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Zusammenfassung

Kollektive Phänomene in Lipidmembranen, wie die Porenbildung und die Fu-
sion, die Selbstorganisation zu Doppelschichten oder die laterale Entmischung
mehrerer Lipidsorten haben in den letzten Jahren großes Interesse geweckt.
All diese Phänomene eint die Tatsache, dass sie auf mesoskopischen Skalen,
also Mikrometern und Mikrosekunden, stattfinden. Diese Skalen sind zu klein
um in Experimenten direkt beobachtet werden zu können, sie sind aber auf
Grund der Vielzahl der beteiligten Freiheitsgrade zu groß für Computersimu-
lationen mit atomarer Auflösung. Vergröberte Modelle verfügen über erheblich
weniger Freiheitsgrade und weichere Potentiale und gestatten eine qualitative
Untersuchung dieser Phänomene mittels Computersimulationen.

Im Rahmen dieser Arbeit wird ein vergröbertes, lösungsmittelfreies Mod-
ell für die Simulation von Doppelschichten amphiphiler Moleküle präsentiert
und eingehend untersucht. Die Moleküle werden durch lineare Ketten von
Punktteilchen beschrieben, die über Federn miteinander verbunden sind. Die
ungebundenen Wechselwirkungen entstammen einem klassischen, gewichteten
Dichtefunktional für die Freie Energie, das eine Entwicklung bis zur dritten
Ordnung in gewichteten molekularen Dichten darstellt. Die auftretenden En-
twicklungskoeffizienten und Wichtungsfunktionen ermöglichen es, im Rahmen
einer Mean-Field-Näherung die Zustandsgleichung und die lokale Flüssigkeits-
struktur unabhängig voneinander vorzugeben. Wir verwenden Dissipative Par-
ticle Dynamics (DPD) Simulationen um die Eigenschaften des Modells nu-
merisch zu untersuchen.

Wir untersuchen die Selbstorganisation zu kondensierten Morphologien, das
Phasendiagramm von Doppelschichten sowie strukturelle und mechanische Ei-
genschaften der flüssigen Phase (Lα) und einer Gelphase (Lβ), darunter den
statischen Strukturfaktor, die Biegesteifigkeit und die Flächenkompressibilität.
Es werden vier Verfahren zur präzisen Lokalisierung des Hauptphasenüber-
gangs (Lβ ↔ Lα) aufgezeigt und die Freie Energie wird als Funktion eines
Konformations-Ordnungsparameters berechnet. Die Linienspannung zwischen
beiden Phasen wird über das Fluktuationsspektrum der Kontaktlinie und aus
der Höhe der freien Energie-Barriere berechnet und verglichen.

Weiterhin untersuchen wir die Brown’sche Bewegung einzelner Moleküle,
sowie die kollektive Bewegung von Molekülclustern anhand der mittleren qua-
dratischen Verschiebung, der Geschwindigkeits-Autokorrelationsfunktion und
des dynamischen Strukturfaktors. Kollektive Diffusion ist nur für sehr kurze
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Zeiten sichtbar; es existieren keine ausgedehnten Strömungsfelder. Wir unter-
suchen die Oberflächenviskosität und die Intermonolagenreibung mit jeweils
zwei verschiedenen Methoden. Für die Berechnung der Intermonolagenreibung
leiten wir eine neue Green-Kubo-Relation ab und präsentieren eine modifizierte
Variante der Seifert-Langer-Theorie, die die Dynamik von Undulationsmoden
in einem lösungsmittelfreien Modell beschreibt. Schließlich bilden wir unser
Modell auf ein noch einfacheres Scheibenmodell ab, in dem alle intramoleku-
laren Freiheitsgrade eliminiert sind, und untersuchen ob es möglich ist, die
ausintegrierte Reibung der intramolekularen Freiheitsgrade einzig durch den
DPD-Thermostaten zu modellieren.



Abstract

Collective phenomena in lipid membranes, like pore formation and fusion, self-
assembly, or lateral demixing of lipid mixtures, have attracted tremendous
interest over the last years. Often, collective phenomena involve mesoscopic
time and length scales, microseconds and micrometers, which are difficult to
observe directly in experiments and which are at present beyond the scales that
can be addressed by models with atomistic resolution. The reduced number of
degrees of freedom and the softer potentials in coarse-grained models open up
the opportunity to address the mesoscopic scales computationally and to gain
qualitative insights.

In this work we present a solvent-free, coarse-grained model for amphiphilic
bilayers. The molecules are represented by linear bead-spring chains and the
non-bonded interactions are derived from a classical density functional, which
is an expansion of the free energy in terms of weighted molecular densities up
to third order. Within the mean-field approximation the involved expansion
coefficients and weighting functions can be utilized to tune the equation of
state and the local, fluid structure of the model independently. We employ
Dissipative Particle Dynamics (DPD) simulations to study the properties of
the model numerically.

We study the self-assembly process of various morphologies, the bilayer phase
diagram, and structural and mechanical properties of the fluid phase (Lα) and
a gel phase (Lβ), e.g., the static structure factor, the bending rigidity, and the
area compressibility. Three different methods for precisely locating the point
of the main phase transition (Lβ ↔ Lα) are presented and the free energy as
a function of a conformational order parameter is computed. We estimate the
line tension between fluid and gel domains from the power spectrum of the
interface fluctuations, as well as from the height of the free energy barrier.

The Brownian motion of individual molecules and the collective motion of
molecular clusters are investigated by looking at the mean-square displace-
ment, the velocity autocorrelation function, and the intermediate scattering
function. Collective diffusion exists only for very short time intervals and no
flow pattern is observed. The surface viscosity and the intermonolayer friction
are each measured by two different methods. To this end we derive a new
Green-Kubo relation for computing the intermonolayer friction and present
a modified version of the Seifert-Langer-theory that is able to describe the
dynamics of undulation modes in a solvent-free model. Finally, we map our
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bead-spring model onto a two-dimensional model of soft discs, where all in-
tramolecular degrees of freedom are integrated out. We study the question if it
is possible to obtain the same dissipation mechanisms as before by using only
a DPD thermostat.
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1 Introduction
“Nature is made in such a way as to be able to
be understood. Or perhaps I should put it –more
correctly– the other way around, and say that we
are made in such a way as to be able to
understand Nature.”

(Werner Heisenberg)

In contrast to the widely held belief that fats are something vicious, which en-
danger our health and should be avoided at all cost, only few people are aware
of the true relevance of these molecules for our body. Fats are essential ingredi-
ents of our diet, they provide for tasty meals, good health, and longevity, and
enable our body to produce important substances like sex hormones, vitamin
D, or bile (the liquid in our stomach to break down the food). They constitute
a major part of our brain and are among the most abundant molecules in our
body [1, 2].

In science, fats are called lipids. They often appear in combination with
other fundamental building blocks of cell biology, like carbohydrates, genes,
or proteins. While proteins are the molecular machines in our body, which
perform highly specific tasks, and genes encode the way how these proteins are
catalyzed, lipids seem to be more general and less specific. This is certainly
related to their less intriguing chemical structure, which only comprises a polar
head group favoring the contact with water (“hydrophilic”) and one or two non-
polar tails avoiding such a contact (“hydrophobic”). Although there are many
kinds of lipids which differ in chemical details, like the degree of saturation of
the carbon tails or the residues in the head groups, they are all qualitatively
similar and the study of individual molecules does not offer much insight into
the relevance of these details or into the lipids’ function.

Their key property becomes visible when they are placed in water. Due to
their amphiphilic nature, i.e., they like and dislike water at the same time,
they self-assemble into extended morphologies, e.g., micelles, bilayers, or vesi-
cles, which minimize the contact area of the hydrophobic tails with the water
[3] and whose size varies between 10 nm and 10 μm. Bilayers are thin films con-
sisting of two stacked layers of apposing lipid molecules with the head groups
pointing outwards, i.e., towards the water, and the tails pointing inwards (see
Fig. 1.1i). They are of particular importance in biology, because they consti-
tute the cell membrane as well as the membranes of cell organelles. There,
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1 Introduction

they are often decorated with proteins or carbohydrates and are then called
biomembranes. Vesicles are spherically closed bilayers, which transport small
molecules or liquids in cells, and are also referred to as liposomes.

The lipids in these self-assembled aggregates attract each other through weak
van-der-Waals interactions and typical forces are on the order of magnitude of
10 pN. A comparison of these forces with those arising from thermal agitation
can be achieved by rewriting the thermal energy, kBT , as a product of a typical
molecular separation, 1 nm, and a thermal force,

thermal energy = 1 kBT ≈ 4 pN × 1 nm.

Here, kB is Boltzmann’s constant, which is a universal number, and T =
293 K = 20 ◦C is the room temperature. We find that the thermal forces
are on the same order of magnitude and, thus, they cannot be neglected. The
coincidence of these two energy scales leads to important thermal fluctuations
of these aggregates and to a permanently changing shape.

Besides lipids, this work also deals with another class of molecules: polymers.
These are synthetic macromolecules consisting of a large number of simple re-
peat units which are covalently bound to form long molecules. If more than one
type of repeat units is used to grow a polymer, the resulting molecule is called
a copolymer for which an endless number of possible molecular compositions
and structures is available. If the different types are arranged in two blocks, the
polymers are called diblock copolymers; if they are arranged in three blocks,
triblock copolymers.

Many block copolymers self-assemble in a selective solvent into a range of dif-
ferent morphologies, like spheres, rods, vesicles, or large micelles [4, 5]. There
is a huge interest in polymeric vesicles, “polymersomes”, because they are in
many respects comparable to lipid vesicles, but at the same time they offer
several advantages. Due to the thicker shell they are generally tougher, the
physical and chemical properties can be tailored over a wide range by attach-
ing various side groups to the polymers, and they can be cross-linked after the
preparation to capsules. This cross-linking makes the polymersomes stable for
long times and leads to very different elastic properties, because these cap-
sules are not fluid anymore. These abilities are interesting for many practical
applications, like the potential use as microreactors, drug-delivery vehicles, or
simple model systems of biomembranes. Polymer vesicles are also able to en-
capsulate proteins, nano-particles, or other biologically active molecules [6, 7,
and references therein].

The self-assembly is just one example of a collective phenomenon of lipids
and polymers; the fusion of biomembranes is another one. It is a crucial step in
many biological processes, like intracellular traffic, viral infection, fertilization,
or the transport of small molecules through a membrane [1]. Although a large
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Figure 1.1: Schematic fusion pathway: (i) Pre-fusion contact. (ii) A point-like mem-
brane protrusion minimizes the energy of the hydration repulsion between the proxi-
mal leaflets of the membranes coming into immediate contact. (iii) A hemifusion stalk
with proximal leaflets fused and distal leaflets unfused. (iv) Stalk expansion yields the
hemifusion diaphragm. (v) A fusion pore forms either in the hemifusion diaphragm bi-
layer or directly from the stalk. Dashed lines show the boundaries of the hydrophobic
surfaces of monolayers. Figure and caption taken from Ref. 8.

fraction of the literature discusses the role fusion proteins play, it seems that
their main purpose is to bring two membranes into close apposition and to
create stress. Once this stage has been reached, there is growing evidence that
the subsequent process, i.e., the rupture of the bilayers and the formation of
intermediate structures, which finally create a fusion pore (see Fig. 1.1), results
from the lipids’ inherent properties [8–12]. Consequently, it should be possible
to study the fusion of lipid bilayers even in simple models without any proteins.
A typical fusion pore spans a few nanometers in diameter and a typical fusion
event takes several microseconds [13].

Similar to lipid vesicles, polymer vesicles can fuse or create pores, too. The
fusion rates of diblock and triblock copolymer vesicles were studied experimen-
tally as functions of the water concentration, the polymer concentration, or the
block length [14–16]. Due to the higher molecular weight, these fusion events
involve significant longer times, e.g., seconds to minutes [15].

The lateral phase separation of lipid mixtures, which naturally occur in
biomembranes, has attracted abiding interest in recent years, and is yet an-
other collective phenomenon. Under certain conditions, unlike lipid species
demix and form domains of like species [18, 19, and references therein]. These
domains, “rafts”, cause a lateral heterogeneity of the bilayer which is deemed
to play an important role in the organization of cell membranes. A typical
domain size is on the order of 10 nm and contains hundreds of lipids. A quan-
tification of this lateral heterogeneity has proven difficult, therefore simpler
systems, with only one or two kinds of lipids and often some cholesterol [17],
are studied (see Fig. 1.2). Although a large number of phase diagrams for
such systems have been studied [20, and references therein], it is difficult to get
a comprehensive overview from these two-dimensional projections of a much
large parameter space.
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1 Introduction

Figure 1.2: Two photon microscopy picture of giant unilamellar vesicles formed from
a ternary mixture of sphingomyelin, DOPC, and cholesterol at various compositions.
The molecules phase separate into a liquid-ordered phase (blue) and a liquid-disordered
phase (red). The scale bar is 5 μm. Reprinted by permission from Macmillan Publish-
ers Ltd: Nature [17], copyright 2003.

Inspired by this heterogeneity, chemists have recently started to tailor poly-
mersomes composed of incompatible macromolecules [21–23] or even “lipo-
polymersomes” which are mixtures of lipids and polymers [24]. In contrast to
the biomembranes, the exact chemical composition of these multi-component
polymersomes is known, so that it is possible to study the demixing behavior
quantitatively. These objects become particularly interesting if polymers of
different chemical or physical properties are combined into a single polymer-
some.

A final example comes from the rheology of biofluids. The flow resistance
of blood in microvessels is largely determined by the deformability of the red
blood cells. It is known that diseases such as diabetes mellitus and sickle cell
anemia decrease this deformability and thereby enhance the flow resistance of
blood which causes, in turn, other diseases [25]. It is therefore of great interest
to understand the cell’s elasticity in shear flow. Red blood cells are, however,
very complex objects, due to their cytoskeleton and their biconcave shape, so
that simpler single-component vesicles, with a size of 10 micrometers or larger,
are preferred in most studies.

Such vesicles under shear flow have been studied in experiments, analytical
calculations, and computer simulations [26, 27, and references therein]. Three
different kinds of motion are observed: the tank-treading, the tumbling, and
the trembling motion (see Fig. 1.3). In the tank-treading motion, the vesicle
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Figure 1.3: Dynamical states of a vesicle with mean radius R = 6.19 μm, at different
values of the fluid’s vorticity and different strain rates. A: tank-treading, B: tumbling,
C: trembling motion. Taken from Ref. 26.

keeps a constant inclination angle between its major axis and the flow direction,
while its membrane rotates about the internal fluid. In the tumbling motion the
entire vesicle rotates and in the trembling motion oscillations of the inclination
angle around 0◦ with excursions smaller than π/2 occur [26]. Typical oscillation
periods are milliseconds to seconds.

Although the tank-treading and the tumbling motion can be explained by
chiefly considering the viscosity of the fluids on the inside and the outside [28],
the surface viscosity and the intermonolayer friction of the membrane also con-
tribute to the energy dissipation. The effect of the monolayer’s surface viscosity
has been studied to some extent [29, 30], but the role of the intermonolayer
friction [31, 32] has received less attention, because the molecular character of
the bilayer must be taken into account. Such a study has not yet been feasi-
ble due to the widely separated length scales, micrometers for the vesicles and
nanometers for the molecules.

Not only lipid vesicles, but also polymersomes under shear flow are of inter-
est. Recently, a group succeeded in creating leuko-polymersomes that act like
leukocytes, but are made of polymers, and can bind to inflammations [33, 34].
Of course, such polymersomes are exposed to the same fast flow in the blood
vessels as any other object, thus the interplay of the elastic and the dissipative
properties of polymersomes under shear has to be known before such objects
can be used in medical applications.

The aforementioned examples show that the properties of lipids manifest
themselves in the collective behavior where hundreds or thousands of molecules
cooperate. It is exactly this cooperative nature which makes the study of collec-
tive phenomena so interesting on the one hand, and so challenging on the other
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1 Introduction

hand. It is inadequate to study individual molecules only, but large numbers
of them must be taken into account to see how their chemical details translate
into a mesoscopic structure. Even though polymers and lipids differ a great
deal in their chemistry and their characteristic scales, they expose the same
qualitative behavior. Thus, there are many good reasons to study collective
phenomena in lipid bilayers together with those in polymeric membranes and
to explore similarities and differences in their behavior.

Coarse-grained models

A direct observation of such collective phenomena in experiments is often dif-
ficult or ambiguous, so that computer simulations are frequently employed to
acquire a better understanding of the experimental results. Simulations of-
fer several advantages, for instance it is possible to repeat the same computer
experiments many times under exactly known conditions, e.g., temperature,
pressure, pH, or molecular composition, or to study the effect of changing one
of these parameters precisely. Since the phenomena in membranes evolve on
vastly different time and length scales, many different models and computa-
tional techniques have been devised for studying specific questions. They can
be roughly categorized into atomistic, coarse-grained, and continuum models.

In atomistic models one tries to describe every component of a membrane
embedded in a solvent with the greatest possible accuracy, so that a chemically
realistic model is obtained. Specifically, the covalent bonds are often taken into
account by rigid constraints between the atoms [35–37] and are supplemented
by carefully determined torsional and dihedral angle potentials. Non-bonded
interactions, i.e., the short-ranged van-der-Waals and the long-ranged Coulomb
interactions are treated explicitly, the former ones by empirically determined
pairwise interaction potentials, and the latter ones by Ewald summation or
particle-mesh Ewald methodologies [38, 39]. Thus, atomistic simulations cru-
cially depend on the existence of previously determined, accurately calibrated
force fields for all possible bonded and non-bonded interactions [40–43]. Most
of these simulations are performed by a technique called molecular dynamics
(MD) where the positions and velocities of all atoms are known in an initial
state. The momentary forces between all atoms are evaluated, Newton’s equa-
tions of motion are integrated for a short time step (∼ 1 fs), and new positions
and velocities are obtained. Then the process starts all over [44–46].

Atomistic models are very well suited for the study of small and specific
systems where the chemical details of the constituents matter, e.g., in protein
folding [47, 48], lipid-protein or lipid-DNA interactions [49], or in the transport
of water or ions through lipid bilayers [50–52].

Due to the complexity of the interactions and the incredibly large number of
atoms, atomistic simulations are seriously limited in size. The first simulations
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in the early 1990’s included only a hundred lipid molecules that were simulated
for 0.1 ns [53, 54], and even today’s state of the art simulations on the fastest
parallel computers are unable to handle systems larger than a few hundred
lipid molecules for much longer than 100 ns [55–57]. Thus, a computer sim-
ulation with full atomistic detail of the aforementioned collective phenomena
on the interesting time and length scales is inaccessible, at present and in the
foreseeable future.

Even if such detailed studies became feasible in the future, they would be
plagued by yet another problem which is particularly bothering for a theo-
retical physicist. The abundance of the degrees of freedom with their highly
specific atomistic detail would hide the underlying universal mechanisms and
complicate the identification of the relevant degrees of freedom that dominate
the phenomenon under study. In other words, “even though one would have
all experimental values right, one wouldn’t learn anything about the system
under study” [58].

Instead of trying to describe the collective phenomena starting from the
underlying, atomistic structure, coarse-grained models overcome this difficulty
by replacing the microscopic background with a simplified description. This is
often achieved by lumping several atoms into effective beads that interact with
each other via simplified, effective potentials (see Fig. 1.4). Chemical bonds
are typically described by harmonic springs which are sometimes accompanied
by bond angle potentials; torsional potentials are normally ignored. The non-
bonded interactions are mostly short-ranged, i.e., it is assumed that the long-
ranged Coulomb interactions are screened [59–64].

The determination of these simplified interactions is “often guided by physi-
cal intuition, computational constraints, and a large degree of trial-and-error”
[65]. Two different approaches for obtaining these interactions can be distin-
guished, which we will denote as the systematic and the phenomenological
coarse-graining. In the former one, a scheme for mapping atoms onto effec-
tive beads and a set of basic interactions with many adjustable parameters are
proposed. The parameters are fitted in a way that the coarse-grained model
reproduces some key quantities as closely as possible, e.g., certain energies or
structural quantities. Several of these systematically coarse-grained models for
lipid bilayers have been established [59, 66–69].

In the phenomenological or “minimal” models, one relies on the concept of
universality, i.e., the assumption that all models, which capture the relevant
interactions of a physical system, should show the same qualitative behavior on
mesoscopic scales. The strengths of these relevant interactions are set by a few
coarse-grained parameters. Unfortunately, in most cases it is unknown what
these coarse-grained parameters and the corresponding relevant interactions
are. Nevertheless, once they have been found, a model comprising the minimum
amount of necessary interactions is obtained which is very appealing from a
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(a) (b)

(c)

(a)

Figure 1.4: (a) Side view of a DPPE bilayer membrane at T = 300 K surrounded
by explicit water molecules (TIP3P). (b) DPPC bilayer in another atomistic model
(left) and in a systematically coarse-grained model (right). Reproduced in part with
permission from the Journal of Physical Chemistry B [60]. Copyright 2004 Ameri-
can Chemical Society. (c) Atomistic and systematically coarse-grained structure of a
DMPC lipid, taken from [61]. Reproduced with permission from IOP Publishing Ltd.

physical point of view and extremely efficient from a technical point of view.
Several of these models for lipid bilayers exist [63, 64, 70–76]. Although some
of them are excellent in describing lipid bilayers, they all involve interaction
coefficients whose physical meaning remains vague.

In both cases, the reduction of the microscopic degrees of freedom has sev-
eral consequences. First and foremost, significantly less degrees of freedom
–compared to atomistic models– have to be simulated for reaching the same
length scale. Second, the usage of effective particles leads to softer interactions
so that much larger integration time steps than in MD (∼ 1 ns) are possible.
Third, the coarse-graining is done for a specific thermodynamic state, e.g.,
pressure, temperature, or thermodynamic phase. Hence, it is understandable
that, in general, the effective interactions depend on these parameters [77].
Fourth, the reduction of chemical detail renders the predictions of a coarse-
grained model near or below the characteristic scale of the reduced degrees of
freedom devoid of any physical meaning. Thus, one has to decide which de-
grees of freedom shall be studied before one can select the degrees of freedom
to be coarse-grained. This decision is the crucial step for the construction of a
coarse-grained model.
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Another important aspect in coarse-grained models arises from the treatment
of the solvent. Since an amphiphilic bilayer is a two-dimensional object without
a bulk phase, most of the volume of the simulation box is occupied by a solvent,
whose main purpose is in many cases only to promote the self-assembly. Thus,
as long as no hydrodynamic interactions of the solvent are of inherent interest
and only the bilayer’s properties shall be studied, a simplified treatment or
a total omission of the solvent potentially leads to a drastic reduction of the
number of interactions to be evaluated and of the required computing time.

The usage of solvent-free models has a long-standing tradition in polymer
science. In many polymer models the solvent is taken into account in the in-
teractions between the polymer beads effectively, i.e., slightly attractive inter-
actions mimic a poor solvent and purely repulsive interactions a good solvent.
Formally, the removal of a solvent can be justified by treating the system com-
prised of the polymers and of the solvent as being incompressible on mesoscopic
scales with a fixed density ρ0. If the solvent’s degrees of freedom are integrated
out, one obtains a model where the local polymer density, ρ(r), can fluctuate
in the interval 0 . . . ρ0.

Recently, solvent-free models have been successfully employed in the study
of lipid bilayer membranes [64, 66, 70–72, 78–80]. It has turned out that mean-
ingful results of many static properties, like density profiles, bending rigidities,
area compressibilities, or the phase behavior, can be obtained in agreement
with experiments or atomistic models. These solvent-free models are particu-
larly appealing because only the interesting degrees of freedom of the bilayer
are simulated, the desired time and length scales become accessible, and a
study of the collective phenomena is qualitatively possible [65, 81, 82].

However, the lack of solvent influences the bilayers. For instance, several
solvent-free models exist where the self-assembly into bilayers cannot be demon-
strated [70, 78]. From the point of view of statistical physics, the removal of
a chemical species leads to a change in the number of thermodynamic degrees
of freedom, i.e., in the number of intensive state variables that can be speci-
fied independently. Finally, the dissipation of energy, which is dominated by
the solvent viscosity on large length scales [83–85], is modified and excitations
decay differently.

The effect of coarse-graining on dynamic properties, like dispersion relations,
autocorrelation functions, or transport coefficients, is less well understood. The
problem is that the microscopic degrees of freedom create friction and thermal
noise and act as a heat bath that dominates the time evolution of the meso-
scopic degrees of freedom. Coarse-graining always decimates the microscopic
degrees of freedom and therefore leads to a reduction of the friction and the
thermal noise. This reduction may impact quantities differently, so that the
speed-up of the dynamics in a coarse-grained model is desired from a compu-
tational point of view, but if there are several slow processes, they may be
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speeded-up by different scaling factors as well. Thus, different relevant slow
processes ensue with rates that deviate from the original system. Although
much effort is devoted to obtaining an understanding of the coarse-grained dy-
namics, there is currently no practical scheme for mapping the dynamics [86–
88]. Hence, as soon as a coarse-grained model is used to study time-dependent
phenomena, great care must be exerted to ensure that the dynamics are phys-
ically meaningful.

Outline

In this thesis we rely on the concept of universality. Instead of trying to
reproduce chemical details of specific lipid molecules, like it is done in atomistic
or systematically coarse-grained simulations, we present a phenomenologically
coarse-grained, solvent-free model for amphiphilic bilayers, which smoothly
interpolates between lipid and polymer membranes. It is situated somewhere
between the systematically coarse-grained and the continuum models, and has
some similarities with models used in self-consistent field calculations [89–91].
The interaction coefficients are calculated from simple expressions, which we
derive from mean-field theory, and thus offer a direct insight into their physical
significance. In Chapter 2 we detail the model description and the simulation
method.

However, before studying collective phenomena we have to ensure that the
model accurately describes lipid and polymer bilayers. We analyze the statics
and dynamics in turn.

In Chapter 3 we begin with the statics and answer the questions which length
scales are reachable and which influence the phenomenological coarse-graining
has. It turns out that our model exhibits a rich phase diagram with a fluid
and several gel phases. Thus, we are able to study lateral phase separation and
phase transitions. In the course of these studies we develop a method for pre-
cisely locating the point of the fluid-gel transition and measure the interfacial
free energy, i.e., the line tension, for a fluid-gel interface.

The first part of Chapter 4 focusses on the question how realistic the coarse-
grained dynamics is. To this end we carefully analyze the Brownian motion as
well as the collective motion of the amphiphiles, and compare our findings to a
recent atomistic molecular dynamics simulation where a flow pattern in a lipid
bilayer is observed [92].

We continue the discussion of the dynamics by looking at the consequences
which arise from the lack of solvent. The most important modifications show
up in the dissipation mechanisms and in the related decay of the undulation
modes. Although we discover that the absence of the solvent impacts the dy-
namics of these modes on large length scales, we obtain an almost quantitative
agreement with other simulation studies of the remaining dissipation mecha-
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nisms on smaller scales. Thus, it is possible to use our model for the study of
mesoscopic phenomena where dissipation on small scales is important.

In the last part of Chapter 4, we present an even more coarse-grained rep-
resentation of our model where the molecules are modelled as soft discs which
move only in-plane. By treating the dissipation constants as additional coarse-
grained parameters, we perform a mapping of our original model that conserves
the statics and the dynamics. We present the conditions that have to be ful-
filled if the mapping of the dynamics is to be achieved by using a thermostat
only.

We close this thesis in Chapter 5 with a summary of the most important
findings and an outlook on further developments and extensions of the model.
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2 Coarse-grained model
“Everything should be made as simple
as possible, but not simpler.”

(Albert Einstein)

This chapter is devoted to the description of the soft, coarse-grained model for
amphiphilic bilayers used in this work. In Sec. 2.1 we begin with an overview
of the different atomistic and coarse-grained models that already exist. We
continue in Sec. 2.2 with the physical ideas of our model and present the de-
tailed interaction potentials. Finally, in Sec. 2.3, we describe the method of
simulation and focus on the computational implementation.

2.1 Atomistic and coarse-grained models – an overview
In general two different types of models are used in the study of bilayer mem-
branes: the “bottom-up” or “ab initio” models and the “top-down” or coarse-
grained models. The former ones describe the physical system under study as
realistically as possible and computer simulations can be used to predict the re-
sults of a variety of experiments accurately [93]. Due to the enormous number
of interacting degrees of freedom, these models are limited to the study of very
small systems for short time intervals, i.e., only a few hundred amphiphiles
embedded in a solvent for tens or hundreds of nanoseconds. The latter ones
focus at the interesting time and length scales, microseconds and micrometers,
where the collective nature of the interacting molecules becomes important.
To this end coarse-grained models integrate out many microscopic degrees of
freedom and incorporate the effect of the microstructure into a small number
of phenomenological, coarse-grained parameters [65, 81, 82].

The atomistic models, which can be divided into the all-atom models and the
united-atom models, are the most important members of the first category. In
the all-atom models every single atom of every interacting molecule is included
in the simulation, whereas in the united-atom models small groups of atoms,
e.g., –CH3 groups, are treated as effective atoms with an effective charge or
dipole moment [94, 95]. In both cases much effort is devoted to a realistic
description of the interactions between the atoms which requires a careful cal-
ibration of all force fields [40–43]. However, since the microscopic interactions
lead to harsh repulsive forces, very small time steps, e.g., Δt ≈ 10 fs, must be
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2 Coarse-grained model

used in molecular dynamics (MD) simulations and the computational require-
ments are formidable. Due to the huge number of involved particles, typically
108 − 1010, large amounts of computing time are needed for the simulation of
systems whose largest dimension is still comparably small, e.g., < 1μm (see
Fig. 1.4).

The systematically coarse-grained models are closely related. Here, larger
groups of atoms, e.g., 5-20, are lumped into effective particles and the inter-
actions between these particles are obtained by a careful matching of static
properties, like the radial distribution function [96, 97] or the forces [98–101].
It has been demonstrated [59, 66–69] that these models lead to an accurate
description of bilayers on all length scales beyond the size of a single molecule.
Due to the coarse-graining, the effective interactions are softer than in the
atomistic case and the number of interacting particles is significantly reduced.
These models are a very promising approach to reach the relevant time and
length scales while preserving realistic interactions even at the small scales.

The other broad category comprises the phenomenologically coarse-grained
models. Formally, they can be justified by integrating out the fast, microscopic
degrees of freedom below a certain threshold. In this way one obtains effec-
tive interactions that depend only on the slow degrees of freedom and a few
coarse-grained parameters which incorporate the microstructure. The larger
this threshold is, the more microscopic details are integrated out which neces-
sarily leads to deviations in some physical quantities from their experimental
counterparts near or below this threshold. Hence, these models cannot be used
to study small scales, but they allow a qualitative understanding of the interre-
lations of the coarse-grained parameters and the physical observables on large
scales.

Frequently, the procedure of explicitly integrating out the degrees of freedom
is skipped and a Hamiltonian1 for a coarse-grained model is proposed directly
which depends on a few coarse-grained parameters. These parameters are often
matched with values obtained from atomistic simulations or experiments. A
common feature of these models is that their interactions are “soft”, i.e., the
involved energies are comparable to the thermal energy, kBT , and therefore
smaller than the harsh, microscopic interactions with typical energies of eV. A
plethora of different coarse-grained models for amphiphilic bilayers has been
proposed which can be roughly divided into different types by their level of
coarse-graining. The amount of included microscopic detail roughly follows
the evolution of the computational power over the last 30 years.

In continuum models the bilayer is modelled as an smoothly-curved, infinitely
thin surface. The molecular structure is assumed to be negligible and the
energy depends on macroscopic quantities like curvature or membrane topology.

1In fact, it is a free energy.

14



2.1 Atomistic and coarse-grained models – an overview

Helfrich’s model is certainly the most representative one of this class of models
[102–104]. These models can be used to study a large range of cell or vesicle
morphologies [105] and to explain mechanical properties on large scales. In
simulations these objects are frequently modelled with triangulated surfaces
[106, 107]. However, they ignore the surrounding solvent totally and it is
difficult to study non-bilayer-like structures or changes of the topology that
occur for instance during membrane fusion or fission [11].

Another type are the molecular models where each molecule is represented
by a single particle or an object with a finite amount of states [62, 108–112].
These were mainly used in the past to acquire qualitative insights into the
static properties of lipid bilayers, like phase transitions and phase diagrams
of various mixtures, i.e., lipid mixtures or mixtures with other molecules like
cholesterol. Many of them are lattice models and, consequently, computation-
ally very efficient. However, these simple models cannot be mapped easily to
specific kinds of lipids and quantitative results must be taken with a grain of
salt. The investigation of dynamical phenomena is outright impossible, because
no continuous degrees of freedom exist. Although most of these models have
been superseded by flexible off-lattice ones today, they still present a possible
route to investigate systems consisting of millions of lipids.

The most important class of modern models suitable for computer simula-
tions are the (off-lattice) bead-spring models where each molecule is represented
by a small number of structureless beads connected by springs. Each bead is
treated as a point particle with three translational degrees of freedom and inter-
acts with the other beads through pairwise interaction potentials. The beads
form flexible molecules which offer several advantages over the molecular mod-
els: first and foremost an unlimited number of conformations is accessible, so
that even miniscule conformational changes in response to some perturbation
can be studied. Furthermore, different molecular architectures, like the number
of hydrophobic tails or their length as well as different lipid compositions can
be easily implemented.

In contrast to the representation of the amphiphiles, which are in many
models similar, there is a broad range of coarse-grained representations for the
surrounding solvent; normally this is water. In principle four different ones
have been devised so far.

(i) The earliest models include an “explicit solvent” where a small number of
water molecules, typically 2-4, are lumped into a single coarse-grained particle
in the simulation [63, 74–76, 113]. The interactions between these solvent
particles are taken into account explicitly, so that these models normally show
realistic hydrodynamics. Additionally, the solvent promotes the self-assembly
of the amphiphiles to various morphologies like micelles, bilayers, or vesicles.
However, they pay a heavy computational price for this. It is easy to see that
a two-dimensional bilayer will occupy only a small amount of space in a three-
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2 Coarse-grained model

dimensional simulation box and that most of the volume is filled with solvent.
Therefore a large amount of the calculated interactions are between “irrelevant”
solvent molecules and the whole simulation becomes rather inefficient. Another
problem is the artificial structure that the explicit interactions impart to the
solvent.

(ii) A first solution to this problem was tried with the introduction of a
“surface solvent potential” [114] where no solvent molecules are simulated at
all. Instead, the hydrophilic heads couple to an external potential that keeps
them at the surface. This potential constrains the bilayer to a plane and
strongly damps its undulations. Therefore, the results of this type of model
must be interpreted with great care.

(iii) A clever solution for the solvent problem was found by Lenz and Schmid
[73, 115] who invented a “phantom solvent”. In this representation the solvent
molecules interact only with the amphiphiles but not with themselves. This has
the advantage that the solvent possesses no internal structure, still promotes
self-assembly, and is inexpensive to simulate. It can even be used to study the
effect of the hydrodynamic coupling between the bilayer and the surrounding
fluid.

(iv) As long as the effects of the solvent are of inherent interest to the phys-
ical problem, one must naturally include it in the model. Frequently, its only
task is to promote hydrophobic attractions between the tails, and as such it is
only of minor relevance to the purpose of a simulation. Therefore it is tempt-
ing to use “solvent-free” models where the solvent is removed altogether, like
it is frequently done in polymer physics, and to take account of it by effective
attractions between the hydrophobic tails instead. Such a model is computa-
tionally extremely efficient, because only the interesting interactions within the
membrane are included. It is known from the earliest attempts of construct-
ing such solvent-free models, that simple Lennard-Jones-like pair potentials
lead either to solid bilayers at low temperatures or to dilute gases at higher
temperatures. This fact inspired Noguchi and Takasu to add higher order
(multi-body), density-dependent interactions and led them to the construction
of a first solvent-free model that shows self-assembly [64, 72]. Unfortunately,
this model suffers from severe difficulties with the interpretation of thermody-
namic quantities. Other models with angular potentials [78] or finely-tuned
Lennard-Jones interactions [70] followed. However, the self-assembly cannot
be demonstrated for all of these models, and in some cases the bending rigidity
of a bilayer is either too high or too low [71]. Since then a small number of
solvent-free models have emerged that show self-assembly and have reasonable
values for the bending rigidity [71, 79, 80]. These models frequently employ in-
teraction potentials with numbers for the interaction coefficients that “produce
the right physics”, but cannot be readily understood from a physical point of
view.
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2.2 Model description I: physical part

In summary, atomistic models have a long-standing tradition in simulations.
They provide quantitative results, allow the study of all processes on the atomic
level, and are frequently employed to interpret experimental results. However,
they are restricted to very small systems and cannot reach the time and length
scales where collective effects involving many molecules, microseconds and mi-
crometers, become important. In coarse-grained models many microscopic de-
grees of freedom are integrated out for these scales to be accessible. This
integrating-out is done either systematically or phenomenologically. The first
approach yields all-purpose models whose accuracy is on large scales compara-
ble to that of atomistic models. The latter approach yields efficient models, that
reproduce key quantities on large scales, but is unable to provide meaningful
results on the microscopic scales. Currently, several coarse-grained bead-spring
models have been proposed which fundamentally differ in their treatment of the
solvent. All of them employ interaction potentials where numerical constants
show up whose physical origin remains unclear.

2.2 Model description I: physical part

In this work a phenomenologically coarse-grained, solvent-free model for the
amphiphilic molecules is considered and this section provides a detailed de-
scription from a physical point of view. We discuss the bonded, intramolecular
interactions first and then turn to the more involved non-bonded ones.

2.2.1 Bonded interactions

In the following the system under study contains n identical molecules and each
one consists of N interaction centers which are linearly connected by harmonic
springs. There are additional bond angle potentials that stiffen the molecules
and restrict their conformational fluctuations. The potential energy is given
by

Hb
kBT

= ks

2

N−1∑
i=1

(
‖ri+1,i‖ − �0

)2 + kb

N−1∑
i=2

(
1 − cos θi

)
, (2.1)

where ri+1,i = ri+1 − ri, and ri denotes the position of the ith bead of a chain.
ks is the spring constant, �0 defines the position of the minimal potential energy,
and kb is the bond angle constant. All simulations take place at the same fixed
temperature, T , and the thermal energy, kBT , serves as the unit of energy in
the rest of this work. θi denotes the angle between three successive beads, and

cos θi = r̂i+1,i · r̂i,i−1, (2.2)

where r̂i,j = ri,j/‖ri,j‖ is a unit vector (see Fig. 2.1).
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Figure 2.1: Architecture of our coarse-grained lipid molecules (right) in comparison
to an united-atom representation of a DPPC molecule (left).

Although amphiphilic molecules are characterized by several length scales,
the root-mean-square end-to-end distance Reo = 〈(rN − r1)2〉1/2 of molecules
that are only subjected to the bonded interactions, is used as the characteristic
dimension of a bilayer. Reo can be pictured as the head-to-tail length of a
molecule. The use of Reo to specify the molecular extension is rooted in poly-
meric membranes, where the polymer conformations are characterized by this
single length scale [116]. The actual size of a molecule is, of course, influenced
by the interactions with its neighbors.

One could easily extend the interaction potential in Eq. (2.1) to other molec-
ular architectures, e.g., amphiphiles with two tails. While not being part of
the present work, such architectures may be considered in the future.

2.2.2 Non-bonded interactions

In this work, each interaction center is either hydrophobic, “A”, or hydrophilic,
“B”. Every molecule consists of two parts, a single hydrophobic tail with NA

beads of type A, and a hydrophilic head with NB = N−NA beads of type B (see
Fig. 2.1). The non-bonded interactions are incorporated into the model by a
phenomenological ansatz for the excess free energy. Specifically, we commence
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with the density functional [116, 117],2

H′
nb[ρ̂A, ρ̂B]

kBT
=
∫

d3r

R3
eo

ρ̂α(r)
[

vαβ

2 ρ̂β(r) + wαβγ

3 ρ̂β(r)ρ̂γ(r)
]

, (2.3)

which is a third order expansion in terms of dimensionless, microscopic molec-
ular densities. Here, we use the Einstein sum convention where Greek indices,
that occur twice, imply a summation over all species, i.e., A and B. The in-
tegration extends over the whole simulation box. Due to symmetry there are
three expansion coefficients of second order (vAA, vAB, vBB) and four of third
order (wAAA, wAAB, wABB, wBBB).

These densities are defined as

ρ̂α(r) = R3
eo

N

nN∑
i=1

δ(ri − r)δαT (i). (2.4)

They count the proportionate number of molecules of species α in a volume
R3

eo and are functions of the explicit coordinates, ri, of the beads of species α,
where T (i) ∈ {A, B} denotes the species of bead i. The prefactor has been
chosen such that the molecular density is independent of N . Below, we define
weighted, molecular densities, where the δ-function in Eq. (2.4) is replaced by a
smooth weighting function in order to regularize the terms in Eq. (2.3). Thus,
H′

nb[ρ̂A, ρ̂B] is a function of the explicit particle coordinates and the properties
of the coarse-grained model can be studied by computer simulations.

Within the mean-field approximation, the properties of the particle-based
simulation model coincide with the results of a classical density functional the-
ory (DFT) calculation using H′

nb[ρ̂A, ρ̂B]. In particular thermodynamic and
structural properties decouple [118]: the thermodynamic properties of a spa-
tially homogeneous system, e.g., the EOS, are dictated by the seven expansion
coefficients, whereas the local structure is encoded in the definition of the
weighted densities.

The advantages of these DFT-based, non-bonded interactions are twofold.
On the one hand, Eq. (2.3) can be generalized in a systematic way to accom-
modate more sophisticated EOSs. In the present work, we use a third-order
expansion [89, 90, 119], because this is the simplest form capable of describ-
ing all six qualitatively different types of phase diagrams that a compressible
binary system exhibits. According to the classification of van Konynenburg
and Scott [120, 121], this suffices to capture all qualitative features of the in-
terplay between the liquid-vapor phase separation and the demixing of two

2This expression should not be confused with a low-density virial expansion around an
ideal gas. Equation (2.3) defines our model’s equation of state (EOS) and is valid for all
densities.
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species. Moreover, by virtue of its simplicity, the second and third order coef-
ficients are straightforwardly related to the density and the compressibility of
a homogeneous liquid, as well as the incompatibility between hydrophobic and
hydrophilic entities. This relation imparts a transparent physical interpretation
to the expansion coefficients. H′

nb[ρ̂A, ρ̂B] also allows for a systematic gener-
alization to systems comprised of more than two different species, a situation
which arises in the study of more complex biomembranes.

On the other hand, the weighted densities encode local structural infor-
mation. Altering the definition of the weighted density, we are able to de-
scribe lipid bilayer membranes, which exhibit pronounced packing effects on
the length scale of an effective interaction center, or polymersomes that are
comprised of long, flexible, amphiphilic polymers and, typically, do not form
gel phases.

We discuss how to choose the expansion coefficients and the definition of the
weighted densities in turn.

Thermodynamic coefficients

Formally, we consider the system of amphiphiles and solvent on the meso-
scopic scale as an incompressible, dense liquid. Knowing the local densities of
amphiphiles, one can reconstruct the solvent density via the incompressibility
constraint and integrate out the degrees of freedom associated with the sol-
vent [65, 77]. This gives rise to effective interactions and the incompressibility
constraint generates multi-body interactions. The occurrence of multi-body
interactions is natural in the course of coarse-graining and it would also arise
during a systematic coarse-graining procedure, where microscopic degrees of
freedom are integrated out explicitly.

The coefficients vAA and wAAA dictate the properties of the hydrophobic
species in contact with the solvent. In a solvent-free model, the hydrophobic
species forms a dense liquid that coexists with a vapor phase, which represents
the solvent. Since the solubility of amphiphiles in the solvent is vanishingly
small, the osmotic pressure of the vapor phase, which coexists at the temper-
ature T with the liquid, vanishes, P ≈ 0. Using the mean-field EOS for the
pure A-component,

PR3
eo

kBT
≈ ρ̄A + vAA

2 (ρ̄A)2 + 2wAAA

3 (ρ̄A)3 , (2.5)

where ρ̄A denotes the average, molecular density of component A, we obtain
for the average, molecular density, ρ̄∗, of the liquid with P = 0

ρ̄∗ ≈ − 3vAA

4wAAA
(2.6)
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Figure 2.2: Mean-field EOS for the pure A-component (black) and the pure B-
component (red) as a function of the average molecular density, ρ̄α. Since the hy-
drostatic pressure, P , is zero, the pure A-component phase separates for ρ̄A < ρ̄∗ into
a condensed liquid and an empty vapor phase. κN gives an estimate of the steepness
of the EOS at the density of the condensed phase.

and for the dimensionless, inverse compressibility

κN ≡ R3
eo

κT ρ̄∗kBT
= vAAρ̄∗ + 2wAAA (ρ̄∗)2 (2.7)

with κT = −(1/V )(∂V/∂P )T , respectively.3 These approximate expressions
impart a simple physical interpretation to the expansion coefficients (see Fig.
2.2). We will present our results as a function of κN and ρ̄∗ using the depen-
dencies

vAA = −2κN + 3
ρ̄∗ and wAAA = 3

2
κN + 2
(ρ̄∗)2 . (2.8)

At large ρ̄∗ molecules strongly overlap, packing effects are small, and the
system is in the fluid phase. This behavior is typical for polymersomes, where
a coarse-grained bead is comprised of many atoms or for high temperatures,
where the soft, non-bonded interactions are weak compared to the thermal
energy scale. A decrease of ρ̄∗, in turn, corresponds to an increase of the

3In both cases we have neglected the contribution of the first term in the EOS, Eq. (2.5),
that corresponds to an ideal gas.
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2 Coarse-grained model

repulsive, third-order interactions (cf. Eq. (2.8)), which gives rise to a transition
from a disordered to an ordered phase. The coefficient vAB sets the strength
of the interactions between A and B beads. It is approximately related to the
Flory-Huggins parameter, χN , via [122]

vAB = χN

ρ̄∗ + 1
2 (vAA + vBB) . (2.9)

χN is a dimensionless quantity and measures the incompatibility between hy-
drophilic and hydrophobic species. The coefficients vBB and wBBB are cho-
sen in a way that the EOS of the hydrophilic beads is purely repulsive, i.e.,
vBB = 0.1 and wBBB = 0. The mixed, third-order coefficients, wAAB and
wABB, do not influence the qualitative behavior and, for simplicity, we set
wAAA = wAAB = wABB.4

Four coarse-grained parameters describe the thermodynamics of our soft,
solvent-free, coarse-grained model: ρ̄∗, κN , χN , and Reo. They parameterize
(i) the density and (ii) the incompressibility of the hydrophobic interior, (iii)
the incompatibility between hydrophilic and hydrophobic beads, and (iv) the
spatial extension of an amphiphile. All these parameters are directly related to
experimentally accessible quantities and our model can be related to a specific
system by matching these four parameters to experimental data.

For instance, we estimate the order of magnitude of κN from the bulk prop-
erties of an alkane liquid. Using the isothermal compressibility under stan-
dard conditions κT = 0.955 GPa−1 for n-Dodecane [123], its bulk mass den-
sity ρm = 748.8 kg/m3, and its molar mass m = 170.34 g/mol, we obtain
κN = m/ (κT ρmkBT ) ≈ 98. The volume compressibility of lipid bilayers, ap-
proximately κT = 0.5 GPa−1, is even lower [124, 125] so that the values for
κN in Tab. A.1 underestimate the actual values.

It should be pointed out that the thermodynamics of a solvent-free model
differs from that of a model including an explicit solvent. The Gibbs phase
rule [126],

f = c − M + 2, (2.10)

specifies how many independent thermodynamic variables, f , exist in a system
with c chemical components and M coexisting phases.

In a single-component bilayer embedded in an explicit solvent there are two
components, c = 2: the amphiphiles and the solvent molecules. Together
they form two phases, M = 2; a condensed phase with a high amphiphile
and a low solvent concentration, and the solvent phase with a very low am-
phiphile and a high solvent concentration. Hence, f = 2, i.e., two intensive

4One could, of course, use some more elaborate mixing rules, like the Lorentz-Berthelot
mixing rules [44] or those used by Müller et al. [89].
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2.2 Model description I: physical part

thermodynamic variables must be specified to define the thermodynamic state.
Simulations with an explicit solvent are often performed in thermodynamic
ensembles like the NPnAT , NPnΣT , or NPthT one, where Pn is the normal
(hydrostatic) pressure, Pt is the lateral pressure,5 A is the area of the bilayer,
Σ = h × (Pn − Pt) is the mechanical tension, and h is the height of the simu-
lation box in the normal direction [127]. In all ensembles N defines the total
number of particles, i.e., the size of the system, but only two of the other three
thermodynamic variables are independent. They must be chosen such that the
right thermodynamic state is obtained.

In case of a solvent-free model, the amphiphiles, c = 1, form two phases,
the condensed phase and the “vacuum”, M = 2. Hence, f = 1, i.e., there is
only one independent thermodynamic variable. Thus, we simulate our solvent-
free model in different ensembles, like NVT or NPtT. V and T or Pt and T ,
respectively, are in general dependent and must be chosen so that two phases
exist. However, T is fixed in our model and the expansion coefficients were
chosen such that there is a phase coexistence at exactly this temperature.
Hence, T must not be varied, and V or Pt are the independent thermodynamic
variables that always lead to a condensed phase coexisting with the vacuum.6

Local structure and weighting functions

For lipid bilayer membranes we seek weighted densities that yield a phase
diagram with the biologically important fluid phase and, additionally, various
gel phases. Analytical studies have suggested that the phase behavior of lipid
bilayers is dominated by packing effects due to the excluded volume of the
hydrophobic tails [110]. In our model, we can draw on the vast knowledge
of liquid-state theory to control the degree of packing effects and the local
structure of the fluid in order to tailor the weighted densities such that the
fluid exhibits pronounced packing effects.

In order to regularize the δ-function in the excess free-energy functional of
non-bonded interactions, Eq. (2.3), we use a weighted-density approximation
[128–131] and define coarse-grained densities

ρ̃mα(r) = R3
eo

N

nN∑
i=1

wm (|ri − r|) δαT (i) (2.11)

by convoluting the microscopic, molecular density, ρ̂α(r), with weighting func-
tions, wm(r) (cf. Eq. (2.4)). These weighting functions are part of the definition
of the model and must be chosen with great care. Here, we require that they are

5Pt is the average of the lateral, diagonal components of the pressure tensor.
6Unfortunately, this condensed phase is not always a bilayer. Other morphologies, such as

micelles or inverted structures are competing.
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Figure 2.3: The two weighting functions from Eqs. (2.12) and (2.13) with a = 0.9 rc.
The inset shows the negative derivatives of these functions, which are proportional to
the non-bonded forces between two beads.

differentiable, vanish for r ≥ rc, and are normalized, i.e.,
∫

d3r wm(‖r‖) = 1.
rc defines the cutoff of the non-bonded interactions.

Liquid-state theory for simple liquids [128, 129] as well as integral equation
theory [132, 133] stress the importance of using different weighting functions
to represent the harsh, short-ranged repulsion in a liquid and the soft, longer-
ranged attractions. The second-order terms in Eq. (2.3) typically correspond to
attractive interactions and the third-order terms to repulsions. Therefore, we
use different weighting functions, w2(r) and w3(r), for the second- and third-
order contributions. Both weighting functions are plotted in Fig. 2.3. The
longer-ranged weighting function,

w2(r) = A

⎧⎪⎪⎨
⎪⎪⎩

(rc − a)3 , 0 ≤ r < a

2r3 − 3(a + rc)r2 + 6arrc − 3ar2
c + r3

c , a ≤ r < rc

0, r ≥ rc

, (2.12)

consists of a constant part for r < a and a cubic spline for a ≤ r < rc with
0 < a < rc; A = −15/2π(2a6 − 3a5rc + 3ar5

c − 2r6
c ) is a normalization constant.

In this work we use a = 0.9 rc. The weighting function for the repulsive
interactions,

w3(r) = 15
2π

×
{

(rc − r)2 , r ≤ rc

0, r ≥ rc

, (2.13)
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2.2 Model description I: physical part

is the standard choice in DPD models [134] and only possesses positive Fourier
modes. Negative Fourier modes of pairwise, repulsive interactions give rise to
cluster-crystallization in dense liquids of soft particles [135–137] and our choice
of weighting functions avoids their formation.

Using Eqs. (2.4) and (2.11), we rewrite the non-bonded interactions as

Hnb
kBT

=
∫ d3r

R3
eo

ρ̂α(r)
[

vαβ

2 ρ̃2β(r) + wαβγ

3 ρ̃3β(r)ρ̃3γ(r)
]

, (2.14)

which takes the form of a weighted-density functional [128–131]. The density-
functional form of this coarse-grained interaction free energy controls local
correlations, e.g., packing effects. Their length scale is set by the spatial ex-
tent of the non-bonded interaction, rc. Unlike DFT, however, we obtain the
properties not by minimizing the density functional but we use these density-
functional-inspired interactions in our soft, coarse-grained model whose prop-
erties are studied by computer simulation. In this way long-range fluctuations,
like undulations, are accounted for.

Finally, we note that weighted densities, which give rise to strong packing
effects, deteriorate the quality of the mean-field approximation. Consequently,
the decoupling between the thermodynamic properties, like the compressibility
and the coexistence density, and the liquid structure breaks down. Therefore,
the model parameters, ρ̄∗ and κN , are not identical to the density in the
hydrophobic interior of the bilayer and its inverse compressibility. Nevertheless,
the approximate equations, (2.6) and (2.7), are a useful guide for constructing
the model.

Relationship to Multibody Dissipative Particle Dynamics

The non-bonded interactions bear a close relationship to another mesoscale
simulation method, called “Dissipative Particle Dynamics” (DPD), and in par-
ticular to one of its descendants, “Multibody DPD” (MDPD).

Originally, DPD [134, 138–141] was invented for the study of fluid elements
pictured as soft, interacting particles. It introduced a momentum conserving,
stochastic thermostat that leads to the correct hydrodynamic behavior, so that
the DPD fluid adheres to the predictions of the Navier-Stokes equation in the
hydrodynamic limit. The great benefit of soft potentials consists in allowing
much larger integration time steps than MD to integrate the stochastic equa-
tions of motion.

However, the EOS of the original DPD fluid is always quadratic, irrespective
of the strength of the interactions [140]. Such an EOS does not permit the
simulation of a liquid phase coexisting with its vapor, because this requires at
least a third order EOS. This fact stimulated the development of MDPD which
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2 Coarse-grained model

adds more flexibility with regard to the EOS [142–144]. The method uses as
input an EOS in the form of a power series in the density, which would normally
produce non-bonded many-body interactions. These many-body interactions
are rewritten as density-dependent two-body interactions and an EOS similar
to the input is obtained. At this point the weighting functions enter the model
definition. Their physical meaning remained unclear in the cited work and, for
simplicity, the standard DPD weighting functions were used.

MDPD is, from a mathematical point of view, equivalent to our model, but
the physical interpretation differs strongly. First, a soft particle in our case
describes a small group of atoms and not a fluid element. Second, the MDPD
weighting functions are used to define the local structure of the amphiphiles
and liquid-state theory is explicitly used to find meaningful functions. Third,
the resulting non-ideal EOS defines our model’s EOS; we do not try to tune
the model to approximate the mean-field EOS.

2.3 Model description II: computational part
MDPD is, from a technical point of view, closely related to MD, but two
crucial differences exist: the velocity dependence of the thermostat’s forces
and the multi-body interactions. Especially the second point is a problem
for many standard MD programs [145–148], since most of the publicly avail-
able programs neither cope with non-bonded multi-body interactions nor with
density-dependent, pairwise interactions. Hence, we have developed our own
simulation code. The close relationship to MD enabled us to build on the vast
knowledge of molecular simulations and facilitated the usage of optimized par-
allelization strategies [148–155] or algorithms for efficiently finding interacting
particles [156–162].

This section discusses the technical details of our simulation program. First,
in Sec. 2.3.1, we describe the force field arising from the interactions and the
thermostats. In Sec. 2.3.2 we briefly discuss the two symplectic integration al-
gorithms that were used in this work to simulate either in the canonical (NVT)
or the tensionless (NPtT) ensemble. Finally, we explain our parallelization
strategy in Sec. 2.3.3.

2.3.1 Forcefield

Like in DPD the force, Fi, acting on a bead i consists of three terms,

Fi = FC
i + FD

i + FR
i . (2.15)

The conservative force, FC
i = FC

i,b + FC
i,nb, comprises the bonded, FC

i,b, and
the non-bonded forces, FC

i,nb; FD
i and FR

i , are the dissipative and the random
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2.3 Model description II: computational part

force, respectively, coming either from the DPD, the transverse DPD, or the
Langevin thermostat. They are discussed in turn.

Conservative forces

The contributions from the bonded interactions, FC
i,b, are obtained by taking

the derivative of the potential energy in Eq. (2.1) with respect to the coor-
dinates of the beads. Noteworthily, all these forces can be decomposed into
pairwise forces which simplifies the calculation of the pressure via the virial
theorem. This is obvious for the harmonic springs and can be seen easily for
the bond angle potentials by calculating the forces between three beads:7

Fi−1 = − kb

‖ri,i−1‖
[
r̂i+1,i − r̂i,i−1 cos θi

]

Fi = kb

‖ri,i−1‖
[
r̂i+1,i − r̂i,i−1 cos θi

]
− kb

‖ri+1,i‖
[
r̂i,i−1 − r̂i+1,i cos θi

]

Fi+1 = kb

‖ri+1,i‖
[
r̂i,i−1 − r̂i+1,i cos θi

]

Unfortunately, we are unaware of an analytical expression for the single-chain
partition function of the potentials in Eq. (2.1), so that the relationship between
the parameters N , Reo, kb, l0, and ks must be determined numerically.8 To
this end a small MC program was used that samples the configuration space
of a single, ideal chain with N beads for a given set of interaction parameters,
kb, �0, and ks, in an efficient way by using “Slithering Snake” [163, 164] and
local displacement moves, until a reliable estimate for 〈(rN − r1)2〉 is obtained.
If this is smaller than the desired R2

eo, then ks is slightly decreased, otherwise
ks is increased, and the program runs again with the new set of parameters.
Finally, a consistent set of parameters kb, �0, and ks is obtained, that yields
〈(rN − r1)2〉 ≈ R2

eo. Some important parameter sets for N = 10 and 16 are
listed in Tab. A.2 and Tab. A.3, respectively.

The non-bonded forces, FC
i,nb, stem from the density-dependent Hamiltonian

Hnb, cf. Eq. (2.14). We rewrite Eq. (2.14) in a computationally convenient
form using Eq. (2.4) and arrive at

Hnb
kBT

=
∑

i

δαT (i)

[
vαβ

2N
ρ̃2β(ri) + wαβγ

3N
ρ̃3β(ri)ρ̃3γ(ri)

]
. (2.16)

By taking the negative derivative and using Eq. (2.11) we obtain

7It is a good idea to limit these forces to a maximum value, because otherwise numerical
instabilities may occur, when ‖ri+1,i‖ or ‖ri,i−1‖ become small.

8There is an expression for kb = 0 and �0 = 0: ks = 3kBT (N − 1)/R2
eo.
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FC
i,nb = − ∂

∂ri
Hnb = kBTR3

eo
N2

∑
j

r̂ij

[
vT (i)T (j)w

′
2
(
|rj − ri|

)

+
2wT (i)T (j)αR3

eo
3N

w′
3
(
|rj − ri|

)(
ρ̃3α(ri) + ρ̃3α(rj)

)]
. (2.17)

Thus, the total non-bonded force is decomposed into a sum of density-
dependent pairwise forces, FC

i,nb =
∑

j Fij . The actual evaluation of the force
requires an additional calculation of all weighted densities, ρ̃3α(ri), first. How-
ever, this additional calculation is cheap, because it involves only an additional
loop over the list of interacting particles.

Standard DPD thermostat

We use the standard DPD thermostat [138, 139, 141, 165] for most of the simu-
lations. It is Galilean invariant, conserves momentum and angular momentum,
and acts locally. The dissipative force, FD

i (rij , vij), depends on the distance,
rij = ri − rj , as well as on the difference of the velocities, vij = vi − vj , be-
tween two interacting particles. They have the same cutoff as the non-bonded
interactions, i.e., rc, and vanish for rij = ‖rij‖ ≥ rc. For rij < rc they are
given by the standard DPD form,

FD(rij , vij) = −γwD(rij)(vij · r̂ij)r̂ij (2.18)
FR(rij) = ξwR(rij)θij r̂ij . (2.19)

The friction constant, γ, is related to the noise coefficient, ξ, by the fluctuation
dissipation theorem, ξ2 = 2kBTγ. θij is a stochastic variable with 〈θij〉 = 0 and
〈θij(t)θkl(t′)〉 = (δikδjl +δilδjk) δ(t−t′). The random numbers are drawn from a
uniform distribution [166] and the standard weighting functions for DPD [134],

[
wR(r)

]2
= wD(r) =

{
(1 − r/rc)2 , r < rc

0, r ≥ rc

, (2.20)

are employed.
Unfortunately, there are two problems with this thermostat. First, the

stochastic nature of the random force can cause problems with the micro-
scopic reversibility. Second, the dissipative force of a particle depends on the
velocities of the other particles. At first sight this looks like a minor detail, but
it invalidates the widely used integration schemes, for instance the “Velocity
Verlet” algorithm. This causes deviations of the actual temperature from the
desired one. Several improved or “self-consistent” integration schemes have
been proposed over the years which alleviate these problems [167–170], how-
ever, it is still an open question how to integrate the stochastic equations of
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motion best. It seems that a different thermostat could be able to solve these
problems [171].

In this work we ignore these two problems and accept that our temperature
is not exactly unity, but 〈

v2
i

〉
3kBT

= 1.0028(2). (2.21)

Transverse DPD thermostat

The transverse DPD thermostat (TDPD) works exactly the same as the DPD
thermostat, there are just additional forces acting perpendicular to the distance
vector rij [172]; the functional form of these transverse forces is the same as
that of the longitudinal ones. To avoid confusion, we now distinguish between
the longitudinal friction and noise coefficients, γ‖ and ξ‖, and their transverse
counterparts, γ⊥ and ξ⊥. The forces between two interacting particles are

FD(rij , vij) = −wD(rij)
[
(γ‖ − γ⊥)r̂ij (r̂ij · vij) + γ⊥vij

]
, (2.22)

FR(rij) = wR(rij)
[
(ξ‖ − ξ⊥)r̂ij(r̂ij · θij) + ξ⊥θij

]
. (2.23)

The longitudinal and transverse friction and dissipation constants obey the
same fluctuation dissipation theorem as before. θij is now a random vector
with 〈θij〉(t) = 0 and 〈θij(t) · θkl(t′)〉 = (δikδjl + δilδjk) δ(t − t′). γ‖ and γ⊥ can
be chosen independently.

Langevin thermostat

The Langevin thermostat is the oldest of the discussed thermostats and has
been used for long times in “Brownian Dynamics” simulations [44]. It vio-
lates the conservation of momentum, thus, it is not Galilean invariant. The
stochastic forces acting on particle i are given by:

FD
i = −γvi, FR

i = ξθi (2.24)

As before γ is the friction constant and related to the noise coefficient, ξ,
by ξ2 = 2kBTγ. The random vector, θi(t), obeys 〈θi(t)〉 = 0 and 〈θi(t) ·
θj(t′)〉 = δijδ(t − t′). As before, we draw the random numbers from a uniform
distribution.

2.3.2 Simulation in various ensembles

The bilayers were simulated either in the canonical ensemble (NVT), where the
dimensions of the simulation box are fixed, or in an ensemble with vanishing

29
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lateral pressure (NPtT), where the two lateral box dimensions could fluctu-
ate either isotropically or anisotropically. In MD and DPD simulations the
thermodynamic ensemble is closely related to the integration scheme for the
equations of motion and a general strategy for deriving arbitrary, phase-space
conserving, “symplectic”, integration schemes exists [173, 174]. Here, we briefly
present the two integration algorithms that were used in this work and that
correspond to the two ensembles.

Canonical ensemble (NVT)

The standard way of integrating the equations of motion in the canonical en-
semble is the “Velocity Verlet” algorithm [173]. The momentum, p(t), and
the coordinate, r(t), of every particle are updated according to the following
scheme:

p(Δt/2) = p(0) + Δt

2 F
(
r(0)
)

(2.25)

r(Δt) = r(0) + Δt

m
p(Δt/2) (2.26)

p(Δt) = p(Δt/2) + Δt

2 F
(
r(Δt)

)
(2.27)

After r(Δt) has been calculated, all forces, F
(
r(Δt)

)
, evaluated from the co-

ordinates at time Δt, must be recalculated. Δt is the integration time step
and we used Δt = 0.005 τ in all simulations. We define the mass of a single
bead as unity, i.e., m ≡ 1. In combination with the units of length, rc, and
energy, kBT , we obtain the unit of time, τ ≡

√
r2

c /kBT , that is mapped to an
experimental time scale later on.

Tensionless ensemble (NPtT)

The integration scheme in the tensionless ensemble is slightly more involved,
because the permanently changing box dimensions lead to a rescaling of the
lateral components of the particle coordinate vectors. Similar algorithms have
already been published for this ensemble [127, 175, 176]. Here, we briefly
present our integration algorithm whose derivation follows that of Kolb and
Dünweg for an NPT ensemble [177]. The full derivation is given elsewhere
[178].

Our coordinate system is chosen such that x is the normal direction, and y
and z are the lateral directions. Due to the anisotropy, the lateral and the nor-
mal components are treated differently. An additional degree of freedom, A(t),
which is the area of the isotropically fluctuating bilayer, with its canonically
conjugated momentum, πA(t), and a mass Q is introduced. The lateral box
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dimensions are Ly(t) = Lz(t) =
√

A(t). Lx is the fixed height of the simulation
box and physically meaningless. The current lateral pressure, Pt, is defined over
the diagonal components of the pressure tensor, Pαα, by Pt = (Pyy + Pzz)/2.
Using the same notation as in the canonical ensemble, the first steps are:

px(Δt/2) = px(0) + Δt

2 Fx
(
r(0)
)

(2.28)

p′
y/z = py/z(0) + Δt

2 Fy/z

(
r(0)
)

πA(Δt/2) = πA(0) + Δt

2 LxPt (2.29)

A(Δt/2) = A(0) + Δt

2QL2
x

πA(Δt/2) (2.30)

rx(Δt) = rx(0) + Δt

m
px(Δt/2) (2.31)

r′
y/z = ry/z(0) + A(0)

A(Δt/2)
Δt

m
p′

y/z

A(Δt) = A(Δt/2) + Δt

2QL2
x

πA(Δt/2) (2.32)

After this step the particle coordinates must be rescaled using A(Δt):

ry/z(Δt) =
√

A(Δt)√
A(0)

r′
y/z p′′

y/z =
√

A(0)√
A(Δt)

p′
y/z (2.33)

Finally, the forces must be recalculated. For simplicity we use the coordinates
r(Δt) and the auxiliary momenta px(Δt/2) and p′′

y/z. The final steps of the
integration algorithm are:

πA(Δt) = πA(Δt/2) + Δt

2 LxPt (2.34)

px(Δt) = px(Δt/2) + Δt

2 Fx
(
r(Δt)

)
(2.35)

py/z(Δt) = p′′
y/z + Δt

2 Fy/z

(
r(Δt)

)
To damp possible oscillations of A(t), we couple a “Langevin piston” to A(t)

by the replacement [177]

Δt

2 LxPt → Δt

2 LxPt − γA
Δt

2QL2
x

πA +
√

kBTγAΔt/2ξA. (2.36)

γA is the friction coefficient of the area and ξA is a Gaussian random number
with unit variance. We use Q = 0.0001 and γA = 0.1.
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A second integration algorithm with two additional degrees of freedom (Ly,
Lz) can be derived in a similar way. It is used to simulate bilayers in the gel
phase, where isotropic fluctuations of the area are inappropriate due to the
hexatic coordination of the molecules. For brevity the details of this algorithm
are omitted.

2.3.3 Parallelization strategy

In this subsection we describe the technical implementation of our parallel
simulation program. Due to the large spatial heterogeneity caused by the lack
of solvent, we decided to employ the “force-decomposition” (FD) strategy [148–
152] for parallelizing the simulation program. Unlike the domain decomposition
scheme, in which distinct parts of the simulation box are distributed over the
available compute nodes, the basic idea of the FD algorithm is to subdivide the
quadratic matrix of all possible pairwise interactions into smaller submatrices
and to assign each one to a different compute node. Specifically, we employ
a modified version of Plimpton’s FD algorithm [148, 149] that is capable of
running on any number of processors and exploits Newton’s third law, so that
every interaction is computed only once. This facilitates a straightforward
incorporation of the DPD or the TDPD thermostat. It is a general scheme
for parallelizing any problem where frequent, pairwise computations between
many objects are needed.9

Force-decomposition parallelization

Let P ∈ N denote the number of parallel processes. The processes are ar-
ranged in a two-dimensional Cartesian grid process topology with R rows and
C columns. R, C ∈ N are arbitrary integers, but must be chosen such that the
relation P = C × R holds. As shown in Fig. 2.4 the processes are ordered in
a way that the process with rank nr, nr = 0 . . . P − 1, is located at the grid
point (n1, n2), n1 = 0 . . . R − 1, n2 = 0 . . . C − 1 with n1 = nr ÷ C and n2 = nr

mod C.10

To simplify the discussion we now introduce the expression of a “group” of
molecules. Here, a group, G, is an ordered set of molecular indices. If the
molecule with index i ∈ G has Ni beads, then we define the size of a group G,
|G|, as the sum

|G| =
∑
i∈G

Ni. (2.37)

9For instance, it can also be used in the calculation of pair correlation functions.
10The integer division, n1 ÷ n2, yields the result of the division n1/n2 with the fractional

part being truncated. The modulus operation, n1 mod n2, yields the remainder of the
integer division n1 ÷ n2.
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Figure 2.4: Left: Interaction matrix for P = 8, R = 4, and C = 2 columns. The
numbers on the vertical and the horizontal axis are the indices i of the groups Gi.
Each process has to compute the pairwise interactions i ↔ j where the bead i is in
one of its two groups on the vertical axis and bead j is in one of its four groups on
the horizontal axis. The dashed lines denote the borders of the areas of responsibility
for each process. The dark gray fields denote the intersections of identical row and
column groups. To avoid the double calculation of all interactions, for instance in
the green checkered areas, we employ Plimpton’s checkerboarding method. Right:
Schematic representation of the communication pattern for process 3 as it is used in
the computation of the non-bonded forces. Only the gray shaded processes compute
forces involving G3, and only those parts of the interaction matrix covered by the thick
black arrow need to be communicated to process 3.

The size is simply the number of all beads belonging to all molecules in a
group. A group can also be conceived as a collection of bead indices which are
compiled in a way that all beads of one molecule are always contained in the
same group.

We now define P groups, Gi, i = 0 . . . P − 1, one for each process. Gi is called
the “local group” of the process with rank i. The n molecules of the physical
system are distributed among these groups, in a way that (i) every molecule
is contained in exactly one group and (ii) all groups have roughly the same
size. It is advantageous if all groups acquire exactly the same size. This can be
achieved by adding an extra “ghost” molecule, j, to group Gj with Nj chosen
so large that

|G0| = |G1| = · · · = |Gj | = · · · = |GP −1|. (2.38)

In principle every bead of every molecule can have non-bonded pairwise
interactions with every other bead, or, to use the group terminology, every bead
in every group can interact with every bead in every other group. This leads to
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2 Coarse-grained model

Plimpton’s picture of the interaction matrix as it is depicted in Fig. 2.4. Every
pairwise interaction occurs twice in this matrix, and we strictly distinguish
between the situation where a bead i interacts with a bead j, denoted as i ↔ j,
and the –physically equivalent– situation where j interacts with i, j ↔ i. If
we talk about all interactions of the beads in one group, Gi, with the beads in
another group, Gj , then this is denoted as Gi ↔ Gj .

The central idea of the FD algorithm is to distribute the entire area of the
interaction matrix among all processes. In contrast to Plimpton’s original
work, we do not use the bead indices, but the group indices to label the two
axes. In a pairwise interaction, Gi ↔ Gj , the first group –in this case Gi– always
corresponds to a group on the vertical axis, while the second group –Gj– always
refers to a group on the horizontal axis. The same convention is also used for
bead indices.

The groups on the vertical axis are written down in order. Since P is divisible
by R without remainder, the processes in row i calculate the interactions of
the groups G(i+k)×C , where k = 0 . . . C − 1. The groups on the horizontal
axis are written down in a permutated order, which goes back to Plimpton.
Here, the processes in column j calculate the interactions of the groups Gj+k×C ,
where k = 0 . . . R − 1. The reason for this permutation lies in the fact that
all processes which compute interactions with group Gk are located within the
same row or the same column.

Communications

The beads’ forces are computed in parallel according to the following algorithm.
In the initial state every process is aware of the current positions and velocities
of all particles in the groups of its row and its column. In a first step, a loop
over all interacting pairs of beads within the available groups is performed
to calculate the partial weighted densities according to Eq. (2.11). No single
process has full knowledge of all interacting pairs, so that a first communication
step is required to add the partial weighted densities and to obtain the complete
weighted densities, ρ̃mα(ri). The permutation of the group indices has led to
the situation in which all processes, that compute interactions of the group Gk,
are located within a single row and a single column. The process at the grid
point where this row and this column intersect is the one with process rank
k, i.e., Gk is its local group. Hence, it is sufficient to perform two collective
communication steps. First, the partial weighted densities of the groups on the
vertical axis are summed up among the processes on the same row. Second,
the partial weighted densities of the groups on the horizontal axis are summed
up among the processes of the same column. Every process participates in
two communications and has full knowledge of the weighted densities of its
local group at the end. By using two more collective communication steps the
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2.3 Model description II: computational part

weighted densities of its local group are then sent back to the other processes
on the same row and the same column.

Now, every process has full knowledge of the positions, velocities, and weight-
ed densities of all beads in all its groups. Hence, the non-bonded, conservative
forces, Eq. (2.17), and the stochastic DPD forces, Eqs. (2.18-2.19), can be
evaluated. For obtaining the full non-bonded forces we need the same commu-
nication steps as before, i.e., two summations along the row and the column.
After that, every process has full knowledge of the non-bonded forces acting
on the beads of its local group.

The calculation of the bonded, intramolecular interactions for the local group
is trivial, because all bead coordinates are available. If these bonded forces are
added to the previously communicated non-bonded ones, then every process
yields the total forces acting on the beads of its local group. With this infor-
mation, the equations of motion of the local group’s beads are integrated by
one time step. Finally, the new coordinates and velocities are communicated
to the processes in the same row and column, they get back to the initial state,
and the procedure starts again.

The method presented so far is already able to compute the non-bonded
interactions in parallel. But up to now, every interaction would be computed
twice, i.e., i ↔ j and j ↔ i. According to Newton’s third law both conservative
forces differ only by a sign, so that one computation is redundant. Plimpton
proposed a simple method which he calls “checkerboarding of the interaction
matrix” to get rid of this redundancy [148]. His idea is to compute an inter-
action i ↔ j, only if (i) i > j and i + j is even, or (ii) i < j and i + j is odd.
Graphically, this leads to a perforated checkerboard of the interaction matrix:
the red squares above the diagonal and the black squares below the diagonal
are omitted. This is pictured for the interactions G3 ↔ G6 and vice versa in
the left part of Fig. 2.4. It should be pointed out that Plimpton devised his
checkerboarding on the level of bead indices, but it can also be done on the level
of molecular or even group indices. Here we use the checkerboarding method
on the level of bead indices.

The parallel scalability of our program is shown in Fig. 2.5.

Construction of neighbor list

Even though we have distributed the force matrix over many processes, we still
need an efficient way to find interacting beads within the set of the possible
interactions in every process, i.e., where r ≤ rc and r is the distance between
two beads. To our understanding the most efficient way to find these pairs is
to create neighbor lists from cell lists [46].

Many different algorithms for creating cell lists have been proposed over the
years [156–162] which can be divided into two categories. Either they subdivide
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Figure 2.5: Parallel scalability of our simulation code

the simulation volume into many small cells whose size is much smaller than
rc, or they subdivide it into cells with a size larger than or equal to rc. In the
former case there are typically zero or one beads in a cell, whereas in the latter
case there are significantly more.

We decided to use the fast algorithm for creating the cell lists devised by
Heinz and Hünenberger [159] which utilizes small cells. Although this algorithm
has been developed for domain-decomposition parallelization schemes, it can be
easily adapted to the case of FD. In the NVT ensemble it is used to determine all
potential interactions within rc + rs, where rs is the shell size of the neighbor
list. Here we use rs/rc = 0.07. In the NPtT ensemble we simply use it to
determine the interactions within rc.
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3 Static properties
“Facts are the air of scientists.
Without them you can never fly.”

(Linus Pauling)

The equilibrium properties of lipidic and polymeric bilayers have been stud-
ied intensively over the last decades by a multitude of experiments, computer
simulations, and analytical calculations. Thus, we commence the discussion of
our coarse-grained model with a comparison to these well-known properties.
This discussion serves a twofold purpose: first, we determine meaningful values
for all parameters, and second we list our results as a reference for future work.
The discussion is partitioned into three sections.

In Sec. 3.1 we look at the self-assembled morphologies and determine under
which conditions stable bilayers form. We setup the bilayer phase diagram
and study the thermodynamic, structural, and mechanical properties of a lipid
membrane’s fluid and gel phase, as well as of a polymer membrane’s fluid phase
in detail.

The second section, Sec. 3.2, focusses on the main phase transition, i.e., the
transition between the fluid and a gel phase in a lipid bilayer. The precise
location of the transition point is a formidable task, because it is obscured by
hysteresis effects. We compare four different methods with different accuracies
for locating it. Thereby we calculate the free energy along the path of a phase
transformation from a fluid to a gel phase and learn how different sets of the
involved degrees of freedom couple.

It has been conjectured that the lateral demixing of multi-component lipid bi-
layers into coexisting domains is actively used by cells to control the properties
of the cell membrane. However, a quantification of this lateral heterogeneity
is difficult due to the complexity of the phase diagram. The simplest system
that shows such a lateral demixing is a single-component bilayer at phase co-
existence. Thus, we continue the study of the main phase transition in Sec.
3.3, calculate the line tension between fluid and gel domains, and look at the
shape transitions of these domains.

A large amount of the material covered in this chapter has been published
in Ref. 178.
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3 Static properties

3.1 Phase diagram and phase properties

The aim of the present section is to establish the thermodynamical, structural,
and mechanical properties of our model. In the course of these calculations,
we perform many validity checks on the model and obtain a comprehensive
overview about its applicability. In particular, we investigate three crucial
aspects: the self-assembly, the bilayer phase diagram, and the elasticity of
bilayers.

In the first part, Sec. 3.1.1, we focus on our model’s ability to self-assemble
into various morphologies. It has been pointed out that the unassisted self-
assembly to bilayers is a crucial property which every realistic coarse-grained
model for lipid membranes should have [71]. The problems with models lacking
this ability are twofold. On the one hand, preassembled bilayers, which are
not the thermodynamically favored morphology, have to be used as initial
configurations. Although the physical system is thereby trapped in a local
minimum of the free energy, it might try to escape, e.g., by sporadically opening
pores, by performing large undulations, or by ejecting micelles. Hence, non-
physical behavior might arise. On the other hand, such models do not yield
true equilibrium averages, since they only sample a small, metastable region of
the phase space.

The self-assembly process is also interesting for another reason. Depend-
ing on the interaction coefficients, the amphiphiles may self-assemble –besides
just bilayers– into other morphologies like spherical, cylindrical, or wormlike
micelles, as well as inverted structures with hydrophilic inclusions. The result-
ing morphology can be conceived as a direct consequence of the mean shape
of the molecules and the way how they pack [3]. Thus, a careful study of
the self-assembled morphologies provides a way of finding suitable interaction
parameters for simulating bilayers.

In the second part, Sec. 3.1.2, we concentrate on bilayers and their different
phases. A whole zoo of such phases have been identified experimentally and
phase diagrams have been compiled for various synthetic and natural lipids, as
well as lipid mixtures as function of temperature, pressure, water concentration,
or composition [20, 179, and references therein]. Among other things there are
a low-temperature subgel phase (LC), an interdigitated, non-tilted gel phase
(LβI), a tilted gel phase (Lβ′), a non-tilted gel phase (Lβ), a ripple phase (Pβ′),
and a fluid phase (Lα). The last phase is most important for cell biology,
because cells are flexible, fluid-like objects and the normal thermodynamic
state of the cell membrane is the fluid one.

With the increasing computing power over the last two decades, bilayer phase
diagrams have also been obtained from computer simulations of atomistic and
coarse-grained models [73, 75, 180–182]. Even though different variables, like
the head-head repulsion, the range of attractive potentials, or the solvent den-
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sity, were used as variables for the phase diagrams, these simulations helped
in clarifying the role individual lipid properties play for obtaining specific
phases as well as the molecular structure of the gel phases at low tempera-
tures (< 30 ◦C). The molecular packing is dominated by the excluded volume
of the tails, but the bulkiness of the head groups decides about the orientation
of the lipids in the gel phases. If it is small, then the lipids arrange normal to
the bilayer plane (Lβ), if it is large –as in the case of many natural lipids– they
include a certain tilt angle with the bilayer plane (Lβ′). If it is very large, the
bilayer forms an interdigitated, non-tilted phase (LβI).

The ripple phase, Pβ′ , which shows up in a narrow region between the Lα and
the Lβ′ phase, has attracted particular interest because of its long wavelength
modulation [75, 182, 183]. It could be demonstrated by computer simulations
that this phase has a striped pattern with out-of-plane modulations in which
fluid and tilted gel regions alternate. Its existence is a consequence of the
stress induced in the bilayer that is caused by the spontaneous curvature of the
monolayers that the Lβ′ phase is comprised of. This stress is, in turn, reduced
by forming ripples.

In the third part of this section, Sec. 3.1.3 and 3.1.4, we turn to the me-
chanical and structural properties of the Lα and the Lβ phases. The bending
rigidity, κ, of the fluid phases is the most important result in this context. It
measures how much energy it costs to bend a bilayer, and its value is therefore
crucial for determining the pathway of all phenomena in which bilayers have to
deform, e.g., in pore formation and fusion, in undulations, or in pulling tethers
from vesicles. Experimentally it is measured by one of two methods: either the
thermal fluctuations of bilayer membranes are recorded and κ is extracted from
the power spectrum of these fluctuations, or the membrane is bent actively and
the required force is measured [184–187]. Typical values of biomembranes are
in the range of κ = 10 − 50 kBT [188]. In computer simulations, κ is routinely
measured by the first method, i.e., from the power spectrum of fluctuations
[70, 74, 181, 189–192], but an alternative employing an active deformation has
also been proposed [193].

The area compression modulus, KA, is a related quantity and is discussed
in turn. It measures the energetic cost of a small stretching of a membrane
and is frequently extracted from the area fluctuations. Experimental values are
∼ 240 mN/m for lipid bilayers [188] and ∼ 100 mN/m for polymeric membranes
[194, 195]. As a side product, we also obtain the mean area per lipid and, in
combination with the density profile of the bilayer, the aspect ratio of the lipids,
fA. Finally, we map the simulation length scale to experimental units.

3.1.1 Self-assembly

In this subsection we study the lipids’ self-assembly process from a random
initial configuration to various morphologies. We use N = 16, Reo = 3.5 rc,
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Figure 3.1: Self-assembly of the system ρ̄∗ = 17, κN = 100, χN = 30, NA = 12 (blue
beads), and NB = 4 (yellow beads). (a) Initial configuration at t = 0. (b) After
t = 40 τ broad micelles have formed. (c) At t = 200 τ these micelles have coalesced to
a bilayer with several pores. (d) After t = 800 τ the pores have closed and a bilayer
has been formed. The red scale bar denotes 7 rc. Reprinted with permission from
Ref. 178. Copyright 2010, American Institute of Physics.
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and three different sets of ks and kb, cf. Eq. (2.1): (i) ks = 3.673 and kb = 0 for
flexible lipids without any bond-angle potential, (ii) ks = 19.089 and kb = 5 for
lipids with a moderate stiffness, and (iii) ks = 29.007 and kb = 10 for lipids with
a high stiffness. We perform all simulations in the NPtT ensemble and use an
initial configuration comprised of n = 1600 lipids in a box with Lx = 50 rc and
Ly(t = 0) = Lz(t = 0) = 30 rc. To avoid the formation of multiple bilayers, the
lipids in the initial configuration were randomly distributed over the lower half
of the box, i.e., 0 < xi < Lx/2. We explore various values of the coarse-grained
parameters, 20 ≤ χN ≤ 100, 50 ≤ κN ≤ 500, and 15 ≤ ρ̄∗ ≤ 40, as well as
different lengths of the hydrophobic tails, NA, and of the hydrophilic heads,
NB = N − NA.

Although the spatial extension of a lipid molecule is of the order Reo, the
fluctuations around this mean value are largely influenced by kb. The confor-
mations in the runs with kb = 0 correspond to fully flexible molecules and the
shape fluctuations are of the same order of magnitude as the lipid’s size, i.e.,
the conformations resemble a self-avoiding random walk. For kb = 10 the lipids
are strongly elongated and they behave like rigid rods, which gives rise to a
nematic, liquid crystalline structure of the self-assembled morphologies. Note-
worthy, gel-like structures are only observed for kb = 5, 10, whereas fluid like
structures are only observed for kb = 0, 5. Thus, the right usage of bond angle
potentials is crucial for obtaining multiple bilayer phases. This observation is
consistent with many other coarse-grained models where similar potentials are
employed [63, 73, 74, 76].

The runs with kb = 5 showed the greatest spectrum of morphologies (see
Tab. 3.1). Depending on the other parameters, the lipids self-assemble within
Δt ≤ 500 τ either into (i) spherical micelles, (ii) cylindrical micelles, (iii)
wormlike micelles, (iv) small bilayers, (v) or bilayers with hydrophilic inclu-
sions. Bilayers form for NA ≥ 11, and inverted structures, i.e., bilayers with
hydrophilic inclusions, form for NA ≥ 13 (see Fig. 3.1). For χN ≥ 50 wormlike
or cylindrical micelles predominantly form, whereas for χN < 20 the incom-
patibility between hydrophilic and hydrophobic beads becomes so small, that
no clear separation between hydrophilic and hydrophobic regions is visible.

The observed sequence of morphologies is consistent with the geometrical
arguments put forward by Israelachvili [3]. For NA < 11 the head groups are
much larger than the tails and the amphiphiles prefer to assemble to micelles
irrespective of the other parameters; their shape is in average conical. At
NA = 11 the lipids form extended structures, like wormlike micelles or networks
of these micelles, which indicates on average the form of a truncated cone.
NA = 12 leads to bilayers, i.e., the lipids have a cylindrical shape. When the
hydrophilic heads decrease in size, NA > 12, the molecules acquire the form of
an inverted truncated cone and inverted morphologies appear.
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Table 3.1: Self-assembled morphologies obtained from a random initial configuration.
The column headers in the right half denote the molecular asymmetry, e.g., 10/6 means
NA = 10 and NB = 6. The morphologies are abbreviated: s=spherical micelles,
c=cylindrical micelles, w=wormlike micelles, b=bilayers, i=inverted structures, i.e.,
bilayers with hydrophilic inclusions.

ρ̄∗ κN χN kb 10/6 11/5 12/4 13/3 14/2 15/1
15 100 40 0 c b b i i i
15 100 40 5 s b b b i i
15 100 60 0 s b b b i i
15 100 60 5 s b b i i i
18 80 20 5 s w w
18 80 30 5 s c w
18 80 40 5 s c w
20 100 20 5 s c b b
20 100 30 5 s c b i
20 100 40 5 s s c b
20 100 50 5 s s w b

We conclude from these results, that NA = 12, NB = 4, kb = 5, and
ks = 19.089 is a set of parameters that reproduces thermodynamically sta-
ble bilayers. Hence, we will use this set exclusively in the remainder of this
work.

3.1.2 Phase diagram
Though the self-assembly runs have already provided a first glimpse on the
possible bilayer phases, a more systematic study is needed for obtaining the
full bilayer phase diagram of our model. To this end, we prepared an initial
bilayer configuration in the fluid phase with n = 500 molecules, quenched this
configuration in many independent runs with κN = 75 . . . 150, ρ̄∗ = 12 . . . 40,
and χN = 30 to the desired point in the bilayer phase diagram, and performed
simulations for 500 τ in the NPtT ensemble. This procedure allowed for a quick
overview of the phase diagram, but is seriously hampered by metastability
effects near the phase boundaries. The result is shown in Fig. 3.2.

Four qualitatively different phases are detected: (i) the Lα phase, (ii) the
Lβ phase, (iii) the LβI phase, and (iv) the Lβ′ phase, see Fig. 3.3. We note
that Fig. 3.2 misses the ripple phase, Pβ′ . It is known that this phase normally
shows up in a narrow region between the Lα and the Lβ′ phase. Since we
omitted a careful study of the Lβ′ phase, we probably overlooked the Pβ′ phase.
Nevertheless, it is still possible that our model includes it. If it existed, it would
probably be located at κN ≥ 140 and ρ̄∗ ≥ 20.
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Figure 3.2: Phase diagram obtained by quenching an initial configuration in the fluid
phase to the given κN and ρ̄∗. Four, qualitatively different phases have been observed
that are portraited in Fig. 3.3. Some simulations yielded bilayers with different phases
on the two leaflets; in this case an empty spot is shown. Others contained coexisting
domains of two phases; in this case the majority phase is shown.

With increasing ρ̄∗ each coarse-grained bead interacts with more neighbors,
so that the mean-field approximation becomes more accurate and fluid-like
packing effects weaker. This marks the crossover to polymeric membranes,
where the chain number density is typically higher than in lipid membranes
and only a fluid phase is stable.

3.1.3 Observables

In this subsection we define the equilibrium quantities that will be used to
characterize the phases. Since most of them are well known, their discussion
is kept brief.

Local structure

Although scanning microscopes are becoming increasingly popular for obtain-
ing real-space images of microscopic biological systems, most structural in-
formation is still obtained from scattering experiments, either with photons,
neutrons, or electrons. To facilitate the comparison of our model bilayer’s struc-
ture with experiments, we calculate the lateral static structure factor, G(q).
Since the scattering theory is covered in detail in many introductory textbooks
to condensed matter physics [196–199], we are content with a brief derivation
of the formulas needed for this work. Our presentation is based on Ref. 198,
chap. 2.1.
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Figure 3.3: Images of the four phases (drawn to scale): (a) Lα fluid phase, (b) Lβ

gel phase, (c) LβI interdigitated gel phase, (d) Lβ′ tilted gel phase. Head groups are
shown in red, tails in blue.
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If an incident plane wave with wave vector k is scattered elastically by a
sample to an outgoing wave vector k′, then the differential cross-section,

d2σ

dΩ ∼ 2π

�

∣∣〈k|U |k′〉∣∣2 , (3.1)

is, according to Fermi’s golden rule, proportional to the square modulus of the
matrix element of the incoming and the outgoing plane wave state with the
interaction potential of the sample, U(r). If there are N scatterers, located at
ri, i = 1 . . . N , each having an interaction potential Ui(r), then U(r) may be
written as

U(r) =
∑

i

Ui(r − ri). (3.2)

An expansion of this matrix element yields after some algebra
∣∣〈k|U |k′〉∣∣2 =

∑
i,j

Ui(q)Uj(−q)e−iq·rieiq·rj , (3.3)

where q = k − k′ is the two-dimensional transferred momentum vector and
Ui(q), the Fourier transform of Ui(r), the atomic form factor.

A special case arises, if all scatterers have the same atomic form factor. Then,
Ui(q) can be taken out of the sum, and the differential cross-section can be
written as

d2σ

dΩ ∼ N |Ui(q)|2 G(q), (3.4)

where we have introduced the static structure factor,

G(q) = 1
N

〈∑
i,j

e−iq·(ri−rj)
〉

= 1
N

〈∣∣∣∣∣
∑

i

e−iq·ri

∣∣∣∣∣
2〉

, (3.5)

which is intensive for all ‖q‖ > 0. G(q) is the sum of N2 complex numbers
with phases determined by all N scatterers. If the relative positions, ri−rj , are
randomly distributed, then destructive interference occurs, i.e., these numbers
average to zero. If a periodicity with wavelength λ exists, then the interference
is constructive and a peak at the corresponding wave vector, q = 2π/λ, shows
up in G(q).

The numerical evaluation of G(q) has been performed on a lattice, and the
details of this calculation are given later at page 82. Due to the periodic
boundary conditions, the wave vector, q, assumes only discrete values of the
form q = 2π(ny/Ly, nz/Lz) with ny, nz ∈ Z.
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The lateral pair correlation function,

g(r) = 1
2πrΦ0N

〈
N∑

i=1

N∑
j=1

′δ
(
r − ‖rj − ri‖

)〉
, (3.6)

is a related quantity and measures correlations between two particles, that are
separated in the plane by a distance r. The primed sum indicates that pairs
with i = j are excluded and Φ0 = N/LyLz is the particle number density. The
normalization is chosen such that g(r → ∞) → 1.

Density profile

Stable fluid membranes in a solvent form a bilayer structure. The hydrophilic
head groups on the outside favor contact with the solvent, and the tails consti-
tute the bilayer’s hydrophobic interior, which is shielded from the solvent. This
lamellar structure becomes visible in the molecular density profile, which we
record for the two leaflets separately. To avoid a broadening of these profiles
by thermal undulations, we laterally subdivide the simulation box into small
cells of a size rc × rc. In each cell, the local bilayer position is determined and
the profiles are averaged with respect to the local bilayer position over all cells
and along a trajectory.

The hydrophobic interior’s width, w, is estimated by measuring the full width
at half maximum (FWHM) of the total hydrophobic density profile. The bilayer
thickness, th, is estimated from the distance between the two peaks arising from
the hydrophilic head groups on each leaflet.

Bending rigidity

The starting point for the calculation of the bending rigidity, κ, in a particle-
based model is the Helfrich Hamiltonian [102–104],

H =
∫

dA

(
κ

2 (2H − C0)2 + κGK + γ

)
, (3.7)

which is an integral over the curved surface of the bilayer. Locally, the surface
can be described by a symmetric curvature tensor with two eigenvalues, the
inverse principal radii of curvature, R−1

1 and R−1
2 . The two invariants of the

tensor, the trace and the determinant, are denoted as the mean curvature, H,
and the Gaussian curvature, K, respectively. They are defined at every point
on the surface by

H =
(
R−1

1 + R−1
2

)
/2 and K = R−1

1 × R−1
2 . (3.8)
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3.1 Phase diagram and phase properties

C0 is the spontaneous curvature of the bilayer, and κG is the saddle-splay
modulus. An in-depth discussion of this Hamiltonian and its terms is given by
Seifert [105].

The first summand in Eq. (3.7) penalizes deviations of the actual curva-
ture from the spontaneous curvature and the constant of proportionality is the
bending rigidity. In the following we will focus on planar bilayers comprised
of symmetric monolayers without such a spontaneous curvature, i.e., C0 = 0,
where the term penalizes any curvature. The second summand in the integral
is, due to the Gauss-Bonnet theorem, a topological invariant, i.e., it is constant
as long as the topology of the bilayer does not change. Its value is given by∫

dA K = 4π(1 − g), where g is the “genus” of the surface, i.e., the number of
handles. It contributes only a constant shift to the energy which is neglected in
the following. The third summand is the mechanical tension, γ, of the bilayer.

In this work, we focus on membranes that deviate only weakly from the
plane, i.e., there are no overhangs. In this case the position of the bilayer
midplane can be described in the Monge parameterization by a height, h(r),
above some reference plane. It can be shown that in the limit of a nearly flat
surface [200],

H = 1
2

∫
d2r

(
κ
(
∇2h
)2

+ γ (∇h)2
)

+ const. (3.9)

It is advantageous to expand h(r) in a Fourier series, i.e., to write

hq = 1
LyLz

∫
d2r h(r)e−iq·r h(r) =

∑
q

hqeiq·r. (3.10)

Insertion of Eq. (3.10) into Eq. (3.9) leads to an expression for H,

H = LyLz

2
∑

q
|hq|2
(
κq4 + γq2

)
, (3.11)

in which the different Fourier modes, hq, decouple. The energy density of each
mode is given by the term in brackets. If the undulation modes are consid-
ered as the degrees of freedom of the bilayer, then the equipartition theorem
may be invoked to obtain the well-known expression for the equilibrium power
spectrum, 〈

|hq|2
〉

= kBT

LyLz (κq4 + γq2) . (3.12)

Equation (3.12) allows us to obtain κ from particle-based simulations, if the
power spectrum is measured. The calculation of 〈|hq|2〉 is done in two steps.
First, we define a linear, two-dimensional mesh with 16×16 grid points over the
area of the bilayer. The bilayer’s height at each grid point is determined in every
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snapshot by the average normal coordinate of the surrounding hydrophobic
beads. In a second step, we calculate a two-dimensional, discrete fast Fourier
transform to obtain hq and |hq|2. It has been pointed out by Cooke and
Deserno that this way of assigning beads to grid points introduces spectral
artifacts which must be accounted for [181]. We do this by dividing |hq|2
through

sinc2
(

ny

16

)
sinc2
(

nz

16

)
, (3.13)

where ny = qyLy/2π and nz = qzLz/2π. Finally, we obtain 〈|hq|2〉 by averaging
over many snapshots.

Area compressibility

The area compressibility, kA, of a bilayer is defined as

kA = 1
A

∂A

∂γ
, (3.14)

where γ is the mechanical tension and A is the surface area of the bilayer.
In this work, we adopt the common approximation of identifying A with the
projected area, i.e., the lateral area of the simulation box, Ly × Lz.1 The
approximation renders the calculation of kA in the NPtT ensemble, where A(t)
fluctuates, a straightforward task. The partition function for this ensemble
[127],

ZNγT =
∞∫

0

dA eβγAZNV T (A), (3.15)

depends on γ only through the first, exponential factor; the canonical partition
function, ZNV T , is independent of it. We compute kA by taking the second
derivative of ln(ZNγT ) and obtain

∂ ln ZNγT

∂γ
= β 〈A〉 , (3.16)

∂2 ln ZNγT

∂γ2 = β
∂ 〈A〉
∂γ

= β2
〈
A2
〉

− β2 〈A〉2 . (3.17)

Thus, with Eq. (3.15) we find

kA = 1
〈A〉

∂ 〈A〉
∂γ

= β

〈
A2〉− 〈A〉2

〈A〉 . (3.18)

1This neglects the excess area introduced by undulations and leads to a dependency of kA

on the system size [201].

48
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Below, in Sec. 4.2, we will use the monolayer area compressibility, km. For
the sake of simplicity we define km = kA/2.

3.1.4 Phase properties

In this subsection we study the properties of the Lα and the Lβ phase. To this
end we simulate larger systems with n = 4680 molecules in the NPtT ensemble.
Specifically, we investigate preassembled bilayers with three different densities,
ρ̄∗ = 17, 18, and 40. The first two have a low molecular density, i.e., they
mimic lipid systems, whereas the latter one has a higher density and mimics a
polymeric system. We use κN = 100 and χN = 30.

Local structure

We start the discussion by inspecting the static structure factors, G(q), of the
Lα and Lβ phases in Fig. 3.4. The first one has a broad ring at qrc ≈ 9.3
and a peak at qrc ≈ 0.33. The ring is typically found in liquids and indicates
that the molecules are distributed isotropically with an average separation of
Δx1 ≈ 0.68 rc and its width is related to the spread of molecular separations.
In contrast to experimental diffraction patterns we miss, of course, the second
microscopic length scale that corresponds to the separation of the two tails of
a single molecule. The peak at small qrc indicates the existence of another,
much larger length scale, Δx2 ≈ 19 rc. However, its origin was not analyzed
in this work, but we expect that it originates from either large undulations or
peristaltic waves.

The diffraction pattern of the Lβ phase has six sharp peaks oriented on a
hexagon at qrc ≈ 9.3. They are surrounded by a background which rises up
to 2 % of the peak’s height. From the existence of this background we tend
to conclude that the Lβ phase has no hexagonal crystalline, but a hexatic,
sixfold orientational order. Thus, there is a long-range orientational, but no
long-range positional order. Interestingly, the peak at small q does not show
up in the Lβ phase for the system sizes studied.

The investigation of the bilayer structure is complemented by the calculation
of the lateral pair correlation function between two head beads (B) and between
two tails beads (A), in the same monolayer, gintra(r), as well as in opposite
monolayers, ginter(r) (see Fig. 3.5). Unlike simple liquids, where the particles’
repulsion creates a pronounced correlation hole at small r, gintra(r) is in our
model always greater than unity at r = 0. This is expected, because the
lipids are oriented perpendicular to the plane where gintra(r) is calculated, so
that the beads seem to overlap in the lateral pair correlation function. The
hydrophobic beads in the same leaflet show weak packing effects up to the
fourth coordination sphere in the fluid phase, and long range packing effects
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Figure 3.4: Static structure factor, G(q), of the Lβ phase at ρ̄∗ = 17 (left) and the Lα

phase at ρ̄∗ = 18 (right). The slight anisotropy of both patterns, as well as the four
dots on a square in the left panel are numerical artifacts caused by the evaluation of
G(q) on a lattice.

in the gel phase. The pair correlation functions of the head groups look very
similar in both phases, which is also expected, since the interactions are the
same. The head beads of the same molecule overlap at small r, but they are
almost uncorrelated with the head beads from other molecules, i.e., gintra(r)
decays quickly to unity.

Even though the interactions between two head beads are purely repulsive
(vBB = 0.1, wBBB = 0) and the weighting function, w2(r), has negative Fourier
components, there is no problem of running into a cluster-crystalline phase.
It can be shown that the critical density for getting cluster crystals is ρ =
N2/vBBR3

eo|w̃2(k∗)| ≈ 700 r−3
c , which is much larger than the actual density

[135]. Here, w̃2(k) is the Fourier transform of w2(r) and k∗ is the wave number
at which w̃2(k) attains its negative minimum.

The tail-tail pair correlation function between opposite leaflets has a small
correlation hole. Its existence indicates that lipids on opposite leaflets tend to
avoid each other. This effect is less pronounced in the fluid phase than in the
gel phase, where ginter(0) falls to 0.38. It means that the molecules in the gel
phase on the one leaflet tend to reside in the interstitials of those on the other
leaflet.

Finally we remark that the head groups on different leaflets are uncorrelated
and that head-tail correlations are, even in the same leaflet, negligible and
therefore omitted.

50



3.1 Phase diagram and phase properties

tail - tail

0

1

2
g in

tr
a(r

)
ρ* = 18
ρ* = 17

head - head

0 2 4
r [ rc ]

0

1

2

g in
te

r(r
)

0 2 4

Figure 3.5: Top row: lateral pair correlation function within the same leaflet between
two tail beads (left column) and between two head beads (right column). Bottom row:
lateral pair correlation function between beads in different leaflets.

Density profiles and conversion factors

Figure 3.6 depicts three density profiles, ρ̂α(x), across the bilayer. They belong
to the Lβ phase at ρ̄∗ = 17, the Lα phase at ρ̄∗ = 18, and the Lα phase
at ρ̄∗ = 40. All three show separated peaks for the hydrophilic heads and
the hydrophobic tails which implies that the amphiphiles indeed form bilayer
membranes. A closer inspection of the densities of the hydrophobic interior
shows that the two leaflets are clearly distinguishable, but that there is no
dip in the center of the density profile, like it is known from atomistic or
systematically coarse-grained models including solvent [202, 203]. In fact, we
find a flat profile in the fluid phase and a minor hump in the gel phase, the
latter being caused by a small overlap of the last bead of the lipids from each
side. We find w = 5.60 rc and th = 7.07 rc for ρ̄∗ = 17, w = 4.93 rc and
th = 6.45 rc for ρ̄∗ = 18, and w = 4.25 rc and th = 5.77 rc for ρ̄∗ = 40.

This overlap might arise from three different reasons. (i) The molecular
shape in our model is finely discretized and the tails are rather flexible. If it
becomes more rod-like, the density profile at the center develops a dip due to
the molecular packing. This could be achieved by a decrease of the number of
beads per lipid or an increase of the bond stiffness. (ii) If the incompatibility
between hydrophobic and hydrophilic segments increases, the bilayer thickness
also increases and the interdigitation between the opposite leaflets decreases.
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Figure 3.6: Density profiles of the Lβ phase at ρ̄∗ = 17 (top), and the Lα phase at
ρ̄∗ = 18 (middle) and ρ̄∗ = 40 (bottom). The densities of the head beads in both
leaflets are colored in red and blue, and the densities of the tail beads in black and
green, respectively. The sum of the tail densities is marked by the dashed, gray line. As
noted above, packing effects lead to a deviation of the hydrophobic interior’s density
from the estimate of the coexistence density, ρ̄∗, provided by mean-field theory.
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3.1 Phase diagram and phase properties

(iii) The flat density profile could also arise from the lack of solvent molecules.
Since there is no solvent exerting pressure on the membrane, the lipids might
have to interdigitate slightly so that the whole bilayer remains stable.

The average area per lipid, 〈a〉 = 2 〈A〉 /n, is an important parameter in
the study of the lipid bilayer phases. We obtained 〈a〉 = 0.52 r2

c , 0.56 r2
c , and

0.33 r2
c for ρ̄∗ = 17, 18, and 40, respectively.

Although w and 〈a〉 depend on the details of the underlying model, the di-
mensionless aspect ratio, fA = w/

√
〈a〉, can straightforwardly be compared

to experiments. The most common two-tailed lipids have aspect ratios in the
range of fA ≈ 3 − 5, whereas our single-tailed model lipids have fA ≈ 6 − 7.
If we assumed that two of our single-tailed lipids glued together result in one
two-tailed lipid, we would double the mean area per lipid, 〈a〉, and obtain an
additional factor of

√
2 in the denominator of fA. Thereby we would obtain as-

pect ratios that are in good agreement with experimental values. Noteworthily,
it is impossible to obtain the right aspect ratio simply by selecting different
interaction coefficients at fixed molecular architecture and fixed discretization,
N .

To establish a conversion factor between the unit of length in simulations
and in experiments, we use the thickness of the bilayer, th = 6.45 rc. From
synthetic lipids like DPPC, DPPE, or DLPC it is known that th ≈ 5 nm.
Hence, we obtain for the lipidic system (ρ̄∗ = 18)

1 rc = 0.78 nm, (3.19)

which is also in good agreement with the typical size of coarse-grained beads
in models for alkanes. For the polymeric system, ρ̄∗ = 40, the thickness,
th = 5.77 rc, is typically between 10 and 20 nm. Thus we get,

1 rc = 2.6 nm. (3.20)

Elastic properties

Figure 3.7 shows the undulation power spectrum of tensionless bilayers in the
Lα phase at ρ̄∗ = 18 and 40. By fitting kBT/A〈|hq|2〉q2 as a function of q2

to a line through the origin, we extract κ from the slope, cf. Eq. (3.12). We
obtain κ = 20.1(4) kBT and κ = 19.7(4) kBT for ρ̄∗ = 18 and 40, respectively.
These values lie within the interval of experimental relevance for lipidic as
well as polymeric membranes. Thus, our model is able to describe realistic
deformations of the bilayer. Since the various gel phases are essentially rigid,
there are no undulations and, consequently, no bending rigidity can be obtained
by this method.
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Figure 3.7: Undulation power spectrum of the fluid phase for ρ̄∗ = 18 (black) and
ρ̄∗ = 40 (red). The solid lines show a fit to the asymptotic q−4 power law, cf. Eq. (3.12).
Inset: (〈|hq|2〉Aq2)−1 shown as a function of q2. κ is given by the slope of the line in
the limit q → 0. Reprinted with permission from Ref. 178. Copyright 2010, American
Institute of Physics.

We measured kA according to Eq. (3.18) for the Lβ phase at ρ̄∗ = 17 as well
as for the Lα phase at ρ̄∗ = 18 and 40, and obtained kA = 1.68 × 10−3 r2

c /kBT ,
kA = 0.46 r2

c /kBT , and kA = 0.051 r2
c /kBT , respectively. We used the conver-

sion factor from Eq. (3.19) to convert kA for the lipidic systems, ρ̄∗ = 17 and
18, to area compression moduli, KA = k−1

A , in experimental units and obtained
KA = 3960 mN/m in the Lβ phase and KA = 14.4 mN/m in the Lα phase.
Hence, the area fluctuations in our model are more pronounced than in exper-
iments, where KA ≈ 240 mN/m (Lα phase) [188]. For the polymeric system,
ρ̄∗ = 40, we used Eq. (3.20) for the conversion and obtained KA = 11.7 mN/m,
which is an order of magnitude smaller than in experiments, KA ≈ 100 mN/m
[194, 195]. We attribute these larger fluctuations to the lack of harsh repulsions.

3.1.5 Summary

In this section we have demonstrated that our model captures three crucial
properties: it self-assembles into bilayers, offers a rich bilayer phase diagram,
and has a high bending rigidity. Further, due to the universality of the phe-
nomena, it can be used to describe polymeric as well as lipidic bilayers.
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Table 3.2: Summary of some important static bilayer properties
Quantity Symbol Unit ρ̄∗ = 17 ρ̄∗ = 18 ρ̄∗ = 40
Bilayer phase Lβ Lα Lα

Area 〈A〉 r2
c 1222 1304 780.2

Area compressibility kA r2
c /kBT 0.168 46 5.1

×10−2

Area per lipid 〈a〉 r2
c 0.52 0.56 0.33

Hydrophobic width w rc 5.60 4.93 4.25
Bilayer thickness th rc 7.07 6.45 5.77
Aspect ratio fA 1 7.8 6.6 7.4
Bending rigidity κ kBT . . . 20.1(4) 19.7(4)

First, we analyzed the correlation between the self-assembled morphologies
and the interaction parameters. Spherical, cylindrical, and wormlike micelles
are obtained for large head groups; bilayers and inverted structures with hy-
drophilic inclusions are obtained for small head groups or small incompatibili-
ties between hydrophilic and hydrophobic beads. The bond-angle stiffness, kb,
crucially determines the structure of bilayer phases: if its value is too low, only
fluid bilayers are observed, if it is too high, only gel bilayers are observed. In
the remainder of this thesis, we exclusively use N = 16, NA = 4, Reo/rc = 3.5,
ks = 19.089, and kb = 5.

Second, we compiled the approximate bilayer phase diagram as a function of
ρ̄∗ and κN by quenching an initial configuration to the desired state. Although
the obtained phase diagram suffers from metastabilities in the vicinity of phase
boundaries, four different phases were identified: the fluid phase, Lα, the gel
phase, Lβ , the tilted gel phase, Lβ′ , and an interdigitated phase, LβI . No ripple
phase, Pβ′ , was observed.

Third, we focussed on κN = 100 and χN = 30, where only the Lα and the
Lβ phase are stable, and calculated many static properties. Among them are
the the static structure factor, the bending rigidity, the density profile, and the
area compressibility. The area compressibility is higher than in experimental
systems, but this can be related to the softness of our model, where density
fluctuations are more pronounced.

The most important results are summarized in Tab. 3.2.

3.2 Main phase transition
The phase diagram of single-component lipid bilayers comprises several gel and
subgel phases, e.g., Lβ, Lβ′ , LβI , LC , the ripple phase, Pβ′ , and the fluid phase,
Lα. The phase transitions between these phases have been experimentally
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studied in detail and they all seem to be discontinuous [20, and references
therein]. Some of them acquired their own names, e.g., the “subtransition”
(LC ↔ Lβ′), the “pretransition” (L′

β ↔ Pβ′), or the “main phase transition”
(Pβ′ ↔ Lα or Lβ ↔ Lα).

At high temperatures the bilayers are always in the Lα phase, but depending
on the bulkiness of the head group, the phase diagrams differ at low temper-
atures qualitatively. Two different cases are distinguished. If the head group
is small, like in the phosphatidylethanolamines (PE), the lipids arrange at low
temperatures in the non-tilted Lβ phase, where the director is parallel to the
normal vector of the membrane. The main phase transition, Lβ ↔ Lα, does
not involve an intermediate ripple phase. If it is large, like in the phosphatidyl-
cholines (PC), the lipids arrange at low temperatures in a tilted phase, Lβ′ ,
with a certain angle between the director and the normal vector. When the
temperature is increased, the pretransition into the ripple phase (L′

β ↔ Pβ′)
occurs first, followed by the main phase transition (Pβ′ ↔ Lα) [204, and refer-
ences therein].

In both cases the main phase transition simultaneously involves a change
in the in-plane degrees of freedom that dictate the orientational order and
a change in the conformational degrees of freedom [110]. The simultaneous
transition in these two different sets of degrees of freedom can be decoupled by
mixing the lipids with cholesterol [205]. In this case an intermediate phase, the
liquid-ordered phase, in which the conformational degrees are still frozen, but
the orientational degrees are unlocked, shows up. It is interesting to note that
the main phase transition happens for most lipids in the vicinity of the body
temperature, e.g., 41 ◦C for DPPC. Hence, it is tempting to speculate that the
proximity of this phase transition is used in some way or other in biology (see
for instance Fig. 1.2 or Fig. 3.8).

Early simulation studies of these phase transitions involved Ising-like, lattice
models [108, 109], where the response functions have been used to locate phase
transitions. Qualitative insights into the topology of the phase diagrams were
obtained later by continuum models [206–208], but it was difficult to gain
insights on the molecular scale with these models. Coarse-grained, off-lattice
models are suited very well for the study of phase transitions, because they are
–unlike atomistic models– able to incorporate a large number of molecules, so
that finite-size effects are suppressed significantly [81, and references therein].
Due to their infinite number of conformations, they offer the possibility to
study even miniscule changes in these degrees of freedom. Though various
phase transitions have been observed in these coarse-grained models, no careful
determination of the exact phase transition point has been presented so far.
Most studies were content with an approximate location of the transition point
by looking for hysteresis effects [71, 75]. Further it seems, that the situation
of large head groups is of major relevance for cell biology, so that most studies
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Figure 3.8: In the vicinity of the main phase transition metastable domains of the
minority phase occur. The left panel shows a fluid domain (Lα; located in the upper
left corner) embedded in the Lβ phase near coexistence. The right panel shows a
Voronoi tesselation of the upper leaflet of the same configuration. The fluid domain
can be clearly distinguished from the gel; the dots denote the centers of mass of the
lipids.

focussed on the more complex situation where a pretransition occurs. The
simpler main phase transition, Lβ ↔ Lα, without a preceding pretransition
and a ripple phase received less attention in the literature.

Motivated by these facts, we focus on the somewhat simpler situation and
locate the main phase transition, Lβ ↔ Lα, in our model precisely. In contrast
to most other studies, we do not use the temperature as the control parameter
to drive the transition, but the molecular density, ρ̄∗. We use three different –
but not independent methods– to locate the phase coexistence. First, we apply
a combination of umbrella sampling (US) and the weighted histogram analysis
method (WHAM) [209–213] to compute the free energy, F (ρ̄∗), in the vicinity
of the main phase transition. Second, we utilize the free energy perturbation
theory (FEP) to extrapolate the free energy branches of each phase [213] and to
find the value of ρ̄∗ at which the branches intersect. Finally, we use a histogram
reweighting scheme to calculate the specific heat, C(ρ̄∗).

In Sec. 3.2.1 we briefly explain the technical details of the free energy cal-
culation and the reweighting methods. This presentation is based on the work
by Souaille and Roux in Ref. 212. We apply them in Sec. 3.2.2 to our model
and conclude the discussion of the main phase transition in Sec. 3.2.3.

3.2.1 Free energy calculations

Order parameters

Several order parameters can be used to characterize the various bilayer phases
[80, 181, 203]. We chiefly employ the orientational order parameter,
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S = 1
n

〈
n∑

i=1

NA−1∑
j=0

3 cos2 αj,j+1 − 1
2(NA − 1)

〉
, (3.21)

where cos αj,j+1 = n(r) · (rj+1 −rj)/ ‖rj+1 − rj‖ denotes the angle between the
local normal vector, n(r), to the bilayer and the bond vector between successive
neighboring hydrophobic beads j and j + 1. i sums over all molecules in the
bilayer and the average is taken over an ensemble of bilayers. S = 1 indicates
that the local director is perfectly aligned parallel to n(r), S = 0 indicates
that the director is isotropically distributed, and S = −1 indicates that the
director is aligned in the plane of the bilayer. Since n(r) is a function of the
coordinates of many lipids, its calculation involves a triangulation procedure
[201], where we describe the bilayer midplane by a set of small triangles with
a unique normal, n(r), in each triangle.

In the gel phase the lipids form a structure with sixfold orientational order.
We probe this structure by the order parameter

ψ6 = 1
n

〈∣∣∣∣∣∣
n∑

i=1

1
ni

ni∑
j=1

exp (6iφij)

∣∣∣∣∣∣
〉

. (3.22)

Here, ni denotes the number of lipids adjacent to lipid i, as determined by a
Voronoi tesselation [214], and φij the angle between the vector from the center
of mass of lipid i to that of lipid j, and some arbitrary but fixed direction in
the plane of the bilayer. ψ6 = 1 indicates perfect sixfold orientational order
over the entire bilayer, whereas ψ6 = 0 signals the absence of such order.

Both order parameters, S and ψ6, clearly distinguish between the Lα and the
Lβ phase, but they differ in one crucial point: S is composed of additive contri-
butions, which only stem from conformational, single molecule properties and
therefore its change in response to moving a segment can be easily computed.
The opposite is true for ψ6, which only reflects orientational order caused by
intermolecular packing and requires the computationally intense Voronoi tes-
sellation in order to identify the neighbors of a lipid. We choose S as the single
reaction coordinate for the main phase transition, because the conformational
and the orientational transitions are coupled, and S is considerably easier to
compute than ψ6.

Free energy perturbation theory

The free energy perturbation theory (FEP) is a formally exact way of calcu-
lating free energy differences between two systems with different Hamiltonians
[213]. Here, FEP is used to calculate such differences between two bilayers
whose non-bonded interactions differ in ρ̄∗. To this end, we sample config-
urations at a reference density, ρ̄∗

0, and calculate the free energy difference,
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F (ρ̄∗) − F (ρ̄∗
0) = −kBT ln

〈
e−βΔHnb(ρ̄∗)

〉
0
, (3.23)

to a system at density ρ̄∗. Here 〈· · · 〉0 stands for an ensemble average of the
reference system and

ΔHnb(ρ̄∗) = Hnb(ρ̄∗) − Hnb(ρ̄∗
0) (3.24)

=
[
vαβ(ρ̄∗) − vαβ(ρ̄∗

0)
]
Pαβ +

[
wαβγ(ρ̄∗) − wαβγ(ρ̄∗

0)
]
Qαβγ

is the difference of the non-bonded energy, cf. Eq. (2.14). Pαβ and Qαβγ are
the integrated densities defined by

Pαβ ≡ 1
2
∑

i

δαT (i)ρ̃2β (ri) (3.25)

Qαβγ ≡ 1
3
∑

i

δαT (i)ρ̃3β (ri) ρ̃3γ (ri) . (3.26)

Since FEP samples only the phase space of a single thermodynamic phase, i.e.,
the phase that is stable2 at ρ̄∗

0, we cannot locate the coexistence of two phases.
However, FEP is well suited to explore the free energy branch, F (ρ̄∗), of a
single phase, i.e., relative changes in the free energy.

Umbrella sampling

In contrast to FEP, the combination of US and WHAM allows for a direct
location of the phase coexistence [209–213]. This becomes possible by calcu-
lating the free energy profile, F (S), as a function of the order parameter, S(x),
which is, in turn, a function of all particle coordinates x. Let Sfl = 0.212 and
Sgel = 0.625 denote the values of the order parameter in the Lα and in the
Lβ phase, respectively. To obtain F (S), bilayer configurations in the interval
Sfl . . . Sgel have to be sampled. However, the unfavorable configurations in the
miscibility gap are virtually unreachable by conventional Boltzmann sampling
because their statistical weight is exponentially small. By including an addi-
tional US potential, Wi, we force the system to sample also these unfavorable
configurations. Specifically, we add the harmonic potential

Wi(x) = k

2n(NA − 1) [S(x) − Si]2 . (3.27)

that biases the simulation to keep S(x) in the vicinity of Si. Here k = 1 kBT is
a spring constant that measures how strong deviations from Si are penalized;
the prefactor makes Wi(x) extensive. We have used an equidistant spacing of

2or at least metastable
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the Si in the range 0.15 < Si < 0.8 with ΔSi = 0.01 to sample the whole
interval uniformly.

In addition to Si, also the expansion coefficients, which determine the non-
bonded interactions, are varied. In each simulation with Wi(x) and coefficients
vj

αβ and wj
αβγ , a trajectory with nij samples of the order parameter S, the

total energy, U , and the integrated densities, Pαβ and Qαβγ , is recorded. This
trajectory is reweighted to study the thermodynamic behavior of the bilayer
at other interaction parameters without performing additional simulations.

Each trajectory, Sij,p, where p = 1 . . . nij denotes the index of one specific
sample, is binned into a normalized histogram p

(b)
ij (S), that measures the bi-

ased probability density of visiting S. The corresponding unbiased probability
density is defined as

p
(u)
ij (S) = eβ[Wij(S)−fij ]p

(b)
ij (S) (3.28)

where the fij are the (yet unknown) free energy differences arising from

Wij(x) = ΔHnb(x, ρ̄j) + Wi(x), (3.29)

with respect to some arbitrary reference state, which is in our case ρ̄∗
0 = 17.

The idea of WHAM is to combine all unbiased histograms p
(u)
ij (S) into a

single optimal histogram p0(S), which is given by a weighted superposition of
the p

(u)
ij (S), so that the statistical error is minimal [211, 212]. First, the free

energies, fij , arising from the biasing potential are calculated from

e−βfij =
∫

dx e−βWij(x)p0(S(x)) (3.30)

where the optimal probability density

p0(x) = C
∑
ij

nij∑
p=1

δ (x − xij,p)∑
kl

e−β[Wkl(xij,p)−fkl]
(3.31)

is formally available, once the free energies fij have been computed, i.e., a
nonlinear set of coupled equations has been solved. Here C is a normalization
constant, which is chosen, such that the first run has the free energy f =
0. Once the fij are available, the free energy, F (ρ̄∗), can be computed by
reweighting via

e−βF (ρ̄∗) =
∫

dx e−βHnb(x,ρ̄∗)p0(x). (3.32)

In contrast to FEP, Eq. (3.23), F (ρ̄∗) includes this time the contributions from
both phases.
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3.2 Main phase transition

The probability density, p(O, ρ̄∗), of any observable, O(x), as a function of
ρ̄∗ is formally available by

p(O, ρ̄∗) =
∫

dx p(x, ρ̄∗) δ
(
O − O (x)

)
, (3.33)

where the full probability density, p(x, ρ̄∗), is given by

p(x, ρ̄∗) = p0(x)e−β[Hnb(x,ρ̄∗)−F (ρ̄∗)]. (3.34)

Equation (3.33) can be used to calculate the free energy of any observable as
a function of ρ̄∗ by taking the negative logarithm, i.e.,

F (O, ρ̄∗) = −kBT ln p(O, ρ̄∗). (3.35)

During the calculations of the fij one frequently encounters expressions like
e−βE , where |βE| > 500 (E is extensive). Computations with standard double
precision fail because of over- or underflows. We have circumvented this issue
by usage of a special floating point library with a much greater precision [215].
However, this library requires huge amounts of computing time and memory so
that a parallel code has been written in which the recurring loops

∑
ij

∑
p · · ·

in Eq. (3.31) have been distributed over 64-1024 CPUs. We have used a variant
of Powell’s hybrid solver method to solve for the fij in Eq. (3.30).

3.2.2 Location of the transition point

Hysteresis loop

A first estimate of the position of the main phase transition is obtained from
the center and the width of a hysteresis loop. Therefore we have simulated
preassembled bilayers in the NPtT -ensemble with n = 1600 that were initially
in the Lα phase at ρ̄∗ = 40. We have performed several sequential cycles
with ρ̄∗ running from 11 to 40 and vice versa in steps of Δρ̄∗ = 0.5 or 1.0 for
κN = 50, 75, 100, 125. At each step the bilayer is simulated for Δt = 100 τ .

Near the main phase transition large hysteresis effects occur in S and ψ6
as shown in Fig. 3.9. The loops for both order parameters differ only quan-
titatively: they are weakly shifted and conformational order, measured by S,
persists up to slightly higher values of ρ̄∗ than the orientational order, measured
by ψ6. Their widths grow with increasing κN , i.e., metastable domains persist
up to higher ρ̄∗. The increasing amplitudes of the order parameters indicate
that different thermodynamic phases show up. For instance, at κN = 125 the
Lβ and the Lβ′ phases occur and their transition is visible as a dip in both
order parameters near ρ̄∗ ≈ 20. For κN < 100 hardly any hysteresis effects are
visible.
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Figure 3.9: Hysteresis loops of S (top) and ψ6 (bottom) for κN = 50 . . . 125. The
arrows mark the direction in which ρ̄∗ is proceeded. The dashed line at ρ̄∗ = 17.27
indicates the transition point for κN = 100 which is determined below. Reprinted
with permission from Ref. 178. Copyright 2010, American Institute of Physics.

We focus on the system κN = 100 where the phase diagram, Fig. 3.2, sug-
gests in agreement with the hysteresis loop, Fig. 3.9, that only two phases, Lα

and Lβ, exist. The main phase transition is located in the interval 15 < ρ̄∗ < 19.
Hence, our first estimate for the point of the phase transition is the center of
this interval, i.e.,

ρ̄HYST = 17(2). (3.36)

Reweighting

We calculate F (S) by means of US/WHAM from simulations at different den-
sities, ρ̄∗ = 16.28, 17.00, and 17.29, with 2-5 different initial configurations
in the NPtT ensemble. Each biasing potential Wi, Eq. (3.27), is simulated
for Δt = 3000 τ . It is advantageous to start the simulation from an initial
configuration where both phases are already present.

The inset of Fig. 3.10 shows F (S) at ρ̄∗ = 17. The two visible minima corre-
spond to the Lα and the Lβ phase. The offset, ΔF = 648 kBT , between these
minima indicates that the Lβ phase is stable and the Lα phase is metastable.
To locate the phase transition, we reweight in ρ̄∗ searching for a rapid varia-
tion, i.e., a rounded discontinuity, of the slope that signals the phase transition.
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Figure 3.10: Inset: Free energy, F (S), at ρ̄∗ = 17. There is a difference of ΔF =
648 kBT between the minima of the Lα phase and the Lβ phase. Main Panel: F (ρ̄∗)
obtained from histogram reweighting in comparison to two independent FEP calcu-
lations of a Lα and a Lβ phase, whose offset, ΔF , at ρ̄∗ = 17 is known from the
inset. Both curves intersect at ρ̄FEP = 17.26(5) (dashed gray line). Reprinted with
permission from Ref. 178. Copyright 2010, American Institute of Physics.

Such a variation occurs at
ρ̄US = 17.29(1) (3.37)

and indicates the crossing of the free energy branches of the different phases
(solid black line in the main panel of Fig. 3.10).

It is convenient to introduce a normalized order parameter,

ΔS ≡ S − Sfl
Sgel − Sfl

, (3.38)

so that the minima of the free energy in the fluid phase at Sfl and in the gel
phase at Sgel correspond to ΔS = 0 and ΔS = 1, respectively.

At ρ̄∗ = 17.29 both phases have equal statistical weight and are separated
by a free energy barrier of 151.0(5) kBT (see Fig. 3.11, left). Gratifyingly the
US/WHAM results for the free energy, F (ΔS) and F (ρ̄∗), are consistent which
indicates the high statistical accuracy of our data.

It is interesting to note that the free energy profile, Fig. 3.11 (left), is asym-
metric around ΔS = 0.5 and slightly tilted to the left. This asymmetry stems
from the onset of orientational order. For ΔS < 0.5 only a small amount of the
lipids has a straight conformation and it is unfavorable to form gel domains.
Hence, no sixfold orientational order, measured by ψ6, is visible (right panel
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Figure 3.11: The free energy profile, F (ΔS), at phase coexistence determined by
US/WHAM (left). The asymmetry around ΔS = 0.5 is related to the nonlinear
coupling between ΔS and ψ6 (right). The dashed line denotes a fictive linear coupling
of S and ψ6. Reprinted with permission from Ref. 178. Copyright 2010, American
Institute of Physics.

of Fig. 3.11). For ΔS > 0.5 enough lipids acquired a straight conformation
so that gel domains form and an orientational order sets in. This leads to an
accelerated decrease of F (ΔS). The minimal free energy is finally reached in a
state with a global sixfold orientational order. Only the trailing tail beads of
the lipids interdigitate with the ones from the opposite leaflet and constitute a
thin, disordered layer at the center of the bilayer.

Free energy perturbation theory

We have conducted two additional, independent simulations at ρ̄∗ = 17 in
the NPtT ensemble without an US potential. One initial configuration was
prepared in the metastable Lα phase and the other was prepared in the Lβ

phase. The free energy branches of each phase are extrapolated with FEP, cf.
Eq. (3.23). In this method the relative free energy difference between both
branches remains undetermined. However, the offset at ρ̄∗ = 17, ΔF =
648 kBT , has already been computed with US/WHAM, cf. Fig. 3.10. The
main panel of this figure depicts the two, correspondingly shifted branches of
F (ρ̄∗), which intersect at

ρ̄FEP = 17.26(5). (3.39)

In Fig. 3.10 we present the two branches of F (ρ̄∗) obtained from FEP in
comparison to the result from US/WHAM. In the Lα phase both methods com-
pletely agree, however, in the Lβ phase there is a small difference discernible.
Between ρ̄∗ = 17.15 and 17.29 the FEP calculation slightly overestimates the
free energy per lipid by ΔF/n = 0.02 kBT , which arises from a gradual loss of
sixfold orientational order as the transition is approached from the Lβ phase.
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Figure 3.12: Specific heat, C, (top) and total energy, 〈U〉, (bottom) obtained from
histogram reweighting as a function of ρ̄∗. The main phase transition is visible as a
peak in C at ρ̄SH = 17.27 (dashed red line) and a sharp rise in 〈U〉. The dotted gray
lines mark the points where US simulations were done. Reprinted with permission
from Ref. 178. Copyright 2010, American Institute of Physics.

Therefore the result, ρ̄FEP, is less accurate.
A similar way of determining the phase coexistence point has been applied

earlier. In Ref. 108 the relationship between the branches is fixed by the knowl-
edge of the two bulk free energies, which were extracted from mean-field theory.
A similar calculation is possible in the fluid phase of our coarse-grained model,
but it is not accurate in the gel phase, where correlations between the lipids
are essential. These correlations, which are captured by our simulations, are
clearly visible, e.g., in the order parameter ψ6.

Specific heat

In the gel phase, the conformational degrees of freedom of the molecules and
the translational degrees of freedom of the centers of mass are frozen and do
not contribute to the total energy 〈U〉. These degrees of freedom are unlocked
in the fluid phase and much larger values of 〈U〉 occur. The expected jump
in the total energy or the large variation, 〈U2〉 − 〈U〉2, which is proportional
to the specific heat, C(ρ̄∗), can be used as another means to determine the
transition point.
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We employ the reweighting procedure, Eq. (3.33), once more to calculate the
probability distribution, p(ρ̄∗, U), and from this 〈U〉(ρ̄∗) as well as

C(ρ̄∗) = kB

〈
U2〉 (ρ̄∗) − 〈U〉2 (ρ̄∗)

(kBT )2 . (3.40)

As expected, p(ρ̄∗, U) has for ρ̄∗ < 17.2 a single peak at negative energies,
Ugel ≈ −4 × 104 kBT , and for ρ̄∗ > 17.3 a single peak at positive energies,
Ufluid ≈ +4 × 104 kBT . In the phase transition region, p(ρ̄∗, U) has a bimodal
shape with two peaks at ±4×104 kBT , thus, the variance of this distribution at
fixed ρ̄∗ acquires a sharp peak (see Fig. 3.12, top). We obtain another estimate
of the main phase transition from the location of this peak,

ρ̄SH = 17.27(2). (3.41)

The difference between these two energies, ΔU = Ufluid −Ugel ≈ 8×104 kBT ,
is the latent heat of the phase transition and gives rise to a sudden jump in
〈U〉(ρ̄∗) at the same position (cf. Fig. 3.12, bottom). The slow increase of
〈U〉(ρ̄∗) in the interval 16.8 < ρ̄∗ < 17.27 can be related to a gradual melting
of the hydrophobic tails, i.e., the conformational degrees of freedom start to
get unlocked even before the main phase transition takes place. Since there is
no additional peak visible in C(ρ̄∗) at smaller ρ̄∗, this gradual melting is no
pretransition [204].

3.2.3 Discussion and conclusion
Depending on the parameters κN and ρ̄∗, the lipids self-assemble into bilayers
of different thermodynamic phases. The main phase transition, Lβ ↔ Lα, has
many of the characteristics well known from discontinuous phase transitions,
like pronounced hysteresis effects, the occurrence of metastable states, and
sharp peaks in the response functions.

In this section, we discussed the main phase transition in detail, computed
its free energy profile as a function of the conformational order parameter, S,
and provided four different (but not independent) methods for locating the
transition point. The first crude estimate, ρ̄HYST = 17(2), was obtained from
the center and the width of the hysteresis loop. A more precise estimate,
ρ̄US = 17.29(1), is obtained from the combination of umbrella sampling and
the weighted histogram analysis method. We used the free energy perturbation
theory to extrapolate the branches of the two phases and to find their intersec-
tion point, thereby yielding ρ̄FEP = 17.26(5). A fourth estimate was obtained
by inspecting the specific heat at the phase transition, which has a sharp peak
at ρ̄SH = 17.27(2).
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The three latter estimates, ρ̄US, ρ̄FEP, and ρ̄SH, nicely agree with each other.
The main uncertainty of our estimate of the phase coexistence, however, stems
from a possible insufficient sampling along the path that reversibly connects
the liquid and the gel phase. Unfortunately, this uncertainty is difficult to
quantify. The consistency of the results suggests that the main phase transition
for κN = 100 occurs at

ρ̄coex = 17.3(1). (3.42)

Thus, the accuracy in the location of the transition point is improved by
a factor of 20 compared to the accuracy obtained from the hysteresis loop.
Thus, with the combination of umbrella sampling and histogram reweighting
it is now –at least in principle– possible to study the entire phase diagram and
accurately determine all phase boundaries.

The free energy profile across the phase transition, F (S), is asymmetric in
the scalar order parameter, S, because of the complex nature of the main phase
transition, where two different sets of degrees of freedom, the conformational
and the translational, are coupled nonlinearly.

3.3 Line tension and bilayers in the miscibility gap
The lateral demixing of multi-component lipid membranes into domains with
different compositions, “rafts”, is an exciting phenomenon that is studied ac-
tively in experiments [17, 216–220], computer simulations [221, 222], and an-
alytical calculations. It is believed that this lateral heterogeneity plays an
important role in biomembranes and cells use it actively to control the prop-
erties of their membranes by switching the molecular composition [223, 224].
The line tension, which is the free energy per unit length of the domain bound-
aries, plays a crucial role in these studies and several different experimental
methods for obtaining such line tensions have been proposed which all give
values around 10 pN [17, 217–220, 225].

The simplest system that shows such a lateral heterogeneity is, however, a
single-component lipid membrane at coexistence of two thermodynamic phases.
Therefore, we continue the discussion of the main phase transition by looking at
the line tension between domains belonging to different thermodynamic phases
and at the shape of these domains, which is closely related. The occurrence of
droplet and slab shapes is a universal aspect of discontinuous phase transitions
in finite systems [226–231]. We show how typical configurations of the finite
bilayer inside the miscibility gap look like and how this is related to the free
energy profile.

It seems to be widely unknown that there are two distinct definitions of the
line tension in a two-dimensional system which should not be confused. In this
work they are denoted as the bare line tension, λ, and the thermodynamic line
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tension, σ. The former one occurs in the power spectrum of line fluctuations,
the latter one in measurements of free energies or interface lengths. We present
a careful definition based on statistical mechanics, measure them in our model,
and demonstrate their difference.

3.3.1 Theory

Configurations in the miscibility gap

Let us consider a lipid bilayer in the Lα phase at phase coexistence with the
Lβ phase. If the normalized order parameter, ΔS, is slightly increased from
ΔS = 0, this small increment is distributed homogeneously throughout the
bilayer. The excess free energy of this undercooled fluid bilayer up to second
order in ΔS is given by a Taylor expansion around the minimum

Fuf = kuf
2 (ΔS)2 , (3.43)

where kuf is a constant measuring the response of the system to changes in ΔS.
The same is true for the other minimum where the free energy of an overheated
gel phase is

Fog = kog
2 (1 − ΔS)2 . (3.44)

In a macroscopic system an undercooled bilayer is metastable and the lipids
condense into two-dimensional droplets of radius R that consist of the thermo-
dynamically stable Lβ phase. In the framework of classical nucleation theory,
the excess free energy of such a droplet,

Fdrop = 2πσR, (3.45)

is given by the droplet’s perimeter and the thermodynamic line tension, σ.
There is no bulk contribution to Eq. (3.45) from the interior of the droplet,
because the Lα and the Lβ phase have the same free energy at coexistence.
Since the lipids occupy in both phases roughly the same area, cf. Tab. 3.2, ΔS
approximately quantifies the fractional area of the Lβ phase. Thus, the area
of the droplet, πR2 � L2ΔS, is in good approximation proportional to ΔS.
Combining with Eq. (3.45) we obtain R ∼ (ΔS)1/2 and

Fdrop = 2σL
√

πΔS. (3.46)

If the two-dimensional droplet grows larger, its size becomes comparable to the
linear dimension of the simulation box, L. Then it is more favorable to form
a slab of the Lβ phase separated from the Lα phase by two plane interfaces of
length L. In this case, F (ΔS) reaches a plateau at the center of the free energy
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profile where its value is independent of ΔS, i.e.,

Fslab = 2σL. (3.47)

The excess free energy of the slab is dominated by the interfacial free energy
provided that the system is large enough for the two interfaces not to interact.
σ is readily obtained from the plateau value [226].

Increasing ΔS further, one observes the reverse set of configurations. The
slab of the Lα phase grows thinner and thinner and at some point it becomes
favorable to form a fluid droplet surrounded by the Lβ phase. The radius of
the droplet decreases while ΔS increases. Finally, the droplet vanishes and the
lipids form a homogeneous Lβ phase.

Interface line fluctuations

If the boundary line separating the two domains in the slab geometry is smooth
and free of overhangs, we can describe its position by a function h(x). The
statistical properties of h(x) are dictated by the capillary wave Hamiltonian
[200, 232],

Hcap = λ

L∫
0

dx
√

1 + [h′(x)]2 ≈ λL + λ

2

L∫
0

dx
[
h′(x)
]2

, (3.48)

where λ denotes the bare line tension. The coordinate system is chosen such
that the mean position of the boundary vanishes, i.e., 〈h(x)〉 = 0. An expansion
of h(x) in a Fourier series with wave number q = 2πn/L, n ∈ Z,

h(x) =
∑

q

hqeiqx, (3.49)

shows that Hcap becomes diagonal in q-space and that the modes decouple:

Hcap = λL + Hf with Hf ≡ λL

2
∑

q

|hq|2 q2. (3.50)

The Hamiltonian Hf is the starting point for all further calculations. On
the one hand, the fluctuation power spectrum,

〈|hq|2〉 = kBT

λLq2 , (3.51)

is readily obtained from Eq. (3.50) by using the equipartition theorem.
On the other hand, we can use Hf to calculate the free energy contribution,

ΔF = F − λL, from the fluctuations of the boundary line. The canonical
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partition function, Z, involves a functional integral over all h(x), which is
equivalent to an integral over all complex Fourier coefficients, hq:

Z ∼
∫

D [hq] exp
(

− Hf

kBT

)
∼
∏
q

∫ dhq

L
exp
(

− λL

2kBT
|hq|2 q2

)
. (3.52)

Since h(x) is a real-valued function, hq has the Hermitian redundancy, i.e.,
h−q = h∗

q . A decomposition into separate integrals over the real and the imag-
inary parts of hq for only the positive modes, q > 0, thus yields

∏
q

∫ dhq

L
=
∏
q>0

∫ d (Re hq)
L

d (Im hq)
L

. (3.53)

We evaluate Z by carrying out the Gaussian quadratures and obtain

Z ∼
∏
q>0

2πkBT

λL

1
(qL)2 . (3.54)

To compute the free energy, ΔF = −kBT ln Z, the range of wave vectors has
to be restricted. The simplest method is to introduce cutoffs for small as well as
for high q. The cutoff at small q arises from the periodic boundary conditions,
i.e., qmin = 2π/L. The UV cutoff, qmax = 2πnmax/L = 2π/a, nmax = L/a, is
delicate, because it introduces an additional length scale. This length scale, a,
characterizes the smallest length on which the fluctuations of the boundary line
can be described by the capillary wave Hamiltonian. Using these two cutoffs
we obtain

ΔF

kBT
= − ln Z =

nmax∑
n=1

ln
(

λL

2πkBT
· 4π2n2

)
(3.55)

= nmax ln
(2πλL

kBT

)
+ 2 ln (nmax!). (3.56)

ΔF is an extensive quantity proportional to L,

ΔF

kBT
= L

a

[
ln
(

2πλL3

a2kBT

)
− 2
]

≡ CL

kBT
, (3.57)

and the total interfacial free energy is given by

F = λL + ΔF = (λ + C)L ≡ σL. (3.58)

Thus, the bare line tension, λ, differs from the thermodynamic line tension,
σ, by a term, C, which stems from the fluctuations of the boundary line and
logarithmically depends on L and a.
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Determination of the interface line

Several different schemes to locate the position of an interface are known [233].
Here we use an integral criterion [234, 235] in which we subdivide the profile of
the local order parameter, S(y, z), into Nz = 16 horizontal stripes with a width
of Δz = Lz/Nz. Each stripe is binned into two histograms, one for each leaflet,
with a bin width of Δy = 2 rc, yielding in total 2Nz histograms per snapshot.
The bulk values of the order parameter in the gel phase, Sgel, and in the fluid
phase, Sfl, are extracted for every snapshot. As illustrated in Fig. 3.13, h(zi) in
stripe i has been calculated for each side of the slab separately as the position
of the Gibbs dividing surface, such that

h∫
h−δy

dy
(
S(y, zi) − Sfl

)
=

h+δy∫
h

dy
(
Sgel − S(y, zi)

)
. (3.59)

Here δy = 10 rc is used to confine the integral to a narrow region surrounding
the Gibbs dividing surface so that fluctuations of the bulk influence the position
of the interface minimally. Once h(z) is determined, |hq|2 is available by an
FFT. Similarly to the case of bilayer undulations, the average value, 〈|hq|2〉, is
divided by a spectral damping factor [sin(πn/Nz)/(πn/Nz)]2 [181].

We compare two different ways of calculating this average. On the one hand,
we argue that the bilayer is essentially a two-dimensional object, so that only
the boundary lines at different sides of the slab, but not on different leaflets,
fluctuate independently. This leads to an average calculated over two lines
per snapshot. On the other hand, we can locate the boundaries in each leaflet
independently, so that the average includes four lines per snapshot. In the limit
q → 0 we expect that the two boundaries in the two leaflets are coupled and
that both methods yield the same λ.

3.3.2 Results and discussion

Configurations in the miscibility gap

First we studied the bilayer configurations in the miscibility gap. Figure 3.14
shows three such configurations: a gel droplet surrounded by the fluid phase,
a slab geometry, and a fluid droplet surrounded by the gel phase. Addition-
ally, it shows the corresponding Voronoi tesselations to illustrate the spatial
distribution of the lipids.

A more quantitative analysis is available by a careful inspection of F (ΔS) at
phase coexistence, cf. Fig. 3.15. The positions of the three configurations are
marked by green circles. A fit to Eq. (3.43) or Eq. (3.44) in the vicinity of the
two minima yields kuf = 6750 kBT and kog = 4290 kBT ; the resulting parabolas
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Figure 3.13: To calculate the Gibbs dividing surface the bulk values of the order pa-
rameter, Sgel and Sfl, are computed (dashed lines). After that, the integral criterion
is applied in a narrow interval h − δy · · · h + δy surrounding each edge of the slab. The
position of the interface h is chosen so that Af = Ag. Reprinted with permission from
Ref. 178. Copyright 2010, American Institute of Physics.

are indicated in Fig. 3.15 by the blues curves. The agreement between the fits
and the actual F (ΔS) is, particularly for the Lα phase, very good. Due to
the aforementioned asymmetry of the free energy profile, cf. Sec. 3.2.2, the
right edge of the free energy barrier has a different shape and the harmonic
approximation for the minimum of the Lβ phase has a smaller range of validity.

The free energies of the gel and the fluid droplets, Fdrop, cf. Eq. (3.46), are
also shown in Fig. 3.15 as red, dash-dotted lines. They fit F (ΔS) very well at
the left edge of the profile, but fail at the right edge where fluid droplets in
the Lβ phase occur. Finally, we present the constant free energy of the slab
geometry, cf. Eq. (3.47), Fslab = 151.0(5) kBT .

Additional deviations from the simple phenomenological estimates arise from
the interaction between the lines that separate the liquid and the gel domains.
For instance, the thermal fluctuations of the two lines in the slab geometry
induce attractive Casimir forces [236]. While the slab is growing thinner and
thinner at the crossover to the droplet geometry, these Casimir forces become
more pronounced and reduce the free energy. However, there is an additional
reduction of the free energy coming from transversal line fluctuations [237].
These become pronounced for small widths of the slab and finally lead to
its destruction. While it is in principle possible to study these fluctuation
mediated interactions by a careful inspection of F (ΔS), we did not investigate
these effects in further detail.
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Figure 3.14: Bilayer configurations in the miscibility gap (duplicated across periodic
boundaries). Left, from top to bottom: Lβ droplet in Lα phase (ΔS = 0.26), the
slab geometry (ΔS = 0.60), and Lα droplet in a Lβ phase (ΔS = 0.84). Each lipid
is colored by its local conformational order parameter: the Lβ phase is white, the
Lα phase dark, and intermediate values gray. Right: Voronoi tesselation of the same
configurations as before, the dots are the molecular centers of mass. Reprinted with
permission from Ref. 178. Copyright 2010, American Institute of Physics.
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Figure 3.15: F (ΔS) at phase coexistence compared to the phenomenological expres-
sions from Eq. (3.43), Eq. (3.46), and Eq. (3.47). Green circles mark the values of ΔS
at which typical configurations are visualized in Fig. 3.14. Reprinted with permission
from Ref. 178. Copyright 2010, American Institute of Physics.

Bare line tension

To record the fluctuation spectrum of the interface line, a rectangular shape of
the simulation box, with Ly > Lz, was chosen. In this asymmetric situation
the slab attains the lowest interfacial free energy if it aligns parallel to the
z-axis. In this way the orientation of the interfaces is dictated by the box
geometry. Specifically, we assembled an initial configuration with n = 14040
lipids at ρ̄∗ = 17 having Ly = 3Lz ≈ 105 rc. This configuration is simulated
in the anisotropic NPtT ensemble with two independent degrees of freedom.
We employ an US potential with S0 = 0.34, k = 5.0 kBT for driving the
system to the desired slab geometry. After an equilibration time of Δt = 104 τ
the box lengths fluctuate around mean values of 〈Ly〉 = 111.2 rc and 〈Lz〉 =
35.0 rc, respectively, and both interfaces on both leaflets are flat. Unlike the
experimental situation, where only domains of spherical shape are observed,
there is no Laplace pressure because the interfaces are not curved and thus the
two phases coexist at the same vanishing lateral pressure.

Figure 3.16 shows the line fluctuation spectra for the two different ways of
averaging with two and four independent lines. In the inset, 〈|hq|2〉q2 is plotted
as a function of (qL)2. For small q this expression becomes linear and intercepts
the y-axis at kBT/λLz. The fits yield λ2 = 1.48 kBT/rc and λ4 = 1.24 kBT/rc

for two and four lines, respectively.
For small q both graphs in the fluctuation power spectrum of Fig. 3.16 asymp-

totically approach the same q−2 power law. This indicates that interface fluc-
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Figure 3.16: Power spectrum, 〈|hq|2〉, of the boundary line fluctuations calculated for
2 (solid) and 4 (dotted) independent interface lines with the standard mean error in
comparison to the value calculated from F (ΔS) (dash-dotted). The dashed grey lines
indicate the estimated value of the UV cutoff, qmax = 2π/a. Inset: 〈|hq|2〉 × q2 plotted
as a function of (qLz)2. For small q this function becomes constant and intersects
the y-axis at kBT/λLz. Reprinted with permission from Ref. 178. Copyright 2010,
American Institute of Physics.

tuations are correlated on large scales. At larger values of q the lines fluctuate
independently and, concomitantly, the high-q estimate of the line tension is
lower for the data extracted from four lines than for two lines. The graph
for qLz/2π > 4 shows clear deviations from the simple power law, which are
expected because the description of the line by the capillary wave Hamiltonian
breaks down on microscopic scales. Thus, Lz ≈ 35 rc is too small to observe
the expected scaling with q−2 over an extended q-range. We compute the final
result by taking the average of both values λ2 and λ4 and the average devia-
tion as the uncertainty. This yields our final estimate of the bare line tension,
λ = 1.36(12) kBT/rc.

Thermodynamic line tension

By taking the plateau value, Fslab = 151.0(5) kBT , from Fig. 3.11 we obtain the
thermodynamic line tension, σ = 2.16(1) kBT/rc. This value can be converted
to a bare line tension by solving Eq. (3.58) numerically for λ. We estimate the
value of the UV cutoff, a, graphically from the intersect of the q−2 power law
at small q and a constant fluctuation strength at higher q. We find qmax =
2π/a = 0.48 r−1

c , i.e., a ≈ 13 rc and thus nmax = 3. This leads us to λF =
1.55(1) kBT/rc, which is in good agreement with the estimate obtained from
the spectrum, λ = 1.36(12) kBT/rc.
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To illustrate the difference between σ and λF , we include in Fig. 3.16 the two
asymptotical power spectra arising from λF (dash-dotted line) and σ (dashed
line), when falsely inserted into Eq. (3.51). The former nicely describes the
measured fluctuation spectrum, whereas the latter deviates significantly. Thus,
there is a notable difference between σ and λF of approximately 30 % even for
the small system size considered in our simulation.

Using the previously determined conversion factor, Eq. (3.19), we get 5.2 pN
= 1 kBT/rc and find that our results, λ = 1.36(12) kBT/rc = 7.1(6) pN and
λF = 1.55(1) kBT/rc = 8.0(1) pN, show an excellent agreement with the
experimental order of magnitude, λ ≈ 10 pN.

3.3.3 Conclusions
The lateral demixing of multi-component lipid membranes into domains with
different compositions is an exciting phenomenon that is studied actively. The
simplest system that shows such a lateral heterogeneity is a single-component
lipid membrane at coexistence of two thermodynamic phases.

In this section we discussed the demixing behavior of lipids in the Lα and
the Lβ phase at coexistence. We studied two aspects which naturally arise at
discontinuous phase transitions: the occurrence of a line tension between fluid
and gel domains, and the shape of these domains that arises as a consequence
of the finiteness of our system.

The first part of this section dealt with the shape of the domains of the minor-
ity phase. We compared different regions in the free energy profile, F (ΔS), to
phenomenological expressions. The first half of F (ΔS), where the fluid phase
is the majority, follows the usual order of an undercooled, homogeneous phase,
a droplet, and finally a slab of the minority phase; the phenomenological ex-
pressions fit F (ΔS) very well. The second half shows the reverse order, but the
quantitative agreement of the expressions is slightly worse. This is attributed
to the onset of orientational order, which is not captured by the scalar order
parameter, ΔS.

In the second part of this section, we studied the line tension between fluid
and gel domains. We demonstrated that there are two different notions in a
two-dimensional system, the bare and the thermodynamic line tension, which
differ by a constant (here: 30 %) that depends on the length scale. This fact
seems to be widely unknown in the literature – both line tensions are often used
interchangeably. We obtained the bare line tension by recording the power
spectrum of line fluctuations and the thermodynamic line tension from the
plateau in F (ΔS). A conversion of the thermodynamic into a bare line tension
yields a good agreement of both methods and we found λ = 1.55(1) kBT/rc =
8.0(1) pN. This agrees very well with the order of magnitude, λ ≈ 10 pN, that
the experimentalists are observing for similar systems.
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4 Dynamic properties
“Biology was invented by God, physical
chemistry was invented by nice people, fluid
mechanics was invented by the devil.”

(Harden McConnell)

One of the central ideas of coarse-graining is to integrate out microscopic de-
grees of freedom of an atomistic description so that an efficient model suitable
for computer simulations is obtained. It has been shown in the previous chapter
that our model reproduces many thermodynamical, structural, and mechani-
cal properties of amphiphilic bilayers. However, the reduction of the degrees
of freedom has an important side effect. They act as a heat bath for the
mesoscopic degrees of freedom: they dissipate energy and create thermal noise.
Since many degrees of freedom have been integrated out in the coarse-grained
description, it is by no means clear that the coarse-grained dynamics still re-
sembles the actual one. In fact, the study of how coarse-graining affects the
dynamics is an active field that is emerging rapidly.

This chapter is devoted to the study of the dynamics of our model and is
written with two slightly different aims in mind. On the one hand we measure
many dynamic properties and compare them to their experimental counter-
parts. In this way we get an impression of the capabilities and shortcomings
of the model. On the other hand we look for systematic deviations from atom-
istic simulations which are caused by the coarse-graining or the thermostat.
We try to understand their origins and explain what could be done to mimic
the atomistic behavior in a coarse-grained model.

There are three sections: in Sec. 4.1 we study the motion of the amphiphiles
and try to shed some light on the recent discussion whether the amphiphiles
move like Brownian particles on short times or if they exhibit collective motion.
The next section, Sec. 4.2, focusses on the different mechanisms of dissipation.
In general, three such mechanisms exist in bilayer membranes. These are the
viscosity of the solvent, the surface viscosity of the bilayer, and the intermono-
layer friction. The first one is missing due to the lack of solvent in our model,
whereas the other two exist and are discussed in turn. Finally, we combine in
Sec. 4.3 the results of the first two sections and create a two-dimensional repre-
sentation of our model, which has the same lateral distribution functions and
the same dissipation constants. In this simplified representation we investigate
how the dynamics changes under the reduction of all intramolecular degrees of
freedom.
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4.1 Brownian vs. correlated motion

In recent years there has been much debate about the question how lipids
actually diffuse. The reason for this discussion is that different experimental
techniques, which probe the lipids’ lateral diffusion on different length scales,
yield diffusion coefficients that differ by two orders of magnitude. On the
one hand there are quasi-elastic neutron scattering experiments (QENS) that
probe the extreme short-range diffusion on a length scale of two lipid diameters;
they find apparent diffusion coefficients of D ≈ 102 μm2/s [238, 239]. On the
other hand there are techniques like fluorescence recovery after photobleaching
(FRAP), fluorescence correlation spectroscopy (FCS), and magnetic resonance
experiments that probe the diffusion over several micrometers; they find D ≈
1 μm2/s [240–244].

Initially, this discrepancy was explained by the “free-volume theory” with
a jump-diffusion model [245, 246]. At short times a lipid is confined to a
cage that is formed by the surrounding molecules. Its center of mass diffuses
within the confinement and this “rattling in a cage” is seen by the QENS
measurements as the fast diffusion. Occasionally a vacancy opens up within
the surrounding molecules that is large enough so that the lipid can jump from
its initial position into this vacancy. If the jump frequency is low enough one
obtains a slow random walk with the diffusion coefficient seen by FRAP or
FCS [247].

Although the free-volume theory is able to rationalize the experimental find-
ings, its predictions for intermediate times could not be verified with the avail-
able experimental setups at that time. Indeed, they turned out to be wrong
as soon as increased computing power became available and atomistic models
of lipid bilayers were studied [248–251]. Only a tiny number of jump events
were observed, and the long-range diffusive motion could not be explained by
them alone. Instead, it turned out that the motion in the intermediate regime
was much more involved and strongly collective [92, 252]. This led to the cur-
rent picture in which the lipids dynamically assemble to clusters with a size of
several nanometers and then diffuse collectively.

Since then, many simulation and experimental groups have been trying to
shed some light on this collective motion. In a prominent work Falck et al. per-
formed atomistic simulations of DPPC bilayers with 1152 and 4608 lipids for
up to 100 ns. They found no evidence for the free-volume theory, but instead
they observed a flow-like pattern of the centers of mass of the lipids. They
state that the “motion of lipids is correlated at least over tens of nanometers”
[92]. Since the flow pattern exhibits some similarities with the string-like mo-
tion that is observed in glass forming materials [253, 254], other authors tried
to understand this pattern by using mode-coupling theory [55], stretched ex-
ponential distributions [255], or other spatiotemporal displacement correlation
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4.1 Brownian vs. correlated motion

Figure 4.1: The picture shows
a top view of a lipid bilayer
(yellow, light blue) with the
trajectories (5000 τ) of eight
lipids that start next to each
other in the area marked with
the red arrow. Their long
time motion resembles a ran-
dom walk, but their interme-
diate motion is under active
discussion.

functions [222, 256]. Currently, there is only one QENS experiment showing
evidence of this flow motion [257].

The diffusion of lipids is not only restricted to the lateral direction, but they
can also tunnel through the bilayer and come out on the other side. This
diffusion in the normal direction, called “flipflop”, is a thermally activated
process and –due to the high energetic barrier– rare in synthetic membranes.1
A typical time between two flipflops is on the order of magnitude of 104 s per
lipid, i.e., it is much slower than any other process [258–260]. However, as
a result of the much softer interactions too frequent flipflops are a common
disease in many coarse-grained models [181, 261], so that this point deserves
special attention.

Besides the study of Brownian motion many other things can be learnt from
modern X-ray and neutron scattering experiments which yield the dynamic
structure factor, S(q, ω) [262–265]. With these techniques it is possible to
probe the lipid dynamics over several orders of magnitude in time and space.
S(q, ω) is also available from simulations [57, 266, 267], so that a detailed
comparison of the dynamics is possible. It is often interpreted in terms of the
Rayleigh-Brillouin scheme for simple liquids where three lines occur [197]. The
Rayleigh line at ω = 0 is related to the transport of heat and has a width
that is proportional to the thermal diffusivity of the system. The two Brillouin
lines at ω = ±ωB(q) are related to the propagation of sound, i.e., ωB(q) = csq

1The situation in biomembranes is more complex, because special proteins, “flippases”, exist
which are able to catalyze flipflops.
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where cs is the adiabatic speed of sound. Their widths are proportional to the
sound attenuation coefficient times q2. cs and the attenuation coefficient have
both been measured in experiments [263, 266] as well as in simulations [57],
and typical values for cs are around 1400 m/s (fluid phase) and 2300 m/s (gel
phase).

In this section we try to answer the question how the Brownian motion of the
lipids in our model looks like and which role the collectivity plays in this process
(see Fig. 4.1). In doing so we study many dynamic properties of individual
lipids as well as their collective motion in the fluid and the gel phase. First, the
diffusion coefficient of the lipids is calculated and used to establish a conversion
factor which relates the unit of time in our model, τ , to an experimental time
scale. We also investigate the performance of our model with respect to the
flipflops. Second, we calculate S(q, ω) to determine the dispersion relations and
hence the spectrum of collective excitations of the bilayer. The speed of sound
is extracted which serves as an upper boundary for all meaningful velocities.
The thermal diffusivity cannot be obtained from our simulations, because the
DPD thermostat flattens all temperature gradients. Since the Rayleigh line is
difficult to observe even in simulations without such a thermostat, we omit its
discussion in this work entirely. Finally, we unsuccessfully look for the flow
pattern and explain its absence in our model.

4.1.1 Methods

Mean-square displacement

One of two different methods is normally employed for measuring a diffusion
coefficient, D, in simulations. The idea of the first method, which goes back to
Einstein [268], is to measure the mean-square displacement (MSD), 〈(ri(t) −
ri(0))2〉, of an ensemble of equal particles labelled by the index i and then to
look at the limit of long times. In two dimensions the MSD is〈(

ri(t) − ri(0)
)2〉 = 4Dt, (4.1)

so that D can be computed by dividing the left hand side of Eq. (4.1) by 4t
and by taking the limit t → ∞.

However, the MSD is by itself an interesting function, because it visualizes
the particle’s motion on all time scales. Another analytically tractable limit is
the one of very short times. Here, each particle ballistically moves a mean free
path before a collision occurs. By using the equipartition theorem it can easily
be shown that 〈(

ri(t) − ri(0)
)2〉 = 2kBTt2/m, (4.2)

where m is the mass of the considered particle. The functional form of these
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4.1 Brownian vs. correlated motion

two limiting cases is universal, while the intermediate dynamics is non-universal
and depends on the interactions.

In this work we look at the lateral diffusion of amphiphiles in a bilayer.
Since the bilayer is soft, thermal undulations of the bilayer should be taken
into account which lead to a diffusion on a curved surface. Hence, Eq. (4.1)
is only an approximation for flat membranes. It has been shown by Reister
and Seifert that it is still a good approximation as long as the system is not
too large [269, 270]. Nevertheless, most particle-based simulation methods –
including our model– are currently unable to treat systems large enough for
curvature effects to become important. In our case the error is smaller than
5% and can be safely ignored.

Normally, one would expect the distribution of MSDs at a fixed time t to
be a Gaussian. However, it is well known from many studies of glasses, that
dynamic heterogeneities may exist, i.e., that there are certain mobile particles
which move faster than other, immobile ones. If such a dynamic heterogeneity
occurs, one sees a deviation from a Gaussian, specifically, one sees a flattening
of the distribution, i.e., it becomes more platykurtic. Therefore, an easy way
of detecting these dynamic heterogeneities is to look at the two-dimensional
non-Gaussianity parameter (NGP) [271, 272],

α(t) =

〈(
ri(t) − ri(0)

)4〉
2
〈(

ri(t) − ri(0)
)2〉2 − 1, (4.3)

which is zero for a Gaussian and positive for a platykurtic distribution.
The MSD as well as the NGP must be sampled over several orders of mag-

nitude to bridge the ballistic and the diffusive limits. A calculation of these
quantities at every instant of time is not only computationally demanding, but
often unnecessary. In this work we use an “order-n” algorithm that calculates
them equidistantly on a logarithmic time scale and that automatically leads to
an average over uncorrelated samples [273].

Velocity autocorrelation

The second method for calculating D goes back to Green and Kubo (GK)
who found a general method for computing friction and transport coefficients
like diffusivities, heat conductivities, or viscosities. The idea is to measure
the velocity autocorrelation function (VACF), 〈vi(t) · vi〉, and to extrapolate
carefully its time integral to infinity. It can be proven that it is equivalent to
the Einstein method and that both produce the same results.2 Here, we use

2It seems that the Einstein method is generally preferred for computing D, because the
time integration over the velocities is already done by the simulation so that the obtained
results have a smaller statistical error.
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the relation [197]

D = 1
2

∞∫
0

dt 〈vi(t) · vi〉 . (4.4)

From a theoretical point of view, this quantity is ill-defined, because it can
be shown analytically that 〈vi(t)·vi〉 decays for long times like t−d/2, where d is
the dimensionality [274, 275]. For d = 2 this leads to a logarithmic divergence
of D. However, a bilayer is not a strict two-dimensional object, so that it
remains an open question with which exponent these long-time tails really
decay. Even in our longest simulations, as well as in the experiments cited
above, no divergence is observed, and we decided to ignore this issue.

Similar to the MSD, it is sufficient to calculate the VACF on a logarithmic
time scale, thereby applying the order-n algorithm once more.

Intermediate scattering function

Concerted motion is only detectable if one inspects dynamic correlations be-
tween several beads or molecules. The simplest approach is to look at correla-
tions between two points (r, t) and (r′, t′) in space and time, but sometimes –for
instance in the study of dynamic heterogeneities in glasses– it is also necessary
to study higher order correlators [276, 277]. Here we restrict the discussion
to two-point correlation functions, which simplifies the comparison with scat-
tering experiments. Our starting point is the time-dependent local density of
particles of type α,

ρα(r, t) =
∑

i

δT (i)α δ (r − ri(t)) , (4.5)

where T (i) denotes the type of particle i, and δαβ is the usual Kronecker delta.
Its spatial Fourier transform is given by

ρα(q, t) =
∑

i

δT (i)α e−iq·ri(t). (4.6)

where q is a wave vector commensurable with the periodic boundary conditions
in the lateral direction. The autocorrelation function, F α(q, t), of the Fourier
components of the density, ρα(q), is called the intermediate scattering function
(ISF) and is the standard tool for the investigation of relaxation processes on
all time and length scales [197]. For an ensemble of n × N beads it is defined
by
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4.1 Brownian vs. correlated motion

F α(q, t) = 1
nN

〈ρα(q, t) ρα(−q, 0)〉

= 1
nN

〈
nN∑
i=1

nN∑
j=1

δT (i)α δT (j)α e−iq·
(

ri(t)−rj(0)
)〉

, (4.7)

and for t = 0 it is identical to the static structure factor, G(q), defined in
Eq. (3.5). Even though F (q, t) is easy to obtain in simulations, most scattering
experiments do not yield F (q, t), but instead its temporal Fourier transform,
the dynamic structure factor,3

Sα(q, ω) =
∞∫

−∞

dt F α(q, t) e−iωt. (4.8)

We also define the ISF for the centers of mass of the molecules as

F com(q, t) = 1
n

〈
n∑

i=1

n∑
j=1

e−iq·(Ri(t)−Rj(0))
〉

, (4.9)

where Ri(t) denotes the center of mass position of molecule i at time t.
A closely related quantity is the density current,

jα(r, t) =
nN∑
i=1

δT (i)α ui(t) δ (r − ri(t)) , (4.10)

for particles of type α. As before, its spatial Fourier transform is

jα(q, t) =
nN∑
i=1

δT (i)α ui(t) e−iq·ri(t). (4.11)

The longitudinal current correlation function, Cα
� (q, t), is defined similarly to

F α(q, t), and it can be shown easily that both are closely connected [197],

Cα
� (q, t) = 1

nN
〈jα(q, t) · jα(−q, 0)〉

= − d2

dt2
1

nN
〈ρα(q, t) ρα(−q, 0)〉

= − d2

dt2 F α(q, t). (4.12)

For later use we also need the Fourier transform of Cα
� (q, t) in the time domain,

3To calculate this integral it is assumed that F (q, t) is an even function in t.
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Jα(q, ω). A quick look at Eq. (4.12) shows that it is related to the dynamic
structure factor by

Jα(q, ω) =
∞∫

−∞

dt Cα
� (q, t) e−iωt = ω2Sα(q, ω). (4.13)

For convenience, we also define the sums of the previous quantities over all
particle types as

ρ(q, t) =
∑

α

ρα(q, t), (4.14)

F (q, t) = 1
nN

〈ρ(q, t) ρ(−q, 0)〉 , (4.15)

S(q, ω) =
∞∫

−∞

dt F (q, t) e−iωt, (4.16)

J(q, ω) = ω2S(q, ω). (4.17)

At this point a technical remark on the numerical evaluation of Eqs. (4.14-
4.17) is in order. Since we are interested in the short as well as in the long
time behavior of F (q, t), a high sampling rate for the configurations over a
long interval is needed. Instead of saving the full configuration {ri(t)} every
few integration steps, we decided to save only the Fourier components, ρα(q, t),
which saves some time and disk space. Furthermore, we are interested in the
range of small to intermediate q, thus a large number of wave vectors is needed.
Hence, it becomes very inefficient to calculate ρα(q, t) for every q and every t
individually.

A faster method for computing the ρα(q, t) is needed. In our case this
is achieved by a Fast Fourier Transform (FFT). The two-dimensional FFT
calculates the Fourier transform on a discrete set of points in real space with
periodic boundary conditions and yields a discrete set of Fourier components,
that are commensurable with the periodic boundary conditions. Therefore it
is necessary to obtain a discretized representation of the density first, in which
the particles are smeared over one or more grid points. Then it is possible to
evaluate ρα(q, t) for all q at once. It should be mentioned that this method
of calculating ρα(q, t) is –from a technical point of view– very similar to the
calculation of the electrostatic potential with the Particle-Mesh-Ewald (PME)
method that is frequently used in MD for the study of Coulomb interactions
[38, 39].

Specifically, we used the assignment function devised by Essmann et al.,
where a very fine grid is needed and cardinal B-splines of fourth order are used
to smear each particle over 4 × 4 grid points [38]. Here we use typical grid
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sizes of 128 × 128 or 256 × 256 for a box length of ∼ 30 rc. The FFT is then
calculated with the FFTW library. Although this algorithm is very efficient,
there are two sources that cause anisotropies in the data at high q. First, there
is the underlying grid that destroys rotational and translational invariance on
the length scale of the lattice spacing completely. Second, the assignment
function is also not rotationally invariant. Since we are only interested in the
regime of small to medium q, we did not try to fix these issues. However they
can be attenuated by using higher order B-splines or even finer discretizations
of the grid.

4.1.2 Results I: Brownian motion

Before turning to the collective motion, we focus on the individual motion. In
this section three different systems with κN = 100, χN = 30 are studied. The
first one, ρ̄∗ = 17, is below the main phase transition and in the gel phase (Lβ),
while the second, ρ̄∗ = 18, and the third, ρ̄∗ = 40, are in the fluid phase (Lα).
The systems with ρ̄∗ = 17 and 18 mimic lipidic membranes, whereas the system
with ρ̄∗ = 40 mimics polymeric membranes. Each system contained n = 4680
amphiphiles with N = 16 beads, and was simulated for 5−8×104 τ in the NVT
ensemble using the standard DPD thermostat with γ = 0.5. Preequilibrated,
tensionless bilayers were used as initial configurations. Measurements of the
MSD, the NGP, and the VACF were done every 0.02 τ .

Mean-square displacement

Figure 4.2 depicts the MSD of the beads averaged over all types and the MSD
of the centers of mass as a function of time, as well as the running exponents.
Four different regimes can be distinguished for the beads, and three different
ones for the centers of mass. They are discussed in turn.

At very small times there is the ballistic regime with 〈(ri(t) − ri(0))2〉 ∼ t2

for the beads as well as for the centers of mass. The source of this regime
is the inertia of the interacting particles and the discrepancy between these
two arises only from the different masses. The observation of this regime is
consistent with all experiments and Eq. (4.2) yields a perfect fit.

At t ≈ 0.1 τ there is a first crossover in the dynamics of the beads to a second
regime scaling linearly with t. This regime is clearly visible from the running
exponent in the interval 0.4 τ < t < 1.6 τ and should not be confused with
the freely diffusive one at long times, though it has the same scaling exponent.
On this time scale the beads have already suffered collisions with other beads,
but they have not yet realized that they are a part of a larger entity. Since the
interactions are weak, the stochastic forces of the thermostat outweigh the non-
bonded interactions and a net random force remains, which leads to a diffusive
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Figure 4.2: Middle: lateral MSD of the beads (open symbols) and of the centers of
mass (filled symbols) for ρ̄∗ = 17, 18 and 40. The dashed lines mark fits to the ballistic
and diffusive regimes for the centers of mass at short and long times, respectively.
Top: running exponent of the beads’ MSD. The dashed-dotted, gray line denotes
unity. Bottom: the NGP, α, for the same systems.
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4.1 Brownian vs. correlated motion

motion of the beads around the center of mass of their molecule. Hence, this
regime is a consequence of the thermostat and therefore the plateaus of all three
MSD curves coincide. The regime is seen neither in the MSD of the centers of
mass, nor in atomistic models.4

For t > 3 τ a second crossover shows up. This is where the beads realize that
they cannot diffuse freely and the molecule has to diffuse as a whole, so that this
regime is a consequence of the molecular connectivity. The MSDs of the beads
and of the centers of mass become subdiffusive with 〈(ri(t) − ri(0))2〉 ∼ tβ, β <
1. Qualitatively, this is similar to the Rouse model in polymer dynamics [279],
although we do not observe the predicted exponent β = 1/2. In an atomistic
MD study Flenner et al. have tried to compute the scaling exponent and ended
up between β = 0.427 and β = 0.677 [55].

For even longer times, t > 300 τ , the beads acquire the diffusion coefficient
of the centers of mass, D, which is dominated by the friction of the DPD
thermostat. For ρ̄∗ = 18 and ρ̄∗ = 40 this leads to a free diffusion, as it is
described by Eq. (4.1). Here we obtain D = 7.28 × 10−3 r2

c /τ (ρ̄∗ = 18) and
D = 19.3 × 10−3 r2

c /τ (ρ̄∗ = 40), respectively. For ρ̄∗ = 17 the molecules stay
where they are and start to move only on much longer time scales. Although
it is difficult to measure, we obtained D = 2.6(1)×10−7 r2

c /τ for the gel phase.
This result is three to four orders of magnitude smaller than in the fluid phase,
but this ratio is in excellent agreement with experimental studies.

The NGP, α(t), differs by approximately two orders of magnitude between
the beads and the centers of mass (see Fig. 4.2, bottom). For the former α(t)
rises continuously from zero to a maximum at t = 2 − 3 τ , where α = 0.5
(ρ̄∗ = 40), 1.1 (ρ̄∗ = 18), and 2.9 (ρ̄∗ = 17). The maximum is located at
the second crossover (from the diffusive to the subdiffusive regime), which
indicates that a broad distribution of MSDs exist. Qualitatively this can be
understood by remembering that α(t) was calculated by averaging over all
beads, regardless of their type. Of course, the hydrophilic beads in the head
groups are more mobile than the hydrophobic ones in the interior. Here, the
different mobilities become very pronounced and lead to the maximum of the
NGP. In the fluid phases α decays, because on larger time scales the motion of
the whole amphiphiles dominates. However, in the gel phase the hydrophobic
tails are at rest, but the head groups are still mobile. Therefore the distribution
of the MSDs is essentially frozen and α remains constant for ρ̄∗ = 17.

The NGP for the centers of mass is two orders of magnitude smaller than
for the beads. Although there is a maximum at t = 5 − 6 τ , the NGP is always
smaller than 0.06. In other two-dimensional systems of glass forming liquids α
is typically much larger, e.g., α = 0.6 [272] or α = 0.5−2 [280, 281], so that our
distribution of the MSD is virtually always Gaussian. These findings already
rule out the possibility of having any significant dynamic heterogeneities.

4see for instance [55, 278]
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Figure 4.3: Top: VACF for the centers of mass of the two systems in the normal and
in the lateral direction. Bottom: running time integral over the VACF for the lateral
direction. Apparently, the integrals converge and the limiting value gives the lateral
diffusion coefficient (see Eq. (4.4)). The diffusion coefficients obtained from the MSD
are indicated as dashed lines.

Velocity autocorrelation

We continue the discussion of the Brownian motion with the VACF that gives
an independent estimate of the diffusion coefficient via Eq. (4.4). The upper
panel of Fig. 4.3 shows the VACF of the centers of mass in the lateral, but also
in the normal direction for the two systems in the fluid phase. For t = 0 they all
start at the squared thermal velocity v2

th = kBT/N . After an initial exponential
decay the lateral VACF for ρ̄∗ = 18 kinks at t = 0.2 τ . This is the time when the
ballistic regime of the beads ends and crosses over to the first diffusive regime.
After this time the first beads of an amphiphile have hit a nearby molecule
and their velocities change the sign and decorrelate. This kink is unseeable
for ρ̄∗ = 40, because of the higher bead density. At t = 1.53 τ (ρ̄∗ = 18) or
t = 1.97 τ (ρ̄∗ = 40) the VACF crosses zero and changes its sign. This can
be conceived as the collision time between two amphiphiles. At this time the
center of mass of the molecule springs back and the VACF decreases further
until it reaches its minimum at t = 2.6 τ (ρ̄∗ = 18) or t = 3.3 τ (ρ̄∗ = 40). At
this time most of the beads have already collided with other molecules so that
the VACF rapidly decays and only the long time tail remains.
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4.1 Brownian vs. correlated motion

The integrated VACF (lower panel of Fig. 4.3) shows a maximum where the
VACF crosses zero for the first time, but then converges to a plateau whose
value equals D. We find D = 0.0075 r2

c /τ (ρ̄∗ = 18) and D = 0.0198 r2
c /τ

(ρ̄∗ = 40). Both are in very good agreement with the diffusion constants
obtained earlier from the MSD. A premature plateau indicating the “rattling
in a cage” motion –as it is obtained from QENS experiments– is not seen. This
is in line with the discussion of the MSD and shows that there is no small time
scale in our model where the amphiphiles are confined. The convergence of the
integrals to the same value as before indicates that there is no diverging long
time tail in the VACF. Even though statistics are bad for long times we have
the impression that a t−3/2 power law fits better than a t−2/2 power law.

The normal component of the VACF decorrelates approximately as fast as
the lateral component, but it shows some oscillatory behavior stemming from
the confinement in the normal direction. At the center of the bilayer the
amphiphiles collide with the molecules from the other leaflet, whereas they are
dragged back into the bilayer by the attractive interactions of their own leaflet
if they move too far to the outside. This up and down motion is closely related
to the protrusion modes that can be seen in the height fluctuation spectrum
at high q [191, 282]. For both systems we find roughly the same frequency
ω = 3.8 τ−1.

Flipflop

During the simulations we also looked for flipflop events in the fluid phase. To
this end the normal positions of the centers of mass of the hydrophilic head
groups, xh

i (t), and of the hydrophobic tails, xt
i(t), for all molecules i and for

all snapshots taken at time t have been calculated. If xh
i (t) > xt

i(t) a lipid is
considered to be on the upper leaflet, otherwise on the lower leaflet. In our
definition a flipflop event takes place, if (xh

i (t) − xt
i(t)) switches its sign and

keeps this new sign for at least 10 τ . This is a rather mild condition, if one
keeps in mind that a flipflop would normally lead to a permanent change of the
molecule’s leaflet. However, even with this criterion we were unable to detect
a single flipflop event neither for ρ̄∗ = 18 nor for ρ̄∗ = 40. Thus, we cannot
give a numerical value for the flipflop rate, r, of our model, but only a lower
boundary,5

r � 2.67 ×−9 τ−1 ≈ 3 s−1. (4.18)

If one keeps in mind that thermally activated flipflops naturally happen with
a rate r ≈ 10−5 s−1, then our result is compatible with the experimental
observation. However, our coarse-grained model is unable to reach these time
scales, and therefore we conclude that flipflops are so rare in our model, that
they can be safely neglected.

5where the conversion units for ρ̄∗ = 18 have been used, see below.
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4 Dynamic properties

Mapping of time scales

A comparison of D with experimental results (for long times) can be used
to map the unit of time in our model. Typical values in lipid membranes
are around D = 5 μm2/s. A comparison with the result for ρ̄∗ = 18, D =
7.3 × 10−3 r2

c /τ , and the previously mapped unit of length, 1 rc = 0.78 nm (cf.
Eq. (3.19)), thus yields

1 τ = 0.89 ns (ρ̄∗ = 18). (4.19)

For the polymeric membrane, ρ̄∗ = 40, we obtained D = 19.3 × 10−3 r2
c /τ

which corresponds to 0.1 μm2/s and 1 rc = 2.6 nm (cf. Eq. (3.20)), hence

1 τ = 1.3 μs (ρ̄∗ = 40). (4.20)

These two numbers serve as conversion factors for the unit of time in the models
with ρ̄∗ = 18 and ρ̄∗ = 40, respectively.

4.1.3 Results II: correlated motion

We now turn to the study of collective dynamical phenomena in lipid bilayers
where many molecules move in unison. We start at the largest length scales and
then advance down to the scale of single molecules. The quantities of interest
are the intermediate scattering function, F (q, t), or the dynamic structure fac-
tor, S(q, ω). The former one is easier to obtain in simulations, while the latter
one is the typical quantity obtained from time-resolved scattering experiments.

Speed of sound

On the largest time and length scales the bilayer behaves like a continuum
and hydrodynamic equations apply. Hence, it is possible to study collective
excitations, like propagating waves, dispersion relations, etc. in the framework
of generalized hydrodynamics. These phenomena are interesting by themselves,
but they also serve as a physical check for F (q, t) and S(q, ω).

We start the discussion with an estimation of the speed of sound, cs, of the
bilayers in our model. This speed marks the upper boundary for all mean-
ingful velocities, but particularly for the velocity of flowing, hypothetical lipid
clusters. A first crude approximation of cs in the liquid phase can be obtained
from the isothermal compressibility, κT , the molecular number density, ρc, and
the molecular mass, m, by the relation cs = 1/

√
κT ρcm. The product of the

isothermal compressibility with the molecular density of the bilayer’s hydropho-
bic interior has already occurred earlier in the definition of κN (cf. Eq. (2.7)).
Since the mass of a single bead is unity in our units and only the hydrophobic

90



4.1 Brownian vs. correlated motion

beads participate in the sound propagation (which is shown below), m equals
the number of hydrophobic beads, i.e., m = 12. Hence,

cs = 1
√

κT ρcm
=

√
κN × kBT

m
=
√

100
12

rc

τ
≈ 3 rc

τ
, (4.21)

irrespective of the other model parameters. Transferred into physical units,
this corresponds to cs ≈ 3 m/s (ρ̄∗ = 18) or cs ≈ 0.01 m/s (ρ̄∗ = 40), which is
–even compared with the tiny value of air, cs = 340 m/s– ridiculously small.
This deficiency results from the fact that the non-bonded interactions are too
soft, i.e., κN is too small. Nevertheless, this estimate already provides a first
glimpse of what one can expect from the simulations.

A more accurate estimate of cs can be obtained from the position of the
maximum in the longitudinal current correlation function, J(q, ω) [57, 197]. If
more than a single maximum shows up, then there are multiple longitudinally
propagating dispersion relations.6

Here we compute S(q, ω) from long simulation runs of Δt = 12000 τ where
ρ(q, t) was computed every 0.02 τ , so that a trajectory of 3 × 105 equidistant
samples was obtained. This trajectory was blocked into overlapping intervals
with each one having 5 × 104 data points. Every interval started 1 × 104 data
points later than its predecessor. For obtaining S(q, ω) we first calculated
F (q, t) in each interval, performed a Fourier transform in the time domain,
and finally averaged over all intervals. F (q, t) was computed using the same
recipe just omitting the Fourier transform. This intricate averaging procedure
is necessary, because S(q, ω) and F (q, t) are very noisy quantities, and a single
computation lacked the desired accuracy.

Figure 4.4 shows J(q, ω) (sum of all beads), JA(q, ω) (only hydrophobic
beads), and JB(q, ω) (only hydrophilic beads) of the fluid phase (ρ̄∗ = 18). In
general three different peaks show up which lead to three different propagating
dispersion relations, ωi(q), i = 1, 2, 3 (inset of Fig. 4.4). ω1(q), is defined by
the position of the first peak in JA(q, ω) (green dots). It has a linear dispersion
over the whole interval we studied and a linear fit yields,

ω1(q) = c1 × q, c1 = 0.81 rc/τ. (4.22)

A careful analysis revealed that the corresponding peak in S(q, ω) has a Lo-
rentzian shape, but that its FWHM scales approximately with q.

The hydrophilic heads possess a very similar dispersion relation, and we
define ω2(q) as the position of the first peak in JB(q, ω). It coincides with
ω1(q) for qrc > 1, but bends upwards for smaller q. One gets the impression,
that it does not even cross the origin, which would mean that this dispersion

6Peristaltic or undulatory waves do not show up because of their transverse character.
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Figure 4.4: The main panel shows J(q, ω) (black), JA(q, ω) (red), and JB(q, ω) (green)
for ρ̄∗ = 18 (Lα phase) and qrc = 0.694 on a logarithmic scale. Here, three propagating
modes can be identified: The first peak at ω1τ = 0.68 stems from the hydrophobic
tails and has a linear dispersion, ω1(q), over the whole interval we studied (inset,
green line). The hydrophilic heads possess a very similar dispersion relation, ω2(q),
that collapses with ω1(q) for qrc > 1, but that splits off below (inset, red dots). The
corresponding peak in the main panel is located at ω2τ = 0.86. Finally, there is a third
peak at ω3τ = 2.7 which leads to another linear dispersion relation, ω3(q). This is the
sound mode and the slope of the black dots in the inset gives the speed of sound, cs.
The arrow in the inset marks the q-value of the main panel.
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4.1 Brownian vs. correlated motion

relation is not based on a conservation law. It seems that on small scales ω1(q)
and ω2(q) are the same or do not interact, but that they start to repel each
other at qrc ≈ 1, where ω2(q) splits off. However, this splitting off can only be
detected if JA(q, ω) and JB(q, ω) are analyzed, but not the total correlation
function, J(q, ω).

An explanation for the branches, ω1(q) and ω2(q), is currently still missing.
We think that this is some kind of collective excitation where the beads of many
lipids perform some internal motion coherently, similar to what one knows from
atoms in a crystal with basis.

A third peak shows up at larger q in JA(q, ω). For qrc > 1 it has a linear
dispersion, for qrc < 1 it bends also upwards. This time the width of the
Lorentzian peak in S(q, ω) scales in the linear regime very well with q2 (not
shown) and we obtain

ω3(q) = c3 × q, c3 = 4.09 rc/τ (ρ̄∗ = 18). (4.23)

It is well known that the dispersion relation of sound waves reads ω = csq, and
that the widths of the corresponding Lorentzian peaks in S(q, ω) are propor-
tional to q2 [197]. Therefore, we conclude that we have identified the disper-
sion relation of sound waves as ω3(q) and that the speed of sound is given by
cs ≡ c3 = 4.09 rc/τ . This is in good agreement with the rough estimate given
in Eq. (4.21).

Finally, we calculated J(q, ω) also for the gel phase (ρ̄∗ = 17). We identify
the same three peaks, which correspond again to three propagating dispersion
relations ωi(q). We start with the obvious case, ω3(q) (black dots in the inset),
which has a linear dispersion and a quadratic dependence on q of the peak’s
width in S(q, ω). We obtain the speed of sound,

ω3(q) = c3 × q, c3 = 6.77 rc/τ (ρ̄∗ = 17). (4.24)

This value is a factor of 2 larger than the rough estimate for the fluid phase
in Eq. (4.21). This is reasonable, because it is well known that the speed of
sound is larger in ordered structures than in fluids.

The other two dispersion relations, ω1(q) (green dots) and ω2(q) (red dots),
are somewhat different than before: ω2(q), the peak in JB(q, ω), is more pro-
nounced but advances with q very slowly. In fact, we find an empirical depen-
dency

ω2(q) = 1.02 × (qrc)1/4. (4.25)

An extrapolation of the branches ω2(q) and ω3(q) indicates that the two branch-
es might cross at qrc ≈ 0.08, i.e., at a length scale around 80 rc. Unfortunately
the system under study is too small for observing what happens at this point.

The last dispersion branch of the hydrophobic beads, ω1(q), is difficult to
track and ceases to exist for qrc � 1. Up to this point it roughly follows ω2(q).
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Figure 4.5: The main panel shows J(q, ω) (black), JA(q, ω) (green), and JB(q, ω) (red)
for ρ̄∗ = 17 (Lβ phase) and qrc = 0.359 on a logarithmic scale. Three propagating
modes can be identified: The first peak at ωτ = 0.79 stems from the head groups
and has a dispersion relation ω2 ∼ q1/4 (inset, red line). Next there is a smaller
peak at ω1τ = 1.10 stemming purely from the tails, but not exclusively from the
trailing beads. Its dispersion is very noisy and ceases before crossing ω2(q) (inset,
green squares). The third mode at ω3τ = 2.47 is the sound or Brillouin mode with a
linear dispersion, ω3 ∼ q (inset, black line). The arrow in the inset marks the q-value
of the main panel.
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Structural relaxation

Another collective phenomenon is the structural relaxation of the lipids’ lateral
coordination, i.e., the time decay of the intermolecular packing peak in the
static structure factor, G(q). This has been the topic of several time-resolved
scattering experiments and it is generally accepted that two decay processes
are involved, a fast and a slow one [257, 265]. Here we analyze the initial decay
of F (q, t)/F (q, 0) for ρ̄∗ = 18 and ρ̄∗ = 40 in the time interval 0 < t < 30 τ
and the q-interval 5 < qrc < 13. We use the same results as before and employ
a phenomenological fitting function,

f(t) = A1e−t2/2s2 + A2e−t/τi , (4.26)

where the Gaussian component accounts for random thermal fluctuations and
all fast processes; the exponential term takes care of the slow structural relax-
ation. F (q, t)/F (q, 0) is fitted for each q-vector with four fitting parameters:
A1, A2 are dimensionless prefactors and τi, s are characteristic time scales for
each decay. The sum A1 + A2 serves as a test for the quality of the fit and its
value should be in all cases around unity.7 Smaller values of q cannot be fitted
with this approach, because of the oscillatory behavior of F (q, t) as a function
of t coming from the propagating waves. This is particularly severe in the gel
phase where propagating waves make F (q, t) strongly oscillatory even for high
q.

The obtained fitting parameters are displayed in Fig. 4.6 as a function of qrc

for both systems. The sum of the prefactors, A1 + A2, is nearly constant and
always deviates from unity by less than 7%. A multiplication of each prefac-
tor with G(q) yields a decomposition of the packing peak into two differently
decorrelating components (upper row in Fig. 4.6). It turns out that the expo-
nentially decaying one has the largest contribution to the peak (∼ 75%), and
that the longest relaxation times τi ≈ 1.06 τ (ρ̄∗ = 18) and 0.48 τ (ρ̄∗ = 40)
coincide with the position of the peak at qrc ≈ 9.3. The Gaussian component
has its maximum contribution at slightly smaller q, i.e., qrc = 8.3 (ρ̄∗ = 18)
or 8.1 (ρ̄∗ = 40) and its maximum decay time, s, at qrc = 9.0 (ρ̄∗ = 18 and
ρ̄∗ = 40). The peak in G(q) mainly originates from the hydrophobic beads (cf.
Sec. 3.1.4), so that the exponentially decaying contribution can be attributed
to the relaxation of the lipids’ tails. The Gaussian component stems from the
tails as well as from the heads.

Looking at the amplitude of the exponentially decaying component, A2, one
gets the impression that it is a single peak overlaid with a second exponentially

7It is always slightly larger than unity, because the initial decay on the scale of the integration
time step of any time correlation function is Gaussian due to the microscopic reversibility
of the integration algorithm. Ignoring this Gaussian decay and directly assuming an
exponential decay leads to a small overestimation of the initial amplitude.
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Figure 4.6: Structural relaxation of the fluid phase at ρ̄∗ = 18 (left) and ρ̄∗ = 40
(right) obtained by fitting F (q, t)/F (q, 0) to Eq. (4.26). Top: static structure factor,
G(q) = F (q, 0), of the fluid phase (blue) with the packing peak reflecting the char-
acteristic length scale that separates two amphiphiles. The amplitudes of the two
components, A1(q) and A2(q), (black, red) are scaled with G(q) so that the absolute
contributions to the scattering intensity become visible. G(q)×(A1(q)+A2(q)) (dashed
gray line) agrees very well with G(q). Bottom: relaxation rates, s, τi, (black, red).
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decaying process at smaller q. One does not get the impression that this peak
continues to smaller q, which would be essential for a longer ranged correlation
in space and time. Instead, if the second process is ignored, the peak looks like
a Lorentzian. Its width, Γ, gives an estimate of the correlation length, ξ � Γ−1.
We find ξ18 ≈ 1/1.52 rc = 0.66 rc (ρ̄∗ = 18) and ξ40 ≈ 1/2.00 rc = 0.50 rc

(ρ̄∗ = 40).
If we compare the obtained time and length scale of this relaxation process

with the neutron scattering results from Rheinstädter et al., we find partial
agreement: they state that “the lipid tails displacements are correlated for at
least four lipid diameters between t1 [=2.5 ps] and t2 [=1.1 ns]” [265]. In the
lipidic system, ρ̄∗ = 18, we find a similar time scale τi ≈ 1.05 τ = 0.93 ns,
but a shorter correlation length ξ18 = 0.5 nm, which is approximately only
one lipid diameter. This means that the time scale agrees very well, but that
the spatial extension of dynamic correlations is significantly shorter than in
experiments. It is in any case much shorter than the 10 nm found by Falck et
al. using atomistic MD [92]. Thus after moving a lipid diameter, each molecule
has already forgotten about its previous situation. In case of the polymeric
system, ρ̄∗ = 40, we find τi ≈ 0.48 τ = 0.62 μs.

Flow motion

We now turn to the correlated motion of the centers of mass and to the dis-
cussion of the flow pattern that Falck et al. observed. Since this pattern has
been observed in atomistic MD on a length scale of 10 nm and a time scale of
10 ns, we need a larger system than before, but we do not need to simulate it
for a long time. Here, we report the simulation results of a system with now
n = 74880 lipid molecules and a box length of Ly = Lz = 144.814 rc ≈ 113 nm.
The interaction parameters are the same as before, but now we focus on lipid
bilayers with ρ̄∗ = 18. The system has been assembled from preequilibrated
pieces of tensionless bilayers and has been simulated for 3600 τ .

A direct visualization of the center of mass displacements, as it is shown
by Falck et al. [92], is in our case inconclusive because the displacements are
blurred by a lot of thermal noise, and averaging over different snapshots is
unhelpful since 〈vi〉 = 0. Therefore we omit the discussion of such displacement
maps and concentrate on the study of F com(q, t) in which all intramolecular
motion is left aside.

To analyze the data we take the idea from Busch et al. that the lipid clusters
move ballistically on the time scale of 1 ns [257]. This motion is similar to that
of beads at very short times before they suffer collisions (cf. Eq. (4.2)), but
with a velocity v0 � vth. The expected collective motion manifests itself as a
Gaussian distribution in q as well as in t,

97



4 Dynamic properties

0.25

0.50

0.75

1.00
σ-1

 [ 
τ-1

 ]

0.2

0.4

0.6

0.8

1.0

A

0.0 0.5 1.0 1.5
qrc

0.1

0.2

0.3

G
(q

)
σ-1~ q
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F com(q, t) ∼ exp
(

−q2v2
0t2

2

)
. (4.27)

To find this motion, we fitted F com(q, t)/F com(q, 0) for every wave vector q
to the sum of a Gaussian and an exponential decay,

F com(q, t)
F com(q, 0) � A(q) exp

(
− t2

2σ(q)2

)
+ [1 − A(q)] exp

(
− t

t0(q)

)
, (4.28)

with a variance σ(q)2, an amplitude A(q), and an arbitrary decay time t0(q)
in the time interval 0 . . . 10 τ . The exponential decay is included to cover other
non-Gaussian decays at short times as well. A comparison of Eq. (4.28) with
Eq. (4.27) shows that one expects σ−1 = qv0 in the region where clusters move
ballistically. In other words the decay time, τq = 1/(qv0), of the corresponding
modes of the ISF grow linearly with increasing size, Δx = 2π/q, i.e., τq ∼
1/q ∼ Δx.

The fitted σ−1(q) and A(q) are shown in the upper panel of Fig. 4.7, the
lower panel depicts G(q). The fits succeeded for all but the smallest q, where
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4.1 Brownian vs. correlated motion

the time interval was probably too narrow for observing a Gaussian decay.
The expected scaling, σ−1 ∼ q, holds in the interval 0.125 < qrc < 0.38; for
qrc > 1.0, σ−1 first levels off and then decreases slowly. Interestingly, the
matching interval roughly coincides with a small dip in G(q) between q = 0.3
and 0.5 r−1

c , which indicates the existence of structures on this length scale.
The broad nature of this dip shows that these have a size between 12 and 21 rc

(9 - 16 nm).
We fitted a line through the origin to σ−1 in the first interval and obtained

v0 = 0.8 rc/τ = 3.2 vth. This velocity is a factor of five smaller than the speed
of sound (Eq. (4.23)), but it is still a factor of three larger than the thermal
velocity. According to the Maxwell-Boltzmann statistics the probability of
finding a lipid with a velocity ‖vi‖ ≥ v0 is around 0.1%. This means that there
are by far not enough lipids in the membrane to form ballistically moving
clusters of such a size. Hence, the motion is too fast for being a flow conveying
lipids.

A possible explanation for these findings comes from the unidentified prop-
agating branch of the dispersion relation, ω1(q), Eq. (4.22): the velocity v0
matches nicely the velocity c1 = 0.81 rc/τ found earlier. The observed dip
in G(q) gives us a rough estimate of the typical wave length of this collective
excitation.

4.1.4 Conclusions
The overall goal of this long but important section was to answer the question
if our model is able to shed some light on the recent discussion of the lipids’
diffusion process. To this end we have discussed many dynamic properties of
the fluid and the gel phase. The discussion started with the motion of individual
beads and lipids by inspecting the mean-square displacement. The MSD has
many of the features (a ballistic, a subdiffusive regime, and a freely diffusive
regime) that are also seen in atomistic simulations, but the DPD thermostat
modifies the bead’s dynamics on short time scales. We do not find evidence
for a jump-diffusion like motion. The discussion of the velocity autocorrelation
function also showed that there is no “rattling in a cage” motion of the lipids.

We continued the discussion with the non-Gaussianity parameter and found
that the only noteworthy dynamic heterogeneity comes from the difference of
the heads and the tails, which is not of particular interest. In case of the centers
of mass, there was hardly any deviation from a Gaussian distribution of the
mean-square displacements, so that we can rule out the possibility of having
dynamic heterogeneities or some kind of string-like motion in our model.8 All
lipids diffuse roughly at the same time scale.

8We did observe dynamic heterogeneities in some non-equilibrium situations, like the spin-
odal decomposition of a gel phase into a fluid phase.
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After this first part of the discussion it was already clear that the motion of
the lipids is more like that of polymers in a dense melt, where collective effects
are of minor relevance. However, we carried on to see which kinds of concerted
motion there are. We measured the intermediate scattering function and the
dynamic structure factor to obtain the dispersion relations and with them the
spectrum of collective excitations of the bilayer. Several branches exist in the
fluid as well as in the gel phase, and we could estimate the speed of sound
which is orders of magnitude slower than in experiments, due to the softness
of our interactions.

An analysis of the structural relaxations showed that the typical correlation
length is on the order of one lipid diameter, so that collective relaxations are
unlikely to occur. However, the time scale of these relaxations agrees nicely
with neutron scattering experiments and is on the order of 1 ns.

Even though the situation is almost clear, we followed the idea of Busch et al.,
that lipid clusters would flow ballistically if they existed [257]. Surprisingly,
we have found the expected scaling regime in the decay of the intermediate
scattering function. It turned out that this motion is too fast for being a
flow conveying lipids. Hence, this finding rules out the possibility of having a
ballistic flow of lipids in our model on the probed time scale.

Taking all results into account, the following picture of a lipid’s motion
emerges: At very short times it moves ballistically. After ∼ 0.1 τ , it hits another
molecule in the vicinity which slows it down and causes its conformation to
change. After ∼ 1 τ the lipid has already suffered so many collision, that
the conformation has decorrelated completely, but its center of mass has not
moved very far, yet. At 10 τ , the velocity of its center of mass is uncorrelated
from its initial value, and after 100 τ the molecule performs a lateral random
walk. There is no support for a dynamic formation of lipid clusters, a strongly
cooperative diffusion, or even a collective flow of lipids in our model.

In this section we have learnt a lot about the motion of the beads and
the molecules in our model. We have found many similarities but also some
differences to atomistic models, and we have shown that in our model Brownian
motion dominates over collective motion.

4.2 Surface viscosity and intermonolayer friction

It is known from the earliest experiments on red blood cells that these “flicker”
under the microscope. This flickering was also observed in other cells and
liposomes, and was related to a continuous undulation of the surface. In the
first analytical treatment of this shape relaxation processes, the bilayer was
treated as a thin sheet surrounded by a viscous solvent that dissipated the
energy of the undulations [283]. The analytical predictions were confirmed by
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video microscopy experiments, but it turned out that the applicability of this
theory was restricted to large length scales where the molecular character of
the bilayer is negligible. On much smaller scales, the lipids diffuse within the
monolayer, slide past one another causing friction in a monolayer, and another
dissipation mechanism, the surface viscosity of the fluid monolayers, becomes
important.

It was pointed out by Evans et al. that there is a third dissipative process
on intermediate scales [31]. If the two monolayers of a bilayer laterally move
against each other, their relative motion is damped by a frictional force (see
Fig. 4.8). This intermonolayer friction cannot be treated in the simple picture
of a structureless, thin sheet membrane anymore, but it crucially depends on
the existence of two adjacent monolayers. Its incorporation into the analytical
treatment led together with the surface viscosity to an understanding of the
relaxation processes on all length scales, and is known as the Seifert-Langer
(SL) theory [84, 85].

Measuring these dissipation mechanisms is a delicate issue and experiments
are rare. All of the experiments focussing on the surface viscosity, η, are based
on a theory by Saffmann [284, 285] where the diffusion of a tracer particle in a
membrane surrounded by a solvent is related to η. The first measurements were
done with membrane tethers [286], but many other objects like latex spheres
[287–289], large proteins [290], or even entire lipid domains [291] have been
used as tracer particles over the years. Typical values for η in liposomes are in
the range of 1−10×10−10 Pa m s.9 Values for polymersomes are approximately
a factor of 500 higher [292].

The intermonolayer friction coefficient, b, was measured first in a bilayer
where the bottom monolayer was fixed to a substrate and the diffusion of
a tracer particle was tracked [293]. Most of the newer experiments rely on
membranes where large curvatures occur, like in pulling a thin tether from a
vesicle [31, 32, 294, 295], in fusion pores [296], or in chemical instabilities that
trigger the ejection of tubules [297]. The time correlations of undulations in
bilayer stacks or giant vesicles were also used for measuring b [298–300]. The
experimental results for lipid bilayers are in the range of 1−10×108 Pa s/m,10

for polymeric membranes they are about an order of magnitude larger [292].
In computer simulations little attention has been given to b and η. A notable

exception is a series of articles from the Briels group studying both quantities
within a coarse-grained model with explicit solvent [301–304]. η is extracted
from a Green-Kubo relation (GK) as well as from non-equilibrium molecular
dynamics (NEMD) with Lees-Edwards sliding boundary conditions [44, 305],
where perpendicular shear is applied to the bilayer. b is obtained from NEMD

9Frequently, η is reported in units of “surface poise”, where 1 SP = 10−3 Pa m s
10b is often reported in cgs units: 1 dyne s cm−3 = 10 Pa s/m
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Figure 4.8: The two shear modes in bilayer membranes. Following the convention on
sheared block copolymers [307], they are denoted as perpendicular shear (left) and
parallel shear (right). The resistance of the bilayer against perpendicular shear is
characterized by the surface viscosity, η, whereas its resistance against parallel shear
is characterized by its intermonolayer friction coefficient, b. Forces are shown as green
arrows.

runs with parallel shear (see Fig. 4.8) and also through comparison with the
SL theory [84, 85]. However, their results for b and η are two orders of magni-
tude too small compared to the experimental counterpart. Additionally, they
observe deviations from the predictions of the SL theory in the autocorrelation
function of the undulation modes which they cannot explain. But since their
results for b are in close proximity to a value reported in an atomistic study
[278], they come to the conclusion that “the interpretation of the experimental
data appears as the most likely source of the discrepancy” [304]. The same
model has also been used by other authors to mimic one of the experiments
mentioned above, where b was extracted from the diffusion of a large protein
[306].

To shed further light on these issues, we decided to measure b and η in our
coarse-grained solvent-free model. It turns out that the procedure for measur-
ing b is complicated by the lack of solvent and none of the procedures used so
far in simulations is accurate for our model. On the one hand sliding boundary
conditions cannot be used in the case of a solvent-free model, because parallel
shear (cf. Fig. 4.8) is needed and in that case the sliding boundary conditions
must have been applied directly at the head groups of the bilayer, which would
lead to a significant distortion of the bilayer. On the other hand, the original
SL theory crucially depends on the presence of a viscous solvent which is absent
in solvent-free models. The aim of the present section is therefore to establish
techniques for measuring b and η that are independent of the solvent viscosity,
to apply them, and in this way to gain a deeper insight into the dynamics of
pure bilayers.

4.2.1 Theory

In this work we utilize two different methods for obtaining the surface vis-
cosity of a single monolayer, η, and two different methods for obtaining the
intermonolayer friction coefficient, b.
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4.2 Surface viscosity and intermonolayer friction

A Green-Kubo relation for η

The first relation for η is the well-known Green-Kubo (GK) formula [308, 309]
that relates the autocovariance of the off-diagonal elements of the momentary
pressure tensor, Pαβ(t), to η by

η = V Lx

2kBT

∞∫
0

dt′ 〈Pyz(t′)Pyz
〉

. (4.29)

The factor 2 in the denominator originates from the fact that the viscosity
of a monolayer is calculated. The derivation of this equation is based on two
conservation laws: the conservation of the particle number and the conservation
of the momentum. It also depends on the corresponding continuity equations
that connect the temporal change in the density field with the momentum
density and the temporal change of the momentum density with the stress
tensor [197]. Pyz(t) is computed with the virial theorem [44].

Reverse Non-Equilibrium Molecular Dynamics (RNEMD)

Alternatively, we obtain η from a set of RNEMD simulations [310–312]. Briefly,
the idea in these simulations is to generate an artificial flow of lipids and to
measure the resulting velocity profile. Compared to standard NEMD simula-
tions this scheme represents a reversal of the cause and the effect – the velocity
gradient and the lipid flow, respectively. To this end, the bilayer was divided
in the y-direction into 20 stripes numbered from 1 to 20. After every fixed time
interval Δts the most positive z-component of a particle’s velocity in stripe 1
was exchanged with the most negative z-component of another particle’s ve-
locity residing in stripe 11. The resulting perpendicular shear flow is damped
by viscous forces which heat the system. If this perturbation is weak enough,
the temperature and the density gradients become negligible, and η is obtained
from

η = Ptot

4tLz

∣∣∣∂vz
∂y

∣∣∣ , (4.30)

where Ptot is the total momentum exchanged during the time t and ∂vz/∂y is
the velocity gradient measured in the simulation.

A Green-Kubo relation for b

If parallel shear is applied to a bilayer, the velocity profile within each mono-
layer is nearly constant and the monolayers are moving with equal, but opposite
velocities causing a frictional force, F , at the midplane of the bilayer. For small
velocities one expects that F is proportional to the contact area, A, and to the
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velocity difference between the monolayers, Δv. The constant of proportional-
ity is b. Hence,

F = A × Δv × b. (4.31)

For measuring b we derive one more GK relation, which is very similar to
an equation used in hydrodynamics to calculate friction coefficients of surfaces
[313, 314]. In linear-response theory, the parallel shear can be described by a
perturbation Hamiltonian H′ = H+ + H− where

H± = ±v0
2

nN±∑
i=1

piy (4.32)

is the perturbation acting on the upper (+) or lower leaflet (−), respectively.
The sum runs over all nN± particles in each leaflet and v0 is a small velocity.
This perturbation creates a constant flow in the +y-direction on the upper and
in the −y-direction on the lower leaflet. The velocity profile up to first order
in v0 is

v±
y = ±v0

2 . (4.33)

Linear-response theory yields the non-equilibrium average of any variable B in
the presence of this perturbation as

〈B(t)〉NE − 〈B〉0 = v0
kBT

t∫
−∞

ds
〈
B(t − s)Ȧ(s)

〉
(4.34)

where the subscript “NE” denotes a non-equilibrium average where the time
evolution is controlled by the perturbed Hamiltonian; the subscript “0” denotes
an equilibrium average without the perturbation [197]. Here, we use A =
H′/v0 = (

∑nN+
i=1 pi,y −∑nN−

i=1 pi,y)/2. Hence,

Ȧ = 1
2

(
F +

y − F −
y

)
= F +

y , (4.35)

where Newton’s third law was used in the second equality. F ±
y =
∑

i Fy,i are
the y-components of the total forces that are exerted on the upper or lower
monolayer, respectively. If we substitute F +

y for B and introduce

b = 1
AkBT

∞∫
0

dt
〈
F +

y (t)F +
y

〉
, (4.36)

then Eq. (4.34) can be rewritten in the final form using Δv = v+
y − v−

y = v0,
〈F +

y 〉0 = 0, and Eq. (4.35) as
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〈
F +

y

〉
NE

= A × Δv × b, (4.37)

which is identical to Eq. (4.31). Unlike the GK relation for η, this one is not
based on a conservation law.

Undulation mode autocorrelation

It was realized by Seifert and Langer that b manifests itself through the decay
of the autocorrelation function of the undulatory modes [84, 85]. In their model
the bilayer consists of two thin sheets with a bending rigidity, κ, surrounded by
a viscous solvent with a shear viscosity, ηS . The lipid densities on the upper (+)
or the lower (−) leaflet at the neutral surface11 are denoted as φ±, respectively
(see Fig. 4.9). In a plane bilayer they equal the projected densities at the
midplane, ψ±, but in an undulating, curved bilayer they differ. The position
of the midplane, h(r), is specified in the Monge gauge as a height above some
reference plane and the mean curvature of nearly flat membranes, H, is related
to this position by 2H = ∇2h(r). If d denotes the normal distance between the
neutral surface and the bilayer midplane, then this difference is in first order
of H given by

φ± ≈ ψ± (1 ± 2dH) . (4.38)

The elastic free energy density of each leaflet is (km/2)(2φ±/Φ0−1)2 ≈ (km/2)×
(ρ± ± 2dH)2 where km is the area compressibility of a monolayer and ρ± =
(ψ±/Φ0−1) is the scaled deviation of the projected density from the equilibrium
lipid density of a flat membrane, Φ0/2 = n/2A. Together with the usual
bending term of the bilayer, the free energy is

F =
∫

dA

(
κ

2 (2H)2 + km

2

[(
ρ+ + 2dH

)2
+
(
ρ− − 2dH

)2])
. (4.39)

A Fourier expansion of h(r) with h(r) =
∑

q hq exp (−iq · r) and q = 2π×
(nx/

√
A, ny/

√
A), nx, ny ∈ N yields

F = A

2
∑

q

(
hq ρΔ

q ρΣ
q
)⎛⎜⎝ κ̃q4 −2kmdq2 0

−2kmdq2 2km 0
0 0 2km

⎞
⎟⎠
⎛
⎜⎝hq

ρΔ
q

ρΣ
q

⎞
⎟⎠

∗

,

where the Fourier coefficients, hq, can be considered as the independent degrees
of freedom. κ̃ = κ + 2d2km is a renormalized bending rigidity and the asterisk
denotes complex conjugation. F is given in terms of the density difference,
11The neutral surface is the surface inside a monolayer that is neither stretched nor com-

pressed [200].
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d
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φ−

ψ− −, ρ
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Figure 4.9: Schematic picture of a lipid bilayer. The black circles with the wavy lines
represent lipid molecules, the dashed lines represent the neutral surfaces and the solid
line the bilayer midplane. The lipid densities at the neutral surfaces are φ±, and
their projections onto the midplane are ψ±. The height of the midplane above some
reference plane is given by h(r).

ρΔ
q ≡ (ρ+

q −ρ−
q )/2, and the average density, ρΣ

q ≡ (ρ+
q +ρ−

q )/2 which decouples,
so that it is ignored in the following.

If the bilayer is excited by a single plane wave, h(r) = h exp [−iq · r] + c.c.,
with an amplitude h, and ρ±(r) = (ρΣ ± ρΔ) exp [−iq · r] + c.c., the exerted
normal force density is

− 1
A

δF

δh∗ = −κ̃q4h + 2kmdq2ρΔ. (4.40)

The in-plane surface pressure, σ±, is in this case

σ± = − 1
A

δF

δρ±∗ = kmρ± ∓ dq2kmh. (4.41)

Unfortunately, the treatment of Seifert and Langer is not directly applicable
to the case of a solvent-free model, because they use a no-slip boundary condi-
tion between the solvent and the bilayer which is no longer meaningful. Simply
putting ηS → 0 in their expressions does not lead to well-defined expressions
either, so that parts of their calculation must be reworked before it can be
applied to a solvent-free model.

To determine the dynamic equation of motion for the membrane, we simply
require that all normal forces balance. The central difference in this work to
Seifert and Langer’s work is that the out-of-plane inertia is no longer neglected.
Hence,

mΦ0ḧ = − 1
A

δF

δh∗ = −κ̃q4h + 2kmdq2ρΔ (4.42)

106



4.2 Surface viscosity and intermonolayer friction

where m is the mass of a lipid. The lipids in each monolayer are treated as
a two-dimensional, incompressible liquid with velocities ṽ±, where the tilde
refers to two-dimensional quantities. Within the two monolayers, the lateral
force balance equation reads

−∇̃σ± + η∇̃2ṽ± ∓ b
(
ṽ+ − ṽ−) = 0 (4.43)

The terms on the left hand side are (i) the surface pressure, (ii) the viscous
damping by the surface viscosity, and (iii) the intermonolayer friction that pe-
nalizes a relative motion between the two monolayers. The in-plane inertia
can be safely neglected, because the motion of the lipids in a dense bilayer is
overdamped on the time scales of interest. The densities, ρ±, obey an approx-
imate continuity equation, ∂tρ

± ≈ −∇̃ · ṽ±, because flip-flops are neglected on
the time scale of interest. This is certainly true for the experimental system
and also approximately true for our coarse-grained model. To incorporate the
continuity equations we take the divergence of Eq. (4.43), transform to the
reciprocal space, and find

q2σ± + ηq2ρ̇± ± b(ρ̇+ − ρ̇−) = 0. (4.44)

Subtracting the equations for both signs, using Eq. (4.41), and dividing by 2
we finally arrive at (

ηq2 + 2b
)

ρ̇Δ = −kmq2ρΔ + dq4kmh. (4.45)

With the standard way of reducing the degree of a differential equation by
increasing the number of coupled equations, a combination of Eq. (4.42) and
Eq. (4.45) leads to the following system of three coupled, linear, first order
differential equations

∂t

⎛
⎜⎝ h

ρΔ

ḣ

⎞
⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

0 0 −1

− kmdq4

2b+ηq2
kmq2

2b+ηq2 0

κ̃q4

mΦ0
−2kmdq2

mΦ0
0

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝ h

ρΔ

ḣ

⎞
⎟⎠ . (4.46)

To simplify the notation, we introduce a time scale τr and a frequency ωh,

τr = 2b + ηq2

kmq2 ωh =

√
κq4

mΦ0
. (4.47)

Additionally the renormalization of the bending rigidity, κ̃, is only a small
perturbation to κ in our case, so that we can write κ̃ = κ(1+ε), ε = 2d2km/κ �
1. For instance, using ρ̄∗ = 18, d ≈ th/4 = 1.6 rc, km = 1.04kBT/r2

c , and
κ = 18 kBT , where th is the thickness of the bilayer, we obtain ε ≈ 0.3. With
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the introduction of the parameter P = 2km/q2κ, Eq. (4.46) becomes

∂t

⎛
⎜⎝ h

ρΔd

ḣ/ωh

⎞
⎟⎠ = −

⎛
⎜⎝ 0 0 −ωh

−ε/Pτr 1/τr 0
(1 + ε)ωh −ωhP 0

⎞
⎟⎠
⎛
⎜⎝ h

ρΔd

ḣ/ωh

⎞
⎟⎠ . (4.48)

The physical meaning of τr and ωh becomes clear if one neglects the two
coupling terms −ε/Pτr and −ωhP between h and ρΔ for a moment. In this
case the matrix in Eq. (4.48) becomes antidiagonal and we find an exponential
relaxation of ρΔ with the characteristic time τr and an undamped harmonic
oscillation of h with frequency ωh. Hence, the system has one real eigenvalue,
1/τr, and two purely imaginary ones, ±iωh.

An exact solution of the whole system of coupled differential equations (for
instance by a Laplace transform) is possible but involves the roots of a cubic
polynomial and leads to cumbersome expressions which are hard to interpret.
Alternatively, one may try a perturbation calculation in which the harmonic
oscillation in h is weakly coupled to the relaxation in ρΔ. Unfortunately, only
one (−ε/Pτr) of the two coupling terms in Eq. (4.48) is small, so that a straight-
forward expansion in ε becomes impossible.

Therefore we restrict our focus on the eigenvalues, λ, of the system in
Eq. (4.48) which correspond to up to three different dispersive modes. The
characteristic polynomial is cubic in λ, and reads

λ3 − λ2/τr + ω2
h(1 + ε)λ − ω2

h/τr = 0. (4.49)

Exact expressions for the roots of this polynomial exist, but from a physical
point of view they are difficult to understand.

Even without solving for the roots one can calculate the discriminant of
this polynomial by inserting realistic values for all parameters. This analysis
reveals that one expects in virtually all cases only one real and two complex
conjugated roots. Unlike the uncoupled system, the two complex roots are not
purely imaginary anymore, but contain real contributions due to the coupling
to the relaxation of ρΔ. The real root leads to an exponential decay with
a decay constant γ1, while the complex roots lead to a damped, oscillatory
decay with a damping constant γ2 and a frequency ωB. Hence, an alternative
parameterization of the characteristic polynomial is given by:

0 =
[
λ − γ1

][
λ − (γ2 + iωB)

][
λ − (γ2 − iωB)

]
(4.50)

= λ3 −
(
γ1 + 2γ2

)
λ2 +
(
γ2

2 + ω2
B + 2γ1γ2

)
λ − γ1

(
γ2

2 + ω2
B

)
(4.51)

A comparison of the coefficients of Eq. (4.49) and Eq. (4.51) leads to

τ−1
r = γ1 + 2γ2 (4.52)
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ω2
h(1 + ε) = γ2

2 + ω2
B + 2γ1γ2 (4.53)

ω2
h/τr = γ1

(
γ2

2 + ω2
B

)
, (4.54)

which are exact within the model. b is contained in τr and can be obtained
without any free parameters by measuring γ1, γ2, and ωB either from Eq. (4.52)
or Eq. (4.54).

For later reference we also provide the first order inverse expressions,

γ1 = 1
τr

(
1 − ε

ω2
hτ2

r

1 + ω2
hτ2

r

)
+ O
(
ε2) (4.55)

γ2 = 1
2τr

(
ε

ω2
hτ2

r

1 + ω2
hτ2

r

)
+ O
(
ε2) (4.56)

ω2
B = ω2

h

(
1 + ε

ω2
hτ2

r

1 + ω2
hτ2

r

)
+ O
(
ε2), (4.57)

which are remarkable because they explicitly show how the coupling combined
τr and ωh to form three new time scales, γ1, γ2, and ωB. γ1 resembles the time
scale of the relaxation of ρΔ and is a bit smaller than 1/τr so that differences
in the density decay slower than in the uncoupled case. γ2 is the new damp-
ing rate of the oscillations and is of first order in ε, i.e., one expects to see
damped oscillatory behavior in the correlation functions. The prefactor 1/2
can be understood by the fact that originally there were two oscillatory modes
and the coupled damping splits between these modes giving each the same
weight. The zeroth order term of the new oscillation frequency, ωB, is given by
ωh. The resubstitution of τr, ωh, and ε in these expressions is not particularly
enlightening, but it should be noted that for qrc � 1

γ1 ∼ q2, (4.58)
γ2 ∼ q2, (4.59)

ω2
B ∼ q4. (4.60)

The standard way of obtaining γ1, γ2, and ωB involves the calculation of
the autocorrelation function of h(t). With an analytical expression for h(t)
one would calculate C(q, t) = 〈h(t)h∗〉 as an ensemble average over the three
initial conditions h(0), ḣ(0), and ρΔ(0). But since such an expression for h(t) is
currently unavailable, we propose an alternative, phenomenological expression
for C(q, t), which is motivated by the previous findings,

C(q, t) ≡ 〈h(t)h∗〉 = 〈|h|2〉
(
A1e−γ1t + A2 cos

(
ωBt + ϕ

)
e−γ2t
)

. (4.61)

Here the weighting factors A1 and A2 are chosen so that A1 + A2 cos ϕ =
1 with an arbitrary phase shift, ϕ. The first term in Eq. (4.61), i.e., the
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simple exponential decay, reflects the relaxation of the density difference and
corresponds to a single, stationary dispersive mode. The Fourier transform
of such an exponential decay leads to a Lorentzian peak at ω = 0 in the
dynamic undulation structure factor, S(q, ω). Following the convention from
light scattering of simple liquids [197], this peak will be denoted as the Rayleigh
line. The second term in C(q, t) comes from the two complex roots which
correspond to two propagating dispersive modes and lead to two Lorentzian
peaks at ω = ±ωB(q) in S(q, ω). They will be denoted as Brillouin lines.
Hence, the Fourier transform of C(q, t) is

S(q, ω) = AR

π

ΓR/2
ω2 +
(
ΓR/2
)2 + AB

π

ΓB/2(
ω − ωB

)2 +
(
ΓB/2
)2 + . . .

· · · + AB

π

ΓB/2(
ω + ωB

)2 +
(
ΓB/2
)2 , (4.62)

where the index R denotes the Rayleigh line and the index B denotes the
Brillouin line of the propagating mode. ΓR and ΓB are the FWHM of the two
Lorentzians, and AR and AB are prefactors. The connection to Eq. (4.61) is
given by ΓR/2 = γ1 and ΓB/2 = γ2.

4.2.2 Results and discussion

Six systems in the fluid phase with ρ̄∗ = 18, 20, 25, 30, 35, and 40, κN = 100,
and χN = 30 were simulated to measure η and b by the GK relations as well as
b from the undulation mode autocorrelation. Each system contained n = 4680
amphiphiles with N = 16 beads and was simulated for 2−5×104 τ in the NVT
ensemble using the standard DPD thermostat with γ = 0.5. Preequilibrated
bilayers under vanishing lateral tension were used as initial configurations.

Measurement of the surface viscosity

For measuring η with the GK formula, Eq. (4.29), the elements of the pressure
tensor, Pαβ , were saved every 0.005 τ , i.e., in every integration step. Pyz(t) is
blocked into overlapping intervals with a length of 250 τ , each block starting
50 τ after the start of the previous one. 〈Pyz(t)Pyz〉 is computed in each
block and averaged (Fig. 4.10, lower panel). The integral in Eq. (4.29) over
the block-averaged 〈Pyz(t)Pyz〉 was evaluated numerically. For t between 20
and 75 τ a first plateau showed up (Fig. 4.10, upper panel), i.e., 〈Pyz(t)Pyz〉
reached approximately zero. This point determines the cutoff of the integral
in Eq. (4.29). Generally speaking, η will have a larger statistical uncertainty
if the integral is continued after this point because one integrates up mostly
noise. Frequently, the choice of the onset of the first plateau was ambiguous so
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Figure 4.10: Lower panel: Block-averaged autocovariance of an off-diagonal element
of the pressure tensor, Pyz, for different ρ̄∗. Upper panel: Running integral over the
autocovariances with the prefactors from Eq. (4.29), so that η(t) → η in the limit
t → ∞.

that a systematic error was introduced at this point. The statistical error was
obtained from a blocking analysis [315]. This yielded the values reported for η
in Tab. 4.1 in the column “Green-Kubo”.

Alternatively, η was computed using the RNEMD methodology from the
data of dedicated simulations lasting 2 − 4 × 104 τ . The bilayer was divided
into 20 stripes along the y-direction and the velocities in the z-direction were
swapped between the stripes 1 and 11. Five bead velocities were swapped at
once every 0.5 τ . The total exchanged momentum Ptot was saved every 2 τ .

The velocity gradient ∂vz/∂y and its statistical error were obtained from
a simultaneous linear regression of both velocity profiles in the unperturbed
region around vz = 0 (Fig. 4.11, bottom). Additionally, the lipid number
density profile, Φ(y)/Φ0, normalized to its equilibrium value Φ0, as well as
the temperature profile in the y-direction have been computed (top, middle in
Fig. 4.11). The total exchanged momentum per time, Ptot/t, was obtained
by fitting the saved values of Ptot to a line through the origin. The statistical
error in this quantity was so low, that it could be safely neglected. The final
value of η was obtained by Eq. (4.30), the statistical error from the usual error
propagation equations. The results for η are shown in Tab. 4.1 in the column
“RNEMD”.

The rate of velocity swaps is set on purpose to a small value, so that the
perturbation of the equilibrium properties is negligible, but the velocity profile
is linear in the center of the shear zones. Tenney and Maginn derive analytic
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Figure 4.11: Top: lipid areal density profile as a function of y for ρ̄∗ = 18 recorded
during the RNEMD runs. The profile is normalized by the average density Φ0. The
gray shaded areas mark the two stripes, in which the velocities are swapped. Middle:
average kinetic energy per degree of freedom, i.e., temperature. The green line marks
the average temperature in a DPD simulation without the RNEMD perturbation.
Bottom: velocity profile in the z-direction. The red line marks the linear fit to the
profile in the center of the shear zones. The arrows visualize the direction of lipid flow.

Table 4.1: Surface viscosities and intermonolayer friction coefficients
ρ̄∗ η [kBT × τ × r−2

c ] b [kBT × τ × r−4
c ]

Green-Kubo RNEMD Green-Kubo Undulations
18 63(3) 66.2(7) 1.7(1) 0(1)
20 57(6) 56.7(5) 2.0(1) –
25 43(4) 48.1(5) 2.9(1) –
30 37(3) 43.7(6) 4.3(2) –
35 46(3) 42.4(5) 6.0(2) –
40 37(3) 42.4(3) 7.6(4) 8(1)
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expressions for the density and the temperature profiles inside the shear zones
for a bulk fluid which are quadratic in y [311]. In contrast to our simulations
they use the thermostat only during the equilibration phase and disable it
before the actual RNEMD phase starts. Thus, energy and momentum are
conserved and the velocity swaps lead to a viscous heating of the system. They
solve a heat-diffusion-equation which leads to the non-trivial temperature and
density profiles.

In our simulations the DPD thermostat is active all the time and removes
the viscous heating almost instantaneously. Hence, our profiles Φ(y)/Φ0 and
〈mv2〉(y)/3kBT in Fig. 4.11 are essentially flat. The spread around the mean
values is of the order of 0.1% and two orders of magnitude smaller than in the
cited work. The residual heating of 0.3% is a remainder of the viscous heating
and vanishes if the driving is reduced even more.

The results of both methods, GK and RNEMD, offer consistent results in
the range of 30 − 70 kBT × τ/r2

c , where the RNEMD method provides one
more significant digit than the GK method. Translating these numbers into
physical units, one obtains η = 3.9 × 10−10 Pa m s for lipid bilayers, ρ̄∗ = 18,
and η = 3.3 × 10−8 Pa m s for polymeric bilayers, ρ̄∗ = 40. The difference
between lipid and polymer membranes is two orders of magnitude, but not a
factor of 500 as found in experiments [292]. However, these two orders stem
entirely from the conversion of units, which were obtained for rather generic
systems. It might be possible that one gets a higher η if specific systems are
mapped. Nevertheless, η matches the desired range of experimental values for
lipid bilayers, 1 − 10 × 10−10 Pa m s, exactly, so that the model provides a
realistic view on the surface viscosity.

Tab. 4.1 displays the peculiar feature that η decreases with increasing ρ̄∗.
This seems at first sight somewhat surprising, because the dynamic viscosity
normally increases with the density. However, increasing the model parameter
ρ̄∗ does not only increase the number density of the lipids, but it also reduces
the strength of the interactions (cf. Eq. (2.8)), so that the products vAA ×
ρ̄∗, wAAA × (ρ̄∗)2 , wAAB × (ρ̄∗)2, and wABB × (ρ̄∗)2 remain constant, but the
actual coefficients vanish in the limit ρ̄∗ → ∞. Only vAB and vBB keep finite
values. In this limit the hydrophobic interior comprises only weakly interacting
tails, and resembles the behavior of a polymeric melt of rather stiff, Gaussian
chains [279]. The main contributions left to η are in this case the intramolecular
interactions.12

12The intramolecular contribution should, however, follow the predictions of the Rouse model,
where η ∝ ρ̄∗. Thus, it might be possible that η develops a minimum at larger ρ̄∗ and
increases again afterwards.
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Is it possible to vary D and η independently?

The frictional forces of the ordinary DPD thermostat are controlled by the
friction coefficient γ and act only longitudinally. With this single parameter it is
impossible to control several dynamical properties like the diffusion coefficient,
D, and the viscosity, η, of a liquid independently.

In a recent article, Junghans et al. propose a modified DPD thermostat, the
transverse DPD (TDPD) thermostat, that adds transverse stochastic forces
with a second friction coefficient, γ⊥ (cf. p. 29). They state that the “presented
[. . . ] thermostat can be used [. . . ] to tune the diffusion constant and viscosity
of the system to the desired values” [172]. If one assumes, that a change in
γ⊥ has only these two effects, i.e., it modifies D and η, but it has a negligible
influence on the hydrodynamic boundary conditions between the lipids, then
this statement contradicts the Stokes-Einstein equation in two dimensions [316],

D = kBT/c2Dπη. (4.63)

Here c2D is a dimensionless constant, that depends only on these boundary
conditions. In contrast to the well-known three-dimensional case, there is no
dependency on the particle diameter in Eq. (4.63) because of the different units
of η in two dimensions. The problem with the cited statement is that according
to Eq. (4.63) D and η are not independent, but their product is constant. In
this small side project the question in the title shall be answered for our model.
Thereby we check the validity of the two-dimensional Stokes-Einstein equation.

To this end several dedicated runs with ρ̄∗ = 18 were started, that used the
TDPD thermostat with γ‖ = 0.5. γ⊥ was varied between 0 and 10, the same
range as in Ref. 172. η was calculated by the GK formula, Eq. (4.29), and by
the RNEMD method, Eq. (4.30). The molecular diffusion constant, D, was
obtained by Eq. (4.1).

The top panel of Fig. 4.12 depicts η obtained from the two methods as a
function of γ⊥. The GK formula underestimates η and the discrepancy is
getting worse with increasing γ⊥. An increase of γ⊥ leads to noisier data for
〈Pyz(t)Pyz〉, so that it becomes more and more difficult to obtain meaningful
averages and to select an appropriate cutoff for the first plateau. It seems, that
the integral over 〈Pyz(t)Pyz〉 was systematically truncated too early. However,
there is hope, that much longer runs will yield better estimates for the cutoff
time in the integration and therefore more accurate values of η.

As before, these difficulties are avoided in the RNEMD calculation, which
produces an almost linear relationship. This linear relationship has also been
observed by Junghans et al. in NEMD simulations using sliding boundary con-
ditions [172]. In the following only the values of η that are obtained from the
RNEMD method will be discussed.
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Figure 4.12: Top: surface viscosity η for different values of the TDPD friction coef-
ficient γ⊥ measured by GK and RNEMD for the system ρ̄∗ = 18. The blue line is a
linear fit to the RNEMD data points. The GK method becomes less reliable for high
γ⊥, whereas the RNEMD method still works. Middle: molecular diffusion constant
D and a fit to the Einstein equation, Eq. (4.64). Bottom: according to Eq. (4.63) the
product Dη/kBT should be a constant and the green line depicts the best fit to this
constant.
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The center panel of Fig. 4.12 presents D as a function of γ⊥. From the
Einstein equation, D ∼ kBT/γ, one expects that D and γ⊥ are inversely re-
lated. Since the molecular diffusion coefficient is recorded and the standard
DPD thermostat still contributes to the friction, we fitted the data to

D = kBT

f(γ⊥ + γ0) . (4.64)

f = 49.9 is a dimensionless scaling factor, whereas γ0 = 2.78 kBT × τ/r2
c

contains the intrinsic friction of the standard DPD thermostat.
Finally, the product Dη/kBT is depicted in the lower panel of Fig. 4.12.

The error bars are obtained from the error propagation equation. Although
they are large for γ⊥ = 4 − 10, there is no trend in the data visible and
the product seems to be constant within error bars. The existence of such a
constant looks like a confirmation of the Stokes-Einstein equation, Eq. (4.63).
At least for this specific set of interaction parameters, it is impossible to tune D
and η independently. Finally, we obtain c2D = 0.15(1), which is much smaller
than the value obtained in Ref. 316, c2D = 1.69(10), for a fluid of Yukawa
discs. Unfortunately, no well-defined expressions relating c2D to the type of
the boundary condition exist, so that it is presented here only for the sake of
completeness.

These findings indicate that an increase of γ⊥ has hardly any effect on
Dη/kBT . Although the TDPD thermostat successfully increases the numerical
value of η, it also diminishes D in the same way. Since the conversion of the
simulation time to physical units is done by mapping the diffusion coefficients,
η stays constant in physical units. Hence, there is no additional flexibility in
tuning the transport coefficients. The TDPD thermostat also increases the
noise in the stress autocovariance, so that averaging becomes harder and the
GK relations become de facto useless. Therefore, we conclude that the use
of the TDPD thermostat offers no advantages in our model over the ordinary
DPD thermostat.

Measurement of the intermonolayer friction

The intermonolayer friction, b, was obtained from the same equilibrium runs.
Here, the key quantity is the instantaneous, total force on the upper leaflet,
F+, exerted by the lower leaflet. F+ was saved every 0.01 τ . In contrast
to the GK measurement of η, two independent measurements of b are this
time available from a single run, because the two components F +

y and F +
z are

uncorrelated. The recorded values of F +
y/z were divided into non-overlapping

blocks with 100 τ , the correlation function was calculated and integrated in
each block, and averaged (see Fig. 4.13). The final b is shown in Tab. 4.1 in
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Figure 4.13: Autocovariance of the tangential force acting between the two monolayers
(main panel) and its running integral (inset) for the two systems ρ̄∗ = 18 and ρ̄∗ = 40.
b is estimated by Eq. (4.36) from the integral in the limit t → ∞. Therefore the
running integral is shown for a longer time interval in the inset.

the column “Green-Kubo”. The statistical uncertainty is obtained, as before,
from a blocking analysis [315].

Fortunately, 〈F +
α (t)F +

α 〉 decays rapidly so that it is easy to compute accurate
values of b with Eq. (4.36). There are hardly any ambiguities regarding the
position of the plateau in the integrated correlation function (see Fig. 4.13),
thus, systematic uncertainties are small.

Finally, b was computed from the autocorrelation function of the undulation
modes, C(q, t) = 〈hq(t)h∗

q〉. To this end hq was calculated as on p. 46 and saved
to disk every 0.02 τ . C(q, t) was computed for the first 18 modes and averaged
over all equivalent modes.13 Indeed, it shows some oscillations that vanish with
increasing q2 (see Fig. 4.14). In a next step C(q, t) was Fourier transformed
into the frequency domain, yielding the dynamic undulation structure factor,
S(q, ω) (see Fig. 4.15). The fit to Eq. (4.62) for positive ω includes five fitting
parameters, which all depend on q: ΓR, ΓB, ωB, AR, and AB.

Besides the dispersion relation of the propagating mode, ωB(q) (see inset of
Fig. 4.15), one also obtains the decay rates γ1(q) and γ2(q) (see Fig. 4.16). In
principle the Eqs. (4.52–4.54) must be solved self-consistently for obtaining τr

and ωh from γ1 and γ2. However, we prefer Eq. (4.52) for evaluating b, because
it depends only on γ1(q) and γ2(q). The other two equations, Eq. (4.53) and
Eq. (4.54), depend additionally on ωB(q) and κ̃/κ, or they contain b only
in higher order terms. b’s statistical uncertainty was estimated by the error
13Two modes hq1 and hq2 are considered to be equivalent, if q2

1 = q2
2.
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Figure 4.14: Autocorrelation function of the two slowest undulation modes, {1 0}
(black) and {1 1} (red), averaged over all equivalent wave vectors for the system with
ρ̄∗ = 18. The solid line (–) marks the result where the DPD thermostat was used,
the dashed line (- -) marks the result where the Langevin thermostat was applied to
all three directions, the dotted line (· · · ) marks the result where it was applied to the
two lateral directions, and the dash-dotted line (·–·) the result where it was applied
only to the normal direction. The DPD result might be fitted with high accuracy to
Eq. (4.61).

propagation equations, where it is implicitly assumed that γ1(q) and γ2(q) are
uncorrelated. The most important contribution to the statistical uncertainty
of b stems from the errors in γ1 and γ2. The final results are listed in Tab. 4.1
in the column “Undulations”.

An independent estimate of the order of magnitude of b can also be obtained
from theoretical considerations on polymer brushes [317, 318]. If one treats the
two monolayers as apposing brushes that overlap in the center of the bilayer
over a distance, δ, and ignores all numerical prefactors, then b ≈ ρc×δ×ξ. Here,
ρc is the molecular number density and ξ = c2D ×η is a friction coefficient. δ is
readily obtained from the width of ρ̂+

A(x) × ρ̂−
A(x), where ρ̂±

A(x) is the density
profile of the hydrophobic beads on the upper/lower leaflet [317], cf. Fig. 3.6.
Using δ = 0.71 rc, c2D = 0.15(1), η = 66.2(7) kBTτ/r2

c , we find

b ≈ 3 kBT × τ × r−4
c , (4.65)

for ρ̄∗ = 18 which gives the right order of magnitude.
A comparison of the three methods shows that they provide consistent re-

sults, although those of the GK formula are more significant by one digit. This
is largely because the GK formula is a much more direct method of probing b.
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dulation modes of the system ρ̄∗ = 18, showing the Rayleigh line at ω = 0 and the
Brillouin line at ω = ωB . The solid lines are fits to Eq. (4.62). Inset: dispersion
relation, ωB(q), of the propagating mode for ρ̄∗ = 18 and ρ̄∗ = 40. The solid lines are
fits to the asymptotical ωB ∼ q2 power law, whereas the dashed lines include a higher
order term O

(
q4).

Qualitatively, the same difference in the accuracy also showed up, when b was
compared by other authors between NEMD simulations with Lees-Edwards
sliding boundary conditions and the Seifert-Langer theory [304]. In that case
the NEMD results are easier to obtain and have a higher accuracy.

Translating the values from Tab. 4.1 for ρ̄∗ = 18 to physical units we ob-
tain b = 1.6 × 106 Pa s/m. Compared to the experimental range of b =
1 − 10 × 108 Pa s/m for lipid bilayers, our result is approximately two orders of
magnitude too small. However, it is close to the two other simulation results
we are aware of. Den Otter and Shkulipa simulate a coarse-grained model of
1518 DPPC lipids in an explicit solvent and find, depending on the details of
the coarse-grained representation of a lipid, b = 2.4 − 7.3 × 106 Pa s/m [304].
Wohlert and Edholm obtain b = 2.8 × 106 Pa s/m in an atomistic study of
128 DMPC molecules surrounded by water [278]. Although these three results
have been obtained by different techniques and from completely different mod-
els, the order of magnitude of b seems to be universal for lipid bilayers. Hence,
we agree with the other two studies claiming that there might be a problem
with the interpretation of the experimental results.

The same problem might also arise in polymeric membranes. Here we find
b = 8.7 × 108 Pa s/m for ρ̄∗ = 40. This value is also 1 − 2 orders of magni-
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Figure 4.16: Top: the decay rate, γ1, of the undulation modes as a function of q2 for
ρ̄∗ = 18 and ρ̄∗ = 40. The solid lines are fits to all data points. Bottom: decay rate
γ2 of the propagating undulation mode. The solid lines are fits to the first four data
points.

tude smaller than the reported experimental values [292]. To the best of our
knowledge nobody has measured b at the time of this writing for such a sys-
tem. It remains an open question, whether there is a general problem with the
interpretation of all experiments measuring the intermonolayer friction.

Origin of the oscillations

How can one be sure, that the oscillations of the undulation autocorrelation in
Fig. 4.14 are really caused by inertia, and not by some other effect?14. In the
following, a series of consistency checks is discussed.

The first and simplest check is to disable the conservation of momentum
temporarily. Of course, such a check is only possible in a computer simulation,
but here it can be achieved by switching from the DPD thermostat to the
Langevin thermostat which violates momentum conservation (cf. p. 29). For
keeping the temperature constant, it is sufficient to couple the thermostat to
only a subset of the translational degrees of freedom, for instance to all y
coordinates. This is interesting, because it leads to a violation of momentum
conservation in only this direction, while the momentum is still conserved in
the other directions.
14Seifert’s original work includes several extensions which all lead to propagating modes [84]
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Here, three cases are discussed, where the Langevin thermostat is coupled to
(i) all degrees of freedom of the beads, (ii) only the lateral ones, and (iii) only
the normal ones. The difference in Fig. 4.14 is striking: in case (i), the conser-
vation of momentum is violated in all directions and consequently there are no
oscillations visible. The autocorrelation function shows an exponential decay,
which is probably the case one would observe in a standard MC simulation, or
in the presence of a solvent. In case (ii), the momentum is conserved only in
the normal direction, and is violated laterally. This situation is similar to what
one expects in DPD simulations, because the two-dimensional liquid of lipids
is overdamped and inertia effects can be neglected. Indeed, oscillations with
a comparable frequency in the autocorrelation function are observed. They
are, however, less pronounced than in the case of DPD, because the bilayer is
not a true two-dimensional liquid. The application of the thermostat in case
(iii) completely destroys all inertia effects in the normal direction and leads to
a low damping of the undulatory modes and therefore to the slowest decay.
Consequently, there are no oscillations visible.

The inertia effect and its analytical treatment can also be checked for con-
sistency by inspecting the dependency of γ1(q), γ2(q), and ωB(q) on q in the
lowest order. The inset of Fig. 4.15 depicts ωB(q) for ρ̄∗ = 18 and ρ̄∗ = 40. A
fit to the first two data points shows a dependency ωB ∼ q2, which is consistent
with Eq. (4.60). For larger q2 deviations show up, that can still be fitted by
including a second order term in q2, i.e., O(q4). In principle it is possible to
extract the bending rigidity, κ, from the slope at small q. We obtain κ = 7,
and κ = 11 for ρ̄∗ = 18 and 40, respectively. The moderate agreement with the
measurement in Sec. 3.1.4 is not too surprising, since the higher order terms
are important and only two data points were used for the fit. The actual slope
of ωB(q2) should therefore be roughly a factor 1.4 higher than calculated here.

Figure 4.16 displays γ1 and γ2 as functions of q2 which are directly related
to the widths of the Rayleigh and the Brillouin lines. γ2(q) has only a limited
number of data points, because it becomes increasingly difficult to track the
width and position of the Brillouin line with increasing q. We deduce from the
linear relationship that both depend in lowest order on q2, as it is expected
from Eq. (4.58) and Eq. (4.59). Notably, γ2 ≈ 0.4×γ1, for both systems, which
supports the idea that the leading term in γ2 is O(ε) (cf. Eq. (4.56)).

The origin of the oscillation is entirely different from the oscillation that is
observed in standard hydrodynamic coupling theory [83, 192, 319–321], which
takes only the membrane tension and the solvent viscosity into account.15 In
this theory a dispersion ω ∼ q3/2 for propagating, transverse capillary waves is
found, that has no additional peak at ω = 0 in the dynamic structure factor
S(q, ω).
15This theory is only valid for wavelengths that are much larger than the membrane thickness,

which is probably not the case in this work
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As a side remark: a simple change of the mass, m → x × m, of all lipids
disqualifies itself for being a check of the model. Although m enters in γ1, γ2,
and ωB, a change leads only to a trivial rescaling of the time scale, i.e., τ →√

xτ . Hence, no new insight into the validity of the model is gained.
After this discussion it is apparent how to get an undulation mode’s auto-

correlation which resembles the experimental result: the bilayer must be able
to exchange momentum with its surroundings.16 This can be either achieved
by introducing a solvent into the model, or by coupling a small fraction of the
degrees of freedom to a thermostat that does not conserve momentum. A possi-
bility could be to couple only the head groups to a Langevin thermostat, which
mimics the momentum that would normally be transferred to the solvent.

4.2.3 Conclusions

In a first step a monolayer’s surface viscosity, η, was measured by two differ-
ent methods. The first one is based on a GK formula and uses equilibrium
fluctuations to extract η from the autocorrelation of the off-diagonal elements
of the pressure tensor. In the second method, RNEMD, an artificial flux of
lipids is created, and the corresponding velocity profile is measured which can
be related to η. The results of both methods agree within error bars, however,
the results of the RNEMD measurement provide one order of magnitude bet-
ter accuracy at comparable compute time than the GK measurements, which
are plagued by the problem of finding the “right” plateau. Standard NEMD
measurements with sliding boundary conditions could not be applied, because
of the lack of solvent. The values for η are in the range of 30 − 70 kBT × τ/r2

c .
Converting these numbers into physical units, we obtain η = 3.9×10−10 Pa m s
for ρ̄∗ = 18 and η = 3.3 × 10−8 Pa m s for ρ̄∗ = 40. Both numbers match the
experimental range and the resulting surface viscosity of polymer membranes
is approximately two orders of magnitude higher than that of lipid bilayers.

In a second step the intermonolayer friction coefficient, b, was measured by
two methods that have not been used before to measure b. The first one is based
on another GK relation that relates the integral of the autocovariance of the
total lateral force between the monolayers to b. In contrast to the GK relation
for η, this one yields results with high accuracy, because the autocovariance
decays rapidly. The GK formula is known from fluid mechanics, where it is
used to extract friction coefficients of rough surfaces [313, 314].

16There is of course the possibility of a negative discriminant of Eq. (4.49), so that three
real eigenvalues come into existence. The detailed conditions can be formulated by two
inequalities, but this has not been worked out. It seems necessary for γ1, which is a
function of km, to become very large; in this case km has to acquire unphysically high
values.
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4.3 Mapping to a fluid of soft discs

The second method is based on a theory by Seifert and Langer, which incor-
porates b into the decay rate of the undulation mode autocorrelation [84, 85].
This method is a very indirect one, and therefore depends on the prior measure-
ment of several other quantities, like the bending rigidity and the monolayer
compression modulus. Unfortunately, the original theory cannot be applied
to a solvent-free model, because inertia effects come into play which are not
treated. These effects change the behavior of the undulation autocorrelations
qualitatively and lead to an oscillatory decay. An improved theory without
any free parameters has been derived that explains these oscillations. Several
consistency checks have been performed, so that we are confident about the
origin of these oscillations. The results of both methods agree within error
bars, although the second one is rather inaccurate. The obtained values for b
are in the range of 1−8 kBT ×τ/r4

c , which translates to b = 1.6×106 Pa s/m for
ρ̄∗ = 18 and b = 8.7 × 108 Pa s/m for ρ̄∗ = 40. Compared to the experiments,
both values are 1-2 orders of magnitude too small, but they are consistent with
other coarse-grained and atomistic simulations. We therefore conclude that
there might be a general problem with the interpretation of the experiments.

In summary the model reproduces realistic values for η. If the DPD ther-
mostat is used and no solvent is present, then the decay of the undulations
is different from what is observed in experiments. This artifact can be cir-
cumvented by a partial violation of the conservation of momentum, or by the
introduction of a solvent. Moreover, we have explored the possibility of using
the TDPD thermostat to control the diffusivity and the viscosity independently.
It turned out that the product D×η is constant within error bars. This finding
is consistent with the two-dimensional Stokes-Einstein equation.

4.3 Mapping to a fluid of soft discs

Our coarse-grained bead-spring model, presented so far, exhibits many static
and dynamic properties of amphiphilic bilayers that are compatible with exper-
imental observations. Even though the number of degrees of freedom has been
reduced significantly compared to atomistic models, its applicability is still lim-
ited to situations whose characteristic dimensions are smaller than 100 nm in
the spatial and 10 μs in the time domain. For many applications in chemical
biology this is still not enough, therefore even coarser coarse-grained models
become necessary.

Under certain circumstances, it is of interest to study the interplay of phe-
nomena on separated time or length scales. In these cases one requires differ-
ently coarse-grained representations of the same physical systems which must
be connected somehow. For instance, one could envisage the study of vesicles
in shear flow, which is a simplified model for the flow of red blood cells in blood
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Figure 4.17: In this section the lipids in the HRM (left) are mapped to a fluid of
soft, two-dimensional discs, the LRM. To give theses discs a spatial extension they are
drawn as spheres instead (right).

vessels. Ideally, all three dissipation mechanisms, i.e., the solvent viscosity, the
intermonolayer friction, and the surface viscosity, would be included. However,
the latter ones can be only accounted for if the molecular structure of the bi-
layer is considered. At the moment such a study is still unfeasible and other
authors resorted to models without such detail; for instance they described the
bilayer surface by a triangulation [106, 107, 322].

In recent years, sophisticated “multi scale” coarse-graining methodologies
have been invented for tackling such problems. Typically they encompass
two or more representations of the same system on different levels of coarse-
graining. In the case of only two representations there is normally one with a
high resolution, i.e., an atomistic or molecular representation, and one with a
low resolution which is more coarse-grained. In the following the former one
will be denoted as the high resolution model (HRM) and the latter one as the
low resolution model (LRM). Generally, a successful connection between these
two representations involves three fundamental steps [100].

The first step is to define a prescription for mapping the HRM’s “atoms”
to some effective interaction centers in the LRM, e.g., by lumping several
atoms into one bead. If dynamic properties are of interest, the momenta
must be mapped additionally. In the following we will map an entire am-
phiphilic molecule onto a single bead sitting at the molecule’s center of mass
(see Fig. 4.17). The bead’s momentum is given by the molecule’s center of
mass momentum.

The second step consists of mapping the interactions of the HRM’s atoms
to the LRM’s beads. Various schemes have been presented for finding these
interactions and many of them are able to reproduce the HRM’s statics with
high accuracy. Most prominent are iterative schemes that reproduce a set of
lower order radial distribution functions, like inverse Monte Carlo [323–325],
the iterative Boltzmann inversion method [96, 326, 327], the structure based
coarse-graining [328, 329], or the molecular renormalization group approach
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4.3 Mapping to a fluid of soft discs

[330, 331]. They have been applied successfully in several studies of lipid bilayer
membranes [325, 332, 333]. A different, non-iterative scheme is based on solving
the Born-Green-Yvon (BGY) set of integral equations known from liquid-state
theory numerically [334, 335]. In this way variationally optimized interaction
potentials can be generated from existing structural correlation functions.

Finally, there is the “force-matching” scheme, where arbitrary many-body
interaction potentials are cast into a set of pair potentials that are expanded
as linear combinations of suitable basis functions [98–101]. The coefficients
of this expansion are determined variationally, by minimizing the discrepancy
between the forces of the HRM and the matched forces of the LRM. Several
successful applications of this scheme in lipid bilayer studies have been reported
[67, 98, 336–338].

Reproducing only static properties is not enough for preserving the dynamics
of the underlying model.17 In fact, the coarse-graining eliminates many micro-
scopic degrees of freedom which act as a heat bath and cause thermal noise
and friction for the macroscopic degrees of freedom. Therefore, a third step is
needed, in which the HRM’s friction is imprinted on the LRM. This step has
been overlooked in many studies so far, and work on this topic has begun only
recently [86–88]. At present no practical, working schemes are available and
the mapping of friction is largely based on physical intuition.

An easy way of reintroducing friction and thermal noise into the LRM is
to let an adjusted DPD thermostat do the work. This marks a change in the
perception of the thermostat: instead of being responsible for maintaining only
the temperature, its stochastic forces now replace the microscopic background
that has been eliminated [141]. By manipulating the thermostat’s parameters,
i.e., the friction coefficient, the weighting function, or the cutoff, it is possible
to control the friction [172, 339–341] and it might be possible to adjust the
LRM’s transport coefficients to the HRM’s values.

In this section we use our coarse-grained model as the HRM and perform an
additional coarse-graining step for obtaining a simplified representation. The
lipids in this LRM are represented by two-dimensional soft discs interacting
via pair potentials (see Fig. 4.17). The goal of this study is to establish a
representation of our model with the same pair correlations on large and small
scales, and the same dissipation coefficients, i.e., the intermonolayer friction
and the surface viscosity. The consideration of the dissipation marks an im-
provement over previous work, where only static properties have been matched
[332, 338]. This toy model allows us to perform very efficient simulations and
to gain insight into the relevance of the degrees of freedom for the dynamics,
as well as to study the influence of the DPD thermostat and its parameters on
the transport coefficients.
17It has been pointed out that reproducing only static properties is not even enough for

preserving the thermodynamics [77].
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4.3.1 Interactions

The mapping of the HRM to the LRM is achieved by the three steps mentioned
before. First, a simple, two-dimensional mapping prescription is established,
where the lipids are represented by a single bead which resides at the lateral
position of its center of mass. The normal coordinate is discarded. Second, the
interaction potentials of the LRM are engineered to approximate the lateral
pair correlation functions and the static structure factor of the HRM; this is
achieved by a force-matching procedure. Third, the intermonolayer friction and
the surface viscosity of the LRM particles are adjusted to the HRM’s values
by tuning the DPD thermostat’s parameters.

Force-matching

The n lipids in the LRM are structureless, two-dimensional point particles
confined to a plane. To mimic the existence of two leaflets, half of the lipids are
tagged as residing on the lower leaflet, and half of them as residing on the upper
one. All lipids interact through two pair potentials: an intraleaflet potential,
Uintra(r), for the interactions between two lipids within the same leaflet, and an
interleaflet potential, Uinter(r), for the interactions between lipids on opposite
leaflets. In the following r denotes the lateral distance between two beads,
irrespective of their leaflets.

The interactions of the HRM are mapped to Uintra(r) and Uinter(r) by a
force-matching procedure. An extensive discussion of this procedure is given
elsewhere [98–101], thus only a brief description of the relevant issues for this
work is given. The presentation follows Ref. 101.

The matching prescription that defines the LRM’s positions, RI , and mo-
menta, PI , as functions of the HRM’s positions, rIi, and momenta, pIi is:

RI = 1
N

N∑
i=1

(êy ⊗ êy + êz ⊗ êz) · rIi (4.66)

PI = 1
N

N∑
i=1

(êy ⊗ êy + êz ⊗ êz) · pIi (4.67)

The two indices of the HRM quantities are the molecular index, I, and the
bead index, i, of molecule I. The quantities of the LRM are written in upper
case, whereas those of the HRM are written in lower case. According to the
classification of Noid et al. [100], this mapping is “consistent in phase space”,
i.e., the LRM’s “equilibrium distribution of coordinates and momenta is equal
to the distribution determined by the [HRM’s] equilibrium distribution func-
tion”. An important feature of this mapping is the equivalence of the unit of
length, rc, in both the LRM and the HRM.
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4.3 Mapping to a fluid of soft discs

The LRM’s total potential energy can be written as

U(Rn) =
∑
x,γ

Ux(r({R}γ)), (4.68)

where n denotes the number of molecules, x ∈ {intra, inter} one of the two
possible interactions, and γ a specific pair of LRM particles that has an inter-
action of type x. The function r({R}γ) gives the lateral distance between the
two particles. Both potentials, Ux(r), have a finite range and vanish for r ≥ Λ.
They are gauged so that Ux(Λ) = 0. In the interval [0, Λ] they are constructed
from a set of K basis functions, uxd(r), and are written as linear combinations
with real coefficients, φxd, as follows

Ux(r) =
K∑

d=1
φxd uxd(r). (4.69)

The corresponding force on particle I is therefore

FI(Rn; φ) =
∑
x,d

φxd GI;xd (Rn) (4.70)

with
GI;xd(Rn) = −

∑
γ

d uxd(r({R}γ))
dr

∂r({R}γ)
∂RI

. (4.71)

Equation (4.70) demonstrates that FI is linear in the expansion coefficients
φxd. The force-matching has the consequence that the unit of energy, kBT ,
agrees in the two models in addition to rc.

In this work we use fourth order B-splines for the basis functions, uxd(r), i.e.,
cubic polynomials which are defined in a compact interval and are continuously
differentiable at the interval boundaries. They are widely used in many different
areas where fitting problems occur [336, 342]. It can be shown easily that the
gauge implies φxK = 0.

As it was shown by Noid et al. the force-matching procedure can be formu-
lated as a variational principle in the coefficients φxd that is very similar to the
one used in condensed matter physics to determine ground-state wave functions
[100, 101]. In our two-dimensional case, the functional to be minimized is

χ2
MS(φ) = 1

2n

〈
n∑

I=1

∥∥∥fI(rnN ) − FI(Rn; φ)
∥∥∥2
〉

. (4.72)

Here, fI(rnN ) is the total lateral force on the center of mass of lipid I according
to the interactions of the HRM. In general, this depends on the positions of all
nN beads, rnN , in the HRM. The positions of the LRM particles, Rn, are also

127



4 Dynamic properties

functions of rnN with the relationship being given by the mapping operator.
For obtaining an expression that is easier to handle, we rewrite Eq. (4.72) as a
time average over Nt sampled time steps. By using Eq. (4.70) we find

χ2
MS(φ) � 1

2Ntn

Nt∑
t=1

n∑
I=1

∥∥∥∥∥fI(rnN
t ) −

∑
xd

φxd GI;xd (Rn)
∥∥∥∥∥

2

= 1
2Ntn

∥∥∥f − G φ
∥∥∥2 . (4.73)

In the second line, f denotes the vector of 2Ntn force components, φ the vec-
tor of 2K expansion coefficients, and G the 2Ntn × 2K matrix of all force
components; ‖ · ‖ is the usual Euclidean norm.

From a technical point of view, Eq. (4.73) depicts a linear least-squares
problem,18 with 2K parameters φxd, that can be readily solved with one of the
many numerical libraries.19 Since G gets very large for large Nt, it is virtually
impossible to keep all sampled time steps in the computer’s memory at the
same time. Therefore the block averaging approximation is used [101]. In
this approximation the Nt samples are grouped into m equal blocks of length
Ñt = Nt/m. One computes an estimate φ̃

i
, i = 1 . . . m, from each block i, and

finally yields φ =
∑

i φ̃
i
/m. Besides the reduced memory consumption, this

approximation offers the benefit of speeding up the calculation of φ, because
the computational cost of the least-squares problem scales with the block length
like O(Ñ2

t ).

Friction-matching

The projection onto the centers of mass removes all intramolecular degrees
of freedom, so that the intrinsic friction of the LRM is expected to be much
smaller than that of the HRM. Hence, the LRM’s b and η will differ from the
HRM’s values. Of course, the unit of time in the LRM does not have to agree
with the one in the HRM, thus, a new mapping of the time scale, similar to
p. 90, becomes necessary.

Instead of performing the additional mapping explicitly, we focus in this
section on the time scale independent products Db/kBT and Dη/kBT . The first
one has the dimension of an inverse area, while the latter one is dimensionless.
To distinguish the HRM’s target quantities from the LRM’s actual quantities,

18In fact it is a constrained least-squares problem, because Eq. (4.73) is accompanied by two
linear constraints, φxK = 0, which result from the potential gauge, Ux(Λ) = 0. Since the
constraints are linear, the constrained least-squares problem with 2K degrees of freedom
can be rewritten as an unconstrained linear least-squares problem with 2(K − 1) degrees
of freedom.

19Here the function dgglse() of the LAPACK library is used.
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4.3 Mapping to a fluid of soft discs

we denote the latter ones with a tilde, e.g., b̃, η̃, and D̃. Since the units of length
(rc) and energy (kBT ) agree in both models, the equations D̃b̃/kBT ≈ Db/kBT
and D̃η̃/kBT ≈ Dη/kBT have to hold for the mapping to be successful.

For adjusting the friction of the LRM we have to introduce a new source of
friction, which will be the DPD thermostat. We have learnt in Sec. 4.2 that
two different dissipation mechanisms exist and, hence, we will use a variant of
this thermostat that distinguishes the interactions within the same leaflet from
those between opposite leaflets. Specifically, we assign an intraleaflet friction
coefficient, γintra, and an intraleaflet (DPD-)weighting function, wD

intra(r), to the
interactions in the same leaflet, and an interleaflet friction coefficient, γinter,
and a corresponding weighting function, wD

inter(r), to the other case (cf. the
discussion of the standard DPD thermostat on p. 28). Hence, we have two
parameters (γintra, γinter) and two functions (wD

intra(r), wD
inter(r)) as degrees of

freedom for tuning the LRM’s dynamics. A proper shape of the weighting
functions has to be determined.

For saving computing time, one would like to have an analytic expression that
relates the four degrees of freedom of the DPD thermostat (wD

intra(r), wD
inter(r),

γintra, γinter) to D̃. It has been shown by Lahmar and Rousseau that such an
expression approximately exists [341]. Here, we extend this expression to the
case of two coupled, two-dimensional monolayers. For brevity we introduce the
notation

[f ] ≡ 2πΦ0

Λ∫
0

rdr f(r) (4.74)

to denote an areal integral of an arbitrary function f(r) over the disc with
radius Λ; Φ0 = n/A is the lipid number density. By considering the lateral
pair correlation function of beads in the same leaflet, gintra(r), and in different
leaflets, ginter(r), we define effective friction coefficients as

γ̄inter = γinter [ginterwinter] , (4.75)
γ̄intra = γintra [gintrawintra] . (4.76)

These integrals project the four degrees of freedom onto two scalar quantities.
For physical reasons, γ̄inter and γ̄intra are always positive. Due to the softness
of our interactions, packing effects are negligible, i.e., gintra(r) ≈ ginter(r) ≈ 1.
This fact can be used to simplify these expressions to20

γ̄inter ≈ γinter [winter] and γ̄intra ≈ γintra [wintra] . (4.77)

The lateral diffusion coefficient may now be cast approximately in the form of
20Keeping gintra(r) and ginter(r) in the expressions changes the numerical values of γ̄intra and

γ̄inter by less than 5%.
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a Stokes-Einstein equation as [341]

D̃ = c1 × kBT

γ0 + (γ̄intra + γ̄inter)
, (4.78)

where c1 is a positive, dimensionless coupling constant and γ0 is the (small)
LRM’s intrinsic friction originating from the interaction potentials. Equa-
tion (4.78) depends only on the sum of the two effective friction coefficients.
Hence, this universality allows us to predict the value of D̃ for all DPD param-
eters, once the constants c1 and γ0 are fixed.

It is tempting to speculate if a similar expression also holds for the inter-
monolayer friction coefficient, b̃. However, such a relationship has not yet been
found. Here, we propose a linear relationship involving only γ̄inter, because this
is the essential source of the friction between the leaflets. For obtaining the
right units, b̃ should also be proportional to Φ0. Hence,21

b̃ = c2Φ0 × γ̄inter, (4.79)

where c2 is another dimensionless coupling constant, independent of the ther-
mostat. This expression should be valid for intermediate friction, but will fail
if γ̄inter approaches zero, since the intrinsic intermonolayer friction is neglected
in Eq. (4.79). At very high friction, non-linear terms, which are currently
neglected, can become relevant.

Multiplying D̃ and b̃, i.e., Eq. (4.78) and Eq. (4.79), and dividing by kBT
we obtain the expression

D̃b̃

kBT
= c1c2Φ0 × γ̄inter

γ0 + (γ̄intra + γ̄inter)
. (4.80)

The product D̃b̃/kBT has the dimension of an inverse area and is independent
of the time scale. Thus, its numerical value is directly comparable to that in
the HRM and a successful mapping should yield Db/kBT = D̃b̃/kBT . Since
we are interested in solving for the friction coefficients, we replace the LRM’s
actual value of this product by the known target value of the HRM, rearrange
this equation as a linear combination of γ̄inter and γ̄intra, and obtain

γ̄inter

(
Db

kBT
− c1c2Φ0

)
+ γ̄intra

(
Db

kBT

)
+ γ0

(
Db

kBT

)
= 0. (4.81)

21One could add an additional offset so that b̃ > 0 even if γ̄inter = 0. But for brevity we omit
such a term.
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Equation (4.81) reveals a problem. The friction coefficients γ̄inter, γ̄intra, and
γ0 are –for physical reasons– always positive, as well as the product Db/kBT .
Hence, a consistent, physically meaningful solution to this equation can only
exist, if

Db/kBT < c1c2Φ0. (4.82)

Thus, it all depends on the relative magnitude of the two constants c1 and
c2. If they are too small, no physically meaningful solution for γ̄inter and γ̄intra
exists, and D̃b̃/kBT cannot be matched to Db/kBT with the DPD thermostat
alone.

Finally, we are looking for an expression relating the surface viscosity, η̃, to
the thermostat’s parameters. Fortunately, the shear viscosity of standard DPD
fluids has been studied carefully and analytical expressions for two and three
dimensions exist [138, 339]. Their derivations involve a sphere of action which
is defined by higher moments of the DPD weighting functions. In our case, two
such spheres exist and we define

〈
R2
〉

intra
=
[
r2wintra

][
w2

intra
] and

〈
R2
〉

inter
=
[
r2winter

][
w2

inter
] . (4.83)

With these definitions, η̃ can be written in a convenient form as

η̃ = c3mΦ0 ×
(
γ̄intra

〈
R2
〉

intra
+ γ̄inter

〈
R2
〉

inter

)
(4.84)

where c3 is another dimensionless coupling constant and m is the mass of a
molecule. To keep this equation linear in the effective friction coefficients, we
have omitted a small kinetic term proportional to (γ̄intra + γ̄inter)−1 [339].

A multiplication of Eq. (4.84) with Eq. (4.78) and a subsequent division by
kBT lead to the dimensionless quantity

D̃η̃

kBT
= c1c3mΦ0 × γ̄intra

〈
R2〉

intra + γ̄inter
〈
R2〉

inter
γ0 + (γ̄intra + γ̄inter)

. (4.85)

Similarly to the previously treated case, a successful mapping should yield
D̃η̃/kBT = Dη/kBT . We therefore substitute D̃η̃/kBT by Dη/kBT , rewrite
this expression as a linear combination of the effective friction coefficients, and
arrive at

−γ0
Dη

kBT
= γ̄inter

(
Dη

kBT
− c1c3mΦ0

〈
R2
〉

inter

)

+ γ̄intra

(
Dη

kBT
− c1c3mΦ0

〈
R2
〉

intra

)
. (4.86)

For obtaining physically relevant results one of the two terms in brackets on
the RHS must be negative. In contrast to Eq. (4.81) this condition is easier to
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fulfill because of the additional dependence on the action radii,
〈
R2〉

inter and〈
R2〉

intra. Their values can be set appropriately by choosing different weighting
functions. Hence, by tweaking the DPD parameters, it is possible to set the
LRM’s surface viscosity to the desired values.

Matching D̃, b̃, and η̃ at once is only possible if Db/kBT is small enough. In
this case, Eq. (4.81) and Eq. (4.86) form a set of two coupled linear equations
with two unknowns (γinter and γintra). Although the equations still depend on
the shape of the weighting functions, it is possible to find numerically exact
solutions, if an ansatz for the weighting functions with a parameter is used.

4.3.2 Mapping of the statics

The interaction potentials and their cutoff

For matching the interaction potentials of the LRM, we set up dedicated simu-
lations of the HRM for the two systems ρ̄∗ = 18 and 40 in the NPtT ensemble
with the standard DPD thermostat. Preequilibrated bilayer configurations
with vanishing lateral tension in the fluid phase22 having n = 4680 molecules
and N = 16 beads were used as initial configurations. Each simulation lasted
104 τ and the forces on the n amphiphiles’ center of mass, fI(rnN ), I = 1, . . . , n
were saved every 2 τ .

The force-matching procedure outlined in Sec. 4.3.1 was used to calculate
Uintra(r) and Uinter(r) from the recorded forces. We employed the block aver-
aging approximation with 500 configurations per block, i.e., the final potentials
are averages over ten independent estimates.

There are two degrees of freedom in this procedure. The first is the cutoff,
Λ, for which we tried Λ = 2, 3, 4, 5, and 6 rc and the second is the number
of basis functions, K. Here we tried different values between K = 20 and
100, however, it turned out that K is of minor importance. If the number of
basis functions is too small for a certain Λ, then the potentials look jagged
and acquire sharp edges; if it is too high, spurious oscillations pop up and the
potentials look noisy. Between these extremes there is a broad range of possible
values for K, and we chose K = 30 for Λ ≤ 4 rc and K = 50 for Λ ≥ 5 rc.
The right choice of Λ is more involved and it is based on comparisons of the
lateral pair correlation function, g(r), the static density structure factor, G(q),
and the lateral pressure with those of the HRM. Another crucial criterion is
the performance of the simulation which degrades with increasing Λ.

Figure 4.18 shows the two interaction potentials for ρ̄∗ = 18 and Λ =
3, 4, 5, 6 rc as well as the corresponding second order virial coefficients,
22The gel phase cannot be matched with this approach, because its configuration space

is sampled only for lipid separations close to integer multiples of the lattice constant
sufficiently.
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Figure 4.18: Interaction potentials Uintra(r) (top) and Uinter(r) (bottom) of the LRM
as determined by the force-matching procedure for ρ̄∗ = 18, Λ = 2, 3, 4, 5, 6 rc. The
two insets show the second virial coefficients Bintra(Λ) and Binter(Λ) calculated with
Eq. (4.87), respectively.

Bx = π

Λ∫
0

rdr
(
1 − e−βUx(r)

)
, (4.87)

in the insets where x ∈ {intra, inter}. At first glance Uintra(r) and Uinter(r) are
soft, finite potentials which decay monotonously for r < 2 rc, enter a weak dip
with a minimum at around 2.5 rc, and finally approach zero. The dip is the
only source of attractive interactions between different molecules and therefore
important for lowering the lateral pressure.

Uintra(r) has a maximum at r = 0 with an energy of 1.1 kBT and a maximum
depth of the dip of 0.06 kBT . If we use Λ = 2 or 3 rc the dip is absent. There
is hardly any difference in Uintra(r) between Λ = 5 and 6 rc. The repulsive
part of the other potential, Uinter(r), is roughly a factor of 3 smaller than in
Uintra(r), but the dip has approximately the same depth with 0.07 kBT . From
these findings we conclude that the essential features of the interactions are
captured by Λ = 4 and 5 rc. Larger values of Λ lack any new features and slow
down the whole simulation, thus, these values are disregarded in the remainder
of this section.

Another interesting quantity for deciding on Λ is the lateral pressure, Pt =
Lx(Pyy + Pzz)/2. Ideally, one wants to reach the state where the membrane is
tensionless, i.e., Pt = 0. However, a look at the potentials in Fig. 4.18 shows
that there are hardly any attractive interactions which reduce the lateral pres-
sure. This can be quantified by inspecting the second order virial coefficients,
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Table 4.2: LRM’s lateral pressure, Pt, in units of kBT/r2
c for Λ = 6 rc. The attractive

parts of Uintra(r) and Uinter(r) have been scaled by the factors sintra and sinter given
in the first column and the first row, respectively. X marks a combination of factors
where the system collapsed.

1.00 1.01 1.02 1.05 1.10 1.15 1.20 1.25
1.00 1.90 1.85 1.80 0.70 X
1.01 1.85 1.80 1.25 0.95
1.02 1.75 1.70 1.20 0.90
1.05 1.30 1.05 0.70 X
1.10 1.25 1.20 1.05 0.75 X X
1.15 1.00 0.90 0.75 X
1.20 0.75 X X X X
1.25 X

Bintra and Binter. If their sum is zero,23 the virial expansion of the lateral pres-
sure becomes Pt = Φ0kBT + O(Φ3

0). Hence, Bintra + Binter must be negative to
compensate the ideal gas term. This is only the case for Λ > 5 rc.

Obviously, the force-matching procedure in its current state misses some
attractions that would lower Pt. Therefore, we increased the attractions man-
ually. To this end Uintra(r) and Uinter(r) were split into a repulsive and an
attractive part by a Weeks-Chandler-Andersen (WCA) decomposition [343].
The two attractive parts were scaled independently by a factor sintra or sinter
in the range 1.00 - 1.60, respectively, and the potentials were assembled again.
Indeed, the succeeding simulations with Λ = 4, 5, 6 rc revealed that Pt was
decreased (see Tab. 4.2).

Besides the fact that rescaling the attractive parts has a small influence
on the static properties, e.g., g(r) and G(q) (to be discussed below), a new
problem arose. Since the potential energies are finite, there is a critical line
of rescaling factors at which the attractions win over the repulsions and the
whole system becomes unstable, i.e., cluster-crystallization occurs. We stress
that this is highly unphysical and a pure artifact of the finite interactions, but
it sets a limit on sintra and sinter. This critical line is located in the lower right
half of Tab. 4.2 and separates the region with finite pressures from that where
the system collapses. Noteworthily, even a small rescaling, i.e., sintra = 1.05 or
sinter = 1.05, led for Λ = 5 rc to a collapse. It seems that the force-matching
procedure yields in this case interactions that are close to the critical line. The
smallest values are Pt = 1.95 kBT/r2

c for Λ = 4 rc (sintra = sinter = 1.60),
Pt = 1.15 kBT/r2

c for Λ = 5 rc (sintra = sinter = 1.00; all other were unstable),
and Pt = 0.70 kBT/r2

c for Λ = 6 rc (sintra = 1.05 and sinter = 1.15).
23This corresponds to the Boyle temperature of a liquid.
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4.3 Mapping to a fluid of soft discs

Uintra(r), cf. Fig. 4.18, can be compared with the potential from Murtola et
al., who map an atomistic model of a mixture of DPPC with cholesterol onto a
fluid of discs by the inverse Monte Carlo method [332]. They employ a cutoff
of 2.5 nm which translates to 3.2 rc in our units, so that both potentials are
directly comparable. Since their HRM features harsh repulsions, their force-
matched potential is more repulsive than ours and exceeds 20 kBT at r = 0.24

Similar to our result for Λ = 3 rc, their LRM potential decays monotonously
lacking any visible, attractive dip. As a consequence it seems highly unlikely
that a tensionless state can be obtained in their model.

One may also compare our potential to the work of Ayton and Voth who map
an atomistic model of DMPC to a three-dimensional model where the lipids
have an ellipsoidal shape [338]. For small distances the molecules interact via
an anisotropic Gay-Berne potential. This potential has a harsh repulsion and
diverges for r → 0. For larger r they interact via a spherical, force-matched
potential. It has a cutoff of 2 nm (2.6 rc) and possesses a broad attractive well
with a depth of ∼ 2.5 kBT . Due to the anisotropic potential for small r and the
higher dimensionality, their potential is very different from ours and a direct
comparison is, even though they use the same numerical method, impossible.
Noteworthily, they are able to reach the tensionless state, Pt = 0.

Pair correlation function

Another crucial check of the force-matching procedure is to compare the LRM’s
lateral pair correlation function with the HRM. With this check we can ensure
that both models have the same molecular structure on small scales. Unlike
Eq. (3.6) we define here two correlation functions,

gintra(r) = 1
πrnΦ0

〈
n+∑
i

n+∑
j 	=i

δ
(
r − ‖rj − ri‖

)
+

n−∑
i

n−∑
j 	=i

δ
(
r − ‖rj − ri‖

)〉

ginter(r) = 2
πrnΦ0

〈
n+∑
i

n−∑
j

δ
(
r − ‖rj − ri‖

)〉
, (4.88)

that measure the correlations within the same leaflet and between opposite
leaflets. As before, n± denotes the number of lipids on the upper (+) or lower
(−) leaflet, n = n+ + n−, and Φ0 = n/A. Both functions are normalized to 1
in the limit r → ∞.

In Fig. 4.19 we compare both correlation functions for ρ̄∗ = 18 and ρ̄∗ = 40
and for Λ = 2, 3, 4, 5 rc to the ones obtained from the HRM. gintra(r) of the
HRM starts at r = 0 with 0.6 (ρ̄∗ = 18) and 0.8 (ρ̄∗ = 40), respectively,

24For the case with 0% cholesterol.
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Figure 4.19: Lateral pair correlation functions ginter(r) (top) and gintra(r) (bottom) of
the two systems ρ̄∗ = 18 (left) and ρ̄∗ = 40 (right) for different values of Λ compared
to the HRM. The curves for different Λ have been stacked along the y-direction with
a displacement of 0.1.

indicating that there is a tremendous overlap of the molecules and only a very
small excluded volume. There are hardly any packing oscillations except a little
hump with 1.005 between r = 1.6 and 2.0. The same is also true for ginter(r),
but here the excluded volume is even smaller and at r = 0 it starts at 0.94−0.95.
It is easy to imagine that these structureless functions can be matched readily.
Indeed, the simulation of the LRM yields in all cases correlation functions that
are very close to the HRM, i.e., one has to look carefully to see any differences.
The humps of gintra(r) and ginter(r) are slightly overestimated at Λ = 2 rc.
The force-matching procedure is capable of reproducing the right lateral pair
correlation functions for Λ > 2 rc and the structure on small scales is matched
correctly. But since these functions are so structureless, ginter(r) and gintra(r)
are no good indicators for the right choice of Λ.

Static structure factor

We now turn our attention to the large scale properties, that can be probed by
the static structure factor,

G(q) = 1
n

〈
n∑

i=1

n∑
j=1

eiq·(rj−ri)
〉

. (4.89)
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Figure 4.20: The radially averaged static structure factor, G(q), of the two systems
ρ̄∗ = 18 (top) and ρ̄∗ = 40 (bottom) for different values of Λ compared to the HRM.
The noise for qrc > 8 is caused by a radial averaging over a slightly anisotropic G(q).
This anisotropy is a numerical artifact caused by calculating G(q) on a grid.

The spatial distribution of the amphiphiles lacks any long-range order and
since there are hardly any packing effects, a wide distribution of molecular
separations exists. Therefore, a plot of the HRM’s G(q) in the qy-qz-plane is
rotationally symmetric and has a single broad ring without any isolated Bragg
spots (see Fig. 4.20). In the limit q → 0, G(q) goes to a finite value. The results
of the force-matching procedure show for qrc > 2 a similar distribution that is
almost independent of Λ. Although the scattering intensity at qrc = 6 is the
same as in the HRM, the curves are slightly shifted and have less intensity for
small qrc which means that the LRM produces more disordered structures on
larger scales.

Even though all G(q) behave similarly for qrc > 2, there is a remarkable
difference in the limit qrc → 0. It turns out that the limiting value, G(q → 0),
which is proportional to the isothermal compressibility, increases with increas-
ing Λ. This becomes particularly severe for Λ = 5 rc, where G(q) diverges.
Such a divergence indicates a liquid-vapor phase coexistence, as it is described
by the Ornstein-Zernicke (OZ) theory [344], and certainly leads to an incorrect
macroscopic behavior. This artifact of the force-matching procedure is highly
unwanted and disqualifies the usage of Λ ≥ 5 rc. Even though Λ = 4 rc ex-
ceeds the compressibility of the HRM, it is finite for both systems, ρ̄∗ = 18 and
ρ̄∗ = 40, and at most twice as large. The smaller cutoffs Λ = 2 rc (not shown)
and Λ = 3 rc yield good agreement with the HRM.
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In summary, the choice of Λ is difficult because it has a strong impact on
many aspects of the LRM. First, it is a crucial parameter for the performance
of the simulations, because the number of interactions to be calculated scales
with O

(
Λ2) and large values degrade the performance significantly. Second, Λ

strongly influences the strength of the attractions and therefore the EOS. Λ = 2
and 3 rc lead to an almost purely repulsive potential, while Λ = 5 and 6 rc

have a small attractive dip. However, large values of Λ increase the isothermal
compressibility of the LRM. For Λ = 5 rc one already obtains a divergence
of G(q → 0), which leads to the wrong macroscopic properties of the system.
Since the pressure is too high for every set of parameters, and since the EOS
was not included in the force-matching process, we expect the LRM to have
an entirely different EOS from the HRM’s. Consequently, such a system would
never self-assemble into bilayers.

We conclude the discussion of the statics by stating that Λ = 4 rc is –without
any rescaling– the best compromise: it yields the right macroscopic properties,
simulations are still efficient, the system does not collapse, and the pressure
is as low as possible. Therefore, it will be used exclusively in the following
discussion of the dynamics.

4.3.3 Mapping of the dynamics
The LRM’s dynamics was studied for the system ρ̄∗ = 18 and Λ = 4 rc, i.e., the
quantities to be matched are Db/kBT ≈ 1.3 × 10−2 r−2

c and Dη/kBT ≈ 0.48
(cf. Tab. 4.1). Numerous DPD friction coefficients, γintra and γinter, and two
different (dissipative) weighting functions,

wD
1 (r) =

{
(1 − r/R)2 , r < R

0, r ≥ R
(4.90)

wD
2 (r) =

{
1, r < R

0, r ≥ R
, (4.91)

with variable cutoffs, R ≤ Λ, were used in various combinations; the details are
compiled in Tab. 4.3. Two different simulation runs were started for each set of
DPD parameters: one equilibrium run for measuring D̃ from the bead’s MSD,
cf. Eq. (4.1), as well as b̃ via the Green-Kubo relation, cf. Eq. (4.36), and one
non-equilibrium, RNEMD run for measuring η̃, cf. Eq. (4.30). Large values of
γ̄intra or γ̄inter slowed down the relaxation significantly, thus we extended some
runs for obtaining D̃, b̃, and η̃ with a comparable accuracy. The equilibrium
runs took between 5 000 and 24 000 τ , and the RNEMD runs between 5 000
and 56 000 τ .
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4.3 Mapping to a fluid of soft discs

Table 4.3: DPD friction coefficients and weighting functions for studying the LRM’s
dynamics. See Eqs. (4.90) and (4.91) for the definitions of the weighting functions.

wintra/R winter/R γintra γinter # runs
w1/4.0 w1/4.0 0.5 – 2.0 4 – 16 11
w1/3.5 w1/3.5 0.5 – 2.0 4 2
w1/3.0 w1/3.0 0.5 – 6.0 4 – 20 10
w1/2.5 w1/2.5 0 – 4.0 2 – 20 15
w1/2.0 w1/2.0 0 – 4.0 2 – 20 24
w1/1.5 w1/1.5 0.5 – 2.0 4 2
w1/1.0 w1/1.0 0.5 – 2.0 4 2
w1/0.5 w1/0.5 2 4 1
w1/2.0 w2/4.0 1 12 – 20 3
w1/2.5 w2/4.0 1 12 – 20 3
w1/3.0 w2/4.0 1 12 – 20 3
w2/4.0 w2/4.0 2 4 – 8 3

Diffusion

First, we discuss the results of the measurement of D̃, which were obtained by
the same method as in Sec. 4.1.2. In contrast to the HRM with three different
regimes, the LRM’s MSD function displays only two regimes: the ballistic and
the freely diffusive one (see inset of Fig. 4.21). The intermediate, subdiffusive
regime, which originates from the molecular connectivity, is missing.

The obtained diffusion coefficients are shown as a function of γ̄intra + γ̄inter
in the main panel of Fig. 4.21. We observe the expected universality, i.e., the
data points collapse on a single curve that can be fitted by Eq. (4.78). This
finding is in qualitative agreement with that from Lahmar and Rousseau [341]
and demonstrates that γ̄intra and γ̄inter contribute equally to D̃. A least-squares
fit with two parameters matches all but the largest values of γ̄intra + γ̄inter and
we obtain c1 = 2.46(2) and γ0 = 3.85 kBTτ/r2

c . The deviations from the
asymptotic (γ̄intra + γ̄inter)−1 power law for large friction are small.

Intermonolayer friction

We now turn to the discussion of the LRM’s intermonolayer friction. Fig-
ure 4.22 depicts b̃ as a function of the effective friction between two leaflets,
γ̄inter, for all sets of DPD parameters. The data points were obtained using
the Green-Kubo relation with the same method as in Sec. 4.2.2. The measure-
ment is straightforward and accurate estimates are available. All data points
collapse on a single curve which is approximately linear and our linear expres-
sion, Eq. (4.79), is valid over three orders of magnitude. At the highest values,
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Figure 4.21: The LRM’s diffusivity, D̃, as a function of the summed effective frictions,
γ̄intra + γ̄inter. The data for different weighting functions and friction coefficients col-
lapse on a single curve, described by Eq. (4.78) (green, solid line). The labels coincide
with Tab. 4.3, “mixed” refers to the combinations where wintra = w1 and winter = w2.
The asymptotic power law is shown by the red, solid line. The inset shows the MSD
for a typical simulation run (wintra(r) = winter(r) = w1(r), R = 2.5 rc, γintra = 4,
γinter = 2). The asymptote to the ballistic regime is shown in red, the one to the freely
diffusive regime in green.

γ̄inter ≥ 103, deviations from this linear behavior show up that may arise ei-
ther from sampling difficulties or from non-linear effects. At very small values
of γ̄inter no plateau is visible. This indicates that the intrinsic intermonolayer
friction is negligible compared with the one induced by the thermostat. The
influence of the intramonolayer DPD parameters, γintra and wintra(r), on b̃ is
virtually zero and even the data points for distinct intramonolayer weighting
functions collapse on the same, universal curve.

A fit of the linear regime to Eq. (4.79) yields the dimensionless constant
c2 = 1.02(2) × 10−3. Hence,

c1c2Φ0 = 8.93(2) × 10−3 r−2
c < Db/kBT = 13(1) × 10−3 r−2

c (4.92)

So even though it is possible to vary b̃ over more than three, and D̃ over
more than two orders of magnitude in a controlled way, their variation is de-
pendent and their product is always smaller than Db/kBT . This means, the
DPD thermostat slows the diffusion down faster than it is able to increase the
intermonolayer friction. Hence, it is impossible to solve Eq. (4.81) for two pos-
itive friction coefficients. In other words, the HRM’s intermonolayer friction
is –on the relative time scale defined by the diffusivity– so high that it can-
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Figure 4.22: The LRM’s intermonolayer friction coefficient, b̃, as a function of the
effective intermonolayer DPD friction coefficient, γ̄inter. The names in the legend
coincide with those in Fig. 4.21.

not be matched by adjusting the LRM’s DPD parameters alone, although the
difference is remarkably small.

It is difficult to judge if the LRM is capable of reproducing the intermonolayer
friction of real existing lipid bilayers because of the two orders of magnitude
difference between experiments and simulations (cf. Sec. 4.2.2). However, a
direct comparison with the atomistic simulations from Wohlert and Edholm is
feasible [278]. They found b = 2.8 × 106 Pa s/m and D = 0.79 × 10−11 m2/s,
which leads in our units to Db/kBT = 5.48 × 10−3 nm−2 = 3.34 × 10−3 r−2

c .
This atomistic result is a factor 4 smaller than our coarse-grained result, and
therefore smaller than c1c2Φ0. Hence, the LRM can be used to map this
atomistic model.25

Surface viscosity

Finally, we move on to the discussion of the LRM’s surface viscosity, η̃. We ap-
plied the RNEMD technique that allows efficient estimates for low to moderate
friction. For very large friction, even this robust method becomes troublesome,
because the velocity gradient gets very noisy and vanishes in short simulations.

Figure 4.23 shows η̃ as a function of (γ̄intra
〈
R2〉

intra + γ̄inter
〈
R2〉

inter), cf.
Eq. (4.84), for all DPD parameters. Although minor deviations exist, the data
points seem to collapse onto a universal curve. This curve has a small negative
slope for small values of the abscissa, but is essentially flat. A minimum at
25This requires, of course, different interaction potentials.
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Figure 4.23: The surface viscosity, η̃, of the LRM as a function of γ̄intra
〈
R2〉

intra +
γ̄inter
〈
R2〉

inter. The names in the legend coincide with those in Fig. 4.21.

∼ 3 kBTτ shows up, followed by a sharp rise by two orders of magnitude.
The existence of a minimum and the decay at small values are, of course, not
captured by our linear theory, since Eq. (4.84) neglects the kinetic contribution
to the viscosity [339]. The sharp rise is approximately fitted with one parameter
by the linear theory and we obtain a value for the coupling constant, c3 =
8.136 × 10−4. For very large friction, this linear theory becomes invalid, thus
only the intermediate regime is captured acceptably. However, the quality of
this fit is worse than that of the two other dynamical quantities. The existence
of a universal curve for η̃ is, however, an important result and implies that one
can predict η̃’s value approximately from the knowledge of the thermostat’s
parameters.

We conclude the discussion of the dynamics by a brief look at the accuracy
of this mapping procedure. For the sake of simplicity we take the results of
one of the already existing simulation runs: wintra(r) = winter(r) = w1(r),
R = 2.5 rc, γintra = 4, and γinter = 2. This parameterization should be valid for
mapping the HRM’s surface viscosity to the LRM. Using c1 and γ0 from above,
we compute the expected diffusion coefficient, D̃exp = 0.0672 r2

c /τ . The value
obtained from the simulation, D̃sim = 0.0677 r2

c /τ , is in excellent agreement
with this prediction. The expected surface viscosity, η̃exp = 7.03 kBTτ/r−2

c is
a bit higher than the measured value, η̃sim = 5.9 kBTτ/r−2

c . We obtain for the
expected dimensionless mapping parameter, (D̃η̃/kBT )exp = 0.47, and for the
measured one, (D̃η̃/kBT )sim = 0.40(5). With this simple mapping scheme, one
can map the product Dη/kBT from the HRM to the LRM with an accuracy
of two significant digits.
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4.3.4 Conclusions

In this section we established a two-dimensional representation of our soft,
solvent-free coarse-grained model for amphiphilic bilayers. The molecules are
represented by soft, structureless discs that interact via pair potentials. We em-
ployed the force-matching procedure to find interaction potentials which closely
mimic the effective interactions between lipids in the original model. The most
important parameter in this matching is the cutoff of the interactions, Λ. We
investigated the effect of different values of Λ on the lateral pair correlation
functions, the static structure factor, the second order virial coefficients, and
the lateral pressure of our model. The short-ranged liquid structure is obtained
easily, but the disc model seems to be unable to reproduce longer-ranged corre-
lations correctly and large-scale properties crucially depend on Λ. The lateral
pressure was in all cases too high, which can be attributed to the lack of any
significant attractive tails in the interaction potentials. An amplification of
the attraction by means of a WCA-decomposition lowered the pressure, but
introduced instabilities. The best compromise for all these quantities has been
found for Λ = 4.0 rc.

The DPD thermostat was used to recover the amount of friction which was
lost by removing the intramolecular degrees of freedom. We used different
weighting functions and different friction coefficients for the interactions within
the same leaflet and within opposite leaflets. The choice of these degrees of
freedom of the thermostat affected the dynamical quantities differently. The
diffusivity, D̃, only depends on the sum of the effective intra- and interleaflet
contributions; the weighting functions enter as a numerical prefactor. Hence,
every value of D̃ can be obtained by manipulating only the friction coefficients.
The surface viscosity, η̃, depends non-linearly on the sum of the intra- and
interleaflet frictions, each scaled by a factor that includes various moments of
the weighting functions. This dependency offers the possibility of controlling
η̃’s value through the shape of the two weighting functions. Finally, the inter-
monolayer friction, b̃, depends only on the effective interleaflet friction. This
dependency is linear in the friction over several orders of magnitude. The DPD
thermostat, with these four degrees of freedom, is a versatile tool as long as
only one of these three quantities is required to have a predefined value. The
universal behavior of D̃, b̃, and η̃ on the parameters facilitates a straightforward
mapping and saves a significant amount of computing time.

For a physically meaningful mapping, at least two dynamical quantities must
be considered at the same time. Here, one of them is D̃ which serves as a con-
version factor for the unit of time. We identified Db/kBT and Dη/kBT as
reasonable mapping parameters, because they do not depend on the arbitrary
timescale and because the units of length and energy agree in both models.
We demonstrated that an upper boundary for Db/kBT exists, and that values

143



4 Dynamic properties

exceeding this boundary cannot be obtained from our thermostat. The prod-
uct with the surface viscosity, Dη/kBT , is easier to obtain, since it involves
higher moments of the weighting functions which serve as additional tuning
parameters.

The mapping of the HRM’s dynamics onto the LRM was only partially suc-
cessful. Though it was possible to obtain D̃η̃/kBT ≈ Dη/kBT , Db/kBT was
slightly too high to be mapped. However, an atomistic simulation from a differ-
ent group yielded a value of Db/kBT below the threshold, thus the LRM could
in principle be used to map such a model. Since the intermonolayer friction
and the diffusivity increase with an increasing molecular density, ρ̄∗, the LRM
is unable to describe the dissipation mechanisms of polymeric membranes. It
seems that it is only capable of describing the intermonolayer friction of weakly
interdigitated objects, e.g., lipids or soft rods. This can be also conceived from
another point of view: the LRM crucially depends on the assumption of two
weakly coupled leaflets. This assumption is justified in lipid bilayers, however,
with an increasing molecular density the degree of interdigitation between the
two monolayers, and thus the coupling, also increases and the basic assumption
of the LRM fails.

We conclude from these findings that strongly coarse-grained models lack
the ability to generate large values of the intermonolayer friction. The HRM,
in turn, is able to generate much greater values of it, but lacks the ability of
generating small ones. Hence both models are complementary in this respect.
It would be interesting to see, if the molecular discretization, N , provides
another means for modifying b in the HRM. In this case one would end up
with a parameter, that is more flexible than the DPD thermostat and that can
be used to tune b to high and low values easily.
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“Further, science is a collaborative effort.”

(John Bardeen)

Collective phenomena in lipid bilayer membranes, like self-assembly, pore for-
mation and fusion, lateral phase separation, collective diffusion, or phase tran-
sitions, play an important role in many biological processes. These phenomena
involve hundreds to thousands of molecules and the characteristic time and
length scales are microseconds and micrometers. Polymer membranes of di-
block copolymers can be tailored to meet a wide range of applications and
are much more robust than their lipid counterparts. However, they possess
the same relevant interactions at the mesoscale, i.e., the scale between the
monomeric repeat unit and the extension of the entire molecule, and thus show
similar collective phenomena. Due to the higher molecular weight, the charac-
teristic time and length scales are one to two orders of magnitude larger.

These scales, microseconds and micrometers, are often difficult to observe
in experiments, so that computer models are used to aid in the interpretation
of experimental results or to predict the outcome of certain measurements.
Atomistic models, where all molecules are described in great chemical detail,
are hardly suited to the study of these mesoscopic collective phenomena, there-
fore one often resorts to a coarse-grained description.

In Chapter 2, we have developed a coarse-grained, solvent-free model which
smoothly interpolates between lipid and polymer membranes. Our soft, non-
bonded interactions are based on a classical, weighted density functional which
is a third-order expansion in weighted molecular densities. The thermodynamic
properties and the local structure of our model decouple within the mean-field
approximation, and can be controlled independently by the expansion coeffi-
cients and two weighting functions. By calculating the expansion coefficients
from simple physical principles, which involved only quantities that are ac-
cessible from experiments, we impart a transparent interpretation onto these
coefficients. Appropriate weighting functions are selected to create weak pack-
ing effects. The bonded, intramolecular interactions include simple harmonic
potentials to mimic the connectivity and bond-angle potentials to restrict con-
formational fluctuations. We employ multibody dissipative particle dynamics
to integrate the beads’ equations of motion.
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5 Conclusions and outlook

A parallel simulation code, based on the force-decomposition scheme, was
written allowing for the simulation of our model within the canonical or the
tensionless ensemble. The program scales well up to 64 CPUs, so that large
systems of 104 − 105 molecules can be simulated. Linear dimensions of 100 nm
and time intervals of 10 μs are accessible, thus, our model allows for a qualitative
study of collective phenomena.

Chapter 3 of this work discusses the static properties of our model. Here, we
confirm that it accurately represents polymer as well as lipid bilayers. Depend-
ing on the interaction coefficients, our model shows self-assembly into spherical,
cylindrical, or wormlike micelles, as well as to bilayers or inverted structures.
The lipid bilayer phase diagram comprises the fluid phase (Lα) as well as sev-
eral gel phases (Lβ , Lβ′ , LβI). We did not observe a ripple phase (Pβ′). The
bending rigidity was found to be around 20 kBT , which is high enough for
biomembranes (without proteins) to be simulated.

In a subsequent discussion we turned to the discontinuous main phase tran-
sition between the fluid and a gel phase (Lβ). We presented a method based on
a non-Boltzmann sampling scheme to locate precisely the point of this phase
transition. In comparison to the trivial way of finding the phase transition
point by looking at the center and the width of the corresponding hysteresis
loop, this method gives an estimate that is twenty times more accurate. In
addition we studied the lateral demixing of fluid and gel domains and mea-
sured the line tension between such domains. It is very close to experimental
values, i.e., ∼ 10 pN. It was demonstrated that two different definitions, the
thermodynamic and the bare line tension, exist which differ by a fluctuation
term that depends on the length scale.

The coarse-grained dynamics was studied in Chapter 4. We carefully an-
alyzed the diffusion of the lipids by measuring the dynamic structure factor,
the velocity autocorrelation function, and the mean-square displacement of the
beads and the centers of mass. This study revealed that there is hardly any
concerted motion of the centers of mass. In particular, no flow pattern like in
atomistic models is observable [92], the lipids move in unison only for very short
time intervals and their motion decorrelates quickly. The dynamic structure
factors offered insights into the spectrum of collective excitations and the dis-
persion relations of the bilayers; a value for the speed of sound was extracted.
Noteworthily, the flipflop rate, i.e., the rate of transversal diffusion of the lipids
across the bilayer, is vanishingly small.

Another large part of the study was dedicated to the dissipation mecha-
nisms. In contrast to atomistic simulations with an explicit, viscous solvent,
there are only two instead of three mesoscopic dissipation mechanisms in our
solvent-free model: the intermonolayer friction and the surface viscosity. Both
quantities have not yet been measured in a solvent-free model, and two meth-
ods for calculating each one were presented. In particular we derived a new
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Green-Kubo relation for measuring the intermonolayer friction and presented
a modified version of the Seifert-Langer theory [84, 85] that describes the time
evolution of undulation modes. This modification included an inertial term
which was neglected in the original theory. This term led to propagating un-
dulation modes and explained the observed time evolution of the undulations
in our solvent-free model very well. The obtained numerical value of the surface
viscosity, η ≈ 3.9 × 10−10 Pa m s, matches the one from experiments [287–289].
The intermonolayer friction’s value, b ≈ 1.6 × 106 Pa s/m, agrees with other
simulations [278, 304], but differs from experiments by two orders of magnitude
[298–300]. The reason for this discrepancy has not been resolved yet.

The impact of coarse-graining on the static properties is well understood,
but its influence on the dynamics is still under active research. At present
no practical scheme for mapping the dynamics of an atomistic model onto
a coarse-grained model exists. Nevertheless, it is interesting to see how the
coarse-graining procedure affects the dynamics. In a final part of Chapter 4
we devised another, even more coarse-grained model for lipid bilayers where
entire molecules are represented as two-dimensional soft particles that move
only laterally. We studied the question to what extent the DPD thermostat
can be used to yield the same dissipation constants, measured on a relative
time scale set by the lateral diffusion, as in the full bead-spring model. It turns
out that such a mapping is indeed possible, as long as these constants are not
too high. The surface viscosity can be mapped easily, whereas mapping the
intermonolayer friction is far more challenging.

In this work we have exclusively studied single-component bilayers that
served as a good testing bed for our new model. However, biomembranes
as well as synthesized lipid bilayers always contain more than one species, e.g.,
DPPC with cholesterol, so that the next step in line of this work is certainly
an extension to more than one species. This would open up the possibility of
studying phase diagrams of lipid mixtures, line tensions between domains of
different compositions, or the elastic properties as functions of the lipid com-
position. One could also investigate if the collective diffusion changes, or how
the intermonolayer friction and the surface viscosity depend on the composi-
tion. Such an extension is –from a technical point of view– straightforward: an
addition of a single bead species to the excess free energy functional, Eq. (2.3),
suffices.

The equilibrium properties of membranes are well-understood. In their nat-
ural surroundings, biomembranes are permanently subjected to external forces,
e.g., osmotic pressure differences, significant electric fields, or membrane pro-
teins, which keep them out of equilibrium. Such forces induce stress or cur-
vature in the membranes and may lead to large deformations. Thus, another
continuation of this work is to study such deformations. One could ask ques-
tions concerning the curvature’s influence on the motion of the molecules, or
its effect on the phase diagram.
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5 Conclusions and outlook

At the moment, the model is already used in two other projects. The first
investigates the adhesion, rupture, and spreading of vesicles on solid substrates,
and the related pathways. In the second project a simplified model for a protein
has been devised and the protein’s influence on the pathway of membrane fusion
is analyzed.

Summarizing the salient points of this thesis, we have presented a general,
very efficient solvent-free, coarse-grained model for the simulation of lipid and
polymer bilayers that describes the statics and dynamics realistically. The
model has proven useful in this work, and hopefully it will do the same in
future work. “Science is a collaborative effort”, and with this thesis we hope to
have created a good starting point for further research on collective phenomena
in lipid and polymer membranes.

148



A Interaction coefficients

Table A.1: Frequently occurring interaction parameters. Not shown are vBB = 0.1,
wBBB = 0, wAAA = wAAB = wABB .

ρ̄∗ κN χN vAA vAB wAAA

17 100 30 -12.1176 -4.24412 0.529412
18 100 30 -11.4444 -4.00556 0.472222
20 100 30 -10.3 -3.6 0.3825
40 100 30 -5.15 -1.775 0.095625

Table A.2: Calculated intramolecular parameters for N = 10, �0 = 0. Recommended
parameters are in bold.

Reo [rc] kb [kBT ] ks [kBT/r2
c ]

2.0 2 15.001
2.0 3 20.537
2.0 4 25.288
2.0 5 28.635
2.2 5 23.969
2.5 2 9.662
2.5 3 13.033
2.5 4 16.195
2.5 5 18.590
2.8 5 14.650
3.0 5 12.745
3.5 5 9.405
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A Interaction coefficients

Table A.3: Calculated intramolecular parameters for N = 16. Used parameters are in
bold.

Reo [rc] kb [kBT ] �0 [rc] ks [kBT/r2
c ]

3.5 0 0 3.673
3.5 4 0 16.026
3.5 5 0 19.089
3.5 5 0.1 25.516
3.5 5 0.2 38.793
3.5 5 0.3 ∼90
3.5 6 0 21.658
3.5 6 0.1 29.798
3.5 6 0.2 48.128
3.5 6 0.3 ∼135
3.5 7 0 24.024
3.5 7 0.1 33.382
3.5 7 0.2 56.438
3.5 7 0.3 ∼230
3.5 8 0 26.033
3.5 8 0.1 36.778
3.5 8 0.2 64.539
3.5 8 0.3 ∼375
3.5 9 0 27.611
3.5 9 0.1 39.598
3.5 9 0.2 72.596
3.5 9 0.3 ∼1000
3.5 10 0 29.007
3.5 10 0.1 42.136
3.5 10 0.2 80.247
5.0 20 0 18
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