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1 Summary 
  

 Transcription and translation are two highly coupled processes during prokaryotic gene 

expression where ribosomes initiate translation on mRNAs already during transcription, in 

contrast to eukaryotes where two principle processes occur in two different cellular 

compartments.  

 One of mechanisms by which transcription and translation in prokaryotes communicate 

directly with one other is sharing proteins, which have dual activity. As one such example, 

S10 protein was initially defined as a ribosomal (r-) protein before an additional role in 

transcription was discovered. S10 is a component of the 30S ribosomal subunit and 

participates together with NusB protein in processive transcription antitermination. NusB is 

implicated in translation through studies of its mutations that slow down the translation 

elongation rate. However, the exact role of NusB in translation remains unknown and the 

molecular mechanisms by which S10 and NusB can act as transcription or translation factors 

are still a mystery. 

 Here, regions of S10 dispensable for transcription antitermination were delineated 

through complementation assays and recombineering. The crystal structure of a 

transcriptionally active NusB-S10 complex was determined. In the complex, S10 adopts the 

same fold as in the 30S subunit and is blocked from simultaneous association with the 

ribosome. Mass spectrometric mapping of UV-induced crosslinks revealed that the NusB-S10 

complex presents an intermolecular, composite, and contiguous binding surface for RNAs 

containing BoxA antitermination signals. Furthermore, S10 overproduction complemented a 

nusB null phenotype. These data demonstrate that S10 and NusB together form a BoxA 

binding module, that NusB facilitates entry of S10 into the transcription machinery, and that 

S10 represents a central hub in processive antitermination. Last, the evidence that NusB plays 

a role of a loading factor in delivering S10 into transcription antitermination complex and 

into other molecular environment in vitro (crystals) allowed me to deduce a hypothesis that in 

translation NusB may still function as a loading factor that delivers S10 into ribosomes.   
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2 Introduction 
 

2.1 Overview of the prokaryotic transcription machinery 
  Transcription (RNA synthesis) is the first step of gene expression where RNA polymerase 

(RNAP) reads DNA and produces a complementary, antiparallel copy of DNA sequence as 

an RNA product, which is then translated by ribosomes to yield proteins (Squires and 

Zaporojets, 2000). The prokaryotic RNAP molecule is a complex enzyme composed of two α 

subunits, one β subunit, one β’ subunit, one ω subunit and one σ subunit. The σ subunit can 

be separated from other subunits to give rise to a core RNAP. Three main types of RNA are 

obtained from transcription: messenger RNA (mRNA) that will be translated into amino acids 

for protein biosynthesis; transfer RNA (tRNA) that transfers amino acids to ribosomes; 

ribosomal RNA (rRNA) that involves in the ribosomes assembly and catalysis. The 

prokaryotic transcription is divided into several major phases that are illustrated in the Figure 

2.1.      

 

 
 

Figure 2.1 The prokaryotic transcription cycle (Mooney et al., 1998)  

For simplicity, not all intermediate steps are shown. The four major phases of the transcription (promoter 

engagement, initiation, elongation and termination) are discussed in the main text. 
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2.1.1 Prokaryotic transcription initiation 
 The initial stage of the prokaryotic transcription begins with the binding of RNAP to the 

promoter in DNA, which localizes approximately 10 and 35 base pairs upstream from the 

start site of transcription. The binding of RNAP to the promoter is aided by σ subunit. The 

transcription is then initiated with melting of about 15 base pairs of DNA around the 

initiation site and scrunching of DNA of the growing bubble into RNAP (Roberts et al., 

2008). The σ subunit is released from RNAP after addition of about first 10 nucleotides (nt) 

by accumulated stress from DNA scrunching, which also drives breakage of the interaction 

between RNAP and promoter DNA, as well as between RNAP and other initiation factors for 

promoter clearance (Kapanidis et al., 2006). The initiation process is also affected by many 

other initiation factors, including both positively acting factors like AraC, CAP and Fis, and 

negatively acting factors like repressors (Squires and Zaporojets, 2000).    

 

2.1.2 Prokaryotic transcription elongation 
 After the initiation, RNAP moves along the DNA template strand (non-coding strand) to 

make the elongation of the growing RNA chain. Transcription elongation starts with binding 

of a template-complementary nucleotide triphosphate (NTP) into the growing bubble, 

followed by the reaction between the RNA chain 3’-OH and the NTP α-PO4 group (Roberts 

et al., 2008; Vassylyev et al., 2007). This chemical reaction, catalyzed by a pair of bound 

Mg2+ ions, results in the addition of one nucleotide monophosphate (NMP) to the RNA and 

release of a pyrophosphate and subsequently, the next template base is placed in the growing 

bubble (Roberts et al., 2008; Vassylyev et al., 2007). This process produces an RNA 

molecule that is an exact copy of the coding strand of DNA with the exceptions that thymines 

(T) are replaced with uracils (U) and that the nucleotides are made of ribose sugars. During 

the elongation process, at certain template sites RNAP pauses frequently to modulate the 

elongation rate, reflecting a finely detailed evolution of transcription rate to match the 

particular fate of the transcript (Roberts et al., 2008). Pausing and antipausing are fine-tuned 

by specific factors which lead RNAP to vary its elongation rate from 40-45 nucleotides/s on 

most mRNAs to 80-90 nucleotides/s on rRNAs (Squires and Zaporojets, 2000).  

 

2.1.3 Prokaryotic transcription termination 
 Transcription proceeds until RNAP encounters a termination signal, where RNA 

synthesis stops, the growing RNA chain is released from RNAP, and RNAP dissociates from 
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the DNA template. Prokaryotes use two different ways to terminate transcription: intrinsic 

termination (Rho-independent termination) and Rho-dependent termination.  

 An intrinsic termination has a termination signal in DNA consisting of a GC-rich dyad 

symmetry element and an oligo T sequence (T stretch), thus the transcribed RNA contains a 

stable hairpin followed by an element of seven to nine U residues (U stretch) at the 3’ 

terminus (d'Aubenton Carafa et al., 1990; Gusarov and Nudler, 1999). The transcription 

elongation complex stops at the end of U stretch (usually at U7 and U8 positions), and then it 

is converted to an irreversibly trapped configuration (Gusarov and Nudler, 1999). The hairpin 

disrupts most of the A-U base pairs in the DNA-RNA hybrid and also disrupts the interaction 

between single stranded RNA and RNAP, thus destabilizing the trapped elongation under 

physiological salt conditions (Gusarov and Nudler, 1999).  

 Rho-dependent termination depends on the Rho factor, a protein having both ATPase and 

helicase activities (Ciampi, 2006). Rho forms a hexametric ring by six protomers joined 

together through the N- and C-terminal domains of each protomer, where the Rho hexamer is 

split open to accommodate single-stranded RNA (Skordalakes and Berger, 2003). Each of six 

N-terminal domains of the Rho is working as the primary RNA binding site to mediate the 

tethering of the Rho to the Rho utilization site (rut), an element of 70-80 nt exhibiting a high-

C and low-G content (Ciampi, 2006). The C-terminal domain in each protomer of the Rho 

contains several key motifs: P loop, a part of a Walker-type ATP binding protein required for 

ATP binding and hydrolysis; R loop and Q loop, together forming Rho’s secondary RNA 

binding site (Skordalakes and Berger, 2003). Rho-dependent termination starts with the 

loading of the Rho to the rut site through the primary RNA binding sites in the N-terminal 

domains of the Rho (Ciampi, 2006; Skordalakes and Berger, 2003). To allow association 

between mRNA and the secondary RNA binding sites (R loop and Q loop) in the interior of 

the hexamer, the Rho ring opens during rut site binding (Ciampi, 2006; Skordalakes and 

Berger, 2003). Rho-mRNA binding activates the Rho’s ATPase functionality, providing the 

energy for Rho translocation along the mRNA, and finally the transcript is released by Rho’s 

helicase activity (Ciampi, 2006; Skordalakes and Berger, 2003).     

 

2.2 Overview of the prokaryotic translation machinery 
 Translation is the first stage of protein biosynthesis by ribosomes through decoding 

mRNA generated in transcription to produce a specific polypeptide according to genetic 

codes. Ribosomes (70S) in prokaryotes consist of a small 30S ribosomal subunit and a large 
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50S ribosomal subunit. Assembly of the 30S ribosomal subunit needs proteins S1 through 

S21 along with the 16S rRNA, and the assembly of the 50S ribosomal subunit requires 

proteins L1 through L36 along with the 23S and 5S rRNA (Squires and Zaporojets, 2000). 

The fully assembled prokaryotic ribosomes have three tRNA binding sites, defined as the 

aminoacyl (A), peptidyl (P) and exit (E) sites. The prokaryotic translation initiation, 

elongation, termination and ribosome recycling are illustrated in the Figure 2.2. 

 

 
 

Figure 2.2 The prokaryotic translation cycle (Schmeing and Ramakrishnan, 2009)  

For simplicity, not all intermediate steps are shown. The four major phases of the translation (initiation, 

elongation, termination and ribosome recycling) are discussed in the main text.  

 

2.2.1 Prokaryotic translation initiation 
 The initiation of prokaryotic translation begins with the binding of the 30S ribosomal 

subunit to the initiation factor 3 (IF3), which leads the dissociation of ribosomes into subunits 

and couples translation initiation and ribosome recycling (Gualerzi and Pon, 1990). Initiation 

factor 1 (IF1) stimulates the activity of the IF3, specifically interacts with bases of the A site 

of the 30S subunit, and thus indirectly guides the initiator tRNA (fMet-tRNAfMet, a tRNA 

carrying a formylmethionine) to the ribosomal P site by blocking the A site (Laursen et al., 
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2005). The mRNA associates with the 30S subunit through complementary base paring 

between its Shine-Dalgarno (SD) sequence and the anti-SD sequence of the 16S RNA, and 

hence the initiation codon (AUG) is adjusted in the P site of the 30S subunit (Yusupova et al., 

2001). The initiator tRNA is accurately positioned at the P site of 30S subunit by the 

promotion of initiation factor 2 (IF2), where the binding of initiator tRNA to the P site is 

further stabilized by the IF3 (Laursen et al., 2005). In the presence of GTP, the GTPase 

activity of the IF2 is activated upon association of the 50S subunit to the 30S initiation 

complex that gives rise to the 70S initiation complex, during which process the IF1 and IF3 

are ejected, GTP is hydrolyzed to GDP and phosphate, and the IF2 is released  (Brock et al., 

1998). At this stage the initiator tRNA is ready to form the first peptide bond with the second 

coded aminoacyl-tRNA (Brock et al., 1998). 

 

2.2.2 Prokaryotic translation elongation 
 An initiator tRNA in the P site and an empty A site of ribosome coming from the end of 

the initiation process serves to initiate translation elongation. The second coded aminoacyl-

tRNA is brought to the A site as a ternary complex with elongation factor Tu (EF-Tu) and 

GTP (Ramakrishnan, 2002). The recognition of the anticodon of the second aminoacyl-tRNA 

with the mRNA codon causes conformational changes in the ribosome which stabilizes tRNA 

binding and stimulates GTP hydrolysis by EF-Tu (Ramakrishnan, 2002). The resulting EF-

Tu:GDP complex exhibits a low binding affinity for the aminoacyl-tRNA, which is then 

released from the A site of ribosome (Dell et al., 1990). A peptide bond between the initiator 

tRNA from the P site and the aminoacyl-tRNA accommodated in the A site is formed 

through the peptidyl transferase reaction that takes place in the 50S subunit, in which 23S 

rRNA is viewed as the catalytic element (Nissen et al., 2000; Noller et al., 1992). During the 

peptide bond formation, the initiator tRNA from the P site is deacylated and the peptidyl-

tRNA is transferred to the A site (Ramakrishnan, 2002). Next, the deacylated tRNA is 

translocated to the E site from the P site and the peptidyl-tRNA to the P site from the A site, 

where translocation is catalyzed by the elongation factor G (EF-G) (Rodnina et al., 1997). As 

a result, the ribosome is ready for the next cycle of elongation, with deacylated tRNA and 

peptidyl-tRNA in the P site, and an empty A site to accommodate the next cognate ternary 

complex (Ramakrishnan, 2002).  
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2.2.3 Prokaryotic translation termination and ribosome recycling 
 The translation elongation cycle is repeated until a stop codon is encountered on mRNA 

in the A site of ribosome (Ramakrishnan, 2002). Stop codons are recognized by “class I” 

release factors (RF): RF1 recognizing UAA and UAG; RF2 recognizing UAA and UGA 

(Kisselev and Buckingham, 2000). The RF1 and RF2 trigger the hydrolysis of the ester bond 

in peptidyl-tRNA and release the newly synthesized peptide chain from the ribosome 

(Kisselev and Buckingham, 2000). The “class II” release factor, RF3, binds to the RF1-RF2 

complex and induces the release of the RF1 and RF2 from the ribosome at the end of 

termination process (Ramakrishnan, 2002). 
 After the release of the peptide chain, the complex formed at the end of the termination 

process, comprising the 70S ribosome, mRNA and deacylated tRNA in the P site, is 

disassembled by the ribosome recycling factor (RRF) and EF-G to prepare the ribosome for a 

new round of protein synthesis (Janosi et al., 1996). During this ribosome recycling process, 

RRF and EF-G trigger the dissociation of the ribosome into 30S and 50S subunits on the 

basis of GTP hydrolysis (Karimi et al., 1999). Subsequently, the IF3 removes the deacylated 

tRNA from the 30S subunit, and all translational components are free for the next round of 

translation (Ramakrishnan, 2002).   

  

 

2.3 The coupling between prokaryotic transcription and 

translation machineries 
 Transcription and translation are two highly coupled processes during prokaryotic gene 

expression where ribosomes initiate translation on mRNAs already during transcription 

(Laursen et al., 2005). As one strategy to communicate directly with one each other in 

transcription and translation machineries, prokaryotes make use of “moonlighting” proteins 

that can be shared in more than one cellular context (Jeffery, 1999). This dual activity of 

proteins was first noted in phage λ transcription antitermination system (Friedman et al., 

1981). 

 

2.3.1 Transcription antitermination systems 
 During lytic phase, early gene transcription of the phage λ genome initiates at pL and pR 

promoters proceeding in opposite directions (Figure 2.3), in which transcription on the left 

transcribes the N gene and stops on the tL1 termination site, and about 50 % of transcripts on 
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the right stops on the tR1 termination site with the remainder continuing and terminating at 

the combined tR2,3,4 terminators in the nin region (Friedman and Court, 1995). In the presence 

of N-dependent processive transcription antitermination system, transcription can overcome 

these termination barriers and allow phage λ to switch from early to delayed early gene 

expression (Friedman and Court, 1995).  

 

 
 

Figure 2.3 Map of the regulatory region of phage λ lytic phase  

A representative collection of genes are shown at the top of the figure. The following lists the activities of the 

products of gene not discussed in details in the text: cl and cro, repressors; cll, transcription activator; N, phage 

λ protein involved in early gene expression; Q, phage λ protein involved in late gene expression; pR’ and tR’, 

promoter and terminator for late gene expression. Blue, λ genome; Pink, gene products; Green arrow, phage λ 

gene expression switch; Black arrow, directions of phage λ gene expression. Figure is modified according to 

(Friedman and Court, 1995). 

 

 The processive transcription antitermination system of phage λ relies on the phage-

encoded protein N, an RNA control sequence (N-utilization site, Nut; comprising two linear 

elements, BoxA and a “spacer”, followed by a stem loop, BoxB) and four host N-utilization 

substances (NusA, NusB, NusE and NusG) (Figure 2.4 (Left); (Friedman and Court, 1995; 

Friedman and Gottesman, 1983)). Phage λ N protein belongs to a family of proteins 

containing an arginine rich motif of about 6-10 amino acids which directly interacts with 

BoxB RNA (Legault et al., 1998). The NusA-binding region (amino acids 34-47) of N 

protein suppresses NusA’s enhancement of termination, and the C-terminal region of that 

makes contacts with RNAP (Mogridge et al., 1998a). NusA consists of three functional 

domains: the N-terminal domain that binds β and β’ of RNAP (Mah et al., 1999); the RNA-

binding domain that comprises an S1 motif and two KH motifs (Mah et al., 2000); the 
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regulatory domain encompassing the acidic repeats AR1 for N binding and AR2 (Bonin et al., 

2004a). NusG is a conserved regulatory protein comprising two largely independent N- and 

C-terminal domains (NTD and CTD; (Steiner et al., 2002)), where the NTD interacts with 

RNAP, and the CTD interacts with the Rho and other Nus factors (Mooney et al., 2009). 

NusE is identical to r-protein S10 (Friedman et al., 1981). NusE forms a stable complex with 

NusB (Mason et al., 1992) that has enhanced affinity for BoxA-containing RNAs compared 

to NusB alone (Luttgen et al., 2002; Mogridge et al., 1998b; Nodwell and Greenblatt, 1993). 

N, Nut RNA and the Nus factors form a ribonucleoprotein complex on the surface of RNAP, 

in which RNA and protein factors engage in numerous, predominantly weak and cooperative 

contacts (Mogridge et al., 1995). The N-Nut-Nus factor complex accompanies RNAP during 

elongation via RNA looping (Whalen and Das, 1990) and promotes processive transcription 

elongation through downstream intrinsic and factor-dependent termination sites (Weisberg 

and Gottesman, 1999). 

 

 
 

Figure 2.4 Transcription anitermination or termination models  

(Left) Model of phage λ N-dependent transcription antitermination. (Middle) Model of E. coli ribosomal RNA 

transcription antitermination. (Right) Model of phage HK022 transcription termination. The Nus factors, NusA 

(yellow), NusB (blue), NusE (red) and NusG (pink), are involved in all three models. In E. coli ribosomal RNA 

transcription antitermination, BoxB-like element is dispensable and one of r-proteins (green) participates. λ N, 

green; Nun, cyan; RNAP, grey; Rho, marine; DNA and RNA, black. Rho factor is blocked (represented by a red 

curve) in phage λ N-dependent transcription antiterrmination and in E. coli ribosomal RNA transcription 

antitermination. Rho factor is provoked (represented by a green arrow) to terminate phage HK022 transcription. 

 

 Other bacteria like Escherichia coli (E. coli or eco) utilize a similar mode of processive 

antitermination during their ribosomal RNA gene (rrn) transcription (Figure 2.4 (Middle)), in 

that the same factors, NusA, NusB, NusE and NusG, are involved (Li et al., 1984; Quan et 

al., 2005). BoxA RNA is strictly conserved in all seven rrn operons of E. coli, whereas the 

BoxB-like element is dispensable for rrn antitermination (Berg et al., 1989). However, there 
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is no known analogue of N itself, so either the analogue has not been found or one of r-

proteins participates in rrn antitermination (Roberts et al., 2008). In addition to Nus factors, 

other r-proteins, including S2, S4, L4 and L13, participate in this latter process for 

transcription antitermination (Torres et al., 2004; Torres et al., 2001).  

 A relative of λ, phage HK022, expresses the Nun protein which is a transcription factor 

related to the λ N protein (Friedman and Court, 1995). Nun protein acts at the λ Nut BoxB 

site and, after enlisting the four Nus factors, provokes transcription termination (Figure 2.4 

(Right); (Robert et al., 1987)). Moreover, the Nun protein competes with N at λ Nut sites and 

represses phage λ N transcription in order to avoid superinfection with phage λ of a bacterial 

cell that is already HK022 infected, thus securing phage HK022 survival (Robert et al., 

1987).   

 

2.3.2 Proteins shared by the transcription and translation machineries 
 Prokaryotic transcription and translation leading to gene expression communicate directly 

with one another by sharing proteins (Squires and Zaporojets, 2000). More than 60 proteins 

are required to fine-tune the transcriptional and translational processes, providing ample 

candidates for proteins to be shared between two activities (Squires and Zaporojets, 2000). 

For example, three r-proteins, S10, L4 and S1, have been clearly discovered to participate in 

both transcription and translation, and two transcription antitermination factors, NusG and 

NusB, are implicated in translation through genetic mutation studies but their exact roles in 

translation are still not well understood.  

  

2.3.2.1 S10 (NusE) 

 S10 was initially defined as an r-protein before an additional role in transcription was 

discovered (Friedman et al., 1981). It is an important architectural element in the 30S 

ribosomal subunit (Figure 2.5A), as revealed by reconstitution (Mizushima and Nomura, 

1970) and crystal structure analyses (Schluenzen et al., 2000; Wimberly et al., 2000). S10 is 

one of last six r-proteins involved in the final step of 30S ribosomal subunit assembly 

(Squires and Zaporojets, 2000). In the 30S ribosomal subunit, S10 exhibits a globular domain 

that is located at the surface of the particle and an extended ribosome-binding loop that 

deeply penetrates the subunit and interacts with several other r-proteins and the 16S rRNA 

(Figure 2.5A and 2.5B; (Schluenzen et al., 2000; Wimberly et al., 2000)). It was suggested 
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that the fold of S10 by itself is unstable (Das et al., 2008; Gopal et al., 2001); thus, the other 

r-proteins and 16S rRNA may act to stabilize S10 in the ribosome.  

 The participation of S10 in transcription represents a first example of an r-protein 

involved in two cellular machineries (Friedman et al., 1981). The role of S10 in transcription 

antitermination is highly cooperative to NusB in vivo, where NusB and S10 form a complex 

for BoxA RNA binding (Figure 2.4), suggesting that S10 is involved in the formation of 

functional transcription antitermination complex (Nodwell and Greenblatt, 1993). The 

addition of S10 increases the efficiency of terminator read-through in an in vitro rRNA 

transcription antitermination system (Squires et al., 1993; Squires and Zaporojets, 2000). In 

addition, it was also found that S10 directly contacts RNAP (Mason and Greenblatt, 1991) 

and it has been shown to bind phage λ N in vitro (Mogridge et al., 1995, 1998b).  

 

 
 

Figure 2.5 Structures of S10 and NusB 

(A) The global view of E. coli S10 in 30S ribosomal subunit (PDB ID 2AVY; (Schuwirth et al., 2005)). S10, 

red; 30S r-proteins, grey; 16S rRNA, gold.  

(B) Ribbon plot of the crystal structure of S10 from E. coli 30S ribosomal subunit (PDB ID 2AVY; (Schuwirth 

et al., 2005)). 

(C) Ribbon plot of the NMR structure of E. coli NusB (PDB ID 1EY1 (Altieri et al., 2000)) 
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2.3.2.2 L4 

 L4 participates in the early assembly of the 50S ribosomal subunit in which L4 fixes the 

tertiary structure of the 23S rRNA (Nierhaus, 1991; Worbs et al., 2000). L4 has a globular 

domain that sits on the surface of the 50S subunit and an extended loop penetrates the core of 

the 50S subunit (Ban et al., 2000; Zengel et al., 2003). L4 is involved with the peptidyl 

transferase RNA region and may participate in the catalysis of peptide bond formation 

(Worbs et al., 2000).  

 Some r-proteins have a function as regulators, autogenously inhibiting expression of their 

own operons when they are produced in excess of available binding sites on nascent rRNA 

during ribosomes assembly (Zengel et al., 2003; Zengel and Lindahl, 1994). These r-protein 

operons feedback translational regulations by a particular r-protein encoded in the operon 

(Squires and Zaporojets, 2000). L4 is one component of the S10 operon which contains genes 

for eleven r-proteins (Lindahl and Zengel, 1986). Like other r-protein operons, the S10 

operon is autogenously regulated by one of its products, L4, which inhibits translation by 

preventing initiation of translation of the most proximal gene of the S10 operon (Zengel and 

Lindahl, 1992). Regulation of the S10 operon by L4 occurs not only at the translation level, 

but also at the transcription level. L4 inhibits the transcription of the S10 operon, with the 

cooperation of NusA, by leading transcription termination at a particular site in the S10 

operon leader region, where NusA stabilizes the RNAP pause, and L4 further reinforces this 

pause and converts RNAP into a termination activity (Squires and Zaporojets, 2000; Zengel 

and Lindahl, 1992).  

 

2.3.2.3 S1 

 S1 is one of last proteins involved in the 30S ribosomal subunit assembly. It recognizes 

the nascent mRNA structures and opens up these mRNA structures to initiate translation by 

ribosomes (Squires and Zaporojets, 2000).  S1 is the largest r-protein (mass, 70 kDa) with an 

NTD for ribosome binding and with a CTD formed by six copies of approximately ~70 

amino acids for mRNA binding (Gribskov, 1992).  

 S1 is involved in the cellular transcription on the basis of the finding that it competitively 

inhibits the binding of NusB and S10 to the BoxA RNA during the rrn antitermination 

(Mogridge and Greenblatt, 1998). The affinity of the rrn BoxA RNA for S1 is 200-fold-

higher than that of for NusB-S10 complex that suggests that S1 might be an inhibitor of 

transcription antitermination (Mogridge and Greenblatt, 1998). The competitive binding 

ability of S1 for phage λ Nut BoxA RNA was identified in the same manner, but it did not 
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inhibit the λ N-dependent transcription antitermination in vitro in reactions containing other 

antitermination factors (Mogridge and Greenblatt, 1998; Squires and Zaporojets, 2000). The 

transcription antitermination roles of S1 in both ribosomal RNA and phage λ N transcription 

systems have to be further studied.  

 

2.3.2.4 NusG 

 NusG is a transcription elongation factor that was originally discovered as a key 

component in the phage λ N-dependent antitermination complex (Figure 2.4), where NusG 

interacts directly with RNAP (Li et al., 1992; Squires and Zaporojets, 2000). NusG inhibits 

transcription pausing and increases the rate of elongation (Burova et al., 1995). NusG has 

also been shown to directly bind the Rho factor (Pasman and von Hippel, 2000) and stimulate 

Rho-dependent termination (Sullivan and Gottesman, 1992). Thus, NusG establishes a bridge 

between RNAP and Rho to help recruit the Rho into the termination complex in a way 

independent of its effect on elongation (Li et al., 1993).  

 A role for NusG in translation has been identified by the finding that the peptide 

elongation rate in vivo is reduced in the nusG-depleted cells by measuring rate of synthesis of 

a lacZ construct (Zellars and Squires, 1999). Thus, NusG was viewed to serve as a linker to 

couple the rate of transcription and the rate of translation (Zellars and Squires, 1999). 

Moreover, all known members of the NusG family at the C-terminus of proteins carry a 

KOW motif, a 27-amino acids sequence with a glycine at position 11, which is highly 

conserved in r-protein families RL24, RL26 and RL27 (Squires and Zaporojets, 2000). The 

phenomenon that a transcription factor has been linked by a sequence motif to r-protein 

families suggests that NusG potentially participates in translation (Squires and Zaporojets, 

2000).   

 

2.3.2.5 NusB 

 The nusB gene was discovered by Shiba et al when they were seeking the extragenic 

suppressors of secY24 mutation that causes a defect in secretion (Shiba et al., 1986). The 

NMR structure of E. coli NusB protein shows that NusB is composed of five helixes and 

adopts an all helical fold (Figure 2.5C; (Altieri et al., 2000)). NusB is implicated in 

translation elongation on the basis of characterizations of several mutations in nusB (Court et 

al., 1995). One of these nusB mutations, nusB::IS10, suppresses the secY24 defect, leads to a 

cold-sensitive growth defect in E. coli cells and slows down the peptide chain elongation rate 

by 30% (Court et al., 1995; Shiba et al., 1986; Taura et al., 1992). As most mutations that 
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suppress a secY mutation have been identified in genes whose products are related to protein 

synthesis, NusB was speculated to play a role in translation (Squires and Zaporojets, 2000). 

 Much evidence indicates NusB is an important transcription antitermination factor during 

λ N-mediated antitermination (Figure 2.4). NusB forms a stable complex with S10 even in 

the absence of other Nus factors (Mason et al., 1992) to sustain unstable S10 a proper fold in 

transcription antitermination (Das et al., 2008; Gopal et al., 2001). NusB alone interacts 

specifically with BoxA RNA, and the enhanced binding affinity is achieved by the addition 

of S10 (Nodwell and Greenblatt, 1993). Since BoxA is strictly conserved in all seven rrn 

operons of E. coli, where the BoxB-like element is dispensable for rrn antitermination (Berg 

et al., 1989), association of NusB, S10 and BoxA is considered as a key nucleation event 

during processive antitermination (Greive et al., 2005).  

 

 

2.4 Aims of this study 
 There is much evidence showing S10 participates in transcription and translation, but 

presently, it is still unclear how S10 is reprogrammed as a transcription factor. In particular, it 

is unknown how S10 interacts with NusB, whether the conformation of S10 in transcription is 

different from that in the 30S subunit (Gopal et al., 2001), whether the protein can remain 

part of the ribosome while participating in antitermination (Das et al., 1985) and why the 

NusB-S10 complex exhibits enhanced affinity for BoxA RNA. 

 The effects of nusB mutations on translation are certainly indirect evidence that NusB 

participates in translation. However, the exact role of NusB in translation remains unknown 

and the dual activity of NusB in transcription and translation is still not understood.  

 Mutations in nusB and nusE have served as important genetic tools to study processive 

antitermination. Some mutations were found to affect antitermination activities. For 

instances, the nusB5 mutation leads to a defect in N-dependent antitermination that blocks λ 

growth (Friedman et al., 1976); the nusB101 mutation suppresses the N antitermination 

defects of nusA1 and nusE71 mutations at high temperatures (Ward et al., 1983); the nusE71 

mutation blocks N antitermination λ growth at high temperatures (Friedman et al., 1981); the 

nusE100 mutation restricts Nun termination but not N antitermination (Robledo et al., 1991). 

However, the biochemical basis for the dysfunction or suppressor activity of any of the 

mutant proteins was not defined.  
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 The aims of this study are to answer these questions and to define the dual roles of S10 

and NusB during transcription and translation processes.  
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3 Materials and Methods 
 

3.1 Materials 
 

3.1.1 Chemicals 

Acetic acid             Merck, Darmstadt 

Acrylamide solution           Roth, Karlsruhe  

Agarose              Invitrogen, USA 

Ammonium persulfate (APS)        Merck, Darmstadt 

Bovine serum albumin (BSA), acetyliert     Sigma, Deisenhofen 

Bradford solution            Biorad, München 

Bromophenol blue           Merck, Darmstadt 

Coomassie brillant blau R250        Serva, Heidelberg 

Dimethyl sulfoxide (DMSO)        Sigma, Deisenhofen 

Dithiothreitol (DTT)           Roth, Karlsruhe 

DNA ladder (1 kb)           Invitrogen, USA 

Ethanol              Merck, Darmstadt 

Ethylendiamine tetra-acetic acid (EDTA)     Roth, Karlsruhe 

Ethidium bromide solution         Roth, Karlsruhe 

Glutathione (reduced)          Sigma, Deisenhofen 

Glycin               Merck, Darmstadt 

Glycerol              Merck, Darmstadt 

HEPES              Calbiochem, USA 

Imidazole              Merck, Darmstadt 

Isopropyl-β-D-thiogalactoside (IPTG)      Sigma, Deisenhofen 

Lysozyme              Boehringer, Mannheim 

Milk powder, instant           Cenovis GmbH, Radolfzell 

Magnesium chloride            Merck, Darmstadt 

Methanol              Merck, Darmstadt 

Polyethylenglycol 3350 (PEG3350)       Sigma, Deisenhofen 

Ponceau S              Serva, Heidelberg 

Potassium chloride           Merck, Darmstadt 

Precision protein standard marker       Biorad, München 
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Roti-Phenol/Chloroform          Roth, Karlsruhe 

Silver nitrate             Merck, Darmstadt 

Sodium chloride             Merck, Darmstadt 

Sodium dodecyl sulfate (SDS)        Merck, Darmstadt 

Sodium thiosulfate            Merck, Darmstadt 

N, N, N’, N’-Tetramethylethylendiamin (TEMED)  Sigma, Deisenhofen 

tRNA, E. coli             Boehringer, Mannheim 

Tris-(hydroxymethylen) aminomethan       Roth, Karlsruhe 

Triton X-100             Sigma, Deisenhofen 

Tween 20              Sigma, Deisenhofen 

Xylene cyanol FF            Fluka, Schweiz 

 Standard chemicals, organic substances and solvents (purification grade p.a.), which are 

not listed here, were ordered from one of the following companies: Merck (Darmstadt), Roth 

(Karlsruhe), Sigma (Taufkirchen), Serva (Heidelberg) or Fluka (Switzerland). 

 
3.1.2 Media 

Auto-inducing medium          Own production  

LB-medium             Q-Biogene, USA 

Luria-Bertani-broth (LB)-Agar        Q-Biogene, USA 

 

3.1.3 Antibiotics 

Ampicillin             Sigma, Deisenhofen 

Chloramphenicol            Boehringer, Mannheim 

Kanamycin sulphate           Sigma, Deisenhofen 

 

3.1.4 Nucleotides 

Deoxynucleoside-5’-Triphosphate (dNTPs, 100 mM)  Amersham, Freiburg        

 

3.1.5 Radionucleotides     

[γ32P]-ATP (6000 Ci/mmol, 10 Ci/l)      Amersham, Freiburg 

 

3.1.6 Antibodies  

Rabbit anti-GST antibody         Invitrogen, USA  

Goat anti-rabbit IgG           Dianova, Hamburg   
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3.1.7 Enzymes and inhibitors 

DNase I                  Roche, Mannheim 

Pfu DNA polymerase (2,5 U/µl)        Stratagene, Heidelberg 

PreScission protease            Own production 

Proteinase inhibitor cocktail complete™, EDTA-free  Roche, Mannheim 

Restriction endonucleases                       New England Biolabs, France 

RNAsin (40 U/µl)           Promega, USA 

T4 DNA ligase (400 U/µl)         New England Biolabs, France 

T4 polynucleotide kinase (20 U/µl)       New England Biolabs, France 

Taq DNA polymerase (5000 U/µl)       Promega, USA 

TEV-protease             Own production 

 

3.1.8 DNA oligonucleotides  

 Synthetic DNA oligonucleotides (Table 3.1) were purchased from MWG/Operon 

(Ebersberg, Germany). 

 

Table 3.1 DNA oligonucleotides 
 

Protein Description Oligo  Sequence (5’→3’) 

ecoNusB 

pETM11;  
E2K; Full-
length 

Forward ACGTACCCATGGAACCTGCTGCTCGTCGCCGCGC 

Reverse ACGTACGGTACCTCACTTTTTGTTAGGGCGAATCAC
AG 

pBAD; Full-
length 

Forward TATCCGTCTCCCATGAAACCTGCTGCTCGTCGCC 

Reverse AGCCTCGAGTCACTTTTTGTTAGGGCGAATCACAGG 

ecoNusE 

pGEX-6p-1; 
Full-length 

Forward CGCGGATCCATGCAGAACCAAAGAATCCGTATCC 

Reverse CGCGAATTCTTAACCCAGGCTGATCTGCACGTC 

pBAD; Full-
length  

Forward TATCCGTCTCCCATGCAGAACCAAAGAATCCGTATC
CGCCTG 

Reverse AGCCTCGAGTTAACCCAGGCTGATCTGCACGTC 

ecoNusEΔ 

pGEX-6p-1; 
AA46-67S 

Forward CCGATCCCGCTGCCGACACGCAGCCGTACTCACTTG
CGTCTGG 

Reverse CCAGACGCAAGTGAGTACGGCTGCGTGTCGGCAGCG
GGATCGG 

pBAD; AA46-
67S 

Forward TATCCGTCTCCCATGCAGAACCAAAGAATCCGTATC
CGCCTG 

Reverse AGCCTCGAGTTAACCCAGGCTGATCTGCACGTC 

 

3.1.9 RNA oligonucleotides 

 Synthetic RNA oligonucleotides (Table 3.2) were purchased from Dharmacon (Lafayette, 

USA). 
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Table 3.2 RNA oligonucleotides 
 

Oligo Description Sequence (5’→3’) 
rrn  BoxA RNA E. coli; 19mer CACUGCUCUUUAACAAUUA 

NutR  BoxA RNA Phage λ; 19mer CACCGCUCUUACACAAUUA 

NutR  BoxA RNA Phage λ; 12mer; 5-BrU labeled CGCBrUCUUACACAAUUA 

 

3.1.10 Vectors  

 pBAD vector was used to express proteins for in vivo complementation and 

recombineering analysis (Table 3.3). pETM11 and pGEX-6p-1 vectors were used to express 

proteins for crystallization and biochemical assays (Table 3.3). 

 

Table 3.3 Vectors 
 

Vector Description Source 
pBAD Expression vector; His-Tag; araBAD promoter; Ampr Invitrogen 
pETM11 Expression vector; His-tag; T7 promoter; Kanr Novagen 
pGEX-6P-1 Expression vector; GST-tag;  tac promoter; Ampr GE Healthcare 

 

3.1.11 Plasmids (Table 3.4) 

 The plasmids generated by site directed mutagenesis were not listed.  

 

Table 3.4 Plasmids 
 

Plasmid Description 
pBAD-ecoNusB Cleavage sites: NcoI→XhoI; Full-length 
pBAD-ecoNusE Cleavage sites: NcoI→XhoI; Full-length 

pBAD-ecoNusEΔ Cleavage sites: NcoI→XhoI; AA 46-67 were replaced 
with a serine 

pETM11-ecoNusB Cleavage sites: NcoI→Acc65I; Full-length  
pGEX-6P-1-ecoNusE Cleavage sites: BamHI→EcoRI; Full-length 

pGEX-6P-1-ecoNusEΔ Cleavage sites: BamHI→EcoRI; AA 46-67 were 
replaced with a Serine 

 

3.1.12 Bacterial strains 

E. coli  BL21(DE3)           Novagen, Darmstadt 

E. coli  DH5α             Invitrogen, USA 

E. coli  XL-1 blue           Stratagene, Heidelberg 

E. coli  9739             Max Gottesman 
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E. coli  9976 (nusB::Cam)         Max Gottesman 

 

3.1.13 Commercial kits 

ECL Western blot detection kit        Amersham, Freiburg 

Pre-crystallization test kit         Hampton Research, USA 

QIAprep spin miniprep kit         Qiagen, Hilden 

QIAquick gel extraction kit         Qiagen, Hilden 

QIAquick PCR purification kit        Qiagen, Hilden 

Stratagene QuikChangeTM kit        Stratagene Amsterdam 
 

3.1.14 Crystallization screens 

Amonium sulfate screen          Qiagen, Hilden 

Anions and cations suites         Qiagen, Hilden 

Classics and classics lite          Qiagen, Hilden 

Crystal screen I and II          Hampton Research, USA 

Index I and II             Hampton Research, USA 

JCSG screen             Qiagen, Hilden 

Mb class I and II            Qiagen, Hilden 

MPD suite              Qiagen, Hilden 

Nucleix suite             Qiagen, Hilden 

PACT screen             Qiagen, Hilden 

PEG I and II             Qiagen, Hilden 

pH clear I and II            Qiagen, Hilden 

Protein complex screen          Qiagen, Hilden 

SM I, II and III            Qiagen, Hilden 

Salt Rx screen            Hampton Research, USA 

 

3.1.15 Equipments 

Anode X-ray generator (in-house source)     Rigaku, Tokyo 

Äkta explorer/prime/purifier and columns     Amersham, Freiburg 

Biofuge (pico/fresco)           Heraeus, Hanau 

Cartesian NanoDrop robot          Zinsser Analytik, Frankfurt 

Electrophoresis appartaus         BiorRad, München 

Gel documentation system         Biorad, München 
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Heating block             Hybaid Biometra, UK 

Head over tail rotor 7637-01         Cole-Parmer, USA 

Image plate detector (in-house source)      MAR Research, Norderstedt 

Incubator BK-600                     Heraeus, Hanau 

Incubation shaker Multitron         Infors, Switzerland 

Multi-well filtration manifold        Biorad, München 

pH Meter              MettlerToledo, Switzerland 

Phosphorimager Typhoon 8600        Molecular Dynamics 

Scintillation counter LS                               Beckman/Packard, USA 

SMART system            Pharmacia Biotech 

Sonifier              Heinemann Labortechnik 

Sorvall rotor              Kendro, USA 

SpeedVac concentrator 5301        Eppendorf, Hamburg 

Spectrophotometer Ultropsec 300 pro      Amersham, Freiburg 

SW60 rotor             Beckman, USA 

Synchrotron beamline 14-2         BESSY, Berlin 

Synchrotron beamline PXI/II        SLS, Villigen 

Trans-Blot electrophoresis transfer cell      Bio-Rad, München 

Ultracentrifuge            Sorvall/Beckman, USA 

UV lamp 254 nm            Bachofer, Reutlingen 

Thermal cycler            Hybaid Omni Gene, UK 

Vortex               Janke & Kunkel, Staufen i. Br. 

X-ray film developer X-Omat 2000       Kodak, USA 

 

3.1.16 Consumption materials 

Amicon centriplus concentrator        Millipore, France  

Chemiluminescence film          Amersham, Freiburg 

Cuvettes for monolight 3010        Pharmingen, USA 

Collodium bags            Sartorius GmbH, Göttingen 

Dialysis cassettes            Pierce, USA 

Electroporation cuvettes          Bio-Rad, München  

Falcon tubes (5, 15, 50 ml)         Greiner, Kremsmünster 

Glass beads (425-600 microns)        Sigma, Deisenhofen 

Glutathione sepharose 4B         Amersham, Freiburg 
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Ni-NTA agarose            Quiagen, Hilden 

Nylon membrane hybond-(N+)        Qiagen, Hilden 

Pipettes              Eppendorf, Hamburg 

Probe Quant™ G-25 micro columns      Amersham, Freiburg 

Protran nitrocellulose membrane       Schleicher & Schuell, Dassel 

Reaction tubes (0.5; 1.5; 2 ml)        Eppendorf, Hamburg 

Sterile filter (0.2; 0.45 µm)         Millipore, France 

Talon metal affinity resin         Clontech, Heidelberg 

Vivaspin concentrators          Vivascience, Sartorius 

X-ray film BioMax MR          Kodak, USA 

 
 

3.2 Methods 
 

3.2.1 Molecular cloning 
 

3.2.1.1  PCR amplification 

 Polymerase chain reaction (PCR) was used for target amplification from E. coli genomic 

DNA and plasmid construction. Both forward and reverse primers (Table 3.2) were designed 

to introduce compatible restriction enzyme sites and 3-6 additional bases were added before 

these sites to allow efficient digestion by restriction enzymes. The annealing temperature was 

chosen on the basis of the melting temperatures of the primers. A typical PCR reaction and 

cycling programme are shown below: 

 

 

 

 
 
 
 
 
 

PCR reaction mixture (50 µl) 

1 µl  DNA sample (100 ng/µl) 

5 µl  10x Pfu buffer 

5 µl  DMSO 

1 µl  5’ primer (20 pmol/µl)  

1 µl  3’ primer (20 pmol/µl) 

4 µl  dNTP (10 mM each) 

2 µl  Pfu polymerase 

31 µl H2O 

 

PCR cycling programme 

94 °C 2’ 

94 °C 15”  

60 °C 30”        30 repetitions 

72 °C 1’ 

72 °C 5’ 

4 °C hold temperature 
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3.2.1.2 Agarose gel electrophoresis and DNA fragment isolation  

 Agarose gel electrophoresis was performed for the analysis of PCR products. PCR 

samples were mixed with 5x DNA loading buffer and loaded to a 1.5 % agarose gel. A 1-kb 

DNA ladder at the concentration of 0.05 mg/ml was loaded in one lane as a marker. Gel was 

then run in 1x TBE buffer at 50-100 V and stained in 0.5 µg/ml ethidium bromide. DNA was 

visualized under UV light. QIAquick gel exaction kit was used for DNA fragments isolation 

from agarose gel. The band of interest on the agarose gel was cut out and treated according to 

the manufacturer’s protocol.  

 

 

 

 

3.2.1.3 Enzyme digestion and ligation 

 For the ligation reaction both vector DNA and the insert DNA were digested with 

appropriate restriction enzymes, and then purified with QIAquick PCR Purification Kit 

(Qiagen) according to the manufacturer’s protocol. 3:1 to 5:1 molar ratio of insert to vector 

was performed in the reaction to achieve the optimal ligation efficiency. The reaction mixture 

was incubated at 16°C for 3 hours, and then incubated at 65°C for 15 minutes to inactivate 

the enzymes. The sample was spun down briefly before the transformation. A typical ligation 

reaction is shown below: 

 

 

 

 

 

 

3.2.1.4 Preparation of competent cells for electroporation transformation 

 E. coli competent cells from manufacturers were grown in 1 L of LB medium until the 

OD600 of 0.4-0.6 was reached. The cell culture was centrifuged at 4000 g for 15 min at 4°C. 

The pellet was washed twice with 500 ml of ice-cooled, sterilized water, once with 200 ml of 

ice-cooled, sterilized 10 % glycerol and once with 50 ml of ice-cooled, sterilized 10 % 

glycerol. The resulting pellet was resuspended in 4 ml of 10% glycerol, divided into 50 µl 

aliquots and then flash-frozen in liquid nitrogen and stored at -80 °C.  

 

Ligation reaction mixture (20 µl) 

2 µl  10x Buffer for T4 DNA ligase 

2 µl  Linearised vector DNA 

8 µl  Insert DNA 

7.5 µl H2O 

0.5 µl T4 DNA ligase (400 U/µl) 

 

10x TBE buffer (pH 8.3) 

1 M   Tris base 

0.83 M  Boric acid 

10 mM  EDTA 

 

5x DNA loading buffer 

30 % (v/v)  Glycerol  

0.25 % (w/v) Bromophenol blue  

025 % (w/v)  Xylene cyanol FF  
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3.2.1.5 Preparation of competent cells for chemical transformation  

 E. coli competent cells from manufacturers were grown in 250 ml of LB medium until the 

OD600 of 0.4-0.6 was reached. The culture was centrifuged at 4000 g for 15 min at 4 °C. The 

cell pellet was resuspended in 100 ml of ice-cooled TFBI buffer and incubated at 4 °C for 10 

min. The resuspended cells were centrifuged at 4000 g for 5 min at 4°C. The pellet was 

resuspended in 10 ml of ice-cooled TFBII buffer and incubated on ice for at least 15 min. 100 

µl aliquots were flash-frozen in liquid nitrogen and stored at -80 °C. 

 

 

 

 

 

 

 

3.2.1.6 Electroporation transformation  

 The plasmid was mixed with 50 µl of competent cells already thawed on ice. The mixture 

was transferred to a pre-chilled electroporation cuvette and subjected to a voltage of 1.8 kV 

(for cuvettes with 0.1 mm width) by the E. coli Pulser. After the resuspension in 950 µl of LB 

medium, the cells were grown at 37 °C for 1 h without any antibiotics. Subsequently, the 

cells were pelleted, resuspended in a small volume of fresh LB medium, streaked out on an 

agar plate containing the selective antibiotics and incubated at 37 °C overnight.  

 

3.2.1.7 Chemical transformation  

 The plasmid was mixed with 100 µl of competent cells already thawed on ice. The 

mixture was incubated on ice for 20-30 min, heat shocked at 42°C for 90 sec and then cooled 

down on ice for 2 min. After the resuspension in 950 µl of LB medium, the cells were grown 

at 37 °C for 1 h without any antibiotics. Subsequently, the cells were pelleted, resuspended in 

a small volume of fresh LB medium, streaked out on an agar plate containing the selective 

antibiotics and incubated at 37 °C overnight. 

 

3.2.1.8 Mini-preparation of plasmid and DNA sequencing  

 A single colony was picked up from an agar plate for the mini-preparation of plasmid 

DNA by the QIAprep spin miniprep kit according to the manufacturer’s protocol. DNA 

TFBI 

30 mM   potassium acetate  

100 mM  rubidium chloride  

10 mM   calcium chloride  

50 mM   manganese chloride  

15% v/v  glycerol  

Adjust to pH 5.8 with acetic acid and sterilize. 

TFBII 

10 mM   MOPS  

75 mM   calcium chloride  

10 mM   rubidium chloride  

15% v/v  glycerol 

Adjust pH to 6.5 with KOH and 

sterilize. 
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sequencing was performed by the Seqlab, Göttingen. The appropriate amounts of DNA and 

sequencing primers were supplied as suggested by the Seqlab. 

 

3.2.1.9 PCR-based site directed mutagenesis  

 Site directed mutagenesis was performed by the Stratagene QuikChangeTM kit according 

to the manufacturer’s protocol. All the primers were designed by the online QuikChange 

primers design tool provided by Stratagene. A typical mutagenesis PCR reaction and cycling 

programme are shown below:  

 

 

 

 

 

 

 

 

 

3.2.2 Protein Production 
 

3.2.2.1 Co-expression of protein complexes 

 Equal amounts (20 ng) of two plasmids containing the genes of interest were co-

transformed into an E. coli strain BL21(DE3). The cells were grown in auto-inducing 

medium (Studier, 2005) in the presence of appropriate antibiotics to an OD600 of 0.5 at 37 °C, 

and then incubated for an additional 16 hours at 20 °C. After harvesting at 4 °C, the cell 

pellets were washed with binding buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl) and 

stored at -80 °C. 

 

 

 

 

 

 

PCR reaction mixture (50 µl) 

2 µl  DNA sample (10 ng/µl) 

5 µl  10x Pfu buffer 

1.5 µl 5’ primer (10 pmol/µl)  

1.5 µl 3’ primer (10 pmol/µl) 

4 µl  dNTP (10 mM each) 

1 µl  PfuTurbo DNA polymerase (2.5 U/µl) 

35 µl H2O 

PCR cycling programme 

95 °C 30”  

95 °C 30”         

55 °C 1’              16 repetitions 

68 °C 6’30” 

4 °C hold temperature 

Auto-inducing medium (1 L) 

ZY    950 ml 

50× 5052  20 ml 

50× M   20 ml 

2 M MgSO4  1 ml 

1000× Metals 200 µl 

Per 950 ml ZY 

N-Z-Amine AS  10 g 

Yeast Extract  5 g 

Autoclave at 121°C for 15 min 
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3.2.2.2 Cell lysis 

 Frozen cells were thawed in binding buffer and disrupted by a sonifier. Proper cooling 

was accomplished with a NaCl ice-bath and a number of short pulses (duration 5-10 s) with 

pauses (duration 10-30 s) to sustain a low temperature. Subsequently, the lysate was 

centrifuged at 4 °C and 15000 rpm for 30 min to pellet the cell debris. The supernatant was 

supplied to purification. 

 

3.2.2.3 Co-purification of protein complexes 

 For purification, the cleared lysate was incubated with glutathione-sepharose equilibrated 

with binding buffer to trap the complex via the N-terminal GST-tag of the S10 or S10Δloop 

protein. Proteins were eluted in a single step with binding buffer containing 15 mM reduced 

glutathione and then treated with PreScission protease overnight at 4 °C in order to remove 

the GST-tag. After PreScission cleavage, the protein complex was trapped via the N-terminal 

His6-tag of the NusB protein on Ni2+-NTA-agarose equilibrated with binding buffer 

containing 20 mM imidazole, washed with 50 mM imidazole and eluted with 500 mM 

imidazole. During dialysis against binding buffer plus 2 mM DTT, proteins were treated with 

TEV protease overnight at 4 °C in order to remove the His6-tag. After TEV cleavage and 

dialysis, the sample was passed again over Ni2+-NTA-agarose. The flow-through was 

concentrated by ultrafiltration and further purified by gel filtration on a Superdex-75 26/60 

column equilibrated with crystallization buffer (10 mM Tris-HCl, pH 7.5, 50 mM NaCl, 2 

mM DTT). Purified protein complex was concentrated by ultrafiltration to 16 mg/ml and 

stored at -80 °C after flash-freezing in liquid nitrogen.  

 

3.2.2.4 Determination of protein concentrations 

 Protein solution was concentrated using an Amicon centriplus concentrator with an 

appropriate molecular weight cutoff (around 3 times less than the molecular weight of the 

respective protein). The protein concentration was determined with a Bradford assay: 1 µl of 

concentrated protein was mixed in 1 ml of 5× diluted Bradford solution; the absorbance at 

595 nm was measured in a spectrophotometer; the BSA protein was employed to make a 

standard curve in the same manner; by comparison with a BSA standard curve, the 

concentration of the protein solution was determined. 
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3.2.2.5 SDS-polyacrylamide gel electrophoresis 

 The denaturing SDS polyacrylamide gel electrophoresis (SDS-PAGE) was performed 

according to Laemmli method (Laemmli, 1970). In this study, acrylamide gels of 12 % and 

15 % (37.5:1 acrylamide:bis-acrylamide, 1mm thickness) were used depending on the 

protein-mixture that had to be separated. Before sample loading on the gel, proteins were 

mixed with Laemmli buffer and incubated 5 min at 95 °C to ensure complete denaturation. 

After loading the samples on the gel in a gel chamber filled with protein running buffer, the 

proteins were focused in the stacking gel at 15-25 mA and subsequently separated in the 

resolving gel at 30-45 mA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2.6 Gel staining  

 Proteins on SDS-PAGE gels were visualized either by staining with Coomassie brilliant 

blue R250 and destaining (Sambrook and Fritsch, 1989) or by silver-staining (Blum and 

Beier, 1987). Whereas Coomassie-staining reveals a band formed by up to 1 μg of protein 

and silver-staining can detect up to 5 ng of protein in a single band. 

 

 

3.2.3 Protein crystallography 
 In this section applied methods for protein crystallization, data collection and processing, 

phasing, model building and refinement, and structure analysis are described. Basic principles 

of protein X-ray crystallography are provided in the appendixes (Section 7.1).  

Laemmli buffer 

75 mM    Tris, pH 6.8 

1.25 mM   EDTA  

2.5 % (w/v)   SDS  

20 % (w/v)   Glycerol 

0.1 % (w/v)   Bromphenolbue 

50 mM    DTT 

Protein running buffer 

25 mM   Tris, pH 8.8 

192 mM   Glycine 

0.1 % (w/v)   SDS 

 

12 % of resolving gel (30 ml) 

H2O    6.3 ml 

1M Tris, pH 7.8  11.25 ml 

30 % Acrylamide 12 ml 

10 % SDS   0.3 ml 

10 % APS   0.15 ml 

TEMED    0.03 ml 

15 % of resolving gel (30 ml) 

H2O    3.3 ml 

1M Tris, pH 7.8  11.25 ml 

30 % Acrylamide 15 ml 

10 % SDS   0.3 ml 

10 % APS   0.15 ml 

TEMED    0.03 ml 

5 % of stacking gel (10 ml) 

H2O    6.9 ml 

1M Tris, pH 6.8  1.25 ml 

30 % Acrylamide 1.67 ml 

10 % SDS   0.1 ml 

10 % APS   0.1 ml 

TEMED    0.01 ml 
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3.2.3.1 Pre-crystallization test 

 To determine the optimal concentration for crystallization, a pre-crystallization test was 

carried out by using the pre-crystallization kit (Hampton) according to manufacturer’s 

instruction. Alternatively, the protein was crystallized in the Hampton classics screen and the 

number of drops, where the protein was precipitated, was counted. The target concentration 

was determined when approximately 1/3rd of all conditions showed precipitation 1 h later 

after drop setting. 

 

3.2.3.2 Protein crystallization 

 Initial screening was performed in a 96-well format crystallization plate. The protein was 

spun down prior to crystallization at 13 krpm for 5 min. Drop volumes of 200 nl with a 1:1 

ratio of protein and reservoir solution were set up by the Cartesian NanoDrop robot at 20 °C 

via sitting drop vapor diffusion method. The screens listed in the Section 3.1.14 were usually 

tested in initial screening. An overview of the crystallization experiments performed with 

different protein complexes is provided in the Table 3.5. The initial conditions that yielded 

crystals were subsequently scaled up to microliter range and optimized by screening the 

effects of precipitant and pH. Droplets were set up manually at 20 °C via sitting drop vapor 

diffusion by mixing 1 µl of sample with 1 µl of reservoir solution in a 24-well format 

crystallization plate. Crystals could be cooled at cryogenic temperatures after transfer into 

certain cryo-protectants (Table 3.5). Cryo-protectants were determined by checking a titration 

curve of cryo-protectant mixed with reservoir for the scattering behavior upon exposure to an 

X-ray beam. 

 

Table 3.5 High-throughput crystallization experiments  
 

Protein name Concentration 
(mg/ml) 

Number of 
screened 

conditions 

Optimized buffer 
condition Cryo-protectant 

NusB-S10Δloop 16 960 0.1 M CHES, pH 8.8, 18 
% PEG 8000 

10 % propylene 
glycol 

NusBAsp118Asn-S10Δloop 16 672 0.2 M K3C6H5O7, 20 % 
PEG 3350 40 % glycerol 

NusB-S10Δloop, Ala86Asp 16 768 
0.1 M Tris, pH 7.1, 0.2 M 

(NH4)SO4, 25 % PEG 
3350 

10 % propylene 
glycol 

NusB-S10Δloop, Pro39Ala 16 672 0.17 M Mg(CH3COO)2, 
14 % PEG 3350 30 % glycerol 

S10Δloop 16 1248 
0.16 M (NH4)SO4, 0.08 M 
NaCH3COO, pH 4.4, 22 % 
PEG 4000, 20 % glycerol 

None 
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3.2.3.3 Data collection and processing 

 The diffraction quality of crystals was tested on an in-house source equipped with a MAR 

image plate detector coupled to a RU-200 rotating anode X-ray generator producing CuKα 

radiation with a wavelength of 1.5148 Å. The complete diffraction dataset for NusB-S10Δloop, 

Ala86Asp protein complex was collected on beamline PXI in SLS using a Pilatus detector 

(Broennimann et al., 2006). The complete diffraction datasets for the rest protein complexes 

were collected on beamline PXII in SLS using a MarCCD 225 mm detector. Data collection 

strategies are shown in the Table 3.6. The data were processed with the XDS package 

(Kabsch, 1993). Crystallographic data can be found in the Table 4.2. 

 

Table 3.6 Data collection strategy 
 

Protein  
Data collection strategy 

Distance 
(mm) λ (Å) Δ φ (°) Exposure time 

(s) Frames 

NusB-S10Δloop 100 0.9840 0.5 0.5 720 
NusBAsp118Asn-S10Δloop 250 0.9788 1 1 180 
NusB-S10Δloop, Ala86Asp 400 0.9763 0.2 0.2 500 
NusB-S10Δloop, Pro39Ala 180 0.9999 0.5 1 190 

S10Δloop 230 0.9200 0.5 1 360 
 

3.2.3.4 Phasing, model building and refinement 

 The usage of the NcoI site for NusB gene cloning into pETM-11 vector gave rise to a 

Lys2Glu point mutation. The mutated protein was initially used for crystallographic analysis. 

The phase of NusBLys2Glu-S10Δloop was calculated by molecular replacement through Molrep 

(CCP4, 1994) using the coordinates of Thermotoga maritima NusB (PDB ID 1TZV; (Bonin 

et al., 2004b)) and of Thermus thermophilus S10 taken from the structure of the T. 

thermophilus 30S ribosomal subunit (chain J of PDB ID 1J5E; (Wimberly et al., 2000)). The 

coordinates of NusBLys2Glu-S10Δloop were employed to solve the other protein complexes’ 

structures by molecular replacement. The models were built using COOT (Emsley and 

Cowtan, 2004) and refined by standard methodology using Refmac5 (Murshudov et al., 

1997) including TLS refinement (Winn et al., 2001). 

 

3.2.3.5 Structure analysis 

 The geometric quality assessment on the refined models was done with PROCHECK 

(Laskowski et al., 1993). Illustrations of the structures were prepared by Pymol 

(http://pymol.sourceforge.net/).  

http://pymol.sourceforge.net/�
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3.2.4 Biochemical assays 
 

3.2.4.1 GST pull-down assay 

 Frozen cells were lysed as above (Section 3.2.2.2). The cleared lysates were incubated 

with glutathione-sepharose beads equilibrated with binding buffer. Trapped proteins were 

washed with binding buffer and eluted with 15 mM reduced gluthathione. Aliquots of the 

samples were analyzed by SDS-PAGE. 

 

3.2.4.2 5’-End labeling of RNA-oligonucleotides 

 19mer BoxA RNA oligonucleotides containing rrn BoxA or Nut BoxA were 5’-end-

labeled with [γ-32P]-ATP (6000 Ci/mmol) using T4 polynucleotide kinase (PNK). 10 pmol of 

RNA-oligonucleotide was incubated in a volume of 10 μl with 1 μl of T4 PNK and 1 μl of 

10× PNK buffer in the presence of 2 μl of [γ-32P]-ATP. The mixture was incubated at 37 °C 

for 30 min. The 5’-end labeled product was diluted with 40 μl of H2O and purified via 

MicroSpin G25 columns according to the manufacturer’s protocol. The labeled product was 

stored at -20 °C. A typical [γ-32P]-ATP labeled reaction is shown below: 

 

 

 

 

 

 

3.2.4.3 Double filter-binding assay 

 [γ-32P]-ATP labeled RNA oligonucleotide was diluted by a factor of 50. Varying 

concentrations of protein complex (0, 0.04, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 8.0 µM) 

were incubated with 1 µl of diluted [32P]-labeled RNA oligonucleotide for 30 min at 4 °C in 

10 µl reaction volumes. The upper nitrocellulose membrane and the lower nylon membrane 

served to trap protein-RNA complexes and unbound RNA, respectively. The membranes 

were pre-washed with MilliQ water and soaked for one hour in crystallization buffer at 4 °C 

(Wong and Lohman, 1993). A multi-well filtration manifold was used to spot samples onto 

the membranes according to the manufacturer’s instruction. After membranes had been 

washed with 200 µl of crystallization buffer and air-dried, radioactivity retained on the 

membranes was visualized by a Typhoon 8600 phosphoimager. 

[γ-32P]-ATP labeled reaction mixture (10 µl) 

1 µl  RNA oligo (10 pmol/µl) 

2 µl  [γ-32P]-ATP 

1 µl  10× PNK buffer 

1 µl  T4 PNK enzyme 

5 µl  H2O 
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3.2.4.4 UV-induced crosslinking assay 

 [γ-32P]-ATP labeled RNA oligonucleotide was diluted by a factor of 50. Varying 

concentrations (0, 0.15, 0.31, 0.62, 1.25 and 2.5 µM) of NusB-S10Δloop or NusB101-S10Δloop 

(NusBAsp118Asn-S10Δloop) were mixed with 1µl of diluted [32P]-labeled RNA oligonucleotide in 

10 µl reaction volumes and exposed to 254 nm ultraviolet light for 5 min at 4 °C (Lingel et 

al., 2003). Reactions were analyzed by 15 % SDS-PAGE. Gels were dried and developed on 

a phosphoimager.  

 Under saturating conditions, a maximum of ca. 7 % of the total radioactivity was shifted 

on gels. For quantification, 0.31 and 0.62 µM of NusB-S10Δloop or NusB101-S10Δloop were 

crosslinked as above. Crosslinked samples from three independent experiments were 

analyzed on the same SDS-PAGE gel. For loading control, each sample was divided and 

averaged. Radiolabeled bands were quantified by densitometry using Image Quant software 

(GE Healthcare). Crosslink yields for the components of the wt NusB-based complex were 

normalized to 1 and the yields for the corresponding components of the NusBAsp118Asn-based 

complex were represented relative to the wt sample. 

 

3.2.4.5 Deduction of protein-RNA crosslinking sites 

 Crosslinks identified are listed in the Table 4.6. NusB peptide B1 (96-

SDVPYKVAINEAIELAK-112) was found crosslinked to a CU (or UC) dinucleotide. The 

only such sequences are found at positions 3-6 of λ or rrn BoxA elements. Thus, peptide B1 

must be in contact with this region in either RNA. Consistently, peptide B1’ that is elongated 

by an arginine at the C-terminus compared to peptide B1 shows identical crosslinking 

behavior as B1. 

 NusB peptide B3 (122-FVNGVLDK-129) was found crosslinked to a UU dinucleotide 

employing either λ or rrn BoxA RNA. There are two regions encompassing UU di-

nucleotides. Therefore, the peptide B3 is in close proximity to the UUU sequence at positions 

6-8 of rrn BoxA and to the UU element at positions 6/7 of λ BoxA. This conclusion is based 

on the observation that the same peptide in isolated NusB was found crosslinked to a triple-U 

sequence of the rrn BoxA oligomer. The latter crosslink rules out the UU di-nucleotide 3’-

terminal of the core BoxA as a crosslinking site for peptide B3. 

 NusB peptide B2 (113-SFGAEDSHKFVNGVLDK-129) encompasses the linker between 

peptides B1 and B3 plus the entire B3 peptide. In complex with S10 and λ BoxA, peptide B2, 
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but not the shorter peptide B3, crosslinks to a UAC (or permuted) trinucleotide. There is only 

one such sequence at positions 7-9 of the λ BoxA RNA. 

 Peptide E1 of S10 (10-LKAFDHR-16) was found crosslinked to a UA (or AU) element. 

The observation that this peptide also crosslinks to a UA/AU in a shortened λ BoxA core 

oligomer, which harbors only one such dinucleotide, unequivocally identifies positions 8/9 of 

rrn BoxA and positions 7/8 of λ BoxA as the contact sites of this peptide and rules out 

contacts to UA/AU-elements 3’ of the BoxA cores. Peptides E2 (49-FTVLISPHVNK-58) and 

E3 (63-DQYEIR-68) are entirely and partially contained in the ribosome-binding loop of 

S10, respectively. They both crosslink to an AAU (or permuted) trinucleotide. For peptide 

E3, this crosslink was observed with either type of RNA, ruling out the possibility that 

peptide E3 crosslinked to positions 8-10 of rrn BoxA. Instead, this peptide must be in close 

proximity to the AAU elements at position 12 and beyond. Peptide E2 also crosslinks to this 

latter region in the RNAs, since in the case of rrn BoxA an additional unequivocal crosslink 

to an AAUU (or permuted) oligo was observed. 

 

3.2.4.6 Ribosome preparation 

 Ribosomes were prepared by sedimentation from whole-cell extracts as described 

previously (Worbs et al., 2002). Cells were transformed with the plasmids and grown at 32 

°C in 200 ml LB medium with 100 µg/ml ampicillin. At OD450 = 0.1, IPTG was added to 0.5 

mM final concentration. At OD450 = 1.5, cells were harvested by centrifugation. The cell 

pellets were washed once with 1 ml of buffer A (20 mM HEPES-KOH, pH 7.5, 6 mM 

MgCl2, 30 mM NH4Cl, 6 mM β-mercaptoethanol), resuspended in 2 ml of buffer A and split 

into two 1-ml aliquots.  

 After addition of lysozyme (100 µl of a 15 mg/ml solution) and incubation on ice for 3 

min, cell lysis was completed by freeze-thawing. Lysates were clarified by spinning at 23,000 

rpm for 30 min in an S100-AT4 rotor. The duplicate supernatants from each culture were 

pooled and centrifuged for 4 hours at 43,000 rpm in an S100-AT4 rotor. The pellets were 

resuspended overnight in 200 µl of buffer A and centrifuged at 7900 x g in a Fresco 17 

centrifuge for 10 min at 4 °C. The resulting supernatants contain ‘crude’ ribosomes. 150 µl of 

the crude ribosome preparations were mixed with 1.8 ml of buffer B (20 mM HEPES-KOH, 

pH 7.5, 30 mM MgCl2, 1 M NH4Cl, 6 mM β-mercaptoethanol), incubated for 1 hour at 4 °C 

and then centrifuged for 4 hours at 53,000 rpm in an S100-AT4 rotor. The pellets were rinsed 

once with 200 µl of buffer A, resuspended overnight in 100 µl of buffer A and centrifuged at 
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7900 x g in a Fresco 17 centrifuge for 10 min at 4 °C. The resulting supernatants contain 

‘salt-washed’ ribosomes. 

 For analysis of total-cell extracts, 1-ml aliquots of the 200-ml cultures were removed prior 

to IPTG addition and grown in parallel (uninduced extract, ‘ext -’). Also, 1-ml aliquots were 

removed from the IPTG-induced culture immediately before harvesting (induced extract, ‘ext 

+’). Both sets of samples were centrifuged and the pellets were resuspended in 200 µl of 

Laemmli sample buffer, incubated for 2 min at 95 °C and stored at -20 °C. 

 

3.2.4.7 Western blot 

 Proteins from ribosomes (0.1 A260 equivalents) were separated by 12 % SDS PAGE and 

electro-blotted on a nitrocellulose transfer membrane by a Trans-Blot Electrophoretic 

Transfer Cell according to the manufacturer’s instruction. A pre-stained MW standard was 

applied onto one lane as an indication of a successful transfer. The gel, membrane and filter 

paper were soaked in the Blot buffer and sandwiched by a cassette. The transfer was 

performed in the Blot buffer for 2 h at 70 V at 4 °C. To decrease non-specific binding of 

antibodies, the membrane was blocked in the block buffer for overnight at 4 °C. For probing 

GST-tagged S10 or S10Δloop, the membrane was first incubated with a rabbit anti-GST 

antibody (primary Ab solution) for 1 h at room temperature, washed 3 times for 15 min/ each 

with washing-1 solution at room temperature and subsequently by a goat anti-rabbit IgG 

(secondary Ab solution) for 1 h at room temperature, and then washed 3 times for 15 min/ 

each with washing-2 solution at room temperature. The signal was detected by using ECL 

Western blotting detection reagents and exposing a high performance chemiluminescence 

film. The film was developed on a KONICA developer. 

 

 

 

 

 

 

 

 

 

 

Slab 4 (5 L) 

30 g  Tris 

142.6 g     Glysine 

5 g        SDS 

Add H2O up to 5 L 

Blot buffer (3 L) 

1.5 L  Slab 4 

0.6 L Methanol 

0.9 L H2O 

 

Block buffer 

1× TBS 

1 % Tween 

5 % Milk 

Primary Ab solution 

1× TBS 

1 % Tween 

1 % Milk 

Rabbit anti-GST antibody 

Secondary Ab solution 

1× TBS 

1 % Tween 

1 % Milk 

Goat anti-rabbit IgG 

Washing-1  

1× TBS 

1 % Tween 

1 % Milk 

Washing-2  

1× TBS 

1 % Tween 

 

10× TBS (1 L) 

24.2 g  Tris 

87.66 g  NaCl 

Add H2O up to 1 L 

Adjust to pH 7.6 with HCl 
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3.2.4.8 Analytical size exclusion chromatography 

 NusB-S10Δloop and NusG proteins were mixed in approximately equimolar ratios, applied 

on a Superdex-75 PC 3.2 column (GE Healthcare), and chromatographed in 10 mM Tris-HCl, 

pH 7.5, 50 mM NaCl and 2 mM DTT using a SMART protein purification system (GE 

Healthcare). For a typical run, 30 µl of sample were loaded on the column at a flow rate of 40 

µl/min. 40-µl fractions were collected and analyzed by 15 % SDS-PAGE gel. 
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4 Results 
 

4.1 Transcriptional and translational functions are attributed to distinct 

regions of S10 

  
4.1.1 The long ribosome-binding loop of S10 is dispensable for transcriptional functions 

 To investigate the structural requirements of S10 (NusE) as a transcription factor, I 

attempted to delineate molecular regions that are dispensable for processive transcription 

antitermination. In the 30S ribosomal subunit, S10 exhibits a globular domain that is located 

at the surface of the particle and an extended ribosome-binding loop that deeply penetrates 

the subunit and interacts with several other r-proteins and the 16S rRNA (Figure 2.5A and 

2.5B; (Schluenzen et al., 2000; Wimberly et al., 2000)). I speculated that the ribosome-

binding loop may be dispensable for transcription antitermination. To test this idea, a 

truncated S10 variant was generated, in which this loop (residues 46-67) was replaced by a 

serine (S10∆loop). To test whether the truncation affected the interaction with NusB, full-

length S10 or S10∆loop were co-expressed with NusB in E. coli and purified via a GST-tag on 

the S10 molecules. Both wild type (wt) and truncated S10 remained stably associated with 

NusB during purification (Figure 4.1A, lanes 1-6). During antitermination, the NusB-S10 

complex interacts with the BoxA element of the mRNA, a function that should be preserved 

in the NusB-S10∆loop complex. Indeed, the affinities of the full-length and loop-deleted 

complexes for BoxA-containing RNAs were comparable in a filter-binding assay (Figure 

4.1B). Most importantly, the antitermination activity of the loop-deleted S10 variant was 

tested directly by Max Gottesman’s group. They found that S10∆loop complemented λ growth 

at 42 °C in an E. coli strain bearing a chromosomal nusE71 defect (Table 4.1) that normally 

blocks N-antitermination and λ growth at high temperatures (Friedman et al., 1981). 

Therefore, the transcription antitermination activity of S10 is unaffected by deletion of its 

ribosome-binding loop. 

 

4.1.2 The loop-deleted S10 variant does not bind to ribosomes 

 It was known that the nusE gene is essential for cell growth (Bubunenko et al., 2007). The 

question is whether nusE∆loop gene is also essential for cell growth. To answer this question, 

w 
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Figure 4.1 Analysis of the S10∆loop mutant  

(A) Copurification of GST-S10 or GST-S10∆loop and mutants with His6-NusB and mutants. Groups of three 

lanes show the soluble extract from co-overexpression experiments (first lane), the wash (second lane) and the 

elution (third lane) from glutathione beads. Co-expressed proteins are indicated above the group of lanes. M, 

molecular mass marker; sizes of marker bands in kDa are indicated on the right. 

(B) Double filter-binding assays of a NusB-S10 complex to an rrn BoxA-containing 19mer RNA. (Upper panel) 

nitrocellulose layer representing bound RNA. (Lower panel) nylon filter representing unbound RNA. The upper 

lanes correspond to the full-length complex, the lower lanes to the NusB-S10∆loop complex. Numbers indicate 

protein concentrations in µM. 

 

Table 4.1 nusE+ and nusE∆loop are dominant to nusE71 
 

Chromosomal nusE pBAD Plasmid Arabinose λ EOP 
+ - - 1 
71 - - <10-5 
71 nusB+ - <10-3 
71 nusE+ - 1.0 
71 nusE∆loop - 1.0 
71 nusB+ + <10-3 
71 nusE+ + 1.0 
71 nusE∆loop + 1.0 
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nusE71 is non-permissive for λ growth at 42 ºC. Strains are W3102 derivatives that carry nusE+ or the nusE71 

mutation in the chromosome and the indicated plasmid. λimm434 was titered on LB or LB plus ampicillin (50 

µg/ml) at 42 ºC and Efficiencies of Plating (EOP) were determined. Where indicated, 0.1 % arabinose was 

added to the plate.  

 

Donald Court’s group used recombineering technique to test if nusE∆loop gene is able to 

suppress deletion of the chromosomal nusE gene to support cell growth. They found that in 

cells containing a plasmid with nusE under arabinose control, the chromosomal nusE could 

be replaced with a kan gene (kan open reading frame fused with nusE open reading frame), 

conferring kanamycin resistance, in an arabinose-dependent manner (Figure 4.2A). The 

appearance of a single nusE<>kan fragment indicates that S10 expressed from a plasmid is 

functional and is able to complement the nonviable chromosomal nusE knockout (Bubunenko 

et al., 2007). In contrast, cells containing plasmid-borne nusE∆loop yielded only rare 

nusE<>kan recombinants irrespective of arabinose induction. The 40 such recombinants 

tested all carried an additional nusE+ gene as a tandem duplicate in the chromosome. The 

appearance of two fragments representing nusE<>kan and nusE indicates that S10Δloop copy 

expressed from a plasmid is not functional and is unable to complement a chromosomal 

knockout. In this case, recombinants are rare and have a knockout copy and a wt copy of 

nusE, which reflects the special diploid nature of these strains (Bubunenko et al., 2007). 

Thus, nusE∆loop does not encode all vital functions of nusE.  

 I speculated that the long ribosome-binding loop of S10 is essential for cell growth most 

likely due to its interaction role in ribosomes, in which S10Δloop may fail to bind to ribosomes 

and therefore fail to support translation. In order to test this idea, I directly monitored binding 

of glutathione S-transferase (GST)-S10 and GST-S10Δloop to ribosomes. GST-S10 and GST-

S10Δloop were overexpressed in an E. coli BL21(DE3) strain, and then the fully assembled 

ribosomes were prepared. Crude and salt washed ribosomes were purified by 

ultracentrifugation of a whole cell lysate. The procedure of salt washing ribosomes in the 

crude ribosome pellet is used to distinguish between true ribosomal proteins and proteins 

associated with ribosome as contaminants or accessory translational factors (Zengel et al., 

2003). Associations of GST-S10 and GST-S10Δloop with the crude and salt washed ribosomes 

were evaluated by Western blot by using an anti-GST antibody. Since the N-terminus of S10 

is accessible on the surface of the 30S ribosomal subunit (Wimberly et al., 2000), an N-

terminal GST fusion should not interfere with stable ribosome incorporation of the protein. 

Indeed, GST-S10 was incorporated readily and in a salt-stable manner into ribosomes (Figure 
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4.2B, lanes 1-4). In contrast, while residual amounts of GST-S10Δloop were seen associated 

with crude ribosome preparations, the truncated fusion protein was completely lacking from 

salt-washed ribosomes (Figure 4.2B, lane 5-8). Thus, S10 behaves differently from some 

other r-proteins, such as L4, in which analogous ribosome-penetrating loops are not required 

for stable ribosome association (Zengel et al., 2003).  

 These data show that transcriptional and translational functions can be attributed to 

distinct regions of S10. Namely, only is the globular part of S10 necessary for transcription 

function, while its loop is exclusively required for S10 function in translation.    

 

 
 

Figure 4.2 Gel analysis of nusE<>kan recombinants and ribosome binding of S10∆loop  

(A) Gel analysis of nusE<>kan recombinants. Kanamycin resistant cells from a single colony were analyzed by 

PCR for configuration of the targeted chromosomal nusE region. Lane 1, DNA markers (Invitrogen). Lanes 2 

and 3, PCR products from recombinant cells that contained pBADnusE. Lanes 4 and 5, PCR products from 

recombinant cells that contained pBADnusEΔloop initially selected either with (lanes 2 and 4) or without (lanes 3 

and 5) 0.2 % arabinose. Lane 6, PCR product control of wt nusE from the bacterial chromosome. Note that a 

haploid nusE<>kan knockout can be made only when pBADnusE is induced by arabinose , i.e. when wt nusE is 

expressed from the plasmid (lane 2). 

(B) Western blot probing the binding of GST-S10 and GST-S10Δloop to ribosomes. Equal amounts of cells before 

(-; lanes 1 and 5) and after (+; lanes 2 and 6) induction with IPTG as well as equal amounts (0.1 A260 

equivalents) of crude (cr; lanes 3 and 7) and salt-washed (sw; lanes 4 and 8) ribosomes from the E. coli 

BL21(DE3) strains expressing GST-S10 (lanes 1-4) or GST-S10Δloop (lanes 5-8) were analyzed on a 12 % SDS 

gel, transferred to a nitrocellulose membrane and analyzed by Western blotting. 
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4.2 Structural analysis of the NusB-S10 complex 
 

4.2.1 Crystal structure of a transcriptionally active NusB-S10 Complex 

 The gene encoding NusB was PCR-amplified from E. coli chromosomal DNA and ligated 

into the NcoI and Acc65I restriction enzyme sites of the pETM11 vector. The usage of the 

NcoI site for cloning into pETM11 gave rise to a Lys2Glu point mutation. The mutated 

protein was used for crystallographic analysis (the NusBLys2Glu-S10Δloop complex is referred as 

wt NusB-S10Δloop complex). For functional studies, Glu2 was converted back to a lysine by 

site directed mutagenesis. NusB proteins with Glu or Lys at position 2 behaved identically in 

biochemical, RNA crosslinking and in vivo studies (see for example GST pull-down assays in 

Figure 4.1A, lanes 22-24). 

 I exploited the results from the functional dissection of S10 in order to devise a high-

resolution crystal structure of a transcriptionally active NusB-S10 complex. Crystals obtained 

from the complex of the full-length proteins did not diffract well. The ribosome-binding loop 

of S10 might be flexible off the ribosome and disturb the crystalline order. Therefore, the 

S10Δloop was employed, instead of full-length S10, to co-express and co-purify with NusB. 

The NusB-S10Δloop complex gave rise to crystals that diffracted to 1.3 Å resolution and 

allowed structure solution by molecular replacement. The structure was refined to Rwork and 

Rfree factors of 17.3 and 20.4 %, respectively (Table 4.2). 

 In the structure of the complex (Figure 4.3A), NusB adopts an all-helical fold with two 

perpendicular three-helix bundles. S10Δloop exhibits a four-stranded antiparallel β-sheet 

backed by two α-helices on one side. Helix α1 and an irregular strand, β2, of S10Δloop bridge 

the two helical bundles of NusB (contact regions I and II in Figure 4.3A). The region on 

NusB contacted by S10Δloop coincides with NusB residues that show NMR chemical shift 

changes upon addition of full-length S10 (Das et al., 2008). These observations further 

corroborate the equivalence of the wt and loop-deleted S10 in transcription. 

 NusB and S10Δloop approach each other via complementary electrostatic surfaces (Figure 

4.3B), burying ca. 1700 Å2 of combined surface area upon complex formation. The two 

proteins engage in mixed hydrophobic and hydrophilic interactions (Figure 4.3C–4.3F). For 

example, an intramolecular Asp19-Arg72 ion pair of S10Δloop forms hydrogen bonds to Tyr18 

of NusB, thereby positioning Tyr18 between Pro39 and Pro41 of a proline motif (Pro39-

Ile40-Pro41-Leu42-Pro43) on strand β2 of S10 (Figure 4.3C). The remainder of the proline 

we 
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Figure 4.3 Structure of the NusB-S10Δloop complex 

(A) Ribbon plot of the E. coli NusB-S10∆loop complex. NusB, blue, S10∆loop, red. Secondary structure elements 

and termini are labeled. The red sphere marks the site at which the ribosome-binding loop of S10 has been 

replaced by a single serine. (I and II) Interaction regions on the flank of the first three helix bundle (I) and on a 

tip of the second three helix bundle (II) of NusB. (Inset 1) NMR structure of ecoNusB (PDB ID 1EY1; (Altieri 

et al., 2000)) after global superpositioning on the NusB molecule of the present complex. (Inset 2) Structure of 

S10 from the E. coli 30S subunit (PDB ID 2AVY; (Schuwirth et al., 2005)) after global superpositioning on the 

S10∆loop molecule of the present complex.  

(B) Electrostatic surface potentials mapped on the surfaces of NusB (left) and S10∆loop (right) showing a view on 

the interfaces of both molecules. Blue, positive charge, red, negative charge. Protomers were rotated 90° relative 

to panel (A) as indicated.  

(C-F) Details of the NusB-S10∆loop interaction. Interacting residues and secondary structure elements are labeled. 

Residues of interest are colored by atom type: carbon, the respective molecules; oxygen, red; nitrogen, blue. 

Cyan spheres indicate water molecules. Dashed lines are hydrogen bonds or salt bridges. Views relative to (A) 

are indicated. 

 

motif with two intervening apolar side chains engages in snug van-der-Waals contacts with 

NusB-Phe114, sandwiching it between S10-Pro41 and S10-Pro43 (Figure 4.3D). Pro39 is 

molded into a cis conformation that allows it to participate in intra- and intermolecular 

hydrogen bonding networks (Figure 4.3E). 

 

4.2.2 NusB and S10 retain their overall folds upon complex formation but interact via 

local induced fit 

 The global structures of isolated NusB (Altieri et al., 2000; Bonin et al., 2004b; Das et al., 

2008; Gopal et al., 2000) and of NusB in complex with S10∆loop are very similar (Figure 

4.3A, inset 1; Table 4.3). S10∆loop in complex with NusB likewise resembles the structure of 

S10 in the 30S subunit (Schuwirth et al., 2005) (Figure 4.3A, inset 2; Table 4.3). It was 

suggested that the fold of S10 by itself is unstable (Das et al., 2008; Gopal et al., 2001); thus, 

NusB apparently acts to stabilize S10 in the same overall conformation it takes in the 

ribosome. Clearly, the data exclude the possibility that S10 is extensively remodeled by NusB 

as a mechanism for partitioning of S10 between the translation and transcription machineries 

as suggested by Gopal et al (Gopal et al., 2001). 

 While the global structures of both proteins are conserved, they are apparently adjusted by 

local induced fit upon complex formation. A pronounced difference to the structure of NusB 

determined in isolation (Altieri et al., 2000; Bonin et al., 2004b; Das et al., 2008) is seen in 

our 
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Table 4.2 Crystallographic data 
 

Data collection NusB- 
S10Δloop

 
NusBAsp118Asn-
S10Δloop

 
NusB- 
S10∆loop, Ala86Asp

 
NusB- 
S10Δloop, Pro39Ala

 
S10Δloop

 
Wavelength (Å) 0.9051 0.9788 0.9763 0.9999 0.9200 
Temperature (K) 100 100 100 100 100 
Space Group P212121 I4122 I4122 C2221 P61 

Unit Cell 
Parameters (Å, °) 

a = 40.7, 
b = 49.0,  
c = 122.8 

a = 112.64,  
b = 112.64,  
c = 263.25 

a = 112.2  
b = 112.2,  
c = 266.2 

a = 38.57,  
b = 76.42,  
c = 151.76 

a = 63.22,  
b = 63.22,  
c = 61.24  

Resolution (Å) 30.0 - 1.3 
(1.4 - 1.3)a 

30.0 - 2.5  
(2.6 - 2.5)a 

50.0 - 2.6  
(2.7 - 2.6) a 

30.0 - 1.7 
(1.8 - 1.7)a 

50.0 – 1.9 
(2.0 – 1.9)a 

Reflections  
  Unique 56411 (11095) 29761 (3263) 26358 (2780) 23587 (2808) 16062 (952) 
  Completeness (%) 100 (100) 100 (100) 100 (100) 93.6 (72.2) 99.5 (92.5) 
  Redundancy 15.3 (14.6) 7.22 (7.42) 7.1 (6.5) 3.7 (3.3) 4.1 (2.4) 
I/σ(I) 17.5 (5.3) 18.1 (4.1) 19.8 (3.9) 18.2 (5.4) 16.9 (3.9) 
Rsym(I)b 7.4 (64.8) 8.6 (72.5) 6.8 (46.2) 6.6 (35.0) 7.1 (21.0) 
Refinement  

Resolution (Å) 20.0 - 1.3  
(1.33 -1.30) 

30.0 – 2.5  
(2.56 -2.50) 

30.0 - 2.6  
(2.67 - 2.60) 

30.0 – 1.7  
(1.74 -1.70) 

15.0 – 1.9 
(1.95 –1.90) 

Reflections  
  Number 56394 (4109) 29753 (2178) 26337 (1921) 23522 (1121) 10944 (745) 
  Completeness (%) 100 (100) 100 (100) 100 (100) 100 (100) 99.4 (93.7) 
  Test Set (%) 5.0 5.0 5.0 5.0 4.8 
Rwork

c 17.3 (27.8) 20.4 (23.1) 21.8 (29.5) 20.1 (24.0) 25.3 (24.3) 
Rfree

c 20.4 (29.7) 25.6 (29.1) 28.0 (35.8) 23.4 (25.7) 29.3 (26.7) 
Contents of A.U.d  
  Protein Molecules, 
  Refined Atoms 

1/1, 
1779 

3/3, 
5313 

3/3, 
5308 

1/1, 
1766 

1,  
636 

  Water 316 155 197 185 62 
  Ligand /Atoms 3 CHES/39 1 K+/1 - - - 
Mean B-Factors 
(Å2)  

  Wilson 24.6 52.7 54.3 25.6 29.9 
  Protein 21.5 60.5 48.7 17.9 31.3 
  Water 41.0 22.8 46.0 25.7 45.4 
  Ligand 38.2 29.5 - - - 
Ramachandran 
Plote  

  Favored 99.1 97.12 96.8 97.7 100 
  Allowed 0.9 2.43 2.3 1.8 0 
  Outliers 0 0.45 0.9 0.5 0 
RMSDf from Target 
Geometry  

  Bond Lengths (Å) 0.013 0.01 0.006 0.01 0.01 
  Bond Angles (°) 1.51 1.22 1.09 1.38 1.45 
RMSD B-Factors 
(Å2)  

  Main Chain Bonds 0.86 0.41 0.28 0.76 0.87 
  Main Chain Angles 1.31 0.82 0.51 1.44 1.68 
  Side Chain Bonds 2.47 1.43 0.45 2.49 2.47 
  Side Chain Angles 3.58 2.48 0.80 4.24 4.36 
PDB ID 3D3B 3IMQ 3D3C - - 
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a Data for the highest resolution shell in parentheses 
b Rsym(I) = ΣhklΣiIi(hkl) - <I(hkl)> / ΣhklΣiIi(hkl); for n independent reflections and i observations of a given 

reflection; <I(hkl)> – average intensity of the i observations 
c R = ΣhklFobs - Fcalc / ΣhklFobs; Rwork – hkl ∉ T; Rfree – hkl ∈ T; T – test set 
d A.U. – asymmetric unit 
e Calculated with MolProbity (http://molprobity.biochem.duke.edu/) (Davis et al., 2004) 
f RMSD – root-mean-square deviation 

 

the loop connecting helices α4 and α5, which rearranges to allow an ionic interaction 

between NusB-Glu75 and S10-Arg16 (Figure 4.4A). In agreement with this observation, 

strong NMR chemical shift changes were previously observed in this loop of NusB upon 

addition of full-length S10 (Das et al., 2008). In ribosome-bound S10 (Schuwirth et al., 2005; 

Selmer et al., 2006; Wimberly et al., 2000) several residues that contact the 16S rRNA, 

including Pro39 and Arg72, have been refined with different conformations compared to the 

present structure of S10 in complex with NusB. While these data suggest that S10 also 

adjusts locally to accommodate different binding partners, the limited resolution of the 

ribosome structures precludes a more detailed comparison. 

 

Table 4.3 Structural comparisons 
 

 ecoNusB mtuNusB tmaNusB aaeNusB ecoS10 
PDB ID 1EY1 1EYV 1TZV 2JR0 2AVY 

Reference (Altieri et al., 
2000) 

(Gopal et al., 
2000) 

(Bonin et al., 
2004b) 

(Das et al., 
2008) 

(Schuwirth et 
al., 2005) 

Sequence Identity (%) 100 29.9 35.1 25.2 100 
Matching Cα Atoms 106 111 125 126 76 
RMSD (Å) 2.47 1.36 1.45 2.35 1.09 
 

Comparison of NusB protein structures to the NusB molecule of the present NusB-S10∆loop crystal structure and 

of S10 from the 30S subunit to the S10 ∆loop molecule of the present NusB-S10∆loop crystal structure. ecoNusB, 

NMR structure of E. coli NusB; mtuNusB, crystal structure of M. tuberculosis NusB; tmaNusB, crystal structure 

of Thermotoga maritima NusB; aaeNusB, NMR structure of Aquifex aeolicus NusB; ecoS10, crystal structure 

of E. coli S10 in complex with the 30S ribosomal subunit. 

 

4.2.3 Binding of S10 to NusB is mutually exclusive with its incorporation into the 

ribosome and with NusB dimerization 

 S10 residues His15, Arg37, Pro39, Ile40, Pro41, Pro43, Thr44, His70 and Arg72, which 

directly interact with NusB, also directly contact 16S rRNA in the 30S subunit (within 3.5 Å 

w 
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Figure 4.4 Aspects of the NusB-S10Δloop interaction 

(A) Stereo ribbon plot showing induced fit adjustment of the loop between helices α4 and α5 in NusB. An 

NMR structure of E. coli NusB (gray; PDB ID 1EY1; (Altieri et al., 2000)) was superimposed on the NusB 

subunit of the present NusB-S10∆loop complex (blue and red, respectively). The view relative to Figure 4.3A is 

indicated. Glu75 of NusB changes its position dramatically (arrow) upon complex formation in order to engage 

in a salt bridge with Arg16 of S10 ∆loop. Relevant residues are in sticks and colored by atom type as before.  

(B) Comparison of S10∆loop (red) binding to NusB (blue) and S10 binding to the remainder of the 30S subunit 

(rRNA, gold; r-proteins, gray). The orientation relative to Figure 4.3A is indicated.  

(C) Comparison of the present NusB-S10∆loop complex (blue and red, left) with the M. tuberculosis NusB dimer 

(blue and cyan, right; PDB ID 1EYV; (Gopal et al., 2000)). The blue NusB molecules of both complexes are in 

the same orientation. 
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distance; (Schuwirth et al., 2005)). As a consequence, the surface of S10 that binds NusB is 

occluded in the ribosome (Figure 4.4B). Thus, contrary to a previous hypothesis (Das et al., 

1985; Gopal et al., 2001), S10 cannot participate with NusB in transcription antitermination 

as a part of the 30S subunit. This finding is in agreement with the observation that processive 

N-dependent antitermination can be reconstituted using purified S10 and other Nus factors 

(Das et al., 1985). 

 Mycobacterium tuberculosis NusB forms dimers (Gopal et al., 2000) whose significance 

for transcription antitermination has so far remained obscure. Comparison of these dimers to 

the NusB-S10∆loop complex shows that NusB dimerization would interfere with S10 binding 

(Figure 4.4C). This observation is in agreement with the previous suggestion (Bonin et al., 

2004b) that dimerization may be used as a packaging mechanism by some organisms to 

downregulate aberrant activities of isolated NusB. Similar autoinhibitory mechanisms have 

been demonstrated for other transcription antitermination factors (Belogurov et al., 2007; 

Mah et al., 2000). 

 

4.2.4 Molecular basis of the conserved proline motif on S10  

 The solved crystal structure of the NusB-S10Δloop complex sheds light on the binding 

interface between NusB and S10, in which NusB binds a proline motif (Gly38-Pro39-Ile40-

Pro41-Leu42-Pro43-Thr44) on S10 (Figure 4.3C-4.3F and 4.5A). This proline motif is highly 

conserved in bacteria (Figure 4.5B). To investigate how the individual prolines on the proline 

motif affect the transcription activities, each of three prolines was mutated to alanine, and the 

N antitermination and Nun termination activities were tested directly by Max Gottesman’s 

group (Table 4.4). All of the S10 proline mutants have a phenotype. Pro39Ala supports N 

antitermination but not Nun termination. Pro41Ala is toxic. Pro43Ala supports Nun 

termination (better than wt S10), but not N antitermination. The differences among these 

mutants suggest that they do not simply affect NusB binding. To further characterize whether 

the binding of S10 to NusB is affected by a partial proline motif, S10 bearing individual 

proline to alanine changes were co-expressed with NusB in E. coli and purified via a GST-tag 

on the S10Δloop. All the S10Δloop proteins still associated with NusB during purification 

(Figure 4.5C). Therefore, the full S10 proline motif is not mandatory for interaction with 

NusB.   
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Figure 4.5 Aspects of proline motif of S10  

(A) The highlight of proline motif of S10 for NusB binding. NusB is shown a surface view for clearance. 

Proline residues on S10Δloop are labeled. The orientation relative to Figure 4.3A is indicated.  

(B) Alignment of twelve bacterial S10 sequences. Numbering corresponds to E. coli S10. The background of 

conserved prolines is red, and that of other highly conserved amino acids is black. Abbreviations: eco, 

Escherichia coli; tte Thermoanaerobacter tengcongensis; mtu, Mycobacterium turberculosis; rsp, Rhodobacter 

sphaeroides; bsu, Bacillus subtilis; tma, Thermotoga maritime; tth, Thermus thermophilus; sth, Streptococcus 

thermophilus; ype, Yersinia pestis; mth, Moorella thermoacetica; bbu, Borrelia burgdorferi; vco, Vibrio 

cholera. 

(C) Copurification of GST-S10Δloop or proline mutants with His6-NusB. Group of eight lanes show the cell 

extract before induction (first lane), cell extract after induction (second lane), soluble extract (third lane), GSH-

sepharose flow-through (fourth lane), the wash (fifth and sixth lanes), and the elution (seventh and eighth lanes). 

Coexpressed proteins are indicated above the group of lanes. M, molecular mass marker.  

 

Table 4.4 Transcription activities tests by overproduction of S10 or S10 proline mutants 
 

pBAD-NusE Nun-Termination N-Antitermination Toxicity 
wt + + - 

Pro39Ala - (antitermination) + - 
Pro41Ala +/- +/- + 
Pro43Ala ++ - - 
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The complementation assay for N antitermination activity was carried out at 42 °C in an E. coli strain bearing a 

chromosomal nusE71 defect. Nun termination activity was tested in the HK022 strain carrying the fusion nusE 

R72G cI857 pR cro27 nutR tR1 cII::lacZ.  '+', '++': growth or toxic; '-': no growth or not toxic. 

 

4.2.5 NusB does not influence the cis/trans equilibrium at Pro39 of S10  

 S10-Pro39 is molded into a cis conformation that organizes the neighboring Gly38 

residue to interact with NusB, which has further long range effects via orienting other NusB 

residues that engages in additional S10 contacts (Figure 4.6B (left) and 4.6C (left)). While in 

the ribosome-bound S10, Pro39 adopts a trans conformation (Figure 4.6C (middle) 

(Schuwirth et al., 2005)). The phenomenon points out the question whether NusB influences 

the cis/trans equilibrium at Pro39 of S10. Firstly, S10Δloop, Pro39Ala was still able to sustain 

NusB-S10 interaction in GST-pull-down assays (Figure 4.5C, lanes 9-16) that suggests Pro39 

is not required for NusB binding. Secondly, the crystal structure of the NusB-S10Δloop, Pro39Ala 

complex was solved by molecular replacement at 1.7 Å resolution with Rwork and Rfree factors 

of 20.0 % and 23.8 %, respectively (Table 4.2). The global structure of S10Δloop, Pro39Ala in 

complex with NusB (Figure 4.6A) is virtually identical to that of the NusB-S10Δloop complex 

(rmsd of 0.85 Å for 207 Cα atoms), indicating that the Pro39Ala mutation has no global 

conformational consequences. The S10-Ala39 is molded into a trans conformation (Figure 

4.6C (right)) that allows formation of a longer β2-sheet (Figure 4.6A). In particular, the trans 

Ala39 still makes interaction with Ser19 of NusB as the cis Pro39 does (Figure 4.6B), 

demonstrating that a cis conformation at S10 residue 39 is not required for NusB binding. 

 The enzyme peptidyl-prolyl cis/trans isomerase (PPIase), which catalyses the cis/trans 

isomerization of proline imidic peptide bonds in oligopeptides (Lang et al., 1987), is 

considered as a folding chaperon to aid proteins folding. Cyclophilin A (CypA) is one of the 

PPIases that has been found in a variety of functional contexts (Piotukh et al., 2005). The 

preferred peptide sequence for CypA binding is Gly-Pro-X (any amino acid)-hydrophobic 

(Piotukh et al., 2005), which matches the proline motif on S10 (Gly38-Pro39-Ile40-Pro41) 

for NusB binding. The evidence expresses a tendency that NusB might work as a PPIase. In 

contrast, the proline on amino acid 39 of S10 is not necessary for NusB binding and further 

for λ N antitermination activity. A cis conformation is not required for NusB binding. 

Moreover, NusB was not found to catalyze cis/trans-prolyl isomerization of the model 

substrate N-Suc-Ala-Ala-Pro-Phe-p-nitroanilide (data not shown) in an assay used to identify 

the PPIase (Fischer et al., 1984). Therefore, little evidence was found that NusB could act as 

a PPIase to influence the cis/trans equilibrium at Pro39 of S10. 
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Figure 4.6 Structure of the NusB-S10Δloop, Pro39Ala complex  

(A) Ribbon plot of the E. coli NusB-S10Δloop,Pro39Ala complex. NusB, blue; S10Δloop, Pro39Ala, red. Secondary 

structure elements and termini are labeled. The red sphere makes the site at which the ribosome binding loop of 

S10Δloop, Pro39Ala has been replaced by a single serine. 

(B) Comparison of S10Δloop binding to NusB with S10Δloop, Pro39Ala binding to NusB. Interacting residues are 

labeled. Cyan sphere, water molecule. Dashed lines, hydrogen bonds or salt bridges.  
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(C) Ribbon plot showing residue 39 of S10 induces cis or trans conformation in various sources. Left: the cis 

conformation of Pro39 on S10Δloop in complex with NusB; Middle: the trans conformation of Pro39 on S10 in 

the 30S subunit (PDB ID 2AVY; (Schuwirth et al., 2005)); Right: the trans conformation of Ala39 on S10Δloop, 

Pro39Ala in complex with NusB. 

 

4.2.6 Molecular basis of the nusB5 and nusE100 phenotypes 

 Mutations in nusB and nusE have served as important genetic tools to study processive 

antitermination. However, the biochemical basis for the dysfunction or suppressor activity of 

any of the mutant proteins was not defined. The nusB5 allele gives rise to a Tyr18Asp 

mutation in NusB (Court et al., 1995) and leads to a defect in N-dependent antitermination, 

which blocks λ growth (Friedman et al., 1976). The nusE100 mutation restricts Nun-

termination but not N-antitermination (Robledo et al., 1991). An E. coli cell strain bearing a 

chromosomal nusE100 defect was obtained from Max Gottesman’s group. I have sequenced 

the nusE100 allele and found that it encodes an S10Arg72Gly variant. Remarkably, NusB-Tyr18 

and S10-Arg72 are both involved in the same buried, hydrophilic, intermolecular interaction 

network at the center of the NusB-S10 interface (Figure 4.3C). Replacement of NusB-Tyr18 

by Asp or replacement of S10-Arg72 by Gly is expected to interfere with this interaction 

network. Therefore, it is possible that the defects of the mutant alleles are in part caused by a 

weakened NusB-S10 affinity. This idea was tested by monitoring the ability of the mutant 

proteins to sustain NusB-S10 interaction in GST-pull down assays. Indeed, the NusB5 variant 

(Tyr18Asp) did not bind to S10∆loop (Figure 4.1A, lanes 7-9) and the S10∆loop, Arg72Gly mutant 

protein of nusE100 ∆loop failed to interact with NusB (Figure 4.1A, lanes 10-12). 

 Previously, the lack of production of a stable gene product was thought to be the cause of 

the nusB5 defect in N-antitermination (Mason et al., 1992). The results presented here, in 

contrast, suggest that nusB5 gives rise to a gene product that is less active due to a weakened 

interaction with S10. In that case, the nusB5 defect may be overcome simply by mass action. 

Therefore, the question is if high levels of NusB5 can restore N antitermination. Indeed, the 

complementation analysis by Max Gottesman’s group showed that overexpression of the 

NusB5 protein in an E. coli nusB deletion strain partially rescued λ growth (Table 4.5). In 

agreement with this observation, multiple copies of a plasmid carrying the nusB5 gene have 

previously been found to complement a chromosomal nusB5 allele (Court et al., 1995). Thus, 

the data underscore the importance of a stable NusB-S10 interaction at physiological 

expression levels of these proteins for N and Nun activities. 
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Table 4.5 Overexpression of NusB5 overcomes the nusB5 defect  
 

pBAD λ wt λ r32 
- <10-6 <10-4 

nusB 0.73 0.61* 
nusB5 0.35 <10-2 

 

Values are Efficiency of Plating (EOP) relative to a nusB+ strain with no plasmid. Strains are nusB::Cam 

derivatives of W3102. Phage were titered at 42 ºC. To induce the pBAD promoter, 0.1 % arabinose, was added 

to the plates. λ wt = λimm434; λ r32 = λimm434 r32. The r32 insertion increases the dependency of λ on N. * = 

small plaques. 

 

4.2.7 The nusE71 mutation defines an additional interaction surface on S10 

 The residue affected by the nusE71 mutation (Ala86Asp), which blocks both N and Nun, 

is remote from the NusB interface and the RNA-binding region of S10. I have determined the 

crystal structure of the NusB-S10Δloop, Ala86Asp complex by molecular replacement at 2.6 Å 

resolution (Figure 4.7A). The structure was refined to Rwork and Rfree factors of 21.8 % and 

28.0 %, respectively (Table 4.2). The structure of the NusB-S10∆loop, Ala86Asp complex is 

virtually identical to the wt complex (rmsd of ca. 0.8 Å for 206 Cα atoms; Figure 4.7A). 

Therefore, dysfunction of S10Ala86Asp is not due to a global effect on the structure of the 

protein. Rather, the mutation changed the local surface properties of S10 (Figure 4.7B). This 

finding suggests that yet another molecular interaction of S10 may be attenuated in 

S10Ala86Asp. S10 is known to interact directly with RNAP (Mason and Greenblatt, 1991) and it 

is possible that the helix α2 region encompassing residue 86 is involved in this association. 

Alternatively, the S10 region around Ala86 might mark an interface with N and Nun; N and 

S10 proteins are reported to co-purify in some preparations (Mogridge et al., 1995, 1998b). 

This notion would explain the otherwise puzzling observation that nusE71 does not block rrn 

antitermination, which uses RNAP but not N or Nun (Zellars and Squires, 1999). 
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Figure 4.7 Structure of the NusB-S10Δloop, Ala86Asp complex  

(A) Comparison of the NusB-S10∆loop complex (left) with the NusB-S10∆loop, Ala86Asp complex (right). Gray 

meshes indicate the final 2Fo-Fc electron densities covering residue 86 and neighboring residues of the S10∆loop 

molecules, contoured at the 1σ level. Insets show closeup views of the residue 86 regions. The orientations 

relative to Figure 4.3A are indicated.  

(B) Comparison of the electrostatic surface potentials of the complexes. Blue, positive charge; red, negative 

charge. Left, NusB-S10∆loop complex; Right, NusB-S10∆loop, Ala86Asp complex. The positions of residue 86 are 

circled. The orientations are the same as in panel (A). 
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4.3 BoxA RNA binding by the NusB-S10 complex 
 

4.3.1 The NusB-S10 complex exhibits an intermolecular, mosaic and contiguous BoxA 

RNA-binding surface 

 To explore the mechanism by which S10 enhances the affinity of NusB for BoxA RNA, 

the interactions of the NusB and the NusB-S10 complex with BoxA-containing RNA were 

investigated. This work was done by Henning Urlaub’s group through mass spectrometric 

analysis of UV-induced crosslinking sites based on materials prepared by me. NusB-RNA or 

NusB-S10-RNA complexes were exposed to UV light and the zero-length crosslinks 

generated were analyzed by mass spectrometry (Table 4.6). The same two 19-nucleotide λ 

NutR BoxA or rrn BoxA RNAs, previously used in fluorescence-based interaction studies 

(Greive et al., 2005), were employed (Figure 4.8). Overall, Henning Urlaub’s group identified 

four peptides in NusB (B1, B1’, B2 and B3) and three peptides in full-length S10 (E1, E2 and 

E3) that crosslinked to distinct, short RNA elements (Figure 4.8; Table 4.6). UV-induced 

crosslinking in the absence of RNA oligos and mass analysis with complete mixtures but 

without UV-irradiation did not give rise to any peaks corresponding to those of the identified 

peptide-RNA crosslinks. 

 

Table 4.6 Electrospray-ionization tandem mass spectrometry identification of protein-

RNA crosslinks  
 

NusB-S10   NusB      

λ BoxAa rrn 
BoxAa 

λ BoxA 
Corea λ BoxA rrn BoxA Exp. 

M.W. 
Crosslinked  
Peptide+RNA 

Peptide 
M.W. 

RNA 
M.W. 

X X  X X 2488.20 NusB SDVPYKVAINEAIELAK (B1)+CU 1859.00 629.08 

X X  X X 2644.25 NusB RSDVPYKVAINEAIELAK (B1’)+CU 2015.11 629.08 

X   X  2807.03 NusB SFGAEDSHKFVNGVLDK (B2)+UAC 1848.90 958.13 

X X  X X 1520.56 NusB FVNGVLDK (B3)+UU 890.48 630.06 

    X 1826.57 NusB FVNGVLDK (B3)+UUU 890.48 936.09 

X X    1520.62 S10 LKAFDHR (E1)+UA-18 885.48 653.09 

X X X   1538.70 S10 LKAFDHR (E1)+UA 885.48 653.09 

 X    2541.88 S10 FTVLISPHVNK (E2)+AAUU 1253.71 1288.17 

 X    2235.85 S10 FTVLISPHVNK (E2)+AAU 1253.71 982.14 

X X    1804.62 S10 DQYEIR (E3)+AAU 822.38 982.14 

 
a λ BoxA: CAC CGC UCU UAC ACA AUU A;  

 rrn BoxA: CAC UGC UCU UUA ACA AUU A 
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λ BoxA core: CGC BrUCU UAC ACA; BrU, 5-bromo uridine 
b “X” indicates observation of a particular crosslink in a given mixture. 
  

 Scrutinizing the sequences of the crosslinked peptides and RNA elements allowed me to 

deduce unequivocally the molecular neighborhoods (Section 3.2.4.5). These data show that 

NusB is in close proximity to residues 3-8 of rrn BoxA and residues 3-9 of λ BoxA, while 

S10 is in direct contact with residues 8, 9 and 12 of rrn BoxA, residues 7, 8 and 12 of λ 

BoxA and with residues just downstream in either of the RNAs (Figure 4.8; Table 4.6). The 

BoxA positions in direct contact with NusB and S10 are remarkably congruent with residues 

2-9 of rrn BoxA and residues 2-7 of λ BoxA, which are essential for recruitment of NusB and 

S10 to the antitermination machineries (Mogridge et al., 1998b). In addition, parts of the S10 

ribosome-binding loop (the entire peptide E2 and part of E3) crosslinked to RNA at the very 

3’-end of the core BoxA elements and to nucleotides immediately downstream (Figure 4.8; 

Table 4.6). Thus, the ribosome-binding loop fosters auxiliary, but not essential (Table 4.1), 

mRNA contacts that might enhance processive antitermination. 

 Since identical crosslinks of NusB to the RNAs in the absence or in the presence of S10 

(Table 4.6) were found, the specificity of the NusB-BoxA RNA contacts is influenced little if 

at all by S10. Thus, the direct S10-BoxA interactions detected herein are responsible for the 

increased BoxA RNA affinity of the NusB-S10 complex compared to NusB alone. Since 

isolated S10 binds RNA weakly and largely non-specifically (Greive et al., 2005), NusB 

apparently stabilizes an RNA-binding conformation of S10 and positions S10 on the BoxA 

RNA, suggesting that NusB loads S10 onto a specific RNA element. 

 The amino acid residues crosslinked to RNA in both NusB and S10 are dispersed in the 

primary sequences but nevertheless coalesce in 3D on one surface of the NusB-S10∆loop 

complex (Figure 4.8). Peptides B1 (B1’), B2 and B3 form a contiguous surface on NusB and 

peptide E1 of S10 directly neighbors the C-terminus of peptide E3 at the base of the 

ribosome-binding loop. The tip of NusB peptide B2 is in weak direct contacts with S10 

peptides E1 and E3 (Figure 4.8). Thus, NusB and S10 together present a contiguous, mosaic 

BoxA-binding surface. The results from structural and crosslinking analyses were combined 

to derive the overall topology of the NusB-S10-RNA complex (Figure 4.8, inset). The central 

region of a BoxA element is placed on the confluent binding surface of the protein complex. 

The RNA runs 5’-to-3’ from the NusB to the S10 RNA-binding patches. 
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Figure 4.8 Mapping of crosslinked peptides on the surface of the NusB-S10∆loop complex 

The view is from the top of Figure 4.3A. NusB, dark gray; S10, light gray. Crosslinked peptides of NusB (B1, 

B2, B3, B4; see Table 4.6 for peptide sequences) are light blue, dark blue, cyan and steel blue, respectively. 

Crosslinked peptides of S10 (E1 and E3) are red and violet, respectively. Asp118, which is mutated to Asn in 

the nusB101 allele, is colored gold. RNAs encompassing the rrn and λ BoxA elements and used for crosslinking 

are given above and below the structure, respectively. Boxed regions with residue numbers indicate the core 

BoxA elements. Residues in green of rrn BoxA RNA and λ BoxA RNA have previously been implicated in 

recruitment of NusB and S10 to antitermination complexes by mutational analysis (Mogridge et al., 1998b). 

Outlined residues differ in λ BoxA compared to rrn BoxA. Black bars designate crosslinked regions of the 

RNAs. They are connected by lines to the peptides, to which they have been crosslinked (see Table 4.6 for a 

complete list of crosslinks). Inset 1 illustrates the deduced topology of the NusB-S10-BoxA RNA complexes. 

 

4.3.2 nusB101 represents a gain-of-function mutation with increased RNA affinity 

 The nusB101 mutation (Asp118Asn) suppresses the N-antitermination defects of NusA1 

and NusE71 mutants at high temperatures (Ward et al., 1983). Notably, NusB-Asp118 is part 

of peptide B2, which lies at the center of the closely spaced RNA-binding patches on NusB 

and S10 (Figure 4.8). Removal of a negative charge at the NusB-118 position could 

conceivably increase the RNA affinity of NusB and of the NusB-S10 complex, in agreement 

with a previous proposal (Court et al., 1995). This idea was tested by crosslinking increasing 

amounts of NusB-S10∆loop and of NusB101-S10∆loop (NusBAsp118Asn-S10∆loop) to BoxA-

containing RNAs under conditions where the crosslink yields reflect the binding equilibria. 

As predicted, NusB101-S10∆loop exhibited increased affinities for either λ or rrn BoxA 



Structure and Function of the NusB-S10 Complex  Results 

57 
 

sequences (Figure 4.9A and 4.9B). Thus, nusB101 represents a gain-of-function mutation that 

increases the affinity of NusB for BoxA. Consistent with cooperativity among the component 

antitermination factors, enhanced RNA affinity in NusB101 might compensate for decreased 

RNA affinity of the suppressed NusA1 mutant, in which a core residue of the S1 RNA-

binding domain is altered (Worbs et al., 2001). 
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Figure 4.9 Protein-RNA and protein-protein crosslinking analysis  

(A) Comparative crosslinking of λ BoxA RNA (left) or rrn BoxA RNA (right) to increasing amounts of NusB-

S10∆loop complex (lanes 1-6) or NusBAsp118Asn-S10∆loop (NusB101-S10∆loop) complex (lanes 7-12). Protein 

concentrations were 0 (lanes 1, 7), 0.15 (lanes 2, 8), 0.31 (lanes 3, 9), 0.62 (lanes 4, 10), 1.25 (lanes 5, 11) and 

2.5 µM (lanes 6, 12). After 5 minutes of UV irradiation (all lanes), crosslinked species were resolved on an SDS 

gel and visualized by autoradiography. Crosslinking yields scaled with the concentration of the proteins, 

showing that they reflect the equilibrium binding situations. The yields of all crosslinked species (S10∆loop-RNA, 

NusB/NusBAsp118Asn-RNA, NusB/NusBAsp118Asn-S10∆loop-RNA indicated on the left) were higher in the presence 

of NusB101 (NusBAsp118Asn; lanes 8-12) compared to wild type NusB (lanes 2-6). Crosslinking with either RNA 

gave rise to significant amounts of NusB-S10∆loop-BoxA RNA or NusB101-S10∆loop-BoxA RNA ternary 

crosslinks. Additionally, bands assigned to the ternary crosslinks were heterogeneous. These observations can 

be explained by NusB (or NusB101) and S10∆loop (or S10) undergoing efficient UV-induced protein-protein 

crosslinking (see panel C). Thus, under the experimental conditions, covalent ternary complexes with different 

topologies (such as NusB/NusB101 crosslinked to S10∆loop plus one of the proteins crosslinked to RNA; both 

proteins crosslinked to RNA and not crosslinked to each other; both proteins crosslinked to each other and both 

crosslinked to RNA) are obtained. These topologically different ternary complexes will exhibit different 

mobilities on SDS gels.  

(B) Top: Representative crosslinking of λ NutR BoxA RNA (left two panels) or rrn BoxA RNA (right two 

panels) to NusB-S10∆loop or NusB101-S10∆loop (NusBAsp118Asn-S10∆loop). Two concentrations of protein complex 

(0.31 µM and 0.62 µM) were crosslinked, resolved on SDS gels and visualized by autoradiography. In each 

panel, RNA alone is in the left lane, NusB-S10∆loop complex in the central lane and NusB101-S10∆loop complex 

in the right lane. Bottom: Quantification of crosslink yields. Values are the crosslink yields of the protein 

components of the NusB101-S10∆loop samples, relative to the crosslink yields of the corresponding components 

of the NusB-S10∆loop samples. The crosslink yields of the components of the NusB-S10∆loop samples were set at 

100 % (dashed lines). Values represent the means of three independent experiments +/- the standard errors of 

the mean. Asterisks - p ≤ 0.032; double asterisks - p ≤ 0.020.  

(C) UV-induced protein-protein crosslinking. 20 µM of NusB-S10∆loop or NusB101-S10∆loop (NusBAsp118Asn-

S10∆loop) were treated either with 1 µl Benzonase (Novagen) or with 1 µl each of RNase A and RNase T1 

(Ambion) in 10 µl reaction volumes at 37 °C for 1 hour or at 4 °C for 16 hours in order to remove any potential 

traces of contaminating RNA. Samples were exposed to 254 nm ultraviolet light for 5 min at 4 °C. Reactions 

were analyzed by 15 % SDS polyacrylamide gel electrophoresis. The gel was Coomassie stained. The same 

results were obtained when S10 was used instead of S10∆loop. Lane 1, RNase A; Lane 2, RNase T1; Lane 3, 

Benzonase; Lane 4, NusB-S10∆loop, no UV; Lane 5, NusB-S10∆loop, 5 min UV; Lane 6, NusB-S10∆loop plus 

Benzonase, 37 °C, 5 min UV; Lane 7, NusB-S10∆loop plus Benzonase, 4 °C, 5 min UV; Lane 8, NusB-S10∆loop 

plus RNases A and T1, 37 °C, 5 min UV; Lane 9, NusB-S10∆loop plus RNases A and T1, 4 °C, 5 min UV; Lane 

10, NusBAsp118Asn-S10∆loop, no UV; Lane 11, NusBAsp118Asn-S10∆loop, 5 min UV; Lane 12, NusBAsp118Asn-S10∆loop 

plus Benzonase, 37 °C, 5 min UV; Lane 13, NusBAsp118Asn-S10∆loop plus Benzonase, 4 °C, 5 min UV; Lane 14, 

NusBAsp118Asn-S10∆loop plus RNases A and T1, 37 °C, 5 min UV; Lane 15, NusBAsp118Asn-S10∆loop plus RNases A 

and T1, 4 °C, 5 min UV. M,  molecular weight marker. The presence of both NusB or NusBAsp118Asn and S10∆loop 



Structure and Function of the NusB-S10 Complex  Results 

59 
 

in the slower migrating bands obtained upon UV crosslinking was verified by tryptic mass spectrometric peptide 

fingerprinting. 

 

4.3.3 The structure of NusBAsp118Asn-S10Δloop closely resembles the structure of NusB-

S10Δloop 

 To investigate whether the increased BoxA RNA affinity of the NusBAsp118Asn-S10Δloop 

complex correlates with structural rearrangements compared to the NusB-S10Δloop complex, 

the crystal structure of the NusBAsp118Asn-S10Δloop complex was solved by molecular 

replacement at 2.5 Å resolution (Figure 4.10A). The structure was refined to Rwork and Rfree 

factors of 20.4 % and 25.6 %, respectively (Table 4.2). An asymmetric unit of the crystal 

contains three molecules each of NusBAsp118Asn and S10Δloop, which were assembled as three 

NusBAsp118Asn-S10Δloop complexes (Table 4.2). Two of the complexes exhibited well defined 

electron density. The electron density map of the third complex was fragmentary. In that 

complex, residues 60-77 and 127-139 of NusBAsp118Asn and residues 45-47 and 60-72 of 

S10Δloop could not be unambiguously traced. The following discussion refers to the structures 

of the two well defined complexes, which are very similar (rmsd of 0.53 Å for 220 Cα 

atoms). 

 The global structure of NusBAsp118Asn in complex with S10Δloop is very similar to that of wt 

NusB in isolation (PDB ID 1EY1; (Altieri et al., 2000); rmsd of 2.54 Å for 110 Cα atoms; 

Figure 4.10B and 4.10C). Furthermore, the structure of the NusBAsp118Asn-S10Δloop complex is 

virtually identical to that of the NusB-S10Δloop complex (rmsd of 0.82 Å for 220 Cα atoms; 

Figure 4.10C), demonstrating that the D118N mutation has no global conformational 

consequences. In particular, the locations of NusB residues N118 in the mutant and of residue 

D118 in the parent complex are virtually identical. Irrespective of the amino acid at position 

118, the neighboring region undergoes identical adjustments upon S10Δloop binding, during 

which the Cα position of residue 118 is repositioned by ca. 2.8 Å (Figure 4.10C, inset). 

However, the Asp118Asn exchange leads to a significant difference in the local electrostatic 

surface properties of the complex (Figure 4.10D). Thus, the increased BoxA RNA affinity of 

NusBAsp118Asn or its complex with S10 is due to the replacement of a negatively charged 

residue with an uncharged residue at the RNA binding site, which reduces the repulsion with 

the negatively charged sugar-phosphate backbone of the RNA. Alternatively or in addition, 

an asparagine compared to an aspartate at position 118 may engage in additional hydrogen 

bonds to the RNA. 
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Figure 4.10 Structure of the NusBAsp118Asn-S10Δloop complex  

(A) Ribbon plot of the E. coli NusBAsp118Asn-S10Δloop complex. NusBAsp118Asn, green; S10Δloop, orange. Secondary 

structure elements and termini are labeled. The orange sphere makes the site at which the ribosome binding loop 

of S10 has been replaced by a single serine.  

(B) Comparison of the NusBAsp118Asn-S10Δloop complex (left) with the NusB-S10Δloop complex. Insets: closeup 

views of the residue 118 regions. The orientation relative to (A) is indicated. Gray mesh, final 2Fo - Fc electron 

density of the NusBAsp118Asn-S10Δloop structure contoured at the 1σ level and covering Asn118 and neighboring 

residues. The orientation relative to (A) is indicated.  

(C) Superimposition of the NusB-S10Δloop complex (blue and red) and of NusB (gray, PDB ID 1EY1; (Altieri et 

al., 2000)) on the NusBAsp118Asn-S10Δloop complex (green and orange). Residues at position 118 are shown as 

sticks and a magnified view of the residue 118 region is provided (carbon, as the respective molecule; oxygen, 

red; nitrogen, blue). The orientation relative to (A) is indicated.  

(D) Comparison of the electrostatic surface potentials of the complexes. Blue, positive charge; red, negative 

charge. Left, NusBAsp118Asn-S10Δloop complex; Right, NusB-S10Δloop complex. The positions of residue 118 are 

circled. The orientations are the same as in (B). 
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4.4 Roles of S10 and NusB in transcription and translation 
 

4.4.1 S10 supports transcription antitermination in the absence of NusB 

 N and rrn antitermination and Nun-termination involve appropriate tethering of BoxA 

and BoxB RNA sites to RNAP via N or Nun and the Nus factors (Nodwell and Greenblatt, 

1991). Since S10 directly contacts RNA (this work; Figure 4.8) and RNAP (Mason and 

Greenblatt, 1991), it is possible that S10 may be the functional antitermination factor in the 

NusB-S10 complex at Nut sites. To test this idea, Max Gottesman’s group overexpressed S10 

and S10∆loop in an E. coli strain lacking the nusB gene. Strikingly, overexpression of either 

S10 or S10∆loop rescued λ growth, restoring functional N-antitermination in the absence of 

NusB (Table 4.7). Similarly, S10 or S10∆loop expression rescued Nun-dependent termination 

in the nusB-deletion strain, as determined by the expression of a lacZ gene promoter-distal to 

λ Nut (Table 4.7). These results are at variance with the traditional view that the role of S10 

is to recruit NusB to RNAP (Mason and Greenblatt, 1991; Mason et al., 1992). Therefore, 

NusB, although it engages in more extensive BoxA contacts than S10, merely serves as a 

loading factor that ensures efficient entry of S10 into these transcription complexes, while 

S10 constitutes the critical antitermination component of the NusB-S10 complex. 

 

Table 4.7 Overproduction of S10 or S10∆loop allows λ to grow on a ∆nusB strain 

(nusB::Cam)  
 

N-Antitermination 
Chromosomal 

nusB pBAD Plasmid Arabinose λ EOP 

+ - - 1.0 
∆ - - <10-5 
∆ nusE+ - <10-2 
∆ nusE∆loop - <10-2 
∆ nusE+ + 0.30 
∆ nusE∆loop + 0.71 

 
Nun-Termination 

HK022 pBAD Plasmid - Arabinose + Arabinose 
- nusE 2260 1453 
- nusE∆loop 2373 1856 
+ nusE 951 (58) 213 (85) 
+ nusE∆loop 1208 (49) 406 (78) 

 

N antitermination: nusE+ and nusE∆loop are carried by a pBAD plasmid and, where indicated, induced with 0.1 % 

arabinose. λimm434, which is insensitive to λ repressor, was plated at 37 ºC on LB plates with or without (+/-) 
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50 µg/ml ampicillin to determine EOP. Strains are W3102 derivatives carrying the fusion λcI857 – pR – cro 

(∆RBS) – nutR  – tR1 – cII::lacZ. Nun termination: nusB::Cam cells additionally carried a HK022 prophage as 

indicated. Cells were grown at 37 ºC until early log phase and then shifted to 42 ºC for 2 hours without (“- 

Arabinose”) or with (“+ Arabinose”) 0.1 % arabinose. Numbers in parentheses indicate % termination. 

 

4.4.2 NusB delivers S10 into other molecular environment 

 When crystallization trials for the NusB-S10Δloop complex were performed, the complex 

could be crystallized in an orthorhombic (P212121) or a hexagonal (P61) space group under 

different conditions (Table 3.5). The crystal form with space group P212121 (unit cell: 40.7 Å, 

49.0 Å, 122.8 Å; 90°, 90°, 90°) allowed me to determine the structure of  the NusB-S10Δloop 

complex, which presents one hetero-dimer in an asymmetric unit with solvent content of 43 

% (Table 4.2). The asymmetric unit of the second crystal form with space group P61 (unit 

cell: 63.2 Å, 63.2 Å, 61.2 Å; 90°, 90°, 120°) is too small to harbor the NusB-S10Δloop 

complex. Since there is no indication of twinning, it is possible that one protein might have 

crystallized alone. Therefore, the crystals were checked by SDS-PAGE gel. Indeed, NusB 

protein was lost during crystallization (Figure 4.11B).  

 The structure of S10Δloop in isolation was solved by molecular replacement from the data 

of the second crystal form (Table 4.2; Figure 4.11A). The asymmetric unit contains one 

S10Δloop (Table 4.2). The structure of S10Δloop in isolation was only refined to Rwork and Rfree 

factors of 25.3 % and 29.3 %, respectively (Table 4.2), which are a little higher at 1.9 Å 

resolution, since there are some unsolved features related with screw axis in the density map. 

These unsolved features cannot be generated by the presence of residual NusB in crystals, 

because S10Δloop residues, Arg37, Pro39, Ile40, Pro41 and Pro43, which directly interact with 

NusB, also directly participates in S10Δloop alone crystal packing (Figure 4.11C and 4.11F). 

As a consequence, the NusB-binding surface of S10Δloop is occluded by crystal packing in the 

crystalline S10Δloop dimer (Figure 4.11C and 4.11F) that rules out the presence of NusB in 

crystals. Thus, I reasoned that unsolved features might be from the presence of partially 

aggregated S10Δloop in crystals. The global structure of S10Δloop in isolation is very similar to 

that of the S10Δloop in complex with NusB (rmsd of 0.81 Å for 79 Cα atoms; Figure 4.11D). 

The C-terminus of S10Δloop in isolation is slightly oriented to the left relative to that of the 

S10Δloop subunit of NusB-S10Δloop complex (Figure 4.11E). In addition, Pro39 remains a cis 

conformation in the S10Δloop in isolation (Figure 4.11G), evidencing that the cis conformation 

at Pro39 is an intrinsic property of S10. These data suggest that in vitro NusB can play a role 

of a loading factor in delivering S10 into the other molecular environment (crystals). 
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Figure 4.11 Aspects of the S10Δloop in isolation  

(A) Ribbon plot of the S10Δloop in isolation. S10Δloop, red. Secondary structure elements and termini are labeled. 

The red sphere makes the site at which the ribosome binding loop of S10 has been replaced by a single serine. 

(B) SDS-PAGE gel analysis of S10Δloop in isolation crystals. M, molecular mass marker. Lane 1, the NusB-

S10Δloop complex used for crystallization; Lane 2, crystals grew in conditions that yielded S10Δloop alone. 

Crystals were washed three times with mother liquor and dissolved in the 1× Laemmli loading dye.    

(C) Ribbon plot of the NusB-S10Δloop complex. NusB, blue; S10Δloop, red.  

(D) Superimposition of S10Δloop in isolation (red) on the S10Δloop (pink) from NusB-S10Δloop complex.  

(E) Ribbon plot showing detailed comparison of C-terminus of S10Δloop in isolation (red) with that of the 

S10Δloop (pink) from the NusB-S10Δloop complex. The structure of the S10Δloop in isolation was superimposed on 

the S10Δloop subunit of the NusB-S10Δloop complex. The C-terminus of S10Δloop in isolation is slightly oriented to 

the left (arrow) relative to that of the S10Δloop subunit of the NusB-S10Δloop complex.    

(F) Ribbon plot of the crystalline S10Δloop dimer. S10Δloop, red; Crystaline S10Δloop, grey. 

(G) Ribbon plot showing the cis conformation of Pro39 on S10Δloop in isolation.  
 

4.4.3 Does NusB escort S10 into ribosomes? 

 It was shown that NusB plays a role of a loading factor in transcription antitermination 

and in vitro (where NusB delivers S10 into crystals). Mutations of NusB in E. coli slow down 

the cell growth rate that suggests its role in translation (Taura et al., 1992). Thus, I speculated 

that NusB could also function as a loading factor that facilitates the entry of S10 into 

ribosomes. By this means, S10 would not be detected in assembled ribosomes from an E. coli 

strain bearing the absence of NusB. To test this idea, I employed the same ribosome binding 

assay as I used before (Section 4.1.2), and directly monitored the assoication of the GST-S10 

to ribosomes from wt E. coli strain 9739 and ribosomes from E. coli strain 9976 (isogenic to 

strain 9739) bearing a chromosomal nusB gene knockout (nusB::Cam). Associations of GST-

S10 with crude and salt washed ribosomes were evaluated by Western blot. In wt strain the 

GST-S10 goes into ribosomes and is well detectable in crude and salt washed ribosomes 

(Figure 4.12, lanes 3 and 4). To my surprise, GST-S10 in crude and salt washed ribosomes 

from mutant strain is also detectable and its contents are comparable with those from wt 

strain (Figure 4.12, lanes 7 and 8). The results presented here cannot clearly answer the 

question that whether NusB escorts S10 into ribosomes and therefore, it has to be further 

investigated by other means.  
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Figure 4.12 Ribosome binding of S10 
Western blot probing the binding of GST-S10 to ribosomes from wt E. coli strain 9739 and from E. coli strain 

9976 (isogenic to 9739) bearing a chromosomal nusB gene knockout (nusB::Cam). Equal amounts of cells 

before (-; lanes 1 and 5) and after (+; lanes 2 and 6) induction with IPTG as well as equal amounts (0.1 A260 

equivalents) of crude (cr; lanes 3 and 7) and salt-washed (sw; lanes 4 and 8) ribosomes from E. coli strain 9739 

expressing GST-S10 (lanes 1-4) or from E. coli strain 9976 expressing GST-S10 (lanes 5-8) were analyzed on a 

12 % SDS-PAGE gel, transferred to a nitrocellulose membrane and analyzed by Western blot.  

 

4.4.4 NusG couples transcription and translation via S10 

 In the N and rrn antitermination and Nun-termination complexes, NusG is a key 

component that inhibits transcription pausing and increases the rate of elongation, where 

NusG-NTD directly binds to RNAP (Burova et al., 1995; Li et al., 1992; Squires and 

Zaporojets, 2000). A role for NusG in translation has been identified by the finding that the 

peptide elongation rate in vivo is reduced in nusG-depleted cells by measuring the rate of 

synthesis of a lacZ construct (Zellars and Squires, 1999). 

 The genetic evidence that nusG4 (S163F) mutation restores λ N antitermination activity in 

an E. coli strain bearing a chromosomal nusE71 defect indicates a functional interaction 

between NusG and S10. The genetic interaction might reflect a direct physical contact 

between the proteins in vitro. In order to test this motion, the transcriptionally active NusB-

S10 complex (NusB-S10Δloop) was mixed with NusG, and mixtures were subjected to 

analytical size exclusion chromatography. The mixture of NusB-S10 and NusG eluted 1-2 

fractions earlier compared to either NusB-S10 or NusG alone, indicating formation of a stable 

NusG-NusB-S10 complex (Figure 4.13).  

 To further characterize the detailed interactions within the complex, Paul Rösch’s group 

investigated the complex formation by NMR based on the NusB-S10Δloop complex, which is 

more stable than wt NusB-S10 complex. NMR titrations revealed that S10Δloop is the binding 

component for NusG in the NusB-S10Δloop complex and NusG-CTD directly binds to 
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S10Δloop. The interaction surface of S10 with NusG is still accessible when S10 forms part of 

30S ribosomal subunit. Thus, S10 could mediate simultaneous formation of a NusG-NTD-

RNAP complex and a NusG-CTD-ribosome complex. This analysis suggests that NusG 

establishes a link to ribosome-bound S10 or the S10-NusB complex.  

 The notion that NusG is a molecular link between transcription and translation is 

presented by Paul Rösch’s group. Detailed results and discussions are not provided here as 

the majority of the work has been done by them.  

 

 
 

Figure 4.13 Size exclusion chromatography analyses 
Size exclusion chromatography analyses of the NusB-S10∆loop complex, NusG and of a mixture of NusB-

S10∆loop and NusG. The panels show the migration of NusB-S10∆loop complex (top), NusG (middle) and of a 

mixture of NusB-S10∆loop and NusG (bottom). Fractions collected from each run were analyzed by SDS-PAGE. 

Equivalent fractions (17-23) are aligned below each other in the three panels. The mixture of NusB-S10∆loop and 

NusG elutes 1-2 fractions earlier compared to either NusB-S10∆loop or NusG alone, indicating formation of a 

stable complex. 
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5 Discussion 
 

 As one strategy to increase the functional diversity of their proteomes, organisms make 

use of “moonlighting” proteins that can function in more than one cellular context (Jeffery, 

1999). In many cases, the molecular basis for the dual activity of these proteins is unknown. 

Transcription and translation are two highly coupled processes during prokaryotic gene 

expression. One of mechanisms by which these two cellular contexts communicate directly 

with one other is sharing proteins. S10 and NusB are two of these shared proteins. Their 

molecular mechanisms of dual activity in transcription and translation are incompletely 

understood. Here, I have presented work that defines the roles of a ribosomal protein, S10, 

which is part of antitermination complexes, and of another antitermination factor, NusB, 

which forms a stable sub-complex with S10. The results have repercussion for the generation 

of functional diversity in proteomes by employing one protein for multiple activities. 

 

5.1 S10∆loop is a tool to dissect transcriptional and translational functions of S10 

 The long ribosome-binding loop of S10 is delineated that is exclusively required for S10 

function in the ribosome but not in transcription. The phenomenon that S10Δloop fails to bind 

to ribosomes (Figure 4.2B) demonstrates that the loop of S10 is the main binding part with 

other r-proteins and the 16S rRNA in the 30S ribosomal subunit. The finding that the long 

loop of S10 is dispensable in transcription is consistent with the observation that mutants 

defective in transcriptional functions (nusE71, nusE100) map to the globular part of S10. 

Therefore, transcriptional and translational functions are attributed to distinct regions of S10. 

The functional architecture of S10 is paralleled by that of r-protein L4, which also has a 

second activity as a transcriptional attenuator (Lindahl et al., 1983). In L4, a similar 

ribosome-binding loop was also found dispensable for attenuation (Worbs et al., 2000; 

Zengel et al., 2003). The findings show that evolution made economic use of r-proteins by 

diverting regions not under strict selection by ribosomal functions to other purposes. 

 The S10 loop is of obvious architectural importance for the 30S subunit (Figure 2.5;  

(Schluenzen et al., 2000; Wimberly et al., 2000)), consistent with the observation that the 

loop is essential for cell viability (Figure 4.2). These results suggest that the transcription 

antitermination activity of S10 is independent of ribosomes or ribosome-bound S10, in 

perfect agreement with the finding that S10 cannot bind to NusB and the 30S subunit at the 

same time. The above results also demonstrate that under normal growth conditions, rRNA 
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transcription antitermination is not essential for the cells and that proteins involved in 

antitermination are essential because of their function in other cellular processes, as recently 

also shown for other antitermination factors (Bubunenko et al., 2007; Phadtare et al., 2007). 

 

5.2 S10 is adapted to different functional contexts without global structural remodeling 

 S10 has been suggested to represent a largely intrinsically unstructured protein, whose 

structure could adapt to different functional contexts (Gopal et al., 2001). S10 expressed 

alone exhibits low solubility and tends to aggregate. NusB confers increased solubility on 

S10 (Figure 4.1A), suggesting that S10 may preferentially exist in complex with NusB off the 

ribosome. I observed that the bulk of S10 adopts the same global fold in complex with NusB 

as in the ribosome. Thus, the results presented here rigorously exclude the possibility that the 

structure of S10 is extensively remodeled in order to recruit the protein as a transcription 

factor. Indeed, the long ribosome-binding loop is most likely the only intrinsically unfolded 

region of S10. 

 

5.3 Mutually exclusive binding of S10 to the 30S subunit or NusB may provide for 

feedback control of ribosome biogenesis 

 Balancing the levels of ribosomal building blocks is critical for bacteria, since ribosome 

biosynthesis can consume half of the available metabolic energy (Bremer and Dennis, 1987). 

A number of negative feedback loops have been characterized that act to ensure 

stoichiometric levels of ribosomal constituents. When expressed in surplus of their rRNA 

binding sites, several r-proteins restrict their own expression and that of other proteins in their 

operons by binding to their own mRNAs, thereby sequestering the messages from translation 

(Lindahl and Zengel, 1986). In addition to such translational feedback, r-protein L4 also 

down-regulates transcription of its operon (Lindahl et al., 1983). Evidence presented here 

suggests that such negative feedback may be complemented by positive feedback through r-

protein S10 (Figure 5.1). Since crystal structures show that S10 cannot participate in 

transcription antitermination on RNA polymerase and translation on the ribosome at the same 

time, only S10 produced in excess of ribosomes will elicit antitermination of rrn operons and 

thus a higher rate of rRNA biosynthesis. As a consequence, surplus S10 would act to increase 

the rRNA level. With respect to rRNA production, NusB and BoxA may therefore be 

envisioned as enhancers of an S10-based feedback regulation. 
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Figure 5.1 A feedback control circuit by S10 

S10 cannot participate in rRNA transcription and ribosome assembly at the same time (shown by the red curve 

and ‘-’). S10 functions as an architectural element for ribosome assembly when it expresses on the level of 

fulfilling available ribosomal binding sites (shown by green arrows and ‘+’). Only S10 produced in the excess of 

available ribosome binding sites up-regulates the antitermination modular for rRNA transcription (shown by the 

blue arrow and ‘+’). Black arrow, transcription is coupled with translation.  

 

5.4 S10 and NusB form a functional module for recognition of BoxA 

 Much of the proteome is organized as functional modules (Hartwell et al., 1999), which 

support an autonomous function as, for example, devices within a macromolecular machine. 

Here it is shown how the NusB-S10 complex acts as a functional RNA-binding module of the 

transcriptional machineries with which it is associated. Both subunits of the NusB-S10 

complex contribute to a mosaic yet contiguous binding surface for a crucial RNA signaling 

element, BoxA. An analogous situation was encountered intramolecularly in NusA, in which 

different NusA RNA-binding domains come together to create an enlarged, composite RNA-

binding site (Beuth et al., 2005; Worbs et al., 2001). Cooperation between two or more 

subunits to generate a composite binding surface for an additional factor is an important 

architectural principle in macromolecular assemblies (Liu et al., 2007). 

 

5.5 S10 is the active antitermination factor of the NusB-S10 complex and NusB serves as 

an adaptor in the transcription process 

 In the traditional view of processive antitermination, S10 serves as an auxiliary factor that 

recruits the antitermintion factor NusB to RNAP (Mason and Greenblatt, 1991; Mason et al., 
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1992). Contrary to that view, work presented here shows that S10 supports N-antitermination 

and Nun-termination even in the absence of NusB. According to results presented here, NusB 

has supportive functions, while the fundamental antitermination activity of the complex relies 

on S10. What are the supportive functions of NusB and what constitutes the fundamental 

antitermination activity of S10? 

 S10 is a truly multi-functional protein even within the transcriptional complexes. Apart 

from interacting with NusB ((Mason et al., 1992) and this work), it directly binds RNAP 

(Mason and Greenblatt, 1991). Furthermore, S10 has been suggested to contact phage λ 

protein N (Mogridge et al., 1995, 1998b). My work shows that S10 is even more versatile and 

also binds to the BoxA mRNA element. Thus, S10 constitutes a hub within the N- and rrn 

antitermination and Nun-termination complexes, through which the functions of other factors 

may be integrated. However, isolated S10 binds RNA with low specificity (Greive et al., 

2005). Under physiological conditions, positioning of S10 on the mRNA by RNAP or the 

phage proteins is presumably inefficient. NusB is therefore required as an adaptor that 

ensures efficient loading of S10 on the mRNA at BoxA and subsequent contact with RNA 

polymerase. 

 

5.6 Hypothesis: NusB may deliver S10 into ribosomes 

 NusB and S10 together form a functional module in the transcription antitermination, 

where NusB serves as a loading factor that ensures efficient entry of S10 into the 

transcription complexes. In addition, NusB can deliver S10 into the other molecular 

environment in vitro, e.g. into crystals. Thus, I speculated that in translation NusB may still 

function as a loading factor that delivers S10 into ribosomes. Namely, S10 would not be 

detected in assembled ribosome from an E. coli strain bearing the absence of NusB. 

However, ribosomes binding assay showed little difference between the content of S10 in 

ribosomes from wt strain and that of S10 in ribosomes from nusB gene knockout strain 

(Figure 4.12). Little difference in contents of S10 might be due to the fact that fully 

assembled ribosomes from which S10 was obtained may yield the high background for 

Western blot detection. As S10 is a crucial protein involved in the 30S ribosomal subunit 

assembly, further investigations have to be made to monitor S10 from the 30S ribosomal 

subunit in order to get rid of effects from fully assembled ribosomes. 

 The hypothesis that NusB may deliver S10 into ribosomes in translation must be 

considered whether there are reasonable amounts of NusB so that it could carry out two tasks 
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(loading S10 into both transcription antitermination complex and ribosomes). A minimum of 

~2000 S10 molecules, in which there are ~36 rrn operons per cell and ~55 RNAP molecules 

per operon, would be required for transcription under the fast growth conditions in the cell 

(Squires and Zaporojets, 2000). There must be one S10 molecule per ribosome and there 

could be ≤ 70,000 S1 0 molecules involved in ribosome assembly under same fast growth 

conditions in the cell (Squires and Zaporojets, 2000). It is estimated that about 3000-6000 

NusB molecules are present depending on the growth conditions in the cell (Swindle et al., 

1988). Therefore, this is a quantity that might be expected for NusB to load ~2000 S10 

molecules into transcription antitermination complex. In the meantime the remaining (~1000-

3000) NusB molecules are apparently not enough to make stoichiometric binding with 70,000 

S10 molecules involved in ribosome assembly and subsequently, cannot load all S10 

molecules into ribosomes at one time. Thus, I assume that the loading of S10 into ribosomes 

by NusB is a repetitive process. This repetitive loading process regulates the rate of ribosome 

formation in order to meet the cell’s need for protein synthesis capacity. This assumption is in 

an agreement with suggestions by Squires et al that the role NusB plays in translation is likely 

to be transient rather than the permanent and stoichiometric role that the r-proteins play in 

ribosome assembly and function (Squires and Zaporojets, 2000). 
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7 Appendixes 
 

7.1 Principles of protein X-ray crystallography 
 X-ray crystallography is a principle technique in the determination of protein structures. 

Its process involves the crystal growth, data collection and processing, solutions of the phase 

problem and fitting, refinement and validation of crystal structures. Here, the basic principles 

of protein X-ray crystallography are briefly described. The following sections are compiled 

from crystallography textbooks (Drenth, 1994; Rhodes, 2006).  

 

7.1.1 Crystal growth 

 The initial step in protein crystallography is the production of protein crystals. To form a 

crystal the pure protein solution at a concentration between 0.5 and 200 mg/ml is mixed with 

reagents to decrease the protein solubility close to the precipitation point. Protein-solvent 

interactions are disturbed by these reagents, which results in the formation of nucleation sites, 

to allow protein molecules to assemble into a periodic lattice from supersaturated solutions. 

Crystal growth is then followed by expansion and cessation when the crystal reaches a certain 

size.  

 The most commonly used experimental method to form crystals from protein solution is 

vapor diffusion by sitting drop or hanging drop techniques. The common format involves 

setting up a droplet containing equal amounts of protein solution and precipitant solution in a 

sealed chamber. The droplet is equilibrated against the precipitant solution in the reservoir of 

chamber. Due to the mixture of protein solution and precipitant solution, the precipitant 

concentration in the droplet is lower than that in the reservoir. Thus, the water molecules 

leave the droplet and dissolve in the reservoir by the evaporation in order to achieve the 

equilibrium. The equilibration over time in this seal environment leads to supersaturating 

concentrations that allow protein crystallization in the droplet.  

 

 7.1.2 Data collection and processing 

 Crystals are exposed under X-rays for diffraction data collection. Crystals are frequently 

flash-cooled to liquid nitrogen temperature (~100 K) for reducing thermal vibrations of atoms 

in crystals, and avoiding the radiation damage of crystals in order to collect complete datasets 

from a single crystal. Nowadays synchrotron is used as the main source of X-rays that 

produces high intensity X-ray radiation and allows selection of radiation with wavelengths in 
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a wide range. The speed and quality of structure solution have improved dramatically 

compared with conventional X-ray sources, e.g. the sealing tube and the rotating anode. 

When the flash-cooled crystal held within a loop is mounted in a goniometer in the path of X-

ray beam, X-rays are scattered into many discrete beams by the electrons in molecules that 

form a crystal lattice. Scattered X-rays are observed (diffracted) when the angle (θ) of 

incidence at lattice planes is equal to the angle (θ) of scattering and the path length difference 

is equal to an integer number (n) of wavelengths (λ) according to Bragg’s law: 

 

n λ = 2d sinθ 

 

in which d is the spacing between lattice planes. Interferences among scattered X-rays 

generated at lattice points in parallel planes produce distinct spots that can be recorded on a 

detector to yield the diffraction pattern. Each spot represents a reflection, which is a sum of 

individual scattering of all of the electrons in the unit cell along a particular direction. The 

sum that describes diffracted X-rays at position hkl (reciprocal space coordinates) is called 

structure factor F (h, k, l), which is a function of the electron density distribution in the unit 

cell. Therefore, the structure factor is a vector defined by intensity Fhkl and phase αhkl. The 

goal of crystallography is to calculate the electron density ρ at every position x, y, z in the 

unit cell. This can be done by Fourier transform (FT). The FT is a transition between two 

different, but equivalent ways of describing an object or a process. The structure factor F (h, 

k, l) is the Fourier transform of ρ (x, y, z) but the reverse is also true: ρ (x, y, z) is the Fourier 

transform of F (h, k, l) and therefore, ρ (x, y, z) can be written as a function of all F (h, k, l):          

 

ρ(xyz)= 1/V ΣhΣkΣl|F(hkl)|exp[- 2πi(hx + ky + lz) + iα(hkl)] 

 

where V is the total volume of the unit cell and i is the contribution of each atom.  

 

 The data processing from recorded spots yields a list of reflections (positions) and their 

intensities. The intensity of the diffracted X-rays is proportional to the square of the 

amplitudes (Ihkl), which could be measured from diffraction pattern. It now seems easy to 

calculate the electron density ρ (x, y, z) at every position (x, y, z) in the unit cell. However, 

there is a problem. The phase angle (αhkl) cannot be obtained directly from the diffraction 

pattern. 
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7.1.3 Solutions of the phase problem  

 The importance of phases in producing the correct structure is demonstrated by Kevin 

Cowtan’s FT model of a duck and of a cat: the electron density map derived by combining 

amplitudes for the duck diffraction and phases from the cat diffraction leads to a cat 

(http://www.ysbl.york.ac.uk/~cowtan/fourier/magic.html). To solve the phase problem 

several techniques were developed: Direct Method, Molecular Replacement, Single 

Isomorphous Replacement (SIR), Multiple Isomorphous Replacement (MIR), Single-

wavelength Anomalous Dispersion (SAD), Multiple-wavelength Anomalous Dispersion 

(MAD), and combination of above approaches which gives rise to Single Isomorphous 

Replacement Anomalous Scattering (SIRAS) and Multiple Isomorphous Replacement 

Anomalous Scattering (MIRAS). One can refer to any crystallography textbooks for the 

theories behind these methods. As molecular replacement method was applied to my work, 

the method is briefly explained below.   

 Molecular Replacement (MR) can be useful to deduce the phase if a homology model is 

available. As a rule of thumb, a sequence identity > 35 % is normally required between a 

homology protein and the unknown protein, or the two proteins are expected to have a very 

similar fold of the polypeptide chain (rmsd of α C atoms < 2.0 Å). Placement of the 

homology protein in the target unit cell requires its proper orientation and precise position 

that involves two steps: rotation and translation. In the rotation step the spatial orientation of 

the known and unknown protein with respect to each other is determined while in the next 

step the translation needed to superimpose the now correctly oriented protein onto the other 

protein is calculated. The basic principle of the MR can be understood by regarding the 

Patterson function of a protein crystal structure. The Patterson function P (u, v, w) is a 

Fourier summation with intensities as coefficients and without phase angles: 

 

P (uvw) = 1/V ΣhΣkΣl|F(hkl)|2 cos[2π(hu + kv + lw)] 

  

u, v, w are relative coordinates in the unit cell.  

 The Patterson map generated by Patterson function is a vector map: vectors between 

atoms in the real structure show up as vectors from the origin to maxima in the Patterson 

map. If the pairs of atoms belong to the same molecule, then the corresponding vectors are 

relatively short and their end-points are found not too far from the origin in the Patterson 

map; they are called self-Patterson vectors (intramolecular vectors), which can provide us 
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with the rotational relationship between the known and the unknown structures. In the 

rotation step the intramolecular vectors for the know molecule are calculated in a P1 unit cell. 

These calculated intramolecular vectors are rotated in accordance with an Eulerian angle 

system until they match the observed Patterson functions from the unknown molecule. For 

the final solution of the MR method the translation required to overlap one molecule onto the 

other in real space must be determined, after it has been oriented in the correct way with the 

rotation function. The translation function is calculated that gives the correlation between a 

set of cross-Patterson vectors (intermolecular vectors) for a model structure and the observed 

Patterson function. Intermolecular vectors mean vectors in the Patterson map derived from 

vectors between atoms in two molecules in the model structure related by a crystallographic 

symmetry operation. With the translation function one can determine the position of molecule 

1 with the respect to the symmetry related molecule 2, and subsequently for any other pairs of 

symmetry related molecules. When the correct position is located, the phases of the model in 

this position can be used to deduce the phases for unknown protein.  

  

7.1.4 Fitting, refinement and validation of crystal structures  

 From molecular replacement an approximate model of the protein structure can be 

obtained in which the broad features of the molecular architecture are apparent. To adjust an 

initial model such that the best possible agreement with electron density map is achieved 

while maintaining a reasonable stereochemistry, an iterative model building and refinement 

are carried out. The calculated structural factor (Fcal) after each cycle of refinement is 

compared with the observed structural factor (Fobs) to yield an R factor, which is one of 

quality assessment factors of the final structure. Refinement is the process of adjusting the 

model to find a closer agreement between Fcal and Fobs. Several methods have been developed 

and, if applied, they lower the R factor substantially, reaching values in the 10 to 20 % range 

or even lower. The adjustment of the model consists of changing the positional parameters (x, 

y, z) and the temperature factors (B factors) for all atoms in the structure. B factor generated 

after the refinement is used to judge the mobility of the structure within the crystal. Attention 

should be given to residues of parts of residues with conspicuously high B factor values. It 

has been shown that the R factor can reach surprisingly low values in the refinement of 

protein structural models that appear later to be incorrect, for instance, because the number of 

model parameters is taken too high. Therefore, Rfree factor was suggested to improve this 

situation. In this method reflections are divided into a test set and a working set. The test set 

is a random selection of 5 % of the observed reflections. The refinement is carried out with 
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the working set only, and the Rfree factor is calculated with the test set only. Rfree factor is 

unbiased by the refinement process and therefore, it reflects the accuracy of the structural 

model. In addition, the accuracy of structural model can be estimated by other methods, such 

as Ramachandran Plot. The result of protein structure determination is the generation of a file 

that lists x, y and z coordinates for all atoms present in the crystal.  
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7.2 Abbreviations 
 

°C      Degree celsius 

3D     3 Dimensional 

Å      Angstrom (1Å = 10-10 m) 

AA/aa     Amino acid 

aae     Aquifex aeolicus 

AR     Acidic repeats  

ATP    Adenosine-5’-triphosphate 

BLAST    Basic local alignment search tool 

bp      Base pair 

CC     Correlation coefficient 

CCD     Charged coupled device 

CTD     C-terminal domain 

ddH2O    Double distilled water 

DMSO    Dimethylsulfoxide 

DNA    Deoxyribonucleic acid 

DTT     Dithiothreitol 

E. coli/eco   Escherichia coli 

EDTA    Ethylene-diamine-tetraacidic acid 

EF      Elongation factor 

EF-G     Elongation factor G 

EF-Ts     Elongation factor Ts 

EF-Tu     Elongation factor Tu 

F      Structure factor 

FOM     Figure of merit 

GTP    Guanosine-5’-triphosphate 

h      Hour 

HEPES    N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid 

I      Intensity 

IF      Initiation factor 

IPTG     Isopropyl-β-D-thiogalactopyranoside 

K      Kelvin 
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kb      Kilo base 

kD     Kilo dalton 

KH    K-homology 

KOW    Kyprides, Ouzounis, Woese 

l      Liter 

LB     Luria bertani medium 

M      Molarity 

MAD     Multi-wavelength anomalous dispersion 

mAU     milli-Absorption unit 

MES     2-(N-morpholino)-ethanesulfonic acid 

min     Minute 

MIR     Multiple isomorphous replacement 

MPD     2-Methyl 2, 4-pentanediol 

MR     Molecular replacement 

mRNA   messenger RNA 

Ni-NTA    Nickel-Nitrilotriacetate 

nm     Nanometer 

NMR     Nuclear magnetic resonance 

NTD     N-terminal domain 

Nus    N-utilization substance 

Nut    N-utilization site 

OD     Optical density 

P      Phosphate 

PBS     Phosphate-buffered saline 

PCR     Polymerase chain reaction 

PDB     Protein data bank 

PEG     Polyethylene glycol 

RF     Release factor  

rmsd     Root mean square deviation 

RNA     Ribonucleic acid 

RNAP    RNA polymerase 

rpm     Revolutions per minute 

r-protein    Ribosomal protein 

RRF     Ribosome recycling factor 
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RRM     RNA recognition motif 

rRNA/rrn    Ribosomal RNA 

RT     Room temperature 

s      Second 

S      Svedberg 

SAD     Single-wavelength anomalous diffraction 

SDS-PAGE   Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SeMet     Selenomethionine 

SIR     Single isomorphous replacement 

SIRAS    Single isomorphous replacement anomalous scattering 

SLS     Swiss light source 

Taq     Thermus aquaticus 

TEV     Tobacco etch virus protease 

T. mar/tma   Thermotoga maritima  

Tris     Tris-(hydroxymethyl) aminomethane 

tRNA     transfer RNA 

T. th/tth    Thermus thermophilus  

U      Unit 

UV     Ultraviolet 

V      Volume 

x g     Times gravity 

 

Nucleic acid bases  

Adenine    A 

Cytosine    C 

Guanine    G 

Thymine    T 

Uracil     U 

 
Amino acids  

Alanine    A  Ala   

Arginine    R  Arg   

Asparagine  N  Asn   

Aspartic acid   D  Asp   
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Cysteine    C  Cys   

Glutamine   Q  Gln   

Glutamic acid  E  Glu   

Glycine    G  Gly   

Histidine    H  His   

Isoleucine   I  Ile   

Leucine    L   Leu    

Lysine    K   Lys    

Methionine   M   Met    

Phenylalanine  F   Phe    

Proline    P   Pro    

Serine     S   Ser    

Threonine   T   Thr    

Tryptophan   W   Trp    

Tyrosine    Y   Tyr    

Valine    V   Val    
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