) ξj(t
′). (4.16)

The time evolution is now characterized by two time quantities. First, the time evolution
generated by the potential force is characterized by the matrix elements Ui,j(t) := [U(t)]i,j
of the exponential of the generalized connectivity matrix

U(t) := e−3 eΓ t/tmic (4.17)
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with the microscopic time scale tmic being defined in (4.3).
Second, the 3×3 tensor T (t, t′) characterizes the time evolution the external flow field.

The validity of (4.19) requires ∂t T (t, t′) = γ̇(t) T (t, t′) with initial condition T (t, t) = 1.
For an arbitrary velocity gradient tensor the solution T (t, t′) is given by the time-ordered
exponential of the integral over γ̇(τ). However, for the simple shear flow (2.6) one has
γ̇(t)γ̇(t′) = 0 for all t, t′ and therefore only the first two terms are nonzero

T (t, t′) := 1 +

∫ t

t′
dt′′ γ̇(t′′) . (4.18)

The solution Ri(t) of the Zimm equation (2.33) is obtained by inserting (4.16) in (4.11)

Ri(t) =

N∑

j=1

[
H

1
2U(t− t0)H

− 1
2

]
i,j

T (t, t0) Rj(t0)

+
1

ζ

∫ t

t0

dt′
[
H

1
2U(t− t′)

]
i,j

T (t, t′) ξj(t
′). (4.19)

Since ξi(t) is a Gaussian process, so is Ri(t) due to the linearity of the equation of motion.
Hence, it is again completely characterized by its first two moments. If the initial condition
Rj(t0) is stochastically independent of ξi(t) the mean value is given by

Ri(t) =

N∑

j=1

[
H

1
2U(t− t0)H

− 1
2

]
i,j

T (t, t0) Rj(t0) (4.20)

and does not vanish in general. The matrix of second moments of Ri(t) is given by

Ri(t)R
†
j(t

′) =
N∑

m,n=1

{[
H

1
2U(t− t0)H

− 1
2

]
i,m

T (t, t0)Rm(t0)Rn(t0)
†T †(t′, t0)

[
H− 1

2U(t′ − t0)H
1
2

]
n,j

}

+
2kBT

ζ

∫ min(t,t′)

t0

dt′′
[
H

1
2U(t + t′ − 2t′′)H

1
2

]
i,j

T (t, t′′)T †(t′, t′′) . (4.21)

As demonstrated in the previous section, in the absence of shear flow equilibrium dy-
namics is reached as the stationary state on the subspace (

� − E0)
� N × � 3 for t → −∞.

Here, in contrast, a non-equilibrium, stationary, state is reached on that subspace due to the
presence of the shear flow acting as a driving force. By taking the limit t0 → −∞ of the
exponential U(t) only the projector Ẽ0 onto the subspace of zero eigenvalues Γ̃ survives

lim
t0→−∞

U(t− t0) = Ẽ0 =
H− 1

2E0H
− 1

2

Tr(E0H−1)
. (4.22)
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Here the representation (4.15) is employed for Ẽ0. By virtue of Eq. (4.22) the limit t0 →
−∞ of the moments (4.20) and (4.21) is meaningful only on the subspace (

� −E0)
� N × � 3

where one has a vanishing mean and the steady state co-variance

Ci,j(t, t
′) := lim

t0→−∞

N∑

m,n=1

[
� − E0]i,m Rm(t)R†

n(t′) [
� − E0]m,j

=
2kBT

ζ

∫ min(t,t′)

−∞
dt′′

{[
(

� − E0)H
1
2U(t + t′ − 2t′′)H

1
2 (

� − E0)
]

i,j

T (t, t′′)T †(t′, t′′) .

}
(4.23)

The co-variance is a function of t and t′ if the shear rate depends on time. For a constant
shear rate γ̇ = const the strain tensor T (t, t′) = 1+(t− t′)γ̇ ≡ T (t− t′) depends only on
the difference t− t′. In this case Ri(t) is a stationary Gaussian process on this subspace.

Expectation values of observables in the stationary state can be computed for t0 → −∞
from the solution of the Rouse–Zimm equation.

4.1.3 Rouse–Zimm model without external flow

Finally, Rouse–Zimm dynamics is considered in the presence of hydrodynamic interactions
κ 6= 0 and in the absence of the external driving force γ̇ = 0. It is necessary to examine
this case separately, since for diffusion constants and the incoherent scattering function the
increment or displacement

(
Ri(t) − Ri(0)

)
of monomer i is of special interest which is

well-defined only in the absence of the shear flow.
The displacement is immediately obtained from the solution (4.19) by observing

T (t, t′) = 1 in the absence of shear flow γ̇ = 0. This gives rise to

Ri(t) − Ri(0) =
N∑

j=1

[
H

1
2U(−t0)

(
U(t) − � )

H− 1
2

]
i,j

Rj(t0)

+
1

ζ

∫ t

t0

dt′
[
H

1
2U(t− t′)

]
i,j

ξj(t
′) (4.24)

− 1

ζ

∫ 0

t0

dt′
[
H

1
2U(−t′)

]
i,j

ξj(t
′) . (4.25)

The displacement is a linear combination of Gaussian processes and thus is itself Gaussian.
For t0 → −∞ the mean value of the displacement vanishes

lim
t0→−∞

(Ri(t) − Ri(0)) = 0 , (4.26)

which follows from the identity (U(t) − �
) = (

� − Ẽ0)(U(t) − �
) and the application of

(4.22) in the limit t0 → ∞.
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The second moment in equilibrium is obtained after a little algebra (see App. C). It can
be written in the form

Di,j(t) : = lim
t0→−∞

(
Ri(t) − Ri(0)

)(
Rj(t) − Rj(0)

)†

=
2 kBT

ζ

∫ t

0

dt′
[
H

1
2U(t′)H

1
2

]
i,j

1 (4.27)

=: Di,j(t)1 . (4.28)

4.1.4 Consistency of the Zimm model

One may ask if the preaveraging in the Zimm model is a consistent approximation in the
following sense: Zimm dynamics with a mobility matrix H , which is preaveraged with the
Boltzmann distribution, should recover the Boltzmann distribution afterwards in the static
limit t→ ∞ in order to guarantee

lim
t→∞

lim
t0→−∞

Hi,j

(
Ri(t) − Rj(t)

)
= 〈Hi,j(Ri − Rj)〉eq = Hi,j1 . (4.29)

This is indeed the case, which can be seen by considering the second moment (4.23) in the
absence of shear flow, i.e. T (t, t′) = 1. In App. B.3 it is then proved that

lim
t→∞

Ci,j(t, t)
∣∣∣
γ̇=0

=
a2

3

[
1 − E0

Γ

]

i,j

1 (4.30)

is valid independent of the preaveraged mobility matrixH . This implies that in the absence
of shear flow Rouse- and Zimm dynamics approach identical equilibrium states for t→ ∞
on the subspace (

� − E0)
� N × � 3. Within this subspace equilibrium averages can be

computed either with the Boltzmann weight exp{−U({R})/kBT} or by taking the limit
t0 → −∞, t → ∞ of the average over the thermal noise. For instance, the formula (4.10)
for the mean squared distance between two monomers on the same cluster is valid for
Rouse and for Zimm dynamics which follows directly from (4.30). In the same way the
validity of (4.29) can be shown.

4.2 Viscoelasticity in the Rouse–Zimm model

4.2.1 Stress tensor

For the computation of the stress tensor (3.16) within the Rouse–Zimm model in the sta-
tionary state the average 〈•〉st is computed by fixing the initial condition Ri(t0) in the
infinite past t0 → −∞. By inserting the force Fi(t) = −3kBT/a

2
∑N

j=1 Γi,jRj(t) on
monomer i, the stress (3.16) is expressed in terms of the second moment Ci,j(t, t) from
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Eq. (4.23) via

σ(t| � ) = lim
t0→−∞

−ρm

N

N∑

i=1

Fi(t)R
†
i (t)

=
3 kBTρm

tmicN

N∑

i,j=1

Γi,jCi,j(t, t)

=
6 kBTρm

tmicN

∫ t

−∞
dt′ Tr

[
Γ̃U
(
2(t− t′)

)]
B(t, t′) . (4.31)

Here, Tr(•) denotes the trace of an N ×N matrix, B(t, t′) := T (t, t′)T †(t, t′) is referred
to as the Finger strain tensor and the last step in (4.31) employs the cyclic invariance of the
trace and the definition of the generalized connectivity matrix Γ̃ (4.14). The dependence
on the crosslink realization � is made explicit.

Now, the shear stress relaxation function is introduced

G(t| � ) :=
kBTρm

N
Tr

(
(1 − Ẽ0( � )) exp

{
− 6 t

tmic

Γ̃ ( � )

})
, (4.32)

in terms of which the monomer contribution to the stress can be written as

σ(t) =

∫ t

−∞
dt′
(
∂

∂t′
G(t− t′)

)
B(t, t′) . (4.33)

Integrating by parts and writing down the matrix explicitly yields

σ(t| � ) = G(0)1 +

∫ t

−∞
dt′ G(t− t′| � ) γ̇(t′)




2
∫ t

t′
ds γ̇(s) 1 0
1 0 0
0 0 0


 (4.34)

for the stress tensor in the Rouse–Zimm model. It is determined by a single function,
the shear relaxation function which is a sum of N − K exponentials. The exponentials
describe the relaxations of the normal modes of Γ̃ which are associated with nonvanishing
eigenvalues. Hence, the eigenvalues determine the memory of the stress tensor, i.e. how
the stress at time t is influenced by the shear flow at time t′ < t.

The excess shear stress σx,y from the polymers is given by a linear response relation
which is valid for arbitrary shear rates γ̇(t). In other words the Rouse–Zimm model is
a linear viscoelastic model for the shear stress (cf. Eq. (3.5)). The fact that shear stress
depends linearly on the shear rate justifies the use of the equations for the material func-
tions in Sec. 3.1.2 which were derived under the assumption of linear viscoelasticity. The
viscosity and the recoverable compliance can be computed from the formulas (3.8) and
(3.15), respectively, by using the shear relaxation function (4.32). Note, that the shear re-
laxation functionG(t) can be also computed from the stress autocorrelation function in the
absence of shear flow. Then, the shear viscosity (3.8) amounts to a Green–Kubo formula
(see Ch. 2.5 in [BoYi91]). Besides the linear response for the shear stress, (4.34) predicts
non-isotropic normal stresses. This result is beyond linear viscoelasticity.
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4.2.2 Stress relaxation function

Due to the independent motion of the clusters which is reflected by the block diagonal form
of Γ̃ the stress relaxation function G(t) (4.32) can be decomposed into contributions from
different clusters according to

G(t| � ) =
K∑

k=1

Nk

N
G(t| �

k) . (4.35)

The contribution from cluster Nk is given by

G(t| �
k) :=

kBTρm

Nk

Tr

(
(1 − Ẽ0(

�
k)) exp

{
− 6 kBT

a2
Γ̃ (

�
k)t

})
.

4.2.3 Shear viscosity

For a constant shear rate γ̇(t) = γ̇ the viscosity is given by (3.8). The integral is readily
carried out giving

η( � ) =
1

ρm

∫ ∞

0

dt′ G(t′| � )

=
a2

3

1

2N
Tr

(
1 − Ẽ0( � )

Γ̃ ( � )

)
(4.36)

Thus, the viscosity is given by the trace of the Moore Penrose inverse, that is the sum over
the nonzero eigenvalues of the generalized connectivity matrix Γ̃ . The dependence on the
crosslink configuration � in Eq. (4.36) is made explicit.

According to the cluster decomposition of G(t| � ) in (4.36) the viscosity is also de-
composed into additive contributions from individual clusters

�
k according to

η( � ) =
K∑

k=1

Nk

N
η(

�
k) , (4.37)

where the contribution of the cluster
�

k is defined by

η(
�

k) :=
a2

3

1

2Nk
Tr

(
1 − Ẽ0(

�
k)

Γ̃ (
�

k)

)
. (4.38)

4.2.4 Normal stresses

In view of the stress tensor (4.34), the second normal stress coefficient Ψ(2) defined in Eq.
(3.4) vanishes for arbitrary shear rate γ̇(t). This result holds for both, the Rouse and the
Zimm model.
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In contrast, for time independent shear rate γ̇(t) = γ̇ the first normal stress coefficient
defined in Eq. (3.4) is nonzero and given by

Ψ(1)( � ) =
2

ρm

∫ ∞

0

dt t G(t| � ) . (4.39)

The integration is carried out and Ψ(1) is expressed in terms of the generalized connectivity
matrix via

Ψ(1)( � ) =
1

kBT

(
a2

3

)2
1

2N
Tr




1 − Ẽ0( � )
(
Γ̃ ( � )

)2


 . (4.40)

Again, the cluster decomposition of G(t) implies the decomposition of Ψ(1) into contribu-
tions from individual clusters

�
k

Ψ(1)( � ) =

K∑

k=1

Nk

N
Ψ(1)(

�
k) , (4.41)

with

Ψ(1)(
�

k) =
1

kBT

(
a2

3

)2
1

2Nk
Tr




1 − Ẽ0(
�

k)(
Γ̃ (

�
k)
)2


 . (4.42)

4.2.5 Recoverable compliance

The recoverable compliance defined by Eq. (3.15) can be computed from the viscosity
(4.36) and the first normal stress coefficient (4.39) according to

J( � ) =
Ψ(1)( � )

2 η( � )2
(4.43)

4.3 Density fluctuations within the Rouse–Zimm model

4.3.1 Diffusion constants

Note, that density fluctuations are computed in the absence of external flow where the
equilibrium averages are recovered within the limit t0 → −∞.

First, the diffusion constant (3.28) of a cluster
�

k with Nk monomers is computed. It
can be expressed in terms of the matrix of second moments of the displacements (4.27)
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according to

D(
�

k) : = lim
t→∞

lim
t0→−∞

1

6t

[
RCM(t| �

k) − RCM(0| �
k)
]2

= lim
t→∞

1

2t

1

N2
k

∑

i,j∈ � k

Di,j(t|
�

k)

= lim
t→∞

1

2t

1

Nk
Tr
(
E0(

�
k)D(t| �

k)
)
. (4.44)

The benefit of the apparently complicated representation of the diffusion constant in terms
of the projector E0 will turn out below. The long time asymptotics of the positive matrix
D(t| �

k) is dominated by a linear term in t encoding the motion of the center of mass. It
is computed in App. C.1 and given by

D(t| �
k)

t→∞∼ 2 kBT

ζ

E0(
�

k) t

Tr(H−1E0(
�

k))
. (4.45)

Inserting (4.45) into (4.44) and using the projector property Tr(E0(
�

k)E0(
�

k)) = 1 one
obtains the diffusion constant

D(
�

k) =
kBT

ζNk

1

Tr
(
H−1E0(

�
k)
) =

kBT

ζ

( ∑

i,j∈ � k

[
H−1

]
i,j

)−1

. (4.46)

The expression (4.46) for the diffusion constant has been derived in [Oet87b] for the dif-
fusion of linear polymer chains.

Another diffusion constant has been introduced originally by Kirkwood [KiRi48] (cf.
[DoEd88, BiCu87]),

D(K)(
�

k) :=
kBT

ζN2
k

∑

i,j∈ � k

Hi,j =
kBT

ζNk
Tr
(
E0(

�
k)H

)
. (4.47)

In fact, this expression provides an upper bound to the exact expression (4.46) which can
be shown from the representations of the diffusion constants in terms of the projector E0

by applying the Jensen–Peierls inequality to (4.46). The simplest version of the Jensen–
Peierls inequality for matrices is given App. F. It implies

Tr
(
E0(

�
k)H

)
≥
[
Tr
(
E0(

�
k)H

−1
)]−1

, (4.48)

and hence

D(K)(
�

k) ≥ D(
�

k) . (4.49)
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4.3.2 Incoherent scattering function

The incoherent scattering function (3.27) is the characteristic function of the stochastic
process (Ri(t) − Ri(0)) which is a Gaussian process with zero mean (cf. Eq. (4.26)) and
covariance given by (4.27) in the limit t0 → ∞. Thus, the characteristic function reads

S(q, t| � ) =
1

N

N∑

i=1

e− q2

2
Di,i(t|

�
), (4.50)

where q = |q| denotest the magnitude of the scattering vector. The expression (4.50) can
be written as a sum over contributions from individual clusters

S(q, t| � ) =

K∑

k=1

Nk

N
S(q, t| �

k) , (4.51)

where the cluster contribution is then given by

S(q, t| �
k) :=

1

Nk

∑

i∈ � k

e− q2

2
Di,i(t| � k) . (4.52)

For long times t → ∞ the scattering function is expected to be dominated by the linear
growth of Di,i(t|

�
k) with time. More precisely this has to be formulated as an upper

bound. By inspection of the long time behavior of Di,i(t|
�

k) from App. C.1 one has

Di,i(t|
�

k) ≥
2 kBT

ζ

[E0(
�

k)]i,i t

Tr (H−1E0(
�

k))
= 2D

( �
k

)
t (4.53)

for all nodes i ∈ �
k since the matrix elements [E0]i,i = 1/Nk are equal for all i ∈ �

k.
This gives rise to the upper bound

S(q, t| � ) ≤
K∑

k=1

Nk

N
e−D( � k) q2t (4.54)

to the incoherent scattering function (4.50). From a physical point of view this is reason-
able since it predicts the long time decay of the scattering function to be dominated by the
diffusion constants of the clusters.

4.3.3 Dynamic nonlinear susceptibility

The nonlinear dynamic susceptibility (3.34) is written as

χ(q, t| � ) := lim
t0→−∞

1

N

N∑

i,j=1

e iq·[Ri(t)−Rj (t)]e−iq·[Ri(0)−Rj(0)] (4.55)
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and thus identified with the characteristic function of the Gaussian process
(
Ri(t) −

Ri(0)
)
−
(
Rj(t) − Rj(0)

)
which is the difference of the displacements of monomers

i and j. In the limit t0 → −∞ this process is characterized by a zero mean according to
(4.26) and a second moment, which can be expressed in terms of the second moments of
the displacements (4.27) via

[(
Ri(t) − Ri(0)

)
−
(
Rj(t) − Rj(0)

)][(
Ri(t) − Ri(0)

)
−
(
Rj(t) − Rj(0)

)]†

t0→−∞
=

[
Di,i(t| � ) +Dj,j(t| � ) − 2Di,j(t| � )

]
1. (4.56)

Accordingly, the characteristic function (4.55) is given by

χ(q, t| � ) :=
1

N

N∑

i,j=1

e− q2

2

[
Di,i(t|

�
)+Dj,j (t|

�
)−2 Di,j(t|

�
)
]
. (4.57)

The long time asymptotics of the nonlinear susceptibility is of special interest. In the
limit t → ∞ the expression (4.57) can be simplified to an expression of independent
contributions of individual clusters. The exponent in (4.57) can be written as a scalar
product (ψ(i,j), D(t| � )ψ(i,j)) with the vector ψ(i,j)

m ∈ ���
defined by ψ(i,j)

m = δi,m − δj,m
m = 1, 2, . . .N . For long timesD(t| � ) is dominated byE0( � ) t/Tr

(
H−1E0( � )

)
. If i and

j do not belong to the same cluster one has (ψ(i,j), E0( � )ψ(i,j)) > 0 and for t → ∞ these
contributions are suppressed exponentially. If instead i and j do belong to the same cluster
one has (ψ(i,j), E0ψ

(i,j)) = 0. Accordingly, the sum over all pairs i, j in (4.57) reduces to
a sum over all i, j in the same cluster at the cost of a lower bound

χ(q, t| � ) ≥
K∑

k=1

N2
k

N

1

N2
k

∑

i,j∈ � k

e− q2

2

[
Di,i(t| � k)+Dj,j (t| � k)−2 Di,j(t| � k)

]
. (4.58)

This bound can be written as a sum over contributions from individual clusters according
to

χ(q, t| � ) ≥
K∑

k=1

N2
k

N
χ(q, t| �

k) , (4.59)

with cluster contributions

χ(q, t| �
k) =

1

N2
k

∑

i,j∈ � k

e− q2

2

[
Di,i(t| � k)+Dj,j (t| � k)−2 Di,j (t| � k)

]
. (4.60)
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Chapter 5

Methods

The following chapter provides methods which shall be employed to compute the critical
behavior of dynamical observables within the Rouse and the Zimm model. The dynamics
and thus the relaxation times of the system are determined by the eigenvalues of the matrix
Γ in the Rouse model or by the eigenvalues of the matrix Γ̃ = H

1
2 ΓH

1
2 in the Zimm

model. Hence, computing disorder averages of dynamical observables amounts to the task
of computing disorder averaged properties of the eigenvalues of the matrices within the
respective ensembles of crosslinks. The methods which will be employed for that purpose
differ depending on the properties of the respective matrix. For the Rouse model, the rather
discernable structure of the matrix Γ facilitates the application of analytical methods. In
the Zimm model one is forced to employ numerical methods instead which is due to the
more complicated structure of the matrix Γ̃ .

However, both matrices share the common property of being block-diagonal which
reflects the fact the individual clusters do not interact. This fact considerably simplifies
the computation of disorder averages irrespective of the special structure of the matrices
and is thus applicable for both models. This cluster decomposition of disorder averages is
demonstrated in the following section. The subsequent three sections address properties
of the connectivity matrix Γ and thus mainly refer to the Rouse model. The last section
provides numerical procedures for the matrix Γ̃ in the Zimm model.

5.1 Disorder averages

As just mentioned, within the Rouse and the Zimm model all observables such as the vis-
cosity (4.37), the first normal stress coefficient (4.41), the intermediate scattering function
(4.51) and the order parameter susceptibility (4.59) share the common property of being
decomposable into contributions from individual clusters. The disorder average over dif-
ferent realizations of the crosslink configuration � of such an observable A( � ) will be
computed by the following procedure. First, the clusters are sorted according to their size
and the average contribution 〈A〉n of clusters of a given size n is computed. The occur-
rence of clusters of a given size n is determined by the cluster size distribution τn. Thus,
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the overall average A( � ) is obtained by weighting the partial averages 〈A〉n with the clus-
ter size distribution. This procedure is carried out in the following section and it will give
the result

A =
∞∑

n=1

nτn〈A〉n (5.1)

for the disorder averaged observable A.

5.1.1 Cluster decomposition of observables

More precisely, all observables A( � ) of interest can be written in the special form

A( � ) :=
1

N
Tr g

(
Γ̃ ( � )

)
, (5.2)

where g is a function on the reals. Due to the block diagonal structure of Γ̃ one may
decompose A( � ) into contributions from different clusters according to

A( � ) =
K∑

k=1

Nk

N
A(

�
k). (5.3)

Here, the contribution of the cluster
�

k to A is defined by

A(
�

k) :=
1

Nk
Tr g

(
Γ̃ (

�
k)
)
. (5.4)

In order to compute the disorder averageA := 〈A( · )〉 as defined in (2.36) over all crosslink
realizations � in the macroscopic limit M → ∞, N → ∞ with fixed crosslink concentra-
tion c := M/N it is useful to introduce partial averages

〈A〉n :=
1

τn

〈
1

N

K∑

k=1

δNk,nA(
�

k)

〉
(5.5)

of A(
�

k) over all clusters with n sites. The normalization

τn :=

〈
1

N

K∑

k=1

δNk,n

〉
(5.6)

represents the average number of clusters with n sites per monomer and is nothing but the
cluster size distribution. By multiplying Eq. (5.5) with njτn and summing over n, one gets
the useful identity

∞∑

n=1

njτn〈A〉n =

〈 K∑

k=1

N j
k

N
A(

�
k)

〉
(5.7)
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which is valid in the absence of an infinite cluster. The LHS of Eq. (5.7) describes how
the average is computed in terms of the cluster size distribution τn and the average over all
clusters of size n, provided the observable is given by the cluster-decomposed form on the
RHS. By setting j = 1 and comparing with (5.3) the expression

A := 〈A( · )〉 =
∞∑

n=1

nτn〈A〉n (5.8)

is derived for the disorder average of an observableA( � ) with special form (5.2). Equation
(5.7) is nothing but the weight average of A.

5.1.2 Critical behavior of observables

The critical behavior of an observable is determined by the dependence of the disorder
average (5.8) on the crosslink concentration c, where both τn and 〈A〉n depend on c.

The dependence of τn on c is given by the scaling form (2.37). Turning to 〈A〉n, the
dependence on c is more subtle. A percolation cluster of size n can be realized with a dif-
ferent number of bonds. In simple terms, for small c the system comprises only few bonds
and the clusters have a more tenuous structure than for larger c. This is reflected by the
discrimination of lattice animals and percolation clusters (see. Ch. 2.3 [StAh95]). Lattice
animals refer to clusters on the percolation lattice for c ↓ 0 whereas percolation cluster
refer to clusters at the critical point c = ccrit. Lattice animals are thus more tenuous objects
than percolation clusters and have a smaller fractal dimension. In principle, the partial av-
erage 〈A〉n should reflect this crossover from lattice animals to percolation clusters when
the critical point is approached. In contrast, for Erdős-Rényi random graphs the situation
is rather simple. The system comprises only trees. Thus, the size n of a cluster fixes the
number of vertices and edges, since a tree of size n contains n− 1 edges. As a conclusion
the partial average is independent of c and given by an average over all labelled trees

�
n

of size n

〈A〉n =
1

nn−2

∑
�

n

A(
�

n) . (5.9)

The normalization nn−2 is the number of labelled trees of size n. This result stems from
the 19th century [Cay89].

However, if one is solely interested in the critical behavior of the series (5.8) the precise
dependence of the partial average 〈A〉n on the crosslink concentration c is not relevant as
long as 〈A〉n is regular for ε = |c− ccrit|/ccrit ↓ 0 and governed by a power law

An := 〈A〉n|ε=0 ∼ nb (5.10)

at the critical point. This is a reasonable assumption since the self similar system at criti-
cality lacks any characteristic scale. Thus, for ε ↓ 0 the sum in (5.7) becomes

∞∑

n=1

nj−τ+b f(nε1/σ) , (5.11)
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where the scaling form of the cluster-size distribution has been inserted. As shown in App.
E.1 or by virtue of Ch. 2.5 in [StAh95] the critical behavior of (5.11) is given by the scaling
form

∞∑

n=1

njτnn
b ∼ ε−(j+1−τ+b)/σ , (5.12)

provided, that there is a divergence for ε ↓ 0, i.e. j + 1− τ + b > 0. For j + 1− τ + b < 0
the sum converges to a finite value for ε ↓ 0 and (5.11) exhibits no divergence at the critical
point.

The most important case of the general formula (5.11) is indeed j = 1, that is the
critical behavior of the disorder average (5.8)

A =
∞∑

n=1

nτn n
b ∼ ε−(2−τ+b)/σ (5.13)

In summary, the computation of the disorder average (5.8) of an observable A reduces
to the task of computing the scaling of its partial average (5.10) over clusters of size n at
the critical point.

5.2 Random resistor networks

In this section a very useful, exact mapping of the viscosity of a Rouse cluster onto a re-
sistor network is derived. This mapping relies on a relation between the Moore–Penrose
inverse of the connectivity matrix of the cluster and the resistances in a corresponding resis-
tor network. This mapping yields a simple relation for the viscosity in terms of topological
characteristics of the cluster which can be simply read off the molecular graph.

5.2.1 From Rouse dynamics to random resistor networks

The dependence of static and dynamic properties of macromolecules on the molecular
structure or topology was originally considered in polymer chemistry on a phenomenolog-
ical level by means of so-called topological indices. Probably the most famous topological
index is the Wiener index which was introduced by Wiener in [Wie47]. He recognized that
the dependence of boiling points, molar volumes and other properties of alkanes is corre-
lated with the species’ molecular topology and well described by the Wiener index. The
Wiener index is defined by the sum over all shortest path distances di,j between all vertices
in the molecular graph. For a simple example, see Fig. 5.1. Shortest path distances are
called chemical distances and given simply by the number of bonds along the shortest path
between i and j along the backbone of the molecular graph.

The Wiener index can be employed to compute static and dynamical properties of tree-
like macromolecules in the Rouse model. It is a well know fact of graph theory [Mer89]
that the sum over the inverse eigenvalues of the Rouse matrix, or equivalently, the trace
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Figure 5.1: Simple example for the Wiener index. For the linear polymer � 4 with 4
monomers the Wiener index is W ( � 4) = d1,2 + d1,3 + d1,4 + d2,3 + d2,4 + d3,4 = 10.
For � n one has W ( � n) = n(n2 − 1)/6.

over the Moore-Penrose inverse of the graph Laplacian, is related exactly to the Wiener
index according to

Tr

( � − E0(
�

n)

Γ (
�

n)

)
=

1

2n

∑

i,j∈ �
n

di,j =
W (

�
n)

n
. (5.14)

The radius of gyration and the viscosity in the Rouse model are both proportional to
the sum over inverse eigenvalues. For tree like clusters these quantities can be computed
from 5.14 by simply counting chemical distances in the graph [Nit94].

The formulation of the Rouse model in terms of graph theoretical terms has not gained
wide acceptance in polymer physics. Only few attempts have been made to carry the
formalism of graph theory into the Rouse model, e.g. [Eic72, For76, Gut78] by identifying
the connectivity matrix Γ , originally termed Rouse matrix in polymer physics, with the
Laplacian matrix of a graph. By means of graph theory some results for phantom polymers
are more easily computed. For instance, the computation of the radius of gyration for
general tree like phantom polymers which constitutes the well known Kramer’s theorem
(see. Ch. 2.4.3 in [RuCo03] is at heart nothing but a particular method of calculating the
Wiener index for general tree-like molecules [Mer89].

For molecular topologies which contain loops equation (5.14) is no longer valid if the
distances di,j are regarded as chemical, i.e. shortest-path distances. The generalization
of equation (5.14) for arbitrary topology is accomplished by the notion of “resistance-
distance” introduced in [KlRa93]. Therefore, a single, connected spring cluster is mapped
onto a resistor network by identifying a crosslink between two neighboring monomers
with a unit resistor of magnitude R0. (see Fig. 5.2) Then, a voltage U is applied to the
nodes i and j such that a unit current I is measured. For each vertex k in the graph
Kirchhoff’s current law

∑
l∼k Il,k = I(δi,k − δj,k) must be valid. It states that the sum over

the currents Il,k into node k coming from adjacent nodes l ∼ k must vanish except for
the sink and source vertices i and j, respectively. The current in the bond from l to k is
related to the difference of vertex potentials Uk − Ul of these two vertices by Ohm’s law
Il,k = (Uk − Ul)/R0. By the definition of the connectivity matrix (2.16) Kirchhoff’s law
can be rewritten as

∑
l Γk,lUl = R0 I(δi,k − δj,k), where now the sum is over all vertices l

in the cluster. The solution of this linear equation for the vertex potentials Ul is given by
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Figure 5.2: Equivalence between the resistor network (left) and a spring network (right).
The mechanical analog of Kirchhoff’s current law

∑
l Γk,lUl = IR0(δi,k − δj,k) for vertex

k is the balance of forces 3kBT/a2
∑

l Γk,lRl = F (δi,k − δj,k) for monomer k. Details are
explained in the text.

Uk = IR0 ([(
� − E0)/Γ ]k,i − [(

� − E0)/Γ ]k,j) + U0 with an arbitrary constant U0 which
stems from the zero eigenvalue of Γ and reflects the freedom of choosing the ground of the
potential. Hence the potential difference U = (Ui − Uj) measured between vertices i and
j is given by Ohm’s law U = R0 � i,jI with an effective resistance � i,j which is defined in
terms of the matrix elements of the Moore–Penrose inverse

� i,j =

[ � − E0

Γ

]

i,i

+

[ � − E0

Γ

]

j,j

− 2

[ � − E0

Γ

]

i,j

. (5.15)

Tree cluster contain no loops, and hence no parallel circuits. The resistances on the unique
path from vertex i to vertex j are all connected in series and the effective resistance is then
simply given by the chemical distance.

In fact, Kirchhoff’s law
∑

l Γk,lUl = R0 I(δi,k − δj,k) is the electrical analog of the fol-
lowing mechanical problem. If the spring cluster is subjected to external forces F which
act solely on monomers i and j and pull these monomers in opposite directions (see Fig.
5.2), then the equilibrium positions of the monomers Rl are determined by the force bal-
ance 3kBT/a

2
∑

l Γk,lRl = F (δi,k − δj,k) of the gradient of the potential energy (2.15)
and the external forces. The equation for each component of the vector Rl coincides
with Kirchhoff’s law. Here, the zero eigenvalue of the connectivity matrix allows for an
arbitrary, constant vector to be added to the the solution of the force balance equation,
which simply reflects the translational invariance. The solution of the mechanical prob-
lem (Rk − Rl) = a2/(3kBT ) � k,lF is in fact Hooke’s law which implies that the inverse
effective resistance � −1

k,l is the effective spring constant in the mechanical problem.
For completeness it is remarked that the assumption of identical persistence lengths a

and thus identical nearest neighbor resistances R0 can be abandoned. If molecules have
different, or in general, a distribution of persistence lengths a1, a2 . . . an Eq. (5.15) remains
valid by introducing a weighted Laplacian matrix [KlRa93].

Finally, a useful implication of Eq. (5.15) is given. Since the resistances and the matrix
elements of the Moore–Penrose inverse are in a linear one to one correspondence, Eq.
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(5.15) is easily inverted to express the matrix elements in terms of the resistances

[ � − E0

Γ

]

i,j

= − 1

2
� i,j +

1

2n

n∑

k=1

� i,k (5.16)

+
1

2n

n∑

k=1

� k,j −
1

2n2

n∑

k,l=1

� k,l

which is valid for an arbitrary connected clusters of size n. The proof of equation (5.16) is
given in App. B.4.

5.2.2 How to apply the resistor analogy: Shear viscosity

The interpretation of � i,j as a resistance has important consequences for the Rouse model.
First, it sheds some light onto the mean squared distance (2.24) between monomers i and j
in the same cluster which governs the Gaussian distribution (2.22) of the mutual Euclidean
distance: The mean squared distance between nodes i and j in a phantom network is given
by its pair resistance in the corresponding resistor network. Accordingly, the radius of
gyration (2.25) is simply given by the average resistance between all pairs of vertices in
that cluster.

Second, and even more important, the viscosity (4.38) of a cluster in the Rouse model
can be related to the resistances. This relation is established by applying the relation (5.15)
to the cluster

�
k and summing the equation over all i, j ∈ �

k. The matrix elements
of the projector E0(

�
k) are all equal to (Nk)

−1 (see Eq. (2.20) in Sec. 2.3.1). Hence,
the sum over all i, j of the last term on the right-hand side equals −2Nk Tr

[
E0(

�
k)
( � −

E0(
�

k)
)
/Γ (

�
k)
]

and thus vanishes. This yields

1

2Nk

∑

i,j∈ � k

� i,j = Tr

( � − E0(
�

k)

Γ (
�

k)

)
(5.17)

which generalizes the relation (5.14) between the trace of the Moore–Penrose inverse and
the Wiener index to arbitrary topologies where the distances di,j have been replaced by
resistances � i,j. The viscosity (4.38) is then directly obtained from (5.17),

η(
�

k) =
ζa2

12N2
k

∑

i,j∈ � k

� i,j . (5.18)

It is emphasized that this connection relies on the special form of the viscosity in the Rouse
model.

One may test Eq. (5.18) by applying it to a linear polymer with n monomers, i.e.
�

k =
� n. Then the resistances are connected in series and thus η( � n) = ζa2/6n2W ( � n). As
indicated in Fig. 5.1, this gives rise to the well known result η( � n) = ζa2/36(n2 − 1)/n
[DoEd88, Ch. 4.5].
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Finally, the aforementioned connection between the viscosity and the radius of gyration
of a cluster in the Rouse model is stated explicitly. By comparing the viscosity (5.18) with
the radius of gyration (2.25) the well known result [DoEd88] is found that both quantities
are proportional

η(
�

k) :=
ζ

6
R2

gyr(
�

k) . (5.19)

The connection between the radius of gyration and resistances has also been mentioned in
[Cat85] without derivation.

The correspondence (5.18) is the fundamental equation for computing the viscosity in
the Rouse model, since it allows to relate the critical behavior of the overall viscosity to
the critical behavior of the average resistance in a random resistor network. As pointed out
in Sec. 5.1 the critical behavior of the viscosity is determined by the scaling with n of the
average of the viscosity (4.38) over all clusters of size n at the critical point, viz

ηn := 〈η( · )〉n |ε=0 . (5.20)

Thanks to (5.18) this is nothing but the scaling with n of the average resistance between
two vertices in clusters of size n at the critical point.

As pointed out in the beginning of this section, the viscosity is given here as an example
how to apply the resistance mapping to Rouse dynamics. It can be applied to other observ-
ables as well. Therefore, it is convenient to study the critical scaling of a more general
quantity, the p-th moment of the pair resistance

ρ(p)
n :=

1

n2

n∑

i6=j

〈� p
i,j〉n

∣∣
ε=0

. (5.21)

The viscosity can then be inferred from (5.21) via ηn = (ζa2/12) ρ
(1)
n .

For Erdős-Rényi random graphs the computation of ρ(p)
n is a rather simple task. This

is due to the fact that trees contain no parallel circuits and resistances reduce to chemical
distances such that results on average distances in random trees can be applied [MeMo70].
In contrast, for bond percolation the computation of ρ(p)

n is a more complicated issue. How-
ever, random resistor networks on percolation clusters have been studied for a long time
within mean field approximations [Sti74, Ste77] and renormalization group calculations
[HaLu87, HaMe90, StJa99]. The scaling relations which have been obtained for the ran-
dom resistor networks can be employed to derive the scaling of ρ(p)

n . This is done in the
following section and additionally also other useful quantities from random resistor net-
works are provided. However, the main result of this rather technical section is the critical
scaling of (5.21). The result is given in advance such that the reader is free to go through
the details. The scaling of (5.21) for Erdős-Rényi random graphs and bond percolation can
be combined in the formula

ρ(p)
n ∼ np(2/ds−1) , (5.22)

involving the so-called spectral dimension ds of critical percolation clusters. The spectral
dimension encodes the fractal nature of the fractal without giving reference to its spatial
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configuration and was introduced by Alexander and Orbach [AlOr82] as the fracton di-
mension. It characterizes the low-energy behavior of the vibrational density of states N(γ)
of the Laplacian matrix of the critical macroscopic cluster. At the critical point the density
of states of the macroscopic cluster is characterized by N(γ) ∼ γds/2−1 for small γ ↓ 0.
This might be regarded as a generalization of the well known behavior of the (phonon)
density of states N(γ) ∼ γd/2−1 of the Laplacian on the regular lattice in spatial dimen-
sion d. An important point to note about the spectral dimension is the Alexander–Orbach
conjecture which states ds = 4/3 for all spatial dimensions 2 ≤ d ≤ 6 [AlOr82]. In fact,
the Alexander–Orbach conjecture has not yet been proved wrong but there is a large body
of evidence against it (see e.g. [HaBe02] and references therein). Nonetheless, it is a very
good approximation for d = 3 where ds = 1.33 is very close but not exactly equal to
the mean field value ds = 4/3. The spectral dimension ds is the characteristic quantity of
a fractal for large chemical distances. It will also emerge in the upcoming sections as a
characteristic of random walks on fractals.

5.2.3 Scaling properties of random resistor networks

5.2.3.1 Erdős-Rényi random graphs

In Erdős-Rényi random graphs the computation of resistances is is considerably simpler
than for bond percolation. As pointed out in Sec. 5.1 (cf. Eq. (5.9)) the average 〈•〉n is over
all nn−2 equally weighted labelled tree clusters with n monomers. Tree clusters contain
no parallel circuits and the resistance between two points is simply given by their mutual
chemical distance, that is the number of vertices on the unique path joining i and j. The
distribution of the chemical distance between two points in a tree chosen randomly from
the nn−2 labelled trees of size n is known analytically [MeMo70]

pdist(k) :=
〈
δ�

i,j ,k

〉
n

=
k + 1

nk

(n− 2)!

(n− k − 1)!
, k = 1, 2 . . . n− 1 . (5.23)

Hence, the p−th moment (5.21) can be computed in a straightforward manner from the
distance distribution (5.23) via

〈
� p

i,j

〉
n

= (n− 2)!
n−1∑

k=1

kp(k + 1)

nk(n− k − 1)!
, (5.24)

which is independent of 1 ≤ i 6= j ≤ n. As shown in App. (E.3), for n → ∞ the
(Riemann-) sum in (5.24) tends to the integral

〈
� p

i,j

〉
n
∼ np+1

∫ 1

0

dx xp+1 exp

[
n

∫ x

0

dy ln(1 − y)

]
(5.25)

n→∞∼ 2p/2 Γ(1 + p/2)np/2 ,

where in a second step Laplace’s method is applied for the asymptotic evaluation of the
integral over x for n→ ∞. Euler’s gamma function is denoted by Γ and (5.25) is valid for
p > −2.
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d = 3 d = 6

φ 1.12 1
ds 1.33 4/3

Table 5.1: Numerical values of the spectral dimension ds and the resistance crossover expo-
nent φ. The results for φ and ds in d = 3 are taken from [GiLo90] and [HaBe02], respectively.

In summary, for Erdős-Rényi random graphs the p − th moment (5.21) of the pair
resistance is given by

ρ(p)
n

n→∞∼ 2p/2 Γ(1 + p/2)np/2 , (5.26)

which is valid for all p > −2 and includes the prefactor on the LHS of (5.26).

5.2.3.2 Bond percolation

Random resistor networks on percolation clusters have been studied intensively in [Sti74,
Ste77, HaLu87, HaMe90, StJa99]. For the purpose of computing ρ(p)

n the joint probability
µ(R,x)dR is considered, that is the probability that two vertices of the random resistor
network, whose relative position vector in

� 3 is x, belong to the same cluster and that the
resistance measured between them lies in the interval fromR toR+dR [HaLu87, StJa99].
It is defined by

µ(R,x) =
〈
δ � (i), � (j) δxi−xj ,x , δ(R− � i,j)

〉
(5.27)

where the Kronecker symbol δ � (i), � (j) equals 1 if i and j are in the same cluster and
zero otherwise. In the vicinity of the critical point and for large spatial distances x the
distribution is given by [HaLu87]

µ(R,x) =
1

R
x−(d−2+η)Fµ

(
Rx−φ/ν , xεν

)
. (5.28)

Here Fµ is a scaling function and ν, η denote the exponents of lattice bond percolation
and x = |x|. The equation (5.28) is taken from Eq. (2.39) in [HaLu87] by neglecting
corrections to scaling. The exponent φ is referred to as the crossover resistance exponent
of random resistor networks[HaLu87, StJa99] and determines how typical resistances scale
with distance,R ∼ |x|φ1/ν . An ε-expansion up to second order in (d−ε), d being the spatial
dimension, yields [StJa99] the expansion φ = 1 + ε/42 + 4ε2/3087. The exponent φ is
related [StAh95] to a more fundamental exponent, the aformentioned spectral dimension,
or fracton dimension ds of percolation clusters (see e.g. Sec. 2.3 in [HaBe02]).

φ =
1

σ

(
2

ds
− 1

)
. (5.29)

Numerical values of φ and ds are given in Tab. 5.1.
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In order to deduce ρ(p)
n from the resistance distribution (5.27), the following quantity is

considered

∞∑

n=1

n2τn ρ
(p)
n =

〈
1

N

K∑

k=1

∑

i,j∈ � k

� p
i,j

〉
=

〈
1

N

N∑

i,j=1

δ � (i), � (j) , � p
i,j

〉
(5.30)

where the first equality is a consequence of (5.7). The last expression in (5.30) can then
be simplified by employing translational invariance which amounts to relating it to the
resistance distribution (5.27) and determining its critical behavior

∞∑

n=1

n2τn ρ
(p)
n =

〈
N∑

j=1

δ � (i), � (j) � p
i,j

〉
(5.31)

=

∫
�

d

ddx

∫ ∞

0

dR Rp µ(R,x)

∼ ε−(pφ−(τ−3))/σ

In fact, (5.31) coincides with Eq. (2.45) in [HaLu87]. The validity of (5.31) requires that
there is a divergence for ε ↓ 0, i.e. that pφ− (τ − 3)/σ > 0.

It remains to deduce the scaling of ρ(p)
n from (5.31). Therefore, a power-law ansatz

for the n-dependence of ρ(p)
n ∼ nbρ(p) is inserted into (5.31). A power law ansatz is a

reasonable choice at the critical point in the absence of characteristic scales. By comparing
the resulting equation with Eq. (5.12) for j = 2, one obtains the equality pφ− (τ −3)/σ =
bρ(p)/σ − (τ − 3)/σ. This yields bρ(p) = p σφ or by virtue of the scaling relation (5.29)
one has

ρ(p)
n ∼ nbρ(p), with bρ(p) = p

(
(2/ds) − 1

)
. (5.32)

The prediction (5.32) coincides with Erdős-Rényi random graphs in d ≥ 6. More precisely,
by inserting ds = 4/3 for d ≥ 6 the scaling (5.26) is recovered.

Besides the scaling relation (5.32) two other quantities can be inferred from random
resistor networks which are useful for computing disorder averages in the Rouse model.
As mentioned before, the scaling of the average resistance (5.32) encodes the fractal struc-
ture of percolation clusters without referring to the spatial configuration. In other words, it
displays properties which should be also encoded in the connectivity matrix Γ . There-
fore, one might discuss the connectivity matrix directly. This was also done in Refs.
[HaLu87, StJa99] where the authors discuss the generating function of the distribution
of the resolvent of Γ ,

Z(λ, ω) :=

〈
exp

{
−λ

2

2

(
1

Γ + iω

)

j,j

}〉
. (5.33)

By means of a renormalization group analysis up to second order in ε = 6− d the validity
of the scaling relation

Z(λ, ω)∼εβ FZ

(
ε−φλ2, ε1/σω

)
(5.34)
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is shown for c ↑ ccrit. Moreover, above the percolation transition for c > ccrit the diagonal
elements of the Moore–Penrose inverse can be interpreted as the resistance between two
infinitely separated points on the macroscopic cluster

�
∞ provided i belongs it (see Eq.

(2.12) in [StJa99])
R∞ := 2[(

� − E0)/Γ ]i,i , if i ∈ �
∞ . (5.35)

In ([StJa01]) the authors discuss the generating function Z∞(λ) for the resistance between
point i and a point at infinity

Z∞(λ) :=

〈
δ � (i), � ∞

exp

{
−λ2

[ � − E0

Γ

]

i,i

}〉
. (5.36)

In the vicinity of the critical point the generating function can be written in the form

Z∞(λ) = S∞

∫ ∞

0

dx π(x) e−λ2ε−φ/x , (5.37)

for c ↓ ccrit, where S∞ denotes the gel fraction, i.e. the order parameter of percolation

S∞ =
〈
δ � (i), � ∞

〉
=

{
0 c < ccrit

εβ c ↓ ccrit
(5.38)

and π(x) is a scaling function. Within a mean field approximation in d = 6 the Laplace
transform π̂(z) =

∫∞
0

dx exp{−zx} π(x) of the scaling function is determined by the
nonlinear, second order differential equation

4z π̂′′(z) = π̂(z)
(
1 − π̂(z)

)
(5.39)

with π̂(0) = 1 and π̂(∞) = 0 (see Eq. (30) in [StJa01]).

5.3 Random walks on fractals

A different route to Rouse dynamics of a cluster is accomplished by the equivalence to
a particular random walk on the cluster. One might imagine that the propagation of a
perturbation applied to one monomer has to diffuse along the backbone of the cluster.

5.3.1 Connecting Rouse dynamics to a blind ant’s random walk

The connection between Rouse dynamics and random walks is easily motivated formally.
The dynamics of a Rouse cluster

�
k is quite generally determined by the time evolution

matrix U(t| �
k) = exp{−3Γ (

�
k)t/tmic}, with the microscopic time scale tmic. The fact

that the connectivity matrix of a cluster
�

k is the discrete Laplacian operator on the cor-
responding graph amounts to identify the exponential of the connectivity matrix U(t| �

k)
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Figure 5.3: Random walk of the blind ant (left) and the myopic ant (right) on a percolation
cluster on the square lattice. In this case di = 3 and dmax = 4 (details are given in the text).
Thus the blind ant remains at site i with finite probability 1/4. This is interpreted as the trial
of moving along the nonoccupied bond and the subsequent return after failure.

with the generator of a particular random walk on that cluster. This is the analog to a con-
tinuous random walk or diffusion of a particle in

� d. If the particle starts at the origin at
t = 0, the transition probability px(t) satisfies the well known diffusion equation

∂t px(t) = ∆x px(t) . (5.40)

The formal solution is given by px(t) = exp{t∆x} px(0). In this case the Laplace operator
∆x is said to be the generator of free diffusion.

The connection between Rouse dynamics and random walks on fractals was first used
in [Cat84, Cat85] and consequently employed in [Mue03] to derive the scaling behavior
of the shear relaxation function G(t) in the Rouse model. This derivation is outlined in
the following. A comprehensive review on diffusion in disordered media can be found in
[HaBe02].

The diffusion which is generated by Γ is referred to as the blind ants’ random walk.
The term blind ant was introduced by de Gennes [Gen76b] and is distinguished from the
so called myopic ant by the choice of one-step probabilities (see below).

Consider a discrete time random walk on an arbitrary connected graph with the restric-
tion that the vertex degree di of each vertex i must not exceed a maximum value dmax. This
is true for bond percolation in d dimensions, where the vertex degrees cannot exceed the
coordination number dmax = 2d of the lattice

� d. If the ant arrives at site i at time s, it
moves with equal probability 1/dmax along one of di adjacent bonds to a neighboring ver-
tex and stays at the same vertex i with probability 1− di/dmax. In contrast, the myopic ant
moves with equal probability 1/di to one of the adjacent sites (see Fig. 5.3). By definition
of the connectivity matrix Γ one has Γi,i = di and Γi,j = −1 if two i 6= j are neighbors
and Γi,j = 0 otherwise. Hence, the blind ant’s master equation for the probability pi(s) of
visiting vertex i after s time steps is given by

pi(s+ 1) = (1 − Γi,i/dmax) pi(s) +
∑

j 6=i

(−Γi,j/dmax) pj(s) , (5.41)
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or equivalently

pi(s+ 1) − pi(s) = − 1

dmax

∑

j

Γi,j pj(s) . (5.42)

For s � 1 the difference on the LHS of (5.42) can be replaced by a derivative. This ap-
proximation can be circumvented by defining an appropriate continuous time random walk.
The solution of (5.42) with initial condition pi(0) = δi,i0 is given by pi(s) = [e−sΓ/dmax ]i,i0 .

The mean return probability for a random walk on critical percolation clusters of size
n is then defined by

Pn(s) := 〈pi0(s)〉n|ε=0 =

〈
1

n
Tr e−sΓ/dmax

〉

n

∣∣∣∣
ε=0

, (5.43)

where the independence of the return probability on starting point i0 is exploited.

5.3.2 Scaling properties of the blind ant’s random walk

The scaling of Pn(s) for s� 1 is given by [Mue03]

Pn(s) ∼ s−ds/2 FP (s/sn) +
1

n
, with sn ∼ n2/ds (5.44)

and a scaling function FP (x) which is of order one for x < 1 and decreases rapidly to zero
for x > 1. The scaling (5.44) can be interpreted as follows. For times t . sn the ant has
not yet recognized the finite nature of the fractal, hence the scaling with time reflects the
fractal environment by a power-law. For t & sn the ant has roughly discovered the finite
fractal completely, and the probability tends to the stationary, uniform distribution 1/n.
The return probability P∞(s) on the infinite cluster at the critical point decays according
to

P∞(s) ∼ s−ds/2 . (5.45)

The main result in [Mue03] is to relate the scaling relation (5.43) of the return prob-
ability to the scaling of the shear relaxation function (4.36) from clusters of size n at the
critical point

Gn(t) := 〈G(t| · )〉n|ε=0 . (5.46)

This is easily done by employing the representation [E0]i,j = 1/n for 1 ≤ i, j ≤ n of the
projector and inserting dmax = 6 for d = 3. This yields

Gn(t) = kBTρm

(
Pn(36 t/tmic) −

1

n

)
. (5.47)

Then it is assumed that the overall shear relaxation function G(t) := 〈G(t| · )〉 exhibits a
scaling form

G(t) ∼ t−∆FG(t/t∗) (5.48)
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in the vicinity of the critical point. The scaling is characterized by an appropriate scaling
function FG with an exponent ∆ and a divergent time scale

t∗ := tmic ε
−z . (5.49)

By combining the scaling assumption for G(t) with the scaling (5.47) the author in
[Mue03] computes the exponent ∆ and the dynamic exponent z in terms of the funda-
mental exponents τ, σ, ds. They are given by

∆ =
ds

2
(τ − 1), z =

2

dsσ
. (5.50)

The deficiency of assuming the scaling form (5.48) instead of deriving it relies on the fact
that the scaling form of the average Pn(s) and likewise Gn(t) is only known precisely at
the critical point ε = 0, rather than in the vicinity of it.

5.4 Density of states of the connectivity matrix

5.4.1 Connecting Rouse dynamics to the density of states of the graph
Laplacian

The mappings of Rouse clusters onto either resistor networks or random walks on fractals
turned out to be useful analogies to characterize certain dynamic quantities in the Rouse
model. However, the straightest approach to Rouse dynamics is to compute the density
of relaxation times directly. The density of inverse relaxation times, that is the density of
eigenvalues of the connectivity matrix is defined by

N(γ) : =

〈
1

N
Tr
((

1 − E0( � )
)
δ
(
Γ ( � ) − γ

))〉
(5.51)

=
1

π
lim
ε↓0

Im

〈
1

N
Tr R

(
−(γ + iε)

)〉
. (5.52)

Here R(ω) := (Γ + ω
�
)−1 is the resolvent of the connectivity matrix and Im denotes

the imaginary part of a complex number which stems from the representation of the delta
function via the Sokhotsky formula. The shear relaxation function is then simply related
to the density of eigenvalues via Laplace transformation

G(t) = kBTρm

∫ ∞

0

dγ N(γ) e−(6/tmic) tγ . (5.53)

Thus, the density of states carries the same information as the shear relaxation function and
functional properties of the density of states can be translated into functional properties of
the shear relaxation function.
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5.4.2 Scaling properties of the density of states

The connectivity matrix is a random matrix, with a distribution of eigenvalues which is
not given by Wigner’s famous semicircle law [Wig58]. In fact, for Erdős-Rényi random
graphs it is possible [BrAs01] to derive a nonlinear integral equation for the density of
states (5.51) by means of a replica representation of the resolvent R(γ). As a result, the
density of states N(γ) can be computed exactly for arbitrary γ by an iterative procedure.
Additionally, for small γ the lowest order, inverse moments of the density of states can be
computed exactly [BrAs01]

M1 :=

∫ ∞

0

dγ
N(γ)

γ
=

1

4c

[
ln

(
1

1 − 2c

)
− 2c

]
(5.54)

M2 : =

∫ ∞

0

dγ
N(γ)

γ2

= c

[
−8c3 − 6c2 − 5c+ 1

30c (1 − 2c)3
− 4c2 − 3c− 1

24c (1 − 2c)2
+

1

240 c2
ln(1 − 2c)

]
. (5.55)

Even more interesting, the density of eigenvalues exhibits a Lifshits tail, that is a sin-
gular fall off for γ ↓ 0. Lifshits tails in the density of states in disordered systems can be
related to the occurrence of very small, exponentially rare eigenvalues. Bray and Rodgers
[BrRo88] were the first to propose that the Lifshits tail can be traced back to the smallest
eigenvalues of all clusters of size n which stems from the linear cluster and is of order
1/n2. In [BrAs01] it is then proved that the density of states exhibits a Lifshits tail

N(γ) ∼ exp{−(γ∗/γ)αN}, γ ↓ 0 , c < ccrit , (5.56)

with an exponent αN = 1/2 and a typical scale γ∗. The Lifshits tail was actually proved for
the integrated density of states which should, however, also apply to the density of states
itself if algebraic prefactors are neglected. Thus, in [BrAs01] the scaling (5.56) for small
γ is translated into the leading behavior of the shear relaxation function (5.53) for large t

G(t) ∼ exp{−(t/t∗)αG}, t→ ∞, c < ccrit , (5.57)

with an exponent αG = 1/3 and a time scale t∗ ∼ 1/γ∗. From the behavior of the lowest
order, inverse moments it is suggested that t∗ ∼ 1/γ∗ ∼ ε−3. This claim is in accordance
with the scaling (5.49) for mean field values σ = 1/2 and ds = 4/3. Unfortunately,
an a posteriori verification of the assumed scaling behavior (5.48) is not possible from
the results obtained for the density of states since algebraic prefactors in (5.57) remain
undetermined.

For bond percolation the density of states of the connectivity matrix Γ on percolation
clusters has become a focus of interest in the mathematical literature. In [KiMu04] it is
rigorously shown that the integrated density of states of Γ exhibits a Lifshits tail with the
same exponent αD = 1/2 as in (5.56). However, if the integrated density of states exhibits
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a Lifshits tail so does (5.51) and the scaling form (5.57) for the long time behavior of
the shear relaxation function is valid for all spatial dimensions d with the same exponent
αG = 1/3. In contrast, the scale t∗ ∼ 1/γ∗ does depend on the dimensionality d but its
ε-dependence cannot be derived within the approach [KiMu04].

All three, apparently different approaches to Rouse dynamics from the previous chap-
ters involve the spectral dimension ds as the characteristic exponent and therefore it is
worthwhile to stress the connections between these approaches. The density of states may
be regarded as the fundamental quantity in the Rouse model. The Laplace transform of
the density of states of clusters of size n equals the return probability of the blind ant’s
random walk on clusters of size n. It remains to establish a connection to random resistor
networks. For the myopic ant it is a well known fact that the effective resistance � i,j (5.15)
is proportional to the commute time between vertices i and j [Tet91]. The commute time
is the expected time it takes the myopic ant to start at vertex i, visit vertex j and return to i.
However, the return probability of both ants is characterized by the same exponent ds for
large times [Mar88, HaMe87]. Therefore, the effective resistance � i,j also determines the
commute time for the blind ant’s random walk at least for vertices i, j which are a large
chemical distance apart. This demonstrates why the scaling of the effective resistances is
also characterized by the spectral dimension.

As an aside, the interpretation of the resistance as a commute time allows character-
izing recurrence properties of random walks by an illustrative and exact picture [Tet91]:
The walk is recurrent if the effective resistance between the starting point and a “point at
infinity” (cf. Eq. 5.35) is infinite.

5.5 Numerical methods

Within the Zimm model it is not possible to establish a relation between the generalized
connectivity matrix Γ̃ and topological properties, which would allow to treat Zimm dy-
namics analytically. Hence, one is forced to compute the averages (5.10) of observables
over clusters of size n and the corresponding scaling exponent b numerically in order to
obtain the critical behavior from (5.11).

The numerical computation of partial averages 〈•〉n requires three subsequent steps.
First, an algorithm is required that generate clusters (graphs)

�
k of size n according to

their probability of occurrence in their respective ensembles. Second, for each generated
cluster

�
k the connectivity matrix Γ (

�
k) and the mobility matrix H(

�
k) have to be

computed in order to build the generalized connectivity matrix Γ̃ (
�

k). Third, observables
are computed from spectral properties of Γ̃ (

�
k) by a numerical diagonalization of Γ̃ (

�
k).

These three steps slightly differ, depending on which crosslink ensemble is used. Therefore
Erdős-Rényi random trees and bond percolation are discussed separately.
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2

1

4

3

5

SP = {v1, v2, v3} = {1, 4, 1}
l d1 d2 d3 d4 d5 new edge

1 3 1 1 2 1 (2, 1)
2 2 0 1 2 1 (3, 4)
3 2 0 0 1 1 (4, 1)

1 0 0 0 1 (1, 5)

Figure 5.4: Example for the Prüfer algorithm for a given Prüfer sequence SP and tree size
n = 5. The table shows the values of the degree sequence d1, d2 . . . d5 at the beginning of the
lth main loop and the corresponding new edge which is created at the end of the lth loop.

5.5.1 Erdős-Rényi random graphs

As already mentioned in Sec. 5.1.2, for the Erdős-Rényi random graphs the average 〈•〉n

is an average over all nn−2 equally weighted, labelled trees of size n. Labelled trees of
a given size can easily generated via the Prüfer algorithm [Pru18]. It provides a mapping
from a sequence SP = {vl}n−2

l=1 of n−2 independent, identically distributed random integer
variables, each of which is distributed uniformly on the integer set [1..n]. The vl can be
regarded as the vertices of the tree. Obviously, there are nn−2 possible sequences, which
are in a one-to-one correspondence with the set of trees of size n according to the following
(Prüfer) algorithm

//initialize the sequence of vertex degrees in
�

n

for v = 1 to n do
dv = 1 + number of occurrences of v in SP

//main loop
for l = 1 to n-2 do
{
vmin = vertex with smallest label and

vertex degree dvmin
= 1;

(vmin, vl) is an edge of the tree;
decrement the degrees of vmin and vl by one;

}
the two remaining vertices having degree one form

the last edge

The algorithm is demonstrated for a simple example in Fig. (5.5.1) The overall computer
time for the simple implementation described above is

�
(n2). If the vertices are held in

a priority queue, the operation of dequeueing the item with highest priority, i.e. the vertex
with the smallest label, is of order

�
(logn) [MeNa99, Ch. 5.4] and hence the numerical

complexity of the Prüefer algorithm is of order
�

(n logn).
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Figure 5.5: Distribution of the resistance (distance) between two arbitrary vertices in a tree
of size n = 30.

The output of the Prüfer algorithm is an adjacency list of n vertices of the tree which is
handled with the LEDA-library [MeNa99]. The library supports common data structures
associated with graphs. After the generation of a tree

�
n the connectivity matrix Γ (

�
n)

is computed from the adjacency list according to Eq. (2.16).
The computation of the preaveraged mobility matrix (2.29) requires the pair resistances

� i,j. As already mentioned the resistance between the vertices i and j in the tree
�

n is
simply the chemical distance between them, that is the length of the shortest (and unique)
path. These distances can be computed with the Dijkstra algorithm which is provided by
LEDA and is of complexity

�
(n2). The preaveraged mobility matrix H(

�
n) is then com-

puted with the function h from (2.31), corresponding to the Rotne–Prager tensor. After
these steps H(

�
n) and Γ (

�
n) are available. The complexity of the generation of these

matrices as a function of tree size n is of order O(n2) due to the computation of the dis-
tances.

Tests The numerical computation of resistances can be tested by comparing the numer-
ical distribution of the resistance (distance) � i,j for an arbitrary pair of vertices i, j with
the analytical expression (5.23). In Fig. 5.5 the distribution is computed from 106 tree re-
alizations for n = 30 and compared with the theoretical prediction. Deviations from the
theoretical distribution are negligible. This is quite remarkable when the sample size 106

is compared with the total number 3028 ≈ 1041 of trees of size n = 30.

5.5.2 Bond percolation

For the generation of clusters according to 3−dimensional percolation there are mainly two
possibilities. Within the box filling method bonds are thrown in a finite, cubic sublattice
of

� d for different sizes of the cube. The infinite volume properties are then obtained by
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finite size scaling.
However, for an investigation of single cluster properties the Leath method [Lea76] is

more advantageous. The Leath algorithm generates single clusters, by starting from an ini-
tial seed vertex which may be regarded as an arbitrary point of the hypercubic lattice. All
points on the lattice which are adjacent to the seed are marked as “connected” with prob-
ability p or marked as “disconnected” with probability 1 − p. This procedure is repeated
recursively for all points which already have been marked as connected until all connected
points are surrounded by disconnected points.

In order to compute disorder averages, the average 〈•〉n (5.5) has to be computed for a
sequence { �

i}L
i=1 of generated Leath clusters. The correspondence between the output of

the algorithm and the disorder average A of an observable which can be decomposed into
different clusters according to (5.2) is given by

A = lim
L→∞

1

L

L∑

l=1

A(
�

l) (5.58)

as shown in App. G.
By choosing A(

�
k) := δNk,n/Nk the cluster size distribution τn is obtained which can

be seen by virtue of Eqs. (5.7) and (5.6). Accordingly, the cluster size distribution τn is
obtained from the Leath average (5.58) via

τn =
1

n
lim

L→∞

1

L

L∑

l=1

δN( � l),n (5.59)

=:
1

n
τ (Leath)
n . (5.60)

The implication of Eq. (5.59) is obvious: the cluster size distribution τ (Leath)
n of the Leath

algorithm differs by a factor n from the cluster size distribution of the box filling method.
Hence, the number of clusters of size n generated by the Leath method is by a factor n
larger as for the box filling method. This is particularly useful for studying critical behavior
which is dominated by clusters with large n.

For a given Leath cluster
�

the resistances � i,j are computed from the Moore-Penrose
inverse of the connectivity matrix Γ (

�
) according to Eq. (5.15). The Moore-penrose in-

verse is computed via the spectral decomposition (B.7), where the eigenvalues and eigen-
vectors have been obtained with the LAPACK-routine dsyev_ . The smallest numerically
computed eigenvalue, which is small but numerically nonzero, is taken to be the null eigen-
value of Γ (

�
). The preaveraged mobility matrix (2.29) is computed with the function h

from (2.31), corresponding to the Rotne–Prager tensor. After these steps, the matrices
Γ (

�
) and H(

�
) are available. The numerical complexity is of order

�
(n3) due to the

spectral decomposition of the connectivity matrix.

Tests The algorithm is tested by comparing the numerical data with literature results for
bond percolation. According to Stauffer [StAh95] the cluster size distribution τn obeys the
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Figure 5.6: Scaling of the cluster size distribution with literature values τ = 2.18 and
σ = 0.45 taken from [StAh95]

scaling law (1.3) for large n and bond probabilities p close to the percolation probability
ccrit = 0.2488. The scaling assumption predicts a master curve for large n if nτ τn is plotted
as a function of the scaling variable nεσ. In Fig. (5.6) nτ−1τ

(Leath)
n is plotted as a function

of nεσ. The values σ = 0.45 and τ = 2.18 for the exponents for 3d bond percolation are
taken from the literature [StAh95]. For large n the curves for different values of the bond
probability p fall fairly well on top of each other. The scattering of the data for p = 0.24
displays the fact that for large n only very few, i.e. 1, 2 . . . clusters per cluster size are
generated. The total number 107 of generated clusters is still to small to obtain accurate
statistics at high n which reflects the power law decay of the cluster size distribution at the
critical point.

As a second test the numerical data is compared to exact series expansion results of
perimeter polynomials Dm(1 − p). The perimeter polynomials Dm(1 − p) are defined by
the relation [SyGa81]

K(p) :=
∞∑

m=1

Dm(1 − p)pm (5.61)

for the mean number K(p) of finite clusters per lattice site at density p where the sum
is over all possible numbers of bonds. This implies that nm(p) := Dm(1 − p)pm is the
mean number of clusters per lattice site consisting of m bonds and an arbitrary number of
vertices. The presence of m bonds is reflected by the factor pm and the average geometry
of the cluster is characterized by the perimeter polynomial Dm(1 − p). For the Leath
algorithm, one has [PiSt81]

n(Leath)
m (p) :=

1

d

m

p
nm(p) (5.62)

which allows comparing the numerically obtained value n(Leath)
m (p) with the analytical

expression nm(p) for the simple cubic lattice from [SyGa81]. The numerical data is shown
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in shown in Fig. 5.7, it is excellent agreement with the analytical expression for various
values of p.

In the last test the scaling of a typical, averaged single cluster quantity with cluster
size n is computed, namely the scaling of the squared radius of gyration R2

gyr,n of lattice
percolation clusters at the critical point.

Since each Leath cluster
�

l is generated on the cubic lattice
� 3 the radius of gyration

is defined by

R2
gyr(

�
l) :=

1

2(N(
�

l))2

∑

i,j∈ � l

(xi − xj)
2 , (5.63)

where xi − xj is the Euclidean distance vector between points i, j on that lattice in units
of the nearest neighbor distance. At the critical point pc ≈ 0.2488 the radius of gyration is
computed as a function of the cluster size n. The result is shown in Fig. 5.8. By fitting the
data to a power law R2

gyr,n ∼ nbR in the interval [50, 5000] the exponent bR ≈ 0.791. This

is to be compared with Eq. (1.8). The literature value d(H)
f = 2.53 yields bR = 2/d

(H)
f ≈

2/2.53 ≈ 0.791 which is in perfect agreement with the above result.



5.5. Numerical methods 77

1 10 100 1000
0.1

1

10

100

1000

PSfrag replacements

n

R
2 gy

r
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Chapter 6

Results

6.1 Rouse Model

Observables in the Rouse model are obtained from the formulas derived in Secs. 4.2 and
4.3 by setting H =

�
.

6.1.1 Shear viscosity

Even though briefly explained in section 5.2, here the procedure of obtaining the averaged
viscosity starting from the expression (4.36) is demonstrated again since these steps are
important and identical for all observables.

The disorder average η = 〈η( · )〉 of the shear viscosity η( � ) from (4.36) is computed
by employing Eq. (5.8) which amounts to

η =
∞∑

i=1

nτn ηn . (6.1)

Thereby the partial average 〈η( · )〉n in (5.8) has been replaced by the average ηn (see Eq.
(5.20) at the critical point which suffices to compute the critical behavior of η as explained
in Sec. 5.1.2. The scaling of ηn is deduced from Eqs. (5.18), (5.20) and (5.21), yielding

ηn =
ζa2

12
ρ(1)

n . (6.2)

For Erdős-Rényi random graphs an exact expression for the averaged viscosity valid
for all c < ccrit was already derived in [BrLo99, Loe99]. This was done by inserting the
exact expression (5.24) for ρ(1)

n into (6.1). The series can be summed up by analytic means
and gives

η =
ζa2

24c

[
ln

(
1

1 − 2c

)
− 2c

]
. (6.3)

Hence, for Erdős-Rényi random graphs the viscosity diverges logarithmically for c ↑ ccrit,
corresponding to a critical exponent k = 0. Additionally, the result (6.3) can be rederived

79
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[BrLo01b] by expressing the viscosity η in terms of the first, inverse moment M1 (5.54) of
the density of states (5.51) according to η = ζa2

6
M1. Again, one ends up with (6.3).

For bond percolation the averaged contribution (6.2) of the viscosity of clusters of sizes
n is determined by the scaling form

ηn := 〈η( · )〉 |ε=0 =
ζa2

12
ρ(1)

n ∼ n2/ds−1 (6.4)

as a consequence of Eqs. (5.18),(5.21) and (5.32). The result (6.4) is an exact expression
for the Mark–Houwink relation of percolation clusters in the Rouse model at the critical
point. The same scaling relation has been obtained in [Mut85] by generalizing the Rouse
equation of motion of a linear chain heuristically to fractal topologies.

The critical behavior of the overall viscosity (6.1) for bond percolation follows from
Eqs. (6.4) and (5.13) and is given by

η ∼ ε−k , with k = (2/ds + 1 − τ)/σ . (6.5)

It agrees with (6.3) for Erdős-Rényi random graphs if the mean field exponents (d ≥ 6) for
bond percolation are inserted. The numerical values for k are inferred from Tabs. 1.2, 5.1.
This implies k = 0 in d = 6 which corresponds to the logarithmic divergence (6.3) and
d = 3 one has k = 0.71.

The derivation of the result (6.5) relies on the assumption (5.32) that the p−th moment
follows a power law at the critical point which is reasonable but could not be justified rig-
orously. However, this assumption can be confirmed a posteriori. Therefore the viscosity
η is related to the generating function Z(λ, ω) of the resolvent of Γ which is defined by
Eq. (5.33). Using the fact that the system is translationally invariant the viscosity (4.36)
averaged over the disorder is related to Z(λ, ω) via

η =
ζ a2

6

〈(
1 − E0

Γ

)

j,j

〉

= − ζ a2

3
lim
ω→0

Re
∂

∂λ2

∣∣∣∣
λ=0

Z(λ, ω) . (6.6)

Here, for the second equality the expansion (B.6) of the resolvent of Γ is employed in.
From (6.6) the result (6.5) is readily re-derived.

In order to shed some light onto the viscosity scaling (6.4) the relation of the radius
of gyration of percolation clusters is re-examined. Since η(

�
k) := (ζ/6)R2

gyr(
�

k) (cf.
(5.19)) the averaged radius of gyration R2

gyr,n of percolation clusters with n monomers
follows the same scaling form as the viscosity

R2
gyr,n =

〈
R2

gyr( · )
〉

n
|ε=0 ∼ n2/ds−1 . (6.7)

When comparing Eq. (6.7) to the familiar relation R2
n ∼ n2/d

(H)
f (cf. Eq. 1.8) for the radius

of gyration of lattice percolation clusters in terms of the Hausdorff fractal dimension d(H)
f
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it is suggestive to introduce a Gaussian fractal dimension d(G)
f by

2

d
(G)
f

:=

(
2

ds
− 1

)
(6.8)

for Gaussian percolation clusters [Cat85]. By means of d(G)
f the scaling of the radius of

gyration (6.7) and the viscosity (6.4) is rewritten as

R2
gyr,n ∼ ηn ∼ n2/d

(G)
f . (6.9)

The Gaussian fractal dimension for randomly branched polymers was first computed by
Zimm and Stockmayer [ZiSt49] and is given by d(G)

f = 4.
Finally, it is mentioned that the critical behavior of the viscosity (6.5) can also be

deduced from η =
∫∞

0
dt′ G(t′) by employing the scaling of the shear relaxation function

G(t) from (5.48) [Mue03]. It yields k = z(1 − ∆) and by virtue of the definitions of
the exponents z,∆ in (5.50) one ends up with (6.5). This result is consistent with the
scaling argument given in [CoGi93] which relates the viscosity to the product of the longest
relaxation time t∗ and the modulus on that time scale G(t∗) ∼ (t∗)−∆. This argument
follows from dimensional analysis and gives η ∼ (t∗)1−∆. It is not surprising that the
fundamental scaling relation k = z(1−∆) of critical rheology is recovered (cf. Sec. 1.3.1)
since the scaling (5.48) of the shear relaxation function was assumed a priori.

6.1.2 First normal stress coefficient

According to (5.8) the disorder averaged first normal stress coefficient (4.41) is given by

Ψ(1) =
∞∑

i=1

nτn Ψ(1)
n (6.10)

with the partial average at the critical point

Ψ(1)
n :=

〈
Ψ(1)( · )

〉
n

∣∣
ε=0

. (6.11)

In order to compute the partial average (6.11) the first normal stress coefficient of a cluster�
k the expression (4.42) is written in the form

Ψ(1)(
�

k) :=
1

kBT

(
a2

3

)2
1

2Nk

∑

i,j∈ � k

[
1 − E0

Γ

]

i,j

[
1 − E0

Γ

]

i,j

. (6.12)

From Eq. (6.12) it is plausible that a straightforward application of the derived scaling rela-
tion for the resistances (5.21) is not as simple. This can be seen by inserting the expression
(5.16) for the matrix element [(

� −E0)/Γ ]i,j in terms of the resistances into (6.12) and sub-
sequently into (6.11): It requires the computation of averages of the form 〈� i,j � k,l〉n for
arbitrary nodes i, j, k, l in the same cluster. In other words, it requires the joint probability
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of two resistances � i,j, � k,l or equivalently by the conditional probability Prob(� i,j|� k,l)
of � i,j under the condition of fixed � k,l. Note, that fixing � k,l imposes a constraint on the
geometry of the cluster. However, for large cluster sizes n → ∞ which give the dominant
contributions to the critical behavior of (6.10) this constraint is expected to be negligible,
which means that the finite set of vertices i, j, k, l in the nearly infinite cluster have inde-
pendent environments. Therefore it seems plausible that the average factorizes for n→ ∞.
Then, for i 6= k or j 6= l one has 〈� i,j � k,l〉n ∼ 〈� i,j〉2n, whereas for i = k and j = l one
has 〈� i,j � k,l〉n =

〈
� 2

i,j

〉
n
. Since for both ensembles, Erdős-Rényi random trees (5.26)

and bond percolation (5.26) the square of the average resistance and the average of the
squared resistance have the same scaling for n→ ∞, viz

〈� i,j〉2n |ε=0 ∼
〈

� 2
i,j

〉
n
|ε=0 ∼ nρ(2)

n , (6.13)

the aforementioned argument leads to the conjecture

Ψ(1)
n ∼ nρ(2)

n ∼ n4/ds−1 (6.14)

for the scaling of the averaged first normal stress coefficient over clusters of size n. By
inserting (6.14) into (6.10) and comparing with (5.13) the critical behavior

Ψ(1) ∼ ε−` , with ` =
(
4/ds + 1 − τ

)
/σ (6.15)

is derived for the first normal stress coefficient.
This result is consistent with Erdős-Rényi random graphs where the normal stress coef-

ficient can be computed from the second inverse momentM2 (see Eq. (5.55)) of the density
of states [BrLo01b]. It yields

Ψ(1) ∼M2 = c

[
−8c3 − 6c2 − 5c+ 1

30c(1 − 2c)3
− 4c2 − 3c− 1

24c(1 − 2c)2
+

1

240c2
ln(1 − 2c)

]
(6.16)

and exhibits a divergence Ψ(1) ∼ ε−3 for c ↑ ccrit which is accordance with (6.15) for the
mean field values ds = 4/3, τ = 5/2, σ = 1/2.

In fact, the conjecture (6.15) is also confirmed by computing the first normal stress
coefficient directly from the shear relaxation function Ψ(1) ∼

∫∞
0

dt t G(t) with the scaling
form (5.48) as done in [Mue03]. This gives the scaling relation ` = z(2 − ∆) and by
virtue of the definitions (5.50) of z,∆ one arrives at (6.15). The numerical value is given
by ` ≈ 4.9 for d = 3 and ` = 3 for mean field percolation.

6.1.3 Recoverable compliance

In contrast to the previous examples, the average of the recoverable compliance cannot be
computed directly, since the expression (4.43) cannot be written as a sum over contribu-
tions from individual clusters. However, since self-averaging is anticipated for all observ-
ables, the recoverable compliance (4.43) must be determined by the critical behavior of the
viscosity (6.5) and the normal stress coefficient (6.15) according to

J =
Ψ(1)

2η2
∼ ε−`

ε−2k
∼ ε−(`−2k) . (6.17)
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Note that ` − 2k = z∆ which is in accordance with the following simple scaling picture.
The recoverable compliance J is an inverse elastic modulus on time scales t ≈ t∗ where
the liquid, macromolecular system still exhibits elastic behavior. After the time t∗ or for
frequencies ω < ω∗ = 1/t∗ the response of the system is fluid-like for all frequencies. The
modulus on the terminal time scale is given by G(t∗) ∼ (t∗)−∆ which is a consequence
of the scaling form (5.48). This implies J ∼

(
G(t∗)

)−1 ∼ ε−z∆, in accordance with the
fundamental scaling relation of critical rheology µ = z∆ for the exponent µ of the shear
modulus (cf. Sec. 1.3.1).

Denoting by θ the critical exponent of J it can be expressed solely in terms of the
exponents of the cluster size distribution

J ∼ ε−θ , with θ =
τ − 1

σ
(6.18)

and is independent of ds. The numerical values are given by θ = 2.62 in d = 3 and θ = 3
in d = 6.

6.1.4 Incoherent Scattering function

Next, density fluctuations in the Rouse model are considered. The simplest quantity, the
diffusion constant of a cluster of size n, is rather uninteresting in the Rouse model. Ac-
cording to (4.46) the diffusion constant of a cluster of size n in the Rouse model is simply
given by inverse number of monomers in the cluster [BrGo97]

Dn =
kBT

nζ
. (6.19)

This is a consequence of the fact that the Rouse model assigns the same frictional force to
each monomer in the cluster.

Scaling of the incoherent scattering function The average of the incoherent scattering
function (4.50) is given by

S(q, t) := 〈S(q, t| · )〉 =

∞∑

n=1

nτn Sn(q, t) (6.20)

with the partial average

Sn(q, t) :=

〈
1

Nk

∑

i∈ � k

e− q2

2
Di,i(t| · )

〉

n

∣∣∣∣∣∣
ε=0

. (6.21)

The average 〈•〉n of the exponential in (6.21) cannot be computed analytically. However,
a lower bound to the scattering function can be derived by applying the Jensen inequality
(cf. App. F) in the form 〈exp(•)〉n ≥ exp(〈•〉n) to (6.21). This yields

Sn(q, t) ≥ e−q2 1
2n

Tr Dn(t) , (6.22)
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where the average Dn(t) := 〈D(t| · )〉n|ε=0 of the matrix (4.27) of second moments of the
increments has been defined. The bound can be related to the return probability (5.44) of
the blind ants random walk (5.43) via

1

2n
TrDn(t) =

kBT

ζ

∫ t

0

dt′Pn(18t′/tmic) , (6.23)

and hence

S(q, t) ≥
∞∑

n=1

nτn e−(kBT/ζ) q2
R t
0

Pn(18t/tmic) (6.24)

If 18t� tmic the scaling form (5.44) can be inserted into (6.24). Therefore, it is convenient
to introduce a critical, characteristic length scale, which is termed Gaussian correlation
length

ξ∗ := a ε−ν(G)

(6.25)

with the Gaussian correlation length exponent

ν(G) := 1/(σd
(G)
f ) = (1/ds − 1/2)/σ. (6.26)

The Gaussian correlation length exponent (6.26) is defined in analogy to lattice percolation
where the correlation length exponent ν is related to the Hausdorff fractal dimension d(H)

f

of lattice percolation clusters in the same way ν = 1/(σd
(H)
f ) (see Tab. 1.1). The Gaussian

correlation length is thus proportional to the radius of gyration of the largest cluster with
size n∗. By inserting the scaling behavior (5.44) of Pn(t) and the cluster size distribution
τn = n−τ f(n/n∗) into (6.24) the bound can be written in terms of the scaling variables
t/t∗, qξ∗, n/n∗

S(q, t) ≥
∫ ∞

0

dnn1−τ f(−n/n∗)

exp

{
−(qξ∗)2 (t/t∗) (n∗/n)

[
1 +

+
(n/n∗)

(t/t∗)ds/2

∫ 1

0

dy y−ds/2FP

(
y

(t/t∗)

(n/n∗)2/ds

)]}
. (6.27)

It is suggested that this bound correctly recovers the scaling properties of the incoherent
scattering function. However, it has not been possible to show this analytically. The accu-
racy of the bond relies on the accuracy of the Jensen inequality in (6.22). One may suggest
that the bound amounts to an equality for the following reason: In [Loe99, BrLo01a] it
was shown for Erdős-Rényi random graphs that the application of the Jensen inequality in
a similar case does not affect the asymptotic long time behavior of the scattering function
for t� t∗.



6.1. Rouse Model 85

Long time decay of the incoherent scattering function Next, the disorder averaged
upper bound (4.54) of the incoherent scattering function is examined. With the expression
(6.19) for the diffusion constant the upper bound

S(q, t) ≤
∞∑

n=1

nτn e−Dnq2t (6.28)

is obtained [Loe99, BrLo01a], which has a striking physical interpretation. On the longest
time scales t � t∗ only the diffusive motion of the clusters contribute to the decay of the
scattering function. Possible dynamical processes stemming from the relaxation of internal
modes have already decayed. Expression (6.28) has also been proposed by de Gennes on
phenomenological grounds [Gen79a]. For Erdős-Rényi random graphs it can be proved
(see [Loe99, BrLo01a]) that the long time decay of the bound (6.28) coincides with the
long time decay of the scattering function. The proof requires the precise knowledge of
the cluster size distribution which is exactly known only for Erdős-Rényi random trees. If,
however, (6.28) is also expected as the true long time behavior for bond percolation, then
the long time behavior of both ensembles can be combined in the same functional scaling
form. Therefore, the sum (6.28) is converted into an integral for ε � 1. This yields (see
[BrLo01a] or App. E.2)

S(q, t) ∼ (q2t)δFS(t/tq) , (6.29)

with a q-dependent, diffusive, diverging time scale

tq ∼ q−2ε−z̃ , with z̃ = 1/σ . (6.30)

The scaling function FS(x) is of order unity for x → 0 and decays like a stretched expo-
nential FS(x) ∼ xαS(δ−1/2) exp{−c xαS} for x→ ∞. Neglecting algebraic prefactors, the
incoherent scattering function decays according to a stretched exponential

S(q, t) ∼ exp {−(t/tq)
αS} , with αS = 1/2 (6.31)

in the sol phase and according to a power law

S(q, t) ∼ 1

(q2t)δ
, with δ = τ − 2 (6.32)

at the critical point. The exponent of the stretched exponential does not depend on the
cluster statistics in the Rouse model. This is similar to the stretched exponential decay
of the shear relaxation function G(t) where the exponent αG = 1/3 is valid also for both
crosslink ensembles (see below Eq. 5.57).

Next, the effective diffusion constant (3.29) is computed, which is given by the time
integral over the scattering function. Likewise, one can integrate the lower bound (6.28)
which presumably has the same long time decay which dominates the integral in the vicin-
ity of the transition. This implies

D−1
eff =

∞∑

n=1

nτnD
−1
n . (6.33)
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Using Dn ∼ 1/n and the formula (5.13) Eq. (6.33) gives rise to the divergence [BrLo01a]

D−1
eff ∼ ε−u , with u = (3 − τ)/σ (6.34)

Expression (6.33) reveals the significance of the effective diffusion constant: It is the
diffusion constant of a cluster with weight-averaged cluster size nw ∼ ε−γ (cf. Eq. (1.4))
since Dnw ∼ n−1

w ∼ εγ ∼ Deff . In contrast, the diffusion constant of the largest cluster
Dn∗ ∼ ε1/σ vanishes more rapidly.

One may be confused that the discussion of density fluctuations apparently introduces
a new time scale tq with a critical divergence being different from that of t∗. The time scale
t∗ is the longest time scale in the system and can be related to the diffusive time scale of
those clusters having size n∗ and spatial extension ξ∗, viz t∗ = (ξ∗)2/Dn∗ . Moreover, one
would expect that t∗ is the only relevant time scale and ξ∗ the only relevant length scale
in the vicinity of the critical point. Hence, dimensional analysis dictates the diffusive time
scale tq ∼ q−2 being related to the fundamental scales according to

tq =
t∗

(qξ∗)2
. (6.35)

Equation (6.35) then predicts tq ∼ ε2ν(G)−z which coincides with (6.30) by virtue of the
definitions of ν(G) and z in Eqs. (6.26) and (5.50), respectively. This implies the scaling
relation

z̃ = z − 2ν(G) . (6.36)

Time persistent contribution of the incoherent scattering function Finally, the limit
t → ∞ of the incoherent scattering function (6.20) is considered. The time persistent
contribution

S∞(q) := lim
t→∞

S(q, t) (6.37)

for c > ccrit plays the role of the order parameter for the gelation transition in the Rouse
model. For that purpose, the long time limit of the matrix of displacements

Di,i(t| � ) =
2kBT

ζ

(
1

N(i)
t+

∫ t

0

dt′
[
(

� − E0) exp {−3 Γ ( � )t′/tmic}
]
i,i

)
(6.38)

is examined more precisely. Whenever the number of monomers N(i) of the cluster of
monomer i remains finite in the macroscopic limit Di,i(t| � ) tends to infinity for t → ∞
reflecting an unbounded mean squared displacement due to diffusive motion of the center
of mass. On the other hand, if i belongs to the incipient macroscopic cluster then N(i)
tends to infinity which suppresses the diffusive motion of that cluster. This corresponds to
a localization of the incipient infinite cluster

�
∞ in space. In fact, this result relies on the

order of the limits, the long time limit is to be taken after the macroscopic limit.
As demonstrated in App. C.1 the long time limit is given by

lim
t→∞

Di,i(t| � ) =





∞ i 6∈ �
∞

2a2

3

[ � − E0

Γ

]

i,i

i ∈ �
∞ ,

(6.39)
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which implies

S∞(q) : = lim
t→∞

S(q, t) =

〈
1

N

∑

i∈ � ∞

exp

{
−q2a2

[ � − E0

Γ

]

i,i

}〉
(6.40)

for the scattering function (6.20).
Thus, the time persistent part of the incoherent scattering function is nothing but the

characteristic function (5.36) of the resistance to infinity, viz S∞(q) = Z∞(|q|). It can be
written as

S∞(q) = S∞

∫ ∞

0

dx π(x) e−(qξ∗)2/x (6.41)

in terms of the gel fraction S∞ according to Eq. (5.37). This is interpreted as follows: π(x)
plays the role of a distribution of squared, inverse localization lengths which characterizes
the thermal excursions of a particle in the macroscopic cluster. The length scale of these
excursions is set by ξ∗. The expression (6.41) is formally identical to the result (3.32) which
has been derived within a mean field approximation of the gelation transition in d = 6 in the
presence of excluded volume interactions. The difference between both expressions lies
in the associated length scales. In the presence of excluded volume interactions the order
parameter (3.32) involves the correlation length of lattice percolation ξ whereas in the
absence of excluded volume interactions (5.37) involves the Gaussian correlation length
ξ∗.

However, it is emphasized that the result (6.41) bears a serious conceptual problem.
It is well known that excluded volume interactions are indispensable in the gel phase for
c ≥ ccrit in order to guarantee a stable equilibrium phase [BaEd80]. Without repulsive
interactions it is not possible to maintain a homogeneous system with a constant monomer
density. This is plausible, since in the absence of excluded volume interactions cluster radii
are governed by the Gaussian fractal dimension which is larger than the spatial dimension.

Thus, the monomer density n/(Rn)d ∼ n1−d/d
(G)
f within a cluster of size n exhibits a

singularity for the incipient macroscopic cluster for n → ∞. This prevents homogeneity.
Nevertheless, one might imagine that a gelling system is governed by a Gaussian fractal
dimension up to a particular length scale and thus (5.37) might be valid at least on certain
length scales even for for c ≥ cc. But, unless it is possible to identify the phantom cluster
description of percolation clusters with a meaningful limit of a realistic system, the result
(6.41) remains a formal one. This point is again taken up in the discussions.

6.1.5 Order parameter susceptibility

The disorder average of the bound to the nonlinear dynamic susceptibility (4.59) is given
by

χ(q, t) ≥
〈

1

N

N∑

i,j

e− q2

2

[
Di,i(t)+Dj,j (t)−2Di,j (t)

]〉
. (6.42)
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According to (5.12) this can be written in the form

χ(q, t) ≥
∞∑

n=1

n2τn

〈
1

N2
k

∑

i,j∈ � k

e− q2

2

[
(Di,i(t)+Dj,j (t)−2Di,j (t)

]〉

n

. (6.43)

Similar to the scattering function the average of the exponential in (6.43) cannot be per-
formed exactly. Therefore, the Jensen inequality is applied to (6.43) by shifting both av-
erages, 〈•〉n and N−2

k

∑
i,j(•) into the argument of the exponential. From Eq. (C.5) the

equality N−2
k

∑
i,j∈ � k

Di,j(t|
�

k) = 2 kBT t/(ζNk) is inferred and by setting H =
�

the
lower bound

χ(q, t) ≥
∞∑

n=1

n2τn exp

{
−2q2

(
1

2n
TrDn(t) − kBT t

ζn

)}
(6.44)

=
∞∑

n=1

n2τn exp

{
−2 kBT

ζ
q2

∫ t

0

dt′
(
Pn(18t′/tmic) − 1/n

)}
(6.45)

is obtained. Here, the second equation is obtained by inserting (6.23). By assuming t �
tmic the scaling form (5.44) of the return probability Pn(t) can be inserted. In the vicinity
of the critical point the sum over clusters is converted into an integral and by substituting
x := n/n∗ = nε1/σ and y := t′/t one gets

χ(q, t) & ε−(3−τ)/σ

∫ ∞

ε1/σ

dx x2−τ f(x)

exp

{
−2 kBT

ζ
q2(t/tmic)

1−ds/2

∫ 1

0

dy y−ds/2FP

(
ytε2/(σds)

x2/ds

)}
. (6.46)

With the time scale t∗ = tmic ε
−z from (5.49) and the length scale ξ∗ from (6.25) it is

readily verified that (kBT/ζ) q
2t1−ds/2 = (qξ∗)2(t/t∗)1−ds/2t

−ds/2
mic . In the limit ε ↓ 0 the

integral has a well defined limit for τ < 3 and hence the scaling relation

χ(q, t) & ε−γ Fχ(q ξ∗, t/t∗) , for ε ↓ 0 (6.47)

is derived for the bound of the nonlinear susceptibility with a scaling function

Fχ(z1, z2) =

∫ ∞

0

dx x2−τ f(x) exp

{
−2z1z

1−ds/2
2

∫ 1

0

dy y−ds/2FP

(
z2 y/x

2/ds
)}

.

(6.48)
The scaling form (6.47) which has been derived for the bound to the nonlinear dy-

namic susceptibility is of exactly the same form one would anticipate within the dynamic
scaling assumption [HoHa77, Sec. III C.2]. Unfortunately, it is not possible to prove the
scaling behavior also for (6.42). Nonetheless, the result is reasonable and demonstrates the
relevance of the scales ξ∗ and t∗ in the Rouse model.
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6.2 Zimm model

Observables in the Zimm model are obtained from the formulas derived in Secs. 4.2 and
4.3 with H 6= �

.

6.2.1 Shear viscosity and first normal stress coefficient

The disorder averages of the viscosity (4.37) and the first normal stress coefficient (4.41)
in the Zimm model are determined by the scaling behaviors

ηn =
〈
η( · )

〉
n

∣∣
ε=0

∼ nbη (6.49)

Ψ(1)
n =

〈
Ψ(1)( · )

〉
n

∣∣
ε=0

∼ nbΨ (6.50)

via the familiar relations

η =

∞∑

n=1

nτn ηn , Ψ(1) =

∞∑

n=1

nτn Ψ(1)
n . (6.51)

Note, that the viscosity (4.38) and the first normal stress coefficient (4.42) are now deter-
mined by the matrix Γ̃ = H

1
2 ΓH

1
2 where the matrices Γ and H are either computed for

Erdős-Rényi random graphs or for bond percolation as described in Sec. 5.5.1, 5.5.2, re-
spectively. As already mentioned, Γ̃ = H

1
2 ΓH

1
2 and Γ̂ = HΓ have the same eigenvalues

(this is proved in App. B.2). For numerical purposes it is advantageous to use Γ̂ instead of
Γ̃ in order to avoid the computation of the square root H

1
2 . For each generated cluster the

product Γ̂ := HΓ is computed and numerically diagonalized by the LAPACK routines
dgehrd_ and dhseqr_ . The smallest eigenvalue of Γ̂ , which is a nonzero number in
computer precision is regarded as the null eigenvalue. The viscosity is given by the sum
over the inverse, nonzero eigenvalues and the normal stress coefficient by the sum over the
squares of inverse, nonzero eigenvalues.

6.2.1.1 Numerical results

Erdős-Rényi random graphs For Erdős-Rényi random graphs suitable, logarithmically
equidistant cluster sizes n ∈ [2, 4000] are chosen, in order to reduce the computational
effort. For each cluster size the viscosity and the first normal stress coefficient are averaged
over 50 trees, which turned out to yield an acceptable computer-time/accuracy trade-off.
In Figs. 6.1(a) and (b) ηn and Ψ

(1)
n are plotted as a function of n on a double-logarithmic

scale for different values of the hydrodynamic interaction parameter κ. According to (6.49)
the exponents bη and bΨ are obtained by power law fits in the large n-range, for which the
interval n ∈ [700, 4000] is chosen, see Fig. 6.1(c). For the viscosity the exponent decreases
from bη = 0.28 for κ = 0.05 to bη = 0.11 for κ = 0.3. The Rouse exponent for κ = 0 is
exactly given by bη = 1/2 (cf. Eq. (6.4)). The exponent bΨ of the normal stress coefficient
ranges from bΨ = 1.2 for κ = 0.05 to bΨ = 0.73 for κ = 0.25. The Rouse value for κ = 0
is exactly given by bΨ = 2 (cf. Eq. (6.14)).
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Figure 6.1: Numerical data to determine the scaling (6.49) for random clusters in the case
of Erdős–Rényi random graphs (left column) and three-dimensional bond percolation (right
column). In each case the averaged viscosity ηn (top) and normal stress coefficient Ψ

(1)
n

(middle) are plotted for different strengths of the hydrodynamic interaction parameter κ as a
function of the cluster size n on a double logarithmic scale. Power-law fits to the data yield
the exponents bη and bΨ as a function of κ (bottom).
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Figure 6.2: Comparison between Rotne–Prager and the Oseen tensor. The viscosity (left)
and the first normal stress coefficient (right) for Erd̋os-Rényi random graphs have been com-
puted for κ = 0.3. Note, that the axis-scale is linear, so that the differences between both are
indeed negligible

The same results are obtained if the Oseen tensor is used instead of the Rotne–Prager
tensor. This is demonstrated in Fig. 6.2 where the viscosity and the first normal stress
coefficient computed from the Rotne–Prager tensor are compared with the Oseen tensor
for cluster sizes n ≤ 1914 for κ = 0.3. The relative deviation for n = 1914 is of order
1% for the viscosity and 2% for the normal stress coefficient and corresponding fits for the
exponents give the same results within numerical accuracy.

Bond percolation The generation of clusters is restricted to values n < 4000 due to the
limited amount of memory, which is required for the generation and diagonalization of
the matrix product Γ̂ = HΓ . Moreover, for calculating disorder averages the number of
realizations pertaining to a given cluster size is restricted to a maximum of 50. However,
within the present numerical effort this maximum number is not even attained for larger
cluster sizes. Therefore the disorder averaged quantities are still subject to fluctuations. In
order to obtain smooth curves for ηn and Ψ

(1)
n the raw data is smoothed out by performing

a running average over cluster sizes in the window [n− 5, n+5]. The thus obtained values
for ηn and Ψ

(1)
n are plotted in Figs. 6.1(d) and (e), respectively, as a function of n on a

double-logarithmic scale for different values of κ. The exponents bη and bΨ, extracted by
fitting the curves in Figs. 6.1(d) and (e) to a power law in the interval n ∈ [800, 4000], are
shown in Fig. 6.1(f). The numerical values for bη are nearly identical to those obtained for
Erdős–Rényi random graphs. Again, one observes a decrease from bη = 0.21 for κ = 0.05
to bη = 0.11 for κ = 0.3. The exponent bΨ of the normal stress coefficient ranges from
bΨ = 1.1 for κ = 0.05 to bΨ = 0.78 for κ = 0.25. The corresponding Rouse values for
κ = 0 follow from Eq. (6.5) and (6.15).
For both Erdős-Rényi random graphs and bond percolation similar results are obtained:
The exponents bη, bΨ appear to depend on the strength of the hydrodynamic interaction
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parameter κ. The origin of the observed variation may be due to finite-size effects or
possible non-universal behavior. The present numerical calculations are not capable of
clarifying the origin of the observed variations with κ neither for Erdős-Rényi random
graphs nor for bond percolation due to the limitations of available cluster sizes. In order
to better understand finite-size effects and the onset of the asymptotic scaling regime, it is
useful to study a system where the scaling exponents are known analytically. Therefore
the viscosity ηring and the first normal stress coefficient Ψ

(1)
ring of ring polymers in the Zimm

model are re-investigated with the Rotne–Prager tensor.

6.2.1.2 A reference system: Ring polymers

For a ring polymer � n of size N the connectivity matrix Γ ( � n) differs from the connectiv-
ity matrix of the linear chain (2.17) only by one bond

Γ ( � n) =




2 −1 0 . . . −1

−1 2 −1
...

0
. . . 0

... −1 2 −1
−1 . . . 0 −1 2



. (6.52)

Due to the cyclic structure of the ring Γ ( � n) is a circulant matrix, i.e. the matrix elements
Γi,j( � n) depend only on (|i−j| mod n). The pair resistances � i,j have the same property
and so has H( � n). All circulant matrices are simultaneously diagonalizable. In fact, the
j-th component of the l-th eigenvector of Γ̂ ( � n) = H( � n)Γ ( � n) for a ring of size n is
explicitly given by ψ(l)

j = exp(i2πjl/n). The eigenvalues γ̂l of Γ̂ ( � n) can be written in a
Fourier representation

γ̂l = 2
(
1 − cos (2π l/n)

) n−1∑

k=0

hk exp

{
i 2π

kl

n

}
(6.53)

for l = 0, 1, . . . n− 1 where the coefficients hk are defined by hk := h
(
κ2πn/(k(n− k))

)
.

The eigenvalues are real valued which can be seen from hk = hn−k for k = 1, 2, . . . n− 1
(cf. also [OeZy92]). The discrete Fourier transforms (6.53) can be computed efficiently by
Fast Fourier Transformation up to ring sizes n = 105 with the Numerical Recipes routine
four1 . The resulting viscosity ηring and the first normal stress coefficient Ψ

(1)
ring are shown

in Figs. 6.3(a) and (b) on a double logarithmic scale. The data is then fitted to a power law
in two different fit ranges. In addition to a fit in the terminal large-n range, n ∈ [104, 105], a
second fit in the range n ∈ [500, 5000] is performed, which is roughly where the fits in the
random-cluster case are done. The fit exponents are shown in Fig. 6.3(c). Apparently, they
depend on the fit range. For κ = 0.05 an exponent bη,ring = 0.69 is found from the small-n
fit. This value clearly exceeds the theoretical one bη,ring = 1/2 which can be deduced from
long-standing analytical results, [BlZi66] (see also App. H). Even the corresponding value
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Figure 6.3: Numerical data to determine the scaling (6.49) for ring polymers. The viscosity

ηring (a) and the normal stress coefficient Ψ
(1)
ring (b) are plotted for different strengths of the

hydrodynamic interaction parameter κ as a function of the cluster size n on a double logarith-
mic scale. (c) shows the exponents bη,ring and bΨ,ring from power-law fits to the data of (a)
and (b). The fits were performed for two different ranges of cluster sizes n. Additional data
points for κ = 0.05, 0.15 and 0.25 in (c) stem from curves which have been omitted in (a) and
(b) for reasons of clarity. The two horizontal lines indicate the exact values bη,ring = 1/2 and
bΨ,ring = 2.

bη,ring = 0.58 from the large-n fit still has an error of 36%. In contrast, for κ = 0.3 both
values, bη,ring = 0.51 and 0.50, are quite close to the exact one. The same characteristic
behavior holds true for bΨ,ring with the exact value given by bΨ,ring = 2 (see App. H).

The observed variation of the exponents bη,ring and bΨ,ring is quite similar to the random
cluster case. However, for ring polymers it is straightforward to demonstrate (see App. H)
by means of the Fourier representation (6.53) the occurrence of a crossover at n̂ ≈ π/κ2

from Rouse behavior, ηring ∼ n, to the asymptotic Zimm behavior ηring ∼ n1/2/κ for
all n � κ−2. Hence, the larger κ, the less important is residual Rouse behavior in the
numerical data for the scaling of ηring. The same holds true for Ψ

(1)
ring. Unfortunately,

choosing larger values for κ is not a practicable way out for obtaining good-quality data.
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This is because for large κ the asymptotics

h(x) ∼ 1 − (πx)−1/2 (6.54)

of (2.31) as x → ∞ becomes noticeable and leads to the transient behavior ηring ∼ κn0

for intermediate n as shown in App. H. This behavior is observed for (unphysically large)
κ > 10. But even the data for κ = 0.5 and κ = 1.0 in Fig. 6.3 is still slightly influenced by
(6.54).

In summary, if the scaling with ring size n of the viscosity ηring ∼ nbη,ring and the
first normal stress coefficient Ψ

(1)
ring ∼ nbΨ,ring is considered one can access much higher

values of n as for random clusters, see Figs. 6.3(a) and (b). In particular, the exactly
known scaling exponents bη,ring = 1/2 and bΨ,ring = 2, which are universal in κ > 0,
can be extracted from the data in Fig. 6.3(c). However, if the full range of available ring
sizes is not exploited and the fit is restricted to those lower values of n which could also
be accessed for random clusters, then universality would be veiled by finite-size effects.
Finite-size effects are more pronounced for κ ≤ 0.15 and κ > 0.5.

6.2.1.3 Critical behavior

Taking into account the results obtained for ring polymers the following conclusions are
drawn for the numerical data in the random cluster case: (i) The viscosity ηn and the first
normal stress coefficient Ψ

(1)
n show a crossover from initial Rouse behavior for κ = 0 to

universal Zimm behavior for κ > 0. (ii) The universal large-n regime has not been reached
yet for all κ under consideration, especially for κ ≤ 0.15 (Fig. 6.1). The data for κ = 0.3
should be the most reliable one. Therefore the exponents of the viscosity ηn and the first
normal stress coefficient Ψ

(1)
n are estimated from the data for κ = 0.3 as

bη ≈ 0.11 and bΨ ≈ 0.77 . (6.55)

Within the accuracy of the data, the exponents are the same for both Erdős–Rényi random
graphs and three-dimensional percolation. This is similar to the Rouse model where the
corresponding exponents of the viscosity and the first normal stress coefficient are nearly
identical as a consequence of ds ≈ 4/3 valid for Erdős-Rényi random trees and bond
percolation (cf. Eq. 5.22).

For the critical behavior of the overall viscosity (6.51) this implies a finite value at the
gel point for both, Erdős–Rényi random graphs and three-dimensional bond percolation.
This follows from (5.13) which requires the condition b > τ − 2 for a divergence. For
bη ≈ 0.11 this is neither fulfilled for τ = 5/2 for Erdős-Rényi random graphs nor for
τ = 2.18 for bond percolation.

In contrast, by employing (5.13) it is found that the first normal stress coefficient Ψ(1)

diverges with an exponent that depends on the cluster statistics

` =

{
0.54, Erdős-Rényi random graphs

1.3, Bond percolation (d = 3)
. (6.56)



6.2. Zimm model 95

These exponent values are less than a third in magnitude of the corresponding exact ana-
lytical predictions ` = 3, respectively ` ≈ 4.1 of the Rouse model with the corresponding
cluster statistics (cf. Sec. 6.1.1,6.1.2)

6.2.2 Recoverable compliance

The critical behavior of the recoverable compliance J (4.43) is now deduced from the
numerical results for η and Ψ(1). Due to a finite viscosity the recoverable compliance has
the same critical exponents (6.56) as the first normal stress coefficient

J ∼ ε−θ , (6.57)

with

θ =

{
0.54, Erdős-Rényi random graphs

1.3, Bond percolation (d = 3)
. (6.58)

6.2.3 Cluster diffusion

Next, diffusion constants in the Zimm model are considered. In the Zimm model the
diffusion constant (4.46) of a cluster is a more interesting quantity than in the Rouse model
(cf. Eq. 6.19) since in the presence of hydrodynamic interactions (H 6= �

) it depends on
the topology of the cluster .

6.2.3.1 Kirkwood diffusion constant

First, the averaged Kirkwood diffusion constant (4.47) at the critical point is considered

D(K)
n :=

〈
D(K)( · )

〉
n

∣∣
ε=0

. (6.59)

Here, it is useful to compute the preaveraged mobility matrix H (2.29) from the Oseen
tensor with h(x) =

√
x/π. Then the average (6.59) can be expressed in terms of the p−th

moment ρ(p)
n of the resistance distribution (5.21) by setting p = −1/2

D(K)
n =

kBT

ζ

〈
1

n
+

κ

n2

∑

i,j∈( · )
� − 1

2
i,j

〉

n

∣∣∣∣∣∣
ε=0

=
kBT

ζ

(
1

n
+ κρ(−1/2)

n

)
. (6.60)

By inserting the scaling relation (5.32) for p = 1/2 and using the definition of the Gaussian
spectral dimension d

(G)
f (6.8) the disorder averaged Kirkwood diffusion constant at the

critical point is written as

D(K)
n =

kBT

ζ

(
1

n
+ κλn−1/d

(G)
f

)
, (6.61)

where λ denotes an uninteresting numerical prefactor.
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Due to the two competing n dependencies Eq. (6.61) predicts a crossover from Rouse
behavior D(K)

n ∼ n−1 for small n to Zimm behavior

D(K)
n ∼ n−1/d

(G)
f (6.62)

for large n. The crossover cluster size n̂(κ) depends on the strength of the hydrodynamic
interactions κ. By matching the asymptotic formulas one has

n̂(κ) ∼ κ−d
(G)
f /(d

(G)
f −1) . (6.63)

The crossover cluster size n̂ ≈ π/κ2 which has been found for the viscosity of ring poly-
mers (see. Sec. 6.2.1.2) is compatible with (6.63) since ring polymers have Gaussian fractal
dimension df = 2.

The result (6.62) for the diffusion constant is reasonable. In can be written in terms of
the averaged radius of gyration of phantom percolation clusters (6.9) according to

D(K)
n ∼ 1/

√
R2

gyr,n . (6.64)

In other words, the averaged diffusion constant is inversely proportional to the averaged
radius of gyration which is nothing but the Stokes–Einstein relation (1.14). This scaling
is well-known to be valid in the Zimm model for linear polymers. Linear polymers have
Gaussian fractal dimension 2 and a diffusion constant D(K)

lin,n ∼ n−1/2 [DoEd88].

6.2.3.2 Diffusion constants

More detailed information on Dn is obtained from numerical studies. The averaged diffu-
sion constant

Dn := 〈D〉n
∣∣
ε=0

∼ n−bD (6.65)

of clusters of size n at the gel point is considered. The exponent bD which governs the
scaling for large cluster sizes n, is bounded from below by the corresponding exponent of
the Kirkwood diffusion constant

bD ≥ 1/d
(G)
f (6.66)

which is a consequence of the the Jensen-Peierls inequality Dn ≤ D
(K)
n (cf. Eq. (4.49)).

Erdős-Rényi random trees For each n = 1 . . . 750 the averageDn is computed over 100
realizations of trees of size n. In Fig. 6.4(a) Dn is plotted as a function of n on a double-
logarithmic scale for different values of the hydrodynamic interaction parameter κ. The
exponent bD is extracted by fitting the curves to a power law in the interval n ∈ [700, 750].
Fig. 6.4(b) displays the exponent bD for different κ. The horizontal line marks the lower
bound bD > 1/d

(G)
f = 1/4 from the Kirkwood diffusion constant. A sharp crossover is

observed from the Rouse value bD = 1 (cf. 6.19) for κ = 0 to smaller values of bD for
nonzero κ. The latter are close to and may be identical to the lower bound 1/d

(G)
f = 1/4.
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Figure 6.4: Numerical data to determine the scaling (6.65) of the diffusion constant for ran-
dom clusters in the case of Erdős–Rényi random graphs (left column) and three-dimensional
bond percolation (right column). In each case the diffusion constant Dn is plotted for different
strengths of the hydrodynamic interaction parameter κ as a function of the cluster size n on
a double logarithmic scale. Power-law fits to the data yield the exponent bD a function of κ
(bottom).



98 Chapter 6. Results

Bond percolation For bond percolation cluster sizes are restricted to values n < 3000
due to the memory limitations when computing the inverse of H . For small cluster sizes
up to 100 diffusion constants are computed for given n, for large cluster sizes this number
is considerably smaller. The results are shown in Figs. 6.4(c) and 6.4(d). In Fig. 6.4(c) Dn

is plotted as a function of n on a double-logarithmic scale for different values of κ. The
exponent bD, extracted by fitting the curves in Fig. 6.4(c) to a power law in the interval
n ∈ [500, 3000], is shown in Fig. 6.4(d). The horizontal line marks the lower bound
1/d

(G)
f ≈ 0.25 for bD, based on the value ds ≈ 1.33 [NaYa94, BuHa96]. Again one may

conjecture that bD = 1/d
(G)
f . The numerical values of bD for bond percolation are nearly

identical to those obtained for Erdős-Rényi random graphs.
In summary, the numerical data for both ensembles shows a crossover from initial

Rouse behavior to Zimm behavior which is more pronounced for small κ. This is very
similar to the observed crossover for the viscosity and the first normal stress coefficient.
However, for the diffusion constants an upper bound, the Kirkwood diffusion constant can
be computed analytically. The exponent d(G)

f characterizing the bound, agrees qualitatively
with the numerical values for bD. Therefore, it is suggested that

bD = 1/d
(G)
f . (6.67)

The suggestion, that the diffusion constant and the Kirkwood diffusion constant have the
same scaling with cluster size n is also substantiated by results for the Zimm model of
linear polymers where the scaling with n for both diffusion constants is governed by the
same exponent D(K)

lin,n ∼ Dlin,n ∼ n−1/2 (see [Oet87b]).

6.2.4 Incoherent scattering function

Within the Zimm model it is only possible to compute the incoherent scattering function
in the asymptotic regime on the longest time scales t → ∞ . The disorder average of the
bound (4.54) is given by

S(q, t) ∼
∞∑

n=1

nτn

〈
e−D( � k)q2t

〉
n

∣∣∣
ε=0

. (6.68)

By applying the Jensen inequality, the average 〈•〉n is shifted into the argument of the
exponential

S(q, t) ∼
∞∑

n=1

nτne−Dnq2t ≥
∞∑

n=1

nτne−D
(K)
n q2t , (6.69)

where the second inequality employs Dn ≤ D
(K)
n . The expression (6.69) can be evaluated

in the limit t → ∞ (see App. E.1). Up to a multiplicative constant, this yields the scaling
form

S(q, t) ∼ (q2t)−δ FS(t/tq) (6.70)
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with a diverging, diffusive time scale

tq ∼ q−2ε−z̃ , with z̃ = ν(G) (6.71)

and a scaling function FS(x) which is of order unity for x→ 0 and decays like a stretched
exponential FS(x) ∼ xαS(δ−1/2) exp{−c xαS} for x → ∞. Neglecting algebraic prefac-
tors, the incoherent scattering function has a stretched exponential decay

S(q, t) ∼ exp {−(t/tq)
αS} , with αS = d

(G)
f /(d

(G)
f + 1) (6.72)

in the sol phase for c < ccrit and and a power law decay

S(q, t) ∼ 1

(q2t)δ
, with δ = (τ − 2) d

(G)
f (6.73)

at the critical point c = ccrit [KuLo03]. The equations (6.70-6.73) for the Zimm model
are to be compared with the results (6.29-6.32) for the Rouse model. Here, in contrast to
the Rouse model, it can only be suggested that the expressions (6.69) and (6.68) have the
same long time behavior. In order to support the suggestion, the tightness of the Jensen
inequality has been checked numerically (see Fig. 6.5). Within numerical accuracy the
Jensen inequality becomes an equality and hence does not affect the long-time behavior.

The knowledge of the diffusive time scale (6.71) provides a way to estimate the longest
relaxation time t∗ in the Zimm model with the same line of argument presented below Eq.
(6.35). Since static properties of the Zimm model are identical to the Rouse model, the
critical length scale should also be given by ξ∗. Then, dimensional analysis dictates tq ∼
t∗/(qξ)2 ∼ ε2ν(G)−z in terms of the Zimm relaxation time t∗. Comparing this expression
with (6.71) leads to

t∗ ∼ ε−z , with z = 3ν(G) . (6.74)
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This scaling is in agreement with the simple estimate that the longest relaxation time is
determined by the diffusive time scale of the largest clusters t∗ ∼ (ξ∗)2/Dn∗ ∼ (ξ∗)2Rn∗ ∼
(ξ∗)3.

6.2.5 Effective diffusion constant

The effective diffusion constant (3.29) is calculated from the bound (6.69)

D−1
eff =

〈
D−1

eff ( · )
〉
≥

∞∑

n=1

nτn
(
D(K)

n

)−1
. (6.75)

From D
(K)
n ∼ n1/d

(G)
f and Eq. (5.12) one concludes, that the effective diffusion constant

Deff from (3.29) vanishes

Deff . εu , with u = (2 − τ + 1/d
(G)
f )/σ , (6.76)

provided that u > 0. Three-dimensional bond percolation leads to the value u ≈ 0.16.
If instead 1/d

(G)
f < τ − 2, then Deff remains nonzero at the transition. Such an un-

physical situation will occur for Erdős-Rényi random graphs. Note that the average
time as exemplified by Deff is not proportional to the time scale tq of the stretched ex-
ponential, as is sometimes assumed incorrectly. The effective diffusion constant can
be interpreted as the diffusion constant of the cluster with weight-averaged cluster size

Dnw ∼ n
−1/d

(G)
f

w ∼ εγ/d
(G)
f ∼ εu.



Chapter 7

Discussion

7.1 Summary of results

In this work results have been obtained for the critical dynamics of gelation by starting from
the well known semi-microscopic dynamical description of polymers within the Rouse-
and the Zimm model which is generalized to random clusters. The cluster statistics is
chosen according to either Erdős-Rényi random graphs pertaining to a mean field distribu-
tion which neglects correlations between crosslinks or 3d bond percolation. Within these
models observables are examined which show critical behavior at the gelation transition.
Critical rheology is revealed by the shear viscosity η, the first normal stress coefficient Ψ(1)

and the recoverable compliance J . The second normal stress coefficient Ψ(2) vanishes in
both models. Critical, microscopic density fluctuations are revealed by diffusion constants
Dn of single clusters of size n, the incoherent scattering function S(q, t), the inverse,
effective diffusion constant D−1

eff and the nonlinear dynamic susceptibility χ(q, t). The
critical behavior of the observables is summarized in Tab. 7.1. Additionally, results from
[BrGo97, BrAs01, Mue03, KiMu04] are given since they complete the picture of the gela-
tion transition in these models. Instead of expressing critical exponents strictly in terms of
the fundamental exponents σ, τ, ds it will be useful for later discussions to pick appropriate
ones from σ, τ, γ, β, ds, d

(G)
f , ν(G) by employing the scaling relations 2/d

(G)
f = 2/ds − 1,

ν(G) = (σd
(G)
f )−1 and the scaling relations of the connectivity properties of percolation

from Tab. 1.1.
For the Rouse model which neglects excluded volume and hydrodynamic interactions,

analytical results have been obtained by means of exact mappings of the Rouse dynamics
onto resistor networks and onto random walks on fractals. The so obtained results can be
discussed simultaneously for both crosslink ensembles, Erdős-Rényi random graphs and
3d bond percolation since the first is recoverd by the latter in its mean field approximation
for d ≥ 6.

By employing the resistance mapping the zero-shear material functions have been com-
puted. These quantities only require the knowledge of the shear response on the longest
time scales. The Mark–Houwink relation ηn ∼ nbη for the averaged viscosity of clusters of
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Quantity Scaling Exp. Rouse d=3 Zimm d=3

Viscosity ηn ∼ nbη

η ∼ ε−k
bη

k
2/d

(G)
f

2ν(G) − β

0.50
0.71

—
—

0.11
—

Normal stress
coefficient

Ψ
(1)
n ∼ nbΨ

Ψ(1) ∼ ε−`
bΨ
`

4/d
(G)
f + 1

4ν(G) + γ

2.01
4.04

—
—

0.54
1.30

Recoverable
complicance

Jn ∼ nbJ

J ∼ ε−θ
bJ

θ
2τ − 3
(τ − 1)/σ

1.36
2.62

—
—

0.54
1.30

Shear
relaxation
function

G(t) ∼ t−∆ FG(t/t∗)
t∗ ∼ ε−z

G(t) ∼ e−(t/t∗)−αG c < ccrit
G(t) ∼ t−∆ , c = ccrit

z
αG

∆

k + θ
1/3
θ/(k + θ)

3.33
0.33
0.79

3ν(G)

—
—

1.68
—
—

Incoherent
scattering
function

S(q, t) ∼ (q2t)−δ FS(t/tq)
tq ∼ q−2ε−z̃

S(q, t) ∼ e−(t/tq)−αS , c < ccrit
S(q, t) ∼ t−δ , c = ccrit

z̃
αS

δ

1/σ
1/2
τ − 2

2.22
0.5
0.18

ν(G)

d
(G)
f /(d

(G)
f + 1)

β/ν(G)

0.56
0.80

0.71

Diffusion
constant

Dn ∼ n−bD bD 1 1.0 1/d
(G)
f 0.25

Eff. diffusion
constant

D−1
eff ∼ ε−u u γ 1.80 ν(G) − β 0.15

Table 7.1: Overview of critical behaviour in the Rouse and in the Zimm model. Numerical
values in d = 3 have been obtained from the percolation exponents given in Tab. 1.1 and the
numerical values d

(G)
f = 2ds (2 − ds)

−1 ≈ 3.97 and ν(G) = (σd
(G)
f )−1 ≈ 0.56, which have

been computed from ds ≈ 1.33 (see Tab. 5.1).

size n at the critical point has been computed analytically. The Mark–Houwink exponent
bη is given in terms of the spectral dimension ds of percolation clusters, which chracterizes
the connectivity of the clusters for large topological distances without referring to the spa-
tial configuration. The overall shear viscosity η of the gelling system is then determined
by weighting these contributions from clusters of size n according to the cluster size dis-
tribution of the respective crosslink ensembles, which are governed by the exponents τ, σ.
Thereby, the critical exponent k of the viscosity is expressed in terms of the basis set of
three independent exponents τ, σ, and ds. The additive decomposition of an observable
into contributions from different clusters is a generic feature of the Rouse model and valid
only in the absence of cluster-cluster interactions. The resistance analogy is also applied to
suggest a Mark–Houwink like scaling relation Ψ

(1)
n ∼ nbΨ for the averaged contribution of

clusters of size n to the first normal stress coefficient at the critical point. The critical ex-
ponent ` governing the divergence of the overall first normal stress coefficient is expressed
in terms of τ, σ, and ds. The elastic response of the system on the longest time scale as re-
vealed by the recoverable compliance J can be related to the viscosity and the first normal
stress coefficient. In contrast to the latter quantities the critical exponent θ of J does not
involve the spectral dimension ds, it is completely determined by the exponents τ, σ of the
underlying clusters size distribution.
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As already mentioned, concerning material functions it suffices to compute the
shear response on the longest time scales as revealed by the lowest order moments of
the distribution of inverse relaxation times, the shear relaxation function G(t). If in-
stead, the complete spectrum of relaxation times is addressed by employing results from
[Mue03, BrAs01, KiMu04], one has also access to functional forms of relaxation patterns
such as the stretched exponential decay of the shear relaxation function in the sol phase,
the algebraic decay at the critical point or the general scaling form G(t) ∼ t−∆FG(t/t∗)
with the divergent time scale t∗ ∼ ε−z. The exponents z,∆ are given in terms of σ, τ, ds.
In particular, the knowledge of the scaling exponents z,∆ has been exploited twofold in
this work. First, the fundamental scaling relations of critical rheology (cf. Sec. 1.3.1) can
be verified. The viscosity exponent k satisfies k = z(1 − ∆) which in accordance with
the scaling hypothesis. The critical exponent θ of the recoverable compliance satisfies
θ = z∆ which is also in accordance with the scaling hypothesis, since the recoverable
compliance plays the role of an inverse shear modulus. Second, and even more important,
the knowledge of the characteristic time scale t∗ ∼ ε−z in the Rouse model allows to ex-
tend the scaling picture of critical relaxations to time and space dependent processes. By
computing bounds to the incoherent scattering function S(q, t) and the nonlinear dynamic
susceptibility χ(q, t) the characteristic length scale ξ∗ ∼ ε−ν(G)

of the Rouse model, the
Gaussian correlation length, has been identified. Its exponent ν (G) is related to the Gaus-
sian fractal dimension d(G)

f in the same way as the correlation length exponent ν of rigid
percolation is related to the Hausdorff fractal dimension ν = 1/(σd

(H)
f ). Both, the bound

to the incoherent scattering function S(q, t) & s(qξ∗, t/t∗) and the bound to the nonlinear
dynamic susceptibility, χ(q, t) & ε−γFχ(qξ∗, t/t∗) can be written in terms of the scaling
variables t/t∗ and qξ∗ for all times t which are large when compared to the microscopic
time scale. The relevance of these two scales is also reflected by the asymptotic, long-time
decay of the incoherent scattering function for t→ ∞. It is governed by a stretched expo-
nential S(q, t) ∼ exp{−(t/tq)

αS}. The characteristic, diffusive time scale tq is related to
the fundamental scales according to tq = t∗/(qξ∗)2.

In the strict limit t → ∞ the scattering function recovers the order parameter S∞(q)
of gelation in the Rouse model. It is zero in the sol phase for c < ccrit and acquires a time
persistent part in the gel phase which is reminescent of the Debye–Waller factor. In the
vicinity of the transition, its q-dependence is determined by a distribution of localization
lengths of monomers in the macroscopic cluster. Again, the Gaussian correlation length ξ∗

sets the characteristic scale of this distribution. However, it has been pointed out that the
physical meaning of the gel phase in the Rouse model is unclear.

For the Zimm model, which neglects excluded volume interactions and accounts for
hydrodynamic interactions on a preaveraged level, results are mainly obtained numerically.
By generating clusters at the critical point according to Erdős-Rényi random graphs and
bond percolation the disorder averages of the viscosity and the first normal stress coeffi-
cient are computed numerically. The numerical results for random clusters are consider-
ably affected by finite size effects. The comparison with numerical data for ring clusters
allows to corroborate the identified critical exponents. It has been found that, within nu-
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merical accuracy, the Mark–Houwink relation ηn ∼ nbη is governed by the same exponent
bη in both ensembles, Erdős-Rényi random graphs and bond percolation. As a consequence
of the small value of bη the viscosity η remains finite at the critical point in either case. In
contrast, the numerically computed Mark–Houwink like scaling exponent bΨ for the first
normal stress coefficient leads to a divergent normal stress coefficient Ψ(1) at the critical
point, where the exponent ` depends on the clusters statistics. The recoverable compliance
J diverges with the same exponent due to a finite value of the viscosity.

Density fluctuations in the Zimm model can be studied from the incoherent scattering
function on the longest time scales. The dominating contribution stems from the diffusion
of clusters and can be computed from the scaling of the averaged diffusion constant Dn of
clusters of size n. The scalingDn ∼ n−bD has been obtained numerically for both crosslink
statistics. Similar to the viscosity, finite size effects prohibit an accurate determination of
bD. However, the results can be compared to an upper bound, the averaged Kirkwood
diffusion constant DK

n which has been computed analytically. The qualitative agreement
of Dn with DK

n leads to the conclusion that both diffusion constants are governed by the
same exponent bD = 1/d

(G)
f .

By employing the scaling of the diffusion constant Dn to the incoherent scattering
function, a stretched exponential decay S(q, t) ∼ exp−(t/tq)

αS in the sol phase is ob-
tained with a characteristic, diffusive time scale tq which diverges at the critical point. The
exponent αS is the same for both crosslink ensembles. Precisely at the critical point the
decay of S(q, t) is algebraic in time. The effective diffusion constant D−1

eff which is ob-
tained by integrating the incoherent scattering function is found to diverge only for 3d bond
percolation.

Having determined the exponent z̃ of the diverging time scale tq ∼ ε−z̃ it allows to
identify the exponent z of the characteristic time scale t∗ in the Zimm model by dimen-
sional analysis tq ∼ t∗/(qξ∗). The length scale in the Zimm model is also given by the
Gaussian correlation length ξ∗ since static properties, and hence length scales, are the same
as in the Rouse model.

In summary, the Rouse model of gelation enables one to derive a rather complete scal-
ing picture of the transition in the sol phase. Scaling relations can be computed exactly in
terms of the characteristic time scale t∗ and a characteristic length scale ξ∗. These scales
are governed by critical exponents which are not solely determined by the two exponents
of percolation. For the Zimm model of gelation far less analytical predictions are avail-
able. Some scaling relations can be given in terms of the basic exponents, for others only
numerical values are available.

Now the results shall be discussed against the background of existing experimental and
theoretical results. First the experimental results are reviewed. Afterwards, the derived
scaling relations for the Rouse and the Zimm model are compared with existing scaling
relations.
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k ` θ z ∆ αG µ

Rouse (ν(G)) 0.71 4.05 2.62 3.3 0.79 1/2 –

Zimm (ν(G)) 0 1.3 1.3 – – – –

Rouse (ν) 1.35 – 2.64 3.99 0.66 – 2.64

Zimm (ν) 0 – 2.64 2.64 1 – 2.64

[AxKo90] 0.82 2.67 0.71 1.93

[DeBo93] 0.7 2.9 0.72 2.0

[TaYo94] 1.3 2.7-2.8 0.67-0.68 2.0-2.1

[LuMo95] 1.36 2.71 0.66

[LuMo99] 6.1 3.2 0.33

[DuDe87] 0.70

[AdDe79] 0.78

[AdDe85] 0.81 3.2

[AdLa97] 1.1 0.69 1.9

[ToFa01] 0.76 0.77 2.54

[TaUr90] 0.2

[MaAd88] 1.4 0.70

[CoGi93] > 1.4 3.0

[ZhTh96] 1.27

[TiTo04] 0.69–0.77 2.4–2.7

Table 7.2: Experimental values for the viscoelastic exponents. Additionally numerical values
of the theoretical predictions of the Rouse and Zimm model from this work, referred to as
Rouse (ν(G)) and Zimm (ν(G)), and theoretical predicitons from scaling arguments, referred
to as Rouse (ν) and Zimm (ν) are given for comparison. The latter theoretical predictions
are discussed in Sec. 7.3 where the naming conventions will become clear. Numerical Rouse-
Zimm values have been obtained from the percolation exponents given in Tab. 1.1 and the
numerical value ν(G) = (1/ds − 1/2)/σ ≈ 0.56 which has been computed from ds ≈ 1.33
(see Tab. 5.1).

7.2 Comparison to experiments and simulations

Besides those experiments mentioned in the introduction which basically confirm that con-
nectivity properties of gelling systems are well described by percolation (see also Tab. 3 in
[AdLa96]), critical rheology and in particluar the shear viscosity are the most frequently
studied quantities in experiments. Few experimental results are available for single cluster
properties such as the Mark–Houwink relation for randomly branched polymers. Further-
more, microscopic density fluctuations have been studied by light scattering experiments.
The experimental point of view is completed by computer simulations. All experimental
results are listed in Tabs. 7.2 and 7.3. The first experiments which report on the scaling
of complex shear relaxation function (see Sec. 1.3.1) were [ChWi85] who find ∆ = 0.5.
The validity of the fundamental scaling assumption G(t) ∼ t−∆FG(tεz) within numer-
ical accuracy has been confirmed for different systems. Devreux et al have investigated
silica gels in [DeBo93], they confirm the validity of the scaling relations z = k + µ and
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µ = ∆z, where µ is the exponent of the shear modulus. Similarly, Axelos et al [AxKo90]
have verified these scaling relations for a completely different system of crosslinked pectin
biopolymers. The numerical values of their exponents are similar to those in [DeBo93].
Rather different exponents have been measured by Lusignan et al from polycondensation
reactions of polyesters of different lengths [LuMo95, LuMo99]. Short polyesters where
investigated in [LuMo95] and an exponent τ ≈ 2.17 was found which is well described by
3d percolation. In contrast, for the second system of long chains [LuMo99] a mean field
like exponent τ ≈ 2.47 was found in agreement with the vulcanization picture. The large
value of k in the latter experiment is argued to be influenced by entanglement effects. How-
ever, both experiments report on the validity of the scaling relations. Noteworthy, in both
experiments the scaling law ∆ = θ/(θ + k) was confirmed by measuring the recoverable
compliance and its exponent θ rather than the shear modulus exponent µ. Both quantities
are argued to be characterized by the same critical exponent. However, the equivalence
of the shear modulus and the inverse recoverable compliance is not obvious as indicated
by the experiments reported in [TaYo94] for an end-linking reaction of polyoxypropylene.
The exponent of the recoverable compliance is significantly higher than that of the shear
modulus.

Moreover, in many experiments some but not all viscoelastic exponents have been
measured. Adam et al studied a co-polymerization reaction of Styrene divinylbenzene
[AdDe79] and reported k = 0.78. A similar value k = 0.8 has been found by some of the
latter authors in a polycondensation reaction of polyurethane gels [AdDe85]. In [AdLa97]
vinyl terminated PDMS networks are investigated and three viscoelastic exponents were
measured independently. Rather different exponents for the same system were found in
[ToFa01] and attributed to the variation of the functionality of the crosslinkers and the av-
erage degree of polymerization of the prepolymers. The influence of the chemical structure
of crosslinkers and prepolymers was investigated by one of the latter authors in [TiTo04].
From the variation of the exponents 0.69 ≤ ∆ ≤ 0.77 and 2.4 ≤ µ ≤ 2.7 the authors sug-
gest a possible non-universal behavior of the critical exponents.The authors in [ZhTh96]
studied an alginate system where gelation was induced by cupric ions and found k = 1.27.
Similar high values are obtained in expoxy resins [MaAd88]. The highest values for k,
besides that in [LuMo99], have been found by Colby et al [CoGi93] where k > 1.4.

The Mark–Houwink exponent bη has also been investigated experimentally for
branched macromolecules. In Ref. [MaOh86] measurements on randomly branched
polystyrenes have been performed, resulting in bη ∈ [0.2, 0.25]. Measurements on
branched polyethyleneimine [PaCh96] yield the slightly higher value bη ≈ 0.31. Un-
fortunately, no results have been reported on the critical behaviour of the first normal stress
coefficient.

The experimental values for the long time decay of the scattering function are summa-
rized in Tab. 7.3. In fact, all three experiments measure the coherent scattering function
(see Sec. 3.2.2). However, it is argued in [MaWi91] that only self-correlations are expected
to contribute to the signal and the experimental results are therefore discussed in terms of
the incoherent scattering function. Even though the validity of this approximation may be
questioned it is expected that both, the coherent and the incoherent scattering are governed
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αS δ z̃ u

ROUSE (ν(G)) 1/2 0.18 2.22 1.82

ZIMM (ν(G)) 0.80 0.71 0.56 0.16

[MaWi91] 0.66 0.27 2.5 1.9

[AdDe88] 0.3 – 0.8 0.2 – 0.3 – 0.5 –1.0

[BaBu92] 0.64 0.34 – 1.9

Table 7.3: Critical exponents for the incoherent scattering function.

by the same stretched exponential decay for long times. For the Rouse model this claim
can be substantiated by non-rigorous arguments [Kue01].

Also, a variety of computer simulation have been performed in order to study critical
viscoelastic behavior. One of the most astonishing results is the excellent agreement of
the Rouse exponent with the result k = 0.70 from molecular dynamics simulations by
Vernon et al [VePl01]. In these simulations the monomers are initially placed on a simple
cubic lattice in the simulation volume and crosslinks are drawn with probability p between
nearest neighbors. This procedure ensures lattice percolation statistics for the connectivity.
Crosslinks are modeled by harmonic springs. Even though these simulations do account
for excluded volume interactions between monomers by a repulsive, soft-sphere potential,
the result is nearly identical to the Rouse value for phantom clusters. A similar result,
k = 0.65, has been found by one of the latter authors in [JePl03] for a slightly different
crosslinking mechanism. The influence of solvent was investigated in [PlVe03] by in-
cluding uncrosslinked solvent particles explicitly in the MD simulations. A nonuniversal,
concentration-dependent viscosity exponent 0.3 < k < 0.45 was observed. It decreases
with increasing density of the solvent.

In [JePl03] also the scaling Dn ∼ n−bD of the diffusion constant at the critical point
has been obtained with bD = 0.69. A similar result was found in [Jes02]. It is worth
mentioning, that the simulations in [JePl03] also verify the validity of a widely used scal-
ing relation for the diffusion constant in terms of the radius of gyration in concentrated
solutions, namely D(Rgyr) ∼ R

−(1+k/ν)
gyr [Gen79b]. This is interesting insofar as the com-

putation of the viscosity in another, quite different class of simulations by del Gado et al
[GaAr00] is based on precisely this scaling relation. The latter simulations were done by
means of the bond fluctuation method on a lattice and the scaling of the diffusion constant
Dn ∼ n−bD is found to be given by bD ≈ 1.0. By means of the above scaling relation the
viscosity exponent k ≈ 1.3 is computed which is significantly higher than the result from
the off-lattice MD simulations in [VePl01]. For the elastic modulus an exponent µ ≈ 2.5
was found from the lattice simulations [GaAr02].

Besides critical properties, also Brownian dynamics simulations of single hyper-
branched polymers were performed by Sheridan et al [ShAd02]. They account for fluctuat-
ing hydrodynamic interactions corresponding to κ = 0.35, as well as for excluded-volume



108 Chapter 7. Discussion

interactions and lead to bη = 0.13. This result is remarkably close to the Zimm prediction
bη ≈ 0.11 whereas the experimental findings on bη are consistently above the Zimm value.

Most striking, the experimental data scatters over a broad range and the exposition of
a systematic trend is not possible. Concerning the viscoelastic exponents it is desirable
that experiments would always measure at least two viscoelastic exponents. This would
simplify the classification of the exponents. Some results agree quite well with the Rouse
model whereas other exponents differ significantly. In order to judge this agreement and
the quality of the predictions of the Rouse and Zimm model it is helpful to consider also
existing theoretical (scaling) approaches to the gelation transition.

7.3 Comparison to scaling theories

7.3.1 The electrical analogy

Since the electrical analogy (see Sec. 1.3.2) is so widely employed as a “theory” of vis-
coelasticity it is interesting to reveal how the exact resistance mapping, which is used in
this work, is related to it. The electrical analogy comprises two predictions, one for the
viscosity and the other one for the shear modulus.

The first proposal k = s of the electrical analogy [Gen78] (see also Sec. 1.3.2) for
the viscosity relates its divergence to the divergence of the conductivity of a conduc-
tor/superconductor network. In contrast the exact mapping (cf. Sec. 5.2.1) relates the
viscosity to the divergence of the average resistance in an insulator/conductor network. In
fact, the exact mapping for the viscosity exponent k in the Rouse model disproves the long
standing scaling relation k = s. This can hardly be revealed by comparing the numerical
values in d = 3, k ≈ 0.71 and s ≈ 0.75 [HeDe84]. However, in d = 2 duality implies
s = φ [Str77] in terms of the crossover exponent φ of the random resistor network whereas
the exact result for the viscosity is k = φ− β which is in contradiction with k = s. Note,
that sometimes the scaling relation s = ν−β/2 [Ker83] is used which implies a similar nu-
merical value s ≈ 0.67 in d = 3. However, this scaling relation is believed to be incorrect
since it is equivalent to the Alexander–Orbach conjecture in d = 2 [Ker83]. Alexander and
Orbach conjectured [AlOr82] that the spectral dimension ds = 4/3 of percolation clusters
is independent of the spatial dimension for 2 ≤ d ≤ 6. Although this conjecture has not
yet been disproved rigorously, there is a large body of evidence against it (see [HaBe02]
and references therein).

The second proposal of the electrical analogy relates the exponent µ of the shear modu-
lus to the exponent s̃ of the vanishing conductivity in an insulator/conductor problem above
ccrit [Gen76a]. The conductivity exponent has been calculated by renormalization group
methods up to second order in ε = (6−d) which yield the scaling relation s̃ = φ+ν(d−2)
[LuWa85] in terms of the percolation exponent ν and the crossover exponent φ. Unfortu-
nately, the Rouse model as defined in Sec. 2.3.2 does not allow addressing the shear mod-
ulus and other quantities above the percolation transition since the gel phase requires the
incorporation of stabilizing repulsive interactions. However, the shear modulus has been
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examined in a different model [XiMu04] which accounts for excluded volume interactions
for stabilization. In this model phantom clusters are obtained by appropriately taking the
limit of vanishing excluded volume strength. In this limit the second part of the electrical
analogy can be derived, viz the exponent of the shear modulus equals the conductivity ex-
ponent µ = φ + ν(d− 2). Most interesting in [XiMu04] it is claimed that in the phantom
limit the field theory of the gelation transition becomes identical to the field theory of ran-
dom resistor networks [HaLu87], and hence identical to the same system which has been
employed here to compute the viscosity. Hence, both exponents can be computed from
the same electrical insulator/conductor problem. Concerning the shear modulus this is in
accordance with the long-standing scaling argument. Concerning the viscosity, the exact
electrical analog differs from the long-standing phenomenological one, a fact which has
also been suspected in [SaGo85].

It seems that the electrical analogy can be recovered from a gelling system by ap-
propriate phantom limits, i.e. for subdominant excluded volume interactions. From some
experimental results for the viscosity and the shear modulus and from the computer simu-
lations [VePl01] one might also conjecture that the phantom limit is a a suitable description
for certain systems. Indeed this poses the fundamental question, if there is any justification
for neglecting excluded volume interactions and applying a phantom description to gelling
percolation clusters. Therefore, it will be useful to shed some light onto the relevance of
excluded volume interactions in a system of percolation clusters.

7.3.2 The relevance of excluded volume interactions

Is it justifiable to neglect excluded volume interactions for percolation clusters under cer-
tain circumstances? This question is indeed motivated by the fact that for linear poly-
mers the dense melt does provide such a circumstance where excluded volume interac-
tions are screened and the phantom description is perfectly reasonable. In order to un-
derstand this screening of excluded volume interactions for linear polymers and address
the above question at least phenomenologically, one can apply a so called Flory argument
[Gen79a, DoEd88, RuCo03], which is reviewed in the following. A Flory argument esti-
mates the relevance of excluded volume interactions for the size of a tagged, fractal, macro-
molecule which is immersed in a solution of other objects. These objects are allowed to be
monomers, linear chains, macromolecules, fractals etc. The tagged macromolecule con-
sists of n monomers and it is characterized by its Gaussian fractal dimension d(G)

f , which is

an intrinsic property of the fractal relating its ideal radius R0 ∼ nd
(G)
f to its size n in the of

absence of excluded volume interactions. In the presence of excluded volume interactions
the dependence of the fractal’s (swollen) radius R on the size is characterized by a differ-
ent, smaller fractal dimension df which is to be determined now. Therefore, it is assumed
[IsLu80, Vil88] that the free energy of the tagged fractal is given by the following simple
form

F (R) ∼
(
R

R0

)2

+ v
1

nw

n2

Rd
. (7.1)
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The first term estimates the entropic penalty for stretching the fractal to a radius R. The
second term estimates the energetic penalty of n monomers being uniformly distributed
in the d-dimensional volume Rd, where v is the strength of the excluded volume interac-
tions. The fractals which surround the tagged one are characterized by their weight average
molecular weight nw which reflects the screening of the interactions due to the presence
of other clusters inside the pervaded volume of the tagged cluster. It is assumed that both
sizes can be related to each other by the scaling nw ∼ nρ. The equilibrium extension is
then obtained by minimizing F (R) with respect to R. This yields the fractal dimension

df =
d+ 2

2 − ρ + 2/d
(G)
f

(7.2)

of the tagged cluster. In order to estimate the importance of excluded volume interactions

the swelling ratio rswell := R/R0 ∼ nd
(G)
f (2−ρ)−d is examined. It is obvious that there is an

upper critical dimension duc = d
(G)
f (2 − ρ) at which the swelling ratio rswell becomes of

order one and thus excluded volume interactions become irrelevant. The most important
examples are given in the following.

If the tagged polymer is a linear chain then d(G)
f = 2 i.e. the ideal random walk. If

this chain is surrounded by small solvent particles, i.e. monomers one has ρ = 0 and Eq.
(7.2) predicts Flory’s famous result for the fractal dimension of a swollen linear chain,
df = (d + 2)/3, which is valid below the upper critical dimension duc = 4. Next, if
the surrounding monomers are replaced by linear chains of the same size one has ρ = 1
and hence an upper critical dimension duc = 2. For d ≥ 2 one has df = 2 which is
nothing but the initially mentioned result that in 3-dimensional polymer melts excluded
volume interactions are screened and the size of the tagged polymer is described by the
ideal random walk.

Next, the tagged fractal is chosen as the characteristic percolation cluster of size n =
n∗. It suffices to employ the mean field percolation exponents which yield the Gaussian
fractal dimension d(G)

f = 4 and relate n∗ to the weight average molecular weight by ρ =
1/2. As a result, the Flory argument predicts duc = 6 for the upper critical dimension
of excluded volume interactions for percolation clusters. The fractal dimension of three
dimensional percolation clusters is then estimated to df = 2.5, which agrees very well with
numerical value of the Hausdorff fractal dimension of lattice percolation clusters d(H)

f =
2.53. If instead, the percolation clusters are immersed in a solvent of monomers, i.e. ρ = 0
the excluded volume interactions become even more important. This is reflected by a shift
of the upper critical dimension to duc = 8 below which the prediction df = 2(d + 2)/5
for the swollen fractal dimension of percolation clusters in dilute solutions is an excellent
estimate of observed value the df ≈ 2 in d = 3.

It is pointed out that the Flory argument solely considers static properties of fractals in
equilibrium. The argument implies that three dimensional percolation clusters are always
affected by excluded volume interactions as far as static, equilibrium properties are con-
cerned. This holds true in the absence of a solvent and the effect is even more pronounced
in the presence of a solvent. Unfortunately, if this argument is simply generalized to dy-
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k z θ (= z∆) ∆ (= θ/(k + θ)) µ (= z∆)

ROUSE (ν(G)) 2ν(G) − β 2ν(G) + 1/σ (τ − 1)/σ (τ − 1)/(2σν(G) + 1) –

ROUSE (ν) 2ν − β 2ν + 1/σ dν dν/ (2ν + 1/σ) dν

ZIMM (ν(G)) 0 1) dν — — —

ZIMM (ν) 0 2) dν dν 1 dν

Table 7.4: Scaling predictions for the viscoelastic exponents. The results in this work are
given by ROUSE (ν(G)) and ZIMM (ν(G)) in terms of the Gaussian correlation length whereas
ROUSE (ν) and ZIMM (ν) refer to scaling arguments which involve the lattice percolation
length. 1): finite viscosity. 2): logarithmic divergence.

namics in equilibrium which completely determines the regime of linear viscoelasticity
one is forced to question the applicability of models which neglect excluded volume inter-
actions. However, this is not necessarily true for systems under the influence of external
stresses or in nonequilibrium situations. This is discussed as an open problem in Sec. 7.5

Moreover, the Flory argument is well suited for a sound understanding of how the
results from the Rouse and the Zimm model are to be compared to existing scaling ap-
proaches since these scaling arguments relate the fundamental time scale to a fundamental
length scale which is characterized by a fractal dimension (see Sec. 1.3.2).

7.3.3 Viscoelasticity in the absence of hydrodynamic interactions

Next, the exact Rouse exponents k, θ,∆, z of critical rheology are compared to the set
exponents stemming from scaling arguments in the absence of hydrodynamic interactions
as given in Sec. 1.3.2. These exponents are usually referred to as the Rouse exponents
which is always meant as a synonym for “in the absence of hydrodynamic interactions” but
with the ambiguity that it is sometimes used in the sense “in the absence of hydrodynamic
interactions and in the presence of excluded volume interactions ” and sometimes in the
sense “in the absence of both, hydrodynamic and excluded volume interactions”. It is
exactly this difference which becomes important now.

As reviewed in Sec. 1.3.2, in the absence of hydrodynamic interactions the scaling
arguments estimate the longest relaxation time t∗ = ξ2/Dn∗ within the assumption that the
diffusion constant Dn∗ is inversely proportional to the size of the cluster which is, without
a doubt, valid in the Rouse model. Then, the size ξ of the largest cluster is estimated by the
correlation length of lattice percolation, yielding z = 2ν +1/σ for the critical exponent of
the characteristic relaxation time. In contrast, the Rouse model, as defined here, describes
phantom clusters which are governed by the Gaussian correlation length with an exponent
ν(G), yielding z = 2ν(G) + 1/σ for the exponent of the characteristic time scale. Therefore
it will be useful to label the exact Rouse exponents which are computed in this work in
terms of the Gaussian correlation length by ROUSE (ν (G)) and the exponents from the
scaling argument which involve the correlation length of lattice percolation by ROUSE (ν).
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Two conclusion can be drawn by confronting the ROUSE (ν (G)) with the ROUSE (ν) ex-
ponents: (i) The formal similarity of the exponents demonstrates that the scaling argument
can also be applied to the Rouse model of phantom clusters if only the phantom nature
is accounted for consistently by inserting the Gaussian correlation length as the charac-
teristic length scale. Interpreted in this manner the scaling argument correctly resembles
the viscosity exponent by replacing the correlation length exponent ν in the scaling pre-
diction k = 2ν − β with the Gaussian correlation length ν (G), yielding the exact result
k = 2ν(G) − β. Likewise, it is applicable to ∆ which can be computed from k, z via the
scaling relation ∆ = (z − k)/z. (ii) The ROUSE (ν) exponents do not describe a system
where excluded volume interactions are irrelevant as is sometimes assumed incorrectly.
The possible significance of the ROUSE (ν) exponents is suggested from the Flory argu-
ment in the previous section: The exponent ν = 1(σd

(H)
f ) describes static properties of

gelation clusters having percolation connectivity with excluded volume interactions and
therefore the ROUSE (ν) exponents most likely describe critical rheological properties of
percolation clusters with excluded volume interactions. This claim is, to some extent sup-
ported by renormalization group calculations [Wie98a] for the dynamics of self-avoiding
membranes and in particular linear polymer chains in the absence of hydrodynamic inter-
actions. The mean squared displacement of an arbitrary monomer grows with an exponent
2/df + 1 for large times. Thereby df is to be chosen as the Gaussian fractal dimension
df = d

(G)
f = 2 if excluded volume interactions are irrelevant, i.e. for d > duc = 4 whereas

for d < duc the fractal dimension df ≈ 1.70 (see [DoEd88, Ch. 2.5]) of the excluded
volume dominated, linear polymer chain is to be inserted.

There remain two viscoelastic exponents which have not been discussed yet with ref-
erence to the comparison between ROUSE (ν(G)) and ROUSE (ν), the exponents θ and µ
of the recoverable compliance J and the shear modulus G, respectively. Both exponents
µ and θ describe (shear) elastic properties, since the recoverable compliance can be re-
garded as an inverse shear modulus on large but finite time scales. Therfore, it is often
argued [MaAd88, MaAd91, LuMo95, WiMo97] that the exponent µ which describes the
vanishing of the static shear modulus above the gel point is identical to the exponent θ
which describes the divergence of the recoverable compliance below the gel point. The
scaling argument ROUSE (ν) predicts G = kBT/ξ

d from dimensional analysis and hence
µ = dν (see also Sec. 1.3.2). As a consequence both exponents of elasticity are given by
µ = θ = dν. Since the ROUSE (ν) exponents are computed from lattice percolation hyper-
scaling must be valid. By employing the (hyper)scaling relations of percolation (cf. Tab.
1.1) dν = (τ−1)/σ is obtained for the exponents of the shear modulus and the recoverable
compliance within ROUSE (ν) [LuMo95], [CoGi93]. Most surprisingly, the same exponent
θ = (τ − 1)/σ is also found for the exact ROUSE (ν (G)) value without referring to hyper-
scaling relations. In other words, the product θ = z∆ assumes the same value (τ − 1)/σ
for both ROUSE (ν(G)) and ROUSE (ν) which implies that z∆ is completely determined by
the underlying cluster size distribution and is independent of the spatial arrangement.

The numerical predictions of the two exponent classes ROUSE (ν (G)) and ROUSE (ν)
in the absence of hydrodynamic interactions are highly different (see Tab. 7.2). This is
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obvious since the suggested relevance of excluded volume interactions for ROUSE (ν) slow
down the relaxation processes due to a larger extension of the clusters in space.

7.3.4 Viscoelasticity in the presence of hydrodynamic interactions

The label Zimm is always used as a synonym of dominant hydrodynamic interactions but
it has the same ambiguity as the label Rouse: Sometimes it is used in the sense “phantom
clusters in the presence of hydrodynamic interactions” and sometimes as “excluded volume
dominated clusters in the presence of hydrodynamic interactions”. Similar to the discus-
sion of the scaling arguments for the Rouse model this ambivalence suggests to introduce
the label ZIMM (ν(G)) for the exponents obtained in this work which assume Gaussian
clusters and the label ZIMM (ν) for scaling arguments which assume the length scale to be
set by the correlation length of lattice percolation.

For ZIMM (ν(G)) the scaling z = 3ν(G) in d = 3 for the typical relaxation time has been
found. This is in accordance with the ZIMM (ν) proposal z = dν [MaAd88] for unswollen
percolation clusters in the presence of hydrodynamic interactions (cf. also Sec. 1.3.2).
The scaling relation z = dν is also corroborated by results from Wiese [Wie98b], who
defined the dynamic exponent by the mean-squared displacement of a single monomer of
a polymer chain in the presence of non-preaveraged hydrodynamic interactions. The result
is translated to a time scale which is given by tn ∼ Rd

n in terms of the radius of gyration.
This is in fact the starting point for the scaling argument ZIMM (ν).

Turning to the viscosity first the Mark–Houwink relation ηn ∼ nbη is discussed. In
[Mut85, Cat85] it was suggested that the Mark–Houwink exponent is given by bη = d/df−
1 (see also Sec. 1.3.2) irrespective of excluded volume interactions. Since phantom clusters
are governed by the Gaussian fractal dimension df = d

(G)
f ≈ 4 the scaling relation implies

bη ≈ −1/4 in d = 3. This value is definitely ruled out by the numerical data. This
disproves the validity of the scaling relation for for phantom clusters in the Zimm model.

If instead the scaling argument ZIMM (ν) is employed for the viscosity the fractal
dimension of lattice percolation must be inserted which gives bη = d/d

(H)
f − 1 [StCo82].

By weighting these contributions of clusters of size n with the cluster size distribution the
exponent k = (1−τ+d/d

(H)
f )/σ is obtained for the shear viscosity for percolation clusters

with fractal dimension d(H)
f . By employing the (hyper)scaling relations of percolation 1.1

one finds k = (1− τ + d/d
(H)
f )/σ = 0 which is then attributed to a logarithmic divergence

[StCo82]. From k = 0 and z = dν the other viscoelastic exponents can be obtained by the
scaling relations of critical rheology which constitute the ZIMM (ν) values in Tab. 7.4.

A completely different scaling relation k = ν − β/2 for the viscosity exponent in the
Zimm model was proposed in [ArSa90]. This proposal is also ruled out definitely by the
numerical results.

The reason for the failure of the Zimm model in predicting a diverging viscosity can be
traced back to a too slowly diverging typical relaxation time t∗ ∼ εz in the Zimm model.
This is due to the phantom nature of the clusters, where the monomers are in close proxim-
ity in a space. Thus, relaxations can occur on very small time scales which lead to a very
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weak divergence of the longest relaxation time with increasing cluster size. As a conse-
quence the viscosity remains finite and, of course, in the absence of a divergence scaling
theory fails. Thus, the inclusion of hydrodynamic interactions requires most certainly also
the inclusion of excluded volume interactions which is then most likely recovered by the
ZIMM (ν) exponents. The failure of the Zimm model for Gaussian percolation clusters is
to be contrasted with the success for a solution of linear polymer chains where the Zimm
model for the Gaussian chain yields a realistic description of viscoelasticity at the theta
point (see [DoEd88, Ch. 4.5] and references therein).

The preaveraging approximation of hydrodynamic interactions is most likely not re-
sponsible for a finite viscosity and the unrealistic exponent values in the Zimm model.
This is suggested, since linear polymers show a decrease in the viscosity when abandon-
ing the preaveraging approximation [Fix81] and the effects of preaveraging for branched
polymers are even more pronounced than for linear ones [BuSc80]. For linear polymers it
is also known that only prefactors of the Mark–Houwink relation are diminished as a result
of preaveraging while the scaling exponent bη,linear remains unchanged [OoKo83]. This
holds true to first order in ε = (4 − d) for both, the Gaussian chain and the self avoiding
chain.

In contrast, another shortcoming which is most likely cured by abandoning the equi-
librium preaveraging procedure is the vanishing second normal stress coefficient Ψ(2) = 0.
The consistent preaveraging in the absence of excluded volume interactions yields a
nonzero but positive second normal stress coefficient, Ψ(2) > 0 [Oet87a]. In order to
obtain a negative second normal stress coefficient Ψ(2) < 0, as observed in experiments,
the preaveraging has to be abandoned completely [Oet89, Wan89].

7.3.5 Density fluctuations

Turning to density fluctuations, the derived decomposition of the incoherent scattering
function into single cluster exponentials which reflecting the diffusive motion of the clus-
ters has also been suggested on phenomenological grounds [Gen79b, MaWi88].

In the Rouse model, the exponents αS, δ which characterize the long time decay of the
incoherent scattering function for t → ∞ are not compatible with existing scaling argu-
ments. This failure can be traced back to the fact that scaling arguments are based on the
Stokes–Einstein relation (cf. Eq. (1.14) in Sec. 1.3.2) for the diffusion constant whereas in
Rouse model the averaged diffusion constant of a cluster does not obey a Stokes–Einstein
scaling form in terms of the the averaged radius of gyration. This shortcoming stems from
oversimplified picture that in the Rouse model diffusion constants are simply inversely
proportional to the size of the cluster and do not depend on the shape at all.

In contrast the Zimm model does predict a scaling form Dn ∼ /Rgyr,n. The stretched
exponential decay of the incoherent scattering function is governed by the exponent
αS = d

(G)
f /(d

(G)
f + 1) which is in accordance with scaling arguments [MaWi88] where

an exponent αS = df/(df + 1) has been proposed by employing the Stokes–Einstein rela-
tion.
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The fact that in the Zimm model the diffusion constant is inversely proportional to
the radius of gyration supports the hard-sphere or non-draining picture of Zimm clus-
ters: In general, one can define a hydrodynamic radius of a cluster following Stokes law
Dn =: kBT/(6πηRhyd,n). If the hydrodynamic radius scales with the same exponent as
the radius of gyration then the cluster behaves effectively as a dense object which is not
drained by flow, in agreement with Stokes law for hard spheres. For comparison, the Rouse
model corresponds to the freely draining case. Despite being a good approximation, the
non-draining picture is not valid strictly [Oet96b]. The hard sphere picture is not limited
to preaveraged hydrodynamic interactions. Renormalization group calculations [Wie98b]
indicate that even polymers with fluctuating hydrodynamic interactions have the same dy-
namic exponent.

For the nonlinear dynamic susceptibility χ(q, t) the derived scaling form of the lower
bound is of precisely that form one would anticipate within the generally accepted assump-
tion of dynamic scaling [HoHa77] for a system with a characteristic length scale ξ∗ and
time scale t∗.

7.4 Conclusions

In summary, the quantities, which do exhibit critical behaviour in the Rouse and in the
Zimm model, correctly recover existing scaling arguments provided that the Gaussian frac-
tal dimension is used.

The Gaussian nature of the percolation clusters i.e. the neglect of excluded volume
interactions seems to be the crudest drawback of the present theory as suggested by the
Flory argument. However, the Rouse model with three dimensional percolation statistics
agrees quite well with some experiments, a fact which still lacks an explanation (this point
is again considered in the next section).

In contrast the Zimm model has turned out to give an unrealistic picture of the gela-
tion transition. The failure of predicting a diverging viscosity and the poor agreement of
other quantities with experiments are most likely due to the presence of hydrodynamic
interactions in the absence of excluded volume interactions.

Another drawback of the theory is that entanglement effects are neglected. These topo-
logical interactions (see [DoEd88, Ch. 5.4]) are argued to play a vital role in stress relax-
ation. However, temporary entanglements are expected to play a minor role [CoGi93] in
the dynamical regime on the longest time scales close to the transition since the time scale
of a temporary entanglement is determined by the smaller cluster whereas the dynamics
on the longest time scales is determined by the largest clusters. Permanent entanglement
effects due to interlocking loops are clearly beyond the scope of this work.



116 Chapter 7. Discussion

7.5 Open problems

A possible explanation of the good agreement of some experimental values with the Rouse
exponents is the existence of a crossover from phantom behaviour to excluded volume
dominated behaviour. In fact, the aforementioned result [XiMu04] for the shear modulus
(see Sec. 7.3.3) predicts exactly such a crossover from the phantom limit, which is gov-
erned by the conductivity exponent µ = φ + ν(d − 2), to a different regime which is
governed by the exponent µ = dν. In order to shed some light onto this crossover and its
possible conclusions for the dynamics in the presence of excluded volume interactions it
is helpful to review briefly the characteristics of the model employed in [XiMu04]. This
provides a suitable conceptual framework for further discussions.

The model is a generalization of the statistical mechanics approach to static proper-
ties of gelation from [GoCa96]. It describes a system of identical polymers consisting of
a finite number of monomers which interact via excluded volume interactions. Prior to
crosslinking the state of the system is referred to as preparation state. The preparation
state is characterized by the Edwards-Hamiltonian which accounts for the connectivity of
each individual polymer chain and the mutual excluded volume interactions between all
monomers in the system. The excluded volume interactions determine the compressibility
B0 of the system in the preparation state. Then, the polymers are to be connected by hard
crosslinks. After crosslinking the state of the system is referred to as measurement state
and is characterized by a Hamiltonian which accounts for the connectivity of the chains
and excluded volume interactions which are allowed to differ in strength from that of the
preparation state. Accordingly, the measurement state is characterized by a compressibility
B which may be different from B0. This distinction between preparation state and mea-
surement state emerges naturally in this model as a consequence of the Deam–Edwards
distribution which is used for the crosslink statistics: This distribution is based on the idea,
that the equilibrium configurations of polymers in the preparation state without crosslinks
determine the probability of the crosslinks such that, at the bottom of the line, crosslinks
are more likely drawn between monomers which are in close proximity in the preparation
state.

The special case B0 = B 6= 0, i.e. identical excluded volume strengths in the prepa-
ration and measurement state has been discussed in a series of papers. The most impor-
tant for this discussion is the renormalization group approach [PeGo00] which shows that
the Deam–Edward distribution recovers the geometric properties of lattice percolation for
B0 = B 6= 0 (see also [JaSt01]). This seems plausible, since nonvanishing excluded vol-
ume interactions during preparation causes spatial correlations with an averaged number
of nearest neighbors which is similar to that of the lattice system. The situation is similar
to continuum (off-lattice) percolation which is also expected to be in the same universality
class as lattice percolation.

If the shear modulus is computed for B0 = B 6= 0 the critical exponent µ = dν
is obtained [CaGo00]. The other case which has been studied in [XiMu04] is B0 � B.
Although, both compressibilities are expected to be large in real systems so that the density
essentially remains constant throughout the transition they can still differ by a large factor.
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In the idealized case, when B vanishes the shear modulus is governed by the exponent
µ = (d − 2)ν + φ of the conductivity of the insulator/conductor percolation problem to
first order in (d− 6).

Indeed, in real systems the ratio B/B0 might be small but never zero. Then it is pre-
dicted [XiMu04] that the shear modulus exponent should crossover from its phantom be-
haviour µ = φ + ν(d− 2) to the excluded volume dominated behaviour µ = dν since the
latter is governed by a more stable fixed point of the RG analysis. The emergence of the
conductivity exponent of percolation clusters gives strong evidence that a nonvanishing
B0 still ensures that the Deam–Edwards distribution recovers percolation statistics in the
preparation state. A vanishing B then ensures a phantom description of these percolation
clusters in the measurements state. The dynamical description of this state in the sol phase
is expected to be given by the Rouse model as it is adopted here: The Rouse model as-
sumes percolation statistics without referring to a preparation state. This can be regarded
as if the crosslinks were generated in a preparation state with excluded volume interactions
B0 6= 0. The Rouse model then describes the dynamics of phantom percolation clusters
which can be regarded as if excluded volume interactions being switched off in the mea-
surement state, i.e. B = 0. If the shear modulus crosses over from the excluded volume
dominated value µ = dν to the value µ = φ + ν(d − 2) in the phantom limit one might
conjecture that, the viscosity exponent is also affected by this limit and should cross over
from the still unknown excluded volume dominated value (presumably k = 2ν − β) to its
phantom value k = φ − β. This suggests that both viscoelastic exponents k = φ− β and
µ = φ + ν(d − 2) can be derived from the problem of gelling percolation clusters in the
limit of subdominant excluded volume interactions in the measurement state which seems
to be equivalent to the electrical insulator/conductor problem.

This crossover, which describes the relevance of excluded volume interactions for
fixed (percolation-like) connectivity is qualitatively different from another, well known
crossover which can arise in gelation: The connectivity crossover from mean field perco-
lation to 3d percolation for the vulcanization of long polymer chains. This connectivity
crossover is easily illustrated by the above picture: If the preparation state comprises long
precursor chains in a dense melt then these chains are ideal according to the above Flory
argument. This pertains to a small value B0 ≈ 0. In the picture of the Deam–Edwards dis-
tribution, a small B0 in the preparation state leads then to many nearest neighbors during
crosslinking and one monomer could be connected to many others. Thus, a mean field like
connectivity is generated. This sensitivity of the nature of the Deam–Edwards distribution
on the strength of the excluded volume interactions in the preparation state is supported by
unpublished results: If crosslinks are chosen according to the Deam–Edwards distribution
in the absence of excluded volume interactions in the preparation state, the shear viscosity
can be computed and is identically given by the result (6.3) which was computed for the
mean field like connectivity of Erdős-Rényi random graphs.

The above discussion suggest, that actually two crossovers may may play a vital role
for the gelation transition in the absence of hydrodynamic interactions, a connectivity
crossover from mean field percolation to 3d percolation and a crossover from phantom
clusters to excluded volume dominated clusters. Both features of the theory have the same
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upper critical dimension duc = 6. The above Flory argument also suggest, that if one
includes a solvent the upper critical dimension for excluded volume should increase to
duc = 8.

If both crossovers are observable in real systems the interplay of these crossovers might
result in all combinations of connectivity (mean field or 3d) with bulk compressibilities
(phantom or excluded volume dominated). This might be a reason why even in the ab-
sence of hydrodynamic interactions exponents are scattered over a broad range lying be-
tween k = 0 (logarithmic divergence of phantom clusters with mean field connectivity) to
k ≈ 1.3 which is, presumably, the value for excluded volume dominated clusters with 3d
percolation connectivity.

The origin of the connectivity crossover is well understood, it can be driven by the
length of the precursor chains [Gen77]. In contrast the possible physical origin for the
crossover from phantom to excluded volume dominated behaviour is unclear. In [XiMu04]
it is suggested that different qualities of solvent or correlations built up during the course
of the chemical reaction might be responsible for a large ratio B0/B. Another origin
of phantom behaviour and a conductivity like scaling might be internal stresses [Ale84].
Alexander argued that the origin of shear rigidity stems basically from the crosslink in-
teractions in the tenuous, macroscopic cluster while the compressibility of the system is
maintained by the excluded volume interactions of all monomers in the system. Therefore,
the macroscopic cluster can be regarded as a system under external stress (pressure) which
is produced by the sol clusters. Then it is demonstrated in [Ale84] that in the presence of
large stresses, the elasticity is dominated by the so-called scalar elasticity which is equiv-
alent to the conductivity of the network [TaTh87, ZhLa00]. The influence of the stress S
on the critical behaviour is due to the introduction of a new length scale ξd−1

S = kBT/S
besides the correlation length. But, if the elasticity of the tenuous, macroscopic cluster in
the gel phase is well described by scalar elasticity which seems to correspond to the phan-
tom limit of gelation clusters [XiMu04] one might conclude that the presence of stresses
also affect the viscoelastic properties of nearly macroscopic clusters in the sol phase. This
conclusion is substantiated by the fact that, at least in the critical region and in the limit of
linear response, the elastic and viscous properties are related to each other by a response
function, the shear relaxation function G(t), and thus by the Kramers–Kronig relations.

Beyond linear response, another interesting mechanism has been found which sup-
presses excluded volume interactions in a linear polymer chain, namely a simple shear
flow with moderate shear rate γ̇ [RaKa89]. If the chain is subjected to shear then the shear
rate can be chosen small enough to avoid the the coil-stretch transition (see e.g. [Gen79a])
and at the same time large when compared to the inverse of the typical relaxation time
tn of the chain. In this regime the conformation is affected considerably by the shear but
the overall extension of the chain is still small when compared to the fully stretched state
which ensures the Edwards- Hamiltonian to be a reasonable model. Note, that if the in-
verse shear rate becomes a relevant time scale it also introduces a new length scale via
ξ2
γ̇ ∼ kBT/(γ̇ζn). Alternatively the system can be regarded as being subjected to a stress
S ∼ (kBT/R

d
n)(γ̇tn). This demonstrates that this stress is important only if the shear rate

is of order of the inverse relaxation time tn of the chain. This effect might play a vital role
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in experiments system where it is increasingly difficult to guarantee the condition γ̇tn � 1
for steady state behaviour due to diverging relaxation times.

In order to complete the issue of crossovers it is noted, that besides the elasticity
crossover from µ = φ + ν(d− 2) to µ = dν which is found in [XiMu04], there is another
crossover for the elasticity problem in disordered solids which has generated considerable
interest in the last decades (see [NaYa94, Sec. V A.3]). This is the crossover from scalar
elasticity governed by µ = φ+ν(d−2) to regime of so-called vectorial elasticity [KaWe84]
which is governed by the exponent exponent µ = dν + 1. This type of elasticity is mod-
eled by introducing bond bending forces in a diluted percolation lattice. Bond bending
forces intend to model local rigidity of the amorphous solid, which is less important for
the sparsely connected gel in the vicinity of the transition. However, this crossover has also
been observed experimentally [DeBo93] well outside the critical region in the gel phase.

To summarize, it is inevitable to study dynamics of gelling systems with excluded
volume interactions. Furthermore it seems necessary to examine the role of initial stresses
on the viscoelastic response.

7.6 Outlook

A first step towards computing the viscosity with excluded volume can be done. Following
Fixman [Fix83a] (see also [DoEd88, Ch. 4.6]) one can derive lower and upper variational
bounds for the viscosity and the diffusion constant in the presence or absence of hydro-
dynamic interactions in terms of equilibrium averages. In the absence of hydrodynamic
interactions the bound for the viscosity can be derived by linearizing the Smoluchowski
equation [DoEd88, Ch. 4.6] for small shear rates. It is given by (see App. I)

η ≥ ζ
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The equilibrium expectation value in (7.3) involves the Boltzmann weight of a Hamilto-
nian with excluded volume interactions. In the absence of excluded volume interactions
this bound coincides with the exact expression (cf. Eq. (4.37) and (5.19)). In the pres-
ence of excluded volume interactions this bound is most likely tractable by employing the
results from the statistical mechanics approach with the Deam Edwards distribution for
B = B0 6= 0 (see above). For this choice of parameters the geometrical properties of the
crosslinked gelation clusters lie in the percolation universality class [PeGo00]. Thus, one
might compute the bound directly from percolation which gives k = 2ν − β [StAh95, p.
65]. This is nothing but the result which is obtained from the scaling argument ROUSE

(ν). The result indicates that in the presence of excluded volume interactions the viscosity
exponent is at least k > 2ν − β.

Unfortunately, the expression (7.3) cannot be inferred directly from the renomalization
group calculations for the gelation transition since the quantity cannot be expressed simply
in terms of the density fluctuations ρ(x) of the overall monomer density. It requires rather
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the knowledge of density fluctuations of clusters of fixed size n. Alternatively, one may
introduce an appropriate generating function. This can be seen by rewriting the bound
(7.3) in terms of the projector E0 as

η ≥ ζ
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An appropriate generating function is then given by

Ξ(λ, ω) :=
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in terms of the resolvent of Γ . The bound can be computed from Ξ(λ, ω) via
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the computation of which is left for future work.
In the Rouse model static and dynamic quantities are completely determined by the

connectivity matrix. In more realistic models also other interactions play a role. Never-
theless, it might be interesting to explore the relationship between the static and dynamic
properties and the spectral properties of the underlying connectivity matrix also in a more
realistic model of gelation. Therefore one might investigate the spectral properties of the
random connectivity matrix which is characterized by the Deam–Edwards distribution.
This problem is somehow reminiscent of recent developments for glassy systems by means
of so called Euclidean random matrix theory [CiGr03, GrMa03] which aim at the charac-
terization of the vibrational density of states. Particles are localized per hand at random
positions in space and the density of states of the Hessian from the harmonic expansion of
the energy around these randomly chosen fixed positions is computed. The gelling system
has the advantage that the random localization of particles is intrinsically contained in the
model as a consequence of the properties of the underlying connectivity matrix. It would
be interesting to study the connection between the vibrational density of states of randomly
crosslinked amorphous solids, and the density of states of the underlying connectivity ma-
trix, in particular, the relevance of the expected (spectral) localization transition of the
connectivity matrix for the thermodynamic properties of the gelling system.



Appendix A

The equation of motion

Here, following [OeRa89], the derivation of the equation of motion (2.11) is presented in
a greater detail by starting from the coupled Langevin equations

0 = −ζ
(

d

dt
Ri(t) − u(Ri, t)

)
+ Fi(t) + ξi(t) (A.1)

ρs

[
∂u(r, t)

∂t
+ u(r, t)∇u(r, t)

]
= ηs∆u(r, t) −∇p(r, t) (A.2)

+
N∑

i=1

Fi(t)δ(r − Ri(t)) + f(r, t)

for the monomer positions Ri(t) and the velocity field u(r, t) subjected to the incompress-
ibility condition

∇ · u(r, t) = 0. (A.3)

The zero mean, Gaussian white noises ξi(t) and f(r, t) are characterized by their second
moments

ξi(t)ξj(t′) = 2 kBT ζ δi,jδ(t− t′)1. (A.4)

f(r, t)f(r′, t′) = −2kBTηs∆δ(r − r′)δ(t− t′)1. (A.5)

Here, ηs and ρs are the solvent viscosity and density respectively and ∆ denotes the Lapla-
cian operator.
For highly viscous, i.e. small Reynolds numbers flows the convection term u(r, t)∇u(r, t)
in (A.2) is neglected. The resulting linear equation can be solved by introducing the spatial
Fourier transform of the velocity field

ũ(k, t) :=
1

(2π)3

∫
�
3

d3r u(r, t) e ik·r . (A.6)

Eq. (A.2) is transformed into the ordinary differential equation

∂

∂t
ũ(k, t) = − 1

τ(k)
ũ(k, t) − i

ρs
p̃(k, t)k +

1

ρs(2π)3

N∑

i=1

Fi(t) e ik·Ri(t) +
1

ρs
f̃(k, t).

(A.7)
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122 Chapter A. The equation of motion

Here the solvent relaxation times are defined by τ(k) := ρs/(ηsk
2) with k = |k|. If the

transverse projection operator Pk := 1 − k̂k̂† is applied to Eq. (A.7) the pressure term
drops out whereas the incompressibility condition (A.3) amounts to Pk ũ(k, t) = ũ(k, t).
By integrating the resulting equation from initial time t0 to t one has

ũ(k, t) = ũ(k, t0) e−(t−t0)/τ(k) + ũf(k, t)

+
1

ρs(2π)3

N∑

i=1

∫ t

t0

dt′ Pk Fi(t
′) e ik·Ri(t

′)−(t−t′)/τ(k)
(A.8)

with a zero mean Gaussian white noise

ũf(k, t) =
1

ρs

∫ t

t0

dt′ Pk f̃(k, t′) e−(t−t′)/τ(k). (A.9)

The second moment of the real-space counterpart of (A.9) can be computed by inverse

Fourier transformation of ũf (k, t)ũ
†
f(k

′, t′) which in turn employs the Fourier transforma-
tion of (A.5). In the limit t0 → −∞ it is given by

uf (r, t)uf(r′, t′)† =
kBT

ρs(2π)3

∫
�
3

d3kPk e ik·(r−r′)−|t−t′|/τ(k) (A.10)

To proceed, the Markovian approximation is employed: The solvent relaxation times τ(k)
are supposed to be small, so that the exponential exp{|t − t′|/τ(k)} is approximated by
2τ(k)δ(t− t′). As a consequence the second moment (A.10) simplifies to

uf (r, t)uf(r′, t′) = 2 kBT Ω(r − r′) δ(t− t′). (A.11)

with the Oseen tensor

Ω(r) =
1

ρs(2π)3

∫
�
3

d3k
ρs

ηsk2

(
1 − k̂k̂†

)
e ik·r

=
1

8πηsr

(
1 + r̂r̂†) . (A.12)

The integral in (A.12) is computed in App. 3.III in [DoEd88]. By employing the Marko-
vian approximation in (A.8) and neglecting the initial condition for t0 → −∞ the inverse
Fourier transform can be carried out and yields

u(r, t) = uf(r, t) +
N∑

i=1

Ω
(
r − Ri(t)

)
Fi(t

′) (A.13)

for the position dependent velocity field of the solvent in the presence of the particles at
positions Ri(t).



Appendix B

The connectivity matrices

In this appendix some properties of the connectivity matrices Γ and Γ̃ are summarized.
Here, only single connected graphs (clusters) are considered. The generalization to the
connectivity matrices for a collection of clusters is then easily accomplished by the de-
composition of the connectivity matrix into clusters according to (2.19).

B.1 Spectral properties of the graph Laplacian

The connectivity matrix or graph Laplacian Γ of an arbitrary connected graph with n
vertices is, by virtue of its definition (2.15), a symmetric, positive-semidefinite matrix. It
can be written as the difference of the diagonal matrix of vertex degrees and the adjacency
matrix of the graph

Γi,j = δi,jdi − Ai,j (B.1)

By definition, the vertex degree di of vertex i is equal to the number of sites adjacent
to i, i.e. di =

∑n
j=1Ai,j and hence the constant vector ψ(0) = n−1/2(1, 1, . . . 1) is im-

mediately identified as a normalized eigenvector with corresponding eigenvalue γ0 = 0.
It is non-degenerate [GoRo01, Ch. 13.1]. By labelling the eigenvalues according to
γ0, γ1, . . . γn−1 = 0 with γi > 0 for i = 1 . . . n− 1 and denoting the associated orthogonal
eigenprojectors by Ei, the spectral decomposition is given by

Γ =
n−1∑

i=1

γiEi, withEiEj = δi,j Ei. (B.2)

The eigenprojectors corresponding to positive eigenvalues depend on the topology of the
cluster. In contrast, the matrix elements of the eigenprojector [E0]i,j = ψ

(0)
i ψ

(0)
j = 1/n de-

pend only on the number of vertices in the cluster. Likewise, if a graph � has K connected
components (clusters) the nullspace can be decomposed according to

E0( � ) =
K⊕

k=1

E0(
�

k). (B.3)
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124 Chapter B. The connectivity matrices

and hence

[E0]i,j =
1

N(i)
δ � (i), � (j) (B.4)

where the Kronecker delta is one if the cluster
�

(i) of particle i is identical with the
cluster

�
(j) of particle j and zero otherwise.

The resolvent of Γ is defined by R(ω) := (Γ + ω
�
)−1 for ω ∈ � and its spectral

decomposition

R(ω) =
n−1∑

i=0

1

γi + ω
Ei. (B.5)

is a direct consequence of (B.2). For small ω the resolvent has an asymptotic expansion

R(ω) =
1

ω
E0 +

N−1∑

i=1

1

γi
Ei +

�
(ω). (B.6)

The singular
�

(ω−1) term stems from the nullspace and the
�

(1) term is given by the
Moore–Penrose inverse [Alb72] of Γ

� − E0

Γ
:=

n−1∑

i=1

1

γi

Ei, (B.7)

it is the inverse of Γ restricted on the subspace of nonzero eigenvalues which is uniquely
defined even for singular matrices. The Moore–Penrose inverse of Γ is uniquely deter-
mined by � − E0

Γ
Γ = Γ

� − E0

Γ
=

� − E0 (B.8)

B.2 Relation between a symmetric or nonsymmetric, dy-
namic matrix in the Zimm model

Here, the relations between the spectral properties of different dynamic matrices in the
Zimm model are shown, namely, the symmetric matrix Γ̃ = H

1
2 ΓH

1
2 and the nonsymmet-

ric matrix Γ̂ = HΓ .
Let H > 0 be a real, symmetric, positive-definite matrix of order n and Γ ≥ 0 a

symmetric matrix characterized by its spectral decomposition (B.2). Then the matrix Γ̃ :=
H

1
2 ΓH

1
2 is a real, symmetric matrix which is nonnegative and has a spectral decomposition

Γ̃ =

n−1∑

i=1

γ̃i Ẽi , ẼiẼj = δi,jẼi. (B.9)

The orthogonal projector Ẽ0 onto the nullspace of Γ̃ is given explicitly in terms of the
projector onto the nullspace of Γ via

Ẽ0 =
H−1/2E0H

−1/2

Tr(H−1E0)
. (B.10)
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where Tr(•) denotes the trace of a matrix. The normalization stems from the requirement
Ẽ0Ẽ0 = Ẽ0, which is easily shown by using [E0]i,j = ψ

(0)
i ψ

(0)
j = 1/n.

Let then Q̃ be the orthogonal matrix which diagonalizes Γ̃ , viz

Q̃†
Γ̃ Q̃ = diag(Γ̃ ), (B.11)

where diag(Γ̃ ) is the diagonal matrix of eigenvalues of Γ̃ . Defining nonsymmetric matri-
ces by Γ̂ := HΓ and Q̂ := H

1
2 Q̃, it is deduced from (B.11) that

Q̂−1
Γ̂ Q̂ = diag(Γ̃ ). (B.12)

This proves, i) the nonsymmetric matrix Γ̂ is diagonalizable by the transformation Q̂ and
ii) its real eigenvalues are equal to the eigenvalues of Γ̃ .

Denoting by ψ̃(n) the eigenvector of Γ̃ with corresponding eigenvalue γ̃n such that
Γ̃ ψ̃(n) = γ̃n ψ̃

(n) for n = 0 . . . n− 1. Then H−1/2ψ̃(n) and H1/2ψ̃(n) are the left and right
eigenvectors of Γ̂ , respectively.

B.3 Consistency condition for the Zimm model

The consistency condition (4.30) in the Zimm model states that in the limit t → ∞ the
same equilibrium state is approached for Rouse and Zimm dynamics. Therefore, let

Γ
+ := (

� − E0)H
1
2

� − Ẽ0

Γ̃

H
1
2 (

� − E0) (B.13)

then for consistency

Γ
+ =

� − E0

Γ
(B.14)

has to be proved. According to (B.8) this can be achieved by verifying ΓΓ
+ = Γ

+
Γ =� − E0.

First, one observes by means of (B.10) that

(
� − E0)H

1
2 (

� − Ẽ0) = (
� − E0)H

1
2 . (B.15)

In a second step, consider

Γ
+
Γ = (

� − E0)H
1
2

� − Ẽ0

Γ̃

H
1
2 ΓH

1
2 H− 1

2 (B.16)

= (
� − E0)H

1
2 (

� − Ẽ0)H
− 1

2 (B.17)

By employing (B.15) in (B.16) one has Γ
+
Γ =

� − E0. The equation ΓΓ
+ =

� − E0 is
shown similarly and hence (B.14) is proved.
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B.4 Proof of the resistance formula (5.16)

The relation (5.15) between the resistance and the matrix elements of the associated
Moore–Penrose inverse is easily inverted. Again the shorthand notation

Γ
+ :=

� − E0

Γ
(B.18)

is used for the connectivity matrix of a connected graph
�

with n vertices. The relation
(5.15) between the resistances � i,j between two vertices i, j ∈ �

in terms of the matrix
elements of Γ

+ reads
� i,j = Γ

+
i,i + Γ

+
j,j − 2Γ+

i,j . (B.19)

Summing (B.18) over j and i, j respectively yields

n∑

j=1

� i,j = nΓ+
i,i + TrΓ+

n∑

i,j=1

� i,j = 2nTrΓ+ (B.20)

These relations imply

� i,j −
1

n

n∑

k=1

� i,k −
1

n

n∑

k=1

� k,j +
1

n2

n∑

k,l=1

� k,l = � i,j − Γ
+
i,i − Γ

+
j,j (B.21)

= −2Γ+
i,j , (B.22)

where the first equation follows from (B.20) and and the second equation employs (B.19).
This proves formula (5.16).



Appendix C

Correlation functions for the
Rouse-Zimm Langevin equation

The displacement of monomer i in the Zimm model in the absence of an external flow is
given by

Ri(t) − Ri(0) =

N∑

j=1

[
H

1
2U(−t0) (U(t) − �

)H− 1
2

]
i,j

Rj(t0)

+

∫ t

t0

dt′
[
H

1
2U(t− t′)H− 1

2

]
i,j

ηj(t
′)

−
∫ 0

t0

dt′
[
H

1
2U(−t′)H− 1

2

]
i,j

ηj(t
′). (C.1)

with white noise ηj(t) which is characterized by Eq. (2.34). Considering
(Ri(t) − Ri(0))(Ri(t) − Ri(0))† in the limit t0 → −∞ the term involving Ri(t0)Rj(t0)

†

vanishes and so do the linear terms in ηi(t). It remains to compute

ζ

2kBT
lim

t0→−∞
(Ri(t) − Ri(0))(Rj(t) − Rj(0))† =

[
H

1
2

(∫ t

t0

dt′ U(2(t− t′)) +

∫ 0

t0

dt′ U(−2t′) − 2

∫ 0

t0

dt′ U(t− 2t′)

)
H

1
2

]

i,j

1 .

The integrals in brackets are carried out immediately by observing

∫ t2

t1

dt′ U(−2t′) = (t2 − t1)Ẽ0 + tmic

� − Ẽ0

6Γ̃

(
U(−2t2) − U(−2t1)

)
(C.2)

127



128 Chapter C. Correlation functions

and U(t1 + t2) = U(t1)U(t2), yielding

(. . .) = tmic U(2t)

� − Ẽ0

6Γ̃

(
U(−2t) − U(−2t0)

)
+ tmic

� − Ẽ0

6Γ̃

( � − U(−2t0)
)

− tmic 2U(t)

� − Ẽ0

6Γ̃

( � − U(−2t0)
)

+ tẼ0

t0→−∞
= tmic

� − Ẽ0

3Γ̃

( � − U(t)
)

+ tẼ0

=

∫ t

0

dt′ U(t′) , (C.3)

and eventually

Di,j(t) =
2 kBT

ζ

∫ t

0

dt′
[
H

1
2U(t′)H

1
2

]
i,j

1 . (C.4)

C.1 Long time behaviour

Note, that the co-variance matrix D(t) is positive definite. For long times it is dominated
by the diffusive motion of the individual monomers. If the diffusive contribution is sepa-
rated the integrand in (C.4) becomes

D(t) =
2 kBT

ζ

∫ t

0

dt′H
1
2

(
Ẽ0 +

� − Ẽ0

)
U(t′)H

1
2 (C.5)

=
2 kBT

ζ

(
E0 t

Tr(E0H−1)
+

∫ t

0

dt′H
1
2

( � − Ẽ0

)
U(t′)H

1
2

)
(C.6)

t→∞∼ 2 kBT

ζ

E0 t

Tr(E0H−1)
+

2 a2

3
H

1
2

� − Ẽ0

Γ̃

H
1
2 (C.7)

In the second step, the representation (B.10) has been employed.



Appendix D

Equilibrium averages

D.1 Pair distributions

By computing equilibrium averages with respect to the Boltzmann weight of the potential
energy (2.15) care has to be taken due to the zero eigenvalues of the connectivity matrix.
Here, a confining potential 3ω/(2a2)

∑N
i=1 Ri ·Ri is added to (2.15) and the limit ω ↓ 0 is

performed subsequently, viz

〈•〉ωeq :=
1

�
ω

∫
�
3N

d3NR exp

{
− 3

2a2

N∑

i,j=1

(Γi,j + ωδi,j)Ri · Rj

}
(•) (D.1)

with a normalization
�

ω such that 〈1〉ωeq = 1. Of special interest is the probability distri-
bution of the vector distance vector (Ri − Rj) between two monomers i and j

pω
i,j(|r|) := 〈δ((Ri − Rj) − r)〉ωeq (D.2)

which must be invariant under rotations in
� 3 due to the rotational invariance of the poten-

tial energy (2.15). The Fourier representation of the delta function in (D.2) leads to

pω
i,j(|r|) =

1

(2π)3

∫
�
3

d3q e−iq·r

〈
exp

{
i

N∑

k=1

Rk · q(δi,k − δj,k)

}〉ω

eq

(D.3)

=
1

(2π)3

∫
�
3

d3q e−iq·r exp

{
−1

2
q2

N∑

k,l=1

a2

3
Rk,l(ω)(δi,k − δj,k)(δi,l − δj,l)

}

which involves the resolvent R(ω) := (Γ + ω
�
)−1 of Γ . By introducing the variance

σ2
ω : =

a2

3

N∑

k,l=1

Rk,l(ω) (δi,k − δj,k)(δi,l − δj,l) (D.4)

=
a2

3

(
Ri,i(ω) +Rj,j(ω) − 2Ri,j(ω)

)
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and performing the remaining Fourier transform of the Gaussian in (D.3) one has

pω
i,j(|r|) =

(
1

2πσ2
ω

)3/2

exp

{
− 1

2σ2
ω

r2

}
(D.5)

The limit ω ↓ 0 is meaningful only if monomers i and j are in the same cluster. This can
be seen by the expansion of the resolvent R(ω) in (B.6) for small ω which amounts to

lim
ω↓0

σ2
ω =

{
� i,j a

2/3
�

(i) =
�

(j)

∞ �
(i) 6= �

(j)
(D.6)

The quantity � i,j is then defined in terms of the matrix elements of the Moore Penrose
inverse of Γ

� i,j :=

[
1 − E0

Γ

]

i,i

+

[
1 − E0

Γ

]

j,j

− 2

[
1 − E0

Γ

]

i,j

(D.7)

D.2 Preaveraging of the mobility matrix

The equilibrium averaged hydrodynamic interaction tensor

〈Ω(Ri − Rj)〉eq = lim
ω↓0

∫
�
3

d3r pω
i,j(|r|)Ω(r) (D.8)

for i 6= j is considered. Thereby, Ω denotes either the Oseen tensor (2.8) which is written
as

Ω(r) =
1

8πηs
Θ(r)

[
1

r

(
1 + r̂r̂†)

]
(D.9)

or the Rotne-Prager tensor (2.14) which is written in the form

Ω(r) =
1

8πηs

{
Θ(r − 2rm)

[
1

r

(
1 + r̂r̂†)+

2r2
m

3r3

(
1 − 3r̂r̂†)

]

+Θ(2rm − r)

[
4

3rm
1 +

3r

8r2
m

(
1 − 1

3
r̂r̂†
)]} . (D.10)

Here, the Heaviside step function Θ(x) equals 1 for x ≥ 0 and zero otherwise. By intro-
ducing spherical coordinates in (D.8) the integral factorizes into a radial and an angular
average according to

〈•〉ωrad :=

∫ ∞

0

dr 4πr2 pω
i,j(r) (•) (D.11)

〈•〉ang :=
1

4π

∫ 2π

0

dϕ

∫ π

0

dϑ sin(ϑ) (•) (D.12)



D.2. Preaveraging of the mobility matrix 131

The average over ϑ, ϕ is carried out first yielding
〈
r̂r̂†〉

ang
= 1/3. For the radial average

it is convenient to introduce the quantities

I
(m)
[s,t](ω) :=

〈
rm χ[s,t](r)

〉ω
rad

(D.13)

with χ[s,t](r) denoting the characteristic function on the interval [s, t] ⊂ [0,∞). Obviously,
if s = 0 in (D.13) convergence requires m > −3. A simple substitution gives

I
(m)
[s,t] (ω) =

2√
π

(2σ2
ω)

m
2

[
γ

(
m + 3

2
,
s2

2σ2
ω

)
− γ

(
m+ 3

2
,
t2

2σ2
ω

)]
(D.14)

in terms of the incomplete Gamma function γ(α, x) :=
∫ x

0
dr exp(−r)rα−1.

In terms of (D.13), the average (D.8) is written as

〈Ω(Ri − Rj)〉eq =
1

6πηs
1

{
I

(−1)
[0,∞)(0), Oseen

I
(−1)
[2rm,∞)(0) + 1

rm
I

(0)
[0,2rm](0) − 1

4r2
m
I

(1)
[0,2rm](0), Rotne-Prager

(D.15)
The limit ω ↓ 0 of (D.14) depends on whether i and j belong to the same cluster or not.

1)
�

(i) 6= �
(j): The variance σω tends to infinity for ω ↓ 0 according to (D.6).

The asymptotic expansion γ(α, x) = α−1xα +
�

(xα+1) of the incomplete γ−function for
x ↓ 0 [Ch. 9.2, Eq. (4) in [ErMa53] Vol. 2] implies I (m)

[s,t] (ω) = const σ−3
ω +

�
(σ−4

ω ) for

σω → ∞ and finite interval limits s, t and eventually limω↓0 I
(m)
[s,t](ω) = 0. For t = ∞ one

has limω↓0 I
(m)
[s,∞)(ω) = 0 iff m < 0 which is sufficient for all cases in (D.15). In summary,

Hi,j = 0 whenever i and j belong to different clusters.

2)
�

(i) =
�

(j): The variance σ2
ω tends to the finite value σ2

0 = � i,ja
2/3 for ω → 0.

In case of the Oseen-tensor this implies

〈Ω(Ri − Rj)〉eq =
1

6πηs

2√
π

(
1

2σ2
0

)1/2

γ(1,∞) 1 (D.16)

with γ(1,∞) = Γ(1) = 1. For the Rotne-Prager tensor one has

〈Ω(Ri − Rj)〉eq =
1

6πηs

2√
π

{(
1

2σ2
0

)1/2 [
γ(1,∞) − γ

(
1,

2r2
m

σ2
0

)]
(D.17)

+
1

rm
γ

(
3

2
,
2r2

m

σ2
0

)
− (2σ2

0)
1/2

4r2
m

γ

(
2,

2r2
m

σ2
0

)}
1

The incomplete Gamma-functions for m = −1, 1, 0 are then expressed in a more
convenient way: According to eq. 8.352 in [GrRh80] one has γ(1, x) = (1 −
exp (−x) and γ(2, x) = (1 − exp (−x)(1 + x)). Equations 8.356.1 and 8.359.4 give
γ(3/2, x) =

√
π/2 erf (

√
x) − √

x exp (−x) in terms of the error function erf(x) :=
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2/
√
π
∫ x

0
dr exp(−r2). In summary, (D.17) is then expressed in the variable x = 2r2

m/σ
2
0

via

〈Ω(Ri − Rj)〉eq =
1

6πηs

2√
π

{
1

2rm

√
x e−x +

1

rm

(√
π

2
erf(

√
x) −

√
x e−x

)
(D.18)

− 1

2rm

1√
x

(
1 − (1 + x) e−x

)}
1

By introducing the parameter

κ :=

√
6

π

ζ

6πηsa
=

√
6

π

rm
a

(D.19)

one has x = 2r2
m/σ

2
0 = 6r2

m/(� i,ja
2) = πκ2/� i,j. As a result the preaveraged mobility

matrix (2.10) is block-diagonal with respect to the clusters and within one block given by

〈Hi,j(Ri − Rj)〉eq = δi,j1 − (1 − δi,j)ζ 〈Ω(Ri − Rj)〉eq (D.20)

=

[
δi,j + (1 − δi,j) h

(
κ2π

� i,j

)]
1. (D.21)

with the function h depends on the hydrodynamic interaction tensor

h(x) =

{√
x/π Oseen

erf(
√
x) − 1√

π
1−exp(−x)√

x
Rotne-Prager

(D.22)

The latter reduces to the first as x ↓ 0.



Appendix E

Asymptotic evaluations of integrals and
sums

E.1 Critical behaviour of disorder averages

Here, the evaluation of disorder averages (5.11), or more generally, moments of the cluster
size distribution are considered. If (5.11) is rewritten according to

∞∑

n=1

nj−τ+bf(nε1/σ) = ε−(j+1−τ+b)σ

{
ε1/σ

∞∑

n=1

(nε1/σ)j−τ+bf(nε1/σ)

}
. (E.1)

for ε ↓ 0 the term in the curly braces is identified with the Riemann sum of the dimension-
less integral

∫∞
n=0

dx xj−τ+bf(x). Since the scaling function f approaches a constant for
x ↓ 0 and decays exponentially for x > 1 the integral is well defined if the singularity at
the origin is integrable, viz.

j − τ + b > −1 ⇔ j + 1 − τ + b > 0 (E.2)

In this case the critical behaviour

∞∑

n=1

njτnn
b ∼ ε−(j+1−τ+b)/σ (E.3)

is deduced. It requires a divergence for ε ↓ 0, i.e. j+1−τ+b > 0. If instead j+1−τ+b < 0
the divergence of the integral due to the singularity at the origin and the prefactor in (E.1)
cancel out and the sum converges to a finite value for ε ↓ 0. In this case (E.1) exhibits no
divergence at the critical point. For the most important case j = 1, the critical behaviour
of the disorder average (E.1) is given by

∞∑

n=1

nτn n
b ∼ ε−(2−τ+b)/σ (E.4)
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A second application is the weight averaged cluster size which follows from j = 1 and
b = 1

nw =

∞∑

n=1

n2τn ∼ ε−(3−τ)/σ (E.5)

E.2 Long-time decay of the incoherent scattering function

Consider the long time limit of the incoherent scattering function

S(q, t) ∼
∞∑

n=1

nτn e−Dnq2t (E.6)

with the diffusion constant Dn ∼ n−b. Hence, the Rouse model is recovered for b = 1 and
the Zimm model for b = d

(G)
f . The exponent in (E.6) is rewritten by observing Dnq

2t =
(t/tq)(n

∗/n)b with tq := tmicq
−2 ε−z̃ with z̃ = b/σ. The scaling function of the cluster size

distribution τn ∼ n−τf(n/n∗) is replaced by an exponential which is asymptotically valid
for large n/n∗ and the sum is converted into an integral

S(q, t) ∼
∫ ∞

1

dnn1−τ e−n/n∗

e−(t/tq)(n/n∗)−b

(E.7)

= ε(τ−2)/σ

∫ ∞

0

dx x1−τ e−x e−(t/tq)x−b

. (E.8)

In the second step x = n/n∗ is substituted and the lower limit of integration is extended
to x = 0, since the second exponential decays rapidly for x ↓ 0. Now, an exponent δ is
defined in order to rewrite the ε dependent prefactor according to ε(τ−2)/σ = (q2t)−δ(t/tq)

δ.
This requires δ = (τ − 2)/(z̃σ) = (τ − 2)/b and (E.7) can be written in the scaling form

S(q, t) ∼ (q2t)−δFS(t/tq), (E.9)

where the scaling function is defined by

FS(y) = yδ

∫ ∞

0

dx x1−τ exp{−(x + yx−b} (E.10)

First, the limit y � 1 of (E.10) is considered. A substitution x = w y1/b yields

FS(y) = yδy(2−τ)/b

∫ ∞

0

dww1−τ exp{−(wy1/b + w−b)} (E.11)

where the integral tends to to a finite limit for y ↓ 0.
Second, for y � 1 (E.10) can be evaluated by Laplace’s method (see [BeOr78] Ch. 6).

Therefore, x = wy1/(1+b) is substituted which gives

FS(y) = yδy(2−τ)/(1+b)

∫ ∞

0

dww1−τ exp{−y1/(1+b)(w + w−b)} (E.12)
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The function g(w) = w + w−b has a unique minimum at w0 = b1/(1+b). By taking into ac-
count the algebraic prefactor which stems from the expansion of g(w) around the minimum
(see. Ch. 6.4 [BeOr78] for details) the scaling function takes the form

FS(y) ∼ yδy(2−τ)/(1+b)y−1/(2(1+b)) e−λ y1/(1+b)

(E.13)

for y → ∞. Here λ is a constant of order unity. By denoting αS = 1/(1 + b) as the
exponent of the stretched exponential the two limiting cases of the scaling function are
given summarized as

FS(y) =

{ �
(1), y � 1

yα (δ−1/2) exp{−λ yα}, y � 1
(E.14)

E.3 Moments of the resistance distribution for random
trees

The p−th moment of the resistance (distance) distribution in labelled random trees is given
by

〈
� p

i,j

〉
n

= (n− 2)!

n−1∑

k=1

kp(k + 1)

nk(n− k − 1)!

=
1

n− 1

n−1∑

k=1

kp(k + 1)
(n− 1)(n− 2) . . . (n− k)

nk
(E.15)

By converting the fraction in the sum in (E.15) into

k∏

l=1

(
1 − l/n

)
= exp

{
k∑

l=1

ln
(
1 − l/n

)
}

= exp

{
n

∫ k/n

0

dy ln
(
1 − y

)
}

(E.16)

and defining the function f(x) :=
∫ x

0
dy ln(1− y) the average resistance can be written as

〈
� p

i,j

〉
n

= np+1 1

n− 1

n−1∑

k=1

(
k

n

)p+1

exp
{
n f
(
k/n

)}

∼ np+1

∫ 1

0

dx xp+1 exp {n f(x)} (E.17)

For the second equation in (E.17), the (Riemann) sum has been replaced by an integral
which is valid for large n. This integral is now evaluated asymptotically for n → ∞ by
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Laplace’s method. Therefore, one observes that the function f(x) has a unique maximum
at x = 0 in [0, 1]. According to [BeOr78], Ch. 6.4 the asymptotic behaviour of the integral
for large n remains the same, if f is replaced by the expansion f(x) = −x2/2 +

�
(x3)

around its maximum point. Hence, for n→ ∞

〈
� p

i,j

〉
n
∼ np+1

∫ 1

0

dx xp+1 exp
{
−n

2
x2
}

(E.18)

By substituting x = nx2/2 the integral takes the form of an incomplete Gamma function

n−(1+p/2)2p/2

∫ n/2

0

dy yp/2 exp{−y} ∼ n−(1+p/2)2p/2Γ(1 + p/2) (E.19)

which is tends to the complete Gamma function for n → ∞. Eventually, this yields the
asymptotic behaviour

〈
� p

i,j

〉
n
∼ 2p/2 Γ(1 + p/2) np/2 (E.20)

of the p-th moment of the resistance distribution for labelled trees of size n. The result
(E.20) for p = 1, 2 agrees with the rigorous result computed in [MeMo70].



Appendix F

The Jensen inequality

Probably one of the most useful inequalities for problems involving randomness is the
Jensen inequality. Consider the problem of computing the average of a function g(X)
where X is a random variable with given probability distribution p(X). Depending on
the function g, this turns out to be a highly unfeasible task in general. In contrast, it is
often relatively simple to compute the average of the random variable X . Under certain
conditions, the Jensen inequality allows to relate the average value of g to the value which
g assumes at the average of X (see e.g. [Fel66] Vol. II, Ch. V.8)

More precisely, let X ∈ �
be a random variable which is characterized by its proba-

bility distribution p(X) which is concentrated on an interval I ⊂ �
and suppose that the

expectation value X :=
∫

I
dXXp(X) exists. Let g : I → �

be a convex, real valued
function defined on I ⊂ �

. Whenever the expectation g :=
∫

I
dX g(X) p(X) exists the

Jensen inequality states
g ≥ g(X) . (F.1)

The convexity condition for a twice differentiable function g is indeed equivalent to a
nonnegative, second order derivative of g for all X ∈ I .

A generalization of the Jensen inequality is the Jensen-Peierls inequality for operators.
Here it is given for real, finite dimensional, symmetric matrices. In fact for this special
case it is equivalent to (F.1) [Sim79].

Let H be a real, symmetric matrix of order n, E a one dimensional, orthogonal pro-
jector, i.e. E2 = E, and g : I → �

a convex, real-valued function, defined on an interval
I ⊂ �

. Suppose, that the spectrum σ(H) of H , that is the set of real eigenvalues, is
contained in I . Then the Jensen-Peierls inequality states

Tr
(
E g(H)

)
≥ g
(
Tr(E H)

)
(F.2)

For a proof and generalizations see [Sim79] Sec. 8c.
By specifying E as the projector E0 = E0(

�
k) onto the nullspace of Γ (

�
k), H as the

preaveraged mobility matrix and g(x) = x−1 as the convex function the inequality yields

Tr
(
E0H

−1
)
≥
(
Tr (E0H)

)−1
(F.3)
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which gives the inequality (4.49) between the diffusion constant of a cluster and the Kirk-
wood diffusion constant.



Appendix G

Disorder averages from the
Leath-algorithm

Here, it is demonstrated how the disorder average A = 〈A( · )〉 of an observable of type
(5.2) is related to a sequence of clusters { �

l}L
l=1 which is generated by the Leath algorithm.

Therefore, consider the average number of lattice points per vertex which belong to a� −cluster

τ(
�

) : =

〈
1

N

K∑

k=1

Nkδ � k, �

〉
(G.1)

which amounts to express A = 〈A( · )〉 via

A =

〈
K∑

k=1

Nk

N
f(

�
k)

〉
=
∑

�
τ(

�
)f(

�
) (G.2)

Eq. (G.1) implies

τ(
�

) =

〈
1

N

K∑

k=1

Nkδ � k, �

〉
=

1

N

N−1∑

i=0

〈χi∈ � 〉 (G.3)

= 〈χ0∈ � 〉 (G.4)

where the last step in (G.3) is valid due to translational invariance. Hence, the quantity
τ(

�
) can be interpreted as the probability that the origin belongs to a

�
-cluster which

provides a link to the Leath algorithm. Starting from the origin as seed vertex, the Leath
algorithm generates a sequence { �

l}L
l=1 where the computational probability of finding

the cluster
�

is given by

p(Leath)(
�

) := lim
L→∞

1

L

L∑

l=1

δ � l, � . (G.5)
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The Leath probability (G.5) of finding the cluster
�

is the probability that the origin
belongs to a

�
-cluster, hence

〈χ0∈ � 〉 = p(Leath)(
�

) (G.6)

By successively inserting (G.5) into (G.6) into (G.3) into (G.2) one ends up with

A = lim
L→∞

1

L

L∑

l=1

δ � l, � f(
�

l) (G.7)

By choosing the observable f(
�

k) := δNk,n/Nk one has

τn =

〈
1

N

K∑

k=1

δNk,n

〉
= lim

L→∞

1

L

L∑

l=1

δN( � l),n/N(
�

l) (G.8)

=:
1

n
τLeath
n (G.9)

with

τLeath
n := lim

L→∞

1

L

L∑

l=1

δN( � l),n (G.10)



Appendix H

Ring polymers in the Zimm model

In the following, the preaveraged Rotne–Prager tensor for ring polymers in the Zimm
model is examined. Thereby, the attention is drawn to the limiting cases of small and
large κ.

The eigenvalues of the commuting cyclic matrices Γ ( � n) and H( � n) can be written in
terms of Fourier representations. The eigenvalues of Γ ( � n) are given by

γl = 2
(
1 − cos (2π l/n)

)
(H.1)

for l = 0, 1 . . . n− 1. The eigenvalues of H( � n) are given by

hl =
n−1∑

k=0

h(κ2π/� k) exp

{
i 2π

kl

n

}
, (H.2)

where � k =
(
k−1 + (n− k)−1

)−1
= k(1− k/n) is the resistance between two monomers

on the ring with chemical distance k. Due to cyclicity � k = � n−k and (H.2) can be written
as

hl = h(0) + δn,even (−1)l+1 h(κ2π/� n/2) + 2

bn/2c∑

k=1

h(κ2π/� k) cos (2πl k/n) , (H.3)

where bxc denotes the floor function which returns the maximum integer kx which satisfies
kx ≤ x. The eigenvalues of Γ̂ ( � n) = Γ ( � n)H( � n) are then given by γ̂l = γlhl. The func-
tion h(x) can be either chosen according to the Rotne–Prager tensor (2.31) or according to
the Oseen tensor (2.30). In the following the inverse moments of Γ̂ ( � n) are computed for
two limiting cases.

Case 1: n� 1 and κ2/n� 1: Then, also κ2/� k � 1 for all k = 1, 2 . . . n and one can
expand h(x) = erf(x1/2) −

(
1 − exp(−x)/(πx)1/2

)
= 1 − (π x)−1/2 +

�
(exp(−x)) for
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large arguments. This implies

hl = 1 + δn,even (−1)l+1

(
1 − n1/2

2κπ

)
+ 2

bn/2c∑

k=1

cos (2πl k/n)

− 2

π

bn/2c∑

k=1

n1/2

κ

[
k

n

(
1 − k

n

)]1/2

cos (2πl k/n) (H.4)

The last (Riemann) sum can be converted into an integral for l � n, it yields

2n3/2

πκ

∫ 1/2

0

dx
[
x(1 − x)

]1/2
cos(2πlx) =

n3/2

πκ

∫ 1

0

dx
[
x(1 − x)

]1/2
cos(2πlx)

=
n3/2

πκ

π1/2

2πl
cos(πl) Γ(3/2) J1(πl) = −n

3/2

κπ

(−1)l+1

8l
J1(πl) (H.5)

The second equation follows from Eq. 3.768.9 in [GrRh80] in terms of Euler’s Γ function
and the Bessel function J1. The Bessel function can be expanded for large arguments,
J1(z) =

(
2/(πz)

)1/2
cos(z − 3/4π) +

�
(z−5/2) according to Eq. 7.13.1 (3) in [ErMa53],

Vol. II. If (H.5) is inserted into (H.4) by observing cos(π(l − 3/4)) = (−1)l+1/
√

2 the
eigenvalues of H become

hl ∼
(n/l)3/2

κ
, for 1 � l � n� κ (H.6)

If the inverse moments of Γ̂ are computed by employing expression (H.6), one has

1

n

n−1∑

l=1

1

(γlhl)m
∼ κl

∫ 1

1/n

dx

[
x3/2

1 − cos(2πx)

]m

. (H.7)

The dominating contribution to the integral in (H.7) stems form the behaviour for x ↓ 0
where the integrand behaves as x−m/2. Hence, for large κ or more precisely for n� 1 and
κ2/n� 1 the inverse moments take the form

1

n

n−1∑

l=1

1

(γlhl)m
∼ κm





const , m = 1

ln(n) , m = 2

nm/2−1 , m ≥ 3

(H.8)

Case 2: n � 1 and κ2/n � 1: For κ2/n � 1 the function h(x) for the Rotne–Prager
tensor can be approximated by its expansion for low x which is given by h(x) =

√
x/π
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for Oseen tensor. Inserting this (H.3) yields

hl = 1 + 2n1/2κ

bn/2c∑

k=1

1

n

[
k

n

(
1 − k

n

)]−1/2

cos (2πl k/n) +
�

(n−1)

∼ 1 + n1/2κ

∫ 1

0

dx
cos(2πl x)

[x (1 − x)]1/2
+

�
(n−1) (H.9)

∼ 1 + n1/2κ (−1)l π1/2J0(πl) +
�

(n−1) (H.10)

where the last equation follows from from Eq. 3.768.9 in [GrRh80]. The Bessel function
can be expanded for large arguments J0(z) =

(
2/(πz)

)1/2
cos(z − π/4) +

�
(z−5/2) (see,

e.g. , Eq. 7.13.1 (3) in [ErMa53], Vol. II). With cos(π(l − 1/4)) = (−1)l/
√

2 this gives
rise to

hl ∼ 1 + κ
( n
π l

)1/2

(H.11)

for l � 1 to leading order in n.
The mth inverse moment of the Γ̂ can be computed from the approximation (H.11) via

1

n

n−1∑

l=1

1

(γlhl)m
∼ 1

2

∫ 1

1/n

dx
[(

1 − cos(2πx)
)(

1 + κ/(πx)
)]−m

∼ 1

2

∫ 1

1/n

dx

[
(πx)−3/2

2κ

]m

(H.12)

where the last equation is obtained by expanding the integrand for x ↓ 0 within the as-
sumption κ2/π � 1/n. Hence, for n � 1 and κ2n � π the inverse moments take the
form

1

n

n−1∑

l=1

1

(γlhl)m
∼ 1

3m− 2

(
1

2κπ3/2

)m

n
3m−2

2 (H.13)

for m ≥ 1. If instead κ2/π . 1/n in (H.11) and (H.12), Rouse behaviour is observed.
Therefore the crossover clusters size n̂ := π/κ2 separates Rouse from Zimm behaviour.
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Appendix I

A variational bound to the viscosity

In the following it is demonstrated how it is possible to go beyond the approximation of
phantom clusters and address the effects of excluded volume interactions by means of
variational bounds. The advantage of this approach is that the bound to the shear viscosity
can be expressed in terms of an equilibrium expectation value (see [Pra71] or Ch. 4.6 in
[DoEd88]).

The starting point is the a priori unknown steady state solution p({R}) of the Smolu-
chowski equation (2.13). For vanishing shear rate γ̇ = 0 the solution is given by the
equilibrium Boltzmann weight peq({R}) ∼ exp{−U({R})/kBT}. In the presence of
shear flow a product ansatz

p({R}) =: peq({R}) p∆({R}) (I.1)

is made, with an unknown function p∆({R}) which is required to be translationally invari-
ant

p∆(R1,R2, . . .RN) = p∆(R1 + a,R2 + a, . . .RN + a). (I.2)

As shown by Prager [Pra71], for each p∆ satisfying (I.2) a lower bound for the shear
viscosity is given by

η ≥ kBT

γ̇2N
W [p∆], (I.3)

with a functional

W [p∆({R})] :=

〈
−kBT

ζ

N∑

i,j=1

∂p∆({R})
∂Ri

· Hi,j(Ri − Rj)
∂p∆({R})
∂Rj

+ 2
N∑

i=1

∂p({R})
∂Ri

· γ̇Ri

〉

eq

(I.4)

In the limit of vanishing hydrodynamic interactions, Hi,j = δi,j1, one has

W [p∆({R})] :=

〈
−kBT

ζ

N∑

i=1

∂p∆({R})
∂Ri

· ∂p∆({R})
∂Ri

+ 2γ̇

N∑

i=1

∂p∆({R})
∂Ri

· K̇Ri

〉

eq
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where K := γ̇/γ̇. A simple choice for the trial function which satisfies (I.2) is

p∆({R}) := 1 +
λ

2a2

N∑

i,j=1

[
� − E0]i,j Ri · KRj. (I.5)

Inserting the gradient

∂p∆({R})
∂Ri

=
λ

a2

N∑

j=1

[
� − E0]i,j KRj (I.6)

into (I.4) one ends up with

η ≥ kBT

γ̇2N

〈(
2γ̇

λ

a2
− kBT

ζ

λ2

a4

) N∑

i,j=1

[
� − E0]i,j Ri · K†KRj

〉

eq

(I.7)

where the projector property (
� −E0)

2 =
� −E0 was employed. Maximization with respect

to λ gives λmax = γ̇ζa2/(kBT ). Due to rotational invariance of the potential energy one
has
〈
Ri · K†KRj

〉
eq

= 1/d 〈Ri · Rj〉eq and enventually

η ≥ ζ

dN

〈
N∑

i,j=1

[
� − E0]i,j Ri · Rj

〉

eq

This can be written in the following form

η ≥ ζ

2d

〈
K∑

k=1

Nk

N
R2

gyr(
�

k)

〉

eq

. (I.8)

In the absence of excluded volume interactions, the bound coincides with the exact value
in the Rouse model which can be inferred from (4.37) and (5.19).
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