
Hybrid Systems
Modeling
Manufacturing and
Front Dynamics

.





Hybrid Systems Modeling
Manufacturing and Front Dynamics

Dissertation
zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten
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Kurzfassung

Die vorliegende Arbeit befasst sich mit der Dynamik einer Klasse hybrider dynami-
scher Systeme, die alsswitched tank systemsbezeichnet werden. Die Anwendung
solcher hybriden Modelle auf Produktionssysteme und die Frontdynamik in Halbleiter-
übergittern f̈uhrt zu neuen Erkenntnissenüber die Natur des Zeitverhaltens dieser Sys-
teme.
Hybride dynamische Systeme entstehen aus der Interaktion kontinuierlicher dynami-
scher Systeme mit Automaten. Ihr Verhalten wird daher nur in einem Zustandsraum
versẗandlich, der sowohl kontinuierliche als auch diskrete (symbolische) Variablen
entḧalt.
Im ersten Teil der Arbeit werden die Hintergründe der Modellierung und Untersuchung
hybrider Systeme als dynamischer Systeme am Beispiel derswitched tank systems
dargestellt.
Nach einer kurzen Einleitung wird daher im zweiten Kapitel der Begriff des hybriden
dynamischen Systems und die damit verbundene Terminologie eingeführt.
Das dritte Kapitel befasst sich mit der Klasse der Grenzkollisionsbifurkationen (bor-
der collision bifurcations), die in kontinuierlichen dynamischen Systemen nicht auf-
treten. Diese Bifurkationen bestimmen die Dynamik der in dieser Arbeit betrachteten
Systeme.
Das vierte Kapitel untersucht die Dynamik vonswitched arrivalundswitched server
systems, sowie weiterer, von diesen beiden Grundtypen abgeleiteterswitched tank sys-
tems. Die Verwendung von Poincaré-Abbildungen zur Analyse der Dynamik von
Hybridsystemen wird erläutert und die enge Beziehung zwischen den zwei Grund-
typen herausgearbeited. Es wird gezeigt, dass diese hybriden Systeme bei Parame-
terver̈anderungen eine Vielzahl von Bifurkationen und unterschiedliche Dynamiken
durchlaufen.
Der zweite Teil der Arbeit widmet sich zwei Anwendungen aus verschiedenen Gebie-
ten der Wissenschaft.
Die Modellierung von Produktionssystemen durch hybride dynamische Systeme wird
im Kapitel fünf dargestellt. Nach einer allgemeinen Disskussion des Ansatzes wird ein
Modell eines Produktionssystems untersucht, das Rüstzeiten einbezieht. Mit diesem
Modell und den Ergebnissen aus dem vierten Kapitel wird die logistische Leistungs-
fähigkeit von Produktionssystemen in verschiedenen dynamischen Regimes bestimmt.
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Es zeigt sich, dass die Leistung wesentlich durch die Dynamik beeinflusst wird, und
dass in bestimmten Konfigurationen z.B. zu kleine Pufferkapazitäten zu chaotischem
Verhalten f̈uhren, das mit empfindlichen Leistungsverlusten einhergeht.
Im sechsten Kapitel wird der raum-zeitliche Musterbildungsprozess in Halbleiter-
übergittern betrachted. Aus einer kurzen Einführung in dasÜbergittersystem wer-
den wesentliche Eigenschaften des physikalischen Systems extrahiert und zur For-
mulierung eines hybriden Modells benutzt. Dieses Modell kann in bestimmten Pa-
rameterbereichen mit Hilfe einer eindimensionalen Abbildung analysiert werden. Das
Kapitel endet mit einem Vergleich numerischer Resultate aus dem Hybridmodell und
aus einer vollsẗandigen mikroskopischen Simulation des Halbleiterübergitters, die eine
bemerkenswertëUbereinstimmungen aufweisen.
Im letzten Kapitel wird einÜberblick über die Ergebnisse der Arbeit gegeben, die
nicht nur die Untersuchung hybrider Systeme als dynamische Systeme zum Ziel hat,
sondern durch die Anwendung solcher Modelle in zwei sehr verschiedenen Gebieten
der Wissenschaft (Produktionsingenieurwesen und Halbleiterphysik) auch die poten-
tielle Breite der Anwendung hybrider dynamischer Systeme zeigt. Wir hoffen, dass
diese Beispiele die zukünftige Forschung auf dem Gebiet der Dynamik hybrider Sys-
teme stimulieren werden.
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4.3.1 Properties of Poincaré Maps . . . . . . . . . . . . . . . . . . 47
4.3.2 Bifurcations in three tank switched server systems. . . . . . 50
4.3.3 Dynamics of Switching Times. . . . . . . . . . . . . . . . . 53
4.3.4 Complexity of Symbolic Dynamics. . . . . . . . . . . . . . 55

4.4 Further Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Modified Switching Rules. . . . . . . . . . . . . . . . . . . 55
4.4.2 An Asymmetric Billiard . . . . . . . . . . . . . . . . . . . . 57
4.4.3 A Three Tank System with Four Discrete States. . . . . . . . 60

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Modeling of Manufacturing Systems 67
5.1 Manufacturing Systems and Hybrid Models. . . . . . . . . . . . . . 67

5.1.1 A Brief History of Hybrid Modeling for Manufacturing Systems69
5.1.2 Switched Arrival and Server Systems in Manufacturing. . . . 70

5.2 Manufacturing Systems with Set-up Times. . . . . . . . . . . . . . . 72
5.2.1 A Model for Switched Server Systems with Set-up Time. . . 72
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1 Introduction

This introduction provides a brief discussion of the main ideas presented in this thesis.

It is outlined that this work, that might look like a collection of treatises on diverse

themes basically is an investigation of one topic: Thedynamicsand applications

of hybrid dynamical systems. Furthermore, the motivation, the objective and the

structure of this thesis are clarified.

The investigation of systems that show a complex evolution in time is an important
topic of modern sciences. One fundamental challenge therein is the development of
models that are able to explain dynamical phenomena and to analyze them by math-
ematical means. Such models shall preserve the essential features of a real world
system but idealize it in a way that allows us to understand it.

Judging by the title and the table of contents, this thesis concernshybrid systems
modelingof manufacturing systemsand front dynamics in semiconductor superlat-
tices. However, what is the meaning of front dynamics, and where is the connection
between superlattices and manufacturing systems? And what are hybrid systems and
which role do they play in these fields? For the reader familiar with all three notions,
it might make sense to speak about the modeling of manufacturing systems by means
of hybrid systems, but at least the connection to pattern formation in semiconductor
systems needs an explanation.

A first general impression of the relations between this only seemingly distinct
topics may be obtained from Fig.1.1. In contrast to standard models of nonlinear dy-
namics we considerhybrid systems. Roughly speaking, any dynamical system that
involves the interaction of anautomatonacting on a set of discrete symbols with an
ordinary dynamical system is a hybrid system (Fig.1.1a). Up to now, the research on
hybrid systems was mostly stimulated due to their importance inengineering applica-
tions. Previous works on hybrid systems have focussed on automaton aspects, general
modeling frameworks and stability considerations. However not much is known about
hybrid systems from the viewpoint of nonlinear dynamics. Studies of bifurcation phe-
nomena and transitions to chaos as carried out in this thesis reveal new insights in the
dynamics of this ”exotic” class of dynamical systems.
Hybrid systems are found, for instance, in manufacturing (Fig.1.1b). Due to scarce
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resources the service of different material flows is switched according to logical rules
- called policies - between competing tasks.

With the research on systems that involve processes ofwell separated time scalesin
natural sciences, as for instance inbiophysicsor pattern formation, hybrid modeling
techniquesare moving into these areas. Here the approximation of very fast processes
by instantaneous changes is a reasonable method to obtain idealized models. If due
to idealizations some conditions involving state variables occur, for instance in form
of thresholds, the models become hybrid in fact. This was possibly not recognized in
the past, since the notion of hybrid systems is not common among researchers from
natural sciences, and hybrid phenomena may be hidden in sophisticated notations for
equations of motions.

The systems investigated in the following are very basic hybrid models. We can
think of them as a number of tanks and a server, switching between these tanks. De-
pending on the task of the server, the systems are calledswitched server systemsif
the server has to empty tanks (Fig.1.1c), orswitched arrival systems(Fig.1.1d), if the
server has to fill several tanks. The models are hybrid systems in continuous time, and
if we consider the tank contents as variables, they havepiecewise constant time deriva-
tives(Fig.1.1g). Owing to this piecewise linearity the systems are special, simple ex-
amples of hybrid systems. The only nonlinearities in these systems are introduced due
to switchingsbetween the tanks, i.e. between a number of different possible values
of these derivatives according to somelogical rules. Therefore these systems contain
not only aspects of nonlinear dynamical systems, but also aspects ofautomata. This
fact will become more obvious, when we shall usestate transition graphsof symbolic
variablesto investigate the dynamics.
Although graph representations borrowed from automata theory are helpful to un-
derstand the logical structure of hybrid systems and unavoidable in the field of hybrid
maps, the dynamics itself should be investigated by methods from nonlinear dynamics.
For hybrid systems in which switchings are triggered if the continuous state trajectory
reaches certain thresholds (Fig.1.1g) thePoincaŕe mappingtechnique provides piece-
wise linear maps. To understand the bifurcations of the investigated hybrid systems
therefore an understanding of the bifurcations of piecewise linear maps (Fig.1.1f) is
fundamental. The bifurcations of piecewise linear maps are very distinct from bifurca-
tions of smooth maps. They constitute the rich variety ofborder collision bifurcations.
Since these border collision bifurcations are not common, we have included a chapter
that provides the basic knowledge in form of an overview of border collision bifurca-
tions of one dimensional maps.
It turns out, that despite of the remarkably simple construction of tank-switching hy-
brid systems they are able to show different types of bifurcations and chaotic behavior.
We study the dynamics in some detail. By introducing additional switching thresholds
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Figure 1.1: Graphical outline of this thesis containing the main ideas and the relations between the
main topics in a general view. The icons surrounded by rectangular boxes stand for chapters of this
work, whereas the encircled symbols give the connecting ideas. The small encircled labels are referred
to in the text.
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we show in particular, that the dynamics of switched arrival systems and switched
server systems occur as limiting cases in the same system. Inbetween these limit-
ing cases characterized by periodic and chaotic behavior, a rich variety of dynamics
is found, due to bifurcation scenarios built exclusively from various border collision
bifurcations. Although the dynamics of the limiting cases in principle was known
before, their bifurcations as well as the close relation between switched server and
switched arrival systems presented in this thesis have not been discussed previously.

The first part of this thesis covers basic themes like the nature of bifurcations in
switched tank hybrid models on a more general level. In the second part of this thesis
the range of possible applicationsof the models introduced and investigated in the
foregoing part is demonstrated bystudying two applicationsfrom very distinct areas
in detail.
One example is the investigation of basic layout structures inmanufacturing systems
for its dynamics dependent performance (Fig.1.1b). This study provides new insights
in the importance of dimensioning buffer capacities in production planning. There-
with effects can be understood that are common on a practical level among production
engineers. But in the existing frameworks of operations research (e.g. queuing theory)
such dynamical effects are hardly to observe or rather difficult to explain.
The second example is located in the area of modernsolid state physics. In semi-
conductor superlatticesrecently dynamical regimes were found, in which fronts of
opposite charge may travel with different velocities through the lattice, annihilate one
another and formcomplex spatio temporal patterns(Fig.1.1h). The traveling of fronts
is characterized by piecewise constant velocities and very fast changes, if fronts anni-
hilate. We derive a simple model for this pattern formation process in abistable system
under anintegral over space conservation condition. With this model that belongs to
the class of switched arrival systems (Fig.1.1d) not only the basic bifurcation behavior
can be understood and modeled computationally effectively, but also in certain pa-
rameter ranges analyzed using a one dimensional iterated map. The traditional way of
modeling these systems involves the numerical integration of typically one hundred
coupled differential equations with well over 15 physically relevant parameters. In
view of these facts the traditional modeling does not allow any investigation of bifur-
cations by analytical means.
We shall point out the surprising fact that in both applications essentially the same
hybrid model is applicable. In our view this supports the conjecture that the basic hy-
brid systems considered here are a generic class of dynamical systems which can be
widely used and may improve the understanding of complex systems in physics and
other sciences.

This thesis is organized as follows. In Chap.2 we introduce the termhybrid system
and some notions that are needed in the following chapters. Also a brief review of con-
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cepts for hybrid systems that are developed in the communities of control engineers
and computer scientists is given. The more formal definition, explained as reference
in this chapter, will be relaxed in the main part of this work in favor of readability.
In Chap.3 the class ofborder collision bifurcationsis presented in detail. The normal
forms for this class of bifurcations are piecewise linear maps. This chapter provides
the knowledge on the bifurcations that are obtained in the hybrid systems which are
the main topic of this thesis.
Chapter4 deals with the dynamics and bifurcations ofswitched server systemsand
switched arrival systems. We explain the use of Poincaré maps for the investigation
of dynamical properties of hybrid systems and consider their dynamics. The hybrid
modeling ofmanufacturing systemsis discussed in Chap.5. A general discussion of
the hybrid modeling approach is followed by the investigation of a model that includes
set-up times in the switched server and switched arrival systems. With this model and
the knowledge obtained in Chap.4 we observe measures of logistical performance in
different dynamical regimes. It turns out that the performance of manufacturing sys-
tems can significantly be affected by different dynamical behaviors.
Thespatio-temporal pattern formationprocess insemiconductor superlatticesis ad-
dressed in Chap.6. From a brief introduction into the physical system the essential
features are extracted and used to formulate at first a hybrid model for front positions
that can be transformed into a switched arrival hybrid system. From the latter model
a flat bottom tent map is derived that captures the basic dynamical features of the sys-
tem. The chapter closes with a comparison of numerical results that are obtained from
the derived hybrid model and a full microscopic simulation of the semiconductor su-
perlattice.
In the last chapter (Chap.7) we give a summary of the main results of this thesis. Since
this thesis is rather a humble beginning of research in the exiting field of dynamics of
hybrid systems than the contribution of a new aspect in a well covered field, we con-
clude with some suggestions for future research.





2 Hybrid Systems

The topic of this thesis are dynamical systems, that do not fit into the common

categories of dynamical systems. We consider systems which contain two distinct

components: subsystems with continuous dynamics and subsystems that act on a

finite set of symbols, interacting with each other. Such systems are known ashybrid

dynamical systems.

This chapter provides some fundamentals of hybrid systems. Since the notion of

hybrid systems is not common the term will be clarified and illustrated with some

examples (Sec.2.1). Then a more formal framework of hybrid systems is given

Sec.2.2 and some results of recent hybrid system’s research will be discussed. The

numerical simulation of hybrid systems as used in this work is briefly explained in

Sec.2.3.

2.1 Hybrid Dynamical Systems

To introduce the notion of a hybrid dynamical system as it is used throughout this the-
sis, we shall at first recall two well known concepts, namelydynamical systemsand
automata.
Many textbooks ondynamical systemsstart with the statement that systems are dy-
namical if their state evolves in time and that two main types of dynamical systems
can be distinguished. Systems withdiscrete timeΓ = {t : t ∈ Z,N}, represented by
iterated maps

xt+1 = f(xt) (2.1)

and dynamical systems withcontinuous timeΓ = {t : t ∈ R}, represented by differ-
ential equations

ẋ = X(x). (2.2)

In both casesx is considered to be the system’scontinuously valued statein a state
space which is a smooth manifold. More formally a dynamical system is a tuple
(φ,M,Γ), whereφ is a flow, M is a smooth manifold andΓ the set of times. Through-
out this thesis we assign the terms “continuous (part of) dynamical system” and “con-
tinuous (part of) state-space” to systems and parts of systems, respectively, whose
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behavior is described by Eq.(2.1) or Eq.(2.2).
On the other hand systems are known that operate on adiscrete set of state variables
Q : q ∈ Q, which is countable and typically finite. These systems are considered in
the framework ofautomata theory(for an introduction refer [58]) or1 discrete event
systems[86]. Such discrete event systems usually exhibit a directed evolution of states
in a logical timegoverned by discrete events (inputs) from a setΣ, wheree ∈ Σ is
an event label. Their ”dynamics” is given by a transition functionδ : Σ × Q 7→ Q
defining the jump like transitions between discrete states. Systems , or part of systems
that obey the above characteristics are referred to as ”discrete part of hybrid dynamical
systems” in the following.
Thus the termscontinuousanddiscreteare used here with respect to the range of state
variables and not with respect to time.
Notwithstanding the great efforts of continuous dynamical system’s theory and the
beauty of the automata theory an impressively large group of dynamical systems and
models do not fit into one of the categories since they contain aspects of both types.
Roughly speaking, any system that evolves in time and contains interactions between
continuous processes and discrete automata can be seen ashybrid dynamical system
usually referred to ashybrid system. Due to the mixed nature of hybrid systems their
complete state spacecontains both continuous (x ∈ Rn) and discrete (symbolic) vari-
ables, and the dynamics can be represented and analyzed only with respect to this full
state space.

2.1.1 Occurrence of Hybrid Systems

Hybrid systems arise if dynamical systems consisting of piecewise defined continuous
time evolution processes are interfaced with some logical or decision making process.
Such models are used in several disciplines of science and occur regularly in the mod-
eling of technical systems.

A common example for such a hybrid system aretwo water tanks(see Fig.2.1a)
with a water volume ofxi(t) in each. The water flows out of the tanks with a constant
rateµi, and there is a switching fill unit dedicated exclusively to one tank at a time,
filling this tank with a constant rateλi. Whenever a tank becomes empty (xi = 0) The
filling unit switches to this tank to refill it. If the filling unit is attached to tanki we
can write the equation of motion forxi asẋ = eiλ − µ whereei is the i’th canonical
unit vector inR2 andλ = (λ, λ)T ,µ = (µ1, µ2)T are the vectors of in and outflow rates.

1As typical in science, researchers from different fields developed distinct frameworks, methods and
definitions for similar problems. Here the automata theory represents a more rigorous mathematical
approach founded on the works of Turing and von Neumann, whereas the notion of discrete event
systems was developed in the framework of computer sciences and control theory.
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Figure 2.1: Scheme of the two watertank system (a) and the bouncing ball (b). Two standard examples
for hybrid dynamical systems.

Also dynamical systems can be considered as hybrid, if jump like transitions in the
continuous part of the state space occur due to collisions with obstacles for instance.
A standard example for this type of hybrid systems is the vertically bouncing ball
(Fig.2.1b). In its free flight state the ball moves within the gravity field (ẍ = −g).
The discrete event transition takes place if the ball touches the ground. Ifx = 0 the
ball is reflected and a part of its energy is dissipated:ẋ 7→ −cẋ where0 < c < 1 is a
constant.

The main common feature of all hybrid systems are instantaneous jumps of either
the continuous state or the “vector field”, i.e. either the right or left hand side of the
equation of motion written in the form of Eq.(2.2). In the hybrid system’s literature
[17, 18, 71, 97] four main types of hybrid phenomena are considered:

• autonomous switching: a vector field changes, if the continuous state hits certain
boundaries

• autonomous impulses: the continuous state jumps discontinuously if it reaches a
certain boundary

• controlled switching: the the vector field changes abruptly due to an ”external”
control signal

• controlled impulses: the continuous state jumps discontinuously due to an ”ex-
ternal” control signal

A distinction similar to the notion of autonomous/controlled changes is the consid-
eration oftimed events, where the moment of transition is known a priori andstate
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eventswhere a transition occurs, if some condition involving the state variables is ful-
filled.
Since an external controller or a clock principally can be included in the description of
the system the distinction of autonomous and controlled hybrid phenomena is blurred,
but sometimes helpful in applications. Even mixed forms of state and time events can
occur, if, for instance one transition is a state event, but the following transition takes
place after a certain time interval (e.g. Sec.5.2). In the same sense a mixed occurrence
of switching and impulse like transitions in the same system is possible (Sec.6.4).
For technical systems it is often obvious how discrete jumps or switches influence the
systems dynamics. For models of natural processes however, it depends often on the
level of idealization whether a process is regarded as continuous process at fast time
scales or as switching process. Sometimes new insights may become possible through
idealizations that lead to hybrid models even in natural systems (the model, derived
in Chap.6 may serve as an example). Otherwise in natural sciences the hybrid nature
of models may be hidden in the equations of motion in form of nonsmooth intrinsic
functions, such asmin,max or if statements [97] .

2.1.2 Research on Hybrid Systems

There has been significant research activity in the area of hybrid systems2 in the last
decade involving scientist from very different fields like dynamical systems, control
theory and computer science. More and more dynamical systems, that have hybrid
characteristics are investigated for their dynamical behavior, sometimes without men-
tioning the hybrid nature of the system explicitly. Research on dynamical behav-
ior of hybrid systems includestechnical systemslike mechanical systems with con-
straints occuring in robotics [70, 75] , automotive engine control, and a large num-
ber of other intelligent control systems with a high degree of autonomy (references
for such technical systems are found in the engineering literature on hybrid systems
[20, 57, 15, 94, 73] ). Furthermore a number ofelectronic oscillatorsthat fall in the
class of modulated relaxation oscillators may be seen as hybrid systems. Even the
switching circuits, used inpower electronicsare hybrid.
In themodeling of biological systemshybrid models were proposed for metabolic cell
regulatory networks (see [2, 56] for an introduction), transcription of genes by RNA
polymerase, cell growth and division, and successfully applied to gene expression in
multicellular networks [1, 14].
However, at least the engineering orientated research is not mainly interested in the
dynamics of hybrid systems, but in design and verification of systems and controlers,
that guarantee a stable (periodic) operation of technical devices. In this context the
controllability and reachability analysis of hybrid systems plays a major rule. The

2The novelty of the subject leads to a number of different synonyms used to name hybrid systems or
some special classes of this type of dynamical systems.
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proposed methods for this analysis are of numerical nature [15]. Thus a huge number
of modeling frameworksand describing languages for hybrid systems where devel-
oped, partly to transfer stability criteria, known from other systems classes, to more
ore less restricted classes of hybrid systems. An other part of modeling frameworks
emerged from (numerical) simulation tools and software languages for hybrid system
problems. The probably best review of the different approaches is given by research
articles, that consider the equivalence of several classes of modeling frameworks (see
e.g. [20, 57]).

2.2 Notions of Hybrid Systems

Basically a hybrid system3 is a dynamical system that describes the evolution of a set
of discrete and continuous variables in time.

2.2.1 Approach to a Definition of Hybrid Systems

Currently, no common definition of hybrid systems is available. Hence we will use
the following basic notion of a hybrid system which mainly adopt the hybrid system
definition given in [94] and [73] and incorporates the definitions of [17, 18].This def-
inition is a straightforward adaption of the hybrid system’s blueprint4 and combines
the definition of automata and dynamical systems in an appropriate manner:

A hybrid system is a collectionH = (M,Q, E , D,X , G,R), where:
M is a smooth manifold that contains the continuous statesx ∈ M of H, preferably
M ⊂ Rn;
Q is a countable and finite set of (discrete) statesq ∈ Q of H;
E ⊂ Q×Q is the collection of discrete state transitions (ε ∈ E) 5;
D = {Dq : q ∈ Q} is the set of domains6 of H, whereDi ⊂ q ×M ∀q ∈ Q
X is a set of flows7 on M or subsets of M.
G = {G(ε) : ε ∈ E} is the set of guards, where for eachε = (qi, qj) ∈ E, G(ε) ⊂
D(qi);
R = {Rε : ε ∈ E} is the set of resets, where for eachε = (qi, qj) ∈ E Rε is a relation
between elements ofG(ε) and Elements ofDq such thatRε ⊂ G(ε) × Dq, usually a

3In some parts of the hybrid systems literature even the notion hybrid automaton is common.
4A hybrid system consist of dynamical systems and an automaton interacting with each other.
5It is also common to callE the collection of edges because the transitions are symbolized by edges

in a graph representation of the hybrid system.
6In computer science related literature the domain is called invariant set. The infelicity of this term

is that there is nothing dynamical invariant in a domain.
7For instance given by a set of vector fields such thatX = {Xq : M ×Q→ TM ; (x, q) 7→ Xq(x)}

andXq is Lipschitz onDq ∀q ∈ Q.
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mapR(q1, q2) : G(qi, qj)→ D(qj)

The complete state ofH at a time t is given by(x(t), q(t)) ∈ M ×Q and the state
space is

D =
⋃
q∈Q

Dq. (2.3)

D is called thetotal domainof H. Although different domains lie in distinct copies
of M we use the termcontinuous part of the state spacefor that manifold which is
obtained by ignoring the discrete state of the system. Formally this is done by identi-
fying M ×Q with M via the diffeomorphism(x, q) 7→ x. Further hybrid systems, in
which the set of flows is given by a set of diffeomorphisms (i.e. a number of iterated
maps) are calledhybrid mapsin the following.
The basic idea behind the above formalism is that the system, given byH evolves
from a starting point (x,qi)insomedomain(Dqi) according toẋ = Xqi(x) until a
guardG(qi, qj) is reached, where an instantaneous switch via the resetR(qi, qj) is
made which sets the discrete state toqj and the continuous state to some value x’.
After this transition the system evolves insideD(qj) up to the moment the next guard
is reached.
For thewater tank example(see Sec.2.1.1) we obtain with the above given formalism:

M = R2

Q = {q1, q2}
E = {(q1, q2), (q2, q1)},
D(q1) = {q1} ×R2+, D(q2) = {q2} ×R2+,
Xq1,q2 = e1,2λ− µ
G(q1, q2) = {(q1, x) ∈ D(q1)|x2 = 0} G(q2, q1) = {q2, x) ∈ D(q2) : x1 = 0}
R(q1, q2) : (q1, x1, 0) 7→ (q2, x1, 0), R(q2, q1) : (q2, 0, x2) 7→ (q1, 0, x2).

A comparison of the above set of equations with the five lines containing verbal
description of the system in Sec2.1.1may be a good argument for relaxing the nota-
tion in the remaining part of this thesis. Since the systems that are considered in the
following are not much more complicated than the two tank example and no further
benefits result from the formalism, we give the discrete state transitions, guards and
resets in form of verbalswitching rules. These rules are emphasized and numerated
like equations for easy reference in the following.

2.2.2 Graph Representation

Since the discrete state can take only a finite number of values, it is sometimes con-
venient to represent a hybrid system by adirected graph(cf. Fig. 2.2). In a graph
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Figure 2.2: A hybrid system can be represented by a graph. a) The graph of the two watertank
system. b) One of the simplest hybrid dynamical systems is a bouncing ball. The figure gives the graph
representation of this hybrid system with impulse like transitions.

representation the number of nodes is equal to the number of possible discrete states.
Each node corresponds to a discrete stateq . The notation of the vector field or

equations of motion of the hybrid system in this state can be added as well as the
conditions describing under which the system remains in this node. The nodes of the
graphical representation are connected by directed edges, symbolizing the state transi-
tion q1 7→ q2. Jump like changes of the continuous state of the system are noted aside
the transition edges (see Fig.2.2b). In this thesis we will give graph representations of
the considered systems if needed in form ofstate transition diagrams, where a node
is only labeled with the discrete state that it represents.
A graph representation of a hybrid system emphasizes the automaton aspect of hybrid
systems and clarifies its logical structure. The graph can also be taken as an alternative
definition of a hybrid systemH. Furthermore, it depicts the grammar of thesymbolic
dynamics of the discrete states of the hybrid system(see Sec.4.3.4).

2.2.3 Hybrid Trajectories

For every(x, q) ∈ D(H) the action ofH generates a trajectory of the hybrid system
H. If the flow for the continuous part of the hybrid system is given by a differential
equation the trajectory is continuous inside the domains ofH, where the discrete state
q(t) = q remains constant. If a guard is reached at timeti, the full state of the system
changes discontinuously. We write(x(ti), q(ti)) 7→ (x(t+i ), q(t+i )), wheref(t+) de-
notes the usual limit from the right of anyf at timet.
It is generally assumed that the trajectories of hybrid systems are piecewise continu-
ous from the right, if the limit exists8. The timesti are calledevent times. The series

8Of course there is some problem, if an infinite number of switchings occur in finite time. However,
the not resolved problems of a consistent mathematical framework for hybrid dynamical systems are
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of event times of a hybrid dynamical system is apoint process.
The sequenceτ = {Ii}Ni=0 of intervalsIi = [ti, ti + 1] is also called a (forward)hy-
brid time trajectory. This sequence can be either infinite (N → ∞) or finite. N(τ)
is the size of the hybrid time trajectory and by{τ} we denote the set(1, 2, ..., N)
and (1, 2, ...) for N → ∞, respectively. IfN(τ) is finite the intervalIN is either
In = [tN , tN+1] with ti < tN+1∀i or In = [tn,∞).
A triple χ = (τ, q, x) with τ being the hybrid time trajectory,q : {τ} → Q a map and
xi : Ii → M a collection of maps, is also called anexecution of H. Thus execution is
a notion, that approaches the trajectory of hybrid systems from automaton ideas. For
a precise definition refer [73]. The execution time ofχ is

τ∞(χ) =

N(τ)∑
i=0

(ti+1 − ti) = lim
i→N(τ)

ti+1 − t0 (2.4)

It is clearly a specific hybrid dynamical system’s phenomenon, that there are trajecto-
ries which terminate in a finite time. Hence the following notions are used:
A execution is calledinfinite, if N(τ) =∞ or τ∞(χ) =∞.
A execution isZeno9 if N(τ) =∞ but τ∞ <∞
The execution time of a Zeno execution is called aZeno time. A (forward) trajec-
tory which corresponds to a Zeno execution should be calledZeno trajectory. If we
consider trajectories of hybrid dynamical systems we usually mean trajectories that
correspond to infinite executions.
An example for Zeno trajectories is the water tank withλ < µ1 + µ2. For a given
total contentc = x1(0) + x2(0) at timet0 the Zeno time istzeno = c/(µ1 + µ2 − λ).
During this time the total content of the two tanks becomes smaller and smaller and
the closer the system comes to zero total content the faster the switchings occur. Even
the bouncing ball has only zeno trajectories since it stops if the initial total energy is
completely dissipated due to an infinite series of bounces.
In hybrid systems literature often the set ofreachable statesof H is considered, which
are all states that can be reached from a set of initial conditions within a finite time.
Furthermore, hybrid systems where for every(x, q) ∈ D an infinite (forward) exe-
cution exists are callednon-blocking. All hybrid systems considered in this thesis are
deterministic and non-blocking, i.e. for everyp ∈ D exists a unique infinite execution.
Generally in a deterministic non-blocking hybrid dynamical system the resets have to
be functions, the guards have to be mutually disjoint sets and whenever a trajectory is
at the boundary of a domain it has to hit a guard.

not addressed here.
9The name Zeno is a reminiscence of the paradoxon about Achill and the tortoise given by the greek

philosopher Zeno. As is generally known, the paradoxon is resolved by the observation that an infinite
series can converge to a finite sum.Thus even in hybrid systems infinite discrete transitions can occur
in finite time.
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2.2.4 Dynamical Properties of Hybrid Systems

From the foregoing sections it is obvious that a hybrid dynamical system in general
can be a complicated (and up to now not well explored) object.
It would be desirable to achieve a theory of hybrid dynamical systems as dynamical
systems in the future. Recently in this direction a number of attempts have been
made concerning the transfer of stability notions from dynamical systems to hybrid
systems [108]. Especially the use of piecewise defined Lyapunov functions [19] for
considering Lyapunov stability is well established meanwhile [35]. A further basic
approach is developed in [94] where the notion of ahybrifold was introduced. A
hybrifold is an object consisting of manifolds glued together at the guard edges, which
is mathematically not easy to handle because of its generally complicated topology
and its partial open, partial closed boundary. Hybrifolds are in consequence similar
to branched manifoldswhich are considered to analyze the topological structure of
smooth chaotic dynamical systems. For an introduction to topological analysis of
chaotic systems cf. [52]
In conclusion we state that the dynamics of hybrid systems is not well understood
today.

2.3 Numerical Simulation of Hybrid Systems

Since discrete events are the basic features in every hybrid system, any numerical
calculation must be performed on an event by event basis.
The core of the event driven simulation is the organization of an event list, which
contains all known future events and their event times. Further a simulation clock is
needed that holds the actual time of simulation. Given the full state of the system
at time t all possible future events connected with that state can be obtained for a
deterministic hybrid system and have to be noted in the event list. Than the simulations
proceeds as follows:

1. Pick the next event form the event list and set the simulation clock to its event
time.

2. Apply, depending on the event the reset map and set the system into its next
discrete state.

3. Remove all future events, that do not occur since the discrete state ofH has
changed from the event list.

4. Compute all future events that may occur now and their event times.

5. Store this future events in the event list and rearrange it according to the event
times.
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6. Return to step 1.

Due to this structure a simulation program for hybrid systems is programmed
preferably in an object orientated manner. The estimation of the next event time can
be a challenging task for hybrid systems where the continuous state is given by a non-
linear differential equation. In the systems considered in this work we are not in the
need of numerical integration of nonlinear differential equations and approximating
the moment of guard reaching. All events are either timed, or their the time distance
towards a possible future event time can be calculated directly from equations in form
∆t(m+1) = (S+x(tm))/λwhereS is a threshold,x(tm) a continues state at the present
event timetm andλ any rate. In this regard the numerics is exact. Furthermore, it is
fast, since only event times have to be calculated. And if values for variables inbe-
tween two event times are needed, they can be also obtained by linear relations.

A more comprehensive guide to event driven simulations is found in [48, 65, 77].
Furthermore a number of software packages and tool boxes for the simulation of more
or less restricted classes of hybrid systems especially for engineering purposes is avail-
able today.

2.4 Summary

Hybrid systems arise in a wide range of engineering applications as well as in models
of natural processes. Sometimes the hybrid nature of models is very obvious whereas
in other cases the hybrid nature of dynamical systems is hidden in discontinuities of
the equations of motion.
Despite of the fact that hybrid dynamical systems have received a considerably in-
terest in the engineering community during the last decade we are far away from a
comprehensive theory of hybrid dynamical systems as it exists for continuous dynam-
ical systems.
Nonetheless the concept of hybrid dynamical systems may be useful elsewhere for the
investigation of some other models not only in technics. In the switched tank sys-
tems considered in this thesis, the hybrid modeling allows a fast and exact numerical
simulation by discrete event algorithms.



3 Border Collision Bifurcations

In the following chapters of this work we are dealing with Poincaré maps that con-

sist of several linear segments. Therefore an introduction tobifurcation phenomena

emerging inpiecewise linear mapsis given. The most simple case of one-dimensional

maps consisting of two segments will be discussed in more detail. A short overview

of basic notions (Sec.3.1) is followed by a review of (border collision) bifurcations of

maps that are continuous, but have a discontinuous derivative. Then the bifurcation

scenarios associated with a discontinuity in the map are discussed in Sec.3.3.

3.1 Bifurcations of Piecewise Smooth Maps

Bifurcation generally means some branching process, in which the qualitative topo-
logical picture of anattractoralters with the change of the parameters of adynamical
system. The literature dealing with bifurcation theory (e.g. [30]) is in general focused
on bifurcations of dynamical systems arising from (everywhere) differentiable pro-
cesses.

For the understanding of hybrid sytems thebifurcations of piecewise smooth maps
are important. Such maps arise in a very natural way from the discrete modeling
of technical and natural systems [31, 28, 29, 88]. Especially the derivation of such
piecewise smooth maps for systems in power electronics [80, 7, 103] has led to an
increasing interest in systematic investigations of bifurcations in such maps during the
last years.
Usually a bifurcation occurs if a periodic point of a map looses its stability due to a
change of parameters. If a parameter is smoothly changed in a differentiable map the
eigenvalue also changes in a smooth way and a local bifurcation occurs when crossing
the unit circle. For piecewise smooth maps the situation is a little different. Here the
eigenvalue changes abruptly if a periodic point leaves a smooth segment of the map.
This leads to bifurcations that are very distinct from bifurcations of smooth maps.
Since a point of discontinuity of either the map or its derivative is aborderbetween
to smooth segments of the map, the termborder collision bifurcationwas assigned to
this type of bifurcations of piecewise smooth maps (probably the term emerged firstly
in [81]). Border collision bifurcations are also calledC-bifurcationsafter the earlier
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works of M.I. Feigin [49, 50, 51, 40]. The class of border collision bifurcation phe-
nomena includes a rich variety of different bifurcations as for instance bifurcations
from a fixed point attractor to a higher periodic attractor or even a chaotic one.

Hence thebifurcation parametersunder consideration are unusual. Generally we
consider maps where the slopes of the segments are fixed and a bifurcation parameter
which tunes the position of the segments relative to the diagonalxn+1 = xn. This is
exactly the situation that we face with diverse Poincaré maps appearing in the follow-
ing chapters.

For the following discussion we consider piecewise linear maps with two segments
of different slope, which are the most simple examples among this class of iterated
maps.

3.1.1 Preliminaries

Before we start an overview of bifurcation phenomena in piecewise linear maps let
us briefly recall some basic notions by means of one dimensional maps. A concise
introduction to the theory of one dimensional maps is provided by several text books
(e.g. [33]).

A mapf : I → I with I ⊂ R is called smooth if it has a continuous derivative. The
map ispiecewise smooth1 if it has a finite number of pointsck ∈ I, k ∈ N such that
f is smooth onIk = [ck−1, ck). A point ck is a turning pointof f if in an open neigh-
borhood ofck the map is strictly increasing on one side ofck and strictly decreasing
on the other. Maps with one turning point areunimodal maps. If ck is a turning point
or adiscontinuityof f , we callck a critical point of f . The trajectory (or orbit) of a
pointx0 is fn(x0)∞n=0 and it is periodic of periodm if m is the smallest number such
thatfn+m(xp) = fn(xp). An orbit of periodm is typical, if the derivative of them’th
iterate of the map at the orbit’s location exists and this derivativeε (the eigenvalue) is
neither 1 nor -1. In other words: its stability properties are ensured by the knowledge
of the derivative. The orbit is called aflip saddleif ε < −1, a regular saddleif ε > 1
and anattracting periodic pointif |ε| < 1. The Lyapunov number of a trajectory is
L(x0) = limn→∞[|(fn)′(x0)|]1/n if this limit exists, and the Lyapunov exponent is
λ = log(|L(x0)|). A periodic orbit is often calledsuper stableif its Lyapunov expo-
nent is−∞.

In connection with bifurcation scenarios sometimes the question ofscaling laws
and corresponding scaling constants is considered. For instance all unimodal smooth
maps belong to the sameFeigenbaumuniversality class with universal Feigenbaum

1By the notion piecewise smooth we do not imply that the map is continuous.
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constantsαFandδF . The scaling properties reflect the self similar structure of a bi-
furcation diagram. Usually two constants appear. The first oneδ, denotes the scaling
constant in the parameter space, and the secondα, the one in state space2. The con-
stantδ is defined by:

δ = lim
n→∞

δn = lim
n→∞

an−1 − an
an − an+1

(3.1)

wherean is the bifurcation parameter’s value at the n’th bifurcation point. The scaling
constantα is given by3:

α = lim
n→∞

αn = lim
n→∞

(x0 − x1)|a=an

(x0 − x1)|a=an+1

(3.2)

where(x0−x1)|a=an is the distance between two subsequent points of a periodic orbit
at the bifurcation parameter’s valuean. In the Feigenbaum scenario the parameteran
for the superstable period-2n orbits is used for determiningα, but if such an orbit does
not exist another choice must be made. The definition of these scaling constants im-
plies, besides the existence of the limitn→∞, a scaling that follows a power law. As
we will see below such constants are not universal in the case of piecewise linear maps.

Another useful method for investigating the dynamics of one dimensional maps is
the consideration ofsymbolic dynamics. For one dimensional maps with one criti-
cal pointc to each orbit a binary symbolic sequence can be assigned by labeling the
touched branch according to

Ji =

{
0 for xi ≤ c
1 for xi > c.

(3.3)

For 0, 1 also the symbols L, R will be used to denote the branches. Thesymbol se-
quenceof {Ji(f i(x0))}i≥0 is thef -itinerary of x0. The itinerary off(c) is known as
thekneading sequenceK(f).
Using the symbol sequence of an orbit awinding numberis defined by

r = lim
n→∞

∑∞
i=1 Ji
n

. (3.4)

It is also useful to consider for periodic orbits areinjection numberN , counting the
number of changes from L to R (or R to L) within the period, i.e. the number of{10}

2For the sake of completeness the values of the two famous Feigenbaum constants for maps with
quadratic maxima are noted:αF ≈ 2.502908... andδF ≈ 4.669202...

3α describes in the Feigenbaum scenario the scaling of subsequent fork openings in the period dou-
bling cascade.
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Figure 3.1: A continuous, piecewise smooth one-dimensional map. The bifurcation parameterµ is
indicated. Here is0 < aL < 1 and1 < aR, such that the stable fixed point inL for µ < 0 looses its
stability if µ crosses zero. This corresponds tocase 1’ain Fig.3.2.

subsequences within a period4.

3.2 Bifurcations of Continuous Piecewise Linear Maps

If a one-dimensional piecewise smooth map is continuous but has a derivative which is
not continuous at one point, this point is the”border” between two smooth segments
of the map. As shown in [7] every one dimensional map with this behavior and a
single critical point can be transformed into the followingnormal form:

f(x) =

{
fL(x) = aLx+ µ for x ≤ 0
fR(x) = aRx+ µ for x > 0.

(3.5)

This normal form is a piecewise linear map with three parameters(aL, aR, µ) and one
border located atx = 0. The slopes of the left and the right segment of the map are
denoted byaL andaR respectively and are assumed to be finite5. Figure3.1 shows
an example of such a map. If we considerµ as bifurcation parameter an orbit or
attractor changes its stability if a fixed point or a periodic point hits the border of a
linear segment atµ = 0.

The nature of this bifurcation depends only on the values ofaL andaR because
µ 6= 0 determines only the size of an orbit that exists for allµ < 0 andµ > 0,

4Both winding number and reinjection number are associated with different qualities of an orbit.
Consider for instance a periodic orbit with the symbol sequence (1010) and an other with (1100).
Both have a winding number r=1/2 but the reinjection number of the first orbit isN = 2 whereas the
reinjection number of the second isN = 1.

5Piecewise smooth maps with one side infinite partial derivatives arise e.g. for grazing impact oscilla-
tors [27, 34] and some laser systems [80]. Border collision bifurcations in maps with such singularities
are also called grazing bifurcations. For a discussion see [39].
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Figure 3.2: Overview of theaL − aR parameter space of continuous piecewise linear maps with two
segments. Shown are regions with the same bifurcation phenomena (cf. [8]). The labeling of the
regions denotes the cases that are discussed in the text. The primed numbers show regions with the
same bifurcation phenomena for an inverse border crossing due to the symmetry indicate by the dashed
line.

respectively. If (and only if) the map (3.5) has a stable periodic orbit or even a chaotic
attractor forµ = 1 then it has it for allµ > 0. These orbits scale linear withµ. If {x}
is a trajectory forµ = 1 then the similar trajectory for all otherµ is given by{µx}.
The same statements apply to attractors for−µ > 0. The study of border collision
bifurcations, in other words has to examine the attractors of (3.5) for a givenaL, aR at
µ = ±1.
Furthermore we have asymmetryin the (aL, aR) parameter space. If a certain kind
of bifurcation occurs foraR < aL whenµ is increased through zero, an analogous
situation occurs ifa′L = aR anda′R = aL andµ is reduced through zero. Due to this
symmetry we restrict our following discussion of bifurcations of the map (3.5) to the
parameter areaaR ≤ aL. For an overview of the below discussed cases refer Fig.3.2.

3.2.1 Border Collision Pair Bifurcations

If

aL > 1 andaR < 1 (3.6)

then there is no fixed point forµ < 0 while for µ > 0 two -possibly unstable- fixed
points

L∗ = µ/(1− aL) and R∗ = µ/(1− aR) (3.7)
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a) b)

Figure 3.3: Bifurcation diagrams of border collision bifurcations for the map (3.5). a) (Case 1a) with
aL = −0.2, aR = −0.9 where a unique stable fixed point is born at the bifurcation pointµ = 0. b)
The border collision bifurcation (case 1b) of the normal form withaL = 1.05, aR = −1.2. A chaotic
attractor is born at the bifurcation point.

in L andR respectively, exist. Because of this emergence of fixed points at the border
collision point this bifurcation was namedborder collision pair bifurcation.

Case 1 a
If the slope|aR| < 1 the fixed point in the right segment is stable forµ > 0. Further-
more it is attracting inside the interval(L∗,+∞). Thus we obtain a bifurcation from
no attractor(µ < 0) to a unique stableperiod-1 attractorfor µ > 0. This scenario is
shown in Fig.3.3a.

Case 1 b
If aL > 1 andaR < −1 bothL∗ andR∗ are unstable. Thus forµ > 0 only achaotic
attractor may exist (see Fig.3.3b and Fig.3.4a for examples). If a chaotic attractor ex-
ists the chaos isrobust[10].
For most smooth chaotic systems a dense set of periodic windows for any range of
parameter values is obtained (for instance in the logistic map). For non-smooth sys-
tems by contrast parameter ranges are obtained, where a in neighborhood in parameter
space a unique chaotic attractor without any periodic attractors in that neighborhood
exists. The termrobust chaoswas introduced6 for this phenomenon in [10].
The parameter range for the existence of a stable chaotic attractor is bounded since no
point of an attractor can be located right ofL∗, where every point is mapped to−∞.
Therefore a stable attractor exists, as long as

aR > −
aL

(aL − 1)
. (3.8)

6It was argued in [10], that this type of chaos may be important in technical applications where a
reliable operation under chaos is required (even if a slight fluctuation of parameters are unavoidable).
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a) b)

Figure 3.4: Bifurcation diagrams of border collision bifurcations of map (3.5). a) A special situation
of case 1bwhere a four piece chaotic attractor is born at the bifurcation point (aL = 1.5, aR = −1.2).
b) An example ofcase 2 (aL = −0.2, aR = −0.9).

Inside this region a special parameter range exists for

aL <
aR

(1− a2
R)
. (3.9)

where multiple piece chaotic attractors of skewed tent maps arise forµ > 0. The
discussion of these possible chaotic attractors is postponed to the following section in
the context of case 4 where the borders for an emergence of n-piece chaotic attractors
will be reviewed.

Case 1 c
In the parameter regionaL > 1 andaR < −aL/(aL − 1) neither forµ < 0 nor for
µ > 0 a stable attractor exists.

3.2.2 Border Crossing Bifurcations

In all regions of the parameter space that do not belong to the area defined in Eq.3.6,
an existing fixed point crosses the border ifµ is varied through zero and changes its
stability properties. The border crossing of fixed points may alternatively be inter-
preted as the existence of a pair of fixed points where one isvirtually in the sense that
the branch to which it belongs does not exist where this fixed point is located. Ifµ
crosses zero the virtuality is interchanged between the two fixed points.

Case 2
If both

|aR| < 1 and|aL| < 1

there is obviously a stable fixed pointL∗ for µ < 0 andR∗ for µ > 0 (Eq.3.7). Thus
there is a unique stable period-1 attractor which changes its path atµ = 0, similar to
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a tangent bifurcation in smooth maps. IfaL andaR contain an opposite algebraic sign
the direction of the path will be also opposite to its former direction after the bifurca-
tion.

Case 3
The parameter region

0 < aL < 1 andaR < −1

shows a variety of different border crossing bifurcations. Forµ < 1 the map has a
stable fixed point at the left branch. But forµ > 0 the map becomes askewed tent
map with one segment expanding and one contracting. Due to its importance and
its rich dynamical behavior skewed tent maps have attained a considerable interest
[74, 80, 79, 16].
The first result that was reported in [74] and [80] using results from [60] deals with
the existence and stability ofperiodic orbits in the skewed tent map family (with
aL < aR/(1+aR), aR < 0 with respect to the symmetries and the stability result (3.8)
reported above).
All stable period-n orbits are of the symbolic form{10n−1}. The parameter regions
where stable periodic orbits of periodn ≥ 2 appear are determined by the region
which ensures the existence of an period-n orbit, given byaR ≤ −(1−an−1

L )/(an−2
L −

an−1
L ) and the curve, where the period-n orbit looses its stability, i.e.aR > −a−(n−1)

L .
Therewith the region where a stable period-n orbit exists is given [74, 80] by

Pn(aL, aR) : −a1−n
L < aR < aL(1− aL)−1(1− a1−n

L ). (3.10)

With aL = 0.5 we obtain for instance a period-n attractor for−2n−1 ≥ aR >
−(2n−1 − 1). The two curves of the lower and upper boundary of this region intersect
in pointsOn = (aL, aR), which define the endpoints of the stability regions. This
endpoints are located on theaR < −1 branch of the hyperbolaaR = aL/(1 − 2aL)
where the first coordinate ofOn is the root ofanL− 2aL + 1 = 0 in the interval(0.5, 1)
[74]. At the right hand side of this hyperbola the region given by (3.10) is an open and
nonempty set.

The second result on skewed tent-maps, that was found in [74, 80], is the order
of attractors in the parameter regions, where no stable periodic orbits exist. IfaR de-
creases through the stability boundary ofPn, aR = −aL/(aL − 1), a2n-piece chaotic
attractor emerges for alln > 2. This 2n-piece interval-circle is obtained by iterating
the interval(f 2n(µ), µ) underf , especially it contains the interval(fn(µ), f3n(µ)).
If aR is further decreased the intervals(f 2n(µ), µ) andfn(µ), f3n(µ)) come in con-
tact and merge7, forming an-piece chaotic attractor. The bifurcation line where this

7Band-merging bifurcations are typical bifurcations for unimodal maps and are observed also in
smooth maps as for instance the logistic map. Nonetheless, in the piecewise linear map there is no
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a) b)

c) d)

Figure 3.5: Series of border collision bifurcations for the map (3.5) in the parameter area0 < aL < 1,
aR < −1 (case 3). With aL = 0.5. Different attractors of the skewed tent-maps appear forµ > 0.
a)aR = 15.5 , i.e (aL, aR) ∈ P5 a period-1 to period-5 bifurcation occurs forµ = 0.
b) aR = 16.05 , i.e (aL, aR) ∈ C510 a period-1 to a 10-piece-chaotic attractor bifurcation occurs for
µ = 0..
c) aR = 16.4 , i.e (aL, aR) ∈ C55 a period-1 to 5-piece-chaotic attractor bifurcation occurs forµ = 0.
d) aR = 16.4 , i.e (aL, aR) ∈ C51 a period-1 to one-piece-chaotic attractor bifurcation occurs for
µ = 0.

merging occurs, is given by:

a
2(n−1)
L a3

R − aR + aL = 0. (3.11)

Even this n-piece chaotic attractor undergoes a further bifurcation, where the n bands
merge and a 1-piece chaotic attractor is born. The bifurcation line was also obtained
in [74], given by:

a
(n−1)
L a2

R − aR + aL = 0. (3.12)

A special bifurcation scenario is connected with the period-2 case. Here attracting
chaotic interval cyclesof period2m for all m ∈ N appear if the parameters are below
the region of stable period-2 orbits. For the parameters(aL, aR) crossing(1,−1) an
interval cycle of period2∞ occurs forµ > 0. From this point onwards a inverse period

further internal structure inside the chaotic bands in contrast to smooth maps.
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doubling cascade of interval cycles down to a one piece periodic attractor characterizes
the dynamic of skewed tent maps.

For this period doubling cascade of interval cycles in [74] two universal scaling
constants are derived.δ can be defined according to (3.1) usingan = (aL,n, aR,n) at
the bifurcation points at any straight lineaR = k(aR − 1) + 1 which passes through
(aL, aR) = (1,−1). It was proven that the limit exists andδ = 2. For the scaling
in the state space the distance of the merging pointsxn at the bifurcation point were
considered andα was defined, similar to (3.2) by α = limn→∞(1− xn)(1− (xn+1)).
It appears that the state space scaling not obeys a power law sinceαn ∼ α0 · 2n with
α0 '

√
2.

Thus in a piecewise linear map with one critical point of skewed tent map type the
following order of attractor bifurcations occurs:

(P1)� P2 � (C22m � C22m−1 � . . . � C22 � CI)
� P3 � (C36 � C33 � CI
� P4 � (C48 � C44 � CI) . . .
� Pn � (Cn2n � Cnn � CI) . . .

where the capital letter symbolizes the nature of the attractor (periodic or chaotic),
the first superscript denotes the period of the parameter space region it belongs to and
the subscript for chaotic attractors denotes the number of chaotic intervals (CI means
a one piece chaotic attractor). All these attractors emerge, depending on theaL, aR
parameters in the border collision bifurcation point in the regions of case 3 and case
1b. See Fig.3.2.2for examples.

Case 4
For

−1 < aL < 0 andaR < 0

every point in L is mapped to R and vice versa. Thus all admissible orbits are of{10}n
(n ≥ 1) type. Therefore the dynamics is governed by the second iterate. This second
iterate has a stable fixed point atx∗ = aL(µ + 1)/(1− aLaR) for µ > 0 if aLaR < 1,
and an unstable saddle forµ > 0 andalaR > 1.

Case 4 a
Thus we obtain for

−1 < aL < 0 aR < −1 andaLaR < 1

a period doublingperiod-1 to period-2 border collision bifurcation. Note that the lin-
ear divergence of the period doubled orbit (Fig.3.6) makes here the visible difference
to a period doubling bifurcation which is obtained in smooth maps.
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Figure 3.6: Period doubling border collision bifurcation (case 5a) for the map (3.5) with aL =
−0.5, aR = −1.5. Note that the two branches of the period 2 orbit diverge linear from the bifurca-
tion point and hold a fixed direction thenceforwards. For the usual period doubling bifurcation the
diverging branches start perpendicular and the direction of the branches changes continuously behind
the bifurcation point.

Case 4 b
If

−1 < aL < 0, aR < −1 andaLaR > 1

a bifurcation from period-1 to no attractor appears.

Case 6
Finally we note that for

aL < −1 andaR < −1

no attractor for bothµ < 0 andµ > 0 exists.

3.2.3 Border Collision Bifurcations in Continuous Two Dimensional Maps

Even in continuous piecewise smooth maps in two dimensions border collision bi-
furcations take place. Here the border between two segments is a one dimensional
manifold. Since this bifurcations were investigated in great detail in recent publica-
tions [7, 9, 84] here only a brief reference should be given, concerning the differences
to the one dimensional case and some new phenomena due to the increased dimension
of the maps.
A suitable normal form of piecewise linear maps in two dimensions according to [7]
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is given by:

f(x) =


fL(x) =

(
aL 1
hL 0

)(
x
y

)
+ µ

(
1
0

)
for x ≤ 0

fR(x) =

(
aR 1
hR 0

)(
x
y

)
+ µ

(
1
0

)
for x > 0

(3.13)

The fixed points of the left and right branches, which may be virtually ( Sec.3.2.2)
are given by:

L∗ =

(
µ

1− aL + hL
,
−hLµ

1− aL + hL
,

)
(3.14)

R∗ =

(
µ

1− aR + hR
,
−hRµ

1− aR + hR
,

)
(3.15)

Their stability is governed by the eigenvaluesλ1,2 = 1
2
(h±

√
a2 − 4h). Thus, in two

dimensional maps even complex eigenvalues are possible, indicating aspiral fixed
point, where the rotation is clockwise witha > 0 and counterclockwise otherwise.
Since thesymmetrywith respect toaL, aR, µ exists for the two dimensional case too,
the following considerations are restricted to parametersaL ≤ aR.
At first the bifurcations for0 < |hL,R| < 1 are considered. As long as all eigenval-
ues of the fixed points are real numbers, in principal the same bifurcations as in the
1D case are obtained. Especially theborder collision pair bifurcationsappear in a
similar way, only the conditions foraL,R have to be slightly changed (by replacing1
by 1 + hL,R ) and one has also to consider the values ofhL,R to obtain the stability
threshold for chaotic attractors (i.e. the line that separates 1b and 1c in Fig.3.2 see
[7]). Even here the chaotic attractors arerobust.
As long as either2

√
hL < aL < 1 + hL or 2

√
hR < aR < 1 + hR, or bothaL,R are

of equal sign and|aL,R| < 2
√
hL,R or 0 > 2

√
hL,R > aL,R > 1 + hL,R theborder

crossingof fixed points leads to unique period 1 orbits for allµ 6= 0 (similar to case 2
in Sec.3.2.2) despite of the fact that the fixed points may be attracting in a spiral way.
A rather strange situation, that is not possible in one dimensional maps, occurs if the
two fixed pointsL∗, R∗ arespiral attractors of opposite rotationor aspiral attractor
for one branch is combinedwith a flip saddlefor the other branch (despite of the ”vir-
tuality” of one of the fixed points). In this case a large number of coexisting attractors
may occur, which leads tomultiple attractor bifurcations8 [43] if µ crosses zero.
We discuss the possible cases in more detail:
Case m1: multiple attractors both forµ < 0 andµ > 0:

8It was argued in [43] that such multiple attractor bifurcations are a source of an extreme sensitivity
to noise, since for a variation of the bifurcation parameter through its critical value in the presence of
noise the new orbit of the system may be unpredictable by any means.
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If 0 < aL < 2
√
hL, −2

√
hR < aR < 0 or 0 < aR < 2

√
hR, −2

√
hL < aL < 0 two

spiral attractors with opposite sense of rotation occur. For−2
√
hL < aL < 2

√
hL,

−2
√
hR > aR > −(1 + hR) a spiral attractor and a flip attractor occur. In this case

there are multiple attractors both forµ < 0 andµ > 0 existing, one of them is the
fixed pointL∗ orR∗.
Case m2: multiple attractors forµ < 0:
If aR < −(1 + hR) and−2

√
hL < aL < 2

√
hL then there can be multiple attractors

for µ < 0. Depending onaL the border collision bifurcation atµ = 0 is of type
multiple attractors to no attractor
(−2
√
hL < aL < 0 and1− aLaR + hL + hR + hlhR < 0),

multiple attractors to period-2
(−2
√
hL < aL < 0 and1− aLaR + hL + hR + hlhR > 0) , or

multiple attractors to chaotic or periodic attractors
(0 < aL < 2

√
hL).

In the latter case the occuring attractors forµ > 0 are the two dimensional counter-
parts of the skewed tent-map families attractors discussed as case 3 in3.2.2.
If both−1 < hL,R < 0 there are no imaginary eigenvalues for the fixed points. There-
fore the above discussed multiple attractor phenomenon does not occur and only the
border collision types which are known from one dimensional maps are possible. For
further details see [7, 9].
A special situation is given if eitherhL = 0 or hR = 0. Then the map istwo dimen-
sional at one side, but one dimensional at the other sideof the border. This situation
is studied in some extend in [84]. The authors end up with a collection of catalogues
for twenty distinguishable regions in parameter space with different border collision
bifurcations forhL > 1, hR = 0 and another twenty regions for0 < hL < 1, hR = 0
as well as twelve regions for−1 < hL < 0, hR = 0. In the cases with|h| > 1 inside
the regions with basically the same behavior, i.e. the same type of fixed points for
µ < 0 andµ > 0 occurs, depending on the parameters chaotic and periodic attractors.
Such chaotic attractors can, due to the special nature of piecewise smooth maps be
organized around repellers and need not to be associated with saddle type fixed points
[84].
This brief review may already show, that the class of border collision bifurcations is
even for the case of only two segments in a continuous map extremely rich and there
may be new phenomena in dimensions larger than two. To our knowledge no system-
atic investigation of such higher dimensional piecewise linear maps was done up to
now.
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3.3 Bifurcations of Piecewise Linear Maps with a Discontinuity

In the following we give an introduction to phenomena associated with two segment
piecewise linear maps containing a discontinuity or, in other words, a jump. Since
even a discontinuity point between two segments can be seen as a border the bifurca-
tion of such discontinuous maps are also summarized under the termborder collision
bifurcations. As a suitable normal form we use the following map, which was pro-
posed recently in [109].

xn+1 =

{
aLxn + µ for xn ≤ 0
aRxn − (l − µ) for xn > 0

(3.16)

This map consist of two linear segments, denoted by L and R with slopesaL andaR,
respectively and a discontinuity atx = 0. The height of the discontinuous jump at
x = 0 is l. We consider the parameterµ asbifurcation parameter. Hence wenormal-
ize l by l = 1 for |aL| < 1, |aR| < 1. For all l > 0 in this cases a linear scaling for
attractors and periodic orbits forµ 6= 0 applies. For slopes|aL,R| > 1 a normalization
of the discontinuous jump to one is not sufficient. However, even there we assume
l = 1 since a choice has to be made.

As for the continuous case discussed in the foregoing Sec.3.2 a symmetryin the
parameter space with respect toaL, aR, µ exists. If a certain orbit occurs foraR <
aL, µ the same orbit is an orbit ofa′L = aR, a′R = aL andµ′ = (1 − µ). Therefore
we shall consider in the following the attractors and bifurcations of map (3.16) in the
parameter rangeaL > aR.

3.3.1 General Properties of Periodic Orbits

If |aL| < 1 and|aR| < 1 the jump impedes the existence of fixed points in the map
(3.16) if 0 < µ < 1. Thus we conclude that a periodic orbit has to be of period 2
or larger. Every periodic orbit that exists is also stable since|df/dx| < 1 for all x.
We therefore have to find the admissible periodic orbits with respect to (aL, ar, µ) to
characterize the dynamics of the piecewise linear map with one discontinuity and two
segments. As mentioned in [109] the disposition of periodic orbits with respect top
obeys anasymmetric devil’s staircase, that may beincompletein some cases.
The common feature of maps (3.16) with 0 < aL < 1 is achannelformed by the left
segment of the map and the diagonalxn+1 = xn (see Fig.3.12). Once injected from
the right into the channel, a trajectory spends a number of iterations inside until it can
leave the channel through thedraining intervalDL : (xn ∈ (f−1

L (0), 0)). The injec-
tion takes place inside aninjection intervalIL. If 1 > aR > 0 even the right segment
forms a similar channel.
The value ofµ determines the width of the channel. A change in the channel width by
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Figure 3.7: Overview of theaL, aR parameter space of piecewise linear maps with two segments
and a discontinuity Eq.(3.16), showing regions with the same qualitative bifurcation phenomena. The
labeling of the regions are the cases that appear in the text. The primed numbers show regions with
the same bifurcation phenomena for an inverse border crossing due to the symmetry indicated by the
dashed line.

changingµ can result inbifurcationsif the number of iterations inside the channel is
altered.

Now, in principle the conditions for the existence of a periodic orbit with a given
symbolic encoding{Ji} can be investigated by direct analytic calculus since an orbit
has to fulfill the equation

fR ◦ ... ◦ fL(x1) = x1 (3.17)

with the left hand side ordered according to the symbolic encoding of the orbit and
x1 is the leftmost point of the orbit. Because this equation is linear with respect to
x1 its solution is unique. A number of restrictions concerning the points{xi} of the
orbit are necessary. Assumed, we have a block ofm consecutivefR’s followed byn
consecutivefL’s, i.e. an orbit of(0n1m) type. Then the set of inequalities

fn−1
L (x1) < 0 < fnL(x1) , fm−1

R fnL(x1) < 0 < fmR f
n
L(x1)

must be fullfilled. A similar set can be used for every, even more complicated periodic
orbit. This set of inequalities gives a sufficient condition for the existence of a periodic
orbit of the desired form, which can be written as:

µmin({Ji}, aL, aR) < µ < µmax({Ji}, aL, aR).
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Figure 3.8: Example of a piecewise linear map Eq.(3.16) with a discontinuity atx = 0. Here the
situation0 < aL < 1 and0 < aR < 1 is depicted, which corresponds tocase 1in Fig. 3.7. The
injection intervalIL and the draining intervalDL of the channel formed by the left segment of the map
are indicated as well as the bifurcation parameterµ.

However, the stability of this orbit has to be considered separately. For an unique
period-2 orbit{10} this method leads to

aL
1 + aL

< µ <
1

1 + aR
. (3.18)

This condition for a period-2 holds for allaL, aR. For |aL|, |aR| < 1 the stability of
the period-2 orbit is ensured and the interval given by (3.18) includes alwaysµ = 1/2.
Now we shall consider the appearance of periodic orbits with respect to(aL, aR) in
more detail.

3.3.2 Period Adding Scenarios

Case I
In the parameter region

1 > aL > aR > 0

the most rich variety of periodic orbits can be obtained. At first we consider periodic
orbits with reinjection number N=1i.e periodn > 2 orbits of the type{1n−10} and
{10n−1}. The condition for a{1n−10} period-(n + 1) orbit (winding numberr =
n− 1/n) was derived in [109] by:

1− an−2
R + aLa

n−2
R (1− aR)

1− an−1
R + aLa

n−2
R (1− aR)

< µ <
1− an−1

R

1− anR
. (3.19)
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a) b)

c) d)

Figure 3.9: Example of period adding scenarios of map Eq.(3.16) in thecase 1. a) shows the bifur-
cation diagram for0 < µ < 1 andaL = 0.9, aR = 0.7 and b) the corresponding devil’s staircase of
winding numbers defined according to Eq.(3.4). c), and d) depicts the period adding scenario and the
winding numbers, respectively, foraL = 0.8, aR = 0.2. Note that forµ = 0.5 in all cases a period-2
(10) orbit exists.

In a similar way one obtains for a{10n} period-(n + 1) orbit (winding numberr =
1/n+ 1):

an−1
L (1− aL)

1− anL
< µ <

an−2
L (1− aL)

1− an−1
L + aRa

n−2
L (1− aL)

. (3.20)

From (3.19) and (3.20) the following order of intervals for any fixed(aL, aR) is found:

µmin(10n+1) < µmax(10n+1) < µmin(10n) < µmax(10n) < ... < µmax(102) < µmin(10) <
µmax(10) < µmin(120) < ... < µmin(1n0) < µmax(1n0) < µmin(1n+10) < µmax(1n+10)

Thus, forµmax(10n+1) < µ < µmin(10n) there is non such that (3.20) can be full-
filled, therefore orbits of a more complicated structure must exist in these ”gaps” be-
tween the{10n} orbits.
Inbetween these gaps the draining interval contains subsets of bothfnL(IL) andfn+1

L (IL).
The periodic orbits arising inµmax(10n) < µ < µmin(10n+1) hence are build only
from subsequences of(10n) and(10n+1) type. By a deeper study it is possible to ob-
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a) b)

Figure 3.10: Bifurcation diagram of the period increment scenario in the non generic caseaL =
1.0, aR = 0.0.

tain aFarey treelike ordering of the existing periodic orbits. This was done for a spe-
cial case in [99]. However, the structure of this symbolic period adding tree crucially
depends onaL, aR. Without going into deeper analysis we briefly remark, that not for
every reinjection number a orbit exists and basically the symbolic period adding tree is
finite. However, higher and higher periodic orbits are obtained in smaller and smaller
intervals and and therefore the periodicity varies non- monotonic (Fig.3.9).

3.3.3 Period Increment Scenarios

Case II
In the case where the right segment has a slope of zero or negative slope, i.e.

−1 < aL ≤ 0 and0 < aR < 1

the situation is lucid compared to the previous considerations.
To begin with, we shall consider thespecial caseaR = 0, aL > 0. Here the

injection interval shrinks to one point given byx = µ − 1. Obviously all existing
orbits, even foraL > 1 are superstable since the contraction of the right segment is
infinite, and all are of the symbolic form(10n). Using (3.20) it can be determined that
µmax(10n) = µmin(10n+1) and thus a period-n orbit occurs9 if:

an−1
L (1− aL)

1− anL
< µn <

anL(1− aL)

1− anL + 1
. (3.21)

Here, the period of the system will be increased at every bifurcation point by one
and its order is represented by an arithmetical series. Due to this fact and to make a
difference to the period adding scenario discussed above it was suggested in [6] to call
this situation aperiod increment scenario. For 0 < aL ≤ 1 this period increment is

9ForaR = 0, aL = 1 a simple geometrical consideration yields:1n−1 < µn ≤ 1
n
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a) b)

Figure 3.11: Bifurcation diagram (a) and corresponding winding numbers (b) for a period increment
scenario (case II). The parametersaL = −0.8, aR = 0.2 are used.

complete, i.e. alln ∈ N appear forµ → 0. Thus we can compute scaling constants
for this scenario using (3.1) and (3.2). Forδ we derive:

δ = lim
n→∞

µmin,n−1 − µmin,n
µmin,n − µmin,n+1

= lim
n→∞

aL − anL
1− anL

= aL (3.22)

α = lim
n→∞

(aL(µ− 1) + 2µ− 1)|µmin,n
(aL(µ− 1) + 2µ− 1)|µmin,n+1

= lim
n→∞

a−1
L − anL
1− anL

= 1 (3.23)

For 0 > aR > −1 (and0 < aL < 1) even no consecutive1’s in a symbolic orbit
are possible, because every point in L is mapped to R within the next iteration. By
application of the above mentioned method the following condition for the existence
of an exclusive{10n} orbit is obtained [109]:

anL(1− aL)

1− an+1
L + anLaR(1− aL)

< µ <
an−1
L (1− aL)

1− anL
(3.24)

The borders for the unique10n orbit are, if we noteµ∗min(n) < µ∗ < µ∗max(n),
µ∗min(n) = µmax(n + 1) andµ∗max(n) = µmin(n − 1). This relation is caused by the
negative slope of the right segment, which interchanges the upper and lower boundary
of the draining intervalDL while it is mapped byfr to the injection intervalIL. More-
over, the existence of a stable{10n} orbit is determined again by (3.20). Thus inside
the intervalµ∗max(n + 1) < µ < µ∗min(n) both stable{10n+1} and{10n} periodic or-
bits arecoexisting. Orbits with injection numbersN > 1 are not obtained in this case.
As a consequence one obtains anincomplete devil’s staircasecontaining only wind-
ing numbers that result from orbits{10n} where intervals of unique periodn orbits
are connected by intervals where the two neighboring periodic orbits are interleaving
(see Fig.3.11).
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Case III
If both the slope of the right and the left segment are negative and contracting

(−1 < aL < 0 and−1 < aR < 0),

the only possible stable orbit is the period-2{10} orbit.

Case III a
This stable period-2 orbit even remains stable for allµ > 0 for aR < −1, 0 > aL > −1
as long asaR > a−1

L .

Case III b
If, on the other handaR < a−1

L (with 0 > aL > −1) no stable attractor still exist for
all µ.

3.3.4 Discontinuous Maps with Slopes Larger than One

Now we shall consider the dynamics of the map (3.16) if |aL| > 1 or |aR| > 1. If
the slope of the left segment is larger than one, for everyµ an unstable fixed point at
the left branch exists, and ifaR > 1 also an unstable fixed point on the right branch is
found. These fixed points are given by:

L∗ = (µ)/(1− aL) and R∗ = (µ− 1)(1− aR) (3.25)

For the normalizedl = 1 in Eq.(3.16). Every trajectory, that contains a point located
left of L∗ diverges towards−∞ and every trajectory with a point right ofR∗ diverges
towards∞ (given thataL, aR > 1).

Case IV
For

aL > 1 and0 < aR < 1

the equations (3.19) and (3.20) for the existence of stable periodic orbits remain true as
long as the associated periodic orbit exists. ForaL > 1 the region of existence of any
periodic orbit shrinks with increasingaL up to the moment whereµmin(n) = µmax(n).
This point is reached withanL = a−1

R for {10n} orbits and fora−1
L = anR for {1n0}

orbits, i.e. just in the point, where the periodic orbit also looses its stability. Even for
more complicated periodic orbits, occuring in the period adding scenario a condition
of this form can be derived since the devil’s staircase obeys a strictly increasing order
of occurrence for the winding numbers with increasingµ. Thus for everyaL, aR a
critical winding numberrc = c/(c + 1) with c = ln(aR)/| ln(aL)| and a criticalµc
exists. If µ > µc a period adding scenarioas in case Ioccurs, leading to stable
periodic orbits. Forµ < µc all periodic orbits are unstable. Thenchaotic attractors
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that may consist of several intervals occur. The stable chaotic attractor disappears if
fr(0

+) < L∗ i.e.

µ ≤ aL − 1

aL
. (3.26)

Case V
A similar situation arises if

aL > 1 andaR < 0.

In this case a period increment scenario with regions of coexisting{10n} and{10n+1}
orbits arises as in case II. The regions of coexisting orbits expand for increasingaL .
If a periodic orbit looses its stabilityanL = aR−1 chaotic orbits appear. But in regions
where a second periodic attractor coexists, that has, due to an other periodicity not
lost its stability the chaotic attractor eventually is not obtained. If all coexisting period
orbits in a given parameter region are unstable chaotic attractors are formed. Even
here interval attractors may occur. This chaotic orbits clearly loose their stability if
fR(µ) < L∗, i.e

µ ≥ aL − 1

1 + (aL − 1)(aR + 1)
. (3.27)

For

aR < 2(1− aL)/(aL − 1) (3.28)

the condition (3.27) requires values ofµ > 1 to obtain a stable chaotic orbit. In
consequence no stable chaotic attractor is possible for a map (3.16) with jump size
of one. For jumps larger than one this border becomes more and more restrictive,
whereas this condition resembles (3.8) for a vanishing jump atx = 0. The condition
for the disappearance of periodic orbits is given by the inequalityx1 ≤ L∗ wherex1

is the leftmost point of the periodic orbit.
Because of the coexistence of period-n and period-(n+1) orbits in the associated

parameters regions two coexisting basins occur, where one is the basin of a stable
periodic orbit of period n and the other is the basin of a diverging solution.

Case VI
Now we shall investigate the case

0 < aL < 1 andaR < −1.

At first the appearance of periodic orbits should be considered. Here again the con-
dition (3.24) with respect toµ for the existence of an unique{10n} orbit applies. As
one easily obtains the parameter interval for such a unique period-n orbit shrinks with
decreasingaR. On the other hand the intervals where two of this orbits coexist grow
with decreasingaR and for smaller values this intervals came in contact and create
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a) b)

Figure 3.12: Bifurcation diagram and winding numbers for map (3.16) with aL = 0.8, aR = −3.0,
i.e. case VI

intervals where three, or even more periodic orbits can coexist. Inside such intervals
orbits of{10n},{10n−1}, ... are found.
However, every periodic orbit of{10n} type becomes unstable ifanL ≥ |a−1

R |.
LetN be the smallest integer withN > − ln |aR|/ ln |aL|. Then every periodic orbit
{10n} with n < N is unstable, and the criticalµc is given by the largestµ for which
the stable10N orbit exists, i.e.:

µc =
aN−1
L (1− aL)

1− aNL aRa
N−1
L (1− aL)

. (3.29)

Forµ > µc chaotic attractors appear. Those may be consisting of several intervals.

Case VII
For

aL > 1 andaR > 1

we obtain a expanding shift map with generally two different slopes. This map has a
stable chaotic attractor ifµ ≤ R∗ andµ− l ≥ L∗ i.e.:

aL − 1

aL
≤ µ ≤ 1

aR
. (3.30)

This requiresaL/(aL − 1) ≥ aR to obtain a chaotic attractor.

Case VIII
Finally we remark, that for

−1 > aL and−1 > aR

no stable attractor for the map3.16exists.
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Attractors of piecewise linear one dimensional maps with one discontinuity and
a positive jump

aL, aR attractor

|aL| < 1 , |aR| < 1 two coexisting stable fixed points
one in L, attracting in L and one in R, attracting in R

aL > 1 , |aR| < 1 one stable fixed point in R
attracting in R

|aL| < 1 , aR < −1 one stable fixed point in L
everywhere attracting

aL > 1, aR > 1 no stable attractor

aL < −1 , aR < −1 chaotic attractor
for (1− aL)(aL) ≤ µ ≤ −1/aR. (Shift map)

Table 3.1: Overview of fixed points and attractors in piecewise linear one dimensional maps with two
segments (Eq.3.16). Basically forl = −1,−1 < µ < 0 no bifurcations with changingµ take place.

3.3.5 Positive Jump at the Discontinuity

For the sake of completeness we have summarized the behavior of the map (3.16) for
−1 < µ < 0, l = −1 in table3.1. In this case the map jumps atx = 0 from a
value smaller than zero towards a positive one. For the the map in a large fraction of
the (aL, aR) parameter space simply stable fixed points exists, only for bothaL < −1
andaR < 1 a Bernoulli type shift map as in case VII is obtained, but now with two
negatively sloped segments.

3.4 Summary

We have demonstrated, that the bifurcations of piecewise linear maps in one dimen-
sion are very distinct to the well known bifurcations of smooth one dimensional maps
(as the logistic map, for instance). The bifurcations that are caused by non-smoothness
are summarized under the notionborder collision bifurcations. Basically the type of
bifurcation depends on the slopes of linear segments. For continuous piecewise linear
maps with two segments five regions of qualitative distinct bifurcation behavior are
found with respect to a symmetry regarding the interchange of slopes (Sec.3.2). If
additional a discontinuity in the map is considered, further eight regions of different
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bifurcation behavior are identified (Sec.3.3). The cases, that appear at the borders of
the above discussed regions in parameter space are not included here.
Whereas most of the results we have reviewed here appeared in the literature at dis-
tinct places in various contexts a comprehensive overview of this class of bifurcations
however, is to our knowledge not available yet.
This chapter therefore provides a discussion of such bifurcations that play a major
rule in the next chapters of this thesis. The nature of hybrid systems implies non-
smooth flows. Border collision bifurcations are therefore generic in hybrid systems.
A research on hybrid systems or other non-smooth dynamical systems may stimulate
investigations of border collision bifurcations in dimensions larger than one. Whereas
the bifurcations of continuous piecewise linear maps in two dimensions are well un-
derstood meanwhile (see Sec.3.2.3), a systematic investigation of discontinuous piece-
wise linear two dimensional maps was not carried out yet, for instance.
The hybrid systems consisting of tanks and servers, that switch between this tanks are
model systemsfor the appearance of border collision bifurcations. This rich class of
bifurcations basically structures the variety of dynamical behaviors in this systems.



4 Switched Tank Hybrid Systems

In this chapter the dynamics of hybrid systems consisting ofservers that switch be-

tween tanksaccording to some logical rules is investigated. In Sec.4.2 we introduce

two examples of such systems, theswitched arrivalandswitched serversystem in-

cluding maximum capacities of the tanks.The framework ofstrange billiardsis de-

rived and limiting cases for the dynamics are considered. These limiting cases clarify

the close relation between these two models. In Sec.4.3thedynamicsof systems with

three thanks in between the limiting cases will be considered in some detail.

In the second part of this chapter (Sec.4.4) related models are briefly discussed. This

includes modified switching rules (Sec.4.4.1), switching thresholds that are applied to

only one tank (Sec.4.4.2) and a model that involves two switching servers and has a

hybrid Poincaŕe map (Sec.4.4.3). Finally, in Sec.4.5we draw some conclusions.

4.1 Switching Between Tanks

In the present work we investigate a certain class of hybrid systems consisting of ba-
sic units, calledtanksin the following, that are driven by discrete events. Although
the two tank system (see Sec.2.1.1) is frequently used as standard example in hybrid
systems literature, not much is known up to now about the dynamics of such systems,
especially if the systems contain more than two tanks and additional switching thresh-
olds. Hence we try to fill this gap and end up with a number of dynamic phenomena
(as, for instance, a variety of border collision bifurcations) in these remarkably simple
systems.

In the following the tanksi = 1, ..., n have maximum capacitiesbi, i = 1, 2, ..., n
and can be continuously filled with fluid at ratesλi and emptied with ratesµi. The
fluid contentxi of each tank is controlled by switching the inflow or outflow according
to switching rules if a tank produces a discrete point event, which means for instance
it is full (xi = bi) or empty. The complete state in state space for connected systems
of the described type contains both, continuous variablesxi and a discrete (symbolic)
variableq labeling the discrete state of the system (i.e., the on or off state of inflows
or outflows). At the discrete event timestm the complete state of the system changes
[x(tm), q(tm)] 7→ [x(tm), q(t+m)] (with x = (x1, x2, ..., xn)).
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Due to their behavior that provides a uniform motion inside simplexes if projected
in the continuous part of the state space the eidetic termstrange billiardwas created
[92] to label these systems. As we will see the systems have not much in common
with ordinary billiard systems. However, such systems can be studied by means of
Poincaŕe mappings. Chaos can be induced or avoided through different shapes of the
boundary.

Almost all previous work [25, 92, 98, 59, 63, 62, 87] emphasized the occurrence of
switched tank systems in manufacturing systems (see Chap.5 for a discussion). First
models of the described type have been analyzed by Chaseet al. [25]. They studied
two discretely controlled variable systems which occur as limiting cases for the later
discussed three tank switched server and three tank switched arrival system, respec-
tively. The first system was shown to be periodic in contrast to the second, which was
shown to be chaotic. A three tank switched arrival system with equal rates for all tanks
(λ1,2,3 = 1/3) and upper thresholds was studied in [59] by a graphical method, but no
deeper analysis of the dynamics was done. In [98] switched server systems under so
called corridor policies were considered and the possibility of chaotic behavior for
these systems was concluded. The work of Chaseet al. was extended by Schürmann
and Hoffmann [92] who derived the invariant measure for then-tank switched arrival
system with unrestricted tank capacities. Recently the switched arrival system with-
out upper thresholds was studied in [63, 62] in the context of discrete material flows
and used in [87] to study the interaction of parallel layers of switched arrival systems,
coupled through production losses as a model of manufacturing systems.

4.2 Switched Arrival and Switched Server Systems

Consider a system consisting ofn parallel tanks, and one server as shown in Fig.4.1.
At a time, the server can be attached to one tank, only. This server has either to empty
all tanks (Fig.4.1a), in which case they are assumed to fill themselves continuously.
Or the tanks, which are all emptied continuously, will be filled by a single switching
server (Fig.4.1b). We call, according to [25], the first situation aswitched server
system, and the second, where the input to parallel tanks is delivered by a single server,
aswitched arrival system.

The discrete (symbolic) variableq labels the discrete state of the system (i.e., the
position of the switching server).
The switching policies under consideration are the following. For the switched server
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Figure 4.1: Scheme of then-tank switched server system (a) and then-tank switched arrival system.

system:

If a tank is filled to its maximum the server instantaneously starts
to serve this tank.

(4.1)

However if the currently served tank becomes empty before the first rule applies,
a deterministic function of the current state should be used to determine the next tank
that goes in service. We point out one possible rule:

Serve the next tank in cyclic order. (4.2)

For the switched arrival system the policy is inverse: A tank will be instantaneously
served if it becomes empty, and the second switching rule has to be applied if a tank
is full before another becomes empty.
If more than one tank is empty or filled in the same moment, we require that the system
stops.These events correspond either to a mapping on unstable periodic orbits in the
Poincaŕe maps (Sec.4.2.1and Sec.4.3) or to discontinuity points of the Poincaré map.
If the stop points are critical points (due to the discontinuity) their basin of attraction
consists only of the points itself and is therefore of zero measure. If they are unstable
fixed points their basin of attraction contains all their preimages. This set is of zero
measure with respect to the Lebesgue measure, but can form a dense set. These orbits
are, in other words, not typical for the considered hybrid dynamical systems.

If the total inflow into the switched tank systems is smaller or greater than the
total outflow the systems will either empty in a finite time, or the total content of the
systems grows (up to infinity if there are no upper thresholds) until all tanks reach
their upper thresholds simultaneously. In both casesZeno trajectoriesoccur.
Hence we investigate the special (balanced) dynamical regime, where the total inflow
into the system meets the total outflow. To avoid overflow or complete draining of all
tanks we require that abalance conditionis fullfilled.
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The balance condition for the switched server system is that
∑

i λi = Υ and for the
switched arrival system that

∑
i µi = Λ. Furthermore, the balance condition implies

(here) that the total content of the system is constant (fixed by the initial conditions).
Without loss of generality we normalize thereforeΥ = 1 =

∑
i λi andΛ = 1 =

∑
i µi

and
∑

i xi = 1. For simplicity we choose here the same maximum capacityb for all
tanks,bi = b. As long as the system stays in the discrete stateq (i.e., the server is
attached to tank q) the equation of motion forx is simply:

ẋ = vq (4.3)

wherevq = λ−eq for the switched server system, andvq = eq−µ for the switched ar-
rival system. Herex = (x1, x2, ..., xn) is the continuous state vector,{vq|q = 1, ..., n}
is the set of velocity vectors,λ = (λ1, λ2, ..., λn), µ = (µ1, µ2, ..., µn) are constant
vectors andeq is theq’th canonical unit vector inRn.
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x1(t)

x2(t)

x3(t)

q(t)

Figure 4.2: Sample trajectory of a three tank switched arrival system withλ1,2,3 = 1/3 andb = 1.(a)
depicts a trajectory in the continuous part of the state space. The starting point is marked by (↘) and
the end with (∗). Samples of the time series ofxi(t) andq(t) are given in b).
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4.2.1 Strange Billiards and their Poincaŕe Maps

The evolution of the system insideRn reveals the structure of a strange billiard (see
Fig.4.2). The current state moves uniformly and linearly inside the bounded region
S∗n(b) = {x ∈ R

n|
∑

i xi = 1, 0 ≤ xi ≤ b; for i = 1, ..., n}. The evolution
changes according to the switching rules if the continuous statex hits the bound-
ary δS∗n(b) of S∗n(b). At this time instanttm the full state of the system changes
[x(tm), q(tm)] 7→ [x(tm), q(t+m)] and a new velocity vector is selected from the set
{(vq)|q = 1, ..., n}.
This can be interpreted as a strange reflection at the boundary. The balance condition
implies that the allowedvq span a hyperplane ofRn.
But in contrast to ordinary physical billiards, which are invertible Hamiltonian sys-
tems, these systems are not invertible. Furthermore, the angle of incidence in general
does not equal the angle of reflection.

As ordinary billiards the systems can be studied by means ofPoincaŕe mappings
of the boundary onto itself. These Poincaré mappings sample, in other words, the
systems continuous state at the switching times.
Consider the Poincaré mapG : δS∗n → δS∗n. For the switched arrival as well as for
the switched server system two successive hits of the boundary (attm andtm+1) are
determined uniquely byx(tm) and we can formally write

x(tm+1) = G(x(tm)) = x(tm) + vq∆tm (4.4)

where∆tm = tm+1 − tm is ∆tm = min([xq(tm)/(1 − λq)]; [(b − xi(tm))/λi]i6=q) for
the switched server system and∆tm = min([(b − xq(tm))/(1 − µq)]; [xi(tm)/µi]i6=q)
for the switched arrival system.

4.2.2 Limiting Cases

For the normalized switched systems (withn > 2) two limit cases with respect to
the shape ofS∗n exist. Forb = 1, S∗n is the usualn-simplex embedded inRn given
as S̄n = S∗n(b = 1) = {x ∈ Rn|

∑
i xi = 1, 0 ≤ xi ≤ 1; for i = 1, ..., n}. If

b = 1/(n − 1), S∗n is a geometrically similar regularn-simplex which is now smaller
and inverted, given as̃Sn = S∗n(b = 1/(n − 1)) = {x ∈ Rn|

∑
i xi = 1, 0 ≤ xi ≤

1/(n − 1); for i = 1, ..., n}. Figure4.3shows an illustration of these two limit cases
for n = 3.
Now we shall examine the properties ofG on the boundariesδS̄n andδS̃n. For the
switched server system on̄Sn it was shown [25] that G is everywhere contracting. In
contrast, for the switched arrival system onS̄n the Poincaŕe mapG is chaotic and the
invariant measure can be derived by constructing the Frobenius-Perron operator. The
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piecewise constant probability measure invariant under G is given by

p∗(s̄xi=0,n) =
1

d
µi(1− µi) (4.5)

with d =
∑

i µi(1 − µi) and s̄xi=0,n = {x ∈ Rn|xi = 0, x ∈ S̄n} denotes the
i’th face of S̄n (δS̄n =

⋃n
i=1 s̄xi=0,n) [92]. Moreover, the generating partition of the

Poincaŕe map is given by sub-simplexes exactly corresponding to the discrete states
of the hybrid system.For̃Sn choose the transformations

ẽq =
1

n− 1
(I− eq)

and

µ̃ = (n− 1)−1(I− λ)

λ̃ = (n− 1)−1(I− µ)

with I =
∑n

i=1 ei. This constitutes a complete orthonormal system (with mirrored
handedness) where the equation of motion and the Poincaré map G for the switched
server system oñSn are (up to the scaling factor1/(n−1)) just the ones of the switched
arrival system on̄Sn and vice versa.
For b < 1/(n− 1) the system dynamics is the same as forb = 1/(n− 1), restricted to
a smaller and smaller n-simplex up tob = 1/n where the simplex vanishes.
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Figure 4.3: Illustration of the continuous part of the state space embedded inR
3. (a) The two 3-

simplexesS̄3 (green) andS̃3 (red) that correspond to the limiting casesb = 1 andb = 1/2, respec-
tively. (b) Contracting and expanding properties of one and the same velocity vector insideS̄3 andS̃3,
respectively. The green edge ofS̄3 (corresponding tōsx2=0,3) is mapped underv3 to a shorter segment
at the bottom of̄S3, whereas the red segment of the top edge ofS̃3 (subset of̃sx3=1/2,3) is expanded
by the same flow.
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Figure 4.4: Sample trajectories and Poincaré maps of a three tank switched server model, filling rates
λ1 = 0.3, λ2 = 0.4, λ3 = 0.3. The upper threshold is varied: The first row shows trajectories for a)
b = 1.0, b) b = 0.62 and c)b = 0.5.
The lower row depicts the Poincaré maps of the system. The main segments (corresponding to faces
of S∗3 ) are indicated by dashed lines.X(n) = X(n + 1) is shown by a dot-dashed line. a) Every-
where contracting Poincaré map with 2 discontinuities forb = 1.0 where only switchings at the lower
threshold take place. b)b = 0.7, c) b = 0.6 d) Bernoulli type Poincaré map forb = 0.5 where only
switchings at the upper threshold take place.

4.3 Dynamics and Bifurcations

The dynamics of strange billiards depends besides the configuration and theλ andµ
parameters also on the shape of the boundary, determined byb. In the following we
shall discuss the dynamics with respect tob as bifurcation parameter. We restrict our
analysis ton = 3 and consider the switched server system. Applying the results of
Sec.4.2.2the transfer to the switched arrival system is straightforward.

4.3.1 Properties of Poincaŕe Maps

For three tanks the dynamics is restricted toS∗3 which lies on a two dimensional man-
ifold, and is generally a 6-simplex. The boundaryδS∗3 is one dimensional. After
suitable changes of coordinates (T : δS∗3 → [0, 1];x 7→ X) and rescaling of the pa-
rameters the resulting Poincaré maps are piecewise linear maps of the unit interval
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onto itself (Fig.4.4). This normalized Poincaré maps are given in analytical form in
tableA.1(see Appendix A). By definition all branches of the Poincaré map are right-
continuous andq is a function ofX.
For b = 1 (whereS∗3 = S̄3 is a triangle (see Fig.4.3a) we obtain an everywhere
contracting piecewise linear map with three different branches and three discontinuity
points (Fig.4.4d). Forb = 1/2 a Bernoulli type map with six segments of constant
slope and two discontinuities arises (Fig.4.4f). The branches are given by the trans-
formed coordinates of the vertices ofS̃3 and their pre-images onδS̃3. For the switched
server systems in between the limit casesb = 1 andb = 1/2 we obtain a parameter de-
pendent morphing between an everywhere contracting map and a Bernoulli type map
(Fig. 4.4e). The mechanism, typical for strange billiards, is the expansion of linear
branches and the creation of new branches of the map with decreasingb.
In general, the maps have 6 main segments, associated with the 6 faces ofS∗3 , de-
noted assx1=0, sx3=b, sx2=0, sx1=b, sx3=0, sx2=b in this sequence. Each of the 6 seg-
ments possesses a number of sub segmentsg (up to three sub segments forsxi=b and
up to two for sxi=0 ), where the slope of the Poincaré map is constant. Whereas
the exact slope (a(g) with a < 0 everywhere) is defined by{λi|i = 1, 2, 3}, some
general properties depend only on the main segments (faces ofS∗3 ) to which the sub
segment maps. We denote the possibilities for the segments: A segment belonging to
g(sxi=b 7→ sxi=0) or g(sxi=0 7→ sxi=b) hasa = −1, providing interval exchanges. A
segmentg(sxi=b 7→ sxj=b) hasa < −1 and segmentsg(sxi=0 7→ sxj=0) contribute
contracting branches (a > −1). For segmentsg(sxi=0 7→ sxj=b) the slope is given
by a = −(λi/λj) and the associated branches are contracting, neutrally or expanding
depending on{λi} . Thus, for the strange billiard expanding properties are closely
related to faces wherexi = b.

The discontinuities of the map are given by the verticessx1=0/sx3=b, sx2=0/sx1=b

andsx3=0/sx2=b. By construction a further discontinuity at the pre-image of the point
where we slicedδS∗3 , (i.e. the vertexsx2=b/sx1=0 andsx2=b/sx3=b for b = 0.5) is ob-
tained. It is obvious that not all branches are present for allb. Moreover, the properties
of some branches depend on{λi}. Thereforedifferent types of maps, connected with
different admissible orbits specify the dynamics for differentb. This is crucial for the
occurrence of chaotic behavior. A chaotic attractor is governed by more local expan-
sion than contraction during its evolution. Therefore chaotic behavior is only possible
if branches with expanding properties exist and are visited sufficiently often. A sim-
ple example for the creation of expanding branches and the associated change of the
dynamics is depicted in Fig.4.5a. Here withλi = 1/3 the only expanding segments
g(sxi=b 7→ sxj=b) appear simultaneously forb < 2/3 (which can be derived from
simple geometrical arguments) and in this parameter region also chaotic behavior is
obtained.
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Figure 4.5: Bifurcation diagrams for three tank switched server models showing the normalized bound-
ary coordinateX vs. maximum tank capacityb. The main segments are indicated by dashed lines.
a) filling ratesλ1 = λ2 = λ3 = 1/3.

b) filling rates λ1 = 0.3, λ2 = 0.4, λ3 = 0.3.
c) filling rates λ1 = 0.49, λ2 = 0.11, λ3 = 0.4.
d) filling rates λ1 = 0.45, λ2 = 0.15, λ3 = 0.4.
e) filling rates λ1 = 0.15, λ2 = 0.8, λ3 = 0.05.
f) filling rates λ1 = 0.1, λ2 = 0.6, λ3 = 0.3.

Note, that all bifurcations in this diagrams are border collision bifurcations, occuring from collisions of
periodic points with borders of subsegments of the Poincaré maps.
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4.3.2 Bifurcations in three tank switched server systems

In a parameter region where neither new segments appear nor existing segments van-
ish, the slope and (dis-) continuity of the branches are invariant for changingb but their
end points and extension are altered. In this case abifurcationcan occur, if a point of a
periodic orbit of the map hits the border of a segment. At this border the map is either
continuous or has a discontinuity. In the billiard picture the hit of a segment border
corresponds to a reflection point at the boundary, that hits a vertex. In view of the dif-
ferent numbers of segments for differentb, the number of critical points in the maps
and the fact that the segments are relatively small, it is clear that the entire structure of
the dynamics of strange billiards can be quite complicated. Figure4.5provides some
examples of bifurcation diagrams. For some areas in the parameter space orbits with
marginal stabilitymay occur due to the fact that expansion and contraction for the
orbit cancel each another. This typically requires a certain symmetry for the velocity
vectorsvq.
In generalcoexisting attractorstouching different subsets ofδS∗3 are possible.
If a periodic point moves from one segment (slopeaL) on a continuous branch to an-
other with slopeaR border collision bifurcationsof continuous piecewise linear maps
(see Chap.3) can occur. Because all slopes in the Poincaré map are smaller than zero,
either both slopes of the segments (in an n-fold Poincaré map for a periodic orbit)
are greater than zero (even period) or smaller than zero (odd period). Therefore, as
discussed in Sec.3.2 , three cases of border-collision bifurcations of continuous maps
for periodic orbits can occur here:

1. If |aL| < 1 and|aR| > 1 a period doubling bifurcation takes place if 3. does not
apply.

2. If |aL| < 1 and|aR| < 1 there is a unique attractor on both segments, only the
path of the fixed point changes.

3. If both slopes are smaller than zero (aL > −1 andaR < −1) and1 − aRaL < 0
the periodic attractor vanishes.

An example of aborder collision bifurcationis depicted in Fig.4.6. For decreasing
b a period-3 orbit exists up to the moment where the face ofx1 = b hits the periodic
point onsx3=0 (↑ in Fig. 4.6a,c). There the fixed point in the three-fold Poincaré map
(Fig. 4.6b) crosses from the segment with slope(−1 < a < 0) to the segment with
slope(−2 > a) and a period-6 attractor is born. With decreasingb the reflection points
of this attractor move alongδS∗3 as shown in Fig.4.6c. The next border crossing occurs
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Figure 4.6: a) Bifurcation diagram for a three tank switched server model with filling ratesλ1 = 0.26,
λ2 = 0.49, λ3 = 0.25. b) Part of the three-fold Poincaré map in the sectionx2 = 0 atb = 0.670, c) The
period-3 orbit (solid line) atb = 0.672 before the border collision, and the period-6 orbit (dashed line)
at b = 0.670 after the bifurcation, d) The modified period 6 orbit atb = 0.668 after border crossing

when the reflection point of the period-6 attractor crosses the vertexsx2=b/sx1=0 (↑ ∗
in Fig. 4.6a,d) but no bifurcation takes place (0 < aL,R < 1 in the 6-fold Poincaŕe
map) only the path with respect tob is altered. A second border collision bifurcation
(not depicted in Fig.4.6) will follow when a reflection point of the orbit hits the vertex
sx2=0/sx3=b. As the example shows it is typical for strange billiards that bifurcations
occur on different branches in a rapid sequence if the orbit contains reflection points
on faces withxi = b.

Whereas the role of border collision bifurcations of continuous maps in the entire
scenario is limited, thediscontinuitiesare in some sense essential for the dynamics of
the systems. When due to varyingb a periodic point hits a point of discontinuity, it is
mapped to a completely distinct site. It is well known that critical points caused by
a discontinuity can induce a rich variety of dynamical behavior in maps on the unit
interval.This includesperiod adding scenariosand unusual transitions to chaos as al-
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Figure 4.7: a) Bifurcation diagram for a three tank switched server model with filling ratesλ1 = 0.15,
λ2 = 0.8, λ3 = 0.05 (compare Fig.4.5c) b) Reduced return map forsx2=0 at b = 0.70. c) Reduced
return map forsx2=0 at b = 0.682. d) Stable period-5 orbit forb = 0.7 given by the stable fixed
point at the first segment of the reduced return map. e) Sample trajectory from the chaotic attractor at
b = 0.682.

ready discussed in Sec.3.3.
For a detailed investigation it is often useful to consider return maps for a subset of
X, preferably of a main segment or face of the 6-simplex onto itself instead of the
full Poincaŕe map. Suchreduced return mapscontain a number of segments, typically
associated with topologically different paths which map (usually within different num-
bers of iterations) points located on the choosen subset back to this subset.
Figure4.7gives an example of a bifurcation scenario involving a discontinuity. The
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a) b) c)

Figure 4.8: Examples of the functionM : X 7→ ∆t for a three tank switched server system, filling
ratesλ1 = 0.3, λ2 = 0.4 (cf. Fig.4.5).The upper threshold is varied: a)b = 1.0, b) b = 0.6 and c)
b = 0.5. The main segments ofX(corresponding to faces ofS∗3 ) are indicated by dashed lines.

only relevant discontinuity for the considered family of attractors is the one located
at the vertexsx2=0/sx1=b (marked by↑ in Fig. 4.7a,d,e). We obtain the reduced re-
turn mapH for the facesx2=0 (Fig. 4.7b,c). Here, the discontinuity in the reduced
return map forsx2=0 separates branches where the orbits return tosx2=0 within the
fifths iteration and those where the orbit returns within the third iteration. Forb = 0.7
a stable period-5 orbit is obtained, indicated by a stable fixed point on the leftmost
segment of the reduced return map (Fig.4.7b,d). After border collision bifurcations
for decreasingb all segments ofH become involved in the attractor formation.

4.3.3 Dynamics of Switching Times

To describe thefull dynamics of the hybrid systemnot only the filling levels (x) of the
tanks or their transformed equivalentsX (given by iteration of the Poincaré map) at
the switching times are required but also the switching timestm or the intervals∆tm.
The interval∆tm for given rates and tank capacities in a switched server system is
uniquely determined byx(tm) or X(tm) and is given by a piecewise linear function
M : [0, 1] → R, X(t) 7→ ∆t. Some typical examples of this function are depicted
in Fig.4.8 for different thresholdsb. The functionM = M(X,λ, b) has segments
located at the same locations as these ofG(X,λ, b) : X(tm) 7→ X(tm+1) since the
time to the next switching (i.e. the next hit of the boundaryδS∗) is proportional to
the distance of the next boundary segment in the direction of the determined velocity
vector. The functionM(X) can be determined analytically. The segments ofM(X)
are of constant slope, determined by{λi} and for segmentsm(sxi=b 7→ sxi=0) and
m(sxi=0 7→ sxi=b) M(X) = const. The functionM(X) is not invertible.
Moreover, a map that considers∆tm 7→ ∆tm+1 is in general not unique (see Fig.4.9
for an example). Only for systems where all (fill) rates are equal and eitherb = 1 or
b = 1/2 this map is unique and allows a study of the systems dynamics directly from
successive inter-switching time intervals∆tm.
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a) b)

c) d) e)

Figure 4.9: Examples of bifurcation diagrams and numerically estimated distributions of inter-
switching time intervals∆t. The bifurcation diagrams of∆t vs. the maximum tank capacityb for three
tank switched server systems in the first row are computed for a):λ1,2,3 = 1/3 and b)λ1 = 0.15,
λ2 = 0.8, λ3 = 0.05 (cf. Fig.4.5a,e). c) Example for a map∆tm+1 vs. ∆tm (computed for
λ1 = λ3 = 0.3, λ2 = 0.4 andb = 1/2) d),e) histograms of inter-switching times for a three tank
switched server system with the parameters a). d)b = 0.6, e)b = 1/2.

However, a bifurcation diagram oft vs. the maximum tank capacity contains simi-
lar information on the system dynamics as a bifurcation diagram of normalized bound-
ary coordinates with two major drawbacks (c.f. Fig.4.9a,b and Fig.4.5a,e). Firstly, the
period of∆t allows no conclusion on the period of the hybrid system since tanks that
obtain equal (filling) rates produce switching time intervals that are equal and do not
distinguish the different tanks. Secondly, whole boundary segments of the simplex in
the countinuous part of the state space (those that mapm(sxi=b 7→ sxi=0)) lead to only
one value for∆tm.
If we consider the series of switching events asdeterministic point process, the in-
variant probability density of inter-switching time intervalsp(∆t) is of interest. This
probability density can be obtained byp(∆t) = M(X)p(X) if the invariant proba-
bility densityp(X) of the Poincaŕe map is known. For periodic orbits of the hybrid
systemp(∆tm) is a set of someδ peaks. For intermediate tank capacities, even if the
hybrid system is chaotic, some inter-switching times will occur with a high probabil-
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ity due to the horizontal segments inM(X) and generally in some intervals of∆t,
p(∆t) will be zero. Only in the limiting case ofb = 1/2 where the hybrid system is
chaotic and the Poincaré map has a piecewise constant invariant probability measure
evenp(∆tm) will be a piecewise constant function. Fig.4.9d,e provides two examples
of numerically estimated histograms ofp(∆t).

4.3.4 Complexity of Symbolic Dynamics

For hybrid systems of the discussed type two types of symbolic dynamics can be con-
sidered. The first type is the usual symbolic dynamics of the Poincaré maps. Once a
generating partition for the Poincaré map is found the symbolic dynamics is a useful
tool for analytical studies. On the other hand we have the symbolic dynamics in-
duced by the discrete states of the hybrid system. If we label different states of the
hybrid system with symbols, the temporal evolution of the system produces a sym-
bol sequence. Each segmentg of the Poincaŕe map, or section of the faces ofδS∗3 , is
uniquely associated with a symbol that equalsq for the time interval until the next hit
of the boundary in the hybrid system. In general this hybrid system related partition
of the map is neither generic nor generating. Only for special cases, as forb = 1/2 in
the switched server system, both types of partitions are equivalent and the entropy of
the symbol sequence of hybrid system states can be derived directly from the invariant
probability measure of the Poincaré map.

4.4 Further Models

4.4.1 Modified Switching Rules

As we pointed out above, the switching rules for the switched server system and for
the switched arrival system (at the lower and upper threshold, respectively) are not
predetermined by system requirements. Two further possible choices for the switched
server rule at the lower threshold are:

Serve the tank that needs the shortest time to become empty. (4.6)

Serve the tank that needs the most time to become empty. (4.7)

Apply rule 4.7unless tank 3 is empty. In that case serve the tank
that needs the shortest time to become empty.

(4.8)

All these rules imply, in contrast to the choice that was made in Sec.4.2 that every
boundary sectionsxi=0 contains two distinct subsections, where a switching leadsto
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Figure 4.10: Scheme of the vector fields for different switching rules. a) Cyclic switching rule4.2b)
Switching rule4.6and c) rule4.8.

a) b)

Figure 4.11: Bifurcation diagrams for three tank switched server models. The main segments are
indicated by dashed lines a) Filling ratesλ1 = 0.45, λ2 = 0.15, λ3 = 0.40, switching rule4.6 is
applied b) Same filling rates as a) but switching rule4.7 is applied. For the same system with rule4.2
compare Fig.4.5d.

different discrete statesq(t+m) and even to different velocity vectors. A sketch of the
resulting velocity vectors is depicted in Fig.4.10. The pointC, where the two subsec-
tions meet, is determined byxj(C) = (1−λj)/(2−λj −λk) at sidexi = 0 in the full
system wherex = (xi, xj, xk),λ = (λi, λj, λk) andxj(C) = 1− xk(C).

The main impact of such modified switching rules is an increasing number of criti-
cal points (discontinuities) in the Poincaré map. This essentially changes the admissi-
ble orbits and makes coexisting orbits more likely. On the other hand the fundamental
bifurcation mechanisms are not changed. Figure4.12shows two bifurcation diagrams
that are computed with the modified switching rules4.7and4.8.

Figure 4.12b provides an example where in a certain parameter region (around
b = 0.67) coexisting with a stable period-3 orbit another family of attractors undergoes
a period adding scenario (see Sec.3.3.2).
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a)

b) c)

Figure 4.12: Example of a period adding scenario obtained for a switched server system. a) Bifurca-
tion diagram. The main segments are indicated by dashed lines. Filling ratesλ1 = 0.5, λ2 = 0.25, λ3 =
0.25. Switching rule4.8 is applied. b) A section of a) showing a family of periodic attractors under-
going a sequence of period adding bifurcations. c) Reduced return map forsx3=0 at b = 0.674, same
parameters as b), showing the return map that provides the mechanism of the period adding scenario
(see Sec.3.3.2).

4.4.2 An Asymmetric Billiard

This subsection provides an example of a three tank switched server system, where
only to the first tank an upper thresholdb is assigned (Fig.4.13). In this hybrid system
different tanks are emptied with different priorities. Whereas the server stops instan-
taneously an emptying of tank two or three to serve tank one if its content reaches the
thresholdb, tank two is served only, if tank one was emptied in the foregoing time
interval. Tank three finally is only served, if tank two was emptied previously and the
content of tank one is below the threshold.
Now consider the dynamics of this asymmetric system. The balance condition is ap-
plied and all variables are normalized as in Sec.4.2. Every possible orbit has to strike
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Figure 4.13: a) Illustration of the continuous part of the state space of the switched server system with
an upper threshold assigned to the first tank only. b) Poincaré mapG of the system forλ1 = 0.2,
λ2 = 0.6, λ3 = 0.2 atb = 0.4. The main segments (faces of the parallelogram) are indicated by dashed
lines. c) The return mapH for sx1=0 → sx1=0, rescaled to the unit interval, same parameters as in b).

one point at the facesx1=0 within the second or third iteration. Therefore by sim-
ple geometrical arguments one may conclude, that there are three ways leading to a
mapping of the facesx1=0 onto itself. The dynamics of the system can be studied by
a family of three segment piecewise linear continuous maps constituting the reduced
return mapH : sx1=0 → sx1=0. We denote the paths and give the slopea of the asso-
ciated branches of the reduced return mapH:

g1 : sx1=0
2→ sx1=b

1→ sx1=0

⇒ a1 = 1

g2 : sx1=0
2→ sx2=0

3→ sx1=b
1→ sx1=0

⇒ a2 = λ2/(λ2 − 1)

g3 : sx1=0
2→ sx2=0

3→ sx3=0
1→ sx1=0

⇒ a3 = λ1λ2λ3/[(λ1 − 1)(λ2 − 1)(λ3 − 1)].
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a) b)

Figure 4.14: Bifurcation diagrams for an asymmetric three tank switched server system showing the
normalized boundary coordinateX vs. the upper thresholdb at the first tank. The dashed lines indicate
the main segmentssx1=0, sx2=0, sx1=b, sx3=0. The dynamics for the lowest segment in the bifurcation
diagramssx1=0 is given by the reduced return map. a) Filling ratesλ1 = 0.2, λ2 = 0.6, λ3 = 0.2, b)
Filling ratesλ1 = 0.1, λ2 = 0.7, λ3 = 0.2.

The full equation of the reduced return map on the unit interval is:

H(yn) = yn+1 =

 a1yn + d1 for 0 ≤ x(n) < c1

a2yn + d2 for c1 ≤ x(n) < c2

a3yn + d3 for c2 ≤ x(n) < 1
. (4.9)

with: a1, a2, a3 given above,c1 = 1 − b(1 + λ3/λ1), c2 = (1 − b)/λ2 − bλ3/λ1,
d1 = bλ3[(1− λ1)−1 + λ−1

1 ], d2 = 1 + bλ3/(1− λ1)− c1a2− b andd3 = λ3/(1− λ1).
The branchesg1 andg2 exist only if c1 > 0, c2 > 0, respectively. Thus existence
and expansion of branches depends onb again. The only expanding segment in the
full Poincaŕe map isg(sx2=0 7→ sx1=b) provided thatλ2 > λ1. For the dynamics this
expansion is effective ina2 of segmentg2 in the reduced return map. Forλ2 < 0.5 a
stable fixed point ong3 or g2 in the reduced return map is obtained, which corresponds
to a stable period-3 orbit in the full system. Forλ2 = 0.5 a stable period-3 orbit
exists as long asb ≥ (1 − λ1)/(0.5 + 1.5λ3). For smallerb a number of marginally
stable orbits exist and for some parameter regions also stable higher periodic orbits
occur (involving periodic points ong3 in the reduced return map). Ifλ2 > 0.5 the first
bifurcation atb = (1 − λ1)/(λ2 + λ3 + λ2λ3) is a period doubling border collision
bifurcation. For smallerb in this case further bifurcations and chaotic orbits occur.
For smallb, where segmentg3 is not admissible fromg1 or g2 the dynamics is that
of the skewed and shifted tent map consisting ofg1 andg2. In this parameter region
depending onλ2/(λ2 − 1) chaotic interval attractors are obtained (see Sec.3.2.2).
Thus for the asymmetrically assigned threshold the possibility of the system to behave
chaotically is determined by the value ofλ2. Figure 4.14provides two examples of
bifurcation diagrams for this system.
If the segmentg3 in the reduced return map is not reachable due to a smallb even a
special dynamical situation is obtained. Whereas the hybrid system may be chaotic,
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the dynamics of the first, restricted tank remains periodic. It will be repetitively filled
up to its maximum capacity and completely emptied afterwards. This behavior is
shown in Fig.4.15.

a)

x1 x2

x3

b)

x1(t)

x2(t)

x3(t)

q(t)

Figure 4.15: Example of the trajectory (a) and time series (b) of a three tank switched arrival system
with an upper threshold (b1 = 0.3) at the first tank only. Parameters.λ1 = 0.2, λ2 = 0.6, λ3 = 0.2.
Note that the content of the first (restricted) tank fluctuates periodically whereas the whole system is
chaotic (cf. Fig.4.14)

4.4.3 A Three Tank System with Four Discrete States

So far we have considered models of switched flow systems which involve one switch-
ing server. In the following we give an example of a system that involves two servers
where each can be attached to only two tanks but both are connected through a com-
mon tank (Fig.4.16). Therewith we wish to emphasize two aspects. Firstly: Con-
nections of switched flow systems can exhibit chaotic behavior even if subsystem are
not able to show it (clearly, a two tank switched arrival system is not chaotic and a
two tank switched server system also). Secondly: For more complicated systems the
successive hits of the boundary may not be determined uniquely from a section of the
boundary in the continuous part of the phase space but may depend on the foregoing
discrete stateq, too. So we have to use Poincaré maps with different leaves, or in other
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words: the Poincaré map becomes a hybrid map.
The switching rules are as follows:

Server I switches instantaneously , if one of the tanks A or B is
empty to the empty one and begins to fill it up to the next switch.

(4.10)

Server II serves one tank, up to the moment where it is empty and
starts then the service of the other one and so on.

(4.11)

We consider different filling (λi) and emptying rates (µi) for each tank and setρi =
λi/µi. The system’s dynamic is nontrivial ifρ1 > 1 andρ3 < 1. Otherwise the server
I can never leave tank A, server II stays forever at tank C and the total content of the
system approaches infinity.
We obtain four possible discrete states associated with four possible velocity vectors
{vi|i = 1, 2, 3, 4} for the whole system, named AB, AC, BC and BB, where the first
capital names the tank that is filled by server I and the second the one, which is emptied
by server II. Figure4.16b shows a state transition diagram for these four states with
the parts of the boundary, where the transitions occur. The system is balanced if

ρ2 =
1− ρ3

1− ρ−1
1

. (4.12)

The fraction of time, where the arrival of server I is placed on A is determined byρ1, as
well as the time, where server II serves C is determined byρ3. Because B can be filled
by server I only during a fraction of time1 − ρ−1

1 and will be cleared in a fraction of
size1−ρ3 by server II the two flowsρ1 andρ3 completely define the relation between
λ2 andµ2. As in the former models, the balance condition implies for this system, that
the dynamics is restricted to a hyperplane in the continuous part of the phase space
that is spanned by the velocity vectors{vi}. With the switching conditions a normal-
ized form of the bounded region can be given asSE = {x ∈ R3|

∑
i cixi = 1, xi ≥ 0}

whereci are coefficients1 (depending on{λi, µi|i = 1, 2, 3}).SE is a generally not
equilateral triangle.

Even for this system we obtain a Poincaré map by considering the mappingδSE →
δSE and a normalization to a map of the unit interval onto itself. Here the main
segments of the map are given by the boundary segments ofSE i.e. sx1 = 0, sx2 = 0,
sx2 = 0, wher the switching processes of server I and II take place. An example of
this map is depicted in Fig.4.17. ThePoincaŕe mapfor this system isnot unique. It is
hybrid, because the branch of the map that must be used for an iteration depends on
whether the upper path of the state transition diagram (Fig.4.16b) is recently used or

1We obtainc1 = n[λ1λ2(λ3 − µ3)/(µ1 − λ1)], c2 = n[λ2
1(λ3 − µ3)/(µ1 − λ1)], c3 = n[λ1λ2],

wheren is a normalization factor such that1 = [c21 + c22 + c33]1/2.
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Figure 4.16: Scheme (a) and graph representation of the symbolic transitions (b) for a switched tank
system involving two switching servers

the lower one. We denote these paths by the discrete state transitions that are made,
i.e (BC,AC,AB) for the upper one. The decision between the paths depends on the
subsegment ofsx2=0 to which the system is mapped in stateAB. We can simplify

the complete Poincaré map by introducing areduced branch2 H : sx2=0
(BC,AC,AB)−→

sx2=0, shown by a dashed green line and labeled with(BC,AC,AB) in Fig.4.17,
summarizing the mapping under the upper path of discrete state transitions. This
reduced branch is crucial for the dynamical behaviour, therefore we give its slope:

a(BC,AC,AB) = ρ1ρ3. (4.13)

The reduced branch intersects the diagonal(X(n) = X(n+ 1)) if

ρ−1
1 + ρ3 > 1. (4.14)

It turns out, that the dynamics of the system depends crucially on the choosen pa-
rameters{λi, µi}. We shall discuss some possibilities.

Case 1:ρ2 > 1, ρ1−1 + ρ3 > 1
If ρ2 > 1 the content of tank B grows as long as the system is in state BB. The edge

BB
x2=0−→ BC in the state transition diagram (Fig.4.16b) is never reached.

If condition 4.14 is fullfilled, then there exists a stable fixed point for the mapping

H : sx2=0
(BC,AC,AB)−→ sx2=0, because from Eq.(4.13) and Eq.4.12with ρ2 > 1 follows

that |a(BC,AC,AB)| < 1. Thus we obtain a stable periodic orbit of the system in this
case. Fig.4.18shows an example. For the system the state BB is under these condi-
tions a ”garden eden” state, a state that can only occur if given as initial condition and

2With the introduction of this reduced branch the hybrid Poincaré map becomes a unique mapping
of the unit interval onto itself.
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BC

AB

AC BC

AB

BB

(BC,AC,AB)

Figure 4.17: Poincaŕe map for a switched tank system involving two switching servers withλ1 = 3.0,
λ2 = 0.75, λ3 = 1.0, µ1 = 1.0, µ2 = 1.0, µ3 = 2.0. The main segments of the boundary (sx1=0,
sx2=0, sx3=0,) are indicated by dashed lines. The Branches are labeled with the symbolic states for
which the transitions occur. The red branches correspond to an symbolic orbit (BC,AC,AB) in the
transition graph (the upper path in Fig.4.16b). The dashed green branch is the summarized result of this
path. For a iteration of this hybrid Poincaré map the transition graph Fig.4.16b must be considered to
choose the next branch, where two possibilities are given.

then never reached again.

Case 2:ρ2 = 1

Even ifρ2 = 1 the edgeBB
x2=0−→ BC can not occur, moreover in state BB the content

of tank B remains constant as in the state AC. In other wordsvBB = −vAC and both
velocity vectors are parallel to the edgesx2=0 of the triangle in the continuous part
of the state space. The assumption of equal inflow and outflow for the second tank
(ρ2 = 1) implies that the relation between in- and outflow for the first tank A meets
the relation of out- and inflow for the third tank C (ρ1 = ρ−1

3 ).
In this case periodic orbits with a symbolic sequence composed of(BC,AC,AB) and
(BC,BB,AB) sequences are obtained. A special situation occurs ifρ−1

1 = ρ3 = 1/2.
This implies that the velocity vectorsvAB andvBC are parallel and of opposite direc-
tion in the strange billiard. Thus every orbit(AB,BC,BB,AB,BC,AC) runs the
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Figure 4.18: Sample of trajectories and time series for the switched tank system with two switching
servers, illustrating theρ2 > 1 case (first column) and theρ2 < 1 case (second column).(a):λ1 = 21/2,
λ2 = 2.0, λ3 = 1.2750..., µ1 = 1.0, µ2 = 0.9859..., µ3 = π.,(b):λ1 = 3.0, λ2 = 0.75, λ3 = 1.0,
µ1 = 1.0, µ2 = 1.0, µ3 = 2.0.

same way back and forth in the continuous part of the phase space, and all orbits of
this form are marginally stable.

Case 3:ρ2 < 1.
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Only if the second tank can become empty even in state BB the full transition diagram
of Fig.4.16b applies to the system. In this case the system is chaotic. See Fig.4.18for
an example.

4.5 Summary

We have analyzed the dynamics of two basic types of hybrid tank systems with switch-
ing servers from the viewpoint and with methods of Nonlinear Dynamics. Due to the
continuity of the trajectory at the switching points in the continuous part of the state
space their behavior can be characterized as a strange billiard. In Sec.4.2 we have
shown that with the introduction of upper thresholds switched arrival and switched
server systems, two previously as contrasting examples for the dynamics of switched
flow systems described types are limit cases in one and the same system and recipro-
cal. This seemingly simple relation was not recognized before. For systems with three
tanks these limit cases show chaotic and periodic dynamics both in switched server
and switched arrival systems.
By sampling the dynamics at the switching points for systems with three tanks one
dimensional piecewise linear Poincaré maps were obtained and discussed in detail.
When the bifurcation parameterb is varied, linear segments of the Poincaré map ap-
pear, disappear and change their extension whereas the slope of the segments is con-
stant. We have demonstrated that the change of extensions and the associated shift of
segments leads to bifurcations in the strange billiard. These bifurcation scenarios are
built (exclusively) from sequences of several border collision bifurcations. Sometimes
these bifurcations arise in a rapid sequence at different segments of the Poincaré map.
These scenarios are therefore very different from the usual bifurcation scenarios, ob-
tained for smooth maps on the unit interval. The dynamics here is governed by an
interplay of expanding and contracting properties in connection with discontinuities
of the Poincaŕe maps. Typical bifurcation mechanisms are discussed and illustrated
with bifurcation diagrams. For a detailed study of bifurcations in certain intervals we
used reduced return maps which are often simpler than the full Poincaré map. This
technique may be useful in other cases too.
For more complicated systems such as those considered in Sec.4.4.3 the successive
hits may not be determined uniquely from a section of the boundary in the continuous
part of the state space anymore but depend on the foregoing discrete stateq too. In
this case we obtain hybrid Poincaré maps.
Here we did not consider any higher dimensional system with more than three tanks.
Such systems will lead in a natural way to higher dimensional piecewise linear maps
with even more complex dynamics.





5 Modeling of Manufacturing Systems

In this chapter modeling of manufacturing systems as an application of hybrid models

is discussed. Specifically we investigate the previously introduced switched server

and switched arrival systems for the interdependencies between switching policies,

switching thresholds and thelogistic performance.

After a general introduction concerning some aspects of modeling manufacturing

systems at a logistic level as dynamical systems (Sec.5.1) we introduce some

extensions to the switched server and arrival systems to include set up times which

are often unavoidable in manufacturing (Sec.5.2). In Sec.5.3 an analysis of the

performanceof this dynamical systems from a logistical point of view is done.

Finally, in Sec.5.4 we present numerical evidence, that the dynamics of discrete

deterministic queuing models is similar to the dynamics of hybrid models.

In the context of manufacturing systems our investigations lead not only to the

conclusion that for a given layout and policy the dynamics of a system may be

affected significantly by restricted buffer sizes, but also shows the complex relation

between system parameters, dynamics and performance.

5.1 Manufacturing Systems and Hybrid Models

The basic unit of most manufacturing systems is awork stationcontaining a server
(e.g., a machine) to perform some processing and abuffer, queuing the material be-
fore it can be processed. In practice the meaning of servers and material may be very
different from system to system. A server may represent a machine or a group of
machines (dubbed ”job shop” some times) in which case the material are work pieces
processed in a factory. Otherwise the ”material” may be a group of passengers for a
scheduled flight, waiting for an aircraft, or at another level, some aircrafts that have
absolved a number of flights, and are waiting for a maintenance phase. Or the material
are data packets originating from a computer network, that have to to be scheduled to
their destination.
From these randomly picked examples it is obvious that a large number of man made
systems, which can be considered even at different levels of coarse-graining (one may
think of a hierarchy like machines, job shops, factories, supply chains) fit into the gen-
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eral description.

However, modern manufacturing systems are typically large networks of various
production and storage facilities. Their dynamics is governed by complex, system
immanent interdependencies involving both deterministic and stochastic elements as
well as unforeseen external influences. A basic feature of most manufacturing systems
is theexistence of policies, controlling the allocation of scarce resources among com-
peting tasks. It is of great importance for operators of such manufacturing systems to
know how the policies may influence the time evolution or even the performance and
profitability of the manufacturing process. Also knowledge of the dynamics of such
processes is urgently needed for planning and control of manufacturing.

Traditionally the investigation of manufacturing systems is addressed inoperations
research, mainly in the context of a large area calledqueuing theory. The classical
queuing theoryfocuses on the influence of stochastic arrival and departure processes
on the formation of queues, mostly in the language of equilibrium solutions. However,
in the framework of queuing theory the evolution of systems in time is hardly to obtain
and the distributions of inter-event times in modern manufacturing, which are often
restricted and have small variances are difficult to handle in a stochastic formulation.
Thus a number of recent investigations came up with the description ofmanufacturing
systems as deterministic dynamical systemsto overcome the restrictions of queueing
theory and develop a new framework for efficient modeling and analysis of industrial
processes (see [22] and references therein).

In the context of dynamical systemsrule (policy) dependent switchingsbetween
different operation modes (and parameters) are essential nonlinearities, leading to
complex behavior in manufacturing systems. To analyze such influences it is rea-
sonable to neglect any stochastic influence and the discreteness of the material flow.
This approach leads to dynamical systems consisting of piecewise defined continu-
ous time evolution processes interfaced with some logical or decision making process.
These approximations lead in a natural way tohybrid dynamical systemsas models of
manufacturing systems.

With a hybrid modeling approach we shall not try to account the ”complexity” and
confusing structure of interactions that arises in a 1:1 model of a large production
facility. In particular for investigations of mainly stochastically determined behavior
that characterizes production systems which are strongly influenced by humans and
sudden random breakdowns of installations queuing theoretical methods are naturally
the best choice. But individualautomated subsystemsare comparatively well defined
and seem to be promising candidates for a hybrid modeling approach.
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Figure 5.1: Diagrams of basic structures of automated production lines, after [66]. a) Linear, b)
Reentrant systems: ServerA needs a policy to decide whether stream 1 or stream 2 should be processed.
c) m:n junctions, here referred to as switched server and switched arrival systems, station A needs a
policy to decide which of the following stations should be filled or which of the foregoing stations
should be served.

Suchautomated production linesare networks, build from very few basic concate-
nation principles [66]. Fig. 5.1 shows diagrams of tree basic types. Besides pure
sequential configurationsandreentrant structuresalso so calledm:n junctionswhere
one machine has to serve a number of foregoing workstations or one workstation has
to deliver products to some subsequent stations appear. Most of the real world m:n
junctions are2 : 1, 1 : 2 or 1 : 3 and3 : 1 catenations [106]. The latter configuration
shall be investigated here. Inside a larger production facility these basic configura-
tions may occur in several combinations in the same production network. However,
any scientific approach should at first try to understand the dynamical features of such
basic configurations.

5.1.1 A Brief History of Hybrid Modeling for Manufacturing Systems

One basic idea of hybrid modeling, the approximation of the discrete flow of items
by a continuous flow which can be described by a differential equation is not new. It
was frequently used as simple example in queuing theory (see [64], vol.II ) as well as
in the production engineer’s community where it is also known as ”funnel approach”
[82].

To our knowledge, the first work that used a hybrid modeling approach to study
the dynamics of a system that falls in the above outlined class of manufacturing sys-
tems appeared in 1991. In [45] a hybrid model for telephone traffic switching systems
incorporating two buffers, a switching server and a time delayed feedback loop was
analyzed by means of Poincaré map techniques and oscillatory behavior and chaos
were found. The paper closes with the programatic words: ”More generally, there is
a need to view teletraffic systems as dynamical systems whose behavior can substan-
tially influence performance.”
The investigation of deterministic models of manufacturing systems received a further
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impulse from the pioneering works of Beaumariage and Kempf [13] who observed
in a number of simulations of simple models ofreentrant structuresa sensitivity to
initial conditions and parameter changes that led to the conjecture of chaotic behavior
in these systems. In a number of following investigations [41, 42, 55] this conjecture
was proofed to be invalid, but it was demonstrated that methods of nonlinear dynamics
can be successfully applied to understand the dynamics of manufacturing systems.
M to n connections in manufacturing systems in form ofswitched server and switched
arrival systemswhere investigated in Chase et al. [25] and in [92, 98, 59, 63, 62, 87]
(see Chap.4). Whereas all these works were motivated partly by the occurrence of
switched server structures in manufacturing systems the consequences of dynamics
for the performance were addressed only in [63, 62, 87] for the switched arrival sys-
tem with unrestricted buffers.
Another field of manufacturing systems for which hybrid models were successfully
considered is the understanding ofsupply chain dynamics. The problem making the
management of supply chains a challenging task is the delay between an incoming or-
der (orientated at the actual demand) and the delivery date. This delay causes usually
a mismatch between the delivered amount of goods and the actual demand (which is
less or higher than the previous one). Supply chains can be modeled by hybrid sys-
tems with timed events, since the orders are made usually at fixed time instants and
the delivery will also be done at fixed times. The processing of orders, however, is
a continuous process. A basic model also known as the ”beer game” was studied by
means of a hybrid modeling approach (see [68] and the references therein).
Last but not least the works [12, 11, 22] on deterministic hybrid models of different
forms of the Toyota Sewn Products Management System (TSS) should be mentioned
here. In principle the question is addressed how the work of a limited number of
workers at a street of (sewing) machines should be organized, if the worker carry their
workpieces from machine to machine, usually with different work speeds, since they
are more or less skilled. For such systems where the workers are sequenced from
slowest to fastest, the termbucket brigadewas coined by Bartholdy and Eisenstein
[12]. In [11] by hybrid modeling piecewise smooth maps for two and three worker
systems1 where derived and for a two worker system a fixed point could be identified
that corresponds to an optimal production rate.

5.1.2 Switched Arrival and Server Systems in Manufacturing

As mentioned above (see Fig.5.1) layout structures where one work unit has to load
a number of subsequent units or one unit has to server some foregoing workstations
appear as basic concatenation principles in manufacturing. Because the parallel (fore-
going or subsequent) work units in general may process different products such con-
nections are generally operated under scheduling policies summarized under the term

1Many real life systems operate with only a few workers.
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IFA

Figure 5.2: Part of a production line for crankshafts as example for a switched arrival system [107].

CAF ”clear-a-fraction” . That means the server picks one of the parallel buffers and
serves it at its full ability until a switch to another buffer is required by any rule.
In Chap.4 we have investigated such configurations as switched arrival systems and
switched server systems. In particular thebalanced regimewas considered, with a
total inflow into the systems that meets the total outflow. The balanced state guaran-
tees the normal operation of a manufacturing system and is in industrial engineering
assured under CONWIP (Constant work in process) policies. Theupper limitsapplied
to the tanks in Chap.4 are translated here in buffers with arestricted maximum capac-
ity. And buffers in manufacturing are allways of limited capacity.
We shall now review the main results from the investigations in Chap.4 in this context.
For switched arrival configurations that are chaotic for large buffer capacities, smaller
buffer sizes lead to a more regular (periodic) behavior. In switched server configura-
tions with three (or more) buffers small buffer capacities lead to chaotic behavior. The
onset of chaos can be very abrupt (cf. Fig.4.5f).
These results coincide with operational experience aggregated by production engi-
neers [106]. Despite of the fact that basically small buffers are favorite to keep the
inventory small and to reduce throughput times, it is empirically well known that in
some configurations to small dimensioned buffers cause several problems.
For a given configuration the behavior can be changed qualitatively (from chaotic to
regular dynamics for instance) by slight changes of policies (Sec.4.4.1). In view of
the parameter dependence of dynamics it depends on the given configuration whether
those measures are succesful and which rules should be choosen.
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The switched server system with only one upper threshold Sec.4.4.2 is a model
for a manufacturing system with three (or more) priority classes.The first (restricted)
buffer is has the highest priority in this model.

5.2 Manufacturing Systems with Set-up Times

Usually different buffers (i.e. tanks in hybrid models) contain different types of prod-
ucts. Thus in general a server incurs a ”set-up time”τ (a bounded delay) when chang-
ing over to serve a new tank. A set-up is needed to change tools, to make the switching
itself or to perform maintenance which would be scheduled if a buffer is not served.
During this time intervalτ the server is not able to work at its full ability causing
production losses and finally additional costs which are discussed in the following
section.

5.2.1 A Model for Switched Server Systems with Set-up Time

One way to take into account losses caused by set-up times is to assume a fixed amount
of costs for each switching. This implies in some sense that the whole system is
stopped for a timeτ and continues after this interval just at the same state it had be-
fore the switching took place.

On the other hand it is desirable to improve the switched server (arrival) models
by introducing an effective reduction of output in connection with switching events.
Therefore one may assume that a server can work during a certain setup time, but with
a reduced rate. To conserve the balanced state of the system a simultaneous reduction
of the total in- and outflow of the system is necessary.
Recently an additional switching rule2 was proposed for the switched arrival sys-
tem without restricted buffer capacities [87] for this purpose. If restricted buffers
or switched server systems are considered, this proposed rule is not feasible.

We consider here switched server systems with three buffers and the following

2This rule can be formulated as:

switched arrival systems, no upper threshold:
If a buffer (i) runs empty let the server for a certain timeτ stay filling the ”old”
buffer, but with a reduced rateλ∗ = 1− µi which matches the total outflow of
the remaining (non-empty) buffers. Afterτ switch the filling server to bufferi.
The filling rate recovers its normal valueλ = 1.
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Figure 5.3: Dynamics of a three tank switched server model (λ1 = 0.3, λ2 = 0.4, λ3 = 0.3) with an
additional set-up timeτ = 0.2. The rule5.1 is applied. a) Sample trajectory of the tank content atb =
0.6. b) Short time series of the buffer contentsxi(t) and the production rate (λ(t) =

∑
λi(t) = µ(t))

for the system if the maximum tank content isb = 0.6. Every time a switching is made, the production
shrinks.

additional switching rule:

If required, switch the server according to the rules given in Sec.4.
During a timeτ after a switching maintain the just left tank at its
previous level, i.e. this tank gets no input for the period of timeτ .
Also the emptying rateµ of the server is reduced by the rate that
normally applies to this just left tank.

(5.1)

This rule is applicable even for switched arrival systems and more than three buffers.
It may be also combined with different switching rules for the lower threshold in
switched server systems (Sec.4.4.1). For simplicity we require an identicalτ for all
switches. With the introduction of a set-up timetimed events(see Sec.2.1.1) are intro-
duced in the hybrid system, which previously was governed by state events only.

Furthermore, the additional rule implies a number ofnew discrete statesfor the
hybrid system. Besides the statesq = {i|i = 1, 2, 3} for three buffers where the
server is attached to bufferi and empties it with rateµi = 1 in the normalized system,
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Figure 5.4: State transition diagram of a three tank switched server model with a maximum buffer ca-
pacityb and an additional set-up time. The discrete states are labeled as described in the text. Transition
edges that are associated with state events are inscribed with this state event. The green edges (without
in-scripts) correspond to time event transitions. Note that in the discrete statesij,k (small circles) the
continuous state of the system remains constant.

six further discrete states occur where one tank is not filled (during the set-up time
following a switching). These states are denoted byq = {ik|i, k = 1, 2, 3 : i 6= k}
where the number (i) gives the buffer to which the server is attached and the subscript
(k) denotes the (just left) buffer that is out of filling. In these states the emptying rate,
i.e. the output rate of the system is reduced toµik = 1− λk and in the continuous part
of the phase space the associated velocity vectors are parallel to sidesxk=0, because
the content of bufferk stays constant for the periodτ . At the end of the time intervalτ
after a switch the discrete state jumps back (ik 7→ i), but it may happen that previously
the continuous state hits another boundary segment ofS∗3(b). In this case the server
switches, but for the remaining part of the intervalτ now whether the previously left
tank nor the recently left tank obtain input and the emptying rate associated with this
new discrete state, denoted byji,k, isµji,k = 1−λi−λk = λj. In other words, only one
tank is filled and emptied with the same rate and the continuous state of the system
is constant. Thus every switching process in the system is followed by a period of
reduced production rates. Figure5.4shows the graph of state transitions for the three
tank switched server system with set-up times applied according to rule5.1.
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Figure 5.5: Poincaŕe map (a) of a three tank switched server model (λ1 = λ2 = λ3 = 1/3) with
an additional set-up timeτ = 0.5 and a maximum buffer capacityb = 0.5. The rule5.1 and a cyclic
switching4.2 at the lower threshold is applied. The main segments (corresponding to faces ofS̃3)
are indicated by dashed lines.b) Different velocity vectors during the set-up time lead to an up and
downward shift of segments in the Poincaré map, depending on the foregoing discrete state. Without
a set-up time both depicted cases will be uniquely mapped under the dashed vector. c) Corresponding
sample of the trajectory in the continuous part of the state space.

5.2.2 Poincaŕe Maps and Dynamics

The additional rule implies a number of new discrete states for the hybrid system
(Fig.5.4). For three tanks we obtain six additional states where one tank is out of ser-
vice and six further states3 where two tanks simultaneously are out of service. There-
fore the introduction of a set-up time with reduced production rate also changes the
dynamical behavior (cf. Fig.5.6). Furthermore, the switches between different discrete
states occur not only at the boundaryδS∗3 and the following discrete state depends on
the previous one.

Since the following hit of the boundaryδS∗3 in the continuous part of the state space
is uniquely determined by the previous discrete state and the boundary coordinate a

3Since there are only three different emptying rates associated with these six states and the velocity
vectors in the continuous part of the state space are zero in all six cases, one may conclude that there
are only three or one states, respectively. However, to make the graph representation unique, we need
the full number of six discrete states with two buffers out of service.
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a) b)

Figure 5.6: Bifurcation diagrams of three tank switched server models with an additional set-up time.
The rule5.1 and a cyclic switching (rule4.2) at the lower threshold is applied. The main segments
(corresponding to faces of̃S3) are indicated by dashed lines. a)λ1 = 0.0, λ2 = 0.4, λ3 = 0.3, set-up
time: τ = 0.2. b)λ1 = 0.15, λ2 = 0.8, λ3 = 0.15, set-up time:τ = 0.5.

-now hybrid- Poincaŕe map for the mapping(δS∗3 , Q) → (δS∗3 , Q) can be obtained.
In the hybrid Poincaŕe map for the same normalized boundary coordinateX ∈ (0, 1)
two and three separate branches appear, depending on the number of discrete states
that can lead to a mapping to this value ofX. Figure5.5a gives one example of such
a Poincaŕe map. In middle positions of the faces, that can be reached only by states
with all buffers filled continuously, only two branches are present, one for each of the
possible discrete states. The slopes of these branches are the same as for the switched
server model without set-up times, but they are shifted upwards and downwards now
(see Fig.5.5b for an explanatory sketch). Only near vertices the continuous state of
the hybrid system may reach a new face of the boundary during the set-up time. In
this case also the third possible discrete state appears as a preceding state and a third
branch in the hybrid Poincaré map is visible.
The consequences of set-up times for the low periodic orbits (which are typical for
largeb in the switched server system) are not important because the orbits are only
slightly shifted compared to the systems without set-up times. But for smallerb the
dynamics is modified. Nevertheless forb approaching the limiting caseb = 0.5 sys-
tems with set-up times are chaotic. One may state, that the dynamics of switched
server systems with set-up times is similar to the systems without this set-up. Fig.5.6
gives examples of bifurcation diagrams for these systems.

We remark that in the model with set-up times the system can also stay at vertices
of S∗3 during set-up times with statesij,k and then evolve forward during the following
ij state. However, because of the hybrid nature of the Poincaré map an unique func-
tion between the normalized boundary coordinate and the inter-switching time∆t as
described in Sec.4.3.3for systems without set-up times does not exist.
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From the above considerations it becomes clear, that even slight changes to a hy-
brid model (like the introduction of set -up times) may complicate the structure and
analysis of the model significantly.Although it results in a similar dynamics. One
may argue that a part of these difficulties arises, because we wished to maintain the
balanced state during the set-up. But without this requirement a number of other prob-
lems is obtained. The modified model with set- up times deserves its attention here
mainly due to its natural application for the evaluation of performance of switched
server manufacturing systems in the following section.

5.3 Performance of Manufacturing Systems

In the foregoing chapter the influence of restricted buffer content and different switch-
ing rules on the dynamics of switched server and switched arrival systems was studied.
Now we address the question, how different dynamics may affect the performance of
manufacturing systems, modeled as hybrid systems.

5.3.1 Measures of Logistic Performance

From the viewpoint of production planning and control it is a basic challenge to eval-
uate thelogistic performanceof a manufacturing process. The interest in modeling
of manufacturing systems concerns not primarily the dynamics, but the estimation of
measures of profitability of the manufacturing process in particularly with regard to
lead time, due date performance and machinery utilization.
Utilization (ρ) means the ratio of work which is actually done by a production system
to its theoretical maximum performance (capacity). The maximum performance of a
server is the maximum rate at which it is able to empty (to fill) a buffer, in normalized
models given byµ = 1 (λ = 1). Practically the utilizationρ becomes smaller than
one if any disturbance reduces the actual production, as for instance during the set-up
time. Thus real production systems, where never an absolute lossless production can
be guaranteed, always obtainρ < 1. However, one of the often contradicting aims of
production planning and control is to keep the utilization as high as possible.
The second family of performance measures in production is related to thethroughput
timeT , given by the time difference between the entry time of a workpiece and its
departure time, and thework in process(WIP, inventory). Whereas a short through-
put time saves a quick completion of costumer orders a small level of WIP keeps the
capital, bounded in the manufacturing system in form of material, low. The latter vari-
ables are connected throughLittle’s Law for the mean values ofT (throughput time),
x (WIP) andλ (arrival rate):

〈λ〉 = 〈x〉〈T 〉. (5.2)
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This fundamental equation applies to all systems, regardless if they are stochastic or
not [69]. Since these measures are the data usually ascertained in real manufacturing
processes we give a number of examples for distributions of throughput times gen-
erated by deterministic models. Therewith it should be demonstrated that even pure
deterministic systems can show effects that may be similar to stochastic queueing sys-
tems, at least at superficially inspection.
In a practical view chaotic behavior, induced by small tank capacities for instance, has
two major consequences. On the one hand, the temporal evolution of tank (buffer)
contents is more difficult to predict in a chaotic system. On a statistical level this
spreads the distributions of inter-switching and throughput times and makes in general
the sequence of different products at the departure point irregular. Thus the production
planning may be affected. The performance of manufacturing itself is influenced by
the number of switchings per time interval for instance which strongly depends on the
dynamics.

5.3.2 The Costs of Switchings

For models without explicit production losses due to set-up times we study the per-
formance through cost functions. In the context of manufacturing two types of cost
functions have to be considered. Usually the set-up of buffer capacities causes costs.
For simplicity we assume that these costs are proportional to the maximum buffer
capacity and call them buffer cost:

kx = cb (5.3)

wherec is a constant. On the other hand consider the switching cost function:

kn = lim
T→∞

NT

T
. (5.4)

whereNT is the number of switches in the time intervalT . Here we assume that every
switching of the server causes fixed costs. The dependence of the cost functions on
the maximum buffer contentb for switched server systems is depicted in Fig.5.7.

For models designed according to Sec.5.2 the production loss due to switchings
can be calculated directly. We consider the production rate:

ρ = lim
T→∞

∫ T
0
dtµ(t)∫ T

0
dtµ0

(5.5)

whereµ(t) =
∑

i λi(t) is the actual emptying rate whileµ0 = 1 due to the normaliza-
tion. Fig.5.8provides some examples of production rates for switched server systems
depending on the maximum buffer capacityb.
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a) b)

Figure 5.7: Cost functions for three tank switched server systems vs. maximum buffer contentb. The
buffer costs forc = 3 are given by the three-dot-dashed line. a) The solid curve gives the switching
costs forλ1 = 0.3, λ1 = 0.4, λ1 = 0.3. The dot dashed curve gives the switching costs forλ1 =
1, λ2 = 0.8, λ3 = 0.1 and the dot-dashed curve forλ1 = 0.1, λ2 = 0.6, λ3 = 0.3. Compare the
bifurcation diagrams given in Fig.4.5.
b) Switching costs for a three tank switched server system (λ1 = 0.45, λ1 = 0.15, λ1 = 0.4) under
different switching rules. Solid line: a cyclic switching rule (rule4.2) is applied, dashed line: rule4.6
is applied, dot-dashed line: rule4.7 is applied. Compare the bifurcation diagrams given in Fig.4.5and
Fig.4.11.

a) b)

Figure 5.8: Production rateρ(b) vs. maximum buffer content shows production losses due to set-up
times for three tank switched server systems operated with rule5.1. Note that a lossless production will
result inρ = 1.0. a) ρ(b) for different parameters and a set-up timeτ = 0.2. The solid curve gives
ρ(b) for λ1 = 0.3, λ1 = 0.4, λ1 = 0.3. The dashed curve is forλ1 = 1, λ2 = 0.8, λ3 = 0.1 and the
dot-dashed curve forλ1 = 0.1, λ2 = 0.6, λ3 = 0.3.
b) Production rateρ(b) for a three tank switched server system withλ1 = λ3 = 0.3, λ2 = 0.4 if
different set-up times are applied. Solid curve:τ = 0.1, dashed curve:τ = 0.2 and dot-dashed curve:
τ = 0.3.

Every attractor of the system has its own switching costs and production rate, re-
spectively. Therefore discontinuities in the switching cost function and production
rate are typical if the system changes the attractor. The switching costs become high
(and the production rate shrinks) if the attractor comes close to vertices, because there
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the time interval to the next switching is short. It is obvious in the examples that the
chaotic behavior for smallb reduce the performance of switched server systems.
Since it is common in the community of industrial engineers to consider”character-
istic curves”, the curves in Fig.5.8 may be regarded as such. But these curves are
characteristics for special deterministic systems with buffers of maximum sizeb and
should be not confused with theρ vs. 〈b〉 (here〈b〉 is the mean queue length) curves
usually applied in production planning [82] that have a similar shape.

5.3.3 Throughput Times and their Distribution

The second important measure of logistic performance are throughput time and their
distribution. In practical regards it is easy to determine the throughput time of a work-
piece since only the time difference of the moment, where the part enters a manufac-
turing systems and the moment when it departures have to be measured.
For hybrid models with either a continuous arrival process (switched server systems
with fixed arrival ratesλi) or a continuous departure process (switched arrival systems
with fixed departure ratesµi) the throughput timeT can be computed directly for all
differential amounts of material. In the switched server system4 the timeT (t) that the
material has spent in the buffer up to the moment where it departures is given by:

T (t) =
xi(t)

λi
. (5.6)

Here i labels the buffer that is actually emptied andxi(t) is its actual filling level.
A explanation of this relation is provided by Fig.5.9. Due to the continuous arrival
process the entry time is proportional to the actual filling level. The throughput time
T (t) thus is a piecewise decreasing function oft in emptying intervals for the specified
buffers.

Since in switched server (and switched arrival) systems without set-up times both
the initial contentxi at the beginning of an emptying interval as well as the duration
of the emptying itself are uniquely determined by the normalized boundary coordinate
X (see Sec.4.3) there exists a unique mappingp(T ) = f(T,X) wheref(T,X) for
X fixed isp(T ) = const. if T ∈ (Tmin, Tmax) andp(T ) = 0 otherwise.Tmin is the
throughput time at the end of the associated emptying interval andTmax the throughput

4In a similar way for the switched arrival systems the throughput time can be determined in the
moment, when material enters one of the parallel buffers by :

T (t) =
xi(t)
µi

.

Now i labels the just filled buffer andxi(t) is the actual filling level. The throughput time function now
is peace-wise increasing in the intervals of filling.
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Figure 5.9: On the estimation of throughput times in a hybrid model for switched server systems. The
times that the ”material” has spent in the buffer is read in the upper part of the figure with separately
drawn time evolutions of the cumulative arrivals (xin) and departures (xout) as function oft. The WIP
is x(t) = xin(t)− xout(t).

time at the beginning of the associated emptying interval. With these relations we can
obtain the probability density function of throughput timesp∗(T ) analytically by

p∗(T ) = n

∫ 1

0

dXp(X)f(T,X) (5.7)

(wheren is a normalizing factor to obtain1 =
∫∞

0
dTp(T )) if the invariant probability

densityp(X) for X is known.
Thus, periodic orbits lead to a piecewise constant probability density functions of

throughput times. A piecewise constant invariant density of the orbit, which is ob-
tained in the chaotic limit case for the switched server or switched arrival system,
results in a triangular shaped (sawtooth like) probability density function of through-
put times (cf. Fig.5.10, first column). If the maximum buffer capacityb in a switched
server system is smaller than0.5 all buffers are never emptied completely. In that case
all throughput times are longer than a minimal value larger than zero.

The distinction between throughput time distributions of chaotic and periodic or-
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a) e)

b) f)

c) g)

d) h)

Figure 5.10: Numerically estimated distributions of throughput times in hybrid models for three tank
switched server systems, depending on the maximum buffer content for different parameters.
Filling rates:λ1 = λ3 = 0.3, λ2 = 0.4. The first column shows histograms for the system without
set-up time, right column histograms for the system with set-up timeτ = 0.3. The maximum buffer
capacity is reduced from top down: a),e)b = 1.0, b),f) b = 0.7, c),g)b = 0.5, d),h)b = 0.4,
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a)
b)

Figure 5.11: Numerically estimated distributions of throughput times in continuous hybrid models for
three tank switched server systems, with an upper threshold assigned to the first buffer only.
The solid curve stands for the first (restricted) buffer, the dotted for the second buffer and the dash
dotted curve gives the distribution for the third buffer.
a) Filling rates:λ1 = λ3 = 0.3, λ2 = 0.4. The system is not chaotic.
b) Filling rates:λ1 = 0.1, λ2 = 0.7, λ3 = 0.2 for b1 = 0.2. The system is chaotic, but the dynamics of
the first buffer is periodic.

bits is especially obvious in the histograms shown in Fig.5.11b where the switched
server system with an upper threshold at the first buffer only (Sec.4.4.2) was used.
Here the throughput time is considered for the different buffers separately. The first
buffer exhibits a periodic evolution (of period one) and provides a piecewise constant
probability density of throughput times in contrast to the chaotic evolution of the other
two buffers.

If systems with a setup time according to Sec.5.2 are considered, the additional
time intervals where the filling levels of a buffer are maintained constant must be
taken into consideration. In this case an estimation in form of Eq.(5.7) is not possi-
ble. A numerical estimation of throughput times shows that the set-up time changes
the throughput time distribution compared to the system without set-up (see Fig.5.10).
The times during which two of the three buffers are out of service (i.e. the filling level
of the remaining buffer is kept constant) lead to exactly the same throughput time for
all material that enters and leaves the buffer during this time interval. Therefore some
throughput times occur very frequently.

Finally we shall consider themean throughput time. For switched server systems
without set-up times the mean throughput time for the whole system is independent of
the parameterb and constant. This follows directly from Little’s law (Eq.5.2) because
both WIP (total content) and total arrival (departure) rate are constant. For systems
with a switching rule according to Sec.5.2 the mean throughput time depends on the
utilization and increases for small buffer capacities.
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a) c)

c) d)

Figure 5.12: Numerical estimation of mean throughput times in a continuous hybrid model for three
tank switched server systems. The mean throughput time per buffer vs. maximum buffer contentb is
shown for different parameters. The solid curves correspond to buffer1, the dotted curves to buffer2
and the dot dashed curves correspond to buffer3.
a)λ1 = 0.3, λ2 = 0.4, λ2 = 0.5, without any switching time.
b) λ1 = 0.1, λ2 = 0.6, λ3 = 0.3, without any switching time.
c) λ1 = 0.3, λ2 = 0.4, λ2 = 0.3, a set-up time ofτ = 0.3 is applied.
d) λ1 = 0.1, λ2 = 0.6, λ3 = 0.3, a set-up time ofτ = 0.3 is applied.

However, the mean throughput times for different buffers may deviate significantly
from one another (see Fig.5.12). Moreover, this mean throughput times for individual
buffers in the system depend on the attractors of the system and may change with
maximum buffer capacityb and or modifyied switching rules (Sec.4.4.1).

5.3.4 Optimization and Chaos Control

It is common to reduce buffer costs by loweringb. In the switched arrival system this
can also prevent chaotic behavior but it induces chaos connected with high switching
costs or production losses in the switched server system.
Optimization may therefore address organizational tasks to adjust parameter combina-
tions in a desired range. This can include appropriately chosen switching thresholds or
filling rates. Optimization may alternatively consider appropriately chosen switching
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rules for the lower (upper) threshold in the switched server (arrival) system. As we
have seen the dynamics is influenced strongly by the switching rule and another rule
may lead to stable orbits with lower costs. The advantage of such organizational tasks
is, that the system can follow its own dynamics once the parameters are adjusted to
the desired values.
Another way may be active control of the dynamics. To optimize both cost functions
for the switched server system the maximum buffer contentb can be reduced, and
then chaos control methods can be applied in the chaotic region to reduce the switch-
ing costs.

5.4 Switched Discrete Deterministic Systems

The hybrid modeling of manufacturing systems in connection with the strange bil-
liard concept is a powerful tool to evaluate the potential dynamical features of a given
topology of manufacturing systems under priority rules and to obtain analytical results
in the language of nonlinear dynamics. However, to meet manufacturing reality we
have to consider a discrete material flow instead of the fluid modeling presented in the
previous sections.

Therefore we now dismiss the approximation of continuous material flows and
study the behavior of the previously investigated systems under the assumption of
deterministic, but discrete flow of parts. We assume fixed inter-arrival times (T )
and inter-departure times (Θ) for the buffers and servers. The system is balanced
if 1/Θ =

∑
1/Ti. The switching rules with respect to the buffer filling levels under

consideration should be the same rules as in Sec.4. The main difference between both
types of modeling is that a change in the servers position now can occur only at spe-
cific times, i.e. the processing of a part is finished. A normalization as with the hybrid
models is not feasible in the discrete case. Rather we have to start with an initial buffer
contentxi ∈ N and even discrete thresholds for the buffer capacities. Additionally the
initial condition defines the time to the next event inside the intervals, given by the
inter-event times. In some sense hybrid models are the limit case of discrete models
with infinite total content or infinitesimal inter-event times. Following the terminol-
ogy of (stochastic) queueing theory such models should be described asdeterministic
queueing models. In principle the same system of queues, servers and routers as in
queueing theory are considered, but instead of stochastic processes the systems are
governed by deterministic point processes.
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a)

b)

c)

e)d)

Figure 5.13: Bifurcation like behavior and transition to quasi-chaotic states in a deterministic queuing
model of switched server type with three buffers. Parameters:T1 = 0.3, T2 = 0.5, T3 = 0.3, Θ =
0.11538462. a) Bifurcation diagram showing the content of the first buffer (measured in parts) at
switching times of the server vs. the maximum buffer capacity. Total content:132± 1
b),c) Time series of buffer content for a total content of42 ± 1 parts, b) maximum buffer capacity
b = 40, c) maximum buffer capacityb = 23.
d),e) Histograms of throughput times for the whole system with a total content of42 ± 1 parts for
different maximum buffer capacities. d)b = 23, e)b = 40.

5.4.1 Dynamics

Due to the doubly discrete nature of the system (in ampltude and time) the dynam-
ics of the discrete model is fundamentally distinct to the continuous hybrid model.
The discreteness implies a countable, finite number of possible states (filling levels of
buffers) and therewith a periodic behavior of the trajectory. Usually a larger number
of coexisting orbits in the discrete state space are obtained. Nonetheless the discrete
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model shows in some sense a similar dynamic as the hybrid model even if the tran-
sition from the continuous to the discrete material flow fundamentally changes the
modeling assumptions in a mathematical framework.

In particular a correspondence of similar coarse grained dynamics in certain pa-
rameter regions is obtained. And even in deterministic queuing models bifurcation
like phenomena arise (cf. Fig.5.13a). Small buffer capacities in the switched server
system lead to a complicated behavior which may be dubbed quasi-chaotic. For the
discrete model it is possible to obtain throughput times for single parts. The distri-
bution of throughput times is determined by the dynamic behavior, and therefore also
this logistic parameter depends on the maximum buffer content (Fig.5.13d,e).

5.4.2 Small Stochastic Disturbances

As a further step towards fully realistic modeling of manufacturing we carried out
numerical simulations of deterministic queueing models with small stochastic distur-
bances of inter-event times as they are typical for highly automated manufacturing sys-
tems. The results indicate, that such small disturbances mainly lead to slow changes in
the total content of the systems. Thus the dynamics is reasonably good approximated
by the deterministic queueing models for short time scales. At larger time intervals
the system may (because of the varying total content) slowly drift through different
dynamics of the pure deterministic model. This leads, for instance, to unexpected
chaotic behavior, if the total content of the systems rises through a certain value.

5.5 Summary

We have analyzed the dynamical behavior of manufacturing systems governed by the
interaction of scheduling policies and limited buffer capacities in the deterministic
limit case.
By estimation of cost functions or calculation of production losses due to set-up times
it became obvious, that dynamical behavior directly influences the performance of
manufacturing systems.
Despite of their relative simplicity the systems investigated here exhibit a complex
dynamics, even without irregular influences. Furthermore not only the policies them-
selves contribute to this behavior, but also the chosen thresholds are crucial where
these policies become active. For larger networks of work units with even more rules,
thresholds and a huge number of possible discrete states exists. Therefore a highly
complex behavior is expected. The transition from a continuous flow to a discrete part
flow, which we briefly discussed in Sec.5.2 still remains an open fundamental ques-
tion. The systems we have introduced here might serve as model systems for the study
of such transitions.



88 5 Modeling of Manufacturing Systems

Last but not least the investigations may be seen as a contribution to the discussion on
chaos in manufacturing systems([13, 104, 67, 89, 91]). Whereas in an informal man-
ner the word chaos5 is frequently used by engineers trying to operate manufacturing
systems not many sources of a behavior that deserves this term in its scientific sense
are identified in manufacturing. The analyse presented here shows, that the intrinsic
dynamic of a switched server or switched arrival configurations, depending on the
dimension of buffer capacities, can lead to a complex dynamical behavior. This com-
plex behavior is also obtained, if the material flow is discrete. The interdependencies
outlined here may be useful to prevent situations in manufacturing where a planning
and prediction of production is complicated and the performance of the manufacturing
system is reduced.

5More recently even the termturbulencewas used as a metaphor for things going wrong in man-
ufacturing [104][105]. In this setting production engineers try to identify sources of turbulence in
manufacturing systems.



6 Modeling of Front Dynamics in Semiconductor
Devices

This chapter presents a general hybrid modeling approach for studying front prop-

agation in nonlinear systems with a global constraint. A model of semiconductor

superlattices is investigated, where the dynamics of electron accumulation and deple-

tion fronts shows complex spatio temporal patterns.

After a brief introduction into the investigated solid state system (Sec.6.1) a generic

hybrid model belonging to the switched arrival class is derived in Sec.6.2. Then we

investigate the dynamics of the model for some cases in more detail.

6.1 Fronts and Pattern Formation in Semiconductor
Superlattices and Other Spatio-Temporal Systems

Moving fronts are the source of complex patterns in very different areas of physics
[32, 102], chemistry [61, 76], and biology [93, 78]. While the movement of single
fronts is well understood for many systems, not much is known on how front gen-
eration and annihilation processes or collisions between fronts influence the possible
bifurcation scenarios in systems where fronts of different velocities interact.
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Figure 6.1: Sketch of a typical semiconductor superlattice structure.
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Spatio-temporal pattern formation processes of fronts traveling with different ve-
locities are found, for instance, insemiconductor superlattices. Superlattice structures
(cf. Fig.6.1), as suggested in 1970 by Esaki and Tsu [47, 46] are artificial crystal like
structures with an adjustable periodd that are realized by periodically repeated de-
position of alternate layers of different semiconductor materials. The two materials,
AlAs and GaAs for instance, possess different band gaps, resulting in discontinuities
in both the conduction band and the valence band of the superlattice structure. The
conduction band is of interest. Since the conduction band in AlAs is higher than in
GaAs the layers of AlAs act as a barrier for electrons, whereas the layers of GaAs
representquantum wells. For superlattices with a large barrier width (weakly coupled
superlattices) the structure can be approximated by a series of quantum wells in which
the electrons are located. For a finite barrier width the wells become coupled to each
other by tunneling processes and the main electrical transport for an applied electric
field results fromresonant tunneling. This leads to asequential tunneling modelfor
the electron transport. For details on this approach and other microscopic models see
[100].
This model describes the tunneling current densityJm→m+1(Fm, nm, nm+1) from well
m to wellm + 1. It depends only on the electron densitiesnm andnm+1 in the wells
and the electric fieldFm between the wells [100, 3, 46]. The resulting typicalN-
shaped current density vs. electric field characteristicis depicted in Fig.6.2.
In a microscopic simulation the electric fieldsFm are determined by a discrete version
of the Poisson equation:

εrε0(Fm − Fm−1) = e(nm −ND) for m = 1, · · · , N (6.1)

whereND is the doping density ande < 0 the electron charge. The dynamic evolution
of electron densitiesnm is given by the continuity equation:

e
dnm
dt

= Jm−1→m − Jm→m+1 for m = 1, · · · , N (6.2)

In the following a superlattice for a fixed applied voltageU is considered, giving rise
to the global constraint

U =
N∑
m=0

Fmd. (6.3)

Crucial for the formation of patterns are theboundary conditionsat the emitter and
collector of the superlattice device.

J0→1 = σF0 and JN→N+1 = σFN
nN
Nd

(6.4)
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Figure 6.2: N-shaped current density characteristic (current density vs electric field) at the emitter
barrier (straight line) and between two neutral wells [3]. The Ohmic conductivity of the emitter is
σ = 0.5 Ω−1m−1. Jc denotes the intersection point of the two characteristics.

whereσ is the Ohmic conductivity. An N-shaped well-to-well current voltage charac-
teristic with a region ofnegative differential conductivityhas major implications for
the behavior of a spatially extended system since it introduces abistability.

For a given fixed currentJ a homogeneous electric field for the whole sample is
unstable if it falls into the region of negative differential conductivity. This results
in the formation of field domains of different local well-to-well electric fields. In the
neutral regions of the superlattice, there are two stable points for fixed currentJ , one
at a low fieldF l(J) and one at a high fieldF h(J) (Fig. 6.2). In the following we
make the approximation that both fields do not depend on the current, andF l = 0 and
F h(J) = F h. For a transition from a low field domainFm = 0 to a high field domain
Fn = −F h (n > m) a negatively charged region (i.e. anelectron accumulation front)
is required by Poisson’s equation. Similarly a transition from a high field domain to
a low field domain can be attributed to anelectron depletion front. Such fronts can
appear only alternating and a high-field domain is located between a leading accumu-
lation and a trailing depletion front. A regime with one electron accumulation and one
electron depletion front is called adipoleregime whereas a regime with one depletion
and two accumulation fronts or two accumulation fronts and one depletion front is a
tripole regime.
For the following considerations it is also helpful to remark, that the velocities of ac-
cumulation and depletion front are basically functions of the total current [24, 23, 3].
The relation is depicted in Fig.6.3.

The formation of fronts and field domains due to the negative differential conduc-
tivity gives rise to a large menagerie of complex behavior in semiconductor super-
lattices including self–sustained current oscillations [85], or sawtooth–like current–
voltage characteristics [46, 54, 90]. For a recent review see [100]. While ac driven
chaos was already reported some time ago theoretically [21] and experimentally [72],
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Figure 6.3: Front velocity vs. current density for electron depletion and accumulation fronts [3]. JT ,
J∗T denote the currents corresponding to tripole propagation with two accumulation and one depletion
front and with two depletion and one accumulation front, respectively.JD is the current corresponding
to a dipole propagation with equal velocities for one accumulation and one depletion front. The Ohmic
conductivity of the emitter isσ = 0.5 Ω−1m−1.

autonomous chaos in weakly coupled superlattices was predicted only recently [3].
Depending on the doping density and the contact characteristics the fronts may travel
through the lattice with different velocities, annihilate one another and form a complex
spatio-temporal pattern under constant voltage conditions.
The main conditions for such behavior are:

1. Boundary conditions that permit multiple stationary states and fronts due to neg-
ative differential resistance.

2. An integral over space constraint (e.g.Eq.(6.3)).

These conditions are found in many semiconductor devices [23] and even in molecular
electronics [83, 26]. Patterns which are very similar to the ones we investigate here
were found for instance in a spatially continuous semiconductor model describing the
impurity impact ionization breakdown in bulk p type Ge [23].

6.1.1 Benefits of a Generic Model

The straight forward approach for studying the dynamic behavior of superlattices is
to numerically integrate the charge densitiesni(t) in each well using a sequential
tunneling model. This leads to a system of typically 100 coupled ODEs with well
over 15 physically relevant parameters. Over the last decade this method has proven
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to yield quantitative data which could be verified in a large range of experiments [100].
From the dynamical system point of view, it is still highly desirable to find a generic
model which captures the essential dynamics and bifurcation scenarios of the full
system in only a few dynamical variables and parameters. This is especially important
in the case of complex behavior, where the type of complexity should be completely
characterized by the generic model.

6.2 Modeling Front Dynamics

In the following we motivate a simplified model for the front dynamics, which will
lead to a version of the switched arrival hybrid system. Hence a discrete quantum well
structure is approximated by a one dimensional continuum.
Let us denote byai the distance of an electron accumulation front (or more precisely
its center of charge) from the emitter. The indexi = 1, ..., Na labels the accumulation
fronts depending on their emitter distance, such thatai < ai+1 andNa is the number
of accumulation fronts. In the same way the positions of depletion fronts are denoted
by di with i = 1, ..., Nd, andNd is the number of depletion fronts. Since we only
allow for alternating accumulation and depletion fronts, we haveNd−Na = −1, 0, 1.

The applied voltageU between emitter and collector defines the total lengthLh =
U/F h of the lattice that is at high field. This imposes a constraint on the fields and at
the same time on the front positions by

Lh =
N∑
m=0

−Fm
F h

L

N
=

Nd∑
i=1

di −
Na∑
i=1

ai modL. (6.5)

HereL denotes the total length of the superlattice. The expression modL in (6.5)
means thatL is to be added as necessary in order forLh to be in the interval[0, L].
Note that althoughai anddi are continuous variables, Eq. (6.5) is exact even for a
discrete lattice with extended fronts, as long as all charge can be uniquely assigned to
one front.

By assuming that the front velocities are a function of the total current [24, 5] we
haveȧi = va andḋi = vd for all fronts. Differentiating Eq. (6.5) with respect to time
yields

Na

vd
=
Nd

va
, (6.6)

for the relative velocities. We may fix the absolute velocities usingva + vd = 2 by
rescaling time.

In the microscopic model it is found that the front injection at the emitter is gov-
erned by a critical currentJc. ForJ < Jc the region close to the emitter is pinned at
a low field [100]. Hence an accumulation front is injected, if the preceeding front is a
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depletion front. Due to the finite width and build-up time of the fronts new fronts can
not be injected arbitrarily fast. Phenomenologically we therefore introduce a distance
parameterph, and assume that front generation is suppressed whiled1 < ph, where
d1 is the position of the first depletion front. In the same fashion, a depletion front
is injected ifJ rises aboveJc andpl < a1, wherepl is a parameter describing the
minimum front distance for depletion front injection.

Since the currentJ is a monotonous function ofNa/Nd [3] (cf. Fig.6.3) , the
parameterJc may be replaced by a new parameterrc and the above conditionJ ≷ Jc
is transformed intoNa/Nd ≷ rc.

The processes which reduce the number of fronts are collision of two fronts of
opposite polarity and the running out of fronts at the emitter. Both processes affect
Na/Nd and potentially trigger a new front generation at the emitter.

We summarize the front model by the following rules:

(I) Evolve the positions of the fronts linearly according to

ȧi =
2Nd

Na +Nd

for i = 1 . . . Na

ḋi =
2Na

Na +Nd

for i = 1 . . . Nd

until one of the following rules applies.

(6.7)

(II) If Na/Nd < rc andph < a1 < d1 then increaseNa by one,
re-indexai → ai+1 for all i and seta1 = 0 (6.8)

(III) If Na/Nd > rc andpl < d1 < a1 then increaseNd by one,
re-indexdi → di+1 for all i and setd1 = 0 (6.9)

(IV) If aia = dja for any ia, ja then decreaseNa andNd by one,
re-indexai+1 → ai for i ≥ ia anddj+1 → dj for j ≥ ja. (6.10)

(V) If aNa > L decreaseNa by one. (6.11)

(VI) If dNd > L decreaseNd by one. (6.12)

Note that the voltage parameterLh only enters in the starting position for the fronts
(see Eq. (6.5)) and that forr′c = r−1

c the characters of accumulation and depletion
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Figure 6.4: Space-time plot of the electron density evolution in a semiconductor superlattice. Elec-
tron accumulation and depletion fronts are indicated by light and dark shading, respectively. The
full microscopic sequential tunneling model [3] for n = 100 quantum wells and contact conductiv-
ity σ = 0.5Ω−1m−1 is used for a biasU = 0.95V . The inset shows the simplified view of the pattern
which is adopted in the hybrid model. The dashed lines denote the switching timestm

fronts are interchanged.
In the following we will restrict ourselves to the caserc < 1 andpl = 0. All consid-
erations that are made for high-field domains here apply also to low-field domains if
rc > 1. Rule6.8does not apply as long asNa > rc/(1−rc) andNa can only decrease.
Consequentlyrc imposes the following limits on the number of fronts:

Na <
1

1− rc
Nd <

1

1− rc
+ 1 for rc < 1 (6.13)

Since the number of high-field domains is given by the number of fronts this implies
a maximum numbern of high-field domains of:

n = int[
1

1− rc
+ 1] (6.14)

where int[x] means the largest integer smaller thanx. The injection of an accumulation
front is immediately followed by the injection of a depletion front (rule6.9). This
detaches a high-field domain from the emitter and opens a new one.

Let us now introduce the length of the high-field domains (see Fig.6.4):

x1 = d1 (6.15)

xi = di − ai−1 for i = 2 . . . Nd (6.16)

Further we require the maximal number of high field domainsn for a givenrc (6.14).
In case no fronts reach the collector, the rules6.11and6.12do never apply. The case
when fronts are able to reach the collector is considered in Sec.6.4. The rules for the
front model can be now reformulated in terms ofxi by the following rules for atank
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model:

(1) Filling and emptying rates:
ẋ1 = λ = (Nd − 1)µ

ẋi = −µ = − 1

(Nd − 1)
for i = 2 . . . Nd

(6.17)

(2) If xia = 0 then decreaseNd by one, re-indexxi+1 → xi for
all i > ia andxia → x(n−Nd). (6.18)

(3) If Nd < 1/(1 − rc) andx1 > ph then increaseNd by one,
re-indexxi → xi+1 for all i. (6.19)

The conservation law (6.5) can be expressed now by

Lh =
∑
k

xk. (6.20)
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Figure 6.5: Illustration of a typical situation in the tank model withn tanks. The minimum filling
level is indicated byph. One tank (indexed by 0) is waiting, whereasNd = n− 1 tanks are emptied or
filled and the fronts they are assigned to are present in the superlattice.

It is very illustrative to interpret this model in the language of ann-tank switched
arrival system(cf. Fig.6.5). A domain may be seen as a tank with fluid contentxi.
Now we haven of such tanks, where one of them is filled at rate(Nd− 1)µ, while the
others are drained with rateµ (xi|i = 1, ..., Nd), or waiting for filling (xi|i < 1), be-
cause the currently filled tank has not reached the minimal filling levelph. Apart from
the re-indexing procedure and the normalization of the total content toLh (instead
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of one) this configuration is well known from Chap.4 but here aminimal switching
thresholdin form of ph is introduced.
In the following we shall investigate the dynamics of this model.

6.3 Dynamics for Long Superlattices

In this section we consider the dynamics of the hybrid model under the assumption
that no fronts reach the collector. This implies a long superlattice sample. Since no
front reaches the collector, the only effect is the annihilation of fronts, which results in
the generation of a new dipole at the emitter site. This new dipole contains a depletion
front, which opens a new domain at the emitter site growing with a ratevd. The
previously growing domain will be closed by the accumulation front and shrinks now
continuously with the rateµ = (va−vd). If another domain annihilates (i.e. its content
reaches zero) the same process repeats.

6.3.1 Limiting Case of a Vanishing Threshold

At first we discuss the limiting casepl = ph = 0. If a tank is empty at timetm
(xk(tm) = 0) the rules6.18and rule6.19apply instantaneously and the system starts
to fill this tank (x1(t+m) = 0). In this case no indicesi < 1 occur, i.e. no tank has to
wait for filling. Apart from the re-indexing procedures we obtain a switched arrival
system (Sec.4.2). As shown in [92] the system is chaotic for alln > 2 and has a
constant invariant probability measure.
By sampling the dynamics at the event timestm we obtain thePoincaŕe mapP :
~x(tm) 7→ ~x(tm+1):

~x(tm+1) = ~x(t+m) + ~̇x∆tm
∆tm = minj 6=1(xj(t

+
m)/µ)

(6.21)

where~̇x = (λ,−µ, . . . ,−µ) is a constant vector and∆tm = tm+1 − tm.
Generally this is ann - dimensional mapping which acts due to the normalization∑

i xi = 1 on then − 2 dimensional boundary of a regularn-simplex embedded in
R
n. The re-indexing procedure can be seen as a rotation of then-simplex which brings

the subsimplexxi = 0 in the position of thex1 = 0 subsimplex. To link the dynamics
of the tank model for fronts with the hybrid dynamical systems investigated in the
previous chapters we have included some figures (e.g. Fig.6.6), where the well known
regular 3-simplex is not rotated and the strange billiard trajectories can be obtained
directly.

Since all tanks are indistinguishable with respect to their filling and emptying rates
here we can denote then−2 dimensional mapping directly. Forn = 3 the map reduces
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a)

b)

c)

Figure 6.6: Illustration of the basic model for three domains. a) The trajectory of domain sizes moves
uniformly inside the 3-simplexS3 embedded inR3. b) Sample evolution of domain contents. The
different tanks (domains) are indicated by solid, dashed and dot-dashed lines. c) Associated evolution
of fronts on the lattice with normalized velocities.

to a one dimensional map of the interval(0, Lh) onto itself describing successive filling
levels of the first tank attm. From the rules we obtainx1(t+m) = 0, x2(t+m) = x1(tm),
andx3(t+m) = Lh − x1(tm). If x1(tm) < Lh/2, the tank2 empties after∆tm =
x1(tm)/µ and we findx1(tm+1) = 2x1(tm). Otherwise, ifx1(tm) > Lh/2, tank 3
empties after∆tm = (Lh−x1(tm))/µ and we findx1(tm+1) = 2(Lh−x1(tm)). Thus
the dynamics is that of the well knowntent map:

x1(tm+1) = Lh − |2(x1(tm)− Lh/2)|. (6.22)

For n = 4 we consider the filling level of the first tank and the emptiest remain-
ing tank (xS, without loss of generality ) as appropriate variables for the return map.
Since either the just filled tank or the tank with contentxS is the next empty tank the
determination of the filling level att = tm+1 is straightforward. Thus for the construc-
tion of the return map only the filling level of the smallest remaining tank att = tm+1

should be determined. Since all filling levels are known we obtain the following map:

x1(tm+1) = min{3x1(tm), 3xS(tm)}

xS(tm+1) =
{
xS(tm)− x1(tm) if xS(tm) > x1(tm)
min{x1(tm)− xS(tm), Lh − x1(tm)− 2xS(tm)} if xS(tm) < x1(tm)

(6.23)
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For all n > 4 a similar map can be constructed, ifx1(tm) and then − 3 smallest
remaining tanks are used as variables for the iterated map. Forrc → 1 however the
dimension diverges(n− 2)→∞.

6.3.2 The Parameterph

The basic model, considered in the previous allows the opening of a new domain for
any size of the previously filled domain. In contrast in semiconductor superlattices the
injection of a new dipole at the emitter is suppressed if a depletion front is near the
emitter. To include this effect the parameterph was introduced and assumed that the
filling of an empty domain only starts if the previously filled one has a sizexi ≥ ph. If
a domain is empty (xi(t0) = 0) and the currently filled domainxq(t0) < ph it remains
empty untilxq(t1) = ph. During this interval onlyn′ = n− 1 domains are present in
the system. Due to this fact we have to adjust the empty-rate toµ∗ with µ∗i = 1/n′− 1
and the normalized front velocitỹvd = 1 − 1/N∗ for the remaining domains. But
if one subsequent tank is emptyxi(t1) = 0|i = 1, 2 while x1(t1) < xmin only rule
6.18applies and the empty tank is sent to a waiting state (indexed byi < 1). In this
state the rates are changed according to rule6.17. In the strange billiard picture the
trajectory moves with a new velocity vector along the boundaryδSn (see Fig.6.9 for
illustration).
Forn = 2 (i.e. rc ≤ 1/2) the minimal switching height has no influence and the pat-
tern is periodic.(If one domain is empty, all current is concentrated in the remaining
domain which is over the threshold due to this fact.)
Forn = 3 only one domain can be empty without the currently filled domain is over
the threshold. But forn > 3 we have a possibility to have two or more (up ton − 2)
empty domains for which the filling is prevented by the thresholdph. That increases
the number of discrete states in the hybrid model ton+ (n− 2)N . The corresponding
trajectories are restricted to subsimplexes of decreasing dimensions the more tanks
are in the waiting state. However, loosely speaking, the system ”knows” how many
tanks it has due to the parameterrc that is given by physical conditions (i.e.σ, U , see
Sec.6.2).

6.3.3 Dynamics for Three Domains

Now we consider the casepl > 0, n = 3. The Poincaŕe map Eq.(6.22) remains
unchanged ifph/2 ≤ x1(tm) ≤ (1 − ph/2). But if one subsequent tank is empty
(xi(t1) = 0|i = 1, 2) while x1(t1) < ph only rule6.18applies and the empty tank is
sent to a waiting state and the rates are changed according to rule6.17. Nonetheless,
at a later event timetm we getx1(tm) = xmin and now the filling of the empty tank



100 6 Modeling of Front Dynamics in Semiconductor Devices

starts. In this case we taketm as sampling time for the map. Thus forn = 3 we obtain
(cf. Fig.6.7a)):

x1(tm+1) = max{Lh − 2|x1(tm)− Lh/2|, ph} (6.24)

The map is depicted in Fig.6.7. Due to the flat segments and the remaining tent-
map part we call the map Eq.6.24 flat bottom tent mapin the style of [53] where
the flat topped tent map appears. For physical reasons the map is not defined for
x < ph. However, for the long term behavior we may also consider the form given in
Eq.(6.24) since every point in(0, ph) is mapped within one iteration into the invariant
set[ph, Lh). For the hybrid model∆tm(x1(tm)) is a unique function given by:

∆tm(x1(tm)) = max{Lh−2|x1(tm)−Lh/2|)
2

,

ph − (Lh − 2|x1(tm)− Lh/2|) + Lh−2|x1(tm)−Lh/2|)
2

}
(6.25)
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Figure 6.7: Illustration of the return map for three domains. a) The modified tent map (6.24) b) The
graph of function Eq.(6.25) giving ∆tm(x1(tm))

The introduction of a minimal switching threshold fundamentally changes the dy-
namics of the model compared to the chaotic limiting case discussed in Sec.6.3.1.
A bifurcation diagramfor map6.24 is given in Fig.6.8. It is convenient to plot this
diagram usingx1/ph vs. Lh/ph for two reasons. On the one hand consider the su-
perlattice. Owing toLhU , the axisLh/ph reads the voltage applied to the superlattice
(assumed thatph = const. for the superlattice system). Furthermore,x1/ph gives a
value proportional to the distance of the leading depletion front in the lattice, i.e. the
initial domain content (at the moment where the domain detaches from the emitter)
measured on the lattice. On the other hand it is favorable since the bifurcation struc-
ture becomes much more visible than in the usual way of plotting bifurcation diagrams
(cf. Fig.6.8b).
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Figure 6.8: Bifurcation diagram of the flat bottom tent map Eq.(6.24) (a). This diagram directly gives
the initial domain content on the lattice. b) the bifurcation diagram from a) now plotted in the usual
manner withx = x1/Lh andp = ph/Lh, i.e. the bifurcation diagram of the flat bottom tent map as a
map of the unit interval onto itself. c),d) enlarged sections of a) for the regions between the period-1
and the period -3 window and between the period-2 and period-3 window.

The bifurcation structure of map (6.24) with respect to the bifurcation parameter
ph is unusual (Fig.6.8) but has similarities to the flat-topped tent map [53, 101, 95].
Due to the horizontal segments the map cannot show chaotic behavior although it un-
dergoes several bifurcation cascades. A trajectory on the tent map segments would
explore the attractor of the tent map and will therefore either fall on one of the flat
segments or stay at an unstable periodic orbit of the tent map, which is contained in
the remaining part of the tent map. Once arrived at one of the flat segments the tra-
jectory continues on a stable periodic orbit. The dynamics isperiodic. By analyzing
then’th return map of the flat bottom tent map we find, that windows of periodk are
found inside the intervalslh/ph ∈ (2k−1

4j−2
, 2k+1

4j−2
) for j ∈ Ik ⊂ {j ∈ N|j ≤, 2k−2 − 1}.

Thus higher and higher stable periodic orbits are arising in smaller and smaller inter-
vals.
The most obvious feature in Fig.6.8 are thehorizontal linesjust giving the first, and
higher iterated images of the minimal switching height (ph). Between the windows
where with increasingLh/ph orbits of periodk andk + 1 are stable, a point of the
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unstable periodic set of the tent map is reached, which produces thespider like struc-
tureswith orbits of even periods at one side and odd periods at the other side.

6.3.4 Obtaining Front Positions

Now we turn to the front dynamics, driven by the normalized model. The front veloc-
ities are given by rule6.7. If the filling of a domain starts (t = t0), we set the position
of the leading depletion frontdi(t0) = 0 and the position of the accumulation front
that closes the previously filled domainai(t0) = 0.
The evolution of fronts is completely governed by the dynamics of the tank model
with respect to the following rule:

Evolve the position of the depletion fronts with velocitẏdi for
i = 1, ..., Nd given in rule6.7 and obtainai = di − Lhxi for
i = 2, ..., Na. If rule 6.18 applies, re-index the front positions
in the same manner asxi but do not consider any front position
assigned toxi|i < 1. If rule 6.19applies, re-index the fronts asxi
and setd1 = 0.

(6.26)

To compare the results obtained from the hybrid model with the results of a micro-
scopic simulation by means of a sequential tunneling model presented by Amann et
al. in [3] we shall consider a transformation to front positions given in units of (quan-
tum) wells. We assume a length of the superlattice of 100 wells as it was used in [3].
To obtain front positions in the superlattice from the normalized model the results have
to be rescaled. At first a relation between the normalized total content

∑
i xi = Lh

and the content at the lattice (measured in wells) with respect to voltage U has to be
established. We assume that this relation is simply linear and given by:

di − ai−1 = c1Uxi (6.27)

wherec1 is the scaling constant (in the following we apply:c1 = 23[wells/V ]). Fur-
ther we re-scale the time using the relation between the front velocity (ṽd inwells/ns),
given in Fig.6.3and the normalized models front velocityvd by

t̃ = c1U
vd
ṽd
t (6.28)

An adequate approximation is given by the dipole propagation velocity ofVd = Va =
10wells/ns. This value yieldsvd/ṽd = 0.1[ns/well]. Because the relation Eq.(6.6)
holds for all models therewith the scaling is done. Figure6.9shows an example of the
strange billiard like trajectory of the hybrid model and the resulting evolution of do-
main contents as well as the time evolution of the associated fronts in the superlattice.
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a)

b)

c)

Figure 6.9: Illustration of the basic model including a minimal switching threshold for three domains
forU = 0.7V, cmin = 5.5wells a) The trajectory of domain sizes moves uniformly inside the 3-simplex
S3 embedded inR3 and if a domain is underneath the threshold along the boundary ofS3.b) Sample
trajectory of domain contents, the time is rescaled by Eq.(6.28). c) Associated evolution of fronts on
the lattice, completely rescaled.

We shall briefly discuss the relations between Fig.6.8 and Fig.6.15a that gives a
bifurcation diagram of annihilation positions of accumulation and depletion fronts ob-
tained from the hybrid model and rescaled using Eq.(6.27). By rule6.26the period of
the Poincaŕe map is the period of the pattern observed from the front model. More-
over, the bifurcation diagram of the hybrid model Fig.6.8indicates the size of the first
domain at the moment it is resolved from the emitter. The timetm when this happens
is defined bytm of the tank model. Thus the bifurcation diagram Fig.6.8 reveals the
structure of Fig.6.15. But the collision position of fronts, although given in principle
by x1(tm), can not be obtained directly in Fig.6.8. During the shrinking of a high-field
domain any other waiting tank event may occur, which changes the propagation ve-
locities and therefore the collision position.

6.3.5 Four and More Domains

After the above excursion we shall maintain the discussion of the dynamics of the
switched arrival tank model given by the rules6.17- 6.19.
For four and more possible domains we obtain a Poincaré map that is hybrid too, due
to the likewise possibility that more than one tank stays empty for a wile. Forn = 4
we have only 2 possible discrete states: either none or one tank stays empty (q = 1) or
two tanks have to wait for filling (q = 2). The hybrid Poincaŕe map can be written as
an iterated map of one discrete variableq and two continuous variablesx1, xS chosen
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as in Eq.(6.23). Forx1 in stateq = 1 we can write:

x1(tm+1) = max{min{3x1(tm), 3xS(tm)}, ph} (6.29)

The iteration ofxS in stateq = 1 depends on the value, obtained forx1(tm+1). If
x1(tm+1) > ph we have:

xS(tm+1) =
{
xS(tm)− x1(tm) if xS(tm) > x1(tm)
min{x1(tm)− xS(tm), Lh − x1(tm)− 2xS(tm)} if xS(tm) < x1(tm)

(6.30)

For x1(tm+1) = ph the additional draining during the time that is needed by the first
tank to reach the minimum switching threshold must be considered:

xS(tm+1) =

{
xS(tm)− x1(tm)− ph−x1

2 if xS(tm) > x1(tm)
min{x1(tm)− xS(tm)− ph−xs

2 ,
Lh − x1(tm)− 2xS(tm)− ph−xs

2 } if xS(tm) < x1(tm)
(6.31)

In stateq = 1 the following discrete state is obtained by:

q(tm + 1) = q(tm) if XS(tm+1) > 0 and q(tm + 1) = 2 otherwise (6.32)

If q(tm + 1) = 2 we have toreset(see Sec.2.2.1) the continuous state by replacing
xS by:

xS(tm + 1) = 1− ph (6.33)

Once arrived in the discrete stateq = 2 (i.e. two waiting tanks during (tm, tm+1) the
iteration of the hybrid Poincaré map is straightforward:

x1(tm+1) = ph
xS(tm+1) = min{xS(tm)− ph

2
, ph

2
}

q(tm+1) = 1
(6.34)

Basically this map is most time a two dimensional iterated map (stateq = 1) and only
sometimes it becomes for some iterations one dimensional (q = 1). Since we have
to proceed with a two dimensional map after everyq = 2 state we keep the second
variablexs even there.
The bifurcation structure of this hybrid map is shown in Fig.6.10. Although the bi-
furcation structure is much more complicated than for then = 3 case the same basic
features are obtained: Here we have again the horizontal lines of images of the bifur-
cation parameterph, and even the spider like structures appear.
For more than four possible domains, in other word forrc ≥ 3/4, the hybrid Poincaŕe
map has a higher dimension andn−2 discrete states. The numerics indicates, that even
in this case horizontal lines and spider structures are characteristics of the bifurcation
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a)

x1

ph

Lh/ph

b)

x1

ph

Lh/ph
c)

x1

ph

Lh/ph

Figure 6.10: Bifurcation diagram of the hybrid map Eq.(6.29)-Eq.(6.34). a) This diagram directly
gives the initial domain content on the lattice. b),c) enlarged sections of a).

diagrams. However, we think that it is beyond the scope of this thesis to investigate the
bifurcations of more dimensional piecewise linear hybrid mapsin detail. Since here
not only an example of such a map, but also an application in a highly attracting area
of modern semiconductor physics is outlined, we hope to stimulate future research on
such bifurcation problems.

6.4 Dynamics if Domains Can Traverse the Sample

A second effect that has to be included in the hybrid model is the run out of fronts
reaching the collector due to the limited size of the lattice. To decide whether a front
has reached the collector or not, we have to include an additional set of variables
{di|i = 1, ..., N} into the model, becausedi is not a unique function ofx (it depends
on the history). Now we deal with a hybrid model that contains exactly as many
continuous variables as fronts are present in the superlattice.
If di(t0) = L we assume that at first no new dipole is injected at the emitter site. Thus
we get, due toNa = Nd new front velocities:v∗d = v∗a = 1 and therefore the domain,
that is at the collector site will be emptied withµ∗ = 1 while for all other domains
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a)

b)

c)

Figure 6.11: Illustration of the model including with a periodic solution for all fronts reaching the
collector atU = 2.5V . a) The trajectory of domain sizes moving inside the 3-simplexS3 embedded in
R

3. b) Sample trajectory of domain contents. c) Associated evolution of fronts on the lattice.

µ∗∗ = 0 and the one attached to the emitter will be filled withλ∗ = µ∗. With these
considerations we have to add one additional discrete state to the model. Finally, if the
domain at the collector is empty, a new dipole is injected, and the system turns back
to its normal state. During the time the domain at the collector is emptied, no other
domain can become empty. Thus the rules prevent a conflicting situation. Although
a unreal situation is not avoided: if a new domain at the emitter is opened just before
another reaches the collector, we may get an accumulation and depletion front running
through the lattice in a small distance.
More formally we represent the mechanism outlined above by including rule6.12
beside the rules6.17-6.19and6.26in acomplete hybrid modelfor the front dynamics.
With this model various dynamical regimes are numerically obtained. This includes
periodic states, where all domains reach the collector (see Fig.6.11) as well as higly
complex patterns (Fig.6.12).

a) b)

Figure 6.12: By means of the hybrid model numerically obtained patterns of front dynamics with
n = 4 and fronts reaching the collector. A length of the lattice of 100 wells is assumed and the results
are rescaled according to Eq.(6.27) and Eq.(6.28) a)Lh/ph = 16 b)Lh/ph = 20
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6.5 Comparison of Numerical Results

To test the validity of thehybrid modelfor front dynamicsin semiconductor superlat-
ticeswe will now compare some numerical results obtained from the much simpler
hybrid model with results of the fullmicroscopic sequential tunneling modelgiven in
[3]. At first we consider the spatio-temporal patterns of moving accumulation and de-
pletion front (see Fig.6.5and Fig.6.14). It turns out, that the results in [3] are obtained
for then = 3 case (see Sec.6.3.3).

a) b)

100 150t[ns]

Figure 6.13: Dynamic evolution of front positions , obtained in a period-5 window. from the hybrid
model (a) and the microscopic sequential tunneling model(b) [3]. The position is given in wells for a
superlattice of 100 wells. a):n = 3, Lh/ph = 3.2, rescaled according to Eq.6.27and Eq.6.28. b)
σ = 0.5Ω−1m−1, U = 0.95V .

Generally the patterns for small voltages are reproduced qualitatively satisfaction-
able with the simplified three tank model including a minimal switching height. Es-
pecially the time intervals between successive maxima in the pattern are in good co-
incidence if the scaling is well adapted (cf. Fig.6.14). The annihilation positions
are not completely reproduced, but a discretisation phenomenon in the sequential tun-
neling model should be considered, leading to an earlier annihilation if the difference
between fronts is smaller than one well. It seems that a drift of the parameterh from
higher to lower values with increasing voltage can give better coincidences. Basically
the domains obtained from the hybrid model seem to be too large in an arbitrary emit-
ter distance. This coincides with the observation that the dynamics near the emitter site
is not well reproduced in the hybrid model. However, we do not expect to reproduce
the dynamics of the microscopic model in all details by the hybrid model. Especially
the complicated interactions during the detachment of fronts are not considered in the
hybrid modeling. But the hybrid model, based on very basic assumptions is, as the
examples show able to capture the essential features of the spatio-temporal pattern
formation process.

Thebifurcation diagram6.15shows, that the bifurcation structure for small volt-
ages can be understood from the hybrid model. The simple linear scaling relation
which we use here (Eq.(6.27)) is not proper (especially the width of the periodic win-
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U = 0.4V

U = 0.7V

U = 0.82V

150 200t[ns]

Figure 6.14: Dynamic evolution of front positions for various voltages, obtained from the hybrid
model (first column) and the sequential tunneling model [3] at σ = 0.5Ω−1m−1. The voltages applied
to the superlattice are indicated.

dows is too large), and some details, visible in Fig.6.15b are not present in Fig.6.15a.
I.e. the falling property of some branches after bifurcations, and the clearly reduced
minimal annihilation position inside the second ”chaotic” window aboveU = 1.1V. A
possible explanation is, that the microscopic simulations are carried out with parame-
ters, that giverc ≈ 2/3. The microscopic simulations therefore are near the situation
where we have to operate with an = 4 tank model [4]. Thus in the regions above
the prominent period-3 window sometimes the system simulated with the full micro-
scopic model falls in irregular dynamical regimes by opening a fourth domain that
annihilates near the emitter.
We note, that theprominent featuresof the bifurcation diagram, for instance the hori-
zontal lines, given by the first, and higher iterated images of the minimal filling height
are covered completely by the observations of the one-dimensional flat bottom tent
map. In particular the spider-like structure atU ≈ 0.9V in Fig.6.15 is explained
by the nature of the bifurcation structure of the flat bottom tent map Eq.(6.24) (cf.
Fig.6.8).
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a) b)

Figure 6.15: Bifurcation diagrams of positions where accumulation and depletion fronts annihilate,
obtained (a) from the hybrid model with three tanks (see Sec.6.3.3) and (b) a simulation by means of
a sequential tunneling model [3].

6.6 Conclusion

We have introduced hybrid models as simplified models for the front dynamics in
semiconductor superlattices. These hybrid models are derived by idealizing the con-
tinuous but very fast processes of front generation and annihilation as instantaneous
switching processes. The global coupling in the superlattice system in connection
with the integral over space constraint allowed a hybrid modeling of the semiconduc-
tor system by means of a switched arrival system withn tanks. In this unexpected
analogy, the tank filling level corresponds to the widths of the high-field domains in
the superlattice, while the position of the server determines which high field domain
is connected to the emitter. The number of tanks that have to be included are directly
given by a physically meaningful constantrc. The switched arrival system includes a
minimal switching thresholdph that was motivated by the process of front detachment
in the superlattice. This minimal switching threshold leads to a special bifurcation
structure that was investigated in particular forn = 3 . For this case a one dimen-
sional map named flat bottom tent map is found, which covers the front dynamics as
long as no front reaches the collector completely. This simplified model provides an
explanation for the complicated front dynamics in semiconductor superlattices. A bi-
furcation diagram for the positions of the front collisions (Fig.6.15) exhibits a striking
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similarity with the corresponding diagram of the full sequential tunneling model [3].
Although we investigated a superlatticemodel in this chapter, the presented methods
are very general and are expected to work for other pattern forming systems which
provide bistability and a global coupling similar to Eq.(6.3) as well.
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Here the results and insights obtained in the previous chapters are summarized. Some

open questions concerning the dynamics of hybrid systems and related topics are

outlined and conclusions for future research are drawn.

In this thesis new results for the dynamics of hybrid switched tank systems have
been presented. By using hybrid switched tank systems as models for manufacturing
systems and front dynamics in semiconductor superlattices new insights are obtained
into the nature of the dynamics of these systems.

The switched tank systems considered throughout this thesis deserve interest in
their own right. On the one hand side they are fundamental models for the dynam-
ics of hybrid systems, because all complexities of the dynamics are produced by the
hybrid characteristics of the systems, i.e. the rule dependent switching processes. Fur-
thermore, they are ideal model systems to study border collision bifurcations because
these are the only bifurcations that can occur due to the piecewise linear nature of the
associated Poincaré maps. On the other hand, the large number of different border
collision bifurcations (see Chap.3) causes the rich variety of dynamical behaviors in
switched tank systems.
By considering switched server systems and switched arrival systems with upper switch-
ing thresholds we found a close relation between these models. We have seen, that a
switched server system in a limiting case can show the behavior of a switched arrival
system and vice versa (Sec.4.2).
In particular we investigated the dynamics of some close relatives and variants of a
three tank switched server system in detail. In Sec.4.3an upper threshold for all tanks
was applied and chosen as bifurcation parameter. The bifurcations of these systems,
as of all other systems considered here as well, are exclusively border collision bi-
furcations. We have discussed the bifurcation mechanisms. We remark that border
collision bifurcations in these systems are indeed associated with collisions of the at-
tractor with a simplex boundary, when changing a control parameter. In Sec.4.4.1
we discussed the influence of various switching rules on the dynamics of these sys-
tems. A three tank system with an upper threshold applied only to the first tank was
considered in Sec.4.4.2. Here the value of one filling rate (λ2) was identified to be
crucial for the system’s ability to exhibit chaotic behavior. A system that contains two
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servers, one for filling two tanks and another for emptying two tanks, was investigated
in Sec.4.4.3. For this system a hybrid Poincaré map was obtained. This is an iterated
map, in which the iteration of a continuous variable depends on a discrete state. In
the context of manufacturing systems a switched tank model with additional set-up
times was introduced (Sec.5.2). Here the Poincaré map is also hybrid. Although the
system’s description contains a higher number of discrete states, the dynamics of these
systems, including a set-up time was found to be similar to the dynamics of systems
without set-up times.
Whereas in Chap.4 and Chap.5 all possible choices of rates were of interest, in Chap.6,
where a model for the front dynamics was investigated, all tanks obtained equal filling
rates. By using the symmetries that are introduced therewith, modified versions of the
tent map could be used for the description of the dynamics. Due to the introduction of
minimal switching thresholds, motivated by physical reality, the associated three tank
switched server system shows only periodic dynamics. The period, however, can be
very high.
From the investigations of a variety of hybrid switched tank systems we conclude, that
seemingly slight changes in the model can have major consequences for the dynamical
features. Furthermore, the inclusion of conditions, like set-up times, leads in a natural
way to hybrid Poincaŕe maps.

Since the beginnings of nonlinear dynamics the theoretical concepts were applied
to problems of interdisciplinary character in all areas of science, including physics,
ecology, economics and biology. In this thesis we applied the knowledge, obtained
theoretically for a general description of switched arrival systems and switched server
systems to investigate systems exhibiting a complex dynamics from two areas of sci-
ence.
We addressed the dynamics of basic configurations in automated manufacturing sys-
tems. Here we have approximated the discrete flow of materials by a continuous
process to obtain a hybrid model that describes the dynamics and can be analyzed by
analytical means from nonlinear dynamics. The irregularities obtained in such sys-
tems are shown to be caused by the intrinsic dynamics of policy guided switching
systems. Restricted buffer capacities in switched server systems are identified as a
source of chaotic behavior in the hybrid models of switched server configurations.
By means of numerical simulation we have seen, that the chaotic behavior and bifur-
cations, obtained for a continuous approximation of material flows are qualitatively
also found for discrete deterministic queuing models. To clarify the interdependencies
between systems parameters, dynamics and performance we used measures that are
used regularly in operations research and by production engineers. It became obvious,
that chaotic behavior not only complicates the planning of production but also reduces
effectively the productivity. The question, what countermeasures are able to prevent
such drawbacks was briefly discussed. The knowledge and methods for predicting the



113

effects of changed parameters or policies are contained in this thesis.
The most unexpected result of this thesis is the application of a switched arrival tank
model to describe the dynamics of accumulation and depletion fronts in semiconduc-
tor superlattices. By approximating basically continuous processes of front generation
and annihilation by instantaneous switching-like processes, it was possible to find a
generic description for this spatio-temporal pattern formation process. The global cou-
pling in the superlattice in connection with an integral over space constraint allowed
a model, in which the tank filling levels correspond to the widths of high-field do-
mains in the superlattice, while the position of the server determines, which high-field
domain is connected to the emitter. With this model the complex pattern formation
process and a bifurcation scenario, obtained by means of a simulation of a sequential
tunneling model, could be explained and investigated by means of a one dimensional
map, called flat bottom tent map. Although we investigated a superlattice model, the
applied methods are very general and are expected to work for other pattern forming
systems, too. This might be useful in other areas of research, where systems with
similar characteristics, i.e. a global coupling and a bistability inducing fronts with
different characteristic velocities appear.
From the presented results it becomes obvious, that a hybrid modeling approach can
be a highly efficient method to obtain idealized models of dynamical phenomena,
describing the main features of the dynamics. Furthermore, at least the models con-
sidered here are tractable by analytical means. This is possible due to the piecewise
linear nature of the obtained Poincaré maps. For some systems we could make use
of reduced return maps summarizing the action of whole paths in a state transition
diagram of the hybrid system in one segment of the map to simplify the analysis.
The hybrid nature of the systems is reflected by the existence of not only the above
mentioned Poincaré map, but also a second map that has to describe the dynamics of
inter-switching times of the systems (Sec.4.3.3) and state transition graphs that are a
way to determine the possible evolution of discrete states in these hybrid systems.

As we have seen, the investigation of more complicated hybrid systems leads in a
natural way tohybrid maps. Since those maps are the most simple hybrid systems a
future investigation of hybrid dynamical phenomena may consider such hybrid maps
as starting point for a systematic research.
In connection with the dynamics of hybrid systems a number of problems is still unre-
solved. This ranges from very fundamental questions, as for instance the classification
and investigation of border collision bifurcations in more than two dimensions, to a
new view on natural systems which obey characteristics as the pattern formation pro-
cess in superlattices that can be covered by a hybrid modeling approach.
We expect that if the concept of hybrid systems becomes more known among re-
searchers from natural sciences even other systems will be recognized where this
notion may lead to new insights. Especially networks of pulse coupled oscillators
(integrate-and fire neuron models) [44, 96] are seemingly hybrid.
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A closer investigation of hybrid systems with impulse like transitions of the contin-
uous state may be fruitful. It will be a challenge to reach furthermore a deeper un-
derstanding of the implications of mixed occurrence of state and timed events in the
same system as we have seen them in the switched server model with set-up times.
Up to now we lack a quantitative measure for the chaotic properties hybrid systems.
For strange billiard like systems as considered here it may be promising to explore
a transfer of methods used for the estimation of Lyapunov exponents in Hamiltonian
billiards [37, 36, 38] to strange billiards.

In this thesis not only models are presented, that reveal some fascinating features,
but also an application in a highly attracting area of modern physics was given. We
hope that this will stimulate future research in the field of hybrid dynamical systems.
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Table A.1: Table of the segments of the Poincaré map for the three tank switched server system with a
maximum tank capacityb for all tanks.
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Table A.2: Table of the segments of the reduced Poincaré map for the three tank switched server system
with an upper thresholdb assingned to the first tank only.
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[66] C. Köhrmann. Modellbasierte Verf̈ugbarkeitsanalyse automatischer Mon-

tagelinien. PhD thesis, University Hannover, Institute for Production Systems,
2000.

[67] S.R.T. Kumara, H. van Brussel, S.T.S. Bukkapatam, and I. Ham. Non-linear dy-
namics and chaos in manufacturing - a critical analysis. InCIRP international
Seminar on Manufacturing Systems, 2001.

[68] E.R. Larsen, J.W.D. Morecroft, and J.S. Thomson. Complex behaviour in a
production distribution model.European Journal of Operational Research,
119:61–74, 1999.

[69] J.D.C. Little. A proof for the queueing formulal = λw. Operations Research,
9:383–387, 1960.

[70] O. Lorch, J. Denk, J.F. Seara, M. Buss, F. Freyberger, and G. Schmidt. An em-
ulation enviroment for a vision guided virtual walking machine. InProc. of the
First IEEE-RAS International Conference on Humanoid Robots HUMANOID
S2000, Cambridge, MA, 2000.

[71] J. Lunze. Modelling, Analysis and Design of Hybrid Systems, volume 279 of
LNCIS, chapter What is a Hybrid System, pages 3–14. Springer Verlag ,Berlin,
Heidelberg, 2002.

[72] K.J. Luo, H.T. Gran, K.H. Ploog, and L.L. Bonilla. Explosive bifurcation
to chaos in weakly coupled semiconductor superlattices.Phys. Rev. Lett.,
81(6):1290–1293, 1998.

[73] J Lygeros, K.H. Johansson, S.N. Simic, J. Zhang, and S. Sastry. Dynamical
properties of hybrid automata.IEEE Trans. Autom. Control, 41(1):2–18, 2003.

[74] Y.L. Maistrenko, V.L. Maistrenko, and L.O. Chua. Cycles of chaotic intervals
in a time -delayed chua’s circuit.Int. J. Bifurcation Chaos Appl. Sci. Eng.,
3(6):1557–1572, 1993.

[75] J. Mareczek, M. Buss, and G. Schmidt. Robust global stabilization of the un-
deractuated 2-dof manipulator.Proc. of the IEEE International Conference on
Robotics and Automation, Leuven, pages 2640–2645, 1998.

[76] A.S. Mikhailov. Foundations of Synergetics, volume 1. Springer, Berlin, 1994.



124 Bibliography

[77] I. Mitrani. Simulation techniques for discrete event systems. Cambridge Uni-
versity Press, 1982.

[78] J. Müller and W. van Saarloos. Morphological instability and dynamics of
fronts in bacterial growth models with nonlinear diffusion.Phys. Rev. E,
56:061111, 2002.

[79] H.E. Nusse and J.A. J.A. Yorke. Border-collision bifurcations for piecewise
smooth one-dimensional maps.Int. J. Bifurcation Chaos Appl. Sci. Eng.,
5(1):189–207, 1995.

[80] H.E. Nusse, E. Ott, and J.A. Yorke. Border collision bifurcations: An expla-
nation for observed bifurcation phenomena.Phys. Rev. E, 49(2):1073–1076,
1994.

[81] H.E. Nusse and J.A. Yorke. Border collision bifurcations including ”period two
to period three”.Physica D, 57:39–57, 1992.

[82] P. Nyhuis and H.-P. Wiendahl.Logistische Kennlinien. Springer Berlin Heidel-
berg New York, 1999.

[83] P. Orella and F. Claro. A terahertz molecular switch.Phys. Rev. Lett.,
90(17):178302, 2003.

[84] S. Parui and S. Banerjee. Border collision bifurcations at the change of state
space dimension.Chaos, 12(4):1054–1069, 2002.
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