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If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one 

sentence passed on to the next generations of creatures, what statement would 

contain the most information in the fewest words? I believe it is the atomic 

hypothesis (or the atomic fact, or whatever you wish to call it) that all things are 

made of atoms—little particles that move around in perpetual motion, attracting 

each other when they are a little distance apart, but repelling upon being squeezed 

into one another. In that one sentence, you will see, there is an enormous amount of 

information about the world, if just a little imagination and thinking are applied. 

Feynman “Lectures on Physics” 

1 Introduction 

 

Size is one of the basic characteristics of molecules. Molecular size can be a very 

sensitive detector of changes in environment such as temperature, pH or chemical 

composition (Lu et al., 1993; Sherman et al., 2008; Parmar & Muschol, 2009). 

Molecular size also changes upon interactions with other molecules, e.g. binding of ions 

(Yamniuk et al., 2004). Therefore, the ability to determine molecular size and moreover 

to observe its changes can provide a wealth of information about molecules and their 

interactions (Sun, 2004; Wilson & Walker, 2010). As such, precise measurements of 

molecular size find broad applications in physics, chemistry and biology (for example, 

Murphy & Tsai, 2006).  

The challenge of measuring the molecular size is to do it with sufficient accuracy. 

An accuracy in the order of Ångstrøms is necessary to distinguish, for example, between 

different conformational states in proteins (Weljie et al., 2003). Another challenge is to 

perform these measurements close to the infinite dilution limit to prevent any 

intermolecular interaction of aggregation that would alter the correct size value 

(Kiefhaber et al., 1991). Thus molecular sizing is a state-of-art research performed on a 

cross-road of physics, biology and chemistry. 

The work presented here is concerned with high-precision sizing of molecules at 

pico- to nanomolar concentrations. A special spectroscopic technique of single-molecule 

spectroscopy, namely fluorescence correlation spectroscopy (FCS) was chosen because 

of its enormous sensitivity and relative simplicity, as will be seen below. Besides, FCS 

is very aesthetic from a physics point of view, because it employs one of the most basic 

properties of matter, thermal fluctuations: “Alive or not, everything is subject to thermal 

fluctuations” (Berg, 1983).   

In what follows, I will start from a historical background, followed by an 

overview of the various methods that are used for sizing molecules in solution. Then, I 
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will focus on the general introduction into the philosophy of FCS and, in particular, on 

one advanced special variation of FCS, dual-focus FCS or 2fFCS, which proved to be of 

fundamental importance for obtaining high-precision values of molecular size. 

 

1.1 Historical background 

The history of molecule is closely interwoven with the history of atom. Moreover 

till late into the 18th century, the term "molecule" was used synonymously with "atom" 

to denote an "extremely minute particle".  

The idea of atom belongs to the ancient Greek philosophers Leucippus and 

Democritus. They surmised that there are atoms because there must be a limit to the 

divisibility of matter. Then, it took almost two millennia to step from that speculative 

philosophical idea to a scientific theory based on careful chemical, stoichiometric 

measurements as formulated by the chemist John Dalton. His work was directly related 

to the concept of “a molecule” as being two or more atoms bound by strong chemical 

bonds. But only by the beginning of the 20th century, with Einstein's theoretical work 

and Perrin's experiments on Brownian motion, the existence of atoms and molecules was 

finally proven beyond any doubt.  

With the acceptance of the existence of atoms and molecules and the 

development of quantum mechanics, within several decades many different methods 

were developed for the study of molecular structure. Among them were nuclear 

magnetic resonance (NMR), x-ray diffraction, electron microscopy, and different kinds 

of optical spectroscopy. Typically, these methods allowed for measuring the average 

characteristics of a large number of atoms or molecules (ensemble or bulk 

measurements). Only the second half of the 20th century saw the development of real 

single atom or molecule measurement techniques such as single-molecule fluorescence 

spectroscopy, field emission microscopy, or atomic force microscopy (AFM). These 

techniques opened new vistas for studying processes and properties on a single particle 

level which was impossible to do before. Here, the starting point of single-molecule 

fluorescence spectroscopy in condensed matter can be traced back to the ground-

breaking work of W. E. Moerner and L. Kador in 1989 (Moerner & Kador, 1989) and, 

independently, by Michel Orrit and Jacky Bernard, who performed hole-burning 

experiments on the fluorescence of immobilized single molecules in ultrathin films 

crystals at liquid helium temperatures. (~ 1.5 K) (Orrit & Bernard, 1990). However, the 

big break-through in detecting directly fluorescent light from an individual molecule in 
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solution under ambient conditions came with the successful detection of single 

rhodamine molecules in water by the group of Richard Keller in 1987 (Nguyen et al., 

1987). This launched an avalanche of methodological developments and innumerable 

applications that continues up to this day.  

Nowadays, due to the development of new and cheap laser sources, high-sensitive 

single-photon counting detectors, and with the advent of high-quality objectives with 

large numerical aperture, single-molecule fluorescence spectroscopy and imaging has 

become a standard technique in many labs around the world (see, for example, (Selvin & 

Ha, 2008)). Correspondingly broad are the many different applications of the technique 

in the physical, chemical and biological sciences. Zander (2002), Hinterdorfer and van 

Qijen (2009), Knight  (2009) are only few text books giving an overview of a modern 

single molecule field state. 

 

1.2 Molecular sizing techniques 

The hydrodynamic radius is a typical parameter for characterizing molecular size. 

The radius is directly coupled to a diffusion coefficient of a particle via Stokes-Einstein 

relation. Any change in that radius will change the associated diffusion coefficient of the 

molecules. The diffusion coefficient is the fundamental parameter describing diffusion 

of a molecule in a solution. There are several standard methods to measure molecular 

motion (and thus size) in solutions with high accuracy. Among them are dynamic light 

scattering (DLS), pulsed field gradient NMR (Callaghan, 1991), analytical 

ultracentrifugation, and fluorescence correlation spectroscopy (FCS).  

The main advantage of DLS is its ability to study untagged molecules, as this 

method is based solely on light scattering. The core idea is to register scattered laser 

light from a sample and to evaluate the time-dependent fluctuations in scattering 

intensity which is due to the constantly changing distances between diffusing molecules 

in solution. The recorded scattering signal is autocorrelated, yielding the second order or 

autocorrelation function (ACF). The temporal decay of the ACF contains information 

about the particles' diffusion coefficient and thus their hydrodynamic radius. However, 

due to the scaling of the scattering intensity with molecular volume, the method becomes 

increasingly insensitive with decreasing radius, making it rather applicable to objects 

larger than ~10 nm, and demanding large sample concentrations (micromolar and larger) 

(Berne & Pecora, 2000).  

There are two ways to study diffusion processes with NMR and to measure 
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diffusion coefficients: analysis of relaxation data, and pulsed-field gradient or pfgNMR. 

The relaxation method is in fact sensitive to rotational diffusion, while in pgfNMR 

measurement, motion is measured over millisecond to seconds (W.S. Price, 1997). In 

pfgNMR experiment two subsequent gradient pulses are used which each produce 

opposite phase shift. For a sample in which the spins do not change position over the 

time between both pulses, the resulting phase shift is zero. However, should spin 

migrate, residual phase shifts arise which are sensitive to motion (Callaghan et al., 

1999). The limit on measurable diffusion values, therefore, depends on the area of the 

gradient pulses and the time allowed for diffusion. Larger values of diffusion coefficient 

 scm /10 25  can be reliably measured using this experiment. In case of large 

molecules, such as proteins, difficulties in measuring diffusion occur in obtaining 

sufficient amplitude attenuation as well as in water suppression. Because of the 

importance of observing exchangeable protons, NMR solution conditions usually require 

a 105-fold excess of water protons which means at 1-2 mM protein concentration an 

solvent consisting of 90% H2O/10% D2O (Altieri et al., 1995). 

An analytical ultracentrifugation uses advantages of a preparative ultracentrifuge 

and an optical detection system. It is capable of directly measuring the sample 

concentration inside the centrifuge cell during sedimentation. The sample is visualized 

in real time during sedimentation. There are two experimental applications: 

sedimentation velocity and sedimentation equilibrium. Sedimentation equilibrium is a 

thermodynamic technique that is sensitive to the mass but not the shape of the 

macromolecular species. In contrast, sedimentation velocity is a hydrodynamic 

technique sensitive to the mass and shape of the macromolecular species (Brown & 

Schuck, 2006). In a sedimentation velocity experiment, a moving boundary is formed on 

application of a strong centrifugal field. A series of scans (i.e., measurements of sample 

concentration as a function of radial distance) are recorded at regular intervals to 

determine the rate of movement that contains information about molecule's mass, and 

broadening of the boundary as a function of time providing shape characterization. 

Depending on the application and optical system used, sample requirements can differ 

(Cole et al., 1999), hence the experiments are often carried out at micromolar 

concentration (Altieri et al., 1995). 

All above mentioned methods have their advantages to solve different problems 

but all of them operate at rather high sample concentrations, far away from the limit of 

infinite dilution. To estimate correctly hydrodynamic radius, one has often to measure at 
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different concentrations and to extrapolate the concentration/diffusion coefficient curve 

towards zero concentration (e.g. see Liu et al., 2005). Another problem is that proteins 

are often prone to aggregation at the concentrations needed for obtaining sufficient data 

quality (Kiefhaber et al., 1991). 

In comparison with others methods FCS is designed to work at nanomolar 

concentration, i.e. close to infinite dilution limit. Consequently, values for the diffusion 

coefficient obtained by FCS are indistinguishable from their infinite dilution value, and 

the method circumvents most aggregation problems. Another significant advantage of 

FCS is its relative technical simplicity, at least when compared to such methods as 

NMR. How FCS achieves those advantages as well as possible difficulties one can face 

using this method are discussed in the next section. 

 

1.3 Fluorescence Correlation Spectroscopy 

FCS is a fluorescence technique where the focus of interest is shifted from 

average emission intensity itself to intensity fluctuations caused by the minute deviation 

of small system at thermal equilibrium. 

The idea of FCS was introduced by Madge, Elson and Webb in 1972. They 

applied FCS to measure diffusion and chemical dynamic of DNA-ethidium bromide 

interaction (Magde et al., 1972). But only in early nineties the full potential of the 

method and its extreme sensitivity was demonstrated by Rigler and his coworkers owing 

to both new developments 

in laser technique, 

microscopy and their idea 

to combine FCS technique 

with confocal detection 

(Rigler et al., 1990, 

Woffbeis 1992, Rigler et 

al., 1993).  

There are two 

important things in FCS: a 

nanomolar sample 

concentration and a very 

small volume where 

excitation as well as 

Fig.1.1: The left panel shows a schematic of the detection
volume (yellow) where effective fluorescence detection takes place.
When molecules (blue spheres) diffuse in and out of that region, 
they generate a highly fluctuating fluorescence signal (right panel)
due to ever changing numbers of molecules within the detection
volume. 
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detection is confined. The volume restriction is essential part of FCS because even such 

low concentration as one nanomolar corresponds to about 1011 particles in one milliliter. 

However, to be able to see the fluorescence intensity fluctuations one has to excite one 

or very few molecules at a time (Fig.1.1). To achieve this goal the incoming laser light is 

strongly focused by a high numerical aperture objective to a diffraction limited spot. A 

confocal pinhole, introduced in the image plane, blocks all light emanating off the focal 

plane and this way limits the detection volume in axial direction.  

The detected fluorescence intensity trace is multiplied with a time-shifted replica 

of itself for different values of time shift (lag time) τ. The time averages of these 

products are reasonable estimates of the so-called autocorrelation function g (second-

order correlation function, in short ACF) for the respective lag time τ:   

 

)()()(   tItIg         (1.1) 

 

I(t) is the fluorescence intensity at 

time t and I(t+) is the intensity at 

time t + , the triangular brackets 

denote time averaging. The physical 

meaning of the autocorrelation is 

that it is directly proportional to the 

probability to detect a photon at 

time  if there was a photon 

detection event at time zero. This 

probability is composed of two 

different terms. One and the most 

important term contains correlated 

signal, i.e. the two photons are 

originating from one and the same 

molecule and are then physically 

correlated. This highlights the 

single molecule nature of FCS. The 

other term consists of all contributions from uncorrelated signals, i.e. the two detected 

photons were originating from different fluorescent molecules or from a backscatted 

Fig.1.2: Typical autocorrelation curve: On 
the microsecond time scale the fast decay is due to 
fast photophysical processes i.e. transitions into the 
triplet state or cis-trans isomerisation (red). On a 
millisecond time scale, autocorrelation decays due to 
the diffusion of molecules out of the detection region 
(green). The long-time constant offset (blue) is due to 
the completely uncorrelated photon pairs. Open 
circles: measured data (aqueous solution of the dye 
Alexa633). 
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laser light and therefore do not have any physical correlation. These uncorrelated events 

will contribute to a constant offset of g() that is completely independent on  (the joint 

probability to detect two physically uncorrelated photons is completely independent of 

the time distance between their detection). Typical autocorrelation curve is shown on 

Fig. 1.2.  

From a qualitative 

consideration, ACF shows 

how long the fluorescence 

molecule can be observed. 

The closer to the center 

molecule stays, the more 

consecutive photons from the 

same molecule can be 

registered. With time the rate 

of detected photons decreases 

due to the diffusion of the 

molecule out of the detection 

region and disappears when it 

completely diffused away. 

This means the temporal 

decay of the correlation 

function is proportional to the diffusion speed of the molecule and therefore related to its 

size. Thus, FCS measurements can provide information about diffusion of fluorescing 

molecules. Any process that alters the diffusion coefficient or the fluorescence of the 

molecule can therefore be measured by FCS. For example, consider the binding of two 

proteins in solution. It is well illustrated by Fig.1.3.where correlation curves of one and 

two coupled yellow fluorescence proteins are shown.  

Another important property of the ACF is its dependence on the concentration of 

fluorescing molecules. It is rather obvious that the fluorescence intensity fluctuations 

will be larger for smaller molecule concentrations. Indeed, if one has, on average, only a 

signal molecule within the detection volume, than the diffusion of this molecule out of 

this volume or the diffusion of another molecule into this volume will cause a big 

change in measured fluorescence intensity. On the contrary, if the average number of 

Fig.1.3: Example of the connection between 
autocorrelation decay and diffusion coefficient. Four
measurements are shown: purified water (light blue) and a salt
buffer solution (green) that still contain rapidly diffusing 
fluorescent contaminations; aqueous solution of the yellow
fluorescent protein (YFP, blue), showing a much slower
diffusion; aqueous solution of two coupled yellow fluorescent
proteins bound together by a short amino linker, displaying an
even slower diffusion. 
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fluorescing molecules within the detection volume is rather large (e.g. several hundreds), 

then the leaving or entering of a molecule causes only small signal variations. That 

means this method is limited to the narrow range of the sample concentrations: 10-13
 –

 10-8
 M. For any other concentration, the measurement time for obtaining a high-quality 

autocorrelation function gets prohibitively large. That may restrict FCS applications in 

some fields. For example, many enzymes naturally work at much higher ligand 

concentrations, and their Michaelis constants are often in the micro- to millimolar range 

(Fersht, 1999). Moreover, low concentrations of ligand can influence the mechanistic 

pathway of enzyme kinetics and alter the partitioning between multiple catalytic 

pathways, thus affecting turnover cycle histories and distributions (Levene et al., 2003; 

and ref. there).  But there are several ways to overcome that problem: One is to rapidly 

scan the laser focus through the solution (Petersen, 1986; Petersen et al., 1986) and 

another is to reduce the observation volume that gives opportunity to work at higher 

concentrations. For example, Starr and coworkers combine total internal reflection and 

FCS to reduce a volume by an order of magnitude (Starr et al., 2001). Combination of 

stimulated emission and FCS brings resolution down to 90-110 nm in lateral dimensions 

and produces a focal volume 18 times smaller than one can get using conventional 

confocal microscopy (Klar et al., 2000, Klar et al., 2001). An advantage of employing 

so-called zero mode waveguide together with FCS is the flexibility to choose the best 

volume size and sample concentration. For detailed information about zero mode 

waveguide can be found in the refs. (Levene et al., 2003; Wenger et al., 2009). 

To conclude, FCS is relatively simple method to implement, maintain and use 

what assures its wide and extensive application: Besides, the straightforward application 

which study molecular diffusion in free solution (see, for example, (Borsch et al., 1998; 

Diez et al., 2004)), FCS can be also applied to study different processes in artificial and 

cell membranes, where diffusion is limited to two dimensions (Benda, et al., 2003, 

Meissner & Häberlein, 2003, Dertinger, et al., 2006). This technique is also used in 

combination with microfluidic devices where dimensions reduce from three to one due 

to flow in microfluidic cell (Magde, et al., 1978; Enderlein, et al., 1998; Arbour & 

Enderlein, 2010). Such combination is useful to study, for example, enzymatic reactions 

and folding/unfolding processes (Hamadani, & Weiss, 2008).  

The new extensions such as fluorescence cross-color correlation spectroscopy, 

FCS together with resonance energy transfer have spread a lot in biochemical and 

biological fields to resolve behavior of several different molecule species or different 
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Fig.1.4: Wave-optical calculations concerning the 
effect of the molecule detection function on
autocorrelation functions for different measurement
conditions. The large figure shows, from left to right, the
MDF and ACF for three increasing values of refractive 
index of the sample solution of 1.333, 1.346, and 1.360. The
inset figure shows the dependence of apparent diffusion
coefficient and the concentration on refractive index
(Enderlein et al., 2005) 

parts of the same macromolecule 

(Rigler & Elson, 2001, Schwille 

& Haustein 2001, Widengren et 

al., 2001, Eggeling et al., 2005). 

Another approach to extract the 

FCS data from a mixture is to use 

the decay times of the two 

species, so-called fluorescence 

lifetime correlation spectroscopy 

(Benda et al., 2006, Kapusta et 

al., 2007, Gregor & Enderlein, 

2007, Humpolíčková, et al. 

2008). For the full and detailed 

overview about method and its 

applications one can read Rigler 

& Elson (2001), Schwille & 

Haustein (2001), Zander et al., 

(2002), Lacowicz (2006). 

However, that wide range of FCS applications reveals its limitations. The most 

severe problem is a quantitative evaluation of an FCS measurement. For doing that, one 

has to exactly know the size and 

the shape of the detection 

volume which is described by 

the so-called molecule detection 

function (MDF) giving the 

probability to detect a 

fluorescence photon from a 

molecule at a given position in 

sample space (Enderlein et al., 

2004; Gregor et al., 2005). It 

sensibly depends on manifold 

parameters of the optical setup, 

such as the peculiarities of laser 

focusing or fluorescence light 

Fig.1.5: Wave-optical calculations concerning 
the effect of the molecule detection function on 
autocorrelation functions for different measurement 
conditions. The large figure shows, from left to right, the 
MDF and ACF for three increasing values of optical 
saturation. The inset figure shows the dependence of 
apparent diffusion coefficient and concentration on 
optical saturation i.e. excitation intensity (Enderlein et 
al., 2005). 
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collection, which are difficult or impossible to control exactly. These dependencies 

make an exact and quantitative evaluation of FCS measurements rather difficult (Hess & 

Webb, 2002; Nagy et al., 2005; Perroud et al., 2005). Furthermore, properties of the 

sample like refractive index, cover slide thickness, or laser beam astigmatism all 

influence the outcome of an FCS experiment (Enderlein et al., 2004; Enderlein, 2005). 

All those factors affect the shape and size of detection volume resulting in a change of 

the measured autocorrelation function (ACF) and thus extracted value of a diffusion 

coefficient. For example, even small deviation of sample refractive index from water, 

used as the immersion media for the most objectives in conventional FCS systems, cause 

a very complex shape of molecular detection function (Enderlein et al., 2004) and most 

importantly it leads to an increase of the detection volume and therefore to a dramatic 

decrease of the apparent diffusion coefficient (see Fig.1.4).  

A reference measurement of fluorescent molecule, with an a priori known 

diffusion coefficient, under identical experimental conditions is usually used as a 

remedy for those problems. But even then, the most disturbing MDF problem in FCS 

measurements is the dependence of the MDF on excitation intensity due to optical 

saturation (Berland & Shen, 2003, Nishimura & Kinjo, 2004) (Fig.1.5). Thus the MDF 

depends on photophysical characteristics of each molecular species. Moreover 

photophysical properties of even the same dye often change when it is chemically bound 

to a protein or other target molecule (see, for example, (Eggeling et al., 2006)). This 

makes referential measurements problematic. 

All those potential error sources are linked to a fundamental problem of FCS – 

the absence of an intrinsic length scale in the measurement. The fluorescence correlation 

decay of the ACF depends on diffusion speed and the spatial extend and shape of the 

MDF, but the former is to be measured and the latter is not well known. The way to 

improve conventional FCS is to introduce an external parameter or ruler that is not prone 

to above mentioned optical and photophysical factors. Since 2002 several works have 

been published with proposal to modify optical excitation and/or detection schemes to 

achieve better definition and control of the MDF. Among them are z-scan FCS (Benda, 

et al., 2003, Humpoličková, et al., 2006), a method allowing for exact and absolute 

diffusion measurements in membranes, and scanning FCS (Ries & Schwille, 2006, 

Petrasek & Schwille, 2008), combining spatial and temporal correlation while scanning 

a focus in a well-defined manner. In particular, one tried to introduce an external ruler 

into the measurement, which is absent in standard FCS (Davis & Bardeen, 2002; 
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Rigneault & Lenne, 2003; Jaffiol et al., 2006). The most successful and elegant 

modification is dual focus fluorescence correlation spectroscopy (2fFCS) (Dertinger, et 

al., 2007 & 2008). The neat idea, how extrinsic length-scale can be created and therefore 

absolute diffusion coefficient values can be obtained, is described next. 

 

1.4 Dual-focus Fluorescence Correlation Spectroscopy 

Dual-focus fluorescence correlation spectroscopy or 2fFCS is a special variation 

of FCS. In comparison with conventional single-focus FCS, a 2fFCS measurement 

records photon detection events from two detection volumes. Those volumes are 

identical but laterally shifted and overlapping with fixed centre distance between them. 

Exactly this distance defines an external invariable length scale in 2fFCS experiments 

(Dertinger et al., 2007). Many of the aforementioned experimental conditions such as 

laser beam quality or refractive index mismatch are be able to change the size and shape 

of the detection volume of each focus but not the centre distance between them. It makes 

2fFCS largely insensitive to optical aberrations introduced by all those factors. 

What makes 2fFCS very attractive for applications? This technique is relatively 

easy to implement. To introduce two identical foci in the sample space one has to use 

one extra laser emitting light of the same frequency but cross-polarized to another one 

and one more optical element – a Nomarski prism. This prism reflects laser beams under 

different angles according to their polarization and thus creates two identical foci in the 

sample space and defines the later shift between them. These are all the necessary 

modification of conventional single-focus FCS system. 

Now, in 2fFCS experiments, photon detection events are recorded from two 

identical but laterally shifted detection regions. Therefore the ACFs for each detection 

volume as well as the cross correlation function (CCF) between the two detection 

volumes can be calculated. The CCF is calculated in a similar way as the ACF (Eq.1.1.) 

but correlating photons from different detection volumes:  

 

)()()( 21   tItIg        (1.2) 

 

I1(t) is the fluorescence intensity collected from first focal volume at time t and I2(t + ) 

is the intensity collected from the second one at time t + , the triangular brackets denote 

time averaging. Thus, a typical output of 2fFCS-measurement consists of two 
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autocorrelation- and one cross-correlation curve as shown in Fig.1.6. The CCF decays at 

longer times than ACFs because the fluorescent molecules have to pass the extra 

distance between both foci.  

The time delay of the 

cross correlation relative to the 

autocorrelation scales with the 

square of the distance between 

foci divided by the diffusion 

coefficient. Moreover, the 

relation between cross-

correlation to autocorrelation 

amplitude will be a direct 

measure of focus overlap. This 

leads to a very restrictive and 

thus stabilizing fit-criterion. 

Thus a global fitting applied to 

both auto- and cross-correlation 

curves yields an absolute value 

of the diffusion coefficient.  

The 2fFCS robustness 

against optical aberrations caused by refractive index mismatch was demonstrated by 

Dertinger and co-authors (Dertinger et al., 2007). They measured diffusion coefficient of 

the red fluorescence dye Atto655 in aqueous solutions of guanidine hydrochloride. The 

concentration of guanidine hydrochloride was varied from zero to 6M within their 

experiments to increasing aberrations introduced by the refractive index mismatch. 

Increasing of guanidine hydrochloride concentration leads also to strong changes of the 

solutions’ viscosity and therefore provides an excellent tool to visualize the aberrations 

influence on results. As according to the Stokes-Einstein relation between diffusion 

coefficient D, temperature T, solution viscosity η, and hydrodynamic radius Rh of the 

molecules, 

 

h

B

R

Tk
D

6
          (1.3) 

 

Fig.1.6: 2fFCS measurement on a nanomolar 
aqueous solution of Atto655. Shown are the 
autocorrelation functions for the first focus, the second 
focus, and the cross-correlation between both foci (CCF). 
The shape of both ACFs is virtually identical. Circles are 
experimental values; solid lines are global fits as 
described below. 
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one would expect to find a linear 

relation between diffusion 

coefficient and in-verse of the 

viscosity when apparent and 

absolute diffusion coefficients 

agree with each other. The results 

are depicted on Fig.1.7. As can be 

seen, 2fFCS precisely yields the 

results predicted with the Stokes-

Einstein relation. On the contrary, 

the diffusion coefficients 

calculated for one-focus FCS, 

using a standard model that 

assumes a three-dimensional 

Gaussian MDF, are strongly 

affected by aberration and deviate 

from linear dependence. Additionally the value of diffusion coefficient was determined 

with pulsed field gradient NMR, being capable of measuring absolute diffusion 

coefficients (Callaghan, 1991; Callaghan, 1999). It is shown in Fig.1.7, that the 2fFSC 

value of the diffusion coefficients perfectly match with that determined by pfgNMR.  

To conclude, 2fFCS is able to measure absolute values of diffusion coefficient. 

The achievable accuracy of 2fFCS in diffusion coefficient measurements was estimated 

to be smaller than 5 % (Dertinger et al., 2007). It opens the possibility to measure 

changes in the hydrodynamic radius of nanometer-sized molecules on the order of one 

Ångstrøm. 

 

1.5 Goals of the study 

The work presented here is concerned with high-precision sizing of molecules at 

pico- to nanomolar concentrations. Advanced variation of FCS, dual-focus FCS achieves 

the necessary accuracy to measure molecular size and moreover allows measuring 

absolute values of diffusion coefficient (and thus molecular size). Therefore this method 

is applied to determine size of different molecules.  

The second chapter is concerned with methods and technical details. There I 

Fig.1.7: Dependence of the diffusion 
coefficient of Atto655 in aqueous guanidine 
hydrochloride solutions (red) and in d4-deuterized 
methanol (black) at 25°C as a function of solvent 
viscosity. Solid line is linear least square fit to all 
data. The results of single-focus FCS are shown in 
green (Dertinger et al., 2007). 
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present a calibration procedure of centre distance between foci that is based on a 

combination of fluorescence correlation spectroscopy and dynamic light scattering. That 

is important as this distance introduces an external length scale into 2fFCS data 

evaluation. The accuracy in that distance determination defines how accurate the 

diffusion coefficient can be determined. I finish this chapter reporting diffusion 

coefficient values of three fluorescent dyes across the visible spectrum. Those values can 

be used as reference standards for fluorescence correlation spectroscopy. 

Chapter 3 is focused on 2fFCS performance under optical saturation conditions. It 

includes theoretical study of 2fFCS performance with respect to systematical variations 

of experimental parameters such as laser focusing and laser excitation intensity. It is also 

shown experimentally that the method is robust against optical saturation within certain 

excitation intensity range. The experimental results are compared with conventional FCS 

measurements and theoretical prediction. 

In chapter 4 the results of sizing small fluorescent molecules as well as globular 

proteins are presented. The sizing of three derivatives of Atto655 is used to demonstrate 

resolving power of the method. Then, I present results for chemically synthesized dyes, 

and for short oligopeptides. The observed quantitative relation between molecular 

weight and measured diffusion coefficient is discussed there. 2fFCS is used to size 

common globular proteins. The obtained values of hydrodynamic radius are compared 

with the published literature values and theoretical values calculated using the structural 

information from protein database. 

In the last chapter I describe a novel method to measure rotational diffusion of 

large molecules (globular proteins) in solution based on fluorescence correlation on the 

nanosecond time scale. It is shown that the method works even if the rotational diffusion 

time is much longer than the fluorescence decay time. It is demonstrated that a pulsed 

interleaved excitation scheme with crossed excitation polarization maximizes the time-

dependent amplitude of the measured correlation curve as caused by rotational diffusion. 

Using the determined rotational diffusion coefficient, precise values of the 

hydrodynamic radius are obtained for four common globular proteins. 
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2 Experimental set-up and methods 

 

2.1 Dual-focus Fluorescence Correlation Spectroscopy. Optical set-up 

The dual-focus or 

2fFCS set-up is schematically 

shown in Fig. 2.1. It is based 

on an inverse epi-fluorescence 

microscope (MicroTime 200, 

PicoQuant, Berlin, Germany). 

The system is equipped with 

two identical pulsed 470 nm 

diode lasers (LDH-P-C-470B, 

PicoQuant, Berlin, Germany), 

two identical pulsed 635 nm 

diode lasers (LDH-P-635, 

PicoQuant, Berlin, Germany) 

with linear polarization. The 

duration of the laser pulses 

is 50 ps (FWHM). The 

lasers are pulsed alternately with a sufficiently high repetition rate (~10 – 40 MHz), so-

called pulsed interleaved excitation or PIE mode (Müller, B.K. et al., 2005)). Different 

repetition rates vary the delay between pulses from 25 ns to 100 ns. The choice of the 

delay depends on the fluorescence lifetime of the label. It has to be long enough to 

assure that the fluorescence excited by one laser pulse decays completely before the next 

excitation pulse comes. Alternate pulsing is accomplished by special laser driver 

electronics (PDL 828 “Sepia II”, PicoQuant, Berlin, Germany).  

The light of each of the two pairs of identical wavelength lasers is combined by 

two polarizing beam splitters (broadband polarizing cube by Ealing Catalogue, St. 

Asaph, UK) into single beams. The 635 nm and 470 nm beams are combined by a 

dichroic mirror (490 dcxr, AHF-Analysentechnik, Tübingen, Germany) resulting in a 

virtually single light beam containing both wavelengths with pulse trains of alternating 

polarization in each wavelength. The combined beam is optically shaped by sending it 

through a polarization-preserving single mode fiber. Before entering the back aperture of 

Fig.2.1: Schematic of the 2fFCS setup.  
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the water immersion objective (UPLAPO 60x W, 1.2 N.A., Olympus Europa, Hamburg, 

Germany), the light is passed through a Nomarski prism (U-DICTHC, Olympus Europa, 

Hamburg, Germany), see Fig.2.2, which is usually used for differential interference 

contrast (DIC) microscopy. This prism deflects the laser pulses into two slightly 

different directions depending on their polarization. After focusing through the 

objective, one thus obtains two overlapping foci with fixed lateral distance determined 

solely by the properties of the Nomarski prism, further called DIC prism.  

Fluorescence is collected by the same objective (epi-fluorescence set-up), passed 

through the DIC prism and separated from the excitation light by a dichroic mirror (Q 

660 LP, Chroma Technology, Rockingham, VT, USA).A tube lens focuses the light on 

to a single pinhole of 150 μm diameter which is positioned symmetrically with respect to 

both focus positions. The pinhole is chosen large enough to let the light pass from both 

foci. After the pinhole, the light is re-collimated, split by a polarizing beam splitter cube 

(broadband polarizing cube by Ealing Catalogue, St. Asaph, UK), and refocused onto 

two single photon avalanche diodes (SPAD, AQR13, Perkin Elmer, Wellesley, MA, 

USA). The emission bandpass filters HC692/40 or HC520/35 (Semrock, USA) for red or 

blue excitation, respectively, positioned directly in front of each detector, discriminate 

fluorescence against scattered light.  

A dedicated single-photon counting electronics (HydraHarp 400, PicoQuant 

Company, Berlin, Germany) can independently record the detected photons of both 

detectors with an absolute temporal resolution of one picosecond. By evaluating the 

arrival times of the photons on a nanosecond time scale, the detected photons can be 

unequivocally associated with its corresponding excitation pulse and thus with the 

corresponding focus. Thus, it is possible to calculate the auto correlation functions (or 

ACFs) for each focus separately, as well as the cross-correlation function (or CCF) 

between photons emerging from both foci.  

Besides, only photons from the two different detectors are correlated to prevent 

distortions of the resulting ACF by SPAD afterpulsing, which is the effect of faked 

photon generation and detection after a true photon detection event (Enderlein & Gregor, 

2005). 
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2.2 Calculating the auto- and cross-correlation functions 

A 2fFCS measurement records photon detection events from two identical but 

laterally shifted detection regions. Thus in a 2fFCS measurement, two ACFs are 

calculated, for each detection volume separately. The autocorrelation    titi  of the 

fluorescence signal from one and the same molecule can be easily derived when 

remembering its physical meaning: It is proportional to the chance to see, from one and 

the same molecule, a photon at time t + τ if there was a photon detection at time t. The 

probability to find a molecule within an infinitely small volume dV anywhere in the 

sample is equal to dV/V, where V is the total sample volume. Next, the probability to 

detect a photon from a molecule at a given position r1 is directly proportional to the 

value of the molecular detection function (or MDF) at this position, i.e. to  1rU


. 

Furthermore, the chance that the molecule diffuses from position 1r


 to position 2r


 within 

time τ is given by the solution of the diffusion equation for the given initial (molecule at 

position 1r


) and boundary conditions. For a sample with distant boundaries this solution 

has the simple form: 
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where D is the diffusion coefficient of the molecule. Finally, the chance to detect a 

photon from the molecule at the new position is again proportional to the value of the 

MDF at this position, i.e. to  2rU


. Thus, the autocorrelation  tg  is calculated as the 

product of all these individual contributions and averaging over all possible initial and 

final positions of the molecule, i.e. integrating over r


: 
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where c is the concentration of the molecules; ε1,2 are two factors describing the two 

different overall detection efficiency in both detection volumes, respectively.  

The CCF is calculated in a similar way as the ACF but correlating photons from 
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the two different detection volumes and taking into account the spatial separation 

between them. Let’s assume that the lateral shift is along the x-axis perpendicular to the 

optical axis of the microscope. Then expression for CCF can be written in the same form 

as Eq.2.2 for one-focus FCS: 
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where the vector x̂  is the unit vector along x, δ is the lateral shift value. 

A crucial point for a successful 2fFCS data analysis is to have a sufficiently 

appropriate model function for the MDF. Recently, Dertinger and coauthors showed that 

the MDF of a confocal microscope can be fairly well-approximated by a Gauss-

Lorentzian function (Dertinger et al., 2007): 
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where x and y are transversal coordinates perpendicular to the optical axis z = 0. Eq.2.4 

is a modification of the three-dimensional Gaussian and says that in each plane 

perpendicular to the optical axis, the MDF is approximated by a Gaussian distribution 

having width w(z) and amplitude κ(z)/w2(z). The functions κ(z) and w(z) are given by 

 

 
212

2
0

0 1





















nw

z
wzw ex




       (2.5) 

and 
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where the function R(z) is defined by: 
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Here, λex is the excitation wavelength, λem is the center emission wavelength, n is the 

refractive index of the immersion medium (water), α is the radius of the confocal 

aperture divided by magnification, and w0 and R0 are two (generally unknown) model 

parameters. Eq.2.5 is nothing else than the scalar approximation for the radius of a 

diverging laser beam with beam waist radius w0.  

Using MDF given by Eq.2.4 as well as the parameterisation given by Eqs. 2.5 

through 2.7, Eq.2.3 for calculating cross-correlation curve of the two-focus set-up can be 

written as 
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Data fitting is performed by least-square fitting of the model curve, Eq.2.8, 

against the measured ACFs and cross-correlation CCF simultaneously in a global fit. As 

fit parameters, one has ε1c/2, ε2c/2, D, w0 and R0. The distance δ between the detection 

regions is determined by the properties of the DIC prism and has to be exactly known a 

priori, thus introducing an external length scale into data evaluation.  

 

2.3 Calibration of the shear distance of the Nomarski-prism 

A Nomarski prism, also called differential-interference contrast or DIC prism, is 

mostly used in differential interference contrast microscopy (Nomarski,G., 1970). The 

DIC prism, which is a modified Wollaston prism, consists of two optical quartz or 

calcite wedges cemented together at the hypotenuse. One of the wedges is identical to a 

conventional Wollaston quartz wedge and has the optical axis oriented parallel to the 

surface of the prism (Fig.2.2). The second wedge of the prism is modified by cutting the 

quartz crystal in such a manner that the optical axis is oriented obliquely with respect to 

the flat surface of the prism. The Nomarski modification causes the light rays to come to 
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a focal point outside the body of the 

prism and thus allows greater 

flexibility when setting up the 

microscope. In 2fFCS, the DIC prism 

is one of the core elements in the 

measurement set-up that generates two 

laterally shifted but overlapping 

detection volumes. The value of that 

shift is fixed and well defined. 

Therefore the DIC prism constructs a 

spatial ruler for precise and qualitative 

determination of diffusion coefficients 

(Dertinger et al., 2007).  

The precision with which the interfocal distance is known determines the 

accuracy with which a diffusion coefficient can be measured as its value scales with the 

square of the adopted focus distance. For example, for an interfocal distance of 500 nm, 

one has to know the distance with an accuracy of better than 10 nm (2 %) when aiming 

for an accuracy of the diffusion coefficient measurement of better than 4%. And vice 

versa when the diffusion coefficient or hydrodynamic radius is known with high 

precision, one can use this value to quantify the distance between the two propagating 

light beams generated by the DIC prism. Thus the core idea is to (i) measure with 

dynamic light scattering (DLS) the hydrodynamic size of commercially available 

fluorescently labelled and monodisperse spherical colloidal latex particles, and (ii) to 

measure with 2fFCS the diffusion coefficient of these particles. By comparing the 

hydrodynamic radius as obtained with both methods, one can directly determine the 

distance between the detection volumes in the 2fFCS measurement set-up, and thus the 

shear distance of the DIC prism. This strategy is presented in the paper published 

together with Müller,C.B. (2008a). 

The work presented in this thesis was done on a system implemented with four 

pulsed excitation lasers at 470 nm and 640 nm. The shear distance of the DIC prism is 

wavelength-dependent because of the DIC material dispersion and therefore has to be 

determined for each wavelength. 

Fig.2.2: Schematic of Wollaston (a) and 
Nomarski (b) prisms in differential interference 
contrast (DIC) microscopy. Ordinary and 
extraordinary rays correspond to laser beams with 
different polarization. The paths of beams with 
parallel and orthogonal polarization are depicted 
for Wollaston and Nomarski prisms 
(www.microscopyu.com) 
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Fig.2.3: Dynamic light scattering measurements. Main picture: DLS at 
90° of mono disperse TetraSpeck 100 latex particles, fitted with a 2nd order 
cumulant fit. Inset: standard plot of ACF (Müller,C.B. et al., 2008a). 

 
 

The smallest multi-fluorescent TetraSpeck beads of 100 nm in diameter were 

used for the calibration. They can be still considered as point source of light in 2fFCS 

experiments (Müller, et al., 2008b) but are big enough to get a good signal to noise ratio 

in dynamic light scattering measurements. DLS is used to determine the beads size and 

the corresponding diffusion coefficient. Measurements were performed on a “Coulter N4 

Plus” DLS system (Beckman Coulter Inc., Brea, USA) using a detection angle of 90°. 

The temperature was kept at 293.15 ± 0.1 K in all DLS experiments. The measurements 

were done with excitation light of 640 nm and were repeated thirty times to get a 

sufficiently small standard deviation. A semi-logarithmic plot of the data is shown in the 

main panel of Fig.2.3, together with a second order cumulant fit. The good fit quality 

proves the good monodispersity of the bead sample. The hydrodynamic radius Rh of the 

beads was determined to be 55.4 ± 0.6 nm. This result is in a good agreement with value 

provided by company and equal to 50 ± 5 nm.  

In a second step, 2fFCS measurements were performed at the two excitation 

wavelengths of 470 nm and 640 nm, respectively. Due to the high label density of the 

beads, total excitation power was reduced to less than 0.1 μW within each detection 

volume. A few correlation functions had to be discarded due to distortions generated by 
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the transit of large particle clusters through the detection volume. A typical measurement 

result is shown in the inset of Fig.2.4.  

To reveal the distance between the overlapping detection volumes, each set of 

ACFs and CCF was globally fitted by the model function of Eq.2.8 to obtain a value of 

the diffusion coefficient D and thus hydrodynamic radius Rh. The fits were done for a 

series of assumed distances δ between the detection volumes between 360 and 416 nm.  
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Fig. 2.4: Main picture: Wavelength dependent determination of DIC-
prism shear distance, by comparison of DLS and 2f-FCS measurements, obtained 
from enhanced model for multi labeled particles. Inset: 2fFCS measurement of 
TetraSpec 100 latex particles. Autocorrelation (ACF) and cross-correlation (CCF) 
functions, fitted with 2fFCS model Eq.2.8 (Müller,C.B. et al., 2008a). 

 

 

The obtained hydrodynamic radii Rh as a function of assumed distance δ is shown in 

Fig.2.4. The intersection of this curve with a horizontal line at the actual value of the 

hydrodynamic radius as obtained from the DLS measurements gives the actual distance 

between the detection volumes, and thus the shear distance of the DIC prism. Table 2.1 

lists the obtained values of the shear distance at the two different excitation 

wavelengths. Standard deviation of the 2fFCS measurements is better than 0.4 %, or ± 

1.5 nm.  
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Table 2.1: Wavelength dependent shear distances obtained from comparison of 
DLS and 2fFCS experiments 

Excitation wavelength (λex) Shear distance of DIC prism 

470 nm 395 nm 

640 nm 414 nm 

 

 

2.4 Absolute and precise diffusion coefficient measurements across the visible 

spectrum 

One of the significant disadvantages of a conventional single-focus FCS 

measurement is that it has always to be referenced against a standard sample with known 

diffusion coefficient. The typical reference sample is an aqueous solution of the dye 

Rhodamine 6G (Rh6G), and for over three decades its diffusion coefficient was reported 

as     scmGRhD C
26

22 107.08.26 
   in a buffer solution of 10−4

 M Na 

ethylenediaminetetraacetic acid, 10−1 M NaCl and 10−2 M tris-(hydroxymethyl)-

aminomethane at 8.0 pH (Madge et al., 1974). In spite of the knowledge that the 

diffusion coefficient of a substance depends on solvent viscosity (for example see 

Madge et al., 1974), in most publications that value is used directly for aqueous 

solutions of Rh6G, where it translates into a value of 

    scmGRhD C
26

25 108.00.36 
   at 25°C. Using advantage of 2fFCS to measure 

absolute and precise values of diffusion coefficient, we have measured the new diffusion 

coefficient value of Rh6G and diffusion coefficients of two more widely used 

fluorescence dyes that can serve as diffusion standards. The results of that work are 

reported here and published together with Müller C.B. (2008c).  

We have chosen the three widely used fluorescent dyes Oregon Green® 488, 

Rhodamine 6G, and Atto655-maleimide that are excitable at three different wavelengths 

470 nm, 532 nm, and 637 nm to cover the most used part of the visible spectrum where 

FCS experiments are performed. Their chemical structures are depicted on Fig.2.5. All 

dyes were measured in aqueous solutions. 2fFCS measurements for Rhodamine 6G were 

done in collaboration with Claus Bernd Müller, at that time at the Institute of Physical 

Chemistry of the RWTH Aachen University (Germany). In all cases it was checked that 

the obtained diffusion coefficient was independent on excitation intensity, in stark 
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contrast to typical single-focus FCS measurements. Only when the excitation power per 

focus was exceeding ca. 50 μW photobleaching started to accelerate the apparent 

diffusion coefficient.  
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Fig.2.5: Chemical structure of fluorescence dyes: Oregon Green 488 (a), Rhodamine 6G (b) and 
MR121 (c). MR121 belongs to the same group of oxazine molecules as Atto655 and has similar structure. 

 

 

Let’s start from already mentioned Rh6G. It is known that the grade of purity is 

quite different for commercially available rhodamine. Thus Rh6G was obtained from 

two different suppliers: No. 83697 from Sigma-Aldrich (Seelze, Germany), and R634 

from Invitrogen (Karlsruhe, Germany). The purity of the samples was checked using 

high performance liquid chromatography (HPLC).  

Rh6G purchased from Sigma-Aldrich shows a purity grade of less than 55%, but 

the remainder absorbs also at 532 nm and exhibits fluorescence. The obtained value of 

    scmGRhD C
26

25 103.089.36 
   corresponds to the average diffusion coefficient of 

that mixture and can not be used as a calibration standard. 

Rhodamine 6G purchased from Invitrogen showed a purity grade of better than 

95%, as checked with HPLC. Its diffusion coefficient 

    scmGRhD C
26

25 1005.014.46 
   corresponds to a hydrodynamic radius of 5.89 Å 

and is in perfect agreement with a recently published measurement using plug 

broadening in capillary flow (Culbertson et al., 2002). Therefore, this value can be 

recommended for calibration. It is important to note that the found value of the diffusion 

coefficient is by 37% larger than the previously reported value for that dye, used as the 

reference standard in single-focus FCS measurements for many decades. 

For the dye Atto655-maleimide (AttoTec, Siegen, Germany), a diffusion 

coefficient in water     scmD C
26

25 101.007.4maleimideAtto655 
   was found. A 
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cross-check experiment was made for the same dye in deuterized methanol (methanol4d) 

with pfgNMR. The Stokes-Einstein relation was applied to calculate the dye 

hydrodynamic radius. In both solvents, the value of the hydrodynamic radius was found 

to be identical (within our measurement errors) and equal to (6.01± 0.11) Å. 

Finally, the diffusion coefficient of the dye 2′, 7′- difluorofluorescein (Oregon 

Green® 488) (No. D6145, Invitrogen, Karlsruhe, Germany) was found to be 

    scmD C
26

25 1006.011.4488GreenOregon 
  , corresponding to a hydrodynamic 

radius of 5.95Å. 

The measured diffusion coefficients of all three dyes are summarized in to the 

following table: 

 

 

Table 2.2: Diffusion coefficients of fluorescent dyes across the visible spectrum. 

Fluorescent dye D25°C / 10-6 cm2/s 

Oregon Green 488 4.11 ± 0.06 

Rhodamine 6G 4.14 ± 0.05 

Atto655 maleimide 4.07 ± 0.10 
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3 Performance of dual-focus Fluorescence Correlation Spectroscopy 

under optical saturation 

At the beginning of this chapter I introduce optical saturation phenomenon. It is 

followed by the theoretical study of 2fFCS performance under optical saturation. At the 

end I will present experimental results of optical saturation effect in 2fFCS. 

 

3.1 Optical saturation 

The most important and most disturbing source of inaccuracy and 

irreproducibility in conventional FCS measurements is the dependence of the ACF decay 

alias diffusion time on the excitation intensity due to optical saturation of fluorescence. 

In contrast to other optical artifacts of conventional FCS, optical saturation makes even 

comparative measurements of diffusion coefficients problematic because the 

fluorescence properties of many fluorescing dyes used for labeling of proteins, DNA, or 

RNA, and thus their optical saturation behavior, are changing upon binding to these 

molecules. 

Optical saturation occurs when the excitation intensity becomes so large that a 

molecule spends more and more time in a non-excitable state, so that increasing the 

excitation intensity does not lead to a proportional increase in emitted fluorescence 

intensity. The most common sources of optical saturation are (i) excited state (S1) 

saturation, i.e. the molecule is still in the excited state when the next potential excitation 

photon arrives; (ii) triplet state saturation, i.e. the molecule undergoes intersystem-

crossing from the excited to the triplet state so that it can no longer become excited until 

it returns back to the ground-state; (iii) other photoinduced transitions into a non-

fluorescing state, such as the photoinduced cis-trans-isomerization in cyanine dyes, or 

the optically induced dark states in quantum dots.  

The exact relation between fluorescence emission intensity and excitation 

intensity can be very complex and even dependent on the excitation mode (pulsed or 

continuous wave) (Gregor et al., 2005). Moreover, the rate of change of apparent 

diffusion coefficient with increasing excitation intensity is largest in the limit of 

infinitely small intensity (Gregor et al., 2005; Enderlein et al., 2005). Therefore, for 

precise diffusion coefficient measurements it is necessary to repeat the measurement at 

different excitation intensities and to extrapolate the obtained diffusion coefficients 

towards zero excitation intensity. 
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What about dual-focus FCS? How does 2fFCS perform under optical saturation? 

These questions will be answered in the present chapter. 

The theoretical study of the performance of 2fFCS can be found in a paper 

published together with Dertinger et al. in 2008. Here, I will present the main results of 

these calculations concerning optical saturation, and I will compare the theoretical 

predictions with experiments. The experimental part of this chapter was published in 

Loman et al. in 2008.  

 

3.2 Theoretical study 

Calculations of the molecular detection function or MDF and subsequent 

calculation of the ACF and CCF curves were performed for different laser focus sizes. 

The considered range of focus size started with a rather large value corresponding to a 

1.25 mm beam-radius (relaxed focusing), and did end with a focus size close to the 

diffraction limit which corresponds to a 4 mm laser beam-radius (there is an inverse 

relationship between laser beam diameter at the back-focal plane of the objective and 

focus diameter in the sample). The calculated ACF/CCF curves were then fitted with 

Eq.2.8 that was derived by assuming a Gauss-Lorentz model for the MDF (Eqs. 2.3 

through 2.7), as described in chapter 2. These are the same equations as used for real 

2fFCS measurements analysis. For more details see Dertinger et al., 2008, and 

references therein. 

Let’s start by considering the simplest case of optical saturation connected with 

the S0 → S1 transition and the finite lifetime of the excited state. The relevant parameter 

determining the degree of optical saturation is the ratio of average excitation rate to 

saturation intensity Isat = (σ·τf)
−1 (given here in units of photons per area per time), where 

σ denotes the molecules’ absorption cross section at the excitation wavelength (Gregor 

et al., 2005), and f is the excited state lifetime. In our modeling, this ratio, at the 

position of maximum intensity (cross point of optical axis with focal plane), was varied 

between zero and one, which means that the maximum excitation intensity in the very 

centre of the focus was varied between zero and Isat.  

The impact of varying saturation on the apparent diffusion coefficient (Dfit) is shown 

in Fig.3.1. There, I compare the sensitivity of 2fFCS against S0 → S1 optical saturation for 

different degrees of focusing. As can be seen in Fig.3.1, for rather relaxed focusing (laser 

beam radius below ~ 2 mm), diffusion coefficients ratio Dfit/D is rather insensitive to  
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Fig.3.1: The sensitivity of 2fFCS against S0→ S1 optical saturation for 
different degrees of focusing. Shown are the global fit results of a 2fFCS 
measurement with five different laser beam radii between 1.25 and 4 mm (Dertinger 
et al., 2008). 

 
 
 
 

 
 

Fig.3.2: Anatomy of the MDF for focusing a laser beam with radius R = 2 
mm and a S0→S1 optical saturation parameter of one (Dertinger et al., 2008). 
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saturation as long as the maximum excitation intensity remains below ~ 0.2·Isat ,and 

focusing is not too tight. Under optimal conditions (laser beam radius is equal to 2 mm), the 

extracted diffusion coefficient deviates by less then 1% from its actual value. And even for 

the two extreme cases of focusing, the relative error is not larger than 7 %. This is in stark 

contrast to conventional single-focus FCS as was analyzed in Enderlein et al. (2005).  

The robustness of 2fFCS against optical saturation is remarkable in the light of that it 

affects the shape and size of the MDF, of course. In Fig. 3.2 it is shown how much the MDF 

is deformed at the extreme saturation value of one, i.e. when the maximum excitation 

intensity in each focus is equal to Isat. This changes the overlap of the two foci as well as the 

relative amplitude of the CCF to that of the ACF. However, because the distance between 

the foci centres does not change, a global fit of ACF and CCF can mostly compensate for 

the effects introduced by saturation and yields sufficient accurate values of the diffusion 

coefficients. Typical examples for the fit quality of the fitting curves Eq.2.8 against modeled 

ACF/CCF curves is shown in Fig.3.3.  

 

 

 
 
Fig.3.3: Fit quality of the global fit of a 2fFCS experiment under ideal 

optical conditions (left couple of curves) and for a S0 → S1 optical saturation of one 
(right couple of curves). Dots are the theoretically calculated auto- and cross-
correlation curves; solid lines are the best global fit (Dertinger et al., 2008). 
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Fig. 3.4: Dependence of the fitted absolute value of the diffusion coefficient 
on excited state saturation with different ratios κ of intersystem crossing rate 
constant to phosphorescence rate constant, i.e. kisc/kph. Shown are the global fit 
results of a 2fFCS measurement assuming a laser beam radius of 2 mm. For 
comparison, fit results from a single-focus FCS measurement are also shown, for 
the two limiting κ-values of 0 (no triplet state dynamics, compare with Fig.3.1) and 
8. The two single-focus FCS curves are normalized by their value at zero optical 
saturation, i.e. in the limit of zero excitation intensity (Dertinger et al., 2008). 

 

 

Next, I will focus on the more complex mechanisms of saturation when molecules 

are driven into a non-fluorescent triplet state or into some other non-fluorescent 

conformation. The relevant parameter, in this case, is the ratio between intersystem-crossing 

rate constant kisc and triplet-state-relaxation rate constant kph, i.e. κ = kisc/kph. Fig.3.4 

represents the impact of triplet state pumping and relaxation to the performance of 

conventional FCS and 2fFCS for the optimal laser beam radius of 2 mm. The results are 

compared as a function of excitation intensity in units of Isat for different values of κ. As can 

be seen now, with increasing triplet state pumping efficiency the outcome of a 2fFCS 

measurement in terms of a determined diffusion coefficient becomes more and more biased 

towards smaller values with increasing excitation intensity, although the sensitivity is still 

not as large as in the case of conventional FCS.  

In the current versions of 2fFCS using pulse interleaved excitation or PIE, the 

excitation between foci is switched with a high repetition rate much faster than the 

typical triplet state transition and relaxation rates, so that the slow photophysical 
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dynamics “sees” only an average excitation which is the sum of the excitation intensity 

distributions in each focus. Thus, in the region between foci the excitation intensities 

sum up, leading to an apparent pushing-away of the centres of the two MDFs, which 

makes their effective distance larger than it is assumed from the properties of the DIC 

prism. The effect is getting stronger with increasing saturation, as soon as the 

photophysical processes behind the saturation are much slower than the time between 

alternate pulsing in the PIE excitation scheme. However, PIE excitation can also be used 

for circumventing this problem: the waiting time between laser pulses can be chosen to 

be longer than the triplet state relaxation time. In this way, an apparent pushing-away of 

the centres of the two overlapping MDFs can be avoided. This will result in a similar 

insensitivity of the determined diffusion-coefficient on excitation intensity as was seen 

for the pure S0 → S1 saturation state (Donnert et al., 2007). Another option is to use 

reducing/oxidizing (ROXS) or Trolox chemistry that rapidly depletes the triplet state 

(Vogelsang et al.,2008; Cordes et al., 2009).  

 

3.3 Cy5 diffusion under optical saturation 

The widely used cyanine dye Cy5 is used to check the performance of 2fFCS 

under optical saturation. Cy5 exhibits a strong light-driven cis-trans transitions between 

fluorescent and non-fluorescent states (Widengren & Schwille, 2000) with a very 

complex underlying photophysics (Köhn et al., 2002; Heilemann et al., 2005), which 

makes it the ideal candidate for checking the robustness of diffusion coefficient 

measurements based on 2fFCS.  

FCS curves were measured using different values of total excitation power per 

laser between 5 and 40 μW. A typical measurement result is shown in Fig.3.5 displaying 

the ACFs for each focus as well as the CCF between photons from different foci for a 

total excitation power of 7 μW per laser. The figure shows also fits of model curves, 

Eq.2.8, to the measurements. To take into account the Cy5 cis-trans isomerization, an 

additional exponential term was included into Eq.2.8: a purely diffusional part was 

multiplied by a time-dependent factor introducing an exponentially decaying component 

on a microsecond time scale (Widengren, et al., 1994, Widengren & Schwille, 2000). 

The lower panel of the figure shows the residuals between fitted and measured curves, 

demonstrating the fair quality of the fit. 
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Fig.3.5: Auto- and cross-correlation functions measured for Cy5 with 

7 μW total laser power per excitation focus. Although both ACF curves have the 
same shape, their amplitudes are slightly different due to a minute power 
difference between both lasers. 

 

 

For comparing 2fFCS with conventional single-focus FCS, FCS measurements 

were performed with the same experimental system but using only one of both lasers. 

The resulting ACFs were fitted using the same equations as in the case of 2fFCS, but 

with δ = 0. The diffusion coefficient of Cy5 as determined with 2fFCS was used as the 

reference value for calibrating the single-focus FCS results. 

The final dependence of the determined values on the diffusion coefficient as a 

function of total excitation power per focus is depicted in Fig.3.6. As one can see, the values 

as determined with 2fFCS are insensitive to the excitation power within the range of 

employed values, giving an average absolute value of the diffusion coefficient of 

    6 2
25 C Cy5 3.7 0.15 10 cm sD 
     (this value was derived from the experimental values 

by recalculating it to a temperature of 25 °C using the Stokes–Einstein equation and the 

known temperature dependence of the viscosity of water). In contrast, the values obtained 

with conventional FCS are strongly dependent on excitation power. For better comparison 

with 2fFCS, I extrapolated this dependence toward zero excitation power (dotted line) and 
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used the obtained zero-intensity value as reference point for all single-focus FCS 

measurements as was mentioned in section 3.1. 

 

 

 
 

Fig. 3.6: Determined diffusion coefficient as a function of total laser 
excitation power per focus. Points with error bars are the results of 2fFCS. 
Solid horizontal line shows the average value of all 2fFCS measurements. 
Lower intensity dependent curve refers to the results of conventional FCS, 
using the extrapolated zero-intensity value as reference. Dotted line is an 
extrapolation of the determined power dependence toward zero power 
(Loman et. al., 2008). 

 

 

3.4 Summary 

The dye Cy5 exhibits strong optical saturation due to optically driven cis-trans 

isomerization. It is a very similar process to triplet-state pumping and therefore the 

obtained results can be interpreted using the theoretical calculations discussed above.  

The dependence of the apparent diffusion coefficient of Cy5 on excitation power, 

as determined with conventional single-focus FCS, is in perfect qualitative agreement 

with the theoretical estimates (compare Figs.3.4 and 3.6). Interestingly, the 2fFCS 

experimental results do not show the predicted shift towards smaller values within the 

range of employed excitation power values. It may be due to the fact that the cis-trans 

isomerization is accelerated by light in both directions. However, 2fFCS measurements 

of the diffusion of other dyes such as Rhodamine 6G and Oregon Green studied in 
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chapter 2.4 show a similar insensitivity upon excitation power within a sufficiently small 

range of excitation intensities (Müller C.B et al., 2008c).  

Nevertheless, the result shown in Fig.3.4 makes clear that as soon as triplet state 

pumping or similar light-driven photophysical processes take place, it is always 

advisable to check the dependence of the determined diffusion coefficient on excitation 

intensity when using 2fFCS as well as conventional FCS.  
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4 Molecular sizing with dual-focus fluorescence correlation 

spectroscopy 

This chapter describes the application of dual-focus FCS for size determination of 

various molecules. Taking into account the results of the previous chapter, all experiments 

were done using low excitation intensity and relaxed laser focusing (optimal excitation 

conditions). I start with illustrating the 2fFCS superb accuracy. Then, I present results for 

chemically synthesized dyes, and for short oligopeptides. The observed quantitative relation 

between molecular weight and measured diffusion coefficient is discussed. At the end of the 

chapter, I present results for several globular proteins. 

 

4.1 Accuracy of dual-focus fluorescence correlation spectroscopy 

In chapter 2 it was shown that the accuracy of a 2fFCS measurement is about 1%. In 

order to show that the method is indeed able to determine diffusion coefficients with high 

precision, we measured the diffusion coefficient of Atto655 free acid and its two derivatives 

NHS-ester and maleimide.  

Atto655 has the particular property that it has an exceptionally small intersystem 

crossing rate and therefore negligible triplet state dynamics. That means that the 

autocorrelation (ACF) and cross-correlation (CCF) functions do not show any fast 

exponential decay on the microsecond time scale, which is so typical for triple-state 

dynamics. The correlation curves of Atto655 are thus solely determined by diffusion. 

However, one should keep in mind that the slight increase of triplet lifetime can be observed 

when the dye is bound to other molecules, e.g. in an Atto655-DNA complex (Eggeling et 

al., 2006). Besides that, Atto655 fluorescence is efficiently quenched by the amino acid 

tryptophan and the DNA base guanine (Doose et al., 2005).  

Three forms of Atto655: free acid (AD 655-21), NHS-ester (AD 655-31) and 

maleimide (AD 655-41) were all purchased from Atto-Tec GmbH (Siegen, Germany) and 

were used without any further purification. For the 2fFSC measurements the dyes were 

dissolved in bi-distilled water (Millipore GmbH, Germany) and then diluted to a 0.5 –

 0.2 nM concentration. All experiments were performed at ambient temperature (20 –

 22 °C). The temperature of the sample solution was monitored with a digital thermometer 

HH506RA (Newport Electronics GmbH, Germany). The values of the diffusion coefficients 

reported here were recalculated to a temperature of 25°C for standardization purpose using 

the Stokes-Einstein equation and knowing the temperature dependence of water’s viscosity. 

The diffusion coefficient measurements for each dye sample were repeated at least 5 times. 
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Fig.4.1: The diffusion coefficients of the three forms of Atto655. Red 

circles with error bars are the results of 2fFCS, using 10 measurements to 
determine a standard deviation of the diffusion coefficient. The chemical structure 
of the side groups, i.e. free acid, NHS ester and maleimide (from left to right) are 
depicted next to the corresponding diffusion coefficient values. 

 

 

ACFs and CCF of all three forms of Atto655 showed purely diffusion-related 

correlation decay (Fig.1.6), as expected, and the measured curves were fitted with Eq.2.8 

(see chapter 2). The results are depicted in Fig.4.1 and collected in Table 4.1. As can be 

seen, in spite of the small difference in structure, the diffusion coefficients of all three 

Atto655 forms could still be resolved in a 2fFCS experiment. Pulsed field gradient NMR or 

pfgNMR, an independent method capable of measuring absolute diffusion coefficient values 

(for details see chapter 1), was used for the cross-check measurements. The diffusion 

coefficient values of Atto655 free-acid and its maleimide derivative were determined in 

deuterized methanol with pfgNMR. Using those diffusion coefficients, the hydrodynamic 

radii were calculated via the Stokes-Einstein relation in both solvents. The found values 

were identical within measurement error. The hydrodynamic radius of Atto655-COOH and 

Atto655-maleimide were found to be equal to (5.68 ± 0.19) Å and (6.01 ± 0.11) Å, 

respectively. Thus, 2fFCS was sensitive enough to be able to resolve side group variations 

leading to diffusion coefficient differences of only 4%.  

What is the minimal molecular weight difference that can be resolved using 2fFCS? 

The diffusion coefficient of a molecule depends on its hydrodynamic radius and thus on the 
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cubic root of the molecular weight for spherical particles. This relation restricts the 

sensitivity of FCS. In our case, the molecular weight of the Atto655-derivatives with NHS-

ester and maleimide side groups is 15% and 20% larger than that of Atto655-COOH. This 

difference translates into respective differences of 3% and 4% in the diffusion coefficient, 

which could still be resolved with 2fFCS (see Fig.4.1 and Table 4.1). But the difference 

between the diffusion coefficients of the NHS-ester and maleimide forms that corresponded 

to a 4% difference in molecular weight was already as small as our measurement error 

(Fig.4.1). However, the larger mean value of the Atto655-NHS diffusion coefficient was 

still visible. In conclusion one can say that a molecular weight difference of 15-20% 

represents the lower limit which can still be resolved with certainty by 2fFCS. 

 

4.2 Quantitative relation between molecular weight and the diffusion coefficient  

Intuitively one expects that the more massive a molecule is, the slower it diffuses. 

This is indeed the case; however, the molecular mobility and the molecular weight do not 

have a simple relationship. Hence it is difficult to predict hydrodynamic characteristics of 

molecules in solution, for example their diffusion coefficient or sedimentation constant, 

when only their molecular weight (MW) is known or vice versa. To have a closer look at 

this problem, we measured and analyzed the diffusion coefficients of different molecules 

with known molecular weight. 

 

4.2.1 Red fluorescent molecules 

Besides the three derivatives of Atto655 (free acid, NHS-ester, and maleimide) as 

presented in previous section, I measured also the diffusion of Cy5-NHS-ester (PA15101), 

Cy5-maleimide (PA15131) (GE Healthcare, München, Germany), and Alexa Fluor® 647-

NHS-ester (A-20006, Invitrogen GmbH, Karlsruhe, Germany). Aqueous solutions of these 

dyes were prepared in bi-distilled water. The final concentration of the fluorescent 

molecules was adjusted to lie in the range of 0.2 – 0.5 nM. All the dyes were purchased as 

powder that contained complexes of the dye with corresponding counter ions. After 

dissolving the dye was in either cationic or anionic form. To make a reliable comparison of 

the different diffusion coefficients as a function of MW, the knowledge of the exact MW of 

the ionic form was required. Therefore a mass spectrometry method termed ‘electrospray 

ionization’ was used to determine the MW of Atto655-maleimide as well as Cy5 and Alexa 

Fluor® 647 in NHS-ester form. It was found that the MW of Atto655-maleimide was equal 

to 648 Da and corresponds to the cationic form of the dye with a MW of 650 Da as provided 
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by the company. Therefore the MW values for the other derivatives of Atto655 were taken 

from the Atto-Tec specification list. Those are equal to 625 Da and 528 Da for the NHS-

ester and the free acid form, respectively. The MWs of Cy5-NHS-ester and Alexa 

Fluor® 647 NHS-ester were found to be equal to 780 Da and 1135 Da, respectively. The 

difference in molecular weight between NHS-ester and maleimide side group is only 25 Da 

– hence, Cy5-maleimide has a MW of 805 Da. 

All 2fFCS measurements were done on the system described in chapter 2. A rather 

low laser intensity of 7 μW was chosen for excitation to avoid any saturation due to Cy5 cis-

trans photophysics and the complex photophysics of Alexa Fluor® 647 which involves both 

cis-trans isomerization as well as triplet state formation. To take into account those 

processes, additional exponential terms were included into Eq.2.8 to describe fast decays in 

the correlation curves on the microsecond time range. It should be noted that the determined 

diffusion coefficients of Cy5-NHS-ester and Cy5-maleimide were found to be virtually 

identical within our measurement error. Therefore, in what follows, the notation "Cy5" and 

"Alexa Fluor® 647" will be used without further side group specification. The measured 

diffusion coefficients (and thus hydrodynamic radii) and the MW of all the measured red 

fluorescent dyes are summarized in Table 4.1.  

 

Table 4.1: Diffusion coefficient of the red fluorescent dyes 

Fluorescent dye MW+ / Da D25°C / 10-6 cm2/s Rh / Å 

Atto655-COOH 528 4.30 ± 0.15 5.68 ± 0.19 

Atto655 NHS ester 625 4.14 ± 0.10 5.86 ± 0.14 

Atto655 maleimide 650 4.07 ± 0.10 6.01 ± 0.11 

Cy5 780 3.68 ± 0.09 6.64 ± 0.22 

Alexa Fluor® 647 1130 3.25 ± 0.10 7.52 ± 0.23 

+ MW of the ionic form of the dyes. 

 

 

4.2.2 Short peptides 

Next, I measured the diffusion coefficients of oligopeptides with amino-acid 

sequences going from one to eight amino-acids of the FKPYDAAD sequence. The 

oligopeptide FKPYDAA is a short peptide that has a cleavage site for digestive proteases 
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such as pepsin (Dunn, 2001) and can be used in an assay for detecting the fungus 

Aspergillus fumigatus. That fungus is widespread in nature and is capable of causing a range 

of various diseases in immuno-compromised individuals such as organ transplant recipients 

or patients with AIDS or leukemia. 

Short peptides were synthesized and labeled by W. Weinig (Dept. Functional 

Genomics, German Cancer Research Center, Heidelberg). The shortest molecule contains a 

dye, a linker and only one amino acid (F), while the longest one had the structure dye-x-x-

FKPYDAAD-biotin, where x-x stands for the linker. MALDI mass spectrometry (MALDI-

MS) was applied to check the synthesis quality of the oligopeptides as well as their MW. 

These experiments were done in the German Cancer Research Center in Heidelberg. Alexa 

Fluor® 647 was used to label all peptides, so that their diffusion could be measured with 

2fFCS. 
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Fig. 4.2: Hydrodynamic radii of Alexa Fluor® 647 and seven short 

peptides coupled with Alexa Fluor® 647 via linker. Standard deviation was 
determined using minimum five measurements for each peptide. 

 

 

Phosphate buffered saline (PBS) was used to buffer the oligopeptides at pH 7.4. The 

diffusion coefficient of Atto655-maleimide was measured in PBS to check the buffer 

viscosity. It was found that Atto655 maleimide exhibits the same diffusion behavior (within 

measurement error) in PBS as in bi-distilled water. 2fFCS measurements were done five 
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times for each sample. The power of each excitation laser was set to 7μW. The determined 

values of the hydrodynamic radii for all oligopeptides are shown in Fig.4.3. As can be seen, 

the accuracy of 2fFCS allowed for distinguishing with certainty between oligopeptides that 

differed by two amino acids in length only.  

 

4.2.3 Discussion 

To quantify the relation between the MW and the diffusion coefficient, I employed 

the so-called Mark–Houwink–Kuhn–Sakurada (MHKS) model. This power-law is usually 

used in polymer science to get an estimate of the MW or molecular shape (Harding, 1997; 

Creighton, 1999) of long polymer molecules. The MHKS relation between diffusion 

coefficient D and molecular weight MW reads: 

 

MWD K           (4.1) 

 

where K is the MHKS constant (Mark, 2007). Depending on the experimental method, 

different exponents  in the MHKS relation are employed (Harding, 1997). The value of ε is 

characteristic for the conformational state of a macromolecule: for example, the value 

 = 0.333 describes globular macromolecules with spherical shape (Creighton, 1999).  
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Fig. 4.3: Chemical structure of two classes of red fluorescence dyes. MR121 belongs to oxazine 

molecular group and represents structure similar to Atto655. Both Cy5 and Alexa Fluor® 647 are 
cyanine dyes. Atto655 and Alexa Fluor® 647 have additional or different side groups to tune their 
property, e.g. solubility and photostability, but their structures are a commercial secret. 
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Fig.4.4: Diffusion coefficients of fluorescent dyes’ molecules are shown. 

All values correspond to 25°C and were obtained in aqueous solutions. Circles 
with error bars are the experimental results of 2fFCS, using ten measurements for 
each point to determine a standard deviation of the diffusion coefficient. The lines 
of the same color represent Mark-Houwink-Kuhn-Sakurada relations with the 
fitted constant and exponent for each set of the experimental data. Black dash line 
represents calculated MKHS relation in case of spherical particles. Constant was 
chosen in such way that fitted curve and calculated MHKS relation return the 
same value for molecular weight of 400. 

 

 

The red fluorescent dyes investigated here are molecules with rather elongated and planar 

shape (Fig.4.3). However, due to their small size (5 to 8 Å in radius, see Table 4.1) and 

correspondingly fast rotational diffusion in the picoseconds range, one can assume that, on a 

millisecond timescale, their translational diffusion behavior might be close to that of small 

spheres. To check that assumption, the MHKS relation with the exponent equal to 0.333 was 

used to compare the diffusion the fluorescent dyes with that of ideal spheres. The result is 

plotted in Fig.4.3 (black dashed line). The dependence of the diffusion coefficient on MW of 

the anionic and cationic dye forms is plotted there as well. Red circles with error bars 

represent experimental values with standard deviation as calculated from at least ten 

measurements. The experimental values are close to the ideal sphere curve but do not 

completely follow it, especially in the cases of Cy5 and Alexa Fluor® 647. To find the 

MHKS constant and exponent which best describe the dye diffusion, the experimental 
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results were fitted with the MHKS relation (Eq.4.1). The resulting curve is depicted as the 

red solid line together with the final equation in Fig.4.4. The exponent was found to be 

equal to 0.39. Thus the experimental values of the smallest dyes are in a good agreement 

with an ideal sphere assumption, but for bigger dyes this assumption fails. The reason might 

be that the flexibility of the cyanine dye molecules affect their diffusion and shifts their 

diffusion coefficients closer to the random coil case which has a characteristic exponent ε 

between 0.5 and 0.6 (Creighton, 1997). 

Let us next consider the oligopeptides. Those molecules can be considered as 

unstructured chains of varying length. To put the measured dependence of the diffusion 

coefficient on MW in relation to the MKHS model, two extreme case of the MHKS relation 

were considered: that for globular proteins and that for random coil (unstructured) 

polypeptides.  

The globular protein case is the simplest one because it is similar to the case of an 

ideal sphere. If the density  of the protein is known, then one finds the following relation 

between its MW and its hydrodynamic radius R: 
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            (4.2) 

 

where NA is Avogadro's constant. By using the Stokes-Einstein relation, Eq.4.2 can be 

rewritten as:  
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where Ksphere is a parameter that accounts for protein density, solution temperature, and 

viscosity. Assuming that the average density of proteins is equal to 1.35 g/cm3 (a value used 

in protein crystallography, see Fisher et al., 2004), and using a temperature of 25°C and the 

viscosity of water, Ksphere is equal to 3.68 · 10-5 cm2/s. The corresponding MHKS law is 

shown as a magenta dashed line in Fig.4.5. There, the experimental values for the diffusion 

coefficient of the oligopeptides are shown as blue circles. As can be seen, the oligopeptides 

exhibit a slower diffusion than that for globular proteins of similar MW. 
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Fig.4.5: Diffusion coefficients of measured oligopeptides. All values 

correspond to a temperature of 25 °C and were obtained in PBS buffer at 7.4 pH. 
Circles with error bars are the experimental results from 2fFCS, using ten 
measurements for each point to determine a standard deviation of the diffusion 
coefficient. Lines of same color represent Mark-Houwink-Kuhn-Sakurada 
relations with the MHKS constant and exponent obtaining from fitting the 
corresponding model to the experimental data. Here, magenta dashed line is the 
MHKS relation for spherical molecules (globular proteins) with the exponent ε 
equal to 1/3 and MHKS constant obtained with the average protein density. Green 
dashed line represents MKHS relation for a random coil conformation 
(oligopeptide chains). The corresponding exponent is equal to 0.5, the MHKS 
constant was calculated using the average mass of amino acids and a random-
chain segment length of 2.79 Å. 

 

 

Let us consider a random coil conformation of an ideal polypeptide chain. Ideal 

means no interactions between monomers that are far apart along the chain. The simplest 

unified description of all ideal polymers is provided by an equivalent freely joint chain 

model. The equivalent chain has the same mean-square end-to-end distance R2 and the 

same maximum end-to-end distance Rmax as the actual polymer. But it is independent on the 

local chemical structure of the actual polymer and has N freely-jointed effective bonds or 

segments of length b0 (Kuhn length) (Rubinshtein & Colby, 2003). The mean-square end-to-

end distance of this equivalent chain is 
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2
0

2 bNR           (4.4) 

Taking into account that the MW of a polymer equals the MW of one monomer M0 times 

the number of monomer units (segments) N, the expression for the diffusion coefficient of a 

polypeptide as modeled by the freely-jointed chain model can be written as: 
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where Kcoil is a parameter that includes both solvent characteristics (T and η) as well as 

intrinsic parameters of the polymer (M0 and b0). To find a correlation between the diffusion 

coefficient and the MW of a random coil, M0 and b0 have to be estimated. The polymer 

considered here is an oligopeptide with up to 10 amino acids in length. To find a value for 

b0, I used pfgNMR measurement results of the self-diffusion of simple peptides (one to 

seven amino acids in length) (Danielsson et.al., 2002; Pei et al., 2009). A plot of their 

hydrodynamic radius as a function of amino acid number is presented in Fig.4.6, together 

with a fit using Eq.4.4 and choosing b0 as the free fit parameter. 
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Fig.4.6: Hydrodynamic radius values of short peptides as taken from the 

literature (Danielsson et al., 2002; Pei et al., 2009) are plotted against the number 
of amino acids. The Eq.4.6 with was used to fit data and to obtain a value for the 
segment length (b0) for the freely joint chain model. 

 



Molecular sizing with 2fFCS 

 47

The estimated Kuhn length was found to be equal 2.79 Å. This value is comparable 

to the literature value of 3.3 Å, which is the length of one amino acid (Bier, 2008). 

Therefore, M0 is estimated by using the average molecular weight of an amino acid. M0 thus 

equals to 131 Da. The green dashed line in Fig.4.5 corresponds to the resulting MHKS 

relation for the ideal freely-jointed chain. The fit of the experimental data yields a value for 

the MHKS exponent of 0.51 (blue solid line in Fig.4.5). Within experimental error, this 

value is close to the theoretical value of a random coil.  

In conclusion, the diffusion behavior of small molecules is not only determined by 

their molecular weight but also by their shape and flexibility. This is nicely illustrated by the 

diffusion behavior of fluorescent dyes. The diffusion coefficients for the different 

derivatives of Atto655 are in a good agreement with ideal sphere assumption, whereas those 

for Cy5 and Alexa Fluor® 647 are not. These last two dyes have a structure that consists of 

two aromatic rings connected by a conjugated backbone of six methine groups (CH) 

(Fig.4.4). The polymethine chain makes both dyes much more flexible than Atto655. 

Therefore, cyanine dye molecules exhibit a slower diffusion coefficient than that of a sphere 

of the same molecular weight, and their diffusion coefficient lies between the limiting 

values for a sphere and a random coil. When a cyanine molecule is bound, via a flexible 

linker, to only one amino acid, its diffusion behaviour is already well approximated by a 

random coil model (Fig.4.5, first upper point). 

Finally, the diffusion behaviour of short peptides labelled with Alexa Fluor® 647 via 

a short linker can be well described by a freely jointed chain model with a segment length of 

2.79 Å. These molecules show flexibility comparable to that of an ideal chain. This is 

demonstrated in Fig.4.5 by the overlap between the blue solid (fit of the experimental data) 

and green dashed lines (the model). 

 

4.3 Globular protein sizing 

In this section, I describe the application of 2fFCS to the sizing of several common 

globular proteins (bovine serum albumin or BSA, human serum albumin or HSA, bacterial 

α-amylase, and others). The experimental results are compared with literature values and 

theoretical calculations based on their crystal structure, as far as that is known.  

All proteins are unspecifically labelled with Alexa Fluor® 647 or Atto647N. 

Phosphate buffer saline or PBS and Mops buffers are used to buffer protein solutions at pH 

7.4. The diffusion coefficient of Atto655 maleimide is measured in both buffer systems. The 

obtained values are identical to the diffusion coefficient value of Atto655 maleimide in 
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water (within experimental error), i.e. viscosities of the both buffers are similar to that of 

water. The experimental data were fitted using Eq.2.8, including additional exponential 

terms for taking into account cis-trans isomerization and/or triplet state photophysics on the 

microsecond time scale.  

Keeping in mind that optical saturation due to triplet state pumping can affect 

measurement results (section 3.5.1), and that dye-protein interactions can alter a dye's 

photophysics, control experiments had to be performed which made sure that all these effect 

do not bias the determination of the diffusion coefficients. For example, α-amylase was 

labeled with either Alexa Fluor® 647 or Atto647N. Both dyes exhibit significantly different 

photophysical behavior: Atto647N shows very prominent triplet state pumping (intersystem 

crossing), while Alexa Fluor® 647 has both triplet state and cis-trans dynamics. It was found 

that for both dyes the resulting values of the hydrodynamic radius (as calculated via the 

Stokes-Einstein relation) are the same within experimental error. However, when a similar 

control experiment was done for BSA, the hydrodynamic radius of BSA-Atto647N was 

found to be by 8% larger than that of BSA-Alexa Fluor® 647. A possible explanation is that 

the strong interaction between BSA and the dyes induces a conformational change in the 

protein. BSA possesses a special binding pocket for transporting fatty acids, and Atto647N 

is known to be rather hydrophobic. Thus, it can be assumed that Atto647N preferentially 

attaches to that binding pocket and induces a change of BSA size and shape.  

Interactions between Alexa Fluor® 647 and BSA cannot be excluded as well. The 

experimental data obtained from BSA-Alexa Fluor® 647 can be fairly well fitted with only 

one additional exponential term in Eq.2.8 which means that either the triplet state pumping 

or cis-trans isomerization is suppressed due to the BSA-dye interaction. In contrast, the 

fluorescence correlation of both α-amylase-Alexa Fluor® 647 as well as HSA-Alexa Fluor® 

647 show both triplet state pumping as well cis-trans-isomeraization, although BSA is by 

about 76% similar to HSA (Huang et al., 2004), and both BSA and HSA fulfil similar 

functions in different organisms. This demonstrates that it is always advisable to prepare 

several samples where a protein is labelled with different dyes, so that any dye-specific bias 

of the diffusion coefficient determination can be checked. 

Protein labeling is done in such way that, on average, only one dye or none is 

attached to a protein. This assures that the dye labeling does not introduce a significant 

increase in the overall size of a protein. This can be easily seen when recalling that most 

globular proteins can be well approximated by a spherical geometry, so that the relation 

31311   MWVrD ss  holds (combination of Eqs. 4.3 and 4.4). Then, the impact of the 
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attached dye on the size of the protein-dye complex can be estimated by calculating the ratio 

of the MW of the pure protein and the protein-dye complex. For example, the molecular 

weight of BSA is 66 kDa and that of Alexa Fluor® 647 and Atto647N NHS-esters are 

1.1 kDa and 0.7 kDa, respectively. Thus, I find 
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which predicts a relative change in the diffusion coefficient upon dye labeling of about 0.6% 

for Alexa Fluor® 647, and similarly of 0.4% for Atto647N. For smaller proteins such as α-

amylase, that number will be higher but never more than 1%. 

I will start with reporting the results for BSA and HSA. Both proteins belong to the 

class of serum albumins, which are the most abundant plasma proteins in humans and other 

mammals. BSA is the best studied example of a serum albumin and has attracted 

considerable attention over the past decades (see Tabak et al., (2006) and references 

therein). Similarly, HSA is in the focus of biochemical and biophysical research up to this 

day (see Otosu et al. (2010)). Fig.4.7 shows typical 2fFCS measurement results for the 

diffusion of HSA and BSA. The hydrodynamic radius of HSA is found to be equal to 

(33.4 ± 1.8) Å, whereas the hydrodynamic radius of BSA is found to lie in the range from 

(33.9 ± 1.6) Å to (36.8 ± 2.0) Å, depending on which dye was used (Alexa Fluor® 647 or 

Atto647N). The literature values of for BSA range also between 3.4 nm and 3.7 nm (Flecha 

et al., 2003; Murtaza et al., 1999; Ferrer et al., 2001). 

 

 

 
Fig 4.7: Auto- and cross-correlation functions measured for BSA (left panel) and HSA 

(right panel). Here, both proteins are labeled with Alexa Fluor® 647. 
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Next, I studied conalbumin and hen egg ovalbumin. These proteins were purchased 

from GE Healthcare (München, Germany) as a part of a gel filtration calibration kit. The 

hydrodynamic radius of ovalbumin and conalbumin are known to be 30.5 Å and 35.0 Å, 

respectively (Wishnia et al., 1961; Sabaté & Estelrich, 2001). 2fFCS measurements yielded 

values of Rh(ovalbumin) = (32.2 ± 1.6) Å and Rh(conalbumin) = (35.8 ± 1.6) Å. Another 

protein that is used for calibration is rabbit muscle aldolase (GE Healthcare, München, 

Germany)). Aldolase has a hydrodynamic radius of 48.1 Å according to company 

specifications. The value obtained by 2fFCS is (43.5 ± 1.7) Å. 

Phosphoglycerate kinase (PGK) is a glycolytic enzyme that catalyzes the conversion 

of 1,3-diphosphoglycerate to 3-phosphoglycerate generating one molecule of ATP. This 

kinase has been extensively studied since the seventies of the last century. Nowadays, this 

well-described protein is used as a model system: for example, a recently reported method 

for monitoring fast protein dynamics in vivo has been exemplified on PGK (Ebbinghaus et 

al., 2010). The PGK hydrodynamic radius is found to be (30.8 ± 1.5) Å, virtually coinciding 

with the reported values of 30.0 and 30.9 Å (Spragg et al., 1976; Damaschun et al., 1993).  

Amylase is an enzyme that breaks starch down into sugar. Bacterial α-amylase is a 

particular interesting enzyme because of its thermostability and ability to thermal 

adaptation. The reported value of its hydrodynamic radius is 32 Å (Fitter & Haber-

Pohlmeier, 2004). 2fFCS measurements find the same value, Rh(amylase) = (31.8 ± 0.7) Å. 

For comparing my measured values with theoretical predictions based on structural 

data, I performed calculations using the program HydroPro 7c (de la Torre et al., 2000). 

This program computes the hydrodynamic properties of rigid macromolecules (globular 

proteins, small nucleic acids, etc) from their atomic-level structure as specified by the 

atomic coordinates taken from a PDB file. The following table summarizes all the 

experimenta values of hydrodynamic radius as found with 2fFCS and compares them with 

literature values (as far as they were available) and the theoretical predictions.  
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Table 4.2: Hydrodynamic radius values of proteins 

 Protein  Rh / Å  MW / kDa  

  
2fFCS Literature 

HydroPro 7c 
(PDB code) 

  

       

 
BSA 

33.9 ± 1.6 

36.8± 2.0 
34, 35, 37 -- 66.0 

 

 HSA 33.4± 1.8 -- 35.5 (1bm0) 69.4  

 Ovalbumin 31.4 ± 1.6 30.5 30.4 (1vac) 44.2  

 Conalbumin 35.8 ± 1.6 35.0 37.7 (1aiv) 75.8  

 Phosphoglycerate kinase 30.8 ± 1.5 30.0 (30.9) 30.9 (3pgk) 44.7  

 α-Amylase 31.8 ± 0.7 32.0 30.7 (1bli) 55.2  

 Aldolase 43.5 ± 1.7 48.1* 47.2 (1zah) 156.8  

*High molecular weight gel filtration calibration kit, GE Healthcare  
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4.4 Materials and methods 

Chemicals. NaHCO3, phosphate buffered saline (PBS), Mops buffer, DMSO were 

purchased from Sigma, Fluka (St. Gallen, Switzerland).  

Proteins: Bovine serum albumin (A7906), human serum albumin (A3782) 

phosphoglycerate kinase (P7634) and α-amylase (A4551) were purchased from Sigma 

(St. Gallen, Switzerland). Gel filtration calibration kit was purchased from GE 

Healthcare (München, Germany) and included the following proteins: hen egg 

ovalbumin, rabbit muscle aldolase, conalbumin. All proteins were used without any 

further purification. 

Protein labeling. Amine reactive dyes (NHS-ester) were used for nonspecific 

labelling of lysins on a protein's surface. All dyes were dissolved in dehydrated DMSO 

to avoid NHS-ester group hydrolysis. Used dye concentration in DMSO was adjusted to 

4–8 mM in order to get a negligible amount of DMSO in the protein solution later on. 

Aliquots of dye-DMSO solution were frozen and kept at -20 °C.  

All proteins were labeled with either one of the following dyes: Alexa Fluor® 647-

NHS-ester, Atto647N-NHS-ester or Cy5 bis-NHS-ester, using the standard labeling 

procedure as described by Invitrogen. Solutions of about 10 μM protein concentration were 

prepared in 0.1 M NaHCO3 (pH 8.3). Alexa Fluor® 647, for example, in DMSO was added 

in small amount to 1 ml of protein solution to get a protein-dye ratio of 1 to 0.6. Labeling 

was performed by incubating a dye with a protein at room temperature for 1-2 hours in the 

case of BSA and HSA, and overnight for other proteins. Labeled proteins were purified 

using either PD-10 desalting columns (GE Healthcare Europe GmbH, Freiburg, 

Germany) or a HPLC system (Jasco Labor und Datentechnik GmbH, Groß-Umstadt, 

Germany). After elution, the purified proteins were kept in phosphate buffer saline (PBS) at 

pH 7.4, and were used for the measurements directly after preparation.. 

All 2fFCS measurements of peptides and proteins were done in Lab-Tek II 

chambers with a glass cover slide at their base (Nalge Nunc International Corp., 

Naperville, IL, USA). To prevent unspecific adhesion of peptides or proteins to the 

glass-surface, the chambers were incubated overnight with a 3% BSA solution. BSA is a 

standard surface blocking reagent because of its lack of reactivity in many biochemical 

reactions (Ishikawa et al., 1987). 

 



Rotational diffusion and protein sizing 

 53

5 Rotational diffusion and protein sizing 

Using dual-focus FCS one can measure a translational diffusion coefficient and 

therefore the molecular size with a precision better than 4%. This means that the lower 

threshold of 2fFCS sensitivity is about 15 - 20% difference of molecular weight as it was 

illustrated in section 4.1. The reason of this restriction lies in the fundamental relation 

between the diffusion coefficient and molecule’s hydrodynamic radius as given by the 

Stocks-Einstein equation. However there is another fundamental dynamic process of 

molecules within solution: thermally induced rotational diffusion. The rotational diffusion 

coefficient Drot of a molecule is connected to the value of its hydrodynamic radius Rrot as 

given by the Stokes–Einstein–Debye equation (Debye, 1929): 
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The classical methods to determine rotational diffusion constants are static or 

dynamic fluorescence anisotropy measurements (Lakowicz, 1999). These measurements 

require fluorescent labels with a fluorescence lifetime in the order of the rotational diffusion 

time. Taking into account that the rotational diffusion times of macromolecules such as 

globular proteins are on the order of several dozen nanoseconds, the anisotropy 

measurements require the use of rather uncommon long-lifetime probes. 

In this chapter I present a method to measure rotational diffusion of large 

biomolecules in solution. The method is based on fluorescence correlation on the 

nanosecond time scale (Loman et al., 2010). The idea to use fluorescence correlation 

spectroscopy in the nanosecond time-range to obtain information about molecular rotational 

motion is nearly as old as the FCS concept (Ehrenberg & Rigler, 1974; Aragón & Pecora, 

1975). However, until present there are only a few experimental studies to determine 

rotational diffusion coefficients using FCS (Kask et al., 1987; Tsay et al., 2006; Felekyan et 

al., 2005). Nonetheless, this method is very attractive because it is independent on the label's 

fluorescence lifetime. Besides, it is also rather independent of the details of excitation and 

detection polarization. These advantages are winning in contrast to anisotropy 

measurements (Lakowicz, 1999), especially when large biomolecules are studied.  

The conventional approach to measure rotational diffusion using FCS is to excite the 

sample with a linearly polarized continuous-wave excitation laser, and to monitor the 

fluorescence through either linear polarizers, or in non-polarized detection mode. Here, I 
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propose a more complex but also more efficient excitation/detection scheme: fluorescence is 

excited by a train of laser pulses with alternating polarization. Fluorescence detection is 

done by time-correlated single photon counting in two detection channels with crossed 

detection polarization. High-speed electronics times the photon detection events with 

picosecond accuracy. By this one can unequivocally assign each detected photon to its 

exciting laser pulse. Thus, information about excitation and detection polarizations of each 

photon is obtained. This allows calculating all cross correlations down to picosecond 

correlation times, making it possible to pick out a correlation function that has largest 

rotational-diffusion related amplitude. In the next section I will derive the theoretical shape 

of the various correlation functions that can be obtained. Afterwards the method is 

exemplified by sizing a set of common globular proteins, using the determined rotational 

diffusion coefficient. 

 

5.1 Theory 

 

5.1.1 Autocorrelation function (or ACF) 

On a pico- to nanosecond timescale, the ACF is characterized by fluorescence 

antibunching and rotational diffusion. Fluorescence antibunching is caused by the fact that a 

single emitter with a finite lifetime of its excited state can just emit one single photon at a 

time. Rotational diffusion will be seen in the ACF if one excites/detects fluorescence in a 

polarization-sensitive manner. Due to the rotation of a molecule between different photon 

excitation and emission events and thus rotation of the molecule's dipole axis into or out of 

the polarization plane of the detector, the correlation of the recorded fluorescence signal will 

show a temporal component that is related to the rotational diffusion of the molecule (see, 

for example, Ehrenberg & Rigler, 1974). 

Let us consider an experiment where the sample is excited with two consecutive 

pulses of negligible pulse width. If the fluorescence decay is mono-exponential with decay 

time τ, and a molecule can emit, after one excitation pulse, only one photon, the probability 

to detect two photons from one and the same molecule with the lag time t between them will 

be proportional to 

 

 




 





,,121
)(2

)0,min(

1
1

11 tFeedt ttt

t




     (5.2) 

 



Rotational diffusion and protein sizing 

 55

where F1(t,τ,δ) is the function  
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δ is the time delay between the two pulses, and κ1 and κ2 quantify the chance that the first 

and the second pulse lead to a photon detection event, respectively. Eq.5.2 can be 

understood as the product of the probabilities: (i) that the molecule is excited at time zero, 

(ii) that it emits a photon at time t1, (iii) that the molecule is re-excited by a second pulse at 

time δ, and (iv) that it emits a second photon at time t1 + t. Generally, the values of κ1 and κ2 

depend on the excitation pulse and detection polarization as well as the orientation of a 

molecule's excitation dipole. For a temporal distance between the two pulses that is much 

larger than the fluorescence decay time, δ>>τ, and for lag time values much larger than the 

fluorescence decay time, t>>τ, this function approaches the simple form 
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The chance to detect two photons with lag time t from two different molecules is 

similar to Eq.5.4, but with the distinction that the upper integration limit is now extended to 

infinity, leading to 
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Eq.5.5 is also the defining equation for F2(t,τ,σ). 

The value of F1(t,τ,σ), in contrast to that of F2(t,τ,σ), tends to zero when the pulse 

delay goes to zero, which is the essence of fluorescence antibunching, reflecting the fact that 

a single molecule cannot emit more than a single photon per excitation. However, the 

function F1(t,τ,σ) does not take into account the rotational diffusion of the molecule (i.e. the 

rotation of its absorption/emission dipole). These contributions are contained in the pre-

factors κ1 and κ2 in Eq.5.2 and will be considered in the next section. 
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5.1.2 Excitation and detection 

To get information about molecular rotational diffusion, the fluorescence excitation 

and detection conditions of the measurement have to be specified, in particular the 

polarization properties. Let us assume that the fluorescence lifetime is considerably shorter 

than the rotational diffusion time, which is mostly the case when studying rotational 

diffusion of large proteins and using short-lifetime dyes. In what follows I only consider 

conditions where the protein is tagged with a dye molecule in such a way that the relative 

orientation of the dye with respect to the protein’s principal axes is random but fixed (co-

rotation of dye with protein). Then, one only needs to consider the molecule detection 

function (MDF) describing the chance to excite and detect a photon for a dye molecule with 

a given orientation and position in sample space. The calculation of this function can be 

done using a wave-optics approach as described in ref. (Enderlein et al., 2005).  

The MDF, of course, depends on the peculiarities of the excitation, and can be 

different for different excitation pulses (for example, when exciting the sample with a pulse 

train of pulses with alternating polarization). A first laser pulse with corresponding MDF 

 rU


,1   thus ‘prepares’ the sample in such a way that  rU


,1   describes the chance to 

detect a photon from an excitation/emission dipole at position r


 having orientation ω. Here 

the variables r


 and ω are related to the lab space. However, the movement of the molecule 

has to be described in the frame of the molecules principle axis (see appendix). Therefore, 

rotating the distribution  rU


,1   into the protein’s frame of principal axes which has 

orientation Ω' with respect to the lab frame gives the average chance to excite and detect a 

photon from the protein-dye complex. Next, Green’s function G(,',t), gives the chance 

that the protein-dye complex rotates from orientation Ω' into orientation Ω within time t. 

Using a similar argument as before, the chance to excite and detect a photon by a second 

laser pulse with the MDF  rU


,2   is given by a back-rotation of  rU


,2  into the protein’s 

frame.  

Finally, by integrating over all possible positions and orientations, one obtains the 

average of the product 12 (averaged over many repeats of the double-pulse excitation and 

many different relative protein-dye orientations) that are required for proceeding with Eqs. 

5.4 and 5.5:  

 

            rURtGrURdddrd
t


,,,, 1

2
1

21        (5.6) 
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where R1 is the back-rotation operator. The integrations run over all possible initial and 

final orientations Ω' and Ω of the protein, all possible dye-label orientations ω, and all 

possible positions r


. It should be emphasized that the above expression is quite general, 

allowing for different excitation and detection geometries/polarizations for the first and 

second laser pulse.  

In general a molecule can be modeled by an object with three orthogonal axes of 

rotation (principal axes) with three different rotational diffusion constants (Da, Db, and Dc) 

around each of these axes. For the sake of simplicity, I will further consider the special case 

of a symmetric top rotor where one has Da = Db = D and D|| = Dc. Now, using the 

transformation relation (Eq.A.8), Green’s function G(,',t) (Eq.A.13) and the 

orthonormality of the eigenfunctions Cl
mk(,,) (Eq.A.11) and of spherical harmonics Ylm 

(Eq.A.20) (see appendix), the integrations over , ' and  can be performed analytically, 

resulting in 

 

         2

0
,1

*
,221 1exp mDDtDllrururd

l

l

lm
lmlmt 



 

   
  (5.7) 

 

where l, m are eigenvalues of the angular momentum operator defined by Eqs. A.5 and A.6 

(see appendix). For a spherically symmetric molecule with D = D||  D this expression 

simplifies to 

 

       Dtllrururd
l

l

lm
lmlmt

1exp
0

,1
*

,221   


 

    (5.8) 

 

The explicit calculation of the coefficients  ru lm


,  is a tremendous task, and for the details I 

refer the reader to (Enderlein et al., 2005) and citations therein. Remarkably, when 

neglecting optical saturation (i.e. excitation rate is directly proportional to the absolute 

square of the scalar product of the excitation light electric field amplitude times the 

molecule's absorption dipole vector), only coefficients with l = (0,2,4) will differ from zero. 

Even taking into account depolarization in excitation and detection caused by objectives 

with high numerical aperture (Bahlmann et al., 2000a; Bahlmann et al., 2000b) does not 

change the computation noticeably. 
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Fig.5.1: Dependence of the (normalized) coefficients [m ∫dr u*
2,lmu1,lm] in 

Eq.5.8 for l = 0 (solid lines), l = 2 (solid lines with circles), l = 4 (solid lines with 
triangles) and for different excitation/detection polarizations as a function of laser 
beam diameter (measured at the objective’s back focal plane). It is assumed that 
detection is done through two polarizers with orthogonally aligned polarization 
axes for the first and the second photon. The red curves show the case when the 
first and second laser pulse are both polarized along the same direction as the first 
or the second detector polarizer; the blue curves show the case when both laser 
pulses have the same polarization as the corresponding detector polarizers; and 
the green curves show the case when both laser pulses are polarized perpendicular 
to the corresponding detector polarizers. The calculations were done for a 
perfectly aplanatic 1.2 N.A. water immersion objective.  

 

 

As an example, Fig.5.1 shows the result of a numerical calculation for a 1.2 N.A. 

water immersion objective as a function of the laser beam diameter coupled into the 

objective's back focal plane. In these calculations, it was assumed that detection is done by 

two detectors looking at orthogonal emission polarizations. Without loss of generality, I 

will denote the detection polarization for the first photon by the symbol ||, and that for the 

second photon by  (||   detection polarization mode). Then, there are three principally 

different excitation modes: (i) polarization of excitation for the first and second photon is 

both parallel to the respective detection polarization (||   excitation polarization mode), 

(ii) polarization of excitation for the first and second photon is both orthogonal to the 

respective detection polarization (  || excitation polarization mode), and (iii) excitation 

polarization for both photons is the same (||  || or    excitation polarization mode), so 
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that the first (second) photon is excited with an excitation polarization parallel to its 

detection polarization, and the second (first) orthogonally to its detection polarization. 

Fig.5.1 shows several remarkable features: Firstly, the amplitude ratios in the ||  , the 

  || and the ||  || excitation mode are close to 9:1:3 for l = 0, (18):1:3 for l = 2, and 

(6):8:9 for l = 4, which are the values in the limit of zero numerical aperture, the situation 

considered by Aragón and Pecora (1975). Secondly, one has always non-zero contributions 

with l = 4. However, the relative weight of these contributions when compared to the l = 2 

term is smallest for the ||   excitation mode, where it is ca. 1/15th of the amplitude for 

l = 2.  

 

 
 

Fig.5.2: Correlation functions for ||   (blue),   || (green) and ||  || 
(red) excitation mode for a spherical globular protein with 20 ns rotational 
diffusion time. 

 

 

Thirdly, when getting closer to diffraction-limited focusing (values at the right end of 

Fig.5.1), depolarization effects have a non-negligible impact on the different pre-exponential 

amplitudes in Eq.5.7. The lowest impact is observed for the ||   excitation mode, which 

makes this mode of excitation/detection the most favorable one for measuring rotational 

diffusion via fluorescence correlation spectroscopy in a confocal microscope with high N.A. 

It yields maximum amplitude of the lag-time dependent part of the correlation function with 
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smallest contribution from the l = 4 mode and smallest impact from depolarization effects. 

As an example, the modeled correlation functions for a globular protein (isotropic rotor) 

with 20 ns rotational diffusion time τrot = 1/6Drot are shown in Fig.5.2. 

 In many cases, fluorescent molecules exhibit a non-negligible angle between 

absorption and emission dipole. This will change the amplitudes of the different exponential 

terms in the autocorrelation function, but not the exponents themselves. Because the data 

analysis of autocorrelation curves for obtaining rotational diffusion values will solely rely 

on these exponents, I will not consider how a finite angle between absorption and emission 

dipole will modify the pre-exponential amplitudes. 

 

5.1.3 Molecular shape and rotational diffusion 

In this section I will briefly discuss when it is necessary to take into account the non-

spherical shape of a molecule, and when the assumption of a rotationally symmetric shape is 

still sufficient. As already noted, any molecule can be modeled by an object with three 

orthogonal axes of rotation (principal axes) with, in the most general case, three different 

rotational diffusion constants around each of these axes. In almost all cases of practical 

interest, it is sufficient to approximate a molecule by a symmetric top, i.e. an object that has 

two identical rotational diffusion constants around two of its principal axes and one different 

around the third. This corresponds to approximating the shape of a molecule by a prolate or 

oblate spheroid of rotation. The question is how large the axis ratio between the axes of the 

spheroid has to be so that it is clearly discernible in a rotational diffusion measurement. 

Following Perrin (Perrin, 1934; Perrin, 1936) and Koenig (Koenig, 1975) the rotational 

diffusion coefficients for an oblate spheroid of rotation with aspect ratio  = R/R|| < 1 are 

given by 
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and 
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whereas for a prolate spheroid of rotation ( > 1) they read 
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and 
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Here, D0 is the diffusion coefficient of a sphere of radius R0 with the same volume as the 

spheroid, i.e. 

 

2
||

3
0  RRR          (5.13) 

 

and the value of D0 is given by Eq.5.1. In all the above expressions, the subscript || refers to 

the symmetry axis, and the subscript  to the two transversal axes of the spheroid. Fig.5.3 

shows the dependence of the two rotational diffusion coefficients on the eccentricity ε of the 

spheroid. 

 

 
 

Fig.5.3: Dependence of the rotational diffusion coefficients on spheroid eccentricity. 
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As can be seen, the values of rotational diffusion coefficients change quite quickly 

with changing eccentricity. Theoretically, it should be possible to observe the difference in 

the rotational diffusion coefficients around the symmetry and the transverse axes by the 

emergence of a more complex multi-exponential behavior of the correlation function 

compared to the correlation function produced by an ideal spherical rotor. 

However, in practice the measured correlation curves are usually too noisy to extract 

that information if the axis ratio becomes not exceedingly large. Usually one fits the 

correlation function assuming a spherically-shaped molecule and obtains a mean rotational 

diffusion coefficient and a mean hydrodynamic radius. This corresponds to taking the mean 

of the diffusion coefficients, D = (2D + D||)/3, and to use Eq.5.1 for obtaining the 

hydrodynamic radius. Due to the cubic relationship between radius and diffusion coefficient, 

the dependence of the thus-defined mean value of hydrodynamic radius changes much less 

with eccentricity than the individual rotational diffusion coefficients. This is shown in Fig. 

5.4, where one can see that the mean value of the hydrodynamic radius changes only slightly 

in the range of 0.75 <  < 1.5 at maximum by only 2%. Thus, assuming a spherical shape is 

a quite reasonable approach for moderate values of eccentricity. I will use this assumption 

when measuring the rotational diffusion of globular proteins. 

 

 
 

Fig.5.4: Dependence of the mean hydrodynamic radius on spheroid eccentricity. 
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 5.2 Materials and methods 

 

5.2.1 Measurement set-up 

All measurements were done with the same confocal microscopy system 

(MicroTime 200 with dual-focus option, PicoQuant GmbH, Berlin, Germany) described in 

chapter 2. To measure rotational diffusion a few minor changes in set-up were made: The 

system was used without the DIC prism. Thus all measurements were done with single-

focus FCS. Two red laser diodes are pulsed synchronously with the highest possible 

repetition rate of 80 MHz. To create a pulsed interleaved excitation (PIE) with about 6 ns-

spaced pulses of alternating polarization, a time delay of 6 ns (Ortec Delay 425, AMETEK 

GmbH, Meerbusch, Germany) is inserted between the pulse trains of the first and second 

laser.  

The short delay of 6 ns between the laser pulses requires a fluorescent label with 

sufficiently short lifetime assuring that the fluorescence excited by one laser pulse 

completely decays until the next excitation pulse. Therefore I chose Alexa Fluor® 647 

succinimidyl ester (Invitrogen GmbH, Karlsruhe, Germany) and Cy5 bis-succinimidyl ester 

(GE Healthcare Europe GmbH, Freiburg, Germany), which have fluorescence lifetimes 

about 1 ns. 

Sample temperature was controlled with a HH500 digital thermometer (Omega 

Newport Electronics GmbH, Deckenpfronn, Germany). The values of the rotational 

diffusion coefficient and resulting hydrodynamic radius were subsequently recalculated for 

a temperature of 20 °C employing Eq.5.1, and using the known dependency of water's 

dynamic viscosity on temperature. 

 

5.2.2 Calculation of the ACF 

As described in the theory section, the most advantageous mode of measuring an 

ACF for determining rotational diffusion is to calculate it from photon pairs excited with 

laser pulses of crossed polarization (||  ) and detected with two detectors having detection 

polarization collinear to the corresponding excitation pulses (i.e. ||   detection polarization 

mode). This is relatively easy to achieve with the experimental set-up and the described 

measurement mode. To better understand that, consider the TCSPC histograms as recorded 

by both detectors in the set-up, which are shown in Fig.5.5. As can be seen, each detector 

observes two consecutive fluorescence decays within a complete excitation cycle: one with 
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a large and one with small amplitude. The large amplitude decay corresponds to a laser 

pulse polarization collinear with the detection polarization, whereas the small amplitude 

decay corresponds to a laser pulse polarization orthogonal to the detection polarization. 

Thus, by inspecting the TCSPC histograms, one can precisely determine the relative 

polarizations of the exciting laser pulse with respect to the detection polarization. 

Using fluorescence dyes showing fluorescence decay times sufficiently short so that 

their fluorescence has nearly completely decayed until the next laser pulse occurs, and 

exploiting the TCSPC information of each photon, one can unequivocally associate each 

detected photon to the laser pulse which had excited it, similarly to what is done in pulsed 

interleaved excitation (Müller,B.K. et al., 2005) or dual-focus FCS (Dertinger et al., 2007). 

 

 
 

Fig.5.5: Red curve shows TCSPC-histogram of photons detected by 
detector #1, in blue is the corresponding curve for detector #2. The maxima at ~ 
1.75 ns (detector #1) and ~ 11.5 ns (detector #2) correspond to laser pulses with their 
polarization collinear with the detection polarization. The local maxima at 8.0 ns 
(detector #1) and 5.25 ns (detector #2) correspond to laser pulses with their 
polarization orthogonal to the detection polarization. 

 

 

Now, having the ability to determine, for each detected photon, the polarization of its 

exciting laser pulse, and the polarization of its detector, it is straightforward to calculate the 

desired ||  -polarization ACF by correlating all photon pairs where the first photon is 
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excited by a || polarized laser and detected by the detector with || detection polarization, and 

the second photon is excited by a laser pulse with  polarization and detected by the 

detector with  detection polarization. This computation is done using a general algorithm 

of calculating an ACF on the basis of asynchronous photon counting data as described in 

Wahl et al. (2003). 

At this point it is useful to realize that for extracting the rotational diffusion 

information from the ACF it is not necessary to compute the ACF with a temporal 

resolution better than that which is given by the laser pulse distances. Therefore, each 

detected photon is assigned with a virtual detection time equal to the time of its exciting 

laser pulse. By doing that, the resulting correlation function loses all information connected 

with the fluorescence decay, but maintains the rotational diffusion information. A resulting 

ACF is shown in Fig.5.6, where the bar plot shows values only at the discrete lag times 

corresponding to all possible time intervals between orthogonal and horizontal laser pulses. 

Here, ACF values for t > t0 correspond to photon pairs where the first photon is detected by 

the detector #1 and the second by detector #2, and ACF values for t < t0 to the reverse order 

of detection, where t0 is some absolute time offset determined by the relative temporal 

position of the laser pulse trains with respect to the internal clock of the photon counting 

electronics. Of course, for both t > t0 and t < t0, only photon pairs are correlated where the 

pulse polarization is collinear with detection polarization. The representation of the ACF as 

shown in Fig.5.6 considerably simplifies its evaluation, because the visible temporal 

dynamics is only due to rotational diffusion but not to fluorescence decay. 

Fitting is done with a mono-exponential function of the form 

 

 06exp ttDBA         (5.14) 

 

where A and B are some amplitude factors, and D is the rotational diffusion coefficient. By 

adopting this fit function it is assumed that the studied molecules are close to spherically 

symmetric, and that all terms with l > 2 in Eq.5.8 are negligible compared with the l = 2 

term. 

 

5.3 Results and discussion 

First, I measured the rotational diffusion of HSA non-specifically labeled with Alexa 

Fluor® 647 as described in section 4.4. Fig.5.6 shows the ACF for the ||   excitation mode, 
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calculated as described in the previous 

section. The data are fitted with the 

mono-exponential model curve of 

Eq.5.14, the exponent of which yields 

the inverse rotational diffusion time, 

τrot = 1/6Drot. As can be seen, the fit 

quality is remarkably good, although a 

spherical symmetry of the protein is 

assumed and any terms with l = 4 are 

neglected. This exemplifies once more 

that the l = 4 contribution to the 

correlation function in ||   excitation 

mode is indeed negligibly small. 

To check the dependence of the 

obtained rotational diffusion time rot on total measurement time, I partitioned the measured 

photon stream into subsets of different measurement times, calculated for each subset the 

correlation function, fitted the rotational diffusion time, and averaged these values over 

subsets of equal duration. The resulting values of rot and their standard deviation (if the 

total amount of data could be divided into more than two subsets for the given duration) are 

shown in Fig.5.7. As can be seen, the obtained value of rotational diffusion quickly 

approaches a fixed value if the 

measurement time becomes lager than 

2000 s. Because the average photon 

count rate of the measurement was 

~43 kcps (both detectors), this 

corresponds to a value ~108 measured 

photons. 

 Using the Stokes–Einstein–

Debye equation, Eq.5.1, and the 

known values of temperature and 

viscosity, the determined rotational 

diffusion value corresponds to a value 

of the hydrodynamic radius Rrot of 

Fig.5.6: Measured ||  -correlation 
function (blue bars) and fitted mono-exponential 
lag-time dependence (dashed red line) for HSA. 

Fig.5.7: Dependence of the determined 
values of rotational diffusion on measurement time. 
The dotted line shows an exponentially decaying 
asymptotic fit to the determined values 
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(36.1 ± 0.4) Å. 

Next, I measured the rotational 

diffusion of the protein bovine serum 

albumin (BSA), again non-specifically 

labeled with Alexa Fluor® 647. The 

resulting ACF is shown in Fig.5.8, 

together with a mono-exponential fit. 

The dependence of the 

obtained value on measurement time 

was similar to that for BSA, and the 

finally obtained hydrodynamic radius 

is (36.9 ± 0.5) Å, which is in good 

agreement with literature values for 

BSA (Rrot = 34 Å in Flecha & Levi 

(2003) and Rrot = 35 Å according to Murtaza et al. (1999)), where it was measured via 

fluorescence anisotropy. In an extended study, Ferrer et al. (2001) recently combined both 

fluorescence anisotropy measurements with theoretical modeling to elucidate the anisotropic 

shape of BSA in solution. They found 

an average radius value of 37.5 Å, 

which is still in reasonable agreement 

with the value found by the new 

method. 

Finally, I measured the 

rotational diffusion of the non-

specifically labeled proteins aldolase 

and ovalbumin. Here, the label Alexa 

Fluor® 647 is not sticky enough to co-

rotate with the proteins. It is assumed 

that the hydrophobicity of BSA 

accidentally assured such a co-

rotation, but that it is not granted when labeling arbitrary proteins. Thus, I chose the 

bisfunctional fluorescence label Cy5 bis-succinimidyl ester for non-specifically labeling 

aldolase and ovalbumin. By fluorescence anisotropy measurements I verified that this label 

Fig.5.8: Measured ||  -correlation 
function (blue bars) and fitted mono-exponential 
lag-time dependence (dashed red line) for BSA. 

Fig.5.9: Measured ||  -correlation 
function (blue bars) and fitted mono-exponential 
lag-time dependence (dashed red line) for aldolase 
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indeed co-rotates with the proteins. The measured ACFs are presented in Fig.5.9 and 5.10. 

For these two proteins, fit quality was also excellent, and the extracted hydrodynamic radius 

values are (41.2 ± 0.3) Å for aldolase and (28.6 ± 0.7) Å for ovalbumin. For both proteins, I 

observed a similar dependence of fitted values on measurement time as those observed for 

BSA. 

The following table 

summarizes all the results on the 

hydrodynamic radii of the studied 

proteins, and compares it with 

literature values (as far as they were 

available) and with theoretical 

predictions by HydroPro 7c (de la 

Torre et al., 2000) as in section 4.3. 

The information about protein 

structure was taken from the protein 

database (entry indicated in brackets). 

There is no theoretical value for BSA, 

because no crystal structure is known 

for that protein. 

 

 

Table 5.1: Values of proteins hydrodynamic radius.  

Protein Rrot / Å MW / kDa 

 FCS Literature HydroPro 7c  

HSA 36.1 ± 0.4  36 (1bm0) 69.4 

BSA 36.9 ± 0.5 
34  
35  

37.5 
not avail. 66.0 

Ovalbumin 28.6 ± 0.7 32 31 (1vac) 44.2 

Aldolase 41.2 ± 0.3  49 (1zah) 156.8 

 

Fig.5.10: Measured ||  -correlation 
function (blue bars) and fitted mono-exponential 
lag-time dependence (dashed red line) for 
ovalbumin. To take into account the early onset of 
triplet-state pumping, a second exponent was used 
for fitting. 
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In summary, I presented a new variant of fluorescence correlation spectroscopy to 

measure the rotational diffusion of macromolecules. The approach ensures (i) a maximum 

amplitude of the rotational-diffusion related contribution in the correlation function, (ii) a 

minimal impact of higher order (l = 4) contributions, allowing for a mono-exponential 

fitting of the rotational diffusion time, and (iii) it works best for rotational diffusion times 

that are large compared to the fluorescence decay time, exactly the situation when 

fluorescence anisotropy will no longer be useful. Thus, it can be expected that fluorescence 

correlation spectroscopy on the nanosecond timescale will become be an efficient and 

reliable method for measuring rotational diffusion of large macromolecules. 
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6 Summary 

The main goal of my thesis was to size molecules with high precision using two 

methods based on fluorescence correlation spectroscopy (FCS): dual-focus FCS and 

nanosecond time-scale FCS. Size is one of the basic characteristics of molecules. The 

high accuracy in size determination is required because many biologically relevant 

changes of the molecular size (such as the conformational changes of proteins) happen 

in the order of Ångstrøm. The ability to determine the molecular size with such an 

accuracy can be applied to study molecular interactions or intramolecular reorganization 

upon temperature changes, for example.  

In a dual-focus FCS (2fFCS), one of the core elements in the measurement set-up 

is the DIC prism that generates two laterally shifted foci. The distance between them 

(determined by the shear distance of the DIC prism) has to be determined as precisely as 

possible in order to achieve the required accuracy in 2fFCS measurements. The relative 

error of the shear distance leads to doubled relative error in the diffusion coefficient. 

Therefore I started my thesis by presenting a precise method for measuring the shear 

distance of DIC prism. The method is based on comparison of diffusion coefficient 

measured by 2fFCS and by dynamic light scattering. The achieved precision was less 

than ± 1.5 nm for shear distance values around 400 nm, i.e. the overall accuracy of 

2fFCS was about 1%. Besides, this method can be useful for calibrating DIC 

microscopes as well as 2fFCS measurement systems. 

The most important and disturbing source of inaccuracy and irreproducibility in 

conventional FCS measurements is the optical saturation phenomenon. Therefore I 

analyzed its influence on 2fFCS performance. It was shown by theoretical analysis that 

2fFCS was amazingly robust against ground-state-to-excited-state optical saturation, 

provided that the excitation conditions are optimal (not too close to the diffraction limit). 

In presence of a triplet-state saturation or photophysically similar processes, the theory 

showed that 2fFCS should yield an increasing systematic error in the diffusion 

coefficient with increasing excitation intensity. However, it was found out that 2fFCS 

experimental results were surprisingly insensitive against optical saturation for low 

excitation powers (up to 40 μW per laser focus) and relaxed laser focusing (not too close 

to the diffraction limit). The reasons behind this are not completely understood and 

require further investigations. Until then, the dependence of the diffusion coefficient on 

excitation intensity in 2fFCS should be determined experimentally even under optimal 

excitation conditions. 



Summary 

 72

Molecular sizing with dual-focus FCS 

2fFCS was applied for determining accurate hydrodynamic radii of molecules at 

pico- to nanomolar concentrations. The high accuracy of the method was exemplified on 

measuring diffusion coefficients values of Atto655 free acid and its two derivatives 

NHS-ester and maleimide. It was shown that 2fFCS was able to resolve side group 

variations leading to diffusion coefficient differences of about 4%. This difference 

corresponded to the molecular weight variation of 15-20% and, therefore, can be 

considered as the lower boundary of 2fFCS sensitivity. 

Next, it was observed that the diffusion behavior of small molecules was not only 

determined by their molecular weight but also by their shape and flexibility. This is 

nicely illustrated by the diffusion behavior of fluorescent dyes. It was found that the 

diffusion behavior of different derivatives of Atto655 could be described by the Mark–

Houwink–Kuhn–Sakurada (MHKS) power law with an exponent of 0.333. This value of 

the exponent is characteristic for a globular molecule with spherical shape. However 

Cy5 and Alexa Fluor® 647 exhibited the diffusion behavior shifted to that of random coil 

conformation, characterized by an exponent of 0.5 in the MHKS equation. These two 

dyes have a much more flexible structure than Atto655. Therefore, they exhibit a slower 

diffusion coefficient than that of a sphere of the same molecular weight, and their 

diffusion coefficient lies between the limiting values for a sphere and a random coil. 

Subsequently, I measured the diffusion coefficients of short oligopeptides with 

amino-acid sequences going from one to eight amino-acids of the FKPYDAAD sequence. It 

was shown that the accuracy of 2fFCS allowed to distinguish with certainty between 

oligopeptides that differed by as few as two amino acids. Considering that the oligopeptide 

FKPYDAA is a short peptide with a cleavage site for pepsin (digestive protease), 2fFCS can 

be applied to identify cleaved fragments of oligopeptide after the pepsin treatment. This can 

be of use for developing assay for diagnostics in medicine. 

Besides, the quantitative relation between molecular weight of those oligopeptides 

and their measured diffusion coefficients was analyzed. Interestingly, it was discovered that 

the complex molecule (consisting of oligopeptides, Alexa Fluor® 647, and the short linker) 

could be described by a very simple model of an ideal freely joint chain. This makes it a rare 

occurrence when an idealized model describes the behavior of a real molecule with very 

good accuracy. 

Next, 2fFCS was used to size common globular proteins. The accuracy of 

hydrodynamic radii determination varied from 2% to 5%. The results were found to be 
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in good agreement both with literature values and with theoretical calculations based on 

known crystal structure of the proteins. 

Two proteins such as bovine serum albumin (BSA) and α-aldolase were labeled 

with either Atto647N or Alexa Fluor® 647. The hydrodynamic radius of α-aldolase was 

found to be independent on which dye was used for labeling. However BSA 

hydrodynamic radius in BSA-Atto647N complex was 8% bigger than that in BSA-

Alexa Fluor® 647. Hence it was identified that dye interaction with BSA can introduce 

conformational changes to it. Therefore, it is essential to check how a protein behaves 

with respect to labeling with different dyes so that the dye-specific effects can be 

accounted for. 

 

Molecular sizing with FCS on nanosecond time scale 

Another fundamental dynamic process of molecules within a solution is thermally 

induced rotational diffusion, which happens on a nanosecond time scale for 

macromolecules. A new variant of fluorescence correlation spectroscopy to measure the 

rotational diffusion coefficient was introduced as a final chapter of my thesis. By using 

pulse interleaved excitation with alternating polarization, it becomes possible to pick out 

the correlation function with maximal rotational diffusion contribution. Further, higher-

order orbital momentum quantum number (l = 4) contribution can be neglected, allowing 

for mono-exponential fitting of the rotational diffusion kinetics, greatly simplifying the 

data analysis. Finally, this method works best for rotational diffusion times much larger 

than the fluorescence decay time, in which case fluorescence anisotropy is no longer 

applicable.  

Hence, the fluorescence correlation spectroscopy on the nanosecond time scale 

proves an efficient and reliable method for measuring rotational diffusion of large 

macromolecules and thus their hydrodynamic radius. Here, I applied this method to 

measure rotational diffusion of common globular proteins. The achieved precision was 

better than 0.5 Ångstrøm when the measurement time was long enough to record more 

than 2 · 108 photons per point. This yields the relative accuracy of about 1%, which is 

comparable to pulsed field gradient NMR. 
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Appendix 

The general theory of rotational diffusion of an anisotropic rotor can be found in 

several textbooks on quantum mechanics and was, in the context of correlation spectroscopy 

and light scattering, developed by Aragón and Pecora in 1975, see also (Berne & Pecora; 

2000). In this section, only a brief review of the rotational diffusion theory will be 

presented. In particular, I focus on the case of symmetric top rotor. As in almost all cases of 

practical interest, it is sufficient to approximate the shape of a molecule by a prolate or 

oblate spheroid. In section A2, molecular detection function is described for further 

fluorescence correlation analysis of molecular rotation motion. 

 

A.1 Rotational diffusion equation 

 The rotational diffusion equation  

 

 PJDJDJD
t

P
ccbbaa
222 ˆˆˆ 




      (A.1) 

 

where a, b, and c denote the principal axes of rotation of the molecule, P = P(ψ,θ,) is the 

probability to find the molecule’s principal axes rotated by Euler angles ψ, θ and  with 

respect to the lab frame, the Da,b,c are the generally different rotational diffusion coefficients 

around the molecule’s principal axes, and the Ĵa,b,c are the three angular momentum 

operators around these axes. Eq.A.1 is derived analogously to the more familiar translational 

diffusion equation. The difficulty with Eq.A.1 is that the angular momentum operators relate 

to the intrinsic frame of the molecule’s principal axes which is rotating in time with respect 

to the fixed lab frame. To simplify matters, one can first rotate the molecule back to the 

lab’s frame so that its axes align with the fixed Cartesian coordinate axes of the lab frame, 

then apply the operator, and finally rotate the molecule back, i.e. 

 

   PRJDJDJDR
t

P
zcybxa

1222 ˆˆˆ 



     (A.2) 

 

where R denotes the operation of rotating the molecule’s frame from an orientation aligned 

with the lab’s Cartesian x,y,z-coordinates to its actual orientation as specified by the Euler 

angles ψ, θ and , see Fig.A.1.  
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Fig.A.1: Geometric meaning of the three Euler angles , , and . Shown are the molecule’s 
three principal (and orthogonal) axes of rotation a, b, and c, and the three Cartesian axes x, y, and z of 
the lab frame. 

 

The rotation operator R can be decomposed into  

 

       zyx RRRR          (A.3) 

 

where Ry,z(β) denotes a rotation by angle β around axis y or z, respectively. The advantage 

of Eq.A.2 is that the angular momentum operators are now referring to the fixed lab frame.  

 To further analyze Eq.A.2, let us consider the special case that the function P is 

replaced by  

 

 mlRP ,          (A.4) 

 

where ml,  is an eigenfunction of the angular momentum operator obeying the two 

relations 

 

     mlllmlJJJmlJ zyx ,1,ˆˆˆ,ˆ 2222 


     (A.5) 

and 
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 mlmmlJ z ,,ˆ          (A.6) 

 

Inserting Eq.A.4 into Eq.A.2 yields 

 

 
    mlJDJDJDR

t

mlR
zcybxa ,ˆˆˆ, 222 




     (A.7) 

 

Next, one has to clarify how the rotation operator R acts on ml, . One of the most lucid 

derivations of this action is given by Feynman in (Feynman, 1964) using the possibility to 

represent any state ml,  through a combination of spin-1/2 states for which the 

transformation relations under action of R are well known, see e.g. chapter 3.3 in 

(Thompson, (1994)). The final result is given by 

 

     klSemlR l
mk

ik ,,,,         (A.8) 

 

The functions Sl
mk are Wigner’s rotation matrices defined by 

 

 

       
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     

nkmjkmn
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nkj

y
l
mk

SC
kmnnkjnmjk

mjmj

mjmj

kjkj
mlRklS

222

21

!!!!

!!1

!!

!!
,,




 















 
   (A.9) 

 

Here, the abbreviations C = cos(θ/2) and S = sin(θ/2) were used.  

 As initially mentioned I will restrict my considerations to the special case of a 

symmetric top rotor where one has Da = Db = D and D|| = Dc. The general case of the fully 

asymmetric rotor will be shortly discussed later. For the symmetric top rotor, one finds, by 

multiplying Eq.A.7 with kl, , that the functions  

 

       ,,)1(exp 2
||

l
mkCtmDDllD       (A.10) 

 

with  
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       l
mk

l
mk

l
mk SimikcC  exp,,      (A.11) 

 

are eigenfunctions of the rotational diffusion equation. In Eq.A.8 a normalizing factor cl
mk 

was introduced so that the Cl
mk(,,) represent a complete orthonormal system of 

eigenfunctions obeying the relations 

 

     mmkkll
l

km
l
mk CCddd 


    ,,,

*

0

2

0

2

0

,,,,sin 
  

   (A.12) 

 

Here, the δl,l’ are Kronecker symbols taking the value one for l = l´ and zero 

otherwise. The orthogonality of the functions Cl
mk(,,) with respect to the variables  and 

 is obvious from their definition in Eq.A.8. The orthogonality with respect to  is less 

obvious, but is a consequence of the fundamental orthogonality theorem of group theory 

(see e.g. Thompson, 1994) which is applied here to the functional representation of the 

three-dimensional rotation group as given by the functions Cl
mk(,,). With this complete 

orthonormal system of eigenfunctions, the probability that a molecule has rotated, within 

time t, from an initial orientation ' described by the Euler angles ', ' and ' into a final 

orientation  described by Euler angles ,  and  is given by Green’s function in the 

standard way (Morse & Feshbach, 1953) as 

 

              


 
 ,,,,1exp,, *

0 ,

2
||

l
mk

l
mk

l

l

lkm

CCtmDDllDtG  

           (A.13) 

 

where a star superscript denotes complex conjugation.  

For the sake of completeness, I will briefly discuss the most general case of a 

completely asymmetric rotor. In this case it is not possible to obtain simple eigenfunctions 

of the form of Eq.A.1. However, it is helpful to introduce the operators  

 

yx JiJJ ˆˆˆ           (A.14) 

 

so that the Ĵx and Ĵy operators on the right hand side of Eq.A.2 can be written as 
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 




   zzx JJJJJJ ˆˆˆˆˆ

4

1ˆ 22222


      (A.15) 

 

and 

 

 




   zzy JJJJJJ ˆˆˆˆˆ

4

1ˆ 22222


      (A.16) 

 

where the commutation property of the angular momentum operators 

 

   zxyyxyx JiJJJJJJ ˆˆˆˆˆˆ,ˆ         (A.17) 

 

has been used. When taking into account how the operators Ĵ act on the eigenstates |l,m 

(see e.g. chapter 3.4. in Feynman, 1964). 

 

     1,11,ˆ  mlmmllmlJ      (A.18) 

 

it is straightforward to see that Eq.A.2 yields 2l + 1 orthonormal eigenfunctions as 

superpositions of the states |l,m with corresponding eigenvalues as characteristic temporal 

exponents, from which Green’s function can be constructed as before. Because the case of a 

fully asymmetric rotor is of rather little interest for almost all fluorescence-based 

measurements of molecular rotation, I will not pursue this topic further. 
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A.2 Molecular detection function 

The so-called molecule detection function (MDF) describes the chance to excite and 

detect a photon for a dye molecule with a given orientation and position in sample space. 

The calculation of this function can be done using a wave-optics approach as described in 

ref. (Enderlein et al., 2005). For the following considerations it is important that the MDF 

can be expanded into a series of spherical harmonics in the angles  and  which describe 

the angular orientation  of the excitation/emission dipole (which are assumed to be 

collinear) as depicted in Fig.A.2. 

 
 

Fig.A.2: Geometric meaning of the orientation angles α and β with respect to the lab frame 

 

 

The coefficients of this series expansion are functions of the molecule’s position r


, and the 

MDF, which will be denoted by  rU


,,  is thus represented through 

 

         ,,,,
0

lm
l

l

lm
lm YrurUrU
 



 

      (A.19) 

 

where the spherical harmonics Ylm(,are defined by 

 

       imPY m
llm expcos,        (A.20) 
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Here, the functions  cosm
lP  are associated Legendre polynomials (Abramowitz, 1965). 

Using the orthogonality of spherical harmonics, the coefficients  rulm


 can be found from 

the full MDF via the backward transformation  

 

      
 

,,,sin *

0

2

0

lmlm YrUddru


       (A.21) 

 

The importance of representation Eq.A.19 lies in the fact that the spherical 

harmonics themselves are representations of the three-dimensional rotation group and 

transform under rotation according to Eq.A.8. 

The transformation relation (Eq.A.8), Green’s function G(,',t) (Eq.A.13) and the 

orthonormality of the eigenfunctions Cl
mk(,,) (Eq.A.11) and MDF (Eq.A.19) are used to 

get analytical solution of Eq.5.6 for the average of the product 12. This product is the most 

important part of correlation function giving by Eqs.5.4 and 5.5 (see section 5.1.1) as it 

contains the contribution of molecular rotational motion. 
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A.3 Summed up results for 2fFCS and nanosecond time-scale FCS 

 
Table A.1: Diffusion coefficients and hydrodynamic radii for fluorescent dyes 

 MW+ / Da D25°C / 10-6 cm2/s Rh / Å 

Oregon Green 488 368 4.11 ± 0.06 5.95 ± 0.10 

Rhodamine 6G 443 4.14 ± 0.05 5.89 ± 0.09 

Atto655-COOH 528 4.30 ± 0.15 5.68 ± 0.19 

Atto655 NHS ester 625 4.14 ± 0.10 5.86 ± 0.14 

Atto655 maleimide 650 4.07 ± 0.10 6.01 ± 0.11 

Cy5 780 3.68 ± 0.09 6.64 ± 0.22 

Alexa Fluor® 647 1130 3.25 ± 0.10 7.52 ± 0.23 

+ MW of the ionic form of the dyes. 
 
 
Table A.2: Hydrodynamic radii for the globular proteins 

Proteins MW / kDa Rh / Å 

  
2fFCS 

FCS on nanosecond 

time scale 

BSA 66.0 
33.9 ± 1.6 

36.8± 2.0 
36.9 ± 0.5 

HSA 69.4 33.4± 1.8 36.1 ± 0.4 

Ovalbumin 44.2 31.4 ± 1.6 28.6 ± 0.7 

Conalbumin 75.8 35.8 ± 1.6 - 

Phosphoglycerate 

kinase 
44.7 30.8 ± 1.5 - 

α-amylase 55.2 31.8 ± 0.7 - 

Aldolase 156.8 43.5 ± 1.7 41.2 ± 0.3 
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