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Summary 

 

SUMMARY 

Remyelination represents an important self repair mechanism in demyelinating diseases 

such as multiple sclerosis (MS). The intrinsic regenerative potential of the cerebral cortex 

is considerable, however cortical MS lesions frequently fail to remyelinate, especially at 

later stages of the disease. Repeated demyelinating events are one assumed cause of 

remyelination failure and the subject of this work. 

The aim of the study was to determine whether repetitive demyelinating episodes may 

exhaust the intrinsic cortical remyelinating capacity. Therefore, MS-like lesions were 

induced in the rat targeted cortical experimental autoimmune encephalomyelitis (EAE) 

model in a repeated manner. After subcutaneous immunization with recombinant rat 

myelin oligodendrocyte glycoprotein (rMOG), a cytokine cocktail composed of the 

proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was 

stereotactically injected in the rat cerebral cortex thereby leading to focal inflammatory 

demyelinating lesions. Lesions were repetitively induced at intervals of three weeks, 

simulating the repetitive events in relapsing-remitting MS. 

Histological analysis revealed widespread subpial and intracortical demyelinated lesions 

within the injected cortical hemisphere 3 days after lesion induction. Demyelination was 

accompanied by loss of mature oligodendrocytes and activation/recruitment of 

macrophages/microglia at this time point. However, three weeks after lesion induction 

extensive remyelination, restoration of oligodendrocyte population and resolution of 

inflammation was observed. This picture of de- and remyelination was consistently 

observed even after four cycles of demyelination at the same anatomical area. Although 

the fraction of myelinated axons was extensively restored after repetitive lesioning it did 

not fully recover. The initial inflammatory response measured by the density of activated 

macrophages/microglia was markedly stronger compared to the subsequent episodes. In 

contrast to NogoA-positive cells, oligodendrocyte transcription factor 2 (olig2)-positive 

oligodendrocyte precursor cell (OPC) density was stable and even increased at particular 

time points. Proliferation of olig2 and NogoA-positive cell populations was observed 

during demyelination. However, only few proliferated NogoA-positive cells were 
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identified within remyelinated lesions, in contrast to substantial proliferation of olig2-

positive OPCs.  

This work demonstrates the extensive intrinsic regenerative capacity of the rat cerebral 

cortex after repeated demyelinating insults. Four cycles of cortical demyelinating 

episodes did not lead to reduction of the cortical remyelinating capacity in our 

experimental setting. Our results suggest furthermore that oligodendroglial recruitment 

occurs by differentiation of existing rather than newly generated OPCs within the 

cerebral cortex. Findings from these studies will contribute to understanding the 

underlying processes of remyelination with implications for MS.  



Introduction 

1. INTRODUCTION 

 

MS also known as encephalomyelitis disseminata, is one of the most common 

neurological diseases in young adults. MS was first described by Jean Martin Charcot in 

1868 and is currently believed to be an autoimmune disorder causing inflammatory 

demyelination in the central nervous system (CNS). In northern Europe the general 

population prevalence of MS varies in average between 20-60/100000, being more 

common in females (Sospedra and Martin, 2005). 

As MS is a complex and heterogeneous disorder, many questions remain open despite 

intensive research. The main focus of this study addresses cortical pathology of MS 

which extent has been underestimated for a long time by the scientific community. This 

chapter provides an introduction to clinical and pathological features of multiple 

sclerosis, especially focussing on cortical grey matter pathology. In addition, 

remyelination, oligodendroglial recruitment and genesis will be addressed. Finally, the 

targeted cortical EAE model which is used for studying repetitive inflammatory 

demyelination will be introduced. 

 

1.1 Multiple Sclerosis 

1.1.1 Etiology of MS 

Despite extensive efforts the etiology of MS remains enigmatic. MS is considered to be 

autoimmune in nature, but its exact cause remains still unknown. However, it occurs to be 

a result of genetic and environmental factors (Sospedra and Martin, 2005; Gold et al., 

2006).  

Genetic predisposition seems to play a role since first-degree relatives and monozygotic 

twins of affected individuals show a higher risk to develop MS (Sospedra and Martin, 

2005). Furthermore, susceptible genes on chromosome 6p21 in the area of the major 

histocompatibility complex (MHC) seem to account for 10-60% of genetic risk in MS 

(Hillert and Olerup, 1993; Haines et al., 1998; Oksenberg et al., 2008). 
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In addition to genetic factors, epidemidological studies strongly suggest that 

environmental factors are involved in disease predisposition. To these factors belong e.g. 

sunlight exposure and ultraviolet radiation, hormonal and hygienic status, as well as the 

consequences of socioeconomic and industrial development (Sospedra and Martin, 2005). 

Infectious agents have been furthermore postulated to cause MS. This is supported by 

studies showing a possible association between viral infections and exacerbations of MS 

symptoms (Bebbe et al., 1967; Sibley et al., 1985). Especially, the Epstein-Barr virus 

(EBV) has been related to MS but its direct implication in the disease remains unproven 

(Johnson, 1994; Bagert, 2009). 

 

1.1.2 Clinical presentation 

MS patients suffer from a variety of neurological symptoms, such as optic neuritis, 

sensory disturbances, weakness, diplodia, diminished dexterity, ataxia, fatigue and 

bladder dysfunction. Symptoms occur in either discrete attacks (relapsing forms) or 

slowly accumulating over time (progressive forms). The initial symptoms are often 

transient and mild, but worsen often with time ending with permanent disability. With 

regard to its clinical course, three main subtypes have been described (Lublin et al., 

1996):  

Relapsing-remitting MS (RRMS): 

The relapsing remitting subtype is the most frequent (85-90%) subtype of MS. It is 

characterized by relapses followed by remissions without any disease activity in between. 

Despite remission, disability may accumulate after each relapse. 

Primary progressive MS (PPMS): 

This subtype is characterized by progressive disability from onset of the disease, with no 

or occasional relapses and remissions. Approximately 10 to 15% percent of all MS 

patients show a primary progressive course. 

Secondary progressive MS (SPMS): 
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The secondary progressive subtype describes patients with initial relapsing-remitting MS, 

who then experience progressive disability with no definite remission. The conversion 

from the relapsing-remitting to the secondary progressive phase on average takes place 

between 15 and 20 years after disease onset. 

 

1.1.3 Immunology 

MS is considered to be caused by an autoimmune response against unknown antigens of 

the myelin sheaths. According to this concept, myelin antigens are recognized by 

professional antigen presenting cells (APCs) and presented in the periphery via MHC 

class II molecules to T helper 1 (Th1) cells. Following activation, priming and clonal 

expansion, CD4-positive cells infiltrate the CNS where they re-encounter their antigen. 

Upon restimulation by microglia, CD4-positive cells initiate effector functions such as 

the secretion of the pro-inflammatory cytokines TNF-α, IFN-γ and interleukin 2 (IL-2) 

(Merril, 1992). Thereby, attracted macrophages and resident microglia become activated, 

which in turn contribute to the inflammatory milieu by the release of matrix 

metalloproteinases (MMPs), oxyradicals and TNF-α. In addition, the secretion of the 

chemoattractants interferon-inducible protein-10 (IP-10) and Rantes and the activation of 

their respective receptors chemokine (C-X-C motif) receptor 3 (CXCR3) and chemokine 

(C-C motif) receptor 5 (CCR5), promote the recruitment of leukocytes into the sites of 

inflammation (Simpson et al., 1998; Martínez-Cáceres et al., 2002). CNS migration 

through the blood brain barrier (BBB) is enabled by the upregulation of the intercellular 

adhesion molecule-I (ICAM-I) and the vascular cell adhesion molecule-I (VCAM-I) on 

endothelial cells and their ligands leukocyte function-associated antigen-1 (LFA-1) and 

very late antigen-4 (VLA-4), the last ones being expressed on the surface of activated 

effector cells (Yusuf-Makagiansar et al., 2002). 

Class I MHC-restricted CD8-positive cells are supposed to play an important role in MS. 

They are considered to directly target oligodendrocytes and axons, indicated by secretion 

of cytotoxic granules and upregulation of cytotoxic T-cell markers such as Fas, Fas-

ligand and granzyme B (Lazzarini, 2004). B- and plasma-cells located in the meninges 

and perivascular space is suggested to contribute to the pathogenesis by mediating 
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myelin-specific antibody responses in a subset of MS patients (Lucchinetti et al., 2000; 

Serafini et al., 2004). Antibodies may bind to membrane bound antigens enabling Fc-

receptor-mediated cytotoxicity and phagocytosis by activated macrophages. Furthermore, 

the complement cascade is initiated (Lazzarini, 2004). 

Inflammation usually resolves after each relapse and is promoted by a transition of CD4-

positive Th1 to Th2 cells. These lymphocytes secrete anti-inflammatory cytokines such 

as IL-4, IL5, IL-10, IL-13 and transforming growth factor-β (TGF-β), silencing the 

inflammatory reaction (Issazadeh et al., 1995). 

 

1.1.4 Histopathology 

MS is characterized by multifocal, demyelinated plaques with glial scar formation. T-cell 

infiltration occurs in all active MS lesions. However, histopathological heterogeneity was 

observed in MS lesions. Accordingly, four histopathological patterns were proposed 

(Lucchinetti et al., 2000). Pattern I describes a macrophage-associated demyelination 

promoted by toxic products such as TNF-α or reactive oxygen species (Probert et al., 

2000; Griot et al., 1990). In addition to macrophage activation, antibody and 

complement-mediated demyelination takes place in pattern II. Distal 

oligodendrogliopathy (pattern III) and primary oligodendrocyte degeneration (Pattern IV) 

was observed in a subgroup of patients (Lucchinetti et al., 2000).    

Importantly, these patterns describe the acute phase of disease in which inflammation and 

demyelination is still ongoing, and therefore termed “active” lesions. In contrast, chronic 

or inactive lesions, lacking signs of active demyelination, are characterized by 

demyelination, astrogliosis, axonal damage, and loss and can not be arranged to one of 

the four aforementioned patterns (Lazzarini, 2004).   

 

1.1.5 Cortical lesions 

Grey matter involvement in MS has already been observed in early disease history 

(Taylor, 1892; Sander, 1898; Brownel and Hughes, 1962). Later however, cortical lesions 

have been overseen for decades. Due to significant improvement in staining techniques, 
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they were finally rediscovered by the end of the century (Kidd et al., 1999; Peterson et 

al., 2001; Bo et al., 2003). Since the use of sensitive in vivo imaging techniques, the 

importance of cortical involvement becomes more apparent (Filippi et al., 1996; Geurts et 

al., 2005; Kangarlu et al., 2007).   

Cortical demyelination is a frequent phenomenon occurring in 90% of MS patients with 

long disease duration (Albert et al., 2007). On average, between 10-25% of cortical grey 

matter is demyelinated (Albert et al., 2007; Bo et al., 2003; Kutzelnigg et al., 2005; 

Gilmore et al., 2009). In the progressive stage of the disease CNS grey matter is even 

more affected compared to white matter (Gilmore et al., 2009). Three main types of 

cortical lesions have been described, namely leukocortical lesions, which extend through 

white and grey matter, pure intracortical lesions and subpial lesions. Last mentioned 

lesion type is the most frequent and extensive one (Peterson et al., 2001; Bo et al., 2003).    

Compared to white matter lesions, cortical demyelination is less inflammatory, presenting 

with reduced lymphocyte infiltration and reduced microglia activation (Peterson et al., 

2001; Bo et al., 2003). Furthermore, complement deposition, limited astrogliosis and 

relative axonal preservation was reported (Schwab and McGeer, 2002; Peterson et al., 

2001; Wegner et al., 2006; Vercellino et al., 2005). Despite weak lymphocyte-mediated 

inflammation, follicle-like structures harbouring B-cells were observed in the sulcal 

meninges of SPMS patients. These structures are associated with enhanced axonal 

damage and disability (Serafini et al., 2004; Magliozzi et al., 2007). In addition to 

moderate axonal damage, neuronal loss and cortical atrophy was reported (Wegner et al., 

2006). On the contrary, reduction of synaptic densities does not necessarily occur 

(Vercelino et al., 2005; Kutzelnigg et al., 2007). However, reduced expression of amino 

acid transporters and gamma-aminobutyric acid (GABA) related transcripts, and 

enhanced excitotoxicity underline the functional consequences of cortical MS lesions 

(Vercellino et al., 2007; Dutta et al., 2006).  

Classically, MS patients present with sensory and motor symptoms. In case of cortical 

involvement patients may additionally suffer from cognitive and neuropsychiatric 

symptoms, thus contributing to disease severity already in early stages of the disease 

(Skegg et al., 1993; Haase et al., 2003; Zarei et al., 2006).   
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1.1.6 Remyelination 

Remyelination is an important repair mechanism and is accompanied by functional 

recovery such as the reestablishment of salutatory conduction and the resolution of 

clinical symptoms (Smith et al., 1979; Jeffery et al., 1997; Merkler and Liebetanz, 2006). 

Remyelinated axons have thinner and shorter internodes and usually do not attain original 

dimensions (Blakemore, 1974; Ludwin and Maitland, 1984). In histological sections of 

MS patients, remyelinated areas are characterized by pale and less dense myelin, so 

called “shadow plaques” (Itoyama et al., 1980). Furthermore, remyelinated lesions can be 

detected by magnetic resonance imaging (Barkhof et al., 2003; Merkler et al., 2005).   

Remyelination is a frequent phenomenon, occurring in more than 50% of MS plaques 

(Lucchinetti et al., 1999; Patrikios et al., 2006, Patani et al., 2007). However, the grade of 

remyelination depends on anatomical location and disease stage (Stadelmann and Brück, 

2008; Goldschmidt et al., 2009). As an example, regions close to the ventrikel walls 

remyelinate less, opposed to those in the deep white matter (Patrikios et al., 2006). In 

turn, cortical grey matter remyelination is more frequent and extensive compared to white 

matter lesions (Albert et al., 2007). Despite long disease duration extensive remyelination 

can occur, but fails in the majority of cases at later stages of the disease (Patani et al., 

2007; Goldschmidt et al., 2009).     

Remyelination is neuroprotective, preventing secondary axonal damage (Kornek et al., 

2000; Irvine and Blakemore, 2008; Trapp and Nave, 2008). Furthermore, the presence of 

myelin proteins such as proteolipid protein (PLP) and 2’,3’-cyclic nucleotide 3’-

phosphodiesterase 1 (CNP1), plays an important role in axon stability (Lappe-Siefke et 

al., 2003; Griffiths et al., 1998; Edgar and Garbern, 2004).  

 

1.1.7 Mechanisms of remyelination 

Loss of remyelination capacity is considered to play an important role in MS pathology, 

however, the mechanisms causing impaired remyelination are not fully understood. To 

date there are three main hypotheses which describe the different possible causes of 

remyelination failure (Franklin and ffrench-Constant 2008). The first is known as the 
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failure of recruitment hypothesis, in which inadequate provision of OPCs might be the 

cause of incomplete or total lack of myelin restoration. The second hypothesis describes 

how OPCs, after being recruited into the sites of demyelination fail to differentiate to 

remyelinating oligodendrocytes. Lastly, the dysregulation hypothesis suggests that 

remyelination might fail due to disturbances of the precise coordination of regenerative 

cellular events (Franklin and Kotter, 2008). Furthermore, disturbed axon-glia interactions 

may hinder remyelination (Franklin, 2002). Age is an aggravating factor for the efficacy 

of endogenous remyelination as shown in animal studies (Sim et al., 2002; Shen et al., 

2008). 

Treatments improving remyelination are not available yet. However, basic research in 

animal models proposes new approaches for future remyelination strategies. These 

include the enhancement of endogenous repair mechanisms such as the proliferation and 

differentiation of endogenous OPCs (Franklin and Kotter, 2008). Furthermore, successful 

transplantation of myelinating cells has been proven in several animal studies, but its 

therapeutic potential in humans remains open (Stangel und Trebst, 2006). The current 

standard therapy for MS consists of treatment with immunomodulatory drugs. These 

therapeutic approaches may indirectly influence remyelination by preventing further 

myelin damage (Lazzarini, 2004).  

 

1.2 Myelin 

1.2.1 Structure and function of myelin 

Neurons communicate by depolarizing the electrical potentials of their membranes, a 

process called action potential. This occurs by exchange of sodium and potassium along 

closely distributed channels on the axon. The majority of axons are wrapped by lipid-rich, 

lamellar structures named myelin sheaths. Due to the myelin-sheaths insulating 

properties, action potentials jump between myelin free spaces, a process called salutatory 

conduction. This provides fast and energy-efficient signaling over longer distances, 

allowing cross linking of remote brain areas. In the CNS myelin sheaths are built by 

specialized cells called oligodendrocytes. The complex radial geometry allows these cells 
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to build multiple internodes on axons within their reaching area. Axons are accompanied 

by many oligodendrocytes, each of one myelinating a particular segment along the axonal 

route. In contrary, dendrites are never myelinated. Myelin sheaths are compact spiraled 

cellular processes that contain two plasma membranes and no cytoplasm.  Opposed to 

other cell membranes, myelin is composed of up to 75% of lipids. Furthermore, a variety 

of membrane proteins and cytoskeletal components are involved in formation and 

maintenance of this complex cell organelle. Briefly, the most abundant ones are PLP, the 

myelin basic protein (MBP), and the myelin associated glycoprotein (MAG). 

 

1.2.2 Myelin proteins 

PLP is the major integral membrane protein of myelin consisting of four transmembrane 

domains. It is distributed in compact myelin, and is important for structural stability of 

myelin, keeping normal spacing between single sheaths. Lack of PLP and its splice 

variant DM20 does not impair myelination but leads to structural disturbances followed 

by axonal damage in adulthood (Trapp and Nave, 2008).    

MBP is an extrinsic membrane protein located in the cytoplasmic leaflets of compact 

myelin. The MBP deficient shiverer mouse shows hypo- and dysmyelination, indicating 

an important role of this protein in myelin formation and preservation (Lazzarini, 2004).  

MAG is located in the periaxosomal and mesoaxonal membranes of compact myelin. 

This protein has been shown to participate in the control of compact myelin distribution 

and is essential for myelination and axonal integrity (Quarles, 2007).  

Myelin oligodendrocyte glycoprotein (MOG) is an integral membrane protein consisting 

of an immunoglobulin G (IgG)-like extracellular domain, a transmembrane domain, a 

membrane associated domain and two cytoplasmic domains. Quantitatively, it comprises 

of 0.05-0.1% of total myelin protein. However, it is of high immunological importance 

since it is an autoantigen frequently used to induce EAE. MOG is suggested to be a 

cellular adhesive molecule, regulating oligodendrocyte microtubule stability. Further, 

MOG might mediate interactions between myelin and the immune system, in particular 

the complement cascade (Lazzarini, 2004).   
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1.3 Oligodendrogenesis 

1.3.1 Developmental oligodendrogenesis 

Neurons, astrocytes and oligodendrocytes are the most common cell types in the 

vertebrate CNS. Oligodendrocytes arise from the neuroepithelial cells of discrete neural 

tube regions (Ono et al., 1995). They first appear as so called oligodendrocyte precursor 

cells (OPCs) along the rostro-caudal extent at the ventral part of the spinal cord. In more 

rostral parts of the CNS the earliest oligodendroglial precursors are located in the 

ventricular and subventricular zone (Ono et al., 1997). Later, new sources of proliferation 

are available, such as the medial and lateral ganglionic eminence, from where new OPCs 

migrate into the developing cerebral cortex (reviewed in Miller, 2002).  

Proliferation, migration and maturation of oligodendrocytes are orchestrated by a variety 

of signaling molecules, but also by gene and protein expression. At the beginning both 

neuronal and oligodendroglial lineages respond to the signaling molecule sonic hedgehog 

and express the transcription factor Olig2 (Zhou et al, 2001). Later, combinatory 

expression of olig1, olig2 and Nk2 transcription factor related locus 2 (Nkx2.2) provides 

the generation of OPCs. At this stage OPCs can be detected with the monoclonal 

antibody A2B5, which is directed against a specific ganglioside epitope (Zhou et al., 

2001). Further, migrating early progenitors express the sulfated proteoglycan 

neuronal/glial 2 (NG2) and the platelet derived growth factor receptor α (PDGF-αR), by 

which they can be distinguished from neuronal precursors. Motoneurons also express 

Olig2, but they follow the neuronal lineage by additional expression of Ngn1 and Ngn2 

(Lu et al., 2002). Once departed from the neuronal lineage, precursors differentiate to 

astrocytes and oligodendrocytes and are therefore termed oligodendrocyte-type-2 

astrocyte (O-2A) progenitor cells (Raff et al., 1984). OPCs continue their maturation and 

express galactosulfatide, which is detectable using the monoclonal anti-oligodendrocyte 

marker O4 (Warrington and Pfeiffer, 1992). O4-positive OPCs, also termed late OPCs are 

postmigratory but still proliferative (Pfeiffer et al., 1993).  

After migration from the germinal zones, OPCs evenly distribute in gray and white 

matter followed by a wave of differentiation spreading from the corpus callosum towards 

the pial surface (Nishiyama et al., 1996; Pringle et al., 1992; Reynolds and Hardy, 1997). 
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Differentiation is mediated by down regulation of NG2 and PDGF-αR. In addition, 

myelin proteins are expressed such as MAG, CNP, MBP but not PLP and MOG. Finally, 

myelinating oligodendrocytes express PLP and MOG. Premyelinating oligodendrocytes 

which do not differentiate to myelinating oligodendrocytes undergo apoptosis, occurring 

in approximately 50% of these cells. However, a small population of proliferative late 

OPCs remains in the adult CNS after development.         

 
(Figure obtained from Miller, 2002) 

Figure 1: Proliferation and differentiation of oligodendrocytes during development 
Developmental oligodendroglial precursor cells (OPCs) derive from the subventricular zone (SVZ) of the neural tube. Upon the 

proliferative and migratory effects of hormonal factors such as platelet-derived growth factor (PDGF) and fibroblast growth factor 

(FGF), early OPCs can be detected using the monoclonal antibody A2B5. During the transition from proliferation to differentiation of 

oligodendroglial cells, the expression of surface antigens such as galactocebroside (GC) and galactosulfatide (which can be recognized 

by the monoclonal antibody O4) increases. Myelin proteins such as myelin basic protein (MBP) and proteolipid protein (PLP) are 

expressed at late stages of differentiation and are required for myelin assembly. OPCs which do not complete the maturation process 

undergo apoptosis. 
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1.3.2 Proliferation and differentiation promoting factors 

A variety of trophic factors promote proliferation. As an example, plateled derived 

growth factor (PDGF) which is released by astrocytes and neurons, increases 

proliferation of OPCs by acting on its receptor PDGFαR (Noble et al., 1988; Pringle et 

al., 1992; Yeh et al., 1991). PDGF is not only a potential mitogen, it is also required for 

oligodendroglial survival (Fruttiger et al., 1999). The beneficial effects of PDGF are 

enhanced by the presence of the chemokine (C-X-C motif) ligand 1 (CXCL1) (Robinson 

et al., 1998). Moreover, CXCL1 regulates the migration of immature progenitors (Tsai et 

al., 2002). The basic fibroblast growth factor (FGFb) also supports proliferation by 

enhancing the expression of PDGF-αR on OPCs (McKinnon et al., 1991). Further 

promoters of proliferation are neurotrophin-3 (NT3), fibroblast growth factor 2 (FGF2), 

neuregulin-1 (NRG1) and its receptor  eukaryotic ribosome biogenesis protein 2 (Erb2) 

(Barres et al., 1994, Qian et al., 1997; Vartanian et al., 1999; Park et al., 2001).   

Differentiation is accompanied by upregulation of TGF-β. Additionally, the numbers of 

precursors can be controlled by altering the availability of survival factors such as PDGF. 

Proliferation and differentiation mechanisms mesh, as factors which promote 

differentiation on the one hand, in turn inhibit proliferation (Lazzarini, 2004). 

 

1.3.3 Adult oligodendrogenesis 

After development, a quiescent population of NG2 and PDGFαR expressing OPCs 

remains in the adult CNS. In contrast to developmental OPCs, adult OPCs show a more 

mature phenotype as they also express O4 (Dawson et al., 2000). Adult OPCs derive 

from developmental ones or from type B cells of the subventricular zone (Wren et al., 

1992; Lazzarini, 2004). Adult OPCs are abundant in the CNS and account for between 3 

to 9% of all cells. Further, spinal cord OPC:oligodendrocyte ratio is 1:4, whereas 1:1 ratio 

was found in gray matter (Dawson et al., 2003). The reason why adult OPCs do not 

differentiate to oligodendrocytes and why they remain as a quiescent abundant population 

is still unknown. Likely, gray matter environment arrests oligodendrocyte differentiation 

in an immature state, by the relative down regulation of humoral factors to a sub-

threshold level during adulthood (Dawson et al., 2000; Levine et al., 2001; Lazzarini, 
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2004). However, adult OPCs are considered to differentiate to myelinating 

oligodendrocytes and replace lost ones, providing a potential source of remyelination in 

the diseased CNS, as occurring in MS and experimental demyelination. The higher ratio 

of OPC:oligodendrocyte in cerebral cortex compared to spinal cord provides a potent 

source of remyelinating cells that could explain the relatively effective cortical 

remyelination in MS patients (Lazzarini, 2004). Other studies indicate that OPCs may be 

involved in synaptic function (Bergles et al., 2000; Jabs et al., 2005; Karadottir et al., 

2008). 

As in developmental myelination, remyelination is associated with the upregulation of the 

transcription factors Olig2, Nkx2.2, myelin transcription factor 1 (Myt1) and Sry-related 

HMG box (Sox2) (Fancy et al., 2004; Watanabe et al., 2004; Talbott et al., 2005; Vana et 

al., 2007). Furthermore, adult OPC proliferation and differentiation is promoted by 

humoral factors. The most potent mitogen is PDGF acting via its receptor PDGFαR, 

which is uniquely expressed on OPCs (Noble et al., 1988; Wolswijk et al., 1991). FGF 

stimulates proliferation, partly by enhancing PDGFαR expression, and inhibits 

differentiation on the other hand (Besnard et al., 1989; Bansal and Pfeifer et al., 1994; 

McKinnon et al., 1990). The role of NT3 in adult oligodendrogenesis is not clear so far. 

However, studies indicate both, proliferative and differentiative effects of NT3, acting in 

combination with PDGF and basic fibroblast growth factor (bFGF) (Ibarrola et al., 1996; 

McTigue et al., 1998). Insulin-like growth factor-1 (IGF-1) increases proliferation and 

survival, enhances differentiation, and modulates expression of MBP in both OPCs and 

oligodendrocytes (Barres et al., 1992; McMorris and Dubois-Dalcq, 1988; Saneto et al., 

1988). 

 

1.4 Animal models of MS 

1.4.1 Toxin-induced demyelination models 

A number of animal models are available to study MS pathology and demyelination. One 

of the most used approaches is the injection of gliotoxic agents into locations of the CNS, 

producing focal demyelinating lesions. Due to the fact that spontaneous remyelination 
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takes place in almost all of these lesions, toxin induced demyelination provides a potent 

tool to study endogenous remyelination and oligodendrocyte recruitment, but also the 

engraftment of transplanted cells.  

Lysolecithin (lysophosphatidyl choline) is a membrane solubilizing agent and was first 

used in experimental demyelinaton by Hall (Hall, 1972). Injection into the rat dorsal 

funiculus produces ellipsoid shaped demyelination which extends longitudinally over 3 to 

8mm. Lysolecithin has a particular toxicity for myelin and oligodendrocytes. However, 

marginal loss of axons and astrocytes occurs in the point of injection. Following 

demyelination, oligodendrocyte and Schwann cell remyelination takes place. 

Injection of ethidium bromide into the rat spinal cord results in much larger areas of 

demyelination than in the lysolecithin model (Yajima and Suzuki, 1979; Blakemore et al., 

1982). This deoxyriribonucleic acid (DNA) intercalating agent kills oligodendrocytes, 

oligondendrocyte precursors and astrocytes. Both oligodendrocyte and Schwann cell 

remyelination takes place, depending on location and species (Woodruff and Franklin, 

1999; Jeffery and Blakemore, 1997). As mentioned above, spontaneous remyelination 

occurs in all toxin-induced demyelination models. Therefore, the contribution of 

engrafted cells is difficult to evaluate. For this reason, X-radiation prior to gliotoxin 

injection is used to deplete the local OPC population and inhibit endogenous 

remyelination (Hinks et al., 2001). Exogenous remyelination via cell transplantation can 

then be investigated in this model.  

The cuprizone mouse model is a widely used non-invasive model to investigate effects 

directly related to demyelination and remyelination within the CNS (Blakemore, 1973; 

Matsushima and Morell, 2001). Feeding young adult mice with the cuprizone (bis-

cyclohexanone-oxalhidrazone) for 5 weeks results in synchronous and consistent 

demyelination of the corpus callosum. Furthermore, strong spontaneous remyelination 

occurs rapidly after cuprizone removal from the diet. 

In addition to aforementioned models demyelination can be induced by the injection of 

anti-galactocerebroside antibodies and complement (Keirstead and Blakemore, 1997). 

Compared to gliotoxins, lesions involve a greater area of the dorsal funiculus, but in turn 

are shorter in length. Furthermore, less axonal loss takes place. 
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1.4.2 EAE 

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating 

disease of the CNS. EAE was first described by Rivers and colleagues in 1933 who 

observed that vaccination with rabbit CNS homogenate resulted in brain inflammation in 

rhesus monkeys (Rivers et al., 1933). Today EAE is the most used animal model of MS 

and acute disseminated encephalomyelitis (ADEM). EAE is nowadays induced by active 

immunization with a single injection of defined myelin peptides/proteins such as MBP, 

PLP and MOG (Kabat et al., 1951; Gold et al., 2006). The disease can be reliably 

induced in many different species, such as in the marmorset monkey, guinea pig, mouse 

and rat. Depending on the genetic background of the species or strain and the antigen 

used for vaccination, EAE reproduces many clinical and immunopathological aspects of 

MS (Hohlfeld and Wekerle, 2001; Gold et al., 2006).  

The autoimmune response against myelin sheath components is driven by 

encephalitogenic CD4-positive T cells (Ben-Nun et al., 1981). This is enabled by 

professional APCs which present antigen to fully reactive T cells (Dustin and Cooper, 

2000). In addition, B cell derived autoantibodies play an important role in rat and 

marmorset leading to extensive demyelination, but not in mice (Schluesener et al., 1987; 

Linington et al., 1988; Genain et al., 1995; von Budingen et al., 2004). Furthermore, 

components of the innate immune system like macrophages and Toll-like receptors are 

involved in disease pathogenesis (Takeda et al., 2003; Munz et al., 2005). 

Clinically, EAE disease is evaluated by a standardized EAE clinical score, the equivalent 

to the expanded disability status scale (EDSS) used in humans (Kurtzke, 1983). The 

clinical course of EAE can be either monophasic as in rats immunized with MBP, 

relapsing-remitting like in PLP/MOG peptide-immunized SJL mice, or secondary 

progressive such as observed in antibody high (ABH) Biozzi mice (Pender, 1987; Fritz et 

al., 1983; McRae et al., 1992; Hampton et al., 2008, Gold et al., 2006).  

To date, MOG is the only antigen that induces a significant demyelinating antibody-

mediated immune response.  
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1.4.3 Targeted cortical EAE model 

Studying cortical MS pathology is hampered by the lack of adequate animal models, as 

conventional EAE predominantly affects the spinal cord, but rarely the brain. Indeed, 

toxin-induced demyelination approaches are available, however, they do not reflect the 

autoimmune nature of MS. To overcome this limitation the targeted cortical EAE model 

was established by Merkler and colleagues (Merkler et al., 2006). Lewis rats are 

subcutaneously immunized with a subthreshold dose of MOG which leads to production 

of anti-MOG autoantibodies, but not to overt neurological symptoms. Following 

peripheral immune priming, lesions are induced by injection of pro-inflammatory 

cytokines into the cerebral cortex.  

The underlying concept of this model is that application of TNF-α/IFN-γ locally attracts 

blood born monocytes and lymphocytes into the target area, going inline with transient 

BBB leakage. This allows vaccination derived anti-MOG autoantibodies to penetrate into 

the CNS paremchyma and to bind to their epitopes on the myelin surface. Finally, 

demyelination is mediated by a combination of complement and antibody-dependent 

cellular cytotoxicity mechanisms (Linington et al., 1988; Gold et al., 2006). 

Histopathologically, the targeted cortical EAE model is characterized by extensive 

subpial and intracortical demyelination and oligodendroglial loss. The subpial lesions are 

reminiscent to cortical type III lesions observed in MS patients (Merkler et al., 2006; 

Peterson et al., 2001). In addition, demyelination is accompanied by 

microglia/macrophage activation, CD4- and CD8-positive T cell infiltration, and 

complement deposition. Furthermore, an acute axonal damage but no substantial neuronal 

loss was observed. In contrast to targeted white matter lesions, extensive cortical 

remyelination takes place and inflammation resolves within two weeks post lesion 

induction (Kerschensteiner et al., 2004; Merkler et al., 2006). For mentioned reasons, 

focal cortical EAE model is very suitable for demyelination and remyelination studies. 
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1.5 Aim 

The failure to achieve remyelination is considered to play an important role in MS, 

however the mechanisms causing this failure are not fully understood. Inadequate 

provision of OPCs is a proposed cause of impaired or total lack of myelin restoration. A 

further hypothesis describes how OPCs, after being recruited into the sites of 

demyelination fail to differentiate to remyelinating oligodendrocytes. Irrespective of the 

aforementioned theories and age-dependent effects, frequency of demyelinating events 

may also play a role in MS. The reason for focussing on the cerebral cortex is based upon 

its ability to remyelinate during early stages of the disease, even after indications of 

repetitive demyelinating events. However, limited or impaired myelin restoration in 

patients with long disease duration indicates an exhaustion of the remyelination capacity.    

My thesis addressed whether chronic demyelinated lesions within the cerebral cortex in 

MS patients are the result of repetitive demyelinating episodes.  

The aims were: 

1. to  induce repetitive inflammatory demyelinated lesions within  the same cortical 

area in the targeted cortical rat EAE model of MS 

2. to characterize de- and re-myelination after repeated lesion inductions 

3. to characterize oligodendroglial recruitment in targeted cortical EAE lesions 

4. to investigate the effects of repeated targeted cortical EAE lesions on 

inflammation and axonal density 



Material and Methods  

2. MATERIALS AND METHODS 

 

The study was carried out at the laboratories of the Department of Neuropathology and 

the animal house (Zentrale Tierexperimentelle Einrichtung, ZTE) of the University 

Medical Center, Göttingen, according to the approval of the Bezirksregierung 

Braunschweig.  

 

2.1 Study design 

Our objective in the present study was to determine whether repetitive demyelinating 

cortical episodes may exhaust the intrinsic cortical remyelinating capacity. For this 

purpose, we induced repeated lesions (each of which simulates a “demyelinating 

episode”) at fixed intervals and a defined location in the rat cortex followed by 

histological assessment at different time points. 

In the classical rodent EAE model, lesions are mostly confined to the spinal cord but only 

rarely affected the cerebral cortex. Therefore, a new model of MS was established that 

allows for EAE lesions to be targeted in the cerebral cortex with high accuracy in terms 

of the time point and location of lesion evolvement as well as lesion recovery (Merkler et 

al., 2006). In this animal model, rats are immunized with a subclinical dose of 

recombinant myelin oligodendrocyte glycoprotein (rMOG). Subclinical MOG 

immunization induces anti-MOG antibodies without overt clinical symptoms per se. In a 

second step, pro-inflammatory mediators are stereotactically injected into the rat cerebral 

cortex 1 mm caudal to bregma and 2 mm lateral to the sagittal suture, which finally 

induce focal extensive subpial and intracortical lesions (Figure 2). According to Paxinos 

stereotactic brain atlas, the affected area includes the motor (M1) and sensory cortex (S1) 

and allows for future behavioural analysis with regard to putative motor and sensory 

implications (Paxinos, 1998). The time points chosen for histological evaluation include 

the maximum extent of demyelination, which occurs at day 3 post lesion induction and 

remyelination at day 21. Lesioning was then repeated at the same particular area a total of 

four times at 21-day intervals, thus providing the necessary time for recovery between 

each demyelinating event. Animals were sacrificed at previously mentioned time points 
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after the first, second and fourth lesioning episodes. Histological analysis was performed 

with respect to demyelination, remyelination, recruitment of oligodendrocytes, 

inflammatory infiltrates and axonal integrity. By computer-aided and manual analysis, 

the following parameters were analyzed and quantified: demyelinated area, fraction of 

myelinated fibres and cell densities.    

In order to investigate oligodendrocyte recruitment in more detail, the proliferative 

kinetics of oligodendroglial populations in response to demyelination was analysed. 

Therefore, animals were labelled with the proliferation marker 5-bromo-2-deoxyuridine 

(BrdU), which is incorporated in dividing cells.  

High and stable serum levels of anti-MOG autoantibodies are an important prerequisite 

for induction of demyelinating episodes. Therefore, serum levels of MOG autoantibodies 

were monitored by ELISA beginning from the initial lesion (day 18 post immunization) 

until the last lesion induction (day 82 post immunization).  
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Figure 2: Experimental design 
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2.2 Animals and groups 

A total number of n=101 adult female Lewis rats (195g ± 15, Harlan, Horst, Netherlands) 

were included in this study. The animals were kept in groups (max. 8 animals per cage) 

on a 12:12 h light/dark cycle with food and water provided ad libitum. All experiments 

were approved by the Bezirksregierung Braunschweig, Germany.  

This study consisted of 5 independent experiments from which 4 were pooled for the 

repetitive lesioning approach (Table 1), as interexperimental variations were negligible. 

In an additional experiment, proliferation of oligodendroglial cells were analysed in more 

detail (Table 2). The following tables show the total numbers of animals used: 

 

immunization 
1st injection 

days post injection* 

2nd injection 
days post injection* 

4th injection 
days post injection* 

3 21 3 21 3 21 

s.c. MOG 9 11 7 5 8 18 

s.c. IFA 6 - - - 4 - 

no 6† - - - - - 

* sacrifice of animals; † 3 of 6 animals were killed immediately after injection 

Table 1: Numbers of animals, groups and time points of the repetitive lesioning approach 

 

immunization 
1st injection 

days post injection* 

3 21 21‡ 

s.c. MOG 4 6 - 

s.c. IFA 5 6 6+

* sacrifice of animals; ‡ intracerebral PBS injection instead of cytokines 
                                   + the contralateral side was used as a control and termed “non-injected”   

Table 2:  Numbers of animals, groups and time points of the single lesioning approach 
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2.3 Solutions and reagents 

 

Phosphate buffered saline (PBS): 

PBS (Dulbecco, Biochrom AG) 9.55g 

distilled water    1000ml 

 

1M sulfuric acid: 

 96% sulfuric acid (Merck)  51.1ml 

 distilled water    448.9ml 

 

4% paraformaldehyde (PFA): 

PFA (Merck, Germany)  40g 

1.0 M sodium hydroxide   1 drop 

10-fold PBS    100ml 

distilled water     9000ml  

adjust to pH 7.3 

 

0.05% Triton containing phosphate buffered saline (PBST): 

PBS      1000ml 

Triton X-100 (MP Biomedicals) 500µl 

 

Bielschowsky silver staining: 

20% silver nitrate solution: 

 silver nitrate (Roth)   10g 

 distilled water    50ml 

 

Developer stock solution: 

 37% formalin (Merck)  20ml 
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 citric acid (Merck)   0.5g 

 65% nitric acid (Merck)  2 drops 

 distilled water    100ml 

 

2% sodium thiosulfate solution: 

sodium thiosulfate pentahydrate 10g 

(Merck) 

distilled water    500ml 

 

H & E staining: 

1% acid rinse: 

30% hydrochloric acid  2ml 

100% Isopropyl alcohol (Merck) 198ml 

 

1% eosin solution: 

 Eosin-G Certistain© (Merck)  2ml 

 70% isopropyl alcohol  198ml 

(filter before use) 

 

Immunohistochemistry: 

 
10mM citric acid buffer: 

citric acid (Merck))   2.1g 

distilled water    1000ml 

adjust to pH 6 

 

Tris-ethylenediaminetetraacetic acid (Tris-EDTA) buffered saline:  

Trizma base (Sigma)   1.21g 
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1.0M EDTA    1ml 

distilled water    1000ml 

adjust to pH 9 

 

0.2% casein block: 

 Tropix (Applied Biosystems)  2g 

 PBS     1000ml 

 Tween 20 (Merck)   1ml 

 heat Tropix/PBS to 50°C until it dissolves 

 

1.0M Tris/HCl stock solution: 

 trizma base (Sigma)   121g 

 30% hydrochloric acid  400ml 

 sodium chloride (Merck)  170g 

 distilled water     fill up to 1000ml 

 adjust to pH 7.5  

  

TBS working solution (washing buffer for immunohistochemistry): 

 sodium chloride (Merck)  9g 

 1.0M  Tris/HCl   50ml 

adjust to pH 7.5 

 

Fast Red working solution: 

 0.1M TBS (pH 8.2)   49ml 

naphtol-ASMX-phosphate (Sigma) 10mg 

 dimethylformamide (Sigma)  1ml 

 1.0M levimasole (Sigma)  50µl 

 Fast Red TR salt (Sigma)  0.05g 

 filter before use 
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3,3’-diaminobenzidine tetrachloride (DAB) working solution: 

 DAB (Sigma)    25mg 

 PBS     50ml 

 30% hydrogen peroxidase (Merck) 30µl 

 

1% nickel ammonium sulfate solution: 

 nickel ammonium sulfate (Merck) 0.1g 

 distilled water     10ml 

 

4-nitro blue tetrazolium chloride (NBT) stock solution: 

70% N,N-dimethylformamide  1ml 

(Sigma) 

NBT (Roche)    100mg 

 

5-bromo-4-chloro-3-indolyl phosphate (BCIP) stock solution: 

70% N,N-dimethylformamide   1ml 

(Sigma) 

BCIP (Roche)    50mg 

 

NBT/BCIP buffer: 

1.0M Tris (Sigma-Aldrich)  100ml 

5.0M NaCl (Merck)   20ml 

1.0M MgCl (Merck)   50ml 

distilled water    100ml      

 

NBT/BCIP working solution: 

NBT stock solution   225µl 
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BCIP stock solution   175µl 

NBT/BCIP buffer   50ml 

 

 

2.4 Operations and procedures 

2.4.1 Immunogen 

Recombinant MOG (rMOG) was produced as described by Adelmann and colleagues 

(Adelmann et al., 1995). Briefly, rMOG corresponding to the N-terminal sequence of rat 

MOG (amino acids 1-125) was expressed in Escherichia coli and purified to 

homogeneity. The purified protein was dissolved in 6 mol/l of urea and dialysed against 

20 mmol/l of sodium acetate buffer (pH 3.0). Finally, the sample was stored at -70°C.  

 

2.4.2 Sensitization procedure 

Rats (n = 68) were anaesthetized by inhalation anaesthesia with isoflurane (Abbot, 

Germany) and injected subcutaneously at the base of tail with a total volume of 100µl of 

rMOG (50µg MOG diluted in saline) emulsified in incomplete Freund‘s adjuvant (IFA; 

Sigma-Aldrich Chemie GmbH, Steinheim, Germany). For control experiments, rats (n = 

27) were injected subcutaneously at the base of the tail with a total volume of 100µl of 

saline emulsified in IFA. A subset of animals (n=6) received no s.c. injection (native 

controls). For induction of a targeted EAE lesion, MOG-sensitized rats were kept for 19-

21 days and then given a stereotactic injection of cytokines into a predetermined location 

of the cerebral cortex. 

 

2.4.3 Intracerebral stereotactic injection 

Animals were anaesthesized by intraperitoneal (i.p.) injection of ketamine 60mg/kg 

bodyweight (Inresa, Freiburg, Germany) and xylazine 8mg/kg bodyweight (Riemser, 

Greifswald, Germany). One ml of warmed sterile saline was administered subcutaneously 

to maintain normal hydration during the surgical procedure and recovery. Following loss 
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of consciousness, the rats were mounted on a stereotactic device (Stoelting Co, IL, USA). 

A fine hole was then drilled through the scull 1 mm caudal to bregma and 2 mm lateral to 

the sagittal suture. To minimize the risk of brain damage, the drilling head was removed 

before penetrating the scull. The remaining thin scull was then opened by a fine scalpel, 

giving access to the surface of the brain. A finely calibrated glass capillary (Braun, 

Germany) was then stereotactically inserted, targeting the cortex at approximately 1.7 

mm depth. The rats were then injected with 1µl of a cytokine mixture composed of 250 

ng of recombinant rat tumour necrosis factor-α (TNF-α; R&D Systems, Abingdon, UK) 

and 150 U of recombinant rat interferon-γ (IFN-γ; PeproTech, London, UK) dissolved in 

phosphate-buffered saline (PBS, Dulbecco instamed, Biochrom AG, Germany) over a 3-

min period. A trace of monastral blue (Fluka, Germany) was added as a marker dye for 

better visibility. Unsensitized (native) control animals (Table 1) and a subgroup of s.c. 

MOG immunized animals (Table 2) received PBS and monastral blue alone. After 

injection, the capillary was carefully withdrawn and the operation site was sealed by 

suture. To provide analgesia, Temgesic© (Essex Pharma GnbH, Germany) was 

administered at 0.03mg/kg during surgery and 6 hours later. Stereotactic cytokine 

injection was performed up to four times at intervals of 21 days, always targeting the 

same area (Tables 1 and 2).  

 

2.4.4 5-bromo-2-deoxyuridine (BrdU) injection 

To determine proliferation of oligodendroglial cells after lesion induction, BrdU labelling 

was performed. A subset of s.c. MOG (n=44) and s.c. IFA (n=17) immunized animals  

were injected intraperitonealy twice daily with 1.5ml 0.9% NaCl solution (Braun, 

Germany) containing 100mg/kg (animal weight) 5-bromo-2-deoxyuridine (BrdU, Sigma). 

In a subgroup of animals, BrdU administration was started immediately after a single 

lesion induction and continued until the animals were sacrificed at day three post lesion 

induction. In animals which were kept for 21 days after lesion induction, BrdU was 

administered for 5 days starting at day 2 after each final intracerebral cytokine/PBS 

injection.   
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2.4.5 Blood sampling and serum preparation 

In a randomly selected group of animals, blood samples were taken 1-3 days before and 

18-21 days after each intracerebral cytokine injection. Therefore, the rats were shortly 

anaesthetized by gas inhalation with isoflurane (Abbot, Germany). Following loss of 

consciousness, a blood sample (approx. 1ml) was immediately taken from the sublingual 

vein. Bleeding was then stopped by pressing a piece of cotton soaked in iron (III) 

chloride on the tongue. Collected blood samples were centrifuged (Centrifuge 5415 R, 

Eppendorf, Germany) at 13000rpm for 10min. The supernatant was then taken off and 

stored at -20°C for further measurements. 

 

2.5 Enzyme-linked immunosorbent assay (ELISA) for detection of anti-MOG 

autoantibodies 

To monitor the immune response, anti-MOG autoantibody serum levels were determined 

by ELISA. As a first step, 96-well maxisorp microtiter plates (Nunc, Langenselbold, 

Germany) were coated with rMOG at 0.4µg/50µl/well dissolved in PBST (phosphate 

buffered saline + 0.05% Triton). The plates were then wrapped in damp towels and stored 

at room temperature for 4 hours. Afterwards, the content was discarded by inverting the 

plates and tapping the bottom on paper towels. Plates were then blocked with 5% bovine 

serum albumin (BSA, Serva) dissolved in PBS (200µl/well) for 1h at room temperature 

and washed subsequently 5 times with water. As a last step, wells were filled with 200µl 

each and incubated for 15min at room temperature. Before storing at -20°C the plates 

were tapped on paper towels as described earlier.  

Rat sera were prepared by diluting 1:100 in PBST. In addition, 1:3 serial dilutions of each 

sample were added on a MOG coated plate starting with the upper row. The plates were 

then kept humid for 2h at room temperature. To remove unbound antibodies, plates were 

washed 6 times with PBST. Afterwards, 50µl of IgG-specific horseradish peroxidise-

conjugated goat anti-rat antibody (1:10000 in PBST; Pierce, Rockford, IL, USA) was 

added to each well and kept humid for 2 hours at room temperature. Following proper 

washing with PBST (6 times) 50µl of 3,3’-5,5’-tetramethylbenzidine (BM-Blue, POD; 

Roche, Basel, Switzerland) was added as a substrate. After the first row of wells 
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developed a blue colour, reaction was stopped immediately by adding 50µl of 1M H2SO4 

(Merck) to all wells. Finally, optical density (OD) was measured at 450nm (Model 680, 

Bio-Rad, Hercules, CA, USA). Antibody titres were defined as the serum dilutions at half 

maximum OD.  

 

2.6 Histology 

2.6.1 Tissue processing 

2.6.1.1 Perfusion and sectioning 

Animals were anaesthetized by injecting a lethal dose of 14% chloral hydrate (Merck). 

After loss of consciousness, transcardial perfusion was performed through the left cardial 

ventricle with PBS followed by 4% paraformaldehyde. Brains were then dissected and 

stored for 24h in 4% paraformaldehyde at 4°C. After fixation, the brain was cut in 4mm 

thick slices and washed in water. In addition, slices were gradually dehydrated by 

performing alcohol/xylol/paraffin series overnight using an automated tissue processor 

(Thermo Scientific, Germany). The next day, slices were embedded in paraffin. Tissue 

blocks were then cut in 1-2µm thin coronal sections. Serial sections adjacent to the 

injection site were used for further histology (injection site was recognized/identified by 

traces of monastral blue).  

 

2.6.1.2 Deparaffination and dehydration of histological sections 

Prior to histological stainings, sections were deparaffinized by performing graded xylol 

(Merck) and isopropyl alcohol (Merck) series as follows: 4 x 100% xylol (8min), 1 x 

xylol/alcohol (1:1, 1min), 2 x 100% alcohol (4min), 1 x 90% alcohol (4min), 1x 70% 

alcohol (4min), 1x 50% alcohol (4min), 1x distilled water. 

Dehydration was achieved by performing the above described series in reversed order. 
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2.6.2 Histochemical stainings 

2.6.2.1 Hematoxylin and eosin (HE) staining 

HE staining was performed to obtain a general overview with regard to inflammation and 

astrocytosis. Sections were deparaffinized as described above, washed 3 times with 

distilled water and placed into Mayers Hämalaun (Merck, Germany) for 5 min. 

Afterwards, sections were washed with distilled water and differentiated by dipping 

slides once into 1% acid rinse. Subsequently, bluing was performed by bathing slides in 

flowing tap water for 10min. Slides were then washed in distilled water and placed into 

eosin solution for 5min. In addition, slides were washed (once again) in distilled water 

and dehydrated as described earlier. Alcohol series were performed quickly to avoid 

excessive elution of eosin. Finally, slides were mounted using DePex mounting medium 

(VWR International, Germany) and coverslipped.   

 

2.6.2.2 Bielschowsky silver staining (modified) 

To assess axonal integrity Bielschowsky silver staining was performed. Sections were 

deparaffinized as described earlier and washed 3 times with distilled water. Afterwards, 

sections were placed in 10% silver nitrate solution for 20min. Concentrated (32%) 

ammonium hydroxide (Merck, Germany) was added drop by drop to the nitrate solution 

until the formed precipitate cleared.  Following washing in distilled water, the slides were 

placed into the silver nitrate/ammonium hydroxide solution for 15min and kept dark.  

While washing the slides in distilled water (containing few drops of ammonium 

hydroxide), 10 drops of developer stock solution was added to silver nitrate/ammonium 

hydroxide solution using a stirrer. Subsequently, the slides were placed into this solution 

for about 1 minute until color of the tissue turned to ochery. In addition, excessive silver 

nitrate was washed out using 2% sodium thiosulfate solution. After a final wash with 

distilled water, slides were dehydrated as described earlier and mounted using DePex 

mounting medium (VWR International, Germany) and coverslipped. 
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2.6.3 Immunohistochemistry 

2.6.3.1 Antigen retrieval 

Loss of immunoreactivity caused by paraformaldehyde fixation can be reversed if tissue 

is exposed to heat and acid: 

Hydrated and washed slides were placed in closed polystyrene cuvettes filled to the top 

with 10mM citric acid (pH=6) or 1mM Tris-EDTA (pH=9) buffered saline. Slides were 

heated 5 times for 3 min using a microwave oven (800watt, Bosch). Between each 

incubation cycle (step), cuvettes were filled up alternately with buffer and distilled water. 

Before continuing further staining procedure, slides were left to cool down for 30min and 

then washed with distilled water.  

 

2.6.3.2 GFAP immunohistochemistry 

Reactive astrogliosis was assessed by immunohistochemistry using glial fibrillary acidic 

protein (GFAP) as a marker for astrocytes. Slides were washed 5 times in PBS between 

each step. Following deparaffination, endogenous peroxidases were blocked by placing 

slides in 3% hydrogen peroxide (dissolved in PBS) for 20min at 4°C. Unspecific antibody 

binding was performed by applying 100µl 10% fetal calf serum (FCS, Biochrom) for 30 

min. Afterwards, excessive FCS was removed with a cleaning wipe without washing with 

PBS. The primary antibody mouse anti-human GFAP (1:50, clone 6F2, Dako) was added 

overnight at 4°C. Biotinylated sheep anti-mouse (1:200, Amersham) and ExtrAvidin 

(1:1000, Sigma) were applied consecutively for 1h at room temperature. Color 

development with DAB was performed for approximately 5min followed by 

counterstaining with Mayers Hämalaun (Merck, Germany). Finally, slides were 

dehydrated and mounted using DePex mounting medium (VWR International, Germany) 

and coverslipped. 
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2.6.3.3 MBP immunohistochemistry 

Demyelination and remyelination was assessed by immunohistochemistry using MBP as 

a marker for myelin sheaths. Slides were washed 5 times in PBS between each step, 

blocking of unspecific antibody binding being an exception. Following deparaffination, 

endogenous peroxidases were blocked by placing slides in 3% hydrogen peroxide 

(dissolved in PBS) for 20min at 4°C. Unspecific antibody binding was performed by 

incubation with 100µl 10% fetal calf serum (FCS, Biochrom) for 30 min. The primary 

antibody, rabbit anti-human MBP (1:1500, A0623, Dako), was added overnight at 4°C. 

Biotinylated donkey anti-Rabbit (1:200, Amersham) and ExtrAvidin (1:1000, Sigma) 

were applied consecutively for 1h at room temperature. Color development with DAB 

was performed for approximately 5min followed by counterstaining with Mayers 

Hämalaun (Merck, Germany).  In a subset of animals, color reaction was enhanced by 

adding 2.5ml of 1% nickel ammonium sulfate to the substrate solution (adjusted to pH 

7.2). Finally, slides were dehydrated and mounted using DePex mounting medium (VWR 

International, Germany) and coverslipped. 

 

2.6.3.4 ED1 immunohistochemistry 

Inflammation was assessed by immunohistochemistry using ED1 as a marker for 

macrophages and activated microglia, respectively. Slides were washed 5 times in PBS 

between each step. Following deparaffination, antigen retrieval (10mM citric acid and 

microwave irradiation) was performed as described above. Afterwards, endogenous 

peroxidases were blocked by placing slides in 3% hydrogen peroxide (dissolved in PBS) 

for 20min at 4°C.  Blocking of unspecific antibody binding was achieved by incubation 

with 100µl 10% FCS for 30min. Afterwards, excessive FCS was removed with a cleaning 

wipe without washing with PBS. The primary antibody, rabbit anti-human ED1 (clone 

ED1; Serotec, Oxford, UK), was applied overnight at 4°C. Biotinylated donkey anti-

rabbit (1:200, Amersham) and ExtrAvidin (1:1000, Sigma) were added consecutively for 

1h at room temperature. Color development with DAB was performed for approximately 

5min followed by counterstaining with Mayers Hämalaun (Merck). Finally, slides were 
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dehydrated and mounted using DePex mounting medium (VWR International, Germany) 

and coverslipped. 

 

2.6.3.5 MBP/NogoA double immunohistochemistry 

To determine the oligodendrocyte density within the lesion, double 

immunohistochemistry was performed using MBP as a marker for myelin sheaths and 

NogoA (clone 11C7) as a marker for mature oligodendrocytes. Antigen retrieval (10mM 

citric acid and microwave irradiation) was performed followed by blocking of 

endogenous peroxidases and unspecific antibody binding as described above (see 

2.5.3.4). The primary antibody, mouse anti-mAb11C7 (1:20000, kindly provided by M. 

E. Schwab, ETH Zurich), was added overnight at 4°C. Biotinylated sheep anti-mouse 

(1:200, Amersham) and ExtrAvidin (1:1000, Sigma) were applied consecutively for 1h at 

room temperature. Color development with DAB was performed for approximately 5min. 

To saturate open binding sites on the first primary antibody, 100µl of Fab antibody 

(mouse, Dako) was added followed by blocking of unspecific antibody binding sites 

using 100µl 10%FCS (containing 0.05% Triton-X-100, MP Biomedicals). The second 

primary antibody, rabbit anti-human MBP (1:1500, A0623, Dako), was applied for 2h at 

room temperature. Henceforth, 0.5M Tris buffered saline (TBS) was used for washing 

and incubation steps. Mouse anti-rabbit antibody bridge (1:50, Dako), goat anti-mouse-

alkaline phosphatase (AP) (1:50, Dako) and alkaline phosphatase anti-alkaline 

phosphatase (APAAP) mouse (1:50, Dako) were added consecutively for 1 hour at room 

temperature. Color reaction was performed using NBT/BCIP (Roche) as substrate. For 

representative photographs, some sections were stained using Fast Red as a substrate. 

Finally, slides were mounted with Immu-Mount (ThermoScientific) and coverslipped. 

 

2.6.3.6 Olig2/PLP double immunofluorescence 

To determine the oligodendroglial precursor density within the lesion, double 

immunofluorescence staining was performed using PLP as marker for myelin sheaths and 

olig2 as a marker for oligodendroglial precursors/early oligodendrocytes. Antigen 

 
 

34



Material and Methods  

retrieval (1mM Tris-EDTA, pH=9, microwave heating) was followed by blocking with 

0.2% casein (Tropix, I-Block, Applied Biosystems) in PBS for 30min. The first primary 

antibody, rabbit anti-human olig2 (1:300 in 0.2% casein, IBL, Germany), was added 

overnight at 4°C. The indocarbocyanine 3 (Cy3) conjugated donkey anti-rabbit IgG 

(H+L) secondary antibody (1:300 in 0.2% casein, Dianova GmbH, Hamburg, Germany) 

was applied for 1h at room temperature. The second primary antibody, mouse anti-PLP 

(1:2500 in 10% FCS, clone Plpc1, Biozol), was added overnight at 4°C followed by 

indocarbocyanine 2 (Cy2) conjugated donkey anti-mouse IgG (H+L) secondary antibody 

(1:200 in 10% FCS, Dianova GmbH, Hamburg, Germany) for 1h at room temperature. 

Cell nuclei were stained with DAPI (1:10000 in 10%FCS, Molecular Probes) for 10min 

at room temperature. Finally, slides were mounted using Fluoromount (Dako) and 

coverslipped. 

 

2.6.3.7 NogoA/BrdU double immunohistochemistry 

To determine the mature oligodendrocyte population derived by cell division after lesion 

induction, double immunohistochemistry was performed. NogoA was used as a marker 

for mature oligodendrocytes. BrdU was used as a marker for previous cell division. 

Antigen retrieval (10mM citric acid and microwave irradiation) was performed followed 

by blocking of endogenous peroxidases and unspecific antibody binding as described 

above (2.5.3.4). The primary antibody, rabbit anti-NogoA (1:100 in 10% FCS, clone 

H300, Santa Cruz), was added overnight at 4°C. Henceforth, 0.5M Tris buffered saline 

(TBS) was used for washing and incubation steps till finishing the first staining. Goat 

anti-rabbit alkaline peroxidase (AP) conjugated antibody (1:50, D0487, Dako) was added 

for 45min at room temperature. Color reaction was performed using Fast Red (Sigma) as 

a substrate. The second primary antibody, mouse anti-BrdU (1:400 in 10% FCS, 

Chemicon), was applied overnight at 4°C.  Biotinylated sheep anti-mouse (1:200 in 10% 

FCS, GE Healthcare) and ExtrAvidin (1:1000, Sigma) were added consecutively for 1h at 

room temperature. Color development with DAB was performed for approximately 5min 

followed by counterstaining with Mayers Hämalaun (Merck). Finally, slides were 

mounted using Immu-Mount (ThermoScientific) and coverslipped. 
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2.6.3.8 Olig2/BrdU double immunohistochemistry 

To determine the oligodendroglial precursor density derived by cell division after lesion 

induction, double immunofluorescence staining was performed using olig2 as a marker 

for oligodendroglial precursors/early oligodendrocytes and BrdU as a marker for 

proliferation. Antigen retrieval (Tris-EDTA and microwave heating) was performed 

followed by blocking with 0.2% casein in PBS for 30min. The first primary antibody, 

rabbit anti-human  olig2 (1:300 in 0.2% casein, IBL, Germany), was added overnight at 

4°C. The Cy3-conjugated donkey anti-rabbit IgG (H+L) secondary antibody (1:300 in 

0.2% casein, Dianova GmbH, Hamburg, Germany) was applied for 1h at room 

temperature. As a second primary antibody, mouse anti-BrdU (1:400 in 10% FCS, 

Chemicon) was added overnight at 4°C followed by Cy2-conjugated donkey anti-mouse 

IgG (H+L) secondary antibody (1:200 in 10% FCS, Dianova GmbH, Hamburg, 

Germany) for 1h at room temperature. Cell nuclei were stained with DAPI (1:10000 in 

10%FCS, Molecular Probes) for 10min at room temperature. Finally, slides were 

mounted using Fluoromount (Dako) and coverslipped. 

 

2.7 Photoimaging and morphometric analysis 

Histological photographs were captured through light and fluorescent microscopes (BX 

40 and BX 50, Olympus, Germany) at 20-, 40-, 200-, 400- and 1000-fold magnification, 

respectively. Images for computer-aided analysis were recorded with digital cameras 

mounted on mentioned microscopes (Color View II and DP71, Olympus, Germany).  

Histological stainings were analysed as followed: 

Digital images of MBP-stained sections were recorded through a light microscope (BX 

40, Olympus, Germany) with a CCD camera (Color View II, Olympus, Germany) at 200-

fold magnification. The size of demyelinated lesion was measured using Analysis 

software (Analysis, Soft Imaging System, Germany). The extent of demyelination was 

defined as the MBP-negative area (mm²). The length of subpial lesion was given in µm. 

The fraction of myelinated axons was determined in cortical layer III within 4 fields of 

sight using a counting grid (10x10 squares) at 1000-fold magnification (see Figure 3, A). 
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The numbers of MBP-positive myelin sheaths which overlapped the crosses of the 

counting grid were determined on MBP-stained sections. In addition, the numbers of 

axons were analysed in the same way on adjacent Bielschowsky-stained sections. 

Afterwards, MBP-positive fibre counts were normalized to axon counts, second been set 

to 100% as a reference.  

The macrophage/microglia reaction was determined on ED1-stained sections within two 

defined cortical areas. First, ED1-positive cells were counted in cortical layer III within 

the center of lesion within four fields of sight at 1000-fold magnification (Figure 3, A). 

To capture a broad area of inflammation, a further region of interest (ROI) was chosen. 

This ROI was defined as the cortical area lying within the upper quadrant of a 

standardized fictive rectangular cross, which was placed in the middle of the analyzed 

section orientated in the medial-lateral and dorsal-ventral direction, respectively (Figure 

3, C). For both ROIs, the mean number of ED1-positive cells per square millimetre was 

given.   

Axonal integrity was assessed on Bielschowsky silver-stained sections at 1000-fold 

magnification. Axons were determined in the center of lesion of cortical layer III within 4 

fields of sight using a 10x10 counting grid (Figure 3, A). Axonal density was given in 

percent using untreated control animals as a reference (set to 100%). 

NogoA-positive cell population was determined on NogoA/MBP double positive-stained 

sections at 400x-fold magnification. Proliferated NogoA-positive cells were determined 

on NogoA/BrdU double stained sections. The density of both cell populations were 

assessed in cortical layers I and II within 11 fields of sight of a 10x10 counting grid, 

covering the typically affected areas of subpial demyeliantion (Figure 3, B). Cell density 

was given as cells per square millimetre.  

Olig2-positive and olig2/BrdU-double positive cell populations were determined on 

olig2/BrdU double fluorescent stained sections using a light/fluorescent microscope (BX 

51, Olympus, Germany) at 200-fold magnification. Cells were counted in cortical layers I 

and II within three fields, which is similar to ROI used for evaluation of above mentioned 

NogoA-positive cell populations (Figure 3, B). Cell densities were given as cells per 

square millimetre. 
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A cell was considered “positive” or “double-positive” when the following two conditions 

were met: 

First, the specific signal must overlap with the cell soma (NogoA, olig2, BrdU, ED1) or 

its dendritic processes (ED1). Second, a cell must contain a nucleus.   

 

 
Figure 3: Regions of interest used for histological evaluation 
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2.8 Statistics 

Statistical analysis was performed using a statistical software package (SPSS Version 12 

for Windows, SPSS Inc., Chicago, IL, USA). Graphs were visualized with GraphPad 

version 5 for windows (GraphPad Software, San Diego, CA, USA). Normality of 

distribution was verified by Kolmogorow-Smirnov-test. Statistical calculations included 

one-way analysis of variance (ANOVA) if three or more groups were compared, 

followed by post-hoc least significance difference (LSD)-test. For comparisons between 

two groups, unpaired t-tests were performed. A probability value of less then 0.05 was 

considered significant. All data are given as mean + SEM. 



Results  

 

3. RESULTS 

3.1 Detection of anti-MOG autoantibody titres 

High and stable serum levels of anti-MOG autoantibodies are an important prerequisite 

for induction of targeted EAE lesions. Therefore, serum levels of MOG autoantibodies 

were monitored by ELISA at regular intervals. High and consistent anti-MOG 

autoantibody titres were detected in s.c. MOG immunized animals at all time points 

analysed (Figure 4). As expected, s.c. IFA immunized control animals did not reveal a 

significant antibody response against MOG.  

 
Figure 4: Anti-MOG autoantibody titres 
Titres of anti-MOG autoantibodies. Time-course analysis revealed high and consistent anti-MOG antibody titres in s.c. MOG 

immunized animals. S.c. IFA control animals did not reveal a detectable antibody response against MOG. Data are expressed as mean 

+ SEM. For statistical evaluation, one-way ANOVA was peformed.  

* antibody titres refer to the serum dilution needed to achieve half maximum OD  

 

3.2 Gliosis 

To analyse possible traumatic effects caused by surgical intervention, HE-staining and 

GFAP immunohistochemistry were performed. HE-staining revealed moderate gliosis 

and edema restricted to the close proximity of the injection site (Figure 5, A, D and E). 

This observation was supported by GFAP-staining showing intense GFAP-
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immunoreactivity at similar areas to the HE-staining (Figure 6, A, C, F). In addition, 21 

days post lesion induction, a few s.c. MOG immunized animals presented with increased 

subpial GFAP-immunoreactivity in remyelinated cortical areas. Aside from these 

aforementioned cases, adjacent areas showed no pathological abnormalities (Figure 5, B 

and C; Figure 6, B/D/E). 

 

HE- staining
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Figure 5: HE-staining of local gliosis  
Representative photographs of HE-stained section of a cortical lesion (A-E). Moderate gliosis was observed at close proximity of the 

needle track (A/D/E). Edema and glial scar formation (D and E, indicated by arrows) were restricted to the immediate vicinity of the 

injection.  No pathological abnormalities were observed in adjacent areas within cortical lesion (B/C). 

Scale bars: A = 200µm, B-E = 50µm 
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GFAP- immunohistochemistry
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Figure 6: GFAP immunohistochemistry of local gliosis  
Representative photographs of GFAP-immunostained section of a cortical lesion (A-F). GFAP immunoreactivity was observed in 

close proximity to the injection site (A/C/F).  No pathological abnormalities were observed in adjacent areas within the cortical lesion 

(B//D/E). 

Scale bars: A = 250µm, B-F = 50µm 

 

3.3 Topology of de- and remyelination in the focal cortical EAE model 

MBP immunohistochemistry was performed to assess demyelination and remyelination, 

respectively. At day three post intracerebral cytokine injection, extensive cortical 
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demyelination was observed in MOG primed animals (Figure 7, A-C). With regard to 

topology, a pronounced widespread subpial lesions was located at the site of injection 

(Figure 7, A-C), which often extended into deep cortical layers (layers 4-6). In the 

medial-lateral direction, demyelination extended more superficially (layers 1-3). The 

topography of these lesions was highly reminiscent of cortical type III lesions found in 

multiple sclerosis (Peterson et al., 2001). In addition, spots of perivascular lesions were 

distributed along the ipsilateral cerebral cortex (Figure 7, A and B). Similar lesion pattern 

and similar extent of demyelination was observed in animals which received two or four 

intracerebral cytokine injections (Figure 8). The contralateral non-injected hemisphere 

showed no signs of demyelination (Figure 7, D, E and F). Cytokine injection did not 

show substantial tissue damage in s.c. IFA immunized control animals, even after 

repetitive injections (Figure 8). Cortical demyelination is a transient phenomenon; 21 

days after lesion induction, extensive remyelination took place (Figure 8) and only few 

and small areas within the center of the lesion remained demyelinated. Even animals 

suffering from 2 or 4 demyelinating events showed extensive remyelination and did not 

differ morphologically from singly induced ones.  
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Figure 7: Focal cortical EAE lesion  
Representative photographs of MBP immunostained cerebral cortex of s.c. MOG primed Lewis rats at day 3 post lesion induction (A-

F). Proinflammatory cytokines such as TNF-α and IFN-γ were targeted to the cerebral cortex (indicated by arrow with a blue traced 

needle track underneath), leading to extensive focal demyelination (lesion border indicated by dotted line) within the ipsilateral 

hemisphere (A-C). The contralateral non-injected hemisphere was not affected (D-F). 

Scale bars: A and F = 500µm, B-E = 100µm 
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Figure 8: Cortical demyelination and remyelination after repetitive lesion induction 
Representative photographs of MBP stained sections of cortical layer 3 (center of lesion). The different time points (days 3 and 21) 

and immunization protocols (s.c. MOG versus s.c. IFA) are arranged in columns. The numbers of lesion inductions (1st, 2nd and 4th) are 

arranged in rows. Repeated cortical demyelination (MBP-negative) was observed in s.c. MOG immunized animals 3 days after 

cytokine injection (left column). At 21 days after lesion induction, extensive remyelination (MBP-positive: dark stained fibres) took 

place, even after repetitive demyelinating events (middle column). S.c. MOG immunized control animals showed no signs of 

demyelination (right column).   

Scale bars: 100µm 

 

3.3.1 Extent of demyelinated area 

The extent of demyelination was quantified using computerbased analysis performed on 

photographs of MBP-stained sections. Intracerebral cytokine injection led to focal 

cortical demyelination in all s.c. MOG primed animals (Figure 9, A). Demyelinated area 

did not differ significantly between animals with singular induced lesions (1.53 x 106 ± 

2.67 x 105µm²) compared to those animals with two (1.73 x 106 ± 2.34 x 10 µm²) and four 
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(1.76 x 106 ± 3.12 x 105µm²) demyelinating episodes. Demyelinated area decreased 

significantly (one-way ANOVA F5,52 = 11,013, p < 0,001) twenty-one days after each 

previous demyelinating episode (post-hoc LSD-test: 1st inj. p < 0,001, 2nd inj. p = 0,002, 

4th inj. p < 0,001). No significant difference was observed comparing groups at day 21 

post lesion induction after single or repetitive lesioning. S.c. IFA immunized and 

cytokine injected control animals did not show any sign of demyelination.  

 
Figure 9: Extent of demyelination  
 (A) Extent of demyelination was determined on MBP-stained sections. Intracerebral cytokine injection following immunization with 

MOG led to extensive demyelination following each cytokine injection. Demyelinated area decreased significantly even after 

repetitive lesioning. S.c. IFA immunized control animals showed no signs of demyelination. (B) Analysis of subpial lesion length 
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revealed similar outcome.  Data are expressed as mean + SEM. For statistical evaluation, one-way ANOVA followed by post-hoc 

LSD-test was performed (** = p< 0.01, *** = p< 0.001). 

 

3.3.2 Length of subpial lesions 

As an additional parameter, length of subpial lesion was measured. At day three post 

lesion induction, average subpial lesion length did not differ between singly induced 

lesions (5490 ± 670.3µm) compared to those animals with two (5769 ± 606.9µm) and four 

(5666 ± 621µm) demyelinating episodes (Figure 9, B). Twenty-one days after each 

previous lesion induction, length of subpial lesion decreased significantly (ANOVA F5,52  

= 14,936, p < 0,001) compared to those lesions measured at day 3 (post-hoc LSD-test: 1st 

inj. p < 0,001, 2nd inj. p = 0,001, 4th inj. p < 0,001). No significant difference was 

observed comparing groups at day 21 post lesion induction. As expected, s.c. IFA 

immunized control groups showed no signs of demyelination.  

3.3.3 Fraction of myelinated axons 

To determine the ratio of myelin density to axons, the fraction of myelinated axons was 

measured in de- and remyelinated areas of cortical layer III. Fraction of myelinated axons 

is defined as the ratio of MBP-positive fibres to axons (determined on Bielschowsky 

silver-stained sections). In untreated age matched control animals, a considerably high 

fraction of myelinated axons (mean 40.58 ± 2.67%) was determined. At day 3 post lesion 

induction, almost no myelin was detected in s.c. MOG immunized animals (Figure 10, 1st 

inj.: 1.27 ± 0.58%, 2nd inj.: 2.67 ± 1.12%, 4th inj.: 0.52 ± 0.34%). Twenty-one days after 

lesion induction, the fraction of myelinated axons (1st inj.: 16.22 ± 3.02%, 2nd inj.: 21.95 

± 3.84, 4th inj.: 16.64 ± 2.99%) increased significantly (one-way ANOVA F8,61=10,727 p 

< 0,001) in all s.c. MOG immunized groups (post-hoc LSD-test: 1st inj.: p = 0.012, 2nd 

inj.: p = 0.02, 4th inj.: p = 0.011). Comparisons between s.c. MOG immunized groups at 

day 21 revealed no significant statistical differences. Albeit a substantial fraction of axon 

remyelinated at day 21, the obtained values were still significantly lower as compared to 

the control groups (post-hoc LSD-test: 1st inj.: p < 0.001, 2nd inj.: p = 0.013, 4th inj.: p < 

0.001). At day 3 post lesion induction, fraction of myelinated axons was significantly 

reduced compared to control groups (post-hoc LSD-test: 1st, 2nd and 4th inj.: p < 0.001). 
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Figure 10: Fraction of myelinated axons  
Fraction of myelinated axons was expressed as the percentage of myelin density normalized to axonal density. After each lesion 

induction, almost complete loss of myelin content was determined within the center of lesion of s.c. MOG immunized animals. 

Twenty-one  days after lesion induction, the fraction of myelinated axons recovered significantly. However, remyelinated lesions 

showed significantly reduced fraction of myelinated axons compared to normally myelinated cerebral cortex (untreated controls). In 

contrast, IFA immunized controls showed similar fraction of myelin as untreated controls. Data are expressed as mean + SEM. For 

statistical evaluation, one-way ANOVA followed by post-hoc LSD-test was performed (* = p < 0.05, ** = p < 0.01, *** = p < 0.001). 

 

3.4 Evaluation of activated macrophages/microglia 

To assess inflammatory activity during de- and remyelination, immunohistochemistry 

was performed using ED1 as a marker for activated macrophages/microglia. 

Demyelination was accompanied by inflammation (Figure 11). At day 3 after lesion 

induction, ED1-positive cells were detected within and near demyelinated areas (Figure 

11, H). With regard to morphology, two different ED1-positive cell types were observed: 

1) Ramified macrophages/microglia were the predominant population in s.c. IFA 

immunized control animals (Figure 11, G) but were also abundant within lesions 

of s.c. MOG primed animals. 

2) Foamy macrophages were mainly found at day 3 post lesion induction in s.c. 

MOG   immunized animals, indicating demyelination (Figure 11, F). 
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Extensive and dense parenchymal infiltrates were predominantly located in the center of 

subpial lesions (Figure 11, E and H). In contrast, perivascular infiltrates (Figure 11, D) 

were also observed in nearby non-demyelinated cortical areas (Figure 11, H). 

Inflammation was more pronounced after single lesioning in both density and extent of 

activated macrophages/microglia. ED1-positive cells were also detected in repetitively 

injected animals, but macrophage/microglia activation seemed to be less pronounced 

compared to singly injected ones (Figure 12). Inflammation resolved 21 days after lesion 

induction. Just few ED1-positive cells were observed in close vicinity to the needle track, 

similar to s.c. IFA immunized control animals. The contralateral non injected side 

appeared normal and rarely few ED1-positive cells were detected in the subpial region of 

the sulcus centralis. 
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Figure 11: Inflammatory demyelination in the focal cortical EAE model 
Representative photographs of the cerebral cortex of s.c. MOG primed Lewis rats at day 3 post lesion induction. Subpially 

demyelinated lesions (A and C, lesion border is indicated by dotted line) and perivascular lesions (A and B, lesions are surrounded by 

dotted circles) were identified by MBP immunohistochemistry (lesions are MBP-negative). Demyelination was accompanied by 

activation of microglia/macrophages visualized by ED1 immunohistochemistry (D-H). Perivascular (D) and parenchymal (E) spots of 

ED1-positive cells were distributed within and near demyelinated areas (H, see also A-C). Foamy macrophages indicating 

demyelination, were predominantly found at day 3 after lesion induction (F, indicated by arrow). Ramified ED1-positive cells (G, 

indicated by arrow) were observed in s.c. MOG primed demyelinated/remyelinated animals and s.c. IFA controls, respectively.  

Scale bars: A and H = 1mm, B-E = 150µm 
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Figure 12: Transient activation of macrophages/microglia 
Representative photographs of ED1 stained sections of the lesioned cerebral cortex. The time points of histological evaluation (days 3 

and 21) and immunization protocols (s.c. MOG versus s.c. IFA) are arranged in columns. The numbers of lesion inductions (1st, 2nd 

and 4th) are arranged in rows. Strong activation of microglia/macrophages was observed in s.c. MOG immunized animals at day 3 post 

lesion induction (left column). Inflammation resolved within 21 days post lesion induction (middle column). In s.c. IFA immunized 

control animals, no substantial activation of microglia/macrophages was observed (right column). 

Scale bar: 100µm 

3.4.1 Density of activated macrophages within center of lesion 

Density of activated macrophages/microglia was analysed on ED1 stained sections in 

cortical layer 3 within the center of lesion:  

At day 3 post lesion induction, high densities of ED1-positive cells were detected after 

each demyelinating episode in s.c. MOG immunized animals (Figure 13 A, 1st inj.: 537.1 
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± 56.64cells/mm², 2nd inj.: 485.3 ± 52.81cells/mm², 4th inj.: 360.0 ± 66.32cells/mm²). 

After four demyelinating episodes, values decreased significantly (one-way ANOVA F7,59 

= 41,874, p < 0,001) compared to animals with a single (post-hoc LSD-test: p = 0.01) or 

two demyelinating episodes (post-hoc LSD-test: p = 0.022). Twenty-one days after each 

demyelinating episode, density of ED1-positive cells (1st inj.: 67.64 ± 13.05cells/mm², 2nd 

inj.: 70.4 ± 17.23cells/mm², 4th inj.: 57.33 ± 5.83cells/mm²) decreased significantly 

compared to day 3 animals (post-hoc LSD-test: 1st, 2nd and 4th inj.: p < 0.001) and were 

similar to s.c. IFA immunized control groups (1st inj.: 56.00 ± 10.73cells/mm², 4th inj.: 

72.00 ± 4.62cells/mm²). S.c. MOG immunized animals analysed at day 3 post lesion 

induction showed significantly increased values when compared to their corresponding 

s.c. IFA immunized control group (post-hoc LSD-test: 1st and 4th inj.: p < 0.001). 

3.4.2 Density of activated macrophages/microglia throughout all cortical layers 

As mentioned above, activated macrophages/microglia were also distributed beyond the 

border of demyelinated lesions. Therefore, quantification of activated 

macrophages/microglia was performed in a broad area including all cortical layers 

(Figure 3, B). Density of ED1-positive cells reached highest values at day 3 of singly 

injected s.c. MOG immunized animals (58.48 ± 10.75cells/mm², Figure 13, B). Although 

a substantial accumulation of ED1-positive cells were observed after two and four 

demyelinating episodes (2nd inj.: 28.80 ± 4.84cells/mm², 4th inj.:25.11 ± 3.99cells/mm²), 

their numbers were decreased (one-way ANOVA F7,59 = 19,031, p < 0,001) when 

compared to single injected animals (post-hoc LSD-test: 2nd and 4th inj.: p < 0.001). 

Twenty-one days after each demyelinating episode, density of ED1-positive cell counts 

(1st inj.: 4.77 ± 1.88cells/mm², 2nd inj.: 6.04 ± 1.29cells/mm², 4th inj.: 4.33 ± 

0.67cells/mm²) dropped sharply and significantly compared to day 3 animals (post-hoc 

LSD-test: 1st inj.: p < 0.001, 2nd inj.: p = 0.007, 4th inj.: p = 0.001), reaching similar 

values as s.c. IFA immunized control groups (1st inj.: 3.113 ± 0.19cells/mm², 4th inj.:4.88 

± 0.58cells/mm²). S.c. MOG immunized animals analyzed at day 3 post lesion induction 

showed significantly increased values when compared to their corresponding s.c. IFA 

immunized control group (post-hoc LSD-test: 1st inj.: p < 0.001, 4th inj.: p < 0.016). 
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Figure 13: Density of activated macrophages/microglia 
Density of activated macrophages was determined on ED1-stained sections. Strong and extensive activation of macrophages/microglia 

was observed in s.c. MOG immunized animals 3 days post lesion induction. (A) Within the center of lesion in cortical layer III, 

density of ED1-positive cells decreased significantly after four lesion inductions compared to previous ones. (B) Quantification of 

ED1-positive cells performed in a wider cortical lesional area (ranging from layer I-V) revealed significantly decreased cell counts 

already after two lesion inductions. Twenty-one days after each lesion induction, inflammation resolved as only few ED1-positive 

cells were detected (A and B). S.c. IFA immunized controls showed negligible numbers of ED1-positive cells (A and B). Data are 

expressed as mean + SEM. For statistical evaluation, one-way ANOVA followed by post-hoc LSD-test was performed (* = p < 0.05, 

** = p < 0.01, *** = p < 0.001). 
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3.5 Axonal integrity 

To analyse putative degenerative effects on axons, Bielschowsky silver stained sections 

were analysed in cortical layer III at the center of lesion. Bielschowsky silver staining 

showed no substantial alterations of axonal morphology, except in areas immediately 

adjacent to the injection site due to surgical minitrauma (Figure 14). Quantitative analysis 

revealed constant levels in axonal density in s.c. MOG immunized animals (Figure 15, 1st 

inj.: 92.16 ± 9.48%, 2nd inj.: 112.0 ± 14.27%, 4th inj.: 90.33 ± 12.91%) and s.c. IFA 

immunized control animals (1st inj.: 96.68 ± 7.95%, 4th inj.: 116.0 ± 19.27%) at day 3 

after lesion induction. No significant differences were detected. These results show that 

neither cortical demyelination nor surgical intervention causes substantial loss of axonal 

structures. 
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Figure 14: Axonal integrity 
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Representative photographs of Bielschowsky silver-stained sections of cortical layer 3 (center of lesion). The different immunization 

protocols (s.c. MOG and s.c. IFA) are arranged in columns. The different numbers of lesion inductions (1st, 2nd and 4th) are arranged in 

rows. Axonal distribution appeared normal in s.c. MOG and s.c. IFA immunized control animals. 

Scale bars: 20µm 

 
Figure 15: Axonal density 
Axonal density was determined on Bielschowsky silver-stained sections. No alterations in axonal density were detected within center 

of lesion in cortical layer III. Data are expressed as mean + SEM.  

3.6 Oligodendrocyte loss and recovery 

To determine an effect of demyelination and subsequent remyelination on 

oligodendrocyte population, immunohistochemistry was performed using NogoA as a 

marker for mature oligodendrocytes. 

Three days after intracerebral cytokine injection, substantial loss of oligodendrocytes was 

observed within demyelinated cortical lesions of s.c. MOG immunized animals. 

Oligodendroglial loss was most obvious within the center of intracortical lesions of 

several animals (Figure 16). Furthermore, a reduction of oligodendrocyte densities was 

also evident in demyelinated subpial areas after single and repeated lesioning (Figure 17). 

Following remyelination at 21 after lesion induction, the oligodendrocyte population was 

again recovered. No loss of oligodendrocytes was observed in s.c. IFA immunized 

animals. 
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Figure 16: Loss of oligodendrocytes during focal cortical inflammatory demyelination 
Representative photographs of a NogoA/MBP double-immunostained section of a cortical lesion. In normal appearing gray matter 

(MBP-positive myelin sheaths = red) numerous oligodendrocytes (indicated by arrows) were observed (A, B and C).  Demyelination 

(lesion border is indicated by dotted line) was accompanied by loss of oligodendrocytes (A, D and E).  

Scale bars: A= 100µm, B-E = 20µm 

3.6.1 Oligodendrocyte density 

Quantitative analysis of oligodendrocyte density in subpial lesions revealed significant 

differences between analysed groups (Figure 18, one-way ANOVA F8,51= 4,041, p = 

0.001). At day 3 after singly induced lesion in s.c. MOG immunized animals, post-hoc 

LSD-test revealed decreased oligodendrocyte density (4.91 ± 1.54cells/mm²) compared to 

remyelinated animals (16.27 ± 3.59cells/mm², p = 0.004), s.c. IFA controls (1st inj.: 20.77 

± 2.63cells/mm², p= 0.001) and untreated controls (17.89 ± 2.64cells/mm², p = 0.002). 

After a second demyelinating episode, s.c. MOG immunized animals showed a decrease 
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in oligodendrocyte density at day 3 (11.14 ± 3.04cells/mm²) compared to remyelinated 

animals at day 21 (23.52 ± 3.88cells/mm², post-hoc LSD-test: p = 0.011). After a fourth 

demyelinating episode, oligodendrocyte density was not significantly decreased in day 3 

animals (6.75 ± 2.84cells/mm²) compared to the corresponding remyelinated s.c. MOG 

immunized group at day 21 (11.57 ± 3.0cells/mm²) and the corresponding s.c. IFA 

control group (4th inj.: 16.07 ± 0.8cells/mm²), but was significantly decreased when 

compared to untreated controls (post-hoc LSD-test: p = 0.014).   
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Figure 17: Spontaneous recovery of oligodendrocytes in subpial lesions 
Representative photographs of NogoA/MBP double immunostained sections of lesioned subpial cortical area. The different time 

points (days 3 and 21) and immunization protocols (s.c. MOG and s.c. IFA) are arranged in columns. The different numbers of lesion 

inductions (1st, 2nd and 4th) are arranged in rows. Loss of oligodendrocytes (brown shaped cells) was observed within subpial lesions at 

day 3 post lesion induction (left column). Twenty-one days after lesion induction, NogoA-positive cell population recovered (middle 

column). NogoA-positive cell population was not affected in s.c. IFA primed controls (right column). 

Scale bars: 50µm, length of enlarged image = 14µm 
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Figure 18: Density of oligodendrocytes 
Oligodendrocyte density was determined within lesioned subpial cerebral cortex of NogoA/MBP double stained sections. At 3 days 

post lesion induction, NogoA-positive cell density decreased significantly followed by recovery (at day 21) after single and two 

demyelinating events.  At day 3 post fourth lesion induction, loss of oligodendrocytes was only significant when compared to 

untreated controls. Data are expressed as mean + SEM. The mean of the untreated controls is indicated by dotted line. For statistical 

evaluation, one-way ANOVA followed by post-hoc LSD-test was performed (* = p < 0.05, ** = p < 0.01). 

3.6.2 Proliferation of NogoA-positive oligodendrocytes 

To assess the effect of repeated lesion induction on the proliferation of oligodendrocytes, 

NogoA-positive cells were labelled with the proliferation marker BrdU. 

Oligodendrocytes which underwent cell division during BrdU administration were 

detected by NogoA/BrdU double immunohistochemistry (Figure 19). 

At day 21 after single lesioning, few cells double-positive for NogoA and BrdU were 

detected within remyelinated subpial areas of s.c. MOG immunized animals (Figure 20, 

3.87 ± 1.14cells/mm²). NogoA/BrdU-double positive cell density did not differ 

significantly in repetitively injected animals (2nd inj.: 0.57 ± 0.51cells/mm², 4th inj.: 2.34 

± 0.73cells/mm²).  

The proliferation of oligodendrocytes was analysed in more detail in a further 

experiment. Three days post lesion induction (Figure 21), few NogoA/BrdU double-

positive cells were detected in s.c. MOG immunized (4.66 ± 2.15cells/mm²) and IFA 

 
 

58



Results  

immunized controls animals (2.87 ± 1.98cells/mm²). At 21 days post lesion induction 

(Figure 22), comparably low densities of NogoA/BrdU double-positive cells were 

detected in s.c. MOG immunized animals (2.30 ± 2.30cells/mm²) and s.c. IFA immunized 

control animals (cytokine injection: 1.16 ± 0.804; PBS injection: 0.78 ± 0.49cells/mm²; 

no injection: 0.35 ± 0.35cells/mm²). No significant differences were detected between the 

groups at day three or day 21 post lesion induction. 
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Figure 19: Oligodendrocyte proliferation during remyelination 
Representative photographs of NogoA/BrdU double immunostained sections of subpial lesions. The different numbers of lesion 

inductions (1st, 2nd and 4th) are arranged in rows. Few mature NogoA-labelled oligodendrocytes cells (red) incorporated the 

proliferation marker BrdU (brown), which was administrated at days 2 to 7 post lesion induction.   

Scale bars: left column = 50µm, right column = 20µm 
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Figure 20: Proliferation of NogoA-positive cells after repeated demyelinating events 
Density of proliferated oligodendrocytes within lesioned subpial cerebral cortex was determined on NogoA/BrdU double positive 

stained sections.  Twenty-one days post lesion induction, few NogoA/BrdU double positive cells were detected. No statistical 

differences were observed between singly and repetitively lesioned animals. Data are expressed as mean + SEM.  

 

 
Figure 21: Early effects of lesion induction on proliferation of NogoA-positive cells 
Proliferation of mature oligodendrocytes was determined within lesioned subpial cerebral cortex on NogoA/BrdU double 

immunostained sections. Three days post lesion induction, proliferating NogoA-positive cells were observed in both s.c. MOG and s.c. 

IFA immunized animals. Values did not differ significantly between groups. Data are expressed as mean + SEM. 
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Figure  22: Effect of lesion induction on proliferation of mature oligodendrocytes after remyelination 
Proliferation of mature oligodendrocytes was determined within lesioned subpial cerebral cortex on NogoA/BrdU double 

immunohistochemical sections. Twenty-one days post lesion induction, few proliferated oligodendrocytes were detected. S.c. MOG 

immunized animals did not differ significantly from PBS-injected and non-injected controls. Abbreviations: cyt = cytokines. Data are 

expressed as mean + SEM. 

3.7 Oligodendroglial progenitors 

To investigate the effect of inflammatory demyelination on oligodendroglial progenitor 

population, we performed immunohistochemical staining for olig2 (Figure 23). 

At the peak of demyelination at day three after lesion induction, density of olig2-positive 

cells did not alter in s.c. MOG immunized animals (45.75 ± 2.9cells/mm²). However, at 

day 21 after lesion induction, olig2-positive cell density (60.05 ± 6.21cells/mm²) 

increased significantly (one-way ANOVA F8,48 = 3,045 p=0.007) compared to day 3 

animals (post-hoc LSD-test: p = 0.005), s.c. IFA controls (1st inj.: 40.8 ± 0.97cells/mm², 

post-hoc LSD-test: p = 0.001) and untreated controls (45.69 ±  2.53cells/mm², post-hoc 

LSD-test: p = 0.005). After two demyelinating episodes, cell density was increased in 

both day 3 group (54.14 ± 3.08cells/mm², post-hoc LSD-test: p = 0.041) and day 21 

group (57.69 ± 4.27cells/mm², post-hoc LSD-test: p = 0.014) compared to repetitively 

injected s.c. IFA immunized controls (46.1 ± 5.54cells/mm²). Three days after four 

repetitively induced lesions, olig2-positive cell density (59.9 ± 5.2cells/mm²) was 

increased compared to repetitively injected s.c. IFA immunized controls (46.1 ± 

5.34cells/mm², post-hoc LSD-test: p = 0.02) and untreated controls (45.69 ± 

2.53cells/mm², post-hoc LSD-test: p = 0.013). Twenty-one days after the last 
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intracerebral cytokine injection, cell density (49.44 ± 6.24cells/mm²) did not differ 

compared to control groups. 
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Figure 23: Unaltered oligodendroglial progenitor population 
Representative photographs of olig2/PLP double fluorescent sections of the lesioned subpial cerebral cortex. The different time points 

(days 3 and 21) are arranged in columns. Lesion inductions (1st, 2nd and 4th) and immunization protocols (s.c. MOG and s.c. IFA) are 

arranged in rows. Merged overview photographs consist of olig2 (red), PLP (green) and DAPI (blue).  Magnifications of single cells 

show olig2 (red, upper inset), DAPI (blue, middle inset) and merged signals (lower inset). Numbers of olig2-positive cell population 

ons. Abbreviation: .n.d. = not determined. 

cale bar = 50µm, length of enlarged image = 16µm 

 

remained unaltered even after repetitive lesion inducti

S

 
Figure 24: Density of oligodendroglial progenitors 
Oligodendroglial progenitor density was determined within lesioned subpial cerebral cortex of olig2-stained sections. Olig2-positive 

cell density did not decrease at any examined time point, even after repetitive lesioning. Twenty-one days after single lesioning and 3 

days after four demyelinating events, olig2-positive cell density increased significantly. Data are expressed as mean + SEM. Mean of 

untreated controls is indicated by dotted line. For statistical evaluation, one-way ANOVA followed by post-hoc LSD-test was 

erformed (* = p < 0.05, ** = p < 0.01). 

d in subpial lesions of s.c. MOG immunized 

animals at day 21 after lesion induction. 

p

 

3.7.1 Proliferation of oligodendroglial progenitors 

To assess the effect of repeated lesion induction on the proliferation of oligodendrocytes, 

NogoA-positive cells were labelled with the proliferation marker BrdU. 

Oligodendrocytes which underwent cell division during BrdU administration were 

detected by NogoA/BrdU double immunohistochemistry (Figure 19). Cells double 

positive for olig2/BrdU were quantifie
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Olig2/BrdU double-positive cells were detected within the subpial cortical lesions (Figure 

25). Constant values were measured after one (12.32 ± 2.65cells/mm²), two (8.78 ± 

2.08cells/mm²) and four (8.57 ± 1.84cells/mm²) demyelinating events (Figure 26). 

In a further experiment, the proliferation of oligodendroglial cells was analysed in more 

detail. Three days post lesion induction (Figure 27), relatively high numbers of 

olig2/BrdU double-positive cells were detected in s.c. MOG immunized (23.34 ± 

6.69cells/mm²) and IFA immunized controls animals (12.29 ± 2.88). No significant 

differences were detected between both groups. Twenty-one days post lesion induction 

(Figure 28), high numbers of olig2/BrdU double-positive cells were detected in s.c. MOG 

immunized animals (15.83 ± 2.06), which were significantly increased (one-way 

ANOVA F3,2 2= 6,594, p = 0.003) compared to all s.c. IFA immunized control groups 

(cytokine injection: 9.94 ± 1.23cells/mm², p = 0.048; PBS injection: 7.70 ± 

2.63cells/mm², p = 0.007; no injection: 4.34 ± 1.12cells/mm², p < 0.001). Within the 

control groups, no statistical differences were observed, but there was a trend for increase 

between non-injected animals and those which received an intracebral cytokine injection 

(p = 0.06). These experiments showed an increased proliferation of OPCs upon 

demyelinating insult within the cerebral cortex.   
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Olig2/BrdU double immunofluorescence
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Figure 25: Proliferation of olig2-positive OPCs within subpial lesions 
Representative photographs of olig2/BrdU double fluorescent sections of the lesioned subpial cerebral cortex. The different time 

points (days 3 and 21) are arranged in columns. Lesion inductions (1st, 2nd and 4th) and immunization protocols (s.c. MOG and s.c. 

IFA) are arranged in rows. Merged overview photographs consist of olig2 (red), BrdU (green) and DAPI (blue).  Magnifications of 
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single cells show olig2 (red, upper inset), BrdU (green, middle inset) and merged signals (incl. DAPI, lower inset). Substantial 

proliferation of olig2-positive cells was observed at days 3 and 21 after lesion induction. Abbreviation: .n.d. = not determined. 

Scale bar = 50µm, length of enlarged image = 16µm 

 
 

 

Figure 26: OPC proliferation after repeated demyelinating events 
Proliferated oligodendroglial progenitor population was determined within lesioned subpial cerebral cortex by olig2/BrdU double 

immunofluorescence. Twenty-one days post lesion induction, moderate density of Olig2/BrdU double-positive cells was detected. 

Values did not differ significantly after repetitive lesion induction. Data are expressed as mean + SEM. 

 

 

Figure 27: Early effects of lesion induction on OPC proliferation 
Proliferation of the oligodendroglial progenitor population was determined within lesioned subpial cerebral cortex by olig2/BrdU 

double immunofluorescence. At 3 days post lesion induction, substantial proliferation of olig2-positive cells was observed in both s.c. 

MOG and s.c. IFA immunized animals. Values did not differ significantly between groups. Data are expressed as mean + SEM. 
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Figure 28: Effects of lesion induction on OPC proliferation after remyelination 
Proliferation of the oligodendroglial progenitor population was determined within lesioned subpial cerebral cortex by olig2/BrdU 

double immunofluorescence. Twenty-one days post lesion induction, Olig2/brdU double-positive cell density was significantly 

increased compared to the s.c. IFA control groups. Abbreviations: cyt = cytokines. Data are expressed as mean + SEM. For statistical 

evaluation, one-way ANOVA followed by post-hoc LSD-test was performed (* = p < 0.05, ** = p < 0.01, *** = p < 0.001)
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4 DISCUSSION 

In the presented study I investigated the impact of repeated cortical demyelination on the 

intrinsic remyelination capacity. 

Histological analysis revealed widespread subpial and intracortical demyelinated lesions 

within the injected cortical hemisphere. Demyelination was accompanied by loss of 

oligodendrocytes and activation of macrophages/microglia but without apparent axonal 

loss. Although the fraction of myelinated axons did not fully recover, an extensive 

remyelination, restored oligodendrocyte population and resolution of inflammation was 

observed even after repeated lesioning. This was accompanied by a proliferative response 

of olig2 and NogoA-positive cell populations that was already observed during 

demyelination.  

 

4.1 Targeted cortical demyelination shares similarities with cortical MS lesions 

The study of cortical pathology in MS and its clinical manifestations, as well as 

underlying mechanisms has been hampered by the lack of suitable animal models. The 

cerebral cortex shows frequent involvement in MS patients. In contrast, in the classical 

rodent EAE model, lesions are mostly confined to the spinal cord but only rarely affected 

the cerebral cortex. Alternatively, injection of gliotoxins e.g. lysolecithin or ethidium 

bromide were used to induce lesions within the brain of rodents (Yajima and Suzuki, 

1979; Hall, 1972). However, these models do not reflect the immunopathological nature 

of MS lesions in the cerebral cortex. Interestingly, the evolvement of cortical EAE lesions 

was observed in the marmoset EAE model. These lesions occurred spontaneously during 

the disease course and highly resemble cortical MS lesion pathology (von Budingen et 

al., 2004; Pomeroy et al., 2005; Merkler et al., 2006; Merkler et al., 2006b).  However, 

experiments with outbread primates show high requirements for infrastructure and animal 

husbandry, that can only be accomplished in highly specialized centers. A further 

limitation in using outbread primates is the unpredictable disease course, making it 

difficult to reproduce cortical lesions in a standardized manner.  
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To gain insight into the important aspects of cortical MS, a novel animal model was 

recently developed in our laboratoty that allows for the targeted induction of cortical 

demyelinating lesions (Merkler et al., 2006). Sensitization of rats against MOG resulted 

in a subclinical immune response. In a second step, stereotactic injection of pro-

inflammatory cytokines into a defined area of the animal’s cortex led to cortical 

demyelination that shows considerable similarities to human cortical MS pathology 

(Merkler et al., 2006). Importantly, neither subclinical MOG sensitization nor cytokine 

injection alone can cause demyelination or important cellular inflammation in the CNS. 

As described in the previous study, we could detect predominantly subpial but also 

intracortical lesions in the targeted EAE model that were reminiscent of cortical lesion 

type II and III described in MS patients (Peterson et al. 2001). This lesion topology 

remained consistent over repeated cycles of de- and re-myelination. Furthermore, cellular 

composition of inflammatory infiltrates matched the observation of cortical MS lesions. It 

is possible that the observed topology may be caused by the distribution of injected 

cytokines in our model. After having been targeted to the deeper cortical layers, the 

injected cytokines are likely to partially drain back to the subpial surface. Thereby, the 

BBB may predominantly be affected in these areas resulting in transient BBB breakdown 

and/or upregulation of adhesion molecules on endothelial cells (Yusuf-Makagiansar et 

al., 2002). In a setting of previous priming against MOG, it is conceivable that 

demyelinating anti-MOG autoantibodies cross the altered BBB as a consequence of 

cytokine injection and subsequently trigger a localized inflammatory response within the 

affected areas. An alternative hypothesis for the observed lesion distribution would be 

that macrophages accumulate preferentially at the meningeal area of cytokine injection 

and thereby secrete demyelinating inflammatory cytokines into the subpial cortical area 

(Serafini et al., 2007). However, this latter scenario is rather unlikely in our model, since 

IFA immunized animals did not reveal signs of demyelination despite the fact that these 

animals showed a certain accumulation of macrophages in the meningeal areas following 

cytokine injection (data not shown). Furthermore, recent findings in MS showed that 

meningeal inflammation seems not to be associated with cortical demyelination (Geurts 

et al., 2009). 
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4.2 Effect of repeated demyelinating lesions on remyelination 

Cortical remyelination is a frequent and important repair mechanism in MS (Patani et al., 

2007; Patrikios et al., 2006). The cerebral cortex showed a more extensive remyelinating 

capacity as compared to white matter MS lesions (Albert et al., 2007). Nevertheless, the 

number of chronic demyelinated plaques in the cerebral cortex increases with ongoing 

disease progression (Peterson et al., 2001; Bo et al., 2003; Patani et al., 2007; 

Goldschmidt et al., 2009; Gilmore et al.,  2009; Bo, 2009). Therefore, the objective of 

this study was to investigate the effect of repetitive inflammatory demyelination on the 

endogenous cortical remyelination capacity.  

Although cortical lesions were repeatedly induced in our study, animals revealed 

extensive and in some cases nearly complete remyelination, even after four 

demyelinating episodes. Our results are in line with a previous study which proved 

successful myelin restoration after repeated cycles of ethidium bromide-induced 

demyelination (Penderis et al., 2003). Together, these results suggest at first glance that 

remyelination failure - as can be observed in chronic MS cases - might not solely be the 

result of repetitive demyelinating episodes and further suggest that there are still other 

unknown mediators that may contribute to this phenomenon. Clearly, our study can 

nevertheless not exclude that four cycles of of de- and re-myelination may just not be 

enough to exhaust the intrinsic remyelinating capacity of the cerebral cortex, and that 

remyelination failure in MS may reflect the final consequence of a multitude of such 

events that was not sufficiently recreated by our repeated lesioning approach. One may 

therefore speculate that the targeted cortical EAE lesions reflect the early relapsing-

remitting disease course of MS, in which chronic cortical demyelination is less 

pronounced (Stadelmann et al., 2008). Furthermore, possible differences in the intrinsic 

properties of remyelinating oligodendrocytes in humans and rodents may account for 

these observations. 

As a further parameter of remyelination, we determined the fraction of myelinated fibres 

in the remyelinated cortex. This analysis revealed a reduced fraction of remyelinated 

fibres three weeks after lesioning. To exclude that this change might be explained by still 

incomplete remyelination at this time point, we performed in a subset of animals similar 
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analysis five weeks after demyelination (data not shown). However, the fraction of 

remyelinating fibres remained reduced even at this later time point as compared to age-

matched controls. Thus, this data indicates that the process of remyelination was almost 

already complete three weeks after lesion induction. These results indicate that although 

remyelination is extensive, the restoration of myelin content in the cortex is incomplete, 

therefore as expected not equating to normal developmental myelination (Lazzarini, 

2004). The limitations of remyelination are obvious in the ultrastructure of myelin, 

showing reduced myelin sheath thickness and internode length (Perier and Grégoire, 

1965; Blakemore, 1974; Merkler et al., 2006).    

 

4.3 Inflammation in repeated targeted cortical EAE lesions  

In accordance to a previous report demyelination was accompanied by inflammation 

which resolved within three weeks after each lesion induction (Merkler et al., 2006). The 

initial inflammatory response measured by the density of activated 

macrophages/microglia was markedly stronger compared to the subsequent episodes. 

Macrophage/microglia activation might be related to myelin content, as the fraction of 

myelinated axons was also higher before demyelination when compared to remyelination 

time points. However, this seemed not related to lesion size as the extent of 

demyelination did not alter after repetated lesions. The relationship between myelin 

content and inflammation becomes clear when comparing myelin rich white matter 

lesions, which present with strong inflammation, to grey matter lesions, which present 

with relatively little myelin and reduced inflammation (Kerschensteiner et al., 2004: 

Merkler et al., 2006; Peterson et al., 2001; Bo et al., 2003). However, the different local 

environment of white and grey matter could influence the inflammatory response within a 

given lesion. Anti-MOG autoantibody titres were consistently high over time and 

therefore are not the cause for the observed alterations in inflammatory response. 

Speculatively, excessive blood born monocytes were recruited into the area of 

inflammation during the initial demyelinating lesion. Why the repeated inflammatory 

responses were markedly reduced is not clear. One discussed theory is that neurons, 
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which are abundant in the cerebral cortex could have damped the activation of microglia 

as proposed by Biber and colleagues (Biber et al., 2007).  

The inflammatory process causes tissue damage in EAE and MS. For instance, pro-

inflammatory cytokines such as TNF-α, IFN-γ, interleukin-1 β (IL-1β) and IL-2 have 

been shown to promote oligondendrocyte death in vitro (Selmaj and Raine, 1988; 

Vartanian et al., 1995; Curatolo et al., 1997; Hisahara et al., 1997; Jurewicz et al., 2005). 

Apoptosis-inducing factor-positive oligodendrocyte nuclei were detected around MS 

plaques, suggesting this pathway may contribute to oligodendrocyte loss and disease 

progression (Jurewicz et al., 2005). Furthermore, macrophages and microglia are 

activated by pro-inflammatory cytokines which promote apoptosis of oligodendrocytes 

through oxidative stress or via activation of transcription factor p53 (Merill and Scolding, 

1999; Eizenberg et al., 1995; Ladiwala et al., 1999; Wosik et al., 2003). However, the 

cytokine concentrations used in our model are not cytotoxic, as no effects were observed 

in IFA-immunized control animals.    

 

4.4 Preserved axonal intregrity after repetitive demyelination 

Repetitive lesion induction did not lead to substantial axonal loss. This goes in line with a 

previous study by Merkler and colleagues (Merkler et al., 2006) which reported preserved 

axonal integrity and minimal neuronal death in the targeted cortical EAE model. 

Furthermore, they showed transient accumulation of amyloid precursor protein (APP)-

positive spheroids, correlating with inflammation. Acute axonal damage and minimal 

neuronal loss is also to be assumed in our repetitive lesioning approach, but apparently 

without any cumulating harming effects, as no axonal loss was detected. The fast 

resolution of inflammation in targeted cortical EAE lesions possibly prevented further 

axonal damage. This is supported by several studies suggesting a relationship between the 

extent of axonal damage and the severity of the inflammatory process in EAE and MS 

(Mancardi et al., 2001, Shrivel and Dittel, 2006; Rasmussen et al., 2007; Lassmann et al., 

2001). However, transected neurites and apoptotic neurons were observed in cortical MS 

lesions (Peterson et al., 2001). Extensive remyelination observed in the presented study 
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might have supported axonal preservation as reported by previous studies (Kornek et al., 

2000; Irvine and Blakemore, 2008; Trapp and Nave, 2008).  

 

4.5 Oligodendrocyte recruitment in the targeted cortical EAE model 

Histological assessment revealed normal olig2-positive cells density within the subpial 

cerebral cortex which did not decrease even after repeated cycles of demyelination. The 

cell density even increased at particular time points after lesion induction. This can be 

explained by the fast proliferative response of oligodendroglial cells observed within 

demyelinated areas. From this proliferative population the majority were olig2-positive 

OPCs and only few NogoA-positive cells. This leads to the assumption that the restored 

oligodendrocyte population in the remyelinated cortex, did not derive from proliferated 

OPCs. More likely, oligodendrocytes were preferentially recruited from the local pool of 

abundant OPCs which already persisted before the demylinating lesion was induced 

(Dawson et al., 2003, Levine et al., 2001). One can further speculate that the proliferated 

olig2-positive OPCs might restore the pool of quiescent adult oligodendroglial population 

to replace those which have differentiated into remyelinating oligodendrocytes. This 

seems plausible as, differentiation of OPCs offers a repair mechanism which is fast when 

compared to the longer process required during proliferation and subsequent maturation. 

Moreover, it allows for oligodendrocyte restoration and extensive remyelination within 

21 days. However, both proliferation and differentiation are important mechanisms of 

oligodendrocyte recruitment and which of both mechanisms finally fail in MS is a 

controversial issue. Numerous studies reported OPC recruitment in MS lesions (Prineas 

et al., 1989; Schonrock et al., 1998; Scolding et al., 1998; Chang et al, 2000; Maeda et 

al., 2001). This is supported by experimental demyelination studies underlining the 

potential of OPC recruitment (Carrol and Jennings, 1994; Penderis et al., 2003; Fancy et 

al., 2004; Levine and Reynolds, 1999; Sim et al., 2002). Despite OPC numbers 

decreasing with disease progression, they remain within the lesion, however are 

unresponsive, which therefore indicates a differentiation failure of oligodendroglial 

progenitor cells as the major determinant of remyelination failure in chronic MS 

(Kuhlmann et al., 2008). The importance of efficient differentiation is obvious in GFP-
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PDGF-α transgenic animals, where elevated OPC numbers did not improve remyelination 

after chemical demyelination (Woodruff et al., 2004). Nevertheless, the likelihood of 

OPC recruitment failure can not be excluded since OPC depletion may occur after a 

single demyelinating event (Keirstead et al., 1998). This effect is more obvious after 

protracted and sustained exposure to a demyelinating stimulus (Linington et al., 1992; 

Ludwin, 1980). However, in our experimental setting we could not detect a reduction of 

OPC in the demyelinated cortex. This can be explained by the fact that MOG EAE is not 

directed against OPCs since these cells do not express the MOG antigen. 

The density of proliferated OPCs appeared higher at day three after lesion induction than 

after 21 days. A reason for this may be the excessive recruitment of OPCs undergoing 

apoptosis as reported in a previous study (Calver et al., 1998). In addition, this observed 

process can be partly explained by the normal turn over of OPCs, as Olig2 and NG2-

positive cells are the major cycle related cell population in the CNS (Dawson et al., 2000; 

Levine et al., 2001; Geha et al., 2009; Dimou et al., 2008; Zhu et al., 2008).  

Not all OPCs within the cerebral cortex do differentiate to myelinating/remyelinating 

oligodendrocytes (Franklin and ffrench-Constant 2008). Several studies present evidence 

that different OPC subpopulations with different functions such as synaptic transmission 

may exist (Karadottir et al., 2008; Jacobs et al., 2005). This may be achieved by 

glutamate and N-methyl D-aspartate (NMDA) receptors which have been shown to be 

expressed on oligodendroglial membranes (Bergles et al., 2000; Karadottir et al., 2005; 

Kukley et al., 2007). The putative existence of further OPC subpopulations could explain 

why a substantial number of quiescent OPC remain in high numbers in the normal 

cerebral cortex (Dawson et al., 2003, Levine et al., 2001). Another supporting reason is 

that OPC subpopulations derived from OPCs responded differentially to trophic factors 

such as PDGF-AA, FGF-2 and IGF-1 (Mason et al., 2002). Furthermore, competing 

waves of embryonic oligodendrocyte lineages during development support the existence 

of two different oligodendroglial populations (Kessaris et al., 2006). Whether 

aforementioned cells are also present in the brain of the Lewis rat and whether these cells 

respond to inflammatory demyelination is unknown.  
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NogoA is considered a reliable marker for adult mature oligodendrocytes (Kuhlmann et 

al., 2007). However, during the transition from OPCs to remyelinating oligodendrocytes, 

some cells may express both olig2 and NogoA. Nevertheless, the proportion of wrong 

positive cells might be small. In all probability, the restored population of NogoA-

positive oligodendrocytes contributed to remyelination. However, the presence of 

remyelinating oligodendrocytes in the targeted EAE model should be confirmed by PLP 

in-situ hybridization and electron microscopy in future experiments. 

 

4.6 The origin of proliferated OPCs 

The origin of proliferated OPCs reported in this study is unknown. However, our data 

indicate that OPCs were locally recruited as substantial numbers of proliferated OPCs 

were already observed within demyelinated areas at day three after lesion induction. 

Thus, recruitment from remote brain areas unlikely occurred in such a short time frame. 

Additionally, few OPCs might have migrated from adjacent cortical areas as increased 

numbers of proliferated OPCs were also detected in unaffected cortical areas located 

close to the lesion (data not shown). Furthermore, the subventricular zone (SVZ) is 

discussed in the literature as a potent source for OPCs. The SVZ harbours mitogenic type 

B cells from which OPCs but also astrocytes and neurons derive from this region 

(Levison and Goldman, 1997; Carrol et al., 1998; Menn et al., 2006). These cells migrate 

through the rostral migratory pathway (RMS) to their destination and have been shown to 

be a potential source of oligodendrocyte recruitment in experimental demyelination 

studies (Aguirre et al., 2007; Nait-Oumesmar et al., 1999; Picard-Riera et al., 2002). SVZ 

activation was also described in MS patients (Nait-Oumesmar et al., 2007), although the 

role of SVZ proliferation and migration might play only a minor role in human disease. 

Firstly, the contribution of SVZ-derived cells may be relatively small compared to local 

OPCs, and especially as it occurs in remote places of the brain. Secondly, 

oligodendroglial precursors may be recruited from areas adjacent to demyelinated lesions. 

This is supported by increased oligodendroglial cell counts observed at the rim of MS 

lesions (Raine et al., 1981; Prineas et al., 1989; Robinson et al., 1998).  
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4.7 Indications of overstrained remyelination capacity 

Histological evaluation revealed extensive remyelination after repetitive demyelination. 

In addition, oligodendrocyte population recovered at least after the first two 

demyelinating events. However, twenty-one days after the fourth lesion induction 

NogoA-positive cells counts ranged between the values of the demyelinated and control 

groups. Therefore, it is hard to state whether the oligodendrocyte population is fully 

restored or not. Assuming the previous statement, reduced oligodendrocyte number could 

indicate the start of impaired oligodendrocyte recruitment, which is unclear after the 

fourth injection. This may have become more apparent if further lesioning was 

performed. Similarly, exhaustion of the remyelination capacity can be induced after 

protracted and sustained exposure to a demyelinating stimulus, this does not reflect those 

conditions of cortical MS lesions (Linington et al., 1992; Ludwin, 1980).  

Furthermore, one should keep in mind that MS patients may experience many 

demyelinating episodes during the usually long disease course, whereby cortical 

demyelinating lesions can be observed in early disease stages (Okuda et al., 2009; Lebrun 

et al., 2008). Moreover, signs of previous demyelination were detected in normal 

appearing grey matter of MS patients (Albert et al., 2007). When considering the number 

of undetected and obvious lesions that MS patients suffer throughout disease, loss of 

remyelination capacity due to frequent demyelinating episodes still provides a possible 

explanation for chronic demyelinated plaques. 

 

4.8 Role of reactive astrocytes on remyelination 

Moderate astrogliosis was observed in close proximity to the needle track. In 

concordance to our results, cortical MS lesions present with moderate astrogliosis 

compared to white matter lesions (Stadelmann et al., 2008). The role of astrocytes on de- 

and re-myelination is not fully understood. On the one hand astrocyte-derived hyaluronan 

seem to inhibit OPC maturation and thereby may contribute to the chronicity of plaques 

(Back et al., 2005). On the other hand astrocytes may also be beneficial as they secrete 

the neuroprotective ciliary neurotrophic factor (Albrecht et al., 2007). Furthermore, lack 

of astrocytes is associated with reduced numbers of OPCs in experimental demyelination, 
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which indicates an important role of these cells on remyelination (Talbott et al., 2005). 

However, aforementioned effects may play a minor role in our model, since astrogliosis 

observed in our study is negligible.  

 

4.9 Hormonal effects on targeted cortical EAE  

For induction of targeted EAE lesions female Lewis rats were used. To analyse whether 

disturbances in estrous cycle may interfere with the outcome of our experiments, the 

estrous cycle was determined in a subgroup of animals. Preliminary results indicate a 

transient disturbance of the estrous cycle in the targeted cortical EAE model (Appendix, 

Figure A). Whether a disturbed estrous cycle might interfere with remyelination and 

oligodendrocyte recruitment needs to be analysed in more detail. However, sex hormonal 

alterations play a role in MS, as some patients experience an alleviation of symptoms 

during the third trimester of pregnancy which may be related to high levels of estrogen 

(Confavreux et al., 1998). Furthermore, 17-β-estradiol and estriol promoted 

immunosuppression was confirmed in EAE experiments (Confavreaux et al., 1998; 

Voskuhl, 2002; Kim et al., 1999; Bebo et al., 2001; Ito et al. 2001). In contrast, hormonal 

fluctuations in menstrual cycle or menopause seems to be associated with exacerbations 

of MS symptoms, however definite conclusions are missing due to technical limitations 

and conflicting results (Smith and Studd, 1992; Nicot, 2009).  

Stress is linked to hormonal changes and may thereby influence the disease course in 

autoimmune human diseases and animal models (Heesen et al., 2007; Morale et al., 2001; 

Foster et al., 2003; Kalantaridou et al., 2004; Herzog et al., 2009). Ovariectomies can be 

performed to reduce sex hormone related interferences in animal experiments, as for 

instance estrogen promoted neuroprotection (Hoffman et al., 2001; Offner et al., 2006; 

Morales et al., 2006). However, changes in estrous cycle related hormonal function may 

possibly occur in our model, although it is likely not do not to have a strong impact on the 

disease course, as no obvoius intraindividual differences were observed in the analysed 

parameters.  
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4.10 Conclusions 

This work demonstrates the extensive intrinsic regenerative capacity of the rat cerebral 

cortex after repeated demyelinating insult. Four cycles of cortical demyelinating episodes 

did not lead to reduction of the cortical remyelinating capacity in our experimental 

setting. Our results suggest furthermore that oligodendroglial recruitment occurs by 

differentiation of existing rather than newly generated OPCs within the cerebral cortex. 

Findings from these studies will contribute to understanding the underlying processes of 

remyelination with implications for MS.  
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Appendix 

6 APPENDIX 

6.1 Effect of targeted cortical EAE lesion on estrous cycle 

 
 

 

 
Figure A: Effect of targeted cortical EAE on estrous cycle 

The effect of targeted cortical EAE on the estrous cycle was analyzed. Daily vaginal smears were collected 

and values are given as percentage of rats having regular estrous cycle each week. Two weeks post lesion 

induction a transient disruption of the estrous cycle was observed in some s.c. MOG immunized animals. 

The phases of estrous cycle were determined using standard criteria as described by Herzog and colleagues 

(Herzog et al., 2009). Animals per group: n = 15 (week 1) and n = 9 (weeks 2 and 3). 
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