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Abstract

Membrane fusion is involved in a multitude of biological processes like endo- and
exocytosis, viral infection or synaptic release. The detailed mechanism, however,
is not well understood because the time and length scales — microseconds and tens
of nanometers, respectively — make a direct experimental observattiauidi The

study of this collective phenomena, involving many lipid molecules, is at&culit

in simulations with atomistic resolution. While the details of the fusion pathways
are still under debate, most fusion scenarios start with the formation of a stalk,
which is a hour-glass shaped connection between the two apposing membranes that
are going to fuse. Understanding the properties of this initial fusion intermediate
is a key to controlling fusion of bilayer membranes.

We use a coarse-grained model for bilayer membranes. The lipid molecules are
described by a simple bead-spring model and the solvent degrees of freedom are in-
tegrated out. Theffective non-bonded interactions between the beads of the lipid
molecules take the form of a virial expansion. Within the mean-field approxima-
tion, the codicients of the expansion are related to the density and compressibility
of the hydrophobic interior of the bilayer membrane and the repulsion between the
hydrophilic and hydrophobic units. In order to employ such an excess free energy
density functional for the non-bonded interactions in a particle-based simulation,
the local densities are calculated from the explicit particle coordinates via a collo-
cation lattice. This soft, solvent-free, coarse-grained model for bilayer membranes
allows for an dicient simulation of membrane properties.

This coarse-grained model has been employed to study the excess free energy
of stalks that form between apposing membranes as a function of the molecular
asymmetry of the lipid molecules and the membrane tension. To this end, we
have devised a general strategy for calculating free energies in self-assembling
systems. The method relies on constructing a reversible thermodynamic path that
connects the system of two apposed bilayers and the stalk configuration. This
path is constructed in an extended state space using an inhomogeneous, external
field that is designed to direct the assembly of the system into the two apposed
membranes or the stalk structure in the absence of non-bonded interactions. Using
expanded ensemble simulations it is demonstrated that the path is reversible and
that the Helmholtz free energy can be obtained with high accuracy. Combining
this result with grandcanonical simulations, we have determined the excess free
energy of a stalk as a function of the membrane tension.



In order to compute the dependence of the excess free energy of a stalk on
the molecular architecture, we have used a semi-grandcanonical ensemble, where
Monte Carlo moves mmutatellipids of one architecture into molecules with another
architecture and vice versa. In this ensemble, the composition of the mixed bilayer
membranes is controlled by the chemical potentifiedénce between the species
and we can compute the free energy change upon exchanging lipids fiettedt
architecture with relative ease.

With these computational techniques we systematically investigate the stability
of the stalk structure. The simulations show that the excess free energy of stalks
in on the order of 1&gT, wherekgT denotes the thermal energy unit. Stalks are
comprised of a few tens of lipid molecules and the excess free energy increases
with membrane tension. The stability of a stalk strongly depends on the molecular
architecture. Amphiphiles with a large head groups give rise to highly metastable
stalks, whereas very asymmetric amphiphiles can even reduce the excess free en-
ergy of the stalk to negative values, which correspond to a thermodynamically
stable structure.



Zusammenfassung

Die Fusion von Membranen ist Bestandteil einer Vielzahl von biologischen Prozessen,
wie z.B. der Endo- und Exozytose, Virusinfektion oder synaptischen Ausschit-
tung. Der detaillierte Mechanismus ist jedoch nicht vollstandig verstanden, weil
die mesoskopischen Zeit- und Langenskalen von Mikrosekunden und einigen Nanome-
tern eine direkte experimentelle Beobachtung erschweren. Die Untersuchung dieser
kollektiven Prozesse, an denen viele Lipidmolekiile teilnehmen, ist auch fur atomist-
ische Simulationen schwierig. Wéahrend die Details des Fusionspfades immer noch
strittig sind, beginnen die meisten Fusionsszenarien mit der Bildung einer san-
duhrférmigen Verbindung (,,Stalk”) zwischen den beiden gegeniuberliegenden Mem-
branen, welche fusionieren. Das Verstandnis der Eigenschaften dieser ersten Uber-
gangsstruktur ist ein Schlissel zur Kontrolle der Fusion von Membranen.

Wir verwenden ein vergrobertes Modell fir Doppelschichtmembranen. Die
Lipidmolekile werden durch ein einfaches Kugel-Feder-Modell beschrieben und
die Freiheitsgrade des Ldsungsmittels sind herausintegriert. fi2ietigen, nicht-
gebundenen Wechselwirkungen zwischen den Segmenten der Lipidmolekuile haben
die Form einer Virialentwicklung. Im Rahmen der Molekularfeldndherung sind die
Entwicklungskoéizienten mit der Dichte und Kompressibilitat des hydrophoben
Membraninnerens und der Abstossung zwischen hydrophilien und hydrophoben
Segmenten verknipft. Um ein solches Dichtefunktional der ungebundenen Wech-
selwirkungen in Teilchensimulationen zu verwenden, werden die lokalen Dichten
aus den expliziten Teilchenkoordinaten auf ein Gitter abgebildet. Dieses [6sungsmit-
telfreie vergroberte Modell fir Membranen mit weichen Wechselwirkungen er-
laubt die dfiziente Simulation von Membraneigenschaften.

Dieses vergroberte Modell wurde verwendet, um die freie Energie eines , Stalks”
zwischen zwei gegeniberliegenden Membranen als Funktion der molekularen Asym-
metrie der Lipide und der Membranspannung zu bestimmen. Zu diesem Zweck
haben wir ein allgemeines Verfahren zur Berechnung von freien Energien in selbst-
ordnenden Systemen entwickelt. Die Methode beruht auf einem thermodynamis-
chen Pfad, welcher das System von zwei unverbundenen Membranen mit der ,Stalk”—
Struktur reversibel verbindet. Dieser Pfad verlauft in einem erweiterten Zustand-
sraum mit einem inhomogenen externen Feld. Dieses ist entworfen, um das Sys-
tem ohne ungebundene Wechselwirkungen zur Bildung der zwei gegenuberliegen-
den Membranen bzw. der ,Stalk"-Struktur zu veranlassen. Mittels ,expanded-
ensemble”-Simulationen wird gezeigt, dass der Pfad tatséachlich reversibel ist und
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die Helmholtz’sche freie Energie wird mit grof3er Genauigkeit bestimmt. Durch
zusatzliche grolRkanonische Simulationen haben wir die freie Energie des ,Stalks”
als Funktion der Membranspannung gemessen.

Um die Abhangigkeit der freien Energie von der molekularen Architektur zu
berechnen, verwenden wir ein semi-groRkanonisches Ensemble, in dem Monte-
Carlo-Schritte Lipide von einer Sorte in eine andere Lipidsorte mit verschiedener
Architektur ,mutieren” und umgekehrt. In diesem Ensemble wird die Zusam-
mensetzung der Membran durch did¢iBienz der chemischen Potentiale der Spezies
bestimmt und die Anderung der freien Energie bei dem Austausch einer Lipidsorte
durch die andere kann leicht ermittelt werden.

Mit diesen Rechentechniken haben wir die Stabilitat von ,Stalks” systema-
tisch untersucht. Die Simulationen zeigen, dass die freie Energie eines ,Stalks” in
der GroRRenordnung von etwa K@T liegt, wobeikgT die thermische Energieein-
heit ist. ,Stalks” bestehen aus 10-100 Lipidmolekulen und die freie Energie eines
LStalks” nimmt mit der Membranspannung zu. Die Stabilitdt hangt sehr stark von
der Molekdlarchitektur ab, Amphiphile mit grossen Kopfgruppen fuhren zu hochst
metastabilen ,Stalks”, wahrend sehr asymmetrische Lipide die freie Energie von
~Stalks” sogar zu negativen Werten verschieben, welche thermodynamisch stabilen
Strukturen entsprechen.
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Chapter 1

Introduction

We study transition states of bilayer membrane fusion by Monte Carlo simulation
using a solvent-free model [1]. Figufel presents the chemical structure of a
sphingosine as a particular example of lipid molecules. A lipid molecule, also
called a lipid, is an amphiphilic molecule composed of a hydrophilic block, called

a head, and a hydrophobic block, a tail. In an aqueous solution, the tails of many
amphiphilic molecules gather into one planar structure, i.e. a membrane, to reduce
the interface between water and the tails. The heads are excluded from the inside
of the membrane, i.e. repelled from the dense tails, and collected on the surfaces
of the membrane. This structure is called a bilayer membrane. Cell membranes, an
example of biological membranes, belong to this class of morphology.

OH

HO/Y\/\/\/\/\/\/\/\

NH,

Hydrophilic Hydrophobic

Figure 1.1: Chemical structure of sphingosine, a lipid molecule, with molecular formula
Ci1gH37NO,. A lipid is divided in hydrophilic block, called heads, and hydrophobic block,
denoted as tail.

Interestingly, bilayer structures are also observed in another class of assem-
bling systems: the solutions of amphiphilic block copolymer molecules [2-5].
The similarities of these systems to lipids does not remain only on the level of
comparable self organization patterns. They exhibit also similar dynamical phe-
nomena such as fusion and fission of the bilayer membranes [6]. An example of
these phenomena observed in the case of polymeric vesicles (i.e. spherical bilayer
membranes) is shown in Fi@.2 This universal behavior, demonstrated by am-
phiphilic systems with very dlierent chemical structure, should be attributed to a
generic feature characterizing these systems: the connectivity of hydrophylic and
hydrophobic parts. This observed universality has a very important consequence:
it suggests that a qualitative understanding of the behavior of the amphiphilic sys-

1



2 CHAPTER 1. INTRODUCTION

tems on mesoscale can be obtained within the framework of simple minimal mod-
els, incoorporating only the relevant interactions that are necessary to reproduce
the phenomena of interest [7]. By this way, incoorporating atomistic details can
be avoided, and the collective phenomena (i.e. processes involving a large num-
ber of amphiphilic molecules) can be addressed within computationGitjeat
coarse-grained simulation techniques.

gi8lelelol0
UHH

o

Figure 1.2: Vesicle fusion, shown in the first row, and vesicle fission, in the bottom row
(from Ref. [6]); an analogy of similar processes observed in biological lipid membranes.

The extent of the decimation of the degrees of freedom in coarse-grained mod-
els is closely related to the phenomena one would like to address. In this scope, a
frequent approach when studying structure formation and evolution in amphiphilic
membranes, is to describe these systems within implicit solvent models. In this
description the solvent molecules are “integrated out” and the solvent presence is
taken défectively into account by proper selection of the interaction potentials be-
tween the beads of the coarse-grained amphiphiles. An early example of such an
approach is presented in the work of Dfieuet al [8]. These authors studied the
assembly of amphiphilic vesicles by representing the amphiphiles with spheres in-
teracting with a combination of hard core repulsions, orientation-dependent poten-
tials, and multibody interactions. The multibody character of the interactions had to
be introduced to mimic the “hydrophobiffect” so that a stable, fluid “membrane”
in the form of a single monolayer of spheres formed at high temperatures. A more
realistic solvent-free minimal model of amphiphilic bilayers was introduced by
Noguchi and Takasu [9],followed by Farago [10] and Cooke and Deserno [11, 12].
One of the main drawbacks of these models is the rather “ad-hoc” choice of the
interaction potential, which cannot be connected in a straightforward way to the
thermodynamic and the mechanical properties of the membrane.

In our work we present a solvent-free model based on a density functional
description [1, 13] of the amphiphilic membranes. The parameters of the model
can be connected in a straightforward way to thermodynamic properties such as
the density of the bilayer, its compressibility and incompatibility between the hy-



drophobig¢hydrophilic beads. The density-functional based representation serves
as a basis for a Monte Carlo simulation scheme [14-17]. Essentially, the DFT-
interactions are equivalent to soft intermolecular potentials similar to those that
are used in dissipative particle dynamics (DPD) [18—-20]. Unlike DPD, however,
the present model facilitates the simulation due to an absence of explicit solvent
molecules. In this work, the DFT-based Monte Carlo technique will be used to
study the process of membrane fusion via the free energy of an important interme-
diate structure.

Fusion of bilayer membranes is an event essential in biological systems, e.g. vi-
ral infection, synaptic release, and endocytosis [21-24]. At the initial stages of the
fusion, the isolated membranes are brought into proximity controlled by proteins
(e.g. SNARE protein family [25]). After the membranes are approaching, fusion
events alter the membrane topology. This is a collective phenomenon, in which
a large number of molecules in the membranes participate. In phenomenological
theories, intermediate structures along the fusion process are assumed, as is illus-
trated in Fig1.3. Among these intermediate structures, the stalk morphology plays
a vital role in the fusion process. This morphology is the initial intermediate that is
formed by an hour-glass shaped connection between the two apposing membranes.
The evolution pathways through which the stalk evolves into the fusion pore are
still under debate [26].

TE‘EE_’:
BaR=

Figure 1.3: Classical bilayer membrane fusion process. First a pair of apposed bilay-
ers forms the stalk, an hourglass-shaped structure, that bridges these bilayers. From this
structure, they start the fusion and form, via the hemifusion diafragm, the final fusion pore.
Arrows show the time order of these intermediate states. Hydrophobic tails and hydrophilic
heads of amphiphiles are drawn in red and green respectively.

The stability of the stalk itself will depend on specific properties of the am-
phiphilic system. To this end one can encounter cases of highly unstable stalks as
well as systems where the bilayers are bridged by dense arrays of stalks. The latter
case has been experimentally observed in agueous solutions of lipids [27, 28] and
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diblock copolymer melts [29]. Figure.4shows an example of an electron density
map of such a stable stalk structure derived from x-rdyatition for lipid bilayer
membranes.

Figure 1.4: Electron density map of a stalk derived from x-rayfidiction patterns ob-
served in lipid bilayer membranes [27]. These bilayers form stable stalk structures ar-
ranged on a hexagonal lattice. The bilayer membrane fusion process stops at this state in
this experiment.

From numerical self-consistent field calculations [30, 31], itis known that mem-
brane fusion is observed only in a small region of molecular asymmetry and mem-
brane tension according to the stability of the stalk, as is shown in1Fyg.In
particular, when the amphiphilic molecules are too symmetric, the stalk structure,
from which the fusion always starts, is not even metastable and the membrane
fusion process proceeds very slowly. On the other hand, when the amphiphilic
molecular asymmetry is too high, bilayers become unstable and the stalk spon-
taneously expands into an elongated shape. The membrane tension plays also a
significant role in stalk evolution promoting the opening of the fusion pore. Of
course, when the membrane tension is too high, fusion competes with membrane
rupture. These experimental and theoretical observations indicate that investigat-
ing the stalk stability, i.e. quantifying the excess free energy of the stalk, is a key to
understanding and controlling membrane fusion and that the stability of the stalk
structure depends on the molecular architecture and the membrane tension.

Early phenomenological theories estimated the excess free energy of the stalk,
in other words, the free energyfiirence between the apposed bilayers and the
stalk morphology, to be on the order of a few hundrkgls, wherekgT denotes
the thermal energy, an impractically large value for biological systems. An im-
proved theoretical description [32], incorporating a more realistic representation
of the stalk structure, significantly lowered this result to 30 -k40. Subse-
quently self-consistent field calculations [30, 31] have been used to determine the
free energy of the stalk and other intermediate structures along the fusion pathway
without assumptions about the detailed geometry and molecular conformations.
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Figure 1.5: A phase diagram of the membrane fusion process by numerical self-consistent
field calculations [30].f denotes the fraction of the hydrophilic head in one molecule and
v the membrane tension. Within the unshaded region, the fusion process is successfully

finished and the fusion pore appears.

These mean-field calculations have yielded an even lower excess free energy of the
stalk [30, 31], on the order of X8T. The self-consistent field calculations, how-
ever, were limited to a random-walk-like molecular architecture (Gaussian chain
model) and did not incorporate fluctuations. Both assumptions are appropriate for
polymeric membranes but less so for lipid membranes. In the present dissertation,
we determine the excess free energy of the stalk via molecular simulation method
based on Monte Carlo simulations.

Generally calculating the excess free energy of self-assembled structures by
computer simulation, however, is a challenge because the free energy of a system
is not a simple function of the particle coordinates, and special simulation tech-
niques have been devised [33]. In hard-condensed matter systems, e.g. crystals,
one popular method consists in calculating the free energy by thermodynamic inte-
gration along a path that reversibly connects the structure of interest to a reference
state of known free energy. For crystalline solids, the Einstein crystal is an ap-
propriate reference state, where non-interacting particles are harmonically tethered
to their ideal lattice position. The free energy of the ordered system is derived
[34] from thermodynamic integration based on gradually decreasing the strength
of the tethers and, in turn, increasing the interactions between particles. In self-
assembling fluids, however, there is no analog of the Einstein crystal because even

in the defect-free, self-assembled state molecul&ssdi and are not constrained to

be at some preferential positions; hence the above technique can not be easily gen-

eralised to particle-based simulations (cf. Ref. [35] for a field-theoretic approach).
An alternative technique [36, 37], inspired by similar methods developed for

crystalline solids [38—40], consists in calculating the free enerffgrdince be-
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tween the structures of interest by transforming them reversibly into each other
with the help of an external, ordering field. Like the transition from a liquid to

a crystal, self-assembly or transformation betwedfedént morphologies in re-
sponse to a physically relevant control parameter (e.g., temperature, density, or
repulsion between amphiphilic entities) occur via first-order transitions. Using an
external, ordering field, whose spatial structure and strengths are adopted to the
self-assembled structure and varying the intermolecular interactions, one can avoid
the first-order transition and transform one structure into another via a reversible
path. For the self-assembly from a disordered structure of an ideal gas, such a
transformation path is comprised of two branches: Along the first branch, one
transforms the self-assembled system into an ideal gas that exhibits the same (or
very similar) spatial organisation due to the presence of external, ordering fields.
Along this branch, the intermolecular interactions are gradually decreased to zero
while, simultaneously, the strength of the external, ordering field is increased such
that the structural changes along this branch are minimised [38]. Optimally, the
morphology remains unaltered during the entire transformation, therefore, this
transformation is free of thermodynamic singularities, and the concomitant free
energy diference between the self-assembled fluid and the ideal gas in the external
fields can be obtained by thermodynamic integration. Along the second branch,
we transform the externally structured, ideal gas into a disordered one by progres-
sively reducing the strength of the auxiliary fields. This is also a reversible process
because of the absence of collective, orderiifigats in the non-interacting system,

and the free energyfilerence along this branch can be obtained by thermodynamic
integration (TDI). Along this transformation path one transforms a self-assembled
fluid into an ideal gas without passing through a first-order transition.

In this dissertation we choose the second option and construct a reversible path
that connects the configurations of two apposed bilayers reversible with the stalk
structure with the help of a specifically disigned external field. Simulating the
bilayers in our solvent-free model, we measure the excess free energy of the stalk
via TDI based on the external field with an accuracy of*k@T per molecule.

Experimental works [29] indicate that large molecular asymmetries, which cor-
respond to the large tail blocks at the fixed molecular weight, increase the stability
of the stalk. This is also shown by self-consistent field calculations [30]. In this
work, we study this dependence of the stalk stability on the molecular architecture
by determining the excess free energy of the stalk at various block ratios between
the heads and the tails, and also the dependence on the membrane tension.

We begin our discussion with the solvent-free model in chat€eombined
with PPPM method [41-43], our solvent-free model facilitates the Monte Carlo
simulation. Details of the simulation methods are introduced in ch8pteraddi-
tion to the conventional Metropolis algorithm, a configurational-bias method used
for simulation in the grand canonical ensemble and for the chemical potential cal-
culation is derived. Free energy calculation methods are discussed in chadpter
panded ensemble simulations quantitatively verify the absence of a first-order tran-
sition along the path that reversibly connects two apposing bilayers with the stalk



morphology. Via semigrand canonical ensemble, the Helmholtz free endrgg di
ence between single component systems composedtefatit molecular species

is directly measured. Simulation results on the bilayer membranes are presented
in chapter5. The dependence of the excess free energy of the stalk on molecu-
lar architecture and the membrane tension is obtained. The number of molecules
composing the stalk structure is analyzed in the grand canonical ensemble. We
summarize our work in chaptérand provide an outlook on further applications.
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Chapter 2

Solvent-free model

Membranes are self-assembled structures that are composed of a large number of
molecules. Even though industry keeps making improvement to our computers,
we cannot simulate, with use of the atomistic simulation technique, phenomena
found in macromolecular systems on large spatial and temporal scales on account
of many degrees of freedom. Whereas these simulation methods in an atomistic
scale yield correct data, we need to study coarse-grained simulation methods in a
molecular level in order to reduce required computational time and reproduce large
systems.

In conventional coarse-grained molecular simulation, due to a large number of
particles within the cutd distance of pair interaction potetnial, computational time
increases at high density. PPPM techniques [41-43] discussed in s&8smives
this issue. Despite thdfiency of PPPM, however, countless solvent molecules
that surround solute molecules still pose a computational challenge that cannot be
treated within acceptable computational time.

For the sake of avoiding thisfliiculty, Droute, Maggs, and Leibler proposed
a solvent-free model [8]. In their model solvent molecules are replaced with an ef-
fective interaction potential between solute molecules, i.e. implicit solvents, for the
purpose of integrating out the explicit solvent. Their solvent-free model attained
the dhiciency which could not be reached by models including explicit solvent
molecules. Other solvent-free models have also been invented [44].

Due to the absence of solvent molecules a solvent-free model cannot induce
aggregation without attractive interaction force between particles. This is one of
the significant properties of solvent-free model. For example, in dissipative particle
dynamics (DPD) technique, particles interact only via repulsive pair interaction
potential [20].

In the present dissertation, we present a solvent-free model based on virial
expansion coupled with our improved PPPM method and study the phenomena
observed in macromolecular systems on a large scale. The virial expansion yields
a simple physical interpretation of the excess free energy functional of the non-
bonded interactions compared to previous solvent-free models.

9
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The solvent-free model composed of single component homopolymers is dis-
cussed first. Next, we apply this simulation method to the solvent-free model of
diblock copolymers studying bilayers.

2.1 Single component solvent-free homopolymers

We construct our single-component solvent-free linear homopolymer system based
on the bead-spring model discussed in secfich Two types of interactions can
be distinguished:

i) Bonded, intramolecular interactions characterize the molecular architecture
and they represent the connectivity along the backbone of a macromolecule or
a lipid.

i) Non-bonded interactions characterize the repulsion between the amphiphilic
units and they drive the self-assembly into bilayer membranes.

Our bonded potential between a pair of linked segments is given by a harmonic
spring (see eqA.5)):
Hspring _3N-1,
keT 2 R
wherer is the distance between the linked segments ldnithe polymerization
degreeR, the end to end distance of an ideal linear polymer, is used as the unit of
length scale (cf. eqA.6)).

(2.1)

2.1.1 Free energy in solvent-free single component systems

The non-bonded interactions are described by an excess free energy in our coarse-
grained model.

Here we discuss our solvent-free single component homopolymers in the canon-
ical ensemble. We assume that the total Helmholtz free energy of our system is
defined as

F(T,V,np) := Figeal(T, V. Np) + Fexces{T, V, Np),

wheren, is the number of polymers anddenotes the system volume.
The ideal part of the free energy is given in equatidh23) and @.24).

Fidea(T,V,Np) Ve
kE:,—T = —nplog mZo) (2.2)

The phenomenalogical non-ideal part of free energy is defined via a virial ex-
pansion as
Fexces{T, V., Np) 1, 1 34
————— = | dV|-ZVwps + =Wps|, 2.3
whereps denotes the local number density of segments. Constant parametérs
andw > 0, which correspond to the attractive and repulsive interaction strength
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between the segments, respectively. At largad finitew, the polymers aggregate
into one dense droplet floating in a vacuum, i.e. macro-phase separation, whereas
at finitev and extremely highwv the system is in homogeneous phase.

2.1.2 Mean field approximation

We can investigate the phase behavior of our system using the mean field approxi-
mation [45]. In the framework of the mean field theory we assume that the number
density of the segments is homogeneous. This yields the excess free energy

Fexces{T, V, Np) 1 5, 1 4
kB—T ~V —EVps + éWps . (24)
Therefore the total free energy becomes
. F(T, \/7 np) Ps Nez) 1 2 1 3
(o) i= T = B 1og m) wiegwl  (25)

The critical point on thes — v phase diagram (see sectidri.4and Fig.2.1),
(0sc V), Of our system is determined from the conditions

— = —-V+2Wwps=0
do3 VkeT Nps ws 2.6)
d3 F(Ta\/,np) _ 1 _2+2W_O -
43 VkeT NP -
We find that the critical point is placed at
1 2w
(Psc \/m, Ve N ] (2.7)

The binodal line in our phase diagram (see Fd) is determined from the
simultaneous conditions

dfpd|  _df(ed)|  _ flos) - Flos) 28)
dos by dos hpmpy  PsLmP0
where the chemical potential is given by
df (Ps) _ 1 PSAS 2
db: N (Iog(NeZO + 1] - Vps + Wps“ , (2.9)

and the system is separated into the two phases, a gas and a densediguyidy
andps = ps1.
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Binodal line determined numerically from mean
field approximation

VIV,

0.0 L 2 2 2 ; 2 2 2 2 ;
0.0 5.0 10.0

p'p/p'pc

Figure 2.1: Phase diagram of solvent-free single component linear homopolymer system
numerically constructed from simultaneous equatié$3 and @.13. The critical point

is pointed by a circle. The broken line shows the asymptotic behavior of the binodal line
given in eq. .17 at high densityw is fixed at 10.

2.1.3 Dimensionless parameters for solvent-free single component ho-
mopolymers

In our calculations we use dimensionless units. The dimensionless polymer density
is defined ap), = psRE/N, the dimensionless parameter = wN3/Re®, and the
dimensionless parameter = vN?/R3. With these dimensionless parameters, the
critical point 2.7) is located omp,. = pscRS/N andv; = VeN?/Re?,

(p'pc=\/%,\/c=2m), (2.10)

and the non-ideal part of the free ener@yd is represented by the dimensionless
expression

Fexces€T, V. Np) _ av( 1, ,, 1 .3
—kBT —f\/@(—é\/pp +§V\/,pp (211)

2.1.4 Phase diagram for the single component solvent-free system

The binodal line in our phase diagram can be calculated from the equa2i@hs (
which are based on the mean field approximation. With our dimensionless pa-
rameters defined in secti@l.3 this condition is changed into the dimensionless
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equations

’ p;JO ’ ;7 1 1 ;7 2
ppl{log[7)+ l} _pp0+‘/(_pplppo 2pp1 T 2P0 )
Pm

p (2.12)
;7 2 2 ’ 1 r 3
V\/(pplppo _éppo _éppl =0
and
p ’ ’ 4 ’
log(pp ]+\/(pp1 ~Pho) + W (pho” = ") = 0. (2.13)
pl
where the system is separated into the two phﬁ§@$p’po andpy, = p;ﬂ.
In the dense quuiqbiol > p'po, these two equations are reduced to
log (p ] +1+ \/'pIDl W'pIol = (2.14)
pl
and o
|Og( J +V g — prl =0. (2.15)

We can exactly solve these reduced simultaneous equafid¥$ &nd .15 and
determine the binodal line,

+ —_——
4w 4w w

3V (3v)2 6
Pp1 = > ) (2.16)

At V2 > W, this solution shows the linear relation betwgex—‘f)@ andv/,

3V

—. 2.17
4w ( )

P/pl =
In this limit, a dense polymer melt (i.e. the interior of a lipid bilayer) coexists with
a vapor of vanishingly small density. The coexistence pressure is virtually zero.
In the intermediate density regions, solving numerically the two simultaneous
equation_s:_z.la and Q._lf:) with the two p_arar_neter/s’po andp;ﬂ, we can o_btain
the prediction of the binodal line shown in Fi@.L Note that at this density the
pressure vanishes.

2.2 Solvent-free model of linear amphiphiles

We apply the solvent-free single component homopolymer model to linear am-
phiphilic molecules composed of an A-block and a B-block. Segments are bonded
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by the harmonic springs given in eR.{). For these amphiphilic molecules,
Fexces€T, V. Np) is defined, in terms of the reduced dimensionless parameters, as

Fexces{T, V, Np)

ksgT

dV 1 12 1 ’2 ’ ’
= fv @ {_ivAAppA - EV,BBppB + VAP paPpB

1 3 2 2 3
*3 (WAAAp,pA + 3WanpPpalps + WapsPLpaPps + WBBBp/pB) (2.18)

where 3
Pl = p—S‘”NRe (2.19)

V,,nN?
Vi 1= er?’ (2.20)

W, N3
W, = erﬁ , (2.21)

w, n, andr denote the segment species i.e. A opB, is the local segment density
of w-species, angdy,, dimensionless molecular densityofspeciesy,,;, andwe,:
are the 2nd and the 3rd virial cheients respectively.

The virial codficients used in the present thesis are shown in TaldleWith
these interaction parameters, our solvent-free linear amphiphilic molecules form
a stable bilayer structure, which is simulated in chapteihe A-block and the
B-block correspond to the hydrophobic tail and the hydrophilic head of lipids re-
spectively. In the bilayer structure consisting of these amphiphilic molecules, the
A-blocks form a dense molecular solution inside the bilayer and the B-blocks are
repelled toward the outside. This means that the average molecular density of A-
blocks in this dense solution, denoted(taxéA)nside, can be evaluated by the mean
field theory of a single component dense homopolymer solution i.e. 2ebj) (
Therefore,

Il

’ 3V/AA
<ppA>inside A, =404 (2.22)

is obtained.

2.3 Particle-Particleg/Particle-Mesh (PPPM) method

In order to use the excess free energy of non-bonded interaction in a particle-based
computer simulation, the local densitigs,, andp' g, have to be expressed in
terms of the explicit particle coordinates. Formally, the relation is given by

o= Y - i),

iA
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Table 2.1: Virial coefficients for solvent-free linear amphiphiles used in the present thesis.

Vin =5.15
Vg =001
Vg =-1775

W,,, =0.095625
W,z = 0.095625
W.g = 0.095625
s = 0.0

where the summation runs over all A-segments in the system. The®itactions,
however, are unsuitable for computations. To solve this problem, one can either
regularize th&-function by a weighting function or one can use a collocation grid
to compute the local densities. In the following we choose the second option,
which is particularly icient for calculating the non-bonded interactions in dense
systems. The computational gain compared to the first option scales roughly with
the number of particles a reference bead interacts with. Thus it is particularly suit-
able for systems with long-range interactions in plasma physics or astrophysics or
in systems with high molecular densities (like e.g. polymer systems).

Schemes to assign particle coordinates like the PPPM method have been de-
vised since 1980 [41]. We test and apply PPPM, as a particular example, to dense
polymer and monomer systems.

2.3.1 Original PPPM method

We are simulating linear polymers with A-B binary component segments by bead-
spring model. Our coarse-grained segments are bonded by a harmonic spring po-
tential, eq. 2.1).

In addition to this intra-molecular interaction potential, external pair interac-
tion potential acts between the coarse-grained segments (see also 3&tivve
assume that our system is at high density; there are no solvent molecules in the
system.

The external pair interaction potential, however, requires long computational
times at high density owing to a large number of segments within thefalitse
tance. We can overcome this problem, after dividing the system boxMgi®p
spatially fixed cubic cells, by replacing the pair potential by a grid-based en-
ergy in each divided cell. This scheme is called Particle-Paffiakticle-Mesh
(PPPM) [41]. To illustrate the technique, we use in the following section a non-
bonded excess free energy that is suitable for dense, nearly incompressible poly-
mer melts that are comprised of two segment species A and B. The technique is
straight forwardly carried out to the compressible, solvent-free model for bilayer
membranes.

We assume that our phenomenological total non-bonded interaction energy in



16 CHAPTER 2. SOLVENT-FREE MODEL

the system is given by,

Mx

kBT

My M, oAV 1
Z Z N (XN¢A¢B + 5kN (@A + o5 - ¢0)° (2.23)
j=1 k=1

o= (2.24)

where (, j, k) represent indices of cellsM, My, M) the number of cells ix, y, z-
direction respectively i.eMce = MxMyM,, p is the average number density of the
total segments over the system bd¥, the volume of the divided celN polymer-
ization degreelJ,, the number of the-segments in the cell, and= A, B. Here the
reference density)o, is set to unity. The Flory-Huggins parametel, describes

the incompatibility between the A and B species and the inverse compressibility
kN is chosen large enough to suppress density fluctuations on the lengthRscale,

Whereas this original method caffextively reduce the computational time,
there are no non-bonded interactions between particles in neighboritey€dt)
cells. While the segment moves within one cell, the interaction energy between
this segment and the others does not change. When the segment crosses the bor-
der between the cells, impulsive interaction force suddenly acts. These situations
sometimes cause simulation artifacts. Phase separation of dense simple liquids is
illustrated as an example of such artifacts. In this system, neighboring cells are
filled with one molecular species independently of other cells.

2.3.2 PPPM improved with a linear interpolation

To reduce this spatial discontinuity in the interaction, we often adopt a PPPM
method improved with the linear interpolation [41-43].

Although we still use the same HamiltoniaR.23, we change formulation
about the volume fraction,,. In the original method, volume fraction concerning
one particle, Lp4V, is added to the grid point where this particle belongs. In the
improved method, with the linear interpolation, A4V is divided by the 8 grid
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points which are surrounding this particle:

(i, . K) = (R =R =R —T2) 1

AV pAV
P (RX+1 - rX)(R)jl+1 - I’y)(l’z - Rlz<) 1
$o (i, k+1) = o, A
. (R, — 1)ty RYRE,, - 1) 1
ol 1+ 1K) = N Py (2.25)

(rx = RS (ry — R)j/)(rz - R;Z() 1
AV oAV

o(i+1j+1Lk+1)=

where (, j, k) represent the indices of the grid point where the particle belangs,
segment species of the partig¢,the divided volume fraction on each surrounding
grid point, ¢, ry,r;) the particle coordinate R; , R‘V’y, R’,) the coordinate of the
grid point specified by indices/{, vy, v;). We can obtain the total volume fraction
on each grid point by summing, over all the particles adjacent to the grid point.

Without huge computational cost (about a factor of 2) this improved technique
relieves the problems on the method mentioned in se@tidri

2.3.3 Program test

As a program test, using the linear interpolation method, we simulate linear diblock
copolymers and linear homopolymer blend in the cubic system box via canonical
Monte Carlo simulations. Interactions have been defined in se2tid In all

the simulations, parameters are: polymerization detree32, the total number

of polymersn, = 1000, average number density of all kinds of the polynpgrs
1220/(Re)%, kN = 60.0, the width of the celt Re/6.0, whereR. is the end to end
distance of an ideal linear chain and set as a unit length. AfteMKDS, during
which the system relaxes, particle configuration is collected every 1000 MCS and
10 independent data are sampled. We vary param@teaind observe the phase
behavior.

2.3.3-a Diblock copolymers

First, we simulate diblock copolymers. The block ratio is fixed at 0.5. Mdller
and Daoulas simulated this system via Single-Chain-in-Mean-Field method and
calculated the free energyfilirence between the ordered phase and the disor-
dered phase based on thermodynamic integration and expanded ensemble simu-
lation techniques [36].
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We take snapshots of the system to check the phase behavior. These snhap-
shots show the disordered statey&t < 14.0 whereas lamellae are observed at
xN > 16.0 (Fig. 2.2). To investigate this change in phase behavior, we also calcu-
late the density distribution of A-segments inside a lattice cell (Ei§. We can
observe the sudden change in this density distribution from a single-peaked to a
binodal distribution aroungN ~ 14.0, which indicates the transition between the
disordered phase and the lamella phase.

These results are consistent with the mean field theory that predicts the micro-
phase separation giN = 105 [36, 45] although its value is shifted due to the
fluctuations which are ignored in the mean field theory [46].

Figure 2.2: Snapshot of diblock copolymers g = 16.0. Lamellae are observed in the
system.

2.3.3-b  Homopolymer blend

Second, we simulate the homopolymer blend, which has the same number of A-

homopolymers and B-homopolymers. We control the paraméteand monitor

the phase behavior. Figu4 shows the change in the density distribution of

A-segments with the paramejeN. At YN ~ 4.0 the sudden change of this distri-

bution is observed, which shows that macro phase separation occurs in this region.
The transition point is shifted to a largeN compared to the predictiopN =

2 of the mean field approximation [45] owing to the finite sifieet and, more

importantly, fluctuations.
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Density profile of segment A for diblock copolymers
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Figure 2.3: Distribution of A-segments for diblock copolymers. Micro phase separation
occurs aroungN =~ 14.0.

Density profile of segment A for homopolymer blends
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Figure 2.4: Distribution of A-segments for homopolymer blend. Macro phase separation

occurs aroungN = 4.0.

The number of A-segments per cell
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2.3.4 Benchmark

We have carried out benchmark tests to compare the original method and the linear
extrapolation. We simulate fierent systems and monitor theffdrence in the
computational time between both the methods. The programs implemented based
on these methods are compiled byigversion 4.0.1 with optimization option -O3.
These benchmark programs are run on a server placed in our institute (Intel(R)
Xeon(TM) CPU 2.40GHz, 32 bit Linux OS).

2.3.4-a Benchmark on monomer blend

Benchmark on 1:1 A-B monomer blend that is a mixture of 50% A-segments and
50% B-segments. The simulation parameters and benchmark results are shown in
Tables2.2and2.3respectively.

Table 2.2: Simulation parameters for benchmark on 1:1 A-B monomer blend.
x =50
k =30.0
The total number of monomers= 64000
The average number of monomers in one ceH 64
The number of cells = 1000
Calculated steps = 1000 MCS

Table 2.3: Computational time for 1:1 A-B monomer blend.
Time (sec)
Original method 78
Improved method 205

2.3.4-b  Benchmark on diblock copolymers

Benchmark on A-B diblock copolymers. Tabl2st and2.5 show the parameter
set of the simulation and the benchmark results.

Test simulations and benchmarks discussed indicate that our linear extrapola-
tion method and implementation yield reasonable physical property and the com-
putational cost approximately 2.5 times larger than the computational time for the
original method.
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Table 2.4: Simulation parameters for benchmark on A-B diblock copolymers, where the
end to end distance of an ideal chain is defined as the unit length.
Polymerization degred = 32
xN =20.0
kN =50.0
Block ratio =0.5
The number of polymers = 8000
Number density of polymers = 122.0
Width of the cell ~ 1.0/6.0
Calculated steps = 500 MCS

Table 2.5: Computational time for A-B diblock copolymers.
Time (sec)
Original method 274
Improved method 642
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2.4 Simulation of solvent-free homopolymers

Using the solvent-free system discussed in se@itnwe simulate a single compo-
nent linear homopolymers in the canonical ensemble. The phase behavior observed
in the simulation is compared with the results from the mean field theory in sec-
tion 2.1 The bonded and non-bonded interaction potentials between the segments
in our simulation system is described by equatichg)(and @.11), respectively.

In our simulation, we control the parametgfsandv’ whereas the other param-
eters are fixed. These fixed parameters are shown in 2abl&gT is the energy
unit. The homopolymers are arranged in the rectangular parallelepiped system box
with the sizex x y x z = L x L x 2L. Mainly the simulation results at, = 250
homopolymers are shown in the present thesis. We have verified, however, that our
simulation results do not substantially change where we simulate a larger system
with np = 2000 homopolymers.

After 3x 10f MCS atpp,/ppe = 0.1, 1.0, 4.0, and 10.0 and MCS at other
densities, by which the system relaxes to the equilibrium state, we acquire data
every 18 MCS and get 10 independent samples of the segment configurations.

Table 2.6: Simulation parameters in the single component solvent-free homopolymers.
Polymerization degred = 32
w =1.0
The number of polymens, =250
The width of the celUL =~ (1.0/6.0)Re
The maximum trial displacement= 4L

2.4.1 Locating the liquid-gas coexisting line

Prior to simulation results, we discuss two methods for locating the liquid-gas co-
existing line in molecular simulation.

2.4.1-a Methods via rectangular parallelepiped system box

Using a rectangular parallelepiped system box, we can determine the liquid-gas
coexisting line.

Our particles are arranged in a rectangular parallelepiped system box with size
Xxxyxz=LxLxL, whereL < L,. We assume that the particles separate
into the two coexisting phases i.e. a dense polymermelt and a dilute gas, after the
simulation starts. In order to quantitatively discuss the phase transition between the
gas phase and the liquid phase and construct the phase diagram, the density profile
alongz-axis is calculated.

Owing to the anisotropy of the rectangular parallelepiped system bax in
direction, the interfaces between both the phases tend to be paralletyxthne
when the system is located on the coexisting line. We can find these interfaces from
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the density profile along-axis and quantitatively understand the phase behavior.
If the initial average densityy,, is located inside the miscibility gap, the system
will phase-separate into two domains. The properties in the interior of the domains
correspond to those of the two coexisting phases.

This method can be applied to a variety of systems. Itis well suited for strongly
segregated systems deep inside the miscibility gap. Upon approaching the critical
point, however, the method fails because

i) the interface that separates the two domains becomes very broad and compa-
rable to the system size and

ii) strong fluctuation make the monitoring of the density profiles increasingly
difficult.

2.4.1-b Block density distribution technique

In block density distribution technique [47] the system box, cubic or rectangular
parallelepiped, is divided into finite small blocks or cells. Each block holds parti-
cles in response to the phase of the block. We calculate the density profile of the
particles per block.

When the system is located in the homogeneous phase, i.e. the gas phase or the
liquid phase, this density profile shows one sharp peak on the average density and
the density of each cell is fluctuating around this peak.

Inside the miscibility gap, two peaks are found in the density profile at low
density and high density; these peaks correspond to the blocks in the gas phase and
the ones in the liquid phase respectively. Therefore, finding these two peaks at the
same time we obtain a rough approximation of the liquid-gas coexisting line.

2.4.2 Simulation results of solvent-free homopolymers

For the sake of intuitively understanding the phase behavior of our system, we
take the snapshots of the system. As a particular exmaple 2Fghows the
shapshots of the systema/ oy, = 10.0. We can observe the homogeneous phase
atVv'/v, = 5.0 though atv'/v, = 6.0 the system is separated into two phases,
low density and high density. Ad,/p,. = 100, in view of our snapshots, the
system is in the homogeneous phase’ar, < 5.0 and the separated phase at
V'/v¢ 2 6.0. In order to quantitatively discuss the phase transition between the
homogeneous phase and the coexisting phase and construct an approximation of
the phase diagram, the density profile alaraxis is calculated (see secti@m.1-

a). Owing to the anisotropy of the rectangular parallelepiped system bax in
direction, the interface in the separated region tends to be parallekwiptane.

We can find this interface from the density profile alargxis and quantitatively
understand the phase behavior since, in the homogeneous phase, the interface is
not found and the density profile takes homogeneous form. FRyérehows this
density profile along-axis atp},/p},c = 10.0. We can observe the phase separation
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!!

Figure 2.5: Snapshots of the system/p},. = 10.0 and X 10° MCS. The snapshot (a) is
taken atv'/v; = 5.0 and (b) at/'/v; = 6.0. These figures show the phase transition around

this region.

Density profile along z-axis a p')/p', = 10.0
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Figure 2.6: Density profile along-axis atoy,/pp,c = 10.0. Phase transition is observed at
V' /v, ~ 55. 3L = 2L.

atv'/v; 2 6.0, which is signaled by the formation of two domains (see Eig).
These results indicate that, with use of snapshots of the system and the density
profile alongz-axis, we can quantitatively construct the phase diagram.
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Figure 2.7 shows the binodal line of our solvent-free single component lin-
ear homopolymer systems. Though the form of the binodal line determined from
numerical calculation based on the mean field theory qualitatively correspond to
our simulation results, the critical point is shifted to the regigpoy,. ~ 3.0 and
V' /v, = 4.3.

VIV Binodal line
6.0 °
H
5.0 -
-4 Binodal linevia
4.0 mean field
calculation
3.0 - - Binodal linevia
simulation
2.0
1.0
00 | —— PP
0.0 5.0 10.0

Figure 2.7: Phase diagram obtained via simulation. A black circle represents the separated
phase and a white square the homogeneous phase.A binodal line is plotted by a broken line.
Triangles represent the binodal line via the mean field approximation.

In order to elucidate the discrepancy between these two binodal lines, we cal-
culate the density distribution of the segments per cell. In view of the snapshots of
the system (see Fi@.8), the segments are locally surrounded with a void and the
sparse segment configuration is observed in the rectangular parallelepiped system
box. Figure2.9 shows the density profile of the segments per ceddpy,. = 1.0.

Each cell contains a small number of segments. These results indicate that one seg-
ment interacts with only a few others. At high density, mean field approximation
approaches to the exact solution whereas at low density it fails [45]. Consequently,
due to the sparse segment configuration in our system, the location of the binodal
line expected via the mean field approximation does not agree with our Monte
Carlo simulation results. At high density, however, the binodal line predicted by
the mean field theory approaches to the one from the simulation (se@.Big.

At p}y/phe = 100 andw’ = 1.0 the simulation results show the phase transition at

V' /v; ~ 36.0 (see Fig2.11), which is consistent with the binodal point located with

eq. @.17) i.e. p/ppe = 100 andv' /v = 33.3.
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Figure 2.8: Snapshot of the systemglf/p,. = 1.0 andv’/v; = 0.1, taken at X 10° MCS.

Density distribution of segments
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The number of segments per cell

Figure 2.9: The density profile of the segments per cepator,. = 1.0. Each cell contains
only a few segments.
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Next, we discuss the density distribution of the segments per cell. The density
distribution ao},/p},c = 1.0 (see Fig2.9) shows only one sharp peak in the number
of the segments per cel 0 even though the system is in the phase-separated state
(see also Fi@.7). In the region around the number of the segménts 2 and
high v’ /v, however, the distribution forms a shoulder. These results indicate that
the peak in the high density region is covered in the sharp peak in the low density
region due to the low average density. For the sake of searching for the peak in the
high density region in the separated phase, we simulate the system at high average
density and calculate the density distribution of the segments per cell.

Figures2.10 and 2.11 show the density profile of the segments per cell at
Pp/Ppe = 10.0 andpp/ppe = 1000 respectively. App/ppe = 10.0, the low peak
in the high density region appears around the number of segments per €&l
On the other hand at,/p},c = 1000, extremely high average density, the segment
distribution becomes the same form as the dense polymer solutions [45]. These
results correspond to our discussion in this section and the physical properties of
common polymer systems. Upon increasing the incompatibljty;, we observe
that the distribution changes from a single-peak structure, which characterizes the
homogeneous phase to a binodal form. The two peaks mark the density of the
two coexisting phases. The incompatibility, at which the distribution changes its
qualitative form, provides a rough estimation for the location of the binodal.

Density distribution of segments at

07 p'plp'pe = 10.0
c *V/V_c=1.0
S 06 =V _c=3.0
3 05 VIV _c=5.0
= \ <VIN_Cc=7.0
= 0.4 eV/V_c=10.0
>
% 0.3 \.
202 :

0.1 >

0 b——— =R
0 5 10 15

The number of segments per cell

Figure 2.10: The density profile of the segments per cell. The low second peak is observed
atv’'/v; = 10.0 around the number of segments per e€H.
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Density distribution of segments
atp'Jp'n. = 100.0

< 0.14 +\V'/V'_¢c=30.0
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£ 0.08 VIV_c=36.0
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Figure 2.11: The density profile of the segments per cepigtoy,. = 1000 andn, = 2000.
The phase transition occurs arourigl, ~ 36.0.



Chapter 3

Simulation method

Molecular simulation, also called particle simulation, refers to computational tech-
niques for studying phenomena observed in systems composed of a large number
of particles. Two techniques can be distinguished:

One is the molecular dynamics (MD) method that is based on the fact that a set
of particles move according to Newton equations. For the purpose of simulating
the time evolution of systems, Newton equations are numerically solved in this
method. MD is suited to study dynamical physical properties.

The other is the Monte Carlo (MC) method. In MC methods, particle space co-
ordinates are stochastically generated according to a Boltzmann factor with use of
random numbers on computers. This method allows studying equilibrium physical
properties.

In the present dissertation, we choose the MC method, which is discussed in
this chapter. The Mersenne Twister algorithm is adopted as a uniform random
number generator in our simulation (see sec8dn3. Our systems are simulated
using periodic boundary condition, which is suitable for simulating bulk physical
properties.

3.1 NVT-Monte Carlo simulation technique

In this section, MC simulation techniques in the canonical ensemble [48-50] are
discussed. The canonical ensemble is also clgd-ensemble due to the con-
stant number of particle, constant system volumé, and constant temperature
T.

We assume that our system is composedNgbarticles with massn in the
canonical ensemble and that Hamiltonian of the system is defined as

N

H(pl,pg,...,pN,rl,rz,...,rN):Z?Jn+u(r1,...,r,\j),
j=1

wherep; andr; denote the momentum and the coordinates of the paitielspec-
tively andU does the potential energy of the system. The probability that a micro-

29
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scopic state is found in a small phase space voldmedpN = Hﬂ-\‘zl(drj dp,-) at
the position(ps,..., pnsF1,...,IN) IS

1 1 N 4N
Zn (T V) NI TN ex p[ T H(ps..., pN,rl,...,rN)}dr dp
whereh denotes Planck’s constant add(T, V) does the partition function of the
system,

h
Vet
(3.1)
The ensemble average of a mechanical quariis, ro,. .., rn), which depends
only on the particle coordinates is given by

1 1
ZN(T,V):mfdrl...drN exp[ kTU(rl""’rN)}’ A=

1
INVT = T NI
X ff{A(rl,..., rn) exp[—iH (pl,...,rN)}}drN dp"
QN(T ) f {A(rl,.. ,TN) exp[—ﬁu (rl,...,rN)]}drl...drN,
(3.2)
where

QN(T,V):fdrl...drN exp[—iU(rl,...,rN)].
Vv keT

The right-hand side of3(2) involves aN-dimensional integral over the whole sys-
tem volumeV. At N > 1, high dimension prevents us from numerically calcu-
lating the integral via deterministic integration, e.g. trapezium rule and Simpson’s
rule. For such a high dimensional integral, Monte Carlo integration is required to
determine the ensemble averagenvT, i.e. a physical property of our system.

3.1.1 Metropolis algorithm

In NVT-Monte Carlo simulation, a series of particle coordinates in canonical en-
semble are sampled in a Markov process. The particle configurations correspond to
the states in the Markov process. In 3-dimensional systems, each configuration is a
set of N microscopic particle coordinategy, ..., ry). The set of all the states is
denoted by = {1,2,3,...,k,...}. Within the MC simulation, a stochastic trajec-
tory through configuration space is constructed, such that the distribution of visited
configurations obeys the canonical distribution according to the partition function
eg. 8.1). The probability density that one random walker is found on a state

1 1

W = Za (T V) AN exp[ kBTU} (3.3)
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whereU; denotes the potential energyial he transition probability changing the
state fromi to kis denoted byPi.

In our simulation, this transition probability and e®.3) should fulfill the
principle of detailed balance

Wi Pik = Wk Pxi, i,keQ.

This principle means the frequency that the transition fréok occurs is equal to

the frequency that frorkto i: while a large number of the space trajectories move
over the phase space, the number of them on each point in the phase space should
be constants in equilibrium. In other words, the net flow between any pairs of the
points should vanish. This condition is reduced to

Pic _ expl-Us/ksT] _ exp[_kBiT(uk _ ui)]. (3.4)

Pi  exp[-Ui/keT]
In Metropolis algorithm, particle coordinates are sampled according to the
equation which is obtained fron3.4),
Pik :Pii=1: exp[—(l/kBT)(Ui - Uk)] , whereUy < U,
= exp[-(1/ksT)(Ux — Uj)] : 1, whereUy > U;.

If Ug < Uj, the system is moved frointo k with probability= 1. If Ux > U;, the

system is moved fromto k with probability= exp[—(1/ksT)(Ux — Ui)] (< 1). In

the remainder of this sectidhl1.1 we discuss the detail algorithm.

1) Choosing one patrticle frol ones at random. Giving this chosen partiele
a random displacemedtr, = (4x,,4Y.,42,). The selected particle is moved
fromr, tor, + 4r,. The random displacement vectdr, is determined with
three random numbetg, &, andé; uniformly distributed in the interval [@).

A =6(1=284), Ao =06(1-28y), Az, =6(1-28) (3.5)

With this displacement, points in the cubic box whose centre is located on the
positionr, with size & x 2§ x 26 is uniformly chosen. We call this movement
the trial displacement.

2) Calculating the potential energy of the system after the trial displacetigat,
3) ComparingUygia to the potential before the trial displacemebgyrens

(@) If Ugiar < Ucurrens accept the state after the trial displacement and update
the coordinates of the particte

(b) If Ugiar > Ucurrens geNerate one more random numbgruniformly dis-
tributed in the interval [01), and if

n < exp[—(1/ksT)(Utrial — Ucurrend] ,

accept the state after the trial displacement and update the coordinates of
the particlea. Otherwise, reject the state after the trial displacement and
keep the current state to the next simulation step.
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4) Return to the first procedure, 1).

This procedure 1) - 4) generates, in sequence, a series of the particle coordinates in
canonical ensemble and one cycle is called one simulation step.

3.1.2 Monte Carlo step (MCS) and acceptance ratio

The ratio of the number of accepted simulation steps in one MCIS tycles

of the Metropolis algorithm is defined as acceptance ratio. At high maximum trial
displacementd, the particles can step with large strides through configuration space
though the acceptance ratio decreases owing to the large energy change after the
trial displacement. On the other hand, at ldowhe acceptance ratio increases due

to the small energy change though the particles walk at a small pace. Thus, the
acceptance ratio and the relaxation time to equilibration of the system depend on
the parametes. The optimal value of the acceptance ratio for the short relaxation
time is empirically about 50% [48].

3.1.3 Mersenne Twister

In our Monte Carlo simulation, Mersenne Twister is adopted as a uniform random
number generator [51-53].

¢ A high order of dimensional equidistribution. This means that the corre-
lation between successive values in the output random number sequence is
negligible.

e Architected to have a period of %37 1. Practically, there is little demand
for larger periods, since most simulations do not demafef2— 1 unique
combinations.

e The source code is available on
http://www.math.sci.hiroshima-u.ac. jp/~m-mat/MT/emt.html

This site is also found on the net with the search word “Mersenne Twister”.
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3.2 Statistics for molecules with intra-structure

3.2.1 Molecules with the internal structure

We discuss the statistics abduimolecules of the same specie\¥ T-ensemble.
One molecule consists &l atoms; the total number of the atoms in the system
box= MN. The patrtition function for this system is denoted&y(T, V):

ZN(T,V) =

1 1
mfdr%dr%...dr%,l dr?...drl exp[—kB—TU (gt
(3.6)

wherer'k represents the position of theth atom in thel-th molecule,U is the
potential energy in the system, and the thermal de Broglie wave leng#s been
introduced in eq.3.1). The potential energy is divided into 2 parts:

i) The internal potential energy)™, which includes the intra-molecular inter-
actions, e.g. bonding, bond bending, and torsion.

i) The non-bonded potential energy™®, which takes into account the non-
bonded interactions which have not been taken into account in the internal
part.

With the use olU™ andU", the total potential and the partition function3(6)
are:

N
U(rf. o) = U™ (i) + D U™ () (3.7)
=
and
Zn(T, V) =

1
m fdr%dr’,\\l/l exp

N

3.2.2 ldeal molecules

We define ideal molecules as molecules interacting only via the bonded potential,
i.e. U™ = 0. The partition function3.8) of such an ideal molecular system is
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denoted byZi9e3(T, V),

i 1
deal
ZN*(TV) = i T fdr%...dr',?‘,l exp|-

- A3NMNI {fdr1 drl, exp[ U (r r',\,l)}}

= (f(T,V))N (3.9)
wvN

where

._ 7ideal _ t
f(T,V) = Z'lea(l,V) Ty fdrl...drM exp[——kBTUIn (re,....rm)

(3.11)
and

J(T V) — Zldeal(-l- V)

1
=—VA3(M_1)fdr1...drM exp[—l@—TU'“t(rl,...,rM) .

rg is the position of thé&-th atom in one moleculef. (T, V) and j(T, V) correspond
to the partition function of one ideal molecule and the partition function of the
internal degrees of freedom for one ideal molecule respectively.

Using Stirling’s approximation,

(3.12)

logv = vliogy — v for an integew > 1,

we can calculate the system free enefgya(T, V, N) and the system chemical
potentialuigeal(T, V, N) from the partition function3.10).

|dea|fl-3|_TV N) ~log Z|deal(-|-’ V) = -N Iog( e i(T, V)) (3.13)
ﬂidea_'g’TV’ N)_ _iN logZ*3(T, V) = log(A%) - log j(T,V)  (3.14)

where the average molecular density in the system is denoted=ky/V. Due to
the intensive property of the chemical potentjdl;, V) should not depend o¥,

Ji(T.V) = j(M).

With this expression fojj(T), we can rewrite equation8.00, (3.13, and @.149
in the form:

24T, V) = GOV, (3.15)

N!ASN
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FidealT, V. N)
e T Nlog(N 3J(T)) (3.16)
ﬂidel:;(:::’ﬁ’) - log (Agp) —1log j(T), (3.17)

where

1 .

ideal _ t
i(T) = Z' (T, V) = Wfdrl .dryu exp[ s _I_UIn (rl,...,rM)}.
(3.18)

3.2.2-a Internal potential energy via the bond vector

The internal potential energy of both an ideal molecule and a non-ideal molecule
is independent of the molecular center of mas%t (r4, ..., ry) depends only on
the molecular configuration, i.e. the relative coordinates between the atoms.

The bond vector,

Uj := iz — 1, 1<isM-1, (3.19)

determines this configuration (see F&1). Therefore, the internal potential en-
ergy is represented by the bond vector:

ljint (U]_, Uo,..., UM_1) = Uint (I’]_, cey I’|\/|) s
where

ri=I’1+ZUj, 2<i<M.

With the use of the bond vector atd (u1,...,Um-1), the partition function of
an ideal moleculez!%(T, V), is

Z!Ldeal(T,V) ZA% fdul ...dup_1dry exp[—kBiTUim (re,..., rM)]

(3.20)

Vv 1 -
=Wfdu1...dum_1 exp[—kB—TU'”‘(ul,...,uM_l) ,

3.2.2-b Bead-spring model

In a bead-spring model (see also sec#oB) of a linear polymer,

i 3kT 3kT
GRS Zm P = =2 Z|.|
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Figure 3.1: An example of a molecular configuration schematically represented.by
Spheres represent the atoms. Arrows show these bond vectors, i.e. relative coordinates be-
tween the atoms, which determine the internal potential energy independent of the absolute
coordinates.

whereb denotes the segment size. In this model,

fdrl...drM exp[—kBiTUi”t(rl,...,rM)]

M-1 3 , 3 M-1
:fdul...duM_ldrlgexp[—ﬁwil ]:V{fduexp[—ﬁlul } ,

whereu is one bond vector. Alb <« V/3, i.e. the condition that the system is far
larger than the segment, this Gaussian integral over the system box is approximated
by the Gaussian integral over an infinite volume:

M-1 2\ 3(M-1)
V{fdu exp[—z%zlmz } = V(@) .

3
Using this result, we determingT) of the bead-spring model3(18).

(3.21)

1 (2xb2\ ™M
%)

Zo=1(M) = “zm

Zy is not explicitly dependent oifi, but it depends o via thermal de Broglie
wave lengthA and the segment size The free energy3.16 and the chemical
potential 8.17) of the bead-spring model are also calculated:

Fidea(T, V. N) _ ve
S = ~Nlog(5%) (822
Hideal(T, p) - log (Agp) — log Zo. (3.23)

ksT
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In our simulation based on the bead-spring model, the segment size is fixed
atb? = R2/(M - 1). Using this condition, we shoy defined in 8.21) in our
simulation model (see e (1)).

(3.24)

3
1 o MY
RECE (S(M ~1) )

3.2.3 Statistics of molecules imV T-ensemble

Based on the statistics in the canonical ensemble, we discuss the statistics in the
grand canonical ensemble, i@/ T-ensemble.

We have a system iNVT-ensemble, T, Vo, Ng), whereVy denotes the total
system volume andNg the total number of molecules. We assume that all the
molecules are identical and that each molecule is composktlaibms: the total
number of the atoms in the systemNENy. Our system is divided into 2 subsys-
tems;

i) (T,Vo-V,Ng— N). The molecules in this subsystem do not interact, i.e. ideal
molecular system.

i) (T,V,N). This subsystem contaiméinteracting molecules.

When these two subsystems are isolated from each other, the total partition function
of the system is written with relation8.(l5 and @3.8):

Z°(T, V., Vo, N, No) = Z\{*3 (T, Vo — V) Zn(T. V)

(Vo = V)N N(j(T))NoN
- O(NO—N)!A3(N0‘N) Zn(T, V).

When our subsystems are allowed to exchange the molecules, the total partition
function of the systeni¥(T,V,V’, Ng) whereV’ ;= Vg — V, is determined via

No
Z(T,V,V',No) = > Z(T, V, Vi, N, No)
N=0
Q[ VNNt
(No — N)! A3(No=N)

ZN(T, V)}

N=0

Consider this partition function in the limit that the subsystéim\’, No — N),
composed of ideal molecules, is far larger than the subsystevh), interacting
moleculesNg — o0, V' — o0, (Ng/N) — oo, and (No/V’) — presi.€. it acts as a
reservoir. This ideal molecular densijtys is related to the chemical potential of
the ideal moleculegigeal(T, pres), (3.17). Using these relations, this total partition
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function of the system in this limit,

V(TN oy (No\N
ZT,\/,V’,N = li I ¥ A S S (_) T NZ T.V
( 0) o\l/r’n—mo Z_:{ NOI A3N0 V/ (J( )) N( )
No/V’=pres N=0
S Hideal(T, pres)
= lim |Zge(T, Vv’ Hideak *-Pred) \ 1 7 T\l
() Y o) e 2 y)
No/V'=pres =

Therefore, the partition function for the interacting molecules in this limit is:

2w, T,V) = i {exp[ﬁ N} Zn(T, V)}

N=0

> (exp[(u/ksT) N] 1
ZO{ e [art..antexpl- -0 ()|
(3.25)

whereu := pigeal(T, pres)- E(u, T, V) is called grand partition function, which deter-
mines the probability density thatinteracting molecules are found dri;(. ey r,\N,,)

in the system box with the volunk equilibrated with the reservoirandT. This
probability density is denoted byn{rl, ..., rjy).

1 1 1
~ (1 NY _ _ 1 N H
WN (rl,.. ,rM) = 20 T.V) ANV N exp kBTU (rl, T ) " TN]
(3.26)
The probability density oN is calculated from3.26):
H,1v(N) _fdrl LAy W (13 ry)
3 1 1 N
" 2@ T.V) AN exp[kBT }fdrl driy exp| - k U(r- i)
(3.27)

3.3 Configurational-bias method inuV T-ensemble

In grand canonical ensemb}ey T-ensemble, the system box and the reservoir ex-
change particles. In simulation vV T-ensemble, particles are inserted into and
deleted from the system in addition to Metropolis trial movement. In one simula-
tion step:

i) with probability py, trial particle insertion into the system
ii) with probability pg, trial particle deletion from the system

iii) with probability 1- 2pg, trial movement based on Metropolis algorithm i.e.
perturbation of one segment
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is chosen.

When one macromolecule is inserted in the system box at random, segments
of this extended molecule overlap with others with a high probability and this trial
is rejected. In configurational-bias method the inserted molecule is built segment
by segment. The bias in constructing the molecule reduces the probability of the
overlap between the molecules. We will discuss this configurational-bias method
in grand canonical ensemble. In the present formulation, the reference state in the
chemical potential (see e®.17)), j(T), and thermal de Broglie wave lengthare
absorbed in the definition of the chain potential (cf. original articles [50, 54]); we
can simulate any systems in grand canonical ensemble regardless of the unknown
reference stat@(T) andA (see also sectioB.4.3.

3.3.1 Patrticle insertion

To insert a molecule into the system via configurational-bias method, we use the
following 4 steps.

1) The first atom of the molecule, the end segment, is located in the system box at
random. The energy between this atom and the others is defingd%s).

2) In order to link another segment to this end segment and to grow the molecule
segment by segment, a setlafial positions is generated for theh segment.
These positions are denoted iy} = (b}, b}, ..., b,). These vectors are drawn
from the center of thel (- 1)-th segment and correspond to the bond vector
eq. 3.19 that connect thel (- 1)-th and thd-th segments. This set of trial
orientations are generated using the internal potential energy, which results in
the distribution:

exp|-pu™ (b)| dbl
C ’

where the inverse temperatyge= 1/kgT, u'* " (bl) denotes the internal poten-

tial energy between the trial position Iocated th}yas thel-th segment and the

other segments which have already been grown Ginsla normalization con-
stant.C; is related to the partition function of an ideal molecule, i.e. 8@,

M
sl 1o = i [onl-a 20T o
1=2

1 -~
= Wfdul...duM_l exp[—kB—TU'”t (Ul,...,UM_l)

= Zi%ea\T, v) (3.29)

pi"(bl) dbl =

1<i<k (3.28)

In our present simulation model” Int(b') is a harmonic spring potential. There-
fore x, y, zelements ob' are mdependently distributed by the Gaussian distri-
bution with the average, 0, and the variang/{3(M — 1)}, whereM denotes
the number of segments per molecule.



40 CHAPTER 3. SIMULATION METHOD

For each of these trial positions, the non-bonded potential energy between this
trial position and the other segments, i.e. the other molecules and the segments
which have already been grown in the present molecule, is calculated. This
energy is denoted b(yf’”b(b'j) and one of these positions is selected ad-e
segment with a probability

exp|-puM™(bl) _
pr(b}) = [ana) ’], 1<j<k (3.30)

where )
wh(1) = " exp|-pur(d))] . (3.31)
=1
This step 2) is also schematically illustrated in B2 Since we favour con-
formations with a low energy, we have introduced a bias. For the purpose of

satisfying the detailed balance, this bias should be compensated in the accep-
tance rules.

We define a set afb'} over the trial molecule as

(B} := ({v?}.....{bM}).

3) After repeating step 2) until the whole molecule with the number of segments
per moleculeM, has been grown, we calculate the Rosenbluth weight

b ﬂM wrnB()
n._ N
W= exp[ U (1)] || T (3.32)
4) The new molecule is accepted with a probability
- VexpPBu] . n-
accN - N+ 1/{B}) = mln(l, A—3(N " 1)W iMm]. (3.33)

whereN denotes the current number of molecules in the systgm). and the
chemical potential of the reservoir consisting of ideal molecules denoted by
are given in 8.18 and @.17) respectively. We can reduce the acceptance crite-
rion by expressing andu in terms of the densityes 0f a with non-interacting
molecules.

. Vv
acc(N — N + 1| {B}) = mln(l, mpre{Wn). (3.34)
The reference state in the chemical poteniji@r), and thermal de Broglie wave

lengthA have disappeared from our acceptance criterion.

At large parametek, high acceptance ratio is obtained because energetically
good configurations are found. On the other hand, at sknallprogram runs fast
whereas the acceptance ratio is low.

Particle deletion is discussed in appenBix
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Figure 3.2: Step 2) in the particle insertion. After the first segment is randomly placed

in the system, the other segments that belong to the inserted molecule are grown segment
by segment. Théth segment is connected to tHe—(1)-th segment in step 2). In this
figure, as an example, kt= 4 the 6th segment is linked. Solid lines and spheres represent
the molecular configuration and the segments already grown respectively. {Blyst
(bl,....Hl,....b), I = 6, is generated according to the internal potential energy between
the 6th segment as an trial position and the other segments i.e. from the 1st to the 5th.
Thesek trial positions are drawn by broken arrows and broken spheres with the niimber
One of the trial positions is chosen as the real 6th segment according to the non-bonded
potential energy of each trial position. This non-bonded potential energy is calculated
between each of the trial 6th segment and the other segments i.e. the other molecules and
the segments which have already been built. In this example, the 2nd trial poisitid,

is selected as the 6th segment.

3.3.2 Detailed balance condition of the configurational-bias method

When one molecule is inserted on the positidtit = (r}*1,..., r1) to the
particle configurationr(, ..., r}), the probability flow from the state¥,. .., )
to (r],..., iy is defined as

K((r....taIN) = (r$.... i N+ 1)),

This flow is a product of the probability that the system is found in the state
(ri, ey rk‘,l), given in eq. 8.26), and the transition probability in this flow, denoted

by
Pr((r},...,rmN)—>(ri,...,r,\N,|+1|N+1)).

The flow is:

K((ri,...,r’,:‘,,'N)a(r},...,r’,:‘,l*1|N+l))=
\ivN(r},...,rR‘,l)(dV)MN xPr((r},...,rmN) N (r},...,rk‘,l+1|N +1)). (3.35)
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In the reverse flow, i.e. the flow where the inserted molecule®th is deleted, is
also defined in the same way,

K((rL.. . N+ 1) = (r]..... Ty N)) =
Wiea (1 ) @M s Pr((rg e N+ 1) - (LT N)).
(3.36)

Our molecule is constructed segment by segment with a bias. In the following
we prove that our acceptance criterion compensates the bias and that our simulation
method satisfies the detailed balance in statistical mechanics,

K((r},...,r’,\\'A|N)—>(r},.. N+1’N+1))
K((ri,...,rM+1|N+1)—>(r},...,r’,§'A|N)). (3.37)

Hereafter for simplicity, we denote the states only with the number of the
molecules, e.g.

(N) :=(rd..... I N).

3.3.2-a Flow of probability in the step insertion

First we calculate the flowd(35. In this equation, the former factch(rl, e r’h\‘,l)
has already been given in €e§.26). From now we will determine the latter factor,
the transition probability.

The first atom of the inserted molecule, the end segment, is Iocateﬂ*én
with probability

1
—dV.
Y
Forl-th segment, we assume that the trial molecule is arrangeﬁ*érwhen atrial

orlentatlonb'F is generated and chosen. A $' including sucrb' is denoted by
{b™}. A set of{b""} over the trial molecule is defined as

(B} = ({7} {o™)).
The probability that the trial positior*! is generated with &} (¢ {BT}) is:

nnb

v 1]

This trial is accepted with the acceptance criterion

exp[ /BU”'”t(b| ] dv

acc(N —» N+ 1/{B}).
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The total probability to generate and accept this trial insertion™sn, i.e. the
transition probability, is obtained via summation of these relations over all the
B} (e {B")):

PrN — N+ 1) =
M exp[—,b’uln ”b(b'r)]
—dV
ZBF, D{ wrn(l) (3.38)

acc(N — N+ 1/{B}D)|.

exp| -y '”t(b})] dv}

1

Note that the factok means that the position dx{l. in {b'} does not matter; here-
after b}. is fixed on the last ofb'}, i.e. {b™} = (by,..., b, ,,b}). This transition
probability .38 yields the flow 8.35 =

K(N = N+ 1) =Wy (rf,.... 1)) @)Y x Pr(N — N + 1)

:E(u %I' V) AN exp[—ﬁU (r% e r',t',l) +,8,uN] (dV)MN
erol-4™()

x dV Z []_[{ T

K exp ,BUI”'”t(b')] dV}

acc(N - N+ 1| {B}Y|.

kﬂ

i=
(3.39)
3.3.2-b  Flow of the probability in the deletion step

The reverse flow3.36) is also calculated in the similar way t8.89.
K(N+1- N) =N (r], .. iy ) @M Pr(N + 1 - N)

1
=S TV P (NS T exp[—BU (1L, .., TN 4 (N + 1)] (V) MN+D

. Z M {k L exp|—puP™(bl)| dv

]_I n C }acc(N+1—> NI {B})].

=2 |i=1

(3.40)

3.3.2-c Detailed balance in configurational-bias method

In order to satisfy the detailed balan&37), the flow @3.39 should equal the re-
verse flow 8.40). This detailed balance is certainly fulfilled if each term 339),

for a specic choice of trial vecto(8} (¢ {B"}), is equal to its counterpart i3 40,
which corresponds to the saffi®}. This stronger condition is called super-detailed
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balance [50, 54]. Imposing this super-detailed balance, we determine the accep-
tance criterion ac€N — N + 1| {B}).

Super-detailed balance and the equatié37, (3.39, (3.40, (3.32, (3.29,
and @.18) yield the relation

_ VexpBul . n.
acc(N - N+ 1/{B}) = A—3(N N 1)W j(Myacc(N + 1 — N|{B}). (3.41)
When B
V exp[Bu n-
—_ T)<1
FECEE N
one choice for the acceptance criteria that fulfill the conditAl) is:
_ VexpBu] . n. _
acc(N —» N+ 1|{B}) = A—3(N " 1)W j(T), acc(N+1— N|{B}) =1
(3.42)
When B
VexplBu] . i
A3(N + 1)W M=1

due toWw" = ‘WP for the samd B},

CA3N+1) 11
Vexpu] WO j(T)
(3.43)
These results3(42 and @.43 are consistent with the acceptance criteBa888
and B8.3). Thus our method satisfies the detailed balance.

acc(N —» N +1/{B}) = 1, acc(N +1 — N|{B})

3.3.3 Test simulation of the configurational-bias method

As a test on our configurational-bias method and simulation program, we simulate
ideal polymers and single component solvent-free homopolymers. In this section,
N denotes the number of segments per polymemgrttie number of the polymers

in the systemN is fixed at 32. In these tests, 1% of the total simulation steps is on
average chosen for the particle exchange between the system and the reservoir. The
number of trial positions in constructing one atom, denoteé loyour algorithm

(see sectio.3.]), is fixed at 5.

3.3.3-a Test simulation on ideal polymers iV T-ensemble

First we simulate ideal polymers via our configurational-bias method in the grand
canonical ensemble. In our simulatidnhis fixed at 2023R§ and the dimensionless
polymer density of the reservop., is 122.

109 pfes = BridealT. pres) — 109(A%/(R3Z0)) = 4.80,  see eq.3.23.
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Since our system consists of the identical ideal polymers which also compose the
reservoir, the average polymer density in the system is equal to the one in the
reservoir. In equilibrium, the average number of the polymers in the system is

(np) = Vples = 1000

In the initial configurationny polymers are arranged in the cubic system box.
Figure3.3 shows the number of the polymers in the system Ingxat the initial
valuesnpy = 500, 1000, and 1728. These data indicate thaluctuates around
(np) = 1000. This simulation result is consistent with our discussion.

The number of ideal polymers
at ny,=500, 1000, and 1728
1 MCS = 32,000 simulation steps

‘5 2000 —np0=500
) % —np0=1000
£ ¢ 1888 T ~[npo=1724
E % -- S B o
o o 500
c 3 z 'l 'l [} 'l 'l 'l z [ ]
|_ O T 1 1
0 50 100

MCS

Figure 3.3: The number of polymers),, sampled every MCS, where 1 MCS 32,000
simulation steps. Simulations are started at the initial number of polymgges 500, 1000,
and 1728 respectively.

3.3.3-b  Single component solvent-free system W T-ensemble

In our single component solvent-free homopolymer model (see seZtipnthe
free energy of the system is defined as
F(T,V,np) _ Fideal(T, V, Np) + Fexces{T, V, Np)
keT kgT kgT ’

whereFigeal is given in 3.22 and @.24) and the excess free energy

Fexces{T, V, Np) 1 5, 1 3
kB—T = f\;dV —§Vps + éWpS

1 1
= Z {AV (—EVpg + §Wp§)} .

cells
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Table 3.1: Simulation parameters for the test simulation of single-component solvent-free
homopolymers on configurational-bias method in grand canonical enseRbig taken
as the unit length.

Polymerization degred = 32
System sizé&e =2.0
v =0.01
w  =0.0001
The width of the celUL =~ 0.166
The maximum trial displacement= AL

Mean-field approximation yields

FexceséT, V. Np) 1 1
kB—T ~V —EVpg + §Wp§ .

In this approximation, the total chemical potential of the system is:

u(T, pp)

_ 3 2 3 2
T - log (A%pp) — log Zo — VN?pp, + WNp3,

whereZy has been given in eq324). With use of the dimensionless parameters,
this chemical potential is reduced to

u(T, pp) A%, , )2
s Iog(—pp) —logZy - Vi, + Wpp*, (3.44)

RS

within the mean-field approximation. In equilibrium(T, pj,) should equal the
chemical potential of the reservoir given in €8.43. This relation yields

’
Pres

Iog( d: ) Vil + Wpl2 =0, (3.45)

This equation determines the averaggin the system in equilibrium with the
reservoir.

Simulation parameters are shown in TaBl& This system is simulated at
Pres = 51,171 200, and 2646 which correspond;bg = 64,125 132, and 216
respectively (see Tabl&.2) via eq. 8.45. Due to the smalley’ than the critical
valueV., = 2V2w’ = 0.028, the system is in the homogeneous phase. In the initial
state, each polymer with a Gaussian distribution (R8) = 1, is distributed in the
cubic system box at random.

Figures3.4, 3.5and3.6shown, atp;.s = 51, 171, and 2646 respectively. These
data fluctuate aroun@,) = p;)L3 =512 1000, and 1728 respectively. These simu-
lation results correspond to the estimation via mean-field approximation discussed
in this section.
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Table 3.2: pfes and correspondingy, via mean-field approximation(n,) := ,o;JL3 and
(109p7ed = BricealT. pled) — 109(A%/(REZ0)), see eq.§.23.
Pres  Pp  (Np) 10gpres
51 64 512 3.93
171 125 1000 5.14
200 132 1056 5.30
2646 216 1728 7.88

The number of polymers
at n,;=256, 512, and 1000

1 MCS = 16,384 simulation steps
1500

—np0=1000

"E o - —np0=256
2 8 1000 { npo=512
c £

5 X

o)

TRt

e

l—

0 50 100
MCS

Figure 3.4: The number of polymers, atp;,s = 51 sampled every MCS, where 1 MCS
is defined as 16,384 simulation steps. Simulations are started at the initial number of

polymersny = 256, 512, and 1000 respectively. The data fluctuate arguy)d= p’pL3 =
512.

The number of polymers

—
&

The number of polymers

—~
(=)}
~

at k=5 and NK=500, 1000, and 1728 at k=10 and Ny=500, 1000, and 1728
1 MCS = 32,000 simul ation steps 1 MCS = 32,000 simulation steps
s 2000 E —np0=500 % 2000 € —np0=500
o £ 1500 np0=100 © £ 1500 np0=1000
-g E E —=np0=172 g E —np0=1728
=] [<]

29 500 o a 500
= 0O 1 — [ S TR

0 50 100 0 50 100

MCS MCS

Figure 3.5: The number of polymers, atp;.,s = 171 sampled every MCS, where 1 MCS
is defined as 32,000 simulation steps. (@} 5 and (b):k = 10. Simulations are started at

the initial number of polymersyy = 500, 1000, and 1728 respectively. The data fluctuate
around(n,) = p},L® = 1000.
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The number of polymers
a n,,=1000, 1728, and 2744
1 MCS = 55,296 simulation steps

5 4000 ¢ —np0=1000

— = —

D5 3000 - npO: 1728

5

Jo= 1000 E

- o+t
0 50 100

MCS

Figure 3.6: The number of polymers, at p;,s = 2646 sampled every MCS, where 1
MCS is defined as 55,296 simulation steps. Simulations are started at the initial number
of polymersny = 1000, 1728, and 2744 respectively. The data fluctuate ar¢uy)d=

713
ppLl® =1728.

Next we calculate the probability density of, given in eq. 8.27), at pes =
171 and 200. The ffierence in chemical potential between these two systems is
denoted bylu (see Tables.2),

BAu = log 200- log 171= 0.157.
Equation 8.27) yield the relation

H,u+A;1,T,V (np)
Hutv (np)

In Fig. 3.7, these probability densities and the left-hand side of 8gl§ as a
function of np are plotted. The flat graph of this quantity is consistent with the
relation 3.46).

These test simulations indicate the validity of our configurational-bias method
and the simulation program.

A np} __=wTY) (3.46)

eXp[_ KeT S+ A TN
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Probability density of the number of
polymersat p' =171 and 200

2
B 0.025 + Aﬁm
S o2t M Lew
20015 + S
— 1E-69 1 n
2 0.01 + .,'f 950 1000
80005 + /
x 0 e

900 1000 1100

Np

Figure 3.7: Probability density oh, atp;.s = 171 and 200 plotted by a broken line and a
solid line respectively. Simulations are started at the initial number of polymeges (np).

Data are sampled every 10 MCS and 70,000 independent samples are obtained, where 1
MCS = 33,792 simulation steps gf.; = 200. The left-hand side of e8.46) as a function

of ny is plotted in the inset.
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3.4 Chemical potential inNVT-ensemble

We also measure the chemical potential of the macromolecular system in the canon-
ical ensemble.

In the canonical ensemble, the chemical potential of the syat@nV, N) is
determined by the partition functio.6) and @.10):

0

__0 ideal g Zn(T, V)

=N log Z\**(T, V) N log —Z}\‘}'ea'(T, V)

= Buideal(T, V; N) + Buexces€T, V; N)

= log(A%) — log j(T) + Buexces{T. V. N). (3.47)

Chemical potential of ideal molecul@ggea(T, V, N), is defined in €q.3.17). The
physical quantityiexces{T, V, N) corresponds to the excess chemical potential due
to the interaction potential between the atoms:

Buexces€T, V, N) := 9 lo (M)

ON 7 Zidea(T, v)

1 Zyn41(T, V) Zn(T, V)
"WNeD-N l"’g[zﬁf;"(n V)] i 'OQ(Z‘N"%'U, V)ﬂ

~ _1ogl N+ DZn:a(T. V)
B Zn(T, V) Z%(T, V) |

1R

(3.48)

We discuss the method of calculating this excess chemical potential.

Note thatA andj(T) in chemical potential are never determined in our simula-
tion. However this issue, discussed in secoh.3 does not fiect our simulation
methods and results.

3.4.1 Widom’s insertion and deletion methods

We calculate the chemical potential of our system via the combination method
of Widom'’s particle insertion and deletion methods [55] invented for monatomic
particles by Shing and Gubbins [56,57]. Here we develop their method to our
macromolecules. In this method, molecules are inserted and deleted without any
bias.
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3.4.1-a Probability density determined without bias

Excess chemical potential e@®.48 is calculated by the particle deletion without
any bias:

ﬁﬂexces{ﬁ V, N)

- _log (N + 1)Zn+1(T, V)
B Zn(T, V) Zi%ea(T, v)

- log(ZN+1:(LT, V) A3(N+1)'V'1(N + 1)1 f dry...dr Wle)(p[_ks_TU( ’rkl”)]
x exp| - leUmt( L) )
= log <exp kBiTUQ)E’cess(ri, T rwl)DTVNH, (3.49)
Whereugfcess(r%, N VS [\ r',:‘,ﬁl) is the non-bonded potential energy be-

tween (\ + 1)-th molecule and the others in the system box. This equation means
that a real molecule is deleted from the system. On the other hand, the excess
chemical potential is also calculated by the particle insertion without any bias:

BrtexceséT, V, N)

~log (N +1)Zn+1(T, V)
Zn(T, V) Z9e3(T, v)

- 1 1 . " 1 . )
= |Og(ZN(T V)Zideal(T V) BNM NI fdrl“‘drM exp[ kBTU (rl""’ rM)
yen fdrN+1 k‘/ﬁleXp[ o TUmt( (N+L r,,\\|A+1)]

nb N+1 N+1
xexp[——Uexcess(rl,.. VR[S g )])

_ 1 N l N+1 1 t 1 N+1
=-lo g(m/@m fdf drgexpl - UM ()
X<eXp[_ﬁU2>t<)cess(r%"' rM ’rN+l,. rk‘ﬂ+1)]> ]

T,V,N

—log <<exp[ Ugfcess(rl, N v E ST rM)]> > , (3.50)
TVN

V, ideal

where (1,...,rm) denotes the particle coordinates &f ¢ 1)-th molecule dis-
tributed byZ{**(T, V) and(- - - )\};2 is the ensemble average of this ideal molecule.
This inserted molecule is called a ghost molecule, because it is not a part of the
system. This means that the molecule is randomly inserted into the system box
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according to the partition functiol®®?(T, V) as ghost molecules and that the ex-
cess non-bonded potential energy between this ghost and the others in the system
is measured.

Arguments of logarithmic functions in egn8.49 and @.50 are determined
with use of probability density functiongy1 (Ul2es) and fy (Ukesd, of deleted
and inserted molecular energy:

1 b (1 N [ N+1 N+1
<exp ﬁuexcess(rl,..., o [ )
B TV,N+1

1
= ng+1(Ug>t<)ces; eXp[qu_TUches%duggcess (3.51)

1 b
<<exp[—|q3—Tugxcess(ri, N SV E ST rM)]>TVN>
;NI\ ideal

1
:ffN (Ug}(}ces;exp[_lﬁ_-ruggces%dU(raI)t()cess (3.52)

where
ON+1 (Uggces;
= = 1 1 N+1 1 1 N+1
= 2TV P (T D fdr1 ...drtexp oV (rf...ri™)
X 5(Ug>l<)cess( E rkl/l’ o r%ﬂ) - UQchS; (3.53)
fn (Uggces;

_ 1 1 1 N 1 1 N
= 7TV N fdrl...drlvI exp —kB—TU (rl,...,r,v,)

% (6 (UDesd T TN Tare i Tu) - uggces;)&i;al , (3.54)

and¢ is the Dirac delta function.
The ratio between these two probability density functions is related to the ex-
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cess chemical potential via e®.%0):

ON+1 (U(re])?cesg

1 -1 re,...rmy -1
e e T O )| N N
s Vs , ldeal

1 1 N+1 N+1 1 int ( \N+1 N+1
XWWIdrl o driy* expl - U (i Vi

1 1 1 4N Lot N
X T V) TN fdrl...dr,\,I exp[—kB—TU(rl,...,rM)

1
b (o1 N [ N+1 N+l
xexp[—ﬁuexcess(rl,...,rMjrl L)
B
b [l N N+ N+1) _(jnb
X 8 (Upboesd M- Tl 1ot ) = Ulicesd

1 (ynb nb
B exp[— KeT Uexcesg fn (UEXCESQ
__1 (ynb 1 N
<<exp[ KT Uexcesi ETRRRS rM| 1,005 rM)])T,V,N>V’ ideal

1
_@_Tuggces% fn (Uggces; exp[BuexceséT, V. N)| .

= exp

This equation yields the relation

ON+1 (Uggces;

= Buexces§T, V, N). (3.55)
fn (U(re])?ces; ]

ﬂU g)k()CGSS-l- |Og [

Therefore, the left-hand side of e®.%5 plotted as a function g8U2....shows
a horizontal line that the vertical element equals the excess chemical potential,

Btexces€T, V; N).

3.4.2 Chemical potential calculation via Rosenbluth sampling

Using the configurational-bias method discussed in se8ti@mve insert a molecule
into the system composed bf molecules in the canonical ensemble, i.e. a ghost
molecule, and calculate the Rosenbluth weighB88. The average Rosenbluth
weight calculated in this particle insertion, denoted({¥)t.vn, determines the
excess chemical potentid.48) [58, 59]:

Btexces€T,V; N) = — |09<(W>T,V,N- (3.56)
In the following, we derive this Widom insertion formula e§.86. When one

molecule is inserted into the system box, which is composédimblecules at the
position{rN} = (r1,...,r}}), the probability that this inserted molecule is arranged
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on the positionrN*1} = (ri*1, .. riiH) is (see eq.3.39):

exp[-Bur™ ()] X exp| ﬁu”'”‘(b:)] dv
P{rN+1 =—dV Z {n{ Wnnlb(|) 1—[ .

{BJe{Bl'} =1
(3.57)
With use of this probability and eg3(32, the Rosenbluth weight of this inserted
molecule is calculated.

<(W>{rN+1}’{rN}
1 [ M (exp[-Bur™ ()] K expl ,Bu”'”t(b!)] dv
o 3 [
Blaen | =2 )
i M
:%dv Z exp|-pu™"(1)] 1_[{
{B}e{BI} L =

exp| U™ (b) | dv}

evol-ro(o})] | | 22

i=1

In this equation, the notation of the summatpdyg,,gr, is switched to integral and
eg. B.29 shows the relation:

(W}{mu} My

= —dVexp

—pu(1) - ﬂZu””b ]
M {{k L [exp| ,Bu”'”t(b!)] dv

<[ YL S

i=1
_ (@) exp[-pUpm ()]
- A3M ZildeaI(T’ V)

exp|-pup™ (b})] dv
C

: (3.58)

where
Ugmy ({rN+1}) is the total potential energy of the inserted molecule

Integral of (W) vy With {rN*1} over the whole system yields the average
Rosenbluth weight in the particle configuratipf}:

@)™ exp| Uy ({rV1)]

<W>{ rN} = ASM ZildeaI(T’ V)

’

Canonical ensemble average of the Rosenbluth weight is calculated‘womN},
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Wy = Jdrd. . drN W)y exp[-BU (1], T )]
” ASNM NI Z(T, V)
_ Jdr}.. dritexp|-gU ey ({1 exp[-BU (1] ... Tl )]
(N + 1) TASMN+DM (N + 1)1 Z\ (T, V) ZI%83(T, v)
_ (N+1)Zna(T, V)
 ZN(T, V) Zi9%e3(T, v)

(3.59)

Equation 8.48 and logarithm of eq.3.59 show

(N + 1)Zn4a(T, V)

T.V,N)=—-lo X
Btexces ) g Zn(T.V) ledeal(-l-, V)

= —log{W)T\N.
This result is consistent with ed3.66).

3.4.2-a Rosenbluth weight corresponding to the reservoir

Equations 8.17), (3.47), and 8.56) yield the total chemical potential of the system
in canonical ensemble.

Bu(T.V.N) = log (4%) - log j(T) ~ log(W).un. (3.60)

wherep = N/V denotes the average molecular density in the system. When this
system is equilibrated with the reservoir at the same chemical potential, i.e. the
system in grand canonical ensemble at the chemical potential

Bu(T,V,N) = ures = log (Aspres) —log j(T),

wherepes denotes the molecular density of the reservoir. This relation determines
Pres, 1.€. chemical potential of the reservoir, corresponding to the same system in
NVT-ensemble:

ol
= —) 3.61
Pres Wyrun ( )

3.4.3 Total chemical potential

So far, the excess chemical potenfBakyces{T,V, N) has been discussed. On the
other handA and j(T) in total chemical potential of the system, e8.47), have
not been calculated in our simulation. Our simulation is, however, independent of
these unknown physical quantities.

In our grand canonical ensemble simulation algorithm in se@i8nboth A
and j(T) disappear; the reservoir is uniquely characterized only by the molecular
density in the reservoir unless the molecular architecturej(I®, is changed. In
the corresponding canonical ensemble simulation, this reservoir density is deter-
mined from the system molecular density and the excess chemical potential, e.g.
eg. B.61), independently oft and j(T).
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Total chemical potential in canonical ensemble at a sitey( N;) and a state
(T, V2, Ny) is respectively

N .
Bu(T,V1,N7) = log (Agv—i) — 109 j(T) + Brexces€T, V1, N1),

N .
(T, Va, Ny) = log (A3V—j) ~ 1og | (T) + BrtexcestT, Va, No).

EachBu(T, V1, N1) andBu(T, V2, N2) containsA and j(T) whereas, in the élierence
between the chemical potential, these unknown parameters vanish,

Bu(T, V1, N1) = Bu(T, V2, Np)

N4V
= IOg ( N;Vi) + ,B,Uexceng, Vi, Nl) - ﬁ#exces{T, Vo, NZ)- (3-62)

This relation indicates that the chemical potential at an arbitrary stateTe\., (N1),
is represented by the chemical potentidfietience from reference, e 8u(T, V2, N2)
in this equation, regardless afand j(T).



Chapter 4

Free energy calculation

In this chapter, we discuss methods for the free energy calculation of an ordered
structure in particle simulation.

In our simulation, physical properties of a system are determined as an en-
semble average over equilibrium probability distribution of particle coordinates.
The free energy of a system, however, is not calculated as an ensemble average.
The free energy is equivalent to the partition function of the system. Calculating
the partition function demands a high dimensional integral over the whole phase
space, which requires a large quantity of computational cost.

Instead of the partition function, we calculate a derivative of free energy with a
control parameter as an ensemble average, e.g. pressure as a mechanical quantity
in the canonical ensemble. The integration of the derivative, called thermodynamic
integration (TDI), yields the free energyfiirence between twoftierent states.

However, for example when one state is in a crystal phase and the other in a
fluid phase, a first order transition and concomitant hysteresis occur in the middle
of the integration path. No reversible integration paths as a function of physical
control parameters, e.g. temperature and density, are found between these two
states. Since the stalk morphology and the system of the two apposed bilayers,
between which the excess free energy of the stalk is defined as the free energy
difference, are two distinct states, the same problem as the crystallization occurs in
the thermodynamic integration. For the sake of solving this problem, we have to
find reference states, whose free energy is known, or integration paths bypassing
the first order transition, i.e. reversible paths.

4.1 Free energy of crystals

When we calculate the free energy of crystals, we can choose the Einstein solid,
in which particles are tethered to crystal lattice points by harmonic springs with-

out any inter-particle potential, as the reference state [34]. The potential ener-
gies of the Einstein solid and the original interacting particles are denoted by
Ur(re,...,rj,...,ry) and U (rq, ..., ry) respectively inNV T-ensemble, where

57
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ri is coordinates of théth particle. These two systems are combined into one
system by a dimensionless paramter

Uﬂ(rl,..‘,rN) = AU, (rl,...,rN)+(1—/l)UR(r1,...,rN).

At A1 = 1, this combined system is consistent with the original interacting system
and at1 = 0 the Einstein solid. The derivative of the Helmholtz free energy of this
combined system, denoted By (T, V, N), is:

d _ 9 ogzi(T,v) = (2 A
SFATVIN) = —keT = log ZY(T, V) = <5U” - rN)>T,V,N ’

whereZ}(T,V) denotes the partition function of this systen,- >’T‘,V’N does the
ensemble average atand

d
—U(re,....rn) = U (re, ... rN) —Ur(ra, ..., In) -

da
The integration of this derivative from = 0 to 2 = 1 yields the free energy
difference between the Einstein solid and the crystal,

1 1
Faz1(T,V,N) = Fi=o(T,V,N) = f da <EU4 (re,..., FN)>
0 da TN

In this integration, the spring potential is gradually switch&drom the reference,

i.e. Einstein solid, and the particles are changed to the original interacting particles.
Due to only a slight change in the particle configuration between the crystals and
the Einstein solids, the integration is free from the first order transition.

4.2 Helmholtz free energy calculation based on an exter-
nal field

We have discussed the free energy calculation in crystal phase using Einstein solid
as the reference. On the other hand in fluid phase, moleculestirsintj over the
whole system box. In such a case, no suitable reference states can be found.

We assume that our external field arranges the ideal gas molecules into our self-
assembled structure. In this method, the ordered structure is kept with the help of
this external field during the thermodynamic integration for the sake of preventing
the first-order transition of interacting molecules.

4.2.1 Molecules in the external field

We discuss the statistics abduimolecules of the same specieNWV T-ensemble.
One molecule consists &l atoms; the total number of the atoms in the system
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box= MN. The partition function for this system is denotedZﬁt”E(T, V):
Z (T, V) =
m fdridr% ...drydrz. . .dr}) exp[—kBiTU,l,JE (rf--o r’,:‘,l)] (4.1)

wherer:( represents the position of tkeh atom in thd-th moleculeJ,, ;. denotes

the potential energy in the system, andhermal de Broglie wave length (see
eg. 3.6). In our system, particles are interacting with each other and the external
field. Uy, . is defined as:

U e (I‘i, cees I’u) = Hspring+ A Hint + AeHext, (4.2)

whereHspring denotes the total intramolecular potential of the system e.g. bonding,
torsion, and bendingi,; other total interaction potential energy of the system,
andHey: the total external field energy of the systespring and Hint are equiv-

alent to the internal and the non-bonded potential energies respectively defined in
section3.2 The dimensionless cfiicients1; andAg determine the strength of the
interaction and the external field respectively. A= 1 andAg = 0, this system is
consistent with our original interacting system andijat Ag = 0 the disordered
reference system. The partition function of this original interacting system is

Z’i\r}teract-l-’ V) ::Z/[\ljl :1,/1E:0(T’ V)

1 1 (4.3)
:A—3NM N| fdr% e dr’,\\‘/l exp[_I(B_T (Hspring+ Hint):| .
The partition function al; = 0 andig = 1is
ZI(T, V) :=Z3=0 5= (T, V)
(4.4)

1 1

4.2.2 Thermodynamic integration based on an external field

In our thermodynamic integration method based on the external field, the free en-
ergy diference between the ideal gas as the reference state and the ordered state is
calculated along the integration path via two straight branchelg.tiiplane:

i) Cy:=branchfromf,,1g) = (0,0)to (0 1)
ii) Co:=branch from {;,1g) = (0,1) to (1, 0).

OnCy, 4 = 0and orCy, 1 = 1- g (see also Figd.1). Along the first branch, we
gradually increase the external field strength from the reference state. We assume
that our external field constrains the ideal gas molecules into our self-assembled
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structure at the end of this branch. From this end point, the strength of the exter-
nal field is gradually decreased and the strength of the inter-particle potential is
gradually raised. This is the second branch. At the end of this second branch, the
external field is completely switchedf@nd the system is composed of interacting
molecules as is aimed. The external field is, in general, determined via successive
approximation, which is discussed in secti.4

A

E

0 1 k'

Figure 4.1: Triangular thermodynamic integration path.

On the first branch, our system consists of the ideal gas in the external field.
On the second branch, the system keeps the self-assembled structure with the help
of the external field. Therefore, we can avoid the first-order transition and cal-
culate the free energy fiierence between the disordered and ordered states along
this triangular integration path. The absence of the first order transition is quan-
titatively confirmed by the expanded ensemble simulation, which is discussed in
sectiord.2.3 on each branch.

On this triangular integration path, the derivative of the Helmholtz free energy
F (T, V, N) with Ag is calculated from eqs4(1) and @.2):

4 ELTN)

dAe
A1, AE
ARG A AY)
zZUtE(T,v)  die
= ! ! 1 N 1 1 N
B Z/ll,/lE(T V) ASNM NI fdrl“'drM exp[_kB_TU/h,/lE (rl,...,rM)
N s

x Hext (On Cl)
Hext - Hint (On CZ)

(Hex)yy & (OnCy)
(Hext— Hin)7'y  (OnCp)”

= kg

(4.5)
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where(: - - )ﬂfﬁ, denotes the ensemble average on a paintig). Threfore, the

Helmholtz free energy tlierence between (0) and (10), denoted bylFc,.c,, is:
AFcuc, = [ Hodlifie die s [ (Hon—Hudlifidle  (40)
1 2

where each of the Helmholtz free energffeliences oiC; andC, are:

1
f <Hext>4l,\:/’c’)\]/lE d/lE = f <HeXt>4l,\:/,([)\]/lE d/lE
Cy 01 (47)
 (Hoa- Hin) 08 dg = fo (i35 — (Hexdy' %) die.
2

4.2.3 Method of expanded ensembles

In thermodynamic integration e1.@), the integrand over the interval g < 1
is independently calculated on each discrete points along the braGelaeslC,
in molecular simulation.
In method of expanded ensembles [60], the ensemble is expandehjrtd )
subensembles, i.e.:
O:A(EO)</1551)< ---</1(Em1) =1

The partition function of this expanded ensemble is defined as:
m
Z=>"Z{"(T,V) exp[nml
m=0
wheren, = const. and

1 1
(m) . 1 N _ (m) (1 N
ZPTV) =i fdrl---drm exp[ s (rl,...,rM)}

On the brancliCy, /lfm) =0 and onCy, /lfm) =1- /l(Em). In this simulation method,

each subensemble is successively simulated in one simulation run on each branch.
First we discuss the method of expanded ensembles along the @an€n

this straight branch,

um (r%, ces rklﬂ) = Hspring + /lfgm)Hext-

Monte Carlo simulation via expanded ensembles is performed based on the algo-
rithm:

1) Usual displacement via Metropolis algorithm in the fix?éﬁﬂ during a constant
time period i.e. constant MCS.
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2) Another subensemble(Em), m = k + 1, is chosen at random. The current

subensemblel(Ek) is changed tol(Em) with the fixed particle configuration via
the acceptance criterion

S {min(l, exp[ﬁ (/lg() _ A(Em)) Hext + 77m — nk]), O<m<m
0 m=-1m+1
(4.8)

3) Repeat steps 1) and 2).

In this simulation via the method of the expanded ensempjgss the proba-
bility that the system is found in the subensemﬂt@ is measured:

= (4.9)

- )
MNtotal

wherenyg denotes the total length of the MC chain anpgthe number of MCS in
the subensemblﬂa‘Em). On the other hand, with use of the partition function,
Z{"(T,V) explnm|
pm = Z s

and therefore
P ZV(TV)

= ————exX — 1k
= exXp[—BFm + BFk + 1m — 1kl » (4.10)
whereFn, ;= —kgT log Z,(\,m)(T, V) is Helmholtz free energy of the subensemble

/lfzm). Thus, we can know the fierence of Helmholtz free energy between any
pairs of the subensembles using the relati@gng) @nd @.10).
On the brancli€,,

um (ri, cees rm) = Hspring+ Hint + /l(Em)(Hext — Hiny).
The acceptance criterion ed..9) is:

we o [min(Lexp[B (2 = AL) (Hea = Hin) + =]}, 0<m<my
“™ 7 o, m=-1m +1
(4.11)

Optimal ny In theory, the simulation results should not be dependent on the
choice of the constantg,. In practice, however, the probability, strongly de-
pend o, (e.g. if allpy = 0, the system is mostly found in the subensemble of
the lowest energy). Aym = BFm, the system is homogeneously distributed over
all the subensembles, i.py, = const.= 1/(my + 1). Since this optimal, is deter-
mined from unknown physical quantity before simulation, i.e. free enErgyim

is estimated via preliminary simulation runs, e.g. thermodynamic integration (see
section4.2.2.
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4.2.4 Determining the external field

The external field which arranges the ideal gas into and mimics the ordered struc-
ture observed in the self-assembling system, in other words the external field that
distributes the ideal gas into the molecular density distribution calculated in the
self-assembling system, is essential for our free energy calculation technique. The
absence of the abrupt structural changes on the bi@nutdicates that this branch
bypasses the first order transition, i.e. free from the hysteresis. In this section, we
discuss the external field calculation for the solvent-free linear amphiphiles intro-
duced in sectio2.2 We assume that the energy from the external field is,

Hea _ (1dV

keT  Jv RS
where the dimensionless molecular density has been defined b 89 .gndW,,(r)
denotes the external field acting grspecies of segments at the position

In systems of dense polymer solutions, self-consistent field theory yields an
accurate estimation for the external ordering field [36, 37],

W(r) = RS it , (4.13)
5Pp1(1) g (=7 1)
wherepp, (r) is the molecular density distribution gfspecies in the self-assembling
system i.e. the target structure, which can be calculated prior to this external field
calculation.

In the solvent-free systems, however, fluctuations cannot be neglected. There-
fore, we propose successive approximation. In this method, we iteratively improve
the external fields from the initial estimate via e4.13).

1) Set the initial external fields estimated via e$}1Q.

(05 (1) WA(r) + prig(r) Wa(r)). (4.12)

2) In these external fields, simulate ideal molecules according to the Hamiltonian
eq. @.12 and calculate the molecular density distribution in the system.

3) Using this result, improve the estimate for the external fields via
WD) = WiP() + € ol (1) = B} (4.14)

wherenis the iteration indexs a small positive constant parameter, @G,%)(r)
is the molecular density distribution obtained in step 2).

4) Repeat steps 2) and 3) till the convergence.

4.3 Grand potential calculation

We have discussed the Helmholtz free energy calculation. Now grand potential, i.e.
free energy iV T-ensemble, calculation is discussed. Grand potential is defined
as

Dg(u, T,V) := —kgT logE(u, T, V), (4.15)
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whereZ(u, T, V) denotes the grand partition function,

(9

Eu.T.V) =) {exp[kBLTN] Zn(T, V)}.

N=0
In thermodynamics,

O, T,V) = F(T, VAN, 1v) — i{NY, TV, (4.16)

where(---), 1y denotes the ensemble average.al, andV. Using thermody-
namic integration, we determine thetdrence in the grand potential between the
systems at = u® andy = u©@.

The derivative of the grand potential e4.15 is:

9 15 M
@@G(ﬂ, T,V) = STRAY é{N exp[kBT N] Zn(T, V)}
= —(N),Tv (4.17)

Integration of this derivative yields the grand potentidfatience between™® and
(0).
TN

#(1) P
A0 =06 (1, T V) - 06 (O TV) = | {06 T.V) b
L0 | ou
e

- [, () e (4.18)
M

During this thermodynamic integration iV T-ensemble, the first-order transi-
tion can occur unless the states betwgéh (T, V) and (@, T, V) are in the same
phase. To bypath this transition, in theory, the thermodynamic integration based on
the external field can also be appliedidd T-ensemble. In practice, however, the
external fields used inV T-ensemble could have to be fine tuned for the purpose of
keeping the number of molecules approximately a constant. Although such highly
adjusted external fields are determined, linear dependengge oh 4, along the
branches, i.e. the triangular integration path in Big, would not be sfficient to
bypath the first-order transition.

Instead of this method based on the external fielgd/im-ensemble, we present
another integration path bypassing the transition, i.e. the thermodynamic integra-
tion in uV T-ensemble vidNV T-ensemble:

1) A state in the canonical ensemblE V¥, Ncanonica), Which is in the same phase
as the stated?, T, V) in the grand canonical ensemble, is set.

2) The Helmholtz free energy at this stat&(T, V, Ncanonica), IS calculated along
the path that bypasses the first-order transition. This has been discussed in this
chapter. The chemical potential in the canonical ensembieV, Ncanonica), iS
also determined (see secti8rl). We assume the conditioi{T, V, Ncanonica) &
uD); no first-order transition occurs in the region betwg€h, V, Neanonica) and
1 with the fixedT andV.
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3) The grand potential at the state in the grand canonical ensemble corresponding
to the stateT, V, Neanonica) iS, by eq. 4.16),

(e (IJ(Te Vv, Ncanonica)’ T, V) =F (T, Vv, Ncanonica) —H (T’ Vv, Ncanonica) Ncanonical

(4.19)
Substitutingu(T, V, Ncanonica) for 1@ in eq. @.18 and using eq.4.19, we
obtain the grand potential gi'®), T, V),

e (,U(l), T, V) =F (T, V, Ncanonica) —H (T, V, Ncanonica) Ncanonical
(1)

L
+ f (—(NYTv) . (4.20)

1(T,V,Ncanonica)

Due to the conditions in steps 1) and 2), the first-order transition is bypassed
through the total integration path. Therefore, the grand potential at arbitrary
B is calculated via this equation as long as these conditions are satisfied.

This method means that the thermodynamic integration path in the canonical en-
semble, e.g. the triangular integration path in Hid, is extended to the state in
the grand canonical ensemblg}, T, V).

4.4 Semigrand canonical ensemble

We have discussed the free energy calculation methods of single component sys-
tems. When we calculate the free energffastence between single component
systems composed of distinct molecular species, the same free energy calculation
scheme, which takes vast amounts of computation, has to be repeated for each
molecular species in order to compare the free energies.

Here, we introduce the semigrand canonical ensemble [61-63] which alters
one molecular species to another species. This ensemble yields a direct thermo-
dynamic integration path connecting these two single component systems. Along
this path, the Helmholtz free energyffidirence beteween these systems is directly
determined.

4.4.1 Statistics of semigrand canonical ensemble

The statistics in the canonical ensemble and the grand canonical ensemble have
been discussed. In the grand canonical ensemble the chemical pojentiahe
system is fixed though the number of moleculsfluctuates around the average

that corresponds t@. In a binary systems composed of linear amphiphiteand
v-species, that have 2ftkrent block ratios, the grand partition function (see also
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eg. @3.29) is defined as:

a1y T, V) o= Z Z {exp (tta/ksT) No] €XPI{, /KeTIN,]

=N = GEE JECION

xfdri...dru””\" exp[—ki_ru( .,rI,:,II‘”Ny)]}, (4.21)
B

whereu,, i1, := chemical potential ofr, y-species, and\,, N, := the number of
molecules in the system aof, y-species, respectively. Under the condition that the
total number of the molecules in the system bbdk,.= N, + N,, is fixed, this
partition function 4.21) is:

N
_ . IJ)’ 1 l ,ua/ :u)/
dN(ﬂ(bﬂy,T,V) = EXp[k TN] A3NM NZ {Na! (N _ Na,)! EXp[ k T N ]

><fdr}...dr',\\j|"+'\‘7 exp[—kB—TU( ,r',:,l"’JrN’)]}- (4.22)

This is called semigrand canonical ensemble. In this ensemble, the molecules
moves between the reservoir and the system under the constraiit thdixed.
The probability density oN,,, corresponding to eq3(27), is obtained from4.22),

Htgiry, TVN(NG) 1=
Hy 1 1 Ha = Hy
N N
NI AY) exp[k T ]A3NM N (N = No)! exp[ keT ]
N, +N Ny +N
><fdr}...drM+ ’exp[—ﬁu( N v 7)] (4.23)

This semigrand canonical ensemble is also reproducétMii-ensembleN
molecules confined within the system box switch their species according to the par-
tition function of semigrand canonical ensemble [50]. This means that each term
in eq. @.22 corresponds to the combination tidt of N molecules are chosen as
a-species, i.eNCn, = NI/(Ny! (N — Ng)!). In this NVT-ensemble, the summa-
tion in eq. @.22 is replaced with the summatio¥.omp. Which runs over all the
combinations thal molecules are divided int® andy.

1 u 1 Ha — M
._‘N(/Ja/,/J'y,T V) exp[k )-II-N] A3NM Z {eXp[ k T )IN ]

comb.
1
><fdr1 dry +Nyexp[—k—_l_u(r},.. )

In this partition function of the semigrand canonical ensemble, each term has been
divided bynCy, for the purpose of correcting the double counts.

}. (4.24)
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The partition function4.22 shows the relation

N7 ﬂaf > :u’)/
N, ~ .
0’ /'la/ < /J)’

In this limit,

exp| £=N| ZE(T. V), o > 1y

(4.25)
exp| ZEN|ZU(T. V). pe < 1y

EN(ﬂm My, T, V) = {

where Z{ (T, V) := partition function ofa-species single component system in
canonical ensemble (see €8.9)).

4.4.2 Semigrand canonical ensemble simulation

Systems in the semigrand canonical ensemble is simulated based on the partition
function @.24) by the following methods:

1) In one simulation step, with constant probability trial species change is cho-
sen.

i) One molecule ofN is selected at randomUgg := the energy of this
molecule in the current state is calculated.

ii) The species of the selected molecule is chandégl,, := the energy of
this molecule after this change is calculated. This trial species change is
accepted according to the acceptance criterion,

acc@ — b) = min(l, exp

1
“kaT (tta — o + Unew — Uold)D > (4.26)
B

wherea, b := old and new molecular species respectively. If rejected, the
molecular species is returned to the state before this trial.

2) In one simulation step, with probability 4 ps, a local trial movement via
Metropolis algorithm is chosen.

The acceptance criteriod.@6) indicates that the chemical potetiafférenceu, —
1, determines simulation results, regardless of each chemical potentaldy., .
4.4.3 Free energy dference via semigrand canonical simulation

Using semigrand canonical ensemble, we calculate the Helmholtz free energy dif-
ference between single component systems composed of distinct molecular species.

First, a physical quantity corresponding to free energy of semigrand canonical
ensemble is defined as

YN(a, tty, T, V) := —KgT log En(ite, iy, T, V). (4.27)



68 CHAPTER 4. FREE ENERGY CALCULATION

Derivative of this quantity withy, is:

alPN(l“l(l’/-’l‘y’ T’ V) 1 aEN(I/t(Y’H’y’ T’ V)
= —keT 3 = = (No)T gy VN
a,uoz =N (/Ja, My, T, V) 6,[1(1, (Z]. 28)

where(-- )t ., vn = Semigrand canonical ensemble average. These equations
yield the integration relation,

0
A%, v (11
=N (18 1y, TV) = B (1, 11y, T, V) (4.29)
(1) @
Ha 8‘PN(I'ILY9#)/, T, V) Mo
= f# © o due = f# © (_<N0>T,,u(,,p%\/,N)d,ua, (4.30)

At > 1, andu® < 1y, egs. €.29, (4.27), and ¢.29 show
AN, v (1 1) = Fo(TVIN) = Fy (T, N) = N (1) - ), (4.30)

whereF,(T,V,N) andF, (T, V, N) := Helmholtz free energy of single component
systems in canonical ensemble composed ahdy-species respectively. There-
fore, from eqgs.4.30 and @.31), we obtain the Helmholtz free energyfidirence
between the single component systems

AF, o(T,V,N) :=F,(T,V,N) - Fo(T,V,N)

& (4.32)
! :
= Lo (i) ot =N ).
This result connects a molecular speciewith another specieg via the direct
thermodynamic integration path, sketched in &ig During this integration, the
single component system of one species is mutated to the other species.

4.4.4 Test simulation in semigrand canonical ensemble

As a test, we simulate a binary mixture of linear amphiphiles with the number of
segments per molecue32 using our solvent-free model discussed in se@i@n
The a-species is defined as an amphiphile composed of 28 A-segmentg- and
species 27 A-segments. Single component systemsspiecies are simulated in
chapterb. In this sectionn, denotes the total number of amphiphiles fixed at 932,
Npe denotes the number af-species, andy,, doesy-species. In the initial state,
Npe = 932 amphiphilic molecules are arranged on the bilayer configuration parallel
toyzplane in the system bdx,/RexLy/RexL;/Re = 10x4x4, which corresponds
to a tensionless bilayer af-species. The width of the cellL, and the maximum
trial displacement are given in Tabk.L In this test simulation, 10% of the total
simulation steps are taken as the trial molecular species change on average.
Figure 4.3 shows the Ifp, /np) vs chemical potential éierence graph. In the
regionu, — py, > 0, Np,/Np is approaching to 1 and im, — 4, < 0to 0. The
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O-SPECIES o, Y Y
AF_ AFW
— ’ -

canonical semigrand

T,V,N

Figure 4.2: Thermodynamic integration paths via semigrand canonical ensemblg.
denotes the free energyfidirence between the reference state and the single component
system ofa-species. From this system, the molecules are mutated to another species,
Free energy dierence between the reference and the single component system composed
of y-species is equal toF, + 4F, ,. On these integration pathg, V, andN are fixed.

<Ny, /N> VS (u,-p,)Kg T o: A=28

o O
o 0

Ratio of a-species
O O O
AN

o
oON

(o1, kg T

Figure 4.3: (np,/Np) vs chemical potential fierence betweem andy. Data are sampled

every MCS from 500 MCS, the systems are equilibrated by this MCS, to 1,000 MCS and
501 independent samples are obtained. This continuous line shows the absence of the 1st
order transition in this region; the free energyfelience is calculated from this graph via

eq. 4.32.

continuous line of this graph indicates that no first order transition occurs. In these
simulations, the system keeps the bilayer structure (seeHy.

Figure4.5shows probability densities of,, at4u := u,—u, = 0.305KgT and
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(b) (©)

Figure 4.4: Snapshots of the system at<710° MCS. Red regions in these snapshots
represent the regions in which A-block of the amphiphiles gather and green regions do
B-block. (a): taken aty, — uy)/keT = —4.656, (b): -1.843, and (c): 0.4595. The system
keeps the bilayer structure in our simulation.

0.459%gT. In the inset, the left-hand side of the relation obtained from4@g3j,

Hi g, 7N (Ne) exp| - (ue = 1) = (o — 1y) Na]
Hpigs,. TVN(NG) kT
EN(/JCD/-[}/,T, V) /’l;/ _I'l’}’ .
== ) N| =: Csemi
EN(g, 1y, T, V) ksT

is plotted as a function afy,, whereu;, —u;, = 0.459%gT andu, —py = 0.305KET
in our simulation. This constant graph is consistent with this rela@ggy
These test simulation results show the validity of our simulation.
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Figure 4.5: Probability densities ofip, atdu = p, — p, = 0.305KgT and 0459%gT
plotted by a broken line and a solid line respectively. Data are sampled every 5 MCS after
500 MCS and 139,901 independent samples are obtai@egh as a function oy, is
plotted in the inset.
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Chapter 5

Simulation of bilayer membranes

Using the solvent-free model of linear amphiphiles, i.e. lipids, discussed in sec-
tion 2.2, we simulate bilayer membranes coupled with our improved PPPM method
(see sectior.3). We measure the excess free energy of the stalk in the systems
composed of molecules witNa, the number of A-segments in one lipid, 27,
28, and 29 where the number of interaction centers per molecule equals 32. The
free energy of the systemsIdj = 28 is first measured. Based on this result, the
free energy ala = 27 and 29 is also determined via the semigrand canonical en-
semble. These simulations show the dependence of the stalk stability on molecular
architecture, i.e. the block-ratio of the molecules. We also calculate the tension
of the bilayer membranes, which allows us to plot the free energy of the stalk as a
function of the tension.

Fixed parameters in these simulations are given in TaldleThermal energy
kgT is taken as the energy unit.

First, the single-component isolated tensionless bilayers composed of lipids
with Na = 27, 28 and 29 are simulated as the reference systems.

Table 5.1: Fixed simulation parameters for the solvent-free lipid model.
The number of interaction centers per moleddle = 32
The width of the celUL = (1/6)Re
The maximum trial displacement= AL

5.1 Simulation results of tensionless bilayers

In this section, we simulate the single component isolated tensionless bilayer at
Na = 28 and 29 in the canonical ensemble.

73
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5.1.1 Tensionless bilayers atl = 28

The tensionless bilayers consisting of lipids Wik = 28 in the canonical ensem-

ble are discussed. For the purpose of measuring the membrane thickness at the
tensionless state, i.e. the tension of membranes0, we study the bilayer in the
configuration where the bilayers arranged parallel to/thglane span the periodic
system box only in the-direction, as is shown in the lower inset of Figl In this
system, two free edges are formed in thdirection. Therefore in the canonical
ensemble, the bilayer shrinks or grows in yhdirection by itself until reaching the
tensionless state. This bilayer patch composet ef 1280 molecules is simulated

in the system boxX,x/Rex Ly/Rex L;/Re = 8.0x20.0x 2.0, which is large enough

to simulate an isolated membrane. Obtained molecular density profiles across the
membrane in the-direction, i.e. the normal direction to the membrane, at this ten-
sionless state are shown in the main plate of bidj. The bilayer thickness of tail
regions, 2, is estimated from this density profile, i.ed2= 1.3R.. Comparing

this thickness with typical experimental results [64]c 2 30 (A), the length scale

in our simulation is obtainede = 23.0 (A). The integration of the density profiles
yield the area per amphiphilic moleculdy = 0.03432 = 181 (A%. The peak

of the hydrophobic tails in the density profile, approximately 40, is consistent with
the result of the mean field approximation, €820).

40

30

10

Figure 5.1: Molecular density profile across the tensionless bilayer with the free edges.
The lower inset shows a snapshot of an isolated tensionless hilayer with the two free edges.
The upper inset is a snapshot of the tensionless bilayer consisting of 5830 molecules which
span the system box both jadirection andz-direction. The red and the green in these
pictures show the hydrophobic tails and the hydrophilic heads respectively.
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Using thisAg calculated in our simulation, we can pre-assemble a tensionless
bilayer parallel with theyzplane that spans the system box both inytaérection
and in thez-direction, as is shown in the upper inset of FBgl Figure5.2 shows
the mean square displacement (MSD) of the center of mass for one amphiphile
swimming on this tensionless bilayer composed lofl2/Aq = 5830 amphiphiles
in the cubic system boky/Rex Ly/Rex L;/Re = 10x 10x 10. Since the molecules
are confined in the bilayer, the lateraffdsion constant of the lipids on the bilayer,
denoted byD, is determined from the relation,

- $<|r(t) - 1)), (5.1)

wheret is time measured in units of MCS in our simulation, afi) := the position
of the center of mass of a lipid at timie From this equation and linear fitting of
MSD shown in Fig5.2,

D=295x10"° (Miés) (5.2)

MSD of the center of mass of polymers
N,=28 single tensionless

1200 1 /
800 -+ :

g

N

o . |

a : /’/jl 1834E-04x + 2.4224E+00
? 400 YIS SO

R?=9.9995E-01

o ——r——————y

0.0E+00 4.0E+06 8.0E+06 1.2E+07
MCS

Figure 5.2: Mean square displacement of one moleculdat 28 in the single tensionless
bilayer composed of2/L,/Aq = 5830 amphiphiles. The system sizelig R x Ly/Re X
L,/R. = 10x 10x 10. The solid black line and the broken grey line represent MSD and
the linear fitting of MSD respectively. This fitting indicates the relation, M&MD.1834x
107*t. From this result and eq5(l), the lateral dfusion constantD, is determined in

eq. 6.2.

In order to calculate the excess chemical potential of this tensionless bilayer,
denoted by.g*, we arrange the bilayer parallel with tyeplane which spans the
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system box,Lx/Re X Ly/Re x L;/Re = 5 x 10 x 10, iny and z-direction. The
number of lipids, denoted bwy, is fixed at 2yL,/Ap = 5830. Using about
2 x 10* particle configuration sets, which are sampled eversy 10* MCS, we
calculate the excess chemical potential of the system via3gap)(i.e. the par-
ticle deletion and the insertion without any bias. Figat8 shows the results,
that is,ug* = —37.745%gT. This corroborates the result via Rosenbluth sampling
eq. 3.56, ug* = —-37.74kgT. This excess chemical potential and the average
molecular density in the systemy/LyLyL;, yield the total chemical potential, de-
fined in eq. 8.47), of this system.

We measure the excess chemical potential via Rosenbluth sampling.

llllllllllllllllllllllllllllllllllllllllllllll
0.1 G- —odeletion, g
i r ® A—Ajnsertion, f
= %
/-_\Q o
<< 00 ¥ X ANEEOGR0AAAN
2 d%a
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& -37.68
£ -37.70
¢ +—,-37.72
X -37.74
®3 -37.76
37.78
37.80
] 51 46 -44 42 40 -38
Y W I 1 IED NN S F
0.001 -50 -40 -30 -20 -10
Unb/kBT
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Figure 5.3: Chemical potential calculation of a tensionless bilay@tat 28 via Widom'’s
insertion and deletion method introduced in secBofil Molecules are deleted and in-
serted without any bias. Probability distributions of excess non-bonded interaction poten-
tial Uy on the particle deletion and the particle insertion, functigasd f are shown. In

the inset, the excess chemical potential is plotted according t@&d).(The dashed line

in the inset marks our estimate for the excess chemical potential via this method.

5.1.2 Tensionless bilayers di, = 29and 27

At Np = 29, Ag = 0.03314?% is obtained. ThisAg is smaller than the value at
Na = 28 because the hydrophilic heads in amphiphiles fiszvely smaller. The
excess chemical potential of the tensionless bilayer composdd bf/2, = 6030
which spans the systely/Re X Ly/Re x L;/Re = 5 x 10x 10 iny andz-direction
is uS* = —37.74(KgT.
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At Na = 27, Ay = 0.0352R2. The excess chemical potential of the tensionless
bilayer, ,ugx = —36.044kgT, is determined in a simulation box of sitg/Re X
Ly/Re x Lz/Re = 5x 10x 10, composed of2 L ,/Ag = 5680 molecules.
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5.2 Helmholtz free energy of the stalk atNp = 28

Using the simulation results of tensionless membranes in sebtiprwe simu-

late the stalk morphology and the two apposed bilayers composed of lipids with
Na = 28 in order to measure the free energy of the stalk. The Helmholtz free
energy of the stalk is measured in the caonical ensemble via the thermodynamic
integration and the expanded ensemble simulation (see ch§pter the paths
sketched in Fig5.4. On these paths, the total number of molecules in the system
np, the temperaturd@, and the system volumé¢ are all fixed. In this sketch, the
states 1 and 5 are the two apposed bilayers and the stalk morphology respectively.
From now onJF; denotes the Helmholtz free energy on the sigtethe chemical
potential on the statg andy™ the excess chemical potential anEach of the
paths 3— 4 —» 5 and 3— 2 — 1, on which the external fields that reproduce
the stalk morphology and the two apposed bilayers are applied respectively, corre-
sponds to the triangle path in Fig.L The Hamiltonian due to the external field in

our solvent-free model has been defined in ddL2).

A

field | ™

ordering

Figure 5.4: Thermodynamic integration paths for the Helmholtz free energy calculation
atNa = 28. Each of the paths 3» 4 — 5 and 3— 2 — 1, on which the external fields

that reproduce the stalk morphology and the two apposed bilayers are applied respectively,
corresponds to the triangle path in FigLl On all the branches in this figure, the total
number of molecules in the systerp, the temperaturé, and the system volumé are alll

fixed.

During the branch 1— 2, the interaction potential in the system of the two
apposed bilayers is gradually replaced with the external ordering fields. These ex-
ternal fields confine the ideal molecules into the two apposed bilayer structure at
the end of this branch, state 2, on which the interaction potential is completely
turned df. Along the branch 2- 3, these fields are gradually switchefi and
the ideal gas becomes disordered on state 3. Along the brarer 3the difer-
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ent external ordering fields is gradually turned on. Thefferint external fields
gather the ideal molecules into the stalk morphology on the end of this branch,
state 4. Along the last branch-4 5, these external fields are switcheffland the
interaction potential is gradually turned on. On the last of this path, i.e. state 5, the
external fields are completely turneét.oAlong the total path, we can obtain the
Helmholtz free energy tlierence, i.e. the Helmholtz free energy of the stalk,

4
AF :=Fs—F1= Y AFiLia,  AFjx:=Fx-Fj (5.3)
i=1
Each of the Helmholtz free energyfidirencedFj_ is given from eq.4.7):

APy = [ dig (HEReS_ g Yt 5.4
1-2 = 0 E < ext - Int>-|-,v’np > ( . )
0
_ bilayers\A1=0.1e
AFp3 = fl dAE (Hog S)ﬁv’np (5.5)

whereHstak and H2I2®™ denote the energy due to the external ordering fields for
the stalk morphology and the two apposed bilayers respectively. Similar expres-
sions hold for the branches4 5 and 3— 4 respectively.

Alternatively, the branches 2 3 — 4 can be replaced with the direct branch
2 — 4 in order to directly calculate the free energyfeliencedF,_,4. On this
direct branch, the external ordering fields for the two apposed bilayers is gradually
mutated to the fields for the stalk morphology while the interaction potential energy
Hint is always 0.Hey: is defined as the linear superposition of these 2 fields with

use of a dimensionless parameter
Hext = AHS2K 4 (1 — pH2Yes g <1 (5.6)

ext

At 1 = 0, the system is set on the state 2 and at 1 the state 4. The Helmholtz
free energy dference between the states 2 and 4 via this direct branch is:

1
_ stalk _ ybilayers\1
AFp 4 = fo da (HEa - Hoyt 5>T7V’np (5.7)

where the angle brackets represents the canonical ensemble average at the position
A on this direct branch.
The relation,
AFZ_,g + AF3_>4 - AF2_>4 =0,

provides a gauge measuring the error in the thermodynamic integration.

The number of the molecules in the systemg, and the fixed system size
(Lx, Ly, L;) chosen in this Helmholtz free energy calculation is shown in Taldle
Hereafter in this thesis, bilayers are assembled paraljaptane and span the sys-
tem box iny andz-direction. This means thatdirection is normal to bilayersa,
in Table5.2is slightly larger than the number of lipids in the two apposed tension-
less bilayers that span this system boy endz-direction, i.e. 4yL,/Aq = 4197.

Hereafter, the superscripts, stalk and bilayers, represent the morphology i.e.
the stalk and the two apposed bilayers respectively.
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Table 5.2: System size and the number of lipids used for the Helmholtz free energy
calculation.

Lx =100R.
L, =6.0Re
L, =60Re
np = 4240

5.2.1 External field calculation

We begin with determining the external fields that gather the ideal molecules into
the stalk morphology according to the successive approximation discussed in sec-
tion 4.2.4 For this calculatione = 0.05 is chosen in eq.4(14). The ideal
molecules are simulated in the external fields in the canonical ensemble for 10,000
MCS in order to evaluate the average molecular density distribution. The obtained
molecular density distribution is used to improve the external fields and, in the im-
proved external fields, the ideal molecules are simulated again. The convergence
was achieved at about 10 iterations.

Figure5.5shows 2D contour plots of the molecular density distribution in the

self-assembled stalk structure, i.e. the state 5, and the ideal molecular density dis-
tribution structured by the external fields at the final iteration, i.e. the state 4. These
distributions have been radially averaged around the central axis of thersaaiit.
x denote the radial distance from the central axis of the stalk and the coordinate nor-
mal to the bilayer. This result indicates the similarity between these structures. A
similar quality of consistency between the two apposed bilayers of self-assembling
and the ideal molecules structured into the bilayers by the improved external fields
is also obtained (data not shown).

5.2.2 Expanded ensemble simulations &i, = 28

Using these adjusted external ordering fields, the expanded ensembles simulation
introduced in sectiod.2.3is performed along the branches3 2, 2 — 4, and

4 — 5 which are discretised intd = 58,K = 52, andK = 66 sampling points re-
spectively. Thes& ensure that the distribution function at neighbouring sampling
points overlap. It is noted that a slightlyfifirentK is chosen for the thermody-
namic integration.

Figure5.6 shows the time evolution ofg in the middle of the expanded en-
semble simulation on the branches4 2 and 4— 5. These results indicate that
each subensemble is visited with roughly equal probability and that the systems
freely switch the subensembles over the whole branch, 43 < 1. This means
that these branches are free from the first order phase transition, as was aimed. The
Helmholtz free energy éierence obtained by the expanded ensembles on these
three branches is given in Talde3.
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Figure 5.5: 2D contour plot of the molecular distribution for tail blocks, i.e. A-species.
The result in self-assembled stalk morphology (left) and the result of ideal gas structured
by the external fields determined via the successive approximation (right) are shown. These
distributions have been radially averaged around the central axis of thersalitx denote

the radial distance from the central axis of the stalk and the coordinate normal to the bilayer
respectively.

5.2.3 Helmholtz free energy diference along each branch

We show the Helmholtz free energyigirence along each branch.

The thermodynamic integrands on each branch are shown in $%:igs5.8,
and5.9, where the thermodynamic integrands are plotted in the main panels. The
smooth curves in these integrands show the absence of the first order transition,
which has been quantitatively confirmed by the expanded ensemble simulation.

Figure5.7 presents the results for the branches»12 and 4— 5. The in-
tegrands vary rapidly, approaching the ends of the branches. Around 0,
this behaviour comes from the thermal membrane fluctuations, which occur in the
interacting systems i.e. the states 1 and 5. However, this fluctuation is rapidly sup-
pressed by switching on the external fields. The dependence of the integrand on
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Figure 5.6: Time evolution ofig in the middle of the expanded ensemble simulation on
the branches & 2 and 4— 5 plotted by green and black lines respectively as a function
of the lateral motion of one molecule in a tensionless bilayer membrane.

Ag at the limitAg — 1 is rationalized by the strong reduction of compressibility
and the concomitant growth of fluctuations as the interparticle interaction poten-
tial is completely switchedf®. The Helmholtz free energy flierence is given in
Table.5.3.

Figure5.8 shows the results for the branches23 and 3— 4, on which the
ideal gas gathered into the ordered structure is transformed into a disordered one. In
Fig. 5.8, an analytical estimate for the integrands around the disordered state of the
ideal gas, the state 3, is also plotted with use of the Random-Phase-Approximation
(RPA) [1]. This RPA result corroborates the TDI result at small A < 0.05.

The dependence of the free energffatience of the stalk and two-bilayer structure
on Ag is also plotted in the insets of Fi§.7for the branches + 2 and 4— 5 and
Fig. 5.8for the branches 2» 3 and 3— 4.

In Fig. 5.9, the results along the direct branch24, where the external field is
mutated from the two-bilayer morphology to the stalk morphology, is shown. The
free energy along this branch»_,4(1), is plotted in the inset.

From these data, the free energy of the stalk calculated by the TAH is
15.1kgT via the path 1-» 2 - 3 - 4 — 5 and4F = 16.4kgT via the path
1 - 2— 4 — 5. These results corroborates the free energy of the stalk accurately
determined by the expanded ensemble simulation via the path2l— 4 — 5,

AF = 153kgT which is used hereafter in this thesis. This posititke indicates
the metastability of the stalk. Our result is consistent with the observation that the
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Figure 5.7: The thermodynamic integrands on the branches 2 and 4— 5 plotted

by red line and black circles respectively. These branches are discretised into 65 sampling
points. The inset shows the sum of the free energy changes for the bilayer and stalk struc-
tures, obtained after integrating the data of the main figure (with proper sign to account for
the direction of the branch), as a functionigf

stalk disappears after long simulation runs.

Table 5.3: The Helmholtz free energy filerence on each branch B = 28 via the
thermodynamic integration (TDI) and the expanded ensemble simulation (EE). Hereafter
in this thesis, the results of the expanded ensemble simulation is used.
TDI AF1_>2 + AF4_>5 = 70.108(51-
AFo 3+ AF3,4 = —55.038(BT
AFy4 =-5366XgT
EE AF1_>2 + AF4_>5 = 70.813(BT
AF2,4 = -5555&gT
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Figure 5.8: The thermodynamic integrands on the branches B and 3— 4 plotted

by red line and black circles respectively. These branches are discretised into 51 sampling
points. The inset shows the sum of the free energy changes for the bilayer and stalk struc-
tures, obtained after integrating the data of the main figure as a functin @he predic-

tion of the Random-Phase-Approximation (RPA) [1] for the behaviour of the integrands
near the disordered staté=(= 0) are shown with thick solid and dashed lines for the stalk
and the two bilayers, respectively. The RPA behaviour of the free enefigyatice for

small values ofig is marked in the inset with red line. This RPA result corroborates the

TDI result at smallig.
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Figure 5.9: The thermodynamic integrand on the branch 2. This branch is discretised
into 51 sampling points. The inset shows the free energy change as a functiohtained
after integrating the curve in the main figure.
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5.3 Helmholtz free energy of the stalk atNy = 29

We measure the excess Helmholtz free energy of the st&lkat Na = 29. This

can be calculated by the simulation in the canonical ensemble, the scheme in sec-
tion 5.2, independently of the simulation &y = 28. We choose, however, the
semigrand canonical ensemble simulations discussed in sddfimstead of these
canonical simulations in order to reduce the computation. In our semigrand canon-
ical simulation, 10% of the total simulation steps are chosen as the trial molecular
species change on average.

The integration path based on the semigrand canonical ensemble simulation is
sketched in Fig5.10 The single component system of the molecular species with
Na = 28 for the stalk morphology is mutated iy = 29 from the state 5 via the
semigrand canonical ensemble simulation. The apposed bilay&ig at 29 is
mutated taNa = 28, i.e. state 1. The statesNyt = 29 for the apposed bilayers and
the stalk morphology linked tbly = 28 via these semigrand canonical ensembles
are denoted by states 6 and 7 respectively. AddiRgat Na = 28 to TDI on the
branches 6— 1 and 5— 7, we obtain the Helmholtz free energy of the stalk,
AF = AFg_7 atNa = 29. In these semigrand canonical ensemble simulations, the
system size and the total number of molecules are still fixed; the values inSlable
are used.

N.=29 |6 7
canonical
_ 1 35
N,=28 AF
2 apposed
- >
bilayers stalk

Figure 5.10: Thermodynamic integration paths for the Helmholtz free energy calculation
at Na = 29. The apposed bilayers and the stalk morphology, denoted by 6 and 7 re-
spectively, is connected to the corresponding statdé,at 28, i.e. the states 1 and 5
respectively, via the semigrand canonical ensemble simulations. Ad#firegNa = 28 to

the thermodynamic integration on the branches @ and 5— 7, we obtain the Helmholtz

free energy of the stalkiF atNa = 29. Since the integration from the state 1 to the state 5
has been obtained in the simulationdNat= 28, we can skip the simulations in canonical
ensemble alNa = 29 using these semigrand canonical ensemble simulations.

The semigrand canonical ensemble simulation res(mipg%ﬂ PRV are plot-
stasHys Vstip
ted as a function of the chemical potentiaftelience, 4, — ,uy)/kBTy, in Fig.5.11
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wherea andy-species represeiMa = 29 andNp = 28 respectively. The smooth

form of <n a) indicates the absence of the first-order transition. The dif-
P T’Nmﬂy,v»np

ference between the data,
A <n > . <n >stalk < >bi|ayers
Pa Ts/Ja’/J%V’np T Par T,/J(,,/Jy,\/,np pa Tv/la»/-lysV,np ’

. . . stalk bilayers
is presented in the inset, Whe<nepa>w v and(nm>T# v, denote the re-
sHasHys Vslip sMHasHys Vsllp

sults for the stalk morphology and the apposed bilayers respectively. This small
difference 4 <npa>Tﬂ RV gives the free energy change due to the mutation.
Ha-Hy,VsNp

From these results and the integration dg3®, the Helmholtz free energy fiiéer-
ence is obtained, i.elFg_1 + AFs_,7 = —=15.9kgT. Therefore, the Helmholtz free
energy of the stalk is

(AF atNp = 29) = AFG_)l + AF5_>7 + (AF atNp = 28) = —O.GkBT.

This negativedF at Na = 29 indicates the stability of the stalk; spontaneous stalk
formation between the apposed bilayers is also observed in this system. These
results show the stability of the stalk at the large molecular assymetry, i.e. large
block ratioNa/N.

At (1o — 1y)/keT = =2, where a peak is observed in the inset of Bid.], the
normalized diference of molecular density distribution between both the molecular
species,

Poacy) ~ Py
PA(y) pA(a) (58)

Poaey) * Ppaca)
Wherep’pA(y) denotes the molecular density distribution of hydrophobic tailsgfor
species andioA(a) for a-species, is measured and plotted in Bid.2 In this graph,
negative regions are found on the stalk structure. This result means sipacies,
more asymmetric molecular architectidg = 29, gather around the stalk in the
binary mixture simulated in the semigrand canonical ensemble.

5.4 Helmholtz free energy of the stalk atNp = 27

The Helmholtz free energyF at Np = 27 is also measured via the semigrand
canonical ensemble simulations. The states 1 and 5 are linked to the corresponding
states alNa = 27, the states 8 and 9 respectively, via the semigrand canonical
ensemble. The caIcuIajte{ahpa>T#mﬂ%V’np and 4 (nm>T’ﬂmﬂy’V:np.ar§ presented in

Fig. 5.13 These data yieldiFg_,1 + 4Fs ,9 = 181kgT. This indicates that the

stalk atNa = 27 is more unstable than the stalkNg = 28 i.e. more asymmetric
molecules; this result is consistent with the observation that the stalk disappears in
a short simulation runs &a = 27. The Helmholtz free energy of the stall& at

Na = 27, is:

(AF at NA = 27) = AFg_,l + AF5_>9 + (AF at NA = 28) = 33.4kBT.
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Figure 5.11: Semigrand canonical ensemble simulation results betwaer 29 and
Na = 28. The main plate shovx(mp(,>w N as a function of the chemical potential
Ha-flys

difference, g, — 1,)/ksT, for the stalk morphcp)logy and the two apposed bilayers, which
are plotted by a black solid line and a broken grey line respectively. Both the branches are
setin the interval-12.0 < (u, — 1y)/keT < 10.0 and discretised homogeneously into 221
sampling points.a-species is the molecules witliy, = 29 andy-speciesNy = 28. The
smooth form of these lines indicates the absence of the first-order transition. The black
chain line shows the total number of the moleculgs,= 4240. The inset presents the

difference between the data in the main paﬂléhm)TH .
sHa sty sVsNp
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Figure 5.12: The normalized dference of molecular density distribution between both the
molecular specielly = 29 andNa = 28, defined in eq.4.8), measured ajf, —,)/ksT =

—2. These data are radially averaged around the central axis of the stalk (see a#65) Fig.
Molecules ofa-species, i.e. more asymmetric molecular architediye 29, concentrate
around the stalk.
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Figure 5.13: Semigrand canonical ensemble simulation results betWwienr 28 and
Na = 27. The main plate shovx(mp(,>w N as a function of the chemical potential
Ha-flys

difference, g, — 1,)/ksT, for the stalk morphcp)logy and the two apposed bilayers, which
are plotted by a black solid line and a broken grey line respectively. Both the branches are
set in the interval-120 < (u, — 1,)/keT < 7.0 and discretised homogeneously into 191
sampling points.a-species is the molecules witliy, = 28 andy-speciesNy = 27. The
smooth form of these lines indicates the absence of the first-order transition. The black
chain line shows the total number of the moleculgs,= 4240. The inset presents the

difference between the data in the main paéh, )
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5.5 Grand potential of the stalk

When the stalk bridges a pair of large bilayers, unperturbed regions of the bilayers,
i.e. regions far away from the stalk, work as the reservoir of amphiphiles. This
situation means that the tension of the bilayers is a constant before and after the
stalk formation. In such systems, the excess grand potential of the stalk at the
constant chemical potential denoted byl®g(u), describes the stalk stability. In
other wordsA®g(u) corresponds to the stalk stability at the constant tension of the
bilayers. As a result, the number of molecules in the stalk morphology is larger
than the number in the two apposed bilayers.
In this section, we calculate this excess grand potential of the stalk in Grand
canonical ensemble simulations discussed in se&i8nWe still use the system
box given in Tablés.2 However, the number of molecules is not a constant in this
simulation. The grand potential at chmical potential is denoted bybg'aye's(y)
andCDgta'k(/u) for the two apposed bilayers and the stalk morphology respectively.
Grand potential is calculated via the thermodynamic integration in the grand
canonical ensemble, eqt.20. At Na = 28, the integration ofnp),. v, obtained
in these simulations, from the state 1 to some chemical potenyialds the grand
potential diference between these two state: > u) - b2 *Yu1). In the same
way, the grand potential filerence for the stalk morphology is also calculated, i.e.
K (w) — 0Ky15). Comparing these results and additfg, we obtain the excess

grand potential of the stalk at the fixgd ADg(u) = OTKu) — d2Y*w), at
Na = 28. For the single component systems with = 29, instead of the states 1
and 5, the states 6 and 7 are chosen as the reference respectively.

In our grand canonical ensemble simulation, 10 % of the total simulation steps
is chosen as the trial particle exchange between the system and the reservoir on
average. the number of trial positions in constructing one segment, dendted by
our algorithm (see sectidh3.)), is fixed at 5.

The tension of the bilayer membranegyu, T, V), is calculated via the grand
canonical ensemble simulations of the single isolated bilayer according to the
Gibbs adsorption isotherm,

(Dsingle('u) _ cI)single(ﬂo) " <np>si,n_lgl\3 bilayer
o(u,T,V) = G G = - f dy —E——~ 5.9
u : LyL, Ho a LyLz 5:9)

ngle bilayer

whered2"9() denotes the grand potential of the single biIayer(ar;gdZ',,w
the averag@, of the single bilayer.

The calculated chemical potentials of the single tensionless bilayer, the stalk
morphology, and the two apposed bilayers in the canonical ensemble, which are
required in these grand canonical ensemble simulations as the reference of TDI, via
Rosenbluth sampling are shown in Tabldand5.5. These chemical potentials are
referred to the chemical potential of the single tensionless bilaygby eq. 8.62.

In the canonical ensemble, the chemical potential of the stalk morphology is less
than the one of the two apposed bilayers, it8. < u1 anduy < ug, because
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the regions on the bilayers far away from the stalk are thinner than those in the
two-bilayers morphology.

Table 5.4: Chemical potentials measured via Rosenbluth sampling on each shyte=at
28. The chemical potentials are referred to the chemical potential of the single tensionless

bilayer,uo, by eq. 8.62.

State index npRE/V B Bui — Buo
0 11.66 -37.73983772 0
1 11.77777778 -37.71120594 0.038682113
5 11.77777778 -37.74760927 0.002278791

Table 5.5: Chemical potentials measured via Rosenbluth sampling on each shéie-at
29. The chemical potentials are referred to the chemical potential of the single tensionless

bilayer,uq, by eq. 3.62.

State index npRS/V Bt Bui — Buo
0 12.06 -39.57944964 0
6 11.77777778 -39.64344754 -0.087677575
7 11.77777778 -39.72675926 -0.170989294

(np),,7v Of the single component system composed of molecules Mjth=
28 in the grand canonical ensemble are presented in5Fig. From these data,
tension of the single bilayer andidg(u) are determined. We observe that the
excess number of amphiphiles in the stalknp) = (np)SK — (nyyPlaversjs on
the order of a few tens and it decreases as we increase the chemical pagtential,
or decrease the tension of the membraneye also note that the area density of
amphiphiles in the single bilayer is slightly larger than in the two, apposed bilayers.
We speculate that thigfect mirrors the repulsive interactions between the apposed
bilayers.

The grand potential of the stalldg and the chemical potential is plotted as the
functions ofo-in Fig.5.15 We observe that®g increases with membrane tension.
At u = po, we obtainddg = 16.2kgT, which is consistent with the observation
that the stalk disappears in long simulation runs i.e. metastability of the stalk.

In Fig. 5.16 the diference between the molecular density distribution of hy-
drophobicA-species in the stalk morphologyat 1o = 0.10kgT and the one at
u—puo = —0.100kgT is shown. This graph indicates that, in the vicinity of the stalk,
the material mostly increases in the stalk itself with chemical potential. This results
in the stability of the stalk at high, i.e. a thick stalk. On the other hand outside
the vicinity of the stalk, i.e. in the bilayers, the number of lipids homogeneously
increases. Due to this resullin,) decreases at high chemical potential.

The simulation results &tla = 29 in the grand canonical ensemble, i.e. the
number of lipids in the systerm,), the excess free energy of a stalkg, and the
tension of the single isolated bilayerare shown in Figs5.17and5.18 These
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Figure 5.14: Simulation resutls alla = 28 in the grand canonical ensemble. Number of
molecules per area in a single bilayer (diamonds), two-apposed bilayers (squares), and the
stalk-morphology (circles) as a function of the chemical potential referred to the chemical
potential uo, of the tensionless state. The inset depicts the excess number of molecules of
the stalk A(np) = (Np)3K — (n,)PIYers a5 a function of: — po.
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Figure 5.15: Excess grand canonical potentiddbs (circles), of the stalk as a function of
the membrane tensiom;, at Ny = 28. On the right hand side, we show the dependence
of the chemical potentialy; (dashed line), on the membrane tensien, The unit of the
tensionkgT/R2 = 7.83x 1074 (J/m?) atT = 300 (K).
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density

[

Figure 5.16: 2D contour plot of the dierence between the molecular density distribution

of hydrophobicA-species in the stalk morphologyMek = 28, radially averaged around the
central axis of the stalk, in the grand canonical ensemhlea = 0.10kg T and the one at

u—uo = —0.100kgT (see also Figh.5). The graph shows the molecular density distribution

of tails aty — up = 0.10kgT minus the distribution gi — g = —0.100kgT. r andx denote

the radial distance from the central axis and the coordinate along the membrane normal
respectively. This result indicates that, in the vicinity of the stalk, the materials mostly
increase on the stalk itself with chemical potential. On the other hand, outside this vicinity,
i.e. in bilayers, the number of molecules homogeneously increases.

data indicate the similar dependence on the chemical potential to the results at
Na = 28. We also note that the excess number of amphiphiles in the stalk is larger
than the result ala = 28 and that the spontaneous stalk formation is observed in
the system ala = 29.
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Figure 5.17: Simulation resutls alay = 29 in the grand canonical ensemble. Number of
molecules per area in a single bilayer (diamonds), two-apposed bilayers (squares), and the
stalk-morphology (circles) as a function of the chemical potential referred to the chemical
potential,ug, of the tensionless state. The inset depicts the excess number of molecules of
the stalkA(np) = (np)S@K — (np)PlYerS a5 3 function of: — wo.
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Figure 5.18: Excess grand canonical potentiddbs (circles), of the stalk as a function of
the membrane tension, atNa = 29. On the right hand side, we show the dependence of
the chemical potential; (dashed line), on the membrane tension,



Chapter 6

Conclusions

We have devised a general computational strategy for computing free energies of
self-assembling systems [1, 36]. It has been employed to determine the excess free
energy of a stalk that bridges a pair of apposed bilayer membranes, using a ther-
modynamic integration scheme based on external fields. The technique relies on
reversibly transforming one self-assembled structure into another by substituting
the non-bonded interactions by external, ordering fields. To ensure reversibility,
these external, ordering fields have to be chosen as to generate the structure of
the self-assembled system in a system, where the non-bonded interactions have
been turned 1, i.e., an ideal gas. Applications to dense polymer system study-
ing fluctuation-induced, first-order transition between a disordered and a lamellar
phases in diblock copolymers [36] and the free energies of grain boundariew [37]
demonstrated that the external field can be estimated from mean field theory. For
the case of the strongly fluctuating bilayer systems considered in the main part
of this work the mean field approximation fails and we have devised a numerical
strategy for calculating the external fields.

Along the thermodynamic integration paths, the excess Helmholtz free energy
of the stalk has accurately been calculated with the use of expanded ensembles sim-
ulation. This method quantitatively verifies the absence of the first order transition
along the paths.

The simulations have been performed using a solvent-free coarse-grained model
which reduces the computational time and facilitates the Monte Carlo simulations
due to the reduced number of the degrees of freedom and the soft interaction. This
allows, for example, for a very accurate measurment of chemical potential required
for the simulations of lipid bilayers in the grand canonical ensemble. The Widom’s
insertion and deletion schemes that we used would noffiéesit in a system with
hard interactions. However the proposed TDI approach can be used in context of
a broad scope of ffierent models (e.g. Lennard-Jones potentials) and simulation
techniques such as DPD, conventional molecular dynamics, and single-chain-in-
mean-field-simulations [17]. For example we have utilized this technique within
the framework of a Flory-Huggins type density functional to compute the free en-
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ergy of T-junctions and the free energy cost of the surface reconstruction of the soft
morphologies in thin films of lamella forming diblock copolymers assembled on
patterned substrates.

Focusing on the simulations of bilayers, our modeling approach provided in-
formation on the stalk structure which consists of at most one hundred amphiphilic
molecules, a few % of the total molecules in our system. This in combination
with the fact that the free energyftirences between féierent morphololgies in
soft-matter systems typically are small, the accurate measurement of the free en-
ergy is a computational challenge. In this work, we have utilized a combination
of sophisticated simulation techniques (e.g. expanded ensemble and reweighting
methods [1, 65, 66]) in conjunction with thermodynamic integration which are well
suitable for parallel computing [37]. We obtained an accuracykgf4n the free
energy calculation, which corresponds to the relative accuracy of dthin our
computational resources.

Once the excess Helmholtz free energy of the stalk, is determined in the
canonical ensemble, the dependence of the excess free energies in the canonical
and grand canonical ensembié; and4®dg, on the molecular architecture and the
chemical potentigk can be obtained with a relatively low computational cost. The
dependence of the excess free enef@y on the chemical potential can be utilized
to extract the dependence 4®s on the membrane tension, an information
which can provide a link to experiments.

We have determined the excess free energy of a stalk connecting two tension-
less bilayer membranes to bi@g = 16.2kgT with Na = 28. This free energy
is lower than earlier estimates based on the phenomenological theory, whereas it
is consistent with the results in self-consistent field calculations [30]. This result
is particularly notable owing to significantftBrences in the microscopic struc-
tures between our solvent-free model and the model of the self-consistent field
calculations, e.g., we use an implicit solvent while the self-consistent field model
represents the solvent by homopolymers. This finding suggests that the excess free
energy of the stalk is not very sensitive to the specific interactions of the model and
that the results for our simple coarse-grained model are also relevant for synthetic
or biological bilayer membranes.

When the membrane tension increases, we observe that the number of molecules,
of which the stalk is composed, increases and, in turn, the excess free efixgy,
also increases slightly. This findingfiirs from the results of self-consistent field
calculations [30], which observe that the free energy of the stalk is almost indepen-
dent from the membrane tension or decreases witin the vicinity of the stalk,
the distribution of the molecular density changes mostly in the stalk itself with the
tensiono. This accounts for the high stability of the stalk at low We observe
that the stalk becomes unstable for more symmetric molecules in agreement with
self-consistent field calculations [30]. We also observe that in lipid mixtures, com-
prised of two species with flerent molecular asymmetries, the more asymmetric
species segregates to the stalk.

In this work we have focused on the study of the free energy of the stalk inter-
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mediate without considering its further evolution into a fusion pore. In this scope,
it would be interesting to investigate potential pathways which the fusion process
can follow after the stalk structure is formed. This can be performed via Monte
Carlo simulations utilizing moves that mimic a realistic chain dynamics. In case
some specific fusion intermediate structures are indentified rluving the simulations,
a TDI technique similar to the one developed in this work could be used to estimate
the free energy of these fusion intermediates and exploring the observed pathway.
An additional topic that we would like to address in the future refers to investi-
gating further the influence of the chain architecture on the stalk stability and the
kinetics of its formation. For instance, it has been argued [67] that the double tail
structure, a common feature of many lipid molecules, can play an important roll
during stalk nucleation.
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Appendix A

Gaussian chain

We have simulated molecules in a coarse-grained molecular scale using bead-
spring polymer model. This model is based on the structure of ideal polymers in
a coarse-grained scale. In this appendix, we begin our discussion with the micro-
scopic polymer structure and introduce the bead-spring model, also called Gaus-
sian chain. It is shown that any linear polymers result in Gaussian chain at high
temperature.

A.1 Microscopic polymer structure

We discuss the micro structural character of a linear polymer with a carbon back-
bone [45, 68, 69], e.g. polyethylene sketched in Rid. as a particular example.
The number of repeating units in a polymBl, is called the degree of polymer-
ization or the polymerization degree. The material for a polymer, e.g. ethylene for
polyethylene, is called a monomer.

(@ (b)
H H
N 7
/C_C\
H H / )
H H
I\Io

Figure A.1: Chemical structures of ethylene, (a), and polyethylene, (b), as a particular
example of a linear polymer. Ethylene is polymerized into polyethylene and composes this
repeating unit in polyethylene. In this case, ethylene is called a monomer. The number of
repeating unitsNy, is called the degree of polymerization or the polymerization degree.
Steric structure of the carbon backbone in a linear polymer is presented ifx.Eig.

FigureA.2 presents the steric structure of the carbon backbone in a linear poly-
mer. The angl&d between a pair of neighborinG-C bonds in a polymer, the
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valence angleusually ranges approximately from 5t 80 in response to the
chemical properties of the polymer and remains fixed through the entire polymer
chain. Due to the axial symmetry, rotation around this bond only slightly changes
the energy.

Cn-3

Figure A.2: Steric structure of the carbon backbone in a linear polymer on an atomic scale.
Thick solid lines represent covalent bonds between adjacent carbon atome:, 120,
and 240 correspond tdrans gauché, andgauche respectively (see FigA.3).

When the polymer is formed by adding one carboytg 3 fixed carbon atoms
(n-3,n-2,n-1), the internal rotation angle along the conical surfacés defined
(see FigA.2). The vertex angle of the cone always equ#@sThe energy between
the carbon atoms is determined by this internal rotation apigléhis energy func-
tion of ¢ (shown in Fig.A.3) shows three local minimum points at= 0°, 120,
and 240, which correspond to the three steric structurestians gauché, and
gauche respectively (see FigA.2). At ¢ = 0°, in trans the energy between the
carbon atoms takes the global minimum value. Thus, in the ground state all the
bonds are fixed ap = 0° and the whole polymer is arranged in a platans
zigzag conformation, shown in Fié.4, whereas the thermal energy induces the
local minimum state in the energy between the carbon atoms, trgdushe In
view of a larger scale depicted in Fig.5, at low temperature rigid straight con-
formation appears though at high temperature the whole polymer adopts a flexible
structure.

We can construct a simplified model that captures these microscopic charac-
teristics of the polymer chain e.g. Rotational Isomeric State (RIS)-model. In RIS-
model, all theC-C bonds are fixed to the same length and the torsion angles are
allowed to take onlyransandgaucheangles. In other words, the internal rotation
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Energy between the carbon atoms as a function of
internal rotation angle ¢

Energy

= = ' 4l°]

0 120 240 360
trans gauche? gauche

Figure A.3: Energy between the carbon atoms as a function of internal rotation @angle
The steric structure of the polymergt= 0°, 120, and 240 correspond térans gauche,
andgauche respectively.

C

C

Figure A.4: Planartrans-zigzag conformation, the ground state of the polymer.

_
(=
&)

Figure A.5: Polymer conformation on a large scale, (a), in the ground state and, (b), at high
temperature. Structure of the polymer in figure (a) is consistent with ptearas-zigzag
conformation in a small scale (see Fig4).

angle is limited top = 0°,12C°, and 240, the three local minimum points. This
model can be applied to simulation of the coarse-grained polymer systems, which
retain the microscopic structural property.
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A.2 Gaussian polymer chain

Next, the statistics of a single ideal linear polymer chain is discussed in this sec-
tion [70]. An ideal polymer is defined as a molecule interacting only via intra-
molecular interaction e.g. bonding, bending, and torsion. Other interactions be-
tween monomers, e.g. non-bonded Lennard-Jones interaction, Coulomb interac-
tion, and excluded volume interaction, are not counted in this polymer (see also
section3.2). Ideal polymers are suited to study theet of intra-molecular con-
nection between monomers on the physical properties in polymeric systems.

A.2.1 Persistence length

We assume that our system consists of an ideal polymer at the high temperature at
which the system can move away from the ground state. Along the polymer chain,
a pair of small segments are taken. When the contour length along the polymer be-
tween this pair is small, the orientations of the polymer chain on these segments are
correlated. However, at the large contour length this correlation, i.e. the memory
of chain orientation, vanishes and the segments are oriented independently. When
this memory is lost at some contour distance on average, this length, dendged by

is called persistence length of the polymer. In a scale smallerl e polymer

takes sfif conformation, e.g. shown in Fig\.4, whereas in a scale larger thgn
flexible conformation, e.g. in FigA.5 (b).

A.2.2 End-to-end vector

We are coarse-graining this ideal polymer in a length scale larger ghdn our
coarse-grained model, the linear polymer is reduced lioearly linked segments,

which is sketched in FigA\.6 (a) and (b). Here bond vectors, i.e. the relative
coordinates between adjacent coarse-grained segments, are defined as (see also
section3.2):

Uji=rj1—rj, 1 < j < Noond

whererj is the position of thg-th segment anfll,ong := N — 1 denotes the number
of the bonds in the polymer. Obviously, probability density of each bond vector,
denoted byP1(uj), is statistically independent and isotropically distributed,

P]_(Uj) =Py (|uj])-

Probability density of all the bonds in the polymary ..., un-1), is:

N-1
PNbond (Ul, s uN—l) = 1_[ Pl (lujl) .
j=1



A.2. GAUSSIAN POLYMER CHAIN 103

o9 ;}7
Qs
9 (b (©

Figure A.6: A linear ideal polymer, (a), is coarse-grained ilNdinearly linked segments

in larger scale thaty, (b). The coarse-grained segments are drawn by grey spheres. The
broken line represents the links, i.e. molecular configuration, between these coarse-grained
segments. Gaussian chain, (c), is obtained by replacing these bonds with the harmonic
springs, eqg.A.5). The lengthus corresponds to both the coarse-grained segment size and
the average spring length.

Hereafter, we discuss one structural property of the polymer, i.e. the end-to-end
vector,

N-1
R:= rN—r1=Zuj. (A.1)
=1

We can determine the probability densityRfdenoted byP(R), using Dirac delta,
0.

P(R)—fdul dUN 1PNbond(u1"' , UN= 1)(5(2 uj — \]
fdul -dun- 1[1_[ Py (Juj| ](%)3qu explig- [ ]

= Wqu exp[-iq- R](P](q)) . (A.2)

whereq denotes the wave number vector &hdq) does the Fourier transformation
of P1(Jujl),

Pi(q) := fdu Pi(u)explig-u],  u:=ujandu:=|u|.

Equation A.2) represents the inverse Fourier transformatioR(@).
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By performing this inverse Fourier transformation,

P(R) =

3R ] : (A.3)

~ 2Npong(U2)

(e

where<u2> denotes the mean squarewfThe lengthus := \/m corresponds to
the segment size. This relation e4.J) indicates that, in a length scale larger than
Ip, the end-to-end vector of ideal polymers is distributed according to Gaussian
distribution regardless of model details and chemical structure of polymers. This
property results from the central limit theorem. The probability density of each
bond vector is also calculated by the inverse Fourier transformation,

Npond

ngond 3 2
) exp PI0a) ,Z:; |uj|

The detail calculation for equationa.@) and @.4) is shown in sectior.2.5.

PNoona (U1, - - -, UN-1) = ( . (A.4)

21 (U?)

A.2.3 Gaussian chain

When segments are bonded by harmonic springs with the spring cokgtagt

spring = :?;—BZ;-, kgT := thermal energy (A.5)

the probability density of each bond vector in canonical ensemble is equivalent to
eq. A.4) (see sectior8.2.2-h. This indicates that ideal polymers in the coarse-
grained scale larger thap can be modelled by a sequence of these harmonic
springs that connect the segments.

This polymer model is called Gaussian chain or bead-spring model, which is
schematically presented in Fi§§.6 (c). The lengthus corresponds to both the
coarse-grained segment size and the average length of one spring in Gaussian
chain.

A.2.4 Size of Gaussian chain

From the probability density egA(3), mean square end-to-end distance of the
Gaussian chain is determined,

(R) = de P(R)IR? = Npona{t?),  Re:= J(R2). (A.6)

The lengthRe corresponds to the size of Gaussian chain.
For example in the cubic lattice model with lattice constar(R2> = Npond?®.
This is consistent with results for random walkers on the lattice.
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A.2.5 Derivation of Gaussian chain

In order to derive equationé\(3) and @A.4), we first calculatéP;(qg) and perform
the inverse Fourier transformation eg.2).

In our polymeric system, the polymerization degfeds far larger than 1.
At such largeN, physical properties of the polymer chain at long distance are
important. This region corresponds to sirigll When we study the statistics at
this long distance, using Taylor expansion of @xp u] aroundq = 0 and the
spherical coordinate system wfwe obtain

Fi(@ = [ duPy(uexplia-ul
= fdu Pl(u)(1+iq-u—%(q-u)2) = 1—%deP1(U)(CI'U)2
=1- qzﬂfon do sin@coszej;mdu UP1(u)
—1- q2€_13f0 dudru?Py(u)u? = 1 - é<u2>q2

= exp[—% (v?) qz] : (A7)

whereq denotegq| and<u2> the mean square of The lengthus := +/(u?) corre-
sponds to the segment size.

By substituting A.7) for eq. (A.2) and performing the inverse Fourier transfor-
mation in the spherical coordinate systengpf

P(R) = # qu exp[-iq- R] eXp[—é(N _ 1)<u2> qz]

1 0 g . .
- Wfo dqf0 do exp[-igRcoss] exp|-ac?| ¢? sine
R?
= —#% exp[—ﬁ} (J1— ), (A.8)

whereR denotesR| and

a:= (—15(N - 1)(w),
o]

(o5

J1 :=f dgqgexp
0

J> ::f dggexp
0
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IntegralsJ; andJ; are calculated on the complex plane wath= x + iy.

Ji1 = lim f dz (2 = li f dz #(2
Xp—00 Co Xp—00 C1+C2+C3

Jo = lim dz £(2) = lim f dz £(2),
Xo—% Jc, X0 JC4+Cs+Cg

where the straight integration patfg, C4,...,Cg are shown in TableA.1 and
Fig.A.7, and

im\2
f1(2) := zexp —a(z+ g) ]
. iR\2
f2(2) ;.= zexp —a(z— 51) ]
Table A.1: Straight integration paths on the complex plane.
Co 0.0 - (x.0)
C1 (0,0) —» (0,-R/2a) | Cq4 (0,00 — (0,R/2a)
C, (0,-R/28) — (x0,-R/28) | Cs (0,R/28) — (x0,R/28)
Cs (x0.-R/28) — (%,0) Ce (x.R/28) — (x,0)
y
C5
R/2a >
N v C
C, C 6
0 N X
0 7 X,
CVY /N
- C
-R/2a > 3
Cz

Figure A.7: Straight integration paths on the complex plane.

These complex integrals are calculated on each path.

0 R 2
dz #(2) = f dy yexp a(y+ 2—)
C -R/2a a
R/2a R 2
.. dz £(2) = —fo dy yexp a(y— zl) ]

. dz #(2) - 1;4 dz %(2 = 0.
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On the path€3 andCg, the integrands vanish in the limig — co.

Xo”—*oo fc i Xo”—>°° fc e
m SdZ ) m GdZ 2@
On the path€, andCs,

i dz f(2) = foxodx(x— g) exp[—ax2]
5 dz £(2) = foxo dx (x+ g) exp[-axX].

These results yield the relation

J-J= —%fo dx exp[—ax2] = —2561 T

Therefore, eq.A.8) is:
7 R
(Zﬂ'Nbond<U2>) p[ 2Npond(u?)

The probability density of each bond vector is also calculated by the inverse
Fourier transformation,

P(R) = =eq. A.3).

PyU) = ﬁ f dq exp[-iq- u] Py(q)

(zﬂ)3qu exp[-iq- u]exp[_}< 2>q2}

(i) o2t

and

Npond

3 ijond
PNb"""(ul""’uN_l):(m) X l 2(2) Z’ uj| ]—eq @.4).
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Appendix B

Particle deletion

In the configurational-bias method, to remove a molecule from the system, we use
the following 4-stage algorithm. In the particle deletion, the molecule is removed
with the same scheme as the insertion.

1)

2)

A molecule is randomly selected. The non-bonded potential energy between
the first atom, the end segment, and the other molecules is calculated and is
defined asi®"°(1). None of the other segments in the chosen molecule is taken
into account iru®"e(1).

For thel-th segment, the non-bonded potential energy between this segment
and other segments i.e. the other molecules and the segments from the 1st to
the ( — 1)-th in the chosen molecule, denoteduﬁ)gpb(l), is calculated. A set

of k — 1 trial orientations is generated with a probability given by 88, in

which the internal potential energy is determined withoutltkie to the M-th
segments. Using this set of trial positions and the actual position, we calculate
for thel-th segment

k
wP(1) = exp|-pu™(1)] + > exp|[-BuP"(b})], (B.1)
=2
Whereulo’”b(b'.) denotes the non-bonded potential energy between the trial po-

sition as thd-th segment and other segments i.e. the other molecules and the
segments from the 1st to thk<{ 1)-th in the chosen molecule. This step 2) is
also schematically shown in Fig.1.

3) After repeating step 2) until aM atoms of the molecule have been considered,

we calculate the Rosenbluth weight

V\p,nb(n
k

M
WO = exp|-u*"(1)] ]_[ (B.2)
1=2

for the entire molecule.
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4) The chosen molecule is removed with a probability of

. AN 1 1
acc(N - N -1 {B} :mln(l, - ) B.3
( ) V explg] WO i(T) (B-3)
With use ofpyes, this formula is reduced to
. N1 1
accN - N-1/{B})) =min|l, —————|. B.4
( 18 =min(1.§ = ) ®.4)

Thus, j(T) and A disappear from the present algorithm. Regardless of these
two quantities, we can simulate our systems.

Figure B.1: Step 2) in the particle deletion b= 6, k = 4, andM = 10. As an example,

the inserted molecule in Fi@.2is deleted. The numbers in the present figure show the
segment numbers. White spheres represent the real segments which are not taken into
accout in the energy calculation. First, the non-bonded potential energy betwdeth the
segment and the other segments in the system excluding the white ones is determined.
k — 1 trial positions are generated according to the internal potential energy between each
trial position and the 1st to thé € 1)-th segments. For the trial positions, the non-bonded
potential energy is also calculated between each of the trial 6th segment and the other
segments in the system excluding the white ones.
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