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Chapter 1

Introduction

For many decades, x-ray crystallography has dominated the field of atomic scale

structural measurements. Whenever crystallization of a system is possible it has

been an excellent method, achieving atomic resolution even for complicated sys-

tems like large biomolecules such as proteins. It has not been constrained to static

structure determination, but has also been used to determine the structure of reac-

tion intermediates, for example an early intermediate of bacteriorhodopsin photo-

cycle trapped at low temperature1. Even pump-probe time-resolved experiments

have been devised and performed studying a variety of systems, such as picosecond

excited state structural change in organic crystals of 4,4’-dimethylaminobenzonitrile2,

or Ångstrom scale atomic motion involved in nonthermal melting of germanium3.

However, many important systems, especially in structural biology, cannot be

crystallized. Diffraction on these samples does not benefit from Bragg amplifica-

tion. In the case of crystalline samples the amplification of the signal at the Bragg

peaks is caused by the constructive interference from periodically repeated unit

cells. Therefore the diffraction signal from noncrystalline samples is much weaker,

the increase of the source brightness being the only possibility for increased sig-

nal. Until now even the brightest x-ray sources, such as the synchrotrons of the

third generation or plasma sources, did not provide enough photons to enable

measurable high resolution diffraction on noncrystalline samples.

In recent years the next generation of x-ray sources — free electron lasers

(FELs) — have been under construction. They are expected to provide source

brilliance on the level where coherent diffraction measurements of noncrystalline

1



2 Introduction

samples would be possible. However, with such high brilliance radiation damage

of the samples becomes an important issue. Using todays synchrotron sources and

minimizing the radiation damage by cryoprotection techniques, a beam brightness

of 200 photons per Å2 with 1Å x-rays4 is considered the maximum before the

radiation damage becomes too strong for successful structural measurement.

Much more intense probe pulses would be necessary for single molecule mea-

surements. At the necessary intensity the effect of the so called Coulomb explosion

is unavoidable. The high number of ionization events under the necessary pho-

ton fluxes would strip the sample of electrons leaving behind what is in essence a

cluster of repulsive positively charged ions. Depending on the size of the original

molecule this would disintegrate in time-scales on the order of tens to hundreds

femtoseconds. However, it has been reported5 that even such intense ultrashort

pulses might be used, if they are short enough to provide the coherent diffrac-

tion signal in the very first stages of Coulomb explosion, when the structure factor

changes of the atoms in the sample caused by photoionization are small enough for

reliable structural measurement. The spacial coherence of the FEL pulses opens

the door for new imaging techniques such as coherent diffractive imaging. The

object is computationally reconstructed from coherent scattering patterns, mak-

ing use of phase retrieval techniques.6,7,8 The strong laser fields of FEL provide

new challenges for experiments as well as theory. This work is is focused on the

detailed description of processes in the sample and the effects they have on x-ray

scattering.

As the emergence of the FEL sources opens up new opportunities in material

research, the theory and modeling of the behavior of matter in strong x-ray laser

fields, as well as novel approaches to scattering, become of an increased importance.

The high intensity allows for measurements with increased electron density details

refinement due to possible increase of signal to noise ration in the diffuse spectra

region. Another topic of interest for theoretical study is the coherent diffraction

during the event of Coulomb explosion. Time-resolved x-ray scattering studies of

small molecular systems using the strong FEL pulses can elucidate a number of

questions concerning their reaction dynamics. This has been so far studied mainly

by spectroscopic techniques, which in many cases do not lead to conclusive results.

There is a number of possible theoretical approaches in theoretical studies of

molecular structure and dynamics and matter–laser interaction. In the case of
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large molecular systems and clusters (as for example in the work by Neutze et al

[5]) the preferred theoretical description is one based on molecular dynamics and

stochastic methods. If, however, the studied molecular system is relatively small,

bearing in mind the required computational time, a choice of a suitable ab-initio

quantum chemistry method is beneficial. This provides a detailed account of quan-

tum mechanical processes involved in the time-dependent changes of the molecular

structure in pump-probe experiment, as well as the matter–laser interaction with

a specific laser probe pulse. One of the most widely used ab-initio methods for the

description of ground state structures is the so called density functional theory

(DFT), extended as time-dependent density functional theory (TDDFT) in the

case of excited states. Throughout this thesis these methods are not only used in

modeling the molecular structure and dynamics but also the matter–laser interac-

tion. Chapter 2 contains the overview of these methods as well as other theoretical

and modeling tools used in this thesis.

Focusing on small molecular systems a number of important effects can be

studied, benefiting from the improved scattering resolution offered by the strong

FEL pulses. Effects such as delocalized electron density distribution, as it is ex-

hibited for example in chemical bonds, can become measurable even in gaseous or

liquid samples. A study of the effects of detailed electron density distribution on

photoisomerization of stilbene are described in detail in the Chapter 3.

Another interesting subject for time-resolved studies is the dynamics of chemi-

cal reactions. One of widely studied prototypical reactions is the photodissociation

and recombination of molecular iodine. The high number of electrons in iodine

means a strong scattering signal, so that even an experiment with an I2 gas is

possible. The Chapter 4 deals with various aspects of the reaction dynamics, such

as coherent and non-coherent processes, periodic features of structural relaxation

versus non-periodic dissociative process, as well as small electron density changes

caused by electronic excitation, all with respect to x-ray scattering.

Recent advances in laser alignment of molecular systems offer an alternative

to proposed single molecule coherent diffraction. Alignment introduces a form of

periodicity in the molecular system and so increases the diffraction intensity. As

explained in Chapter 5 this enhances the structural information encoded in the

scattering images and enables improved resolution in studies of reaction dynamics,

as it is shown on the example of the photoisomerization of stilbene. Interesting
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applications could follow also from the fact that the scattering signal is strongly

influenced by the alignment axis, which can be modified by attaching suitable

polarizable groups onto the studied molecule.

Theoretical studies of Coulomb explosion have gained importance with respect

to the interest in the single molecule coherent diffraction. Instead of the usual

approach using classical molecular dynamics, the TDDFT approach to the problem

is the subject of Chapter 6. This is a computationally expensive method and

therefore the size of the studied cluster has to be correspondingly small. However,

it has an important advantage in comparison to the stochastic methods as it

accounts for the laser field explicitly and so does not impose constrains on the

interaction of the laser pulse with the cluster.



Chapter 2

Theory

2.1 Wave Functions and Electron Density

Atomic systems, be it molecules, crystals or even just isolated atoms, are in quan-

tum mechanics described by a number of properties. Some of them have a classi-

cal equivalent which assists our intuitive understanding of them, forming a bridge

between the classical and quantum mechanical world. Others are more or less

symbolic, like bonds and molecular orbitals, understanding of which is predomi-

nantly based on their theoretical representation by equations and mathematical

expressions. Electron density is one of the properties belonging to the first group.

This Chapter is concerned with the understanding of the relationship and inter-

play between electronic and vibrational wave functions and consequently between

the electron densities and vibrational degrees of freedom in a molecule. This under-

standing is essential for detailed study of x-ray scattering intensities of molecular

systems (see Chapter 2.2). A detailed overview can be found in e.g. Ref. [9] and

for the detailed evaluation of the vibrational degrees of freedom Ref. [10] or [11].

2.1.1 Born-Oppenheimer Approximation

When interested in the physical behavior of a molecular system, the first step in

a quantum mechanical study is describing the system through the Schrödinger

equation

ĤΦ = EΦ. (2.1)

5
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The Hamiltonian of a molecular system is built from a few important terms

Ĥ = T̂n + T̂e + V̂ne + V̂ee + V̂nn =

−
∑
a

~2

2Ma
∇2
a −

∑
j

~2

2me
∇2
j

−
∑
a

∑
j

Zae
2

|rj −Ra|
+
∑
i

∑
j>i

e2

|ri − rj |
+
∑
a

∑
b>a

ZaZbe
2

|Ra −Rb|
(2.2)

where a, b denote nuclei and i, j electron term, thus Ra, ri correspond to the

position of the nuclei and electrons respectively, Ma, me to the mass of nuclei and

electrons. In the kinetic energies T̂ and particle pair interaction potentials V̂ the

subscripts e and n denote the dependence of electron and nuclear positions, with

for example T̂e being the kinetic energy of the electrons and V̂ne the nuclei-electrons

pair interaction potential.

Since the Schrödinger equation of the many particle system (2.2) is a compli-

cated second order partial differential equation, one has to perform a number of

approximations in order to solve it. Let us assume that we have the complete set

of orthonormal eigenstates Ψi(R, r) to the electronic part of the Hamiltonian 2.2,

Ĥe = T̂e + V̂ne + V̂ee + V̂nn, with the corresponding energy eigenvalues Ei(R). The

eigenstates of the total Hamiltonian can be generally written in the form

Φ(R, r) =

∞∑
i=1

χi(R)Ψi(R, r) (2.3)

Here the functions χi(R) serve as R-dependent expansion coefficients for the com-

plete set of electronic wave functions Ψi(R, r). This expression is known as the

Born representation. After substituting the wave function in the Schrödinger equa-

tion 2.1 by the general wave function 2.3, multiplying from the left by a specific

Ψ∗j (R, r) from the complete set of electronic wave functions and integrating over

the electronic coordinates one arrives at

[T̂n + Ej(R)]χi(R)−
∑
i

Λjiχi(R) = Eχj(R) (2.4)

This form of the equation 2.1 is more intuitive, including the eigenenergies Ej(R)

of the electronic Hamiltonian. The term Λji corresponds to the so-called nonadi-
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abatic couplings, which describe the coupling between the nuclear and electronic

wave functions:

Λji = δjiT̂n − 〈Ψj(R, r)|T̂n|Ψi(R, r)〉 (2.5)

Since the r dependence is integrated out the Λji are operators acting only on the

R space.

Practically a complete basis in 2.3 cannot be used and one has to truncate the

sum considerably. One can take into account a small number of coupled states

and truncate the sum accordingly. This approximation is called the group Born-

Oppenheimer approximation. In the case when only a single product in the sum is

taken into account we talk about Born-Oppenheimer approximation. Even though

only one term is considered, the coupling element Λ11 is still maintained in the

equation 2.5. Omitting this element we would arrive at the so-called adiabatic

approximation, where:

[T̂n + E(R)]χ(R) = Eχ(R). (2.6)

This equation in essence describes the motion of the nuclei moving on the potential

energy surface E(R). This is a good approximation in most of the cases, mainly

due to the fact that the electron mass is much smaller than the mass of nuclei

and the fast moving electrons follow the comparably slow movement of the nuclei

virtually instantaneously. Another condition that has to be fulfilled, in order to

keep the coupling elements Λji small, resp. negligible, is that the electronic energy

levels have to be well enough separated in energy.

2.1.2 Wave Functions of the Nuclei

The best way to illustrate the dynamics of the nuclei on the potential energy

surface (PES) is through the harmonic approximation of the nuclear motion. In

the closest vicinity of a minimum, denoted as R0, the PES can be approximated

by a multidimensional quadratic form from the Taylor expansion:

E(R) = E(R0) +

3Nnucl∑
m,n=1

1

2
kmn∆Rm∆Rn (2.7)
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where ∆Rm = R0
m − Rm is a small deviation from the position of the minimum

R0
m. After a transformation to the mass weighted normal mode coordinates

∆Rn =
∑
α

AnαQαn√
Mn

(2.8)

which conveniently exclude the dependence on mass from the final Hamiltonian,

with Anα the normal mode transformation matrix element. The approximate

Hamiltonian for the nuclear motion around the minimum then becomes:

Happrox = E(Q = 0) +
1

2

∑
α

(P 2
α + ω2

αQ
2
α) (2.9)

which corresponds to a system of independent harmonic oscillators vibrating around

the equilibrium position Q = 0. The eigenenergies of this system are:

εN =
∑
α

~ωα(Nα +
1

2
), (2.10)

where Nα is the number of vibrational quanta in each mode and ωα the normal

mode frequencies. This approximation helps us not only study the equilibrium

vibrational states but also simplify vibrational dynamics on a PES.

Generally after a vertical excitation the molecule does not end up in the vibra-

tional ground state of the excited state PES, but rather moves along this surface

described by the Hamiltonian Hnucl = T̂n + E(R), where the PES E(R) is 3N − 6

dimensional. Practically solving the electronic Schödinger equation using quan-

tum chemistry methods for a large number of dimensions becomes computation-

ally prohibitively difficult. Therefore the vibrational degrees of freedom have to

be separated into active coordinates Ra, which take part in the geometry change

during the dynamics, and spectator coordinates Rs, which are considered fixed

around their equilibrium positions R0
s(Ra) dependent on the active coordinate

Ra. The spectator coordinates can then be treated in the harmonic approxima-

tion, introducing their displacements Q(s) analogically to 2.8. The Hamiltonian
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for the nuclear motion on the PES can be then written as:

Hnucl =

Na∑
n=1

p2n
2Mn

+ E(Ra,Rs)+

1

2

3N−Na−6∑
α=1

[P 2
α + ω(s)2

α Q(s)2
α − 2fαQ

(s)2
α ] (2.11)

where

f(Rs) = −
(
∂E(Ra,Rs)

∂Rs

)
Rs=R0

s(Ra)

(2.12)

describes the forces on the spectator atoms due to the motion of the active atoms.

2.1.3 Electron Wave Functions and Electron Density

Finding the solution for the stationary Schrödinger equation ĤeΨ = EΨ given

by the electron part Ĥe of the Hamiltonian 2.2 is not a simple task. Since it

is practically impossible to solve the Schrödinger equation for a many particle

system exactly one has to resort to a number of approximations which will be

shortly summarized in this Section.

One of the basic tasks of any quantum chemistry calculation is finding the

ground state energy of the system. This is facilitated by the use of the varia-

tional principle. When the electronic Hamiltonian is applied to an arbitrary many

electron wave function of an appropriate form we get the energy as:

E[Ψarb] =
〈Ψarb|Ĥe|Ψarb〉
〈Ψarb|Ψarb〉

(2.13)

Naturally, this functional has a minimum at the ground state energy EGS when

Ψarb ≡ ΨGS . Building on this, a method of finding the ground state energy and

wave function of the Hamiltonian can be devised. First one takes a trial wave

function Ψarb of suitable mathematical form containing a number of parameters.

In the second step one finds the correct set of parameters which minimize the

energy.

The electronic wave function Ψ must satisfy appropriate boundary conditions

— it must decay towards zero at infinity for atoms and molecules or satisfy specific

periodic boundary conditions for solids. Additionally, it should be normalized to

give the correct number of electrons. Another condition originates in the relativis-
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tic quantum field theory and states that an electron wave function must be an

antisymmetric function. This means that the many electron wave function must

change sign when the coordinates, for both position and spin, of any two electrons

are interchanged.

The search for the solution to Hamiltonian Ĥe would be greatly simplified if it

was possible to approximate it by a sum over effective one electron Hamiltonians

Ĥe =
∑
i ĥi, since then the total wave function would have a form of a product of

one electron wave functions — orbitals — Ψ =
∏
i ψi which is also called a Hartree

product wave function. However, a simple product of one electron orbitals does not

obey the antisymmetry condition. Instead, one has to build a Slater determinant

of orbital functions:

ΨSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) . . . ψN (1)

ψ1(2) ψ2(2) . . . ψN (2)
...

...
. . .

...

ψ1(N) ψ2(N) . . . ψN (N)

∣∣∣∣∣∣∣∣∣∣∣
(2.14)

where the factor 1√
N !

guarantees the normalization condition 〈ΨSD|ΨSD〉 = 1. The

Slater determinant is the electronic wave functions expression of choice in quantum

chemistry calculations. In the following, the use of this function in the most basic

of ab-initio methods — the Hartree-Fock method — will be summarized.

Let us now take a wave function ΨHF in the form of a normalized Slater

determinant 2.14 with the molecular orbital ψi(r) being products of orthonormal

spatial orbital φi(r) and spin function σi(s) = α(s) or β(s). For clarity, the terms

in the electronic Hamiltonian will be separated according to the number of electron

indices Ĥe =
∑
i ĥi+

∑
i

∑
j ĝij , where ĥi is the sum of one-electron kinetic energy

and electron-nuclear attraction and ĝij is the electron-electron repulsion. The total

energy can then be described by the form:

EHF [ΨHF ] = 〈ΨHF |Ĥe|ΨHF 〉 =

N∑
i=1

Hi +
1

2

N∑
i,j=1

(Jij −Kij) (2.15)

with Hi =
∫
dr ψ∗i (r)ĥiψi(r), the Coulomb integral

Jij =

∫ ∫
drdr′ ψi(r)ψ∗i (r)V̂eeψ

∗
j (r′)ψj(r

′) (2.16)
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and exchange integral

Kij =

∫ ∫
drdr′ ψ∗i (r)ψj(r)V̂eeψi(r

′)ψ∗j (r′) (2.17)

which are all real and satisfy Jij ≥ Kij ≥ 0. The Hartree–Fock ground state energy

of a system is obtained by minimizing equation 2.15 over all possible orthogonal

molecular orbitals.

An important part of quantum chemistry calculations is to choose a suitable

form of molecular orbitals ψ(r) that build the Slater determinant. Theoretically,

the trial molecular orbitals can be expanded in terms of a complete basis set, thus

the true minimum of 2.13 (over the set of single-determinant wave functions) could

be find by optimizing the expansion coefficients. However, actual calculations

can be performed only using a finite basis set, which introduces an additional

approximation in the framework of quantum chemistry calculations. Naturally it

follows that the more the basis set is truncated the poorer the results of the energy

minimum calculation.

The exact solution of the Schrödinger equation for hydrogen atom serves as

a foundation for the introduction of Slater Type Orbitals (STO). They have the

form

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1e−ζr (2.18)

where Yl,m are the spherical harmonics and N is a normalization constant. Here

the correct character of the wave functions, namely the radial nodes, are created

by using linear combinations of STOs. The advantage of this basis set is its

correct exponential dependence e−ζr which prompts a fast convergence of the

energy calculation with the increasing number of basis functions. However, the

disadvantage of the Slater functions — nonexistence of analytical expressions for

three- and four-center two-electron integrals — deems them useful only in a narrow

range of problems, in most of the cases only dealing with atomic and diatomic

systems, or else require complicated numerical integration procedures.

Preferred for their analytical properties are the Gaussian Type Orbitals (GTO)

of the form

χζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r2n−2−le−ζr
2

χζ,n,l,m(x, y, z) = Nxlxylyzlze−ζr
2

(2.19)
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Although they do not have the correct cusp behavior of the STOs near the nucleus

and the fall-off e−ζr
2

with increasing r is too fast, the advantage of analytical two-

electron integrals makes them the basis set of choice for most of quantum chemistry

calculations. The drawbacks of GTOs can be compensated for by increasing the

number of basis functions used which is computationally preferable to numerical

integration. Since the application of GTOs in detailed x-ray scattering simulation

is discussed later in this thesis, let us now describe their construction with some

detail here.

The basic work on the so-called split valence molecular orbitals was done by

Pople (see for example [12], [13]). The molecular orbitals ψi in the Slater deter-

minant 2.14 are composed of basis functions ψi =
∑
µ cµiφi. Here the functions φi

consist of a fixed set of Gaussian functions, while the coefficients cµi are optimized

to minimize the total energy of the molecule. In the case of the first row elements

these so-called contracted basis functions are built as a sum over single, also called

primitive, Gaussian functions

φ1s(r) =

N1∑
k=1

d1s,kgs(α1k, r), (2.20)

φ′2s(r) =

N ′
2∑

k=1

d′2s,kgs(α
′
2k, r), φ′2px(r) =

N ′
2∑

k=1

d′2px,kgpx(α′2k, r), (2.21)

φ′′2s(r) =

N ′′
2∑

k=1

d′′2s,kgs(α
′′
2k, r), φ′′2px(r) =

N ′′
2∑

k=1

d′′2px,kgpx(α′′2k, r), (2.22)

with the functions ψ representing the core shell, φ′ and φ′′ the inner and outer

valence shell, the coefficients αν and dν,k are fixed to minimize the ground state

energy for the given atom, and gs, gpx are Gaussian functions

gs =
2α

π

3/4

exp(−αr2), gpx =
128α5

π3

1/4

exp(−αr2). (2.23)

After choosing the number of primitive basis functions N1, N ′2 and N ′′2 one arrives

at the corresponding split-valance basis set representation N1-N ′2N
′′
2 G, the widely

used basis sets being 4-31G or 6-31G. In another words, in the case of first row

elements, each molecular orbital in this representation is described by a core 1s,

inner valence 2s and 2px orbitals and outer valence 2s and 2px orbitals, with the
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weights cµi determining the prevalent character of this orbital.

2.2 X-Ray Scattering

This Section summarizes the main principles governing x-ray scattering when

studied quantum mechanically. Details on the theory of time-resolved diffraction

as well as examples of time-resolved measurements performed using synchrotron

sources can be found for example in the review work [14] by Helliwell, or Refer-

ences [15, 16, 17]. Additionally, x-ray scattering from molecular systems with ran-

dom orientations of molecules — liquids or gases and systems of aligned molecules

— will be described in detail.

2.2.1 Time-Resolved X-Ray Scattering

For start, let us assume that the system under consideration is a single molecule

in the x-ray field. This assumption will be later dropped in order to study the

scattering from large assemblies of molecules.

Quantum mechanically x-ray scattering is expressed in terms of the following

Hamiltonian:

Ĥ = Ĥr +
∑
j

pj
2mj

+ V −
∑
j

ej
mjc

Aj · pj +
∑
j

e2j
2mjc2

|Aj |2 (2.24)

with Ĥr corresponding to the Hamiltonian of the radiation field, pj the momentum

operator of the j-th particle and the vector potential Aj :

Aj =
∑
k

êk

(
2π~c2

ωkL3

)1/2

[âk exp(ikk · rj) + â∗k exp(−ikk · rj)] (2.25)

with êk and kk being the polarization and propagation vectors of the mode k and

frequency ωk, and the annihilation and creation operators âk, â∗k.

From the time-dependent perturbation theory it follows that the transition rate

for this kind of processes can be expressed as:

WFI = 2π
~ |〈F |H(2)|I〉|2ρ(E) =

2π
~

(
2π~e2
mωkL3

)2
(nk + 1)nk0

∣∣∣〈f ∣∣∣∑j exp(iq · rj)
∣∣∣ i〉 (êk · êk0)

∣∣∣2 (2.26)
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where H(2) corresponds to the last term of the Hamiltonian 2.24,

|I〉 = |εi, nk0~ωk0 , nk~ωk〉 is the initial state of the system,

|F 〉 = |εf , (nk0 − 1)~ωk0 , (nk + 1)~ωk〉 is the final state of the system and ρ(E)

is the number of radiation oscillators per unit energy. The differential scattering

cross section will be:

dσ

dΩ
=

(
e2

mc2

)2

(êk · êk0)2

∣∣∣∣∣∣
〈
f

∣∣∣∣∣∣
∑
j

exp(iq · rj)

∣∣∣∣∣∣ i
〉∣∣∣∣∣∣

2

, (2.27)

here |f〉 and |i〉 correspond to the wave functions of the final and initial state. In

the case of x-ray scattering and diffraction the initial state |i〉 of the molecule is

equal to the final state, the radiation potential does not cause any excitations. For

a molecule these wave function would be of the form of the total wave function

including electronic and nuclear wave functions:

Φ(R, r) = Ψel(r|R)χnucl(R) (2.28)

with Ψel being implicitly R dependent and χnucl build from vibrational wave

functions which in the harmonic approximation (see the Section 2.1.2) have the

form χnucl =
∏M
j=1 ξj(Qj), M denoting the degrees of freedom in vibrational

coordinates. These vibrational coordinates arise from the harmonic approximation

in which vibrational coordinates are separated. The use of this approach helps to

clarify the influence of the molecular movement on the differential cross section

and scattering intensity.

The main term in the dσ/dΩ expression can be expanded as:

〈f |exp(iq · r̂)| i〉 =∫
dQ1...dQMdr ξ

∗
1(Q1)...ξ∗M (QM )Ψ∗el(r|Q) (exp(iq · r̂)) ξ1(Q1)...ξM (QM )Ψel(r|Q) =∫

dQ1...dQM |ξ1(Q1|2...|ξM (QM )|2
∫
dr ρ(r|Q) exp(iq · r) (2.29)

where r̂ corresponds to the electron position operator.

In many practical cases some modes in the vibrational space are strongly con-

fined. By substituting the wave functions of these modes for the delta function

ξj(Qj) = δ(Qj0) these modes would be easily integrated out of the expression by
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substituting the corresponding dependence on the vector Q with the positions Qj0

in the electron density term ρ(r|Q)|Qj=Qj0 .

In order to be able to deal with the equation 2.29 one has to consider the

implicit dependence of the electron density on the nuclear degree of freedom. From

quantum chemistry calculations one obtains a set of ρ(r) each corresponding to a

different Q rather than explicit function ρ(r,Q). From this follows that we have

to deal with the vibrational degree of freedom through numerical integration. A

sufficiently small number of vibrational modes m which are considered having an

effect on the scattering intensity can be assessed by numerical integration and the

differential cross section can be expressed in the form:

dσ

dΩ
∝
∣∣∣∣∫ dQ1...dQm |ξ1(Q1)|2...|ξm(Qm)|2 FT [ρ(r|Q)]

∣∣∣∣2 =∣∣∣∣∣∑
a

∆Q1...
∑
c

∆Qmp1(a∆Q1)...pm(c∆Qm) FT [ρ(r|a∆Q1, ..., c∆Qm)]

∣∣∣∣∣
2

(2.30)

where FT [ρ(r|Q)] denotes the Fourier transformation of the electron density in

a given point Q in the space of vibrational coordinates and indexes a, ..., c run

through the discretized probability distribution functions of the vibrational wave

functions pj(Qj) = |ξj(Qj)|2. Practically the number of contributing modes m

stays small since it is mainly the weakly confined ones that significantly change

the overall intensity.

Having the implicit Q dependence of the electron density in mind we can now

move on to studying its influence on the time-dependence of x-ray scattering.

This enters the equations through the nuclear degree of freedom as ξ(Q, t) and

pj(Qj , t) = |ξj(Qj , t)|2 and so also the electron density ρ(r|Q, t).

2.2.2 Electron Density and its Fourier Transformation

The usual way of dealing with the electron density part of the differential-cross

section 2.30 is an approximation by introducing the atomic scattering factors f .

These practically approximate the electron density by a suitably normalized delta

function in the positions of the nuclei. In this way, any effect on the scattering

intensity arising from the realistic electron density distribution, as are for example
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bonds or electron delocalization in aromatic molecules, is neglected. However, by

using the GTO basis set expression for the molecular orbitals and electron density,

as introduced in the Section 2.1.3, one can include the details of electron density

distribution in the differential-cross section expression. In the Hartree-Fock theory

and Kohn-Sham density functional theory the electron density can be expressed

in terms of the molecular orbitals as:

ρ(r) =

nocc∑
i=1

bi |ψi(r)|2 (2.31)

with occupation numbers bi = 1, 2 and the number of occupied orbitals nocc. The

orbitals are expanded as:

ψi(r) =

N∑
ν=1

Cνiφν(r) (2.32)

where the N real basis functions φν centered at rν = (xν , yν , zν) are defined as

φν(r) = N (x− xν)lν (y − yν)mν (z − zν)nν exp
(
−αν(r− rν)2

)
(2.33)

with normalization constant N . Here, (l + m + n) = 0, 1, 2, . . . denotes s-, p-,

d-type functions etc. Since the product of two Gaussians is a Gaussian, we obtain

for the electron density

ρ(r) =
nocc∑
i=1

N∑
µ=1

N∑
ν=1

biCµiCνiφµ(r)φν(r)

=
nocc∑
i=1

N∑
µ=1

N∑
ν=1

biCµiCνi exp
(
αµαν
αµ+αν

(rµ − rν)2
)

(x− xµ)lµ(x− xν)lν

(y − yµ)mµ(y − yν)mν (z − zµ)nµ(z − zν)nν exp
(
−αµν(r− rµν)2

)
=

nocc∑
i=1

N∑
µ=1

N∑
ν=1

biCµiCνi
∏

r′=x,y,z

(r′ − r′µ)pr′,µ(r′ − r′ν)pr′,ν exp
(
−αµν(r′ − r′µν)2

)
(2.34)

with

αµν = αµ + αν (2.35)

and

rµν =
αµrµ + ανrν
αµ + αν

. (2.36)
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The Fourier transformation (FT) of the electron density is then given by

FT k [ρ(r)] =
nocc∑
i=1

N∑
µ=1

N∑
ν=1

biCµiCνi∏
r′=x,y,z

Fkr′
{

(r′ − r′µ(t))pr′,µ(r′ − r′ν(t))pr′,ν exp
(
−αµν(r′ − r′µν)2

)}
=

nocc∑
i=1

N∑
µ=1

N∑
ν=1

biCµiCνi

∏
r′=x,y,z

Fkr′
{
pr′,µ+pr′,ν∑

j=0

cjr
′pr′,µ+pr′,ν−j exp

(
−αµν(r′ − r′µν(t))2

)}
(2.37)

with cj = f(r′µ, r
′
ν) and c0 = 1.

The FT of a Gaussian function is again a Gaussian function:

FT k

[
exp

(
−α(r− r0)2

)]
=

√
π

α
exp

(
−k2

4α

)
exp (ikr0). (2.38)

From the differentiation theorem of the FT,

FT k[df(r)/dr] = ikFk[f(r)] (2.39)

we can easily calculate the FT of higher angular momentum atomic orbitals. For

the FTs of the functions fl(r
′) = r′l exp

(
−αr′2

)
we obtain

FT k [fl+1(r′)] =
ik

2α
Fk {fl(r′)} −

l

2α
FT k [fl−1(r′)] . (2.40)

In particular, we find for the terms in Eq. (2.37)

FT k
[
r′e−α(r

′−r′0)2
}

=

(
ik

2α
+ r′0

)
Fk
{
e−α(r

′−r′0)2
]
, (2.41)

FT k
[
r′2e−α(r

′−r′0)2
]

=

((
ik

2α
+ r′0

)2

+
1

2α

)
FT k

[
e−α(r

′−r′0)2
]
, (2.42)

and

FT k
[
r′3e−α(r

′−r′0)2
]

=

(
ik

2α
+ r′0

)[(
ik

2α
+ r′0

)2

+
3

2α
+ 3

]
Fk
{
e−α(r

′−r′0)2
}

(2.43)

for p-, d- and f -type Gaussian functions. These results can also be obtained from
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the equation

FT k [r′nf(r′)] = (−i)n d(n)Fk{f(r′)}
dkn

. (2.44)

Generally, the FT of the polynomial expression of the density (2.34) has the

form:

FT k [ρ(r)] =
∑
j

Cjk
lj
x k

mj
y knjz exp(−Djk

2 − ikrµν). (2.45)

If we are interested in the x-ray scattering from a liquid sample, the power of

the absolute value of the FT of the electron density has to be averaged over all

orientations (or spherical angles):

I(k) =
1

4π

2π∫
0

dϕk

π∫
0

dϑk sinϑk |Fk {ρ(r)} |2 (2.46)

where the index k in ϕk and ϑk denotes the spherical coordinates in k-space. This

definite integral contains exponentials of trigonometric functions caused by the

shifts rµν from Eq. 2.45 and we integrate can it numerically using quadrature in

polar coordinates, on a fine enough grid to give converged results.

2.2.3 Ensemble of Molecules, Gases and Alignment

Scattering from a random distribution of molecular orientations in gaseous or liquid

samples can be assessed straightforwardly by summing the intensity contribution

from all molecules in the sample which practically means integrating the expression

2.30 over all angles in spherical coordinates, for all possible orientations of the

molecules in the sample:

dσ

dΩ
∝ 1

4πq2

∫
dψdθ sin θ

∣∣∣∑
a

∆Q1 . . .
∑
c

∆Qmp1(a∆Q1) . . . pm(c∆Qm) FT (q)[ρ]
∣∣∣2

=
1

2πq2

∫
dθ sin θ |f(q)|2 (2.47)

Due to this integration information about the structure is lost, the intensity

is no longer dependent on the directions of the scattering vector q but only on

its length q. In order to boost the structure characteristic part of the scattering

intensity distribution, which is the important part of the signal used to identify the

molecular structure of the system under study, one has to introduce periodicity
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into the system, as for example is the case in the crystalline systems. In the case

of gaseous samples this can be done trough one of the methods of molecular ori-

entation, for example by orienting the molecules in magnetic field or by orienting

them in laser field. By doing so we generally arrive at an ensemble of molecules

with a preferred orientation of their molecular axis with respect to an the external

coordinate system, which corresponds to the external alignment field. The effi-

ciency of the achieved alignment is characterized by a probability distribution of

the uncertainty of the angle between the molecular axis and the external alignment

field axis.

In order to study a system of aligned identical molecules we have to consider

the properties of Fourier transformation with respect to an arbitrary rotation of

the function f(r) that is transformed. Any rotation of an object in 3D space can be

constructed from three sequential rotations with respect to the coordinate system

axis x, y and z, which is mathematically expressed by sequential application of

the rotation matrices R̂x(α), R̂y(β), R̂z(γ) corresponding to the rotation angles

α, β and γ. The Fourier transformation of a rotated function is then:

FT (k)[f
(
R̂z(γ)R̂y(β)R̂x(α)r

)
] =

∫
d3r f

(
R̂z(γ)R̂y(β)R̂x(α)r

)
e−ikr (2.48)

Due to the consecutive application of the rotation matrices to the function f(r)

we can constrain the evaluation to one rotation R̂(α) and simplify the integral

to
∫
d3r f

(
R̂(α)r

)
e−ikr. We apply the substitution u = R̂(α)r which can be

also written as ui =
∑
j Rijrj , where for the Jacobian we have J(R̂r) = R̂ since

rotation is a linear transformation. This leads to det(J(R̂r)) = det(R̂) = 1. We

also consider that the back substitution is r = R̂(−α)u and the property of the

rotation matrix R̂T (α) = R̂(−α) from which follows that k·(R̂(α)r) = (R̂(−α)k)·r.

The Fourier transformation of the rotated function is then:∫
d3r f

(
R̂(α)r

)
e−ik·r =

∫
d3u f (u) e−ik·(R̂(−α)u) =

∫
d3u f (u) e−i(R̂(α)k)·u

(2.49)

from which we can conclude that for a general expression for the Fourier transfor-

mation of rotated function:

FT (k)
[
f
(
R̂z(γ)R̂y(β)R̂x(α)r

)]
= FT

(
R̂z(γ)R̂y(β)R̂x(α)k

)
[f(r)] (2.50)
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Let us now consider a system of N identical molecules aligned with respect

to their molecular axis with a probability distribution p(α) of the uncertainty in

alignment angle α. In order to maintain clarity and simplicity of the expressions

we will in the following omit the molecular wave function contribution to the

total scattering. An ensemble of aligned identical molecules with the electron

density ρ(r) can be simply mathematically expressed as
∑N
i=1 ρ(R̂(αi)r) and the

total differential cross-section and a sum over the contributions from all molecules

which leads to:

dσ

dΩ
∝

N∑
i=1

c(αi)
∣∣∣FT (q)[ρ(R̂(αi)r)]

∣∣∣2 =

N∑
i=1

c(αi)
∣∣∣FT (R̂(αi)q)[ρ(r)]

∣∣∣2 =∫
dα p(α)

∣∣∣FT (R̂(α)q)[ρ(r)]
∣∣∣2 (2.51)

where c(αi) > 0 are the probability distribution coefficients for which it holds∑N
i=1 c(αi) = 1 and p(α) is the corresponding probability distribution function in

the limit N →∞ holding
∫
α
dα p(α) = 1.

Using the expressions presented in this Section the x-ray scattering intensi-

ties can be studied in space and time, without neglecting either realistic electron

density distribution or vibrational degrees of freedom.

2.3 Density Functional Theory

One of the most widely used methods of quantum chemistry that includes electron

correlation is the density functional theory (DFT) and the time-dependent density

functional theory (TDDFT). These methods conveniently combine computational

efficiency with precision. A detailed description of these methods can be found in

a number of quantum chemistry texts, for example the works [18] and [9] can be

refered to for DFT and works [19, 20] for TDDFT. The following Sections summa-

rize some of the basic principles of these methods and discuss their performance

and use when applied to the problems of photo-induced processes and systems in

high intensity laser fields.
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2.3.1 Density Functional Theory

The basis of the DFT — the Hohenberg-Kohn theorem — states that the ground

state properties, most prominently the ground state energy, are completely deter-

mined by the ground state electron density trough a one-to-one mapping between

the ground state electron density and the external potential18.

We have an electronic many particle system described by a Hamiltonian:

Ĥ =

N∑
i=1

−1

2
∇2
i +

N∑
i=1

v(ri) +

N∑
i<j

1

|ri − rj |
(2.52)

which is a conveniently rewritten form of the Hamiltonian 2.2, where

v(ri) = −
∑
α

Zα
|ri −Rα|

(2.53)

is the electronic potential of nuclei Zα acting on the electron i.

The Hohenberg-Kohn theorem proves that the ground state of an electronic

system is completely described by the external potential v(r) and number of elec-

trons N . Due to the fact that the electron density ρ(r) determines not only the

external potential, up to an additive constant, but also the number of electrons

it follows that the knowledge of ρ(r) is sufficient for a complete description of the

system, particularly the ground state energy.

Generally, the electron density function ρ(r) must have specific properties.

Theoretically, the ground state density is connected to the antisymmetric ground

state solution of the electronic Hamiltonian with some external potential v(r).

A general density function is called v-representable if it is linked to the external

potential in this manner. For v-representable densities follows from the Hohenberg-

Kohn theorem

Ev[ρ] ≡ FHK [ρ] +

∫
v(r)ρ(r)dr ≥ Ev[ρ0] (2.54)

where FHK [ρ] = 〈Ψ|T̂ + V̂ee|Ψ〉 and ρ0 is the ground state electron density. How-

ever, not all densities can be linked to the external potential through a ground

state wave function. Rather they can be associated with some antisymmetric wave

function of the correct number of particles. This kind of densities are called N -

representable. Fortunately, it can be shown that the DFT can be formulated to

apply to electron densities that satisfy the more general N -representability condi-
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tion.

The energy functional is straightforwardly divided into the following parts,

which are the kinetic energy functional T [ρ], the Eee[ρ] electron-electron interac-

tion energy part, and the v[ρ] electron-nuclei interaction part, where Eee[ρ] consists

of the Coulomb part J [ρ] and the Exchange part K[ρ] terms which implicitly in-

clude the correlation energy. Here the Coulomb and v[ρ] parts are given by their

classical expressions, while the kinetic energy, exchange and correlation parts are

expressed using various models of electron interaction which have undergone a

gradual fine-tuning to describe different quantum chemical situations.

In the simplest Thomas-Fermi model21, based on the electron density of a non-

interacting homogeneous electron gas, the functionals are dependent strictly only

on the electron density. The energy functional in this model has a form

ETF [ρ] = TTF [ρ] + Ene[ρ] + J [ρ] =
3

10
(3π2)2/3

∫
drρ5/3(r)+∑

a

∫
dr

Zaρ(r)

|Ra − r| +
1

2

∫ ∫
drdr′

ρ(r)ρ(r′)
|r− r′| (2.55)

Here TTF [ρ] is the kinetic energy functional, Ene[ρ] the nuclei-electron interaction

energy part, and the Coulomb functional J [ρ] is one part of the electron-electron

interaction energy.

In this basic Thomas-Fermi model the functionals are dependent strictly only

on the local electron density. It provides total energies with the error of 15-50% and

more importantly it does not allow for chemical bonds because of the assumption

of the non-interacting homogeneous electron gas.22 An improvement of this model

considers not only electron density itself but also the gradients of electron density.

This is similar to taking Taylor expansion of non-uniform electron densities. It

improves the problem with the chemical bonds but the error of this method by

far does not approach the accuracy of the wave mechanics methods. The most

difficult part of the total energy to approximate with an electron density function

is the kinetic energy.

The solution to the problem with kinetic energy functional is sought in the

Kohn-Sham formalism. Here the kinetic energy functional is split into two terms

from which one is calculated exactly and one represents a small correction. Simi-

larly to the Hartree-Fock orbital method the electron density is expressed in a set
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of orbitals of non-interacting particles:

ρ(r) =

N∑
i=1

|φi(r)|2 (2.56)

which leads to the expression for the kinetic energy of the corresponding Slater

determinant

TS =

N∑
i=1

〈φi| −
1

2
∇2|φi〉. (2.57)

These orbitals are chosen to minimize the kinetic energy TS = minφ→ρ〈φi|T̂ |φi〉
while giving the density ρ. In order to understand the level of accuracy of this

approximation we can compare it to the exact kinetic energy as expressed in terms

of natural orbitals:

T [ρexact] =

∞∑
i=1

ni〈φnorbi | − 1

2
∇2|φnorbi 〉, (2.58)

ρexact =

∞∑
i=1

ni〈φnorbi |φnorbi 〉, (2.59)

N =

∞∑
i=1

ni (2.60)

with the orbital occupancy numbers ni ∈ [0, 1]. Therefore when the approximate

density is expressed as a set of one-electron orbitals

ρ(r) =

∞∑
i=1

ni〈φi|φi〉, (2.61)

it would correspond to the T [ρexact] if the occupancies were exactly 0 and 1. The

small correction coming from the difference between the kinetic energy of inter-

acting and non-interacting electrons is is usually accounted for in the exchange-

correlation term Exc[ρ] and thus the energy can be generally written as:

EDFT [ρ] = TS [ρ] + v[ρ] + J [ρ] + Exc[ρ] (2.62)

The DFT exchange and correlation energy, with exchange constituting the largest

part of Exc, is different from the exchange and correlation energy as defined in

the wave function theory. In the wave function theory, the exchange energy is
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defined as the total electron repulsion minus the Coulomb energy, the correlation

energy is the difference between the exact energy and the Hartree-Fock energy.

They both have short-range and long-range parts with the long-range part of the

exchange energy canceling the long range part of the correlation energy. In DFT

the exchange and correlation has only short-range part since it depends only on the

electron density and the local gradient, therefore by applying the wave mechanics

expression for exchange here one would exclude the cancellation of the long-range

energy parts.

In order to provide necessary accuracy in the kinetic energy calculation the

Kohn-Sham orbitals have to be introduced and so the computational costs of

DFT are similar to those of Hartree-Fock calculations. However, the DFT provides

additional accuracy due to the inclusion of the electron correlation.

Theoretically, there exists a general Exc functional valid for all system. Prac-

tically its exact form is not known and it has to be approximated by different

functional forms for different classes of electron systems, e.g. molecular systems,

solid state materials etc. There are three main approximation methods for arriving

at an expression for this functional.

In the most basic approximation it is assumed that the electron density locally

behaves as the electron density of homogeneous electron gas, that is, electron

density varies only slowly as a function of the coordinate r. This approximation

is called the Local Density Approximation (LDA) or more generally Local Spin

Density Approximation (LSDA) in the case when the α and β spin densities are

not equal. The accuracy of the results provided by this approximation is on

average similar the Hartree-Fock method. In the case of molecules the Hartree-

Fock method provides better results, while the LDA is a better approximation for

metals.

In order to improve the accuracy one has to account for non-homogeneous

electron gas. This is done by making the Exc depend not only on the local electron

density but also on the derivatives of the electron density and generally methods

using this approach are called Generalized Gradient Approximation (GGA). A

number of different GGA functionals was proposed, most notably by Lee, Yang and

Parr23 — the LYP functional, providing the correction for the correlation energy,

Becke24 in B or B88 functionals and Perdew and Wang25 in PW86 functional

providing the corrections for the exchange energy, etc.



2.3 Density Functional Theory 25

The third class of methods are so called hybrid methods. In this case, the

exchange functionals is built from the exact exchange as defined in the Hartree-

Fock method combined with LSDA and GGA exchange, while the correlation is

built as a combination of LSDA correlation with an additional GGA term.

2.3.2 Time-Dependent Density Functional Theory

The Runge and Gross26 theorem is an equivalent of the Hohenberg-Kohn theorem

for time-dependent electron densities. It can be shown that there is a one-to-one

mapping between the time-dependent external potential v(r, t) and the density

ρ(r, t), up to an additive coordinate independent term c(t) in v(r, t), under the

condition that v(r, t) can be expressed by a Taylor expansion around t = t0. The

time-dependent Kohn-Sham equation can then be written as:

i
∂φj(r, t)

∂t
=

[
−∇

2

2
+ vKS [ρ(r, t)]

]
φj(r, t) (2.63)

with the density

ρ(r, t) =

N∑
i=1

|φi(r, t)|2 (2.64)

and the potential

vKS(r, t) = vExternal(r, t) +

∫
d3r′

ρ(r, t)

|r− r′| + vXC(r, t), (2.65)

where the integral term corresponds to the Hartree potential, from which it follows

that the time-dependent exchange-correlation functional is dependent on electron

density ρ(r, t) at all previous points in time. However, one can simplify matters by

assuming the adiabatic approximation which takes vXC [ρ](r, t) = vGSXC [ρ]|ρ=ρ(r,t).
In the simplest case the the time-dependent part of the external potential is

just a small perturbation of the system, causing a linear response in the electron

density change, or in another words the time-dependent density ρ(r, t) depends

linearly on the small perturbation part of the external potential. This is the basic

assumption of the linear response theory which facilitates obtaining the excitation

energies of a system from the time-dependent Kohn-Sham equations (TDKS). The

system is perturbed by a weak field at t = 0, the TDKS equations are propagated

while evaluating a linear density-density response function χ[ρ](r, t), the Fourier
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transformation of which gives the optical absorption spectrum. A small perturba-

tion would cause a small difference in electron density ρ(r, t) = ρGS(r, t)+δρ(r, t).

A point-wise susceptibility χ[ρGS ](r, r′, t− t′) response of the ground state to the

small perturbation can be written as:

χ[ρ](r, r′, ω) = χ[ρKS ](r, r′, ω) (2.66)

+

∫
d3r1

∫
d3r2χ[ρKS ](r, r1, ω)

{
1

|r1 − r2|
+ fxc(r1, r2, ω)

}
χ[ρ](r2, r

′, ω)

(2.67)

with the so-called exchange-correlation kernel

fxc[ρGS ](r, r′, t− t′) =
δvxc(r, t)

δρ(r′, t′)

∣∣∣
ρ=ρGS

(2.68)

The response function χ has poles at the transition frequencies of the system which

correspond to electronic excitations.

In the case of frequency independent kernels, the search for poles of χ[ρ](r, r′, ω)

is equivalent to the eigenvalue problem27:

∑
q′

Rqq′F
′
q = Ω2

qFq (2.69)

with Rqq′ = ω4
qδqq′ + 4

√
ωqωq′Kqq′ where Kqq′ =

∫
d3r

∫
d3rξ∗q (r)fHxc(r, r

′)ξq′

and the Hartree-exchange-correlation kernel fHxc(r, r
′) = 1/|r − r′| + fxc(r, r

′).

The lowest eigenvalues give the excitation energies Ω. Since there exist efficient

algorithms to find only the lowest excitation energies from these equations this

is the form of TDDFT most widely implemented in quantum chemical program

packages.

2.3.3 Strong Fields: TDDFT Beyond Linear Response

The solution to the TDKS Eq. 2.63 gives the exact density of the system without

any constrains on the external potential. Let us cunsider the potential vtd(r, t) =

Ef(t)z sin(ωt) due to a laser field with frequency ω intensity E and pulse shape

f(t) that acts on a system in its ground state. If the field is strong, it requires

stepping beyond the linear approximation of the density-density response function

by integrating the TDKS in time explicitly28.



2.4 Nuclear Wavepacket Dynamics 27

From the Runge-Gross theorem (see 2.3.2) follows that even non-linear time-

dependent behavior of a system, for example the ionization probabilities, must be

described by a functional of the time-dependent density ρ(r, t). Although these

functionals are not known, there are approximate methods of handling the ioniza-

tion of a system in strong fields. A space of bound states can be defined which

corresponds to the space where the electron density of the system is confined before

the interaction with the strong external field. During the interaction, the density

which crosses the boundary of this region accounts for the ionization processes.

2.4 Nuclear Wavepacket Dynamics

In a wide range of problems the molecular dynamics of a system is assessed in

simple classical terms, the most common reason being a very high number of atoms

resp. molecules taking part in the dynamics of the studied system. The classical

approach is based on the Newton’s equation of motion Fi = miai. Depending on

the total size of the system (the number of atoms), the molecular system is divided

into mass subunits i which can be either single atoms or molecular fragments with

the mass mi, acceleration ai which move on the potential energy surface due to

the forces Fi.

A number of numerical methods of solving the equation of motion exists, Verlet

and velocity Verlet algorithm, leap-frog algorithm and Beeman’s algorithm just to

mention a few.29,30,31,32 In the Verlet algorithm the on-the-fly integration proceeds

according to the prescription:

r(t+ δt) = 2r(t)− r(t− δt) + a(t)δt2 (2.70)

which is derived from the expressions for the position r at time points (t+ δt) and

(t−δt) with the acceleration a. This algorithm is very simple and straightforward.

It can be supplemented by the velocity Verlet algorithm in which both the positions

and velocities are obtained at every step.

When dealing with relatively small molecular systems however, the motion of

the nuclei can be treated quantum-mechanically. Generally one has two options

for solving the time-dependent Schrödinger equation for the nuclear degrees of

freedom. The first one is based on the knowledge of the complete set of eigenstates
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of the time-independent Schrödinger equation from which one obtains the time-

dependent solutions as:

Ψ(r, t) =

N∑
j=1

cj exp

(
−iEjt

~

)
Ψj(r) (2.71)

where
∑N
j=1 cjΨj(r) denotes the nuclei wave-function of the system at t = 0 ex-

panded in the set of eigenfunctions Ψj(r) of the Hamiltonian with the eigenenergies

Ej . In most cases however the system is too complicated to allow the knowledge

of the complete set of eigenvalues and one has to resort to the direct integration

of the time-dependent Schrödinger equation.

The wave-packet propagation in time draws on the benefits of expressing the

wave-packet problem on a coordinate-space grid. In this basis the potential part of

the Hamiltonian is diagonal while the coupling between the terms stems from the

kinetic energy operator. However, the kinetic energy operator is straightforward

to deal with for example in terms of fast Fourier transformation (FFT) described

in the following (for a review see [33]).

In the FFT method of dealing with the kinetic energy the wave function is

expressed through its Fourier transformation:

Ψ(xj) =

√
1

N

k=N/2∑
k=−N/2

ck exp(−i2πkj/N) (2.72)

where j = 0, 1, ..., N is the number of grid points, xj = j∆x + 0.5∆x and ∆x =

(xmax − xmin)/N . The kinetic energy will thus have a simple form in the Fourier

space based on the general form:

∂nΨ(x)

∂xn
=

√
1

N

∑
k

ck

(
− i2πk
N∆x

)n
exp(−i2πkj/N) (2.73)

with a trivial reverse transformation. Although the FFT method is faster, it is

sometimes beneficial to use the so called discrete variable representation method,

which is based on interpolating a function between the grid points. The advantage

of this method is that the interpolation functions can be chosen to fulfill specific

boundary conditions of a given problem.

The time propagation of the wave-packet can be also expressed in a number of
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methods. The simplest scheme is the so called second order difference scheme:

Φ(xn, t+ ∆t) = Φ(xn, t−∆t) +
2∆t

i~
ĤΦ(xn, t) (2.74)

It requires small steps ∆t due to its error ∼ (∆t)3.

One of the popular and stable methods is the split operator method. In this

scheme one uses that:

Φ(xn, t+ ∆T ) = exp

(
− i∆tĤ

~

)
Φ(xn, t)

≈ exp

(
i~∇2∆t

4m

)
exp

(
− iV∆t

~

)
exp

(
i~∇2∆t

4m

)
Φ(xn, t)

(2.75)

This method is a third order method in ∆t due to the splitting of kinetic energy

operator. In order to evaluate the exponential operators either the FFT or DVR

method can be used. In the case of FFT, using Eq. 2.72, one gets:

exp

(
i~∇2∆t

2m

)
Φ(xj) =

1√
N

∑
k

ck exp

[
i~∆t

2m

(
− i2πk
N∆x

)2
]

exp

(
− i2πkj

N

)
(2.76)

An advantage of the split operator method is that it is unitary, and therefore

preserves normalization of the wave function at every time-step.

There is a number of other time-propagation methods. One of the methods

capable of taking larger time-steps and also convenient to use in case of time-

independent Hamiltonians, is the so called Chebyshev method.34 In the case of

time-dependent Hamiltonians the method of choice is the so called Lanczos reduc-

tion technique.35
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Chapter 3

X-ray Scattering and

Photoisomerization of

Stilbene

3.1 Introduction

In the Section 2.2 we derived a general theoretical outline for calculating time-

dependent atom-atom correlation functions from first principles. In this formalism

for the description of such correlation functions and their dependencies one can

show their proportionality to the molecular form factors and therefore to quanti-

ties obtained from time-resolved x-ray scattering experiments. This formalism is

in this Chapter applied to the photoisomerization of stilbene. The wide-angle x-

ray scattering signal is calculated directly from electron densities as obtained from

quantum-chemical calculations. The x-ray scattering techniques can provide addi-

tional information about molecular processes to the information obtained employ-

ing spectroscopic methods, since x-ray scattering probes the electron density which

theoretically describes a system in its ground state completely. Wide-angle x-ray

scattering offers a possibility to study electron densities in non-periodic complex

systems, which renders it a suitable technique for the investigation of (bio)organic

systems.

In recent years, as the experimental challenges have been overcome, in biol-

31
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ogy and chemistry time-resolved x-ray diffraction and x-ray scattering have gained

in importance in the field of structural change characterization and dynamics of

photo-activated molecular systems. The technical achievements at today’s syn-

chrotron sources (synchronization of ultrafast lasers to synchrotrons, enhancement

of the x-ray flux, high repetition frequency of the experiment) opened the possi-

bility to investigate structural changes of weakly scattering matter like liquids and

to study their structural responses upon photo-excitation up to a time resolution

of 50 ps.36,2,37,38,39,40,41,42 Technical breakthroughs in the development of plasma

sources for the generation of x-rays make it possible to study ultrafast structural

dynamics of condensed matter with periodical order.43,44,45,46 As the technical im-

provements move forward,47 and planned x-ray sources like the x-ray free electron

laser (XFEL) or high-repetition rate sources like the energy recovery linac (ERL)

come to a stage of building-up,48,49,50 new scientific questions have to be raised

and answered, also from a theoretical point of view.

One of the questions which automatically arise and which has to be answered

is to what extend a quantum chemical treatment is required in order to describe

the dynamics of ultrafast processes from an x-ray scattering point of view. In

ultrafast spectroscopy, the concept of wave-packet dynamics has been success-

fully applied to the description of photo-induced ultrafast processes in molecular

systems. Non-adiabatic transitions between the potential surfaces51 as well as vi-

brational and/or rotational energy redistribution and relaxation processes can be

expressed in a wave-packet propagation scheme leading to a description of ultrafast

coherent molecular motions, dephasing and energy dissipation into rovibrational

eigenstates of the system. Even the control of wave packet motion by focusing

the delocalized wave packet has been proposed52 and experimentally proved53. In

time-resolved x-ray scattering experiments one observes the changes of scattered

x-ray intensities as a function of time. Since the scattered x-ray intensities can be

described as Fourier transformations (FT) of electron densities, the time-evolution

of x-ray intensities can also be described in an electron density time-propagation

scheme. In this Chapter we apply the description of electron density changes which

is based on a full quantum-chemical approach from first principles.

Obtaining the electron density distribution of an electronic system from quantum-

chemical methods is theoretically straightforward and as such the electron density

has been suggested as a candidate for comparison of theoretical predictions and
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experiments54,55 especially while studying the ground-state structure of the sys-

tem under consideration. The electron density is experimentally obtained most

commonly from x-ray diffraction methods. The methods practically used for the

electron density analysis are based on the comparison between calculated and

experimentally determined electron densities. By applying Laplacian analysis to

the electron density distributions, and partitioning, chemical bonding and their

changes could be characterized.55 The relation between x-ray charge densities and

chemical bonding has been summarized by Coppens.56

In this Chapter, we take a closer look at the description of x-ray scattering

as it is theoretically derived from the electron density distribution. The well-

known relation between the electron density and the x-ray scattering signal can

be used to directly calculate the scattering spectra. In the case of the electron

density description in terms of Gaussian-type orbitals (GTOs)57 the calculation is

analytically exact. Moreover, we will show how this approach can be easily used

for studying time-dependent processes in electronic systems.

Atomic orbitals are best represented by Slater-type orbitals (STOs) which are

similar to the exact analytical solution of the Schrödinger equation for hydrogen-

like atoms. These functions include the cusp of the s-orbitals at the position of

the nucleus which is responsible for the sharp peaks of the electron density at

the atomic nuclei. For computational reasons, GTOs, introduced by Boys57 and

nowadays used in most common electronic structure programs, are much more

suitable due to the considerably facilitated evaluation of four-center two-electron

integrals.

The knowledge of the electron density of a particular electronic system is suf-

ficient for the determination of the ground state energy of this system58 as well as

some of its important properties. Experimental techniques measuring this quan-

tity are the x-ray scattering methods. Quantum-mechanical treatment (e.g. by

Feil59) shows that in the first Born approximation scattering of a radiation field

on a molecule with electron density ρ(r) leads to the well known dependence of the

scattering intensity on the electron density which, normalized against the scatter-

ing intensity of one electron, reads:

I =

∣∣∣∣∫ d3r ρ(r) exp (−ikr)

∣∣∣∣2 . (3.1)
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Here, k = (kx, ky, kz) is the scattering vector.

A method of particular importance for studies of liquid samples, organic solu-

tions or biological samples, is wide-angle x-ray scattering (WAXS).60 The signal

obtained in WAXS basically corresponds to the spherically averaged FT of the

electron density of the studied system and naturally a large part of the informa-

tion about the electron density is lost after this averaging. If we attempted to use

this method for time-resolved studies, the experimental resolution would have to

be very high in order to resolve all the information needed to describe the elec-

tron density changes in the system under investigation. The requirements on the

experimental resolution depend on how detailed electron density changes we are

interested to measure. In standard classical x-ray diffraction theory the atoms

are modeled by a spherical distribution of electron density which is practically

connected to the atomic scattering factor.

Since a liquid sample consists of the system (molecule) of interest, dissolved

in a suitable solvent, we should shortly mention the effects of the solvent. The

solvent should be chosen so that the signal from its structure is pronounced in

the spectra as little as possible and in a non-disturbing way. In the case of time-

resolved measurements the strongest signal from the solvent corresponds to solvent

heating.

As a model process for our time-dependent study we chose the photoisomeriza-

tion of stilbene (Fig. 3.2) as a typical case of a photo-induced process. Generally

photo-induced processes are of utmost importance in biochemistry, practically they

are being assessed in the growing field of organic electronics. Understanding these

processes is essential for their successful application in the various branches of

material science. As usually molecules containing a large number of atoms are

involved, the potential energy surfaces are accordingly complex. Furthermore, in

photophysics, processes prohibited to spectroscopic measurements occur, though

the studies of the electron density resp. its time evolution are still attainable.

There are various reasons for choosing the photoisomerization of stilbene as a

test process. There has been a large amount of experimental work61,62,63,64,65,66,67,68

done on this system because of its prototypical photochemical character. The

transition from the excited state is almost 100% non-radiative and the process is

irreversible. From a theoretical point of view, it is a system of moderate size, and

the number of atoms involved can be easily assessed by most of the conventional
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quantum-chemical methods. Indeed stilbene has been already extensively studied

theoretically.69,70,71 The reason for the choice of this system for x-ray scattering

measurements is also quite clear. The large amplitude motion from planar 180◦

trans conformation to the 7◦ cis conformation, where the angles refer to the cen-

tral dihedral angle, means strong electron density changes. The signal from these

changes is the most pronounced part of the scattering spectra. On top of this we

will show the fine structure of signal changes stemming from small variations of

the electron density due to bonding and delocalization.

Our goal is to estimate the possible application of x-ray scattering methods

to the measurement of time-dependent processes. In Section 2.2 we recollect the

theoretical aspects needed for assessing the problem.

We calculate the WAXS spectra from the FT of the electron densities as given

by density functional theory (DFT) calculations and compare the results with the

WAXS spectra obtained from the classical Debye equation. We show that the

WAXS signal theoretically has a potential to show features such subtle in electron

density delocalization as double bonds or delocalized electrons in phenyl rings

though experimentally resolution of XFEL is needed to resolve these.

3.2 Potential Energy Surface

The calculations of the ground and excited state PESs of stilbene were per-

formed using the Gaussian0372 program package. The results can be seen in Fig-

ure 3.1. We employed DFT for the electronic ground state calculations, resp. time-

dependent DFT (TDDFT) for calculations of vertical excitation energies, using the

B3LYP73,23 and B3P8624,74 functionals as implemented in the Gaussian package.

The choice of B3P86 can be supported by the fact that it was found to perform the

best in calculating the excitation energies of ethene.75 We use the 6-311++G(d,p)

basis set in the calculation of the PES and the 6-31G(d) basis set in the calculation

of the x-ray scattering.

The main geometry changes during the isomerization of the stilbene molecule

(see Fig. 3.2) correspond to the dihedral angle α and the torsional angles of the

phenyl rings β. The hydrogens at the central carbon atoms are also involved in

the process. To avoid complications with the optimization of the geometries in the

excited state we choose a simplified reaction path with an equidistant grid in the
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Figure 3.1. a) Potential energy surface of the ground state and the S1 state. b) Zoom
of the PES.

angles α, β and the angles of the central hydrogens from the optimized trans to the

optimized cis geometry. The elongation of the central double bond as reported by

Dietl et al.69 and Improta and Santoro70 is also taken into account. We employ

this simplification in order to obtain an approximate PES, bearing in mind that the
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detailed energetics of the process is not the aim of our studies. The small barrier

(measured76 to be 1200 cm−1 and recently theoretically estimated77 to 750 cm−1)

in the excited state between the Franck-Condon state and the 90◦ configuration

where the non-radiative transition over the conical intersection occurs77 is well

reproduced (1197 cm−1 without correction for the zero point energy) even on the

simplified reaction path chosen for our calculations.

Figure 3.2. Sketch of the photoisomerization geometries (using GaussView 3.0978).
The main photoisomerization angles are the dihedral α which corresponds to the large
amplitude motion and phenyl rings twisting angle β.

The conical intersection is the cause for difficulties in calculating the excited

state reaction path. The TDDFT calculation has intrinsic limitations in this re-

gion (Ref. [70] approaches the intersection only to 20◦ in the α torsional angle). A

complete active space SCF (CASSCF) calculation approaching TDDFT in accu-

racy requires a large active orbital space71. But at this stage, our main reason for

obtaining the reaction path is the following study of the isomerization dynamics

in order to investigate the scattering signal differences as obtained from classical

resp. quantum-mechanical calculations. Although approximate, the chosen reac-

tion path is sufficient as a base for our further calculations where we take snapshots

of the electron density along the reaction path by calculating the single molecule

scattering signal.
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3.3 The X-Ray Scattering Spectra

Before integration, the |Fk {ρ(r, t)} |2 term in equation (2.46) corresponds to x-

ray scattering on one molecule. This is naturally much more sensitive to electron

density changes than the WAXS signal which is averaged for random orientations

of molecules. For a better insight into the problem, we will show the difference in

the single molecule scattering from two different electron density distributions.

We start with a calculation of the signal change in the case of the smallest typ-

ical electron density change, namely HOMO-LUMO excitation of trans-stilbene.

Figure 3.3 (a) shows the difference signal from the single molecule scattering of

trans-stilbene in the ground electronic state and first excited Franck-Condon state.

As we see, the maximum signal difference in this case is about 0.1 % (given in %

of the k = 0 intensity, that is ∆I/I(k = 0) × 100). Stronger signal change can

be expected if we remove one electron from a strongly localized core state (on one

central carbon atom) and excite it into the LUMO orbital. Indeed the calculated

absolute difference of the scattering signal amounts to 0.6 % (Fig. 3.3 (b)).

The differences in the single-molecule scattering signal that come from electron

density changes caused by changes in orbital occupancies are only subtle. We can

compare them with the single-molecule scattering differences due to large geometry

changes. Fig. 3.4 (a) represents the difference in the signal from trans and cis

isomers, Fig. 3.4 (b) the difference in the signal from trans and 130◦ dihedral

angle geometry. The absolute difference (when normalized to ∆I/I(k = 0)× 100

which means % of the k = 0 intensity) is high (around 50%) however, this is

not as strongly pronounced in the WAXS spectra since the negative and positive

contributions cancel each other.

Single-molecule scattering calculations present a motivation for further studies

of scattering signals. When averaged over spherical angles they correspond to the

WAXS signals. This averaging obviously leads to a loss of details in the spectra.

The following results show what kind of effects are the WAXS spectra sensitive

to. Our main aim here is to show the sensitivity to the detailed description of

the electron density and later the sensitivity to the wave-packet description of the

molecular degrees of freedom. We calculate WAXS signal changes as expected for

the time-resolved scattering during the photoisomerization process. We take ‘snap-

shots’ of the molecule at different parts of the PES and compare the signal with

the one obtained from the standard scattering formalism with atoms described by
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Figure 3.3. a) Scattering intensity difference of ground state and vertically excited state
in % of k = 0 intensity depicted on the color bar. A filled-contour graph. b) Scattering
intensity difference of ground state and core excited state. For both we assume single-
molecule scattering on the trans stilbene.
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Figure 3.4. a) Scattering intensity difference of trans and 130◦ state in % of k = 0
intensity depicted on the color bar. A filled-contour graph. b) Scattering intensity
difference of trans and cis state.

the atomic scattering factors in the Debye equation. These are further compared

to the ones resulting from the wave-packet description of the nuclear degrees of
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freedom in the next section. By doing so we would like to examine if the WAXS

method is suitable for time-resolved measurements.

In the following we call the difference in the WAXS intensity from two differ-

ent molecular geometries at the same level of electron density assessment (Debye

equation resp. detailed density approach) ‘difference intensity’. As we can see

from Fig. 3.5 (a) resp. from Fig. 3.5 (b) the trans to cis difference intensities as

given by the Debye equation and direct Fourier transformation of electron den-

sities are in a good agreement approximately up to k = 2 Å−1. From here the

difference between these two approaches starts to grow with higher k It amounts

to 0.3 % at k = 3.1 Å−1 (when normalized to ∆I/I(k = 0)×100 or % of the k = 0

intensity), which in relative terms means that the Debye equation overestimates

the difference signal by a factor of 3.3 at this k-point. At k = 5.2 Å−1 it grows

to 0.5 % which means a factor of 9.3 overestimation by the Debye equation. We

should point out that the region of higher k values is the one where the effects of

more localized changes in geometry become pronounced. The periodicity and the

main features of the difference intensity remain the same.

If we would compare the original WAXS curves; Debye WAXS intensity and the

detailed electron density intensity at the same geometry; they start to differ at k '
0.5 Å−1 and the difference grows to approximately 3 % at k = 3 Å−1 as the signal

from the detailed density decreases faster than the Debye signal. However, since

the detailed electron density brings the similar delocalization to every geometry

the WAXS signal from every geometry decreases in the same manner which causes

the difference intensities from the detailed density to be approximately ten times

smaller as compared to the Debye difference intensity.

3.4 Dynamics

In order to estimate the timescale of the process we have performed a classical

simulation of the dynamics on the calculated PES, using the standard Verlet in-

tegration29,30 of the equation of motion. In the case of the photoisomerization

of stilbene, this can offer only an order-of-magnitude guess about the timescale,

since for full consideration the nonadiabaticity of the process must be assessed.

Instead of taking into account the two state system we assume a simple path from

the Franck-Condon state to the cis ground state over the conical intersection as if
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Figure 3.5. a) WAXS difference signal as given by Debye equation (dashed line) vs
signal from the DFT/B3LYP electron densities (solid line). b) Detail of the WAXS
difference signal at higher k-values.

it would belong to a single state. In the chosen internal coordinates described in

the Section 3.2 the PES to a large extend changes smoothly and a small number

of points is sufficient for the energy calculation. We perform the calculation in

22 points with higher density of points at the intersection and for the further cal-

culations we increase the number of points with a simple quadratic spline on the
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obtained surface. We perform the Verlet integration on this approximate minimal

energy photoisomerization path. In this way we approximate the timescale of the

process to be on the order of picoseconds (about 2 ps, depending on the starting

kinetic energy), with a fast relaxation from the first excited state to the ground

state trough the conical intersection in the time scale on the order of femtosec-

onds (about 200 fs). The small starting kinetic energy used is just sufficient for

the molecule to cross the small barrier in the excited state.

Some attention should be payed to the choice of the active coordinates. We

have simplified the problem to one internal coordinate - the reaction path. This

is by definition also the coordinate with the weakest confinement for vibrational

motion. Including more than one dimension brings about problems in the integra-

tion according to Eq. 2.46 since the number of analytical functions needed for the

description of the density of the wave-packet grows accordingly and the calculation

becomes time-consuming.

In the following we present the studies on the influence of the wave-packet

description of nuclear degrees of freedom on the WAXS signal and the difference

intensities. Since at this stage we are not interested in a rigorous description

of the isomerization reaction path, but rather in the possible effects which the

wave-packet description can have on the scattering spectra, we will again employ

significant simplifications. The calculation of the wave-packet dynamics on our

simplified surface (as in the Verlet integration case) is performed in a standard

split-operator procedure.79 We include a small starting momentum to make the

molecule move in one direction across the barrier. Figure 3.6 shows the first

250 fs of the photoisomerization process. The ground state wave-packet is strongly

confined by the ground state potential, in the internal degree of freedom taken into

account. As we could predict the WAXS signal of this well localized wave-packet

is practically indistinguishable from the signal as coming from the trans single

geometry electron distribution. After the vertical excitation (t=0) the wave-packet

quickly broadens on the shallow S1 surface. The wave-packet broadens during the

isomerization process and is mostly much broader than the ground state wave-

packet (see Fig. 3.6). In order to compare the classical and wave-packet approach

to the time development of scattering spectra we calculate these spectra at different

time points of the isomerization process. We choose the trans ground state, the

wave packets in the first 60 fs of the process and a later wave packet at 214 fs
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the expectation value of which corresponds to a geometry with dihedral angle

α=130.6◦. The later wave-packet is chosen as one which corresponds to the excited

state before the transition over the conical intersection because of our choice of the

simplified reaction path. Note, that we have assumed circularly polarized light for

the stilbene excitation which would generate a homogeneous distribution of the

orientation of photoexcited chromophores. Under this assumption the dephasing

effects for orientational distribution can be ignored.
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Figure 3.6. Wave-packet dynamics in the first 250 fs of the photoisomerization. The
PES used for in the dynamics calculation is shown for clarity. Both the PES and the
wave-packet evolution are plotted against the internal mass weighted coordinate used in
the calculation.

The x-ray scattering from a wave-packet can be treated in two different ways.

We can assume times shorter than the internal vibrational redistribution decoher-

ence time, which is expected to be about 50 to 100 fs. At this very short time scales

the nuclear degrees of freedom are described as coherent wave-packets. The sec-

ond case corresponds to times when the decoherence is pronounced in the system

either due to the vibrational redistribution or interaction with the molecules from

the environment like collisions. Here the wave-packet corresponds to a probability

distribution of specific geometries in an ensemble of molecules.

Let us first consider the first, coherent case. The electron density of a system
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can be expressed as the expectation value:

ρ(r, t) = 〈χ(R, t)|ρ(r,R, t)|χ(R, t)〉 (3.2)

where χ(R, t) corresponds to the nuclear wave-packet with nuclear coordinates R.

In order to decouple the influence of the wave-packet description on the WAXS

signal and the difference intensity we assume a simplified electron density distri-

bution where the molecule is build solely from s-functions as in the Debye equa-

tion. This simple model density is easy to expand in nuclear wave functions,

as described in Eq 3.2. In this way we get a delocalization in electron density

due to the wave-packet description of the nuclear degrees of freedom. Figure 3.7

shows the difference intensities from the coherent wave-packets corresponding to

t0(0 fs)− t(10, 20, 30, 40, 50, 60 fs) and for comparison also the difference intensity

coming from the ensemble wave packet description at times t0(0 fs)− t(10, 60 fs).

The decrease in WAXS intensity caused by the electron density delocalization in

the coherent wave-packet is strong. As the wave packet broadens in time on the

shallow S1 surfac the electron density delocalizes accordingly. The WAXS intensity
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Figure 3.7. WAXS difference intensity as simulated from the wave-packet dynamics at
t = 0− 10, 20, 30, 40, 50, 60 fs coherent wave packets, compared to the intensity from an
ensemble with geometry probabilities corresponding to the wave packet at t = 0−10, 60 fs.
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from a broad wave packet is decreased in comparison to the WAXS intensity form

a more localized wave packet at an earlier time point. The difference intensity

t0 − t then grows with increasing time t, in particular at higher k values since our

time t0 = 0 corresponds to the sharply localized Franck-Condon wave packet. The

comparison with the corresponding difference intensities as calculated using the

expectation geometry in the Debye equation and incoherent wave-packet described

by probability distribution of the nuclear geometries is made in Figure 3.8. As we

can see here the signal form the geometry ensemble shows only very small changes

to the Debye equation difference signal at the expectation value of the particular

wave packet for the whole k range.
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Figure 3.8. WAXS difference intensity as simulated from the Debye equation (solid line)
at the expectation value of the nuclear geometry at t = 0−10, 20, 30, 40, 50, 60 fs coherent
wave packets, compared to the intensity from an ensemble with geometry probabilities
corresponding to the incoherent wave-packet at the same time points (dashed line)

After the coherence of the wave-packet is destroyed by molecular vibrations and

interactions, the wave-packet corresponds to the incoherent probability distribu-

tion. For the sake of the test of the method we choose the wave-packet after 213 fs

(with the expectation value corresponding to 130.6◦) and calculate the WAXS sig-

nal using the Eq 2.46 with integration over the wave-packet geometry ensemble

included. Although the WAXS signal from this kind of ensemble is not equal to

the signal from the expectation value geometry, the calculated difference between
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them is in our case very small and no characteristic effect is observable, similarly

to earlier time points of the isomerization process shown in Figure 3.8.

3.5 Conclusions

As the experimental equipment gradually enables us to study liquid samples by

WAXS measurements, it is important to reflect on the theory commonly used, in

this case the Debye equation, which ignores the difference between the classical

model of electron density and the more rigorous quantum chemical approach. As

we have shown, this classical approach can be used only at small k values (from 0 to

approximately 2 Å−1) which means the k range where large-scale electron density

effects are observable. In the range of k values, where actual molecular geometry

effects can be observed, electron delocalization becomes increasingly important

and omitting quantum effects would lead to a misinterpretation of the spectra. In

particular the Debye equation overestimates the sensitivity of WAXS which can

be misleading when interpreting experimental data.

The time-dependent calculation of the scattering signal from the wave-packet

dynamics has important implications. Assuming that trans-stilbene is in a low

lying vibrational state (ground state in our case) the corresponding wave-packet

can be considered as strongly localized. After a Franck-Condon excitation from

this ground state the wave-packet broadens as it follows the reaction path. The

broadening of the wave packet which corresponds to a vibrational redistribution in

the excited state is observable on the further broadening of the scattering spectra.

Evolution of the overall wave-packet in time is so observable on the scattering

spectra. Both effects, the consideration of real electron density distribution and in

the time-resolved case the consideration of nuclear degrees of freedom described by

a wave-packet bring a considerable decrease of the intensity of the WAXS signal in

particular at high k-values. However, in the case of the wave-packet calculations

the dynamic interaction of x-rays with the molecule must be considered, which is

a task for further studies.
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Chapter 4

X-ray Scattering and

Photodissociation of Iodine

4.1 Introduction

The photodissociation and recombination of molecular iodine is a simple prototypi-

cal reaction, and as such it has been extensively experimentally studied.80,81,82,83,84

Recently it has become an object for the development of time-resolved pump-probe

x-ray diffraction experiments, measuring the time-scales of the process on the or-

der of picoseconds.85,86,87,88 In this Chapter we focus on detailed theoretical x-ray

scattering studies of relevant excited states of molecular iodine and wave packet

dynamics of the movements of nuclei during the photodissociation.

The motivation for the choice of molecular iodine as a model system for x-

ray scattering studies is straightforward. The high number of electrons means a

strong scattering signal so that even an experiment with an I2 gas is possible. The

photo-dissociation, triggered by 520nm laser pump pulse, can follow one of the

two following paths. On the simpler first path, I2 is excited onto a dissociative

energy surface. The second possibility is that I2 is first excited onto an energy

surface with a possible bound state but due to energy surface crossing it passes

to a dissociative energy surface,89 as it can be seen on the Figure 4.1 a) between

the energy levels B and B′′. The B state is also the most studied excited state

in I2, as it is responsible for the visible absorption spectrum. The nature of the

49
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photodissociation reaction makes it a good choice for time resolved scattering

experiments due to the dramatic change of bond the length, which has a strong

effect on the x-ray scattering signal even when the studied system is an I2 solution.

(a)

(b)

Figure 4.1. a) Potential energy surfaces of I2. Schematically denoted are the pho-
todissociation process (1 → 2 → 3) and the relaxation to the ground state (3 → 1). b)
Potential energy surfaces of I2 with the relaxation on the ground state denoted

The solvent plays an important part in the dissociation process, as it hinders the
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diffusion of the newly created iodine pair by absorbing the kinetic energy of the sep-

arated atoms90. This can lead to recombination of these same atoms, which is also

called geminate recombination. This process happens on a time-scale on the order

of 102 picoseconds to nanoseconds. If the recombination ends with the molecule in

the A or A′ state, the solvent further assists the relaxation into the grounds state

over an energy level crossing. The time-scale of this relaxation process is strongly

dependent on the solvent.81,82 The geminate recombination is a faster process in

comparison to recombination of tho iodine atoms that did not originate in the

same I2 molecule. The time-scale of both of these processes has been the object

of study of a number of publications using laser spectroscopy.89,80,81,91,92,82

The determination of energy levels and properties of the iodine molecule I2

has been an object of several theoretical studies.93,94,95,96 The main reason for

the complicated energy levels of this seemingly simple molecule is the high nu-

clear charge of iodine, which leads to spin-orbit splitting of the electronic levels.

The main electronic states studied in this work are depicted on the Figure 4.1 a)

and b). The state denoted as B is the 3Πu(0+u ) state of the visible absorption

spectrum. It dissociates into 2P3/2 +2 P1/2 atomic states, while crossing repul-

sive or weakly bound states originating from 2P3/2 +2 P3/2 atomic states. This

crossing results in a number of predissociation effects.97 98 99 The potential energy

surfaces used for wave packet propagation calculations in this Chapter were taken

from de Jong et al [100]. These PES were calculated using two different high level

relativistic approaches for the ground and excited state calculations respectively.

All-electron Dirac-Fock method followed by CCSD(T) calculations were applied in

the case of the ground state and so include all relativistic effects from the outset.

The excited states were calculated using average of configurations Dirac-Hartree-

Fock approach followed by a complete active space CI calculation. The knowledge

of the potential energy surface (PES) is required for the simulations of the the

averaged wide angle x-ray scattering signal, and studies on the time evolution

involving vibrational wave packet propagation.

Symmetric top molecules such as I2 are used also as test systems in x-ray

scattering experiments. X-ray diffraction of aligned symmetric molecules has been

studied on the example of Br2 by Ho and Santra in Reference [101]. Here Br2 was

chosen as a simple test system in order to study the influence of alignment and

and laser field properties on the x-ray scattering spectra.
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One of the interesting implication of coherence in the case of vibrational molec-

ular wave packets is the way it influences the total electron density of the sample

in comparison to non-coherent wave packet. The coherence enhances the scatter-

ing signal and as such it is a good candidate for scattering studies of functional

dependence of the electron density on time. Since the scattered x-ray intensi-

ties can be described as Fourier transformations (FTs) of electron densities, the

time-evolution of x-ray intensities can also be described in an electron-density

time-propagation scheme, as was described in the chapter 2.2 and applied on the

example photoisomerization of stilbene in the Chapter 3.

4.2 The I2 X-Ray Scattering Spectra and Excited

States

Figure 4.2. Total scattering intensity of I2. Color scale in I/I(k = 0) (%)

One of the reasons for choosing iodine for this study is the simplicity and high
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(a) (b)

Figure 4.3. a) Highest occupied orbital (Πg symmetry) of I2 b) Lowest unoccupied
orbital (Σu symmetry) of I2

symmetry of this molecule which allows focusing on a selected properties of the

scattering spectra. One of the interesting effects is the influence of the electronic

orbital structure on the scattering pattern. In order to observe the effect of such

details as electron density change between different excited state one has to resort

to the description of the scattering signal through the FT of detailed electron

densities as it was describe in Section 2.2. In this scattering signal calculation

the iodine molecule was described using the 6-31G(d) basis set at B3LYP level of

theory. This would be insufficient for a high quality electronic calculation but it

can easily quantify such subtle electron density changes that occur for example

during vertical excitations. We start with the total scattering map of one iodine

molecule as it is depicted in Figure 4.2. Most significant here are the fast changing

maxima on the kz axis representing the I2 the bond length. The kz=0 cut of

the scattering intensity spectrum appears spherically symmetric due to the strong

signal representing the core electrons density confined closely to the the nuclei.

One of the smallest theoretical orbital changes and consecutive electron density

changes of a molecule is change represented by HOMO-LUMO excitation. In the

previous Chapter we have shown that in the case of stilbene molecule this change

causes a very small scattering signal change of only about 0.15%. As we will

demonstrate, in the case of iodine the difference between the ground state electron

density and electron density of a vertically HOMO-LUMO excited state gives a
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Figure 4.4. I2 scattering intensity difference in % of k = 0 intensity. a) Intensity differ-
ence corresponding to the electron density change due to the HOMO-LUMO excitation
from the ground state; b) The kz=0 part of the scattering intensity



4.2 The I2 X-Ray Scattering Spectra and Excited States 55

(a)

kx (Å
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Figure 4.5. I2 scattering intensity difference in % of k = 0 intensity. a) Intensity
difference corresponding to the electron density difference between HOMO-LUMO with
the bond length of 2.7Å and I2 during recombination with the bond length of 4.2 Å; b)
The kz=0 part of the scattering intensity
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much stronger signal in the scattering spectrum. The highest occupied and lowest

unoccupied electronic orbitals of iodine in the ground state are depicted on the

Figure 4.3. Figure 4.4 shows the intensity difference between ground state and

HOMO-LUMO excited state, or explicitly scattering intensity of an I2 molecule

in the lowest excited state, with the bond length of 2.73 Å, minus the scattering

intensity of an I2 molecule in its ground state. Therefore this intensity difference is

caused purely by change in orbital occupancy rather than bond length change. In

this way the negative values correspond to signal that is larger for the ground state

structure while positive values correspond to signal that is stronger in the excited

state intensity spectrum. As can be seen the symmetries of the difference scattering

map correspond to the symmetries of structural difference. The main positive

maxima, about 1.5% signal change, of this intensity difference are situated on the

z-axis and correspond to the redistribution of electron density from the highest

occupied orbital (see Fig. 4.3 a) to the lowest unoccupied orbital (Fig. 4.3 b).

In order to compare this still quite small intensity change we consider the

dissociation of iodine. Figure 4.5 shows the intensity change when assuming a

dissociation from the A’ state, the starting structure being the I2 molecule with

the bond length of 2.73Å(which is the ground state bond length) with the orbital

structure corresponding to the HOMO-LUMO excited state. The final structure

corresponds to I2 in predissociation with the bond length of 4.2Åwith the ground

state orbital structure. The main maxima of the scattering signal, about 65%, here

correspond to the bond length change. However the signal corresponding to the

change in the orbital structure can be seen on the kz=0 cut, being symmetrically

similar to the HOMO-LUMO electron density scattering signal change.

Interesting is a comparison of the just mentioned case with the predissocia-

tion intensity difference corresponding to two ground state (X) electron densities.

This is depicted on the Figure 4.6. Although again the strongest signal naturally

represents the bond length change, two additional observations can be made from

this picture. First the electronic density does not undergo a symmetry change

as in the previous case, which is observable from the spherically symmetric kz=0

cut of the scattering intensity spectrum. However it additionally shows another

property. The picture has only negative values, showing two concentric minima of

small absolute value (about 0.18%). The intensity decrease here corresponds to

the electron density that is tighter bound in the stretched molecule.
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4.3 Observing I2 Dissociation with Time-Resolved

X-Ray Scattering
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Figure 4.7. The dynamics of I2 dissociation a) in real space (vibrational wave packet)
b) x-ray scattering signal (reciprocal space)

The dissociation of I2 is an example of chemical reaction especially suitable

for study by x-ray scattering experiments since the scattering signal dramatically
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changes with time up to the dissipation regime. In this case the simulated sys-

tem in our calculations is represented by a randomly oriented ensemble of iodine

molecules, what would be the case of liquid samples. Figure 4.7 shows the coherent

part of the dissociation dynamics of iodine in real and reciprocal space. We use the

split operator method to calculate the wave packet dynamics. It can be seen that

the wave packet not only changes position with the proceeding dissociation, but

also loses confinement. Reflecting this behavior the oscillations in the scattering

spectrum become faster.

Figures 4.8 a) b) and c) and 4.9 a) and b) show the effect of pulse length on the

scattering signal. It can be clearly seen that in the case of dissociation relatively

long probe pulses give still quite a strong signal and time resolved studies should

be possible for up to ∼100 fs probe pulses. Here one has to consider the interaction

between the I2 molecule and the solvent, since the dissipation process restricts the

reliable time interval of the measurement.

At long time scales all that can be measured with the x-ray scattering is the

thermal distribution of the vibrational modes on the ground state electronic surface

as shown on the Figure 4.10. The long time scales we refer to here are time scales

in which the system after dissipation achieved thermal equilibrium. A different

number of vibrational modes are occupied corresponding to each temperature. The

picture shows that although the number of occupied vibrational levels increases

the change on the scattering intensity pattern is very small, on the order of tenths

of percent. As expected, the higher temperatures contribute to the increase in

the scattering signal in the higher k-range. The noncoherent thermal processes by

their nature contribute to the diffuse signal and as such have only a small influence

on the scattering signal of a randomly oriented molecular ensemble.

One gets a different picture while studying processes confined to a small area on

the PES. To test this kind of process we study a fictional (meaning that we have no

means of starting this particular collective coherent bouncing in reality) example of

coherent bouncing of the iodine molecule on the ground state PES. The dynamics

in real and reciprocal space can be seen on the Figure 4.11 a) and b). When we

study the effect of finite x-ray pulse lenghts on this scattering measurements we

see a different picture from the dissociation case. The Figures 4.12 a) and b) show

us that very short probe pulses are necessary for a time resolved measurement of

a process confined to a realtively small area on the PES, while pulses of length
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Figure 4.8. The dissociation dynamics of I2, probed at indicated times after the pho-
toexcitation, with x-ray pulses of finite length: a) 10fs x-ray pulses b) 20fs x-ray pulses
c) 40fs x-ray pulses

∼80 fs can measure only the average thermal behavior.
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Figure 4.9. The dissociation dynamics of I2 probed with x-ray pulses of finite length
a) 60fs x-ray pulses b) 80fs x-ray pulses
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Figure 4.11. Coherent relaxation of the I2 vibrational wave packet on the ground state
energy surface a) in real space b) x-ray scattering signal (reciprocal space)
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−1

)

In
te
n
si
ty

(I
/I
(k
=
0)
)

 

 
60fs x-ray pulses 0fs

40fs

80fs

0 2 4 6 8

0.4

0.5

0.6

0.7

0.8

0.9

1

k (Å
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Figure 4.12. Coherent relaxation of I2 on the ground state energy surface probed with
x-ray pulses of finite length a) 20fs x-ray pulses b) 40fs x-ray pulses c) 60fs x-ray pulses
d) 80fs x-ray pulses
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4.4 Conclusions

The modeling of the x-ray scattering of molecular iodine brought forward a number

of interesting observations. First of all even a very small electron density change,

as represented by the HOMO-LUMO excitation gives a non-negligible signal con-

tribution when dealing with single molecule or potentially aligned samples. Due to

the symmetry of the I2 molecule the small signal change that corresponds to elec-

tron density change caused by different orbital occupation could become observable

for aligned systems. The change of the electronic state is visible on the scattering

spectrum in our simulation with about 1% of signal change at kz,kx=0 Å−1 in the

vicinity of ky=1 Å−1.

The notion of studying coherent molecular processes in a time-resolved x-ray

scattering experiment, as for example time resolved wide angle x-ray scattering, is

also intriguing. Especially since even the control of wave packet motion by focus-

ing the delocalized wave packet has been proposed52 and experimentally proven.53

The wave packet coherence provides a boost for the scattering signal since it pro-

vides new equivalent structure for the constructive interference. The typical time

duration of coherent processes on the order of tens to hundreds of femtoseconds,

depending on the environment (gas or liquid sample), presents a limitation for

the possible probe pulse duration. At the same time the pulse duration is limited

in the same way by the necessity for high resolution in the time domain in the

time-resolved experiments.

The choice of probe pulse length also depends on the sort of the studied process,

which can be either periodic or aperiodic in time. Naturally, in the case of periodic

processes, such as relaxation of the wave packet on an energy surface after an

excitation event, the probe pulse length has to be just a fraction of the period of

the process. In our test case on the relaxation of iodine on the ground state surface

that has a period of about 80 fs the probe pulse must be shorter than about 60 fs.

The more important is the case of aperiodic processes, as is for example the iodine

dissociation. Here the pulse length can be longer. In our case of the first stage

of the dissociation, or lengthening of the bond, an event that was found to take

about 300 fs can be measured by probe pulses of up to about 80 to even 100 fs.
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Chapter 5

X-ray Scattering on Aligned

Molecules

5.1 Introduction

With the build up of the new x-ray sources the interest in their utilization for

detailed measurements of structure and dynamics of various molecular systems —

mainly bio-molecules and their dynamics — has naturally increased.

Already in the work [5] Neutze et al consider the implications that the com-

bination of high intensity and short pulse lengths of the FEL has for structural

studies. The authors there evaluate the feasibility of structural measurements of

samples consisting of a single molecule, while taking into account that the Coulomb

explosion takes place due to the high intensity of the laser pulse. Although this

proposed technique avoids the problems with crystallization, which has been a

necessity in structural studies using conventional x-ray sources, it also introduces

new challenges for the experimentalists. Some of the theoretical implications of

the x-ray scattering measurements using very strong probe pulses are presented in

the next Chapter 6. Generally one would prefer to study molecular systems and

their chemical dynamics in their natural environments, e.g. in solutions. In order

to introduce a periodicity into such a system various methods of alignment have

been proposed and in experimentally performed for small test systems.

Originally the interest in manipulating the orientation of molecules in space

67
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comes from the studies of chemical reactions which are in most cases dependent

on the mutual orientation of the reactants. The most promising method emerg-

ing is the alignment under the influence of laser fields. A number of theoretical

and experimental works has been published in recent years on the laser induced

alignment of molecules.102,103,104,105 A review of alignment techniques with the

main focus on alignment in strong laser fields can be found in [106]. Here we of-

fer a summary of different alignment techniques and the conditions and problems

constraining the efficiency of alignment in experiments.

The alignment of molecules by a laser field is based on the interaction of a

strong non-resonant laser field with an induced dipole moment of a molecule. This

interaction creates an energy minimum for the alignment along the polarization

axis of the field and so limits the free rotation of the molecules. Under these

conditions molecules librate in a limited angular range.

Depending on the pulse length of the aligning laser one distinguishes between

two main alignment set-ups. In the first case the laser pulse, in the following

represented by the laser pulse length τ , is much longer than the rotational period

of the molecule τ � τrot and we can talk about a continuous wave alignment

laser pulse. This so called adiabatic alignment, vanishes after the alignment pulse

is turned off. The second case, when τ � τrot is the so called non-adiabatic

alignment. Here the alignment predictably periodically returns after the laser

pulse is turned off and so we can talk about field free alignment. Under specific τ

conditions the alignment strengthens with the laser off.

The laser alignment technique is fast emerging method of choice in experiments.

It is assumed that the vibrational degrees of freedom can be neglected and the

alignment is said to be dependent only on the rotational degree of freedom of

the molecule. In order to minimize rotations, embedding of molecules in rare gas

liquids, such as argon, has been proposed .

For x-ray scattering the degree of alignment is an important property since

it introduces additional “periodicity” to an otherwise disorganized system and

thus enhances the characteristic details in the scattering signal. As we will show,

even the most basic one dimensional (1D) alignment offers additional structural

information in comparison to a completely amorphous sample. We talk about 1D

alignment when the rotation about one of the axis of the molecule is hindered.

This simply means that the molecule can freely rotate around one axis, without
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orientation restrictions about the remaining axis. It provides a good compromise

between added demands on the experimental set-up and enhanced sample period-

icity, and so enhancing constructive interference in the scattering signal. The x-ray

scattering spectra of tested molecules with the one dimensional alignment provide

the extra structural information necessary to study even relatively small structural

changes and so enable for example the time-resolved studies of systems undergoing

structural change. Even higher control over the periodicity in the sample provides

the tree dimensional alignment (3D) and orientation control. This would to some

extend simulate single-molecule scattering, however orienting molecules is a much

more difficult problem than simple alignment.

In recent years a number of works concerned with various methods of x-ray

imaging applied on aligned systems has been published, dealing with small test

systems such as Br2
101 etc. In this Chapter we will study whether sample align-

ment is a suitable option for x-ray scattering studies of systems with sizes ranging

from tens of atoms to hundreds of atoms as in various organic molecules and

bio-molecular systems, since these are traditionally in the center of interest for

structure and dynamics studies.

As an additional motivation for the interest in the aligned samples we should

add that while already the short pulse length of the FEL, on the level of fem-

toseconds, promises many interesting applications for measurements, methods for

achieving even shorter pulse lengths, on the level of atto-seconds, has been pro-

posed.107,108 A side effect of this is, however, a decrease in the pulse intensity.

This intensity would not be sufficient for one molecule measurements. On the

other hand it gives us an incentive to look into the feasibility of time-resolved

measurements of aligned samples.

5.2 X-ray Scattering on Aligned Systems

Since this Chapter is mainly concerned with the alignment effects on the scatter-

ing spectra, the calculated scattering intensity will be treated using the classical

approach (Debye approximation) with no delocalized electron densities.

In the case of the so called one-dimensional alignment — when the molecule

can freely rotate along one axis — we deal with a straightforward integration in



70 X-ray Scattering on Aligned Molecules

Figure 5.1. Scattering map of an ensemble of 32 DMABN molecules aligned in one-
dimension

one rotational degree of freedom

I(k, θ) =
1

2π

2π∫
0

dφ|Fk,φ,θ {ρ(r)} |2 (5.1)

where one can conveniently include the uncertainty in confinement in θ with the

probability distribution of the uncertainty p(θ) as:

I(k, θ) =
1

2π

θmax∫
0

p(θ) sin θdθ

2π∫
0

dφ|Fk,φ,θ {ρ(r)} |2 (5.2)

where θmax is defined as the angle where p(θmax) ∼ 0 and
∫ θmax
0

p(θ) sin θdθ = 1.

An example of scattering intensity of one-dimensionally aligned molecules of 4,4’-

dimethylaminobenzonitrile (DMABN) can be seen in Figure 5.1.

As the calculated scattering intensity maps in this Chapter show the one di-

mensional alignment offers a significant improvement on the information about

the geometry of the studied sample, when compared to the sample with random
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orientations. The uncertainty in the alignment angle θ is an important parame-

ter. Due to convenience in the angular integration we chose to approximate the

angular uncertainty distribution by a (cosx)2α function, which for large α very

well approximates the Gaussian function exp(−αx2) with the full width at half

maximum related to the parameter α as
√

log 2/α.

The most notable property of the 1D alignment is the dependence of the spectra

on the alignment axis. The Figures 5.2 and 5.3 show the 1D alignment scattering

intensities of stilbene with respect to different alignment axis. The difference in

the scattering spectra is significant. This is a promising feature since the main

polarizability axis, which coincides with the laser alignment axis, can be modified

by attaching various polarizable groups to the molecule.

Keeping the alignment axis constant we can show the importance of the preci-

sion in the alignment. The Figures 5.4 and 5.5 show the same alignment geometry

as the Figure 5.3 but with an uncertainty in alignment axis of 10◦ and 30◦ respec-

tively. The strong scattering features of the well aligned molecules fast diminish

with growing uncertainty in the alignment angle. However, even the uncertainty

distribution with the FWHM of 30◦ still offers a scattering spectra that is much

improved when compared to a fully spherically symmetric scattering spectra of

a sample with randomly oriented molecules. The spectra of randomly oriented

sample are depicted in Figure 5.15 b) as a part of next Section of this Chapter. In

the experiments with the 1D laser alignment reported in [109] the smallest values

of ∆θ achieved is in the range of 20◦.
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(a)

(b)

I/I(k=0)

I/I(k=0)

Figure 5.2. One-dimensional alignment of stilbene with the alignment axis perpen-
dicular to the main moment of inertia axis of stilbene a) trans with 0◦ uncertainty in
alignment b) cis with 0◦ uncertainty in alignment
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(b)
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Figure 5.3. One-dimensional alignment of stilbene with the alignment axis equal to the
moment of inertia axis of stilbene a) trans with 2◦ uncertainty in alignment b) cis with
2◦ uncertainty in alignment. See text for details
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−1

)

k
z
(Å
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I/I(k=0)

I/I(k=0)

Figure 5.4. Stilbene scattering from a) trans with 10◦ uncertainty in alignment b) cis
with 10◦ uncertainty in alignment
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Figure 5.5. Scattering from a) trans and b) cis stilbene geometries with 30◦ uncertainty
in alignment
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Figure 5.6. Structure of the peptide nanotube

The scattering spectra of larger molecules are much more rich in features, with

a much stronger intensity decrease with growing scattering vector k. We com-

pare the effect of alignment and the uncertainty of alignment for larger molecules

using the example of peptide nanotubes (structure shown in Figure 5.6). The

scattering intensity of 1D aligned ensemble of these peptide nanotubes is shown

in Figure 5.7. Even though the scattering signal has been averaged over rotations

around one particular axis to represent the 1D alignment this intensity map is

still relatively rich in detail. We focus to a smaller k-range in Figure 5.8, which is

a more experimentally realistic picture due to the strong intensity decrease with

larger k. Comparing the effect of uncertainty in alignment for an ensemble of

larger molecules, even the intensity spectra with the uncertainty in alignment of

20◦ (Fig 5.8 b) remains relatively rich and so even the simple 1D alignment is po-

tentially beneficial for improved x-ray scattering measurements when performed

on larger molecules.

Theoretically the three dimensional alignment offers the best structural resolu-

tion of the studied sample. The expression for the intensity distribution including

the uncertainty in the alignment ∆θ and ∆φ and the probability distributions of
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Figure 5.7. 1D alignment of peptide nanotubes with intensity in logarithmic scale

the uncertainty p1(θ), p2(φ) is simply:

I(k, θ) =

θmax∫
0

p1(θ) sin θdθ

φmax∫
0

p2(φ)dφ|Fk {ρ(r)} |2 (5.3)

with p1(θmax) ∼ 0 and p2(φmax) ∼ 0. Illustrative examples of scattering intensity

with three dimensional alignment coincide with the single molecule scattering ex-

amples and can be found in the previous Sections on x-ray scattering from stilbene

and iodine.
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−
1
)

 

 
log(I)

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

8

9

10

11

12

13

14

15

(a)

kx (Å
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Figure 5.8. 1D alignment of peptide nanotubes; a) uncertainty in alignment 0◦ b)
uncertainty in alignment 20◦; Intensity in logarithmic scale
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5.3 Time-Resolved Scattering on Aligned Systems

Scattering on aligned samples gives the information about the electron density

projection on the alignment axis. This offers a number or interesting opportunities

for measurements. If one could change the polarizability axis of the molecule one

could observe different projections of the density and so to some extent focus on

the area of interest – maximum density change corresponding to observed process.

As the previous Section showed, the one dimensional alignment provides addi-

tional structural information about the imaged object when compared to randomly

oriented sample. In this Section we evaluate if this information is sufficient in order

to follow time-dependent processes. We will focus on 1D alignment which poses

the lowest experimental demands.

Figure 5.9. Geometry change of aligned stilbene during the photo-isomerisation ad-
justed to angular momentum change δL = 0, with blue model corresponding to trans
stilbene, green to a half-way conformation with dihedral angle of 93.5◦ and red to cis
conformation

We return to the photoisomerization of stilbene as the test process. The geom-

etry change excluding rotation is depicted in Figure 5.9. The photoisomerization

process starts in the trans geometry when the molecular ensemble is aligned with

respect to the main moment of inertia axis. Figures 5.10 to 5.14 show the scattering

of an aligned system undergoing the photo-isomerisation where the alignment has

a 20◦ uncertainty. The alignment axis remains the main moment of inertia axis at

the given time point. Since we want to examine the sensitivity of the 1D scattering

spectra to the geometry change we chose 10 equidistant steps in geometry change

on the simplified minimum energy path (see Fig. 3.1), which correspondents to



80 X-ray Scattering on Aligned Molecules

about 20◦ change of the dihedral angle. The details of the photoisomerization

process were described in Chapter 3.
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−1

)

k
z
(Å
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Figure 5.10. Isomerisation of stilbene; 1D scattering intensity of the geometry a) trans,
b) dihedral angle of 161◦ both with an uncertainty in alignment 20◦; Color scale in % of
the scattering intensity at k = 0

The time-resolved 1D spectra are rich enough to enable simplified comparison
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Figure 5.11. Isomerisation of stilbene; 1D scattering intensity of the geometry with the
dihedral angle of a) 142◦, b) 122◦ with an uncertainty in alignment 20◦; Color scale in
% of the scattering intensity at k = 0

to the spectra from the amorphous sample. Figures 5.10 to 5.14 show a relatively

strong signal change even when we focus just on the one-dimensional I(kz, kx = 0).

The resulting 1D aligned time-resolved spectra together with the amorphous coun-
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Figure 5.12. Isomerisation of stilbene; 1D scattering intensity of the geometry with the
dihedral angle of a) 103◦, b) 84◦ with an uncertainty in alignment 20◦; Color scale in %
of the scattering intensity at k = 0

terparts are depicted on the Figures 5.15 showing the comparison of the total in-

tensities, 5.16 showing the difference intensities between the trans geometry and

the geometry with the given dihedral angle, and 5.17 shows the intensity differ-
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Figure 5.13. Isomerisation of stilbene; 1D scattering intensity of the geometry with the
dihedral angle of a) 65◦ b) 45◦ with an uncertainty in alignment 20◦; Color scale in % of
the scattering intensity at k = 0

ence between two consecutive geometries with the dihedral angle difference of 10◦.

As we can see the even the reduced I(kz, kx = 0) intensity 1D scattering maps

enable much better resolution for structural changes than the spectra from the
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Figure 5.14. Isomerisation of stilbene; 1D scattering intensity of the geometry with the
dihedral angle of a) 26◦ b) cis, with an uncertainty in alignment 20◦; Color scale in % of
the scattering intensity at k = 0

amorphous sample. In comparison to the amorphous sample data, the the aligned

data shows resolution enhancement especially in the geometry range between the

cis conformation and conformation with the dihedral angle of about 120◦. This
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practically means that a time-resolved measurement has much better prospects

when measuring 1D aligned samples.
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Figure 5.15. Total intensity during the isomerisation of stilbene with a) 1D alignment,
b) randomly oriented ensemble
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(Å

−
1
)

 

 

20 40 60 80 100 120 140 160 180

2

4

6

8

−2

0

2

4

6

8

1 2 3 4 5 6 7 8

−2
0
2
4
6
8

kx (Å
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Figure 5.16. Intensity difference between the intensity of trans stilbene and a geometry
with a given dihedral angle with a) alignment, b) randomly oriented ensemble
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Figure 5.17. Intensity difference between two following geometries, with a 10 degree
dihedral angle step, with a) alignment, b) randomly oriented ensemble
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5.4 Conclusions

The one dimensional alignment offers significant improvement to the structural

information provided by the randomly oriented sample. While the three dimen-

sional alignment is experimentally very demanding, especially having in mind the

necessary concentration of the aligned molecules, the 1D alignment is slightly less

of a challenge and so a good candidate especially in the area of time dependent

scattering measurements.

Since the 1D alignment offers improved scattering intensity information it

opens the opportunity for better time-resolved x-ray scattering measurements. At

the same time, although it is sensitive to the uncertainty in the alignment angle,

it offers good results even at a realistic alignment uncertainty distribution of 20◦

full width at half maximum.

It is necessary to look at the importance of the alignment axis on the scattering

spectra. In this test case the alignment axis was chosen to be the main axis of

the moment of inertia of the molecule. This is just a test axis used to study the

alignment properties. In reality the alignment axis is the main polarizability axis.

As the molecular geometry changes in the isomerisation process the alignment axis

changes accordingly, which virtually enhances the possible information provided

by the scattering signal. As we mentioned before, the spectrum of the 1D aligned

system basically provides the information about the electron density projected

onto the alignment axis. Therefore, theoretically, by changing the alignment axis

one could choose the projection with most pronounced density change during the

observed process. If we introduced suitable methods of tagging and determining

the alignment axis this would gives us the opportunity to study the molecule

with respect to different axis and so possibly focus on the electron density area of

interest.

The possible tree-dimensional alignment and orientation would bring the scat-

tering experiment closer to single molecule scattering conditions. However, this

is a much more difficult task for the experiment, while as we have seen, the 1D

alignment significantly improves the scattering resolution between geometrically

close structures. This could contribute to vital enhancement of the time-resolved

structural dynamics scattering measurements.
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Chapter 6

Water in Strong Soft X-Ray

Laser Fields

6.1 Introduction

So far in this thesis we have studied different aspects of x-ray scattering at low x-ray

intensities. As the x-ray source becomes more intense, the energy transfer to the

sample becomes more prominent. Strong laser pulses, such as those from the free

electron laser (FEL), reach pulse intensities up to 1016 W/cm2. For comparison

the static electric field between proton and electron in the hydrogen atom has a

field strength of the same order of magnitude. At these fields the energy transfer

from the x-ray field to molecules or clusters in the sample becomes so great that,

on a very short time scale, due to single- and multi-photon excitations, the sample

transforms to a collection of highly charged ions embedded in a quasi free electron

gas. The formation and dynamics of this state is called a Coulomb explosion.

Necessarily such process influences any measurement performed on the sample in

a number of ways. The description and study of these is the objective of this

Chapter.

The process of Coulomb explosion can be generally divided into tree main

phases. In the first phase the laser light couples to the atoms as if they were

isolated, the cluster environment has no effect. This phase is dominated by pho-

toionizations. In the second phase the cluster expands due to the repulsion between

91
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ions that were created in the first phase, together with ‘inner ionized’, ‘quasi free’

electrons — highly energetic electrons that are still bound to the cluster. In the

third phase the energy redistributes and recombinations occur.110 111

In structural measurements, radiation damage has set a limit for the probe

pulse intensity that a sample can be exposed to. For example, in the case of x-rays

of 12 keV the limit is 200 photons per Å2.4 The emergence of x-ray sources with

high brilliance has led to proposals of single molecule structural measurements that

would highly exceed this damage threshold. At the intensity levels proposed for

single molecule coherent diffraction, the effect of Coulomb explosion is inevitable.

A way to avoid the problem with sample disintegrating in the course of structural

measurement is theoretically simple — the probe pulse must be intense and short

enough to provide structural information before the structural changes, due to the

Coulomb explosion, erode the collected scattering data.112,113,114,115

A number of theoretical works116,117,118 have studied the effect of Coulomb

explosion in connection with single molecule diffraction. Neutze et al in the Ref-

erence [5] presents simulations of intense x-ray pulse–protein sample interaction

and the effects on coherent diffraction. The radiation damage is described stochas-

tically, based on probabilities for photoelectric or inelastic event. The behavior

of the test system — molecule of T4 lysozyme including its 118 crystallograph-

ically determined water molecules— was described trough molecular dynamics,

with force fields incorporating Morse potentials for the description of all chemical

bonds. Using this approach it was shown that 12 keV pulses with intensities of

1011 to 1013 photons per Å2, on the order of up to tens of femtoseconds long, can

be theoretically used for single molecule diffraction before the onset of Coulomb

explosion renders the measurement meaningless. However, this approach omits

the screening effect provided by the free electron gas that builds up in the sample

during the irradiation. It also neglects the effects on the molecular bonds from the

changes in electronic state of the system.

In the publication by Bergh et al119 the x-ray laser–matter interaction model

is expanded by accounting for the free electron gas through iterative use of the

Poisson-Boltzmann equation. This electron gas created by Auger and secondary

electrons is assumed to have the simple Maxwell-Boltzmann distribution. The test

systems in this case were relatively large water clusters, containing 660 molecules

and 1320 molecules respectively. It was shown that the presence of the electron
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gas slows down the Coulomb explosion. A radiation-hydrodynamic model for the

interaction of a soft x-ray laser pulse with matter was studied in the Ref. [120].

A detailed model of laser-matter interaction can be provided by time dependent

density functional theory in its form beyond linear response (for details on DFT

and TDDFT see Chapter 2.3). Since this ab-initio approach is computationally

expensive, the size of the studied system has to be accordingly limited. The (H2O)8

water cluster with S4 symmetry was chosen as a test system (see Figure 6.1) in our

calculations. It is small enough to minimize the computational costs of TDDFT,

while the geometry of this cluster allows for a limited level of volume effects,

such as free electron gas shielding which will be described later in this Chapter.

This water octamer is notable because of its tricoordinate H-bond deficient water

structure. It has been an object of both theoretical121 and experimental122 studies.

The two energetically lowest water octamer conformations form a cube with the

water molecules positioned in the corners, oriented to form D2d or S4 symmetry.

The tricoordinate structures are known to form water123 and ice124 surfaces, as

opposed to the tetracoordinate water that dominates the bulk.

The dynamics of molecules under the influence of fields with very high intensity

and very short pulse length, from the FEL fields, is by nature highly non-linear. As

we described in the Chapter 2.3.3 a convenient method of describing the behavior

of a system like this is the TDDFT in its form beyond linear response. The full

TDDFT is a promising method offering an ab-initio approach to the problem as

opposed to the widely used molecular dynamics treatment,5,116,117,118,119 while al-

lowing the study of small molecular systems. The coupling of the laser field to the

molecular system is formulated in semi-classical way, so called minimal coupling

scheme, where laser is treated as a classical field. In the used TDDFT implemen-

tation the external laser field is is described using the dipole approximation, which

is always justified for optical wavelengths, while for hard x-rays it is satisfied only

in the case of inner-shell electrons.

It should be noted that the TDDFT functionals used for describing the electron

behavior in strong fields are only in the development stage. Therefore experiments,

such as the time-dependent scattering measurements, may prove invaluable for

gaining better understanding of the behavior of electronic structures in strong

fields and help improve the precision of the computational methods and TDDFT

functional development.



94 Water in Strong Soft X-Ray Laser Fields

O(1)

O(2)

H(1)

H(2)

H(3)

H(4)

Figure 6.1. Water octamer with symmetrically independent atom groups colored sep-
arately. The arrow shows the axis of the C4 rotation, which followed by a reflection in
the horizontal plane is the generator of the S4 symmetry group of the cluster

An important question for the structural measurements with strong x-ray

laser pulses is how the behavior of the Coulomb explosion changes with the field

strength. As the pulse lengths generally considered are on the order of tens of fs

to 100 fs, the changes of the structure in this time should stay small if a strong,

well defined scattering signal is to be obtained. The forming free electron gas has
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a dominant effect on the structural data deterioration. TDDFT is a convenient

method for the description of this electron gas formation in detail.

In the following we study the Coulomb explosion behavior with respect to four

different field intensities. The strongest studied intensity of 1016W/cm2 causes a

very fast Coulomb explosion with significant changes to the structure even on the

short computed time interval of 5 fs. For a comparison three weaker fields with

the strengths of 1013W/cm2, 1014W/cm2 and 1015W/cm2 are considered as well.

6.2 Computational Details

For the treatment of matter interaction with strong laser fields in the framework of

TDDFT we must resort to solving the time-dependent Kohn-Sham equations ex-

plicitly. This approach has been implemented in the quantum chemistry program

package OCTOPUS28,125 in the manner shortly described in the following.

In the OCTOPUS program the nuclei are treated classically using the Ehren-

fest molecular dynamics. The system is so represented as two coupled dynamical

systems consisting of the system of non-interacting particles—electrons—described

by the Kohn-Sham equations and classically described system of ions. The num-

ber of active electrons is reduced by using norm-conserving pseudopotentials to

describe the core electrons. The time-dependent Kohn-Sham equations are solved

by integration in real time with all quantities discretized on a grid in real space.

The electromagnetic laser field is described classically as an additional external

potential and the calculation is limited to the dipole approximation. For the laser

field we then have:

vlaser = E0f(t) sin(ωt) p̂ · r (6.1)

with the pulse intensity E0, envelope of the pulse f(t), polarization of the light p̂

and frequency ω.

The OCTOPUS program package has been successfully applied in a number of

previous studies which has been published in literature. For example in the paper

by Isla [126] the Coulomb explosion and fragmentation of deuterium clusters D+
13

has been studied.

A TDDFT study of Coulomb explosion of D2 by Livshits and Baer [127] com-

pares three different approaches: the time-dependent Hartree-Fock method, the

the simplest TDDFT method — so called ALDA which stands for adiabatic lo-
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cal density approximation and TDDFT with the Baer-Neuhauser functional128.

This work concludes that the Baer-Neuhauser functional, which does not suffer

from long-range self-repulsion while incorporating ground state correlation effects

similar to ALDA, does not offer any significant improvement to ALDA.

Because of the fact that the OCTOPUS program uses a pseudopotential de-

scription for core electrons the studied laser wavelength has to be above the oxygen

1s absorption edge which is 4 nm. We chose the soft x-ray wavelength of 10 nm,

corresponding to a photon energy of 120 eV, which is already reachable with the

FLASH-FEL in Hamburg. This means that all valence electrons are in principle

allowed for possible excitations in the simulation. It also keeps us well within

dipole approximation considering the size of the cluster. The time step of the

simulation is 0.1 atto-seconds.

We chose the ALDA approach for our calculations. Although it suffers from

well known shortcomings, such as self-interaction effects, it has an advantage of

being a simple, extensively studied model. We note that the well known problems

of linear response TDDFT in describing charge transfer excitations are due to

the perturbative treatment used in that approximation,129 and are not expected

to appear in the present calculation, which goes beyond perturbation theory by

employing an explicit time integration.

There is a number of important distinction between the hard x-ray and soft

x-ray laser–matter interaction. The higher energy end of the absorption spectra

of water is dominated by the two main lines — the L edge at about 30 eV and the

K edge at about 530 eV.130,131 Table 6.1 shows few main x-ray scattering cross

sections for oxygen. Here it can be seen that the main contribution to the radiation

damage at 100 eV comes from the photoionization. The dominant photoelectric

cross section drops four orders of magnitude between 100 eV and 10 000 eV having

a significant impact on total scattering cross section decrease for hard x-rays.

Table 6.1. Photoelectric, elastic and inelastic scattering cross sections of oxygen at
different photon energies in barns/atom, taken from Reference [132].

energy (eV) Photo Elastic Inelastic
100 1.65 106 42.5 2.83 10−3

1000 1.26 105 39.9 2.29 10−1

10 000 1.47 102 6.85 3.44

An important physical characteristics with respect to the radiation damage is
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the inelastic electron scattering cross section. With hard x-ray photon pulses the

main contribution to electron scattering events comes from Auger electrons,133 as

the cross section for the scattering events with the high energy photo-electrons

is very small. The photo-electrons are expected to leave the sample very fast.

In the case of soft x-ray pulses, the photo-electrons themselves have energies in

the range where electron scattering cross section is high and so contribute to the

‘inner ionized’ electron gas formation. It is however important to note that for

strong fields these cross-sections have to be modified to take multi-photon effects

into account. These effects are included in the present calculation, since the field

is explicitly included in the simulation (in contrast to other approaches based on

perturbation theory).

The simulations of the water cluster (H2O)8 in the strong x-ray field starts

with the water octamer in its ground state structure. The starting guess for

the geometry optimization of this cluster was taken from the Cambridge Cluster

Database134.

The x-ray pulse in the calculations has a Gaussian shape with the total pulse

length of 25 fs in the case of the three weaker fields, and 100 fs in the case of the

strongest field. Since the calculated time interval is shorter than the pulse length

the simulation starts with the pulse envelope at the maximum intensity at t=0.

6.3 Energy Absorption

Within sub-femtoseconds of the application of the x-ray field the electrons start to

absorb the laser energy. In the following, the electron and nuclear dynamics are

presented on plots of various physical properties as a function of time.

In order to find out which orbitals are most influenced by the strong laser field,

by for example electron hole creation, one has to follow the overlap between the

ground state and time dependent molecular orbitals |〈ψi(t)|ψi(0)〉|2. Figure 6.2

shows these overlaps as a function of time in the first 2 fs, in the field of 1016W/cm2.

In this short time the displacement of the nuclei from the starting position is

smaller than one spatial grid step (0.08Å). Up to about 1 fs the fastest rate of

change belongs to the higher valence orbitals.This behavior changes after 1 fs when

with a rapid drop of overlap value for the oxygen 2s orbitals, representing creation

of electron holes in the corresponding orbitals. Because of symmetry effects there
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Figure 6.2. The overlap between ground state and time dependent molecular orbitals,
under the laser field of 1016W/cm2. Orbitals are ordered by energy, from core (oxygen
2s) to valence orbitals, so that orbital 32 is the highest occupied molecular orbital

are two “2s” molecular orbitals (or rather two molecular orbitals formed from the

eight oxygen 2s atomic orbitals) which do not participate in the ionization process,

for the given polarization of the x-ray field. These are orbital 1 and 8 in Figure 6.2.

Figures 6.3 and 6.4 show the kinetic energy of the ions in the water cluster as a

function of time. In Figure 6.3a the kinetic energy corresponding to the two lower

laser field intensities 1013 W/cm2 and 1014 W/cm2 can be seen, as both fall into

the same scale. In the field of 1015 W/cm2 (Fig. 6.3b) the kinetic energy shows first

signs of changes in behavior. It no longer falls into the same scale as the kinetic

energies of the two lower fields, but is up to two orders of magnitude higher at the

end of the studied time interval. The influence of the strongest field on the kinetic

energy of the ions becomes immediately obvious from the Figure 6.4b. Although

it contains the kinetic energies corresponding to all four field strengths only the

one corresponding to the field of 1016 W/cm2 can be seen, due to the fact that

it is yet larger, almost two orders of magnitude, than even the kinetic energy

corresponding to the field of 1015 W/cm2. While in the weakest field the kinetic

energy shows a close to linear dependence on time this significantly changes for

the stronger fields.
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Figure 6.3. Kinetic energy of the ions under the laser field of a) 1013W/cm2 and
1014W/cm2 (thick curve) b) 1015W/cm2

The effect of the field strength on the ion movement can be observed also on

the direct ion response to the oscillation of the laser field. The thickness of the

curve corresponding to the field of 1014 W/cm2 in Figure 6.3a) is caused by the

response of ions to the strong laser field. The small oscillations corresponding

to the laser field frequency are shown in Figures 6.5a) and 6.5b). The different
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Figure 6.4. Kinetic energy of the ions under the laser field of 1016W/cm2

field strengths in these three cases are translated into the amplitude of the ion

vibrations. For the strongest field the kinetic energy oscillation amplitude amounts

to about 4.10−3 eV, which for comparison, corresponds to about 50 K thermal

energy. The oscillation amplitude is then larger than the total kinetic energy

response of to the two weaker laser fields, over the whole simulation time interval

of 6 fs. In the case of the weaker field 1014 W/cm2 the kinetic energy oscillation

amplitude is about 4.10−5 eV and so about 0.5 K and for the field 1013 W/cm2 it

is only 4.10−6 eV or 0.05 K.

The main part of the energy contribution to the total energy increase (see

Fig. 6.8 and Fig. 6.9) comes from the electronic energy (see Fig. 6.6 and Fig. 6.7).

This increase, in contrast to the kinetic energy increase, is directly proportional to

the field strength, 0.6·103 eV/fs for the strongest field and about 0.6 eV/fs for the

weakest, averaged over the first 5 femtoseconds. In general the energy first has to

be absorbed by the electrons before it can be transferred to ion kinetic energy and

cause the Coulomb explosion.
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Figure 6.5. Ion kinetic energy zoom to small oscillations corresponding to the laser
field oscillations a) 1013W/cm2 and 1014W/cm2 laser intensities b) all three studied laser
intensities
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6.4 Distances and Velocities

The time-dependent differences of the distances of atoms from their starting posi-

tions (see Figures 6.10 and 6.11) show an interesting behavior.
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Figure 6.10. Time evolution of the atomic distances from their starting positions at
the field strength of a) 1013W/cm2 and b) 1014W/cm2. Several distinct groups of atoms
with similar velocities are forming. The atomic labels are introduced on the Fig. 6.1
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Figure 6.11. Time evolution of the atomic distances from their starting positions at
the field strength of a) 1015W/cm2 and b) 1016W/cm2, with atomic group labels as in
Fig. 6.1

As one can see in Figure 6.1 the water octamer has the S4 symmetry, thus the

hydrogen atoms can be organized in groups of four, depending on their position

with respect to the center of the cluster. The time-dependent development of the

atomic distances and velocities are in correspondence with this symmetry of the

cluster. The distance plots show a number of separate bunches of curves that
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Figure 6.12. Time evolution of the atomic velocities at the field strength of a)
1013W/cm2 and b) 1014W/cm2, with atomic group labels as in Fig. 6.1. The fast oscil-
lations correspond to the ion oscillations driven by the x-ray field

correspond to symmetrically equivalent atoms. Most notable are the four outer

hydrogens, labeled as H(1), with the largest distance to the center of the cluster.

From the point of view of velocities and displacement this group of hydrogen



6.4 Distances and Velocities 109

0 1 2 3 4 5
0

2

4

6

8

x 10
−3

Time (fs)

V
el
o
ci
ty

(Å
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Figure 6.13. Time evolution of the atomic velocities at the field strength of a)
1015W/cm2 and b) 1016W/cm2, with atomic group labels as in Fig. 6.1

atoms is in all four fields either one of the fastest moving groups (for 1015W/cm2

on Fig. 6.13b) or the fastest moving group (in the other three cases) and so achieves

the highest or second highest displacement. On the opposite side are the slowest,

least moving hydrogens H(2) that share the same water molecule with the fastest

hydrogens H(1).
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Figure 6.14. The Coulomb explosion of water cluster in the field of 1016W/cm2 with
velocity vectors
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Although the total distance difference for the two lower laser fields stays in both

cases in the same order of magnitude they show different time-dependent structure

changes. Even the second strongest field causes only small atomic displacements,

which even at the end of the simulation time interval are below the size of the

electron density spatial grid step of 0.08Å. In all three cases of the weaker fields

(Fig. 6.12 and Fig. 6.13b) the velocities for some of the atomic groups start to drop

after some time. Only the strongest field shows fast fragmentation corresponding

to the Coulomb explosion with the distance change of the outermost hydrogens

reaching 0.85 Å in the first 6 fs. In this case there is no hint of any velocity drop

over the whole simulation time interval.

Table 6.2. Displacement estimates based on the final velocities in the simulation

Field Displacement(in Å) after:
W/cm2 10 fs 25 fs 50 fs 100 fs

1013 O 0.0004–0.0014 0.001–0.0041 0.002–0.0085 0.004–0.017
H 0.0048–0.011 0.011–0.030 0.020–0.061 0.038–0.12

1014 O 0.0007–0.0011 0.0017–0.0034 0.0034–0.0072 0.007–0.015
H 0.0058–0.014 0.016–0.036 0.034–0.073 0.069–0.15

1015 O 0.0014–0.0072 0.0047–0.021 0.01–0.043 0.021–0.087
H 0.051–0.08 0.15–0.23 0.32–0.47 0.67–0.97

1016 O 0.046–0.12 0.14–0.37 0.31–0.78 0.63–1.6
H 0.87–1.9 2.8–5.7 6.0–12.1 12.3–24.8

To compare the overall effect of the different field strengths we estimate the

displacements after times longer than the simulation times using the velocities

from the last stages of the simulation. The results are shown in table 6.2. We can

see that all the three weaker fields cause only a small displacement even after a

relatively long time of 100 fs, while the strong field causes very fast movement of

hydrogens (2.8–5.7 Å in 10 fs). Here it should be stressed that only the strongest

field exhibits the behavior of Coulomb explosion as it could be inferred from the

properties that have been presented so far. At the same time the movement of

oxygens is, as expected due to their mass, relatively slow even in the strong field,

where in the first 25 fs we estimate the maximum displacement to only 0.36 Å.

As the structural measurement is focused on heavier elements, and not hydrogen,

even the pulses of this intensity and length of up to 25 fs can lead to relatively

good results. However longer timescales, 50 to 100 fs adversely affect even the
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heavier oxygen causing displacements of 0.8 Å to 1.6 Å.

6.5 Coulomb Explosion and Electron Density Change

Figure 6.15. Electron density change during the Coulomb explosion in the field of
1016W/cm2. The isosurface value is 0.6Å−3, blue isosurface corresponds to the density
at 0 fs, red to the density at 5 fs

The most important property of the sample for x-ray structural measurements

is the electron density and its possible time-dependent change. Specific features of

electron gas formation in a sample can affect x-ray scattering to a various degree.

An advantage of using TDDFT from this point of view is that it offers ab-initio

electron densities that follow the electron density changes in detail.

Figure 6.15 shows changes in electron density for the strongest field (1016W/cm2).

The two isosurfaces correspond to the electron density of 0.6Å−3, with the blue

isosurface corresponding to density at t=0fs and the inner red isosurface to density

at time t=5fs. It can be seen that with the electron density becoming more diffuse

the isovalue moves closer to the positions of the ions. However, in order to evalu-

ate the electron density changes in detail we have to switch from evaluation of the

density in real space to Fourier space, which corresponds to scattering intensity

spectra.
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Figure 6.16. a) Scattering intensity of the water cluster at t= 0fs in % of the k= 0
intensity and b) difference in scattering intensity between the intensity at t= 0fs and t=
1fs, under the laser field of 1016 W/cm2

A simple way to evaluate the significance of the laser field caused structural

damage for the structural measurements is the sensitivity of the x-ray scattering

intensity to a change in the electron density δρ. The scattering intensity can be
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Figure 6.17. Difference in scattering intensity, in % of the k= 0 intensity, between the
intensity at t= 0fs and t= 1fs a) negative part and b) positive part of the spectra under
the laser field of 1016W/cm2

expressed simply as

|FT (ρ+ δρ)|2 = |FT (ρ) + FT (δρ)|2. (6.2)

We have the time-dependent valence electron densities δρ(t) (hydrogen electrons
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(Å

−
1
)

 

 

∆I/I(k=0) (%)

−5 0 5
−8

−6

−4

−2

0

2

4

6

8

0

1

2

3

4

5

(a)

kx (Å
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Figure 6.18. Difference in scattering intensity, in % of the k= 0 intensity, between the
intensity at t= 0fs and t= 2fs; a) negative part of the spectra and b) positive part of the
spectra, under the laser field of 1016W/cm2

and the 2s and 2p electrons of oxygens) expressed on a spatial grid from the

TDDFT calculations. Since these are smooth functions in comparison to the core

electrons densities the Fourier transformation of these can be done using the fast

Fourier transformation method (FFT). The 1s core electrons densities can be ex-

pressed using analytical functions, δ functions in the simplest approximation or
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Figure 6.19. Difference in scattering intensity, in % of the k= 0 intensity, between the
intensity at t= 0fs and t= 3fs; a) negative part of the spectra and b) positive part of the
spectra, under the laser field of 1016W/cm2

correctly chosen s-functions. In the simplest approach the FT (ρ) of the core

electrons will be assigned scattering factors and treated accordingly. This also

separates the effects of the changes in valence electron density on the scattering

spectra.

Figure 6.16 shows the scattering intensity of the water cluster at t = 0 in %
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Figure 6.20. Difference in scattering intensity, in % of the k= 0 intensity, between the
intensity at t= 0fs and t= 4fs; a) negative part of the spectra and b) positive part of the
spectra, under the laser field of 1016W/cm2

of the I(k = 0) intensity, with the scattering vector k= 4π sin θ
λ , where θ is the

scattering angle and λ the x-ray wavelength. The main maxima correspond to the

oxygen atoms caused by the relatively higher number of electrons in comparison

to the hydrogens. The hydrogens are included in the calculation in the electron

density grid — they have no ”core” electrons. This is an important fact to keep
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Figure 6.21. Difference in scattering intensity, in % of the k= 0 intensity, between the
intensity at t= 0fs and t= 5fs; a) negative part of the spectra and b) positive part of the
spectra, under the laser field of 1016W/cm2

in mind while examining the time-dependent scattering intensity development.

The time dependent change of the intensity in the field of 1016 W/cm2 is de-

picted in Figures 6.17 to 6.21. Here it can be seen that the four strong scattering

maxima around k = 0 are in a consistent fashion diminishing with time, while

at the same time getting broader. The intensities from these maxima are redis-
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Figure 6.22. Difference in scattering intensity, in % of the k= 0 intensity, between the
intensity at t= 0fs and t= 5fs; a) negative part of the spectra and b) positive part of the
spectra, under the laser field of 1015W/cm2

tributed to new features in the scattering map, especially in higher k-range. After

t = 5 fs the scattering of this maxima decreases by about 13% of the k = 0 scat-

tering intensity. This means that in the strongest field the scattering intensity

becomes gradually smeared out, being redistributed from the strong oxygen max-

ima close to k = 0 to maxima at higher k-range as the electrons start forming
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the quasi free electron gas. When focusing on the part of the scattering spectra

that corresponds to the forming electron gas (Fig. 6.17b– 6.21b) these first form

symmetrically around the main oxygen maxima. At later time points however, the

electron gas part of the scattering spreads to larger scattering vector range. The

shown intensity changes in the field of 1016 W/cm2 are very strong, considering

that the experimental x-ray probe pulse is a number of times longer than the here

studied 5 fs time interval. This shows the very fast build up of the “inner ion-

ized” electron gas, which degrades the scattering signal, in a sense degrading the

scattering factors of the atoms in the sample.

Lastly, the negative and positive parts of scattering intensity after 5 fs in the

weaker field of 1015 W/cm2 are shown (Fig. 6.22). Although the atomic displace-

ments in this field at this time point are comparable to the displacements in the

strongest field at about 2 fs, the scattering intensity is only half as influenced,

dropping by only about 1.4% instead of 2.5%. From this example the necessity

for the knowledge of the exact electron density, and not just the change in atomic

positions, becomes obvious.
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6.6 Conclusions

Theoretical studies of x-ray laser–matter interaction have gained importance in

recent years in connection with the proposed single molecule coherent diffraction

measurements. These measurements are intended for relatively large molecular

systems, especially various bio-molecules for which conventional crystallography is

not an option. However, theoretical treatment of the interaction of large molecular

systems with x-ray lasers necessarily employs severe approximations in order to

decrease the computational costs. To describe the x-ray laser–matter interaction in

a quantum mechanical ab-initio approach we have limited the size of the studied

system to a small water cluster (H2O)8. In the current implementation in the

OCTOPUS program package the external laser pulse field cannot treat hard x-ray

energies, due to the dipole approximation and description of atomic core electrons

by pseudopotentials. It is in principle possible to overcome these limitations and

extend the method to the hard x-ray regime.

TDDFT may become an important tool in estimating what field strengths

and pulse lengths are necessary to get a scattering signal of a needed quality. A

detailed ab-initio analysis of the x-ray laser–matter interaction on small molecular

systems can play an important role in choosing optimal field parameters for the

structural measurements. We should however not forget the limitations the current

density functionals impose. The time-dependent electron density measurement can

provide a motivation for development of new density functionals, as an additional

means of comparison of TDDFT performance with real electron wave function

behavior.

In this work, one of the main advantages of the TDDFT approach is that

the detailed ab-initio electron density of the system can be followed in time as it

changes under the influence of the field. As shown in this Chapter the occupation

of the molecular orbitals can be studied as a function of time. No assumptions

have to be made about the nature of the excitation and ionization processes.

This is particularly important for strong fields where nonlinear effects cannot be

neglected, exemplified by the valence excitations evident in Figure 6.2.

The strongest field considered in the simulation (1016 W/cm2) leads to very

fast cluster fragmentation, which renders a structural measurement after just a few

femtoseconds meaningless. As it has been shown the scattering intensity on the

main oxygen maxima drops by 12% in just 5 fs. The Coulomb explosion starts very
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fast with a electron plasma formation, the scattering signal of which contributes

to the diffuse part of the scattering spectrum. Oxygen ions move relatively slowly

even in the strongest field preserving the overall structure of the cluster.

Depending on the objectives of the experiment an encouraging result is the

relatively well conserved overall symmetry and structure on short time scales. This

is good news if one is interested in overall structure of the sample. However the

possibility to determine any details within the structure will be lost very fast due

to the fast plasma formation. As could be seen, although the actual ion movements

during the first stages of the Coulomb explosion are minimal, especially for the

heavier atoms, the scattering intensity is very sensitive to the electron plasma

build-up, as shown in Section 6.5. Therefore it is important that simulations of

Coulomb explosion accurately describe the detailed changes in electron density.



Chapter 7

Summary

With the emergence of free electron x-ray laser sources, the field of x-ray structural

measurements faces new challenges. The possibility to study the structure and

dynamics of system with unparalleled resolution in time, owing to the ultrashort

nature of the pulses, as well as to shed light on the structure of molecular systems

that until now eluded us due to the problems with their crystallization. This

thesis was written with the intention to contribute with a few small pieces to

the puzzle that the field of x-ray scattering structure and dynamics studies has

become. It was attempted to rationalize various physical parameters needed to

be optimized in order to extract structural information from the ultrafast x-ray

diffraction experiments of the present new and to be built x-ray sources.

First of all, x-ray sources with high brightness enhance the resolution of struc-

tural measurements simply by improving the signal to noise ratio, due to the

increase in the photon count. This means enhancement for conventional scatter-

ing measurements. In order to study the possibilities of utilizing this effect we

focus on the case of wide angle x-ray scattering measurements of liquid or gaseous

samples. With the assumption of improved signal to noise ratio of the scattering

measurement we conclude that the detailed electron densities become increasingly

important as the diffuse part of the spectra, i.e. large scattering vectors, becomes

measurable. Here, the small scale effects of the electron density, such as electron

delocalization on bonds, or in phenyl rings in the studied case of stilbene, sig-

nificantly contribute to the scattering signal. This to an extent where the use

of standard scattering model, as in the Debye equation, would lead to a misin-

123
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terpretation of the spectra. In particular the Debye equation overestimates the

sensitivity of wide angle x-ray scattering which can be misleading when interpret-

ing experimental data.

X-ray scattering experiments bear significance even for processes that involve

relatively small molecular systems. If for example one focuses on such a seemingly

simple prototypical reaction as the photodissociation of molecular iodine a num-

ber of interesting effects can be brought forward. Relatively simple wave-packet

dynamics of the molecular vibrations as it unfolds during the photodissociation

gives rise to a strong time-dependent x-ray scattering signal change. Special in-

terest here belongs to dynamical vibrational processes that can be triggered to

unfold coherently in the studied sample, as this coherence gives a boost to the to-

tal scattering signal due to the constructive interference from the electron densities

modulated by equivalent vibrational wave-packets of the nuclei. With consider-

able improvement to the x-ray scattering signal to noise ratio, to the extent when

signal changes of 1% of the scattering intensity maximum at k=0 would be distin-

guishable, even the smallest electron density change, as it occurs during vertical

electronic excitation, can become measurable.

An interesting alternative to proposed single molecule coherent diffraction is

x-ray scattering measurement on a sample consisting of aligned systems. Espe-

cially with the advances in the area of laser alignment this extension to x-ray

scattering from amorphous liquid or gaseous samples shows a great potential. As

we have shown, even the most simple one-dimensional alignment offers significant

improvement compared to the structural information provided by a randomly ori-

ented sample. Although it is sensitive to the uncertainty in the alignment angle,

it offers encouraging results even at realistic alignment uncertainty distribution

with 20◦ full width at half maximum. Everywhere where a specific question about

structural dynamics of a system is the main focus of an experiment, rather than

high resolution structural analysis, one dimensional laser alignment may provide

sufficient information about the structural change. Compared to the proposed

single molecule coherent diffraction, laser alignment decreases the demands on the

x-ray probe pulse brightness since it benefits from scattering intensity enhance-

ment, due to constructive interference from the ensemble of aligned molecules. In

this way the problems with Coulomb explosion do not even enter the picture.

With the interest in structural studies of single molecule or cluster structures
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comes the necessity to consider the dramatic event of Coulomb explosion. The

effort has been not only to find the optimum for x-ray laser pulse length and in-

tensity, but simultaneously to find an appropriate theoretical description for the

laser–matter interaction itself. Time dependent density functional theory, in its

form beyond linear response, shows promise when an ab-initio approach with an ex-

plicit treatment of the laser field is preferred, especially when dealing with smaller

molecular systems. It is by definition well suited to provide the most important

information from the x-ray scattering point of view, the detailed account of elec-

tron density changes in response to the strong laser field. This approach, although

in its current implementation limited at the high energy end of the spectra to

soft x-rays, has been used to study the Coulomb explosion of water octamer. The

strongest field considered in the simulation (1016 W/cm2) leads to very fast cluster

fragmentation which would render a structural measurement after just few fem-

toseconds questionable. The Coulomb explosion starts very fast with an electron

gas formation. It is first and foremost this electron gas formation that requires

adequate theoretical description since it has significant influence on the x-ray scat-

tering signal already in the first stages of the Coulomb explosion. When following

the changes of electron density in Fourier space, in terms of scattering intensities,

we have shown that the fast buildup of free electron gas in the cluster environ-

ment increasingly contributes to diffuse scattering signal. The main features of

the cluster structure and symmetry stay well preserved due to the relatively slow

moving ions.

Throughout this thesis only a small fraction of problems, that arise with the

emergence of the free electron x-ray sources, have been addressed. Undoubtedly, a

large number of additional challenges will spring up when the first experiments on

one of these sources, namely the Linac Coherent Light Source in Stanford, begin

in September 2009.
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10. Domcke, W., Yarkony, D. R., Köppel, H., Eds. Conical Intersections Elec-

tronic Structure Dynamics and Spectroscopy; World Scientific, 2004.

127



128 BIBLIOGRAPHY
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Appendix A

Program for x-ray scattering

on aligned molecules

This section includes a simple C++ program for calculating x-ray scattering from

one-dimensionally aligned samples with an uncertainty in alignment, based on

the Debye equation. It was used to calculate the scattering pattern of aligned

molecules in the Chapter 5

#include <cmath>

#include <cstdlib>

#include <iostream>

#include <fstream>

using namespace std;

void debye(double *kx, double ky, double *kz, double *f,

double *x, double *y, double *z, double *alpha,

double *beta, double *pa, double *I,

int nkx, int nkz, int nalpha, int nbeta, int nmol)

{

int i,j,k=0,l,a,b,count=0;

double t, *xm,*ym,*zm,ca,sa,cb,sb;

xm = new double[nmol];
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ym = new double[nmol];

zm = new double[nmol];

ca=cos(alpha[0]);

sa=sin(alpha[0]);

for (a=0; a<nkx; a++)

{

for (b=0; b<nkz; b++)

{

count = a*nkz+b;

I[count]=0;

}

}

for(k=0; k<nalpha; k++)

{

count=0;

ca=cos(alpha[k]);

sa=sin(alpha[k]);

for(l=0; l<nbeta; l++)

{

sb=sin(beta[l]);

cb=cos(beta[l]);

for(i=0; i<nmol; i++)

{

xm[i] = cb*(x[i]*ca + y[i]*sa) - sb*z[i];

ym[i] = y[i]*ca - x[i]*sa;

zm[i] = sb*(x[i]*ca + y[i]*sa) + cb*z[i];

}

for (a=0; a<nkx; a++)

{

for (b=0; b<nkz; b++)

{

count = a*nkz+b;
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for(i=0; i<nmol; i++)

{

I[count]=I[count]+(f[i] * f[i])*pa[l];

for (j=i+1; j<nmol; j++)

{

t = kx[a]*(xm[i]-xm[j]) + ky*(ym[i]-ym[j])

+ kz[b]*(zm[i] - zm[j]);

I[count]=I[count]+(2 * f[i] * f[j]*cos(t))*pa[l];

}

}

}

}

}

cerr << "k= " << k << " nalpha " << nalpha << " "

<< 100*k/nalpha << "%" << ’\r’;

}

delete[] xm;

delete[] ym;

delete[] zm;

}

int main(void)

{

double *kx, ky, *kz, *f, *x, *y, *z,

*alpha, *beta, *pa, *I,

kxmin, kxmax, dkx, kzmin, kzmax,

dkz, dalpha, D, dbeta,pp=0;

int i, j, nkx, nkz, nalpha, nbeta, nmol, count=0;

cin >> nmol; // reading the number of molecules

x = new double[nmol];

y = new double[nmol];

z = new double[nmol];

f = new double[nmol];
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for(i=0; i<nmol; i++)

cin >> f[i] >> x[i] >> y[i] >> z[i]; //reading scattering factor and

// coordinates of each molecule

cin >> kxmin >> dkx >> kxmax; //reading min(kx), delta kx and max(kx)

cin >> ky; //reading ky

cin >> kzmin >> dkz >> kzmax; //reading kz: min, delta and max

cin >> dalpha; //reading step size in alpha -

//- the spherical angle for integration

cin >> D; //reading FWHM, or the uncertainty

// in the alignment

cin >> dbeta; //reading step in beta - the angle

// corresponding to the spread in alignment

dbeta=M_PI*dbeta/180;

if (D>=30)

{

if(dbeta>M_PI/90)

//for test purposes: one step less if dbeta > 45 degree,

//for dbeta>90 nbeta=1 -- we have a 2d aligned molecule

nbeta = floor(0.5+M_PI/(2*dbeta));

else

nbeta = floor(0.5+M_PI/(2*dbeta))+1;

}

else

nbeta = floor(0.5+3*D*M_PI/(180*dbeta))+1;

cerr << "nbeta " << nbeta << endl;

if(D>0.00001)

{

D=D*M_PI/180;

D=log(2.0)/(D*D); //Gaussian distribution function with alpha = D

beta = new double[nbeta];

pa = new double[nbeta];

for(i=0; i<nbeta; i++)

{
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beta[i] = i*dbeta;

pa[i] = exp(-D*i*i*dbeta*dbeta);

pp=pp+pa[i];

}

}

else

{

beta = new double[nbeta];

pa = new double[nbeta];

for(i=0; i<nbeta; i++)

{

beta[i] = i*dbeta;

pa[i] = 1.0;

pp=pp+pa[i];

}

}

nkx = floor(0.5+(kxmax-kxmin)/dkx)+1;

nkz = floor(0.5+(kzmax-kzmin)/dkz)+1;

dalpha=M_PI*dalpha/180;

nalpha = floor(0.5+(2*M_PI)/dalpha);

kx = new double[nkx];

kz = new double[nkz];

alpha = new double[nalpha];

for(i=0; i<nkx ; i++)

kx[i]=kxmin+i*dkx;

for(i=0; i<nkz ; i++)

kz[i]=kzmin+i*dkz;

for(i=0; i<nalpha; i++)

alpha[i] = dalpha*i;

I=new double[nkx*nkz];

debye(kx,ky,kz,f,x,y,z,alpha,beta,pa,I,nkx,nkz,nalpha,nbeta,nmol);
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double weight=1.0/(nalpha*pp);

for(i=0; i<nkx; i++)

{

for(j=0; j<nkz; j++)

{

count = i*nkz+j;

cout << weight*I[count] << " ";

}

cout << endl;

}

delete[] x; delete[] y; delete[] z; delete[] f; delete[] kx;

delete[] kz; delete[] alpha; delete[] I; delete[] beta;

delete[] pa;

return 0;

}
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