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1 Introduction

Theoretical life in psychology

seemed just a forever-long

sequence of dichotomies.
(Newell,11994)

The present thesis reports on an interdisciplinary atteah@xplaining the negative priming
effect, a characteristic of selective attention, by a cavatibn of behavioral fundamental research,
neuroimaging studies, theoretical psychology and contipui@ modeling. The negative priming
effect is one of a very few measures for ignoring. It is regdads a slowing down of responses
to stimuli that were ignored recently as compared to thoaedhe new. Since the discovery of
the negative priming effect in 1966 a vivid debate on the d¢ognmechanisms underlying the
deceleration has evolved, without arriving at a concluswesensus.

Over the years, a large number of negative priming expetisnieave been conducted, mostly
focusing on a special aspect of the effect by the use of a amquadigm. Regrettably, the results
of each of these studies show a unique pattern as well. Oglypadne slowing of responses to
previously ignored stimuli is found in most of the experinserbut virtually any manipulation of
a paradigm also affects negative priming.

In the introduction we will explain the negative priming pleenenon in section1.1, giving a
condensed overview of the exhaustive presentation of thiedi@egative priming in chaptér 2. We
then expound the importance of computational modelingHeotetical psychology in sectignll.2.
The structure of the thesis is presented in se€fion 1.3 wdigghdescribes our research on negative
priming as a whole. Finally, in sectién_1.4 we will conclutie introduction by listing the original
contributions included in this thesis.

1.1 Negative Priming

Selective attention enables goal-directed behavior teesipe permanent, immense input to the
sensory system. The downside of this ability involves thabfam of how information is ignored.
Contradicting early speculations of an active attending passive ignoring, a special situation
revealed the active nature of ignoring. In the original expent by Dalrvmple-Alford and Budayr
(1966), subjects had to process lists of Stroop tasks. Whilee original Stroop task no systematic
repetition of color and color words was implemented, theghas composed the stimulus cards
in a special way, namely the ignored meaning of a color wonthyd became the to be named
color in which the next word was shown on some of the lists, thers there was no relation
between two succeeding words. The experiment showed tloatg@ere slower in responding
to the related lists compared to unrelated stimulus col&en if the semantic meaning of the
words has been ignored, it must have entered the cognitstersyas it showed the characteristic
interference.
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Since then, several standard negative priming paradigwesdraerged, each featuring a certain
dimension on which priming happens, e.g. the identity ohatus objects or their location on the
presentation screen. The set of stimuli also varies enatyoelg. pictures, shapes, words, letters,
sounds, colored dots. The common denominator of all pamaglig the classification of stimuli in
targets that have to be attended to, and distractors thab &eignored. Stimulus repetitions are
considered in dependence of the role of the repeated olgderget or distractor in two related
trials. Variations of this basal setting include the matagan of experimental parameters like the
time between two related trials, the number of distractmmfzero in some trials to multiple over
the entire experiment, and the saliency of the distractor. adetailed listing of the sometimes
contradictory results, see sectionl2.3.

Because of the controversial nature of the negative priraffect, a variety of different theo-
retical accounts have been developed. But until now nonbeftheoretical accounts is able to
explain all aspects of the negative priming effect, theyhalle their strong points as well as their
shortcomings. All theories assume different mechanisnisetoesponsible for negative priming.
In order to clarify the situation of diverging explanatorgcaunts, the time course of negative
priming is crucial. The mechanisms postulated by the difietheories act in different stages of
trial processing.

1.2 Computational Modeling of Negative Priming

The theories to explain negative priming can be categorizegyhly as memory-based and
activation-based accounts. The first group assumes the rizatian of a trial and eventually
a retrieval of the information in the next trial. The latteogp assumes negative priming to be
caused by interference of trial processing with persisetivation from former trials. Both direc-
tions produced a variety of small branches, many limiteddimgle appearance in order to explain
a certain, singular pattern of results. But due to the lackonfiparability and concreteness, there
is no solution of the debate on the level of argumentativeribs in sight.

In the face of such a sensitive phenomenon it is understéndadt no comprehensive expla-
nation has been found so far. Because a satisfying theonldslhe less complex than the data
it explains, it seems reasonable to focus on the interactfdhe underlying causes instead on
ad hoc defined data features. However, a main reduction oplexity is already achieved by
the design of experiments. Nevertheless, a theoreticabapp is based on the assumption that
the complexity of experimental data can be further redugeddntifying repeating patterns in the
data. Our first attempt, the implementation of a simplifietigtill biologically motivated model of
target selection has proven too simple by our experimertholgh it provided us with a tangible
account of several dependencies of negative priming. Ai@rpoint in the specification of mech-
anisms producing negative priming seems to be the exactiimese of processing a trial where a
previously ignored stimulus has to be attended in compangith the processing of an unprimed
stimulus. Therefore, we faced the problem to reveal temoi@@mation about negative priming.

A first step in that direction is already our simplistic cortgdional implementation as described
by continuous nonlinear differential equations which teetmes show a characteristic time course.
In order to test the validity of the model we designed sevexpkrimental paradigms according to
the objective of making statements about the inner tempbratture of a negative priming trial.
Some of the experiments recorded EEG data which has shovenadéneficial tool in identifying
systematic differences in trial processing, both spati@fid temporally. For two experiments we
developed techniques to record additional time makersdurial processing, making it possible
to temporally localize the emergence of reaction time ¢ffetn order to tackle the problem of
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diverse paradigms and the incomparability of theoreticabants, we designed a computational
framework for perception based action selection by meanghgs$iologically justified building
blocks which each obey a biologically plausible dynamics.

Despite all concise and generally understandable theibwaeseem to have identified the causes
of an observed phenomenon, it is very important to keep irdrthiat psychological fundamental
research uses statistical properties of experimental idadader to interprete human behavior.
On the one hand, behavioral experiments tend to producelyavarying results, caused by the
complexity of the human cognitive system. On the other hainel,interpretation of results is
usually not unambiguous. Both aspects provide a base farthwus and controversial discourse
that is necessary for clarifying a certain psychologicammenon.

One possibility to proceed in the discussion is to solidifgdries by mapping their assump-
tions on measurable processes in the brain, thereby elimgnarbitrariness of the respective
interpretations. A second way is to computationally impdeintheories. Clearly, the obtained
implementation inherits the freedom of interpretatiomirthe underlying theory. Yet, the imple-
mentation adds further degrees of freedom. But the bendfits omplementation are obvious. It
eliminates the risk of misinterpretation, as the sourceeaath be made available for other research
groups interested in working with the model instead of leguhem with wordy descriptions. A
computational model may provide links to biological dathttee more if it is based on naturally
observable processes.

Nevertheless, certain aspects have to be remembered wheéngaon the level of implementa-
tions. In order to reproduce the observed results, most lmb@we to undergo a precise fitting of
parameters, which is also a very subjective process. Torerefireat care has to be taken of the
distinction between results due to parameter fits and eotiipns by the internal dynamics of the
model itself. A different way to benefit from a computatiomabdel is to analyze the structural
result after fitting, which carries a formalized versionlof fitted data. Or, in the words of Hintz-
man (1991):The measure of a model’s value lies not in its ability to filaddiut in how much we
can learn from it.

We will comply with the necessity of quantification in two vgayFirst we will take up a single
theory of negative priming, i.e. the imago semantic actiadet described in sectidn 2.%.7, and
build a minimal model producing realistic effects on theibaé the postulated mechanisms, see
chapteiB. A detailed implementation was performed in cloggraction with the originator of
the theory. The presence of the cognitive representati@nceftain object is modeled by a single
variable, by which we obtain a rather clear dynamic systerichvis able to deal with realistic
stimulus sequences and generates artificial reaction tirmeshaptef b we will show how the
model can be extended to generate hypotheses in a more copgledigm. The generalized
model enables us to resolve contradictions arising in thially attempted modeling approach.
This is to be considered as a success of the modeling prasess are able to falsify an essential
assumption of the original theory by means of a straightfsdimplementation.

The second computational approach is more ambitious wéieet to the discussion about the
applicability of the theories of negative priming in spex#ituations. We build a computational
model comprising most of the mechanisms suspected to plajedrr the neural processing in
negative priming. The outcome is not only a meta-model fgatige priming, termed General
Model, but in itself a simplified model of the brain as a franeekvfor action selection based
on perception. We addressed the tradeoff between biologiatism and understandability by
modeling each assumed mechanism separately but keepimgtehgal dynamics of each of the
corresponding layers very simple by taking over the dynahframework of our first model.
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1.3 Thesis Overview

The present thesis will describe our multi-level approaxieieal the temporal structure of the
negative priming effect. Accompanied by computational eliodj, we run sophisticated psycho-
logical experiments and record and analyze EEG data. Westaitt with an overview of the
phenomenon of negative priming in chagter 2.3 by reviewimgliterature for behavioral results
and theoretical explanations of the effect.

Based on one of the theoretical accounts introduced in eH2@, namely the Imago Semantic
Action Model, see section 2.4.7, we will implement our firstriputational model for negative
priming, the ISAM. The basics of the modeling approach aedriplementation will be the first
part of chaptefl3. The second part will be devoted to testind$AM by deriving predictions and
reproducing several effects related to negative priming.

Adapting the voicekey paradigm described in sedfioh 2. 2wllelescribe an EEG experiment
in chaptei¥ that replicates findings from one of the few ssidin event-related potentials related
to negative priming. Beforehand we will give a detailed adiuction to EEG recordings and the
corresponding data analysis and thoroughly review hithexisting findings of EEG correlates of
negative priming.

During the preoccupation with EEG data analysis, we camea apdnconsistency in averaging
event related potentials. Chapfér 5 introduces our saiutiathe problem to reconstruct a very
noisy signal that additionally is subject to erratic tengbdluctuations. As such a new technique
first has to prove its validity in a broad discussion, we lifhib the current thesis to an interlude
independent of the remainder.

Due to the additional source of uncertainty in EEG reseatehthe interpretation of differ-
ing event related potentials in the different experimentaiditions, we determined ourselves to
behavioral experiments and designed a paradigm whichresyaibutton press between stimulus
identification and target selection phase which is recoesegh additional reaction time. Chayiter 6
describes the model based generation of hypotheses byAlv éSchapteB, the paradigm itself
and finally the results that locate negative priming in therlgart of a trial and that contradict the
ISAM all along the line.

After separating the stimulus identification phase, theaieder of a trial still contains the two
stages of processing of target selection and responseagiener One theory predicts negative
priming to be exclusively produced in the response gererathase. Therefore, we constructed a
second trial splitting paradigm which now singles out trepmmse generation phase. In chabter 7
we will describe the paradigm, go into expected side effetthe altered paradigm and finally
display the results, the devotion of negative priming totdrget selection phase of a trial.

Not only the nontrivial extension of our identity based grimparadigm given in chaptEl 7 to a
comparison task, but also the counterevidence for the ISiNhé experiment in chaptEl 6 made
us head for a less rigid computational model. Chdgter 8 g@stthe result in form of our General
Model for negative priming which provides an implementataf each theory and the ability to
respond in various different negative priming paradigmsue o the complexity of the model
chaptef B can only be seen as the general introduction to draevework which will possibly
shed light on the questions why different paradigms produwich diverse result patterns, and how
the theories can be compared on a par.

The previous chapters are concluded in chapter 9 which albects all results and forms a
complete picture of negative priming as we can give it by esearch. This chapter contains also
an outlook on future directions to finally conclude the maguy of the thesis. Appended is a
listing of experimental data in tables, which were excluétedn the according chapters for the
sake of readability.
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1.4 Original Contributions

All work presented in the present thesis is carried out byoaatl/ cooperating workgroup in the
framework of section C4 of the Bernstein Center for Componat Neuroscience Goéttingen. The
results presented here would not have been possible withisutollaboration. My personal con-
tributions are not restricted to modeling but have had aressing influence also on experimental
design, data analysis, interpretation of results, andydedi algorithms.

Our main contributions to (but not limited to) negative pingpnresearch are listed in the follow-

» We developed a simple model for the transient of the firing rasponse of an integrate and
fire network to constant input by the means of a nonlinear eaimgequation, sectidn_3.1.

We employed the resulting dynamics to build a minimalistienputational model, sec-
tion[3:2, reproducing priming effects based on the mechasisf the global threshold the-
ory, sectiof 2.417.

With the good performance of the model, section 3.3, we djadinely validated global
threshold theory (Schrobsdorff et al., 2007b).

We adapted our voicekey paradigm, secfiod 2.2 to an EEG digpenvironment, sec-
tion[4.4 and replicated some of the very sparse event refetiehtial correlates for negative
priming found in a rather different paradigm, section 4.6.

We confirmed that processing in ignored repetition trialst firenefits from stimulus repe-
tition similar to the attended repetition condition, butyolater in the trial both conditions
diverge due to different demands on cognitive control,ise@.8, (Behrendt et al., 2009)

We developed sophisticated signal processing method®r&®.4 and5]7, which enhance
the averaging of event related potentials, sedfion’s. & paovide a measure for the tem-
poral variation in the processing between two trials, sefi.5, (lhrke et al., 2003, 2009b).

We designed an enhanced algorithm for line-of-synchrorgatien in recurrence plots
which outperforms established solutions, sedfion b. ke et a... 2009a).

We introduced time markers in addition to the usual reactiore into negative priming
paradigms, making it possible to investigate the tempdarattire of the mechanisms caus-
ing negative priming by means of behavioral measures,@d6fil and 7]1.

By applying our technigue of recording intermediate timekaes, we have shown that the
stimulus identification phase of a trial carries no negaisiening, but only facilitation in
the presence of repeated objects, sedfigh 6.6.

By deriving predictions from our computational implemeiu@a of the global threshold
theory to the task switch paradigm, secfiod 6.2, we provatashg counterevidence for that
theory as predicts negative priming to happen already irdification phase, sectionsb.3
and6.6.

We showed that negative priming happens in the target smbguhase of a trial, sectidn 1.5,
by again isolating a part from trial processing, in this ctmeresponse generation phase,
sectior L.
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x Finally we implemented a neurophysiological model, sed8&, of the parts of the brain
that are assumed to be involved in processing a priming s&dtion[8R2. The General
Model is able to cope with various paradigms, secfion Bdnt, implements the behavior
assumed by any of the negative priming theories, seCfiad.8.1

Although patrtially not yet published as articles, all psiate documented by a series of conference

contributions listed on pade 162 ff. and are available at
[WW_nT d. ds. npg. del ~heckel T esear ch, ht |



http://www.nld.ds.mpg.de/~hecke/research.html

2 Negative Priming

Priming is characterized by a sensitivity of reaction titesow stimuli have been encountered
recently. A reduction of the reaction time, positive prignis usually observed with repetitions
of stimuli or responses and is well-known and experimentaiiderstood (Scarborough et al.,
1977). Our object of investigation, negative priming, argown in the reaction time usually in
response to previously ignored stimuli, is experimentbdls tangible (Foy, 1995). The negative
priming effect is sensitive on even subtle parameter chgnghich poses many methodological
and conceptual challenges, but bears exactly for this negeeat potential for applications in
research fields such as memory, selective attention, and affects.

The following chapter will thoroughly introduce the negatipriming phenomenon. After a
classification of negative priming and a description of teninology used in negative priming
studies in section 2.1, we will discuss a showcase studwtayfeeling for what a negative prim-
ing experiment looks like in sectidn 2.2. The diversity ofdfimys concerning negative priming
will be shown in sectioli 2]13. Then we will give a detailediligt of theoretical accounts to the
negative priming effect in sectign2.4.

2.1 A Paradigm to Access Selective Attention

Selective attention is the process of extracting behayor@evant information from the environ-
ment. The focusing on particular stimuli brings along aroigmg of irrelevant information. The
process of ignoring is investigated by systematic vanetibirrelevant stimuli. Interesting effects
like change blindness, the failure to perceive even swgikinanges in a visual scene that are not
behaviorally relevant (McConkie and Currie, 1996), or teational blindness, the apparent in-
sensitivity of the cognitive system to unattended stimr@liMfons and Chabris, 1€99), demonstrate
impressively that our feeling of perceptual accuracy isaijective.

It is still unclear how the selection of stimuli is done. Twasses of mechanisms are assumed,
top-down and bottom-up processes (Anderson, 2001). Thepfiosess actively guides the at-
tentional focus by highlighting particular features of reunt interest. The latter one describes
selection due to perceptual saliency. In everyday taskh, dfdhem interact.

As selection and ignoring are two sides of the same medaladhge of ignoring is crucial,
as distracting information can easily be varied in expenithieand thus gives access to the act of
selection itself. Even if early attempts assumed a pasgivaing, empirical evidence for an active
process comes from the inhibition of return paradigm (Méh and Tioper, 1998). A prolonged
reaction time is observed if a location which has been indloe$ shortly before is required to be
attended to.

A general approach to the processing of distracting stimudrovided by the negative priming
paradigm. Negative priming is often considered the mostctliapproach to assess the selective
aspect of attentional processing, as the ignored, digigastimuli can be proven to be actively
processec (Houghton and Tipper, 1994).

Selective attention has to permanently deal with distngcinformation. Most paradigms we
will discuss in the following show two items in each trial. ©is to be attended, called the tar-
get, while the other one, the distractor, is behavioraligléavant and has to be ignored. One such
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selection trial primes the subject for the next trial. There, a pair of two successive trials is
labeled prime and probe respectively. Generally speakhmeyrepetition of a target stimulus in
two successive trials leads to a faster response. Thigt éffealled positive priming. In contrast
the presentation of a prime distractor as a target in theepnodl may lead to a deteriorated per-
formance compared to a target which has not been presenteddiately before. The behavioral
slowdown indicates that irrelevant information is not pasy ignored, but actively processed, as
no effect on reaction times in subsequent trials would haenlfound if the information about
the distractor is not present.. Negative priming has beandan a wide variety of experimental
contexts and is therefore thought to be a reproducible andrgephenomenon, see section 2.3.

In the present thesis we will rely on the following definitiodegative priming is a slowdown
in reaction time in an ignored repetition condition, wheferaner distractor has become relevant.
As we associate the term negative priming with reaction titifferences, we can not use it as
a label for the ignored repetition condition but rather ehtiee condition labels according to the
configuration of stimuli in a trial, see (Christie and K e®00.1). The first letter in the sequence
contains information about which part of the prime displaydpeated in the probe display.DA
represents the distractor,Tathe target. The second letter indicates the role the péatiabject
has in the probe display, see tablg 2.1. For example, tig T refers to the condition in which
the prime distractor (first letter D) is repeated in the prota as target (second letter T), hence
it is a traditional negative priming trial. In case both atigeare repeated there is a second pair of
letters appended for the second object. Because a targatdistiactor are shown in the prime and
the probe display each, and target and distractor are ndenti¢al, seven relevant combinations
of target-distractor relations are conceivable, see 28le

prime display probe display

target distracton target distractor
TT A B A C targetf + 1) = targetf)
DT A B B C targetf + 1) = distractonq)
TD A B C A distractor(i+ 1) = target()
DD A B C B distractori+ 1) = distractonq)
DDTT A B A B target and distractor are repeated
DTTD A B B A target and distractor switch
Cco A B C D two new stimuli

Table 2.1: The seven possible priming conditions of a paradigm withtarget and one distractor
in each of the prime and probe display.

2.2 A Showcase Negative Priming Experiment

To get a first idea of the characteristics of negative prinmg will now discuss a rather straight-
forward study which can be taken as starting point for allexperiments. The study was part of
our publication (Schrobsdorff et gl., 2007a). We use a Vislgatity priming task where the target
is selected by means of its color and then responded to angdalits identity. The paradigm was
introduced by Tioper (1935) and has been used in the Goéttiggeontology group for some years
and has been optimized in several ways. Since negativergyitends to disappear with problem
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complexity, identity priming with simple stimuli is an opti that maximizes negative priming in
this respect. For efficiency reasons we present the trisremusly, such that every trial primes
the subject for the following trial.

c 5
‘G == ———
Bus Ball Baum Buch Bett Bank

Figure 2.1: Objects used as target and distractor stimuli with theim@er labels.

Stimuli are six different objects, represented by handvdrpictograms, see figufe 2.1, that are
either shown in green or in red color. We use voice recordiggther with a sound level threshold
to determine the reaction time for every trial. As the experit is run in German, the names begin
with a plosive and consist of a single syllabBug Ball, Baum Buch Bett BanK for a sharp, thus
easily detectable onset of the sound signal. Object pratemis balanced in the different priming
conditions as well as their appearance as target and d@trd@riming conditions CO, DT, TT,
DDTT and DTTD are a repeated measures factor.

An exemplary sequence of displays of seven trials is shoviigime[Z.2. One stimulus display
consists of two overlapping line drawings, a green target amed distractor object. Stimuli
appeared entirely in the focal area. The subject is ingtutd name the target objects aloud and
ignore the superimposed red objects. They were told to anasvguickly and as accurately as
possible. Then, after a blank screen period and the pre&emtd a fixation cross, the next display
is presented.

/ i \ time
stimulus onset reaction

response stimulus interval reaction time

Figure 2.2: Example of a sequence of stimuli. Consecutive screens avestEither stimuli or a
blank screen followed by a fixation cross is displayed. Thamirey of the acronyms
is explained in section”d.1. E.g. in the sequence of the skeod third stimulus
displays, the tree switches from red distractor to greegetabut the other two items
are unrelated, a DT condition, see tabI€ 2.1.




2 Negative Priming

An experimental session starts with a test of color diserahility and memory span, followed
by a familiarization with the stimulus objects. Of the ea#20 experimental trials in 10 blocks of
42 trials, 400 trials are analyzed (80 trials of each printagdition), while the first two start trials
of every block are excluded from analysis. Each trial caasi§the following displays: a fixation
cross, centered on the screen for 500 ms, a display corgasniperimposed pictures shown up to
the response, but not longer than 2 seconds and a blank gore&®00 ms, see figule2.2. An
error is registered when subjects failed to give a corrdegranswer. Participants are 12 adults,
4 male and 8 female, mean age 23.6 years, SD = 4.6.

co DT

DDTT TT DTTD

Reaction Time [ms]
200 300 400 500 600 700
! ! ! ! ! ]

100
I

Figure 2.3: Reaction times for the five experimental conditions. Nog# the positive priming
effects on the left side are larger than the negative prireiifects on the right hand
side.

Mean reaction time of the different priming conditions, retard deviation, and the effect
strength, i.e. the difference to CO trials, are shown in 8d#r3 reported in table"A.1 in ap-
pendix[AZl. Erroneous trial&2.4%) are excluded from analysis. Trials with response latencies
less than 250 ms or more than two standard deviations abeviedividual mean of each prim-
ing condition are excluded as we¢h.7%). DTTD trials produce the slowest responses, followed
by DT and CO trials, whereas the responses to TT trials aterfdsan control and DDTT trials
produce the fastest responses.

For statistical analysis, a one way analysis of variance Q¥N) was used to explore the
effects of CO, DT, DTTD, TT and DDTT. The alpha level for alladyses was set at.@b.
Greenhouse-Geisser corrected degrees of freedom aresufezldata violated the assumption of
sphericity. Reaction times depend significantly on the printondition K1.45,15.93) = 23.27,
MSE= 193883, p < 0.001. Planned comparisons show that reaction times in DT antCDtri-
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Figure 2.4: Four different paradigms for negative priming: a) locatifjrflanker task c) voicekey
identification d) word-picture comparison task. In all exdes green defines the tar-
get. The location priming paradigm reveals negative pripiirthe encoding of space.
The flanker task implements a rather difficult stimulus resgamapping, whereas vo-

calization in the voicekey paradigm is a very easy task. Thelvpicture comparison
paradigm has the advantage of a disentanglement of tamygtitidand response.

als were significantly increased, as compared to CO trigl (€ DT: {11) = —3.57, p < 0.01;
CO vs. DTTD: t11) = —3.37, p < 0.01). As anticipated, the reaction time for trials in the at-
tended repetition conditions TT and DDTT were significaxireased (CO vs. TT:A1) = 3.11,

p < 0.01; CO vs. DDTT: {11) = 4.74, p < 0.001). Directed comparison of attended repetition
conditions reveal a difference of reaction time (TT vs. DDT(I1) = 6.11, p < 0.001), whereas
the reaction time of ignored repetition conditions did nifted (DT vs. DTTD: t(11) = —0.60,

p = 0.558).

The experiment shows how the repetition of stimuli can infagereaction times in a negative
priming paradigm. A repetition of relevant stimuli leadsat@rominent speedup of the trial pro-
cessing, whereas a repetition of irrelevant stimuli asetacquses a slowdown of the reaction.
The results document the important fact: irrelevant stirand not filtered out by early perception
mechanisms, but rather are subconsciously processed.

2.3 The Negative Priming Effect

Negative priming is subject to fervid discussions amongnidog theorists for several decades.
The negative priming effect was discovered first in a Stragl {Dalrvmple-Alford and Budzyr,
1966), subjects have to name the ink in which a color-wordritem. A usually strong tendency
to read the word has to be suppressed. Reaction times ayedetatrials where the color of the
ink in the probe is identical to the word in the prime. The setitameaning of the word serves
as the distractor, because it has to be ignored in order tblba@correctly name the color of the
ink. The results were replicated in similar settings: by N4®77).

Negative priming is present in a wide variety of experimeotmtexts (for reviews see Fox,
1995; May et al., 199%: Tipcer, 2001; Mayvr and Buchner, 206-0r example, negative priming
has been elicited using different stimuli such as line dngyi{ Tipper and Cranston, 1985), letters
(Neill and Valdes, 199Z; Neill et al., 1892), words (GrisardaStraver, 2001), auditory stimuli
(Buchner and Steffens, 20C1; Banks et/al., 1995; Mayr andBer; 2006) and nonsense shapes
(DeSchenper and Treismen. 1996). Negative priming has detned with manual (Neill and
Valdes, 1992; Tipper et al., 192) and verbal responsesdAlet a ., 1985; Tipper and Cranston,
1985%), as well as in situations where the mode of responsegeldabetween prime and probe
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(Chianpe and MacLend, 1€95). Furthermore, negative pgrhas also been found in various tasks
including naming (Tipper, 1935), same-different match{ieSchepper and Treismen, 1996),
Stroop-like tasks (Neil!, 1977) and spatial localizatidilliken et al', 1994, Park and Kanwisher,
1994; May et al.. 199%; Kabisch, 2003).

In spite of the obvious universality, the negative primirfg& is sensitive to a variety of pa-
rameters. Most paradigms show their individual aspect ghtiee priming, but no global pattern
of results exists (Fox, 1995). It has been shown that negatiming can depend on the length of
the response stimulus interval (RSI) between prime andep(ileill et al., 1992; Kabisch, 2003;
Frings and Edezr, 2009). But there are also studies repaatcanstant negative priming effect for
varied RSIs (Tipper et al., 1991; Hasher et al., 1991, 1996jprisingly for very short RSls, aDT
condition can produce a facilitatory (Lowe, 1985), or hanmeeeffect (Frings and Wiihr, 2007a).
In the other extreme, an experiment revealed negative pgilditer a month using nonsense shapes
which are very unlikely to be seen in other circumstanzesStibepper and Treismen, 1396). In
continuous presentation of trials, the proportion of pireprRSI and current RSI influences neg-
ative priming (Neill and Valdes, 1992; Mayr and Buchner, €0but not reliably (Hasher et al.,
1996; Conway, 1999).

In the absence of distractors in the probe trial during a Did@®n, negative priming vanishes
or even reverses to facilitation (Lowe, 19385; Tipper andnSran, 1985, Allport et al., 1935;
Moore:, 1994). A more salient prime distractor increasesntiagnitude of the negative priming
effect in DT conditions (Grison and Strayzar, 20J1; Tipp&0:2). Negative priming is reduced or
even reversed to facilitation when the emphasis is put oedspather than accuracy (Neumann
and Deschepper, 1€92). Negative priming occasionally mi#pen age (Spieler and Balota, 1996;
Verhaeghen and De Meersman, 1998; Gamboz €t al., 2002) ar{Beemeitinger et al., 2008).
Increasing the perceptual load, e.g. by raising the numbdistactors presented in a single trial,
leads to less negative priming (Lavie et al., 2004). In o#wdtings a higher number of prime
distractors causes an increase of negative priming (Nenrmad Deschepper, 19€2; Fox, 1995).
The inclusion of TT trials or single target trials in the petation sequence enhances negative
priming (Neill and Westberry, 1937; Titz et €l., 2008).

A short presentation time of prime and probe stimuli attéesiaegative priming (Gibbons and
Rammsayer, 2004). Negative priming vanishes if the targgtrésented a bit earlier than the
distractor in the prime trial. On the other hand, if the pridistractor is shown simultaneously
with the prime target but blanked after a short time, neggtiiming is observed (Macrza, 1994).
If the prime display contains a single stimulus that is médskebjects reporting awareness of the
prime object show positive priming, while subjects not aaafrthe object show a negative priming
effect (Wentura and Frings, 2005). In subliminally primeéls the presence of a distractor in the
probe leads to negative, the absence of a probe distractoptsitive priming effect (Neill and
Kahan, 1999).

It should therefore be noted that negative priming is a usaleeffect which is sensitive to a
variety of factors. Hence, it is not surprising that, althbdhere is a lively theoretical discussion, a
consistent explanation of the entire negative priming phaenon is still lacking. Over the years,
various theories have been developed to explain negafivengrthrough a variety of mechanisms.
The next section will give a thorough description of the tietical accounts.

2.4 Theories of Negative Priming

Because of the controversial nature of the negative prireffegt, a variety of different theoretical
accounts have been developed since its discovery. Theiveegaiming phenomenon has a very
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complex nature. None of the theoretical accounts is ableptaim all aspects of the negative
priming effect found in behavioral studies which have pabiten outlined in sectidn 2.3, they all
have their strong points as well as their shortcomings. h&lbties assume different mechanisms to
be responsible for negative priming. Their realizationls®arery diverse, from a purely descrip-
tive formulation to detailed computational modeling. Thegninfluential theories comprise the
distractor inhibition account (Houghton and Tioger, 193#isodic retrieval (Neill and Valdes,
1992) and response retrieval thecry (Rothermund et al5)200

In the present section we will address each theoreticaluatday explaining the idea and point
to experimental evidence as well as counterevidence. Ag sbheories are derivates of others, we
will highlight the differences. Many of the proposed cortsegre settled in different areas of cog-
nitive processing such that combinations are conceivalfigh actually is one of the theoretical
ideas, but some exclude each other.

2.4.1 Distractor Inhibition Theory

The first theoretical account in the context of negative prgtwas the inhibition hypothesis by

Neill (1977) ancl Neill et &l. (1990), before Neill and Vald4992) began to promote the episodic
retrieval theory, see secti@n 24.2. Meanwhile Tipper nmadeself the spokesperson of the dis-
tractor inhibition theory (Tiopnar. 1935: Tiooer and Bayi987; Tinper et al.. 1938; Tipper and
McLaren, 1990; Tinper et a.., 1991; Houghton and Tipper419996; Tioper, 200..; Tioper et al.,

20022) accompanied by some early questioning work (TippdrGranstan, 1985).

The basic idea of distractor inhibition theory is that iesgdnt stimuli representations are actively
suppressed to support the selection of the relevant tatigailas. The inhibition is assumed to
persist for some time. If perceptual input is no longer pngsthe persisting inhibition drives
the distractor representation below a baseline activatibhe negative priming effect directly
results from the time the probe target representationatativ needs to reach baseline from below.
There are two complementary processes involved in thetatteth selection process: a direct
feedforward excitation of the representation of perceiteahs by the visual pathway and another
one that inhibits all irrelevant information. The slowdowfthe reaction in the probe trial can be
seen as a direct indicator of the amount of activation in te display. Distractor inhibition
assumes selection to operate on a semantic or postcatdgeeb(Houghton and Tinper, 1994).
It therefore also explains findings that report negativenprg in semantic priming tasks (Tipper
and Driver, 1988).

From a modeler’s perspective, the most important conidhuto the domain of distractor in-
hibition comes from Houghton and Tipper (1394). A compuwiadl implementation of an arti-
ficial neural network qualitatively explains negative pirign by an inhibitory rebound naturally
emerging from the network connections between excitatadyiahibitory cells homeostatically
balancing the state of a property unit. The initial versibthe computational distractor inhibition
model is very ambitious, as perception is split into the cigte of single features, hardwiredly
binding them into objects. The model has a very general adimmescheme, to act in a variety of
situations. Unfortunately, none of the further projectspmsed by Houghton and Tipper (1394)
has been realized since then. In order to investigate the doarse of negative priming, the role
of multiple distractors and different distractor salienttee model is later simplified by looking at
only one isolated property unit for the target and one fordiséractor, with connections only to
their on and off cell (Houghton et al., 1996; Houghton ando€ip 1998). The aim is to simplify
the original model as much as possible while still obsertimgsame dynamics. Regrettably, the
generality of the first modeling approach is no longer pres€m the one hand, simplifications
of complex models are an adequate tool to understand theibelof the entire system. On the
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Figure 2.5: Schematic view of target and distractor representatioingusne trial. At stimulus
onset both activations rise driven by the input. The two esmdiverge due to the inhi-
bition the distractor receives. As inhibition builds upb#lances the perceptual input
to the distractor after some time. If a certain differenceveen target and distractor
representation is reached, the target is assumed to béeskland an action is taken.
Then the input is switched off as the stimuli disappear. Hnget activation passively
decays to zero, whereas the distractor activation is stilject to persisting inhibi-
tion, driving the distractor representation below baseiimthe so-called inhibitory
rebound, being responsible for the negative priming efied¢he next trial. Figure
adapted from (Houghton and Tippzar, 1994).

other hand, the reintegration of the single units into tlggér network always brings along vari-
ous nonlinear effects that are inherent to the model and atlpeneglected when deriving system
behavior from results of looking at isolated units. The tegnation does not take place, which
might be an indicator for too high complexity of the dist@dnhibition model to learn something

from it.

A strong point of distractor inhibition theory comes frone tstudy of varied distractor saliency.
The negative priming effect increases with growing saljeot the distractor (Lavie and Fox,
2000; Grison and Strayer, 2001; Tipper et al., 2002). THisceican be very well explained in
terms of the inhibition model, since a stronger distractoula require more inhibition, causing a
stronger inhibitory rebound, and thus leading to a moreomgéd reaction time.

Distractor inhibition theory can directly explain the ingbaf the depth of processing (Craik and
Lockhart, 1972; Craik, 2002). Processing on a deep conaklgvel produces a bigger negative
priming effect. Distractor inhibition theory can explahetresults, as deeper processed items have
a stronger activation and thus need more inhibition if ctterized as distractor. Therefore, more
deeply processed stimuli produce larger negative priming.

The original distractor inhibition theory fails to explaihe dependency of negative priming
on the response stimulus interval. If the representatioa dfstractor object is inhibited, the
impact of inhibition should be strongest immediately after selection, because the inhibition is
assumed to decay to zero with time. Although there is a gétreral of negative priming to decay
with increasing time between prime and probe (Neill and ¥3Jdl992), no negative priming is
observed in several studies when the RSl is very short oigteat (Low:, 19€5; Houghton et al.,
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Figure 2.6: Alternative view of the distractor inhibition theory acating for negative priming
effects in the absence of a response stimulus interval. elfttuation requires very
strong inhibition, the activation of the distractor canpli®low baseline already be-
fore the end of the trial. Sketch adapted from a talk by ClarisErings, May 30th
2007 in Gottingen, on (Frings and Winr, 2007a).

1996). In the original model the equilibrium between petaapinput and inhibition is tuned such
that the activation of the distractor stays positive. Ifttzenew display is shown directly after the
response, a facilitatory effect in the DT condition is expdc Unfortunately, already the study
that brought negative priming to light of Dalrvmple-Alfoehd Budayr (1966) shows negative
priming without any delay between succeeding stimulusspaubjects held cards with several
colored words which they processed in order. Therefore.tMvarmnd Rothermund (2C03), Frings
and Wentura (2006) and Frings and Wiihr (2007a) proposedtansian of distractor inhibition by
assuming that the amount of inhibition is proportional &ktdifficulty. In demanding paradigms
like the Stroop task, inhibition may exceed excitatory infus pushing the distractor activation
below baseline even before a reaction, see figuie 2.6.

Distractor inhibition is incompatible with target only e displays. In the absence of a dis-
tractor priming constellations that usually produce neggtriming effects can show facilitatory
priming as reported by Moara (1994). A suitable extensiogistractor inhibition theory concerns
the notion of what is actually inhibitec. Neill (1977) sugtgethat the semantic representations
of the distractors themselves are inhibited, which matetiéis spreading inhibition through se-
mantical networks (Quilliawr, 1956). Tipper and Cranstao®8£l) propose inhibition to act on the
link between semantic representation and the responsensydtiore explicitly, they assume a
selection state of the response system in which the timstrnimg resolving of the inhibition of
the link between representation and response producesiveegaming. In situations where no
such selection is necessary, the response may still bédtail because of the residual activation
of the distractor representation. Unfortunately, the oesp inhibition account was not integrated
in later papers.

Distractor inhibition theory is also challenged by the erggal finding of long-term negative
priming effects (DeSchepper and Treisman, 1996; Grisoth €2@05). Tioper (2001) integrates
these findings by emphasizing that different mechanismétmigderlie the behaviorally similar
effect in different settings. It is also stated that a retieof an episode (as postulated by the
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Figure 2.7: Episodic retrieval assumes figuratively a do-not-resp@udthat is attached to the
prime distractor. If a probe display contains matchingiinfation, the former episode
is retrieved and with it the tag. Removing this tag in ordergspond to the former
distractor which has become target in DT trials takes timéckviis equivalent to
the negative priming effect. Disadvantageous for the #téal discussion, episodic
retrieval theory was often reduced to the picture of thewdych is only introduced
as a metaphor in the original work.

episodic retrieval theory, described in the next sectioightralso retrieve the inhibitory status of
the previously ignored distractor.

2.4.2 Episodic Retrieval Theory

In recent years the majority of negative priming studiesehiaterpreted their results according to
the episodic retrieval theory. It has originally been idwwoed by Neill and Valdzs (1992). The
theory builds on the instance theory of automatization bgdro(1988). If identical tasks have to
be fulfilled over and over again, memories of past trials aneenand more used to completing the
current trial. Negative priming is assumed to be the reduttonflicting information caused by
automatic retrieval of the prime episode during probe psicg. It is argued that the retrieval is
triggered by the similarity of prime and probe episodes. dBise the object information from the
retrieved episode in a DT trial is inconsistent with the entirole of the object as a target, retrieved
and perceived information are in conflict. Resolving theflicins time consuming and results in
the slowdown of the reaction time. Some of the negative mgnpihenomena listed in sectibnl2.3
can be more easily explained by episodic-retrieval tharbitibbn mechanisms, such as effects
of prime-probe temporal discriminability (Neill and Vakj}z199?2), prime-probe similarity (Fox,
1998) and long-term negative priming from single-trialg@etations (DeSchepper and Treisman,
1996).

According to later extensions by Nzill (1997), the main deieants of the strength of retrieval
are the recency of the memory trace and the strength of theonyapresentation of the trial. It
is assumed that more recent memory traces are more likely tetbieved than older ones. This
assumption allows for the interpretation of experimengdtiisgs with many repetitions of highly
similar episodes. Recency as a relevant factor receive&ieadsupport from studies that show
a negative correlation between response stimulus intarnvéinegative priming effect (Neill and
Valdes, 1992). Neill et al (1932) reports an influence ofittterval preceding prime onset on the
negative priming effect, which challenges the inhibitiased accounts, but is easily explained in
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Figure 2.8: Response retrieval assumes that just the response givila pritne trial is retrieved
triggered by perceptual similarities of the two displayighe appropriate response is
repeated, a positive priming effect is expected, whereasponse switch results in a
negative priming effect. Note that in the voicekey paradigjrawn in the current pic-
ture, TT trials are always associated with a response taepetand DT trials always
require a response switch. Only more complex paradigmw &tipa disentanglement
of priming condition and response relation.

terms of episodic retrieval. When the pre-prime resporigeuits interval is larger than the one
of the current probe, the prime-probe pair is more easihasdpe from the sequence of stimuli.
Hence retrieval of the prime episode in the probe is enharideel memory trace produced by the
prime episode is more elaborated with deeper processingeaftimuli. Therefore, the depth of
processing of the stimuli can influence the strength ofeetti of an episode positively, the data
by Yee et al. (2000) can thus be explained by episodic retiiev

Strong support for episodic retrieval comes from a studytfznd Neely (2001). They found
an increased negative priming effect when the contextumlilagity between prime and probe
situations is increased. Prime/probe episodes were mmitasin terms of visual characteristics
and the required response. On the contrary, a facilitatggbrese at very short response stimulus
intervals (Lowz, 1985) is also difficult to explain in termktbe episodic retrieval framework.
Another weakness of episodic retrieval is semantic negatiiming. The absence of perceptual
similarity should eliminate retrieval, and therefore nfeefs are to be expected.

2.4.3 Response Retrieval Theory

Marczinski et al.|(2003) investigate different primingeaffs for young and old subjects in a two-
alternative forced-choice task, which can not be explalmedpisodic retrieval theory. Therefore
she introduces the notions of specific and unspecific engaatimetrieval respectively. The reac-
tion time difference between trials with a response switath @wials with repeated responses are
called response repetition effect. The idea was borrowelddiiermund et al' (2005), who points
to the inherent entanglement of priming condition and raespaelation in most negative priming
paradigms. Usually DT trials are accompanied by a respongehs whereas TT trials require
the same response. The response retrieval approach pestiat every reaction time difference
in priming paradigms is due to the retrieval of a past respatepending on perceptual similarity
between the two displays.

A letter-matching task initially developed hyv Neill et e1990) is adapted in order to test the
hypothesis (Rothermund et al., 2005). Strings of five Istége presented to the subjects and they
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have to answer yes or no by an appropriate button press degemuwhether the second and the
fourth letter are identical. The remaining three letteesidentical and function as distractors. The
advantage of the paradigm is that the repetition or nontitepe of the response can be varied
independently from priming condition. It is possible to weq both a yes or a no answer in
every priming condition because the answer does not depetiteadentity of the target, but on
its relation to the second target. In their series of expenitsi Rothermund et al. (2005) could
provide solid justification of response retrieval.

The letter-matching paradigm is problematic in the viewmigedic retrieval theory. The sim-
ilarity of the prime and probe display is dependent on whelioth targets match or not. In fact
the highest similarity is achieved in a TT condition whiclgu@es to answer yes in both prime
and probe trial. If the answer no is correct, only one of thgdss is repeated, possibly shortening
reaction times of yes answers. However, two other expetisngescribed by Rothermund ef al.
(2005) implemented task-switching paradigms where therdesi problem does not occur.

2.4.4 Feature Mismatch Theory

In a series of four experiments Park and Kanwisner (1994¢ldped their feature mismatch the-
ory. If, at a certain location, an object changes identityismatch of features is detected which
causes a slowdown of processing (Milliken et al., 2.994). yTrvesented two letters, a particular
one coding for the target, a specific other one for the diiraon two out of four possible loca-
tions on a screen. Subjects indicated via button press thettication. In order to discriminate
between distractor inhibition and feature mismatch, trajed the feature that identifies the target
between prime and probe. In the prime trial, the lettéiad to be responded to, anchad to be
ignored. In the probe trial, subjects should indicate th&tjmn of theo ignoring thex. According
to the distractor inhibition account, TT trials should ldadca positive effect, as the probe target
location is already positively primed. But it turned out toguce a longer reaction time on TT tri-
als, and a faster response in DT trials, contradictingatistr inhibition. Unfortunately the aspect
of task switching effects (see chapfér 6 for a discussiohasd) was not addressed in the paper.
Feature mismatch theory received quite some attentionasuitds often listed among explana-
tions for negative priming. Nonetheless, there has beemntlodr development of the theory nor
experiments in strong support of feature mismatch.

2.4.5 Temporal Discrimination Theory

Milliken et al. (1993) added temporal discrimination theto the set of explanations for negative
priming. Temporal discrimination assumes a classificatbstimuli as old, where a response
can be retrieved from memory, or new, where a response has gererated from scratch. The
classification takes time depending on the similarity betwthe current stimulus and a memory
trace. The dependency is not monotonic: the classificaomesv is fast when prime and probe
stimulus are very dissimilar. The classification as old &t fahen the displays are identical.
But intermediate similarities such as in DT trials where phiene distractor is repeated but not
in its former role but as target, the decision whether theldisis old or new takes more time.
Experimental replications of the effect on which the idifi@per by Milliken et al. (1998) is
based, i.e. negative priming without selection in the prind, do not discuss the theory itself
(Neill and Kahan, 1999; Healy and Burt. 2003).

Even if the temporal discrimination account is often citié@s mostly cut down to the descrip-
tion above. It is rarely theoretically addressed. Cnlv &imnd Wenture (2005) and Frings and
Wuhr (20070) develop the model further. They address thetmuewhether the awareness of the
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prime distractor, which was masked in most of the experisienfavor of temporal discrimina-
tion, plays a role for negative priming or positive primirggdccur in single prime distractor DT
trials. If the masked prime distractor was supraliminalpaifive effect is expected as participants
were not instructed to ignore items eventually containea fdisker in the mask.

As both temporal discrimination and episodic retrievalotlyerely on the question of if the
response can be retrieved from memory or if it has to be coedpdirectly, it is hard to delineate
them from one another. The difference usually pointed ouhénliterature is the presence or
absence of do not respondag, which was introduced metaphorically in episodiciegtl theory,
see sectioh’Z.4.2, but then falsely made a central part bynesrators.

On a closer look, temporal discrimination tacitly involvieg different processes. The direct
computation of a response is completely different from dewl of the answer from memory.
No clue exists that these processes take an equal amounteofMevertheless, most discussions
of temporal discrimination seem to have been misdirectearbjlustration Milliken et al./(1998)
draws to explain his theory. He equates an experimentaivtith the time a PhD student takes
to finish his thesis depending on whether he found a projetztise to his interest. If he chose a
not matching subject, the degree of match with his interétdetermine how long it takes him
to realize and switch the project. No match causes an eaitglsvand he barely loses time in
comparison to a perfect match with his interests. But iféhisrsome overlap, he will proceed for
some time with the project, until he finally realizes he hasseim the wrong project, then change
and again take a full period of PhD research. The analoggsdise following problems: the
student always has to write a thesis. It is only one and theegaacess involved, but response
retrieval or direct response computation are very differamd secondly, the old-new classification
is always performed, whereas the student would have nohlinigt¢ime if the project is suitable.
The acknowledgment of two independent processes rendess ghthe criticism on temporal
discrimination less striking, as most critical argumerdly on the equality of processing time
after the old/new-classification.

The weakest point of temporal discrimination theory is teguanption of a serial processing of
classification and retrieval or direct generation of a respo Most processes in the brain work
simultaneously, and therefore a parallel computation @bild/new signal together with a directly
computed answer and the retrieval of past episodes is ratbbable. Dropping the assumption
of seriality would certainly bury the temporal discrimiimat account which mostly appeals due to
its simplicity.

2.4.6 Dual Mechanism Theory

Obviously there is evidence in support of each of the thameaccounts and no approach is
clearly favored over the others. As distractor inhibitiomdaepisodic retrieval are by far domi-
nant in the domain of explaining the negative priming eff@ttegrating accounts are called dual
mechanism theories.

The original dual-mechanism account of negative primindvay et al. (1995) proposes that
inhibition as well as memory retrieval can be the source ghitige priming and the experimental
context specifies which of the two mechanisms is expectepdmte. Another attempt to integrate
inhibition and retrieval perspectives was made by Tipo80(3. He argued that it is important
to note that distractor inhibition and episodic retrieyaddries are not mutually exclusive, and
both inhibitory and retrieval processes could be involvedhie emergence of negative priming.
Although retrieval processes can be responsible for piadutegative priming effects, inhibitory
processes are still required in selecting information foalgdirected behavior. Supposedly, in
most tasks negative priming will be caused by a mixture ofrifaurtions from persisting inhibition
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Figure 2.9: Time series of the activation variables during one simdldt&al processed by the
computational implementation of the ISAM, see chapter 3ly@he representations
of objects of the current probe trial or the preceding prime have nonzero acti-
vation. The threshold level (blue) is driven by the totali\ation. If only one su-
perthreshold activation is left, a decision is made. The Didition is shown on the
left. The forced decay of activity of the former distractariable is visible in a subtle
kink of the red solid curve. Right is shown the TT conditiorheTactivation of the
former target green solid line has not yet decayed to zerawihe variable is again
subject to input, shortening the reaction time signifigantl

and interference from retrieval. Because these procesagsometimes oppose each other, it is
difficult to distinguish them by means of behavioral measiilee reaction times and error rates
(Gibbons, 2006). However, depending on contextual camustiand other experimental factors,
the contributions of inhibitory and retrieval processeglmivary considerably (Kane et el., 1997;
Tipper, 2001). Gamboz et al. (2002) revealed in a meta aisabysge-related negative priming

experiments that there is no significant evidence for a pgmado produce patterns of results

favoring either inhibition or retrieval theories.

These integrative concepts seem to provide the better Wwamketo explain the various facets
of negative priming, as they raise the level of complexitg #re number of possibly contributing
parameters. However, a more explicit formulation than the given by the mentioned accounts
would be desirable in many cases. For example, the detetioninahether encoding or retrieval
processes play the main role or to what extent they cong&itiuthe effect is widely left to inter-
pretation and thus largely depends on the paradigm. A cdmepsive model that allows for exact,
ideally quantitative predictions for a wide variety of pdigms, tasks and other experimental pa-
rameters would be desirable.

2.4.7 Global Threshold Theory

In the imago-semantic action model (ISAM), Kabisch (2008)eloped the hypothesis of a thresh-
old variable deciding which items from perceptual input t@nresponded to. The threshold is
assumed to adapt according to the current average activatti@presentations of objects. Addi-
tionally, the ISAM proposes a forced decay of activatiorefidual activity is partly overwritten
by perceptual input of a new stimulus. These two mechanisgether can account for positive
as well as negative priming. The ISAM differs from the distmx inhibition theory explained
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2.4 Theories of Negative Priming
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Figure 2.10: Schematic view of the ISAM. The right blue box representsgia@iminary rating
of relevance for the perceived objects. The direct relewarfcertain objects drives
the factor of situational acuteness that controls speedaandracy of the compu-
tation. The level of global activity affects a threshold ehitruncates the list of
perceived objects into a space of possible actions. A decisi achieved if in the
set of applicable actions only a single one is left. The bloe ¢n the left contains a
semantic analysis of the perceived objects. It is able tieptrdack to the posterior
rating of relevance in a so-calls@mantic feedback loof he interaction among the
components leads to a decision about a reaction by a dynigpnazzess.

sectioZ.411, by postulating only facilitative input araspive decay in the absence of input.

The assumed processing is sketched in figure 2.9 which dctlmiws data from our computa-
tional simulations of the ISAM described in chagier 3. Pptaal input drives the corresponding
representation variables to a high value. The target reseidditional support, which drives target
and distractor activation apart. When the threshold ssgsathe second largest activation, the one
of the distractor, the system has selected the target ardedarespond. In DT trials the decay
of the former distractor is faster than for an unrepeatedatbjTherefore the overall activation is
lower, resulting in a slower rise of the threshold, whichtidelays the reaction. In TT trials, target
activation has not yet reached zero. Thus more activatigmesent, which speeds up threshold
and subsequently the reaction.

The ISAM forms a comprehensive concept of action selectibime presented objects are as-
sumed to undergo a pre-attentive processing and percegéiga, resulting in an abstract cognitive
representation of the objects. Formally, the decision betwtarget and distractor is determined
by the task instruction, which is made accessible to the inddethe semantic feedback loop
(left in figure[ZID). In contrast to the abstracted earlyaigprocesses, the decision is guided by
attention and a conscious application of the task inswucti

The stimuli are assumed to be initially processed automtiaccording to a relevance rating
based on low-level features such as motion or color. Theuditeme sorted hierarchically by their
(automatically assigned) relevancy. The relation betvatiamulus and associated action incentive
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2 Negative Priming

is that strong that we will speak of both synonymously. Thgjett has to decide which one of
the current action incentives to follow.

Attention is modeled as trimming the perceived stimulusbyean adaptive threshold which is
driven by the overall activation. If more than one option éations exists, the threshold adapts
such that only one option remains. During the adaptatiohefhireshold, representation variables
can still be subject to input, be it top-down or bottom-up.

According to the dual-code hypothesis of Krause et al. (1,.983signing modified relevancy
values to the respective objects happens in a semantic sffaare stimuli are processed jointly
with the implied actions. The relative relevance of stinualh be affected in a posterior rating in
the semantic space. The activation corresponding to atargmplified such that even if low-level
perceptual features result in a higher saliency of thealidr, the target representation becomes
significantly stronger than that of any distractor.

Kabisch (2003) even found a reversal of priming effects camag to the expected ordering
shown in sectiof 2] 1 for certain response stimulus interddé argued that activation is subject to
diffusion within its layer on a faster timescale than the ofithe passive decay, which means that
global activation is more persistent than specific activatf a certain object variable.

The dependence of negative priming effects on distractigrney can easily be explained by
the ISAM, as we will point out in sectidn-3.3.3. If the disttacbecomes more salient, the target
and distractor activations split later in the trial proéegsdelaying a decision substantially.

2.5 Summary

Mechanisms of selective attention are made accessiblesifrdinework of negative priming, a
slowed reaction to previously ignored stimuli. In standaedative priming paradigms, an experi-
mental trial consists of a target which requires a respondeaaistractor object that is irrelevant
to the task. Experimental conditions are classified by tmeutis relations between two subse-
guent trials, called prime and probe, respectively. Whenastimulus constellation occurs where
a prime distractor becomes target in the probe, the DT domngiti negative priming effect is
expected.

The variety of paradigms that showed a negative primingceffevealed a robust nature of the
effect. But the overall pattern of results also points tarargl dependency on various parameters,
often in an inconsistent manner. Therefore a large bodyeafrttical accounts have evolved, each
based on a certain experimental setting. Due to the contomgieffects, a comprehensive theory
is improbable.

22



3 Imago Semantic Action Model

The first mainstay in our quest to reveal the time course ohtig priming is to implement
a computational model that describes negative priming byntkeans of a dynamic system. The
evolution of the model variables provides detailed temidafarmation. Characteristic differences
between trials of different experimental conditions caridealized in time and thus give insight
in the stage of processing where negative priming is pradiuce

We will present the computational implementation of glabaéshold theory, see sectibn 214.7.
The original work on the imago semantic action model by Keti®003) describes the interac-
tion of concrete representation activations which can tagtitforwardly translated into model
variables. We only had to specify the actual dynamics. Simibncretizations are necessary
whenever a quantification is sought and only a qualitativedption is available.

Our simulations nicely reproduced experimentally obsgmaaction times. Without further
fitting several dependencies of negative priming are matdlyeour model. We thus show that
the adaptive threshold mechanism proposed by global thickgheory is sufficient to explain
both positive and negative priming effects. Additionallye implementation provides testable
predictions with respect to hitherto untested stimulus lmioations, e.g. single object trials, see
sectio 3.3 4.

We will start the following chapter with considerations te transient behavior of an artificial
neural network to the onset and offset of input, secfioh ke resulting exponential fixpoint
dynamics is then used to implement the ISAM. Implementatiod resulting dynamics are de-
scribed in sectiof 312. SectibnB.3 shows how the explapgtower of the ISAM in several as-
pects, i.e. artificial reaction times, the sensitivity ofatve priming to the length of the response
stimulus interval, varying distractor saliency and thesprdation of single target trials. The results
are discussed in sectibnB.4. The present chapter is bagStlombsdorff et al., 2007b).

3.1 Deriving Simple Activation Dynamics

The simulation of the ISAM, as it will be discussed in thed@aling, acts on a rather abstract level.
It contains a single variable for the semantic represemtaif an object triggered by visual input.
For the abstraction we make several assumptions. Firstong&der representation of a concept as
an increase of firing rate for a specific, densely couplednaslyeembedded in a larger network.
For simplicity we model the sensory presence of an objectaariain feature as a constant input
to the corresponding cluster. The of input either preserabsent. The variables of the ISAM
subsume the firing rate of such an assembly as it is driven jyt.inin order to determine a
realistic dynamics of this activation of the correspondiogcept, we consider an isolated cluster
as an all-to-all coupled network of integrate and fire nesrdive then average the firing rate of
the network over many presentations and analyze the shajse@nd decay.

3.1.1 Networks of Integrate-and-Fire Neurons

The membrane potentid of neuroni = 1...N is driven by external inpul;(t) and recurrent
connections which deliver spikes of adjacent neurons nateldlby a synaptic strengtt ;.
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3 Imago Semantic Action Model

h = Ii(t +Zw., 8(t —tly) (3.1)

If hy reaches the firing thresholl= 1, it delivers a spike to its postsynaptic neurons and idrese
by the threshold valubP*stSPke_ pPre: spike_ g

The external input;(t) is drawn independently in each time step from a Gaussiariligon,
with a mean chosen such that a single neuron receives ongavita same input equal to the
difference of threshol® and resting potentidi®. On average and without the recurrent coupling
a neuron would fire once during presentation of the stimuliree firing rate of the network was
determined by summing up all spikes occurring in one tinpeste

We simulated a network dfl = 1000 neurons. A stimulus was shown for 50 timesteps, and
the interstimulus interval was also 50 timesteps long. i@ butput of a neuron was fixed to
o = 0.87. The stochasticity of the input and the sensitivity of tieéwork for fluctuations result
in a rather random single trial firing. But on average a cafitdoehavior becomes visible. For the
results shown in figure~3.1 we averagedQD trials in order to obtain a good estimation of the
firing rate over time.

3.1.2 Network Response to Input Onset and Offset
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Figure 3.1: Average firing rate of the network during input (gray shadegian) and no input.
The fraction of two subsequent values is shown in red. Blaws| the averages of
the respective fractions, are indicating that they remaihner constant over time.

In order to derive a computationally simple dynamics for thpresentation variables of the
ISAM, we tried to fit the time course of rise and decay of then§jriate of the network. A good
candidate seems to be an exponential fixpoint dynamics, variable approaches its current input
value by a fixed fraction of the distance in every timesteps Titaction is called time constant of
the variable.

24



3.1 Deriving Simple Activation Dynamics

In figure[3:1 we show the averaged firing rate and plot the péage of change from one
timestep to the succeeding one in reference to the actuaifitsp.e. maximum firing rate or zero.
The observed time constants are only marginally constamtsudfficient for a justification of the
simplified dynamics we will use for the implementation of t8AM.

0.0102

0.0101

- 10.01

relative frequency

membrane potential

0.0099

0.0098

time steps

Figure 3.2: Distribution of membrane potentials averaged ovefQO trials. Note that the poten-
tials are mostly equally distributed, as the colormap omlyets values from .0098
to 0.0115. Nevertheless, the fine grained plot reveals the psesegenerating the
firing rates analyzed in figudle~3.1: Initially all neurons gmeéshed towards higher
membrane potential by the input, leaving a relative gap ihatopagated upwards.
Then, bands of neurons with a certain membrane potential &w the recurrent in-
put builds up. Finally, the system relaxes and the less aggdikes rebuild a more
equally distributed picture until no further spikes are eyaied.

Besides the result of a dynamics to use in our implementafitime ISAM, the periodicity of the
time constant, even after severe averaging, points tceisiieg behavior of the system. Therefore,
as a short excursion, we will spend some time on it. FigurieBavs the distribution of membrane
potentials averaged over D00 trials as in figur€3l1. During input, all neurons aretstifin
their membrane potential such that small potentials beceemg improbable, to the benefit of
superthreshold potentials. Most potentials within thedbidnat is shifted upwards during stimulus
presentation have a probability ofd@98 and 115, which is near an equal distribution. But
there is some inner structure that survives the averagiogeps, which is revealed when having
a closer look. In the beginning, all units receive only exétiinput. They are shifted upwards,
leaving a relative gap which then propagates through thesaratnge of potentials. Neurons that
spiked are not reset to zero but reset by 1 and still recettgment as well as external input, which
results in virtually no neurons having membrane potenbalsveen zero and.05. As recurrent
input tends to settle at a certain value, there is a trendropijog into the band betweenl® and
0.28 after spiking. This band is now shifted upwards by the sameunt of activation, being
smeared out during travel to the threshold. In every tinpeat@euron jumps from one band to
the next one. After offset of input there is only remainingueent excitation which decays rather
fast. As the number of spikes decreases smoothly, the baadsashed out. In the beginning
of the decay, there are still jump bands visible, but frometistep 60 there is just the small trend
upwards until settlement in the absence of input.
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3 Imago Semantic Action Model

The approximate exponential dynamics of the firing rate m riletwork is attributed to the
successive stimulation of neurons to spike. As more spikeg@nerated, the more neurons are
superthreshold. The only deviations from the exponentyalachics are driven by the external
input, which generates a constant baseline activity angrdference for a certain individual input
which results in the band structure.

3.1.3 Exponential Fixpoint Dynamics

The dynamics can thus be formulated by a set of coupled rearlibangevin equations (Risken,
1996) with the basic form

%X =h(x,t) +g(x,t)r (t) (3.2)
whereX is the overall state of the systemjs time, h is a function that describes drift forces
that depend on the actual state and time Bftd is a Gaussian diffusion term with zero mean
(t)I'(t) = 0 and3 correlation functiont)l (t)I (t') = 25(t —t').

We will drop any noise because of our intention to descrilgeitiago semantic action model
as concretely as possible. The theory does not make anyngtiate about noise influences to
negative priming. Therefore we expect the noise comporejust shadow the mechanisms in
guestion. Another problem is the influence of the subjed#s @n priming effects. In recent work
on modeling the influence of age noise was found to play anitapbrole, see e.g. (Li, 2005). In
future work we plan to model aging questions by taking up thisencomponent and relating its
level to age.

The first parth of equation [[32) will contain all driving forces of the sgst, external input
and internal activation exchange via couplings. This tedalan exponential fixpoint dynamics.
The difference between system state and a given fixpointipliatt by a certain time constant
determines the change of the system.

3.2 Implementation of the ISAM

The simulations essentially follow the paradigm that weddticed in sectioh’2.2. For an overview
of the course of a simulated time step see fiduré 3.3. We censidet ofn stimuli each of
which is represented by the activation of a detector functiiich models a cell assembly that
represents the stimulus. In addition to the stimulus-drigetivation, the detector is subject to
intrinsic dynamics.

3.2.1 Representation Variables

Since the stimuli can occur either as a target or as a distragach is coded by two variables.
One, X' indicates the presence of a stimuius {1,...,n} as the target object, while codes

the activity of the distracting stimulus¢’ andx® are assumed to represent feature combinations
which are considered to precede an object representatiere.g. (Schrobsdorff et el.. 2007a) how
such feature combinations can be combined with an objeotseptation. The system is modeled
using a set of differential equations which determine thmetcourse of the cluster activations and
of the common threshold variable. Stimulus input is presemd the model in the form of jumps

in the fixed points of the activation variables, i.e. theyraaeled as delta-pulses to be integrated
by the internal units[{315)[{3.6). The integration in theira units is modulated by a temporal
convolution with the time constantsandf in the following way: the activity’, wherev € {1,8}
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3.2 Implementation of the ISAM
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Figure 3.3: Schematic view of the loop structure of ISAM. Discrete tirmalenoted by. Reac-
tion time and response stimulus interval in the discrete timits are labeled bRT
andRSlrespectively. It is assumed that stimulus indeis the present target ard
indicates the distractor of the current trial.

denotes target or distractor respectively, rises expaadlnivith time constantx to a certain level
IV, which is determined by the input.

Vv

1dx
1

ik v
a dt !

if X/ < 1Y (3.3)

If the input is switched off the population activity expotiefly decays towards zero. If the
present input is lower than the population activity it temolsards this input, equatioh (3.4). In
both cases the decay constan.is

if x> 1 (3.4)

3.2.2 Visual Input

We assume an abstract recognition mechanism that actistibeslus-specific units. Inputs are
represented by an activity level of one unity in the presesfcan input or otherwise by zero
activity (3.5), [3.6). The semantic feedback loop ampliffessactivity of the unit representing the
targetl| linearly with feedback strengt see equation(3.6).

(3.5)

5 1 during presentation of objecas distractor
' 0 otherwise
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3 Imago Semantic Action Model

1+&At during presentation of objects target
= At denotes the elapsed time while stimulus onset.  (3.6)
0 otherwise

3.2.3 Interference of Semantically Identical Objects

As x' andx® belong to the same objetthey interfere. This interference is given by a negative
interaction. One and the same object cannot be target atndai at the same time. Therefore,
these variables cause conflicts with the strength of the sstnemegative interferencé during
simultaneous activation. Assuming the absence of inpuaton[3:4 becomes

1 d)ﬁ'r T X6 T

ish B EERVLY AV Ve 7
B dt X — (XX (3.7)
for the target and vice versa for the distractor activation

1dx .
Bdt = =X -0 (3.8)

3.2.4 Adaptivity of the Threshold

The crucial point of the model is the adaptation of the tho&shThe threshold (3.9) is driven
by the average activity (3.10). The parametgrdenotes an adaptation constant &ng a delay
time. This is a standard version of a winner-takes-all meisma.

1o

var - t-p-e (3.9)

The average activity depends on the object representagiamsl also on two memory variables:
andr®, which are residual activities from previous activationghie present target and distractor,
respectively.

X = %(rT+r5+iZ(>¢+><§)> (3.10)

At the moment of input onset! andr? are set to the activity level of the appearing target and
distractor. If the new display contains stimulpss target and as a distractor, then we set the

following at the point of stimulus onset:
r=x, rP=x (3.11)

The variables™ andr® form a separate temporary representation of the curreectshjwhich
undergoes a different time course after initialization.
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Figure 3.4: Activity vs. time. All traces relevant to the model are showistractorx® activation
is red and target’ activation green, the threshold lewis blue. Additionally, the av-
erage activityxis plotted in dash-dotted blue, the absolute sensitivirglle in cyan.
The inputs together with the semantic amplification are shaw a thin dash-dotted
pattern. Their color corresponds to their role as targetisirattor input. Insetsa)
The activation curve of target and distractor approachr thput exponentially. The
input of the distractor is fixed to one. The input of the tarigelinearly amplified
by the semantic feedback loop) The exponential approach 6ftowards the global
averagex is delayed by a certain time intervald) At the moment whe® crosses the
distractor activity only the target activation is ab®;eind a decision can be maas.
During the fast rise of the activation of the new stimuli thés a short time interval
where also only one activation surpasfedue to the global sensitivity levet, no
decision is provoked.

3.2.5 Response Generation

The decision about the target object is performed glob&lfg test whether exactly one variable
is activated above threshold lev@l This test is additionally conditioned due to the fact thre t
threshold is higher than a fixed sensitivity lewel We thus avoid decisions without a significant
activation, e.g. when the adaptive threshBlid near zero. All variables that form the model are
presented in a joint plot in figufe~3.4, for details cf. theeilss Most activity variablex (green
for Xt, red forxd, in different textures for the different objedisare effectively zero. Only the
variables that are or had just been subject to input haverefisnt activity. The threshol®
(blue) is oriented along the average activity lexétiash-dotted blue).

Parameter values are chosen following several princigiesely scalable parameters such as
distractor inputl®, are chosen such that they are kept as simple as possibl@irCesunds have
to be respected, e.g. the sign is usually predeterminedlsnithe order of dependant variables is
fixed. Most desirably parameters can be derived from exmiat data. At the abstract level of
the ISAM, we only can rely on behavioral experiments. Thusle@ded to fit the model behavior
to the priming effects of our negative priming study presdnh sectioriZl2. The fitting is done
manually.
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3 Imago Semantic Action Model
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Figure 3.5: Time evolutions of the activation variables during one dated trial. Only the acti-
vation of objects presented in the current trial or the ptegeprime trial are visible,
the other eight activation variables are virtually zeapDT condition. The forced de-
cay of activity of the former distractor variab¥@, wherex! is the target in the second
trial, is visible in a subtle kink that is pointed up by two tkadashed tangential lines.
These tangentials are not drawn in subplot b) for compari®rDTTD condition.
Kinks are present in both the former target and distrac®thay are influenced by
the rising activation of the new target and distract)rTT condition. The activation
of the target, which is the same object as the previous taiiges from a certain level
above baseline, as it has not yet decayed to zero when thenpeivis switched on.
The activation approaches the input from this step. Thistehs the reaction time
significantly. d) DDTT condition. Here, both stimuli stay the same and apgroac
their input from a higher level, shortening the reactionetieven further.

3.3 Computational Results

3.3.1 Comparison to the Experimental Data

Figure[3:5 shows the time series of a trial in the simulatedlehoThe four subfigures refer to
the four main cases (DT, DTTD, TT, DDTT) described in secloh Since the scale of time is a
degree of freedom in the simulation, we performed a tempzmadje to match the average reaction
time in the control trials.

In the DT-trial in figure[3ba, the activation of target andtdictor from the prime stimulus
decay with a characteristic exponential profile, equati®d)( The threshold® follows these
activations. At timetyp = Oms the RSI has elapsed and a new stimulus is shown. Thissdrive
the activations( andx® of the new target and distractor (respectively) expontytiawards the
input Ievelli6 =1 andljT =1+¢&(t—tp). Attimetp, these inputs are similar. Later the difference
between the activations increases. tAt 565 ms, the thresholfl follows with a delaytgelay. It
approacheg?, which has meanwhile arrived closelfo If the activity of the distractor is surpassed
by the adaptive threshold, then the distractor is cut ouhefsppace of possible actions. Thus, an
unambiguous decision in favor of the target can be made.

Now, the display presents a fixation cross, i.e. the inmﬁtand IjT are switched off and the
activationsx®, x} and6 decay correspondingly. The characteristic time courseDi #&rial shows
a kink in the activation of the distractor variabt% when the distractor becomes the target. Via
the coupling strengtld, the rise ofx} causes an acceleration of the decay of the activation and,
consequently, a slower rise 8f The threshold reacheg later than in a control trial. In the
DTTD trial, see figur€_315b, the two decaying activationsrfrthe previous stimulus are decaying
faster. The overall activity is thus even lower and thus tiepgation o is further delayed, such
that the response is even slower in DTTD trials.
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3.3 Computational Results

In the positive priming condition on the other hand, see &8¢, the same variable} is
activated again by input and therefore starts offpait a higher level of activation compared to
a control trial. As discussed in sectibnl3.2, the residusiViac of x} before stimulus onset is
stored in the appropriate variabig which is subject to an intrinsic decay, and adds to the divera
activation level that drivesd. The augmented activity level &f at the beginning of input causes
a higherx that shortens the time théitneeds to reacle3 significantly. Therefore, the reaction
time is reduced in comparison to the control trials. In theTDDrial, see figur€-3]15d, the reaction
is even faster due to the departure of both target and distractivations from a higher level of

remaining activity.
o - ““\ ““\ ““\ |||||
co DT

DDTT TT

Figure 3.6: Reaction times for a response stimulus interval of 1500rasndtch the experimental
data given in sectioh 2.2 an additional delay=0f.35 ms for perception and action
initiation has to be assumed. These processes will alsbeiuraise the variance but
not alter the strength of the effects. These reaction tima® wbtained in an exem-
plary simulated session of 400 trials. The parameters sfgmulated experiment
were: o = 0.028, 3 = 0.003, & = 0.0016,¢{ = 0.0053,y = 0.013, tgelay = 15ms and
0 = 0.62. A simulated time step was3ins
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We simulate sequences of 400 trials. The results from thalations show a close correspon-
dence to the results we obtain in our experimental studibs. résults of a simulated session are
presented in table”A.2. We thus added 200 ms to all of theiogatines in order to account for
perception and action initiation processes which are ne¢rea by the ISAM.
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3 Imago Semantic Action Model

3.3.2 Dependence on the Response Stimulus Interval

An interesting aspect for the evaluation of the model is thygethdency of priming effects on the

response-stimulus interval (RSI). The adaptation of thesttold critically depends on the length
of the RSI. This is due to an adaptation to the specificity efdtored information rather than the
exact average level of activation. In the computational ehdtthis corresponds to a weighting of

the averaged activity in the process of the adaptation afhifeshold. We simulate the state of the
model system during medium RSI from about 1s #8s2 Both very short (below one second) and
very long RSI (on the order of hours or more) are not coverethbymodel and are discussed in
section[3.4. In the first case, the perception process nedus $pecified in more detail, which

would lead to a stronger dependency of the model on the platiexperimental setup. In the latter

case, we would need to extend the model with specific memochamesms, which is beyond the

scope of the present approach.

It is a known fact that reaction times in human subjects amengty affected by the RSI
(Kabisch, 2003). At very short RSI for example, a TT trial sradoxically slower than base-
line and in medium RSI the priming effect in DTTD trials is vkeathan in simple DT trials. The
occurrence of these so-called paradoxical effects in é@xgertal studies (Kabisch, 2003) for very
short RSl is confirmed by the computational model, see figude B the model some of these
results are due to a backward threshold crossing by thea#iotivariables.

0 R
%)
£
g —50
o NP2
(]
=2 NP
E -100{ - COo
& ad

-1504
T T T
500 1000 1500 2000
RSI [ms]

Figure 3.7: Differences in the reaction times for the five experimentaiditions in dependence
upon the response-stimulus interval. Note that the chahegifexts for short response
stimulus intervals is caused by the situation that the tolesis not yet fallen under
the representation activations.

3.3.3 Variation of Distractor Saliency

One of the characteristics of the negative priming phenames the influence of distractor
saliency on negative priming. The empirical finding that tiegative priming effect increases
with growing saliency of the distractors is generally laukteactive inhibition (e.q. Grison and
Strayer, 2001; Houghton et el., 1996; Lavie and F-ox, 2000pndii et al., 2002).
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Figure 3.8: Differences in the reaction times for the five experimentaiditions in dependence
on the relative distractor saliency. For a low distractdiesay positive priming ef-
fects are pronounced whereas for higher distractor sgli@asitive priming virtually
vanishes and negative priming becomes lager.

In two experiments, Grison and Streyer (2001) manipulatedoerceptual quality of the target
or the distractor. Their data indicates that negative prijmis dependent on the activation of
postperceptual representations of the distractor. Thu®ie malient postperceptual distractor
representation leads to a stronger negative priming effdwey found stronger negative priming
and weaker positive priming for a degraded target comparadiegraded distractor. This relation
was predicted by the inhibition model (Houahton et al.. )99&d could be confirmed by Tipper
et al. 2002).

The question how distractor saliency affects reaction dilngerms of the ISAM is not easily
answered, as reaction times depend on the sensitive imyespall parts of the model. The saliency
of the distractor can be altered by changing equalion (8ug) that in the presence of a distractor
stimulus the distractor inpuf equals the saliency. It denotes the saliency relative to the target
input. Equation[{316) describing the target infustays unchanged. Figure3.8 shows the reaction
times produced by the ISAM if the distractor saliergis changed from 1 (equal distractor and
target saliency) to 1.25 (distractor saliency 25% strotigan target saliency).

The ISAM shows several effects when exposed to distractovarging saliency. Generally, a
stronger distractor saliency leads to longer reactionginhore time is heeded to actively ignore
the distractor to be able to respond to the target. Computaty, this is due to the higher level
the threshold has to reach in order to cut out the distracttivadion from the space of possible
actions. Counteracting is the fact that the residual autina from the former trial are still higher,
due to the higher level of target and distractor activatipbthe point of the prime decision. This
contributes to a higher threshold level at trial onset,gbgraccelerating an answer. But this effect
is weaker than the influence of the higher distractor adtimdevel the threshold has to reach for
a decision.

The two positive priming effects TT and DDTT become weakethwgrowing distractor
saliency. The reason for this is the exponential dynamicthefactivation variable. Positive
priming is produced by greater residual activation of thgatvariable compared to a control
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3 Imago Semantic Action Model

trial. This activation difference between positive prigiiand control also decays exponentially.
Thereby, longer reaction times and thus a higher distraatidency reduce positive priming effects
exponentially in the framework of the ISAM.

Both negative priming effects grow with higher distractatiency. Negative priming is pro-
duced by an interference between the former distractovadizin and the new target activation
accelerating their decay reciprocal. With higher diswastliency more activation from the prime
trial carries over. The interference in equatibn(3.7) ipedeent on the former distractor activa-
tion. Therefore, a stronger activation leads to a strongerfierence and thus to a bigger negative
priming effect.

3.3.4 Predictions for Single-Object Trials

The present model is critically tested by the applicatiorsiofjle stimuli during the course of

the experiment. In single-object (SO) trials only a singbgeot is presented. With respect to the
experimental setting, it is only conceivable to use siragct trials with the object being a target.
If single distractors were to be included, a no-responseanaould be necessary, disturbing the
flow of the experiment. Nevertheless, the implementatiothef ISAM enables us to predict

reaction times in these conditions. A non-reaction is fdssit the moment, when the distractor
activation reaches a strength that would lead to the clea8dh of a target.

We introduce a number of new categories in addition to thes araened in section 2.1. SO-
trials occur in three variants, realizing special casesefdstandard conditions DT, TT and CO
relative to the preceding target/distractor pair (see upp# of table[3.34). We are also aware
of numerical effects in the reaction times of the ISAM of méding SO-trials to standard trials.
Therefore we further separate these three trial condifimms trials which were preceded by both
target and distractor. In our notation, four letter ablatehns denote the six new conditions: If the
preceding display contained a single stimulus, the firstletters are SO, and the last two letters
indicate the condition of the actual display. If the pregseat shows only a single object, the first
two letters denote the condition it matches in relation wgteceding display. See table_313.4 for
the appropriate naming of the resulting additional cases.

prime display probe display
target distracton target distractor
DTSO| A B B - distractorf) = targeta+ 1)
TTSO A B A - target) = target+ 1)
COSO| A B C - One object this trial which was
A B - C not presented the last trial.
SODT - B B C distractor()) = target+ 1)
SOTT A - A C target) = targetG+ 1)
SOCO| A C D None of the two stimuli matches
- B C D the only preceding stimulus.

Table 3.1: Additional priming conditions resulting from the introdian of single object trials.
The upper part of the table shows the single objects tri@m#elves, the lower part
show trials that immediately follow a single object trialhd ISAM predicts that re-
sponses directly after single object trials have to be clemsd separately.
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Figure 3.9: Representation variables over time for the analysis of énabior of the ISAM during
SO-trials. There is only one object present. This resultslower average activity.
Without the sensitivity cutoff vias, the reaction time in the case of an SO-trial would
not be longer than the time necessary for perception andreittitiation. In the trial
directly after an SO-trial, the baseline activation is lowecomparison to non-SO
trials, as the activation of the second obiject is lacking.

When SO-trials are presented to the model, a dramatic rieduatreaction time is observed, as
shown in tablé_ZA18. Columns 2 — 4 contain much smaller valbas £xpected in trials with two
simultaneous objects. The priming effects are clearlygesithout specific tuning of the model
to this case, See figufe_B.9. However, the global sensitigitgl o plays an important role, as it
finally determines the moment of reaction.

Figure[3.1D also displays the reaction times for trials tfmaediately succeed SO-trials. They
are classified in dependence on the reoccurrence of the faiopect. It is obvious that a signif-
icant slowdown of reaction time after SO-trials is inheremthe model due to the lower overall
activity if only one object representation is activated bg tnput. This justifies the separate con-
sideration of trials immediately succeeding SO-trials.thise trials were subsumed under the
classical conditions, they would artificially increase tlagiance. In experiments, this slowdown
can occur due to a disturbance of the response routine ofaslpy SO-trials, where the switch
back to two stimuli displays is also a distracting factor. &ve currently running experiments to
check whether this effect really is present in human behavio

The observed effects during the presentation of singleabljials are readily explained in terms
of the formal model: The overall activation that drives theeshold is lower in SO-trials, therefore
0 takes longer to reach the activation level of the distradtming the next trial. This causes a
longer delay until the correct object is singled out in ortteallow for an unambiguous decision
of the system.
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Figure 3.10: Predictions for single object reaction times for a resposts@ulus interval of
1500ms, in dependence of experimental condition. The ysualing conditions
are not shown. The parameters are the same as in figuire 3.6.
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3.4 Discussion

3.4.1 Modeling Priming

The ISAM impressively reproduces experimental data withmantradictions. Additionally it
shows reasonable behavior when confronted with the toocbsbf RSI-dependency. The im-
plementation of the ISAM presented here is robust enoughadeige predictions about stimulus
constellations that have barely been considered in prigxpgriments thus far. This circumstance
serves as a good opportunity to test the ISAM experiment@iiyong the many theoretical ap-
proaches to priming, we select three of the most popular fe@ie compare their implications
to empirical results.

The distractor-inhibition model (Tipper and Cransion, Ei%48oughton and Tipper, 1998) is one
of the most influential theoretical accounts. Followingtime of reasoning, the negative priming
effect is supposed to be a cognitive index for the inhibitooynponent of selective attention. It
is assumed that irrelevant stimuli representations ateedtsuppressed to support selection of
the goal-relevant target stimulus, and that this inhibitiersists for some time. When the former
distractor becomes the behavioral relevant target in theesjuent display, responding is ham-
pered because of the persistence of the inhibition impoedtduring the prime trial. However,
shortcomings of this model emerge when explaining certggeemental results: Because nega-
tive priming is described as an after-effect of distractdnibition, a facilitatory effect of ignored
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3.4 Discussion

repetition trials without a distractor in the probe trialge Tibper and Cranston, 1985) cannot be
reasonably accounted for in terms of this model.

A second important account, the episodic retrieval mode,driginally been proposed by Neill
and Valdes (1992). They argue that negative priming is thelref conflicting information caused
by a retrieval of the prime episode when exposed to the pritmelsis triggered by similarities
of the two situations. The probe target thus causes retridibe prime episode due to repetition
of the prime distractor. The information from the retrievegisode (i.e. “ignore the stimulus”)
conflicts with the need to respond to this same stimulus inctiveent probe episode, resulting
in a time-consuming process. This causes an increasedorediobe, characteristic of negative
priming. A particular advantage, in comparison to the ottmexdels, is its explanatory power
regarding the influence of temporal discriminability of gréne episode relative to the preceeding
episodes. This is more easily accounted for by episodievalrthan by inhibition-based models.
The same is true for experimental evidence which shows kigaeftfect increases quantitatively
when the contextual similarity between prime and probeasiitn is increased (e.q. Stolz and
Neely, 2001). However, the model falls short of explainimgnantic negative priming effects,
where the response to a probe target is only semanticaliyeceto the prime distractor (such as
dog to cat), which are more easily accounted for by the itibibimodel (Tinper and Cransion,
198%5). Both the inhibition model and the episodic retriavaldel explain general reaction time
increases in negative priming conditions in a straightveod manner.

In contrast to the two previously described models, the teaigliscrimination model (e.qg. Mil-
liken et al., 1998) does not assume selection processagydhe prime task as the basis of negative
priming. Instead, it assumes that negative priming is chas¢he moment of response formation
during the probe processing. Two response modes are pestutathe following context: the
response can either be computed or directly retrieved framany. Which of the two response
modes guides behavior in the probe task depends on a caigtiymmi of the probe target as either
“old” or “new”. If the probe target is categorized as new, apense is generated on the basis
of perceptual analysis. Otherwise, if the same task s@ndtias already been encountered, the
response can rely on a direct retrieval of the former respoi®r a probe target in an ignored
repetition trial, an ambiguity in the categorization pregés assumed, resulting in a longer reac-
tion time. But there is also empirical evidence which catlitts the predictions derived from this
model: In a repeated distractor condition, the model ptedicslowdown in responding, whereas
a speed-up is repeatedly demonstrated in psychologicariexents (e.g Frings, 2C05).

These considerations show that modeling of the negativeipgi effect is still in its develop-
mental stages. Therefore we do not hesitate to implemeriSthil as a new contribution to the
ongoing discussion of negative priming explanations. At fjtance the ISAM looks similar to the
inhibition based mode! (Tinper, 1€85) as negative primsthe result of a negative interference.
However considering details the two models differ in crlagpects. In the ISAM, priming effects
are an interplay of remaining activation from the prime tiigpand activation driven by the probe
input.

Generally, none of the effects are present in the ISAM uhélprobe trial starts. For the inhi-
bition based model, this is not the case, as the activatidheoflistractor is inhibited in the prime
trial and negative priming is just an after-effect. The niegainterference is not due to a control
mechanism ruling the prime decision as postulated in thibitidn based model, but rather an in-
trinsic interference within the neuronal circuits accangptfor the prime distractor representation.
The negative priming effect is thus obtained by the addeidrgfof the distractor representation,
which must switch states from "do not respond to” to "resptaid This interference is more like
the postulated conflict between memory traces and the d¢uadivation pattern responsible for
negative priming in the episodic retrieval model. Anotherking-off feature of the ISAM is that
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representations cannot be pushed below baseline, as #ecabsf a representation is modeled by
zero activation. The interference only affects time camstaf decay or rise towards input equa-
tions [3.7) and[(318). Similarities to Tipper's inhibitionodel can be found in the assumption of
an external control mechanism responsible for the decigom rather than inhibiting target acti-
vation in the probe trial, the control mechanism postulategtie ISAM boosts the target activation
due to its semantic classification relative to the task.

Since the ISAM produces the priming effects at a very eadgetof the probe trial, it displays
no obvious similarities to the mechanisms presupposeckitetinporal discrimination theory (Mil-
liken et al., 1998). In terms of the functional effectivesid@s can rather be placed between the two
models first discussed, the inhibition and the episodidenedt theory. The ISAM thus incorpo-
rates advantages from both approaches and integratesmgssrfrom both models into a more
complete theory comprising all (positive and negativeinimg effects.

3.4.2 Phenomenological and Neural Models

Modeling provides an attractive approach to attentionathmaisms and thus in particular to prim-
ing phenomene (Houghton and Ticper, 1994). First, matheelahodeling of a theory requires
a precise formulation of the theoretical assumptions anchar@sms. This is of even greater im-
portance as some of the explanatory models for negativamgipresented above do not specify
how and on what level attentional processes operate. Seanmxplicit computational model can
help to derive more specific predictions than possible froonerabstract models, since not only
gualitative but also quantitative predictions can be gateek Also, conducting computational
experiments can produce new and even unexpected resultinthan, can lead to experimental
confirmation and extension of the model.

The ISAM presented here is implemented with effective équat A refinement of neural net-
works seems desirable but cannot provide deeper insighthetmechanisms generating negative
priming, as the effect appears at a high level of brain famctvthere computation is strongly dis-
tributed. Therefore, no plausible neural model can be gatethis stage of brain research. The
reduction to an effective theory, in contrast, allows faedt observations of the functioning of the
model itself without exhaustive investigations of the diated data.

The difficulties of the model with short RSI point out the gfieity of a certain approach that
can never describe the whole behavior of the brain whichexample, in the context of changing
the RSI uses several different strategies, such as shortnbemory and long term memory when
changing the RSI from 500 to 1500 ms. With the present impigat®n, the ISAM moves
up in line with the other explanations of priming effectselithe inhibition or episodic retrieval
approach. It shows possible simplifications of existing eisdhaving in mind a minimal model
that describes the generation of priming effects in the hubrain.

3.4.3 The Implementation of the Model

The numerical implementation revealed an insufficiencyhefi SAM concerning RSIs that involve

short-term memory effects. For very short RSI its consetjimeplementation shows a reversal of
priming effects. The reason for this strange behavior israptg space of possible actions. At
stimulus onset, the threshold level is still greater thanaativation of the variables representing
object recognition. Therefore, a decision is made when theviariable reaches the threshold. An
increase of this limited range of RSI also requires the dmration of low-level neurophysiolog-

ical details, which will be incorporated in an improved vensof the model. Furthermore, our

implementation is sensitive to the number of stimuli in oreplhy. The factor% in equatior 3710
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was chosen for the situation of one target and one distraétomltiple distractors were present,
the model may not come to a decision. In extending the ISAMdeceparadigms the factor should
be adjustable according to the stimulu configuration ina thisplay.

All this together with the restriction of the ISAM to identibased voicekey paradigms built the
basis for constructing the General Model for negative grgmore or less from scratch. Chapter
B will be devoted to the development of a computational méuklis capable of dealing with nu-
merous stimuli and response schemes while being complexgérto incorporate all mechanisms
that are suspect to produce priming effects.

3.5 Summary

The imago semantic action model by Kabisch (2003), whichoeas described in sectibn Z4.7, is
the attempt to explain negative and positive priming by dngle mechanism, the presence of an
adaptive threshold which decides on the semantic repiesam of stimuli which one of them to
attend. The original description is sufficiently precisertake a straightforward implementation
as a dynamic system possible.

We first derived a very simple dynamics describing the teartsdf the spike rate response of
a neuronal compound to the onset and offset of external .inpbe resulting dynamics is used
to model object representations as activation of a singliaia even though this representation
is most likely held by a distributed network of interconreztineurons. On the basis of these
representation dynamics we implemented the ISAM with maliedditional assumptions and
found that the reproduction of frequently encountered rineffects is easily achieved. We thus
prove guantitatively that priming effects, both positivedanegative, can be explained in terms
of the ISAM. Further phenomena that are well described byl8#eM include the speedup of
responses to single-object presentations, the presemaitpriming effects in these cases, and the
reproduction of the dependency of priming effects on vadiistractor saliency.
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4 EEG Correlates of Negative Priming

The second mainstay in the determination of the time coureegative priming is electrophysio-
logically recording the processes happening during a iegaitiming trial. The electroencephalo-
gram (EEG) is well suited for negative priming experimenig db its high temporal resolution.
Especially the consideration of event-related poten{laRPs) is well suited to reveal the differ-
entially time-consuming components of information praieg that are responsible the negative
priming effect.

In search of a cooperation, we were offered to use a fullymmpd state-of-the-art 64 channel
EEG-laboratory in the department for medical psychologytiGgen. We seized the opportunity
to run a series of priming experiments while recording EE/iyg. The results of the adaptation
of our voicekey paradigm, presented in secfion 2.2, to th@ Efvironment provide the replication
of the results of a recent study on EEG correlates of negptivging (Gibbons, 2006).

We will describe the derivation of EEG signals and tradiloway of data analysis in sec-
tion[4]. In sectiom 412, we will give a detailed review of @ates of negative priming. In sec-
tions[4.3 td'4.b we will describe our study on electrophyxiatal correlates of negative priming,
present the results in sectidnsl4.6 4.7. The resultsimgrated into previous ERP correlates
and evaluated in sectiohs %.8 dnd 4.9. Our publication @whret al., 2009) is the basis for the
current chapter.

4.1 Introduction to Electroencephalography

Electroencephalographic (EEG) data is the electric pisienhange on the skull surface on a
10QuV scale. These potential fluctuations are most likely preduioy electrical fields generated
by ion flux around axons of firing neurons. Axons that are aedrperpendicular to and not far
from the skull surface contribute best to the signal. ArotlBd00 neurons are required to fire in
synchrony to obtain a good signal. But even contributionsnfdeeper brain regions can not be
excluded and a potential reversal can occur at electrodscoetical folds. The measured signal
is the superposition of all signals finally low-pass filtelsdthe skull.

4.1.1 EEG Recording

For clean recordings, a shielded recording environmentégssary. Electrical equipment should
run on low DC current. Very sensitive difference amplifiers ased that feed the signal into the
A/D converter at a recording computer. Electrodes are lagthd¢o the skull by an electrode cap
that ensures a correct positioning. Electrical contact aximized by degreasing the electrode
sites with alcohol and by the application of a conductivelgdll the impedance is below Xk
The sintered ring electrodes are made of highly conductisgerial (Ag/AgCl) in our recording
environment. In our case placing on the scalp follows thadstedized extended 10-20 system
by Jasper (1958), see figurel4.1. Electrodes are named awgdodtheir position from fronto-
polar via anterior, frontal, central, parietal and tempdoaoccipital. Odd numbers are situated
on the left side, even numbers on the right. Care has to ba,taldeen looking at head plot
topographies, as the EEG-researcher looks at a head frome,albbereas fMRI-researchers look
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Figure4.1: The extended Ten-Twenty system of electrode placementtaexlirced by Jasper
(1958).

at their subjects from the feet and thus sketch the headsielerAdditional electrode positions
are located beneath the eye, a rather strong dipole, todrecoelectrooculogram in order to clean
the data from collateral artifacts.

The reference for the difference amplifier is usually plaata position where low brain activity
can be expected, such as the mastoids TP9 and TP10 or a padittoe the great longitudinal
fissure like FCz. Recording a difference signal has the adgarthat global noise can be expected
to be homogeneously present at all sites and thus not emtatata. Unfortunately global EEG
signals do not as well. Choosing the reference is crucighasignal of the reference is present
in every time series. But if certain electrodes have beentiiiied to contain a signal of interest,
an offline rereferencing is still possible which can enhaheesignal. In the raw recording setup
we set a high sampling rate of 5000 Hz, applied a band passtfdteveen QL-70 Hz and a notch
filter to suppress 50Hz mains hum.

A second computer is dedicated to stimulus presentatiomearaatding of the behavioral data. It
transmits time markers to the computer recording the EEG}@8 of data per session. Markers
can be given for the onset of the successive stimulationajis@nd for the subjects’ responses
and make a meaningful segmentation of the EEG data possible.

4.1.2 Data Processing

Before considering EEG data, the behavioral data is andlgrd outliers are rejected according to
the following procedure. The outliers can be simple behavierrors which invalidate the current
trial and the successor, as the priming may be mixed up. Readhat were faster than 250 ms or
slower than 2000 ms were removed, as they most likely cosigimals from processes differing
from the ones under investigation. Finally, reaction timéere the difference to the mean of the
experimental condition exceeded two times the standaridtilmv were excluded too.

Because most inferential statistics assume a normal lisitsh of the data, Kolmogorov-
Smirnov tests were conducted for the reaction times witheneéxperimental conditions. If the
test showed that the assumption of a normal distributionwigated, single values were removed
based on their probability given the normal distributiondmlountil the Kolmogorov-Smirnov test
yielded insignificant results. Overall, we ensure that noterthan 10% of the trials are excluded
from the analysis for each participant. If this is the cabe,dubject is excluded completely from
the analysis.
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4.1 Introduction to Electroencephalography

In order to obtain neural correlates of a certain behavieffakct, the effect has to be identified
first by analysis of the behavioral data, i.e. by comparingrage reaction times of the different
priming conditions. Then the EEG is segmented accordindpéostirveyed time markers. The
segments should contain some information preceding t@efdr a baseline correction as the EEG
is no absolute measure but just potential differences. Hlsoreaction in each trial should be
captured, thereby defining the segment length. Only segni@hbnging to behavioral valid trials
enter the analysis.

The data still contains artifacts due to body movementstufatons in electrode conductance,
electrostatic charges or technical errors. A major probtdmecording the average activity of
large numbers of neurons (as compared to intracellular uneaments of single neurons) is the
very strong background activity in the data, apparent ag s&png noise. In the EEG, noise
is significantly stronger than the ERP itself (Flexer, 200@0)hereas the electrical background
activity is in the range of + 20QuV, the evoked potentials have an amplitude of only 30uv
(see figuré412).
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Figure 4.2: Noise and signal in EEG-data. Note that the approximate itudpl of the average
ERP of 132 trials is in the order of ii¥, while single trial recordings show amplitudes
of ~ 10QuV.

Thus a cascade of data cleaning and trial rejecting proesdarcarried out. Basic techniques
are simple filters, baseline corrections and visual inspeetnd manual removal of erroneous elec-
trodes or segments. Automatic data rejection excludds trigh a maximum potential surpassing
a certain threshold. Furthermore, eyeblinks cause magiuribances in the data, especially in
the fronto-polar regions. Their impact has to be removdakeeiby traditional regression based
techniques! (Gratton et al., 1983) or by more recently d@eslcapproaches using independent
component analysis (Jovce e: al., 2C04; Jung et al., 2000rme et al., 2007).

After these cleaning procedures, segments of one expeiiremdition are averaged pointwise
forming the averaged event-related potential (AERP). TERR usually shows a stereotypical
form, a sequence of minima and maxima. Height and latenchefpeaks, which are named
according to polarity and sequential number, alternatieplbroximate latency, as N2, P3 or P300,
are assumed to contain information about cognitive preses$herefore latency and amplitude
of the peaks are systematically compared between the grinunditions in order to determine
which mechanisms in the trial processing carry the diffeednetween the conditions.
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4.2 Review: ERP Correlates of Negative Priming

We will now review electroencephalographic correlateseaxfative priming. As we have seen in
the last section, EEG recordings provide insight into whdttdappening in the brain, but the inter-
pretation is difficult due to a very bad signal to noise raime way to relate EEG data to behavior
is finding discrepancies in the averages of two experimeatadlitions. Those Differences can be
interpreted in favor or in denial of a certain theory. Thdatié#nt theoretical accounts vary by
assuming different cognitive processes to cause negativeng. Those Processes are found to
be present in defined ERP components. Thus the latency anduatapf the signal differences
can be attributed to such a process and therefore give eddena theory for negative priming.

To give a comprehensive overview of ERP Correlates of Neg&triming, we will go through
the ERP components in the order of their latency. Partiguthe N200 and P300 components
are discussed as candidates for correlates of behaviagative priming. The observed patterns
of differences in latency and amplitude are interpretedvédeace for a particular theoretical
approach (for a review see Mayr and Buchner, 2007).

4.2.1 N200 Component

In general, the N200 component in the ERP, a negative deffeofithe EEG around 200 ms, has
been interpreted to reflect early stimulus evaluation apd@ally active or passive discrimination
processes subsequent to the perceptual identificationeadtimulus features. Several negative
priming studies revealed modulations or additional negatiomponents in the N200 range in
frontocentral or occipital areas in DT trials compared tamatml condition. For example, Dau-
rignac et al. (2006) analyzed negative priming correlates Piaget-like numerical task, in which
strategies rather than stimulus features were repeatecgéeiprime and probe. They observed an
enhanced N200 in DT trials, which they interpreted as evdiddor inhibition mechanisms. Sim-
ilarly, Frings and Groh-Bordir (2007) found more negatijang waveforms in the frontal N200
complex in DT relative to control trials using a classicahRar paradigm. In addition, they re-
ported that this effect was modulated by magnitude of thiviehdal behavioral negative priming
effect in reaction times. Participants who did not show beiral negative priming also did not
have a significant negative priming effect on N200 amplitu@ibe authors concluded that ERP
components in the N200 time range represent cognitive psesghat cause negative priming and
interpreted them as additional effort required in DT prafoeselect a previously inhibited stimulus
against distractors. ERP studies investigating episodimary processes revealed that episodic
recognition of a stimulus is usually associated with ERP ponents emerging not earlier than
300 ms (Groh-Bordin et a'., 2005, 2006). Therefore, the twvitelow of the DT-specific enhanced
N200 component (around 200 ms after stimulus onset) is saitbtit a retrieval explanation. But
the fact that no correlates of retrieval are found at thdy/darencies does not imply that retrieval
is not yet in progress.

4.2.2 P300 Component

The P300 is often interpreted as reflecting the updating sduees needed for stimulus evalu-
ation within the context of a model of the environment (Ddncand Coles, 1988). In a study
investigating location-based and identity-based negatiiming in a direct comparison, Kath-
mann et al. (2006) reported differential ERP effects fortthe tasks. They observed increased
P300 amplitudes in DT relative to control trials in an idgntiask with overlapping black and
grey digits, whereas this effect was absent in a locatioratieg priming task. Kathmann et al.
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(2006) concluded that there was no evidence in their datafabitory mechanisms in identity-
based negative priming. The authors suggested that the@nadd P300 modulation would reflect
the updating of object representations when they are repeand concluded that an increased
processing effort was required in the DT condition.

Unlike Kathmann et al. (2006), Gibbons (2006) argued thatRBOO enhancement seems to
be well in line with the inhibition view of negative primingAccording to the context-updating
hypothesis of Donchin and Cales (1388), the increased PB(itade reflects the completion
of a process by which a task-relevant stimulus is integratéa the current context (stimulus
evaluation). Inhibition theory assumes that the activat&vel of the internal representation of
a DT trial probe target should be below baseline at displasebHoughton and Tipper, 1994).
Relative to control, more activation is therefore needeckéh a criterion threshold required for
stimulus identification, which is reflected in increased ®atnplitude and/or latency. Based on
similar considerations, one can expect reduced P300 ameléand/or latency in the TT condition,
due to above-baseline activation of the representatiohetarget at probe display onset (Stahl
and Gibbons, 2007).

Whereas findings by Ceballos et al. (2003) of larger P300 itudiels and delayed P300 laten-
cies adopting a visual identity neqative priming task aré imdine with the results of Kathmann
et al. '2006), Stahl and Gibbons (2007) found a reductiomeidft posterior P300 amplitude for
both TT and DT conditions compared to control in a recentystndestigating ERP correlates of
identity negative priming in a flanker task. Furthermores Bil-related P300 amplitude reduc-
tion was negatively correlated with behavioral negativienprg; those participants who showed
strong behavioral negative priming showed less DT-relR@@D reduction. Thus, it appears likely
that DT shifts produce at least one facilitatory effect,nigefeflected in P300 reduction. This
facilitatory effect may reduce the behavioral negativenimg effect in weak-negative priming
participants. Stahl and Gibbors (2007) further argued tth@tP300 reduction reflects an initial
evaluation of both TT and DT probe displays as similar to thim@ and postulated a resulting
tendency to repeat the prime response. This tendency isatdnrthe TT condition but wrong in
the DT condition, causing facilitation and response caonftespectively, like it was postulated by
response retrieval theory. The response conflict accoutiteif flanker negative priming effect
also receives support from the analysis of the lateralizadiness potential (LRP), differing EEG
signals on the two primary motor areas. Onset of the resgonked LRP occurred significantly
earlier for DT than control, indicating increased duratafrmotor processing, which fulfills the
predictions that can be derived from retrieval theor eahBand Gibbons (2007) suggested that
DT-related P300 reduction is better in line with episoditiegal than with inhibition view. Be-
cause of the initial equivalence of TT and DT processing dmadrésulting tendency to repeat
the prime response, persisting activation rather thangtierg inhibition seems to be present in
DT trials. Therefore, to explain the emergence of behalioegative priming effects, a process
operating at later stages counteracting the presumeddsmiy DT effect during stimulus evalu-
ation has to be assumed. However, it should also be takemaactmunt that there is an alternative
interpretation of the P300 reduction. Instead of a true rtadiun of that component, the P300
reduction for DT and TT conditions could reflect superimmbpeocessing negativity in the P300
range (Kok, 20C1). Yet, this alternative account of DT redaP300 reduction would also not be
in line with distractor inhibition theory because it leavig®en the question of why DT and TT
conditions behave in a similar fashicn (Stahl and Gibbo68;2

The divergent empirical findings of Kathmann et al. (2006) 8tahl and Gibbons (2007) con-
cerning the P300 component may be accounted for by threeodatigical differences between
the two studies. First, Stahl and Gibbons (2007) employedtshprime-probe than probe-prime
intervals (Neill and Valdes, 1992), whereas Kathmann 2(28106) realized identical intervals.
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The former study may therefore have provided conditionsriag episodic retrieval, due to the
better temporal discriminability of the prime episode frprior episodes (se:e Allport et el., 1985).
Second. Stahl and Gibbons (2207) used a significant propoofi TT trials, which potentially in-
crease the probability of episodic retrieval (on TT tridhe retrieval of prime information would
indeed be useful), whil2 Kathmann et al. (2006) presentdg Bt and control trials in their
study. Third, compared to the side-by-side arrangemenargiet and distractor stimuli in the
flanker experiment by Stahl and Gibbons (2007), Kathmanih ¢2@06) used overlapping digits
as target and distractor stimuli, so that successful seteof the target might require particularly
strong distractor inhibition. The discussion of the diveggresults concerning the P300 compo-
nent seems to agree with the assumptions of the dual meahduyisothesis proposed by May
et al. /1995). These authors proposed that inhibition ataseiemory retrieval may contribute
to the emergence of negative priming, but that the expetiah@ontext specifies which of the
two mechanisms is expected to operate. It is conceivabteStiadl and Gibbons (2007) provided
conditions that encouraged episodic retrieval to becorfextdfe, while the experimental setup
by Kathmann et al. (2006) favored the emergence of pergigtinibition. This may have been
responsible for the different ERP correlates of negativmipg in the two studies.

4.2.3 Positive Slow Wave Component

Two studies of negative priming in the auditory domain bv KMetval. '2003) and Mayr and Buch-
ner (2003) reported modulations of ERP amplitude in the tiimelow of the late positive complex
(LPC). They investigated reaction time and ERP effects dftaty negative priming in a catego-
rization task, where the participants had to categorizadepresented to a cued ear as musical
instruments or animal voices. In the study by Mavr et al. CQ0ERP analysis revealed an attenu-
ation of a late parietal positivity ranging from about 30@B@0 ms in the DT condition compared
to both TD and control. This critical finding was replicatgoNdayr and Buchner (2006), showing
a parietally located negativity in the DT condition comhte the control conditions between 550
and 730 ms post stimulus onset. The authors interpreted tiesslts as support for an episodic
retrieval account, because the late ERP component is krmba $ensitive to stimulus recognition
and familiarity. Mayr et al. (2003) argued that the only ERfe@ that was uniquely related to
the DT condition was a late posterior complex which sharésripg time course, and topography
of the so-called old/new ERP effect obtained in studiesdtigating recognition memory (Rugg
and Doyle, 19€4). This old/new effect is characterized byemmsitive parietal ERP amplitude
at about 300 ms following the onset of an old compared to a tiemukis. Several studies found
a relationship between the enhancement of the LPC and azaeof the familiarity of succes-
sive events (Ruga and Allan, 2000; Ruga and Caovle, 1994)atérdamiliarity, in turn, has been
associated with more fluent processing of an event (Johrettah, 1985). If the DT condition
evoked a smaller LPC, the processing of a previously ignetigdulus is equivalent to the less
fluent processing of novel stimuli, hence resulting in nieggtriming in reaction times.

This line of argumentation should also hold when comparibgaiid control condition, because
of the greater familiarity between prime and probe evenirtrials, which was not observed in
the data. Mayr and Buchner (2006) pointed out that the stismfdmiliarity in their experiment
was generally high because of the small set of only six difieauditory stimuli that were pre-
sented throughout the study. Therefore, partial stimubpetition from prime to probe as in the
TD or DT condition was per se not expected to be sufficient toeiase the baseline familiarity
of the stimulus, and to induce an old/new ERP effect. Thisetqiion was fulfilled in the TD
condition, which did not differ from the standard controlthviespect to the LPC. The apparent
contradiction could be resolved by assuming that the old/effect is restricted to the attended
parts of the probe display, i.e. the probe target.
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4.3 Hypotheses

As a further result, Mayr and Buchner (2006) reported that tARC negative priming correlate
was more pronounced for slow trials than for fast trials. T@eeendency of the effect size on
the reaction time and ERP effects of negative priming on #aetion time level is consistent
with the episodic-retrieval account of negative primingwever, lower-than-baseline familiarity
in the negative priming condition could also be induced byeotmechanisms. For example, a
comparable effect might result from a persisting inhilvitiaf the prime distractor. Nevertheless,
it seems that the concept of a frontal inhibition procesotscompatible with the results of Mayr
et al. /2003) and Mayr and Buchner (2006).

4.2.4 Summary of ERP Correlates

Further ERP studies on visual identity negative primingehasen published, but either showed no
ERP effects of negative priming (Gibbons, 2006; Hinojosal ¢2007), or the interpretation of the
ERP correlates of negative priming was difficult because egative priming effects were found
at the behavioral level (Gibboris, 20006). Two other studgdsgulexical decision tasks found small
N400 amplitude reductions in the DT condition relative totrol (Heil and Rolke. 2004; Wagner
et al., 2006). It has however been argued that this effectavwcasrelate of a detected prime-probe
repetition, rather than a specific correlate of negativenjorg (Heil and Rolke, 2004).

On the basis of the relatively small number of existing stadand the heterogeneous results
it is not possible to get a clear picture of the ERP correlafedgsual identity negative priming
up to now. Overall, the majority of studies seem to supporegisodic-retrieval explanation of
negative priming. Yet the inconsistency of previous resatid especially the lack of replication
of the ERP correlates of negative priming have hitherto gmésd significant contributions of ERP
research to the theoretical debate on negative primingy @l findings of left posterior P300
reduction for both DT and TT conditions compared to contrad ¢he significantly earlier onset
of the response locked LRP for DT than control trials (Stafd &ibbons, 2007) were replicated
by Gibbons (2009) using the same flanker task. Showing teaP800 effect generalizes over
different identification tasks would substantially addhe discussion. It should also be empha-
sized that the findings only indirectly support retrievablaxations; at least, a genuine functional
late-range ERP correlate of negative priming which coupatesent the conflict between retrieved
prime information and information extracted from the prabstill missing.

4.3 Hypotheses

The present study of identity based negative priming aimguitiing episodic retrieval theory to
a critical test. We derive two testable predictions fromsegic retrieval theory. First, retrieval
of prime information should only occur if the stimuli fromehprobe display in a DT trial is

perceived as similar to the ones of the prime display. Secardte processing conflict should
emerge, because the prime episode retrieved due to a siyndae is misleading for the required
probe response in DT trials. For both processes, an earljasity signal and a late correlate
displaying a conflict, ERP correlates are to be found. The E®&Relate of perceived prime-
probe similarity and/or the retrieval process itself sdobe largely the same for DT and TT
trials (for both conditions, the probe target is a repeatéhe stimulus). We therefore expect
a conceptual replication of the consistently observed E&Relate of visual negative priming,

that is, P300 amplitude reduction in both TT and DT trialstige to CO (Gibbons. 2009; Stahl
and Gibbons, 2007). By contrast, the second late-range BR&ate should distinguish negative
priming from both, TT and CO conditions, because only in Di&lsr conflict should emerge.

Anterior predominance can be expected for this late-rang@ Eorrelate of negative priming,
given the crucial role of frontal cortex in the processinyafious types of conflict (Ridderinkhof

et al., 2004).
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4.4 Experimental Setup

The relatively small behavioral negative priming effed®-(5 ms) found in previous ERP studies
of visual negative priminc (Frings and Groh-Boiclin, 200Thi&n;, 2009; Kathmann et el.. 2006;
Stahl and Gibbons, 2007) may be one reason why no late rangéict related ERP effect of
negative priming has been established until now. Therefotlie present study a classical picture
naming task introduced Lty Tipper (1985), and already intced in sectiofi 212, is employed.
No comparable identity-priming paradigm has been used iR ERdies of negative priming so
far. Obviously, the larger effects increase the chance tbdifunctional late range ERP correlate
of negative priming. More complex stimuli producing gemigriarger reaction times than in the
simple flanker task may increase the chance to find a late corglated ERP correlate of negative
priming.

Sixteen participants, five of which were male, eleven femadean age 23.3 years, SD = 5.5
years, were tested individually in sessions that lastedongdr than 70 minutes. Prior to the
main experiment, subjects were tested for their color gigoation abilities. Participants were
instructed to name the green target object as quickly anecty as possible while ignoring the
superimposed red distractor object. A 30-trials practess®n preceded the main session.

In a single trial, subjects saw the following series of esefa) a fixation cross, centered on the
screen for 500 ms (b) a display containing two superimpodgecbor a single green target ob-
ject until the subject responded, but no longer than 2 secr)c blank screen for a randomized
duration between 0 and 1000 ms. The length of the resporsttalus interval (RSI) was thus
randomized between 500 and 1500 ms (blank screen plus fixetiss). This approach yielded
good results in terms of strong negative priming effectsravipus experiments. Behavioral er-
rors were noted when subjects accidentally named the distraused a wrong name identifier,
stuttered, or failed to answer.

EEG was continuously recorded from 63 head electrodes (geeefd.%) arranged in an ex-
tended 10-20 system, using a 64-channel BrainAmp MR ampéfiel an electrode cap (Brain
Products Inc., Germany) with sintered Ag/AgCI electrod&grtical electro-oculogram (EOG)
was monitored from an electrode positioned 1 cm below tha Bge. FCz served as active refer-
ence electrode. All impedances were kept belovi) k

From continuous EEG, ERPs were derived separately for pgroonditions (CO, DT, and TT)
and participants, according to the following steps. FIEE€EG segmentation was performed, re-
sulting in [-100,1500 ms epochs relative to trial onset. Epochs were then basetimected
with respect to thé—100,0] ms interval, and an initial artifact rejection was perfode identify
epochs with technical artifacts, i.e. amplitudes exceagdith mV. Afterwards, we performed an
EOG correction according ‘o Gratton et al. (1983). A finalrengensitive artifact rejection elim-
inated all epochs containing amplitude values exceedit@QuV. This resulted in a reduction
of trials of less than 10% for each participant and primingditton. Epochs were then aver-
aged separately for priming conditions and participamsa final step, these individual averaged
waveforms were re-referenced against algebraically timkastoids (TP9, TP10).

4.5 Data Analysis

An analysis of variance (ANOVA) with a repeated-measuresofapriming condition (CO, DT,
and TT) was computed for reaction times, employing coroectif p-values according to Geisser
and Greenhouse (1958). One-tailed Bonferroni-correctedts were applied to test differences to
control for conditions DT and TT (expecting negative andifpespriming effects, respectively).
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4.6 Behavioral Results

We determined the grand-averaged ERP waveforms computezhéb of the three priming
conditions (see figuile4.4). Identified potentials includedterior P1 (mean peak latency 102 ms)
and N1 (mean peak latency 174 ms). A subsequent P2 potesdilbd at around 230 ms, followed
by N2 (270 ms). At posterior electrodes, P300 was observadoand 360 ms. In addition, over
frontal areas a late positive complex (LPC) occurred atraalol00 ms after probe display onset.
Second, in an attempt to systematically investigate ERRipg effects, amplitudes and latencies
of these ERP peaks were determined separately for primimgjtians and individuals. Separately
for electrodes, the P1 peak was found as the most positivéitadgvalue between 80 and 120
ms. The N1 peak was found as the most negative amplitude batween 140 and 200 ms, and
the P2 peak as the most positive amplitude value betweenrg2@%0 ms. N2 was found as the
most negative amplitude value between 250 and 300 ms. The R&fk was determined at the
most positive amplitude value between 300 and 500 ms, anétahtal LPC was found as the
most positive peak between 400 and 900 ms.

Amplitudes and latencies of P1, N1, P2, N2, P300, and LPOntiate were subjected to sepa-
rate analyses of variance (ANOVAS), treating priming ctiodi (CO, DT, and TT) and Electrode
as repeated-measures factors, with levels of the latttrfdepending on the potential of interest:
For P1, N1, and P300, electrodes from the most posterioe tlorgs (see figure4.4) were included
in the analysis, whereas for P2 and N2, only electrodes flmmmiost posterior two rows were
considered. In the analysis of LPC, the most anterior fowsraere included. Note that P300
amplitude was measured as mean voltage between 300 and 5tiansount for the broader tem-
poral distribution of P300. Since analysis revealed a gtfaniming effect on LPC peak latency,
LPC amplitude was not determined from a fixed time windowhRgtto assess priming effects on
LPC amplitude and latency independently of each other, Lia@litude was computed separately
for participants, priming conditions and electrodes asrmesdtage in 200-ms time windows ad-
justed for LPC peak latency. Intervals ranged from 500 to M@0n the TT condition, and from
550 to 750 ms in the DT and control conditions. Geisser and@reuse (1958) correction was
applied when necessary and significant effects were fuetki|gored using post-hoc Scheffe’s test.

4.6 Behavioral Results

Mean reaction times in each priming condition, standardadiems, and effects for DT and TT
trials compared with CO trials are shown in figlirel 4.3 t&bld ik.appendiX’AB. Trials in which
an error was committed (1.2 %) and directly subsequenstaed excluded from further analy-
sis. Trials with response latencies below 250 ms or more tilvarstandard deviations above the
individual mean for each participant and priming conditaoe excluded as outliers (4.7 %).

One-way ANOVA is used to analyze priming effects. The effi#fgbriming condition (CO, DT
and TT) is significanf (2,30) = 85.68, p < 0.001;c = 0.85. Planned comparisons show that the
mean reaction time for DT trials is significantly increasgd2lz.5 ms compared to CO trials (CO
vs. DT:t(15) = —5.62, p < 0.001). As anticipated, reaction time for trials in the TT citioth are
significantly decreased by 132.9 (CO vs. T(5) = 8.57, p < 0.001).

4.7 ERP Results

Figurel4.4 displays the grand-grand average ERP wavefasmpueted across priming conditions.
Components P1 (mean peak latency 102 ms), N1 (174 ms), P2{88IN2 (270 ms), and P300
(360 ms) can be identified. In addition, a frontal/frontovtal LPC component can be seen at
around 700 ms post-stimulus. The data suggests ERP prinfiegtseon N2, P300, and LPC.
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Figure 4.3: Summary of the reaction times. All three conditions diffgnificantly (CO vs. DT:
p < 0.001, COvs. TTp < 0.001).

Posterior N2 is increased specifically in the DT conditionhid/ P300 amplitude is reduced for
both conditions TT and DT relative to CO, particularly oveftlposterior areas, amplitude of
the anterior LPC increases in the order DT, CO, and TT. MaedvPC peaked earlier for TT
compared to both DT and CO, which is not surprising due to thelmshorter reaction time in TT
trials. In the following repeated-measures ANOVASs areiedrout for peak amplitude and latency
of components P1, N1, P2, N2, P300, and LPC, employing fagioming condition (CO, DT,
and TT) and Electrode, with levels of the latter factor defieg on analysis (see sectibnl4.4).

P1 In the analysis of P1 latency, only the main effect of eletrds significantf (16,240) =
5.0,p < 0.01;¢ = 0.25. This effect is not further explored because it was iuaie to prim-
ing. Neither the main effect of priming conditiof,(2,30) = 0.7,p = 0.47;¢ = 0.80, nor the
interaction by Electrodef-(32,480) = 0.8, p = 0.51;e = 0.13, proves to be reliable. Also, the
analysis of P1 amplitude does not yield any significant prgnéffects; main effect of prim-
ing condition, F(2,30) = 1.7, p = 0.20;e = 0.88; interaction priming condition< electrode,
F(32,480) = 0.4,p=0.84;e = 0.14.

N1 There is a significant priming effect on N1 peak lateri€f2,30) = 3.7, p < 0.05;€ = 0.97.
According to Scheffe’s test, in the DT condition the N1 peskeliably delayed compared to
TT (176 and 172 msp < 0.05). N1 latency in the CO condition (174 ms) is not signifitant
different from DT and TT conditionsp(> 0.50). Neither the main effect of priming condition on
N1 amplitudeF(2,30) = 1.5, p = 0.23;e = 0.93, nor the interaction by electrode(32,480) =
0.8, p=0.56;e = 0.19, are significant.

P2 Also for P2 latency, a significant effect of priming conditioan be establishe#,(2,30) =
3.8, p < 0.05;e = 0.79, which is due to P2 peaking slightly earlier for DT than Q37 and 241
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4.7 ERP Results

FT7 FC5 FC3 FC1 FCz FGC2 FC4 FCé FT8

Figure 4.4: Grand-grand averaged ERP waveforms for each priming dondi€O = continuous
line, DT = dashed line, TT = dotted line). Negativity is pkdtupwards. Note the
reduced left-posterior P300 amplitude for the DT and the @fiditions as compared
to CO trials (e.g. P7). Amplitude and latency of a fronta¢lpbsitive complex (LPC)
between 500 and 700 ms post-stimulus were found to be sensitithe priming
manipulation. DT trials showed significantly reduced LP(éitade compared to CO
trials, while TT trials produced significantly increasedmitnide (see sectidn4.8). In
addition, the LPC peak occurred earlier for TT trials (e @z}
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ms, p < 0.05 according to Scheffe’s test). P2 latency in the TT cooditf239 ms) does not
differ significantly from the other two conditiong (> 0.50). The interaction priming condition
x electrode is not significant (14,210) = 1.1, p = 0.36;€ = 0.31. Neither the main effect of
priming condition on P2 amplitude; (2,30) = 0.4,p = 0.61;e = 0.75, nor the interaction by
electrodef (14,210) = 1.4, p = 0.24;e = 0.36, are significant.

N2 No reliable priming effects are observed for N2 latency; nmeffect of priming condition,
F(2,30) = 0.7, p=0.5C = 0.85; interaction by electrode, F(14, 210) = 0.5, p = 06670.33. By
contrast, a significant main effect of priming condition &ablished for N2 amplitude, F(2, 30)
= 3.7, p <0.05g = 0.91. N2 is significantly larger in the DT condition than hetCO condition
(-0.8 uV and 0.0uV; p < 0.05 according to Scheffe’s test). Both, the diffeenbetween DT and
TT and between TT and CO are not significant (p > 0.30). Thedot®n by electrode is not
significant, F(14, 210) = 1.8, p =0.14= 0.31.

P300 The analysis of P300 latency vyields a significant main effefcpriming condition,
F(2,30) = 4.3,p < 0.05;e = 0.74. Scheffe’s test revealed that the P300 peak occurs inThe T
condition reliably earlier than in the DT condition (351 aB8ll ms,p < 0.05). The difference
of reaction times between DT and CO is not significgnt(0.83), nor is the difference between
TT and CO ¢ = 0.10). The interaction by electrode is not significaR{,32,480) = 1.6,p =
0.16;e¢ = 0.20. Also for P300 amplitude, the main effect of priming cdiwdh is significant,
F(2,30) = 4.3,p < 0.05;¢ = 0.78. As indicated by Scheffe’s test, P300 amplitude is réliab
larger in the CO condition (3.4V) than in both the TT condition (2.AV; p < 0.05) and the DT
condition (3.0uV; p < 0.05). TT and DT condition do not differ from each oth@r=£ 0.95).

The main effect is further qualified by a significant interactby electrode,F (32 480) =
4.5 p < 0.001;¢ = 0.19. Since an a-priori hypothesis has been formulated basedeoresults
by Stahl and Gibbons (2007) and Gibkons (2009), regardiitgéeietal predominance of prim-
ing effects on P300 amplitude (see secfion 4.2), plannegadsons between priming conditions
are performed for clusters of left parietal (P1, P3, P5, Mt) laomologous right parietal elec-
trodes (P2, P4, P6, P8). Over left side parietal areas, P@Qlitade in the CO condition (4.3
KV) is significantly larger than in both the DT condition (318, t[15] = 4.1, p = 0.001), and the
TT condition (3.5uV, t{[15] = 2.7, p < 0.05). By contrast, right parietal P300 amplitude does not
differ significantly for DT and CO (4.6 and 48/, t[15] = 1.3, p=0.22), and TT and CO (4.4
and 4.8uV, f[15] = 1.7, p= 0.11).

L PC For analysis of the frontal late positive complex at arou@@ ihs post-stimulus, the four
most anterior rows of electrodes are considered. The méatadf priming condition on LPC
peak latency is significank (2,30) = 10.1, p < 0.001;e = 0.99. According to Scheffe’s test, LPC
peaks significantly earlier in the TT condition (711 ms) thatoth the CO condition (789 ms;
p < 0.01) and the DT condition (769 mg; < 0.05). The difference between DT and CO is not
significant ¢ > 0.5). There was no reliable interaction between priming cimdiand electrode,
F(50,750) = 1.3,p = 0.20;¢ = 0.17. Analysis of LPC amplitude determined as mean voltage
in a 200-ms window centered around the condition specific pBék (see sectidn 4.5) yields a
significant main effect of priming conditior, (2,30) = 13.7, p < 0.001;¢ = 0.71. Scheffe’s test
reveals significantly larger LPC amplitude in the TT coratit{3.6uV) compared to both DT (2.1
LV; p < 0.001) and CO conditions (2/8V; p < 0.05). Also the difference between DT and CO
is significant atp = 0.05. The interaction by electrode is not significat50, 750) = 0.6, p =
0.66;e = 0.09.

Given substantial blink activity at around (or, immedigtafter) the overt response (see fig-
ure[4:4, vEOG), it is necessary to ensure that the frontal efé€Zts are not merely due to dif-
ferences in vertical EOG activity between priming condgiioMean EOG activity in the 550-750
ms interval (which is exactly the time window used for LPC ditade analysis) is compared for
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4.8 Discussion

CO and DT conditions. No significant difference was fountl5}(= 1.5,p = 0.16. To compare
CO and TT conditions, the time window had to be adjusted ferTh condition (500-700 ms)
to compensate for LPC latency differences, thus exactlchiag the time window chosen for
the TT condition in the analysis of LPC amplitude. The t teshlso not significant, t(15) = 0.4,
p=0.68.

4.8 Discussion

The present experiment was designed to localize the negatiming effect in time and space by
means of electrophysiological correlates. Concerningriitecal explanations of negative priming
our main goal is to find evidence for two ERP correlates ptedifrom episodic retrieval. First, the
finding of left-posterior P300 amplitude reduction for DTdaRT conditions compared to control
(Gibbons, 20C9; Stahl and Gibbons, 2007) which may reflexptiocessing of prime-probe sim-
ilarity should be replicated in a completely different tagksecond late conflict-related correlate
of negative priming which distinguishes the DT conditioanr both, TT and CO conditions was
expected, and may reflect the negative priming-specificgaging of conflict between retrieved
prime information and information extracted from the probaly one such direct ERP correlate
of visual identity-based negative priming has been regdpfore, in terms of negative priming
specific amplitude enhancement of a left posterior, N4k®-tomponent (Gibbons, 2009).

Relative to other ERP studies using digit identification titaann et 1., 2006) or flanker tasks
(Gibbons, 20C¢; Stahl and Gibbons, 2007), a strong advamtithe present picture-naming task is
that it produces strong behavioral priming effects (seedtifal., 2008). In the current study, mean
reaction time was delayed by 28 ms in DT trials and acceléfayel33 ms in TT trials, compared
to control. Because both TT and DT effects were sufficiersttgé, substantial differences in the
corresponding ERPs can be expected.

The observed ERP correlates of negative priming mainly eoredd two components, P300
and frontal LPC. Two other findings were not followed up fertha small increase in DT of
the N1 latency by 4 ms compared to TT, which neither can adcfamthe 28-ms behavioral
negative priming effect nor for the 161-ms reaction timéedénce between DT and TT conditions;
and a small N2 amplitude increase for the DT condition retatd control without significant
difference of DT and TT. Thus, in contrast to the studies buridmac et al. (2006) and Frings and
Groh-Bordin (2007), no significant negative priming specdffects on early ERP components
were observed which were assumed to support distractdoifidm. In the following, possible
explanations for the difference in P300 and LPC amplitudgsedding on priming conditions and
their theoretical consequences are discussed in moré. detai

The present study provides a successful replication ofaedileft-posterior P300 in both DT
and TT trials by Gibbons and Stahl (2007) and Giboons (2088)ce their Eriksen flanker task
is rather different from the present task employing overiag objects, the convergent results
regarding priming effects on P300, even with respect to dffteplosterior scalp topography, are
all the more remarkable. Note that the present left post&890 effect was observed in a (300-
500 ms) time window, whereas Gibbons (2009) and Gibbons #atil (2007) analyzed an earlier
time window (300-400 ms). Given the mean reaction times efgtesent task (650-800 ms) and
the two earlier studies (500-650 ms), it seems likely thatfionally the same processes were
involved in P300 reduction in both tasks. Therefore, follmpyGibbons (2009) we interpret TT
and DT related reduction in P300 amplitude as reflecting gsses related to perceived prime
probe similarity corresponding to a retrieval cue accagdmepisodic retrieva (Neill and Valdes,
1992; Rothermund et al., 2005).
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4 EEG Correlates of Negative Priming

Repetition usually triggers larger ERP positivity (see 8095, for an early review). How-
ever, the repetition effect typically has its maximum atusat 600 ms, as opposed to the present
joint positive priming/negative priming effect on P300@and 400 ms. There are at least two other
striking differences between the present priming task &edrépetition paradigm: First, in the
present experiment all stimuli are repeated over and oveereas in repetition studies first and
second presentations of a stimulus are compared, with s @nging from many seconds to
several minutes. Second, unlike the present task repegtiperiments do not involve selection;
typically, on each trial one single stimulus is presentetie Present P300 component therefore
seems to be rather different from the later positive ERP @omapts observed in ERP repetition
studies.

We did not find differences in P300 peak latency between DT@@Adconditions, suggesting
similar speed of stimulus evaluation processes in theseptimaing conditions. When the rel-
atively strong behavioral negative priming effect is cdesed, in line with Stahl and Gibbons
(2007) it can be argued that at least one additional proceteipost-P300 time range has to be
assumed to explain behavioral negative priming.

The present study provides a basis for a consistent explanaftthe reaction time differences
between priming conditions. We found a reduced amplitud# @ualitatively) delayed peak
latency of the frontal late positive complex (LPC) for the Bdndition, as well as increased LPC
amplitude and reduced LPC latency for the TT condition, lmaimpared to control. The effects
were widely distributed over the anterior scalp, includihg first four rows of electrodes (fronto-
polar to fronto-central). Note that LPC priming effects ei@nalyzed between 500 and 700 ms,
but frontal ERP differences-to-control already startedratind 380 ms for TT and 520 ms for DT
(see figur€4l4). Given that mean reaction times ranged f&2m& (TT condition) to 793 ms (DT
condition), the LPC effects may well reflect processes thetewesponsible for priming effects
on reaction time, and not merely consequences of the meatioedime differences between
conditions.

Frontal brain activity is known to be particularly presentsituations where an individual's
behavior is not simply controlled by stimulus-responsatiehships, but requires careful selection
from different response options (see Ridderinkhof et @04 for a review). One possibility is
to explain the present LPC differences in terms of the necgsamount of cognitive control.
Processes related to cognitive control are often obsersddta range frontal ERP negativity in
situations of conflict processing (e.q. Krigolson and Hatr?007, Lorist et €1/, 2000; West et al.,
2004; Yeung et al., 2004). Control processes should begatstiin the high conflict DT condition,
thereby reducing and/or delaying the ERP positivity thaitmadly indicates the completion of trial
processing. In contrast, in the low conflict TT condition miasg cognitive control is required,
causing earlier and stronger ERP positivity.

Response retrieval theory (see secfion_2.4.3) can wellaaxplegative priming in terms of
late processing conflicts. In case of TT trials, both primspomse retrieval and probe processing
converge at the same response, which causes behaviot@algpsiming and, moreover, should be
accompanied by a very low conflict. No cognitive control igured. This can explain particularly
strong and early frontal ERP positivity in the TT conditi@s, positive ERP deflections typically
occur when mental resources are updated when they are rer lvegded for ongoing information
processing.

In contrast, in the DT condition retrieval of the prime resge and algorithmic probe processing
activate different responses. Cognitive control procebseome necessary, resulting in late-range
frontal brain activation. This type of brain activity typity manifests in ERP negativity. Su-
perimposed on positive components indicating the comgaiadf stimulus analysis, the negativity
is observed as an amplitude reduction or delayed lateney Ksé:, 2001, for the general argu-

54
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mentation). In sum, the observed differences in frontal lalitude between DT, CO, and TT
conditions are well in line with response retrieval theory.

A second explanation for the present LPC priming effects uliegctly refer to memory pro-
cesses Mauyr et al. (2C03) and Mayr and Buchner (2006) obdarggative priming related re-
duction of posterior LPC amplitude in the auditory domaimeTauthors interpreted their finding
as support for episodic retrieval mechanisms and arguedlasvé: familiarity of a stimulus
is reflected in larger posterior LPC, compared to novel diimifi however negative priming is
accompanied by reduced LPC amplitude, this may indicateftinaner distractor stimuli, when
repeating as targets in the DT condition, are in some sessefdiliar than the novel targets
in the CO condition. This below baseline familiarity of néga priming targets may then result
in less efficient processing of these stimuli, causing ttgatiee priming effect. In principle, a
similar mechanism may also be responsible for our frontal k&duction. The different topogra-
phies of the two effects might be explained in terms of magalifferences (visual vs. auditory)
and/or differences in task demands (i.e. naming a visuaobhjs. classifying a sound by means
of a button press). Note that there is evidence in the lilegathat visual memory tasks indeed
may show frontal LPC effects (e.q. Havama et al., 2008; \Widand Rucg. 1996). The effects
on frontal LPC presented here are therefore well in line Withassumption that familiarity of the
probe target in the TT condition is particularly high andtttiee familiarity of a recently ignored
target seems to be below baseline.

To conclude, there seems to be little evidence in the pretsatfor an interpretation in favor
of distractor inhibition theory. According to the literady persisting inhibition can be expected to
operate in the N200 time rance (Daurignac et al., 2006; Eramal Groh-Bordr, 2007) where we
find no significant negative priming correlates. P300 amgétis often understood as an index of
mental effort (e.g. Ullsperger et al., 1988; Kok, 2001). $hpersisting inhibition as a cause for
negative priming would produce larger P300 amplitude ford@mpared to TT trials. Reduced
P300 amplitude in TT trials would reflect facilitation of pessing due to persisting activation
of internal representations of the target stimulus. IneedaP300 amplitude in DT trials would
reflect greater mental effort, as the activation of DT tagdestill below baseline, due to persisting
inhibition. As noted earlier, this pattern of P300 ampléads not present in the current data.

Episodic retrieval therefore seems most appropriate &spnét our ERP correlates of negative
priming in a picture-naming task, as it can explain the redue300 amplitudes in both conditions
DT and TT, and the modulation of LPC amplitude. Prime-proib&larity which is reflected in
smaller P300 amplitude, may serve as cue for the retrievaliofe information (Neill and Valdas,
1992). As explained above, the retrieved prime informatieen has opponent effects on further
processing in TT and DT trials. This is consistent with ouservation that up to the P300 time
range ERPs do not reveal any major differences in the primgee§ DT and TT trials. Hence, the
present negative priming effect seems to originate at g latst-P300 stage of processing.

A cautionary note concerns the fact that the three primingditimns relevant to the present
study (TT, DT, and CO) were randomly presented among otia@rypes not containing distrac-
tor objects. These trials were included to answer a sepegagarch question not relevant to the
present study. Their presence, however, may have affecssipe strategies used by the partici-
pants and, thereby, processes related to negative prirRimgexample, the frequent inclusion of
single-target trials may have increased the saliency dfteaditor. We assume the target-only trials
to have strengthened the negative priming effect, whicloisistent with the aim of the present
study, i.e. to increase the chance to find ERP correlatesgaftive priming by employing a task
known to produce strong negative priming.
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4.9 Conclusion

One of the two major results of our study, the smaller lefttpdor P300 amplitude for DT and
TT trials compared to the CO condition, represents a coneépeplication of the results of Stahl
and Gibbons (2007) ard Gibbons (2009) in a classical pigtareing priming task. Thus, the
processing of prime-probe similarity is important for \asunegative priming in general and is
not restricted to a certain task. In addition, the reduce@ khplitude in DT trials shows more
effortful processes related to cognitive control and memeirieval. The present negative priming
effect on frontal LPC amplitude has been observed for thetfing. It points to a specific feature
of the picture naming task, which is more difficult than elge flanker task, and produces long
reaction times and strong behavioral negative primingcedfe Both these aspects may provide
good conditions to identify late range ERP correlates ofatieg priming. Overall, our results
favor a retrieval-based explanation of negative priming.

4,10 Summary

Electroencephalographic recordings are a tool well suitedssess the time course of negative
priming due to the high temporal resolution. The obtainedsEtata is extremely noisy as the
signal common to all similar trials is embedded in the pramirand not stimulus locked ongoing
activity in the brain. Also geometric, biological and tedaal issues deteriorate the recorded
signal. The common way to deal with the bad signal to noise iatthe averaging of the EEG
signal over all trials of the same experimental conditidterahe data has passed some cleaning
routines. The differences of the obtained signals, theafleat averaged event related potentials,
are subject to interpretation according to their latengyplitude and localization on the skull. Due
to the specialty of negative priming, not many EEG corralatethe effect have been identified so
far. Even between those few no clear picture can be drawn.

We presented a study that adapted a traditional picturéngaparadigm to EEG recordings.
We found a less positive P300 component in both DT and TT coaap@ control, which points
to a similar processing of trials which contain repeatethslii at early stages. A distinction
between positive and negative priming, separated by thgalaondition as it is observed in the
reaction times, was present in the late positive complexchvimdicates little cognitive control
for TT trials, intermediate effort for control trials and'@tg cognitive intervention in DT trials.
An interpretation in favor of retrieval theories is obvipas they claim the resolution of a conflict

between current and retrieved information in DT trials. Anblenefit of the retrieved information
in TT trials.
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5 Interlude: Advanced EEG Analysis

During the occupation with EEG experiments, we were urfsadisvith several aspects of tradi-
tional EEG analysis. As a side project we developed enhatazduhiques to extract information
from EEG data. As the resulting algorithms produce much rposeninent components than sim-
ple point-wise averaging, the benefit of our methods to acttestime course of negative priming
is obvious. Nevertheless our methods are not yet suffigiestlablished to make accredited state-
ments about the processing in a negative priming trial. kisrreason we call the current chapter
interludeand refrain from using the methods in the other chapters.

Our main complaint concerning the point-wise averagingRPE is the ignoring of the variabil-
ity of reaction times. Primarily later in a trial the variatis cause different cognitive processes to
enter he average simultaneously. If we assume a commos sétuaderlying cognitive processes
in all trials of one experimental condition, we should beeabl adjust the time flow of the individ-
ual trials before averaging, such that similar processesratched temporally when averaging.
We find that a natural assumption about processing speatsyaiomplex but nevertheless robust
algorithm for the analysis of electrophysiological dataesRts from artificial and real ERP-data
show that our algorithm outperforms existing solutions.

We will point out the characteristics of EEG data in secfiofi &1d derive realistic models
for event-related potentials in sectibnl5.2. The main tagha of our approach, dynamic time
warping, is reviewed in sectidn $.3. The recursive appbeoabf the technique is presented in
sectio 5.4. The obtained algorithm also provides a metrie¥ent-related potentials which can
be used for clustering as described in secfioh 5.5. An iategr of additional time markers as
described in the next two chapters is also possible as shosectiorf 56. Finally we develop the
construction of the time warping function by the means ofireence plots and show the resulting
performance in sectidn8.7. The present chapter appearsebagiccessive contributions to the
conference IDEAL (lhrke et al., 2008, 2009a) and was alsbgfaa book on coordinated activity
in the brain (lhrke et al., 2009b). The presented algoritlamesavailable for download from the
project pagentt p://1ibeegtool s. sf. net.

5.1 EEG Analysis in Cognitive Research

In electroencephalographic (EEG) data, noise levels 2 dB are standard (Flexer, 2000), and
for electromyography (EMG) or functional magnetic resareaimaging (fMRI) the situation is
similar. The arising problem of the recovery of relevaninfiation from such data has been
dealt with extensively (Whalzn, 1€71; Castleman, 19963e&ms reasonable to exploit intrinsic
structures in the data, i.e. to identify patterns in the dagéd reoccur under specific conditions,
e.g. at the onset of a stimulus or in relation with other evémthe course of the experiment.

A straight-forward solution consists of averaging singial tevent-related potentials (ERPS) in
order to obtain an averaged ERP (AERP) that is expected totparable across different ex-
perimental setups (Picton et al., 1995), see chapter 4. ditabitity of the AERP allows in turn
the identification of characteristic features of the timerse of the signal such as the latency
and amplitude of major minima and maxima. We will discuss mlper of algorithms which are
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theoretically justified, and have proven useful in an experital project (Ihrke, 2008). System-
atic changes in the AERP components between different empatal conditions are consistent
with the hypothesis that ERP components reflect stages ofniration processing in the brain.
The idealized noise-free ERP represents the signal oféstiewhereas variability across trials is
considered as noise. We assume the EEG signal to complyveittolowing:

1. It contains relevant aspects of neural activity.
2. Task-specific activations form a significant fractionted EEG signal.
3. The brain solves similar tasks in a similar way.

The signal can thus be defined as a minimal variance curvéwtith data set obtained for many
repetitions of the same task. The axioms imply that vametidue to external conditions should
be excluded, and that the external conditions and even #te st the subject should be kept as
constant as possible for all trials. Yet, data mining teghes reveal that for comparable data only
a fraction of 60% of the pooled epochs contribute to the AERReform while the other 40% just
increase the variancea (Haig e al., 1995).

Thus, it cannot be decided unambiguously whether the \éitjatf the ERPs is caused by the
stochastic nature of the underlying neural dynamics or byattiplication of different strategies to
a task. The comparison of two single trial ERPs and their AERP figuré 512, points already to
a basic problem: Simple averaging will particularly detesite late components of the ERP which
makes their interpretation difficult, see figlirel5.3.

5.2 Models for Event-Related Potentials

In psychological studies, the signal-to-noise ratio (SMREEG data is typically enhanced by
combining data epochs in a pointwise average

(s(t) :%z:\':ls(t) i=1,...,N. (5.1)

Heres (1) is the measured signal in triak= 1,...,N at timet. The signal-plus-noise (SPN) model
(Truccolo et al., 2002) or fixed-latency model (de W=2rd 1)Qthderlying the point-wise average
assumes the following.

1. Signal and noise add linearly.
2. The signal is identical in all trials.
3. Noise is a zero-mean random process drawn independentach trial.

Assuming additive noise of zero mean, igt)) = 0, we can represent the data by
s(t) = so(t) +&i(t), (5.2)

wheresy(t) denotes the signal that is to be recovered fsgth. Under the above conditions the
pointwise average is an unbiased and optimal estimate im#éan-square error sense. It has been
argued on theoretical grounds, that an improvement beyoirdwise averaging is not possible
if no a priori knowledge about the characteristics of siggmadl noise is given (Nagelkerke and
Strackee, 1979).

The validity of the SPN model is challenged by the analysithefresidualg ™" obtained by
subtracting the mean from the raw data
G =s(t) — (s, (5.3)
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which is expected to be just the noigét). The fact that the repetition of a task is typically ac-
companied by coherent ongoing neural activity (Truccolal e2001) can be analyzed as follows.
Given the SPN modef,™"? should not contain any event-related modulation becawsedise is
assumed to be independent and identically distributedreftue, statistical coherence measures
such as the autocorrelations

@90 = [0+ (5.4

and the spectral densities

PSDG™) = 7 {Gx %} (5.5)

computed orZ? should not show any event-related modulation (i.e. a flattspe and cross
correlations that behave likeddfunction are to be expected). Empirical evidence showstitese
assumptions are violated for real deta (Truccolo 2t al.120@002), see an analysis of data from
our experiment described in chapfér 4 shown in figurk 5.1.
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Figure5.1: Coherence measures computed on residi#¥s (a) The variance? over trials shows
event-related modulation for the residuals after sulitrgcthe average. Given the
SPN model, we expect a flat curve as obtained from compuifngn the single-
trial denoised residualéide”. (b) Crosscorrelation computed on the residuals for a
sample trial. Again, unexpected (from SPN) correlationswship for ™% whereas
the function approximates&function for the denoised single trial residuals.

Extending the SPN model, the variable latency model (VLMbOM/, 1967) introduces a trial-
dependent scaling factor and a time lag;

s(t) = aiso(t+ 1) + & (). (5.6)
One possibility to obtain the time lagsis the maximization of the crosscorrelation
Ti = argtma>(<s>i *5)(1) (5.7)

between the data and the pointwise averégg. After the shift according ta;, the data can
be interpreted by the SPN model. However, in an empiricaluetian of analytically derived
predictions of this model, patterns that are not consistéthtthe predictions were found (Truccolo
etal., 2002). Therefore it is reasonable to go back to Cikg¢ét@69), who already showed that the
intertrial variability of the evoked potential can go begaihe simple time shift. A more general
model for order-preserving time warping of the data is gibgn

s (t) = ajso(@ (1) + &), (5.8)
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where@ are monotonous functions that map the time scale of theithgaV trials to that of a
template. The functions; > 0 determine the local scaling of the curve. The advantag&isf t
variable-components-plus-noise model (VCPN) is illusitieby figuré 5.2. The VCPN modél(5.8)

1 1 1
0 500 1000 1500
ms

Figure 5.2: Smearing of components in the simple average (black dagshed)o temporal vari-
ance. Two input signals (gray curves) were simulated a@ogtd the model in equa-
tion[5.8. An averaging procedure incorporating temporabvee (red) .

takes into account temporal variations of the individughsls in addition to differences in scale,
and is thus able to identify systematic distortions dueriglsttrial fluctuations that otherwise are
averaged out.

We use two datasets, one containing artificial data the aherconsisting of real EEG data.
Real data reported in this chapter is taken from the studgrteg in chaptell4. The artificial data
was generated according to the VCPN model introduced intiemqi&.8.
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Figure 5.3: Real data ERPs for 150 trials (color coded) and their aveflagtom). With growing
number of trials (i.e. time spent in the experiment) the shafithe ERP is subject to
changes. E.g. while the P2 is very pronounced for the firstia®t its amplitude is
decreased later. The N2 amplitude decreases over time amdsgig completely in
some trials. A general shift in the pattern with growing nembf trial is observable
(P2/N4 amplitude).
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5.3 Dynamic Time Warping

For any two trialss ands;, we express the problem of optimizing the individual wagpianc-
tion @_j in terms of an energy function

E(@) = [ Is(@-;(0) - (D Pdt (5.9

Minimizing equation[5.Bresults in the functiop_j opt such that the difference between the
warpeds ands; in Euclidean distances is minimized.

5.3 Dynamic Time Warping

(a) (b) (c)
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Figure 5.4: Dynamic time warping. (a) Optimal patfy through the cost-matriDj for two
signals (black curves) from (b) and (c). Note the differas#tlss of the x and y axis.
(b) lllustration of DTW matching corresponding pointsgnands;. (c) An average
produced by ADTW (red).

Dynamic time warping (DTW), see figufe’5.4, will be shown topde a distance measure
that directly implements our assumptions. The method wasudsed in speech analysis (Myers
and Rabiner, 1981), appears to present a more suitableagbpto EEG analysis. DTW aims at
matching two trial time courses onto one another, see flgdie) 5First, a pointwise dissimilarity
measure between two signalss; is defined

d(si(ti),sj(tj)) ==& (t) — § ;) +I5'(t) — §'(t;)], (5.10)
where
§(t) = (S(t) — (s(t))¢) (s(t)2); 2 (5.11)

is the normalized signal argithe first derivative o6. The distance{5.10) gives rise to derivative
DTW (Keogh and Pazzani, 2001) because it is based on amplitnd slope of the signal.
An optimal mapg_.j opt is determined by a patfy that satisfies recursively

if px=(I,m)thenpy.1 € {(l+1,m),(I,m+1),(1+1,m+1)} (5.12)

and minimizes the sum over the corresponding eleménpt®f the dissimilarity matrix (Picton
et al., 1988)

dim = d(s(1), sc(m)). (5.13)
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This path can be found by backtracking through the cumuledstimatrix
Dim = dim +mMin{Dj m—1,D1—1m,Di—1m-1}, (5.14)

i.e. via the minimum of the downward, right, and down-rigkighbors, fromD_ y to D1 1. The
final elementD_  constitutes a measure for the dissimilarity of the two csirbased on their
overall shape, due to the cumulation.

In order to recover the original signal, we use the obtairati fo simultaneously average two
trials in time and amplitude by

( £ ) _ ( 5[t + ()] ) (5.15)
s[s(tG) +sj(o(t))]

and find the required sampling points by linear interpofathd signals are averaged by subsequent
application of [5.1b) to trials randomly drawn frofd, ... ,N}.

It is further possible to introduce constraints on the DTWhod that penalize path deviations
(Picton et al., 1995) from the main diagonal, thereby remtyithe bias on the cost of an increased
variance. Before applying the DTW algorithm, it should bewed that trials are sufficiently
similar to each other, e.g. by applying time warping onlyhivitdistinct clusters, see sectibnl5.5.
In the next section, we propose to apply external time martkext can act as an objective reference
for trial matching and advanced averaging.

u»

5.4 Pyramidal Averaging Dynamic Time Warping

For N trials, a straightforward solution proposed by Picton et(8088) is to simply combine

pairs of single-trial ERPs using ADTW. In a next step, pairthe results from this combination

can be averaged again and the entire process iterated nlytiboe average is left. We proceed
recursively, namely

D¥™{g,...,onHt) =D*P™M{D*®™ {s,...,n}, D™ {snr1, .- Son (). (5.16)

An extension of DTW incorporates information about lateneyiability by hierarchically
choosing pairs of similar trials before averaging. The clated path coefficient obtained from
DTW is used as a measure for the dissimilarity of two time sesy see figure8.6. Select-
ing the minimum element from the resulting difference matkj; = DTW{s,s;} by (i, ) =
arg mir}j,@Ajk. Now the minimal-dissimilarity trials are combined and rownd columnj are
removed fromAj.. This procedure is iterated until the matrix is empty. Thenpiete process
is repeated with about half the number of pairwise averagal$.t The entire tree-like process
is continued until all trials are merged. We refer to this moet as pyramidal ADTW (PADTW)
because of the successive subdivision of the set of trialstdalistic data, the procedure performs
substantially better than the DTW algorithm described @lést section, see figure b.5 and (lhrke,
2007).

5.5 Trial Clustering for Cleaner Averages

Unsupervised classification techniques can help to ideBfRPs that were generated by distinct
processing mechanism in the brain. The temporal varianioediaced in this way, however, is not
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5.6 Enhancing Averaging by Integrating Time Markers
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Figure 5.5: Comparison of the traditional point-wise average and thBPA algorithm for real
data. Notably PADTW does not flatten late components, bilitskibws pronounced
peaks. It also shows fast oscillations which are not predexperimental validation
has to show whether the oscillations are present in the datfethey are produced by
the attempt of PADTW to match peaks in the noise of the signal.

resolved by the VCPN model, equatidn_{5.8). Averaging tepies should therefore be applied
selectively to trials within distinct clusters.

Selective averaging schemes use only specific episodevdoaging (Basar et al., 1€75) in
order to exclude artefacts such as muscular activity. Iemtd reduce visual inspection of the
data it is possible to assist the selection process by cngt@_ange et £l.. 2000). An inherent
problem of any clustering algorithm is the decision aboutmsthle number of clusters. If a
specific experimental design allows a theory-driven edtntd that number it is of course to
be preferred. Otherwise, strategies based on withinerustatter coefficients can be applied
(e.g. Tibshirani et al., 2001).

5.6 Enhancing Averaging by Integrating Time Markers

Some experimental setups suggest an alignment of the d#taregpect to response markers,
i.e. instead of stimulus locked (SERP) now response lockeRRF) ERPs are used. If such in-
formation is available then a more reliable time order isieadd for the effects, in particular
relatively late after the stimulus. Gibbons and Stahl (J0@fopose to stretch or compress the
single-trial signals in order to match the average readiime by moving the sampling points in
time according to a temporal low-order power law.

From this formulation, it follows naturally that not only dwbut arbitrarily many time-markers
can be integrated to guide the formation of the average. dpysoach has been used in (Ihrke,
2007), where the onset of an eye movement served as an addlitiarker.
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Figure 5.6: Cluster analysis of denoised single-trial ERP data. (a) emuplate trials were used
to derive the single-trial instances in (b) according toamun[5.8. (c) Heat map based
on Euclidean distances, (d) same for DTW. While the DTW roetorrectly classifies
all trials to be generated by one of the templates in (a), tidiiean fails to do so in
several instances.

5.7 Recurrence Plots to Obtain the Warping Function

We propose to utilize recurrence plots (Eckmann @t al., 1,98 ool from nonlinear dynamic
system theory, to minimize equatibnl5.9 and synchronizglesitrial ERP data.

5.7.1 Recurrence Plots

Recurrences, i.e. points in state space that are visited than once, are fundamental characteris-
tics of many dynamic systems, ranging from the financial miatikepidemics and brain dynamics
(Marwan et al., 2007). In order to visualize and quantifylstecurrences, Eckmann et al. (1987)
introduced the notion of recurrence plots. Consideringreeggd dynamic system

ax(t) -
TR f(X(t))
its recurrence plot is defined as
R(t1,t2) = ©(e — [[X(ta) — X(t2)|) (5.17)
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5.7 Recurrence Plots to Obtain the Warping Function

where® is the Heaviside step function. That meaRS,is a binary matrix, that is equal to one
whenever the transition in phase-space approaches a psgvigsited point and falls within an
e-ball of the previous vector. Such a plot (e.g. fighire b.10ayides the educated observer with
a powerful facility to assess important properties of thdartying system (e.g. stationarity, cycli-
cism, laminar states; sece Marwan et al., 2007, for a review).

In previous studies, recurrence plots have already bediedgp ERP-data analysis (Marwan
etal., 2007; Jeong et &l., 1998; Marwan and Meinke, 2004)namstly in order to make statements
about the nature of the underlying dynamic system in thanbiaithe current work, we propose to
use a detection of the line-of-synchrony based on crosgnece plots to synchronize individual
trials prior to averaging, thus reducing the bias due tortgniariability of the curve.

5.7.2 Phase-Space Reconstruction

In empirical studies, it is almost always impossible to clise measure the different variables
of a dynamic system. For example, it is impossible to sinmagltausly record the activity of all
nonlinear devices (i.e. the neurons) that produce a redde@&s-potential. The only access to the
dynamics of the system is therefore the time-series of th@.[Hackard et al  (1980) has shown
that reconstruction of the phase space ved(rsis possible using the time delay method, where

m

Xt) =9 s(t—|j1)g (5.18)
(t) J;( )&

&; being the unit-vector in-direction. However, this method is strongly dependenterchoice of
the embedding dimensianand the time-lag (which is often chosen as a multiple of the sampling
time At). Finding an optimal choice for the two parameters is neialiand has been subject
to intense research (Kennel et al., 1992; Fraser and Svyii®86). We use the false nearest-
neighbors method proposed in (Kennel et al.. 1992) to finartimmal embedding dimensiom_
where “false” neighbors (due to a too small embedding dinoesire detected using the fact that
they disappear when going fromto m+ 1. We applied this method to our data and estimate
m_ = 10 from figure[5.7a, which is similar to earlier results for ERata (Jeona et a.. 1998).
To estimate the time lag we use an information theoretic approach (Fraser and $wji983)
where the first local minimum of the mutual information serees the criterion to determine the
time lag, see figurg4.7b.

Finally, the neighborhood criterioa from equatio_5.17 needs to be determined. We apply
a fixed amount of neighbors (FJARN) criterion in order to deiee € on a per-point basis for
each of the points on the trajectory (Marwan et al., 2007). That means, ¢(igtis determined
such that each point has the same amount of neighbors. Thibéadvantage of eliminating the
impact of scale difference in the applied curves such thatormalization of the amplitudes is
necessary.

5.7.3 Line-of-Synchrony Detection in Cross-Recurrence Pl ots

An extension to recurrence plots are the so-called craggnence plots (CRPs) in which two
signals are simultaneously embedded into the same phase-8darwan et al., 2007). Therefore,
equatior 5117 is modified as

CY(ty,t2) = O(e — ||R(t2) — Y(t2)|]), (5.19)
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Figure5.7: (a) Percentage of false nearest neighbors (ANN) as a funofiembedding dimen-
sionm. After m= 10, no false nearest neighbors are detected. (b) The firak loc
minimum of the mutual informatioh estimates the time-lag(first zero-crossing of
the first derivative of).

whereX andy are the phase-space trajectories of the two signals. Itdms $hown, that CRPs of
similar signals with varying time-scale, show a “distortedin diagonal”, the line-of-synchrony
(LOS), that can be extracted and used for resynchroniz¢kitamwan et al., 2002).

This approach has been applied to geological data (Marwati, 2002) and could be shown
to yield results comparable to manual tuning. The algoritie®d in this study applies a growing
window strategy, where a window is set around a detectedrneree point that grows in or
y direction until no more recurrences are found. The methgeiameterized by, anddy, that
indicate the maximum size of the windowxrandy direction, respectively. It has been shown, that
this algorithm works very well in a setting where only minewvéations from the main diagonal are
expected. However, applying the method to EEG-data is awbatemore delicate undertaking,
because (i) the initial SNR is extremely low, (ii) the temadorariability can be quite large (lhrke
et al., 2008) and (iii) the underlying signal can be différein behavioral experiments, huge
variations in reaction times are observed (Schrobsdo#f £2007a) that are not even one order of
magnitude less than the mean reaction time. Given that #otioa times mirror the same state of
the brain in two trials, a significant temporal distortiontloé signal has to have taken place. We
therefore propose a new and more flexible algorithm for d@téng the line-of-synchrony and
evaluate it in comparison to Marwan et al.'s method (Marwaal € 2002).

For illustrative purposes, consider the example alreashtéd in (Marwan et al., 2002), where
the recurrence plot of two sines that differ in their timedsc

f(t) = sin(t) and  g(t) =sin(t+asin(t)) (5.20)

is investigated. Via parameter it is possible to manipulate the amount of distortion of @S

as illustrated in figure5l8. While the algorithm from (Mamet al., 2002) works well to extract
the LOS in case of low distortiora= 0.3, figure[5.8a), parameterization is difficult and produces
errors for medium distortionsa(= 0.9, figure[5.8b) and we failed completely to find working
parameters for strong distortiona £ 1, figure[5.8c). A problem with the parameterization of
the algorithm is its dependence on the characteristicseofghurrence plot. Our alternative, an
unparameterized algorithm presented in the next paragraytcessfully extracts the LOS in all
settings (figur€5l8, red curves).
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Figure 5.8: The recurrence plot of two sine functions @nand sirit + asin(t)) is shown for
different values ofa. The algorithm by Marwan et al. (blue curves) works well for
small distortions (a), is hard to parameterize for mediugtadiions (b) and fails for
strong distortions (c). Our parameterless algorithm (newes) correctly tracks the
LOS in all cases.

5.7.4 An Algorithm for Line-of-Synchrony Detection

In the following, we compare the performance of two triafistration methods based on the CRPs,
the method introduced in (Marwan et al., 2002) and a methastimate the functiop with the
smallest number of non recurrences and the shortest pagthle

We propose to directly optimize the amount of recurrencedeveimultaneously preferring the
shortest possible path. Lgtbe the first derivative of, then we seek to simultaneously minimize
the line integral over the cross-recurrence plot (i.e. thmlper of non recurrences)

/ CR(t, o(t))1/1+ ¢ (t)2dlt (5.21)

and the length of the path

JRVERTTORE (522)

When dealing with binary matric€sY, there are many possible solutions for minimizing equa-
tion[5.21 because in a neighborhood containing zeros, ibigrary which path is taken. We there-
fore use equation’5.P1 to restrict our search space and tlo&rfdr the shortest of these paths.
In practice, we solve these minimizations by a single apfibn of the dynamic time-warping
algorithm.

In our case, application of DTW to the binary matrix-C*Y(ty,t,), wherety,t, € {iAt|i =
1,...,n;iAt € 7 } results in the warping function minimizing the number of frecurrences along
the way, i.e. minimizing equatidn’5]21. As stated abovereti® more than one solution to this
minimization since the cost is not influenced by additioreros along the path. To impose the
path length criterion from equatidn_5122, we modify the reence matrix that enters the DTW
algorithm

A, = (l_éxy(tlatZ)) +& (5.23)

wheree is uniformly distributed, uncorrelated, positive noiseaafamplitude much smaller than 1
(in our simulations, we used] @ (0,0.01)). There are two effects of this added noise component:
First, sincee > 0, we add a penalty to ensure that the length of the path is ake account. Sec-
ond, we remove the arbitrariness that the algorithm eneosinthen choosing among three equal
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Figure 5.9: lllustration for the proposed algorithm. (a) The CRP for sirme-functions sift) and
sin(t +asin(t)) and (b) the modified distance matrix with added noise (exatge)
are shown. (c) The matrix is cumulated (DTW) and used to reictive distortion
function (d).
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Figure5.10: (a) Recurrence plot for two trials from the artificial dataaed the LOS calculated
according to the two methods from above 10,1 = 6,dy = 25,d, = 25). (b) The
raw data (gray) and the averaged curves for each algoritieinTHe errorA(, fp)
(see text) averaged over 20 realizations is plotted as diumof noise-level ih =

10,1 = 10,FAN = 20).

values in the backtracing stage. For illustration, corsadmin the two sines from equatibn4.20
in figure[5.9, where we plot the subsequent steps of the &hgori

5.7.5 Results

In order to compar= Marwan et al. (2002) and our algorithm ple¢ the recurrence matrix, the
extracted line of synchrony, see figlire%.10a, and the agsraguation’5.15, using these distortion
functions, see figudle 5.110b. The function correctly idesdifoy our method improves the shape of
the average (i.e. its shape is closer to the underlying Bigrtdle a non-optimal path adds further
distortions rather than recovering the original signalc&ese we directly construct the distortion
function for the artificial data, we can define a distance mes&(@, fp) that, for each point in
the recoveredp, returns its distance to the closest point in the real distofunctiong. Because
we encounter high noise-levels in realistic settings, itriportant that the algorithms are stable
against noise. We present in figure 5.10c the result of camgduoth algorithm with varying
noise-level. Our method (red) performs significantly beitethis task but both algorithms are
relatively stable with respect to the level of noise in theada

Finally, we show examples for the temporal averaging basethe extracted LOS. In fig-
ure[5.11a, the shape of the original signal can be fully rec even from very noisy data (gray
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Figure5.11: (a) The template from which the artificial data was generé&ewcovered by our
method (red) while the conventional average (blue) failprtoduce some of the
peaks. (b) Real ERP-data from 134 trials at electrode logafiPz. Our resyn-
chronization method shows more pronounced and betteiizedabeaks (e.g. P300).
Embedding parameters weame= 10,1 = 20, FAN = 100, time-scale of single trials
was transformed for plotting according to the describedratigm.

curves are single trials). In contrast, the conventionahtpgse average (blue) washes out some
of the peaks.

The data presented here was taken from the priming experidescribed in chaptéd 4. We
applied a bandpass filter with cutoff frequencies &d 20 Hz before data analysis. The results of
applying our method to the data is exemplified in figures. ix average produces pronounced
peaks in the expected time window (e.g. P300) that are beaslibie and more tightly localized in
time than when using conventional averaging.

5.8 Summary

Traditional averaging procedures upon which the entirel fidélevent-related potential research
is relying have certain drawbacks, we addressed in therduchapter. We clarified the situation
by the formulation a few assumptions on EEG signals: theasighinterest is contained in the
recorded time trace, the task-specific activations are réfigignt amount of the signal and cog-
nitive processes are in some way stereotypical, such thet ik a common part in the signal of
similar trials. Based on these assumptions we show how noptesticated analysis methods can
be derived.

In order to robustly extract meaningful signals from noissc&ophysiological data, averaging
over many similar trials is unavoidable. The nature of theg& sets, i.e. correlations between
electrodes, clustered time courses across trials andiprawledge from the design of the experi-
ment, suggests a number of more complex procedures foriotpeata and enhancing the quality
of the signal.

We introduced our open source project, an algorithm toollideegt ool s providing mecha-
nisms to enhance averaging of trials of a certain experiai@aindition. It is possible to reduce
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the variablity of the data by allowing for variable interqabcessing speeds. If two trials produce
different reaction times, their processing must also hakert a different timecourse, thus a simple
averaging does not comply with the situation. Our methodstifly the relative temporal differ-
ence in processing and uses the information in the averagibgth trials. The identification of
the required time warping function can be done by an adaptafithe concept of recurrence plots.
As a side product we develop a metric which can successfellyded to cluster trials according
to their timecourse of processing. Our algorithms can ssfaly be applied to artificial and real
ERP-data significantly improving the quality of event rethpotentials compared to the traditional
point-wise average. But the specific application to EEG dates not limit the generality of the
approach which may as well be used for other imaging teclasiqu
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6 Perception or Selection Effect

The third mainstay to temporally localize the negative jmigreffect are experimental paradigms
that divide trial processing into several parts which carthdze measured separately, as presented
in the current and the following chapter. By assuring thatgbbtasks have to be accomplished
in serial manner we can assign temporal differences in thegssing of a certain experimental
condition to specific parts of the trial.

The aim of the present study is to single out the stimulustifieation phase from an experi-
mental trial. The question whether negative priming is padi in the identification phase or in
the phase of selecting the target over the distractor is\esdi to be crucial for the distinction be-
tween memory based or representation based theories. frherfassume a conflict in the target
selection phase and the latter like Distractor Inhibitisee sectioh2.4.1, or the ISAM, chagtér 3,
assume interferences already in an early stage of a triate#lize the trial splitting by showing a
color cue indicating which of the two objects to attend afker two objects already disappeared.
Both objects have to be considered first, and afterwardstgetthas to be selected from memory.

We will describe the current experiment in secfiod 6.1 whighalso cover an introduction of
the side effects to be expected when introducing a task lswa#avell as the extension of the set of
experimental conditions. The hypotheses in sedfion 6.pantty generated by a simulation of the
ISAM. The necessary adaptations of the implementation srsepted in sectidn 6.2. To obtain
comparability of the obtained results with previous stadige run two preparatory experiments
which are given in section 8.4. Sectibnl6.5 is devoted to tlesgntation of the final post-cue
experiments which will provide two individual reaction & for the two phases of each trial,
stimulus identification and target selection. Finally alperiments of the study are discussed in
connection in section 8.6.

6.1 Task Switch Paradigm

We realized the division of the trial processing by intradgca task switch dimension into the

voicekey paradigm seen in sectibnl2.2. The basic idea igftbi@ subject is given a color cue

indicating the target after the presentation of the two shir® objects, no information regarding
which of the two shown objects is to be selected is availablioag as the stimuli are visually

present. Therefore, a complete identification of both dbjsaequired before the trial can proceed
by showing the color cue.

Additionally, the design brings along several difficultiddie most prominent one is the dimen-
sion of task switching which is known to produce large betalieffects (Monsell, 2003). We
will discuss the impact of task switching to our paradigment®n[6.T.P after the introduction of
our series of experiments in the following section.

6.1.1 Sequence of Experiments

Our final goal in the current series of experiments is theaekitvn of processing times of the stim-
ulus identification phase of a negative priming trial. Thiedduction of the target color cue brings
along unwanted side effects. To best control and monitoclia@ges in the paradigm, we prepend
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two experiments. The first one surveys the differences lmtveeresponse to a red target or to
a green one by showing one block with red-target trials anglcarsd one, separated by a break,
where targets are green. Supposedly responding to a rexl tarfgster, as red is generally more
salient to humans. The issue is important, as the relatienss between target and distractor
is suspected to affect priming effects, see sed¢tioni3.3@. second pre-cue experiment assesses
the impact of the task switch dimension on priming effectthim usual processing of a negative
priming trial. We present a color patch previous to the shirswbjects. Any modulations in the
priming effects can then be attributed to task switching.

Finally we make the step to the post-cue experiment, whitdrsathe way of presentation by
exchanging the order of cue and stimuli such that while thmauit are shown, no information
is available as to which one of the two will be target. Therefsubjects have to identify both
objects in the stimulus identification phase. Time markees@corded at trial onset, the subject’s
button press that changes the display from stimuli to cuefanadly the response. We label the
reaction time in the stimulus identification phd&% and the one in the target selection phBSe

6.1.2 Task Switch and Negative Priming

The current series of experiments is primarily designedteal the temporal localization of the
different priming effects by segmenting the trials as désct above. As such, a differentiation
is only possible if the current target is not known to the sabfuring the stimulus identification
phase. Thus we introduced a target color switch to our velgglaradigm. Even if the task for
the subjects ("name as fast and accurately the object ofolloe you will see after a button press
that also eliminates the stimuli from the display") is camstover the entire post-cue experiment,
the possibility of a target color switch can trigger to somtent effects that have been investi-
gated under the label of task switching (for a review see Mr2003). Task switching is usually
considered by interchanging rather different tasks. Nbedgss, the very similar tasks we imple-
ment in the current experiment are also suspected to pradskaswitching phenomena. Negative
priming has already been mixed with a task switch, but theckwhappened in the dimension of
response (word reading vs. picture naming) rather thangisplecific feature as in our case (ham-
ing green or red picture, respectively). Waszak et al. (2806ws overlaid pairs of a word and
a picture. A cue tells the subject whether to respond to thelwoto the picture every two tri-
als. The switches occurred alternatingly and were thezgfoedictable. Nevertheless, as Monsell
(2003) reports, predictable switches also cause switds,das. reaction time differences between
switch and non-switch trials. Unfortunately, Waszak et(200%) focus on the reoccurrence of
identical word-picture pairs later in the experiment anthpare the reaction times separately for
switch trials (directly after a cue) or non-switch trialefore the next cue). No analyses of the
interaction between two directly successive trials as veeirterested in are possible due to the
special stimulus sequence.

When dealing with task switch experiments, two effects efstitch are present. The first one,
called global switch costs is a general slow-down of the nneaction time in a task heterogeneous
block compared to a block which always requires the same W #kin one heterogeneous block,
where trials directly succeeding a task switch are slowan thials that repeat the task from the
preceding trial, the slow-down is labeled specific or loedteh costs.

In a study that comes very close to the basic setting in theegurchapter, MacLeod et al.
(2002) investigate differences in negative priming betweerds that are repeated and word pairs
from the same semantical category. Their design includeskblwith a change of the target color
between paired prime and probe trials and blocks where thettaolor stayed constant. In the
former case, a DT condition repeats the object of interesttidally, the latter in a different color.
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The authors find a difference of approximately 70-90 ms betwmaismatch and match blocks,
which can be seen as global switch costs. Specific switchs @ast not be determined from the
experiment, as a task switch block does not contain norchwiiials.

6.1.3 Condition Set

We opted for a comprehensive set of stimulus relations itieent experiment, even if the main
focus of attention is still on the two conditions DT and TT.olily CO, DT and TT trials are
presented, the probe target is repeated from the primeagligpl2/3 of all trials, which biases the
subjects to make additional effort to keep track of the tweonis. Adding DD and TD trials to the
condition set balances the repeated object between bdagneé and irrelevant in the probe trial.
A positive side effect is the broadening of the data of the temeated distractor conditions that
are only rarely surveyed. For each of the five priming condgiimplemented in the experiment,
CO, DT, TT, TD, and DD, a task switch variant exists, see a samgnm tabl€6.1L.. We label them
by appending the abbreviation SW.

prime display probe display

red green cue red green cue
CO A m | C |
DT
TT
TD
DD
CO_SwW
DT_SW
TT_SW
TD_SW
DD_SwW

> > > > >|\> > > >
E B BB EEEEDN
m>000002>»®

Table 6.1: The priming conditions of our task switch paradigm with oakyet and one distractor
in each of the prime and probe display and a cue for the taajet respectively.

Note that the stimulus configuration is shared by a pair ofltmns whereof one keeps target
color, the other one incorporates a task switch, i.e. a aharighe target color. The follow-
ing pairs have an identical stimulus display: (DT&DD_SWHT&TD_SW), (TD&TT_SW) and
(DD&DT_SW). In our last experiment of the current chaptee present the target cue after the
subject has pressed a button to announce a full identificatidhe two stimulus objects. Until
the cue is shown, the above condition pairs are indistifiglile. Only after the cue onset can the
processing diverge.

6.2 Task Switch and the ISAM

As the current series of experiments is based on the voigglieadigm, we can easily derive
predictions about priming effects by simulations of the MbAFor all implementational details
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see chaptdr 3. In order to make the simulation of a task sywacadigm with the ISAM possible,
we had to extend the model by a task variable. Additionalig, flactor in the calculation of the
global activity levelx which drives the threshold has become a parameter as itadigan specific.

6.2.1 Extension of the ISAM

In the implementation of the ISAM given in chaplér 3, the &ngput rises with rat€. \We now
introduce two variables that hold the evidence for respuptld one of the two colors. Whenever
a color cue is presented, the corresponding variable igmlidy exponential dynamics to its max-
imum & = &, see equation 8.1 and 6.2. As we have a two alternative fareeide situation, the
two tasks, to respond to the red or green object respectiardycomplementary. They always add
up to the maximum target amplification ra&teTherefore £ eq andégreencan be seen as cumulated

evidence or probability for one of the two alternative tastisere is the level of certainty.

If a cue is presented, the task variables adapt with timetantis to their fixpointsé and 0,
respectively. The time constantdetermines the global switch costs, i.e. the differencevbet
the overall mean reaction time in an experimental block edthany task switch and the overall
reaction time in a task-switch block. For a green color égrenandé eq adapt according to

d A

%—Egleen = &— Egreen (6.1)
1d
? Zrted = —&red (6.2)

In between two trials of a task switch paradigm, the taskakdeis relax with the same time
constant towards a baseline evidergce §/2 and(§ — &) < &/2 that slightly favors the former
task to account for specific task switch costs, see secflbf.6Assume a green cue in the former
task, gives the following dynamics. A preceding red cue wqubduce the opposite.

1- dEgreen

1 dt = §— Egreen (6-3)
1d&req T
; dt - (E—i) —&red (6.4)

The resulting dynamics fgreen @nd & eq is shown in figure§ 612 arld 6.4 at the bottom. In the
presence of a cue, the task of the required target color tisésll evidence, suppressing the
opposite task. If the trial is over, both variables approaabh other, still having a certain offset
representing the tendency to assume the same task cue iexteial.

The normalization factor of the activation meamrquatiori-3.110, that is the basis for the adaptive
threshold, is labeled by.

X = v(rr+r5+i(xf+x,-6)> (6.5)

Depending on the number of stimulus objects in a certaindigma v can be adjusted to values
that allow for an accurate but fast decision on which objeatspond to. Future extensions of
the ISAM could include a self-organization mechanismv@ccording to the current tasks of the
system.
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Figure 6.1: Object representation variables over 10 seconds of sigtutne. Several different
priming conditions are shown. Red lines correspond to réelctdy green lines to ob-
jects shown in green. Textures label object identity. Theghold® is shown in blue.
Note the slow rise of target and distractor activation asmaned to e.g. figure_3.4
which causes the threshold to run only slightly below thé&rditor activation making
the model very sensitive.

6.2.2 Calibration

In order to produce realistic predictions, the ISAM is fingbgect to a calibration phase. We fit the
model such that it matches the priming effects of the stugpnted in section 212 to a satisfying
extent. Calibration is done manually by intuition and yeddhe following parameter values: rsi
= 1000 ms,{ = 0.0025, & = 0.0007,a = 0.004, 3 = 0.0018,y = 0.003, 0 = 0.845, v = 0.64,

A = 25, a time step was 1 ms. Again as in chapler 3 we do not intemdatoh the particular
reaction times but merely the priming effects, as the sitrariaof the ISAM disregards perceptual
time lags and also delays due to motor commands and theiuntxec We also took the priming
conditions DTTD and DDTT of two repeated objects into actdon the calibration phase to
obtain a most accurate behavior of the model. In the expeatsnee exclude those conditions
and instead consider the two conditions TD and DD where tpeated object is shown as a
distractor in the probe, see sectlon@.1.3. The simulatiodyced priming effects similar to those
in the mentioned experiment (to-be-fitted target effectareptheses): DT -24.81 ms (-21.36 ms),
TT 34.77 ms (35.20 ms), DTTD -23.44 ms (-25.70 ms) and DDTTL@9ns (59.53 ms). A
comparison of the obtained reaction times and priming &ffisagiven in tabl&Al5, appendixA.4.
The simulation produced a very small TD effect of -4.91 msasd a weak DD effect of 6.70 ms.

The behavior of the model variables can be seen in figuie 6.¢omMparison with figur€3l4
or[33 shows the differences in the model behavior obtaigatdcalibrated parameter set and the
parameters we used for our simulations in chapter 3. We t&djuns the first place the sampling
rate, i.e. the simulated time step from 0.3 ms to 1 ms for colevee. But we also shifted the
point of target selection to an earlier phase of unsaturdittdhctor activation by a slower rise and
decay of activation variables and a short delay in the dyoamii the threshol®.
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6 Perception or Selection Effect

6.2.3 Pre-Cue Simulation

We now take the parameter values derived in the last seatidgiae in between the trials a color
cue which is subject to unpredictable change. The time eafrthe corresponding task values as
well as the response of the model system are plotted in figdreN®te that the task variables start
to adapt to the appropriate values at 500 ms before the nekstarts, at the moment the color
cue appears.

TDSW DD SW TT COSW CO D

activation

0 T T T T T T T T T 1
10 11 12 13 14 15 16 17 18 19 20
time [s]

Figure 6.2: Simulation results for the pre-cue paradigm with the patamsedetermined in sec-
tion[6.2.2. The top plot shows the dynamics of represemtativations and thresh-
old 6 in blue. The bottom plot shows the time course of the two tasttemice vari-
ables in units of. Note that the six trials are perceptually identical to tixergals in
figure[6.1.

The results show a familiar pattern in the non-switch trisée also table”AlL6 in appendix’A.4.
The conditions DT and TD are delayed by 14.67 ms and 15.61aspectively. TT and DD are
accelerated by 27.76 ms and 21.92 ms, respectively. Thi padtern is very different in switch
trials, where DT_SW trials are largely accelerated, 32.82 T _SW is delayed by 13.87 ms,
TD_SW is 22.71 ms faster than CO_SW and DD_SW is again delayeldt.78 ms. Overall, a
change of object color results in a slow-down, whereas thetition of objects of the same color
leads to a faster response.

Even in the switch trials the tendency to respond faster ¢atidally repeated stimuli is con-
served. It is much stronger than any priming effect stemnfrioign the role of an object as target
or distractor. The ISAM is a model where priming acts on a @giaal level. The global switch
costs of 33 ms are given by the difference between the medhrebation times (of the relevant
conditions: CO, DT, TT, TD, DD) of the baseline simulationsefctior 6.212, 498.50 ms, and the
overall mean of the pre-cue simulation of the no-switchidria31.54 ms. Remarkably, the spe-
cific switch costs taken from the control condition due todppositional reaction time differences
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6.2 Task Switch and the ISAM
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Figure 6.3: Simulated reaction times in the pre-cue paradigm. Note #gative specific task
switch costs. A switch trial is faster than non-switch sidal he repetition of an object
in the identical color leads to an acceleration, while if tbpeated object changes
color, the response is slower.

in the other conditions are negative. The CO_SW trials aravemage 7.17 ms faster than their
non-switch counterparts. If the mean of all no-switch #jagain 531.54 ms, is compared to the
average of all switch trials 522.87 ms, a benefit for swit@dgrof 9.67 ms is still present.

6.2.4 Post-Cue Simulation

The ISAM solves the post-cue paradigm such that it first veseequal input by the two objects
of the stimulus display. If both the activations surpassseasitivity valueo, the objects are said
to be recognized and stored, such that their activationrisigient even after the display switches
to the color cue.

If we run a simulation with the parameter values derived & chlibration phase described in
section[6.Z2 on the post-cue paradigm, we encounter agmnotde already know from investi-
gations of the dynamics of the ISAM in a setting with varyimgponse stimulus intervals. The
adaptation of the threshold is too quick to accurately sdheetask of the post-cue paradigm.
The threshold shoots over both the target and the distrespoesentation activation. To solve the
problem, we assume a mechanism that is able to adjust trehtidebehavior to the particular task
demands. In the present case, the threshold is slowed byathaadjusting the following param-
eters tov = 0.55, y= 0.002 andA = 50. With these parameter values, the threshold stays below
both relevant activations until the target color boost aglisugh total activation to the system.

Note that both target and distractor activation rise sirtyilaseparated only by their activation
values right at stimulus onset, see figlird 6.4. Therefory, merceptual issues of the probe trial

77



6 Perception or Selection Effect
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Figure 6.4: Simulation run for the post-cue paradigm with the adjustedghold parametexs=
0.55, y = 0.002 andA = 50. The top plot shows the dynamics of representation
activations in red and green and different textures foredéfit objects and threshold
8in blue. The bottom plot shows the time course of the two tagledice variables in
units of§. Note that the slower adaptation@®fioes not lead to artifacts as the attempt
to respond before the cue appears.

can influence the first reaction tini®'. A detailed listing of simulated reaction times, see fig-
ure[6.5, and effect strengths is given in tablelA.7. In sunyntae ISAM predicts only slowing
effects of around 40 ms iRS' for the conditions that are subject to the forced decay ifaber
stimulus reappears with a different color, i.e. DT, TD, TW &nd DD_SW. IrR'S, the above con-
ditions are again slowed, TD and DD_SW weaker than DT and TI._®e other four conditions,
TT, DD, DT_SW and TD_SW, are faster than the respective obotndition with TT having the
strongest benefit.

6.3 Hypotheses

As already mentioned in sectin 611.3 we will mainly focustioe analysis of priming effects in
the two conditions DT and TT, the classical negative andtpespriming conditions. Therefore,
we only give hypotheses for further conditions, if a patacihypothesis also applies to other
conditions.

As denoted in section 6.2.1, the ISAM is able to generateilddtaypotheses for the current
series of experiments. For the pre-cue experiment, the IpAddicts a slow-down of about 14 ms
for trials where the repeated object changes color and aldpereefit of 20—30 ms for the condi-
tions TT, DD, DT_SW and TD_SW. The post-cue experiment isligted to produce very large
slowing effects of about 70-95 ms distributed equally betwine two reaction times in the con-
ditions with a perceptual switch, and a comparably weaktpeseffect of 18-27 ms which is
exclusively present in the target selection phase
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Figure 6.5: Simulation results for the post-cue paradigm. The left ghaiws both partial reaction
times stacked on top of each other to point up the primingcdfim the overall reac-
tion times. The right plot compares both partial reactiome individually. Note the
identical RS'with perceptually identical displays. Perceptually, oalpegative effect
is present which has its origin in the forced decay of adtwvethe ISAM incorporates.
Positive effects are only present in the stimulus identificaphase.

Episodic retrieval as well as response retrieval theordipte prime retrieval in all conditions
apart from CO, with a tendency for a stronger memory rettitaraidentically repeated objects.
As response retrieval postulates only the response to bevedd, no effects are expected in the
first part of the trial. Only the target selection phase stiadrry all priming effects in a way
that only repeated responses benefit from retrieval, i.ly. the TT condition and a bit weaker
the TT_SW condition are faster than control. All other prigniconditions should trigger by their
perceptual similarity a retrieval of the, in this case falssponse. Thus all other conditions
are expected to produce negative priming. The same effeettde expected for the first two
experiments. Traditional episodic retrieval postulates tetrieval of the entire prime episode
depending on stimulus similarity. Therefore, a percepbealefit is to be expected in every priming
condition besides CO. In cases where the to-be-attendexttalsj retrieved together with some
conflicting action advice, i.e. DT, DT_SW, a counteractimgeleration in the later part of the trial
is conjectured. If the action advice matches, as in TT andSW trials, Episodic Retrieval makes
the prediction of additional benefit.

Distractor Inhibition expects perceptual facilitationdanditions where the prime target is re-
peated, and a perceptual slowing if the prime distractoepeated. Predictions for the reaction
time of the target selection pha&are hard to obtain, as the dynamic system underlying dis-
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6 Perception or Selection Effect

tractor inhibition theory is too complex to guess the outedmthe second phase of the post-cue
experiment. Late priming effects depend on the mechanismvhigh objects are classified and
identified, be it at a saturation level, where no priming &Hecould be carried over to the late
phase, or at intermediate activation levels like in the &ithon of the ISAM, when positive as
well as negative priming can still cause behavioral effecthe later stage.

6.4 Preparatory Task Switch Experiments

In order to achieve comparability of results of the post-edperiment and our earlier studies,
we make two preparatory experiments that help to succégsadsl complexity to the original
voicekey experiment, see sectfonl2.2. We begin with twollvesklocks, one of which follows the
paradigm introduced in sectidn 2.2, the other requiringrditbn to the red object. The comparison
of the two blocks helps us to understand the difference alstivith a red target and those with a
green one that will be naturally present in the task switgteexnents.

The next step is the introduction of task switching in thexfasf a color cue indicating the
target color in the following trial. Despite the task swit¢the paradigm stays identical. Thus,
any changes in priming effects are due to the cue and its dittoaattend to its color. Besides
the impact of updating a task set, physical alterations @ raade to a trial. In particular, the
response stimulus interval is longer in the pre-cue expartimas the subject’s reckoning of the
cue adds to it. Also, the additional percept of a color patefote the actual trial may change
processing compared to the baseline experiment.

In the current section we will present the two experimenggtioer. One reason is their nature
of providing prerequisites for the experiment of interéisg post-cue paradigm. Another is that
both experiments are performed by the same subjects in ea®ee The baseline experiment also
provides a familiarization with the stimuli and the task floe pre-cue experiment.

6.4.1 Design

We first only slightly altered our traditional negative pimg experiment. Two blocks of the simple
voicekey task are run, one with green as target color, whéether required a response to the red
item. The sequence of these blocks was balanced over subjgoe two baseline parts included
five priming conditions, CO, DT, TT, TD and DD.

After the two baseline blocks followed a task switch expemtnof 420 trials with breaks every
42 trials paced by the subjects themselves. We implemerdgehdard way of unpredictable task
switches by pseudo randomly presenting a color cue indigaitie target color each trial anew. The
color patch was removed by a button press by the subject wh@hstarted the actual trial. The
switch dimension is reflected in a doubling of experimentaiditions, as a task switch destroys
the confounding of whether an object is repeated in the saoe ar not and the object to respond
to.

6.4.2 Participants

Thirty undergraduate students (19 female, 11 male) fromuthieersity of Goéttingen took part

in the study. Their ages ranged from 20 years to 35 years (M.5 ydars, SD = 1.6 years).
The participants were rewarded by course credits or are Ia#. All subjects had normal or

corrected-to-normal vision and no color discriminatiogatiilities. They were not informed about
the specific purpose of the experiment and had not takenrpagtrievious study employing similar
stimulus material.
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6.4 Preparatory Task Switch Experiments

6.4.3 Procedure

The experiments took place in two special chambers optiinfae low noise and standardized
lighting conditions. Participants were tested individypah sessions that lasted no longer than 90
minutes. Before the start of the priming tasks, the line dlngerof the experimental stimuli along
with their names printed in black were shown to the subjeh& subjects were told that they will
see these objects overlapping one another, one drawn in greethe other in red. Realizing a
classical picture naming task, participants were inséditd name the target objects as quickly and
correctly as possible while ignoring the superimposedalisbr object. To familiarize participants
with the experimental procedure, a 30-trials practiceisegzreceded the main session.

The first two experimental tasks consisted of 210 trials gatiich were divided into 5 blocks
of 42 trials. After each block, subjects were allowed to talshort break. In a single trial, subjects
encountered the following series of events: a fixation grosstered on the screen for 500 ms; a
display containing two superimposed objects until subjesponded, but no longer than 2 seconds
and then a blank screen for a randomized duration betweed 0G00 ms.

In the pre-cue experiment, an additional visual cue inditdf the target color of the trial was
green or red. The number of trials was doubled compared tliriéasks to 420 trials, so that the
participants had to complete 10 blocks of 42 trials. A singhd consisted of the following series
of events: a fixation cross for 500 ms, the color cue until tgext pressed a button, the stimulus
display and then a randomized RSI of 0-1000 ms. Behaviorat®were noted when subjects
failed to give the correct answer. After the participantspteted all trials, they were asked to
comment on the experimental procedure.

6.4.4 Data Analysis

First, we want to make sure that the baseline experiments strong priming effects as antici-
pated. The two different target colors are then compare@. @pect is a main effect of red/green,
which indicates a direct influence of target color to processpeed. Another aspect is an inter-
action between target color and priming effects. If suchnéeraction exists, we have to group the
task switch trials into conditions with homogeneous tacgdor.

A comparison between overall mean reaction time in the besekperiment and the pre-cue
paradigm yields a measure for global switch costs, i.e rifiednce of the presence of task switch-
ing on processing speed. Comparing switch and non-swiials twithin the pre-cue experiment
leads to specific switch costs. We then check for primingetdfen the respective condition, espe-
cially in the task switch trials, as no data exists for simdattings.

To clean the data, some procedures to reject outliers frenbéhavioral data are employed.
In a first step, all reaction times from trials in which a bebeal error occurred, are excluded
from the analysis as well as the directly following trial. &#on times below 250 ms and above
3000 ms were removed from the analysis as they presumablyaaexl on other processes than
the ones under investigation due to their unusual duratioa.next step, reaction times where the
difference to the mean of the experimental condition exeddd/o times the standard deviation
were also excluded. Overall, for each participant not mbam t10% of the trials per condition
were excluded from the analysis.

6.4.5 Results, Baseline Experiment

The overall 2< 5 x 2 (target colorx priming x color block order) ANOVA treating reaction
times as dependent variable showed a main effect of tar¢mt €¢1,116) = 16.11 p < 0.001, a
main effect of priming=(4,29) = 2321, p < 0.001, but no interaction of target color and priming
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6 Perception or Selection Effect

F(4,116) = 0.77, p = 0.54 and no effects at all of the order in which the two color kiare
tested, see table_A.8. Especially the absence of effecteeadrder in which red or green indicate
the target allows a pooling of all subjects, regardless dtwkarget color the subjects encounter

first.
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Figure 6.6: Priming effects of the baseline experiment. Significandemparisons to the con-
trol condition are given. Expectedly, trials with a repeatibject that changes its
role between prime and probe are slower, identical repattiof objects lead to an
acceleration.

The absence of an interaction between target color and mgirailows the determination of
priming effects in the entire baseline experiment, i.e nti@an reaction time differences over both
target color blocks, see figure 5.6 and tdble A.9 in appenddix Arials with a green target, 776.10
(95.80) ms, are on average 47 ms slower than trials with aarget, 729.20 (104.59) ms. Evenin
the pooled situation all priming effects are significant,-Gr= —18.28 msf(29) = —3.09,p <
0.01, CO-TT=45.83 mst(29) = 4.56,p < 0.001, CO-TD= —13.43 mst(29) = —2.27,p <
0.05 and CO-DD=20.45 ms{(29) = 3.55,p < 0.01.

6.4.6 Results, Pre-Cue Experiment

The overall 2< 5 (switch x priming) ANOVA on reaction times shows main effects of switc
F(1,29) =19.94, p< 0.001 and priming-(4,116) = 1512 p < 0.001 as well as an interaction of
bothF(4,116) = 8.21, p < 0.001. Specific switch costs, 27 ms, are determined as theetiffe
between overall mean reaction times in switch trials (783108.52) ms) and no-switch trials
(810.25 (123.80) ms) in the pre-cue experiment. We find dletdtch costs in the two-sided
comparison of the mean reaction time in the baseline expatir52.65 (95.05) ms), and the pre-
cue experiment (796.76 (115.23) ms), which differ by 44. Klsignificantlyt(29) = —3.37,p <
0.01.

For priming effects we compared the appropriate contrdhitie priming conditions and found
effects in CO-DT= —24.93 mst(29) = —2.83,p < 0.01; CO-TT=54.76 ms{(29) = 5.09,p <

82



6.4 Preparatory Task Switch Experiments

850
|

xx

800
|

xxx

Reaction Time [ms]
750
]

700
|

650
L

co DT T ™D DD CO_SW DT_SW TT_SW TD_SW DD_SW

Figure 6.7: Priming effects of the pre-cue experiment. Significancesamfparisons to the ap-
propriate control condition (indicated by the horizontagE) are given. Disregarding
the control condition the pattern of the priming conditidmsks similar in the switch
and non-switch stimuli. For illustrative purposes we iadécthe position of such a
hypothetical control with a dashed line.

0.001, but no effects in the two conditions G@D= —3.60 ms,t(29) = —0.54,p = 0.29 and
CO-DD=0.20 ms,t(29) = 0.024 p = 0.48. For trials that incorporated a target color switch
from the prime, the present effects are CO_SBT_SW= —28.07 mst(29) = —2.54, p < 0.01,
CO_SW-TD_SW= —21.23 ms,t(29) = —2.31,p < 0.05 and CO_SWDD_SW= —19.66 ms
t(29) = 2.63,p < 0.01, no effect shows CO_SWIT_SW= —5.30 mst(29) = —0.66, p = 0.25.
The results are summarized in figlirel 6.7, details given ile fBELO in appendix’/Al4.

6.4.7 Discussion

The baseline experiment shows that it is easier to respordréal target than to a green one,
presumably because of the higher saliency of the color retl dBspite the faster response in the
red target block, priming effects did not differ. Furthdretdifferent saliency does not influence
priming in the baseline experiment as it does in other sitiiTipper et gl.. 2002), see also sec-
tion[3:3:3. We therefore pooled both parts and still founavatcing priming effects, i.e. negative
priming in the DT and TD condition and positive priming for BhRd DD, see figurg 8.6. The two
condition pairs are each associated by a reoccurrence dbjanton the same or in a different
color, respectively. The results of the baseline expertroane more prove the suitability of our
paradigm to access negative priming.

Introducing the task switch in the pre-cue experiment dgstt the effects in the TD and DD
condition, as the influence of the probe distractor appiréstiminished. But the effects in the
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most interesting conditions, DT and TT, are even more proced than in the baseline experiment
without task switch, see figufe 6.7. Comparing the pre-cyegment with the baseline reveals
global switch costs visible in the general slowing of reawsi after the introduction of the task
switch. Comparing non-switch conditions in the pre-cueegixpent with the switch conditions
reveals specific switch costs of comparable order to theagjlofes. Trials following a task switch
are slower than trials that require the attention to an idelty colored target.

Remarkably the priming effects in the switch trials show serall deceleration in the case of
an object repetition. Only TT_SW trials are not distingaisle from CO_SW. The reoccurrence
of an object in conjunction with a task switch seems to owtlthe subjects, such that they react
slower than if no object is repeated from the prime trial. Aselr look at figuré6l7 reveals that
the relations between the priming conditions themselvek kery similar to the conceptually
matching non-switch trials. Seemingly, the repetitionmbaject in any color produces a constant
offset into the processing of switch trials, but the patcyriming effects remain.

6.5 Post-Cue Task Switch Experiment

The presentation of the target color cue after the identifineof the stimulus objects is a techni-
cally easy manipulation. Nevertheless, the small manijmichas several implications. First of
all, the desired effect that the identification of stimulsha be separated from the target selection
puts way higher demands onto the subject. Both objects lmalve in the attentional focus. Ad-
ditionally, the information about their identity bound twetcorrect color has to be memorized in
some way. Secondly, the effective RSI is now augmented bguberesentation phase which is
much longer than the cue phase in the pre-cue experiment.

The high demands led several subjects to use an after-imiegegy which shifts part of the
stimuli identification to the later phase of the trial. Thisagegy interferes with our assumption of
seriality. In order to enforce a serial trial processing,imeoduce a mask between the stimulus
presentation and the appearance of the target cue after ttie @btal 30 participants. Such a
mask again disturbs the experimental flow and drives usdurlway from the original voice-
key paradigm. Notwithstanding, we assume only a small impacthe trial processing when
compared to the subjects in the non-masked group who didsedthe after image but completely
identified the two objects before proceeding with the trial.

6.5.1 Design

The post-cue experiment only differs from the pre-cue erpamt by the order of presenting the
cue and the stimulus objects. Now, the subjects see botlulsimthe beginning of a trial, have
to press a button when they are ready to proceed, and thewahabjects are replaced by a color
cue which is present until the subject gives the answereéiftsubjects saw a mask for 100 ms
between the stimuli and the color cue in order to erase amy imftage. The mask consists of red
and green dots at the location of the stimulus compound imaasidensity.

6.5.2 Participants

Overall thirty young adults were tested and received coarsdit or are paid 1&. One person
was excluded from the sample because of a high rate (38%)spbnse errors and statistical
outliers. The remaining sample of participants consisfeti7adfemales and 12 males with mean
age of 23.7 years, SD = 1.6. All participants had normal oremed-to-normal vision, no color
discrimination disabilities and were naive about the aifrth® experiment.
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6.5 Post-Cue Task Switch Experiment

6.5.3 Data Analysis

Prepended to the analysis of reaction times is the outlieection we introduced in sectién 6.4.4
We will consider the two parts of each tri@®s' andR'S separately. In both cases we will begin
with the analysis of priming effects for the two groups, wathd without mask, but later on take
the two groups together for an overall analysis of the past-experiment. Despite one rather
weird exception, the pooling of both groups is possible.

During the analysis of the stimulus identification phaR¥, there is a perceptual congruence
between two conditions, see sectlon 6.1.3. We thereforgpacenthe pairs of matching object
displays and perform a pooled analysis of priming effectdte four resulting conditions.

6.5.4 Results, Stimulus Identification Phase

When considering the first part of a tri@®', there are always pairs of conditions that are iden-
tical from the percept of objects, until the color-cue iswhoand they diverge into a switch
condition and a non-switch condition, see secfion 6.1.3thénpost-cue experiment without a
mask, no significant difference of reaction times within thars is present. Two-sided tests
yield: CO-CO_SW=18.40 ms,std = 12843 t(14) = 0.55,p = 0.58; DT—DD_SW=6.40 ms,
std = 71.98,t(14) = 0.34,p = 0.73; TT-TD_SW= —3.46 ms,std = 8242,t(14) = 0.16,p =
0.87; DD—DT_SW= —46.06 ms,std = 10846,p = 0.12 and TD-TT_SW=23.60 ms,std =
93.97,t(14) = 0.97,p = 0.34.

In most experimental conditions of the masked experimensituation is similar. A two-sided
t-test reveals no difference between the following condidi CO-CO_SW-=26.07 ms,std =
147.44,t1(13) = 0.66,p = 0.52; TT-TD_SW= —20.07 ms,std = 11022,t(13) = —0.68,p =
0.50; DD—DT_SW= —24.57 msstd= 79.56,t(13) = —1.15 p=0.26; TD—TT_SW=36.92 ms,
std="74.73t(13) = 1.84, p=0.087. Only the conditions DT and DD_SW, which are percepyuall
identical, show a significant difference: B'DD_SW= —143 ms,std = 12056,t(13) = —4.44.
As such, an effect can not be explained by systematic vanistbetween the two perceptually
identical trials. The only source of the effect is a disbailag of trials, e.g. in the number of
occurrences of an individual object or the even distributiwer all experimental blocks, by data
cleaning like error trial or outlier removal.

Disregarding the significant difference between DT and DW® 8ials, we pool the per-
ceptually identical conditions over both experiments, hwiand without masking of tar-
get and distractor object, to obtain priming effects in thienglus identification phase of
a trial, see figurd_6l8. A one-sided t-test yields significaniming effects only in the
two pooled conditions: (CO&CO_SW)YTT&TD_SW)=87.51 ms, std = 11848t(28) =
3.97,p < 0.001; (CO&CO_SW)-(DD&DT_SW)=35.55 ms,std = 78.37,t(28) = 2.44,p <
0.05. No effect is present for (CO&CO_SWJTD&TT_SW)=11.51 ms,std = 69.79,t(28) =
0.88 p = 0.19 and also the invalid subsumption of DT and DD_SW does notvsén effect
(CO&CO_SW)-(DT&DD_SW)= —6.87 ms,std = 76.03,t(28) = —0.48 p = 0.31. Whenever
the repeated object is shown identically, i.e. in the sanhar,cihe stimulus identification is accel-
erated. No perceptual slow-down for repeated objects vatiimatching colors is visible.

If we now assume an incomparableness of the conditions DD&dEW due to their abnormal
behavior, which may be caused by some violation of balancirgcan not consider the data set
in a global ANOVA, but rather have to exclude the DT and DD_SéMditions in advance. We
run a 4x 2 x 2 (primingx percepk mask) ANOVA which yields the expected main effect priming
F(3,81) =6.19, p< 0.01, but no interaction of both primingpercept(3,81) =2.51, p=0.082
and primingc percepkmaskF (3,81) = 0.22, p = 0.87. The above ANOVA takes into account,
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Figure 6.8: Priming effects in the stimulus identification phase of tstpcue experiment in de-
pendence on the pooled conditions. Significances of cosgasito the control con-
dition are given. The stimulus identification phase showsg banefits for the condi-
tions where an object is repeated in the same color. No dondi slower than the
two controls, the first part of a trial only shows positivenpirg.
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that not e.g. TT and TT_SW have to be compared but TT and TD_Siley are identical in the
stimulus identification phase,

For better comparison witR*we pool the masked and non-masked group, ignoring the in-
teraction of mask and priming in the DD_SW condition, seer&d®.9 and tabl€"A12. Prim-
ing effects are revealed by 2-sided t-tests of the diffessmaf the appropriate control and the
priming condition: CG-TT=104.31 ms}(28) = 3.41 p < 0.01; CO-DD=64.44 mst(28) =
2.50,p < 0.05; CO_SW-DT_SW=70.72 ms,t(28) = 3.25,p < 0.001 and the inappropriate
CO_SW-DD_SW= —50.82 mst(28) = —2.32,p < 0.05. No priming effects are found in the
conditions CO-DT=37.06 mst(28) = 1.65,p=0.11; CO-TD=7.55ms}(28) = 0.34,p=0.73;
CO_SW-DT_SW=6.65 ms,t(28) = 0.43,p = 0.66 and CO_SW-TT_SW=15.48 mst(28) =
0.96,p = 0.34.

6.5.5 Results, Target Selection Phase

We now come to the analysis of the second part of the trildfs, The detailedR® and the
corresponding priming effects are listed in table"A.13 irpepdix [A4. A global 5x 2 x
x2 (primingxswitchxmask) ANOVA reveals a main effect priming (4,108 = 10.33 p <
0.001, a main effect mask(1,27) = 4.44, p < 0.05 and an interaction between priming and
switch F(4,108) = 11.18 p < 0.001. There is no main effect switdf(1,27) = 3.26, p =
0.082 and neither an interaction primirngaskF(4,108) = 0.63 p = 0.64 nor an interaction
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6.5 Post-Cue Task Switch Experiment

primingx switchxmaskF (4,108) = 0.66, p = 0.61. Despite trials in the masked experiment be-
ing 99 ms slower on average, due to the missing interactigoriofing and mask, we are able
to combine both experiments and determine priming effemtshie post-cue experiment globally.
Results are shown in figufe 6.9, details given in table’]A.14.

In the pooled data, we find in a 2-sided t-test priming effemtsCO—-DT= —17.86 ms{(28) =
2.12,p < 0.05; CO-DD=31.51 ms}(28) = —2.59,p < 0.05; CO_SW-DT_SW= —32.41 ms,
t(28) = —2.74,p < 0.05; CO_SW-TT_SW= —60.65 ms, t(28) = —5.26,p < 0.001 and
CO_SW-TD_SW-=29.96 ms}(28) = 2.77,p < 0.05. No effect is present in COTT=6.55 ms,
t(28) = 0.56,p = 0.57; CO-TD=10.75 ms,t(28) = 0.98,p = 0.33; CO_SW-DD_SW=

—14.31 ms(28) = —1.60,p = 0.12.
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Figure 6.9: Partial reaction times for the post-cue paradigm pooled masked/nonmasked. Left
hand side shows stacked bars, allowing for a look at the byeiaing effects, where
mostly accelerations are visible. On the right hand side shav the two partial
reaction times beneath each other in order to make primfegtsfin the later reaction
time RSvisible. Condition DD_SW does not allow such a poolingR% Therefore,
the according bar is not to be taken too seriously.
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6.5.6 Results, Comparison of Partial Reaction Times

So far the data suggests that positive priming is a more prraephenomenon, i.e. is present
in R, and negative priming is produced while target selectiot @sponse generation, i.e. is
found in RS. We limit the analysis to non-switch trials. Due to the sfigrint interaction of
switch and priming, a task switch destroys the priming éffaee are looking for. Specific 2 2
(control/priming< RS'/R'S) ANOVAs are carried out for every priming condition sepahat
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6 Perception or Selection Effect

DT: Main effect forRS/RSF (1,28) = 27.39, p < 0.001, no main effect for priming (1,28) =
0.56, p = 0.45. But the expected interaction reaches significaR¢g,28) = 6.07, p < 0.05. DT
responses are 38 ms faster than control respong@®.iConversely, responding to a DT trial is
delayed by 18 ms ifRS. TT: Main effect for RS/RSF (1,28) = 26.91, p < 0.001, a main effect
for priming F(1,28) = 9.84, p < 0.01 and also the interaction reaches significargd, 28) =
10.79, p < 0.01. TT responses are 104 ms faster than control respon$&s ifihe acceleration
by 7 ms inR'Sis not significant. TD: Only a main effect f&S/RISF (1,28) = 29.75, p < 0.001.

No main effect for primingF(1,28) = 0.50, p = 0.48 and also the interaction does not reach
significance F(1,28) = 0.02, p = 0.88. TD responses are nonsignificantly 8 ms faster than con-
trol responses ifRS. The acceleration by 11 ms RSis not significant. DD: Main effects for
RS/RSF (1,28) = 29.16, p < 0.001 and primingF (1,28) = 10.90, p < 0.01, but the interaction
does not reach significanceé(1,28) = 1.40, p = 0.24. DD responses are 65 ms faster than con-
trol responses iR¥and 31 ms irRs.

Summarizing, the interaction betweBH/RS and priming in the DT and TT conditions supports
the hypothesis that negative priming is an effect of atterati processes, and positive priming is
produced during perception. The two conditions where tlobg@distractor is repeated from the
prime trial do not produce such a clear pattern.

6.5.7 Discussion

The overall impression when looking at the post-cue expeminis that it implements a very de-
manding task. Reaction times are nearly three times lotnger ih the pre-cue experiment. The
difficulty, supposedly, led to the development of a fadilitg strategy in certain subjects. Sub-
jects applying such a strategy did not process the objectscgmusly as we wanted them to, in
order to achieve a clear separation of stimulus identificaéind target selection phase. Mostly,
the mask we introduced for the second half of the subjecttatblthe possibility to use an after
image, but did not disturb the obtained priming effectspitesa strange deceleration in DD_SW
trials in the masked group. The most puzzling aspect is tfiereice ofRS in DD_SW trials
andRS' of DT trials. Both conditions are perceptually identicaidaup to the point of the button
press that determind®® absolutely no information about whether the trial will be & Bial or

a DD_SW trial is available to the subjects. We therefore sappa technical issue like an imbal-
ance of stimulus objects in the DD_SW condition after outl@moval to be responsible for the
seeming precognition.

Ignoring the difference in DD_SW trials, no further inteian of priming and mask is present,
and we are able to pool both groups with and without mask ierota determine the location of
priming effects in a perceptual stage or the target seleghmse of a trial. The overall reaction
time shows no negative priming effects in non-switch tridlgt positive priming for trials that
identically repeat an object, i.e. TT and DD. In switch gittie identical repetition only speeds up
trial processing in the TD_SW condition, i.e. where the gritarget reappears. The other three
switch conditions slow the trials down, see figlire 6.9, lefes

The separation of the trials reveals that in the first g&#,only acceleration effects are present,
again disregarding DD_SW, whereas the target selectiosepslaows a more differentiated pic-
ture. The second reaction tin®® shows a negative priming effect for DT and DT_SW but even
more prominent for TT_SW. An acceleration is present for Did aD_SW, see figure 8.9, right
side. The data indicates that positive priming is a per@gthienomenon and negative priming is
produced by interferences during selective attentionédaiget object.
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6.6 General Discussion

6.6 General Discussion

Overall, the introduction of a task switch, including respes to green as well as red targets seems
not to alter the basic negative priming effect in a DT coditi Also, the positive priming effect
in the TT condition is conserved. Another pattern shows utiéntrials that immediately follow
a task switch. In the pre-cue experiment, a repetition oflgaab only slows down the reaction,
but no benefits are visible. As the pattern is different ingbst-cue experiment, the postponing
of the cue has a strong impact on trial processing.

Predictions of the ISAM for conditions TD and DD are well nfad in the baseline experi-
ments, see figude 8.6. TD produces a negative priming eff@ttis weaker than the one in DT
trials, and DD trials are accelerated to a smaller exterm ffi& trials. Already in the pre-cue
experiment the simplicity of the ISAM is no longer able tomeguce the complexity of the data.
The behavior of the ISAM relies on perceptual parameters situation for the ISAM gets even
worse when assuming an additive process occurring durinighswrials with a repeated object
as discussed in sectibn 614.7. The effects obtained thisfellmyv the conceptual nature of the
trial and not the perceptual one as the ISAM predicts. Rinthlé predictions of the ISAM for
the post-cue experiments further show the inappropriatené the model. The ISAM predicts
only negative priming but no acceleration for identicalypeated objects in the perceptual phase.
Only with the onset of the color cue, positive priming emsrgad still some decelerations in per-
ceptually nonmatching object repetitions occur, whichampletely contrary to the experimental
results.

The assumption of a forced decay of activation to be resptnfr negative priming via the
influence on the adaptation speed of a global thresholdhlarés the ISAM makes, directly leads
to an inevitable slow-down in the stimulus identificationapl, as at a later stage in the trial
all activation from the prime trial is gone. The experimértata merely shows a tendency to
facilitation of DT trials in theR®, due to perceptual similarity. Therefore, our experimarrids
the ISAM, at least in the implemented form we introduced iaath3.

Depending on how literally the statements of responseexetritheory are taken, the localization
of positive priming in the first partial reaction time is ptetmatic or not. Onthe one hand, response
retrieval explicitly links priming effects to the automatietrieval of a response, which would
suspect no priming effects in the perceptual part of thd. trBut response retrieval does not
exclude other facilitation mechanisms to happen, posstén in the perceptual phase. Without
the assumption of an additional facilitating process, oasp retrieval theory is not able to explain
an acceleration of DD trials as compared to CO.

Besides the slowing in the DD_SW condition, episodic regiecan well explain the accel-
eration in all the other priming conditions, as the similatriggers the retrieval of the former
episode. This then positively interferes with the idendifion of the current objects. In the target
selection phase, the predictions of episodic retrievatanepatible with non-switch trials, but do
not fit for switch trials. In TT_SW trials, which repeat tharme target in a different color (which
should still trigger retrieval) the object is to be respahde again. Contradicting the facilitation
presumed by episodic retrieval the experiment shows a m@mhslow-down oRS. Similarly the
shorterR® in TD_SW trials is in contrast to episodic retrieval theory.

Unfortunately, we are not able to exactly reproduce the adgatipnal simulations of distractor
inhibition theory. Therefore, no predictions to be testee available for the second reaction
time, R'S. ConcerningR®', the perceptual facilitation for TT is predicted correctBut distractor
inhibition theory would as well predict a perceptual slogviim DT trials, which could not be
verified by our experiment. As distractor inhibition thedrypothesizes the negative priming
effect to stem from persistent inhibition carried over frtra prime trial, negative priming should
be most prominent at the beginning of a trial, which is in agfion to our results.
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6 Perception or Selection Effect

Summarizing, the current series of experiments shows areisting way to split trial process-
ing into several parts, each devoted to a certain aspecboépsing a trial in a negative priming
experiment. The changes that have to be made to the paradigmdér to assure serial pro-
cessing obviously introduce multiple effects that are metspnt in traditional negative priming
experiments. Apparently negative priming does only showrala pattern after task switches
if the relation to CO is disregarded but only relative reattlimes between the priming condi-
tions are considered. In any case, if we restrict our conafiims to the two conditions of most
interest, i.e. DT and TT, the experiments confirm the statgrtet positive priming is a percep-
tual phenomenon, whereas negative priming is producedeatdtages of a trial, target selection
or response generation. The pattern of results is bestieggldy episodic retrieval theory and
strongly challenges distractor inhibition and the ISAM.

6.7 Summary

We introduced a way to assess the time course of negativéngrion a behavioral level. We
altered the voicekey paradigm such that a color cue indicaéeh trial anew which one of the
objects is the target. With a series of three experimentsbuile the bridge from our previous
studies to the post-cue paradigm. This gives the targetforietiae presentation of the two objects,
enforcing the subjects to first identify both objects andeledt the target and generate the response
in the second part of a trial.

The extension of the paradigm brought along interferences task switches which were
shown to interact with priming effects. The consideratidrrials immediately following a task
switch also shows interesting phenomena. Apparently tasictses introduce a general slow-
down of reaction time if an object is repeated, but relat@action times in the task-switch priming
conditions show a pattern similar to the conditions that dbrequire a task switch. Seemingly
the coincidence of task switch and object repetition triggeresolving mechanism independent
of the concrete priming condition.

The splitting of trials into two phases shows first that whemdhe repeated object is shown
in the same color, the stimulus identification is acceletatslso, if the repeated object changes
color, identification is unaltered. We show that positivieniing is a perceptual effect, and negative
priming happens during target selection or response genera
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7 Selection or Response Effect

The results of the last chapter left open whether negatieipg is produced during target se-
lection or response generation, due to the lack of a time endrkbetween those two phases.
The present chapter will now solve the question with a se@xperiment that provides multiple
reaction times per trial, i.e. one for perception and tasgdtction, another one for the response
generation phase.

The design is tailored for a critical test of response resili¢gheory, see Sectidn Z.4.3, which
postulates priming to happen during response generetiothé®mund et al., 2005). In order
to prevent a decision about the appropriate response hatitarget is selected, we extend our
paradigm by a comparison word which is spatially separatet the stimulus objects, such that
a simultaneous evaluation is impossible. If the targetaitj@d the word match semantically, a
button assigneglesis to be pressed, if not the alternatiwe button is the correct response. Due to
the spatial separation, a gaze shift from stimulus objectise¢ comparison word is required which
we detect by recording the electrooculogram. As the ISAMctirally depends on a one-to-one
mapping of stimuli to actions, we derive our hypotheses pdiom response retrieval theory.

We will begin the chapter with a description of the gazeighafadigm in section 7.1 and present
the derived hypotheses in sect[onl 7.2. The experimentakpioe and the analysis are explained
in section_Z.B. Results are shown in secfion 7.4 and disduessectior/.b. The study reported
in the current chapter was part of the diploma project of Ma#t Ihrke, and has already been
presented in the corresponding thesis (lhrke, 2008).

7.1 Gaze Shift Paradigm

Response retrieval postulates that the systematic var&in reaction time are due to retrieval
of the prime response, which then can either facilitate ad [® a conflict, see Sectign_Z14.3.
The fundamental assumption can be tested in an experimsgttailg that records both the time
until target selection is finished and the actual reactioretuntil the response is given. Such an
experimental setup must ensure that no information abeutahrect response is available before
finishing target selection. Admittedly, such a manipulatiotroduces a severe change in trial
processing compared to traditional negative priming erpemts that allow for a parallel handling

of target selection and response generation.

eyemovement motor command
target selection | response selection
1 *
; | | tir;e
trial onset glance onset response

Figure 7.1: Hypothetical time course of processing during one trialhie tjaze shift paradigm.
First the target is identified and selected, followed by agmeyvement to focus the
comparison word. Then the response is generated and pedorm
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7 Selection or Response Effect

Acquiring information about the time taken until the targelection process finished should not
interfere with the natural course of processing of the.ttrabrder to achieve minimal disturbance,
a natural marker of the completion of the target selectiatbde measured. In the current study,
the movement of the eyes from the target/distractor comghdutthe direction of the comparison
word is used as time marker. The overlapping alignment gktaaind distractor, as it has already
been described in chaptér 3, allows for a foveal processingrget and distractor at the same
time. To elicit an eyemovement that is strong and reliableugh to be measured validly from
the electrooculogram (EOG), the distance between stimabjects and the comparison word is
chosen large enough so that no simultaneous processingsibf® Therefore, we ensure a serial
processing of the two parts of the trial as visualized in fdtifl. Then the reaction time in each
trial is composed of several parts: the time taken by thestasglectiorR'S, the response selection
partRs and a constant time for the eyemovement and the motor comfand

R=R°+R*+C (7.1)

% v

<
L

&

Bus

Figure 7.2: Stimulus display of one trial: the comparison word is showtha bottom of the pre-
sentation screen. Participants have to shift their poiffixafion in order to complete
the task.

Averaging the interval from trial onset to the eyemovemavegan estimation far's, while the
time taken for response selection cannot be separated fi@nemainder. Sincécan be assumed
not to vary systematically with priming or response corditiany effects in the interval between
eyemovement and reaction can be assigned to the respoastaseinechanism.

During the experiment we record 60 channels of EEG and foanibls EOG for gaze shift
detection. As we want to focus on the behavioral part of theegment and the division of
reaction times into two parts, we will only shortly refer teetEEG related results.

7.2 Hypotheses

Rothermund et al. (2005) examined only DT, DD and controbitions. However, the underlying
mechanism of response retrieval can be used to derive goedidor further priming conditions.
Response retrieval theory postulates an automatic ratrid\the response of the prime trial trig-
gered by any similarity between the prime and the probe ajsfi be responsible for priming
effects. Whenever the appropriate response is repeatbd probe trial and some perceptual fea-
ture from the prime trial repeats, a facilitatory effect oolge response should occur. Accordingly,
a negative priming effect is expected whenever the primetlaagrobe displays share common
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Trial n Trial n +1

time

(500 — 1000 ms)

Response—Keys

Figure 7.3: A sample trial pair. Triah primes trialn+ 1, being the probe for trial— 1. Shown is
a DT condition with a switch of the appropriate response.eNlo¢ possibility to vary
response and priming condition orthogonally.

features and the required responses do not match. The@uesthains, whether the assumption
of Response Retrieval holds true for other priming condgitike TD as well, i.e. any of the condi-
tions DT, TT, DD and TD leads to an acceleration whenever fipeapriate response is repeated,
but to a slowdown if the responses changes.

Distractor Inhibition theory predicts a slowdown in reaatitime for TD trials, as remaining
activation of the prime target has to be inhibited additiynaEpisodic Retrieval would expect
similar modulations as the retrieved tendency to respotigetprobe distractor has to be resolved.
Unfortunately, the ISAM as described in chagdikr 3 is not abldeal with comparison tasks and
therefore cannot predict effects of a situation with anagtinal variation of priming condition
and response. Only half of the eight conceivable conditfmiraing x response relation can be
predicted, see table’All5. Regarding the TD condition whi@ntangled with a response switch,
the ISAM predicts a negative priming effect.

Concerning the localization of effects in one of the two etagf processing, response retrieval
theory would expect priming effects in the response sargbart of the reaction timg's. But
if negative priming is produced on the level of semantic espntations as assumed by the other
theories, the effect would be present in the target seletitioe RS,

As discussed in chaptEl 4, the research on the electropbgtial correlates of negative prim-
ing is very sparse. A potential candidate for a negative imgnsensitive component is the P300.
Since the current study is relatively similar to the desigaatibed by Behrendt et al. (2009), sim-
ilar results are to be expected. However, there are sonereliftes in the design that could affect
the occurrence of the expected P300 effect. The eyemoverhanges the percept and could thus
trigger a second P300 for evaluation of the new stimulusctimeparison word. It is thus unclear
whether the expected reduction in P300 amplitude would rofmstthe first or the second part of
the display. Also, the modulation in the late PSW could belharobserve due to the expectation
of generally longer reaction times in the current experimé&tegarding the location of negative
priming sensitive components on the scalp, we could exbecptefrontal areas to yield the best
results since these have been shown to be sensitive to veegatining in fMRI studies (Wright
et al., 2006).
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7.3 Gaze Shift Experiment

7.3.1 Design

In order to produce strong priming effects, we use a conedmhject comparison task. The
response is given via a forced choice equal vs. differenisagcwhich is recorded via button
presses. In each trial the subjects has to compare a greg tdoject accompanied by a red
distractor with a grey word and to decide whether they areasg¢ically identical or not, see fig-
urel7.2.

The main part of the experiment consists of 924 trials. Thmipg condition in each trial
and the repetition of the required response serve as indepenariables that are varied within
subjects. 5 priming conditions are realized: TT, DT, DD, Tidacontrol. The sequence of
responses to triah and to trialn+ 1 serves as a second independent variable, which can take 4
different values.yy, nn, yn andny depending on whether yes or no is the correct response in the
prime and the probe trial respectively. Due to a balancingesfand No responses we summarize
repeated responses, i.e. yy and nn, under the label sr far sesponse and altered responses,
i.e. yn and ny, under dr for different response. Altogetaes,(TT, DT, DD, TD, CO)x 2 (sr, dr)
design with two within-subject variables (priming conditiand response relation) is realized.

Other factors known to influence the priming effects aretadd or randomized in the design.
The RSl is randomized between 500 and 1500 ms, yielding gemdts in terms of strong negative
priming effects in our previous experiments (see e.0. Bwattret a.., 20C9). The assignment of
left or right hand to one of the responses is balanced ovgeatisb The number of trials are equal
for each priming condition and for each of the four resporeations. The different stimulus
objects used in the study are equally distributed over theipg and response conditions as well.
The stimulus sequence is thoroughly designed such thaicpable patterns are avoided, while
the optimal distribution of the conditions over the triadbnserved.

When designing a comparison paradigm, a further effectrgsostiich might interact with the
effect of interest, i.e. in our case negative priming. Resps that require a confirmative Yes
answer can be given faster than negative No answers, wha¢ Sih984) explains by additional
cognitive effort is required to generate a negative answarpared to confirmative answers. In
order to eliminate a possible confirm vs. negate effect inresults, Yes and No responses are
equally distributed over the same response vs. differamtamse trials. Nevertheless, we check
for an interaction in Sectidn 7.4.1.

7.3.2 Participants

16 (8 male, 8 female) participants took part in the study witban ageM = 24.8 years, and
standard deviatio®D = 3.2 years. Participants were rewarded either with moneygq}0or by
course credits. All participants have normal or correctedormal vision and are right-handed.
They have no red-green deficiency. All subjects were naitkeg@urpose of the experiment and
had not taken part in a previous study employing similar ghirea material. The participants are
requested to fill out the Activation-Deactivation AdjeetiChecklist (ADACL) (Thayer, 1936), a
vocabulary test (Schmidt and Metzler, 1992) and the nurabenbol test from theéNirnberger
Altersinventar(Oswald and Fleischman, 1982), to ensure a homogeneoup gfsubjects.

7.3.3 Procedure

The subjects were instructed to make just one eyemovemetrtade They should first identify the
target object beyond doubt, then fixate and identify the veord finally, press the correct button.

94



7.3 Gaze Shift Experiment

The experiment started and ended with a baseline phase ga36siach, where only green objects
were presented and have to be named. After 30 introductainirig trials, 924 experimental trials
had to be completed, with breaks every 84 trials.

Each of the experimental trials was preceded by the prasgamtaf a fixation cross for 500 ms.
When the response was given, the display was cleared. Teerscemained completely empty
for 500 to 1000 ms randomized over all trials.

7.3.4 Extraction of Partial Reaction Times

In order to find the gaze shift latency, 4 EOG electrodes éeét right hEOG and VEOG respec-
tively) were attached to the ocular muscles. Electrooatéda is well suited to record eye move-
ments (Jovce et 2., 2002) by measuring the potential fltiomdue to the movement of the eye
which is a dipole. The angle of the eye movement is approxpairoportional to the resulting
change in the recorded potential. Here we are only intefésta valid measure of the latency of
the saccade downwards. Therefore we just consider thenéfthee right vEOG electrodes.

The saccade manifests as a fast positive shift of the patentboth of the two electrodes simul-
taneously. In afirst step, the data from the EOG channelsvipss filtered with a cutoff at 20 Hz.
The data is then segmented relative to markers for the miggtin interval§—500,2000 ms. We
seek for the global maximum in the first discrete derivatseg figuré_714. If it is present in both
left and right EOG within a time window of 100 ms, we considsipeak latency aR'S. Otherwise
the trial is marked as invalid and not further processed.

(a) right vEOG

100

50

_50

-100~

~150 L L L L
-500 0 500 . 1000 1500 2000
ms

(b) left vEOG

100

nY

- L L L L
-500 0 500 1000 1500 2000

Figure 7.4: Extracting the largest vertical eyemovement. The plot shihw potential fluctuations
in the (a) right and (b) left vVEOG electrodes (blue line) amelfirst discrete derivative
(red line) in a sample trial. The maximum indicating the gsamarked by a cross.

95
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7.3.5 Analysis of Behavioral Data

A global analysis of variance is applied to the completesitaf reaction times. In case of signif-
icant main effects or interactions within the factors, #"§NOVAs for the factors are computed
until individual differences can be contrasted with singlests. If more than one t-test is applied
to the same dataset, the Bonferroni-correction is apptetthe p-values. Generally, a result is
treated as significant, when thevalue fell below 005. The codes of significance used are as
follows: x for p < 0.05, xx for p < 0.01 andxxx for p < 0.001.

7.3.6 EEG Data Analysis

In a first step, visual inspection of ERPs is used as an appadiin for the location of possible
effects. Once an approximate time window is determined,ratyais of variance is carried out
on the mean amplitude value, treating electrode and expetahcondition as repeated measures.
The main effect of electrodes is considered trivial. In caksignificant interactions, pairwise
planned contrasts are computed to find out which electrodesralitions differed significantly.
The contrasts are again guided by visual inspection. In oaseveral simultaneously applied
contrasts, the Bonferroni correction is used to avoid aibitise family-wise error rate.

For analysis, data is downsampled to 500 Hz, bandpass dilith a low cutoff at 056 Hz and
a high cutoff at 20 Hz. The data is then split into segments5ffo2ms, i.e. the time window
[-500,2000 ms relative to the markers for stimulus onset. For furthedysis, we exclude all
trials that were classified as invalid in the outlier analysf behavioral data. Next, a baseline
correction in the interval-100 0] ms relative to display onset is carried out, followed by aleru
artifact rejection that rejected all data that crossed 100t absolute values. Then, we rerefer-
ence algebraically to the mean of TP9 and TP10 and again pgdiorm the baseline correction
in the interval[—100,0] ms. Then, a finer artifact rejection with threshatd00pV is employed.
Finally the data is sorted and averaged according to expetathcondition.

7.4 Results

We will first have a look at the overall reaction times and Idok a response repetition effect.
Then we split the reaction times according to the gaze timéenand again determine priming
effects in the two segments. In the end we will shortly comsBHEG correlates of the observed
effects.

7.4.1 Response-Repetition Effect

Concerning the possibility for side effects of the confirm wsegate effect, the 5 2 (prim-
ing x probe response) ANOVA shows the expected main effect fabgresponsef (1,15) =
39.741 p < 0.001. No responses are consistently slower for all primingd@@ns. But although
the interaction probe responsepriming becomes significank (4,60) = 2.88 p < 0.03. Sepa-
rate ANOVAs showed that only in the comparison of DD and aans the interaction between
probe response and priming significaftl, 15) = 5.50, p < 0.05. But on a level further the com-
parison of priming conditions for each of the responses dogseach significance (Yes answers,
t(15) = 0.9, p= 0.38; No answer$(15) = —1.77, p = 0.10), finally justifying a pooling of trials
according to the response repetition or switch, disreggrtlie concrete answers.

A 5 x 2 ANOVA for the reaction times yields main effects for prirgiconditionF (4,60) =
6.63, p < 0.001 and response repetitiéi(1,15) = 19.48 p < 0.001 as well as a significant in-
teraction primingx response repetitior; (4,60) = 2.85, p < 0.05. The response is significantly
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7.4 Results

delayed over all priming conditions when the same respoasadbe given compared to when
the required response switched. To specify the reactioa &ffects, 4 separatex22 (priming x
response repetition) ANOVAs are carried out for all primgunditions against control.

DT Main effects for primingF(1,15) = 4.62, p < 0.05 and response repetitioR{1,15) =
9.94, p < 0.01. The expected interaction does not reach significahtg,15) = 0.54, p = 0.47.
DT responses are slower than control responses, indepgnderesponse repetition. Conversely,
responding is delayed only for control trials when the resgois repeated(15) = —2.67, p <
0.02 but not so for DT trialst(15) = —0.67, p= 0.51.

TT Main effects for primingF (1,15) = 9.28, p < 0.01 and response repetitioR{1,15) =
15.78, p < 0.01. The expected interaction does not reach significahck,15) = 0.91, p= 0.36.
Responding is delayed in response repetition trials fan lbohtrol and TT trials, and the reaction
times are shorter in the TT condition, regardless of theaesg.

TD Only the main effect for the response repetition reachesifgignce, F(1,15) =
1834, p < 0.001. Again, responding is delayed in case of a responseétiepet

DD The interaction primingx response reaches significanég/1,15) = 6.41, p < 0.03.
There are no main effects. Separate t-tests reveal thaetipomses are significantly slower in
DD trials when the response shift$15) = —2.02, p < 0.05 but somewhat faster or at least not
delayed, when the response has to be repetits), = 1.25, p = 0.23.
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Figure 7.5: Summary of the results clustered by response repetitigmifiances in the compar-
ison to the corresponding control condition are indicated.

Figure[Z.5 and table”’A.16 in AppendiX A give a summary of tigmificant results. The results
are largely inconsistent with response retrieval. A gdreoavdown in responding is present for
the DT condition, and a general facilitation for TT, indedent of response relation. Only the DD
condition shows a significant interaction.

7.4.2 Partial Reaction Times

To answer the question whether priming effects are proddecrithg target identification or re-
sponse selection, we computed the partial reaction timesittised in Subsectiof 7.3.K° and
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7 Selection or Response Effect

RS then entered as dependent variables into a similar anagsdescribed above. Responses
were again clustered by response repetition.

The overall 5< 2 (priming x response repetition) ANOVA using®as dependent variable re-
veals only a main effect of priminds (4,60) = 5.62, p < 0.001. Because of the absence of an
interaction between response repetition and priming, we jmool over both response relations.
Separate analyses for the priming conditions show thatffeetds present in the DT condition,
F(1,15) =9.32 p < 0.01 and the TD conditiorf (1,15) = 6.92, p < 0.05, but not in the DD and
TT condition F(1,15) = 1.79, p=0.2 andF(1,15) = 1.78, p= 0.2). No other main or interac-
tion effects are present. The target selec®his thus delayed in both response repetition and
response shift cases in DT and TD trial€l6) = —2.72, p < 0.05 andt(15) = —2.84, p < 0.05).

The equivalent ANOVA for the response selection tiRié results in a main effect for prim-
ing condition,F(4,60) = 5.17, p < 0.001 and a main effect for response repetitibril, 15) =
9.99 p < 0.01. The primingx response-repetition interaction is not significaRt4,60) =
1.34, p=0.26. Again, we combine response repetition and responselswidls of one priming
condition. Separate ANOVAs for the single priming conditsocontrasted against control trials
show that the main effect for the response repetition isgmtesm all priming conditions (DT,
F(1,15) = 13.89, p < 0.01; TT,F(1,15) = 6.29, p < 0.05; TD,F(1,15) = 5.43, p < 0.05; DD,
F(1,15) =5.72, p < 0.05). The response selection is thus significantly slowemathe response
has to be repeated in all priming conditions. The main efieiching stems exclusively from the
TT condition,F(1,15) = 11.67, p < 0.01.
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Figure 7.6: Summary of the results for the partial reaction times poalegr response relation.
The left plot showsR'® and RS stacked on top of each other, the right shows the
priming effects for both partial reaction times.

7.4.3 EEG Correlates

For completeness, we shortly report the results from EE®sisa In order to find correlates for
the observed behavioral effects, we contrast TD and TT agaémtrol. Because no interaction of
response relation with the partial reaction tini®s andR's is present, the ERPs are pooled over
response relation. Because the target selection was yisoatipleted afterz 500 ms, early ERP
components are scanned for correlates oRfeffect.
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Figure7.7: Electrodes AF3, Fz, AF4, P1, Pz and P2 for control, DT and Talstr

Visual inspection of the data reveals differences of thedimms in an early time interval
[200.300 ms in the frontal electrodes. There seems to be priming tsenshodulation such
that the N1 is enhanced or the P2 reduced for the TT condiétative to control and vice versa
for the TD condition, see figule_1.7a. To confirm the visualresgion, a % 62 ANOVA (prim-
ing conditionsx electrodes) is applied to the mean amplitude in the intgR@0 300 ms post
stimulus. There is a main effect for primin§,(2,30) = 7.45, p < 0.001 and a significant in-
teraction primingx electrodeF (122 1830 = 2.92, p < 0.001. Pairwise contrasts of the condi-
tions in the frontal electrodes {FP1, FPz, FP2, AF3, AFz, AW#th Bonferroni correction show
that the priming conditions are indeed different from cohtr(95) = —2.53, p < 0.05 (TD) and
t(95) = 4.01, p < 0.001 (TT) and also that the priming conditions are substiyiiifferent from
each othert(95) = 6.39, p < 0.001. This pattern is only found in the frontal electrodes.tha
posterior cluster, only the P300 effect for the TT conditigi11) = 3.09, p < 0.01 is present and
no difference between control and TD is obsent¢ti11) = —0.81, p=0.42.

7.5 Discussion

The current chapter investigates the validity of the thicaieassumptions underlying response
retrieval theory by separating the critical response gaimr phase from stimulus evaluation and
target selection. We use a comprising set of priming cammiitiand equip each trial with a time
marker that divides the overall reaction into a part of taiggdection and a part attributable to
response generation. We are for the first time able to teriptoaalize priming effects according
to the two phases.

We find a main effect of response repetition. There was a stamdidelay in response repetition
trials compared to response switch for all priming condsi@xcept DD. It is common in forced
choice tasks with only a few response alternatives thaoress are delayed when the same re-
sponse has to be given to a new stimulus disglay (Marczirtski £2003). The effect is strong
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7 Selection or Response Effect

enough that repetition of the prime response is even sloWingials, which is counterintuitive in
the framework of priming.

As expected from the literature on yes-no response effSitmér, 1984), a very strong main
effect of probe response is present in the data. Negatipgmness are significantly delayed com-
pared to confirmations in all trials. However no differehiimpact of the probe response on
priming conditions becomes significant.

We derive predictions for all four priming conditions, poedinantly from response retrieval.
Surprisingly the overall result for condition TD was revadsompared to what response retrieval
suggests. TD trials are significantly faster for responseches compared to control trials instead
of response repetitions, a fact that is not only incongruétit response retrieval but also with all
other theoretical accounts to negative priming. Distmabrihibition predicts a decelerated rather
than an accelerated response due to persisting activdttbe ourrent distractor object stemming
from the previous display where it appeared as target. Hjgiseetrieval also predicts an increase
of reaction time since the tendency to respond to the reti®@bject has to be resolved to ignore
the particular object in the probe. Also predictions from IBAM tend in the opposite direction,
see tablé_AT5. Since none of the theories can explain thenads TD effect, future research
should investigate the TD condition more thoroughly.

Whether the prime response is retrieved or not does not apgrtl on the overall similarity
of the displays and additional processes beyond respotrgs/ad must be at work. The assump-
tion taken by Rothermund et al. (2005) that the prime resp@mcidentally associated with all
aspects of the prime episode might be moderated by a prosge®@osed in the framework of
temporal discrimination theory (Milliken et al., 1998). @Full match in a TT trial is detected by
the scanning process resulting in an automatic retrievilieprime response leading to faster or
slower reactions depending on whether the retrieved respiencorrect or not, respectively. For
the TD or DT cases the similarities are not strong enoughtfandisplay is classified as new thus
leading to a suppression of response retrieval.

The extraction of the partial reaction times produce a sejoer of priming effects. Apparently,
the DT and TD priming effects are produced in the target selectage, while the TT effect
occurs exclusively during response selection. For the Tiditimn, the division of the reaction
time into target and response selection revealed a hiddect @fhich did not reach significance
in the overall reaction time but is present in the targetcigle part. The temporal separation
of priming effects implies that more than one mechanismsgaasible for the different priming
effects. At first glance, the distinctive feature is whetherobject is repeated in a different color
(DT and TD) or in the same color (TT). Unfortunately, no sf@gaint priming effects in the DD
condition are visible in any of the reaction times. Respaes@eval postulates the priming effect
to stem from a conflict of responses. This is in clear conttaghe fact that the DT effect is
observed in the target selection phase.

One reason for our result pattern may be the alterations veke imethe paradigm. The forced
seriality of processing may produce unexpected side sffdeven if the stimuli are identical to
former studies that show strong negative priming, the madatpn of writing the comparison
word out of the focal area leads to a split of the stimulus ldigjin time, such that subjectively
two different stimuli are visible in each trial. As negatigeming is shown to be sensitive to
the length of the response stimulus interval, we might userg ng time interval between the
two presentations of target and distractor in the prime aadotobe trial, as the time to read and
process the comparison word adds to the interstimulusvidteAlso, the visual input of the grey
comparison word can act as a mask, albeit a very weak one aséty dissimilar to the target
and distractor objects, thereby interfering with negapivimming. As response retrieval assumes
the archiving of the last trial at the time of the responsetlzer reason for our result pattern
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may lay in the association of the response with the percetiteo€omparison word. Therefore,
similarities of the two stimulus compounds are not the ingoarfactor for triggering a memory
retrieval, but perceptual similarities between the congparwords. Unfortunately, we took great
care in designing a clean stimulus sequence, thereby eliedras much additional repetitions as
possible, thus permitting repeated comparison words sxely in TT-yes trials. That is why we
are not able to rerun the analysis based on the factor of vimithsty.

7.6 Summary

After the last chapter identified retrieval based theoriebéd better applicable than representa-
tion based theories, we then wanted to test the two promigxarples against each other. We
introduced a time marker between the target selection pinagee beginning and the response
generation phase, where the crucial difference betweeaodipiretrieval and response retrieval is
supposed to become apparent. In order to least disturb biyecsa processing of trials, we forced
a detectable eye movement from the stimulus objects on theftthe screen to the comparison
word at the bottom. The obtained results showed that diffgpeiming conditions behave dif-
ferently in the two partial reaction times. Our experimembwsed that DT and TD effects occur
during target selection while TT produced a facilitatiorregponse generation, thereby favoring
episodic retrieval theory over response retrieval.
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8 The General Model for Negative Priming

We showed in chaptéll 6 how computational modeling is ableltarce the discussion about the
applicability of negative priming theories. Thus it is dabie to have a computational implemen-
tation for each theory. A direct reproduction of the only gartational model besides the ISAM,
the distractor inhibition model ty Houghton and Tinger (£99s not possible. In personal com-
munications, the authors stated to have lost any source @agtethe years. All other theories
are described in a very abstract way, often using keywordsnonstandard way, like episodic
memory does not match the functions postulated by episatieval theory, see sectibn 812.3.
Such unspecific formulations of theories, each postulatifigrent mechanisms to cause negative
priming, are hardly comparable.

We therefore developed a computational model that repteadramework capable of acting on
any experimental paradigm and representing the mechamisspssed by each of the theoretical
accounts to negative priming. Starting from the differerdggsses interacting while an action
has to be selected on the basis of perceptual input, we cotedir several building blocks for
the model each having a physiological counterpart. Thesgefeveral research fields have to be
integrated despite their diverging vocabulary. Each ad¢hadocks is implemented using the same
realistic activation dynamics as the ISAM. Priming effeetserge by the interplay of all aspects
during a simulation of the General Model.

The following chapter will motivate the General Model in sec[8.1 and describe its compo-
nents and their biological counterpart in secfiod 8.2. i8e@.3 presents the dynamic equations
on which the General Model is based, and sedfich 8.4 explainsthe different theories can be
tested. We then show some exemplary simulations in sed8&hand8.J6. The present introduc-
tion of the General Model will be concluded by a critical dission about the strong point and the
weaknesses of the General Model in secfioh 8.7.

8.1 A Framework to Test all Negative Priming Theories

The starting point for the General Model was our attempt tierk our implementation of the

ISAM described in chaptdrd 3 in order to simulate a word-piEtasomparison task like the one

introduced in chaptél 7. First of all we sought a way to inoogpe different paradigms. The word-
comparison task is a good example for what problems aris@ aimeing for a generalized model.

Compared to the voicekey task described in sedfioh 2.2, thve-picture comparison provides

two different combinations of features in the stimuli: sbalor and word-color. To be accurate,
there is also a space dimension in both as they appear orediffecations on the screen. Another
striking difference between paradigms concerns resporshalities. In the voicekey paradigm a
direct association of semantic representation and spoked i8 possible. Whereas the word-
picture paradigm needs an additional stage of processitigeasvo semantic representations of
word and picture have to be compared and the match or misrhagto be mapped on a yes or no
response, still disregarding that those responses arert@pped onto a left or right hand button
press. Thus, we were not able to conserve the simplicityefrtiplementation of the ISAM.
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Figure 8.1: Interaction scheme of the different components of the Garndodel. Perceived

stimuli are decomposed into single features, each of wisicepresented in a single
variable in the according layer. Object identity is keptkaf by activations in the
binding layer, associating the different features of a ghire object. Most paradigms
require a semantic evaluation of the stimuli in order to gateea response. Therefore
the semantic layer gates information flow from the relevaatdres to the action layer
which decides on the action to perform. Parallel to the miation flow from percep-
tion to action a so-called central executive steers the mavior with regard to the
current task, i.e. providing information about the targed ¢he mapping of semantic
variables to actions. According to the similarity of thegapt and a memorized stim-
ulus configuration, the memory layer feeds back informatibthe former trial. The
similarity signal also affects the effectivity of transisien between features, semantic
layer and actions as well as between memory itself and agttbe latter inversely to
the first.
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8.1 A Framework to Test all Negative Priming Theories

8.1.1 Different Paradigms

The description of the initial implementation of the dista inhibition theory (Houghton and
Tipper, 1994) is able to deal with different perceptual ing@&timuli are recognized by specialized
feature units. The decomposition of the percept into thevesit feature dimensions offers good
flexibility of the model to receive very different stimulies sectioi 8.21. Such a mechanism
nicely determines on a more concrete level the differengeacddigms. This is supposed to be
responsible for the diverging results of negative primingl®es. After decomposition, it is neces-
sary to keep track of object entities, which can be realized texible feature binding mechanism
(Treisman,_1996). For the General Model we decided to imphgra simplification of an earlier
attempt to bind feature representations by means of pemsispiking activity (Schrobsdorff et al.,
20074a), similar to the simplification leading from poputatiactivity of a spiking network to the
intrinsic dynamics of the ISAM in sectidn_3.1.

In order to account for different response modalities, veeia® two separate layers — one con-
taining activations of semantic representations, therathe activations of certain action schemes.
Between these two layers, an abstract mechanism we calhterecutive implements a possibly
nontrivial mapping. The central executive also providdsrimation about which feature instance
codes for the target and distractor, and which feature déinanis relevant for responding, see
sectiof 8.25.

8.1.2 Inclusion of Theories

So far we have explained the points that go beyond the ISAMdh&a necessary to deal with
several experimental paradigms. Additionally, the corigoar of diverging theoretical concepts
needs clear formulations of the different theories. We wieus looking for ways to include the
mechanisms proposed by other theories into the General IModiethus make it worthy of its

name.

The inclusion of distractor inhibition into our framework straightforward. The target is no
longer boosted, but the distractor is subject to inhibitiBimultaneously, activations below base-
line are necessary for the inhibitory rebound. We theregingply shift the arbitrary baseline
activation from zero in the ISAM to /2, as the exponential dynamics of the ISAM which we want
to reuse in the General Model does not allow for negativevaiidins.

Episodic retrieval theory requires the explicit modelinfgneemory and retrieval processes.
Therefore, we add a layer which contains (mostly short-fenm@mory that is able to store a snap-
shot of the state of the dynamic system subject to decay ower The memory layer is also able
to compute the strength of retrieval determined by the aintyl of the current percept and the one
stored in memory. Retrieval is modeled by partially restgriormer system variables. Memory
gets an update at the most prominent point in a trial, i.e nvthe decision takes place.

Response retrieval manifests in the General Model as a iicagibn of episodic retrieval.
Only system variables of the action layer are restored dumtrieval. The retrieval strength is
still determined by similarity of current and stored petcep

Feature mismatch theory states a conflict whenever an alijaatertain location changes shape
or identity, but not necessarily its role as target or digtra Abstracting from the very specific
location paradigm on which feature mismatch is based, wenassa generalized form to be in
line with feature mismatch theory. The binding of one featinto a new stimulus entity is in
concurrence with existing bindings of this feature. Suclocarrence is inherent in the General
Model, as it only has a single variable for a specific featastance. If e.g. two red objects are
presented, both object representing bindings will poirthtosame color variable. Any activation
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8 The General Model for Negative Priming

that is exchanged via one of the bindings is then further ggaped through the second binding.
In the case of still existing bindings from earlier trialsetsituation is similar.

Temporal discrimination theory acts on the same episodinonglayer as the episodic retrieval
account. The probability if a stimulus display was just sean be computed by looking at the
similarity between current and memorized percept we ajré@dre. This value clearly is highest
when both configurations entirely match. As a percept is nra®o when a decision is made, all
stored values of variables that played a role in the ladtaliaady acquired prominent activation
and the new percept first has to be built up. The similaritihisstslowly rising from zero to its
final value. We now compute the difference of the similarigyiable with a prototype similarity
signal that separates perfectly similar displays from glithat vary in only one feature. In order
to account for initial fluctuations, the difference has tgosiss a certain threshold that is large at
trial onset but shrinks with time in order to generate anr@d+ classification. If a display is rather
similar to the memorized one, the similarity value will stagpgest within the uncertainty interval
preventing an old-new classification.

As the classification has been done, temporal discriminatieory assumes the affection of
information flow. In the presence of new stimuli retrievabiscked and direct computation is
facilitated. And for old stimuli the direct computation isopped and retrieval will be performed.
This is incorporated into the General Model in terms of matah of transmission strengths be-
tween the corresponding layers: from semantic to actiodifect computation and from episodic
memory to action for retrieval.

The spirit of the dual mechanism hypothesis is inherentéoGlneral Model, as it will cover
all the mentioned theories simultaneously. According #adhove brief descriptions it becomes
evident that the mechanisms postulated by inhibition arektiold theory are located in the more
sensory part of the system, whereas the retrieval accoohts kter parts. Thus, coexistence is
trivial. The localization of theories in the concrete fotation of the General Model also unveils
the differing nature of the two big parties in the discussbout negative priming. As we already
pointed out in chaptdr 6, distractor inhibition and the ISAk perceptual theories, whereas the
retrieval accounts propose influence of selection prosesse

8.2 Characterizing System Components

The last section briefly described the minimal setup of thegead Model in order to still cope with
a variety of paradigms and to incorporate assumptions fibtineoretical accounts. The following
section will review facts concerning the correspondinddig blocks of the General Model, see
figure[8.1. There are two sources of information about thpe@s/e components. One is the
classification by behavioral psychologists. The other @ndelivered by neuroimaging studies
that allow for a spatial and temporal localization. Thedatbrocedure is usually based on the
first one, as neurophysiological results are interpretetherbasis of knowledge from behavioral
experiments.

We already introduced the possibilities to obtain inforimraabout mechanisms involved in task
accomplishment from EEG data in chapiérs 4[@nd 5. Anothlntgae, functional magnetic reso-
nance imaging (fMRI) provides very accurate spatial infation. But the nature of the measured
blood oxygen level dependency (BOLD) is still unclear evanaccellular level, not to speak of
its relation to behavior. Nevertheless, fMRI recordings arwidely used tool to noninvasively
obtain spatial information about brain processes. If diifte repeated, the BOLD response is
weaker than for new stimuli, which can be explained by eitbfahe three hypotheses: fatigue,
in the corresponding subnetworks less energy is presentodiecent activity; facilitation, less
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oxygen is consumed, as the units are still in an activateeé;séad sharpening, neurons coding
for features irrelevant for identification show less atyiGrill-Spector et al., 2006). Support
for the latter hypothesis comes from a study consideringrieenorization of novel stimuli with
simultaneous recording of EEG and fMRI (Fiebach et al., 200fwever, there is also evidence
that the often observed lower BOLD signal is independentiofidus repetition, as it is possible
to vary them orthogonally (Ganel et al., 2006). The hypaghtst a lower BOLD signal reflects
accumulation of neural activity (James and Gauthier, 2@66)vell with the findings of increased
activation in priming situations; (Fiebach et al., 2005)higher cognitive areas, faster processing
is related with less BOLD (Maccotta and Buckner, 2004). Qné/presence of distractors reduces
activation in the inferiotemporal lobe, whereas targetsamce activation in the prefrontal cortex
(Jiang et al., 2000). Concluding, even if the meaning of tleasared fMRI signal is still under
debate, we can learn from it about the brain areas that eéxfideriminative signals in the different
priming conditions. Those areas are good candidates fon@esof the systematic reaction time
variations. In the current section, we will discuss evidefar the individual components of the
General Model.

8.2.1 Feature Layers

In the visual pathway the percept from the retina is decomgha®o low level features, each being
represented by different subsets of neurons (Van Essen, @0812). Later, the low level repre-
sentations are recombined to form higher order featuredjetcts from visual input (Prinzmetal,
199%5). Feature decomposition bears excellent flexibility & sensory system, but comes with
the disadvantage that the distributed information aboublgect has to be bound together for
the recognition of objects as entities (Treisiran, 1996c8Byonization might play a role in this
context (Singer, 1995), but the particular implementat#oyet to be specified. In the realization
of feature binding in the General Model, we refer to featureding in terms of our earlier fea-
ture binding model on the basis of localized excitations gpiking network (Schrobsdorff et al.,
20074a).

In order to cover most paradigms with visual stimuli, we @aiie General Model in the pre-
sented form with feature layers to detect color, shape timtand word(-shape). See Schacter
et al. 2004) for the neural distinction between Gestadtpghand the shape of written words. Fea-
ture bindings are realized as a finite list of objects, eactt afsfeatures, and a binding strength
which specifies activation exchange between the featurggeaiccording object.

Biologically, the binding seems to be located in the palieteiex as some neurological patients
show a dramatic breakdown in the ability to see objects $§fmain, 19€8). In the formation of
binding, attention seems to form a crucial role, as neuraravars associated with attention are
essential for the formation but not for the maintenance ndlinigs (Botly and De Rosa, 2007). In
our terms this means that objects from currently perceitieauéi are bound, and the binding can
survive the vanishing of the perceptual input. Bindingssiable against stimulus changes up to
the point where the limited resources are in use, i.e. thamar number of bindings is reached.
Then new stimuli will take over the least active binding slot

8.2.2 Semantic Representations

Many negative priming paradigms require stimulus evatuwatin a semantic level, e.g. the word-
picture comparison task introduced in chapler 7, the sfiseihStroop cards which are the origin
of negative priming research (Dalrymple-Alford and Bud#866), or the naming of pictograms
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8 The General Model for Negative Priming

in the voicekey paradigm from chapferi2.3. Semantic reptatiens are closely related to lan-
guage processing (Demb et al., 1995), which is rather diged over the entire cortex.

Semantic tasks correlate with higher activity in the lefienor frontal lobe, categories and
concepts can be attributed to the temporal lobe, wheredsextand figurative demands distribute
over the right hemisphera (Bookheimer, 2002). Semanticqasing tasks with either pictures or
written words are found to activate a network of regions @nl#it inferior frontal lobe, left anterior
temporal lobe, left middle and inferior temporal gyri, l&fp junction and the right cerebellum
(Devlin et al., 2002). Despite the distributed nature of aptic processing, the General Model
includes only one layer holding strengths of the semanfitesentation of a certain stimulus
in a similar way to the ISAM. The General Model also inheritad attention mechanism from
the ISAM, i.e. an adaptive threshold relying on activatiomshe semantic layer. The threshold
controls information propagation to response generation.

8.2.3 Episodic Memory

Episodic retrieval theory, see sectlon214.2, expliciéfers to episodic memory for storing infor-
mation about one experimental trial which is retrievedrlate Unfortunately, there is a mismatch
with what is called episodic memory in the field of memory eesbh. Episodic memory in that
context is generally seen as the capacity to reference medregperiences in the context of both
time and space: (Tulving, 2002). Experienced sequencesarmnzed together with temporal in-
formation. The basic paradigm to consider such memoriesgiarding place cells in rats and the
encoding of the experienced sequences of visited placemfiippocampus, and then the transfer
to long term memory during sleep (Tsodyks, 1€99; Seinows#tiestexhe, 2000; Buzsaki, 2005;
Suzuki, 2006).

On the contrary, a trial is more or less static in most negatiming paradigms, and also the
temporal sequence of trials is not considered beyond tleettlirpreceeding one by any of the
theories. The interference of a memory with behavior is m&slito depend only on the time
elapsed and stimuli encountered in the meantime. In spiteeainusual usage, we will stay with
the term episodic memory for the memory process involvedeiative priming experiments, as
the General Model is dedicated to advance the discussiorgative priming research and thus
should use the language common in that field. Hence, to gilesa iclea of the episodic memory
of negative priming research, we will now discuss the predesgjuestion in detail.

Following the theory on working memory hy Baddeley and Hi{¢tB74), who assume a con-
scious awareness to retrieve information from episodic orgnBaddeley, 1998), the episodic
memory layer of the General Model is not located in the theac buffer but rather in the other
parts of working memory (see Baddelay, 2000, 2001). Our nmgfager goes beyond the notion
of short term memory as the maintenance of activation bytte (Cowan, 19€8). During typical
priming experiments, no attention is devoted to distractord past episodes. Nevertheless, the
corresponding representation is said to be retrieved, fargtad to be memorized before.

Physiologically, memory encoding is related to activitytiire left prefrontal cortex, whereas
retrieval is more associated with right prefrontal cor’&ilYing et al., 1994; Fletcher et al., 1997).
This is conjectured to be due to different control mechasismthe two tasks (Craix, 2002). We
would rather like to speak of a memory trace "whatever thisgwut to be” (Cralk, 2002) as
a neural blackboard. We solve the stability-plasticity jbeon that memories have to be formed
reliably and instantly but have to persist for some time dwvetine presence of interfering input
(Norman et al.. 200%; Suzuki, 2006) by implementing a lichilember of memory slots that hold
the entire state of the system at a certain point in time. &unkmory is assigned a strength which
decays with time. In our scenario, individual instancesthesonly forms of experience that are
represented, as Logean (1388) postulates for neurologpagsentations of memories.
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8.2 Characterizing System Components

8.2.4 Memory Retrieval

Memory research distinguishes between involuntary rettiand willing recollection (Yonelinas,
2002). Physiologically measurable is the so-called familf signal, which becomes visible in
the EEG past 300ms after stimulus onset. Familiarity israssuto trigger further retrieval, as
a spontaneous recognition can lead to willing recollec{ammer et al., 2006; Ecker et al.,
20071h,a). There is a functional dissociation of dorsalrpréfl cortex for context monitoring and
ventral right prefrontal cortex for retrieval itself (Hemset a., 1929). Context monitoring means
the evaluation of the appropriateness of a retrieved epidddner and Hirsch, 2005). Topography,
latency, and polarity of the familiarity signal in EEG-ddars resemblance to the old/new effect
related to episodic memory retrieval (Ruga and Nagy, 1989).

The two approaches of episodic retrieval and temporal idideation theory predict differing
mechanisms controlling the strength of memory retrievak first theory assumes that involuntary
retrieval is positively correlated with perceptual simitha of the two trials. The latter postulates
another perception based classification of the encounggrisdde being old or new. When signif-
icant evidence for an old stimulus display is cumulated, rietrieval is triggered, simultaneously
stopping the direct response generation.

The General Model performs in any case the computation ofrélifaity signal by compar-
ing the current percept with the memorized one. In one casdamiliarity directly determines
the strength of retrieval, i.e. very familiar situationaisa a strong retrieval, whereas unfamiliar
stimuli cause very little but still positive retrieval. lhe other case, the system holds a template
time course of a familiarity signal separating the time sesrof the familiarity signal while en-
countering a perfect match of stimulus displays and a paubfequent displays that vary in one
single feature. Greater familiarity than the templategatis the identical stimulus configuration,
while lower familiarity is considered as being produced byew display. In order to account for
the uncertainty of the signal early in the trial, the Genddaldel implements a shrinking corri-
dor around the template curve in which the evidence of thglalisbeing old or new is not yet
significant enough.

8.2.5 Central Executive

Though having a high degree of complexity, the General Magstill a very simplified system
compared to biology. The General Model does not comprisechamsm to autonomously adapt
to the diverse demands of the different paradigms. We ratbsrme a mechanism to be in charge
of the adaptation and to adjust several parameters or nggpihhe discussion about how the
brain solves the adaptation to new situations and tasksghtaup the famous, but most likely
inexistent homunculus in the brain, steering the system bigla abstraction level and keeping
track of long-term goals.

The corresponding building block of the General Model idethicentral executive (Cowan,
1988), not in the meaning of an “reclusive autocrat” (CraiB02), but as an emergent property of
interacting subsystems (Barnard, 1985; Teasdale and Ba1H893; Bressler and Ke so, 2001).
Even if there is no consensus on the necessity of a centraliixe in memory functions (Badde-
ley,1993; Johnson, 2007), we will use the term in order t@idles the sudden change in system
behavior if it is presented a new task. Concretely, we petite General Model with the task
demands by specifying the top-down input modulating taogetistractor activation and a set of
mappings each describing the input to the action layer fartain paradigm.

109



8 The General Model for Negative Priming

8.3 Implementation of the General Model

After the thorough examination in the previous section othamisms contributing to the pro-
cessing of a negative priming trial, and thus in questionrofipcing negative priming, we will
now come to the concrete description of how we implementedabneral Model. Again, we are
faced with the problem of translating abstract conceptsot@wiete mathematical dependencies.
The way of implementation determines the behavior of théesys Thus, the correct interpreta-
tion of theories is crucial for the success of the model tagiveheories against each other. The
following implementation of the the General Model is written an abstract mathematical way,
which is necessary to be explicit enough to allow for a repotion of the simulations, an aspect
we consider to be very important in computational research.

Formally, we will use an exponential fixpoint dynamics like elready successfully introduced
in chaptef’B. The difference between a state variable andea @ixpoint multiplied by a certain
time constant determines the change of that variable. Dinetbigh degree of interconnections of
the system variables, we give an overview on the notatiommnsarizing all variables, parameters
and mappings in tablés"/AJ0, Al18 dnd A.19, appehdit A.Geetvely. In the following we will
go through all dynamic equations in the order of informatftmw, beginning with the feature
layers, passing the semantic layer and the action layer aatlyfidescribe the behavior of the
memory variables.

8.3.1 Feature Variables

All objects from input space are represented and fully deteezd by tuples of features. The
number of relevant features can vary according to the tagkrrhation about a perceived object
is decomposed and then passed to several layers of the Gbtutal: features drive feature

detection variables of the system, whereas the informatimut the combination of all features
to one object entity is held by the binding layer. This alsbrass the synaptic interconnection of
feature variables belonging to the same object.

Shape Layer

159 CO CO T1T CO Tr DT CO TD DD
yes yes yes no no no yes no yes

Yy

/

activation

0.5+ |

0 o T T T T T T T
10 12 14 16 18 20 22 24 26

time [s]

Figure 8.2: Time series of the representation variables in the shape I@yapeof the General
Model during accomplishing the word-picture comparisoradam, see sectidn 8.6.
Different color saturations label different objects. Thedual is set to episodic re-
trieval mode, see sectién 8.4. The plot shows the retridvphst episodes in depen-
dence of perceptual similarity, see figlirel 8.9, and alsodtieadion propagation from
the color layer, see figuile_8.3, via the respective bindifigsre[8.5 as target and
distractor activation diverge.
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8.3 Implementation of the General Model
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Figure 8.3: Time series of the representation variabfgs ', fioi,, and f5,, in the color layer

of the General Model during accomplishing the word-pictcoenparison paradigm,
see sectioh 8l6. The model is set to episodic retrieval memiesection 8l4. The plot
shows the target amplification, equatlonl 8.3, in the fasseraf green.

Feature variable$’ are defined by the indicésdenoting the respective feature, e.g. color, see
figure[8.38, shape, see figurel8.2 or word shape, see figurerl4,vehich indicates the concrete
instance of the feature, e.g. green. The dynamics of a feaanable is determined by several
terms that act simultaneously. The first one is a drift witheiiconstant towards the external
input FiJ of the feature instance, wheregstakes on two different valugs; if the feature variable
is lower than the input and rises by an active drivedpiif the input variable is lower and the
feature variable passively decayls.J is defined by the presence of the respective feature in the
display configuration. If the particular feature instaneéirtes the respective object to be target or
distractor in the current task, an additional input, exoitgor inhibitory, is applied to the feature
variable. In case of feature presenég, is set to maximum external input strengthplus the
current value of the variable accounting for the receptibinput by only a subset of neurons
in one assembly, similar to the argumentation in sedfioM3r&roducing the residual activities
to the ISAM. The residual overshoot of the input decays tontlagimum input in the same way
feature activation would. In case of feature absence, gt is set to the activation baseline value
of F which is not necessarily zero.

' F+ fij at display onset, if instancgof featurei is present
R = 5+(F —F')  during stimulus perception, as longls— F (8.1)
E at display offset

Both target selection mechanisms, target amplificationdisiflactor inhibition simply add to
the corresponding feature inplE|i to the overall in|ouFiJ in the dynamics of the feature variables.
Target amplification A is linearly increasing until a resperis given and set to zero afterwards.
Distractor inhibition | is said to persist for some time, &sds to be retrenched after a response was
given. Therefore, inhibition | increases linearly withjséa during perception and fades linearly
after the decision was made.
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8 The General Model for Negative Priming

15 Word Layer
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Figure 8.4: Time series of the representation variablé,grd in the word layer of the General
Model during accomplishing the word-picture comparisoragagm, see sectidn 8.6.
The model is set to episodic retrieval mode, see setfidrBgdides a very monotonic
behavior, the plot reveals one of the major problems in thségdeof the word picture
comparison paradigm by pointing to the fact that we onlyvalior a repetition of the
comparison word in TT trials that require a confirmative mrse, which may cause
systematic reaction time effects as well.

Fl+A  if {i,]} defines the target

Fl = Fl 41 if {i,j} defines the distractor (8.2)
F! otherwise
dA . : .
i o during stimulus presentation (8.3)
A = 0 nostimulus present
d l during external input (8.4)
dt —1 after the offset of input until &0 '

The second term governing the dynamics of features is lasfirigature specificity in the ab-
sence of input defined by a broadening of activation with teoastantp, within one feature
towards the feature meaf) f!, without lowering the total activation of the respectivatigre
layer. Thirdly, feature activation is passed via existifigdings to the other feature instances be-
longing to the same object. If e.g. the feature tufidelor,green{shape,bali{location,botton}
defining a green ball shown at the bottom of the visual scerteeld by the binding variable
By color,green {shape, ball{location,botton} - ItS Value defines the amount of activation interchange éetw
the variablesf o) £ .and fio2her such that they approach their mean. There exists only one
feature variable for green. Therefore multiple green dbjexperience a natural connection, as
they share this variable. The last term that drives featar@bles is the back projection of mem-
orized episodes into the feature layer. Weighted by the mragosaluery of the actual percept and
thekth last memorized episode and the strerggthf the respective memory trace the value of the

J . .
feature variable at the respective response moneienﬁ; fed back to the variable.
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8.3 Implementation of the General Model

L= (R - 1) (8.5)

+B (0 -1

+ Z b{ik,jk}(<3k:ik:|7jk:m7{ik7jk}#{i7j}>f|m)
By i TKIk=1, k=]

+ Z k€ <e|iij - fij>

i Bl 3
where 17 = ¢ P !f o>

8.3.2 Feature Binding Mechanism

The bindings themselves are dynamic variables, as theytbed&rength of feature interconnec-
tion within one object, see figufe~8.5. But as the underlyitngcsure, see (Schrobsdorff et al.,
20074), is a flexible but resource constrained layer, tiseoaly a limited number of such binding
variables where each can code for any feature combinafiam. dbject appears in stimulus space,
it is checked whether the object is already represented;hwlould correspond to an immediate
recognition of the object as the same that has just beensamed. If the object is not yet repre-
sented by a binding, the weakest binding variable that isabject to actual input is overwritten,
deleting the respective object from working memory. If ajeobis shown, the respective binding
variable is driven with time constami, towards a maximum interconnection stren@thlf the
percept of an object is gone, the respective binding varigbksively decays with time constant
oy to zero.

Binding Layer
0.05+ 1
0.04- F ﬂ | (’l
0.03| | |

0.02+

activation

0.01+

0- T T — T T =T

10 12 14 16 18 20 22 24 26
time [s]

Figure 8.5: Time series of binding strengttts;, ;1 of the General Model during accomplishing
the word-picture comparison paradigm, see se¢fion 8.6.nduel is set to episodic
retrieval mode, see sectionB.4. The plot shows a very giguieal behavior for all
bindings as the only interaction in the binding layer is thking over of a binding
slot if the resources are exhausted and a new object is pedceAlways the weakest
binding is replaced by a new one, therefore the effect byakimg over is minimal.
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8 The General Model for Negative Priming

pp(b— Biiv k) if an object with the respective

% = feature is perceived (8.6)
=Dy ik if the percept is switched off
iy = 0O ifthe binding slot is overwritten

i.e. object{iy, jx}x was not shown and held by the
weakest binding when a new display was uncovered
containing a non-bound objel;, j }i.

8.3.3 Semantic Variables

The role of the variables in the semantic layer, see figulei8#&ssigned by the central executive,
depending on task demands. Therefore, a fixed descriptitreafynamics of semantic variables
is not possible. After a hypothetical training phase thatituces a new task, we assume that
the central executive has elaborated a reasonable gatiatjdo S(f) of feature activations to
the semantic layer. This function defines the fixpoint the a#in activation is approaching to
with time constanps or ds for an actively driven rise or a passive decay, respectivagain the
variables are subject to retrieval of former episodes ayuals to feature variables.

as

& = oS-+ Tne(e -9) ®.7)

Semantic Layer

1.4+
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Figure 8.6: Time series of the representation variatdeim certain shades of green and the thresh-
old €2 in blue in the semantic layer of the General Model during agaéshing the
word-picture comparison paradigm, see sedfioh 8.6. Theshisdet to episodic re-
trieval mode, see sectidn_8.4. During yes-trials, whenetaagd comparison word
match, the input from chape layer and word layer converge tire same semantic
concept, causing a much higher activation in those casesthrashold now detects
the presence of relatively high activations, as there igdisuperthreshold activa-
tion. In cases of no match, the threshold will surpass allaibbns which is then seen
as evidence for a no response.
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8.3 Implementation of the General Model

. H J
where 15 = Ps i S] =S
Os if 9 <¢

8.3.4 Short-Term Modulation of Connectivity

The General Model is able to direct information flow such thatn decide whether a response
should be computed from scratch by considering the perakjpiput or by retrieving information
from episodic memory. Therefore, synaptic connectionsvéen the layers can be blocked or
facilitated, depending on the old-new sigioglgenerated by comparing thh last episode to the
actual percept. A blocking variabt®, ok adapts with time constamock to 0k which is either set
to 1,% or 0 depending on whether the signal is old, unclassified wr respectively. The synaptic
strength is scaled according &jock between a minimum synaptic strength_, and an open
channel ofos_s= 1.

Oi—s = (1—0;_¢)+ 0 <Oblock (8.8)
... dOplock
with & = Thlock (Ok — Oblock) (8.9)
Information Gating Block Action Retrieval Facilitation
1 27
0.81 15
C 06 =
o
.% =R
2 04] =
3 @
@ 0.5+
0.2
0 T T - . 0 T T T )
10 15 20 25 30 10 15 20 25 30
time [s] time [s]

Figure 8.7: Connectivity modulation according to episodic retrievatl aemporal discrimination
theory. Whenever a perceptual match is high, the direct cdatipn, i.e. the in-
formation transmission between feature layers and semkayer and also between
semantic layer and action layer, is closed. If the two pdascape dissimilar, the trans-
mission is enhanced as visible on the left plot. The right plwows the retrieval
strength for the action layer. Whenever a match is detethedresponse can be re-
trieved from memory, retrieval is enhanced, if no match isspnt, the retrieval is
useless, and therefore prevented, see secfiord 8.3.8.

8.3.5 The Adaptive Threshold in the Semantic Layer

As a decision mechanism for comparison tasks, the semagc possesses an adaptive threshold
s® which is computed by a weighted average of activation in #raantic layer, see figufe_8.6.
The weighting of the average is such that it adapts betwehitfhest two semantic activations.
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8 The General Model for Negative Priming

Therefore the baseline activatiénthat is directly passed from feature layers to the semaayier|
has to enter the averaging process.

(8.10)

8.3.6 Action Variables

The action layer behaves similarly to the semantic layerfigeirel8.8. Action activation variables
are driven towards external inpAts, f) that is computed from semantic and feature representa-
tions according to the task, i.e. given by a mapping funditimorporated in the central executive.
Depending on whether the adaptation is an actively drive® or a passive decay, two time con-
stantspa, &, apply, respectively. An aspect that is easily overseendptissibility of a person
not to respond. For example in cases where no target objebbisn. Therefore, action zesd

has the special role of representing no reactiags, f,of,%a)j is designed such that whenever
there is no target stimulus shown, e.g. between two tdlés, f,0¢ s .a) = 1. In case of stimuli
triggering a responsé’(s, f,0¢ s .a) = 0.

da

T = ra(Aj(s,f,of‘s_,a)—aj)JrraZrkek(eﬁj—aj) (8.11)

i j j
where 1, = Pa ItAGS, f)_ ~a
0a if A(s, f)! < al

The relative retrieval of action representatiagss modulated contrary to the synaptic trans-
mission to the action layert s .5 reflecting the facilitation of action retrieval by an oldwsignal
indicating an old episode which can be answered by retigegiformer response. Also, the mod-
ulation of information flow can decrease the retrieval ofsponse if a new episode is classified.

Ofs—a = (1_Qf7s—)a)+gf,s_>a0-block (8.12)
ra = (1+max(gsg . 0¢ .s)) —2Max(0s s .2, 0¢ ) Oblock (8.13)

In order to model the decision making process in the actiperleve introduce a threshold level
analogous to the semantic layer. As input to the action legeges from zero to one, we do not
have to care about any baseline activation in the preseet cas

1 da® -
Ty al —a° 8.14

Tae dt aez ( )
Superthreshold activatiors > a® define the space of possible actions the system can take. If
there is only one action superthreshold, the corresporalitign is executed. In case aft > a°,
the system does not do anything.

8.3.7 Memory Processes

Memory Processes are modeled in a very simplified way. Attpdimtime that mark the clo-

sure of an episode, in this case at reaction times, the estéte of the model is written down as
one episode. The stored values can be retrieved on the oddrharder to compute similarities
between passed episodes and an actual percept, see figu@ndi®e other hand, this similarity
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Action Layer
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Figure 8.8: Time series of the action variabl@s in shades of purple, the representation of no

actional in black dotted and the threshadfl in blue in the action layer of the General
Model during accomplishing the word-picture comparisorag@m, see sectidn 8.6.
The model is set to episodic retrieval mode, see seEfidnIBthe semantic thresh-
old decides for a certain response , its representatiorivescaput. In the absence
of stimuli the no-response is activated. The thresholdatdei adapts in the same
way as the semantic threshold. Whenever only one respordmi® threshold, the
corresponding action is executed.

triggers an automatic retrieval of the former episodes. grhater the similarity, the stronger mem-
orized values are piped back into the respective varialiege. presence of memorized episodes
is set to the initial value When the episode is written down, and then freely decaysrwwith
time constande.

e = 6 if episodek is memorized
% = —0& Otherwise (8.15)

If a new episode is memorized, thth last episode naturally becomes ket 1)th last one.

\'A _ Vv
ei</+1 =& J_ o } when an action is taken (8.16)
e&/=v ve{f byi.5.a}

Generating a reliable old-new signal from only internaless, i.e. information that is accessible
by the system itself, is rather tricky. The intention is tednaome value that is higher for a higher
degree of similarity between the actual percept and a megobone. The system is only able to
monitor internal variables. Therefore, at first the ideahefdctual percept can only be determined
by looking at feature variables. As the system is trainediferpresent task, it has some knowledge
about the expected number of objentis the display. But the actual objects can only be guessed
by looking at then strongest bindings. Besides the summed distances of aliréegariables,
there is a contribution of the sum of distances betweemtlaggest binding variables and their
memorized value if the binding already existed rescalechbyntaximum binding strengﬁn The
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8 The General Model for Negative Priming

Episodic Memory Layer
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Figure 8.9: Time series of the representation variables in the episodimory layer of the General
Model during accomplishing the word-picture comparisoragam, see sectidn 8.6.
The model is set to episodic retrieval mode, see seEiidnA&iditional to the orange
similarity signal and the black activation course of mengirgngth, see sectién 8.3.7,
which are used in the implementation of episodic retriea plot shows the corridor
that decides about the classification of a trial as old or sew,section 8.3.8. An old
stimulus configuration is correctly only detected in the yiE trial, as it repeats the
target and the comparison word. In the TT-no trial the comsparword changes be-
tween prime and probe, therefore not enough similarity foold display is detected.

old-new signal computed in this way is biggest for nonmatgtpercept and memory. Another
disadvantage is the bad resolution if percept and memorghrata high degree. Therefore, we
take the inverse of this model before applying a normatizatly the significance of a percept
given by the sum over all actual feature variables, dividgdhe number of features relevant to

the task.
Zfij _ -1
) i f) 1 by, j
o= (z ('fi’—ek tz -jl}l—ek{'J'}'D) (8.17)
f {inirh

where{i|, ji }1 € {subjective percept
= {objects being held by thelargest binding$
with n = #objects in one display

8.3.8 Connectivity Modulation

Information gating mechanisms are modeled by the dynaméniog or shutdown of synaptic
transmissions between the different layers as well as thieval channel to the action layer. This
modulation is governed by an old-new sigaglcomparing thekth last episode to the actual per-
cept. The comparison process is modeled by locatindtthestrieval signaty below, in between
or above an uncertainty deviatian shrinking exponentially with time constant, from a proto-
type time course for an intermediate resemblance of disgiayen by an exponential adaptation
from an initial valued with time constantry towards a retrieval leved dividing old from new
displays, see figuie8.9.
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0 if re>d-+u
oK = 1 ifre <d—u (8.18)
3 otherwise
where d=d } at display onset

u=u

d=0 } at display offset

u=0

dd _ {_

a = Ta(d—d) }otherwise (8.19)

d— _tu

dt u

8.3.9 Generating Real World Reaction Times

Up to now we presented all dynamic equations governing thaier of the General Model.
For a complete picture of all implementation details, soméher points have to be mentioned.
The modeling comprises just the internal processes. Whiligidg biologically realistic reaction
times, several additive components have to be consideeatufe input is not set on immediately
if a new display is shown, but rather after some recognitaiaricy needed to transfer the infor-
mation from the screen via the retina and the entire visualmy to feature layers. Also, there is
persisting activation throughout the visual pathway knasthe after-image, which drives feature
input longer than the stimulus display is shown. Finallg thaction time is recorded at a button
press or similar actions, not at the point in time where ornima@lternative became selected in
the action layer. Therefore some fixed time elapses betweaeddcision in the action layer and
the offset of the stimuli. These three time intervals mayp &ls subject to statistical variation and
additionally can depend on the subjects preferences otshdtievertheless, we take these values
as fixed over subjects, stimulus conditions and time. Theshtgngths of these time intervals can
be taken from the respective research fields.

8.4 Defining Setscrews for the Theories

In order to analyze the consequences of a certain thedraticaunt, we define single setscrexs
that modulate the impact of the assumptions of one theorh@ibéhavior of the General Model.
We label the setscrews with abbreviations according to thebretical scope. A list is given in
table[8.1.

Retrieval itself is easiest controlled by adjusting thdiahistrength of a memory trace as it
linearly determines the impact of retrieval. The modulatiactor =, just scales the maximum
memory strengtle.If =¢, is zero, no memory is written down, and therefore retriewal o effect
on the system behavior. H¢; = 1, memories are stored initially with the maximal strengtmd
retrieval provides the input to the system described inee@3.7.

The question whether the entire system state at the lagideds retrieved or only the prime
response separates episodic retrieval from responsevadttheory. These two assumptions are
contradictory. Therefore the setscréy gradually shuts down the retrieval or activation in layers
other than the action layer. ¥, = 1 the entire episode is retrieved, whereas,jf= 0, only the
action layer receives memory input.
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8 The General Model for Negative Priming

Model Behavior for = = Model Behavior for = =
=er | No retrieval at all maximum retrieval
= | only retrieval of response | total retrieval
=ip | distractor inhibition target boost
=gt | no activation interference | forced decay and activation broadening
Zisp | full propagation retrieval blocks features sematic synapses
=sab | full propagation retrieval blocks semantic action synapsgs

=y | classical episodic retrieval old/new evaluation

Table 8.1: Setscrews controlling the strength of the implementatiba oertain theoretical ac-
count into the General Model. Their range is continuouslyveen zero and one.

Distractor inhibition theory and the global threshold theoontradict each other by either as-
suming an inhibition of the distractor or a target boostpeesively. The setscrewj, modulates
input to the feature instance that identifies target andaditir. If =i, = 0, only the distractor re-
ceives inhibiting input, i.ea = 0. If Zj, = 1 only the target feature receives excitation, i.e. 0.
=ip additionally adjust the baseline activation level frof21n the distractor inhibition case to 0
with target boost, where no sub-baseline activation israeslu At this point a major gap in the
retrieval accounts becomes visible. They do not make amgrstnts on what the direct compu-
tation of a trial may look like. But the general model needs\ealecision making mechanism.
In order to have the least effect of the decision making maishaon priming effects in the case
where we consider retrieval based mechanisms, we choseda@haure target boost in the feature
layers. Forced decay as well as activation broadening a&seénhfeatures of the global threshold
theory will thus be controlled independentlyy linearly controls the broadening of activati@in
and the strength of the forced decay if two concepts are inwroance of a feature instance.

Both temporal discrimination and episodic retrieval tlyepostulate a decision of the system
on whether the current response should be generated difemth the input, or retrieved from
memory. The corresponding modulation in the General Mcgleloine via the setscre@gy. If
Ztsp = 0, there is a concurrence between direct computation anievadtin the system. [Eqp =1,
the strength of retrieval, i.e. the similarity signal, gé&s a shutdown of the synapses between
features and semantic layer, modeling a decision of thesysb only retrieve the response and
drop the direct determination of the right answer.

In an excursion by Tinper and Cranston (1985) into the episatrieval domain, he argued
in favor of a blocking of the information flow in the episodietrieval context right before the
action selection state. This manifests in the General Masl@l blocking similar t&ss, described
in the last paragraph, but the shutdown rather happens betae@mantic and action layer. The
corresponding setscrew i5ap

A final setscrew is given b¥q which controls the evaluation of a stimulus being old or new
before retrieval is initiated. In the casgy = 0O, the similarity signal determines the retrieval
strength from the beginning of a trial, wherea&if = 1 there is no retrieval unless the similarity
signal surmounts the uncertainty corridor around the pypt similarity signal, as explained in
sectior 8.317.

Table[8.2 summarizes the values of the setscrews if the ingbacsingle theoretical account is
to be evaluated. Note that some mechanisms are inhererg @®eheral Model such as activation
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8.5 Wicekey Paradigm

Eer = Eib Egt Efsb Esab Etd
Distractor Inhibition 0 0 0 0 0 0 0
Global Threshold 0 0 1 1 0 0 0
Episodic Retrieval 1 1 1 0 0 0 0
Response Retrieval 1 0 1 0 0 0 0
Temporal Discrimination, 1 1 1 0 1 1 1

Table 8.2: Settings of the setscrews in order to produce predictiorjssiyone theory.

propagation via the feature bindings. Therefore the puitings do not give a minimal compu-
tational model of the respective theory, but we rather kbepntechanisms none of the accounts
specifies constant in all cases.

8.5 Voicekey Paradigm

The current and the following section will show four exansptd the General Model during two
different paradigms and while emulating different theoayiants. The aim is to show the capabil-
ities of the model concerning different paradigms and thegarison of theories.

The first simulation shows the General Model in a voicekeyagigm, see section 2.2. all
relevant variables are plotted over nine trials includitigfiee conditions in figureC8.10. The
setscrews are tuned to episodic retrieval, i.e. we have tiation interferences in the feature
layers, but perceptual input, a boost of the target coloemrg¢he activation exchange via the
bindings and activation retrieval from memory.

The presentation of a red and a green pictogram drives thedoo and the two shape repre-
sentations in the respective layers. The central execdélieers additional input to green which
augments the activity of the target object’s shape via thdibgs. The semantic representations
are given by a one-to-one mapping of shapes,3(é) =1, thus the activation is more or less
identical in both layers. The plot of the episodic memoryelaghows the memory strength in
black which decays with time from a fixed value at memory atitiation which takes place at the
point a response is given. In orange, the plot shows thedaiityilsignal which linearly modulates
the retrieval of a former trial. The signal is highest for HiE trial, intermediate for DT, TD and
DD in ascending order. In the action layer, the trace for th@ction, see sectidn 8.8.6, is dotted.
The selection of the target in the semantic layer again ectir passed to the action layer. Every
semantic representation has its corresponding actionpir@me it.

Already visible is a prediction of the configuration for TDals. In this case the intermediate
similarity drives the retrieval of the high former targettieation which is now applied to the
distractor. The threshold needs longer to surpass theadistr therefore a strong slow-down is
observable, see also table’A.21.

The present simulation was run with the following valuestaf televant parameter&e, =
1L, =n=1zZp=1, Egt =0, Ztsb =0, Zsab=0, th =0, a=0.0005F =1, trecognition: 50,
tatterimage= 30, tmotor = 80, ps = 0.01, &; = 0.003, b = 0.05, # = 7, pp = 0.008, &, = 0.005,

Te = 0.002,ve = 0.51, py = 0.004,0, = 0.002, 16 = 0.002,v6 = 0.5, €= 0.002, 5 = 0.003.

Negative priming in DT trials and positive priming in TT tidaare with 21 ms and 56 ms
at rather realistic regimes, but the deceleration of -157irmED trials points to the fact that
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8 The General Model for Negative Priming

the mechanisms of negative priming are not well reproduciid thve current parameter settings.
Detailed results are given in tatile"Al21 in apperidix] A.6.

The second simulation, figure 8111 is run with a setting taueral discrimination, i.eZgp = 1,
Zsab= 1, =g = 1. This means that the retrieval of activation is only triggk if the episode is
categorized as old. This is only the case for TT trials, adliother cases the relevant object
changes.

Reaction times are about 200 ms slower than in the settingealvehich is mainly due to the
missing standard retrieval in every trial which is just miaded in episodic retrieval interpretation
of negative priming. Temporal discrimination assumeseeat only to happen if an episode is
classified as old, which is correctly only done in TT trialghie simulation shown in figuie 811.
Also priming effects are not well matched: every conditierdéecelerated, TT trials are slowest,
followed by DD, TD and finally DT trials. The simulation resaiare summarized in tadle Al22.

8.6 Word Picture Comparison Task

After the sketch of a comparison of episodic retrieval amdgeral discrimination theory we will
now show how a relatively small change in the form of a weak uhattébn of information transfer
will enhance priming. We expose the General Model to a wactlipe comparison task, as it was
introduced in sectiof_7.1 despite the long distance betwbgects and comparison word, such
that a parallel evaluation of shapes and words is possihl¢hid paradigm both shape and word
layers project into the layer of semantic representatidvisenever both converge, much stronger
input is delivered to the corresponding semantic conceghaayes response is triggered.

We again start off with a straight episodic retrieval seftinThe present simulation was run
with the following values of the relevant parametefg; =1, =y =1,Zp =1, =gt = 0, Ztsp =0,
sab= 91 =ta=0,a=0.001,F =1, trecognition: 50, tafterimage: 30, tmotor = 80, ptr = 0.01,%¢ =
0.003,b=0.05, #, =7, pp = 0.01, &, = 0.005,19 = 0.0015,ve = 0.5, p = 0.004,, = 0.002,

T, = 0.002,v = 0.5, €= 0.002, 5, = 0.003.

Results are given in table”’AR3 in appendix]A.6. No stronieants are visible, but the desired
facilitation in TT trials does not exist.

Parameter changes in the second simulation introducingglt shodulation of information
transmission, shown in figufe 8113, are given By, = 0.3, =sap= 0.3 Tpjock = 0.5. Whenever
the model encounters a similarity signal strong enoughdesilly the percept as old, bottom up
information flow is hampered by a relative shutdown of thensmtion between feature layers and
semantic layer and in parallel the retrieval of the formepmnse is facilitated. On the contrary a
classification as new eases bottom up information flow andpeasiretrieval.

Reaction time results are given in table A.24 in appehdit &¥en if the overall reaction time
is rather fast, the pattern of priming effects shows raaliglues, as compared to the vanishing
facilitation in TT trials the simulation with pure episodietrieval linearly based on the similarity
signal shows.

8.7 Discussion

The simulated reaction times in the tables in sedfiod A.Gvstat the behavior of the General
Model is far from being robust against even small paramétanges. This may be a hint that the
complexity level is chosen about right in order to accoumttifie multitude of different findings

in connection with negative priming. But we have to face thegjion whether the model is built
such that it can basically fit any data pattern with just tlyhtriparameter settings. Due to the
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8.8 Summary

high dimensionality of the parameter space and the seitgiti’the General Model, this question
can not be answered conclusively by the means of parametanisg techniques. In fact, an
important next step for the General Model is the paramet#uation by determining as many
values as possible by comparisons with trusted experirhesgalts, e.g. for the availability of
after-images, decay times of feature bindings, etc. Thaildehess of the General Model is also
easily capable of showing partial reaction times. Theefbogood way to limit the range of the
parameter space would be to have a series of time-markerimgrgs specially designed to reveal
processing stages that are also measurable in the Genedal Mip to now the General Model can
only be a basis for discussion on the concrete nature of imegaiming theories and paradigms.

In order to really decide which of the theories explains wheat of the negative priming ef-
fect, a thorough dialogue with the psychologists who ingdrthe theories is necessary. As the
discussion can best be triggered by a prominent introducfdhe General Model to the priming
community we are in a vicious cycle. No acknowledged sinmatesults are possible without an
exchange between theoreticians and modelers, but alssausgion in the community is possible
without recognized results. The first attempt to break thaeclgy advertising the General Model
at several conferences did not succeed yet. The secondpatteying to reproduce a large portion
of empirical data, is still work in progress.

8.8 Summary

We presented the proof of concept for our neurophysioldgieadel of perception based action
selection. Based on the cognitive demands of a negativamgiparadigm we reviewed exper-
imental findings as well as theoretical concepts that cheariae the mechanisms suspected to
contribute to trial processing. We then implemented séveaglel layers for the different stages,
each devoted to a specialized purpose and with certainatieaisdics. But all layers are working
with the same realistic rate dynamics we introduced withnifg@ementation of the ISAM.

The result is a comprehensive model able to recognize peiadepbjects by feature decompo-
sition and a binding mechanism that keeps track of the objetiies. These objects are translated
into a semantic representation where the attentional nmésthaselects the most important item
and propagates the information to an action selection.layes chooses the appropriate responses
and triggers its execution. In parallel a memory componéstoves the repetition of perceptual
stimuli and triggers the retrieval of previously encouatkstimuli together with the results of trial
processing in order to facilitate responding.

The General Model gives a unified framework to quantify edd¢hetheories for negative prim-
ing. The identification of setscrews for the different agasumakes it convenient to compare the
different predictions in a certain setting. But the applma to clarify the explanations of nega-
tive priming is still confronted with several hurdles to ¢ak he high dimensionality of parameter
space makes it impossible to exclude possibilities of biehavAnd the implementation of the
different theories still should undergo a debate with thmprg community in order to best match
the concepts of the theories, which are a matter of commasesen
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Figure 8.10: Activation traces in the different layers of the General Moih the voicekey
paradigm described in sectibn2.2. The model is in classigigbdic retrieval mode,
ie.Zer=1,=Z4=1,Zp=1,Z¢ =0, Ztsp = 0, =sap= 0 and=¢g = 0. That means
we have a target boost and retrieval of the entire episodenddiorced decay of
activation, no old/new classification. Retrieval is visiltly the relatively small rise
of formerly active variables. Resulting reaction timessummarized in table’A21.
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8.9 Simulation Plots
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Figure 8.11: Activation traces in the different layers of the General Moih the voicekey
paradigm described in sectibn2.2. The model is in tempasafichination mode,
ie.Zer=1,=Zr=1Zp=1,=Z5=0,=tsp =1, =sap= 1 and=yg = 1. That means we
have a target boost and retrieval of the entire episode,dytiftan episode is clas-
sified as old, what happens if the retrieval variable (oratggves the uncertainty
region (yellow). Resulting reaction times are summarizethble[A.ZP.
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Figure 8.12: Activation traces in the different layers of the General Mloih the voicekey
paradigm described in sectibn2.2. The model is in classjgigbdic retrieval mode,
ie.Zer=1,=Zy=1,Zp=1,Z¢ =0, Ztsp = 0, =sap= 0 and=yg = 0. That means
we have a target boost and retrieval of the entire episodenddorced decay of
activation, no old/new classification. Retrieval is visiltly the relatively small rise
of formerly active variables. Resulting reaction timessummarized in table”A23.
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Figure 8.13: Activation traces in the different layers of the General Moih the voicekey
paradigm described in sectibn2.2. The model is in episadieeval mode addition-
ally applying information gating via a modulations of infieation flow according to
similarity, i.e. Zer=1,Zr =1, Zip =1, =gt =0, Zfsb = 1, Zsap= 1 and=yg = 1.
That means we have a target boost and retrieval of the emiisede, but only if an
episode is classified as old, what happens if the retrievédbla (orange) leaves the
uncertainty region (yellow). Resulting reaction times suenmarized in table’A.24.
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9 Conclusion

The present thesis described how we applied different tgaba to reveal the temporal structure
of the negative priming effect, i.e. the slow down of reaasido previously ignored stimuli. We

have approached negative priming by modeling, data asadyxl by the design of novel exper-
imental paradigms, each of which led to specific results. Melemented two computational

models describing the origins of negative priming. Dethilesight into the temporal and spatial
characteristics of priming was gained by EEG recordingsalii we described two attempts how
the temporal structure of negative priming can be assessidrbducing paradigms with subtasks
for which we record reaction times separately. We will cadel on each of the three points in the
following sectiong 911, 912 arild 9.3, respectively. Afteeaiew of the results obtained from each
of the approaches to negative priming, secfionh 9.4 is destic® collect all results in order to get
insight in the time course of negative priming. Secfiod 9ib give some final remarks on our

project and future directions.

9.1 Computational Modeling in Psychology

For the prediction of behavior, psychological theoriesagood tool. But they neither provide
a clear link to physiology, nor make precise predictionss Hather the current interpretation of
the models characteristics that gives rise to educatedsgsas) how the mechanisms postulated
by the particular theory interact and what consequencesds. If a negative priming experiment
seems to provide negative evidence for a certain theoryt hke$y this evidence would be less
conclusive if the involved theories were considered fronifferént perspective. There are only a
few agreements on behavioral effects that can be descritwbasevely by one theory.

With a background in the exact sciences we found it naturabtmretize the theoretical as-
sumptions by implementing computational models. The firstieh follows the global threshold
theory, see sectidn 2.4.7, as closely as possible. Theirgsaimulation easily produced realistic
priming effects. The power of the implementation is showsection 6.2 where we derived hy-
potheses by simulating the model for a newly designed pamadi he straightforward adaptation
of the implementation to the new paradigm showed the ingpjaeness of the assumptions un-
derlying global threshold theory, i.e. the forced decayesidual activity in a clash with external
input. This assumption is responsible for the localizatbnmegative priming in an early stage of
a trial, as all residual activation will have faded later on.

Apparently the level of complexity of the ISAM was set too ltsvwcorrectly describe the man-
ifold aspects of negative priming. Instead of implementagh theory separately, we designed
a comprehensive framework of action selection mechanisamedon perception. In this way a
sufficient level of detail was achieved in order to incorperseveral theories of negative priming
and to compare them quantitatively. Due to the complexitthefmodel implied by the diverse
theories and the unclear data patterns, we focused on agfrooficept of the General Model. Itis
clearly of importance to discuss the implications of the eladth the founders of the respective
theories, a process which was very beneficial during theedmphtation of the ISAM.

To get some ordering into the different experimental payadi with their partly very different
result patterns, it would be helpful to implement severaksical experiments in the framework
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of the General Model. Not only would the standardizationhaf tormulation of the paradigms
bring up the crucial differences, but also the behavior efrtiodel itself would reveal the differ-
ent behavioral consequences the paradigms provoke. Wédsihewefore obtain reasons for the
diversity of findings on negative priming.

9.2 EEG Correlates

We put a lot of hope into the analysis of EEG data for the smatitn of the timecourse of
negative priming. EEG experiments are difficult becausectfitical problems, the high variabil-
ity in the data, or the available commonly acknowledged dsanalysis techniques that assume
an underlying process which is not subject to temporal tiaria which is already disproved by
behavioral data. Therefore, we did not only advance outsskilrecording EEG data with ap-
propriate paradigms and sharpen our view to recognize ldessorrelates in resounding grand
average plots, but we also challenged the established deetirtd developed advanced analysis
techniques.

On the level of correlates our experiments reveal the simpilacessing of trials with repeated
objects in an early, perceptual phase. Later in the trigl, EBEG shows a discrimination of both
conditions in opposite directions from the control coraditiindicating low cognitive control dur-
ing target selection if the target is repeated, and highrobiitthe target has been ignored previ-
ously. These correlates replicate the results from anategative priming study that was based
on a flanker task.

For comparability reasons we did not consequently use onramvanced averaging technique,
but stayed with the traditional pointwise average when mipp our results. The advanced aver-
aging technique is up to now only promoted separately.

9.3 Behavioral Paradigms Beyond Response Latencies

In order to gain insight into the temporal localization of thechanisms causing negative priming,
we developed two paradigms that single out a certain phasmlgirocessing while recording re-
action times separately for each of the parts. The first pamacdescribed in chaptét 6 considers
the perceptual phase individually by leaving open the dgoresthich of the two colors indicates
the target in the current trial, until the recognition of thabjects has been acknowledged by the
participant. Clearly the change of the paradigm compardtd wrigin, the voicekey paradigm in-
troduced in sectioh 2.2, is quite drastic. We had to deal inttirfering effects from the difference
between trials, requiring attention to the same color akérptime trial and trials where the other
color coded for the target.

The situation is similar in the paradigm considering resgageneration separately, as described
in chapteil7. In order to disentangle target selection agplomese generation, we adapted a word-
picture comparison task, which is also based on the samelstthe voicekey paradigm. The
crucial differences are the presence of a comparison waddttzan response modality, a left or
right button press according to a match or mismatch of tasbgict and comparison word. We
introduced our time marker that separates the trial by a dtistgnce between the stimulus objects
and the comparison word, while asking the subjects to fiestifly the target object and then to
make one single eye-movement towards the comparison wottisl case, we encountered inter-
ferences from the different processing of confirmation egation. Another desired particularity
of the paradigm is the equal frequency of response switatesesponse repetition, an aspect that
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is crucial for response retrieval theory. This localizaspng to occur during response generation
based on change or repetition of the appropriate response.

We obtained rather diverse result patterns over the ermtirger of experimental conditions. The
additional complexity of the paradigms made the introductof further conditions necessary.
Nevertheless, the results concerning the traditionaligresting experimental conditions DT and
TT are rather clear. Our experiment unveiled the fact thatudus repetitions lead only to facili-
tation, and that negative priming is generated before thigarese generation phase.

9.4 The Time Course of Negative Priming

Remembering the promise of the title of the current thesésywill now describe the time course of
a negative priming trial. An objective description is atfgad here by collecting the major results
of our experiments, without referring to theories or sintiolas, as we will do in the following
paragraph. We will also interpret the results in light of tierent theories, and then describe a
negative priming trial on the level of mechanisms in the fearark of the General Model.

A negative priming trial consists of the following sequené&érst, during the perceptual phase
a comparison with preceding stimuli occurs which resulta Bimilarity signal. It does not need
to rely on purely perceptual features, but takes into adcalso semantic similarities. Thus DT
and TT trials show a similar characteristic in the P300 matioh, and are both accelerated in
the stimulus identification phase, albeit objects in TTigrere still more quickly identified than
in DT trials. As the target is identified by a perceptual featuhe target selection may run in
parallel with perception if not artificially delayed. In ghperceptual phase, the processing of a
DT trial changes from the initial benefit of easier recogmitito the delay that is characteristic
for negative priming due to a high demand on cognitive cdntteformerly ignored stimulus has
to be attended to. The onset of response generation may bbegél before the target is fully
identified as such by accumulating evidence. This finalsedi the trial processing is accelerated
if the response follows the same stimulus again, regardiestether this response is actually the
same or not. However, no decelerations were found in ouraegghresponse generation phase.

This picture of a negative priming trial is clear enough tavdisome conclusions about the va-
lidity of the different theoretical accounts for negativiming. The characteristics of episodic re-
trieval match our results best. Both distractor inhibitaord global threshold theory fail to explain
why no negative priming effects are present during stimidigstification. Temporal discrimi-
nation does not comply with the equal processing in early id RT trials. Response retrieval
theory is disproved by the fact that no negative priming isibduring response generation. Fea-
ture mismatch theory is not really applicable in our paradigas we show all our stimuli at the
same location. Thus, each trial should show the slow-dowasezh by the present feature mis-
match, as we never repeat both objects at once. We therdfose @ description by means of the
General Model in episodic retrieval mode with moderatevatibn gating.

Following the interpretation of the General Model, a negagiriming trial begins with the onset
of input to the feature layers and the formation of bindingstiie respective stimuli. Simultane-
ously, the feature instance that defines a target receidiicaml input by the central executive.
The bindings exchange activation between the differeritifedayers, such that the feature which
triggers the response to the target object receives alse imaut than the corresponding one of the
distractor. A similarity signal is computed immediatelyeafthe stimulus appeared. The higher
the similarity, as in TT and DT trials compared to CO, the rsgjer the feedback of the former
trial's activations. This supporting retrieval leads toesigeptual acceleration. Later in the seman-
tic layer the differential retrieval becomes crucial asaaflivations, the externally driven and the
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retrieved ones, enter the calculation of the thresholdwhiiatdetermine the point in time where
the target is selected against the distractor. During Dalstrionly the low value of a distractor
is fed into the probe target variable making it slower than Bt we also have less overall ac-
tivation as in a CO trial where both former objects are re@iedue to the inherent similarity of
trials of the same experiment. If the selection of the tahget been done, a rather stereotypical
mechanism of action initiation is triggered, which is exikely faster in TT trials, a phenomenon
which can not be explained by any of the existing theoried,igthus not yet implemented in the
General Model. One possible source may be a higher arousat#s where the same object is to
be attended again, accelerating response execution.

9.5 Summary and Outlook

By the means of innovative experimental paradigms, EEGrdiegs, and computational model-
ing, we obtained a comprehensive picture of negative pamWWe found that negative priming
is neither produced during perception, nor at responsergtme. A fact only a single theory,
episodic retrieval, can explain.

Besides the global aim of unveiling the temporal structdm@regative priming trial, our project
yielded numerous additional results. We enriched the seegétive priming paradigms by intro-
ducing intermediate behavioral time markers. We investididhe interaction of negative prim-
ing with phenomena that occur naturally in several paradigimd that are caused e.g. by task
switching or response repetition. We consolidated sevVeEfb-correlates of negative priming
and brought up an subtle way to account for reaction timeatiaris during averaging. With our
modeling we advanced the discussion about the most likelgrihto explain negative priming,
by consistently falsifying one account and by constructinfjamework in which all theoretical
accounts are comparable.

All in all, the question about negative priming is far fromitog answered, as our description
of a generic negative priming trial can not account for all tdudities found in connection with
negative priming. We will finally present several ideas togaed in order to come closer to the
origin of negative priming.

Negative priming is sensitive to age, and therefore an éstarg phenomenon for aging re-
search. As we aimed at a complete picture of negative priitsedf before we introduce aging as
an additional factor, a theory of aging still remains to beuded into our approach. Experimen-
tally, however, we already acquired a broad base of expetahdata comparing old and young
subjects. The evaluation of the data and the integratianant theoretical framework is one of
the major points in the remaining eight months of our project

Another direct continuation of our time marker paradigmtiésintroduction of multiple makers
per trial for a future experiment. According to our advanegdraging techniques, the consider-
ation of individual event related potentials for each pdrthe trial is straightforward. Therefore
we are already planning another EEG study.

In order to extend the approach also to other experimentaldgms, we want to introduce
self-organization mechanisms which should enable the aEModel to act more flexibly and
robustly in different situations. The accelerating efficthe response generation phase has to
be tested more thoroughly in order to identify the corresidmmn mechanism to include it in the
General Model.
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A Tables

A.1 Tables of Chapter 2[]

(RT) [ms] (sd) | effect [ms]

co 660.22  (62.85) —

DT 681.57  (69.65) -21.36
DTTD | 685.92 (78.04) -25.70
TT 625.02  (65.29) 35.20
DDTT | 600.69 (70.56) 59.53

Table A.1: Reaction times, standard deviation and priming effeats the differences of control
reaction time and reaction time of the according condition.

A.2 Tables of Chapter 3[]

(RT) [ms] (sd) | effect

co 525.84 (14.78) —
DT 546.40 (19.62) -20.55
DTTD 552.12 (22.19) -26.28
TT 489.76 (18.38) 36.09
DDTT | 46556 (17.31) 60.29

Table A.2: Reaction times for a response stimulus interval of 1500rasndtch the experimental
data given in section 2.2 an additional delay~0fl35 ms for perception and action
initiation has to be assumed. These processes will alsbefuraise the variance but
not alter the strength of the effects. Given are also theamag and the effect in
dependence on the condition. These reaction times wer@ebtin an exemplary
simulated session of 400 trials. The parameters of this |latea experiment were:
a =0.028,3 =0.003,& =0.0016,{ = 0.0053,y = 0.013,tgelay= 15ms andy = 0.62.

A simulated time step was8mns
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(RT)

(sd) | effect

Cco
COSO| 407.48
DTSO | 427.72
TTSO | 299.58
SOCO| 573.55
SODT | 624.80
SOTT | 548.20

525.84

(14.78) —
(22.91) 118.36
(24.77) 98.12
(36.51)| 226.26
(19.98) -47.70
(34.30) -98.96
(27.70) -22.36

Table A.3: Predictions of reaction times for a response stimulusvatasf 1500ms, together with
variances and absolute effects in dependence of the comdifian exemplary simu-
lated session. The usual priming conditions are not showre garameters are the

same as in table’Al.2.

A.3 Tables of Chapter 4]

(RT) [ms] (sd) effects [ms]
control 765.8 (198.8) —
DT 793.3 (214.2) xxx -27.5
TT 632.9 (139.0) x»xx 1329

Table A.4: Reaction times for the different priming condition (CO, OTT) together with their
standard deviation and priming effects as the differenteden CO and DT, resp. TT.
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A.4 Tables of Chaptén 6

A.4 Tables of Chapter

6.

(RT) [ms] Effect [ms] | Target Effect [ms]
CO 50085 — —
DT 52566 —24.81 —21.36
TT 466.07 3477 35.20
TD 50575 —491 —_—
DD 49415 670 —
DTTD 52429 —2344 —2570
DDTT 45175 4910 5953

Table A.5: Reaction times for the different priming conditions TT, IDTT and DTTD of the
calibrated simulation in comparison to their target effsitengths, see sectibn2.2.
Note that the simulation already provides predictive datatlie conditions DD and
TD which are not subject to fitting.

Reaction Time [ms]

Priming Effect [mg

CoO 53542 —
DT 55008 —14.67
TT 507.66 2776
TD 55102 —-15.61
DD 51350 2192
CO_sw 52825 —
DT_SW 49543 3282
TT_SW 54212 —13.87
TD_SW 50553 2271
DD_SW 54302 —14.78

Table A.6: Predictions for the priming conditions TT, DT, DD and TD ahdit task-switch coun-
terparts in the pre-cue paradigm. Priming effects are ohétexd by the difference of
the corresponding control and the respective priming dawdi The repetition of an
object in the same color leads to a benefit, the reappeanaaadifferent color disturbs

processing.
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Reaction Times [ms] Priming Effects [ms]
Total RSl RS | Total RSl RS
Co 126321 | 46598 79723 — — —
DT 134547 | 507.57 83790 | —8226 | —4159 —40.67
TT 123554 | 46585 76969 | 27.68 0.13 2755
TD 134749 | 51523 83226 | —84.28 | —49.25 —35.02
DD 124461 | 46589 77872 1860 0.08 1852
CO_SW | 137273 | 46595 90678 — — —
DT_SW | 135400 | 46587 88813 1873 0.09 1864
TT_SW | 146804 | 51497 95307 | —9531 | —49.01 —46.29
TD_SW | 135333 | 46590 88743 19.40 0.06 1934
DD_SW | 144622 | 507.36 93886 | — 7349 | —4141 —32.08

Table A.7: Predictions for the priming conditions TT, DT, DD and TD inpg@@dency of a task

switch or task repetition derived by our simulation of th@& M. Additional to the total

reaction time the ISAM produces predictions for the dividedction times into the
partsRS'and RS, Effects are differences of the appropriate control andréispective
priming condition. Note that perceptually identical desyd like DT and DD_SW
produce the samies'.

target red target green
(RT) [ms] (sd)| Effect[ms] | (RT) [ms] (sd)| Effect [ms]
CO | 73536 (11092 — | 78376 (10386) —
DT | 75340 (11375 —18 | 80230 (10137) —18
TT | 68663 (10033) 48 | 74083 (10395 43
TD | 757.36 (13524) —22 | 78863 (94.09) -5
DD | 71326 (9883 22 | 76496 (10026) 19

Table A.8: Mean reaction times, standard deviation in brackets arettefitrength for the five

priming conditions CO, DT, TT, TD and DD in the two baselingpesments. The left
side shows the data for red targets, and the right side showes gargets. Note that
trials with green targets are about 48 ms slower than trigls awred target due to the
stronger saliency of the color red. But priming effects, difeerence of CO and the
respective condition, are mostly identical in the two tagggor cases.
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(RT) [ms]  (sd) Effect [ms]
CO | 75956 (10432 —
DT | 777.85 (10071) xx —1828
TT | 71373 (87.50) | xxx 4583
TD | 77300 (10815) x» —1343
DD | 73911 (9168) | xx 2045

Table A.9: Mean reaction

time, standard deviation in brackets

andccteffrength for the five

priming conditions CO, DT, TT, TD and DD pooled over the twaéline experiments.
All conditions produce priming effects. DT and TD have a rnizgaimpact, whereas
TT and DD lead to facilitation.

(RT)[ms]  (sd)| Effect[ms]
ofe) 788567 (11839) —
DT 813500 (107.17) | »» —24.93
TT 733800 (10235) | xxx 5476
TD 792167 (11942) —-3.60
DD 788367 (11197) 0.20
CO_SW/| 795400 (12073) —
DT_SW | 823467 (14576) | xx —2807
TT_SW | 800700 (126.388) —5.30
TD_SW | 816633 (12490 ¥ —2123
DD_SW | 815067 (12331) *x —19.66

Table A.10: Mean reaction time, standard deviation and priming effecttifie priming condi-
tions TT, DT, DD and TD and their task-switch counterpartimpre-cue paradigm.
Priming effects are determined by the difference of theesponding control and
the respective priming condition. DT and TT behave simjlénlthe baseline exper-
iment. In the task-switch conditions, an overall decelerais present which may be
due to a negative shift of conditions that repeat an object.
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without mask with mask

(R¥) [ms]  (sd) | Effect [ms] | (R¥) [ms]  (sd)| Effect [ms]
CO 147053 (63333) — | 160785 (43149) —_—
DT 145733 (60348) 13 | 154521 (41874) 63
TT 139573 (59351) 75 | 147192 (41466) 136
D 146466 (626.80) 6 | 159850 (42373) 9
DD 141026 (58147) 60 | 153892 (407.10) 69
CO_SW| 145213 (62273) | 158178 (43597) —
DT_SW | 145633 (61308) —4 | 156350 (41272) 18
TT_SW | 144106 (60974) 11 | 156157 (41911) 20
TD_SW | 139920 (56447) 53 | 149200 (38062) 96
DD_SW | 145093 (607.58) 1| 168835 (47145) —106

Table A.11: MeanRS', standard deviation in brackets and effect strength fofitlegoriming con-
ditions CO, DT, TT, TD and DD in the two post-cue experimeiitse left side shows
the data for the non-masked experiment, where the thirdeoktibjects that use an
after-image strategy causes a faster mean reaction tima emech higher variance

than on the right side, where data from the masked experirmshbwn.

Table A.12: Stimulus identification reaction timé®', standard deviation and priming effect for
the priming conditions TT, DT, DD and TD and their task-sWwittounterparts in the
post-cue paradigm pooled over both experiments with andowttmask. Priming
effects are determined by the difference of the correspandbntrol and the respec-
tive priming condition. Note the inappropriateness to ppdl_SW over the mask
and non-mask group.

(R [ms] (sd)| Effect[ms]
co 153682 (54025) —
DT 149975 (51527) 37.06
TT 143251 (507.40) | »x 10431
TD 152927 (53332 7.55
DD 147237 (50027) x 6444
CO_SW | 151472 (53524) —
DT_SW | 150806 (519.60) 6.65
TT_SW | 149924 (520.76) 1548
TD_SW | 144400 (47832) | x» 70.72
DD_SW | 156555 (549.86) x —50.82
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without mask with mask

(RS) [ms]  (sd) | Effect[ms]| (RS) [ms] (sd)| Effect [ms]
Co 96646 (12585) — | 86550 (15862) —
DT 98966 (11447) —23 | 87764 (17083) ~12
TT 957.06 (11814) 9 | 86200 (16823) 4
TD 95320 (13559) 13 | 857.42 (15747) 8
DD 91860 (11099) 48 | 85150 (19285) 14
CO_SW| 95786 (9555) — | 86264 (13098) —
DT _SW | 99420 (8243 —36 | 89085 (14557) -28
TT_SW | 102820 (11020) —70 | 91292 (14469) —40
TD_SW | 93606 (107.76) 22 | 82392 (14635) 39
DD _SW| 97306 (10121) —15 | 87600 (14136) -13

Table A.13: MeanR', standard deviation in brackets and effect strength fofiteepriming con-
ditions CO, DT, TT, TD and DD in the two post-cue experimeiitise left side shows

the data for the non-masked experiment, the left side th&edgsart.

(RS) [ms] (sd)| Effect[ms]
co 91598 (26.49) —
DT 93365 (2682) | x —17.86
TT 90953 (26.83) 6.55
TD 90531 (27.22) 10.75
DD 88505 (2896) | » 3151
CO_SW| 91025 (21.18) —
DT_SW | 94252 (21.76) | » —3241
TT_SW | 97056 (23.77) | x¥x —60.65
TD_SW | 87999 (2374) | x 2996
DD_SW | 92453 (22.70) —-14.31

Table A.14: Target selection reaction tim&%, standard deviation and priming effect for the prim-
ing conditions TT, DT, DD and TD and their task-switch coupgets in the post-cue
paradigm pooled over both experiments with and without m&skming effects are
determined by the difference of the corresponding contrdlthe respective priming
condition.
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A.5 Tables of Chapter 7]

Priming Effects

same response different respornse

TT 30.98 n.a.
DT n.a. —24.80
DD n.a. 4944
TD n.a. —17.74

Table A.15: Predictions for the difference and reaction times of cdratnal the four priming con-
ditions TT, DT, DD and TD derived by our simulation of the ISAM

same responsk different response
Mean Reaction [ms] (sd)
control | 9760 (3013) 9452 (2583)
DT 9840 (2810) 9747 (287.6)
TT 9595 (2652) 9128 (2441)
TD 9898 (3238) 9495 (267.3)
DD 9650 (2945) 9680 (3007)
Priming Effects [ms]
DT x =80 x =295
TT xx 165 xx 324
TD —138 —4.3
DD 110 x —228

Table A.16: Reaction times and priming effects in dependence on primmamglition and response
relation. Priming effects are computed as the differencthefreaction time in the
control and the prime condition, respectively.
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e | RS
Mean Reaction [ms] (sd)
CO | 4172 (107.3) | 5158 (639)
DT | 4294 (107.9) | 5217 (731)
TT 4147 (96.0) | 4967 (60.7)
TD | 4288 (1190) | 5104 (68.9)
DD | 4222 (1095) | 5187 (75.5)
Priming Effects [ms]
DT xx —122 -59
TT 2.5 xx 192
TD x» —115 55
DD -5.0 -29

Table A.17: Partial reaction times and priming effects for each primampdition. The color
switch of repeated objects gives a slowdown in the percéptoase, whereas an
acceleration of TT trials is located in the second part @i processing.

155



A Tables

A.6 Tables of Chapter 8]

free parameters

ure

Pt Pb PsPa | rise time constants

Ot Op Os 04 decay time constants

Teo Tgo adaptation time constant for thresholds

Ve Vo normalization factors for thresholds

b maximum binding strength

# maximum number of simultaneous bindings
theory specific parameters

a target amplification

F baseline activity in case of feature absence

l distractor inhibition

B time constant of activation broadening within one feat

Oi_ s Ofs.a | Maximum synaptic depression while full blocking

Tolock adaptation time constant fow ok

é initial memory strength

Oe decay time constant for memories

d initial value ofd at display onset

d fixpoint for the adaptation of

T4 adaptation time constant far

u initial value ofu at display onset

Ty adaptation time constant for

Table A.18: Parameters of the General Model. The upper part shows pteentetermining the
overall behavior of the General Model. The lower part déssiparameters that
control the processes that are postulated by a particidangtor negative priming.

)

A(87 f70-f7s—)a)

maps feature activations on semantic input

maps feature and semantic activations on action input

Table A.19: Mappings to be defined by the central executive.
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e

(%)

e

—

D

7]

Eqg. | Description Comment
f) (83) | activation of thejth instance of fea; f&"""is the subjective presence
turei green
F/ 81) | external input to thg-th instance off FJ2"= F while green is shown
featurei
I @B2) | inhibition of the distractor object I= 0 no inhibition
A @@B3) | excitation of the target A= 0 no excitation
F/ (B2) | total input including excitation and FJ-="= F + Awhile green is targe
inhibition color
B ik | @8) | binding strength of an object possessh;color greert {shapeball} = b in sub-
ing jkth instance of featurig jective presence of a green ball
sl @) | activation of thejth semantic repret s@ = 0 subjective absence of th
sentation semantic concepiall
& (810) | adaptive threshold level in the se-The relation between the and<’
mantic layer determines the input to the actig
layer.
Of_s @B38) | synaptic strength between featurest .5 = 0 all information flow
and semantic layer blocked
Oblock @B9) | synaptic block caused by matchingopock = 1 full block of bottom up
retrieval information flow
al @B.11) | activation of thejth action alternativeg a¥®s>= 0 means the impossibility t¢
according to the task answeryes
Ofs-a | (BJ2)| synaptic strength between featurests ., = 0 all information flow
and semantic layer projecting ontdblocked
the action layer
ra @B.13) | relative retrieval strength for actions r, = 1 retrieval equal to other layer
ad (812) | adaptive threshold level in the actignAction alternativesal above a°
layer determine possible actions of th
model.
& @158) | memory strength of thekth last| e, =0 the last episode is totally for
episode gotten
€l (B.16) | memorized value of variable e{g"rﬁin = 1 green was active at las
reaction
rk @B11) | retrieval strength for thekth last| rx =0 no stimulus match, therefor
episode no retrieval
Ok (B18) | old-new signal comparing theh last | 0, = 0 the actual percept has ju
trial with the actual one been shown
@B.19) | threshold for old-new decisions
@B.19) | uncertainty width for old-new deci- r; > d+ uthe last episode is recog
sions nized as old

Table A.20: Variables describing the state of the General Model ordbyetheir location in the
different layers. See the corresponding equations foildeta the particular dynam-

ICS.
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(RT) [ms](sd) | Effect [ms]
CO 95934 —
DT 98125 -2191
TT 90250 56.84
D 111694 —157.60
DD 103287 —7353

Table A.21: Mean reaction time and effect strength for the five primingdittons CO, DT, TT,
TD and DD produced by the General Model in episodic retrievatle as described

in sectior 8.b.

(RT) [ms](sd) | Effect [ms]
(6{0) 115419 —
DT 116985 —15.66
TT 122412 —69.93
TD 118410 —29.91
DD 118735 —33.16

Table A.22: Mean reaction time and effect strength for the five primingditons CO, DT, TT,
TD and DD produced by the General Model in episodic retrievatle as described

in sectio 8.b.

(RT) [ms](sd) | Effect [ms]
CO 83949 —
DT 85287 —13.38
TT 83904 0.44
D 85269 —-1320
DD 84926 -9.78

Table A.23: Mean reaction time and effect strength for the five primingdittons CO, DT, TT,
TD and DD produced by the General Model in episodic retriewalde during a
word-picture comparison task as described in sefidn 8.6.
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A.6 Tables of Chaptéll 8

(RT) [ms](sd) | Effect [ms]
CO 69882 —
DT 71522 —16.40
TT 67647 22.35
D 70910 —10.28
DD 72574 —26.91

Table A.24: Mean reaction time and effect strength for the five primingditions CO, DT, TT,
TD and DD produced by the General Model in episodic retrievatie with a weak
modulation of activation transfer during a word-picturengarison task as described

in sectio 8.6.
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