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Abstract

Membrane fusion is involved in a multitude of biological processes like endo- and
exocytosis, viral infection or synaptic release. The detailed mechanism, however,
is not well understood because the time and length scales – microseconds and tens
of nanometers, respectively – make a direct experimental observation difficult. The
study of this collective phenomena, involving many lipid molecules, is also difficult
in simulations with atomistic resolution. While the details of the fusion pathways
are still under debate, most fusion scenarios start with the formation of a stalk,
which is a hour-glass shaped connection between the two apposing membranes that
are going to fuse. Understanding the properties of this initial fusion intermediate
is a key to controlling fusion of bilayer membranes.

We use a coarse-grained model for bilayer membranes. The lipid molecules are
described by a simple bead-spring model and the solvent degrees of freedom are in-
tegrated out. The effective non-bonded interactions between the beads of the lipid
molecules take the form of a virial expansion. Within the mean-field approxima-
tion, the coefficients of the expansion are related to the density and compressibility
of the hydrophobic interior of the bilayer membrane and the repulsion between the
hydrophilic and hydrophobic units. In order to employ such an excess free energy
density functional for the non-bonded interactions in a particle-based simulation,
the local densities are calculated from the explicit particle coordinates via a collo-
cation lattice. This soft, solvent-free, coarse-grained model for bilayer membranes
allows for an efficient simulation of membrane properties.

This coarse-grained model has been employed to study the excess free energy
of stalks that form between apposing membranes as a function of the molecular
asymmetry of the lipid molecules and the membrane tension. To this end, we
have devised a general strategy for calculating free energies in self-assembling
systems. The method relies on constructing a reversible thermodynamic path that
connects the system of two apposed bilayers and the stalk configuration. This
path is constructed in an extended state space using an inhomogeneous, external
field that is designed to direct the assembly of the system into the two apposed
membranes or the stalk structure in the absence of non-bonded interactions. Using
expanded ensemble simulations it is demonstrated that the path is reversible and
that the Helmholtz free energy can be obtained with high accuracy. Combining
this result with grandcanonical simulations, we have determined the excess free
energy of a stalk as a function of the membrane tension.
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In order to compute the dependence of the excess free energy of a stalk on
the molecular architecture, we have used a semi-grandcanonical ensemble, where
Monte Carlo moves mmutatellipids of one architecture into molecules with another
architecture and vice versa. In this ensemble, the composition of the mixed bilayer
membranes is controlled by the chemical potential difference between the species
and we can compute the free energy change upon exchanging lipids with different
architecture with relative ease.

With these computational techniques we systematically investigate the stability
of the stalk structure. The simulations show that the excess free energy of stalks
in on the order of 10kBT, wherekBT denotes the thermal energy unit. Stalks are
comprised of a few tens of lipid molecules and the excess free energy increases
with membrane tension. The stability of a stalk strongly depends on the molecular
architecture. Amphiphiles with a large head groups give rise to highly metastable
stalks, whereas very asymmetric amphiphiles can even reduce the excess free en-
ergy of the stalk to negative values, which correspond to a thermodynamically
stable structure.



Zusammenfassung

Die Fusion von Membranen ist Bestandteil einer Vielzahl von biologischen Prozessen,
wie z.B. der Endo- und Exozytose, Virusinfektion oder synaptischen Ausschüt-
tung. Der detaillierte Mechanismus ist jedoch nicht vollständig verstanden, weil
die mesoskopischen Zeit- und Längenskalen von Mikrosekunden und einigen Nanome-
tern eine direkte experimentelle Beobachtung erschweren. Die Untersuchung dieser
kollektiven Prozesse, an denen viele Lipidmoleküle teilnehmen, ist auch für atomist-
ische Simulationen schwierig. Während die Details des Fusionspfades immer noch
strittig sind, beginnen die meisten Fusionsszenarien mit der Bildung einer san-
duhrförmigen Verbindung („Stalk”) zwischen den beiden gegenüberliegenden Mem-
branen, welche fusionieren. Das Verständnis der Eigenschaften dieser ersten Über-
gangsstruktur ist ein Schlüssel zur Kontrolle der Fusion von Membranen.

Wir verwenden ein vergröbertes Modell für Doppelschichtmembranen. Die
Lipidmoleküle werden durch ein einfaches Kugel-Feder-Modell beschrieben und
die Freiheitsgrade des Lösungsmittels sind herausintegriert. Die effektiven, nicht-
gebundenen Wechselwirkungen zwischen den Segmenten der Lipidmoleküle haben
die Form einer Virialentwicklung. Im Rahmen der Molekularfeldnäherung sind die
Entwicklungskoeffizienten mit der Dichte und Kompressibilität des hydrophoben
Membraninnerens und der Abstossung zwischen hydrophilien und hydrophoben
Segmenten verknüpft. Um ein solches Dichtefunktional der ungebundenen Wech-
selwirkungen in Teilchensimulationen zu verwenden, werden die lokalen Dichten
aus den expliziten Teilchenkoordinaten auf ein Gitter abgebildet. Dieses lösungsmit-
telfreie vergröberte Modell für Membranen mit weichen Wechselwirkungen er-
laubt die effiziente Simulation von Membraneigenschaften.

Dieses vergröberte Modell wurde verwendet, um die freie Energie eines „Stalks”
zwischen zwei gegenüberliegenden Membranen als Funktion der molekularen Asym-
metrie der Lipide und der Membranspannung zu bestimmen. Zu diesem Zweck
haben wir ein allgemeines Verfahren zur Berechnung von freien Energien in selbst-
ordnenden Systemen entwickelt. Die Methode beruht auf einem thermodynamis-
chen Pfad, welcher das System von zwei unverbundenen Membranen mit der „Stalk”–
Struktur reversibel verbindet. Dieser Pfad verläuft in einem erweiterten Zustand-
sraum mit einem inhomogenen externen Feld. Dieses ist entworfen, um das Sys-
tem ohne ungebundene Wechselwirkungen zur Bildung der zwei gegenüberliegen-
den Membranen bzw. der „Stalk”–Struktur zu veranlassen. Mittels „expanded-
ensemble”-Simulationen wird gezeigt, dass der Pfad tatsächlich reversibel ist und
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die Helmholtz’sche freie Energie wird mit großer Genauigkeit bestimmt. Durch
zusätzliche großkanonische Simulationen haben wir die freie Energie des „Stalks”
als Funktion der Membranspannung gemessen.

Um die Abhängigkeit der freien Energie von der molekularen Architektur zu
berechnen, verwenden wir ein semi-großkanonisches Ensemble, in dem Monte-
Carlo-Schritte Lipide von einer Sorte in eine andere Lipidsorte mit verschiedener
Architektur „mutieren” und umgekehrt. In diesem Ensemble wird die Zusam-
mensetzung der Membran durch die Differenz der chemischen Potentiale der Spezies
bestimmt und die Änderung der freien Energie bei dem Austausch einer Lipidsorte
durch die andere kann leicht ermittelt werden.

Mit diesen Rechentechniken haben wir die Stabilität von „Stalks” systema-
tisch untersucht. Die Simulationen zeigen, dass die freie Energie eines „Stalks” in
der Größenordnung von etwa 10kBT liegt, wobeikBT die thermische Energieein-
heit ist. „Stalks” bestehen aus 10-100 Lipidmolekülen und die freie Energie eines
„Stalks” nimmt mit der Membranspannung zu. Die Stabilität hängt sehr stark von
der Molekülarchitektur ab, Amphiphile mit grossen Kopfgruppen führen zu höchst
metastabilen „Stalks”, während sehr asymmetrische Lipide die freie Energie von
„Stalks” sogar zu negativen Werten verschieben, welche thermodynamisch stabilen
Strukturen entsprechen.
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Chapter 1

Introduction

We study transition states of bilayer membrane fusion by Monte Carlo simulation
using a solvent-free model [1]. Figure1.1 presents the chemical structure of a
sphingosine as a particular example of lipid molecules. A lipid molecule, also
called a lipid, is an amphiphilic molecule composed of a hydrophilic block, called
a head, and a hydrophobic block, a tail. In an aqueous solution, the tails of many
amphiphilic molecules gather into one planar structure, i.e. a membrane, to reduce
the interface between water and the tails. The heads are excluded from the inside
of the membrane, i.e. repelled from the dense tails, and collected on the surfaces
of the membrane. This structure is called a bilayer membrane. Cell membranes, an
example of biological membranes, belong to this class of morphology.

Hydrophilic Hydrophobic

Figure 1.1: Chemical structure of sphingosine, a lipid molecule, with molecular formula
C18H37NO2. A lipid is divided in hydrophilic block, called heads, and hydrophobic block,
denoted as tail.

Interestingly, bilayer structures are also observed in another class of assem-
bling systems: the solutions of amphiphilic block copolymer molecules [2–5].
The similarities of these systems to lipids does not remain only on the level of
comparable self organization patterns. They exhibit also similar dynamical phe-
nomena such as fusion and fission of the bilayer membranes [6]. An example of
these phenomena observed in the case of polymeric vesicles (i.e. spherical bilayer
membranes) is shown in Fig.1.2. This universal behavior, demonstrated by am-
phiphilic systems with very different chemical structure, should be attributed to a
generic feature characterizing these systems: the connectivity of hydrophylic and
hydrophobic parts. This observed universality has a very important consequence:
it suggests that a qualitative understanding of the behavior of the amphiphilic sys-

1



2 CHAPTER 1. INTRODUCTION

tems on mesoscale can be obtained within the framework of simple minimal mod-
els, incoorporating only the relevant interactions that are necessary to reproduce
the phenomena of interest [7]. By this way, incoorporating atomistic details can
be avoided, and the collective phenomena (i.e. processes involving a large num-
ber of amphiphilic molecules) can be addressed within computationally efficient
coarse-grained simulation techniques.

Figure 1.2: Vesicle fusion, shown in the first row, and vesicle fission, in the bottom row
(from Ref. [6]); an analogy of similar processes observed in biological lipid membranes.

The extent of the decimation of the degrees of freedom in coarse-grained mod-
els is closely related to the phenomena one would like to address. In this scope, a
frequent approach when studying structure formation and evolution in amphiphilic
membranes, is to describe these systems within implicit solvent models. In this
description the solvent molecules are “integrated out” and the solvent presence is
taken effectively into account by proper selection of the interaction potentials be-
tween the beads of the coarse-grained amphiphiles. An early example of such an
approach is presented in the work of Drouffe et al [8]. These authors studied the
assembly of amphiphilic vesicles by representing the amphiphiles with spheres in-
teracting with a combination of hard core repulsions, orientation-dependent poten-
tials, and multibody interactions. The multibody character of the interactions had to
be introduced to mimic the “hydrophobic effect” so that a stable, fluid “membrane”
in the form of a single monolayer of spheres formed at high temperatures. A more
realistic solvent-free minimal model of amphiphilic bilayers was introduced by
Noguchi and Takasu [9],followed by Farago [10] and Cooke and Deserno [11, 12].
One of the main drawbacks of these models is the rather “ad-hoc” choice of the
interaction potential, which cannot be connected in a straightforward way to the
thermodynamic and the mechanical properties of the membrane.

In our work we present a solvent-free model based on a density functional
description [1, 13] of the amphiphilic membranes. The parameters of the model
can be connected in a straightforward way to thermodynamic properties such as
the density of the bilayer, its compressibility and incompatibility between the hy-
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drophobic/hydrophilic beads. The density-functional based representation serves
as a basis for a Monte Carlo simulation scheme [14–17]. Essentially, the DFT-
interactions are equivalent to soft intermolecular potentials similar to those that
are used in dissipative particle dynamics (DPD) [18–20]. Unlike DPD, however,
the present model facilitates the simulation due to an absence of explicit solvent
molecules. In this work, the DFT-based Monte Carlo technique will be used to
study the process of membrane fusion via the free energy of an important interme-
diate structure.

Fusion of bilayer membranes is an event essential in biological systems, e.g. vi-
ral infection, synaptic release, and endocytosis [21–24]. At the initial stages of the
fusion, the isolated membranes are brought into proximity controlled by proteins
(e.g. SNARE protein family [25]). After the membranes are approaching, fusion
events alter the membrane topology. This is a collective phenomenon, in which
a large number of molecules in the membranes participate. In phenomenological
theories, intermediate structures along the fusion process are assumed, as is illus-
trated in Fig.1.3. Among these intermediate structures, the stalk morphology plays
a vital role in the fusion process. This morphology is the initial intermediate that is
formed by an hour-glass shaped connection between the two apposing membranes.
The evolution pathways through which the stalk evolves into the fusion pore are
still under debate [26].

Figure 1.3: Classical bilayer membrane fusion process. First a pair of apposed bilay-
ers forms the stalk, an hourglass-shaped structure, that bridges these bilayers. From this
structure, they start the fusion and form, via the hemifusion diafragm, the final fusion pore.
Arrows show the time order of these intermediate states. Hydrophobic tails and hydrophilic
heads of amphiphiles are drawn in red and green respectively.

The stability of the stalk itself will depend on specific properties of the am-
phiphilic system. To this end one can encounter cases of highly unstable stalks as
well as systems where the bilayers are bridged by dense arrays of stalks. The latter
case has been experimentally observed in aqueous solutions of lipids [27, 28] and
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diblock copolymer melts [29]. Figure1.4shows an example of an electron density
map of such a stable stalk structure derived from x-ray diffraction for lipid bilayer
membranes.

Figure 1.4: Electron density map of a stalk derived from x-ray diffraction patterns ob-
served in lipid bilayer membranes [27]. These bilayers form stable stalk structures ar-
ranged on a hexagonal lattice. The bilayer membrane fusion process stops at this state in
this experiment.

From numerical self-consistent field calculations [30, 31], it is known that mem-
brane fusion is observed only in a small region of molecular asymmetry and mem-
brane tension according to the stability of the stalk, as is shown in Fig.1.5. In
particular, when the amphiphilic molecules are too symmetric, the stalk structure,
from which the fusion always starts, is not even metastable and the membrane
fusion process proceeds very slowly. On the other hand, when the amphiphilic
molecular asymmetry is too high, bilayers become unstable and the stalk spon-
taneously expands into an elongated shape. The membrane tension plays also a
significant role in stalk evolution promoting the opening of the fusion pore. Of
course, when the membrane tension is too high, fusion competes with membrane
rupture. These experimental and theoretical observations indicate that investigat-
ing the stalk stability, i.e. quantifying the excess free energy of the stalk, is a key to
understanding and controlling membrane fusion and that the stability of the stalk
structure depends on the molecular architecture and the membrane tension.

Early phenomenological theories estimated the excess free energy of the stalk,
in other words, the free energy difference between the apposed bilayers and the
stalk morphology, to be on the order of a few hundredskBT, wherekBT denotes
the thermal energy, an impractically large value for biological systems. An im-
proved theoretical description [32], incorporating a more realistic representation
of the stalk structure, significantly lowered this result to 30 - 40kBT. Subse-
quently self-consistent field calculations [30, 31] have been used to determine the
free energy of the stalk and other intermediate structures along the fusion pathway
without assumptions about the detailed geometry and molecular conformations.
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Figure 1.5: A phase diagram of the membrane fusion process by numerical self-consistent
field calculations [30].f denotes the fraction of the hydrophilic head in one molecule and
γ the membrane tension. Within the unshaded region, the fusion process is successfully
finished and the fusion pore appears.

These mean-field calculations have yielded an even lower excess free energy of the
stalk [30, 31], on the order of 13kBT. The self-consistent field calculations, how-
ever, were limited to a random-walk-like molecular architecture (Gaussian chain
model) and did not incorporate fluctuations. Both assumptions are appropriate for
polymeric membranes but less so for lipid membranes. In the present dissertation,
we determine the excess free energy of the stalk via molecular simulation method
based on Monte Carlo simulations.

Generally calculating the excess free energy of self-assembled structures by
computer simulation, however, is a challenge because the free energy of a system
is not a simple function of the particle coordinates, and special simulation tech-
niques have been devised [33]. In hard-condensed matter systems, e.g. crystals,
one popular method consists in calculating the free energy by thermodynamic inte-
gration along a path that reversibly connects the structure of interest to a reference
state of known free energy. For crystalline solids, the Einstein crystal is an ap-
propriate reference state, where non-interacting particles are harmonically tethered
to their ideal lattice position. The free energy of the ordered system is derived
[34] from thermodynamic integration based on gradually decreasing the strength
of the tethers and, in turn, increasing the interactions between particles. In self-
assembling fluids, however, there is no analog of the Einstein crystal because even
in the defect-free, self-assembled state molecules diffuse and are not constrained to
be at some preferential positions; hence the above technique can not be easily gen-
eralised to particle-based simulations (cf. Ref. [35] for a field-theoretic approach).

An alternative technique [36, 37], inspired by similar methods developed for
crystalline solids [38–40], consists in calculating the free energy difference be-
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tween the structures of interest by transforming them reversibly into each other
with the help of an external, ordering field. Like the transition from a liquid to
a crystal, self-assembly or transformation between different morphologies in re-
sponse to a physically relevant control parameter (e.g., temperature, density, or
repulsion between amphiphilic entities) occur via first-order transitions. Using an
external, ordering field, whose spatial structure and strengths are adopted to the
self-assembled structure and varying the intermolecular interactions, one can avoid
the first-order transition and transform one structure into another via a reversible
path. For the self-assembly from a disordered structure of an ideal gas, such a
transformation path is comprised of two branches: Along the first branch, one
transforms the self-assembled system into an ideal gas that exhibits the same (or
very similar) spatial organisation due to the presence of external, ordering fields.
Along this branch, the intermolecular interactions are gradually decreased to zero
while, simultaneously, the strength of the external, ordering field is increased such
that the structural changes along this branch are minimised [38]. Optimally, the
morphology remains unaltered during the entire transformation, therefore, this
transformation is free of thermodynamic singularities, and the concomitant free
energy difference between the self-assembled fluid and the ideal gas in the external
fields can be obtained by thermodynamic integration. Along the second branch,
we transform the externally structured, ideal gas into a disordered one by progres-
sively reducing the strength of the auxiliary fields. This is also a reversible process
because of the absence of collective, ordering effects in the non-interacting system,
and the free energy difference along this branch can be obtained by thermodynamic
integration (TDI). Along this transformation path one transforms a self-assembled
fluid into an ideal gas without passing through a first-order transition.

In this dissertation we choose the second option and construct a reversible path
that connects the configurations of two apposed bilayers reversible with the stalk
structure with the help of a specifically disigned external field. Simulating the
bilayers in our solvent-free model, we measure the excess free energy of the stalk
via TDI based on the external field with an accuracy of 10−3kBT per molecule.

Experimental works [29] indicate that large molecular asymmetries, which cor-
respond to the large tail blocks at the fixed molecular weight, increase the stability
of the stalk. This is also shown by self-consistent field calculations [30]. In this
work, we study this dependence of the stalk stability on the molecular architecture
by determining the excess free energy of the stalk at various block ratios between
the heads and the tails, and also the dependence on the membrane tension.

We begin our discussion with the solvent-free model in chapter2. Combined
with PPPM method [41–43], our solvent-free model facilitates the Monte Carlo
simulation. Details of the simulation methods are introduced in chapter3. In addi-
tion to the conventional Metropolis algorithm, a configurational-bias method used
for simulation in the grand canonical ensemble and for the chemical potential cal-
culation is derived. Free energy calculation methods are discussed in chapter4. Ex-
panded ensemble simulations quantitatively verify the absence of a first-order tran-
sition along the path that reversibly connects two apposing bilayers with the stalk
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morphology. Via semigrand canonical ensemble, the Helmholtz free energy differ-
ence between single component systems composed of different molecular species
is directly measured. Simulation results on the bilayer membranes are presented
in chapter5. The dependence of the excess free energy of the stalk on molecu-
lar architecture and the membrane tension is obtained. The number of molecules
composing the stalk structure is analyzed in the grand canonical ensemble. We
summarize our work in chapter6 and provide an outlook on further applications.
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Chapter 2

Solvent-free model

Membranes are self-assembled structures that are composed of a large number of
molecules. Even though industry keeps making improvement to our computers,
we cannot simulate, with use of the atomistic simulation technique, phenomena
found in macromolecular systems on large spatial and temporal scales on account
of many degrees of freedom. Whereas these simulation methods in an atomistic
scale yield correct data, we need to study coarse-grained simulation methods in a
molecular level in order to reduce required computational time and reproduce large
systems.

In conventional coarse-grained molecular simulation, due to a large number of
particles within the cutoff distance of pair interaction potetnial, computational time
increases at high density. PPPM techniques [41–43] discussed in section2.3solves
this issue. Despite the efficiency of PPPM, however, countless solvent molecules
that surround solute molecules still pose a computational challenge that cannot be
treated within acceptable computational time.

For the sake of avoiding this difficulty, Drouffe, Maggs, and Leibler proposed
a solvent-free model [8]. In their model solvent molecules are replaced with an ef-
fective interaction potential between solute molecules, i.e. implicit solvents, for the
purpose of integrating out the explicit solvent. Their solvent-free model attained
the efficiency which could not be reached by models including explicit solvent
molecules. Other solvent-free models have also been invented [44].

Due to the absence of solvent molecules a solvent-free model cannot induce
aggregation without attractive interaction force between particles. This is one of
the significant properties of solvent-free model. For example, in dissipative particle
dynamics (DPD) technique, particles interact only via repulsive pair interaction
potential [20].

In the present dissertation, we present a solvent-free model based on virial
expansion coupled with our improved PPPM method and study the phenomena
observed in macromolecular systems on a large scale. The virial expansion yields
a simple physical interpretation of the excess free energy functional of the non-
bonded interactions compared to previous solvent-free models.

9
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The solvent-free model composed of single component homopolymers is dis-
cussed first. Next, we apply this simulation method to the solvent-free model of
diblock copolymers studying bilayers.

2.1 Single component solvent-free homopolymers

We construct our single-component solvent-free linear homopolymer system based
on the bead-spring model discussed in sectionA.2. Two types of interactions can
be distinguished:

i) Bonded, intramolecular interactions characterize the molecular architecture
and they represent the connectivity along the backbone of a macromolecule or
a lipid.

ii) Non-bonded interactions characterize the repulsion between the amphiphilic
units and they drive the self-assembly into bilayer membranes.

Our bonded potential between a pair of linked segments is given by a harmonic
spring (see eq. (A.5)):

Hspring

kBT
=

3
2

N − 1

R2
e

r2 (2.1)

where r is the distance between the linked segments andN the polymerization
degree.Re, the end to end distance of an ideal linear polymer, is used as the unit of
length scale (cf. eq. (A.6)).

2.1.1 Free energy in solvent-free single component systems

The non-bonded interactions are described by an excess free energy in our coarse-
grained model.

Here we discuss our solvent-free single component homopolymers in the canon-
ical ensemble. We assume that the total Helmholtz free energy of our system is
defined as

F(T,V,np) := Fideal(T,V,np) + Fexcess(T,V,np),

wherenp is the number of polymers andV denotes the system volume.
The ideal part of the free energy is given in equations (3.22) and (3.24).

Fideal(T,V,np)

kBT
= −np log

(
Ve

npΛ3
Z0

)
(2.2)

The phenomenalogical non-ideal part of free energy is defined via a virial ex-
pansion as

Fexcess(T,V,np)

kBT
:=

∫
V

dV

(
−

1
2

vρ2
s +

1
3

wρ3
s

)
, (2.3)

whereρs denotes the local number density of segments. Constant parametersv > 0
andw > 0, which correspond to the attractive and repulsive interaction strength
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between the segments, respectively. At largev and finitew, the polymers aggregate
into one dense droplet floating in a vacuum, i.e. macro-phase separation, whereas
at finitev and extremely highw the system is in homogeneous phase.

2.1.2 Mean field approximation

We can investigate the phase behavior of our system using the mean field approxi-
mation [45]. In the framework of the mean field theory we assume that the number
density of the segmentsρs is homogeneous. This yields the excess free energy

Fexcess(T,V,np)

kBT
≈ V

(
−

1
2

vρ2
s +

1
3

wρ3
s

)
. (2.4)

Therefore the total free energy becomes

f (ρs) :=
F(T,V,np)

VkBT
≈ −
ρs

N
log

(
NeZ0

ρsΛ3

)
−

1
2

vρ2
s +

1
3

wρ3
s (2.5)

The critical point on theρs − v phase diagram (see section2.1.4and Fig.2.1),
(ρsc, vc), of our system is determined from the conditions

d2

dρ2
s

F(T,V,np)

VkBT
=

1
Nρs
− v+ 2wρs = 0

d3

dρ3
s

F(T,V,np)

VkBT
= −

1
N
ρ−2

s + 2w = 0.

(2.6)

We find that the critical point is placed atρsc =
1
√

2Nw
, vc = 2

√
2w
N

 . (2.7)

The binodal line in our phase diagram (see Fig.2.1) is determined from the
simultaneous conditions

d f (ρs)
dρs

∣∣∣∣∣
ρs=ρs0

=
d f (ρs)

dρs

∣∣∣∣∣
ρs=ρs1

=
f (ρs1) − f (ρs0)
ρs1 − ρs0

, (2.8)

where the chemical potential is given by

d f (ρs)
dρs

=
1
N

(
log

(
ρsΛ

3

NeZ0

)
+ 1

)
− vρs+ wρs

2 , (2.9)

and the system is separated into the two phases, a gas and a dense liquid,ρs = ρs0

andρs = ρs1.
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Figure 2.1: Phase diagram of solvent-free single component linear homopolymer system
numerically constructed from simultaneous equations (2.12) and (2.13). The critical point
is pointed by a circle. The broken line shows the asymptotic behavior of the binodal line
given in eq. (2.17) at high density.w′ is fixed at 1.0.

2.1.3 Dimensionless parameters for solvent-free single component ho-
mopolymers

In our calculations we use dimensionless units. The dimensionless polymer density
is defined asρ′p = ρsR3

e/N, the dimensionless parameterw′ = wN3/Re
6, and the

dimensionless parameterv′ = vN2/R3
e. With these dimensionless parameters, the

critical point (2.7) is located onρ′pc = ρscR3
e/N andv′c = vcN2/Re

3,

(
ρ′pc =

1
√

2w′
, v′c = 2

√
2w′

)
, (2.10)

and the non-ideal part of the free energy (2.3) is represented by the dimensionless
expression

Fexcess(T,V,np)

kBT
=

∫
V

dV

Re
3

(
−

1
2

v′ρ′p
2
+

1
3

w′ρ′p
3
)

(2.11)

2.1.4 Phase diagram for the single component solvent-free system

The binodal line in our phase diagram can be calculated from the equations (2.8)
which are based on the mean field approximation. With our dimensionless pa-
rameters defined in section2.1.3, this condition is changed into the dimensionless
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equations

ρ′p1

log

ρ′p0

ρ′p1

 + 1

 − ρ′p0 + v′
(
−ρ′p1ρ

′
p0 +

1
2
ρ′p1

2
+

1
2
ρ′p0

2
)

+ w′
(
ρ′p1ρ

′
p0

2
−

2
3
ρ′p0

3
−

1
3
ρ′p1

3
)
= 0

(2.12)

and

log

ρ′p0

ρ′p1

 + v′
(
ρ′p1 − ρ

′
p0

)
+ w′

(
ρ′p0

2
− ρ′p1

2
)
= 0, (2.13)

where the system is separated into the two phasesρ′p = ρ
′
p0 andρ′p = ρ

′
p1.

In the dense liquidρ′p1 � ρ
′
p0, these two equations are reduced to

log

ρ′p0

ρ′p1

 + 1+
1
2

v′ρ′p1 −
1
3

w′ρ′p1
2
= 0 (2.14)

and

log

ρ′p0

ρ′p1

 + v′ρ′p1 − w′ρ′p1
2
= 0. (2.15)

We can exactly solve these reduced simultaneous equations (2.14) and (2.15) and
determine the binodal line,

ρ′p1 =

3v′

4w′
+

√√ 3v′

4w′

2

−
6

w′

2
. (2.16)

At v′2 � w′, this solution shows the linear relation betweenρ′p1 andv′,

ρ′p1 �
3v′

4w′
. (2.17)

In this limit, a dense polymer melt (i.e. the interior of a lipid bilayer) coexists with
a vapor of vanishingly small density. The coexistence pressure is virtually zero.

In the intermediate density regions, solving numerically the two simultaneous
equations (2.12) and (2.13) with the two parametersρ′p0 andρ′p1, we can obtain
the prediction of the binodal line shown in Fig.2.1. Note that at this density the
pressure vanishes.

2.2 Solvent-free model of linear amphiphiles

We apply the solvent-free single component homopolymer model to linear am-
phiphilic molecules composed of an A-block and a B-block. Segments are bonded
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by the harmonic springs given in eq. (2.1). For these amphiphilic molecules,
Fexcess(T,V,np) is defined, in terms of the reduced dimensionless parameters, as

Fexcess(T,V,np)

kBT

=

∫
V

dV

Re
3

{
−

1
2

v′AAρ
′2
pA −

1
2

v′BBρ
′2
pB + v′ABρ

′
pAρ
′
pB

+
1
3

(
w′AAA ρ

′3
pA + 3w′AABρ

′2
pAρ
′
pB + 3w′ABBρ

′
pAρ
′2
pB + w′BBBρ

′3
pB

)}
(2.18)

where

ρ′pω :=
ρsωRe

3

N
(2.19)

v′ωη :=
vωηN2

Re
3

(2.20)

w′ωητ :=
wωητN3

Re
6
, (2.21)

ω, η, andτ denote the segment species i.e. A or B,ρsω is the local segment density
of ω-species, andρ′pω dimensionless molecular density ofω-species.vωη andwωητ
are the 2nd and the 3rd virial coefficients respectively.

The virial coefficients used in the present thesis are shown in Table2.1. With
these interaction parameters, our solvent-free linear amphiphilic molecules form
a stable bilayer structure, which is simulated in chapter5. The A-block and the
B-block correspond to the hydrophobic tail and the hydrophilic head of lipids re-
spectively. In the bilayer structure consisting of these amphiphilic molecules, the
A-blocks form a dense molecular solution inside the bilayer and the B-blocks are
repelled toward the outside. This means that the average molecular density of A-
blocks in this dense solution, denoted by

〈
ρ′pA

〉
inside

, can be evaluated by the mean
field theory of a single component dense homopolymer solution i.e. eq. (2.17).
Therefore, 〈

ρ′pA

〉
inside

�
3v′AA

4w′AAA

= 40.4 (2.22)

is obtained.

2.3 Particle-Particle/Particle-Mesh (PPPM) method

In order to use the excess free energy of non-bonded interaction in a particle-based
computer simulation, the local densities,ρ′pA and ρ′pB, have to be expressed in
terms of the explicit particle coordinates. Formally, the relation is given by

ρ′pA(r) =
∑
iA

R3
e

N
δ (r − r iA) ,
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Table 2.1: Virial coefficients for solvent-free linear amphiphiles used in the present thesis.

v′AA = 5.15
v′BB = 0.01
v′AB = -1.775

w′AAA = 0.095625
w′AAB = 0.095625
w′ABB = 0.095625
w′BBB = 0.0

where the summation runs over all A-segments in the system. The Diracδ-functions,
however, are unsuitable for computations. To solve this problem, one can either
regularize theδ-function by a weighting function or one can use a collocation grid
to compute the local densities. In the following we choose the second option,
which is particularly efficient for calculating the non-bonded interactions in dense
systems. The computational gain compared to the first option scales roughly with
the number of particles a reference bead interacts with. Thus it is particularly suit-
able for systems with long-range interactions in plasma physics or astrophysics or
in systems with high molecular densities (like e.g. polymer systems).

Schemes to assign particle coordinates like the PPPM method have been de-
vised since 1980 [41]. We test and apply PPPM, as a particular example, to dense
polymer and monomer systems.

2.3.1 Original PPPM method

We are simulating linear polymers with A-B binary component segments by bead-
spring model. Our coarse-grained segments are bonded by a harmonic spring po-
tential, eq. (2.1).

In addition to this intra-molecular interaction potential, external pair interac-
tion potential acts between the coarse-grained segments (see also section3.2). We
assume that our system is at high density; there are no solvent molecules in the
system.

The external pair interaction potential, however, requires long computational
times at high density owing to a large number of segments within the cutoff dis-
tance. We can overcome this problem, after dividing the system box intoMcell

spatially fixed cubic cells, by replacing the pair potential by a grid-based en-
ergy in each divided cell. This scheme is called Particle-Particle/Particle-Mesh
(PPPM) [41]. To illustrate the technique, we use in the following section a non-
bonded excess free energy that is suitable for dense, nearly incompressible poly-
mer melts that are comprised of two segment species A and B. The technique is
straight forwardly carried out to the compressible, solvent-free model for bilayer
membranes.

We assume that our phenomenological total non-bonded interaction energy in
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the system is given by,

Ht

kBT
=

Mx∑
i=1

My∑
j=1

Mz∑
k=1

ρ∆V
N

(
χNφAφB +

1
2
κN (φA + φB − φ0)2

)
(2.23)

φα =
Uα
ρ∆V

(2.24)

where (i, j, k) represent indices of cells, (Mx,My,Mz) the number of cells inx, y, z-
direction respectively i.e.Mcell = MxMyMz, ρ is the average number density of the
total segments over the system box,∆V the volume of the divided cell,N polymer-
ization degree,Uα the number of theα-segments in the cell, andα = A, B. Here the
reference density,φ0, is set to unity. The Flory-Huggins parameter,χN, describes
the incompatibility between the A and B species and the inverse compressibility
κN is chosen large enough to suppress density fluctuations on the length scale,Re.

Whereas this original method can effectively reduce the computational time,
there are no non-bonded interactions between particles in neighboring (different)
cells. While the segment moves within one cell, the interaction energy between
this segment and the others does not change. When the segment crosses the bor-
der between the cells, impulsive interaction force suddenly acts. These situations
sometimes cause simulation artifacts. Phase separation of dense simple liquids is
illustrated as an example of such artifacts. In this system, neighboring cells are
filled with one molecular species independently of other cells.

2.3.2 PPPM improved with a linear interpolation

To reduce this spatial discontinuity in the interaction, we often adopt a PPPM
method improved with the linear interpolation [41–43].

Although we still use the same Hamiltonian (2.23), we change formulation
about the volume fractionφα. In the original method, volume fraction concerning
one particle, 1/ ρ∆V, is added to the grid point where this particle belongs. In the
improved method, with the linear interpolation, 1/ ρ∆V is divided by the 8 grid
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points which are surrounding this particle:

φ′α(i, j, k) =
(Rx

i+1 − rx)(R
y
j+1 − ry)(R

z
k+1 − rz)

∆V
1
ρ∆V

φ′α(i, j, k+ 1) =
(Rx

i+1 − rx)(R
y
j+1 − ry)(rz− Rz

k)

∆V
1
ρ∆V

φ′α(i, j + 1, k) =
(Rx

i+1 − rx)(ry − Ry
j)(R

z
k+1 − rz)

∆V
1
ρ∆V

. . .

φ′α(i + 1, j + 1, k+ 1) =
(rx − Rx

i+1)(ry − Ry
j)(rz− Rz

k)

∆V
1
ρ∆V

(2.25)

where (i, j, k) represent the indices of the grid point where the particle belongs,α

segment species of the particle,φ′α the divided volume fraction on each surrounding
grid point, (rx, ry, rz) the particle coordinate, (Rx

νx
,Ry
νy,R

z
νz

) the coordinate of the
grid point specified by indices (νx, νy, νz). We can obtain the total volume fraction
on each grid point by summingφ′α over all the particles adjacent to the grid point.

Without huge computational cost (about a factor of 2) this improved technique
relieves the problems on the method mentioned in section2.3.1.

2.3.3 Program test

As a program test, using the linear interpolation method, we simulate linear diblock
copolymers and linear homopolymer blend in the cubic system box via canonical
Monte Carlo simulations. Interactions have been defined in section2.3.1. In all
the simulations, parameters are: polymerization degreeN = 32, the total number
of polymersnp = 1000, average number density of all kinds of the polymersρ0 =

122.0/(Re)3, κN = 60.0, the width of the cell≈ Re/6.0, whereRe is the end to end
distance of an ideal linear chain and set as a unit length. After 105 MCS, during
which the system relaxes, particle configuration is collected every 1000 MCS and
10 independent data are sampled. We vary parameterχN and observe the phase
behavior.

2.3.3-a Diblock copolymers

First, we simulate diblock copolymers. The block ratio is fixed at 0.5. Müller
and Daoulas simulated this system via Single-Chain-in-Mean-Field method and
calculated the free energy difference between the ordered phase and the disor-
dered phase based on thermodynamic integration and expanded ensemble simu-
lation techniques [36].
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We take snapshots of the system to check the phase behavior. These snap-
shots show the disordered state atχN . 14.0 whereas lamellae are observed at
χN & 16.0 (Fig.2.2). To investigate this change in phase behavior, we also calcu-
late the density distribution of A-segments inside a lattice cell (Fig.2.3). We can
observe the sudden change in this density distribution from a single-peaked to a
binodal distribution aroundχN ≈ 14.0, which indicates the transition between the
disordered phase and the lamella phase.

These results are consistent with the mean field theory that predicts the micro-
phase separation atχN = 10.5 [36, 45] although its value is shifted due to the
fluctuations which are ignored in the mean field theory [46].

Figure 2.2: Snapshot of diblock copolymers atχN = 16.0. Lamellae are observed in the
system.

2.3.3-b Homopolymer blend

Second, we simulate the homopolymer blend, which has the same number of A-
homopolymers and B-homopolymers. We control the parameterχN and monitor
the phase behavior. Figure2.4 shows the change in the density distribution of
A-segments with the parameterχN. At χN ≈ 4.0 the sudden change of this distri-
bution is observed, which shows that macro phase separation occurs in this region.

The transition point is shifted to a largerχN compared to the predictionχN =
2 of the mean field approximation [45] owing to the finite size effect and, more
importantly, fluctuations.
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Density profile of segment A for diblock copolymers

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40
The number of A-segments per cell

D
en

si
ty

 p
ro

fi
le

ChiN=4.0
ChiN=8.0
ChiN=12.0
ChiN=16.0
ChiN=20.0

Figure 2.3: Distribution of A-segments for diblock copolymers. Micro phase separation
occurs aroundχN ≈ 14.0.

Density profile of segment A for homopolymer blends
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Figure 2.4: Distribution of A-segments for homopolymer blend. Macro phase separation
occurs aroundχN ≈ 4.0.
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2.3.4 Benchmark

We have carried out benchmark tests to compare the original method and the linear
extrapolation. We simulate different systems and monitor the difference in the
computational time between both the methods. The programs implemented based
on these methods are compiled by g++ version 4.0.1 with optimization option -O3.
These benchmark programs are run on a server placed in our institute (Intel(R)
Xeon(TM) CPU 2.40GHz, 32 bit Linux OS).

2.3.4-a Benchmark on monomer blend

Benchmark on 1:1 A-B monomer blend that is a mixture of 50% A-segments and
50% B-segments. The simulation parameters and benchmark results are shown in
Tables2.2and2.3respectively.

Table 2.2: Simulation parameters for benchmark on 1:1 A-B monomer blend.

χ = 5.0
κ = 30.0

The total number of monomers= 64000
The average number of monomers in one cell= 64

The number of cells = 1000
Calculated steps = 1000 MCS

Table 2.3: Computational time for 1:1 A-B monomer blend.

Time (sec)
Original method 78

Improved method 205

2.3.4-b Benchmark on diblock copolymers

Benchmark on A-B diblock copolymers. Tables2.4 and2.5 show the parameter
set of the simulation and the benchmark results.

Test simulations and benchmarks discussed indicate that our linear extrapola-
tion method and implementation yield reasonable physical property and the com-
putational cost approximately 2.5 times larger than the computational time for the
original method.
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Table 2.4: Simulation parameters for benchmark on A-B diblock copolymers, where the
end to end distance of an ideal chain is defined as the unit length.

Polymerization degreeN = 32
χN = 20.0
κN = 50.0

Block ratio = 0.5
The number of polymers = 8000

Number density of polymers = 122.0
Width of the cell ≈ 1.0/6.0
Calculated steps = 500 MCS

Table 2.5: Computational time for A-B diblock copolymers.

Time (sec)
Original method 274

Improved method 642
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2.4 Simulation of solvent-free homopolymers

Using the solvent-free system discussed in section2.1, we simulate a single compo-
nent linear homopolymers in the canonical ensemble. The phase behavior observed
in the simulation is compared with the results from the mean field theory in sec-
tion 2.1. The bonded and non-bonded interaction potentials between the segments
in our simulation system is described by equations (2.1) and (2.11), respectively.

In our simulation, we control the parametersρ′p andv′ whereas the other param-
eters are fixed. These fixed parameters are shown in Table2.6. kBT is the energy
unit. The homopolymers are arranged in the rectangular parallelepiped system box
with the sizex × y × z = L × L × 2L. Mainly the simulation results atnp = 250
homopolymers are shown in the present thesis. We have verified, however, that our
simulation results do not substantially change where we simulate a larger system
with np = 2000 homopolymers.

After 3 × 106 MCS atρ′p/ρ
′
pc = 0.1, 1.0, 4.0, and 10.0 and 106 MCS at other

densities, by which the system relaxes to the equilibrium state, we acquire data
every 104 MCS and get 10 independent samples of the segment configurations.

Table 2.6: Simulation parameters in the single component solvent-free homopolymers.

Polymerization degreeN = 32
w′ = 1.0

The number of polymersnp = 250
The width of the cell∆L ≈ (1.0/6.0)Re

The maximum trial displacement= ∆L

2.4.1 Locating the liquid-gas coexisting line

Prior to simulation results, we discuss two methods for locating the liquid-gas co-
existing line in molecular simulation.

2.4.1-a Methods via rectangular parallelepiped system box

Using a rectangular parallelepiped system box, we can determine the liquid-gas
coexisting line.

Our particles are arranged in a rectangular parallelepiped system box with size
x × y × z = L × L × Lz, whereL < Lz. We assume that the particles separate
into the two coexisting phases i.e. a dense polymermelt and a dilute gas, after the
simulation starts. In order to quantitatively discuss the phase transition between the
gas phase and the liquid phase and construct the phase diagram, the density profile
alongz-axis is calculated.

Owing to the anisotropy of the rectangular parallelepiped system box inz-
direction, the interfaces between both the phases tend to be parallel withxy-plane
when the system is located on the coexisting line. We can find these interfaces from
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the density profile alongz-axis and quantitatively understand the phase behavior.
If the initial average density,ρ′p, is located inside the miscibility gap, the system
will phase-separate into two domains. The properties in the interior of the domains
correspond to those of the two coexisting phases.

This method can be applied to a variety of systems. It is well suited for strongly
segregated systems deep inside the miscibility gap. Upon approaching the critical
point, however, the method fails because

i) the interface that separates the two domains becomes very broad and compa-
rable to the system size and

ii) strong fluctuation make the monitoring of the density profiles increasingly
difficult.

2.4.1-b Block density distribution technique

In block density distribution technique [47] the system box, cubic or rectangular
parallelepiped, is divided into finite small blocks or cells. Each block holds parti-
cles in response to the phase of the block. We calculate the density profile of the
particles per block.

When the system is located in the homogeneous phase, i.e. the gas phase or the
liquid phase, this density profile shows one sharp peak on the average density and
the density of each cell is fluctuating around this peak.

Inside the miscibility gap, two peaks are found in the density profile at low
density and high density; these peaks correspond to the blocks in the gas phase and
the ones in the liquid phase respectively. Therefore, finding these two peaks at the
same time we obtain a rough approximation of the liquid-gas coexisting line.

2.4.2 Simulation results of solvent-free homopolymers

For the sake of intuitively understanding the phase behavior of our system, we
take the snapshots of the system. As a particular exmaple, Fig.2.5 shows the
snapshots of the system atρ′p/ρ

′
pc = 10.0. We can observe the homogeneous phase

at v′/v′c = 5.0 though atv′/v′c = 6.0 the system is separated into two phases,
low density and high density. Atρ′p/ρ

′
pc = 10.0, in view of our snapshots, the

system is in the homogeneous phase atv′/v′c . 5.0 and the separated phase at
v′/v′c & 6.0. In order to quantitatively discuss the phase transition between the
homogeneous phase and the coexisting phase and construct an approximation of
the phase diagram, the density profile alongz-axis is calculated (see section2.4.1-
a). Owing to the anisotropy of the rectangular parallelepiped system box inz-
direction, the interface in the separated region tends to be parallel withxy-plane.
We can find this interface from the density profile alongz-axis and quantitatively
understand the phase behavior since, in the homogeneous phase, the interface is
not found and the density profile takes homogeneous form. Figure2.6 shows this
density profile alongz-axis atρ′p/ρ

′
pc = 10.0. We can observe the phase separation
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(a) (b)(a) (b)

Figure 2.5: Snapshots of the system atρ′p/ρ
′
pc = 10.0 and 3×106 MCS. The snapshot (a) is

taken atv′/v′c = 5.0 and (b) atv′/v′c = 6.0. These figures show the phase transition around
this region.
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Figure 2.6: Density profile alongz-axis atρ′p/ρ
′
pc = 10.0. Phase transition is observed at

v′/v′c ≈ 5.5. 30∆L = 2L.

at v′/v′c & 6.0, which is signaled by the formation of two domains (see Fig.2.5).
These results indicate that, with use of snapshots of the system and the density
profile alongz-axis, we can quantitatively construct the phase diagram.
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Figure 2.7 shows the binodal line of our solvent-free single component lin-
ear homopolymer systems. Though the form of the binodal line determined from
numerical calculation based on the mean field theory qualitatively correspond to
our simulation results, the critical point is shifted to the regionρ′p/ρ

′
pc ≈ 3.0 and

v′/v′c ≈ 4.3.

Binodal line

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 5.0 10.0

v' /v' c

Binodal line via
mean field
calculation

Binodal line via
simulation

pcp '' ρρ

Binodal line

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 5.0 10.0

v' /v' c

Binodal line via
mean field
calculation

Binodal line via
simulation

pcp '' ρρ

Figure 2.7: Phase diagram obtained via simulation. A black circle represents the separated
phase and a white square the homogeneous phase.A binodal line is plotted by a broken line.
Triangles represent the binodal line via the mean field approximation.

In order to elucidate the discrepancy between these two binodal lines, we cal-
culate the density distribution of the segments per cell. In view of the snapshots of
the system (see Fig.2.8), the segments are locally surrounded with a void and the
sparse segment configuration is observed in the rectangular parallelepiped system
box. Figure2.9shows the density profile of the segments per cell atρ′p/ρ

′
pc = 1.0.

Each cell contains a small number of segments. These results indicate that one seg-
ment interacts with only a few others. At high density, mean field approximation
approaches to the exact solution whereas at low density it fails [45]. Consequently,
due to the sparse segment configuration in our system, the location of the binodal
line expected via the mean field approximation does not agree with our Monte
Carlo simulation results. At high density, however, the binodal line predicted by
the mean field theory approaches to the one from the simulation (see Fig.2.7).
At ρ′p/ρ

′
pc = 100 andw′ = 1.0 the simulation results show the phase transition at

v′/v′c ≈ 36.0 (see Fig.2.11), which is consistent with the binodal point located with
eq. (2.17) i.e. ρ′p/ρ

′
pc = 100 andv′/v′c = 33.3.
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Figure 2.8: Snapshot of the system atρ′p/ρ
′
pc = 1.0 andv′/v′c = 0.1, taken at 3×106 MCS.
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Next, we discuss the density distribution of the segments per cell. The density
distribution atρ′p/ρ

′
pc = 1.0 (see Fig.2.9) shows only one sharp peak in the number

of the segments per cell= 0 even though the system is in the phase-separated state
(see also Fig.2.7). In the region around the number of the segmentsU = 2 and
high v′/v′c, however, the distribution forms a shoulder. These results indicate that
the peak in the high density region is covered in the sharp peak in the low density
region due to the low average density. For the sake of searching for the peak in the
high density region in the separated phase, we simulate the system at high average
density and calculate the density distribution of the segments per cell.

Figures2.10 and 2.11 show the density profile of the segments per cell at
ρ′p/ρ

′
pc = 10.0 andρ′p/ρ

′
pc = 100.0 respectively. Atρ′p/ρ

′
pc = 10.0, the low peak

in the high density region appears around the number of segments per cellU = 3.
On the other hand atρ′p/ρ

′
pc = 100.0, extremely high average density, the segment

distribution becomes the same form as the dense polymer solutions [45]. These
results correspond to our discussion in this section and the physical properties of
common polymer systems. Upon increasing the incompatibilityv′/v′c, we observe
that the distribution changes from a single-peak structure, which characterizes the
homogeneous phase to a binodal form. The two peaks mark the density of the
two coexisting phases. The incompatibility, at which the distribution changes its
qualitative form, provides a rough estimation for the location of the binodal.
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The phase transition occurs aroundv′/v′c ≈ 36.0.



Chapter 3

Simulation method

Molecular simulation, also called particle simulation, refers to computational tech-
niques for studying phenomena observed in systems composed of a large number
of particles. Two techniques can be distinguished:

One is the molecular dynamics (MD) method that is based on the fact that a set
of particles move according to Newton equations. For the purpose of simulating
the time evolution of systems, Newton equations are numerically solved in this
method. MD is suited to study dynamical physical properties.

The other is the Monte Carlo (MC) method. In MC methods, particle space co-
ordinates are stochastically generated according to a Boltzmann factor with use of
random numbers on computers. This method allows studying equilibrium physical
properties.

In the present dissertation, we choose the MC method, which is discussed in
this chapter. The Mersenne Twister algorithm is adopted as a uniform random
number generator in our simulation (see section3.1.3). Our systems are simulated
using periodic boundary condition, which is suitable for simulating bulk physical
properties.

3.1 NVT-Monte Carlo simulation technique

In this section, MC simulation techniques in the canonical ensemble [48–50] are
discussed. The canonical ensemble is also calledNVT-ensemble due to the con-
stant number of particlesN, constant system volumeV, and constant temperature
T.

We assume that our system is composed ofN particles with massm in the
canonical ensemble and that Hamiltonian of the system is defined as

H (p1, p2, . . . , pN, r1, r2, . . . , rN) =
N∑

j=1

p2
j

2m
+ U(r1, . . . , rN),

wherepj andr j denote the momentum and the coordinates of the particlej respec-
tively andU does the potential energy of the system. The probability that a micro-

29
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scopic state is found in a small phase space volumedrN dpN =
∏N

j=1

(
dr j dpj

)
at

the position(p1, . . . , pN, r1, . . . , rN) is

1
ZN(T,V) N! h3N

exp

[
−

1
kBT

H (p1, . . . , pN, r1, . . . , rN)

]
drN dpN

whereh denotes Planck’s constant andZN(T,V) does the partition function of the
system,

ZN(T,V) =
1

Λ3N N!

∫
dr1 . . . drN exp

[
−

1
kBT

U(r1, . . . , rN)

]
, Λ :=

h
√

2πmkBT
.

(3.1)
The ensemble average of a mechanical quantity,A(r1, r2, . . . , rN), which depends
only on the particle coordinates is given by

〈A〉NVT =
1

ZN(T,V) N! h3N

×

" {
A(r1, . . . , rN) exp

[
−

1
kBT

H (p1, . . . , rN)

]}
drN dpN

=
1

QN(T,V)

∫
V

{
A(r1, . . . , rN) exp

[
−

1
kBT

U (r1, . . . , rN)

]}
dr1 . . . drN,

(3.2)

where

QN(T,V) =
∫

V
dr1 . . . drN exp

[
−

1
kBT

U (r1, . . . , rN)

]
.

The right-hand side of (3.2) involves aN-dimensional integral over the whole sys-
tem volumeV. At N � 1, high dimension prevents us from numerically calcu-
lating the integral via deterministic integration, e.g. trapezium rule and Simpson’s
rule. For such a high dimensional integral, Monte Carlo integration is required to
determine the ensemble average〈A〉NVT, i.e. a physical property of our system.

3.1.1 Metropolis algorithm

In NVT-Monte Carlo simulation, a series of particle coordinates in canonical en-
semble are sampled in a Markov process. The particle configurations correspond to
the states in the Markov process. In 3-dimensional systems, each configuration is a
set of 3N microscopic particle coordinates,(r1, . . . , rN). The set of all the states is
denoted byΩ = {1,2,3, . . . , k, . . . }. Within the MC simulation, a stochastic trajec-
tory through configuration space is constructed, such that the distribution of visited
configurations obeys the canonical distribution according to the partition function
eq. (3.1). The probability density that one random walker is found on a statei is:

wi :=
1

ZN(T,V)
1

Λ3N N!
exp

[
−

1
kBT

Ui

]
, (3.3)
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whereUi denotes the potential energy ati. The transition probability changing the
state fromi to k is denoted byPik.

In our simulation, this transition probability and eq. (3.3) should fulfill the
principle of detailed balance

wiPik = wkPki, i, k ∈ Ω.

This principle means the frequency that the transition fromi to k occurs is equal to
the frequency that fromk to i: while a large number of the space trajectories move
over the phase space, the number of them on each point in the phase space should
be constants in equilibrium. In other words, the net flow between any pairs of the
points should vanish. This condition is reduced to

Pik

Pki
=

exp[−Uk/kBT]
exp[−Ui/kBT]

= exp

[
−

1
kBT

(Uk − Ui)

]
. (3.4)

In Metropolis algorithm, particle coordinates are sampled according to the
equation which is obtained from (3.4),

Pik : Pki = 1 : exp[−(1/kBT)(Ui − Uk)] , whereUk < Ui ,

= exp[−(1/kBT)(Uk − Ui)] : 1, whereUk > Ui .

If Uk < Ui , the system is moved fromi to k with probability= 1. If Uk > Ui , the
system is moved fromi to k with probability= exp[−(1/kBT)(Uk − Ui)] (< 1). In
the remainder of this section3.1.1, we discuss the detail algorithm.

1) Choosing one particle fromN ones at random. Giving this chosen particleα
a random displacement∆rα = (∆xα, ∆yα, ∆zα). The selected particle is moved
from rα to rα + ∆rα. The random displacement vector∆rα is determined with
three random numbersξx, ξy, andξz uniformly distributed in the interval [0,1).

∆xα = δ(1− 2ξx), ∆yα = δ(1− 2ξy), ∆zα = δ(1− 2ξz) (3.5)

With this displacement, points in the cubic box whose centre is located on the
positionrα with size 2δ × 2δ × 2δ is uniformly chosen. We call this movement
the trial displacement.

2) Calculating the potential energy of the system after the trial displacement,Utrial.

3) ComparingUtrial to the potential before the trial displacement,Ucurrent.

(a) If Utrial ≤ Ucurrent, accept the state after the trial displacement and update
the coordinates of the particleα.

(b) If Utrial > Ucurrent, generate one more random number,η, uniformly dis-
tributed in the interval [0,1), and if

η < exp[−(1/kBT)(Utrial − Ucurrent)] ,

accept the state after the trial displacement and update the coordinates of
the particleα. Otherwise, reject the state after the trial displacement and
keep the current state to the next simulation step.



32 CHAPTER 3. SIMULATION METHOD

4) Return to the first procedure, 1).

This procedure 1) - 4) generates, in sequence, a series of the particle coordinates in
canonical ensemble and one cycle is called one simulation step.

3.1.2 Monte Carlo step (MCS) and acceptance ratio

The ratio of the number of accepted simulation steps in one MCS toN cycles
of the Metropolis algorithm is defined as acceptance ratio. At high maximum trial
displacementδ, the particles can step with large strides through configuration space
though the acceptance ratio decreases owing to the large energy change after the
trial displacement. On the other hand, at lowδ the acceptance ratio increases due
to the small energy change though the particles walk at a small pace. Thus, the
acceptance ratio and the relaxation time to equilibration of the system depend on
the parameterδ. The optimal value of the acceptance ratio for the short relaxation
time is empirically about 50% [48].

3.1.3 Mersenne Twister

In our Monte Carlo simulation, Mersenne Twister is adopted as a uniform random
number generator [51–53].

• A high order of dimensional equidistribution. This means that the corre-
lation between successive values in the output random number sequence is
negligible.

• Architected to have a period of 219937− 1. Practically, there is little demand
for larger periods, since most simulations do not demand 219937− 1 unique
combinations.

• The source code is available on

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

This site is also found on the net with the search word “Mersenne Twister”.
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3.2 Statistics for molecules with intra-structure

3.2.1 Molecules with the internal structure

We discuss the statistics aboutN molecules of the same species inNVT-ensemble.
One molecule consists ofM atoms; the total number of the atoms in the system
box= MN. The partition function for this system is denoted byZN(T,V):

ZN(T,V) =

1
Λ3NM N!

∫
dr1

1 dr1
2 . . . dr1

M dr2
1 . . . drN

M exp

[
−

1
kBT

U
(
r1
1, r

1
2, . . . , r

1
M, r

2
1, . . . , r

N
M

)]
(3.6)

where r l
k represents the position of thek-th atom in thel-th molecule,U is the

potential energy in the system, and the thermal de Broglie wave lengthΛ has been
introduced in eq. (3.1). The potential energyU is divided into 2 parts:

i) The internal potential energy,U int, which includes the intra-molecular inter-
actions, e.g. bonding, bond bending, and torsion.

ii) The non-bonded potential energy,Unb, which takes into account the non-
bonded interactions which have not been taken into account in the internal
part.

With the use ofU int andUnb, the total potentialU and the partition function (3.6)
are:

U
(
r1
1, . . . , r

N
M

)
= Unb

(
r1
1, . . . , r

N
M

)
+

N∑
i=1

U int
(
r i
1, . . . , r

i
M

)
(3.7)

and

ZN(T,V) =

1
Λ3NM N!

∫
dr1

1 . . . drN
M exp

− 1
kBT

Unb
(
r1
1, . . . , r

N
M

)
+

N∑
i=1

U int
(
r i
1, . . . , r

i
M

)
 .

(3.8)

3.2.2 Ideal molecules

We define ideal molecules as molecules interacting only via the bonded potential,
i.e. Unb = 0. The partition function (3.8) of such an ideal molecular system is
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denoted byZideal
N (T,V),

Zideal
N (T,V) =

1
Λ3NM N!

∫
dr1

1 . . . drN
M exp

− 1
kBT

N∑
i=1

U int
(
r i
1, . . . , r

i
M

)
=

1
Λ3NM N!

N∏
i=1

{∫
dr i

1 . . . dr i
M exp

[
−

1
kBT

U int
(
r i
1, . . . , r

i
M

)]}
=

1
N!

( f (T,V))N (3.9)

=
VN

N! Λ3N
( j(T,V))N , (3.10)

where

f (T,V) := Zideal
1 (T,V) =

1
Λ3M

∫
dr1 . . . drM exp

[
−

1
kBT

U int (r1, . . . , rM)

]
(3.11)

and

j(T,V) :=
Λ3

V
Zideal

1 (T,V)

=
1

VΛ3(M−1)

∫
dr1 . . . drM exp

[
−

1
kBT

U int (r1, . . . , rM)

]
, (3.12)

rk is the position of thek-th atom in one molecule.f (T,V) and j(T,V) correspond
to the partition function of one ideal molecule and the partition function of the
internal degrees of freedom for one ideal molecule respectively.

Using Stirling’s approximation,

logν � ν logν − ν for an integerν � 1,

we can calculate the system free energyFideal(T,V,N) and the system chemical
potentialµideal(T,V,N) from the partition function (3.10).

Fideal(T,V,N)
kBT

= − logZideal
N (T,V) � −N log

( Ve

NΛ3
j(T,V)

)
(3.13)

µideal(T,V,N)
kBT

= −
∂

∂N
logZideal

N (T,V) � log
(
Λ3ρ

)
− log j(T,V) (3.14)

where the average molecular density in the system is denoted byρ = N/V. Due to
the intensive property of the chemical potential,j(T,V) should not depend onV,

j(T,V) = j(T).

With this expression forj(T), we can rewrite equations (3.10), (3.13), and (3.14)
in the form:

Zideal
N (T,V) =

VN

N! Λ3N
( j(T))N , (3.15)
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Fideal(T,V,N)
kBT

= −N log
( Ve

NΛ3
j(T)

)
, (3.16)

µideal(T, ρ)
kBT

= log
(
Λ3ρ

)
− log j(T), (3.17)

where

j(T) =
Λ3

V
Zideal

1 (T,V) =
1

VΛ3(M−1)

∫
dr1 . . . drM exp

[
−

1
kBT

U int (r1, . . . , rM)

]
.

(3.18)

3.2.2-a Internal potential energy via the bond vector

The internal potential energy of both an ideal molecule and a non-ideal molecule
is independent of the molecular center of mass;U int (r1, . . . , rM) depends only on
the molecular configuration, i.e. the relative coordinates between the atoms.

The bond vector,

ui := r i+1 − r i , 1 ≤ i ≤ M − 1, (3.19)

determines this configuration (see Fig.3.1). Therefore, the internal potential en-
ergy is represented by the bond vector:

Ũ int (u1,u2, . . . ,uM−1) := U int (r1, . . . , rM) ,

where

r i = r1 +

i−1∑
j=1

u j , 2 ≤ i ≤ M.

With the use of the bond vector and̃U int (u1, . . . ,uM−1), the partition function of
an ideal molecule,Zideal

1 (T,V), is

Zideal
1 (T,V) =

1
Λ3M

∫
du1 . . . duM−1 dr1 exp

[
−

1
kBT

U int (r1, . . . , rM)

]
=

V

Λ3M

∫
du1 . . . duM−1 exp

[
−

1
kBT

Ũ int (u1, . . . ,uM−1)

]
. (3.20)

3.2.2-b Bead-spring model

In a bead-spring model (see also sectionA.2) of a linear polymer,

U int (r1, . . . , rM) =
3kBT

2b2

M−1∑
i=1

|r i+1 − r i |
2 =

3kBT

2b2

M−1∑
i=1

|ui |
2 ,
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Figure 3.1: An example of a molecular configuration schematically represented byui .
Spheres represent the atoms. Arrows show these bond vectors, i.e. relative coordinates be-
tween the atoms, which determine the internal potential energy independent of the absolute
coordinates.

whereb denotes the segment size. In this model,∫
dr1 . . . drM exp

[
−

1
kBT

U int (r1, . . . , rM)

]
=

∫
du1 . . . duM−1 dr1

M−1∏
i=1

exp

[
−

3
2b2
|ui |

2
]
= V

{∫
du exp

[
−

3
2b2
|u|2

]}M−1

,

whereu is one bond vector. Atb � V1/3, i.e. the condition that the system is far
larger than the segment, this Gaussian integral over the system box is approximated
by the Gaussian integral over an infinite volume:

V

{∫
du exp

[
−

3
2b2
|u|2

]}M−1

� V

(
2πb2

3

) 3
2 (M−1)

.

Using this result, we determinej(T) of the bead-spring model, (3.18).

Z0 := j(T) =
1

Λ3(M−1)

(
2πb2

3

) 3
2 (M−1)

(3.21)

Z0 is not explicitly dependent onT, but it depends onT via thermal de Broglie
wave lengthΛ and the segment sizeb. The free energy (3.16) and the chemical
potential (3.17) of the bead-spring model are also calculated:

Fideal(T,V,N)
kBT

= −N log
( Ve

NΛ3
Z0

)
(3.22)

µideal(T, ρ)
kBT

= log
(
Λ3ρ

)
− logZ0. (3.23)
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In our simulation based on the bead-spring model, the segment size is fixed
at b2 = R2

e/(M − 1). Using this condition, we showZ0 defined in (3.21) in our
simulation model (see eq. (2.1)).

Z0 =
1

Λ3(M−1)

(
2π

3(M − 1)
R2

e

) 3
2 (M−1)

. (3.24)

3.2.3 Statistics of molecules inµVT-ensemble

Based on the statistics in the canonical ensemble, we discuss the statistics in the
grand canonical ensemble, i.e.µVT-ensemble.

We have a system inNVT-ensemble, (T,V0,N0), whereV0 denotes the total
system volume andN0 the total number of molecules. We assume that all the
molecules are identical and that each molecule is composed ofM atoms: the total
number of the atoms in the system isMN0. Our system is divided into 2 subsys-
tems;

i) (T,V0−V,N0−N). The molecules in this subsystem do not interact, i.e. ideal
molecular system.

ii) (T,V,N). This subsystem containsN interacting molecules.

When these two subsystems are isolated from each other, the total partition function
of the system is written with relations (3.15) and (3.8):

Ziso(T,V,V0,N,N0) = Zideal
N0−N(T,V0 − V) ZN(T,V)

=
(V0 − V)N0−N( j(T))N0−N

(N0 − N)! Λ3(N0−N)
ZN(T,V).

When our subsystems are allowed to exchange the molecules, the total partition
function of the system,Z(T,V,V′,N0) whereV′ := V0 − V, is determined via

Z(T,V,V′,N0) =
N0∑

N=0

Ziso(T,V,V0,N,N0)

=

N0∑
N=0

{
V′N0−N( j(T))N0−N

(N0 − N)! Λ3(N0−N)
ZN(T,V)

}

Consider this partition function in the limit that the subsystem (T,V′,N0 − N),
composed of ideal molecules, is far larger than the subsystem (T,V,N), interacting
molecules;N0 → ∞, V′ → ∞, (N0/N) → ∞, and (N0/V′) → ρres i.e. it acts as a
reservoir. This ideal molecular densityρres is related to the chemical potential of
the ideal moleculesµideal(T, ρres), (3.17). Using these relations, this total partition
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function of the system in this limit,

Z(T,V,V′,N0) � lim
N0,V′→∞
N0/V′=ρres

N0∑
N=0

{
V′N0( j(T))N0

N0! Λ3N0
Λ3N

(N0

V′

)N

( j(T))−NZN(T,V)

}

= lim
N0,V′→∞
N0/V′=ρres

Zideal
N0

(T,V′)
N0∑

N=0

{
exp

[
µideal(T, ρres)

kBT
N

]
ZN(T,V)

} .
Therefore, the partition function for the interacting molecules in this limit is:

Ξ(µ,T,V) :=
∞∑

N=0

{
exp

[
µ

kBT
N

]
ZN(T,V)

}

=

∞∑
N=0

{
exp

[
(µ/kBT) N

]
Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

N
M

)]}
(3.25)

whereµ := µideal(T, ρres). Ξ(µ,T,V) is called grand partition function, which deter-
mines the probability density thatN interacting molecules are found on (r1

1, . . . , r
N
M)

in the system box with the volumeV equilibrated with the reservoirµ andT. This
probability density is denoted by ˆwN(r1

1, . . . , r
N
M).

ŵN

(
r1
1, . . . , r

N
M

)
=

1
Ξ(µ,T,V)

1
Λ3NM N!

exp

[
−

1
kBT

U
(
r1
1, . . . , r

N
M

)
+
µ

kBT
N

]
(3.26)

The probability density ofN is calculated from (3.26):

Hµ,T,V(N) :=
∫

dr1
1 . . . drN

M ŵN

(
r1
1, . . . , r

N
M

)
=

1
Ξ(µ,T,V)

1
Λ3NM N!

exp

[
µ

kBT
N

] ∫
dr1

1 . . . drN
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

N
M

)]
(3.27)

3.3 Configurational-bias method inµVT-ensemble

In grand canonical ensemble,µVT-ensemble, the system box and the reservoir ex-
change particles. In simulation inµVT-ensemble, particles are inserted into and
deleted from the system in addition to Metropolis trial movement. In one simula-
tion step:

i) with probability pg, trial particle insertion into the system

ii) with probability pg, trial particle deletion from the system

iii) with probability 1− 2pg, trial movement based on Metropolis algorithm i.e.
perturbation of one segment
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is chosen.
When one macromolecule is inserted in the system box at random, segments

of this extended molecule overlap with others with a high probability and this trial
is rejected. In configurational-bias method the inserted molecule is built segment
by segment. The bias in constructing the molecule reduces the probability of the
overlap between the molecules. We will discuss this configurational-bias method
in grand canonical ensemble. In the present formulation, the reference state in the
chemical potential (see eq. (3.17)), j(T), and thermal de Broglie wave lengthΛ are
absorbed in the definition of the chain potential (cf. original articles [50, 54]); we
can simulate any systems in grand canonical ensemble regardless of the unknown
reference statej(T) andΛ (see also section3.4.3).

3.3.1 Particle insertion

To insert a molecule into the system via configurational-bias method, we use the
following 4 steps.

1) The first atom of the molecule, the end segment, is located in the system box at
random. The energy between this atom and the others is defined asun,nb(1).

2) In order to link another segment to this end segment and to grow the molecule
segment by segment, a set ofk trial positions is generated for thel-th segment.
These positions are denoted by{bl} = (bl

1, b
l
2, . . . , b

l
k). These vectors are drawn

from the center of the (l − 1)-th segment and correspond to the bond vector
eq. (3.19) that connect the (l − 1)-th and thel-th segments. This set of trial
orientations are generated using the internal potential energy, which results in
the distribution:

pint
l (bl

i) dbl
i =

exp
[
−βun,int

l (bl
i)
]

dbl
i

Cl
, 1 ≤ i ≤ k (3.28)

where the inverse temperatureβ = 1/kBT, un,int
l (bl

i) denotes the internal poten-
tial energy between the trial position located bybl

i as thel-th segment and the
other segments which have already been grown, andCl is a normalization con-
stant.Cl is related to the partition function of an ideal molecule, i.e. eq. (3.20),

V

Λ3M

M∏
l=2

Cl =
V

Λ3M

∫
exp

−β M∑
l=2

un,int
l (bl

i)

 M∏
l=2

dbl
i

=
V

Λ3M

∫
du1 . . . duM−1 exp

[
−

1
kBT

Ũ int (u1, . . . ,uM−1)

]
= Zideal

1 (T,V) (3.29)

In our present simulation model,un,int
l (bl

i) is a harmonic spring potential. There-
fore x, y, z-elements ofbl

i are independently distributed by the Gaussian distri-
bution with the average, 0, and the variance,R2

e/{3(M − 1)}, whereM denotes
the number of segments per molecule.
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For each of these trial positions, the non-bonded potential energy between this
trial position and the other segments, i.e. the other molecules and the segments
which have already been grown in the present molecule, is calculated. This
energy is denoted byun,nb

l (bl
j) and one of these positions is selected as thel-th

segment with a probability

pnb
l (bl

j) =
exp

[
−βun,nb

l (bl
j)
]

wn,nb(l)
, 1 ≤ j ≤ k, (3.30)

where

wn,nb(l) =
k∑

j=1

exp
[
−βun,nb

l (bl
j)
]
. (3.31)

This step 2) is also schematically illustrated in Fig.3.2. Since we favour con-
formations with a low energy, we have introduced a bias. For the purpose of
satisfying the detailed balance, this bias should be compensated in the accep-
tance rules.

We define a set of{bl} over the trial molecule as

{B} :=
({

b2
}
, . . . ,

{
bM

})
.

3) After repeating step 2) until the whole molecule with the number of segments
per molecule,M, has been grown, we calculate the Rosenbluth weight

Wn := exp
[
−βun,nb(1)

] M∏
l=2

wn,nb(l)
k
. (3.32)

4) The new molecule is accepted with a probability

acc(N→ N + 1| {B}) = min

(
1,

V exp[βµ]
Λ3(N + 1)

Wn j(T)

)
, (3.33)

whereN denotes the current number of molecules in the system.j(T) and the
chemical potential of the reservoir consisting of ideal molecules denoted byµ

are given in (3.18) and (3.17) respectively. We can reduce the acceptance crite-
rion by expressingj andµ in terms of the densityρres of a with non-interacting
molecules.

acc(N→ N + 1| {B}) = min
(
1,

V
N + 1

ρresW
n
)
. (3.34)

The reference state in the chemical potential,j(T), and thermal de Broglie wave
lengthΛ have disappeared from our acceptance criterion.

At large parameterk, high acceptance ratio is obtained because energetically
good configurations are found. On the other hand, at smallk, a program runs fast
whereas the acceptance ratio is low.

Particle deletion is discussed in appendixB.
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1

42

3

Figure 3.2: Step 2) in the particle insertion. After the first segment is randomly placed
in the system, the other segments that belong to the inserted molecule are grown segment
by segment. Thel-th segment is connected to the (l − 1)-th segment in step 2). In this
figure, as an example, atk = 4 the 6th segment is linked. Solid lines and spheres represent
the molecular configuration and the segments already grown respectively. First,{bl} =

(bl
1, . . . , b

l
i , . . . , b

l
k), l = 6, is generated according to the internal potential energy between

the 6th segment as an trial position and the other segments i.e. from the 1st to the 5th.
Thesek trial positions are drawn by broken arrows and broken spheres with the numberi.
One of the trial positions is chosen as the real 6th segment according to the non-bonded
potential energy of each trial position. This non-bonded potential energy is calculated
between each of the trial 6th segment and the other segments i.e. the other molecules and
the segments which have already been built. In this example, the 2nd trial position,i = 2,
is selected as the 6th segment.

3.3.2 Detailed balance condition of the configurational-bias method

When one molecule is inserted on the positionrN+1 := (rN+1
1 , . . . , rN+1

M ) to the
particle configuration (r1

1, . . . , r
N
M), the probability flow from the state (r1

1, . . . , r
N
M)

to (r1
1, . . . , r

N+1
M ) is defined as

K
((

r1
1, . . . , r

N
M

∣∣∣ N)
→

(
r1
1, . . . , r

N+1
M

∣∣∣ N + 1
))
.

This flow is a product of the probability that the system is found in the state
(r1

1, . . . , r
N
M), given in eq. (3.26), and the transition probability in this flow, denoted

by

Pr
((

r1
1, . . . , r

N
M

∣∣∣ N)
→

(
r1
1, . . . , r

N+1
M

∣∣∣ N + 1
))
.

The flow is:

K
((

r1
1, . . . , r

N
M

∣∣∣ N)
→

(
r1
1, . . . , r

N+1
M

∣∣∣ N + 1
))
=

ŵN

(
r1
1, . . . , r

N
M

)
(dV)MN × Pr

((
r1
1, . . . , r

N
M

∣∣∣ N)
→

(
r1
1, . . . , r

N+1
M

∣∣∣ N + 1
))
. (3.35)
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In the reverse flow, i.e. the flow where the inserted molecule onrN+1 is deleted, is
also defined in the same way,

K
((

r1
1, . . . , r

N+1
M

∣∣∣ N + 1
)
→

(
r1
1, . . . , r

N
M

∣∣∣ N))
=

ŵN+1

(
r1
1, . . . , r

N+1
M

)
(dV)M(N+1) × Pr

((
r1
1, . . . , r

N+1
M

∣∣∣ N + 1
)
→

(
r1
1, . . . , r

N
M

∣∣∣ N))
.

(3.36)

Our molecule is constructed segment by segment with a bias. In the following
we prove that our acceptance criterion compensates the bias and that our simulation
method satisfies the detailed balance in statistical mechanics,

K
((

r1
1, . . . , r

N
M

∣∣∣ N)
→

(
r1
1, . . . , r

N+1
M

∣∣∣ N + 1
))
=

K
((

r1
1, . . . , r

N+1
M

∣∣∣ N + 1
)
→

(
r1
1, . . . , r

N
M

∣∣∣ N))
. (3.37)

Hereafter for simplicity, we denote the states only with the number of the
molecules, e.g.

(N) :=
(
r1
1, . . . , r

N
M

∣∣∣ N)
.

3.3.2-a Flow of probability in the step insertion

First we calculate the flow (3.35). In this equation, the former factor, ˆwN

(
r1
1, . . . , r

N
M

)
,

has already been given in eq. (3.26). From now we will determine the latter factor,
the transition probability.

The first atom of the inserted molecule, the end segment, is located onrN+1
1

with probability
1
V

dV.

For l-th segment, we assume that the trial molecule is arranged onrN+1
l when a trial

orientationbl
Γ

is generated and chosen. A set{bl} including suchbl
Γ

is denoted by
{bΓl}. A set of{bΓl} over the trial molecule is defined as{

BΓ
}

:=
({

bΓ2
}
, . . . ,

{
bΓM

})
.

The probability that the trial positionrN+1 is generated with a{B} (∈ {BΓ}) is:

1
V

dV
M∏

l=2

exp
[
−βun,nb

l

(
bl
Γ

)]
wn,nb(l)

k∏
i=1

exp
[
−βun,int

l (bl
i)
]
dV

Cl


This trial is accepted with the acceptance criterion

acc(N→ N + 1| {B}) .
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The total probability to generate and accept this trial insertion onrN+1, i.e. the
transition probability, is obtained via summation of these relations over all the
{B} (∈ {BΓ}):

Pr(N→ N + 1) =

1
V

dV
∑
{B}∈{BΓ}

 M∏
l=2

exp
[
−βun,nb

l

(
bl
Γ

)]
wn,nb(l)

k
k∏

i=1

exp
[
−βun,int

l (bl
i)
]
dV

Cl

 acc(N→ N + 1| {B})

 .
(3.38)

Note that the factork means that the position ofbl
Γ

in {bl} does not matter; here-
after bl

Γ
is fixed on the last of{bl}, i.e. {bΓl} = (bl

1, . . . , b
l
k−1, b

l
Γ
). This transition

probability (3.38) yields the flow (3.35) =

K(N→ N + 1) =ŵN

(
r1
1, . . . , r

N
M

)
(dV)MN × Pr(N→ N + 1)

=
1

Ξ(µ,T,V)
1

Λ3NM N!
exp

[
−βU

(
r1
1, . . . , r

N
M

)
+ βµN

]
(dV)MN

×
1
V

dV
∑
{B}∈{BΓ}

 M∏
l=2

exp
[
−βun,nb

l

(
bl
Γ

)]
wn,nb(l)

k
k∏

i=1

exp
[
−βun,int

l (bl
i)
]
dV

Cl

 acc(N→ N + 1| {B})

 .
(3.39)

3.3.2-b Flow of the probability in the deletion step

The reverse flow (3.36) is also calculated in the similar way to (3.39).

K(N + 1→ N) = ŵN+1

(
r1
1, . . . , r

N+1
M

)
(dV)M(N+1) × Pr(N + 1→ N)

=
1

Ξ(µ,T,V)
1

Λ3(N+1)M (N + 1)!
exp

[
−βU

(
r1
1, . . . , r

N+1
M

)
+ βµ(N + 1)

]
(dV)M(N+1)

×
∑
{B}∈{BΓ}

 M∏
l=2


k−1∏
i=1

exp
[
−βu0,int

l (bl
i)
]
dV

Cl

 acc(N + 1→ N| {B})

 .
(3.40)

3.3.2-c Detailed balance in configurational-bias method

In order to satisfy the detailed balance (3.37), the flow (3.39) should equal the re-
verse flow (3.40). This detailed balance is certainly fulfilled if each term in (3.39),
for a specic choice of trial vectors{B} (∈ {BΓ}), is equal to its counterpart in (3.40),
which corresponds to the same{B}. This stronger condition is called super-detailed
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balance [50, 54]. Imposing this super-detailed balance, we determine the accep-
tance criterion acc(N→ N + 1| {B}).

Super-detailed balance and the equations (3.37), (3.39), (3.40), (3.32), (3.29),
and (3.18) yield the relation

acc(N→ N + 1| {B}) =
V exp[βµ]
Λ3(N + 1)

Wn j(T) acc(N + 1→ N| {B}) . (3.41)

When
V exp[βµ]
Λ3(N + 1)

Wn j(T) < 1,

one choice for the acceptance criteria that fulfill the condition (3.41) is:

acc(N→ N + 1| {B}) =
V exp[βµ]
Λ3(N + 1)

Wn j(T), acc(N + 1→ N| {B}) = 1.

(3.42)
When

V exp[βµ]
Λ3(N + 1)

Wn j(T) ≥ 1,

due toWn =W0 for the same{B},

acc(N→ N + 1| {B}) = 1, acc(N + 1→ N| {B}) =
Λ3(N + 1)
V exp[βµ]

1
W0

1
j(T)
.

(3.43)
These results (3.42) and (3.43) are consistent with the acceptance criteria (3.33)
and (B.3). Thus our method satisfies the detailed balance.

3.3.3 Test simulation of the configurational-bias method

As a test on our configurational-bias method and simulation program, we simulate
ideal polymers and single component solvent-free homopolymers. In this section,
N denotes the number of segments per polymer andnp the number of the polymers
in the system.N is fixed at 32. In these tests, 1% of the total simulation steps is on
average chosen for the particle exchange between the system and the reservoir. The
number of trial positions in constructing one atom, denoted byk in our algorithm
(see section3.3.1), is fixed at 5.

3.3.3-a Test simulation on ideal polymers inµVT-ensemble

First we simulate ideal polymers via our configurational-bias method in the grand
canonical ensemble. In our simulation,V is fixed at 2.023R3

e and the dimensionless
polymer density of the reservoir,ρ′res, is 122.

logρ′res= βµideal(T, ρ
′
res) − log(Λ3/(R3

eZ0)) = 4.80, see eq. (3.23).
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Since our system consists of the identical ideal polymers which also compose the
reservoir, the average polymer density in the system is equal to the one in the
reservoir. In equilibrium, the average number of the polymers in the system is〈

np

〉
= Vρ′res= 1000.

In the initial configuration,np0 polymers are arranged in the cubic system box.
Figure3.3 shows the number of the polymers in the system box,np, at the initial
valuesnp0 = 500, 1000, and 1728. These data indicate thatnp fluctuates around
〈np〉 = 1000. This simulation result is consistent with our discussion.
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Figure 3.3: The number of polymers,np, sampled every MCS, where 1 MCS := 32,000
simulation steps. Simulations are started at the initial number of polymersnp0 = 500, 1000,
and 1728 respectively.

3.3.3-b Single component solvent-free system inµVT-ensemble

In our single component solvent-free homopolymer model (see section2.1), the
free energy of the system is defined as

F(T,V,np)

kBT
=

Fideal(T,V,np)

kBT
+

Fexcess(T,V,np)

kBT
,

whereFideal is given in (3.22) and (3.24) and the excess free energy

Fexcess(T,V,np)

kBT
=

∫
V

dV

(
−

1
2

vρ2
s +

1
3

wρ3
s

)
�

∑
cells

{
∆V

(
−

1
2

vρ2
s +

1
3

wρ3
s

)}
.



46 CHAPTER 3. SIMULATION METHOD

Table 3.1: Simulation parameters for the test simulation of single-component solvent-free
homopolymers on configurational-bias method in grand canonical ensemble.Re is taken
as the unit length.

Polymerization degreeN = 32
System sizeL = 2.0

v′ = 0.01
w′ = 0.0001

The width of the cell∆L ≈ 0.166
The maximum trial displacement= ∆L

Mean-field approximation yields

Fexcess(T,V,np)

kBT
≈ V

(
−

1
2

vρ2
s +

1
3

wρ3
s

)
.

In this approximation, the total chemical potential of the system is:

µ(T, ρp)

kBT
= log

(
Λ3ρp

)
− logZ0 − vN2ρp + wN3ρ2

p,

whereZ0 has been given in eq. (3.24). With use of the dimensionless parameters,
this chemical potential is reduced to

µ(T, ρ′p)

kBT
= log

(
Λ3

R3
e
ρ′p

)
− logZ0 − v′ρ′p + w′ρ′p

2, (3.44)

within the mean-field approximation. In equilibrium,µ(T, ρ′p) should equal the
chemical potential of the reservoir given in eq. (3.23). This relation yields

log

(
ρ′p

ρ′res

)
− v′ρ′p + w′ρ′p

2
= 0. (3.45)

This equation determines the averageρ′p in the system in equilibrium with the
reservoir.

Simulation parameters are shown in Table3.1. This system is simulated at
ρ′res = 51,171,200, and 2646 which correspond toρ′p = 64,125,132, and 216
respectively (see Table3.2) via eq. (3.45). Due to the smallerv′ than the critical
valuev′c = 2

√
2w′ � 0.028, the system is in the homogeneous phase. In the initial

state, each polymer with a Gaussian distribution, i.e.〈R2
e〉 = 1, is distributed in the

cubic system box at random.
Figures3.4, 3.5and3.6shownp atρ′res= 51,171, and 2646 respectively. These

data fluctuate around〈np〉 = ρ
′
pL3 = 512,1000, and 1728 respectively. These simu-

lation results correspond to the estimation via mean-field approximation discussed
in this section.
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Table 3.2: ρ′res and correspondingρ′p via mean-field approximation.〈np〉 := ρ′pL3 and
(logρ′res) = βµideal(T, ρ′res) − log(Λ3/(R3

eZ0)), see eq. (3.23).

ρ′res ρ′p 〈np〉 logρ′res

51 64 512 3.93
171 125 1000 5.14
200 132 1056 5.30

2646 216 1728 7.88
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Figure 3.4: The number of polymersnp at ρ′res = 51 sampled every MCS, where 1 MCS
is defined as 16,384 simulation steps. Simulations are started at the initial number of
polymersnp0 = 256, 512, and 1000 respectively. The data fluctuate around〈np〉 = ρ
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pL3 =

512.

0

500

1000

1500

2000

0 50 100

T
he

 n
um

be
r 

of
 

po
ly

m
er

s

MCS

The number of polymers
at k=5 and np0=500, 1000, and 1728
1 MCS = 32,000 simulation steps

np0=500
np0=1000
np0=1728

(a)

0

500

1000

1500

2000

0 50 100

T
he

 n
um

be
r 

of
 

po
ly

m
er

s

MCS

The number of polymers
at k=10 and np0=500, 1000, and 1728

1 MCS = 32,000 simulation steps
np0=500
np0=1000
np0=1728

(b)

Figure 3.5: The number of polymersnp atρ′res = 171 sampled every MCS, where 1 MCS
is defined as 32,000 simulation steps. (a):k = 5 and (b):k = 10. Simulations are started at
the initial number of polymersnp0 = 500, 1000, and 1728 respectively. The data fluctuate
around〈np〉 = ρ

′
pL3 = 1000.
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Figure 3.6: The number of polymersnp at ρ′res = 2646 sampled every MCS, where 1
MCS is defined as 55,296 simulation steps. Simulations are started at the initial number
of polymersnp0 = 1000, 1728, and 2744 respectively. The data fluctuate around〈np〉 =

ρ′pL3 = 1728.

Next we calculate the probability density ofnp, given in eq. (3.27), at ρ′res =

171 and 200. The difference in chemical potential between these two systems is
denoted by∆µ (see Table3.2),

β∆µ = log 200− log 171= 0.157.

Equation (3.27) yield the relation

Hµ+∆µ,T,V
(
np

)
Hµ,T,V

(
np

) exp

[
−
∆µ

kBT
np

]
=

Ξ(µ,T,V)
Ξ(µ + ∆µ,T,V)

. (3.46)

In Fig. 3.7, these probability densities and the left-hand side of eq. (3.46) as a
function of np are plotted. The flat graph of this quantity is consistent with the
relation (3.46).

These test simulations indicate the validity of our configurational-bias method
and the simulation program.
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MCS := 33,792 simulation steps atρ′res= 200. The left-hand side of eq. (3.46) as a function
of np is plotted in the inset.
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3.4 Chemical potential inNVT-ensemble

We also measure the chemical potential of the macromolecular system in the canon-
ical ensemble.

In the canonical ensemble, the chemical potential of the systemµ(T,V,N) is
determined by the partition function (3.6) and (3.10):

βµ(T,V,N) = −
∂

∂N
logZN(T,V)

= −
∂

∂N
logZideal

N (T,V) −
∂

∂N
log

 ZN(T,V)

Zideal
N (T,V)


= βµideal(T,V,N) + βµexcess(T,V,N)

= log
(
Λ3ρ

)
− log j(T) + βµexcess(T,V,N). (3.47)

Chemical potential of ideal molecules,µideal(T,V,N), is defined in eq. (3.17). The
physical quantityµexcess(T,V,N) corresponds to the excess chemical potential due
to the interaction potential between the atoms:

βµexcess(T,V,N) := −
∂

∂N
log

 ZN(T,V)

Zideal
N (T,V)


� −

1
(N + 1)− N

log

ZN+1(T,V)

Zideal
N+1(T,V)

 − log

 ZN(T,V)

Zideal
N (T,V)


= − log

 (N + 1)ZN+1(T,V)

ZN(T,V) Zideal
1 (T,V)

 . (3.48)

We discuss the method of calculating this excess chemical potential.

Note thatΛ and j(T) in chemical potential are never determined in our simula-
tion. However this issue, discussed in section3.4.3, does not affect our simulation
methods and results.

3.4.1 Widom’s insertion and deletion methods

We calculate the chemical potential of our system via the combination method
of Widom’s particle insertion and deletion methods [55] invented for monatomic
particles by Shing and Gubbins [56, 57]. Here we develop their method to our
macromolecules. In this method, molecules are inserted and deleted without any
bias.
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3.4.1-a Probability density determined without bias

Excess chemical potential eq. (3.48) is calculated by the particle deletion without
any bias:

βµexcess(T,V,N)

= − log

 (N + 1)ZN+1(T,V)

ZN(T,V) Zideal
1 (T,V)


= log

(
1

ZN+1(T,V)
1

Λ3(N+1)M (N + 1)!

∫
dr1

1 . . . drN+1
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

N
M

)]
×exp

[
−

1
kBT

U int
(
rN+1
1 , . . . , rN+1

M

)])
= log

〈
exp

[
1

kBT
Unb

excess

(
r1
1, . . . , r

N
M

∣∣∣rN+1
1 , . . . , rN+1

M

)]〉
T,V,N+1

, (3.49)

whereUnb
excess

(
r1
1, . . . , r

N
M

∣∣∣rN+1
1 , . . . , rN+1

M

)
is the non-bonded potential energy be-

tween (N + 1)-th molecule and the others in the system box. This equation means
that a real molecule is deleted from the system. On the other hand, the excess
chemical potential is also calculated by the particle insertion without any bias:

βµexcess(T,V,N)

= − log

 (N + 1)ZN+1(T,V)

ZN(T,V) Zideal
1 (T,V)


= − log

 1

ZN(T,V) Zideal
1 (T,V)

1
Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

N
M

)]
×

1
Λ3M

∫
drN+1

1 . . . drN+1
M exp

[
−

1
kBT

U int
(
rN+1
1 , . . . , rN+1

M

)]
× exp

[
−

1
kBT

Unb
excess

(
r1
1, . . . , r

N
M

∣∣∣rN+1
1 , . . . , rN+1

M

)])
= − log

 1

Zideal
1 (T,V)

1
Λ3M

∫
drN+1

1 . . . drN+1
M exp

[
−

1
kBT

U int
(
rN+1
1 , . . . , rN+1

M

)]
×

〈
exp

[
−

1
kBT

Unb
excess

(
r1
1, . . . , r

N
M

∣∣∣rN+1
1 , . . . , rN+1

M

)]〉
T,V,N


= − log

〈〈
exp

[
−

1
kBT

Unb
excess

(
r1
1, . . . , r

N
M

∣∣∣ r1, . . . , rM

)]〉
T,V,N

〉r1,...,rM

V, ideal

, (3.50)

where (r1, . . . , rM) denotes the particle coordinates of (N + 1)-th molecule dis-
tributed byZideal

1 (T,V) and〈· · · 〉r1,...,rM
V, ideal is the ensemble average of this ideal molecule.

This inserted molecule is called a ghost molecule, because it is not a part of the
system. This means that the molecule is randomly inserted into the system box
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according to the partition functionZideal
1 (T,V) as ghost molecules and that the ex-

cess non-bonded potential energy between this ghost and the others in the system
is measured.

Arguments of logarithmic functions in eqns. (3.49) and (3.50) are determined
with use of probability density functions,gN+1

(
Unb

excess

)
and fN

(
Unb

excess

)
, of deleted

and inserted molecular energy:

〈
exp

[
1

kBT
Unb

excess

(
r1
1, . . . , r

N
M

∣∣∣rN+1
1 , . . . , rN+1

M

)]〉
T,V,N+1

=

∫
gN+1

(
Unb

excess

)
exp

[
1

kBT
Unb

excess

]
dUnb

excess (3.51)

〈〈
exp

[
−

1
kBT

Unb
excess

(
r1
1, . . . , r

N
M

∣∣∣ r1, . . . , rM

)]〉
T,V,N

〉r1,...,rM

V, ideal

=

∫
fN

(
Unb

excess

)
exp

[
−

1
kBT

Unb
excess

]
dUnb

excess, (3.52)

where

gN+1

(
Unb

excess

)
=

1
ZN+1(T,V)

1
Λ3(N+1)M (N + 1)!

∫
dr1

1 . . . drN+1
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

N+1
M

)]
× δ

(
Unb

excess

(
r1
1, . . . , r

N
M

∣∣∣ rN+1
1 , . . . , rN+1

M

)
− Unb

excess

)
(3.53)

fN
(
Unb

excess

)
=

1
ZN(T,V)

1
Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

N
M

)]
×

〈
δ
(
Unb

excess

(
r1
1, . . . , r

N
M

∣∣∣ r1, . . . , rM

)
− Unb

excess

)〉r1,...,rM

V, ideal
, (3.54)

andδ is the Dirac delta function.

The ratio between these two probability density functions is related to the ex-
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cess chemical potential via eq. (3.50):

gN+1

(
Unb

excess

)
=


〈〈

exp

[
−

1
kBT

Unb
excess

(
r1
1, . . . , r

N
M

∣∣∣ r1, . . . , rM

)]〉−1

T,V,N

〉r1,...,rM

V, ideal


−1

×
1

Zideal
1 (T,V)

1
Λ3M

∫
drN+1

1 . . . drN+1
M exp

[
−

1
kBT

U int
(
rN+1
1 , . . . , rN+1

M

)]
×

1
ZN(T,V)

1
Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

N
M

)]
× exp

[
−

1
kBT

Unb
excess

(
r1
1, . . . , r

N
M

∣∣∣rN+1
1 , . . . , rN+1

M

)]
× δ

(
Unb

excess

(
r1
1, . . . , r

N
M

∣∣∣ rN+1
1 , . . . , rN+1

M

)
− Unb

excess

)
=

exp
[
− 1

kBT Unb
excess

]
fN

(
Unb

excess

)
〈〈

exp
[
− 1

kBT Unb
excess

(
r1
1, . . . , r

N
M

∣∣∣ r1, . . . , rM

)]〉
T,V,N

〉r1,...,rM

V, ideal

= exp

[
−

1
kBT

Unb
excess

]
fN

(
Unb

excess

)
exp

[
βµexcess(T,V,N)

]
.

This equation yields the relation

βUnb
excess+ log

gN+1

(
Unb

excess

)
fN

(
Unb

excess

)  = βµexcess(T,V,N). (3.55)

Therefore, the left-hand side of eq. (3.55) plotted as a function ofβUnb
excessshows

a horizontal line that the vertical element equals the excess chemical potential,
βµexcess(T,V,N).

3.4.2 Chemical potential calculation via Rosenbluth sampling

Using the configurational-bias method discussed in section3.3, we insert a molecule
into the system composed ofN molecules in the canonical ensemble, i.e. a ghost
molecule, and calculate the Rosenbluth weight (3.32). The average Rosenbluth
weight calculated in this particle insertion, denoted by〈W〉T,V,N, determines the
excess chemical potential (3.48) [58, 59]:

βµexcess(T,V,N) = − log〈W〉T,V,N. (3.56)

In the following, we derive this Widom insertion formula eq. (3.56). When one
molecule is inserted into the system box, which is composed ofN molecules at the
position{rN} = (r1

1, . . . , r
N
M), the probability that this inserted molecule is arranged
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on the position{rN+1} = (rN+1
1 , . . . , rN+1

M ) is (see eq. (3.38)):

P{rN+1},{rN} =
1
V

dV
∑
{B}∈{BΓ}

 M∏
l=2

exp
[
−βun,nb

l

(
bl
Γ

)]
wn,nb(l)

k
k∏

i=1

exp
[
−βun,int

l (bl
i)
]
dV

Cl


 .

(3.57)
With use of this probability and eq. (3.32), the Rosenbluth weight of this inserted
molecule is calculated.

〈W〉{rN+1},{rN}

=
1
V

dV
∑
{B}∈{BΓ}

W M∏
l=2

exp
[
−βun,nb

l

(
bl
Γ

)]
wn,nb(l)

k
k∏

i=1

exp
[
−βun,int

l (bl
i)
]
dV

Cl




=
1
V

dV
∑
{B}∈{BΓ}

exp
[
−βun,nb(1)

] M∏
l=2


exp

[
−βun,nb

l

(
bl
Γ

)] k∏
i=1

exp
[
−βun,int

l (bl
i)
]
dV

Cl




In this equation, the notation of the summation
∑
{B}∈{BΓ} is switched to integral and

eq. (3.29) shows the relation:

〈W〉{rN+1},{rN}

=
1
V

dVexp

−βun,nb(1)− β
M∑

l=2

un,nb
l

(
bl
Γ

)
×

M∏
l=2


k−1∏

i=1

∫
exp

[
−βun,int

l (bl
i)
]
dV

Cl

 exp
[
−βun,int

l (bl
Γ
)
]
dV

Cl


=

(dV)M exp
[
−βU{rN}

({
rN+1

})]
Λ3MZideal

1 (T,V)
, (3.58)

where

U{rN}

({
rN+1

})
is the total potential energy of the inserted molecule.

Integral of 〈W〉{rN+1},{rN} with {rN+1} over the whole system yields the average
Rosenbluth weight in the particle configuration{rN}:

〈W〉{rN} =

∫
(dV)M exp

[
−βU{rN}

({
rN+1

})]
Λ3MZideal

1 (T,V)
,

Canonical ensemble average of the Rosenbluth weight is calculated from〈W〉{rN},
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i.e.

〈W〉T,V,N =

∫
dr1

1 . . . drN
M〈W〉{rN} exp

[
−βU

(
r1
1, . . . , r

N
M

)]
Λ3NM N! ZN(T,V)

=

∫
dr1

1 . . . drN+1
M exp

[
−βU{rN}

({
rN+1

})]
exp

[
−βU

(
r1
1, . . . , r

N
M

)]
(N + 1)−1Λ3(N+1)M (N + 1)! ZN(T,V) Zideal

1 (T,V)

=
(N + 1)ZN+1(T,V)

ZN(T,V) Zideal
1 (T,V)

(3.59)

Equation (3.48) and logarithm of eq. (3.59) show

βµexcess(T,V,N) = − log

 (N + 1)ZN+1(T,V)

ZN(T,V) Zideal
1 (T,V)

 = − log〈W〉T,V,N.

This result is consistent with eq. (3.56).

3.4.2-a Rosenbluth weight corresponding to the reservoir

Equations (3.17), (3.47), and (3.56) yield the total chemical potential of the system
in canonical ensemble.

βµ(T,V,N) = log
(
Λ3ρ

)
− log j(T) − log〈W〉T,V,N, (3.60)

whereρ = N/V denotes the average molecular density in the system. When this
system is equilibrated with the reservoir at the same chemical potential, i.e. the
system in grand canonical ensemble at the chemical potentialµres,

βµ(T,V,N) = µres= log
(
Λ3ρres

)
− log j(T),

whereρres denotes the molecular density of the reservoir. This relation determines
ρres, i.e. chemical potential of the reservoir, corresponding to the same system in
NVT-ensemble:

ρres=
ρ

〈W〉T,V,N
, (3.61)

3.4.3 Total chemical potential

So far, the excess chemical potentialβµexcess(T,V,N) has been discussed. On the
other hand,Λ and j(T) in total chemical potential of the system, eq. (3.47), have
not been calculated in our simulation. Our simulation is, however, independent of
these unknown physical quantities.

In our grand canonical ensemble simulation algorithm in section3.3, bothΛ
and j(T) disappear; the reservoir is uniquely characterized only by the molecular
density in the reservoir unless the molecular architecture, i.e.j(T), is changed. In
the corresponding canonical ensemble simulation, this reservoir density is deter-
mined from the system molecular density and the excess chemical potential, e.g.
eq. (3.61), independently ofΛ and j(T).
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Total chemical potential in canonical ensemble at a state (T,V1,N1) and a state
(T,V2,N2) is respectively

βµ(T,V1,N1) = log

(
Λ3 N1

V1

)
− log j(T) + βµexcess(T,V1,N1),

βµ(T,V2,N2) = log

(
Λ3 N2

V2

)
− log j(T) + βµexcess(T,V2,N2).

Eachβµ(T,V1,N1) andβµ(T,V2,N2) containsΛ and j(T) whereas, in the difference
between the chemical potential, these unknown parameters vanish,

βµ(T,V1,N1) − βµ(T,V2,N2)

= log

(
N1V2

N2V1

)
+ βµexcess(T,V1,N1) − βµexcess(T,V2,N2). (3.62)

This relation indicates that the chemical potential at an arbitrary state, e.g. (T,V1,N1),
is represented by the chemical potential difference from reference, e.g.βµ(T,V2,N2)
in this equation, regardless ofΛ and j(T).



Chapter 4

Free energy calculation

In this chapter, we discuss methods for the free energy calculation of an ordered
structure in particle simulation.

In our simulation, physical properties of a system are determined as an en-
semble average over equilibrium probability distribution of particle coordinates.
The free energy of a system, however, is not calculated as an ensemble average.
The free energy is equivalent to the partition function of the system. Calculating
the partition function demands a high dimensional integral over the whole phase
space, which requires a large quantity of computational cost.

Instead of the partition function, we calculate a derivative of free energy with a
control parameter as an ensemble average, e.g. pressure as a mechanical quantity
in the canonical ensemble. The integration of the derivative, called thermodynamic
integration (TDI), yields the free energy difference between two different states.

However, for example when one state is in a crystal phase and the other in a
fluid phase, a first order transition and concomitant hysteresis occur in the middle
of the integration path. No reversible integration paths as a function of physical
control parameters, e.g. temperature and density, are found between these two
states. Since the stalk morphology and the system of the two apposed bilayers,
between which the excess free energy of the stalk is defined as the free energy
difference, are two distinct states, the same problem as the crystallization occurs in
the thermodynamic integration. For the sake of solving this problem, we have to
find reference states, whose free energy is known, or integration paths bypassing
the first order transition, i.e. reversible paths.

4.1 Free energy of crystals

When we calculate the free energy of crystals, we can choose the Einstein solid,
in which particles are tethered to crystal lattice points by harmonic springs with-
out any inter-particle potential, as the reference state [34]. The potential ener-
gies of the Einstein solid and the original interacting particles are denoted by
UR (r1, . . . , r i , . . . , rN) and UI (r1, . . . , rN) respectively inNVT-ensemble, where

57
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r i is coordinates of thei-th particle. These two systems are combined into one
system by a dimensionless paramterλ,

Uλ (r1, . . . , rN) := λUI (r1, . . . , rN) + (1− λ)UR (r1, . . . , rN) .

At λ = 1, this combined system is consistent with the original interacting system
and atλ = 0 the Einstein solid. The derivative of the Helmholtz free energy of this
combined system, denoted byFλ(T,V,N), is:

d
dλ

Fλ(T,V,N) = −kBT
d
dλ

logZλN(T,V) =

〈
d
dλ

Uλ (r1, . . . , rN)

〉λ
T,V,N
,

whereZλN(T,V) denotes the partition function of this system,〈· · · 〉λT,V,N does the
ensemble average atλ, and

d
dλ

Uλ (r1, . . . , rN) = UI (r1, . . . , rN) − UR (r1, . . . , rN) .

The integration of this derivative fromλ = 0 to λ = 1 yields the free energy
difference between the Einstein solid and the crystal,

Fλ=1(T,V,N) − Fλ=0(T,V,N) =
∫ 1

0
dλ

〈
d
dλ

Uλ (r1, . . . , rN)

〉λ
T,V,N
.

In this integration, the spring potential is gradually switched off from the reference,
i.e. Einstein solid, and the particles are changed to the original interacting particles.
Due to only a slight change in the particle configuration between the crystals and
the Einstein solids, the integration is free from the first order transition.

4.2 Helmholtz free energy calculation based on an exter-
nal field

We have discussed the free energy calculation in crystal phase using Einstein solid
as the reference. On the other hand in fluid phase, molecules are diffusing over the
whole system box. In such a case, no suitable reference states can be found.

We assume that our external field arranges the ideal gas molecules into our self-
assembled structure. In this method, the ordered structure is kept with the help of
this external field during the thermodynamic integration for the sake of preventing
the first-order transition of interacting molecules.

4.2.1 Molecules in the external field

We discuss the statistics aboutN molecules of the same species inNVT-ensemble.
One molecule consists ofM atoms; the total number of the atoms in the system



4.2. HELMHOLTZ FREE ENERGY CALCULATION BASED ON AN EXTERNAL FIELD59

box= MN. The partition function for this system is denoted byZλI ,λE
N (T,V):

ZλI ,λE
N (T,V) =

1
Λ3NM N!

∫
dr1

1 dr1
2 . . . dr1

M dr2
1 . . . drN

M exp

[
−

1
kBT

UλI ,λE

(
r1
1, . . . , r

N
M

)]
(4.1)

wherer l
k represents the position of thek-th atom in thel-th molecule,UλI ,λE denotes

the potential energy in the system, andΛ thermal de Broglie wave length (see
eq. (3.6)). In our system, particles are interacting with each other and the external
field. UλI ,λE is defined as:

UλI ,λE

(
r1
1, . . . , r

N
M

)
= Hspring+ λI Hint + λEHext, (4.2)

whereHspringdenotes the total intramolecular potential of the system e.g. bonding,
torsion, and bending,Hint other total interaction potential energy of the system,
andHext the total external field energy of the system.Hspring andHint are equiv-
alent to the internal and the non-bonded potential energies respectively defined in
section3.2. The dimensionless coefficientsλI andλE determine the strength of the
interaction and the external field respectively. AtλI = 1 andλE = 0, this system is
consistent with our original interacting system and atλI = λE = 0 the disordered
reference system. The partition function of this original interacting system is

Zinteract
N (T,V) :=ZλI=1,λE=0

N (T,V)

=
1

Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

(
Hspring+ Hint

)]
.

(4.3)

The partition function atλI = 0 andλE = 1 is

Zfield
N (T,V) :=ZλI=0,λE=1

N (T,V)

=
1

Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

(
Hspring+ Hext

)]
.

(4.4)

4.2.2 Thermodynamic integration based on an external field

In our thermodynamic integration method based on the external field, the free en-
ergy difference between the ideal gas as the reference state and the ordered state is
calculated along the integration path via two straight branches onλIλE-plane:

i) C1 := branch from (λI , λE) = (0,0) to (0,1)

ii) C2 := branch from (λI , λE) = (0,1) to (1,0).

OnC1, λI = 0 and onC2, λI = 1−λE (see also Fig.4.1). Along the first branch, we
gradually increase the external field strength from the reference state. We assume
that our external field constrains the ideal gas molecules into our self-assembled
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structure at the end of this branch. From this end point, the strength of the exter-
nal field is gradually decreased and the strength of the inter-particle potential is
gradually raised. This is the second branch. At the end of this second branch, the
external field is completely switched off and the system is composed of interacting
molecules as is aimed. The external field is, in general, determined via successive
approximation, which is discussed in section4.2.4.

1

1

0

C
1

C
2

λ
I

λ
E

Figure 4.1: Triangular thermodynamic integration path.

On the first branch, our system consists of the ideal gas in the external field.
On the second branch, the system keeps the self-assembled structure with the help
of the external field. Therefore, we can avoid the first-order transition and cal-
culate the free energy difference between the disordered and ordered states along
this triangular integration path. The absence of the first order transition is quan-
titatively confirmed by the expanded ensemble simulation, which is discussed in
section4.2.3, on each branch.

On this triangular integration path, the derivative of the Helmholtz free energy
FλE(T,V,N) with λE is calculated from eqs. (4.1) and (4.2):

d
dλE

FλE(T,V,N)

= −kBT
1

ZλI ,λE
N (T,V)

dZλI ,λE
N (T,V)

dλE

=
1

ZλI ,λE
N (T,V)

1
Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

UλI ,λE

(
r1
1, . . . , r

N
M

)]

×

Hext (OnC1)

Hext− Hint (OnC2)

=

〈Hext〉
λI=0,λE
T,V,N (OnC1)

〈Hext− Hint〉
λI ,λE
T,V,N (OnC2)

, (4.5)
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where〈· · · 〉λI ,λE
T,V,N denotes the ensemble average on a point (λI , λE). Threfore, the

Helmholtz free energy difference between (0,0) and (1,0), denoted by∆FC1+C2, is:

∆FC1+C2 =

∫
C1

〈Hext〉
λI=0,λE
T,V,N dλE +

∫
C2

〈Hext− Hint〉
λI ,λE
T,V,N dλE (4.6)

where each of the Helmholtz free energy differences onC1 andC2 are:∫
C1

〈Hext〉
λI=0,λE
T,V,N dλE =

∫ 1

0
〈Hext〉

λI=0,λE
T,V,N dλE∫

C2

〈Hext− Hint〉
λI ,λE
T,V,N dλE =

∫ 1

0

(
〈Hint〉

λI ,λE
T,V,N − 〈Hext〉

λI ,λE
T,V,N

)
dλE.

(4.7)

4.2.3 Method of expanded ensembles

In thermodynamic integration eq. (4.6), the integrand over the interval 0≤ λE ≤ 1
is independently calculated on each discrete points along the branchesC1 andC2

in molecular simulation.
In method of expanded ensembles [60], the ensemble is expanded into (m1+1)

subensembles, i.e.:
0 = λ(0)

E < λ
(1)
E < · · · < λ

(m1)
E = 1.

The partition function of this expanded ensemble is defined as:

Z =
m1∑

m=0

Z(m)
N (T,V) exp

[
ηm

]
whereηm = const. and

Z(m)
N (T,V) :=

1
Λ3NM N!

∫
dr1

1 . . . drN
M exp

[
−

1
kBT

U(m)
(
r1
1, . . . , r

N
M

)]
U(m)

(
r1
1, . . . , r

N
M

)
=Hspring+ λ

(m)
I Hint + λ

(m)
E Hext.

On the branchC1, λ(m)
I = 0 and onC2, λ(m)

I = 1− λ(m)
E . In this simulation method,

each subensemble is successively simulated in one simulation run on each branch.
First we discuss the method of expanded ensembles along the branchC1. On

this straight branch,

U(m)
(
r1
1, . . . , r

N
M

)
= Hspring+ λ

(m)
E Hext.

Monte Carlo simulation via expanded ensembles is performed based on the algo-
rithm:

1) Usual displacement via Metropolis algorithm in the fixedλ(k)
E during a constant

time period i.e. constant MCS.
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2) Another subensembleλ(m)
E , m = k ± 1, is chosen at random. The current

subensembleλ(k)
E is changed toλ(m)

E with the fixed particle configuration via
the acceptance criterion

wk→m :=

min
(
1,exp

[
β
(
λ(k)

E − λ
(m)
E

)
Hext+ ηm− ηk

])
, 0 ≤ m≤ m1

0, m= −1,m1 + 1
(4.8)

3) Repeat steps 1) and 2).

In this simulation via the method of the expanded ensembles,pm := the proba-
bility that the system is found in the subensembleλ(m)

E is measured:

pm =
nm

ntotal
, (4.9)

wherentotal denotes the total length of the MC chain andnm the number of MCS in
the subensembleλ(m)

E . On the other hand, with use of the partition function,

pm =
Z(m)

N (T,V) exp
[
ηm

]
Z

,

and therefore

pm

pk
=

Z(m)
N (T,V)

Z(k)
N (T,V)

exp
[
ηm− ηk

]
= exp

[
−βFm+ βFk + ηm− ηk

]
, (4.10)

whereFm := −kBT logZ(m)
N (T,V) is Helmholtz free energy of the subensemble

λ(m)
E . Thus, we can know the difference of Helmholtz free energy between any

pairs of the subensembles using the relations (4.9) and (4.10).
On the branchC2,

U(m)
(
r1
1, . . . , r

N
M

)
= Hspring+ Hint + λ

(m)
E (Hext− Hint).

The acceptance criterion eq. (4.8) is:

wk→m :=

min
(
1,exp

[
β
(
λ(k)

E − λ
(m)
E

)
(Hext− Hint) + ηm− ηk

])
, 0 ≤ m≤ m1

0, m= −1,m1 + 1
(4.11)

Optimal ηm In theory, the simulation results should not be dependent on the
choice of the constantsηm. In practice, however, the probabilitypm strongly de-
pend onηm (e.g. if all ηm = 0, the system is mostly found in the subensemble of
the lowest energy). Atηm = βFm, the system is homogeneously distributed over
all the subensembles, i.e.pm = const.= 1/(m1+ 1). Since this optimalηm is deter-
mined from unknown physical quantity before simulation, i.e. free energyFm, ηm
is estimated via preliminary simulation runs, e.g. thermodynamic integration (see
section4.2.2).
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4.2.4 Determining the external field

The external field which arranges the ideal gas into and mimics the ordered struc-
ture observed in the self-assembling system, in other words the external field that
distributes the ideal gas into the molecular density distribution calculated in the
self-assembling system, is essential for our free energy calculation technique. The
absence of the abrupt structural changes on the branchC2 indicates that this branch
bypasses the first order transition, i.e. free from the hysteresis. In this section, we
discuss the external field calculation for the solvent-free linear amphiphiles intro-
duced in section2.2. We assume that the energy from the external field is,

Hext

kBT
=

∫
V

dV

R3
e

(
ρ′pA(r) WA(r) + ρ′pB(r) WB(r)

)
, (4.12)

where the dimensionless molecular density has been defined in eq. (2.19) andWη(r)
denotes the external field acting onη-species of segments at the positionr.

In systems of dense polymer solutions, self-consistent field theory yields an
accurate estimation for the external ordering field [36, 37],

Wη(r) = R3
e
δHint

δρ′pη(r)

∣∣∣∣∣∣
ρ′pη(r)=ρ̃′pη(r)

, (4.13)

whereρ̃′pη(r) is the molecular density distribution ofη-species in the self-assembling
system i.e. the target structure, which can be calculated prior to this external field
calculation.

In the solvent-free systems, however, fluctuations cannot be neglected. There-
fore, we propose successive approximation. In this method, we iteratively improve
the external fields from the initial estimate via eq. (4.13).

1) Set the initial external fields estimated via eq. (4.13).

2) In these external fields, simulate ideal molecules according to the Hamiltonian
eq. (4.12) and calculate the molecular density distribution in the system.

3) Using this result, improve the estimate for the external fields via

W(n+1)
η (r) =W(n)

η (r) + ε
{
ρ′pη,(n)(r) − ρ̃

′
pη(r)

}
, (4.14)

wheren is the iteration index,ε a small positive constant parameter, andρ′pη,(n)(r)
is the molecular density distribution obtained in step 2).

4) Repeat steps 2) and 3) till the convergence.

4.3 Grand potential calculation

We have discussed the Helmholtz free energy calculation. Now grand potential, i.e.
free energy inµVT-ensemble, calculation is discussed. Grand potential is defined
as

ΦG(µ,T,V) := −kBT logΞ(µ,T,V), (4.15)
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whereΞ(µ,T,V) denotes the grand partition function,

Ξ(µ,T,V) :=
∞∑

N=0

{
exp

[
µ

kBT
N

]
ZN(T,V)

}
.

In thermodynamics,

ΦG(µ,T,V) = F(T,V, 〈N〉µ,T,V) − µ〈N〉µ,T,V, (4.16)

where〈· · · 〉µ,T,V denotes the ensemble average atµ,T, andV. Using thermody-
namic integration, we determine the difference in the grand potential between the
systems atµ = µ(1) andµ = µ(0).

The derivative of the grand potential eq. (4.15) is:

∂

∂µ
ΦG(µ,T,V) = −

1
Ξ(µ,T,V)

∞∑
N=0

{
N exp

[
µ

kBT
N

]
ZN(T,V)

}
= −〈N〉µ,T,V (4.17)

Integration of this derivative yields the grand potential difference betweenµ(1) and
µ(0):

∆Φ
µ(1),µ(0)

G :=ΦG

(
µ(1),T,V

)
− ΦG

(
µ(0),T,V

)
=

∫ µ(1)

µ(0)

{
∂

∂µ
ΦG(µ,T,V)

}
dµ

=

∫ µ(1)

µ(0)

(
−〈N〉µ,T,V

)
dµ. (4.18)

During this thermodynamic integration inµVT-ensemble, the first-order transi-
tion can occur unless the states between (µ(1),T,V) and (µ(0),T,V) are in the same
phase. To bypath this transition, in theory, the thermodynamic integration based on
the external field can also be applied toµVT-ensemble. In practice, however, the
external fields used inµVT-ensemble could have to be fine tuned for the purpose of
keeping the number of molecules approximately a constant. Although such highly
adjusted external fields are determined, linear dependence ofλE on λI along the
branches, i.e. the triangular integration path in Fig.4.1, would not be sufficient to
bypath the first-order transition.

Instead of this method based on the external fields inµVT-ensemble, we present
another integration path bypassing the transition, i.e. the thermodynamic integra-
tion in µVT-ensemble viaNVT-ensemble:

1) A state in the canonical ensemble (T,V,Ncanonical), which is in the same phase
as the state (µ(1),T,V) in the grand canonical ensemble, is set.

2) The Helmholtz free energy at this state,F(T,V,Ncanonical), is calculated along
the path that bypasses the first-order transition. This has been discussed in this
chapter. The chemical potential in the canonical ensemble,µ(T,V,Ncanonical), is
also determined (see section3.4). We assume the conditionµ(T,V,Ncanonical) ≈
µ(1); no first-order transition occurs in the region betweenµ(T,V,Ncanonical) and
µ(1) with the fixedT andV.
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3) The grand potential at the state in the grand canonical ensemble corresponding
to the state (T,V,Ncanonical) is, by eq. (4.16),

ΦG (µ(T,V,Ncanonical),T,V) = F (T,V,Ncanonical) − µ (T,V,Ncanonical) Ncanonical.

(4.19)
Substitutingµ(T,V,Ncanonical) for µ(0) in eq. (4.18) and using eq. (4.19), we
obtain the grand potential at (µ(1),T,V),

ΦG

(
µ(1),T,V

)
=F (T,V,Ncanonical) − µ (T,V,Ncanonical) Ncanonical

+

∫ µ(1)

µ(T,V,Ncanonical)

(
−〈N〉µ,T,V

)
dµ. (4.20)

Due to the conditions in steps 1) and 2), the first-order transition is bypassed
through the total integration path. Therefore, the grand potential at arbitrary
µ(1) is calculated via this equation as long as these conditions are satisfied.

This method means that the thermodynamic integration path in the canonical en-
semble, e.g. the triangular integration path in Fig.4.1, is extended to the state in
the grand canonical ensemble, (µ(1),T,V).

4.4 Semigrand canonical ensemble

We have discussed the free energy calculation methods of single component sys-
tems. When we calculate the free energy difference between single component
systems composed of distinct molecular species, the same free energy calculation
scheme, which takes vast amounts of computation, has to be repeated for each
molecular species in order to compare the free energies.

Here, we introduce the semigrand canonical ensemble [61–63] which alters
one molecular species to another species. This ensemble yields a direct thermo-
dynamic integration path connecting these two single component systems. Along
this path, the Helmholtz free energy difference beteween these systems is directly
determined.

4.4.1 Statistics of semigrand canonical ensemble

The statistics in the canonical ensemble and the grand canonical ensemble have
been discussed. In the grand canonical ensemble the chemical potential,µ, of the
system is fixed though the number of molecules,N, fluctuates around the average
that corresponds toµ. In a binary systems composed of linear amphiphiles,α and
γ-species, that have 2 different block ratios, the grand partition function (see also
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eq. (3.25)) is defined as:

Ξ(µα, µγ,T,V) :=
∞∑

Nα=0

∞∑
Nγ=0

{
exp

[
(µα/kBT) Nα

]
Λ3NαM Nα!

exp[(µγ/kBT)Nγ]

Λ3NγM Nγ!

×

∫
dr1

1 . . . dr
Nα+Nγ
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

Nα+Nγ
M

)]}
, (4.21)

whereµα, µγ := chemical potential ofα, γ-species, andNα,Nγ := the number of
molecules in the system ofα, γ-species, respectively. Under the condition that the
total number of the molecules in the system box,N := Nα + Nγ, is fixed, this
partition function (4.21) is:

ΞN(µα, µγ,T,V) := exp

[
µγ

kBT
N

]
1
Λ3NM

N∑
Nα=0

{
1

Nα! (N − Nα)!
exp

[
µα − µγ

kBT
Nα

]
×

∫
dr1

1 . . . dr
Nα+Nγ
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

Nα+Nγ
M

)]}
. (4.22)

This is called semigrand canonical ensemble. In this ensemble, the molecules
moves between the reservoir and the system under the constraint thatN is fixed.
The probability density ofNα, corresponding to eq. (3.27), is obtained from (4.22),

Hµα,µγ,T,V,N(Nα) :=

1
ΞN(µα, µγ,T,V)

exp

[
µγ

kBT
N

]
1
Λ3NM

1
Nα! (N − Nα)!

exp

[
µα − µγ

kBT
Nα

]
×

∫
dr1

1 . . . dr
Nα+Nγ
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

Nα+Nγ
M

)]
. (4.23)

This semigrand canonical ensemble is also reproduced inNVT-ensemble;N
molecules confined within the system box switch their species according to the par-
tition function of semigrand canonical ensemble [50]. This means that each term
in eq. (4.22) corresponds to the combination thatNα of N molecules are chosen as
α-species, i.e.NCNα = N!/(Nα! (N − Nα)!). In this NVT-ensemble, the summa-
tion in eq. (4.22) is replaced with the summation

∑
comb. which runs over all the

combinations thatN molecules are divided intoα andγ.

ΞN(µα, µγ,T,V) =
1
N!

exp

[
µγ

kBT
N

]
1
Λ3NM

∑
comb.

{
exp

[
µα − µγ

kBT
Nα

]
×

∫
dr1

1 . . . dr
Nα+Nγ
M exp

[
−

1
kBT

U
(
r1
1, . . . , r

Nα+Nγ
M

)]}
. (4.24)

In this partition function of the semigrand canonical ensemble, each term has been
divided byNCNα for the purpose of correcting the double counts.
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The partition function (4.22) shows the relation

Nα ≈

N, µα � µγ
0, µα � µγ

.

In this limit,

ΞN(µα, µγ,T,V) =

exp
[
µα

kBT N
]
ZαN(T,V), µα � µγ

exp
[
µγ

kBT N
]
ZγN(T,V), µα � µγ

(4.25)

whereZa
N(T,V) := partition function ofa-species single component system in

canonical ensemble (see eq. (3.6)).

4.4.2 Semigrand canonical ensemble simulation

Systems in the semigrand canonical ensemble is simulated based on the partition
function (4.24) by the following methods:

1) In one simulation step, with constant probabilityps, trial species change is cho-
sen.

i) One molecule ofN is selected at random.Uold := the energy of this
molecule in the current state is calculated.

ii) The species of the selected molecule is changed.Unew := the energy of
this molecule after this change is calculated. This trial species change is
accepted according to the acceptance criterion,

acc(a→ b) = min

(
1,exp

[
−

1
kBT

(µa − µb + Unew− Uold)

])
, (4.26)

wherea,b := old and new molecular species respectively. If rejected, the
molecular species is returned to the state before this trial.

2) In one simulation step, with probability 1− ps, a local trial movement via
Metropolis algorithm is chosen.

The acceptance criterion (4.26) indicates that the chemical potetial differenceµα −
µγ determines simulation results, regardless of each chemical potentialµα andµγ.

4.4.3 Free energy difference via semigrand canonical simulation

Using semigrand canonical ensemble, we calculate the Helmholtz free energy dif-
ference between single component systems composed of distinct molecular species.

First, a physical quantity corresponding to free energy of semigrand canonical
ensemble is defined as

ΨN(µα, µγ,T,V) := −kBT logΞN(µα, µγ,T,V). (4.27)
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Derivative of this quantity withµα is:

∂ΨN(µα, µγ,T,V)

∂µα
= −kBT

1
ΞN(µα, µγ,T,V)

∂ΞN(µα, µγ,T,V)

∂µα
= − 〈Nα〉T,µα,µγ,V,N

(4.28)
where〈· · · 〉T,µα,µγ,V,N := semigrand canonical ensemble average. These equations
yield the integration relation,

∆ΨN,µγ,T,V

(
µ(1)
α , µ

(0)
α

)
:=ΨN

(
µ(1)
α , µγ,T,V

)
− ΨN

(
µ(0)
α , µγ,T,V

)
(4.29)

=

∫ µ(1)
α

µ(0)
α

∂ΨN(µα, µγ,T,V)

∂µα
dµα =

∫ µ(1)
α

µ(0)
α

(
− 〈Nα〉T,µα,µγ,V,N

)
dµα. (4.30)

At µ(1)
α � µγ andµ(0)

α � µγ, eqs. (4.25), (4.27), and (4.29) show

∆ΨN,µγ,T,V

(
µ(1)
α , µ

(0)
α

)
= Fα(T,V,N) − Fγ(T,V,N) − N

(
µ(1)
α − µγ

)
, (4.31)

whereFα(T,V,N) andFγ(T,V,N) := Helmholtz free energy of single component
systems in canonical ensemble composed ofα andγ-species respectively. There-
fore, from eqs. (4.30) and (4.31), we obtain the Helmholtz free energy difference
between the single component systems

∆Fγ,α(T,V,N) :=Fγ(T,V,N) − Fα(T,V,N)

=

∫ µ(1)
α

µ(0)
α

(
〈Nα〉T,µα,µγ,V,N

)
dµα − N

(
µ(1)
α − µγ

)
.

(4.32)

This result connects a molecular speciesα with another speciesγ via the direct
thermodynamic integration path, sketched in Fig4.2. During this integration, the
single component system of one species is mutated to the other species.

4.4.4 Test simulation in semigrand canonical ensemble

As a test, we simulate a binary mixture of linear amphiphiles with the number of
segments per molecule= 32 using our solvent-free model discussed in section2.2.
The α-species is defined as an amphiphile composed of 28 A-segments andγ-
species 27 A-segments. Single component systems ofα-species are simulated in
chapter5. In this section,np denotes the total number of amphiphiles fixed at 932,
npα denotes the number ofα-species, andnpγ doesγ-species. In the initial state,
npα = 932 amphiphilic molecules are arranged on the bilayer configuration parallel
to yz-plane in the system boxLx/Re×Ly/Re×Lz/Re = 10×4×4, which corresponds
to a tensionless bilayer ofα-species. The width of the cell,∆L, and the maximum
trial displacement are given in Table.5.1. In this test simulation, 10% of the total
simulation steps are taken as the trial molecular species change on average.

Figure4.3 shows the (npα/np) vs chemical potential difference graph. In the
regionµα − µγ � 0, npα/np is approaching to 1 and inµα − µγ � 0 to 0. The
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Figure 4.2: Thermodynamic integration paths via semigrand canonical ensemble.∆Fα
denotes the free energy difference between the reference state and the single component
system ofα-species. From this system, the molecules are mutated to another species,γ.
Free energy difference between the reference and the single component system composed
of γ-species is equal to∆Fα + ∆Fγ,α. On these integration paths,T, V, andN are fixed.
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Figure 4.3: (npα/np) vs chemical potential difference betweenα andγ. Data are sampled
every MCS from 500 MCS, the systems are equilibrated by this MCS, to 1,000 MCS and
501 independent samples are obtained. This continuous line shows the absence of the 1st
order transition in this region; the free energy difference is calculated from this graph via
eq. (4.32).

continuous line of this graph indicates that no first order transition occurs. In these
simulations, the system keeps the bilayer structure (see Fig.4.4).

Figure4.5shows probability densities ofnpα at∆µ := µα−µγ = 0.3053kBT and
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(a) (c)(b)

Figure 4.4: Snapshots of the system at 7× 105 MCS. Red regions in these snapshots
represent the regions in which A-block of the amphiphiles gather and green regions do
B-block. (a): taken at (µα − µγ)/kBT = −4.656, (b): -1.843, and (c): 0.4595. The system
keeps the bilayer structure in our simulation.

0.4595kBT. In the inset, the left-hand side of the relation obtained from eq. (4.23),

Hµ′α,µ′γ,T,V,N(Nα)

Hµα,µγ,T,V,N(Nα)
exp

[
−

(µ′α − µ
′
γ) − (µα − µγ)

kBT
Nα

]
=
ΞN(µα, µγ,T,V)

ΞN(µ′α, µ′γ,T,V)
exp

[
µ′γ − µγ

kBT
N

]
=: Csemi,

is plotted as a function ofnpα, whereµ′α−µ
′
γ = 0.4595kBT andµα−µγ = 0.3053kBT

in our simulation. This constant graph is consistent with this relation,Csemi.
These test simulation results show the validity of our simulation.
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Figure 4.5: Probability densities ofnpα at ∆µ := µα − µγ = 0.3053kBT and 0.4595kBT
plotted by a broken line and a solid line respectively. Data are sampled every 5 MCS after
500 MCS and 139,901 independent samples are obtained.Csemi as a function ofnpα is
plotted in the inset.
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Chapter 5

Simulation of bilayer membranes

Using the solvent-free model of linear amphiphiles, i.e. lipids, discussed in sec-
tion 2.2, we simulate bilayer membranes coupled with our improved PPPM method
(see section2.3). We measure the excess free energy of the stalk in the systems
composed of molecules withNA, the number of A-segments in one lipid,= 27,
28, and 29 where the number of interaction centers per molecule equals 32. The
free energy of the systems atNA = 28 is first measured. Based on this result, the
free energy atNA = 27 and 29 is also determined via the semigrand canonical en-
semble. These simulations show the dependence of the stalk stability on molecular
architecture, i.e. the block-ratio of the molecules. We also calculate the tension
of the bilayer membranes, which allows us to plot the free energy of the stalk as a
function of the tension.

Fixed parameters in these simulations are given in Table5.1. Thermal energy
kBT is taken as the energy unit.

First, the single-component isolated tensionless bilayers composed of lipids
with NA = 27, 28 and 29 are simulated as the reference systems.

Table 5.1: Fixed simulation parameters for the solvent-free lipid model.

The number of interaction centers per moleculeN = 32
The width of the cell∆L = (1/6)Re

The maximum trial displacement= ∆L

5.1 Simulation results of tensionless bilayers

In this section, we simulate the single component isolated tensionless bilayer at
NA = 28 and 29 in the canonical ensemble.

73
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5.1.1 Tensionless bilayers atNA = 28

The tensionless bilayers consisting of lipids withNA = 28 in the canonical ensem-
ble are discussed. For the purpose of measuring the membrane thickness at the
tensionless state, i.e. the tension of membranesσ = 0, we study the bilayer in the
configuration where the bilayers arranged parallel to theyz-plane span the periodic
system box only in thez-direction, as is shown in the lower inset of Fig.5.1. In this
system, two free edges are formed in they-direction. Therefore in the canonical
ensemble, the bilayer shrinks or grows in they-direction by itself until reaching the
tensionless state. This bilayer patch composed ofnp = 1280 molecules is simulated
in the system box,Lx/Re×Ly/Re×Lz/Re = 8.0×20.0×2.0, which is large enough
to simulate an isolated membrane. Obtained molecular density profiles across the
membrane in thex-direction, i.e. the normal direction to the membrane, at this ten-
sionless state are shown in the main plate of Fig.5.1. The bilayer thickness of tail
regions, 2dc, is estimated from this density profile, i.e. 2dc = 1.3Re. Comparing
this thickness with typical experimental results [64], 2dc ≈ 30 (Å), the length scale
in our simulation is obtained,Re = 23.0 (Å). The integration of the density profiles

yield the area per amphiphilic molecule,A0 = 0.0343R2
e = 18.1 (Å

2
). The peak

of the hydrophobic tails in the density profile, approximately 40, is consistent with
the result of the mean field approximation, eq. (2.22).
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Figure 5.1: Molecular density profile across the tensionless bilayer with the free edges.
The lower inset shows a snapshot of an isolated tensionless bilayer with the two free edges.
The upper inset is a snapshot of the tensionless bilayer consisting of 5830 molecules which
span the system box both iny-direction andz-direction. The red and the green in these
pictures show the hydrophobic tails and the hydrophilic heads respectively.
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Using thisA0 calculated in our simulation, we can pre-assemble a tensionless
bilayer parallel with theyz-plane that spans the system box both in they-direction
and in thez-direction, as is shown in the upper inset of Fig.5.1. Figure5.2shows
the mean square displacement (MSD) of the center of mass for one amphiphile
swimming on this tensionless bilayer composed of 2LyLz/A0 = 5830 amphiphiles
in the cubic system boxLx/Re×Ly/Re×Lz/Re = 10×10×10. Since the molecules
are confined in the bilayer, the lateral diffusion constant of the lipids on the bilayer,
denoted byD, is determined from the relation,

D �
1
4t

〈
|r(t) − r(0)|2

〉
, (5.1)

wheret is time measured in units of MCS in our simulation, andr(t) := the position
of the center of mass of a lipid at timet. From this equation and linear fitting of
MSD shown in Fig.5.2,

D = 2.95× 10−5
(

R2
e

MCS

)
. (5.2)

y = 1.1834E-04x + 2.4224E+00
R² = 9.9995E-01
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Figure 5.2: Mean square displacement of one molecule atNA = 28 in the single tensionless
bilayer composed of 2LyLz/A0 = 5830 amphiphiles. The system size isLx/Re × Ly/Re ×

Lz/Re = 10× 10× 10. The solid black line and the broken grey line represent MSD and
the linear fitting of MSD respectively. This fitting indicates the relation, MSD∝ 1.1834×
10−4 t. From this result and eq. (5.1), the lateral diffusion constant,D, is determined in
eq. (5.2).

In order to calculate the excess chemical potential of this tensionless bilayer,
denoted byµex

0 , we arrange the bilayer parallel with theyz-plane which spans the
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system box,Lx/Re × Ly/Re × Lz/Re = 5 × 10 × 10, in y and z-direction. The
number of lipids, denoted bynp, is fixed at 2LyLz/A0 = 5830. Using about
2 × 104 particle configuration sets, which are sampled every 1× 104 MCS, we
calculate the excess chemical potential of the system via eq. (3.55), i.e. the par-
ticle deletion and the insertion without any bias. Figure5.3 shows the results,
that is,µex

0 = −37.745kBT. This corroborates the result via Rosenbluth sampling
eq. (3.56), µex

0 = −37.740kBT. This excess chemical potential and the average
molecular density in the system,np/LxLyLz, yield the total chemical potential, de-
fined in eq. (3.47), of this system.

We measure the excess chemical potential via Rosenbluth sampling.
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Figure 5.3: Chemical potential calculation of a tensionless bilayer atNA = 28 via Widom’s
insertion and deletion method introduced in section3.4.1. Molecules are deleted and in-
serted without any bias. Probability distributions of excess non-bonded interaction poten-
tial Unb on the particle deletion and the particle insertion, functionsg and f are shown. In
the inset, the excess chemical potential is plotted according to eq. (3.55). The dashed line
in the inset marks our estimate for the excess chemical potential via this method.

5.1.2 Tensionless bilayers atNA = 29and 27

At NA = 29, A0 = 0.03314R2
e is obtained. ThisA0 is smaller than the value at

NA = 28 because the hydrophilic heads in amphiphiles are effectively smaller. The
excess chemical potential of the tensionless bilayer composed of 2LyLz/A0 = 6030
which spans the systemLx/Re × Ly/Re × Lz/Re = 5× 10× 10 in y andz-direction
is µex

0 = −37.740kBT.
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At NA = 27, A0 = 0.0352R2
e. The excess chemical potential of the tensionless

bilayer, µex
0 = −36.044kBT, is determined in a simulation box of sizeLx/Re ×

Ly/Re× Lz/Re = 5× 10× 10, composed of 2LyLz/A0 = 5680 molecules.
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5.2 Helmholtz free energy of the stalk atNA = 28

Using the simulation results of tensionless membranes in section5.1, we simu-
late the stalk morphology and the two apposed bilayers composed of lipids with
NA = 28 in order to measure the free energy of the stalk. The Helmholtz free
energy of the stalk is measured in the caonical ensemble via the thermodynamic
integration and the expanded ensemble simulation (see chapter4) on the paths
sketched in Fig.5.4. On these paths, the total number of molecules in the system
np, the temperatureT, and the system volumeV are all fixed. In this sketch, the
states 1 and 5 are the two apposed bilayers and the stalk morphology respectively.
From now on,Fi denotes the Helmholtz free energy on the statei, µi the chemical
potential on the statei, andµex

i the excess chemical potential oni. Each of the
paths 3→ 4 → 5 and 3→ 2 → 1, on which the external fields that reproduce
the stalk morphology and the two apposed bilayers are applied respectively, corre-
sponds to the triangle path in Fig.4.1. The Hamiltonian due to the external field in
our solvent-free model has been defined in eq. (4.12).
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Figure 5.4: Thermodynamic integration paths for the Helmholtz free energy calculation
at NA = 28. Each of the paths 3→ 4 → 5 and 3→ 2 → 1, on which the external fields
that reproduce the stalk morphology and the two apposed bilayers are applied respectively,
corresponds to the triangle path in Fig.4.1. On all the branches in this figure, the total
number of molecules in the systemnp, the temperatureT, and the system volumeV are all
fixed.

During the branch 1→ 2, the interaction potential in the system of the two
apposed bilayers is gradually replaced with the external ordering fields. These ex-
ternal fields confine the ideal molecules into the two apposed bilayer structure at
the end of this branch, state 2, on which the interaction potential is completely
turned off. Along the branch 2→ 3, these fields are gradually switched off and
the ideal gas becomes disordered on state 3. Along the branch 3→ 4, the differ-
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ent external ordering fields is gradually turned on. These different external fields
gather the ideal molecules into the stalk morphology on the end of this branch,
state 4. Along the last branch 4→ 5, these external fields are switched off and the
interaction potential is gradually turned on. On the last of this path, i.e. state 5, the
external fields are completely turned off. Along the total path, we can obtain the
Helmholtz free energy difference, i.e. the Helmholtz free energy of the stalk,

∆F := F5 − F1 =

4∑
i=1

∆Fi→i+1, ∆F j→k := Fk − F j . (5.3)

Each of the Helmholtz free energy difference∆F j→k is given from eq. (4.7):

∆F1→2 =

∫ 1

0
dλE

〈
Hbilayers

ext − Hint

〉λI=1−λE,λE

T,V,np
, (5.4)

∆F2→3 =

∫ 0

1
dλE

〈
Hbilayers

ext

〉λI=0,λE

T,V,np
(5.5)

whereHstalk
ext andHbilayers

ext denote the energy due to the external ordering fields for
the stalk morphology and the two apposed bilayers respectively. Similar expres-
sions hold for the branches 4→ 5 and 3→ 4 respectively.

Alternatively, the branches 2→ 3→ 4 can be replaced with the direct branch
2 → 4 in order to directly calculate the free energy difference∆F2→4. On this
direct branch, the external ordering fields for the two apposed bilayers is gradually
mutated to the fields for the stalk morphology while the interaction potential energy
Hint is always 0.Hext is defined as the linear superposition of these 2 fields with
use of a dimensionless parameterλ:

Hext = λH
stalk
ext + (1− λ)Hbilayers

ext , 0 ≤ λ ≤ 1. (5.6)

At λ = 0, the system is set on the state 2 and atλ = 1 the state 4. The Helmholtz
free energy difference between the states 2 and 4 via this direct branch is:

∆F2→4 =

∫ 1

0
dλ

〈
Hstalk

ext − Hbilayers
ext

〉λ
T,V,np

(5.7)

where the angle brackets represents the canonical ensemble average at the position
λ on this direct branch.

The relation,
∆F2→3 + ∆F3→4 − ∆F2→4 = 0,

provides a gauge measuring the error in the thermodynamic integration.
The number of the molecules in the system,np, and the fixed system size

(Lx, Ly, Lz) chosen in this Helmholtz free energy calculation is shown in Table5.2.
Hereafter in this thesis, bilayers are assembled parallel toyz-plane and span the sys-
tem box iny andz-direction. This means thatx-direction is normal to bilayers.np

in Table5.2is slightly larger than the number of lipids in the two apposed tension-
less bilayers that span this system box iny andz-direction, i.e. 4LyLz/A0 = 4197.

Hereafter, the superscripts, stalk and bilayers, represent the morphology i.e.
the stalk and the two apposed bilayers respectively.
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Table 5.2: System size and the number of lipidsnp used for the Helmholtz free energy
calculation.

Lx = 10.0Re

Ly = 6.0Re

Lz = 6.0Re

np = 4240

5.2.1 External field calculation

We begin with determining the external fields that gather the ideal molecules into
the stalk morphology according to the successive approximation discussed in sec-
tion 4.2.4. For this calculation,ε = 0.05 is chosen in eq. (4.14). The ideal
molecules are simulated in the external fields in the canonical ensemble for 10,000
MCS in order to evaluate the average molecular density distribution. The obtained
molecular density distribution is used to improve the external fields and, in the im-
proved external fields, the ideal molecules are simulated again. The convergence
was achieved at about 10 iterations.

Figure5.5shows 2D contour plots of the molecular density distribution in the
self-assembled stalk structure, i.e. the state 5, and the ideal molecular density dis-
tribution structured by the external fields at the final iteration, i.e. the state 4. These
distributions have been radially averaged around the central axis of the stalk.r and
x denote the radial distance from the central axis of the stalk and the coordinate nor-
mal to the bilayer. This result indicates the similarity between these structures. A
similar quality of consistency between the two apposed bilayers of self-assembling
and the ideal molecules structured into the bilayers by the improved external fields
is also obtained (data not shown).

5.2.2 Expanded ensemble simulations atNA = 28

Using these adjusted external ordering fields, the expanded ensembles simulation
introduced in section4.2.3is performed along the branches 1→ 2, 2→ 4, and
4→ 5 which are discretised intoK = 58, K = 52, andK = 66 sampling points re-
spectively. TheseK ensure that the distribution function at neighbouring sampling
points overlap. It is noted that a slightly differentK is chosen for the thermody-
namic integration.

Figure5.6 shows the time evolution ofλE in the middle of the expanded en-
semble simulation on the branches 1→ 2 and 4→ 5. These results indicate that
each subensemble is visited with roughly equal probability and that the systems
freely switch the subensembles over the whole branch, 0≤ λE ≤ 1. This means
that these branches are free from the first order phase transition, as was aimed. The
Helmholtz free energy difference obtained by the expanded ensembles on these
three branches is given in Table5.3.
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Figure 5.5: 2D contour plot of the molecular distribution for tail blocks, i.e. A-species.
The result in self-assembled stalk morphology (left) and the result of ideal gas structured
by the external fields determined via the successive approximation (right) are shown. These
distributions have been radially averaged around the central axis of the stalk.r andx denote
the radial distance from the central axis of the stalk and the coordinate normal to the bilayer
respectively.

5.2.3 Helmholtz free energy difference along each branch

We show the Helmholtz free energy difference along each branch.

The thermodynamic integrands on each branch are shown in Figs.5.7, 5.8,
and5.9, where the thermodynamic integrands are plotted in the main panels. The
smooth curves in these integrands show the absence of the first order transition,
which has been quantitatively confirmed by the expanded ensemble simulation.

Figure5.7 presents the results for the branches 1→ 2 and 4→ 5. The in-
tegrands vary rapidly, approaching the ends of the branches. AroundλE = 0,
this behaviour comes from the thermal membrane fluctuations, which occur in the
interacting systems i.e. the states 1 and 5. However, this fluctuation is rapidly sup-
pressed by switching on the external fields. The dependence of the integrand on
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Figure 5.6: Time evolution ofλE in the middle of the expanded ensemble simulation on
the branches 1→ 2 and 4→ 5 plotted by green and black lines respectively as a function
of the lateral motion of one molecule in a tensionless bilayer membrane.

λE at the limitλE → 1 is rationalized by the strong reduction of compressibility
and the concomitant growth of fluctuations as the interparticle interaction poten-
tial is completely switched off. The Helmholtz free energy difference is given in
Table.5.3.

Figure5.8shows the results for the branches 2→ 3 and 3→ 4, on which the
ideal gas gathered into the ordered structure is transformed into a disordered one. In
Fig. 5.8, an analytical estimate for the integrands around the disordered state of the
ideal gas, the state 3, is also plotted with use of the Random-Phase-Approximation
(RPA) [1]. This RPA result corroborates the TDI result at smallλE, λE < 0.05.
The dependence of the free energy difference of the stalk and two-bilayer structure
onλE is also plotted in the insets of Fig.5.7for the branches 1→ 2 and 4→ 5 and
Fig. 5.8for the branches 2→ 3 and 3→ 4.

In Fig.5.9, the results along the direct branch 2→ 4, where the external field is
mutated from the two-bilayer morphology to the stalk morphology, is shown. The
free energy along this branch,∆F2→4(λ), is plotted in the inset.

From these data, the free energy of the stalk calculated by the TDI is∆F =
15.1kBT via the path 1→ 2 → 3 → 4 → 5 and∆F = 16.4kBT via the path
1→ 2→ 4→ 5. These results corroborates the free energy of the stalk accurately
determined by the expanded ensemble simulation via the path 1→ 2 → 4 → 5,
∆F = 15.3kBT which is used hereafter in this thesis. This positive∆F indicates
the metastability of the stalk. Our result is consistent with the observation that the
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Figure 5.7: The thermodynamic integrands on the branches 1→ 2 and 4→ 5 plotted
by red line and black circles respectively. These branches are discretised into 65 sampling
points. The inset shows the sum of the free energy changes for the bilayer and stalk struc-
tures, obtained after integrating the data of the main figure (with proper sign to account for
the direction of the branch), as a function ofλE.

stalk disappears after long simulation runs.

Table 5.3: The Helmholtz free energy difference on each branch atNA = 28 via the
thermodynamic integration (TDI) and the expanded ensemble simulation (EE). Hereafter
in this thesis, the results of the expanded ensemble simulation is used.

TDI ∆F1→2 + ∆F4→5 = 70.108kBT
∆F2→3 + ∆F3→4 = −55.038kBT

∆F2→4 = −53.662kBT
EE ∆F1→2 + ∆F4→5 = 70.813kBT

∆F2→4 = −55.558kBT
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Figure 5.8: The thermodynamic integrands on the branches 2→ 3 and 3→ 4 plotted
by red line and black circles respectively. These branches are discretised into 51 sampling
points. The inset shows the sum of the free energy changes for the bilayer and stalk struc-
tures, obtained after integrating the data of the main figure as a function ofλE. The predic-
tion of the Random-Phase-Approximation (RPA) [1] for the behaviour of the integrands
near the disordered state (λE = 0) are shown with thick solid and dashed lines for the stalk
and the two bilayers, respectively. The RPA behaviour of the free energy difference for
small values ofλE is marked in the inset with red line. This RPA result corroborates the
TDI result at smallλE.
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into 51 sampling points. The inset shows the free energy change as a function ofλ obtained
after integrating the curve in the main figure.
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5.3 Helmholtz free energy of the stalk atNA = 29

We measure the excess Helmholtz free energy of the stalk,∆F, at NA = 29. This
can be calculated by the simulation in the canonical ensemble, the scheme in sec-
tion 5.2, independently of the simulation atNA = 28. We choose, however, the
semigrand canonical ensemble simulations discussed in section4.4instead of these
canonical simulations in order to reduce the computation. In our semigrand canon-
ical simulation, 10% of the total simulation steps are chosen as the trial molecular
species change on average.

The integration path based on the semigrand canonical ensemble simulation is
sketched in Fig.5.10. The single component system of the molecular species with
NA = 28 for the stalk morphology is mutated toNA = 29 from the state 5 via the
semigrand canonical ensemble simulation. The apposed bilayers atNA = 29 is
mutated toNA = 28, i.e. state 1. The states atNA = 29 for the apposed bilayers and
the stalk morphology linked toNA = 28 via these semigrand canonical ensembles
are denoted by states 6 and 7 respectively. Adding∆F at NA = 28 to TDI on the
branches 6→ 1 and 5→ 7, we obtain the Helmholtz free energy of the stalk,
∆F = ∆F6→7 at NA = 29. In these semigrand canonical ensemble simulations, the
system size and the total number of molecules are still fixed; the values in Table5.2
are used.

1 5
∆F

∆F
6→1 ∆F

5→7

6 7

semigrand
canonical

N
A
=28

N
A
=29

semigrand

stalk

2 apposed

bilayers

Figure 5.10: Thermodynamic integration paths for the Helmholtz free energy calculation
at NA = 29. The apposed bilayers and the stalk morphology, denoted by 6 and 7 re-
spectively, is connected to the corresponding states atNA = 28, i.e. the states 1 and 5
respectively, via the semigrand canonical ensemble simulations. Adding∆F at NA = 28 to
the thermodynamic integration on the branches 6→ 1 and 5→ 7, we obtain the Helmholtz
free energy of the stalk,∆F at NA = 29. Since the integration from the state 1 to the state 5
has been obtained in the simulations atNA = 28, we can skip the simulations in canonical
ensemble atNA = 29 using these semigrand canonical ensemble simulations.

The semigrand canonical ensemble simulation results,
〈
npα

〉
T,µα,µγ,V,np

, are plot-

ted as a function of the chemical potential difference, (µα − µγ)/kBT, in Fig. 5.11
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whereα andγ-species representNA = 29 andNA = 28 respectively. The smooth
form of

〈
npα

〉
T,µα,µγ,V,np

indicates the absence of the first-order transition. The dif-

ference between the data,

∆
〈
npα

〉
T,µα,µγ,V,np

:=
〈
npα

〉stalk

T,µα,µγ,V,np
−

〈
npα

〉bilayers

T,µα,µγ,V,np
,

is presented in the inset, where
〈
npα

〉stalk

T,µα,µγ,V,np
and

〈
npα

〉bilayers

T,µα,µγ,V,np
denote the re-

sults for the stalk morphology and the apposed bilayers respectively. This small
difference,∆

〈
npα

〉
T,µα,µγ,V,np

, gives the free energy change due to the mutation.

From these results and the integration eq. (4.32), the Helmholtz free energy differ-
ence is obtained, i.e.∆F6→1 + ∆F5→7 = −15.9kBT. Therefore, the Helmholtz free
energy of the stalk is

(∆F at NA = 29)= ∆F6→1 + ∆F5→7 + (∆F at NA = 28)= −0.6kBT.

This negative∆F at NA = 29 indicates the stability of the stalk; spontaneous stalk
formation between the apposed bilayers is also observed in this system. These
results show the stability of the stalk at the large molecular assymetry, i.e. large
block ratioNA/N.

At (µα − µγ)/kBT = −2, where a peak is observed in the inset of Fig.5.11, the
normalized difference of molecular density distribution between both the molecular
species,

ρ′pA(γ) − ρ
′
pA(α)

ρ′pA(γ) + ρ
′
pA(α)

(5.8)

whereρ′pA(γ) denotes the molecular density distribution of hydrophobic tails forγ-
species andρ′pA(α) for α-species, is measured and plotted in Fig.5.12. In this graph,
negative regions are found on the stalk structure. This result means thatα-species,
more asymmetric molecular architectureNA = 29, gather around the stalk in the
binary mixture simulated in the semigrand canonical ensemble.

5.4 Helmholtz free energy of the stalk atNA = 27

The Helmholtz free energy∆F at NA = 27 is also measured via the semigrand
canonical ensemble simulations. The states 1 and 5 are linked to the corresponding
states atNA = 27, the states 8 and 9 respectively, via the semigrand canonical
ensemble. The calculated

〈
npα

〉
T,µα,µγ,V,np

and∆
〈
npα

〉
T,µα,µγ,V,np

are presented in

Fig. 5.13. These data yield∆F8→1 + ∆F5→9 = 18.1kBT. This indicates that the
stalk atNA = 27 is more unstable than the stalk atNA = 28 i.e. more asymmetric
molecules; this result is consistent with the observation that the stalk disappears in
a short simulation runs atNA = 27. The Helmholtz free energy of the stalk,∆F at
NA = 27, is:

(∆F at NA = 27)= ∆F8→1 + ∆F5→9 + (∆F at NA = 28)= 33.4kBT.
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Figure 5.11: Semigrand canonical ensemble simulation results betweenNA = 29 and
NA = 28. The main plate shows

〈
npα

〉
T,µα,µγ ,V,np

as a function of the chemical potential

difference, (µα − µγ)/kBT, for the stalk morphology and the two apposed bilayers, which
are plotted by a black solid line and a broken grey line respectively. Both the branches are
set in the interval−12.0 ≤ (µα − µγ)/kBT ≤ 10.0 and discretised homogeneously into 221
sampling points.α-species is the molecules withNA = 29 andγ-speciesNA = 28. The
smooth form of these lines indicates the absence of the first-order transition. The black
chain line shows the total number of the molecules,np = 4240. The inset presents the
difference between the data in the main panel,∆

〈
npα

〉
T,µα,µγ ,V,np

.
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Figure 5.12: The normalized difference of molecular density distribution between both the
molecular speciesNA = 29 andNA = 28, defined in eq. (5.8), measured at (µα −µγ)/kBT =
−2. These data are radially averaged around the central axis of the stalk (see also Fig.5.5).
Molecules ofα-species, i.e. more asymmetric molecular architectureNA = 29, concentrate
around the stalk.
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Figure 5.13: Semigrand canonical ensemble simulation results betweenNA = 28 and
NA = 27. The main plate shows

〈
npα

〉
T,µα,µγ ,V,np

as a function of the chemical potential

difference, (µα − µγ)/kBT, for the stalk morphology and the two apposed bilayers, which
are plotted by a black solid line and a broken grey line respectively. Both the branches are
set in the interval−12.0 ≤ (µα − µγ)/kBT ≤ 7.0 and discretised homogeneously into 191
sampling points.α-species is the molecules withNA = 28 andγ-speciesNA = 27. The
smooth form of these lines indicates the absence of the first-order transition. The black
chain line shows the total number of the molecules,np = 4240. The inset presents the
difference between the data in the main panel,∆

〈
npα

〉
T,µα,µγ ,V,np

.
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5.5 Grand potential of the stalk

When the stalk bridges a pair of large bilayers, unperturbed regions of the bilayers,
i.e. regions far away from the stalk, work as the reservoir of amphiphiles. This
situation means that the tension of the bilayers is a constant before and after the
stalk formation. In such systems, the excess grand potential of the stalk at the
constant chemical potentialµ, denoted by∆ΦG(µ), describes the stalk stability. In
other words,∆ΦG(µ) corresponds to the stalk stability at the constant tension of the
bilayers. As a result, the number of molecules in the stalk morphology is larger
than the number in the two apposed bilayers.

In this section, we calculate this excess grand potential of the stalk in Grand
canonical ensemble simulations discussed in section3.3. We still use the system
box given in Table5.2. However, the number of molecules is not a constant in this
simulation. The grand potential at chmical potential= µ is denoted byΦbilayers

G (µ)
andΦstalk

G (µ) for the two apposed bilayers and the stalk morphology respectively.
Grand potential is calculated via the thermodynamic integration in the grand

canonical ensemble, eq. (4.20). At NA = 28, the integration of〈np〉µ,T,V, obtained
in these simulations, from the state 1 to some chemical potentialµ yields the grand
potential difference between these two states,Φ

bilayers
G (µ)−Φbilayers

G (µ1). In the same
way, the grand potential difference for the stalk morphology is also calculated, i.e.
Φstalk

G (µ)−Φstalk
G (µ5). Comparing these results and adding∆F, we obtain the excess

grand potential of the stalk at the fixedµ, ∆ΦG(µ) = Φstalk
G (µ) − Φbilayers

G (µ), at
NA = 28. For the single component systems withNA = 29, instead of the states 1
and 5, the states 6 and 7 are chosen as the reference respectively.

In our grand canonical ensemble simulation, 10 % of the total simulation steps
is chosen as the trial particle exchange between the system and the reservoir on
average. the number of trial positions in constructing one segment, denoted byk in
our algorithm (see section3.3.1), is fixed at 5.

The tension of the bilayer membranes,σ(µ,T,V), is calculated via the grand
canonical ensemble simulations of the single isolated bilayer according to the
Gibbs adsorption isotherm,

σ(µ,T,V) =
Φ

single
G (µ) − Φsingle

G (µ0)

LyLz
= −

∫ µ

µ0

dµ′
〈np〉

single bilayer
µ′,T,V

LyLZ
(5.9)

whereΦsingle
G (µ) denotes the grand potential of the single bilayer and〈np〉

single bilayer
µ′,T,V

the averagenp of the single bilayer.
The calculated chemical potentials of the single tensionless bilayer, the stalk

morphology, and the two apposed bilayers in the canonical ensemble, which are
required in these grand canonical ensemble simulations as the reference of TDI, via
Rosenbluth sampling are shown in Table5.4and5.5. These chemical potentials are
referred to the chemical potential of the single tensionless bilayer,µ0, by eq. (3.62).
In the canonical ensemble, the chemical potential of the stalk morphology is less
than the one of the two apposed bilayers, i.e.µ5 < µ1 andµ7 < µ6, because
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the regions on the bilayers far away from the stalk are thinner than those in the
two-bilayers morphology.

Table 5.4: Chemical potentials measured via Rosenbluth sampling on each state atNA =

28. The chemical potentials are referred to the chemical potential of the single tensionless
bilayer,µ0, by eq. (3.62).

State indexi npR3
e/V βµex

i βµi − βµ0

0 11.66 -37.73983772 0
1 11.77777778 -37.71120594 0.038682113
5 11.77777778 -37.74760927 0.002278791

Table 5.5: Chemical potentials measured via Rosenbluth sampling on each state atNA =

29. The chemical potentials are referred to the chemical potential of the single tensionless
bilayer,µ0, by eq. (3.62).

State indexi npR3
e/V βµex

i βµi − βµ0

0 12.06 -39.57944964 0
6 11.77777778 -39.64344754 -0.087677575
7 11.77777778 -39.72675926 -0.170989294

〈np〉µ,T,V of the single component system composed of molecules withNA =

28 in the grand canonical ensemble are presented in Fig.5.14. From these data,
tension of the single bilayer and∆ΦG(µ) are determined. We observe that the
excess number of amphiphiles in the stalk,∆〈np〉 = 〈np〉

stalk − 〈np〉
bilayers is on

the order of a few tens and it decreases as we increase the chemical potential,µ,
or decrease the tension of the membrane,σ. We also note that the area density of
amphiphiles in the single bilayer is slightly larger than in the two, apposed bilayers.
We speculate that this effect mirrors the repulsive interactions between the apposed
bilayers.

The grand potential of the stalk∆ΦG and the chemical potential is plotted as the
functions ofσ in Fig.5.15. We observe that∆ΦG increases with membrane tension.
At µ = µ0, we obtain∆ΦG = 16.2kBT, which is consistent with the observation
that the stalk disappears in long simulation runs i.e. metastability of the stalk.

In Fig. 5.16, the difference between the molecular density distribution of hy-
drophobicA-species in the stalk morphology atµ − µ0 = 0.100kBT and the one at
µ−µ0 = −0.100kBT is shown. This graph indicates that, in the vicinity of the stalk,
the material mostly increases in the stalk itself with chemical potential. This results
in the stability of the stalk at highµ, i.e. a thick stalk. On the other hand outside
the vicinity of the stalk, i.e. in the bilayers, the number of lipids homogeneously
increases. Due to this result,∆〈np〉 decreases at high chemical potential.

The simulation results atNA = 29 in the grand canonical ensemble, i.e. the
number of lipids in the system〈np〉, the excess free energy of a stalk∆ΦG, and the
tension of the single isolated bilayerσ are shown in Figs.5.17and5.18. These
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Figure 5.14: Simulation resutls atNA = 28 in the grand canonical ensemble. Number of
molecules per area in a single bilayer (diamonds), two-apposed bilayers (squares), and the
stalk-morphology (circles) as a function of the chemical potential referred to the chemical
potential,µ0, of the tensionless state. The inset depicts the excess number of molecules of
the stalk,∆〈np〉 = 〈np〉

stalk− 〈np〉
bilayersas a function ofµ − µ0.
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Figure 5.15: Excess grand canonical potential,∆ΦG (circles), of the stalk as a function of
the membrane tension,σ, at NA = 28. On the right hand side, we show the dependence
of the chemical potential,µ (dashed line), on the membrane tension,σ. The unit of the
tension,kBT/R2

e = 7.83× 10−4 (J/m2) atT = 300 (K).
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Figure 5.16: 2D contour plot of the difference between the molecular density distribution
of hydrophobicA-species in the stalk morphology atNA = 28, radially averaged around the
central axis of the stalk, in the grand canonical ensemble atµ−µ0 = 0.100kBT and the one at
µ−µ0 = −0.100kBT (see also Fig.5.5). The graph shows the molecular density distribution
of tails atµ− µ0 = 0.100kBT minus the distribution atµ− µ0 = −0.100kBT. r andx denote
the radial distance from the central axis and the coordinate along the membrane normal
respectively. This result indicates that, in the vicinity of the stalk, the materials mostly
increase on the stalk itself with chemical potential. On the other hand, outside this vicinity,
i.e. in bilayers, the number of molecules homogeneously increases.

data indicate the similar dependence on the chemical potential to the results at
NA = 28. We also note that the excess number of amphiphiles in the stalk is larger
than the result atNA = 28 and that the spontaneous stalk formation is observed in
the system atNA = 29.
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Figure 5.17: Simulation resutls atNA = 29 in the grand canonical ensemble. Number of
molecules per area in a single bilayer (diamonds), two-apposed bilayers (squares), and the
stalk-morphology (circles) as a function of the chemical potential referred to the chemical
potential,µ0, of the tensionless state. The inset depicts the excess number of molecules of
the stalk,∆〈np〉 = 〈np〉

stalk− 〈np〉
bilayersas a function ofµ − µ0.
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Figure 5.18: Excess grand canonical potential,∆ΦG (circles), of the stalk as a function of
the membrane tension,σ, at NA = 29. On the right hand side, we show the dependence of
the chemical potential,µ (dashed line), on the membrane tension,σ.



Chapter 6

Conclusions

We have devised a general computational strategy for computing free energies of
self-assembling systems [1, 36]. It has been employed to determine the excess free
energy of a stalk that bridges a pair of apposed bilayer membranes, using a ther-
modynamic integration scheme based on external fields. The technique relies on
reversibly transforming one self-assembled structure into another by substituting
the non-bonded interactions by external, ordering fields. To ensure reversibility,
these external, ordering fields have to be chosen as to generate the structure of
the self-assembled system in a system, where the non-bonded interactions have
been turned off, i.e., an ideal gas. Applications to dense polymer system study-
ing fluctuation-induced, first-order transition between a disordered and a lamellar
phases in diblock copolymers [36] and the free energies of grain boundariew [37]
demonstrated that the external field can be estimated from mean field theory. For
the case of the strongly fluctuating bilayer systems considered in the main part
of this work the mean field approximation fails and we have devised a numerical
strategy for calculating the external fields.

Along the thermodynamic integration paths, the excess Helmholtz free energy
of the stalk has accurately been calculated with the use of expanded ensembles sim-
ulation. This method quantitatively verifies the absence of the first order transition
along the paths.

The simulations have been performed using a solvent-free coarse-grained model
which reduces the computational time and facilitates the Monte Carlo simulations
due to the reduced number of the degrees of freedom and the soft interaction. This
allows, for example, for a very accurate measurment of chemical potential required
for the simulations of lipid bilayers in the grand canonical ensemble. The Widom’s
insertion and deletion schemes that we used would not be efficient in a system with
hard interactions. However the proposed TDI approach can be used in context of
a broad scope of different models (e.g. Lennard-Jones potentials) and simulation
techniques such as DPD, conventional molecular dynamics, and single-chain-in-
mean-field-simulations [17]. For example we have utilized this technique within
the framework of a Flory-Huggins type density functional to compute the free en-
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ergy of T-junctions and the free energy cost of the surface reconstruction of the soft
morphologies in thin films of lamella forming diblock copolymers assembled on
patterned substrates.

Focusing on the simulations of bilayers, our modeling approach provided in-
formation on the stalk structure which consists of at most one hundred amphiphilic
molecules, a few % of the total molecules in our system. This in combination
with the fact that the free energy differences between different morphololgies in
soft-matter systems typically are small, the accurate measurement of the free en-
ergy is a computational challenge. In this work, we have utilized a combination
of sophisticated simulation techniques (e.g. expanded ensemble and reweighting
methods [1, 65, 66]) in conjunction with thermodynamic integration which are well
suitable for parallel computing [37]. We obtained an accuracy of 4kBT in the free
energy calculation, which corresponds to the relative accuracy of 10−5, within our
computational resources.

Once the excess Helmholtz free energy of the stalk,∆F, is determined in the
canonical ensemble, the dependence of the excess free energies in the canonical
and grand canonical ensemble,∆F and∆ΦG, on the molecular architecture and the
chemical potentialµ can be obtained with a relatively low computational cost. The
dependence of the excess free energy∆ΦG on the chemical potential can be utilized
to extract the dependence of∆ΦG on the membrane tension,σ; an information
which can provide a link to experiments.

We have determined the excess free energy of a stalk connecting two tension-
less bilayer membranes to be∆ΦG = 16.2kBT with NA = 28. This free energy
is lower than earlier estimates based on the phenomenological theory, whereas it
is consistent with the results in self-consistent field calculations [30]. This result
is particularly notable owing to significant differences in the microscopic struc-
tures between our solvent-free model and the model of the self-consistent field
calculations, e.g., we use an implicit solvent while the self-consistent field model
represents the solvent by homopolymers. This finding suggests that the excess free
energy of the stalk is not very sensitive to the specific interactions of the model and
that the results for our simple coarse-grained model are also relevant for synthetic
or biological bilayer membranes.

When the membrane tension increases, we observe that the number of molecules,
of which the stalk is composed, increases and, in turn, the excess free energy,∆ΦG

also increases slightly. This finding differs from the results of self-consistent field
calculations [30], which observe that the free energy of the stalk is almost indepen-
dent from the membrane tension or decreases withσ. In the vicinity of the stalk,
the distribution of the molecular density changes mostly in the stalk itself with the
tensionσ. This accounts for the high stability of the stalk at lowσ. We observe
that the stalk becomes unstable for more symmetric molecules in agreement with
self-consistent field calculations [30]. We also observe that in lipid mixtures, com-
prised of two species with different molecular asymmetries, the more asymmetric
species segregates to the stalk.

In this work we have focused on the study of the free energy of the stalk inter-
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mediate without considering its further evolution into a fusion pore. In this scope,
it would be interesting to investigate potential pathways which the fusion process
can follow after the stalk structure is formed. This can be performed via Monte
Carlo simulations utilizing moves that mimic a realistic chain dynamics. In case
some specific fusion intermediate structures are indentified rluving the simulations,
a TDI technique similar to the one developed in this work could be used to estimate
the free energy of these fusion intermediates and exploring the observed pathway.
An additional topic that we would like to address in the future refers to investi-
gating further the influence of the chain architecture on the stalk stability and the
kinetics of its formation. For instance, it has been argued [67] that the double tail
structure, a common feature of many lipid molecules, can play an important roll
during stalk nucleation.
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Appendix A

Gaussian chain

We have simulated molecules in a coarse-grained molecular scale using bead-
spring polymer model. This model is based on the structure of ideal polymers in
a coarse-grained scale. In this appendix, we begin our discussion with the micro-
scopic polymer structure and introduce the bead-spring model, also called Gaus-
sian chain. It is shown that any linear polymers result in Gaussian chain at high
temperature.

A.1 Microscopic polymer structure

We discuss the micro structural character of a linear polymer with a carbon back-
bone [45, 68, 69], e.g. polyethylene sketched in Fig.A.1 as a particular example.
The number of repeating units in a polymer,N0, is called the degree of polymer-
ization or the polymerization degree. The material for a polymer, e.g. ethylene for
polyethylene, is called a monomer.

C C
H H

HH

(a)

N
0

(b)

Figure A.1: Chemical structures of ethylene, (a), and polyethylene, (b), as a particular
example of a linear polymer. Ethylene is polymerized into polyethylene and composes this
repeating unit in polyethylene. In this case, ethylene is called a monomer. The number of
repeating units,N0, is called the degree of polymerization or the polymerization degree.
Steric structure of the carbon backbone in a linear polymer is presented in Fig.A.2.

FigureA.2 presents the steric structure of the carbon backbone in a linear poly-
mer. The angleθ between a pair of neighboringC-C bonds in a polymer, the
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valence angle, usually ranges approximately from 50◦ to 80◦ in response to the
chemical properties of the polymer and remains fixed through the entire polymer
chain. Due to the axial symmetry, rotation around this bond only slightly changes
the energy.

Cn-3

Cn-2

Cn-1

Cn

0

Figure A.2: Steric structure of the carbon backbone in a linear polymer on an atomic scale.
Thick solid lines represent covalent bonds between adjacent carbon atoms.φ = 0◦,120◦,
and 240◦ correspond totrans, gauche+, andgauche− respectively (see Fig.A.3).

When the polymer is formed by adding one carbon (n) to 3 fixed carbon atoms
(n−3,n−2,n−1), the internal rotation angle along the conical surface,φ, is defined
(see Fig.A.2). The vertex angle of the cone always equals 2θ. The energy between
the carbon atoms is determined by this internal rotation angleφ. This energy func-
tion of φ (shown in Fig.A.3) shows three local minimum points atφ = 0◦,120◦,
and 240◦, which correspond to the three steric structures i.e.trans, gauche+, and
gauche− respectively (see Fig.A.2). At φ = 0◦, in trans, the energy between the
carbon atoms takes the global minimum value. Thus, in the ground state all the
bonds are fixed atφ = 0◦ and the whole polymer is arranged in a planartrans-
zigzag conformation, shown in Fig.A.4, whereas the thermal energy induces the
local minimum state in the energy between the carbon atoms, that is,gauche. In
view of a larger scale depicted in Fig.A.5, at low temperature rigid straight con-
formation appears though at high temperature the whole polymer adopts a flexible
structure.

We can construct a simplified model that captures these microscopic charac-
teristics of the polymer chain e.g. Rotational Isomeric State (RIS)-model. In RIS-
model, all theC-C bonds are fixed to the same length and the torsion angles are
allowed to take onlytransandgaucheangles. In other words, the internal rotation
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0 120 240 360
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ne

rg
y

Energy between the carbon atoms as a function of 
internal rotation angle φ

trans gauche+ gauche-

][°φ

Figure A.3: Energy between the carbon atoms as a function of internal rotation angleφ.
The steric structure of the polymer atφ = 0◦,120◦, and 240◦ correspond totrans, gauche+,
andgauche− respectively.

C

C
Figure A.4: Planartrans-zigzag conformation, the ground state of the polymer.

(a)
(b)

Figure A.5: Polymer conformation on a large scale, (a), in the ground state and, (b), at high
temperature. Structure of the polymer in figure (a) is consistent with planartrans-zigzag
conformation in a small scale (see Fig.A.4).

angle is limited toφ = 0◦,120◦, and 240◦, the three local minimum points. This
model can be applied to simulation of the coarse-grained polymer systems, which
retain the microscopic structural property.
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A.2 Gaussian polymer chain

Next, the statistics of a single ideal linear polymer chain is discussed in this sec-
tion [70]. An ideal polymer is defined as a molecule interacting only via intra-
molecular interaction e.g. bonding, bending, and torsion. Other interactions be-
tween monomers, e.g. non-bonded Lennard-Jones interaction, Coulomb interac-
tion, and excluded volume interaction, are not counted in this polymer (see also
section3.2). Ideal polymers are suited to study the effect of intra-molecular con-
nection between monomers on the physical properties in polymeric systems.

A.2.1 Persistence length

We assume that our system consists of an ideal polymer at the high temperature at
which the system can move away from the ground state. Along the polymer chain,
a pair of small segments are taken. When the contour length along the polymer be-
tween this pair is small, the orientations of the polymer chain on these segments are
correlated. However, at the large contour length this correlation, i.e. the memory
of chain orientation, vanishes and the segments are oriented independently. When
this memory is lost at some contour distance on average, this length, denoted bylp,
is called persistence length of the polymer. In a scale smaller thanlp the polymer
takes stiff conformation, e.g. shown in Fig.A.4, whereas in a scale larger thanlp

flexible conformation, e.g. in Fig.A.5 (b).

A.2.2 End-to-end vector

We are coarse-graining this ideal polymer in a length scale larger thanlp. In our
coarse-grained model, the linear polymer is reduced toN linearly linked segments,
which is sketched in FigA.6 (a) and (b). Here bond vectors, i.e. the relative
coordinates between adjacent coarse-grained segments, are defined as (see also
section3.2):

u j := r j+1 − r j , 1 ≤ j ≤ Nbond,

wherer j is the position of thej-th segment andNbond := N−1 denotes the number
of the bonds in the polymer. Obviously, probability density of each bond vector,
denoted byP1(u j), is statistically independent and isotropically distributed,

P1

(
u j

)
= P1

(∣∣∣u j

∣∣∣) .
Probability density of all the bonds in the polymer, (u1, . . . ,uN−1), is:

PNbond (u1, . . . ,uN−1) =
N−1∏
j=1

P1

(∣∣∣u j

∣∣∣) .
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(a) (c)(b)

u
s

Figure A.6: A linear ideal polymer, (a), is coarse-grained intoN linearly linked segments
in larger scale thanlp, (b). The coarse-grained segments are drawn by grey spheres. The
broken line represents the links, i.e. molecular configuration, between these coarse-grained
segments. Gaussian chain, (c), is obtained by replacing these bonds with the harmonic
springs, eq. (A.5). The lengthus corresponds to both the coarse-grained segment size and
the average spring length.

Hereafter, we discuss one structural property of the polymer, i.e. the end-to-end
vector,

R := rN − r1 =

N−1∑
j=1

u j . (A.1)

We can determine the probability density ofR, denoted byP(R), using Dirac delta,
δ.

P(R) =
∫

du1 · · · duN−1 PNbond (u1, . . . ,uN−1) δ

N−1∑
j=1

u j − R


=

∫
du1 · · · duN−1

N−1∏
j=1

P1

(∣∣∣u j

∣∣∣) 1
(2π)3

∫
dq exp

iq ·
N−1∑

j=1

u j − R




=
1

(2π)3

∫
dq exp

[
−iq · R

] (
P̂1(q)

)N−1
. (A.2)

whereq denotes the wave number vector andP̂1(q) does the Fourier transformation
of P1(|u j |),

P̂1(q) :=
∫

du P1(u) exp
[
iq · u

]
, u := u j andu := |u|.

Equation (A.2) represents the inverse Fourier transformation ofP(R).
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By performing this inverse Fourier transformation,

P(R) =

(
3

2πNbond
〈
u2〉)3/2

exp

[
−

3|R|2

2Nbond
〈
u2〉] , (A.3)

where
〈
u2

〉
denotes the mean square ofu. The lengthus :=

√〈
u2〉 corresponds to

the segment size. This relation eq. (A.3) indicates that, in a length scale larger than
lp, the end-to-end vector of ideal polymers is distributed according to Gaussian
distribution regardless of model details and chemical structure of polymers. This
property results from the central limit theorem. The probability density of each
bond vector is also calculated by the inverse Fourier transformation,

PNbond (u1, . . . ,uN−1) =

(
3

2π
〈
u2〉)

3
2 Nbond

exp

− 3
2
〈
u2〉 Nbond∑

j=1

∣∣∣u j

∣∣∣2 . (A.4)

The detail calculation for equations (A.3) and (A.4) is shown in sectionA.2.5.

A.2.3 Gaussian chain

When segments are bonded by harmonic springs with the spring constantkspring,

kspring=
3kBT〈

u2〉 , kBT := thermal energy, (A.5)

the probability density of each bond vector in canonical ensemble is equivalent to
eq. (A.4) (see section3.2.2-b). This indicates that ideal polymers in the coarse-
grained scale larger thanlp can be modelled by a sequence of these harmonic
springs that connect the segments.

This polymer model is called Gaussian chain or bead-spring model, which is
schematically presented in FigA.6 (c). The lengthus corresponds to both the
coarse-grained segment size and the average length of one spring in Gaussian
chain.

A.2.4 Size of Gaussian chain

From the probability density eq. (A.3), mean square end-to-end distance of the
Gaussian chain is determined,〈

R2
〉
=

∫
dRP(R) |R|2 = Nbond

〈
u2

〉
, Re :=

√〈
R2〉. (A.6)

The lengthRe corresponds to the size of Gaussian chain.
For example in the cubic lattice model with lattice constantb,

〈
R2

〉
= Nbondb2.

This is consistent with results for random walkers on the lattice.
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A.2.5 Derivation of Gaussian chain

In order to derive equations (A.3) and (A.4), we first calculateP̂1(q) and perform
the inverse Fourier transformation eq. (A.2).

In our polymeric system, the polymerization degreeN is far larger than 1.
At such largeN, physical properties of the polymer chain at long distance are
important. This region corresponds to small|q|. When we study the statistics at
this long distance, using Taylor expansion of exp

[
iq · u

]
aroundq = 0 and the

spherical coordinate system ofu, we obtain

P̂1(q) =
∫

du P1(u) exp
[
iq · u

]
�

∫
du P1(u)

(
1+ iq · u −

1
2

(q · u)2
)
= 1−

1
2

∫
du P1(u) (q · u)2

= 1− q2π

∫ π

0
dθ sinθ cos2 θ

∫ ∞

0
du u4P1(u)

= 1− q21
6

∫ ∞

0
du4πu2P1(u) u2 = 1−

1
6

〈
u2

〉
q2

� exp

[
−

1
6

〈
u2

〉
q2

]
, (A.7)

whereq denotes|q| and
〈
u2

〉
the mean square ofu. The lengthus :=

√〈
u2〉 corre-

sponds to the segment size.

By substituting (A.7) for eq. (A.2) and performing the inverse Fourier transfor-
mation in the spherical coordinate system ofq,

P(R) =
1

(2π)3

∫
dq exp

[
−iq · R

]
exp

[
−

1
6

(N − 1)
〈
u2

〉
q2

]
=

1
(2π)2

∫ ∞

0
dq

∫ π

0
dθ exp[−iqRcosθ] exp

[
−aq2

]
q2 sinθ

= −
1

(2π)2

1
iR

exp

[
−

R2

4a

]
(J1 − J2) , (A.8)

whereRdenotes|R| and

a :=
1
6

(N − 1)
〈
u2

〉
,

J1 :=
∫ ∞

0
dq qexp

[
−a

(
q+

iR
2a

)2]
,

J2 :=
∫ ∞

0
dq qexp

[
−a

(
q−

iR
2a

)2]
.
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IntegralsJ1 andJ2 are calculated on the complex plane withz := x+ iy.

J1 = lim
x0→∞

∫
C0

dz f1(z) = lim
x0→∞

∫
C1+C2+C3

dz f1(z)

J2 = lim
x0→∞

∫
C0

dz f2(z) = lim
x0→∞

∫
C4+C5+C6

dz f2(z),

where the straight integration pathsC0,C1, . . . ,C6 are shown in Table.A.1 and
Fig. A.7, and

f1(z) := zexp

[
−a

(
z+

iR
2a

)2]
f2(z) := zexp

[
−a

(
z−

iR
2a

)2]
.

Table A.1: Straight integration paths on the complex plane.

C0 (0,0) → (x0,0)
C1 (0,0) → (0,−R/2a) C4 (0,0) → (0,R/2a)
C2 (0,−R/2a) → (x0,−R/2a) C5 (0,R/2a) → (x0,R/2a)
C3 (x0,−R/2a) → (x0,0) C6 (x0,R/2a) → (x0,0)

0

y

x

R / 2a

x
0

C
0

C
6

C
5

C
4

C
3

C
2

C
1

- R / 2a

Figure A.7: Straight integration paths on the complex plane.

These complex integrals are calculated on each path.∫
C1

dz f1(z) =
∫ 0

−R/2a
dy yexp

[
a
(
y+

R
2a

)2]
∫

C4

dz f2(z) = −
∫ R/2a

0
dy yexp

[
a
(
y−

R
2a

)2]
∫

C1

dz f1(z) −
∫

C4

dz f2(z) = 0.
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On the pathsC3 andC6, the integrands vanish in the limitx0→ ∞.

lim
x0→∞

∫
C3

dz f1(z) = lim
x0→∞

∫
C6

dz f2(z) = 0.

On the pathsC2 andC5,∫
C2

dz f1(z) =
∫ x0

0
dx

(
x−

iR
2a

)
exp

[
−ax2

]
∫

C5

dz f2(z) =
∫ x0

0
dx

(
x+

iR
2a

)
exp

[
−ax2

]
.

These results yield the relation

J1 − J2 = −
Ri
a

∫ ∞

0
dx exp

[
−ax2

]
= −

Ri
2a

√
π

a
.

Therefore, eq. (A.8) is:

P(R) =

(
3

2πNbond
〈
u2〉)3/2

exp

[
−

3|R|2

2Nbond
〈
u2〉] = eq. (A.3).

The probability density of each bond vector is also calculated by the inverse
Fourier transformation,

P1(u) =
1

(2π)3

∫
dq exp

[
−iq · u

]
P̂1(q)

=
1

(2π)3

∫
dq exp

[
−iq · u

]
exp

[
−

1
6

〈
u2

〉
q2

]
=

(
3

2π
〈
u2〉)3/2

exp

[
−

3u2

2
〈
u2〉] ,

and

PNbond (u1, . . . ,uN−1) =

(
3

2π
〈
u2〉)

3
2 Nbond

exp

− 3
2
〈
u2〉 Nbond∑

j=1

∣∣∣u j

∣∣∣2 = eq. (A.4).



108 APPENDIX A. GAUSSIAN CHAIN



Appendix B

Particle deletion

In the configurational-bias method, to remove a molecule from the system, we use
the following 4-stage algorithm. In the particle deletion, the molecule is removed
with the same scheme as the insertion.

1) A molecule is randomly selected. The non-bonded potential energy between
the first atom, the end segment, and the other molecules is calculated and is
defined asu0,nb(1). None of the other segments in the chosen molecule is taken
into account inu0,nb(1).

2) For the l-th segment, the non-bonded potential energy between this segment
and other segments i.e. the other molecules and the segments from the 1st to
the (l − 1)-th in the chosen molecule, denoted byu0,nb

l (l), is calculated. A set
of k− 1 trial orientations is generated with a probability given by eq. (3.28), in
which the internal potential energy is determined without thel-th to theM-th
segments. Using this set of trial positions and the actual position, we calculate
for the l-th segment

w0,nb(l) = exp
[
−βu0,nb

l (l)
]
+

k∑
j=2

exp
[
−βu0,nb

l (bl
j)
]
, (B.1)

whereu0,nb
l (bl

j) denotes the non-bonded potential energy between the trial po-
sition as thel-th segment and other segments i.e. the other molecules and the
segments from the 1st to the (l − 1)-th in the chosen molecule. This step 2) is
also schematically shown in Fig.B.1.

3) After repeating step 2) until allM atoms of the molecule have been considered,
we calculate the Rosenbluth weight

W0 := exp
[
−βu0,nb(1)

] M∏
l=2

w0,nb(l)
k

(B.2)

for the entire molecule.
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4) The chosen molecule is removed with a probability of

acc(N→ N − 1| {B}) = min

(
1,

Λ3N
V exp[βµ]

1
W0

1
j(T)

)
. (B.3)

With use ofρres, this formula is reduced to

acc(N→ N − 1| {B}) = min

(
1,

N
V

1
ρres

1
W0

)
. (B.4)

Thus, j(T) andΛ disappear from the present algorithm. Regardless of these
two quantities, we can simulate our systems.

1

10

9

76

85
4

2

3

Figure B.1: Step 2) in the particle deletion atl = 6, k = 4, andM = 10. As an example,
the inserted molecule in Fig.3.2 is deleted. The numbers in the present figure show the
segment numbers. White spheres represent the real segments which are not taken into
accout in the energy calculation. First, the non-bonded potential energy between thel-th
segment and the other segments in the system excluding the white ones is determined.
k − 1 trial positions are generated according to the internal potential energy between each
trial position and the 1st to the (l − 1)-th segments. For the trial positions, the non-bonded
potential energy is also calculated between each of the trial 6th segment and the other
segments in the system excluding the white ones.
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