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“Smell is a potent wizard that transports us across 

thousands of miles and all the years we have lived. 

The odors of fruits waft me to my southern home, to 

my childhood frolics in the peach orchard. Other 

odors, instantaneous and fleeting, cause my heart 

to dilate joyously or contract with remembered grief. 

Even as I think of smells, my nose is full of scents 

that start awake sweet memories of summers gone 

and ripening fields far away.” 

 

 
 Helen Keller 

 US blind & deaf educator (1880-1968) 
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1 Introduction 

The sense of smell enables almost all species of the animal kingdom to recognize 

and discriminate between a large array of molecules called odors with a great 

accuracy and sensitivity. Especially in humans, this sense was regarded as a kind of 

luxury, but in fact, animals heavily depend on detecting molecules in the environment 

in order to survive as a successful organism. This makes olfaction one of the most 

remarkable senses, but it is also the least understood. 

The olfactory system is a chemosensory system, indispensable for the 

interplay of an organism with its environment. This sense is of particular importance 

as it allows to identify about 10,000 odors (for humans, Mombaerts, 2004), and it has 

a tremendous impact on a variety of behavioral patterns. Olfaction is a significant 

sensory input for appetite regulation and food seeking behavior. Most animals 

including humans use olfactory information in order to appreciate food palatability 

and to initiate food intake (Rolls, 2005; Yeomans, 2006). Furthermore, the olfactory 

system influences emotional responses like anxiety, fear, and pleasure, reproductive 

functions like sexual and maternal behaviors as well as social behaviors like 

recognition of conspecifics and predators (Schultz and Tapp, 1973; Nimmermark, 

2004; Takahashi et al., 2005). Olfaction is often underestimated, but its significance 

becomes obvious in the case of its loss. Many patients with impaired olfaction have a 

poor quality of life and develop feelings of personal isolation, lack of interest in 

eating, and emotional blunting. Moreover, olfactory disorders are associated with 

depression (Toller, 1999; Nordin and Brämerson, 2008). It is now apparent that dys-

function of olfaction is one of the first symptoms of neurodegenerative diseases like 

Alzheimer’s and Parkinson’s disease (Doty, 2008; Doty, 2009), and it is associated 

with many other cognitive diseases like schizophrenia or Huntington’s disease 

(Lombion-Pouthier et al., 2006; Lazic et al., 2007; Atanasova et al., 2008). 

The increasing understanding of the links between olfaction and various 

diseases will eventually lead to the discovery of new disease mechanisms, which in 

turn introduce new targets for drug development. This is of particular importance 

since none of the diseases mentioned above can be cured to date. However, before 

functional links in this field can be established, further knowledge about olfaction 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Nordin%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Br%C3%A4merson%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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itself has to be gained. Regarding the first steps of peripheral odor encoding, two 

questions need to be addressed for a better understanding of the mechanisms 

underlying olfaction: 

By which mechanisms are odors coded in the neuronal substrates? 

How is odor coding modulated by intrinsic and extrinsic factors? 

In this thesis, significant findings are presented that contribute to answer these 

questions. Before showing the results I obtained during the last three years, I would 

like to introduce basic principles of olfaction, as far as they are important for a better 

understanding of the results. Section 1.1 summarizes the organization of the 

olfactory mucosa and principles of odor encoding by olfactory receptor neurons. In 

section 1.2 the current understanding of modulatory principles in the olfactory 

mucosa are summarized. Especially the endocannabinoid system is highlighted: on 

the one hand the importance of this system for olfaction is elaborated, on the other 

hand the common physiological importance of endocannabinoids and their 

mechanism of action are illustrated. 

 

 

1.1 The sense of smell 

1.1.1 Morphology of the olfactory system 
 

The olfactory system in vertebrates can roughly be divided into the olfactory 

epithelium (OE), the olfactory bulb, and higher brain centers. The first steps of odor 

detection take place in the OE, whereas further processing takes place centrally. The 

OE is located in the nasal cavity embedded under a layer of mucus, which is 

secreted by olfactory glands (primarily Bowman’s glands) and sustentacular cells 

(Getchell, 1986; Gold, 1999, Schwob, 2002). This epithelium contains three main cell 

types (Figure 1): 

 

1. Olfactory receptor neurons (ORNs; Figure 1, upper part, orange) are bipolar 

neurons. These primary sensory cells transduce and transform the binding of 

ligands to olfactory receptors into sequences of action potentials. From the 
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small soma, a single dendrite extends to the nasal cavity and ends in a knob 

bearing cilia. In cilia olfactory transduction takes place upon binding of odors 

to the receptors situated in the membrane. On the basal side of the soma an 

unmyelinated axon originates and projects via the olfactory nerve to the 

olfactory bulb (Getchell, 1986; Schild and Restrepo, 1998; Gold, 1999). 

2. Sustentacular cells (Figure 1, purple) have multi-faceted functions in the OE. 

Besides their role in mucus secretion and regulation of the ionic content of the 

mucus (Getchell and Getchell, 1992; Hansen et al., 1998) they have a glia-like 

function and insulate ORNs physically and chemically (Breipohl et al., 1974; 

Getchell and Getchell, 1992), phagocytose dead cells (Suzuki et al., 1996), 

 
 
Figure 1: Organization of the olfactory system. The morphology of the olfactory system 

is illustrated in this sketch. Figure modified from Lang and Lang (2007); In “Basiswissen 

Physiologie”, page 429; 2nd edition; Springer Berlin Heidelberg Verlag. 
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and detoxify noxious substances (Lazard et al., 1991). Recently it was 

suggested that sustentacular cells play a role in intraepithelial signaling, e.g. in 

cell proliferation by purinergic signaling (Hegg and Lucero, 2006; Hassen-

klöver et al., 2008; Hassenklöver et al., 2009). Sustentacular cells are 

arranged columnar at the apical side of the OE and are either ciliated or 

secretory. 

3. Basal cells (Figure 1, upper part, green) represent the stem cells within the OE 

and are responsible for cell regeneration. The life span of ORNs is 30 to 60 

days and they have to be replaced continuously due to the exposure of the OE 

to a variety of toxic agents. The consequential cell damage and death is 

compensated by differentiation of basal cells into ORNs and sustentacular 

cells (Schwob, 2002; Ronnett and Moon, 2002). 

 

Each mature ORN relays electric information via its axon running in the 

olfactory nerve to the olfactory bulb, which is separated from the OE by the cribriform 

plate in adult vertebrates (Figure 1). There, it forms synapses in specialized 

structures called glomeruli. Two types of interneurons are involved in the olfactory 

processing in the bulb: periglomerular cells and granule cells. The output neurons of 

the olfactory bulb, the mitral cells, are glutamatergic and convey olfactory information 

to the primary olfactory cortex (Mori et al., 1999; Lledo et al., 2005; Wilson and 

Mainen, 2006). 

 

1.1.2 Olfactory transduction and transformation in ORNs 
 

Olfactory transduction 

The first step in perceiving an odor is the interaction of the odorant molecule with the 

olfactory receptor on cilia of ORNs (Figure 2). These receptors belong to the family of 

seven transmembrane receptors and are encoded by about 1000 separate genes in 

rat and mouse and 400 in frog (Buck and Axel, 1991; Mombaerts, 1999; Niimura and 

Nei, 2006). The interaction of odors with the receptors leads to the intracellular 

activation of an olfactory-specific guanosine triphosphate (GTP)-binding protein 

called Golf. The α-subunit of this G protein in turn mediates the activation of adenylate 
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cyclase III. This membrane-bound enzyme catalyzes the reaction of ATP to cAMP, 

which opens cyclic nucleotide-gated (CNG) channels (Dhallan et al., 1990) that are 

permeable for cations including Na+ and Ca2+. The subsequent current both 

depolarizes the cell membrane and Ca2+ intracellularly opens Ca2+-activated Cl- 

channels (Stephan et al., 2009), resulting in an efflux of Cl- ions. Due to the elevated 

equilibrium potential of Cl-, the cell membrane is further depolarized (Schild and 

Restrepo, 1998; Kleene, 2008). 

The cAMP-dependent transduction mechanism appears to be predominant 

particularly in terrestrial vertebrates. However, besides this well described pathway 

also non-cAMP-dependent transduction mechanisms exist (Schild and Restrepo, 

1998; Manzini et al., 2002). These comprise inositol 1,4,5,-tris-polyphosphate as a 

second messenger (Kaur et al., 2001; Bruch, 1996) as well as nitric oxide and carbon 

 
Figure 2: cAMP-dependent olfactory transduction. Upon binding of an odor (green 

square) to an olfactory receptor (R) in the ciliary membrane, GTP bound to Golf is 

hydrolyzed. This leads to the dissociation of the α-subunit which activates the adenylate 

cyclase (AC). Subsequently, cAMP gates CNG channels which are permeable for cations. 

Influx of Na+ and Ca2+ leads to both depolarization of the membrane and opening of Ca2+-

dependent Cl- channels which results in a further depolarization by a Cl- efflux. Figure 

modified from Firestein (2001). 
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monoxide (Breer and Shepherd, 1993; Broillet and Firestein, 1996). Furthermore, 

odors induce not only excitatory responses in ORNs, but they can also elicit inhibitory 

responses in other ORNs (Vogler and Schild, 1999; Morales et al., 1997). 

 

Olfactory transformation 

The receptor potential, which is generated in cilia, propagates electrotonically to the 

soma. Because of their small membrane capacitance, high membrane resistance, 

and long time constant (Schild et al., 1994; Schild and Restrepo, 1998; Imanaka and 

Takeuchi, 2001) ORNs are highly sensitive to odorant stimulation. If the potential at 

the soma reaches threshold, voltage-gated Na+ channels open at the axon hillock, 

thus generating an action potential. This strong depolarization then activates voltage-

gated Ca2+ channels (high-voltage-activated, activated between -30 mV and -40 mV) 

at the proximal dendrite. Ca+-dependent K+ channels at the proximal dendrite and 

voltage-gated K+ channels at the axon hillock serve to repolarize the cell membrane 

and to terminate the action potential (Schild, 1989; Schild et al. 1994). Action 

potentials are conveyed via the olfactory nerves towards the olfactory bulb where 

further processing takes place (Wilson and Mainen, 2006; Toida, 2008). 

 

1.1.3 Peripheral odor coding 
 

Olfactory receptor neurons detect many odors with their qualitative, quantitative, and 

temporal information. A single odorant can activate multiple olfactory receptors and 

one olfactory receptor can bind many odorants. The hypothesis of one olfactory 

receptor type per ORN is reevaluated and the probability of the expression of more 

than one olfactory receptor per ORN is discussed (Rawson et al., 2000; Mombaerts, 

2004; Tian and Ma; 2008). 

Moreover, the OE consists of ORN subsets, which can be classified e.g. 

according to their odor sensitivity, maturation state, and transduction cascade. 

Regarding the second messenger cascades, there exist multiple types in the OE of 

various species (Schild and Restrepo, 1998; Manzini et al., 2002) and some may 

even be coexpressed within one cell (Ko and Park, 2006). This means that odor 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Morales%20B%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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coding is a complex process and that ORN subsets work not only in parallel but may 

also interact or are coactivated. 

In order to understand peripheral odor coding mechanisms, ORN subsets 

need to be characterized in detail. Tools, allowing interference with single ORN 

subtypes are required. To date, the differentiation of ORN subtypes according to the 

olfactory receptor expression is possible by genetic manipulation (Mombaerts et al., 

1996; Grosmaitre et al., 2005). Differentiation of ORNs according to their sensitivity is 

mainly possible by stimulating ORNs with odors or second messenger analogues 

(Manzini and Schild, 2003a; Gautam et al., 2006). 

Having a closer look at the cAMP-dependent ORN subset, a well known 

feature of olfactory transduction is the expression of a cascade of two generator 

channels, a Ca2+-permeable CNG channel driving a Ca2+-dependent Cl- channel 

(Stephan et al., 2009). The transduction of odorants can be interfered with on three 

levels: First, at the level of olfactory receptors (Oka et al., 2004a; Oka et al., 2004b; 

Sanz et al., 2005), second, at the level of receptor potential modulation (e.g. Czesnik 

et al., 2007 (cannabinoids); Bouvet et al., 1988 (acetylcholine); Kawai et al., 1999 

(adrenaline)), and third, at the level of action potential generation. Blocking olfactory 

transduction at the level of one or the other the generator channel has proven difficult 

so far, due to the lack of specific Cl- channel blockers and the lack of CNG channel 

blockers that act at resting membrane potentials. 

Obviously, such blockers would be particularly important in order to 

experimentally dissect the transduction cascade. Furthermore, they would allow 

systematic pharmacological interference with the cAMP-dependent ORN subset, 

which is not possible so far. 
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1.2 The effect of endocannabinoids on olfaction 
 

Olfaction influences the behavior of animals as well as humans. If an olfactory cue is 

caught a distinct behavioral pattern might be elicited. But also vice versa, the current 

physiological state has an impact on olfactory processing. E.g. it is everydays 

experience that olfactory stimuli that are attractive before food intake may become 

neutral or even aversive afterwards. Even at the most peripheral state of the olfactory 

system, in the OE, hormones and transmitters modulate processing of odors. Thus, a 

single ORN cannot be considered as a static unit. Equal inputs may result in varying 

output, depending on the physiological state of the organism, and thus, the tuning of 

ORNs. 

In the following section I will present a novel mechanism, by which odor 

responses are affected in a very fascinating way: the cannabinoid modulation. Then I 

will introduce some endogenous modulatory systems, which are known to exist in the 

OE and describe their function. In the last two sections I will give some physiological 

and biochemical facts about the endocannabinoid system. 

 

1.2.1 Modulation of olfactory processing in the OE 
 

Cannabinoids 

The endocannabinoid system is an endogenous signaling system and affects 

multiple metabolic functions. The name is derived from the cannabis plant Cannabis 

sativa because of the cannabimimetic actions of its major active compound 

∆9-tetrahydrocannabinol, which belongs to the group of cannabinoids (Gaoni and 

Mechoulam, 1964; Adams and Martin, 1996). The endocannabinoid system com-

prises cannabinoid (CB) receptors, their endogenous ligands, called endocan-

nabinoids, and the proteins involved in the synthesis and degradation of these 

ligands (Mackie, 2008; Howlett et al., 2002). 

Recently, cannabinoid modulation of olfactory processing was observed. First, 

CB1 receptor mRNA was detected in the olfactory placodes of Xenopus laevis 

tadpoles (Migliarini et al., 2006). One year later CB1 receptors could be localized to 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mackie%20K%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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the proximal dendrites of ORNs (Czesnik et al., 2007). They showed that 

CB1 receptor-specific antagonists modulate odor-evoked Ca2+ changes in ORNs. 

Responses to odors were reduced and delayed. The delay was up to several 

seconds, which is an exceptional phenomenon and was not observed for other 

modulatory systems before. Since the CB1 receptor is expressed in ORNs and since 

ORNs can be modulated by cannabinoids, the existence of the endocannabinoid 

system in the OE seems very probable. This raises questions, which were not 

addressed as yet: Are endocannabinoids produced in the OE and if yes, which is the 

physiological trigger for endocannabinoid release? Is the odor sensitivity affected by 

endocannabinoids? And finally, how do endocannabinoids act? 

 

Other modulatory substances 

The modulation of olfactory processing is influenced by hormones involved in energy 

metabolism, like orexin and leptin. Orexin, an orexigenic peptide, is produced in the 

hypothalamus and acts on feeding and sleep. Leptin is secreted peripherally by 

adipocytes and acts in an anorexigenic manner. Additionally, both substances are 

synthesized locally in the OE (Caillol et al., 2003; Baly et al., 2007). Orexin may 

modulate transduction via binding to its receptors on ORNs and sustentacular cells 

(Caillol et al., 2003) and leptin decreases odor-induced transduction currents and 

receptor potentials upon binding to leptin receptors (Savigner et al., 2009), which are 

located on a subpopulation of ORNs (Baly et al., 2007). Cerebroventricular injection 

of orexin results in an increased olfactory sensitivity whereas leptin injection 

decreases sensitivity (Julliard et al., 2007). 

ATP as well as dopamine act in a neuroprotective way in the olfactory system. 

ATP is thought to be released following noxious stimuli in the OE and reduces odor 

responsiveness. Vice versa, purinergic receptor antagonists have been shown to 

increase odor-evoked [Ca2+]i transients (Hegg et al., 2003). Dopamine was also 

postulated to act in a neuroprotective manner in the OE (Hegg and Lucero, 2004; 

Féron, 1999). Stimulation of dopamine receptors on ORNs modulates hyperpo-

larization activated currents (Vargas and Lucero, 2002) and voltage-gated Ca2+ 

channels (Hegg and Lucero, 2004). 

Besides the mechanisms described so far, the gonadotropin releasing 

hormone modulates odor sensitivity in a season-dependent manner (Eisthen et al., 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Hegg%20CC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lucero%20MT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Hegg%20CC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lucero%20MT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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2000). In addition, the neuroregenerative substances insulin like growth factor 

(Suzuki and Takeda, 2002; Mathonnet et al., 2001) and neuropeptide Y (Montani et 

al., 2006) act in the OE. 

 

1.2.2 Physiological role of the endocannabinoid system 
 

Appetite stimulation is probably the best-known effect of cannabis use. The 

ability of the endocannabinoid system to control appetite, food intake and energy 

balance has recently been described (Matias and Di Marzo, 2007; Osei-Hyiaman et 

al., 2006; Horvath, 2006). Additionally, selective inverse agonists of CB1 receptors 

reduce weight and can be used for the treatment of obesity (Kirkham and Tucci, 

2006; Engeli, 2008). At the central nervous system level it has been well described 

that the endocannabinoid system plays a dual role in the regulation of food intake as 

well as in the homeostatic and non-homeostatic (or hedonic) energy regulation 

(Matias et al., 2008). Furthermore, it was shown that metabolic functions are 

controlled by endocannabinoids by acting on peripheral tissues, such as adipocytes, 

hepatocytes, and the gastrointestinal tract (Pagotto et al., 2006). 

Another effect of cannabis consumption is an increased risk of developing a 

psychosis (Semple et al., 2005). This indicates that a disregulated endocannabinoid 

system may promote the development of e.g. depression, anxiety or schizophrenia. 

In fact, the CB1 receptor level in the prefrontal cortex of depressed suicide victims is 

elevated (Hungund et al., 2004), cannabinoid agonists have an anxiolytic action 

(Viveros et al., 2005), and schizophrenic patients have an increased CB1 receptor 

density in various brain regions as well as an increased endocannabinoid level in the 

cerebrospinal fluid (Zavitsanou et al., 2004; Giuffrida et al., 2004). 

Furthermore, endocannabinoids also influence the perception of pain 

(Richardson et al., 1998), addiction (Scherma et al., 2008), stress (Gorzalka et al., 

2008), neuroprotection (Galve-Roperh et al., 2008), and a variety of other functions. 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kirkham%20TC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Tucci%20SA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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1.2.3 Biochemical aspects of the endocannabinoid system 
 

Cannabinoid receptors 

There are two major receptors which belong to the endocannabinoid system: CB1 

and CB2 receptors (Matsuda et al., 1990; Munro et al., 1993). In addition to that, the 

orphan G protein-coupled receptor GPR55 was recently described to be targeted by 

a number of cannabinoids (Lauckner et al., 2008). The most abundant CB receptor in 

the central nervous system is CB1. This suggests that this receptor is responsible for 

the psychoactive effect of cannabinoids and the physiological actions of 

endocannabinoids (Elphick and Egertová, 2001). 

The CB1 receptor belongs to the family of G protein-coupled receptors 

(Matsuda et al., 1990) and its distribution was first mapped by using the radiolabeled 

synthetic cannabinoid [3H]CP55,940. Using current techniques CB1 receptors could 

be localized in high quantity in the olfactory bulb and the hippocampus, in several 

parts of the striatum and its target nuclei, and the cerebellar molecular layer. 

Moderate CB1 receptor levels were identified (Figure 3) in other forebrain regions 

and in a few nuclei in the brain stem and the spinal cord (Herkenham et al., 1990; 

Herkenham et al., 1991). The CB1 receptor was also found in peripheral tissues like 

adipose tissue, liver, skeletal muscle, gastrointestinal tract, pancreas, thyroid gland, 

and adrenal gland (Pagotto et al., 2006; Demuth and Mollemann, 2006; Juan-Picó et 

al., 2006). 

 

Endocannabinoids and their metabolism 

The first endocannabinoid which was identified is N-arachidonoyl ethanolamide (or 

anandamide; Devane et al., 1992). It is a partial agonist for both CB receptors 

(Sugiura et al., 2002). In contrast, 2-arachidonoylglycerol (2-AG), which is found in 

much higher concentrations than anandamide in the brain (Sugiura et al., 2006), acts 

as a full agonist at the CB1 and CB2 receptors (Sugiura et al., 2002). Both 

endocannabinoids are produced on demand. This can be triggered by activation of 

Gq/11 protein-coupled receptors, by rising [Ca2+]i to the millimolar range, or by 

activation of Gq/11 protein-coupled receptors together with a moderate [Ca2+]i increase 

(Hashimotodani et al., 2007; Kano et al., 2009). The synthesis pathways (Figure 4) 

for anandamide and 2-AG are mediated by N-acylphosphatidylethanolamide-

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Elphick%20MR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Egertov%C3%A1%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�


1 Introduction 

12 
 

 
 
Figure 3: Distribution of CB1 receptors in the central nervous system. The overall 

distribution of CB1 receptors in (A) sagittal and (B, C) frontal brain sections of mice was 

visualized by an immunolabeling with an antibody against the mouse CB1 receptor 

(Fukudome et al., 2004). CB1 immunoreactivity is highest along striatal output pathways, 

including the substantia nigra pars reticulata (SNR), globus pallidus (GP), and 

entopeduncular nucleus (EP). High levels are also observed in the hippocampus (Hi), 

dentate gyrus (DG), and cerebral cortex, such as the primary somatosensory cortex (S1), 

primary motor cortex (M1), primary visual cortex (V1), cingulate cortex (Cg), entorhinal 

cortex (Ent), basolateral amygdaloid nucleus (BLA), anterior olfactory nucleus (AON), 

caudate putamen (CPu), ventromedial hypothalamus (VMH), and cerebellar cortex (Cb). 

Scale bars 1 mm. Figure and figure subtitle modified from Kano et al., 2009. 
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anandamide   2-AG 
 
Figure 4: Anabolic and catabolic pathways of anandamide and 2-AG. Both ananda-

mide and 2-AG are arachidonic acid derivates. Anandamide is synthesized by N-acyl-

transferase (NAT) and NAPE-PLD and degraded by FAAH, 2-AG is produced by phos-

phorlipase C (PLC) and DAGL and degraded by MAGL. The endocannabinoid membrane 

transporter (EMT) facilitates endocannabinoid release and uptake. The chemical struc-

tures of anandamide and 2-AG are indicated under the scheme. Figure from Di Marzo et 

al., 2004, see there for further information. 
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hydrolyzing phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL), respect-

tively. Both endocannabinoids act extracellularly at CB receptors. For degradation, 

they are transported into cells, where they are primarily catabolized by the enzymes 

fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively 

(Basavarajappa, 2007; Kano et al., 2009). 

 

Endocannabinoid signaling 

Eight years ago, endocannabinoids have been found to act as retrograde messen-

gers. They are released by postsynaptic neurons and modulate the release of 

inhibitory and excitatory neurotransmitters upon binding to CB1 receptors localized 

on presynaptic membranes. Besides this well established mechanism of depola-

rization-induced suppression of inhibition or excitation, endocannabinoids mediate 

synaptic plasticity and excitability (Kano et al., 2009; Howlett et al., 2004). 

The CB1 receptor signaling is very diverse and seems to depend on the 

identity of the stimulating agonist as well as on the target tissue and the cell type 

(Howlett et al., 2002; Di Marzo et al., 2004; Demuth and Mollemann; 2006). In the 

following I will give an overview about the most abundant and best described 

signaling pathways (Figure 5). 

Upon CB1 receptor stimulation, signal transduction pathways involving Gi/0 or 

GS proteins can be activated (Howlett et al., 2005). Rhee et al. (1998) demonstrated 

that adenylate cyclase isoforms 1, 3, 5, and 8 were inhibited by CB1 receptor 

activation, and that the subtypes 2, 4, and 7 produced cAMP upon receptor 

stimulation. The G proteins coupled to CB1 receptors mediate a multitude of effects. 

One important aspect is the modulation of ion channels. Thus, activation of the 

CB1 receptor may result in the activation of Kir and A-type K+ channels (McAllister et 

al., 1999; Childers and Deadwyler, 1996), and in the inhibition of voltage-gated L- 

(Gebremedhin et al., 1999; Straiker et al., 1999), N- (Mackie and Hille, 1992; Huang 

et al., 2001) and P/Q-type Ca2+ channels (Mackie et al., 1995; Hampson et al., 1998). 

Furthermore, several intracellular kinases, like the protein kinase A and the mitogen-

activated protein (MAP) kinase (Bouaboula et al., 1995; Galve-Roperh et al., 2002), 

are of particular importance for CB1 signaling, because these proteins alter gene 

expression, which then affects multiple cellular functions. 
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What makes signaling of CB1 receptors even more complex is that these 

receptors form homo- and heterodimers (Mackie, 2005) and that they cross-talk with 

various other signaling systems, e.g. D2 receptors (Marcellino et al., 2008), opiate 

receptors (Robledo et al., 2008), and type1 orexin receptors (Hilairet et al., 2003). 

 

 

 

 
 
Figure 5: CB1 receptor signaling. The activation of CB1 receptors leads to the 

stimulation of G proteins that in turn modulate various ion channels. In addition, several 

intracellular kinases are stimulated, which then modulate gene expression. Note that the 

figure shows only some of the known intracellular signaling events. Figure from Di Marzo 

et al., 2004. Abbreviations: AC: adenylate cyclase, PKA: protein kinase A. 
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1.3 Goal of the thesis 
 

Olfactory disorders are associated with a variety of diseases that can hardly be 

medicated. In order to establish new drug therapies, it is substantially important to 

understand the underlying principles of olfaction. This thesis is subdivided into two 

parts, covering topics of basic research of olfaction:  

 

1. At least two subsets of olfactory receptor neurons exist in the olfactory 

epithelium regarding odorant transduction mechanisms. One subset trans-

duces odors using the cAMP-dependent transduction cascade, whereas the 

other subset uses a cAMP-independent transduction mechanism. In order to 

gain knowledge about, e.g., odor coding mechanisms, it would obviously be 

important, to be able to interfere with one of these subsets at the level of the 

generator current. This would make it possible to experimentally dissect the 

transduction of odors. Recently, the styryl dye FM1-43 was shown to stain 

olfactory receptor neurons, and to inhibit several cation channels of sensory 

cells. Therefore, I speculated that FM1-43 might be a promising candidate for 

blocking olfactory generator channels and examined this hypothesis. In this 

thesis, it will be shown that only a subset of the olfactory receptor neurons can 

be labeled with FM1-43. The identity of this subset will be characterized in 

detail. Furthermore, the effect of FM1-43 on the generator channel of this 

subset and on odor-induced responses will be examined. 

 

2. The search for food as well as the subsequent food intake is known to be 

guided by the sense of smell, and it has been suggested that the feeding state 

modulates the olfactory sensitivity. However, the underlying mechanisms 

responsible for the functional interaction between olfaction and food intake are 

as yet poorly understood. It is well-documented that the endocannabinoid 

system is important for energy homeostasis and nutrition at central stages. 

The endocannabinoid system may therefore functionally link the feeding state 

and the olfactory sensitivity of an animal. Indeed, it was recently shown that 

cannabinoids act on olfactory receptor neurons. In this work, I will detect the 

endocannabinoid that acts in the olfactory epithelium and the cell types that 
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produce this substance. Moreover, the trigger for endocannabinoid release in 

the olfactory epithelium, the effect on odorant detection thresholds as well as 

the effector of the cannabinoid receptor will be investigated. Finally, the 

existence of receptors for other modulatory substances besides endocan-

nabinoids in the olfactory epithelium will be examined. 
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2 Materials and Methods 

2.1 Xenopus laevis tadpoles as the experimental model 
 

Xenopus laevis, the South African clawed frog, belongs to the order “Anura” of the 

amphibians. The natural occurrence of this species is limited to Africa south of the 

Sahara. Because of its tremendous use as an animal model for many scientific 

purposes Xenopus laevis now occupies areas all over the world. This frog lives in the 

mud at the bottom of warm and stagnant water and ponds. It is predominantly 

crepuscular and nocturnal. The adult Xenopus laevis is counted among the 

scavengers, whereas the larvae feed mainly on algae. To locate food this species 

relies mostly on its sense of smell (Avila and Frye, 1978; Nieuwkoop and Faber, 

1994). 

The olfactory placode of larval animals becomes distinct at stage 23 as a 

thickening of the sensorial layer of the ectoderm (Klein and Graziadei, 1983). The 

olfactory organ begins to segregate into the principal cavity and the vomeronasal 

organ at stage 37/38 (Nieuwkoop and Faber, 1994). Synapses of ORN axons in the 

olfactory bulb also appear at this stage (Byrd and Burd, 1991). Mature ORNs could 

be specifically stained and olfactory receptor mRNA could be detected at stage 45 

(Hansen et al., 1998). A third sensory chamber, the middle cavity, forms and 

expands during metamorphosis. At the same time, the principal cavity is remodeled 

into the principal cavity of the adult animal (Hansen et al., 1998; Nieuwkoop and 

Faber, 1994). 

Since Xenopus laevis is totally aquatic as larva, the principal cavity of the 

tadpole is exposed to water-borne odorants, and after metamorphosis to airborne 

odorants. The middle cavity and the vomeronasal organ are always exposed to 

waterborne odorants (Freitag et al., 1998). The vomeronasal organ detects 

pheromones (Halpern, 1987). The OE of Xenopus laevis consists of three cell types 

(Figure 6): ORNs (red), sustentacular cells (green, blue nuclei), and basal cells (blue 

nuclei shown at the basal side of the OE). Larval animals have ORNs bearing either 

cilia or microvilli, and sustentacular cells which are either ciliated or secretory. After 

http://dict.leo.org/ende?lp=ende&p=thMx..&search=crepuscular�
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metamorphosis, the principal cavity comprises only ciliated ORNs and secretory 

sustentacular cells (Hansen et al. 1998). 

In this thesis, Xenopus laevis tadpoles were used as the experimental model, 

because this aquatic animal is an excellent tool to study the olfactory system. First of 

all, it is easy to house adult frogs in the laboratory and every six to eight weeks 

spawning can be induced (Elinson, 2001). Xenopus laevis is a poikilothermal animal, 

and all experiments can be performed at room temperature. Slice preparations of the 

olfactory system of the tadpole are easy to produce, because the animals are 

essentially transparent with only a few melanocytes, and they have no cribriform 

plate between the OE and the olfactory bulb. 

 
 
Figure 6: Immunohistochemical staining of the OE of Xenopus laevis larvae. 
Olfactory receptor neurons in a slice of the OE were stained with a biocytin-streptavidin 

backtrace (red). In green a cytokeratin-like-immunoreactivity of the sustentacular cells is 

shown. Sustentacular cells form a tightly packed layer on the apical side of the OE and 

their processes extend across the OE that terminate in endfeet-like structures at the basal 

level of the OE. All cell nuclei are stained with DAPI (blue). Scale bar: 15 µM. Figure 

kindly provided by T. Hassenklöver. 
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Adult frogs were purchased from Kaehler (Hamburg, Germany) and Nasco 

(USA) and held in aquaria with a water temperature of 20 °C. They were fed with 

Pondstick food (Tetra Pond, Melle, Germany). For inducing breeding, frogs were 

separated by gender and repeatedly injected with human chorionic gonadotropin 

(Sigma, Deisenhofen, Germany) subcutaneously. Then, breeding pairs were housed 

together overnight, and on the following day the embryos were obtained and kept in 

separate aquaria (water temperature 20 °C). The tadpoles were fed with algae (Dose 

Aquaristik, Bonn, Germany). For all experiments in this thesis, tadpoles of 

developmental stages 51 to 54 (Figure 7; Nieuwkoop and Faber, 1994) were used. 

 

 

  

        
 

Figure 7: Xenopus laevis tadpole. (A) Larval Xenopus laevis are shown. (B) The 

olfactory system is marked by a black rectangle. The olfactory mucosa is located most 

anterior of the head. The ORN axons of the olfactory nerves terminate in the glomeruli in 

the olfactory bulb, the anterior part of the brain. All tadpoles are from stage 54. Figures 

kindly provided by T. Hassenklöver and I. Manzini. 
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2.2 In vivo labeling of ORNs with FM1-43 
 

To stain ORNs with FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)-

styryl)pyridinium dibromide, Figure 8), living tadpoles were transferred into distilled 

water for 5 min and then incubated for 7 min (standard staining) or 1 min and 15 s 

(light staining) in 10 ml 2 µM FM1-43 (Molecular Probes, Leiden, the Netherlands) 

dissolved in distilled water. Afterwards the tadpoles swam again briefly in distilled 

water. In some experiments, where the impact of certain substances on the staining 

efficiency was investigated, 2 mM CaCl2, 1 mM MgCl2, 200 µM LY-83,583 or 1 mM 

amiloride was added to the solution that contained FM1-43. In these cases the 

exposure time in the respective incubation solution was 7 min. 

Subsequently the animals were anaesthetized for OE slice preparation and 

viewed by using a laser-scanning confocal microscope attached to an inverted 

microscope (LSM 510) with 10x or 40x objectives. The confocal pinhole was set to 

120-150 µm to exclude fluorescence detection from more than one cell layer. 

Fluorescence images (excitation at 488 nm; emission > 505 nm) of the OE were 

acquired together with a pseudo bright-field image for orientation in the tissue. 

FM1-43 stained tadpoles were also used for OE slice preparation with subse-

quent double labeling for [Ca2+]i imaging experiments. 

 

 

2.3 Tissue preparations 

2.3.1 OE slice preparation 
 

Slices were prepared of animals, which were prestained with FM1-43 or non-stained. 

For this purpose, the tadpoles of Xenopus laevis were chilled in a mixture of ice and 

water and decapitated, as approved by the University of Göttingen Committee for 

Ethics in Animal Experimentation. A block of tissue containing the OE, the olfactory 

nerves, and the brain was cut out and kept in bath solution (Table 2). The tissue was 

then glued onto the stage of a vibratome (VT 1200S; Leica, Bensheim, Germany) 

and cut horizontally into 130 to 150 µm thick slices. 
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For imaging soma [Ca2+]i, tissue slices were incubated with 200 µl of bath 

solution containing 50 µM fluo-4 AM (Molecular Probes, Leiden, The Netherlands) 

and 50 µM MK571 (Alexis Biochemicals, Grünberg, Germany). Fluo-4 AM was 

dissolved in DMSO (Sigma, Deisenhofen, Germany) and Pluronic F-127 (Molecular 

Probes). The final concentrations of DMSO and Pluronic F-127 did not exceed 0.5 % 

and 0.1 %, respectively. To avoid multidrug resistance transporter mediated destain-

ing of the slices, MK571, a specific inhibitor of the multidrug resistance-associated 

proteins, was added to the incubation solution (Manzini et al., 2003b). After 

incubation at room temperature for 30 min, the tissue slices were put under a grid in 

a recording chamber and placed on the microscope stage of an Axiovert 100M 

(Zeiss, Jena, Germany) to which a laser scanning unit (LSM 510; Zeiss) was 

attached. Before starting the Ca2+ imaging experiments, the slices were rinsed with 

bath solution for at least 5 min. 

2.3.2 Olfactory bulb whole mount preparation 
 

For imaging [Ca2+]i of glomeruli, ORNs were traced via fluo-4 dextran 10 kDa by 

electroporation in the OE. For this purpose, larval Xenopus laevis were anesthetized 

in 0.02 % MS-222 (Sigma). Crystals of fluo-4 dextran, potassium salt, 10 kDa 

 
 

Figure 8: Chemical structure of FM1-43. 
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(Invitrogen) were inserted into the nasal cavities, where it dissolved in the residual 

water. Subsequently, two platinum electrodes of 250 µm diameter and 3 mm 

interspace interval were placed into the nasal cavities and the dye was electro-

porated by application of 30 V twelve times with alternating polarity. The animals 

were kept in a water tank for one to three days until experiments were performed. 

Tadpoles were chilled in a mixture of ice and water and decapitated, as 

approved by the University of Göttingen Committee for Ethics in Animal Experi-

mentation. A block of tissue containing the OE, the olfactory nerves, and the brain 

was cut out and kept in bath solution (Table 2). The tissue surrounding the ventral 

part of the olfactory bulb was removed and the whole-mount preparation was put 

under a grid in a recording chamber and placed on the microscope stage of an 

Axiovert 100M (Zeiss, Jena, Germany) to which a laser scanning unit (LSM 510; 

Zeiss) was attached. The tissue was rinsed with bath solution for at least 5 min 

before the experiment was started. 

 

 

2.4 Conventional and advanced [Ca2+]i imaging and patch clamp 
recordings 

2.4.1 [Ca2+]i imaging of odor-induced responses of ORNs and glomeruli with 
confocal microscopy 

 

For [Ca2+]i imaging of odor-induced responses of ORNs, fluo-4 stained tissue slices 

were produced. Glomeruli were imaged using whole mount preparations prestained 

with fluo-4 dextran. 

[Ca2+]i was monitored using a laser-scanning confocal microscope (LSM 510, 

Zeiss). The confocal pinhole was set to approximately 120 µm / 300 µm to exclude 

fluorescence detection from more than one cell layer / glomerulus. Fluorescence 

images (excitation at 488 nm; emission > 505 nm for fluo-4 stained OE slices and 

glomeruli; emission from 505 to 530 nm and > 560 nm for fluo-4 and FM1-43 

doublestained OE slices, respectively) of the OE were acquired in the range of 1.02 

to 2.03 Hz, with three to ten images taken as control images before the onset of odor 
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delivery. The fluorescence changes ∆F/F of fluo-4 were calculated for individual 

ORNs / glomeruli as ∆F/F = (F1 – F2) / F2, where F1 was the fluorescence averaged 

over the pixels of an ORN soma / glomerulus, while F2 was the average fluorescence 

of the same pixels prior to stimulus application, averaged over five images. A 

response was assumed if the following two criteria were met: (i) the first two intensity 

values after stimulus arrival at the mucosa, ∆F/F(t1) and ∆F/F(t2), had to be larger 

than the maximum of the prestimulus intensities; (ii) ∆F/F(t2) > ∆F/F(t1) with t2 > t1. 

Data analysis was performed with Matlab (Mathworks, USA). 

2.4.2 Uncaging of cAMP in ORNs viewed with confocal microscopy 
 

In order to observe the effect of cAMP uncaging on [Ca2+]i in FM1-43-loaded ORNs, 

tadpoles were stained with the dye as described and OE slices were prepared. 

Afterwards the tissue was incubated in 200 µl of Ca2+ indicator rhod-2 AM solution 

(50 µM rhod-2 AM (Molecular Probes, Leiden, The Netherlands) dissolved in DMSO 

(0.5 %) and Pluronic F-127 (0.1 %) and 50 µM MK571) at room temperature for 

30 min. The tissue slices were placed under a grid in a recording chamber and 

positioned on the microscope stage of an Axiovert 100M to which a laser scanning 

unit was attached. A glass fiber (HCG-M0200T 200 µm, Laser Components) coupled 

to a 378 nm diode laser (iPulse, Toptica Photonics) was positioned next to the OE. 

The slices were incubated with 100 µM DMNB-caged cAMP (Invitrogen, stock 

solution: 20mM in DMSO) for 15 min. Stimulation of ORNs was performed by a 

10 ms laser pulse (378 nm, 16 mW). 

After FM1-43-loaded ORNs were identified, rhod-2 fluorescence was moni-

tored using a pinhole diameter of approximately 120 µm. Images (excitation at 

543 nm; emission > 560 nm) of the OE were acquired in the range of 1.02 to 2.03 Hz, 

with three to ten images taken as control images before the onset of odor delivery. 

The fluorescence changes ∆F/F were calculated for individual ORNs. Data analysis 

was performed with Matlab. 
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2.4.3 [Ca2+]i dendrite imaging in tissue slices with a fast scanning line 
illumination microscope 

 

For fast imaging of dendrite [Ca2+]i, slices were placed under a grid in a recording 

chamber and viewed by a 63x water immersion objective mounted to a custom-built 

line illumination microscope described by Junek et al. (2009). Patch pipettes were 

filled with 4 µl fluo-4 containing pipette solution (Table 3). After establishing the 

whole-cell mode fluo-4 diffused into the cell. Subsequently, stacks of images of the 

stained ORN were obtained every 30 s. Each image stack comprised 20 images and 

was acquired within 328 ms. 

2.4.4 Patch-clamp recordings of the CNG current 
 

For patch-clamping the slices were placed under a grid in a recording chamber and 

viewed by using Nomarski optics (Axioskop 2; Zeiss, Göttingen, Germany). Patch 

pipettes with a tip resistance of 6-10 MΩ were pulled from borosilicate glass with a 

1.8 mm outer diameter (Hilgenberg, Malsfeld, Germany) by a two-stage pipette puller 

(PC-10, Narishige, Japan) and filled with 4 µl cAMP and cGMP containing pipette 

solution (Table 3). Pulse protocols for data acquisition were written in C. Voltage 

pulses were delivered from a microcontroller (Schild et al., 1996) to a D/A converter 

and then to the patch-clamp amplifier (EPC7; List, Darmstadt, Germany) in order to 

assess the impedance in the on-cell and whole-cell configurations. The data were 

digitized online. 

After establishing the on-cell configuration in bath solution the holding potential 

was set to 0 mV. The responsiveness of the patch-clamped cell was tested by 

stimulating the ORN with 50 µM forskolin dissolved in bath solution. Subsequently, 

the holding potential was set to -70 mV and the external solution was replaced by 

Ca2+ and Mg2+ free bath solution (Table 2) with or without 10 µM FM1-43. Directly 

after establishing the whole-cell configuration by shortly applying negative pressure 

to the patch pipette an inward current was induced. Evaluation of the current traces 

was performed in Matlab. 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12456827#b26�
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2.4.5 Bathing conditions and stimulus application 
 

For all experiments the recording chamber was perfused by gravity feed from a 

syringe through a funnel applicator (Schild, 1985; Manzini et al., 2002) with various 

bath solutions (Table 2). The tip of the applicator was placed in front of the OE. The 

change of the external solution was performed by stopping the influx of one bath 

solution and starting the influx of another bath solution into the funnel applicator. 

A mixture of amino acids (Manzini et al., 2002; Caprio and Byrd, 1984; Iida and 

Kashiwayanagi, 1999), amines (Carr and Derby, 1986; Carr et al., 1990; Rolen et al., 

2003; Gliem et al., 2009), bile acids (Kang and Caprio, 1995; Sato and Suzuki, 2001) 

and alcohols (Altner et al., 1977; Tinsley and Kobel, 1996) are known to be odorants 

for aquatic species and were used as odors. A mixture of 19 amino acids or single 

amino acids (arginine, lysine and methionine), as well as mixes of amines, bile acids, 

and alcohols were used as odors. The odors were dissolved in bath solution (stocks 

of 10 mM or 25 mM, see Table 4) and used at a final concentration of 0.2 µM to 

100 µM in all of the experiments. Stimulus solutions were prepared immediately 

before use and were pipetted directly into the funnel for bath perfusion without 

stopping the flow. Outflow was through a syringe needle placed close to the OE. The 

time course of stimulus arrival at the OE was simulated by applying the fluorescent 

dye avidin AlexaFluor-488 as a dummy stimulus and by measuring the fluorescence 

after avidin AlexaFluor-488 application to the funnel. The delay of stimulus arrival 

caused by the syringe, i.e., from pipetting into the funnel to concentration increase in 

the OE, was approximately 2 s. The minimum interstimulus interval between odorant 

applications was 2 min. 

 

 

2.5 Molecular biology experiments 

2.5.1 Single-cell reverse transcription (RT) PCR 
 

Tissue slices were visualized using a 40x water immersion objective mounted to an 

Axioscop 2 microscope. Patch pipettes were filled with 4 µl pipette solution (Table 3). 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Caprio%20J%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Byrd%20RP%20Jr%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Iida%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kashiwayanagi%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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Cells were identified as ORNs and sustentacular cells based on their morphology. 

After the formation of a gigaseal, negative pressure was applied to the pipette and 

the whole cell configuration was established (Hamill et al., 1981). Olfactory receptor 

neurons showed spontaneous spiking activity in the on-cell mode and typical voltage-

gated Na+ and K+ currents in the whole cell configuration. Sustentacular cells 

typically show no electric activity. Cell cytoplasm was harvested under visual and 

resistance control by applying gentle suction to the patch pipette. 

Cells fulfilling these physiological criteria and whose seals remained intact 

during harvesting were used for reverse transcription with a modified protocol of the 

SuperScriptTM III First-Strand Synthesis System for RT PCR (Invitrogen). The content 

of the pipette was immediately expelled into a tube containing 5 ng random hexa-

mers, 40 U RNasin Plus RNase Inhibitor (Promega), 1 mM dNTP mix, and DEPC 

water. The mixture was heated to 65 °C for 5 min and cooled on ice for at least 1 

min. Next, reverse transcription was performed by adding 1x RT buffer, 5 mM MgCl2, 

10 mM DTT, 2 U RNaseOUT, and 10 U SuperScript III RT and incubating in a 

thermocycler (T-Personal, Biometra) at 25 °C (10 min), 50 °C (50 min), 85 °C (5 min), 

and chilled on ice. RNA was degraded by adding 1 µl RNase H and incubating for 

20 min at 37 °C. Negative control reactions without SuperScript III RT were also 

performed. 

The cDNA produced in one single cell RT was split in four tubes and served as 

the template for PCR. The reactions were performed according to the manual of the 

FastStart Taq DNA Polymerase (Roche). In brief, the reaction mix contained 200 nM 

specific forward and reverse primers for OMP1 (Rössler et al., 1998), CYTII, DAGLα, 

or DAGLβ (primer sequences in Table 1), 200 µM dNTPs, 1x PCR buffer, and 2 U 

FastStartTaq DNA Polymerase. The reaction was activated at 95 °C for 5 min and 

underwent 40 cycles of a temperature protocol of 30 s at 95 °C, 30 s at 58 °C, and 

45 °C at 72 °C. After a final extension of 7 min at 72 °C the PCR products were run 

on a 2 % (w/v) agarose gel in tris acetate EDTA (TAE) buffer containing ethidium 

bromide (Sigma) and visualized under UV-light (UVsolo, Biometra). 
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2.5.2 Real-time PCR 
 

Tadpoles were exposed to four different nutritious states (n = 7): In one condition 

animals were food-deprived for 6 h (group A6h) or 12 h (group A12h) in another 

animals were food-deprived for 6 h and overfeed for 2 h with 1 g shredded algae 

(Dohse Aquaristic, Millipore; group B6h) per 1 l water or 12 h food-deprived for 12 h 

and overfeed for 2 h (group B12h). As control condition animals were overfeed for 2 h 

(group C). 

 

RNA isolation and cDNA synthesis 

Olfactory epithelia of four animals per condition were cut out of the tissue and stored 

in liquid nitrogen until RNA isolation. Total RNA was isolated with the TRIzol method 

(Invitrogen) according to the manufacturer’s protocol and DNA-contaminations were 

removed by subsequent DNase I treatment (DNase I recombinant, RNase-free, 

Roche). The RNA quality and quantity was analyzed with the microfluidics-based 

electrophoresis system Agilent 2100 Bioanalyzer (Agilent Technologies). Reverse 

transcription was performed from 1 µg RNA with the iScript cDNA Synthesis Kit from 

BioRad as described in the manual. 

 

cDNA Quantification 

Quantification of DAGLα and β RNA was performed using the iQ SYBR Green 

Supermix (BioRad) on an iQ5 real-time PCR detection system (BioRad) according to 

the manufacturer’s instructions. The ATPase F0F1 (primer sequences see Table 1) 

was used as an internal control. The general PCR conditions were as follows: 

polymerase activation at 98 °C for 30 s followed by 40 cycles of denaturation at 94 °C 

for 1 s, annealing at 58 °C for 15 s, and extension at 72 °C for 1 s. After the 

amplification a melt curve analysis verified the formation of the single desired PCR 

products. The relative gene expression ratios (Kubista et al., 2006) were determined 

and normalized for control conditions. Confidence intervals were calculated by 

determining the standard deviation of the logarithmized ratios followed by exposing 

the left and right borders. 
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2.5.3 Conventional PCR 
 

For the analysis of gene expression of Xenopus laevis, Rattus norvegicus and Homo 

sapiens mRNA was analyzed. The OEs of three rats were excised. For Xenopus 

laevis tadpoles, ten OEs were pooled for all three samples. mRNA isolation and 

reverse transcription were accomplished as described. Human cDNA was kindly 

provided by Thomas Hummel. For PCR, 200 ng of cDNA were mixed with PCR 

buffer, 200 µM nucleotide mix, 200 nM forward and reverse primers (Table 1), and 

2 U FastStartTaq DNA Polymerase dissolved in PCR grade water as described in the 

manual (FastStart Taq DNA Polymerase, dNTPack, Roche, Mannheim, Germany). 

The samples were incubated in a thermocycler with the following PCR conditions: 

polymerase activation at 95 °C for 5 min followed by 30 cycles of denaturation at 

95 °C for 30 s, annealing at 56 °C for 30 s, and extension at 72 °C for 45 s. After a 

final elongation at 72 °C for 7 min PCR products were run on a 2 % agarose gel in 

TAE buffer and ethidium bromide and visualized under UV light. 
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 forward primer reverse primer 
product 

length [bp] 

Xenopus laevis 

OMP1 CTTTCTTAGATGGCGCTGACC GTGGTTATTTCTCTACACTTGG 404 

CYTII CATTGATAAGGTCAGGTTCCTG CACGGAGTTCAGCTTCATAC 389 

F0F1 GTCAGCGTGAGCTCATCATC GCATCAGAGGCTGTAGCAGA 161 

CB1 TCCTACCACTTCATTGGCAGCTT TCCATGCGAGTCTGGTCC 560 

DAGLα GTCATGGTGAGTCCGACAGAG TTTGAGAATTGGCGACAGAAG 210 

DAGLβ ATGACCTGGTGTTTCCTGGAG ACACAATGGCAGAGACCACAC 186 

NAPE-PLD TAGCAATGTTCCCAGCTCAAA TGAAGCTTATTGGGGAAGCAT 209 

FAAH ATGGAGTGCCGATTACCCTAA TGTCCAAAGATGGAATTGCTG 205 

MAGL AACACTGCTGCCGATATGATG GGTCCGGGTATTGTTTCTTCA 183 

D2A GCCGCTGCTTTACAAGATTC ACCGGTAGATCCACAACTGC 378 

D2B CCAGTGCAACAATGTCAACC AAGCCAAGTGAAGGCACTGT 319 

AdR1 GGCATTTCCAACCTTCAAGA AAGGGGGCTAGTGGATCAGT 159 

AdR2 AGATTGGGTGGCTGGTACTG GAATTCCTGGAGGTTGGACA 188 

leptinR CACATGCCTCCTGCACTTAT TGCTGCTGTCTGAACTCACC 249 

Rattus norvegicus 

CB1 TCTGATCCTGGTGGTGTTGA TGTCTCAGGTCCTTGCTCCT 180 

DAGLα TACCTGGGCATCCTTCTGAG GACCATCCCGAGAGTGACAT 234 

DAGLβ CCACGTTAGCTTTCACGACA ACGCAGTCCTGTAGCTCGAT 174 

NAPE-PLD ACCCTCCTGGATGACAACAA TCTGGGTCAGCATGTTGGTA 203 

FAAH GTGGAAACTGCAGCATGAGA CTGAGCCAGACTCCAAGGAC 204 

MAGL GACCTTCCTCACCTGGTCAA TGGAAGTCCGATACCACCAT 230 

CB2 ATCTTTGCCTGCAACTTCGT GTAGGAGATCAACGCCGAGA 243 

GPR55 CTCCCTCCCATTCAAGATGA ATGCTTCCAACCCATACCAG 240 

D2 TCCCAGCAGAAGGAGAAGAA CGGAACTCGATGTTGAAGGT 212 

AdR1 ACGGCTCATCTACCTCTCCA GACAAAGCCCTCAGCGATAG 175 

AdR2 CTCATGATGTGCTGCCAGAT GAAGAACAACCCGAAGACCA 245 
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orexinR1 GAGTTCCTCCGCTACCTGTG CATGATTCGGTGATGTCCAC 248 

orexinR2 TTCCCGGAACTTCTTCTGTG GTGTGTGAACATCCCGAACA 242 

leptinR TGCAGTGTACTGCTGCAATG CTGCACAGTGCTTCCCACTA 166 

Homo sapiens 

CB1 AAGACCCTGGTCCTGATCCT CGCAGGTCCTTACTCCTCAG 188 

DAGLα AGAATGTCACCCTCGGAATG GGTTGTAGGTCCGCAGGTTA 197 

DAGLβ TGCCACAGTGGTTTCCATTA CAACCCGAGTATGGTCGTCT 203 

NAPE-PLD AGCTATTCCCATCGGAGCTT TCAGCTTCACTGGAGGCTCT 173 

FAAH AAGGGACCAACTGTGTGACC CATGGACTGTGGAACATTGG 248 

MAGL ATGTGTTGCAGCATGTGGAT AAGAACCAGAGGCGAAATGA 155 

CB2 CGTGGCTGTGCTCTATCTGA CACAGAGGCTGTGAAGGTCA 211 

GPR55 AAGAACCCACAGACCAGGTG CTCTGCCCAAGACACTCTCC 217 

D2 CACCTGAGGGCTCCACTAAA CATGCCCATTCTTCTCTGGT 202 

AdR1 CTTGACCATGCTCAGACCAA GGGACAAAGCTCCCCATAAT 207 

AdR2 TGGGAAGTTTTGTTCCTTGG TTAAGGAACCCCTCCGAGAT 180 

orexinR1 GAGGAAGACAGCCAAGATGC ATGGGCAGGACAGAGCTAGA 245 

orexinR2 ATTTGGGATGTTTGCCCATA ATGGTGAACTCCAAGGCAAC 178 

leptinR CTCCATCCAGTGTGAAAGCA TAGCCTCTTACAGCGCACCT 233 

 
Table 1: Primer sequences. All sequences listed are written from 5’ to 3’. The resulting 

length of the PCR products are indicated in base pairs (bp). All primers were purchased from 

Invitrogen. Abbreviations of gene names: OMP1: olfactory marker protein 1, CB1: 

CB1 receptor, D2A and B: dopamine receptor 2A and B, AdR1 and 2: adiponectin receptor 1 

and 2, leptinR: leptin receptor, CB2: CB2 receptor, GPR55: G protein-coupled receptor 55, 

orexinR1 and 2: orexin receptor 1 and 2. 
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2.6 Solutions 

2.6.1 External solutions 
 

 bs 0 Ca 0 Mg NMDG25 NMDG10 NMDG0 

NaCl 98 mM 98 mM 25 mM 10 mM 0 mM 

NMDG - - 73 mM 88 mM 98 mM 

KCl 2 mM 2 mM 2 mM 2 mM 2 mM 

CaCl2 1 mM - 1 mM 1 mM 1 mM 

MgCl2 2 mM - 2 mM 2 mM 2 mM 

glucose 5 mM 5 mM - - - 

sodium pyruvate 5 mM 5 mM - - - 

HEPES 10 mM 10 mM 10 mM 10 mM 10 mM 

EGTA - 2 mM - - - 

 adjusted to pH 7.8 and 230 mOsmol/liter 

 
Table 2: Composition of external solutions. The composition of all bath solutions used are 

listed in this table. All components were purchased from Sigma. Abbreviations: bs: bath 

solution, 0 Ca 0 Mg: Ca2+ and Mg2+ free bath solution, NMDG25/10/0: bath solution with 

substituted Na+ (25/10/0 mM Na+ and 73/88/98 mM NMDG, a Na+ substitute). 
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2.6.2 Internal solutions 
 

Stock solutions for Na2-ATP (100 mM), Na2-GTP (10 mM), cAMP (100 mM), and 

cGMP (10 mM) were prepared in HEPES solution (pH 7.8), fluo-4 potassium salt was 

dissolved in distilled water (10 mM). 

 

 ps cAMP/cGMP ps fluo-4 ps 

NaCl 2 mM 2 mM 2 mM 

KCl 11 mM 11 mM 11 mM 

MgSO4 2 mM 2 mM 2 mM 

K-gluconate 80 mM 80 mM 80 mM 

HEPES 10 mM 10 mM 10 mM 

EGTA 0.2 mM 0.2 mM 0.2 mM 

Na2-ATP 1 mM 1 mM 1 mM 

Na2-GTP 0.1 mM 0.1 mM 0.1 mM 

cAMP - 1 mM - 

cGMP - 0.1 mM - 

fluo-4 K+ salt - - 0.1 mM 

 adjusted to pH 7.8 and 190 mOsm/liter 

 
Table 3: Composition of internal solutions. The composition of all pipette solutions are 

listed here. All components besides fluo-4 potassium salt (Invitrogen) were purchased from 

Sigma. Abbreviations: ps: pipette solution, cAMP/cGMP ps: cAMP and cGMP containing 

pipette solution, fluo-4 ps: fluo-4 potassium salt containing pipette solution. 
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2.6.3 Odors 
 

odor 
concentration of 

stock solution  
odor 

concentration of 

stock solution 

19 amino acid mix  amine mix 

L-glycine 10 mM  2-phenylethylamine 25 mM 

L-alanine 10 mM  tyramine 25 mM 

L-serine 10 mM  butylamine 25 mM 

L-threonine 10 mM  cyclohexylamine 25 mM 

L-cysteine 10 mM  hexylamine 25 mM 

L-asparagine 10 mM  3-methylbutylamine 25 mM 

L-glutamine 10 mM  N,N-dimethylethylamine 25 mM 

L-valine 10 mM  2-methylbutylamine 25 mM 

L-leucine 10 mM  1-formylpiperidine 25 mM 

L-isoleucine 10 mM  2-methylpiperidine 25 mM 

L-methionine* 10 mM  N-ethylcyclohexylamine 25 mM 

L-proline 10 mM  1-ethylpiperidine 25 mM 

L-arginine* 10 mM  piperidine 25 mM 

L-lysine* 10 mM  alcohol mix 

L-histidine 10 mM  beta-phenylethylalcohol 25 mM 

L-glutamate 10 mM  citral 25 mM 

L-aspartate 10 mM  beta-Ionone 25 mM 

L-tryptophane 10 mM  gamma-phenylpropylalcohol 25 mM 

L-phenylalanine 10 mM  terpineol 25 mM 

bile acid mix    

taurocholic acid 10 mM    

 
Table 4: Odors. All odors were used as the indicated mixes or as the single amino acids 

arginine, lysine, and methionine (marked with *). All chemicals were purchased from Sigma 

and stock solutions were made in bath solution. 
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All odors were used at a final concentration of 100 µM dissolved in bath solution. 

Only the single amino acids arginine, lysine, and methionine were applied in various 

concentrations as indicated in the corresponding results section. 

2.6.4 Drugs 
 

drug company solvent 
concentration of 

stock solution 

concentration of 

working solution 

FM1-43 Invitrogen Methanol 2 mM 2 µM 

LY-83,583 Sigma Methanol 50 mM 200 µM 

amiloride Sigma Distilled water 100 mM 1 mM 

AM281 Tocris DMSO 10 mM 10 µM 

AM251 Tocris DMSO 10 mM 5 µM 

HU210 Tocris DMSO 20 mM 10-20 µM 

RHC Tocris DMSO 50 mM 25-50 µM 

orlistat Tocris DMSO 25 mM 50 µM 

CE Invitrogen DMSO 10 mM 5 µM 

 
Table 5: Drug solutions. The purchased drugs are listed with stock and working solutions. 

Abbreviations: CE: SE(5-(and-6)-carboxyeosin diacetate, succinimidyl ester). 
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3 Results 

3.1 The styryl dye FM1-43 permeates and blocks CNG channels in 
olfactory receptor neurons of larval Xenopus laevis 

3.1.1 FM1-43 stains a subset of ORNs 
 

In a first set of experiments, living Xenopus laevis tadpoles were put into water 

containing the styryl dye FM1-43 (2 µM). Thereafter the animals were sacrificed and 

tissue slices were prepared from the OE. When the slices were viewed with a 

confocal laser scanning microscope, a large number of cells were stained in the 

entirety of their cytosol (Figure 9 A), whereas control slices showed no fluorescence 

(exposed to the same treatment but without FM1-43; Figure 9 B). For a better 

orientation the fluorescence images were overlayed with the corresponding trans-

mission images scanned through wide-field optics. Figure 9 C shows the magnified 

rectangular area of B as a z-projection to illustrate the fine structure of the stained 

cells. Dendrites running to the surface of the OE, where cilia or microvilli issued from 

dendritic knobs, and axons running into the opposite direction to join the olfactory 

nerve unambiguously defined these cells as ORNs. Nuclei remained unstained. No 

staining at all was found in the vomeronasal organ (not shown). 

 

3.1.2 FM1-43-stained ORNs rarely respond to odors 
 

FM1-43 never stained the entire OE. It rather appeared to stain a certain subset of 

ORNs. To characterize the ORNs of this subset it was tried to test their sensitivity to 

amino acids, bile acids, amines, alcohols, and a mixture of all (100 µM for each 

substance). 156 out of 165 stained ORNs did not respond to any of the stimuli, which 

is in contrast to the high responsiveness of Xenopus tadpole ORNs as seen in 

previous studies (Manzini and Schild, 2004; Schild and Manzini, 2004). Only nine 
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ORNs were responsive to the mixture, one of them to alcohols and four to amines. 

Figure 10 A shows an FM1-43-loaded cell (red) in a fluo-4 stained slice (green) and 

Figure 10 B–H gives a typical example showing primarily two things. First, this ORN 

was sensitive to alcohols (Figure 10 D, G) but not to amino acids (Figure 10 C), bile 

acids (Figure 10 E) and amines (Figure 10 F) and second, the response amplitudes 

to both the stimulus mixture (Figure 10 B, H) and to alcohols (Figure 10 D, G) rapidly 

declined over time and then vanished. The facts that FM1-43 stained only a subset of 

ORNs and that most of the stained ORNs did not respond at all, while those few 

which initially did respond rapidly lost their responsiveness, suggested that the 

responsiveness of the stained ORNs was severely compromised by FM1-43. 

 

 
Figure 9: FM1-43 is selectively internalized by a subset of ORNs. (A, B) The image 

shows OEs of tadpoles with and without FM1-43 incubation, respectively. (C) The z-

projection and magnification of (A) illustrates the morphology of FM1-43-labeled ORNs by 

the cytosolic staining. Scale bars: (A, B) 50 µm, (C) 10 µm. 
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Figure 10: Odor-induced [Ca2+]i transients of an FM1-43-stained ORN. (A) The image 

shows a doublestained OE slice with fluo4-AM (green) and a FM1-43-loaded ORN (red; 

image acquired at rest). (B-H) The [Ca2+]i transients of the FM1-43-labeled ORN from (A) 

evoked by odorant mixtures (B, H), amino acids (C), alcohols (D, G), bile acids (E), and 

amines (F; 100 µM for each) are shown in chronological order. Scale bars: 10 s and ∆F/F 

= 10 %. The black lines indicate the application of the odorants. 
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3.1.3 FM1-43 is selectively internalized by CNG channels 
 

As FM1-43 uptake took place in the OE in vivo, it certainly occurred through the 

plasma membrane of the compartments exposed to the principal cavity, i.e., through 

cilia, microvilli, and/or dendritic knobs. Furthermore, as FM1-43 fluorescence was 

cytosolic and as it built up rapidly, FM1-43 permeated into the cytosol presumably via 

ion channels rather than via transport proteins. It was therefore checked whether 

CNG channels were permeable for FM1-43 using the well-known permeability 

properties of divalent ions in CNG channels as well as the effect of two non-specific 

blockers of CNG channels. 

When CaCl2 (2 mM; n = 5) or MgCl2 (1 mM; n = 5) was added to the water 

during in vivo incubation with FM1-43, the fluorescence intensity of ORNs was 

reduced to almost zero (Figure 11 A (CaCl2) and Figure 11 B (MgCl2), control: Figure 

11 C). This would be consistent with an uptake of FM1-43 through CNG channels as 

 
 
Figure 11: Block of FM1-43 labeling by cations. Incubation of the tadpoles in FM1-43 

solution with (A) 2 mM CaCl2 or (B) 1 mM MgCl2 almost completely blocked FM1-43 

uptake. (C) Under control conditions many ORNs were labeled when living tadpoles were 

incubated in 2 µM FM1-43 solution. Scale bars: 200 µm. 
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Ca2+ has been reported to exert a permeation block in these channels (Frings et al., 

1995). 

If FM1-43 permeates through CNG channels its permeation should be affected 

by LY-83,583 or amiloride. When LY-83,583 (200 µM), which blocks CNG channels 

and the soluble guanylyl cyclase (Leinders-Zufall and Zufall, 1995), was added 

during dye incubation, the uptake of FM1-43 was completely blocked (Figure 12 A, 

n = 10; control: Figure 12 C). The presence of amiloride (1 mM), which blocks CNG 

channels, Na+ channels, T-type Ca2+ channels and several transporters (Benos, 

1982; Zhuang et al., 1984; Tang et al., 1988; Frings et al., 1992), during incubation 

also reduced FM1-43 uptake dramatically (Figure 12 B, n = 8). These results suggest 

that CNG channels have a sizable permeability for FM1-43. The ORNs stained by 

FM1-43 may thus correspond to the subset of ORNs endowed with the canonical 

cAMP-transduction cascade. 

The direct test of this hypothesis would be to evoke responses to cAMP in 

FM1-43-stained cells. Of course, this is conflicting with the hypothesis itself because 

FM1-43 would suppress the responses. It was tried to circumvent this problem by 

exposing the animals to FM1-43 for a relatively short time in order to have a 

 
 
Figure 12: Block of FM1-43 labeling by unspecific CNG channel blockers. Incubation 

of the tadpoles in FM1-43 solution with the unspecific CNG channel blockers (A) LY-

83,583 (200 µM) or (B) amiloride (1 mM) blocked FM1-43 uptake compared to control 

conditions (C). Scale bars: 200 µm. 
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correspondingly weak staining and at least some CNG channels functional. In fact, 

under these conditions, the ORN staining with FM1-43 was rather faint, and when the 

cells were stimulated with forskolin they showed weak but clear and reproducible 

responses (Figure 13 A). Similar results were obtained in ten out of 13 cells (five 

slices). The three non-responding cells came all from the same slice. Uncaging of 

caged cAMP in FM1-43-loaded ORNs also resulted in a small, transient fluorescence 

increase of the Ca2+ indicator dye rhod-2 (Figure 13 B; five out of five cells; three 

slices; performed together with E. Kludt). 

Taken together, the block of FM1-43 uptake by divalent ions and by CNG 

channel blockers as well as the responses of faintly stained ORNs to forskolin and 

cAMP is consistent with the hypothesis that FM1-43 enters ORNs through CNG 

channels. 

 

 

 
 
Figure 13: FM1-43-labeled ORNs are sensitive to forskolin and uncaging of cAMP. 
(A) Forskolin-evoked [Ca2+]i transients and (B) [Ca2+]i transients induced by uncaging of 

cAMP in individual FM1-43-stained ORNs are reproducible and have small amplitudes. 

Scale bars: (A) 20 s and ∆F/F = 10 %, (B) 10 s and ∆F/F = 5 %. The black line indicates 

the application of the forskolin and the black dot the time point of uncaging. 
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3.1.4 FM1-43 inhibits CNG currents 
 

Patch-clamped ORNs in untreated OE tissue slices were first identified as cAMP-

dependent or -independent by stimulation with forskolin in the on-cell mode of the 

patch clamp technique. Some ORNs responded to forskolin with a transient firing rate 

increase (Figure 14 A and B, upper traces), while others, presumably due to the lack 

of CNG channels, showed no response to forskolin (Figure 14 C, upper trace). In a 

second step of the experiment the same cells were recorded in the whole-cell mode, 

with cAMP and cGMP added to the pipette solution. The effect of the second 

messengers that diffuse from the pipette into the cell was observed either with 

(Figure 14 A) or without FM1-43 (Figure 14 B) added to the bath solution. Without 

any FM1-43 in the bath an inward current set in immediately after breakthrough 

(Figure 14 A, blue trace). To avoid, as much as possible, the activation of Ca2+-

activated Cl- channels downstream the CNG channels, Ca2+ was omitted from the 

bath in these experiments, so that the recorded current was a current through CNG 

channels carried by Na+ ions. Its average amplitude was 213.8 +/- 21.2 pA (SEM; 

Figure 14 A, blue trace; n = 5). FM1-43 in the bath solution (10 µM) reduced the 

inward current in cAMP-dependent cells upon breakthrough to 54.5 +/- 31.6 pA 

(Figure 14 B, red trace; n = 6). In non-cAMP-dependent ORNs, cAMP and cGMP 

never had any effect on the current (Figure 14 C, blue trace; n = 4). An overview 

about the reduced CNG current amplitudes is given in Figure 14 D. 

 

3.1.5 Extracellular FM1-43 in the OE reduces forskolin-induced responses of 
glomeruli 

 

The previous experiment demonstrated that FM1-43 inhibits CNG channels, but the 

site of inhibition remains unclear. Therefore, the effect of extracellular FM1-43 on 

odor responses was investigated (experiment performed together with E. Kludt). 

Figure 15 A (black trace) shows a forskolin-application elicited [Ca2+]i transient in a 

glomerulus in the medial cluster of a typical bulb whole mount preparation. When 

FM1-43 (10 µM) was added to the bath solution, the amplitudes of the [Ca2+]i 

transients were reduced (red trace). This effect was reversible by washing FM1-43 
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out of the slice (grey trace; 11 glomeruli in 3 animals). Figure 15 B summarizes the 

obtained data. The mean amplitudes of the [Ca2+]i transients during FM1-43 wash-in 

and during wash-out are depicted normalized to those of the control experiment. The 

 
 
Figure 14: CNG currents are inhibited by FM1-43. (A, B, C) Cells were patch-clamped 

in the on-cell mode in bath solution. Forskolin induced an increased spike frequency in 

cAMP-dependent (A and B, black traces), but not in cAMP-independent ORNs (C, black 

trace). Subsequently, the bath solution was substituted with Ca2+- and Mg2+-free bath 

solution (0 Ca 0 Mg) and the whole cell mode was established with cAMP and cGMP in 

the pipette solution. This induced an inward current in cAMP-dependent ORNs (A, blue 

trace), no current was detected in cAMP-independent neurons (C, blue trace). (B, red 

trace) When FM1-43 was present in the Ca2+- and Mg2+-free bath solution, the amplitude 

of the inward current was reduced dramatically. (D) The current amplitudes of (A; n = 5) 

and (B; n = 6) are quantified in a bar graph. Scale bars: (A-C) 5 s and 50 mV or 50 pA. 

The black lines indicate the application of the forskolin. 
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amplitude was reduced to 0.58 ± 0.16 upon 10 µM FM1-43 in the bath compared to 

control conditions. Wash-out of the dye increased the amplitude to 0.67 ± 0.22 

(Figure 15 B). 

 

 

 

 
 
Figure 15: Extracellular FM1-43 inhibits glomerular responses. (A) Forskolin-evoked 

[Ca2+]i transients of glomeruli in the medial cluster of a typical olfactory bulb whole mount 

preparation (black trace) were reduced upon FM1-43 in the bath (10 µM; red trace). 

Wash-out of the dye recovered the amplitude (grey trace; n = 11). (B) The amplitudes are 

quantified in the bar graph. Scale bar: (A) 10 s and ∆F/F = 20 %. The black line indicates 

the application of forskolin. 
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3.2 Modulation of processing in olfactory receptor neurons by the 
endogenous cannabinoid system 

3.2.1 Localization of the endocannabinoid system in OE 
 

Czesnik et al. (2007) proved that cannabinoids affect olfactory processing. This 

finding makes the presence of the endogenous cannabinoid system in the OE 

probable. In order to locate the endocannabinoid system in the OE, the mRNA 

content of the whole OE was analyzed for components of the endocannabinoid 

system with PCR. cDNA for the CB1 receptor, the 2-AG-catabolizing enzymes 

DAGLα and β and MAGL, and the anandamide-catabolizing enzymes NAPE-PLD 

and FAAH were detected (Figure 16). Thus, 2-AG and anandamide can be produced 

and act in the OE. 

 

3.2.2 Suppression of 2-AG production reduces and delays odor-induced 
responses of ORNs 

 

Endocannabinoids play a physiological role in the OE. When the CB1 receptors of 

ORNs are blocked, responses to odorants are diminished and delayed (Czesnik et 

al., 2007). This effect could be explained by assuming a tonic synthesis and action of 

endocannabinoids in the OE. This assumption was checked by blocking 2-AG 

synthesis using the DAGL blockers RHC80267 or orlistat. The superfusion with these 

drugs had two effects. They prolonged the delay and reduced the amplitude of 

responses of individual ORNs to odorants. The black traces in Figure 17 A and B 
show typical [Ca2+]i responses upon application of a mixture of amino acids (100 µM) 

in two different ORNs taken from two different OE slice preparations. Superfusion of 

the slices with orlistat (50 µM, for 10 min) or RHC80267 (50 µM, for 12 min) 

diminished and delayed the [Ca2+]i responses (Figure 17 A, B, respectively, red 

traces). This effect was highly reproducible (observed in 49 out of 49 cells, eight 

slices) with concentrations in the range of 25-50 µM (RHC80267) or 50 µM (orlistat). 
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The recovery during drug wash-out was accelerated by the CB1 receptor 

agonist HU210. A wash-in of HU210 (10 µM) for 2 min led to an almost complete 

recovery of the responses (Figure 17 A, B, green traces). The described effects are 

very similar to those induced by blockage of CB1 receptors as published previously 

(Czesnik et al., 2007, Figure 17 C). 

 

3.2.3 Differential expression of the DAGL isoforms within the OE 
 

While the above data demonstrate that the suppression of odorant responses was 

brought about by the endocannabinoid 2-AG, produced by a DAGL, the production 

site of 2-AG, i.e. the site of DAGL activity remained unclear so far. Therefore the 

expression of the DAGL in the OE, specifically the expression of the α and β isoforms 

was localized. Olfactory receptor neurons and sustentacular cells, which could easily 

be distinguished on the basis of their characteristic morphology, were first patch-

 
 
Figure 16: Endocannabinoid system in the OE of tadpoles. PCR products for mRNAs 

of the CB1 receptor (lane 1), the two DAGL isoforms α and β (lane 2 and 3), MAGL (lane 

4), NAPE-PLD (lane 5), and FAAH (lane 6) were electrophoretically separated in an 

ethidium bromide containing agarose gel and visualized with UV-light. 
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clamped and physiologically identified. Then the cytoplasm of the patch-clamped cell 

was harvested into the patch pipette for further PCR analysis. The mRNA of olfactory 

marker protein 1 (OMP1) and of cytokeratin type II (CYTII) were used as markers to 

confirm the identity of ORNs and sustentacular cells, respectively (Rössler et al., 

1998; Hassenklöver et al., 2008). Five out of ten ORNs (OMP1-positive) expressed 

DAGLβ, and none of them expressed DAGLα. On the other hand, five out of eight 

sustentacular cells (CYTII-positive) expressed DAGLα, and none of them DAGLβ. In 

summary, 2-AG is synthesized in both ORNs and sustentacular cells, though by two 

different isoforms of the DAGL (see examples in Figure 18). The β-isoform is active 

in ORNs and the α-isoform in sustentacular cells. 
 

 
Figure 17: RHC80267 and orlistat suppress odor-evoked [Ca2+]i transients. (A, B) 

Aamix-evoked [Ca2+]i transients in somata of individual ORNs (black traces) were reduced 

and delayed after wash-in of the DAGL inhibitors orlistat (50 µM) and RHC80267 (50 µM) 

to the bath solution (red traces), respectively. 2 min after adding HU210 (10 µM) to the 

bath, the [Ca2+]i transients recovered almost completely (green traces). (C) Addition of the 

CB1 receptor antagonist AM281 (5 µM) to the bath solution elicited almost identical 

effects as the DAGL blockage. Scale bars: 10 s and ∆F/F = 25 % (A) or 50 % (B, C). The 

black lines indicate the application of the odorants. 
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3.2.4 DAGLα expression is enhanced after food-deprivation 
 

In order to find a functional link between the nutritional or hunger state of an animal 

on the one hand and 2-AG synthesis on the other, it was investigated whether 

hunger affected the expression of DAGL. To this end mRNA of both DAGL isoforms 

were obtained and analyzed from five groups of animals using real-time PCR. The 

first and second group of animals were food-deprived either for 6 h (group A6h) or for 

12 h (group A12h) before analyzing their mRNA levels. The third and forth group were 

fed to satiety for 2 h after having been food-deprived for 6 h (group B6h) or 12 h 

(group B12h). A control group of animals (group C) was fed to satiety for 2 h before 

measurements. The mRNA expression levels for the A- and B-groups were normal-

ized to those of the control group (Figure 19, grey line). 

Comparing the expression levels of DAGLα (blue; sustentacular cells) and 

DAGLβ (red; ORNs), hunger clearly had no effect on 2-AG production in ORNs 

(Figure 19, red points), since the normalized changes of the DAGLβ (ORNs) by 

hunger (groups A6h and A12h) or refeeding after hunger (groups B6h and B12h) were 

 
 
Figure 18: Differential DAGLβ and α expression in ORNs and sustentacular cells. 
Single-cell RT-PCR revealed mRNA of DAGLβ solely in ORNs (OMP1-positive cells) and 

mRNA of DAGLα in sustentacular cells (CYTII-positive cells). 
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0.99, 1.07, 0.97, and 1.05, respectively (n = 7). In contrast, in sustentacular cells, 

DAGLα expression was significantly enhanced after food deprivation for both 6 h 

(group A6h) and 12 h (group A12h). On average the mRNA expression levels were 

1.45 times (n = 7; A6h) or 1.50 times (n = 7; group A12h) higher than in the control 

group. Refeeding for 2 h after 6 h food deprivation diminished the increase slightly 

(mean: 1.32 fold; n = 7; group B6h), while the enhanced expression levels after 12 h 

food deprivation showed no recovery (mean: 1.52 fold; n = 7, group B12h). 

 

3.2.5 The endocannabinoid level tunes odor thresholds of individual ORNs 
 

The above data suggested that 2-AG modulates the sensitivity of ORNs. As to 

possible sensitivity measures, the obvious candidates were the concentration at 

 
 
Figure 19: DAGL mRNA expression is regulated upon food-deprivation. Relative 

expression levels (i.e. normalized to the control group) of DAGLα in sustentacular cells 

(blue points) and β in ORNs (red points) in the OE exposed to four nutritious states. 

DAGLα expression levels were affected by the various nutritious conditions (group A6h, 

food-deprived for 6 h, n = 7, 1.45 fold; group B6h, food-deprived for 6 h and refed for 2 h, 

n = 7, 1.32 fold; group A12h, food-deprived for 12 h, n = 7, 1.50 fold; group B12h, food-

deprived for 12 h and refed for 2 h, n = 7, 1.52 fold). DAGLβ expression levels were not 

affected by the various nutritious conditions (0.99 fold, 1.07 fold, 0.97 fold, 1.05 fold 

(n = 7), respectively). 
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which the dose-response curve is half-maximum, K1/2, or the threshold concentration 

below which an ORN shows no response to the stimulus, cth. Dose-response curves 

of ORNs for a number of stimuli (arginine, methionine and lysine) were measured 

(done by B. Gutermann) and fitted to a Boltzmann function. Figure 20 A, B shows 

 
 

Figure 20: Dose-response relationships of [Ca2+]i transients induced by single 
amino acids. (A) [Ca2+]i transients of a single ORNs elicited by increasing concentrations 

(0, 0.2, 1, 2, 10, 20, 50, 100, 200, 500, 1000 and 2000, in µM) of lysine (lys) are shown. 

The detection threshold concentration (*) in this example is 1 µM. (B) the amplitudes 

obtained by the demonstrated dose-response-measurements were fitted by a Boltzmann 

equation. (C) Histograms of all investigated ORNs were classified for the three amino 

acids lysine (lys), arginine (arg) and methionine (met) according to their individual 

detection thresholds. The black lines indicate the application of the odorants. 
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ORN responses to lysine together with the corresponding dose-response curve as an 

example. The midpoint slopes of the 65 dose-response curves measured varied 

considerably (by a factor > 10) so that curves having the same K1/2 had quite different 

cth values (not shown). Therefore the threshold concentration, cth, was preferred as a 

convenient measure of sensitivity, whereby cth is defined as the concentration below 

which, under control conditions, no responses could be measured. Specifically, the 

first data point of the monotonic increase of the dose-response-curve was taken as 

the detection threshold cth. Note that this definition refers to control conditions (i.e., 

no food shortage and no drugs applied). 

The detection thresholds varied from ORN to ORN over a wide range. Figure 

20 C gives the threshold distributions for the three odorants used. 

To investigate the effect of 2-AG on the odorant detection threshold of a 

specific ORN, a control experiment as shown in Figure 21 A was carried out first. The 

orange trace gives an arginine-induced [Ca2+]i transient at the detection threshold cth 

(in this case, 20 µM). Expectedly, a higher odorant concentration induced a larger 

response amplitude and a shorter response latency (black trace, 50 µM), while 

concentrations below cth failed to elicit a response in this ORN (blue trace, 10 µM). 

Importantly, this response behavior was well reproducible (Figure 21 B, orange and 

brown traces, blue and light blue traces). Now the slice was superfused with the 

DAGL blocker RHC80267, which consistently led to response failures at cth (Figure 

21 C, red trace, RHC80267, 50 µM), meaning that the threshold ĉth, under the experi-

mental condition of less 2-AG being produced was shifted to a higher value, i.e., 

ĉth > cth. Mimicking the presence of 2-AG by wash-in of the CB1 receptor agonist 

HU210 (10 µM) was able to rescue the odorant responses at cth (Figure 21 C, green 

trace). Moreover, HU210 was not only able to rescue the response; frequently it also 

lowered the threshold so that responses could be recorded at subthreshold odorant 

concentrations (c < cth). This is shown in Figure 21 D, where an odor response failure 

at 10 µM (c < cth, blue trace) is transformed into a clear response at the same 

concentration after HU210 was added to the bath (Figure 21 D, green trace). There is 

thus no doubt that the sensitivities of ORNs are modulated by endocannabinoids. 

While Figure 21 C gave a typical example, Figure 22 A summarizes the data 

for all ORNs recorded under this condition. The cells are grouped with respect to 

their threshold concentration cth (abscissa). The left (orange) column of each column 
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triplet of the histogram gives the number of ORNs found to have the threshold 

concentration indicated on the abscissa. The middle column (red) gives the number 

of ORNs that show a response suppression (threshold increase) upon DAGL 

blockage, and the right column of each column triplet (green) shows how many 

ORNs regained an odor response after adding HU210 to the bath. An increase of 

threshold concentration upon application of RHC80267 or orlistat was observed in 54 

out of 54 ORNs (52 slices; 18 cells for arginine, 21 cells for lysine and 15 cells for 

 
 
Figure 21: ORNs have individual and tunable odorant detection thresholds 
according to the 2-AG level in the OE. (A) ORN [Ca2+]i responses to various 

concentrations of arg (10, 20, 50 µM). (B) The responses to the detection threshold cth (20 

µM, orange and brown traces) and concentrations below cth (10 µM, blue and light blue 

traces) were highly reproducible. (C) After addition of RHC80267 (50 µM) to the bath 

solution the [Ca2+]i transients induced at cth were abolished (red trace). Wash-out of 

RHC80267 with HU210 in the bath solution (2 min, 10 µM, green trace) accelerated 

recovery. (D) Lacking odorant response under control conditions (arg, blue trace) and 

reappearing of odorant response after addition of HU210 (2 min, green trace) to the bath. 

The black lines indicate the application of the odorants. 
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methionine; red bars), and the agonist HU210 led to a recovery in 42 out of these 54 

ORNs (green bars). 

 
 
Figure 22: Summary of detection threshold modulation. (A) Histogram of a group of 

ORNs responsive to arginine, lysine or methionine classified according to their individual 

detection thresholds cth under control conditions (orange bars). In all of these ORNs 

RHC80267 or orlistat led to a reduction of the response (red bars) whereby a recovery 

(drug wash-in of HU210 10 µM, green bars) could be observed in 42 out of 53 ORNs. (B) 

Histogram of groups of arginine-, lysine- or methionine-responsive ORNs (blue bars) 

plotted over the highest concentration where no response could be recorded. In 19 out of 

38 ORNs HU210 (10 µM) permitted responses at the respective concentrations (green 

bars). 
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Figure 23: PMCA but not NCX mediates CB1 receptor-induced effects. (A) Aamix-

evoked [Ca2+]i transients of individual ORNs (black traces) were reduced and delayed 

after wash-in of the PMCA inhibitor CE (5 µM; red trace). After drug wash-out with bath 

solution, the [Ca2+]i transients recovered (blue traces). (B) Aamix-evoked [Ca2+]i transients 

of individual ORNs (black traces) were only reduced after substation of Na+ with NMDG 

(NMDG25: dark grey; NMDG10: middle grey; NMDG0: light grey). After drug wash-out 

with bath solution, the [Ca2+]i transients recovered (blue traces). (C) CE-modulated [Ca2+]i 
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Figure 22 B summarizes the experiments where stimulation was at subthresh-

old concentrations, i.e., at c < cth, where no responses could be elicited, and 

repeated the stimulation with the CB1 agonist HU210 added to the bath. With HU210 

in the bath, responses were observed in 19 (green) out of 38 (blue) cells (38 slices). 

There was no correlation between the occurrence of this effect and the 

corresponding threshold concentration. 

 

3.2.6 Preliminary: PMCA is effector molecule of the CB1 receptor in ORNs 
 

Although the cellular effect of CB1 receptor blockage and activation was 

demonstrated, the underlying signaling systems are unknown so far. CB1 receptor 

signaling mostly modulates intracellular Ca2+ levels. Ca2+ is extruded from ORNs by 

the plasma membrane Ca2+ ATPase (PMCA; Lischka and Schild, 1993; Castillo et 

al., 2007) and the Na+-Ca2+-exchanger (NCX; Reisert and Matthews, 1998; Lucero et 

al., 2000). 

 

 

 

 

 

 

 

 

 

 

transients (red trace; control: black trace) was rescued after drug wash-in of HU210 (20 

µM) in the bath solution (green traces). (D) NMDG10-modulated [Ca2+]i transients (grey 

trace; control: black trace) did not change upon HU210 (10 µM) in the bath solution (green 

traces). (E) The control response to Aamix application (black trace) was reduced in 

amplitude upon NMDG10 (grey trace) and further reduced and delayed by wash-in of CE 

(5 µM; red trace). Wash-out with bath solution recovered the transient (blue trace). Scale 

bars: 10 s and ∆F/F = 50 % (A), 30 % (B, C) or 40 % (D, E). The black lines indicate the 

application of the odorants. 
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First, a possible involvement of PMCA in CB1 signaling was investigated. The 

PMCA blocker carboxyeosin (CE) was used during odorant stimulation of ORNs with 

amino acids. The black trace in Figure 23 A shows a [Ca2+]i transient upon 

stimulation with amino acids under control conditions. Wash-in of CE (5 µM; 10 min; 

Figure 23 A, red trace) delayed the response and reduced its amplitude. This effect is 

similar to that observed for blockage of 2-AG synthesis (Figure 17). A subsequent 

wash-out of the drug recovered the response (Figure 23 A, blue trace; observed in 28 

out of 28 cells in three slices). 

In the next step, the involvement of NCX in CB1 signaling was examined. To 

achieve a stop or even a reverse mode of the NCX and thus, retain Ca2+ ions in the 

cell, extracellular Na+ was substituted for NMDG (NMDG25: 25 mM NaCl, NMDG10: 

10 mM NaCl, NMDG0: 0 mM NaCl; Schild et al., 1994). These conditions reduced 

the amplitude of [Ca2+]i responses (Figure 23 B, grey traces) compared to the control 

(Figure 23 B, black trace). Restorage of extracellular Na+ to 98 mM recovered the 

response (Figure 23 B, blue trace). A delay of the response could not be observed by 

NCX interference (observed in 28 out of 28 cells in four slices). 

In the following experiments it was investigated whether these described 

effects occur downstream of the CB1 receptor or whether they are mediated 

CB1 receptor-independent. Thus, the experiment was slightly modified and the 

altered [Ca2+]i responses upon PMCA or NCX blockage were tried to be rescued by 

wash-in of the CB1 receptor agonist HU210. The black traces in Figure 23 C and D 

are [Ca2+]i responses to amino acids under control conditions. Wash-in of CE (5 µM; 

Figure 23 C, red trace) reduced and delayed the response and substitution of 

extracellular Na+ by NMGD (in this case NMDG 10; Figure 23 D, grey trace) only 

reduced the response. Subsequent wash-in of HU210 (20 µM) rescued the response 

upon CE (Figure 23 C, green trace; observed in 21 out of 26 cells in four slices), but 

had no effect on the responses altered by NMDG10 (HU210, 10 µM; Figure 23 D, 

green trace; observed in 52 out of 52 cells in four slices). This suggests that PMCA is 

located downstream in the CB1 receptor signaling cascade in ORNs, but not NCX. 

To further verify this finding, it was tested, whether CE still triggers the 

described effect when the NCX is out of action. The control response to amino acid 

application in Figure 23 E (Figure 23 E, black trace) was reduced in amplitude upon 

NMDG10 (Figure 23 E, grey trace). Wash-in of CE (5 µM; Figure 23 E, green trace) 
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further reduced and additionally delayed the [Ca2+]i response. Wash-out with bath 

solution recovered the transient (Figure 23 E, blue trace; observed in 45 of 45 cells in 

three slices). 

To localize the CB1/PMCA-mediated [Ca2+]i change in ORNs, single dendrites 

were imaged during CE incubation of tissue slices. Exemplarily, a fluo-4-loaded cell 

is shown in Figure 24 (left side) as a z-projection. Regions of interest were arranged 

as indicated by the numbers. The [Ca2+]i levels in these regions upon CE in the bath 

solution was normalized to those obtained during control conditions (five images 

accessed prior to the experiment, grey line). [Ca2+]i increased in all regions 2.5 min 

after CE wash-in, the increase was highest at the knob region (red trace) and 

smallest close to the soma (black region). Similar results were obtained for three 

cells. First experiments with the CB1 antagonist AM281 revealed similar results (data  

 
 
Figure 24: [Ca+2]i increases in the distal dendrite upon CE. Left side: fluo-4-loaded 

ORN with indicated regions of interest. Right: The [Ca2+]i level upon CE was normalized to 

these of control conditions (grey line). [Ca2+]i increased in all regions 2.5 min after CE 

wash-in. The increase was highest at the knob region (red trace) and smallest close to the 

soma (black region). Scale bars: 1 min and ∆F/F = 250 %. 
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not shown; n = 3). However, more experiments have to be carried out to draw a final 

conclusion. 

 

3.2.7 Endocannabinoid system and receptors for other modulators in the OE 
of various species 

 

Xenopus laevis tadpoles served as an animal model in all experiments so far. Of 

course, it is interesting to find out, if the endocannabinoid system is located also in 

mammals, especially in humans. Therefore, the mRNA in OEs of rats and a human 

was analyzed in addition to mRNA of tadpoles. 

First, it was examined, whether mRNA for the synthesis and degradation 

enzymes for 2-AG (DAGLα, DAGLβ, FAAH) and anandamide (NAPE-PLD, MAGL) 

are present in the OE (Table 6). In fact, PCR products for the corresponding mRNAs 

were detected in all samples investigated. CB1 receptor mRNA was detected in the 

OE of tadpoles and rats, but not in the human sample. In rats, CB2 receptor and 

GPR55 mRNA was additionally found. In humans, only GPR55 mRNA was detected 

as a receptor for endocannabinoids. 

Since a link of the nutritious status to the endocannabinoid system in the OE 

was shown in this thesis (Figure 19), the presence of several receptors, among them 

receptors for orexigenic substances was investigated on the transcriptional level in 

OEs (Table 6). In tadpoles, the mRNA for dopamine, adiponectin, and leptin 

receptors were localized to the OE. Rats exhibited mRNA for dopamine, adiponectin, 

orexin, and leptin receptors in the OE and the human sample showed adiponectin 

and leptin receptor mRNA, but not dopamine and orexin receptor mRNA. 

 

Table 6: mRNA of the components of the endocannabinoid system and receptors for 
other modulatory substances. In this table all investigated mRNAs of OEs of tadpoles (n = 

3), rats (n = 3), and a human (n = 1) are shown. Components of the endocannabinoid system 

(CB1, DAGLα, DAGLβ, NAPE-PLD, FAAH, MAGL, CB2, GPR55) and receptors for 

orexigenic substances (dopamine receptors A and B, adiponectin receptors 1 and 2, orexin 

receptors 1 and 2, leptin receptor) are listed. Empty table elements mirror mRNA, for which 

the gene sequence is not known or was not analyzed. 
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4 Discussion 

4.1 The styryl dye FM1-43 permeates and blocks CNG channels in 
olfactory neurons of larval Xenopus laevis 

 

The first question I raised in the introduction was by which mechanisms odors are 

encoded by the activity of ORN subsets. An essential step toward solving this issue 

is to establish a tool in order to differentiate ORN subsets and to specifically interfere 

with one ORN subset pharmacologically. Here, the action of FM1-43 in the OE was 

investigated and the mechanism by which it acts was characterized. 

 

4.1.1 FM1-43 stains ORNs 
 

FM1-43, among other styryl dyes, is mainly used in the neurosciences to monitor 

membrane trafficking. Since this substance reversibly stains membranes but does 

not pass them, and because it changes its fluorescent properties according to the 

hydrophobicity of its environment, FM1-43 became a powerful tool to investigate 

synaptic vesicle recycling and synaptic transmission (Cochilla et al., 1999; Kidokoro 

et al., 2004; Kay et al., 1999). However, there are some studies, which describe the 

staining of neuronal cells by styryl dyes. FM1-43 labels several sensory and neuronal 

cells, e.g., sensory hair cells in the lateral line organ, the cochlea of various 

vertebrate species (Nishikawa and Sasaki, 1996; Seiler and Nicolson, 1999; Gale et 

al., 2001; Meyers et al., 2003), Merkel cells, taste buds, nociceptive fibers as well as 

primary sensory neurons in the trigeminal (V), geniculate (VII), petrosal (IX), nodose 

(X), and dorsal root ganglia (Meyers et al., 2003; Drew and Wood, 2007; Drew et al., 

2007). 

Nishikawa and Sasaki (1996) reported that FM1-43 labeled epidermal cells at 

nasal pits. The labeled cells were not further identified. Three years later, FM1-43 

was shown to label dissociated ORNs (Rankin et al., 1999). In these experiments 

FM1-43 was internalized and appeared in the cell body, dendrite, and knob after 
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stimulation with L-glutamate, but the dye could not be located to the cytosol or the 

plasma membrane due to technical reasons. Rankin et al. (1999) postulated a novel 

endocytosis-like mechanism for the dye uptake. In the present work, I found no 

evidence for this hypothesis. FM1-43 was shown herein to stain ORNs in the OE of 

Xenopus laevis tadpoles when living animals were incubated in a solution of distilled 

water and the dye (Figure 9). Fluorescence was observed in the cytosol and was 

absent only in the nucleus. The same cytosolic staining pattern as in this thesis was 

also observed for hair cells by Gale et al. (2001) and Meyers et al. (2003). 

 

4.1.2 FM1-43 uptake in ORNs through CNG channels 
 

Uptake of dyes through plasma membrane channels seems to be a more general 

process than previously assumed. For example, YO-PRO permeates purinergic 

receptors (Khakh et al., 1999) and TAE permeates the mechanoelectric transduction 

channel. Besides hair cell mechanotransducer channels, other sensory channels like 

the vanilloid receptor TRPV1, the purinergic receptor P2X2 and mechanoelectric 

transduction channel of dorsal root ganglion cells (Meyers et al., 2003; Drew and 

Wood, 2007) were shown to be permeable for FM1-43. 

Meyers and coworkers (2003) compared FM1-43 staining of hair cells with that 

of FM3-25, a structurally related styryl dye with similar properties. FM3-25 only 

labeled the plasma membrane of hair cells whereas FM1-43 caused a cytosolic 

staining. This comparison shows that FM1-43 stains certain cells by a different 

mechanism than membrane insertion, namely channel permeation. 

For FM1-43 staining of ORNs, living tadpoles were incubated in a solution of 

the dye and distilled water. The cells at the apical side of the OE are connected by 

tight junctions that prevent the diffusion or the transport of molecules from the 

principal cavity into the tissue (Miragall et al., 1994; Steinke et al., 2008). Therefore, 

dye uptake certainly occurred through the plasma membrane exposed to the 

principal cavity: cilia, microvilli, and/or dendritic knobs come into consideration. 

Indeed, FM1-43 uptake in hair cells also occurred at the stereocilia (Gale et al., 2001; 

Meyers et al., 2003), where removal of the cilia prevented dye uptake. 
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Since FM1-43 fluorescence was cytosolic, since it built up rapidly, and since 

CNG channels are located on cilia, it was checked whether CNG channels are 

permeable for FM1-43. The well-known permeability of divalent ions through CNG 

channels as well as the effect of two non-specific blockers of CNG channels were 

used here. FM1-43-staining of ORNs was blocked when divalent ions were present 

during dye internalization (Figure 11). Similarly, FM1-43 competes with other cations 

for uptake through the mechanoelectric transducer channel in hair cells (Nishikawa 

and Sasaki, 1996; Seiler and Nicolson, 1999; Gale et al., 2001). 

Furthermore, the unspecific CNG channel blockers LY-83,583 and amiloride 

prevented dye uptake in ORNs as presented in this thesis (Figure 12). Endocytosis-

independent FM1-43 uptake was also investigated by Meyers et al. (2003) in bullfrog 

and mice hair cells. In that study cells rapidly filled by diffusion of FM1-43 from the 

apical to the basal pole. Mechanical closure of the mechanotransducer channel was 

sufficient to block dye uptake. Gale and coworkers obtained similar results in 2001. 

Additionally, they demonstrated that hair cells of Myo 7a mutants cannot be labeled 

with FM1-43. In these mutants, the mechanoelectric transduction channels, and thus 

the gates for FM1-43 internalization, are closed at rest. In addition, treatment of hair 

cells with the Ca2+ chelator EGTA, a condition which breaks tip links and thus closes 

the mechanoelectric transduction channel, abolished subsequent dye loading. 

In this study, FM1-43 entered ORNs in the absence of an externally applied 

stimulus. Generally, the exclusion of any kind of stimulation can hardly ever be met in 

olfactometry. Apart from this caveat, CNG channels in ORNs are reported to gate 

spontaneously and ligand-independent, thereby producing a detectable macroscopic 

conductance (Kaupp and Seifert, 2002). Kleene (2000) estimated the open 

probability of CNG channels due to spontaneous gating in dissociated grass frog 

ORNs to be approximately 0.03. Tibbs and coworkers (1997) calculated an open 

probability of 0.002. Their model was an exogenous expression system with the α 

subunit of the catfish olfactory CNG channel. Combined with the incubation time of 

several minutes, this would allow spontaneous dye uptake in ORNs. This concept 

also holds true for hair cells: these can also be loaded with FM1-43 in the absence of 

a stimulus. The open probability of the mechanoelectric transduction channel at rest 

is 0.1 to 0.2. A stimulus essentially increases the channel open probability and the 

current across the membrane (Grant and Fuchs, 2007). 
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4.1.3 Only ORNs endowed with the cAMP transduction machinery internalize 
FM1-43 

 

FM1-43 always stained a subset of ORNs in the OE. The identity of this subset was 

characterized herein by three experiments: First, FM1-43 staining of the ORN subset 

was blocked when divalent ions were present during dye internalization (Figure 11). 

Second, unspecific CNG channel blockers inhibited dye internalization (Figure 12). 

Third, FM1-43-stained ORNs exhibited the cAMP-dependent transduction cascade 

because they could be stimulated with forskolin and uncaging of cAMP (Figure 13). 

These findings indicate that FM1-43 permeates CNG channels and stains 

ORNs with the cAMP-dependent transduction cascade. In a number of publications it 

has been reported that only a fraction of Xenopus laevis ORNs possess the 

canonical, cAMP-dependent olfactory transduction cascade (Manzini et al., 2002; 

Manzini et al., 2003b; Czesnik et al., 2006). Other ORNs in the OE detect odorants, 

e.g. amino acids, via a cAMP-independent transduction mechanism. FM1-43 must 

thus be supposed to stain cAMP-dependent ORNs when permeating CNG channels. 

Olfactory receptor neurons that could not be stained with FM1-43 are therefore 

believed to express a different kind of generator channel. If FM1-43 permeated those 

channels too, the vast majority of ORNs in the OE would be stained. As this was not 

the case, it can be concluded that the ORN generator channels involved in the 

detection of amino acids are not permeable for FM1-43. 

In studies, in which hair cells were labeled with FM1-43, the staining was 

observed in all cells exposed to the dye (e.g. Seiler and Nicolson, 1999; Meyers et 

al., 2003). This may be due to the fact that the transduction mechanism in hair cells 

seems to be identical throughout the hair cell population in the cochlea. The identity 

of the mechanoelectric transduction channel is still unknown. However, it is a 

nonselective cation pore, permeable for K+ and Ca2+ (Grant and Fuchs, 2007; Phillips 

et al., 2008). FM1-43 is thus used as a marker for mature hair cells (Doyle et al., 

2007). 
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4.1.4 Extracellular FM1-43 inhibits cation currents through CNG channels 
 

To date, little systematic effort was made to develop potent and specific 

pharmacological agents that inhibit CNG channels. CNG channel blockers known so 

far are unspecific and have to be used in high concentrations causing many side 

effects. Others block channels only at positive membrane potentials. FM1-43 inhibits 

CNG channels at the resting membrane potential at low concentration (Figure 14). In 

the following, I will provide a short overview of CNG channel blockers with their 

properties concerning potency and specificity. Then, I will discuss FM1-43 as a CNG 

channel blocker: 

L-cis-diltiazem is probably the CNG channel blocker, which has been studied 

most extensively (Koch and Kaupp, 1885; Haynes, 1992; Brown et al., 2006). It 

inhibits the rod photoreceptor CNG channels noncompetitively and in a voltage-

dependent manner. The K1/2 of L-cis-diltiazem is in the low micromolar range at 

+30 mV and increases with negative voltages. This blocker affects CNG channels 

from the cytoplasmatic side, and it is non-specific. Amiloride is often used as an 

epithelial Na+ channel blocker at low micromolar concentrations, and it also blocks 

rod and olfactory CNG channels (used in Figure 12; Frings et al., 1992; Brown et al., 

2006). The inhibition is strongly voltage-dependent and least effective at the resting 

membrane potential. D-600 and verapamil, two amiloride derivates, have similar 

properties (Frings et al., 1992). Dichlorobenzamil, another derivate of amiloride has 

more promising characteristics (Nicol et al., 1987). It blocks CNG channels at low 

micromolar concentrations, and it is relatively voltage-independent. Nevertheless, 

amiloride derivates cannot be considered as selective antagonists since they inhibit 

also the Na+-Ca2+ exchanger and voltage-gated Na+, Ca2+ and K+ channels in the 

similar concentration range. LY-83,583 is another unspecific CNG channel blocker. It 

was used in this thesis at a high concentration (Figure 12). Besides this function, it 

blocks cGMP production, inhibits intracellular Ca2+ release, and blocks the effects of 

nitric oxide (Leinders-Zufall and Zufall, 1995). Tetracaine, a local anesthetic, blocks 

Na+, Ca2+ and CNG channels at micromolar concentrations. The block of CNG 

channels by tetracaine is voltage- and state-dependent. Two studies of Karpen’s lab 

(Ghatpande et al., 2003; Strassmaier et al., 2005) reported on tetracaine analogues 

with less side effects. The most potent inhibitor for monomeric CNG channels is 
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pseudechtoxin (Brown et al., 1999; Kaupp and Seifert, 2002). The K1/2 is 5 to 100 nM. 

Concerning heteromeric channels, the pseudechtoxin blocks CNG channels several 

odors of magnitudes less effectively. 

Because of these unfavorable properties of the blockers, the concentrations of 

LY-83,583 and amiloride were very high (200 µM and 1 mM, respectively) in the 

presented experiment in Figure 12. Nevertheless, staining of ORNs with FM1-43 was 

abolished when these blockers were present. 

In contrast to many CNG channel blockers mentioned above, FM1-43 blocks 

at resting membrane potentials. Cells can be stained in vivo without stimulation. 

Furthermore, 10 µM FM1-43 reduced the CNG current to ~25 %. This was measured 

in the absence of Ca2+ and Mg2+ at the resting membrane potential. The blockage 

occurred from the extracellular site as proven in Figure 15. 

FM1-43 was also described as a blocker of cation currents in two other 

studies: Gale et al. (2001) observed that extracellular FM1-43 reversibly blocks 

mechanotransduction in cochlear hair cells in culture. FM1-43 reduces the currents in 

a voltage-dependent way. The block is most effective at -4 mV (Kd = 1.2 µM) and less 

effective at large positive and negative potentials. Furthermore, the block is strongly 

dependent on extracellular Ca2+ and most effective at low Ca2+ concentrations. In a 

study by Drew and Wood (2007) extracellular FM1-43 blocked rapidly- and slowly-

adapting mechanically activated cation currents in cultured dorsal root ganglion 

neurons. The Kd is 5 µM and 3 µM, respectively. The block was equally efficient at 

voltages of -70 and -35 mV, but it was significantly reduced at positive holding 

potentials. At low extracellular Ca2+ concentrations the FM1-43 block of the currents 

was more effective. 

With this knowledge, one of the first experiments I presented, i.e. the 

determination of odor sensitivity of FM1-43-loaded ORNs (Figure 10), becomes more 

comprehensible. Only few FM1-43-stained ORNs could be stimulated with an odor-

mixture. The stimuli for these cells included amines and alcohols and elicited only 

very small [Ca2+]i transients. A second stimulation with the odors led to a reduced 

response. Considering these aspects, one can conclude that while permeating CNG 

channels FM1-43 blocks the ionic current through these channels. In this way 

odorant responses are prohibited. This is very useful as there are virtually no other 

potent and specific blockers for CNG channels known. 
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Figure 25: Action of FM1-43 in the OE. FM1-43 labels the ORN subset endowed with 

the cAMP-dependent transduction cascade (right side, ORN highlighted in red). 

Extracellular FM1-43 inhibits CNG channels. ORNs that use a different transduction 

mechanism and have a different generator channel are not stained with FM1-43 (left side, 

ORN in grey). PC, principal cavity; ON, olfactory nerve; od, odorant, SC, sustentacular 

cell. 
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4.1.5 Conclusion 
 

Taken together, FM1-43 appears to exert a permeation block of CNG channels 

(Figure 25). It is a novel mechanism to label a distinct subset of ORNs, and 

conversely, to identify non-labeled cells such as sustentacular cells or ORNs that 

don't use cAMP in their transduction cascade. Further it allows staining and blocking 

in vivo and under physiological conditions. It seems therefore particularly useful for 

studies of olfactory transduction cascades. Finally the fluorescence of FM1-43 may 

turn out to be well-suited for studying ciliary processes and channel densities. 
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4.2 Modulation of processing in olfactory receptor neurons by the 
endogenous cannabinoid system 

 

In the introduction, I pointed out that ORNs cannot be considered as static units. The 

physiological state of the organism may influence the fine-tuning of odor detection. 

Since many modulatory systems in the OE seem to work in parallel, one has to 

analyze all of these systems separately, and then investigate their interplay. Here I 

examined the effect of the endocannabinoid 2-AG on olfactory processing. In the 

following sections, I present the functional meaning of endocannabinoid modulation 

in the OE, its action, and its mechanism of action. 

 

4.2.1 The endocannabinoid 2-AG acts in the OE 
 

Several studies showed that CB1 receptors or the related mRNA can be found at 

different stages of the central olfactory system (Cesa et al., 2001; Egertová and 

Elphick, 2000). A study of Migliarini et al. (2006) demonstrated the presence of CB1 

receptor mRNA in the OE of Xenopus laevis tadpoles at stage 46. Recently, Czesnik 

and coworkers (2007) revealed that ORNs are modulated by cannabinoids. CB1 

receptor antagonists reduced and delayed odor-induced responses of ORNs, and the 

CB1 receptor agonist HU210 accelerated the recovery of these responses. 

Additionally, they localized CB1 receptors on ORN dendrites in the OE. These results 

indicate the presence of the endogenous cannabinoid system in the OE. However, 

the type of endocannabinoid acting in the OE was not described. Therefore, an 

mRNA analysis of the components of the endocannabinoid system in the OE of 

tadpoles was performed. Indeed, mRNA of the CB1 receptor as well as the synthesis 

and degradation enzymes for 2-AG (DAGLα, DAGLβ, MAGL) and anandamide 

(NAPE-PLD, FAAH) were detected (Figure 16). This implies that both 2-AG and 

anandamide are synthesized in the OE. 

2-AG is more abundant in the brain than anandamide (Sugiura et al., 2006). 

For this reason, its action was investigated by blockage of 2-AG synthesis with the 

DAGL inhibitors RHC80267 or orlistat (Hashimotodani et al., 2008) in the present 
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work. This decreased and delayed the odor-induced [Ca2+]i transients. Wash-in of the 

CB1 receptor agonist HU210 rescued the responses (Figure 17). The same effects 

were obtained with the CB1 receptor antagonists AM281, AM251, and LY320135 by 

Czesnik and coworkers (2007). 

Besides the olfactory system, other sensory systems are also known to be 

modulated by the endocannabinoid system. For example, CB1 receptors are located 

on photoreceptors and bipolar cells in the visual system. There, cannabinoids speed 

up the dynamics of the phototransduction deactivation cascade in cones (Straiker et 

al., 1999; Struik et al., 2006). In addition, CB1 receptors are expressed on dorsal root 

ganglion cells, and may play a role in the spinal nociceptive system (Morisset et al., 

2001). The endocannabinoid modulation of sensory output at the most peripheral 

stage may thus be a common feature of these sensory systems. 

 

4.2.2 Cellular localization of 2-AG synthesis and its functional meaning 
 

2-AG acts in the OE, and it is synthesized by DAGLα and β. However, the cellular 

localization of 2-AG synthesis was not known so far. In this thesis, mRNA of both the 

DAGLα and β isoforms were detected by single-cell PCR in sustentacular cells and 

ORNs, respectively (Figure 18). In ORNs appears to exist an autocrine pathway 

since 2-AG is produced by DAGLβ in ORNs, and since it acts on CB1 receptors on 

ORNs (Czesnik et al., 2007). In contrast, DAGLα mRNA is solely expressed in 

sustentacular cells, indicating an additional paracrine route of 2-AG action in the OE. 

 

2-AG production by DAGLα in sustentacular cells is enhanced upon food-deprivation 

2-AG is produced by DAGLα in sustentacular cells and acts paracrine on ORN 

dendrites. Sustentacular cells insulate ORNs (Breipohl et al., 1974; Getchell and 

Getchell, 1992; Farbman, 1992; Morrison and Moran, 1995) and regulate mucus 

secretion and ion homeostasis of the extracellular compartment (Getchell and 

Getchell, 1992; Hansen et al., 1998). In this thesis, a novel role of sustentacular cells 

is indicated. 2-AG is secreted by sustentacular cells and modulates the activity of 

ORNs. Additionally, DAGLα mRNA expression in the OE was found to be enhanced 

after food deprivation, whereas DAGLβ expression was not affected by the various 
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nutritious conditions (Figure 19). This allows to conclude that 2-AG production in 

sustentacular cells by DAGLα is enhanced by hunger and acts via a paracrine route 

upon CB1 receptors on ORN dendrites. 

The endocannabinoid system is known to play a crucial role in food intake and 

energy homeostasis (Aimé et al., 2007). For instance, in the teleost fish Carassius 

auratus (Soderstrom et al., 2004), in the zebra finch (Kirkham et al., 2002), and in 

rodents (Di Marzo et al., 2001; McLaughlin et al., 2003), brain endocannabinoids 

seem to act as orexigenic mediators. In addition, AM251 induces suppression of rat 

food intake and food-reinforced behavior in rats (Mousley et al., 2006). The link 

between exocannabinoids and increased food intake is well-known (Hart et al., 2002; 

Verty et al., 2005). A previous study has shown that CB1 receptor antagonists 

diminish and delay odor responses (Czesnik et al., 2007). In this thesis, a functional 

link between 2-AG as a modulator in the OE and the nutritious state of an animal is 

shown. It was demonstrated that there is an endocannabinoid-system-mediated 

crosstalk between the neuronal control of feeding, e.g. olfaction, and the nutritional 

state. 

A similar concept was suggested for orexin and leptin, which are hormones 

involved in energy metabolism. Orexins are synthesized within the OE. Orexin 

receptors were localized among others on the apical part and microvilli of 

sustentacular cells and knobs and cilia of ORNs in the OE. Thus, a possible modu-

lation of olfactory perception by these neuropeptides is probable (Caillol et al., 2003). 

Intranasally applied orexin A restores olfactory function in narcolepsy (Baier et al., 

2008), and more importantly, cerebroventricular injection of orexin results in an 

increased olfactory sensitivity (Julliard et al., 2007). Leptin and its receptors were 

also found on sustentacular cells and ORNs (Baly et al., 2007). Fasting caused a 

significantly enhanced transcription of both leptin and leptin receptors. Furthermore, 

leptin decreases odor-induced receptor potentials (Savigner et al., 2009) and 

sensitivity in a behavioral experiment (Julliard et al., 2007). 
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2-AG produced by DAGLβ in ORNs may play a role in ORN protection or 

differentiation 

2-AG is also produced by DAGLβ in ORNs and acts autocrine on CB1 receptors on 

ORN dendrites. As to the autocrine pathway, no particular modulation was found. 

However, the following two functional meanings could be plausible: 

First, odor-induced increase of [Ca2+]i can be supposed to mediate 2-AG 

release (as reported in other systems, Szabo et al., 2006; Hashimotodani et al., 

2007) and a subsequent increase of sensitivity and signal-to-noise ratio of responses 

to odors. 

Second, autocrine endocannabinoid signaling appears to be a key regulatory 

signaling network for the wiring of the brain during development (Harkany et al., 

2008), and may play a role in the constantly regenerating ORNs (Schwob, 2002) in 

the OE. Interference with the endocannabinoid system using pharmacological 

inhibitors disturbs axon pathfinding and fasciculation (Watson et al., 2008). Williams 

and coworkers showed that DAGL-dependent activation of neuronal CB1 receptors 

and CB1 agonists stimulate the growth of axons while CB1 antagonists inhibit this 

process (Williams et al., 2003). For instance, developing pyramidal cells rely on 

endocannabinoid signaling to initiate the elongation and fasciculation of their long-

distance axons (Mulder et al., 2008). 

In the future, selective blockers will allow to study the effect of autocrine acting 

2-AG, which is produced by DAGLβ. 

 

4.2.3 2-AG level modulates odor detection thresholds 
 

Recently, several studies dealing with the influence of the nutritious state on the 

neurophysiology of olfactory information processing have been published. In these 

studies an altered sensitivity of ORNs could indirectly be attributed to the effects of 

modulators like neuropeptide Y, leptin or orexin (Mousley et al., 2006; Caillol et al. 

2003; Getchell et al., 2006). Here, detection thresholds of arginine, lysine, and 

methionine were investigated. Their dose-response relationships and detection 

thresholds at cellular resolution were described using confocal fluo-4 Ca2+-imaging 

(Figure 20). The findings show that response thresholds are distributed over a 
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distinct concentration range between 0.2 and 200 µM, which has also been described 

by Duchamp-Viret and coworkers for ORNs in rat and adult frog (Duchamp-Viret et 

al., 2000). The classical view is that odorant detection thresholds are determined by 

the affinity and expression level of olfactory receptors (Kajiya et al., 2001; Malnic et 

al., 1999; Saito et al., 2009), olfactory receptor dimerization (Neuhaus et al., 2004) as 

well as amplification and adaptation in the transduction cascade (Takeuchi and 

Kurahashi, 2008). Herein, the significant contribution of endocannabinoids to the 

control of odorant thresholds is shown (Figure 21, Figure 22). These findings support 

the view that 2-AG acts as an orexigenic modulator in the OE by increasing and 

decreasing the sensitivity of ORNs to odorants during phases of hunger or satiety. As 

a consequence, the concept of a “threshold as a well defined and constant 

concentration below which an ORN does not respond to a specific odorant” is no 

longer applicable. The threshold under control conditions, cth, as it has been used 

herein, may serve as a simple and convenient definition, but it should only be used if 

the conditions are sufficiently well-defined. 

 

4.2.4 Novel CB1 transduction cascade in ORNs: PMCA as effector molecule 
 

The preliminary results concerning the transduction mechanism of CB1 receptors 

suggest (Figure 23, Figure 24) that the PMCA is involved in CB1 signaling. 

CB1 receptor activation would enhance PMCA activity and thus decrease [Ca2+]i 

whereas CB1 blockage would reduce PMCA activity and thus increase [Ca2+]i. The 

changes in [Ca2+]i levels could be localized to the apical dendrite and knob in the 

experiments performed and will be verified in future experiments. It is known, that 

CB1 receptor activation modulates [Ca2+]i (e.g. Straiker et al.,1999; Huang et al., 

2001; Mackie et al., 1995). However, the PMCA as an effector molecule of the CB1 

receptor in ORNs would propose a novel mechanism of CB1 receptor signaling. 

Certainly, the messengers in between the CB1 receptor and the PMCA still have to 

be identified. 

Another question, which has to be solved in a future study is, how altered 

[Ca2+]i levels in ORNs mediate the reduction and the delay of odorant-evoked [Ca2+]i 

transients. One hypothesis is that changes in [Ca2+]i induced by PMCA may affect 
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olfactory transduction by mimicking an adaptative state of the respective ORN to 

odorants and thus modulate ORN sensitivity. Three different types of adaptation for 

which elevated [Ca2+]i is crucial, were described for ORNs. First, Ca2+-calmodulin 

binding to the CNG channel decreases its affinity for cAMP. For this reason an equal 

stimulus results in smaller responses (Chen and Yau, 1994; Liu et al., 1994). 

Second, Ca2+-activated calmodulin-dependent protein kinase II inhibits the adenylate 

cyclase III by phosphorylation and attenuates odorant responses (Wei et al., 1998; 

Leinders-Zufall et al., 1999). Third, Ca2+-activated calmodulin-dependent protein 

kinase II targets the phosphodiesterase 1C, which then probably enhances cAMP 

destruction (Yan et al., 1995; Borisy et al., 1992). 

Further experiments will elucidate the CB1 transduction cascade in ORNs and 

the effect of CB1-receptor induced [Ca2+]i changes by PMCA in ORNs. 

 

4.2.5 Endocannabinoid and other modulatory systems exist in the OE of 
Xenopus laevis tadpoles and mammals 

 

In this thesis, it was demonstrated that the action of 2-AG controls detection 

thresholds of odorants in larval Xenopus laevis. Subsequently, it was investigated, 

whether the OE of higher vertebrates also exhibit the equipment of the 

endocannabinoid system. For this experiment, samples of rats and a human were 

used. 

The mRNA for the enzymes for production and degradation of 2-AG as well as 

anandamide were detected in rat and human. The CB1 and CB2 receptor were only 

found in rats, but GPR55 was detected in both species (Table 6). GPR55 is an 

orphan G protein-coupled receptor and was recently proposed as a novel 

cannabinoid receptor with different pharmacological properties than CB1 and CB2 

receptors (Barnett-Norris et al., 2005; Brown, 2007; Pertwee, 2007). Hence, the 

components or similar components of the endocannabinoid system found in larval 

Xenopus laevis also exist in the OE of rat and human. In order to speculate about 

similarities between the physiological meaning of endocannabinoids in the OE of 

larval Xenopus laevis and mammals, further experiments have to be done. 
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Recently, several studies revealed other neuromodulatory substances like 

orexin, leptin, adiponectin, and dopamine. Orexin, leptin, and adiponectin are 

hormones involved in food intake and energy metabolism, and act orexigenic or 

anorexigenic. Orexin and leptin are synthesized in the OE (Caillol et al., 2003; Baly et 

al., 2007) whereas adiponectin reaches the OE with the blood serum (Hass et al., 

2008). Dopamine acts neuroprotectively in the OE, probably by binding to 

D2 receptors (Hegg and Lucero, 2004). The source of dopamine is not identified yet. 

However, all described substances have their corresponding receptors on ORNs and 

probably influence olfactory transduction. Odorant transduction and coding seems to 

be a complex, highly dynamic process. Olfactory receptor neurons are thus not only 

tuned by 2-AG, as demonstrated in detail in this thesis, but also by many other 

substances. To gain first hints if these systems indeed exist in parallel within the OE 

of one animal, mRNA of OEs of larval Xenopus laevis, rats, and the human were 

screened for receptors of orexin, leptin, adiponectin, and dopamine. 

In tadpoles, mRNA for dopamine, adiponectin, and leptin receptors were found 

(the genetic identity for the orexin receptor is not known so far). Rats exhibit mRNA 

for dopamine, adiponectin, orexin, and leptin receptors. The human sample showed 

adiponectin as well as leptin receptor mRNA, but neither dopamine nor orexin 

receptor mRNA (Table 6). These data demonstrate that the morphological basis for a 

complex modulatory signaling system is present in all three species. To date it is not 

known how these systems act, and whether they interact with the endocannabinoid 

system. However, in the literature there are some hints for possible interplays of 

these systems: 

Peptides such as leptin, adiponectin, and orexin modulate food intake, and act 

on the endocannabinoid system. Consistently, it was shown that leptin treatment of 

mice affects 2-AG signaling in the thalamus (Di Marzo et al., 2001; Jo et al., 2005). A 

functional link between adiponectin and endocannabinoids was observed by 

Zyromski et al. (2009). In that study, CB1 receptor blockade increased circulating 

adiponectin concentration. Crespo and coworkers (2008) demonstrated that the 

CB1 receptor antagonist rimonabant blocks the orexigenic effect of orexin. The 

receptor for orexin belongs to the family of Gq/11 protein-coupled receptors (Sakurai et 

al., 1998). These receptors have the potential to stimulate endocannabinoid 

production through receptor-driven endocannabinoid release or Ca2+-assisted 
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receptor-driven endocannabinoid release (Hashimotodani et al., 2007; Kano et al., 

2009). Thus, orexin may be a trigger for endocannabinoid release in the OE. 

Another type of interaction between dopamine and orexin on the one hand and 

endocannabinoids on the other is receptor heterodimerization of the respective 

receptor with the CB1 receptor (Mackie, 2005). CB1 receptors and D2 receptors can 

form dimers with antagonistic interactions (Marcellino et al., 2008). Furthermore, CB1 

and orexin receptors can dimerize (Hilairet et al., 2003; Ellis et al., 2006). 

Many modulatory systems exist in the OE. Their roles and their possible 

interfaces have to be investigated by physiological experiments in future studies. The 

presence of various modulatory systems in the OE and the few studies indicating first 

functional links open the novel field of peripheral modulation of olfactory input. 

 

4.2.6 Conclusions 
 

To summarize, the findings support the view that paracrine 2-AG acts as an 

orexigenic modulator in the OE by increasing and decreasing the sensitivity of ORNs 

to odorants during phases of hunger or satiety (Figure 26). As a consequence, the 

concept of a “threshold as a well defined and constant concentration below which an 

ORN does not respond to a specific odorant” has lost its meaning. PMCA probably 

acts as the effector molecule of the CB1 receptor and alters the intracellular Ca2+ 

concentration according to the 2-AG level in the OE. This would be a novel signaling 

mechanism of the CB1 receptor and a future study will reveal the cascade in detail. 

Besides endocannabinoids, also other modulatory substances may act in the OE. 
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Figure 26: Scheme of endocannabinoid action in the OE. Under control conditions a 

tonic level of 2-AG is synthesized. DAGLα mRNA synthesis in sustentacular cells (~, blue) 

is enhanced upon food-deprivation and leads to an enhanced level of 2-AG binding to 

CB1 receptors (green circles) on ORN dendrites (blue arrows). This state renders ORNs 

more sensitive and increases action potential frequency. DAGLβ mRNA expression in 

ORNs (~, red) is not affected upon food-deprivation. 2-AG synthesized in ORNs feeds 

back on ORNs (red arrow). The CB1 receptor probably alters PMCA activity. Also other 

substances like orexin, leptin, adiponectin, and dopamine may modulate ORN activity. 

PC, principal cavity; ON, olfactory nerve; od, odorant; SC, sustentacular cell. 
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5 Summary 

The sense of smell is critical for finding food and mediating emotional and social 

responses. A dysfunction of this sense is often associated with diseases. In the last 

two decades much progress has been made in this research field and insights in how 

the sensation of smell is perceived has been gained. This thesis covers two topics of 

basic research in olfaction and is accordingly subdivided: 

 

1. Various olfactory receptor neuron subsets exist in the olfactory epithelium. 

One classification of these subsets can be made according to the transduction 

mechanism of odorants. The olfactory receptor neurons belonging to one 

subset transduce odorants into depolarizations using the cAMP-dependent 

transduction mechanism. To date, it is not possible to stain this subset or to 

interfere with their generator channels with potent and specific blockers. In this 

thesis, the styryl dye FM1-43 was identified as a marker for olfactory receptor 

neurons endowed with cAMP-dependent transduction machinery. The dye is 

internalized in neurons by uptake through cyclic nucleotide-gated channels, 

the generator channel of the cAMP-dependent olfactory receptor neurons. 

This was proven by interference of FM1-43 uptake with divalent ions and 

unspecific cyclic nucleotide-gated channel blockers used in high 

concentrations and further confirmed by evoking responses to cAMP and 

forskolin in FM1-43-stained cells. Characteristic for FM1-43-stained olfactory 

receptor neurons is that these cells did not respond to odors or rapidly lost 

their responsiveness. This suggested that FM1-43 severely interfered with the 

transduction machinery of stained olfactory receptor neurons. Indeed, 10 µM 

FM1-43 blocked currents through native cyclic nucleotide-gated channels to 

approximately 25 % and acts from the extracellular side. This tool thus allows 

optical differentiation and pharmacological interference with olfactory receptor 

neurons endowed with cAMP-dependent transduction at the level of the signal 

transduction. 
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2. The sense of smell is an important input for the search for food and food 

intake, but the underlying mechanisms for this functional interaction are poorly 

understood. One key factor for energy homeostasis and nutrition at central 

stages is the endocannabinoid system. Therefore, it was hypothesized, that 

the endocannabinoid system may link food intake with olfaction. Recently, 

cannabinoids were shown to act in the olfactory epithelium. Pharmacological 

interference at the according cannabinoid receptor modulates odor-evoked 

responses. In this thesis, it is shown that the endocannabinoid 2-AG is 

synthesized in the olfactory epithelium and acts on olfactory receptor neurons. 

Blocking 2-AG synthesis decreased and delayed odorant-induced responses. 

Analyzing single cells revealed, that there are two sources of 2-AG in the 

olfactory epithelium: the first are olfactory receptor neurons, where production 

of 2-AG depends on diacylglycerol lipase β, and the other are sustentacular 

cells, where production depends on diacylglycerol lipase α. Diacylglycerol 

lipase α mediated 2-AG-synthesis in sustentacular cells is influenced by the 

hunger state of the animal. The essential 2-AG effect in olfactory receptor 

neurons is the control of odorant detection thresholds. An enhanced 2-AG 

level decreases the detection threshold of an individual olfactory receptor 

neuron whereas a lowered 2-AG level increases the detection threshold. Thus, 

hunger renders olfactory receptor neurons more sensitive and 

endocannabinoid modulation in the nose may therefore substantially influence 

food seeking behavior. The intracellular effector mediating cannabinoid 

receptor actions probably is the plasma membrane calcium ATPase. This 

signaling cascade was not described as yet. However, future experiments 

have to be performed to identify the complete transduction cascade. Besides 

the endocannabinoid system, receptors for several other modulatory 

substances, i.e. orexin, leptin, adiponectin, and dopamine, were found in the 

olfactory epithelium. This indicates that already at the most peripheral stage of 

the olfactory system, the sensation of odors is modulated by many 

substances. 
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