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Chapter 1

Introduction

If a physical system is prepared in nonequilibrium, a coupling to an environment gives
rise to dissipation. Thereby the system will finally attain a stationary state. Classically,
the interaction term in the Hamilton function leads to dissipative forces in the equations
of motion. In many cases one ends up with a generalized Langevin equation for the
coordinates of the local system [1]. To obtain a correct description of such systems,
however, one has to consider the problem quantum mechanically. This leads to quantum
dissipative systems where dissipation is generated by the interaction term in the Hamilton
operator which acts on the product Hilbert space of the local system and the environmental
bath. Typically the environment is given by a particle bath (e.g. electron reservoir) or
a bath of quasiparticles representing excitation modes (e.g. phonons in a solid). The
dynamics is determined by the Heisenberg equation while the thermodynamic properties
follow from the partition function. The local system is described by the reduced density
matrix, which is the trace of the full density matrix over the bath degrees of freedom.

In case of a small coupling of the local system to the environment, such problems
can be approximately solved by using standard perturbation theory. However, for larger
coupling constants this treatment becomes insufficient and other methods have to be ap-
plied. One often uses the path-integral formulation of Feynman [2], where the interaction
term may be accounted for by an influence functional. One then ends up with an ef-
fective theory for the local system’s degrees of freedom which usually has to be solved
approximately.

Any interacting system may also be studied by exactly diagonalizing the Hamilto-
nian. However, for quantum dissipative systems this is a complex problem due to the
high dimension of the Hilbert space of the bath. Therefore, one may only apply some ap-
proximate diagonalization. A general method that serves this purpose is the flow equation
formalism of Wegner [3]. In this method the unitary transformation which diagonalizes
the Hamiltonian is decomposed. This results in a sequence of infinitesimal transforma-
tions, and its differential formulation then leads to flow equations. This approach has
often been used to determine the matrix elements of the diagonalized Hamiltonian, such
as the ground-state energy. From these one may also calculate spectral properties, such as
equilibrium correlation functions. However, the calculation of the diagonalizing unitary
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4 CHAPTER 1. INTRODUCTION

transformation requires much more effort within this formalism. Therefore, one does not
obtain a solution for the system’s dynamics.

The method of the flow equations can be viewed as a renormalization-group (RG)
technique. RG procedures use some kind of operation to transform a physical system
into an equivalent one. Successive application of this operation generates a sequence of
systems which define a semi-group with respect to this operation. The elements of the
group can be labeled by a parameterµ. The idea of RG methods is that, for some limit
of µ, e.g. µ → ∞, one deals with a trivial system. Today RG methods are often used
tools which are successful in describing many physical problems beyond perturbation
theory [3] - [11]. However, until recently RG methods could only be used to calculate
equilibrium quantities. They could not describe nonequilibrium stationary states or pro-
vide the dynamics of quantum dissipative systems. A new approach which also allows
for the description of the dynamics in arbitrary nonequilibrium situations is the real-time
renormalization-group (RTRG) by Schoeller [12]. Within this approach one develops an
effective theory for the local system by introducing normal ordering and applying Wick’s
theorem regarding the bath operators. One then has to account for nontrivial expressions,
which involve time-dependent bath contractions. In the RTRG scheme one defines the
real-time parametertc as a critical time scale, which serves as a cutoff regarding the time
arguments of the contractions that one takes into account. To leave the physical prob-
lem invariant one has to account for this cutoff by renormalized operators for the local
system. By considering the steptc → tc + dtc with an incrementdtc one then obtains a
set of differential equations with respect totc. This defines a renormalization-group flow
for physical quantities, which now depend on the flow parametertc. Within the RTRG
one starts attc = 0 with the original problem, and ends in the limittc → ∞, where all
contractions have been integrated out. In contrast to Poor Man’s scaling equations [4],
this approach takes the full time evolution into account. Thus, all time scales are consid-
ered and one generally does not need any further cutoff regarding thetc flow. Another
advantage of this method is that one may work on the Keldysh contour. Thereby, non-
Hamiltonian dynamics is considered, so that both dynamical and stationary quantities of
quantum dissipative systems can be calculated for any nonequilibrium problem.

The RTRG has been applied to equilibrium problems [13] and has been used to study
nonequilibrium stationary states [14]. In this thesis we use the RTRG to analyze different
quantum dissipative systems. These RG studies lead to results which could not be ob-
tained before for these systems, such as nonequilibrium stationary states or the dynamics
of the reduced density matrix. In fact, we present the first RG calculation of the time-
dependent reduced density matrix of a quantum dissipative system at all. We discuss the
power and performance of the RTRG and present some further modifications. This will
also convey an insight into the general properties and possibilities of this RG method.

As a starting point and a first application of the new RTRG method we consider the
polaron problem described by the Fröhlich Hamiltonian [15] in the next chapter. It is a
standard model for an electron interacting with phonons in a solid and has attracted much
interest in the past 50 years. More recently also low-dimensional systems have often been
studied [16] - [20]. We present approximate results for the ground-state energy as well as
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for the effective mass of the one-dimensional polaron in the regime of small to interme-
diate couplings for the case of vanishing temperature. For this analysis we do not have to
work on the Keldysh contour, but it is sufficient to consider theS matrix within the RTRG
approach. We also generalize the standard methods of Lee, Low and Pines [21, 22] and
that of Feynman [23] to the one-dimensional case with finite bandwidth. These approxi-
mations are then compared to the results following from the flow equation formalism and
those obtained by the RTRG [24]. Although the comparisons show that the RTRG method
is in principle able to describe the polaron beyond perturbation theory, we achieve only a
low accuracy for this model. The difficulties of the RTRG concerning the polaron prob-
lem are discussed. Furthermore, it turns out that a nonequilibrium study of the polaron
requires too much numerical effort.

In Chapter3, the central part of this thesis, we study the spin-boson model using
the RTRG method. In this case the problems which arise for the polaron model are not
present. In contrast, here we use the RTRG formalism on the Keldysh contour to de-
termine the full time evolution of the reduced density matrix starting from an arbitrary
nonequilibrium state [25, 26]. Furthermore, we also calculate static quantities as well as
equilibrium correlation functions. Our results are obtained for arbitrary parameters with
the only restriction of not too large couplings, and they exhibit a remarkably high accu-
racy. The spin-boson model is a basic, yet nontrivial quantum dissipative model, which
can be used for any physical or chemical system, where a local two-state system is coupled
to a bosonic environment. Altough it has been examined very often (see Refs. [1, 27] and
references therein), an exact solution of the spin-boson model is only known for special
parameter values.

After we have given a detailed explanation of the general formalism of the RTRG,
we discuss the explicit form of the differential equations for the spin-boson model. Con-
sidering the resulting RG equations we analytically find the correct renormalized energy
scale of the problem. We solve the RG equations numerically to present results for the
stationary reduced density matrix, the static spin susceptibility and the time-dependent
reduced density matrix. For the latter we also determine both the oscillation frequency
of the diagonal elements and the decay constants in the asymptotic regime, the dephas-
ing and the relaxation time. Eventually, we use the RTRG to also calculate equilibrium
correlation functions. The presented results show the correct scaling behaviour and are
consistent with both QMC simulations and the Shiba-relation. Additionally, we draw
comparisons to the noninteracting blip approximation (NIBA) [27] and to results obtained
for the anisotropic Kondo model [28, 29].

A more complicated quantum dissipative system is considered in Chapter4, where
we study a system consisting of two coupled quantum dots in a phonon bath. This struc-
ture has been realized in a recent experiment [30], where the authors applied an external
voltage to the double dot and measured the stationary tunnel current through it. Today
quantum dot systems are often studied, as they can be used as realizations for many phys-
ical phenomena [31, 32, 33]. In the experiment described in Ref. [30] the influence of the
phonon environment on the stationary tunnel current was examined at low temperature.
We study this out-of-equilibrium problem using the RTRG, by which again the whole pa-
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rameter space with small to moderately large couplings to the environment is accessible.
Since the coupled quantum dots in a phonon bath are closely related to the spin-boson
model, we can make use of the insights we have gained in the preceding chapter. In con-
trast to a previous qualitative theoretical analysis [34] our approach yields quantitatively
reliable results. Furthermore, within our analysis we also allow for an additional electron-
phonon interaction term, which arises from the finite extension of the electron densities
within the dots. Comparing our results with the experiment we show that one has to ac-
count for the variation of this finite extension with the applied bias between the quantum
dots. Using the experimental data we calculate the width of the electron densities as a
function of the energy difference between the dots [35].

In the preceding chapters we have neglected “double vertex objects”, which have not
been present in the original Hamiltonians, but are generated during the renormalization-
group procedure. This approximation led to the restriction in the coupling constants. In
contrast, in Chapter5 we study the two-lead Kondo model, where a Kondo impurity is
coupled to two bands. Since the original Kondo Hamiltonian already contains such double
vertex objects, the previously used approximation is not applicable then. However, within
the usual RTRG method double vertex objects give rise to retardation effects, which lead
to substantially more complicated RG equations. We avoid this problem by introducing
a formulation of the RTRG in energy space. The Kondo model has attracted much, both
theoretical and experimental, interest (for a review, see [36]). Recently, especially the
case of the two-lead Kondo model with a finite external voltage has been studied [37] -
[42]. Based on qualitative arguments, a two-channel regime for the running couplings was
proposed for that model [37]. However, the authors excluded the effects of rates which
may destroy the two-channel physics [43]. Applying the RTRG to this model we restrict
ourselves to the analysis of an effective Hamiltonian, thus we also disregard the effects of
rates which can only be accounted for by studying the problem on the Keldysh contour.
Thereby we quantitatively find the two-channel behaviour of the running couplings which
confirms the proposal of Ref. [37].



Chapter 2

The polaron

The polaron has often been examined since Fröhlich proposed the corresponding Hamil-
tonian [15] (for a review, see Ref. [44]). It serves as a standard model for various problems
involving a nonrelativistic particle moving in a scalar field, e.g. the interaction between
nucleons and scalar mesons or a single electron in a solid interacting with phonons. The
physical picture is that the particle polarizes the environment and must drag this polariza-
tion with it, which affects its energy and effective mass. The problem has been studied by
Lee, Low and Pines, who used a variational method [21, 22]. They obtained results for
small to intermediate coupling strengths. For large couplings the polaron has been exam-
ined by Pekar et al. [45, 46]. Feynman provided an analysis for arbitrary couplings [23].
Since polaron effects have been observed in low-dimensional systems, the problem has
also been studied in two dimensions [16, 17, 18] and in one dimension [19, 20].

We examine the one-dimensional polaron problem. It can be realized e.g. for a Bloch
electron in a one-dimensional wire or macromolecular structure. The excitation of an
electron is strongly influenced by the interaction with longitudinal optical phonons [47].
If the conduction band is partially filled, one can linearize the electronic spectrum and
the model is exactly solvable by using bosonization techniques [20]. However, if the
conduction band is empty, it is necessary to consider a quadratic spectrum for the elec-
tron with a bare massm0. This leads to the one-dimensional Fröhlich Hamiltonian with
a constant coupling to the phonons. It is our purpose to examine the ground-state en-
ergy and the effective mass of the electron for this problem at vanishing temperature
using renormalization-group methods. We apply the flow equations introduced by Weg-
ner [3, 48] and the real-time renormalization-group (RTRG) technique recently developed
by Schoeller [12, 13]. Furthermore, we compare our results with first and second order
perturbation theory, with Feynman’s variational principle, and with the method of Lee,
Low and Pines generalized to the one-dimensional case with finite bandwidth. Regarding
the flow equations the approximation used in Ref. [49] turns out to be insufficient to de-
scribe renormalization effects of the polaron. Using the RTRG for not too large coupling
constants we find a ground-state energy below the one following from Feynman’s method
and perturbation theory of second order and a value for the effective mass between the
result of Feynman and the one of Lee, Low and Pines [24]. However, due to a further
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8 CHAPTER 2. THE POLARON

approximation within the RTRG only a low accuracy is achieved.

2.1 Fröhlich Hamiltonian

A Hamiltonian for the polaron system was introduced by Fröhlich in 1954 [15]. He
considered a single electron in a polar medium, which interacts with the polarization
field resulting from displacements of the ions. As only the longitudinal waves enter the
interaction term one can write for the quantized polarization at the position~x

~P (~x) =
1√
V

∑
~q

[
ω

8π

(
1

ε∞
− 1

ε

)] 1
2 ~q

|~q|
ei~q~x(a~q − a†−~q) ,

where we assume periodic boundary conditions.a†~q(a~q) creates (annihilates) a longitudi-
nal optical phonon with the wave vector~q, where~q lies in the first Brioullin zone. These
phonons are assumed to be dispersionless:ω~q = ω. The solid has the volumeV , the
static dielectric constant isε, and the one for large frequencies isε∞. The operator for the
charge density of the electron is given by

ρ(~x) = eψ†(~x)ψ(~x) .

ψ†(~x) (ψ(~x)) is the creation (annihilation) operator of an electron at position~x. It can be
expressed as

ψ†(~x) =
1√
V

∑
~k

c†~ke
−i~k~x

ψ(~x) =
1√
V

∑
~k

c~ke
i~k~x

 ,

wherec†~k (c~k) creates (annihilates) an electron with wave vector~k. The Hamiltonian then
follows from the classical Hamilton function. It consists of a free part for the electron,
H0, one for the phonons,HB, and an interaction partHV :

H = H0 +HB +HV .

They are given by

H0 =
∑
k

εk c
†
kck , (2.1)

HB =
∑
q

~ω a†qaq , (2.2)

HV =
∑
k,q

(Mqa
†
−q +M∗

−qaq)c
†
k+qck . (2.3)

Now the indicesk, q denote the corresponding wave vectors~k, ~q, the spin index is omit-
ted, as it is conserved under the interaction. We consider a slowly moving electron so
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that only large wavelengths are important. In this picture the electron energyεk can
be assumed as(~|~k|)2/2m0, m0 being the bare mass of the electron. Consequently,
the first Brioullin zone for the one-dimensional case is given by the bandwidthD as
[−
√

2m0D/~,
√

2m0D/~[. While the electron-phonon interaction coefficientsMq are
proportional to1/|~q| in case of the bulk polaron, the one-dimensional situation involves a
q independent coefficientM [18]. We define

M = ~ω

√
2α√

L
√

2m0ω/~
, (2.4)

whereL is the one-dimensional normalization volume. In analogy to the three-dimensional
caseα is a dimensionless coupling constant. In the following we discuss some earlier ap-
proximate solutions of the polaron problem and generalize them to the one-dimensional
case with finite bandwidthD. Henceforth we choose units such that~ = m0 = ω = 1.

2.1.1 Perturbation theory

The simplest approximation that can be applied to the problem is standard perturbation
theory in the coupling constantα. One obtains for the energyEk of the polaron with
momentumk

Ek =
k2

2
−
∑
q

M2

∆k,q

−1

2

∑
q,q′

M4 (∆k,q + ∆k,q′)(∆k,q + ∆k,q′ − Γk,q,q′)

∆2
k,q∆

2
k,q′Γk,q,q′

+O(α3) , (2.5)

where we defined the energies

∆k,q = εk+q − εk + 1 , (2.6)

Γk,q,q′ = εk+q+q′ − εk + 2 . (2.7)

Note that for|k| <
√

2 the fractions are well defined. In the continuum limit theq sums
correspond to integrals which can be performed analytically in first order inα. With the
bandwidthD one obtains for the ground-state energy

E0 = −α 2

π
arctan(

√
D) +O(α2) . (2.8)

The inverse effective mass1/m is given as1/m = d2

dk2Ek
∣∣
k=0

, thus

1

m
= 1− α

π

(
arctan(

√
D) +

√
D

D + 1
− 2

√
D

(D + 1)2

)
+O(α2) . (2.9)
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2.1.2 Method of Lee, Low and Pines

The method of Lee, Low and Pines is based on the usual variational principle [21, 22].
In the following we will use their approach to derive results for the ground-state en-
ergy E0 and the effective massm for the one-dimensional polaron with finite band-
widthD. Assuming that successive virtual phonons are emitted independently they chose
the following ansatz with the parametervk,q for the ground-state of the polaron with
momentumk:

|ψk〉LLP (vk,q) =

∫
L

dx
1√
L

exp

(
ix
(
k −

∑
q

qa†qaq

))
ψ†(x)

×N exp

(∑
q

vk,qa
†
−q

)
|0〉 . (2.10)

The normalization factorN is given by

N = exp

(
−1

2

∑
q

v2
k,q

)
. (2.11)

This yields for the energyEk

ELLP
k =

k2

2
+ 2

∑
q

Mvk,q +
1

2

(∑
q

v2
k,qq

)2

+
∑
q

v2
k,q∆k,q . (2.12)

Minimizing the energy with respect to the coefficientsvk,q leads to

vk,q∆k,q +M + vk,qq
∑
q′

v2
k,q′q

′ = 0 . (2.13)

Following Lee, Low and Pines [21] we choose the ansatz

ηkk = −
∑
q

v2
k,qq , (2.14)

which leads to

vk,q = − M

∆k(1−ηk),q

. (2.15)

We now assume
0 < ηk < 1 (2.16)

for all k, so that the above fraction in Eq. (2.15) is well defined for|k| <
√

2. Inserting
this in Eq. (2.14) we integrate to get an expression forηk:

ηk =

α
π

(
arctan(

√
D) +

√
D

D+1
− 2

√
D

(D+1)2

)
α
π

(
arctan(

√
D) +

√
D

D+1
− 2

√
D

(D+1)2

)
+ 1

+O(k2) . (2.17)
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For the calculation of the ground-state energy and the effective mass it is sufficient to take
into account only the lowest order ink for ηk, so that Eq. (2.16) holds. It then follows
from Eqs. (2.12) and (2.15):

ELLP
0 = −α 2

π
arctan(

√
D) , (2.18)

1

mLLP
=

1

1 + α
2

+
α
2

(1 + α
2
)
·

1− 2
π

(
arctan(

√
D) +

√
D

D+1
− 2

√
D

(D+1)2

)
1 + α

π

(
arctan(

√
D) +

√
D

D+1
− 2

√
D

(D+1)2

) . (2.19)

These approximate results are valid for small to intermediate couplingsα . 2. One
notices that the expression for the energy, Eq. (2.18), coincides with that of perturbation
theory to first order ofα, Eq. (2.8). Thus perturbation theory of first order gives an upper
bound for the ground-state energy.

2.1.3 Feynman’s method

Feynman’s variational approach [23] is able to treat both small to intermediate and strong
couplings. Furthermore, for small couplings he could improve the approximate results
of Lee, Low and Pines [21]. We apply Feyman’s method to the one-dimensional polaron
with a finite bandwidth and small to intermediate couplings. Feynman’s variational prin-
ciple is based on the path-integral formalism [2, 50]. When the paths of the oscillators of
the bath have been integrated out, one obtains for the effective Euclidean action

SEeff =
1

2

∫ β

0

dτ

(
dx

dτ

)2

− α√
2

∫ β

0

dτ

∫ β

0

dτ ′ e−|τ−τ
′| 1

L

∑
q

eiq(x(τ)−x(τ ′)) , (2.20)

where we use the coordinate representation. One now considers the sum over all possible
trajectories

K =

∫
Dx(τ) exp(−SEeff) . (2.21)

Of course,K will depend onβ as well as on the initial and final condition for the path
x(τ). From the path-integral formalism we know that forβ → ∞, K decays ase−E0β,
E0 being the ground-state energy. One now chooses an approximate effective actionS̃Eeff

which is more tractable thanSEeff . Let us consider the average of a functionalf(x(τ)) with
the positive weightexp(−S̃Eeff):

〈f〉 =

∫
Dx(τ) exp(−S̃Eeff)f∫
Dx(τ) exp(−S̃Eeff)

. (2.22)

For any set of real quantitiesg we then may use Jensen’s inequality

〈exp(g)〉 ≥ exp(〈g〉) . (2.23)
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Thus

K ≥ exp(〈S̃Eeff − SEeff〉)
∫
Dx(τ) exp(−S̃Eeff) . (2.24)

If we know the ground-state energỹE0 of the problem described bỹSEeff , this leads to an
upper bound forE0:

Ẽ0 + lim
β→∞

〈SEeff − S̃Eeff〉
β

≥ E0 . (2.25)

The left-hand side of the above equation may then be used as an approximate result for
E0. For small to intermediate couplings we choose Feynman’s two-particle approximation
with the free parametersC andw:

S̃Eeff =
1

2

∫ β

0

dτ

(
dx

dτ

)2

+
1

2
C

∫ β

0

dτ

∫ β

0

dτ ′ e−w|τ−τ
′|(x(τ)− x(τ ′))2 . (2.26)

Following Feynman [23] one studies

I = 〈exp (iq(x(τ)− x(τ ′)))〉

=

∫
Dx(τ) exp

(
−S̃Eeff + iq(x(τ)− x(τ ′))

)
∫
Dx(τ) exp(−S̃Eeff)

. (2.27)

By considering the path, for which the exponent in Eq. (2.27) is maximum, he derived

I = exp

(
−2Cq2

v3w
(1− e−v|τ−τ ′|)− w2q2

2v2
|τ − τ ′|

)
(2.28)

with the definition

v2 = w2 +
4C

w
. (2.29)

Expanding Eq. (2.28) with respect toq up to orderq2 we obtain

〈(x(τ)− x(τ ′))2〉 =
4C

v3w
(1− e−v|τ−τ ′|) +

w2

v2
|τ − τ ′| . (2.30)

ThenẼ0 can be derived from the free action (C = 0) and the derivative

dẼ0

dC
= lim

β→∞

1

β

∫ β

0

dτ

∫ β

0

dτ ′
1

2
〈(x(τ)− x(τ ′))2〉e−w|τ−τ ′| . (2.31)

This yields

dẼ0

dC
=

1

vw
(2.32)

=⇒ Ẽ0 =
v − w

2
. (2.33)
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Furthermore, we obtain analogously to Ref. [23]

lim
β→∞

〈SEeff − S̃Eeff〉
β

= −α
√

2

π

∫ ∞
0

dτ e−τ

×
∫ √2D

0

dq exp

(
−2Cq2

v3w
(1− e−vτ )− w2q2

2v2
τ

)
− C

vw
, (2.34)

whereD is again the bandwidth. Thus, the approximate ground-state energyEF
0 reads

EF
0 = Ẽ0 + lim

β→∞

〈SEeff − S̃Eeff〉
β

=
(v − w)2

4v
− α v√

π

∫ ∞
0

dτ e−τ (g(τ))−
1
2 erf

(√
Dg(τ)

v

)
(2.35)

with the error-function

erf(x) =
2√
π

∫ x

0

dt e−t
2

and

g(τ) =

(
v2 − w2

v

(
1− e−vτ

)
+ w2τ

)
.

The parametersv andw are chosen such thatEF
0 is minimum. Forv = w the result

of perturbation theory of first order inα is reproduced. Following Feynman we treat
small couplings by settingv = (1 + δ)w. Consideringδ small one can now expand the
right-hand side in Eq. (2.35) which yields

EF
0 =

1

4
wδ2 +O(δ3)

−α
(

2

π
arctan

√
D + δ

2

π

(
arctan

√
D − P

)
+O(δ2)

)
, (2.36)

where we introduced

P =

√
D

D + 1
+

2

w

(
√
w + 1 arctan

√
D√

w + 1
− arctan

√
D

)
. (2.37)

Minimizing the energy to this order we obtain

δ = α
4

wπ

(
arctan

√
D − P

)
. (2.38)

Thus

EF
0 = −α 2

π
arctan

√
D − α2 4

wπ2

(
arctan

√
D − P

)2

. (2.39)
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This expression is not sensitive to the choice ofw. ForD →∞ it is minimum forw = 3,
for w = 1 theα2 coefficient drops by approximately20%. Therefore, we may choose
w = 3 for all D. This finally leads to

EF
0 = −α 2

π
arctan

√
D

−α2 4

3π2

(
5

3
arctan

√
D − 4

3
arctan

√
D

2
−
√
D

D + 1

)2

. (2.40)

Within Feynman’s approximation the effective massm can be calculated by considering
paths with a final coordinatexβ. For small momenta,K in Eq. (2.21) asymptotically
decays ase−E0β−mx2

β/2β, from which the mass can be determined. One setsxβ = uβ, so
that the value ofI in Eq. (2.28) now depends onu. Proceeding analogously as above one
obtains

mF = 1 + α
1

π

(
arctan

√
D +

√
D(D − 1)

(D + 1)2

)

+α2 4

3π2

(
5

3
arctan

√
D − 4

3
arctan

√
D

2
−
√
D

D + 1

)

×

(
arctan

√
D + arctan

√
D

2

+
3
√
D(D2 + 5D − 2)

(D + 1)2(D + 4)
− 36

√
D

3
(D + 3)

(D + 1)2(D + 4)2

)
, (2.41)

where we chose the same values of the parameters as for determining the ground-state
energy. Since Eq. (2.40) follows from a variational principle Feynman’s method gives
an upper bound for the ground-state energy. In fact, it leads to more accurate results for
the energy than for the mass (for quantitative studies concerning the accuracy in three
dimensions see Ref. [51]). ForD →∞ our results coincide with Refs. [18, 19].

2.2 Flow equations

The flow equations introduced by Wegner [3] are based on infinitesimal transformations
which are successively applied to diagonalize the Hamiltonian. Formally one application
of such an infinitesimal transformation is established by incrementing a continuous pa-
rameterl by dl. This leads to al dependence of the transformed HamiltonianH(l). It
may be written as

H(l) = U(l)HU †(l) (2.42)

with a l dependent unitary transformationU(l). By convention one starts atl = 0:

U(0) = 1 =⇒ H(0) = H . (2.43)
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The infinitesimal transformations are now defined by a generatorη(l):

η(l) =
dU(l)

dl
U †(l) . (2.44)

Thus, the resulting flow equation can formally be expressed by the commutator[·, ·]−:

d

dl
H(l) = [η(l), H(l)]− . (2.45)

One useful choice forη(l) is

η(l) = [Hd(l), Hr(l)]− , (2.46)

whereHd denotes the diagonal part of the Hamiltonian andHr the off-diagonal part. As
a consequence of this choice the off-diagonal elements decay forl→∞. This can easily
be shown if there are no degeneracies. However, even in the presence of degeneracies
more detailed studies [49, 52, 48] suggest the decay ofHr. With this choice ofη the
problem arises that the formal flow equation, Eq. (2.45), does not correspond to a closed
set of differential equations for the matrix elements of the Hamiltonian. This is due to the
generation of new interaction terms when performing the commutators. Therefore, one
usually has to truncate the system of flow equations.

Applying this scheme to the polaron one chooses forη(l)

η(l) = [H0(l) +HB(l), HV (l)]− (2.47)

with H0(0) = H0, HB(0) = HB andHV (0) = HV . The generated set of differen-
tial equations is truncated as in Ref. [49], where this approximation proved sufficient to
explain the effective interaction between electrons. By using this truncation we neglect
double phonon processes, thusH0(l), HB(l) andHV (l) are given as in Eqs. (2.1) - (2.3),
but with l dependent coefficientsεk(l), ω(l) andMk,q(l). In general, we expect this ap-
proximation to be valid at least for small couplingsα. In the thermodynamic limit the
phonon frequencies are not renormalized:ω(l) = ω = const.. The flow equations read

d

dl
εk(l) = −

∑
q

2∆k,q(l)M
2
k,q(l) , (2.48)

d

dl
Mk,q(l) = −∆2

k,q(l)Mk,q(l) , (2.49)

where we again used the definition in Eq. (2.6). Note that a(k, q) dependence of the
couplingsMk,q is generated in thel flow. When we examined the three-dimensional
polaron using this formalism [48], the ground-state was in the focus of interest. Here,
we are only interested in the ground-state energy and the effective mass of the (one-
dimensional) polaron. These quantities can directly be derived by integrating Eqs. (2.48)
and (2.49), as the renormalized energies are given byEk = liml→∞ εk(l). Eqs. (2.48) and
(2.49) can be solved approximately [48]. If we, for example, neglect thel dependence
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Figure 2.1: Ground-state energy of the polaron in the flow equations as a function of the
flow parameterl for α = 0.1, 0.3, 0.5 andD = 10.

of ∆k,q on the right-hand side, perturbation theory of first order is readily reproduced for
|k| <

√
2.

However, here we will solve the set of equations exactly using numerical methods. A
description of these methods is given in AppendixE.1. Theq integration in Eq. (2.48)
is performed using the extended trapezoidal rule. Accurate results are obtained for a
discretizationδq ≈ 0.15. Fig. 2.1 shows the solution forε0(l) for different coupling
strengthsα and the bandwidthD = 10.

The ground-state energyE0 as a function ofα for D = 10 is shown in Fig.2.2. One
recognizes that the result of the flow equations for the ground-state energy is even larger
than the result of the perturbation theory of first order. As both the result of perturbation
theory of first order and Feynman’s result are upper bounds for the ground-state energy,
one concludes that this standard approximation for the flow equations gives poor results
for the polaron’s energy. From Fig.2.3we see that this statement also holds for different
bandwidths.

Differentiating Eq. (2.48) twice with respect tok gives an equation for the inverse
effective mass of the polaron. Fig.2.4shows the solution ford2/dk2εk(l)|k=0 for different
coupling strengthsα and the bandwidthD = 10.

Theα dependence of the inverse effective mass1/m = liml→∞ d
2/dk2εk(l)|k=0 for

D = 10 is shown in Fig.2.5. The result of the flow equations for the effective mass is
larger than those of Feynman or Lee, Low and Pines. For couplings larger thanα ≈ 2
this method fails in calculating the mass, similarly to perturbation theory a singularity for
the mass is obtained. Varying the bandwidth the result of the flow equations stays close



2.2. FLOW EQUATIONS 17

0 1 2 3

α

−3

−2

−1

0

E0

Figure 2.2: Ground-state energy of the polaron as a function of the coupling constantα
for D = 10. Solid line: flow equations. Dashed and long-dashed lines: perturbation
theory of orderα andα2. Dotted line: Feynman’s method.
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Figure 2.3: Ground-state energy of the polaron as a function of the bandwidthD for
α = 0.5. Solid line: flow equations. Dashed and long-dashed lines: perturbation theory
of orderα andα2. Dotted line: Feynman’s method.
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flow parameterl for α = 0.1, 0.3, 0.5 andD = 10.
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Figure 2.5: Inverse effective mass of the polaron as a function of the coupling constantα
for D = 10. Solid line: flow equations. Dashed and long-dashed lines: perturbation
theory of orderα andα2. Dotted line: Feynman’s method. Dot-dashed line: result of Lee,
Low and Pines.
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Figure 2.6: Inverse effective mass of the polaron as a function of the bandwidthD for
α = 0.5. Solid line: flow equations. Dashed and long-dashed lines: perturbation theory
of orderα andα2. Dotted line: Feynman’s method. Dot-dashed line: result of Lee, Low
and Pines.

to that of perturbation theory of first order (see Fig.2.6).

2.3 Real-time renormalization-group for the polaron

Since we deal with vanishing temperature, we may use the Gell-Mann-Low theorem to
determine the renormalized energiesEk. Thus, we assume that the interaction is turned on
adiabatically in the intervalt ∈]−∞, 0] and that there is no crossing of the ground-states
during this process. We therefore consider theS matrix

S = lim
t0→∞

Te
−i
∫ t
−t0

dtH

= lim
t0→∞

e−i(H0+HB)tTe
−i
∫ t
−t0

dt′HV (t′)
e−i(H0+HB)t0 (2.50)

acting on the free ground-state with momentumk, c†k|0〉. Here,T denotes time order-
ing andHV (t) is the interaction part of the Hamiltonian taken in the interaction picture
with respect toH0 + HB. The idea of the RTRG is to leave this object invariant while
successively integrating out diagrams of different time scales. Thereby a renormalized
propagator is generated. Its matrix elements correspond to the renormalized energies ac-
cording to the Gell-Mann-Low theorem. The general formulation of the RTRG will be
explained in detail in Section3.2. Thus, here we only mention the main points, which this
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Figure 2.7: Scheme of the real-time renormalization-group. With increasing cutofftc (in-
dicated by the arrows) the correlation functions (dashed lines) are successively accounted
for by renormalized energies and coupling constants (thick lines and dots).

systematic approach is based on. The procedure is schematically shown in Fig.2.7 [12].
For a given cutofftc in time space, we allow only for correlation functions of the phonons
with a time scalet > tc. At zero temperature, the latter are given by

〈(a†−q + aq)(t)(a
†
q + a−q)〉 = e−iωt . (2.51)

All correlation functions (dashed lines in Fig.2.7) with time scales shorter thantc are
accounted for by renormalized energies and coupling constants, which then aretc de-
pendent. These are represented by thick lines and dots in Fig.2.7. A change oftc to
tc + dtc is made by applying three steps [13]: (i) expanding the second exponential in
Eq. (2.50) and introducing normal ordering for the phonon operators using Wick’s theo-
rem, (ii) integrating over the contractions with a time scale betweentc andtc + dtc and
(iii) resumming the operators in an exponential form. Consequently, these operators will
not be limited to zero-phonon and one-phonon operators any more. But we shall see that
a good approximation is achieved for not too large coupling constants, if we neglect dou-
ble or higher-order vertex operators. Within this method we only need to consider the
operators of the electronic system, as the phonon degrees of freedom are integrated out in
eachtc step. For the polaron problem we writeHV =

∑
q Gq(a

†
−q + aq). Thus we start

with tc = 0 involving the operators

H0 =
∑
k

εkc
†
kck , (2.52)

Gq =
∑
k

Mc†k+qck (2.53)
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as in Eqs. (2.1) and (2.3) and end up with an effective Hamiltonian fortc → ∞. We
obtain the following RG equations

dH0

dtc
= −ie−iωtc

∑
q

eiH0tcGqe
−iH0tcG−q , (2.54)

dGq

dtc
= −e−iωtc

∑
q′

∫ tc

0

dt

(
eiH0tGq′e

−iH0tGqe
iH0(t−tc)G−q′e

−iH0(t−tc)

−Gqe
iH0tGq′e

−iH0tcG−q′e
−iH0(t−tc)

)
. (2.55)

The second term in Eq. (2.55) is a correction term. It is due to the fact that a time interval
connected with a contraction becomes a single point in time at one RG step. In the next
step this leads to the generation of new terms which were previously not present, and
therefore, must be subtracted. Taking the corresponding matrix elements of Eqs. (2.54)
and (2.55) we obtain

dεk
dtc

= −i
∑
q

e−i∆k,qtcMk+q,−qMk,q , (2.56)

dMk,q

dtc
=

∑
q′

(
Mk+q+q′,−q′Mk+q′,qMk,q′

e−i∆k+q,q′ tc − e−i∆k,q′ tc

i(∆k+q,q′ −∆k,q′)

+ Mk,qMk+q′,−q′Mk,q′tce
−i∆k,q′ tc

)
(2.57)

with the tc dependent coefficientsεk(tc) andMk,q(tc). Again the energy∆k,q is defined
by Eq. (2.6). The (k, q) dependence of the interaction coefficients is generated during
the RG flow. The level broadening is included in Eq. (2.56) since all energies become
complex. The terms that generate the double vertex operators are of fourth order inM .
Therefore Eqs. (2.56) and (2.57) contain the orderM4 exactly. Thus, the renormalized
energiesEk = limtc→∞ εk(tc) are correct up to orderα2. In comparison the method of
Lee, Low and Pines, Feynman’s approach and the flow equations lead to results which
are correct up to first order inα only. If one neglects thetc dependence ofMk,q and∆k,q

and introduces the regularizatione−ηtc , Eq. (2.56) reproduces perturbation theory of first
order for|k| <

√
2.

To go beyond perturbation theory we solve the ordinary differential equations (2.56)
and (2.57) numerically (AppendixE.1). For the integrals a discretizationδq ≈ 0.15 is
again sufficient. Regarding the oscillating terms in these equations one recognizes that
given a certain discretization inq space one obtains large errors with increasing timetc.
To avoid this∆k,q andMk,q have been interpolated inq space (see also AppendixE.3).
Unfortunately Eqs. (2.56) and (2.57) do not show a convergent behaviour for the ground-
state energy fortc → ∞ (see Fig.2.8, where thetc flow of ε0 is shown for different
α andD = 10). One reason is that there are undamped modes corresponding to high
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Figure 2.8: Ground-state energy of the polaron in the RTRG as a function oftc
for α = 0.1, 0.3, 0.5 andD = 10.

excitations in theq sums leading to increasing effects on the ground-state energy. In this
context another problem arises from the fact that the correlation function in Eq. (2.51)
is not decaying. As a consequence, oscillations decay as a function oftc but reoccur
for sufficiently largetc. For other correlation functions, e.g. for acoustic phonons, the
numerics is expected to be more stable.

The idea of our solution is to neglect further renormalizaton effects of both∆k,q and
Mk,q for tc larger than a certain pointtf [24]. By doing this we obtain a damped oscillation
of the ground-state energyε0 in tc space fortc > tf . Therefore Eq. (2.56) can be integrated
analytically which leads to

E0 ≈ ε0(tf )−
∑
q

Mq,−q(tf )M0,q(tf )

∆0,q(tf )
e−i∆0,q(tf )tf . (2.58)

In Fig. 2.9 the solution of Eq. (2.58) is shown as a function oftf for differentα. The
problems mentioned above make it necessary to choose a finitetf where the renormal-
ization effects beyond perturbation theory are contained but the numerical instabilities do
not yet occur. We choosetf = 2.5 for all values ofα. At this point only low excitations
(∆ < 0.4) are not integrated out yet. Since∆ ∼ 1 sets the scale for the first excited state,
it is reasonable to assume that excited states do not have further important renormalization
effects. The change ofE0 betweentf = 2 andtf = 3 is approximately1% for α = 0.5.

The α dependence ofE0 is shown in Fig.2.10. One notices that forα . 1 we
obtain lower values for the ground-state energy than those of both Feynman’s method and
perturbation theory of second order. However, note that our result does not follow from
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Figure 2.9: Ground-state energy of the polaron in the RTRG as a function oftf
for α = 0.1, 0.3, 0.5 andD = 10.

a variational principle and therefore does not give an upper bound for the energy. For
larger couplings our method is no longer reliable and yields worse results (see Fig.2.10),
which is not surprising since we neglected double and higher-order vertex operators. We
also calculatedE0 for different bandwidthsD. As one can see in Fig.2.11we find lower
ground-state energies for all bandwidths.

To calculate the inverse effective mass one may again (as in Section2.2) differentiate
the flow equation for the energy, Eq. (2.56), twice with respect tok. However, the numer-
ical solution of the resulting equation exhibits an even worse convergence than in case of
the energy. This behaviour can easily be understood in the perturbative solution of first
order, where one again neglects thetc dependence ofMk,q and∆k,q. The differentiation
leads to oscillations with increasing amplitude. To reproduce the result of perturbation
theory one again has to introduce the regularizatione−ηtc .

For the numerical solution of the differential equations, we again introduce a finitetf
to avoid these problems. However, the accuracy for the mass is worse than for the energy.
For α = 0.5 the change of1/m is approximately7% betweentf = 2 andtf = 3, see
Fig. 2.12.

The results as a function ofα are shown in Fig.2.13. For small couplings (α . 0.5),
we find a value for the mass between the variational principle of Feynman and the one of
Lee, Low and Pines. For larger couplings the numerical solution is too unstable to make
definite statements from the RG approach. From Fig.2.14we see that our mass depends
only slightly on the bandwidth.
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Figure 2.10: Ground-state energy of the polaron as a function of the coupling constantα
for D = 10. Solid line: RTRG withtf = 2.5. Dashed and long-dashed line: perturbation
theory of orderα andα2. Dotted line: Feynman’s method.
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Figure 2.11: Ground-state energy of the polaron as a function of the bandwidthD for
α = 0.5. Solid line: RTRG withtf = 2.5. Dashed and long-dashed line: perturbation
theory of orderα andα2. Dotted line: Feynman’s method.
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Figure 2.12: Inverse effective mass of the polaron in the RTRG as a function oftf for
α = 0.1, 0.3, 0.5 andD = 10.
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Figure 2.13: Inverse effective mass of the polaron as a function of the coupling constantα
for D = 10. Solid line: RTRG withtf = 2.5. Dashed and long-dashed line: perturbation
theory of orderα andα2. Dotted line: Feynman’s method. Dot-dashed line: result of Lee,
Low and Pines.
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Figure 2.14: Inverse effective mass of the polaron as a function of the bandwidthD for
α = 0.5. Solid line: RTRG withtf = 2.5. Dashed and long-dashed line: perturbation
theory of orderα andα2. Dotted line: Feynman’s method. Dot-dashed line: result of Lee,
Low and Pines.

2.4 Discussion

In summary, we applied two different renormalization-group methods to the
one-dimensional polaron problem. We also generalized the methods of Lee, Low and
Pines as well as that of Feynman to the one-dimensional case with finite bandwidth. We
compared the values for the ground-state energy and the effective mass, where we also
considered the results of perturbation theory. The following conclusions can be drawn:

If in the formalism of the flow equations one uses the approximation introduced in
Ref. [49], Eqs. (2.48) and (2.49) are obtained. They are not sufficient to analyze the
polaron beyond perturbation theory. In fact, they yield even worse results than simple
perturbation theory of first order. To improve the performance of this formalism one may,
of course, extend the set of flow equations, i.e. account for double phonon processes [48].

In contrast, the real-time renormalization-group method is able to study the polaron
problem beyond perturbation theory. However, due to the fact, that the bath correlation
function is not decaying, we did not obtain a convergent solution of the RG equations for
tc →∞. We applied a physically motivated approximation by introducing the parameter
tf , which made it possible to obtain results within relatively small errors [24]. For the ef-
fective mass the accuracy is generally worse than for the ground-state energy. The RTRG
gives reliable results only for not too large couplings:α . 1 concerning the ground-state
energy andα . 0.5 regarding the effective mass. The restriction inα is due to the ne-
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glecting of double and higher-order vertex operators. In this context note that it is difficult
to judge the performance of the RTRG for the polaron, because there are no exact results
which could serve as a test for our approach. In summary, it remains unsatisfactory that
the reliability of the RTRG method for the polaron model suffers from the convergence
problems. Additionally, due to the continuous electron spectrum a numerical calculation
of the reduced density matrix is not viable.

We will show in the next chapter that this method works much better with damped
bath correlations. Furthermore, in the next chapter we will study a problem with only
two degrees of freedom in the local system. Thus the computational effort needed will
be much less in this case, so that we will be able to use this approach to calculate the
time-dependent reduced density matrix starting from an arbitrary noneqilibrium state.





Chapter 3

The spin-boson model

The spin-boson model (SBM) is one of the most fundamental quantum dissipative sys-
tems [27] (for a review, see Ref. [1]). It models a particle in a double-well potential with
a finite tunnel amplitude coupled to a (bosonic) heat bath of harmonic oscillators, see
Fig. 3.1. For various physical and chemical systems this rather simple model is adequate
and captures the essential physics. For instance the model can be applied to electron trans-
fer reactions, where an electron tunnels from a donor site to an acceptor site in a polarized
environment interacting with the electron [53]. Another example is quantum tunneling
between flux states in a SQUID [54]. Other applications include tunneling of light parti-
cles or defects in solids [55, 56] and electron tunneling between quantum dots [30]. An
example of the latter and its relation to the spin-boson model will be studied in Chapter4.
The strong interest in the spin-boson model is due to the fact that it provides a nontrivial
description of dissipation in these quantum systems.

We study the dynamics of the spin-boson model using the real-time renormalization-
group method. In Chapter2 we used this method to study an equilibrium problem for
vanishing temperature, see also Refs. [13, 24]. Now we apply its nonequilibrium formu-
lation for arbitrary temperature [12, 14] to the spin-boson model. For the first time we use
this approach to calculate the time-dependent reduced density matrix, and, furthermore
generalize the formalism to the calculation of equilibrium correlation functions [25, 26].

We present a solution of the complete dynamics of the reduced density matrix of the
spin-boson model, starting from an arbitrary nonequilibrium state. This is achieved for
arbitrary parameters with the only restriction of not too large coupling strengths. We
also determine the oscillation frequency of the diagonal elements, and in the asymptotic
regime we find an exponential decay of the elements of the reduced density matrix in-
volving decay constants, which are identified with a dephasing time and a relaxation
time. Additionally, we calculate the spin susceptibility as well as equilibrium correla-
tion functions. Comparisons to the noninteracting blip approximation (NIBA) [27] and
to results for the anisotropic Kondo model [28, 29] are made. In contrast to the NIBA
our analysis provides the complete dynamics of the spin-boson model, i.e. all elements
of the time-dependent reduced density matrix are determined. Furthermore, we obtain
accurate results in a parameter regime, where the NIBA fails. Generally, our calculation

29
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V0

∆

|u> |d>
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gq
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Figure 3.1: Double-well potential for a particle coupled to a bosonic bath (dashed lines).
gq: coupling strength to the coordinate of theqth oscillator of the bath,∆: tunnel matrix
element,ε: bias,ω0: lowest excitation energies,V0: potential barrier. Truncating the
problem to the ground-states|u〉 and|d〉 leads to the spin-boson model.

allows a comparison to the anisotropic Kondo model in a parameter regime, which is not
accessible by many other methods. To demonstrate the reliability of our results we show
the consistency with chromostochastic quantum dynamics (CSQD) [57], and check the
Shiba-relation as well as the scaling behaviour [25, 26].

3.1 Model Hamiltonian

The general Hamiltonian of a local system with the generalized coordinatez, which is
coupled to an environment consisting of harmonic oscillators with coordinatesxq, can be
written as

H =
p2
z

2M
+ V (z) +

1

2

∑
q

(
p2
q

mq

+mqω
2
q

(
xq −

cq
mqω2

q

z

)2
)
. (3.1)

Here, the local system is characterized by the massM and the general potentialV (z).
Furthermore, we introducedmq andωq as the masses and frequencies of the oscillators.
Finally, we assumed an interaction which is linear in bothxq andz involving the coupling
constantscq. This model is known as Caldeira-Leggett model [58].

Let us now specialize to the spin-boson model, where the local system is given by a
particle in a double-well potential (Fig.3.1). According to Eq. (3.1) we write the spin-
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boson Hamiltonian as the sumH = H0 + HB + HV , whereH0 is the Hamiltonian of
the particle in the double-well potential,HB the Hamiltonian of the oscillators in the bath
andHV the contribution of the interaction between those systems. In the following we set
~ = kB = 1.

The two ground-states for the particle in the double-well potential are denoted by
|u〉 and |d〉. Apart from the tunnel matrix element∆, which follows from a Wentzel-
Kramers-Brillouin calculation, there may also be a finite energy differenceε. If for the
potential barrierV0, the lowest excitation energiesω0 and the bath temperatureT the
relationV0 � ω0 � ∆, ε, T holds, we may use a tight-binding model to describe the
problem. Thereby the local system can be represented by only two states:|u〉 and |d〉.
Using pseudospin language we then obtain the Hamiltonian for the two-state system as

H0 = −∆

2
σx +

ε

2
σz , (3.2)

whereσx andσz are the usual Pauli matrices.
The bath part of the Hamiltonian is the same as in the Caldeira-Leggett model (see

Eq. (3.1)).

HB =
1

2

∑
q

(
p2
q

mq

+mqω
2
qx

2
q

)
. (3.3)

For the interaction part we write

HV = σz
∑
q

√
mqωq

2
gqxq . (3.4)

The term which is proportional toz2 in Eq. (3.1) is now absorbed in the local potential
V (z), as we assumed Gaussian statistics for the fluctuating force

∑
q cqxq(t) [58, 1]. Fur-

thermore, we introduced a new coupling constantgq, which contains the dependence of
HV on the spatial distance between the two wells of the potential. Eventually, quantizing
the coordinatesxq and the momentapq yields

HB =
∑
q

ωqa
†
qaq , (3.5)

HV =
σz
2

∑
q

gq(a
†
q + aq) , (3.6)

wherea†q (aq) creates (annihilates) a boson with energyωq. The coupling to the environ-
ment is completely defined by the spectral density

J(ω) = π
∑
q

g2
qδ(ω − ωq) , (3.7)

which is usually parametrized by

J(ω) = 2παωn+1e−ω/D . (3.8)
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Figure 3.2: Renormalization-group flow of the parameters of the spin-boson model:∆/ωc
andα. The arrows indicate the direction of decreasingωc.

The casen = 0 is referred to as the Ohmic case, whereasn > (<)1 corresponds to the
super(sub)ohmic case. In the following we want to consider the Ohmic bath, which most
studies of the spin-boson model deal with. Therefore the coupling to the bath is now
characterized by the dimensionless coupling constantα and the high-energy cutoffD.

An exact solution of the spin-boson model is only known forα = 1/2 [59] which is
referred to as the Toulouse limit. From the Poor Man’s scaling equations of the anisotropic
Kondo model (see AppendixB) one obtains for the running couplings of the spin-boson
model [28, 4]

dα

d lnωc
= α

(
∆

ωc

)2

+O
(

∆

ωc

)4

, (3.9)

d (∆/ωc)

d lnωc
= −(1− α)

(
∆

ωc

)
+O

(
∆

ωc

)3

. (3.10)

The initial conditions are fixed atωc = D, thenα and∆ are the parameters of the bare
Hamiltonian. For decreasing high-energy cutoffωc the renormalization-group flow is
shown in Fig.3.2. In the regionA - where the coupling constantα is always larger than
1 - we obtain∆/ωc → 0 for T = 0. Thus the corresponding parameters give rise to
localization. The tunneling regime is found in the regionsB andC. There the flow
of the parameters yieldsα → 0 and∆/ωc → ∞, which can be shown by the numerical
renormalization-group or the Bethe ansatz. AtT = 0 the crossover energy scale is defined
by ∆r = ∆(ω̃c) with ω̃c = ∆(ω̃c). In regionB - where the coupling constantα is always
less than1 - one can approximately integrate Eq. (3.10) [28]. This yields

∆r/∆ = (∆/D)α/(1−α) , (3.11)
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where∆ is the tunnel matrix element of the bare Hamiltonian. The renormalized tunnel
matrix element∆r is the relevant energy scale of the problem. In the scaling limit, which
is defined by

D →∞ , ∆r = const , (3.12)

physical quantities only depend on∆r, i.e. there is no otherD dependence. This be-
haviour is referred to as universal [1]. For T = ε = 0 there is a transition from coherent
oscillations to a pure incoherent decay of〈σz(t)〉 at α = 1/2 [27]. Concerning equi-
librium correlation functions the long-time behaviour respectively low-frequency limit is
analytically known for vanishing temperature from the Shiba-relation [60] (see Subsec-
tion 3.4.4).

Among the approximate solutions of the spin-boson model perturbative approaches
in α [61] have the important disadvantage that they disregard the renormalization of the
tunnel matrix element. Most of the studies on the problem are based on the influence func-
tional method of Feynman and Vernon [62], like e.g. the NIBA [27], which is explained in
AppendixA. The NIBA contains the correct energy scale∆r of the problem. However,
it does not give the correct long-time behaviour [63]. Furthermore, at low temperature
it applies only to the diagonal matrix elements of the reduced density matrixp(t) and
breaks down for the biased caseε 6= 0. Recent real-time quantum Monte Carlo (QMC)
simulations [64, 57, 65] provide also reliable information on the nondiagonal elements of
p(t). But as these methods suffer from the dynamical sign problem, they are quite time-
consuming and have not been able to check the correct long-time behaviour of the corre-
lation functions yet. The flow equation method of Wegner (see Chapter2) has reproduced
the Shiba-relation for the unbiased case and coupling strengths up toα ∼ 0.025 − 0.05
(with an error of3 − 10%) [66], but there only spectral properties of the system have
been addressed. Other approaches try to use a mapping of the spin-boson model on the
anisotropic Kondo model [67, 68, 69] (see AppendixB), and solve the latter exactly using
the numerical renormalization-group (NRG) [6, 70], the Bethe ansatz [28], or the con-
formal field theory (CFT) [29]. However, the NRG and the Bethe ansatz provide only
spectral properties or dynamics at very short time scales [71], and CFT yields a solution
only for the diagonal elements ofp(t) in case ofε = 0. Furthermore, and most impor-
tantly, the mapping on the Kondo model cannot be proven rigorously, and the relation of
the parameters is not precisely known [27, 72]. It is known that the mapping is incorrect
for finite high-energy cutoffD, but it is at least established that the scaling behaviour in
the limit of largeD agrees with that of the spin-boson model [66, 6, 70, 29].

3.2 Real-time renormalization-group formalism

We use the RTRG method to investigate the spin-boson model. Not only the correct
renormalized tunnel matrix element∆r is contained in this approach, but we can also
calculate the dynamics of the two-state system for an arbitrary initial state and consider
arbitrary parameters for not too large couplingsα. In the following analysis the quan-
tities of interest are the time-dependent reduced density matrix, the static susceptibility
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and equilibrium correlation functions. In contrast to Chapter2, here we need the full
nonequilibrium formulation of the method [12], which is explained in the following. The
derivation of the formalism is rather general and can readily be transferred to any other
quantum dissipative system, where the coupling is linear in the bath field operators.

In order to calculate the reduced density matrixp(t) one performs two main steps.
First one expressesp(t) using a kinetic equation, which involves an integral kernelΣ
accounting for dissipation. This reduces the problem to that of calculatingΣ. In the
second step we explain the RTRG method, which provides a set of differential equations
determiningΣ.

In case of equilibrium correlation functions, initial correlations give rise to another
integral kernelΣD, for which we derive additional RG equations.

3.2.1 Kinetic equation

The dynamics of the density matrixρ(t) is given by the von Neumann equation

ρ̇ = −i[H, ρ] . (3.13)

For the time evolution of the reduced density matrixp(t) of the local system this leads to

p(t) = TrB
[
e−iHtp(0)ρeqB e

iHt
]
, (3.14)

whereTrB denotes the trace over the bath degrees of freedom.p(0) is the initial density
matrix of the two-state system andρeqB = exp(−HB/T ) the equilibrium density matrix
of the bath. We assumed here, that initially, the two-state system is decoupled, and the
bath is in thermal equilibrium,ρ(0) = p(0)ρeqB . At t = 0, the coupling is turned on
instantaneously, and the reduced density matrix of the two-state system will evolve into a
stationary state. This preparation corresponds to a rarely encountered physical situation.
It may be realized, however, in electron transfer reactions where photoinjection suddenly
gives rise to a particular electronic donor state. One may also think of a preparation
which is physically more relevant, e.g. where one applies a strong biasε� 1 for t < 0 to
localize the particle in the right well. In this case the particle would be in equilibrium with
the environment. These initial correlations cannot be represented by a factorized form of
ρ(0) any more. However, it turns out that for the Ohmic bath the initial correlations are
negligible forD � ∆ [1].

As in Refs. [12, 14] we expand the forward/backward propagatorsexp(∓iHt) in the
interactionHV , and perform the traceTrB by applying Wick’s theorem with respect to the
bath field operators. All terms can be represented diagrammatically as shown in Fig.3.3.
The vertex operators−iσz/2 are ordered along a closed Keldysh contour. They are con-
nected in pairs by the contractions (dashed lines in Fig.3.3)

γ(t) = TrB [j(t)jρeqB ] , (3.15)

where we used the interaction picture with respect toHB for the operatorj

j =
∑
q

gq(a
†
q + aq) . (3.16)
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Figure 3.3: Example of a diagram on the Keldysh contour for the reduced density matrix
p(t). The dashed lines represent the bath contractions.

By definition
γ(−t) = γ∗(t) (3.17)

holds. From Eqs. (3.7) and (3.8) one obtains forγ(t) = R(t) + iS(t):

R(t) = −2αT
d

dt
Im

[
1

T/D + itT
− 2ψ(1 + T/D + itT )

]
, (3.18)

S(t) = −2αIm

[
1

(t− i/D)2

]
. (3.19)

Here, we used the logarithmic derivative of theΓ function [73]

ψ(x) =
d

dx
ln Γ(x) .

For the physically relevant situationD � T this yields for the real part ofγ(t)

R(t) = −2αRe

[
(πT )2 1

sinh2(πT (t− i/D))

]
. (3.20)

The solid line in Fig.3.3 represents free time evolution of the two-state system. As a
result, we have obtained an effective theory of the local system, while the bath has been
integrated out.

The type of contractions, which connect vertices lying only on one, the forward or
the backward, propagator, has also been present in case of the equilibrium considera-
tions regarding the polaron. In contrast, the contraction lines connecting the forward with
the backward propagator do not occur in any equilibrium theory but arise for a Keldysh
contour in a natural way. Such contractions lead to non-Hamiltonian dynamics for the re-
duced density matrix, and therefore, account for dissipation. Formally these two kinds of
contractions do not have to be distinguished, when one views the forward and backward
propagator as one double line, see Fig.3.4. The price is that a “state” on the double line
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Figure 3.4: The same as Fig.3.3but the two lines taken together.

has to be specified by two states, one for the upper (forward) and one for the lower (back-
ward) propagator. Formally this leads to a superoperator notation, where one introduces
the Liouvillian L = L0 + LB + LV , which acts on an usual operatorO by taking the
commutator[·, ·]− with the Hamiltonian:

LO = [H,O]− (L0O = [H0, O]− , LBO = [HB, O]− , LVO = [HV , O]− ) . (3.21)

In Eq. (3.14) the Liouvillian acts on the density matrixρ:

p(t) = TrB
[
e−iLtp(0)ρeqB

]
= TrB

[
e−i(L0+LB)tTe−i

∫ t
0 dt
′ LV (t′)p(0)ρeqB

]
= TrB

[
e−iL0tTe−i

∫ t
0 dt
′ LV (t′)p(0)ρeqB

]
, (3.22)

whereT denotes the time ordering operator. ForLV (t) we used the interaction picture
with respect toL0 + LB. Expanding Eq. (3.22) in LV and performing the trace using
Wick’s theorem again leads to the effective theory for the local system shown in Fig.3.4.
The free propagation between the vertices is given by the propagatorexp(−iL0t). For
the spin-boson modelL0 corresponds to a(4 × 4)-matrix, and the elements(L0)s1s′1,s2s′2
are labeled by the two states of the local system withs1/2 (s′1/2) referring to the forward
(backward) propagator. The interaction partLV can be written as

LV =
∑
p=±

GpJp . (3.23)

The superoperatorsGp andJp are defined by

G+O =
σz
2
O ,

G−O = −Oσz
2
, (3.24)

J+O = jO ,

J−O = Oj , (3.25)
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= +p(t)  = Σ

Figure 3.5: Iterative scheme for the reduced density matrixp(t). The two lines of the
Keldysh contour are put together to only one line. The thick line represents the exact time
evolution ofp(t), whereas the thin line corresponds to free propagation.Σ represents all
irreducible diagrams with the outermost vertices att2 andt1.

whereO again is an usual arbitrary operator. Thus, in Fig.3.4we deal with the interaction
vertices−iGp, wherep = ± denotes whether the vertex acts on the forward/backward
propagator. The contractions connecting the verticesGp1 andGp2 also depend onp1, p2:

γp1,p2(t) = TrB [Jp1(t)Jp2ρeqB ] . (3.26)

This can be expressed usingγ(t) defined in Eq. (3.15):

γp,+(t) = γ(t) , γp,−(t) = γ(−t) = γ∗(t) . (3.27)

To derive a kinetic equation we call diagrams irreducible if any vertical cut crosses at
least one dashed line. Fig.3.4 (respectively Fig.3.3) shows four such irreducible blocks
(a)-(d). We denote the sum over all irreducible diagrams with the outermost vertices at
the time pointst2 andt1 (t1 > t2) by the kernelΣ(t1 − t2). Diagrammatically,p(t) is
then given by all possible sequences of such kernelsΣ. In Fig. 3.5 an iteration scheme
for p(t) is shown (the double line of the Keldysh contour is now represented by only one
line). Here,p(t) is represented by the thick line, and the iteration starts with the free
propagation, which corresponds to the thin line. The iterative solution is formally given
by the self-consistent equation

p(t) = e−iL0tp(0) +

∫ t

0

dt1

∫ t1

0

dt2 e
−iL0(t−t1)Σ(t1 − t2)p(t2) (3.28)

with the superoperatorΣ:

Σ(t1 − t2) = (−i)2TrB

[
LV e

−iL0t1Te−i
∫ t1
t2
dtLV (t)eiL0t2LV ρ

eq
B

]
irred.

. (3.29)

Here the index “irred.” indicates that only irreducible diagrams are taken into account.
Differentiating Eq. (3.28) with respect to timet leads to the standard kinetic equation
[12, 14]

ṗ(t) + iL0p(t) =

∫ t

0

dt′Σ(t− t′)p(t′) . (3.30)

The left-hand side of Eq. (3.30) describes the time evolution of the two-state system in
the absence of a coupling to the bath, whereas the right-hand side contains the dissi-
pative part which drives the reduced density matrix into a stationary state. Because of
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limt→∞ p(t) = pst we may take the Laplace transform ofp(t) in the upper half plane, i.e.
for Imz > 0. With

p(z) =

∫ ∞
0

dt eiztp(t) , Σ(z) =

∫ ∞
0

dt eiztΣ(t) , (3.31)

we get an explicit equation forp:

p(z) = Π(z)p(0) , Π(z) =
i

z − L0 − iΣ(z)
. (3.32)

Thus, the knowledge ofΣ(z) provides the full time evolution of the reduced density ma-
trix. The stationary solutionpst follows from

pst = −i lim
z→0

zp(z) . (3.33)

This yields
[L0 + iΣ(z = 0)]pst = 0 . (3.34)

For the spin-boson model we also calculate the static susceptibilityχ0, which is defined
as

χ0 = − d

dε
Tr0 [σzpst] , (3.35)

whereTr0 denotes the trace over the local degrees of freedom.

3.2.2 RTRG method

Perturbative results for the spin-boson model (e.g. following from Redfield theory [61])
can be recovered by calculating the kernelΣ(z) up to first order in the couplingα. The
aim of the present study, however, is to go beyond and calculate the kernel nonpertur-
batively by a systematic RG procedure. The idea is to integrate out all contraction lines
one after another, as we have already outlined in Section2.3. This is accounted for by
both a renormalized kernelΣ(z) and a renormalized propagator and vertices. We formally
introduce the time scaletc, which the bath contractions depend on:

γp1,p2(t, tc) = γp1,p2(t)q(t, tc) , t > 0 . (3.36)

Starting withtc = 0 the RG flow is determined by the cutoff-functionq(t, tc). The stan-
dard choice ofq(t, tc) is the sharp cutoff [13, 14, 24]

q(t, tc) = Θ(t− tc) . (3.37)

This choice has already been applied in Section2.3. With this form ofγp1,p2(t, tc) the RG
flow can be described within the diagrammatic language. At a fixed value oftc all con-
tractions with a time scalet < tc have already been integrated out, which again reminds
us of the remarks in Section2.3. Thus, in Fig.3.4 (respectively Fig.3.3) the shortest
contraction line of each of the blocks (a)-(d) is integrated out first. In the diagrams (a)
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and (b) this leads to a renormalization ofL0, while in the blocks (c) and (d) a vertex
is renormalized. The contractions connecting the upper and the lower propagator (as in
(b)) may change the states on the upper and the lower propagator simultaneously. This
gives rise to rates, so that the renormalized LiouvillianL0 cannot be represented by a
commutator with a renormalized HamiltonianH0 any more, i.e.L0 6= [H0, ·] for tc > 0.
Thereby a non-Hamiltonian dynamics is generated. Correspondingly, due to diagrams as
(d), a renormalized vertex generally acts on both the forward and backward propagator
simultaneously. In the following we denote the rightmost (leftmost) vertex of the kernel
Σ(z) by Ap(z) (Bp(z)). They are renormalized in a different way thanGp and also be-
comez dependent fortc > 0. It should be emphasized that, although the definition of
the cutoff-function in Eqs. (3.36) and (3.37) has the advantage that it can be understood
in this rather simple picture, this choice is not necessary. Formally, one may think of an
arbitrary tc dependence of the functionγp1,p2(t, tc), which only has to fulfill the initial
condition

γp1,p2(t, tc = 0) = γp1,p2(t) . (3.38)

Furthermore, a convergent RG flow, where all diagrams are integrated out, can only be
expected for

lim
tc→∞

γp1,p2(t, tc) = 0 . (3.39)

Note that for the spin-boson model the above equation is fulfilled for the sharp cutoff
defined in Eqs. (3.36) and (3.37), since

lim
t→∞

γp1,p2(t) = 0 . (3.40)

The renormalization for a general functionγp1,p2(t, tc) is based on the invariance of
Σ(z). Before introducingtc the kernelΣ is given by definition as some functionalF :

Σ(z) = F(L0, G
p, Ap, Bp, γp1,p2(t)) (3.41)

with Ap = Bp = Gp. Introducing the time scaletc we postulate the invariance of the
left-hand side of Eq. (3.41). This can be achieved by writing

Σ(z) = Σ(z, tc) + F(L0(tc), G
p(tc), A

p(z, tc), B
p(z, tc), γ

p1,p2(t, tc)) . (3.42)

With Eq. (3.38) the initial condition attc = 0 is then given by Eq. (3.41):

Σ(z, tc = 0) = 0 ,

L0(tc = 0) = L0 ,

Gp(tc = 0) = Ap(z, tc = 0) = Bp(z, tc = 0) = Gp . (3.43)

Because of Eq. (3.39) andF = O(γp1,p2(t, tc)) a solution is found fortc →∞:

Σ(z) = lim
tc→∞

Σ(z, tc) . (3.44)

In the following we derive the renormalization scheme determiningΣ(z, tc).
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When incrementing the cutofftc → tc + dtc, the left-hand side of Eq. (3.42) stays the
same, so that

0 = dΣ(z) +
∂F
∂L0

dL0 +
∑
p

(
∂F
∂Gp

dGp +
∂F

∂Ap(z)
dAp(z) +

∂F
∂Bp(z)

dBp(z)

)
+
∑
p1,p2

∫ ∞
0

dt
∂F

∂γp1,p2(t, tc)
dγp1,p2(t, tc) , (3.45)

where we have omitted thetc dependence of the objectsΣ(z, tc), L0(tc),Gp(tc),Ap(z, tc)
andBp(z, tc). According to Eqs. (3.29) and (3.31), a term contributing toF has the form

(−i)n
∫ ∞

0

dt1 . . .

∫ tn−2

0

dtn−1 A
p1(t1, z) · · · Gpj(tj) . . . G

pk(tk) · · · Bpn(0, z) , (3.46)

where “ ” represents a contraction. The time-dependence ofGp(t),Ap(t, z) andBp(t, z)
stems from the interaction picture respectively the Laplace transform, it is given by

Gp(t) = eiL0tGpe−iL0t ,

Ap(t, z) = eiztAp(z)e−iL0t ,

Bp(t, z) = eiL0tBp(z)e−izt .

The last term in Eq. (3.45) leads to terms where one contraction lineγp1,p2(t, tc) is re-
placed bydγp1,p2(t, tc). This will be indicated by a cross “× ”. We write Cj for
Gj ≡ Gpj(tj) respectivelyAj ≡ Apj(tj, z) or Bj ≡ Bpj(tj, z) and define a
“cross contraction” by

×
Cj · · ·Ck= −

dγpj ,pk

dtc
(tj − tk, tc)dtcCj · · ·Ck . (3.47)

We have included a minus sign in Eq. (3.47) in order to later identify a cross con-
traction with the renormalization contributionsdΣ(z), dL0, dG

p, dAp(z), dBp(z), so that
Eq. (3.45) is fulfilled.

Let us now consider terms of the form∫
t1>t2>t3>t4

dt2dt3 C1

×
G2G3 C4 . (3.48)

Such terms contribute to a renormalization ofL0, which corresponds to the second term in
Eq. (3.45). The propagation at a given time pointt∗ with t1 > t∗ > t4 for an infinitesimal
time intervaldt can be expanded

exp(−iL0dt) = 1− iL0dt . (3.49)

Thus, the second term in Eq. (3.45) gives rise to a contributiondL0(t∗) = eiL0t∗dL0e
−iL0t∗

to the renormalized Liouvillian at any time pointt∗. Regarding the above term (3.48) one
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has to choose this time pointt∗, which the cross contraction corresponds to. We fix that
time ordering variablet∗ at the smaller time point of the cross contraction. To do that
formally the term (3.48) is written as∫

t1>t2>t3>t4

dt2dt3 C1

×
G2G3 C4 =

∫
t1>t3>t4
t2>t3

dt2dt3 C1

×
G2G3 C4

−
∫

t2>t1>t3

dt2dt3 C1

×
G2G3 C4

+

∫
t2>t1>t4>t3

dt2dt3 C1

×
G2G3 C4 . (3.50)

The first term on the right-hand side of Eq. (3.50) is identified withdL0(t3). Including
the factors(−i) and the sums overp2, p3 we obtain

−idL0(t3) = (−i)2

∫ ∞
t3

dt2
∑
p2,p3

×
G2G3 . (3.51)

Shifting the integration boundaries leads to

−idL0(0) = (−i)2

∫ ∞
0

dt
∑
p1,p2

×
Gp1(t)Gp2(0) . (3.52)

The second term on the right-hand side of Eq. (3.50) is a correction term due to the choice
of the time ordering. Its occurence can be understood, if one multipliesdL0(t3) from the
left by some vertexC1. Then time ordering requirest1 > t3. Thus,t1 is decoupled from
the integration variablet2, and terms witht2 > t1 > t3 occur. Since such diagrams have
not been present before calculatingdL0, we have to substract the corresponding correction
term in Eq. (3.50). It is interpreted as a contribution to a renormalized vertexC1, where
C1 = G1 respectivelyC1 = A1. SinceB is the vertex with the smallest time argument in
Σ(z),C1 = B1 is not allowed. Thus, we account for this term using the third (respectively
fourth) term in Eq. (3.45). In these terms the vertexGp (Ap) is replaced bydGp (dAp).
Denoting the correction term bydC(c)

1 we obtain

−idC(c)
1 = −(−i)3

∫
t2>t1>t3

dt2dt3
∑
p2,p3

C1

×
G2G3 . (3.53)

The last term on the right-hand side of Eq. (3.50) is interpreted as a double vertex, since
both t1 andt4 lie within the contraction interval[t2, t3]. Such objects are neglected. A
further vertex renormalization stems from terms of the form∫

t2>t1>t3

dt2dt3
×

C2G1G3 . (3.54)
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If C2 = G2 this contributes todG1, whereasC2 = A2 leads to a renormalizationdA1.
Correspondingly we obtain a contributiondB1 from

∫
t2>t1>t3

dt2dt3
×

G2G1B3 . (3.55)

The terms (3.54) and (3.55) again cause correction terms. However, they correspond to
double and higher-order vertex objects, which are neglected. Thus, with shifted integra-
tion boundaries the total renormalization contributionsdGp, dAp anddBp read

− idGp(0) = (−i)
∫

∞>t>0>t′>−∞

dtdt′
∑
p1,p2

(
Gp(0)

×

Gp1(t)Gp2(t′)

−
×

Gp1(t)Gp(0)Gp2(t′)

)
, (3.56)

−idAp(0, z) = (−i)
∫

∞>t>0>t′>−∞

dtdt′
∑
p1,p2

(
Ap(0, z)

×

Gp1(t)Gp2(t′)

−
×

Ap1(t, z)Gp(0)Gp2(t′)

)
, (3.57)

−idBp(0, z) = −(−i)
∫

∞>t>0>t′>−∞

dtdt′
∑
p1,p2

×

Gp1(t)Gp(0)Bp2(t′, z) . (3.58)

The renormalization scheme is completed by the terms connecting boundary vertex ob-
jects. The terms

×
A1G2 and

×
G1B2

do not occur, since we consider only irreducible diagrams. The remaining term

×
A1B2

is accounted for by the renormalizationdΣ(z) in Eq. (3.45). With the definition of the
Laplace transform this yields

dΣ(z) = (−i)2

∫ ∞
0

dt
∑
p1,p2

×
Ap1(t, z)Bp2(0, z) . (3.59)

Using the definition in Eq. (3.47), the renormalization in Eq. (3.52) and Eqs. (3.56) -
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(3.59) leads to the RG equations

dL0

dtc
= i

∫ ∞
0

dt
∑
p1,p2

dγp1,p2

dtc
(t, tc)G

p1(t)Gp2(0) , (3.60)

dGp

dtc
=

∫ ∞
0

dt

∫ 0

−∞
dt′
∑
p1,p2

dγp1,p2

dtc
(t− t′, tc)

×
(
Gp1(t)Gp(0)−Gp(0)Gp1(t)

)
Gp2(t′) , (3.61)

dAp

dtc
(z) =

∫ ∞
0

dt

∫ 0

−∞
dt′
∑
p1,p2

dγp1,p2

dtc
(t− t′, tc)

×
(
Ap1(t, z)Gp(0)− Ap(0, z)Gp1(t)

)
Gp2(t′) , (3.62)

dBp

dtc
(z) =

∫ ∞
0

dt

∫ 0

−∞
dt′
∑
p1,p2

dγp1,p2

dtc
(t− t′, tc)

×Gp1(t)Gp(0)Bp2(t′, z) , (3.63)

dΣ

dtc
(z) =

∫ ∞
0

dt
∑
p1,p2

dγp1,p2

dtc
(t, tc)A

p1(t, z)Bp2(0, z) . (3.64)

The tc dependence of the functionγp1,p2(t, tc) will be chosen such that one integral on
the right-hand sides of the above equations becomes trivial (e.g. the sharp cutoff given in
Eqs. (3.36) and (3.37)). In principle, the integration variables only refer to the interaction
picture, so that we deal with pure differential equations.

3.2.3 Remarks

The first order contribution inα to the kernelΣ(z) may be obtained by neglecting thetc
dependence ofL0, Ap(z) andBp(z), i.e. integrating only Eq. (3.64). In the set of or-
dinary differential equations (3.60) - (3.64) double and higher-order vertex objects have
been neglected. Principally the RG scheme allows a systematic study of all higher-order
vertex objects - the additional terms arising from double vertex objects are shown in Ap-
pendixC. However, the number of terms increases substantially, and due to retardation
effects of the double vertices one deals with integro-differential equations. Thus, account-
ing for double vertex objects within this formalism increases the numerical effort rapidly.
However, in Chapter5 we will present a formulation of the RTRG, where double vertices
can also be included. At this stage we expect from the approximation a restriction in
the magnitude of the coupling constantα, since double vertex objects are of first order
in γ(t) respectivelyα. In fact, within Eqs. (3.60) - (3.64) the kernelΣ(z) is contained
exactly up to second order inα. The explicit range of validity of the approximation can-
not be derived directly from the formalism, but for the spin-boson model we will find
that our results are accurate forα . 0.1 − 0.2. In this context note, that although third
and higher orders ofα are not containedexactlywithin the approximation, by integrating
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Eqs. (3.60) - (3.64) we still account for diagrams ofall orders ofα. Thus, the RG equa-
tions naturally account for nonperturbative effects; for the spin-boson model we will cal-
culate the correct renormalized tunnel amplitude∆r in Section3.4.1. Furthermore, be-
cause we have not expanded the propagator in Eqs. (3.60) - (3.64), all time scales are
considered and we do not deal with any restriction regarding the eigenvalues ofL0tc.
Thus, in contrast to a Poor Man’s scaling approach (see Eqs. (3.9) and (3.10)) we do not
have to stop the RG flow at a finitetc (respectivelyωc in Eqs. (3.9) and (3.10)), but we
may consider the limit oftc →∞.

The initial values of the superoperators are given by Eq. (3.43). For the spin-boson
model we obtain from Eqs. (3.21) and (3.24) for the corresponding matrices

(L0)s1s′1,s2s′2
= δs′1,s′2 (H0)s1s2 − δs1,s2 (H0)s′2s′1

, (3.65)(
G+
)
s1s′1,s2s

′
2

= δs′1,s′2

(σz
2

)
s1s2

, (3.66)(
G−
)
s1s′1,s2s

′
2

= −δs1,s2
(σz

2

)
s′2s
′
1

. (3.67)

Due to Hermiticity of the Hamiltonian it follows

(iL0)s1s′1,s2s′2
= (iL0)∗s′1s1,s′2s2

, (3.68)

(iGp)s1s′1,s2s′2
= (iGp̄)

∗
s′1s1,s

′
2s2

, (3.69)

wherep̄ = ∓ for p = ±. Using Eq. (3.27) one finds that the above symmetry is conserved
by the flow equations (3.60) - (3.64). Thus, the symmetry relations (3.68) and (3.69) are
valid for all tc ≥ 0, and we also have

(iAp(z))s1s′1,s2s′2
= (iAp̄(−z∗))∗s′1s1,s′2s2 , (3.70)

(iBp(z))s1s′1,s2s′2
= (iBp̄(−z∗))∗s′1s1,s′2s2 , (3.71)

(Σ(z))s1s′1,s2s′2
= (Σ(−z∗))∗s′1s1,s′2s2 . (3.72)

From Eq. (3.32) one then concludes

p(z)ss′ = (p(−z∗))∗s′s (3.73)

for p(0) being Hermitian. Thus, the RG equations conserve the Hermiticity ofp(t). Fur-
thermore,

0 =
∑
s

(L0)ss,s1s2 =
∑
s,p

(Gp)ss,s1s2

=
∑
s,p

(Ap(z))ss,s1s2 =
∑
s,p

(Bp(z))ss,s1s2 =
∑
s

(Σ(z))ss,s1s2 (3.74)

is fulfilled for all tc ≥ 0. With the kinetic equation (3.30) one then finds the conservation
of probability: d/dtTr0p(t) = 0. Eqs. (3.74) also show that a solution of Eq. (3.34) for
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the stationary reduced density matrixpst exists, since the sum of two rows of the matrix
L0 +iΣ(z = 0) vanishes. Furthermore, because of Eqs. (3.68) and (3.72) this solution can
be chosen to be Hermitian. However, the eigenvaluesλi of pst do not necessarily satisfy
the relation0 ≤ λi ≤ 1 for all tc.

Finally, we note that the scheme we used for the polaron in Section2.3can be recov-
ered from Eqs. (3.60) and (3.61) by taking only the upper propagator, i.e.
p = p1 = p2 = +, and choosing the sharp cutoff defined in Eqs. (3.36) and (3.37).
To obtain Eqs. (2.54) and (2.55) we have to replace the superoperators by the correspond-
ing operators:L0 → H0 andGp → Gq. Note that in case of the polaron we had a
q dependent operatorGq in the electron system (see Eq. (2.53)). In the above language
this means that also the bath operatorj becomesq dependent. Thus, in such a situa-
tion the bath contractionγ formally depends on two indicesq1 andq2, which the right-
hand sides of the RG equations are then summed over. In case of the polaron we had
γq1,q2 = δq1,−q2 exp(−iωt). From this contraction there arose difficulties concerning the
convergence, because Eq. (3.39) was not fulfilled, sinceexp(−iωt) does not decay. Fur-
thermore, for the polaron we were not able to use the RTRG formalism on the Keldysh
contour, as the continuous electron spectrum led to a large size of the numerical problem.
Additionally, we had to perform the sums over the bath degrees of freedom numerically.
In contrast, the spin-boson model has only two degrees of freedom in the local system
and the bath degrees of freedom have been integrated out analytically when calculating
γ(t). Thus, for the spin-boson model we are able to use the full nonequilibrium version
of the RTRG, where we work on the Keldysh contour. We point out that already in case
of the polaron we accounted for level broadening respectively finite life-times, since the
energies became complex. On the Keldysh contour this physics is included by contraction
lines connecting vertices, which lie only on one propagator, i.e.p1 = p2 in γp1,p2 . The
complex energies already lead to the inequalityL0 6= [H0, ·] for tc > 0 [12]. This however
does not reflect rates invoked by dissipation. As explained in the preceding subsection this
phenomenon corresponds to diagrams, which connect the upper and the lower propagator,
since these terms may change the states on both propagators simultaneously. Thereby the
system is driven irreversibly into a stationary state.

3.2.4 Equilibrium correlation functions

For the calculation of equilibrium correlation functions the formalism explained above is
not sufficient, because then initial correlations are important. They did not occur above,
since we assumed a factorized initial state. In the following we develop a generalization
of the method, which accounts for such initial correlations. Let us consider an equilibrium
correlation function of the form

C(t) = Tr
[
[g(t), d]± ρ

eq
]
. (3.75)

Here,g andd are some operators for the local system and[·, ·]± denotes the anticommu-
tator respectively the commutator. This can be written as

C(t) = Tr
[
ge−iLtDρeq

]
(3.76)
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Figure 3.6: The diagrammatic expression for an equilibrium correlation function C(t),
whenD lies within aΣ block.

with the superoperatorD1. It acts on an operatorO by

DO = dO ±Od , (3.77)

where the sign depends on whether we consider the correlation function for the anticom-
mutator or the commutator ofg and d. The density matrix in equilibriumρeq can be
expressed by an evolution out of a factorized initial state att0 → −∞. Thus

C(t) = lim
t0→−∞

Tr0TrB

[
ge−iLtDe

−i
∫ 0
t0
dt′ L

p(t0)ρeqB

]
. (3.78)

To perform the trace over the bath degrees of freedom we proceed analogously to the
dicussion of the reduced density matrix. The diagrammatic expression for Eq. (3.78) is
again given by all possible sequences ofΣ blocks of irreducible diagrams. However, in
this case the superoperatorD may lie within such a block, i.e.D may be crossed by at
least one contraction line. This gives rise to a new object, which we callΣD [25, 26] (see
Fig. 3.6). It depends not only on the time difference between the last and the first vertex
(t1 − t2), but also on the time difference betweenD and the first vertex (0 − t2). We
write ΣD = ΣD(t1 − t2,−t2). To evaluate the diagrams in Fig.3.6 we take the Laplace
inversion of Eq. (3.32). This gives us an equation for the evolution of the reduced density
matrix out of a factorized state att = 0:

p(t) = Π(t)p(0) . (3.79)

Thus, the superoperatorΠ(t) accounts for all sequences ofΣ blocks in a time interval with
lengtht. We may now expressC(t) by superoperators acting only in the local system.
With limt0→−∞Π(t1 − t0)p(t0) = pst the total result forC(t) reads

C(t) = Tr0

[
gΠ(t)Dpst +

∫ t

0

dt1

∫ 0

−∞
dt2 gΠ(t− t1)ΣD(t1 − t2,−t2)pst

]
, (3.80)

where the first term accounts for the diagrams, whereD is not crossed by any contraction
line. Switching back to Laplace space yields

C(z) = Tr0 [gΠ(z) (D + ΣD(z)) pst] (3.81)

1It is clear from the context, whetherD refers to this superoperator or the high-energy cutoff.
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with C(z) =
∫∞

0
dt eiztC(t), Π(z) as in Eq. (3.32) and

ΣD(z) =

∫ ∞
0

dt1

∫ 0

−∞
dt2 e

izt1ΣD(t1 − t2,−t2)

=

∫ ∞
0

dt1

∫ ∞
0

dt2 e
izt1ΣD(t1 + t2, t2)

=

∫ ∞
0

dt eizt
∫ t

0

dt′ e−izt
′
ΣD(t, t′) . (3.82)

While Π(z) only depends onΣ(z), and therefore can be calculated from Eqs. (3.60) -
(3.64), we have to set up additional RG equations for determiningΣD. Formally, it is
given by

ΣD(t, t′) = (−i)2TrB

[
LV e

−iL0tTe−i
∫ t
0 dtLV (t)D(t′)LV ρ

eq
B

]
irred.

, (3.83)

whereT again is the time ordering operator, and the interaction picture with respect to
L0 + LB has been used.

The renormalization scheme for this object can be derived within the same framework
as in Subsection3.2.2. We obtain

dΣD(z) = (−i)2

∫ ∞
0

dt

∫ t

0

dt′
∑
p1,p2

×

Ap1(t, z)D(t′)B̄p2(0) . (3.84)

According to the Laplace integral in Eq. (3.82) the objectsD andB̄ are defined by

D(t) = eiL0tDe−iL0te−izt , (3.85)

B̄p(t) = Bp(t, z = 0) = eiL0tBp(z = 0) . (3.86)

In the following we will interpretD as a vertex. Thus, the renormalization ofD is analo-
gous to Eq. (3.61). We therefore end up with two additional RG equations for the calcu-
lation of equilibrium correlation functions. They read

dD

dtc
=

∫ ∞
0

dt

∫ 0

−∞
dt′
∑
p1,p2

dγp1,p2

dtc
(t− t′, tc)

×
(
Gp1(t)D(0)−D(0)Gp1(t)

)
Gp2(t′) , (3.87)

dΣD

dtc
(z) =

∫ ∞
0

dt

∫ t

0

dt′
∑
p1,p2

dγp1,p2

dtc
(t, tc)

×Ap1(t, z)D(t′)Bp2(0, z = 0) . (3.88)

Eqs. (3.60) - (3.64) and the above equations now define the complete RG scheme. Since
we treatedD as a vertex, we interpreted terms like

×
G1DG2G3 , t1 > 0 > t2 > t3
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as double vertex objects, which are neglected (compare with the last term on the right-
hand side of Eq. (3.50)). However, if one considers the definitions ofΣD andΣ, Eqs. (3.83)
and (3.29), this approximation implies that forΣD the RG equations do not account for
the same class of diagrams as forΣ, i.e. in contrast toΣ, ΣD is not contained exactly up
to second order ofα.

At the end of this section we again point out that the RTRG formalism explained here
may be applied to any quantum dissipative system. However, the approximation we in-
troduced here is feasible, only if the interaction term is linear in the bath field operators.
When studying problems involving a fermionic environment, one has to account for ad-
ditional signs. This will be explained in detail in Chapter4, where we study coupled
quantum dots.

3.3 RG equations for the spin-boson model

3.3.1 Initial values

For the spin-boson model the initial values for the superoperators in Eq. (3.65) - (3.67)
correspond to the(4× 4)-matrices

L0 =


ε 0 ∆

2
−∆

2

0 −ε −∆
2

∆
2

∆
2
−∆

2
0 0

−∆
2

∆
2

0 0

 , (3.89)

G+ =
1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , (3.90)

G− = −1

2


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (3.91)

Here, we identified an arbitrary superoperatorS of the two-state system with a(4 × 4)-
matrix using the prescription

S =


Sud,ud Sud,du Sud,uu Sud,dd
Sdu,ud Sdu,du Sdu,uu Sdu,dd
Suu,ud Suu,du Suu,uu Suu,dd
Sdd,ud Sdd,du Sdd,uu Sdd,dd

 ,

where the matrix elements are labeled by the two states|u〉 and|d〉.
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3.3.2 Thetc dependence of the bath contraction

Let us now make an explicit choice for thetc dependence ofγp1,p2(t, tc) for the RG scheme
in Eqs. (3.60) - (3.64). As we have already mentioned, one possible choice is the sharp
cutoff, which we want to consider first. We define

γp1,p2

1 (t, tc) = γp1,p2(t)Θ(t− tc)
=

(
R(t) + ip2S(t)

)
Θ(t− tc) , (3.92)

where we used Eq. (3.27). For D � T the functionsR(t) and S(t) are given by
Eqs. (3.20) and (3.19). This leads to the RG equations

dL0

dtc
= −i

∑
p1,p2

(
R(tc) + ip2S(tc)

)
Gp1(tc)G

p2(0) , (3.93)

dGp

dtc
= −

∫ tc

0

dt
∑
p1,p2

(
R(tc) + ip2S(tc)

)
×
(
Gp1(t)Gp(0)−Gp(0)Gp1(t)

)
Gp2(t− tc) , (3.94)

dAp

dtc
(z) = −

∫ tc

0

dt
∑
p1,p2

(
R(tc) + ip2S(tc)

)
×
(
Ap1(t, z)Gp(0)− Ap(0, z)Gp1(t)

)
Gp2(t− tc) , (3.95)

dBp

dtc
(z) = −

∫ tc

0

dt
∑
p1,p2

(
R(tc) + ip2S(tc)

)
×Gp1(t)Gp(0)Bp2(t− tc, z) , (3.96)

dΣ

dtc
(z) = −

∑
p1,p2

(
R(tc) + ip2S(tc)

)
Ap1(tc, z)B

p2(0, z) . (3.97)

However, this set of equations generates unphysical terms, when calculatingΣ(z). This
can easily be seen, if we restrict ourselves to the “trivial” case, where∆ = ε = T = 0,
i.e. we deal with two decoupled shifted harmonic oscillators. First, one recognizes that
L0, Gp, Ap andBp commute for alltc, since the commutator[G+, G−]− andL0 vanish
initially. With

M = G+ +G− =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 . (3.98)

and the identityMG+ = MG− the solutions forL0 andGp then read

L0(tc) = −i2α tc
t2c + 1/D2

M2 , (3.99)

Gp(tc) = Gp . (3.100)
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Here, we used the result forR(t) for vanishing temperature:

R(t) = −2αRe

[
1

(t− i/D)2

]
. (3.101)

Settingz = 0 the integrals in Eqs. (3.95) and (3.96) give rise to terms

f(tc) =
e−iL0tc − 1

−iL0tc

=
e
−2α

t2c
t2c+1/D2 − 1

−2α t2c
t2c+1/D2

, (3.102)

where we usedM4 = M2. We introduceA = A+ + A− andB = B+ + B− and obtain
the differential equations

dA

dtc
(z = 0) = −R(tc)(tcf(tc)− tc)M2A , (3.103)

dB

dtc
(z = 0) = −R(tc)tcf(tc)M

2B , (3.104)

where, for the latter equation, we used

d(B+ −B−)

dtc
= 0 .

We now define

F (tc) =

∫ tc

0

dtR(t)tf(t) , (3.105)

so that the solutions forA andB read

A(z = 0, tc) = M exp

(
−F (tc) +

∫ tc

0

dtR(t)t

)
, (3.106)

B(z = 0, tc) = M exp (−F (tc)) . (3.107)

With that we obtain from Eq. (3.97)

dΣ

dtc
(z = 0) = −M2R(tc) exp

(
−2F (tc)−

2α t2c
t2c + 1/D2

+

∫ tc

0

dtR(t)t

)
(3.108)

= −M2R(tc) exp

(
−2F (tc) + α ln

(
1

(Dtc)
2 + 1

))
. (3.109)

We integrate that formally, using the substitutionsx = Dt andz = 1/(1 + x2):

Σ(z = 0, tc) = −2αM 2D

∫ Dtc

0

dx (2z2 − z)e−2F (x/D)+α ln z . (3.110)
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Expanding the above expression inα yields

Σ(z = 0, tc) = −2M2 tc
t2c + 1/D2

[
α + α2 (− ln zc + 2zc − 2)

+α3

(
1

2
ln2 zc + (−2zc + 4) ln zc +

10

3
z2
c −

25

3
zc +

9

2

)]
−α3M2D arctan (Dtc) +O

(
α4
)
, (3.111)

where we wrotezc = 1/(1 + (Dtc)
2). One notices that, in third order ofα we obtain a

term depending linearly onD. However, it is known, that forD → ∞ the exact solution
involves only logarithmic divergencies [1, 27]. Thus, the choice of the sharp cutoff gener-
ates unphysical terms. Within our approximation they only arise in third or higher order
of α, since Eqs. (3.60) - (3.64) give the exact result forΣ(z) up to second order inα.

In the following the generation of unphysical terms is avoided by making an appro-
priate choice for thetc dependence ofγp1,p2(t, tc). We introduce

γp1,p2(t, tc) =
d

dt

(∫ t

0

dt′R(t′)Θ(t− tc)

)
+ ip2S(t)Θ(t− tc) . (3.112)

Compared to the sharp cutoff, this choice includes an additional term stemming from the
derivative of theΘ function. From Eq. (3.20) we obtain

∫ t

0

dt′R(t′) = 2αRe [πT coth (πT (t− i/D))] . (3.113)

The asymptotic behaviour is given by
∫∞

0
dt′R(t′) = 2απT . Therefore the above defi-

nition does not satisfy Eq. (3.39). However, we may generate a convergent RG flow by
modifying Eq. (3.112). We write

R̃(t) =

∫ t

0

dt′R(t′)− 2απT sign(t) (3.114)

and define

γp1,p2

2 (t, tc) =
d

dt

(
R̃(t)Θ(t− tc)

)
+ Θ(t− tc)

d

dt
2απT sign(t)

+ip2S(t)Θ(t− tc) . (3.115)

With this definition the initial condition in Eq. (3.38) is still fulfilled, sinceR̃(t = 0) van-
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ishes. Considering only the second term of Eq. (3.115) leads to the differential equations

dL0

dtc
= −i

∑
p1,p2

4απTδ(tc)G
p1(tc)G

p2(0) , (3.116)

dGp

dtc
= −

∫ tc

0

dt
∑
p1,p2

4απTδ(tc)

×
(
Gp1(t)Gp(0)−Gp(0)Gp1(t)

)
Gp2(t− tc) , (3.117)

dAp

dtc
(z) = −

∫ tc

0

dt
∑
p1,p2

4απTδ(tc)

×
(
Ap1(t, z)Gp(0)− Ap(0, z)Gp1(t)

)
Gp2(t− tc) , (3.118)

dBp

dtc
(z) = −

∫ tc

0

dt
∑
p1,p2

4απTδ(tc)

×Gp1(t)Gp(0)Bp2(t− tc, z) , (3.119)
dΣ

dtc
(z) = −

∑
p1,p2

4απTδ(tc)A
p1(tc, z)B

p2(0, z) , (3.120)

where we usedd
dt

sign(t) = 2δ(t). Therefore, this term ofγp1,p2

2 (t, tc) does not contribute
to the renormalization of the verticesGp, Ap(z), Bp(z). RegardingL0 andΣ(z) we may
account for it by changing the initial conditions:

L0(tc = 0) = L0 − 2iαπTM2 , (3.121)

Σ(z, tc = 0) = −2απTM2 . (3.122)

Let us now consider the remaining terms of Eq. (3.115). Note that for them Eq. (3.39) is
fulfilled, sincelimt→∞ R̃(t) = 0 holds. Using partial integration for the first term, the RG
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equations read

dL0

dtc
=

∑
p1,p2

(
R̃(tc)[G

p1(tc), L0] + p2S(tc)G
p1(tc)

)
Gp2(0) , (3.123)

dGp

dtc
=

∑
p1,p2

(
R̃(tc)

(
Gp1(tc)G

p(0)−Gp(0)Gp1(tc)
)
Gp2(0)

−i
∫ tc

0

dt
(
Gp1(t)Gp(0)−Gp(0)Gp1(t)

)
×
(
R̃(tc)[L0, G

p2(t− tc)] + p2S(tc)G
p2(t− tc)

))
, (3.124)

dAp

dtc
(z) =

∑
p1,p2

(
R̃(tc)

(
Ap1(tc, z)G

p(0)− Ap(0, z)Gp1(tc)
)
Gp2(0)

−i
∫ tc

0

dt
(
Ap1(t, z)Gp(0)− Ap(0, z)Gp1(t)

)
×
(
R̃(tc)[L0, G

p2(t− tc)] + p2S(tc)G
p2(t− tc)

))
, (3.125)

dBp

dtc
(z) =

∑
p1,p2

(
R̃(tc)G

p1(tc)G
p(0)Bp2(0, z)

−i
∫ tc

0

dtGp1(t)Gp(0)

×
(
R̃(tc)(L0 − z) + p2S(tc)

)
Bp2(t− tc, z)

)
, (3.126)

dΣ

dtc
(z) =

∑
p1,p2

−iAp1(tc, z)
(
R̃(tc)(L0 − z) + p2S(tc)

)
Bp2(0, z) . (3.127)

The above equations do not generate the unphysical terms, which are produced by the
standard sharp cutoff. We may easily check this by considering again the special case,
where∆ = ε = T = z = 0. Then, as in case of the sharp cutoff the objectsL0, Gp, Ap

andBp commute for alltc. This yields

L0(tc) = 0 , (3.128)

Gp(tc) = Gp . (3.129)

Furthermore, this leads to

A(z = 0, tc) = A+(z = 0, tc) + A−(z = 0, tc) = M , (3.130)

Σ(z = 0, tc) = 0 , (3.131)
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where we again usedd(B+ −B−)/dtc = 0. Finally, one obtains forB = B+ +B−

B(z = 0, tc) = M exp

(∫ tc

0

dt R̃(t)

)
= M exp

(
−α ln

(
1

1 + (Dtc)2

))
= M

(
1 + (Dtc)

2
)α

. (3.132)

Thus, the choiceγp1,p2

2 (t, tc) does not lead to unphysical divergencies forD →∞.

However, the convergence of the RG flow can be improved by switching fromγp1,p2

2 (t, tc)
to γp1,p2

1 (t, tc) at some valuetc = t̄ [25, 26]. In case of largeα this also leads to more
accurate results for the equilibrium correlation functions (see Subsection3.4.4). For
tc > t̄� 1/D, γp1,p2

1 (t, tc) does not generate any unphysical terms, since thenR(t) is ap-
proximately independent ofD. Thus, we define a smooth crossover att̄ with a smearing
η:

γp1,p2

t̄η (t, tc) = (1− uη(tc − t̄ )) γp1,p2

2 (t, tc) + uη(tc − t̄ )γp1,p2

1 (t, tc) , (3.133)

where we use the function

uη(x) =
1

2
+

1

π
arctan

(
x

η

)
. (3.134)

In Eqs. (3.60) - (3.64), we have to substitute

d

dtc
γp1,p2

t̄η (t, tc) = (1− uη(tc − t̄ ))
d

dtc
γp1,p2

2 (t, tc) + uη(tc − t̄ )
d

dtc
γp1,p2

1 (t, tc)

+

(
d

dtc
uη(tc − t̄ )

)
R̃(t)

(
d

dtc
Θ(t− tc)

)
, (3.135)
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which leads to the RG equations

dL0

dtc
=

∑
p1,p2

(
(1− uη(tc − t̄ )) R̃(tc)[G

p1(tc), L0]

−iUp2

t̄η (tc)G
p1(tc)

)
Gp2(0) , (3.136)

dGp

dtc
=

∑
p1,p2

(
(1− uη(tc − t̄ )) R̃(tc)

(
Gp1(tc)G

p(0)−Gp(0)Gp1(tc)
)
Gp2(0)

−
∫ tc

0

dt
(
Gp1(t)Gp(0)−Gp(0)Gp1(t)

)
×
(
i (1− uη(tc − t̄ )) R̃(tc)[L0, G

p2(t− tc)]

+Up2

t̄η (tc)G
p2(t− tc)

))
, (3.137)

dAp

dtc
(z) =

∑
p1,p2

(
(1− uη(tc − t̄ )) R̃(tc)

(
Ap1(tc, z)G

p(0)− Ap(0, z)Gp1(tc)
)
Gp2(0)

−
∫ tc

0

dt
(
(Ap1(t, z)Gp(0)− Ap(0, z)Gp1(t)

)
×
(
i (1− uη(tc − t̄ )) R̃(tc)[L0, G

p2(t− tc)]

+Up2

t̄η (tc)G
p2(t− tc)

))
, (3.138)

dBp

dtc
(z) =

∑
p1,p2

(
(1− uη(tc − t̄ )) R̃(tc)G

p1(tc)G
p(0)Bp2(0, z)

−
∫ tc

0

dtGp1(t)Gp(0)

×
(
i (1− uη(tc − t̄ )) R̃(tc)(L0 − z)

+Up2

t̄η (tc)
)
Bp2(t− tc, z)

)
, (3.139)

dΣ

dtc
(z) = −

∑
p1,p2

Ap1(tc, z)
(
i (1− uη(tc − t̄ )) R̃(tc)(L0 − z)

+Up2

t̄η (tc)
)
Bp2(0, z) . (3.140)

Here, we used the function

Up2

t̄η (tc) = R(tc)uη(tc − t̄ ) + R̃(tc)
d

dtc
uη(tc − t̄ ) + ip2S(tc) , (3.141)
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where the derivative ofuη is given by the Lorentzian

d

dx
uη(x) =

1

ηπ

η2

x2 + η2
.

According to Eqs. (3.121) and (3.122) the initial conditions have to be modified again:

L0(tc = 0) = L0 − (1− uη(−t̄ ))2iαπTM2 , (3.142)

Σ(z, tc = 0) = −(1− uη(−t̄ ))2απTM2 . (3.143)

Furthermore, the corresponding RG equations for the calculation ofΣD follow from
Eqs. (3.87) and (3.88):

dD

dtc
=

∑
p1,p2

(
(1− uη(tc − t̄ )) R̃(tc)

(
Gp1(tc)D −DGp1(tc)

)
Gp2(0)

−
∫ tc

0

dt
(
Gp1(t)D −DGp1(t)

)
×
(
i (1− uη(tc − t̄ )) R̃(tc)[L0, G

p2(t− tc)]

+Up2

t̄η (tc)G
p2(t− tc)

))
, (3.144)

dΣD

dtc
(z) =

∑
p1,p2

(
(1− uη(tc − t̄ )) R̃(tc)A

p1(tc, z)DB
p2(0, z = 0)

−
∫ tc

0

dtAp1(t, z)D
(
i (1− uη(tc − t̄ )) R̃(tc)L0

+Up2

t̄η (tc)
)
Bp2(t− tc, z = 0)

)
. (3.145)

As in case ofGp, Ap(z) andBp(z), the initial conditions ofD andΣD(z) remain un-
changed.

The following study of the spin-boson model is based on Eqs. (3.136) - (3.140),
(3.144) and (3.145), the final RG equations for the smooth crossover betweenγp1,p2

2 (t, tc)
andγp1,p2

1 (t, tc). Note that, in the limit of largēt, we again recover Eqs. (3.123) - (3.127),
the RG equations forγp1,p2

2 (t, tc). This limit is usually applied, when we solve the
RG equations. However, it turns out, that for large couplingsα sometimes a crossover
aroundt̄ ≈ 1/∆ yields more stable and/or more accurate results. We then always choose
η = 0.001/∆, so that, withD = 100∆ orD = 1000∆, 1/D is negligible inγp1,p2

1 (t, tc),
and we do not deal with unphysical terms.
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3.4 Results

3.4.1 The renormalized tunnel matrix element

Because of its nonperturbative character the real-time renormalization group is able to
determine the renormalized tunnel matrix element∆r of the spin-boson model. As al-
ready mentioned in Subsection3.2.3, the flow equations for the HamiltonianH0 of the
two-state system is obtained from the RG equations on the Keldysh contour by setting
p = p1 = p2 = + and replacingL0 byH0 as well asG+ byσz/2. Furthermore, we expand
the exponentials intc. Analogously to the Poor Man’s scaling approach (see Section3.1),
∆r atT = 0 is given by the crossover energy scale defined by∆r = ∆(t̃c) = 1/t̃c.

In lowest order intc we obtain for∆(tc) from Eq. (3.136)

−1

2

d∆

dtc
(tc) = (1− uη(tc − t̄ )) R̃(tc)

∆(tc)

4
− Ut̄η(tc)tc

∆(tc)

4
+O(α2) . (3.146)

We now consider the limit of̄t→∞, so that we may setuη(tc−t̄ ) = d/dtcuη(tc−t̄ ) = 0.
The resulting flow equation then reads

d∆

dtc
(tc) =

∆(tc)

2

(
−R̃(tc) + iS(tc)tc

)
+O(α2) . (3.147)

In the following we neglect the terms of the orderα2. To determine∆r we take the real
part of∆(tc). Performing the integral yields

ln

(
∆r

∆

)
= −α

2
ln

(
1 +

(
D

∆r

)2
)
. (3.148)

Considering the above equation in the scaling limit, whereD � ∆r holds, leads to

∆r

∆
=

(
∆

D

) α
1−α

, (3.149)

which coincides with the well-known result in Eq. (3.11). Thus our approach contains the
correct relevant energy scale. Also note that for the spin-boson model the renormalization-
group flow of the couplings yieldsα → 0, if for the bare couplingα < 1 holds (see
Fig. 3.2). Therefore, Eqs. (3.136) - (3.140), (3.144) and (3.145) are able to describe the
spin-boson model accurately in a nonperturbative way.

In the following we present numerical results obtained from these equations both for
the reduced density matrix and for equilibrium correlation functions. The correspondence
of the expectation values of the Pauli matrices to the matrix elements of the reduced
density matrixp(t) reads

〈σx(t)〉 = pud(t) + pdu(t) = 2Re[pud(t)] ,

〈σy(t)〉 = i(pud(t)− pdu(t)) = −2Im[pud(t)] ,

〈σz(t)〉 = puu(t)− pdd(t) = 2puu(t)− 1 . (3.150)
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The second equations in Eq. (3.150) follow from the Hermiticity ofp(t) and the normal-
ization puu + pdd = 1. Furthermore,〈σy〉 and 〈σz〉 are connected via the Heisenberg
equation which yields

〈σ̇z〉 = −∆〈σy〉 . (3.151)

3.4.2 Static properties

The static properties of the spin-boson model are determined by Eq. (3.34). We calculate
the kernelΣ(z = 0) by integrating the ordinary differential equations Eqs. (3.136) -
(3.140) using the method described in AppendixE.1. As we have already mentioned, the
time-integrals on the right-hand sides of the RG equations only refer to the interaction
picture. Thus they can be performed analytically. For the evaluation of the exponentials
of L0 we introduce a unitary transformation which diagonalizesL0, see AppendixE.2for
details. For the calculation of the stationary reduced density matrixpst we consider the
limit of t̄→∞ in Eq. (3.133), i.e. we use the definition ofγp1,p2

2 (t, tc). Figs.3.7and3.8
show the real part of the matrix elements ofpst as a function oftc for different values of
ε andα with D = 100∆ andT = 0. Note thatpst converges fortc → ∞. Whereas for
finite tc the stationary reduced density matrix has unphysical eigenvalues (see our remarks
in Subsection3.2.3), its asymptotic value corresponds to a well-defined reduced density
matrix. The imaginary part ofpst vanishes for alltc which is consistent with Eq. (3.151).
For the symmetric case the diagonal elements of the real part are also constant(= 1/2).
In case ofε 6= 0 the diagonal elements are renormalized, and the asymmetry leads to a
finite difference between them fortc →∞. The off-diagonal elements of the real part of
pst are renormalized in any case and attain a finite value fortc →∞.

We may now calculate the static susceptibility according to Eq. (3.35) from the asymp-
totic (tc →∞) results forpst. The derivative with respect toε is performed by calculating
pst for an incrementdε. We setdε = 0.001∆, which turns out to be sufficiently small. The
temperature-dependence of the static susceptibilityχ0(T ) for different values ofD, α and
ε is shown in Figs.3.9 - 3.14. In Fig. 3.9 one sees the susceptibility forD = 100∆ and
D = 1000∆ with α = 0.1 andε = 0, where we again chosēt → ∞. Using Eq. (3.149)
this yields renormalized tunnel matrix elements of∆r = 0.599∆ and ∆r = 0.464∆.
Fig. 3.9shows thatχ0(T ) strongly depends on the high-energy cutoffD. However, in the
scaling limit the susceptibility should only depend on one energy scale. We normalize
our results using the zero-temperature valueχ0(T = 0). Then the curves for different
high-energy cutoffs coincide. The normalized results for different values ofα andε can
be seen in Figs.3.10and3.11. Whereas forε = 0 the susceptibility is a monotonous
function ofT , we obtain a local maximum for the biased case. In Fig.3.12our result for
α = 0.125 andε = 0 is compared to that obtained for the anisotropic Kondo model using
the Bethe ansatz. One recognizes a good agreement, which can be improved by choosing
a finite value of the crossover parametert̄ ≈ 1/∆ (as mentioned in Section3.3 we set
η = 0.001/∆ for the smearing). For largerα this finite value of̄t also avoids numerical
instabilities, and we will later see that the errors concerning the Shiba-relation can be
reduced forα ≈ 0.2 by settingt̄ ≈ 1/∆. For the biased case the results of the Bethe
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Figure 3.7: Real part of the stationary reduced density matrixpst as a function oftc for
α = 0.1,D = 100∆ andT = 0. Solid lines:ε = 0. Dashed lines:ε = 0.1∆.
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Figure 3.8: Real part of the stationary reduced density matrixpst as a function oftc for
α = 0.2,D = 100∆ andT = 0. Solid lines:ε = 0. Dashed lines:ε = 0.1∆.
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Figure 3.9: Static susceptibilityχ0 as a function of the temperatureT for α = 0.1, ε = 0
andD = 100∆, 1000∆.
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Figure 3.10: Static susceptibilityχ0 as a function of the temperatureT for ε = 0,
D/∆ = 1000� ∆r/∆ andα = 0.01, 0.05, 0.125 (from top to bottom).
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Figure 3.11: Static susceptibilityχ0 as a function of the temperatureT for α = 0.1,
D/∆ = 1000� ∆r/∆ andε/∆ = 0, 0.1, 0.2, 0.5, 1 (from top to bottom).
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with t̄→∞. Dashed line: Bethe ansatz for the anisotropic Kondo model.
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ansatz forα = 0.2 are shown in Fig.3.13[28]. Our corresponding results are presented
in Fig. 3.14, where we have used̄t = 1/∆. Comparing them one recognizes deviations
at low temperature forε 6= 0. These deviations occur independently of the choice oft̄,
which demonstrates that the commonly used relation of the parameters (see AppendixB)
of the Kondo model to the ones of the spin-boson model has to be taken with care.

Finally, we note that in the high-temperature limit all our results forχ0(T ) show the
correct1/2T law, which is independent ofα, ε andD [28].

3.4.3 Dynamics

In this subsection we calculate the time-dependent reduced density matrixp(t) for the ini-
tial preparation of the two-state system in the spin-up state:p(0)uu = 1,
p(0)dd = p(0)ud = p(0)du = 0. From the result forΣ(z) for tc →∞ and from Eq. (3.32)
we determine the Laplace transformp(z). According to Eq. (3.31) p(t) is then given by

p(t) =
1

2π

∫ ∞+ic

−∞+ic

dz e−iztp(z)

=
1

2π
ect
∫ ∞
−∞

dz e−iztp(z + ic) for c ∈ R+ . (3.152)

This Fourier integral is calculated numerically using the method described in AppendixE.3
and settingc = 0.1∆.

The solution for the time evolution of the reduced density matrix at vanishing temper-
ature is shown in Figs.3.15- 3.20for different couplings and for the unbiased and biased
case. Here, we again choset̄ → ∞, in fact these results are insensitive to the choice of
t̄ even for a coupling strength ofα = 0.2. Figs.3.15and3.16show, that, forα = 0.1,
ε = 0 andD = 100∆ we achieve a very good agreement with chromostochastic quantum
dynamics (CSQD). Only the real parts of the nondiagonal elements, which correspond
to 〈σx〉, exhibit a deviation of approximately5%. However, in contrast to the results for
〈σz〉 CSQD cannot give an error for〈σx〉 [74]. The diagonal elements oscillate in time as
well as the imaginary parts of the off-diagonal elements, in fact the latter do not contain
any new information due to Eq. (3.151), so that we focus on the real part ofp(t) in the
following. For the symmetric case the real parts of the off-diagonal elements show a pure
decaying behaviour (Fig.3.15). In Fig. 3.17 the correct scaling behaviour is checked
for D = 100∆ respectivelyD = 1000∆ by rescaling the results using∆r = 0.599∆ re-
spectively∆r = 0.464∆. One obtains coincidence of the diagonal elements, whereas the
real parts of the off-diagonal elements have an extra factor of∆r/∆, which is consistent
with Ref. [1]. A comparison with the noninteracting blip approximation (NIBA) both for
the unbiased and the biased case is drawn in Figs.3.18 and3.19. Note that a formal
derivation of the NIBA results is presented in AppendixA. In Figs.3.18and3.19, p(t)
is calculated from Eqs. (A.14) - (A.19), where we again used the technique presented in
AppendixE.3. One recognizes that forε = 0 the NIBA gives quite accurate results for
the diagonal elements (see also AppendixA), but fails for the nondiagonal elements. The
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Figure 3.15: Real part of the time-dependent reduced density matrixp(t) for α = 0.1,
ε = 0,D = 100∆ andT = 0. Solid lines: RTRG. Dashed lines: CSQD.
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Figure 3.16: Imaginary part of the time-dependent reduced density matrixp(t) for
α = 0.1, ε = 0,D = 100∆ andT = 0. Solid lines: RTRG. Dashed lines: CSQD.
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Figure 3.18: Real part of the time-dependent reduced density matrixp(t) for α = 0.1,
ε = 0,D = 100∆ andT = 0. Solid lines: RTRG. Dashed lines: NIBA.



66 CHAPTER 3. THE SPIN-BOSON MODEL

0 10 20 30 40

∆t

0

0.5

1

p

RTRG
NIBA

puu

Re(pud)=Re(pdu)

pdd

Figure 3.19: Real part of the time-dependent reduced density matrixp(t) for α = 0.1,
ε = 0.5∆,D = 100∆ andT = 0. Solid lines: RTRG. Dashed lines: NIBA.

NIBA even violates the bound

〈σx(t)〉2 ≤ 1 , (3.153)

which follows from〈σ2
x(t)〉 − 〈σx(t)〉2 ≥ 0. For finite bias (see Fig.3.19) the diagonal

elements also have a decaying part, as well as the nondiagonal elements also show oscil-
lations. We see, that, forε = 0.5∆ the NIBA gives poor results both for the diagonal and
the nondiagonal elements. In Fig.3.20our results for the unbiased and the biased case
are shown forα = 0.2.

For one of these plots ofp(t) we calculated 512 points of the Laplace transform
p(z + ic) for z ∈ [−10∆, 10∆]. For z < −10∆ respectivelyz > 10∆ we extrap-
olatedp(z + ic) algebraically (see also AppendixE.3). For such an integration prob-
lem a parallelization of the computer program may strongly improve the performance.
We applied the “pvm” package to parallelize our program [75]. Using a cluster of four
PIII (500MHz)-machines, one of these plots ofp(t) is generated within about five hours
only.

From the above results forp(t) we also determine the oscillation frequencyΩ ∼ ∆r

of the diagonal elements. We compare it with the analytical resultΩ0, which is valid in
the limit of smallα only. It reads [1]

Ω0 =
(
ε2 + (Γ(1− 2α) cos(πα))1/1−α ∆2

r

)1/2

. (3.154)

Furthermore, for the symmetric case, conformal field theory (CFT) applied to the anisotropic
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Figure 3.20: Real part of the time-dependent reduced density matrixp(t) for α = 0.2,
D = 100∆ andT = 0. Solid lines:ε = 0. Dashed lines:ε = 0.5∆.

Kondo model, leads to the solution [29, 1]

ΩCFT = sin (πα/2(1− α)) cos (πα/2(1− α))
Γ (α/2(1− α))√
πΓ (1/2(1− α))

×

(
Γ
(

1
2

+ α
)

Γ (1− α) Γ(1− 2α) cos(πα)
√
π

)1/2(1−α)

∆r , (3.155)

which is valid for0 < α < 0.5. Figs.3.21and3.22showΩ as a function of the coupling
strengthα for the unbiased and the biased case withD = 100∆ andT = 0. As expected,
in the limit of smallα our results are consistent withΩ0, while for largeα there are devia-
tions. In comparison to the CFT result for the symmetric case we find a good agreement,
only for largeα there are small deviations.

The long-time behaviour ofp(t) can be approximated by an exponential decay, which
is parametrized by the dephasing timeτ deph and the relaxation timeτ rel:

p(t) = p0 + p1e
iΩte−t/τ

deph

+ p2e
−t/τrel . (3.156)

The results forα� 1 read [1]

τ deph0 =
2 (Γ(1− 2α) cos(πα))1/(α−1) Ω0

πα∆2
r

, (3.157)

τ rel0 =
(Γ(1− 2α) cos(πα))1/(α−1) Ω0

πα∆2
r

. (3.158)
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Figure 3.21: Oscillation frequencyΩ as a function of the coupling constantα for ε = 0,
D = 100∆ andT = 0. Solid line: RTRG. Dashed line:Ω0 (α� 1). Dotted line:ΩCFT .
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Figure 3.23: Decay constantsτ deph andτ rel as a function of the coupling constantα for
ε = 0, D = 100∆ andT = 0. Solid line: RTRG. Dashed line:τ deph0 andτ rel0 (α � 1).
Dotted line:τ dephCFT .
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Figure 3.24: Decay constantsτ deph andτ rel as a function of the coupling constantα for
ε = 0.5∆,D = 100∆ andT = 0. Solid line: RTRG. Dashed line:τ deph0 andτ rel0 (α� 1).
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For the symmetric case, a solution for the diagonal elements has been found using the
CFT [29]. But as the diagonal elements exhibit a purely oscillating behaviour forε = 0,
CFT yields only a result forτ deph:

τ dephCFT = sin−2 (πα/2(1− α))

√
πΓ (1/2(1− α))

Γ (α/2(1− α))

×

(
Γ
(

1
2

+ α
)

Γ (1− α) Γ(1− 2α) cos(πα)
√
π

)1/2(α−1)

∆−1
r , (3.159)

which again is valid for0 < α < 0.5. We calculate the dephasing and relaxation times
by studying the poles ofp(z). Theα dependence ofτ deph andτ rel for the unbiased and
the biased case is shown in Figs.3.23and3.24. Again our results coincide withτ deph0 and
τ rel0 only in the limit of smallα, and the result ofτ deph for ε = 0 is in good agreement
with CFT.

3.4.4 The Shiba-relation

The Shiba-relation is an exact equation forT = 0, which was originally derived for the
Anderson model [60]. In time space the relation determines the asymptotic long-time
behaviour of the symmetrized equilibrium correlation function [1]:

Cs(t) :=
1

2
Tr
[
[σz(t), σz]+ ρ

eq
]
−
(
Tr0 [σzpst]

)2

= −2α
χ2

0

t2
for t→∞ . (3.160)

Here,[·, ·]+ again denotes the anticommutator.
In energy space we obtain for the Fourier transform

Cs(ω) :=

∫ ∞
−∞

dt eiωtCs(t) (3.161)

an equation for the low-frequency limit:

Cs(ω) = 2παχ2
0|ω| for ω → 0 . (3.162)

When checking the RTRG results using the Shiba-relation, the discontinuity of
Cs(ω)/ω for ω → 0 leads to numerical instabilities. Therefore, we focus on the antisym-
metrized equilibrium correlation function involving the commutator[·, ·]−. The imaginary
part of the dynamic susceptibility is defined as

χ′′(ω) =

∫ ∞
−∞

dt eiωt
1

2
Tr
[
[σz(t), σz]− ρ

eq
]
. (3.163)

χ′′(ω) is connected withCs(ω) by the fluctuation-dissipation theorem [1]

Cs(ω) = coth
( ω

2T

)
χ′′(ω) . (3.164)
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Figure 3.25: Spectral functionS(0.1∆) as a function oftc for α = 0.1, D = 100∆ and
T = 0. Solid line:ε = 0. Dashed line:ε = 0.1∆.

Hence, the Shiba-relation for the imaginary part of the dynamic susceptibility reads

χ′′(ω) = 2παχ2
0ω for ω → 0 . (3.165)

We now use Eqs. (3.136) - (3.140), (3.144) and (3.145) to calculateχ′′(ω). Since Eq. (3.81)
determines the Laplace transform of an equilibrium correlation function, we write

χ′′(ω) = Re
[∫ ∞

0

dt eiωtTr
[
[σz(t), σz]− ρ

eq
]]
. (3.166)

In Figs. 3.25 and 3.26 one can see thetc dependence of the spectral function
S(ω) = χ′′(ω)/ω at ω = 0.1∆ for D = 100∆, T = 0 and different values ofε and
α. We again usēt→∞, unless stated otherwise.

The asymptotic (tc → ∞) result ofS as a function ofω is shown in Fig.3.27 for
α = 0.1, T = 0 and different values ofD andε. As in case of the static susceptibil-
ity one obtains a strongD dependence. But again one may normalize the result using
S(0) = limω→0 χ

′′(ω)/ω and the frequencyωmax ≈ ∆r, whereS is maximum. Then the
curves for different cutoffs coincide, thereby showing the correct scaling behaviour (see
Fig. 3.28, whereε has also been rescaled).

We test the Shiba-relation, Eq. (3.165), for differentα, ε andD which can be seen in
Tab.3.1. Forα . 0.1, we achieve a very good agreement with the Shiba-relation (error
smaller than5%). In comparison, the flow equation method of Wegner produces an error
of 25% for α = 0.1 [66]. One recognizes, that for largerα our error increases strongly,
which is due to our neglecting of double vertex objects. However, in case ofα = 0.2 we
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α ε/∆ D/∆ ∆χ0 2πα(∆χ0)2 limω→0 ∆2S(ω) error

0.01 0.0 100 1.051 0.06942 0.06798 2.09%
0.05 0.0 100 1.290 0.5227 0.5083 2.79%
0.1 0.0 100 1.687 1.788 1.834 2.55%
0.2 0.0 100 2.995 11.27 15.54 31.85%
0.2 0.0 100 3.240∗ 13.19∗ 12.31∗ 6.90%∗

0.01 0.0 1000 1.077 0.07291 0.07115 2.44%
0.05 0.0 1000 1.453 0.6636 0.6445 2.92%
0.1 0.0 1000 2.180 2.987 3.088 3.33%
0.2 0.0 1000 5.159 33.44 51.34 42.23%
0.2 0.0 1000 5.722∗ 41.14∗ 35.49∗ 14.75%∗

0.1 0.01 100 1.686 1.786 1.831 2.49%
0.1 0.05 100 1.667 1.746 1.752 0.34%
0.1 0.1 100 1.604 1.616 1.621 0.31%
0.1 0.01 1000 2.178 2.980 3.091 3.66%
0.1 0.05 1000 2.137 2.869 2.723 5.22%
0.1 0.1 1000 2.019 2.561 2.438 4.92%

Table 3.1: Shiba-relation for differentα, ε andD.
The star∗ indicates the finite value of̄t = 1/∆.
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also present the data obtained for a finite crossover parametert̄ = 1/∆ (indicated by∗).
Then, the error is reduced substantially. In this context it must be noted again, that our
results for the reduced density matrixp(t) were independent of̄t within numerical errors.

Analogously to Subsection3.4.3we may also transform the results for the Laplace
tranform of an equilibrium correlation function into time space. We present the time
evolution of

Cs
yy(t) :=

1

2
Tr
[
[σy(t), σy]+ ρ

eq
]
. (3.167)

In Fig. 3.29our results forε = 0, D = 50∆r, T = 0 and differentα are compared to
CSQD calculations [57]. We again find a good agreement.

3.5 Discussion

We studied the spin-boson model as a fundamental quantum dissipative system. It is
applicable for any physical problem, where one effectively deals with two states, which
are coupled to a bosonic heat reservoir. Thus it is a basic model which, however, contains
the nontrivial features of quantum dissipation and, therefore is not exactly soluble. We
have used a new RG approach, the real-time renormalization-group method to study the
spin-boson model. Thereby we have been able to determine both static and dynamic
properties. By calculating the time-dependent reduced density matrix, we have been able
to examine the effects of quantum dissipation on the dynamics of a local system, when
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one starts out from an arbitrary nonequilibrium state. Previously such studies have not
been possible within a (nonperturbative) RG approach.

The RTRG method has been explained in detail. It is formulated for the Keldysh con-
tour, so that dissipation is properly taken into account, i.e. non-Hamiltonian dynamics
is generated within this approach. Therefore any nonequilibrium situation may be con-
sidered. Furthermore, we have extended the formalism to the calculation of equilibrium
correlation functions [25, 26].

We have found that the standard form of the RTRG (sharp cutoff for the bath contrac-
tions) generates unphysical terms for the spin-boson model. However, since the general
formalism does not specify thetc dependence of the bath contractions explicitly, we could
avoid those unphysical terms by applying a modified choice forγp1,p2(t, tc).

From the resulting RG equations we achieved reliable results for the whole parameter
space with the only restriction ofα . 0.1 − 0.2 [25, 26]. We have shown, that, due
to its nonperturbative nature the approach accounts for the correct renormalized tunnel
matrix element. In contrast to the study of the polaron, the numerical solution of the RG
equations exhibited a convergent behaviour fortc →∞, since, here, the bath contractions
were decaying. From the results for the stationary reduced density we determined the
static susceptibility. Furthermore, we presented a solution for the complete dynamics of
the two-state system for an arbitrary initial nonequilibrium preparation. The tunneling
frequencyΩ ∼ ∆r as well as the decay constants in the asymptotic regime, the dephasing
and the relaxation time, have been determined. Eventually, we have calculated equilib-
rium correlation functions both in energy and in time space.

We directly solved the spin-boson model for any parameter value of the high-energy
cutoffD, the biasε, the tunneling∆, and the temperatureT . Therefore, a quantitative and
unambigious comparison to the anisotropic Kondo model could be drawn in a parameter
regime, where the mapping of that model on the spin-boson model cannot be proven
rigorously. We found, that forε = 0 both the oscillation frequencyΩ of the diagonal
elements ofp(t) and the dephasing timeτ deph agree with the results of CFT, which were
obtained for the anisotropic Kondo model. Furthermore, in the scaling limit the static
susceptibility agrees rather well with Bethe ansatz results for the anisotropic Kondo model
for ε = 0, but deviations occur at finite bias.

We have also shown that our method gives a much better description for the time
evolution of the reduced density matrix than the NIBA, which, for vanishing temperature,
is restricted to the diagonal elements for the unbiased case. In contrast to the NIBA, we
have been able to study the complete dynamics of the reduced density matrix both for the
unbiased and the biased case.

The generalization of the RTRG method to the calculation of equilibrium correlation
functions allowed us the examination of the imaginary part of the dynamic susceptibil-
ity. Its low-frequency behaviour for vanishing temperature is connected with the static
susceptibility by the exact Shiba-relation. Concerning this relation we obtained the very
small error. 5% for α . 0.1. Additionally, we compared our result for the correlation
functionCs

yy(t) with CSQD and obtained a good agreement. We note, that, in contrast
to other methods, the RTRG yields reliable results for the equilibrium correlation func-
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tions for the spin-boson model forα = 0.1. NRG results [6, 70] are very accurate for
low frequency but fail forω ∼ ∆ [66], flow equation methods have already an error of
∼ 25% concerning the Shiba-relation [66], and CSQD does not provide a check of the
Shiba-relation [57]. Generally, QMC methods have difficulties to determine the long-
time respectively low-frequency behaviour of physical quantities due to the dynamical
sign problem. Furthermore, the reliability of our method is also demonstrated by the con-
sistency of the time-dependent reduced density matrix with CSQD and the correct scaling
behaviour of our results. The restriction inα is due to the fact that we neglected dou-
ble vertex objects. When one includes these objects in the approach, the method gets
much more complicated. However, in Chapter5 a possibility to account for double vertex
objects will be explained.

Finally, we note that the derivation of the formalism in principle holds for any quantum
dissipative system. The presented solution of the spin-boson model shows that the RTRG
provides a powerful tool to study various kinds of quantum dissipative systems for any
nonequilibrium situation. Among these systems, quantum dot structures have recently
attracted both experimental and theoretical interest. In the next chapter we will study
coupled quantum dots in a phonon environment. We will calculate the current through
them, when an external bias gives rise to a nonequilibrium stationary state.



Chapter 4

Coupled quantum dots

Today quantum dot systems allow a detailed study of many physical phenomena, like
Coulomb blockade [76, 31], Kondo effects [77, 32, 33] or interference effects [32]. As in
these structures quantum states can be manipulated, they also may have an application in
future quantum gates [78]. Quantum dot systems can typically be characterized by only a
few parameters, which are experimentally controllable. Theoretically, these systems may
then be described by basic models, which capture the essential physics. In this chapter
we present a theoretical analysis of an out-of-equilibrium quantum dot experiment, where
an external voltageV gives rise to a stationary tunnel current through a double quantum
dot, which interacts with a phonon bath (see Fig.4.1). The current was measured at
low temperature as a function of the energy differenceε of the two dot levels and the
influence of the phonon environment was examined [30]. The thermal energy of the
environment is always a source of unwanted transitions in quantum dot devices. Even at
zero temperature spontaneous emission of phonons gives rise to inelastic transitions, i.e.
they occur between dot states of nonequal energy. In the experiment described in Ref. [30]
the inelastic contribution to the tunnel current through the double dot was studied. A first
theoretical interpretation of the experimental results focused on the interaction of the dots
with the phonons, which is analogous to the spin-boson model [34]. The authors found
the qualitative current spectrum by eliminating the coupling to the leads perturbatively,
and applying an approximation to the electron-phonon problem, which corresponds to
the noninteracting blip approximation (NIBA) for the spin-boson model [27]. However,
a quantitative comparison with the experiment has not yet been possible. Especially, the
unexpectedly large inelastic current of the experiment could not be explained.

As we have seen in Chapter3, the RTRG provides a powerful method to study such
a nonequilibrium problem for moderately strong couplings. Therefore, here we again
apply the RTRG approach, thereby treating both the coupling to the phonon reservoir
and the coupling to the leads nonperturbatively. Thus, we obtain a quantitatively reliable
solution for the tunnel current through the double dot system for a wide range of coupling
parameters, including those of the experiment of Ref. [30]. Both the level broadening
induced by the coupling to the leads is included in this method, and the external voltage
is accounted for properly. Moreover, we do not deal with the parameter restrictions of the

77
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Figure 4.1: The double quantum dot may be charged with one additional electron in the
left or right dot. The corresponding states|L〉 and|R〉 are coupled by the tunnel amplitude
Tc. The couplings to the leads are given byΓL(R). The energy difference between the
quantum dots isε = εL − εR, and there is an external voltageV = µL − µR. The
interaction with the acoustical phonons (dashed lines), consists of a diagonal part with the
coefficientsαq andβq, and an off-diagonal part with the constantsγq.

NIBA, which, in this case is valid only for sufficiently high temperature. Note that the
calculation of the tunnel current through the double dot as a function ofε corresponds to
determining the off-diagonal elements of the reduced density matrix for the biased case
of the spin-boson model, but we have seen in Chapter3, that for this case the NIBA fails
at low temperature. Additionally, the RTRG method may treat any form of dot-phonon
interaction. Therefore, we are able to account for the full electron-phonon interaction, i.e.
including interaction terms, which involve a tunneling between the dots (“off-diagonal
interaction terms”). In the quantitative analysis the off-diagonal interaction terms lead to
a strong dependence of the current on the extension of the wavefunctions within one dot.
We find that the variation of this extension with the energy differenceε between the dot
levels has to be accounted for. By fitting the result for the current with the experimental
data, we obtain the width of the electron density within one dot as a function ofε [35].

4.1 Model Hamiltonian

Let us first derive a model Hamiltonian for the double dot system as it was realized in
the experiment [30]. Our model consists of two coupled quantum dots (L andR, respec-
tively). Each dot is coupled to an electron reservoir with the chemical potentialsµL and
µR, see Fig.4.1. In the experiment the external voltageV = µL − µR was much smaller
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than the Coulomb charging energyU . Thus, due to Coulomb blockade the double dot
cannot be charged with more than one additional electron. Furthermore, a strong mag-
netic field was applied perpendicular to the dots. Thus, we assume spin polarization here
and omit the spin index. We denote the many-particle ground-state, where an additional
electron is in the left (right) dot, by|L〉 (|R〉) and neglect any excited states. Therefore,
together with the uncharged ground state|0〉, there are only three possible states of the
double dot. The total Hamiltonian̄H for the system can be written as a sum of the dot
Hamiltonian, the contributions of the electron reservoirs and the phonon bath, and the
interaction parts stemming from the coupling to the leads and the electron-phonon inter-
action:

H̄ = Hd +Hres +Hph +He−res +He−ph . (4.1)

The dot HamiltonianHd reads

Hd = εL|L〉〈L|+ εR|R〉〈R|+ Tc (|L〉〈R|+ |R〉〈L|) , (4.2)

whereεL (εR) is the ground-state energy of|L〉 (|R〉) and the coupling between the dots
is described by the tunnel matrix elementTc. The reservoir contributions are given by

Hres =
∑
k

εkc
†
kck +

∑
k

εkd
†
kdk , (4.3)

Hph =
∑
q

ωqa
†
qaq . (4.4)

Here, the operatorc†k (ck) creates (annihilates) an electron with the energyεk in the left
lead, whereas the creation (annihilation) operatord†k (dk) refers to the right electron reser-
voir. Analogously,a†q (aq) creates (annihilates) a phonon with the wave vector~q and the
frequencyωq. In this chapter we again choose units such that~ = kB = 1, furthermore
we set the elementary chargee = 1. The double dot is coupled to the external leads by
the parametersVk andWk:

He−res =
∑
k

(
Vkck|L〉〈0|+ V ∗k |0〉〈L|c

†
k

)
+
∑
k

(
Wkdk|R〉〈0|+W ∗

k |0〉〈R|d
†
k

)
. (4.5)

The electron-phonon interaction consists of a diagonal part, which is characterized by the
coupling constantsαq andβq, and an off-diagonal contribution with the parameterγq:

He−ph =
∑
q

(αq|L〉〈L|+ βq|R〉〈R|)(a†q + a−q)

+
∑
q

γq(|L〉〈R|+ |R〉〈L|)(a†q + a−q) . (4.6)
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The above interaction coefficients are given by [34]

αq = λq〈L|ei~q~x|L〉 , (4.7)

βq = λq〈R|ei~q~x|R〉 , (4.8)

γq = λq〈L|ei~q~x|R〉 , (4.9)

whereλq is the matrix element for the interaction of 2DEG electrons with phonons. The
phonons are assumed to be three-dimensional acoustical phonons [30]. It then follows for
the interaction [34]

|λq|2 = g
π2c2

s

V |~q|
, (4.10)

and the dispersion reads

ωq = cs|~q| . (4.11)

Here, we introducedcs as the speed of sound in the medium,V as the volume of the
crystal, and the dimensionless coupling constantg [34]. For the evaluation of Eqs. (4.7)
- (4.9) we model the electron densityρL(~x) (ρR(~x)) within one dot by a Gaussian, which
is peaked around the dot position~xL (~xR = ~xL + ~d ) with a width|∆~x| =

√
3/2σ [35]:

ρL(R)(~x) =

(
1

πσ2

)3/2

e−
(~x−~xL(R))2

σ2 . (4.12)

The finite widthσ leads to a high-energy cutoffD = cs/σ for the coefficientsαq, βq and
γq. We include this cutoff in an exponential form, so that we end up with the following
interaction coefficients:

αq = λqe
i~q~xLe−

cs|~q|
2D , (4.13)

βq = λqe
i~q~xRe−

cs|~q|
2D , (4.14)

γq = λqe
i~q(

~xL+~xR
2

)e−
|~d|D
2cs e−

cs|~q|
2D . (4.15)

A simple form of the Hamiltonian, which shows the analogy with the spin-boson model, is
obtained by shifting the bosonic field operators. One introduces the unitary transformation
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U = exp

[∑
q

(
αq + βq

2ωq
a†q −

α∗q + β∗q
2ωq

aq

)]
, (4.16)

so that

UaqU
† = aq −

αq + βq
2ωq

. (4.17)

Thus, our final HamiltonianH = UH̄U † reads

H = H0 +HB +HV , (4.18)

H0 =
ε

2
(|L〉〈L| − |R〉〈R|)

+T eff
c (|L〉〈R|+ |R〉〈L|)

+E (|L〉〈L|+ |R〉〈R| − |0〉〈0|) , (4.19)

HB =
∑
k

εkc
†
kck +

∑
k

εkd
†
kdk +

∑
q

ωqa
†
qaq , (4.20)

HV =
∑
µ

: gµjµ : , (4.21)

where we have used Eqs. (4.10), (4.11) and (4.13) - (4.15). Furthermore, for simplicity
we have set(εL + εR)/2 = 0 and introduced the parameters

ε = εL − εR , (4.22)

T eff
c = Tc − 2gωde

− D
2ωd arctan

D

2ωd
, (4.23)

E = −g
4

(
D + ωd arctan

D

ωd

)
(4.24)

and

ωd =
cs

|~d|
. (4.25)

Thus, the tunnel amplitudeTc has to be replaced by a smaller effectiveT eff
c , which is due

to the off-diagonal electron-phonon interaction. One already recognizes that the reduction
of Tc strongly depends on the width of the electron densitiesσ = |~d|ωd/D. Finally, in
view of the RTRG method, we have written the interaction partHV as normal ordered
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products of local (dot) operatorsgµ and environmental operatorsjµ. They are defined by

gb1 =
1

2
(|L〉〈L| − |R〉〈R|) , (4.26)

jb1 =
∑
q

(αq − βq)
(
a†q + a−q

)
, (4.27)

gb2 = (|L〉〈R|+ |R〉〈L|) , (4.28)

jb2 =
∑
q

γq
(
a†q + a−q

)
, (4.29)

gb3 = −1

2
|0〉〈0| , (4.30)

jb3 =
∑
q

(αq + βq)
(
a†q + a−q

)
, (4.31)

g+L = g†−L = |L〉〈0| , j+L = j†−L =
∑
k

Vkck , (4.32)

g+R = g†−R = |R〉〈0| , j+R = j†−R =
∑
k

Wkdk . (4.33)

(4.34)

Therefore, the interaction indexµ runs over the bosonic indicesb1, b2, b3 and the fermionic
ones+L,−L,+R,−R. From Eqs. (4.18) - (4.21) a spin-boson model is recovered by
omitting the electron reservoirs and the interaction with them, excluding the state|0〉 and
neglecting the off-diagonal electron-phonon interaction, i.e.γq = 0, which also means
T eff
c = Tc. The correspondence to the spin-boson model, defined in Eqs. (3.2), (3.5) and

(3.6), is then given byTc = −∆/2. Note thatE is then only a constant energy, which
can be neglected. Although in this case the electron-phonon interaction is not exactly of
the type of an Ohmic bath, we will see below in Subsection4.2.2, that there is a strong
relation to the standard spin-boson model in the Ohmic case with the correspondence of
the coupling constantsg = 2α.

A solution for the stationary tunnel current in case of vanishing electron-phonon cou-
pling (g = 0) was found by Stoof and Nazarov [79]. If one introduces the tunneling
densities of states as

ΓL(ε) = 2π
∑
k

|Vk|2δ(ε− εk) , (4.35)

ΓR(ε) = 2π
∑
k

|Wk|2δ(ε− εk) , (4.36)

and assumes, thatΓL(R)(ε) ≈ const. holds, the result reads

Ist =
T 2
c ΓR

T 2
c (2 + ΓR/ΓL) + Γ2

R/4 + ε2
. (4.37)

Note that this formula deviates from the expressions given in both Ref. [30] and Ref. [34],
which is due to the fact that the results given therein are incorrect. In Ref. [30] ε must
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be divided by~ instead ofh [80], and in Ref. [34] a factor of2 must be taken out of the
definition of the ratesΓf to be consistent with the literature and with the results presented
therein [81].

The influence of the electron-phonon interaction was qualitatively studied by using an
approximation, which corresponds to the NIBA for the spin-boson model [34]. Thereby
it was shown that the interference of phonons interacting with the electron densities at the
two dots leads to an oscillating structure in the current spectrum. However, they treated
the interaction with the electron reservoirs only perturbatively. Therefore, they had to
introduce an additional cutoff parameter, which simulates the level broadening due to the
coupling to the leads. Furthermore, they considered the limit of large external voltage
(V →∞), so that they could not study the regimeε ≈ V . Additionally, we have already
mentioned that the calculation of the tunnel current as a function of the energy difference
ε corresponds to determining the off-diagonal elements of the reduced density matrix for
the spin-boson model for arbitrary biasε. Thus, this approach is only valid for the pa-
rameter regime(∆2

r + ε2)1/2 . T (see AppendixA). Here,∆r = ∆(∆/D)α/(1−α) is
the renormalized tunnel amplitude for the spin-boson model (Eq. (3.11)). Finally, this ap-
proximation did not account for the off-diagonal terms of the electron-phonon interaction.
Therefore, this analysis could not provide a quantitative result forIst(ε).

4.2 The tunnel current within the RTRG

We apply the RTRG to determine the stationary tunnel current through the double dot
system. It is defined by

Ist = lim
t→∞
〈I〉(t) , (4.38)

whereI is the current operator

I = i
∑
k

(
V ∗k |0〉〈L|c

†
k − Vkck|L〉〈0|

)
. (4.39)

To calculateIst it is not sufficient to determine the kernelΣ introduced in Section3.2.
However, the scheme for the calculation of the reduced density matrix, which we have
derived in Section3.2, can easily be modified to also determine expectation values of
operators, which are linear in the bath field operators [12]. Before we set up the RG
equations, we again derive an exact expression forIst, which now depends on a kernel
ΣI .

4.2.1 Exact expression for the stationary tunnel current

First, we again introduce the LiouvillianL = L0 + LB + LV , which is defined as in
Eq. (3.21). It acts on an operatorO according to

LO = [H,O]− (L0O = [H0, O]− , LBO = [HB, O]− , LVO = [HV , O]− ) . (4.40)
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Similarly as in Eq. (3.22) the time-dependent expectation value can be written as

〈I〉(t) = Tr0TrB
[
Ie−iLtp(0)ρeqB

]
= Tr0TrB

[
(−iAI)e−iLtp(0)ρeqB

]
. (4.41)

Here we again assumed a factorized initial density matrix withp(0) as the initial dot
density matrix andρeqB as the equilibrium distribution of the electron reservoirs and the
phonon bath. Furthermore, we introduced the superoperatorAI as

AIO = [
i

2
I, O]+ , (4.42)

whereO again is an usual operator and[·, ·]+ denotes the anticommutator. As in Sec-
tion 3.2we now use the interaction picture with respect toL0 + LB and obtain

〈I〉(t) = Tr0TrB

[
e−iL0tT (−iAI(t))e−i

∫ t
0 dt
′ LV (t′)p(0)ρeqB

]
, (4.43)

whereT again denotes the time ordering operator. Expanding the above expression in
LV and performing the trace over the bath degrees of freedom using Wick’s theorem we
can use the same diagrammatic language as in Section3.2. According to Eq. (4.21) the
interaction partLV can be written as

LV =
∑
µ,p=±

: Gp
µJ

p
µ : , (4.44)

where the superoperatorsGp
µ andJpµ act on an operatorO:

G+
µO = gµO ,

G−µO = −Ogµ , (4.45)

J+
µ O = jµO ,

J−µ O = Ojµ . (4.46)

Furthermore, the vertexAI can be written as

AI =
∑
µ,p=±

: ApIµJ
p
µ : , (4.47)

where we introduced

A+
IµO =

1

2
(δµ,+L|L〉〈0| − δµ,−L|0〉〈L|)O ,

A−IµO =
1

2
O (δµ,+L|L〉〈0| − δµ,−L|0〉〈L|) . (4.48)

Thus, we again obtain an effective theory for the local system, where the verticesGp
µ and

ApIµ of the local system are connected by the pair contractions

γp1,p2
µ1,µ2

(t) = TrB
[
Jp1
µ1

(t)Jp2
µ2
ρeqB
]
. (4.49)
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0 t’ t

<I>(t)  = 0 ITr Σ

Figure 4.2: Diagrammatic expression for〈I〉(t). The two lines of the Keldysh contour
are put together to one line. The irreducible diagrams inΣI include the leftmost vertex
superoperator at the time pointt′ and the current superoperatorApIµ at the time pointt. ΣI

acts onp(t′), which is represented by the thick horizontal line.

Introducing the kernelΣ(t1 − t2) as in Section3.2, we again have to account for all
possible sequences of suchΣ blocks, which can be expressed byp(t). However, for the
calculation of〈I〉(t) the last vertex of the last irreducible block isApIµ. We call that new
objectΣI , see Fig.4.2. Finally, we also have to perform the trace over the local degrees
of freedom. Formally, this yields [35]

〈I〉(t) = Tr0

[∫ t

0

dt′ΣI(t− t′)p(t′)
]
, (4.50)

where the kernel is given by

ΣI(t1 − t2) = (−i)2TrB

[
AIe

−iL0t1Te−i
∫ t1
t2
dtLV (t)eiL0t2LV ρ

eq
B

]
irred.

. (4.51)

In addition to Eq. (3.31) we introduce the Laplace transforms

〈I〉(z) =

∫ ∞
0

dt eizt〈I〉(t) , ΣI(z) =

∫ ∞
0

dt eiztΣI(t) (4.52)

for Imz > 0. This leads to

〈I〉(z) = Tr0 [ΣI(z)p(z)] . (4.53)

UsingIst = −i limz→0 z〈I〉(z) together with Eq. (3.33), we finally obtain the exact equa-
tion

Ist = Tr0 [ΣI(z = 0)pst] . (4.54)

The stationary reduced density matrixpst can again be calculated from Eq. (3.34):

[L0 + iΣ(z = 0)]pst = 0 . (4.55)

Thus, for the calculation ofIst we need to determine the kernelsΣ(z = 0) andΣI(z = 0).

4.2.2 RG equations for the coupled quantum dots

For the calculation ofΣ(z = 0) we use the framework given by Eqs. (3.60) - (3.64).
Note that we now have the additional bath indicesµ, which the vertex superoperators
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p

s
p

2

1

s’

Figure 4.3: Additional sign arises for fermionic contractions, if the difference between
the fermionic occupation numbers of the statess ands′ is odd, andp1 6= p2.

p p p
1

p p
2

p
1

2

Figure 4.4: Additional sign arises for fermionic contractions, if the free vertex is
fermionic, andp = p2.

Gp
µ, Ap(I)µ andBp

µ as well as the bath contractionsγp1,p2
µ1,µ2

(t) depend on. Thus, we have
RG equations for the vertices for eachµ, and the right-hand sides of the RG equations
have to be summed over all possible contractions. Furthermore, we have to account for
additional signs arising from the commutation of fermionic field operators [12]. There
are two possible situations, where a fermionic contraction leads to a minus sign on the
right-hand side of the RG equations, see Figs.4.3and4.4. First, in Fig.4.3a minus sign
occurs, when a fermionic contraction connects the upper and the lower propagator and the
fermionic occupation numbers of the statess ands′ differ by an odd number. We account
for this by including a matrix̂σp1,p2 after the later vertex, i.e. in the RG equations we
multiply the later vertex superoperator from the left withσ̂p1,p2 , which is given by

(σ̂p1,p2)ss′,ss′ =

{
p1p2 for Ns −Ns′ = odd

1 for Ns −Ns′ = even
. (4.56)

Since we include the matrix̂σp1,p2 after the later contraction vertex an additional minus
sign occurs, when a fermionic vertex lies between the contraction vertices, and on the
same propagator as the first contraction vertex (Fig.4.4). This is accounted for by the
function

ηp1,p2
µ =

{
−p1p2 for µ fermionic

1 else
. (4.57)

RegardingΣI the only difference toΣ is that the last vertex is not a usual vertex but the
current vertexApIµ. Thus, we replace the right boundary vertexApµ by ApIµ in Eq. (3.64)
to obtain the RG equation forΣI . The renormalization of the current vertexApIµ is com-
pletely analogous to Eq. (3.62), so that we again only have to replaceApµ byApIµ to obtain
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the corresponding RG equation. However, note that the objectApIµ cannot be derived from
Apµ, since the initial conditions differ, see Eq. (3.43) and Eq. (4.48).

Let us now consider the explicit form of the bath contractionsγp1,p2
µ1,µ2

(t). The bosonic
contractions can be derived using Eqs. (4.13) - (4.15). As mentioned earlier they are
strongly related to the bath contraction of the spin-boson model given by Eqs. (3.18) -
(3.20) with the correspondence of the coupling constants:g = 2α. We again consider the
caseD � T , and therefore, we define

γp1,p2

SBM(t) = −g

(
Re

[
(πT )2 1

sinh2(πT (t− i/D))

]
+ ip2Im

[
1

(t− i/D)2

])
. (4.58)

Then, the bosonic contractions for the double dot system in the phonon bath read

γp1,p2

b1,b1 (t) = γp1,p2

SBM(t)− ωd
2

∫ t+1/ωd

t−1/ωd

dt′ γp1,p2

SBM(t′) , (4.59)

γp1,p2

b1,b2 (t) = γp1,p2

b2,b1 (t) = 0 , (4.60)

γp1,p2

b1,b3 (t) = γp1,p2

b3,b1 (t) = 0 , (4.61)

γp1,p2

b2,b2 (t) =
1

2
e−D/ωdγp1,p2

SBM(t) , (4.62)

γp1,p2

b2,b3 (t) = γp1,p2

b3,b2 (t) = ωde
−D/2ωd

∫ t+1/2ωd

t−1/2ωd

dt′ γp1,p2

SBM(t′) , (4.63)

γp1,p2

b3,b3 (t) = γp1,p2

SBM(t) +
ωd
2

∫ t+1/ωd

t−1/ωd

dt′ γp1,p2

SBM(t′) . (4.64)

The above integral can be performed:∫ t+1/ωd

t−1/ωd

dt′ γp1,p2

SBM(t′) = −g

(
Re

[
πT

sinh(πT (t+ 1/ωd − i/D))

× sinh(πT (2/ωd))

sinh(πT (t− 1/ωd − i/D))

]

+ip2Im

[
2/ωd

(t+ 1/ωd − i/D)(t− 1/ωd − i/D)

])
.(4.65)

Here, we assumed that the bosons, which are represented by the shifted phonon opera-
tors (see Eq. (4.17)), are in equilibrium. Accounting for the original phonons being in
equilibrium would give rise to correction terms to the above pair contractions, which are
of second order ing. In fact, within numerical errors this correction does not change the
results forIst. In Eqs. (4.62) and (4.63) one again recognizes that the influence of the
off-diagonal electron-phonon interaction strongly depends on the width of the electron
densitiesσ = |~d|ωd/D. The fermionic contractions can be written as

γp1,+
ηf,η′f ′(t) = γp1,−

η′f ′,ηf (−t) = δη,−η′δf,f ′γηf (t) , (4.66)
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where the indicesη andf run over± andL,R. Using again the definitions in Eqs. (4.35)
and (4.36) and the assumptionΓf (ε) ≈ const. we obtain

γηf (t) =
−iTΓfe

−iηµf t

2 sinh (πT (t− i/Df ))
. (4.67)

Here, we also introduced a bandwidthDf of the reservoirf .

To obtain the explicit form of the RG equations one has to make a choice of thetc
dependence of the bath contractionsγp1,p2

µ1,µ2
(t, tc). Since the bosonic bath contractions

γp1,p2

bj ,bk
(t) (j, k = 1, 2, 3) correspond to those of the spin-boson model, we choose thetc

dependence analogously toγp1,p2

2 (t, tc) in Section3.3. Thus, we set

γp1,p2

bj ,bk
(t, tc) =

d

dt

(
R̃jk(t)Θ(t− tc)

)
+ ip2Sjk(t)Θ(t− tc)

+Θ(t− tc)
d

dt
gπT sign(t)

×


1 for j = k = 1 or j = k = 3

1
2
e−D/ωd for j = k = 2

0 else
, (4.68)

where we defined

R̃11(t) = gRe
[
πT coth (πT (t− i/D))

+
ωd
2

ln

(
sinh (πT (t− 1/ωd − i/D))

sinh (πT (t+ 1/ωd − i/D))

)]
−gπT sign(t) , (4.69)

S11(t) = g Im
[ 1/ω2

d

((t− i/D)2 − 1/ω2
d) (t− i/D)2

]
, (4.70)

R̃12 = R̃21 = S12 = S21 = 0 , (4.71)

R̃13 = R̃31 = S13 = S31 = 0 , (4.72)
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R̃22(t) =
g

2
e−D/ωd Re

[
πT coth (πT (t− i/D))

]
−g

2
e−D/ωdπT sign(t) , (4.73)

S22(t) = −g
2
e−D/ωd Im

[ 1

(t− i/D)2

]
, (4.74)

R̃23(t) = R̃32(t) = −gRe
[
ωde

−D/2ωd

× ln

(
sinh (πT (t− 1/2ωd − i/D))

sinh (πT (t+ 1/2ωd − i/D))

)]
, (4.75)

S23(t) = S32(t) = −g Im
[ e−D/2ωd

((t− i/D)2 − 1/4ω2
d)

]
, (4.76)

R̃33(t) = gRe
[
πT coth (πT (t− i/D))

−ωd
2

ln

(
sinh (πT (t− 1/ωd − i/D))

sinh (πT (t+ 1/ωd − i/D))

)]
−gπT sign(t) , (4.77)

S33(t) = g Im
[ 1/ω2

d − 2(t− i/D)2

((t− i/D)2 − 1/ω2
d) (t− i/D)2

]
. (4.78)

Regarding the fermionic contractions we choose the standard sharp cutoff:

γp1,p2

ηf,η′f ′(t, tc) = γp1,p2

ηf,η′f ′(t)Θ(t− tc) . (4.79)

Furthermore, because of Eq. (4.66) we can write

γp1p2

ηfη′f ′(t) = δη,−η′δf,f ′

(
1

2
(γηf (t) + γ−ηf (−t))

+
p2

2
(γηf (t)− γ−ηf (−t))

)
. (4.80)

With

lim
Df→∞

1

2
(γηf (t) + γ−ηf (−t)) =

Γf
2
δ(t) (4.81)

we obtain for largeDL (DR)

γp1,p2

ηf,η′f ′(t, tc) = δη,−η′δf,f ′

(
Γf
2
δ(t)Θ(t− tc) + γ̄p1,p2

ηf (t)Θ(t− tc)
)
, (4.82)

where we have introduced

γ̄p1,p2

ηf (t) =
p2

2
(γηf (t)− γ−ηf (−t))

= −ip2

2
TΓfe

−iηµf tRe

[
1

sinh(πT (t− i/Df ))

]
. (4.83)

Note that the above choice of thetc dependence of the bath contractions yields a well-
defined RG scheme, sinceγp1,p2

µ1,µ2
(t, tc = 0) = γp1,p2

µ1,µ2
(t). As for the spin-boson model, the
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last term in Eq. (4.68) can be incorporated in the initial conditions. In Section3.3we have
seen that such terms only contribute to an initial renormalization ofL0 andΣ(I). The first
term in Eq. (4.82) will be accounted for in the same way, so that we obtain the modified
initial conditions

L0(tc = 0) = L0 − igπT
∑
p1,p2

(
Gp1

b1
Gp2

b1
+

1

2
e−D/ωdGp1

b2
Gp2

b2
+Gp1

b3
Gp2

b3

)
−i

∑
ηf,p1,p2

Γf
4
σ̂p1,p2Gp1

ηfG
p2

−ηf , (4.84)

Σ(z, tc = 0) = −gπT
∑
p1,p2

(
Gp1

b1
Gp2

b1
+

1

2
e−D/ωdGp1

b2
Gp2

b2
+Gp1

b3
Gp2

b3

)
−
∑

ηf,p1,p2

Γf
4
σ̂p1,p2Gp1

ηfG
p2

−ηf , (4.85)

ΣI(z, tc = 0) = −ΓL
4

∑
η,p1,p2

σ̂p1,p2Ap1

IηLG
p2

−ηL . (4.86)

Substituting the remaining terms of Eqs. (4.68) and (4.82) in Eqs. (3.60) - (3.64) and ac-
counting for the additional signs for fermionic contractions yields the final RG equations:

dL0

dtc
=

∑
p1,p2,j,k

(
R̃jk(tc)[G

p1

bj
(tc), L0] + p2Sjk(tc)G

p1

bj
(tc)
)
Gp2

bk
(0)

−i
∑

p1,p2,η,f

γ̄p1p2

ηf (tc)σ̂
p1p2Gp1

ηf (tc)G
p2

−ηf (0) , (4.87)

dGp
µ

dtc
=

∑
p1,p2,j,k

(
R̃jk(tc)

(
Gp1

bj
(tc)G

p
µ(0)−Gp

µ(0)Gp1

bj
(tc)
)
Gp2

bk
(0)

−i
∫ tc

0

dt
(
Gp1

bj
(t)Gp

µ(0)−Gp
µ(0)Gp1

bj
(t)
)

×
(
R̃jk(tc)[L0, G

p2

bk
(t− tc)] + p2Sjk(tc)G

p2

bk
(t− tc)

))
+

∑
p1,p2,η,f

γ̄p1p2

ηf (tc)

∫ tc

0

dt
(
Gp
µ(0)σ̂p1p2Gp1

ηf (t)

−ηpp2
µ σ̂p1p2Gp1

ηf (t)G
p
µ(0)

)
Gp2

−ηf (t− tc) , (4.88)
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dAp(I)µ
dtc

(z) =
∑

p1,p2,j,k

(
R̃jk(tc)

(
Ap1

(I)bj
(tc, z)G

p
µ(0)− Ap(I)µ(0, z)Gp1

bj
(tc)
)
Gp2

bk
(0)

−i
∫ tc

0

dt
(
Ap1

(I)bj
(t, z)Gp

µ(0)− Ap(I)µ(0, z)Gp1

bj
(t)
)

×
(
R̃jk(tc)[L0, G

p2

bk
(t− tc)] + p2Sjk(tc)G

p2

bk
(t− tc)

))
+

∑
p1,p2,η,f

γ̄p1p2

ηf (tc)

∫ tc

0

dt
(
Ap(I)µ(0, z)σ̂p1p2Gp1

ηf (t)

−ηpp2
µ σ̂p1p2Ap1

(I)ηf (t, z)Gp
µ(0)

)
Gp2

−ηf (t− tc) , (4.89)

dBp
µ

dtc
(z) =

∑
p1,p2,j,k

(
R̃jk(tc)G

p1

bj
(tc)G

p
µ(0)Bp2

bk
(0, z)

−i
∫ tc

0

dtGp1

bj
(t)Gp

µ(0)

×
(
R̃jk(tc)(L0 − z) + p2Sjk(tc)

)
Bp2

bk
(t− tc, z)

)
−

∑
p1,p2,η,f

γ̄p1p2

ηf (tc)

∫ tc

0

dt ηpp2
µ σ̂p1p2Gp1

ηf (t)G
p
µ(0)Bp2

−ηf (t− tc, z), (4.90)

dΣ(I)

dtc
(z) = −i

∑
p1,p2,j,k

Ap1

(I)bj
(tc, z)

(
R̃jk(tc)(L0 − z) + p2Sjk(tc)

)
Bp2

bk
(0, z)

−
∑

p1,p2,η,f

γ̄p1p2

ηf (tc)σ̂
p1p2Ap1

(I)ηf (tc, z)B
p2

−ηf (0, z) . (4.91)

Note that the convergence condition, Eq. (3.39), is fulfilled, since

lim
t→∞

R̃bjbk(t) = lim
t→∞

Sbjbk(t)

= lim
t→∞

γ̄p1,p2

ηf (t) = 0 . (4.92)

The generation of multiple vertex superoperators is neglected here as in Chapter3. Within
this approximation we solved the spin-boson model for couplings up to
α = g/2 . 0.1 − 0.2. Since realistic values ofg are significantly smaller (g = 0.05
for GaAs), our approach will lead to very reliable results. Furthermore, in contrast to the
spin-boson model we do not introduce a crossover between different definitions of the
tc dependent bosonic bath contractions (see Section3.3), since in the relevant coupling
regime the results turn out to be independent of such a crossover. Note that by using the
RTRG for the spin-boson model we achieved reliable results for arbitrary biasε and tem-
peratureT , and we also obtained the off-diagonal elements of the reduced density matrix.
That means for the coupled quantum dots, that the solution of the above RG equations will
yield accurate results for the stationary currentIst for arbitraryε even at low temperature,
whereas an approach using the NIBA can giveIst as a function ofε only for sufficiently
high temperature, see Section4.1.
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Since also the coupling to the leads is treated nonperturbatively, the induced level
broadening is accounted for properly, so that we do not have to simulate that by an addi-
tional cutoff parameter. Furthermore, a finite value of the external voltageV is included in
our method, so that we obtain correct results also in the regimeε ≈ V . Eventually, using
the RTRG we are also able to account for the off-diagonal electron-phonon interaction,
which is important for smallD/ωd, see Eqs. (4.23), (4.62) and (4.63).

4.3 Results

We solve the set of ordinary differential equations, Eqs. (4.87) - (4.91), numerically,
where we again use the methods described in AppendixE.1 and E.2. The stationary
tunnel currentIst then follows from Eqs. (4.54) and (4.55). Our choice of the parame-
ters corresponds to the experiment, where a GaAs structure was used at the temperature
T = 23mK = 1.98µeV with an external voltageV = 140µeV [30]. For GaAs we deal
with cs = 5000m/s andg = 0.05 [82]. The distance between the dots is estimated as
d = 200 · 10−9m [34], which yieldsωd = 16.5µeV .

Let us first study the parametersTc = ΓL = ΓR = 1µeV , DL = DR = 1meV and
D = 150µeV , which corresponds to the parameters studied in Ref. [34]. The tc flow of
Ist for different energy differencesε is shown in Fig.4.5. The external voltageV gives
rise to a finite stationary tunnel current, which we see in the limit oftc →∞.

The asymptotic (tc →∞) result forIst as a function ofε for the same parameters, but
also forD = 100µeV is shown in Fig.4.6. The elastic current can be seen aroundε with
a width depending on the coupling to the leadsΓL = ΓR and the internal tunnel amplitude
Tc (see Eq. (4.37)). There the phonons do not participate in the tunnel process. Due to
the coupling to the phonons there is also an inelastic current, where phonons are emitted
(ε > 0) respectively absorbed (ε < 0) during the tunnel process. For increasingΓL(R)

the width of the elastic current grows, while an increased coupling constantg leads to a
larger inelastic current. The effect of the finite voltageV can be seen in Fig.4.6, where for
ε > V the tunnel current drops to zero. Furthermore, Fig.4.6shows that the off-diagonal
interaction leads to a larger inelastic current. This effect is increased with decreasing
D, see also Eqs. (4.62) - (4.63). We will see below (Fig.4.8) that, due to Eq. (4.23),
the off-diagonal interaction also suppresses the elastic current. Eventually, in Fig.4.6one
also recognizes the oscillations stemming from the interference of the phonons interacting
with the two dots [34].

Let us now study the current quantitatively in comparison with the experiment. For
this it is necessary to choose realistic parameter values forTc, ΓL(R),D andDL(R). From
changing the bias polarity in the experiments the ratioΓR/ΓL ≈ 0.5..1 was found [30]. To
determine the couplingsTc andΓR, the experimental data are compared with the result of
Stoof and Nazarov, given in Eq. (4.37), which is valid for no electron-phonon interaction
(g = 0). A good agreement of the elastic current is found forTc = 0.124µeV and
ΓL = ΓR = 3.5µeV , see Fig.4.7. However, due to the absent electron-phonon interaction
the influence of the off-diagonal interaction terms on the internal tunnel amplitudeT eff

c is
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Figure 4.5: Stationary tunnel currentIst as a function oftc for Tc = ΓL = ΓR = 1µeV ,
D = 150µeV ,DL = DR = 1meV andε/µeV = 0, 1, 10, 100 (from top to bottom).
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Figure 4.6: Stationary tunnel currentIst as a function of the energy differenceε for Tc =
ΓL = ΓR = 1µeV andDL = DR = 1meV . Solid line: D = 150µeV . Dotted line:
D = 150µeV , γq = 0. Dashed line:D = 100µeV . Dot-dashed line:D = 100µeV ,
γq = 0.
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Figure 4.7: Stationary tunnel currentIst as a function of the energy differenceε. Solid
line: Experiment [30]. Dashed line: Stoof-Nazarov result for the case of no electron-
phonon interaction, with the parametersTc = 0.124µeV andΓL = ΓR = 3.5µeV .

disregarded in the Stoof-Nazarov result. In contrast, within our approach this influence is
accounted for in Eq. (4.23). In case of a finite extension of the electron densities within
the dots, i.e. finite ratiosD/ωd, the tunnel amplitude is effectively reduced. Therefore,
the Stoof-Nazarov result underestimates the value ofTc.

From the large inelastic current in the experiment one can conclude, that in fact a
finite value ofD was realized. It turns out thatTc ≈ 0.375 allows sensible fits. First,
in Fig. 4.8 our results forTc = 0.375µeV , ΓL = ΓR = 3.5µeV , DL = DR = 1meV
andD = 70µeV respectivelyD = 100µeV are compared with the experiment. One
recognizes that with decreasingD the larger overlap of the dots’ wavefunctions leads to
a stronger impact of the off-diagonal electron-phonon interaction. The elastic current is
suppressed, whereas the inelastic current is increased. The deviations from the experiment
show, that there is anε dependence of the width of the electron densities, which we have
to account for in order to achieve agreement. In Fig.4.9 we show a fit of the width
σ = dωd/D, which is based on the experimental results forIst. One recognizes that for
larger absolute values ofε the electron densities are more sharply peaked. The asymmetry
is due to the finite external voltageV . Forε < 0 the state|L〉 lies in a deep potential well,
thus this energetic separation of the two quantum dot levels and the leads causes a very
small overlap of the wavefunctions within the dots. On the other hand forε > 0 neither
dot level lies in a deep potential well, however, an increasing energetic separationε again
leads to more sharply defined electron densities.

Eventually, in Fig.4.8 one also recognizes that the structure on the emission side
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Figure 4.8: Stationary tunnel currentIst as a function of the energy differenceε. Solid
line: Experiment [30]. Dotted line: RTRG withTc = 0.375µeV , ΓL = ΓR = 3.5µeV ,
DL = DR = 1meV andD = 70µeV . Dashed line: RTRG withTc = 0.375µeV ,
ΓL = ΓR = 3.5µeV ,DL = DR = 1meV andD = 100µeV .
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Figure 4.9: The width of the electron density within one dot,σ, as a function of the energy
differenceε. Tc = 0.375µeV , ΓL = ΓR = 3.5µeV andDL = DR = 1meV .



96 CHAPTER 4. COUPLED QUANTUM DOTS

(ε > 0) of the current spectrum observed in the experiment (see also Fig.4.7) does not
stem from interference effects of the phonons. In fact, the oscillations generated by this
interference occur on a much larger energy scale than the structure found in the exper-
imental curve. In contrast, our results show that the bump on the emission side of the
current spectrum (Fig.4.7) is due to another mechanism: on the one hand we see in
Fig. 4.8 that for smallε > 0 the inelastic current grows with increasingε. On the other
hand however, the electron densities are simultaneously sharpened, so that the cutoffD is
increased. For largerε this again reduces the inelastic current.

4.4 Summary

A coupled quantum dot system in a phonon bath in nonequilibrium was examined. We
have explained the close relation of this problem to the previously studied spin-boson
model. As in case of the spin-boson model we applied the RTRG to this problem and
determined the stationary tunnel current. In this case it was necessary to formulate the
RTRG also for observables, which are linear in the bath field operators, and we had to
account for additional signs arising from the commutation of fermionic field operators.

By accounting for both the coupling to the leads and the coupling to the environmen-
tal phonons nonperturbatively we achieved a reliable solution for the stationary tunnel
current in the whole parameter space with moderately large couplings. Especially, we
obtained accurate results for arbitrary energy differenceε between the dots and tempera-
tureT , which is in contrast to approximations using the NIBA. Furthermore, we included
off-diagonal terms of the electron-phonon interaction, which give a contribution in case
of finite extensions of the electron densities within the dots. Thereby, for the first time
both the elastic and the inelastic current of the experiment could quantitatively be re-
produced [35]. Our analysis shows the importance of the finite widthσ of the electron
densities within one dot, and for the experiment, the dependence ofσ onε was calculated.

For the coupling parameters realized in the experiment [30] the neglecting of double
and higher-order vertex objects was justified. In contrast, in the next chapter we will study
a Kondo model, for which we will have to account for double vertices. We have already
mentioned in Section3.2, that we will use a modified formulation of the RTRG to treat
these double vertex objects.



Chapter 5

Two-lead Kondo model

The Kondo model describes a magnetic impurity coupled to a band of conduction elec-
trons. Over the past decades this problem has often been studied both experimentally and
theoretically (for a review see Ref. [36]). When Kondo first studied the model perturba-
tively in 1964 [83], he found low-temperature divergencies. In fact, perturbative studies
give only a good description of the problem forT � TK , whereTK is the Kondo tem-
perature. Renormalization-group studies show that the coupling constant increases when
reducing the relevant energy scale. Thus, perturbative approaches like Poor Man’s scal-
ing break down atTK . In 1975, the problem was solved by Wilson [5] by applying the
numerical renormalization-group method to the Kondo model. Later, a solution was also
found by using the Bethe ansatz [84, 85], an approach which had first been introduced in
Ref. [86].

In recent experiments quantum dot systems served as realizations of the Kondo model
[87, 88, 89, 77]. Such systems have the advantage that the parameters can be tuned within
a wide range. When one applies an external bias voltage to the quantum dot, one deals
with a nonequilibrium problem, the two-lead Kondo model (TLKM). It has attracted much
theoretical interest and the question has been raised, if an external voltage induces two-
channel physics [37] - [43].

We apply the RTRG method to the problem. As the bare Hamiltonian already involves
double vertices, the usual formulation would lead to complicated equations because of re-
tardation effects (see AppendixC). Therefore, we use a formulation in energy space, by
which we avoid the problem of retardation. However, one then has to account for an addi-
tional frequency-dependence of the vertices. Furthermore, this method naturally leads to
divergencies, if the cutoff is defined only with respect to the frequency of the contraction
vertices. We introduce a generalized definition of the cutoff-function, which also depends
on the external vertices. This new scheme allows a RG study of the coupling constants of
the two-lead Kondo model. We study an effective Hamiltonian for vanishing temperature
T . Thus, effects which are only taken into account by an analysis on the Keldysh con-
tour, such as rates, are neglected. Thereby we quantitatively find a two-channel behaviour
for the running couplings which, on this level, was previously proposed in a qualitative
analysis [37]. The influence of rates, which arise for a finite bias, is discussed.
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Figure 5.1: The two-lead Kondo model. The voltageV is applied between two leads (L
andR), which are coupled to the impurity spin~S. The coupling constantsJLL andJRR
(JLR andJRL) correspond to reflection (transmission) of conduction electrons.

5.1 Model Hamiltonian

In 1964 Kondo studied a model Hamiltonian for a magnetic impurity in a conduction
band [83]. There an exchange scattering potential gives rise to an interaction part of the
HamiltonianHV , which is parametrized by the energyJ :

HV =
∑
kσσ′

Jc†kσ~σσσ′ckσ′
~S . (5.1)

Here,~S is the spin of the impurity and~σ is the vector consisting of the Pauli spin matrices.
c†kσ (ckσ) creates (annihilates) an electron in the conduction band with the energyεk and
the spinσ. The total Hamiltonian can be written as a sumH = HB + HV , whereHB

denotes the free electron part for the conduction electrons. When two bands are coupled
to the impurity, we end up with

HB =
∑
αkσ

εαkc
†
αkσcαkσ , (5.2)

HV =
∑

αα′kσσ′

Jαα′c
†
αkσ~σσσ′cα′kσ′

~S , (5.3)

where the indexα = L(R) refers to the left (right) electron reservoir. The coupling
constantsJLL andJRR correspond to a reflection of conduction electrons, whereasJLR
andJRL give rise to transmission from one reservoir to the other. Between them a finite
external voltageV may be applied (see Fig.5.1).

The case of vanishing bias involves a well-known renormalization-group flow [5, 36].
Introducing the high-energy cutoffωc as a flow parameter the antiferromagnetic coupling
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constants increase, whenωc is successively reduced. This leads to a low-temperature
regime where the impurity spin is quenched by the band electrons. The physics is then
determined by the only relevant energy scale, the Kondo temperatureTK . Regarding
the above Hamiltonian we use the density of states of the reservoirα, ρα, to define the
dimensionless couplinḡJαα′ := ραJαα′. In the following we consider the symmetric case,
whereJ̄ := J̄LL = J̄RR = J̄LR = J̄RL. The Kondo temperature is given by

TK = D
√

2J̄e−1/4J̄ , (5.4)

whereD � TK is the bandwidth of the electron reservoirs. Note that, in this chapter we
again use~ = kB = e = 1. For the caseV = 0 the increase of the coupling constant for
TK > T follows from the RG equation [5, 36]

dJ̄

d lnωc
= −4J̄2

⇒ dJ̄−1

d lnωc
= 4 . (5.5)

For the case of finiteV , Colemanet al. [37] proposed for the running couplings the
existence of two different regimes, which are separated by the energy scaleV :

dJ̄

d lnωc
= −4J̄2 for ωc � V > TK > T , (5.6)

dJ̄LL
d lnωc

=
dJ̄RR
d lnωc

= −2J̄2 ,

dJ̄LR
d lnωc

=
dJ̄RL
d lnωc

= 0

 for V � ωc � TK > T . (5.7)

However, since Colemanet al. used a qualitative argumentation within a Poor Man’s
scaling approach, these equations have not been derived quantitatively. Furthermore, the
above equations do not reflect the effects of rates which arise for a finite voltage.

5.2 The RTRG for the two-lead Kondo model

We apply the real-time renormalization-group method to obtain the running couplings for
T = 0 and finite biasV . As in case of the polaron, we consider theS matrix

S = lim
t0→∞

Te
−i
∫ t
−t0

dtH

= lim
t0→∞

e−iHBtTe
−i
∫ t
−t0

dt′HV (t′)
e−iHBt0 , (5.8)

whereT denotes time ordering andHV is taken in the interaction picture with respect
to HB. The underlying picture is that we turn on the interaction adiabatically in a large
time interval, but keep the external voltage at a constant value during that process. Using
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the RTRG we obtain an effective Hamiltonian, which contains the running couplings.
However, this approach does not account for the rates generated by the current. To include
them one would have to study the problem on the Keldysh contour.

Let us first write the Hamiltonian in a convenient form. We define

gηασ,η′α′σ′ := δη,−δη′,+Jαα′~σσσ′ ~S , (5.9)

j+ασ :=
∑
k

cαkσ , (5.10)

j−ασ :=
∑
k

c†αkσ , (5.11)

where the indexη takes the values± referring to out- and ingoing electrons in the corre-
sponding reservoir. With the superindexν = (η, α, σ) we then obtain forHV

HV =
∑
ν,ν′

gν,ν′ − gν′,ν
2

: jνjν′ : . (5.12)

Here,: · : denotes normal ordering according to Wick’s theorem. Note, that∑
ν,ν′

gν,ν′〈jνjν′〉 = 0

holds. One obtains for a bath contraction

〈jν(t)jν′〉 = δη,−η′δα,α′δσ,σ′e
−iηµαt

∫
dω e−iηωt

ρα
2
e−ηω/DΘ(ηω)

= δη,−η′δα,α′δσ,σ′(−i)
ρα
2

e−iηµαt

t− i/D
, (5.13)

whereµα is the chemical potential of the reservoirα and we assumed a constant density
of statesρα(ε) = 2

∑
k δ(ε− εαk) ≈ const.. We now proceed analogously to Section2.3,

i.e. we apply Wick’s theorem and integrate out certain diagrams. However, in this case
the “cross contractions” (see the derivation of the RTRG in Section3.2) will be specified
in energy space. The diagrams giving rise to “cross contractions” may be read from the
equation

: jν1jν2 : : jν3jν4 : = : jν1jν2jν3jν4 :

+ : jν2jν3 : 〈jν1jν4〉− : jν1jν3 : 〈jν2jν4〉
+ : jν1jν4 : 〈jν2jν3〉− : jν2jν4 : 〈jν1jν3〉
+〈jν2jν3〉〈jν1jν4〉 − 〈jν1jν3〉〈jν2jν4〉 . (5.14)

As we outlined in AppendixC, double vertices lead to retardation effects in the RTRG,
thereby causing integro-differential equations. We now develop a formulation in energy
space, which avoids this problem. We write for the bath contraction

〈jν(t)jν′(t′)〉 = δη,−η′δα,α′δσ,σ′

∫
dω

∫
dω′ e−iηωte−iη

′ω′t′ γ̂ν(ω, ω
′) (5.15)
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with
γ̂ν(ω, ω

′) = δ(ω − ω′)ρα
2
e−η(ω−µα)/DΘ(η(ω − µα)) . (5.16)

The factorexp(−i(ηωt+ η′ω′t′)) in Eq. (5.15) may formally be included in the definition
of the interaction picture forgν,ν′:

gν,ν′,ω,ω′(t) = eiH0tgν,ν′,ω,ω′e
−iH0te−iηωte−iη

′ω′t . (5.17)

H0 is the Hamiltonian for the impurity and vanishes initially. Furthermore, we have al-
ready accounted for aω dependence of the operatorsgν,ν′, which is generated during the
RG flow. Initially, we start withgν,ν′,ω,ω′ = gν,ν′. By the definition in Eq. (5.17) the in-
formation about the time arguments of the bath contractions is contained ingν,ν′,ω,ω′(t),
i.e. the vertices may be shifted, so that an additional time-dependence ofgν,ν′,ω,ω′(t) is
not necessary. The RG is now set up by including the cutoff-functionq(ω, ωc). We define

γν(ω, ωc) =
ρα
2
e−η(ω−µα)/DΘ(η(ω − µα))q(ω − µα, ωc) , (5.18)

which is analogous to the corresponding definition in time space (see Eq. (3.36)). Thus,
we end up with the RG equations

dH0

dωc
= i

∫ ∞
0

dt

∫
dω

∫
dω′

∑
ν,ν′

d

dωc

(
γν(ω, ωc)γν′(ω

′, ωc)
)

×
(
gν′,ν,ω′,ω(t/2)− gν,ν′,ω,ω′(t/2)

)
g−ν,−ν′,ω,ω′(−t/2) , (5.19)

dgν1,ν2,ω1,ω2

dωc
= i

∫ ∞
0

dt

∫
dω
∑
ν

d

dωc
γν(ω, ωc)

×
(
gν1,ν,ω1,ω(t/2)− gν,ν1,ω,ω1(t/2)

)
×
(
g−ν,ν2,ω,ω2(−t/2)− gν2,−ν,ω2,ω(−t/2)

)
, (5.20)

where we have used−ν = (−η, α, σ). The following ansatz solves the above equations:

H0(ωc) = h(ωc)1 , (5.21)
gν1,ν2,ω1,ω2(ωc)− gν2,ν1,ω2,ω1(ωc)

2
= Jα1α2,ω1,ω2(ωc)

(
~σσ1σ2

~S
)

+Kα1α2,ω1,ω2(ωc) (δσ1σ21) . (5.22)

The initial conditions are given at the initial high-energy cutoffω0
c :

h(ω0
c ) = 0 , (5.23)

Jα1α2,ω1,ω2(ω0
c ) = Jα1α2 , (5.24)

Kα1α2,ω1,ω2(ω0
c ) = 0 . (5.25)

Thus, since the impurity Hamiltonian stays degenerate, Eq. (5.20) does not depend on
H0(ωc). Therefore, the running couplings are determined by Eq. (5.20) only. However,
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because of the degeneracy ofH0 we have to introduce a regularization parameterε to
perform the time integral. Defining the dimensionless couplings

J̄α1α2,ω1,ω2 := ρα1Jα1α2,ω1+µα1 ,ω2+µα2
, (5.26)

K̄α1α2,ω1,ω2 := ρα1Kα1α2,ω1+µα1 ,ω2+µα2
(5.27)

we obtain the RG equations

dJ̄α1α2,ω1,ω2

dωc
= −

∫
dω
∑
α

dq(ω, ωc)

dωc

{(
eω/DΘ(−ω)

ω̄ − ω + V̄α − iε
− e−ω/DΘ(ω)

ω̄ − ω + V̄α + iε

)

×J̄α1α,ω1,ωJ̄αα2,ω,ω2

+

(
eω/DΘ(−ω)

ω̄ − ω + V̄α − iε
+

e−ω/DΘ(ω)

ω̄ − ω + V̄α + iε

)

×
(
J̄α1α,ω1,ωK̄αα2,ω,ω2 + K̄α1α,ω1,ωJ̄αα2,ω,ω2

)}
, (5.28)

dK̄α1α2,ω1,ω2

dωc
= −

∫
dω
∑
α

dq(ω, ωc)

dωc

(
eω/DΘ(−ω)

ω̄ − ω + V̄α − iε
+

e−ω/DΘ(ω)

ω̄ − ω + V̄α + iε

)
×
(
3/4J̄α1α,ω1,ωJ̄αα2,ω,ω2 + K̄α1α,ω1,ωK̄αα2,ω,ω2

)
(5.29)

Here, we introduced the parameters

ω̄ = 1/2(ω1 + ω2) , (5.30)

V̄α = 1/2(µα1 − µα) + 1/2(µα2 − µα) . (5.31)

One now has to make a choice for the cutoff-functionq(ω, ωc). The standard choice
would be a sharp cutoff, which reads

q(ω, ωc) = Θ(ω + ωc)−Θ(ω − ωc) , (5.32)

so that
dq(ω, ωc)

dωc
= δ(ω + ωc) + δ(ω − ωc) . (5.33)

Substituting this into Eqs. (5.28) and (5.29), however generates divergencies forε→ 0. If
one uses a smooth cutoff, one deals with a principal value integral instead of divergencies,
but consequently, one then has to solve integro-differential equations. This has been an
inherent problem of the RTRG in energy space. However, one may obtain a well-defined
RG scheme represented only by differential equations, if one uses a more general form of
q(ω, ωc) by allowing for dependences on the external vertices (α1, α2, ω1, ω2) as well as a
further dependence on the contraction indexα. We define

q̃(ω, ωc) = Θ(ω − ω̄ − V̄α + ωc)−Θ(ω − ω̄ − V̄α − ωc) , (5.34)

⇒ dq̃(ω, ωc)

dωc
= δ(ω − ω̄ − V̄α + ωc) + δ(ω − ω̄ − V̄α − ωc) . (5.35)



5.2. THE RTRG FOR THE TWO-LEAD KONDO MODEL 103

ωc ωc

ωcωc

ω, ωc )

1

ω
0

( ω+Vα ( ω+Vα )) +( ω+Vα )

-

-

(q
(~ )

- - - - - -

Figure 5.2: The cutoff function in energy space. The standard choiceq(ω, ωc) and our
new choicẽq(ω, ωc) (in brackets). The new sharp cutoff is shifted byω̄ + V̄α.

This choice is again a sharp cutoff. But whereas in case of Eq. (5.32) the cutoff is centered
around0 (with respect to the chemical potential of the contraction reservoir), the definition
in Eq. (5.34) is centered around̄ω+ V̄α (see Fig.5.2). Thereby the divergencies forε→ 0
are avoided forωc > 0. With the definition

∆(ωc) = ωc + ω̄ + V̄α (5.36)

we obtain

dJ̄α1α2,ω1,ω2

d lnωc
=

∑
α

{
−sign(∆)J̄α1α,ω1,∆J̄αα2,∆,ω2

+
(
J̄α1α,ω1,∆K̄αα2,∆,ω2 + K̄α1α,ω1,∆J̄αα2,∆,ω2

)}
−
∑
α

{
∆(ωc)→ ∆(−ωc)

}
, (5.37)

dK̄α1α2,ω1,ω2

d lnωc
=

∑
α

{(
3/4Jα1α,ω1,∆J̄αα2,∆,ω2 + K̄α1α,ω1,∆K̄αα2,∆,ω2

)}
−
∑
α

{
∆(ωc)→ ∆(−ωc)

}
, (5.38)

where we have usedΘ(x)−Θ(−x) = sign(x) andΘ(x) + Θ(−x) = 1. Furthermore, we
have setD →∞, so that the initial high-energy cutoffω0

c plays the role of the bandwidth.
The above equations fulfill the symmetry relations

J̄α1α2,ω1,ω2 = J̄ᾱ1ᾱ2,−ω1,−ω2 ,

K̄α1α2,ω1,ω2 = −K̄ᾱ1ᾱ2,−ω1,−ω2 ,

J̄α1α2,ω1,ω2 = J̄α2α1,ω2,ω1 ,

K̄α1α2,ω1,ω2 = K̄α2α1,ω2,ω1 . (5.39)
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Figure 5.3: The center of the cutoff-function,ω̄+ V̄α, for the different coupling constants
J̄LL, J̄RR andJ̄LR (J̄RL) with ω̄ = ω1 = ω2 = 0. This applies in the same way for the
couplingsK̄.

By ᾱwe denote the opposite electron reservoir of the bandα. Let us consider the RG flow
of the coupling constants in the low-energy limit, i.e.ω1 = ω2 = 0. The energies, around
which the cutoff-functions are centered, can be seen from Fig.5.3. They are different
for the reflection coefficients̄JLL (K̄LL), J̄RR (K̄RR) and the transmission constantsJ̄LR
(K̄LR), J̄RL (K̄RL).

5.3 The running couplings

5.3.1 The role of the external voltage

In Fig. 5.3 one recognizes that due to the occupancy in the bands atT = 0, the
renormalization-group flow should qualitatively change atωc = V (ωc = V/2) regard-
ing the reflection (transmission) couplings. This can be studied for the couplingsJ̄ by
neglecting the coefficients̄K, which will be justified later in an exact solution. Then
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Eq. (5.37) yields forω1 = ω2 = 0

dJ̄LL,0,0
d lnωc

=
dJ̄RR,0,0
d lnωc

= −
(
J̄LL,0,ωc J̄LL,ωc,0 + J̄LL,0,−ωc J̄LL,−ωc,0

)
−
(
J̄LR,0,V+ωc J̄RL,V+ωc,0 + J̄LR,0,V−ωc J̄RL,V−ωc,0

)
for ωc > V , (5.40)

dJ̄LL,0,0
d lnωc

=
dJ̄RR,0,0
d lnωc

= −
(
J̄LL,0,ωc J̄LL,ωc,0 + J̄LL,0,−ωc J̄LL,−ωc,0

)
−
(
J̄LR,0,V+ωc J̄RL,V+ωc,0 − J̄LR,0,V−ωc J̄RL,V−ωc,0

)
for ωc < V , (5.41)

dJ̄LR,0,0
d lnωc

=
dJ̄RL,0,0
d lnωc

= −
(
J̄LL,0,−V/2+ωc J̄LR,−V/2+ωc,0 + J̄LL,0,−V/2−ωc J̄LR,−V/2−ωc,0

)
−
(
J̄LR,0,V/2+ωc J̄RR,V/2+ωc,0 + J̄LR,0,V/2−ωc J̄RR,V/2−ωc,0

)
for ωc > V/2 , (5.42)

dJ̄LR,0,0
d lnωc

=
dJ̄RL,0,0
d lnωc

=
(
J̄LL,0,−V/2+ωc J̄LR,−V/2+ωc,0 − J̄LL,0,−V/2−ωc J̄LR,−V/2−ωc,0

)
−
(
J̄LR,0,V/2+ωc J̄RR,V/2+ωc,0 − J̄LR,0,V/2−ωc J̄RR,V/2−ωc,0

)
for ωc < V/2 . (5.43)

If one neglects the frequency-dependence in the above equations, one obtains the RG
flow proposed by Colemanet al. (Eqs. (5.6) and (5.7)). Thus,V acts as a cutoff for the
running couplings giving rise to a two-channel behaviour, in which the couplingsJ̄LL and
J̄RR are renormalized independently by intra-lead processes and the transmission terms
are effectively suppressed. But as we have already mentioned, a finite external voltage
also gives rise to rates which we did not account for here. These rates may act as a further
cutoff which may destroy the two-channel physics [43].

5.3.2 Exact results

In this subsection we present the exact solution of the set of ordinary differential equa-
tions, Eqs. (5.37) and (5.38). We again use the numerical method described in Ap-
pendixE.1. The initial high-energy cutoffω0

c = 1000 sets the energy scale of the prob-
lem. For the initial value ofJ̄(= J̄LL = J̄RR = J̄LR = J̄RL) we choose0.01, so that
TK ≈ 10−9. For the solution we choose a logarithmic discretization of the frequencies
ω1 respectivelyω2. It turns out, that it is sufficient to take into account 50 frequencies.
The running couplings forω1 = ω2 = 0 both for the biased and the unbiased case are
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Figure 5.4: RG flow of the coupling constantsJ̄α1α2 for ω1 = ω2 = 0.
Solid line:V = 100. Dashed line:V = 0.

shown in Figs.5.4 and5.5. For V = 0, Eqs. (5.37) and (5.38) conserve the symmetry
J̄ = J̄LL = J̄RR = J̄LR = J̄RL, which also applies to the couplings̄K. Hence, with
the symmetry relations in Eqs. (5.39) one recognizes that̄K = 0 holds (not shown in
Fig. 5.5). For V = 100 the couplings stay the same up toωc ≈ V . For ωc < V one
recognizes the different flow for the reflection coefficients and the transmission coeffi-
cients.K̄LL andK̄RR are generated, but they are negligible compared to the couplingsJ̄ .
To compare our solution with the proposal of Colemanet al. in detail we plot1/J̄α1α2

(see Fig.5.6). For the unbiased case we obtain the correct single-lead behaviour given
by Eq. (5.5). For V = 100 one recognizes that the renormalization strength of the in-
verse reflection coefficients is decreased by a factor of2 whenωc crossesV , whereas
the transmission coefficients stay constant forωc < V/2. This corresponds to the same
two-channel behaviour that we already obtained from our approximation in the previous
subsection. Thus the RG flow confirms the proposal of Colemanet al., Eqs. (5.6) and
(5.7). The slope of the couplingsJ is discontinuous, since we study the case of vanishing
temperature. However, the stationary current in case of finiteV corresponds to a rateΓ
which we neglected. Thus the presented RG flow only holds forωc > Γ.

The frequency-dependence ofJ̄ andK̄ for V = 0 andωc = 0.01 is shown in Figs.5.7
and5.8. For J̄ we obtain a peak structure, where the peaks are located atω̄ = 0. This is
due to our definition of the cutoff functioñq(ω, ωc), whereω̄ acts in the same way as̄Vα.
Hence, both a finiteV and a finiteω̄ act as a cutoff for the RG flow. From Fig.5.8we see
that |K̄| < 10−4 holds for all frequencies, which justifies the neglecting of the couplings
K̄ in Subsection5.3.1. In Figs.5.9 and5.10we show the frequency-dependence ofJ̄LL
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Figure 5.7: Coupling constant̄J as a function of frequencyω1 for differentω2 with V = 0
andωc = 0.01.
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Figure 5.9: Coupling constant̄JLL as a function of frequencyω1 for differentω2 with
V = 100 andωc = 0.01.
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and J̄LR for V = 100 andωc = 0.01. J̄LL is smaller than for the unbiased case, but it
shows the same peak structure. In contrast, forJ̄LR the peaks are concentrated around
ω1 = V .

5.4 Discussion

In summary, we have applied the RTRG to the two-lead Kondo model and studied the
renormalization-group flow of the coupling constants quantitatively. Since the Kondo
problem involves double vertex objects, we have used a formulation of the RTRG in en-
ergy space. Thereby the retardation effects are accounted for without an additional time-
dependence, i.e. the generation of integro-differential equations is avoided. However, this
formulation naturally leads to divergencies in the RG equations. To set up a well-defined
RG scheme, we have developed a technique by which the singularities arising in energy
space are avoided. Studying an effective Hamiltonian forT = 0 we obtained the correct
renormalization-group flow for the single-lead Kondo model, i.e. for vanishing bias. For
the case of finite bias we quantitatively found a two-channel behaviour of the running
couplings, which had been proposed earlier in a qualitative analysis [37].

However, since we studied only one propagator, we did not take effects into account,
which can only be explained by considering the Keldysh contour. Thus, we disregarded
rates which arise for a finite voltageV . A rateΓ may act as a further cutoff, so that the
obtained RG flow is cut off atωc ≈ Γ. Depending on the magnitude ofΓ this may destroy
the two-channel physics [38]. Thus, a complete analysis of the two-lead Kondo model
would require a study of the Keldysh contour. We have already presented the formulation
of the RTRG for the Keldysh contour (see Section3.2). This is also applicable in energy
space, and again any divergencies can be avoided by applying our generalization of the
cutoff-function (the RG equations are presented in AppendixD). However, one then
deals with(4×4)-matrices. Despite certain symmetries this results in a too large problem
size. The numerical solution for only 10 frequencies on a PIII (500MHz)-computer then
requires roughly 100 days.



Chapter 6

Conclusion

In this thesis we used renormalization-group (RG) theory to study different quantum dis-
sipative systems, which are formed by a local system interacting with a dissipative en-
vironment. By applying the recently developed real-time renormalization-group (RTRG)
method [12] we have not been restricted to equilibrium considerations, but we also ex-
amined both stationary states in out-of-equilibrium situations and the time-dependent re-
duced density matrix, where the latter describes the time evolution of the local system out
of an arbitrary nonequilibrium state.

As a starting point we applied the RTRG to the polaron problem, a standard problem
of many-particle theory, where we also drew comparisons to various methods including
the flow equation formalism of Wegner [3]. We considered the one-dimensional case and
calculated the ground-state energy and the effective mass for vanishing temperature [24].
Thus, we were able to use the Gell-Mann-Low theorem, and a full nonequilibrium con-
sideration on the Keldysh contour was not necessary. It turned out that the standard ap-
proximation of the flow equations for that problem [49] led to worse results than simple
perturbation theory. On the other hand, the RTRG method was able to describe the po-
laron beyond perturbation theory. However, there problems arose from the form of the
bath correlations, which did not decay. As a consequence we had to apply a physically
motivated approximation, and we achieved only a low accuracy for the ground-state en-
ergy and the effective mass. Moreover, in case of the polaron the local system consisted
of a continuous electron spectrum, so that a study of the reduced density matrix was nu-
merically impossible.

This motivated us to study a more fundamental, yet nontrivial quantum dissipative
system, the spin-boson model, where a two-state system is coupled to a bosonic heat
bath. For this model the dynamics of the local system in the presence of quantum dissi-
pation could be determined. Since in this case the bath contractions were decaying we
obtained a convergent RG flow. Before we applied the RTRG to the spin-boson model,
we presented a detailed explanation of the formalism for arbitrary nonequilibrium situ-
ations, i.e. involving the Keldysh contour, and we also extended the RG scheme to the
calculation of equilibrium correlation functions. Within the RTRG formalism the explicit
cutoff-dependence of the bath contractions (γp1,p2(t, tc)) is not specified. For the spin-
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boson model we discussed different choices ofγp1,p2(t, tc). We showed that an adequate
definition was necessary in this case, because the standard choice of a sharp cutoff led to
large errors, which could be avoided by applying a modified definition ofγp1,p2(t, tc).

An important advantage of renormalization-group theory is the possibility to study a
physical problem beyond perturbation theory. In case of the spin-boson model this means,
that the correct renormalized tunnel matrix element is accounted for. For the RTRG we
demonstrated that in an analytical calculation.

We solved the RG equations numerically to determine stationary quantities, such as
the static susceptibility, and the time-dependent reduced density matrixp(t), starting from
an arbitrary nonequilibrium state. Forp(t) we also analyzed the oscillation frequency
as well as the asymptotic behaviour. Furthermore, we calculated equilibrium correlation
functions both in the frequency and the time domain [25, 26]. The reliability of our results
was shown by the consistency with chromostochastic quantum dynamics (CSQD), and
the good agreement with the exact Shiba-relation. Furthermore, we checked the correct
scaling behaviour of the spin-boson model. We obtained accurate results for arbitrary
parameters with the only restriction of not too large couplings to the environment. The
latter is due to the approximation, where we neglected double and higher-order vertex
objects.

In contrast to the noninteracting blip approximation (NIBA), our approach allowed the
calculation of the dynamics of the complete reduced density matrix. Moreover, the regime
of validity of the NIBA is characterized by further restrictions regarding the parameters
of the model. We also compared our results to those obtained for the anisotropic Kondo
model. Since we could choose arbitrary parameters these comparisons could be made in a
parameter regime, where the mapping of the spin-boson model on the anisotropic Kondo
model cannot be proven rigorously.

The results for the spin-boson model demonstrated that the RTRG is a powerful
method, which is easily generalized to other quantum dissipative systems, where the ne-
glecting of double vertex objects is justified.

We also studied a double quantum dot system, which is coupled to two electron leads
and to a phonon environment. There a finite external voltage gives rise to a stationary
tunnel current, which was measured in a recent experiment [30]. Applying the RTRG
to that problem we could examine this out-of-equilibrium situation beyond perturbation
theory. Using a formulation of the RTRG for expectation values of operators, which are
linear in the bath operators, we set up the RG equations for the stationary tunnel current.
For the experimentally realized coupling parameters, which were only moderately large,
we obtained quantitatively reliable results. In contrast to previous theoretical studies [34]
we could well describe the experimental data. We found that the finite extension of the
electron densities within the quantum dots cannot be neglected, and we presented its
dependence on the energy difference between the dots [35].

At the end of this thesis we discussed the two-lead Kondo model, where an impurity
is coupled to two electron bands, between which a finite voltage may be applied. This is
a model, where double vertices are important. Thus, the standard approximation, where
one neglects double vertex objects, is not applicable. However, taking these objects into
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account leads to RG equations which are much more complicated: instead of ordinary dif-
ferential equations one deals with integro-differential equations. This principal difficulty
has been overcome by introducing a formulation of the RTRG in energy space. However,
then the standard form of the RG equations involves divergencies. Using a generalized
definition for the cutoff-dependence in the RG, we found a systematic way to avoid these
divergencies. Thereby, we obtained well-defined RG equations for an effective Hamilto-
nian. The solution showed a two-channel behaviour of the running couplings, which was
previously proposed but was not derived quantitatively [37]. However, the influence of
rates, which arise from the stationary current in case of a finite voltage, was not taken into
account, since we did not study the problem on the Keldysh contour. Such an analysis
requires too much numerical effort, as we deal with an additional frequency-dependence
of the vertex objects, when the RTRG is formulated in energy space.

Thus, it was shown, that also double (and higher-order) vertex objects can be treated
within the RTRG, when one accounts for an additional frequency-dependence. Then
the RG scheme is given by a set of ordinary differential equations. In principle, such
equations can easily be solved numerically. However, a solution may become too time-
consuming, if the problem involves a too large problem size, which follows from the num-
ber of degrees of freedom in the local system and the number of vertices. In this context,
note that, if one accounts for double vertex objects, an additional frequency-dependence
is generated, which increases the numerical effort substantially.

In summary, the RTRG provides a new possibility to study quantum dissipative sys-
tems beyond perturbation theory; unlike other RG procedures, within the RTRG also
arbitrary nonequilibrium quantities can be calculated. The physics of rates giving rise to
non-Hamiltonian dynamics is included in this approach, and all time scales are accounted
for, since the propagators have not been expanded. Applying this method we were able
to present the first RG calculation of a time-dependent reduced density matrix. This was
achieved for the spin-boson model, for which we determined various quantities, whose
accuracy was high compared to other methods (see Subsection3.4.4). Furthermore, we
presented a quantitatively reliable solution for the stationary tunnel current through a dou-
ble dot system in a phonon environment, and we systematically calculated the running
couplings for the two-lead Kondo model. Both results could not be obtained before. In
case of the double dot system it became also clear, that within the RTRG method different
reservoirs can easily be treated since they do not lead to qualitatively more complicated
RG equations. Therefore, in an outlook this method can also be used to study the phe-
nomenon of thermal transport, wich arises for two baths at different temperatures.





Appendix A

The noninteracting blip approximation

The noninteracting blip approximation (NIBA) [27] gives an approximate result for the
time-dependent reduced density matrixp(t) = TrBρ(t) for the spin-boson model given
by the Hamiltonian in Eqs. (3.2), (3.5) and (3.6). In Chapter3 we compared our result for
p(t) to that of the NIBA. The NIBA is most often used for the calculation of the diagonal
elements ofp(t) for the unbiased case. However, we considered all elements ofp(t) for
arbitraryε. Our analysis in Chapter3 showed the restrictions of the NIBA regarding its
validity for that general case. These findings were also important for our study of the
coupled quantum dots in a phonon bath in Chapter4.

Therefore, we here present the general formal results of the NIBA for the complete
reduced density matrix for arbitrary parameters. The derivation is described in some detail
in Ref. [1]. In the following we outline the main steps. As in Subsection3.2.1we assume
a product initial state att = 0:

ρ(0) = p(0)ρeqB . (A.1)

Following the method of Feynman and Vernon [62] we write p(t) as a path-integral and
account for the bath degrees of freedom by the influence functionalF .

p(t) = JFV (t)p(0) , (A.2)

whereJFV is a superoperator in Liouville space. Its matrix elements are given by

(JFV )σfσ′f ,σiσ′i(t) =

∫
Dσ

∫
Dσ′ exp

(
i

~

(S0[σ]− S0[σ′])

)
F [σ, σ′] . (A.3)

The pathsσ jump between the states|u〉 (σ = 1) and|d〉 (σ = −1), and the integration
boundaries are given by

σ(0) = σi , σ(t) = σf ,

σ′(0) = σ′i , σ′(t) = σ′f . (A.4)

S0 is the action of the undamped two-state system. Letm be the number of jumps between
the two states on the pathσ, andm′ the corresponding number on the pathσ′. Then the
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path integrals for the free case can be written asm+m′ time-integrals:∫
Dσ

∫
Dσ′ exp

(
i

~

(S0[σ]− S0[σ′])

)
=

∞∑
m,m′=0

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tm+m′−1

dtm+m′

(
i

~

∆

2

)m+m′

(−1)m
′

× exp

(
−
∫ t

0

dt′
i

~

ε

2
(σ(t′)− σ′(t′))

)
. (A.5)

The influence functionalF is obtained by integrating out the bath degrees of freedom:

F [σ, σ′] = exp

(
1

4

∫ t

0

dt′
∫ t′

0

dt′′
(

(σ̇(t′)− σ̇′(t′))Re[Q(t′ − t′′)](σ̇(t′′)− σ̇′(t′′))

+i(σ̇(t′)− σ̇′(t′))Im[Q(t′ − t′′)](σ̇(t′′) + σ̇′(t′′))

))
(A.6)

with

Q(t) =

∫ ∞
0

dω
J(ω)

πω2

(
coth

(
~ω

2kBT

)
(1− cos(ωt)) + i sin(ωt)

)
. (A.7)

The spectral densityJ(ω) is given by Eq. (3.7) respectively Eq. (3.8). Comparing the
expression forQ(t) with the bath correlation functionγ(t) introduced in Eq. (3.15) one
finds Q̈(t) = γ(t). Correspondingly, in the limit of large high-energy cutoff (D → ∞)
one obtains for the Ohmic bath

Q(t) = 2α ln

(
D

πkBT
sinh (πkBT |t|/~)

)
+ iπα sign(t) . (A.8)

The spin pathsσ andσ′ enter Eqs. (A.5) and (A.6) as combinations representing a diag-
onal state (σ + σ′) respectively an off-diagonal state (σ − σ′). When we start out from a
diagonal state att0 = 0, we may write for a path forσ andσ′ with 2n transitions at the
time pointstj (j = 1, . . . , 2n)

1

2
(σ(t) + σ′(t)) =

n∑
j=0

ηj (Θ(t− t2j)−Θ(t− t2j+1)) ,

1

2
(σ(t)− σ′(t)) =

n∑
j=1

ξj (Θ(t− t2j−1)−Θ(t− t2j)) . (A.9)

Here, the coefficientsηj = ±1 andξj = ±1 depend on the diagonal respectively off-
diagonal states. The time intervals[t2j, t2j+1] are namedsojourns, whereas the periods
[t2j−1, t2j] are calledblips [27]. With the matrices

Λjk = Re [Q(t2j − t2k−1) +Q(t2j−1 − t2k)
−Q(t2j − t2k)−Q(t2j−1 − t2k−1)] ,

Xjk = Im [Q(t2j − t2k+1) +Q(t2j−1 − t2k)
−Q(t2j − t2k)−Q(t2j−1 − t2k+1)] (A.10)
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the influence functional for the path in Eq. (A.9) is given by

Fn = exp

(
−

n∑
j=1

Re[Q(t2j − t2j−1)]

)
exp

(
−

n∑
j=2

j−1∑
k=1

ξjξkΛjk

)

× exp

(
i

n−1∑
k=0

n∑
j=k+1

ξjηkXjk

)
. (A.11)

With Eq. (A.8) for D →∞ the last exponential in the above equation reads

exp

(
i
n−1∑
k=0

n∑
j=k+1

ξjηkXjk

)
= exp

(
i

n∑
k=1

ξkηk−1Im[Q(t2k − t2k−1)]

)
. (A.12)

The NIBA is based on the assumption that the average sojourn time is very large
compared to the average blip time. Thus, in the NIBA one sets the interblip interactions
Λjk to zero. Then the influence functional reduces to the factorized form

FNIBA
n =

n∏
j=1

exp
(
−Re[Q(t2j − t2j−1)] + iξjηj−1Im[Q(t2j − t2j−1)]

)
. (A.13)

Within this approximation one may derive an expression forp(t). According to Eq. (3.151)
it is sufficient to consider the expectation values〈σz(t)〉 and〈σx(t)〉. Their Laplace trans-
forms〈σj(z)〉 =

∫∞
0
dt eizt〈σj(t)〉 read

〈σz(z)〉 =
1− i

~z
Σ

(a)
z (z)

Σ
(s)
z (z)− i~z − i~z∆2/(ε2 − (~z)2)

, (A.14)

〈σx(z)〉 =
i

~z
Σ(s)
x (z)− 〈σz(z)〉

(
Σ(a)
x (z) + ε∆/(ε2 − (~z)2)

)
. (A.15)

Here, initially the system is prepared in the state|u〉 and we introduced the self-energies

Σ(s)
z (z) = ∆2

∫ ∞
0

dτ eizτ cos(ετ/~)
(
e−Re[Q(τ)] cos (Im[Q(τ)])− 1

)
, (A.16)

Σ(a)
z (z) = ∆2

∫ ∞
0

dτ eizτ sin(ετ/~)e−Re[Q(τ)] sin (Im[Q(τ)]) , (A.17)

Σ(s)
x (z) = ∆

∫ ∞
0

dτ eizτ cos(ετ/~)e−Re[Q(τ)] sin (Im[Q(τ)]) , (A.18)

Σ(a)
x (z) = ∆

∫ ∞
0

dτ eizτ sin(ετ/~)
(
e−Re[Q(τ)] cos (Im[Q(τ)])− 1

)
, (A.19)

wheres(a) denotes whether the self-energies are (anti)symmetric under inversion of the
biasε.

For the Ohmic bath the NIBA will provide accurate results for〈σz(t)〉 in case of
vanishing biasε and weak coupling (α� 1). For, the contributions of the interblip corre-
lationsΛjk to the self-energyΣ(s)

z cancel in first order inα. Another regime of the Ohmic
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bath, where the NIBA is justified, is given by large damping and/or high temperature.
This is due to the suppression of long blips because of the increase ofRe[Q] with t at long
times. A more detailed study [1] yields that the temperature range, where the NIBA is
valid, is given by √

∆2
r + ε2 . kBT . (A.20)

Here, ∆r = ∆(∆/D)α/(1−α) denotes the renormalized tunnel matrix element
(see Eq.3.11).

Forε = 0 and vanishing temperature one finds in the scaling limit (see Subsection3.1)

〈σz(t)〉 = E2−2α(−(∆efft/~)2−2α) , (A.21)

whereEν(z) is the Mittag-Leffler function [90] and

∆eff = (Γ(1− 2α) cos(πα))1/2(1−α) ∆r . (A.22)

For α < 1/2 this solution for 〈σz(t)〉 has an incoherent part, which decays as
1/(∆efft/~)2−2α, and a coherent part, which is proportional tocos(Ωt)e−t/τ

deph
. The os-

cillation frequencyΩ and the dephasing timeτ deph are given by

~Ω = ∆eff cos (πα/2(1− α)) , (A.23)

τ deph/~ = ∆−1
eff sin−1 (πα/2(1− α)) . (A.24)

These results yield the same quality factorQ = Ωτ deph as obtained by Lesage and
Saleur [29] (see Eqs. (3.155) and (3.159)). However, the aymptotic behaviour given by
the algebraic decay of the incoherent part is not correct, as more detailed studies of the
interblip correlations show [1]. Concerning the asymptotics of equilibrium correlation
functions the NIBA also fails, for it violates the Shiba-relation.



Appendix B

Relation of the SBM to the Kondo
model

The Kondo model describes an impurity with spin1/2 in a conduction band. It interacts
with the conduction electrons via an exchange scattering potential. In order to map this
problem on the spin-boson model, which we studied in Chapter3 one has to consider the
anisotropic Kondo model, where one deals with different coupling constants for processes
which conserve the impurity spin (J‖), and spin-flip processes (J⊥). The corresponding
Hamiltonian reads

HK =
∑
kσ

εkc
†
kσckσ + J⊥

∑
kk′

(
c†k↑ck′↓S

− + c†k↓ck′↑S
+
)

+J‖
∑
kk′

(
c†k↑ck′↑ − c

†
k↓ck′↓

)
Sz − gµBhSz . (B.1)

Herec†kσ(ckσ) creates (annihilates) a conduction electron with spinσ and energyεk. Si
(i = x, y, z) are the impurity spin operators withS± = Sx±iSy. The last term in Eq. (B.1)
represents the energy when a local magnetic fieldh in z direction couples to the impurity.
In contrast to this model, in Chapter5 we investigated the isotropic (J‖ = J⊥) two-lead
Kondo model, where the impurity is coupled to two different bands.

The electron-hole excitations have bosonic character. In fact, using bosonization
[91, 92] the Kondo Hamiltonian in Eq. (B.1) transforms into the spin-boson Hamiltonian
given by Eqs. (3.2), (3.5) and (3.6). The parameters are then given by

∆/D = ρJ⊥ cos2(δK) , (B.2)

α = (1− 2δK/π)2 , (B.3)

ε = −gµBh , (B.4)

whereρ is the constant density of states of the conduction electrons. The scattering phase
shift δK depends on the applied regularization [93]. For a separable form one obtains
δK = arctan(πρJ‖/4), whereas else one deals withδK = πρJ‖/4. Thus, the universality
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of this mapping is rigorously correct only in the limit

ρJ⊥ = ∆/D � 1 ,

ρ|J‖| = |1− α| � 1. (B.5)

The ferromagnetic regimeρJ‖ < 0 corresponds toα > 1, whereas the antiferromag-
netic Kondo model withρJ‖ > 0 translates intoα < 1. In the antiferromagnetic regime,
the Kondo temperatureTK sets the temperature scale, below which perturbation theory
breaks down. The corresponding characteristic energy scale of the spin-boson model is
the renormalized tunnel matrix element∆r (see Eq. (3.11)). ForρJ⊥ � ρJ‖ � 1, which
is equivalent to∆/D � 1− α� 1, the relation betweenTK and∆r reads

kBTK =
2

π

(
1

2(1− α)

)1/(1−α)

∆r . (B.6)



Appendix C

Double vertices in the RTRG

In Section3.2 we derived the RG equations for the spin-boson model in the real-time
renormalization-group formalism. We applied an approximation by neglecting the double
and higher-order vertex objects. Here, we include the double vertex objects within the
systematic approach. We again symbolically writeG1 ≡ Gp1(t1), A1 ≡ Ap1(t1) and
B1 ≡ Bp1(t1). The double vertices are denoted byG12 ≡ Gp1,p2(t1, t2) respectively
A12 ≡ Ap1,p2(t1, t2), B12 ≡ Bp1,p2(t1, t2). Henceforth, we choose the time ordering
always bytn−1 > tn (n > 1), and we again use the cross contraction “× ” defined in
Eq. (3.47). Note that, here also double vertices may be connected by a cross contraction.
Thus, it is important, to which index the contraction refers to. Ift1 of a double vertex
G12 is connected only to vertices at time pointst > t1 andt2 only to vertices att < t2,
the resulting term may lead to a reducible diagram. We call such a double vertex object
Gr

12. (Note that such a configuration leading to reducible diagrams is not possible for a
boundary vertex.) Correspondingly,Gi

12 denotes the double vertex, which in any case
gives rise to irreducible diagrams. Since only irreducible diagrams contribute toΣ(z), we
have to distinguish those double vertices. We write

G12 = Gr
12 +Gi

12 . (C.1)

The RG equation for the Liouvillian reads

−idL0(t2) = (−i)2

∫ ∞
t2

dt1
∑
p1,p2

(
×

G1G2 +
×
G12

)
. (C.2)

Note that in this appendix we again use~ = 1. Additionally, in the following we omit the
factors(−i). Furhermore, neither the time-integrals nor thep sums are written explicitly.
By convention those indices, which are denoted by a hat, are identified on the left-hand
side and the right-hand side. The remaining indices on the right-hand side correspond
to integration variablesti and summation indicespi. These indices are connected by a
contraction.
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Extending the scheme of Section3.2to double vertex objects then yields

dG1̂ =
×

G2G3̂G4 +
×

G2G3̂4 +
×
G2G34̂ +

×
G2̂3G4 +

×
G23̂G4

−
×

G3̂G2G4 −
×

G3̂G24 , (C.3)

dGr
1̂2̂

=
×

G3G4̂G
r
56̂

+
×

Gr
3̂4
G5̂G6 +

×
G34̂G

r
56̂

+
×

Gr
3̂4
G5̂6

+
×

Gr
3̂4
Gi

56̂
+

×

Gi
3̂4
Gr

56̂
+

×
Gr

3̂4
Gr

56̂

−
×

Gr
3̂5̂
G4G6 −

×
Gr

3̂5̂
G46 −

×
Gr

4̂5̂
G3G6 −

×
Gr

4̂5̂
G36

−
×

G4̂G3G5̂G6 −
×

G3G4̂G6G5̂ −
×

G4̂G3G5̂6 −
×

G3G4̂6G5̂ −
×

G4̂G3G56̂

−
×

G5̂G3G46̂ −
×

G3̂4G6G5̂ −
×

G3̂5G6G4̂ −
×

G4̂G35̂G6 −
×

G34̂G6G5̂

+
×

G4̂G3G6G5̂ +
×

G4̂G36G5̂ , (C.4)

dGi
1̂2̂

=
×

G3G4̂G5̂G6 +
×

G3G4̂G5̂6 +
×

G3G4̂G
i
56̂

+
×

G3G4̂5̂G6 +
×

G34̂G5̂G6

+
×

Gi
3̂4
G5̂G6 +

×
G34̂G5̂6 +

×

G34̂G
i
56̂

+
×

Gi
3̂4
G5̂6 +

×

Gi
3̂4
Gi

56̂

−
×

Gi
3̂5̂
G4G6 −

×

Gi
3̂5̂
G46 −

×

Gi
4̂5̂
G3G6 −

×

Gi
4̂5̂
G36 , (C.5)

dA1̂ =
×

A2G3̂G4 +
×

A2G3̂4 +
×

A2G
i
34̂

+
×

A2̂3G4 +
×

A23̂G4

−
×

A3̂G2G4 −
×

A3̂G24 , (C.6)

dA1̂2̂ =
×

A3G4̂G5̂G6 +
×

A3G4̂G5̂6 +
×

A3G4̂G56̂ +
×

A3G4̂5̂G6 +
×

A34̂G5̂G6

+
×

A3̂4G5̂G6 +
×

A34̂G5̂6 +
×
A34̂G56̂ +

×
A3̂4G5̂6 +

×
A3̂4G56̂

−
×

A3̂5̂G4G6 −
×

A3̂5̂G46 −
×

A4̂5̂G3G6 −
×

A4̂5̂G36

−
×

A4̂G3G5̂G6 −
×

A3G4̂G6G5̂ −
×

A4̂G3G5̂6 −
×

A3G4̂6G5̂ −
×

A4̂G3G56̂

−
×

A5̂G3G46̂ −
×

A3̂4G6G5̂ −
×

A3̂5G6G4̂ −
×

A4̂G35̂G6 −
×

A34̂G6G5̂

+
×

A4̂G3G6G5̂ +
×

A4̂G36G5̂ , (C.7)
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dB1̂ =
×

G2G3̂B4 +
×

G2B3̂4 +
×
G2B34̂ +

×

Gi
2̂3
B4 +

×
G23̂B4 , (C.8)

dB1̂2̂ =
×

G3G4̂G5̂B6 +
×

G3G4̂B5̂6 +
×

G3G4̂B56̂ +
×

G3G4̂5̂B6 +
×

G34̂G5̂B6

+
×

G3̂4G5̂B6 +
×

G34̂B5̂6 +
×
G34̂B56̂ +

×
G3̂4B5̂6 +

×
G3̂4B56̂

−
×

G4̂G3G5̂B6 −
×

G3G4̂G6B5̂ −
×

G4̂G3B5̂6 −
×

G3G4̂6B5̂ −
×

G4̂G3B56̂

−
×

G5̂G3B46̂ −
×

G3̂4G6B5̂ −
×

G3̂5G6B4̂ −
×

G4̂G35̂B6 −
×

G34̂G6B5̂

+
×

G4̂G3G6B5̂ +
×

G4̂G36B5̂ . (C.9)

FordΣ(z) we obtain

dΣ(z) =
×

A1B2 +
×

A12G3B4 +
×

A1G2B34 +
×

A12B34 +
×

A12B34 +
×

A12B34

−
×

A12G4B3 −
×

A13G4B2 −
×

A2G1B34 −
×

A3G1B24 . (C.10)

Note that in the above equation there is one integration less than time variables, since
the Laplace integral involves only the time difference between the larger time ofA and
the smaller time ofB. Furthermore, “ ” again represents the usual contraction. The
correction terms have an additional minus sign, which is accounted for by the signs in
Eqs. (C.3) - (C.10).

As pointed out in Section3.2, the number of terms strongly increases by consider-
ing double vertex objects. Furthermore, the RG equations are now integro-differential
equations. The reason is a nontrivial time-dependence of the double vertices due to retar-
dation effects. If one uses the interaction picture for the double vertices, one ends up with
equations for

Gp1,p2(t1 − t2) = e−iL0t1Gp1,p2(t1, t2)eiL0t2 , (C.11)

Ap1,p2(t1 − t2) = e−izt1Ap1,p2(t1, t2)eiL0t2 , (C.12)

Bp1,p2(t1 − t2) = e−iL0t1Bp1,p2(t1, t2)eizt2 . (C.13)

Thus, the numerical solution of these equations requires much more effort than solving
the problem within the single vertex approximation. However, in Chapter5 we formu-
late the real-time renormalization-group approach in energy space. Then, the retardation
problems are not present, and double vertices become tractable.

Eventually, we note that, as in Section3.2, the results presented in this appendix are
generally valid for any quantum dissipative system. Again for fermionic environments
one has to account for additional signs.





Appendix D

Keldysh formalism for the TLKM

In Chapter5 we studied the running couplings for the two-lead Kondo model (TLKM).
However, we restricted ourselves to a study of the effective Hamiltonian forT = 0. In
this appendix we present the RG equations for an analysis on the Keldysh contour. To
treat the double vertex objects we again apply the formulation in energy space.

Similarly as in Chapter3 we define superoperators by

L0O = [H0, O]− , (D.1)

G++
ν,ν′O = gν,ν′O ,

G−−ν,ν′O = −Ogν,ν′ , (D.2)

whereO is again an usual operator,H0 is the impurity Hamiltonian which vanishes ini-
tially, andgν,ν′ is given by Eq. (5.9). Furthermore, initially the superoperatorsG+−

ν,ν′ and
G−+
ν,ν′ vanish. We again use the interaction picture analogously to Eq. (5.17):

Gpp′

ν,ν′,ω,ω′(t) = eiL0tGν,ν′,ω,ω′e
−iL0te−iηωte−iη

′ω′t . (D.3)

Additionally, we introduce

Cpp′

ν,ν′,ω,ω′ =
1

2

(
pGpp′

ν,ν′,ω,ω′ − p
′Gp′p

ν′,ν,ω′,ω

)
. (D.4)

For setting up the RG equations we have to choose a cutoff-dependence. In generalization
of our definition in Eqs. (5.34) we also include a dependence on the matrix elements of
L0. The matrix elements are chosen corresponding to those of the external vertices and the
contraction vertex, so that again divergencies are avoided. As outlined in AppendixE.2
we may assume a block-diagonal LiouvillianL0 with a maximum block size of(2 × 2).
For the eigenvalues of these blocks we use the same notation as AppendixE.2. We define

Tiσi,kσk,jσj =
1

2
λiσi − λkσk +

1

2
λjσj , (D.5)

whereλiσi are the eigenvalues of the blocks as given by Eqs. (E.26) and (E.28). Further-
more, we use the matrixAii′σi defined in Eqs. (E.25) and (E.27). ForL0 we obtain the
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RG equation(
dL0

dωc

)
ij

=
∑

i′j′kk′σiσkσj

∑
p1p2p3p4,ν1ν2

[
1

2

∫
dω p3p4

f(p1∆−(ωc))f(−p2ω)(
−ωc − iIm

[
Tiσikσkjσj

])
×
(

1− d

dωc
Re
[
Tiσikσkjσj

])
×Aii′σi

(
Cp4p3

ν1,ν2,∆−(ωc),ω

)
i′k
Akk′σk

(
Cp2p1

ν2,ν1,ω,∆−(ωc)

)
k′j′

Aj′jσj

+
1

2

∫
dω p3p4

f(p1ω)f(−p2∆+(ωc))(
ωc − iIm

[
Tiσikσkjσj

])
×
(

1 +
d

dωc
Re
[
Tiσikσkjσj

])
×Aii′σi

(
Cp4p3

ν2,ν1,ω,∆+(ωc)

)
i′k
Akk′σk

(
Cp2p1

ν1,ν2,∆+(ωc),ω

)
k′j′

Aj′jσj

]
+

∑
i′j′kk′σiσkσj

∑
p1p2p3p4,ν1ν2

[
ωc → −ωc

]
(D.6)

with
∆η(ωc) = ωc + ω − µα1 + µα2 + ηRe

[
Tiσikσkjσj

]
. (D.7)

Here, we considered the case of arbitrary temperatureT and used the Fermi-function
f(x) = 1/(ex/T + 1). µα is again the chemical potential of the reservoirα. The RG
equation forCp1p2

ν1,ν2,ω1,ω2
reads

(
dCp1p2

ν1,ν2,ω1,ω2

dωc

)
ij

=
∑

i′j′kk′σiσkσj

∑
p′1p
′
2,ν

[
p1p
′
1

f(−p′2∆+(ωc))

]
(
ωc − iIm

[
Tiσikσkjσj

])
×
(

1 +
d

dωc
Re
[
Tiσikσkjσj

])
×Aii′σi

(
C
p1p′1
ν1,ν,ω1,∆+(ωc)

)
i′k
Akk′σk

(
C
p′2p2

ν,ν2,∆+(ωc),ω2

)
k′j′

Aj′jσj

−p2p
′
2

f(p′1∆−(ωc))(
−ωc − iIm

[
Tiσikσkjσj

])
×
(

1− d

dωc
Re
[
Tiσikσkjσj

])
×Aii′σi

(
C
p′2p2

ν,ν2,∆−(ωc),ω2

)
i′k
Akk′σk

(
C
p1p′1
ν1,ν,ω1,∆−(ωc)

)
k′j′

Aj′jσj

]
+

∑
i′j′kk′σiσkσj

∑
p′1p
′
2,ν

[
ωc → −ωc

]
(D.8)
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with
∆η(ωc) = ωc + ω̄ + V̄α + ηRe

[
Tiσikσkjσj

]
. (D.9)

The parameters̄ω andV̄α are defined in Eqs. (5.30) and (5.31).
The above equations fulfill the symmetry of spin inversion on the impurity and

Cp1p2
ν1,ν2,ω1,ω2

= −Cp2p1
ν̄2,ν̄1,−ω2,−ω1

, (D.10)

whereν̄ = (η, ᾱ, σ) corresponds to the opposite reservoirᾱ of the bandα.
In the above RG equations the matrix elements of the Liouvillian may act as a cutoff in

a similar way as the voltageV does in Section5.3. By accounting for the Liouvillian we
also consider rates here, i.e. by solving the RG equations the question can be examined,
if there is two-channel physics in case of the two-lead Kondo model or if it is destroyed
by the rates. Note that observables can be calculated by considering kernelsΣ (as in
Chapter3) or ΣI (as in Chapter4). Their RG equations are given analogously to Eq. (D.6).

However, a numerical solution of Eqs. (D.6) and (D.8) turns out to require too much
numerical effort since we deal with frequency-dependent(4 × 4)-matrices. As already
pointed out in Section5.4 the numerical solution for only 10 frequencies on a
PIII (500MHz)-computer requires about 100 days.





Appendix E

Numerical methods

E.1 Ordinary differential equations

Renormalization-group approaches typically require the solution of an initial value prob-
lem for ordinary differential equations. In this thesis we solved these equations using
numerical methods. In the following, we give a description of the applied algorithm.

There are many different methods for the numerical solution of initial value problems
for ordinary differential equations. Among them the Runge-Kutta method is used very
often. It provides a stable and efficient algorithm for most problems, if one does not
require too high accuracy [94]. Regarding our problems it turned out that this method
performs very well.

In general, the initial value problem is given by

dyi
dx

(x) = fi(x, y1, . . . , yN) ,

yi(x0) = y0i , i = 1, . . . , N . (E.1)

The Runge-Kutta algorithm is based on the Euler method, where one integrates the dif-
ferential equations stepwise with a stepsizeh:

~y(x+ h) = ~y(x) + h~f(x, ~y) +O(h2) . (E.2)

Here we used the vector notation for theN componentsyi andfi. Conventially one calls
a methodnth order if its error term isO(hn+1). Thus, this simple Euler scheme is a first-
order method. It is not of any practical use because of low accuracy and stability problems.
The reason is that at each integration step only the information of the derivatives at the
original point is used. Therefore, the method can be improved by also using the derivative
information at some intermediate point(s), e.g. the midpoint of the step interval. With
the right combination of these derivatives one may eliminate the error in higher orders.
One very often used algorithm is the fourth-order Runge-Kutta method, which needs four
derivative calculations per step. However, we use a Runge-Kutta algorithm where we
need six derivative calculations. The advantage of this additional effort is that we may
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bij ai c
(4)
i c

(5)
i

jQ
Q
Q
QQi

1 2 3 4 5

1 2825
27648

37
378

2 1
5

1
5

0 0

3 3
40

9
40

3
10

18575
48384

250
621

4 3
10

− 9
10

6
5

3
5

13525
55296

125
594

5 −11
54

5
2
−70

27
35
27

1 277
14336

0

6 1631
55296

175
512

575
13824

44275
110592

253
4096

7
8

1
4

512
1771

Table E.1: Cash-Karp parameters for embedded Runge-Kutta method.

combine these derivatives in two different ways, one resulting in a fourth-order method,
Eq. (E.4), the other corresponding to a fifth-order algorithm, Eq. (E.5).

~k1 = h~f(x, ~y) ,

~ki = h~f(x+ aih, ~y +
i−1∑
j=1

bij~kj) , i = 2, . . . , 6 , (E.3)

~y(4)(x+ h) = ~y(x) + c
(4)
1
~k1 + c

(4)
2
~k2 + c

(4)
3
~k3 + c

(4)
4
~k4 + c

(4)
5
~k5 + c

(4)
6
~k6 ,

~y(x+ h) = ~y(4)(x+ h) +O(h5) , (E.4)

~y(5)(x+ h) = ~y(x) + c
(5)
1
~k1 + c

(5)
2
~k2 + c

(5)
3
~k3 + c

(5)
4
~k4 + c

(5)
5
~k5 + c

(5)
6
~k6 ,

~y(x+ h) = ~y(5)(x+ h) +O(h6) . (E.5)

The parameters in Tab.E.1have been found by Cash and Karp [95]. This type of equations
is called an embedded Runge-Kutta formula. By comparing both results one obtains an
error estimate∆i = |y(4)

i − y
(5)
i | of the fourth-order formula. Using this error information

one can then adjust the stepsize to keep a given accuracyεi. As the error scales withh5

the adjusted stepsizeha is given by

ha = h max
1≤i≤N

(
εi
∆i

)0.2

. (E.6)

If ha < h, the step is rejected and repeated usingha as stepsize, whereas ifha > h, the
step is accepted andha is used in the next step. In our numerical integrations we used
a relative toleranceTOL ∼ 10−4 whereTOL = εi

yi
. For more details on the adaptive

stepsize control, see Ref. [94].
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E.2 Exponentials of a matrix in differential equations

If the real-time renormalization-group approach is used for the Keldysh contour (as in
Chapters3 and4), one deals with ordinary differential equations forN (n× n)-matrices
Mi with respect totc:

dMi

dtc
= f(tc,M1, . . . ,MN) , 1 ≤ i ≤ N . (E.7)

The function on the right-hand side includes exponentials of the matrixM1 = L0. Thus,
for a numerical solution we introduce a transformationU such that

UL0U
−1 =


l1
· 0
·

0 ·
lm

 , m ≤ n . (E.8)

Here, thelk (1 ≤ k ≤ m) are(1 × 1)- or (2 × 2)-matrices. In the following we write
M̃i = UMiU

−1. For tc = 0 the transformationU has to be calculated for the initial value
of L0. To obtain thetc flow of U we first note that

dM̃i

dtc
= [E, M̃i] + U

dMi

dtc
U−1 , 1 ≤ i ≤ N , (E.9)

whereE is given by

E =
dU

dtc
U−1 . (E.10)

E shall then be determined such that the block structure ofL̃0 in Eq. (E.8) is retained. If
the indicesi andj correspond to different blocks, we have to fulfill

Sij + [E, L̃0]ij = 0 , (E.11)

where we have written

S = U
dL0

dtc
U−1 . (E.12)

For the case, where bothi andj correspond to(1× 1)-blocks this yields

Eij =
Sij

(L̃0)ii − (L̃0)jj
for (L̃0)ii 6= (L̃0)jj . (E.13)

If (L̃0)ii ≈ (L̃0)jj, i.e. for the crossing of two eigenvalues ofL̃0, we interprete them
as a(2 × 2)-block. If i corresponds to a(1 × 1)-block, whereasj is an element of a



132 APPENDIX E. NUMERICAL METHODS

(2× 2)-block, Eq. (E.11) leads to

Eij =

(
(L̃0)ii − (L̃0)j̄j̄

)
Sij + (L̃0)j̄jSij̄(

(L̃0)ii − (L̃0)jj

)(
(L̃0)ii − (L̃0)j̄j̄

)
− (L̃0)j̄j(L̃0)jj̄

,

Eji = −

(
(L̃0)ii − (L̃0)j̄j̄

)
Sji + (L̃0)jj̄Sj̄i(

(L̃0)ii − (L̃0)jj

)(
(L̃0)ii − (L̃0)j̄j̄

)
− (L̃0)j̄j(L̃0)jj̄

for
(

(L̃0)ii − (L̃0)jj

)(
(L̃0)ii − (L̃0)j̄j̄

)
− (L̃0)j̄j(L̃0)jj̄ 6= 0 . (E.14)

Here, the two indices of the(2× 2)-block are denoted byj andj̄. The case(
(L̃0)ii − (L̃0)jj

)(
(L̃0)ii − (L̃0)j̄j̄

)
− (L̃0)j̄j(L̃0)jj̄ ≈ 0 .

corresponds to the situation, where(L̃0)ii crosses one eigenvalue of the(2 × 2)-block.
Whenever a(2 × 2)-block involves two different eigenvalues, we therefore stop thetc
integration, diagonalize that block, consider it as two(1× 1)-blocks and resume the inte-
gration with a modified transformationU . Thus, we may use the above equations, unless
three eigenvalues of̃L0 cross each other around one value oftc. If i andj correspond to
two different(2×2)-blocks (with the indicesi andī respectivelyj andj̄), we obtain from
Eq. (E.11) 

Eij
Eij̄
Eīj
Eīj̄

 = T−1


Sij
Sij̄
Sīj
Sīj̄

 , (E.15)

where the matrixT is given by

T =


(L̃0)ii − (L̃0)jj −(L̃0)j̄j (L̃0)īi 0

−(L̃0)jj̄ (L̃0)ii − (L̃0)j̄j̄ 0 (L̃0)īi
(L̃0)īi 0 (L̃0)ī̄i − (L̃0)jj −(L̃0)j̄j

0 (L̃0)īi −(L̃0)jj̄ (L̃0)ī̄i − (L̃0)j̄j̄

 .

(E.16)
As we diagonalize(2 × 2)-blocks with two different eigenvalues, the inverseT−1 does
exist, unless four eigenvalues ofL̃0 are approximately equal for onetc. For the case,
where the indicesi andj belong to the same block, we setEij = 0. Thus,E is completely
determined and Eq. (E.10) leads to the additional differential equation

dU

dtc
= EU . (E.17)
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The above scheme now only requires the evaluation of exponentials of the form

UecL0U−1 =


ecl1

· 0
·

0 ·
eclm

 , (E.18)

wherec is a complex number. The calculation ofexp(clk) is trivial in case of(1 × 1)-
blocks. The exponential of a(2× 2)-matrix can be written as

eclk =
∑
σ=±

A(2)
σ ecλ

(2)
k,σ . (E.19)

With the parameters

a
(2)
k =

1

2
((lk)11 + (lk)22) , (E.20)

b
(2)
k =

(
1

4
((lk)11 − (lk)22)2 + (lk)12 (lk)21

) 1
2

, (E.21)

the matrixA(2)
k,σ and the eigenvaluesλ(2)

k,σ of lk are given by

A
(2)
k,σ =

σ

2b
(2)
k

(
lk − λ(2)

k,−σ1
)

for b
(2)
k 6= 0 , (E.22)

λ
(2)
k,σ = a

(2)
k + σb

(2)
k . (E.23)

From the above considerations for(1× 1)- or (2× 2)-matrices one readily obtains(
UecL0U−1

)
ij

=
∑
σ=±

Aij,σe
cλi,σ . (E.24)

Here,Aij,σ = 0 holds, if the indicesi andj correspond to different blocks. Trivially, if
i = j corresponds to a(1× 1)-block, we have to set

Aij,σ = δij/2 , (E.25)

λi,σ = (L̃0)ii . (E.26)

Eventually, if the indicesi andj correspond to a(2 × 2)-block,Aij,σ andλi,σ are given
by

Aij,σ =
σ

2bi

(
(L̃0)ij − λi,−σδij

)
for bi 6= 0 , (E.27)

λi,σ = ai + σbi . (E.28)
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Here we used the parameters

ai =
1

2

(
(L̃0)ii + (L̃0)ī̄i

)
, (E.29)

bi =

(
1

4

(
(L̃0)ii − (L̃0)ī̄i

)2

+ (L̃0)īi(L̃0)īi

) 1
2

, (E.30)

where we again denote the two indices of that(2 × 2)-block by i and ī. We still have to
consider the case wherebi ≈ 0. Generally, we have to calculate products of the matrix
elements in Eq. (E.24). Suppose that the indicesi1, . . . , in correspond to(2 × 2)-blocks
with

bi1 ≈ · · · ≈ bin � 1 .

The products of the form

P =
∑

σi1 ,...,σin

Ai1j1,σi1 · · ·Ainjn,σinf(λi1,σi1 , . . . , λin,σin )

can then be determined by expanding the functionf . One obtains

P =
∑

σi1 ,...,σin

{
f(ai1 , . . . , ain)

+
∞∑
j=1

1

j!

∑
k1,...,kj∈{i1,...,in}

σk1 · · ·σkjbk1 · · · bkj
∂j

∂λk1,σk1
· · · ∂λkj ,σkj

f(ai1 , . . . , ain)

×

σi1
(

(L̃0)i1j1 − ai1δi1j1
)

2bi1
+
δi1j1

2

 · · ·
· · · ×

σin
(

(L̃0)injn − ainδinjn
)

2bin
+
δinjn

2

} . (E.31)

Thus, we may write

P ≈
∑

σi1 ,...,σin

Bi1j1,σi1
· · ·Binjn,σin

gσi1 ,...,σin (ai1 , . . . , ain) , (E.32)

where we introduced

Bisjs,+ = δisjs
Bisjs,− = (L̃0)isjs − aisδisjs , 1 ≤ s ≤ n ,

gσi1 ,...,σin (ai1 , . . . , ain) =
1

j!

∂j

∂λk1,σk1
· · · ∂λkj ,σkj

f(ai1 , . . . , ain)

for k1, . . . , kj ∈ {i1, . . . , in} and σk1 = · · · = σkj = − . (E.33)
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Note that our result forbi1 ≈ · · · ≈ bin � 1 in Eq. (E.32) is regular forbi1 = · · · =
bin = 0. Therefore, the prescriptions, which we have developed in this appendix, solve
the problem of the occurence of exponential functions. Only if more than two eigenvalues
of L̃0 are the same for onetc, we obtain a divergence for the matrixEij. This is not the
case for the problems studied in Chapters3 and4.

E.3 Fourier transforms

The real-time renormalization-group approach is formulated for the Laplace tranform of
the reduced density matrixp(z). From the numerical data forp(z) the time-dependent
reduced density matrix can be calculated by a Fourier transform (see Subsection3.4.3).
In the following, we outline the algorithm we used for that problem.

We have to perform the integral

f̃(t) =

∫ ∞
−∞

dx f(x)e−ixt , (E.34)

wheref(x) follows from the RG procedure. For large enoughd this integral is approxi-
mately given by

f̃(t) ≈
∫ d

−d
dx f(x)e−ixt − f(−d)eidt

it
+
f(d)e−idt

it
. (E.35)

The error is controlled by calculating̃f(t) for different cutoffsd. For the numerical
evaluation of the integral in Eq. (E.35) we have to discretizef(x). It turns out that there
are subintervals in[−d, d] with quite different scales, whichf(x) varies on. Therefore,
we split the integral into these subintervals applying an adequate discretization off(x)
for each. Thus, we have to consider integrals of the form

I(t) =

∫ b

a

dx f(x)e−ixt . (E.36)

For the numerical evaluation of Eq. (E.36) we set the discretization∆x = b−a
M

with
M ∈ N. ThenI(t) is a periodic function with the period2t̄, wheret̄ = π/∆x is the time
corresponding to the Nyquist critical frequency [94]. As the timest1 andt2 = t1 +2t̄ give
the same discretizedf(x), the value ofI(t) for t > t̄ is falsely translated (“aliased”) into
the interval[−t̄, t̄ ]. Therefore, given a certain discretization we may only determineI(t)
for t < t̄.

With xj = a + j∆x for 0 ≤ j ≤ M the integration then requires the evaluation off
at the pointsxj. For large|xj| it is possible to fit the decay off(x) algebraically, so that
in this case we need not calculatef(xj) from the RG equations.

A straightforward application of a standard integration method, such as the extended
trapezoidal rule, is not possible though. As in case of the RG equations for the polaron in
Chapter2 the oscillatory nature of the integral would lead to large errors, for the integrand
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oscillates with a frequencyt < t̄, i.e. the parameter determining the error,∆x t, will be
as large asπ. As in Chapter2 we use interpolation to overcome these difficulties. Using
a piecewise polynomial interpolation scheme,f(x) is of the general form

f(x) ≈
M∑
j=0

f(xj)ψ

(
x− xj

∆x

)
+

∑
j=endpoints

f(xj)φj

(
x− xj

∆x

)
, (E.37)

where the functionsψ andφj depend on the applied interpolation scheme. Inserting this
expression in Eq. (E.36) yields

I(t) ≈ ∆xe−iat

(
W (∆x t)

M∑
j=0

f(xj)e
−ij∆x t +

∑
j=endpoints

f(xj)αj(∆x t)

)
(E.38)

with the definitions

W (y) =

∫ ∞
−∞

ds e−iysψ(s) , (E.39)

αj(y) =

∫ ∞
−∞

ds e−iysφj(s− j) . (E.40)

For a given interpolation scheme we may evaluate the above functions analytically. The
sum in Eq. (E.38) corresponds to a discrete Fourier transform. In view of a finer sampling
in time space we introduceN > M ,N ∈ N. Settingf(xj) = 0 for M < j < N we then
extend the sum, so thatj takes the range0 ≤ j ≤ N − 1. Thereby we are able to produce
an output fortn = 2πn/N∆x with 0 ≤ n ≤ N/2 − 1. N is chosen as an integer power
of 2, because then, we may easily apply the fast Fourier transform to perform the sum.
This standard algorithm reduces the computational effort fromO(N2) toO(N logN) by
rewriting a discrete Fourier transform of lengthN as two discrete Fourier transforms of
lengthN/2 [94].

Using a cubic interpolation scheme in Eq. (E.37) we finally obtain

I(tn) = ∆xe−iatn

(
W (∆xtn)

N−1∑
j=0

f(xj)e
−2πijn/N

+
3∑
j=0

(
αj(∆x tn)f(xj) + e−i(b−a)tnα∗j (∆x tn)f(xM−j)

))
(E.41)
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with the functions

W (y) =
6 + y2

3y4
(3− 4 cos y + cos(2y)) , (E.42)

α0(y) =
−42 + 5y2 + (6 + y2)(8 cos y − cos(2y))

6y4

−i−12y + 6y3 + (6 + y2) sin(2y)

6y4
,

α1(y) =
14(3− y2)− 7(6 + y2) cos y

6y4
− i30y − 5(6 + y2) sin y

6y4
,

α2(y) =
−4(3− y2) + 2(6 + y2) cos y

3y4
− i−12y + 2(6 + y2) sin y

3y4
,

α3(y) =
2(3− y2)− (6 + y2) cos y

6y4
− i6y − (6 + y2) sin y

6y4
. (E.43)

To calculateI(t) for all 0 < t < t̄ we perform polynomial interpolation on the spec-
trum of the discrete Fourier transform. This interpolation, however, is only accurate for a
large “oversampling” (N �M ) [94].





Bibliography

[1] U. Weiss,Quantum Dissipative Systems(World Scientific, Singapore, 2nd edition,
2000).

[2] R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals(Mc Graw-
Hill, New York, 1965).

[3] F. Wegner, Ann. Physik (Leipzig)3, 77 (1994).

[4] P. W. Anderson, G. Yuval, D. R. Hamann, Phys. Rev. B1, 4464 (1970).

[5] K. G. Wilson, Rev. Mod. Phys.47, 773 (1975).

[6] T. A. Costi, C. Kieffer, Phys. Rev. Lett.76, 1683 (1996).

[7] C. J. Halboth, W. Metzner, Phys. Rev. B61, 7364 (2000).

[8] V. Meden, W. Metzner, U. Schollwöck, and K. Schönhammer, cond-mat/0104336

[9] V. Meden, W. Metzner, U. Schollwöck, and K. Schönhammer, cond-mat/0109013

[10] W. Hofstetter, H. Schoeller, cond-mat/0108359

[11] W. Hofstetter, J. König, H. Schoeller, Phys. Rev. Lett.87, 156803 (2001).

[12] H. Schoeller, inLow-Dimensional Systems, edited by T. Brandes (Springer, Berlin,
1999), p. 137.

[13] J. König, H. Schoeller, Phys. Rev. Lett.81, 3511 (1998).

[14] H. Schoeller, J. König, Phys. Rev. Lett.84, 3686 (2000).

[15] H. Fröhlich, Adv. Phys.3, 325 (1954).

[16] J. Sak, Phys. Rev. B6, 3981 (1972).

[17] S. Das Sarma, Phys. Rev. B27, 2590 (1983).

[18] F. M. Peeters, Wu Xiaoguang and J. T. Devreese, Phys. Rev. B33, 3926 (1986).

[19] F. M. Peeters, M. A. Smondyrev, Phys. Rev. B43, 4920 (1991).

139



140 BIBLIOGRAPHY

[20] V. Meden, K. Schönhammer, and O. Gunnarson, Phys. Rev. B50, 11179 (1994).

[21] T. D. Lee, F. E. Low and D. Pines, Phys. Rev.90, 297 (1953).

[22] T. D. Lee, D. Pines, Phys. Rev.92, 883 (1953).

[23] R. P. Feynman, Phys. Rev.97, 660 (1955).

[24] M. Keil, H. Schoeller, Phys. Rev. B62, 2990 (2000).

[25] M. Keil, H. Schoeller, Phys. Rev. B63, 180302(R) (2001).

[26] M. Keil, H. Schoeller, Chemical Physics268, 11-20 (2001).

[27] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger,
Rev. Mod. Phys.59, 1 (1987).

[28] T. A. Costi, G. Zarand, Phys. Rev. B59, 12398-418 (1999).

[29] F. Lesage and H. Saleur, Phys. Rev. Lett.80, 4370 (1998).

[30] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado,
S. Tarucha, L. P. Kouwenhoven, Science282, 932 (1998).

[31] S. Tarucha, D. G. Austing, Y. Tokura, W. G. van der Wiel, and L. P. Kouwenhoven,
Phys. Rev. Lett.84, 2485 (2000).

[32] W.G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha,
L.P. Kouwenhoven, Science289, 2105 (2000).

[33] S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto, S. Tarucha,
L. P. Kouwenhoven, Nature405, 764-767 (2000).

[34] T. Brandes, B. Kramer, Phys. Rev. Lett.83, 3021 (1999).

[35] M. Keil, H. Schoeller, to be published.

[36] A. C. Hewson,The Kondo Problem to Heavy Fermions(Cambridge University
Press, Cambridge, 1997).

[37] P. Coleman, C. Hooley, O. Parcollet, Phys. Rev Lett.86, 4088 (2001).

[38] A. Rosch, J. Kroha, P. Wölfle, Phys. Rev. Lett.87, 156802 (2001).

[39] Yu-Wen Lee, Yu-Li Lee, cond-mat/0105009

[40] D. Giuliano, B. Jouault, A. Tagliacozzo, cond-mat/0101341

[41] E. Lebanon, A. Schiller, cond-mat/0105488.



BIBLIOGRAPHY 141

[42] A. Kaminski, Y. V. Nazarov, and L. I. Glazman, Phys. Rev. B62, 8154 (2000).

[43] A. Kaminski, Y. V. Nazarov, and L. I. Glazman, Phys. Rev. Lett.83, 384 (1999).

[44] V. D. Lakhno,Polarons and Applications(Wiley, Chichester, 1994).

[45] S. I. Pekar, V. I. Sheka, G. V. Dimitrenko, Sov. Phys. JETP36, 771 (1973) [Zh.
Eksp. Teor. Fiz.63, 1455 (1972)].

[46] S. I. Pekar, L. S. Khazan, V. I. Sheka, Sov. Phys. JETP38, 999 (1974) [Zh. Eksp.
Teor. Fiz.65, 1999 (1973)].

[47] C. Fürst, A. Leitenstorfer, A. Laubereau, and R. Zimmermann, Phys. Rev. Lett.78,
3733 (1997).

[48] M. Keil, diploma thesis, University of Heidelberg, Germany (1998).

[49] P. Lenz, F. Wegner, Nuclear Physics B482, 693 (1996).

[50] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics
(World Scientific, Singapore, 2nd edition, 1995).

[51] Y. Lu, R. Rosenfelder, Phys. Rev. B46, 5211 (1992).

[52] S. K. Kehrein, A. Mielke, P. Neu, Z. Phys. B99, 269 (1996).

[53] D. Chandler, inLiquids, Freezing, and the Glass Transition, edited D. Levesque et
al. (Les Houches Lectures, Elsevier, Amsterdam, 1991).

[54] A. J. Leggett, inPercolation, Localization and Superconductivity, edited by M.
Goldman, S. A. Wolf (vol. 109, NATO Advanced Study Institute, Series B: Physics,
Plenum, New York, 1984).

[55] H. Grabert, H. Wipf, inAdvances in Solid State Physics(vol. 30, Vieweg, Braun-
schweig, 1990), p. 1.

[56] B. Golding, N. M. Zimmerman, S. N. Coppersmith, Phys. Rev. Lett.68, 998 (1992).

[57] J. T. Stockburger, C. H. Mak, Phys. Rev. Lett.80, 2657 (1998).

[58] A. O. Caldeira, A. J. Leggett, Ann. Phys. (New York)149, 374 (1983).

[59] M. Sassetti, U. Weiss, Phys. Rev. A41, 5383 (1990).

[60] H. Shiba, Progr. Theor. Phys.54, 967 (1975).

[61] C. P. Slichter,Principles of Magnetic Resonance(Harper & Row, New York, 1963).

[62] R. P. Feynman, F. L. Vernon, Ann. Phys. (N.Y.)24, 18 (1963).



142 BIBLIOGRAPHY

[63] M. Sassetti, U. Weiss, Phys. Rev. Lett.65, 2262 (1990).

[64] R. Egger, C. H. Mak, Phys. Rev. B50, 15210 (1994).

[65] J. T. Stockburger, Phys. Rev. E59, R4709 (1999).

[66] S. K. Kehrein, A. Mielke, Ann. Physik (Leipzig)6, 90 (1997).

[67] S. Charkravarty, Phys. Rev. Lett.50, 1811 (1982).

[68] A. J. Bray, M. A. Moore, Phys. Rev. Lett.49, 1546 (1982).

[69] V. Hakim, F. Guinea, A. Muramatsu, Phys. Rev. B32, 4410 (1985).

[70] T. A. Costi, Phys. Rev. Lett.80, 1038 (1998).

[71] T. A. Costi, Phys. Rev. B55, 3003 (1997).

[72] D. Weinmann, diploma thesis, University of Stuttgart, Germany (1991).

[73] I. S. Gradshteyn, I. M. Ryzhik,Table of Integrals, Series, and Products(Academic
Press, London, 1994).

[74] Private communication with J. T. Stockburger.

[75] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam,PVM:
Parallel Virtual Machine(MIT Press, Cambridge, 1994).

[76] M. Raikh, A. Asenov, Superlatt. Microstr.11, 325 (1992).

[77] S. M. Cronenwett, T. H. Oosterkamp, L. P. Kouwenhoven, Science281, 540 (1998).

[78] D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 (1998).

[79] T. H. Stoof and Y. V. Nazarov, Phys. Rev. B53, 1050 (1996).

[80] Private communication with T. Fujisawa.

[81] Private communication with T. Brandes.

[82] H. Bruus, K. Flensberg, and H. Smith, Phys. Rev. B48, 11144 (1993).

[83] J. Kondo, Prog. Theor. Phys.32, 37 (1964).

[84] N. Andrei, Phys. Rev. Lett.45, 379 (1980).

[85] P. B. Wiegmann, Sov. Phys. JETP Lett.31, 392 (1980).

[86] H. A. Bethe, Z. Phys.71, 205 (1931).

[87] D. Goldhaber-Gordonet al., Nature391, 156 (1998).



BIBLIOGRAPHY 143

[88] F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheider, M. Bichler, Phys. Rev. Lett.
83, 804 (1999).

[89] J. Schmid, J. Weis, K. Eberl, K. v. Klitzing, Phys. Rev. Lett.84, 5824 (2000).

[90] A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathematical Physics
(Birkhäuser Verlag, Basel, 1988).

[91] G. Yuval, P. W. Anderson, Phys. Rev. B1, 1522 (1970).

[92] J. v. Delft, H. Schoeller, Ann. Phys. (Berlin)7, 225-305 (1998).

[93] A. M. Tsvelik, P. B. Wiegmann, Adv. Phys.32, 453 (1983).

[94] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,Numerical Recipes in
C (Cambridge University Press, New York, 1992).

[95] J. R. Cash, A. H. Karp, ACM Transactions on Mathematical Software16, 201
(1990).





Ackowledgements

I would like to thank Prof. Dr. Kurt Schönhammer for giving me the opportunity
to write this thesis and for his unconditional support. He always showed a great interest
in my work and readily discussed the results with me. His comments have helped me
very much. Furthermore, I am grateful to him for critically reading the manuscript of my
thesis.

I am deeply indebted to Prof. Dr. Herbert Schoeller whose continual enthusiasm
for my scientific work always encouraged me over the past few years. Our numerous
discussions and his suggestions have been of great benefit to me. I very much enjoyed
our collaboration which turned out to be very fruitful. Finally, I thank him for his kind
hospitality during my several stays at the University of Karlsruhe, the Forschungszentrum
Karlsruhe and the Rheinisch-Westfälische Technische Hochschule Aachen.

My special thanks go to Dr. Jürgen Holm for his patience concerning all kinds of
computer problems. His advice was always very helpful. For their support of my compu-
tational work out of Göttingen I would also like to thank Dr. Matthias Hettler in Karlsruhe
and Dr. Uwe Kahlert in Aachen.

I am also grateful to Prof. Dr. Ulrich Weiss, Dr. Jürgen Stockburger, Dr. Theo Costi,
Dr. Tobias Brandes and Dr. Toshimasa Fujisawa for answering questions and/or for their
numerical data.

I would like to thank Urs Wiesemann, Thomas Korb and Dr. Maarten Wegewijs for
useful discussions and for their comments on the manuscript of my thesis.

Finally, I want to express my thanks to all of our present and former group members
who contributed to the friendly atmosphere which I appreciated very much.

This work was financially supported by the Deutsche Forschungsgemeinschaft as part
of the Sonderforschungsbereich 345.





Lebenslauf

Name: Markus Keil
Geburtsdatum: 21.12.1971
Geburtsort: Groß-Gerau
Familienstand: ledig
Staatsangehörigkeit: deutsch

Schulausbildung:

1978 - 1980 Hasengrundschule, Rüsselsheim
1980 - 1982 Grundschule Selbecke, Hagen
1982 - 1991 Fichte-Gymnasium, Hagen
06/1991 Allgemeine Hochschulreife

Zivildienst:

07/1991 - 09/1992 Zivildienst bei der Arbeiterwohlfahrt in Hagen

Studium:

10/1992 - 09/1998 Studium der Physik
an der Ruprecht-Karls-Universität zu Heidelberg

06/1994 Vordiplom in Physik
02/1995 - 07/1995 Studium an der University of Adelaide in Adelaide, Australien
09/1998 Diplom in Physik

Diplomarbeit bei Prof. Dr. Franz Wegner:
„Untersuchung des Polarons mittels Flußgleichungen“

10/1995 - 07/1998 Studium der Volkswirtschaftslehre
an der Ruprecht-Karls-Universität zu Heidelberg

07/1998 Vordiplom in Volkswirtschaftslehre

Promotion:

seit 02/1999 Wissenschaftlicher Mitarbeiter
am Institut für Theoretische Physik
der Georg-August-Universität zu Göttingen,
Promotion bei Prof. Dr. Kurt Schönhammer:
„Renormalization Group Theory
for Quantum Dissipative Systems in Nonequilibrium“




	Introduction
	The polaron
	Fröhlich Hamiltonian
	Perturbation theory
	Method of Lee, Low and Pines
	Feynman's method

	Flow equations
	Real-time renormalization-group for the polaron
	Discussion

	The spin-boson model
	Model Hamiltonian
	Real-time renormalization-group formalism
	Kinetic equation
	RTRG method
	Remarks
	Equilibrium correlation functions

	RG equations for the spin-boson model
	Initial values
	The tc dependence of the bath contraction

	Results
	The renormalized tunnel matrix element
	Static properties
	Dynamics
	The Shiba-relation

	Discussion

	Coupled quantum dots
	Model Hamiltonian
	The tunnel current within the RTRG
	Exact expression for the stationary tunnel current
	RG equations for the coupled quantum dots

	Results
	Summary

	Two-lead Kondo model
	Model Hamiltonian
	The RTRG for the two-lead Kondo model
	The running couplings
	The role of the external voltage
	Exact results

	Discussion

	Conclusion
	The noninteracting blip approximation
	Relation of the SBM to the Kondo model
	Double vertices in the RTRG
	Keldysh formalism for the TLKM
	Numerical methods
	Ordinary differential equations
	Exponentials of a matrix in differential equations
	Fourier transforms


