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1 Introduction

Theoretical life in psychology
seemed just a forever-long
sequence of dichotomies.

(Newell, 1994)

The present thesis reports on an interdisciplinary attemptat explaining the negative priming
effect, a characteristic of selective attention, by a combination of behavioral fundamental research,
neuroimaging studies, theoretical psychology and computational modeling. The negative priming
effect is one of a very few measures for ignoring. It is revealed as a slowing down of responses
to stimuli that were ignored recently as compared to those that are new. Since the discovery of
the negative priming effect in 1966 a vivid debate on the cognitive mechanisms underlying the
deceleration has evolved, without arriving at a conclusiveconsensus.

Over the years, a large number of negative priming experiments have been conducted, mostly
focusing on a special aspect of the effect by the use of a unique paradigm. Regrettably, the results
of each of these studies show a unique pattern as well. Only the bare slowing of responses to
previously ignored stimuli is found in most of the experiments, but virtually any manipulation of
a paradigm also affects negative priming.

In the introduction we will explain the negative priming phenomenon in section 1.1, giving a
condensed overview of the exhaustive presentation of the field of negative priming in chapter 2. We
then expound the importance of computational modeling for theoretical psychology in section 1.2.
The structure of the thesis is presented in section 1.3 whichalso describes our research on negative
priming as a whole. Finally, in section 1.4 we will conclude the introduction by listing the original
contributions included in this thesis.

1.1 Negative Priming

Selective attention enables goal-directed behavior despite the permanent, immense input to the
sensory system. The downside of this ability involves the problem of how information is ignored.
Contradicting early speculations of an active attending and passive ignoring, a special situation
revealed the active nature of ignoring. In the original experiment by Dalrymple-Alford and Budayr
(1966), subjects had to process lists of Stroop tasks. Whilein the original Stroop task no systematic
repetition of color and color words was implemented, these authors composed the stimulus cards
in a special way, namely the ignored meaning of a color word always became the to be named
color in which the next word was shown on some of the lists, on others there was no relation
between two succeeding words. The experiment showed that people were slower in responding
to the related lists compared to unrelated stimulus colors.Even if the semantic meaning of the
words has been ignored, it must have entered the cognitive system as it showed the characteristic
interference.

1



1 Introduction

Since then, several standard negative priming paradigms have emerged, each featuring a certain
dimension on which priming happens, e.g. the identity of stimulus objects or their location on the
presentation screen. The set of stimuli also varies enormously, e.g. pictures, shapes, words, letters,
sounds, colored dots. The common denominator of all paradigms is the classification of stimuli in
targets that have to be attended to, and distractors that areto be ignored. Stimulus repetitions are
considered in dependence of the role of the repeated object as target or distractor in two related
trials. Variations of this basal setting include the manipulation of experimental parameters like the
time between two related trials, the number of distractors from zero in some trials to multiple over
the entire experiment, and the saliency of the distractor. For a detailed listing of the sometimes
contradictory results, see section 2.3.

Because of the controversial nature of the negative primingeffect, a variety of different theo-
retical accounts have been developed. But until now none of the theoretical accounts is able to
explain all aspects of the negative priming effect, they allhave their strong points as well as their
shortcomings. All theories assume different mechanisms tobe responsible for negative priming.
In order to clarify the situation of diverging explanatory accounts, the time course of negative
priming is crucial. The mechanisms postulated by the different theories act in different stages of
trial processing.

1.2 Computational Modeling of Negative Priming

The theories to explain negative priming can be categorizedroughly as memory-based and
activation-based accounts. The first group assumes the memorization of a trial and eventually
a retrieval of the information in the next trial. The latter group assumes negative priming to be
caused by interference of trial processing with persistentactivation from former trials. Both direc-
tions produced a variety of small branches, many limited to asingle appearance in order to explain
a certain, singular pattern of results. But due to the lack ofcomparability and concreteness, there
is no solution of the debate on the level of argumentative theories in sight.

In the face of such a sensitive phenomenon it is understandable that no comprehensive expla-
nation has been found so far. Because a satisfying theory should be less complex than the data
it explains, it seems reasonable to focus on the interactionof the underlying causes instead on
ad hoc defined data features. However, a main reduction of complexity is already achieved by
the design of experiments. Nevertheless, a theoretical approach is based on the assumption that
the complexity of experimental data can be further reduced by identifying repeating patterns in the
data. Our first attempt, the implementation of a simplified but still biologically motivated model of
target selection has proven too simple by our experiments. Although it provided us with a tangible
account of several dependencies of negative priming. A crucial point in the specification of mech-
anisms producing negative priming seems to be the exact timecourse of processing a trial where a
previously ignored stimulus has to be attended in comparison with the processing of an unprimed
stimulus. Therefore, we faced the problem to reveal temporal information about negative priming.

A first step in that direction is already our simplistic computational implementation as described
by continuous nonlinear differential equations which themselves show a characteristic time course.
In order to test the validity of the model we designed severalexperimental paradigms according to
the objective of making statements about the inner temporalstructure of a negative priming trial.
Some of the experiments recorded EEG data which has shown to be a beneficial tool in identifying
systematic differences in trial processing, both spatially and temporally. For two experiments we
developed techniques to record additional time makers during trial processing, making it possible
to temporally localize the emergence of reaction time effects. In order to tackle the problem of

2



1.2 Computational Modeling of Negative Priming

diverse paradigms and the incomparability of theoretical accounts, we designed a computational
framework for perception based action selection by means ofphysiologically justified building
blocks which each obey a biologically plausible dynamics.

Despite all concise and generally understandable theoriesthat seem to have identified the causes
of an observed phenomenon, it is very important to keep in mind that psychological fundamental
research uses statistical properties of experimental datain order to interprete human behavior.
On the one hand, behavioral experiments tend to produce largely varying results, caused by the
complexity of the human cognitive system. On the other hand,the interpretation of results is
usually not unambiguous. Both aspects provide a base for thearduous and controversial discourse
that is necessary for clarifying a certain psychological phenomenon.

One possibility to proceed in the discussion is to solidify theories by mapping their assump-
tions on measurable processes in the brain, thereby eliminating arbitrariness of the respective
interpretations. A second way is to computationally implement theories. Clearly, the obtained
implementation inherits the freedom of interpretation from the underlying theory. Yet, the imple-
mentation adds further degrees of freedom. But the benefits of an implementation are obvious. It
eliminates the risk of misinterpretation, as the source code can be made available for other research
groups interested in working with the model instead of leaving them with wordy descriptions. A
computational model may provide links to biological data, all the more if it is based on naturally
observable processes.

Nevertheless, certain aspects have to be remembered when arguing on the level of implementa-
tions. In order to reproduce the observed results, most models have to undergo a precise fitting of
parameters, which is also a very subjective process. Therefore, great care has to be taken of the
distinction between results due to parameter fits and extrapolations by the internal dynamics of the
model itself. A different way to benefit from a computationalmodel is to analyze the structural
result after fitting, which carries a formalized version of the fitted data. Or, in the words of Hintz-
man (1991):The measure of a model’s value lies not in its ability to fit data, but in how much we
can learn from it.

We will comply with the necessity of quantification in two ways. First we will take up a single
theory of negative priming, i.e. the imago semantic action model described in section 2.4.7, and
build a minimal model producing realistic effects on the basis of the postulated mechanisms, see
chapter 3. A detailed implementation was performed in closeinteraction with the originator of
the theory. The presence of the cognitive representation ofa certain object is modeled by a single
variable, by which we obtain a rather clear dynamic system which is able to deal with realistic
stimulus sequences and generates artificial reaction times. In chapter 6 we will show how the
model can be extended to generate hypotheses in a more complex paradigm. The generalized
model enables us to resolve contradictions arising in the initially attempted modeling approach.
This is to be considered as a success of the modeling process,as we are able to falsify an essential
assumption of the original theory by means of a straightforward implementation.

The second computational approach is more ambitious with respect to the discussion about the
applicability of the theories of negative priming in specific situations. We build a computational
model comprising most of the mechanisms suspected to play a role in the neural processing in
negative priming. The outcome is not only a meta-model for negative priming, termed General
Model, but in itself a simplified model of the brain as a framework for action selection based
on perception. We addressed the tradeoff between biological realism and understandability by
modeling each assumed mechanism separately but keeping theinternal dynamics of each of the
corresponding layers very simple by taking over the dynamical framework of our first model.
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1 Introduction

1.3 Thesis Overview

The present thesis will describe our multi-level approach to reveal the temporal structure of the
negative priming effect. Accompanied by computational modeling, we run sophisticated psycho-
logical experiments and record and analyze EEG data. We willstart with an overview of the
phenomenon of negative priming in chapter 2.3 by reviewing the literature for behavioral results
and theoretical explanations of the effect.

Based on one of the theoretical accounts introduced in chapter 2.3, namely the Imago Semantic
Action Model, see section 2.4.7, we will implement our first computational model for negative
priming, the ISAM. The basics of the modeling approach and the implementation will be the first
part of chapter 3. The second part will be devoted to testing the ISAM by deriving predictions and
reproducing several effects related to negative priming.

Adapting the voicekey paradigm described in section 2.2, wewill describe an EEG experiment
in chapter 4 that replicates findings from one of the few studies on event-related potentials related
to negative priming. Beforehand we will give a detailed introduction to EEG recordings and the
corresponding data analysis and thoroughly review hitherto existing findings of EEG correlates of
negative priming.

During the preoccupation with EEG data analysis, we came upon an inconsistency in averaging
event related potentials. Chapter 5 introduces our solution to the problem to reconstruct a very
noisy signal that additionally is subject to erratic temporal fluctuations. As such a new technique
first has to prove its validity in a broad discussion, we limitit in the current thesis to an interlude
independent of the remainder.

Due to the additional source of uncertainty in EEG research,i.e. the interpretation of differ-
ing event related potentials in the different experimentalconditions, we determined ourselves to
behavioral experiments and designed a paradigm which requires a button press between stimulus
identification and target selection phase which is recordedas an additional reaction time. Chapter 6
describes the model based generation of hypotheses by the ISAM of chapter 3, the paradigm itself
and finally the results that locate negative priming in the later part of a trial and that contradict the
ISAM all along the line.

After separating the stimulus identification phase, the remainder of a trial still contains the two
stages of processing of target selection and response generation. One theory predicts negative
priming to be exclusively produced in the response generation phase. Therefore, we constructed a
second trial splitting paradigm which now singles out the response generation phase. In chapter 7
we will describe the paradigm, go into expected side effectsof the altered paradigm and finally
display the results, the devotion of negative priming to thetarget selection phase of a trial.

Not only the nontrivial extension of our identity based priming paradigm given in chapter 7 to a
comparison task, but also the counterevidence for the ISAM by the experiment in chapter 6 made
us head for a less rigid computational model. Chapter 8 pictures the result in form of our General
Model for negative priming which provides an implementation of each theory and the ability to
respond in various different negative priming paradigms. Due to the complexity of the model
chapter 8 can only be seen as the general introduction to a newframework which will possibly
shed light on the questions why different paradigms producesuch diverse result patterns, and how
the theories can be compared on a par.

The previous chapters are concluded in chapter 9 which also collects all results and forms a
complete picture of negative priming as we can give it by our research. This chapter contains also
an outlook on future directions to finally conclude the main body of the thesis. Appended is a
listing of experimental data in tables, which were excludedfrom the according chapters for the
sake of readability.
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1.4 Original Contributions

1.4 Original Contributions

All work presented in the present thesis is carried out by a closely cooperating workgroup in the
framework of section C4 of the Bernstein Center for Computational Neuroscience Göttingen. The
results presented here would not have been possible withoutthis collaboration. My personal con-
tributions are not restricted to modeling but have had an increasing influence also on experimental
design, data analysis, interpretation of results, and design of algorithms.

Our main contributions to (but not limited to) negative priming research are listed in the follow-
ing.

⋆We developed a simple model for the transient of the firing rate response of an integrate and
fire network to constant input by the means of a nonlinear Langevin equation, section 3.1.

⋆We employed the resulting dynamics to build a minimalistic computational model, sec-
tion 3.2, reproducing priming effects based on the mechanisms of the global threshold the-
ory, section 2.4.7.

⋆With the good performance of the model, section 3.3, we quantitatively validated global
threshold theory (Schrobsdorff et al., 2007b).

⋆We adapted our voicekey paradigm, section 2.2 to an EEG recording environment, sec-
tion 4.4 and replicated some of the very sparse event relatedpotential correlates for negative
priming found in a rather different paradigm, section 4.6.

⋆We confirmed that processing in ignored repetition trials first benefits from stimulus repe-
tition similar to the attended repetition condition, but only later in the trial both conditions
diverge due to different demands on cognitive control, section 4.8, (Behrendt et al., 2009)

⋆We developed sophisticated signal processing methods, sections 5.4 and 5.7, which enhance
the averaging of event related potentials, section 5.7.5, and provide a measure for the tem-
poral variation in the processing between two trials, section 5.5, (Ihrke et al., 2008, 2009b).

⋆We designed an enhanced algorithm for line-of-synchrony detection in recurrence plots
which outperforms established solutions, section 5.7.4, (Ihrke et al., 2009a).

⋆We introduced time markers in addition to the usual reactiontime into negative priming
paradigms, making it possible to investigate the temporal structure of the mechanisms caus-
ing negative priming by means of behavioral measures, section 6.1 and 7.1.

⋆By applying our technique of recording intermediate time markers, we have shown that the
stimulus identification phase of a trial carries no negativepriming, but only facilitation in
the presence of repeated objects, section 6.6.

⋆By deriving predictions from our computational implementation of the global threshold
theory to the task switch paradigm, section 6.2, we providedstrong counterevidence for that
theory as predicts negative priming to happen already in theidentification phase, sections 6.3
and 6.6.

⋆We showed that negative priming happens in the target selection phase of a trial, section 7.5,
by again isolating a part from trial processing, in this casethe response generation phase,
section 7.1.
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1 Introduction

⋆Finally we implemented a neurophysiological model, section 8.3, of the parts of the brain
that are assumed to be involved in processing a priming trial, section 8.2. The General
Model is able to cope with various paradigms, section 8.1.1,and implements the behavior
assumed by any of the negative priming theories, section 8.1.2.

Although partially not yet published as articles, all points are documented by a series of conference
contributions listed on page 162 ff. and are available at

www.nld.ds.mpg.de/~hecke/research.html
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2 Negative Priming

Priming is characterized by a sensitivity of reaction timesto how stimuli have been encountered
recently. A reduction of the reaction time, positive priming, is usually observed with repetitions
of stimuli or responses and is well-known and experimentally understood (Scarborough et al.,
1977). Our object of investigation, negative priming, a slowdown in the reaction time usually in
response to previously ignored stimuli, is experimentallyless tangible (Fox, 1995). The negative
priming effect is sensitive on even subtle parameter changes, which poses many methodological
and conceptual challenges, but bears exactly for this reason great potential for applications in
research fields such as memory, selective attention, and aging effects.

The following chapter will thoroughly introduce the negative priming phenomenon. After a
classification of negative priming and a description of the terminology used in negative priming
studies in section 2.1, we will discuss a showcase study to give a feeling for what a negative prim-
ing experiment looks like in section 2.2. The diversity of findings concerning negative priming
will be shown in section 2.3. Then we will give a detailed listing of theoretical accounts to the
negative priming effect in section 2.4.

2.1 A Paradigm to Access Selective Attention

Selective attention is the process of extracting behaviorally relevant information from the environ-
ment. The focusing on particular stimuli brings along an ignoring of irrelevant information. The
process of ignoring is investigated by systematic variation of irrelevant stimuli. Interesting effects
like change blindness, the failure to perceive even striking changes in a visual scene that are not
behaviorally relevant (McConkie and Currie, 1996), or inattentional blindness, the apparent in-
sensitivity of the cognitive system to unattended stimuli (Simons and Chabris, 1999), demonstrate
impressively that our feeling of perceptual accuracy is notobjective.

It is still unclear how the selection of stimuli is done. Two classes of mechanisms are assumed,
top-down and bottom-up processes (Anderson, 2001). The first process actively guides the at-
tentional focus by highlighting particular features of current interest. The latter one describes
selection due to perceptual saliency. In everyday tasks, both of them interact.

As selection and ignoring are two sides of the same medal, thenature of ignoring is crucial,
as distracting information can easily be varied in experiments, and thus gives access to the act of
selection itself. Even if early attempts assumed a passive ignoring, empirical evidence for an active
process comes from the inhibition of return paradigm (Milliken and Tipper, 1998). A prolonged
reaction time is observed if a location which has been in the focus shortly before is required to be
attended to.

A general approach to the processing of distracting stimuliis provided by the negative priming
paradigm. Negative priming is often considered the most direct approach to assess the selective
aspect of attentional processing, as the ignored, distracting stimuli can be proven to be actively
processed (Houghton and Tipper, 1994).

Selective attention has to permanently deal with distracting information. Most paradigms we
will discuss in the following show two items in each trial. One is to be attended, called the tar-
get, while the other one, the distractor, is behaviorally irrelevant and has to be ignored. One such
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2 Negative Priming

selection trial primes the subject for the next trial. Therefore, a pair of two successive trials is
labeled prime and probe respectively. Generally speaking,the repetition of a target stimulus in
two successive trials leads to a faster response. This effect is called positive priming. In contrast
the presentation of a prime distractor as a target in the probe trial may lead to a deteriorated per-
formance compared to a target which has not been presented immediately before. The behavioral
slowdown indicates that irrelevant information is not passively ignored, but actively processed, as
no effect on reaction times in subsequent trials would have been found if the information about
the distractor is not present.. Negative priming has been found in a wide variety of experimental
contexts and is therefore thought to be a reproducible and general phenomenon, see section 2.3.

In the present thesis we will rely on the following definition: Negative priming is a slowdown
in reaction time in an ignored repetition condition, where aformer distractor has become relevant.
As we associate the term negative priming with reaction timedifferences, we can not use it as
a label for the ignored repetition condition but rather chose the condition labels according to the
configuration of stimuli in a trial, see (Christie and Klein,2001). The first letter in the sequence
contains information about which part of the prime display is repeated in the probe display. AD
represents the distractor, aT the target. The second letter indicates the role the particular object
has in the probe display, see table 2.1. For example, the string DT refers to the condition in which
the prime distractor (first letter D) is repeated in the probetrial as target (second letter T), hence
it is a traditional negative priming trial. In case both objects are repeated there is a second pair of
letters appended for the second object. Because a target anda distractor are shown in the prime and
the probe display each, and target and distractor are never identical, seven relevant combinations
of target-distractor relations are conceivable, see table2.1.

prime display probe display

target distractor target distractor

TT A B A C target(n+1) = target(n)

DT A B B C target(n+1) = distractor(n)

TD A B C A distractor(n+1) = target(n)

DD A B C B distractor(n+1) = distractor(n)

DDTT A B A B target and distractor are repeated

DTTD A B B A target and distractor switch

CO A B C D two new stimuli

Table 2.1: The seven possible priming conditions of a paradigm with onetarget and one distractor
in each of the prime and probe display.

2.2 A Showcase Negative Priming Experiment

To get a first idea of the characteristics of negative priming, we will now discuss a rather straight-
forward study which can be taken as starting point for all ourexperiments. The study was part of
our publication (Schrobsdorff et al., 2007a). We use a visual identity priming task where the target
is selected by means of its color and then responded to according to its identity. The paradigm was
introduced by Tipper (1985) and has been used in the Göttingen gerontology group for some years
and has been optimized in several ways. Since negative priming tends to disappear with problem
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2.2 A Showcase Negative Priming Experiment

complexity, identity priming with simple stimuli is an option that maximizes negative priming in
this respect. For efficiency reasons we present the trials continuously, such that every trial primes
the subject for the following trial.

Bus Ball Baum Buch Bett Bank

Figure 2.1: Objects used as target and distractor stimuli with their German labels.

Stimuli are six different objects, represented by hand-drawn pictograms, see figure 2.1, that are
either shown in green or in red color. We use voice recording together with a sound level threshold
to determine the reaction time for every trial. As the experiment is run in German, the names begin
with a plosive and consist of a single syllable (Bus, Ball, Baum, Buch, Bett, Bank) for a sharp, thus
easily detectable onset of the sound signal. Object presentation is balanced in the different priming
conditions as well as their appearance as target and distractor. Priming conditions CO, DT, TT,
DDTT and DTTD are a repeated measures factor.

An exemplary sequence of displays of seven trials is shown infigure 2.2. One stimulus display
consists of two overlapping line drawings, a green target and a red distractor object. Stimuli
appeared entirely in the focal area. The subject is instructed to name the target objects aloud and
ignore the superimposed red objects. They were told to answer as quickly and as accurately as
possible. Then, after a blank screen period and the presentation of a fixation cross, the next display
is presented.

DT

time

time

DTTD

CO

reaction time
reaction

response stimulus interval

DDTTTT

CO

stimulus onset

CO

Figure 2.2: Example of a sequence of stimuli. Consecutive screens are shown. Either stimuli or a
blank screen followed by a fixation cross is displayed. The meaning of the acronyms
is explained in section 2.1. E.g. in the sequence of the second and third stimulus
displays, the tree switches from red distractor to green target, but the other two items
are unrelated, a DT condition, see table 2.1.
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2 Negative Priming

An experimental session starts with a test of color discriminability and memory span, followed
by a familiarization with the stimulus objects. Of the entire 420 experimental trials in 10 blocks of
42 trials, 400 trials are analyzed (80 trials of each primingcondition), while the first two start trials
of every block are excluded from analysis. Each trial consists of the following displays: a fixation
cross, centered on the screen for 500 ms, a display containing superimposed pictures shown up to
the response, but not longer than 2 seconds and a blank screenfor 1000 ms, see figure 2.2. An
error is registered when subjects failed to give a correct, clear answer. Participants are 12 adults,
4 male and 8 female, mean age 23.6 years, SD = 4.6.

DDTT TT CO DT DTTD
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Figure 2.3: Reaction times for the five experimental conditions. Note that the positive priming
effects on the left side are larger than the negative primingeffects on the right hand
side.

Mean reaction time of the different priming conditions, standard deviation, and the effect
strength, i.e. the difference to CO trials, are shown in figure 2.3 reported in table A.1 in ap-
pendix A.1. Erroneous trials(2.4%) are excluded from analysis. Trials with response latencies
less than 250 ms or more than two standard deviations above the individual mean of each prim-
ing condition are excluded as well(4.7%). DTTD trials produce the slowest responses, followed
by DT and CO trials, whereas the responses to TT trials are faster than control and DDTT trials
produce the fastest responses.

For statistical analysis, a one way analysis of variance (ANOVA) was used to explore the
effects of CO, DT, DTTD, TT and DDTT. The alpha level for all analyses was set at 0.05.
Greenhouse-Geisser corrected degrees of freedom are used as the data violated the assumption of
sphericity. Reaction times depend significantly on the priming condition F(1.45,15.93) = 23.27,
MSE= 1938.83, p < 0.001. Planned comparisons show that reaction times in DT and DTTD tri-
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2.3 The Negative Priming Effect

a) b)

DD C

A D

B C

c)

"Ball"

d)

Ball

mismatchmatch

Figure 2.4: Four different paradigms for negative priming: a) locationb) flanker task c) voicekey
identification d) word-picture comparison task. In all examples green defines the tar-
get. The location priming paradigm reveals negative priming in the encoding of space.
The flanker task implements a rather difficult stimulus response mapping, whereas vo-
calization in the voicekey paradigm is a very easy task. The word-picture comparison
paradigm has the advantage of a disentanglement of target identity and response.

als were significantly increased, as compared to CO trials (CO vs. DT: t(11) = −3.57, p < 0.01;
CO vs. DTTD: t(11) = −3.37, p < 0.01). As anticipated, the reaction time for trials in the at-
tended repetition conditions TT and DDTT were significantlydecreased (CO vs. TT: t(11) = 3.11,
p < 0.01; CO vs. DDTT: t(11) = 4.74, p < 0.001). Directed comparison of attended repetition
conditions reveal a difference of reaction time (TT vs. DDTT: t(11) = 6.11, p < 0.001), whereas
the reaction time of ignored repetition conditions did not differ (DT vs. DTTD: t(11) = −0.60,
p = 0.558).

The experiment shows how the repetition of stimuli can influence reaction times in a negative
priming paradigm. A repetition of relevant stimuli leads toa prominent speedup of the trial pro-
cessing, whereas a repetition of irrelevant stimuli as target causes a slowdown of the reaction.
The results document the important fact: irrelevant stimuli are not filtered out by early perception
mechanisms, but rather are subconsciously processed.

2.3 The Negative Priming Effect

Negative priming is subject to fervid discussions among cognitive theorists for several decades.
The negative priming effect was discovered first in a Stroop task (Dalrymple-Alford and Budayr,
1966), subjects have to name the ink in which a color-word is written. A usually strong tendency
to read the word has to be suppressed. Reaction times are delayed in trials where the color of the
ink in the probe is identical to the word in the prime. The semantic meaning of the word serves
as the distractor, because it has to be ignored in order to be able to correctly name the color of the
ink. The results were replicated in similar settings by Neill (1977).

Negative priming is present in a wide variety of experimental contexts (for reviews see Fox,
1995; May et al., 1995; Tipper, 2001; Mayr and Buchner, 2007). For example, negative priming
has been elicited using different stimuli such as line drawings (Tipper and Cranston, 1985), letters
(Neill and Valdes, 1992; Neill et al., 1992), words (Grison and Strayer, 2001), auditory stimuli
(Buchner and Steffens, 2001; Banks et al., 1995; Mayr and Buchner, 2006) and nonsense shapes
(DeSchepper and Treisman, 1996). Negative priming has beenobtained with manual (Neill and
Valdes, 1992; Tipper et al., 1992) and verbal responses (Allport et al., 1985; Tipper and Cranston,
1985), as well as in situations where the mode of response changed between prime and probe
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(Chiappe and MacLeod, 1995). Furthermore, negative priming has also been found in various tasks
including naming (Tipper, 1985), same-different matching(DeSchepper and Treisman, 1996),
Stroop-like tasks (Neill, 1977) and spatial localization (Milliken et al., 1994; Park and Kanwisher,
1994; May et al., 1995; Kabisch, 2003).

In spite of the obvious universality, the negative priming effect is sensitive to a variety of pa-
rameters. Most paradigms show their individual aspect of negative priming, but no global pattern
of results exists (Fox, 1995). It has been shown that negative priming can depend on the length of
the response stimulus interval (RSI) between prime and probe (Neill et al., 1992; Kabisch, 2003;
Frings and Eder, 2009). But there are also studies reportinga constant negative priming effect for
varied RSIs (Tipper et al., 1991; Hasher et al., 1991, 1996).Surprisingly for very short RSIs, a DT
condition can produce a facilitatory (Lowe, 1985), or hampering effect (Frings and Wühr, 2007a).
In the other extreme, an experiment revealed negative priming after a month using nonsense shapes
which are very unlikely to be seen in other circumstances (DeSchepper and Treisman, 1996). In
continuous presentation of trials, the proportion of preprime RSI and current RSI influences neg-
ative priming (Neill and Valdes, 1992; Mayr and Buchner, 2006) but not reliably (Hasher et al.,
1996; Conway, 1999).

In the absence of distractors in the probe trial during a DT condition, negative priming vanishes
or even reverses to facilitation (Lowe, 1985; Tipper and Cranston, 1985; Allport et al., 1985;
Moore, 1994). A more salient prime distractor increases themagnitude of the negative priming
effect in DT conditions (Grison and Strayer, 2001; Tipper, 2001). Negative priming is reduced or
even reversed to facilitation when the emphasis is put on speed rather than accuracy (Neumann
and Deschepper, 1992). Negative priming occasionally depends on age (Spieler and Balota, 1996;
Verhaeghen and De Meersman, 1998; Gamboz et al., 2002) and sex (Bermeitinger et al., 2008).
Increasing the perceptual load, e.g. by raising the number of distractors presented in a single trial,
leads to less negative priming (Lavie et al., 2004). In othersettings a higher number of prime
distractors causes an increase of negative priming (Neumann and Deschepper, 1992; Fox, 1995).
The inclusion of TT trials or single target trials in the presentation sequence enhances negative
priming (Neill and Westberry, 1987; Titz et al., 2008).

A short presentation time of prime and probe stimuli attenuates negative priming (Gibbons and
Rammsayer, 2004). Negative priming vanishes if the target is presented a bit earlier than the
distractor in the prime trial. On the other hand, if the primedistractor is shown simultaneously
with the prime target but blanked after a short time, negative priming is observed (Moore, 1994).
If the prime display contains a single stimulus that is masked, subjects reporting awareness of the
prime object show positive priming, while subjects not aware of the object show a negative priming
effect (Wentura and Frings, 2005). In subliminally primed trials the presence of a distractor in the
probe leads to negative, the absence of a probe distractor toa positive priming effect (Neill and
Kahan, 1999).

It should therefore be noted that negative priming is a universal effect which is sensitive to a
variety of factors. Hence, it is not surprising that, although there is a lively theoretical discussion, a
consistent explanation of the entire negative priming phenomenon is still lacking. Over the years,
various theories have been developed to explain negative priming through a variety of mechanisms.
The next section will give a thorough description of the theoretical accounts.

2.4 Theories of Negative Priming

Because of the controversial nature of the negative primingeffect, a variety of different theoretical
accounts have been developed since its discovery. The negative priming phenomenon has a very
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complex nature. None of the theoretical accounts is able to explain all aspects of the negative
priming effect found in behavioral studies which have partly been outlined in section 2.3, they all
have their strong points as well as their shortcomings. All theories assume different mechanisms to
be responsible for negative priming. Their realization is also very diverse, from a purely descrip-
tive formulation to detailed computational modeling. The most influential theories comprise the
distractor inhibition account (Houghton and Tipper, 1994), episodic retrieval (Neill and Valdes,
1992) and response retrieval theory (Rothermund et al., 2005).

In the present section we will address each theoretical account by explaining the idea and point
to experimental evidence as well as counterevidence. As some theories are derivates of others, we
will highlight the differences. Many of the proposed concepts are settled in different areas of cog-
nitive processing such that combinations are conceivable,which actually is one of the theoretical
ideas, but some exclude each other.

2.4.1 Distractor Inhibition Theory

The first theoretical account in the context of negative priming was the inhibition hypothesis by
Neill (1977) and Neill et al. (1990), before Neill and Valdes(1992) began to promote the episodic
retrieval theory, see section 2.4.2. Meanwhile Tipper madehimself the spokesperson of the dis-
tractor inhibition theory (Tipper, 1985; Tipper and Baylis, 1987; Tipper et al., 1988; Tipper and
McLaren, 1990; Tipper et al., 1991; Houghton and Tipper, 1994, 1996; Tipper, 2001; Tipper et al.,
2002) accompanied by some early questioning work (Tipper and Cranston, 1985).

The basic idea of distractor inhibition theory is that irrelevant stimuli representations are actively
suppressed to support the selection of the relevant target stimulus. The inhibition is assumed to
persist for some time. If perceptual input is no longer present, the persisting inhibition drives
the distractor representation below a baseline activation. The negative priming effect directly
results from the time the probe target representation activation needs to reach baseline from below.
There are two complementary processes involved in the attentional selection process: a direct
feedforward excitation of the representation of perceiveditems by the visual pathway and another
one that inhibits all irrelevant information. The slowdownof the reaction in the probe trial can be
seen as a direct indicator of the amount of activation in the prime display. Distractor inhibition
assumes selection to operate on a semantic or postcategorial level (Houghton and Tipper, 1994).
It therefore also explains findings that report negative priming in semantic priming tasks (Tipper
and Driver, 1988).

From a modeler’s perspective, the most important contribution to the domain of distractor in-
hibition comes from Houghton and Tipper (1994). A computational implementation of an arti-
ficial neural network qualitatively explains negative priming by an inhibitory rebound naturally
emerging from the network connections between excitatory and inhibitory cells homeostatically
balancing the state of a property unit. The initial version of the computational distractor inhibition
model is very ambitious, as perception is split into the detection of single features, hardwiredly
binding them into objects. The model has a very general connection scheme, to act in a variety of
situations. Unfortunately, none of the further projects proposed by Houghton and Tipper (1994)
has been realized since then. In order to investigate the time course of negative priming, the role
of multiple distractors and different distractor salience, the model is later simplified by looking at
only one isolated property unit for the target and one for thedistractor, with connections only to
their on and off cell (Houghton et al., 1996; Houghton and Tipper, 1998). The aim is to simplify
the original model as much as possible while still observingthe same dynamics. Regrettably, the
generality of the first modeling approach is no longer present. On the one hand, simplifications
of complex models are an adequate tool to understand the behavior of the entire system. On the
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Figure 2.5: Schematic view of target and distractor representation during one trial. At stimulus
onset both activations rise driven by the input. The two curves diverge due to the inhi-
bition the distractor receives. As inhibition builds up, itbalances the perceptual input
to the distractor after some time. If a certain difference between target and distractor
representation is reached, the target is assumed to be selected, and an action is taken.
Then the input is switched off as the stimuli disappear. The target activation passively
decays to zero, whereas the distractor activation is still subject to persisting inhibi-
tion, driving the distractor representation below baseline in the so-called inhibitory
rebound, being responsible for the negative priming effectin the next trial. Figure
adapted from (Houghton and Tipper, 1994).

other hand, the reintegration of the single units into the bigger network always brings along vari-
ous nonlinear effects that are inherent to the model and can not be neglected when deriving system
behavior from results of looking at isolated units. The reintegration does not take place, which
might be an indicator for too high complexity of the distractor inhibition model to learn something
from it.

A strong point of distractor inhibition theory comes from the study of varied distractor saliency.
The negative priming effect increases with growing saliency of the distractor (Lavie and Fox,
2000; Grison and Strayer, 2001; Tipper et al., 2002). This effect can be very well explained in
terms of the inhibition model, since a stronger distractor would require more inhibition, causing a
stronger inhibitory rebound, and thus leading to a more prolonged reaction time.

Distractor inhibition theory can directly explain the impact of the depth of processing (Craik and
Lockhart, 1972; Craik, 2002). Processing on a deep conceptual level produces a bigger negative
priming effect. Distractor inhibition theory can explain the results, as deeper processed items have
a stronger activation and thus need more inhibition if characterized as distractor. Therefore, more
deeply processed stimuli produce larger negative priming.

The original distractor inhibition theory fails to explainthe dependency of negative priming
on the response stimulus interval. If the representation ofa distractor object is inhibited, the
impact of inhibition should be strongest immediately afterthe selection, because the inhibition is
assumed to decay to zero with time. Although there is a general trend of negative priming to decay
with increasing time between prime and probe (Neill and Valdes, 1992), no negative priming is
observed in several studies when the RSI is very short or nonexistent (Lowe, 1985; Houghton et al.,
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Figure 2.6: Alternative view of the distractor inhibition theory accounting for negative priming
effects in the absence of a response stimulus interval. If the situation requires very
strong inhibition, the activation of the distractor can drop below baseline already be-
fore the end of the trial. Sketch adapted from a talk by Christian Frings, May 30th
2007 in Göttingen, on (Frings and Wühr, 2007a).

1996). In the original model the equilibrium between perceptual input and inhibition is tuned such
that the activation of the distractor stays positive. If then a new display is shown directly after the
response, a facilitatory effect in the DT condition is expected. Unfortunately, already the study
that brought negative priming to light of Dalrymple-Alfordand Budayr (1966) shows negative
priming without any delay between succeeding stimulus pairs, subjects held cards with several
colored words which they processed in order. Therefore, Wentura and Rothermund (2003), Frings
and Wentura (2006) and Frings and Wühr (2007a) proposed an extension of distractor inhibition by
assuming that the amount of inhibition is proportional to task difficulty. In demanding paradigms
like the Stroop task, inhibition may exceed excitatory input thus pushing the distractor activation
below baseline even before a reaction, see figure 2.6.

Distractor inhibition is incompatible with target only probe displays. In the absence of a dis-
tractor priming constellations that usually produce negative priming effects can show facilitatory
priming as reported by Moore (1994). A suitable extension ofdistractor inhibition theory concerns
the notion of what is actually inhibited. Neill (1977) suggests that the semantic representations
of the distractors themselves are inhibited, which matcheswith spreading inhibition through se-
mantical networks (Quillian, 1966). Tipper and Cranston (1985) propose inhibition to act on the
link between semantic representation and the response system. More explicitly, they assume a
selection state of the response system in which the time-consuming resolving of the inhibition of
the link between representation and response produces negative priming. In situations where no
such selection is necessary, the response may still be facilitated because of the residual activation
of the distractor representation. Unfortunately, the response inhibition account was not integrated
in later papers.

Distractor inhibition theory is also challenged by the empirical finding of long-term negative
priming effects (DeSchepper and Treisman, 1996; Grison et al., 2005). Tipper (2001) integrates
these findings by emphasizing that different mechanisms might underlie the behaviorally similar
effect in different settings. It is also stated that a retrieval of an episode (as postulated by the

15



2 Negative Priming

NP

retrieval

conflict

respond

Do not respond
Do not 

Prime Probe

Figure 2.7: Episodic retrieval assumes figuratively a do-not-respond tag that is attached to the
prime distractor. If a probe display contains matching information, the former episode
is retrieved and with it the tag. Removing this tag in order torespond to the former
distractor which has become target in DT trials takes time which is equivalent to
the negative priming effect. Disadvantageous for the theoretical discussion, episodic
retrieval theory was often reduced to the picture of the tag,which is only introduced
as a metaphor in the original work.

episodic retrieval theory, described in the next section) might also retrieve the inhibitory status of
the previously ignored distractor.

2.4.2 Episodic Retrieval Theory

In recent years the majority of negative priming studies have interpreted their results according to
the episodic retrieval theory. It has originally been introduced by Neill and Valdes (1992). The
theory builds on the instance theory of automatization by Logan (1988). If identical tasks have to
be fulfilled over and over again, memories of past trials are more and more used to completing the
current trial. Negative priming is assumed to be the result of conflicting information caused by
automatic retrieval of the prime episode during probe processing. It is argued that the retrieval is
triggered by the similarity of prime and probe episodes. Because the object information from the
retrieved episode in a DT trial is inconsistent with the current role of the object as a target, retrieved
and perceived information are in conflict. Resolving the conflict is time consuming and results in
the slowdown of the reaction time. Some of the negative priming phenomena listed in section 2.3
can be more easily explained by episodic-retrieval than inhibition mechanisms, such as effects
of prime-probe temporal discriminability (Neill and Valdes, 1992), prime-probe similarity (Fox,
1998) and long-term negative priming from single-trial presentations (DeSchepper and Treisman,
1996).

According to later extensions by Neill (1997), the main determinants of the strength of retrieval
are the recency of the memory trace and the strength of the memory representation of the trial. It
is assumed that more recent memory traces are more likely to be retrieved than older ones. This
assumption allows for the interpretation of experimental settings with many repetitions of highly
similar episodes. Recency as a relevant factor receives empirical support from studies that show
a negative correlation between response stimulus intervaland negative priming effect (Neill and
Valdes, 1992). Neill et al. (1992) reports an influence of theinterval preceding prime onset on the
negative priming effect, which challenges the inhibition based accounts, but is easily explained in
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Figure 2.8: Response retrieval assumes that just the response given in the prime trial is retrieved
triggered by perceptual similarities of the two displays. If the appropriate response is
repeated, a positive priming effect is expected, whereas a response switch results in a
negative priming effect. Note that in the voicekey paradigmshown in the current pic-
ture, TT trials are always associated with a response repetition, and DT trials always
require a response switch. Only more complex paradigms allow for a disentanglement
of priming condition and response relation.

terms of episodic retrieval. When the pre-prime response stimulus interval is larger than the one
of the current probe, the prime-probe pair is more easily separable from the sequence of stimuli.
Hence retrieval of the prime episode in the probe is enhanced. The memory trace produced by the
prime episode is more elaborated with deeper processing of the stimuli. Therefore, the depth of
processing of the stimuli can influence the strength of retrieval of an episode positively, the data
by Yee et al. (2000) can thus be explained by episodic retrieval.

Strong support for episodic retrieval comes from a study by Stolz and Neely (2001). They found
an increased negative priming effect when the contextual similarity between prime and probe
situations is increased. Prime/probe episodes were more similar in terms of visual characteristics
and the required response. On the contrary, a facilitated response at very short response stimulus
intervals (Lowe, 1985) is also difficult to explain in terms of the episodic retrieval framework.
Another weakness of episodic retrieval is semantic negative priming. The absence of perceptual
similarity should eliminate retrieval, and therefore no effects are to be expected.

2.4.3 Response Retrieval Theory

Marczinski et al. (2003) investigate different priming effects for young and old subjects in a two-
alternative forced-choice task, which can not be explainedby episodic retrieval theory. Therefore
she introduces the notions of specific and unspecific encoding or retrieval respectively. The reac-
tion time difference between trials with a response switch and trials with repeated responses are
called response repetition effect. The idea was borrowed byRothermund et al. (2005), who points
to the inherent entanglement of priming condition and response relation in most negative priming
paradigms. Usually DT trials are accompanied by a response switch, whereas TT trials require
the same response. The response retrieval approach postulates that every reaction time difference
in priming paradigms is due to the retrieval of a past response depending on perceptual similarity
between the two displays.

A letter-matching task initially developed by Neill et al. (1990) is adapted in order to test the
hypothesis (Rothermund et al., 2005). Strings of five letters are presented to the subjects and they
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have to answer yes or no by an appropriate button press depending on whether the second and the
fourth letter are identical. The remaining three letters are identical and function as distractors. The
advantage of the paradigm is that the repetition or non-repetition of the response can be varied
independently from priming condition. It is possible to require both a yes or a no answer in
every priming condition because the answer does not depend on the identity of the target, but on
its relation to the second target. In their series of experiments Rothermund et al. (2005) could
provide solid justification of response retrieval.

The letter-matching paradigm is problematic in the view of episodic retrieval theory. The sim-
ilarity of the prime and probe display is dependent on whether both targets match or not. In fact
the highest similarity is achieved in a TT condition which requires to answer yes in both prime
and probe trial. If the answer no is correct, only one of the targets is repeated, possibly shortening
reaction times of yes answers. However, two other experiments described by Rothermund et al.
(2005) implemented task-switching paradigms where the described problem does not occur.

2.4.4 Feature Mismatch Theory

In a series of four experiments Park and Kanwisher (1994) developed their feature mismatch the-
ory. If, at a certain location, an object changes identity, amismatch of features is detected which
causes a slowdown of processing (Milliken et al., 1994). They presented two letters, a particular
one coding for the target, a specific other one for the distractor, on two out of four possible loca-
tions on a screen. Subjects indicated via button press the target location. In order to discriminate
between distractor inhibition and feature mismatch, they varied the feature that identifies the target
between prime and probe. In the prime trial, the letterx had to be responded to, ando had to be
ignored. In the probe trial, subjects should indicate the position of theo ignoring thex. According
to the distractor inhibition account, TT trials should leadto a positive effect, as the probe target
location is already positively primed. But it turned out to produce a longer reaction time on TT tri-
als, and a faster response in DT trials, contradicting distractor inhibition. Unfortunately the aspect
of task switching effects (see chapter 6 for a discussion of those) was not addressed in the paper.

Feature mismatch theory received quite some attention, andas it is often listed among explana-
tions for negative priming. Nonetheless, there has been no further development of the theory nor
experiments in strong support of feature mismatch.

2.4.5 Temporal Discrimination Theory

Milliken et al. (1998) added temporal discrimination theory to the set of explanations for negative
priming. Temporal discrimination assumes a classificationof stimuli as old, where a response
can be retrieved from memory, or new, where a response has to be generated from scratch. The
classification takes time depending on the similarity between the current stimulus and a memory
trace. The dependency is not monotonic: the classification as new is fast when prime and probe
stimulus are very dissimilar. The classification as old is fast when the displays are identical.
But intermediate similarities such as in DT trials where theprime distractor is repeated but not
in its former role but as target, the decision whether the display is old or new takes more time.
Experimental replications of the effect on which the initial paper by Milliken et al. (1998) is
based, i.e. negative priming without selection in the primetrial, do not discuss the theory itself
(Neill and Kahan, 1999; Healy and Burt, 2003).

Even if the temporal discrimination account is often cited,it is mostly cut down to the descrip-
tion above. It is rarely theoretically addressed. Only Frings and Wentura (2005) and Frings and
Wühr (2007b) develop the model further. They address the question whether the awareness of the
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prime distractor, which was masked in most of the experiments in favor of temporal discrimina-
tion, plays a role for negative priming or positive priming to occur in single prime distractor DT
trials. If the masked prime distractor was supraliminal, a positive effect is expected as participants
were not instructed to ignore items eventually contained asa flicker in the mask.

As both temporal discrimination and episodic retrieval theory rely on the question of if the
response can be retrieved from memory or if it has to be computed directly, it is hard to delineate
them from one another. The difference usually pointed out inthe literature is the presence or
absence of ado not respond-tag, which was introduced metaphorically in episodic retrieval theory,
see section 2.4.2, but then falsely made a central part by commentators.

On a closer look, temporal discrimination tacitly involvestwo different processes. The direct
computation of a response is completely different from a retrieval of the answer from memory.
No clue exists that these processes take an equal amount of time. Nevertheless, most discussions
of temporal discrimination seem to have been misdirected byan illustration Milliken et al. (1998)
draws to explain his theory. He equates an experimental trial with the time a PhD student takes
to finish his thesis depending on whether he found a project suitable to his interest. If he chose a
not matching subject, the degree of match with his interest will determine how long it takes him
to realize and switch the project. No match causes an early switch, and he barely loses time in
comparison to a perfect match with his interests. But if there is some overlap, he will proceed for
some time with the project, until he finally realizes he has chosen the wrong project, then change
and again take a full period of PhD research. The analogy raises the following problems: the
student always has to write a thesis. It is only one and the same process involved, but response
retrieval or direct response computation are very different; and secondly, the old-new classification
is always performed, whereas the student would have no switching time if the project is suitable.
The acknowledgment of two independent processes renders most of the criticism on temporal
discrimination less striking, as most critical arguments rely on the equality of processing time
after the old/new-classification.

The weakest point of temporal discrimination theory is the assumption of a serial processing of
classification and retrieval or direct generation of a response. Most processes in the brain work
simultaneously, and therefore a parallel computation of the old/new signal together with a directly
computed answer and the retrieval of past episodes is ratherprobable. Dropping the assumption
of seriality would certainly bury the temporal discrimination account which mostly appeals due to
its simplicity.

2.4.6 Dual Mechanism Theory

Obviously there is evidence in support of each of the theoretical accounts and no approach is
clearly favored over the others. As distractor inhibition and episodic retrieval are by far domi-
nant in the domain of explaining the negative priming effect, integrating accounts are called dual
mechanism theories.

The original dual-mechanism account of negative priming byMay et al. (1995) proposes that
inhibition as well as memory retrieval can be the source of negative priming and the experimental
context specifies which of the two mechanisms is expected to operate. Another attempt to integrate
inhibition and retrieval perspectives was made by Tipper (2001). He argued that it is important
to note that distractor inhibition and episodic retrieval theories are not mutually exclusive, and
both inhibitory and retrieval processes could be involved in the emergence of negative priming.
Although retrieval processes can be responsible for producing negative priming effects, inhibitory
processes are still required in selecting information for goal directed behavior. Supposedly, in
most tasks negative priming will be caused by a mixture of contributions from persisting inhibition
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Figure 2.9: Time series of the activation variables during one simulated trial processed by the
computational implementation of the ISAM, see chapter 3. Only the representations
of objects of the current probe trial or the preceding prime trial have nonzero acti-
vation. The threshold level (blue) is driven by the total activation. If only one su-
perthreshold activation is left, a decision is made. The DT condition is shown on the
left. The forced decay of activity of the former distractor variable is visible in a subtle
kink of the red solid curve. Right is shown the TT condition. The activation of the
former target green solid line has not yet decayed to zero when the variable is again
subject to input, shortening the reaction time significantly.

and interference from retrieval. Because these processes may sometimes oppose each other, it is
difficult to distinguish them by means of behavioral measures like reaction times and error rates
(Gibbons, 2006). However, depending on contextual conditions and other experimental factors,
the contributions of inhibitory and retrieval processes might vary considerably (Kane et al., 1997;
Tipper, 2001). Gamboz et al. (2002) revealed in a meta analysis of age-related negative priming
experiments that there is no significant evidence for a paradigm to produce patterns of results
favoring either inhibition or retrieval theories.

These integrative concepts seem to provide the better framework to explain the various facets
of negative priming, as they raise the level of complexity and the number of possibly contributing
parameters. However, a more explicit formulation than the one given by the mentioned accounts
would be desirable in many cases. For example, the determination whether encoding or retrieval
processes play the main role or to what extent they contribute to the effect is widely left to inter-
pretation and thus largely depends on the paradigm. A comprehensive model that allows for exact,
ideally quantitative predictions for a wide variety of paradigms, tasks and other experimental pa-
rameters would be desirable.

2.4.7 Global Threshold Theory

In the imago-semantic action model (ISAM), Kabisch (2003) developed the hypothesis of a thresh-
old variable deciding which items from perceptual input canbe responded to. The threshold is
assumed to adapt according to the current average activation of representations of objects. Addi-
tionally, the ISAM proposes a forced decay of activation if residual activity is partly overwritten
by perceptual input of a new stimulus. These two mechanisms together can account for positive
as well as negative priming. The ISAM differs from the distractor inhibition theory explained
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Figure 2.10: Schematic view of the ISAM. The right blue box represents thepreliminary rating
of relevance for the perceived objects. The direct relevance of certain objects drives
the factor of situational acuteness that controls speed andaccuracy of the compu-
tation. The level of global activity affects a threshold which truncates the list of
perceived objects into a space of possible actions. A decision is achieved if in the
set of applicable actions only a single one is left. The blue box on the left contains a
semantic analysis of the perceived objects. It is able to project back to the posterior
rating of relevance in a so-calledsemantic feedback loop. The interaction among the
components leads to a decision about a reaction by a dynamical process.

section 2.4.1, by postulating only facilitative input and passive decay in the absence of input.
The assumed processing is sketched in figure 2.9 which actually shows data from our computa-

tional simulations of the ISAM described in chapter 3. Perceptual input drives the corresponding
representation variables to a high value. The target receives additional support, which drives target
and distractor activation apart. When the threshold surpasses the second largest activation, the one
of the distractor, the system has selected the target and is able to respond. In DT trials the decay
of the former distractor is faster than for an unrepeated object. Therefore the overall activation is
lower, resulting in a slower rise of the threshold, which then delays the reaction. In TT trials, target
activation has not yet reached zero. Thus more activation ispresent, which speeds up threshold
and subsequently the reaction.

The ISAM forms a comprehensive concept of action selection.The presented objects are as-
sumed to undergo a pre-attentive processing and perceptionstage, resulting in an abstract cognitive
representation of the objects. Formally, the decision between target and distractor is determined
by the task instruction, which is made accessible to the model via the semantic feedback loop
(left in figure 2.10). In contrast to the abstracted early visual processes, the decision is guided by
attention and a conscious application of the task instruction.

The stimuli are assumed to be initially processed automatically according to a relevance rating
based on low-level features such as motion or color. The stimuli are sorted hierarchically by their
(automatically assigned) relevancy. The relation betweenstimulus and associated action incentive
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is that strong that we will speak of both synonymously. The subject has to decide which one of
the current action incentives to follow.

Attention is modeled as trimming the perceived stimulus setby an adaptive threshold which is
driven by the overall activation. If more than one option foractions exists, the threshold adapts
such that only one option remains. During the adaptation of the threshold, representation variables
can still be subject to input, be it top-down or bottom-up.

According to the dual-code hypothesis of Krause et al. (1997), assigning modified relevancy
values to the respective objects happens in a semantic spacewhere stimuli are processed jointly
with the implied actions. The relative relevance of stimulican be affected in a posterior rating in
the semantic space. The activation corresponding to a target is amplified such that even if low-level
perceptual features result in a higher saliency of the distractor, the target representation becomes
significantly stronger than that of any distractor.

Kabisch (2003) even found a reversal of priming effects compared to the expected ordering
shown in section 2.1 for certain response stimulus intervals. He argued that activation is subject to
diffusion within its layer on a faster timescale than the oneof the passive decay, which means that
global activation is more persistent than specific activation of a certain object variable.

The dependence of negative priming effects on distractor saliency can easily be explained by
the ISAM, as we will point out in section 3.3.3. If the distractor becomes more salient, the target
and distractor activations split later in the trial processing, delaying a decision substantially.

2.5 Summary

Mechanisms of selective attention are made accessible in the framework of negative priming, a
slowed reaction to previously ignored stimuli. In standardnegative priming paradigms, an experi-
mental trial consists of a target which requires a response and a distractor object that is irrelevant
to the task. Experimental conditions are classified by the stimulus relations between two subse-
quent trials, called prime and probe, respectively. Whenever a stimulus constellation occurs where
a prime distractor becomes target in the probe, the DT condition, a negative priming effect is
expected.

The variety of paradigms that showed a negative priming effect revealed a robust nature of the
effect. But the overall pattern of results also points to a strong dependency on various parameters,
often in an inconsistent manner. Therefore a large body of theoretical accounts have evolved, each
based on a certain experimental setting. Due to the contradictory effects, a comprehensive theory
is improbable.
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The first mainstay in our quest to reveal the time course of negative priming is to implement
a computational model that describes negative priming by the means of a dynamic system. The
evolution of the model variables provides detailed temporal information. Characteristic differences
between trials of different experimental conditions can belocalized in time and thus give insight
in the stage of processing where negative priming is produced.

We will present the computational implementation of globalthreshold theory, see section 2.4.7.
The original work on the imago semantic action model by Kabisch (2003) describes the interac-
tion of concrete representation activations which can be straightforwardly translated into model
variables. We only had to specify the actual dynamics. Similar concretizations are necessary
whenever a quantification is sought and only a qualitative description is available.

Our simulations nicely reproduced experimentally observed reaction times. Without further
fitting several dependencies of negative priming are matched by our model. We thus show that
the adaptive threshold mechanism proposed by global threshold theory is sufficient to explain
both positive and negative priming effects. Additionally,the implementation provides testable
predictions with respect to hitherto untested stimulus combinations, e.g. single object trials, see
section 3.3.4.

We will start the following chapter with considerations on the transient behavior of an artificial
neural network to the onset and offset of input, section 3.1.The resulting exponential fixpoint
dynamics is then used to implement the ISAM. Implementationand resulting dynamics are de-
scribed in section 3.2. Section 3.3 shows how the explanatory power of the ISAM in several as-
pects, i.e. artificial reaction times, the sensitivity of negative priming to the length of the response
stimulus interval, varying distractor saliency and the presentation of single target trials. The results
are discussed in section 3.4. The present chapter is based on(Schrobsdorff et al., 2007b).

3.1 Deriving Simple Activation Dynamics

The simulation of the ISAM, as it will be discussed in the following, acts on a rather abstract level.
It contains a single variable for the semantic representation of an object triggered by visual input.
For the abstraction we make several assumptions. First, we consider representation of a concept as
an increase of firing rate for a specific, densely coupled assembly embedded in a larger network.
For simplicity we model the sensory presence of an object or acertain feature as a constant input
to the corresponding cluster. The of input either present orabsent. The variables of the ISAM
subsume the firing rate of such an assembly as it is driven by input. In order to determine a
realistic dynamics of this activation of the correspondingconcept, we consider an isolated cluster
as an all-to-all coupled network of integrate and fire neurons. We then average the firing rate of
the network over many presentations and analyze the shape ofrise and decay.

3.1.1 Networks of Integrate-and-Fire Neurons

The membrane potentialhi of neuroni = 1. . .N is driven by external inputIi(t) and recurrent
connections which deliver spikes of adjacent neurons modulated by a synaptic strengthwi, j .
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ḣi = Ii(t)+
N

∑
j=1

wi, jδ(t − t j
sp) (3.1)

If hi reaches the firing thresholdθ = 1, it delivers a spike to its postsynaptic neurons and is reset
by the threshold valuehpost-spike

i = hpre-spike
i −θ.

The external inputIi(t) is drawn independently in each time step from a Gaussian distribution,
with a mean chosen such that a single neuron receives on average the same input equal to the
difference of thresholdθ and resting potentialh0. On average and without the recurrent coupling
a neuron would fire once during presentation of the stimulus.The firing rate of the network was
determined by summing up all spikes occurring in one timestep.

We simulated a network ofN = 1000 neurons. A stimulus was shown for 50 timesteps, and
the interstimulus interval was also 50 timesteps long. The total output of a neuron was fixed to
α = 0.87. The stochasticity of the input and the sensitivity of thenetwork for fluctuations result
in a rather random single trial firing. But on average a coherent behavior becomes visible. For the
results shown in figure 3.1 we averaged 10.000 trials in order to obtain a good estimation of the
firing rate over time.

3.1.2 Network Response to Input Onset and Offset
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Figure 3.1: Average firing rate of the network during input (gray shaded region) and no input.
The fraction of two subsequent values is shown in red. Black lines, the averages of
the respective fractions, are indicating that they remain rather constant over time.

In order to derive a computationally simple dynamics for therepresentation variables of the
ISAM, we tried to fit the time course of rise and decay of the firing rate of the network. A good
candidate seems to be an exponential fixpoint dynamics, i.e.a variable approaches its current input
value by a fixed fraction of the distance in every timestep. This fraction is called time constant of
the variable.
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In figure 3.1 we show the averaged firing rate and plot the percentage of change from one
timestep to the succeeding one in reference to the actual fixpoint, i.e. maximum firing rate or zero.
The observed time constants are only marginally constant, but sufficient for a justification of the
simplified dynamics we will use for the implementation of theISAM.

Figure 3.2: Distribution of membrane potentials averaged over 10.000 trials. Note that the poten-
tials are mostly equally distributed, as the colormap only covers values from 0.0098
to 0.0115. Nevertheless, the fine grained plot reveals the processes generating the
firing rates analyzed in figure 3.1: Initially all neurons arepushed towards higher
membrane potential by the input, leaving a relative gap thatis propagated upwards.
Then, bands of neurons with a certain membrane potential form as the recurrent in-
put builds up. Finally, the system relaxes and the less regular spikes rebuild a more
equally distributed picture until no further spikes are generated.

Besides the result of a dynamics to use in our implementationof the ISAM, the periodicity of the
time constant, even after severe averaging, points to interesting behavior of the system. Therefore,
as a short excursion, we will spend some time on it. Figure 3.2shows the distribution of membrane
potentials averaged over 10.000 trials as in figure 3.1. During input, all neurons are shifted in
their membrane potential such that small potentials becomevery improbable, to the benefit of
superthreshold potentials. Most potentials within the band that is shifted upwards during stimulus
presentation have a probability of 0.0098 and 0.0115, which is near an equal distribution. But
there is some inner structure that survives the averaging process, which is revealed when having
a closer look. In the beginning, all units receive only external input. They are shifted upwards,
leaving a relative gap which then propagates through the entire range of potentials. Neurons that
spiked are not reset to zero but reset by 1 and still receive recurrent as well as external input, which
results in virtually no neurons having membrane potentialsbetween zero and 0.15. As recurrent
input tends to settle at a certain value, there is a trend of jumping into the band between 0.18 and
0.28 after spiking. This band is now shifted upwards by the sameamount of activation, being
smeared out during travel to the threshold. In every timestep a neuron jumps from one band to
the next one. After offset of input there is only remaining recurrent excitation which decays rather
fast. As the number of spikes decreases smoothly, the bands are washed out. In the beginning
of the decay, there are still jump bands visible, but from time step 60 there is just the small trend
upwards until settlement in the absence of input.
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The approximate exponential dynamics of the firing rate in the network is attributed to the
successive stimulation of neurons to spike. As more spikes are generated, the more neurons are
superthreshold. The only deviations from the exponential dynamics are driven by the external
input, which generates a constant baseline activity and thepreference for a certain individual input
which results in the band structure.

3.1.3 Exponential Fixpoint Dynamics

The dynamics can thus be formulated by a set of coupled nonlinear Langevin equations (Risken,
1996) with the basic form

dxxx
dt

= h(xxx, t)+g(xxx, t)Γ(t) (3.2)

wherexxx is the overall state of the system,t is time, h is a function that describes drift forces
that depend on the actual state and time andΓ(t) is a Gaussian diffusion term with zero mean
〈t〉Γ(t) = 0 andδ correlation function〈t〉Γ(t)Γ(t ′) = 2δ(t − t ′).

We will drop any noise because of our intention to describe the imago semantic action model
as concretely as possible. The theory does not make any statements about noise influences to
negative priming. Therefore we expect the noise component to just shadow the mechanisms in
question. Another problem is the influence of the subject’s age on priming effects. In recent work
on modeling the influence of age noise was found to play an important role, see e.g. (Li, 2005). In
future work we plan to model aging questions by taking up the noise component and relating its
level to age.

The first parth of equation (3.2) will contain all driving forces of the system, external input
and internal activation exchange via couplings. This results in an exponential fixpoint dynamics.
The difference between system state and a given fixpoint multiplied by a certain time constant
determines the change of the system.

3.2 Implementation of the ISAM

The simulations essentially follow the paradigm that we introduced in section 2.2. For an overview
of the course of a simulated time step see figure 3.3. We consider a set ofn stimuli each of
which is represented by the activation of a detector function which models a cell assembly that
represents the stimulus. In addition to the stimulus-driven activation, the detector is subject to
intrinsic dynamics.

3.2.1 Representation Variables

Since the stimuli can occur either as a target or as a distractor, each is coded by two variables.
One, xτ

i indicates the presence of a stimulusi ∈ {1, . . . ,n} as the target object, whilexδ
i codes

the activity of the distracting stimulus.xτ
i andxδ

i are assumed to represent feature combinations
which are considered to precede an object representation, see e.g. (Schrobsdorff et al., 2007a) how
such feature combinations can be combined with an object representation. The system is modeled
using a set of differential equations which determine the time course of the cluster activations and
of the common threshold variable. Stimulus input is presented to the model in the form of jumps
in the fixed points of the activation variables, i.e. they aremodeled as delta-pulses to be integrated
by the internal units (3.5), (3.6). The integration in the neural units is modulated by a temporal
convolution with the time constantsα andβ in the following way: the activityxν

i , whereν ∈ {τ,δ}
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Figure 3.3: Schematic view of the loop structure of ISAM. Discrete time is denoted byt. Reac-
tion time and response stimulus interval in the discrete time units are labeled byRT
andRSI respectively. It is assumed that stimulus indexj is the present target andk
indicates the distractor of the current trial.

denotes target or distractor respectively, rises exponentially with time constantα to a certain level
Iν
i , which is determined by the input.

1
α

dxν
i

dt
= Iν

i −xv
i if xν

i < Iν
i (3.3)

If the input is switched off the population activity exponentially decays towards zero. If the
present input is lower than the population activity it tendstowards this input, equation (3.4). In
both cases the decay constant isβ.

1
β

dxν
i

dt
= Iν

i −xν
i if xν

i > Iν
i (3.4)

3.2.2 Visual Input

We assume an abstract recognition mechanism that activatesstimulus-specific units. Inputs are
represented by an activity level of one unity in the presenceof an input or otherwise by zero
activity (3.5), (3.6). The semantic feedback loop amplifiesthe activity of the unit representing the
targetI τ

i linearly with feedback strengthξ, see equation(3.6).

Iδ
i =

{

1 during presentation of objecti as distractor

0 otherwise
(3.5)
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I τ
i =











1+ ξ∆t during presentation of objecti as target

∆t denotes the elapsed time while stimulus onset.

0 otherwise

(3.6)

3.2.3 Interference of Semantically Identical Objects

As xτ
i andxδ

i belong to the same objecti, they interfere. This interference is given by a negative
interaction. One and the same object cannot be target and distractor at the same time. Therefore,
these variables cause conflicts with the strength of the symmetric negative interferenceζ during
simultaneous activation. Assuming the absence of input, equation 3.4 becomes

1
β

dxτ
i

dt
= −xτ

i −ζxδ
i xτ

i (3.7)

for the target and vice versa for the distractor activation

1
β

dxδ
i

dt
= −xδ

i −ζxτ
i x

δ
i . (3.8)

3.2.4 Adaptivity of the Threshold

The crucial point of the model is the adaptation of the threshold. The thresholdθ (3.9) is driven
by the average activity ¯x (3.10). The parameterγ denotes an adaptation constant and∆ is a delay
time. This is a standard version of a winner-takes-all mechanism.

1
γ

dθ
dt

= x̄(t −∆)−θ (3.9)

The average activity depends on the object representationsxi and also on two memory variables:rτ

andrδ, which are residual activities from previous activations in the present target and distractor,
respectively.

x̄ =
1
2

(

rτ + rδ +
n

∑
i=1

(xτ
i +xδ

i )

)

(3.10)

At the moment of input onset,rτ and rδ are set to the activity level of the appearing target and
distractor. If the new display contains stimulusj as target andk as a distractor, then we set the
following at the point of stimulus onset:

rτ = xτ
j , rδ = xδ

k (3.11)

The variablesrτ and rδ form a separate temporary representation of the current objects, which
undergoes a different time course after initialization.
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Figure 3.4: Activity vs. time. All traces relevant to the model are shown. Distractorxδ
i activation

is red and targetxτ
i activation green, the threshold levelθ is blue. Additionally, the av-

erage activity ¯x is plotted in dash-dotted blue, the absolute sensitivity level σ in cyan.
The inputs together with the semantic amplification are shown as a thin dash-dotted
pattern. Their color corresponds to their role as target or distractor input. Insets:a)
The activation curve of target and distractor approach their input exponentially. The
input of the distractor is fixed to one. The input of the targetis linearly amplified
by the semantic feedback loop.b) The exponential approach ofθ towards the global
average ¯x is delayed by a certain time interval.c) At the moment whenθ crosses the
distractor activity only the target activation is aboveθ, and a decision can be made.d)
During the fast rise of the activation of the new stimuli there is a short time interval
where also only one activation surpassesθ. Due to the global sensitivity levelσ, no
decision is provoked.

3.2.5 Response Generation

The decision about the target object is performed globally.We test whether exactly one variable
is activated above threshold levelθ. This test is additionally conditioned due to the fact that the
threshold is higher than a fixed sensitivity levelσ. We thus avoid decisions without a significant
activation, e.g. when the adaptive thresholdθ is near zero. All variables that form the model are
presented in a joint plot in figure 3.4, for details cf. the insets. Most activity variablesx (green
for xτ, red for xδ, in different textures for the different objectsi) are effectively zero. Only the
variables that are or had just been subject to input have a significant activity. The thresholdθ
(blue) is oriented along the average activity level ¯x (dash-dotted blue).

Parameter values are chosen following several principles.Freely scalable parameters such as
distractor inputIδ

i , are chosen such that they are kept as simple as possible. Certain bounds have
to be respected, e.g. the sign is usually predetermined, butalso the order of dependant variables is
fixed. Most desirably parameters can be derived from experimental data. At the abstract level of
the ISAM, we only can rely on behavioral experiments. Thus wedecided to fit the model behavior
to the priming effects of our negative priming study presented in section 2.2. The fitting is done
manually.
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Figure 3.5: Time evolutions of the activation variables during one simulated trial. Only the acti-
vation of objects presented in the current trial or the preceding prime trial are visible,
the other eight activation variables are virtually zero.a) DT condition. The forced de-
cay of activity of the former distractor variablexδ

i , wherexτ
i is the target in the second

trial, is visible in a subtle kink that is pointed up by two black dashed tangential lines.
These tangentials are not drawn in subplot b) for comparison. b) DTTD condition.
Kinks are present in both the former target and distractor, as they are influenced by
the rising activation of the new target and distractor.c) TT condition. The activation
of the target, which is the same object as the previous target, rises from a certain level
above baseline, as it has not yet decayed to zero when the new input is switched on.
The activation approaches the input from this step. This shortens the reaction time
significantly. d) DDTT condition. Here, both stimuli stay the same and approach
their input from a higher level, shortening the reaction time even further.

3.3 Computational Results

3.3.1 Comparison to the Experimental Data

Figure 3.5 shows the time series of a trial in the simulated model. The four subfigures refer to
the four main cases (DT, DTTD, TT, DDTT) described in section2.1. Since the scale of time is a
degree of freedom in the simulation, we performed a temporalgauge to match the average reaction
time in the control trials.

In the DT-trial in figure 3.5a, the activation of target and distractor from the prime stimulus
decay with a characteristic exponential profile, equation (3.4). The thresholdθ follows these
activations. At timet0 = 0ms the RSI has elapsed and a new stimulus is shown. This drives
the activationsxτ

j andxδ
i of the new target and distractor (respectively) exponentially towards the

input levelIδ
i = 1 andI τ

j = 1+ ξ(t − t0). At time t0, these inputs are similar. Later the difference
between the activations increases. Att = 565 ms, the thresholdθ follows with a delaytdelay. It
approachesxδ

i , which has meanwhile arrived close toIδ
i . If the activity of the distractor is surpassed

by the adaptive threshold, then the distractor is cut out of the space of possible actions. Thus, an
unambiguous decision in favor of the target can be made.

Now, the display presents a fixation cross, i.e. the inputsIδ
i and I τ

j are switched off and the

activationsxδ
i , xτ

j andθ decay correspondingly. The characteristic time course in aDT trial shows

a kink in the activation of the distractor variablexδ
j when the distractor becomes the target. Via

the coupling strengthζ, the rise ofxτ
j causes an acceleration of the decay of the activation and,

consequently, a slower rise ofθ. The threshold reachesxδ
i later than in a control trial. In the

DTTD trial, see figure 3.5b, the two decaying activations from the previous stimulus are decaying
faster. The overall activity is thus even lower and thus the adaptation ofθ is further delayed, such
that the response is even slower in DTTD trials.
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3.3 Computational Results

In the positive priming condition on the other hand, see figure 3.5c, the same variablexτ
j is

activated again by input and therefore starts off att0 at a higher level of activation compared to
a control trial. As discussed in section 3.2, the residual activity of xτ

j before stimulus onset is
stored in the appropriate variablerτ, which is subject to an intrinsic decay, and adds to the overall
activation level ¯x that drivesθ. The augmented activity level ofxτ

j at the beginning of input causes

a higher ¯x that shortens the time thatθ needs to reachxδ
i significantly. Therefore, the reaction

time is reduced in comparison to the control trials. In the DDTT trial, see figure 3.5d, the reaction
is even faster due to the departure of both target and distractor activations from a higher level of
remaining activity.
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Figure 3.6: Reaction times for a response stimulus interval of 1500ms. To match the experimental
data given in section 2.2 an additional delay of≈ 135 ms for perception and action
initiation has to be assumed. These processes will also further raise the variance but
not alter the strength of the effects. These reaction times were obtained in an exem-
plary simulated session of 400 trials. The parameters of this simulated experiment
were: α = 0.028, β = 0.003, ξ = 0.0016,ζ = 0.0053,γ = 0.013, tdelay = 15ms and
σ = 0.62. A simulated time step was 0.3ms.

We simulate sequences of 400 trials. The results from the simulations show a close correspon-
dence to the results we obtain in our experimental studies. The results of a simulated session are
presented in table A.2. We thus added 200 ms to all of the reaction times in order to account for
perception and action initiation processes which are not covered by the ISAM.
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3 Imago Semantic Action Model

3.3.2 Dependence on the Response Stimulus Interval

An interesting aspect for the evaluation of the model is the dependency of priming effects on the
response-stimulus interval (RSI). The adaptation of the threshold critically depends on the length
of the RSI. This is due to an adaptation to the specificity of the stored information rather than the
exact average level of activation. In the computational model, this corresponds to a weighting of
the averaged activity in the process of the adaptation of thethreshold. We simulate the state of the
model system during medium RSI from about 1s to 2.5s. Both very short (below one second) and
very long RSI (on the order of hours or more) are not covered bythe model and are discussed in
section 3.4. In the first case, the perception process needs to be specified in more detail, which
would lead to a stronger dependency of the model on the particular experimental setup. In the latter
case, we would need to extend the model with specific memory mechanisms, which is beyond the
scope of the present approach.

It is a known fact that reaction times in human subjects are strongly affected by the RSI
(Kabisch, 2003). At very short RSI for example, a TT trial is paradoxically slower than base-
line and in medium RSI the priming effect in DTTD trials is weaker than in simple DT trials. The
occurrence of these so-called paradoxical effects in experimental studies (Kabisch, 2003) for very
short RSI is confirmed by the computational model, see figure 3.7. In the model some of these
results are due to a backward threshold crossing by the activation variables.
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Figure 3.7: Differences in the reaction times for the five experimental conditions in dependence
upon the response-stimulus interval. Note that the change of effects for short response
stimulus intervals is caused by the situation that the threshold is not yet fallen under
the representation activations.

3.3.3 Variation of Distractor Saliency

One of the characteristics of the negative priming phenomenon is the influence of distractor
saliency on negative priming. The empirical finding that thenegative priming effect increases
with growing saliency of the distractors is generally labeled reactive inhibition (e.g. Grison and
Strayer, 2001; Houghton et al., 1996; Lavie and Fox, 2000; Tipper et al., 2002).
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Figure 3.8: Differences in the reaction times for the five experimental conditions in dependence
on the relative distractor saliency. For a low distractor saliency positive priming ef-
fects are pronounced whereas for higher distractor saliency, positive priming virtually
vanishes and negative priming becomes lager.

In two experiments, Grison and Strayer (2001) manipulated the perceptual quality of the target
or the distractor. Their data indicates that negative priming is dependent on the activation of
postperceptual representations of the distractor. Thus a more salient postperceptual distractor
representation leads to a stronger negative priming effect. They found stronger negative priming
and weaker positive priming for a degraded target compared to a degraded distractor. This relation
was predicted by the inhibition model (Houghton et al., 1996) and could be confirmed by Tipper
et al. (2002).

The question how distractor saliency affects reaction times in terms of the ISAM is not easily
answered, as reaction times depend on the sensitive interplay of all parts of the model. The saliency
of the distractor can be altered by changing equation (3.5),such that in the presence of a distractor
stimulus the distractor inputIδ

i equals the saliencys. It denotes the saliency relative to the target
input. Equation (3.6) describing the target inputI τ

i stays unchanged. Figure 3.8 shows the reaction
times produced by the ISAM if the distractor saliencys is changed from 1 (equal distractor and
target saliency) to 1.25 (distractor saliency 25% strongerthan target saliency).

The ISAM shows several effects when exposed to distractors of varying saliency. Generally, a
stronger distractor saliency leads to longer reaction times. More time is needed to actively ignore
the distractor to be able to respond to the target. Computationally, this is due to the higher level
the threshold has to reach in order to cut out the distractor activation from the space of possible
actions. Counteracting is the fact that the residual activations from the former trial are still higher,
due to the higher level of target and distractor activation at the point of the prime decision. This
contributes to a higher threshold level at trial onset, thereby accelerating an answer. But this effect
is weaker than the influence of the higher distractor activation level the threshold has to reach for
a decision.

The two positive priming effects TT and DDTT become weaker with growing distractor
saliency. The reason for this is the exponential dynamics ofthe activation variable. Positive
priming is produced by greater residual activation of the target variable compared to a control
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trial. This activation difference between positive priming and control also decays exponentially.
Thereby, longer reaction times and thus a higher distractorsaliency reduce positive priming effects
exponentially in the framework of the ISAM.

Both negative priming effects grow with higher distractor saliency. Negative priming is pro-
duced by an interference between the former distractor activation and the new target activation
accelerating their decay reciprocal. With higher distractor saliency more activation from the prime
trial carries over. The interference in equation (3.7) is dependent on the former distractor activa-
tion. Therefore, a stronger activation leads to a stronger interference and thus to a bigger negative
priming effect.

3.3.4 Predictions for Single-Object Trials

The present model is critically tested by the application ofsingle stimuli during the course of
the experiment. In single-object (SO) trials only a single object is presented. With respect to the
experimental setting, it is only conceivable to use single-object trials with the object being a target.
If single distractors were to be included, a no-response answer would be necessary, disturbing the
flow of the experiment. Nevertheless, the implementation ofthe ISAM enables us to predict
reaction times in these conditions. A non-reaction is possible at the moment, when the distractor
activation reaches a strength that would lead to the classification of a target.

We introduce a number of new categories in addition to the ones named in section 2.1. SO-
trials occur in three variants, realizing special cases of the standard conditions DT, TT and CO
relative to the preceding target/distractor pair (see upper half of table 3.3.4). We are also aware
of numerical effects in the reaction times of the ISAM of preceding SO-trials to standard trials.
Therefore we further separate these three trial conditionsfrom trials which were preceded by both
target and distractor. In our notation, four letter abbreviations denote the six new conditions: If the
preceding display contained a single stimulus, the first twoletters are SO, and the last two letters
indicate the condition of the actual display. If the presenttrial shows only a single object, the first
two letters denote the condition it matches in relation to the preceding display. See table 3.3.4 for
the appropriate naming of the resulting additional cases.

prime display probe display

target distractor target distractor

DTSO A B B - distractor(n) = target(n+1)

TTSO A B A - target(n) = target(n+1)

COSO A B C - One object this trial which was

A B - C not presented the last trial.

SODT - B B C distractor(n) = target(n+1)

SOTT A - A C target(n) = target(n+1)

SOCO A - C D None of the two stimuli matches

- B C D the only preceding stimulus.

Table 3.1: Additional priming conditions resulting from the introduction of single object trials.
The upper part of the table shows the single objects trials themselves, the lower part
show trials that immediately follow a single object trial. The ISAM predicts that re-
sponses directly after single object trials have to be considered separately.
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Figure 3.9: Representation variables over time for the analysis of the behavior of the ISAM during
SO-trials. There is only one object present. This results ina lower average activity ¯x.
Without the sensitivity cutoff viaσ, the reaction time in the case of an SO-trial would
not be longer than the time necessary for perception and action initiation. In the trial
directly after an SO-trial, the baseline activation is lower in comparison to non-SO
trials, as the activation of the second object is lacking.

When SO-trials are presented to the model, a dramatic reduction in reaction time is observed, as
shown in table A.3. Columns 2 – 4 contain much smaller values than expected in trials with two
simultaneous objects. The priming effects are clearly present without specific tuning of the model
to this case, See figure 3.9. However, the global sensitivitylevel σ plays an important role, as it
finally determines the moment of reaction.

Figure 3.10 also displays the reaction times for trials thatimmediately succeed SO-trials. They
are classified in dependence on the reoccurrence of the former object. It is obvious that a signif-
icant slowdown of reaction time after SO-trials is inherentto the model due to the lower overall
activity if only one object representation is activated by the input. This justifies the separate con-
sideration of trials immediately succeeding SO-trials. Ifthese trials were subsumed under the
classical conditions, they would artificially increase thevariance. In experiments, this slowdown
can occur due to a disturbance of the response routine of subjects by SO-trials, where the switch
back to two stimuli displays is also a distracting factor. Weare currently running experiments to
check whether this effect really is present in human behavior.

The observed effects during the presentation of single-object trials are readily explained in terms
of the formal model: The overall activation that drives the threshold is lower in SO-trials, therefore
θ takes longer to reach the activation level of the distractorduring the next trial. This causes a
longer delay until the correct object is singled out in orderto allow for an unambiguous decision
of the system.
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Figure 3.10: Predictions for single object reaction times for a responsestimulus interval of
1500ms, in dependence of experimental condition. The usualpriming conditions
are not shown. The parameters are the same as in figure 3.6.

3.4 Discussion

3.4.1 Modeling Priming

The ISAM impressively reproduces experimental data without contradictions. Additionally it
shows reasonable behavior when confronted with the touchstone of RSI-dependency. The im-
plementation of the ISAM presented here is robust enough to provide predictions about stimulus
constellations that have barely been considered in primingexperiments thus far. This circumstance
serves as a good opportunity to test the ISAM experimentally. Among the many theoretical ap-
proaches to priming, we select three of the most popular models and compare their implications
to empirical results.

The distractor-inhibition model (Tipper and Cranston, 1985; Houghton and Tipper, 1998) is one
of the most influential theoretical accounts. Following this line of reasoning, the negative priming
effect is supposed to be a cognitive index for the inhibitorycomponent of selective attention. It
is assumed that irrelevant stimuli representations are actively suppressed to support selection of
the goal-relevant target stimulus, and that this inhibition persists for some time. When the former
distractor becomes the behavioral relevant target in the subsequent display, responding is ham-
pered because of the persistence of the inhibition imposed on it during the prime trial. However,
shortcomings of this model emerge when explaining certain experimental results: Because nega-
tive priming is described as an after-effect of distractor inhibition, a facilitatory effect of ignored
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repetition trials without a distractor in the probe trial (e.g. Tipper and Cranston, 1985) cannot be
reasonably accounted for in terms of this model.

A second important account, the episodic retrieval model, has originally been proposed by Neill
and Valdes (1992). They argue that negative priming is the result of conflicting information caused
by a retrieval of the prime episode when exposed to the probe stimulus triggered by similarities
of the two situations. The probe target thus causes retrieval of the prime episode due to repetition
of the prime distractor. The information from the retrievedepisode (i.e. “ignore the stimulus”)
conflicts with the need to respond to this same stimulus in thecurrent probe episode, resulting
in a time-consuming process. This causes an increased reaction time, characteristic of negative
priming. A particular advantage, in comparison to the othermodels, is its explanatory power
regarding the influence of temporal discriminability of theprime episode relative to the preceeding
episodes. This is more easily accounted for by episodic retrieval than by inhibition-based models.
The same is true for experimental evidence which shows that the effect increases quantitatively
when the contextual similarity between prime and probe situation is increased (e.g. Stolz and
Neely, 2001). However, the model falls short of explaining semantic negative priming effects,
where the response to a probe target is only semantically related to the prime distractor (such as
dog to cat), which are more easily accounted for by the inhibition model (Tipper and Cranston,
1985). Both the inhibition model and the episodic retrievalmodel explain general reaction time
increases in negative priming conditions in a straight-forward manner.

In contrast to the two previously described models, the temporal discrimination model (e.g. Mil-
liken et al., 1998) does not assume selection processes during the prime task as the basis of negative
priming. Instead, it assumes that negative priming is caused at the moment of response formation
during the probe processing. Two response modes are postulated in the following context: the
response can either be computed or directly retrieved from memory. Which of the two response
modes guides behavior in the probe task depends on a categorization of the probe target as either
“old” or “new”. If the probe target is categorized as new, a response is generated on the basis
of perceptual analysis. Otherwise, if the same task situation has already been encountered, the
response can rely on a direct retrieval of the former response. For a probe target in an ignored
repetition trial, an ambiguity in the categorization process is assumed, resulting in a longer reac-
tion time. But there is also empirical evidence which contradicts the predictions derived from this
model: In a repeated distractor condition, the model predicts a slowdown in responding, whereas
a speed-up is repeatedly demonstrated in psychological experiments (e.g. Frings, 2005).

These considerations show that modeling of the negative priming effect is still in its develop-
mental stages. Therefore we do not hesitate to implement theISAM as a new contribution to the
ongoing discussion of negative priming explanations. At first glance the ISAM looks similar to the
inhibition based model (Tipper, 1985) as negative priming is the result of a negative interference.
However considering details the two models differ in crucial aspects. In the ISAM, priming effects
are an interplay of remaining activation from the prime display and activation driven by the probe
input.

Generally, none of the effects are present in the ISAM until the probe trial starts. For the inhi-
bition based model, this is not the case, as the activation ofthe distractor is inhibited in the prime
trial and negative priming is just an after-effect. The negative interference is not due to a control
mechanism ruling the prime decision as postulated in the inhibition based model, but rather an in-
trinsic interference within the neuronal circuits accounting for the prime distractor representation.
The negative priming effect is thus obtained by the added ”effort” of the distractor representation,
which must switch states from ”do not respond to” to ”respondto”. This interference is more like
the postulated conflict between memory traces and the current activation pattern responsible for
negative priming in the episodic retrieval model. Another marking-off feature of the ISAM is that
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representations cannot be pushed below baseline, as the absence of a representation is modeled by
zero activation. The interference only affects time constants of decay or rise towards input equa-
tions (3.7) and (3.8). Similarities to Tipper’s inhibitionmodel can be found in the assumption of
an external control mechanism responsible for the decision. But rather than inhibiting target acti-
vation in the probe trial, the control mechanism postulatedin the ISAM boosts the target activation
due to its semantic classification relative to the task.

Since the ISAM produces the priming effects at a very early stage of the probe trial, it displays
no obvious similarities to the mechanisms presupposed in the temporal discrimination theory (Mil-
liken et al., 1998). In terms of the functional effectiveness, it can rather be placed between the two
models first discussed, the inhibition and the episodic retrieval theory. The ISAM thus incorpo-
rates advantages from both approaches and integrates assumptions from both models into a more
complete theory comprising all (positive and negative) priming effects.

3.4.2 Phenomenological and Neural Models

Modeling provides an attractive approach to attentional mechanisms and thus in particular to prim-
ing phenomena (Houghton and Tipper, 1994). First, mathematical modeling of a theory requires
a precise formulation of the theoretical assumptions and mechanisms. This is of even greater im-
portance as some of the explanatory models for negative priming presented above do not specify
how and on what level attentional processes operate. Second, an explicit computational model can
help to derive more specific predictions than possible from more abstract models, since not only
qualitative but also quantitative predictions can be generated. Also, conducting computational
experiments can produce new and even unexpected results that, in turn, can lead to experimental
confirmation and extension of the model.

The ISAM presented here is implemented with effective equations. A refinement of neural net-
works seems desirable but cannot provide deeper insight into the mechanisms generating negative
priming, as the effect appears at a high level of brain function where computation is strongly dis-
tributed. Therefore, no plausible neural model can be givenat this stage of brain research. The
reduction to an effective theory, in contrast, allows for direct observations of the functioning of the
model itself without exhaustive investigations of the simulated data.

The difficulties of the model with short RSI point out the specificity of a certain approach that
can never describe the whole behavior of the brain which, forexample, in the context of changing
the RSI uses several different strategies, such as short term memory and long term memory when
changing the RSI from 500 to 1500 ms. With the present implementation, the ISAM moves
up in line with the other explanations of priming effects like the inhibition or episodic retrieval
approach. It shows possible simplifications of existing models, having in mind a minimal model
that describes the generation of priming effects in the human brain.

3.4.3 The Implementation of the Model

The numerical implementation revealed an insufficiency of the ISAM concerning RSIs that involve
short-term memory effects. For very short RSI its consequent implementation shows a reversal of
priming effects. The reason for this strange behavior is an empty space of possible actions. At
stimulus onset, the threshold level is still greater than any activation of the variables representing
object recognition. Therefore, a decision is made when the first variable reaches the threshold. An
increase of this limited range of RSI also requires the consideration of low-level neurophysiolog-
ical details, which will be incorporated in an improved version of the model. Furthermore, our
implementation is sensitive to the number of stimuli in one display. The factor12 in equation 3.10
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was chosen for the situation of one target and one distractor. If multiple distractors were present,
the model may not come to a decision. In extending the ISAM to more paradigms the factor should
be adjustable according to the stimulu configuration in a trial display.

All this together with the restriction of the ISAM to identity based voicekey paradigms built the
basis for constructing the General Model for negative priming more or less from scratch. Chapter
8 will be devoted to the development of a computational modelthat is capable of dealing with nu-
merous stimuli and response schemes while being complex enough to incorporate all mechanisms
that are suspect to produce priming effects.

3.5 Summary

The imago semantic action model by Kabisch (2003), which hasbeen described in section 2.4.7, is
the attempt to explain negative and positive priming by one single mechanism, the presence of an
adaptive threshold which decides on the semantic representations of stimuli which one of them to
attend. The original description is sufficiently precise tomake a straightforward implementation
as a dynamic system possible.

We first derived a very simple dynamics describing the transient of the spike rate response of
a neuronal compound to the onset and offset of external input. The resulting dynamics is used
to model object representations as activation of a single variable even though this representation
is most likely held by a distributed network of interconnected neurons. On the basis of these
representation dynamics we implemented the ISAM with minimal additional assumptions and
found that the reproduction of frequently encountered priming effects is easily achieved. We thus
prove quantitatively that priming effects, both positive and negative, can be explained in terms
of the ISAM. Further phenomena that are well described by theISAM include the speedup of
responses to single-object presentations, the preservation of priming effects in these cases, and the
reproduction of the dependency of priming effects on varieddistractor saliency.
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4 EEG Correlates of Negative Priming

The second mainstay in the determination of the time course of negative priming is electrophysio-
logically recording the processes happening during a negative priming trial. The electroencephalo-
gram (EEG) is well suited for negative priming experiments due to its high temporal resolution.
Especially the consideration of event-related potentials(ERPs) is well suited to reveal the differ-
entially time-consuming components of information processing that are responsible the negative
priming effect.

In search of a cooperation, we were offered to use a fully equipped state-of-the-art 64 channel
EEG-laboratory in the department for medical psychology Göttingen. We seized the opportunity
to run a series of priming experiments while recording EEG activity. The results of the adaptation
of our voicekey paradigm, presented in section 2.2, to the EEG environment provide the replication
of the results of a recent study on EEG correlates of negativepriming (Gibbons, 2006).

We will describe the derivation of EEG signals and traditional way of data analysis in sec-
tion 4.1. In section 4.2, we will give a detailed review of correlates of negative priming. In sec-
tions 4.3 to 4.5 we will describe our study on electrophysiological correlates of negative priming,
present the results in sections 4.6 and 4.7. The results are integrated into previous ERP correlates
and evaluated in sections 4.8 and 4.9. Our publication (Behrendt et al., 2009) is the basis for the
current chapter.

4.1 Introduction to Electroencephalography

Electroencephalographic (EEG) data is the electric potential change on the skull surface on a
100µV scale. These potential fluctuations are most likely produced by electrical fields generated
by ion flux around axons of firing neurons. Axons that are oriented perpendicular to and not far
from the skull surface contribute best to the signal. Around10.000 neurons are required to fire in
synchrony to obtain a good signal. But even contributions from deeper brain regions can not be
excluded and a potential reversal can occur at electrodes near cortical folds. The measured signal
is the superposition of all signals finally low-pass filteredby the skull.

4.1.1 EEG Recording

For clean recordings, a shielded recording environment is necessary. Electrical equipment should
run on low DC current. Very sensitive difference amplifiers are used that feed the signal into the
A/D converter at a recording computer. Electrodes are attached to the skull by an electrode cap
that ensures a correct positioning. Electrical contact is maximized by degreasing the electrode
sites with alcohol and by the application of a conductive geluntil the impedance is below 5 kΩ.
The sintered ring electrodes are made of highly conductive material (Ag/AgCl) in our recording
environment. In our case placing on the scalp follows the standardized extended 10-20 system
by Jasper (1958), see figure 4.1. Electrodes are named according to their position from fronto-
polar via anterior, frontal, central, parietal and temporal to occipital. Odd numbers are situated
on the left side, even numbers on the right. Care has to be taken, when looking at head plot
topographies, as the EEG-researcher looks at a head from above, whereas fMRI-researchers look
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Figure 4.1: The extended Ten-Twenty system of electrode placement as introduced by Jasper
(1958).

at their subjects from the feet and thus sketch the head inversely. Additional electrode positions
are located beneath the eye, a rather strong dipole, to record an electrooculogram in order to clean
the data from collateral artifacts.

The reference for the difference amplifier is usually placedat a position where low brain activity
can be expected, such as the mastoids TP9 and TP10 or a position above the great longitudinal
fissure like FCz. Recording a difference signal has the advantage that global noise can be expected
to be homogeneously present at all sites and thus not enter the data. Unfortunately global EEG
signals do not as well. Choosing the reference is crucial as the signal of the reference is present
in every time series. But if certain electrodes have been identified to contain a signal of interest,
an offline rereferencing is still possible which can enhancethe signal. In the raw recording setup
we set a high sampling rate of 5000 Hz, applied a band pass filter between 0.1-70 Hz and a notch
filter to suppress 50Hz mains hum.

A second computer is dedicated to stimulus presentation andrecording of the behavioral data. It
transmits time markers to the computer recording the EEG, ca. 4GB of data per session. Markers
can be given for the onset of the successive stimulation displays and for the subjects’ responses
and make a meaningful segmentation of the EEG data possible.

4.1.2 Data Processing

Before considering EEG data, the behavioral data is analyzed and outliers are rejected according to
the following procedure. The outliers can be simple behavioral errors which invalidate the current
trial and the successor, as the priming may be mixed up. Reactions that were faster than 250 ms or
slower than 2000 ms were removed, as they most likely containsignals from processes differing
from the ones under investigation. Finally, reaction timeswhere the difference to the mean of the
experimental condition exceeded two times the standard deviation were excluded too.

Because most inferential statistics assume a normal distribution of the data, Kolmogorov-
Smirnov tests were conducted for the reaction times within the experimental conditions. If the
test showed that the assumption of a normal distribution wasviolated, single values were removed
based on their probability given the normal distribution model until the Kolmogorov-Smirnov test
yielded insignificant results. Overall, we ensure that not more than 10% of the trials are excluded
from the analysis for each participant. If this is the case, the subject is excluded completely from
the analysis.
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4.1 Introduction to Electroencephalography

In order to obtain neural correlates of a certain behavioraleffect, the effect has to be identified
first by analysis of the behavioral data, i.e. by comparing average reaction times of the different
priming conditions. Then the EEG is segmented according to the surveyed time markers. The
segments should contain some information preceding the trial for a baseline correction as the EEG
is no absolute measure but just potential differences. Alsothe reaction in each trial should be
captured, thereby defining the segment length. Only segments belonging to behavioral valid trials
enter the analysis.

The data still contains artifacts due to body movements, fluctuations in electrode conductance,
electrostatic charges or technical errors. A major problemof recording the average activity of
large numbers of neurons (as compared to intracellular measurements of single neurons) is the
very strong background activity in the data, apparent as very strong noise. In the EEG, noise
is significantly stronger than the ERP itself (Flexer, 2000). Whereas the electrical background
activity is in the range of 1− 200µV, the evoked potentials have an amplitude of only 1− 30µV
(see figure 4.2).
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Figure 4.2: Noise and signal in EEG-data. Note that the approximate amplitude of the average
ERP of 132 trials is in the order of 10µV, while single trial recordings show amplitudes
of ≈ 100µV.

Thus a cascade of data cleaning and trial rejecting procedures is carried out. Basic techniques
are simple filters, baseline corrections and visual inspection and manual removal of erroneous elec-
trodes or segments. Automatic data rejection excludes trials with a maximum potential surpassing
a certain threshold. Furthermore, eyeblinks cause major disturbances in the data, especially in
the fronto-polar regions. Their impact has to be removed either by traditional regression based
techniques (Gratton et al., 1983) or by more recently developed approaches using independent
component analysis (Joyce et al., 2004; Jung et al., 2000; Delorme et al., 2007).

After these cleaning procedures, segments of one experimental condition are averaged pointwise
forming the averaged event-related potential (AERP). The AERP usually shows a stereotypical
form, a sequence of minima and maxima. Height and latency of the peaks, which are named
according to polarity and sequential number, alternatively approximate latency, as N2, P3 or P300,
are assumed to contain information about cognitive processes. Therefore latency and amplitude
of the peaks are systematically compared between the priming conditions in order to determine
which mechanisms in the trial processing carry the difference between the conditions.
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4 EEG Correlates of Negative Priming

4.2 Review: ERP Correlates of Negative Priming

We will now review electroencephalographic correlates of negative priming. As we have seen in
the last section, EEG recordings provide insight into what is happening in the brain, but the inter-
pretation is difficult due to a very bad signal to noise ratio.One way to relate EEG data to behavior
is finding discrepancies in the averages of two experimentalconditions. Those Differences can be
interpreted in favor or in denial of a certain theory. The different theoretical accounts vary by
assuming different cognitive processes to cause negative priming. Those Processes are found to
be present in defined ERP components. Thus the latency and amplitude of the signal differences
can be attributed to such a process and therefore give evidence for a theory for negative priming.

To give a comprehensive overview of ERP Correlates of Negative Priming, we will go through
the ERP components in the order of their latency. Particularly the N200 and P300 components
are discussed as candidates for correlates of behavioral negative priming. The observed patterns
of differences in latency and amplitude are interpreted as evidence for a particular theoretical
approach (for a review see Mayr and Buchner, 2007).

4.2.1 N200 Component

In general, the N200 component in the ERP, a negative deflection of the EEG around 200 ms, has
been interpreted to reflect early stimulus evaluation and especially active or passive discrimination
processes subsequent to the perceptual identification of the stimulus features. Several negative
priming studies revealed modulations or additional negative components in the N200 range in
frontocentral or occipital areas in DT trials compared to a control condition. For example, Dau-
rignac et al. (2006) analyzed negative priming correlates in a Piaget-like numerical task, in which
strategies rather than stimulus features were repeated between prime and probe. They observed an
enhanced N200 in DT trials, which they interpreted as evidence for inhibition mechanisms. Sim-
ilarly, Frings and Groh-Bordin (2007) found more negative-going waveforms in the frontal N200
complex in DT relative to control trials using a classical flanker paradigm. In addition, they re-
ported that this effect was modulated by magnitude of the individual behavioral negative priming
effect in reaction times. Participants who did not show behavioral negative priming also did not
have a significant negative priming effect on N200 amplitude. The authors concluded that ERP
components in the N200 time range represent cognitive processes that cause negative priming and
interpreted them as additional effort required in DT probesto select a previously inhibited stimulus
against distractors. ERP studies investigating episodic memory processes revealed that episodic
recognition of a stimulus is usually associated with ERP components emerging not earlier than
300 ms (Groh-Bordin et al., 2005, 2006). Therefore, the timewindow of the DT-specific enhanced
N200 component (around 200 ms after stimulus onset) is said not to fit a retrieval explanation. But
the fact that no correlates of retrieval are found at that early latencies does not imply that retrieval
is not yet in progress.

4.2.2 P300 Component

The P300 is often interpreted as reflecting the updating of resources needed for stimulus evalu-
ation within the context of a model of the environment (Donchin and Coles, 1988). In a study
investigating location-based and identity-based negative priming in a direct comparison, Kath-
mann et al. (2006) reported differential ERP effects for thetwo tasks. They observed increased
P300 amplitudes in DT relative to control trials in an identity task with overlapping black and
grey digits, whereas this effect was absent in a location negative priming task. Kathmann et al.
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4.2 Review: ERP Correlates of Negative Priming

(2006) concluded that there was no evidence in their data forinhibitory mechanisms in identity-
based negative priming. The authors suggested that their observed P300 modulation would reflect
the updating of object representations when they are repeated, and concluded that an increased
processing effort was required in the DT condition.

Unlike Kathmann et al. (2006), Gibbons (2006) argued that the P300 enhancement seems to
be well in line with the inhibition view of negative priming.According to the context-updating
hypothesis of Donchin and Coles (1988), the increased P300 amplitude reflects the completion
of a process by which a task-relevant stimulus is integratedinto the current context (stimulus
evaluation). Inhibition theory assumes that the activation level of the internal representation of
a DT trial probe target should be below baseline at display onset (Houghton and Tipper, 1994).
Relative to control, more activation is therefore needed toreach a criterion threshold required for
stimulus identification, which is reflected in increased P300 amplitude and/or latency. Based on
similar considerations, one can expect reduced P300 amplitude and/or latency in the TT condition,
due to above-baseline activation of the representation of the target at probe display onset (Stahl
and Gibbons, 2007).

Whereas findings by Ceballos et al. (2003) of larger P300 amplitudes and delayed P300 laten-
cies adopting a visual identity negative priming task are well in line with the results of Kathmann
et al. (2006), Stahl and Gibbons (2007) found a reduction of the left posterior P300 amplitude for
both TT and DT conditions compared to control in a recent study investigating ERP correlates of
identity negative priming in a flanker task. Furthermore, the DT-related P300 amplitude reduc-
tion was negatively correlated with behavioral negative priming; those participants who showed
strong behavioral negative priming showed less DT-relatedP300 reduction. Thus, it appears likely
that DT shifts produce at least one facilitatory effect, being reflected in P300 reduction. This
facilitatory effect may reduce the behavioral negative priming effect in weak-negative priming
participants. Stahl and Gibbons (2007) further argued thatthe P300 reduction reflects an initial
evaluation of both TT and DT probe displays as similar to the prime and postulated a resulting
tendency to repeat the prime response. This tendency is correct in the TT condition but wrong in
the DT condition, causing facilitation and response conflict, respectively, like it was postulated by
response retrieval theory. The response conflict account oftheir flanker negative priming effect
also receives support from the analysis of the lateralized readiness potential (LRP), differing EEG
signals on the two primary motor areas. Onset of the responselocked LRP occurred significantly
earlier for DT than control, indicating increased durationof motor processing, which fulfills the
predictions that can be derived from retrieval theories. Stahl and Gibbons (2007) suggested that
DT-related P300 reduction is better in line with episodic retrieval than with inhibition view. Be-
cause of the initial equivalence of TT and DT processing and the resulting tendency to repeat
the prime response, persisting activation rather than persisting inhibition seems to be present in
DT trials. Therefore, to explain the emergence of behavioral negative priming effects, a process
operating at later stages counteracting the presumed facilitatory DT effect during stimulus evalu-
ation has to be assumed. However, it should also be taken intoaccount that there is an alternative
interpretation of the P300 reduction. Instead of a true modulation of that component, the P300
reduction for DT and TT conditions could reflect superimposed processing negativity in the P300
range (Kok, 2001). Yet, this alternative account of DT related P300 reduction would also not be
in line with distractor inhibition theory because it leavesopen the question of why DT and TT
conditions behave in a similar fashion (Stahl and Gibbons, 2007).

The divergent empirical findings of Kathmann et al. (2006) and Stahl and Gibbons (2007) con-
cerning the P300 component may be accounted for by three methodological differences between
the two studies. First, Stahl and Gibbons (2007) employed shorter prime-probe than probe-prime
intervals (Neill and Valdes, 1992), whereas Kathmann et al.(2006) realized identical intervals.
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The former study may therefore have provided conditions favoring episodic retrieval, due to the
better temporal discriminability of the prime episode fromprior episodes (see Allport et al., 1985).
Second, Stahl and Gibbons (2007) used a significant proportion of TT trials, which potentially in-
crease the probability of episodic retrieval (on TT trials,the retrieval of prime information would
indeed be useful), while Kathmann et al. (2006) presented only DT and control trials in their
study. Third, compared to the side-by-side arrangement of target and distractor stimuli in the
flanker experiment by Stahl and Gibbons (2007), Kathmann et al. (2006) used overlapping digits
as target and distractor stimuli, so that successful selection of the target might require particularly
strong distractor inhibition. The discussion of the diverging results concerning the P300 compo-
nent seems to agree with the assumptions of the dual mechanism hypothesis proposed by May
et al. (1995). These authors proposed that inhibition as well as memory retrieval may contribute
to the emergence of negative priming, but that the experimental context specifies which of the
two mechanisms is expected to operate. It is conceivable that Stahl and Gibbons (2007) provided
conditions that encouraged episodic retrieval to become effective, while the experimental setup
by Kathmann et al. (2006) favored the emergence of persisting inhibition. This may have been
responsible for the different ERP correlates of negative priming in the two studies.

4.2.3 Positive Slow Wave Component

Two studies of negative priming in the auditory domain by Mayr et al. (2003) and Mayr and Buch-
ner (2006) reported modulations of ERP amplitude in the timewindow of the late positive complex
(LPC). They investigated reaction time and ERP effects of auditory negative priming in a catego-
rization task, where the participants had to categorize sounds presented to a cued ear as musical
instruments or animal voices. In the study by Mayr et al. (2003), ERP analysis revealed an attenu-
ation of a late parietal positivity ranging from about 300 to600 ms in the DT condition compared
to both TD and control. This critical finding was replicated by Mayr and Buchner (2006), showing
a parietally located negativity in the DT condition compared to the control conditions between 550
and 730 ms post stimulus onset. The authors interpreted these results as support for an episodic
retrieval account, because the late ERP component is known to be sensitive to stimulus recognition
and familiarity. Mayr et al. (2003) argued that the only ERP effect that was uniquely related to
the DT condition was a late posterior complex which shares polarity, time course, and topography
of the so-called old/new ERP effect obtained in studies investigating recognition memory (Rugg
and Doyle, 1994). This old/new effect is characterized by more positive parietal ERP amplitude
at about 300 ms following the onset of an old compared to a new stimulus. Several studies found
a relationship between the enhancement of the LPC and an increase of the familiarity of succes-
sive events (Rugg and Allan, 2000; Rugg and Doyle, 1994). Greater familiarity, in turn, has been
associated with more fluent processing of an event (Johnstonet al., 1985). If the DT condition
evoked a smaller LPC, the processing of a previously ignoredstimulus is equivalent to the less
fluent processing of novel stimuli, hence resulting in negative priming in reaction times.

This line of argumentation should also hold when comparing TD and control condition, because
of the greater familiarity between prime and probe events inTD trials, which was not observed in
the data. Mayr and Buchner (2006) pointed out that the stimulus familiarity in their experiment
was generally high because of the small set of only six different auditory stimuli that were pre-
sented throughout the study. Therefore, partial stimulus repetition from prime to probe as in the
TD or DT condition was per se not expected to be sufficient to increase the baseline familiarity
of the stimulus, and to induce an old/new ERP effect. This expectation was fulfilled in the TD
condition, which did not differ from the standard control with respect to the LPC. The apparent
contradiction could be resolved by assuming that the old/new effect is restricted to the attended
parts of the probe display, i.e. the probe target.
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As a further result, Mayr and Buchner (2006) reported that the LPC negative priming correlate
was more pronounced for slow trials than for fast trials. Thedependency of the effect size on
the reaction time and ERP effects of negative priming on the reaction time level is consistent
with the episodic-retrieval account of negative priming. However, lower-than-baseline familiarity
in the negative priming condition could also be induced by other mechanisms. For example, a
comparable effect might result from a persisting inhibition of the prime distractor. Nevertheless,
it seems that the concept of a frontal inhibition process is not compatible with the results of Mayr
et al. (2003) and Mayr and Buchner (2006).

4.2.4 Summary of ERP Correlates

Further ERP studies on visual identity negative priming have been published, but either showed no
ERP effects of negative priming (Gibbons, 2006; Hinojosa etal., 2007), or the interpretation of the
ERP correlates of negative priming was difficult because no negative priming effects were found
at the behavioral level (Gibbons, 2006). Two other studies using lexical decision tasks found small
N400 amplitude reductions in the DT condition relative to control (Heil and Rolke, 2004; Wagner
et al., 2006). It has however been argued that this effect wasa correlate of a detected prime-probe
repetition, rather than a specific correlate of negative priming (Heil and Rolke, 2004).

On the basis of the relatively small number of existing studies and the heterogeneous results
it is not possible to get a clear picture of the ERP correlatesof visual identity negative priming
up to now. Overall, the majority of studies seem to support anepisodic-retrieval explanation of
negative priming. Yet the inconsistency of previous results and especially the lack of replication
of the ERP correlates of negative priming have hitherto prevented significant contributions of ERP
research to the theoretical debate on negative priming. Only the findings of left posterior P300
reduction for both DT and TT conditions compared to control and the significantly earlier onset
of the response locked LRP for DT than control trials (Stahl and Gibbons, 2007) were replicated
by Gibbons (2009) using the same flanker task. Showing that the P300 effect generalizes over
different identification tasks would substantially add to the discussion. It should also be empha-
sized that the findings only indirectly support retrieval explanations; at least, a genuine functional
late-range ERP correlate of negative priming which could represent the conflict between retrieved
prime information and information extracted from the probeis still missing.

4.3 Hypotheses

The present study of identity based negative priming aimed at putting episodic retrieval theory to
a critical test. We derive two testable predictions from episodic retrieval theory. First, retrieval
of prime information should only occur if the stimuli from the probe display in a DT trial is
perceived as similar to the ones of the prime display. Second, a late processing conflict should
emerge, because the prime episode retrieved due to a similarity cue is misleading for the required
probe response in DT trials. For both processes, an early similarity signal and a late correlate
displaying a conflict, ERP correlates are to be found. The ERPcorrelate of perceived prime-
probe similarity and/or the retrieval process itself should be largely the same for DT and TT
trials (for both conditions, the probe target is a repeated prime stimulus). We therefore expect
a conceptual replication of the consistently observed ERP correlate of visual negative priming,
that is, P300 amplitude reduction in both TT and DT trials relative to CO (Gibbons, 2009; Stahl
and Gibbons, 2007). By contrast, the second late-range ERP correlate should distinguish negative
priming from both, TT and CO conditions, because only in DT trials conflict should emerge.
Anterior predominance can be expected for this late-range ERP correlate of negative priming,
given the crucial role of frontal cortex in the processing ofvarious types of conflict (Ridderinkhof
et al., 2004).

47



4 EEG Correlates of Negative Priming

4.4 Experimental Setup

The relatively small behavioral negative priming effects (10-15 ms) found in previous ERP studies
of visual negative priming (Frings and Groh-Bordin, 2007; Gibbons, 2009; Kathmann et al., 2006;
Stahl and Gibbons, 2007) may be one reason why no late range, conflict related ERP effect of
negative priming has been established until now. Therefore, in the present study a classical picture
naming task introduced by Tipper (1985), and already introduced in section 2.2, is employed.
No comparable identity-priming paradigm has been used in ERP studies of negative priming so
far. Obviously, the larger effects increase the chance to find a functional late range ERP correlate
of negative priming. More complex stimuli producing generally larger reaction times than in the
simple flanker task may increase the chance to find a late conflict related ERP correlate of negative
priming.

Sixteen participants, five of which were male, eleven female, mean age 23.3 years, SD = 5.5
years, were tested individually in sessions that lasted no longer than 70 minutes. Prior to the
main experiment, subjects were tested for their color discrimination abilities. Participants were
instructed to name the green target object as quickly and correctly as possible while ignoring the
superimposed red distractor object. A 30-trials practice session preceded the main session.

In a single trial, subjects saw the following series of events: (a) a fixation cross, centered on the
screen for 500 ms (b) a display containing two superimposed object or a single green target ob-
ject until the subject responded, but no longer than 2 seconds (c) a blank screen for a randomized
duration between 0 and 1000 ms. The length of the response-to-stimulus interval (RSI) was thus
randomized between 500 and 1500 ms (blank screen plus fixation cross). This approach yielded
good results in terms of strong negative priming effects in previous experiments. Behavioral er-
rors were noted when subjects accidentally named the distractor, used a wrong name identifier,
stuttered, or failed to answer.

EEG was continuously recorded from 63 head electrodes (see figure 4.4) arranged in an ex-
tended 10-20 system, using a 64-channel BrainAmp MR amplifier and an electrode cap (Brain
Products Inc., Germany) with sintered Ag/AgCl electrodes.Vertical electro-oculogram (EOG)
was monitored from an electrode positioned 1 cm below the right eye. FCz served as active refer-
ence electrode. All impedances were kept below 5 kΩ.

From continuous EEG, ERPs were derived separately for priming conditions (CO, DT, and TT)
and participants, according to the following steps. First,EEG segmentation was performed, re-
sulting in [−100,1500] ms epochs relative to trial onset. Epochs were then baselinecorrected
with respect to the[−100,0] ms interval, and an initial artifact rejection was performed to identify
epochs with technical artifacts, i.e. amplitudes exceeding ±1 mV. Afterwards, we performed an
EOG correction according to Gratton et al. (1983). A final, more sensitive artifact rejection elim-
inated all epochs containing amplitude values exceeding±100µV. This resulted in a reduction
of trials of less than 10% for each participant and priming condition. Epochs were then aver-
aged separately for priming conditions and participants. In a final step, these individual averaged
waveforms were re-referenced against algebraically linked mastoids (TP9, TP10).

4.5 Data Analysis

An analysis of variance (ANOVA) with a repeated-measures factor priming condition (CO, DT,
and TT) was computed for reaction times, employing correction of p-values according to Geisser
and Greenhouse (1958). One-tailed Bonferroni-corrected t-tests were applied to test differences to
control for conditions DT and TT (expecting negative and positive priming effects, respectively).
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4.6 Behavioral Results

We determined the grand-averaged ERP waveforms computed for each of the three priming
conditions (see figure 4.4). Identified potentials includedposterior P1 (mean peak latency 102 ms)
and N1 (mean peak latency 174 ms). A subsequent P2 potential peaked at around 230 ms, followed
by N2 (270 ms). At posterior electrodes, P300 was observed ataround 360 ms. In addition, over
frontal areas a late positive complex (LPC) occurred at around 700 ms after probe display onset.
Second, in an attempt to systematically investigate ERP priming effects, amplitudes and latencies
of these ERP peaks were determined separately for priming conditions and individuals. Separately
for electrodes, the P1 peak was found as the most positive amplitude value between 80 and 120
ms. The N1 peak was found as the most negative amplitude valuebetween 140 and 200 ms, and
the P2 peak as the most positive amplitude value between 220 and 250 ms. N2 was found as the
most negative amplitude value between 250 and 300 ms. The P300 peak was determined at the
most positive amplitude value between 300 and 500 ms, and thefrontal LPC was found as the
most positive peak between 400 and 900 ms.

Amplitudes and latencies of P1, N1, P2, N2, P300, and LPC potentials were subjected to sepa-
rate analyses of variance (ANOVAs), treating priming condition (CO, DT, and TT) and Electrode
as repeated-measures factors, with levels of the latter factor depending on the potential of interest:
For P1, N1, and P300, electrodes from the most posterior three rows (see figure 4.4) were included
in the analysis, whereas for P2 and N2, only electrodes from the most posterior two rows were
considered. In the analysis of LPC, the most anterior four rows were included. Note that P300
amplitude was measured as mean voltage between 300 and 500 ms, to account for the broader tem-
poral distribution of P300. Since analysis revealed a strong priming effect on LPC peak latency,
LPC amplitude was not determined from a fixed time window. Rather, to assess priming effects on
LPC amplitude and latency independently of each other, LPC amplitude was computed separately
for participants, priming conditions and electrodes as mean voltage in 200-ms time windows ad-
justed for LPC peak latency. Intervals ranged from 500 to 700ms in the TT condition, and from
550 to 750 ms in the DT and control conditions. Geisser and Greenhouse (1958) correction was
applied when necessary and significant effects were furtherexplored using post-hoc Scheffe’s test.

4.6 Behavioral Results

Mean reaction times in each priming condition, standard deviations, and effects for DT and TT
trials compared with CO trials are shown in figure 4.3 table A.4 in appendix A.3. Trials in which
an error was committed (1.2 %) and directly subsequent trials are excluded from further analy-
sis. Trials with response latencies below 250 ms or more thantwo standard deviations above the
individual mean for each participant and priming conditionare excluded as outliers (4.7 %).

One-way ANOVA is used to analyze priming effects. The effectof priming condition (CO, DT
and TT) is significantF(2,30) = 85.68, p < 0.001;ε = 0.85. Planned comparisons show that the
mean reaction time for DT trials is significantly increased by 27.5 ms compared to CO trials (CO
vs. DT:t(15) = −5.62, p < 0.001). As anticipated, reaction time for trials in the TT condition are
significantly decreased by 132.9 (CO vs. TT:t(15) = 8.57, p < 0.001).

4.7 ERP Results

Figure 4.4 displays the grand-grand average ERP waveforms computed across priming conditions.
Components P1 (mean peak latency 102 ms), N1 (174 ms), P2 (230ms), N2 (270 ms), and P300
(360 ms) can be identified. In addition, a frontal/fronto-central LPC component can be seen at
around 700 ms post-stimulus. The data suggests ERP priming effects on N2, P300, and LPC.
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Figure 4.3: Summary of the reaction times. All three conditions differ significantly (CO vs. DT:
p < 0.001, CO vs. TT:p < 0.001).

Posterior N2 is increased specifically in the DT condition. While P300 amplitude is reduced for
both conditions TT and DT relative to CO, particularly over left posterior areas, amplitude of
the anterior LPC increases in the order DT, CO, and TT. Moreover, LPC peaked earlier for TT
compared to both DT and CO, which is not surprising due to the much shorter reaction time in TT
trials. In the following repeated-measures ANOVAs are carried out for peak amplitude and latency
of components P1, N1, P2, N2, P300, and LPC, employing factors priming condition (CO, DT,
and TT) and Electrode, with levels of the latter factor depending on analysis (see section 4.4).

P1 In the analysis of P1 latency, only the main effect of electrode is significant,F(16,240) =
5.0, p < 0.01;ε = 0.25. This effect is not further explored because it was irrelevant to prim-
ing. Neither the main effect of priming condition,F(2,30) = 0.7, p = 0.47;ε = 0.80, nor the
interaction by Electrode,F(32,480) = 0.8, p = 0.51;ε = 0.13, proves to be reliable. Also, the
analysis of P1 amplitude does not yield any significant priming effects; main effect of prim-
ing condition, F(2,30) = 1.7, p = 0.20;ε = 0.88; interaction priming condition× electrode,
F(32,480) = 0.4, p = 0.84;ε = 0.14.

N1 There is a significant priming effect on N1 peak latency,F(2,30) = 3.7, p < 0.05;ε = 0.97.
According to Scheffe’s test, in the DT condition the N1 peak is reliably delayed compared to
TT (176 and 172 ms,p < 0.05). N1 latency in the CO condition (174 ms) is not significantly
different from DT and TT conditions (p > 0.50). Neither the main effect of priming condition on
N1 amplitude,F(2,30) = 1.5, p = 0.23;ε = 0.93, nor the interaction by electrode,F(32,480) =
0.8, p = 0.56;ε = 0.19, are significant.

P2 Also for P2 latency, a significant effect of priming condition can be established,F(2,30) =
3.8, p < 0.05;ε = 0.79, which is due to P2 peaking slightly earlier for DT than CO (237 and 241

50



4.7 ERP Results

Figure 4.4: Grand-grand averaged ERP waveforms for each priming condition (CO = continuous
line, DT = dashed line, TT = dotted line). Negativity is plotted upwards. Note the
reduced left-posterior P300 amplitude for the DT and the TT conditions as compared
to CO trials (e.g. P7). Amplitude and latency of a frontal late positive complex (LPC)
between 500 and 700 ms post-stimulus were found to be sensitive to the priming
manipulation. DT trials showed significantly reduced LPC amplitude compared to CO
trials, while TT trials produced significantly increased amplitude (see section 4.8). In
addition, the LPC peak occurred earlier for TT trials (e.g. FPz).
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ms, p < 0.05 according to Scheffe’s test). P2 latency in the TT condition (239 ms) does not
differ significantly from the other two conditions (p > 0.50). The interaction priming condition
× electrode is not significant,F(14,210) = 1.1, p = 0.36;ε = 0.31. Neither the main effect of
priming condition on P2 amplitude,F(2,30) = 0.4, p = 0.61;ε = 0.75, nor the interaction by
electrode,F(14,210) = 1.4, p = 0.24;ε = 0.36, are significant.

N2 No reliable priming effects are observed for N2 latency; main effect of priming condition,
F(2, 30) = 0.7, p = 0.50;ε = 0.85; interaction by electrode, F(14, 210) = 0.5, p = 0.67;ε = 0.33. By
contrast, a significant main effect of priming condition is established for N2 amplitude, F(2, 30)
= 3.7, p < 0.05;ε = 0.91. N2 is significantly larger in the DT condition than in the CO condition
(-0.8 µV and 0.0µV; p < 0.05 according to Scheffe’s test). Both, the differences between DT and
TT and between TT and CO are not significant (p > 0.30). The interaction by electrode is not
significant, F(14, 210) = 1.8, p = 0.14;ε = 0.31.

P300 The analysis of P300 latency yields a significant main effectof priming condition,
F(2,30) = 4.3, p < 0.05;ε = 0.74. Scheffe’s test revealed that the P300 peak occurs in the TT
condition reliably earlier than in the DT condition (351 and361 ms,p < 0.05). The difference
of reaction times between DT and CO is not significant (p = 0.83), nor is the difference between
TT and CO (p = 0.10). The interaction by electrode is not significant,F(32,480) = 1.6, p =
0.16;ε = 0.20. Also for P300 amplitude, the main effect of priming condition is significant,
F(2,30) = 4.3, p < 0.05;ε = 0.78. As indicated by Scheffe’s test, P300 amplitude is reliably
larger in the CO condition (3.6µV) than in both the TT condition (2.9µV; p < 0.05) and the DT
condition (3.0µV; p < 0.05). TT and DT condition do not differ from each other (p = 0.95).

The main effect is further qualified by a significant interaction by electrode,F(32,480) =
4.5, p < 0.001;ε = 0.19. Since an a-priori hypothesis has been formulated based on the results
by Stahl and Gibbons (2007) and Gibbons (2009), regarding left-parietal predominance of prim-
ing effects on P300 amplitude (see section 4.2), planned comparisons between priming conditions
are performed for clusters of left parietal (P1, P3, P5, P7) and homologous right parietal elec-
trodes (P2, P4, P6, P8). Over left side parietal areas, P300 amplitude in the CO condition (4.3
µV) is significantly larger than in both the DT condition (3.6µV, t[15] = 4.1, p = 0.001), and the
TT condition (3.5µV, t[15] = 2.7, p < 0.05). By contrast, right parietal P300 amplitude does not
differ significantly for DT and CO (4.6 and 4.8µV, t[15] = 1.3, p = 0.22), and TT and CO (4.4
and 4.8µV, t[15] = 1.7, p = 0.11).

LPC For analysis of the frontal late positive complex at around 700 ms post-stimulus, the four
most anterior rows of electrodes are considered. The main effect of priming condition on LPC
peak latency is significant,F(2,30) = 10.1, p < 0.001;ε = 0.99. According to Scheffe’s test, LPC
peaks significantly earlier in the TT condition (711 ms) thanin both the CO condition (789 ms;
p < 0.01) and the DT condition (769 ms;p < 0.05). The difference between DT and CO is not
significant (p > 0.5). There was no reliable interaction between priming condition and electrode,
F(50,750) = 1.3, p = 0.20;ε = 0.17. Analysis of LPC amplitude determined as mean voltage
in a 200-ms window centered around the condition specific LPCpeak (see section 4.5) yields a
significant main effect of priming condition,F(2,30) = 13.7, p < 0.001;ε = 0.71. Scheffe’s test
reveals significantly larger LPC amplitude in the TT condition (3.6µV) compared to both DT (2.1
µV; p < 0.001) and CO conditions (2.8µV; p < 0.05). Also the difference between DT and CO
is significant atp = 0.05. The interaction by electrode is not significant,F(50,750) = 0.6, p =
0.66;ε = 0.09.

Given substantial blink activity at around (or, immediately after) the overt response (see fig-
ure 4.4, vEOG), it is necessary to ensure that the frontal LPCeffects are not merely due to dif-
ferences in vertical EOG activity between priming conditions. Mean EOG activity in the 550-750
ms interval (which is exactly the time window used for LPC amplitude analysis) is compared for
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CO and DT conditions. No significant difference was found, t(15) = 1.5,p = 0.16. To compare
CO and TT conditions, the time window had to be adjusted for the TT condition (500-700 ms)
to compensate for LPC latency differences, thus exactly matching the time window chosen for
the TT condition in the analysis of LPC amplitude. The t test is also not significant, t(15) = 0.4,
p = 0.68.

4.8 Discussion

The present experiment was designed to localize the negative priming effect in time and space by
means of electrophysiological correlates. Concerning theoretical explanations of negative priming
our main goal is to find evidence for two ERP correlates predicted from episodic retrieval. First, the
finding of left-posterior P300 amplitude reduction for DT and TT conditions compared to control
(Gibbons, 2009; Stahl and Gibbons, 2007) which may reflect the processing of prime-probe sim-
ilarity should be replicated in a completely different task. A second late conflict-related correlate
of negative priming which distinguishes the DT condition from both, TT and CO conditions was
expected, and may reflect the negative priming-specific processing of conflict between retrieved
prime information and information extracted from the probe. Only one such direct ERP correlate
of visual identity-based negative priming has been reported before, in terms of negative priming
specific amplitude enhancement of a left posterior, N400-like component (Gibbons, 2009).

Relative to other ERP studies using digit identification (Kathmann et al., 2006) or flanker tasks
(Gibbons, 2009; Stahl and Gibbons, 2007), a strong advantage of the present picture-naming task is
that it produces strong behavioral priming effects (see Titz et al., 2008). In the current study, mean
reaction time was delayed by 28 ms in DT trials and accelerated by 133 ms in TT trials, compared
to control. Because both TT and DT effects were sufficiently large, substantial differences in the
corresponding ERPs can be expected.

The observed ERP correlates of negative priming mainly concerned two components, P300
and frontal LPC. Two other findings were not followed up further: a small increase in DT of
the N1 latency by 4 ms compared to TT, which neither can account for the 28-ms behavioral
negative priming effect nor for the 161-ms reaction time difference between DT and TT conditions;
and a small N2 amplitude increase for the DT condition relative to control without significant
difference of DT and TT. Thus, in contrast to the studies by Daurignac et al. (2006) and Frings and
Groh-Bordin (2007), no significant negative priming specific effects on early ERP components
were observed which were assumed to support distractor inhibition. In the following, possible
explanations for the difference in P300 and LPC amplitudes depending on priming conditions and
their theoretical consequences are discussed in more detail.

The present study provides a successful replication of reduced left-posterior P300 in both DT
and TT trials by Gibbons and Stahl (2007) and Gibbons (2009).Since their Eriksen flanker task
is rather different from the present task employing overlapping objects, the convergent results
regarding priming effects on P300, even with respect to the left posterior scalp topography, are
all the more remarkable. Note that the present left posterior P300 effect was observed in a (300-
500 ms) time window, whereas Gibbons (2009) and Gibbons and Stahl (2007) analyzed an earlier
time window (300-400 ms). Given the mean reaction times of the present task (650-800 ms) and
the two earlier studies (500-650 ms), it seems likely that functionally the same processes were
involved in P300 reduction in both tasks. Therefore, following Gibbons (2009) we interpret TT
and DT related reduction in P300 amplitude as reflecting processes related to perceived prime
probe similarity corresponding to a retrieval cue according to episodic retrieval (Neill and Valdes,
1992; Rothermund et al., 2005).
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Repetition usually triggers larger ERP positivity (see Rugg, 1995, for an early review). How-
ever, the repetition effect typically has its maximum at around 600 ms, as opposed to the present
joint positive priming/negative priming effect on P300 around 400 ms. There are at least two other
striking differences between the present priming task and the repetition paradigm: First, in the
present experiment all stimuli are repeated over and over, whereas in repetition studies first and
second presentations of a stimulus are compared, with lags often ranging from many seconds to
several minutes. Second, unlike the present task repetition experiments do not involve selection;
typically, on each trial one single stimulus is presented. The present P300 component therefore
seems to be rather different from the later positive ERP components observed in ERP repetition
studies.

We did not find differences in P300 peak latency between DT andCO conditions, suggesting
similar speed of stimulus evaluation processes in these twopriming conditions. When the rel-
atively strong behavioral negative priming effect is considered, in line with Stahl and Gibbons
(2007) it can be argued that at least one additional process in the post-P300 time range has to be
assumed to explain behavioral negative priming.

The present study provides a basis for a consistent explanation of the reaction time differences
between priming conditions. We found a reduced amplitude and (qualitatively) delayed peak
latency of the frontal late positive complex (LPC) for the DTcondition, as well as increased LPC
amplitude and reduced LPC latency for the TT condition, bothcompared to control. The effects
were widely distributed over the anterior scalp, includingthe first four rows of electrodes (fronto-
polar to fronto-central). Note that LPC priming effects were analyzed between 500 and 700 ms,
but frontal ERP differences-to-control already started ataround 380 ms for TT and 520 ms for DT
(see figure 4.4). Given that mean reaction times ranged from 632 ms (TT condition) to 793 ms (DT
condition), the LPC effects may well reflect processes that were responsible for priming effects
on reaction time, and not merely consequences of the mean reaction time differences between
conditions.

Frontal brain activity is known to be particularly present in situations where an individual’s
behavior is not simply controlled by stimulus-response relationships, but requires careful selection
from different response options (see Ridderinkhof et al., 2004, for a review). One possibility is
to explain the present LPC differences in terms of the necessary amount of cognitive control.
Processes related to cognitive control are often observed as late range frontal ERP negativity in
situations of conflict processing (e.g. Krigolson and Holroyd, 2007; Lorist et al., 2000; West et al.,
2004; Yeung et al., 2004). Control processes should be strongest in the high conflict DT condition,
thereby reducing and/or delaying the ERP positivity that normally indicates the completion of trial
processing. In contrast, in the low conflict TT condition no strong cognitive control is required,
causing earlier and stronger ERP positivity.

Response retrieval theory (see section 2.4.3) can well explain negative priming in terms of
late processing conflicts. In case of TT trials, both prime response retrieval and probe processing
converge at the same response, which causes behavioral positive priming and, moreover, should be
accompanied by a very low conflict. No cognitive control is required. This can explain particularly
strong and early frontal ERP positivity in the TT condition,as positive ERP deflections typically
occur when mental resources are updated when they are no longer needed for ongoing information
processing.

In contrast, in the DT condition retrieval of the prime response and algorithmic probe processing
activate different responses. Cognitive control processes become necessary, resulting in late-range
frontal brain activation. This type of brain activity typically manifests in ERP negativity. Su-
perimposed on positive components indicating the completion of stimulus analysis, the negativity
is observed as an amplitude reduction or delayed latency (see Kok, 2001, for the general argu-
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mentation). In sum, the observed differences in frontal LPCamplitude between DT, CO, and TT
conditions are well in line with response retrieval theory.

A second explanation for the present LPC priming effects maydirectly refer to memory pro-
cesses. Mayr et al. (2003) and Mayr and Buchner (2006) observed negative priming related re-
duction of posterior LPC amplitude in the auditory domain. The authors interpreted their finding
as support for episodic retrieval mechanisms and argued as follows: familiarity of a stimulus
is reflected in larger posterior LPC, compared to novel stimuli. If however negative priming is
accompanied by reduced LPC amplitude, this may indicate that former distractor stimuli, when
repeating as targets in the DT condition, are in some sense less familiar than the novel targets
in the CO condition. This below baseline familiarity of negative priming targets may then result
in less efficient processing of these stimuli, causing the negative priming effect. In principle, a
similar mechanism may also be responsible for our frontal LPC reduction. The different topogra-
phies of the two effects might be explained in terms of modality differences (visual vs. auditory)
and/or differences in task demands (i.e. naming a visual object vs. classifying a sound by means
of a button press). Note that there is evidence in the literature that visual memory tasks indeed
may show frontal LPC effects (e.g. Hayama et al., 2008; Wilding and Rugg, 1996). The effects
on frontal LPC presented here are therefore well in line withthe assumption that familiarity of the
probe target in the TT condition is particularly high and that the familiarity of a recently ignored
target seems to be below baseline.

To conclude, there seems to be little evidence in the presentdata for an interpretation in favor
of distractor inhibition theory. According to the literature, persisting inhibition can be expected to
operate in the N200 time range (Daurignac et al., 2006; Frings and Groh-Bordin, 2007) where we
find no significant negative priming correlates. P300 amplitude is often understood as an index of
mental effort (e.g. Ullsperger et al., 1988; Kok, 2001). Thus, persisting inhibition as a cause for
negative priming would produce larger P300 amplitude for DTcompared to TT trials. Reduced
P300 amplitude in TT trials would reflect facilitation of processing due to persisting activation
of internal representations of the target stimulus. Increased P300 amplitude in DT trials would
reflect greater mental effort, as the activation of DT targets is still below baseline, due to persisting
inhibition. As noted earlier, this pattern of P300 amplitudes is not present in the current data.

Episodic retrieval therefore seems most appropriate to interpret our ERP correlates of negative
priming in a picture-naming task, as it can explain the reduced P300 amplitudes in both conditions
DT and TT, and the modulation of LPC amplitude. Prime-probe similarity which is reflected in
smaller P300 amplitude, may serve as cue for the retrieval ofprime information (Neill and Valdes,
1992). As explained above, the retrieved prime informationthen has opponent effects on further
processing in TT and DT trials. This is consistent with our observation that up to the P300 time
range ERPs do not reveal any major differences in the processing of DT and TT trials. Hence, the
present negative priming effect seems to originate at a later, post-P300 stage of processing.

A cautionary note concerns the fact that the three priming conditions relevant to the present
study (TT, DT, and CO) were randomly presented among other trial types not containing distrac-
tor objects. These trials were included to answer a separateresearch question not relevant to the
present study. Their presence, however, may have affected possible strategies used by the partici-
pants and, thereby, processes related to negative priming.For example, the frequent inclusion of
single-target trials may have increased the saliency of a distractor. We assume the target-only trials
to have strengthened the negative priming effect, which is consistent with the aim of the present
study, i.e. to increase the chance to find ERP correlates of negative priming by employing a task
known to produce strong negative priming.
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4.9 Conclusion

One of the two major results of our study, the smaller left-posterior P300 amplitude for DT and
TT trials compared to the CO condition, represents a conceptual replication of the results of Stahl
and Gibbons (2007) and Gibbons (2009) in a classical picture-naming priming task. Thus, the
processing of prime-probe similarity is important for visual negative priming in general and is
not restricted to a certain task. In addition, the reduced LPC amplitude in DT trials shows more
effortful processes related to cognitive control and memory retrieval. The present negative priming
effect on frontal LPC amplitude has been observed for the first time. It points to a specific feature
of the picture naming task, which is more difficult than e.g. the flanker task, and produces long
reaction times and strong behavioral negative priming effects. Both these aspects may provide
good conditions to identify late range ERP correlates of negative priming. Overall, our results
favor a retrieval-based explanation of negative priming.

4.10 Summary

Electroencephalographic recordings are a tool well suitedto assess the time course of negative
priming due to the high temporal resolution. The obtained EEG data is extremely noisy as the
signal common to all similar trials is embedded in the prominent and not stimulus locked ongoing
activity in the brain. Also geometric, biological and technical issues deteriorate the recorded
signal. The common way to deal with the bad signal to noise ratio is the averaging of the EEG
signal over all trials of the same experimental condition, after the data has passed some cleaning
routines. The differences of the obtained signals, the so-called averaged event related potentials,
are subject to interpretation according to their latency, amplitude and localization on the skull. Due
to the specialty of negative priming, not many EEG correlates of the effect have been identified so
far. Even between those few no clear picture can be drawn.

We presented a study that adapted a traditional picture-naming paradigm to EEG recordings.
We found a less positive P300 component in both DT and TT compared to control, which points
to a similar processing of trials which contain repeated stimuli at early stages. A distinction
between positive and negative priming, separated by the control condition as it is observed in the
reaction times, was present in the late positive complex, which indicates little cognitive control
for TT trials, intermediate effort for control trials and strong cognitive intervention in DT trials.
An interpretation in favor of retrieval theories is obvious, as they claim the resolution of a conflict
between current and retrieved information in DT trials. Anda benefit of the retrieved information
in TT trials.
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During the occupation with EEG experiments, we were unsatisfied with several aspects of tradi-
tional EEG analysis. As a side project we developed enhancedtechniques to extract information
from EEG data. As the resulting algorithms produce much moreprominent components than sim-
ple point-wise averaging, the benefit of our methods to access the time course of negative priming
is obvious. Nevertheless our methods are not yet sufficiently established to make accredited state-
ments about the processing in a negative priming trial. For this reason we call the current chapter
interludeand refrain from using the methods in the other chapters.

Our main complaint concerning the point-wise averaging of ERPs is the ignoring of the variabil-
ity of reaction times. Primarily later in a trial the variations cause different cognitive processes to
enter he average simultaneously. If we assume a common series of underlying cognitive processes
in all trials of one experimental condition, we should be able to adjust the time flow of the individ-
ual trials before averaging, such that similar processes are matched temporally when averaging.
We find that a natural assumption about processing speed yields a complex but nevertheless robust
algorithm for the analysis of electrophysiological data. Results from artificial and real ERP-data
show that our algorithm outperforms existing solutions.

We will point out the characteristics of EEG data in section 5.1 and derive realistic models
for event-related potentials in section 5.2. The main technique of our approach, dynamic time
warping, is reviewed in section 5.3. The recursive application of the technique is presented in
section 5.4. The obtained algorithm also provides a metric for event-related potentials which can
be used for clustering as described in section 5.5. An integration of additional time markers as
described in the next two chapters is also possible as shown in section 5.6. Finally we develop the
construction of the time warping function by the means of recurrence plots and show the resulting
performance in section 5.7. The present chapter appeared astwo successive contributions to the
conference IDEAL (Ihrke et al., 2008, 2009a) and was also part of a book on coordinated activity
in the brain (Ihrke et al., 2009b). The presented algorithmsare available for download from the
project pagehttp://libeegtools.sf.net.

5.1 EEG Analysis in Cognitive Research

In electroencephalographic (EEG) data, noise levels of−25 dB are standard (Flexer, 2000), and
for electromyography (EMG) or functional magnetic resonance imaging (fMRI) the situation is
similar. The arising problem of the recovery of relevant information from such data has been
dealt with extensively (Whalen, 1971; Castleman, 1996). Itseems reasonable to exploit intrinsic
structures in the data, i.e. to identify patterns in the datathat reoccur under specific conditions,
e.g. at the onset of a stimulus or in relation with other events in the course of the experiment.

A straight-forward solution consists of averaging single trial event-related potentials (ERPs) in
order to obtain an averaged ERP (AERP) that is expected to be comparable across different ex-
perimental setups (Picton et al., 1995), see chapter 4. The reliability of the AERP allows in turn
the identification of characteristic features of the time course of the signal such as the latency
and amplitude of major minima and maxima. We will discuss a number of algorithms which are
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theoretically justified, and have proven useful in an experimental project (Ihrke, 2008). System-
atic changes in the AERP components between different experimental conditions are consistent
with the hypothesis that ERP components reflect stages of information processing in the brain.
The idealized noise-free ERP represents the signal of interest, whereas variability across trials is
considered as noise. We assume the EEG signal to comply with the following:

1. It contains relevant aspects of neural activity.
2. Task-specific activations form a significant fraction of the EEG signal.
3. The brain solves similar tasks in a similar way.

The signal can thus be defined as a minimal variance curve within the data set obtained for many
repetitions of the same task. The axioms imply that variations due to external conditions should
be excluded, and that the external conditions and even the state of the subject should be kept as
constant as possible for all trials. Yet, data mining techniques reveal that for comparable data only
a fraction of 60% of the pooled epochs contribute to the AERP waveform while the other 40% just
increase the variance (Haig et al., 1995).

Thus, it cannot be decided unambiguously whether the variability of the ERPs is caused by the
stochastic nature of the underlying neural dynamics or by the application of different strategies to
a task. The comparison of two single trial ERPs and their AERP, see figure 5.2, points already to
a basic problem: Simple averaging will particularly deteriorate late components of the ERP which
makes their interpretation difficult, see figure 5.3.

5.2 Models for Event-Related Potentials

In psychological studies, the signal-to-noise ratio (SNR)of EEG data is typically enhanced by
combining data epochs in a pointwise average

〈si(t)〉i =
1
N ∑N

i=1 si(t) i = 1, . . . ,N. (5.1)

Heresi(t) is the measured signal in triali = 1, . . . ,N at timet. The signal-plus-noise (SPN) model
(Truccolo et al., 2002) or fixed-latency model (de Weerd, 1981) underlying the point-wise average
assumes the following.

1. Signal and noise add linearly.
2. The signal is identical in all trials.
3. Noise is a zero-mean random process drawn independently for each trial.

Assuming additive noise of zero mean, i.e.〈ε(t)〉 = 0, we can represent the data by

si(t) = s0(t)+ εi(t), (5.2)

wheres0(t) denotes the signal that is to be recovered froms(t). Under the above conditions the
pointwise average is an unbiased and optimal estimate in themean-square error sense. It has been
argued on theoretical grounds, that an improvement beyond pointwise averaging is not possible
if no a priori knowledge about the characteristics of signaland noise is given (Nagelkerke and
Strackee, 1979).

The validity of the SPN model is challenged by the analysis ofthe residualsζavg
i obtained by

subtracting the mean from the raw data

ζavg
i (t) = si(t)−〈si(t)〉i , (5.3)
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which is expected to be just the noiseεi(t). The fact that the repetition of a task is typically ac-
companied by coherent ongoing neural activity (Truccolo etal., 2001) can be analyzed as follows.
Given the SPN model,ζavg

i should not contain any event-related modulation because the noise is
assumed to be independent and identically distributed. Therefore, statistical coherence measures
such as the autocorrelations

(ζavg
i ⋆ζavg

i )(τ) =
Z

ζavg
i (t)ζavg

i (t + τ)dt (5.4)

and the spectral densities

PSD(ζavg
i ) = F {ζavg

i ⋆ζavg
i } (5.5)

computed onζavg
i should not show any event-related modulation (i.e. a flat spectrum and cross

correlations that behave like aδ function are to be expected). Empirical evidence shows thatthese
assumptions are violated for real data (Truccolo et al., 2001, 2002), see an analysis of data from
our experiment described in chapter 4 shown in figure 5.1.
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Figure 5.1: Coherence measures computed on residualsζavg. (a) The varianceσ2 over trials shows
event-related modulation for the residuals after subtracting the average. Given the
SPN model, we expect a flat curve as obtained from computingσ2 on the single-
trial denoised residualsζden

i . (b) Crosscorrelation computed on the residuals for a
sample trial. Again, unexpected (from SPN) correlations show up for ζavg

i whereas
the function approximates aδ-function for the denoised single trial residuals.

Extending the SPN model, the variable latency model (VLM) (Woody, 1967) introduces a trial-
dependent scaling factorαi and a time lagτi

si(t) = αis0(t + τi)+ εi(t). (5.6)

One possibility to obtain the time lagsτi is the maximization of the crosscorrelation

τi = argmax
t

(〈si〉i ⋆si)(t) (5.7)

between the data and the pointwise average〈si〉i . After the shift according toτi, the data can
be interpreted by the SPN model. However, in an empirical evaluation of analytically derived
predictions of this model, patterns that are not consistentwith the predictions were found (Truccolo
et al., 2002). Therefore it is reasonable to go back to Ciganek (1969), who already showed that the
intertrial variability of the evoked potential can go beyond the simple time shift. A more general
model for order-preserving time warping of the data is givenby

si(t) = αis0(φ−1
i (t))+ εi(t), (5.8)
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5 Interlude: Advanced EEG Analysis

whereφi are monotonous functions that map the time scale of the individual trials to that of a
template. The functionsαi > 0 determine the local scaling of the curve. The advantage of this
variable-components-plus-noise model (VCPN) is illustrated by figure 5.2. The VCPN model (5.8)
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0

10

µV

ms

Figure 5.2: Smearing of components in the simple average (black dashed)due to temporal vari-
ance. Two input signals (gray curves) were simulated according to the model in equa-
tion 5.8. An averaging procedure incorporating temporal variance (red) .

takes into account temporal variations of the individual signals in addition to differences in scale,
and is thus able to identify systematic distortions due to single-trial fluctuations that otherwise are
averaged out.

We use two datasets, one containing artificial data the otherone consisting of real EEG data.
Real data reported in this chapter is taken from the study reported in chapter 4. The artificial data
was generated according to the VCPN model introduced in equation 5.8.
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Figure 5.3: Real data ERPs for 150 trials (color coded) and their average(bottom). With growing
number of trials (i.e. time spent in the experiment) the shape of the ERP is subject to
changes. E.g. while the P2 is very pronounced for the first 50 trials, its amplitude is
decreased later. The N2 amplitude decreases over time and ismissing completely in
some trials. A general shift in the pattern with growing number of trial is observable
(P2/N4 amplitude).
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5.3 Dynamic Time Warping

For any two trialssi andsj , we express the problem of optimizing the individual warping func-
tion φi→ j in terms of an energy function

E(φ) =

Z

|si(φi→ j (t))−sj(t)|
2 dt. (5.9)

Minimizing equation 5.9results in the functionφi→ j, opt such that the difference between the
warpedsi andsj in Euclidean distances is minimized.

5.3 Dynamic Time Warping
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Figure 5.4: Dynamic time warping. (a) Optimal pathpi through the cost-matrixD jk for two
signals (black curves) from (b) and (c). Note the different scales of the x and y axis.
(b) Illustration of DTW matching corresponding points insi andsj . (c) An average
produced by ADTW (red).

Dynamic time warping (DTW), see figure 5.4, will be shown to provide a distance measure
that directly implements our assumptions. The method was first used in speech analysis (Myers
and Rabiner, 1981), appears to present a more suitable approach to EEG analysis. DTW aims at
matching two trial time courses onto one another, see figure 5.4b). First, a pointwise dissimilarity
measure between two signalssi ,sj is defined

d(si(ti),sj(t j)) := |s̃i(ti)− s̃j(t j)|+ |s̃i
′(ti)− s̃j

′(t j)|, (5.10)

where

s̃(t) := (s(t)−〈s(t)〉t)〈s(t)
2〉

−1/2
t (5.11)

is the normalized signal ands′ the first derivative ofs. The distance (5.10) gives rise to derivative
DTW (Keogh and Pazzani, 2001) because it is based on amplitude and slope of the signal.

An optimal mapφi→ j,opt is determined by a pathpk that satisfies recursively

if pk = (l ,m) thenpk+1 ∈ {(l +1,m),(l ,m+1),(l +1,m+1)} (5.12)

and minimizes the sum over the corresponding elementsdlm of the dissimilarity matrix (Picton
et al., 1988)

dlm = d(sk(l),sk(m)). (5.13)
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5 Interlude: Advanced EEG Analysis

This path can be found by backtracking through the cumulatedcost matrix

Dlm = dlm +min{Dl ,m−1,Dl−1,m,Dl−1,m−1}, (5.14)

i.e. via the minimum of the downward, right, and down-right neighbors, fromDL,M to D1,1. The
final elementDL,M constitutes a measure for the dissimilarity of the two curves based on their
overall shape, due to the cumulation.

In order to recover the original signal, we use the obtained path to simultaneously average two
trials in time and amplitude by

(

t̂

ŝ

)

=

(

1
2[ti + φ(ti)]

1
2[si(t(i)+sj(φ(ti))]

)

(5.15)

and find the required sampling points by linear interpolation. N signals are averaged by subsequent
application of (5.15) to trials randomly drawn from{1, . . . ,N}.

It is further possible to introduce constraints on the DTW method that penalize path deviations
(Picton et al., 1995) from the main diagonal, thereby reducing the bias on the cost of an increased
variance. Before applying the DTW algorithm, it should be ensured that trials are sufficiently
similar to each other, e.g. by applying time warping only within distinct clusters, see section 5.5.
In the next section, we propose to apply external time markers that can act as an objective reference
for trial matching and advanced averaging.

5.4 Pyramidal Averaging Dynamic Time Warping

For N trials, a straightforward solution proposed by Picton et al. (1988) is to simply combine
pairs of single-trial ERPs using ADTW. In a next step, pairs of the results from this combination
can be averaged again and the entire process iterated until only one average is left. We proceed
recursively, namely

DADTW{s1, . . . ,s2N}(t) = DADTW {DADTW {s1, . . . ,sN} ,DADTW {sN+1, . . . ,s2N}}(t). (5.16)

An extension of DTW incorporates information about latencyvariability by hierarchically
choosing pairs of similar trials before averaging. The cumulated path coefficient obtained from
DTW is used as a measure for the dissimilarity of two time courses, see figure 5.6. Select-
ing the minimum element from the resulting difference matrix ∆i j = DTW{si ,sj} by (i, j) =
argmin( j,k) ∆ jk. Now the minimal-dissimilarity trials are combined and rowi and columnj are
removed from∆ jk. This procedure is iterated until the matrix is empty. The complete process
is repeated with about half the number of pairwise averaged trials. The entire tree-like process
is continued until all trials are merged. We refer to this method as pyramidal ADTW (PADTW)
because of the successive subdivision of the set of trials. For realistic data, the procedure performs
substantially better than the DTW algorithm described in the last section, see figure 5.5 and (Ihrke,
2007).

5.5 Trial Clustering for Cleaner Averages

Unsupervised classification techniques can help to identify ERPs that were generated by distinct
processing mechanism in the brain. The temporal variance introduced in this way, however, is not
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5.6 Enhancing Averaging by Integrating Time Markers
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Figure 5.5: Comparison of the traditional point-wise average and the PADTW algorithm for real
data. Notably PADTW does not flatten late components, but still shows pronounced
peaks. It also shows fast oscillations which are not present. Experimental validation
has to show whether the oscillations are present in the data,or if they are produced by
the attempt of PADTW to match peaks in the noise of the signal.

resolved by the VCPN model, equation (5.8). Averaging techniques should therefore be applied
selectively to trials within distinct clusters.

Selective averaging schemes use only specific episodes for averaging (Basar et al., 1975) in
order to exclude artefacts such as muscular activity. In order to reduce visual inspection of the
data it is possible to assist the selection process by clustering (Lange et al., 2000). An inherent
problem of any clustering algorithm is the decision about a sensible number of clusters. If a
specific experimental design allows a theory-driven estimate of that number it is of course to
be preferred. Otherwise, strategies based on within-cluster scatter coefficients can be applied
(e.g. Tibshirani et al., 2001).

5.6 Enhancing Averaging by Integrating Time Markers

Some experimental setups suggest an alignment of the data with respect to response markers,
i.e. instead of stimulus locked (sERP) now response locked (rERP) ERPs are used. If such in-
formation is available then a more reliable time order is achieved for the effects, in particular
relatively late after the stimulus. Gibbons and Stahl (2007) propose to stretch or compress the
single-trial signals in order to match the average reactiontime by moving the sampling points in
time according to a temporal low-order power law.

From this formulation, it follows naturally that not only two but arbitrarily many time-markers
can be integrated to guide the formation of the average. Thisapproach has been used in (Ihrke,
2007), where the onset of an eye movement served as an additional marker.
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Figure 5.6: Cluster analysis of denoised single-trial ERP data. (a) Twotemplate trials were used
to derive the single-trial instances in (b) according to equation 5.8. (c) Heat map based
on Euclidean distances, (d) same for DTW. While the DTW metric correctly classifies
all trials to be generated by one of the templates in (a), the Euclidean fails to do so in
several instances.

5.7 Recurrence Plots to Obtain the Warping Function

We propose to utilize recurrence plots (Eckmann et al., 1987), a tool from nonlinear dynamic
system theory, to minimize equation 5.9 and synchronize single-trial ERP data.

5.7.1 Recurrence Plots

Recurrences, i.e. points in state space that are visited more than once, are fundamental characteris-
tics of many dynamic systems, ranging from the financial market to epidemics and brain dynamics
(Marwan et al., 2007). In order to visualize and quantify such recurrences, Eckmann et al. (1987)
introduced the notion of recurrence plots. Considering a general dynamic system

d~x(t)
dt

= ~f (~x(t))

its recurrence plot is defined as

R~x(t1, t2) = Θ(ε−||~x(t1)−~x(t2)||) (5.17)
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5.7 Recurrence Plots to Obtain the Warping Function

whereΘ is the Heaviside step function. That means,R~x is a binary matrix, that is equal to one
whenever the transition in phase-space approaches a previously visited point and falls within an
ε-ball of the previous vector. Such a plot (e.g. figure 5.10a) provides the educated observer with
a powerful facility to assess important properties of the underlying system (e.g. stationarity, cycli-
cism, laminar states; see Marwan et al., 2007, for a review).

In previous studies, recurrence plots have already been applied to ERP-data analysis (Marwan
et al., 2007; Jeong et al., 1998; Marwan and Meinke, 2004) butmostly in order to make statements
about the nature of the underlying dynamic system in the brain. In the current work, we propose to
use a detection of the line-of-synchrony based on cross-recurrence plots to synchronize individual
trials prior to averaging, thus reducing the bias due to timing variability of the curve.

5.7.2 Phase-Space Reconstruction

In empirical studies, it is almost always impossible to directly measure the different variables
of a dynamic system. For example, it is impossible to simultaneously record the activity of all
nonlinear devices (i.e. the neurons) that produce a recorded EEG-potential. The only access to the
dynamics of the system is therefore the time-series of the EEG. Packard et al. (1980) has shown
that reconstruction of the phase space vectors~x(t) is possible using the time delay method, where

~x(t) =
m

∑
j=0

s(t − jτ)~ej (5.18)

~ej being the unit-vector inj-direction. However, this method is strongly dependent on the choice of
the embedding dimensionmand the time-lagτ (which is often chosen as a multiple of the sampling
time ∆t). Finding an optimal choice for the two parameters is not trivial and has been subject
to intense research (Kennel et al., 1992; Fraser and Swinney, 1986). We use the false nearest-
neighbors method proposed in (Kennel et al., 1992) to find theminimal embedding dimensionm_

where “false” neighbors (due to a too small embedding dimension) are detected using the fact that
they disappear when going fromm to m+ 1. We applied this method to our data and estimate
m_ = 10 from figure 5.7a, which is similar to earlier results for ERP data (Jeong et al., 1998).
To estimate the time lagτ, we use an information theoretic approach (Fraser and Swinney, 1986)
where the first local minimum of the mutual information serves as the criterion to determine the
time lag, see figure 5.7b.

Finally, the neighborhood criterionε from equation 5.17 needs to be determined. We apply
a fixed amount of neighbors (FJARN) criterion in order to determine ε on a per-point basis for
each of the pointst on the trajectory (Marwan et al., 2007). That means, thatε(t) is determined
such that each point has the same amount of neighbors. This has the advantage of eliminating the
impact of scale difference in the applied curves such that nonormalization of the amplitudes is
necessary.

5.7.3 Line-of-Synchrony Detection in Cross-Recurrence Pl ots

An extension to recurrence plots are the so-called cross-recurrence plots (CRPs) in which two
signals are simultaneously embedded into the same phase-space (Marwan et al., 2007). Therefore,
equation 5.17 is modified as

~C~x,~y(t1, t2) = Θ(ε−||~x(t1)−~y(t2)||), (5.19)
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(a) (b)

Figure 5.7: (a) Percentage of false nearest neighbors (ANN) as a function of embedding dimen-
sion m. After m = 10, no false nearest neighbors are detected. (b) The first local
minimum of the mutual informationI estimates the time-lagτ (first zero-crossing of
the first derivative ofI ).

where~x and~y are the phase-space trajectories of the two signals. It has been shown, that CRPs of
similar signals with varying time-scale, show a “distortedmain diagonal”, the line-of-synchrony
(LOS), that can be extracted and used for resynchronization(Marwan et al., 2002).

This approach has been applied to geological data (Marwan etal., 2002) and could be shown
to yield results comparable to manual tuning. The algorithmused in this study applies a growing
window strategy, where a window is set around a detected recurrence point that grows inx or
y direction until no more recurrences are found. The method isparameterized bydx anddy, that
indicate the maximum size of the window inx andy direction, respectively. It has been shown, that
this algorithm works very well in a setting where only minor deviations from the main diagonal are
expected. However, applying the method to EEG-data is a somewhat more delicate undertaking,
because (i) the initial SNR is extremely low, (ii) the temporal variability can be quite large (Ihrke
et al., 2008) and (iii) the underlying signal can be different. In behavioral experiments, huge
variations in reaction times are observed (Schrobsdorff etal., 2007a) that are not even one order of
magnitude less than the mean reaction time. Given that the reaction times mirror the same state of
the brain in two trials, a significant temporal distortion ofthe signal has to have taken place. We
therefore propose a new and more flexible algorithm for determining the line-of-synchrony and
evaluate it in comparison to Marwan et al.’s method (Marwan et al., 2002).

For illustrative purposes, consider the example already treated in (Marwan et al., 2002), where
the recurrence plot of two sines that differ in their time-scale

f (t) = sin(t) and g(t) = sin(t +asin(t)) (5.20)

is investigated. Via parametera, it is possible to manipulate the amount of distortion of theLOS
as illustrated in figure 5.8. While the algorithm from (Marwan et al., 2002) works well to extract
the LOS in case of low distortion (a = 0.3, figure 5.8a), parameterization is difficult and produces
errors for medium distortions (a = 0.9, figure 5.8b) and we failed completely to find working
parameters for strong distortions (a = 1, figure 5.8c). A problem with the parameterization of
the algorithm is its dependence on the characteristics of the recurrence plot. Our alternative, an
unparameterized algorithm presented in the next paragraphs successfully extracts the LOS in all
settings (figure 5.8, red curves).
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(a) (b) (c)

Figure 5.8: The recurrence plot of two sine functions sin(t) and sin(t + asin(t)) is shown for
different values ofa. The algorithm by Marwan et al. (blue curves) works well for
small distortions (a), is hard to parameterize for medium distortions (b) and fails for
strong distortions (c). Our parameterless algorithm (red curves) correctly tracks the
LOS in all cases.

5.7.4 An Algorithm for Line-of-Synchrony Detection

In the following, we compare the performance of two trial-registration methods based on the CRPs,
the method introduced in (Marwan et al., 2002) and a method toestimate the functionφ with the
smallest number of non recurrences and the shortest path-length.

We propose to directly optimize the amount of recurrences while simultaneously preferring the
shortest possible path. Letφ′ be the first derivative ofφ, then we seek to simultaneously minimize
the line integral over the cross-recurrence plot (i.e. the number of non recurrences)

Z

T

~C~x,~y(t,φ(t))
√

1+ φ′(t)2 dt (5.21)

and the length of the path
Z

T

√

1+ φ′(t)2 dt. (5.22)

When dealing with binary matrices~C~x,~y, there are many possible solutions for minimizing equa-
tion 5.21 because in a neighborhood containing zeros, it is arbitrary which path is taken. We there-
fore use equation 5.21 to restrict our search space and then look for the shortest of these paths.
In practice, we solve these minimizations by a single application of the dynamic time-warping
algorithm.

In our case, application of DTW to the binary matrix 1− ~C~x,~y(t1, t2), wheret1, t2 ∈ {i∆t|i =
1, . . . ,n; i∆t ∈ T } results in the warping function minimizing the number of non-recurrences along
the way, i.e. minimizing equation 5.21. As stated above, there is more than one solution to this
minimization since the cost is not influenced by additional zeros along the path. To impose the
path length criterion from equation 5.22, we modify the recurrence matrix that enters the DTW
algorithm

dt1,t2 = (1−~C~x,~y(t1, t2))+ ε (5.23)

whereε is uniformly distributed, uncorrelated, positive noise ofan amplitude much smaller than 1
(in our simulations, we usedε ∝U (0,0.01]). There are two effects of this added noise component:
First, sinceε > 0, we add a penalty to ensure that the length of the path is taken into account. Sec-
ond, we remove the arbitrariness that the algorithm encounters when choosing among three equal
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(a) (b) (c) (d)

Figure 5.9: Illustration for the proposed algorithm. (a) The CRP for twosine-functions sin(t) and
sin(t + asin(t)) and (b) the modified distance matrix with added noise (exaggerated)
are shown. (c) The matrix is cumulated (DTW) and used to recover the distortion
function (d).

(a) (c)(b)

time (ms) noise strength

Figure 5.10: (a) Recurrence plot for two trials from the artificial dataset and the LOS calculated
according to the two methods from above (m= 10,τ = 6,dx = 25,dy = 25). (b) The
raw data (gray) and the averaged curves for each algorithm. (c) The error∆(φ, φ̂)
(see text) averaged over 20 realizations is plotted as a function of noise-level (m=
10,τ = 10,FAN = 20).

values in the backtracing stage. For illustration, consider again the two sines from equation 5.20
in figure 5.9, where we plot the subsequent steps of the algorithm.

5.7.5 Results

In order to compare Marwan et al. (2002) and our algorithm, weplot the recurrence matrix, the
extracted line of synchrony, see figure 5.10a, and the averages, equation 5.15, using these distortion
functions, see figure 5.10b. The function correctly identified by our method improves the shape of
the average (i.e. its shape is closer to the underlying signal) while a non-optimal path adds further
distortions rather than recovering the original signal. Because we directly construct the distortion
function for the artificial data, we can define a distance measure ∆(φ, φ̂) that, for each point in
the recovered̂φ, returns its distance to the closest point in the real distortion functionφ. Because
we encounter high noise-levels in realistic settings, it isimportant that the algorithms are stable
against noise. We present in figure 5.10c the result of comparing both algorithm with varying
noise-level. Our method (red) performs significantly better in this task but both algorithms are
relatively stable with respect to the level of noise in the data.

Finally, we show examples for the temporal averaging based on the extracted LOS. In fig-
ure 5.11a, the shape of the original signal can be fully recovered even from very noisy data (gray
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Figure 5.11: (a) The template from which the artificial data was generatedis recovered by our
method (red) while the conventional average (blue) fails toproduce some of the
peaks. (b) Real ERP-data from 134 trials at electrode location CPz. Our resyn-
chronization method shows more pronounced and better localized peaks (e.g. P300).
Embedding parameters werem= 10,τ = 20,FAN = 100, time-scale of single trials
was transformed for plotting according to the described algorithm.

curves are single trials). In contrast, the conventional pointwise average (blue) washes out some
of the peaks.

The data presented here was taken from the priming experiment described in chapter 4. We
applied a bandpass filter with cutoff frequencies 0.5 and 20 Hz before data analysis. The results of
applying our method to the data is exemplified in figure 5.11b.Our average produces pronounced
peaks in the expected time window (e.g. P300) that are bettervisible and more tightly localized in
time than when using conventional averaging.

5.8 Summary

Traditional averaging procedures upon which the entire field of event-related potential research
is relying have certain drawbacks, we addressed in the current chapter. We clarified the situation
by the formulation a few assumptions on EEG signals: the signal of interest is contained in the
recorded time trace, the task-specific activations are a significant amount of the signal and cog-
nitive processes are in some way stereotypical, such that there is a common part in the signal of
similar trials. Based on these assumptions we show how more sophisticated analysis methods can
be derived.

In order to robustly extract meaningful signals from noisy electrophysiological data, averaging
over many similar trials is unavoidable. The nature of thesedata sets, i.e. correlations between
electrodes, clustered time courses across trials and priorknowledge from the design of the experi-
ment, suggests a number of more complex procedures for cleaning data and enhancing the quality
of the signal.

We introduced our open source project, an algorithm toolboxlibeegtools providing mecha-
nisms to enhance averaging of trials of a certain experimental condition. It is possible to reduce
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the variablity of the data by allowing for variable internalprocessing speeds. If two trials produce
different reaction times, their processing must also have taken a different timecourse, thus a simple
averaging does not comply with the situation. Our methods identify the relative temporal differ-
ence in processing and uses the information in the averagingof both trials. The identification of
the required time warping function can be done by an adaptation of the concept of recurrence plots.
As a side product we develop a metric which can successfully be used to cluster trials according
to their timecourse of processing. Our algorithms can successfully be applied to artificial and real
ERP-data significantly improving the quality of event related potentials compared to the traditional
point-wise average. But the specific application to EEG datadoes not limit the generality of the
approach which may as well be used for other imaging techniques.
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6 Perception or Selection Effect

The third mainstay to temporally localize the negative priming effect are experimental paradigms
that divide trial processing into several parts which can each be measured separately, as presented
in the current and the following chapter. By assuring that the subtasks have to be accomplished
in serial manner we can assign temporal differences in the processing of a certain experimental
condition to specific parts of the trial.

The aim of the present study is to single out the stimulus identification phase from an experi-
mental trial. The question whether negative priming is produced in the identification phase or in
the phase of selecting the target over the distractor is believed to be crucial for the distinction be-
tween memory based or representation based theories. The former assume a conflict in the target
selection phase and the latter like Distractor Inhibition,see section 2.4.1, or the ISAM, chapter 3,
assume interferences already in an early stage of a trial. Werealize the trial splitting by showing a
color cue indicating which of the two objects to attend afterthe two objects already disappeared.
Both objects have to be considered first, and afterwards the target has to be selected from memory.

We will describe the current experiment in section 6.1 whichwill also cover an introduction of
the side effects to be expected when introducing a task switch as well as the extension of the set of
experimental conditions. The hypotheses in section 6.3 arepartly generated by a simulation of the
ISAM. The necessary adaptations of the implementation are presented in section 6.2. To obtain
comparability of the obtained results with previous studies, we run two preparatory experiments
which are given in section 6.4. Section 6.5 is devoted to the presentation of the final post-cue
experiments which will provide two individual reaction times for the two phases of each trial,
stimulus identification and target selection. Finally all experiments of the study are discussed in
connection in section 6.6.

6.1 Task Switch Paradigm

We realized the division of the trial processing by introducing a task switch dimension into the
voicekey paradigm seen in section 2.2. The basic idea is thatif the subject is given a color cue
indicating the target after the presentation of the two stimulus objects, no information regarding
which of the two shown objects is to be selected is available as long as the stimuli are visually
present. Therefore, a complete identification of both objects is required before the trial can proceed
by showing the color cue.

Additionally, the design brings along several difficulties. The most prominent one is the dimen-
sion of task switching which is known to produce large behavioral effects (Monsell, 2003). We
will discuss the impact of task switching to our paradigm in section 6.1.2 after the introduction of
our series of experiments in the following section.

6.1.1 Sequence of Experiments

Our final goal in the current series of experiments is the extraction of processing times of the stim-
ulus identification phase of a negative priming trial. The introduction of the target color cue brings
along unwanted side effects. To best control and monitor thechanges in the paradigm, we prepend
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two experiments. The first one surveys the differences between a response to a red target or to
a green one by showing one block with red-target trials and a second one, separated by a break,
where targets are green. Supposedly responding to a red target is faster, as red is generally more
salient to humans. The issue is important, as the relative saliency between target and distractor
is suspected to affect priming effects, see section 3.3.3. The second pre-cue experiment assesses
the impact of the task switch dimension on priming effects inthe usual processing of a negative
priming trial. We present a color patch previous to the stimulus objects. Any modulations in the
priming effects can then be attributed to task switching.

Finally we make the step to the post-cue experiment, which alters the way of presentation by
exchanging the order of cue and stimuli such that while the stimuli are shown, no information
is available as to which one of the two will be target. Therefore, subjects have to identify both
objects in the stimulus identification phase. Time markers are recorded at trial onset, the subject’s
button press that changes the display from stimuli to cue andfinally the response. We label the
reaction time in the stimulus identification phaseRsi and the one in the target selection phaseRts.

6.1.2 Task Switch and Negative Priming

The current series of experiments is primarily designed to reveal the temporal localization of the
different priming effects by segmenting the trials as described above. As such, a differentiation
is only possible if the current target is not known to the subject during the stimulus identification
phase. Thus we introduced a target color switch to our voicekey paradigm. Even if the task for
the subjects ("name as fast and accurately the object of the color you will see after a button press
that also eliminates the stimuli from the display") is constant over the entire post-cue experiment,
the possibility of a target color switch can trigger to some extent effects that have been investi-
gated under the label of task switching (for a review see Monsell, 2003). Task switching is usually
considered by interchanging rather different tasks. Nevertheless, the very similar tasks we imple-
ment in the current experiment are also suspected to producetask switching phenomena. Negative
priming has already been mixed with a task switch, but the switch happened in the dimension of
response (word reading vs. picture naming) rather than in the specific feature as in our case (nam-
ing green or red picture, respectively). Waszak et al. (2005) shows overlaid pairs of a word and
a picture. A cue tells the subject whether to respond to the word or to the picture every two tri-
als. The switches occurred alternatingly and were therefore predictable. Nevertheless, as Monsell
(2003) reports, predictable switches also cause switch costs, i.e. reaction time differences between
switch and non-switch trials. Unfortunately, Waszak et al.(2005) focus on the reoccurrence of
identical word-picture pairs later in the experiment and compare the reaction times separately for
switch trials (directly after a cue) or non-switch trials (before the next cue). No analyses of the
interaction between two directly successive trials as we are interested in are possible due to the
special stimulus sequence.

When dealing with task switch experiments, two effects of the switch are present. The first one,
called global switch costs is a general slow-down of the meanreaction time in a task heterogeneous
block compared to a block which always requires the same task. Within one heterogeneous block,
where trials directly succeeding a task switch are slower than trials that repeat the task from the
preceding trial, the slow-down is labeled specific or local switch costs.

In a study that comes very close to the basic setting in the current chapter, MacLeod et al.
(2002) investigate differences in negative priming between words that are repeated and word pairs
from the same semantical category. Their design includes blocks with a change of the target color
between paired prime and probe trials and blocks where the target color stayed constant. In the
former case, a DT condition repeats the object of interest identically, the latter in a different color.
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The authors find a difference of approximately 70–90 ms between mismatch and match blocks,
which can be seen as global switch costs. Specific switch costs can not be determined from the
experiment, as a task switch block does not contain non-switch trials.

6.1.3 Condition Set

We opted for a comprehensive set of stimulus relations in thecurrent experiment, even if the main
focus of attention is still on the two conditions DT and TT. Ifonly CO, DT and TT trials are
presented, the probe target is repeated from the prime display in 2/3 of all trials, which biases the
subjects to make additional effort to keep track of the two items. Adding DD and TD trials to the
condition set balances the repeated object between being relevant and irrelevant in the probe trial.
A positive side effect is the broadening of the data of the tworepeated distractor conditions that
are only rarely surveyed. For each of the five priming conditions implemented in the experiment,
CO, DT, TT, TD, and DD, a task switch variant exists, see a summary in table 6.1. We label them
by appending the abbreviation SW.

prime display probe display

red green cue red green cue

CO A B � C D �

DT A B � B C �

TT A B � A C �

TD A B � C A �

DD A B � C B �

CO_SW A B � C D �

DT_SW A B � C B �

TT_SW A B � C A �

TD_SW A B � A C �

DD_SW A B � B C �

Table 6.1: The priming conditions of our task switch paradigm with one target and one distractor
in each of the prime and probe display and a cue for the target color respectively.

Note that the stimulus configuration is shared by a pair of conditions whereof one keeps target
color, the other one incorporates a task switch, i.e. a change of the target color. The follow-
ing pairs have an identical stimulus display: (DT&DD_SW), (TT&TD_SW), (TD&TT_SW) and
(DD&DT_SW). In our last experiment of the current chapter, we present the target cue after the
subject has pressed a button to announce a full identification of the two stimulus objects. Until
the cue is shown, the above condition pairs are indistinguishable. Only after the cue onset can the
processing diverge.

6.2 Task Switch and the ISAM

As the current series of experiments is based on the voice-key paradigm, we can easily derive
predictions about priming effects by simulations of the ISAM. For all implementational details
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see chapter 3. In order to make the simulation of a task switchparadigm with the ISAM possible,
we had to extend the model by a task variable. Additionally, the factor in the calculation of the
global activity level ¯x which drives the threshold has become a parameter as it is paradigm specific.

6.2.1 Extension of the ISAM

In the implementation of the ISAM given in chapter 3, the target input rises with rateξ. We now
introduce two variables that hold the evidence for responding to one of the two colors. Whenever
a color cue is presented, the corresponding variable is driven by exponential dynamics to its max-
imum ξ̂ = ξ, see equation 6.1 and 6.2. As we have a two alternative forcedchoice situation, the
two tasks, to respond to the red or green object respectively, are complementary. They always add
up to the maximum target amplification rateξ̂. Therefore,ξred andξgreencan be seen as cumulated
evidence or probability for one of the two alternative tasks, whereξ̂ is the level of certainty.

If a cue is presented, the task variables adapt with time constant τ to their fixpointsξ̂ and 0,
respectively. The time constantτ determines the global switch costs, i.e. the difference between
the overall mean reaction time in an experimental block without any task switch and the overall
reaction time in a task-switch block. For a green color cue,ξgreenandξred adapt according to

1
τ

dξgreen

dt
= ξ̂−ξgreen (6.1)

1
τ

dξred

dt
= −ξred. (6.2)

In between two trials of a task switch paradigm, the task variables relax with the same time
constant towards a baseline evidenceξ ≥ ξ̂/2 and(ξ̂− ξ) ≤ ξ̂/2 that slightly favors the former
task to account for specific task switch costs, see section 6.1.2. Assume a green cue in the former
task, gives the following dynamics. A preceding red cue would produce the opposite.

1
τ

dξgreen

dt
= ξ−ξgreen (6.3)

1
τ

dξred

dt
= (ξ̂−ξ)−ξred (6.4)

The resulting dynamics ofξgreen andξred is shown in figures 6.2 and 6.4 at the bottom. In the
presence of a cue, the task of the required target color risesto full evidence, suppressing the
opposite task. If the trial is over, both variables approacheach other, still having a certain offset
representing the tendency to assume the same task cue in the next trial.

The normalization factor of the activation mean ¯x, equation 3.10, that is the basis for the adaptive
threshold, is labeled byν.

x̄ = ν

(

rτ + rδ +
n

∑
i=1

(xτ
i +xδ

i )

)

(6.5)

Depending on the number of stimulus objects in a certain paradigm, ν can be adjusted to values
that allow for an accurate but fast decision on which object to respond to. Future extensions of
the ISAM could include a self-organization mechanism forν according to the current tasks of the
system.
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Figure 6.1: Object representation variables over 10 seconds of simulated time. Several different
priming conditions are shown. Red lines correspond to red objects, green lines to ob-
jects shown in green. Textures label object identity. The thresholdθ is shown in blue.
Note the slow rise of target and distractor activation as compared to e.g. figure 3.4
which causes the threshold to run only slightly below the distractor activation making
the model very sensitive.

6.2.2 Calibration

In order to produce realistic predictions, the ISAM is first subject to a calibration phase. We fit the
model such that it matches the priming effects of the study reported in section 2.2 to a satisfying
extent. Calibration is done manually by intuition and yielded the following parameter values: rsi
= 1000 ms,ζ = 0.0025, ξ = 0.0007, α = 0.004, β = 0.0018, γ = 0.003, σ = 0.845, ν = 0.64,
∆ = 25, a time step was 1 ms. Again as in chapter 3 we do not intend tomatch the particular
reaction times but merely the priming effects, as the simulation of the ISAM disregards perceptual
time lags and also delays due to motor commands and their execution. We also took the priming
conditions DTTD and DDTT of two repeated objects into account for the calibration phase to
obtain a most accurate behavior of the model. In the experiments we exclude those conditions
and instead consider the two conditions TD and DD where the repeated object is shown as a
distractor in the probe, see section 6.1.3. The simulation produced priming effects similar to those
in the mentioned experiment (to-be-fitted target effect in parentheses): DT -24.81 ms (-21.36 ms),
TT 34.77 ms (35.20 ms), DTTD -23.44 ms (-25.70 ms) and DDTT 49.10 ms (59.53 ms). A
comparison of the obtained reaction times and priming effects is given in table A.5, appendix A.4.
The simulation produced a very small TD effect of -4.91 ms andalso a weak DD effect of 6.70 ms.

The behavior of the model variables can be seen in figure 6.1. Acomparison with figure 3.4
or 3.5 shows the differences in the model behavior obtained by the calibrated parameter set and the
parameters we used for our simulations in chapter 3. We adjusted in the first place the sampling
rate, i.e. the simulated time step from 0.3 ms to 1 ms for convenience. But we also shifted the
point of target selection to an earlier phase of unsaturateddistractor activation by a slower rise and
decay of activation variables and a short delay in the dynamics of the thresholdθ.
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6 Perception or Selection Effect

6.2.3 Pre-Cue Simulation

We now take the parameter values derived in the last section and give in between the trials a color
cue which is subject to unpredictable change. The time course of the corresponding task values as
well as the response of the model system are plotted in figure 6.2. Note that the task variables start
to adapt to the appropriate values at 500 ms before the next trial starts, at the moment the color
cue appears.
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Figure 6.2: Simulation results for the pre-cue paradigm with the parameters determined in sec-
tion 6.2.2. The top plot shows the dynamics of representation activations and thresh-
old θ in blue. The bottom plot shows the time course of the two task evidence vari-
ables in units of̂ξ. Note that the six trials are perceptually identical to the six trials in
figure 6.1.

The results show a familiar pattern in the non-switch trials, see also table A.6 in appendix A.4.
The conditions DT and TD are delayed by 14.67 ms and 15.61 ms, respectively. TT and DD are
accelerated by 27.76 ms and 21.92 ms, respectively. The result pattern is very different in switch
trials, where DT_SW trials are largely accelerated, 32.82 ms, TT_SW is delayed by 13.87 ms,
TD_SW is 22.71 ms faster than CO_SW and DD_SW is again delayedby 14.78 ms. Overall, a
change of object color results in a slow-down, whereas the repetition of objects of the same color
leads to a faster response.

Even in the switch trials the tendency to respond faster to identically repeated stimuli is con-
served. It is much stronger than any priming effect stemmingfrom the role of an object as target
or distractor. The ISAM is a model where priming acts on a perceptual level. The global switch
costs of 33 ms are given by the difference between the mean of all reaction times (of the relevant
conditions: CO, DT, TT, TD, DD) of the baseline simulation ofsection 6.2.2, 498.50 ms, and the
overall mean of the pre-cue simulation of the no-switch trials, 531.54 ms. Remarkably, the spe-
cific switch costs taken from the control condition due to theoppositional reaction time differences
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Figure 6.3: Simulated reaction times in the pre-cue paradigm. Note the negative specific task
switch costs. A switch trial is faster than non-switch trials. The repetition of an object
in the identical color leads to an acceleration, while if therepeated object changes
color, the response is slower.

in the other conditions are negative. The CO_SW trials are onaverage 7.17 ms faster than their
non-switch counterparts. If the mean of all no-switch trials, again 531.54 ms, is compared to the
average of all switch trials 522.87 ms, a benefit for switch trials of 9.67 ms is still present.

6.2.4 Post-Cue Simulation

The ISAM solves the post-cue paradigm such that it first receives equal input by the two objects
of the stimulus display. If both the activations surpass thesensitivity valueσ, the objects are said
to be recognized and stored, such that their activation is persistent even after the display switches
to the color cue.

If we run a simulation with the parameter values derived in the calibration phase described in
section 6.2.2 on the post-cue paradigm, we encounter a problem we already know from investi-
gations of the dynamics of the ISAM in a setting with varying response stimulus intervals. The
adaptation of the threshold is too quick to accurately solvethe task of the post-cue paradigm.
The threshold shoots over both the target and the distractorrepresentation activation. To solve the
problem, we assume a mechanism that is able to adjust the threshold behavior to the particular task
demands. In the present case, the threshold is slowed by manually adjusting the following param-
eters toν = 0.55, γ = 0.002 and∆ = 50. With these parameter values, the threshold stays below
both relevant activations until the target color boost addsenough total activation to the system.

Note that both target and distractor activation rise similarly, separated only by their activation
values right at stimulus onset, see figure 6.4. Therefore, only perceptual issues of the probe trial
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Figure 6.4: Simulation run for the post-cue paradigm with the adjusted threshold parametersν =
0.55, γ = 0.002 and∆ = 50. The top plot shows the dynamics of representation
activations in red and green and different textures for different objects and threshold
θ in blue. The bottom plot shows the time course of the two task evidence variables in
units ofξ̂. Note that the slower adaptation ofθ does not lead to artifacts as the attempt
to respond before the cue appears.

can influence the first reaction timeRsi. A detailed listing of simulated reaction times, see fig-
ure 6.5, and effect strengths is given in table A.7. In summary, the ISAM predicts only slowing
effects of around 40 ms inRsi for the conditions that are subject to the forced decay if a probe
stimulus reappears with a different color, i.e. DT, TD, TT_SW and DD_SW. InRts, the above con-
ditions are again slowed, TD and DD_SW weaker than DT and TT_SW. The other four conditions,
TT, DD, DT_SW and TD_SW, are faster than the respective control condition with TT having the
strongest benefit.

6.3 Hypotheses

As already mentioned in section 6.1.3 we will mainly focus onthe analysis of priming effects in
the two conditions DT and TT, the classical negative and positive priming conditions. Therefore,
we only give hypotheses for further conditions, if a particular hypothesis also applies to other
conditions.

As denoted in section 6.2.1, the ISAM is able to generate detailed hypotheses for the current
series of experiments. For the pre-cue experiment, the ISAMpredicts a slow-down of about 14 ms
for trials where the repeated object changes color and a speed benefit of 20–30 ms for the condi-
tions TT, DD, DT_SW and TD_SW. The post-cue experiment is predicted to produce very large
slowing effects of about 70–95 ms distributed equally between the two reaction times in the con-
ditions with a perceptual switch, and a comparably weak positive effect of 18–27 ms which is
exclusively present in the target selection phaseRts.
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Figure 6.5: Simulation results for the post-cue paradigm. The left plotshows both partial reaction
times stacked on top of each other to point up the priming effects in the overall reac-
tion times. The right plot compares both partial reaction times individually. Note the
identicalRsiwith perceptually identical displays. Perceptually, onlya negative effect
is present which has its origin in the forced decay of activation the ISAM incorporates.
Positive effects are only present in the stimulus identification phase.

Episodic retrieval as well as response retrieval theory predict a prime retrieval in all conditions
apart from CO, with a tendency for a stronger memory retrieval for identically repeated objects.
As response retrieval postulates only the response to be retrieved, no effects are expected in the
first part of the trial. Only the target selection phase should carry all priming effects in a way
that only repeated responses benefit from retrieval, i.e. only the TT condition and a bit weaker
the TT_SW condition are faster than control. All other priming conditions should trigger by their
perceptual similarity a retrieval of the, in this case false, response. Thus all other conditions
are expected to produce negative priming. The same effects are to be expected for the first two
experiments. Traditional episodic retrieval postulates the retrieval of the entire prime episode
depending on stimulus similarity. Therefore, a perceptualbenefit is to be expected in every priming
condition besides CO. In cases where the to-be-attended object is retrieved together with some
conflicting action advice, i.e. DT, DT_SW, a counteracting deceleration in the later part of the trial
is conjectured. If the action advice matches, as in TT and TT_SW trials, Episodic Retrieval makes
the prediction of additional benefit.

Distractor Inhibition expects perceptual facilitation inconditions where the prime target is re-
peated, and a perceptual slowing if the prime distractor is repeated. Predictions for the reaction
time of the target selection phaseRtsare hard to obtain, as the dynamic system underlying dis-
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tractor inhibition theory is too complex to guess the outcome in the second phase of the post-cue
experiment. Late priming effects depend on the mechanism bywhich objects are classified and
identified, be it at a saturation level, where no priming effects could be carried over to the late
phase, or at intermediate activation levels like in the simulation of the ISAM, when positive as
well as negative priming can still cause behavioral effectsin the later stage.

6.4 Preparatory Task Switch Experiments

In order to achieve comparability of results of the post-cueexperiment and our earlier studies,
we make two preparatory experiments that help to successively add complexity to the original
voicekey experiment, see section 2.2. We begin with two baseline blocks, one of which follows the
paradigm introduced in section 2.2, the other requiring attention to the red object. The comparison
of the two blocks helps us to understand the difference of trials with a red target and those with a
green one that will be naturally present in the task switch experiments.

The next step is the introduction of task switching in the form of a color cue indicating the
target color in the following trial. Despite the task switch, the paradigm stays identical. Thus,
any changes in priming effects are due to the cue and its demand to attend to its color. Besides
the impact of updating a task set, physical alterations are also made to a trial. In particular, the
response stimulus interval is longer in the pre-cue experiment, as the subject’s reckoning of the
cue adds to it. Also, the additional percept of a color patch before the actual trial may change
processing compared to the baseline experiment.

In the current section we will present the two experiments together. One reason is their nature
of providing prerequisites for the experiment of interest,the post-cue paradigm. Another is that
both experiments are performed by the same subjects in one session. The baseline experiment also
provides a familiarization with the stimuli and the task forthe pre-cue experiment.

6.4.1 Design

We first only slightly altered our traditional negative priming experiment. Two blocks of the simple
voicekey task are run, one with green as target color, while the other required a response to the red
item. The sequence of these blocks was balanced over subjects. The two baseline parts included
five priming conditions, CO, DT, TT, TD and DD.

After the two baseline blocks followed a task switch experiment of 420 trials with breaks every
42 trials paced by the subjects themselves. We implemented astandard way of unpredictable task
switches by pseudo randomly presenting a color cue indicating the target color each trial anew. The
color patch was removed by a button press by the subject whichthen started the actual trial. The
switch dimension is reflected in a doubling of experimental conditions, as a task switch destroys
the confounding of whether an object is repeated in the same color or not and the object to respond
to.

6.4.2 Participants

Thirty undergraduate students (19 female, 11 male) from theUniversity of Göttingen took part
in the study. Their ages ranged from 20 years to 35 years (M = 24.5 years, SD = 1.6 years).
The participants were rewarded by course credits or are paid15 e. All subjects had normal or
corrected-to-normal vision and no color discrimination disabilities. They were not informed about
the specific purpose of the experiment and had not taken part in a previous study employing similar
stimulus material.
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6.4.3 Procedure

The experiments took place in two special chambers optimized for low noise and standardized
lighting conditions. Participants were tested individually in sessions that lasted no longer than 90
minutes. Before the start of the priming tasks, the line drawings of the experimental stimuli along
with their names printed in black were shown to the subjects.The subjects were told that they will
see these objects overlapping one another, one drawn in green and the other in red. Realizing a
classical picture naming task, participants were instructed to name the target objects as quickly and
correctly as possible while ignoring the superimposed distractor object. To familiarize participants
with the experimental procedure, a 30-trials practice session preceded the main session.

The first two experimental tasks consisted of 210 trials each, which were divided into 5 blocks
of 42 trials. After each block, subjects were allowed to takea short break. In a single trial, subjects
encountered the following series of events: a fixation cross, centered on the screen for 500 ms; a
display containing two superimposed objects until subjectresponded, but no longer than 2 seconds
and then a blank screen for a randomized duration between 0 and 1000 ms.

In the pre-cue experiment, an additional visual cue indicated if the target color of the trial was
green or red. The number of trials was doubled compared to thefirst tasks to 420 trials, so that the
participants had to complete 10 blocks of 42 trials. A singletrial consisted of the following series
of events: a fixation cross for 500 ms, the color cue until the subject pressed a button, the stimulus
display and then a randomized RSI of 0-1000 ms. Behavioral errors were noted when subjects
failed to give the correct answer. After the participants completed all trials, they were asked to
comment on the experimental procedure.

6.4.4 Data Analysis

First, we want to make sure that the baseline experiments show strong priming effects as antici-
pated. The two different target colors are then compared. One aspect is a main effect of red/green,
which indicates a direct influence of target color to processing speed. Another aspect is an inter-
action between target color and priming effects. If such an interaction exists, we have to group the
task switch trials into conditions with homogeneous targetcolor.

A comparison between overall mean reaction time in the baseline experiment and the pre-cue
paradigm yields a measure for global switch costs, i.e. the influence of the presence of task switch-
ing on processing speed. Comparing switch and non-switch trials within the pre-cue experiment
leads to specific switch costs. We then check for priming effects in the respective condition, espe-
cially in the task switch trials, as no data exists for similar settings.

To clean the data, some procedures to reject outliers from the behavioral data are employed.
In a first step, all reaction times from trials in which a behavioral error occurred, are excluded
from the analysis as well as the directly following trial. Reaction times below 250 ms and above
3000 ms were removed from the analysis as they presumably arebased on other processes than
the ones under investigation due to their unusual duration.In a next step, reaction times where the
difference to the mean of the experimental condition exceeded two times the standard deviation
were also excluded. Overall, for each participant not more than 10% of the trials per condition
were excluded from the analysis.

6.4.5 Results, Baseline Experiment

The overall 2× 5× 2 (target color× priming × color block order) ANOVA treating reaction
times as dependent variable showed a main effect of target color F(1,116) = 16.11, p < 0.001, a
main effect of primingF(4,29) = 23.21, p< 0.001, but no interaction of target color and priming
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F(4,116) = 0.77, p = 0.54 and no effects at all of the order in which the two color blocks are
tested, see table A.8. Especially the absence of effects of the order in which red or green indicate
the target allows a pooling of all subjects, regardless of which target color the subjects encounter
first.
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Figure 6.6: Priming effects of the baseline experiment. Significances of comparisons to the con-
trol condition are given. Expectedly, trials with a repeated object that changes its
role between prime and probe are slower, identical repetitions of objects lead to an
acceleration.

The absence of an interaction between target color and priming allows the determination of
priming effects in the entire baseline experiment, i.e. themean reaction time differences over both
target color blocks, see figure 6.6 and table A.9 in appendix A.4. Trials with a green target, 776.10
(95.80) ms, are on average 47 ms slower than trials with a red target, 729.20 (104.59) ms. Even in
the pooled situation all priming effects are significant, CO−DT=−18.28 ms,t(29) = −3.09, p <
0.01, CO−TT=45.83 ms,t(29) = 4.56, p < 0.001, CO−TD= −13.43 ms,t(29) = −2.27, p <
0.05 and CO−DD=20.45 ms,t(29) = 3.55, p < 0.01.

6.4.6 Results, Pre-Cue Experiment

The overall 2× 5 (switch× priming) ANOVA on reaction times shows main effects of switch
F(1,29) = 19.94, p< 0.001 and primingF(4,116) = 15.12, p< 0.001 as well as an interaction of
bothF(4,116) = 8.21, p < 0.001. Specific switch costs, 27 ms, are determined as the difference
between overall mean reaction times in switch trials (783.28 (108.52) ms) and no-switch trials
(810.25 (123.80) ms) in the pre-cue experiment. We find global switch costs in the two-sided
comparison of the mean reaction time in the baseline experiment (752.65 (95.05) ms), and the pre-
cue experiment (796.76 (115.23) ms), which differ by 44.11 ms significantly,t(29) = −3.37, p <
0.01.

For priming effects we compared the appropriate control with the priming conditions and found
effects in CO−DT=−24.93 ms,t(29) = −2.83, p < 0.01; CO−TT=54.76 ms,t(29) = 5.09, p <
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Figure 6.7: Priming effects of the pre-cue experiment. Significances ofcomparisons to the ap-
propriate control condition (indicated by the horizontal lines) are given. Disregarding
the control condition the pattern of the priming conditionslooks similar in the switch
and non-switch stimuli. For illustrative purposes we indicate the position of such a
hypothetical control with a dashed line.

0.001, but no effects in the two conditions CO−TD= −3.60 ms,t(29) = −0.54, p = 0.29 and
CO−DD=0.20 ms,t(29) = 0.024, p = 0.48. For trials that incorporated a target color switch
from the prime, the present effects are CO_SW−DT_SW=−28.07 ms,t(29) = −2.54, p < 0.01,
CO_SW−TD_SW= −21.23 ms,t(29) = −2.31, p < 0.05 and CO_SW−DD_SW= −19.66 ms
t(29) = 2.63, p < 0.01, no effect shows CO_SW−TT_SW=−5.30 ms,t(29) = −0.66, p = 0.25.
The results are summarized in figure 6.7, details given in table A.10 in appendix A.4.

6.4.7 Discussion

The baseline experiment shows that it is easier to respond toa red target than to a green one,
presumably because of the higher saliency of the color red. But despite the faster response in the
red target block, priming effects did not differ. Further, the different saliency does not influence
priming in the baseline experiment as it does in other settings (Tipper et al., 2002), see also sec-
tion 3.3.3. We therefore pooled both parts and still found convincing priming effects, i.e. negative
priming in the DT and TD condition and positive priming for TTand DD, see figure 6.6. The two
condition pairs are each associated by a reoccurrence of an object in the same or in a different
color, respectively. The results of the baseline experiment once more prove the suitability of our
paradigm to access negative priming.

Introducing the task switch in the pre-cue experiment destroyed the effects in the TD and DD
condition, as the influence of the probe distractor apparently is diminished. But the effects in the
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6 Perception or Selection Effect

most interesting conditions, DT and TT, are even more pronounced than in the baseline experiment
without task switch, see figure 6.7. Comparing the pre-cue experiment with the baseline reveals
global switch costs visible in the general slowing of reactions after the introduction of the task
switch. Comparing non-switch conditions in the pre-cue experiment with the switch conditions
reveals specific switch costs of comparable order to the global ones. Trials following a task switch
are slower than trials that require the attention to an identically colored target.

Remarkably the priming effects in the switch trials show an overall deceleration in the case of
an object repetition. Only TT_SW trials are not distinguishable from CO_SW. The reoccurrence
of an object in conjunction with a task switch seems to overload the subjects, such that they react
slower than if no object is repeated from the prime trial. A closer look at figure 6.7 reveals that
the relations between the priming conditions themselves look very similar to the conceptually
matching non-switch trials. Seemingly, the repetition of an object in any color produces a constant
offset into the processing of switch trials, but the particular priming effects remain.

6.5 Post-Cue Task Switch Experiment

The presentation of the target color cue after the identification of the stimulus objects is a techni-
cally easy manipulation. Nevertheless, the small manipulation has several implications. First of
all, the desired effect that the identification of stimuli has to be separated from the target selection
puts way higher demands onto the subject. Both objects have to be in the attentional focus. Ad-
ditionally, the information about their identity bound to the correct color has to be memorized in
some way. Secondly, the effective RSI is now augmented by thecue presentation phase which is
much longer than the cue phase in the pre-cue experiment.

The high demands led several subjects to use an after-image strategy which shifts part of the
stimuli identification to the later phase of the trial. This strategy interferes with our assumption of
seriality. In order to enforce a serial trial processing, weintroduce a mask between the stimulus
presentation and the appearance of the target cue after 15 ofthe total 30 participants. Such a
mask again disturbs the experimental flow and drives us further away from the original voice-
key paradigm. Notwithstanding, we assume only a small impact on the trial processing when
compared to the subjects in the non-masked group who did not use the after image but completely
identified the two objects before proceeding with the trial.

6.5.1 Design

The post-cue experiment only differs from the pre-cue experiment by the order of presenting the
cue and the stimulus objects. Now, the subjects see both stimuli in the beginning of a trial, have
to press a button when they are ready to proceed, and then the two objects are replaced by a color
cue which is present until the subject gives the answer. Fifteen subjects saw a mask for 100 ms
between the stimuli and the color cue in order to erase any after image. The mask consists of red
and green dots at the location of the stimulus compound in a similar density.

6.5.2 Participants

Overall thirty young adults were tested and received coursecredit or are paid 10e. One person
was excluded from the sample because of a high rate (38%) of response errors and statistical
outliers. The remaining sample of participants consisted of 17 females and 12 males with mean
age of 23.7 years, SD = 1.6. All participants had normal or corrected-to-normal vision, no color
discrimination disabilities and were naïve about the aims of the experiment.
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6.5 Post-Cue Task Switch Experiment

6.5.3 Data Analysis

Prepended to the analysis of reaction times is the outlier correction we introduced in section 6.4.4
We will consider the two parts of each trial,Rsi andRts separately. In both cases we will begin
with the analysis of priming effects for the two groups, withand without mask, but later on take
the two groups together for an overall analysis of the post-cue experiment. Despite one rather
weird exception, the pooling of both groups is possible.

During the analysis of the stimulus identification phase,Rsi, there is a perceptual congruence
between two conditions, see section 6.1.3. We therefore compare the pairs of matching object
displays and perform a pooled analysis of priming effects for the four resulting conditions.

6.5.4 Results, Stimulus Identification Phase

When considering the first part of a trial,Rsi, there are always pairs of conditions that are iden-
tical from the percept of objects, until the color-cue is shown and they diverge into a switch
condition and a non-switch condition, see section 6.1.3. Inthe post-cue experiment without a
mask, no significant difference of reaction times within thepairs is present. Two-sided tests
yield: CO−CO_SW=18.40 ms,std = 128.43, t(14) = 0.55, p = 0.58; DT−DD_SW=6.40 ms,
std = 71.98, t(14) = 0.34, p = 0.73; TT−TD_SW= −3.46 ms,std = 82.42, t(14) = 0.16, p =
0.87; DD−DT_SW= −46.06 ms,std = 108.46, p = 0.12 and TD−TT_SW=23.60 ms,std =
93.97, t(14) = 0.97, p = 0.34.

In most experimental conditions of the masked experiment the situation is similar. A two-sided
t-test reveals no difference between the following conditions: CO−CO_SW=26.07 ms,std =
147.44, t(13) = 0.66, p = 0.52; TT−TD_SW= −20.07 ms,std = 110.22, t(13) = −0.68, p =
0.50; DD−DT_SW=−24.57 ms,std= 79.56, t(13) =−1.15, p= 0.26; TD−TT_SW=36.92 ms,
std= 74.73, t(13) = 1.84, p= 0.087. Only the conditions DT and DD_SW, which are perceptually
identical, show a significant difference: DT−DD_SW= −143 ms,std= 120.56, t(13) = −4.44.
As such, an effect can not be explained by systematic variations between the two perceptually
identical trials. The only source of the effect is a disbalancing of trials, e.g. in the number of
occurrences of an individual object or the even distribution over all experimental blocks, by data
cleaning like error trial or outlier removal.

Disregarding the significant difference between DT and DD_SW trials, we pool the per-
ceptually identical conditions over both experiments, with and without masking of tar-
get and distractor object, to obtain priming effects in the stimulus identification phase of
a trial, see figure 6.8. A one-sided t-test yields significantpriming effects only in the
two pooled conditions: (CO&CO_SW)−(TT&TD_SW)=87.51 ms, std = 118.48, t(28) =
3.97, p < 0.001; (CO&CO_SW)−(DD&DT_SW)=35.55 ms,std = 78.37, t(28) = 2.44, p <
0.05. No effect is present for (CO&CO_SW)−(TD&TT_SW)=11.51 ms,std = 69.79, t(28) =
0.88, p = 0.19 and also the invalid subsumption of DT and DD_SW does not show an effect
(CO&CO_SW)−(DT&DD_SW)= −6.87 ms,std = 76.03, t(28) = −0.48, p = 0.31. Whenever
the repeated object is shown identically, i.e. in the same color, the stimulus identification is accel-
erated. No perceptual slow-down for repeated objects with non-matching colors is visible.

If we now assume an incomparableness of the conditions DT andDD_SW due to their abnormal
behavior, which may be caused by some violation of balancing, we can not consider the data set
in a global ANOVA, but rather have to exclude the DT and DD_SW conditions in advance. We
run a 4×2×2 (priming×percept×mask) ANOVA which yields the expected main effect priming
F(3,81) = 6.19, p< 0.01, but no interaction of both priming× perceptF(3,81) = 2.51, p= 0.082
and priming×percept×maskF(3,81) = 0.22, p = 0.87. The above ANOVA takes into account,
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Figure 6.8: Priming effects in the stimulus identification phase of the post-cue experiment in de-
pendence on the pooled conditions. Significances of comparisons to the control con-
dition are given. The stimulus identification phase shows only benefits for the condi-
tions where an object is repeated in the same color. No condition is slower than the
two controls, the first part of a trial only shows positive priming.

that not e.g. TT and TT_SW have to be compared but TT and TD_SW as they are identical in the
stimulus identification phase,

For better comparison withRtswe pool the masked and non-masked group, ignoring the in-
teraction of mask and priming in the DD_SW condition, see figure 6.9 and table A.12. Prim-
ing effects are revealed by 2-sided t-tests of the differences of the appropriate control and the
priming condition: CO−TT=104.31 ms,t(28) = 3.41, p < 0.01; CO−DD=64.44 ms,t(28) =
2.50, p < 0.05; CO_SW−DT_SW=70.72 ms,t(28) = 3.25, p < 0.001 and the inappropriate
CO_SW−DD_SW= −50.82 ms,t(28) = −2.32, p < 0.05. No priming effects are found in the
conditions CO−DT=37.06 ms,t(28) = 1.65, p= 0.11; CO−TD=7.55 ms,t(28) = 0.34, p= 0.73;
CO_SW−DT_SW=6.65 ms,t(28) = 0.43, p = 0.66 and CO_SW−TT_SW=15.48 ms,t(28) =
0.96, p = 0.34.

6.5.5 Results, Target Selection Phase

We now come to the analysis of the second part of the trials,Rts. The detailedRts and the
corresponding priming effects are listed in table A.13 in appendix A.4. A global 5× 2×
×2 (priming×switch×mask) ANOVA reveals a main effect primingF(4,108) = 10.33, p <
0.001, a main effect maskF(1,27) = 4.44, p < 0.05 and an interaction between priming and
switch F(4,108) = 11.18, p < 0.001. There is no main effect switchF(1,27) = 3.26, p =
0.082 and neither an interaction priming×maskF(4,108) = 0.63, p = 0.64 nor an interaction
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6.5 Post-Cue Task Switch Experiment

priming×switch×maskF(4,108) = 0.66, p = 0.61. Despite trials in the masked experiment be-
ing 99 ms slower on average, due to the missing interaction ofpriming and mask, we are able
to combine both experiments and determine priming effects for the post-cue experiment globally.
Results are shown in figure 6.9, details given in table A.14.

In the pooled data, we find in a 2-sided t-test priming effectsfor: CO−DT=−17.86 ms,t(28) =
2.12, p < 0.05; CO−DD=31.51 ms,t(28) = −2.59, p < 0.05; CO_SW−DT_SW= −32.41 ms,
t(28) = −2.74, p < 0.05; CO_SW−TT_SW= −60.65 ms, t(28) = −5.26, p < 0.001 and
CO_SW−TD_SW=29.96 ms,t(28) = 2.77, p < 0.05. No effect is present in CO−TT=6.55 ms,
t(28) = 0.56, p = 0.57; CO−TD=10.75 ms, t(28) = 0.98, p = 0.33; CO_SW−DD_SW=
−14.31 ms,t(28) = −1.60, p = 0.12.
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Figure 6.9: Partial reaction times for the post-cue paradigm pooled over masked/nonmasked. Left
hand side shows stacked bars, allowing for a look at the overall priming effects, where
mostly accelerations are visible. On the right hand side, weshow the two partial
reaction times beneath each other in order to make priming effects in the later reaction
time Rtsvisible. Condition DD_SW does not allow such a pooling inRsi. Therefore,
the according bar is not to be taken too seriously.

6.5.6 Results, Comparison of Partial Reaction Times

So far the data suggests that positive priming is a more perceptual phenomenon, i.e. is present
in Rsi, and negative priming is produced while target selection and response generation, i.e. is
found in Rts. We limit the analysis to non-switch trials. Due to the significant interaction of
switch and priming, a task switch destroys the priming effects we are looking for. Specific 2×2
(control/priming×Rsi/Rts) ANOVAs are carried out for every priming condition separately.
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DT: Main effect forRsi/RtsF(1,28) = 27.39, p < 0.001, no main effect for primingF(1,28) =
0.56, p = 0.45. But the expected interaction reaches significance,F(1,28) = 6.07, p < 0.05. DT
responses are 38 ms faster than control responses inRsi. Conversely, responding to a DT trial is
delayed by 18 ms inRts. TT: Main effect forRsi/RtsF(1,28) = 26.91, p < 0.001, a main effect
for priming F(1,28) = 9.84, p < 0.01 and also the interaction reaches significance,F(1,28) =
10.79, p < 0.01. TT responses are 104 ms faster than control responses inRsi. The acceleration
by 7 ms inRtsis not significant. TD: Only a main effect forRsi/RtsF(1,28) = 29.75, p < 0.001.
No main effect for primingF(1,28) = 0.50, p = 0.48 and also the interaction does not reach
significance,F(1,28) = 0.02, p = 0.88. TD responses are nonsignificantly 8 ms faster than con-
trol responses inRsi. The acceleration by 11 ms inRtsis not significant. DD: Main effects for
Rsi/RtsF(1,28) = 29.16, p < 0.001 and primingF(1,28) = 10.90, p < 0.01, but the interaction
does not reach significance,F(1,28) = 1.40, p = 0.24. DD responses are 65 ms faster than con-
trol responses inRsiand 31 ms inRts.

Summarizing, the interaction betweenRsi/Rts and priming in the DT and TT conditions supports
the hypothesis that negative priming is an effect of attentional processes, and positive priming is
produced during perception. The two conditions where the probe distractor is repeated from the
prime trial do not produce such a clear pattern.

6.5.7 Discussion

The overall impression when looking at the post-cue experiment is that it implements a very de-
manding task. Reaction times are nearly three times longer than in the pre-cue experiment. The
difficulty, supposedly, led to the development of a facilitating strategy in certain subjects. Sub-
jects applying such a strategy did not process the objects consciously as we wanted them to, in
order to achieve a clear separation of stimulus identification and target selection phase. Mostly,
the mask we introduced for the second half of the subjects deleted the possibility to use an after
image, but did not disturb the obtained priming effects, despite a strange deceleration in DD_SW
trials in the masked group. The most puzzling aspect is the difference ofRsi in DD_SW trials
andRsi of DT trials. Both conditions are perceptually identical, and up to the point of the button
press that determinesRsi absolutely no information about whether the trial will be a DT trial or
a DD_SW trial is available to the subjects. We therefore suppose a technical issue like an imbal-
ance of stimulus objects in the DD_SW condition after outlier removal to be responsible for the
seeming precognition.

Ignoring the difference in DD_SW trials, no further interaction of priming and mask is present,
and we are able to pool both groups with and without mask in order to determine the location of
priming effects in a perceptual stage or the target selection phase of a trial. The overall reaction
time shows no negative priming effects in non-switch trials, but positive priming for trials that
identically repeat an object, i.e. TT and DD. In switch trials the identical repetition only speeds up
trial processing in the TD_SW condition, i.e. where the prime target reappears. The other three
switch conditions slow the trials down, see figure 6.9, left side.

The separation of the trials reveals that in the first part,Rsi, only acceleration effects are present,
again disregarding DD_SW, whereas the target selection phase shows a more differentiated pic-
ture. The second reaction timeRts shows a negative priming effect for DT and DT_SW but even
more prominent for TT_SW. An acceleration is present for DD and TD_SW, see figure 6.9, right
side. The data indicates that positive priming is a perceptual phenomenon and negative priming is
produced by interferences during selective attention to the target object.
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6.6 General Discussion

Overall, the introduction of a task switch, including responses to green as well as red targets seems
not to alter the basic negative priming effect in a DT condition. Also, the positive priming effect
in the TT condition is conserved. Another pattern shows up inthe trials that immediately follow
a task switch. In the pre-cue experiment, a repetition of an object only slows down the reaction,
but no benefits are visible. As the pattern is different in thepost-cue experiment, the postponing
of the cue has a strong impact on trial processing.

Predictions of the ISAM for conditions TD and DD are well matched in the baseline experi-
ments, see figure 6.6. TD produces a negative priming effect that is weaker than the one in DT
trials, and DD trials are accelerated to a smaller extent than TT trials. Already in the pre-cue
experiment the simplicity of the ISAM is no longer able to reproduce the complexity of the data.
The behavior of the ISAM relies on perceptual parameters. The situation for the ISAM gets even
worse when assuming an additive process occurring during switch trials with a repeated object
as discussed in section 6.4.7. The effects obtained this wayfollow the conceptual nature of the
trial and not the perceptual one as the ISAM predicts. Finally the predictions of the ISAM for
the post-cue experiments further show the inappropriateness of the model. The ISAM predicts
only negative priming but no acceleration for identically repeated objects in the perceptual phase.
Only with the onset of the color cue, positive priming emerges and still some decelerations in per-
ceptually nonmatching object repetitions occur, which is completely contrary to the experimental
results.

The assumption of a forced decay of activation to be responsible for negative priming via the
influence on the adaptation speed of a global threshold variable as the ISAM makes, directly leads
to an inevitable slow-down in the stimulus identification phase, as at a later stage in the trial
all activation from the prime trial is gone. The experimental data merely shows a tendency to
facilitation of DT trials in theRsi, due to perceptual similarity. Therefore, our experiment buries
the ISAM, at least in the implemented form we introduced in chapter 3.

Depending on how literally the statements of response retrieval theory are taken, the localization
of positive priming in the first partial reaction time is problematic or not. On the one hand, response
retrieval explicitly links priming effects to the automatic retrieval of a response, which would
suspect no priming effects in the perceptual part of the trial. But response retrieval does not
exclude other facilitation mechanisms to happen, possiblyeven in the perceptual phase. Without
the assumption of an additional facilitating process, response retrieval theory is not able to explain
an acceleration of DD trials as compared to CO.

Besides the slowing in the DD_SW condition, episodic retrieval can well explain the accel-
eration in all the other priming conditions, as the similarity triggers the retrieval of the former
episode. This then positively interferes with the identification of the current objects. In the target
selection phase, the predictions of episodic retrieval arecompatible with non-switch trials, but do
not fit for switch trials. In TT_SW trials, which repeat the prime target in a different color (which
should still trigger retrieval) the object is to be responded to again. Contradicting the facilitation
presumed by episodic retrieval the experiment shows a prominent slow-down ofRts. Similarly the
shorterRts in TD_SW trials is in contrast to episodic retrieval theory.

Unfortunately, we are not able to exactly reproduce the computational simulations of distractor
inhibition theory. Therefore, no predictions to be tested are available for the second reaction
time, Rts. ConcerningRsi, the perceptual facilitation for TT is predicted correctly. But distractor
inhibition theory would as well predict a perceptual slowing in DT trials, which could not be
verified by our experiment. As distractor inhibition theoryhypothesizes the negative priming
effect to stem from persistent inhibition carried over fromthe prime trial, negative priming should
be most prominent at the beginning of a trial, which is in opposition to our results.
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Summarizing, the current series of experiments shows an interesting way to split trial process-
ing into several parts, each devoted to a certain aspect of processing a trial in a negative priming
experiment. The changes that have to be made to the paradigm in order to assure serial pro-
cessing obviously introduce multiple effects that are not present in traditional negative priming
experiments. Apparently negative priming does only show a similar pattern after task switches
if the relation to CO is disregarded but only relative reaction times between the priming condi-
tions are considered. In any case, if we restrict our considerations to the two conditions of most
interest, i.e. DT and TT, the experiments confirm the statement that positive priming is a percep-
tual phenomenon, whereas negative priming is produced at later stages of a trial, target selection
or response generation. The pattern of results is best explained by episodic retrieval theory and
strongly challenges distractor inhibition and the ISAM.

6.7 Summary

We introduced a way to assess the time course of negative priming on a behavioral level. We
altered the voicekey paradigm such that a color cue indicates each trial anew which one of the
objects is the target. With a series of three experiments, webuilt the bridge from our previous
studies to the post-cue paradigm. This gives the target cue after the presentation of the two objects,
enforcing the subjects to first identify both objects and to select the target and generate the response
in the second part of a trial.

The extension of the paradigm brought along interferences from task switches which were
shown to interact with priming effects. The consideration of trials immediately following a task
switch also shows interesting phenomena. Apparently task switches introduce a general slow-
down of reaction time if an object is repeated, but relative reaction times in the task-switch priming
conditions show a pattern similar to the conditions that do not require a task switch. Seemingly
the coincidence of task switch and object repetition triggers a resolving mechanism independent
of the concrete priming condition.

The splitting of trials into two phases shows first that whenever the repeated object is shown
in the same color, the stimulus identification is accelerated. Also, if the repeated object changes
color, identification is unaltered. We show that positive priming is a perceptual effect, and negative
priming happens during target selection or response generation.
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The results of the last chapter left open whether negative priming is produced during target se-
lection or response generation, due to the lack of a time marker in between those two phases.
The present chapter will now solve the question with a secondexperiment that provides multiple
reaction times per trial, i.e. one for perception and targetselection, another one for the response
generation phase.

The design is tailored for a critical test of response retrieval theory, see Section 2.4.3, which
postulates priming to happen during response generation (Rothermund et al., 2005). In order
to prevent a decision about the appropriate response until the target is selected, we extend our
paradigm by a comparison word which is spatially separated from the stimulus objects, such that
a simultaneous evaluation is impossible. If the target object and the word match semantically, a
button assignedyesis to be pressed, if not the alternativenobutton is the correct response. Due to
the spatial separation, a gaze shift from stimulus objects to the comparison word is required which
we detect by recording the electrooculogram. As the ISAM structurally depends on a one-to-one
mapping of stimuli to actions, we derive our hypotheses mainly from response retrieval theory.

We will begin the chapter with a description of the gaze-shift paradigm in section 7.1 and present
the derived hypotheses in section 7.2. The experimental procedure and the analysis are explained
in section 7.3. Results are shown in section 7.4 and discussed in section 7.5. The study reported
in the current chapter was part of the diploma project of Matthias Ihrke, and has already been
presented in the corresponding thesis (Ihrke, 2008).

7.1 Gaze Shift Paradigm

Response retrieval postulates that the systematic variations in reaction time are due to retrieval
of the prime response, which then can either facilitate or lead to a conflict, see Section 2.4.3.
The fundamental assumption can be tested in an experimentalsetting that records both the time
until target selection is finished and the actual reaction time until the response is given. Such an
experimental setup must ensure that no information about the correct response is available before
finishing target selection. Admittedly, such a manipulation introduces a severe change in trial
processing compared to traditional negative priming experiments that allow for a parallel handling
of target selection and response generation.

timeresponseglance onsettrial onset

eyemovement
target selection response selection

motor command

Figure 7.1: Hypothetical time course of processing during one trial in the gaze shift paradigm.
First the target is identified and selected, followed by an eyemovement to focus the
comparison word. Then the response is generated and performed.
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Acquiring information about the time taken until the targetselection process finished should not
interfere with the natural course of processing of the trial. In order to achieve minimal disturbance,
a natural marker of the completion of the target selection has to be measured. In the current study,
the movement of the eyes from the target/distractor compound in the direction of the comparison
word is used as time marker. The overlapping alignment of target and distractor, as it has already
been described in chapter 3, allows for a foveal processing of target and distractor at the same
time. To elicit an eyemovement that is strong and reliable enough to be measured validly from
the electrooculogram (EOG), the distance between stimulusobjects and the comparison word is
chosen large enough so that no simultaneous processing is possible. Therefore, we ensure a serial
processing of the two parts of the trial as visualized in figure 7.1. Then the reaction time in each
trial is composed of several parts: the time taken by the target selectionRts, the response selection
partRrs and a constant time for the eyemovement and the motor commandζ

R= Rts+Rrs+ ζ. (7.1)

Bus

focus

gaze

retinal

shift

Figure 7.2: Stimulus display of one trial: the comparison word is shown at the bottom of the pre-
sentation screen. Participants have to shift their point offixation in order to complete
the task.

Averaging the interval from trial onset to the eyemovement gives an estimation forRts, while the
time taken for response selection cannot be separated from the remainder. Sinceζ can be assumed
not to vary systematically with priming or response condition, any effects in the interval between
eyemovement and reaction can be assigned to the response selection mechanism.

During the experiment we record 60 channels of EEG and four channels EOG for gaze shift
detection. As we want to focus on the behavioral part of the experiment and the division of
reaction times into two parts, we will only shortly refer to the EEG related results.

7.2 Hypotheses

Rothermund et al. (2005) examined only DT, DD and control conditions. However, the underlying
mechanism of response retrieval can be used to derive predictions for further priming conditions.
Response retrieval theory postulates an automatic retrieval of the response of the prime trial trig-
gered by any similarity between the prime and the probe display to be responsible for priming
effects. Whenever the appropriate response is repeated in the probe trial and some perceptual fea-
ture from the prime trial repeats, a facilitatory effect on probe response should occur. Accordingly,
a negative priming effect is expected whenever the prime andthe probe displays share common
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yesnoResponse−Keys yesno

  Ball   Buch

RSI
(500 – 1000 ms)

500 ms
time

Trial n Trial n + 1

Figure 7.3: A sample trial pair. Trialn primes trialn+1, being the probe for trialn−1. Shown is
a DT condition with a switch of the appropriate response. Note the possibility to vary
response and priming condition orthogonally.

features and the required responses do not match. The question remains, whether the assumption
of Response Retrieval holds true for other priming conditions like TD as well, i.e. any of the condi-
tions DT, TT, DD and TD leads to an acceleration whenever the appropriate response is repeated,
but to a slowdown if the responses changes.

Distractor Inhibition theory predicts a slowdown in reaction time for TD trials, as remaining
activation of the prime target has to be inhibited additionally. Episodic Retrieval would expect
similar modulations as the retrieved tendency to respond tothe probe distractor has to be resolved.
Unfortunately, the ISAM as described in chapter 3 is not ableto deal with comparison tasks and
therefore cannot predict effects of a situation with an orthogonal variation of priming condition
and response. Only half of the eight conceivable conditionspriming × response relation can be
predicted, see table A.15. Regarding the TD condition whichis entangled with a response switch,
the ISAM predicts a negative priming effect.

Concerning the localization of effects in one of the two stages of processing, response retrieval
theory would expect priming effects in the response selection part of the reaction timeRrs. But
if negative priming is produced on the level of semantic representations as assumed by the other
theories, the effect would be present in the target selection timeRts.

As discussed in chapter 4, the research on the electrophysiological correlates of negative prim-
ing is very sparse. A potential candidate for a negative priming sensitive component is the P300.
Since the current study is relatively similar to the design described by Behrendt et al. (2009), sim-
ilar results are to be expected. However, there are some differences in the design that could affect
the occurrence of the expected P300 effect. The eyemovementchanges the percept and could thus
trigger a second P300 for evaluation of the new stimulus, thecomparison word. It is thus unclear
whether the expected reduction in P300 amplitude would occur for the first or the second part of
the display. Also, the modulation in the late PSW could be hard to observe due to the expectation
of generally longer reaction times in the current experiment. Regarding the location of negative
priming sensitive components on the scalp, we could expect the prefrontal areas to yield the best
results since these have been shown to be sensitive to negative priming in fMRI studies (Wright
et al., 2006).
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7 Selection or Response Effect

7.3 Gaze Shift Experiment

7.3.1 Design

In order to produce strong priming effects, we use a conceptual object comparison task. The
response is given via a forced choice equal vs. different decision which is recorded via button
presses. In each trial the subjects has to compare a green target object accompanied by a red
distractor with a grey word and to decide whether they are semantically identical or not, see fig-
ure 7.2.

The main part of the experiment consists of 924 trials. The priming condition in each trial
and the repetition of the required response serve as independent variables that are varied within
subjects. 5 priming conditions are realized: TT, DT, DD, TD and control. The sequence of
responses to trialn and to trialn+ 1 serves as a second independent variable, which can take 4
different values:yy, nn, yn andny depending on whether yes or no is the correct response in the
prime and the probe trial respectively. Due to a balancing ofYes and No responses we summarize
repeated responses, i.e. yy and nn, under the label sr for same response and altered responses,
i.e. yn and ny, under dr for different response. Altogether,a 5 (TT, DT, DD, TD, CO)× 2 (sr, dr)
design with two within-subject variables (priming condition and response relation) is realized.

Other factors known to influence the priming effects are balanced or randomized in the design.
The RSI is randomized between 500 and 1500 ms, yielding good results in terms of strong negative
priming effects in our previous experiments (see e.g. Behrendt et al., 2009). The assignment of
left or right hand to one of the responses is balanced over subjects. The number of trials are equal
for each priming condition and for each of the four response relations. The different stimulus
objects used in the study are equally distributed over the priming and response conditions as well.
The stimulus sequence is thoroughly designed such that predictable patterns are avoided, while
the optimal distribution of the conditions over the trials is conserved.

When designing a comparison paradigm, a further effect occurs which might interact with the
effect of interest, i.e. in our case negative priming. Responses that require a confirmative Yes
answer can be given faster than negative No answers, what Singer (1984) explains by additional
cognitive effort is required to generate a negative answer compared to confirmative answers. In
order to eliminate a possible confirm vs. negate effect in ourresults, Yes and No responses are
equally distributed over the same response vs. different response trials. Nevertheless, we check
for an interaction in Section 7.4.1.

7.3.2 Participants

16 (8 male, 8 female) participants took part in the study withmean ageM = 24.8 years, and
standard deviationSD= 3.2 years. Participants were rewarded either with money (10e ), or by
course credits. All participants have normal or corrected-to-normal vision and are right-handed.
They have no red-green deficiency. All subjects were naïve tothe purpose of the experiment and
had not taken part in a previous study employing similar stimulus material. The participants are
requested to fill out the Activation-Deactivation Adjective Checklist (ADACL) (Thayer, 1986), a
vocabulary test (Schmidt and Metzler, 1992) and the number-symbol test from theNürnberger
Altersinventar(Oswald and Fleischman, 1982), to ensure a homogeneous group of subjects.

7.3.3 Procedure

The subjects were instructed to make just one eyemovement per trial. They should first identify the
target object beyond doubt, then fixate and identify the wordand finally, press the correct button.
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7.3 Gaze Shift Experiment

The experiment started and ended with a baseline phase of 36 trials each, where only green objects
were presented and have to be named. After 30 introductory training trials, 924 experimental trials
had to be completed, with breaks every 84 trials.

Each of the experimental trials was preceded by the presentation of a fixation cross for 500 ms.
When the response was given, the display was cleared. The screen remained completely empty
for 500 to 1000 ms randomized over all trials.

7.3.4 Extraction of Partial Reaction Times

In order to find the gaze shift latency, 4 EOG electrodes (leftand right hEOG and vEOG respec-
tively) were attached to the ocular muscles. Electrooculardata is well suited to record eye move-
ments (Joyce et al., 2002) by measuring the potential fluctuations due to the movement of the eye
which is a dipole. The angle of the eye movement is approximately proportional to the resulting
change in the recorded potential. Here we are only interested in a valid measure of the latency of
the saccade downwards. Therefore we just consider the left and the right vEOG electrodes.

The saccade manifests as a fast positive shift of the potential at both of the two electrodes simul-
taneously. In a first step, the data from the EOG channels is low pass filtered with a cutoff at 20 Hz.
The data is then segmented relative to markers for the trial onset in intervals[−500,2000] ms. We
seek for the global maximum in the first discrete derivative,see figure 7.4. If it is present in both
left and right EOG within a time window of 100 ms, we consider its peak latency asRts. Otherwise
the trial is marked as invalid and not further processed.
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Figure 7.4: Extracting the largest vertical eyemovement. The plot shows the potential fluctuations
in the (a) right and (b) left vEOG electrodes (blue line) and the first discrete derivative
(red line) in a sample trial. The maximum indicating the gazeis marked by a cross.
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7 Selection or Response Effect

7.3.5 Analysis of Behavioral Data

A global analysis of variance is applied to the complete dataset of reaction times. In case of signif-
icant main effects or interactions within the factors, single ANOVAs for the factors are computed
until individual differences can be contrasted with singlet-tests. If more than one t-test is applied
to the same dataset, the Bonferroni-correction is applied to the p-values. Generally, a result is
treated as significant, when thep-value fell below 0.05. The codes of significance used are as
follows: ⋆for p < 0.05, ⋆⋆for p < 0.01 and ⋆⋆⋆for p < 0.001.

7.3.6 EEG Data Analysis

In a first step, visual inspection of ERPs is used as an approximation for the location of possible
effects. Once an approximate time window is determined, an analysis of variance is carried out
on the mean amplitude value, treating electrode and experimental condition as repeated measures.
The main effect of electrodes is considered trivial. In caseof significant interactions, pairwise
planned contrasts are computed to find out which electrodes or conditions differed significantly.
The contrasts are again guided by visual inspection. In caseof several simultaneously applied
contrasts, the Bonferroni correction is used to avoid a biasin the family-wise error rate.

For analysis, data is downsampled to 500 Hz, bandpass filtered with a low cutoff at 0.5 Hz and
a high cutoff at 20 Hz. The data is then split into segments of 2500 ms, i.e. the time window
[−500,2000] ms relative to the markers for stimulus onset. For further analysis, we exclude all
trials that were classified as invalid in the outlier analysis of behavioral data. Next, a baseline
correction in the interval[−100,0] ms relative to display onset is carried out, followed by a crude
artifact rejection that rejected all data that crossed 1000µV in absolute values. Then, we rerefer-
ence algebraically to the mean of TP9 and TP10 and again againperform the baseline correction
in the interval[−100,0] ms. Then, a finer artifact rejection with threshold±100µV is employed.
Finally the data is sorted and averaged according to experimental condition.

7.4 Results

We will first have a look at the overall reaction times and lookfor a response repetition effect.
Then we split the reaction times according to the gaze time marker and again determine priming
effects in the two segments. In the end we will shortly consider EEG correlates of the observed
effects.

7.4.1 Response-Repetition Effect

Concerning the possibility for side effects of the confirm vs. negate effect, the 5× 2 (prim-
ing × probe response) ANOVA shows the expected main effect for probe response,F(1,15) =
39.741, p < 0.001. No responses are consistently slower for all priming conditions. But although
the interaction probe response× priming becomes significant,F(4,60) = 2.88, p < 0.03. Sepa-
rate ANOVAs showed that only in the comparison of DD and control is the interaction between
probe response and priming significant,F(1,15) = 5.50, p< 0.05. But on a level further the com-
parison of priming conditions for each of the responses doesnot reach significance (Yes answers,
t(15) = 0.9, p = 0.38; No answerst(15) = −1.77, p = 0.10), finally justifying a pooling of trials
according to the response repetition or switch, disregarding the concrete answers.

A 5× 2 ANOVA for the reaction times yields main effects for priming conditionF(4,60) =
6.63, p < 0.001 and response repetitionF(1,15) = 19.48, p < 0.001 as well as a significant in-
teraction priming× response repetition,F(4,60) = 2.85, p < 0.05. The response is significantly
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delayed over all priming conditions when the same response has to be given compared to when
the required response switched. To specify the reaction time effects, 4 separate 2×2 (priming×
response repetition) ANOVAs are carried out for all primingconditions against control.

DT Main effects for primingF(1,15) = 4.62, p < 0.05 and response repetition,F(1,15) =
9.94, p < 0.01. The expected interaction does not reach significance,F(1,15) = 0.54, p = 0.47.
DT responses are slower than control responses, independently of response repetition. Conversely,
responding is delayed only for control trials when the response is repeated,t(15) = −2.67, p <
0.02 but not so for DT trials,t(15) = −0.67, p = 0.51.

TT Main effects for primingF(1,15) = 9.28, p < 0.01 and response repetition,F(1,15) =
15.78, p < 0.01. The expected interaction does not reach significance,F(1,15) = 0.91, p = 0.36.
Responding is delayed in response repetition trials for both control and TT trials, and the reaction
times are shorter in the TT condition, regardless of the response.

TD Only the main effect for the response repetition reaches significance, F(1,15) =
18.34, p < 0.001. Again, responding is delayed in case of a response repetition.

DD The interaction priming× response reaches significance,F(1,15) = 6.41, p < 0.03.
There are no main effects. Separate t-tests reveal that the responses are significantly slower in
DD trials when the response shifts,t(15) = −2.02, p < 0.05 but somewhat faster or at least not
delayed, when the response has to be repeated,t(15) = 1.25, p = 0.23.
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Figure 7.5: Summary of the results clustered by response repetition. Significances in the compar-
ison to the corresponding control condition are indicated.

Figure 7.5 and table A.16 in Appendix A give a summary of the significant results. The results
are largely inconsistent with response retrieval. A general slowdown in responding is present for
the DT condition, and a general facilitation for TT, independent of response relation. Only the DD
condition shows a significant interaction.

7.4.2 Partial Reaction Times

To answer the question whether priming effects are producedduring target identification or re-
sponse selection, we computed the partial reaction times asoutlined in Subsection 7.3.4.Rts and
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7 Selection or Response Effect

Rrs then entered as dependent variables into a similar analysisas described above. Responses
were again clustered by response repetition.

The overall 5×2 (priming× response repetition) ANOVA usingRtsas dependent variable re-
veals only a main effect of priming,F(4,60) = 5.62, p < 0.001. Because of the absence of an
interaction between response repetition and priming, we now pool over both response relations.
Separate analyses for the priming conditions show that the effect is present in the DT condition,
F(1,15) = 9.32, p< 0.01 and the TD condition,F(1,15) = 6.92, p< 0.05, but not in the DD and
TT condition (F(1,15) = 1.79, p = 0.2 andF(1,15) = 1.78, p = 0.2). No other main or interac-
tion effects are present. The target selectionRts is thus delayed in both response repetition and
response shift cases in DT and TD trials (t(15) = −2.72, p < 0.05 andt(15) = −2.84, p < 0.05).

The equivalent ANOVA for the response selection timeRrs results in a main effect for prim-
ing condition,F(4,60) = 5.17, p < 0.001 and a main effect for response repetition,F(1,15) =
9.99, p < 0.01. The priming× response-repetition interaction is not significant,F(4,60) =
1.34, p = 0.26. Again, we combine response repetition and response switch trials of one priming
condition. Separate ANOVAs for the single priming conditions contrasted against control trials
show that the main effect for the response repetition is present in all priming conditions (DT,
F(1,15) = 13.89, p < 0.01; TT,F(1,15) = 6.29, p < 0.05; TD,F(1,15) = 5.43, p < 0.05; DD,
F(1,15) = 5.72, p < 0.05). The response selection is thus significantly slower when the response
has to be repeated in all priming conditions. The main effectpriming stems exclusively from the
TT condition,F(1,15) = 11.67, p < 0.01.
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Figure 7.6: Summary of the results for the partial reaction times pooledover response relation.
The left plot showsRts and Rrs stacked on top of each other, the right shows the
priming effects for both partial reaction times.

7.4.3 EEG Correlates

For completeness, we shortly report the results from EEG analysis. In order to find correlates for
the observed behavioral effects, we contrast TD and TT against control. Because no interaction of
response relation with the partial reaction timesRts andRrs is present, the ERPs are pooled over
response relation. Because the target selection was usually completed after≈ 500 ms, early ERP
components are scanned for correlates of theRtseffect.
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Figure 7.7: Electrodes AF3, Fz, AF4, P1, Pz and P2 for control, DT and TT trials.

Visual inspection of the data reveals differences of the conditions in an early time interval
[200,300] ms in the frontal electrodes. There seems to be priming sensitive modulation such
that the N1 is enhanced or the P2 reduced for the TT condition relative to control and vice versa
for the TD condition, see figure 7.7a. To confirm the visual impression, a 3×62 ANOVA (prim-
ing conditions× electrodes) is applied to the mean amplitude in the interval[200,300] ms post
stimulus. There is a main effect for priming,F(2,30) = 7.45, p < 0.001 and a significant in-
teraction priming× electrode,F(122,1830) = 2.92, p < 0.001. Pairwise contrasts of the condi-
tions in the frontal electrodes {FP1, FPz, FP2, AF3, AFz, AF4} with Bonferroni correction show
that the priming conditions are indeed different from control, t(95) = −2.53, p < 0.05 (TD) and
t(95) = 4.01, p < 0.001 (TT) and also that the priming conditions are substantially different from
each other,t(95) = 6.39, p < 0.001. This pattern is only found in the frontal electrodes. Inthe
posterior cluster, only the P300 effect for the TT condition, t(111) = 3.09, p< 0.01 is present and
no difference between control and TD is observed,t(111) = −0.81, p = 0.42.

7.5 Discussion

The current chapter investigates the validity of the theoretical assumptions underlying response
retrieval theory by separating the critical response generation phase from stimulus evaluation and
target selection. We use a comprising set of priming conditions and equip each trial with a time
marker that divides the overall reaction into a part of target selection and a part attributable to
response generation. We are for the first time able to temporally localize priming effects according
to the two phases.

We find a main effect of response repetition. There was a consistent delay in response repetition
trials compared to response switch for all priming conditions except DD. It is common in forced
choice tasks with only a few response alternatives that responses are delayed when the same re-
sponse has to be given to a new stimulus display (Marczinski et al., 2003). The effect is strong
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7 Selection or Response Effect

enough that repetition of the prime response is even slowingTT trials, which is counterintuitive in
the framework of priming.

As expected from the literature on yes-no response effects (Singer, 1984), a very strong main
effect of probe response is present in the data. Negating responses are significantly delayed com-
pared to confirmations in all trials. However no differential impact of the probe response on
priming conditions becomes significant.

We derive predictions for all four priming conditions, predominantly from response retrieval.
Surprisingly the overall result for condition TD was reversed compared to what response retrieval
suggests. TD trials are significantly faster for response switches compared to control trials instead
of response repetitions, a fact that is not only incongruentwith response retrieval but also with all
other theoretical accounts to negative priming. Distractor Inhibition predicts a decelerated rather
than an accelerated response due to persisting activation of the current distractor object stemming
from the previous display where it appeared as target. Episodic Retrieval also predicts an increase
of reaction time since the tendency to respond to the retrieved object has to be resolved to ignore
the particular object in the probe. Also predictions from the ISAM tend in the opposite direction,
see table A.15. Since none of the theories can explain the observed TD effect, future research
should investigate the TD condition more thoroughly.

Whether the prime response is retrieved or not does not only depend on the overall similarity
of the displays and additional processes beyond response retrieval must be at work. The assump-
tion taken by Rothermund et al. (2005) that the prime response is incidentally associated with all
aspects of the prime episode might be moderated by a process as proposed in the framework of
temporal discrimination theory (Milliken et al., 1998). The full match in a TT trial is detected by
the scanning process resulting in an automatic retrieval ofthe prime response leading to faster or
slower reactions depending on whether the retrieved response is correct or not, respectively. For
the TD or DT cases the similarities are not strong enough, andthe display is classified as new thus
leading to a suppression of response retrieval.

The extraction of the partial reaction times produce a separation of priming effects. Apparently,
the DT and TD priming effects are produced in the target selection stage, while the TT effect
occurs exclusively during response selection. For the TD condition, the division of the reaction
time into target and response selection revealed a hidden effect which did not reach significance
in the overall reaction time but is present in the target selection part. The temporal separation
of priming effects implies that more than one mechanism is responsible for the different priming
effects. At first glance, the distinctive feature is whetheran object is repeated in a different color
(DT and TD) or in the same color (TT). Unfortunately, no significant priming effects in the DD
condition are visible in any of the reaction times. Responseretrieval postulates the priming effect
to stem from a conflict of responses. This is in clear contrastto the fact that the DT effect is
observed in the target selection phase.

One reason for our result pattern may be the alterations we made in the paradigm. The forced
seriality of processing may produce unexpected side effects. Even if the stimuli are identical to
former studies that show strong negative priming, the manipulation of writing the comparison
word out of the focal area leads to a split of the stimulus display in time, such that subjectively
two different stimuli are visible in each trial. As negativepriming is shown to be sensitive to
the length of the response stimulus interval, we might use a very long time interval between the
two presentations of target and distractor in the prime and the probe trial, as the time to read and
process the comparison word adds to the interstimulus interval. Also, the visual input of the grey
comparison word can act as a mask, albeit a very weak one as it is very dissimilar to the target
and distractor objects, thereby interfering with negativepriming. As response retrieval assumes
the archiving of the last trial at the time of the response, another reason for our result pattern
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may lay in the association of the response with the percept ofthe comparison word. Therefore,
similarities of the two stimulus compounds are not the important factor for triggering a memory
retrieval, but perceptual similarities between the comparison words. Unfortunately, we took great
care in designing a clean stimulus sequence, thereby eliminated as much additional repetitions as
possible, thus permitting repeated comparison words exclusively in TT-yes trials. That is why we
are not able to rerun the analysis based on the factor of word similarity.

7.6 Summary

After the last chapter identified retrieval based theories to be better applicable than representa-
tion based theories, we then wanted to test the two prominentexamples against each other. We
introduced a time marker between the target selection phasein the beginning and the response
generation phase, where the crucial difference between episodic retrieval and response retrieval is
supposed to become apparent. In order to least disturb the subject’s processing of trials, we forced
a detectable eye movement from the stimulus objects on the top of the screen to the comparison
word at the bottom. The obtained results showed that different priming conditions behave dif-
ferently in the two partial reaction times. Our experiment showed that DT and TD effects occur
during target selection while TT produced a facilitation atresponse generation, thereby favoring
episodic retrieval theory over response retrieval.
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8 The General Model for Negative Priming

We showed in chapter 6 how computational modeling is able to advance the discussion about the
applicability of negative priming theories. Thus it is desirable to have a computational implemen-
tation for each theory. A direct reproduction of the only computational model besides the ISAM,
the distractor inhibition model by Houghton and Tipper (1994), is not possible. In personal com-
munications, the authors stated to have lost any source codeover the years. All other theories
are described in a very abstract way, often using keywords ina nonstandard way, like episodic
memory does not match the functions postulated by episodic retrieval theory, see section 8.2.3.
Such unspecific formulations of theories, each postulatingdifferent mechanisms to cause negative
priming, are hardly comparable.

We therefore developed a computational model that represents a framework capable of acting on
any experimental paradigm and representing the mechanismsproposed by each of the theoretical
accounts to negative priming. Starting from the different processes interacting while an action
has to be selected on the basis of perceptual input, we constructed several building blocks for
the model each having a physiological counterpart. Therefore, several research fields have to be
integrated despite their diverging vocabulary. Each of these blocks is implemented using the same
realistic activation dynamics as the ISAM. Priming effectsemerge by the interplay of all aspects
during a simulation of the General Model.

The following chapter will motivate the General Model in section 8.1 and describe its compo-
nents and their biological counterpart in section 8.2. Section 8.3 presents the dynamic equations
on which the General Model is based, and section 8.4 explainshow the different theories can be
tested. We then show some exemplary simulations in sections8.5 and 8.6. The present introduc-
tion of the General Model will be concluded by a critical discussion about the strong point and the
weaknesses of the General Model in section 8.7.

8.1 A Framework to Test all Negative Priming Theories

The starting point for the General Model was our attempt to extend our implementation of the
ISAM described in chapter 3 in order to simulate a word-picture comparison task like the one
introduced in chapter 7. First of all we sought a way to incorporate different paradigms. The word-
comparison task is a good example for what problems arise when aiming for a generalized model.
Compared to the voicekey task described in section 2.2, the word-picture comparison provides
two different combinations of features in the stimuli: shape-color and word-color. To be accurate,
there is also a space dimension in both as they appear on different locations on the screen. Another
striking difference between paradigms concerns response modalities. In the voicekey paradigm a
direct association of semantic representation and spoken word is possible. Whereas the word-
picture paradigm needs an additional stage of processing asthe two semantic representations of
word and picture have to be compared and the match or mismatchhas to be mapped on a yes or no
response, still disregarding that those responses are to bemapped onto a left or right hand button
press. Thus, we were not able to conserve the simplicity of the implementation of the ISAM.
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Figure 8.1: Interaction scheme of the different components of the General Model. Perceived
stimuli are decomposed into single features, each of which is represented in a single
variable in the according layer. Object identity is kept track of by activations in the
binding layer, associating the different features of a stimulus object. Most paradigms
require a semantic evaluation of the stimuli in order to generate a response. Therefore
the semantic layer gates information flow from the relevant features to the action layer
which decides on the action to perform. Parallel to the information flow from percep-
tion to action a so-called central executive steers the model behavior with regard to the
current task, i.e. providing information about the target and the mapping of semantic
variables to actions. According to the similarity of the percept and a memorized stim-
ulus configuration, the memory layer feeds back informationof the former trial. The
similarity signal also affects the effectivity of transmission between features, semantic
layer and actions as well as between memory itself and actions, the latter inversely to
the first.
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8.1 A Framework to Test all Negative Priming Theories

8.1.1 Different Paradigms

The description of the initial implementation of the distractor inhibition theory (Houghton and
Tipper, 1994) is able to deal with different perceptual input. Stimuli are recognized by specialized
feature units. The decomposition of the percept into the relevant feature dimensions offers good
flexibility of the model to receive very different stimuli, see section 8.2.1. Such a mechanism
nicely determines on a more concrete level the difference ofparadigms. This is supposed to be
responsible for the diverging results of negative priming studies. After decomposition, it is neces-
sary to keep track of object entities, which can be realized by a flexible feature binding mechanism
(Treisman, 1996). For the General Model we decided to implement a simplification of an earlier
attempt to bind feature representations by means of persistent spiking activity (Schrobsdorff et al.,
2007a), similar to the simplification leading from population activity of a spiking network to the
intrinsic dynamics of the ISAM in section 3.1.

In order to account for different response modalities, we assume two separate layers – one con-
taining activations of semantic representations, the other one activations of certain action schemes.
Between these two layers, an abstract mechanism we call central executive implements a possibly
nontrivial mapping. The central executive also provides information about which feature instance
codes for the target and distractor, and which feature dimension is relevant for responding, see
section 8.2.5.

8.1.2 Inclusion of Theories

So far we have explained the points that go beyond the ISAM that are necessary to deal with
several experimental paradigms. Additionally, the comparison of diverging theoretical concepts
needs clear formulations of the different theories. We werethus looking for ways to include the
mechanisms proposed by other theories into the General Model and thus make it worthy of its
name.

The inclusion of distractor inhibition into our framework is straightforward. The target is no
longer boosted, but the distractor is subject to inhibition. Simultaneously, activations below base-
line are necessary for the inhibitory rebound. We thereforesimply shift the arbitrary baseline
activation from zero in the ISAM to 1/2, as the exponential dynamics of the ISAM which we want
to reuse in the General Model does not allow for negative activations.

Episodic retrieval theory requires the explicit modeling of memory and retrieval processes.
Therefore, we add a layer which contains (mostly short-term) memory that is able to store a snap-
shot of the state of the dynamic system subject to decay over time. The memory layer is also able
to compute the strength of retrieval determined by the similarity of the current percept and the one
stored in memory. Retrieval is modeled by partially restoring former system variables. Memory
gets an update at the most prominent point in a trial, i.e. when the decision takes place.

Response retrieval manifests in the General Model as a simplification of episodic retrieval.
Only system variables of the action layer are restored during retrieval. The retrieval strength is
still determined by similarity of current and stored percept.

Feature mismatch theory states a conflict whenever an objectat a certain location changes shape
or identity, but not necessarily its role as target or distractor. Abstracting from the very specific
location paradigm on which feature mismatch is based, we assume a generalized form to be in
line with feature mismatch theory. The binding of one feature into a new stimulus entity is in
concurrence with existing bindings of this feature. Such a concurrence is inherent in the General
Model, as it only has a single variable for a specific feature instance. If e.g. two red objects are
presented, both object representing bindings will point tothe same color variable. Any activation
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8 The General Model for Negative Priming

that is exchanged via one of the bindings is then further propagated through the second binding.
In the case of still existing bindings from earlier trials, the situation is similar.

Temporal discrimination theory acts on the same episodic memory layer as the episodic retrieval
account. The probability if a stimulus display was just seencan be computed by looking at the
similarity between current and memorized percept we already have. This value clearly is highest
when both configurations entirely match. As a percept is memorized when a decision is made, all
stored values of variables that played a role in the last trial already acquired prominent activation
and the new percept first has to be built up. The similarity is thus slowly rising from zero to its
final value. We now compute the difference of the similarity variable with a prototype similarity
signal that separates perfectly similar displays from stimuli that vary in only one feature. In order
to account for initial fluctuations, the difference has to surpass a certain threshold that is large at
trial onset but shrinks with time in order to generate an old-new classification. If a display is rather
similar to the memorized one, the similarity value will staylongest within the uncertainty interval
preventing an old-new classification.

As the classification has been done, temporal discrimination theory assumes the affection of
information flow. In the presence of new stimuli retrieval isblocked and direct computation is
facilitated. And for old stimuli the direct computation is dropped and retrieval will be performed.
This is incorporated into the General Model in terms of modulation of transmission strengths be-
tween the corresponding layers: from semantic to action fordirect computation and from episodic
memory to action for retrieval.

The spirit of the dual mechanism hypothesis is inherent to the General Model, as it will cover
all the mentioned theories simultaneously. According to the above brief descriptions it becomes
evident that the mechanisms postulated by inhibition and threshold theory are located in the more
sensory part of the system, whereas the retrieval accounts act in later parts. Thus, coexistence is
trivial. The localization of theories in the concrete formulation of the General Model also unveils
the differing nature of the two big parties in the discussionabout negative priming. As we already
pointed out in chapter 6, distractor inhibition and the ISAMare perceptual theories, whereas the
retrieval accounts propose influence of selection processes.

8.2 Characterizing System Components

The last section briefly described the minimal setup of the General Model in order to still cope with
a variety of paradigms and to incorporate assumptions from all theoretical accounts. The following
section will review facts concerning the corresponding building blocks of the General Model, see
figure 8.1. There are two sources of information about the respective components. One is the
classification by behavioral psychologists. The other one is delivered by neuroimaging studies
that allow for a spatial and temporal localization. The latter procedure is usually based on the
first one, as neurophysiological results are interpreted onthe basis of knowledge from behavioral
experiments.

We already introduced the possibilities to obtain information about mechanisms involved in task
accomplishment from EEG data in chapters 4 and 5. Another technique, functional magnetic reso-
nance imaging (fMRI) provides very accurate spatial information. But the nature of the measured
blood oxygen level dependency (BOLD) is still unclear even on a cellular level, not to speak of
its relation to behavior. Nevertheless, fMRI recordings are a widely used tool to noninvasively
obtain spatial information about brain processes. If stimuli are repeated, the BOLD response is
weaker than for new stimuli, which can be explained by eitherof the three hypotheses: fatigue,
in the corresponding subnetworks less energy is present dueto recent activity; facilitation, less
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8.2 Characterizing System Components

oxygen is consumed, as the units are still in an activated state; and sharpening, neurons coding
for features irrelevant for identification show less activity (Grill-Spector et al., 2006). Support
for the latter hypothesis comes from a study considering thememorization of novel stimuli with
simultaneous recording of EEG and fMRI (Fiebach et al., 2005). However, there is also evidence
that the often observed lower BOLD signal is independent of stimulus repetition, as it is possible
to vary them orthogonally (Ganel et al., 2006). The hypothesis that a lower BOLD signal reflects
accumulation of neural activity (James and Gauthier, 2006)fits well with the findings of increased
activation in priming situations (Fiebach et al., 2005). Inhigher cognitive areas, faster processing
is related with less BOLD (Maccotta and Buckner, 2004). Onlythe presence of distractors reduces
activation in the inferiotemporal lobe, whereas targets enhance activation in the prefrontal cortex
(Jiang et al., 2000). Concluding, even if the meaning of the measured fMRI signal is still under
debate, we can learn from it about the brain areas that exhibit discriminative signals in the different
priming conditions. Those areas are good candidates for a source of the systematic reaction time
variations. In the current section, we will discuss evidence for the individual components of the
General Model.

8.2.1 Feature Layers

In the visual pathway the percept from the retina is decomposed into low level features, each being
represented by different subsets of neurons (Van Essen et al., 1992). Later, the low level repre-
sentations are recombined to form higher order features of objects from visual input (Prinzmetal,
1995). Feature decomposition bears excellent flexibility for a sensory system, but comes with
the disadvantage that the distributed information about anobject has to be bound together for
the recognition of objects as entities (Treisman, 1996). Synchronization might play a role in this
context (Singer, 1995), but the particular implementationis yet to be specified. In the realization
of feature binding in the General Model, we refer to feature binding in terms of our earlier fea-
ture binding model on the basis of localized excitations in aspiking network (Schrobsdorff et al.,
2007a).

In order to cover most paradigms with visual stimuli, we equip the General Model in the pre-
sented form with feature layers to detect color, shape, location and word(-shape). See Schacter
et al. (2004) for the neural distinction between Gestalt-shape and the shape of written words. Fea-
ture bindings are realized as a finite list of objects, each a set of features, and a binding strength
which specifies activation exchange between the features ofthe according object.

Biologically, the binding seems to be located in the parietal cortex as some neurological patients
show a dramatic breakdown in the ability to see objects (Treisman, 1998). In the formation of
binding, attention seems to form a crucial role, as neuromodulators associated with attention are
essential for the formation but not for the maintenance of bindings (Botly and De Rosa, 2007). In
our terms this means that objects from currently perceived stimuli are bound, and the binding can
survive the vanishing of the perceptual input. Bindings arestable against stimulus changes up to
the point where the limited resources are in use, i.e. the maximum number of bindings is reached.
Then new stimuli will take over the least active binding slots.

8.2.2 Semantic Representations

Many negative priming paradigms require stimulus evaluation on a semantic level, e.g. the word-
picture comparison task introduced in chapter 7, the specialized Stroop cards which are the origin
of negative priming research (Dalrymple-Alford and Budayr, 1966), or the naming of pictograms
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8 The General Model for Negative Priming

in the voicekey paradigm from chapter 2.3. Semantic representations are closely related to lan-
guage processing (Demb et al., 1995), which is rather distributed over the entire cortex.

Semantic tasks correlate with higher activity in the left inferior frontal lobe, categories and
concepts can be attributed to the temporal lobe, whereas context and figurative demands distribute
over the right hemisphere (Bookheimer, 2002). Semantic processing tasks with either pictures or
written words are found to activate a network of regions in the left inferior frontal lobe, left anterior
temporal lobe, left middle and inferior temporal gyri, lefttop junction and the right cerebellum
(Devlin et al., 2002). Despite the distributed nature of semantic processing, the General Model
includes only one layer holding strengths of the semantic representation of a certain stimulus
in a similar way to the ISAM. The General Model also inheritedthe attention mechanism from
the ISAM, i.e. an adaptive threshold relying on activationsin the semantic layer. The threshold
controls information propagation to response generation.

8.2.3 Episodic Memory

Episodic retrieval theory, see section 2.4.2, explicitly refers to episodic memory for storing infor-
mation about one experimental trial which is retrieved later on. Unfortunately, there is a mismatch
with what is called episodic memory in the field of memory research. Episodic memory in that
context is generally seen as the capacity to reference personal experiences in the context of both
time and space (Tulving, 2002). Experienced sequences are memorized together with temporal in-
formation. The basic paradigm to consider such memories is regarding place cells in rats and the
encoding of the experienced sequences of visited places first in hippocampus, and then the transfer
to long term memory during sleep (Tsodyks, 1999; Sejnowski and Destexhe, 2000; Buzsáki, 2005;
Suzuki, 2006).

On the contrary, a trial is more or less static in most negative priming paradigms, and also the
temporal sequence of trials is not considered beyond the directly preceeding one by any of the
theories. The interference of a memory with behavior is assumed to depend only on the time
elapsed and stimuli encountered in the meantime. In spite ofthe unusual usage, we will stay with
the term episodic memory for the memory process involved in negative priming experiments, as
the General Model is dedicated to advance the discussion in negative priming research and thus
should use the language common in that field. Hence, to give a clear idea of the episodic memory
of negative priming research, we will now discuss the process in question in detail.

Following the theory on working memory by Baddeley and Hitch(1974), who assume a con-
scious awareness to retrieve information from episodic memory (Baddeley, 1998), the episodic
memory layer of the General Model is not located in the the episodic buffer but rather in the other
parts of working memory (see Baddeley, 2000, 2001). Our memory layer goes beyond the notion
of short term memory as the maintenance of activation by attention (Cowan, 1988). During typical
priming experiments, no attention is devoted to distractors and past episodes. Nevertheless, the
corresponding representation is said to be retrieved, and thus had to be memorized before.

Physiologically, memory encoding is related to activity inthe left prefrontal cortex, whereas
retrieval is more associated with right prefrontal cortex (Tulving et al., 1994; Fletcher et al., 1997).
This is conjectured to be due to different control mechanisms on the two tasks (Craik, 2002). We
would rather like to speak of a memory trace ”whatever this turns out to be” (Craik, 2002) as
a neural blackboard. We solve the stability-plasticity problem that memories have to be formed
reliably and instantly but have to persist for some time evenin the presence of interfering input
(Norman et al., 2005; Suzuki, 2006) by implementing a limited number of memory slots that hold
the entire state of the system at a certain point in time. Sucha memory is assigned a strength which
decays with time. In our scenario, individual instances arethe only forms of experience that are
represented, as Logan (1988) postulates for neurological representations of memories.
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8.2 Characterizing System Components

8.2.4 Memory Retrieval

Memory research distinguishes between involuntary retrieval and willing recollection (Yonelinas,
2002). Physiologically measurable is the so-called familiarity signal, which becomes visible in
the EEG past 300ms after stimulus onset. Familiarity is assumed to trigger further retrieval, as
a spontaneous recognition can lead to willing recollection(Zimmer et al., 2006; Ecker et al.,
2007b,a). There is a functional dissociation of dorsal prefrontal cortex for context monitoring and
ventral right prefrontal cortex for retrieval itself (Henson et al., 1999). Context monitoring means
the evaluation of the appropriateness of a retrieved episode (Egner and Hirsch, 2005). Topography,
latency, and polarity of the familiarity signal in EEG-databears resemblance to the old/new effect
related to episodic memory retrieval (Rugg and Nagy, 1989).

The two approaches of episodic retrieval and temporal discrimination theory predict differing
mechanisms controlling the strength of memory retrieval. The first theory assumes that involuntary
retrieval is positively correlated with perceptual similarity of the two trials. The latter postulates
another perception based classification of the encounteredepisode being old or new. When signif-
icant evidence for an old stimulus display is cumulated, full retrieval is triggered, simultaneously
stopping the direct response generation.

The General Model performs in any case the computation of a familiarity signal by compar-
ing the current percept with the memorized one. In one case this familiarity directly determines
the strength of retrieval, i.e. very familiar situations cause a strong retrieval, whereas unfamiliar
stimuli cause very little but still positive retrieval. In the other case, the system holds a template
time course of a familiarity signal separating the time courses of the familiarity signal while en-
countering a perfect match of stimulus displays and a pair ofsubsequent displays that vary in one
single feature. Greater familiarity than the template indicates the identical stimulus configuration,
while lower familiarity is considered as being produced by anew display. In order to account for
the uncertainty of the signal early in the trial, the GeneralModel implements a shrinking corri-
dor around the template curve in which the evidence of the display being old or new is not yet
significant enough.

8.2.5 Central Executive

Though having a high degree of complexity, the General Modelis still a very simplified system
compared to biology. The General Model does not comprise a mechanism to autonomously adapt
to the diverse demands of the different paradigms. We ratherassume a mechanism to be in charge
of the adaptation and to adjust several parameters or mappings. The discussion about how the
brain solves the adaptation to new situations and tasks brought up the famous, but most likely
inexistent homunculus in the brain, steering the system on ahigh abstraction level and keeping
track of long-term goals.

The corresponding building block of the General Model is called central executive (Cowan,
1988), not in the meaning of an “reclusive autocrat” (Craik,2002), but as an emergent property of
interacting subsystems (Barnard, 1985; Teasdale and Barnard, 1993; Bressler and Kelso, 2001).
Even if there is no consensus on the necessity of a central executive in memory functions (Badde-
ley, 1998; Johnson, 2007), we will use the term in order to describe the sudden change in system
behavior if it is presented a new task. Concretely, we provide the General Model with the task
demands by specifying the top-down input modulating targetor distractor activation and a set of
mappings each describing the input to the action layer for a certain paradigm.
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8 The General Model for Negative Priming

8.3 Implementation of the General Model

After the thorough examination in the previous section of mechanisms contributing to the pro-
cessing of a negative priming trial, and thus in question of producing negative priming, we will
now come to the concrete description of how we implemented the General Model. Again, we are
faced with the problem of translating abstract concepts to concrete mathematical dependencies.
The way of implementation determines the behavior of the system. Thus, the correct interpreta-
tion of theories is crucial for the success of the model to weigh theories against each other. The
following implementation of the the General Model is written in an abstract mathematical way,
which is necessary to be explicit enough to allow for a reproduction of the simulations, an aspect
we consider to be very important in computational research.

Formally, we will use an exponential fixpoint dynamics like we already successfully introduced
in chapter 3. The difference between a state variable and a given fixpoint multiplied by a certain
time constant determines the change of that variable. Due tothe high degree of interconnections of
the system variables, we give an overview on the notation by summarizing all variables, parameters
and mappings in tables A.20, A.18 and A.19, appendix A.6, respectively. In the following we will
go through all dynamic equations in the order of informationflow, beginning with the feature
layers, passing the semantic layer and the action layer and finally describe the behavior of the
memory variables.

8.3.1 Feature Variables

All objects from input space are represented and fully determined by tuples of features. The
number of relevant features can vary according to the task. Information about a perceived object
is decomposed and then passed to several layers of the General Model: features drive feature
detection variables of the system, whereas the informationabout the combination of all features
to one object entity is held by the binding layer. This also defines the synaptic interconnection of
feature variables belonging to the same object.
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Figure 8.2: Time series of the representation variables in the shape layer f j
shapeof the General

Model during accomplishing the word-picture comparison paradigm, see section 8.6.
Different color saturations label different objects. The model is set to episodic re-
trieval mode, see section 8.4. The plot shows the retrieval of past episodes in depen-
dence of perceptual similarity, see figure 8.9, and also the activation propagation from
the color layer, see figure 8.3, via the respective bindings,figure 8.5 as target and
distractor activation diverge.
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Figure 8.3: Time series of the representation variablesf green
color , f red

color and f gray
color in the color layer

of the General Model during accomplishing the word-picturecomparison paradigm,
see section 8.6. The model is set to episodic retrieval mode,see section 8.4. The plot
shows the target amplification, equation 8.3, in the faster rise of green.

Feature variablesf j
i are defined by the indicesi, denoting the respective feature, e.g. color, see

figure 8.3, shape, see figure 8.2 or word shape, see figure 8.4, and j which indicates the concrete
instance of the feature, e.g. green. The dynamics of a feature variable is determined by several
terms that act simultaneously. The first one is a drift with time constantτ f towards the external
inputF j

i of the feature instance, whereasτ f takes on two different valuesρ f if the feature variable
is lower than the input and rises by an active drive, orδ f if the input variable is lower and the
feature variable passively decays.F j

i is defined by the presence of the respective feature in the
display configuration. If the particular feature instance defines the respective object to be target or
distractor in the current task, an additional input, excitatory or inhibitory, is applied to the feature
variable. In case of feature presence,F j

i is set to maximum external input strengthF̂ plus the
current value of the variable accounting for the reception of input by only a subset of neurons
in one assembly, similar to the argumentation in section 3.2.4 introducing the residual activities
to the ISAM. The residual overshoot of the input decays to themaximum input in the same way
feature activation would. In case of feature absence, the input is set to the activation baseline value
of F which is not necessarily zero.

F j
i =











F̂ + f j
i at display onset, if instancej of featurei is present

δ f (F̂ −F j
i ) during stimulus perception, as long asF j

i − F̂

F at display offset

(8.1)

Both target selection mechanisms, target amplification anddistractor inhibition simply add to
the corresponding feature inputF j

i to the overall inputF j
i in the dynamics of the feature variables.

Target amplification A is linearly increasing until a response is given and set to zero afterwards.
Distractor inhibition I is said to persist for some time, as it has to be retrenched after a response was
given. Therefore, inhibition I increases linearly with slope ι during perception and fades linearly
after the decision was made.
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Figure 8.4: Time series of the representation variablesf j
word in the word layer of the General

Model during accomplishing the word-picture comparison paradigm, see section 8.6.
The model is set to episodic retrieval mode, see section 8.4.Besides a very monotonic
behavior, the plot reveals one of the major problems in the design of the word picture
comparison paradigm by pointing to the fact that we only allow for a repetition of the
comparison word in TT trials that require a confirmative response, which may cause
systematic reaction time effects as well.

F j
i =











F j
i +A if {i, j} defines the target

F j
i + I if {i, j} defines the distractor

F j
i otherwise

(8.2)

dA
dt

= α during stimulus presentation (8.3)

A = 0 no stimulus present

dI
dt

=

{

ι during external input

−ι after the offset of input until I= 0
(8.4)

The second term governing the dynamics of features is losingof feature specificity in the ab-
sence of input defined by a broadening of activation with timeconstantβ, within one feature
towards the feature mean〈i〉 f j

i , without lowering the total activation of the respective feature
layer. Thirdly, feature activation is passed via existing bindings to the other feature instances be-
longing to the same object. If e.g. the feature tuple{color,green}{shape,ball}{location,bottom}
defining a green ball shown at the bottom of the visual scene isheld by the binding variable
b{color,green}{shape,ball}{location,bottom}. Its value defines the amount of activation interchange between
the variablesf green

color , f ball
shapeand f bottom

location such that they approach their mean. There exists only one
feature variable for green. Therefore multiple green objects experience a natural connection, as
they share this variable. The last term that drives feature variables is the back projection of mem-
orized episodes into the feature layer. Weighted by the matching valuerk of the actual percept and
thekth last memorized episode and the strengthek of the respective memory trace the value of the

feature variable at the respective response momente
f j
i

k is fed back to the variable.
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d f j
i

dt
= τ f (F

j
i − f j

i ) (8.5)

+β
(

〈i〉 f j
i − f j

i

)

+ ∑
b{ik, jk}

:∃k:ik=i, jk= j

b{ik, jk}(〈∃k : ik = l , jk = m,{ik, jk} 6= {i, j}〉 f m
l )

+∑
k

rkek

(

e
f j
i

k − f j
i

)

where τ f =

{

ρ f if F j
i > f j

i

δ f if F j
i < f j

i

8.3.2 Feature Binding Mechanism

The bindings themselves are dynamic variables, as they codethe strength of feature interconnec-
tion within one object, see figure 8.5. But as the underlying structure, see (Schrobsdorff et al.,
2007a), is a flexible but resource constrained layer, there is only a limited number of such binding
variables where each can code for any feature combination. If an object appears in stimulus space,
it is checked whether the object is already represented, which would correspond to an immediate
recognition of the object as the same that has just been represented. If the object is not yet repre-
sented by a binding, the weakest binding variable that is notsubject to actual input is overwritten,
deleting the respective object from working memory. If an object is shown, the respective binding
variable is driven with time constantρb towards a maximum interconnection strengthb̂. If the
percept of an object is gone, the respective binding variable passively decays with time constant
δb to zero.
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Figure 8.5: Time series of binding strengthsb{ik, jk}k
of the General Model during accomplishing

the word-picture comparison paradigm, see section 8.6. Themodel is set to episodic
retrieval mode, see section 8.4. The plot shows a very stereotypical behavior for all
bindings as the only interaction in the binding layer is the taking over of a binding
slot if the resources are exhausted and a new object is perceived. Always the weakest
binding is replaced by a new one, therefore the effect by the taking over is minimal.
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db{ik, jk}k

dt
=











ρb(b̂−b{ik, jk}k
) if an object with the respective

feature is perceived

−δbb{ik, jk}k
if the percept is switched off

(8.6)

b{ik, jk}k
= 0 if the binding slot is overwritten

i.e. object{ik, jk}k was not shown and held by the

weakest binding when a new display was uncovered

containing a non-bound object{i l , j l}l .

8.3.3 Semantic Variables

The role of the variables in the semantic layer, see figure 8.6, is assigned by the central executive,
depending on task demands. Therefore, a fixed description ofthe dynamics of semantic variables
is not possible. After a hypothetical training phase that introduces a new task, we assume that
the central executive has elaborated a reasonable gating function S( f ) of feature activations to
the semantic layer. This function defines the fixpoint the semantic activation is approaching to
with time constantρs or δs for an actively driven rise or a passive decay, respectively. Again the
variables are subject to retrieval of former episodes analogous to feature variables.

dsj

dt
= σ f→sτs(S

j( f )−sj)+∑
k

rkek

(

esj

k −sj
)

(8.7)
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Figure 8.6: Time series of the representation variablessj in certain shades of green and the thresh-
old sθ in blue in the semantic layer of the General Model during accomplishing the
word-picture comparison paradigm, see section 8.6. The model is set to episodic re-
trieval mode, see section 8.4. During yes-trials, when target and comparison word
match, the input from chape layer and word layer converge onto the same semantic
concept, causing a much higher activation in those cases. The threshold now detects
the presence of relatively high activations, as there is always superthreshold activa-
tion. In cases of no match, the threshold will surpass all activations which is then seen
as evidence for a no response.
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8.3 Implementation of the General Model

where τs =

{

ρs if Sj > sj

δs if Sj < sj

8.3.4 Short-Term Modulation of Connectivity

The General Model is able to direct information flow such thatit can decide whether a response
should be computed from scratch by considering the perceptual input or by retrieving information
from episodic memory. Therefore, synaptic connections between the layers can be blocked or
facilitated, depending on the old-new signalok generated by comparing thekth last episode to the
actual percept. A blocking variableσblock adapts with time constantτblock to ok which is either set
to 1, 1

2 or 0 depending on whether the signal is old, unclassified or new, respectively. The synaptic
strength is scaled according toσblock between a minimum synaptic strengthσ f→s and an open
channel ofσ f→s = 1.

σ f→s = (1−σ f→s)+ σ f→sσblock (8.8)

with
dσblock

dt
= τblock(ok−σblock) (8.9)
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Figure 8.7: Connectivity modulation according to episodic retrieval and temporal discrimination
theory. Whenever a perceptual match is high, the direct computation, i.e. the in-
formation transmission between feature layers and semantic layer and also between
semantic layer and action layer, is closed. If the two percepts are dissimilar, the trans-
mission is enhanced as visible on the left plot. The right plot shows the retrieval
strength for the action layer. Whenever a match is detected,the response can be re-
trieved from memory, retrieval is enhanced, if no match is present, the retrieval is
useless, and therefore prevented, see section 8.3.8.

8.3.5 The Adaptive Threshold in the Semantic Layer

As a decision mechanism for comparison tasks, the semantic layer possesses an adaptive threshold
sθ which is computed by a weighted average of activation in the semantic layer, see figure 8.6.
The weighting of the average is such that it adapts between the highest two semantic activations.
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8 The General Model for Negative Priming

Therefore the baseline activationF that is directly passed from feature layers to the semantic layer
has to enter the averaging process.

1
τsθ

dsθ

dt
= νsθ ∑

j

(

sj −F
)

+F −sθ (8.10)

8.3.6 Action Variables

The action layer behaves similarly to the semantic layer, see figure 8.8. Action activation variables
are driven towards external inputA(s, f ) that is computed from semantic and feature representa-
tions according to the task, i.e. given by a mapping functionincorporated in the central executive.
Depending on whether the adaptation is an actively driven rise or a passive decay, two time con-
stantsρa,δa apply, respectively. An aspect that is easily overseen is the possibility of a person
not to respond. For example in cases where no target object isshown. Therefore, action zeroa0

has the special role of representing no reaction.A(s, f ,σ f ,s→a)
j is designed such that whenever

there is no target stimulus shown, e.g. between two trials,A0(s, f ,σ f ,s→a) = 1. In case of stimuli
triggering a responseA0(s, f ,σ f ,s→a) = 0.

da j

dt
= τa(A

j(s, f ,σ f ,s→a)−a j)+ ra∑
k

rkek

(

eaj

k −a j
)

(8.11)

where τa =

{

ρa if A(s, f ) j > a j

δa if A(s, f ) j < a j

The relative retrieval of action representationsra is modulated contrary to the synaptic trans-
mission to the action layerσ f ,s→a reflecting the facilitation of action retrieval by an old-new signal
indicating an old episode which can be answered by retrieving a former response. Also, the mod-
ulation of information flow can decrease the retrieval of a response if a new episode is classified.

σ f ,s→a = (1−σ f ,s→a)+ σ f ,s→aσblock (8.12)

ra =
(

1+max
(

σ f ,s→a,σ f→s

))

−2max
(

σ f ,s→a,σ f→s

)

σblock (8.13)

In order to model the decision making process in the action layer we introduce a threshold level
analogous to the semantic layer. As input to the action layerranges from zero to one, we do not
have to care about any baseline activation in the present case.

1
τaθ

daθ

dt
= νaθ ∑

j

a j −aθ (8.14)

Superthreshold activationsa j > aθ define the space of possible actions the system can take. If
there is only one action superthreshold, the correspondingaction is executed. In case ofa0 > aθ,
the system does not do anything.

8.3.7 Memory Processes

Memory Processes are modeled in a very simplified way. At points in time that mark the clo-
sure of an episode, in this case at reaction times, the entirestate of the model is written down as
one episode. The stored values can be retrieved on the one hand in order to compute similarities
between passed episodes and an actual percept, see figure 8.9. On the other hand, this similarity
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Figure 8.8: Time series of the action variablesa j in shades of purple, the representation of no
actiona0 in black dotted and the thresholdaθ in blue in the action layer of the General
Model during accomplishing the word-picture comparison paradigm, see section 8.6.
The model is set to episodic retrieval mode, see section 8.4.If the semantic thresh-
old decides for a certain response , its representation receives input. In the absence
of stimuli the no-response is activated. The threshold variable adapts in the same
way as the semantic threshold. Whenever only one response isabove threshold, the
corresponding action is executed.

triggers an automatic retrieval of the former episodes. Thegreater the similarity, the stronger mem-
orized values are piped back into the respective variables.The presence of memorized episodes
is set to the initial value ˆe when the episode is written down, and then freely decays to zero with
time constantδe.

ek = ê if episodek is memorized
dek

dt
= −δeek otherwise (8.15)

If a new episode is memorized, thekth last episode naturally becomes the(k+1)th last one.

ev
k+1 = ev

k

ev
1 = v v∈ { f j

i ,b{ jk,ik}k
,sj ,a j}

}

when an action is taken (8.16)

Generating a reliable old-new signal from only internal values, i.e. information that is accessible
by the system itself, is rather tricky. The intention is to have some value that is higher for a higher
degree of similarity between the actual percept and a memorized one. The system is only able to
monitor internal variables. Therefore, at first the idea of the actual percept can only be determined
by looking at feature variables. As the system is trained forthe present task, it has some knowledge
about the expected number of objectsn in the display. But the actual objects can only be guessed
by looking at then strongest bindings. Besides the summed distances of all feature variables,
there is a contribution of the sum of distances between then largest binding variables and their
memorized value if the binding already existed rescaled by the maximum binding strengtĥb. The
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Episodic Memory Layer
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Figure 8.9: Time series of the representation variables in the episodicmemory layer of the General
Model during accomplishing the word-picture comparison paradigm, see section 8.6.
The model is set to episodic retrieval mode, see section 8.4.Additional to the orange
similarity signal and the black activation course of memorystrength, see section 8.3.7,
which are used in the implementation of episodic retrieval,the plot shows the corridor
that decides about the classification of a trial as old or new,see section 8.3.8. An old
stimulus configuration is correctly only detected in the TT-yes trial, as it repeats the
target and the comparison word. In the TT-no trial the comparison word changes be-
tween prime and probe, therefore not enough similarity for an old display is detected.

old-new signal computed in this way is biggest for nonmatching percept and memory. Another
disadvantage is the bad resolution if percept and memory match to a high degree. Therefore, we
take the inverse of this model before applying a normalization by the significance of a percept
given by the sum over all actual feature variables, divided by the number of features relevant to
the task.

rk =

∑
i, j

f j
i

#f

(

∑
{il , jl}l

(∣

∣

∣

∣

f j
i −e

f j
i

k

∣

∣

∣

∣

+
1

b̂

∣

∣

∣
b{il , jl }l

−e
b{il , jl }l
k

∣

∣

∣

)

)−1

(8.17)

where{i l , j l}l ∈ {subjective percept}

= {objects being held by then largest bindings}

with n = #objects in one display

8.3.8 Connectivity Modulation

Information gating mechanisms are modeled by the dynamic opening or shutdown of synaptic
transmissions between the different layers as well as the retrieval channel to the action layer. This
modulation is governed by an old-new signalok comparing thekth last episode to the actual per-
cept. The comparison process is modeled by locating thekth retrieval signalrk below, in between
or above an uncertainty deviationu, shrinking exponentially with time constantτu, from a proto-
type time course for an intermediate resemblance of displays given by an exponential adaptation
from an initial valued with time constantτd towards a retrieval level̂d dividing old from new
displays, see figure 8.9.
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ok =











0 if rk > d+u

1 if rk < d−u
1
2 otherwise

(8.18)

where
d = d

u = u

}

at display onset

d = 0

u = 0

}

at display offset

dd
dt = τd

(

d̂−d
)

du
dt = −τuu

}

otherwise (8.19)

8.3.9 Generating Real World Reaction Times

Up to now we presented all dynamic equations governing the behavior of the General Model.
For a complete picture of all implementation details, some further points have to be mentioned.
The modeling comprises just the internal processes. While deriving biologically realistic reaction
times, several additive components have to be considered. Feature input is not set on immediately
if a new display is shown, but rather after some recognition latency needed to transfer the infor-
mation from the screen via the retina and the entire visual pathway to feature layers. Also, there is
persisting activation throughout the visual pathway knownas the after-image, which drives feature
input longer than the stimulus display is shown. Finally, the reaction time is recorded at a button
press or similar actions, not at the point in time where one action alternative became selected in
the action layer. Therefore some fixed time elapses between the decision in the action layer and
the offset of the stimuli. These three time intervals may also be subject to statistical variation and
additionally can depend on the subjects preferences or habits. Nevertheless, we take these values
as fixed over subjects, stimulus conditions and time. The actual lengths of these time intervals can
be taken from the respective research fields.

8.4 Defining Setscrews for the Theories

In order to analyze the consequences of a certain theoretical account, we define single setscrewsΞ
that modulate the impact of the assumptions of one theory on the behavior of the General Model.
We label the setscrews with abbreviations according to their theoretical scope. A list is given in
table 8.1.

Retrieval itself is easiest controlled by adjusting the initial strength of a memory trace as it
linearly determines the impact of retrieval. The modulation factorΞer just scales the maximum
memory strength ˆe. If Ξer is zero, no memory is written down, and therefore retrieval has no effect
on the system behavior. IfΞer = 1, memories are stored initially with the maximal strength ˆe and
retrieval provides the input to the system described in section 8.3.7.

The question whether the entire system state at the last decision is retrieved or only the prime
response separates episodic retrieval from response retrieval theory. These two assumptions are
contradictory. Therefore the setscrewΞrr gradually shuts down the retrieval or activation in layers
other than the action layer. IfΞrr = 1 the entire episode is retrieved, whereas, ifΞrr = 0, only the
action layer receives memory input.
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8 The General Model for Negative Priming

Model Behavior for Ξ = 0 Model Behavior for Ξ = 1

Ξer no retrieval at all maximum retrieval

Ξrr only retrieval of response total retrieval

Ξib distractor inhibition target boost

Ξgt no activation interference forced decay and activation broadening

Ξfsb full propagation retrieval blocks features sematic synapses

Ξsab full propagation retrieval blocks semantic action synapses

Ξtd classical episodic retrieval old/new evaluation

Table 8.1: Setscrews controlling the strength of the implementation of a certain theoretical ac-
count into the General Model. Their range is continuously between zero and one.

Distractor inhibition theory and the global threshold theory contradict each other by either as-
suming an inhibition of the distractor or a target boost, respectively. The setscrewΞib modulates
input to the feature instance that identifies target and distractor. If Ξib = 0, only the distractor re-
ceives inhibiting input, i.e.α = 0. If Ξib = 1 only the target feature receives excitation, i.e.ι = 0.
Ξib additionally adjust the baseline activation level from 1/2 in the distractor inhibition case to 0
with target boost, where no sub-baseline activation is assumed. At this point a major gap in the
retrieval accounts becomes visible. They do not make any statements on what the direct compu-
tation of a trial may look like. But the general model needs some decision making mechanism.
In order to have the least effect of the decision making mechanism on priming effects in the case
where we consider retrieval based mechanisms, we chose to have a pure target boost in the feature
layers. Forced decay as well as activation broadening as inherent features of the global threshold
theory will thus be controlled independently.Ξgt linearly controls the broadening of activationβ
and the strength of the forced decay if two concepts are in concurrence of a feature instance.

Both temporal discrimination and episodic retrieval theory postulate a decision of the system
on whether the current response should be generated directly from the input, or retrieved from
memory. The corresponding modulation in the General Model is done via the setscrewΞfsb. If
Ξfsb = 0, there is a concurrence between direct computation and retrieval in the system. IfΞfsb = 1,
the strength of retrieval, i.e. the similarity signal, triggers a shutdown of the synapses between
features and semantic layer, modeling a decision of the system to only retrieve the response and
drop the direct determination of the right answer.

In an excursion by Tipper and Cranston (1985) into the episodic retrieval domain, he argued
in favor of a blocking of the information flow in the episodic retrieval context right before the
action selection state. This manifests in the General Modelas a blocking similar toΞfsb described
in the last paragraph, but the shutdown rather happens between semantic and action layer. The
corresponding setscrew isΞsab.

A final setscrew is given byΞtd which controls the evaluation of a stimulus being old or new
before retrieval is initiated. In the caseΞtd = 0, the similarity signal determines the retrieval
strength from the beginning of a trial, whereas ifΞtd = 1 there is no retrieval unless the similarity
signal surmounts the uncertainty corridor around the prototype similarity signal, as explained in
section 8.3.7.

Table 8.2 summarizes the values of the setscrews if the impact of a single theoretical account is
to be evaluated. Note that some mechanisms are inherent to the General Model such as activation
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8.5 Voicekey Paradigm

Ξer Ξrr Ξib Ξgt Ξfsb Ξsab Ξtd

Distractor Inhibition 0 0 0 0 0 0 0

Global Threshold 0 0 1 1 0 0 0

Episodic Retrieval 1 1 1 0 0 0 0

Response Retrieval 1 0 1 0 0 0 0

Temporal Discrimination 1 1 1 0 1 1 1

Table 8.2: Settings of the setscrews in order to produce predictions byjust one theory.

propagation via the feature bindings. Therefore the pure settings do not give a minimal compu-
tational model of the respective theory, but we rather keep the mechanisms none of the accounts
specifies constant in all cases.

8.5 Voicekey Paradigm

The current and the following section will show four examples of the General Model during two
different paradigms and while emulating different theory variants. The aim is to show the capabil-
ities of the model concerning different paradigms and the comparison of theories.

The first simulation shows the General Model in a voicekey paradigm, see section 2.2. all
relevant variables are plotted over nine trials including all five conditions in figure 8.10. The
setscrews are tuned to episodic retrieval, i.e. we have no activation interferences in the feature
layers, but perceptual input, a boost of the target color green, the activation exchange via the
bindings and activation retrieval from memory.

The presentation of a red and a green pictogram drives the twocolor and the two shape repre-
sentations in the respective layers. The central executivedelivers additional input to green which
augments the activity of the target object’s shape via the bindings. The semantic representations
are given by a one-to-one mapping of shapes, i.e.S( f ) =1I, thus the activation is more or less
identical in both layers. The plot of the episodic memory layer shows the memory strength in
black which decays with time from a fixed value at memory initialization which takes place at the
point a response is given. In orange, the plot shows the similarity signal which linearly modulates
the retrieval of a former trial. The signal is highest for theTT trial, intermediate for DT, TD and
DD in ascending order. In the action layer, the trace for the no-action, see section 8.3.6, is dotted.
The selection of the target in the semantic layer again is directly passed to the action layer. Every
semantic representation has its corresponding action, i.e. to name it.

Already visible is a prediction of the configuration for TD trials. In this case the intermediate
similarity drives the retrieval of the high former target activation which is now applied to the
distractor. The threshold needs longer to surpass the distractor, therefore a strong slow-down is
observable, see also table A.21.

The present simulation was run with the following values of the relevant parameters:Ξer =
1, Ξrr = 1, Ξib = 1, Ξgt = 0, Ξfsb = 0, Ξsab= 0, Ξtd = 0, α = 0.0005, F = 1, trecognition= 50,
tafterimage= 30, tmotor = 80, ρ f = 0.01, δ f = 0.003, b̂ = 0.05, #b = 7, ρb = 0.008, δb = 0.005,
τsθ = 0.002,νsθ = 0.51,ρa = 0.004,δa = 0.002,τaθ = 0.002,νaθ = 0.5, ê= 0.002,δe = 0.003.

Negative priming in DT trials and positive priming in TT trials are with 21 ms and 56 ms
at rather realistic regimes, but the deceleration of -157 msin TD trials points to the fact that
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8 The General Model for Negative Priming

the mechanisms of negative priming are not well reproduced with the current parameter settings.
Detailed results are given in table A.21 in appendix A.6.

The second simulation, figure 8.11 is run with a setting to temporal discrimination, i.e.Ξfsb = 1,
Ξsab= 1, Ξtd = 1. This means that the retrieval of activation is only triggered, if the episode is
categorized as old. This is only the case for TT trials, as in all other cases the relevant object
changes.

Reaction times are about 200 ms slower than in the setting above, which is mainly due to the
missing standard retrieval in every trial which is just modulated in episodic retrieval interpretation
of negative priming. Temporal discrimination assumes retrieval only to happen if an episode is
classified as old, which is correctly only done in TT trials inthe simulation shown in figure 8.11.
Also priming effects are not well matched: every condition is decelerated, TT trials are slowest,
followed by DD, TD and finally DT trials. The simulation results are summarized in table A.22.

8.6 Word Picture Comparison Task

After the sketch of a comparison of episodic retrieval and temporal discrimination theory we will
now show how a relatively small change in the form of a weak modulation of information transfer
will enhance priming. We expose the General Model to a word-picture comparison task, as it was
introduced in section 7.1 despite the long distance betweenobjects and comparison word, such
that a parallel evaluation of shapes and words is possible. In this paradigm both shape and word
layers project into the layer of semantic representations.Whenever both converge, much stronger
input is delivered to the corresponding semantic concept and a yes response is triggered.

We again start off with a straight episodic retrieval setting. The present simulation was run
with the following values of the relevant parameters:Ξer = 1, Ξrr = 1, Ξib = 1, Ξgt = 0, Ξfsb = 0,
Ξsab= 0, Ξtd = 0, α = 0.001,F = 1, trecognition= 50, tafterimage= 30, tmotor = 80, ρ f = 0.01, δ f =
0.003, b̂ = 0.05, #b = 7, ρb = 0.01, δb = 0.005,τsθ = 0.0015,νsθ = 0.5, ρa = 0.004,δa = 0.002,
τaθ = 0.002,νaθ = 0.5, ê= 0.002,δe = 0.003.

Results are given in table A.23 in appendix A.6. No strong artifacts are visible, but the desired
facilitation in TT trials does not exist.

Parameter changes in the second simulation introducing a slight modulation of information
transmission, shown in figure 8.13, are given by:Ξfsb = 0.3, Ξsab= 0.3 τblock = 0.5. Whenever
the model encounters a similarity signal strong enough to classify the percept as old, bottom up
information flow is hampered by a relative shutdown of the connection between feature layers and
semantic layer and in parallel the retrieval of the former response is facilitated. On the contrary a
classification as new eases bottom up information flow and hampers retrieval.

Reaction time results are given in table A.24 in appendix A.6. Even if the overall reaction time
is rather fast, the pattern of priming effects shows realistic values, as compared to the vanishing
facilitation in TT trials the simulation with pure episodicretrieval linearly based on the similarity
signal shows.

8.7 Discussion

The simulated reaction times in the tables in section A.6 show that the behavior of the General
Model is far from being robust against even small parameter changes. This may be a hint that the
complexity level is chosen about right in order to account for the multitude of different findings
in connection with negative priming. But we have to face the question whether the model is built
such that it can basically fit any data pattern with just the right parameter settings. Due to the
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high dimensionality of the parameter space and the sensitivity of the General Model, this question
can not be answered conclusively by the means of parameter scanning techniques. In fact, an
important next step for the General Model is the parameter reduction by determining as many
values as possible by comparisons with trusted experimental results, e.g. for the availability of
after-images, decay times of feature bindings, etc. The detailedness of the General Model is also
easily capable of showing partial reaction times. Therefore a good way to limit the range of the
parameter space would be to have a series of time-marker experiments specially designed to reveal
processing stages that are also measurable in the General Model. Up to now the General Model can
only be a basis for discussion on the concrete nature of negative priming theories and paradigms.

In order to really decide which of the theories explains whatpart of the negative priming ef-
fect, a thorough dialogue with the psychologists who invented the theories is necessary. As the
discussion can best be triggered by a prominent introduction of the General Model to the priming
community we are in a vicious cycle. No acknowledged simulation results are possible without an
exchange between theoreticians and modelers, but also no discussion in the community is possible
without recognized results. The first attempt to break the cycle by advertising the General Model
at several conferences did not succeed yet. The second attempt, trying to reproduce a large portion
of empirical data, is still work in progress.

8.8 Summary

We presented the proof of concept for our neurophysiological model of perception based action
selection. Based on the cognitive demands of a negative priming paradigm we reviewed exper-
imental findings as well as theoretical concepts that characterize the mechanisms suspected to
contribute to trial processing. We then implemented several model layers for the different stages,
each devoted to a specialized purpose and with certain characteristics. But all layers are working
with the same realistic rate dynamics we introduced with theimplementation of the ISAM.

The result is a comprehensive model able to recognize perceptual objects by feature decompo-
sition and a binding mechanism that keeps track of the objectentities. These objects are translated
into a semantic representation where the attentional mechanism selects the most important item
and propagates the information to an action selection layer. This chooses the appropriate responses
and triggers its execution. In parallel a memory component observes the repetition of perceptual
stimuli and triggers the retrieval of previously encountered stimuli together with the results of trial
processing in order to facilitate responding.

The General Model gives a unified framework to quantify each of the theories for negative prim-
ing. The identification of setscrews for the different accounts makes it convenient to compare the
different predictions in a certain setting. But the application to clarify the explanations of nega-
tive priming is still confronted with several hurdles to take. The high dimensionality of parameter
space makes it impossible to exclude possibilities of behavior. And the implementation of the
different theories still should undergo a debate with the priming community in order to best match
the concepts of the theories, which are a matter of common sense.
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Figure 8.10: Activation traces in the different layers of the General Model in the voicekey
paradigm described in section 2.2. The model is in classicalepisodic retrieval mode,
i.e. Ξer = 1, Ξrr = 1, Ξib = 1, Ξgt = 0, Ξfsb = 0, Ξsab= 0 andΞtd = 0. That means
we have a target boost and retrieval of the entire episode, but no forced decay of
activation, no old/new classification. Retrieval is visible by the relatively small rise
of formerly active variables. Resulting reaction times aresummarized in table A.21.
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8.9 Simulation Plots
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Figure 8.11: Activation traces in the different layers of the General Model in the voicekey
paradigm described in section 2.2. The model is in temporal discrimination mode,
i.e. Ξer = 1, Ξrr = 1, Ξib = 1, Ξgt = 0, Ξfsb = 1, Ξsab= 1 andΞtd = 1. That means we
have a target boost and retrieval of the entire episode, but only if an episode is clas-
sified as old, what happens if the retrieval variable (orange) leaves the uncertainty
region (yellow). Resulting reaction times are summarized in table A.22.
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Figure 8.12: Activation traces in the different layers of the General Model in the voicekey
paradigm described in section 2.2. The model is in classicalepisodic retrieval mode,
i.e. Ξer = 1, Ξrr = 1, Ξib = 1, Ξgt = 0, Ξfsb = 0, Ξsab= 0 andΞtd = 0. That means
we have a target boost and retrieval of the entire episode, but no forced decay of
activation, no old/new classification. Retrieval is visible by the relatively small rise
of formerly active variables. Resulting reaction times aresummarized in table A.23.
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8.9 Simulation Plots
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Figure 8.13: Activation traces in the different layers of the General Model in the voicekey
paradigm described in section 2.2. The model is in episodic retrieval mode addition-
ally applying information gating via a modulations of information flow according to
similarity, i.e. Ξer = 1, Ξrr = 1, Ξib = 1, Ξgt = 0, Ξfsb = 1, Ξsab= 1 andΞtd = 1.
That means we have a target boost and retrieval of the entire episode, but only if an
episode is classified as old, what happens if the retrieval variable (orange) leaves the
uncertainty region (yellow). Resulting reaction times aresummarized in table A.24.
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9 Conclusion

The present thesis described how we applied different techniques to reveal the temporal structure
of the negative priming effect, i.e. the slow down of reactions to previously ignored stimuli. We
have approached negative priming by modeling, data analysis and by the design of novel exper-
imental paradigms, each of which led to specific results. We implemented two computational
models describing the origins of negative priming. Detailed insight into the temporal and spatial
characteristics of priming was gained by EEG recordings. Finally we described two attempts how
the temporal structure of negative priming can be assessed by introducing paradigms with subtasks
for which we record reaction times separately. We will conclude on each of the three points in the
following sections 9.1, 9.2 and 9.3, respectively. After a review of the results obtained from each
of the approaches to negative priming, section 9.4 is dedicated to collect all results in order to get
insight in the time course of negative priming. Section 9.5 will give some final remarks on our
project and future directions.

9.1 Computational Modeling in Psychology

For the prediction of behavior, psychological theories area good tool. But they neither provide
a clear link to physiology, nor make precise predictions. Itis rather the current interpretation of
the models characteristics that gives rise to educated guesses on how the mechanisms postulated
by the particular theory interact and what consequences this has. If a negative priming experiment
seems to provide negative evidence for a certain theory, most likely this evidence would be less
conclusive if the involved theories were considered from a different perspective. There are only a
few agreements on behavioral effects that can be described exclusively by one theory.

With a background in the exact sciences we found it natural toconcretize the theoretical as-
sumptions by implementing computational models. The first model follows the global threshold
theory, see section 2.4.7, as closely as possible. The resulting simulation easily produced realistic
priming effects. The power of the implementation is shown insection 6.2 where we derived hy-
potheses by simulating the model for a newly designed paradigm. The straightforward adaptation
of the implementation to the new paradigm showed the inappropriateness of the assumptions un-
derlying global threshold theory, i.e. the forced decay of residual activity in a clash with external
input. This assumption is responsible for the localizationof negative priming in an early stage of
a trial, as all residual activation will have faded later on.

Apparently the level of complexity of the ISAM was set too lowto correctly describe the man-
ifold aspects of negative priming. Instead of implementingeach theory separately, we designed
a comprehensive framework of action selection mechanisms based on perception. In this way a
sufficient level of detail was achieved in order to incorporate several theories of negative priming
and to compare them quantitatively. Due to the complexity ofthe model implied by the diverse
theories and the unclear data patterns, we focused on a proofof concept of the General Model. It is
clearly of importance to discuss the implications of the model with the founders of the respective
theories, a process which was very beneficial during the implementation of the ISAM.

To get some ordering into the different experimental paradigms with their partly very different
result patterns, it would be helpful to implement several classical experiments in the framework
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of the General Model. Not only would the standardization of the formulation of the paradigms
bring up the crucial differences, but also the behavior of the model itself would reveal the differ-
ent behavioral consequences the paradigms provoke. We should therefore obtain reasons for the
diversity of findings on negative priming.

9.2 EEG Correlates

We put a lot of hope into the analysis of EEG data for the specification of the timecourse of
negative priming. EEG experiments are difficult because of technical problems, the high variabil-
ity in the data, or the available commonly acknowledged use of analysis techniques that assume
an underlying process which is not subject to temporal variations which is already disproved by
behavioral data. Therefore, we did not only advance our skills in recording EEG data with ap-
propriate paradigms and sharpen our view to recognize possible correlates in resounding grand
average plots, but we also challenged the established methods and developed advanced analysis
techniques.

On the level of correlates our experiments reveal the similar processing of trials with repeated
objects in an early, perceptual phase. Later in the trial, the EEG shows a discrimination of both
conditions in opposite directions from the control condition, indicating low cognitive control dur-
ing target selection if the target is repeated, and high control if the target has been ignored previ-
ously. These correlates replicate the results from anothernegative priming study that was based
on a flanker task.

For comparability reasons we did not consequently use our own advanced averaging technique,
but stayed with the traditional pointwise average when reporting our results. The advanced aver-
aging technique is up to now only promoted separately.

9.3 Behavioral Paradigms Beyond Response Latencies

In order to gain insight into the temporal localization of the mechanisms causing negative priming,
we developed two paradigms that single out a certain phase oftrial processing while recording re-
action times separately for each of the parts. The first paradigm, described in chapter 6 considers
the perceptual phase individually by leaving open the question which of the two colors indicates
the target in the current trial, until the recognition of both objects has been acknowledged by the
participant. Clearly the change of the paradigm compared toits origin, the voicekey paradigm in-
troduced in section 2.2, is quite drastic. We had to deal withinterfering effects from the difference
between trials, requiring attention to the same color as in the prime trial and trials where the other
color coded for the target.

The situation is similar in the paradigm considering response generation separately, as described
in chapter 7. In order to disentangle target selection and response generation, we adapted a word-
picture comparison task, which is also based on the same stimuli as the voicekey paradigm. The
crucial differences are the presence of a comparison word and the response modality, a left or
right button press according to a match or mismatch of targetobject and comparison word. We
introduced our time marker that separates the trial by a longdistance between the stimulus objects
and the comparison word, while asking the subjects to first identify the target object and then to
make one single eye-movement towards the comparison word. In this case, we encountered inter-
ferences from the different processing of confirmation vs. negation. Another desired particularity
of the paradigm is the equal frequency of response switches and response repetition, an aspect that
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9.4 The Time Course of Negative Priming

is crucial for response retrieval theory. This localizes priming to occur during response generation
based on change or repetition of the appropriate response.

We obtained rather diverse result patterns over the entire range of experimental conditions. The
additional complexity of the paradigms made the introduction of further conditions necessary.
Nevertheless, the results concerning the traditionally interesting experimental conditions DT and
TT are rather clear. Our experiment unveiled the fact that stimulus repetitions lead only to facili-
tation, and that negative priming is generated before the response generation phase.

9.4 The Time Course of Negative Priming

Remembering the promise of the title of the current thesis, we will now describe the time course of
a negative priming trial. An objective description is attempted here by collecting the major results
of our experiments, without referring to theories or simulations, as we will do in the following
paragraph. We will also interpret the results in light of thedifferent theories, and then describe a
negative priming trial on the level of mechanisms in the framework of the General Model.

A negative priming trial consists of the following sequence. First, during the perceptual phase
a comparison with preceding stimuli occurs which results ina similarity signal. It does not need
to rely on purely perceptual features, but takes into account also semantic similarities. Thus DT
and TT trials show a similar characteristic in the P300 modulation, and are both accelerated in
the stimulus identification phase, albeit objects in TT trials are still more quickly identified than
in DT trials. As the target is identified by a perceptual feature, the target selection may run in
parallel with perception if not artificially delayed. In this perceptual phase, the processing of a
DT trial changes from the initial benefit of easier recognition, to the delay that is characteristic
for negative priming due to a high demand on cognitive control if a formerly ignored stimulus has
to be attended to. The onset of response generation may as well begin before the target is fully
identified as such by accumulating evidence. This final section of the trial processing is accelerated
if the response follows the same stimulus again, regardlessof whether this response is actually the
same or not. However, no decelerations were found in our separated response generation phase.

This picture of a negative priming trial is clear enough to draw some conclusions about the va-
lidity of the different theoretical accounts for negative priming. The characteristics of episodic re-
trieval match our results best. Both distractor inhibitionand global threshold theory fail to explain
why no negative priming effects are present during stimulusidentification. Temporal discrimi-
nation does not comply with the equal processing in early TT and DT trials. Response retrieval
theory is disproved by the fact that no negative priming is found during response generation. Fea-
ture mismatch theory is not really applicable in our paradigms, as we show all our stimuli at the
same location. Thus, each trial should show the slow-down caused by the present feature mis-
match, as we never repeat both objects at once. We therefore chose a description by means of the
General Model in episodic retrieval mode with moderate activation gating.

Following the interpretation of the General Model, a negative priming trial begins with the onset
of input to the feature layers and the formation of bindings for the respective stimuli. Simultane-
ously, the feature instance that defines a target receives additional input by the central executive.
The bindings exchange activation between the different feature layers, such that the feature which
triggers the response to the target object receives also more input than the corresponding one of the
distractor. A similarity signal is computed immediately after the stimulus appeared. The higher
the similarity, as in TT and DT trials compared to CO, the stronger the feedback of the former
trial’s activations. This supporting retrieval leads to a perceptual acceleration. Later in the seman-
tic layer the differential retrieval becomes crucial as allactivations, the externally driven and the
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retrieved ones, enter the calculation of the threshold thatwill determine the point in time where
the target is selected against the distractor. During DT trials, only the low value of a distractor
is fed into the probe target variable making it slower than TT, but we also have less overall ac-
tivation as in a CO trial where both former objects are retrieved due to the inherent similarity of
trials of the same experiment. If the selection of the targethas been done, a rather stereotypical
mechanism of action initiation is triggered, which is exclusively faster in TT trials, a phenomenon
which can not be explained by any of the existing theories, and is thus not yet implemented in the
General Model. One possible source may be a higher arousal incases where the same object is to
be attended again, accelerating response execution.

9.5 Summary and Outlook

By the means of innovative experimental paradigms, EEG-recordings, and computational model-
ing, we obtained a comprehensive picture of negative priming. We found that negative priming
is neither produced during perception, nor at response generation. A fact only a single theory,
episodic retrieval, can explain.

Besides the global aim of unveiling the temporal structure of a negative priming trial, our project
yielded numerous additional results. We enriched the set ofnegative priming paradigms by intro-
ducing intermediate behavioral time markers. We investigated the interaction of negative prim-
ing with phenomena that occur naturally in several paradigms and that are caused e.g. by task
switching or response repetition. We consolidated severalEEG-correlates of negative priming
and brought up an subtle way to account for reaction time variations during averaging. With our
modeling we advanced the discussion about the most likely theory to explain negative priming,
by consistently falsifying one account and by constructinga framework in which all theoretical
accounts are comparable.

All in all, the question about negative priming is far from being answered, as our description
of a generic negative priming trial can not account for all the oddities found in connection with
negative priming. We will finally present several ideas to proceed in order to come closer to the
origin of negative priming.

Negative priming is sensitive to age, and therefore an interesting phenomenon for aging re-
search. As we aimed at a complete picture of negative primingitself before we introduce aging as
an additional factor, a theory of aging still remains to be included into our approach. Experimen-
tally, however, we already acquired a broad base of experimental data comparing old and young
subjects. The evaluation of the data and the integration into our theoretical framework is one of
the major points in the remaining eight months of our project.

Another direct continuation of our time marker paradigms isthe introduction of multiple makers
per trial for a future experiment. According to our advancedaveraging techniques, the consider-
ation of individual event related potentials for each part of the trial is straightforward. Therefore
we are already planning another EEG study.

In order to extend the approach also to other experimental paradigms, we want to introduce
self-organization mechanisms which should enable the General Model to act more flexibly and
robustly in different situations. The accelerating effectin the response generation phase has to
be tested more thoroughly in order to identify the corresponding mechanism to include it in the
General Model.
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A Tables

A.1 Tables of Chapter 2

〈RT〉 [ms] (sd) effect [ms]

CO 660.22 (62.85) —–

DT 681.57 (69.65) -21.36

DTTD 685.92 (78.04) -25.70

TT 625.02 (65.29) 35.20

DDTT 600.69 (70.56) 59.53

Table A.1: Reaction times, standard deviation and priming effects, i.e. the differences of control
reaction time and reaction time of the according condition.

A.2 Tables of Chapter 3

〈RT〉 [ms] (sd) effect

CO 525.84 (14.78) —–

DT 546.40 (19.62) -20.55

DTTD 552.12 (22.19) -26.28

TT 489.76 (18.38) 36.09

DDTT 465.56 (17.31) 60.29

Table A.2: Reaction times for a response stimulus interval of 1500ms. To match the experimental
data given in section 2.2 an additional delay of≈ 135 ms for perception and action
initiation has to be assumed. These processes will also further raise the variance but
not alter the strength of the effects. Given are also the variance and the effect in
dependence on the condition. These reaction times were obtained in an exemplary
simulated session of 400 trials. The parameters of this simulated experiment were:
α = 0.028,β = 0.003,ξ = 0.0016,ζ = 0.0053,γ = 0.013,tdelay= 15ms andσ = 0.62.
A simulated time step was 0.3ms.
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A Tables

〈 RT 〉 (sd) effect

CO 525.84 (14.78) —–

COSO 407.48 (22.91) 118.36

DTSO 427.72 (24.77) 98.12

TTSO 299.58 (36.51) 226.26

SOCO 573.55 (19.98) -47.70

SODT 624.80 (34.30) -98.96

SOTT 548.20 (27.70) -22.36

Table A.3: Predictions of reaction times for a response stimulus interval of 1500ms, together with
variances and absolute effects in dependence of the condition of an exemplary simu-
lated session. The usual priming conditions are not shown. The parameters are the
same as in table A.2.

A.3 Tables of Chapter 4

〈RT〉 [ms] (sd) effects [ms]

control 765.8 (198.8) —–

DT 793.3 (214.2) ⋆⋆⋆-27.5

TT 632.9 (139.0) ⋆⋆⋆132.9

Table A.4: Reaction times for the different priming condition (CO, DT,TT) together with their
standard deviation and priming effects as the difference between CO and DT, resp. TT.
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A.4 Tables of Chapter 6

A.4 Tables of Chapter 6

〈RT〉 [ms] Effect [ms] Target Effect [ms]

CO 500.85 —– —–

DT 525.66 −24.81 −21.36

TT 466.07 34.77 35.20

TD 505.75 −4.91 —–

DD 494.15 6.70 —–

DTTD 524.29 −23.44 −25.70

DDTT 451.75 49.10 59.53

Table A.5: Reaction times for the different priming conditions TT, DT,DDTT and DTTD of the
calibrated simulation in comparison to their target effectstrengths, see section 2.2.
Note that the simulation already provides predictive data for the conditions DD and
TD which are not subject to fitting.

Reaction Time [ms] Priming Effect [ms]

CO 535.42 —–

DT 550.08 −14.67

TT 507.66 27.76

TD 551.02 −15.61

DD 513.50 21.92

CO_SW 528.25 —–

DT_SW 495.43 32.82

TT_SW 542.12 −13.87

TD_SW 505.53 22.71

DD_SW 543.02 −14.78

Table A.6: Predictions for the priming conditions TT, DT, DD and TD and their task-switch coun-
terparts in the pre-cue paradigm. Priming effects are determined by the difference of
the corresponding control and the respective priming condition. The repetition of an
object in the same color leads to a benefit, the reappearance in a different color disturbs
processing.
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Reaction Times [ms] Priming Effects [ms]

Total Rsi Rts Total Rsi Rts

Co 1263.21 465.98 797.23 —– —– —–

DT 1345.47 507.57 837.90 −82.26 −41.59 −40.67

TT 1235.54 465.85 769.69 27.68 0.13 27.55

TD 1347.49 515.23 832.26 −84.28 −49.25 −35.02

DD 1244.61 465.89 778.72 18.60 0.08 18.52

CO_SW 1372.73 465.95 906.78 —– —– —–

DT_SW 1354.00 465.87 888.13 18.73 0.09 18.64

TT_SW 1468.04 514.97 953.07 −95.31 −49.01 −46.29

TD_SW 1353.33 465.90 887.43 19.40 0.06 19.34

DD_SW 1446.22 507.36 938.86 −73.49 −41.41 −32.08

Table A.7: Predictions for the priming conditions TT, DT, DD and TD in dependency of a task
switch or task repetition derived by our simulation of the ISAM. Additional to the total
reaction time the ISAM produces predictions for the dividedreaction times into the
partsRsiandRts. Effects are differences of the appropriate control and therespective
priming condition. Note that perceptually identical displays like DT and DD_SW
produce the sameRsi.

target red target green

〈RT〉 [ms] (sd) Effect [ms] 〈RT〉 [ms] (sd) Effect [ms]

CO 735,36 (110.92) —– 783.76 (103.86) —–

DT 753.40 (113.75) −18 802.30 (101.37) −18

TT 686.63 (100.33) 48 740.83 (103.95) 43

TD 757.36 (135.24) −22 788.63 (94.09) −5

DD 713.26 (98.83) 22 764.96 (100.26) 19

Table A.8: Mean reaction times, standard deviation in brackets and effect strength for the five
priming conditions CO, DT, TT, TD and DD in the two baseline experiments. The left
side shows the data for red targets, and the right side shows green targets. Note that
trials with green targets are about 48 ms slower than trials with a red target due to the
stronger saliency of the color red. But priming effects, thedifference of CO and the
respective condition, are mostly identical in the two target color cases.
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〈RT〉 [ms] (sd) Effect [ms]

CO 759.56 (104.32) —–

DT 777.85 (100.71) ⋆⋆−18.28

TT 713.73 (87.50) ⋆⋆⋆ 45.83

TD 773.00 (108.15) ⋆−13.43

DD 739.11 (91.68) ⋆⋆ 20.45

Table A.9: Mean reaction time, standard deviation in brackets and effect strength for the five
priming conditions CO, DT, TT, TD and DD pooled over the two baseline experiments.
All conditions produce priming effects. DT and TD have a negative impact, whereas
TT and DD lead to facilitation.

〈RT〉 [ms] (sd) Effect [ms]

CO 788.567 (118.39) —–

DT 813.500 (107.17) ⋆⋆−24.93

TT 733.800 (102.35) ⋆⋆⋆ 54.76

TD 792.167 (119.42) −3.60

DD 788.367 (111.97) 0.20

CO_SW 795.400 (120.73) —–

DT_SW 823.467 (145.76) ⋆⋆−28.07

TT_SW 800.700 (126.88) −5.30

TD_SW 816.633 (124.90) ⋆−21.23

DD_SW 815.067 (123.31) ⋆⋆−19.66

Table A.10: Mean reaction time, standard deviation and priming effect for the priming condi-
tions TT, DT, DD and TD and their task-switch counterparts inthe pre-cue paradigm.
Priming effects are determined by the difference of the corresponding control and
the respective priming condition. DT and TT behave similarly to the baseline exper-
iment. In the task-switch conditions, an overall deceleration is present which may be
due to a negative shift of conditions that repeat an object.
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without mask with mask

〈Rsi〉 [ms] (sd) Effect [ms] 〈Rsi〉 [ms] (sd) Effect [ms]

CO 1470.53 (633.33) —– 1607.85 (431.49) —–

DT 1457.33 (603.48) 13 1545.21 (418.74) 63

TT 1395.73 (593.51) 75 1471.92 (414.66) 136

TD 1464.66 (626.80) 6 1598.50 (423.73) 9

DD 1410.26 (581.47) 60 1538.92 (407.10) 69

CO_SW 1452.13 (622.73) —– 1581.78 (435.97) —–

DT_SW 1456.33 (613.08) −4 1563.50 (412.72) 18

TT_SW 1441.06 (609.74) 11 1561.57 (419.11) 20

TD_SW 1399.20 (564.47) 53 1492.00 (380.62) 96

DD_SW 1450.93 (607.58) 1 1688.35 (471.45) −106

Table A.11: MeanRsi, standard deviation in brackets and effect strength for thefive priming con-
ditions CO, DT, TT, TD and DD in the two post-cue experiments.The left side shows
the data for the non-masked experiment, where the third of the subjects that use an
after-image strategy causes a faster mean reaction time anda much higher variance
than on the right side, where data from the masked experimentis shown.

〈Rsi〉 [ms] (sd) Effect [ms]

CO 1536.82 (540.25) —–

DT 1499.75 (515.27) 37.06

TT 1432.51 (507.40) ⋆⋆ 104.31

TD 1529.27 (533.32) 7.55

DD 1472.37 (500.27) ⋆ 64.44

CO_SW 1514.72 (535.24) —–

DT_SW 1508.06 (519.60) 6.65

TT_SW 1499.24 (520.76) 15.48

TD_SW 1444.00 (478.32) ⋆⋆ 70.72

DD_SW 1565.55 (549.86) ⋆−50.82

Table A.12: Stimulus identification reaction timesRsi, standard deviation and priming effect for
the priming conditions TT, DT, DD and TD and their task-switch counterparts in the
post-cue paradigm pooled over both experiments with and without mask. Priming
effects are determined by the difference of the corresponding control and the respec-
tive priming condition. Note the inappropriateness to poolDD_SW over the mask
and non-mask group.
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without mask with mask

〈Rts〉 [ms] (sd) Effect [ms] 〈Rts〉 [ms] (sd) Effect [ms]

CO 966.46 (125.85) —– 865.50 (158.62) —–

DT 989.66 (114.47) −23 877.64 (170.83) −12

TT 957.06 (118.14) 9 862.00 (168.23) 4

TD 953.20 (135.59) 13 857.42 (157.47) 8

DD 918.60 (110.99) 48 851.50 (192.85) 14

CO_SW 957.86 (95.55) —– 862.64 (130.98) —–

DT_SW 994.20 (82.43) −36 890.85 (145.57) −28

TT_SW 1028.20 (110.20) −70 912.92 (144.69) −40

TD_SW 936.06 (107.76) 22 823.92 (146.35) 39

DD_SW 973.06 (101.21) −15 876.00 (141.36) −13

Table A.13: MeanRts, standard deviation in brackets and effect strength for thefive priming con-
ditions CO, DT, TT, TD and DD in the two post-cue experiments.The left side shows
the data for the non-masked experiment, the left side the masked part.

〈Rts〉 [ms] (sd) Effect [ms]

CO 915.98 (26.49) —–

DT 933.65 (26.82) ⋆−17.86

TT 909.53 (26.83) 6.55

TD 905.31 (27.22) 10.75

DD 885.05 (28.96) ⋆ 31.51

CO_SW 910.25 (21.18) —–

DT_SW 942.52 (21.76) ⋆−32.41

TT_SW 970.56 (23.77) ⋆⋆⋆−60.65

TD_SW 879.99 (23.74) ⋆ 29.96

DD_SW 924.53 (22.70) −14.31

Table A.14: Target selection reaction timesRts, standard deviation and priming effect for the prim-
ing conditions TT, DT, DD and TD and their task-switch counterparts in the post-cue
paradigm pooled over both experiments with and without mask. Priming effects are
determined by the difference of the corresponding control and the respective priming
condition.
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Priming Effects

same response different response

TT 30.98 n.a.

DT n.a. −24.80

DD n.a. 49.44

TD n.a. −17.74

Table A.15: Predictions for the difference and reaction times of control and the four priming con-
ditions TT, DT, DD and TD derived by our simulation of the ISAM.

same response different response

Mean Reaction [ms] (sd)

control 976.0 (301.3) 945.2 (258.3)

DT 984.0 (281.0) 974.7 (287.6)

TT 959.5 (265.2) 912.8 (244.1)

TD 989.8 (323.8) 949.5 (267.3)

DD 965.0 (294.5) 968.0 (300.7)

Priming Effects [ms]

DT ⋆ −8.0 ⋆ −29.5

TT ⋆⋆ 16.5 ⋆⋆ 32.4

TD −13.8 −4.3

DD 11.0 ⋆ −22.8

Table A.16: Reaction times and priming effects in dependence on primingcondition and response
relation. Priming effects are computed as the difference ofthe reaction time in the
control and the prime condition, respectively.

154



A.5 Tables of Chapter 7

Rts Rrs

Mean Reaction [ms] (sd)

CO 417.2 (107.3) 515.8 (63.9)

DT 429.4 (107.9) 521.7 (73.1)

TT 414.7 (96.0) 496.7 (60.7)

TD 428.8 (119.0) 510.4 (68.9)

DD 422.2 (109.5) 518.7 (75.5)

Priming Effects [ms]

DT ⋆⋆−12.2 −5.9

TT 2.5 ⋆⋆19.2

TD ⋆−11.5 5.5

DD −5.0 −2.9

Table A.17: Partial reaction times and priming effects for each primingcondition. The color
switch of repeated objects gives a slowdown in the perceptual phase, whereas an
acceleration of TT trials is located in the second part of trial processing.
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free parameters

ρ f ρb ρs ρa rise time constants

δ f δb δs δa decay time constants

τsθ τaθ adaptation time constant for thresholds

νsθ νaθ normalization factors for thresholds

b̂ maximum binding strength

#b maximum number of simultaneous bindings

theory specific parameters

α target amplification

F baseline activity in case of feature absence

ι distractor inhibition

β time constant of activation broadening within one feature

σ f→s, σ f ,s→a maximum synaptic depression while full blocking

τblock adaptation time constant forσblock

ê initial memory strength

δe decay time constant for memories

d initial value ofd at display onset

d̂ fixpoint for the adaptation ofd

τd adaptation time constant ford

u initial value ofu at display onset

τu adaptation time constant foru

Table A.18: Parameters of the General Model. The upper part shows parameters determining the
overall behavior of the General Model. The lower part describes parameters that
control the processes that are postulated by a particular theory for negative priming.

S( f ) maps feature activations on semantic input

A(s, f ,σ f ,s→a) maps feature and semantic activations on action input

Table A.19: Mappings to be defined by the central executive.
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Eq. Description Comment

f j
i (8.5) activation of thejth instance of fea-

ture i
f green
color is the subjective presence of

green

F j
i (8.1) external input to thej-th instance of

featurei
Fgreen

color = F̂ while green is shown

I (8.4) inhibition of the distractor object I= 0 no inhibition

A (8.3) excitation of the target A= 0 no excitation

F j
i (8.2) total input including excitation and

inhibition
Fgreen

color = F̂ +A while green is target
color

b{ik, jk}k
(8.6) binding strength of an object possess-

ing jkth instance of featureik

b{color,green},{shape,ball} = b̂ in sub-
jective presence of a green ball

sj (8.7) activation of thejth semantic repre-
sentation

sball = 0 subjective absence of the
semantic conceptball

sθ (8.10) adaptive threshold level in the se-
mantic layer

The relation between thesj andsθ

determines the input to the action
layer.

σ f→s (8.8) synaptic strength between features
and semantic layer

σ f→s = 0 all information flow
blocked

σblock (8.9) synaptic block caused by matching
retrieval

σblock = 1 full block of bottom up
information flow

a j (8.11) activation of thejth action alternative
according to the task

ayes= 0 means the impossibility to
answeryes

σ f ,s→a (8.12) synaptic strength between features
and semantic layer projecting onto
the action layer

σ f .s→a = 0 all information flow
blocked

ra (8.13) relative retrieval strength for actions ra = 1 retrieval equal to other layers

aθ (8.14) adaptive threshold level in the action
layer

Action alternativesa j above aθ

determine possible actions of the
model.

ek (8.15) memory strength of thekth last
episode

e1 = 0 the last episode is totally for-
gotten

ev
k (8.16) memorized value of variablev e

f green
color

1 = 1 green was active at last
reaction

rk (8.17) retrieval strength for thekth last
episode

rk = 0 no stimulus match, therefore
no retrieval

ok (8.18) old-new signal comparing thekth last
trial with the actual one

o1 = 0 the actual percept has just
been shown

d (8.19) threshold for old-new decisions

u (8.19) uncertainty width for old-new deci-
sions

r1 > d+u the last episode is recog-
nized as old

Table A.20: Variables describing the state of the General Model orderedby their location in the
different layers. See the corresponding equations for details on the particular dynam-
ics.
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〈RT〉 [ms](sd) Effect [ms]

CO 959.34 —–

DT 981.25 −21.91

TT 902.50 56.84

TD 1116.94 −157.60

DD 1032.87 −73.53

Table A.21: Mean reaction time and effect strength for the five priming conditions CO, DT, TT,
TD and DD produced by the General Model in episodic retrievalmode as described
in section 8.5.

〈RT〉 [ms](sd) Effect [ms]

CO 1154.19 —–

DT 1169.85 −15.66

TT 1224.12 −69.93

TD 1184.10 −29.91

DD 1187.35 −33.16

Table A.22: Mean reaction time and effect strength for the five priming conditions CO, DT, TT,
TD and DD produced by the General Model in episodic retrievalmode as described
in section 8.5.

〈RT〉 [ms](sd) Effect [ms]

CO 839.49 —–

DT 852.87 −13.38

TT 839.04 0.44

TD 852.69 −13.20

DD 849.26 −9.78

Table A.23: Mean reaction time and effect strength for the five priming conditions CO, DT, TT,
TD and DD produced by the General Model in episodic retrievalmode during a
word-picture comparison task as described in section 8.6.
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〈RT〉 [ms](sd) Effect [ms]

CO 698.82 —–

DT 715.22 −16.40

TT 676.47 22.35

TD 709.10 −10.28

DD 725.74 −26.91

Table A.24: Mean reaction time and effect strength for the five priming conditions CO, DT, TT,
TD and DD produced by the General Model in episodic retrievalmode with a weak
modulation of activation transfer during a word-picture comparison task as described
in section 8.6.
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