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Chapter 1

Introduction

If a physical system is prepared in nonequilibrium, a coupling to an environment gives
rise to dissipation. Thereby the system will finally attain a stationary state. Classically,
the interaction term in the Hamilton function leads to dissipative forces in the equations
of motion. In many cases one ends up with a generalized Langevin equation for the
coordinates of the local systemi][ To obtain a correct description of such systems,
however, one has to consider the problem quantum mechanically. This leads to quantum
dissipative systems where dissipation is generated by the interaction term in the Hamilton
operator which acts on the product Hilbert space of the local system and the environmental
bath. Typically the environment is given by a particle bath (e.g. electron reservoir) or
a bath of quasiparticles representing excitation modes (e.g. phonons in a solid). The
dynamics is determined by the Heisenberg equation while the thermodynamic properties
follow from the partition function. The local system is described by the reduced density
matrix, which is the trace of the full density matrix over the bath degrees of freedom.

In case of a small coupling of the local system to the environment, such problems
can be approximately solved by using standard perturbation theory. However, for larger
coupling constants this treatment becomes insufficient and other methods have to be ap-
plied. One often uses the path-integral formulation of Feynriamjhere the interaction
term may be accounted for by an influence functional. One then ends up with an ef-
fective theory for the local system’s degrees of freedom which usually has to be solved
approximately.

Any interacting system may also be studied by exactly diagonalizing the Hamilto-
nian. However, for quantum dissipative systems this is a complex problem due to the
high dimension of the Hilbert space of the bath. Therefore, one may only apply some ap-
proximate diagonalization. A general method that serves this purpose is the flow equation
formalism of WegnerJ]. In this method the unitary transformation which diagonalizes
the Hamiltonian is decomposed. This results in a sequence of infinitesimal transforma-
tions, and its differential formulation then leads to flow equations. This approach has
often been used to determine the matrix elements of the diagonalized Hamiltonian, such
as the ground-state energy. From these one may also calculate spectral properties, such as
equilibrium correlation functions. However, the calculation of the diagonalizing unitary
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4 CHAPTER 1. INTRODUCTION

transformation requires much more effort within this formalism. Therefore, one does not
obtain a solution for the system’s dynamics.

The method of the flow equations can be viewed as a renormalization-group (RG)
technique. RG procedures use some kind of operation to transform a physical system
into an equivalent one. Successive application of this operation generates a sequence of
systems which define a semi-group with respect to this operation. The elements of the
group can be labeled by a parameterThe idea of RG methods is that, for some limit
of u, e.g. u — oo, one deals with a trivial system. Today RG methods are often used
tools which are successful in describing many physical problems beyond perturbation
theory [3] - [11]. However, until recently RG methods could only be used to calculate
equilibrium quantities. They could not describe nonequilibrium stationary states or pro-
vide the dynamics of quantum dissipative systems. A new approach which also allows
for the description of the dynamics in arbitrary nonequilibrium situations is the real-time
renormalization-group (RTRG) by SchoelléZ]. Within this approach one develops an
effective theory for the local system by introducing normal ordering and applying Wick’s
theorem regarding the bath operators. One then has to account for nontrivial expressions,
which involve time-dependent bath contractions. In the RTRG scheme one defines the
real-time parametet. as a critical time scale, which serves as a cutoff regarding the time
arguments of the contractions that one takes into account. To leave the physical prob-
lem invariant one has to account for this cutoff by renormalized operators for the local
system. By considering the step— t. + dt. with an incrementit. one then obtains a
set of differential equations with respectito This defines a renormalization-group flow
for physical quantities, which now depend on the flow paramgeteWithin the RTRG
one starts at. = 0 with the original problem, and ends in the limjt — oo, where all
contractions have been integrated out. In contrast to Poor Man’s scaling equdtions [
this approach takes the full time evolution into account. Thus, all time scales are consid-
ered and one generally does not need any further cutoff regarding tlosv. Another
advantage of this method is that one may work on the Keldysh contour. Thereby, non-
Hamiltonian dynamics is considered, so that both dynamical and stationary quantities of
guantum dissipative systems can be calculated for any nonequilibrium problem.

The RTRG has been applied to equilibrium problefif§ fpnd has been used to study
nonequilibrium stationary state$4]. In this thesis we use the RTRG to analyze different
guantum dissipative systems. These RG studies lead to results which could not be ob-
tained before for these systems, such as nonequilibrium stationary states or the dynamics
of the reduced density matrix. In fact, we present the first RG calculation of the time-
dependent reduced density matrix of a quantum dissipative system at all. We discuss the
power and performance of the RTRG and present some further modifications. This will
also convey an insight into the general properties and possibilities of this RG method.

As a starting point and a first application of the new RTRG method we consider the
polaron problem described by the Frohlich Hamiltoniag] in the next chapter. Itis a
standard model for an electron interacting with phonons in a solid and has attracted much
interest in the past 50 years. More recently also low-dimensional systems have often been
studied [L6] - [20]. We present approximate results for the ground-state energy as well as



for the effective mass of the one-dimensional polaron in the regime of small to interme-
diate couplings for the case of vanishing temperature. For this analysis we do not have to
work on the Keldysh contour, but it is sufficient to consider $hmatrix within the RTRG
approach. We also generalize the standard methods of Lee, Low and Pingg][and

that of Feynman3] to the one-dimensional case with finite bandwidth. These approxi-
mations are then compared to the results following from the flow equation formalism and
those obtained by the RTR@G4]. Although the comparisons show that the RTRG method

is in principle able to describe the polaron beyond perturbation theory, we achieve only a
low accuracy for this model. The difficulties of the RTRG concerning the polaron prob-
lem are discussed. Furthermore, it turns out that a nonequilibrium study of the polaron
requires too much numerical effort.

In Chapter3, the central part of this thesis, we study the spin-boson model using
the RTRG method. In this case the problems which arise for the polaron model are not
present. In contrast, here we use the RTRG formalism on the Keldysh contour to de-
termine the full time evolution of the reduced density matrix starting from an arbitrary
nonequilibrium stateZ5, 26]. Furthermore, we also calculate static quantities as well as
equilibrium correlation functions. Our results are obtained for arbitrary parameters with
the only restriction of not too large couplings, and they exhibit a remarkably high accu-
racy. The spin-boson model is a basic, yet nontrivial qguantum dissipative model, which
can be used for any physical or chemical system, where a local two-state system is coupled
to a bosonic environment. Altough it has been examined very often (see Refg énd
references therein), an exact solution of the spin-boson model is only known for special
parameter values.

After we have given a detailed explanation of the general formalism of the RTRG,
we discuss the explicit form of the differential equations for the spin-boson model. Con-
sidering the resulting RG equations we analytically find the correct renormalized energy
scale of the problem. We solve the RG equations numerically to present results for the
stationary reduced density matrix, the static spin susceptibility and the time-dependent
reduced density matrix. For the latter we also determine both the oscillation frequency
of the diagonal elements and the decay constants in the asymptotic regime, the dephas-
ing and the relaxation time. Eventually, we use the RTRG to also calculate equilibrium
correlation functions. The presented results show the correct scaling behaviour and are
consistent with both QMC simulations and the Shiba-relation. Additionally, we draw
comparisons to the noninteracting blip approximation (NIB2&J [and to results obtained
for the anisotropic Kondo mode?§, 29].

A more complicated quantum dissipative system is considered in Chgptdrere
we study a system consisting of two coupled quantum dots in a phonon bath. This struc-
ture has been realized in a recent experim@&fl, where the authors applied an external
voltage to the double dot and measured the stationary tunnel current through it. Today
guantum dot systems are often studied, as they can be used as realizations for many phys-
ical phenomenadl, 32, 33]. In the experiment described in Re&(] the influence of the
phonon environment on the stationary tunnel current was examined at low temperature.
We study this out-of-equilibrium problem using the RTRG, by which again the whole pa-
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rameter space with small to moderately large couplings to the environment is accessible.
Since the coupled quantum dots in a phonon bath are closely related to the spin-boson
model, we can make use of the insights we have gained in the preceding chapter. In con-
trast to a previous qualitative theoretical analy8i§ jour approach yields quantitatively
reliable results. Furthermore, within our analysis we also allow for an additional electron-
phonon interaction term, which arises from the finite extension of the electron densities
within the dots. Comparing our results with the experiment we show that one has to ac-
count for the variation of this finite extension with the applied bias between the quantum
dots. Using the experimental data we calculate the width of the electron densities as a
function of the energy difference between the dt.[

In the preceding chapters we have neglected “double vertex objects”, which have not
been present in the original Hamiltonians, but are generated during the renormalization-
group procedure. This approximation led to the restriction in the coupling constants. In
contrast, in Chaptes we study the two-lead Kondo model, where a Kondo impurity is
coupled to two bands. Since the original Kondo Hamiltonian already contains such double
vertex objects, the previously used approximation is not applicable then. However, within
the usual RTRG method double vertex objects give rise to retardation effects, which lead
to substantially more complicated RG equations. We avoid this problem by introducing
a formulation of the RTRG in energy space. The Kondo model has attracted much, both
theoretical and experimental, interest (for a review, s¥8)[ Recently, especially the
case of the two-lead Kondo model with a finite external voltage has been stugiigd |
[42]. Based on qualitative arguments, a two-channel regime for the running couplings was
proposed for that modeB[]. However, the authors excluded the effects of rates which
may destroy the two-channel physiési]. Applying the RTRG to this model we restrict
ourselves to the analysis of an effective Hamiltonian, thus we also disregard the effects of
rates which can only be accounted for by studying the problem on the Keldysh contour.
Thereby we quantitatively find the two-channel behaviour of the running couplings which
confirms the proposal of Ref3]].



Chapter 2

The polaron

The polaron has often been examined since Frohlich proposed the corresponding Hamil-
tonian [L5] (for a review, see Ref4H]). It serves as a standard model for various problems
involving a nonrelativistic particle moving in a scalar field, e.g. the interaction between
nucleons and scalar mesons or a single electron in a solid interacting with phonons. The
physical picture is that the particle polarizes the environment and must drag this polariza-
tion with it, which affects its energy and effective mass. The problem has been studied by
Lee, Low and Pines, who used a variational meth&ij P2]. They obtained results for
small to intermediate coupling strengths. For large couplings the polaron has been exam-
ined by Pekar et al4]5, 46]. Feynman provided an analysis for arbitrary couplingd.

Since polaron effects have been observed in low-dimensional systems, the problem has
also been studied in two dimensiori$] 17, 18] and in one dimensionlp, 20].

We examine the one-dimensional polaron problem. It can be realized e.g. for a Bloch
electron in a one-dimensional wire or macromolecular structure. The excitation of an
electron is strongly influenced by the interaction with longitudinal optical phonons [

If the conduction band is partially filled, one can linearize the electronic spectrum and
the model is exactly solvable by using bosonization technig@éls [However, if the
conduction band is empty, it is necessary to consider a quadratic spectrum for the elec-
tron with a bare mass:,. This leads to the one-dimensional Frohlich Hamiltonian with

a constant coupling to the phonons. It is our purpose to examine the ground-state en-
ergy and the effective mass of the electron for this problem at vanishing temperature
using renormalization-group methods. We apply the flow equations introduced by Weg-
ner [3, 48] and the real-time renormalization-group (RTRG) technique recently developed
by Schoeller {2, 13]. Furthermore, we compare our results with first and second order
perturbation theory, with Feynman’s variational principle, and with the method of Lee,
Low and Pines generalized to the one-dimensional case with finite bandwidth. Regarding
the flow equations the approximation used in Ré€] furns out to be insufficient to de-
scribe renormalization effects of the polaron. Using the RTRG for not too large coupling
constants we find a ground-state energy below the one following from Feynman’s method
and perturbation theory of second order and a value for the effective mass between the
result of Feynman and the one of Lee, Low and Pir#&$. [However, due to a further

7



8 CHAPTER 2. THE POLARON

approximation within the RTRG only a low accuracy is achieved.

2.1 Frohlich Hamiltonian

A Hamiltonian for the polaron system was introduced by Frohlich in 1954, [ He
considered a single electron in a polar medium, which interacts with the polarization
field resulting from displacements of the ions. As only the longitudinal waves enter the
interaction term one can write for the quantized polarization at the position

1
B 1 w1 1\ G =
P(¥) = — — | — == LT (g —al ),
=T (-] el

where we assume periodic boundary conditim}ﬁaq) creates (annihilates) a longitudi-
nal optical phonon with the wave vect@rwhereq lies in the first Brioullin zone. These
phonons are assumed to be dispersionlegs= w. The solid has the volum¥, the
static dielectric constant is and the one for large frequenciesis. The operator for the
charge density of the electron is given by

p(7) = el (D)0 (7).

Y1(Z) (1(7)) is the creation (annihilation) operator of an electron at positiolt can be
expressed as

1 o 1 o
T"__E T —ikT —*__E L ikE
w (%)— \/V . C];‘e 2ﬁ(x) - \/V - Cke )
k k

wherecg (cg) creates (annihilates) an electron with wave ve&toFhe Hamiltonian then
follows from the classical Hamilton function. It consists of a free part for the electron,
Hy, one for the phonond{, and an interaction paffy :

H=Hy+ Hp+ Hy .

They are given by

Hy = Zekczck, (2.1)
k

Hp = Y hwala,, (2.2)
q

Hy = Z(Mqaiq—i—quaq)chck. (2.3)
k.q

Now the indicest, ¢ denote the corresponding wave vectBra", the spin index is omit-
ted, as it is conserved under the interaction. We consider a slowly moving electron so
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that only large wavelengths are important. In this picture the electron emrgrgsn

be assumed a§i|k|)2/2my, m, being the bare mass of the electron. Consequently,
the first Brioullin zone for the one-dimensional case is given by the bandwidds
[—v2moD/h,\/2moD/k[. While the electron-phonon interaction coefficiedt§ are
proportional tol /|¢] in case of the bulk polaron, the one-dimensional situation involves a
q independent coefficient/ [18]. We define

M= Y2 , (2.4)

L\/2mow/h

wherelL is the one-dimensional normalization volume. In analogy to the three-dimensional
casex is a dimensionless coupling constant. In the following we discuss some earlier ap-
proximate solutions of the polaron problem and generalize them to the one-dimensional
case with finite bandwidt®. Henceforth we choose units such that my = w = 1.

2.1.1 Perturbation theory

The simplest approximation that can be applied to the problem is standard perturbation
theory in the coupling constamt. One obtains for the energy, of the polaron with
momentumk

k? M?

By = ——
: 2 Ay,

1 (Apg+ M)Ay + Ay — Do)
= M4 q 4 4 4 4,4 + O(Oé3) ’ (25)
2 ; AZ A2 Thyy

where we defined the energies

Apg = €rpg— €+ 1, (2.6)
Drgq = €tqrq — €+ 2. (2.7)

Note that for|k| < /2 the fractions are well defined. In the continuum limit theums
correspond to integrals which can be performed analytically in first order With the
bandwidthD one obtains for the ground-state energy

Ey = —ozg arctan(v'D) + O(a?). (2.8)

™

The inverse effective madgm is given asl /m = 5 E; | thus

% =1- % <arctan(\/5) + D\/—i—ﬁl — (;iﬁl)?) + 0(a?). (2.9)
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2.1.2 Method of Lee, Low and Pines

The method of Lee, Low and Pines is based on the usual variational pringipla]).

In the following we will use their approach to derive results for the ground-state en-
ergy Ey and the effective mass: for the one-dimensional polaron with finite band-
width D. Assuming that successive virtual phonons are emitted independently they chose
the following ansatz with the parametey, for the ground-state of the polaron with
momentumk:

V) (o) = /Ld:z: % exp (zx <k: — an};aq>> Yi(z)
x N exp (Z Uk,anq> 0) . (2.10)

q

The normalization factol is given by

N = exp (—% > %) . (2.11)

q

This yields for the energy,

2
k> 1
BEP = 5 42 ; Mugg+ 5 (Z Ug,qq> - ; Up o Dig - (2.12)

q
Minimizing the energy with respect to the coefficients, leads to
Uk ,qDkg + M + Vi gq Z vigd =0. (2.13)
q/

Following Lee, Low and Pine<[l] we choose the ansatz

mek ==Y 174, (2.14)
q
which leads to v
Vpg=——". (2.15)
! Ak(l—nk),q
We now assume
0<m <1 (2.16)

for all &, so that the above fraction in EQ.(5 is well defined for|k| < v/2. Inserting
this in Eq. .14 we integrate to get an expression fpr

= (arctan(\/ﬁ) + Difl — (127\11?)2

Y Y ) + O(k?). (2.17)
= (arctan(x/ﬁ) + B (DH)Q) +1

Nk =
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For the calculation of the ground-state energy and the effective mass it is sufficient to take
into account only the lowest order infor 7, so that Eq.Z.16) holds. It then follows
from Egs. .12 and @.15:

2
EMP = —aZ arctan(v D), (2.18)
s
1 B 1
mLLP 1+%

1-2 (arctan(\/ﬁ) + Difl - (gfl_)P)

) 14 a <arctan(\/5) + Difl - ([2)\115)2>

(2]
2

+

q (2.19)

+

These approximate results are valid for small to intermediate couplings 2. One
notices that the expression for the energy, Bql®, coincides with that of perturbation
theory to first order oy, Eq. 2.8). Thus perturbation theory of first order gives an upper
bound for the ground-state energy.

2.1.3 Feynman’s method

Feynman'’s variational approachd is able to treat both small to intermediate and strong
couplings. Furthermore, for small couplings he could improve the approximate results
of Lee, Low and Pines[l]. We apply Feyman’s method to the one-dimensional polaron
with a finite bandwidth and small to intermediate couplings. Feynman’s variational prin-
ciple is based on the path-integral formalisn0]. When the paths of the oscillators of

the bath have been integrated out, one obtains for the effective Euclidean action

1 B dz 2 « A B il . ’
Y I A o T S e
T2 dr V2 Jo 0 qu: (2.20)

where we use the coordinate representation. One now considers the sum over all possible
trajectories

K = /Dl‘(T) exp(—Sk). (2.21)

Of course,K will depend ong as well as on the initial and final condition for the path
x(7). From the path-integral formalism we know that for— oo, K decays as %0,

E, being the ground-state energy. One now chooses an approximate effectiveé@?;tion
which is more tractable tha$);;. Let us consider the average of a functiofiat (7)) with

the positive weightxp(—S%):

_ [ Da(r) exp(=Sk)f
J Da(7) exp(—5%)
For any set of real quantitigswe then may use Jensen’s inequality

(exp(g)) > exp((g)) . (2.23)

{f) (2.22)
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Thus
K > exp(( /D:c exp(—5E). (2.24)

If we know the ground-state enerdy; of the problem described ., this leads to an
upper bound forE:
E _ QE
E0+ lim <Seﬂ ﬁ Seff)

p—o0

> E. (2.25)

The left-hand side of the above equation may then be used as an approximate result for
Ey. For small to intermediate couplings we choose Feynman’s two-particle approximation
with the free parameters andw:

Seﬁ_%/oﬁdf (Z—i) + 0/ dT/ dr'e "Nz (r) — z(7)?.  (2.26)

Following FeynmanZ3] one studies

I = (exp(iq(z(7) — z(7"))))
| Da(7) exp <_S‘§f +iq(z(7) — x(7’))>

— - . 2.2
[ Da(r) exp(—9E) (2:27)

By considering the path, for which the exponent in Ef2{) is maximum, he derived

20> ey W3R ,
I =exp (— " (1—e vl — 5p2 |7 — 7’| (2.28)
with the definition 40
v =w? + — (2.29)
w

Expanding Eq.Z.28 with respect ta; up to orderg® we obtain
2
—v|r—7' w
—(1—e" ')+F|T—T’|. (2.30)

ThenE, can be derived from the free actiofi & 0) and the derivative

) 3 s
%:ﬂli“;o% ) dT'%<<fC(T)—x<T’))Q>e“’”". (2.31)
This yields
dEo 1
0 o 2.32
dC vw (2.32)
— B = ——. (2.33)




2.1. FROHLICH HAMILTONIAN 13

Furthermore, we obtain analogously to Ref3|[

E _ QFE 00
lim <Seff Seff> — _Oé\/i dre ™
f—0oo B T Jo
V2D 2 2 2
2Cq Cory WYQ
></0 dqexp(—vsw(l—e )—27}27')
o : (2.34)
vw

whereD is again the bandwidth. Thus, the approximate ground-state efgrggads

SE _ GE
Eg = E0+ lim 4< off cit)

B—o0

v _U —a—/ dre " (g(T) _% erf <7DUQ<T)> (2.35)

with the error-function

erf(x / dt et
T T

g(7) = (”2 — ) +w27) .

v

and

The parameters andw are chosen such thdt" is minimum. Forv = w the result
of perturbation theory of first order in is reproduced. Following Feynman we treat
small couplings by setting = (1 + 6)w. Consideringy small one can now expand the
right-hand side in Eq.2.35 which yields
1
2
- (E arctan VD + 6= (arctan VD — P) + (’)(52)> ., (2.36)
s m

where we introduced

D 2 D
P = D\/:1 + — (\/w + 1 arctan \/wL—l—l — arctan \/5) . (2.37)

Minimizing the energy to this order we obtain

0= ai <arctan VD — P) . (2.38)

wTm

Thus
2 4 2
El = —a= arctan VD — a2—2 (arctan VD — P> ) (2.39)
™ wT
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This expression is not sensitive to the choicevofor D — oc it is minimum forw = 3,
for w = 1 the o? coefficient drops by approximateB0%. Therefore, we may choose
w = 3 forall D. This finally leads to

2
Eg = —qa—arctanv D
T
2
4 5 4 v D v D
—042@ <§ arctan v D — 3 arctan - - D——i-l) : (2.40)

Within Feynman’s approximation the effective massan be calculated by considering
paths with a final coordinates. For small momental in Eq. (2.21) asymptotically
decays as~"7~™73/%% from which the mass can be determined. One 8gts uf, so
that the value of in Eq. 2.28 now depends on. Proceeding analogously as above one
obtains

mtf" = 1+ ozl <arctan\/5+ M)

T (D +1)2
4 5 4 D D
+a2@ (5 arctan \/5 — g arctan g — DL—H)

D
X (arctan \/5 -+ arctan g

3VD(D?+5D —2)  36vVD (D +3) 241
(D+1)%(D+4) (D+1)2(D+4)2 )" '

where we chose the same values of the parameters as for determining the ground-state
energy. Since Eq.2(40 follows from a variational principle Feynman’s method gives

an upper bound for the ground-state energy. In fact, it leads to more accurate results for
the energy than for the mass (for quantitative studies concerning the accuracy in three
dimensions see Refs]]). For D — oo our results coincide with Refsl§, 19].

2.2 Flow equations

The flow equations introduced by Wegné&}t ire based on infinitesimal transformations
which are successively applied to diagonalize the Hamiltonian. Formally one application
of such an infinitesimal transformation is established by incrementing a continuous pa-
rameter! by di. This leads to d dependence of the transformed Hamiltonid(V). It
may be written as

H(l) =U)HU(I) (2.42)

with al dependent unitary transformatiéf(/). By convention one starts at= 0:

U()=1 = H(0)=H. (2.43)
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The infinitesimal transformations are now defined by a genergtar

n(l) = d[é—l(l)UT(l). (2.44)

Thus, the resulting flow equation can formally be expressed by the commtatar

SH() = 1), HD)- (2.45)
One useful choice for(l) is
n(l) = [Ha(l), Hy(1)]-, (2.46)

where H, denotes the diagonal part of the Hamiltonian @&hdthe off-diagonal part. As
a consequence of this choice the off-diagonal elements decayfaso. This can easily
be shown if there are no degeneracies. However, even in the presence of degeneracies
more detailed studiestp, 52, 48] suggest the decay dff,. With this choice ofy the
problem arises that the formal flow equation, E2}46), does not correspond to a closed
set of differential equations for the matrix elements of the Hamiltonian. This is due to the
generation of new interaction terms when performing the commutators. Therefore, one
usually has to truncate the system of flow equations.

Applying this scheme to the polaron one chooses;foy

n(l) = [Ho(l) + Hp(l), Hy(1)]- (2.47)

with Hy(0) = Hy, Hg(0) = Hp and H,(0) = Hy. The generated set of differen-

tial equations is truncated as in Ret9], where this approximation proved sufficient to
explain the effective interaction between electrons. By using this truncation we neglect
double phonon processes, thidg(l), Hg(l) andHy (1) are given as in Eqs2(2) - (2.3),

but with  dependent coefficients (/), w(l) and M ,(1). In general, we expect this ap-
proximation to be valid at least for small couplings In the thermodynamic limit the
phonon frequencies are not renormalized) = w = const.. The flow equations read

%Eka) - _ZzAk,qU)M/?,q(l), (2.48)
%Mk,q(l) = —A7,(DMyq(0), (2.49)

where we again used the definition in EG.G). Note that a(k, q) dependence of the
couplings My, , is generated in thé flow. When we examined the three-dimensional
polaron using this formalism4p], the ground-state was in the focus of interest. Here,
we are only interested in the ground-state energy and the effective mass of the (one-
dimensional) polaron. These quantities can directly be derived by integratingZe=f}. (

and @.49, as the renormalized energies are giverfhy= lim,; ., €x(!). Egs. .48 and

(2.49 can be solved approximatelyd]. If we, for example, neglect thedependence
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Figure 2.1: Ground-state energy of the polaron in the flow equations as a function of the
flow parametef for o = 0.1,0.3,0.5 and D = 10.

of A, , on the right-hand side, perturbation theory of first order is readily reproduced for
k| < V2.

However, here we will solve the set of equations exactly using numerical methods. A
description of these methods is given in AppenHid. Theq integration in Eq. 2.48
Is performed using the extended trapezoidal rule. Accurate results are obtained for a
discretizationdg ~ 0.15. Fig. 2.1 shows the solution foe,(/) for different coupling
strengthsy and the bandwidti® = 10.

The ground-state energdy, as a function oty for D = 10 is shown in Fig2.2 One
recognizes that the result of the flow equations for the ground-state energy is even larger
than the result of the perturbation theory of first order. As both the result of perturbation
theory of first order and Feynman'’s result are upper bounds for the ground-state energy,
one concludes that this standard approximation for the flow equations gives poor results
for the polaron’s energy. From Fig.3we see that this statement also holds for different
bandwidths.

Differentiating Eq. .48 twice with respect td: gives an equation for the inverse
effective mass of the polaron. Fig.4 shows the solution faf? /dk?e;,(1) |- for different
coupling strengtha and the bandwidti = 10.

The a dependence of the inverse effective mags = lim; .., d?/dk?ex(1)|1—o for
D = 10 is shown in Fig.2.5. The result of the flow equations for the effective mass is
larger than those of Feynman or Lee, Low and Pines. For couplings largenthan
this method fails in calculating the mass, similarly to perturbation theory a singularity for
the mass is obtained. Varying the bandwidth the result of the flow equations stays close
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Figure 2.2: Ground-state energy of the polaron as a function of the coupling constant
for D = 10. Solid line: flow equations. Dashed and long-dashed lines: perturbation
theory of ordeix anda?. Dotted line: Feynman’s method.

Figure 2.3: Ground-state energy of the polaron as a function of the bandwiddn
a = 0.5. Solid line: flow equations. Dashed and long-dashed lines: perturbation theory
of ordera anda?. Dotted line: Feynman’s method.
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Figure 2.4: Inverse effective mass of the polaron in the flow equations as a function of the
flow parametef for o = 0.1,0.3,0.5 and D = 10.
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Figure 2.5: Inverse effective mass of the polaron as a function of the coupling constant

for D = 10. Solid line: flow equations. Dashed and long-dashed lines: perturbation
theory of ordery anda?. Dotted line: Feynman’s method. Dot-dashed line: result of Lee,

Low and Pines.
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Figure 2.6: Inverse effective mass of the polaron as a function of the bandidibin

a = 0.5. Solid line: flow equations. Dashed and long-dashed lines: perturbation theory
of ordera ando?. Dotted line: Feynman’s method. Dot-dashed line: result of Lee, Low
and Pines.

to that of perturbation theory of first order (see Fic).

2.3 Real-time renormalization-group for the polaron

Since we deal with vanishing temperature, we may use the Gell-Mann-Low theorem to
determine the renormalized energigs Thus, we assume that the interaction is turned on
adiabatically in the interval €] — oo, 0] and that there is no crossing of the ground-states
during this process. We therefore consider $hmatrix

- rt
S = lim Te “w®H
tp—o0

—  lim e iHotHR)p =t [y At Hy () —i(Ho+Hp)to (2.50)

to—00
acting on the free ground-state with momentmTCHO). Here, T' denotes time order-
ing and Hy (t) is the interaction part of the Hamiltonian taken in the interaction picture
with respect toH, + Hz. The idea of the RTRG is to leave this object invariant while
successively integrating out diagrams of different time scales. Thereby a renormalized
propagator is generated. Its matrix elements correspond to the renormalized energies ac-
cording to the Gell-Mann-Low theorem. The general formulation of the RTRG will be
explained in detail in Sectiod.2 Thus, here we only mention the main points, which this
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Figure 2.7: Scheme of the real-time renormalization-group. With increasing ¢u(oft
dicated by the arrows) the correlation functions (dashed lines) are successively accounted
for by renormalized energies and coupling constants (thick lines and dots).

systematic approach is based on. The procedure is schematically shown2n/Fid).
For a given cutoft. in time space, we allow only for correlation functions of the phonons
with a time scale > t¢.. At zero temperature, the latter are given by

((al, +ag)(t)(al +a_y)) = e, (2.51)

All correlation functions (dashed lines in Fig.7) with time scales shorter than are
accounted for by renormalized energies and coupling constants, which théndee
pendent. These are represented by thick lines and dots iRFigA change oft. to

t. + dt. is made by applying three steps3]: (i) expanding the second exponential in

Eq. 2.50 and introducing normal ordering for the phonon operators using Wick’s theo-
rem, (ii) integrating over the contractions with a time scale betweamdt. + dt. and

(iif) resumming the operators in an exponential form. Consequently, these operators will
not be limited to zero-phonon and one-phonon operators any more. But we shall see that
a good approximation is achieved for not too large coupling constants, if we neglect dou-
ble or higher-order vertex operators. Within this method we only need to consider the
operators of the electronic system, as the phonon degrees of freedom are integrated out in
eacht.. step. For the polaron problem we writé, = > Gq(aT_q + a,). Thus we start

with ¢. = 0 involving the operators

Hy = > exchor, (2.52)

k
Gy, = Y Mcl, o (2.53)
k
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as in Egs. 2.1) and @.3) and end up with an effective Hamiltonian for — oco. We
obtain the following RG equations

dHy : —iwte iH —iHot.
= e t~;e oleGue G, (2.54)
dGq —iwtc fe iHot —1Hot iHo(t—tC) —iHo(t—tc)
T = —e Z i dt [ e Gye Gge G_ge
q/

—quiHOth,eiHothq,eiH0<ttc>> : (2.55)

The second term in Eq2(55) is a correction term. It is due to the fact that a time interval
connected with a contraction becomes a single point in time at one RG step. In the next
step this leads to the generation of new terms which were previously not present, and
therefore, must be subtracted. Taking the corresponding matrix elements oREBds. (

and @.55 we obtain

dEk
dt.

= =iy e My Mg, (2.56)
q

o~ Brpqqte _ p=ily gte

i(Alﬁ-q,q’ - Ak,q’)

d M,
dth - Z(Mk+q+q’,—q’Mk+q’7qu,q’

ql

+ Mkthk_Fqc_q/Mkyq/tce_iAkvq/tc> (257)

with thet. dependent coefficients,(t.) and My ,(t.). Again the energy\, , is defined
by Eq. £.6). The (k,q) dependence of the interaction coefficients is generated during
the RG flow. The level broadening is included in EB.50 since all energies become
complex. The terms that generate the double vertex operators are of fourth ofder in
Therefore Egs.4.56 and @.57) contain the ordef/* exactly. Thus, the renormalized
energiesk, = lim;, .., €x(t.) are correct up to order®. In comparison the method of
Lee, Low and Pines, Feynman’s approach and the flow equations lead to results which
are correct up to first order im only. If one neglects the. dependence af/;, , andA;, ,
and introduces the regularizatien™-, Eq. (2.56) reproduces perturbation theory of first
order for|k| < /2.

To go beyond perturbation theory we solve the ordinary differential equatiohé) (
and @.57) numerically (AppendixE.1). For the integrals a discretizatiog ~ 0.15 is
again sufficient. Regarding the oscillating terms in these equations one recognizes that
given a certain discretization inspace one obtains large errors with increasing time
To avoid thisA, , and M, , have been interpolated inspace (see also Appendix3).
Unfortunately Egs.4.56) and @.57) do not show a convergent behaviour for the ground-
state energy fot, — oo (see Fig.2.8, where thet, flow of ¢, is shown for different
a andD = 10). One reason is that there are undamped modes corresponding to high
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Figure 2.8: Ground-state energy of the polaron in the RTRG as a functign of
fora=0.1,0.3,0.5 and D = 10.

excitations in the; sums leading to increasing effects on the ground-state energy. In this
context another problem arises from the fact that the correlation function in2Exf) (
is not decaying. As a consequence, oscillations decay as a functigrbaf reoccur
for sufficiently larget.. For other correlation functions, e.g. for acoustic phonons, the
numerics is expected to be more stable.

The idea of our solution is to neglect further renormalizaton effects of hgthand
M, , for t. larger than a certain poitit [24]. By doing this we obtain a damped oscillation
of the ground-state energyin t. space fot,. > t;. Therefore Eq.4.56) can be integrated
analytically which leads to

M, _o(ts)My,(t ,
EO ~ €o(tf) _ Z q, ‘i(f)(sz(;Q( f)e—ZA(),q(tf)tf ) (258)
»q

q

In Fig. 2.9 the solution of Eq.Z4.58 is shown as a function of; for differenta. The
problems mentioned above make it necessary to choose atfiniteere the renormal-
ization effects beyond perturbation theory are contained but the numerical instabilities do
not yet occur. We choosg = 2.5 for all values ofa. At this point only low excitations
(A < 0.4) are not integrated out yet. Since~ 1 sets the scale for the first excited state,
it is reasonable to assume that excited states do not have further important renormalization
effects. The change df, between ; = 2 and¢; = 3 is approximatelyi % for ow = 0.5.

The o dependence of), is shown in Fig.2.10 One notices that fonr < 1 we
obtain lower values for the ground-state energy than those of both Feynman’s method and
perturbation theory of second order. However, note that our result does not follow from
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Figure 2.9: Ground-state energy of the polaron in the RTRG as a functign of
fora=0.1,0.3,0.5 and D = 10.

a variational principle and therefore does not give an upper bound for the energy. For
larger couplings our method is no longer reliable and yields worse results (see1E)g.

which is not surprising since we neglected double and higher-order vertex operators. We
also calculatedy, for different bandwidthd). As one can see in Fig.11we find lower
ground-state energies for all bandwidths.

To calculate the inverse effective mass one may again (as in SecBHodifferentiate
the flow equation for the energy, EQ.56), twice with respect t&. However, the numer-
ical solution of the resulting equation exhibits an even worse convergence than in case of
the energy. This behaviour can easily be understood in the perturbative solution of first
order, where one again neglects thelependence al/;, , andA; ,. The differentiation
leads to oscillations with increasing amplitude. To reproduce the result of perturbation
theory one again has to introduce the regularizatiotr.

For the numerical solution of the differential equations, we again introduce atfinite
to avoid these problems. However, the accuracy for the mass is worse than for the energy.
For o = 0.5 the change ol /m is approximately7% betweent; = 2 andt; = 3, see
Fig.2.12

The results as a function afare shown in Fig2.13 For small couplingsd < 0.5),
we find a value for the mass between the variational principle of Feynman and the one of
Lee, Low and Pines. For larger couplings the numerical solution is too unstable to make
definite statements from the RG approach. From Eigi4we see that our mass depends
only slightly on the bandwidth.
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Figure 2.10: Ground-state energy of the polaron as a function of the coupling camstant
for D = 10. Solid line: RTRG witht; = 2.5. Dashed and long-dashed line: perturbation
theory of ordeir anda?. Dotted line: Feynman’s method.
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Figure 2.11: Ground-state energy of the polaron as a function of the bandiidin
a = 0.5. Solid line: RTRG witht; = 2.5. Dashed and long-dashed line: perturbation
theory of ordery anda?. Dotted line: Feynman’s method.
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a=0.1

Figure 2.12: Inverse effective mass of the polaron in the RTRG as a functignfof
a=0.1,0.3,0.5 andD = 10.
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Figure 2.13: Inverse effective mass of the polaron as a function of the coupling camstant
for D = 10. Solid line: RTRG witht; = 2.5. Dashed and long-dashed line: perturbation
theory of ordery anda?. Dotted line: Feynman’s method. Dot-dashed line: result of Lee,

Low and Pines.
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Figure 2.14: Inverse effective mass of the polaron as a function of the bandiittih

a = 0.5. Solid line: RTRG witht; = 2.5. Dashed and long-dashed line: perturbation
theory of ordery anda?. Dotted line: Feynman’s method. Dot-dashed line: result of Lee,
Low and Pines.

2.4 Discussion

In summary, we applied two different renormalization-group methods to the
one-dimensional polaron problem. We also generalized the methods of Lee, Low and
Pines as well as that of Feynman to the one-dimensional case with finite bandwidth. We
compared the values for the ground-state energy and the effective mass, where we also
considered the results of perturbation theory. The following conclusions can be drawn:

If in the formalism of the flow equations one uses the approximation introduced in
Ref. [49], Egs. .48 and Q.49 are obtained. They are not sufficient to analyze the
polaron beyond perturbation theory. In fact, they yield even worse results than simple
perturbation theory of first order. To improve the performance of this formalism one may,
of course, extend the set of flow equations, i.e. account for double phonon procgesses |

In contrast, the real-time renormalization-group method is able to study the polaron
problem beyond perturbation theory. However, due to the fact, that the bath correlation
function is not decaying, we did not obtain a convergent solution of the RG equations for
t. — oo. We applied a physically motivated approximation by introducing the parameter
tr, which made it possible to obtain results within relatively small errd4 [For the ef-
fective mass the accuracy is generally worse than for the ground-state energy. The RTRG
gives reliable results only for not too large couplings< 1 concerning the ground-state
energy andch < 0.5 regarding the effective mass. The restrictiornims due to the ne-
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glecting of double and higher-order vertex operators. In this context note that it is difficult
to judge the performance of the RTRG for the polaron, because there are no exact results
which could serve as a test for our approach. In summary, it remains unsatisfactory that
the reliability of the RTRG method for the polaron model suffers from the convergence
problems. Additionally, due to the continuous electron spectrum a numerical calculation
of the reduced density matrix is not viable.

We will show in the next chapter that this method works much better with damped
bath correlations. Furthermore, in the next chapter we will study a problem with only
two degrees of freedom in the local system. Thus the computational effort needed will
be much less in this case, so that we will be able to use this approach to calculate the
time-dependent reduced density matrix starting from an arbitrary noneqilibrium state.






Chapter 3

The spin-boson model

The spin-boson model (SBM) is one of the most fundamental quantum dissipative sys-
tems R7] (for a review, see Ref.1]]). It models a particle in a double-well potential with

a finite tunnel amplitude coupled to a (bosonic) heat bath of harmonic oscillators, see
Fig. 3.1 For various physical and chemical systems this rather simple model is adequate
and captures the essential physics. For instance the model can be applied to electron trans-
fer reactions, where an electron tunnels from a donor site to an acceptor site in a polarized
environment interacting with the electrofd. Another example is quantum tunneling
between flux states in a SQUIB4]. Other applications include tunneling of light parti-

cles or defects in solid$p, 56] and electron tunneling between quantum déi§.[ An
example of the latter and its relation to the spin-boson model will be studied in CHapter
The strong interest in the spin-boson model is due to the fact that it provides a nontrivial
description of dissipation in these quantum systems.

We study the dynamics of the spin-boson model using the real-time renormalization-
group method. In Chaptér we used this method to study an equilibrium problem for
vanishing temperature, see also Reis, P4]. Now we apply its nonequilibrium formu-
lation for arbitrary temperaturé P, 14] to the spin-boson model. For the first time we use
this approach to calculate the time-dependent reduced density matrix, and, furthermore
generalize the formalism to the calculation of equilibrium correlation functiafsq].

We present a solution of the complete dynamics of the reduced density matrix of the
spin-boson model, starting from an arbitrary nonequilibrium state. This is achieved for
arbitrary parameters with the only restriction of not too large coupling strengths. We
also determine the oscillation frequency of the diagonal elements, and in the asymptotic
regime we find an exponential decay of the elements of the reduced density matrix in-
volving decay constants, which are identified with a dephasing time and a relaxation
time. Additionally, we calculate the spin susceptibility as well as equilibrium correla-
tion functions. Comparisons to the noninteracting blip approximation (NIRA) &nd
to results for the anisotropic Kondo modelg] 29] are made. In contrast to the NIBA
our analysis provides the complete dynamics of the spin-boson model, i.e. all elements
of the time-dependent reduced density matrix are determined. Furthermore, we obtain
accurate results in a parameter regime, where the NIBA fails. Generally, our calculation

29



30 CHAPTER 3. THE SPIN-BOSON MODEL

lu> ld>

Figure 3.1: Double-well potential for a particle coupled to a bosonic bath (dashed lines).
g4: coupling strength to the coordinate of tih oscillator of the bath: tunnel matrix
element,e. bias,wy: lowest excitation energied/;: potential barrier. Truncating the
problem to the ground-statés) and|d) leads to the spin-boson model.

allows a comparison to the anisotropic Kondo model in a parameter regime, which is not
accessible by many other methods. To demonstrate the reliability of our results we show
the consistency with chromostochastic quantum dynamics (CS®I)dnd check the
Shiba-relation as well as the scaling behavidit; R6.

3.1 Model Hamiltonian

The general Hamiltonian of a local system with the generalized coordinatich is
coupled to an environment consisting of harmonic oscillators with coordingtesn be
written as

2

2
_ D 1 pg 2 Cq
H= 2M+V(Z)+§Zq:(m_q+mqwq xq—mz : (3.1)

Here, the local system is characterized by the midsand the general potentid&l(z).
Furthermore, we introducea, andw, as the masses and frequencies of the oscillators.
Finally, we assumed an interaction which is linear in batlandz involving the coupling
constants:,. This model is known as Caldeira-Leggett modsd][

Let us now specialize to the spin-boson model, where the local system is given by a
particle in a double-well potential (Fig.1). According to Eq. 8.1) we write the spin-




3.1. MODEL HAMILTONIAN 31

boson Hamiltonian as the sufd = H, + Hg + Hy, where H, is the Hamiltonian of

the particle in the double-well potentidf,z the Hamiltonian of the oscillators in the bath
and Hy the contribution of the interaction between those systems. In the following we set
h=kg=1.

The two ground-states for the particle in the double-well potential are denoted by
|u) and|d). Apart from the tunnel matrix elemert, which follows from a Wentzel-
Kramers-Brillouin calculation, there may also be a finite energy differendéfor the
potential barrierl;, the lowest excitation energies and the bath temperatufe the
relationVy > wy > A, e, T holds, we may use a tight-binding model to describe the
problem. Thereby the local system can be represented by only two statemnd |d).
Using pseudospin language we then obtain the Hamiltonian for the two-state system as

A
Hy=~50.+ 50.. (3.2)
whereo, ando, are the usual Pauli matrices.

The bath part of the Hamiltonian is the same as in the Caldeira-Leggett model (see

Eq. 3.1)).
Hp = %Z (7]’1—2 + mqux?I) . (3.3)

For the interaction part we write

mg,w
Hy=0.) 4/ ‘é ? Gy - (3.4)
q

The term which is proportional te* in Eq. (3.1) is now absorbed in the local potential
V(2), as we assumed Gaussian statistics for the fluctuating Jorge x,(?) [58, 1]. Fur-
thermore, we introduced a new coupling constgntwhich contains the dependence of
Hy, on the spatial distance between the two wells of the potential. Eventually, quantizing
the coordinates, and the momentg, yields

Hp = quaflaq, (3.5)

_o:
= Z gq(a —I— aq) , (3.6)

whereaj] (a,) creates (annihilates) a boson with enexgy The coupling to the environ-
ment is completely defined by the spectral density

w)=m 2925@) —wy), (3.7)

which is usually parametrized by

J(w) = 2maw" e /P (3.8)
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Figure 3.2: Renormalization-group flow of the parameters of the spin-boson mode:
anda. The arrows indicate the direction of decreasing

The caser = 0 is referred to as the Ohmic case, whereas (<)1 corresponds to the
super(sub)ohmic case. In the following we want to consider the Ohmic bath, which most
studies of the spin-boson model deal with. Therefore the coupling to the bath is now
characterized by the dimensionless coupling constaartd the high-energy cutoff.

An exact solution of the spin-boson model is only knowndo# 1/2 [59] which is
referred to as the Toulouse limit. From the Poor Man'’s scaling equations of the anisotropic
Kondo model (see Appendi) one obtains for the running couplings of the spin-boson

model 28, 4]
do A\? AN?
dnw, O‘(w_c) +O(w_c) | 49)
d(Ajw.) A AN
et = - (2)vo(2) 340

The initial conditions are fixed at. = D, thena and A are the parameters of the bare
Hamiltonian. For decreasing high-energy cutoff the renormalization-group flow is
shown in Fig.3.2 In the regionA - where the coupling constantis always larger than

1 - we obtainA/w. — 0 for T = 0. Thus the corresponding parameters give rise to
localization. The tunneling regime is found in the regidfsand C'. There the flow

of the parameters yields — 0 andA/w. — oo, which can be shown by the numerical
renormalization-group or the Bethe ansatz7At (0 the crossover energy scale is defined
by A, = A(@.) with ©. = A(@,). In regionB - where the coupling constaatis always
less tharl - one can approximately integrate E§.10 [28]. This yields

A JA = (A/D) =) (3.11)



3.2. REAL-TIME RENORMALIZATION-GROUP FORMALISM 33

whereA is the tunnel matrix element of the bare Hamiltonian. The renormalized tunnel
matrix element),. is the relevant energy scale of the problem. In the scaling limit, which
is defined by

D — oo, A, = const, (3.12)

physical quantities only depend aX,, i.e. there is no otheD dependence. This be-
haviour is referred to as universdl][ For T = ¢ = 0 there is a transition from coherent
oscillations to a pure incoherent decay(ef (¢)) ata = 1/2 [27]. Concerning equi-
librium correlation functions the long-time behaviour respectively low-frequency limit is
analytically known for vanishing temperature from the Shiba-relatidh (see Subsec-
tion 3.4.49).

Among the approximate solutions of the spin-boson model perturbative approaches
in o [61] have the important disadvantage that they disregard the renormalization of the
tunnel matrix element. Most of the studies on the problem are based on the influence func-
tional method of Feynman and Verndit], like e.g. the NIBA 7], which is explained in
AppendixA. The NIBA contains the correct energy scale of the problem. However,
it does not give the correct long-time behavio@B8][ Furthermore, at low temperature
it applies only to the diagonal matrix elements of the reduced density mdtnixand
breaks down for the biased case‘ 0. Recent real-time quantum Monte Carlo (QMC)
simulations p4, 57, 65] provide also reliable information on the nondiagonal elements of
p(t). But as these methods suffer from the dynamical sign problem, they are quite time-
consuming and have not been able to check the correct long-time behaviour of the corre-
lation functions yet. The flow equation method of Wegner (see Chaphexs reproduced
the Shiba-relation for the unbiased case and coupling strengthsaup-t6.025 — 0.05
(with an error of3 — 10%) [66], but there only spectral properties of the system have
been addressed. Other approaches try to use a mapping of the spin-boson model on the
anisotropic Kondo modeb[7, 68, 69] (see AppendixB), and solve the latter exactly using
the numerical renormalization-group (NR@), [7(], the Bethe ansat2f], or the con-
formal field theory (CFT) 29]. However, the NRG and the Bethe ansatz provide only
spectral properties or dynamics at very short time scalgs ind CFT yields a solution
only for the diagonal elements oft) in case ofe = 0. Furthermore, and most impor-
tantly, the mapping on the Kondo model cannot be proven rigorously, and the relation of
the parameters is not precisely knovwaY[72]. It is known that the mapping is incorrect
for finite high-energy cutoffD, but it is at least established that the scaling behaviour in
the limit of large D agrees with that of the spin-boson mod#4,[6, 70, 29].

3.2 Real-time renormalization-group formalism

We use the RTRG method to investigate the spin-boson model. Not only the correct
renormalized tunnel matrix element, is contained in this approach, but we can also
calculate the dynamics of the two-state system for an arbitrary initial state and consider
arbitrary parameters for not too large couplings In the following analysis the quan-
tities of interest are the time-dependent reduced density matrix, the static susceptibility



34 CHAPTER 3. THE SPIN-BOSON MODEL

and equilibrium correlation functions. In contrast to Chagtehere we need the full
nonequilibrium formulation of the method?], which is explained in the following. The
derivation of the formalism is rather general and can readily be transferred to any other
guantum dissipative system, where the coupling is linear in the bath field operators.

In order to calculate the reduced density majrix) one performs two main steps.
First one expresses(t) using a kinetic equation, which involves an integral kerfel
accounting for dissipation. This reduces the problem to that of calculaiingn the
second step we explain the RTRG method, which provides a set of differential equations
determining.

In case of equilibrium correlation functions, initial correlations give rise to another
integral kernel , for which we derive additional RG equations.

3.2.1 Kinetic equation
The dynamics of the density matrixt) is given by the von Neumann equation
p=—ilH,p|. (3.13)
For the time evolution of the reduced density majrix) of the local system this leads to
p(t) = Trp [ep(0)pe™] (3.14)

whereTrz denotes the trace over the bath degrees of freegd®).is the initial density
matrix of the two-state system apl’ = exp(—Hp/T) the equilibrium density matrix
of the bath. We assumed here, that initially, the two-state system is decoupled, and the
bath is in thermal equilibriump(0) = p(0)p%. At t = 0, the coupling is turned on
instantaneously, and the reduced density matrix of the two-state system will evolve into a
stationary state. This preparation corresponds to a rarely encountered physical situation.
It may be realized, however, in electron transfer reactions where photoinjection suddenly
gives rise to a particular electronic donor state. One may also think of a preparation
which is physically more relevant, e.g. where one applies a strong bias fort < 0 to
localize the particle in the right well. In this case the particle would be in equilibrium with
the environment. These initial correlations cannot be represented by a factorized form of
p(0) any more. However, it turns out that for the Ohmic bath the initial correlations are
negligible forD > A [1].

As in Refs. [L2, 14] we expand the forward/backward propagaters(FiHt) in the
interactionHy,, and perform the tracérg by applying Wick’s theorem with respect to the
bath field operators. All terms can be represented diagrammatically as shown 33Fig.
The vertex operatorsio, /2 are ordered along a closed Keldysh contour. They are con-
nected in pairs by the contractions (dashed lines in&g).

V() = Trp[i(t)jrF] , (3.15)
where we used the interaction picture with respedt/tpfor the operatoy

j= Z gq(ail +ay,) . (3.16)
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p(D)

0 t

Figure 3.3: Example of a diagram on the Keldysh contour for the reduced density matrix
p(t). The dashed lines represent the bath contractions.

By definition
V(=) =7"(1) (3.17)
holds. From Eqgs.3.7) and @.8) one obtains fory(t) = R(t) + iS(t):

d 1 .
1

Here, we used the logarithmic derivative of théunction [73]

d

W(x) = o InT(x).

For the physically relevant situatidn > T this yields for the real part of(¢)

1
sinh?(#T'(t —i/D)) |

R(t) = —2aRe | (xT)? (3.20)

The solid line in Fig.3.3 represents free time evolution of the two-state system. As a
result, we have obtained an effective theory of the local system, while the bath has been
integrated out.

The type of contractions, which connect vertices lying only on one, the forward or
the backward, propagator, has also been present in case of the equilibrium considera-
tions regarding the polaron. In contrast, the contraction lines connecting the forward with
the backward propagator do not occur in any equilibrium theory but arise for a Keldysh
contour in a natural way. Such contractions lead to non-Hamiltonian dynamics for the re-
duced density matrix, and therefore, account for dissipation. Formally these two kinds of
contractions do not have to be distinguished, when one views the forward and backward
propagator as one double line, see BgL The price is that a “state” on the double line
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Figure 3.4: The same as Fi§.3 but the two lines taken together.

has to be specified by two states, one for the upper (forward) and one for the lower (back-
ward) propagator. Formally this leads to a superoperator notation, where one introduces
the Liouvillian . = Ly + Lp + Ly, which acts on an usual operatorby taking the
commutator-, -] with the Hamiltonian:

LO = [H7O]— (LOO: [H07O]—7 LBO: [HB,O]_7 LVO: [HV7O]—>‘ (321)
In EqQ. (3.14) the Liouvillian acts on the density matrix

p(t) = Trg [e"'p(0)p7]
— TI'B |:€7i(L0+LB)tT67i fé dt’ Lv(t/)p(o)pg]

= T [ BT R Op(0)ig] (3.22)

whereT" denotes the time ordering operator. Hgr(¢) we used the interaction picture
with respect toL, + L. Expanding Eq.3.22 in L, and performing the trace using
Wick’s theorem again leads to the effective theory for the local system shown i8.Eig.
The free propagation between the vertices is given by the propagatoriLyt). For
the spin-boson moddl, corresponds to &t x 4)-matrix, and the elementd), .,
are labeled by the two states of the local system with (s} /2) referring to the forward
(backward) propagator. The interaction payt can be written as

Ly =Y G'J’. (3.23)
p==%

The superoperatols? and.J? are defined by

+to = &

G0 = Z0,

G0 = —o%, (3.24)
Jt0 = 3O,

J 0 = 0j, (3.25)
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p(t) = f— %

0 t 0 t 0 t t ¢t

Figure 3.5: Iterative scheme for the reduced density maitix The two lines of the
Keldysh contour are put together to only one line. The thick line represents the exact time
evolution ofp(t), whereas the thin line corresponds to free propagatibrepresents all
irreducible diagrams with the outermost vertices,atndt; .

whereO again is an usual arbitrary operator. Thus, in Big.we deal with the interaction
vertices—iG?, wherep = + denotes whether the vertex acts on the forward/backward
propagator. The contractions connecting the verti¢gsandG?2 also depend op, ps:

APP(E) = Trp [J7 ()7 ] (3.26)
This can be expressed usifng) defined in Eq. 8.15:

P =), AP () ==t =7"(1). (3.27)

To derive a kinetic equation we call diagrams irreducible if any vertical cut crosses at
least one dashed line. Fig.4 (respectively Fig3.3) shows four such irreducible blocks
(a)-(d). We denote the sum over all irreducible diagrams with the outermost vertices at
the time pointg, andt; (t; > to) by the kernel=(¢; — t5). Diagrammaticallyp(t) is
then given by all possible sequences of such kerReltn Fig. 3.5 an iteration scheme
for p(t) is shown (the double line of the Keldysh contour is now represented by only one
line). Here,p(t) is represented by the thick line, and the iteration starts with the free
propagation, which corresponds to the thin line. The iterative solution is formally given
by the self-consistent equation

t t1
p(t) = e 'p(0) + / dty / dty eI — ty)p(ts) (3.28)
0 0
with the superoperatat:

N(t; —ty) = (—4)*Trp [Lve_iLotlTe_ijfz1 dtLV(t)eiLotQLVp;f’ . (3.29)
irred.
Here the index itred.” indicates that only irreducible diagrams are taken into account.
Differentiating Eqg. 8.28 with respect to time leads to the standard kinetic equation
[12, 14]
t
p(t) + iLop(t) :/ dt' 3(t — t)p(t'). (3.30)
0
The left-hand side of Eq.3(30 describes the time evolution of the two-state system in
the absence of a coupling to the bath, whereas the right-hand side contains the dissi-
pative part which drives the reduced density matrix into a stationary state. Because of
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lim; ., p(t) = ps We may take the Laplace transformygt) in the upper half plane, i.e.
for Imz > 0. With

p(z) = / dte#p(t), X(z)= / dt e*'(t), (3.31)
0 0
we get an explicit equation for.
1

pE) = TER0), ) = e

(3.32)

Thus, the knowledge 0f(z) provides the full time evolution of the reduced density ma-
trix. The stationary solutiop,; follows from

Pst = —1 lin% zp(2) . (3.33)

This yields
(Lo +iX(z = 0)]pst = 0. (3.34)

For the spin-boson model we also calculate the static susceptibilityhich is defined
as

d
Xo = ——-Tio [ (3.35)
€

whereTr, denotes the trace over the local degrees of freedom.

3.2.2 RTRG method

Perturbative results for the spin-boson model (e.g. following from Redfield théa}y [

can be recovered by calculating the kerigt) up to first order in the coupling. The

aim of the present study, however, is to go beyond and calculate the kernel nonpertur-
batively by a systematic RG procedure. The idea is to integrate out all contraction lines
one after another, as we have already outlined in Se@i8nThis is accounted for by

both a renormalized kerngl(z) and a renormalized propagator and vertices. We formally
introduce the time scale, which the bath contractions depend on:

7?171?2 (t, tc) — 713171?2 (t)q(t, tc) , t>0. (3-36)

Starting witht. = 0 the RG flow is determined by the cutoff-functiq(¥, t.). The stan-
dard choice ofy(t, t.) is the sharp cutoff]3, 14, 24]

g(t,t) = Ot —t.). (3.37)

This choice has already been applied in Sec#ich With this form ofy?1?2(t, t.) the RG

flow can be described within the diagrammatic language. At a fixed valyeadifcon-
tractions with a time scale < ¢. have already been integrated out, which again reminds
us of the remarks in Sectioa3. Thus, in Fig.3.4 (respectively Fig3.3) the shortest
contraction line of each of the blocks (a)-(d) is integrated out first. In the diagrams (a)
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and (b) this leads to a renormalization bf, while in the blocks (c) and (d) a vertex
is renormalized. The contractions connecting the upper and the lower propagator (as in
(b)) may change the states on the upper and the lower propagator simultaneously. This
gives rise to rates, so that the renormalized Liouvilliancannot be represented by a
commutator with a renormalized Hamiltoni&fy any more, i.e.L, # [Hy, -] for t. > 0.
Thereby a non-Hamiltonian dynamics is generated. Correspondingly, due to diagrams as
(d), a renormalized vertex generally acts on both the forward and backward propagator
simultaneously. In the following we denote the rightmost (leftmost) vertex of the kernel
¥(z) by AP(z) (B?(z)). They are renormalized in a different way th@f and also be-
comez dependent for, > 0. It should be emphasized that, although the definition of
the cutoff-function in Eqs.3.36) and 3.37) has the advantage that it can be understood
in this rather simple picture, this choice is not necessary. Formally, one may think of an
arbitrary t. dependence of the functioyf**2(t, ¢.), which only has to fulfill the initial
condition

PPt te = 0) = APP(t). (3.38)

Furthermore, a convergent RG flow, where all diagrams are integrated out, can only be
expected for
lim ~APvP2(t,t.) = 0. (3.39)

te—00

Note that for the spin-boson model the above equation is fulfilled for the sharp cutoff
defined in Egs.3.36 and @3.37), since

lim 172 (t) = 0. (3.40)

t—o00

The renormalization for a general functigfi*2 (¢, ¢.) is based on the invariance of
¥.(z). Before introducing. the kernel® is given by definition as some functionat

3(z) = F(Lo, G, AP, BP /P72 (1)) (3.41)

with A? = BP = GP. Introducing the time scalé. we postulate the invariance of the
left-hand side of Eq.3.4]). This can be achieved by writing

Y(z) = X(z, t) + F(Lo(te), GP(t.), AP(z,t.), BP(z,t.), vV P2 (t, t.)) . (3.42)
With Eq. 3.39 the initial condition at. = 0 is then given by Eq.3.41):

¥(z,t.=0) = 0,
Lo(t.=0) = Lo,
GP(t.=0) = AP(2,t.=0)= BP(z2,t.=0)=G". (3.43)

Because of Eq.3.39 andF = O(yP*#2(t,t.)) a solution is found for, — oo:

Y(2) = lim X(z,t.). (3.44)

te—00

In the following we derive the renormalization scheme determiditg ¢.).
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When incrementing the cutoff — ¢. + dt., the left-hand side of Eq3(42 stays the
same, so that

OF OF
_ P p p
0 = dx(z) 8LOdL0+ > j(aGpdG +t 5a O 5p P (z))

+y / 7@ i )dvm’”(t,tc), (3.45)

P1,P2

where we have omitted thie dependence of the object$z, t.), Lo(t.), GP(t.), AP(z,t.)
andB?(z,t.). According to Egs.%.29 and @.31), a term contributing t¢ has the form

0o tn—2 1
(=) / dty .. / Aty AP (t1,2) - GPI(E5) ... G (ty) - BP(0,2), (3.46)
0 0

where ‘T1” represents a contraction. The time-dependence&of), A?(t, z) andBP(t, z)
stems from the interaction picture respectively the Laplace transform, it is given by

Gp(t) _ eiLotGpe—iLot ’
AP(t,z) = eiZtAp(z)e*iLot ,
BP(t,z) = e"™'BP(z)e ",

The last term in Eq.3.45 leads to terms where one contraction liffe?2(t,t.) is re-

placed bydy**2(t,t.). This will be indicated by a cross™”. We write C; for

G; = GPi(t;) respectivelyA; = APi(t;,z) or B; = BPi(t;,z) and define a
“cross contraction” by

d/‘}/pj »Pk

c;---C
i Ce= ==

(t; — to, t)dtC - - Gy (3.47)

We have included a minus sign in EB.47) in order to later identify a cross con-
traction with the renormalization contributiod&(z), d L, dG?, dAP(z), dBP(z), so that
Eqg. 3.45H is fulfilled.

Let us now consider terms of the form

ﬁel
dtadts Cy GoGs Cy. (3.48)

t1>ta>t3>1

Such terms contribute to a renormalization’gf which corresponds to the second term in
Eq. 3.49. The propagation at a given time potritwith ¢, > t* > t, for an infinitesimal
time intervaldt can be expanded

exp(—iLodt) = 1 — iLodt . (3.49)

Thus, the second term in EQ.45) gives rise to a contributiodiL,(t*) = e'*ot" d Lye Lot
to the renormalized Liouvillian at any time poitit Regarding the above terd.48 one
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has to choose this time poitit, which the cross contraction corresponds to. We fix that
time ordering variable* at the smaller time point of the cross contraction. To do that
formally the term 8.48) is written as

ey ey
dtgdtg Cl G2G3 C4 == / dtgdtg Cl G2G3 C4

t1>ta>t3>1y t1t>t>3t>t4
2 3

9
— / dtgdtg Cl G2G3 C4

to>t1>t3

4
+ / dtydts Cy GoGs Cy.  (3.50)
to>t1>t4>13

The first term on the right-hand side of E&.50 is identified withdLy(¢3). Including
the factorg —i) and the sums over,, p; we obtain

—idLy(ts) = (—i)? / h dty > Gl_;ng, . (3.51)

t3 D2,P3

Shifting the integration boundaries leads to

—idLo(0) = (—i)? / Ty G (e o) (3.52)

L p1,p2

The second term on the right-hand side of Eg5() is a correction term due to the choice
of the time ordering. Its occurence can be understood, if one multiplig&s) from the

left by some vertex”;. Then time ordering requires > t3. Thus,t; is decoupled from

the integration variablé,, and terms witht, > ¢; > ¢3 occur. Since such diagrams have
not been present before calculatifhfy,, we have to substract the corresponding correction
term in Eq. 8.50. Itis interpreted as a contribution to a renormalized veétgxwhere

C1 = G4 respectivelyC'; = A;. SinceB is the vertex with the smallest time argument in
¥(z), C1 = By is notallowed. Thus, we account for this term using the third (respectively
fourth) term in Eg. 8.45. In these terms the vertex? (AP) is replaced bylG? (dAP).
Denoting the correction term bJLCl(C) we obtain

ﬁ<_|
—idC? = —(—i)? / dirdts »  Ci GoGs . (3.53)
ta>t1 >3 p2:p3

The last term on the right-hand side of E§.50) is interpreted as a double vertex, since
both¢, andt, lie within the contraction intervdl,, t;]. Such objects are neglected. A
further vertex renormalization stems from terms of the form

—
dtadts CyG1G3 . (3.54)

to>t1>13
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If Cy = G, this contributes talG,, whereas’s; = A, leads to a renormalizatiofA; .
Correspondingly we obtain a contributidi3; from

%
dtodts GoG1Bs . (3.55)

to>t1>t3

The terms 8.54) and 3.55 again cause correction terms. However, they correspond to
double and higher-order vertex objects, which are neglected. Thus, with shifted integra-
tion boundaries the total renormalization contributid®, d A? andd B read

ﬁh
a0 = ) dtdt’Z(GP(O) G (G™ (1)
co>t>0>t">—00 P1,P2

| S E—
— G (t)GP(0)GP? (t’)) , (3.56)

—idAP(0,2) = (—i) / dtdt’Z(Ap(O,z) G (1)GP2 (1)

co>t>0>t'>—00 p1,p2

iy z)Gp(O)CIJm(t’)> . (357)

—idBP(0,2) = —(—i) / dtdt’ Y GP(H)GP(0)B™ (1, z) . (3.58)

00>t>0>t>—00 p1,p2

The renormalization scheme is completed by the terms connecting boundary vertex ob-
jects. The terms

P4 >
AlGQ and GlBg

do not occur, since we consider only irreducible diagrams. The remaining term

ﬁel
A1 By

is accounted for by the renormalizatidx(z) in Eq. (3.45. With the definition of the
Laplace transform this yields

d5(2) = (—i)? /0 TS A ) B0, 1) (3.59)

P1,p2

Using the definition in Eq.3.47), the renormalization in Eq.3(52 and Egs. .56 -
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(3.59 leads to the RG equations

d o0 d P1,P2
dfco - Z/ dtg thc (£, )G ()G™(0) (3.60)
Ciicjp _ / dt/ dt ,yplpz( _t/’tc)

X (G’”( )GP(0) — GP(0)G™ () GP* (t') (3.61)

dAP P1,P2
() = / dt/ dt’ 7 (t—t,t.)

Pl sD2

x (AP (2, z)G”(O) — AP0, )G (1) GP(¢),  (3.62)

d BP P1,p2
—(2) = / dt/ dt’ 7 —(t=1t)

pl P2

<GP (H)GP(0)BP2(t, 2) | (3.63)
d> oo d~P1P2
e = /0 at Y thc (t,.) AP (t, 2) B2 (0, 2) . (3.64)

P1,p2

Thet. dependence of the functioy?*?2(¢,¢.) will be chosen such that one integral on

the right-hand sides of the above equations becomes trivial (e.g. the sharp cutoff given in
Egs. 3.36 and @3.37)). In principle, the integration variables only refer to the interaction
picture, so that we deal with pure differential equations.

3.2.3 Remarks

The first order contribution i to the kernel2(z) may be obtained by neglecting the
dependence of.y, AP(z) and B?(z), i.e. integrating only Eq.3.64). In the set of or-
dinary differential equations3(60 - (3.64) double and higher-order vertex objects have
been neglected. Principally the RG scheme allows a systematic study of all higher-order
vertex objects - the additional terms arising from double vertex objects are shown in Ap-
pendixC. However, the number of terms increases substantially, and due to retardation
effects of the double vertices one deals with integro-differential equations. Thus, account-
ing for double vertex objects within this formalism increases the numerical effort rapidly.
However, in Chapteb we will present a formulation of the RTRG, where double vertices
can also be included. At this stage we expect from the approximation a restriction in
the magnitude of the coupling constantsince double vertex objects are of first order

in () respectivelya. In fact, within Egs. 8.60 - (3.64) the kernel>(z) is contained
exactly up to second order in The explicit range of validity of the approximation can-

not be derived directly from the formalism, but for the spin-boson model we will find
that our results are accurate for< 0.1 — 0.2. In this context note, that although third

and higher orders af are not containedxactlywithin the approximation, by integrating
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Egs. B.60 - (3.64 we still account for diagrams @l orders ofa. Thus, the RG equa-
tions naturally account for nonperturbative effects; for the spin-boson model we will cal-
culate the correct renormalized tunnel amplitullein Section3.4.1 Furthermore, be-
cause we have not expanded the propagator in BogQ(- (3.64), all time scales are
considered and we do not deal with any restriction regarding the eigenvalueg.of
Thus, in contrast to a Poor Man'’s scaling approach (see B@@.and 3.10) we do not
have to stop the RG flow at a finitg (respectivelyw,. in Egs. 8.9) and @.10), but we
may consider the limit of, — oo.

The initial values of the superoperators are given by Bagl3. For the spin-boson
model we obtain from Eqs3(21) and 3.24) for the corresponding matrices

(L0)818/1,828/2 = 68'178'2 (H0)3152 - 581752 (H0)5’25’1 ) (365)
+ S T

(G )515/1,828’2 - 681752 ( 92 )5132 3 (366)
_ g,

(G )815/17325’2 - _551:32 (?)sésll . (367)

Due to Hermiticity of the Hamiltonian it follows

(iLO)SlSll,SQSIQ — (iLO):aSLS/QSQ 5 (368)

(iGp)SIS/1782S/2 — (iGp):IISLSIQSQ ; (3.69)
wherep = F for p = +. Using Eq. 8.27) one finds that the above symmetry is conserved
by the flow equations3(60 - (3.64). Thus, the symmetry relation8.68 and 3.69 are
valid for all t. > 0, and we also have

(A" (2)y 0 e, = GAP(=2)oy o (3.70)
(in(Z))sls’l,s%”2 - (Z.Bﬁ(_z*))z’lsl,sé@ ) (371)
(Z(Z))slsll,SQS’Q = (Z(_Z*)):isl,séSQ ° (372)
From Eq. 8.32 one then concludes
p(2)ss = (p(—2")) 0, (3.73)

for p(0) being Hermitian. Thus, the RG equations conserve the Hermiticipytof Fur-
thermore,

s

= D (WD = 2 B D) = D ED)sey B4

S7p

O = Z (LO)5575152 = Z (Gp)s&slsg

is fulfilled for all £. > 0. With the kinetic equation3;30 one then finds the conservation
of probability: d/dtTrop(t) = 0. Eqs. B.74) also show that a solution of E¢3.34) for
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the stationary reduced density matpix exists, since the sum of two rows of the matrix
Ly+iX(z = 0) vanishes. Furthermore, because of E§$6§) and @.72) this solution can
be chosen to be Hermitian. However, the eigenvalyed p,; do not necessarily satisfy
the relation) < \; < 1 for all ¢...

Finally, we note that the scheme we used for the polaron in Se2t&xan be recov-
ered from Eqgs. 3.60 and @.61) by taking only the upper propagator, i.e.
p = pr = po = +, and choosing the sharp cutoff defined in Eg3¢ and @.37).
To obtain Egs.Z.54) and .55 we have to replace the superoperators by the correspond-
ing operators:L, — H, andG? — G,. Note that in case of the polaron we had a
q dependent operatd¥, in the electron system (see EQ.%3). In the above language
this means that also the bath operatdrecomes; dependent. Thus, in such a situa-
tion the bath contraction formally depends on two indiceg and¢,, which the right-
hand sides of the RG equations are then summed over. In case of the polaron we had
Yoae = Oq1.—q» €Xp(—iwt). From this contraction there arose difficulties concerning the
convergence, because E§.39 was not fulfilled, sincexp(—iwt) does not decay. Fur-
thermore, for the polaron we were not able to use the RTRG formalism on the Keldysh
contour, as the continuous electron spectrum led to a large size of the numerical problem.
Additionally, we had to perform the sums over the bath degrees of freedom numerically.
In contrast, the spin-boson model has only two degrees of freedom in the local system
and the bath degrees of freedom have been integrated out analytically when calculating
~(t). Thus, for the spin-boson model we are able to use the full nonequilibrium version
of the RTRG, where we work on the Keldysh contour. We point out that already in case
of the polaron we accounted for level broadening respectively finite life-times, since the
energies became complex. On the Keldysh contour this physics is included by contraction
lines connecting vertices, which lie only on one propagator,ji;e= ps in 472, The
complex energies already lead to the inequdligy# [H,, -| for t. > 0[12]. This however
does not reflect rates invoked by dissipation. As explained in the preceding subsection this
phenomenon corresponds to diagrams, which connect the upper and the lower propagator,
since these terms may change the states on both propagators simultaneously. Thereby the
system is driven irreversibly into a stationary state.

3.2.4 Equilibrium correlation functions

For the calculation of equilibrium correlation functions the formalism explained above is

not sufficient, because then initial correlations are important. They did not occur above,
since we assumed a factorized initial state. In the following we develop a generalization
of the method, which accounts for such initial correlations. Let us consider an equilibrium
correlation function of the form

O(t) = Te[lg(t). dl. 0] (3.75)

Here,g andd are some operators for the local system andl. denotes the anticommu-
tator respectively the commutator. This can be written as

C(t)y="Tr [ge_iLtDpeq} (3.76)
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Figure 3.6: The diagrammatic expression for an equilibrium correlation function C(t),
when D lies within a¥ block.

with the superoperatdp’. It acts on an operatap by
DO =dO + 0Od, (3.77)

where the sign depends on whether we consider the correlation function for the anticom-
mutator or the commutator of andd. The density matrix in equilibrium®? can be
expressed by an evolution out of a factorized initial statg at —oo. Thus

O(r) =, Tm_TroTe [ge~ " De™ Fo® p(to) ] (3.78)
To perform the trace over the bath degrees of freedom we proceed analogously to the
dicussion of the reduced density matrix. The diagrammatic expression foBE&) is

again given by all possible sequencesblocks of irreducible diagrams. However, in

this case the superoperatbrmay lie within such a block, i.eD may be crossed by at
least one contraction line. This gives rise to a new object, which wegalP5, 26] (see

Fig. 3.6). It depends not only on the time difference between the last and the first vertex
(t; — to), but also on the time difference betweénand the first vertex()( — ¢,). We

write ¥Xp = Xp(t; — te, —t3). To evaluate the diagrams in Fig.6 we take the Laplace
inversion of Eq. 8.32. This gives us an equation for the evolution of the reduced density
matrix out of a factorized state at= 0:

p(t) = TI(#)p(0) . (3.79)

Thus, the superoperat(t) accounts for all sequencesX®blocks in a time interval with
lengtht. We may now expres§'(t) by superoperators acting only in the local system.
With limy, . II(t1 — to)p(to) = ps: the total result folC' (¢) reads

t 0
C(t) = TI‘O |:gH(t>Dpst + / dtl / dtg gH(t — tl)ZD(tl — tQ, —tg)pst s (380)
0 —00

where the first term accounts for the diagrams, whieie not crossed by any contraction
line. Switching back to Laplace space yields

C(z) = Tro [g11(2) (D + Ep(2)) pst] (3.81)

LIt is clear from the context, whethd? refers to this superoperator or the high-energy cutoff.
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with C(z) = [7dt ' C(t), I1(z) as in Eq. 8.32 and

e 0
Yp(z) = / dtl/ dty €' Sp(ty — ta, —t2)

= / dtl / dtg Gthlzp tl +t2,t2)
= / dt e / dt' e Sp (8, 1) . (3.82)
0 0

While II(z) only depends orx(z), and therefore can be calculated from Eg60() -
(3.64), we have to set up additional RG equations for determiipg Formally, it is
given by

Yp(t,t') = (—i)*Trg [Lve_iLotTe_ifot WLv® D (t") Ly p? , (3.83)

irred.

whereT" again is the time ordering operator, and the interaction picture with respect to
Ly + Lg has been used.

The renormalization scheme for this object can be derived within the same framework
as in Subsectio3.2.2 We obtain

ﬁ%
d¥p(z / dt / dt' Y AP(t,2)D(t')B™(0) . (3.84)

p1,p2
According to the Laplace integral in E@.82 the objectsD and 5 are defined by
D(t) — eiLotDe—iLote—izt ’ (385)
BP(t) = BP(t,z=0)=¢e"'BP(z =0). (3.86)
In the following we will interpretD as a vertex. Thus, the renormalization/ois analo-

gous to Eq. 8.61). We therefore end up with two additional RG equations for the calcu-
lation of equilibrium correlation functions. They read

dD 7}71 p2
= dt dt’ t' t,
A AN D A

p1,p2

«(GP(1)D (O)—D(O)Gpl(t))GPQ(t’), (3.87)
ddztf(z) - / dt/dt > VMZ (t,t.)

Pp1,P2

X AP (2, z)D(t VB (0,2 = 0). (3.88)

Egs. 8.60 - (3.64 and the above equations now define the complete RG scheme. Since
we treatedD as a vertex, we interpreted terms like

¢
G1DG2G3 , t1 > 0>ty > 13
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as double vertex objects, which are neglected (compare with the last term on the right-
hand side of Eq.3.50). However, if one considers the definitionsof andX:, Eqgs. 8.83

and @3.29, this approximation implies that fot, the RG equations do not account for

the same class of diagrams as ¥gri.e. in contrast tdZ, >p is not contained exactly up

to second order af.

At the end of this section we again point out that the RTRG formalism explained here
may be applied to any quantum dissipative system. However, the approximation we in-
troduced here is feasible, only if the interaction term is linear in the bath field operators.
When studying problems involving a fermionic environment, one has to account for ad-
ditional signs. This will be explained in detail in Chaptrwhere we study coupled
gquantum dots.

3.3 RG equations for the spin-boson model

3.3.1 Initial values

For the spin-boson model the initial values for the superoperators in3E ¢ (3.67)
correspond to thét x 4)-matrices

¢ 0 4 -2
0 — —5 £
Ly = A A o A ; (3.89)
A X X
-2 3 0 0
1 0 0 0
1{0o —-10 0
+ —_
Gr = 210 0 1 0 | (3.90)
0 0 0 —1
—1 00 0
_ 1{f o 10 0
G =3 0 01 o0 (3.91)
0 00 —1

Here, we identified an arbitrary superoperatoof the two-state system with @ x 4)-
matrix using the prescription

Sud,ud Sud,du Sud,uu Sud,dd
S = Sdu,ud Sdu,du Sdu,uu Sdu,dd
Suu,ud Suu,du Suu,uu Suu,dd
Sadud  Sdddu  Sdduu Sdd,dd

?

where the matrix elements are labeled by the two stateand|d).
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3.3.2 Thet. dependence of the bath contraction

Let us now make an explicit choice for thedependence off*2(¢, t.) for the RG scheme
in Egs. B.60 - (3.69. As we have already mentioned, one possible choice is the sharp
cutoff, which we want to consider first. We define

NPIP2( 4) = AP (1)O(t — t,)
= (R(t) +ip2S(t))O(t — 1), (3.92)

where we used Eq.3(27). For D > T the functionsR(t) and S(t) are given by
Egs. 3.20 and B.19. This leads to the RG equations

‘;fco = —i Y (R(t) +ip2S(t)) G (t.)G™(0) , (3.93)

P1,P2

dG? fe ,
- [ @ (R +ims()

X GPL(1)GP(0) B (t — t, 2), (3.96)
;l_z(z) = —Z o) +ip2S(te)) AP (t., ) BP(0, 2) . (3.97)

P1,p2

However, this set of equations generates unphysical terms, when calculétingThis

can easily be seen, if we restrict ourselves to the “trivial” case, whetree = T = 0,

i.e. we deal with two decoupled shifted harmonic oscillators. First, one recognizes that
Ly, GP, AP and B? commute for allt., since the commutatdz*, G| and L, vanish
initially. With

1 0 00
M=G'+G = 8 _01 8 8 (3.98)
0 0 00
and the identityM/ G* = MG~ the solutions for, andG? then read
t
Lo(t.)) = —i2a———M? 3.99
0( ) t atz—Fl/DQ ’ ( )

Gr(t) = GP. (3.100)
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Here, we used the result fét(¢) for vanishing temperature:

1
t)=-2 — . 3.101
R0 = ~2aRe| 7 (3100
Settingz = 0 the integrals in Eqs.3(95 and 3.96) give rise to terms
e—iLotC -1
le) = ———F—
f(te) v
72041%:1% _1
= ¢ — (3.102)
—20gme

where we used/* = M?. We introduced = AT + A~ andB = B* + B~ and obtain
the differential equations

dA

T (2=0) = —R(t)(tef(tc) = te) MPA, (3.103)
Zf(zzo) = —R(t)t.f(t.)M*B, (3.104)

where, for the latter equation, we used

d(B* —B7) 0
dt. -
We now define .
F(t.) :/ dt R(t)tf(t), (3.105)
0
so that the solutions fad and B read
tc
A(z=0,t.) = Mexp <—F(tc) + / dt R(t)t) : (3.106)
0
B(z=0,t.) = Mexp(—F(t.)) . (3.107)
With that we obtain from Eq.3.97)
v, > 20012 te

1
= —M?*R(t,)ex (—QF t.) + aln (—)) . 3.109
(to) exp  ~2F (1) TN (3.109)
We integrate that formally, using the substitutians: Dt andz = 1/(1 + 2?):

Dt.
Y(z2=0,t.) = —204M2D/ dx (222 — z)e 2@/ D)talnz, (3.110)
0
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Expanding the above expressiomiryields

_ 2 c 2
Z(Z:O,tc) = —2M m[&+0& (—IHZC+QZC—2)
1 10 25 9
+a? (5 In® 2z, + (=22, + 4) In z, + ?zf — g + 5)}
—a*M?D arctan (Dt,) + O (o) | (3.1112)

where we wrote:. = 1/(1 + (Dt.)?). One notices that, in third order of we obtain a
term depending linearly o. However, it is known, that foD — oo the exact solution
involves only logarithmic divergencie$,[27]. Thus, the choice of the sharp cutoff gener-
ates unphysical terms. Within our approximation they only arise in third or higher order
of «, since Eqs.3.60 - (3.64) give the exact result for(z) up to second order ia.

In the following the generation of unphysical terms is avoided by making an appro-
priate choice for theé. dependence of?'2(¢,t.). We introduce

APLP2 (t, tc) — % (/t dt' R(t/)@(t — tc)) + ipzs(t)@<t — tc) . (3.112)

0

Compared to the sharp cutoff, this choice includes an additional term stemming from the
derivative of theo function. From Eq. .20 we obtain

/t dt' R(t") = 2aRe [rT coth (7 T(t —i/D))] . (3.113)

The asymptotic behaviour is given by° dt’ R(t') = 2axT. Therefore the above defi-
nition does not satisfy Eq3(39. However, we may generate a convergent RG flow by
modifying Eq. ¢.112. We write

R(t) = /Ot dt' R(t') — 2arTsign(t) (3.114)

and define

NP2 (¢ 8,) = % <R(t)@(t — tc)> +O(t— tc)%Qostign(t)

FipaS(H)O(t — t.) . (3.115)

With this definition the initial condition in Eq.3(38) is still fulfilled, sinceR(t = 0) van-
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ishes. Considering only the second term of Bg1{9 leads to the differential equations

dLy ) .
% —i Y 4arT6(t,) G (t.)G*(0) | (3.116)

p1,p2

dGr te
i —/0 dt Z4omT5(tc)

p1,p2

x (G (t)GP(0) — GP(0)GP (1)) G (t — t.), (3.117)
Ci;;lj(z) = —/Ocdt Z4oz7rT5(tc)

p1,p2

< (AP (1, 2)GP(0) — AP(0, 2)GP (1)) G (¢ — ), (3.118)
‘iip@) . /0 “it' S danTt,)

p1,p2

X GP (1)GP(0)BP(t — 1., 2) , (3.119)
d—z(z) = = 4arT6(t.) A" (t., z)B™(0, 2), (3.120)

P1,p2

where we used:sign(t) = 25(t). Therefore, this term of}* (¢, ¢.) does not contribute
to the renormalization of the verticé®, A?(z), BP(z). Regardingl, and>(z) we may
account for it by changing the initial conditions:

Lo(t,=0) = Lo— 2iarTM?, (3.121)
Y(z,te=0) = —2arTM?. (3.122)

Let us now consider the remaining terms of E3}1(9. Note that for them Eq.3(39) is
fulfilled, sincelim,_,., R(t) = 0 holds. Using partial integration for the first term, the RG
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equations read

dL
dtf - Z(
dGP (

dt.

R(L)GP (1), Lo] + p2S(E)G™ (1)) G7(0),  (3.123)

R(t.)(G™ (t.)G?(0) — GP(0)G™ (t.)) G**(0)

i /0 "t (6P (HGP(0) — GPO)G (1)

X (R(tc)[L(M G? (t - tc)] + p2S(tc)Gp2 (t - tc))) ) (3124)

Ci;;lcp <Z) - Z (R(tc) (Apl (tc, Z)GP(O) — Ap(()’ Z)Gpl (t(;))Gm (O)

i /0 "t (A (1, 2)GP(0) — AP(0, 2)G™ (1)

(Rl (Lo, 67t = 1] + paS(E)G (1 - m)) (3125)

ﬁp@) = S (R)em ()6 0) B (0, 2)
— /tc dt G (t)Gp(())
* <R(tc)(L0 —2)EmS <tc)> Bt —te, 2)) . (3.126)

Q) = Y A (1) (RU)(Lo— 2) + () BR(0.2).  (3127)

dt.
p1,p2

The above equations do not generate the unphysical terms, which are produced by the
standard sharp cutoff. We may easily check this by considering again the special case,
whereA = ¢ =T = z = 0. Then, as in case of the sharp cutoff the objdgtsG?, AP

and B? commute for alk.. This yields

Lo(t.) = 0, (3.128)
GP(t.) = G*. (3.129)

Furthermore, this leads to
A(z=0,t.) = AT(z=0,t.)+ A (z=0,t.) =M, (3.130)

N(z=0,t) = 0, (3.131)
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where we again usefl B" — B~)/dt. = 0. Finally, one obtains foB = B* + B~

Blx=0,t) = Mexp (/Ot dté(t))

= Mexp (‘O‘m (ﬁ))

= M (1+(Dt.)*)" . (3.132)

Thus, the choiced" ™ (t, t.) does not lead to unphysical divergencies for— oo.

However, the convergence of the RG flow can be improved by switchingf§6ffi(¢, ¢.)
to "™ (t, t.) at some value, = ¢ [25, 26]. In case of largev this also leads to more
accurate results for the equilibrium correlation functions (see Subsegtbd). For
te >t > 1/D,~7""*(t,t.) does not generate any unphysical terms, since B{ehis ap-
proximately independent dD. Thus, we define a smooth crossovet aiith a smearing

n.
Vg (s te) = (1= up(te —£)) 25" (¢, te) + un(te — £)77"" (¢, te) (3.133)

where we use the function

1 1
upy(z) = 5 + - arctan (%) : (3.134)
In Eqgs. 3.60 - (3.64), we have to substitute
Lopa () = (1= uylte = ) B (1, 80) + uglte — )PP (1 1)
dtct” s be n\tc dtCQ ) be n\tc dtcl s Le

i (ditcunac _ E)) 0 (%@@ - tc)) , (3.135)

C
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which leads to the RG equations

dLy
dt,

dG?
dt.

dAP
dt.

dBP

C

%(2) =

> (1= wglte = 1)) Rt)[G (t), Lo

—iU () G7 (tc)> G (0), (3.136)

3 ((1 gt — 1)) R(L) (G (L)GP(0) — GP(0)G™ (1)) G7(0)

p1,p2

N /0 dt (G (t)GP(0) — GP(0)GP (1))
x (z’ (1 — uy(t. — £)) R(t.)[Lo, GP(t — t.)]
+U572 (tc)Gm (t - tc))) ) (3.137)

3 ((1 — uy(te — 1)) R(t,) (AP (e, 2)GP(0) — AP(0, 2)GP' () G?*(0)

p1,p2

- [ (@60 - 0,67 0)
X (Z (1 - un(tc - t_)) R(tc)[L(J? G" (t - tc)]
+U,§fj§ (t.)GP (t — tc))> 7 (3.138)

3 ((1 =gt — ) R()GP (1)GP(0)BP(0, 2)

P1,p2

- / G (1)GP(0)
x (2 (1= uy(te — ) R(t) (Lo — 2)

+UP(t) ) B (¢ — t,, z)> , (3.139)

+UP (tc)> B0, 2) . (3.140)

Here, we used the function

Up: (te) = Rlte)uy(te — ) + R(te) -y (te = T) + ip2S(te) (3.141)
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where the derivative af,, is given by the Lorentzian

d (z) 1 n?
— (1) = — .
dz " nm x? + n?

According to Egs..121) and 3.122 the initial conditions have to be modified again:

Lo(te=0) = Lo— (1 —u,(—t))2iarTM?, (3.142)
Y(z,te =0) = —(1—u,(—t))2arTM?*. (3.143)

Furthermore, the corresponding RG equations for the calculatiodpofollow from
Egs. 3.87) and 3.89):

Cjzi - ((1 — uy(t, — 1)) R(t) (G™ (t)D — DG (,))G™(0)

P1,p2

_ / “a (@ (0D - DG (1)
x (5 (1= uy(te = 1)) R(t) Lo, G™(t — )]

+UP ()G (1 — tc))> , (3.144)

djzif (2) = Z ((1 — uy(te — 1)) R(t.) AP (t,, 2)DBP2(0, z = 0)

Pp1,p2

_/tc thpl(t,z)D(z'(l — uy(te — 1)) R(te) Lo

+UP (tc)>Bp2(t = 0)) . (3.145)

As in case ofG?, A?(z) and B?(z), the initial conditions ofD andXp(z) remain un-
changed.

The following study of the spin-boson model is based on Eg4.39 - (3.140,
(3.149 and @.149, the final RG equations for the smooth crossover betwéeft (¢, ¢.)
and~y""*(¢,t.). Note that, in the limit of large, we again recover Eqs3(123 - (3.127),
the RG equations for4'**(¢,t.). This limit is usually applied, when we solve the
RG equations. However, it turns out, that for large couplingsometimes a crossover
aroundt ~ 1/A yields more stable and/or more accurate results. We then always choose
n = 0.001/A, so that, withD = 100A or D = 10004, 1/D is negligible inv{* " (t, t.),
and we do not deal with unphysical terms.
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3.4 Results

3.4.1 The renormalized tunnel matrix element

Because of its nonperturbative character the real-time renormalization group is able to
determine the renormalized tunnel matrix elemAntof the spin-boson model. As al-
ready mentioned in Subsecti@?2.3 the flow equations for the HamiltoniaH, of the
two-state system is obtained from the RG equations on the Keldysh contour by setting
p = p1 = p2 = + and replacind,o by H, as well asZ* by o, /2. Furthermore, we expand
the exponentials in.. Analogously to the Poor Man'’s scaling approach (see Se8ti)n
A, atT = 0 is given by the crossover energy scale defined\by= A(t.) = 1/%..

In lowest order irt, we obtain forA(t.) from Eq. 3.139

Alte) Alte)

LdA (te) = (1 —uy(t. — 1)) R(t.) 4C — Up,(to)te 4C (a?).  (3.146)

24t

We now consider the limit of — oo, so that we may set, (t.—t ) = d/dt.u,(t.—t) = 0.
The resulting flow equation then reads

flfc (1) = A(th) (“R(t) +iS(t)) + Ofa?). (3.147)

In the following we neglect the terms of the ordet. To determineA, we take the real
part of A(t.). Performing the integral yields

In (%) - —%m (1 v (A%)z> . (3.148)

Considering the above equation in the scaling limit, whers> A, holds, leads to

A, A\ Ta
- (= 14
A (D) ’ (3.149)

which coincides with the well-known result in EQ®.L1). Thus our approach contains the
correct relevant energy scale. Also note that for the spin-boson model the renormalization-
group flow of the couplings yielda — 0, if for the bare couplingx < 1 holds (see

Fig. 3.2). Therefore, Eqs.3.136 - (3.140, (3.149 and (3.149 are able to describe the
spin-boson model accurately in a nonperturbative way.

In the following we present numerical results obtained from these equations both for
the reduced density matrix and for equilibrium correlation functions. The correspondence
of the expectation values of the Pauli matrices to the matrix elements of the reduced
density matrixp(¢) reads

<Uz(t)> = pud( ) +pdu( ) = QRe[pud@)} )
{(Pud(t) — pau(t)) = —2Im[pua(t)],
(0:(t)) = Puu(t) — paa(t) = 2puu(t) — 1. (3.150)

—
R)
<
—
~
N—
=
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The second equations in E®.150 follow from the Hermiticity ofp(¢) and the normal-
ization p,,, + psa = 1. Furthermore(o,) and(c.) are connected via the Heisenberg
equation which yields

(6:) = —Alo,). (3.151)

3.4.2 Static properties

The static properties of the spin-boson model are determined by3Bd).(We calculate
the kernelX(z = 0) by integrating the ordinary differential equations Eq3.186 -
(3.140 using the method described in AppendiXl. As we have already mentioned, the
time-integrals on the right-hand sides of the RG equations only refer to the interaction
picture. Thus they can be performed analytically. For the evaluation of the exponentials
of Ly we introduce a unitary transformation which diagonalizgssee Appendi.2for
details. For the calculation of the stationary reduced density matriwe consider the
limit of ¢ — oo in Eq. 3.133, i.e. we use the definition off***(¢,t.). Figs.3.7and3.8
show the real part of the matrix elementspgf as a function ot for different values of
e anda with D = 100A and7 = 0. Note thatp,, converges fot. — oo. Whereas for
finite ¢ the stationary reduced density matrix has unphysical eigenvalues (see our remarks
in SubsectiorB.2.3, its asymptotic value corresponds to a well-defined reduced density
matrix. The imaginary part gi,; vanishes for alt. which is consistent with Eq3(15J).
For the symmetric case the diagonal elements of the real part are also cdasigiy).
In case ofe # 0 the diagonal elements are renormalized, and the asymmetry leads to a
finite difference between them for — oco. The off-diagonal elements of the real part of
pst @re renormalized in any case and attain a finite value.fes co.

We may now calculate the static susceptibility according to E§5 from the asymp-
totic (t. — oc) results forp,;. The derivative with respect tas performed by calculating
pse for anincrementle. We setde = 0.001A, which turns out to be sufficiently small. The
temperature-dependence of the static susceptihijity’) for different values ofD, oo and
e is shown in Figs3.9- 3.14 In Fig. 3.9 one sees the susceptibility far = 100A and
D = 1000A with o = 0.1 ande = 0, where we again choge— oc. Using Eq. 8.149
this yields renormalized tunnel matrix elementsof = 0.599A and A, = 0.464A.
Fig. 3.9shows thai,(7") strongly depends on the high-energy cutbffHowever, in the
scaling limit the susceptibility should only depend on one energy scale. We normalize
our results using the zero-temperature valy€l' = 0). Then the curves for different
high-energy cutoffs coincide. The normalized results for different valuesasfde can
be seenin Figs3.10and3.11  Whereas foe = 0 the susceptibility is a monotonous
function of 7', we obtain a local maximum for the biased case. In Bi@j2our result for
a = 0.125 ande = 0 is compared to that obtained for the anisotropic Kondo model using
the Bethe ansatz. One recognizes a good agreement, which can be improved by choosing
a finite value of the crossover parameter 1/A (as mentioned in Sectiod.3 we set
n = 0.001/A for the smearing). For larger this finite value oft also avoids numerical
instabilities, and we will later see that the errors concerning the Shiba-relation can be
reduced fora ~ 0.2 by settingt ~ 1/A. For the biased case the results of the Bethe
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10 S Re(pud)=Re(pdu) ]

Figure 3.7: Real part of the stationary reduced density matfias a function ot for
a=0.1, D = 100A andT = 0. Solid lines:e = 0. Dashed lines¢ = 0.1A.

100 ¢ - ey
[ — &=0
---- e=0.1A

10 :: 7777777777 Re(pud):Re(pdu) A:

Figure 3.8: Real part of the stationary reduced density matfias a function ot for
a=0.2,D =100A andT = 0. Solid lines:e = 0. Dashed lines¢ = 0.1A.
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Figure 3.9: Static susceptibility, as a function of the temperaturéfor o« = 0.1, ¢ = 0
andD = 100A, 1000A.
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Figure 3.10: Static susceptibility, as a function of the temperaturéfor ¢ = 0,
D/A =1000 > A,/A anda = 0.01,0.05,0.125 (from top to bottom).
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Figure 3.11: Static susceptibility, as a function of the temperatuie for o = 0.1,
D/A =1000 > A, /A ande/A = 0,0.1,0.2,0.5, 1 (from top to bottom).
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Figure 3.12: Static susceptibility, as a function of the temperatuiéfor o = 0.125,
e=0andD/A = 1000 > A,/A. Solid line: RTRG witht = 1/A. Dotted line: RTRG
with £ — oco. Dashed line: Bethe ansatz for the anisotropic Kondo model.
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Figure 3.13: Static susceptibility, as a function of the temperatufefor o = 0.2, D >
A, andmxo(T = 0)e = 0,0.3125,0.625,1.25,2.5,5 (from top to bottom), obtained by
the Bethe ansatz for the anisotropic Kondo model (taken from R&}j. [
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Figure 3.14: Static susceptibility, as a function of the temperatufe for o = 0.2,
D/A = 1000 > A,/A, T = 1/A and7xo(T = 0)e = 0,0.3125,0.625,1.25,2.5,5
(from top to bottom).
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ansatz forv = 0.2 are shown in Fig3.13[28]. Our corresponding results are presented
in Fig. 3.14 where we have used= 1/A. Comparing them one recognizes deviations
at low temperature for # 0. These deviations occur independently of the choicg of
which demonstrates that the commonly used relation of the parameters (see Agpendix
of the Kondo model to the ones of the spin-boson model has to be taken with care.

Finally, we note that in the high-temperature limit all our results)fgf7’) show the
correctl /2T law, which is independent ef, ¢ and D [28].

3.4.3 Dynamics

In this subsection we calculate the time-dependent reduced density pia}riar the ini-
tial preparation of the two-state system in the spin-up statg0),, = 1,
P(0)aa = p(0)ua = p(0)q, = 0. From the result fok(z) for t. — oo and from Eq. 8.32
we determine the Laplace transfofrx). According to Eq. 8.31) p(t) is then given by

1 oco+1ic )
i) = 5o [ dze(e)
—oo+t1ic
1 ct > —izt . +
= 5-€ dze **'p(z + ic) for ceR™. (3.152)
™ —00

This Fourier integral is calculated numerically using the method described in Apderadix
and setting: = 0.1A.

The solution for the time evolution of the reduced density matrix at vanishing temper-
ature is shown in Figs3.15- 3.20for different couplings and for the unbiased and biased
case. Here, we again chose~ oo, in fact these results are insensitive to the choice of
t even for a coupling strength of = 0.2. Figs.3.15and3.16 show, that, fora = 0.1,

e = 0andD = 100A we achieve a very good agreement with chromostochastic quantum
dynamics (CSQD). Only the real parts of the nondiagonal elements, which correspond
to (o, ), exhibit a deviation of approximately/s. However, in contrast to the results for
(c,) CSQD cannot give an error fde,.) [74]. The diagonal elements oscillate in time as
well as the imaginary parts of the off-diagonal elements, in fact the latter do not contain
any new information due to Eq3(15J), so that we focus on the real partpft) in the
following. For the symmetric case the real parts of the off-diagonal elements show a pure
decaying behaviour (Fig3.19. In Fig. 3.17 the correct scaling behaviour is checked
for D = 100A respectivelyD = 1000A by rescaling the results usinly, = 0.599A re-
spectivelyA, = 0.464A. One obtains coincidence of the diagonal elements, whereas the
real parts of the off-diagonal elements have an extra factdy,@f\, which is consistent

with Ref. [1]. A comparison with the noninteracting blip approximation (NIBA) both for
the unbiased and the biased case is drawn in Bgf®and3.19 Note that a formal
derivation of the NIBA results is presented in Appendix In Figs.3.18and3.19 p(t)

is calculated from EqsA(14) - (A.19), where we again used the technique presented in
AppendixE.3. One recognizes that fer= 0 the NIBA gives quite accurate results for

the diagonal elements (see also Apperaljxbut fails for the nondiagonal elements. The
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Figure 3.15: Real part of the time-dependent reduced density matyixor a = 0.1,
e =0,D = 100A andT" = 0. Solid lines: RTRG. Dashed lines: CSQD.
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Figure 3.16: Imaginary part of the time-dependent reduced density métyifor
a=0.1,e=0,D =100A andT = 0. Solid lines: RTRG. Dashed lines: CSQD.
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Figure 3.17: Rescaled real part of the time-dependent reduced density marior
a=0.1,e=0,T7=0andD = 100A, 1000A. The nondiagonal elements have an extra
factorA, /A = 0.599A, 0.464A.
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Figure 3.18: Real part of the time-dependent reduced density mathixtor o« = 0.1,
e =0, D = 100A andT = 0. Solid lines: RTRG. Dashed lines: NIBA.
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Figure 3.19: Real part of the time-dependent reduced density madtiixor o = 0.1,
e = 0.5A, D = 100A andT = 0. Solid lines: RTRG. Dashed lines: NIBA.

NIBA even violates the bound
(02(1))* <1, (3.153)

which follows from (a%(t)) — (o.(t))? > 0. For finite bias (see Fig3.19 the diagonal
elements also have a decaying part, as well as the nondiagonal elements also show oscil-
lations. We see, that, fer= 0.5A the NIBA gives poor results both for the diagonal and

the nondiagonal elements. In Fi§.20our results for the unbiased and the biased case
are shown fory = 0.2.

For one of these plots gf(¢) we calculated 512 points of the Laplace transform
p(z + ic) for z € [-10A,10A]. For z < —10A respectivelyz > 10A we extrap-
olatedp(z + ic) algebraically (see also Appendix3). For such an integration prob-
lem a parallelization of the computer program may strongly improve the performance.
We applied the “pvm” package to parallelize our prograif][ Using a cluster of four
PIll (500MHz)-machines, one of these plotsygf) is generated within about five hours
only.

From the above results f@i(t) we also determine the oscillation frequeriey~ A,

of the diagonal elements. We compare it with the analytical réxylwvhich is valid in
the limit of smalla only. It reads ]

Oy = <62+(F(1—2a) cos(ﬂa))l/l_aAf)l/Q. (3.154)

Furthermore, for the symmetric case, conformal field theory (CFT) applied to the anisotropic
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Figure 3.20: Real part of the time-dependent reduced density mathixtor o« = 0.2,
D = 100A andT = 0. Solid lines:e = 0. Dashed linest = 0.5A.

Kondo model, leads to the solutioid, 1]
Qcpr = sin(ma/2(1 — a))cos (ra/2(1 — a)) I'(a/2(1 — o))

VAl (1/2(1 - @)
y (F (L+a)T(1—a)T(1 - 2a) COS<M)> 1/2(01—a)

NG

which is valid for0 < o < 0.5. Figs.3.21and3.22show(2 as a function of the coupling
strengtho for the unbiased and the biased case wite= 100A and7T = 0. As expected,
in the limit of smalla our results are consistent with, while for largea there are devia-

tions. In comparison to the CFT result for the symmetric case we find a good agreement,
only for largea there are small deviations.

A,, (3.155)

The long-time behaviour gf(t) can be approximated by an exponential decay, which
is parametrized by the dephasing tinf€”” and the relaxation time™':

p(t) = po + pre™ e T 4 ppe=t/T

. (3.156)
The results forr < 1 read [1]
2(T(1 = 2a) cos(ma))/ ™ Q
deph 3.157
7o TaA? ’ ( )
el (T(1 = 2a) cos(ma)) /1 Qq
To =

: 3.158
T2 ( )
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Figure 3.21: Oscillation frequendy as a function of the coupling constamffor ¢ = 0,
D = 100A andT = 0. Solid line: RTRG. Dashed liné2, (o < 1). Dotted line:Q¢rr.
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Figure 3.22: Oscillation frequendy as a function of the coupling constantor
e = 0.5A, D = 100A andT = 0. Solid line: RTRG. Dashed lin&2, (o < 1).
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Figure 3.23: Decay constanté”" and7"¢ as a function of the coupling constamtfor
e =0, D = 100A andT = 0. Solid line: RTRG. Dashed linez;{”" and 7} (a < 1).
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Figure 3.24: Decay constanté”" and7"¢ as a function of the coupling constamtfor
¢ = 0.5A, D = 100A andT = 0. Solid line: RTRG. Dashed line;}*" andr}¢ (o < 1).
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For the symmetric case, a solution for the diagonal elements has been found using the
CFT [29]. But as the diagonal elements exhibit a purely oscillating behaviour fo10,
CFT yields only a result forr":

deph  _ oo vVl (1/2(1 - a))
Topr = sin ° (ma/2(1 — a)) T (/201 — )

. (r (L +a) 0 (1—a)T(1 - 2a)cos(ra)

NG

which again is valid fo) < a < 0.5. We calculate the dephasing and relaxation times
by studying the poles gf(z). Thea dependence of?** andr"* for the unbiased and
the biased case is shown in Fi§s23and3.24 Again our results coincide Witkbdeph and

o€ only in the limit of smalla, and the result of %" for ¢ = 0 is in good agreement
with CFT.

1/2(a—1)
) ATl (3.159)

3.4.4 The Shiba-relation

The Shiba-relation is an exact equation o= 0, which was originally derived for the
Anderson model§0]. In time space the relation determines the asymptotic long-time
behaviour of the symmetrized equilibrium correlation functibh [

1

(1) = Tr[lox(), o)1 0] — (Trolowpa])”

— 22X for oo, (3.160)

Here,[-, -], again denotes the anticommutator.
In energy space we obtain for the Fourier transform

C*(w) = / h dt e™'C*(t) (3.161)

—0o0

an equation for the low-frequency limit:
C*(w) = 2maxp|w| for w—20. (3.162)

When checking the RTRG results using the Shiba-relation, the discontinuity of
C*(w)/w for w — 0 leads to numerical instabilities. Therefore, we focus on the antisym-
metrized equilibrium correlation function involving the commutatof . The imaginary

part of the dynamic susceptibility is defined as

V(W) = / dt ei“t%Tr[[az(t), o) o). (3.163)
X" (w) is connected withC*(w) by the fluctuation-dissipation theorer] [
s _ i "
O%(w) = coth <2T> (). (3.164)
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Figure 3.25: Spectral functiofi(0.1A) as a function ot. for « = 0.1, D = 100A and
T = 0. Solid line:e = 0. Dashed linee = 0.1A.

Hence, the Shiba-relation for the imaginary part of the dynamic susceptibility reads
Y (w) = 2raxiw for w—0. (3.165)

We now use Eqs3(136 - (3.140, (3.1449 and 38.145 to calculatey” (w). Since Eq.8.81)
determines the Laplace transform of an equilibrium correlation function, we write

X" (w) = Re [/000 dt e Tr[[0.(t), 2] peqﬂ : (3.166)

In Figs. 3.25 and 3.26 one can see the. dependence of the spectral function
S(w) = X" (w)/w atw = 0.1A for D = 100A, T" = 0 and different values of and
«. We again usé — oo, unless stated otherwise.

The asymptotic. — oco) result of S as a function otfv is shown in Fig.3.27 for
a = 0.1, T = 0 and different values oD ande. As in case of the static susceptibil-
ity one obtains a stron@ dependence. But again one may normalize the result using
S(0) = lim, o ¥’ (w)/w and the frequency, .. =~ A,, whereS is maximum. Then the
curves for different cutoffs coincide, thereby showing the correct scaling behaviour (see
Fig. 3.28 wheree has also been rescaled).

We test the Shiba-relation, E@.(L69, for differenta, e and D which can be seen in
Tab.3.1 Fora < 0.1, we achieve a very good agreement with the Shiba-relation (error
smaller tharb%). In comparison, the flow equation method of Wegner produces an error
of 25% for a = 0.1 [66]. One recognizes, that for largerour error increases strongly,
which is due to our neglecting of double vertex objects. However, in case-0f).2 we
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Figure 3.26: Spectral functiofi(0.1A) as a function ot. for « = 0.2, D = 100A and
T = 0. Solid line:e = 0. Dashed linee = 0.1A.
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Figure 3.27: Spectral functiofi as a function of frequency
D = 100A, 1000A. Solid lines:e = 0. Dashed linese = 0.1A.

fora = 0.1, T = 0 and
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Figure 3.28: Rescaled spectral functiSnas a function of frequency for a = 0.1,
D > A, andT = 0. Solid lines:e = 0. Dashed lines¢ = 0.167A,..

a e/A | D/A| Axo | 2mra(Axo)? | lim,_o A%S(w) error
0.01| 0.0 100| 1.051 0.06942 0.06798| 2.09%
0.05| 0.0 100| 1.290 0.5227 0.5083| 2.79%
0.1 | 0.0 100| 1.687 1.788 1.834| 2.55%
0.2 | 0.0 100 | 2.995 11.27 15.54| 31.85%
0.2 | 0.0 100 | 3.240 13.19 12.3T | 6.90%

0.01| 0.0 | 1000| 1.077 0.07291 0.07115| 2.44%
0.05|/ 0.0 | 1000| 1.453 0.6636 0.6445| 2.92%
0.1 | 0.0 | 1000| 2.180 2.987 3.088| 3.33%
0.2 | 0.0 | 1000| 5.159 33.44 51.34| 42.23%
0.2 | 0.0 | 1000| 5.722 41.14 35.49 | 14.75%

0.1 |0.01, 100| 1.686 1.786 1.831| 2.49%
0.1 | 0.05| 100| 1.667 1.746 1.752| 0.34%
0.1 |01 100| 1.604 1.616 1.621| 0.31%
0.1 | 0.01| 1000| 2.178 2.980 3.091| 3.66%
0.1 |0.05| 1000| 2.137 2.869 2.723| 5.22%
0.1 | 0.1 | 1000| 2.019 2.561 2.438| 4.92%

Table 3.1: Shiba-relation for different, e and D.
The star® indicates the finite value af= 1/A.
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Figure 3.29: Correlation functio@’ (¢) for = 0.1,0.2, ¢ = 0, D = 50A, andT’ = 0.
Solid lines: RTRG. Dashed lines: CSQD.

also present the data obtained for a finite crossover parametdr/A (indicated by*).

Then, the error is reduced substantially. In this context it must be noted again, that our

results for the reduced density matri) were independent afwithin numerical errors.
Analogously to Subsectiof.4.3we may also transform the results for the Laplace

tranform of an equilibrium correlation function into time space. We present the time

evolution of

Co(t) = %Tr[[ay(t),ayhpeq}. (3.167)

In Fig. 3.29our results fore = 0, D = 50A,, T = 0 and differenta. are compared to
CSQD calculationsj7]. We again find a good agreement.

3.5 Discussion

We studied the spin-boson model as a fundamental quantum dissipative system. It is
applicable for any physical problem, where one effectively deals with two states, which

are coupled to a bosonic heat reservoir. Thus it is a basic model which, however, contains
the nontrivial features of quantum dissipation and, therefore is not exactly soluble. We

have used a new RG approach, the real-time renormalization-group method to study the
spin-boson model. Thereby we have been able to determine both static and dynamic
properties. By calculating the time-dependent reduced density matrix, we have been able
to examine the effects of quantum dissipation on the dynamics of a local system, when
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one starts out from an arbitrary nonequilibrium state. Previously such studies have not
been possible within a (nonperturbative) RG approach.

The RTRG method has been explained in detail. It is formulated for the Keldysh con-
tour, so that dissipation is properly taken into account, i.e. non-Hamiltonian dynamics
is generated within this approach. Therefore any nonequilibrium situation may be con-
sidered. Furthermore, we have extended the formalism to the calculation of equilibrium
correlation functionsZs, 26).

We have found that the standard form of the RTRG (sharp cutoff for the bath contrac-
tions) generates unphysical terms for the spin-boson model. However, since the general
formalism does not specify thig dependence of the bath contractions explicitly, we could
avoid those unphysical terms by applying a modified choicefor?(, t.).

From the resulting RG equations we achieved reliable results for the whole parameter
space with the only restriction of < 0.1 — 0.2 [25, 26]. We have shown, that, due
to its nonperturbative nature the approach accounts for the correct renormalized tunnel
matrix element. In contrast to the study of the polaron, the numerical solution of the RG
eqguations exhibited a convergent behaviourfor oo, since, here, the bath contractions
were decaying. From the results for the stationary reduced density we determined the
static susceptibility. Furthermore, we presented a solution for the complete dynamics of
the two-state system for an arbitrary initial nonequilibrium preparation. The tunneling
frequency2 ~ A, as well as the decay constants in the asymptotic regime, the dephasing
and the relaxation time, have been determined. Eventually, we have calculated equilib-
rium correlation functions both in energy and in time space.

We directly solved the spin-boson model for any parameter value of the high-energy
cutoff D, the bias, the tunneling), and the temperatufB. Therefore, a quantitative and
unambigious comparison to the anisotropic Kondo model could be drawn in a parameter
regime, where the mapping of that model on the spin-boson model cannot be proven
rigorously. We found, that for = 0 both the oscillation frequenc§ of the diagonal
elements of(t) and the dephasing time/»" agree with the results of CFT, which were
obtained for the anisotropic Kondo model. Furthermore, in the scaling limit the static
susceptibility agrees rather well with Bethe ansatz results for the anisotropic Kondo model
for e = 0, but deviations occur at finite bias.

We have also shown that our method gives a much better description for the time
evolution of the reduced density matrix than the NIBA, which, for vanishing temperature,
is restricted to the diagonal elements for the unbiased case. In contrast to the NIBA, we
have been able to study the complete dynamics of the reduced density matrix both for the
unbiased and the biased case.

The generalization of the RTRG method to the calculation of equilibrium correlation
functions allowed us the examination of the imaginary part of the dynamic susceptibil-
ity. Its low-frequency behaviour for vanishing temperature is connected with the static
susceptibility by the exact Shiba-relation. Concerning this relation we obtained the very
small error< 5% for o < 0.1. Additionally, we compared our result for the correlation
function C;, (t) with CSQD and obtained a good agreement. We note, that, in contrast
to other methods, the RTRG yields reliable results for the equilibrium correlation func-
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tions for the spin-boson model far = 0.1. NRG results §, 70] are very accurate for

low frequency but fail forv ~ A [66], flow equation methods have already an error of

~ 25% concerning the Shiba-relatiobq], and CSQD does not provide a check of the
Shiba-relation $7]. Generally, QMC methods have difficulties to determine the long-
time respectively low-frequency behaviour of physical quantities due to the dynamical
sign problem. Furthermore, the reliability of our method is also demonstrated by the con-
sistency of the time-dependent reduced density matrix with CSQD and the correct scaling
behaviour of our results. The restriction dnis due to the fact that we neglected dou-

ble vertex objects. When one includes these objects in the approach, the method gets
much more complicated. However, in Chadiex possibility to account for double vertex
objects will be explained.

Finally, we note that the derivation of the formalism in principle holds for any quantum
dissipative system. The presented solution of the spin-boson model shows that the RTRG
provides a powerful tool to study various kinds of quantum dissipative systems for any
nonequilibrium situation. Among these systems, quantum dot structures have recently
attracted both experimental and theoretical interest. In the next chapter we will study
coupled quantum dots in a phonon environment. We will calculate the current through
them, when an external bias gives rise to a nonequilibrium stationary state.



Chapter 4

Coupled quantum dots

Today quantum dot systems allow a detailed study of many physical phenomena, like
Coulomb blockade’6, 31], Kondo effects {7, 32, 33] or interference effects3p]. Asin

these structures quantum states can be manipulated, they also may have an application in
future quantum gates §]. Quantum dot systems can typically be characterized by only a
few parameters, which are experimentally controllable. Theoretically, these systems may
then be described by basic models, which capture the essential physics. In this chapter
we present a theoretical analysis of an out-of-equilibrium quantum dot experiment, where
an external voltag®” gives rise to a stationary tunnel current through a double quantum
dot, which interacts with a phonon bath (see Fdl). The current was measured at

low temperature as a function of the energy differenad the two dot levels and the
influence of the phonon environment was examingd.[ The thermal energy of the
environment is always a source of unwanted transitions in quantum dot devices. Even at
zero temperature spontaneous emission of phonons gives rise to inelastic transitions, i.e.
they occur between dot states of nonequal energy. In the experiment described &URef. |
the inelastic contribution to the tunnel current through the double dot was studied. A first
theoretical interpretation of the experimental results focused on the interaction of the dots
with the phonons, which is analogous to the spin-boson mdadgl [The authors found

the qualitative current spectrum by eliminating the coupling to the leads perturbatively,
and applying an approximation to the electron-phonon problem, which corresponds to
the noninteracting blip approximation (NIBA) for the spin-boson mod@e].[ However,

a quantitative comparison with the experiment has not yet been possible. Especially, the
unexpectedly large inelastic current of the experiment could not be explained.

As we have seen in Chapt8ythe RTRG provides a powerful method to study such

a nonequilibrium problem for moderately strong couplings. Therefore, here we again
apply the RTRG approach, thereby treating both the coupling to the phonon reservoir
and the coupling to the leads nonperturbatively. Thus, we obtain a quantitatively reliable
solution for the tunnel current through the double dot system for a wide range of coupling
parameters, including those of the experiment of R&d].[ Both the level broadening

induced by the coupling to the leads is included in this method, and the external voltage
is accounted for properly. Moreover, we do not deal with the parameter restrictions of the

77
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M T, Me

Figure 4.1: The double quantum dot may be charged with one additional electron in the
left or right dot. The corresponding statés and|R) are coupled by the tunnel amplitude

T.. The couplings to the leads are given By ). The energy difference between the
guantum dots is = €, — eg, and there is an external voltagé = u;, — pug. The
interaction with the acoustical phonons (dashed lines), consists of a diagonal part with the
coefficientsa,, and3,, and an off-diagonal part with the constangs

NIBA, which, in this case is valid only for sufficiently high temperature. Note that the
calculation of the tunnel current through the double dot as a functiertofresponds to
determining the off-diagonal elements of the reduced density matrix for the biased case
of the spin-boson model, but we have seen in Chapttrat for this case the NIBA fails

at low temperature. Additionally, the RTRG method may treat any form of dot-phonon
interaction. Therefore, we are able to account for the full electron-phonon interaction, i.e.
including interaction terms, which involve a tunneling between the dots (“off-diagonal
interaction terms”). In the quantitative analysis the off-diagonal interaction terms lead to
a strong dependence of the current on the extension of the wavefunctions within one dot.
We find that the variation of this extension with the energy differenibetween the dot
levels has to be accounted for. By fitting the result for the current with the experimental
data, we obtain the width of the electron density within one dot as a functiofi3f.

4.1 Model Hamiltonian

Let us first derive a model Hamiltonian for the double dot system as it was realized in
the experimentj0]. Our model consists of two coupled quantum ddtsa6d R, respec-
tively). Each dot is coupled to an electron reservoir with the chemical poteptisdsd

Lr, See Fig4.1l In the experiment the external voltabe= u; — g Was much smaller
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than the Coulomb charging ener@y Thus, due to Coulomb blockade the double dot
cannot be charged with more than one additional electron. Furthermore, a strong mag-
netic field was applied perpendicular to the dots. Thus, we assume spin polarization here
and omit the spin index. We denote the many-particle ground-state, where an additional
electron is in the left (right) dot, byZ) (|R)) and neglect any excited states. Therefore,
together with the uncharged ground stitg there are only three possible states of the
double dot. The total Hamiltoniafl for the system can be written as a sum of the dot
Hamiltonian, the contributions of the electron reservoirs and the phonon bath, and the
interaction parts stemming from the coupling to the leads and the electron-phonon inter-
action:

H= Hg+ Hyes + th + Heyes + Hefph . (41)

The dot Hamiltoniand; reads
Hq = er|L)(L| + er|R)(R| + T¢. (|L){(R| + | R)(L]) , (4.2)

wheree;, (er) is the ground-state energy f) (|R)) and the coupling between the dots
is described by the tunnel matrix elemé&nt The reservoir contributions are given by

Hyeo = Y exclex+ Y exdldy, (4.3)
k

k
Hy, = quagaq. (4.4)
q

Here, the operatoai (cx) creates (annihilates) an electron with the enesgin the left
lead, whereas the creation (annihilation) operdﬁdﬂk) refers to the right electron reser-
voir. Analogously,ajl (a,) creates (annihilates) a phonon with the wave vegtand the
frequencyw,. In this chapter we again choose units such that kz = 1, furthermore
we set the elementary charge= 1. The double dot is coupled to the external leads by
the parameterg;, andV,:

He—res = Z (V;cck’|L><O| + ‘/k*|0><L|CL>
k

£ 37 (Wi R) 0]+ Wi 0)(R|d)) (4.5)
k

The electron-phonon interaction consists of a diagonal part, which is characterized by the
coupling constants, andj,, and an off-diagonal contribution with the paramejgr

Hepn = Y (ag|L){L| + By R)(R])(a} + a—y)

q

+ D %a(1L) (BRI + [RY(L)(af + a—y). (4.6)

q
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The above interaction coefficients are given B¥j[

a; = NJ(L|e"F|L), (4.7)
ﬁq = )‘q<R|ei(ﬁ|R>> (4.8)
Yo = A{L[e"|R), (4.9)

where), is the matrix element for the interaction of 2DEG electrons with phonons. The
phonons are assumed to be three-dimensional acoustical ph&thrsthen follows for
the interaction 34]

2.2
A2 =gl 4.10
and the dispersion reads
Wy = ¢s|q] - (4.11)

Here, we introduced, as the speed of sound in the mediuvhas the volume of the
crystal, and the dimensionless coupling constafii4]. For the evaluation of Eqs4(7)

- (4.9) we model the electron density (%) (pr(%)) within one dot by a Gaussian, which
is peaked around the dot positiop (7x = 71, + d ) with a width|AZ| = /3/20 [35]:

mo?

4 1 \*? _eam?
prLr)(T) = < ) e . (4.12)

The finite widtho leads to a high-energy cutaff = ¢ /o for the coefficientsy,, 5, and
~4- We include this cutoff in an exponential form, so that we end up with the following
interaction coefficients:

csldl

g = NeTLe 2D (4.13)
B, = AelTre 5B (4.14)
e = AT 52 - (4.15)

A simple form of the Hamiltonian, which shows the analogy with the spin-boson model, is
obtained by shifting the bosonic field operators. One introduces the unitary transformation
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g + 5, ¥ O‘Z + ﬁ;
- — 4.1
U = exp [Z < 2, al 2o ag ||, (4.16)
q
so that
+ 8
Ua,Ut = a, — 240 (4.17)
q q 2wq

Thus, our final Hamiltoniad = U HU reads

H = Ho+ Hg+ Hy, (4.18)
Hy = (L)L - |R)(R])
T (L) (R] + | R)(L)

+E (IL) (L] + |R)(R| = [0){0]) , (4.19)
HB = Z EkCJ]LCk -+ Z Ekd};dk + quagaq N (420)
k k q
Hy = Z S Gudu (4.21)
w

where we have used Eq<l.{0), (4.11) and @.13 - (4.19. Furthermore, for simplicity
we have sete;, + €g)/2 = 0 and introduced the parameters

€ = €, —¢€R, (4.22)
_D D
" = T, —2gwge” *a arctan — (4.23)
Q(Ud
D
E = -4 (D + wg arctan —) (4.24)
4 Wq
and
c
Wy = — . (4.25)
|d|

Thus, the tunnel amplitudg. has to be replaced by a smaller effectiy@, which is due

to the off-diagonal electron-phonon interaction. One already recognizes that the reduction
of T, strongly depends on the width of the electron densties |cf|wd/D. Finally, in

view of the RTRG method, we have written the interaction @gértas normal ordered
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products of local (dot) operatoyg and environmental operatojs. They are defined by

g = 5 (LI~ |R)(R]) (4.26)

g = Y (g —By) (al +ay) , (4.27)

P = (!L><R\+!R>< ), (4.28)

Joy = qu af+ag) (4.29)

o = —§|0><0|, (4.30)

G = Y (ag+8,) (al +ay) (4.31)

gir = g, =100 . =i =) Via, (4.32)
k

gin = g p=IR)YOl ,  Jir=jg=) Wids. (4.33)
k

(4.34)

Therefore, the interaction indexruns over the bosonic indicés, by, bs and the fermionic
ones+L,—L,+R,—R. From Egs. 4.18 - (4.2]) a spin-boson model is recovered by
omitting the electron reservoirs and the interaction with them, excluding the|Gtated
neglecting the off-diagonal electron-phonon interaction, 4£= 0, which also means
T® = T.. The correspondence to the spin-boson model, defined in &g5. (8.5 and
(3.6), is then given byl, = —A/2. Note thatF is then only a constant energy, which
can be neglected. Although in this case the electron-phonon interaction is not exactly of
the type of an Ohmic bath, we will see below in Subsectidh? that there is a strong
relation to the standard spin-boson model in the Ohmic case with the correspondence of
the coupling constanig= 2a.

A solution for the stationary tunnel current in case of vanishing electron-phonon cou-
pling (¢ = 0) was found by Stoof and Nazarov9]. If one introduces the tunneling
densities of states as

Tr(e) = 20 [Vild(e —ex), (4.35)
k

Frle) = 27TZ‘W;€|25(6—61€), (4.36)
k

and assumes, th&t, g (¢) ~ const. holds, the result reads
TTg
T2(2 + FR/FL) —I—F /4+ 62

Note that this formula deviates from the expressions given in both Réfahd Ref. B4],
which is due to the fact that the results given therein are incorrect. In Réfe [must

(4.37)

]st



4.2. THE TUNNEL CURRENT WITHIN THE RTRG 83

be divided by instead ofh [80], and in Ref. B4] a factor of2 must be taken out of the
definition of the rate$’; to be consistent with the literature and with the results presented
therein B1].

The influence of the electron-phonon interaction was qualitatively studied by using an
approximation, which corresponds to the NIBA for the spin-boson madgl Thereby
it was shown that the interference of phonons interacting with the electron densities at the
two dots leads to an oscillating structure in the current spectrum. However, they treated
the interaction with the electron reservoirs only perturbatively. Therefore, they had to
introduce an additional cutoff parameter, which simulates the level broadening due to the
coupling to the leads. Furthermore, they considered the limit of large external voltage
(V — o), so that they could not study the regime: V. Additionally, we have already
mentioned that the calculation of the tunnel current as a function of the energy difference
e corresponds to determining the off-diagonal elements of the reduced density matrix for
the spin-boson model for arbitrary bias Thus, this approach is only valid for the pa-
rameter regiméA? + ¢2)1/2 < T (see Appendixd). Here, A, = A(A/D)*/0-9) js
the renormalized tunnel amplitude for the spin-boson model Ed1)). Finally, this ap-
proximation did not account for the off-diagonal terms of the electron-phonon interaction.
Therefore, this analysis could not provide a quantitative resulfor).

4.2 The tunnel current within the RTRG

We apply the RTRG to determine the stationary tunnel current through the double dot
system. It is defined by

Iy = tlim (I)(t), (4.38)

where! is the current operator
=iy (v,:yo><L|cL . chk|L><0|) . (4.39)

k

To calculately, it is not sufficient to determine the kernElintroduced in Sectior3.2
However, the scheme for the calculation of the reduced density matrix, which we have
derived in Sectior8.2, can easily be modified to also determine expectation values of
operators, which are linear in the bath field operata.[ Before we set up the RG
eguations, we again derive an exact expressiorn fomhich now depends on a kernel

E[.

4.2.1 Exact expression for the stationary tunnel current

First, we again introduce the Liouvilliah = Lo + Lg + Ly, which is defined as in
Eq. 3.2]). It acts on an operat@p according to

LO - [H, O]_ (LOO - [H0,0]_, LBO - [HB,O]_, Lvo - [Hv,O]_ ) . (440)
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Similarly as in Eq. 8.22) the time-dependent expectation value can be written as

(I)(t) = TroTrg [Ie"p(0)p%]
= TryTrp [(—z’AI)e_iLtp(O)p%q] . (4.41)
Here we again assumed a factorized initial density matrix w{th as the initial dot

density matrix ang? as the equilibrium distribution of the electron reservoirs and the
phonon bath. Furthermore, we introduced the superope#fatas

4,0 = [51,0};.. (4.42)

whereO again is an usual operator apfd-], denotes the anticommutator. As in Sec-
tion 3.2we now use the interaction picture with respectto+ Lz and obtain

(I)(t) = TrgTrp | 2 T(—iA (t))e™ o BV p(0)pif | | (4.43)

whereT" again denotes the time ordering operator. Expanding the above expression in
Ly and performing the trace over the bath degrees of freedom using Wick’s theorem we
can use the same diagrammatic language as in SegtorAccording to Eq. 4.21) the
interaction part.,, can be written as

Ly =) :GhJr:, (4.44)
Hp==%

where the superoperatoi, and.J? act on an operatap:

G;O = 4.0,
G,0 = —0Ogy,, (4.45)
Jj O = 5.0,
J,0 = Oj,. (4.46)
Furthermore, the vertex; can be written as
Ap= Y AL (4.47)
wp==
where we introduced
1
ARO = 5 Oun| L)(O] = 8|0} (L] O,
1
A0 = S0 (04+L|L){0] = 6,,-|0)(L]) . (4.48)

2
Thus, we again obtain an effective theory for the local system, where the veftjcasd
A’}M of the local system are connected by the pair contractions

P12 (t) = Trp [ij; (t)J/’j?p;f’} . (4.49)

7”17#2 2
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<I>(t) = Try ——— Z

|
T

0 r ot

Figure 4.2: Diagrammatic expression fah) (t). The two lines of the Keldysh contour
are put together to one line. The irreducible diagrams jnnclude the leftmost vertex
superoperator at the time poithand the current superoperaté)?u at the time point. X,
acts orp(t’), which is represented by the thick horizontal line.

Introducing the kernek(t; — ¢5) as in Sectior3.2, we again have to account for all
possible sequences of suElblocks, which can be expressed fay). However, for the
calculation of(7)(t) the last vertex of the last irreducible block4g,. We call that new
objectX;, see Fig4.2 Finally, we also have to perform the trace over the local degrees
of freedom. Formally, this yields3f]

t
() (t) = Trg [ [ s - t')p(t'ﬂ | (4.50)
0
where the kernel is given by

S (t — t) = (—i)?Trp {Ale_iLotlTei Ji3 dtLV(t)eiLOtQLVp%q} . (4.51)

irred.

In addition to Eq. 8.31) we introduce the Laplace transforms

I = dt e T hy = dt "'y 452
< >(Z) /0 te < >(t)7 I(Z> /0 te I(t) ( )
for Imz > 0. This leads to

(I)(2) = Tro [Xr(2)p(2)] - (4.53)

Using Iy, = —ilim, o 2(I)(z) together with Eq.&.33), we finally obtain the exact equa-
tion
I = Trg [El(z = 0)pst] : (454)

The stationary reduced density matpix can again be calculated from E§.34):
(Lo +iX(z =0)]pst = 0. (4.55)

Thus, for the calculation of; we need to determine the kern&l§: = 0) andX;(z = 0).

4.2.2 RG equations for the coupled quantum dots

For the calculation ob(z = 0) we use the framework given by Eq8.60 - (3.64).
Note that we now have the additional bath indigeswvhich the vertex superoperators
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Figure 4.3: Additional sign arises for fermionic contractions, if the difference between
the fermionic occupation numbers of the statesds’ is odd, anth; # p,.

Figure 4.4: Additional sign arises for fermionic contractions, if the free vertex is
fermionic, andp = p».

Gh, Alp, and Bl as well as the bath contraction:*2 (¢) depend on. Thus, we have
RG equations for the vertices for eaghand the right-hand sides of the RG equations
have to be summed over all possible contractions. Furthermore, we have to account for
additional signs arising from the commutation of fermionic field operatb?s [There

are two possible situations, where a fermionic contraction leads to a minus sign on the
right-hand side of the RG equations, see Fig8.and4.4. First, in Fig.4.3a minus sign
occurs, when a fermionic contraction connects the upper and the lower propagator and the
fermionic occupation numbers of the stateends’ differ by an odd number. We account

for this by including a matrixg? P2 after the later vertex, i.e. in the RG equations we

multiply the later vertex superoperator from the left with-72, which is given by

AD1,D2 _ ) Pip2 for N, — Ny = odd
(& )55'755' o { 1 for N,— Ny =even (4.56)

Since we include the matrix?' P2 after the later contraction vertex an additional minus
sign occurs, when a fermionic vertex lies between the contraction vertices, and on the
same propagator as the first contraction vertex (Fid).. This is accounted for by the
function

1,02 _ —p1pe  for p fermionic
M = { 1 clse : (4.57)

Regarding>; the only difference ta is that the last vertex is not a usual vertex but the
current vertexA{,’u. Thus, we replace the right boundary veri€x by A{,’# in Eq. 3.69)
to obtain the RG equation fat;. The renormalization of the current vertﬁ& is com-
pletely analogous to Eq3(62), so that we again only have to repladg by AI}M to obtain
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the corresponding RG equation. However, note that the oJajRatannot be derived from
AP, since the initial conditions differ, see E@.43 and Eq. £.48.

Let us now consider the explicit form of the bath contractigfig? (¢). The bosonic
contractions can be derived using Eg$.1Q - (4.15. As mentioned earlier they are
strongly related to the bath contraction of the spin-boson model given by EG$)
(3.20 with the correspondence of the coupling constants: 2. We again consider the
caseD > T, and therefore, we define

e = (Re (1 ) {ﬁD B

Then, the bosonic contractions for the double dot system in the phonon bath read

Wy t+1/wg . .
WO = -5 [, (4.59)
t—1/wq
WEG = BEH =0, (4.60)
WEW = B =0, (4.61)
1 _ w,
Waks(t) = e g, (4.62)
—D/2 L/ / /
WO = A0 = [ A, @
t71/2wd
Wy t+1/wg . .
WO = o+ [ ). (4.64)
t—1/wq

The above integral can be performed:

t-‘rl/wd ) i ) 7_‘,7'1
dt' 222 () = —g| Re
/t_l/wd Vs () g Lmh(nT(H 1/wq — i/ D))

sinh(77T'(2/wy)) ]
sinh(7T'(t — 1/wqg —i/D))

. 2/wq
ipatm {(t T 1w — /D)t — 1w — z’/D)} ) {4.69)

Here, we assumed that the bosons, which are represented by the shifted phonon opera-
tors (see Eqg.4.17), are in equilibrium. Accounting for the original phonons being in
equilibrium would give rise to correction terms to the above pair contractions, which are

of second order irg. In fact, within numerical errors this correction does not change the
results for/y. In Egs. .62 and @.63 one again recognizes that the influence of the
off-diagonal electron-phonon interaction strongly depends on the width of the electron
densitiess = |d|w,/D. The fermionic contractions can be written as

Vng s (8) = Vs () = 0O s (£) (4.66)
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where the indiceg and f run over+ and L, R. Using again the definitions in Eq<l.85
and @.36) and the assumptioli(e) ~ const. we obtain

(o) = —iTT je~imst
Tt = S sinh (rT(t — i/ Dy))

(4.67)

Here, we also introduced a bandwidih of the reservoirf.

To obtain the explicit form of the RG equations one has to make a choice of the
dependence of the bath contractioffs?2 (¢,Z.). Since the bosonic bath contractions
fyg{gf (t) (4,k = 1,2,3) correspond to those of the spin-boson model, we choose. the
dependence analogously " (¢, ¢.) in Section3.3. Thus, we set

<Rjk(t)@(t - tc)> +ip2 S (1)O(t — 1)

SIS

et =

+O(t — tc)igﬂTsign(t)

dt
1 forj=k=1o0orj=k=3
x ¢ Le=Dlwa for j=k=2 ., (4.68)
0 else

where we defined

Ri1(t) = gRe |:7TT coth (7T'(t —i/D))
LWy (Sinh (7T (t — 1/wgq — Z/D)))i|

2 sinh (7T(t + 1/wq — i/ D))
—gnTsign(t), (4.69)
o 1ok
S = ol = 70
Riz = Ry =S1=25:1=0, (4.71)

Ri3 = Ry =S;3=255 =0, (4.72)
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Roo(t) = ge_D/‘”d Re [7TT coth (#T'(t — z/D))}

—ge_D/wdwTsign(t) : (4.73)
_ 9D/ !
Slt) = —5e/ Im[(t - z’/D)Q] , (4.74)
Rgg(t) = Rgg t) —gRe[a}de D/2wq
sinh (7T(t — 1/2wy — /D))
xIn (smh (nT(t +1/2wd—z/D)))} (4.75)
—D/de

Rs3(t) = gRe[ﬂTcoth WT(t—z/D))

Wiy (smh (7T (t — 1/wq — z/D))>]
2 sinh (7T(t + 1/wq — i/ D))
—gnTsign(t) , (4.77)

- 1/w? — 2(t —i/D)>
Sa3(t) = glm[((t_i/Dy_1/wc2l)(t—i/D)2}.

Regarding the fermionic contractions we choose the standard sharp cutoff:
Tofurp (te) =Yg (O — L) . (4.79)

Furthermore, because of E4.§6 we can write

(4.78)

1
B0 = Sy (5 ) + 20l

p
+5 (s (t) - %nf(—t))) : (4.80)
With ' -
i3 (g (8) 7 (=) = 5700 (4.81)
we obtain for largeD;, (Dg)
r
Vg g (b te) = On O g (7]05(15)@( te) + 7, (H)O(t — tc)) : (4.82)

where we have introduced
1,P2 p
%};fp (t) = 52 (Vs () = Y=ns (=)

P2 —inpst 1
= —i27p emins . 4.
gt Re[smh(wT(t—z’/Df))} (4.83)

Note that the above choice of thedependence of the bath contractions yields a well-

defined RG scheme, singg! 2 (¢,t. = 0) = v71 2 (¢). As for the spin-boson model, the
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last term in Eq.4.68 can be incorporated in the initial conditions. In SectioBwe have
seen that such terms only contribute to an initial renormalizatidn@ndX ;). The first
term in Eq. .82 will be accounted for in the same way, so that we obtain the modified
initial conditions

Lo(t.=0) = Lo—ignT ) ( GVGY + e*D/depl G+ GZ;G@’;)

p1,p2
F ja 1 2
—i >, —Lgmegrigr (4.84)
nf,p1,p2
) _ _ GPL GP? 1 fD/depl GP2 GP' P2
<Z7tC - O) - _gﬂ-T Z b1 ~ b1 + 56 bs ~ by + b3 ~ b3
p1,p2
P ~ 1 2
- > Ifapl’pQGf]fo e (4.85)
nf,p1,p2
r
Sz, te =0) = ‘IL GrPAR GP2 (4.86)
n,P1,P2

Substituting the remaining terms of Eq4.68 and @.82 in Egs. @3.60 - (3.64) and ac-
counting for the additional signs for fermionic contractions yields the final RG equations:

dL ~
o o S (RaltICR (1), Lol + paSi(1)CE (1)) G2 (0)
¢ P1,02,),k
Z ,Y’P1P2 0.p1p2GP1( )GTiQT]f() (4.87)
P1,p2:1,f
dGp .
RS (Rjk@c) (G2 tGp(0) ~ GLOGE (1)) G2 (0)
¢ P1,p2,5,k

i /0 “ (ERGEAUREANIERO)
X <Rjk(tc)[[/07 Gi’j (t —te)] + pQSjk(tC>G€§<t - tc)))
r 3w [ i (Gosrnaro

p1,p2,1,f

RIS ST )
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dAI()I)N » p1 D p P1 D2
) = T (Raelte) (AT, (tes 2)GE0) = AL (0, )G (£) ) GE2(0)
¢ P1,P2,J,k
te
i /0 t (A7), (1.2)GE(0) — A7, (0.2)G3 (1)
¢ (Rt o GEE(t = 1] + paS(t)GE (- 1) )
te
+ > (L) / dt (Af(’l)“(o,z)&plf’ZGﬁ}(t)
p1,02,10,f 0
—per AT (1, z)Gf;(O)) G" (t—t.), (4.89)
dBﬁ B P1 D D2
o7 = > Rinlte) Gy () GE(0) B2 (0, 2)
¢ P1,p2,5,k
te
. / 4t G (£)G70)
0
(Rt (Lo = 2) + puSpltd)) BEE(E 1)
— ) ARt / dt P2 6P PG ()G (0) B2 (t — L, 2), (4.90)
P1,p2,1,f
dZ(I) . P1 0 D2
() = =i Y0 AT, (te2) (Ranlt) (Lo — 2) + paSite)) B0, 2)
¢ P1,p2,5,k
Z ’yplm Up1p2Ap1 (tc,z)B (O z). (4.91)
p1,02,M,f
Note that the convergence condition, E81.39), is fulfilled, since
thm Rb]-bk(t) = hm Sb-bk(t)
= hm ’yppo():O. (4.92)

The generation of multiple vertex superoperators is neglected here as in Chapftin

this approximation we solved the spin-boson model for couplings up to
a = g/2 < 0.1 —0.2. Since realistic values af are significantly smallerg( = 0.05

for GaAs), our approach will lead to very reliable results. Furthermore, in contrast to the
spin-boson model we do not introduce a crossover between different definitions of the
t. dependent bosonic bath contractions (see Se&i8n since in the relevant coupling
regime the results turn out to be independent of such a crossover. Note that by using the
RTRG for the spin-boson model we achieved reliable results for arbitrary liag tem-
peraturel’, and we also obtained the off-diagonal elements of the reduced density matrix.
That means for the coupled quantum dots, that the solution of the above RG equations will
yield accurate results for the stationary currépfor arbitrarye even at low temperature,
whereas an approach using the NIBA can giyeas a function ot only for sufficiently

high temperature, see Sectidri
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Since also the coupling to the leads is treated nonperturbatively, the induced level
broadening is accounted for properly, so that we do not have to simulate that by an addi-
tional cutoff parameter. Furthermore, a finite value of the external voltagencluded in
our method, so that we obtain correct results also in the regisné’. Eventually, using
the RTRG we are also able to account for the off-diagonal electron-phonon interaction,
which is important for smalD /w,, see Eqs.4.23), (4.62 and @.63.

4.3 Results

We solve the set of ordinary differential equations, E¢s87) - (4.91), numerically,

where we again use the methods described in AppeBdband E.2 The stationary

tunnel current/, then follows from Egs.4.54) and @.55. Our choice of the parame-

ters corresponds to the experiment, where a GaAs structure was used at the temperature
T = 23mK = 1.98ueV with an external voltag® = 140ueV [30]. For GaAs we deal

with ¢, = 5000m/s andg = 0.05 [82]. The distance between the dots is estimated as

d = 200 - 10~9m [34], which yieldsw; = 16.5ueV .

Let us first study the parametefs = ', = I'r = 1peV, Dy = Dr = 1meV and
D = 150ueV, which corresponds to the parameters studied in Réf. [Thet. flow of
1, for different energy differencesis shown in Fig4.5. The external voltag® gives
rise to a finite stationary tunnel current, which we see in the limit 6f oc.

The asymptotici. — oo) result for/,, as a function ot for the same parameters, but
also forD = 100ueV is shown in Fig4.6. The elastic current can be seen aroamdth
a width depending on the coupling to the ledgds= I' and the internal tunnel amplitude
T. (see Eq.4.37). There the phonons do not participate in the tunnel process. Due to
the coupling to the phonons there is also an inelastic current, where phonons are emitted
(e > 0) respectively absorbed (< 0) during the tunnel process. For increasingp,
the width of the elastic current grows, while an increased coupling conglaats to a
larger inelastic current. The effect of the finite voltdgean be seen in Fig..6, where for
e > V the tunnel current drops to zero. Furthermore, Eigshows that the off-diagonal
interaction leads to a larger inelastic current. This effect is increased with decreasing
D, see also Eqs4(62 - (4.63. We will see below (Fig4.9) that, due to Eq.4.23,
the off-diagonal interaction also suppresses the elastic current. Eventually, ihGoge
also recognizes the oscillations stemming from the interference of the phonons interacting
with the two dots B4].

Let us now study the current quantitatively in comparison with the experiment. For
this it is necessary to choose realistic parameter valu€g fat;,zy, D and D). From
changing the bias polarity in the experiments the rBfgl";, ~ 0.5..1 was found B0]. To
determine the couplingg. andl'i, the experimental data are compared with the result of
Stoof and Nazarov, given in Eq¢.87), which is valid for no electron-phonon interaction
(g = 0). A good agreement of the elastic current is found Tor= 0.124peV and
'y =Tr =3.5ueV, see Fig4.7. However, due to the absent electron-phonon interaction
the influence of the off-diagonal interaction terms on the internal tunnel ampifitfdis
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Figure 4.5: Stationary tunnel curreht as a function ot,. for 7, = 'y, = ' = 1pueV,
D = 150peV, D, = Dr = 1meV ande/ueV = 0,1, 10,100 (from top to bottom).
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Figure 4.6: Stationary tunnel curreht as a function of the energy differeneéor 7,, =
', =Tg = 1pueV and Dy, = Dr = 1meV. Solid line: D = 150ueV. Dotted line:
D = 150ueV, v, = 0. Dashed line:D = 100ueV. Dot-dashed line:D = 100ueV,
Vg = 0.
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Figure 4.7: Stationary tunnel currefy as a function of the energy differenee Solid
line: Experiment $0]. Dashed line: Stoof-Nazarov result for the case of no electron-
phonon interaction, with the parameté&is= 0.124peV andl', = T'g = 3.5ueV.

disregarded in the Stoof-Nazarov result. In contrast, within our approach this influence is
accounted for in Eq.4.23. In case of a finite extension of the electron densities within
the dots, i.e. finite ratio® /w,, the tunnel amplitude is effectively reduced. Therefore,
the Stoof-Nazarov result underestimates the valug. of

From the large inelastic current in the experiment one can conclude, that in fact a
finite value of D was realized. It turns out thdf. ~ 0.375 allows sensible fits. First,
in Fig. 4.8 our results forl, = 0.375ueV, 'y, = I'g = 3.5ueV, D, = Dr = 1lmeV
and D = T0ueV respectivelyD = 100ueV are compared with the experiment. One
recognizes that with decreasigthe larger overlap of the dots’ wavefunctions leads to
a stronger impact of the off-diagonal electron-phonon interaction. The elastic current is
suppressed, whereas the inelastic currentis increased. The deviations from the experiment
show, that there is anhdependence of the width of the electron densities, which we have
to account for in order to achieve agreement. In Big we show a fit of the width
o = dwg/D, which is based on the experimental resultsfpr One recognizes that for
larger absolute values ethe electron densities are more sharply peaked. The asymmetry
is due to the finite external voltagé. Fore < 0 the statgL) lies in a deep potential well,
thus this energetic separation of the two quantum dot levels and the leads causes a very
small overlap of the wavefunctions within the dots. On the other hand fo0 neither
dot level lies in a deep potential well, however, an increasing energetic separagam
leads to more sharply defined electron densities.

Eventually, in Fig.4.8 one also recognizes that the structure on the emission side
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Figure 4.8: Stationary tunnel curref as a function of the energy differenee Solid
line: Experiment B0]. Dotted line: RTRG withl, = 0.375ueV, ', = I'r = 3.5ueV,
Dy = Dg = 1meV and D = 70ueV. Dashed line: RTRG witl, = 0.375ueV,
'y =Tgr=35ueV, Dy, = Dgr=1meV andD = 100ueV .
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Figure 4.9: The width of the electron density within one dots a function of the energy
differencee. T, = 0.375ueV, 'y, =T'gr = 3.5ueV and Dy, = D = 1meV.
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(e > 0) of the current spectrum observed in the experiment (see als@d F)gloes not

stem from interference effects of the phonons. In fact, the oscillations generated by this
interference occur on a much larger energy scale than the structure found in the exper-
imental curve. In contrast, our results show that the bump on the emission side of the
current spectrum (Figd.7) is due to another mechanism: on the one hand we see in
Fig. 4.8 that for smalle > 0 the inelastic current grows with increasingOn the other

hand however, the electron densities are simultaneously sharpened, so that th® cutoff
increased. For largerthis again reduces the inelastic current.

4.4 Summary

A coupled quantum dot system in a phonon bath in nonequilibrium was examined. We
have explained the close relation of this problem to the previously studied spin-boson
model. As in case of the spin-boson model we applied the RTRG to this problem and
determined the stationary tunnel current. In this case it was necessary to formulate the
RTRG also for observables, which are linear in the bath field operators, and we had to
account for additional signs arising from the commutation of fermionic field operators.

By accounting for both the coupling to the leads and the coupling to the environmen-
tal phonons nonperturbatively we achieved a reliable solution for the stationary tunnel
current in the whole parameter space with moderately large couplings. Especially, we
obtained accurate results for arbitrary energy differenoetween the dots and tempera-
tureT’, which is in contrast to approximations using the NIBA. Furthermore, we included
off-diagonal terms of the electron-phonon interaction, which give a contribution in case
of finite extensions of the electron densities within the dots. Thereby, for the first time
both the elastic and the inelastic current of the experiment could quantitatively be re-
produced B5]. Our analysis shows the importance of the finite widtlf the electron
densities within one dot, and for the experiment, the dependencernf was calculated.

For the coupling parameters realized in the experimédjtthe neglecting of double
and higher-order vertex objects was justified. In contrast, in the next chapter we will study
a Kondo model, for which we will have to account for double vertices. We have already
mentioned in SectioB.2, that we will use a modified formulation of the RTRG to treat
these double vertex objects.



Chapter 5

Two-lead Kondo model

The Kondo model describes a magnetic impurity coupled to a band of conduction elec-
trons. Over the past decades this problem has often been studied both experimentally and
theoretically (for a review see Ref3f]). When Kondo first studied the model perturba-
tively in 1964 B3], he found low-temperature divergencies. In fact, perturbative studies
give only a good description of the problem fbr>> Ty, whereTy is the Kondo tem-
perature. Renormalization-group studies show that the coupling constant increases when
reducing the relevant energy scale. Thus, perturbative approaches like Poor Man’s scal-
ing break down affx. In 1975, the problem was solved by Wilsds] py applying the
numerical renormalization-group method to the Kondo model. Later, a solution was also
found by using the Bethe ansa&/[ 85], an approach which had first been introduced in
Ref. [36].

In recent experiments quantum dot systems served as realizations of the Kondo model
[87, 88, 89, 77]. Such systems have the advantage that the parameters can be tuned within
a wide range. When one applies an external bias voltage to the quantum dot, one deals
with a nonequilibrium problem, the two-lead Kondo model (TLKM). It has attracted much
theoretical interest and the question has been raised, if an external voltage induces two-
channel physicsJ7] - [43)].

We apply the RTRG method to the problem. As the bare Hamiltonian already involves
double vertices, the usual formulation would lead to complicated equations because of re-
tardation effects (see Appendd. Therefore, we use a formulation in energy space, by
which we avoid the problem of retardation. However, one then has to account for an addi-
tional frequency-dependence of the vertices. Furthermore, this method naturally leads to
divergencies, if the cutoff is defined only with respect to the frequency of the contraction
vertices. We introduce a generalized definition of the cutoff-function, which also depends
on the external vertices. This new scheme allows a RG study of the coupling constants of
the two-lead Kondo model. We study an effective Hamiltonian for vanishing temperature
T. Thus, effects which are only taken into account by an analysis on the Keldysh con-
tour, such as rates, are neglected. Thereby we quantitatively find a two-channel behaviour
for the running couplings which, on this level, was previously proposed in a qualitative
analysis B7]. The influence of rates, which arise for a finite bias, is discussed.

97
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—

S

Figure 5.1: The two-lead Kondo model. Theyoltdgés applied between two leads (
and R), which are coupled to the impurity sp# The coupling constant$;;, and Jrr
(JLr andJgy) correspond to reflection (transmission) of conduction electrons.

5.1 Model Hamiltonian

In 1964 Kondo studied a model Hamiltonian for a magnetic impurity in a conduction
band B3]. There an exchange scattering potential gives rise to an interaction part of the
HamiltonianHy,, which is parametrized by the enerdy

Hy = Je|,GogrcrorS. (5.1)

koo!

Here,S is the spin of the impurity and is the vector consisting of the Pauli spin matrices.

cLU (ck») creates (annihilates) an electron in the conduction band with the eaecamnd

the spino. The total Hamiltonian can be written as a sim= Hg + Hy, whereHp
denotes the free electron part for the conduction electrons. When two bands are coupled
to the impurity, we end up with

HB = Zeakclkgcako‘a (52)
ako

HV = Z Jaa’clkgo_:oa’ca’ko’sa (53)
aa’ koo’

where the indexa = L(R) refers to the left (right) electron reservoir. The coupling
constants/;,;, and.JJgrr correspond to a reflection of conduction electrons, wheveas
and g, give rise to transmission from one reservoir to the other. Between them a finite
external voltagé” may be applied (see Fi§.1).

The case of vanishing bias involves a well-known renormalization-group #p84].
Introducing the high-energy cutaff. as a flow parameter the antiferromagnetic coupling
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constants increase, when is successively reduced. This leads to a low-temperature
regime where the impurity spin is quenched by the band electrons. The physics is then
determined by the only relevant energy scale, the Kondo temperaiureRegarding

the above Hamiltonian we use the density of states of the reserypjr, to define the
dimensionless coupling,. := paJ.o- In the following we consider the symmetric case,
whereJ := J;; = Jrr = Jr = Jrr. The Kondo temperature is given by

Ty = DV 2Je V4 (5.4)

whereD > Ty is the bandwidth of the electron reservoirs. Note that, in this chapter we
again uséh = kg = e = 1. For the cas& = 0 the increase of the coupling constant for
Tk > T follows from the RG equatiort] 36|

dJ
dln w,
dJ=1
dlnw,

= —4J?

— 4. (5.5)

For the case of finitd”, Colemanet al. [37] proposed for the running couplings the
existence of two different regimes, which are separated by the energyl&cale

dJ .

— 4 for w.>V>Tk>T, (5.6)
dlnw,
djLL _ deR _ _2j2
dlnw, dlnw, for V>w.>Tk>T. (5.7)
dJLR . dJRL 0

dlnw. dlnw, -

However, since Colemaet al. used a qualitative argumentation within a Poor Man’s
scaling approach, these equations have not been derived quantitatively. Furthermore, the
above equations do not reflect the effects of rates which arise for a finite voltage.

5.2 The RTRG for the two-lead Kondo model

We apply the real-time renormalization-group method to obtain the running couplings for
T = 0 and finite biag/. As in case of the polaron, we consider thenatrix

S = lim TeiiﬁfodtH

to—00

= Jim e totent o SO it (5.8)

whereT" denotes time ordering anfly, is taken in the interaction picture with respect
to Hg. The underlying picture is that we turn on the interaction adiabatically in a large
time interval, but keep the external voltage at a constant value during that process. Using
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the RTRG we obtain an effective Hamiltonian, which contains the running couplings.
However, this approach does not account for the rates generated by the current. To include
them one would have to study the problem on the Keldysh contour.

Let us first write the Hamiltonian in a convenient form. We define

gnaa,n’o/a/ = 5n,—6n’,+Jaa’Eaa’§a (59)
I (5.10)

k
Jroo = Y Chiy (5.11)

k

where the index takes the values referring to out- and ingoing electrons in the corre-
sponding reservoir. With the superindex= (7, «, ) we then obtain for,

gu,u’ - gu’,z/ ..
Hy =) Sl (5.12)

v,V

Here,: - : denotes normal ordering according to Wick’s theorem. Note, that
Z v <juj1/’> =0
holds. One obtains for a bath contraction

Go(8)) = Oy syOuapgre Mot / o e—mm%a /PO (1)

BB (—i) L2 5.13

= 777777/ a,a’ U’U/(_Z)?t _ Z/D 5 ( . )
wherey,, is the chemical potential of the reserveirand we assumed a constant density

of states, (€) =2, d(e — eqr) ~ const.. We now proceed analogously to Secti,

i.e. we apply Wick’s theorem and integrate out certain diagrams. However, in this case
the “cross contractions” (see the derivation of the RTRG in Se&igrwill be specified

in energy space. The diagrams giving rise to “cross contractions” may be read from the

equation

Cndve P Jusdvs = JnJueJusdua
+ : jllzjl/3 . <jl/1jl/4>_ :jl/ljl/g . <jl/2jl/4>
+ 2 Jundva  Gundivs) = © Jundiva = (o dis)
+<j1/2j1/3><jl/1jl/4> - <jV1jV3><jl/2jl/4> . (514)
As we outlined in AppendixC, double vertices lead to retardation effects in the RTRG,

thereby causing integro-differential equations. We now develop a formulation in energy
space, which avoids this problem. We write for the bath contraction

(G () dur () = 600000 / dw / dw' e Mtem MW S (1) W) (5.15)
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with
o(@,0) = 8w — o) BT PO((w — o). (5.16)

The factorexp(—i(nwt +n'w't’)) in EQ. (.15 may formally be included in the definition
of the interaction picture fog,

. . . ]
v ww' (t) = elHOtgl/,l/,w,w/e ZHOte mute mwt (517)

H, is the Hamiltonian for the impurity and vanishes initially. Furthermore, we have al-
ready accounted for@a dependence of the operatags,/, which is generated during the
RG flow. Initially, we start withg, /., ., = g,,,». By the definition in Eq.%.17) the in-
formation about the time arguments of the bath contractions is containgg. in.-(t),

i.e. the vertices may be shifted, so that an additional time-dependenge of., (t) is

not necessary. The RG is now set up by including the cutoff-funetienw,.). We define

Yo (w, we) = %ae‘”(“’_““)/[’@(n(w — 1)) (W = faswe) 4 (5.18)

which is analogous to the corresponding definition in time space (se€B@)( Thus,
we end up with the RG equations

dH, oo d
e A ) DO i R
x (gyl’y’w/’w(t/Q) - g”v’//vwvwl (t/Q))g—V,—u’,w,w’(_t/Q) ) (519)

dglll,l/g,wl,UJQ . > d
= Z/o dt/dwzy:d—wc%(w,wc)

X (gV17V7w1,w(t/2) — v ww (t/2>)
X (g—l/,l/27w,w2(_t/2) - gV2,—V,w2,uJ(_t/2>> ’ (520)

where we have usedr = (—n, a, o). The following ansatz solves the above equations:

Ho(we) = h(wol, (5.21)
I “grnmman o)y (0 (3,08)
+ Koy an,01 02 (We) (0510, 1) (5.22)

The initial conditions are given at the initial high-energy cutdfff

h(wg) = 0, (5.23)
oo w1 w2 (Wg) = Jouan (5.24)
Koy agw1 0 (W(c)) = 0. (5.25)

Thus, since the impurity Hamiltonian stays degenerate, £§0( does not depend on
Hy(w.). Therefore, the running couplings are determined by E@( only. However,
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because of the degeneracy Bf we have to introduce a regularization parametéo
perform the time integral. Defining the dimensionless couplings

Ja1a2,w1,w2 = pa1Ja1a2,w1+,ual,w2+,ua2 > (526)

Kalaz,wl,wz = Pay Ka1a2,w1+ua1,wg+pa2 (527)
we obtain the RG equations

djalaz,wl,u& _ /dw Z dQ(wv Wc) ew/D@(_w) _ e_w/D@(W)
dw, N ~ dw, O—w+V,—ie @—w+V, +ie

X Jala,wl,w Jaag,m,mg

+( PO(-w) e IPOw) )

O—w+V,—ie O—w+V, +ie

X (Jala,wl,wKaaQ,w,wz + Rala,wl,wjaag,w,wz)} 9 (528)

w/DQy(_ —w/D
AK oy w1 w5 _ —/dedQ(w’wC)( e PO(—w) 4_¢ O(w) )

dw, dw, O—w+Vy—ie @—w+V,+ie
X (3/4Jay a0 wlaaswws T Karaw wKaaswews) (5.29)
Here, we introduced the parameters
w = 1/2(w + wq), (5.30)
Vo = 1/2(ftay — pta) + 1/2(tay — fia) - (5.31)

One now has to make a choice for the cutoff-functide, w.). The standard choice
would be a sharp cutoff, which reads

¢(w,w.) =0 (w+w.) — O(w —w,), (5.32)
so that
W = 0w+ we) + 0w — we) . (5.33)

Substituting this into Eqs5(28 and 6.29, however generates divergenciesdor 0. If

one uses a smooth cutoff, one deals with a principal value integral instead of divergencies,
but consequently, one then has to solve integro-differential equations. This has been an
inherent problem of the RTRG in energy space. However, one may obtain a well-defined
RG scheme represented only by differential equations, if one uses a more general form of
q(w,w,.) by allowing for dependences on the external vertiegsds, w;, w>) as well as a
further dependence on the contraction indexVe define

Gw,we) = Ow—-0—-Vo+w,) —0Ow—w—V,—w,), (5.34)
:M = f(w—w—Votw)+o(lw—o—V,—w.). (5.35)

dw,



5.2. THE RTRG FOR THE TWO-LEAD KONDO MODEL 103

q(ww)

-0 0 @
(O+HV-@)  (G+Y) (O+V+ @)

Figure 5.2: The cutoff function in energy space. The standard chyice..) and our
new choicej(w, w,) (in brackets). The new sharp cutoff is shifteddw V.

This choice is again a sharp cutoff. But whereas in case offE=8@)(the cutoff is centered
around) (with respect to the chemical potential of the contraction reservoir), the definition
in Eqg. (.34 is centered around + V,, (see Fig5.2). Thereby the divergencies fer— 0

are avoided fow, > 0. With the definition

Alwe) =w.+ @+ V, (5.36)
we obtain i
S %:{_sign(A)Jala,wl,AJQMM
+ (jala,wl,AKaag,Am + Kala’wl,Ajm%A,wQ)}
- Z{ Alwe) — A(—w,) } : (5.37)
%ﬁm = Z{ (3/4Jayaw1,8Jaas,Aws + f(ala’whAf(a%Am)}

“g{ Alwe) = A(—we) } (5.38)

where we have usedl(z) — O(—z) = sign(z) andO(z) + ©(—x) = 1. Furthermore, we
have seD — oo, so that the initial high-energy cutaff’ plays the role of the bandwidth.
The above equations fulfill the symmetry relations

Qa1a2,wi,w2 T J&15¢2,—w1,—w2 )
alag,wiwz T _K@15¥2,—W1,—w2 ’
alog,wi,w2 Q20 ,w2,Ww1 9

= Kopoywswr - (5.39)

KOQOQ»WLWQ
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WH\, =V,

+
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Figure 5.3: The center of the cutoff-functian+ V.., for the different coupling constants
Jiry JrR a_ndJLR (Jrr) With © = w; = wy = 0. This applies in the same way for the
couplingsk.

By a we denote the opposite electron reservoir of the haricet us consider the RG flow
of the coupling constants in the low-energy limit, 8. = w, = 0. The energies, around
which the cutoff-functions are centered, can be seen from3:8). They are different

for the reflection coefficients,;, (K1), Jrr (Kgzr) and the transmission constants;

(KLR)a jRL (KRL)'

5.3 The running couplings

5.3.1 The role of the external voltage

In Fig. 5.3 one recognizes that due to the occupancy in the bands at 0, the
renormalization-group flow should qualitatively changevat= V' (w. = V/2) regard-
ing the reflection (transmission) couplings. This can be studied for the couplilbys
neglecting the coefficient&’, which will be justified later in an exact solution. Then
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Eq. 6.37) yields forw; = wy =0

dJrroo  dJrroo
dlnw, dlnw,

= — (JorowedrLweo + J00—wedLL,—w000)
— (JLro V4w JRL YV 4000 + JLROV—we JRLV w00
for w.>V, (5.40)
dJrr00 dJRrR0,0

dlnw, dlnw,

= — (JLL,O,wC JLLwe,0 T JLL0,—w. JLL,WC,O)

- (JLR,O,V-i-wC JRL,V+wC,O - JLR,O7V—WCJRL,V—wC7O)
for w.<V, (5.41)

dJrRr00 dJRr00

dlnw, dlnw,

= - (JLL,O,A//HWc JLR~V/24we,0 T JLL0,~V/2—we JLR,fV/waC,O)

- (JLR,O,V/2+wc JRR,V/Q-i—wC,O + jLR,O,V/Q—wc JRR,V/2—wc,O)
for w.>V/2, (5.42)

dJLR,O,O dJRL,O,O

dlnw, dlnw,

= (JLL,O,fV/2+wC JLR =V /24we,0 — JLL0,~V/2—we JLR,fV/27wC,O)

- (jLR,O,V/2+wC jRR7V/2+wC,O - jLR,O,V/2—wC jRR7V/2—wC7O)
for w.<V/2. (5.43)

If one neglects the frequency-dependence in the above equations, one obtains the RG
flow proposed by Colemaet al. (Eqs. 6.6) and 6.7)). Thus,V acts as a cutoff for the
running couplings giving rise to a two-channel behaviour, in which the couplipgand

Jrr are renormalized independently by intra-lead processes and the transmission terms
are effectively suppressed. But as we have already mentioned, a finite external voltage
also gives rise to rates which we did not account for here. These rates may act as a further
cutoff which may destroy the two-channel physid§][

5.3.2 Exact results

In this subsection we present the exact solution of the set of ordinary differential equa-
tions, Eqgs. $.37) and 6.38. We again use the numerical method described in Ap-
pendixE.L The initial high-energy cutoff,? = 1000 sets the energy scale of the prob-
lem. For the initial value of/ (= J.;, = Jrr = Jrr = Jrr) We choosd).01, so that

Tx ~ 107°. For the solution we choose a logarithmic discretization of the frequencies
wy respectivelyw,. It turns out, that it is sufficient to take into account 50 frequencies.
The running couplings fo; = wy = 0 both for the biased and the unbiased case are
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Figure 5.4: RG flow of the coupling constants, ., for w; = w, = 0.
Solid line: V = 100. Dashed linel = 0.

shown in Figs5.4and5.5. ForV = 0, Egs. 6.37 and 6.39 conserve the symmetry

J = Jir = Jrr = Jir = Jrr, Which also applies to the couplinds. Hence, with

the symmetry relations in Eqs5.89 one recognizes that = 0 holds (not shown in

Fig. 5.5. ForV = 100 the couplings stay the same upip ~ V. Forw,., < V one
recognizes the different flow for the reflection coefficients and the transmission coeffi-
cients.K;, and Ky are generated, but they are negligible compared to the couplings

To compare our solution with the proposal of Colengral. in detail we plotl/J,, ,

(see Fig5.6). For the unbiased case we obtain the correct single-lead behaviour given
by Eg. 6.5. ForV = 100 one recognizes that the renormalization strength of the in-
verse reflection coefficients is decreased by a factdar whenw, crosses/, whereas

the transmission coefficients stay constantdior< V/2. This corresponds to the same
two-channel behaviour that we already obtained from our approximation in the previous
subsection. Thus the RG flow confirms the proposal of Coleetal., Egs. 6.6) and

(5.7). The slope of the couplingéis discontinuous, since we study the case of vanishing
temperature. However, the stationary current in case of finiberresponds to a raté
which we neglected. Thus the presented RG flow only holds for T'.

The frequency-dependence.band K for VV = 0 andw, = 0.01 is shown in Figs5.7
and5.8. For.J we obtain a peak structure, where the peaks are located=a0. This is
due to our definition of the cutoff functiof(w, w.), wherew acts in the same way as..
Hence, both a finité” and a finitev act as a cutoff for the RG flow. From Fi§.8we see
that| K| < 10~* holds for all frequencies, which justifies the neglecting of the couplings
K in Subsectior.3.1 In Figs.5.9and5.10we show the frequency-dependence/pf
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Figure 5.5: RG flow of the coupling constarts,, ,, for w;, = wy, = 0 andV = 100.
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andJ.p for V. = 100 andw, = 0.01. .J., is smaller than for the unbiased case, but it
shows the same peak structure. In contrast Jigf the peaks are concentrated around
w1 = V.

5.4 Discussion

In summary, we have applied the RTRG to the two-lead Kondo model and studied the
renormalization-group flow of the coupling constants quantitatively. Since the Kondo
problem involves double vertex objects, we have used a formulation of the RTRG in en-
ergy space. Thereby the retardation effects are accounted for without an additional time-
dependence, i.e. the generation of integro-differential equations is avoided. However, this
formulation naturally leads to divergencies in the RG equations. To set up a well-defined
RG scheme, we have developed a technique by which the singularities arising in energy
space are avoided. Studying an effective Hamiltoniar¥Tet 0 we obtained the correct
renormalization-group flow for the single-lead Kondo model, i.e. for vanishing bias. For
the case of finite bias we quantitatively found a two-channel behaviour of the running
couplings, which had been proposed earlier in a qualitative analy/gis [

However, since we studied only one propagator, we did not take effects into account,
which can only be explained by considering the Keldysh contour. Thus, we disregarded
rates which arise for a finite voltagé. A ratel’ may act as a further cutoff, so that the
obtained RG flow is cut off at. ~ I". Depending on the magnitude Bthis may destroy
the two-channel physics3f]. Thus, a complete analysis of the two-lead Kondo model
would require a study of the Keldysh contour. We have already presented the formulation
of the RTRG for the Keldysh contour (see Sect®B). This is also applicable in energy
space, and again any divergencies can be avoided by applying our generalization of the
cutoff-function (the RG equations are presented in Appemix However, one then
deals with(4 x 4)-matrices. Despite certain symmetries this results in a too large problem
size. The numerical solution for only 10 frequencies on a Pl (500MHz)-computer then
requires roughly 100 days.



Chapter 6

Conclusion

In this thesis we used renormalization-group (RG) theory to study different quantum dis-
sipative systems, which are formed by a local system interacting with a dissipative en-
vironment. By applying the recently developed real-time renormalization-group (RTRG)
method [L2] we have not been restricted to equilibrium considerations, but we also ex-
amined both stationary states in out-of-equilibrium situations and the time-dependent re-
duced density matrix, where the latter describes the time evolution of the local system out
of an arbitrary nonequilibrium state.

As a starting point we applied the RTRG to the polaron problem, a standard problem
of many-particle theory, where we also drew comparisons to various methods including
the flow equation formalism of Wegnées][ We considered the one-dimensional case and
calculated the ground-state energy and the effective mass for vanishing tempe&i4ture [
Thus, we were able to use the Gell-Mann-Low theorem, and a full nonequilibrium con-
sideration on the Keldysh contour was not necessary. It turned out that the standard ap-
proximation of the flow equations for that probled®] led to worse results than simple
perturbation theory. On the other hand, the RTRG method was able to describe the po-
laron beyond perturbation theory. However, there problems arose from the form of the
bath correlations, which did not decay. As a consequence we had to apply a physically
motivated approximation, and we achieved only a low accuracy for the ground-state en-
ergy and the effective mass. Moreover, in case of the polaron the local system consisted
of a continuous electron spectrum, so that a study of the reduced density matrix was nu-
merically impossible.

This motivated us to study a more fundamental, yet nontrivial quantum dissipative
system, the spin-boson model, where a two-state system is coupled to a bosonic heat
bath. For this model the dynamics of the local system in the presence of quantum dissi-
pation could be determined. Since in this case the bath contractions were decaying we
obtained a convergent RG flow. Before we applied the RTRG to the spin-boson model,
we presented a detailed explanation of the formalism for arbitrary nonequilibrium situ-
ations, i.e. involving the Keldysh contour, and we also extended the RG scheme to the
calculation of equilibrium correlation functions. Within the RTRG formalism the explicit
cutoff-dependence of the bath contraction®{>(¢,t.)) is not specified. For the spin-
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boson model we discussed different choices®#(t, t.). We showed that an adequate
definition was necessary in this case, because the standard choice of a sharp cutoff led to
large errors, which could be avoided by applying a modified definitioytof* (¢, ¢.).

An important advantage of renormalization-group theory is the possibility to study a
physical problem beyond perturbation theory. In case of the spin-boson model this means,
that the correct renormalized tunnel matrix element is accounted for. For the RTRG we
demonstrated that in an analytical calculation.

We solved the RG equations numerically to determine stationary quantities, such as
the static susceptibility, and the time-dependent reduced density m@tristarting from
an arbitrary nonequilibrium state. Fpft) we also analyzed the oscillation frequency
as well as the asymptotic behaviour. Furthermore, we calculated equilibrium correlation
functions both in the frequency and the time domais P6]. The reliability of our results
was shown by the consistency with chromostochastic quantum dynamics (CSQD), and
the good agreement with the exact Shiba-relation. Furthermore, we checked the correct
scaling behaviour of the spin-boson model. We obtained accurate results for arbitrary
parameters with the only restriction of not too large couplings to the environment. The
latter is due to the approximation, where we neglected double and higher-order vertex
objects.

In contrast to the noninteracting blip approximation (NIBA), our approach allowed the
calculation of the dynamics of the complete reduced density matrix. Moreover, the regime
of validity of the NIBA is characterized by further restrictions regarding the parameters
of the model. We also compared our results to those obtained for the anisotropic Kondo
model. Since we could choose arbitrary parameters these comparisons could be made in a
parameter regime, where the mapping of the spin-boson model on the anisotropic Kondo
model cannot be proven rigorously.

The results for the spin-boson model demonstrated that the RTRG is a powerful
method, which is easily generalized to other quantum dissipative systems, where the ne-
glecting of double vertex objects is justified.

We also studied a double quantum dot system, which is coupled to two electron leads
and to a phonon environment. There a finite external voltage gives rise to a stationary
tunnel current, which was measured in a recent experingipt [Applying the RTRG
to that problem we could examine this out-of-equilibrium situation beyond perturbation
theory. Using a formulation of the RTRG for expectation values of operators, which are
linear in the bath operators, we set up the RG equations for the stationary tunnel current.
For the experimentally realized coupling parameters, which were only moderately large,
we obtained quantitatively reliable results. In contrast to previous theoretical st@djes |
we could well describe the experimental data. We found that the finite extension of the
electron densities within the quantum dots cannot be neglected, and we presented its
dependence on the energy difference between the 8gts [

At the end of this thesis we discussed the two-lead Kondo model, where an impurity
is coupled to two electron bands, between which a finite voltage may be applied. This is
a model, where double vertices are important. Thus, the standard approximation, where
one neglects double vertex objects, is not applicable. However, taking these objects into
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account leads to RG equations which are much more complicated: instead of ordinary dif-
ferential equations one deals with integro-differential equations. This principal difficulty
has been overcome by introducing a formulation of the RTRG in energy space. However,
then the standard form of the RG equations involves divergencies. Using a generalized
definition for the cutoff-dependence in the RG, we found a systematic way to avoid these
divergencies. Thereby, we obtained well-defined RG equations for an effective Hamilto-
nian. The solution showed a two-channel behaviour of the running couplings, which was
previously proposed but was not derived quantitativély].[ However, the influence of
rates, which arise from the stationary current in case of a finite voltage, was not taken into
account, since we did not study the problem on the Keldysh contour. Such an analysis
requires too much numerical effort, as we deal with an additional frequency-dependence
of the vertex objects, when the RTRG is formulated in energy space.

Thus, it was shown, that also double (and higher-order) vertex objects can be treated
within the RTRG, when one accounts for an additional frequency-dependence. Then
the RG scheme is given by a set of ordinary differential equations. In principle, such
equations can easily be solved numerically. However, a solution may become too time-
consuming, if the problem involves a too large problem size, which follows from the num-
ber of degrees of freedom in the local system and the number of vertices. In this context,
note that, if one accounts for double vertex objects, an additional frequency-dependence
is generated, which increases the numerical effort substantially.

In summary, the RTRG provides a new possibility to study quantum dissipative sys-
tems beyond perturbation theory; unlike other RG procedures, within the RTRG also
arbitrary nonequilibrium quantities can be calculated. The physics of rates giving rise to
non-Hamiltonian dynamics is included in this approach, and all time scales are accounted
for, since the propagators have not been expanded. Applying this method we were able
to present the first RG calculation of a time-dependent reduced density matrix. This was
achieved for the spin-boson model, for which we determined various quantities, whose
accuracy was high compared to other methods (see Subs8&cligh Furthermore, we
presented a quantitatively reliable solution for the stationary tunnel current through a dou-
ble dot system in a phonon environment, and we systematically calculated the running
couplings for the two-lead Kondo model. Both results could not be obtained before. In
case of the double dot system it became also clear, that within the RTRG method different
reservoirs can easily be treated since they do not lead to qualitatively more complicated
RG equations. Therefore, in an outlook this method can also be used to study the phe-
nomenon of thermal transport, wich arises for two baths at different temperatures.






Appendix A

The noninteracting blip approximation

The noninteracting blip approximation (NIBA2T] gives an approximate result for the
time-dependent reduced density mafwix) = Trgp(t) for the spin-boson model given
by the Hamiltonian in Eqs3(2), (3.5 and @.6). In Chapter3 we compared our result for
p(t) to that of the NIBA. The NIBA is most often used for the calculation of the diagonal
elements of(¢) for the unbiased case. However, we considered all elemenig ofor
arbitrarye. Our analysis in Chapte® showed the restrictions of the NIBA regarding its
validity for that general case. These findings were also important for our study of the
coupled quantum dots in a phonon bath in Chagter

Therefore, we here present the general formal results of the NIBA for the complete
reduced density matrix for arbitrary parameters. The derivation is described in some detalil
in Ref. [1]. In the following we outline the main steps. As in SubsecBoh 1we assume
a product initial state at= 0:

p(0) = p(0)p - (A.1)

Following the method of Feynman and Vernd®]we write p(¢) as a path-integral and
account for the bath degrees of freedom by the influence functfonal

p(t) = Jrv(t)p(0), (A.2)

whereJry is a superoperator in Liouville space. Its matrix elements are given by

s / Do / Do’ eXp< (Solo] - so[a'])> Flo,o].  (A3)

The pathss jump between the statés) (c = 1) and|d) (¢ = —1), and the integration
boundaries are given by

o0) =, olt) =0y,
o'(0) =0y, o'(t)=o0%. (A.4)

Sp is the action of the undamped two-state systemnb.be the number of jumps between
the two states on the path andm’ the corresponding number on the path Then the
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path integrals for the free case can be writtemas m’ time-integrals:

/Da /Da’ exp <i(so[a] — So[a’]))
_ mz / dt, / dty - / - (%%)M (=)™

m+m -1

X exp (— /0 dt’ﬁg(o(t’) —a’(t'))) . (A.5)

The influence functionat’ is obtained by integrating out the bath degrees of freedom:
Flo,0'] = exp( / dt’ / dt” ( (1) — o' (t')Re[Q(t — t")](a(t") — o' ("))
+i(o(t) — o' (t)Im[Q(t — ") (6 (") + &’(t”)))) (A.6)

with

Q(t) = /0 " dw {T L“;) ( oth <2/ZL:T) (1—cos(wt))+isin(wt)) . @AD

The spectral density (w) is given by Eq. 8.7) respectively Eq.3.8). Comparing the
expression fo)(t) with the bath correlation function(t) introduced in Eq.§.15 one
finds Q(t) = ~(t). Correspondingly, in the limit of large high-energy cutaff (— o)

one obtains for the Ohmic bath

Q(t) =2aln <7Tlf)T

The spin pathg ando’ enter Egs.A.5) and (A.6) as combinations representing a diag-
onal state € + ¢’) respectively an off-diagonal state ¢ ¢'). When we start out from a
diagonal state at, = 0, we may write for a path fos ando’ with 2n transitions at the
time pointst; (j = 1,...,2n)

sinh (WkBT|t|/h)) +imasign(t) . (A.8)

%(a(t) +0'(t) = Zn] —ta;) — Ot — ta41))

So(t) o' (1)) = Z@ (t = ta1) = Ot — ) . (A.9)

Here, the coefficienty;, = +1 andfj = +1 depend on the diagonal respectively off-
diagonal states. The time intervals;, t5;+1] are namedojourns whereas the periods
[t2j_1, t2;] are calledblips [27]. With the matrices

Ajp = Re[Q(tay; — tor—1) + Qtaj—1 — tor)
(tyj—1 — tar—1)]
(

(

toj—1 — tok)

) —Q
Xjk = Im [Q(tzg - t2k+1) +Q
) — Q(t2j—1 — tart1)] (A.10)
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the influence functional for the path in E@.Q) is given by

= exp< ZRG tgj—tQj 1))eXp< 7
j=2 k=1
X exp (22 Z fjnkak> . (A.12)

k=0 j=k+1

n j—1

égfk/\jk>

With Eg. (A.8) for D — oc the last exponential in the above equation reads

n—1 n n
exp (22 Z ijkak) = exp (iwak_lIm[Q(t% — tgk_l)]> . (A.12)
k=1

k=0 j=k-+1

The NIBA is based on the assumption that the average sojourn time is very large
compared to the average blip time. Thus, in the NIBA one sets the interblip interactions
A, to zero. Then the influence functional reduces to the factorized form

FNIBA _ Hexp(—Re[Q(tzj — ta;-1)] + i&mj—Im[Q(ta; — taj-1)]) - (A.13)

Within this approximation one may derive an expressiomnf{oy. According to Eq.38.15])
itis sufficient to consider the expectation valgyes(t)) and(c,(t)). Their Laplace trans-
forms(o;(2)) = [, dt e (0;(t)) read

(0:()) = ) (A.14)

22‘3)(2) — thz — zthQ/(e2 (hz)?)
(02(2)) = ézf)(z) —(0:(2)) (B (2) + eA /(€ = (h2)%)) . (A15)

Here, initially the system is prepared in the stateand we introduced the self-energies

»E)(z) = A? /000 dr €™ cos(eT /h) (e’Re[Q(TH cos (Im[Q(7)]) — 1) , (A.16)
Eg“)(z) = A? /Oo dr " sin(ET/h)e_Re[Q(T)] sin (Im[Q(7)]) , (A.17)

0
»E)(z) = A/OOO dr "™ cos(er /R)e B sin (Im[Q(7)]) , (A.18)
$@(z) = A/OO dr €7 sin(et /h) (e_Re[Q(T” cos (Im[Q(7)]) = 1) , (A.19)

0
W_heres(a) denotes whether the self-energies are (anti)symmetric under inversion of the
bla?f(.)r the Ohmic bath the NIBA will provide accurate results fet(¢)) in case of

vanishing biag and weak couplingd < 1). For, the contributions of the interblip corre-
lationsA j; to the self-energyjis) cancel in first order imv. Another regime of the Ohmic
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bath, where the NIBA is justified, is given by large damping and/or high temperature.
This is due to the suppression of long blips because of the incre&sg@fwith ¢ at long
times. A more detailed studyl] yields that the temperature range, where the NIBA is

valid, is given by
VA2 + e < kpT. (A.20)

Here, A, = A(A/D)*/(-2) denotes the renormalized tunnel matrix element
(see Eq3.11).
Fore = 0 and vanishing temperature one finds in the scaling limit (see Subs&cijon

(0.(1)) = Ea_ga(—(Acgt/h)*2%), (A.21)
whereF, (z) is the Mittag-Leffler function90] and

At = (T'(1 = 2a) cos(ma)) ™9 A, (A.22)

For « < 1/2 this solution for (o,(t)) has an incoherent part, which decays as

1/(Agt/h)2~2*, and a coherent part, which is proportionakts(Qt)e /7", The os-
cillation frequency) and the dephasing time“" are given by

hQ = Aegcos(ma/2(1 —a)) , (A.23)

Tirh /h = A sin! (ma/2(1 — a)) . (A.24)

These results yield the same quality factor = Q7" as obtained by Lesage and
Saleur P9 (see Egs. §.1595 and @3.159). However, the aymptotic behaviour given by

the algebraic decay of the incoherent part is not correct, as more detailed studies of the
interblip correlations showl]. Concerning the asymptotics of equilibrium correlation
functions the NIBA also fails, for it violates the Shiba-relation.



Appendix B

Relation of the SBM to the Kondo
model

The Kondo model describes an impurity with spif2 in a conduction band. It interacts

with the conduction electrons via an exchange scattering potential. In order to map this
problem on the spin-boson model, which we studied in Chaptere has to consider the
anisotropic Kondo model, where one deals with different coupling constants for processes
which conserve the impurity spin/|(), and spin-flip processes (). The corresponding
Hamiltonian reads

Hy = Z Ekclgck’a + J Z <CLTCk/lS_ + CLLCIC’TS-’_)
ko kk’

+J) Z (CLTCM - CLMM) S, — gushsS; . (B.1)

kk'

Hereczg(c,w) creates (annihilates) a conduction electron with gpend energy,. S;
(i = z,y, z) are the impurity spin operators wittt = S, +iS,. The lasttermin EqR.1)
represents the energy when a local magnetic figidz direction couples to the impurity.
In contrast to this model, in Chaptéwe investigated the isotropid( = .J,) two-lead
Kondo model, where the impurity is coupled to two different bands.

The electron-hole excitations have bosonic character. In fact, using bosonization
[91, 92] the Kondo Hamiltonian in Eq.K.1) transforms into the spin-boson Hamiltonian
given by Egs. 8.2), (3.5 and @.6). The parameters are then given by

A/D = pJcos*(dk), (B.2)
a = (1—20k/7), (B.3)
€ = —gugh, (B.4)

wherep is the constant density of states of the conduction electrons. The scattering phase
shift 5 depends on the applied regularizati®$][ For a separable form one obtains
dx = arctan(mp.J)/4), whereas else one deals with = mp.J| /4. Thus, the universality
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of this mapping is rigorously correct only in the limit

pJJ_ = A/D<<1,
plAyl = N—aol <1 (B.5)

The ferromagnetic regime/; < 0 corresponds ta. > 1, whereas the antiferromag-
netic Kondo model withp.J; > 0 translates intex < 1. In the antiferromagnetic regime,
the Kondo temperaturéy sets the temperature scale, below which perturbation theory
breaks down. The corresponding characteristic energy scale of the spin-boson model is
the renormalized tunnel matrix elemeht (see Eq.8.11)). ForpJ, < pJ; < 1, which
is equivalenttd\ /D <« 1 — a < 1, the relation betweef andA, reads

9 1 1/(1—a)



Appendix C

Double vertices in the RTRG

In Section3.2 we derived the RG equations for the spin-boson model in the real-time
renormalization-group formalism. We applied an approximation by neglecting the double
and higher-order vertex objects. Here, we include the double vertex objects within the
systematic approach. We again symbolically wiite = G?'(t;), A; = AP (¢;) and

By = BP'(t;). The double vertices are denoted By, = GP*P2(1y,t5) respectively

Ap = APP2(ty,ty), Bis = BPYP2(ty,15). Henceforth, we choose the time ordering
always byt,,_; > t, (n > 1), and we again use the cross contractiofn™ defined in

Eq. 3.47). Note that, here also double vertices may be connected by a cross contraction.
Thus, it is important, to which index the contraction refers tot, Ibf a double vertex

(712 is connected only to vertices at time points- ¢; and¢, only to vertices at < t,,

the resulting term may lead to a reducible diagram. We call such a double vertex object
G7,. (Note that such a configuration leading to reducible diagrams is not possible for a
boundary vertex.) Correspondingli, denotes the double vertex, which in any case
gives rise to irreducible diagrams. Since only irreducible diagrams contribdie:jowe

have to distinguish those double vertices. We write

G12 == G7£2 + G712 . (Cl)

The RG equation for the Liouvillian reads

—idLo(tz) = (_Z')Q/Oo dt, Z (G’TéQ + 212> : (C.2)

t2 P1,p2

Note that in this appendix we again use- 1. Additionally, in the following we omit the
factors(—i). Furhermore, neither the time-integrals nor greums are written explicitly.

By convention those indices, which are denoted by a hat, are identified on the left-hand
side and the right-hand side. The remaining indices on the right-hand side correspond
to integration variableg; and summation indiceg;. These indices are connected by a
contraction.
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APPENDIX C. DOUBLE VERTICES IN THE RTRG

Extending the scheme of SectiBr2to double vertex objects then yields

dG;

dG%s

dG',

dA;

dAjis

— 7 Nel e ]
G2G3G4 + GQG34 + GQGBZL + GQ3G4 + G23G4

9 P9
— G3G2Gy — G3Glay, (C.3)

— . r 1 e Ir_>ﬁ
G3G21G56 + G34G5G6 + G3ZLG56 + G34G56

~a el P4
+ G34G56’ + G:§4G56 + G34 56

— GGG — GGlag — GheGaGly — GGl

— — — 9 r9
— (3G3G:Gs — G3G1GeGs — G3G3Gig — G3GGs — GGG
ol [mep 9 — —
— GGG — G3,G6Gs — GGGy — GGG — G43G6Gs
9 P9
+ GZLGgGGGs + G4G36G5, (C.49)
I 1 M 1 — [ 1 f 1
G3G4G5G6 + G3G4G56 + G3G4Gl56 + G3G45G6 + G34G5G6
+ G}, GsGe + G33Gsg + Gy Gig + G5, Gs + G5, G
— GLGiGy — GLGag — GGG — GieGag, (C.5)

— =9 P 4 —
AQG3G4 + A2G34 + AQG;ZI + AQ?)G4 + A2§)G4

ey P
— A3GoGy — A3Gay, (C.6)

f 1 f 1 4 f 1 f 1
A3G4G5G6 + A3G4G56 + A3G4G5g + AgG;lgGG + A34G5G6

f 1 f 1 f 1 4 9
+ A3, GsGo + A31Gae + A3iGrg + A34Gse + A3y Grg
eyl 8] 1 P9

— A35G4GG — A35G46 — A;lgGgGG — A45G36

< — < 9 8l
— A;G3GG — AsGiGeGs — AjGsGyy — AsGyGs — AjGsGog

P4 4 P4 —e e
— A:G3Gyy — Ay GeGs — A3 GeGy — AjGyeGe — Ay GGl

9 il
+ A4G3G6G5 + A4G36G5 , (C7)
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—— —9 P4 9 —
dBi = GQGgB4 + GQB;§4 + G2B321 + GZQgB4 + G2?)B47 (C.8)

f 1 f 1 — M 1 M 1
dBj; = GgG;LGgBG + G3G4356 + G3G4356 + GgG;lgB(i + GggngBG

f | | 9 €

+ G34GSB6 + G3ZLB?>6 + G321356 + 034356 + G34B56

— > — o rq
— GG3GBs — G3G1G6Bs — G3G3 Bz — GGy Bs — G3G3 By

el 9 < — —
— G5GsByg — G, GeBs — Gy3Ge By — GGy Bs — GG By

—9 P
+ G;ngGng + G4G36Bg . (Cg)

For dX(z) we obtain

e I — - l:‘ﬁ —
| | | |
d¥(z) = A1By+ A19G3By + A1GoBsy + A19Bsy + A19Bsy + A12Bsy

9 Nay ™
— A1pGyB3 — A13GaBy — AsG1 B3y — A3G1Bay (C.10)

Note that in the above equation there is one integration less than time variables, since
the Laplace integral involves only the time difference between the larger tirdeanid

the smaller time ofB. Furthermore, f1” again represents the usual contraction. The
correction terms have an additional minus sign, which is accounted for by the signs in
Egs. C.3 - (C.10.

As pointed out in SectioB.2, the number of terms strongly increases by consider-
ing double vertex objects. Furthermore, the RG equations are now integro-differential
equations. The reason is a nontrivial time-dependence of the double vertices due to retar-
dation effects. If one uses the interaction picture for the double vertices, one ends up with
equations for

GPP2(t — ty) = o~ iLot1 (yp1.p2 (t1, tg)eiLotg : (C.11)
APVP (b — 1) = eTEIAPIR () fy ettt (C.12)
BP1:p2 (751 _ tg) — e—iL()tl BP1:P2 (tb tz)eiztz ) (C_13)

Thus, the numerical solution of these equations requires much more effort than solving
the problem within the single vertex approximation. However, in Chaptge formu-
late the real-time renormalization-group approach in energy space. Then, the retardation
problems are not present, and double vertices become tractable.

Eventually, we note that, as in Secti8r®, the results presented in this appendix are
generally valid for any quantum dissipative system. Again for fermionic environments
one has to account for additional signs.






Appendix D
Keldysh formalism for the TLKM

In Chapter5 we studied the running couplings for the two-lead Kondo model (TLKM).
However, we restricted ourselves to a study of the effective Hamiltonia@ fer 0. In
this appendix we present the RG equations for an analysis on the Keldysh contour. To
treat the double vertex objects we again apply the formulation in energy space.

Similarly as in Chapte8 we define superoperators by

LyO = [H(),O]— ) (Dl)
G:;O = gl/,l/O s
G, 0 = —Ogyv, (D.2)

whereQ is again an usual operatdt, is the impurity Hamiltonian which vanishes ini-
tially, andg,,, is given by Eq. $.9). Furthermore, initially the superoperatcoﬁg“,;, and
G;j, vanish. We again use the interaction picture analogously toF=Lj7)(

/ . . i L,y
Gll/)f)l/’,w,w’ (t) = elLOtGu,u’,w,w’67ZL0t67mwt€7m wit (DS)
Additionally, we introduce
ol _ 1 Gpp/ _ /Gp/p (D.4)
v ww' T 9 p v ! P Vo w ] - .

For setting up the RG equations we have to choose a cutoff-dependence. In generalization
of our definition in Egs. .34 we also include a dependence on the matrix elements of
Lg. The matrix elements are chosen corresponding to those of the external vertices and the
contraction vertex, so that again divergencies are avoided. As outlined in Apderadix

we may assume a block-diagonal Liouvillidg with a maximum block size of2 x 2).

For the eigenvalues of these blocks we use the same notation as AppehdiMe define

1 1
EUi,ka,ij - 5)\10'1 - )\k‘O')C + 5)\]'0']' ) (D5)

where),,, are the eigenvalues of the blocks as given by Hf226) and €.29. Further-
more, we use the matrid;;,, defined in Egs.K.25 and E.27). For L, we obtain the
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RG equation

(Z—iS)U -y 3 B/dwp3p4({(plA_(%))f(_pM)

w —iIm[T- P ])
i'j'kk'oi0,0; DP1P2P3P4,V1V2 ¢ io;kogjo;

d
X (1 - dche [ﬂaikakjcrj]
B P4P3 P2pP1 .
XAzz’cfi (CV17V2’A7(UJC),W) ' Akk’ak <CV2,V1,W,A,(¢UC)> K AJ’]‘TJ'

1 F(pr) f(=p2Ay (we))
3 / A pspa (we — 0 [ Tig ko]

d
X (1 + dche [Eaikakjoj})
XAii’Uz‘ (Of;lfzgl,w,A_,_(wc))i,k Ak’klak (Clljlzfllz,A_,_(wC),w) Ko Aj'j"j:|

+ ) > [wcﬁ—wcl (D.6)

i'j'kk' 00,05 DP1pP2p3P4,V1V2

with
Ay (we) = we + W — fla, + o, + NRE [Tigik%jgj] ) (D.7)

Here, we considered the case of arbitrary temperdfuend used the Fermi-function

f(z) = 1/(e*/T +1). u, is again the chemical potential of the reserveir The RG
equation forC'r1p2 reads

V1,V2,W1,w2

o )
( dwC )ij N Z Z |:p1p1 (wc - ZIIH [Eaikakjcj])

i'j'kk'oiok0; piph,v

d
X (1 + dwCR’e[ﬂUikUij'j]
- Pp1P} P5P2 »
% AZZ/O'i (OVl Vw1, (Wc)) ik Akk/ak <OV7V27A+(WC)7‘U2 k'5’ A],Jo—j

f(pllAf (wc))
—We — 7Im [,I%aikffkjffj})

d
X (1 - da} Re[ﬂdik)Uijj])
P5D2 P1D}
XAii’o'i (Cl/,zl/%A—(wc),WZ)i,k Ak’k‘lo'k (Cl/l,lll,wl,A_(wc)> k’j/ Aj’jO'j:|

+ oYY {wc — —wc] (D.8)

i'j'kk'oio05  piph,v

_p2p,2 (
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with )
Ay(we) =we +w+V, +1Re [Tioikakjoj} . (D.9)

The parameters andV/, are defined in Eqs5(30 and 6.31).

The above equations fulfill the symmetry of spin inversion on the impurity and

Cl{)lliz,m,wz = _05227%11,—0-127—001 ) (D.10)

wherer = (1, &, o) corresponds to the opposite reservof the bandy.

In the above RG equations the matrix elements of the Liouvillian may act as a cutoff in
a similar way as the voltageé does in Sectiod.3. By accounting for the Liouvillian we
also consider rates here, i.e. by solving the RG equations the question can be examined,
if there is two-channel physics in case of the two-lead Kondo model or if it is destroyed
by the rates. Note that observables can be calculated by considering Ker(essin
Chapte) or 32; (as in Chapte#). Their RG equations are given analogously to Eg6j.

However, a numerical solution of Eq®.6) and ©.8) turns out to require too much
numerical effort since we deal with frequency-dependént 4)-matrices. As already
pointed out in Section5.4 the numerical solution for only 10 frequencies on a
Pl (500MHz)-computer requires about 100 days.






Appendix E

Numerical methods

E.1 Ordinary differential equations

Renormalization-group approaches typically require the solution of an initial value prob-
lem for ordinary differential equations. In this thesis we solved these equations using
numerical methods. In the following, we give a description of the applied algorithm.

There are many different methods for the numerical solution of initial value problems
for ordinary differential equations. Among them the Runge-Kutta method is used very
often. It provides a stable and efficient algorithm for most problems, if one does not
require too high accuracyfl]. Regarding our problems it turned out that this method
performs very well.

In general, the initial value problem is given by

dy;
%(m) — fi(-r7y17"'7yN)’
yz‘(xo) = Yoi =1 N . (E-1)

The Runge-Kutta algorithm is based on the Euler method, where one integrates the dif-
ferential equations stepwise with a stepsize

J(x +h) = §a) + hf(z, i) + O(h?). (E.2)

Here we used the vector notation for tNecomponentg; and f;. Conventially one calls

a methoduth order if its error term i€)(h"*1). Thus, this simple Euler scheme is a first-
order method. Itis not of any practical use because of low accuracy and stability problems.
The reason is that at each integration step only the information of the derivatives at the
original point is used. Therefore, the method can be improved by also using the derivative
information at some intermediate point(s), e.g. the midpoint of the step interval. With
the right combination of these derivatives one may eliminate the error in higher orders.
One very often used algorithm is the fourth-order Runge-Kutta method, which needs four
derivative calculations per step. However, we use a Runge-Kutta algorithm where we
need six derivative calculations. The advantage of this additional effort is that we may
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(4) (5)
bij a; (63 (63
VU120 03 4 5
/)
1 2825 | 37
27648 | 378
1 1
2 = 5 0 0
3 3 9 3 | 18575 | 250
40 40 10 | 48384 | 621
4 3 _9 6 3 | 13525 | 125
10 10 5 5 | 55296 | 594
11 5 70 35 277
5 " 54 2 a7 27 1 14336 0
6 1631 175 575 44275 253 | 7 1 512
55206 512 13824 110592 4096 | 8 4 1771

Table E.1: Cash-Karp parameters for embedded Runge-Kutta method.

combine these derivatives in two different ways, one resulting in a fourth-order method,
Eq. (E.4), the other corresponding to a fifth-order algorithm, Ef 5.

— —

ki = hf(l‘, ?j) )
i—1
Ei = hf(x+azh,g]+ZijE]) s 7 :2,...,6 s (E3)
j=1
7P (x+h) = gla)+ c§4)l¥1 + cg“)l% + cgl)lzg + 0514)124 + cgl) ks + cé4)l;6 :
Jla+h) = §Y+h)+0(R°), (E.4)
7Nz +h) = glx)+ 055)121 + cg"’)l% + 055)123 + 0515)%4 + cé5)E5 + céS)EG :
Jla+h) = 7z +h)+0OR°). (E.5)

The parameters in TaB.1have been found by Cash and Ka#g]l This type of equations

is called an embedded Runge-Kutta formula. By comparing both results one obtains an
error estimate\; = |yi(4) - y§5)| of the fourth-order formula. Using this error information

one can then adjust the stepsize to keep a given accufradg the error scales with®

the adjusted stepsizg is given by

0.2
€
he = h max (E) . (E.6)

1<i<N

If h, < h, the step is rejected and repeated ugip@s stepsize, whereaslif > h, the
step is accepted and, is used in the next step. In our numerical integrations we used
a relative toleranc&OL ~ 10~* whereTOL = ;— For more details on the adaptive
stepsize control, see Ref]. Z
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E.2 Exponentials of a matrix in differential equations

If the real-time renormalization-group approach is used for the Keldysh contour (as in
Chapters3 and4), one deals with ordinary differential equations fér(n x n)-matrices
M; with respect ta..

dM;
dt.

= f(te, Mq,...,My) 1<i<N. (E.7)
The function on the right-hand side includes exponentials of the mafyix= L,. Thus,
for a numerical solution we introduce a transformatiosuch that

h

ULJU ™! = . , m<n. (E.8)

Here, thel; (1 < k < m) are(1 x 1)- or (2 x 2)-matrices. In the following we write
M,; = UM;U~'. Fort. = 0 the transformatio/ has to be calculated for the initial value
of Ly. To obtain the, flow of U we first note that

dM; ~ dM; .
pr :[E,Mi]+Udt vt 1<i<N, (E.9)
whereF is given by
d
E = %Ul : (E.10)

E shall then be determined such that the block structute,of Eq. E.9) is retained. If
the indicesi andj correspond to different blocks, we have to fulfill

Sij +[E, Lo)i; =0, (E.11)
where we have written
dLy,. 4
= ) E.12
S=U i U (E.12)

For the case, where bottand;j correspond t@1 x 1)-blocks this yields

Eij = — ) A 2 for (Lo)“ 7é (LO)jj . (E13)

If (Lo)i ~ (Lo);;, i-e. for the crossing of two eigenvalues bf, we interprete them
as a(2 x 2)-block. If i corresponds to &l x 1)-block, whereag is an element of a
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(2 x 2)-block, Eq. €.11) leads to

P ((Lo)z'z' - (E(J)jj) Sij + (Lo);;S;5
T (o Ro) (Lo = R = (Ll
((obi — (Eo)ys) S5+ (L) 55

((Zo)is = (Eo)ss) ((Zo)is = (Eo)53) = (Lo)ss(Lo)s3

E. = —

Jt

for ((zo)z’z’ - (iO)jj> ((io)“ - (£0)35> — (Lo)jj(Lo)j7 #0.  (E.14)
Here, the two indices of th@ x 2)-block are denoted byand;. The case
((io)z‘z‘ - (E0>jj> ((io)m - (io);g) — (Lo)3;(Lo);5 = 0.

corresponds to the situation, wheg,);; crosses one eigenvalue of tfe x 2)-block.
Whenever a2 x 2)-block involves two different eigenvalues, we therefore stoptthe
integration, diagonalize that block, consider it as two< 1)-blocks and resume the inte-
gration with a modified transformatidin. Thus, we may use the above equations, unless
three eigenvalues df, cross each other around one value oflf i and;j correspond to
two different(2 x 2)-blocks (with the indices$ and: respectivelyj and;), we obtain from

Eqg. E.1)

Eﬁ _ 1 Sij
5| = T S (E.15)
E; Sg;
where the matrix” is given by
(Lo)ii — (Lo)y;  —(Lo)j; (Lo)ii 0
T_ —(Lo)j  (Lo)u—(Lo)iz O (Lo)ii
(Lo)ii 0 (Lo)ii — (Lo)j; _ —(Lo)j
0 (Lo)s —(Lo) 3 (Lo)i — (Lo);

(E.16)
As we diagonalizé?2 x 2)-blocks with two different eigenvalues, the invefBe! does
exist, unless four eigenvalues &f are approximately equal for orte. For the case,
where the indicesand; belong to the same block, we g6t = 0. Thus,E is completely
determined and EqE(10 leads to the additional differential equation

v
dt,

EU . (E.17)



E.2. EXPONENTIALS OF A MATRIX IN DIFFERENTIAL EQUATIONS 133

The above scheme now only requires the evaluation of exponentials of the form

6cll

Uetboy=! = : (E.18)

wherec is a complex number. The calculation @fp(cly) is trivial in case of(1 x 1)-
blocks. The exponential of @ x 2)-matrix can be written as

et = 37 AP (E.19)
o=+
With the parameters
1
0 = () + ()z) (E-20)
1 3
b = (5 (0 G+ (010 00) E21)
the matrixA}") and the eigenvaluey’) of I are given by
2 _ _9 ) (2
AP — e (zk A,WOIL) for b2 £0, (E.22)
A= a? +ab (E.23)

From the above considerations fdrx 1)- or (2 x 2)-matrices one readily obtains
(UetoU™), = > Aygee. (E.24)
o=+
Here, A;;, = 0 holds, if the indices and; correspond to different blocks. Trivially, if
i = j corresponds to él x 1)-block, we have to set

Aij,o‘ - (513/2, (E25)

Nio = (Lo (E.26)

Eventually, if the indices andj correspond to & x 2)-block, 4;;, and ), , are given
by

o

2%, ((LO)Z] — Ai7,05ij> for b; 7& O7 (E27)
)\i,g = a; + O'bi . (E28)

Aij,a
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Here we used the parameters

a = 5 ((Eo+ (Lo)s) | (E.29)
b= (5 (o= (E0)e) "+ LalatLali) (E:30)

where we again denote the two indices of tfiaik 2)-block by: and:. We still have to
consider the case whebg ~ 0. Generally, we have to calculate products of the matrix
elements in Eq.K.24). Suppose that the indicés . .., i, correspond t@2 x 2)-blocks
with

biy ~ b, <1.

in

The products of the form

P = E , Anh oip zn]n Ulnf()‘iuaila SRR /\imain)

P = Z {f(ail,...,ain)

Oiqseees o
1 o7
+Zﬁ Z 4 0k1"'0kjbk1 bk’;a)\klak '..a)\k'dk,f(ail7"',ain)
Jj=1 ki,..., kje{ll ..... Zn} R 7%k
((Zo)im - ai15i1j1> S
X i
7 2. L
- X i . .
Tin 2, L
Thus, we may write
P~ Z Bl1]1 o, T zn]n Ciy, gall ..... Cin (ail, e 7a7;n) , (E32)
where we introduced
Bijo+ = Oij,
BiS.jSvf = (L0>ZSJS - aiséisjs ) 1 S S S n7

( ) - 12 K )
Gig gy iy \ iy« + o 5 iy = - Ay ooy Ay,
gzlv 1in 1 ]!a)\klak aAk» o 1

for ky,...,k; € {i,...,in} and oy =---=o0;, =—. (E.33)
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Note that our result fob;,, ~ --- = b;, < 1in Eq. E.32 is regular forp;,, = --- =

b;,, = 0. Therefore, the prescriptions, which we have developed in this appendix, solve
the problem of the occurence of exponential functions. Only if more than two eigenvalues
of L, are the same for onke, we obtain a divergence for the mat;. This is not the

case for the problems studied in Chapteéend4.

E.3 Fourier transforms

The real-time renormalization-group approach is formulated for the Laplace tranform of
the reduced density matrixz). From the numerical data fgr(z) the time-dependent
reduced density matrix can be calculated by a Fourier transform (see Subsedt®n
In the following, we outline the algorithm we used for that problem.

We have to perform the integral

o0

ft) = /_ dx f(x)e™™t (E.34)

o0

where f(z) follows from the RG procedure. For large enougthis integral is approxi-
mately given by

d idt —idt
10 %/_ dx f(z)e ™" — f(—-d)e ’ + f(d)e™ : (E.35)

d it it

The error is controlled by calculating(t) for different cutoffsd. For the numerical
evaluation of the integral in EqQE(35 we have to discretiz¢(x). It turns out that there
are subintervals ifi—d, d] with quite different scales, whiclfi(x) varies on. Therefore,
we split the integral into these subintervals applying an adequate discretizatfgm )of
for each. Thus, we have to consider integrals of the form

I(t) = /b dx f(z)e ™", (E.36)

For the numerical evaluation of EE.36) we set the discretizatiodr = ("7“ with
M € N. ThenI(t) is a periodic function with the peric2t, wheret = 7/Ax is the time
corresponding to the Nyquist critical frequené&y]. As the times; andt, = ¢, + 2t give
the same discretizef{x), the value ofl (¢) for ¢t > ¢ is falsely translated (“aliased”) into
the interval—¢, ¢ ]|. Therefore, given a certain discretization we may only determine
fort < t.

With z; = a + jAx for 0 < j < M the integration then requires the evaluatioryof
at the pointse;. For large|z;| it is possible to fit the decay of(z) algebraically, so that
in this case we need not calculgter;) from the RG equations.

A straightforward application of a standard integration method, such as the extended
trapezoidal rule, is not possible though. As in case of the RG equations for the polaron in
Chapter2 the oscillatory nature of the integral would lead to large errors, for the integrand
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oscillates with a frequency < t, i.e. the parameter determining the errar; ¢, will be
as large as. As in Chapte2 we use interpolation to overcome these difficulties. Using
a piecewise polynomial interpolation schenfiér) is of the general form

f(x)%if(xj)w<x;xxj>+ PORICHTY (tf), (E.37)

j=0 j=endpoints

where the functiong) and¢,; depend on the applied interpolation scheme. Inserting this
expression in Eq.H.36) yields

I(t) ~ Aze " (W(Axt)z flae @80t 4 3 f(xj)ozj(Axt)> (E.38)

j=0 j=endpoints

with the definitions

Wi(y) = /OO dse”¥5(s), (E.39)

—00

ay(y) = /mdse—%xs—j). (E.40)

—00

For a given interpolation scheme we may evaluate the above functions analytically. The
sum in Eq. E.38 corresponds to a discrete Fourier transform. In view of a finer sampling
in time space we introduc® > M, N € N. Settingf(z,;) = 0for M < j < N we then
extend the sum, so thatakes the range < j < N — 1. Thereby we are able to produce

an output fort,, = 2rn/NAz with 0 < n < N/2 — 1. N is chosen as an integer power

of 2, because then, we may easily apply the fast Fourier transform to perform the sum.
This standard algorithm reduces the computational effort #0iV?) to O(N log N) by
rewriting a discrete Fourier transform of lengthas two discrete Fourier transforms of
length N/2 [94].

Using a cubic interpolation scheme in E§.87) we finally obtain

N-1

I(t,) = Age ' <W(Axtn) Z f(xj)eﬂm‘jn/N

<

3

+ Z (ozj(Ax tn) f(x;) + e_i(b_a)t"oz;f(Ax tn)f(mM_j))> (E.41)

=0
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with the functions

6 4 y?

Wi(y) = 3—y4<3 — 4 cosy + cos(2y)), (E.42)
—42 + 5y + (6 + y?)(8 cos y — cos(2y))
apy) = 64!
Pt/ 6y° 4 (6 + y*) sin(2y)
6y* ’
143 —y?) —7(6 + y*)cosy .30y — 5(6 + y*)siny
ai (y) = —t J
Gy* Gy*
—4(3 —9?) +2(6 +y?) cosy . —12y+2(6+ y?)siny
Oég(y) = -1 )
3yt 3y
23—y*) = (6+y*)cosy .6y —(6+y*)siny
asz(y) = 60 —1 6 . (E.43)

To calculatel (¢) for all 0 < ¢t < t we perform polynomial interpolation on the spec-
trum of the discrete Fourier transform. This interpolation, however, is only accurate for a
large “oversampling” v > M) [94].
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