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Summary

This thesis deals with black-box modeling techniques, in particular local models based
on nearest neighbors, and Cluster Weighted Models, which combine a stochastic
clustering of the input space with a deterministic parametric model in each cluster.
Given observations obtained from a dynamical system, often corrupted by noise,
those models are then used to predict future states, or to reconstruct the current
internal state of the system. The performance of both techniques will be evaluated
on various examples, from numerical chaotic oscillators to experimental friction data,
where for the latter it is shown that using an ensemble of Cluster Weighted Models
enhances the stability of the model output.

Cluster Weighted Models produce a full probability distribution as output. Using
the concept of probabilistic scoring, Cluster Weighted Models will be compared
against other modeling techniques which produce a probabilistic output, showing
that they perform well in the stochastic as well as the deterministic regime. Also,
several regularization techniques and their effect on the model’s score will be discussed.
Cluster Weighted Models will then be used for the concept of Active Learning, where
one strives to actively choose data points for measurements which yield the most
information. The models will be used to find points with a high information gain,
also in terms of detecting interesting features like extremal values.

Lastly, tackling the problem of long term prediction, a new method based on
nearest neighbors will be introduced, which tries to maximize the overlap between the
original and the model’s attractor. This method is then used to fit the coefficients of a
system of ordinary differential equations, targeting numerical as well as experimental
systems.





Contents

Introduction 1

1 Basic notions of nonlinear dynamics 4

1.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Lyapunov exponents and chaotic motion . . . . . . . . . . . . . . . . 5

1.3 Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Attractor dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Attractor reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Takens’ theorem and delay embedding . . . . . . . . . . . . . 9

2 Modeling based on nearest neighbors and weighted clusters 11

2.1 The modeling problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Time series prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Cross prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Bias/Variance trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Error measures . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Local modeling with nearest neighbors . . . . . . . . . . . . . . . . . 16

2.5.1 Local polynomial modeling . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Locally constant models . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Locally linear models . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.4 Parameters of local modeling . . . . . . . . . . . . . . . . . . 18

2.5.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.6 Parameter optimization for local modeling . . . . . . . . . . . 23

2.6 Cluster Weighted Modeling . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Expectation Maximization algorithm . . . . . . . . . . . . . . 31

2.6.3 EM algorithm applied to Cluster Weighted Models . . . . . . 34

2.7 Example: Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Example: Signal through chaotic channel . . . . . . . . . . . . . . . . 40

2.9 Example: Friction modeling . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Example: Chua’s oscillator . . . . . . . . . . . . . . . . . . . . . . . . 45

i



3 Probabilistic evaluation of Cluster Weighted Models 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Probabilistic Forecasts and Scoring . . . . . . . . . . . . . . . . . . . 50

3.3 Probabilistic Forecasting Schemes . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Application of density estimators to state estimation . . . . . 54

3.3.2 The Invariant Measure . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Global and local density estimator . . . . . . . . . . . . . . . 56

3.3.4 Interacting Particle Filters . . . . . . . . . . . . . . . . . . . . 57

3.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Notation

If not explicitly noted otherwise in the text, the following notation will be used:
x scalar value, ∈ R
x vector, ∈ Rd

X matrix, ∈ Rm×n

X† pseudoinverse of matrix X
x̂ an estimate of x
x̄ the mean of a set {xi}N1
E[Z|Ψ] conditional expectation value of the r.v. Z, dependent on Ψ
< Z|Ψ > dto., short form
< Z >m cluster weighed expectation value for cluster with index m
p(Z) probability distribution of the r.v. Z
p(Z|x) conditional probability, short form of p(Z|X = x)
P(A) probability of observation A

Abbrevations

CWM Cluster Weighted Model/Modeling
KDE Kernel Density Estimator
IPF Interacting Particle Filter
SNR Signal-to-Noise Ratio
QbC Query by Committee
ODE Ordinary Differential Equation
(N)MSE (Normalized) Mean Squared Error
GMM Gaussian Mixture Model
RBF Radial Basis Function
(T)PCR (Truncated) Principal Component Regression
PCTR Principal Components Threshold Regression
PCA Principal Component Analysis
ML Maximum Likelihood
EM Expectation Maximization (algorithm)
(LOO)CV (Leave-one-out) Cross Validation



Introduction

In many modern fields of science, one is confronted with huge amounts of data and
little to no information about the underlying process which generated it. Even if
one happens to have knowledge of the generating process, it might be too complex
to derive an analytical model, or the model cannot be applied with the amount
of data available. Be it the biologist struggling with DNA sequences [7], or the
physicist trying to make sense out of the data coming from CERN’s massive detector
arrays [49], black-box modeling can often assist in extracting features, separating
important from unimportant data, reducing measurement noise, or the classification
of data.

There is a vast amount of literature regarding black-box modeling, targeted at
different disciplines and hence often using different vocabulary: Machine Learning,
Supervised and Unsupervised Learning, Statistical Learning Theory, Function Ap-
proximation, Density Estimation — it is difficult to get an overview and correctly
classify the different theories and algorithms. This thesis will naturally use the view
of a physicist: our “black box” stands for an experiment, depending on some input
terms and producing some kind of output. One can think of the model as a function
f(x) = y, with x being the input data and y the outcome of the experiment. The
underlying process is usually not known, and as little information as possible should
be needed for modeling. Thus, the model f(·) should ideally be generated entirely
through the data itself.

One can divide black-box modeling very roughly into two categories: the local and
the global approach [52]. The former tries to build models only in a neighborhood
of a certain query input vector xq, i.e., the model output yq = f(xq) only depends
on the neighborhood of xq in input space and ignores everything else. The global
approach however depends on an often time consuming training process, involving
the whole data set, to find a general model which is able to map the dependencies
between input and output variables.

For local modeling, the question arises how one should define neighborhoods. The
most common approach is based on nearest neighbors of the query point xq. Despite
the quite simple architecture, this approach is among the most powerful black-box
modeling techniques, but the problems lie in the details: how to find a good size
of the neighborhood, which metric should be used, how should the neighbors be
weighted and what kind of functional model should be employed.
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Technically a global modeling technique, but somewhat adhering to the local
paradigm, in most of this thesis we will use Cluster Weighted Modeling (CWM),
first described by Gershenfeld et al. in [30]. The locality is provided by a clustering
technique, using Gaussian Mixture Models [51], but combined with a parametric
function for modeling functional dependence in each cluster. In the end, we have a
global model, which can be written down in closed form, but still have locality due
to the clustering of the input space.

Another important feature which make Cluster Weighted Models stand out,
is that their output comes in the form of a full probability distribution, whereas
many other models only provide a scalar output, maybe combined with a variance.
There are of course other modeling algorithms which provide a probabilistic output,
like particle filters [15] or kernel density estimators [73], and we will compare their
performance against CWMs. This leads to the question how one should measure
the performance of a distribution, in terms of its prediction quality. The usual
measure for a model’s performance, the mean squared error, does not account for full
probability distributions, but only depends on their expectation value. Therefore,
the notion of scores will be introduced, and according to such a score the comparison
will be done by performing state estimations for different numerical and experimental
systems.

For experiments where generating data is costly, be it in terms of time or money,
it is important to wisely choose for which input values one would like to measure the
experimental outcome. When working on such an experiment, one usually strives
to measure those parameters which one expects to yield the most information. The
problem here is how to define and find those points; this is the field of Experimental
Design and Active Learning. Cluster Weighted Models will be used to find points
with a high information gain, also in terms of detecting interesting features like
extremal values.

Lastly, the problem of long term prediction will be discussed. It is a well known
problem that models which perform good for short predictions can show vastly
different behavior on longer time scales [38]. However, sometimes one is not primarily
interested in a good short-term prediction, but would like to have a model which
qualitatively shows a behavior similar to the original system when the model is
freely iterated for many steps. A new local method based on nearest neighbors is
introduced, which tries to maximize the overlap between the original and the model’s
attractor. This method is then used to fit the coefficients of an ODE system.

The structure of this thesis is as follows:
First, a few basic notions of nonlinear dynamics will be introduced which are

needed for the following chapters. Chapter two will first deal with modeling in
general, before turning to local modeling based on nearest neighbors and Cluster
Weighted Modeling, with a focus on the latter. Several numerical and experimental
systems will be used to demonstrate how both modeling techniques perform for
various purposes like noise reduction, signal reconstruction and the modeling of
friction data. For the latter, the usage of CWM ensembles is discussed to enhance



Page 3

the stability of the model’s output.

Chapter three will then turn to the probabilistic evaluation of Cluster Weighted
Models. The concept of scores is introduced and CWMs are compared against
several other probabilistic modeling techniques, again using numerical as well as
experimental data.

Since CWMs are prone to overfitting, chapter four will deal with different regular-
ization techniques and their effect on the resulting score, demonstrated on numerical
data of the Chua oscillator. In the following chapter six, we will give a short in-
troduction on Design of Experiments and Active Learning, and then discuss how
CWMs can be used in this context. The final chapter will deal with the method of
attractor comparison for creating models with respect to long-term behavior, which
again will be demonstrated on numerical and experimental data.

The thesis will close with a summary and outlook to possible future developments.



Chapter 1

Basic notions of nonlinear dynamics

This chapter will define the basic terms of nonlinear dynamical systems used in the
following chapters, but necessarily in a very brief way. For further details, the reader
is referred to texts like [3, 58,66,75].

1.1 Dynamical systems

In general, a dynamical system is a set of objects with continuously or discretely
observable states, which change with time according to certain rules. The objects
are described through state vectors x ∈M ⊂ Rd in a finite dimensional space. The
dynamical system is defined through a continuous mapping

Φ : K×M →M (1.1)

with the following properties [43]

Φ(0,x) = x for all x ∈M , (1.2)

Φ(d,Φ(t,x)) = Φ(t+ d,x) for all d, t ∈ K,x ∈M . (1.3)

As one can see from those properties, the mapping Φ defines the evolution of
a state x, with the parameter t denoting the time. This parameter may either be
discrete (K = Z) or continuous (K = R), leading to discrete or continuous dynamical
systems, resp.; in the latter case, the mapping Φ is also called the flow of the
dynamical system. If Φ is non-invertible, the parameter t must be restricted to
positive values.

Following the time evolution of a certain state x ∈M yields a trajectory or orbit
in state space, which can be described through a mapping

αx : K → M

t 7→ Φ(t,x) . (1.4)

4
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Since the trajectory is uniquely defined through its initial state, it is impossible for
two different trajectories to cross each other in state space.

We will now look at an autonomous system, where the time derivative is given
by a continuously differentiable vector field F : M → Rd:

dx

dt
= F(x) . (1.5)

This defines an autonomous system of first order ordinary differential equations,
which is general in the sense that any system of higher order can be reduced to a
system of first order equations by introducing additional variables. Similarly, by
adding the variable xd+1 = t and the trivial differential equation ẋd+1 = 1, one can
transform every non-autonomous system into an autonomous one. A trajectory of
the form (1.4) is a solution to this ODE system.

For continuously differentiable vector fields (which can in fact be further reduced
to fields which fulfill the Lipschitz condition), the solution of this autonomous system
is uniquely defined through the initial values. The flow Φ can be obtained by
integrating the differential equation over time t, from which it follows that this flow
is always invertible.

Systems with discrete time are described through a difference equation

xn = f(xn−1) , (1.6)

with xn being the state of the system for time index n ∈ Z. Again, the time evolution
is uniquely defined through the initial states, thereby making (1.6) a dynamical
system, with the flow coinciding with the mapping itself.

1.2 Lyapunov exponents and chaotic motion

The Lyapunov exponents describe the exponential divergence or convergence of
closely adjacent trajectories; if they diverge exponentially, one says the system has a
sensitive dependence on the initial conditions and thus is chaotic.

To define the Lyapunov exponent, we start with two different initial states x0

and x0 + δx0, with δx0 being an infinitesimal perturbation, and observe how the
trajectories beginning at those states evolve under the flow, and in particular the
absolute value of the perturbation. With a dynamical system of the form (1.5), the
time derivative is given by

d(x + δx)

dt
= F(x + δx) . (1.7)

Linearization in the neighborhood of x yields

dx

dt
+
δx

dt
= F(x) +

dF

dx
· δx

⇒ δẋ = J(x) · δx ,
(1.8)
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with J(x) = dF/dx being the Jacobian of the ODE system. The time evolution
of the perturbation can be obtained through the transfer matrix Ut, which solves
U̇ = JU with U0 = I, hence

δxt = Utδx0 . (1.9)

The Lyapunov-Exponent in the direction of u0 = δx0/‖δx0‖ is now given by

λ(x0, δx0) = lim
t→∞

1

t
ln
‖δxt‖
‖δx0‖

= lim
t→∞

1

t
ln ‖Ut(x0)u0‖ . (1.10)

For discrete mappings of the form (1.6), the flow coincides with the mapping
itself, hence one can calculate the time evolution of the perturbation directly through
its Jacobian.

Therefore, in a d-dimensional phase space, there exist d Lyapunov exponents,
describing the time evolution of the perturbation in the different directions. For
ergodic systems, they are invariant towards their initial conditions x0 and δx0.
Continuous systems always have one Lyapunov exponent equal zero in the tangential
direction of the trajectory, except for trajectories tending to a stable fixed point,
where all Lyapunov exponents are negative. Chaotic motion is defined through
(at least) one positive Lyapunov exponent, thus calculating the largest Lyapunov
exponent allows to definitely state whether a system is chaotic. However, getting a
robust estimation of the Lyapunov exponents can be a fairly difficult task, especially
when the system equations are not known and only an observed time series is available;
for details on the various available methods the reader is referred to [27,59].

1.3 Attractors

Regarding the trajectories (1.4), one is mostly interested in their asymptotic behavior
with t → ∞. In a conservative dynamical system, the flow is volume preserving,
meaning that during time evolution, a set of states will always occupy the same
volume in phase space. In dissipative systems however, this volume shrinks under
the flow, i.e., for continuous systems the divergence of the vector field is negative

∇ · F < 0 , (1.11)

and for dissipative discrete systems, the determinant of the Jacobian of f is smaller
than one.

Under the influence of the flow, it is typical for dissipative systems that the
initial volume of a set of states approaches a compact subset A ⊂ Rn in phase space.
Because of its “attracting” property, this subset is called an attractor, which has the
following properties [66, 75]:

• Attractivity : It exists a neighborhood U of A such that Φ(U, t) ⊂ U for t > 0
and which contracts under the flow, so that

A =
⋂
t>0

Φ(U, t) . (1.12)
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• Invariance: The attractor A is invariant under the flow, i.e., for all x ∈ A and
t > 0 it holds that Φ(x, t) ∈ A.

• Irreducibility : With growing t and for almost all x0 it holds that Φ(x0, t) ∈ Ua

for arbitrary neighborhoods Ua for all a ∈ A, meaning that the attractor A
cannot be divided into two non-overlapping, closed invariant sets.

The set of all initial values leading to the attractor is called the basin of attraction.
If the initial value of a trajectory lies within such a basin, it will, after a certain
time called the transient, lie within the attractor. Such an attractor also exists for
chaotic systems; when observing a volume element on such an attractor, it grows
exponentially in the direction(s) corresponding to the positive Lyapunov exponent(s),
and shrinks or stagnates in the other directions. Since the attractor is a compact
set, the volume cannot grow indefinitely, but will be bounded and folded back when
reaching the attractor’s border. Through this stretching and folding, the attractor
shows a self-similar structure on different scales, forming a fractal set with a non-
integer dimension, which is why they are also called strange attractors. While regular
attractors like fixed points or limit cycles are smooth manifolds, a strange attractor
is a fractal subset of the phase space, which however is usually embedded in a lower
dimensional manifold. The fractal structure of the attractor is a necessary condition
for chaotic dynamics, but it is not sufficient. For instance, in quasiperiodically forced
systems, one can have a strange but nonchaotic attractor [58].

1.4 Attractor dimension

In general, the dimension of an attractor can be seen as the amount of information
needed to uniquely locate a point on the attractor with a certain accuracy. It is a
measure for the number of degrees of freedom and thus for the complexity of the
motion on the attractor.

For defining the dimension of a strange attractor with its fractal structure, one
has to look at the statistical distribution of the points in phase space. The most
well known method is the box-counting method, where one divides the phase space
into identical boxes with volume εd and counts the number of boxes N(ε) containing
points of the attractor. In the ideal case, this yields a correlation of the form

N(ε) ∼ ε−D0 , (1.13)

with the exponent D0 being the box-counting dimension

D0 = lim
ε→0

ln(N(ε))

ln(1/ε)
. (1.14)

However, the dimension D0 does not account for the fact that trajectories might
reach certain regions of the attractor much more frequently than others (which is in
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fact a typical behavior of chaotic motion, due to unstable periodic orbits embedded
in the attractor). This can be described through the natural measure

µ(Ni) = lim
T→∞

η(Ni, T )

T
, (1.15)

where η(Ni, T ) is the amount of time a trajectory stays in the box Ni during time
0 ≤ t ≤ T . This can be interpreted as the probability that a point can be found in
box Ni. One can now define the information dimension through

D1 = lim
ε→0

∑N(ε)
i=1 µ(Ni) lnµ(Ni)

ln(ε)
= lim

ε→0

I(ε)

ln(1/ε)
, (1.16)

with I(ε) = −∑N(ε)
i=1 µ(Ni) lnµ(Ni) being the Shannon entropy, which can be seen as

a measure for the amount of information being gained when using an edge length ε,
hence the information dimension is the fraction between information gain and edge
length used for dividing the phase space.

Both dimensions can be derived as special cases from Renyi’s generalized dimension

Dq = lim
ε→0

1

q − 1
·

ln
(∑N(ε)

i=1 (µ(Ni))
q
)

ln(ε)
, (1.17)

with q ∈ R, thus leading to an infinite number of dimensions, holding the relation
Dq ≤ Dp for q ≥ p. The box-counting dimension (1.14) can be obtained for q = 0,
whereas the information dimension (1.16) can be derived with q → 1 and employing
L’Hôspital’s rule. It shall be noted that the often used correlation dimension, which
describes the spatial correlation of point pairs on the attractor, is an approximation
for D2. This dimension is quite popular since it can be calculated fairly easily through
nearest neighbor algorithms [3].

1.5 Attractor reconstruction

The theory described so far always operated in phase space. In practice however,
we usually only have access to one (or maybe several) scalar time series recorded
from the dynamical system. Therefore, what is needed is a unique mapping from the
one-dimensional time series to states in phase space.

We shall first restrict ourselves to continuous systems of the form (1.5), with
the dynamics taking place in a manifold S ⊂ Rk with dimensionality d < k. Let us
assume we can perform n independent measurements u1, . . . , un for a certain time,
then we can describe this through a measurement function h(x), mapping states
from S to Rn:

h : S ⊂ Rk → Rn

x 7→ h(x) = (u1, . . . , un) .
(1.18)
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To reconstruct the system’s original dynamics, its attractor A ⊂ S must be invari-
ant under this measurement function, meaning that two measurements h(xi) and
h(xj) with i 6= j may only be identical if and only if xi = xj. Additionally, we
must make sure that the attractor’s differential properties are retained, which is
called an embedding of the attractor, effectively making this a nonlinear coordinate
transformation.

The question under which preconditions (1.18) is an embedding was first answered
for smooth manifolds by Whitney’s embedding theorem in 1936, and was later
extended in 1991 by Sauer et al. for compact subsets with a fractal structure [67]. In
summary, it says that if A is compact in Rk with a box-counting dimension d, and Φ
is a flow on Rk and n is a natural number with n > 2d, then almost all continuously
differentiable mappings h are an embedding from A to Rn, with the latter also being
called reconstruction space.

1.5.1 Takens’ theorem and delay embedding

In practice, the preconditions described in the previous chapter are very difficult
or impossible to satisfy, since one has to simultaneously measure n > 2d different
properties. However, Takens’ theorem [76] provides the striking result that the
continuous measurement of only one property is usually sufficient to reconstruct the
systems’ attractor.

This property is measured by applying the continuous mapping h(x), relating
each state in phase space with one scalar value st for time t. Using the flow Φt, the
delay coordinate mapping is defined through

F(h,Φ, τ)(x) =
(
h(x), h(Φτ (x)), h(Φ2τ (x)), . . . , h(Φ(n−1)τ (x))

)
, (1.19)

with τ being the delay time.

Takens’ theorem [76] and its extension by Sauer et al. [67] states that given a
continuous dynamical system with a compact invariant smooth manifold A with
box-counting dimension d, that if n > 2d, the delay coordinate mapping F is an
embedding for almost all (h, τ), given that A

• contains no periodic orbits of period τ or 2τ ,

• contains only a finite number of equilibria,

• contains only a finite number of periodic orbits of period pτ with 3 ≤ p < n,
and the linearizations of those orbits have distinct eigenvalues.

Note that the theorem only holds for continuous measurement functions with
noiseless data, whereas in practice we can only perform discrete measurements, which
will also be corrupted by measurement noise. Though Takens’ theorem in theory does
not apply for this case, it is still usually possible to obtain an embedding, provided
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that the sampling time is not too large and a proper delay time is used, so that the
attractor gets unfolded. For discrete values, the delay coordinate mapping is reduced
to the construction of delay vectors

xt−τ(d−1) = (st, st−τ , . . . , sn−(d−1)τ ) , t = τ(d− 1) + 1, . . . , n (1.20)

with τ being a multiple of the sampling time.



Chapter 2

Modeling based on nearest neighbors
and weighted clusters

2.1 The modeling problem

Given a data set of N pairs of points

Ω = {(x1, y1), (x2, y2), . . . , (xN , yN)} (2.1)

with vector inputs xi ∈ Rd and corresponding scalar outputs yi ∈ R of an unknown
system, the nonlinear modeling problem is to find an estimate ŷ of the system output
for a new vector input q /∈ Ω, which is often simply called the query.

A different and perhaps more familiar approach arises from the statistical view-
point where one tries to find a good approximation for the regression E[Y |X]. Here
the pairs (xi, yi) are seen as realizations of the random variables X and Y , where Y
and X are drawn from an unknown joint probability P . The regression E[Y |X] is
the random variable which gives the conditional expectation m(x) ≡ E[Y |X = x].
It is the best approximation for the output values yi in a least squares sense [28].

2.2 Time series prediction

We now want to specialize the described modeling problem to the case of time series
prediction, where given a series s1, . . . , sN , si ∈ R, the model should be able to
predict the p next time steps sN+1, . . . , sN+p. We assume that the time series is the
result of a measurement with a certain sampling frequency, performed on a nonlinear
dynamical system with a deterministic time evolution. In the case of chaotic systems,
even the exact knowledge of the underlying system does not allow the prediction of
an arbitrary number of time steps due to the sensitivity on the initial conditions, i.e.
the prediction horizon is limited. Additionally, if the time series was measured in an
experiment, it will always be corrupted by some measurement noise.

11
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The input vectors xi ∈ Rd for the modeling algorithm can be obtained by
reconstructing the attractor of the underlying dynamical system. As described in
section 1.5.1, this can be accomplished by using a delay embedding of the time series
with proper dimension d and delay τ , leading to the input vectors

xt = (st, st−τ , . . . , st−(d−1)τ ) , (2.2)

with t ranging from (d− 1)τ + 1 to N − p (considering that we predict p steps into
the future). It is also possible to choose a non-uniform embedding, which instead of
the fixed delay τ allows varying delays τi, i = 1, . . . , d− 1 between the components
of the input vector [42].

To predict one step ahead, the corresponding output is given by yt = st+1. For a
further prediction of the next p steps, one can add the model output ŝN+1 to the
given time series and repeat the modeling procedure until ŝN+p is obtained, leading to
an iterated prediction. However, if one is only interested in the model output ŝN+p, it
is possible to do a direct prediction by using yt = st+p for the corresponding outputs.
With iterated prediction, the errors of the model output accumulate, whereas for
direct prediction the system output becomes more complex and is therefore more
difficult to model correctly, especially for chaotic systems. There has been much
discussion regarding whether iterated or direct prediction is the better choice [17].
This question cannot be answered in general, as it depends on the complexity of the
system, the step size p and the sampling time. However, for chaotic systems iterated
prediction has often shown to be superior in practice [52].

2.2.1 Cross prediction

A more general case is the cross prediction of a time series, where one or more
input time series s

(1)
1...N , . . . , s

(n)
1...N are given and one output time series u1...N has to

be predicted. The previous case of time series prediction can be seen as a special
case of cross prediction, where the output time series is simply the input time series
shifted p steps into the future. In the more general form with several different input
time series, the construction of the input vector becomes more complicated. For
every given input time series, a delay embedding must be performed. The delay
vectors can then be concatenated to form the input vectors

xt =
(
s

(1)
t , s

(1)
t−τ1 , . . . , s

(1)
t−(d1−1)τ1

, s
(2)
t , s

(2)
t−τ2 , . . . , s

(n)
t−(dn−1)τn

)
(2.3)

for the modeling algorithm.

However, even if the output of the dynamical system is completely determined
by the input time series, in some cases the modeling problem becomes much easier
if past values of the output time series are included in the input vector, effectively
introducing a feedback into the modeling procedure. This can lead to an improvement
of the prediction, but may lead to stability problems if the model is iterated over
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several time steps since the errors in the prediction accumulate. A practical example
of such a cross prediction with feedback is shown in section 2.9 with the modeling of
friction phenomena.

2.3 Bias/Variance trade-off

For finding the mapping yi = f(xi) between dependent and independent variables,
one has to consider that the model should not only be able to describe the given
realization, but ideally also every other realization which is drawn from the joint
probability P (y,x). Even if one finds a perfect approximation for the regression
E [y |x] for one particular realization, this does not in general lead to a model which
will perform well on new data sets. In other words, the model should have the ability
to generalize with respect to new data.

Given a realization Ω = {(x1, y1), . . . , (xn, yn)} of the data generating process,
the model based on this particular realization is written as f(x; Ω). The expectation
value of the squared error, given this realization, can be split into two parts

E [(y − f(x; Ω))2 |x,Ω] = E [(y − E [y |x])2 |x,Ω]︸ ︷︷ ︸
variancey

+ (f(x; Ω)− E [y |x])2︸ ︷︷ ︸
model error

, (2.4)

where the expectation is taken with respect to the joint probability P . The first term
E [(y−E [y |x])2 |x,Ω] is the variance of y for a given x and is independent from the
realization Ω and the model f(x). Therefore, the variance is a lower bound on the
expectation value of the squared error, although it is of course through interpolation
always possible to get a zero squared error for one particular realization. However,
a model which simply interpolates the data will on other realizations lead to a
larger squared error than the regression E [y |x], as it also tries to model realization
dependent features. This effect is called overfitting and can be avoided by introducing
a bias which limits the variance of the model.

To see the connection between bias and variance, one has to examine the second
term (f(x; Ω)− E [y |x])2, which describes the actual model error. It may be that
for the particular realization Ω our model perfectly approximates the regression
E [y |x]. However, the model might vary strongly depending on the given realization,
or it might on average over all possible realizations be a bad approximator for the
regression, making the model f(x; Ω) an unreliable predictor of y. Since we want to
have a model which has the ability to generalize, we must look at the expectation
value of (f(x; Ω)− E [y |x])2 over all possible realizations, in the following denoted
by EΩ[·]. This term can again be split into two parts [28], the squared bias and the
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variance:

EΩ [(f(x; Ω)− E [y |x])2] = (EΩ [f(x; Ω)]− E [y |x])2︸ ︷︷ ︸
bias2

+ EΩ

[
(f(x; Ω)− EΩ [f(x; Ω)])2]︸ ︷︷ ︸

variancef

.
(2.5)

The bias is the expectation value for the deviation between model output and
the regression over all possible realizations. Therefore, a model with high bias will
give similar results for different realizations, whereas a model with low bias and
high variance can lead to very different model outputs and has a greater chance of
overfitting. If the bias is zero we obtain EΩ [f(x; Ω)] = E [y |x], i.e., our model is
on average equal to the regression. However, from this we cannot conclude that
for one particular realization the model f(x; Ω) is a good approximation for the
regression E [y |x]. A low bias typically comes with a large variance, making the
model unreliable and leading to overfitting and therefore to an increase of the model
error. This fact is known as the bias variance dilemma [28], which states that it is
often not possible to have a low bias and a low variance at the same time. Instead,
one has to find a good trade-off between these two.

2.4 Model validation

As just described in section 2.3, it usually not possible to generate a model which
offers low bias and low variance at the same time. The most common procedure for
finding a good trade-off between bias and variance lies in the training of the model
by using cross validation. Here the data set is split into two parts, the

• training set, used for training and the

• test set, used for validating the model.

The usual iterative procedure is to switch between training and validation using
the training and test data, respectively. With further training, the model error
on the training set will usually monotonically decrease as the model is able to
describe more and more features of the training data. At some point however, the
model begins to overfit on the training data and the error on the test data will
then begin to increase. Therefore, the minimum of the test error yields the optimal
set of parameters and leads to a model which has still the ability to generalize.
For comparing the performance between different models, another test data set is
necessary which is only used to calculate one final error measure after the model
training is completely finished. In this case, the test set for the cross validation is
sometimes referred to as the validation set to distinguish it from the test data set
for the model comparison.
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The drawback of cross validation is the reduced number of points available for
training. Therefore, the possibility remains a better model could have been obtained
without cross validation [69]. To minimize this possibility, the size of the test set
should be chosen as small as possible. This leads to an “extreme” form of the cross
validation, the leave-one-out cross validation (LOOCV), where the test set is reduced
to one single test point. Of course, one has to repeat this validation procedure with
enough different test points to get a good estimation of the actual model error. Local
models are very well suited for LOOCV, as they are lazy learners which wait with
the actual model calculations until they are queried. To implement LOOCV, they
simply have to exclude the test point from their set of possible nearest neighbors.

2.4.1 Error measures

The most common choice for calculating the model error is the mean squared error
(MSE)

MSE1 =
1

|Tref|
∑
t∈Tref

(
yt − f t(xt)

)2
, (2.6)

where |Tref| is the number of test points and f t(x) is the model which was constructed
without the point xt.

For time series prediction, the MSE1 gives the model error for predicting one step
ahead in the future, but it is often desirable to have a model which predicts several
steps p. As described in section 2.2, this can be achieved by using iterated prediction,
where the model is used p times successively. One has to consider however that the
model error accumulates during the prediction. Otherwise, when the model is solely
validated using the above MSE1, one will mostly obtain models which are good for
one-step but inferior for iterated prediction. Therefore, the MSE should be extended
to average the error over p successive steps:

MSEp =
1

p|Tref|
∑
t∈Tref

[(
st+1 − f t(xt)

)2
+

p−1∑
i=1

(
st+i+1 − f t+i(x̂t+i)

)2
]
. (2.7)

The first point xt is taken from the data set, whereas all further predictions depend
on previous model outputs x̂t+i.

When using models based on nearest neighbors, and if the time series is densely
sampled, one has to take into account that the nearest neighbors of a test point
xt will mostly be points which are also close in time, i.e. points which are directly
before or after this point on the same trajectory in phase space. Therefore, it is
necessary to exclude not only the test point xt, but a whole segment of points lying
in a certain interval [t− c, t+ c]. For the new parameter c the average return time of
the system can be used.

The model excluding these indices is denoted by f t±c(xt). Furthermore, it is
good practice to normalize the model error with the variance of the time series. The
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normalized mean squared error (NMSE) over p steps is then given by

NMSEp,c =
N

p|Tref|
∑N

t=1(st − s̄)2

∑
t∈Tref

[(
st+1 − f t±c(xt)

)2

+

p−1∑
i=1

(
st+i+1 − f (t+i)±c(x̂t+i)

)2
]
.

(2.8)

2.5 Local modeling with nearest neighbors

Given the modeling problem defined in section 2.1, the most common procedure
for getting an estimate for a new input vector q is to first fit a parametric function
f(x,θ) on the data set Ω, where θ is a set of parameters which has to be optimized
(e.g. with a maximum likelihood approach). After fitting the function f(x,θ), an
estimate for q /∈ Ω can be obtained by evaluating f(q,θ). This procedure is also
known as global parametric modeling, since a parametric function is fitted to the
whole data set before the model can be queried.

In contrast to these global models, pure local models delay any computation until
queried with the new vector input q. A small neighborhood of q is located in the
training set and a simple model using only the points lying in this neighborhood is
constructed [24]. In statistical learning theory, local models are also referred to as
lazy learners [4].

As the model is constructed in a neighborhood of the query q, local modeling
falls in the category of non-parametric regression, where no kind of functional form
is preconditioned for the whole model. The data set is an inseparable part of the
model construction and the quality of the resulting model highly depends on it. In
contrast, in parametric regression the model f(x,θ) has a fixed functional form and
the data points are only used to calculate or train the model parameters. After
training, the resulting model can be separated from the data set and written down in
closed form. Therefore, the model has a fixed functional form, which is particularly
useful if this functional form is assumed or even known beforehand, e.g. by a physical
theory where the parameters may also have a meaningful interpretation. In this case,
parametric models are also more efficient than non-parametric ones, since they need
less data for obtaining an accurate model that describes the data. However, if there
does not exist any a priori knowledge, the functional form used may be unable to
describe the data generating process and the model will fail completely.

The neighborhood of the query in which the local model is constructed can be
chosen in two different ways. The most common choice is to locate the k nearest
neighbors xnn1 , . . . , xnnk of x, i.e. the k points in the data set which have the
smallest distance to the query point according to some arbitrary metric ‖ · ‖ (usually
euclidean). This type of neighborhood is also known as fixed mass, because the
number of nearest neighbors remains constant. Alternatively, one can search for all
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points lying in some fixed neighborhood of the query point (fixed size) so that the
actual number of neighbors varies. The fixed mass neighborhood is easier to handle,
since it varies its size according to the density of points and empty neighborhoods
cannot occur.

The problem of finding nearest neighbors is very well studied and there are
numerous algorithms for this task [8, 26, 53]. We use an algorithm called ATRIA,
which relies on a binary search tree built in a preprocessing stage [55]. This algorithm
is particularly effective when the points are close to a low dimensional manifold,
even when the actual dimension of the input space is large. Therefore, it is very well
suited for the case where most of the data lie on a low dimensional attractor.

2.5.1 Local polynomial modeling

Local models use only a neighborhood of the query q to calculate the model output.
Since the neighborhood is usually small, the actual model used should not be too
complex. A good choice is to implement a polynomial model with low degree m,
where the coefficients are calculated using the well known least squares method. In
the following, we choose a fixed mass neighborhood with k nearest neighbors.

One drawback of these simple local models is that they do not produce continuous
output, because shifting the query point results in points suddenly entering or leaving
the neighborhood. To smooth the model output, one can apply some kind of weights
on the nearest neighbors, so that farther neighbors have a lesser effect on the output
than the ones lying nearer to the query point.

To apply a weighted least squares method, we define

X =

 1 M(xnn1)m1
...

...
1 M(xnnk)m1

 (2.9)

where M(x)m1 denotes all monomials of x ∈ Rd with degree 1 ≤ i ≤ m. The
output vector is given by y = [ynn1 , . . . , ynnk ]T and the coefficient vector by ν =
[ν1, . . . , νl]

T with l = |M(x)m1 |+1. Additionally, we introduce the weight matrix W =
diag {w1, . . . , wk}. The weighted sum of squared errors, which is to be minimized is
now given by

P (ν) = (y −Xν)TWTW(y −Xν) . (2.10)

Setting the gradient of this function to zero leads to the solution for the coefficient
vector. With XW = W ·X and yW = W · y, we get

ν = (XT

WXW )−1XT

WyW = (XW )†yW , (2.11)

where (XW )† denotes the pseudo inverse of XW , which can be calculated by using
singular value decomposition [64] (see also section 2.5.5).
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2.5.2 Locally constant models

Setting the degree of the polynomial model to zero gives the local averaging model,
where all input vectors are eliminated from the matrix X. The coefficient vector can
now be written as

ν = (1T

kW1k)
−11T

kWy (2.12)

=

∑k
i=1w

2
i ynn(i)∑k

i=1w
2
i

(2.13)

= ŷ ,

i.e. a weighted average of the output values of the k nearest neighbors. Although this
seems to be an overly simplistic approach, this model can produce quite remarkable
results [54]. It has several advantages over more complex models. Most important of
all, local averaging models are always stable, as the model output is bounded by the
output values of the nearest neighbors.

Furthermore, these models are very fast as they require almost no computation
besides nearest neighbor searching. Another advantage, especially when dealing with
small data sets, is the ability of local averaging models to work with very small
neighborhoods, as even one nearest neighbor is enough to produce a stable model
output.

2.5.3 Locally linear models

Choosing a degree of m = 1 gives the locally linear model, where a weighted linear
regression is performed on the output values of the nearest neighbors. The model
output is now given by

ŷ = 〈[1 qT],ν〉 . (2.14)

In many cases, especially when many data points are available, the locally linear
model gives far better results. However, to guarantee a stable model one usually
has to perform some kind of regularization, which will be discussed in section 2.5.5.
Locally linear models are also computationally more expensive since they require a
least squares optimization of the coefficients.

2.5.4 Parameters of local modeling

Number of nearest neighbors

The number of nearest neighbors k is the most crucial parameter, as it directly
affects the bias and variance of the resulting local model. A small number of nearest
neighbors leads to a model with high variance and low bias. In the extreme case, a
local averaging model with one nearest neighbor simply interpolates the outputs of
the nearest neighbors of the data points. Conversely, a large number of neighbors
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leads to a model with high bias and low variance and in the extreme case to a very
simple global model.

Weight function

A good choice for weighting the nearest neighbors are functions of the form

wn(r) = (1− rn)n , r =
di
dmax

, (2.15)

where dmax = ‖xk−q‖ is the distance to the furthest nearest neighbor and di = ‖xi−q‖
the distance to the nearest neighbor with index i < k. Depending on the exponent n,
different kinds of weight functions can be obtained: with n = 0 no kind of weighting is
applied, whereas n = 1 leads to linear weighting. Choosing n = 2 leads to biquadratic,
n = 3 to tricubic weight functions. It is obvious that the type of weight function
and the number of nearest neighbors are connected: choosing a high exponent n
effectively reduces the number of nearest neighbors which affect the model output.
However, the main motivation for using a weight function is to smooth the model
output. Its effect on the accuracy of the model is mostly not very high, as long as
any kind of weighting is done. Therefore, it is usually sufficient to choose n between
0 and 3.

Distance metric

The kind of distance metric used has a strong influence on the neighborhood of
the query point. Although the euclidean metric will often be a good choice, other
metrics can sometimes significantly improve model accuracy. By using the diagonally
weighted euclidian distance

ddwe(x,q)2 =
d∑
i=1

λ2
i (xi − qi)2 = (x− q)TΛ2(x− q)

where Λ = diag(λ), λ ∈ Rd ,

(2.16)

one can specify which components of the input vectors should be more relevant
when searching for nearest neighbors and which components should be more or less
dropped. Unfortunately, one does not usually know beforehand which components
are vital for modeling the data set and which are irrelevant or corrupted by noise.
However, one can use an algorithm which uses the leave-one-out cross-validation
error for optimizing the metric parameters (see also section 2.5.6).

In the case of time series prediction, the input vectors are delay vectors of the
form

xt = (st, st−τ , . . . , st−(d−1)τ ) . (2.17)

It is questionable why certain components of the input vectors should be favoured, as
a certain value si exists in different delay vectors at different positions. Nevertheless,
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in some cases the prediction can be improved by applying a special case of the
diagonally weighted distance, the exponentially weighted distance

dexp(x,q) =

(
d∑
i=1

λi−1(xi − qi)2

)1/2

. (2.18)

In the case of delay vectors, this method favours those components of x which are
closer in time to the prediction. Furthermore, only one parameter has to be optimized
and the standard euclidian metric can still be obtained by setting λ = 1. Therefore, an
optimization procedure which optimizes λ can only improve the prediction accuracy
compared to the euclidean metric.

2.5.5 Regularization

Given enough data points, locally linear models are usually more precise than locally
averaging models. One problem though lies in the calculation of the inverse of the
matrix product XT

WXW , which leads to unstable models if the resulting matrix is
ill-conditioned. Therefore, some kind of regularization method must be applied. The
two most common choices are the principal components regression (PCR) and the
ridge regression (RR), which will be described in the following section.

Principal Component and Ridge Regression

The basic principle of this method relies on the singular value decomposition of XW ,
which is given by

XW = USVT , (2.19)

where U ∈ Rk×k and V ∈ Rl×l are orthonormal, and S = diag(σ1, . . . , σp) is a
diagonal matrix with the singular values σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 with p = min{k, l}.
The pseudoinverse of XW can now be written as

X†W = VS+UT , (2.20)

where S+ = diag(1/σ1, . . . , 1/σr, 0, . . . , 0) and r = rank(XW ) [33], hence setting
1/σi to zero if σi = 0. In practice however, these singular values are usually not
exactly zero. The matrix XW is not singular but ill-conditioned. The principal
components regression (PCR) works by first setting these small singular values to
zero and then calculating S+ as just noted. For this procedure it is crucial that the
nearest neighbors are centered around the origin by subtracting the mean. This also
simplifies the calculation of the locally linear model since the constant is now given
by the mean of the images of the nearest neighbors ȳ. The column of ones in the
design matrix (2.9) can therefore be omitted.

However, there exist different possibilities in how to decide whether a singular
value is so small that it should be dropped. The easiest way is the truncated PCR
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(TPCR), where a fixed number of the smallest singular values is automatically set to
zero, without looking at their actual values. Alternatively, in principal components
threshold regression (PCTR) every singular value below some previously defined
threshold σmin is dropped. This procedure can be further generalized by applying
weights to the inverse singular values, which leads to a PCTR with soft-thresholding.
The model output for the locally linear model can then be written as

ŷ = ȳ +

p∑
i=1

〈(q− x̄)T,vi〉
(
f(σi)

σi

)
〈uT

i ,yW 〉 , (2.21)

where in general any kind of weight function f(σ) can be used. McNames [52] has
suggested to use a modified biquadratic weight function

f(σ) =



0 smin > σ ,(
1−

(
smax − σ
smax − smin

)2
)2

smin ≤ σ < smax ,

1 smax ≤ σ ,

(2.22)

where smin and smax are given by

smin ≡ sc(1− sw) (2.23)

smax ≡ sc(1 + sw) . (2.24)

The parameters sc and sw define the center and width of the threshold in which
the singular values are weighted down to zero. Singular values above smax remain
unchanged, whereas the ones smaller than smin are set to zero. With sw = 0 we get
smin = smax = sc and therefore a hard threshold at sc.

Another good choice for the weight function is given by

f(σ) =
σ2

µ2 + σ2
, (2.25)

so that for σ � µ we get f(σ) ≈ 1, and for σ → 0 the weight function becomes zero.
The parameter µ ≥ 0 therefore defines the degree of regularization. This particular
weight function leads to a special case of a regularization procedure known as Ridge
Regression or Tikhonov Regularization [10, 33]. Here, the cost function (2.10) is
modified by adding a penalty term which penalizes large values in the coefficient
vector, leading to

P (ν)RR = (y −Xν)TWTW(y −Xν) + νTRTRν . (2.26)

The diagonal ridge matrix R ≡ diag(r1, . . . , rl) weighs the different components
of the coefficient vector. The solution for ν can now be written as

ν = (XT

WXW + RTR)−1XT

WyW . (2.27)
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Therefore, the modified cost function (2.26) is equivalent to adding the values
r2

1, . . . , r
2
l to the diagonal of XT

WXW . A simple (and popular) choice for the ridge
matrix is R = µ2I, i.e. all components of ν are weighted with the same factor µ2. The
solution (2.27) can now be easily obtained by using the singular value decomposition
XW = USVT and this leads to

ν =
k∑
i=1

σi
σ2
i + µ2

〈uT

i ,yW 〉vi (2.28)

and therefore to the above mentioned weight function (2.25).
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Figure 2.1: Example for regularization with Ridge Regression and PCTR with soft-threshold.
The dashed line shows the inverse 1/σ which goes to infinity for σ → 0. The circles show
the regularized singular value with Ridge Regression and µ = 0.75, while the crosses show
PCTR with soft-threshold and sc = 1, sw = 0.5.

An illustration of both regularization techniques can be seen in figure 2.1. While
PCTR has the advantage that it can locally adapt to the dimensionality of the
data, Ridge Regression in its general form (2.26) can put different regularization
parameters on each component through the regularization matrix R. Both methods
can produce good results, however, it has been shown that in the case of time series
prediction of chaotic systems, principal component regression with thresholding is
superior to ridge regression [52].

Local projection

Another possibility for regularization is to reduce the dimensionality of the points
found in the neighborhood of the query before performing the least squares optimiza-
tion. This can be done by performing a Principal Component Analysis (PCA) on
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the nearest neigbors and then projecting them onto the subspace which covers most
of the variance of the data [13,41]. Given the following matrix

A =

 xT
nn1
− x̄T

nn
. . .
xT
nnk − x̄T

nn

 (2.29)

containing the centered nearest neighbors of the query, the eigenvalues and eigenvec-
tors of the empirical covariance matrix C = AT ·A are calculated. The eigenvalues
correspond to the variance in the direction given by the corresponding eigenvalue.
Keeping only the first r eigenvectors with eigenvalues above some given threshold σ,
we can define through these remaining eigenvectors a lower dimensional subspace
which covers most of the variance of the data. The nearest neighbors projected into
this subspace are given by Ã = A ·Pr, with the projection matrix given by

Pr = (v1 . . .vr) , (2.30)

consisting of the eigenvectors corresponding the the first r largest variances. This
also effectively removes noise present in the data, given that the noise is small so
that it only contributes a small amount to the variance. The coefficients for the local
model can then be calculated in this lower dimensional subspace.

This procedure is very closely related to TPCR. In fact, for local linear models it is
equivalent, given that the nearest neighbors are centered around their mean, since the
design matrix X from (2.9) is then equal to A. It follows that Ã = A ·Pr = Ur · Sr,
where Ur and Sr denote the matrices U and S from the SVD in (2.20), but reduced
to the r largest singular values. The pseudo inverse of Ã is then given by

Ã† = (ÃTÃ)−1ÃT = S−1
r UT

r . (2.31)

Given the query q, we obtain for the model output

ŷ = q ·Pr · Ã†y = q ·Pr · S−1
r UT

r y (2.32)

which is equivalent to TPCR since Pr = (v1 . . .vr) = Vr.

For locally quadratic models or local models with other model types like radial
basis function networks, the local projection and TPCR are not equivalent anymore.
TPCR with soft thresholding introduced in the previous section is more flexible
and can often lead to better results than PCTR without soft-thresholding or local
projection.

2.5.6 Parameter optimization for local modeling

Several different parameters have to be set for local modeling. Most of these
parameters deal with the neighborhood of the query point: the kind of metric used
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for calculating the distances between the query point and its neighbors, the number of
nearest neighbors k and the weight function applied. The other parameters deal with
the model used in the neighborhood: one has to choose between locally averaging or
locally linear models, and for the latter, one has to choose a regularization method.
The regularization itself has additional parameters associated, which have a large
influence on the stability and accuracy of the model, especially in the case where the
model is iterated over several steps.

Although all these parameters have a more or less intuitive appeal, it is difficult
to find good values based on simple “trial and error”. Furthermore, these parameters
are not independent from each other: the distance metric and weight function directly
affect the form and size of the neighborhood which is primarily controlled by the
number of nearest neighbors. On the other hand, changing the type of model or the
regularization parameters often demands other forms of neighborhoods.

Good parameter values can be found by applying an optimization algorithm using
the leave-one-out cross-validation error. Although local models allow an efficient
calculation of this error, it is still a time consuming task, especially for large data
sets combined with multiple step prediction. Moreover, gradient-based optimization
algorithms are mostly not applicable, as only the regularization and metric parameters
allow the calculation of a gradient.

One popular approach for such an optimization problem is to use genetic algo-
rithms [32], as they do not need a gradient and are able to deal with integer and
floating point parameters at the same time. They are well suited for optimizing
embedding parameters, especially when a non-uniform embedding is used [6].

Genetic algorithms start with a randomly chosen population of parameter vectors
which can contain the delays of the embedding as well as the number of nearest
neighbors or any other parameter for local modeling. This population is then
“evolved” by using different types of inheritance, mutation and selection operators.
The algorithm stops after a certain number of iterations.

However, it is not advisable to optimize all parameters at once with a genetic
algorithm, as the initial population and the number of iterations has to be very large
for the algorithm to converge. This may be due to the fact that the parameters are
not of equal importance. Therefore, we first use a genetic algorithm to optimize
only the delays for a non-uniform embedding and the number of nearest neighbors,
since these are the most crucial parameters for a good model performance. During
this optimization step, the other parameters are held constant; we used biquadratic
weights with an euclidean distance, and for locally linear models the regularization
procedure given by (2.22) with sc = 1 · 10−4 and sw = 0.6.

After this primary step, the other parameters are optimized using a simple type
of cyclic optimization, where all parameters are successively optimized with an
exhaustive search in the case of integer parameters and with a semi-global line search
for floating point parameters [52]. Although one has a good value for the number of
nearest neighbors, it should be included in this second optimization step since it is
the most crucial parameter.
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Because of local minima, this optimization procedure will not necessarily lead
to the global minimum in parameter space, but nevertheless it will usually improve
prediction accuracy compared to manually chosen parameters.

2.6 Cluster Weighted Modeling

Cluster Weighted Modeling (in the following denoted as CWM), an algorithm first
introduced by Gershenfeld et al. [29,30], lies between the local and the global modeling
approach. It is global in the sense that the model has to be trained beforehand with
the whole data set, hence it lacks the flexibility of lazy learning. But it is also local
in the sense that usually only the points lying in a neighborhood of the query point
are crucial for the model output.

The central idea is to describe the compound density p(y,x) of input vectors x
and outputs y by means of a sum of simple models, each of which approximates
the true density in the vicinity of a cluster center. Once a model of the compound
density p(y,x) is successfully built, one is able to compute derived quantities like
the conditional forecast 〈y|x〉 for new query points. This idea is also known under
the name Finite Mixture Model, including the well known and widely used Gaussian
Mixture Model (GMM), often employed for problems involving clustering of data [51].
This is also an example for unsupervised classification, since there is no correction or
calculation of the model error with respect to some known output values. CWMs
have much in common with Gaussian Mixture Models, but they offer one crucial
extension: in each cluster, they include a model for the functional dependence
between the input vectors and the target values, and therefore combine the stochastic
Mixture Model approach with deterministic modeling. This also implies that CWMs
are used in supervised learning scenarios, while Finite Mixture Models are usually
aimed at unsupervised learning problems (like the already mentioned clustering of
data vectors).

Generally, CWMs are written as a sum

p(x, y) :=
M∑
m=1

pm(y,x), (2.33)

where m enumerates the clusters, and pm(y,x) is a density of a specific form discussed
below. The total number of clusters M must be chosen beforehand and can be
optimized using cross validation.

The density pm(y,x) is written as

pm(y,x) := pm(y|x) · pm(x) · wm. (2.34)

The terms in (2.34) have the following interpretation (the terminology was adopted
from the original reference [30]):
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Cluster Weights: The cluster weight wm ∈ [0, 1] specifies the fraction of the data
set explained by cluster m. The wm are chosen subject to the normalization
constraint ∑

m

wm = 1. (2.35)

Domains of Influence: The density pm(x) describes the domain of influence of
cluster m, that is, the distribution of the inputs x around the cluster. They
are chosen as multivariate normal probability densities, i.e.

pm(x) =
|C−1

m |
1/2

(2π)d/2
exp

(
−(x− µm)T ·C−1

m · (x− µm)/2
)
, (2.36)

with mean µm and covariance matrix Cm, effectively describing, respectively,
the location and the range of influence of the cluster m. When dealing with
high dimensional spaces, it is advisable to reduce these input domains to
separable Gaussians, with single variances in each dimension, i.e. Cm =
diag{σ2

m,1, . . . , σ
2
m,d}. Thus, the input term becomes

pm(x) =
d∏
i=1

1√
2πσ2

m,i

exp
(
−(xi − µm,i)2/2σ2

m,i

)
, (2.37)

which is also what will be used in the following sections and practical examples.
Working with such a reduced input domain means that the axes of the clusters
are always aligned within the given coordinate system, while they can rotate
in any direction when working with full covariance matrix.

The pm(x) are normalized:∫
pm(x)dx = 1 ∀m. (2.38)

Output terms: The density pm(y|x) is the conditional density of the outputs y
given the inputs x around the cluster m.

They are also chosen as multivariate normal probability densities

pm(y|x) =
1√

2πΣ2
m

exp
(
−[y − f(x,βm)]2/2Σ2

m

)
, (2.39)

with mean f(x,βm) and variances Σ2
m, effectively describing, respectively, the

local cluster model and the corresponding error statistics around the cluster m.
The vector βm denotes the parameters for the function in cluster m. These
functions f(x,βm) are often called local models but will in the following be
denoted as cluster functions, to avoid confusion with the local nearest neighbor
models introduced earlier.
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The pm(y|x) are normalized thus∫
pm(y|x)dy = 1 ∀m,x. (2.40)

The cluster functions are chosen as linear combinations

f(x,βm) =
I∑
i=1

βm,ifi(x) (2.41)

of basis functions fi(x) (e.g. monomials). Next to the number of clusters M , the
number I and type fi of the basis functions directly determines the complexity of
the resulting CWM and hence control bias and variance.

The reason for choosing the output term in the above way becomes clear when
we look at the model output, i.e. the conditional forecast which we can obtain by
integrating the output values with respect to the conditional density p(y|x),

〈y|x〉 =

∫
y p(y|x) dy =

∫
y
p(y,x)

p(x)
dy =

∑M
m=1

∫
y pm(y|x) dy pm(x)wm∑M
m=1 pm(x)wm

=

∑M
m=1 f(x,βm)pm(x)wm∑M

m=1 pm(x)wm
.

(2.42)

The model output of the CWM is therefore given by a weighted average of the
cluster functions f(x,βm). The Gaussians, which are given by the input domains
pm(x), control the interpolation of the cluster functions and therefore do not serve as
approximators like in conventional radial basis function networks. This will become
clearer in the example given in the next section.

One is now confronted with the problem of finding good values for

• the weights wm,

• the means µm and variances σ2
m of the input domains,

• the variances of the output terms Σ2
m, and

• the parameters of the cluster functions βm.

The task of parameter optimization is done using an Expectation-Maximization
(EM) algorithm, which will be further explained in section 2.6.2, in combination with
a Maximum Likelihood estimation of the cluster function parameters.
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2.6.1 Illustrative example

To further convey the basic principle of CWMs, a simple one-dimensional example
shall be shown in this section. We want to model a small data set which stems from
the sine function, using a model with only two clusters, each containing a linear
model as cluster function. As data set, we take 50 equidistantly sampled points
from the sine function. Figure 2.2 shows the resulting CWM, with two clusters with
weights w1 = 0.33 and w2 = 0.66, meaning that they cover about one third and
two thirds of the data points, respectively. In the next plot, the two linear cluster
functions are plotted, which approximate the data points in the vicinity of the cluster.
The resulting model output can be seen as essentially converging towards these two
linear functions, interpolated through the two Gaussians where the clusters overlap.
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Figure 2.2: Example for a simple CWM. Left plot: Data points (*) covered by two
clusters (red/blue dashed lines) with cluster weights w1, w2, which can be interpreted as the
percentage of points the clusters cover. The right plot shows the two linear cluster functions
f1, f2 (red/blue) and the resulting model output (black line).

Two important remarks regarding this example:

1. As can be seen in the right plot, it is the cluster functions f1 and f2 which
approximate the data set, while the Gaussians only serve as interpolants and
define the area of influence for the local functions. This is the crucial difference
to a Radial Basis Function Network, where the data is approximated by a
superposition of the Gaussians themselves (or any other RBF, by that matter).

2. Cluster Weighted Models produce a whole probability distribution (pdf) as
output; in fact, the right plot in figure 2.2 shows only the expectation of this
pdf. A plot of the full distribution can be seen in figure 2.3. It is clear that
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Figure 2.3: Plot of the full probability distribution for the above example. The model
output plotted in figure 2.2 is the expectation value of this distribution. The distribution
along the dashed line is shown in the right plot, which exhibits a bimodal structure.

this full distribution contains much more information than just the mean; for
example, this distribution becomes bimodal in parts of the area where the
clusters overlap, an example of which is shown in the right plot of the figure.
Also, the distribution generated by the second (right) cluster is less sharp, since
it covers more of the nonlinear features of the sine function than the first one.

It is instructional to see how the CWMs behave in areas where data is unavailable.
In figure 2.4, we again see a CWM with two clusters with data sampled from the
sine function, but we now have an interval [1.5 3] where the data points are missing.
The two clusters now cover roughly the same amount of points and therefore have
almost equal weights. They still produce a legit model output, but from the resulting
mean it does not become clear that the model is completely uncertain in the area
with no available data points. While in this simple one-dimensional example the
missing data is obvious and can be directly seen by simply plotting it, this is usually
no longer the case for more complex and higher-dimensional problems.

The uncertainty of the model can clearly be seen when looking at the full
probability distribution, which is shown in Figure 2.5. Right in the middle of the
data gap, at x = 2.25, the resulting distribution is bimodal, with both peaks almost
the same height, albeit slightly different widths.

Therefore, reducing the model output to the mean implies ignoring additional
and often important information. But this directly leads to another problem: How
can we quantify full probability distributions, and how can we compare different
models regarding the full distribution? The most simple answer is to calculate higher
moments, like the variance, to express model uncertainty. This is also what will
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Figure 2.4: CWM example but with missing data points in [1.5 3]. The clusters now
almost have the same weights since they cover roughly the same amount of points. In the
right plot, the cluster functions f1, f2 (red/blue) are seen with the resulting model output
(black line).
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Figure 2.5: Full distribution for the CWM with missing data points in [1.5 3]. In the right
plot, the distribution along the dashed line is shown, which is at x = 2.25 and therefore in
the middle of the missing data interval. The distribution there is completely bimodal.
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be done when dealing with Active Learning in chapter 5. However, for the task of
comparing different models with probabilistic output, we will introduce the concept
of scores in section 3.2.

2.6.2 Expectation Maximization algorithm

The EM algorithm is an iterative maximum-likelihood estimator and is typically
used when one is confronted with incomplete data or when the likelihood function
involves latent variables. However, the distinction of these two cases is more a matter
of interpretation, since we can always think of latent variables as data which we
could not observe, thus leading to incomplete data. Therefore, it is possible to use
the EM algorithm by introducing artificial additional variables which are simply
declared as unobserved.

The EM algorithm was discovered and used independently by several different
researchers, but it was first described fully by Dempster et al. in [21], who also
coined the term “EM algorithm”. One important problem which motivated this
algorithm, also in the original paper, was the parameter estimation for Gaussian
Mixture Models [51], and since Cluster Weighted Models are closely related to this
problem, it is evident to use this algorithm here as well.

Since Dempster’s paper, a huge amount of material was published which further
investigated and used the algorithm for various purposes. It is especially important for
tomographic image reconstruction problems, where for example in Positron Emission
Tomography (PET) it is used to calculate from which locations the positrons where
emitted, based on the data from the detectors around the patient [50]. Other
applications include the training of hidden Markov models, especially for speech
recognition, pattern recognition, and neural network training.

General formulation

For describing the EM algorithm in a general fashion, let us consider a parametric
density function p(x|Ψ), where Ψ are the parameters; in the case of CWMs, these
parameters are the cluster weights and the positions and variances of the clusters.
The random variable X is assumed to be i.i.d. according to this distribution, and
we have a data set Ω = {x1, . . . , xN} which shall be a realization of this random
variable. The likelihood function is then given by

L(Ψ|X) = p(X|Ψ) =
N∑
i=1

p(xi|Ψ) . (2.43)

For obtaining an estimate of the parameters Ψ, the most common approach is
to use those parameters with the Maximum Likelihood, i.e. those parameters Ψ̂ML

which fulfill
Ψ̂ML = arg max

Ψ
L(Ψ|X) . (2.44)
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In many practical cases, it is easier to calculate this maximization by using the
log-likelihood L(Ψ|X) ≡ logL(Ψ|X), which shall also be used in the following. Still,
calculating this maximization analytically is often intractable or even impossible, so
that one has to resort to approximative procedures.

As already mentioned, the EM algorithm is especially suited for cases with
incomplete data. This covers two different scenarios: we could have incomplete data
because we actually could not observe some data, e.g. due to technical difficulties or
other limitations of our observation process. The second scenario is that we have
all data we can obtain, but if we would introduce additional, fictitious parameters,
also called hidden variables, the maximization of the likelihood (2.44) would become
much easier. This latter scenario is usually more common, and is also the case with
Mixture- and Cluster Weighted Models.

The basic strategy of EM is to first formulate the complete data problem, given a
hypothetical complete data set ΩC = {x1, . . . , xN , z1, . . . , zM}, where the zi denote
the hidden variables.

The complete log-likelihood is given by

LC(Ψ|X,Z) = log p(X,Z|Ψ) , (2.45)

and we further assume that the joint density can be further decomposed according
to Bayes’ rule into

p(X,Z|Ψ) = p(Z|X,Ψ) · p(X|Ψ) . (2.46)

Since the hidden variables zi are realizations of the random variable Z, the
complete log-likelihood LC is also a random variable, and we can calculate its
expectation value with respect to Z, given the observed data {xi} and a current
parameter estimate Ψ(k). This expectation is usually written as the Q function

Q(Ψ; Ψ(k)) = E
{

log p(X,Z|Ψ) |X,Ψ(k)
}
. (2.47)

This is the Expectation step (E-step) of the algorithm. It is important to note that
Ψ and Z are random variables, but Ψ(k) and X are constant. While our observed
data always stays the same, the Ψ(k) usually changes with each iteration, with k
denoting the current step.

In the Maximization step (M-step), the just calculated expectation Q(Ψ; Ψ(k)) is
maximized with respect to Ψ, the result being our parameter estimate for the next
iteration:

Ψ(k+1) = arg max
Ψ

Q(Ψ; Ψ(k)) . (2.48)

As already mentioned, this assumes that maximizing the complete log-likelihood
is feasible. But even if this is not the case, it is in fact sufficient to just find a
parameter estimate Ψ(k+1) with a larger likelihood than the previous one. It is
therefore possible to use e.g. a numerical steepest ascent method, which may only
find a local maximum of Q.
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Convergence of the EM algorithm

In every iteration, one E- and M-step is performed, as described in the previous
section. The problem now is to determine if doing these iterations will ever converge,
and if so, if it will converge to a ML estimator.

Let Z be the space of all possible values of Z, so that∑
Z∈Z

p(Z|X,Ψ(k)) = 1 , (2.49)

and hence it holds that

log p(X|Ψ) =
∑
Z∈Z

p(Z|X,Ψ(k)) log p(X|Ψ) . (2.50)

Using Bayes’ rule (2.46), we obtain

log p(X|Ψ) =
∑
Z∈Z

p(Z|X,Ψ(k)) log p(Z,X|Ψ)−
∑
Z∈Z

p(Z|X,Ψ(k)) log p(Z|X,Ψ) .

(2.51)

Using the definition of the Q-function (2.47), we can see that the first term in
this equation is Q(Ψ,Ψ(k)). Therefore, the fraction of the two incomplete likelihoods
before and after an iteration can be written as

log
p(X|Ψ)

p(X|Ψ(k))
= log p(X|Ψ)− log p(X|Ψ(k)) = Q(Ψ,Ψ(k))−Q(Ψ(k),Ψ(k))

+
∑
Z∈Z

p(Z|X,Ψ(k)) log
p(Z|X,Ψ(k))

p(Z|X,Ψ)

(2.52)

The last term is the Kullback-Leibler divergence between the two densities in the
fraction, which by definition is always positive, hence it holds that

log p(X|Ψ)− log p(X|Ψ(k)) ≥ Q(Ψ,Ψ(k))−Q(Ψ(k),Ψ(k)) . (2.53)

We now calculate Ψ(k+1) through the M-step as described in the previous section,
i.e. through a maximization of the Q function

Ψ(k+1) = arg max
Ψ

Q(Ψ,Ψ(k)) . (2.54)

Putting this into (2.53) yields

log p(X|Ψ(k+1))− log p(X|Ψ(k)) ≥ Q(Ψ(k+1),Ψ(k))−Q(Ψ(k),Ψ(k))

≥ Q(Ψ,Ψ(k))−Q(Ψ(k),Ψ(k))

≥ 0

(2.55)
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and therefore

log p(X|Ψ(k+1)) ≥ log p(X|Ψ(k)) , (2.56)

which is the result we were looking for: the likelihood increases with each iter-
ation, until the conditions for equality are satisfied, which implies that a fixed
point is reached. It is clear from (2.54) that every maximum-likelihood parame-
ter estimate ΨML is a fixed point of the iteration, and given the assumption that
the likelihood function is bounded (which is usually the case in practice), the se-
quence of parameter estimates Ψ0,Ψ1, . . . ,Ψk gives rise to a non-decreasing sequence
L(Ψ(0)|X) ≤ L(Ψ(1)|X) ≤ . . . ≤ L(Ψ(k)|X) which must converge as k →∞. While
ML estimates are stationary points, the inverse is not necessarily true. It is possible
to reach a saddle point or even a minimum of the likelihood, but only under very
special conditions which are usually not met in practice; further details regarding
the convergence can be found in [79].

However, the fact remains that the EM algorithm is essentially a steepest ascent
method and therefore is not guaranteed to reach a global maximum of the likelihood.
For more complex shapes of the likelihood function, it is likely that the algorithm will
only converge to a local maximum, dependent on the initial parametrization Ψ(0) with
which the algorithm is started. Therefore, it is advisable to execute the algorithm
several times with different initial conditions, and then compare the performance of
the resulting parameters with some model selection procedure.

2.6.3 EM algorithm applied to Cluster Weighted Models

As described in the general formulation in section 2.6.2, one scenario for using the
EM algorithm is when the maximization of the likelihood becomes much easier by
introducing an additional, albeit fictitious random variable which we can interpret
as unobserved or hidden data.

In the case of CWMs, this unobserved random variable can be introduced by
imagining that each sample (xi, yi) is in fact described by a single cluster, which gets
chosen at random according to some probability.

Let Zi ∈ {1 . . .M} be the label of the cluster that gave rise to (xi, yi). This
variable Zi serves as the unobserved random variable. The cluster weights wm (2.34)
are interpreted as the probabilities of the event Zi = m for all m = 1 . . .M , which
implies that the Zi are distributed according to a multinomial distribution with the
cluster weights wm as parameters.

If one would know from which cluster each sample (xi, yi) was generated, that is,
if Zi were known for all i, calculating an estimate for the cluster model parameters
through maximum likelihood would be straightforward. For example, each cluster
center would be simply given by the mean of all the points with a certain label.
However, since we do not have this data, estimating the cluster parameters through
maximum likelihood becomes a constrained nonlinear optimization problem, which
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is usually difficult to solve directly. For such problems involving latent variables, the
EM algorithm is an elegant and efficient technique.

The realizations of the Zi are written as the indicator vectors zi = (zi1, . . . , ziM)T ,
where

zim =

{
1, if data point (xi, yi) belongs to cluster m,
0, otherwise.

We write the augmented data set (or training set) as

Ωc = {(x1, y1, z1), . . . , (xN , yN , zN)}

and the complete log-likelihood Lc as

Lc(Ωc|Ψ) =
N∑
i=1

M∑
m=1

δzi,m log pm(yi|xi)pm(xi)wm ,

where Ψ denotes the entire set of parameters of the cluster weighted model, namely
the weights wm, the positions and variances µm,σm of the cluster centers as well as
the parameters βm,Σm of the local models.

The EM optimization starts with an initial estimate Ψ(0) of these parameters.
One possibility, which was also used in the following, is to start with uniform weights
wm = 1/M , random cluster position µm (by simply picking M points randomly from
the training data), and all variances σm set to the same value, so that the clusters
roughly cover the points of the training data.

As described in section 2.6.2, in the expectation step (E-step) of the algorithm,
one has to compute the conditional expectation of Lc with respect to the current
parameter estimate, which in the first iteration is given by Ψ̂, giving rise to the
following Q-function:

Q(Ψ; Ψ̂) = EΨ̂ {Lc(Ωc|Ψ)|x, y} . (2.57)

Since the terms in the logarithm depend solely on xi and yi, the conditional expecta-
tion affects δzi,m, only.

It follows that the E-step is effectively reduced to a calculation of the conditional
expectation of δzi,m, given the observed data. We introduce the abbreviation

qm(x, y; Ψ̂) := EΨ̂(δzi,m|x, y) = ¶Ψ̂(Zi = m|xi, yi),

where ¶Ψ̂ is the probability for parameters Ψ̂. According to the definitions from
section 2.6, the posterior probability is in general given by

qm(x, y; Ψ̂) =
pm(y,x)

p(y,x)
=
pm(y|x)pm(x)wm∑M

l=1 pl(y,x)
=

pm(y|x)pm(x)wm∑M
l=1 pl(y|x)pl(x)wl

, (2.58)

where it is understood that pm(y|x), pm(x) depend on Ψ̂, and wm is in fact part of
Ψ̂. This distribution relates each cluster to each data point. Looking at the resulting
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fraction, one can see that the posterior is the ratio between one and all clusters
predicting one specific point. Given this expectation value, the Q-function is given
by

Q(Ψ; Ψ̂) =
N∑
i=1

M∑
m=1

qm(x, y; Ψ̂) log pm(yi|xi)pm(xi)wm .

In the maximization step (M-step), one obtains the next parameter estimate Ψ̌ by
a global maximization of the Q-function with respect to Ψ over the parameter space.
The derivatives with respect to the desired parameters can be readily calculated and
set equal to zero, thus obtaining a set of equations for the new parameters Ψ̌ as
functions of the old parameters Ψ̂. This procedure is iterated until convergence.

In order to compute the new parameters, it is convenient to decompose the
Q-function as follows:

Q(Ψ; Ψ̂) =
N∑
i=1

M∑
m=1

qm(x, y; Ψ̂) log pm(yi|xi)

+
N∑
i=1

M∑
m=1

qm(x, y; Ψ̂) log pm(xi)

+
N∑
i=1

M∑
m=1

qm(x, y; Ψ̂) logwm .

This decomposition is useful, as the local function parameters (βm,Σm) appear only
in the first, the cluster parameters (µm,σm) only in the second, and the weights
wm only in the last summand. Thus, equations for the new parameters Ψ̌ turn out
to be largely decoupled. The cluster weights wm, for example, can be calculated
independently of the other cluster parameters (µm,σm,βm,Σm). Since the weights
are subject to the constraint

∑
wm = 1, we have to introduce a Lagrange multiplier

λ and solve
∂

∂wm

[
Q(Ψ; Ψ̂) + λ(1−

M∑
l=1

wl)

]
= 0 ,

which, after elementary calculations, leads to

w̌m =
1

N

N∑
i=1

qm(yi,xi; Ψ̂) ,

which can be interpreted as a “soft” version of
∑

i δzi,m/N , where the unknown labels
are substituted with their expectation value.

The updated estimates of the means and variances of the clusters (µm,σm) are
also derived by maximizing Q(Ψ; Ψ̂). Thus, the updated means are given by

µ̌m =

∑N
i=1 xi qm(yi,xi; Ψ̂)∑N
i=1 qm(yi,xi; Ψ̂)

, (2.59)
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which can be written in a more condensed form by defining the cluster weighted
expectation of a function φ(x) as

〈φ(x)〉m ≡
∑N

i=1 φ(xi) qm(yi,xi; Ψ̂)∑N
i=1 qm(yi,xi; Ψ̂)

, (2.60)

so that the new cluster means are given by 〈x〉m. In the same way, the new variances
can be written as

σ̌m =
√
〈(x− µ̌m)2〉m . (2.61)

Initial parameter estimate

In the beginning, the EM algorithm needs an initial parameter estimate Ψ(0), which
must be provided by the user. It is this parameter estimate which determines the
resulting model; the algorithm itself does not have any stochastic component which
could lead to different parameter estimates when the same initial values are chosen.
This is important when one would like to build model ensembles, consisting of several
CWMs.

The usual procedure is to start with with uniform weights wm = 1/M and the
cluster centers µm chosen randomly, simply by picking M points from the training
data set. The initial variances σm are chosen so that the clusters roughly cover the
whole data set; therefore, the initial values for σm should depend on the variance of
the given data.

The parameters of the cluster functions are initialized by setting all βm,i = 1 and
the output variances Σm roughly equal to the variance of the target values.

Optimization of cluster functions

For updating the parameters βm of the cluster functions (2.41), we maximize for
each cluster m the log-likelihood with respect to βm [70], that is, we must solve

∂

∂βm
log

N∏
i=1

p(yi,xi) = 0 , (2.62)

leading to

0 =
N∑
i=1

1

p(yi,xi)
pm(yi,xi)

yi − f(xi,βm)

Σ2
m

· ∂f(xi,βm)

∂βm

=
1

N wm

N∑
i=1

p(wm|yi,xi) [yi − f(xi,βm)] · ∂f(xi,βm)

∂βm

=

〈
[y − f(x,βm)] · ∂f(x,βm)

∂βm

〉
m

,

(2.63)
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where we used the definition (2.60).

Since we use linear parametrized local models (2.41), we obtain

0 = 〈[y − f(x,βm)] fj(x)〉m

= 〈y fj(x)〉m −
I∑
i=1

βm,i 〈fj(x) fi(x)〉m .
(2.64)

For each cluster m, we define the matrix (Bm)ij = 〈fj(x) fi(x)〉m and the vector
(am)j = 〈y fj(x)〉m, leading to the following simple update rule for the new cluster
model parameters:

βnew

m = B−1
m · am . (2.65)

For dealing with singular or ill-conditioned matrices Bm, an additional regularization
procedure should be performed before or during the calculation of the matrix inverse.
Further details on this topic are described later in section 4.2.

The updated output variances are now given by

Σ2,new
m =

〈
[y − f(x,βm)]2

〉
m
. (2.66)

2.7 Example: Noise reduction

A possible application for the cross prediction introduced in section 2.2.1 is the
reduction of measurement noise from a deterministic dynamical system [9]. For this
purpose, a noiseless time series from this dynamical system is necessary and a second
time series is generated by corrupting the noiseless data with additive white noise.
Afterwards, a model is trained to predict from this noisy time series to the noiseless
one. This model can then be used as a tool for noise reduction on before unseen
noisy data from the same dynamical system, given that the statistical properties of
the noise are similar.

In our example, we want to reduce noise from the Rössler system, defined by the
following system of ODEs:

ẋ = −y − z
ẏ = x+ a · y
ż = b+ z · (x− c) .

(2.67)

For training, we generate a time series with 30,000 points and add white noise
with a SNR of 10 dB. The embedding parameters obtained while training the local
(nearest neighbor) model (see section 2.5.6) are also used for the the Cluster Weighted
Model.
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Figure 2.6: Noisy input (top), original signal (middle) and local model prediction (bottom).
The CWM prediction looks almost identical.
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Figure 2.7: Original noisy attractor (left) and local model test data prediction (right)



Page 40 2.8. Example: Signal through chaotic channel

Through the prediction, the SNR could be raised to 18 dB. The attractors
reconstructed by an 3D embedding of the original and the predicted test data can
be seen in figure 2.7. An example for the prediction of the local model is shown in
figure 2.6.

2.8 Example: Signal through chaotic channel

Closely related to the previous example, where we subtracted measurement noise
from a dynamical system, we now want to reconstruct a signal which is sent through a
chaotic dynamical system, where the signal can be seen as a special case of dynamical
noise. In our numerical example, a music wave file is taken as the signal and the
Lorenz system as the chaotic system. The signal is added to the first ODE, while
the y variable is taken as the output (see figure 2.8).

ẋ = σ(x − y) + D · s(t)
ẏ = rx − y − xz

ż = xy − bz

?

OutputChaotic systemSignal

Figure 2.8: Illustration of chaotic channel

We now want to construct a model which is able to predict the original signal given
the output, without providing any a-priori knowledge of the underlying dynamical
system. Like the previous example, this is the case of a cross prediction without
feedback. In the following example, the model is trained using 30,000 point pairs,
consisting of the original signal and the output of the chaotic system.

First, we train a locally linear model which also yields good embedding parameters,
which are also used for training a Cluster Weighted Model with locally quadratic
functions. Both models are tested on 10,000 test data points. The locally linear
model has a NMSE of 11.5%, while the Cluster Weighted Model (200 clusters)
performed slightly better with a NMSE of 9.8%. The latter result can be seen in
figure 2.9. Although the NMSE is quite large, which can also be observed in the
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plot of the residuals, the model still shows a good reconstruction of the basic signal
properties.
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Figure 2.9: Prediction of test data for music signal using a Cluster Weighted Model. The
first two plots show the output signal from the Lorenz system and the original input signal.
The lower two plots show the CWM prediction and the residuals. The result from the local
model looks almost the same.

2.9 Example: Friction modeling

Friction is a very complex and nonlinear phenomenon, comprising various regimes and
behavioral facets. While there exist numerous analytical approaches for describing
different aspects of friction phenomena, a model which could explain all aspects
of friction is still missing. In practical control applications where high accuracy is
demanded, the highly nonlinear dependence of the friction force on displacement is
one of the main problems. Black-box models, which do not depend on any a-priori
physical knowledge, can help to deal with this problem.
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Experimental friction data, obtained from an experimental setup done by Al-
Bender, Lampaert and Tjahjowidodo at the University of Leuven [60], is used to
train Local Models as well as Cluster Weighted Models. The data consists of the
(desired) displacement P (t) for the model input and the friction force F (t) (to be
applied) for the model output. Therefore, we have again a cross prediction from
P (t) to F (t), but in this case the accuracy of the modeling can be greatly improved
by adding past values F (t− δ) of the friction force to the input vector, introducing
a feedback into the modeling procedure. The training data set consisted of 90,000
data points and the models were tested on 20,000 points. Here, the models are freely
iterated over the complete test data set, i.e. while the position values in the input
vector are always exact, the friction force is always estimated (except for the starting
value, which is also exact).

Like in the previous examples, we first trained the locally linear model to obtain
good embedding parameters. In this case, the result was the following 5D embedding
vector

x(t) = (P (t), P (t− 16), P (t− 66), P (t− 67), F (t− 19)) , (2.68)

therefore consisting of four position values and one past force value. It is important
to note that the optimal delay for the past force value (in this case δ = 19) can only
be obtained through an optimization which depends on the multi-step prediction
error. Since the time series is very densely sampled, the optimization on the 1-step
prediction error would yield an “optimal” value for the delay of δ = 1, with the
model simply repeating the last force value. Of course, such a model will lead to
bad prediction results when freely iterated over the test data set.

Another important effect of the multi-step prediction error is the better stability
of the final model during iteration over several steps. In fact, as our tests show, the
last position value P (t− 67) is crucial for the stability of the local model, though
it may first seem redundant since it is almost equal to the previous one as they
are only separated by a delay of one. However, even with this additional position
value, the Cluster Weighted Model could not produce stable results when iterated
over the test data, since it tends to oscillate with a period given by the delay of the
past force value. Although one can enforce stability by simply clipping the model
output with the minimum and maximum value of the given output data from the
training set, the model error gets quite large. While it is possible to dampen the
oscillations through filtering, the filter introduces new parameters (order, cut-off
frequency) which somehow have to be optimized.

Our approach for solving this problem is to use not one, but three different
CWMs, each having a slightly different delay for the past force value (in this case
we used 17, 19 and 21). This is called a model ensemble, and it is well known that
such ensembles can often lead to better predictions than each single model in this
ensemble could provide [36], although in our case we are more interested in stability
features. The additional position value P (t − 67) was now omitted, as it was not
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Figure 2.10: Schematic workflow of the CWM ensemble for friction prediction. The data
vector consists of the measured position and one past predicted force value. Each CWM in
the ensemble gets the same positional data but uses a different delay for the force value.
The resulting output, which is also fed back into the ensemble, is the median of the three
model values.

necessary for stability anymore and led in this case to slightly worse prediction results.
Since every model has a different delay for the force value, each model will tend to
oscillate with different periods. When predicting the test data, we first calculate the
three model outputs for each point and simply take the median, i.e. in this case the
output of the model lying between the other two. The median is fed back to all three
models, practically dampening beginning oscillations. A schematic of this procedure
is shown in figure 2.10; extending it to a larger number of models is straightforward,
but didn’t result in lower errors.

The local model (260 neighbors, linear weight function, euclidean distance, PCTR
with soft threshold and sc = 3 · 10−3 and sw = 0.67) yields a NMSE of 1.01% over
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Figure 2.11: Local model (upper panel) and CWM prediction (lower panel) for a section
of friction test data; predictions are given by dashed lines.
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the 20.000 test data points. The CWM ensemble, where each CWM used quadratic
functions and 600 clusters, has almost the same performance with a NMSE of 1.05%
(see figure 2.11). This ensemble error is lower than each of the single model outputs
(though only slightly). The residuals for both models can be seen in figure 2.12.

2.10 Example: Chua’s oscillator

In its original form, the Chua oscillator is an electronic circuit featuring a nonlinear
resistor, which can be realized in different ways, usually using a combination of
operational amplifier(s), diodes and linear resistors [18]. It can be described in a
dimensionless form through the following system of ODEs:

ẋ = α (y − h(x))

ẏ = x− y + z

ż = −βy

with h(x) = m1x+
1

2
(m0 −m1) [|x+ 1| − |x− 1|] .

(2.69)

The nonlinear resistor is described through the function h(x), which is a piecewise-
linear curve. With parameters {α, β,m0,m1} = {9, 14.286,−1/7, 2/7} this system
features a chaotic attractor, the so called double scroll, which can be seen on the
right-hand side of figures 2.14 and 2.15.

In the following, a time series consisting of 6000 points is used, generated numeri-
cally from (2.69) with a sampling rate of 15Hz. By embedding this time series in
three dimensions with a delay of 10, we reconstruct the attractor and train a CWM
to predict 50 time steps into the future (direct prediction, see section 2.2). Using
a set of 500 training points which where not used for training, the model output
in form of the resulting distribution is shown in the lower plot of figure 2.13. The
upper plot was generated by integrating the ODE system with 50 slightly different
initial values, all lying in a small neighborhood of the input vector from the test
data. The value reached after 50 time steps was plotted, resulting in 50 points for
each time step, generating a visual approximation of the actual distribution, which
can be compared against the model.

We can see that both plots exhibit a similar behavior: small regions which are
stable over the 50 time steps, interrupted by larger regions where the outcome is
very uncertain, corresponding to the two different scrolls which the trajectories can
reach (see right-hand side of figure 2.14).

An example for a stable region is time index 0, where we see a fairly small
distribution of the estimated prediction result. Figure 2.14 shows the actual time
series (using the x component of (2.69)), starting with slightly different initial values
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Figure 2.13: Upper panel: Estimation of empirical distribution of the 50-steps prediction
for the Chua oscillator by starting with 50 slightly different initial conditions for each time
step. Lower panel: Output in form of a distribution from Cluster Weighted Model, trained
on 50-steps prediction.
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Figure 2.14: Example for a stable region on the Chua attractor. Shown are several
trajectories with slightly different initial values, starting at time index -50. On the left the
resulting time series is shown (x component), with the red dashed line at time 0 denoting
the prediction step. The right plot shows some of the trajectories on the attractor, with the
red circles denoting their starting positions.

at time index −50. We see that all trajectories stay in each others vicinity and
remain on the same scroll, and begin to diverge just after the prediction goal of 50
steps.

Figure 2.15 shows an unstable region, beginning at time index 15 with the
prediction goal at time step 65. We see that the trajectories diverge, with only some
staying on the initial scroll and most others moving to the other. Those regions are
visible in the CWM output in figure 2.13, sometimes as a bimodal distribution or in
a rapid succession of lower/upper scroll probabilities.

In figure 2.16, we again see the Chua attractor, color-coded with the logarithmic
variance of the CWM. It is important to note that we color-coded the starting point
of the expected variance, meaning that when the point has a high variance (red),
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Figure 2.15: Same setup as in figure 2.14, but this time starting with time index 15, with
most of the trajectories reaching the lower scroll. The effect is a bimodal distribution at the
prediction step (time index 65).

trajectories starting from this region will most likely diverge in the next 50 time
steps, whereas those with a low variance (blue) will most likely remain in each others
vicinity. CWMs can therefore serve as a means to identify stable and unstable regions
on the attractor for predicting a certain amount of steps into the future.
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Figure 2.16: Chua attractor with color coded logarithmic variance (rescaled to the interval
[0 10]) for the 50-steps prediction of the CWM.



Chapter 3

Probabilistic evaluation of Cluster
Weighted Models

An interesting feature of CWMs is that they allow for an output in the form of an
entire probability distribution. This feature is shared by quite a few other modeling
approaches, such as kernel density estimators and various techniques based on nearest
neighbors. In principle, probability assignments allow for a more informed decision
making than “deterministic” or unequivocal forecasts, as the former allow to estimate
the impending risks as well as the expected losses associated with particular decisions.

In the following chapter, the quality of probabilistic output from CWMs shall be
investigated and compared to a couple of other approaches of varying complexity
and requirements as to the knowledge about the underlying system that generated
the data.

Several methods are examined which allow to produce forecasts for time series in
the form of probability assignments. The necessary concepts are presented, addressing
questions such as how to assess the performance of a probabilistic forecast. Two
examples are presented. The first involves estimating the state of (numerically
simulated) dynamical systems from noise corrupted measurements, a problem also
known as filtering. There is an optimal solution to this problem called the optimal
filter, to which the considered time series models are compared. (The optimal filter
requires the dynamical equations to be known.) In the second example, we aim at
forecasting the chaotic oscillations of an experimental bronze spring system.

The work presented in this chapter was done in collaboration with Dr. Jochen
Bröcker from the Max Planck Institute for the Physics of Complex Systems in Dres-
den. Dr. Bröcker provided the concept of probabilistic scores [16], the calculations
for the invariant measure and the Interacting Particle Filter, while the author did
the calculations for the CWMs and the local/global density estimation approach. Re-
garding the collaboration in the textual content, Dr. Bröcker wrote the introductory
section 3.2 on probabilistic scores, which is repeated in this thesis since otherwise
this chapter could not be properly understood. He was also largely responsible for
presenting the concept of particle filters, with the details moved to the appendix.

48
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3.1 Introduction

This chapter aims at presenting a framework for the probabilistic assessment of time
series models. Using this framework, the quality of probabilistic output from CWMs
and several other approaches which generate probabilistic forecasts is investigated
and compared.

Evaluating probabilistic forecasts requires different measures of performance than
evaluating deterministic forecasts. The mathematical concept of scores provides
appropriate performance measures for probabilistic forecasts. They were developed in
stochastics and econometrics to elicit personal probabilities [68]. See for example [16,
31,56] for more information on this concept. Furthermore, scores appear in various
guises and under various names in several branches of stochastics and related fields,
and have received considerable attention in the weather forecasting community as
the appropriate tool to evaluate probabilistic weather forecasts [56].

In this chapter, the performance of Cluster Weighted Models is analyzed by means
of scores and compared to other probabilistic forecast systems of varying complexity
and requirements as to the knowledge about the underlying system that generated the
data. As a sample problem, we consider the problem of state estimation, which aims
at reconstructing the internal state of a dynamical system from noisy observations.
In weather forecasting and econometrics, this problem is often referred to as “now-
casting”, since the state to be reconstructed is in fact the present state of the system.
However, we will keep using the term “forecasting” for this chapter, since it is more
commonly used in physics. Like in the examples presented so far, when CWMs are
applied to this problem, the dynamics of the underlying system are not assumed to
be known, making this a pure black-box approach. One might wonder to what use
the internal state of a dynamical system might be when the dynamical equations are
unknown, in which case we would, for example, be unable to generate predictions of
the dynamical system’s future behavior. The internal state of a dynamical system
might be of interest for its own sake, for example for monitoring purposes and fault
detection. Another motivation was to have a problem for which there exist other
established approaches. In particular, it is known that the interacting particle filter
represents an (asymptotically) optimal solution to this problem, but in contrast to
CWMs, one needs knowledge of the underlying equations to use this method. While
comparing these two methods must obviously be considered “unfair”, we can use
the results from interacting particle filter as a benchmark, giving us an estimate of
how close the purely data-based methods are to an optimal solution. As a further
example, we consider experimental time series from a bronze spring subjected to an
alternating magnetic field, whereby the spring exhibits chaotic oscillations. Here,
the probabilistic forecasting systems are employed to predict the future evolution of
the spring’s motion.
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3.2 Probabilistic Forecasts and Scoring

In this section the reader will be provided with a brief introduction to probabilistic
forecasting. Suppose there is a quantity Y , referred to as the verification1, the
exact value of which is unknown (at least at the time we would like to know it). A
probabilistic forecast is a probability assignment to possible outcomes of Y . If Y is
continuous, probabilistic forecasts can be expressed by means of a density function
p(y), or alternatively by the corresponding cumulative distribution function. As
the latter becomes awkward to handle in higher dimensions, density functions will
be used exclusively in the following. The range of possible values of Y could also
be discrete, in which case Y labels one of a finite number of possible events. Yet
different types of Y (e.g. combined continuous-discrete) are often considered. In the
following though, we will focus on continuous and multivariate verifications.

The exact shape of p(y) should depend on information at hand about the unknown
Y , be it expert knowledge, superstition or observations of quantities assumed to
be related to Y . The question is how to fold the available information into a
probabilistic forecast. Ideally, the probabilistic forecast p(y) should be equal to
the conditional probability of the verification Y , given the available information.
However, in order to form this conditional probability, the relationship between the
information and the verification Y has to be known. Even in the ideal situation where
this is the case, p(y) might be constrained by available computational resources.
Therefore, probabilistic forecasting usually constitutes a modeling problem, similar
to its deterministic counterpart.

The basic requirements for forming probabilistic forecasts from various information
sources are very similar to those required for forming deterministic forecasts. The
main building block is a suitable class of models, capable of producing probabilistic
forecasts, as well as a mechanism to chose a “good” model, where it remains to be
defined what “good” means in these circumstances. Although expert judgment is
often indispensable for choosing models, objective criteria of forecast performance
that can be evaluated numerically become necessary as soon as computational
methods are employed in model design. In other words, quantitative measures
of “goodness” are needed. This is reminiscent of deterministic forecasting, where
statistical learning and numerical design of black-box models, usually in combination
with expert knowledge, have become common in almost all fields where forecasts are
required. In statistical learning, models are tuned by optimizing risk functionals [36].
While the model classes used in this chapter will be subject to section 3.3, the
remainder of this section will focus on the evaluation of probabilistic forecasts, or in
other words on quantitative measures of forecast performance.

To evaluate probabilistic forecasts, we will employ the mathematical concept of
scores, see for example [12,16,31,34,68]. A score is a function S(p(·), Y ), which takes

1Alternative names for Y could be “observation” or “target”. In view of a particular example to
be discussed in section 3.3.1, where a different kind of observation is used to construct the forecast,
we use the term verification, which is also common in the weather forecasting community.
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the forecast p(·) as its first and the verification Y as its second argument. The score
effectively compares the forecast p(·) with the verification Y . As the forecast p(·) is
a function, the score in general depends on the entire functional shape of p(·) and
hence is more accurately described as an operator on the forecast. An example of a
score is the Ignorance [16, 31,34]

S(p(·), Y ) := − log(p(Y )) (3.1)

that will be used in the following to evaluate the performance of different forecasting
methods. Another example is the Proper Linear Score [16, 31] (to our knowledge
first discussed in [12] for the binary case)

S(p(·), Y ) :=

∫
p(y)2dy − 2p(Y ) (3.2)

which depends on the shape of the entire function p(·) (through the integral in (3.2)),
while the Ignorance depends only on the value of p(·) at Y , that is, the verification
that eventually obtains. This property of the Ignorance is called locality.

In the definition of the Ignorance and the Proper Linear Score, it is understood
that a smaller score indicates a better forecast. The reason for this convention,
which might not be consistent with the usage of the word “score” as used in ordinary
parlance, will become clear later. With this convention in mind, the rationale behind
the Ignorance is easily discerned. The Ignorance is small as soon as the forecast
p(·) assigns a high value to the verification Y . A similar argument applies to the
second term −2p(Y ) of the Proper Linear Score. The first (presumably less intuitive)
term of the Proper Linear Score is necessary to render the score proper. Propriety
of scores is a criterion that is indispensable to obtain consistent results, as we will
argue now. Any score (be it a probabilistic or a deterministic one) should yield an
optimum expected value if the forecast is the desired one. In the case of (probabilistic)
scores, we require that if Y is drawn from p(·), then p(·) should in fact be the unique
minimizer of the expected score, that is, any other forecast q(·) should get a larger
(i.e. worse) score than the expected score of p(·). This statement can be written as∫

S(q(·), y)p(y)dy ≥
∫
S(p(·), y)p(y)dy. (3.3)

We speak of a proper score if this inequality indeed holds for any p(·) and q(·),
while we call a score strictly proper if there is a strict inequality in (3.3) unless
p(·) = q(·). Equation (3.3) can be rewritten as∫

[S(q(·), y)− S(p(·), y)] p(y)dy ≥ 0, (3.4)

with equality only if p(·) = q(·). This form makes explicit that every strictly proper
score defines a measure of discrepancy or distance between p(·) and q(·), given by
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the left hand side of (3.4). The fact that distances are usually positive motivates
the convention made earlier that scores be negatively oriented. Propriety is a
mathematical property of the score itself. It can be shown that both the Ignorance
and the Proper Linear Score are indeed strictly proper. In case of the Ignorance, it is
easily seen that the left hand side of (3.4) is in fact the Kullback-Leibler divergence,
which is well-known to be positive definite. In case of the Proper Linear Score, the
left hand side of (3.4) is the mean squared difference between p(·) and q(·). The
name “Proper Linear Score” is motivated by the fact that the intuitively appealing
Näıve Linear Score −p(Y ) is not proper itself but can be rendered proper by adding
the first term in (3.2) [16]. For a detailed discussion of scores and the rationale of
propriety see [14, 16,31].

When evaluating forecast systems, one is not only concerned with a single density
function p(·) but rather with an entire archive of probability density functions
pn(·) and corresponding verifications Yn. This archive can be employed to estimate
the performance of the forecast system. Similar to statistical learning, where the
empirical risk is used to value the forecast system, we define the empirical score
(with respect to a proper scoring rule S) as

SN :=
1

N

N∑
n=1

S(pn(·), Yn). (3.5)

The empirical score values the performance of the forecast system over all forecast-
verification pairs (pn(·), Yn) in the archive. It should be noted that when viewed as a
function of p, the empirical Ignorance score is equal to the negative log-likelihood.

A few remarks on the connections between the presented scoring approach and
the widely applied mean squared error will conclude this section. Various prediction
algorithms employed in deterministic forecasting (a.k.a. forecasting nonlinear time
series) first explicitly or implicitly construct an estimate of the conditional probability
of the verification given the observation, but then keep only the mean value, throwing
away all additional information. Evaluating such a deterministic forecast with the
mean squared error amounts to using a not strictly proper score. Furthermore, even
the mean value of the correct conditional density is a forecast with often rather
undesirable properties. This can be seen as follows. If again pn(·), n = 1 . . . N is a
series of probabilistic forecasts, a deterministic forecast is obtained by considering
the mean

mn :=

∫
y pn(y)dy (3.6)

of the forecast distribution.

This deterministic forecast can be evaluated by the ordinary mean squared error

SN :=
1

N

N∑
n=1

(Yn −mn)2. (3.7)
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Substituting from (3.6) for mn in (3.7), it turns out that the mean squared error can
be interpreted as a score with the score function

S(p(·), Y ) = (Y −
∫
y p(y)dy)

2

. (3.8)

Using the well known minimum property of the mean it can be shown that the
mean squared error is a proper score (i.e. the relation 3.3 holds). It is however not
strictly proper, as any two p, q with the same mean render relation (3.3) an equality.
In other words, the mean squared error does not take into account any other aspects
of the forecasts than the mean. This is appropriate if the mean is the only aspect
we are interested in. Outside the linear context though this is rarely, if ever, the
case. If for example pn(·) is a distribution of possible states on the attractor of a
dynamical system, the mean mn is not necessarily a possible state on this attractor.
Even worse, the sequence mn, n = 1 . . . N almost never forms an orbit either of the
system itself or any other similar system. More generally, the mean mn is usually
not a “typical” or “likely” value of pn(·) in any sense.

3.3 Probabilistic Forecasting Schemes

This section provides a brief outline of several probabilistic forecasting methods. The
discussed methods vary in terms of their complexity, computational demands, pre-
knowledge about the underlying process, and other requirements. Nontrivial trade
offs between performance and, for example, computational costs are not untypical
for realistic situations. From a practical point of view, the required resources and
implementational constraints of a particular method are therefore as important as
its performance. Hence, a comparison of state estimation methods that focused on
the performance alone would be incomplete.

As a first probabilistic forecasting system we discuss the invariant measure. The
invariant measure can be considered as a rather cheap and low skill forecast system.
It is built entirely upon average dynamical behavior of the system and does not take
into account any on-line observations. Further details of this approach are explained
in section 3.3.2. In section 3.3.3, a class of forecasting methods is briefly presented
which is based on global and local density estimators approximating joint densities
p(y, x) in delay embedding space. Finally, as a sort of ideal probabilistic forecast
system, the optimal nonlinear filter [15] is considered. The optimal nonlinear filter
comprises dynamical equations for the conditional probability of the underlying
state, given the time series of past and present observations. For this approach, the
equations of state of the system need to be known. Building the optimal nonlinear
filter though is known to be a formidable problem, suffering from the notorious curse
of dimensionality. An approximative solution is provided by the interacting particle
filter, of which several variants and flavors have been proposed. This approach is
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briefly explained in section 3.3.4, with the technical details being deferred to the
appendix.

It is probably worth mentioning at this point that estimators of the joint density
p(y,x) of input vectors x and outputs y automatically provide estimates of the
conditional density by means of the Bayes formula

p(y|x) = p(y,x)/c(x) with c(x) =

∫
p(y,x)dy, (3.9)

a fact used by several forecasting schemes to be presented. As discussed in the
introduction, the forecasting systems are to be employed to estimate the unknown
state of a dynamical system from noisy observations. How we intend to use density
estimators for this purpose is outlined in the next subsection. The details of the
individual forecasting systems are subject to the following subsections.

3.3.1 Application of density estimators to state estimation

Let Yn ∈ Rd, n ∈ N be the orbit of a dynamical system

Yn+1 = F (Yn),

where the initial condition of Yn is unknown and distributed according to the
probability measure P0

2. The observation process Zn is defined as

Zn = cYn + σRn,

where c is a linear mapping from Rd to R, σ a positive constant and Rn a process of
independent and identically distributed random variables having density γ(r) with
unit variance.

The problem of state estimation (or data assimilation) is to obtain an estimate of
the current state Yn, given only past and current observations, that is, observations
Z1:n := {Zk, k = 1, . . . , n}. Before CWMs (or any other black-box model) can be
applied to this problem, suitable input vectors Xn ∈ RD have to be constructed from
the scalar observations Zn first. Again, as described in section 1.5.1, we use a delay
embedding

Xn :=
(
Zn, Zn−δ, . . . , Zn−(D−1)δ

)
(3.10)

with suitable dimension D and delay δ. Now suppose we have an archive of real-
izations T := {(xn,yn), n = 1 . . . N} of the delay vectors of observations Xn and
the corresponding known states Yn. Using the xn as inputs and the yn as out-
puts, any density estimator can be applied to find an approximation of the joint

2Since our aim is to provide probabilistic estimates of the states Yn, they play the role of the
verification. Hence using the letter Y for the states of the dynamical system is consistent with
the notation used earlier. Also, in this chapter, the capitalized characters X,Y, Z denote random
variables, and are set in bold if multi-dimensional.
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probability p(y,x) and subsequently of the conditional probability p(y|x) by (3.9).
Taking into account that the inputs x are delay vectors of observations, the al-
gorithm is effectively a means to approximate the conditional probability density
p
(
Yn = yn|(Zn, Zn−δ, . . . , Zn−(D−1)δ) = xn

)
.

3.3.2 The Invariant Measure

A simple and intuitively reasonable probabilistic forecasting strategy is to assign
to any possible outcome its observed relative frequency, which obviously requires a
large archive of samples of the variable in question in order to compute observed
frequencies. Ideally, we should use the (unconditional) probability of Yn for this
strategy, or the invariant measure in case Yn is in fact the orbit of a dynamical
system. Employing the invariant measure as a probability forecast amounts to what
is known in meteorology as “climatological rules”. It should be noted that the system
still has to meet certain requirements in order for this strategy to be applicable. For
example, the system should have some (albeit weak) stationarity assumptions.

Since in the following the invariant measure will be employed as a performance
benchmark for other forecasting systems that come in the form of probability density
functions, it is convenient to represent the (approximation to the) invariant measure
in the form of a probability density as well. This density was written as c(x)
in (3.9), and we will keep this notation, in order to distinguish it from a generic
probability density function. Various techniques of considerable sophistication have
been proposed to approximate densities from a sample of points, of which kernel
estimators seem to be the best developed ones. An excellent introduction to this
subject is [73]. The kernel density estimate (KDE) employed in the present work
has the form

c(y) =
1

N

∑ 1

σdi
K

(
y − yi
σi

)
(3.11)

where K is the kernel function, yi, i = 1 . . . N is the archive of verifications and σi
the bandwidth. We use exclusively Gaussian kernels in this chapter, that is

K(y) =
1

(2π)d/2
exp

(
−1

2
‖y‖2

)
. (3.12)

This choice renders the kernel estimate c(y) a positive and normalized density
function. Choosing a good bandwidth σi is the tricky bit. We used the ansatz

σi = s · δ(yi) (3.13)

where δ(yi) is the distance between yi and its k’th nearest neighbor in the archive,
with k =

√
N . The motivation for this choice is that all kernels should cover roughly

the same amount of sample points. On the other hand, some drawbacks of the
nearest-neighbor-estimate, discussed in [73], are thus avoided.
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The only free parameter is the factor s, which was chosen by minimizing the
empirical Ignorance score of c(y) over the archive. It needs to be taken into account
though that the same archive was used to build the density c(y) in the first place. In
order to avoid overfitting effects, leave-one-out cross validation was used to estimate
the score. More specifically, we formed the densities

c−i(y) :=
1

N − 1

∑
k 6=i

1

σdk
K

(
y − yk
σk

)
(3.14)

and estimated the score by

SN :=
1

N

N∑
i=1

− log(c−i(Yi)) (3.15)

which was then minimized as a function of s. It is easy to see that if c(y) were
used in (3.15) rather than c−i(y), the minimum would be −∞, occurring for s = 0.
An implementation of this particular variant of kernel density estimation, which is
somewhat of a cross-bred of concepts proposed in [73], is available for MATLAB
under the Lesser GNU Public License [39].

3.3.3 Global and local density estimator

The kernel density estimator described in section 3.3.1 in connection with the invariant
measure can be used just as well to obtain estimates of the joint density p(y,x), where
again x is a vector of suitably delay-embedded observations. Unlike cluster weighted
models, the kernel density estimator does not assume any functional dependence
between the observations and the state of the dynamical system. Therefore, it
can be interpreted as a somehow “brute force” approach to state estimation. The
corresponding conditional density p(y|x) can be used as a probabilistic forecasting
system for estimating the state of the dynamical system. In contrast to this global
model, which depends on the entire archive of observations and corresponding state
vectors, kernel estimators can also be used for constructing more local estimates
around any possible realization of the delay vector of observations.

These densities are “local” in the sense that they are only assumed to be valid in
some small neighborhood of the delay vector of observations and the corresponding
unknown true state. In other words, each density is tailored to one specific delay
vector of observations. This also implies that this model ansatz is a “lazy learner”,
since it delays any computation until it is queried with an actual delay vector of
observations.

Given a set of pairs of scalar observations and corresponding state vectors, we
first organize the scalar observations in delay vectors xn, as defined in section 3.3.1,
Eq. (3.10). Given a new delay vector of observations x̃, we search for the k nearest
neighbors xnn(i), i = 1, . . . , k of x̃ among the archived delay vectors of observations.
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To these delay vectors correspond archived verifications ynn(i), to which the kernel
estimator technique (as described in the previous section) is applied, providing a local
density estimate p(y|x̃) around x̃. Again, given the particular choice of inputs, this
is effectively an estimate of the density p

(
Yn = yn|(Zn, Zn−δ, . . . , Zn−(D−1)δ) = xn

)
.

3.3.4 Interacting Particle Filters

The problem of estimating the state of a nonlinear system from noisy observations
in a causal manner, that is by not allowing future observations to enter the current
state estimation, is well known to have an optimal solution, often referred to as the
optimal nonlinear filter. The optimal filter can be described as follows (see [40] and
also [44] for continuous time filtering). Given states Yn ∈ Rd of a dynamical system
(or more generally a Markov process) with observations Zn ∈ R, n ∈ N, as defined in
section 3.3.1, the problem of filtering is to compute

πn(A) := Prob(Yn ∈ A|Z1:n),

for arbitrary sets A, that is, the probability of finding Yn ∈ A given the history of
previous (and current) observations Z1 . . . Zn (which we abbreviated as Z1:n). The
quantity πn is commonly referred to as the filtering process. Here we assume that
the filtering process has a density (with respect to Lebesgue measure), which will be
denoted by πn(y).

There are various different ways to represent the filtering process. For an overview
see [40]. The representation used here resembles a dynamical system or evolution
equation for the filtering process. Let

g(y, Zn) :=
1

σ
γ

(
Zn − c y

σ

)
,

and define the measure

π+
n (A) := πn(F−1(A)) = P (Yn+1 ∈ A|Z1:n). (3.16)

Then the following holds:

πn+1(A) =

∫
A
g(y, Zn+1)dπ+

n (y)∫
Rd g(y, Zn+1)dπ+

n (y)
(3.17)

The equations (3.16) and (3.17) should be understood as follows: To compute
πn+1(A), sample from the distribution πn and then apply the mapping F to the
samples, resulting in a sample from π+

n . Then weight each sample with the function
g(y, Zn+1) (which brings the new observation Zn+1 into play), and finally “count”
the weighted mass of all samples that fall into A. This gives the numerator in
equation (3.17). The denominator is for normalization.
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In order for (3.16) and (3.17) to be useful in a practical application, it is of course
necessary to represent πn(y) by a suitable finite dimensional parametrization. If the
dynamics are linear and the errors are normal, the Kalman filter [45] provides such a
parametrization. If F is nonlinear though, the filtering process πn(y) typically does
not admit a finite dimensional parametrization [15,47]. Therefore, approximations
are essential for applications. The approximative filter has to be, of course, finite
dimensional and as optimal as possible. A large variety of approximation methods
have been conceived, one of them being the interacting particle filter (IPF) [35],
which will be employed as a benchmark.

Numerous variants and versions of it have since been conceived. Here we propose
a variant with a relaxation window, which yields particles that are on (or in close
proximity to) the attractor. The details of this approach are explained in appendix A.
It is important to note that the interacting particle filter requires knowledge of the
dynamical equations of the underlying system.

3.4 Numerical Simulations

In this section, the performance of the forecasting schemes presented in section 3.3 is
investigated and compared in the context of several state estimation and prediction
problems. The performance is quantified using the Ignorance score (3.1). Numerically
generated data sets from two dynamical systems are considered, namely the Hénon
system and the Lorenz system. Furthermore, we investigate data from a chaotic
bronze spring experiment and compute probabilistic predictions of its oscillations.

3.4.1 Hénon System

Our first example is the Hénon system

y
(1)
n+1 = 1− 1.4(y(1)

n )
2

+ y(2)
n

y
(2)
n+1 = 0.3y(1)

n

(3.18)

with observations given by
zn = cyn + σrn, (3.19)

where c = (1, 1), and rn are independent random numbers with standard normal
distribution. The actual amount of measurement noise is determined by σ.

Figure 3.1 shows a two dimensional delay embedding of the noise corrupted
observations xn with 30dB signal to noise ratio (left panel) and 10dB signal to
noise ratio (right panel). The signal to noise ratio (SNR), when measured in dB, is
given as 10 log10(Vz/σ

2), where Vz is the variance of the entire signal {zn}, and σ2

is the variance of the noise. The empirical Ignorance for the discussed forecasting
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Figure 3.1: Two dimensional delay embedding of the noisy observations (Eq. 3.19) from
the Hénon system (Eq. 3.18) with (a) SNR 30dB and (b) SNR 10dB.
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Figure 3.2: Empirical Ignorance (Eq. 3.5) vs. Signal-to-Noise Ratio compute with time
series from the Hénon system (Eq. 3.18). The invariant measure, the local and global KDE,
and the CWM are based on a three dimensional delay embedding with delay one. The CWM
consisted of 100 clusters all equipped with (local) linear models.
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schemes as a function of SNR is shown in figure 3.2. The models were trained on
5000 points of data from the Hénon system and evaluated on an equal number of
points. As expected, for high noise levels (low SNR) the particle filter shows the best
performance, with the local KDE coming second, CWMs are third and global KDE
fourth. The forecasting performance of the invariant measure does not depend on
either the observations or the noise level and is therefore represented by a horizontal
line. At high noise levels (SNR < 40dB) the performance as a function of SNR is
surprisingly linear for all models except for the local KDE, which starts to saturate for
SNR > 20dB, converging to the same limit as the global KDE. The CWM forecasts
show good performance for SNR ≤ 30 dB and outperform all other black-box model
approaches for SNR > 30 dB, with only the particle filter producing better results.
While the difference between the CWMs and the particle filter is relatively small for
SNR ≤ 60 dB, it gets increasingly larger as the noise further decreases. However,
since the particle filter has knowledge of the underlying system equations, this result
is to be expected. When computing statistical confidence bars for the performance,
it has to be taken into account that the summands − log(pn(Yn)) in (3.5) are usually
highly correlated. Therefore the standard σ√

N
–estimator of the variance of the

empirical average (3.5) is likely to be too low. To get a more realistic estimate of
the performance variations, we divided the data into segments of 100 instances each,
resulting in 50 segments. An average Ignorance Sb was calculated for each segments
b = 1 . . . 50 separately. The width of the confidence bars was then set to σ√

50
, where

σ here is the standard deviation of the Sb. In figure 3.2, confidence bars are shown
only for the performance of the particle filter, since for the other algorithms, they
turned out to be the size of the symbols and therefore have been omitted.

The discussion of the Hénon example is finished with a few technical remarks:

1. The empirical Ignorance can show extremely large variations when applied to
imperfect probabilistic models. This is caused by “forecast busts”, meaning
that the forecast probability density is vanishingly small at the observation
which in turn causes − log pn(yn) to be very large. A few such busts can
completely dominate the empirical score. To avoid this effect, the forecast
probability of the particle filter was mixed with the invariant measure c(y),
that is,

qn(y) := αpn(y) + (1− α)c(y) (3.20)

was used instead of pn alone. The mixing parameter α was determined during
the training phase. The resulting probability assigned to a verification Y is
now never smaller than (1−α)c(Y). In the following, the forecast performance
is stated in relation to the performance of the invariant measure as a reference,
that is, the (mean of the) difference in performance between pn(y) and c(y) is
reported. This difference can be written as

SN [p]− SN [q] :=
1

N

∑
− log

(
qn(Yn)

c(Yn)

)
. (3.21)
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Replacing qn(y) from Equation 3.20 we get for every summand

qn(Yn)

c(Yn)
=

αpn(Yn) + (1− α)c(Yn)

c(Yn)

= α
pn(Yn)

c(Yn)
+ (1− α)

≥ (1− α),

from which we can conclude

− log (qn(Yn)) ≤ − log (c(Yn))− log(1− α).

Hence the empirical Ignorance of a forecast combined with the invariant
measure relative to the invariant measure alone is never larger (i.e. worse)
than − log(1− α).

Blending with the invariant measure was found not to be necessary for other
models.

2. The values of − log pn(Yn) can be plotted versus Yn, which results in a plot
of the Ignorance over the Hénon attractor. There seems to be no simple
relationship between Yn and − log pn(Yn). In other words, one cannot speak
of regions in state space where state estimation is either particularly easy
or particularly difficult. The embedding dimension in our case was three,
that is, pn is a function of (zn, zn−1, zn−2). It is therefore not surprising
that pn(Yn) is subject to very strong fluctuations. We speculate that these
fluctuations decrease with larger embedding dimension. However, what was
discussed already in section 3.3.1 applies here, namely that the probability of
the underlying state pn(Yn) given the complete history Z1:n cannot be reduced
to a probability given a fixed window of observation. This is a mathematical
consequence of the setup of the numerical experiment, and a marked difference
to the deterministic case (i.e. in the absence of measurement noise or σ = 0),
where yn is a (two leaved) function of (zn, zn−1).

3.4.2 Lorenz System

Our second example is the well known Lorenz model

ẏ1 = 10(y2 − y1),

ẏ2 = 28y1 − y2 − y1y3, (3.22)

ẏ3 = y1y2 −
8

3
y3,

with
zn = y1(n · τ) + σrn (3.23)

and sampling time τ = 0.05. The state to be reconstructed in this case is yn :=
(y1(nτ), y2(nτ), y3(nτ)).
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Figure 3.3: Two dimensional delay embedding of the noisy observations (Eq. 3.23) from
the Lorenz system (Eq. 3.22) with (a) SNR 30dB and (b) SNR 10dB.
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Figure 3.4: Empirical Ignorance (Eq. 3.5) vs. Signal-to-Noise Ratio compute with time
series from the Lorenz system (Eq. 3.22). The embedding dimensions for the local and global
KDE, and the CWM equaled 4, 3, and 7, respectively, all with delay δ = 1. The CWM’s
comprised 60 clusters, all equipped with (local) quadratic models.

A two dimensional delay embedding of the observations can be seen in figure 3.3.
The performance results shown in figure 3.4 are qualitatively similar to those for
the Hénon system. As expected, the particle filter shows the best performance for
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all noise amplitudes, with the difference between the CWMs and the particle filter
getting significantly larger for very high SNR values above 60 dB. The Ignorance
of the local and the global KDE saturate for SNR > 40 dB, and the unavoidable
modeling errors of the CWM result in saturation for SNR > 60 dB. Confidence bars
were calculated in a similar manner as discussed for the Hénon system. Again, the
bars are only shown for the performance of the particle filter and the local KDE, since
for the other algorithms, they turned out to be the size of the symbols and therefore
have been omitted. We have not investigated the influence of the sampling time τ on
the results. For the local and global KDE as well as the CWM, our cross validation
procedure suggested a delay of δ = 1. As was discussed at the end of section 3.3.1,
this indicates that a shorter sampling interval might improve the results.

3.4.3 Bronze Ribbon Experiment

Our final example is concerned with data from an experimental chaotic oscillator. A
detailed description of the experiment can be found in [22,37,71]. The experiment
consists of a cantilevered horizontal bronze ribbon with a small magnet attached to
the freely oscillating tip (see figure 3.5). The tip is subjected to an inhomogeneous
magnetic field. Two coils, placed adjacent to the tip, are supplied with an AC voltage,
thus driving the system. The voltage produced by a wire strain gauge attached
to the beam is used as a measurement signal. The driving voltage is taken as
U(t) = U0 sin(2πt/T )+p, and for suitable parameters U0, T , and p, the bronze spring
exhibits chaotic motion with an attractor of correlation dimension ∼= D2 = 2.75 [71].

U(t)

NSNS

21cm

SN

Figure 3.5: The bronze spring experiment (top view). A cantilevered horizontal bronze
ribbon with a small magnet attached to the freely oscillating tip is subjected to an inhomo-
geneous magnetic field. The two coils are supplied with an AC voltage, driving the system.
The deflection was measured by means of a wire strain gauge, attached to the beam close to
the chucked end.

The variable to be forecast in this experiment was set to be the value of the
time series 10 steps in the future. For the purpose of a detailed comparison of the
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discussed algorithms, the data was corrupted with artificial noise. Independent and
normally distributed random variables were used for this purpose, with mean zero
and relative intensity of 10, 15, 20, 25, 30, 40, 50, 60, 80, and 100dB, as for the other
two experiments. Note that in this case, the targets and features originate from the
same source (albeit with time lags in between), while in the previous experiments,
targets and features represented different variables. As a consequence, not only the
properties of the features, but also of the targets change with changing noise strength,
and in particular the performance of the invariant measure is different for different
SNR, albeit only slightly, as it turns out.

The features were formed through delay-embedding, as described in section 3.3.1.
The optimal embedding dimension, determined through cross validation, turned out
to be four, at a time lag of five steps. In the present example, the performance of
the global and local KDE and CWMs were compared, along with the unconditional
density, in terms of Ignorance. The particle filter was not considered, as its application
would have required a model of the system.
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Figure 3.6: Empirical Ignorance (Eq. 3.5) vs. Signal-to-Noise Ratio for the bronze spring
experiment. For all methods, the embedding dimension was 4 at a delay of 5 time steps.
The CWMs comprised 120 clusters, all equipped with (local) quadratic models.

The performance of the four tested approaches is displayed in figure 3.6. We
see a picture qualitatively similar to the previous examples. The invariant density
performs worst, as expected. Both KDE approaches as well as the CWM perform
similar until about 30dB, beyond which the CWM becomes significantly better than
both KDE approaches. We again speculate that this is due to the CWM’s more
sophisticated modeling of the deterministic part of the relationship between features
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and targets. The variability in the performance was very small, hence confidence
bars could be omitted.
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Figure 3.7: The left plot shows forecast densities for a few time instants for the bronze
spring. The density becomes bimodal for t = 264. The plot on the right shows a short piece
of the time series from the bronze spring. The dashed box marks the time window for which
the estimated densities are displayed in the left panel.

For illustrational purposes, the estimated densities have been plotted for a few
time instances (figure 3.7, upper panel; SNR=30dB). The lower panel of figure 3.7
shows a short piece of the time series from the bronze spring. The dashed box
marks the time window for which the estimated densities are displayed in the upper
panel. This piece of the time series is interesting, since the forecast densities seem
to indicate that the system passes close to a saddle. Making predictions in such
situations is inherently hard since small errors in the current state estimate are
rapidly amplified near the saddle point, due to the presence of unstable directions.
The forecast densities shown in figure 3.7, upper panel, reflect this fact. The density
becomes bimodal for t = 264, as it is not certain at this point how the system will
emerge from the proximity of the saddle. A few instances later, further information
has been gathered, and the forecast density is unimodal again.

3.5 Conclusion

On the basis of our numerical simulations, we conclude that Cluster Weighted
Models are well suited for obtaining probabilistic forecasts. Although CWMs were
outperformed by the local KDE approach for low Signal-to-Noise Ratios (though
only barely in the case of the Lorenz system), CWMs clearly perform best among
the black-box approaches for medium to high SNR. Roughly speaking, we can locate
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two different regimes in our examples: while for low SNR the purely stochastic model
approaches based on the KDE perform well, they are unable to model the distribution
for higher SNR, hence the performance saturates on a constant value. This is due
to the fact that there is only a limited amount of data points available, and with
decreasing SNR the number of points becomes insufficient to model the increasingly
sharp probability distribution. Especially the local KDE approach, which performed
very well for low SNR’s in our examples, needs very small neighborhoods to model
the resulting distribution of the dynamical system for higher SNR. Beginning with
an SNR of about 40dB, this neighborhood reduces to five points (which is the lower
limit in our algorithm), and the resulting model even performs slightly worse than
the global KDE, which was the overall weakest black-box approach in our tests.

CWMs do not suffer from this effect, since they employ more sophisticated
models for the functional relationship between input and output data. Although this
functional relationship is obscured by noise in the case of low SNR, CWMs show
their strength when the noise amplitude decreases. This can be clearly seen in our
first two examples, where the performance of the CWMs saturates not until very
high SNR and the data becomes practically noiseless (SNR ≥ 80dB). The results
from the bronze ribbon experiment show the same behavior, albeit less pronounced,
with the CWM already saturating for lower SNR values. For both the Hénon and
Lorenz system, only the particle filter with its knowledge of the underlying system
equations is able to outperform the CWMs. The particle filter was not applied
to the bronze spring experiment, due to a lack of a proper understanding of how
shortcomings of a dynamic model affect the performance or feasibility of the particle
filter. Subject to this problem being resolved, we speculate that the instruments
discussed, in conjunction with the IPF (or other nonlinear filter variants) can provide
a framework for the probabilistic assessment of dynamical models. This however
requires further investigations.

As a result, CWMs perform very well for state estimation of a deterministic
process, ranging from very noisy to practically noiseless data. Only if there are
sufficient data points available and the SNR is known to be fairly low, purely
stochastic approaches like the local KDE are able to perform better. Additionally,
CWMs are quite robust in their dependence on the model parameters. Although in
our implementation the number of clusters is not data driven but has to be specified
manually before training, the precise number is not as crucial as one might think, as
long as it is not chosen too low. While a high number of clusters will lead to a large
number of parameters to be estimated, an overfitting of the model can usually be
prevented in the simplest case by an early stopping of the EM algorithm through
means like cross validation. More sophisticated procedures for regularization will be
discussed in the next chapter.

The numerical investigations show that the probability densities produced by
CWMs show good performance when evaluated as full probabilistic forecasts. In
particular, it can be concluded that CWMs provide useful information beyond just
the expectation value.



Chapter 4

Regularization of Cluster Weighted
Models

The problem of CWM regularization lies in the different kinds of parameters which
are estimated during the EM algorithm. We can roughly divide those parameters,
which were discussed in section 2.6, into three different types:

• Cluster size and shape: Positions µ, Variances in input space σ (or even the
full covariance matrix C), and in output space Σ. They define the area of
confidence for each cluster.

• Cluster weights wm, with
∑
wm = 1, the fraction of data each cluster explains.

• Local function parameters β, the coefficients of the local, linear parametrized
functions.

Based on the experiences in section 3, we discuss some means for the regularization
of Cluster Weighted Models. First, we shortly review the different type of parameters
which can be considered for regularization. Then we will deal with early stopping,
before we turn to the more sophisticated methods which try to regularize the clusters
and weights.

4.1 Early stopping

As described in the conclusion of section 3, it was observed that it is important to
stop the EM algorithm before it reaches a regime where it begins to overfit on the
given data set, and we used cross-validation to determine the onset of overfitting.
This approach is well known under the name early stopping, and is for instance
used in the training of neural networks [63], which also often have to deal with the
problem of estimating many parameters with only scarce data sets.
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Figure 4.1: Example for speckling (marked regions) in the resulting distribution due to
missing regularization (prediction of the Chua oscillator, sampled with 15Hz, predicted 50
steps into the future). The color for probability zero had to be further darkened, since with a
linear scaled colormap most of the distribution would otherwise not be visible.

In the case of CWMs, early stopping is not employed to avoid a divergence of the
parameters; as shown in section 2.6.2, the EM algorithm does converge, but given
the large number of parameters to be estimated, especially in combination with the
often very limited amount of data available in practice, the converged parameters
are usually not general, meaning that the algorithm overfitted on the given data set.
An additional, typical effect of overfitting are emerging “speckles” in the probability
distribution, meaning small, separated regions with very high probability. This
problem also occurs in other fields using the EM algorithm, for example in the
reconstruction of Positron Emission Tomography (PET) images [50,74], where one
has to deal with very scarce data sets to keep the radiation exposure of the patient as
low as possible. An example for such a speckled distribution can be seen in figure 4.1,
which resulted from a direct prediction of 50 steps of the Chua oscillator (sampled
with 15Hz). One can see the few regions with very high probability, making the
rest of the distribution almost invisible in the image, due to the linear scaling of the
colormap.

Using early stopping, one can halt the algorithm before such speckles emerge,
thereby deliberately hindering the algorithm to converge, which in effect makes this
a regularization method. However, it has the main drawback that it does not have
a well-defined mathematical basis, which makes its usage slightly awkward. More
importantly, all the parameters that were summarized in the previous section are
practically handled the same way, but not only is their influence on the model very
different, it is also very likely that they converge with different rates. While one
could think of stopping the optimization of some parameters earlier than others, we
would then need a different stopping criterion for every set of parameters, and it is
not clear how those could be obtained.

We will therefore take a look at the different parameters and see how those could
be regularized with respect to their influence on the model. This does not mean that
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we can completely discard early stopping — in fact, stopping the EM algorithm is
often still necessary, depending on the number of clusters — but it will become less
important when additional regularization methods are employed.

4.2 Local function parameters

As described in section 2.6, the function parameters β are linear coefficients for
the local functions (2.41), which are used in output terms (2.39). They define
the functional approximation in the vicinity of a certain cluster cm. In each EM
iteration, their calculation requires a matrix inversion (see section 2.6.3, Eq. (2.65)),
a problem very similar to the parameter estimation for nearest neighbor models
with linear or higher order (section 2.5.1, Eq. (2.11)). We already discussed several
possible regularization methods in section 2.5.5, and we can employ basically the
same methods (ridge regression and principal component regression) here. Ridge
regression has the advantage that we can use different regularization parameters on
each component, but in case of CWMs, we already have a fine grained control of the
component’s influence through the input domain (2.36). Besides, one should be wary
of raising the number of parameters even further; the basic principal component
threshold regression (PCTR) only has one parameter (the threshold) and has shown
to be a powerful method for nearest neighbor models, so it shall be used here, too.
While in nearest neighbor models it was used for the calculation of a pseudo-inverse,
it can be used just as well for invertible matrices, where the pseudo-inverse coincides
with the regular inverse.

As described in section 2.5.5, PCTR works by introducing a lower bound σmin

on the singular values σi of the matrix which is to be inverted. All singular values
which lie below this lower bound are simply dropped, thereby effectively discarding
the dimensions with low variance, which are usually spurious dimensions, an artifact
resulting from (measurement) noise in the data.

To show the effect of this regularization method, we shall investigate the modeling
of the Chua oscillator (2.69); the aim is to directly predict the state reached after 50
steps. We use 2000 points, sampled with 15Hz, to train a cluster weighted model with
20 clusters and quadratic cluster functions. For calculating the model’s performance,
we use 3000 test points (in practice, one would usually not use more test than training
points, but for demonstrating the effect of regularization, it is important to have a
good estimation of the model error). For quantifying the model error, we use the
Ignorance score described in section 3.2 (using the mean squared error would produce
a qualitatively similar picture, but much less pronounced, since the ignorance score
penalizes an overfitted model much more than the MSE).

Figure 4.2 shows the development of the Ignorance during EM optimization,
with the abscissa showing the number of iterations. For a very strong regularization
with a value of σmin = 1, effectively removing most of the model’s variance, the
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Figure 4.2: Development of the Ignorance during EM optimization for different PCTR
regularization values. The larger the value for σmin, the stronger the effect of the regularization.
The zoomed region shows that a minimum score is already reached after 4–5 iterations.

Ignorance remains almost constant at a score of roughly 1.3. On the other end
we have σmin = 10−6, which regularizes the model only slightly and results in a
lower minimum score slightly above 1. However, this score is already reached after
4 iterations, and one can clearly see how the model overfits almost immediately
afterwards, quickly reaching a score of 3 after only 10 iterations.

For σmin = 10−3, we get a minimum Ignorance almost as low (see zoomed section
on the right-hand side), but without the same amount of overfitting, thus making
it a good compromise between the two extremes. It still suffers from the fact that
the lowest score is reached very early (after only 5 iterations). This is problematic
since it is likely that other parameters, like the cluster positions and sizes, have
slower convergence rates and might profit from a larger number of iterations. We
will therefore take a look at regularizing the cluster’s sizes in the following section.

4.3 Cluster variances (size)

Another set of parameters describes the size and shape of a cluster: the center µ and
its covariance matrix (or in the simplified form just the variances in input and output
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space σ,Σ). By looking at figure 4.1, one can assume that without regularization
the output variances simply become too small, thereby concentrating all their weight
on a very small region. In fact, when looking at the resulting output variances shown
in figure 4.3, one can see that they stretch over several orders of magnitude. A
regularization method for the variances should therefore penalize small variances
and make sure that they are roughly in the same order of magnitude to avoid the
emergence of speckles in the distribution. Regarding the cluster positions, we will
not apply any specific regularization method for those, since they are not nearly as
critical to overfitting as the variances.
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Figure 4.3: Output variances for the Chua example from figure 4.1. Without any regular-
ization applied, the output variances spread over several orders of magnitude.

We will use a method which not only prohibits the clusters getting to small, but
which also allows to enforce a certain similarity in the volume covered by the different
clusters. It was developed for clustering algorithms using a mixture of Gaussians
and for Fuzzy Clustering [11], and will be adapted in the following for CWMs.

To define the size of a cluster, we start with the determinant of its covariance
matrix Cm, which is the clusters squared (hyper-) volume. With d being the
dimensionality of the data, we can define the isotropic radius and the isotropic
variance through

ς2
m = d

√
|Cm| and ςm =

√
ς2
m = 2d

√
|Cm| , resp. (4.1)

For regularizing the cluster sizes, we can now introduce a rescaling of the clusters
to ensure that they do not shrink too quickly, and to enforce at least a tendency to
a relation between the different cluster sizes. In the extreme case, all clusters would
have the same isotropic radius, variance or (hyper)-volume. For this, we introduce
the exponent a of ςm, with a = 1 and a = 2 leading to an equivalent isotropic
radius or variance, resp., or with a = d to an equivalent (hyper-) volume. After each
EM iteration, we rescale the cluster’s covariance matrix so that it has an isotropic
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variance according to the following adaptation rule:

ςnewm = a

√√√√s ·
∑M

k=1 ς
a
k∑M

k=1(ς
a
k + b)

· (ςam + b) = a

√√√√s ·
∑M

k=1 ς
a
k

c b+
∑M

k=1 ς
a
k

· (ςam + b) . (4.2)

Next to the exponent a, we have two parameters to control the regularization:
the parameter b ∈ R+ defines the amount by which the isotropic variable should
be increased; for b→∞, the cluster sizes will be completely equalized, whereas for
b = 0 no adaption will be done. It is also possible to set b = 0 as long as the spread
between smallest and largest cluster size is below some critical value (see [11] for
details).

Since the clusters are also normalized, the sum of the sizes will be preserved.
However, to slow down the shrinkage of the clusters, we can use the scaling parameter
s, which with s > 1 will scale the sum of the sizes up after each iteration. By
choosing s < 1, we can also accelerate the size shrinkage, but this is usually not
desirable. Since we have a variance in input as well as in output space (see eqs.
(2.37) and (2.39)), we can rescale both variances by introducing the corresponding
scaling parameters sx and sy.

time index
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Figure 4.4: Distribution for Chua time series from 4.1 with size regularization. The
parameters used were a = 1, b = 5 and sx,y = 1 (i.e., no scaling).

In a similar manner, it is possible to regularize not only according to size, but
also the shape of the clusters, i.e., avoiding a large spread of the variances in the
different dimensions. However, we found that this spread is in fact an often desirable
property, since it allows the clusters to adapt to the form of the data distribution.
Only in the case of very few clusters, it might make sense to enforce a tendency
towards a circular form.

Applying this method to the already mentioned Chua system, we can see in
figure 4.4 that the distribution is now less speckled. While there are still areas with
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Figure 4.5: Development of the Ignorance over the EM iterations for different values of
the scaling parameter sx (with sy = 1). One can see how larger scaling effectively slows
down the EM optimization, also yielding a lower Ignorance.

high probability, the spread between the probability values is reduced, yielding a
smoother distribution.

Figure 4.5 shows the effect of the scaling parameter sx of the input clusters on
the Ignorance score, with a cutoff value σmin = 10−4 for the PCTR. One can see
how larger values for sx lead to lower scores at about 0.9, and with 15 iterations
this minimum score is reached later in the optimization process. The rescaling of
the clusters slows down the convergence, giving the clusters the necessary time to
reach better parameters than without rescaling. However, a rescaling of the output
clusters using sy > 1 does not have a further positive effect on the ignorance score,
which is why we will keep the value at sy = 1 for the following examples.

Figure 4.6 shows the effect of the parameter b in equation (4.2), i.e., the size
added to the isotropic radius or variance after each EM iteration. In this case, we
used a = 1 (isotropic radius), sx = 4 and sy = 1 for the scaling parameters, and
again σmin = 10−4 for PCTR. One can see how enlarging this parameter slows down
the optimization process even further. Here, the lowest score is reached after 26
iterations, and with a value of 0.81 it is lower than in the previous examples. One
can see that even a very small value of b = 0.15 already has a pretty significant effect
on the Ignorance score, with the lowest values being reached for b = 1 and b = 3.
Larger values for b do not decrease the score further.
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Figure 4.6: Development of the Ignorance over the EM iterations for different values of
the size regularization parameter b, with a = 1, sx = 4, sy = 1 and σmin = 10−4.

Therefore, we decreased the overall score from 1 to 0.81 by combining the rescaling
of the clusters (through parameter sx) with the added size and renormalization
(through parameter b). It is interesting to note that applying the added size b
without scaling does not reduce the error in this manner.

4.4 Cluster weights

Another important set of parameters are the weights associated with the clusters.
Similar to the variance distribution shown in figure 4.3, the spread between the
weights can become quite large without regularization, though not over several orders
of magnitude as seen for the variances (see figure 4.7). Still, the speckling of the
distribution could stem from a combination of a small variance with high cluster
weights, hence the modeling might benefit from weight regularization as well.

We basically use the same method we already used for the variances [11]:

wnew

m =

∑M
m=1 wm∑M

m=1(wm + bw)
· (wm + bw) =

∑M
m=1 wm

c bw +
∑M

m=1 wm
· (wm + bw) . (4.3)

Again, the regularization parameter bw specifies the weight increase, and for bw →∞
we get a uniform distribution. Since the weights wm are probabilities, we must ensure
that

∑
wm = 1 after regularization, so no additional scaling of the parameter can be

done.
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Figure 4.7: Cluster weights wm for the Chua example from figure 4.1.
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Figure 4.8: Development of the Ignorance score over the EM iterations with different
weight regularization parameter bw. The zoomed region contains the area with minimum
score, showing the difference being very small.

It turns out though that weight regularization does not have the effect on
the model’s output one would hope. Figure 4.8 shows the development of the
Ignorance score over the EM iterations, with bw ranging from 0 to 0.5, with the
other regularization parameters being sx = 3, b = 0.5 and σmin = 10−4. While the
the lowest score is reached for bw = 0.1, as can be seen in the zoomed region, the
difference is minuscule. While the overfitting after roughly 20 iterations is a bit



Page 76 4.4. Cluster weights

reduced through the weight regularization, this alone hardly justifies an additional
parameter. It seems that the PCTR and size regularization already have an influence
on the weight distribution, so that an additional, explicit regularization does not
yield a further reduction of the model error.



Chapter 5

Active Learning

So far we dealt with the construction of good models based on some data set which
was simply given beforehand. In this section, we will discuss the problem of how such
a data set can be obtained efficiently in the first place. This question is motivated by
the fact that in practice, data is usually obtained through some kind of experiment,
which is often a costly process, be it in terms of time or money. Therefore, in such a
situation, it is of great importance to choose query points carefully as to not waste
resources.

In general, the aim of creating an experimental design is to get a good model
with as few data points as possible, which is known under the term Response Surface
Modeling (RSM). However, there often exist additional objectives for which the
constructed model should be used:

• Screening, which aims to find those input components with the greatest impact
on the output variable.

• Optimization, i.e., finding the point in input space which maximizes or minimizes
the target output.

• Robustness and Stability, meaning that little deviations in the input variables
should not lead to drastic changes in the target output.

The problem of creating such an experimental design is of course not new, and
there is a whole branch of statistics dedicated to this topic, known as Optimal Exper-
iments [25], or more general as Design of Experiments (in the following abbreviated
by DoE ), which will be discussed in the first part of this chapter. DoE is well
understood for linear models and Gaussian errors, and here it turns out that the
data set can be constructed beforehand, meaning that it is completely independent
of the actual output of the experiment. After a short review of the linear case, we
will then deal with nonlinear models, leading to Active Learning, where in contrast
to DoE, the current model output is integrated into the data set construction.
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5.1 Design of experiments (passive learning)

In the following, an experiment is defined as procedure to obtain a target output
variable y, dependent on some controllable factors x(1), . . . , x(d). Given a fixed
number N , which defines the number of times the experiment can be performed, we
say that these are optimal when we gain a maximum amount of information from
the resulting data set

Ω = {(x1, y1), (x2, y2), . . . , (xN , yN)} , (5.1)

where x = (x(1), . . . , x(d)) ∈ Rd. This directly leads us to the question how we should
quantify information, and how we can derive optimality criteria from this quantity.

The classical theory of DoE deals with linear parametrized models, meaning
models of the form

f(x) =
M∑
i=1

βi · gi(x) (5.2)

with gi(x) being some suitable basis functions (e.g. monomes or radial basis functions)
and βi ∈ R being the linear coefficients of the model. With β = (β1, . . . , βM)T and
G(x) = (g1(x), . . . , gM(x)), we can write this as

f(x) = G(x) · β . (5.3)

Given the above data set (5.1) with N > M , meaning we have more data points
than basis functions (and preferably much more), we can estimate these parameters
through a least squares approximation by minimizing

N∑
i=1

|yi − f(xi)|2 = ‖Y −G(X) · β‖2
2 , (5.4)

with Y = (y1, . . . , yN)T and

G(X) =


g1(x1) . . . gM(x1)
g1(x2) . . . gM(x2)

...
. . .

...
g1(xN) . . . gM(xN)

 (5.5)

being the so called design matrix. The parameter vector minimizing (5.4) is given by

β̂ = (G(X)TG(X))−1 G(X)T ·Y = G(X)† ·Y (5.6)

where G(X)† denotes the pseudo inverse of G(X), as already described in sec-
tion 2.5.1. This parameter vector β̂ is called the least square estimate and is a
maximum-likelihood estimator, meaning that the probability density that the ob-
servations Ω were generated by a parameter vector β has a maximum for β = β̂.



Chapter 5. Active Learning Page 79

Additionally, it is an unbiased estimator such that E[ β̂ ] = βf for any true parameter
vector βf .

If we now look at the difference between the estimated and the true (unknown)
parameter vector βf , we get

β̂ − βf = G(X)† ·Y −G(X)† ·G(X)βf

= G(X)† ·
(
Y −G(X)βf

)
.

(5.7)

We now have to make two important assumptions:

• The true, unknown mapping from X to Y can be described by the linear
parametrized model, and

• the measurement error is Gaussian and i.i.d.

Given these two assumptions, Y −G(X)βf is distributed according to N(0, σ2)
and a covariance matrix

σ2 ·G(X)† ·
[
G(X)†

]T
= σ2 · (G(X)T ·G(X))−1 . (5.8)

From this result, we can see that our aim should be to minimize the matrix
given by (G(X)T ·G(X))−1. However, there is no analytical procedure to uniquely
minimize the entries of a matrix, hence we need some other kind of optimality
criterion based on (5.8).

One possibility is to minimize the determinant, leading to a D-optimal experi-
mental design Xd-opt, satisfying

det
[
(G(Xd-opt)

T ·G(Xd-opt))
−1
]

=
M∏
i=1

λi = Min

⇒ det (G(Xd-opt)
T ·G(Xd-opt)) = Max .

(5.9)

Generally speaking, this criterion minimizes the confidence ellipsoid of the pa-
rameters β. This however is just one possible criterion alongside several others for
an optimal experimental design. For example, A-optimal designs minimize the trace

trace
[
(G(Xa-opt)

T ·G(Xa-opt))
−1
]

= Max , (5.10)

while E-optimal designs minimize the largest eigenvalue of (G(X)T ·G(X))−1. Among
the other optimality criteria, two further ones shall be mentioned since they directly
depend on the actual model error, which for one specific point in input space
x ∈ M ⊂ Rd is given by e(x) = G(x)(β̂ − βf ). Given the above two assumptions
that our model is sufficient for describing the process with a Gaussian measurement
error, this model error is also a random variable N(0, σ2) with covariance matrix

Σ = σ2 ·G(x)T (G(X)TG(X))−1 G(x) . (5.11)
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From this, we can derive two other optimality criteria, namely G-optimal designs,
which minimize

max
{

G(x)T (G(X)TG(X))−1 G(x) |x ∈M ⊂ Rs
}
, (5.12)

and I-optimal designs, which minimize∫
M

G(x)T (G(X)TG(X))−1 G(x) p(dx) (5.13)

with respect to a density p on M . Both designs are intuitively appealing since they
look at the actual model error and not just at the parameter vector β, but since
we have to regard every possible point in input space, those designs are much more
complex to calculate. Additionally, it turns out that at least G-optimal designs are
strongly related to D-optimal ones, even being equivalent under certain conditions [78].
However, there is no exact analytical solution for calculating D-optimal designs;
instead, one usually uses a computational, iterative search algorithm from one of the
various available statistics software.

5.2 Active Learning strategies

In the classical Design of Experiments paradigm, the experimental design does not
change during the experiment, but is fixed beforehand. Therefore, if we would like
to apply a learning algorithm to model the mapping between the factors and the
target variable, this algorithm is completely passive in its selection of the training
examples. The learning algorithm is simply confronted with an existing training
data set, including the experimental outputs. As described in the previous section,
given a linear process with Gaussian measurement errors, and using a model which
can exactly describe this process, this is no limitation. As soon as we deal with
nonlinear processes however, it makes sense to use a strategy which chooses new
query points during the modeling process, so one can react the actual experimental
outcomes. This strategy is called Active Learning, or sometimes also known as Query
Learning [2].

In an Active Learning scenario, the learning or modeling algorithm can decide for
itself for which input data it would like to see the experimental output; the design
is not fixed before the modeling begins, but is constructed while the experiment is
performed.

Of course, one has to start with some kind of given data set to be able to construct
a first preliminary model. This initial data set is usually very small and contains
either random points from the input space or points chosen according to some space
filling criterion (a grid over the input space, for instance). In addition to the modeling
procedure, one now also needs some kind of query algorithm, which is able to choose
one or several further points which it deems informative and for which it would like
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to see the experimental output1. The new point, together with its corresponding
output, is incorporated into the training data set and the process is repeated until
some convergence criterion is met, be it simply a maximum number of iterations or
some measure based on the model’s training error or variance.

One can think of various criteria for the query algorithm to decide which point(s)
should be chosen. Especially in the beginning, when there are not enough data points
to construct an acceptable model, one can resort to the two most basic strategies:

• Random picking of points from the data set, and

• space filling, which means picking the point with the largest distance to all
other points in the data set (this of course implies that the input space is
bounded).

For some models types and regression problems, it is possible to calculate the
expected model variance when incorporating a new data point, which is a statistically
optimal solution to the Active Learning problem [19]. However, for many model
types, calculating a closed form solution for the expected variance is often intractable,
so there are many other strategies which work by optimizing a different, non-optimal
query criterion [65].

While there are many different strategies for Active Learning, they usually stem
from two main approaches:

• Model variance, used as a measure of model uncertainty. The idea is to include
points where the model has a high uncertainty, since we can expect that these
will have a higher gain of information than those points where the uncertainty
(and hence the variance) is low. This strategy is also known under the name
uncertainty sampling [48]. There are several variations to this strategy; as
already mentioned, it is possible for some model types to calculate the expected
model variance under inclusion of a new data point [19], but those statistics
usually have similar leading terms like the directly calculated model variance,
and therefore lead to similar results.

• Query by committee (QbC), which uses an ensemble of several models gi(x), i =
1, . . . , K, from which one can calculate the ensemble’s variance

varens =
1

K − 1

K∑
i=1

(gi(x)− ḡ(x))2 , (5.14)

with ḡ(x) = 1
K

∑K
i=1 gi(x) being the ensemble mean.

The notion behind QbC is that a large ensemble variance should correlate
with a large uncertainty [72]. Hence, it is reasonable to include the query

1In the Machine Learning community, this is usually paraphrased as “presenting the query point
to an oracle”, which is able to label any point from the input space without error.
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point for which varens is maximal. QbC is especially useful where calculating
the variance for a single model is intractable or even impossible. Of course,
a requirement for QbC is that the models gi(x) are not identical, either by
choosing completely different model types, or by using different training data
sets. If the modeling algorithm has a dependence on the initial conditions of
the model parameters (as is the case for Cluster Weighted Models), one can also
create a model ensemble by varying those. Although creating a whole ensemble
of models increases the computational cost, they are often shown to be superior
than one single model, since in the ideal case they have uncorrelated errors
and can, in a manner of speaking, “correct” each other. The reader is referred
to [36,46,80] for further discussions on model ensembles.

5.3 Using Cluster Weighted Models for Active Learn-
ing

As described in section 3.2, a model which produces a probability distribution as
output can provide the user with much more information than just the mean. The
first thing coming to mind is of course the variance in output space, which in the case
of Cluster Weighted Models can be analytically derived by calculating the conditional
expectation of the output variance [70] and is given through

< Σ |x >=

∑M
m=1 [Σm + f(x,βm)2] pm(x)wm∑M

m=1 pm(x)wm
− < y |x >2 . (5.15)

Therefore, it is not strictly necessary to use a model ensemble to obtain a measure
of uncertainty for the model output, although we will see that especially in the
beginning, when the data set is still small, using an ensemble is still advisable for a
better estimation of the variance. The first description of the algorithm will be done
with a single model, to keep the notation reasonably simple.

In the following, our main application for Active Learning will be the optimization
of some unknown cost function. That means, our learning procedure should primarily
explore areas where the function might have an extremal value of interest (i.e., a
minimum or maximum). Based on the variance (5.15) for CWMs, we can formulate
the following Active Learning algorithm:

Given: Initial data set Ω(0) = {(x1, y1), . . . , (xK , yK)}, consisting of K pairs of
input vectors x ∈ Rd and corresponding scalar outputs y ∈ R. The number of data
pairs K is chosen so that it is possible to get a model that is numerically stable. In
the following, the variable j denotes the current iteration, beginning with j = 0.

1. Train model CWM(Ψ) with the current training set Ω(j). The vector Ψ denotes
the model parameters which have to be trained; in the case of CWMs, this
parameter vector consists of

Ψ = [{µi}, {σi}, {wi}, {βi}] with i = 1, . . . ,M ,
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where we used the same notation as in chapter 2.6. The training of the models
yields a parameter vector Ψ(j).

2. Using the model CWM(Ψ(j)) obtained in the previous step, calculate the
conditional expectation ŷ and variance Σ̂ over the given input space. For an
input space with low dimensionality (≤ 3), this can usually be achieved by
evaluating the model on a grid over the input space (the problem of higher
dimensional spaces will be discussed in chapter 7).

3. Choose new points for training according to the following criteria:

• Space filling : As already mentioned in section 5.2, this chooses point xsf

with the longest distance to all other points in Ω(j):

xsf = arg max
x̃
‖x̃− xi‖2, ∀xi ∈ Ω(j) .

Again, for low dimensional spaces we can get an approximation of xsf

through evaluation over a grid. For high dimensional spaces, it is usually
best to simply resort to a random point in input space.

• High variance: Choose point with maximum model variance. This mostly
targets areas in input space where there are already training points, but
not enough to produce a robust model output.

• Minimum or maximum values: Especially when one is interested in
extrema of the modeled function or system, one aims to identify regions
of maximum or minimum values. Therefore, it makes sense to investigate
those regions in the model output more carefully. Next to the obvious
current global minimum or maximum of the model output, it is also
advisable to include a current local minimum/maximum, since it might
turn out to actually be a global one. Local extrema can be obtained by
using a steepest descent/ascent algorithm with a random starting point.

4. Add points according to the previous criteria, forming the new training set
Ω(j+1), and return to step (1). End the algorithm when a stopping criterion is
reached, like the model variance being below some value, or by setting a limit
on the number of iterations or the number of points in the training set.

This algorithm defines the basic Active Learning procedure, and can be modified
in various ways, also dependent on the iteration j, since with growing j the model
error decreases and criteria like space filling become less important.

Using a model ensemble for Active Learning

Especially in the beginning of the algorithm, when there are only very few points
available for training the model, one is faced with the problem that the resulting
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model is highly dependent on the initial distribution of the clusters. As already done
in section 2.9, where an ensemble of CWMs was used for coping with instabilities
when doing freely iterated predictions, we shall also use an ensemble here. The idea
is that we can use the mean of this ensemble to get a more reliable model, since in
the ideal case the different ensemble member will make uncorrelated errors which
will cancel each other out.

Of course, a precondition when building model ensembles is that the individual
models are different. This has to be guaranteed either by feeding different data into
the models, or by having a stochastic component in the modeling algorithm [46]. As
already noted above, the stochastic element in CWMs is the initial distribution of
the clusters, thus we can use the same input data for all models and still obtain
different individual model outputs.

5.4 Numerical Example

For showing how the algorithm works, we shall use numerically generated data from
a function with one global minimum at the origin, which is surrounded by local
minima, shown in figure 5.1. Since the global minimum is only slightly below the
surrounding local ones, detecting the global minimum is a difficult problem.
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at (0,0)

Figure 5.1: Function with one global minimum at the origin, surrounded by local minima.

We start out with a training set forming a 7 × 7 grid over the bounded input
space [−1 4]2 (we deliberately do not use a symmetric input space around the origin,
where the global minimum resides). With these points, we train five initial CWMs,
each with another initial distribution for the cluster positions (but same variances, to
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make sure that the clusters roughly overlap the training points). Since we only have
a scarce point set, we cannot use any points for testing the model output; instead, we
limit the variance of the CWMs by using only 10 clusters and 10 iterations. However,
these parameters will be raised during the learning process, since with a growing
data set we can make the models more complex.

Figure 5.2: Model output of the five individual CWMs, forming a model ensemble. On
the right panel, the mean of those five models is shown, which is then used for the Active
Learning algorithm.

In figure 5.2, we can see an example after the first iteration of the Active Learning
algorithm using an ensemble of CWMs. On the left-hand side, one can see the
results from the five individual models. Due to the small training data set and
the different initial cluster positions, those five models vary greatly in their output.
Averaging those five models yields the output shown on the right-hand side. The
global minimum is at (0,0) in the lower left, but currently the model fails to detect
it correctly — while it shows a minimum in that region, its position is skewed to the
lower left, due to the position of the initial grid points (seen in figure 5.4(a)).

In figure 5.3, the same is done for the variance: the left-hand side showing the
five individual model variances, and the average on the right-hand side. One can see
that the regions of highest variance mostly lie between the detected minimal regions.

As described in section 5.3, we choose new points for training according to
variance and global/local minima; every third iteration, we search the current global
minimum, otherwise we start with a random point in input space and use a steepest
descent algorithm to find a minimum, which will in this case likely not be the global
one. This way, we get two new points for each iteration. Space filling or random
points were not used, since we used an initial grid for training, which already covered
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Figure 5.3: Model variance for each ensemble member, and again averaged to form the
ensemble’s output.
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(a) Distribution of training points, showing the
initial grid (black), points chosen with the vari-
ance (blue stars) and the minima criterion (red
circles).
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(b) Model output of CWM ensemble with the
point distribution shown in left plot.

Figure 5.4: State of modeling after 21 iterations of the Active Learning algorithm.

the input space pretty well.

In figure 5.4 we can see the state of modeling after 21 iterations of the Active
Learning algorithm. In figure 5.4(a) we see the point distribution, marked with
different symbols denoting the criterion by which they were chosen. One can clearly
see how points are clustering around the global minimum at the origin, which is
also reflected in the model output shown in figure 5.4(b). It is important to note
that the primary aim here is to quickly identify the basic features of the underlying
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function, mainly where its minimum regions are and which one is in fact the global
minimum. The actual model error might in fact be higher than when using simpler
point selection strategies like random points or space filling, but they are less likely
to cover the important features.



Chapter 6

Training models on larger time scales

For chaotic systems, we have so far restricted ourselves to prediction on short time
scales, limited by the prediction horizon of the observed system, after which a good
prediction is no longer possible (“good prediction” meaning a NMSE < 1, i.e., better
than a trivial estimation using the time series’ mean). However, even when a model
yields very good prediction results on short time scales, it can exhibit a vastly
different behavior from the observed system on longer time scales; in fact, one often
faces the problem that the model is not even stable when freely iterated, as was
shown in section 2.9 for friction modeling using CWMs.

Due to their sensitivity on the initial conditions, it is an inherent property of
chaotic systems that they cannot be predicted for arbitrary time lengths. Still, one
often would like to have a model that qualitatively exhibits the same behavior as
the observed system, meaning that their attractors should show the same essential
features. This motivates the following procedure, which employs a cost function for
comparing two attractors in phase space.

6.1 Comparing attractors in phase space

The basic idea is to compare two attractors in the same embedding space, thus we
need a measure of similarity of two compact sets in phase space. This problem is
of course not new — there are various approaches in the literature to tackle it, like
the Kolmogorov-Smirnov test [64], which is used for testing if two data sets were
drawn from the same probability distribution, but although there exist extensions
of the test to two and three dimensions, it is usually very difficult to employ it for
higher dimensional data. The often used Kullback-Leibler divergence [36] can be
used for multi-dimensional data, but goes to infinity when the two distributions
become disjoint. Furthermore, we need a procedure that should be robust against
noise and should also be independent of the sampling time with which the data was
recorded, as long as the attractor can still be unfolded with the lowest possible delay
d = 1.

88
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(a) Best case scenario: For each
point in A (blue) there is a unique
nearest neighbor in B (red).
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N

(b) Attractor B (red) is a fixed
point, so that each point in B has
the same nearest neighbor in A
(blue).

Figure 6.1: Illustrative example of the nearest neighbor method to obtain a measure of
similarity for two point sets.

The main idea is to use a purely local procedure: Given two attractors A and B
in the form of point sets {xi}Ni=1 and {yi}Ni=1, resp., we can for each point xi ∈ A
search its nearest neighbor ynn(i) ∈ B, and we can sum up the distances between
those pairs:

dxy =
N∑
i=1

‖xi − ynn(i)‖ . (6.1)

Conversely, we can calculate the distance from B to A through

dyx =
N∑
i=1

‖yi − xnn(i)‖ . (6.2)

If the two point sets were completely identical, we would have xi = ynn(i) for each
i ∈ {1, . . . , N} and thus dxy = dyx = 0. With different attractors, we would have
in the ideal case a unique nearest neighbor for each point, for which it follows that
dxy = dyx > 0, hence one of the two distances would already suffice; this situation is
shown in figure 6.1(a). Since this will usually not be the case, the two distances will
differ and we have to calculate both distances, leading to the primary cost function

p = dxy + dyx . (6.3)

6.1.1 Cost functions for comparing attractors

Figure 6.1(b) shows an illustrative example where the just introduced primary cost
p is misleading. Here, the points from attractor A are spread, but attractor B is a
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fixed point, meaning that the set {yi}Ni=1 consists of identical points yi = yfp for all
i ∈ {1, . . . N}. Since all points from B have the same nearest neighbor, the resulting
distance dyx in (6.3) will be small, although the two attractors are vastly different.
One possible solution for this problem is to also incorporate the distribution of the
nearest neighbors indices nn(i).

For this, we look at the two extreme cases:

• In the ideal case, each point from one attractor has a unique nearest neighbor
in the other point set, leading to a uniform distribution of the nearest neighbor
indices nn(i).

• In the worst case, all points in one attractor have the same nearest neighbor,
leading to a delta-like distribution of the indices. Figure 6.1(b) is just showing
one possible example for this case, but it can also happen for two attractors
which are completely disjoint, for instance.

One well-known measure which can be used to quantify the complexity of a
distribution p is the Shannon entropy

S(p) = −
N∑
i=1

pi · log(pi) . (6.4)

The value of S(p) is maximal for p being uniform and minimal for a delta
distribution, hence with setting p as the distribution of the nearest neighbor indices,
our new cost function reads

p = dxy + dyx + C · Smax − S(p)

Smax

, with Smax = lnN . (6.5)

Through the constant C ∈ R+ we can control the influence of the distribution’s
entropy to the cost function.

Instead of using the entropy in the cost function, we can also enforce a uniform
distribution of the nearest neighbor indices. We can do this by removing a point
from the attractor set as soon as it was used in the distance calculation. The
major drawback of this procedure is that we cannot use an efficient algorithm for
searching nearest neighbors like ATRIA [55], since those rely on a search tree built
in a preprocessing stage (as described in section 2.5). Removing a point from such a
search tree is much more costly than simply doing a brute force search in the first
place.

To diminish the computational cost of the procedure, one can implement a
“blocked” version of the algorithm: With user-chosen block size B, first build a search
tree with the current point set, then search the nearest neighbors for B points in
the attractor, and remove those B points from the point set. The larger B, the
more the distribution of the found nearest neighbors can deviate from the uniform
distribution.



Chapter 6. Training models on larger time scales Page 91

6.2 Example: Post-optimization of a polynomial model
through attractor comparison

Given is a time series from the Hénon map (3.18), corrupted with white noise. In
figure 6.2(a), the original, noise-free Hénon attractor is shown in black. The noisy
time series, embedded in two dimensions, is shown with blue dots, yielding a “blurred”
version of the true attractor.
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(a) With least squares fit, the model’s attractor
(red) deviates from the original attractor (black)
due to noise in the data (blue dots), especially
in the outer regions.
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(b) After optimization through attractor com-
parison, the model’s attractor (red) now reaches
the outer areas.

Figure 6.2: Post-optimization of a polynomial model for fitting a noisy Hénon time series.

Based on the reconstructed (noisy) attractor from the time series, we fit a
polynomial model of degree 3, using a simple least-squares estimator for the model
coefficients. The resulting attractor from this model is shown in red; one can see that
while the model should technically be able to perfectly model the Hénon map (which
is a polynomial of degree 2), the noise in the time series introduces a bias, leading
to erroneous coefficients from the least squares estimator. The model’s attractor
differs significantly from the noiseless one; most prominently, it fails to reach the
outer areas of the original attractor.

We now employ a genetic algorithm (see section 2.5.6), targeted at minimizing
the cost function (6.5), to further optimize the model’s coefficients, thereby aiming
to maximize the overlap between the reconstructed noisy attractor and the model’s
attractor. The resulting model after optimization is shown in red in figure 6.2(b).
We can see that it is now reaching the outer regions. It still fails to reconstruct the
finer details of the original attractor, but given the amount of noise present in the
data, this is to be expected.
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6.3 Estimating ODE coefficients through attractor com-
parison

If one has a time series and also basic knowledge of the underlying dynamics in
the form of a system of ODEs, one is confronted with the problem of estimating
those ODE parameters which generated the given time series. Since this is a pretty
common task, one can choose among various different methods for this purpose, with
the most popular being:

• Multiple Shooting : Iteratively adjust parameters and initial conditions on short
trajectory segments [5].

• Synchronization: Drive model with time series and vary parameters so that
synchronization error is minimized [61,62].

• Optimization: Also based on synchronization, but reformulating it as a tracking
problem in an optimal control framework, thereby minimizing the required
coupling and allowing the usage of powerful algorithms for constrained opti-
mization [1, 20].

• Nonlinear Filtering : Approximate temporal evolution of probability density
functions in state space [15].

While all those methods have been applied successfully for the identification of
ODE parameters of nonlinear dynamical systems, problems often occur when the
time series is corrupted by measurement noise. Additionally, since those methods
explicitly rely on the time series itself, large sampling times complicate the parameter
estimation since the time series is not sufficiently smooth. Since our method only
compares attractors, it is not dependent on a smooth time series, as long as the
sampling time still allows an unfolding of the attractor in the reconstruction space.

The procedure is the same as in the previous section: We have an observed time
series and reconstruct the attractor through a delay embedding. We then optimize the
parameters of an ODE (or system of ODEs) through a genetic algorithm, minimizing
the cost function (6.5).

6.3.1 Example: Chua oscillator and Rössler system

First, we take numerically generated data from the Chua oscillator (2.69), both
with and without added noise. The goal here is to estimate all five parameters
{α, β, γ,m0,m1} from the ODE system.

As training data, we generate 20000 points from the ODE system, and in addition
generate a data set with the same points but corrupted with white noise, resulting
in a SNR of 25dB. In figure 6.3, the training data is plotted with blue dots, with (a)
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(a) Original data (blue) and fitted ODE system
(red) in the absence of noise.
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(b) Orignal data (blue), corrupted by noise
(SNR 25dB), and fitted ODE system (red).

Figure 6.3: Attractor comparison for the Chua oscillator.

the noiseless and (b) the noisy data set. For the genetic optimization, we start with
an initial population of 30000 parameter values and then let the algorithm run over
50 iterations. The number of iterations was limited in this way to yield a reasonable
runtime; on a current (but still single-core) desktop PC, the calculation takes about
15 minutes per iteration. In the end, we obtained the following parameter values:

α β γ m0 m1

exact values 9.25 14.29 0.016 -1.138 -0.722
fit (noiseless) 8.62 13.74 0.017 -1.17 -0.65
fit (SNR 25dB) 8.35 13.24 0.011 -1.50 -0.644

The resulting attractor from both models is plotted with red dots in figure 6.3.
As expected, the fit from the noiseless data yields better results, but in both cases
we get a good approximation of the original attractor.

This procedure can of course also be applied to experimental data. In figure 6.4,
we see data recorded from an electronic Chua oscillator (blue dots). Using the same
procedure as before, we fit the parameters of the Chua ODE (2.69) to this data,
but in addition to five coefficients from the ODE, we now have to incorporate the
sampling time dt as a sixth parameter, because we are using the dimensionless Chua
equations. The resulting values are

α β γ m0 m1 dt
11.86 14.38 0.0144 -1.134 -0.706 0.31

Since we are working with the dimensionless version of the Chua ODE, we cannot
directly compare those values to the actual values from the circuit, but in figure 6.4
we can see that we get a good approximation of the attractor from the experimental
data.
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Figure 6.4: Recorded data from a Chua oscillator (blue) with fitted attractor (red).

So far, we had knowledge of the underlying equation which generated the actual
data. In practice however, this is often not the case. We will therefore now use a
very general ODE of the form

ẋ =y

ẏ =z

ż =c0 + c1x+ c2y + c3z + c4xy + . . .

. . .+ c19 · z3

(6.6)

with 20 parameters {c0, . . . , c20}. The goal is to fit this ODE to data obtained from
the Rössler system (2.67). Next to the 20 coefficients of the ODE, we again have to
incorporate the sampling time dt. Additionally, we introduce a scaling parameter
α ∈ R, which allows us to scale the resulting time series and therefore the resulting
attractor.

The result of the genetic optimization of (6.6) can be seen in figure 6.5, with the
blue dots being the original Rössler data set and the resulting model output shown in
red. While we do not see a perfect fit, the resulting model attractor exhibits similar
features as the original one. Again, the optimization had to be limited, since the
calculations involved take quite long.
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Figure 6.5: Fit of the Rössler attractor through a generic system of polynomial ODEs.

6.3.2 Example: Hindmarsh Rose system and experimental neu-
ron data

The same procedure shall now be applied to a more complicated problem, namely
the Hindmarsh-Rose system, which was developed as a model of neuron activity,
with the defining equations being

ẋ = y + a · x2 − x3 − z + I ,

ẏ = 1− b · x2 − y ,
ż = ε [x− (z − z0)/4] .

(6.7)

A typical time series is shown in figure 6.6(a). One can see that it consists of two
different dynamics: a very fast one, consisting of very narrow spike sequences (so
called bursts), which are separated by longer periods of a slow relaxation dynamic.
The ratio between those two dynamics is defined through the equation for z in (6.7),
with ε� 1. Dependent on the value for z0, the system can exhibit different dynamics,
including chaos for a small window between z0 ≈ 3, 159 and z0 ≈ 3, 2, interspersed
with periodic windows [77].

The two different dynamics make this system quite difficult to model, and
especially the estimation of the parameter ε is problematic. For modeling, we use a
more general form of the Hindmarsh-Rose equations:

ẋ = c0 + c1x+ c2x
2 − c3x

3 − y − z
ẏ = c4y + c5x+ c6x

2

ż = c7z + c8x .

(6.8)
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Figure 6.6: Fit of the Hindmarsh-Rose system.

The resulting model after optimization is shown in red in figures 6.6(a) (time
series) and 6.6(b) (attractor). One can see that both time scales are successfully
modeled, albeit not perfectly, since the model’s relaxation time is slightly larger.

As in the previous section, we now want to apply the same model to measured
data. The data set is a time series measured from an isolated neuron from the
stomatogastric ganglion of a California spiny lobster [23]. The data set was kindly
provided by the group of Henry D.I. Abarbanel from the University of California,
San Diego.

The time series is shown in figure 6.7(a), with the upper panel showing the
complete training data, and the lower panel containing a zoomed area to show the
typical bursting sequences of the neuron. Reconstructing the attractor from this
time series in three dimensions yields the plot shown in figure 6.7(b); its shape is
rather blurred, suggesting a time series heavily corrupted by measurement noise.

For modeling, we take the ODE equations (6.8) which we used for the Hindmarsh-
Rose system, but we add further terms to raise the variance of the model, resulting
in the following systems of ODEs:

ẋ = c0 + c1x+ c2x
2 − c3x

3 − y − z + c4x4 + c5x
5 + c6yx+ c7zx

ẏ = c8y + c9x+ c10x
2 + c11x

3 + c12x
4

ż = c13z + c14x+ c15x
2 + c16x

3 .

(6.9)

Next to the coefficients {c0, . . . , c16}, we also have to estimate the sampling time
dt, leading to a total of 18 parameters. With an initial population size of 80000
parameter sets and 60 iterations of the genetic optimization, we obtain the model
shown in figure 6.8. The plot 6.8(a) shows the time series, with the upper panel
again showing the experimental data and the lower panel showing the model’s output.
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(a) Time series of the experimental neuron
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Figure 6.7: Experimental neuron data.
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Figure 6.8: Fit of the experimental neuron data.

Figure 6.8(b) shows the reconstructed attractors of the data and the model in blue
and red, resp., where the model attractor turns out to be a limit cycle and hence
periodic, which the original system is clearly not. However, we can also see that the
burst sequences have a similar structure, with the typical higher frequencies of the
spikes at the beginning.

Hence, we can see that despite the large amounts of parameters to be estimated,
combined with a very noisy time series as input data, we can still obtain parameters
which yield a similar, albeit periodic dynamic.



Chapter 7

Summary and Outlook

The first modeling technique introduced in this thesis was based on nearest neighbors,
showing very good results for the prediction of dynamical systems. They are simple to
understand, easy to implement (since efficient implementations for nearest-neighbor
searching are readily available), and quite robust. However, the data set remains
an inseparable part of the model, and for getting best results, a time consuming
training of the model is still necessary. In contrast to CWMs, they do not provide
a probability distribution as output. While one can extend them to provide an
estimate of a distribution, for instance by using sampled distributions, the core of
Cluster Weighted Models is based on a probabilistic view of the modeling process,
instead of just extending a purely deterministic approach.

While Cluster Weighted Modeling proves to be a valuable tool for black-box
modeling of dynamical systems, they are currently seldom used for practical purposes,
the reasons for this can only be speculated about. First, they are not straightforward
to implement; we hope that we can somewhat alleviate that problem by releasing the
code, which was developed during the work on this thesis, as a MATLAB toolbox
for everyone’s use. Secondly, and more importantly, their model performance is at
first glance not superior to simpler modeling strategies, so that it is unlikely that the
implementation effort will immediately return the investment in terms of a reduced
model error.

It is not immediately clear how the output in form of a probability distribution
should be used. Many will simply reduce that distribution to its expectation value,
and it was shown that in this case CWMs perform in the same range as nearest-
neighbor models, which is already a good result, considering that this can usually
achieved by solely choosing a large enough number of clusters and a simple PCTR
regularization, combined with cross validation. However, usage of the full probability
distribution allows for a better understanding of the model’s output, as was shown
for the numerical Chua data, and can be used for procedures like Active Learning in
a straightforward way.

CWMs are a global modeling technique, which over nearest-neighbor models has
the advantage that they can be efficiently evaluated after training, and that the data
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set is not needed anymore after the model parameters have been optimized. One
problem of CWMs is the large number of parameters that have to be estimated:
in addition to the cluster positions and sizes as well as their weights, we also need
the coefficients of the linear parametrized local models. As a result, CWMs are
prone to overfitting. It was shown that the risk of overfitting can be minimized by
using different regularization techniques, tailored at the different types of parameters,
in combination with cross validation and early stopping. In addition of avoiding
overfitting, this often also results in a lower Ignorance score.

There is still one area though, where the purely local approach from nearest-
neighbor models has a prime advantage: the training on the multi-step prediction
error, which not only leads to lower errors on iterated predictions, but makes the
model more stable against accumulated errors which inevitably occur. This was
a problem for predicting the friction data, since here a freely iterated model was
needed, and a single CWM turned out to be unstable. It was shown that using a
CWM ensemble can deal with that problem, albeit at higher computational cost.
During the work on CWMs, different approaches were tried for a direct multi-step
prediction without the need for an ensemble, for example by first training a CWM
on the single-step error, then a “re-training” of the model on a further step, but this
also did not result in a stable model. However, this is a basic problem practically all
global modeling techniques share, not only CWMs.

To compare different probabilistic model approaches, we argued that the mean
squared error, operating only on the expectation value, is not sufficient for evaluating a
model’s performance in the probabilistic context. Instead, probabilistic scores should
be used, in particular the Ignorance score. It was shown that CWMs perform very
well in this context; they combine the purely stochastic approach with a deterministic
model and hence perform well for both kinds of problems, as was demonstrated on
numerical and experimental data with different signal-to-noise ratios.

The simple calculation of quantities derived from the distribution, like the model’s
variance, make CWMs well suited for Active Learning, where new data points are
selected during training. Different criteria for point selection were shown, and
demonstrated on an example for detecting a global minimum surrounded by local
minima. As a future work, it would be interesting to see how those criteria behave
for different modeling problems. Also, many criteria in Active Learning are not easily
usable in high-dimensional input spaces. One particular problem is the calculation
of extremal points of the CWM’s model output and variance, which for higher-
dimensional systems cannot be done anymore through the evaluation of the model on
a grid. The special structure of CWMs with their underlying clustering might make
it possible to find an efficient algorithm for this problem. Another possibility would
be to use a procedure based on genetic algorithms as follows: A genetic algorithm is
employed to generate new possible candidates for querying the experiment, but those
are presented first to an already trained CWM ensemble. The ensemble’s output and
variance for those points is calculated, and then candidates are selected according
to the criteria described in section 5.2. This should greatly reduce the number of
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queries for the the actual experiment.

The method of comparing attractors in phase space was used to estimate co-
efficients for ordinary differential equations. On several different numerical and
experimental data sets, it was shown that it is possible to obtain a model with
qualitatively similar features. The main problem of this algorithm is its high com-
putational cost, especially when the method is used were found points are removed
from the data set, since then an efficient nearest-neighbor searcher cannot be used.
The solution to this problem would be to find an efficient way of removing points
from the searcher’s data structure, for example from the search tree built in the
pre-processing stage of the ATRIA algorithm. Still, it should be mentioned that this
algorithm is still faster than techniques which rely on an actual density estimate of
the two attractors, e.g. through a kernel density estimator.

Another interesting project would be to combine the attractor comparison with
Cluster Weighted Models, also to stabilize their behavior for freely iterated prediction;
however, the large number of parameters in CWMs greatly complicate this task. It
would first be necessary to reduce CWMs to their essential clusters, maybe through
a “pruning” algorithm which in a first step simply removes those clusters with a
small weight. It would then be necessary to identify those parameters which have the
most impact on the attractor shape, and then the optimization should concentrate
on those.

Theoretically, Cluster Weighted Models allow mixing different model types, i.e.,
one can use linear models in some clusters and quadratic models in others. Also
theoretically, the clusters should target those positions for which they are best suited.
In practice however, this has been found not to be the case. The reason is that
during EM optimization, clusters more or less smoothly move in input space, so that
if a cluster with a linear model already occupies a certain space, it cannot easily be
replaced by a cluster with another model, even if it would be better suited for that
area. It might be beneficial to include a stochastic element into the modeling process,
which either allows clusters to switch positions or to change their model type.



Appendix A

The Interacting Particle Filter

To define the IPF, consider

πwn (A) := Prob(Yn−w ∈ A|X1:n),

where w is referred to as the relaxation window. In this notation, the filtering
process πn and the quantity π+

n of section 3.3.4 are given as πn(A) = π0
n(A) and

π+
n (A) = π

(−1)
n (A), respectively.

Similar to (3.16) and (3.17), it holds that

πw−1
n (A) = πwn (F−1(A)), (A.1)

πwn+1(A) =

∫
A
g(Fw(x), Xn+1)dπw−1

n (x)∫
Rd g(Fw(x), Xn+1)dπw−1

n (x)
. (A.2)

Here Fw stands for the w–fold composition of F . The idea of the IPF is to sample
from πwn+1(y), assuming that πwn (y) has the form of a kernel estimate

πwn (y) ∼= 1

M

M∑
i=1

1

σdi
K

(
y − yi
σi

)
, (A.3)

and subsequently to use these samples to approximate πwn+1(y) again by a kernel
estimate of the form (A.3). This is implemented by the following algorithm:

1. At any one time n, we have an ensemble of M particles {y1 . . . yM}. Choose
one i ∈ {1 . . .M} at random.

2. Drawing a standard d–dimensional normal variable r, we get a sample from
πwn (y) in the approximation (A.3) by setting

η := yi + σir.

A sample from πw−ln (y) for any desired l is obtained by F l(η).
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3. Now draw a random variable δ with uniform distribution on the unit interval.
The sample η gets accepted if

γ

(
Xn+1 − cFw+1(η)

σ

)
≤ δmax

z
γ(z),

otherwise it is rejected. Here, γ is the density of the measurement noise, as
defined at the beginning of Subsec. 3.3.1. Repeat steps (i)–(iii) until M samples
have been accepted. The accepted samples form a sample from πw+1

n+1 (y).

4. To get a sample from πwn+1(y), apply the dynamics once to the accepted samples.
Then return to step 1, replacing n with n+ 1.

The original IPF had neither a relaxation window nor any regularization, that is,
no perturbation r was added. Some particles will certainly get selected more than
once. This would not be a problem if the system had a stochastic component itself.
Since in our case the system is deterministic though, adding no dynamic noise would
cause some particles to occupy the same point in state space after resampling. We
would effectively end up with fewer and fewer particles until only one is left. The
idea of regularization is extensively discussed in [57].

The relaxation window helps to get samples of πn which lie on the attractor.
According to step 2 of the algorithm, to get a sample from πn (i.e. π0

n) we have to
apply the dynamics w times to the “working” sample η, causing it to fall onto the
attractor. Using a relaxation window is, to our knowledge, a new idea. Note that
the IPF with relaxation window is not the same as applying filtering to strands of
orbits rather than single states. Although filtering strands of orbits is a probably
useful idea, applying the IPF to strands is unlikely to work straight away. The
reason is that every observation would be taken into account more than once (to
be precise, l times if l is the length of the strands), which is likely to result in too
narrow ensembles or overconfident forecasts.
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