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Chapter 1
Introduction

ratchet

1: a mechanism that consists of a
bar or wheel having inclined teeth into
which a pawl drops so that motion can
be imparted to the wheel or bar, gov-
erned, or prevented and that is used
in a hand tool (as a wrench or screw-
driver) to allow effective motion in one
direction only

Merriam-Webster Collegiate Dictio-
nary

The commonplace definition of a ratchet consists of two concepts, inclined teeth and motion
in one direction, which, translated to broken symmetry and rectification, yield the physical
definition. Ratchets, defined as systems which through some broken symmetry act as
rectifiers, are ubiquitous in nature. In macroscopic mechanics, they serve as improved
screwdrivers or self-winding wristwatches. On the molecular scale, motors like kinesin,
responsible for the conversion of chemical energy into directed motion in biological cells
[1-3], and particle separators [4], have been described in terms of a ratchet formalism.
More recently, they even entered the quantum world through setups as diverse as antidot
arrays [5], triangular quantum dots [6], Josephson-junction arrays passed by fluxons [7],
surfaces supporting electromigration [8], cold atoms acted on by an asymmetric optical
lattice [9], or in the improvement of superconductors by reduction of the vortex density
[10].

This wealth of experimental knowledge is accompanied by a long history of theoretical
descriptions. The entity upon which the ratchet will act has to fulfill the condition of being
non-rectified (otherwise, the ratchet would not be necessary) as is the case with an ensemble
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of particles subject to Brownian motion. Such a motion was described by Einstein [11] for a
small particle in a liquid and independently by Langevin [12]. Smoluchowski [13] introduced
the idea of a ratchet mechanism consisting of a potential with broken spatial symmetry that
acts on the fluctuating particles. As Feynman [14] pointed out, however, the working of this
ratchet for equilibrium fluctuations would violate the second law of thermodynamics. A
decade ago, the investigation of molecular motors started to stimulate a lot of work on the
effects of the presence of additional non-equilibrium forces [15-18]. The resulting concept
was that of Brownian motors, nonlinear systems generating transport without an external
bias. A first step in the reduction of this model was the replacement of the noisy fluctuations
by deterministic chaos [19-22]. Following the exploration of rectification on the quantum
level, Hénggi and collaborators [23-26] later studied the quantized Brownian motion of a
damped particle which is subjected to an asymmetric external force. Recently, Flach et al.
were able to observe the generation of a directed current by an alternating potential even in
the absence of dissipation [27]. In their analysis they show that time-reversal symmetry has
to be broken [27,28], a requirement which is fulfilled in the previously known ratchets by
the irreversibility of dissipation. However, they do not explain the observation, leaving the
analysis of Hamiltonian ratchets, as minimal models for any ratchet, as an open problem.

Entering the realm of nonlinear Hamiltonian dynamics, one encounters an even longer
history of theoretical research, starting with the formulation of Hamilton’s equations of
motion, and followed by a bulk of work on the solutions of linear equations. Although
Poincaré showed that even a small perturbation of an integrable system can lead to the
divergence of the perturbation series [29], it took about sixty years until Kolmogoroff
[30] suggested that in this situation almost all regular tori in phase space are preserved,
while the others are responsible for the onset of chaotic motion. This KAM theorem,
consequently generalized by Arnold [31] and Moser [32], still represents the only solid
mathematical basis for what subsequently became known as mized phase space. Indeed, the
generic [33] situation of regular and chaotic dynamics coexisting in phase space still awaits
comprehensive understanding. Prominent among the models for investigating such systems
are canonical mappings, as exemplified by the standard map. Introduced by Chirikov [34],
it has become the paradigm for classical Hamiltonian systems in general, and for the
observation of the transition from integrability to chaoticity under the change of only one
parameter in particular. For certain values of this parameter, the standard map exhibits
so-called accelerator modes of constantly increasing momentum. Together with the intrinsic
properties of a mixed phase space, this leads to the phenomenon of Lévy walks [35], sections
of ballistic chaotic motion the length distribution of which decays algebraically. Time-
reversal symmetry, however, renders the standard map useless for the exploration of the
ratchet mechanism since for each trajectory there is a symmetry-related counterpart which
compensates transport. The more general situation where this symmetry is broken has not
been considered so far.

The desire to realize ratchets in nanoscale systems [6] requires the investigation of the
consequences of quantization. Whereas the integrable case, as in classical mechanics, has



received a lot of attention due to its comparative simplicity, the discipline of quantum chaos
still poses many questions. Indeed, as the uncertainty principle prevents infinitesimally
small distances in phase space, and thereby intrinsically violates sensitivity which in turn
defines chaos, quantum mechanics is always “regular”. However, classical chaoticity leaves
its fingerprints in the quantum domain. Up to now, most of the work has been done for
systems whose classical counterpart is fully chaotic. For the semiclassical limit, i.e., the
typical wavelength of the system approaching zero, Bohigas, Giannoni, and Schmit [36]
showed that the statistics of eigenenergies correspond to that of the eigenvalues of random
matrices as introduced by Wigner, Dyson and Metha [37] two decades previously. This
random matrix theory represents one of the cornerstones of quantum chaos. For the same
limit, Gutzwiller [38] was able to relate the energy spectrum of the quantum system to
the actions of periodic orbits of its classical version by the famous trace formula. Among
the various works stimulated by this theory, Berry’s theory of the form factor of a chaotic
system is of particular interest here since it can be generalized to yield insights into the
diffusive transport properies of extended systems [39].

Like random matrix theory, the trace formula is another fundamental result of quantum
chaos, however, it does not account for mixed systems either. This gap is closed by a
third cornerstone, the semiclassical eigenfunction hypothesis. Percival [40] was the first to
consider the energy spectrum of such systems as a combination of two subsets, a “regular”
and a “chaotic” one, each of which satisfies the statistical properties of the respective limit.
In another fundamental work, Berry [41,42] and later Berry and Robnik [43] transferred
this concept to the eigenstates of the Hamiltonian, stating that almost all of them are
either regular or chaotic, in the sense that they are confined to the corresponding regions
in phase space. Though stated explicitly only for the semiclassical limit, the succeeding
numerical and experimental data [44-46] yielded strong support to the assumption that
most eigenstates are confined to the invariant classical phase-space regions as soon as
the de Broglie wavelength is small enough to resolve them. In a thought experiment,
one can think of continuously decreasing the wavelength of the system. According to
the observations under such a decrease, the theory has also been named (semiclassical)
condensation hypothesis. Ketzmerick et al. [47] further extended the concept to the small
classically fractal regions, presenting states condensated on them.

Maybe the most fascinating transport phenomenon discovered in quantum chaotic or dis-
ordered systems is localization. While disordered systems in the macroscopic regime sup-
port diffusion for all times, the quantum analogues behave as if they were confined by
an exponentially declining envelope which prevents the infinite spreading of density. This
counterintuitive observation, leading to insulating properties of the sample, is of major
relevance for solid state physics. The first theoretical explanation was given by Anderson
[48,49] for the motion of a particle on a lattice of sites subjected to a random potential.
Fishman, Grempel, and Prange [50] related the standard map to this Anderson model,
thereby opening the field of localization to the study of canonical mappings. However, this
requires that the spatial period be no integer multiple of the quantization parameter. The
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violation of this requirement leads to periodic extended Bloch states. Raizen et al., by
exposing cold sodium atoms to standing-wave light fields [51-53], transferred the theory
to experiments. Although dynamical localization in diffusive systems had been studied at
length (for a review, see [54]), it remained an open question how ballistic transport, caused,
for example, by accelerator modes, modifies the process. Only recently, investigations have
been started in this direction, and a huge widening of the localization barriers was observed
[55-58]. Again, Raizen et al. realized a corresponding experiment [59]. Lacking an explicit
description for the observation, however, one could neither predict the length scale of this
widening nor explain correctly the emergence of an intermediate algebraic regime.

In this thesis the mechanism is explained that leads to directed chaotic transport in Hamil-
tonian systems with spatial and temporal periodicity, allowing the construction and op-
timization of dissipationless ratchets. These systems are quantized for the first time. In
disordered quantum Hamiltonian ratchets, a new class of eigenstates is found which chal-
lenges the semiclassical eigenfunction hypothesis: it is argued that even in the semiclassical
limit the states are not confined to the classical phase-space regions. The analysis of eigen-
states both in quantum systems with exact periodicity and in those with disorder leads to
the understanding of the surprising dynamical properties and clarifies how ballistic trans-
port and localization are reconciled. Therefore, while inspired by applications, this thesis
makes several contributions to the theory of quantum chaology.

The thesis is structured as follows:

In the second chapter an outline of the foundations of Hamiltonian chaos is given, fol-
lowed by the definition of Hamiltonian ratchets. The rectification mechanism in the absence
of dissipation is shown to depend crucially on the phase-space structure, leading to a sum
rule for ballistic transport [60]. Based on the insight obtained from this sum rule the class
of model systems can be introduced [61]. Breaking time-reversal symmetry in canonical
maps, a method for the construction of efficient ratchets is given. By following this in-
struction, various ratchet models are established and investigated throughout the thesis.
Finally, the generation of transport by Lévy walks, which has been assumed to provide a
sufficient explanation for the mechanism, is shown to be superseded by the sum rule.

The third chapter introduces quantum Hamiltonian ratchets obeying Bloch theory, again
starting with a sketch of the foundations required. Based on a new interpretation of the
Hellman-Feynman theorem for Bloch bands of quasienergies, a quantum sum rule analogous
to the classical one is established [60]. The analysis of these bands and the corresponding
eigenstates solves the paradox of non-trivial transport persisting in the presence of quan-
tum tunneling for infinite times. The form factor is calculated from the Bloch bands in
respect of their relevance for quantum Hamiltonian ratchets, followed by the analysis of a
second spectral quantity known to indicate transport, the Chern number [62].

In the fourth chapter the condition of perfect periodicity is abandoned, raising the
question of the compatibility of transport with localization. The new and completely
unexpected amphibious eigenstates are presented [63], which contradict the semiclassical
eigenfunction hypothesis. By explaining these states a criterion for the applicability of the
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semiclassical eigenfunction hypothesis is obtained. For systems with time-reversal symme-
try, namely those analogous to the standard map in the regime of accelerator modes, the
eigenstates are calculated for the first time. They too exhibit interesting new properties.
The new insight into such systems can solve the problems of wave packet dynamics in the
presence of accelerator modes.

The fifth chapter concludes by summarizing the main results of the thesis.
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Chapter 2

Classical Dynamics in Hamiltonian
Ratchets

This chapter is concerned with the description of dissipationless ratchets in the classical
limit. By investigating the phase-space structure of such systems it can be explained how
they can make particles initially at rest move at a predetermined velocity.

The first section represents a brief introduction to the field of classical Hamiltonian me-
chanics as required for the understanding of the ratchet mechanism. A more comprehensive
treatment of these basics can be found, for example, in [64,65]. These fundamentals are
sufficient to define Hamiltonian ratchets and explain the ratchet mechanism in the second
section [60]. Based on the definition of ballistic transport in terms of phase-space regions,
the main result is the sum rule for classical transport. This sum rule shows that directed
transport is a property associated with the individual invariant sets of the dynamics. A
necessary condition for non-zero chaotic transport is a mixed phase space with coexisting
regular and chaotic regions. Transport in chaotic regions can be described quantitatively
by analyzing the adjacent regular regions. The relevance of this insight is made more
explicit in the third section which deals with the construction and optimization of Hamil-
tonian ratchets. In the last section, it is shown that Lévy walks are not required for the
generation of directed chaotic motion.
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2.1 Basics on Hamiltonian Systems

2.1.1 Integrable Dynamics

Although they are very rare in nature, integrable systems have received most attention in
the past. This stems from the fact that only they can be solved analytically.

Hamiltonian systems are characterized by the fact that the whole dynamical information
can be extracted from a single function. This function is denoted by H, the Hamiltonian
of the system, which can depend on time and on the generalized position and momentum
variables, x; and p;, which satisfy the Hamilton equations of motion,

_9H . oH

; (2.1)
For these equations to be integrable, the following conditions must be satisfied. First, the
system has n independent constants of motion F' with {F, H} = 0, where n is the number
of degrees of freedom and the Poisson brackets are defined by

ou Ov v Ou
For time-independent Hamiltonians, the energy F is such a constant of motion, leav-
ing n — 1 other constants to be found (hence, in the case of one dimension, each time-
independent system is integrable). Second, the Poisson brackets of these functions must
vanish {F;, F;} = 0Vi # j. The expression of H in terms of the functions F; can then
be achieved by the transformation to action-angle variables, leaving only n independent
variables of H.

The phase space is spanned by the 2n position and momentum variables (and time ¢, if
H = H(t), see below). A point in phase space completely determines the subsequent
motion. Following this motion yields a trajectory. In integrable Hamiltonian systems, up
to a translation in time, a trajectory only depends on the n variables of H, as stated
above. For a compact phase space, this implies that the trajectory lies on a torus which
is determined by a set of values of the constants of motion, the actions. A trajectory on
such a torus can either be a periodic orbit, returning to the initial point after some time,
or non-periodic. As trajectories in phase space may not intersect, each torus is filled either
by periodic or non-periodic orbits. The first case corresponds to a rational ratio of angular
frequencies of the trajectories, and the torus is called a resonant torus. With an irrational
ratio, the torus is non-resonant and the corresponding trajectories are quasi-periodic orbits.

For the systems investigated in this thesis, the Hamiltonian is time-dependent, H =
H(x,p,t). In this case, one can switch to the extended phase space (p,q) = (p, —H, q, 1)
where —H and t are considered as conjugate variables. The new Hamiltonian is given by
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H(p,q) = H(x,p,t)—F such that H = const. The dynamics of the time-dependent system
is analogous to that of the time-independent one with an additional degree of freedom.

In a Hamiltonian system, a phase-space volume p is preserved under the dynamics,

dp
—0. 2,
=V (2.3)

This fact, known as Liouville’s theorem, follows directly from the continuity equation for
phase-space flows and Hamilton’s equations [65].

op
E - {Hap}a

2.1.2 The Poincaré Map

Cx)

Figure 2.1: Poincaré surface S, intersected by a periodic orbit C(z) yielding the fixed point x
of the map, and by a generic trajectory C(z1) leading to a sequence of points.

Commonly, the phase-space dimension is greater than two. In order to visualize such a
phase space, one has to define a useful technique of projecting onto a lower-dimensional
space. Such a projection is the Poincaré section, which is two-dimensional for a 3D phase
space. It has to fulfill two conditions. First, the section must intersect all relevant trajecto-
ries and second, it must be transverse to the flow, i.e. no trajectory may be tangent to the
section. An intersection of a trajectory with the surface will then lead to an sequence of
intersections. The map which generates this sequence of points is denoted as Poincaré map
(Fig. 2.1). For systems with a periodic time dependence, this section is naturally chosen



Classical Dynamics in Hamiltonian Ratchets

at equidistant times t = t, + n7, where 7 denotes the time period. According to Liouville’s
theorem, the areas in such a stroboscopic section are preserved. A periodic trajectory leads
to a finite set of points in the Poincaré section. A non-resonant torus yields an infinite set
of points which appears as a (deformed) circle, while a chaotic trajectory (see Ch. 2.1.3)
will produce a sequence of points spreading irregularly over the corresponding region in
the projection plane.

2.1.3 Mixed Dynamics

For a generic system, the requirements for integrability are not met. The natural starting
point then is perturbation theory. This approach has yielded deep insights into the onset
of chaos. Let H = Hy + € H;, with an integrable H, and a controllable perturbation
parameter €. As stated by the KAM-Theorem, the first thing to happen under increasing
€ is the destruction of the resonant tori, while the non-resonant tori are deformed slightly
only. Within the set of real numbers, the set of rational numbers has zero measure.
Therefore, almost all tori are preserved. For the further increase of the perturbation
parameter, the theorem can often be expanded to the idea that “the more irrational a
torus, the longer it survives”: An irrational number o can be expressed in terms of a
continued fraction expansion,
1

a = aq + ——— = |ag,a1,09,...|, 2.4
0 a1+a21m [0 1, U2 ] ( )

with positive integers a;. For a large a;, a can be approximated with the rational number
[ag, ...,a;_1]. The smaller the a; the worse this approximation. Therefore, the golden mean
o, with a; = 1 Vi, is commonly denoted as the “most irrational number”. Accordingly, the
last KAM-torus to be destroyed is assumed to have a winding number ratio close to o [66].

The Poincaré-Birkhoff-Theorem states that a resonant torus situated between non-resonant
tori with different directions of rotation in the integrable system decays to an even number
of fixed points. The nature of these fixed points alternates between elliptic and hyperbolic.
While the elliptic points are surrounded by a new generation of tori, the hyperbolic ones
are responsible for the onset of chaos. This fact can be visualized using the homoclinic
tangle Fig. 2.2. As soon as a set pointing to the fixed point (stable set) crosses the unstable
set, of the same point, a complicated structure of an infinite number of crossings emerges
in the finite phase-space volume between the surrounding KAM-tori. Due to the infinite
number of destroyed resonant tori, there is an infinite chain of tori of regular motion and
chaotic layers between them. Within these layers, in turn, exist hierarchies of small islands.
Increasing the perturbation even further, the phase space can be divided into a big unified
chaotic sea and major reqular islands of finite size within. Here, the notions of regular
island and chaotic sea arise from the corresponding projection pictures, see Fig. 2.3. The
torus separating the island from the chaotic sea is denoted as bounding torus or last KAM-
torus, respectively. It is surrounded by a hierarchy of small islands. The destruction of
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Elliptic Hyperbolic KAM torus
fixed point fixed point

Figure 2.2: (left) Schematic view of a mixed phase space. Irrational KAM-tori are shown as
circles surrounding elliptic fixed points. Sections of the stable and instable sets belonging to the
same hyperbolic fixed point result in homoclinic tangles, a magnification of which is shown at the
right.

KAM-tori, on the other hand, in the two-dimensional case leads to so-called cantori, partial
phase-space barriers, which will be relevant in Ch. 2.4.

For the purpose of this work it is very important to note that in one-dimensional time
dependent systems, the two-dimensional bounding torus of an island generates a decom-
position of the three-dimensional phase space, prohibiting trajectories to move from inside
the torus to the outside. In terms of the stroboscopic section, a trajectory initialized on
the island will always stay inside this island, whereas a trajectory initialized in the chaotic
sea will never enter an island. This does not hold for higher-dimensional systems such
as two-dimensional time dependent or three-dimensional autonomous ones. There, the
three-dimensional tori do not separate regions in the five-dimensional phase space and the
chaotic sea mixes with the regular islands through Arnold diffusion.
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k=I=1 k=1=2 k=1=3 k=1=5
o
0
—1/2
0

Figure 2.3: Transition from integrability to chaoticity. Shown are Poincaré sections of the kicked
Harper map for different values of the parameters k and [. The images were obtained by iterating
100 initial trajectories over 300 time periods. The choice k = [ leads to a phase space which is
invariant under the exchange of position and momentum.

Ergodicity of the Chaotic Dynamics

Upon the decay of the last torus of regular motion, the phase space becomes fully chaotic.
There may still be periodic trajectories but they have vanishing measure in phase space.
For some sytems, it can then be shown for almost all initial points and a compact phase
space, that the time mean of some observable equals the phase-space mean. For a one-
dimensional time-dependent system and with the observable f, this reads

(f(z,p,1)) = limtﬁm% /Ot dt' f(x(t),p(t'),t') = /Mduf(x,p, t), (2.5)

where p denotes a measure in the phase space M. A system which obeys Eq. (2.5) is called
ergodic.

For the chaotic components of mixed systems, ergodicity has not been proven. However,
numerical observations give strong indications that it can rightfully be assumed.

2.2 Directed Motion in Hamiltonian Ratchets

This section contains the main result for classical dynamics, namely the sum rule for
transport, which follows directly from the assumption of ergodicity and explains the origin
of directed chaotic motion. The section starts with the specification of classical Hamiltonian
ratchets, followed by the investigation of the average velocities of invariant phase-space sets.
This leads to the notion of ballistic transport of finite invariant sets. Finally, it is shown
how the results can be applied to calculate the time averaged current for some initial
distribution of particles in phase space.



2.2 Directed Motion in Hamiltonian Ratchets

2.2.1 Definition of Hamiltonian Ratchets

Throughout this thesis we consider infinitely extended one-dimensional Hamiltonian sys-
tems which are periodic both in space and time. The natural form of a Hamiltonian
fulfulling these conditions is

H(z,p,t) =T(p) + V(z,t), (2.6)

with

Ve, t+T)=V(z+ X,t) =V (x,t). (2.7)

More precisely, the requirement that only the dynamics be periodic imposes a weaker
condition on V' (z): the equations of motion Eq. (2.1) depend only on the force —V”(x), not
the potential itself. For example, it is allowed that the potential contains a term z cost. For
notational simplicity, time and space are scaled such that X =T = 1. Then the condition
of spatial periodicity is expressed as V'(z + 1,t) = V'(z,¢). To exclude trivial ballistic
transport it is also required that the mean force —V"’ vanishes, i.e. fol dt fol dz V'(z,t) = 0.
Due to the periodicity in time, the phase space is invariant under the transformation
t — t+ 1. The natural projection in this case is the stroboscopic Poincaré section at times
t=ty+nT =ty +n.

Periodicity permits the effects investigated on small scales to be detectable on much larger
scales: one can infer all the necessary information about the system from the study of
one unit cell, i.e. a phase-space volume whose size is given by the periods. For example,
an extended system cannot be ergodic since even in the long-time limit, a trajectory can
never fill out the infinite phase space homogeneously. However, restricting the phase space
to the cylinder which is obtained by associating the opposite borders of the unit cell, one
can again assume ergodicity for the chaotic dynamics, which will prove valuable in the
following sections.

The periodicities already define a Hamiltonian ratchet. However, systems which exhibit
the interesting phenomenon of non-trivial directed transport of the chaotic sea satisfy
another condition: those symmetries have to be broken which generate to each trajectory
a second one moving in the opposite direction with the same velocity, see Fig. 2.4. For the
Hamiltonian Eq. (2.6), this amounts to breaking time-reversal symmetry. The Poincaré
section of a system with broken time-reversal symmetry does not have any point symmetry
(see Fig. 2.4(bottom)) [27].
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0

0

Figure 2.4: Spatial periodicity leads to a chain of identical unit cells in the stroboscopic section,
only three of which are shown. The islands with positive (or negative, respectively) momentum
are connected by the underlying torus. A trajectory will follow this chain of islands in the
positive (or negative) direction. (top) System with time-reversal symmetry, which generates for
each trajectory a countermoving partner: A trajectory with initial point (xg,pg) is shown together
with its partner starting at (zo, —po).

(bottom) System with only one dominant island per unit cell and with broken symmetry. Such
a system will exhibit non-trivial directed transport of the chaotic sea as soon as the island is
transporting.

2.2.2 A Typical Ratchet Model
Fig. 2.5 shows the phase space representation of one unit cell of a typical ratchet, as
studied by Flach et al. [27]. The Hamiltonian is given by H = p?/2 + V(z,t) with

oV (x,t)/0x = (2m/w?)[cos(2mz) + 0.6 cos(4mx + 0.4)
—2.3sin(27t) — 1.38 sin(47t + 0.7)] . (2.8)
Here, time-reversal symmetry is broken by the asymmetric time dependence of the poten-

tial, V(x,ty +t) # V(x,ty — t), Vty. The interesting phase-space structure of this model
will be studied in the following.
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a b
t=80 t=80
1 P(x)
o
0 d
-100 0 100 -100 0 100
a C d
i t=40 (=20.000
b P(x)
C
0 1 o y
X -100 0 100 -5000 0 5000
X

Figure 2.5: (left) Poincaré section of the intermediate layer and bounding extended tori of the
ratchet model studied in [27]. The various regular islands transport at different velocities. (right)
Spatial distributions P(z) of trajectories initialized in a non-transporting island (a), in an island
transporting in negative direction (b), on extended tori (c), the chaotic sea (d), after times as
indicated.

In a finite mixed system without spatial periodicity, all the regular tori appear as deformed
circles which enclose finite areas in a stroboscopic Poincaré section. In a Hamiltonian
ratchet, spatial periodicity can lead to tori that in such a section appear as oscillating
lines, closing only after a spatial period, see Fig. 2.5. The former are denoted as closed
and the latter as extended or open tori. The physical meaning of the extended tori can
be visualized using the simple model of a “comb potential” (see Fig. 2.6). The comb
moving at small and constant velocity vg will grasp only those particles with a small
initial velocity, setting their mean velocity to vg. The fast particles, however, will not be
influenced by the comb. In analogy, particles with a large initial velocity are affected only
slightly by the ratchet potential, leading to dynamics like those of free particles under a
small perturbation. In contrast, slower particles are affected more strongly such that their
dynamics become more complicated. To be more precise, the situation can be compared
to the transition from mixed to integrable dynamics as outlined in Ch. 2.1.3: For small
absolute values of the momentum the phase space consists of a chaotic sea with embedded
islands. With increasing |p|, one encounters extended tori, the first of which are denoted
as (upper or lower) bounding torus. These extended tori are separated by small chaotic
layers. Increasing |p| even further, the extended tori become flatter and the intermediate
layers thinner.

Obviously, the phase-space section also exhibits closed tori. The regular islands enclosed by
such tori can be distinguished into two categories according to their dynamical properties.
As Fig. 2.5 shows, trajectories initialized in island a stay at their initial position while
those in b move in the negative direction. The latter are denoted as transporting islands,
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Figure 2.6: (left) Sketch of a “comb potential” with height V' moving at constant velocity vg.
While those particles which have an initial velocity 1)123 -V<vl< v% + V get caught, the others

are not affected by the comb. In a typical system, the motion of the “caught particles” is chaotic
or mixed, unlike in this simple example. (right) Mean velocity ¥ as a function of the initial
velocity vg. The plateau corresponds to the particles grasped by the comb.

whereas island a is non-transporting.

Finally, as Fig. 2.5(d) indicates, also those trajectories which were initialized in the chaotic
sea show an average motion in one direction: on the one hand, the spatial distribution after
20.000 time periods is broadened due to the well-known phenomenon of chaotic diffusion.
On the other hand, the mean is displaced from its initial position. The latter is the
phenomenon of directed chaotic motion, to be explained in the next subsections.

2.2.3 Asymptotic Velocities of Invariant Phase-Space Sets

The standard method of demonstrating directed transport consists in calculating the av-
erage velocities of selected trajectories [27,28] or of an ensemble of trajectories distributed
over the corresponding phase-space region. In order to obtain a good average one has to
calculate for very long times or large ensembles, which, given ergodicity within the chaotic
component, is equivalent. The implementation of this procedure is straightforward but
it gives no information about the origin of the transport. Instead, one can exploit the
periodicity of the dynamics with respect to space and time, and analyze transport in terms
of the invariant sets within one unit cell. The phase space of a typical ratchet exhibits
three basically different types of minimal invariant sets: chaotic regions, non-resonant reg-
ular tori, and periodic orbits (which close on themselves after an integer multiple of the
time period), with dimensions three, two, and one, respectively. According to Hamilton’s
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equations (2.1), the instantaneous velocity of an arbitrary trajectory C'(t)

= (x(t),p(t)) is
given by v = 0H(C,t)/0p and the long-time mean, with & = 0H/dp Eq. (2.1

), by

1
Voo = 1My, —/ dt’ — (2.9)
tJo

ap |

The calculation of this mean is the easiest for the periodic orbits. Due to periodicity in space
and time, one can reduce the consideration to the spatio-temporal unit cell (x,t) € [0,1).
Under the time evolution, the trajectory corresponding to a fixed point ¢ winds around a
unit cell, returning to the initial point after some multiple of the time period. The number
of (positive or negative) spatial windings divided by the number of time periods, that is
the spatio-temporal winding number w; = z;/t;, determines the long-time average velocity,
Viso = w;. This is valid both for hyperbolic and for elliptic fixed points. Whereas the
dynamics in the vicinity of the former are chaotic, the latter are surrounded by closed
tori. As mentioned in Ch. 2.1.3, these tori represent invariant barriers in phase space. Any
trajectory initialized on the torus or on the enclosed phase-space volume will therefore
always stay in the vicinity of the elliptic fixed point, with oscillations in the velocity around
w; which are averaged out in the long-time limit. Therefore, all the minimal invariant sets
which make up the island and its surrounding hierarchy of regular motion can be treated
as a single (non-minimal) invariant set with an average velocity given by the velocity of
the elliptic fixed point at the center of the island.

The investigation of the average velocity of a chaotic layer or of an extended torus, however,
cannot be reduced to fixed points. Assuming that a trajectory initialized in the chaotic
region (ch) fills out this region ergodically for large times, one can replace Eq. (2.9) with the
average over the phase-space volume of (ch). The latter, reduced to the spatio-temporal
unit cell, reads

I ! +oo OH
chyoo — 17 dt d d c 5 ,t—, 2.10
Ueh, Vch/o /0 x/_oo P Xen(,p )ap (2.10)
where ( ) )
_J 1 (z,pt)ec
xch(x,p,t)—{ 0 (ept)éch (2.11)

is the characteristic function and V,;, the phase-space volume of ch,

1 1 +00
‘/ch = / dt / dz / dp Xch(l‘apa t) .
0 0 —o0

For completeness, one can also calculate the average velocity of an extended torus a. Since
such a torus is a set of zero measure in phase space, one has to integrate 0H/0p over the
torus to obtain the irrational winding number w,. With a Hamiltonian of the standard
form Eq. (2.6), the asymptotic velocity can then be calculated as

Vaso = / dt/ “Tp“’ / dt/ xp“’t). (2.12)
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The use of v, instead of w, distinguishes the irrational winding numbers of extended
KAM-tori from the rational ones of fixed points.

Since in the following only asymptotic averages will be of interest, the infinity index will
be dropped, leaving w;, v,, and v., as the denotions for the velocity of an island (or a
hyperbolic fixed point), an extended KAM-torus, and the chaotic layer, respectively.

2.2.4 The Sum Rule for Transport

Besides the velocity, another quantity is introduced, in terms of which the dynamical
properties of the system can be studied conveniently. Both the chaotic sea and the regular
island are invariant sets of finite measure in phase space. For such a set M, ballistic
transport is defined as phase-space volume times average velocity (cf. Eq. (2.10)),

1 1 “+00 8H
TV = / dt / dz / dp xm(x, p,t) 5 (2.13)
0 0 —o0 p

Obviously, the characteristic function is additive for the union of disjunct invariant sets
M = J; M;, namely xn = >, xum;. This additivity transfers to transport such that

This is the sum rule for directed transport.

The extended tori enclose layers of chaotic motion with embedded regular islands. One
can treat this layer as the global invariant set 7, appearing on the Lh.s. of Eq. (2.14).
Assuming that p, = p,(,t), i.e. that the momenta on the bounding tori are functions of
x and ¢, its transport is obtained from Eq. (2.13) as the difference of the averaged kinetic
energies of the bounding extended tori:

Tlager = /Oldt /Oldx /:Odpxlayer(x,p,t)aa—[;
_ /Oldt /Oldx /pi::t)dpz—z (2.15)
= /01 dt /01 dz (T(pu(z,t)) — T(pu(z, 1)) = (T(pu(z, 1)) — (T(pi(z, 1)),

with indices v and [ denoting the upper and lower bounding torus, respectively. Due to
area conservation in the extended phase space and the fact that the time period equals
1, the phase-space volume of a set of finite measure M equals the area of this set in a
stroboscopic section, Vi = Ay = fol dx fj;o dp xa(z,p,t). One can therefore express the
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transport of the intermediate layer in terms of its components (chaotic sea and islands) as

TNayer = (T)w — (T)1 = Achven + ZAi w; (2.16)

(for an example, see Fig. 2.7). Solving for v,

(T = (T = > Aiwi

Uch = )
Ach

clearly indicates the origin of directed chaotic motion: If (T"), # (T');, which is the general
case if all symmetries are broken, one obtains a non-vanishing transport of the intermediate
region. With asymmetric transporting islands, the chaotic transport can even exceed the
value of the layer. Such regular islands can also generate directed chaotic motion if the
boundaries are symmetric.

(2.17)

Tch Treg T

Figure 2.7: Sketch of the sum rule. The contributions to transport from the individual sets sum
up to give the total transport of the intermediate layer. Therefore, the chaotic transport can be
determined from the analysis of the regular components.

The only assumption needed for the derivation of this result is that the chaotic component
is ergodic. Eq. (2.17) has been checked numerically for the continuously driven system
given by Eq. (2.8). One can measure the area A; of an island by approximating its last
torus with a polygon the vertices of which are given by the Poincaré section of some
trajectory initialized on that torus. This area is multiplied with the winding number w; of
the elliptic fixed point at the center of the regular island. Carrying out the procedure for
all the islands visible in the Poincaré section Fig. 2.5, as well as calculating the values (T,)
and (7;) for the extended bounding tori, yields v, = 0.092 + 0.011. The error estimate
includes the uncertainty in the location of the bounding tori and the contribution from
neglected small islands. The result is in agreement with the value vy = 0.082 4 0.002,
which was determined with much more computational effort from the spatial distribution of
10* trajectories, started at the line p = 0 (Fig. 2.8 a). For complex phase-space structures,
the method of measuring island areas can be quite elaborate. However, it is a better
controlled approximation than the traditional method of running long trajectories or large
ensembles of trajectories.
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Figure 2.8: (a) Spatial distribution P(z) of the ratchet system visualized in Fig. 2.5 after 20,000
time periods indicating the directed transport of the chaotic region. Initially, 10* trajectories were
started at random on the line p = 0, z € [0,1) in the chaotic sea.

(b) Same as (a) but for the kicked Hamiltonian for Eq. (2.31) which is optimized to yield a much
more pronounced transport.

2.2.5 From Transport to the Asymptotic Particle Current

The results for the asymptotic mean velocity of a trajectory will now be applied to calculate
the asymptotic mean current both for a discrete initial distribution of particles in phase
space and for a continuous distribution. First consider a discrete distribution at time ¢; = 0

faiser.(z,p, 1) = Z d(x —xn) 0(p — pn) (1) (2.18)

of particles n = 1,2,..., N. Here, the asymptotic mean current is simply the sum over
the number of particles times the asymptotic mean velocities v, o of the trajectories €,
through the points (z,, py,0),

N

deiscr.yoo = ZUC’n,oo . (219)

n=1
The velocities ve, ~ can be calculated according to sections 2.2.3, 2.2.4.

For a continuous and non-singular initial distribution f(z, p,0) = f(z, p), fol dx fj;o dp f =
N, the invariant sets of zero measure in phase space can be neglected and the current is
determined by projection onto the finite sets. Since the shape of the distribution within
an invariant set is irrelevant for the long-time average, it suffices to know the weight
PrM; = fMi dx dp f inside the stroboscopic projection of M; at the initial time ¢y, = 0. The
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mean current is then given by

7

The method of projection onto invariant sets also applies to a distribution f(xzq,po,?)
smeared out over the temporal unit cell, that is, to the question of phase dependence of
the current discussed in [67].

As mentioned in Ch. 1, a ratchet can only work far from the thermodynamic equilib-
rium. For a Hamiltonian ratchet, this condition is inherently fulfilled by the driving po-
tential V(¢). However, it might be of interest to study the effects of a ratchet acting
on particles initially in equilibrium as described by the Maxwell-Boltzmann distribution

f(z,p) =N \/g (z) p® e~9P", where f(z) = fol dp f(x,p), and a > 0. Depending on the
parameter a, such a distribution could either be concentrated in the intermediate layer of
the system or spread over the extended tori as well. In the former case, one projects f on
the finite invariant sets. In the latter case, however, namely if the distribution is broad
enough in momentum to have non-negligible weights on the extended tori, the situation
is more complicated. Instead of calculating the average kinetic energy for each extended
torus to obtain the stepwise increasing (or decreasing, respectively) asymptotic velocities
of the small intermediate chaotic layers, one can make use of the comb potential picture
introduced in Ch. 2.2.2. There, for large initial velocities vy the asymptotic velocity v is
trivially given by T(vg) = vg. Assuming perfectly flat extended tori p,(z,t) = const., this
dependence is a good approximation for the part of the distribution beyond the bounding
tori since it corresponds only to smoothing the small steps in 7(vg). For a ratchet with
standard kinetic energy T'(p) = p?/2 this yields for the asymptotic current

I fp>pu).o0 =/ dp f(p)p, (2.21)

Pu

where f(p) = fol dz f(z,p), and analogous for the lower bounding torus. The approxima-
tion of perfectly flat tori improves for large kinetic energies. For a very broad non-biased
thermal distribution, therefore, the average current is expected to vanish, in contrast to
the case of a narrow distribution.

2.3 Kicked Maps as Model Systems for Ratchets

One is now in the position to specify the models used for the numerical studies of Hamil-
tonian ratchets. As Eq. (2.17) indicates, those systems generate directed chaotic transport
which show a completely desymmetrized phase-space structure. With respect to the nu-
merics, it is desirable to have in each unit cell only one large transporting first-order island
with higher-order islands confined to a small neighborhood: First, this simplifies the sum
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over regular islands. Second, a large transporting island leads to large and therefore easily
detectable directed chaotic motion. Third, a large island is numerically more easily dealt
with also in quantum mechanics.

To calculate the time evolution of a trajectory in a system with a continuous time depen-
dence like that given by Eq. (2.8), one has to integrate the equations of motion for each
time period. This numerically expensive treatment can be avoided by studying systems
with a discrete time dependence. In such systems, the potential acts at certain points in
time (kicking) which for convenience are chosen equidistantly. The Hamiltonian can be
expressed as

H(z,p,t) = T(p) + V(z) Y_ d(t—n), neN, (2.22)

which yields a simple map

Po = Pt = V(Tn1) Tn = Tp1 + T'(pa) (2.23)

for the stroboscopic Poincaré section at times immediately before the kicking: The first
equation represents the kicking whereas the second one describes the time evolution of
a trajectory between two kicks. Since the potential between the kicks is zero, the latter
is denoted as free time evolution. Due to the simplicity of such maps, the numerical
investigations of the transition from integrability to chaos have often been carried out with
them. Two prominent examples are introduced in the following, together with variants
that serve as efficient models for the study of directed chaotic motion.

2.3.1 Symmetry Breaking for the Kicked Harper Map

The Harper map models the dynamics of conduction electrons in a uniform magnetic field
[68—70]. The Hamiltonian is given by

H = Lcos(p) + K cos(z) Z 5(t—n). (2.24)

n=-—oo

According to Eq. (2.23), the stroboscopic map is obtained as
Pn = Pno1 + Ksin(z,_1), x, = x,_1 — Lsin(p,). (2.25)

The Harper map undergoes a transition from an integrable system at K = L = 0 to a
fully chaotic one at K = L ~ 5. Obviously, the Hamiltonian in Eq. (2.24) is periodic in
and the phase space can be restricted to the cylinder = € [0,1). Moreover, the mapping
Eq. (2.23) is invariant under the shift p — p + 1. Hence, the stroboscopic section can be
restricted to the unit cell (z,p) = [0, 27). With

L K <=
H = %COS(27TID) + %COS(QTFI) Z §(t—n), (2.26)

n=—oo
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this unit cell is scaled to (x,p) = [0, 1), as shown in Fig. 2.3.

The straightforward method for constructing a ratchet consists in breaking time-reversal
symmetry in V' (t), either by two kicks with different strengths and different intermediate
time intervals or by three different kicks equidistant in time. Choosing the latter option,
one obtains a big transporting island with

+00
B n Kocos(2mx) : 0.15< (z+¢)mod1l < 0.85
Vie,t) = ; g (t_ 5) % { Kicos(2rx) : else,
T(p) = Lcos(2mp), (2.27)

where Ky = 0.15/2m, K1 = 5/27, and L = ﬁ (see Fig. 2.10 b). The island around
the elliptic fixed point at (z,p) = (0,1/6) moves at the speed w; = —1 to the left and
is therefore always subjected to the small values of the kicking potential. The remaining
phase space is chaotic due to the large kicking strength K; > K.

2.3.2 Deriving Ratchet Models from the Standard Map

The kicked rotator models the dynamics of an object rotating in a plane without friction,
hit periodically in a given direction with a strength depending on the angle and the kicking
parameter K. Denoting the angle as  and the angular frequency as p, the Hamiltonian is
given by

2 +oo
H(z,p,t) = % + K cos(x) Z S(t—n), KeR, (2.28)
or, with periods X = P =1, and k = K/2m,
H(z,p,t) = 5 + 5—cos(2r ) nzooé(t— n), (2.29)
yielding the map
Pn = Pna+ksin(2nz, 1), Tp = Ty 1+ Pn- (2.30)

This model, introduced by Chirikov [34], received a lot of attention and is therefore called
Chirikov or standard map. With kicking parameter £ = 0 it is obviously integrable, and it
devolves to mixed and chaotic dynamics when £ is increased. Among the various domains
of k the most interesting one with respect to ballistic transport is & = 1 + € with small e,
respectively: For k slightly larger than 1, the system exhibits accelerator modes at p = m,
ksin(x) = +1, with integer m. These correspond to islands moving in p-direction, such
that a trajectory initialized on them is accelerated (see Fig. 2.9).
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In order to convert the standard map into a ratchet, exchanging = and p in Eq. (2.30) yields
a system with two first-order islands transporting at constant velocities w; = 1. This, of
course, yields an unphysical kinetic energy. However, it is not required that T'(p) = p?/2,
or & = p, respectively, for the study of the ratchet effect. Since in Hamiltonian systems
momentum and position are related by Hamilton’s equations (2.1), time-reversal symmetry
is broken if T'(p) # T'(—p). For the model system given by

Vir) = 05(rmod1 — 057, T(p) = |p| + pogsin(2rp) (2.31)
m

the dynamics can be restricted to the cylinder p € [—1/2,1/2) and the major island again
transports at the velocity w; = —1 (see Fig. 2.10 a) [60].

1/2

1/2—

X

Figure 2.9: Poincaré section of the standard map with £ = 6.33/2x. The two small accelerator
modes at x = (0.5 £ 0.25), p = 0 transport in momentum direction at velocity w; = F1

Phase-Space Engineering

In order to enlarge the accelerator modes of the standard map with k slightly larger than
1 it is useful first to analyze the stability of the fixed points at the centers of these trans-
porting islands. The knowledge of the resulting stability criterion allows a straightforward
optimization of the force —V'(z) under the restrictions of periodicity (cf. Ch. 2.2.1), and
analyticity (a non- potential would later lead to quantum anomalies). Exchanging x and
p transfers the optimized accelerator modes into islands transporting in z-direction.

The stability of a fixed point (xg, pg) can be analyzed by linearizing the motion in the vicin-
ity of that point [71]. Using vector notation x = (;), the standard map with generalized
force reads f(x, 1) = x,,

fl(xn—l) = Pn =DPn-1 — Vl(l‘n—l)a

fZ(anl) = Tp=Tp-1 1+ Pn-1 — Vl(xnfl) . (232)
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Figure 2.10: Poincaré sections of two paradigmatic ratchet models, both of which show a big
island transporting with velocity w; = —1. a) System derived from the Chirikov map, Eq. (2.31).
b) System derived from the kicked Harper map with three kicks per time period, Eq. (2.27).

One considers the motion of some point x = xy + Ax in the vicinity of the fixed point
Xo = (xg,pp). The accelerator modes are period one fixed points, meaning that their
trajectory closes after one time period in the restricted phase space. For such period one
fixed points, keeping only the first order of the Taylor expansion of f around x; yields

Axn ~ A(XU) . AXTL,1 X (233)
where
oftr 9N "
= 1 =V"(x)
Axy) = | 9 = ( 0 ) 2.34
w-(88) -0 22

is the Jacobian of f evaluated at the fixed point, and it is det(A) = 1. The eigenvalues \; 5
of A follow from the characteristic equation det(A —AI) =0, or A> = ATrA + 1 = 0. For
a stable fixed point, the iteration of the mapping Eq. (2.33) may not cause the trajectory
initially close to x, to diverge from x,. This is fulfilled for an elliptic fixed point: There,
the eigenvalues of A are complex conjugates A\, = ¥, o # (0, 7), and therefore

TrAKx") = 2cos0 = |TrA(xd")| < 2. (2.35)

In contrast, |TrA (x{’?)| > 2 for an unstable hyperbolic fixed point [71]. Since these are
the only generic types of fixed points, one can consider |TrA(xq)| < 2 as a criterion for
the stability of x¢. This yields the condition —4 < —V"(zq) < 0 for the slope of the force.

An accelerator mode at (xg,py = 0) with velocity w; = 1 is obtained for —V'(zy) = 1,
which gives a second condition on the force. To obtain a big island around the accelerator
mode, the regime within which the linear approximation Eq. (2.33) is valid must be large.
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This can easily be realized with a force that is linear within some range —V ) (range) = 0
such that the second derivative of the mapping f vanishes identically. In order to avoid
other islands, the remaining range can be chosen with positive slope of the force, and such
that the integral of V' over one unit cell vanishes. Fig. 2.11 shows the phase space of such
an optimized system with

ey S l=sr oz <w/2
Vi) = { sor—0  w/2< x| <1/2, (2.36)

$1 =52, § = 50s1, w = .85, and § = w/(1 — w), such that ff& dz — V'(x) = 0.
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Figure 2.11: (left) Force —V' optimized for ballistic transport of the chaotic region according to
the method of phase-space engineering. Whereas the section of negative slope supports regular
dynamics, the sections of positive slope lead to chaotic motion. (right) Poincaré section of the
system with large island transporting at w; = +1.

As stated above, quantum mechanics also requires that the potential be smooth, which
can be achieved, e.g., by Gaussian smoothing of V' : With

G(z) = exp(—2%/2e%)/V2me?,

the smoothed functions are calculated as
T'(p) = /dz T'(p+2) G(2), V’(x) = /dz V'(z +2) G(2). (2.37)

One might alternatively Fourier approximate the discontinuous force. The resulting oscil-
lations must be very small, however, and higher orders of the approximation must be taken
into account which proves numerically expensive. Finally, x and p must be exchanged.
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Apart from the model given by Eq. (2.27), all the mappings investigated in this thesis
have been derived from the standard map and exhibit transporting islands with a size
comparable to that of the system Eq. (2.36).

2.3.3 Sum Rule for Compact Phase Space

In kicked mappings, the sum rule for transport Eq. (2.14) can take a very simple form.
Namely, if the momentum is a periodic variable with period P, one can apply the method
of reduction to one unit cell also to the p-coordinate. Then, the unit cell boundaries take
the rdle of the bounding tori, p, = p;+ P = const, and since then T'(p,) = T'(p;), transport
of the whole unit cell vanishes identically,

Ach Uch + Areg Wreg = 0. (238)

With Ay + A = 1, ven follows immediately from the velocity and area of the regular
island as ven = Areg/(1 — Areg)-

For the kicked ratchet Eq. (2.31), Fig. 2.10a, one has wye; = —1, and Ayeg = 0.117 £ 0.001,
thus vy, = 0.133 £+ 0.001 in agreement with vy, = 0.1344 4+ 0.0003 determined from the
spatial distribution shown in Fig. 2.8 b.

2.4 The Role of Lévy Walks

The sum rule for transport Eq. (2.14), following immediately from the assumption of ergod-
icity, explains directed chaotic motion. Any knowledge about the details of the dynamics
within an invariant set is not required. While explicitly accepting the ergodicity assumption
[27] and the sum rule [72], respectively, Flach and colleagues have proposed an alternative
explanation for chaotic transport which relies on such details.

Consider the length of a time interval where some chaotic trajectory shows motion in the
same direction. In a fully chaotic system, these time intervals are distributed exponentially,
f(t) ~ e 1In a system with transporting islands, however, the distribution can be
approximated with f(t) ~ ¢t~ for ¢ — oo [73]. The long sections of motion in the same
direction which lead to this algebraic decay law have been named Lévy walks in contrast
to the random walks in a fully chaotic phase space. As Flach et al. claim, the average
velocity during the random walks vanishes, whereas the Lévy walks are responsible for the
whole transport [27,72]. In order to check the consistency of this claim with the sum rule,
it is necessary to study the origin of the algebraic law first (for a review, see [35]).
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2.4.1 The Chain Model for Lévy Walks

It was outlined in Chapter 2.1.3 that the non-resonant tori are destroyed under increasing
perturbation. For a “sufficiently irrational” KAM-torus, this destruction takes place slowly,
namely the destroyed torus still acts as a partial barrier for phase-space transport. Tra-
jectories from inside such a cantorus can flow out (and vice versa) only through so-called
turnstiles, which correspond to small holes in the cantorus. The flux is proportional to
the size of the turnstile [74] and increases with the perturbation [75]. Typically, a chain of
cantori surrounds all the regular islands [76,77]. To simplifiy the quantitative description
it is assumed that

(i) it suffices to take into account only the chain of cantori around the bounding torus of
the dominant island (or the bounding extended torus, respectively), neglecting the chains
around the small hierarchical islands;

(ii) both the volumes €, enclosed by the n'" and (n + 1)™ cantori and the fluxes ®,, 11
scale exponentially,

Q, ~w', Dypp~ 9", 0<dp<w<l; (2.39)

(iii) the motion inside each volume is stochastic and the probability for a trajectory entering
the volume €2,, to stay inside for a time ¢ is given by

Po(t) ~ et = (ta)” = (d/w)". (2.40)

The resulting model is visualized in Fig. 2.12. Having entered the chain through the first
cantorus, a trajectory will explore the chain up to a certain level n,., and finally go back
to the chaotic sea. The probability for the trajectory to stay in the chain longer than ¢ can
be approximated by an inverse power law,

_ B log w !
Pty ~t77, ~y = (1— logng) , (2.41)

(78], yielding the probability distribution of time intervals

_ logw

flt) ~ 7%,

= . 2.42
T (2.42)
For an island with winding number w;, staying in the cantori chain implies directed motion
at the same velocity, Uchain, = w; . This holds only approximately for an extended torus,
Uchain, = Vg, since the winding number of the destroyed KAM-tori differs from that of the
bounding torus. For the purpose of this section, however, this approximation is very good.
The chain model can therefore explain the algebraic distribution of time-interval lengths
that shows up in typical Hamiltonian ratchets.
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Figure 2.12: Chain model for the sticky region. For simplicity, only the cantori around the

Cantori

major bounding KAM-torus are considered; smaller hierarchical islands as the one shown in the
first enclosed volume are neglected. The enclosed volumes and the fluxes decrease exponentially
when going to higher levels in the chain.

2.4.2 Sum Rule for the Reduced Chaotic Set

In order to explore the asymptotic velocities separately for Lévy walks and random walks,
one has to distinguish them by some well-defined method. This distinction is not straight-
forward. Denisov and Flach [72] approach the problem numerically. Running a chaotic
trajectory for long times, they calculate the change in position Az; = z; — x;_; at integer
times t = ¢y + j. A change in the sign of Az; marks the end of the corresponding walk.
This yields the distribution of walk lengths f(twa). For small ¢, the distribution shows
exponential decay ascribed to the random walks, in contrast to the power law decay for
large tya. A cutoff time is chosen as t.,; = 107, where T' denotes the time period of the
system. A walk with length smaller than ., is consequently considered as a random walk
and the opposite as a Lévy walk. In the chain model, this can be related to a decomposition
of the chaotic set (see Fig. 2.13). For simplification, it is assumed that the length of a cer-
tain walk is essentially given by the inverse of the flux rate of the innermost cantorus Ny«
reached in this walk (N counts the cantori, while n denotes the intermediate volumes).
This is fulfilled if ry_y > ry, i.e. if the flux rates decay very fast. Then, a cutoff cantorus
Neut can be determined from ry,,, < 1/test AND ry., 1 > 1/tcus. For each regular island
and each extended KAM-torus, such a cutoff cantorus separates a chain region from the
reduced chaotic set. In a typical ratchet phase space, the asymptotic velocity of the reduced
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Figure 2.13: Decomposition of the chaotic sea for one unit cell. The upper and lower cutoff can-
tori are symmetric while the higher levels of the corresponding chains is sketched asymmetrically.
For a closed KAM-torus, the cutoff leads to an enlarged effective volume.

chaotic set can be calculated in analogy to Eq. (2.17) as

(T = (T = 30 Ay w;
Ured = )
Ared

(2.43)

with u and [ now denoting the upper and lower cutoff cantori and A; the area (or volume,
respectively) enclosed by the cutoff cantorus of island i.

There is no reason to assume that this velocity must vanish. Rather, it is shown in
Fig. 2.14 that this is not the case for the variant of the kicked Harper map. With a non-
smoothed force Eq. (2.27), the positive chaotic velocity v, = 0.121 read out from a chaotic
trajectory after 10° time periods is well in agreement with the value v, = 0.121 calculated
from A, = 0.108 according to the sum rule (all the errors are estimated as £0.001, cf.
Ch. 2.2.4). In terms of the length distributions of walks in positive or negative direction,
[ (twanc) and f_ (twai), the positive value for the chaotic velocity is due to f, > f_ for small
twak (Fig. 2.14(left)). According to the observation that the distribution functions decay
exponentially, Lévy walks are not visible. This can be explained with the instantaneous
increase of the perturbation parameter at (z + t)mod1 = 0.15, 0.85 which destroys the
cantori chain in the vicinity of the transporting island. For a Gaussian smoothed force (cf.
Ch 2.3.2, ¢ = 0.1), running a trajectory yields vy, = 0.101, which is compared to v, = 0.103
from the sum rule (A, = 0.093). In this model, the smoothed force allows the existence
of a cantori chain around the island, which transports in negative direction. Consequently,
Lévy walks are visible in the distribution function f_ (Fig. 2.14(right)). Calculating vy
from these long walks according to the method outlined in [72] would therefore yield a
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completely wrong result. In this model system, Lévy flights are neither required for the
onset of directed chaotic motion nor can one calculate the chaotic velocity by analyzing
them.

it

Figure 2.14: Length distributions fi (fyqx) of walks in positive (solid curve), and negative
(dashed curve) direction, respectively. The distributions are calulated from a chaotic trajectory
iterated over 10° time steps. (left) Distributions for the model specified by Eq. (2.27). (right)
Same for a corresponding system with a smoothed force.

However, Denisov and Flach specify a model where cutting off the long walks with ¢y > 10T
indeed yields a vanishing average velocity for the remaining steps of the trajectory [72].
The Hamiltonian is given by H(z,p,t) = p*/2+ V(z,t) with

V(z,t) = —cos(z) — x (Eycos(t) + Escos(2t + D)) , (2.44)

with E} = 0.252, Fy = 0.052, and ® # 0, 7 [72]. If Ey = 0, the system had time-reversal
symmetry and vy, = Ureg = 0. This symmetry is broken only weakly since E; ~ 5 FEs.
The walk length distribution exhibits an asymmetry for ¢t; > 407, leading to ve, # 0
while veq &~ 0. In the chain model, this can be explained with an asymmetry between the
higher levels of the upper and lower cantori chains while the lower levels - and in particular
the cutoff tori - are still symmetric (Fig. 2.13). For a stronger breaking of the symmetry,
FE; ~ 3 E,, the reduced chaotic set is no more symmetric and vq # 0 [72].

Not only can the restriction to Lévy walks yield completely wrong results for the average
velocity of the chaotic set, it also increases the numerical effort as stated in Ch. 2.2.4.
Concluding, it is important to note that chaotic transport can arise from purely chaotic
motion.
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2.5 Outlook

This chapter is concerned with the description of one-dimensional dissipationless ratchets.
As stated above, already a two-dimensional system with periodic driving would not fulfill
a central requirement, namely the existence of impenetrable barriers for transport in a
mixed phase space. Here, a chaotic trajectory can diffuse from “inside” a regular torus to
the outside such that almost all points in phase space belong to the same chaotic set. It
might therefore be of interest to study the long-time behavior of such systems.

Up to now, the optimization of phase space has been carried out for kicked maps. The
construction of a model with a potential which is continuous in time might could bring the
theory closer to applications. Finally, the study of Hamiltonian systems is perfectly suited
for the switch to quantum mechanics which will be performed in the next chapter.



Chapter 3

Perfect Quantum Hamiltonian
Ratchets

This chapter deals with the quantum versions of Hamiltonian ratchets. The name perfect
quantum Hamiltonian ratchet is used to distinguish the periodic case from that with dis-
order. A perfect quantum ratchet is characterized by the fact that spatial periodicity is
preserved by the quantization (cf. Ch. 3.1.2). Here, one observes a paradox: On the one
hand, the system shows quantum tunneling between the classically invariant phase-space
regions, i.e. these regions are not invariant any more. This violates a fundamental prereq-
uisite for classical transport (Fig. 3.1(left)). On the other hand, the velocity expectation
value of a wave packet does not vanish even in the long-time limit, see (Fig. 3.1(right)),
that is to say, quantum transport persists.

The first section introduces the basics as required for the following studies. In the second
section, the paradox is explained by a quantum analogue to the classical sum rule for
transport which is employed for the analysis of wavepacket transport in the long-time
limit. The quantum sum rule being based on the spectrum of eigenvalues of the time-
evolution operator, one can also extract information about the short-time dynamics from
this spectrum, as carried out in the third section. Finally, the Chern index, a topological
property of the spectrum which was discussed in connection with transport is investigated
for perfect quantum ratchets.
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Figure 3.1: (left) Quantum tunneling from the transporting island with classical transport
velocity veass = —1. For a coherent wave packet centered initially on the elliptic fixed point
the weight inside the island decays exponentially with time. The chosen model is the quantum
version of the ratchet described by Eq. (2.31) at h = 1/20. (right) Quantum transport for the
same wave packet. The initial quantum transport velocity is preserved.

3.1 Quantization of Hamiltonian Ratchets

The Schréodinger equation for a general Hamiltonian ratchet in position representation
reads

S, t) = A, 0et) = (T6) + VD) via.1), (3.1)

with V(z,t) = V(z,t+ 1) = V(z + X, ) (later, the spatial period will be set to X = 1).
For kicked quantum maps, the classical versions of which were introduced in Ch. 2.3, the
calculation of the eigenvalues and eigenfunctions of H is simplified drastically due to the
delta-like time dependence. Therefore, almost all the quantum calculations in this thesis
are carried out for such models. In the first subsections, the implications of Bloch’s theorem
and its analogon for time-periodic systems, th Floquet theorem, are studied. Then, the
technique of visualizing the quantum phase space is described, followed by a statement
about the quantum manifestations of a mixed classical phase space.

3.1.1 Periodicity in Time

In analogy to Bloch’s theorem for spatially periodic systems, an eigenstate v, (x,t) of a
time-periodic Hamiltonian, H(¢) = H(t + 1), can be written as a product of a steady state
Ue(7,t) = ug(r,t+1) and an exponential which depends on time, ¢, (7, 1) = e~*at/" y (1)
[79]. Since 9, solves the Schrodinger equation (3.1), the steady state satisfies

{I:I(t) - zh%] Ua (2, t) = equa(z,t). (3.2)
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Considering the operator in the square brackets as a new Hamiltonian, with the time
treated as an ordinary coordinate with periodic boundary conditions. ¢ takes the place
of an energy, the reason for which it is called quasienergy. It is convenient to rescale the
quasienergy as €, = £,/27h. Then, adding integers to € does not change the eigenstate
and one can set € € [0, 1).

Since . .
Yo(x,t+1) = e 2meltt) gy (1t + 1) = e 2™ qpy (x,1), (3.3)

diagonalizing the time-evolution operator over one period U (to+1,tp) yields the quasiener-
gies of the system. This is especially important since for a kicked map, U takes a simple
multiplicative form,

Ulto+1,t)) = Ultg+ Litg+1—8)Ulto+ 1 — 6,t,) = e iV @/h o=iT@)/h (3.4)

with ¢+ 1 just after and ¢y + 1 — 9 just before the kicking. The special form of this unitary
Floquet operator allows an efficient numerical implementation of the time evolution: One
can change sequentially from position to momentum representation by a Fourier transform,
leaving the kick, and the free time evolution respectively, as a mere multiplication of the
diagonal representation of the Floquet operator and the vector which represents the wave
packet. With Hilbert-space dimension N, the calculation time for the Fourier transforma-
tion scales only as N log N, in contrast to the scaling with N? of the multiplication with
the non-diagonal Floquet operator matrix.

3.1.2 Periodicity in Space and Momentum

According to Bloch’s theorem, spatial periodicity in one dimension implies that ¢ (z,t) =
e?™ik2/X y(z,t), where u(x + X,t) = u(z) is now a spatially periodic function and the
rescaled Bloch phase k € [0,1) is also referred to as quasimomentum. The momentum
representation is calculated by a standard Fourier transform,

—+00

Dp ) = / o P2/ 2TRE/X 3y (0 gy (3.5)

o0

Decomposing the spatial coordinate into a small value denoting position within a unit cell
and an integer labeling the unit cells, x = £ + nX, £ € [0, X), and n € N, yields

X +oo
1/3(p,t) = / dgeiﬁ(*P/than/X)u(f,t) Z oinX (—p/h+2mk/X)
0

n=-—oo

= a; 6((—p/hi + 21k/X) mod 277) . (3.6)

That is to say, one obtains a discrete momentum basis |m) with p|m) = Z(m + k)|m) =
2 (m + k)|m), where m is an integer. For a given Bloch phase, the interval between two
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momentum lattice sites is given by Ap = h/X. Now, the kicked Hamiltonians studied
in Ch. 2.3 also exhibit a periodic kinetic energy, i.e. T(p) = T(p + P) in momentum
representation, which in analogy yields a discrete position basis with Az = h/P. Then,
AxzAp = h?/XP. One can measure position and momentum in units of the corresponding
unit cells in order to obtain dimensionless variables. Then, Axz/X = Ap/P = h/XP =
heg, i.e. Planck’s constant should be scaled by the area of the stroboscopic unit cell to
obtain a dimensionless quantity. The semiclassical limit is then simply given by h.s — 0.
Henceforth, X = P = 1, such that there is no need to introduce additional notations for
scaled variables. We will use A whenever a statement exploits the periodicities, while 7
will be used in expressions of more general validity.

The discreteness of the position basis, however, influences the applicability of Bloch’s
theorem: only if 1/h is an integer, the discrete basis fits into the period of the potential
and the time-evolution operator is exactly periodic after one unit cell. In the case that
1/h = [/m is rational, periodicity is still preserved for a unit-cell chain of length m. With
an irrational h, however, quantum periodicity is violated. The studies of this situation
are postponed to the next Chapter. Here, for simplicity, 1/h € N. One can then restrict
the extended system to one unit cell and consider the Bloch phase as a parameter of the
eigenstates. Since k determines the phase which is multiplied to the wavefunction upon
crossing the cell’s boundary, a variation of k£ amounts to a variation of the boundary
conditions of the spatial unit cell.

The k-dependence can also be assigned to the momentum operator. With the unitary
transformation R(z) = e*™*? the momentum operator for the restricted system is given
by p(k) = R'pR = p + hk: on the one hand,

Ve = w R'pRu,

and on the other hand,

pk)u(z,t) = [—zh% —|—hk] (e 2™* oy (2,1))

= —hk t —2mikx —ih
u(z,t) + e [ iha

= R'(2)p(w,1),

such that ¢ pyr, = u*p(k) u. The Bloch-phase dependence of the momentum operator
transfers to the Hamiltonian, H (k) = H(z, p(k),t) (see App. A.2), such that the eigenvalues
of H(k) become functions of k, referred to as the Floquet bands €, = €, (k).

3] Yp(z,t) + hku(z,t)

With both spatial and temporal periodicity, the Hilbert space can be reduced to the spatio-
temporal unit cell, (&,t) € [0,1), with an inner product given by

= [ o [Carco. (37)
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Avoided Crossings

For a classically nonintegrable system without symmetries, the Floquet bands typically do
not cross each other. For the eigenenergies of a Hamiltonian which change under variation
of some parameter, this was explained in [80]. The generalization to Floquet operators can
be found in [81] Ch. 3.2. For two non-degenerate bands, one considers the two-dimensional
Hilbert space spanned by the corresponding eigenstates. Since the Floquet operator of this
reduced Hilbert space is again unitary, it depends on four real parameters,

Uy = < c1+1co c3+icy )) (3.8)

—c3+1cs € —1cy

with the additional restriction that > ¢? = 1. Therefore, there are three free parameters in
the equation ex = ¢; +iv/c3 + 3 + ¢ for the eigenvalues of Uyeq. To achieve that e, =e_,
one must generically vary three parameters in the Floquet operator. This number is reduced
to two if U,eq symmetric such that c3 = 0. However, under variation of only one parameter,
e.g., the Bloch phase k, the bands generically avoid crossings.

3.1.3 Quantum Phase-Space Representations

In the classical case, the phase space of a system can be visualized by plotting the precise
location of the section of a trajectory with the Poincaré surface. A stroboscopic quantum
phase-space representation, however, faces the problem that position and momentum obey
Heisenberg’s uncertainty principle. Wigner [64,82] exploited the statistical interpretation
of quantum mechanics to arrive at an analogue to the Boltzmann distribution function for
the probability of some particle to be at the point (z,p) in phase space. Such a function ¥
should satisfy three conditions. First, the integral over position (momentum) space should
yield the absolute square of the momentum (position) representation of the state ¢,

/ dxT(x,p) = [6(p)], / dp¥(x.p) = |6 (3.9)

Second, this function should be real and, third, positive, according to the definition of
probability. While the Wigner function

1
V2rh

satisfies the first two conditions, it fails for the third one due to the oscillations induced
by the Fourier transform. In the semiclassical limit, though, it can be shown that the this
function becomes positive definite and approaches the classical probability distribution.

U(r,p) =

/ dx'e=#7 (x — ¥ /2) p(x + ¥'/2) (3.10)

In order to get rid of the oscillations, one can smooth the Wigner function with a Gaussian
both in position and momentum. The resulting Husimi distribution function, introduced
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in [83], reads

1 N2 N2
(0, po) = ﬁ/dx'olp'exp {—(‘/’”Omf) _ 2o hp) U(,p), (3.11)

where w is the width of the position uncertainty [64]. One can now choose an overcomplete
basis of Gaussians centered around different (z,py) to obtain a stroboscopic phase-space
representation of ¢. This representation will be used throughout the thesis.

3.1.4 Regular and Chaotic States

It is one of the fundamental hypotheses in quantum physics of the mixed phase space
that the stationary states in the semiclassical limit are confined to the classically invariant
regions of phase space [40,42]. In Ch. 4, an important and unexpected exemption from
this hypothesis will be introduced for extended systems. In this chapter, however, dealing
with exactly periodic systems, which can be restricted to a compact phase space, it can
rightfully be assumed. Intuitively, in order to observe a state confined to an invariant
set, AxAp ~ h should be smaller than the phase-space area of this set. According to the
observations, this is indeed sufficient (Fig. 3.2). Then, the eigenstates of a mixed system
can be categorized into chaotic or reqular states. With a smaller h, also the fine structure of
phase space is resolved and the regular states will condense on the classical tori, such that
there will be one eigenstate at the island’s center while the other eigenstates supported by
this island arrange as fringes around this center. Decreasing h even further, Ketzmerick and
colleagues [47] showed that even the hierarchical regions can support their own eigenstates.
For the purpose of this thesis, these hierarchical states can be considered as a subclass of
the regular ones. With h small enough to permit an appropriate statistics, the fraction of
regular and chaotic states equals the fractions of the areas of the corresponding classical
regions in phase space.

3.2 Reading Transport from the Slopes of Floquet
Bands

This section contains the main results for perfect quantum Hamiltonian ratchets: First, the
velocity expectation value of a steady state is shown to be encoded in the corresponding
Floquet band. That relation leads directly to a quantum analogue to the sum rule for
compact phase space. Shifting from eigenstates to wavepackets, the coexistence of quantum
tunneling with non-vanishing asymptotic transport is explained.
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Figure 3.2: Husimi representations of a regular (left) and a chaotic (right) eigenstate. The light
areas correspond to small values of the Husimi function, and vice versa. For comparison, the
bounding torus of the classical regular island is plotted (solid line).

3.2.1 The Quantum Sum Rule for Transport

Classically, the transport of a finite invariant phase-space component equals the averaged
velocity weighted with the component’s volume (see Eq. (2.13)). In analogy, quantum
transport of a classically invariant phase-space set is given by the sum over the velocity
expectation values of those eigenstates ¢, x(x,t) which are supported by this set. With
the velocity operator v = T'(ﬁ), the expectation value of an eigenstate reads

Vak = <<77/}oz,k @W}a,k» . (3.12)

In App. A, it is shown that this equals the slope of the Floquet band « at the position k,
namely

Vag = ((Yak| T (9)[bar)) = dea(k)/dk . (3.13)

This allows one to study quantum transport in terms of spectral properties of the system,
namely in terms of the slopes of Floquet bands.

Consider the bands shown in Fig. 3.3. On a coarse scale, the straight bands with negative
slope appear to cross the oscillating ones with positive average slope. Plotting the phase-
space representation of an eigenstate corresponding to a quasienergy on a straight band
shows that this eigenstate is a regular one (see Fig. 3.2(left)). Accordingly, quasienergies on
the fluctuating bands correspond to chaotic states (see Fig. 3.2(right)). The magnification
in the inset shows that the bands actually do not cross, as argued in Ch. 3.1.2. Only in the
semiclassical limit, the difference in quasienergies at an avoided crossing becomes exponen-
tially small. One can then imagine switching from the adiabatic viewpoint with avoided
crossings to a diabatic one with real crossings, [84,85]. While in the actual, the adiabatic
case, the states corresponding to the two bands of an avoided crossing exchange their type,
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Figure 3.3: Floquet bands ¢(k) of the quantized mapping Eq. 2.31 for h = 1/128. Quasienergies
corresponding to regular states lead to straight lines with negative integer slope in contrast to
the oscillating chaotic bands. On a sufficiently fine scale, all crossings are avoided (right inset).

one can uniquely characterize the bands as regular or chaotic in the diabatic picture. At
an avoided crossing, one observes eigenstates with a “mixed” Husimi representation, sup-
ported by both classical phase-space sets which are involved in the avoided crossing. The
fraction of these special k-sections vanishes in the semiclassical limit and does therefore
not violate the hypothesis that the eigenstates are confined to the classical sets in this
limit. The generalized Hellman-Feynman theorem, Eq. (3.13), explains the band structure
visualized in Fig. 3.3: Neglecting the avoided crossings, a regular band exhibits a slope
equivalent to the velocity of the classically invariant regular set. For the model system
given by Eq. (2.31), one has regular bands with w(™® = w; = —1. Alternatively, if ¥
for a given k is a chaotic state, it spreads over the chaotic sea with the weight oscillating
under variation of k, causing the corresponding band slope to oscillate as well.

Now, the overall slope of the bands can be described in terms of their winding number
around the torus (¢, k) € [0,1). In the adiabatic picture, each band closes on itself, i.e. all
the winding numbers are zero. In the diabatic picture, however, the bands must close only
after an integer number of periods in the € and £ directions, such that the winding numbers
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Wa,diab. = W, are rational. Since shifting from the adiabatic to the diabatic viewpoint simply
corresponds to a reconnection of the bands at the crossings, the sum of winding numbers
must be preserved. Thus it must be zero also in the diabatic case, ), w, = 0. Restricting
the analysis to one regular and one chaotic component, the sum can be decomposed into
the contributions from regular and chaotic bands,

D Wl 4y W = 0. (3.14)

This is the quantum-mechanical analogue of the classical sum rule (2.38). Because of the
localization of the regular states on tori inside the regular island, the winding number of the
regular bands in (e, k)-space is in the semiclassical limit identical to the winding number
in (z,t)-space of the central periodic orbit, i.e., Wi = Wreg- Moreover, in this limit, the
fractions of regular and chaotic bands correspond to the stroboscopic phase-space areas
Areg and 1 — A, respectively. We therefore obtain from Eq. (3.14) the mean slope of
the chaotic bands, @™ = A,./(1 — Areg) = ven, as the classical drift velocity. This is

confirmed in Fig. 3.4.

3.2.2 Asymptotic Wavepacket Transport

Up to now, only the (averaged) velocity expectation values of stationary states have been
considered. The band slopes, however, can also be used to calculate the velocity expectation
value of an arbitrary wave packet ¢(x,t) in the long-time limit. x denotes position in the
extended chain of unit cells, x € (=00, +00), which is again decomposed as x = £ + n into
the position within a unit cell £ € [0, 1), and the unit-cell index n. Accordingly, the position
expectation value of ¢(x,t) can be split into two parts, namely one which corresponds to
length scales within a unit cell and a coarse one corresponding to the scale of many unit
cells,

w0 = [T aripor = [l 3 o nof

o0 n=—00

= Tyu(t) + me(t) . (3.15)

The contribution from the dynamics inside the unit cells is bounded by the size of the unit
cell,

Tue(t) = /dggz (6 +n,1)]? < /dgz oE+n,t))? =1, (3.16)

n=—oo n=—oo

as follows from the normalization of ¢. For the investigation of directed transport, there-
fore, only the coarse part is relevant,

vl /dsz n o€ + . 1), (3.17)

n=—0oo
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Figure 3.4: Distribution of the slopes of Floquet bands shown in Fig. 3.3 exhibiting a sharp
peak at v = —1 from the regular bands and a Gaussian distribution with maximum close to ve,
from the chaotic ones, together with the Husimi representations of typical eigenstates. The arrow
indicates the classical drift velocity v., of the chaotic component. The weight in between the

sharp peak and the Gaussian is due to the intermediate slopes at the avoided crossings and will
therefore vanish for A — 0.

In App. B, it is shown that

1
Tult) & vk, Us :/ AkS eal? o (3.18)
0 o

— dea(k)

= —ar is the

where ¢, is the overlap of ¢ with the eigenstate 1, at time ¢ = 0 and v,
velocity expectation value of 1, .

In other words, the average velocity expectation value of some wave packet is the average
over all band slopes weighted with the overlaps with the Floquet states. Considering
wavepackets which are initially localized in a single unit cell and, moreover, inside one of
the invariant sets of the classical dynamics, the weights |ca.(0)|? are concentrated on the
(diabatic) bands corresponding to this invariant set, but they are nearly homogeneously
distributed over the whole Brillouin zone k € [0, 1) since localization in position implies
delocalization in (quasi-) momentum. This is illustrated in Fig. 3.5. Consequently, from
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Eq. (3.18), one obtains for the asymptotic velocity of a wavepacket which is initially well
localized inside an invariant set of the classical phase an average over the band slopes of
the (adiabatic) bands associated with this invariant set which in the previous section was
shown to coincide with the average classical velocity of the corresponding invariant set.

1 R NI 1

Figure 3.5: Quasienergy band spectrum of system Eq. (2.31) for h~! = 32. The linewidth en-
codes the overlap |(¢q,x|1)|? of the corresponding eigenstate | ¢, k) of the time-evolution operator
with an initial wavepacket |¢). (left) The wavepacket is a coherent state located in the chaotic
part of the phase space of a single unit cell. (right) Here, the wavepacket is concentrated on one
of the tori inside the regular island of a unit cell.

This conclusion is valid only in the semiclassical regime, since otherwise the notion of
diabatic bands, pertaining to a certain classically invariant set, breaks down. On the other
hand, in the semiclassical regime it is clear from the outset that for short times the velocity
of a wavepacket corresponds to the classical velocity. Nevertheless, the statement for
asymptotic transport is non-trivial since the classical velocity shows up in the asymptotic
dynamics for long time, i. e. beyond the h-dependent time scale for quantum-classical
correspondence. The result is illustrated in Fig. 3.6, where the average position of chaotic
wavepackets is shown over a large time interval. In agreement with Eq. (3.18) one observes
a linear dependence on time with very small fluctuations, i. e. directed ballistic quantum
transport persists in the long-time limit. The value of the velocity depends on the initial
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conditions but these fluctuations decrease with A such that the average approaches the
value of the classical velocity. In contrast, in the deep quantum regime one can strongly
vary the asymptotic velocity by choosing different initial positions of the wave packet.
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Figure 3.6: Position vs. time for wavepackets initialized as coherent states inside the chaotic part
of phase space of system Eq. 2.31. Two different values of h and two different initial conditions
are used. The dotted line shows the classical chaotic transport velocity.

It should be noted that the typical quantum velocity for a chaotic wavepacket is above the
classical value. This is due to the hierarchical phase-space region around an island which
communicates with the main chaotic sea only via leaky cantori. Depending on h some
of these cantori allow quantum transitions only by tunneling and therefore are effectively
part of the regular island [47]. According to the sum rule, a larger island means that the
chaotic transport velocity must be larger.

3.2.3 Dynamical Tunneling

As stated above, it is surprising that the division of classical phase space into invariant
sets influences the long-time quantum dynamics, because classically impenetrable barriers
can be crossed in quantum dynamics by tunneling. Indeed, this phenomenon, which is
best known for the case of energy barriers (e. g. in a double-well potential), has been
generalized to dynamical barriers and was recently confirmed experimentally [51]. If in
quantum dynamics no strict barriers exist, the wave packet should explore for long times
the whole available phase space forcing the directed transport to vanish. It was shown in the
previous section that this is not the case. So how does tunneling show up in Hamiltonian
ratchets?
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Figure 3.7: A classical distribution prepared in the regular island of one unit cell moves on
the chain without any spreading. The speed corresponds to the rational winding number of the
central periodic orbit of the island (w, = 1 in this case).

To answer this question one considers a wavepacket which is initially prepared inside the
regular island in phase space in unit cell n = 0, e. g. the wave packet shown in the left inset
of Fig. 3.4. Classically, such an initial distribution is simply shifted along the chain with
a velocity corresponding to the winding number w; of the central periodic orbit (Fig. 3.7).
This property is conserved in the quantum dynamics if one neglects the narrow avoided
crossings between the adiabatic regular and chaotic bands: In this case the regular bands
are straight lines

€ak = €a,0 + Wik .

Within this approximation, a localized wavepacket initially constructed as a superposition
of all states of a regular band r which pertains to the island i, |¢(x, t = 0)) = fol dk [tk ()),
is transported at speed w; without any spreading,

1
€+ wit, 1) = / Q2% et (€ 4wy 1))

1
— / dk e27ri(kwifer,k)t |wr,k(f)>

0

= ¢(£,0), (3.19)

where t is assumed to be a multiple of the period of the regular periodic orbit.

Since excluding avoided crossings between regular and chaotic bands from the analysis ob-
viously prohibits quantum tunneling out of the island, it follows in turn that this tunneling
is encoded in the avoided crossings. These show up in the regular bands as deviations from
the straight line e = w;k: since the bands are bent towards the chaotic bands, the actual
slope is k-dependent and slightly smaller than w;. Using this qualitative information allows
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to predict the shape of the wavepacket at very large times as

1
Bt nt) = / Ak mitn i) (6) (3.20)

- Z Z //Z e27ri(k6,r’k7€r’k)twr,k(§)a
ke, =% |€r7kt|

r

where ;. () is treated as a slowly varying prefactor of the rapidly oscillating phase. The
points of stationary phase in k in Eq. (3.20) select those Bloch states whose superposition
yields the wavepacket at time ¢ and position n. It is no surprise that these are exactly those
points for which the slope of the band corresponds to the velocity n/t. Due to avoided
crossings, the actual slope of the regular bands is smaller than w;, and hence for the
transition to the unit cell n = w;t, where all classical probability is concentrated, no points
of stationary phase with real k exist such that to leading order this process is forbidden in
quantum mechanics. There might be complex solutions of the equation e’r’k = w;, but there
the exponent in Eq. (3.20) has a real part and the contribution will be exponentially small
in ¢ (cf. Figs. 3.1 (left), 3.8). Indeed, the well-known law for the weight in the unit cell
n = w;t for disordered transporting systems [86], P(¢) = |¢(w;t,t)|* = e 7" with tunneling
rate v, also applies to perfect Hamiltonian ratchets (cf Ch. 4.5.2).

The main part of the wavepacket, however, is concentrated not in the ”classical” unit cell
but rather at positions for which real points of stationary phase exist in Eq. (3.20). These
correspond to velocities which have a narrow distribution around a value which is slightly
smaller than the classical velocity. Due to this dispersion in the velocities, induced by
avoided crossings, the wavepacket will spread ballistically in time and will be concentrated
right behind the classical position (Fig. 3.8).

For a wavepacket initially prepared in the chaotic part of a unit cell the influence of
tunneling is much less pronounced: Although the narrow avoided crossings with regular
bands do modify the chaotic bands as well, the existence of points of stationary phase in an
expansion similar to Eq. (3.20) is unaffected. Due to the wide avoided crossings between
them, the chaotic states by themselves exhibit a large variation in their velocities around
the classical value.

The role of tunneling in Hamiltonian ratchets is now identified. It corresponds to the
avoided crossings between regular and chaotic states (or between regular states with differ-
ent winding numbers). In the dynamics of initially localized wavepackets tunneling shows
up mainly in the evolution of regular states which slightly lag behind the position expected
from classical considerations. Quantum tunneling is not able to hinder directed ballistic
transport of such wavepackets for asymptotically large times.

For systems with a symmetric classical phase space like the standard map this implies that
in the semiclassical regime and for initially localized wavepackets there will be no significant
dynamical tunneling from an island to its symmetry-related partner (or the chaotic sea):
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Figure 3.8: The same wave packet as in Fig 3.1 in position representation at time ¢ = 1000.
The classical probability would be restricted to the unit cell n = 1000 (arrow in the inset). The
quantum wave packet, however, has spread and the peak of the weight distribution lags slightly
behind due to tunneling. This is in accordance with the exponential decay of P(t¢) shown in
Fig. 3.1 (left).

A wavepacket initialized in a single unit cell and well inside an ”accelerator mode” with
positive velocity will never be caught moving backwards. There is no contradiction of
this statement with the experiments reported in [51], because there delocalized initial
states were prepared for which directed transport in the sense of Hamiltonian ratchets is
meaningless. With respect to the band spectrum, such states can be concentrated right on
an avoided crossing. This will dramatically enhance the effect of dynamical tunneling.

3.3 Short-Time Transport and the Generalized Form
Factor

The analysis based on the winding numbers carried out in the previous section can be
applied to predict the mean quantum transport in the semiclassical regime from the classical
value. Even more information, namely that about the time course of quantum transport,
can be extracted from spectral two-point correlation functions, as will be seen in the
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following.

For short times, the quantum dynamics is expected to follow the classical one, since quan-
tum interference can be neglected [81] Ch. 8. A suitable quantity to establish a direct
relation between the time evolution of the classical distribution and the band spectrum is
the generalized form factor introduced and studied in [39] for completely chaotic systems.
It is defined as a double Fourier transform of the spectrum, from energy to time and from
quasimomentum to unit-cell index. With ¢ € N,

Ko (t) = h{|an(t)]*), (3.21)
where
1 . ~ N 1 .
an(t) = / dk ek ) =y / dl e 2milkn—cant) (3.22)
0 w1 70

The average denoted by (...) in Eq. (3.21) can be taken over a small time interval or
over an ensemble of quantum systems corresponding to approximately the same classical
system. Comparing Eq. (3.22) to Eq. (3.20) and neglecting all details of the dynamics
within unit cells which are contained in v, 4 (&), one can see that a,(t) can be interpreted
as a wavepacket after time ¢ which is formed by a homogeneous superposition from the
whole band spectrum such that it is localized initially within the unit cell nyg = 0.

To confirm this interpretation, it is shown in App. C, that the form factor K, (t) is re-
lated semiclassically to the classical dynamics of an initially homogeneous distribution
in phase space. It is assumed that upon the averaging, the regular and the chaotic
bands vary independently such that the form factor can be written as an incoherent sum
Ko(t) = K{®(t) + KX (1), as in [43]. The quality of this approximation improves in
the semiclassical limit, when most avoided crossings between the chaotic and the regular
subspectra become very narrow. According to Ch. 3.2, the f;/h bands pertaining to the
regular island ¢ are straight lines with slope de/dk = w;. At fixed Bloch number k, the dis-
tribution of the corresponding quasienergies is Poissonian in the semiclassical limit. Using
these facts in (3.21) yields

K9 (8) = PR (1) =3 fidn i

where P{"® (t) is the classical time-dependent unit-cell distribution for the regular phase-
space component (cf. App. C.1).

A semiclassical theory for the generalized form factor in a system with a fully chaotic
dynamics was presented in [39,87]. In order to apply it to a system with a mixed classical
phase space it is assumed that the classical periodic orbits fill the chaotic component
homogeneously as in a fully chaotic system [88]. In this case, the result of [39,87] remains

essentially unchanged, K\™ (t) = TP (t), where 7 = tfe,/h is the rescaled time for
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systems with broken time-reversal symmetry (see App. C.2). Combining the two results,
one arrives at

K, (t) = P8 (1) + 7P (1) . (3.23)

Therefore, in the semiclassical limit, the generalized form factor can be expressed in terms of
classical distribution functions only. Since in the derivation of (3.23), correlations between

a b
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Figure 3.9: Form factor K, (t) for the system Eq. 2.31 at h = 1/128 (thick line) at times
t = 30 (a), and ¢ = 111 (b), the Heisenberg time of the chaotic component. The two distinct
peaks centered around w; and v, are the signature of ballistic transport. The comparison of the
time-dependent width of the chaotic distribution with the classical distribution PS"(¢) of chaotic
trajectories (thin line) supports Eq. 3.23.

different classical orbits have been neglected, it is valid only up to the Heisenberg time
th = fu/h of the chaotic component [89]. For this time, Fig. 3.9 confirms the validity of
Eq. 3.23. Together with the above analysis for the long-time limit, this result rounds out
the investigation of perfect quantum Hamiltonian ratchets.

3.4 Chern Indices for Perfect Ratchets

Chern indices have been used to determine the conduction properties of mixed systems
[90,91]. Thouless et al. [92], by referring to the fact that these numbers must be integers,
could establish the connection to the quantized Hall conductance which intensified the
interest in the topic. Leboeuf et al. [93,94] use them in the distiction of the eigenstates of
the kicked Harper model into topologically localized and extended. In the following, the
theory is applied to Hamiltonian ratchets.

If the system of interest is periodic also in the momentum variable, T'(p + P) = T(p), a
formalism analogous to the one which for periodicity in x yields the quasimomenta will
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Figure 3.10: Two typical Floquet surfaces E(kl,kQ) for the quantum ratchet Eq. 3.25 with
h =1/9. The arrow points at an avoided crossing which is due to the transmission of the regular
character from the upper to the lower surface.

lead to a second Bloch phase in the spatial coordinate. The quasienergies now depend on
two parameters k = 6; and 0y, resulting in Floguet surfaces of quasienergies ¢ = €(6;,6)
which, as shown in Ch. 3.1.2, generically do not cross (cf. Fig. 3.10). The Chern index of
surface « is given by

R A (0U/06;) a5 (0U/00k)pa 1
Oa—%/(; A dHZZejk +N, (324)

B#a jk el — el 2
b

where (OU/00;)ap =< 14|0U/08;|t5 >, €, denotes the completely antisymmetric tensor,
N = 1/h is the size of the reduced Hilbert space, and j,k € 0, 1.

In the absence of ballistic transport, and for small perturbations of integrability, the Flo-
quet surfaces can be categorized into regular and chaotic. Now, as stated in Ch. 3.1.2,
the variation of the Bloch phases corresponds to varying the boundary conditions. With
an appropriate choice of the unit-cell boundaries, the regular states supported by non-
transporting islands have exponentially small tails at these boundaries, and will therefore
not be affected by such a variation. Since the Chern index depends on the derivatives with
respect to the boundary conditions, it vanishes for the Floquet surfaces corresponding to
such states. This does not apply to a chaotic state, i.e. the Chern index of the correspond-
ing Floquet surface does not necessarily vanish. It can be shown for the kicked Harper map
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Figure 3.11: Poincaré sections for Eq. 3.25 with parameters leading to a Hamiltonian ratchet
(left) and full chaoticity, resp. (right).

that the distribution of Chern numbers around zero is broadened when the perturbation
parameter k = [ is increased [93]. Hence, the distribution width can be interpreted as a
measure for the fraction of states that spread over the chain of unit cells.

The Floquet surfaces of systems which exhibit ballistic transport, however, can not be
associated to certain types of eigenstates due to the avoided crossings. Hence, they can
not be categorized into regular and chaotic which is a prerequisite of the above statement.
One might ask whether it is again possible to reconnect the surfaces in the diabatic ap-
proximation. However, the difference of the quasienergies at an avoided crossing decreases
exponentially with h. Since this difference shows up in the denominator of Eq. (3.24), the
avoided crossings can not be neglected in the semiclassical limit. One might still wonder
whether transport shows up as a significant broadening of the distribution of Chern indices.
This will be investigated in the following.

Since in Eq. (3.24) derivatives of the Floquet operator come into play, one has to employ
a model with a smooth potential and kinetic energy. For the variant of the Chirikov map
with

V(z) = cos(2mx) + 0.15 cos(4mx — ay) + 1/12 cos(67x — ay))

p+1/2)2
gy = PEIRE (3.25)
(a1,a2) = (3m,m), the Poincaré section shows an asymmetric transporting island with

velocity w; =1 (see Fig. 3.11).

The distribution of Chern indices is shown in Fig. 3.12 along with the values for a similar
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Figure 3.12: Distributions of Chern numbers at different values of A and for both the ratchet
Eq. (3.25) and its fully chaotic counterpart. At h = 1/11 the variances o2, ~ 1.29, 0% =~ 0.69
exhibit a larger difference than at h = 1/21 ( 02, =~ 1.95,0% =~ 1.65), although the island can
only be resolved in the latter case.

but fully chaotic system given by (ay, as) = (2, 2m). The classical island is clearly resolved
in the case h = 1/21 but not for h = 1/11. According to the statement by Leboeuf
et al. this distribution should be significantly broadened as soon as the systems supports
transport. One can indeed observe such a broadening, which, however, also applies to the
fully chaotic system. This suggests that the distribution width can not give any indication
about the onset of ballistic transport.

Concluding, it is important to note that the concept of conducting chaotic and isolating
regular bands is not applicable to Hamiltonian ratchets since there, both types of phase-
space regions support eigenstates whose velocity expectation values do not vanish.
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3.5 Outlook

It has been shown how a perfect quantum ratchet with compact phase space can make a
wave packet centered in the chaotic region with zero initial velocity move at a predetermined
velocity which approches the classical value as A — 0. It might be rewarding to extend the
theory to quantum ratchets with a non-compact phase space, or to those with a continuous
time evolution.

Choosing a much smaller effective Planck’s constant leads to the regime where the classi-
cally hierarchical phase-space regions should show up in the quantum dynamics. Accord-
ing to the generalization of the Hellman-Feynman theorem, one would expect the slopes
of those bands which correspond to hierarchical states to be close to the slopes of the
corresponding regular bands. This calculation could be carried out with a numerical effort
smaller than that needed for calculaing the states themselves.

For systems with several islands transporting at different velocities, the corresponding
bands should show different slopes with narrow avoided crossings. It might be interesting
to extend the study of quantum tunneling to such systems.
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Chapter 4

Disordered Quantum Hamiltonian
Ratchets

This chapter is concerned with quantized kicked maps where the effective Planck’s constant
is an irrational number, h ¢ Q. Then, as mentioned in Ch. 3.1.2, the spatial symmetry
is not preserved by the quantization, and neither Bloch’s theorem nor the subsequent
Floquet-band analysis apply.

Rather, as will be clarified in the first section, kicked maps with an irrational i are closely
related to disordered systems as exemplified by the Anderson model [95]. In particular, the
property of localized eigenstates of disordered systems is inherited by the maps. The second
section represents an outline of the hypothesis that the eigenstates are supported by the
classically invariant phase-space components in the semiclassical limit. For Hamiltonian
ratchets, however, one observes the new class of amphibious eigenstates, which ignore the
classical phase-space structure completely, as shown and explained in the third section.
The understanding of these states also contributes to the study of ballistically transporting
systems with time-reversal symmetry like the standard map with accelerator modes (fourth
section). Finally, the new insight is applied to the description of the general wave-packet
dynamics in Hamiltonian ratchets.

4.1 Dynamical Localization

The simplest model suitable for the description of localization is the Anderson model which
consists of a chain of sites and a particle which can hop from one site to its rth neighbor
with probability W?2. At site m acts a random potential V, while u,, represents the
amplitude of the particle being located at site m. One obtains the Schrodinger equation
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as

Vit + Y Wottgr = Bty (4.1)

[81] Ch. 7.2. For analytical purposes, this is further simplified by the restrictions that the

particle can only hop to the nearest neighbor site and that the hopping is symmetric, i.e.
hopping to the left has the same amplitude as hopping to the right.
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Figure 4.1: (top) Variance of a coherent wavepacket spreading over the phase space of the stan-
dard map at k = 1.65.

(bottom) Momentum representation (or, upon exchanging z and p, position representation, re-
spectively) of the wavepacket at times ¢ = 10 (a), ¢ = 100 (b), and ¢ = 1000 (c). The localized
wavepacket (c) exhibits exponential decay, justifying the notion of ezponential localization.

The Schrédinger equation (4.1) can be written for a two-site vector as

()= (P Do)
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with the transfer matriz M,,, det(M,,) = 1. Iterating the transfer yields

U,

< Um+1 > — MmMmfl .. .M2M1 < Z(l) > . (43)

Now, the Fiirstenberg theorem [96] states that for long chains, the logarithm of the trace
of the iteration matrix is proportional to the length of the iteration,

1
1im<,2%oélogTr{1\4QMQ_1 MMy} = >0 (4.4)

for random matrices M; with det(M;) = 1, which is fulfilled by the transfer matrices.
A two-by-two matrix with determinant equal to one and an eigenvalues a has a second
eigenvalue 1/a. One therefore obtains in the long-chain limit the eigenvalues exp(4+m~)
Uy
Ug
give rise to wave functions which grow exponentially both to the left and to the right.
Normalization, however, picks out those states which show exponential decay to both

for the product of transfer matrices. It follows that almost all initial vectors will

Uy

" ), the corresponding spectrum of
0

sides. Since these are discrete in the space of all (

eigenenergies is also discrete.

Fishman, Grempel, and Prange [50] showed that the standard map with irrational A is
related to this model [97]. The notion of dynamical localization - in contrast to Anderson
localization - reminds one of the differences between the two model systems: On the
one hand, the Floquet operator of the mapping in position representation is not really a
random matrix, but only slightly “randomized” by the irrationality of h. On the other
hand, rather than the hopping being restricted to the next lattice site, its amplitude falls
off exponentially for large r in the standard map. Still, the numerical observations have
consistently indicated that the eigenstates of the standard map quantized with h ¢ Q are
exponentially localized with some localization length &. That is to say, the spatial weight
distribution of these states is given by |¢)(z)[> ~ exp(—x/&). (With respect to numerics,

the irrationality of h is commonly achieved by approximating the number h = n—}rg, where
o= @ is the golden mean.)

This leads to a sharp contrast between the quantum dynamics and that of the system’s
classical version: whereas a bundle of classical trajectories initialized in the chaotic sea
exhibits spatial (in the presence of accelerator modes, anomalous) diffusion for all times,
any wave packet that can be constructed from a superposition of localized eigenstates will
only follow the classical diffusion for times smaller than some break time of the order of the
Heisenberg time tg ~ 1/h and localize thereafter (Fig. 4.1). This behavior is confirmed by
a lot of numerical work (see references in [54]).
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4.2 The Semiclassical Eigenfunction Hypothesis

The distinction of the eigenstates and corresponding eigenvalues of the time-evolution
operator into regular and chaotic (see Ch. 3.1.4) can be stated more explicitly in the semi-
classical limit h — 0 in terms of the Wigner function. This semiclassical eigenfunction hy-
pothesis is based mainly on work by Percival [40], Berry [41,42], Voros [98], and Shnirelman
[99]. Stated originally in terms of time-independent N-dimensional systems with conjugate
variables x and p, the hypothesis also applies to the two-dimensional stroboscopic section
of kicked maps as investigated in this thesis.

One starts out from the locally averaged Wigner function

. 1 x'+A/2 p'+A/2
U(x,p) = —/ dx'/ dp' ¥(x',p'), (4.5)
A x'—A/2 p'—A/2

where limp oA = 0, but limp_,o(h/A) = 0 [42], such that the oscillations, whose length
scales with h, are smoothed out. In a classically integrable system, the canonical trans-
formation to action-angle variables yields the invariant actions I, which can be expressed
in terms of the original coordinates x and p, I = I(x,p). Then, the averaged Wigner
function of state ¢ is given in the semiclassical limit by [41]

@(X,p) _ 5N(I(X7 p) _ Lﬁ)

(4.6)

where I, denotes the action values of ¢, and 6" is the N-dimensional Dirac delta function.
That is to say, the state is confined to the classical torus of corresponding action.

For an ergodic system and with the classical Hamiltonian H(x, p), Voros [98] hypothesized
that for almost all states ¢» and h — 0,

K7 . 51(E —H(X,p))
VP) = i Tap o (By— Hxp) (47)

i.e. the state is spread evenly over the whole energy shell. This statement, proven later
by Shnirelman [99], is referred to as the quantum ergodicity or Shnirelman theorem. The
analogy of the Wigner functions in these two extremal cases suggests the expression,

Texp) — 3(Fy — F(x,p)) X (%, P) (4.8)

- [dx [dpd(Fy — F(x,p)) xu(X,P)’

for a state 1 of a classically mixed system with ergodic chaotic components. Here, F'(x, p)
is a generalized constant of motion, Fy, denotes the corresponding quantum value and x,,

represents the characteristic function of the phase-space component w defined by a certain
value of F' [100]. With small A but h # 0, the Wigner function broadens, the width of
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the peak scaling with h=2V/3 [41], leading to a small overlap of the Wigner functions for
eigenstates localized on different invariant manifolds.

The semiclassical eigenfunction hypothesis is supported by convincing numerical and ex-
perimental data [44-46]. It forms the basis of the present understanding of spectral and
transport properties of quantum systems with coexisting regular and chaotic classical dy-
namics [42,47,60]. Therefore, any limitation of its applicability is of great interest for the
field of quantum chaos.

4.3 Broken Time-Reversal Symmetry

The maximum violation of the semiclassical eigenfunction hypothesis would be achieved
when all eigenstates of a system completely ignore the classical phase space structure in the
semiclassical limit. These conditions are met by the eigenstates of quantum Hamiltonian
ratchets with broken time-reversal symmetry as studied in this section. In the first subsec-
tion, the eigenstates are introduced and their localization properties are described. From
the continuity equation for the quantum current, an argument for the states’ local structure
is derived in the second subsection, justifying the statement of maximum violation of the
semiclassical eigenfunction hypothesis. Finally, it is shown why the perturbation theory
leading to this hypothesis fails in the presence of transporting islands.

4.3.1 Amphibious Eigenstates

Fig. 4.2 A shows an example of an amphibious eigenstate living both on the regular island
and the chaotic sea. The comparison with the eigenstates of a similar system with non-
transporting islands at the same h shows that the quantum resolution is high enough to
permit the distinction into regular and chaotic states (cf. Fig. 4.2) B, C. Amphibious
eigenstates should not be confused with the well-known occurrence of partly regular and
partly chaotic eigenstates due to avoided crossings. These are simple superpositions of
regular and chaotic eigenstates and they occur with zero probability in the semiclassical
limit. It should be noted, that although amphibious eigenstates ignore the classical phase-
space structure they conspire in such a way that the dynamics of wave packets follows the
semiclassical expectation. For example, a wave packet started in the regular island follows
the classical motion of this island to very high precision (see Fig. 4.3).
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Figure 4.2: Husimi representations of eigenstates of a transporting (A) and an analogous non-
transporting system (B), (C) as indicated by the arrows. The classical phase space portraits
are shown in black. (A) All eigenstates, like the one shown, spread over the classically regular
islands as well as the chaotic sea. These “amphibious” eigenstates ignore the classical structures
even though h is smaller than the island. For comparison, the well-known eigenstates which can
be categorized into chaotic (B) and regular (C) are shown. These are in agreement with the
semiclassical eigenfunction hypothesis.

Model Systems

For both the transporting (T) and the non-transporting (NT) system, one starts from
piecewise linear functions

t'(p) = s/4t£(A—sp) : 0<Ep<1/2
V() = —(m+r(x—m)) : m—1/2<z<m+1/2, (4.9)

where m is the unit cell index. Smoothing is carried out by folding the discontinu-
ous functions with a Gaussian, G(z) = exp(—z%/2¢?)/V2me?, finally yielding T'(p) =
[dz #'(p+2) G(z) and V'(z) = [dz v'(x + z) G(z). With the values 4 =1, s = 2,
r = 0.65, and € = 0.015, one obtains the classical phase space shown in Fig. 4.2A with a
transporting island (T), whereas A =0, s =2, r = 0.65, and ¢ = 0.11 yield a system with
non-transporting island (NT) of roughly the same size - approximately 50 times larger than
the accelerator modes of the standard map at K = 6.33. Choosing the effective Planck’s
constant as h = 1/(9 + o) leads to one regular state per unit cell in the case where the
semiclassical eigenfunction hypothesis applies.
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Figure 4.3: Husimi representations (red) of a wave packet initialized on the transporting island
(top) and after one iteration (bottom) together with the Poincaré sections of the classical system.

Although this wave packet can be expressed as a superposition of amphibious eigenstates only, it
follows the semiclassical expectation for short times.

Increased Localization Length

While the chaotic states of the non-transporting system exhibit a relatively small local-
ization length {nt &~ 0.22 (and the regular ones are localized on a single island), the
amphibious states show a greatly increazed value, & &~ 1.01 - 10% (Fig. 4.4), as antici-
pated from previous studies of wave-packet dynamics [56,57,86]. Starting a wave packet
at the center of the transporting island with classical winding number w; = 1, one can
determine the tunneling rate v from the decay of the weight in the transported island
P(t) = exp(—~t) [86]. During the time scale 1/ of this decay the wave packet is trans-
ported over w; /v spatial unit cells. Hence, one estimates a dynamical localization length as
& = w; /. The initial wavepacket can be expressed in the basis of eigenstates. According
to the observation, all the eigenstates have essentially the same exponentially decreasing
shape. Then, the scale of the dynamical localization length is recovered in the localization
length of the eigenstates, as confirmed in Fig. 4.4.

When numerically modeling an infinitely extended system, the system size must be chosen
significantly larger than the localization length in order to avoid a strong influence of the
boundary conditions. On the other hand, it can be shown that v decreases exponentially
with h [86], as visualized in Fig. 4.3.1. This explains the enormously increasing numerical
effort when going to smaller values of h or, more precisely, to larger ratios of island size
over quantum parameter Aigang / h.



68

Disordered Quantum Hamiltonian Ratchets

-2

10" ¢ PEON
10° 3 e AN 3
7 7 N N
10" 7 . ]
7 7 1
10—5 | . . Ve I~ N R i
Q _6 7 N
E 10 E 100 E
10" -
N 107
10~ F
I
10° 5
10
-30 30
10‘10 L L L L L L L L L
-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
X

Figure 4.4: Density distribution of the position representation of the amphibious eigenstate
shown in Fig. 4.2 A averaged over unit cells, p(z) = fgjll/; dz' |9 (z")|?. The localization length
is several orders of magnitude bigger than in the non-transporting case of Fig. 4.2 B (inset). It is
quite well estimated by exp(—|z|/\) (dashed line) with A = v/ determined from the tunneling

rate v out of the transporting regular island.

4.3.2 Local Probability Current

The observation that the amphibious eigenstates ignore the classical phase space within
each unit cell can be explained intuitively: Due to localization, the position representation
of an eigenstate has exponentially small weight in its tails. On the other hand, its time
evolution over one period may not lead to a probability current in these tails. Hence,
the current must vanish also with respect to each unit cell. With broken time-reversal
symmetry, this can only be fulfilled if the state is amphibious in each unit cell. This is
stated analytically in the following.

The one-dimensional continuity equation of quantum mechanics

0 0
5710 @ O + == Jy(x,1) =0, (4.10)
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Figure 4.5: Overlap of the eigenstate at the center of the island with a coherent wave packet
centered on the hyperbolic fixed point in the chaotic sea as a function of Planck’s constant,
indicating the exponential decay of v with 1/h. The model system is given classically by Eq. 2.31.

where .J, is the probability current of ¢. Integrating this equation over one temporal
period leads to

a t+1 ! !
(@, £+ D)2 — [z, D)2 = —%/t at' Jy(z, 1), (4.11)

with a left-hand side that vanishes for eigenstates [¢)) of the Floquet operator. Thus the
temporally averaged current is spatially constant. Moreover, this constant is zero since
for a localized eigenstate, the current vanishes in the tails, lim, . ff“ dt' Jy(z,t') = 0.

Hence,

t+1
/ dt' Jy(z,t') =0 Va. (4.12)
t

In the semiclassical regime this probability current is expected to be close to the classical
current, as visualized by the classical and quantum mechanical time-evolution in Fig. 4.3.
This excludes regular eigenstates that mainly live on the classically invariant islands since
these sets show a considerable non-zero transport. Similarly, chaotic eigenstates can be
excluded, since, according to the classical sum rule, the chaotic sea also shows a non-zero
current in the opposite direction. The amphibious eigenstate presented in Fig. 4.2 A,
however, fulfills the requirement of a vanishing current Eq. (4.12) because the phase space
averaged classical current is zero. Hence one concludes that even in the semiclassical limit
all eigenstates spread simultaneously over regular and chaotic regions of phase space in all
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unit cells.

4.3.3 Perturbation Theory of Mixed Phase Space

It is illuminating to point out where the arguments leading to the semiclassical eigen-
function hypothesis fail for systems with transporting islands. In the classical limit, the
tunneling rate v between the center of a regular island and the chaotic sea vanishes. For
small A but h # 0, this suggests a perturbation theory in v: the Hamiltonian is written
as H = Hy + H,, where H; couples the chaotic and regular eigenstates, ¢("® and ¢(°)
H,. An eigenstate i) of H is given to first order by

v) = Ioy) + 302 B 'g: O) (4.13)
k#j

provided that % < 1, Vj # k. The denominator is estimated as the mean level
J

spacing A of those unperturbed states that are coupled by H;. On the other hand, as
follows from Fermi’s golden rule, the tunneling rate v is proportional to the square of this

quotient times A, i.e.
Hilo)\?
% _ <<¢k|A1|¢J>> . (4.14)

Then, the condition for the applicability of perturbation theory can be stated as v/A < 1.

In the absence of transporting islands, the unperturbed eigenstates ¢ are localized, and
H, may couple only those groups of states which are spatially close. The number of these
states is proportional to the localization length which scales with 1/h, such that A ~ h.
Therefore, with v ~ exp(—C/h), 7/A < 1 and perturbation theory is applicable. In the
presence of transporting islands, however, the unperturbed regular states are extended
and all of them will be coupled to all the chaotic states. A now depends crucially on the
system size: with a chain of L unit cells, the number of chaotic states is approximately
given by L/h, leading to A ~ h/L. Then, perturbation theory breaks down as soon as
L ~ h/~v. In particular, for infinitely extended systems, i.e. taking the limit L — oo first,
the transporting regular and chaotic regions are strongly coupled even in the semiclassical
limit. From the breakdown of perturbation theory alone, however, one cannot conclude
the locally amphibious nature of eigenstates which is found numerically and which can be
deduced from the condition of vanishing current Eq. (4.12).

4.4 Time-Reversal Symmetric Case

For ratchets with time-reversal symmetry, a transporting island will have a symmetry-
related counterpart transporting in the opposite direction, like the standard map in the



4.4 Time-Reversal Symmetric Case 71

regime of accelerator modes (K =~ 6.33, and with z and p exchanged to obtain spatial
transport). In this case, regular eigenstates that are supported simultaneously by both
islands would fulfill the condition of vanishing probability current Eq. (4.12). However, due
to the breakdown of perturbation theory, the appearance of such states is not mandatory.

4.4.1 Eigenstates in the Symmetric Case

Fig. 4.6 shows a typical eigenstate of a time-reversal symmetric quantum ratchet. The
eigenstates are of a mixed type: in some unit unit cells they are concentrated on both
dominant regular islands, in some they are confined to the chaotic sea, and in some unit
cells they are amphibious. That is to say, the eigenfunctions show all the local structures
allowed by the condition of vanishing current.

The model is analogous to the standard map up to the spatial dependence of the potential,
V(%) = 1.22cos(2nz) + 0.1 cos(4wi) + 0.05cos(67), (4.15)

before exchanging = and p. It has the same symmetries and transport properties as the
standard map with accelerator modes. Its islands, however, are significantly larger which
leads to a significantly smaller numerical expense. Due to the close analogy, it is natural
to suggest that the standard map’s eigenstates exhibit the same mixed type.

Localization Length in the Symmetric Case

The difference of the probability distribution of the symmetric eigenstate Fig. 4.6 to the
asymmetric case Fig. 4.4 consists in the local substructure: relating the probability dis-
tribution to the Husimi representation (see Fig. 4.6), one finds sharp peaks for chaotic
sections, plateaus with small slopes for regular sections, and intermediate slopes for the
amphibious sections. In general, such a substructure allows a great range of scale for the
total localization length.

The calculated sample of eigenstates, however, suggests that all the states have the same
length scale. Then, each state visits the different phase-space regions in a fraction of unit
cells corresponding to their weight. That is to say, on a global scale, the state is equally
distributed over the phase-space components, like an amphibious eigenstate is on a local
scale. There is no reason to assume that the total localization length of such a state differs
from that of an amphibious eigenstate in an asymmetric ratchet with similar transport and
tunneling properties.

In order to verify the assumption that time-reversal symmetry is not crucial for the lo-
calization length, one can fall back on the analysis of wave-packet dynamics: as shown in



72

Disordered Quantum Hamiltonian Ratchets

10" |

p(X)

| ‘1 l

10}

-3000 -2000  -1000 0 1000 2000 3000
X

Figure 4.6: Typical eigenstate for the system analogous to the standard map at k& ~ 27 with
a symmetric phase space and islands transporting in opposite directions. The insets show the
Husimi representations (together with the classical Poincaré sections) of the eigenstate at different
locations, demonstrating the mixed type: Whereas in some sections, the state is mainly chaotic,
it is mainly regular or amphibious in others. Each type appears at many locations (short arrows),
leading to different slopes of p(z): In those sections where the state has its weight in the classically
chaotic set, the localization length is seen to be much smaller, namely corresponding to the chaotic
localization length.

Fig. 4.7, the localization length of the symmetric eigenstate can be approximated, like in
the asymmetric case, by the inverse of the tunneling rate of a wavepacket initialized on a
regular island. A model which is similar to that with the potential of Eq. (4.15) is given
by

V(z) = cos(2nz) + 0.15cos(4m(z — 0.75)) + 1/12 cos(67(z — 1/6)), (4.16)

Fig. 4.8 shows that the tunneling rates for the two systems are indeed similar for the same
Ajglana/h, i.e. the states localize on the same length scale for both systems.
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Figure 4.7: p(z) from Fig. 4.6 approximated by exp(—|z|y) (dashed line), where v was deter-
mined from the tunneling rate (cf. Ch. 4.3.1).

4.4.2 Accessing the Critical Parameters with a Graph Model

The ratio Ajgana/h < 2 achieved with the map numerics is far from the semiclassical limit.
In this situation, a toy model which allows to investigate all the features of the eigenstates
is certainly of interest. Moreover, the ability to construct a mimimal model which still
exhibits all the relevant phenomena is a strong support for the theory. Such a model will
be presented in the following.

A graph consists of a set of vertices connected by directed bonds. Essentially, the phase-
space representation of the real quantum system is associated to the bonds b;, whereas the
vertices vy determine the dynamical properties. With the goal to simplify the situation as
much as possible, the chaotic region of one unit cell is modelled by two directed bonds,
and a transporting island by a number of bonds directed parallel to the island’s transport
direction (see Fig. 4.9 (top)). The chaotic bonds are strongly coupled with each other,
but only exponentially weak with the outer regular bonds, in analogy to the exponentially
small tunneling rate from the center of a classical island in a kicked map. The coupling of
the I*® regular bond to the chaotic bonds is given by € with ¢ < 1 (Fig. 4.9 (bottom)).

A state ¢ of the system is a vector with the length given by the total number of bonds;
|#(b,)|* denotes the state’s weight at bond b;. Modelling the time evolution, ¢ is multiplied
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Figure 4.8: Determination of vy from P(t) = exp(—~t) (cf. Ch. 4.5.2) for the two systems
shown classically in Fig. 2.4 (Egs. (4.15) and (4.16)). With the size of one island determined
classically from the last torus, A" & 0.042, AZ7 "™ & 0.039, h is chosen such that Aigiand/h
is approximately the same in both cases.

with the unitary matrix which contains the coupling information of the vertices. The
construction of this matrix consists of three steps: First, one sets up a hermitian matrix
M, corresponding to one node. Combining all the bonds which are incoming from (or
outgoing to, respectively) the same direction yields four sets of bonds at the node. Then,
M can be decomposed into four equally large quadratic sub-matrices,

‘ from left from right
M = toleft A B , (4.17)
toright B A

where the sub-matrix R contains the elements for reflection at the node (from the left to
the left, or from the right to the right), whereas 7" amounts to a transition. The coupling
rates, are given by the squared matrix elements. Therefore, choosing A and B as

1 €2 1 € €
0 |],B=—1| ¢ v2 0 |, (4.18)
0

A= —
V2 e 0 V2

€
AW

o O,

fulfills the conditions on the coupling rates shown in (Fig. 4.9 (bottom)).
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Figure 4.9: (top) Chain of “unit cells” of the graph toy model which corresponds to the standard
map with accelerator modes. The situation where Ajgang/h = 2 is modelled by two regular bonds

in each direction. (bottom) Coupling rates of the bonds at one vertex; for clarity, only seven of
the twelve bonds are shown. The chaotic bonds couple back to the regular ones with the same
rates, €2 and €*, respectively.

In the second step, a unitary matrix u is found, with coupling rates similar to those of M.
Such a matrix u can be obtained from the diagonalization of M as

u= Y ey, (419)
J

where M1; = Ajip; (this procedure is analogous to the representation of a time-evolution
operator in the basis of eigenstates of the corresponding Hamiltonian). Now, due to the
symmetry of the graph, u is symmetric and can again be decomposed into four equally
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Figure 4.10: Weight of an eigenstate of U for a graph with one level of regular bonds. The
black line shows the total weight within one unit cell, blue is the weight on the chaotic and red is

the weight on the regular bonds. As the inset indicates, the regular bonds are coupled strongly
to the chaotic ones, leading to correlations in the weight distribution.

large quadratic blocks as,

‘ from left from right
u = toleft R T . (4.20)
toright T R

This allows to set up the time-evolution operator U for the chain of nodes. Here, the
vertical order of the bond groups must equal the horizontal one. One can choose the
sequence (m —1)7, (m — 1)*, m~, m™, ..., where the number denotes the “unit cell” and
the superscript distinguishes between bonds directed to the left (—) and to the right (+).
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Figure 4.11: Weight distribution as in Fig. 4.10 but for a graph with two regular bonds. The
weight in the additional bonds is shown in green, along with a magnification of a plateau (inset).

For this order, U is a banded matrix given by

0
(m—1)" 0 R T
(m —1)* RO 0 0
m- 0 0 0 R T
m T R O O 0 = U. (4.21)
(m+1)~ 00 0 R
(m+1)*" T R O

With the unitarity of u, u-u' = I, it is straightforward to verify that also U - Ut =1, i.e.
U is again unitary. Finally, the disordering has to be modelled. This is achieved by the
multiplication of U with a diagonal matrix consisting of random phases: while the random
phases neither affect the unitarity of U nor the absolute square of its elements, i.e. the
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coupling rates, the periodicity of U is broken, in analogy to h ¢ Q for a kicked mapping.
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Figure 4.12: Distributions of plateau lengths. The arrows indicate the means m of the distri-
butions, mey, & 0.958, Mmyeg, ~ 2.89, and mey, =~ 10.5. This suggests an exponential scaling of
the length with the hierarchy level.

The possibility to control the parameters Ajgang/h through the number of regular bonds
[ and v = ¢ easily is the key reason for the use of graphs. Moreover, since the chaotic
component of one unit cell is modelled by only two bonds, the width of the band of
nonzero elements in U is considerably smaller than for the time-evolution operator of a
corresponding kicked map.

To show the analogy of this model to a Hamiltonian mapping, the eigenstates of a graph
with one level of regular bonds and € = 0.4 are calculated, see Fig. 4.10. The localization
length is determined from an exponential fit as £ =~ 12.5. While for a mapping, the weight
of the state within a certain phase-space region has to be expressed by a Husimi function,
this weight can trivially be read out from the eigenstate in the graph. One can also model
the dynamical evolution of a wave packet initially localized within a regular island in one
unit cell by choosing the initial state equal to 1 on a certain regular bond and 0 elsewhere.
It can be seen that the dynamical localization length in this graph model again scales with
the localization length of the eigenstates. For two regular bonds, an eigenstate is shown
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in Fig. 4.11. Tt complies to all the suggestions made above. The localization length is
approximately increased by a factor 1/¢, & ~ 33.3 and regular sections associated with the
additional regular bond lead to long “plateaus” of appromitalely constant p(z). In order
to quantify this observation, one can define a plateau as a section of unit cells for which
the weight distribution is dominated by the weight in bonds of the same hierarchy level.
As shown in Fig. 4.12, the mean length of these plateaus indeed scales exponentially with
the hierarchy level. This will be of use for the explanation of the shape of a saturated wave
packet in Ch. 4.5.3.

4.5 Wavepacket Dynamics in Disordered Hamiltonian
Ratchets

From the knowledge about stationary quantum mechanics in Hamiltonian ratchets gained
in the last two sections, it is now possible to infer useful information about the dynamical
evolution of a wave packet, since such a wave packet ¢(z,t) can be written as a superpo-
sition of eigenstates ¢, (z) as

o(x,t) = Z Catba(x) @ 260t (4.22)

The first subsection deals with the scaling of the operation time of a disordered quantum
ratchet with A, which follows immediately from the scaling of the localization length.
Since the calculation of the eigenstates with a large localization length is numerically very
expensive, one has fallen back on other methods in the past [55-57,101-103]. A method
which received a lot of attention is the measurement of the weight at the wave-packet front.
The observation presented in the second subsection, however, strongly suggests that this
quantity does not determine the shape of the localized wave packet. For the graph model
introduced in Ch. 4.4.2, this shape is investigated and explained with the substructure of
the eigenstates in the last subsection.

4.5.1 Limit for Transport in Disordered Ratchets

In the long-time limit any wave packet localizes and its velocity expectation value vanishes.
From an experimental perspective, it is interesting to know the time scale on which this
takes place, i.e., up to which a disordered Hamiltonian ratchet operates. Like in Ch. 3.2.2
for perfect quantum ratchets, one considers a wave packet ¢(x,t) initially localized within
one unit cell. Since the wave packet is given by the superposition of eigenstates Eq. (4.22),
and with all the eigenstates showing the same localization length, the wave packet’s local-
ization length &, has the same scaling. Now, as was shown in Ch. 4.3.1, the localization
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length of the eigenstates in a ballistically transporting system scales exponentially with the
inverse Planck’s constant, & ~ exp(C/h), where the constant C' depends on the system
under consideration, leading to &; ~ exp(C/h). With ballistic transport, the time scale
on which localization takes place is proportional to the localization length, finally yielding
tioe ~ €C/". This is confirmed numerically in the following.
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Figure 4.13: (left) Averaged velocity expectation values of wave packets initialized in the
classically chaotic region at (xg,pg) = (0,0.25 + 0.05) in the quantized system Eq. (2.31) for
h =1/(8 + o) (solid line), and h = 1/(16 + o) (dashed line). Beyond ¢;,., the velocity oscillates
around zero. (right) Time t,,4, at which the averaged velocity expectation value falls short of a
given limit under variation of h. Since the calculation time scales exponentially with 1/h, two
different values for vy, are chosen, namely v, = 0.1 (crosses), and vg, = 0.12 (balls).

When the wave packet starts to localize, the velocity expectation value decreases. Hence,
the maximum ratchet operation time t,,,, can be defined as the time at which the absolute
value of this velocity crosses a given threshold value from above, [(vy(tmax))| = Ve, tnel,
and [(ve(t < tmax))| > |vgnr|. Because of tunneling, the quantum transport cannot exceed
the classical value. Therefore, the threshold velocity must be chosen smaller than the
average velocity of a set of classical trajectories whose initial distribution mimics the Husimi
representation of ¢(z,0) in phase space, vgthr < Ugclass.- For the ratchet whose classical
variant is given by Eq. (2.31), Fig. 4.5.1 shows the exponential scaling of the ratchet

operation time with 1/h. It the semiclassical limit, therefore, the ratchet operation time
diverges.
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4.5.2 Dynamics at the Wave-Packet Front

It has been a common method to derive information on the time evolution of a wave packet
from the survival probability of weight in the front unit cell P(t) = |p(w;t,t)|?, with an
initial wavepacket centered in unit cell ng = 0 [55,58]. We have calculated this quantity
for the ratchet given by Eq. (2.31), both for an irrational Planck’s constant h = 1/(n + o)
and for the rational h = 1/n. As indicated by Fig. 4.14, P(t) does not depend on the
rationality of h. This has been observed for various systems and values of the effective
Planck’s constant. This can be explained intuitively as follows: since there is essentially
no weight beyond the unit cell n = w;t, |¢(|n| > |w;t|,#)|* ~ 0, no interference occurs
such that the weight inside this unit cell is simply given by P(¢) = e " in both cases
(Fig. 4.14(b)). In order for this argument to hold, of course, the classical island under
consideration must be the invariant set with the largest average velocity, since otherwise
the weight from a “faster set” would lead to interferences.

For the remaining part of the wave packet, however, the shape depends crucially on the
rationality of h: for perfect quantum ratchets, the major part of the weight lags slightly
behind the unit cell n = w; t, leading to a non-vanishing asymptotic transport, as explained
in Ch. 3.2.3. In a disordered ratchet, however, the weight which has tunneled out starts
to diffuse, leading to an isolated peak at the last unit cell [86], and, for larger times, to
localization. Concluding, the observation that P(t) does not depend on the rationality
of h is a strong indication that this quantity is not useful in the investigation of the full
wave-packet dynamics. In particular, the assumption that P(t) determines the asymptotic
shape of the wave packet, P(t) ~ lim;_,|¢(z/w;)|> [55], seems not to be valid since the
asymptotic wave-packet shape depends crucially on this rationality.

4.5.3 Asymptotic Wave-Packet Shape

We now turn to the long-time limit of the probability distribution of a wave packet ini-
tialized within the classically chaotic region of one unit cell. Classically, Lévy walks (cf.
Ch. 2.4) lead to anomalous diffusion of a bundle of chaotic trajectories, i.e. the diffu-
sion process is enhanced due to the algebraically long ballistic walks in the hierarchical
phase-space regions. For the standard map in a regime without accelerator modes, these
regions were resolved in quantum calculations for one unit cell by Ketzmerick et al. [47].
It is required that the effective Planck’s constant is smaller than the turnstile of a classical
Cantorus. For systems with transporting islands, such a small A would lead to a huge
localization length which prohibits the calculation of eigenstates. Therefore, the quantum
analogue to Lévy walks, which has been denoted as quantum anomalous diffusion [101],
is not accessible by stationary quantum mechanics, and one has to fall back on the time
evolution of wave packets. It has been shown by Stefancich et al. [55], that the weight
in the front unit cell P(¢) of an initially chaotic wave packet exhibits a power-law decay
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Figure 4.14: (a) Analogous wavepackets initially prepared in the regular island of the unit cell
ng = 0 at time ¢ = 1000 for h = 1/16 (dotted line) and h = 1/(16+ o) (solid line) in the quantum
version of the system Eq. 2.31 with smoothed potential. The classical probability would be
restricted to the unit cell n = 1000, whereas the quantum wavepacket in the system with rational
h has spread and lags slightly behind due to tunneling (cf. Ch. 3.2.3). The wavepacket in the
disordered system shows an isolated peak at the unit cell n = ¢ with a value identical to that in
the perfect ratchet (insets). (b) Due to tunneling, the quantum probability P(¢) in the unit cell
n = t decays exponentially as a function of time, with identical slopes for both the wavepacket
in the disordered and in the perfect ratchet.

followed by an exponential decay for large times. It has been assumed that this is an indi-
cation of the quantum signatures of Lévy walks However, as will be shown in the following
for the asymptotic weight distribution of such a wave packet, the power-law decay can be
explained with the local structure of the eigenstates alone.

The toy model graph introduced in Ch. 4.4.2 can once again be employed to decrease the
numerical expense. Fig. 4.5.3 shows localized wave packets with a saturated variance for a
maximum of three hierarchy levels. According to the observation, the shape of |@(x, 00)/?
can be separated into three regions: A plateau of approximately constant probability the
length of which increases exponentially with 1/h, followed by a section with power-law
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Figure 4.15: Localized wave packets which were initialized on a chaotic bond for graphs of
different size. The numbers indicate the number of hierarchy levels of the corresponding model.
For comparison, the curve proportional to 2~! is shown. As indicated for the weight distribution
in the graph with three regular bond levels, the shape can be divided into three sections.

decay which also extends exponentially, and finally, for large x, exponential decay. Whereas
the last two regions would be expected from the semiclassical eigenfunction hypothesis, the
plateau represents an evidence of its violation, as explained in the following.

According to this hypothesis, one has chaotic eigenstates and regular ones denoted as 15,
confined to the classical tori; j labels the hierarchy level of the regular state with ; .
being the state in the center of the island (see Fig. 4.16). The corresponding localization
lengths &; would again be given by the inverse of the tunneling rate to the chaotic region
7v; which in turn decreases exponentially with j, & = 1/7; ~ e ® with some constant
a [86]. Then, the probability distribution of such regular eigenstates would be given by
|1; ()2 ~ el2l. Now, for large z, the asymptotic probability distribution of an initially
chaotic wave packet ¢(z,t) would be dominated by the shape of the regular eigenstates
since the chaotic ones would localize on a much smaller scale, proportional to 1/h. The
following analysis refers to large x, such that chaotic states can be neglected (symbolized
by the approximation sign). It is natural to assume that the overlap of the initially chaotic
wave packet ¢ with state 1; is given by |¢;|* = ;. In the long-time limit, this yields

hm ¢(z,1)] Z |C]| (@) = Z’Yjeimx‘a (4.23)
J



Disordered Quantum Hamiltonian Ratchets

classical i=1 =2
1/2 _
o
0 1
X
=3 j=4 chaotic
k -
- i,

Figure 4.16: FKigenstates condensating on the classical tori in phase space, according to the
semiclassical eigenfunction hypothesis. The state centered on the elliptic fixed point is given the
maximum index. For comparison, the first subplot shows the Poincaré section of the correspond-
ing classical system Eq. (2.31).

where the approximation sign accounts for time-dependent fluctuations. In the semiclassi-
cal limit, the sum over j can be approximated by an integral, fj]:fx dj y(5) e *) where
J € [1, jmax). With v; ~ e, one obtains by the substitution dj — d~;,

jmax .
lim |¢(z, )" ~ / djy(j) e "
t— 00 j=1
1 = (Jmax)| 7| —y(1)|x] 1 —l|z[¥(jmax)
~ m (e — e ) =~ |x|€ s (424)

where the last approximation again improves for large . The resulting distribution, a
power law for comparatively small  and an exponential decay thereafter, is shown in
Fig. 4.17.

This shape is closely related to the observation for the asymptotic wave packets in the
graph model Fig. 4.5.3, even though the semiclassical eigenfunction hypothesis does not
apply. One can explain this with the local structure of the eigenfunctions of a symmetric
quantum ratchet: the initial wave packet centered in the chaotic region of a certain unit
cell excites those eigenstates exponentially weak which inside this unit cell exhibit a Husimi
representation which resembles that of an imagined regular state ;. On the other hand,
the plateau of the asymptotic probability distribution can only be explained in terms of the
violation of the semiclassical eigenfunction hypothesis. As has been discussed in Ch. 4.4, the
eigenstates exhibit plateaus of approximately constant |1)(z)|?>. These plateaus are confined
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Figure 4.17: The superposition of exponentials (dashed lines) with exponentially small coeffi-
cients yields a power law decay with exponent -1 for a finite section according to Eq. 4.23. In
the limit x — oo, the superposition approximates the curve with smallest negative exponent.

by peaks where the weight is concentrated in the chaotic region. A large excitations with
one of these two peaks leads to a smearing of the asymptotic wave packet on the scale of
the plateau length. This length scales exponentially with 1/h (see. Fig. 4.12), which is
transferred to the plateau in the spatial distribution of a saturated wave packet.

These statements could be confirmed by the calculation of localized wave packets deeper
within the semiclassical limit. Since the observed eigenstates allow for even more involved
phenomena of the dynamics, this might be a rewarding topic of further investigations. It
can be concluded, however, that the observation of a power law in P(¢) is not an indication
of the quantum signatures of Lévy walks but arises from the semiclassical substructure of
the symmetric eigenstates alone.

4.6 Outlook

The failure of the semiclassical eigenfunction hypothesis and the appearance of amphibious
eigenstates raise further questions: transporting island chains of arbitrary length exist even
in systems with a finite phase space, such as in the neighborhood of the boundary circle
enclosing a regular island. Will there be amphibious eigenstates? The statistical properties
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of chaotic eigenstates [81] can be seen in conductance measurements on quantum dots [104].
What are the statistical properties of amphibious eigenstates? Are they similar to those
of chaotic eigenstates or are there specific correlations caused by the regular islands?

The recently developed techniques to observe atom dynamics in optical lattices [105,106]
are perfectly suited for the experimental study of amphibious eigenstates. In such systems
wave packets can be prepared on selected points in phase space, for example on the center of
an island, and their long-time dynamics can be studied. A measurement of the phase-space
distribution would reveal that the asymptotic wave packet is uniformly distributed over
phase space, independent of the initial preparation. This is in sharp contrast to a system
with non-transporting islands and would be a clear experimental signature of amphibious
eigenstates.



Chapter 5

Conclusion

This thesis deals with directed transport and its implications in one-dimensional Hamil-
tonian systems that are periodic in space and time. It is shown that the coexistence of
regular and chaotic motion as well as the breaking of time-reversal symmetry are required
to achieve non-trivial directed chaotic transport both classically and quantum mechan-
ically. Two basic results are obtained: A classical sum rule and its quantum analogon
describe the ratchet mechanism in the absence of dissipation. The discovery of a new
class of eigenstates modifies one of the fundamental assumptions of the quantum theory of
nonlinear Hamiltonian systems. These findings lead to a number of corollary results.

The second chapter is concerned with the classical theory of Hamiltonian ratchets. It starts
with a brief introduction to Hamiltonian mechanics, focussed on systems with a mixed
phase space. The classical sum rule for ballistic transport is stated, which describes the
relevant mechanism for the first time: directed transport, defined for the invariant man-
ifolds as phase space volume times average velocity, is additive. Breaking time-reversal
symmetry implies the desymmetrization of phase space. Hence, as long as the dynam-
ics leave the different phase-space regions invariant, this causes the desymmetrization of
transport in the dominant chaotic manifold. The sum rule is formulated both for the
more general situation of a non-cyclic momentum variable, and for the simplified case.
One arrives at the following implications: first, a desymmetrized mixed phase space is
required and sufficient for chaotic directed transport. Second, the sum rule assists in the
construction of optimized Hamiltonian ratchets with large transporting islands. This is
shown explicitly for systems based on the standard map. Third, the dynamics within the
manifolds only affect the shape of the velocity distribution, not the mean transport. The
invariance of this mean under variation of the fraction of phase space supporting Lévy
flights is shown also numerically.

In the following chapter, quantized Hamiltonian mappings are studied for the case where
the quantization parameter fits exactly into the spatial period. In this situation, the
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Bloch theorem applies, leading to Bloch bands of eigenvalues. In terms of the winding
numbers of these bands, which equal the velocity expectation values of the corresponding
eigenfunctions, the quantum sum rule is formulated in analogy to the classical sum rule for
compact phase space: the sum over all band slopes vanishes identically, as is the case for
the non-trivial transport of the union of all the classical phase space regions. It is shown
that quantum transport of these perfect quantum ratchets persists even in the long time
limit, which is counterintuitive. The new aspect of quantum mechanics, i.e. tunneling
across classical barriers, is shown to correspond to the avoided crossings of the bands.
In terms of these narrowly avoided crossings, the coexistence of quantum tunneling with
asymptotic transport is explained. In addition to the traditional WKB approximation, the
analysis yields a new understanding of the exponential decay of the probability within the
transporting island. For short times, the two-point correlation of the spectrum is shown to
contain all the dynamical information of the system, in agreement with semiclassics. The
form factor, a double Fourier transform of these correlations, is related analytically to the
classical probability distributions. The investigation of the Chern numbers of the bands,
however, leads to the insight that these numbers are not useful in the determination of
directed transport.

The last chapter deals with the important case in which the ratio between the quantization
parameter and the spatial period is irrational. In this case, the Bloch theory is not appli-
cable, and quantum tunneling will vitiate transport for long times. The stationary states
of Hamiltonian ratchets are shown to ignore the classical phase space structure completely,
by comparing their Husimi representation with the classical Poincaré section. It is argued
that this property persists even in the semiclassical limit. Such a rigorous violation of the
semiclassical eigenfunction hypothesis has not been stated previously. Although in systems
with broken time-reversal symmetry the steady states contradict the condensation hypoth-
esis even locally, this is not the case for the standard map. The numeric computation for
the latter case is carried out for a mapping and a quantum graph, respectively, both of
which being analogous to the standard map. Since the appropriate construction of such a
graph assumes a correct paradigm of the physical situation, the agreement of the results
obtained from it with those of the mapping support the explanation given for amphibious
eigenstates. In particular, this explanation is based on perturbation theory for the coupling
constant of chaotic and regular regions. The analysis shows that the semiclassical eigen-
function hypothesis applies as long as the relevant system size, is smaller than a critical
value, which is determined by the localization length. These findings can be transferred
to the study of the time evolution of an initially localized wave packet. The quantity
previously considered to be a good approximation to the asymptotic wave packet shape,
the survival probability for the weight inside the transporting island P(t), is found not to
depend on the rationality of the quantization parameter. Since the dynamical properties,
however, depend crucially on this rationality, the investigation of P(t) is not meaningful.
Instead, the time evolution must either be studied in terms of eigenstates or carried out for
the whole wave packet. It is shown that both approaches lead to an asymptotic weight dis-
tribution with a shape of the superposition of a power law decay and an exponential decay.
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It has been suggested previously that such a power law decay is the quantum signature
of Lévy flights. This is excluded for this study, however, since the classical phase-space
regions responsible for the flights are not resolved by the effective Planck’s constant.
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Conclusion




Appendix A

Generalization of the
Hellman-Feynman Theorem

A.1 Hellman-Feynman Theorem for Time-Periodic Sys-
tems

It will be shown that the velocity expectation value of an eigenstate v, with quasienergy
€ (k) is given by
de, (k
Ua,k: = ( ) .
dk

(A.1)

In the first step, the band slope on the right-hand side is related to the expectation value of
the derivative of the Bloch-phase dependent Hamiltonian in the eigenbasis of this Hamil-
tonian,

Vdeo(k)  dea(k) d [P [ .

- - - S ar | deur, H(k)ua

ho dk dk dk/o /0 ¥ U H(F) o
b dH(k)

L .
H
= dt/ dzul, , —— Uak
/0 0 ko dk
du
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This is the generalization of the Hellman-Feynman theorem [107] to time-periodic systems
as stated by Sambe [79]. For a Hamiltonian of the standard form Eq. (2.6),

~

dH(k)  dT(p+ hk)
dk dk
where the prime denotes taking the derivative with respect to the argument, and the factor
h stems from the inner derivative. Hence,

dey (k)

—ap = (a7 + AR uan))

= hT'(p+ hk),

A.2 The Unitary Transformation of the Kinetic En-
ergy

[t remains to be shown that the eigenvalues of T'(p + hk) in the basis of k-independent
states equal those of T'(p) in the basis of k-dependent ones, namely that

1 1 1 1
/ dt / dzul, T'(p + hk) uey = / dt / dz 0%, T' (D) thauk -
0 0 0 0

This is done by expanding T" as a power series of the argument on both sides and comparing
the contributions to the sum. The factors in the Taylor expansion which do not depend
on the argument are equal on both sides and can be neglected. Then, the m' summands
read

! ! fi d m ! ! id\™
dt dz u? - hk o = dt dz * - o
[t v (G me) e = [ [Larvin (355) s o
1 1 i d m 1 1 ) hd m )
dt d * o hk o — dt d * —2mikx [ 70 2mikx N
/0 /0 T Ug <idx + > Uq /0 /0 T Uy e <de> e Uk 5

where /i = h/2m. This is fulfilled if

hd\™ o omike (1 d "
v ik — o2mikz [0 2 ) )
<i dx) e Uk = € R + hk) Uy (A.2)

On the left-hand side, the m'™ derivative of a product of functions is calculated according
to the Leibniz product rule as

h’ d " 2mikx _ & m h’ d md 2mikx h d 7
(idx) O Uak Z(;) [(uh:) ¢ ide) o

J=0

- 2” ] o .

j=0
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The binomial operator on the right-hand side of Eq. (A.2) can be expanded to give
hod s (m (hd\’
S hk) = hiym (2
(Gar o) =2 (5) oo (G

which completes the proof. Together, Apps. A.1 and A.2 show that

(o i T (D) |[ar)) = deq(k)/dk .




94

Generalization of the Hellman-Feynman Theorem




Appendix B

Asymptotic Wavepacket Transport

In this appendix, the average position

Tor (1) :/0 d¢ Z “(E+n,t)n (€ +n,t)

n=—oo
of the wavepacket ¢(z,t) is calculated in the long-time limit ¢ > 1. First, the wavepacket
is written in the basis of eigenstates Yok (2,1) = Yo i (& +n,t) = Yai(E, 1) ™ (k”*“”“t),

1 .
oz, t) = ) /0 Ak Co b () 70 (b= o t) (B.1)

where

+00
Can = / Az (2) 6(z, 0)

oo

Recognizing that the integrand in Eq. (B.1) is periodic in £,

0 = /dkddk (Cayk%,k(ﬁ)e”i(kn_ea’kt))

1 1
— /0 dk e27ri(kn7€a,kt) % (Ca,lcd}a,k(g)) + /0 dk (27_‘_2-,”) e27ri(knfea,kt) Ca,k ¢a,k(€)

dea mwi(kn —¢€
- /odk< dkkt> T =) ¢ o ul€).

for all a. Therefore,

1
néfwt) = 37 / ke n =) e s )

_ z/ Ak <d€akt 27”kncak7/)ak(f t) % <Ca,k7/)a,k(f) e?wi(lm—ea,kt)>>‘



Asymptotic Wavepacket Transport

In the long-time limit, the first summand in the integrand in the last line becomes much
larger than the second one, which will be neglected henceforth. Then, writing also the
complex conjugate ¢*(x,t) as a superposition of eigenstates, one has

xtr(t) = / ng/ dk/ dk/deak */k/w'k'(g t)cakwakft Z e27rzk k'n

a,a! n=—oo

The sum over n yields the periodic delta function,

+o00o

Z o2 (k=K _ 5((k — k") modl1),

n=—0oo

but
§((k — k')modl) = 6(k — k'),

since k € [0,1). This leads to

€ak
i) =t [ e /dk bt (60 ) o Vs (6.1).
whereas the orthonormalization of the eigenstates implies that

da
Ty (t —tZ/ dk |carl? ‘ k.

Finally, with Eq. (3.13),

1
T (t) =t Z/ Ak |can|? Vo - (B.2)
o 0



Appendix C

Generalized Form Factor for Periodic
Maps in the Semiclassical Limit

C.1 Generalized Form Factor for a Regular Island

Assuming that the subspectra which correspond to the classical finite invariant phase-
space components are uncorrelated, one can decompose the form factor into a sum over
form factors for each component. The generalized (i.e. unit-cell specific) form factor which

corresponds to the finite invariant set m is given by
K™ () = h{af™ (1)), (C.1)

n

with
N, 1
a™(t) = / dk e2mitkn=coit) (C.2)
a=1 70

where the sum includes all the reconnected bands which pertain to the relevant subspec-
trum in the diabatic approximation (see Ch. 3.2). In this approximation, which improves
in the semiclassical limit, the regular bands corresponding to an island ¢ are straight lines

ca(k) = wik + cq,

where wj is the classical velocity of the island and the ¢, = €,(0) are Poissonian distributed.
Exploiting the straight-line type of the regular bands, one has

N; 1
e = 3 / dk exp [2mi(k(n — wi t) + cat)]
a=1 0

N;

2micat
- 5n,wit E € .

a=1
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Hence,

N; N;
KD (1) = D {3 3 ePrioeuty.

a=1 o'=1
The expression in the brackets is the usual form factor for a Poissonian ensemble which
is simply given by the size of the spectrum NN; [81] Ch. 4. In the semiclassical limit, the
fraction of bands which correspond to the island equals the fraction of the island’s volume
in phase space, limy,_,o(N;/N = N;h) = f;. Then,

KT(Lreg) (t) = fz 6n,wit ,

which is the classical probability P\"® (¢) of being in unit cell n at time ¢ with an initial
distribution confined to the regular island of unit cell ng, at time ¢, = 0.

C.2 Form Factor for the Chaotic Component

While the special form of regular bands allows to obtain the classical limit easily by starting
from Eq. (C.2), one has to evaluate the trace of the time evolution operator in the chaotic
case. Assuming that the chaotic subset of the spectrum behaves like the spectrum of a fully
chaotic system, one can fall back on the semiclassical analysis of maps by Tabor [108]. In
the first step, we derive an expression for the classical distribution. Then, the form factor
for the chaotic component is calculated in the semiclassical limit. Finally, the close relation
to the classical distribution is shown.

Consider a classical map generated by the action for one time step S(z1, ), such that
85(1‘1,1‘0) . 8S(x1,x0)
8:1:0 = &rl

For ¢ time steps, the propagator is simply the sum over the individual steps,

Po =

t
S(xt, xo,t) = ZS(xi,xi,l).
i=1

For such a map, the classical density of a bundle of trajectories, initialized in a small
phase-space volume around zg, at time ¢ in a small volume around x; is given by
 0%S(wy, w0, 1)
0x; 0xg
(see [64]). Once again decomposing the spatial coordinate (z; = & +mny, xo = & +no = &o),

the classical probability to be in unit cell n at time ¢, upon starting out with the initial
distribution described in App. C.1, is then given by

PTECh) (t) ~ / d&; d&oC' (& + ne, o, ) -
ch

C(xy, g, t) = ‘

b
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Since the dynamics within (ch) is chaotic, the transition probability is effectively indepen-
dent of &, which can be used to replace & with &;:

PO ~ [ aaC(e+nugn = [ accernen.
ch ch
For an initial distribution which is given by the characteristic function of the unit cell

n = 0, the weight in the chaotic sea is given by fu,. This determines the normalization of
the classical distribution as 3> P\™ (1) = fa.

Now, the calculation of the form factor starts with the evaluation of

1 1
aglch) (t) _ / dk e+27rikn tr(ch)Ullct _ / dk e+27rikn / df <§|U£|§>
0 0 ch
The Bloch-phase dependent Floquet operator can be written in diagonal form as

= Z |wa,k>e_2m6a(k)t<’¢}a,k| )

leading to
|Uk &) = Z Vak( 72”“‘1(“%2@ (€).

Upon exchanging the order of mtegratlon,

1 . .
aM () = / € / A €27 g, 4 (€)e 2o Bl (€)
1
= [h df Xa: /0 dk wa,k (f + n)e*27rzea(k)t1/);k(§)
1 .
— /Chdg <§+n|za: /0 dk [ta,e)e ™ (g 1 |)

= [ dste+nltte). (€3)

In the semiclassical limit one obtains as an approximation to the quantum propagator
(x|U" o) of a fully chaotic system in position representation the Van Vleck propagator

a0 ~

where the sum includes all the classically allowed orbits 3 from zy to z; and v is the Morse
index of that orbit [108]. Using this expression in Eq. (C.3) yields

df Z \/227rh

02SP (x4, o, 1)
0x:0x

xp [i (87 (x4, 3, t) /B — 7 /2)] | (C.4)

9255(& +n, &, 1)
d(€ +n)og

xp [i (SP(€+n, &) /h—1°1/2)] .
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Upon insertion into Eq. (C.1), one obtains a double sum, over 3 and . The diagonal
approximation (8 = '), the validity of which is restricted to times smaller than the
Heisenberg time of the chaotic component, t < 5 = Ng,, yields

KMt <) = h{a™ ()]
g(t)h/ dEC(€ +m, 6,1) (C.5)
ch

Q

where ¢(t) is a time-dependent normalization constant which arises from the time depen-
dence of the number of periodic orbits 8. It can be determined from the study of orbit
repetitions and the sum rule of Hannay and Ozorio de Almeida [81] Ch. 8: for the usual
form factor, and with the scaled time 7 = ¢/t$", one has

chy hNT : CUE
K(t < ) = { hN2r —71log(l+271) : COE

(The spectrum of maps with broken time-reversal symmetry corresponds to a unitary
ensemble on the unit circle in the complex plane (CUE), whereas that for time-symmetric
maps is given by an orthogonal ensemble (COE).) Since the shift from the extended system
to the restricted phase space, i.e. from the usual to the generalized form factor, may not
affect the normalization, one has also

ZK(Ch)(t <) = hNuT = fon T . CUE
n " h Nep2r —71log (14 27) = fou 27 —7log(1+27) : COE ~’

which determines the normalization constant in Eq. (C.5). Comparing with the classical
probability finally yields

7P (1) . CUE

Kot <t = .
anlt < tir) {QT—Tlog(l—l—QT)P,gh)(t) . COE

For a typical ratchet with broken time-reversal symmetry, one has the (CUE) case.
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