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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Spin glasses are a fascinating topic in statistical physics ever since the first
attempts to describe them analytically by Edwards and Anderson [1] and
Sherrington and Kirkpatrick [2] in 1975. Starting by trying to understand
experimentally observed properties of a special class of magnetic alloys, see
Ref. [3], and summarizing the characteristic features of systems that exhibit
such properties under the name of spin glasses, they soon became a chal-
lenging field in theoretical physics, see Ref. [4, [B]. The most prominent
phenomenon of spin glasses is a transition into a phase where the spins be-
come frozen in time, following the phase transition of a ferromagnet. Such a
freezing of the spins is expected to happen in a disordered way, in contrast
to the uniform freezing of spins in a ferromagnet.

A standard example of such a magnetic alloy is the diluted solution of
manganese (Mn) in copper (Cu). The magnetic Mn atoms occupy random
positions in a non-magnetic matrix of Cu atoms. Therefore the distance be-
tween them is random as well. Each atom carries a magnetic moment, the
spin, which can be simply understood as a vector. Generally, two atoms (or
ions, etc.) with certain magnetic moments interact magnetically through an
exchange interaction between them, which is a scalar described by the RKKY
potential (named after Ruderman, Kittel, Kasuya, Yosida) in case of a metal.
This potential oscillates with respect to the distance between both particles.
Due to the random positions of the Mn atoms, the interaction between each
pair of them can be ferromagnetic (positive) or antiferromagnetic (negative),
preferring parallel or antiparallel alignment of the spins concerned. This
special disorder due to the mixture of ferromagnetic and antiferromagnetic
bonds is characteristic of all members of the class of spin glasses and can
have different causes (the RKKY potential between spins is not necessary in
general). The magnetic properties of such systems are solely determined by
the configuration of the spins of these atoms, therefore a state in thermal



equilibrium of a spin glass is the result of these competing ferromagnetic
and antiferromagnetic exchange interactions, which we call a bond or a link
in the following. In theoretical physics, such a bond between spin s; and
s;j is described as a random variable, denoted by J;;, which is distributed
according to a probability distribution, which allows for ferromagnetic and
antiferromagnetic bonds. In this way one approximates experimentally ob-
served interactions described, for instance, by the RKKY potential. The J;;’s
are called quenched variables, as they are expected not to change on experi-
mental time scales (in contrast, thermal fluctuations of the spins do happen
on these scales). Modelling a spin glass in that way makes the exact position
of a single atom redundant, which would be necessary to know in order to
calculate the interactions according to their RKKY potential (which seems
impossible). Following from this, the generic Hamiltonian describing a spin
glass is remarkably simple compared to the enormous amount of scientific
contributions to this field. It is

1
H = —§iZjJijSiSj. (11)

We see that it answers the purpose of lowering the energy of a sample,
if two spins s; and s; align parallel for a ferromagnetic bond between them,
Jij > 0, and antiparallel for an antiferromagnetic bond, J;; < 0. The factor
of % prevents counting a single link twice. Over the years, various models
have emerged, concerning for instance the dimension of the underlying lattice
structure, degrees of connectivity and dimension of the spins itself, but the
common basis has remained the Hamiltonian in equation (L.I). In any case,
the basic ingredient of a spin glass is the existence of frustration due to the
special choice of quenched disorder in these systems. Disorder is characterized
by the set of bonds of a chosen sample. Frustration occurs, if it is not possible
to satisfy every single bond of a chosen model at the same time (i.e. to
find a configuration of spins for which each pair of nearest neighbours s;
and s; contributes as —%Jij in equation (1.1])). We find such a situation in
Figure , which shows a small loop of four one-dimensional spins (Ising
spins, sketched as arrows) with positive or negative bonds between them. In
the sketched situation not all four bonds can be satisfied at the same time, as
the spin in the lower left corner should point up according to the interaction
with its neighbour on top resp. point down according to the interaction with
its neighbour to the right.

It is not surprising that disorder and frustration complicate the investiga-
tion of spin glasses in contrast to pure ferro- or antiferromagnets. However,
both in experimental and theoretical spin glasses a phase transition from a
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Figure 1.1: Example of a frustrated loop of four Ising spins.

paramagnetic phase to a spin glass phase is observed (though not in all mod-
els as we will see). In the paramagnetic phase, thermal fluctuations of the
spins dominate and prevent to establish a preferred direction a single spin
points into. In contrast, in the spin glass phase the spins become frozen in
time, which means that the force of ordering to lower the energy dominates
the thermal fluctuations. Due to the disorder of the bonds J;;, the low tem-
perature configuration of spins cannot be uniform or periodical, but is frozen
in disorder. However, for finite temperatures, the spins still fluctuate, but
each single one does fluctuate around its preferred direction. The analogy
of the direction of the spins to the location of atoms in the glass transition
(where the atoms become frozen in disorder) is responsible for the term spin
glass.

Within the framework of statistical physics, the properties of a spin glass
consisting of NV spins are described by the extensive free energy of this sys-
tem, F;, where the index J denotes the special choice of disorder of this
system. The free energy F'; is equal to minus the logarithm of the partition
function Z; times the inverse temperature § = % as F; = —% InZ;. The
partition function is found by calculating the Trace (the integral over all
possible configurations of the spins) of the Boltzmann probability of all pos-
sible spin configurations, which gives a single spin configuration a statistical
weight proportional to e ?# according to the Hamiltonian in equation .
However, to obtain the full statistical information of a spin glass model (in
order to describe, for instance, the phase transition), we have to average
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1.1. THE SHERRINGTON-KIRKPATRICK ISING SPIN GLASS

over the disorder (denoted by FE;) to find the mean value of the free energy
F = E;F;. For large system sizes the free energy per degree of freedom of
a special configuration of bonds, f; = F);/N, approaches the mean value, or
the extensive part, fe = F/N, so that the distribution of f; gets peaked
around fey (i.e. the fluctuations around the mean value vanish with the
system size. We will consider their order of magnitude in the last chapter
of this thesis). In the thermodynamic limit f; is equal to fe. This is the
property of self-averaging of the free energy. It is then possible to find non-
analyticities of the free energy fe., which separate the phase space of the
spins into different phases.

The spin glass phase transition can be characterized by an order pa-
rameter. Among others we use the Edwards-Anderson order parameter
qea = Y. (s:)%. The thermal mean of a spin s;, (s;), is zero in the high
temperature phase due to the dominating thermal fluctuations, whereas it
takes a nonzero value in the low temperature phase where the spins become
frozen in time. However, in the low temperature phase the thermal mean
points into various directions for the different spins and the sum ) (s;) is
zero. The same is true when we regard a single spin and average its thermal
mean over the disorder. This reflects the self-averaging property. Therefore
we have to sum over the squared thermal mean of all spins, which is a sum
of positive contributions in the spin glass phase.

In the following section we introduce the most prominent spin glass model,
the Sherrington-Kirkpatrick Ising spin glass. As it is the first and most
investigated spin glass model, it provides a variety of methods, notations and
results which can be considered as the basis of spin glass physics. Therefore,
we devote an own section to this model within this introduction and even
present some of the basic technical subtleties which we expect to be helpful
in order to get to know spin glasses.

1.1 The Sherrington-Kirkpatrick Ising spin glass

The first spin glass model which could be solved, was the infinite range
model with Ising spins (one dimensional spins of length one, which can only
point "up” or "down”) of Sherrington and Kirkpatrick, known as the SK
model [2] (infinite range means that each spin is connected to every other
spin. It is assumed that infinitely many neighbours correspond to an infinite
dimensional lattice). The authors were making use of the replica method,
which is nowadays a standard method in statistical physics to calculate the
mean free energy when it is not possible to calculate F; directly and average
it over the disorder. There, one introduces n uncoupled copies of the same
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CHAPTER 1. INTRODUCTION

system (the replicas) and calculates the disorder average of the product of
all n partition functions Z;,, as E;[[._, Zja = E;(Z7%). For the infinite
range Ising spin glass F,;(Z7%) is

n

E;(Z7) = E;Trg, exp (Z (ﬁz Jijsi's§ + Bh Z sf‘)), (1.2)

a=1 1<J

where Try, denotes the Trace over all spin configurations and replicas, h
is an external field and s¢ denotes the spin i (i = 1,--- | N) of replica «
( = 1,---,n). So far n is integer, but we have to extend E;(Z%) to an
analytic function of n € C and to take the limit n — 0, to find the disorder
averaged extensive free energy F' = limy_., E;log Z; from the identity

! ,
£)(l0 Z;) = lim ~ (£,(25) - 1). (13)

where Z; is the partition function of the single spin glass. It is further
necessary to take the thermodynamic limit N — oo to obtain F' = N fo. In
the replica calculation this is done implicitly when evaluating the Trace. In
principle, the replica limit n — 0 should be taken first, but in practice the
thermodynamic limit is taken first. This exchange of limits is still suspected
to be a source of trouble in spin glass physics. In the following we will have
a closer look at this pioneering computation.

1.1.1 Replica calculation of the SK Ising spin glass and
Replica Symmetry Breaking

For the SK model of the Ising spin glass, Sherrington and Kirkpatrick cal-
culated the n-times replicated partition function in equation by aver-
aging over the disorder, which meant to integrate over the same Gaussian
distribution with mean zero and variance % for each single bond J;;, with

2
P(J;;) = \/\é*fj exp (— [Zj;]) (Scaling the variance with + is necessary to

obtain extensive quantities proportional to N in the end), and gives

2 72

E;(Z7) o< Trs, exp (%]{[ 2(28?35)2+ﬁh228?> (1.4)

a<f )

It is not possible to carry out the Trace over the spins if the partition func-
tion is of this form, due to the dependence on the squared spin variables
(zl sf‘sf )2. Therefore it is a useful procedure to reduce the dependence of

5



1.1. THE SHERRINGTON-KIRKPATRICK ISING SPIN GLASS

the squared spin variables to a linear dependence by introducing the Gaussian
integrals over the parameter q,s3

exp (ﬁ;{; Z (Zsf‘sf)2> —

a<f( i

2 72
/H dqap exp ( — N%J Zqiﬁ)Trexp (52J22qa523?5f), (1.5)

a<f a<f a<p

where we have set the external field to zero for simplicity. This reduction
by Gaussian integrals is called a Hubbard-Stratonovich transformation. The
integrals over the auxiliary parameters ¢,3 have to be carried out by saddle
point methods, where this kind of integrals with an exponent proportional
to a large parameter (in this case N goes to oo in the thermodynamic limit)
are approximated by taking the integrand at the value of the integration
variable (here ¢,3), which maximizes the exponent. To include the term
Trexp (527 > acpdop D s?sf) from equation into the saddle point
calculation, one has to extract a factor of N. As taking the Trace in this
expression can be done separately for each single site ¢ = 1,--- , N, one has
N integrals of the form Trexp (ﬁQJ2 Za<,8 qagsasﬂ). Finally the n-times
replicated partition function is

2 72
EJ(Z?})O(/HanBeXp<_Nﬂ2J Zqi/@

a<f a<p

+ Nlog Trexp (ﬁ2J2 Z qaﬁs"sﬁ)) (1.6)

a<f

The saddle point equations for the auxiliary parameter g,g reveal a physical
meaning of major importance. It is

2 72 a B
2 72 ap TI"SO‘Sﬂeﬁ T Y0 Gaps™s
82T qaps®s’ _ _ Joa B
log Tre a<p = — 5 = (s”s5")
Tre?*7? La<p daps™s

1
. ﬁ2J2 anﬂ

i.e. the parameters g, are the mean overlaps of the same spin s{* and sf
from different replicas, where the index ext denotes the external exponent
from the second line of equation ((1.6). It can be shown that this defini-
tion of gma is equal to the expectation value (S?S? ) with respect to the
original partition function E;Z;. Even more, if one assumes that these pa-
rameters are independent of the special choice of o and (3, it holds that
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Gop = Ej(s%s0) = E;(s?)(s”) = E;(s;)? (where we have used that the
n-times replicated partition function from equation factorises with re-
spect to the different replicas). The last term is precisely the Edwards-
Anderson overlap in the thermodynamic limit ggq = Y2~ (s;)? introduced
above, which indicates the phase transition. The assumption of indistin-
guishable replicas is called replica symmetry. It implies that there is a single
equilibrium state for each temperature that each replica finds in the thermo-
dynamic limit, i.e. a single state with a non-vanishing statistical weight in
the thermodynamic limit. At first glance, it seems reasonable to assume this
property, but it turned out to be wrong afterwards, as we will see below.
To find the free energy, one has to take the replica limit from equa-

tion ((1.3]), which means to continue this function analytically for n — 0. The
expansion of the exponential in equation (|1.6)) yields 1+Nn <%i‘]2 > a<s q 5t

1 Jog Tre” sy qaﬁSQS@), which leads to

. 62J2 2 1 IBZJQZ o Sasﬁ /82J2
~Bfon = —BEsf; = lim (== %qaﬁ“‘gbgrﬂ@ wxoos™s? L 2,

(1.8)

Under the assumption of replica symmetry (¢ga is abbreviated by ¢) Sher-
rington and Kirkpatrick found (before taking the replica limit)

2J2 1 o 2J2
b n(n—1)¢* + = log Tre®* /%45 az<s " 4 64 >
n n

B e = lim (
(1.9)

We note that the coefficient of ¢? is negative in the replica limit. There-
fore extremising the free energy with respect to ¢ maximizes the free energy
instead of the natural expectation to minimise it. This is one of the pecu-
liar properties of the replica method. In equation ((1.9) one can carry out
the Trace (which introduces a Gaussian integral with parameter z through
a Hubbard-Stratonovich transformation) and take the replica limit n — 0.
The free energy then is given by

2 72 )
—Bfext = ﬁ4j (1—q)?*+ / \/12_7sze_z2 log (2cosh®(BJ4/qz)).  (1.10)

It is further possible to calculate the overlap ¢ explicitly, by extremising the
free energy from equation (|1.9) with respect to ¢q. This gives

q—/\/12_7rdzez22 tanh?(3.J,/qz). (1.11)



1.1. THE SHERRINGTON-KIRKPATRICK ISING SPIN GLASS

From the above discussion we know that the solution in the high temperature
phase is ¢ = 0, while below the critical temperature it is NON-ZeTo0. We expand
the equation for small ¢, which yields ¢ = f\/%dze_%(ﬁQqu + ) =
B%2J%q — O(q¢?) (the dots and the symbol O indicate higher order terms in q).
As long as (3. is smaller than one, the paramagnetic solution ¢ = 0 is the only
solution of this equation. However, for 3J < 1 a second non-zero solution
for ¢ emerges and maximizes the free energy. The critical temperature of the
phase transition of the SK Ising spin glass therefore is 7, = J. This result
holds as long as the external field h is equal to zero. If h # 0, there is no
additional solution to the paramagnetic one, ¢ = 0, and the phase transition
is removed.

However, the replica symmetric solution found by Sherrington and Kirk-
patrick turned out to be wrong for the reason that it produces a negative
entropy at low temperatures equal to —%. Even more, de Almeida and
Thouless explicitly proved the failing of the replica symmetric solution by
their calculation presented in Ref. [6], which showed that the replica sym-
metric solution is unstable against the breaking of replica symmetry. This
calculation involves to expand the free energy from equation around
the replica symmetric solution (with the free energy frg) up to second order
in the perturbation terms y,g, by substituting g, = ¢ + yas. This leads to

the partition function

E;(Z7}) « / H dqoap exp [ — Nﬂ(fRS + Z Z yagGa575y75>], (1.12)

a<pf a<f y<d

where the quadratic form can be abbreviated by y? Gy (y is the vector con-
taining the different y,4 and G is the matrix with entries G,g,5). The matrix
G therefore describes the second derivative of the free energy at the replica
symmetric SK solution, or in other words it is the matrix of coefficients
governing the fluctuations about the SK solution. If the replica symmet-
ric solution were stable against infinitesimal deviations from it, the matrix
of coefficients of the quadratic form, G (the Hessian), must not have nega-
tive eigenvalues. However, one of the eigenvalues becomes negative in the
replica symmetric spin glass phase. Therefore it is necessary to break replica
symmetry in a consistent way.

We point out that a related calculation in case of Ising spins on a reg-
ular lattice with short range interactions of Bray and Moore [7] yields this
eigenvalue to be zero, which corresponds to a locally flat free energy along
the eigenmodes of that eigenvalue (the second derivatives of the free energy
at the saddle point must be positive to have a local minimum there). These
directions were called massless modes. A flat free energy means that the
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question of stability cannot be answered up to second order in the deviations
Yap-

The true solution of the SK model was found by Parisi in a series of
publications [§, @, [10] and summarized in Ref. [4] (but was confirmed to be
the true solution much later in Ref. [I1]). As replica symmetry is based
on the assumption of a single equilibrium state each replica can find for a
given temperature (leading to a single possible overlap gg4 between the same
spin taken from different replicas), it was the natural suggestion to have
many different equilibrium states and multiple different overlaps g, when
breaking replica symmetry. The complicated breaking scheme is based on a
sequence of approximated solutions and leads to a probability distribution
of the overlaps g,s with support on the interval 0 — gg4, in contrast to the
corresponding distribution in the replica symmetric case, which consists of a
single d-peak at qpa. We try to understand, how replica symmetry breaking
(RSB) works, by considering the first stage of it, one step broken replica
symmetry (1-RSB). It involves to divide the n replicas into n/r; blocks each
of r; replicas, where n/r; must be integer (with 1 < r; < n). The overlap
between replicas from the same block (which are n(r; — 1) overlaps) is set
to ¢ and to qo if the replicas are taken from different blocks (n(n/rqy — 1)r;
overlaps). The free energy from equation then is (compare to the replica
symmetric free energy from equation (1.9)))

62 J2
4n

— Bfes = lim (= == (n(n = 11)ad + (1 = 1)a?)

62 J2
; ) (1.13)
where ¢, in the exponential has to be divided into terms with overlap g
and overlap ¢;. It is possible to calculate equations of state determining
qo and ¢, similar to equation . In the replica limit r; is in between
n — 0 and 1 and the free energy has to be maximized with respect to it. One
finds that the transition temperature is not changed. Analysing the stability
of this solution, the negative eigenvalue found by de Almeida and Thouless
increases from the replica symmetric value of —0.16 to —0.01 in case of 1-
RSB. In case of full RSB (which we describe in the following) it is expected to
vanish and in that way produce massless modes, according to the discovery
of Bray and Moore described above. Furthermore, the ground state energy of
the 1-RSB solution is —0.7652 and agrees much better with numerical data
than the replica symmetric one, which is approximately —0.798 [4].
The second step of replica symmetry breaking divides each of the n/rq
blocks further into r1/re blocks with ry replicas apiece. Replicas within the
same of these "new” blocks have overlap ¢, while replicas from two different

+ l log Tr€(62j2 Za<ﬁ qaﬁsasﬂ) +
n



1.1. THE SHERRINGTON-KIRKPATRICK ISING SPIN GLASS

blocks (but within the same of the n/r; blocks from 1-RSB) still have overlap
q1. We see that each stage of replica symmetry breaking introduces a new
overlap ¢; and a new parameter r;. They obey n <r; <ry <--- <1, which
reverses in the replica limit to 0 < ry < ry < --- < 1. The free energy has
to be maximized with respect to each of the overlaps ¢; and m;. As already
indicated, the order parameter g,g can be characterized by the probability
distribution of observing a certain overlap ¢. In case of replica symmetry
there is only a single possible overlap and the probability distribution consists
of a single 0-peak at gga (omitting the symmetry of a total reflection of
all spins). Breaking replica symmetry subsequently introduces an overlap
q; for each breaking step. After k breaking steps the overlap distribution
consists of £+ 1 d-peaks, each with a weight corresponding to the fraction of
combinations of replicas with overlap ¢;. With the total number of possible
overlaps being n(n — 1), the number of combinations with overlap ¢; being
n(ry — 1) and the number of combinations with overlap ¢y being n(n — ry)
(see above), the probability distribution of finding a given overlap ¢, P(q),in
case of 1-RSB in the limit n — 0 is

P(q) =7116(q — @) + (1 = 1)d(q — q1). (1.14)
After k steps of replica symmetry breaking the overlap distribution is P(q) =
Y ico(ri—7it1)0(¢ — gi), where 1o = n — 0 and 7441 = 1. However, in case of
full RSB, the number of replica symmetry breaking steps goes to infinity. In
that case, the order parameter becomes a continuous function ¢(z) and the
probability distribution P(g(z)) has non-vanishing support on the interval 0
to qpa, see Figure (1.2

P(q) P(q) P(q)

I I
Aea 4 9dea 4 dga 9

Figure 1.2: Distribution of the overlap in three different cases. Left: Replica
symmetry, a single overlap at qg4; Middle: 2-RSB, three different overlaps
are possible; Right: Full RSB, the distribution has non-vanishing support
between 0 and gga

The physical significance of breaking replica symmetry of the overlap g,z
into infinitely many overlaps between 0 and gg4 lies in a multi valley struc-
ture of the phase space, as the RSB solution implies to have many different

10
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equilibrium states. An equilibrium state in the thermodynamic limit is de-
fined such that its energy can not be lowered by flipping any finite fraction
of spins. In finite systems these states become metastable. In a dynamical
interpretation we find, that within a single valley the overlap between a cer-
tain spin at different times is equal to gg4. If it is possible to overcome the
free energy barriers separating the different valleys we find different overlap
values between the current and initial state. In the thermodynamic limit the
free energy barriers become infinitely high, so that the system is trapped in a
single valley. Accordingly, for a large but finite system, it is possible to over-
come the barriers, but it takes very long times. This property makes it hard
to measure physical quantities experimentally on reasonable time scales.

1.2 Return to Introduction

We have already mentioned that the RSB ansatz of Parisi was proved to solve
the infinite range SK model correctly in Ref. [I1]. However, there has been
continuing doubt that this picture holds in finite dimensions. Even more,
in Ref. [12] it was suggested that broken replica symmetry can not hold in
any dimension, though this proof does not give insight into the failing of the
broken replica symmetry calculation. The most famous competing picture to
explain the low temperature behaviour of spin glasses is the Droplet picture
developed by Fisher and Huse and Bray and Moore in Ref. [13| 14, [15]. It is a
phenomenological theory, which is based on the assumption of a single unique
groundstate (up to the total spin reflection), i.e. it is a replica symmetric
theory. Within the Droplet theory it is assumed that low-lying excitations
of the groundstate follow from coherent spin flips of finite spin clusters (the
droplets). These excitations dominate the equilibrium and dynamical prop-
erties of spin glasses at low temperatures. As this theory will not be subject
of this thesis we do not go into detail here. However, both theories have been
applied to explain fascinating non equilibrium properties of spin glasses, like
aging, rejuvenation and memory effects, see Ref. [16, [17, 18] 19]. They all
describe aspects of the dependence of the non-equilibrium behaviour of spin
glasses on the history of the sample (as for instance waiting times, tempera-
ture dependence and external field dependence) and are strongly influenced
by the slow relaxation due to the complicated free energy landscape spin
glasses exhibit. For instance, aging denotes the slower relaxation for longer
waiting times [19]. Rejuvenation means that a sample, initially almost equili-
brated at a certain temperature has a suddenly increasing susceptibility when
lowering the temperature. This increasing susceptibility describes a stronger
response to this temperature change than before, i.e. it corresponds to a large

11



1.2. RETURN TO INTRODUCTION

change of the sample, which is then said to be younger (therefore the term
rejuvenation). After bringing the sample back to the initial temperature T}
it finds the initial state at that temperature, i.e. it seems to remember its
own history (memory effect). A related phenomenon in spin glass physics
is chaos [I6]. It describes, that a small change in the temperature or in the
interaction bonds J;; results in a large change of the spin glass sample. In
the thermodynamic limit the initial and the final state are totally uncorre-
lated, which corresponds to a strongly changing energy landscape. We will
be concerned with bond chaos in chapter

Due to the simplicity of the general microscopic spin glass model it is
possible to map different problems from other areas of research onto spin
glasses as a prototypical example of a disordered system and use various of
the methods developed in spin glass physics in these contexts. Prominent
examples of such influence of spin glass physics are the Cavity method [20]
and the message passing algorithm [21], the parallel tempering Monte Carlo
algorithm [22] and error correcting codes [23], 24] (where the decoding of a
bit sequence (sequence of 0 and 1) which has been submitted through a noisy
channel can be facilitated by using the representation of the bit sequence in
terms of Ising spins (£1) and the additional information of the ground state
configuration; These ideas can also be applied to image restoration [23], in
the simplest case by representing the bits of a monochrome image by Ising
spins and adding further information on images in general, as smoothness
etc.). Even for risk minimization in financial markets, spin glass models
have been applied [25] 26| 27].

Up to now, the present introduction of this thesis serves the purpose of
presenting the fundamental ingredients and phenomena of spin glasses. It
focusses on the first solvable model of a spin glass, the infinite ranged Ising
spin glass, as the main observations of these investigations have deeply in-
fluenced theoretical spin glass physics throughout the years. The description
of the replica symmetry breaking scenario of Parisi should be very helpful
to follow this thesis. Applications and competing theories are less relevant
here, so that we have discussed them only briefly. Now, we are going to mo-
tivate analysing a spin glass with continuous vector spins, the m-component
spin glass, and describe how this model has emerged in spin glass physics.
Furthermore, this thesis deals with a different, slightly more realistic picture
of neighbourhood of the spins than the infinite range model, closer to a real
spin glass in finite dimensions. For this purpose, we will make use of the
Cavity method, which will be introduced in chapter

The subject of this thesis is the m-component vector spin glass, in which
the spins are m-component vectors with a fixed length and m is in general
large (later, we will define what exactly large means). The reader might ask,
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why this is a worthwhile research topic, as the main subject of interest in
spin glass physics seems to be the Ising spin glass, following the introduction
of this thesis up to now. To answer this question we are going to sketch the
progress spin glass physics has made over the years, on which the present
thesis is footed. We will see how the analysis of the SK Ising spin glass
has been extended to vector spin glasses and, on the other hand, to finite
dimensional or at least diluted lattices, such as the Bethe lattice, which we
are going to introduce in the next chapter. Finally, we will learn in which
way and to which extend the m-component spin glass is a promising subject
of research.

To describe the limitation of the replica theory of Parisi we mention
that Replica field theory [28] extends the replica theory of Parisi to finite
dimensions. Below six dimensions all calculational tools break down, which
marks the upper critical dimension d,, (above which the mean field solution
- in that case the SK solution of Parisi - is probably correct). In a recent
publication of Bray and Moore [29], the authors show that the de Almeida-
Thouless line vanishes rapidly as o« (d — 6)* when approaching d, = 6 from
above. This line marks the spin glass phase transition of a spin glass in an
external magnetic field and is a characteristic of the broken replica symmetry
solution (in the replica symmetric case there is no phase transition of a spin
glass in an external field, i.e. no de Almeida-Thouless line). Furthermore,
in Ref. [12] it was proved that broken replica symmetry can not hold in
any dimension, though this proof is non-constructive and does not analyse
the failing of the broken replica symmetric calculation in detail, nor gives
it insight into the nature of the spin glass phase. Nevertheless, it is one
of several hints, that going beyond the mean field solution (i.e. the fully
connected spin glass) towards finitely connected models (below d,, = 6) might
restore replica symmetry.

Furthermore, it seems impossible to calculate a partition function of a
finitely connected spin glass directly. Therefore simplifications are necessary
to make analytical progress as for instance with the Cavity method, which
uses the picture of a finite number of nearest neighbours. The appropri-
ate lattice for this method, the Bethe lattice, is somewhere in between the
fully connected and finite dimensional lattices. For vector spin glasses as
the XY spin glass (two dimensional spins) and the Heisenberg spin glass
(three dimensional spins) there has so far been mainly numerical progress.
Nevertheless, there are continuing discussions on the properties of the phase
transition, which we will mention in the following section.

13
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1.3 State of the Art

Up to now we have seen that the solution of the SK Ising spin glass exhibits
quite complicated properties, finally leading to the Parisi replica symmetry
breaking scenario with all its implications. The Ising spin glass is a reason-
able starting point to analyse the spin glass problem, but it is a restriction as
well. Of course, one is similarly interested in vector spin glasses, such as the
XY spin glass (in which the spins have two components) and the Heisenberg
spin glass (spins are three component vectors). However, it has so far not
been possible to calculate the partition function of a vector spin glass for
small component numbers. Numerical work still deals with the question of
the existence of a spin glass phase transition and its connection to ”chiral-
ities” [30], B1] B32) B3] B4, B35, B6]. The picture of chiralities is based on the
property of continuous spin glass models to use the additional components
to lower the energy of the system compared to the discrete spin variables in
the Ising spin glass. A plaquette of four spins can have negative or positive
chirality if it is frustrated, or no chirality if all bonds can be satisfied at the
same time. In a frustrated plaquette (as in Figure of four XY spins
the ground state of the bimodal distribution of interaction bonds J;; can be
calculated to be such that between two neighbouring spins (going clockwise
around that plaquette) with a ferromagnetic bond between them, there is an
angle of m/4. Between two spins with an antiferromagnetic bond between
them, there is an angle of %ﬂ', if the sense of rotation during a clockwise trip
around the plaquette is clockwise as well (positive chirality) [5]. If the rota-
tion is counter-clockwise the chirality is negative. Such spin configurations
producing different chiralities are illustrated in figure [I.3] We see that there
is an extra (discrete) degeneracy additional to the infinite degeneracy due to
the invariance under rotations, which is a global reflection of the spins with
respect to an arbitrary axis in spin space. For Heisenberg spins a similar but
three dimensional quantity can be defined. In the low temperature phase the
chiralities are supposed to differ significantly from zero. As chirality is an
Ising like variable, it is supposed to be possible to describe the low temper-
ature phase similar to the Ising spin glass [31I]. There is continuing debate
about the question whether there is a chiral-spin decoupling in the sense that
chiral order occurs above the critical temperature of spin glass ordering or if
there is a common transition temperature for chiral and spin glass ordering.
Answering this question is complicated by the lack of an analytical solution
for the regarding spin glass models.

The natural generalization of XY- and Heisenberg spins is to investigate
spins with arbitrarily many components m, since it seems reasonable that
vector spins exhibit common features as they consist of spins with a contin-
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+J +J +J
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Figure 1.3: Spin configurations on frustrated plaquettes. The signs inside the
plaquettes denote the sign of the local chirality. The different configurations
can be generated from each other by a global reflection of the spins, but not
by a global rotation.

uous symmetry and are rotational invariant in the space the spins live in.
Furthermore the analysis of the m-component spin glass is simplified in the
limit m — oo (as we will see later), which makes it a promising starting point
for investigating vector spin glasses. The motivation to study this model is
even more supported by the finding that the m-component model of the fer-
romagnet is strongly related to the spherical model of the ferromagnet [37]
and that the spherical model of a spin glass was solved in Ref. [3§]. Therefore
we will describe this model first.

Within the spherical spin glass the spins remain one dimensional but are
relieved from the restriction of having a fixed length of 1. The only constraint
they have to fulfillis >, s? = N. Asin the SK model the interactions between
the spins are infinitely long ranged. The analysis is built on the Hamiltonian
from equation (|1.1)) and on the known shape of the eigenvalue density of
the connectivity matrix (whichs entries are the interaction bonds J;;) in the
thermodynamic limit. It corresponds to the Wigner semicircular law [39] [40].
The spherical model is solved in terms of the eigenbasis of the interaction
bonds by making use of this law. This analysis results in the observation
of a phase transition at T, = J, similarly to the SK model (with J? being
the variance of the distribution of the bonds). Furthermore it is possible to
calculate the free energy and show that the ground state energy is dominated
by the largest eigenvalue of the connectivity matrix. Even more, this model
is replica symmetric as there is just a single order parameter and a single
unique ground state.

The m-component spin glass is a spin glass model which consists of N
vector spins with m components each. The spins have a fixed length /m.
It was first studied within a replica calculation in the thermodynamic limit,
analoguously to the one of the SK model in Ref. [41], mentioned in the intro-
duction of this thesis. There, the authors found the spin glass phase transi-
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tion and a free energy equal to the one of the spherical spin glass in the low
temperature phase by using the replica symmetric ansatz. However, they did
also show that replica symmetry is broken for all finite component numbers
m (along the lines of the stability analysis of de Almeida and Thouless for
the SK Ising spin glass sketched above). This observation was confirmed by
finding massless modes in the m-component spin glass in the limit m — oo
as well [42] 43, [44].

Later on it was discovered that the m-component spin glass of finite size
displays an unusual phase transition at 7" = 0 in the limit m — oo, in
which the spins use only a fraction of the m available components and this
fraction, myg, scales with the system size as mqo ~ N#m [45, 46, 47, 48]. In
Ref. [46] this transition has been described as a generalization of a Bose-
Einstein condensation for which the spins condense into a mg-dimensional
subspace of the m-dimensional space which is actually available (in contrast
to that, the condensate of the conventional Bose-Einstein condensation oc-
cupies a one-dimensional state). We keep the term generalized Bose-Finstein
condensation throughout this thesis. The exponent ., depends on the un-
derlying lattice. It is % for the infinite range model and decreases for finite
dimensional lattices. Apparently, this number of components, my, is suffi-
cient to find the states of lowest energy, whereas for m < mq frustration
along with a limited number of degrees of freedom leads to the complicated
free energy landscape of the RSB scenario. We see that above mg, the m-
component spin glass becomes independent of m and corresponds to the limit
m — oo. In analogy to the finding of an unstable replica symmetric solu-
tion for finite m in the thermodynamic limit, it is assumed to find replica
symmetry in a finite system for m > mg. For finite temperatures there is
so far no reliable theory for this phenomenon, though it is expected to carry
over to finite temperatures. The nature of this unusual phase transition
at finite temperatures is the concern of chapter 3l The question of replica
symmetry breaking when the maximally available number of components is
smaller than the critical number of components for the large-m limit will
be treated in chapter [ However, the generalized Bose-Einstein condensa-
tion contributes to the question of the nature of the usual spin glass phase
transition, as at 7' = 0 in Ref. [47] this condensation influences the nature
of ordering of the spins. There, it was shown that correlations in the SK
model decay with a power of the system size as N~#m (whereas in a true
spin glass phase transition the correlations should be finite, exhibiting long
range order), which is reminiscent of the Kosterlitz-Thouless transition of
the two-dimensional ferromagnet (where there is a finite temperature phase
transition but no long range order below 7, [49]). We will have a closer look
at this phenomenon in chapter [2| and we will try to understand the nature
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of ordering in the low temperature phase. Furthermore the lower critical
dimension of the SK model of the m-component spin glass has been investi-
gated by field theoretical methods [50] [44] [43] and by calculating the finite
size scaling of the zero temperature defect energy [51, 52] (the scaling of
the defect energy describes the cost in energy to break up the ground state
configuration). The lower critical dimension is the dimension of the lattice
below which there is no finite temperature phase transition. Field theoretical
methods predict a dimension of eight [44], 43], whereas numerical methods
find a lower critical dimension slightly above five [51], [52]. This controversy
may be at least partially resolved by the exchange of the thermodynamic
limit and the large-m limit. In numerical simulations the systems analyzed
are of finite size, but the limit m — oo (at "= 0: m > myg) can be taken.
In analytical computations the thermodynamic limit is taken first. Though
we will not be concerned with critical dimensions in this thesis (as the model
we investigate is in between the infinite range and finitely connected models
and not appropriate for this analysis), we will have to take care of the order
of limits.

A different question for spin glasses has emerged by understanding the
distribution of ground states of a spin glass as an application of extreme
value statistics. In extreme value statistics there are three classical uni-
versality classes, the Weibull, Fréchet and the Gumbel distribution, and a
fourth, only recently discovered distribution, the Tracy-Widom distribution
(the distribution of the largest or smallest eigenvalue of a matrix with Gaus-
sian random entries). Universality [53] has become a much-noticed property
since renormalization group methods have shown that universal character-
istics exist for many different models in many different phenomena, as for
instance in critical scaling. The sample-to-sample fluctuations of the ground
state energy (these are the fluctuations from sample to sample due to differ-
ent realizations of disorder) are obviously an extreme value observable and
have been investigated analytically [54], 55, 50, 57] and even more numeri-
cally [58, [59] 60, 58]. The question of interest is the scaling of these fluctu-
ations (and the sample-to-sample fluctuations of the free energy) with the
system size, characterised by a scaling exponent p and its universality. We
will focus on this problem in chapter [5| and calculate the sample-to-sample
fluctuations of the free energy of the m-component spin glass. In the lit-
erature, there have been investigations and results on three important spin
glass models: The SK Ising spin glass, the Random Energy Model (REM)
and the spherical spin glass. According to these, the Ising spin glass exhibits
fluctuations which probably scale as N'/6 (there is a competing exponent %
but currently also growing consensus on the value of ¢ [54, 55]). The REM
consists of randomly independently distributed energies and is not described
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by a microscopic Hamiltonian, see Ref. [61], which makes it a very simple spin
glass model. It has a phase transition at 7, = W with an energy of —FE)
and freezing in time below T.. The REM is solved by a 1-RSB ansatz and
its sample-to-sample fluctuations are distributed according to the Gumbel
universality class and hence of order O(1) [62] 63].

As described above, the ground state energy of the spherical spin glass
is determined by the largest eigenvalue of the interaction matrix, which
contains the bonds between neighbouring spins. As the bonds are Gaus-
sian distributed random variables, the ground state energies of the spherical
spin glass are distributed according to the Tracy-Widom distribution, with
AE ~ N'Y3_ Additionally it was proved that for finitely connected spin
glasses the sample-to-sample fluctuations scale as AF ~ N2 We see, that
different spin glass models belong to different universality classes of extreme
value statistics and it is an interesting and open question whether there exist
certain sub-classes of spin glasses (as for instance replica symmetric models
with infinite ranged interaction) which belong to the same universality class.

1.4 Motivation

The reader may now understand why we have chosen the m-component spin
glass as the subject of research. In the field of spin glasses, the SK model of
the Ising spin glass has received most attention, even the sample-to-sample
fluctuations have been calculated. Vector spin glasses have so far mostly been
investigated numerically, but the m-component spin glass can be tackled an-
alytically as well. Finite dimensional lattices are also hard to analyze. There-
fore most work focussed on these lattices has been done numerically. The
only way to make analytical progress seems to be the simplification resulting
from tree like graphs with finite connectivity. Besides the m-component spin
glass being a worthwhile subject to study in its own rights, the above reasons
suggest that it might also have an impact on other spin glass models.

We see that there are various reasons to study the m-component spin
glass. First of all it is a decisive question whether the m-component spin
glass has a spin glass phase transition with a finite critical temperature be-
low which the spins become frozen in disorder. Second, we want to know if
the phase transition is accompanied by the generalized Bose-Einstein con-
densation and if we find replica symmetry breaking below the large-m limit.
Finite component numbers might be the necessary ingredient to discover the
nature of the breaking of replica symmetry for finite system sizes. Third, we
have to ask about the nature of the spin glass transition with respect to the
generalized Bose-Einstein condensation.
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These questions will be mainly answered for the m-component spin glass
on a Bethe lattice, i.e. for a lattice with finite connectivity appropriate to
apply the Cavity method to it [20,[64]. A Bethe lattice is indeed different from
finite dimensional lattices such as a cubic or square lattice, but allows to make
analytical progress. This different picture of neighbourhood compared to the
fully connected model has so far not been intensively investigated for vector
spin glasses. Only a few publications try to handle this issue [65, [66} [48]. To
this end we use numerical methods such as the simulation of the configuration
of effective fields (resulting from the Cavity method for the m-component spin
glass) and the parallel tempering Monte Carlo method, but also analytical
methods to gain deeper insight into the low temperature physics of the m-
component spin glass. It will be interesting to see whether we find ordering in
the low temperature phase which is reminiscent of other ordering phenomena
as the picture of chirality or as Goldstone modes, which describe excitations
by rotations of the (translationally invariant) spin configuration, which cost
no energy and lead, for instance, to Kosterlitz-Thouless transitions [49, [53].

Furthermore we will calculate the sample-to-sample fluctuations of the
free energy of the infinite range (SK) model of the m-component spin glass
and ask how it is related to other models, especially the spherical model.

In total, this thesis gives some insight into the nature of the low tem-
perature phase of the m-component spin glass. The outline is as follows.
In chapter [2| we present the self-consistent effective-field approach, which
adjusts the Cavity method to the case of m-component vector spins. The
suitable lattice for this method is a Bethe lattice, i.e. a random graph where
each spin has the same (finite) number of nearest neighbours. It is the dis-
tribution of effective fields which indicates the phase transition and reveals
the nature of the low temperature phase. Though this derivation has already
been described in [67) [48], we repeat it to enable the reader to understand
this approach in detail. Based on this approach we present the numerical
solution of it, which means to calculate the configuration of effective fields
for single Bethe lattices, i.e. for single realizations of disorder. This nu-
merical application is of further use in this thesis. As expected we find a
phase transition. Furthermore we investigate this phase transition using a
different numerical technique, the parallel tempering Monte Carlo algorithm.
This method directly simulates the vector spins (whereas the self-consistent
effective-field approach calculates mean effective fields acting onto the spins).
Therefore, the results of both methods complement each other, though the
comparison has to be done carefully.

In chapter |3 we use both numerical methods to investigate the unusual
phase transition called the generalized Bose-Einstein condensation, where
there is a maximum number of components the spins, resp. fields of a m-
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component spin glass of finite size use. In the groundstate, this phenomenon
has already been observed and we review these results before we present
the results for finite temperatures, where we find an interesting temperature
dependence of this maximum component number. Besides this, the investi-
gations reveal a further phenomenon, which is detected as rotations of the
configurations of effective fields below the critical temperature. This strange
observation is supported by similar findings from the parallel tempering al-
gorithm. Together with the results from chapter [2| we develop a common
picture of the phase transition.

In chapter [ we show how replica symmetry is broken in our model. As
already mentioned, replica symmetry is expected to hold as long as the avail-
able number of components is larger than the effective number of components
the spin, resp. fields use (which we investigate in chapter . We confirm
this conjecture with the results of simulations based on the self-consistent
effective-field approach on the one hand and of the parallel tempering Monte
Carlo algorithm on the other hand. Furthermore, we try to observe the break-
ing of replica symmetry analytically. For this purpose we finally present a
method to calculate spin overlaps, which explicitly distinguishes between a
replica symmetric and a broken replica symmetry ansatz (as described in
the introduction). We compute and compare these overlaps for a replica
symmetric and a 1-RSB ansatz.

In the final chapter [5| we present the calculation of the sample-to-sample
fluctuations of the SK model of the m-component spin glass. This computa-
tion involves a basic analytical part as well as numerical support for a special
scaling ansatz (for which we use the parallel tempering Monte Carlo algo-
rithm). The calculation is based on an exact connection between the sample-
to-sample fluctuations and bond chaos in the m-component spin glass. We
show how our result relates to other important spin glass models and to the
research field of extreme value statistics.
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Chapter 2

Phase Transition

One of the most interesting questions to answer for every spin glass model
is whether it has a spin glass phase transition at a finite temperature below
which the spins become frozen in disorder. The m-component spin glass at
least has a phase transition. On the one hand, this was shown in Ref. [41] for
the SK model by making use of the replica method and on the other hand in
Ref. [48] for finite connectivities on a Bethe lattice using the Cavity method
[20]. The transition temperature depends on the connectivity. It is unity for
the SK model and decreases for decreasing connectivities [48]. In this chapter
we review the self-consistent effective field approach of the m-component spin
glass on a Bethe lattice of Aspelmeier and the author [48], as it is essential
in order to understand the underlying concept of the simulations we use to
analyze the low temperature physics of this model in this thesis. In addition,
we will support the derivation of a spin glass phase transition by parallel
tempering Monte Carlo simulations of the m-component spin glass. This
method will be explained in detail in section Within these simulations,
the phase transition is indicated by a predicted finite size scaling of the
correlations between the N spins in the low temperature phase.

The definition of a Bethe lattice will be given in the following as a random
graph with fixed connectivity. The self-consistent effective field approach ad-
justs the Cavity method on a Bethe lattice for Ising spins to the case of
m-component vector spins. This method is based on the propagation of
mean field quantities, the cavity fields, through the Bethe lattice. It is their
distribution which reveals the physics of this spin glass model, as for instance
the phase transition. Afterwards, we will see how it can be extended to finite
component numbers. As the derivation from Ref. [4§] makes use of the saddle
point method for m — oo, we have to take corrections to the saddle point
along (in a power series in %) to deduce the generic behaviour for large but
finite component numbers. In both cases, the self-consistent effective-field
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approach yields an implicit equation determining the effective fields of the
Bethe lattice, which is suited to simulate a configuration of these fields on
single realizations of these Bethe lattices numerically. Results of such sim-
ulations, both for infinite and finite component numbers, will be presented.
Throughout this thesis the simulation of a configuration of fields will be a
major tool to investigate the low temperature phase. Concerning the phase
transition we will see that the results of the simulation agree with the ana-
lytic results of Ref. [48]. However, in the following chapters we will learn that
the criterion for the phase transition is not sufficient for vector spin glasses.
Therefore we will have to take a closer look at the investigation of the effec-
tive fields and we will compare these results to those of a parallel tempering
Monte Carlo simulation of the same model. Both investigations contribute
in different ways. Whereas the effective fields are mean field quantities which
are not affected by thermal fluctuations, the parallel tempering Monte Carlo
algorithm uses the spins itself which are strongly affected by thermal fluctu-
ations. Finally, we will find common support for a phase transition, but no
standard freezing in disorder below T..

As the m-component spin glass was shown to be replica symmetric in the
thermodynamic limit only for m — oo, the analytical basis of this chapter
is restricted to that case. However, for finite N we expect the m-component
spin glass to be replica symmetric for finite, large m as well. We will give
further support for this conjecture in the following chapters and use it there-
fore already in this chapter. Finally, we present the computation of the free
energy of the m-component spin glass on a Bethe lattice in terms of the
cavity fields in section [2.5]

2.1 The Cavity method and the self-consistent
effective-field approach

The Cavity method cannot be used on any arbitrary lattice. It has to have
a locally treelike and homogeneous structure, in order to have the same
statistical properties at every site. A Bethe lattice is a random graph with
fixed connectivity. Two realisation of such a graph for 6 spins with a fixed
connectivity of 3 are provided in figure[2.1. For such random graphs, loops are
large (of order log V), so the structure is locally treelike and the feedback of a
single spin onto itself is small. Nevertheless, loops are present and introduce
frustration. A Bethe lattice is a homogeneous system, as it has no boundaries
and every single spin has the same number of nearest neighbours. If the spins
s; and s; are nearest neighbours, the exchange interaction between them is
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Figure 2.1: Two examples of six spins on a Bethe lattice with fixed connec-
tivity of three.

denoted by J;;, and it is drawn from a probability distribution P(J;;). Results
of the following calculation will be shown for a Gaussian and a bimodal
distribution, the +.J model. The width of this distribution, .J’, is scaled with
the number of nearest neighbours like J’ = J/v/k with J fixed to ensure easy
comparison with the fully connected model, where J' = J/v/N (where k + 1
is the number of nearest neighbours on a Bethe lattice). The Hamiltonian of
the model is

H==Y J;33, (2.1)
(i)

where the sum runs over all pairs of nearest neighbours and the spins are
m-~component vectors with a fixed length, equal to /m.

The self-consistent effective field approach we use to analyse the m-
component spin glass is an extension of the Cavity method for the Bethe
lattice, developed for Ising spins by M. Mézard and G. Parisi [20]. There
the key quantities are cavity fields. A cavity field h;; is the remaining field
on a chosen spin s; when removing the link J;; to the neighbouring spin s;
virtually from the lattice. It is furthermore understood to be the thermally
averaged mean field of the remaining lattice in that situation. A cavity field
is not the true field acting on a chosen spin s;, but a technical construction.
Regarding a Bethe lattice with connectivity k& + 1, all of the k + 1 nearest
neighbours contribute to produce a true local field H; onto spin s;. In con-
trast, only each k of them produce the different (k+ 1 possible) cavity fields.
Propagating through a lattice of connectivity four as in figure 2.2(a)] one
finds the cavity field on cavity spin so (virtually removing the link J; to the
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Figure 2.2: Left: The three spins §;, 53 and s3 and their back branches are
merged onto spin Sy with coupling constants J;, J, and Js in this example
with £ = 3. In the next step of the iteration, 55 and two other branches
will be merged onto the spin s;. Right: In contrast, the true local field F[o
onto the spin Sy is the sum of the interaction with all £ + 1, here 4, of its
neighbours. See text for further explanation.

spin s4) to depend on the cavity fields h; to hg of the spins s; to s3. This
is the essential procedure of the cavity method for finite conectivity lattices:
One merges k branches of the lattice onto the single cavity spin sy, each
assigned a cavity field hy ... hy for its last spins s; ... s, where each of those
spins has only k nearest neighbours before merging. The cavity field onto
the spins s; ... s, of each branch represents the interaction of the many back
spins of that branch. Before merging, the cavity fields h; ... h; are statisti-
cally independent in the thermodynamic limit (as loops are of order log N).
After merging, sy is the last spin of the emerging single branch and has k
nearest neighbours sy ... s, just like these new nearest neighbours had before
merging. Now we understand why the treelike and homogeneous structure
of the underlying lattice is important. First of all, the fields hq,--- h; are
assumed to be statistically independent before merging, which is justified
due to the rareness of small loops of the locally treelike lattice. Second, only
for a homogeneous lattice we can characterize each of the cavity fields by the
same statistical properties.

The merging introduces exchange interactions .J; ... J; between sg and its
neighbours, drawn independently from some probability distribution P(.J;).
Therefore sy can be assigned a cavity field hg, which is found by tracing
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out the neighbouring spins s;...s; from a partition function Z; with the
Hamiltonian of the regarded branch with the cavity spin sg, Hp,

Ho = — Z JZ'8150 - Z h,LS,L (22)

The reader should notice that in general the spin sy contributes to its own
cavity field via the loops of the lattice. However, in the thermodynamic limit,
these loops become large and the feedback becomes small. The calculation of
the Trace for Tr,, e "M gives [Hz c(J;, hz))] exp [Zle Bu(J;, hi)sg] with
o(J,h) = 22RO and Bu(J,h) = atanh [ tanh(3.) tanh(Bh)]. We
remark that the avivty method is only successful if the partition function Z,
is found to be of the form ~ Tr, e’ S vUshid)so after tracing out the spins
S1...8 (with a function v(J, h) that depends on the dimension of the spins
and the resulting evaluation of the Trace from that dimension - in the Ising
spin case v(J, h) = u(J, h)). As the partition function Z; of the spin sy can
additionally be written in terms of a single cavity field in equation Ho =
—hoso after merging, we find the magnetization my = (sg). to be equal to
tanh(Ghg) in that case ((so). is the thermal mean of sq in cavity, i.e. with Ji,,
removed). In the original description it is equal to tanh(8 32", u(J;, hi)),
which leads to the cavity equation hy = Zle u(J;, hyi), from which the field hy
can be calculated recursively from the cavity fields hq, - - - | hy before merging.
A similar consideration (with & — & + 1) allows one to derive the true local
field Hy = ijll u(J;, hy) by merging k + 1 branches of the lattice instead of
k, see figure It should be emphasized that the cavity fields, as well as
the local fields, are thermally averaged quantities by definition and are not
subject to thermal fluctuations.

The method of choice in Ref. [20] to calculate the critical temperature of
the Ising spin glass on a Bethe lattice uses the distribution of cavity fields.
The existence of such a distribution is assumed, as all cavity fields for any
realization of disorder should display the same statistical properties. As the
relation g = S5, u(J;, h;) describes how to calculate any of the k-1 cavity
fields of any spin on the lattice, it restricts the distribution of cavity fields
Q(h) to those fields which satisfy this relation. Therefore, the distribution
of cavity fields is the solution of the functional fixpoint equation

Q(h) = B, / (H m@(m)) 5(h —

The symbol E; denotes the disorder average. Equation ([2.3) reflects the
cavity procedure from above, for hg — h. Before merging, the fields h; on the

u(J, hi)). (2.3)

k
—1

)
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right hand side are independently identically distributed random variables
drawn from the probability distribution @Q(h;). After merging, on the one
hand the new cavity field can be calculated via h = Y°¢ | u(J;, h;) and on
the other hand it is a random variable from the same probability distribution
Q(h). On average, all sites have identical statistical properties, therefore we
expect them to be elements of the same distribution. Equation holds
as long as there is a single distribution of cavity fields, which is true in case
of replica symmetry. If replica symmetry is broken, as it is in the case of
Ising spins below T, the distribution of cavity fields becomes a functional
distribution of distributions of cavity fields, according to the first step of the
complicated breaking scheme of replica symmetry [20]. As the concern of this
thesis is the m-component spin glass in the replica symmetric large-m limit,
we will not give the details of this procedure, but remark that in the broken
replica symmetric case, there are many states the system can be in. Therefore
a single cavity field can take different values and it takes a distribution of
fields for every cavity field to describe the situation correctly. This leads to
a distribution of distributions of cavity fields for the whole Bethe lattice.

The distribution of true local fields, which regards the interaction of a spin
with all k41 of its neighbours, is completely determined by the distribution
of cavity fields. In case of replica symmetry it is

Qi(H) = EJ/ (ﬁ dh; Q(M’)) 6(H — %U(Ji, hi)), (2.4)

i.e. once the distribution of cavity fields is found, the local fields are calcu-
lated by H = S5 u(J;, hy).

The self-consistent effective field approach of the Cavity method for the
m~component spin glass is based on the same procedure as above, but has
to be adjusted for that case. The complication arises from the fact, that a
formulation of the problem in terms of cavity vector fields, Hy = —Eg§0, is
not sufficient. We will see below why this is the case. For this reason, we
have to resort to a full formulation of the problem, which means to take along

higher order terms of the interaction between the cavity spin and the cavity
field of the form

HQ = —Eogo — SBTA()gQ — Bo(go) (25)

Additionally to the linear term —FLO.?O, we have introduced the second order
term with a symmetric traceless matrix Ay and collect terms of order 5,3 and
higher in the function By(Sp). Choosing the matrix Ay to be traceless can
be done without loss of generality, since the constraint 5,2 = m would only
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CHAPTER 2. PHASE TRANSITION

give constant terms for Trsy” AgSy. The explicit dependence of the function
By(Sp) on §y can be omitted, since this term will be neglected in the vicinity
of the phase transition, where we will be able to solve the cavity equations
determining hy and Ag. We continue to repeat the procedure from above.
Before merging the k branches of the lattice onto the cavity spin 5, each last
spin S ... S, of these branches is assigned a full cavity field, with the same
Hamiltonian as for 3 in equation , H; = —l;iE} — 5T A;5;, — Bi(5;). We
have to calculate the Trace of the partition function

k

Zy = / (Hdszné(m—é’f)) exp [—ﬂz (— Ji5150 + )]

=1
k
- / dsgs(m —5°) [[ 2 , where
=1
Zi = /ds?@(m — 5% exp(— 6Hi‘ﬁi—>Ji§o+ﬁi)’ (2.6)

The task is to express equation in the form ~ e A" with H, from
equation and find self-consistent equations for fzo, Ag, and higher orders,
each depending on the fields before merging, ... ﬁk, Ap... A etc. as it
happens to be the case for Ising spins (where hg = Zle u(Ji, hi)). We
will now proceed in two ways. First, we will analyse the problem solely in
terms of the vector fields h and show that a phase transition occurs at finite
temperature. To do so, we will derive the cavity equation for fzo by the
approach, that Z, from equation produces the same expectation value
of 5o, (S0)e, as if this spin was only subject to the single field ﬁo. We remark
that this is the cavity expectation value and should not be mixed up with
the true magnetisation for which sj is subject to a true local field H,. This
computation was achieved in Ref. [67, 48] and was called the self-consistent
effective-field approach there. Second, we will solve the cavity equations by
taking the matrix term (§;” A;5;) along. This calculation is only possible in
the vicinity of the phase transition. We will see that the phase transition
temperature is not affected by this, and that the formulation in terms of the
vector fields h; is the first order approach to the full problem. Therefore it
should yield the correct behaviour of the m-component spin glass close to
the critical temperature.

2.1.1 Self-consistent effective-field approach

The self-consistent effective field approach assumes that there is a cavity field
ho, which effectively produces the same spin expectation value (8). as the
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2.1. CAVITY METHOD AND EFFECTIVE-FIELD APPROACH

cavity partition function , when the spin §j is solely subject to this field.
The calculation of both expectation values is done in appendix[A] It is based
on the saddle point approach where the large parameter is the number of
components m. There we see, that a description solely in terms of cavity
vector fields is not sufficient and why it is necessary to use the self-consistent
effective field approach.

From the appendix [A] the desired effective cavity field is

P Z 26Jh | @)

with 20 = 1 (1 + \/1 +4B82(J2 + % + %2)) The field depends on the
interaction bonds Jl, -, Jr between 5y and k of its neighbours and on the
cavity fields hl, hk onto these neighbours (not taking the interaction with
50 into account). Furthermore, it determines the distribution of effective
cavity fields in the functional fixpoint equation (compare to equation ({2.3)))

QUD=:EJ/Q(IIdmmC%ﬁﬁ>503—EM{LL{EJD, (2.8)

where ho({J;},{h;}) is the solution of equation (2.7). As in the Ising spin
glass case, the true local field Hj is obtained by taking all k£ 4+ 1 neighbours
in the sum of equation (2.7)) into account

k+1 -
- 28J;h;
HOZ; o (2.9)
The distribution of local fields then is Q;(H) = E; f( 15 dmh QB )) S(H -
S

Equation (2.7) is important for us for two reasons. On the one hand, the
expansion for small fields of it can be used to observe the phase transition by
finding the instability of the high temperature solution Q(k) = 8(h) of the
functional fixpoint equation ([2.8)). This has been achieved in Ref. [67] and we
repeat it for the sake of completeness in the following. On the other hand,
we will use it as a prescription to iterate the effective fields of a given Bethe
lattice numerically and obtain their precise values. Besides the emerging of
the phase transition, this numerical study will exhibit further insight into
the low temperature physics of the m-component spin glass in the following
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CHAPTER 2. PHASE TRANSITION

chapters, as, for instance, the number of necessary components to form a
stable replica symmetric configuration of effective fields and the breaking of
replica symmetry.

To find the critical temperature, we have to answer the question how the
distribution of effective fields Q(ﬁ) is related to the spin glass phase transi-
tion. As the spin glass phase transition is indicated by the Edwards-Anderson
order parameter qp4 ~ E;(5;)?, which is zero above T, and increases below
(while E;(S;) remains zero even in the low temperature phase), we can link
the order parameter to the variance of the distribution of effective fields,
(Ah)? = [h:z] — ([h])? (the angular brackets denote the average with respect
to the effective field distribution), with (5;) ~ H; and (5;), ~ h; from equa-
tion (A ) (and from that E;(5;*) ~ [[17,2] and E;(5%), ~ [h:QD As already
pointed out, the distribution of the local fields H; is fully determined, once
the distribution of cavity fields is found. Therefore, (Ah)? is an appropriate
order parameter with a single caveat due to the additional rotational degrees
of freedom, as will be described in more detail below. Equation further
says that the fields point into fixed directions in the low temperature phase
for a given set of bonds J;;, and the spins fluctuate around this preferred
direction. Due to the fact, that the distribution of effective fields is aver-
aged over the disorder, the first momentum, [El], will be zero, and we find
the connection qga ~ [h?] = [ d™h h*Q(h). However, this criterion for the
phase transition is not sufficient for vector spin glasses, due to the property
of being invariant under rotations. In this case it is possible to find a stable
variance (Ah)? but with a rotating configuration of fields. We will discuss
this problem in the following sections.

To calculate [HQ], we expand equation (2.7 in first order for small fields,
as should be valid close to the critical temperature and sufficient to observe
the phase transition. With z® = 1(1 + /1 +432J?) (the solution of z{ for
small fields), the functional fixpoint equation becomes

Q(h) = E, / (H dmhiQ(ﬁi)) 5(h— Z Qifof) (2.10)

=1

The distribution of true local fields Ql(ﬁ) =E; [ (Hfill dmth(ﬁz)> (5(5 —
Sk M) is closely related to the distribution of effective fields (2.10)), as

i=1 4200
its variance will only be nonzero, if the variance of the distribution of effective
fields is. To check whether the high temperature solution of equation ,
5(};), is stable for a certain temperature, we regard Q(ﬁl) to be Gaussian
prepared with a small variance €2, i.e. we introduce a small perturbation
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Table 2.1: Critical temperature from the self-consistent effective field ap-
proach

] kE+1 \ T. Gaussian Bonds \ T. +£J-model ‘

3 0.28 1/2
4 0.4 2/3
6 0.61 /5
8 0.7 6/7
12 0.79 10/11

to the d-solution. With it, we calculate one iteration step via and
compare the resulting variance of Q(E), ¢?, to the initial one, 2. As the
resulting variance depends on the temperature, we explicitly find the critical
temperature, above which the variance diminishes, indicating the stability
of the high temperature solution, and below which it increases, indicating
the low temperature phase with a nonzero variance of the distribution. This
line of argumentation is restricted to the statistical properties of the disorder
averaged distribution of effective fields. Later on we will see, that it is possible
to analyse the phase transition of the m-component spin glass on a single
Bethe lattice by calculating the special non-disorder averaged configuration
of effective fields on this lattice.

For small fields, the calculation of an iteration step of the distribution of
effective fields involves only Gaussian integrals and we find

2 Jt
6/ :4ﬂ2€2k/djl P(J1>m (211)
Equating e and €, we obtain the critical temperature for the +.J-model
1
T.=J(1 - E) (2.12)

In the limit £ — oo, this agrees with the critical temperature of the fully
connected model T, = J [4I]. For a Gaussian distribution of bonds, the
inverse critical temperature is given by the solution of the integral equation

27972
dx IL'2€ z?/2J

V2T (1+ /1 + 45222 k)2

which also yields T, = J in the limit ¥ — oo. Equation (2.13) can be
evaluated numerically. The results of the critical temperature for finite con-
nectivities can be found in table 2.1l The reader should have in mind that

1 =432 (2.13)
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for

we have used the expansion of the cavity equation for fzo = Zle ﬂjsz
small fields, for which 2¢ — 2% in this equation becomes independent of the
cavity fields. This approach is valid above and at the critical temperature,
below which the components of the cavity fields adopt non-zero values and
the original cavity equation is more appropriate to describe the physics of
the system (though it is analytically much harder to handle).

Having calculated the phase transition of the m-component spin glass on
the Bethe lattice with the self-consistent effective field approach, we have to
ask whether the extension towards higher orders of the full formulation of the
cavity method for this model in equation (2.5) (as ﬁ,é’, — ﬁz§; + 5T A8 +
B;(8;)) confirms our findings. Therefore, we have to calculate the cavity
partition function, equation (2.6), for the full Hamiltonian in the following
section.

2.1.2 Analysis of the full problem

In this section we review the calculations involving higher order terms of
Ref. [48] and described in equation (2.5), and see, that the transition tem-
perature is solely determined by the formulation in terms of the vector fields
ﬁi from the previous section. The general procedure of computing the crit-
ical temperature is the same here, but in detail it needs to be extended
perturbatively. We use the Hamiltonian from equation and calculate
the partition functions Z; to

100+C d ~
Zi= [ 52 [ e {8+ 5T+ B+ m - 5}

—100+cC 27

icote g, B [ 2 -1 m
= —expi mz+ hT (— — Ai) h; — ln det (— — A, ) —Innw
/—ioo—i—c 27 { ﬁ B 2

X exp {(BZ-)Z» - 1(<B§>i — (B + - - } . (2.14)

2

The field h subsmtutes The angular brackets (-); denote the average with

respect to the weight exp{ﬂ(his, ZT(B — A;)S;)} and the term Z - A; is
a short hand notation for the matrix expression %]l — A;. Similar to the
previous section, the remaining integration over z will be executed by saddle
point methods. The saddle point equation for z is

L (2 72:’/ 1 z -1 1 O(B;);
1—1(%) (B_AZ) hi+2mﬁTr(B—Al) - —=7, +oeen
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It is possible to calculate (B;); by saddle point methods. However, our con-
cern is the approach close to T., where B;(S;) is very small and can be ne-
glected. A perturbative calculation in second order of equation ([2.15]) reveals
the cavity equations for EO and Ay. This is achieved by attaching a book-
keeping factor A\ to i_iz and ﬁo and a factor A\? to the matrices A; and A,.
As in the previous section, the cavity equations are found by calculating the
spin expectation value (5p). from both the cavity partition function before
merging, equation (2.6), and a partition function after merging (which is,
in terms of hy and A, TreﬁﬁogOJ“ﬁsBTAogO). To do so, we use the limit of the

saddle point z) for h; — 0, 200, Up to second order in A we find

k -
r BJih;
ho=2. 227" (2.16)
=1 1
k
ﬁ2J2 63J2 . .
o= e : hi@h; |, 2.17
’ 2; (4(2?0)2 Am(29)2\/T + 4522 (2.17)

where the symbol ® denotes the tensor product. In first order (equation (2.16))
we reproduce the result from above, the small field expansion in first order of
equation . In second order (equation (2.17))), there is an explicit depen-
dence of Ay (after merging) on the effective fields h; before merging. We note
that these equations are still of a perturbative character. Up to second or-
der, we do not find self-consistency of the cavity equations, which would have
meant to find the cavity partition function of the form Trg,e® % +85%" 4% The
cavity equations should become self-consistent for higher orders, probably a
description of the cavity fields to infinite order would be necessary.

To find the critical temperature up to second order, we have to analyze
the common distribution Q(A, ﬁ), instead of Q(l_i) in the previous section

Q(A,h) = EJ/ (ﬁ dmxmAiQ(Ai>dmhiQ(ﬁi)>

i=1

0(h = ho({1:}, {hi}))6(A — Ag({ 1.} {hi}, {A:})), (2.18)

where ho({J;}, {h:}) and Ag({J;}, {h;}, {A;}) are the solutions of equation (2.16),
resp. equation . In order to find the instability of the trivial high tem-
perature solution solely emerging from the matrices, we compute one itera-
tion step of Qa(A4) = E; [ ([T, d™™A; Q(4:)) 6(A — Ao({Ji}, {hi}, {A:})),
similar to equation . This is not the true distribution of matrices,
as it should depend on the vector fields ; (from which follows Q(A4) =
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[ dhrQ(A, 1)), but exhibits the transition temperature T4 in case the ma-
trices would not depend on the vector fields. If TZ is higher than T,, there
would be a second phase transition indicated by non-zero values of the matri-
ces A;, but if it is lower, the transition of the effective fields will determine the
transition of the matrices and probably of all higher orders. This corresponds
to a single, common critical temperature. The calculation is similar to the
one of the previous section. The distribution of the entries of the cavity ma-
trices before the iteration step, A?ﬁ is assumed to be Gaussian with a small
variance €4. After the iteration step, the variance of the resulting distribu-
tion is €/; and depends on the temperature. This yields the instability of the
high temperature solution, which is the §-function around zero, at a critical

temperature T# = {‘/LE( 1— \/LE) This temperature is lower than 7. calculated

solely from the cavity equation of the vector fields. As the instability of the
matrix cavity equation is bound to the instability of the vector field cavity
equation, there is a common transition temperature for the matrices A; and
the vector fields h;. This is physically sensible and we expect this property
to hold for all higher orders, if they were included in this calculation.

As the full formulation of this problem turns out to be necessary in order
to describe the self-consistency of the cavity method for the whole low tem-
perature phase, we have to regard the self-consistent effective field approach
as the truncated model of this problem. It is correct in the vicinity of the
phase transition and should yield the properties of the low temperature phase
at least qualitatively. It therefore serves as the basis of the following sections
of this chapter.

2.2 Finite component numbers

As equation (2.7)) was derived using a saddle point approach, it only holds for
m — o0o. To analyse the problem for large, but finite component numbers, we
have to introduce corrections around this saddle point. This is the starting
point for investigating the breaking of replica symmetry, which we assume to
happen for finite component numbers, as it does in the SK model, see Ref.
[41]. We will study this issue in chapter[d] Here we will show how to introduce
corrections for finite component numbers for the implicit equation ([2.7). To
this end, we will implement these corrections to the saddle point in a power
series in % and take the first and second order corrections along. This changes
equation and shifts the critical temperature. With it, we have two
equations at hand to study the phase transition numerically in the next
sections and chapters, the one for m — oo and the one for finite m.

The saddle point method for m — oo was used to solve the z-integration
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in equation (|A.3). The technical details and how to introduce corrections to
the saddle point and expand them in a power series in % are described as
Laplace’s method in Ref. [68]. There, the function ¢(z) in the exponent of the
integrand of the following integral which shall be evaluated by saddle point
methods, is Taylor expanded around the saddle point at zp, as (where for
instance ¢”(zp) is the second derivative of g(z) with respect to z, evaluated

at the value z)

/dzemg<z> _ /dz exp {m <g(zo) g/ (20)(z ) + 50" (z = 20) 4+ ) } |
(2.19)

After expanding the exponential expm[%%g(zo)(z —20)* + i%g(zo)(z -
20)* + ] (not explicitly shown in equation (2.19))) and solving Gaussian
integrals for /mz, we sort the resulting terms according to their orders in a
power series in % The general result up to second order is

1
—1In [ dze™®) = g(2) + — (= In(==) — In(yg

1(1 2 "
m m\2 m

(20)))

g s ()

m?\8(g"(20))* 24 (9"(20))°
We now turn to the problem of introducing finite component numbers in the
self-consistent effective field approach. To this end, we apply the technique
from above to the partition function Z of the spin 5, in a single cavity field
ﬁo in equation and the following calculation of the expectation value
<§0>c' We find

. _ Bho

(S0)c = 220 (20), (2.21)
with f(z) = 1+ %(44;_—12)2 _ #864:55—1120§?24;E:2§:)z3—107x2_8$' For the cavity
partition function in equation (A.6)), corrections up to # are introduced in

the partition functions Z;, analoguously to above. For the following saddle
point integration for s, we do not need corrections to the saddle point in %,

. . . - . fdydsan goenLg(so)
as we precisely find the spin expectation value (5p). = T dydsg oo to be

the saddle point. This expectation value is the quantity of interest. Instead
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of equation (A.9) and equation (A.8)) we find

1
A .
M B0
22(si)e = 3 0 (), 2.23

We repeat the manipulations leading to the implicit equation for the effective
field without corrections to the saddle points (2.7)), and obtain

k —
- 229 (50)2 BJihi .,
o = 2o (11— 2220 ) S0 D), (2:24)
el ) &
with (8p). and the function f(x) from equation (2.21)). Analoguously to the
previous sections, the true local fields H; are calculated by using k+1 effective
fields instead of k in equation ([2.24])

Hy = fiii <1 2) > ﬁjh

A first observation after introducing corrections to the saddle point method
in equation is a shift of the critical temperature. To see this, we
compute the corresponding higher orders of the inverse critical temperature
perturbatively as 5. = 39 + %Aﬁcl + #Aﬁf (where (3 is the solution of
equation (2. 11) The critical temperature T, in a power series in % is found
by expandlng -, with 79 = ﬁl = 1 — £. The calculation of 8! and 3?

(2.25)

k
follows the derlvatlon of the phase transition in the prev1ous section. For

the +J-model we have the explicit solution in zeroth order, 37, from equa-

tion (2.12)). The first order correction is found as AS! = (k+’(“k+1), which
yields AT! = Ek ). We see that T? > |T}| for all connectivities > 1. For

k = 1, the transition temperature remains zero, and in the limit £ — oo,

AT! = 0. The second order correction can be calculated to A3? = ZUCZ((;}F—]I;M,

which leads to AT? = —%ﬁ%. Again, in the fully connected model
(k — o00) and for k = 1 there is no shift of the critical temperature, which

probably holds for all higher orders.

2.3 Configurations of effective fields

It is not possible to calculate the distribution of effective fields analytically.
Therefore we are restricted to analyze it numerically. The cavity equa-
tions (2.7)) (saddle point approach) and ([2.24)) (with corrections to the saddle
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point up to #) are appropriate to simulate the effective fields ﬁ, on a given
Bethe lattice of connectivity k& + 1. For this purpose we calculate each of
the N(k + 1) effective fields as the solution of equation , resp. equa-
tion (2.24)), and iterate this procedure until we reach a steady state, i.e. until
convergence to a stable configuration. Replica symmetry corresponds to a
single stable state the configuration of fields can be in. Hence, the iteration
will converge to this state, as long as the spin glass is replica symmetric,
which we expect to be the case for large m, in correspondence to the general-
ized Bose-Einstein condensation at 7' = 0 discussed in the introduction. (For
now, this is all we can say about the large-m limit for finite temperatures.
The dependence of replica symmetry on the number of components will be
discussed in chapter . After convergence we use the resulting values of
the effective cavity fields to calculate the true local fields ﬁi, according to
equation , resp. equation ([2.25). Due to thermal fluctuations at finite
temperatures each spin s; fluctuates around its mean local field H;. There-
fore, these fields determine the mean direction the spins point and we are
able to investigate the space these fields span. Due to the invariance of ro-
tation of vector spin glasses, each local field points in a different direction
for different starting configurations of the spins and for different realisations
of the Bethe lattice. This fact makes the algorithm we use the method of
choice to observe the space of local fields of a single sample. We note that
the basic idea of the algorithm is indeed different to a usual population dy-
namics algorithm [20]. There, no specific single lattice is selected, but one
assumes to be in the thermodynamic limit where the distribution of effective
fields is self-averaging. Here, we regard a finite number of spins on a single
specific Bethe lattice and no disorder averaging takes place. Therefore, the
results we will obtain (as for instance, the critical temperature and the space
the local fields span) depend on the specific choice of disorder, i.e. on the
selected Bethe lattice. It should be mentioned that the phase transition we
find is indeed sharp, though the number of spins, N, is finite. The reason
is that the number of components (though finite as well) corresponds to the
limit m — oo. This is a characteristic of the large-m limit. Due to that, the
number of degrees of freedom is infinite and the phase transition is sharp.
The algorithm is sketched as follows and described in detail below:

1. Build a random Bethe lattice
2. Initialise the effective cavity fields with random values

3. Find new effective cavity fields ﬁij for the whole lattice as the solution
of the implicit equation (2.7)), resp. (2.24))
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4. Repeat the calculation of 3., until convergence to a stable state (crite-
rion: convergence of the variance of the configuration)

5. Calculate the true local fields ﬁl

The algorithm starts by choosing randomly a Bethe lattice configuration.
This is done by selecting subsequently two different spins at random from a
list of size N(k+ 1) where k + 1 entries correspond to the index of each spin
5; resp.. These two spins are connected by a link J;;, taken from a Gaussian
distribution. The chosen entries are deleted from the list afterwards. We do
not allow to connect two spins twice to each other. When the list is empty, we
have built a single random lattice with a fixed number of nearest neighbours,
equal to k+ 1. With this given conﬁguratlon we calculate the effective fields
hU, according to the equations ({2.7)) or . The notation hw denotes the
effective field onto the spin s;, takmg the hnks to all neighbouring spins into
account except the link J;; to the spin 5;. At first, we generate a random
configuration of effective fields. Then, we iterate the implicit equations sub-
sequently for each of the N(k + 1) effective fields ﬁij, keeping all other fields
h; fixed during the iteration. The iteration converges to a certain value of
l_iz-j. In that way, we renew each of the fields. After a single run we calculate

mean, h = ﬁ Zivzl Z?“ fzij (Np is the number of bonds, which is —N(’;H)),

and variance, (Ah)? = 53—~ SN Zfﬂ(ﬁij — h)?, of the new configuration
of effective fields and check for convergence, which is assumed to be when
the new variance is sufficiently close to the old variance. If convergence is
reached, we calculate the true local fields H; from equation , resp. equa-
tion (2.25)). The conjecture of finding a stable state when the absolute values
of mean and variance of the configuration take stable values while iterating,
is adapted from the analytic criterion of finding a stable distribution of fields,
see equation ({2.8]). However, finding a stable mean and variance of a config-
uration of fields is not a sufficient criterion for a stable configuration itself,
due to the invariance of the field configuration under rotation. It includes
the possibility of a configuration which rotates in each single iteration step,
but with stable absolute values of mean and variance.

In the forthcoming chapters we will regard different aspects of the config-
urations of effective fields. Here we will show that the algorithm indeed finds
a phase transition in the large-m limit (i.e. for large enough m to be replica
symmetric, as we will see in chapter . As described in section the spin
glass phase transition is indicated by a nonzero variance in the low temper-
ature phase, while the mean remains zero, i.e. the fields become frozen into
directions, which are fixed in time, but still random in space according to the
configuration of disorder. The situation is different if the phase transition is
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described by a rotating configuration of fields while iterating. In that case
the fields are not frozen in time, though the variance is non-zero as well, such
that we do not see any difference to a usual spin glass phase transition at first
glance. We will analyze this possibility in the following chapter. With the
criterion of a non-zero variance indicating the phase transition, we find a crit-
ical temperature close to the one calculated in table 2.1 Though the system
is finite, the transition for a given configuration of bonds is sharp, in that the

—

high temperature solution, §(h;), becomes unstable at a temperature, which
depends on the configuration of bonds. In the figures - 2.9, we find a
transition for various system sizes and connectivities, including corrections
in # The inset in each of the figures - is a double logarithmic plot
of the order parameter against the difference between the inverse tempera-
ture and the inverse critical temperature, in order to evaluate critical scaling.
The label in the inset plots gives the fitted value of the critical exponent 3" of
qea ~ (AR)? ~ (B—B.)%. We find that the order parameter probably scales
as qpa ~ (Ah)? ~ (3 — .)!, with the critical exponent 3’ corresponding to
the mean field exponent of the Ising universality class [53].

The problem of the true nature of the observed transition will be discussed
in the following chapters. For the time being, we state that we do find a
phase transition in these models at a nonzero temperature (keeping in mind
the pitfall of a rotating configuration).
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Figure 2.3: Results for 96 spins with 8 components on a Bethe lattice with
connectivity equal to eight. The order parameter is plotted against the tem-
perature for four different Bethe lattices. When (Ah)? becomes larger than
zero, the phase transition happens.
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Figure 2.4: Critical scaling of the order parameter for 96 spins with 8 com-
ponents on a Bethe lattice with connectivity equal to eight. The critical
exponent is close to the 1, the exponent of the Ising universality class.
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Figure 2.5: Phase transition for 256 spins with 8 components on four different
Bethe lattices with connectivity equal to 4.
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Figure 2.6: Critical scaling of the order parameter for 256 spins with 8 com-
ponents on a Bethe lattice with connectivity equal 4. The critical exponent
is comparable to that of the Ising universality class.
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Figure 2.7: Phase transition for 256 spins with 8 components on four different
Bethe lattices with connectivity equal to 8.
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Figure 2.8: Critical scaling of the order parameter for 256 spins with 8 com-
ponents on a Bethe lattice with connectivity equal 8. The critical exponent
is close to 1.
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Figure 2.9: Phase transition for 512 spins with 4 components on four different
Bethe lattices with connectivity equal to 6.
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Figure 2.10: Critical scaling of the order parameter for 512 spins with 4 com-
ponents on a Bethe lattice with connectivity equal 6. The critical exponent
is close to 1.

2.4 Parallel Tempering Monte Carlo algorithm

The parallel tempering Monte Carlo method has become a standard tech-
nique in statistical physics for analyzing disordered systems with a compli-
cated free energy landscape such as spin glasses. It circumvents equilibrating
a single system solely at one low temperature where it takes very long times
to pass into different valleys of the free energy. Above the critical tempera-
ture the free energy barriers which separate the different valleys are not as
hard to overcome as in the low temperature phase and the spin glass equili-
brates fast. Thermal fluctuations dominate this temperature range and allow
the spin glass to pass through the whole phase space. In other words, the
spin glass is ergodic. On the other hand, below the critical temperature, the
free energy landscape exhibits barriers, which are hard to overcome (in the
thermodynamic limit of the SK-model they are infinitely high), such that
the spin glass is easily trapped in a minimum (valley) in between two such
energy barriers. A broken replica symmetry produces such a multi-valley
structure, for which we find many stable equilibrium states and the phase
space is broken into different ergodic regions. However, even for a replica
symmetric system below 7, (which we expect the m-component spin glass in
the large-m limit to be), the free energy landscape is complicated enough to
impede the spin glass to pass through the whole phase space. In this section
we use the parallel tempering Monte Carlo algorithm to calculate spin config-
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urations with low energy of two different copies S; and S of a m-component
spin glass with the same set of bonds, below the critical temperature. From
each pair of these configurations we calculate the link overlap q; and analyze
the probability distribution of ¢;. In addition we will see that an appropri-
ate order parameter can be derived by a slight extension of the link overlap.
This method is capable of exhibiting the phase transition at T, and it does
reveal the breaking of replica symmetry below 7., which will be the subject
of chapter [4]

The parallel tempering Monte Carlo algorithm takes advantage of the
ergodicity above T, in order to finally visit different valleys with the cor-
rect Boltzmann weight at temperatures below the critical temperature. In
principle it consists of switching spin configurations of systems at different
temperatures in such a way that every single system can overcome the free
energy barriers, which separate the phase space, at high temperatures and
then migrate down to lower temperatures and visit other valleys. To this
end one takes several spin systems with the same set of bonds, here N7 non-
interacting copies of the same spin glass, which are simulated at different
temperatures. Therefore each of the two copies S; and S5 consists itself of
a system of such Ny copies of the same spin glass at different temperatures.
Furthermore, due to averaging over the disorder, both copies S; and Sy are
simulated with a certain number of different configurations of bonds. The
copies 1,---, Ny are distributed over a set of temperatures 77, ...,Ty,, of
which the lowest temperature 77 is the temperature of interest and the high-
est temperature T, is sufficiently higher than the critical temperature. At
high temperatures the spin system should be free to pass through the whole
phase space and to adopt those states which it wouldn’t have been able to
reach from its current configuration of spins at the lowest temperature within
an acceptable simulation time due to the free energy barriers. Though there
may be quite many copies necessary to run it properly, the parallel tem-
pering Monte Carlo algorithm speeds up simulations compared to running
a simple Monte Carlo simulation of a single copy at 7T, by passing through
the phase space of every single copy 1, - -- , Ny and switching copies of neigh-
bouring temperatures with an appropriate probability. Passing through the
phase space is accomplished by allowing for a certain number of independent
Monte Carlo moves of every single copy. A Monte Carlo move of a single
copy chooses one of the N spins of this copy and rotates this spin randomly
into a new direction (keeping its length equal to \/m). Denoting the initial
configuration of spins with {s;} and the final configuration, in which we sub-
stitute the original spin in favour of the rotated spin, with {5}, we find two
different values of the energy, the initial energy E; = E({5;}) and the final
energy Ey = E({5;}) (the energy is calculated according to — >y Ji;5:5).
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To decide whether the copy keeps the old configuration or takes the new con-
figuration including the rotated spin instead of the original one, we use the
Metropolis probability of accepting the new configuration P({s;} — {ss})

1 otherwise

P({si} = {ss}) = { (2.26)

We see that if rotating the spin lowers the energy, ie. Ey — E; < 0, the
move is accepted with probability one. If it does not lower the energy, it is
accepted according to the Boltzmann weight both configurations have. This
probability satisfies the detailed balance condition

QiP(i — f) = Qs P(f — 1), (2.27)

in that the transition probability of one state to the other, P(i — f) =
P({s;} — {ss}), times the probability of being in the original state ); (which
is proprotional to its Boltzmann weight exp(—3E;)) is equal to the prob-
ability of being in the other state, Q; o exp(—FEy), times the transition
probability to the first state P(f — i) = P({sy} — {si}). In the simulation,
we repeat the attempt to lower the energy of every single copy (i.e. to let
the system equilibrate at each temperature) N times. In such a way, we let
the copy find a new configuration, which increases the probability of passing
to other valleys of the free energy at lower temperatures. To this end, we
have to allow for swapping the temperatures of two copies at neighbouring
temperatures T;.1 and T; with T; < T}y, resp. to switch the spin config-
urations. This is achieved by accepting such a swap with the probability
Pr(T; < Ti4q)

exp(—ABAE)  if AGAE >0

| L (229)
1 otherwise

Pr(Ty — Tiy) = {

where AE = E({3r,,}) — E({Sr,}) is the energy difference between both
configurations and Af = % — ﬁ > 0 is the difference of the inverse tem-
peratures. As above, the swap is accepted if the copy at T;,; produces a
lower energy than the copy at T;. Otherwise it is accepted according to the
Boltzmann weight of both configurations. This acceptance rate satisfies the
detailed balance condition as well. We see that the basic idea of a swap move
is that the spin configuration at the higher temperature 7;,; takes advantage
of its less obstructive phase space to lower its energy in such a way, that the
spin configuration of this low energy has a significant Boltzmann weight at

T;.
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By trying subsequently to swap the copies of each of two neighbouring
temperatures, according to the probability Pr(T; < T;.1), each copy per-
forms a random walk in the given temperature range. If, for instance, a copy
is trapped at a certain valley at the lowest temperature, later on it will have
been swapped to the highest temperature, where it is able to overcome the
energy barriers easily and visit other valleys once it has been swapped to
the lowest energy again. The copy at the highest temperature will migrate
down to the lowest temperature if its spin configuration produces a suffi-
ciently small energy (to be precise, every single system has the chance to
lower its energy at its new temperature by a number of Monte Carlo moves
as explained above. However, at lower temperatures it will not be able to
pass through the whole phase space). If a copy visits the lowest temperature
after having visited the highest one, we expect it to produce an indepen-
dent configuration of spins with a low free energy at 7;. The number of
parallel tempering Monte Carlo moves (swap trials) necessary for a copy to
visit the lowest temperature twice while visiting the highest temperature in
between is called the roundtrip time. We will measure this quantity in the
starting phase of the simulations in order to store independent sets of spin
configurations repeatedly after a number of parallel tempering Monte Carlo
moves corresponding to the roundtrip time. Finally, we will be interested in
certain properties of the link overlap distribution P(q}?), of the link overlap
q° = NLB Z<U><§i§j>1<§i§j>2 between the spin configurations with the same
temperature of two copies S; and Ss of the same spin glass with identical sets
of bonds (where the index at the brackets (-) denotes the thermal average
with respect to only one of the two copies 1 and 2 and Np is the number of
nearest neighbours, here W) We see that the link overlap quantifies cor-
relations between the two copies S7 and S5. Therefore we have to simulate
these two copies, each with the same set of temperatures, simultaneously
but independently and find the distribution P(q}?) by averaging over the
results of the simulation. The phase transition itself can not be observed
from the link overlap distribution, as the link overlap takes only the corre-
lations between neighbouring spins into account. However, the spin glass
phase transition is indicated by long range order. That is why we have to
take the overlap of each pair of spins into account and calculate the quantity
P = m >:;(8i85)1(8i8;)2, which is the mean correlation between each
two of the N spins.

In Ref. [47], the authors give an argument at 7' = 0 why this quantity must
vanish as a power law of the system size, as N7# with a connectivity depen-
dent exponent ,,,. Their line of argumentation is based on the phenomenon
that the ground state spins use only components up to an upper bound, my,
which scales with the system size as N#m [45] 46], [47, [48]. The phenomenon
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of a reduced component number can therefore only be observed for finite
system sizes. If the number of available components m is larger than mg, we
call this the large-m limit. The large-m limit corresponds to taking the limit
m — oo before the thermodynamic limit (which restores replica symmetry
according to Ref. [41]). It is due to this correspondence that it is assumed
that the m-component spin glass is replica symmetric in the large-m limit
whereas replica symmetry is broken for component numbers smaller than my
(we will discuss this problem in chapter . The phenomenon of a reduced
component number is called the generalized Bose-Einstein condensation [40]
and we discuss it at 7' = 0 and at finite temperatures in chapter For
now, we simply assume that this phenomenon is not restricted to the ground
state, but holds in the whole low temperature phase. The order parameter ¢?

can be expressed as the average overlap [($%>1<£§])Q] . In case of replica

symmetry we expect the equilibrium state for a given teaf\lllperature to be the
same for both copies 1 and 2 (up to a global rotation of all spins of each
copy). Therefore the angle © between §; and s; should be the same in both
copies. Furthermore, cos © is the average of the (normalized) z-component
[s:]av Of the spin §;, if we take the z-axis along §; for both copies. Then we
can express ¢* as ¢° = [cos® ., = Zz[s2]ay. Using that the average [s7]ay
is approximately the same for all s;r)niﬁ components mg the spins use in the
mio%[fa]“ = mio ~ N~Fm (where we have
used that the spins are normalized to \/m). The authors in Ref. [47] call this
observation ”quasi-long-range order” as the correlations decay with a power
of the system size, resp. with a power of distance for finitely connected lat-
tices. This property is reminiscent of the Kosterlitz-Thouless transition of
the two dimensional XY ferromagnet, where there is no long range order but
a vanishing order parameter below the critical temperature [49, 53]. How-
ever, scaling the parameter ¢*> with m (which is the definition of the order
parameter in Ref. [41]) gives a finite order parameter for m > mg, as mq is
at most equal to m. Therefore the phase transition is not of the Kosterlitz-
Thouless type in which there is no long range order, though both phenomena
might have the same underlying explanation, Goldstone modes [53], which
to find is beyond the scope of this thesis. However, in the following chapter
we are going to discuss this relation in more detail.

There are two other settings to be made in the starting phase of the
algorithm. On the one hand, generally in Monte Carlo simulations a system
needs some time to equilibrate, i.e. to be in thermal equilibrium, when
starting from a random configuration. We take care of this issue by a special
test for equilibration. On the other hand, we have to choose an appropriate

number of temperatures with an appropriate distance between them to speed

large-m limit, one finds ¢® ~
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up simulations. To achieve this, we have implemented a feedback algorithm,
which chooses the distance between two temperatures in such a way to make
the transition rate between them to be close to %, which seems a reasonable
value to allow many transitions from the highest to the lowest temperature
and vice versa.

In thermal equilibrium the spin configurations of both copies S; and S,
satisfy the relation

2
12

Eyqp — Eiqs = WTU (2.29)
at each temperature. It is valid for a Gaussian distribution of bonds and in-
volves the average energy per spin U = —F; > (i) J;;(5:5;), the link overlap
A = 7z 2y (5i8i)1(5i5))2 and the overlap ¢, = 7=, (55;)% Each of
the sums is taken over all pairs of nearest neighbours ((ij)) and (5;5;) denotes
the thermal average. The relation (2.29)) is derived by integrating by parts
the expression for the average energy with respect to the bonds J;;, which
are taken to be independent Gaussian random variables [34]. Measuring each
of those quantities at 77 during the equilibration phase makes the left and
right hand side of equation approach the same value. Therefore, we
have to simulate a certain number of different lattices (different configura-
tions of disorder of S; and S3) in order to average over the disorder (F) in
equation . In the beginning the right hand side is close to zero, as we
initialize the spins in random directions. However, the left hand side will be
too low in the beginning, as the link overlap between both copies S; and S5
at the lowest temperature will be small due to the random initialisation and
the overlap ¢s; depends less on the Monte Carlo moves (for the Ising case it
is simply a constant, equal to one. In case of m-component vector spins, it
can be shown that §;3; of a random initial spin configuration is equal to v/m
on average. To see this, we regard the initial random configuration of spins.
As each spin has a fixed length equal to y/m, it has on average an entry of
one in each single component. If we transform both spins §; and §; into a
basis in which §; is orientated along the z-axis, the spin §; has an entry of
one along this axis on average. With |5;| = \/m we find (5;5;)? &~ m, which
leads to gs & m). We expect the system to be in thermal equilibrium when
both the right and left hand side come sufficiently close to each other and
fluctuations are small.

The feedback algorithm starts by distributing the Ny temperatures uni-
formly over the temperature range. In between two tests for equilibration of
the whole spin glass system we need a sufficiently large number of parallel
tempering Monte Carlo moves for proper averaging. This allows for mea-
suring the transisition rate between each of two neighbouring temperatures,
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accepted swap trials (i+1—1
total swap trials (i+1—1)

within such single equilibration interval (A swap trial for 7; is defined as
the trial to switch it with the higher temperature T;,1). We suppose that a
transition rate of p; ~ % allows for an appropriate migration from the lowest
to the highest temperature and vice versa. Therefore, we adjust the inverse
temperatures after each equilibration test according to

as p; = ) for every temperature 7; = T1,..., Ty — 1

BV = Bioy + 2pia (B0 — B2, (2.30)
fori =2,..., N—1, while g, = Til and OBy = % remain unchanged. The feed-

back algorithm includes the transition rate found during the previous
equilibration run. After repeatedly adjusting the temperatures, we reach a
steady state in which the temperatures vary only little. It is crucial to choose
the number of temperatures in such a way as to cover the temperature range
properly. A general result is that the distance between two temperatures
0T scales with the inverse square root of the number of degrees of freedom,
i.e. in the case of m-component vector spins as 07" ~ \/#—m [34]. We see
that many more temperatures are needed for vector spin glasses than for
the Ising spin glass, as the number of necessary components in the large-m
limit scales with the system size, which limits the simulations to rather small
system sizes. Nevertheless, here we choose the number of temperatures such
that the transition rates between neighbouring temperatures come close to
% (according to equation ([2.30])) and that the transition rate py,_; from the
highest temperature to its neighbouring temperature is larger than % The
resulting set of temperatures enters the parallel tempering Monte Carlo al-
gorithm, which calculates independent configurations of spins that minimize
the energy at T.

After the equilibration phase in which we find a proper set of tempera-
tures, the algorithm measures the roundtrip time of each single system with
a different configuration of bonds and produces independent configurations
of spins of both copies S; and Sy at each temperature. The configurations
are assumed to be independent, as we wait for a number of parallel temper-
ing Monte Carlo moves corresponding to the measured roundtrip time before
storing the following configuration of spins. From each two configurations
of S; and Sy at each temperature and for each configuration of disorder, we
calculate the link overlap ¢i? and the order parameter ¢*>. We have simulated
systems from N = 48 up to N = 1024 (for m = 2) in the temperature range
of [0.5 : 1.5], and computed the overlaps at least 128 times. From the result-
ing data, we calculate histograms of the probability of observing a certain
link overlap P(qr), which includes the thermal and the disorder averaging
(i.e. averaging over the independent sets of spins and over all configurations
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Figure 2.11: Histogram of the probability distribution of the link overlap for
the four lowest temperatures simulated.

of disorder). These are presented in Figures - for 256 spins with 6
components on a Bethe lattice with a connectivity of 8. We show the his-
tograms for the four lowest and the four highest temperatures and for twelve
temperatures in between (in total we have simulated 29 temperatures for this
system size). Their properties are characteristic for the resulting histograms
of all other system sizes. At all temperatures they get peaked around a typ-
ical mean value [g] (which can be larger than one, due to not normalizing
qr, with respect to m). Further, from the bare shape of the histograms it is
not possible to deduce a phase transition, nor is it possible to deduce the
breaking of replica symmetry.

The reason that we do not see the phase transition is due to the finite
size of the system, as a sharp phase transition can only occur in the ther-
modynamic limit (resp. for an infinite number of degrees of freedom). In
finite systems the phase transition is smeared out. However, the quantity
¢ = m Zl ](§%>1(£§]>2 is an appropriate order parameter to observe
the phase transition by finite size scaling methods. It should scale as N7+
in the low temperature phase, where p,, ~ .377 for the Bethe lattice with a
connectivity of eight [48]. The scaling ansatz for ¢* depends on the system
size and the distance between the simulated temperature 7' and the critical

temperature 7., which we expect at about 0.7, see table [2.1l The scaling
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Figure 2.12: Histogram of the probability distribution of the link

four temperatures covering a range including 7.
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four temperatures above T..
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ansatz therefore is
¢ = N YF(T -T,)N"), (2.31)

where the scaling function F(x) scales as |z|" for # — —oo (i.e. for small T').
The scaling exponents therefore should satisfy the relation o — 54 = fip,.
If ¢*> depends on only the two quantities N and 7' — T, the data for different
N and T should collapse onto a single function, when choosing o/, 3’ and T,
appropriately. This means that the data should become independent of N in
the scaling plot. The phase transition is indicated by a fundamentally differ-
ent scaling of F(z) for x smaller, resp. larger than 0 (i.e. above and below
the critical temperature), which we suggest as F(z) — |z[V for £ — —o0
and a decay as F(x) — 27" above T, (for + — o). To investigate a larger
temperature range, we have extended the simulated range of temperatures in
the parallel tempering Monte Carlo simulations partially to [0.5 : 10.0], but
did not observe a different behaviour as for the original temperature range of
[0.5,1.5]. We indeed find critical finite size scaling for different components
numbers m from 2 to 6, see figures [2.16] [2.18] [2.20] and [2.22] The parameter
in these plots are o/ = 0.6, #/ = 0.2 and 7. = 0.65 and the data match
very well. To support these findings, we check whether the scaling exponents
satisfy the relation o/ — 'y = p,,, which should be true according to the
line of argumentation from Ref. [47] sketched above. To evaluate 7/ we have
plotted the data in the low temperature phase in a double logarithmic plot in
figures [2.17], 2.19] [2.21] and [2.23] and deduce a common estimate of 7/ ~ 1.1,
which leads to o — 3’y = 0.38, very close to p,, from Ref. [48]. Furthermore
we find v &~ 1.8 (data not shown). In total, this is a strong indication of
a phase transition at a critical temperature close (but slightly lower) to the
one indicated by the simulation of a configuration of effective fields in the
previous section (see figure . As we can resolve the problem of a van-
ishing order parameter ¢? by multiplying with m, we expect the transition
to have freezing in disorder below 7., even though the scaling property of
q*> ~ N~#m is reminiscent of a Kosterlitz-Thouless transition. The question
whether the m-component spin glass has a phase transition with the spins
freezing in time will be investigated in the following chapter.

In this section, the parallel tempering Monte Carlo algorithm has proved
to be a very useful technique for vector spin glasses on Bethe lattices as well.
We have been able to simulate spin systems in such a way to discover charac-
teristic properties of the probability distribution of the link overlap. On the
one hand, we have calculated histograms of the link overlap distribution. On
the other hand, we investigated in detail whether the spin glass phase tran-
sition can be observed and used finite size scaling to support the finding of
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Figure 2.16: Scaling plot of the order parameter ¢* for a connectivity of eight
and six components. See text for explanation.

a spin glass phase transition from sections and apparently slightly
below T, from table This further argument for a phase transition is very
important, as the transition from the investigations of the configurations of
effective cavity fields show some peculiar properties, as we will see in the
next chapter. For now, the most convincing argument is that both methods
almost coincide at the value of 7.

2.5 The Bethe lattice free energy

Generally, it is a worthwhile task to study the free energy of any given sys-
tem in statistical physics. Though there is no direct physical application of
the result of this section, it might be helpful for future studies of the m-
component spin glass on a Bethe lattice to have the calculation of the free
energy at hand.

The free energy on a Bethe lattice can be expressed in terms of the config-
uration of cavity fields [20]. In this section we present the calculation of the
free energy for the m-component spin glass, not averaged over the disorder,
but depending on a single configuration of effective fields, i.e. for a single set
of bonds.
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Figure 2.17: Double logarithmic scaling plot of ¢ in the low temperature
phase with £ + 1 = 8 and m = 6. The scaling function matches a scaling of
|lz|""with 4/ & 1.1 (additionally plotted).
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Figure 2.18: Scaling plot of ¢, with k +1 =8 and m = 4.
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Figure 2.19: Double logarithmic scaling plot of ¢? with k+1 = 8 and m = 4.
Additionally plotted: |z|*!
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Figure 2.20: Scaling plot of ¢, with k +1 =8 and m = 3.
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Figure 2.21: Double logarithmic scaling plot of ¢? with k+1 = 8 and m = 3.
Additionally plotted: |z|*!
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Figure 2.22: Scaling plot of ¢, with k +1 =8 and m = 2.
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Figure 2.23: Double logarithmic scaling plot of ¢ with k+1 = 8 and m = 2.
Additionally plotted: |z|!

Close to the critical temperature the self-consistent effective-field ap-
proach of the previous section is valid and we can define the free energy
in terms of these fields. Generally, the free energy consists of site contribu-
tions Fi(l) of a single spin and bond contributions Fi(f) of two neighbouring

spins
Pk
i (i4)
1 ) 1 2)
=—k <— —lnTrpZ( ) + (— —InTrp;; ), 2.32
(-3 > (- juml). e

. 1 k+1 - - 2 k - = k - =
with /)z(‘ )= exp(f Zjil 7;j0i) and pz(‘j) = exp(B ),y a0 + B 105 +
(J;;0:0;), where we have split the sums defining the cavity field h;; = Zf 2 T
and the local fields H; = f“ 77y into contributions 7j; from each sin-

gle neighbour &; (compare for instance to (2.7), where 7j; corresponds to

28Ji1hay )

). Equation ([2.32)) can be derived starting from the usual definition
il

F = —% In P i) T explicitly not averaging over the disorder. Thereby
the partition function of the single link between spin &; and &; can be writ-
ten in terms of the cavity fields h; (the field onto &; not taking into account
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Figure 2.24: Two neighbouring spins s; and s; connected by J;; and the
cavity fields onto them (indicated by the rectangular loops), not taking into
account Jj;.

the link J;;) and ﬁj (the field onto &; not taking into account the link J;;),
see figure [2.24] At first, we write the partition function as pﬁ). However,

summing over all links J;; of the lattice, we count the single contributions

7 in ﬁij = ZZE ’ 177 to every cavity field more than once, and we have to
subtract redundant terms. In fact, the term 7j; appears in the sum of all but
one of the k + 1 cavity fields fzit onto the spin &; (every single link J;; to one
of the neighbours ¢; can be removed to describe one of these fields; If the
link J;; is removed, the term 7j; does not contribute). Understanding further
that the sum of all cavity fields onto a single spin ;, ), hi = D 21 TTijs

is k times the true local field onto &, H;, the free energy resulting from
2) .
=2t %ln Trpgj) is

1 - -
— Bln Tr exp (ﬁ Z J”(ia"] + hzj(ifZ + hﬂ&])
(i)

1 - -
(i) i J

The factor % in the last two contributions prevents to count each single
link twice. As we find the usual expression for the free energy in the first
part of equation , these additional contributions to the free energy
have to be subtracted again. This is achieved by introducing £ times the
site contribution —k >, Fi(l) in equation (2.32)). Therefore, we have to cal-

culate Fi(l) = —%lnTrp,gl) = —%lnTreﬁﬁi&i and Fi(f) = —%lnTrp()

2
ij
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—% In TreAis%:05+6hidi+0h;%;  The first expression is
FY = / do™ §(m — &)l Hic (2.34)
_ /dz'emziélndetMJréfﬁ?M_lﬁi (2 35)
— : , .

where M is a m X m matrix with only diagonal entries equal to z;. The

saddle point equations are 1 — %Z{l — ﬁ—2< ﬁ) 2% = 0. We solve them

4 \ v/m 7
perturbatively with the ansatz z; = 20 + Az; and find 2{ = § and Az; = %
A site contribution then is
1 1.1 p*H?
—BFY =m(Z = ZInZ 5—1). (2.36)

The bond contribution is calculated from (substituting ﬁ, — Eij and

hy — hyi)

1] 7

F? = / dol"do™™ 6(m — G2)5(m — G2)eP it Ohisdit5hid;
L1 B2 T A1}
:/dzidzjem(zﬁ-zj) 5 Indet A+5-hT A 1h’ (237)

where the (2m) x (2m) matrix A has the entries 2z; and 2z; on the diagonal
of the two diagonal m x m blocks resp., and —3J;; on the diagonal of the
two m x m non-diagonal blocks

2z; —BJij

221' —ﬁJij

—ﬁJi]‘ 2Zj

It has the determinant det A = (z;z; — (£ ‘;” )?)™. The vector h is a list of size

2m with the entries of f_iij followed by the entries of ﬁﬂ The saddle point
equations for z; and z; are

BJij 1 7 \2
o BJij Jij\2) 2
27z — (50 A (22 — (52)?)
1 ; 2 %ﬁl+ lﬁl 2
o=1——z—,,+ﬁ—(2 s+ i) (2.39)
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Again we solve them perturbatively with the ansatz z; = 2 + Az; and z; =

0
1 %

29+Azj. As the equations in zeroth order are same, 0 = 1 — 2 w0 7T an
(et} 2
1 ) — U R |
0=1- Em, we find 2z = z? =20= 7+ 74/1 —|—4ﬁ2Ji2j. The reduced

%)2 —

(m = 1) determinant of A in zeroth order simplifies to det A = 2§ — (=5

20
>
In first order, the saddle point equations are

Az; 2 ﬁJijﬁ‘z’ Ez ’
0= —ﬁ+2(Azi+Azj)+ﬁ—( 2 tz[) )
20 m 25
0=— Z+2(Azi+Azj)+ﬁ—(2 JQZOJ). (2.40)
20 m 25
We find the solution
e B, .
(42[2) — Zo)AZi = _E<hl2] (2(2) + (71)2) + ﬁZoJijhﬂhij>
422 Ay = L (2 2 4 (Bluye Jiihiih 2.41
(425 — 20) A2 = =—(hji (20 + (57)°) + B0 Jighishyi ) (2.41)
With it, the bond contribution to the free energy up to first order is
2 ((hij)? + (hj)? Tijhiihyi
_ﬁFz‘(jZ) — m (22 — lln@—i— ﬁ_(( i)+ (h5)?) z0 + Bishish; ). (2.42)

2 2 m 20
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CHAPTER 3. GENERALIZED BOSE-EINSTEIN CONDENSATION

Chapter 3

Generalized Bose-Einstein
condensation

At T = 0, the m-component spin glass of finite size exhibits a character-
istic property: For large component numbers m, the spins condense into a
subspace of the original m-dimensional space they live in [45] [46]. They do
not use all of the m available components. Even more, the dimension of this
subspace, myg, scales with the system size, mg ~ N#m with a model depen-
dent exponent p,, [46, 47, 48], which is equal to % for the fully connected
SK-model and decreases for finite connectivities, see table [3.2l We call this
phenomenon the generalized Bose-Einstein phase transition of vector spin
glasses, as there is a sudden change of the behaviour of a finite system, when
adding components to a mp-dimensional spin glass and as this condensation
generalizes the conventional Bose-Einstein condensation. The natural guess
is that the spins use additional components to lower their free energy, but
above mg they do not, but stick to the value of mgy. The variety of vector
spin glass models that display this phenomenon indicates that it is a general
feature of vector spin glasses in the large-m limit. Due to the scaling prop-
erty mo ~ N#m it can only be detected for finite N (and m > my). As the
explicit calculation of subextensive contributions in the partition function of
spin glasses is impossible (due to the massless modes discussed in the intro-
duction), we are restricted to investigate the phenomenon numerically. The
question of interest in this chapter is whether a similar behaviour as in the
ground state can be observed in the whole low temperature phase.

At T = 0 there are no fluctuations, such that the regarding subspace
the spins span can be directly observed, once a ground state configuration
of spins is found. The investigation at finite T" is complicated by the fact
that thermal fluctuations prevent to observe the subspace by solely regarding
the spins s;. They preferably point into the direction of this subspace, but
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nevertheless fluctuate into the remaining directions as well. Fortunately, the
local fields H; do not fluctuate. These are the thermally averaged mean fields
onto each spin §; and we already know how to obtain them, since this was
one of the concerns of chapter |2l The analysis of the dimension of the space
the local fields span reveals the preferred direction the spins point into. This
dimension displays a remarkable dependence on the temperature. To the
best of our knowledge, this subspace has never been observed yet, neither
numerically nor analytically. However, we now have a method at hand to
examine this space.

We proceed as follows. In the next section, we present the methods and
results of earlier investigations of this phenomenon for the m component spin
glass at T'= 0 [67]. In addition to the scaling exponent fi,, it is possible to
obtain further scaling exponents and to find a scaling relation of the ground
state energy in the large-m limit [48], which will be of further use in this the-
sis. Afterwards, we present the observed behaviour for finite temperatures by
using the numerical simulation of the self-consistent effective-field approach,
presented in section 2.3 and by analysing the dimension of the space the
local fields span. As the settling down of the local fields into a subspace of
the originally m-dimensional space they live in is an ordering process as well,
it gives helpful support to understand the phase transition discussed in the
previous chapter.

3.1 Effective Component Number at 7'= 0

Since there are no thermal fluctuations at zero temperature, the spins are
aligned to the direction of their local fields H;. In general, a local field is the
thermal mean of the sum of fields J;;5; produced by the neighbouring spins
of 5;, §;. As §; aligns to its local field I—jfZ and has the fixed length /m, we

normalize the local field as ﬁm — ﬁz Thus we have (with H; as the modulus

k+1

J=1

This equation is only valid in the ground state. In case of replica symmetry
(i.e. for large m) there is a unique stable solution. Equation is the basis
for investigating the generalized Bose-Einstein phase transition at 7" = 0.
To this end, we transform equation into the eigenvalue equation
2;-\[:1(]‘[7;5@' — Jij)s§ = 0 (for each single component a = 1,...,m) with
the eigenvalue 0. The matrix entries H;d;; — J;; are denoted by A;;, and A
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Table 3.1: Results for u, for different connectivities k + 1

ET fim |
oo [46] 2/5
8 48] | 0.377 (& 0.003)

[
6 48] | 0.362 (& 0.004)
A AR [ 0.352 (% 0.005)
d = 3[T] 0.33
d = 2[47] 0.29

is the inverse susceptibility matrix (xy~1), see Ref. [46]. As the spins have
m components «, there are m of such eigenvalue equations. However, in
Ref. [45] it was shown, that there can at most be v/2N linearly independent
eigenvectors to the eigenvalue zero. Their number determines the dimension
of the null eigenspace of A. Further, the dimension of the null eigenspace
is equal to the dimension of the space the spins live in. This can be seen
by considering a matrix with the spins s7 as its entries. With « as the
column index, the rows correspond to the spins itself and the columns of this
matrix correspond to the null eigenvectors of A (of which there are at most
mo < V2N linearly independent ones). As the column rank is equal to the
row rank (and there are no thermal fluctuations at 7" = 0), the spins span a
mo-dimensional subspace of the m-dimensional space they originally live in.
We call the necessary number of components to observe this subspace the
effective number of components and denote it by meg(T = 0) = my.

To find this subspace, we have to solve equation to find groundstate
configurations of the local fields. This is done by iterating this equation,
where one calculates the local fields according to H; = \/Lm Zfill J;;S; (start-
ing from some random configuration of spins) and aligning the spins to their
local fields as §; = @ afterwards. One stops repeating this procedure when
the change of each of the local fields within one iteration step is sufficiently
small. Then one can set up the matrix A and diagonalise it numerically.
Finally, the number of null eigenvalues of A (which corresponds to the di-
mension of the null eigenspace) is equal to the dimension of the space spanned
by the spins. In Ref. [46], the authors found my in the fully connected model
to scale with the system size as mg ~ N?/5. Additionally it was found that
scaling of the form mgy ~ N#m (with model dependent exponents f,,) holds

for two- and threedimensional lattices [47] and Bethe lattices [67, 48], see

table B.11
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Figure 3.1: Downward shift of the semicircular eigenvalue density of the
fully connected m-component spin glass: mg of the smallest eigenvalues (left,
shaded) become null eigenvalues (deltapeak, right)

Is there an explanation for the observed values? In Ref. [46] is was shown
that y,, = 2/5 can be deduced as the result of the competition of two contri-
butions to the ground state energy e(m, N) = E/(Nm). The first one is the
ground state energy per spin and component in the limit N — oo with m
large but fixed. It was derived in Ref. [41], [69] that it scales as eg+m ™"+ - -,
with eg = —1 and x = 1 for the fully connected m-component spin glass. We
apply the general formulation to finitely connected models, with the effec-
tive component number my, as ey +my " with 2 unknown. This contribution
prefers to choose myg as large as possible, i.e. my = v/2N. The other contribu-
tion arises from forcing the N spins into a my-dimensional subspace, which is
a significant shift of the ground state energy from above, as for finite system
sizes, my is expected to be of order N#m. Therefore, these energy costs vanish
in the thermodynamic limit, but are important, because we are considering
the limit m — oo first. The amount of this contribution can be estimated by
shifting the eigenvalue density of the matrix A, as described in figure[3.1] The
eigenvalue density p(A) was suggested to scale as A for small A in Ref. [70].
For the fully connected model it corresponds to the Wigner semicircle law

1

with v = 5 as displayed in figure , but has a different appearance for

finitely connected models [67, [48]. Nevertheless, the mg smallest eigenvalues

occupy the space from 0 to A\ (%1)1/”+1[67] and have to be shifted to zero.
The necessary amount of energy for that shift is of the same order, as the
sum of eigenvalues of A (the Trace of A) is equal to Y, H; = = > i Jij i85

In total, we have to minimize e = ey + cymy ™ + ¢ (m)l/y+1 + -+ and find

N

1

z(v+1)+1 (32)

/"L =
As a check, we can insert z = 1 and v = % for the fully connected model
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Table 3.2: Results for the exponents pu,,, v, x and y and the ground state
energy per spin and component for different connectivities k + 1.

’ k+1 ‘ v x Y €y
00 1/2 1 2/5 -1
8 0.234(£0.0003 ) | 1.34(%0.002) | 0.505 (4 0.004) | -0.83(£0.0016)
6 0.217(£0.0003 ) | 1.45(£0.002 ) | 0.525 (4 0.006) | -0.80(£0.0015)
4 0.168(+0.0013 ) | 1.57(4£0.0013 ) | 0.553 (£ 0.008) | -0.73(£0.0018)
and get pu = %, consistent with Ref. [46]. For the m-component spin glass

on a Bethe lattice, this relation was used to derive the exponent z from
the findings of y,, and v, see table [3.2] There, the scaling of the eigenvalue
density for small eigenvalues as \” was analyzed via the integrated eigenvalue
density [67, 48].

It is further possible to derive another scaling relation for the m-component
spin glass, this time for the ground state energy per spin and component in
the large-m limit, as e(m — oo, N) — ey ~ N7Y. On the one hand, as de-
scribed above, we expect e(m, N) — ey to scale as my® in the thermodynamic
limit (i.e. for N — 00). On the other hand, for finite system sizes, the num-
ber of components mg scales with N#™. Therefore, we conjecture a combined
scaling ansatz of the form e(m,N) — ey = m™*F(mN~#m). For N — oo, it
scales as m~* (provided F(0) # 0) as claimed by the definition of z. In the
opposite limit, the large-m limit, m is larger than my ~ N*™ and we expect
the ground state energy to be independent of m. Though m might still be
finite in that limit, we have the same ground state energy as if we had taken
the limit m — oo. This is the characteristic property of the large-m limit.
It requires F(z) = const. - z* for m > mg, i.e. z > moN "™, to cancel the
prefactor m~ of the scaling ansatz. We denote this limit by e(co, N) and
find e(oo, N) — eg = N~#m*. The new scaling relation in the large-m limit is

1 — pim
= Uy = )
y=# 1+v

(3.3)

The second part of this equation follows from inserting the scaling rela-
tion . From figure We see that this scaling law is fulfilled for k+1 = 8,
within numerical precision. The ground state energy was calculated as
e(m,N) = _ﬁ DonAn = ﬁ Zij JijSiS;.

The scaling law holds for the other values of k + 1 (data not shown).
Unfortunately, the data are too noisy to deduce the exponent y directly
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Figure 3.2: Ground state energy per spin and component for k+1 =8 as a
function of N7¥ with y calculated from the scaling relation equation (3.3)).
The straight line extrapolates to the ground state energy eq in the limit
N — o0.

from them, so the straight line in figure has the slope —y, calculated
from equation . For the fully connected model, equation predicts
Y = fim = 2/5. Figure .3 which is a result of Ref. [46], shows that this is
indeed observed.

In addition to the exponent y, the ground state energy eq after taking the
limits m — oo and N — oo can be obtained by extrapolating the data as in
figure [3.2) to N = oco. The results are listed in table 3.2l As k increases, e
converges towards —1, the value for the fully connected model. While equa-
tion (3.2)) is a result of Ref. [67], the derivation of the scaling relation (3.3)
and the exponent y is a result of this thesis and will be of further use in the
last chapter.

3.2 Effective Component Number for finite T

In the last section we have learned that ground state spins of a m-component
spin glass of finite size use only mg of their components in the large-m limit.
This effective number of components scales with the system size as mgy ~
N#m_ We now want to investigate the question whether this phenomenon
occurs at finite temperature as well and if the same scaling relation holds. In
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Figure 3.3: Ground state energy per spin and component for the fully con-
nected model. The straight line has slope —2/5. The error bars are smaller
than the point size.

general, the effective number of components in the low temperature phase,
me(T"), should be different than my = meg (7 = 0). Nevertheless, the scaling
relation meg(7) ~ N#m should hold throughout the low temperature phase
as we do not expect another phase transition.

As already pointed out in the introduction of this chapter, at finite tem-
perature it is not the dimension of the space the spins span that we want to
investigate. Due to thermal fluctuations they point in all of the available m
directions. However, they fluctuate around the direction of their local fields,
ﬁi, which are m component vectors as well, but are not subject to thermal
fluctuations as they are thermally averaged (or mean field) quantities, see
chapter 2 If there is a phenomenon of a reduced component number at non-
zero temperature, it should be displayed by the configuration of local fields.
In chapter 2| we have learned how to obtain them: We iterate numerically
the configuration of the effective cavity fields, Eij, for a given Bethe lattice
until convergence (via equation ), and calculate the local fields accord-
ing to equation by inserting the effective fields fzw To the best of our
knowledge, this seems currently to be the only technique, how to obtain the
local fields at nonzero T

The investigation of the spin glass phase transition in the previous chapter
was based on the assumption that iterating the configuration of effective fields
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h is the repeated application of the cavity equation (2.7)) (in the linearized
small field approximation of equation ) for each effective field, which
we now summarize in the repeated application of a non-symmetric matrix
B onto the configuration of fields as Bh. Here h is a list of all N (k+1)
effective fields Ew As each field ﬁij has m components, in fact it is a list of
Nm(k + 1) entries. Now we want to analyse the phase transition and the
dimension meg (7)) in terms of the matrix B.

The rows of B correspond to the cavity equation for fzij, which is /;ij =

fgl\}N(i) 4 2%%5“, where the sum is over all cavity fields ﬁli onto the k + 1

neighbours 5; of 5; except neighbour 5;. We may write the iteration of the

configuration of effective cavity fields after convergence, h, as an eigenvalue
equation of the cavity matrix B

> Bijnbinhiin = Mhijn, (3.4)
kln/
where B has the entries Bz‘jn,kln’ = %5%/5]-61\11\1@)6;61\11\1(@5“(1 — 5jk)7 with
1,7, k.l =1,---, N indicating the different cavity fields and n,n' =1,--- ,m

denoting the different components. As each spin has only k + 1 neighbours,
the matrix B has Nm X k nonzero entries. We see that it is not a symmetric
matrix. However, as the entries are real, its characteristic polynomial has real
coefficients. Therefore its roots, i.e. the eigenvalues A in equation , are
either real numbers or conjugate pairs of complex numbers (if a + ib is a root
of the polynomial, than a — ib is so, too). These eigenvalues of B depend on
the temperature. As long as their absolute values are smaller than one, the
iteration will converge to the d-function around zero, i.e. to the paramagnetic
solution (as the repeated application of the matrix B in this case results in
decreasing values of all fields until they have become zero). However, if we
lower the temperature the eigenvalues increase and at some point the first
eigenvalue has an absolute value equal to one, and we find h = Bh if this
eigenvalue is real (after the configuration has ordered in the eigenbasis to
this eigenvalue), i.e. a configuration with a stable non-vanishing variance.
(In case of conjugate pairs of complex eigenvalues with an absolute value of
one something different happens as will be discussed below.) If we lower the
temperature further, the matrix B is not appropriate to describe the true
behaviour of the configuration of fields anymore, as it considers the small
field approximation and the fields have already non-zero values. If we were
able to calculate the eigenvalues of the true mapping of the cavity fields of an
iteration step, Bie, (which includes solving the full cavity equation ,
involving nonlinear contributions), we expect that the largest eigenvalues
stick to the absolute value of one, as stability of the configuration of fields
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does not allow for eigenvalues larger than one and we have found a stable
variance of the configuration below T, in chapter 2l As the components of
the configuration corresponding to the eigenvalues smaller than one do not
survive the repeated application of the true matrix, it is the eigenspace of the
eigenvalue one, which is the final basis of the configuration of effective fields.
If there is a single (real) eigenvalue equal to one at the critical temperature,
with all other eigenvalues smaller than one, the configuration of effective
fields is one-dimensional.

We have been able to calculate the eigenvalue spectrum of B and found
that the distribution of eigenvalues is not homogeneous, as for some lattices
the largest eigenvalue is a conjugate pair of complex values (i.e. A; 5 = a=ib),
whereas for other lattices it is indeed a single real eigenvalue. Even more,
we find the eigenvalue spectrum of B to be dominated by conjugate pairs of
complex eigenvalues. So far, this phenomenon has not been reported (to the
best of our knowledge). To find conjugate pairs of complex eigenvalues is a
characteristic of rotation matrices. To see this, we regard, for instance, the
two dimensional matrix R

cos® —sin®

f= (Sin@ cos © > ’ (3.5)
which rotates objects in a two dimensional cartesian plane by an angle ©
around the origin. It has the eigenvalues A » = cos ©+isin ©, i.e. a conjugate
pair of complex values. From this we see that the configuration of effective
fields is subject to rotations in the low temperature phase and that it is
either one- or two-dimensional at the critical temperature. We illustrate the
eigenvalue spectrum of B for four different Bethe lattices of 64 spins and a
connectivity of eight in Figure (only the largest eigenvalues are plotted).
From our findings we believe them to be representative for all system sizes and
connectivities. Even more, we have analyzed the eigenvalue spectrum of the
cavity matrix B in case of Ising spins, i.e. with % = u(Jy, hy;) [20], see
section 2.1.1] The general picture of dominating corﬁugate pairs of complex
eigenvalues holds in that case, too. Since B holds only above and at the
critical temperature, it is of no further use below 7, (for instance to find the
temperature at which the first real eigenvalue becomes equal to one, which
might be a plausible indicator of a spin glass phase transition with freezing
in time below T.). Nevertheless, we will confirm the observations from above
in the following. However, we should be aware of the fact that a rotating
configuration is not frozen in time, though it can be described as stable in
the sense of rotating all fields by the same angle. As a spin glass phase
transition is, in general, expected to have a frozen configuration below T,
our current results have profound consequences for the phase transition in
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Figure 3.4: FEigenvalue spectra for four different Bethe lattices of 64 spins
with k+1 = 8. Different colours represent different temperatures, decreasing
from blue to green to pink. The larger circle has a radius of one. When the
first eigenvalue crosses this circle, the phase transition happens. We see that
some lattices have large real eigenvalues (lower left and upper right) and
some have solely complex eigenvalues (lower right and upper left).
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chapter 2| in particular that it is not a spin glass phase transition of the
usual type (though the spin glass phase transition is strongly supported by
parallel tempering Monte Carlo simulations in section . We will compare
the observations of both numerical methods at the end of this chapter and
develop a common picture of the phase transition.

Now we want to investigate the space of local fields, for which we should
observe the rotations due to conjugate pairs of complex eigenvalues of B
and the dimension of the space they span. Having found the local fields ﬁi,
what is this dimension? In the previous section we found mgy at 7' = 0 by
diagonalising the quadratic, symmetric matrix A. This time, we have to diag-
onalise a N X m non-symmetric matrix M, with the entries H;;, i =1,..., N
and [ = 1,...,m. The method of choice is a singular value decomposition
M = UDV?T [71], in which a numerical routine calculates biorthogonal left-
and right-eigenvectors of the matrix M, which are the building columns of
the unitary matrices V', resp. U. The singular values are the entries of the
diagonal m x m matrix D. The rank of M, which is the dimension m.g(7")
of the space the local fields span, is equal to the number of non-zero singular
values in D (the non-zero singular values we find are of order 1 whereas all
other singular values are at least five orders of magnitude smaller and are not
expected to contribute to the rank of M). We find a remarkable dependence
of meg(T) on the temperature. Above T, all fields are zero, so the effective
dimension of the space of local fields is zero. However, close to the critical
temperature we find an increase of the number of effective components with
either a value of 1 or 2 at T, (which is the temperature where the variance
becomes non-zero). Below the critical temperature, meg(T") increases slowly
until the value of m is reached. This is illustrated in the plots[3.5]-[3.8| for var-
ious Bethe lattices, system sizes and connectivities. Additionally to meg(T),
the variance of the configuration of effective fields (i.e. the order parameter)
is plotted, which indicates the phase transition at that temperature where
the variance becomes non-zero, i.e. these plots are a direct continuation of
the results from section 2.3l The critical temperature from this indication
fits very well with the temperature at which meg(7") is smallest. We further
see that the effective number of components meg(7") increases with a step
size of two instead of one in most cases below T.. This is a consequence of
the dominating influence of conjugate pairs of complex eigenvalues with non-
vanishing imaginary parts. Remarkably, even for the rather low maximum
component number of m = 4 in figure not all components are used at the
critical temperature and we are in the large-m limit (at 7,.). We expect the
increasing of meg(7") above T, to be a numerical effect, i.e. the largest eigen-
values, though still smaller than one, already dominate the configuration of
fields. In fact, the transition is indicated by the instability of the J-solution
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of the distribution of effective fields (where all fields are zero), see chapter .
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Figure 3.5: Effective number of components meg(T") (+) for 256 spins with 8
components on different Bethe lattices with k 4+ 1 = 8. Additionally plotted
is the order parameter from section (x).

The observation of meg(7T.) = 2 confirms what we have already derived
by regarding the eigenvalues of the non-symmetric matrix B. At the critical
temperature the configuration of local fields is not frozen in time in that case
but it is two-dimensional and rotates in this two-dimensional plane (according
to the largest eigenvalue which is a conjugate pair of complex values), see
figures , and . There, the order parameter (which is the variance
of the configuration) remains unchanged and each single field keeps its length.
A detailed look at the rotation of the local fields reveals that it is not only
the whole configuration which is rotated, but every single field H; rotates
about the same angle, see figures [3.11] and [3.13] To see this, we calculated
the angle between the old fields and the new fields onto each spin s;. The
new field is found by calculating a new configuration of effective fields via
ﬁnew = Bﬁold. The new effective fields determine the new local fields. For all
temperatures with meg(7) = 2 we find the same angle between each of the
old fields and its corresponding new field, i.e. the relation between each pair
of spins remains the same under these rotations. We see that at the phase
transition (below which we initially thought to be freezing in time) in that
case exists a stable configuration up to the global rotation of all local fields
and that these rotations cost no energy, as the angles between each two of
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Figure 3.6: Effective number of components meg(7") (+) and the order pa-
rameter from section (x) for 96 spins with 8 components on different

Bethe lattices with k£ 4+ 1 = 8.
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Figure 3.7: Effective number of components meg(7) (4) and the order pa-
rameter from section (x) for 256 spins with 8 components on different
Bethe lattices with k 4+ 1 = 4.
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Figure 3.8: Effective number of components meg(7) (+) and the order pa-
rameter from section (x) for 512 spins with 4 components on different
Bethe lattices with £+ 1 = 6.

the fields are constant. Below 7. more and more of these rotations occur due
to the increasing number of conjugate pairs of complex eigenvalues of the full
version of the cavity matrix, By,..., which are supposed to stick at an absolute
value of one, resulting in a complex change of the configuration of fields in
each single iteration step. In that case each effective cavity field is represented
by a different eigenvalue decomposition. Therefore, in each iteration step the
different fields are subject to different rotations (with possibly different axis
and angles of rotation). Hence, the fields do not rotate parallel anymore. In
case of meg(T.) = 1 there is freezing in time until, for lower temperatures,
a rotation sets in when the second (or simultaneously the third) eigenvalue
becomes equal to one. These rotations are not parallel for the local fields
(data not shown) for the same reason as above. Our findings state that the
continuous symmetry of vector spins exhibits surprising replica symmetric
equilibrium states.

Below T, the effective number of components increases up to the maximal
value m. From the analytic result of a broken replica symmetry for finite m
in the thermodynamic limit [41], we suppose that replica symmetry holds
(at least) as long as meg(7T') < m, which we call the large-m limit. We will
confirm this conjecture in the next chapter. However, if m is large enough,
we should be able to come close to T' = 0 and still have meg(7") < m. In that
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Figure 3.9: Three-dimensional plot of a configuration of local fields (128 spins
with three components) in the low temperature phase before (blue) and after
(pink) a single iteration step. Each configuration is only two-dimensional for
this lattice at the chosen temperature, i.e. the large-m limit holds.
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Figure 3.10: Different view at plot The rotation of the iteration step
takes place in the two-dimensional plane each configuration spans.
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Figure 3.11: Seven local fields from figure before and after a single itera-
tion step. Each field is rotated by the same angle.
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Figure 3.12: Three-dimensional plot of a configuration of local fields (128
spins with three components) in the low temperature phase before (blue)
and after (pink) a single iteration step (the pink configuration is shifted
slightly upwards (40.01) to distinguish it from the blue one). In contrast to
figure [3.9] each configuration is one-dimensional and there is no rotation for
this lattice at the chosen temperature.
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Figure 3.13: First and second component of a single effective cavity field
for four different Bethe lattices of 64 spins with £ 4+ 1 = 8. Different colours
represent different temperatures, decreasing from red to green to blue to pink.
The plot presents the different possible scenarios: The field is frozen in time
(lower left plot and single red or green cross in upper right plot), rotations
(ellipses, e.g. lower and upper right plot) or a mixture of rotations and fixed
contributions, possibly rotating in a space the size of which is larger than the
available m components (pink boxes in upper left plot).
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way, we would find an estimate of mq from section 3.1 As we are using the
truncated model, i.e. regarding solely the vector fields and neglecting higher
orders, which is only valid close to the critical temperature, we expect the
estimate of mg not to coincide with the value from section [3.1] for instance,
the value of ms(0.6) = 8 from figure is already larger than the value of
myo from section [3.1}

Can we relate these observations to those of the parallel tempering Monte
Carlo method we used in section [2.4] As already stated, the critical temper-
atures from both methods coincide very well. This is strong support for
a phase transition. The nature of this transition is, however, uncommon.
In this section we have found that it is accompanied by an unusual phase
transition, the generalized Bose-Einstein condensation, in which the spins,
resp. the local fields, use only a subspace of the available m-dimensional
space. Furthermore, the configuration of fields is subject to rotations in
the low temperature phase. These rotations are reminiscent of Goldstone
modes [53], which describe excitations of an equilibrium state in vector spin
glasses without energy cost, due to the invariance under rotations in the spin
space. However, Goldstone modes are thermal excitations, whereas the local
fields are of mean field character and should not display thermal excitations.
Therefore the observation of a rotating configuration of local fields is a phe-
nomenon which we find to be in contrast to Goldstone modes. On the other
hand, in case of the parallel tempering Monte Carlo method, we observe
power-law scaling of the order parameter (which is related to the correlation
function) with the system size. This is in fact a property which is reminiscent
of a Kosterlitz-Thouless transition, where thermal fluctuations in directions
transverse to the one the system wants to order destroy the phase transition
(by exhibiting power law scaling of the correlation function with the system
size, i.e. vanishing long range order in the thermodynamic limit). In our
model, the order parameter can be rescaled by a factor m to be finite in the
low temperature phase, though the scaling property still holds (but with an
exponent different from the theory of Kosterlitz-Thouless transitions). Un-
fortunately, within the parallel tempering Monte Carlo simulations we can
not distinguish between Goldstone modes and a configuration of local fields
rotating by itself. However, the strong support for a phase transition and the
indicated relation to phenomena resulting from Goldstone modes makes it
sensible to suspect the phase transition of the m-component spin on a Bethe
lattice to be dynamically driven by rotations inherent in the phase transition,
a phenomenon similar but different to Goldstone modes.

To further support the conjecture of the kind of phase transition described
above, we derive a finite size scaling ansatz for the effective number of com-
ponents. It regards the apparently universal scaling with 1 < meg(T,.) < 2
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at the critical temperature and the scaling with the system size as meg (7)) ~
N#m with p,, from section (We expect this scaling with the system size
to hold in the whole low temperature phase, following the line of argument
from section . We propose the ansatz

me(T) = e+ N F( (T, T)N*). (3.6)

The scaling function F(x) has the properties of F(0) = 0 and F(z) — const.
for || — oo. The universal value of ¢ at T, is in between 1 and 2. The
figures (bare data) and (scaled data) show the resulting finite size
scaling plots. The data match very well in the vicinity of the phase transition
in figure [3.15] (i.e. close and right to the value of zero at the x-axis). The
crossover at T =~ 0.69 for meg(T) ~ 2 is clear to see in figure For
meg(T) = 0 the data are not supposed to match according to the scaling
ansatz. When meg(T") reaches its maximum value of m = 8, the data splay
out as well as expected. With p,, = 0.377 and T, = 0.69 from the previous
chapters, we find ¢ = 2, a = 0.6 in the best matching scaling plot.
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Figure 3.14: Unscaled effective component number m.g(7") for different sys-
tem sizes.

The observation of meg(7.) = 2 has so far, to the best of our knowledge,
not been reported in the literature. Nevertheless, we expect this phenomenon
to be a general property of vector spin glasses, as the results from the dif-
ferent methods we use complement each other to a sensible common picture.
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Figure 3.15: Scaling plot for N~ (meg(T) — c) against the scaling function
F(T.—T)N).

However, we are lacking of an intuitive explanation of it. In general, it seems
sufficient to break the discrete symmetry of the Ising spins and introduce a
continuous symmetry of the spins to find the large-m limit at and, at least
in a small temperature range, below the critical temperature. The results of
this chapter will contribute to explain the stability and breaking of replica
symmetry in the following chapter.
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Chapter 4

Breaking Replica Symmetry

Replica symmetry breaking is the ansatz with which the SK-Ising spin glass
model can be solved. This has been a milestone in the history of spin glasses,
as the first attempts of solving this fundamental solvable model of a spin glass
with a replica symmetric ansatz in Ref. [2] displayed unphysical solutions in
Ref. [6]. Later on, the technique to examine the stability of the replica
symmetric solution was extended to the SK model of vector spin glasses.
In Ref. [41] it was shown that replica symmetry of the fully connected m-
component spin glass is broken for all finite m. Replica symmetry only holds
for m — oo. However, the calculation is based on a saddle point evaluation
for N — o0, i.e. in the thermodynamic limit. We expect this discovery
to be true for finite connectivities as well, but in the previous chapter we
have seen that there is an effective number of components mes(7") to form
a replica symmetric spin glass state for finite system sizes N. Above this
value, i.e. for m > meg(T), the m-component spin glass is independent of
m. As we expect meg (1) to scale with the system size, as in equation ([3.6)),
we suppose it is infinite in the thermodynamic limit, which would break the
symmetry between replicas for all finite m in that case. In contrast, for finite
N, we combine these observations to the conjecture that replica symmetry
holds as long as the spin glass has more components than necessary, i.e.
m > meg(T). This is what we call the large-m limit and we are going to
examine this conjecture in this chapter.

In the first section we present a simple technique how to distinguish
replica symmetry and broken replica symmetry in the simulations of a con-
figuration of effective cavity fields of section 2.3] We will see that replica
symmetry is indeed broken when meg(7") crosses the maximum number of
components m. In section [4.2] we use the parallel tempering Monte Carlo
algorithm to investigate the variance of the link overlap ¢r of two replicas
of the m-component spin glass with the same configuration of disorder. The
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link overlap is a measure of correlation between the two copies and its vari-
ance can be used to distinguish between replica symmetry and broken replica
symmetry, as will be explained there. In the last section of this chapter, we
implement a calculation, in which we introduce two different corrections to
the fully connected, large-m spin glass. On the one hand these are corrections
for finite connectivities and on the other hand for finite component numbers.
The calculation involves adjusting a technique of Goldschmidt and de Do-
minicis [72], which was developed for Ising spins, to calculate the overlaps
¢y = (ohop) of two components p and v of the same spin & taken from
possibly different copies (replicas) a and 3 of the same spin glass. Both
copies can be in different equilibrium states, if replica symmetry is broken.
That is why we can distinguish both scenarios. As in section [2.2], we present
a procedure how to examine finite component numbers. By comparing the
results for qgg of a replica symmetric ansatz and a one step broken replica
symmetry ansatz, we try to find evidence for the breaking of replica sym-
metry for finite m in the thermodynamic limit. Additionally, we are able to
calculate corrections for finite connectivities.

4.1 Self-consistent effective field approach and
Replica symmetry breaking

We base the analysis of replica symmetry breaking of this section on the
numerical investigations from section [2.3] and which consist of iterating
the implicit equation ([2.24]) resulting from the self-consistent effective field
approach of section 2.1.1] There, we calculated a new configuration of ef-
fective fields resulting from the old configuration. Then we were looking for
convergence when repeatedly renewing the configuration. In that way we
were trying to find the single stable state a replica symmetric spin glass can
be in, irrespective of whether it is replica symmetric or not. The method in
this sections extends this earlier method in that it explicitly tries to distin-
guish between finding and failing of convergence to a single stable solution
of the configuration of effective fields. Therefore, we renew the configuration
for a certain number of times (here: 500 times), even if the algorithm has
already converged. Then we store the value of the order parameter (Ah)?.
We repeat this procedure of storing intermediate results. In this way we
accumulate a sample of 60 intermediate results, from which we exclude the
first ones, to allow for convergence of the algorithm, if possible. From the re-
maining intermediate values of (Ah)? we calculate the variance varay, which
becomes the criterion of convergence. We expect varay, to display two differ-
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ent characteristic cases. In the first case, the configuration of effective fields
converges to a single stable solution, which corresponds to replica symmetry
(resp. independence of the initialization of the effective fields). In this case,
the sample of intermediate results consists of very similar values of (Ah)? and
varap will be small. This is still true if the configuration we find is subject
to rotations in each iteration step (see chapter [3)), as the order parameter
(Ah)? is still stable. In the second case, the algorithm does not find a single
stable solution and varaj, will be some orders of magnitude larger compared
to the results in case of replica symmetry. We deduce that the second case
corresponds to broken replica symmetry, where we have many stable solu-
tions (or at least metastable solutions for finite V), which spread the values
of (Ah)? over a non-vanishing range. The results can be found in figure
- for various system sizes N, connectivities k+ 1 and maximal component
numbers m. The error bars correspond to the resulting variance varay, of the
intermediate results. Additionally plotted are the results for meg(7T") from
section To illustrate the failing of convergence in these figures, we have
rescaled the error bars with a factor ¢ > 1 (which is constant for a given
system) in such a way that a visible error bar corresponds to this failing. It
is clear to see that the error bars become large when the effective number of
components meg(7T") has crossed the maximal component number m. There
are two exceptions from this rule resulting from numerical reasons. On the
one hand, a very slow convergence comparable to the total number of iter-
ations of the configuration of fields in the algorithm will result in a larger
error bar than expected from replica symmetry. However, this exception will
mainly occur slightly below T, as it follows from critical slowing down close
to the critical temperature. Critical slowing down describes the phenomenon
of an increasing time to equilibrate as the temperature approaches T, [53].
From the bare value of the estimated error these scenarios are undistinguish-
able. The plotted data do not show this behaviour. The second exception is
that, although we may be in the broken replica symmetric region, it is still
possible that the algorithm converges to a single state or at least a mixture
of only a few ”sufficiently similar” states resulting in a very small variance
(small error bars) of the intermediate results. This is the case if the config-
uration is trapped in a single valley of the broken phase space. However, as
the failing of convergence due to the existence of more than a single stable
state is the dominating effect, the results show that there is a large-m limit
in the whole low temperature phase (even for Heisenberg spins close to the
critical temperature, see figure .

How can we explain the breaking of replica symmetry, as presented in this
section? We have seen that the lower the temperature, the more components
are necessary to restore replica symmetry. As for lower temperatures the
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Figure 4.1: Plot of meg(T) (left axis, +) and (Ah)? (x) with error bars
corresponding to varay, that indicate the failing of convergence (right axis)
for N = 256, k+1 = 8 and m = 8. Replica symmetry is broken slightly below
the temperature where meg(T') crosses the maximal number of components
available, m.
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Figure 4.3: Corresponding plot to for 96 spins with eight components on
Bethe lattices with connectivity equal to eight.
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Figure 4.5: Corresponding plot to for 128 spins with three components
on Bethe lattices with connectivity equal to seven.

spins §; are less affected by thermal fluctuations, the restriction to align
to their mean local fields H; grows stronger. Due to this, the degree of
frustration grows and apparently more degrees of freedom (i.e. components)
are needed to avoid the complex situation of highly frustrated systems leading
to broken replica symmetry. To be precise, within the simulation we have
detected rotations within each iteration step, see chapter [3] These rotations
are restricted to the available space, i.e. to the dimension of the spin space
m. If, however, the fields already use all available components and a further
rotation occurs (when lowering the temperature), which is at least partly
perpendicular to the initial rotations, this rotation can not be described
completely within the available m components. What we observe in this case
is simply a projection of this rotation onto the available m dimensional space.
This is not a stable configuration and leads to the failing of convergence,
i.e. to the breaking of replica symmetry. We expect that, if there were
enough components to describe the additional rotation, we would still find
convergence of the algorithm (which is easy to understand as we would still
be in the large-m limit).

There are some interesting implications of this result. First of all we
see that for every vector spin glass of finite size with m > 2, there is a
(at least) a small range of temperatures below 7T, in which the system is
replica symmetric. Only the Ising spin glass does in general not exhibit
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such a replica symmetric sector. Second, the results are consistent with
the result of Ref. [41], where replica symmetry is broken for all finite m in
the thermodynamic limit. As we expect scaling of the effective number of
components as in equation (3.6)), i.e. as meg(7) ~ N#m, we should find
broken replica symmetry for finite m in the whole low temperature phase in
the limit N — oo as well. Third, the algorithm of iterating a configuration
of effective fields allows us to discover the breaking of replica symmetry and
confirms that it is a useful technique to investigate spin glasses on Bethe
lattices.

4.2 Parallel Tempering and Replica symme-
try breaking

In chapter [2| we have seen, that the parallel tempering Monte Carlo method
did help us to observe the phase transition of the m-component spin glass on
a Bethe lattice and to confirm the findings from the self-consistent effective-
field approach. The breaking of replica symmetry can be observed with
the data from the parallel tempering simulations as well. To this end, we
have to analyze the dependence of the variance of ¢, (instead of the mean),
(Aqr)? = [¢2] — [qz)?, on the system size. This quantity allows to distinguish
between replica symmetry and broken replica symmetry. The reason has been
discussed in the introduction of this thesis: In case of replica symmetry, the
link overlap between two copies of the same spin glass can only attain a single
value, gg4, in the thermodynamic limit, as there is only a single stable state
the systems can be in. Therefore, the variance of the link overlap should
vanish in the thermodynamic limit in that case, as (Agz)? ~ N~* with some
unknown exponent « (however, we have to take the possible dependence
on the component number m into account). In contrast to that, in case
of broken replica symmetry the link overlap distribution has support on a
non-vanishing interval [8, 4] in the thermodynamic limit, as the systems can
attain many stable states and the link overlap can take smaller values than
qea- Therefore, the variance has a non-zero value in the thermodynamic
limit.

Within the data we should find both cases, as we have seen in the previ-
ous section that for large component numbers m (m > meg (7)) the system is
replica symmetric, whereas replica symmetry is broken for m < meg(7"). We
take all simulated component numbers from 2 to 6 and the various system
sizes into consideration and calculate the link overlaps at the lowest temper-
ature that is simulated. We indeed observe different scaling behaviour for
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m > meg(T) and m < meg(T) in Figure [1.6] where we have plotted the vari-
ance of the link overlap (Agz)? (multiplied by m) with respect to the system
size N (multiplied by m~#n where u,, = 0.377 in case of a Bethe lattice
with a connectivity of eight). The scaling with the number of components
m makes the data independent of m, as they collapse and describe a single
distribution. The final scaling result therefore is m(Aqp)? ~ (Nm="/#rm)=,
Even more, the chosen scaling of the z-axis as Nm~'/#m allows to estimate
the transition from replica symmetry to broken replica symmetry. As the
system should be replica symmetric as long as m > N*™ (in the large-m
limit), we expect the transition to broken replica symmetry to happen for
m = O(N#m), or Nm~'/#m = O(1), for all simulated component numbers m.
This is precisely what we observe, though this transition can not be sharp
due to the finite number of degrees of freedom of the systems. In the large-m
limit on the left hand side of Figure [4.6] we find a vanishing variance of the
link overlap with the system size as (Aqp)? ~ N~ (with the estimate of
a =~ 1.4) for all different values of m. On the right hand side we find the
variance to approach a plateau (though this transition is very slow and it
would require larger system sizes to see it more clearly), as predicted from
broken replica symmetry. We remark that the scaling ansatz for (Aqp)? is
partly motivated from the computation following in the next chapter. As the
ansatz will be used there as well, we refer to section for further details.

In addition to earlier results from the parallel tempering Monte Carlo
simulations in chapter 2] the data from these simulations allow us to confirm
the breaking of replica symmetry below the critical temperature for m <
N#m resp. that replica symmetry holds in the large-m limit. Even more,
they support the finding of an effective number of components to build replica
symmetric equilibrium states for finite system sizes. Although these results
have been derived in other sections and chapters of this thesis, it is not
at all self-evident to find them within the parallel tempering Monte Carlo
simulations. The reason is that these simulations are subject to thermal
fluctuations, whereas the simulation of the configuration of effective fields
was not. The existence of the large-m limit is one of the main results of
this thesis and will be very useful in the last chapter. Furthermore, the
parallel tempering Monte Carlo algorithm will be used there as well, with
the difference that we will be interested in the infinite range model (the
SK-model) of the m-component spin glass, instead of the Bethe lattice spin
glass.
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Figure 4.6: Finite size scaling plot (doubled logarithmic) of the variance of
the link overlap at temperature T' = 0.5.

4.3 Analytical investigation of Replica Sym-
metry Breaking

As shown in Ref. [41], replica symmetry is broken for all finite m in the ther-
modynamic limit. In the previous sections we have seen that it is even broken
for finite N below the large-m limit. However, so far there is only numerical
support for this phenomenon. This section is an attempt to describe the
breaking of replica symmetry below the large-m limit, which we have found
numerically in the previous sections, in an analytical way. To this end, we
will adapt a method developed by Goldschmidt and de Dominicis [72]. Tt is
based on the derivation of a function g*(&), using an iterative description of
the partition function of a single spin & on a Bethe lattice with connectivity
k+1 (similar to the cavity method of chapter , which allows us to estimate
corrections to the fully connected model in a power series in % This function
is used as the weight function (similar to a partition function) in the calcula-
tion of the overlaps qgg = (oho}), where a, 8 = 1,--- ,n denote two replicas
of the n-times replicated partition function and p,v = 1,--- ,m are two of
the m available components. The calculation can be done with a replica
symmetric ansatz for the overlaps or, alternatively with an one step broken

89



4.3. ANALYTICAL INVESTIGATION OF RSB

replica symmetric ansatz (denoted by 1-RSB as a short hand) which is a
first step of introducing the complicated replica symmetry breaking scheme
of the mean field Parisi solution [9} 10, 4]. Finally, it is possible to express
the free energy in terms of these overlaps and to compare the results in order
to decide which of the two alternatives minimizes the free energy. As the
derivation of the weight function g*(&) becomes exact only in the thermo-
dynamic limit, we are restricted to introduce corrections for the number of
components m (instead of the system size N) to find the breaking of replica
symmetry below the large-m limit. These corrections occur when expanding
the saddle point calculation of ¢*(&) for m — oo around the saddle point, as
will be described in the following.

The overlaps qgg are the crucial quantities to distinguish replica sym-
metry and broken replica symmetry. To get used to their notation in the
various cases (besides the distinction of replica symmetry and broken replica
symmetry, we calculate the overlaps with corrections in % up to #, with
corrections in % and without any corrections), they are explained already at
this point. In each of the calculations we choose an ansatz which sets the
overlaps to zero for y # v and independent of the special choice of the in-
vestigated component (which reflects the isotropy of the model). Therefore
we omit these indices as soon as possible after the definition of qgg In the
replica symmetric case, we only have to distinguish whether the two replicas
a and [ are identical or different. Therefore we have to find the overlaps
¢z (for identical replicas) and ¢; (for different replicas). In the 1-RSB case
the n replicas separate into ” blocks of r replicas apiece. It is the first step
of introducing the hierarchical structure of the phase space of the broken
replica symmetry solution. In the thermodynamic limit this structure leads
to a non ergodic phase space. In the case of 1-RSB, the replica symmetric
overlap ¢, separates into two different overlaps, ¢i12 (two spins of different
replicas within the same block) and ¢1111 (two spins of different replicas in
different blocks). As the replica method requires to take the limit n — 0
in the end, the results of the 1-RSB ansatz will depend on the block size
parameter r, and we will have to maximize the free energy with respect to
it (this is a characteristic property of the replica method in spin glasses).
Besides choosing a notation appropriate to describe replica symmetry and
1-RSB resp., it also has to answer the purpose of denoting the degree of
the corrections involved. To this end, the final notation is qr(ﬁ"%, where n4
specifies whether the two replicas the overlap is calculated of are different
(ny = 11) or identical (n; = 2), and ny does the same for the "block” both
replicas are taken from (the index ny will be omitted in the replica symmetric
ansatz). The order of corrections to the fully connected model in the large-m

1

limit is denoted by k (as the order of correction in 1) and m (as the order
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of correction in +). For instance, the overlap qg? is the overlap from two
different replicas taken from the same "replica-block”, it is of order ,%o in the
connectivity (i.e. fully connected) and the corrections to the saddle point

for m — oo are of order # If the overlap involves no corrections to the

saddle point in any power of % we omit this subscript and write qgi)m. In
addition to the two-spin overlaps ¢}; = (0407%), the free energy involves four-
spin overlaps ¢/,"% = (ohoj0%0%). Their notation is similar to the notation
of the two-spin overlaps, with the sole difference that n; and ny denote the
distribution of four spins over different replicas and replica-blocks.

We see that the interest in this calculation is twofold. On the one hand,
we are going to introduce corrections to the large-m limit and ask whether
replica symmetry still holds for finite m. On the other hand we introduce
corrections to the fully connected model, i.e. we describe a finite connectivity
and therefore a different picture of neighbourhood of the spins as in the SK-
model. To facilitate following the framework of this chapter, we give the
final results already at this stage. First of all, without any corrections, we
find the m-component spin glass to be replica symmetric, as in Ref. [41].
The only solution the 1-RSB ansatz exhibits is qg% = QH, i.e. identical
to the replica symmetric solution. Generally, when we want to calculate the
correction terms in #, we will see that we have to know the solutions of
all lower orders than the one we are interested in. The reason for this is a
Taylor expansion around the zeroth order solution (i.e. for m — 00). With
it, we find a set of hierarchical equations, which we can solve subsequently
beginning with the first order. In case of replica symmetry we can calculate

the overlaps up to fourth order in % explicitly. In the case of 1-RSB, we find

the solution in first order from the equations determining qg‘ﬂ (x =2,11), i.e.
the equations in second order, for the reason that they reduce the solution
space we find in first order. We will see why this is the case. The solution
in second order is itself found from the equations determining qgﬁ for the
same reason. Both solutions are replica symmetric, i.e. up to this order
we do not find the breaking of replica symmetry we are searching for. The
equations in third and fourth order, which we have to set up in order to
find the solution in second order, are not sufficient to decide whether replica
symmetry is broken or not, but one would have to go to even higher orders
to determine these solutions. Finally, we will discuss why replica symmetry
breaking is not found, and how one could proceed to observe it.

Concerning the corrections in % we can calculate the replica symmetric
solution, qﬂ), and find a simple relation in case of 1-RSB, (r — 1)q§11?2 =
rqﬁ?ll +¢(T'), which is consistent with the replica symmetric result for r = 0
or r = 1. To decide whether replica symmetry is broken we have to maximize
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the contributions to the free energy in order k—lz (for reasons which will become
apparent below). We find that the free energy is independent of the choice
of r, i.e. the free energy is flat along the 1-RSB mode. We will discuss
implications of this result.

4.3.1 Method / Basic Formalism

The method used can be summarized in a few steps. First of all we derive
the weight function g, (&) by describing the partition function of the central
spin 6y on a Cayley tree iteratively and explain how it can be used on a
Bethe lattice. Afterwards we define the overlaps qgg, which emerge when
parametrizing g,(&) in an alternative way and therefore are determined by
gn(d) (this is the weight function with respect to which the overlaps are
calculated). Then we express the free energy in terms of g,(d) and the
overlaps qgg Finally we calculate the overlaps and the free energy with a
replica symmetric and an 1-RSB ansatz resp., and compare the results.

We start by considering the m-component spin glass on a Cayley tree, i.e.
a tree without loops, which has a central spin &, that is connected to k + 1
branches of the tree. The tree has z shells and each shell consists of spins
that have one neighbour on its neighbouring inner shell and £ neighbouring
spins on the neighbouring outer shell. The spins on the last shell, i.e. on the
boundary, have only one neighbour (that belongs to the penultimate shell).
The Bethe lattice instead is locally equal to a Cayley tree, with the difference
that it has no boundaries, but that every spin is connected with the same
fixed number of nearest neighbours, see chapter The n times replicated
partition function for the central spin ¢y on a Cayley tree is

Z" = Tr, exp (5 2": Z Jijo_’io‘cf’jo‘> ) (4.1)

a=1 (ij)

If we denote the k + 1 neighbouring spins of &, by 89 with {=1,--- ,k+1,
and the k other neighbouring spins of each of the spins §%) by ¢ we can
proceed iteratively by writing

k+1 n

z" =T, [[[] Qo ("5 with (4.2)

=1 a=1
k
Qe (5°13%) = exp (87,0055 ) [ Qe-n(5°170°),
=1

where the argument &y|5 denotes the spin &, in dependence of the direction
of § and the index of () denotes the number of remaining shells it consid-
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ers, while () is the conditional probability distribution of finding a certain
direction of &y, given §. The link between 7y and § is denoted by Jy. In
the iterative sense of formulating the partition function in equation ,
we introduce the function g.)(c) as the partition function of n replicas of
any arbitrary single spin on any of the z shells (here for the central spin &)
interacting solely with a single branch of the remaining outer shells of the
Cayley tree

9()(5o) = EjTryoa [ [ Q) (60159, (4.3)

[teratively it follows
E;Z" = Trog; 1 (50), (4.4)

where ggl (09) describes the interaction of ¢y with all of its £+ 1 neighbouring

spins, which is denoted by the superscript k4 1. Furthermore, we can express
9(=)(0o) self-consistently (only writing the interaction between &, and its
neighbour &) explicitly and subsume the remaining interactions in gé‘;_l) (51))

9(F0) = By Tryg exp (81 3 651" ) g (). (4.5)

In the thermodynamic limit these equations hold on the Bethe lattice, be-
cause of its locally tree like structure. The Bethe lattice is more appropriate
to investigate a spin glass as the Cayley tree, as it has no boundaries, but
large loops that introduce frustration. Therefore we will substitute the index
z of g(») (an enumeration of the shells is not possible on a Bethe lattice)
in favour of g,, which is the corresponding function on the Bethe lattice,

in the next sections (n denotes the n-times replicated partition function).
(=1)
With an appropriate normalisation (Trs1 gﬁ(§1)> from Ref. [72] and the

generalization of the spins 7 — &, and 5} — 7,, we finally have

-1

@) = EiTrrexp (3732 0,2) o7 (Trgh(®) | (@40)

Additionally to equation (4.6)) we can express g, (&) in terms of the over-

laps g,3. To find this formulation, we scale the coupling as \/LE’ expand the

exponential in equation (4.6) in a power series and get
> 1 J r _, _, -1
0@ =Y B (O0) Y mnton ntrotn gt () (Tegk ()
(4.7)
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where oy, . .., o, denote the r possibly different replicas and pq, . . ., 4, denote
the r possibly different components in each sum. We define the overlap
parameters gh!A" in the following way

H1-.-fhor M1 Hr
qhyhr TI"TTal T

(4.8)

. . . . . . 1
and insert them into equation (4.7)), which becomes a series in powers of NG

V 1
gn(0) =1+ _anﬁ 5T 502 24k;2 Z GaprysTa050795 + O(3)- (49)
a,B,v,8
AN

Here, we used a symmetric £J-distribution for averaging over the disorder
E; (note that the prefactor i becomes equal to % for Gaussian distributed
J). The odd moments of such a symmetric distribution vanish. With a
variance of 1 for this distribution, we end up in the last line, with A = 3.

In addition to equation (4.9), we derive a second useful expansion of g~
(by a separation of the overlap parameters of the form ¢ 5 =q, ﬁ( )+ iqgg( )

(i.e. into the leadlng part with £ — oo and corrections in ) further details

in the appendix

17 v A4 14 14
ok(#) = exp (k1 (1 + }quﬁ Lot s D qzﬁzfgazagozas’ﬁ
a,3,7,6
HsVm,p

= exp ( ang otoy) (1 + kzq o+ o Z iy okotolo;

uvnp

Zq’”@ ko)’ + O k2)> (4.10)

Convenient form of the free energy

In the appendix we derive a convenient expression for the free energy
of the m component spin glass on a Bethe lattice in terms of g, previously
derived in Ref. [72] for Ising spins. The final result for the free energy per
spin, f = F/N, is

nBf = klnTryg** ! (7)
k41

In £, Tr, exp (ﬁJZEaFa>gﬁ(F)gZ(5). (4.11)

a=1

This formulation of the free energy will be used in the following.
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The free energy in terms of the overlaps ¢,

The overlap parameters g/, are the crucial quantities to distinguish replica
symmetry and 1-RSB. They are calculated by using g,(d) as a weight func-
tion. We want to express the free energy in terms of the overlaps. To this
end, we insert the result of equation into equation . Then we
separate it into two parts f = fo + % f1 + ... by separating the overlap pa-
rameters g = qaﬁ( )+ %qgg(l) analogously, and similarly for ¢/;"5. For the
details of the calculation we refer to the appendix In summary, the free
energy consists of the following parts (up to order 1):

2

)\ v )\2 v v
mnBfy = T Z(qgﬁ(o))Q — InTrexp (? Z qgﬁ(o)ogaﬂ) (4.12)
a8

)\2 uv (0 )\4 vnp(0
mnBf, = -7 (qaﬁ( ))2 -5 Z (Qgﬁzg( ))2

a,ﬁ a,B,7,8
Hsvsm5p

) _mp(0) uvnp(0)
Z qaﬁ Ty dapys -

a,3,7v,6
V51,0

Note that the terms in qgg(l) have cancelled out and contribute in second
order of the free energy f, for the first time. We further see that we only
have to take the leading order in n of the right hand 81de mto account. As
the sums are of order mn as well as InTr exp( Za q a“aﬁ) (as will

turn out in the next section), evaluating the overlaps m zeroth order in n is
sufficient.

4.3.2 Resulting overlaps for m,k — oo and corrections

in L
m

The equations (4.12)) show the dependence of the free energy on the various

overlaps qZ;(O) and qg;zg(o) and on the term T = Trexp ( Za qaﬂ( )a“aﬁ)

Inserting equation (4.10)) into equation (4.8)) we see that we have to use T

additionally to calculate the various overlaps in zeroth order in 1 L according to

pr(0) 2
af T A2dg ””

between rephca symmetry and broken replica symmetry, it is necessary to
calculate T" both in the replica symmetric and, as a first step towards full
RSB, in the 1-RSB case. As replica symmetry should be broken in order #,
according to Ref. [41], we introduce the general framework of expanding T’

InT. Since the overlaps are the key quantities to distinguish
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towards higher orders in % and calculate the corrections up to the necessary
order of four (which answers the question of replica symmetry breaking for
the order 2, as Will become clear below). For this, we do not need to know
the corrections in 7, as the result of Ref. [41] is restricted to the SK-model.

In the following, we write the various overlaps ¢ as ¢(®©) = ¢(°» + %q(m) +
Lq" + L0 4+ L g0 and use a proper formalism to Taylor expand
around the zeroth order results ¢(°” to derive the determining equations
for the different orders of ¢(*). Details of the computation are given in the

appendix [B.3.1] The final result for InT has the form (up to fourth order)

1 1 1
th = mn(e — 2 — %TI'IH<MO) — % IDTT(M(;1>2 —+ WIHTZ
1 1
—InTy3+ —InT, +... 4.13
+nm3n3+nm4n4+ ), (413)

with the explicit expressions

3Tr(My )t 10(Tr(My1)?)?

SN AT DERETCRAVRE
o7 20T (Mg S6TY(M ) T (Mg )* 69(Tr(Mg)')?

ST (Tr(M; 1)?)3 (Tr(My ™))t A(Te (Mg ')2)*

85Tr(My )" (Tr(M, 1)3)2 285(Te(M; 1)°*)*
(Te(M; 1)?)? 9(Tr(M, 1)?)s
T _105Te(Mg')® | 360Te(My ') Tr(My')® | 225Tr(My ') *Tr(My )*

4 (Tr(Mo—l)Q)4 (TI‘(M&I)2)5 (Tr(Mfl)Q)S
1512(Tr(My 1)®)?  3681(Tr(My1)*)?  3820Tr(My1)S(Tr(My*)3)?
5(Te(My1)2)° 8(Tr (Mg ')?)S 9(Te (Mg ')?)¢
274Tr (M) Tr(My )4 Tre(Myh)3 1302Tr(My ) (Tr(Myt)?)3

(Tr(Mg)?)° 3(Te(Mg')?)T
6925 (Tr(My ) Tr(M; ')®)?  8655Tr(My )4 (Tr(M1)?)
24(Tr( My 1)2)7 3(Tr(My1)2)8
67485(Tr(My1)?) (4.14)

81(Tr(M, ')?)°

The matrix M, has the entries Mogg = 2(e—24)005 — /\qu’g, with the param-
eters z, resulting from the integral representation of the constraint ,° = m
and € to ensure convergence of Gaussian integrals while evaluating the Trace
over the spins. It is introduced in the appendix in more detail. The
result of taking the Trace of any of the various powers of the mn x mn matrix
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Mgy' is of order mn, hence InT is of the necessary order in n. In the fol-
lowing we denote the corresponding terms for the replica symmetric and the
1-RSB-case as T and T}#5B resp., with t = 0,...,4. From the derivation
of these results, it should be clear that all of these terms depend solely on
the overlaps qgg Now, we start with the calculation of the overlaps in zeroth
order (m — 00) in the replica symmetric case.

Replica symmetry

In the replica symmetric case we have two different possible overlaps to cal-
culate, (choy) and (oho}). Due to isotropy of the m component spin glass
model, overlaps of different components p and v are set to zero [44]. This
can be explicitly shown by calculating qgg using spherical coordinates, see
appendix [B.4l There we also see that a four-spin overlap is equal to zero if
a certain component from 1 to m occurs only once (or for an odd number,
in general). Therefore, with the notation ¢, = (oho%) and qi1 = (oho}), we

have the following ansatz for the sums of the overlaps q; and g/’

Z ng = QIl(;Ml/ + Z q25/u/
a,B s
"% w,v

aktf
=mn(n — 1)q11 + mnge

Z Ghgly = mn [(n —1)(n —2)(n = 3)(q1111 + (m = D)p1n)

o,B,7,6
v m,p

+6(n —1)(n —2) ((1211 + (m — 1)parn + (m — 1)p121)
+3(n—1) ((J22 + (m — 1)pae + (m — 1)p22mix)

+4(n — 1) (gs1 + (m — D)psy) + a4 + (m — 1)])4} . (415)

The notation for the four-spin overlaps is analoguous to the two-spin overlaps
@ = (ohotolol), pi = (ololo’or), gs = (ototolah), ps = (otatala?),
(22 = (Ohotoboh), par = (TLOROL0Y), Paamix = (OHOLTH0Y), 11 = (ohohiohot
po1 = (ohoholol), p = (ohololot), quun = (ohohotol) and piy =
(ohogotof) (where a, 3,7,d, resp. p and v ought to be different).

For the matrix M in equation (4.13)) (defined in the derivation of equa-
tion (B.16)) we have the entries My = (xéag — )\2q£?)>5w,, with = 2(e —

z)— )\Qqéo) + /\QQS), and we find the eigenvalues = (with degeneracy m(n—1))
and z — n\%¢\? (degeneracy m) leading to det M = 2™(=1 (2 — nA2¢{%)m.
We solve the saddle point equation for z resp. z (B.19)), and take the limit
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0=2*—z(n Chl +1)+)\ZQ11(”_1)

(nA
1 /

of which we choose the positive sign of the square root, since xzq is an eigen-
value of the positive definite matrix Mj. For In T} this leads to (only regarding
terms up to O(n), which corresponds to the replica limit n — 0 in equation
(4.11))

1
InTy™ oc mn (e — zo — 2—Tr In(Mo))
n

mn mn )\Qq(o)
= 5 (w0 +Na” = XqiY) — == (In(ag) = =H5). (417)
Lo
0 _ _2 _d RS : : : :
The overlap ¢ 2 70 In 7> is obviously 1 and, since there is no further
ds

dependence on qéo) in any of the following orders of In 7%° has no correction

terms of any higher order. This result will hold for the broken replica symme-

try case. For q§20> we have to calculate %an(n—l)qgo) = (0) In TH9 SOy

=d1n1
(which means to take the derivation of In T%° with respect to qgl) at the value

of qg) = q%?o)), which yields

X oo 1 22 dr A2q00
SRANPHCU N (T 12901 ——). 418
2 ql]_ 2 ( _'_ Zo + dqgl) ( xg xo) ( )

We find the saddle point equation (4.16) for zy (before taking the replica
limit n — 0) in the last bracket. This leads to

_q(oo) . )\QQQO
11
(5 +4/3 + 2"y
1
= ¢V =1-= (4.19)

N
from which follows xy = A, i.e. we explicitly find the solution in zeroth order.

From above calculations (leading to equation (4.12))) it is clear that the
overlaps have no dependence on n. With these results we are able to cal-
culate the four-spin overlaps ¢},;"% using Wick’s theorem [53], which allows
to express them in terms of the two—spin overlaps just found. As Wick’s
theorem only holds for Gaussian random variables, it is by no means obvious
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that we can apply it here. However, in appendix we show that it holds
for m — oo. The single component (four-spin) overlaps are

i =3 = =802 )
di = a0y +2a7) = qgi(f)—3—§+%
N R L B
) =3 = A =30-5)
V=3 = 4" =3 (4.20)

The right hand side of these equations is the zeroth order result.

Higher orders are evaluated by using an appropriate Taylor expansion
around qﬁ‘”. From now on, we have to use Tr(M;')! in various powers
t=1,...,8. To do so, we have calculated (M )aﬂ = (cbap+d)d,, (ie. with

A2 Aqu
O

on the n(n — 1) non-diagonal blocks) by diagonalising M, and evaluated the
necessary powers (Diagonalisation and matrices in appendix . It should
be emphasized that we only have to take the leading (zeroth) order in n into
account, as the overlap must not depend on n (the replica limit is implied
in taking only the leading order in n in the derivation of the free energy in

terms of qaﬂ, equation (4.12)).
01)

c= % ord= on the diagonal of the n diagonal blocks of size mxm, resp.

(0)

For q11 , we have to Calculate the right hand side of & Smn(n — l)q11 =
(0) In T in first order in =. The first order term in - from equation (4
d11

is —5= s InTr(My 1)? = =5 (0 In TR, We insert the zeroth order re-
dgyy nm dq

sult for qgg) to keep it of that order and denote this proceeding by O (d;'fO) In TR ) =
4q11

(d L In TS > Furthermore, we Taylor expand the first term in

(00)

equation (4.13)), ﬁ In TRS into first order around ¢;; ’ and denote this or-
11

0 00) °
qgl):q& )

(01) . .
(0)_ (00) “d11 (WhICh is of the
911" =411

(o1)

order i then). We note that this term includes first order overlaps ¢;; . In
(01)

~ d RS\ _ _d (_ad RS
der with Ol(m InTJ*) = P (d oy In T )

summary, we get the following determining equation for ¢;;

2
S = 04 (T — 0oy

In 7%, (4.21)
11
2 dQ11 d g?
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with the result qﬁn) = . In order to compare the replica symmetric

)\(2)\ D)
results W1th the 1-RSB results it is necessary to evaluate xg (qgl)) up to fourth

order in —. In first order we get x¢; = —(2/\ )

Calculatlng higher orders of q11 is straightforward. By taking the corre-

sponding orders in % in the Taylor expansion of T%% around qﬁo) we find
the following determining equations
2 d 1 d d
_iq§§2> =0 (—5 0 T5™) = 501 (=5 W T{™) + Op(—q7 In ")
2 dQ11 2 dqy; dQH
A2 d 1 d d d
— 2l 03( I TP = SO05(—5 W T) + O1 (—5 InT3¥) + Oo(— In T)
o i 2 (0) (0 73
(111 dqy; d‘111 dqy;
N (04 RS 1 RS RS
——q11 (94( lnT ) — =0s( In 71" 4+ Oy (— In T5)
2 Q11 2 dgq ) dCI11)
+ O (W InT*) + O, ( InT,%). (4.22)
dqy; 11
For instance, the notation Os( f(qﬁ))) stands for W( f (q§1))> 000

411 =
(01)y2
0 00 ’ (qll )
q§1)=q§1 )

. We see that this procedure is iter-

02 &2 0
q( ) + 5 2 4 (0))2 (f(qgl)>)
ative, since one needs to know the lower order results in order to solve the
higher order equations. The solutions are

(02 216X% — 136 + 1

M= oNea— 1)t

03 112872)\" — 203352\% + 12288472 — 24946 — 1
= 2A(2X — 1)

(04) _ 1

0 161280\ — 4783680\ + 12096864\ — 7224624)\®

T 2421 — 1)1 (
+ 296576352\7 — 2774291654\° + 7537191576)° — 9983356072\

+ 7432229600\ — 3191593212\% + 741447184 — 72398659),
(4.23)

: _ >\2q(1)% A2 >\2q(1)% 2202 qll 2203 (-7302)2
with oy = 5775 — D17 03 = 531 T @1y and o4 = 554 T A1 T T

In the following subsection we will evaluate the corresponding results for the
1-RSB-ansatz to gain some insight into the breaking of replica symmetry for
finite m.
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1-RSB

In the case of one step broken replica symmetry, according to the usual replica
symmetry breaking scheme [§] (see also the introduction of this thesis), the
n replicas separate into * blocks Qg (K = 1,...,n/r) with r replicas apiece.
Spins from replicas within the same block have a mutual overlap of ¢i;2 =
(0}, k0% x) and spins from replicas taken from different blocks have an overlap
of 111 = (0, g0 ) (K and L denoting the block number). Alike to the
previous section, we have to take the replica limit properly, which means to
find the first order in n of the right hand side of equation (4.12)). Hence, the
overlaps will not depend on n, and r will finally be in between zero and one
(as 1 < r < n before taking the replica limit). The replica symmetric ansatz
of equation (4.15)) changes in the case of 1-RSB to

Z qaﬁ - Z Z q11 115;U/ + Z Z qi1 25uu + Z Z q2 25;11/

K,L (a€Qg#Q138) K (a#ﬁ)eﬂK K aGQK
v

=mn(n —r)q111 +mn(r — 1)gi12 + mngas

Z Gors = mn(n—r)(n—2r)(n=3r)q111,1111+6mn(r—1)(n—r)(n—27)q1111,211

«,3,7,0
v n,p

+3mn(n —r)(r —1)(r — 1)gii11,20 + 4mn(n —r)(r — 1)(r — 2)qi111,31
+mn(r—1)(r—2)(r—3)qi111.4+6mn(n—r)(n—2r)ga11 211 +6mn(n—r)(r—1)ge11.22
+ 12mn(r — 1)(n — r)ga11.31 + 6mn(r — 1)(r — 2)ga11.4 + 3mn(n — 7)qaz22

+ 3mn(r — 1)gae4 + 4mn(n — r)gs1 31 + 4mn(r — 1)gs1 4 + mngaa + - - - .
(4.24)

We omit those four-spin overlaps which contain different components. They
do not contribute in the following, as we will see in section 4.3.3. To evaluate

In T} 9B we have to diagonalize the Matrix MO for this ansatz which has the

entries Mogco, geq, = ((y+)\2q§(i?11)(5 5—A? ‘111 25KL - Q11 11)6/“/7 with y =

2(e—2)— )\Qqé?Q) + A2q§?)2 We find the eigenvalues y (with degeneracy m™ (r —
1)), y2 = y—Mz(ql? 2= ai711) (degeneracy m(%—1)) and ys = y—rA* (g7, —

qﬁ)n) n)\2q11 11 (degeneracy m) (for further details see appendix |B.6|). This

r=ln/ry. i )y3 , which simplifies when neglecting terms

gives det M = y™!
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of order n? and higher, and yields for equation 1) in zeroth order in %

mn mn 1
In TolRSB 9 (?/ + )\2(12 2 >‘2 d1q 2) - T(IH(?JO) - - ln(yo)
1 )\26111 11
-1 — A Ag) — —————— 4.25
+ —Inyo — rA°Ag) " —7’)\2Aq)’ (4.25)

where we abbreviated qﬁ)?z - qﬁ?n to Aq. The saddle point equation for z,

(0)
. . . 1 1 1 A2 11,11
resp. y (with the solution yg) is 1 = w e T rmemag T emiag?

equivalently

or

0= yo(?/o - 7’)\2(%1,2 - Q11,11))2 - Zl/o(yo - 7"/\2(911,2 - Q11,11))

1
+(1 - ;)T)‘Q(QH,? — q11,11) (Yo — A% (12 — @11,11)) — YoN quin. (4.26)

We will denote this equation by saddley(qg?g, qﬁ?n). Unfortunately it is not

generally solvable. Nevertheless we can derive the desired results by making
use of it to solve the following equations, which determine the overlaps qﬁ)’z

and qgn, where

2
ooy d 1RSB
Emn(?" — g5 = q§(1))2 InTy 09, =a\")
9 (00)
w 1 rA d11,11
=(r—Dg=-1+ * .
( )19 Yoo — TA2Aqy (Yoo — TAZAG)?
(4.27)

We find the derivative (0) by differentiating saddley(qu)Q,qgl)n) (equa-

112

tion (4.26))) with respect to q11 ', and get

dyo  2rNyg — 22 X'y Ag — 2rX2yo + Nyo + 2r2 A Aq — 2r\*Aq
dqg?g 3ys — 4rX\2ygAq + r2 A (Aq)? — 2yo + 2r\2Aq — )\Qqn )

(4.28)

As for the replica symmetrlc calculation, the notation Oo(d 0) ) means in-
q
serting q§12) and q11 11 for the general overlaps q§1)2 and q§1)11 1nto equation

(4.28)). The notations yoy and Agqy denote the zeroth order results in = - for
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Yo and Agq resp.. Analogously to equation (4.27)) we derive

2
(00) d 1RSB
—mn(n —r)q In 7|
92 ( ) 11,11 — qgg)n 0 qﬁ),z:tzﬁ?i
)\QQ(OO
(00) 11,11
= (n—r)g = ) 4.29
( ) 11,11 (yoo o 7,)\2Aq0)2 ( )
The last line of this equation contains the useful result (for n — 0 and qﬁon

0) yoo — TA*Agp = X\. With it we rewrite equation (4.27)) to (r — 1)q§?02) =

-1+ % + qu(i?l)l. Inserting both results into the saddle point equation (4.26
leads to

1
P A (1—gii) =4t — 1+ 5

A
1
00
= dh=1- 1. (4.30)
which follows after again using (r — 1)q§202) =—1++ —i—rqll ) and for Agy # 0.
However, this leads immediately to q§1,2) =1- % causing a contradiction to

Aqp # 0. Therefore replica symmetry holds for m — oo, i.e. we have
reproduced this important result from Ref. [41].

To see whether replica symmetry is broken for finite m with the one step
replica symmetry breaking ansatz, we have to evaluate higher orders of qg%

and qﬁ?n. In principle, we follow the replica symmetric procedure of the pre-
vious subsection, but we have to be aware of the missing explicit solution for
yo(qﬁ?Q, qﬁ?n). That is why we treat y, (and for convenience yo = yo—rA?Aq)

. 0 0 0 0 0 0
as further variables of T'/5 (y, (qgl)Q’qgl)ll) 92((151)2&51)11) q§1)27Q§1)11) We
get a thlrd equatlon for yo, addltlonall to the determining equations for

qﬁg and q11 11 by expanding saaldley(q11 9, Q§1)11) to the corresponding order

x. Furthermore, we have to take account of the derivatives ddg‘{?) and aé—%g),
q11,2 di1,11

. They have to be expanded to

TlRSB

which occur, for instance, in (0) In
dgyyy

the necessary higher orders as well.

As in the replica symmetric case, we have to calculate Tr(M, Yt up to
t = 8. We give the result for n = 0 here and refer to the appendix for
further details on powers of Tr(M;*):

(Mal)gléﬂl{,BGQL = (Cl5a[3 + o0k + 03)5”,, (4.31)

where ¢; = i, Cp = —-+ and c3 = ——— + L. We find the equa-

yQV yzn y3n
tions determining the orders to —z L analoguously to the replica symmetric
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case in equations (4 and 2) by regarding the corresponding orders

of —&— InT'RSB and 4T 1RSB . Additionally, we have to expand the
dqyyo 411,11
) (0 )

saddle point equation for y, saddle,(qy;, ¢1111)-

For all orders x the system of equations for yq,, qﬁ’@ and Q§(1)ﬁ)1 is (with a

different right hand side Ijx(r))

1 -2\ 1+2r(A—1) —2r(A—1) yOx .
—1—2r(A—1) 1+22A—=1) —22(A—1) | [ A2 2 = L,(r),
w(A-1) 2201 220 -1) ) \azg0)

(4.32)

since the matrix on the left hand Side is solely determined by the first order

derivative of saddley(qﬁ)%qﬁ)n) (0) In T3E9B and —g— In THE5B vesp. and
d11,11

therefore appears to be the same for each order 2. The three equations are not
linearly independent but have in general a two dimensional solution space.
To see whether this system of equations is solvable, we use the left eigenvector
to the eigenvalue zero, which is [ = (—-1,1,1 — %), and multiply it to El,(r),
which must yield zero in order to make the solution exist. In first order we

find

0
Li(r)=[ -2(r—1)(A = Dzo |, (4.33)
2r(A — Dzy

which satisfies [ - El( ) = 0. Due to the similar structure of equation (4.32])
in each order in =, we find two solutions (in each order) of the general form

= (0, /\2qa,)\2qb) and @y = (a, \?q, A\%q) (the replica symmetric solution),
with Mg, = Loo(r) + Las(r), Mgy = Nga + 75555, ¢ = qit” and a = a,
(with L,, we mean the component y of the solution vector in order ). The
solution in first order uy; = @y +ay(r) (e — ;) (with a parameter o scanning

the solution space) then is

Yo1
N 01
Up1 = A? §12)
01
)‘2 gl 1)1

0 1
2X(1—)) A o (1) 1
= 2 s ——— *
_)\(%j\rZrl())\ 1 2 —1)2""
(2x—1)2

(4.34)

1-1

We see that the solution space for 1-RSB includes the replica symmetric
solution. In principle, we could insert this solution space into the free energy,
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equation (5.24)), and maximize it with respect to r and a;(r). Despite not
knowing the special dependence of a; on r, the free energy is independent
of both parameters, see appendix [B.7 A different, successful way to get the
final value of « is to calculate Lo(r), i.e. the solution vector of the system of
equations in second order, following the presented expansion method. This
includes squares of the solutions in first order, o1, qﬂg and q%?,ll)l, due to the
expansion of the Taylor series up to second order. If there is a solution in
second order, the product I - Ly(r) must be zero and indeed we find o (r)2 —
2a;(r) =1 = a3 = 1. This yields a replica symmetric result in first order
with the corresgjonding values from the replica symmetric evaluation from
section (4.3.2 ql(il% = qgl)l = qgl) and yo1 = xo1. The vector Lo(r) (with
a; =1)1is

1

(2A—1)4 )
Lg(?") = —2(7’ — 1)()\ — 1)1’02 + m . (435)
27"()\ — 1).%'02

The solution in second order can again be constructed by calculating the
explicit form of the general solution vectors u; and ws, and build uy =
Uy +ag(r) (e — ;) (with a new parameter as(r) spanning the solution space).
We get

Yo2
oy = )\26152?2)
)‘2(152?1)1
0 1
= 2(A = D)zo2 + m + aa(r)zes - 1 ) (4.36)
2(\ = D)aoy + rogyr + 22 1-1

The free energy is again independent of the choice of as(r) and 7.

The iterative character of this procedure forces us to go to even higher
orders, in order to find the value of ay(r). The resulting solution vector in
third order is independent of a(r)

o 2)@022
L) = | =200 — D gy — 2o 4.37
3(T) - (r )( ):1303 (2x—1)2 ) ( . )
27‘()\ - 1)1’03
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and the overlaps are

Yos
Up3 = )\2%(1)32)
2,
0 25?;3\(—?)
- Laa(r) + Las(r) Fag(r): sealte 4 Ly (r) — Lia(r) — Las(r)
Lao(r) + Las(r) + 25%)@1) QLE““’(T)) + L31(r) — Lsa(r) — Las(r) — 27@??:\@1)

(4.38)

The next order yields a solution for ay(r). It is

((r = D(20a(r) = (ra(r))?) — 1) 2 — L0 — (24— D)y + A2}
La(r) = —2(r — 1)(A — D)ags — (2X — Doy + 2249V :
2r(A — 1)xoy
(4.39)

and forces a(r) to be equal to one, in order to satisfy [- Ly(r) = 0. This result
corresponds to the replica symmetric solution found in the previous section.
Therefore the m-component spin glass favours replica symmetry up to order
# instead of breaking it in a first step of replica symmetry breaking. This
result does not reproduce the findings of Ref. [41], where replica symmetry is
broken for all finite m. However, in contrast to us their method of choice is
the calculation of the eigenvalues of the Hessian (the matrix which governs
the fluctuations around the replica symmetric free energy). In order # some
of these eigenvalues become negative.

4.3.3 Corrections in %
In order to calculate the %—corrections to the overlaps ¢ from the previ-
ous section, we have to take along the %—terms in the expression for g*

(equation (4.10)). First of all, we use bimodal J;;, i.e. bonds distributed
according to the £.J model, and analyse the case of Gaussian bonds after-

Tro070%g5(5) 1 :
i°j9In 1
Trogh(s b0 order 7. To this end,

we expand this equation by a factor Tr, exp (’\72 Za qgﬂ( )U“ag) and get

wards. We want to calculate ¢} =

Troofolgk(3) Tr. ok (5 -1 .
qut = 7L "W(O) < > 29n(7 )HV(O) ) . To order % this
Tro eXP( 2 Zaw@’ aﬁ H E) Tro exp (7 ZO" 0‘[3 u E)
8% 12314
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18

A2 A2
st(1l S v(0 1 v(l 1
qi;( ) _ Tr,o; 0§ exp (? Z qzﬁ( )agaﬁ) (; Z qgﬁ( )agaﬂ
oy o
nv

a,B,v,6
PRI

A v v A V0) o X2 O
+55 O i Oatotolot— (3 aoton)’ )/ (Tr exp (5 Y di Vokot) )
o, a,B
7%

)\2

st(0 v(0 v(1l v

qi;( "Tr, exp (7 quﬁ( )‘75% ( un : )‘7“%
o,

o,B3,v,6
svsm,p Hyv

/\4 /\4 v A° v v
o1 > dhi” 0“0%020§—§ > qﬁﬁ(0)0502)2> / (Tro exp (5 > qg;%—gaﬁ)) .
a,B a8
pov

(4.40)

We can simplify the parts including four-spin overlaps in this equation by
using Wick’s theorem to write (regarding that each component has to occur
at least twice in the four-spin overlaps)

vnp(0
<24k > O (805t OpinOuptGyup0) — 8k Z g g% 5W5np)guaﬁgnaé

o,B,7,6 o,B,7,8
VM5 P v, P
At ¥(0) 76(0) o(0) | pol0) wn(0)
= <24k E , (qgﬁ ng +qa7( )qﬁé +as qﬁz )(5NV(5770+5H775VP+6M9677V)
a,f,7,0
VM5 P

)\4 v(0 v
- 8’k Z g,@( )ng 6#1/571/))‘750'5‘720([5) =0. (4.41)
,B3,7,6
TR N

We have regarded that qgg is only non-zero for ;4 = v and switched the indices

of the remaining three terms of the first sum (e.g. > a5+ qu(o)qw( )auagUZUl’;éW(S,,p —
v, p

Za gt qaﬁ ng(o)a“aga”agéwcinp) in the last step in such a way as to cancel

them Wlth the second sum. We note that these terms would not have can-
celled if we had used Gaussian distributed .J;; (due to the different prefactor
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1 1
of the first sum, 5; — ¢

2 v v 2 4 v
Tr,o50h exp (4 ZZIB q(’iﬁ(o)o“aﬁ) (A— Za,ﬁ qgﬁ(l)afiaﬁ)
Tr, exp ( Za o qgg(o O'adﬁ)
Tr, exp ( Zaﬁ qaﬁ( O'“O'ﬂ) ( Za,@ q“ v(1 )0“0 )

oo (5 5y 57k

). With equation (4.41]) we get

st(l) _
i T

st(0
g

(4.42)

From now on it is a combinatorical exercise to derive the desired results.
As already mentioned there are only overlaps for s = t. We point out that
possible four-spin overlaps consisting of two pairs of explicitly different com-
ponents do not contribute to qf;(l) (e.g. pi111 or pa2). The reason is that
these terms would contribute with a factor (m — 1) or even (m — 1)(m — 2).
As qf;(l) must not depend on m, these terms must cancel. On the one hand
they do so as we have seen by making use of Wick’s theorem. On the other
hand, for Gaussian distributed J;; they do not cancel after using Wick’s the-
orem (though the combinations of overlaps are exactly the same) Therefore

1(0)

they already have to cancel in each of the sums 3; Za g qaﬁms ohogolloy

and & (Za qaﬁ( )0“06) separately (resp. after taklng the Trace over afaj

times each smgle of these sums). We have been able to verify this conjecture,
but omit this lengthy calculation.

Replica symmetry

In the case of replica symmetry we have to calculate equation (4.42)) for i = j

determining qé and for ¢ # j determining qll) We find

)\2
1 0 1 0
g5 = 5 <Q§ 4+ (n =1l + 20 — 1)V + (n—1)(n — 2)61&)6151)1)

)\2
— Smng” (a6 + (n = el al?) (4.43)

and
)\2
1 1) (0 1 1) (0
qgl) = ) <2Qé )QZ(H) + (n — 2)(1; )qg1)1 + 25]%1%1&2) +4(n 2)Q§1)Q§1)1 +(n—2)(n— 3)C]§1)Q§1)11>
)\2 0 1
5 “mng}} <CJ§ ' + (n 1)Q§1)q§1)> (4.44)

We insert the zeroth order results and neglect the term proportional to mn, as
the overlaps must not depend on n (these terms should cancel if we had taken
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terms proportional to n in the first part along). Then, both equations (4.43))
and (4.44) simplify to

(2X — 2)gl) — (2A — 2)¢8” = 0.
(4.45)

We see that qél) = qﬁ) is the solution. Since there shouldn’t be any correc-
tions to the self overlap, qél) is zero, and so is qﬁ). In the case of Gaussian
distributed J in equation we find a different result as the terms from
equation do not cancel by using Wick’s theorem but result in a con-

stant ¢(A) of order 1 in m and n.

1-RSB

The combinatorics are very similar to those in the replica symmetric case,
but have to be extended to distinguish overlaps consisting of spins from the
same 'replica-block’ and from different ’replica-blocks’. Therefore we have
to calculate three different overlaps: q§12) for the overlap of the spins o}, 07
(the second lower index L, K =1,...,” indicates the number of the replica

block), q11  for ojp o7 and qil 11 for o707y, This time we find

1 1 0
) a5 (n—r)asy
)

2= ?(qg% z(; ,
0
+ q§1 ( n—r)(r— 1)Q§1)1 22 T (r—=1)(r - 2)(151)1 4)

+ Q11 11( (n—r)(r— 1)(1&1)1 31T (n—r)(n—2r )Q§1)1,211)>

(0) (1) (1) (0

0
qé 90+ (r—1)q29 4)+2(T_1)Q11 2Q§1?4+2(”_7‘)Q11 11431,31

A2 0 1 0 0 1
- ?WWQ§ 2) (qé 2)C.Ié2) + ( 1)Q§1)2Q§1)2 + ( r)qgl?ll(.Al?H)a (4-46)

)\2
1 1) (0 1 0 0
Q§1)2 = b} <2q§ 2)Q§1)4 + Q§ 2) ((7” - 2)Q§1)1,4 +(n — T>Q§1)1,22)

0 1 0 0
+2CI£ : Q§2)4+4(7’ 2)q§1)2q§1)174+q£1?2((T’—Q)( 3)Q§1)11 4+(n—1“)(7“—1)q§1)11722)
0
+4(n— T)Q§1?11Q§1)1,31 +Q§1311 (2(7“ —2)(n— T)Q§1)11,31 +(n—r)(n— 27”)6151)11,211))

)\2 0 1 1 1
5 an§1)2 (qé 2)(152) + (7” 1)@%1)2%1)2 + ( )Q§1)11Q§1)11) (4-47>
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and

)\2
1 1 0 0
Q§1?11 9 <2q§ 2)51:&1)31 + qu) (2( 1)Q§1)1 31T (n— 2T>Q§1)1,211)

1 1 0 0
+4(r — 1)Q§ : Qél)l 31T (A ) (2(7’ —1)(r 2)Q§1)11 31T (n—2r)(r— 1)Q§1)11,211)
0 0 0
+ 2(151311‘152),22 + qgl?ll (4(7’ 1)‘151)1 22 T 4(n — 2T)Q§1)1,211)
(1)

0 0
T (2(7‘_1)(7“_1)Q§1)11,22+4(7°_1) (”_27")Q§1)11,211+(”_27“) (n—3r)q§1)1171111))

A2 0 0) (1 0
- Emnqil?u <Q§Q)Qé2) + (r — 1)(1;1)26151)2 +(n — r)QEl)llqgl)ll) (4.48)

Since q§1)2 = q§1)11 up to order 2, which implies that there is a single state,

resp. replica-block, we can sunphfy the overlaps gogys,LxmN 10 Gapys. With

q§12) = 0, all three equations (4.46)- (4.48) reduce to

1
(r— 1)‘1%1)2 = 7’(151)117 (4.49)

irrespective of the explicit values of gng,5. The general solution is

qﬁ)g 1
b ) =0 (, 1), (150
411,11 T

where t(r) (real number) spans the solution space. To find the value of r
and t, we have to extremize the free energy fs, which we derive by tak-
ing the next order in equation along, see appendix This contri-
bution to the free energy can be transformed further by finding all possi-
ble combinations in those sums of equation 1} which depend linearly

on first order overlaps to give Sfi 98 = Bfy(¢@) 4+ 2 Z (qag )

/\?4 ZTZ’M ng(l)ng( )QSEZS(O)JF o ((r — 1)51ﬁ)2 - qul)n) (Where f2(q(0)) de-
notes ﬁhe free energy depending only on zeroth order overlaps). The second
part is zero according to equation (4.49)) (for bimodal .J;;). For Gaussian
bonds it is equal to ¢(\) times the corresponding overlaps in zeroth or-
der. However, in both cases it gives the same contrlbutlon as the rephca
symmetric free energy and we have Gf1- %98 = S A Z (qaﬁ )2

At (1), np(1) _pmp(0)
T 2es dog A5 oy -

Summing over all possible combinations of both remaining sums and in-
serting the relation (r — 1)q§11?2 = rqﬁ?n, we find Bfy 98 = BfFS irrespec-
tive of the value of r, see appendix [B.7.1] We see that the free energy to
order k% does not change when breaking replica symmetry with the 1-RSB
breaking scheme for any block size parameter r.
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Gaussian bonds

Due to different moments of the distribution of the interaction constants J;;
of a Gaussian and a 4+J-model distribution, in case of choosing a Gaussian
distribution, equation and the following equation change slightly
in the prefactor of the four-spin-sum. Therefore using Wick’s theorem does
not eliminate all terms consisting of four-spin-overlaps as in equation (4.41)),
but we find

)\2
st(1 s v(0 v(1 v(0
05" = Tr,080} exp (5 > olo) ( Zq v “%* un Yotos) )
s
-1
X (Trg exp Zq” V(O)a“aﬁ )

X (Tra exp (? Z qg‘;(o)agog)) . (4.51)
a,B
P

Nevertheless, the Sums including four-spin overlaps produce only Zeroth
order contributions in k, making the homogeneous set of equations (4 an
inhomogenous one (we again disregard the second part ~ —qf; ©) as it is still
proportional to n.). We omit this paintaking combinatorical exercise and

present only the result of it. It is

(2) — 2) G }) <Z§;> — (22— 2)e(N) G) , (4.52)

1) is zero and find
RS,gauss

with ¢(A) = § > 0, independent of 7. We suppose that g,
qﬁ) = c(N), Wthh we can insert into the free energy (3f,

In case of 1-RSB the four-spin overlaps in equation (4.5]] - have the same
combinations of zeroth order contributions as for bimodally distributed bonds
(which are replica symmetric). Therefore the system of equations ([4.46)-
(4.48) remains unchanged, but there is a common constant at the right hand
side (equal to the constant on the right hand side of the replica symmetric

calculation, equation (4.52)), leading to
(r = Daitly = raitl +c(A). (4.53)
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As already pointed out in the computation for bimodally distributed bonds,
the free energy is the same as in the replica symmetric case, 3fy 1058 —

RS . .
B fy 78" irrespective of r.

4.3.4 Discussion

The purpose of this section was the analytical investigation of the breaking
of replica symmetry of the m-component spin glass. To this end we have
considered two kinds of corrections to the overlaps qgg of the fully connected
model in the limit m — o0, corrections for finite connectivity in % and
corrections for finite component numbers in % and % First of all, we have
confirmed the result of Ref. [41] that the fully connected m-component spin
glass is replica symmetric for m = oo. Unfortunately, we have not found
the breaking of replica symmetry for finite component numbers in contrast
to this publication. There may be several reasons for this failing. First
of all, it might be that we have to go to even higher orders in % to find
replica symmetry breaking. Another possibility could be that it is necessary
to introduce the two-step RSB scheme to improve the results. However, it
is striking that it is the expansion of the saddle point equation determining
y which forces the parameter aq(r) and as(r) to be equal to one (as they
occur only in the component L,; of each higher order z (determining oy, avs),
which is calculated from the saddle point equation for y). It is therefore the
starting point of large m (m — oo for which the saddle point equation is
derived), which prevents us from observing the breaking of replica symmetry
and it is not clear whether it is possible to find replica symmetry breaking
by an analytical continuation of the m — oo-limit in a power series, as
presented in this section. Nevertheless, we are not aware of a method to
circumvent starting from this limit. The above suggestions for how to proceed
might possibly overcome this problem. It would then be very likely that the
corrections in % display replica symmetry breaking as well. So far, these
corrections are bound to the result in order k% of this section, i.e. they do
not break replica symmetry. However, they enhance our general knowledge
of the free energy of the m-component spin glass, depending on the number
of components of the spins and on the dimension d of the underlying lattice
(which is directly related to the connectivity k+1), see figure We already
know that the Ising spin glass (& = 1) above six dimensions (3 = g) is solved
by full replica symmetry breaking, see the introduction of this thesis. The
same is true for all fully connected (é = 0) models with finite component
numbers, whereas replica symmetry holds for m — oo.

For finite connectivities in this limit we find f% = f'=#58 for any choice

of r (which satistifies (r — 1)qﬁ?2 = rqﬂ?n), i.e. the free energy is flat along
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Figure 4.7: Possible ”phase diagram” of spin glasses for general m-component

vector spins concerning the question of stable or broken replica symmetry

(depending on the number of components as % and the dimension of the
1

underlying lattice as 7). The line of separation between RSB and RS is

motivated in the text.

the 1-RSB mode. Assuming that this result holds for all orders in % and ad-
vanced replica symmetry breaking schemes (e.g. 2-RSB), it has interesting
consequences. On the one hand it reveals a region of coexistence of replica
symmetry and one step broken replica symmetry, which covers at least the
y-axis in figure [£.7] but possibly extends into the range of finite component
numbers to a line of separation between full RSB and the region of coexis-
tence. The argumentation for such a line of separation is motivated by the
finding of the upper critical dimension (above which the mean field solution
holds) of six for Ising spins and at least eight for the m-component spin glass
with m — oo, see Ref. [44] (but probably higher, see Ref. [50]). In case
of Ising spins this means that the mean field solution, which is full broken
replica symmetry, might not be the true solution below 6 dimensions. For the
large-m limit, the replica symmetric mean field solution could be replaced by
the coexistence of replica symmetry and one step broken replica symmetry
we have just found. Another consequence of our result is that it forces us
to take all saddle points (i.e. all possible solutions for qﬁ?Q and qﬁ?u) along
when computing the partition function of the m-component spin glass with
finite connectivity (which has so far not been achieved). Admitting that this
discussion is footed on the assumption that a finite connectivity might sta-
bilize replica symmetry (adapted from the Droplet picture), it offers a new
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perspective to investigate vector spin glasses.

114



CHAPTER 5. FLUCTUATIONS OF THE FREE ENERGY

Chapter 5

Sample-to-sample Fluctuations
of the Free Energy

As we have seen in the previous chapters, spin glasses of finite size exhibit
new phenomena, like a finite number of necessary components to build replica
symmetric states in thermal equilibrium. Quite generally, finite size scaling
of thermodynamic quantities is worth studying, as real models in experimen-
tal samples will always have a finite size. In spin glass physics, the problem
of calculating finite size corrections directly can not be solved. This would
require to include subdominant orders in the calculation of the partition
function, which is impossible, due to the massless modes present in the spin
glass phase (see the introduction of this thesis). These modes describe re-
gions of a ”flat” mean-field free energy [7], and yield an instability of the
mean-field solution at first order in perturbation theory, even in vector spin
glasses [42] 144]. Nevertheless, by other analytical and numerical methods
there is certain progress of the knowledge of the finite size behaviour of spin
glasses. This involves among other things the scaling of the free energy,
resp. the ground state energy. In the thermodynamic limit, these energies
are self-averaging. This suggests that for instance the free energy of a given
disorder configuration and system size N, F;x scales with the system size
as Fy = E;F;n = N fy, + fiN® + --- (with the shift exponent ©;), and
the sample-to-sample-fluctuations scale as AFz = E;(F%) — (E;Fy)? ~ N*
with the (in general unknown) exponent p [58, 59], where Fy = E;F;y is
the disorder averaged (E;) free energy of a spin glass of system size N, fi,,
is the typical extensive part of the average free energy and f; is an unspeci-
fied constant. These scaling properties describe the leading corrections to the
thermodynamic limit for large system sizes N. However, corrections of higher
order are also present and complicate extracting the scaling exponents from
simulations. Recently, the interest in scaling of the free energy fluctuations
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of the SK-Ising spin glass has increased [73, [55] [56], (74 [75] [76], (77, [78], 54]. It
is clear that spin glasses do not exhibit Gaussian fluctuations, which would
be the case for sums of identically independently distributed random vari-
ables, according to the central limit theorem (as the free energies in spin
glasses are far from being independent). Within the replica method, the
derivation of the free energy fluctuations is in principle possible as can be

seen by expanding the logarithm of the n-times replicated partition function
log E;(Z™)

2
log E;(Z") = logEJ(e"IOgZ) = logEJ(l +nlogZ + n?(logZ)2 4. )

2

=nkjlog Z + %((EjlogZ)Z — E;(log 2)*) + -
n2
= —nfBFN + EBQAFJ%/ +- (5.1)

It is therefore necessary to extract the second order term in n in the replica
formalism, which works successfully in the high temperature phase of the
mean-field Ising spin glass [73], [79]. However, in the low temperature phase,
the situation is more complex and a direct calculation is not possible.

A different field of active research can be connected to the scaling of finite
size corrections in spin glass physics: Extreme value statistics. There, the
question of interest is the probability of the occurence of extremal events, such
as the maximum (or minimum) value of a set of random numbers, see [80] for
an overview. Especially the discovery of the Tracy-Widom distribution of the
largest eigenvalue of a Gaussian random matrix [81], where the width of the
distribution scales as N'/3, has intensified investigations. Before, there were
three ”classical” universality classes of extreme values (the Weibull, Fréchet
and Gumbel distribution) and the Tracy-Widom distribution constitutes a
new, fourth class. Spin glass physics provide extreme statistics, too. As
one is interested in the configuration of spins, which minimizes the ground
state energy, the distribution of ground state energies of a certain spin glass
model for finite system sizes is a question of extreme value statistics and one
may ask whether this distribution falls into any of the known universality
classes. For instance, the distribution of ground state energies of the spherical
spin glass falls into the Tracy-Widom universality class, as its ground state
energy is the smallest eigenvalue of a Gaussian random matrix [38] [59]. The
m~component spin glass has the same free energy as the spherical model
in the thermodynamic limit and it would be interesting to compare their
distributions of ground state energies for finite systems. Usually in spin glass
physics, the quite formidable task of evaluating the distribution of energies
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is restricted to the analysis of the width of this distribution. As the free
energy at T = 0 corresponds to the ground state energy, we expect the free
energies in the spin glass phase to obey the same scaling relation as the
ground state energies, although this has never been proved. As the spherical
model is replica symmetric, it is interesting to ask whether the free energies of
replica symmetric mean-field models have a common universal distribution,
as in Ref. [74], and we will be able to deny this question in this chapter by
calculating the free energy fluctuations of the m-component spin glass in the
large-m limit.

A different situation occurs in the case of broken replica symmetry of
the Sherrington-Kirkpatrick Ising spin glass, which doesn’t fall in any of the
four known universality classes. There is growing consensus on the value
of p = 1/6, following a long debate. On the one hand, this value is sup-
ported by replica calculations of the large deviations of the typical free en-
ergy [82] [74, [55] 54], which are linked to the small deviations by a matching
argument of Ref. [73]. This picture stems from the assumption that the
rescaled variable (f — fy,)/on has a limiting distribution in the thermo-
dynamic limit. Large Deviations from the mean free energy are of order
1, i.e. they remain finite in the thermodynamic limit, but have a vanish-
ing weight for large N as the probability of observing them is exponentially
small. Small, or typical deviations instead, are observed with a finite proba-
bility, and vanish with some subdominant power of N. Following the line of
argumentation of Ref. [73], it is possible to match both regimes to describe a
single probability distribution of the free energy, which gets peaked around
the typical value f,, for large N. On the other hand, there are numerical
results [60] 58], 54 [55], which are not always clear in their interpretation and
do not rule out the value of 1/6. The competing value of 1/4 is supported by
heuristic arguments [58], and even more by the numerical results cited above.
This states, how difficult it is to find the exact value of scaling exponents by
numerics. Furthermore, the upper bound of y < 411 was analytically derived in
Ref. [76} [77]. In contrast to mean-field models (including the m-component
spin glass, which is the subject of this chapter), the situation is clear for
finitely connected spin glasses, which display normal Gaussian fluctuations,
as shown in [83]. This homogeneity of a large group of spin glass models
was further confirmed by numerics of the diluted Ising spin glass [84] and
analytical work [56].

In this chapter, we will adapt the method of [76] [77, [78], developed in
the context of Ising spins, to calculate the sample-to-sample-fluctuations of
the fully connected m-component spin glass in the replica symmetric large-m
limit. This method circumvents the direct calculation of the fluctuations via
replicas as described above. It is based on the derivation of an exact connec-
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tion between the sample-to-sample-fluctuations and bond chaos. Although
there doesn’t exist an intuitive explanation for this connection, it is a very
useful technique to calculate the free energy fluctuations. Bond chaos [7§]
means that two replicas with infinitesimally different sets of bonds are totally
uncorrelated in the thermodynamic limit, where the link overlap between the
two copies measures the degree of correlation. In addition to bond chaos,
chaos in temperature has been investigated intensively [85], 86], 87]. Here, we
will calculate the finite size corrections to bond chaos, by forcing two repli-
cas to have a certain link overlap different from zero, i.e. to be correlated.
We will use the probability distribution of such link overlaps to obtain the
free energy fluctuations of the m-component spin glass. Fortunately, replica
symmetry of the large-m limit simplifies the exact connection in such a way
that it is possible to calculate not only an upper bound, as in Ref. [77], but
a small interval of possible values of .

In the next section, we will show how to derive the exact connection be-
tween the fluctuations and bond chaos. Bond chaos will be formulated in
terms of the probability distribution of the link overlap q; of two copies of
the same spin glass but with possibly different sets of bonds, which is the o-
function Pas(qr) = 6(qr) in the thermodynamic limit (where the two copies
with only infinitesimal different sets of bonds (A.J) are totally uncorrelated).
It is the purpose of this chapter to calculate the finite size scaling of the
sample-to-sample fluctuations. Hence, we are interested in the finite size
corrections to the formulation of bond chaos in the thermodynamic limit,
which is the probability distribution of finding a given link overlap different
from zero, and denoted by P.(qr), as will become clear below. In order to
evaluate the fluctuations, we have to find various moments of the averaged
link overlap. Therefore we will calculate the probability distribution P,(qr)
in the second section by a large deviation approximation of bond chaos and
derive these moments from it. In addition to the large deviations results, it
will turn out that a part of the sample-to-sample fluctuations is dominated
by the small deviations of bond chaos. As we are not able to calculate them
directly, we will resort to results from chapter , resp. Ref. [48], and use a
finite size scaling ansatz for this region in the third section, similar to that in
section[4.2] In the last section we will use the results from both regions to cal-
culate the exponent p and point out the implications of our result. Although
the computation of this chapter involves detailed descriptions of technical
steps, the technicalities should not prevent understanding the general steps
and the accuracy of the final result.
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5.1 Exact Connection between the sample-
to-sample Fluctuations and Bond Chaos

We will present two exact connections between the sample-to-sample-fluctuations
of the free energy, AF), and bond chaos for the m-component spin glass in
the large-m limit, the first and second route to chaos, following the derivation

of Ref. [T7]. We will derive the final result for the second route

pary = S [Caeno@? - ) + B [ denoi)
N VP Y
=: T[21 + szz, (5.2)

where fo(€) = 26(1%3;;52) and go(€) = % are nonnegative functions of
¢ (and € "measures” the statistical distance between two sets of bonds {.J; }
and {J3} of two otherwise identical copies 1 and 3 of a spin glass and will
be defined below.) The link overlap is ¢i* = > i< (5i8)1(5:8))s, with

Np
Np = w in the fully connected model. As the thermal averages (5;5;)1

and (5;5;)s of both copies may differ, due to the possibly different sets of
bonds, the link overlap is a measure of correlation of the two copies 1 and 3.
The notation [...] stands for the average taken with the disorder averaged
probability distribution P.(qr) of finding a given link overlap ¢;. Next, we
will explain in detail where equation (5.2) comes from. To do so, we use the
technique of interpolating Hamiltonians [88]. The original Hamiltonian of
the SK-model of the m-component spin glass is

/1 -
H: NZJZ“SZ'SJ', (53)

1<j

where 5; are m-component spins and J;; are independent Gaussian random
variables with unit variance. The spins are assumed to be normalized in such
a way that §;°> = m. Using two copies of the m-component spin glass, each
described by an Hamiltonian of equation but with independent sets of
bonds, the technique of interpolating Hamiltonians allows us to interpolate
between the one set of bonds and the other. To derive the second route of
chaos ((5.2)) we have to define two of such interpolating Hamiltonians. In
each of them we use a parameter between 0 and 1, here t and 7, to interpolate
between a spin glass with a given set of coupling constants {.J;;} for t = 0
(or 7 = 0) and an identical spin glass with a different, independent set of
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coupling constants {J;;} or {J;} for ¢ =1 (resp. 7 = 1):

11—t oL [t oo
Ht = — T Z Jijsisj — N Z JZ-/]'SZ'S]' and

i<j 1<j
1—
M= =y 2o TS =\ 57 2 s (5.4)
i<j 1<y

For all values of ¢t and 7 between 0 and 1, these Hamiltonians describe the
same kind of spin glass, but with different bonds /1 —tJ;; + \/fJZ-’j (or
V1 —7Ji; +/7Jj5). The bonds are still Gaussian random variables with
unit variance and the disorder average taken with respect to all J’s will still
be denoted by E;---. The difference between ¢t and 7 will be important in
the following, as it is a measure of distance between the two sets of bonds of
both Hamiltonians. It is this difference which introduces bond chaos.

From each of the interpolating Hamiltonians we can calculate the free
energy of the system it describes, as —(F; = log Z; and —fBF' = log Z! with
the partition functions Z; = Trexp(—0gH;) and Z. = Trexp(—/H.). Based
on this, we can express the sample-to-sample-fluctuations of the free energy
in terms of the partition functions of the interpolating Hamiltonians, as

E;(log Zy —log Zy)(log Z; — log Z|)) =
E;(log Zy log Z1 — log Zy log Zy — log Zy log Z1 + log Zy log Zy)
— B(F2—F") = B°AF%, (5.5)

where we used the independence of the different sets of bonds to write, for
instance, F;log Zy log Z) = E;BFBF} = ﬁQFQ (the overbar denotes a disor-
der averaged quantity of the original spin glass of interest, i.e. Eq. ) On
the other hand, the sets at ¢ = 0 and 7 = 0 are not independent and yield
E;log Zylog Z, = 32F2. We further proceed by using the idea of Ref. [88]
to represent (log Z; — log Zy)(log Z; — log Z{)) by an integral over ¢ and 7

1 1 a 8 .
5%5@:/ dt/ dTEJalothglogZT, (5.6)
0 0

and to express the right hand side of equation ([5.6]) in terms of thermal link
averages, like (5;5;), as in Ref. [77]. We refer the reader to the appendix
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for a detailed calculation. It results in

0 0 ,
EJa lotha—logZ

16N2 E; Y (((5:5)(5e8))e — (5:57)e(5k81)e) (((5:5))(5k50)) 7 — (5:8))- (5051)7)
ijkl

2
Y ﬂTﬁ 7= (B (G550 - ). 6
The subscript ¢ or 7 on the thermal averages indicates whether the average is
to be taken in a system with Hamiltonian H; or H.. Equation involves
link overlaps of two replicas, for instance replicas with the label 1 and 3,
with possibly different bonds, depending on the explicit values of ¢ and 7,
0 = w0t Lies (350005550 = sty (L (s s) ) = m2N) (the
latter part is the formulation we will use in the next section). To manipulate
equation further, we need four different replicas labeled with upper
indices (1) to (4) (according to the interpolating parameter, their thermal
average is taken with), where replicas 1 and 2 have Hamiltonian H; and
replicas 3 and 4 have Hamiltonian H,. With them, the right hand side of
equation can be expressed in terms of link overlaps of those four replicas

log Zta2 log Z! =

(N —1)2p* 13 23y( 13 _ 14 v - 15"
TEJ«QL —dqr )(QL — 4y )> + 8@@

So far, the derivation of the second route to chaos does not differ very
much from the derivation in Ref. [77] in the context of Ising spins, besides
the formulation in terms of the link overlap q;. However, in contrast to the
Ising spin glass, the m-component spin glass in the large-m limit is replica
symmetric. If this were not the case, it would be necessary to calculate simul-
taneous multi-replica overlaps (such as, for instance, the term E;{q3¢?3)),
which was not possible in [77] and restricted that work to calculating only
the second part of equation , resulting in an upper bound for i (to be
precise: The upper bound was derived using the first route to chaos, but
the calculation is similar to here, as will become clear below). The multi-
replica overlaps must be calculated with the joint probability distribution
P1?3(q?,¢?3) of finding both link overlaps ¢;* and ¢7* simultaneously (the
parameter € serves as a “measure” of the statistical distance between the two
sets of bonds with interpolation parameter ¢, resp. 7, on which the distri-
bution depends, and will be introduced explicitly in the following). Fortu-
nately, in the case of the m-component spin glass this distribution factorizes

)
)
7ot

Ey(q’) (5.8)
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into P'*(q13,¢%) = P.(q}*)P.(¢?*) in the case of replica symmetry, where
different replicas are not correlated in any way. This reflects the fact that
replicas with the same interpolation parameter will be in the same equilib-
rium state. A similar statement holds for the four-replica probability distri-
bution P}?**(¢}3,¢3*). Making use of this in equation (5.8)), the free energy

fluctuations can be written as

parg =D Lo [ () - 0)

-1 52

v ) a6
The notation [...] in the last line stands for the average taken with the bond
averaged probability distribution P.(qr) of finding a given link overlap q.
Up to now the overlaps ¢;* depend on the two parameters ¢ and 7. Since
they describe different sets of bonds (the set of bonds for the parameter ¢ in
equation (5.4) is /T — t.Ji;+V/tJ] Ji;» whereas for 7 we have /1 — 7Ji;++/7J}}),
one may ask if it is possible to express the difference between both sets in a
single parameter. As already mentioned, it is possible and the parameter €
measures this distance between both sets of bonds. In Ref. [77] it was shown
how to rewrite the configurations of bonds from their original formulation

in terms of ¢t and 7 into a formulation solely depending on € as \/11+7 =

v1—1ty/1— 7. In this formulation, the two sets of bonds are identical for
e = 0 and completely uncorrelated for ¢ = oo. To derive this simplification,
one takes the configuration of bonds from the first of the two interpolating
Hamiltonians in equation Hi, K = V1—1tJ; + VtJ)j, to be the
reference configuration in the following. The configuration from the second
interpolating Hamiltonian, M, is Ki; = /1 —7.Ji; + /7Jf;. Both K}; and
K;; are Gaussian random variables, since the basic random variables J;;,
Ji; and Jj; are Gaussian random variables as well. The correlation of both
Conﬁgurations can be calculated by averaging over the disorder and gives

E;K} K = /1 —1t/1—7, due to the independence of .J;;, Jj; and Jj; (such
that £ JJZ] Ji; = 0, for 1nstance) The alternative formulatlon in terms of €

takes K7 9 and an other, independent set Kj; as the building blocks of the
random variables K;;(€) (with an unspecified parameter £). As both K?j and
K;; are Gaussian random variables, K;;(&) can be regarded as a possible set
of bonds as well
1 §

—— K+ ——K;.

/1 + 52 J /1 + 52 J
For £ = 0, we find K;;(0) = K., and for consistency with the first formulation

iy
in terms of ¢ and 7, we require K;;(§ = €) to be equal to K;; (the set of bonds

K () = (5.10)
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CHAPTER 5. FLUCTUATIONS OF THE FREE ENERGY

with parameter 7), which finally determines e. This is achieved by making
both formulations statistically equivalent, which means that the correlation
between both configurations of bonds from the first formulation (in terms of
t and 7) and the second formulation (in terms of €) must be equal. As the
correlation between K;;(0) and Kj;;(e) is E;K;;(0)K;j(e) = ﬁ, we find

1 — — —
—m —\/1 t\/l T.

With this relation, we proceed by substituting 7 in favour of € in equa-
tion (5.9). The integrals over ¢ can be solved [77] and the result is equa-

tion (5.2), B*AF} = (Nfllﬁ)QﬁLl Iy + (N741)62 I5. Finally, the dependence of ¢13
on t and 7 is replaced by the sole dependence on e¢. The right hand side
of equation , the second route to chaos, shows the connection to bond
chaos, which is represented by ¢, the measure of distance between two sets of
bonds. The following sections answer the purpose of calculating the integrals
I5; and 5. Their indices denote the first and second integral of the second

route to chaos.

The derivation of the first route to chaos is similar. Instead of both
interpolating Hamiltonians in equation (5.4)), we use only the first one, H;.
One finds AFy = E;(log Zy —log Zy)? (instead of equation (5.5))). The right
hand side is formulated by integral expressions, similar to equation .
It is therefore possible to carry out the same manipulation steps as in the
derivation of the second route. The only difference consists in a change of the
weight functions fo(€) and go(€) to fi(e) = %amsinﬁ and ¢;(e) =

1

W arcsin T and a minus sign in front of the first integral

par =-S5 Caen@@) - ) + S0 [T denol)
G _161%4 Iy + Sl _41)@ L. (5.11)

Again, the functions fi(e) and g;(¢) are non-negative. Taking the minus
sign in front of the first term into account, the leading N-dependence of
the second term, %112, is an upper bound for the finite size scaling of
the free energy fluctuations (it is possible that the leading orders of both
integrals cancel each other). However, as we will not be able to calculate
the integrals in detail, we restrict ourselves to calculate the leading orders of
the second route to chaos, where both integrals I5; and Iy exhibit positive
contributions. The first step towards this goal is to compute the first and

second moment of the probability distribution P.(qz) in the next sections.
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5.2. CALCULATING P.(Qp)

5.2 Calculating P.(q;)

We want to calculate the disorder-averaged probability distribution, P.(qy),
of finding a link overlap ¢, of a system of two copies of a spin glass, which
have possibly different sets of bonds. Again, € is the measure of that dif-
ference. The partition function, Z. ;(qz) (defined below), constrains the
two copies (or replicas) to have a link overlap ¢;. The system of the two
constrained copies has a certain free energy F, ;(qr) for a given configura-
tion of bonds, which is calculated as the logarithm of the partition func-
tion, as OF. j(qr) = —logZ. j(qr). Therefore, the probability of finding
a given link overlap in such a system is proportional to the Boltzmann-
weight exp ( — BF. s(qr)). Each of the two copies is described by the same
Hamiltonian but with different sets of bonds K;;(0) and K;;(e) from equa-
tion . Constraining two replicas to have a certain overlap was first
suggested in Ref. [89] and forces the replicas to differ from their thermal
state in the unconstrained case in the thermodynamic limit (which, in con-
trast, demands g, = 0). The constraint is implemented using the J-function
(5(qL — m ZW ( isgio)sgie))Q — Nm—_zl), where the upper indices denote
the replica number in its first entry and the value of € in its second entry.
The partition function Z. ;(qr) of the system of two copies of the same spin
glass then is

1 : m’
ZQJ@L):m@(qL——N(N_1>z<zs$>sﬁi>>2—N_1>>
v %
xexp(\/_z 500510 + /—Zsz i 3(3E)>’ (5:12)

1<) 1<J

The non-disorder averaged probability distribution P, ;(qr) follows to be

exp(—BF. s(qr))
fooo dqlL eXp<_6Fe,J(qlL)> ‘

If we were able to calculate the free energy F. ;(q;) and average equa-
tion over the disorder, this would give the desired probability dis-
tribution P.(qr). Unfortunately, calculating the partition function Z. ;(qr)
is too difficult in general, as already pointed out. Therefore, we restrict
the computation to the feasible case of calculating the extensive part of the
average free energy, f.(qr), using replica methods. This free energy is the
first part in the separation F, ;(qr) = Nmfc(qr) + AF(qr) + AF. ;(qr) of
the free energy F. ;(qr) of a system with a given configuration of disorder.
The second part, AF,(q1), denotes the finite size corrections to the disorder

Pe,J(QL) -

(5.13)
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CHAPTER 5. FLUCTUATIONS OF THE FREE ENERGY

averaged free energy E;F, ;(q). They scale with some subdominant power
of the system size N, as N©:, where the shift exponent O, is smaller than
unity. The last part AF, ;(qz) comes from the sample-to-sample deviations
of the free energy about its disorder average Fi(qr) = E;F. ;(qr), implying
E;AF, ;(qr) = 0. Approximating the free energy of a given configuration of
disorder by the extensive part of the free energy is the large deviations for-
mulation, i.e. those deviations that remain finite for large N (and therefore
have an exponentially vanishing probability for N — oo). In other words,
the link overlap ¢j, is strictly zero in the thermodynamic limit, but for fi-
nite N we force g, to differ from zero. The probability of observing such link
overlaps can only be approximated with the extensive part of the free energy,
which describes the large deviations of g, = 0. The probability distribution
of finding a given link overlap within this approximation is

P€0<QL) _ eXp(_ﬁNme(QL)) (514)

Jo7 dql exp(=BNmf.(q)))

Mean, [qz]o, and variance, [¢%]o — [qz]2, of this distribution have the index
0, and replace [q] and [¢%] — [¢z]? in the exact connection between the free
energy fluctuations and bond chaos in the equations and in those
regions where the large deviations approximation is valid (which we will find
out later).

Since the m-component spin glass is replica symmetric in the large-m
limit, each replicated copy of it with the same set of bonds will be in the
same equilibirum state. Hence, the probability distribution for e = 0, i.e.
for identical sets of bonds Kj;(€), consists of a single -peak at the Edwards-
Anderson-value of ¢, in the thermodynamic limit. As we will see, the large
deviations calculation does not display this peak. This implies that it is
caused by the finite size corrections AF(qr), the small deviations. As the 6-
peak (or the finite size behaviour of it) is the dominant part of the distribution
for small € (in fact, for € = 0 it is the only one), but the large deviations
describe the region of larger €, we expect a crossover value from one part to
the other. Finding this value involves knowing the finite size scaling of the
small deviations of the free energy. Fortunately, we have investigated this
problem at 7" = 0 in an earlier work in Ref. [48], which is described in chapter
Bl We will implement the behaviour for small € with a scaling ansatz, which
follows from the dominance of the small deviations in that region, after the
calculation of the large deviations approximation in the next section.
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5.2. CALCULATING P.(Qp)

5.2.1 Replica calculation

The replica trick allows for the calculation of the disorder averaged free en-
ergy in the thermodynamic limit [4] by taking the logarithm of the disorder
average of the partition function of n uncoupled replicas of a given prob-
lem. The linear term in n gives the free energy, see equation (5.1). In
our case this means Nmf.(qr) = lim,_o w with the partition
function Z. ;(qr) from equation (5.12). The calculation of the disorder av-
eraged, n-times replicated partition function of a single m-component spin
glass has been achieved in [44], and we adapt this computation for our pur-
poses, presenting only the most necessary parts of it. We refer the reader
to a detailed calculation of the partition function in appendix [D] The first
step is to average (Zcs(qr))" = [1h_; Zc.sa(qr) (where « is the replica in-
dex of the spins) over the disorder Ej;, which takes the independent, ba-
sic sets of disorder Kioj and K; from equation to be Gaussian with
unit variance. Then, we use an integral representation of the d-functions,

IL, 5(qL — m ZW ( 5( )3(26)) — m—Q), with parameters z, (for each

oy “tov N-1
replica a = 1,...,n), followed by a Hubbard-Stratonovich transformation
of the spin Varlables which introduces the fields Q73 v(10), Z; 69 and RL;
(, 3=1,...,nand p,v =1,...,m). They can be 1nterpreted as an expec—

tation Value of two components 1 and v of a spin from possibly different repli-

cas a and [ (of the same or different copies 1, resp. 3) Q“V(lo = <3&1£)sg?))

(and analoguoulsy for (10) — (3¢)), resp. RL) = (3&?3%)}. We see, that

Q%5 corresponds to the overlap ng(o) from section .

Proceeding further, we separate both tensors @5 (for both copies (10),(2¢))
into its diagonal and off-diagonal part by introducing the traceless tensor T4
(with Za s =2 Zw Qs +23 i TH 43 (Qua + T A3, 44])
The resultlng Gaussnsm mtegrals for both @), can be solved. Expanding the
remaining exponential in a power series up to third order in the tensors @, T’
and R, we can take the Trace over the spins using spherical coordinates.
The expansion in terms of small (), and R is valid close to the critical
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temperature. Re-exponentiating the power series yields

i) ([ B facion (5

Hr L) Y @) (4 ﬁ) S (@) 4 S (R

o,u<v ol oz;tﬁ
2,za 1 (1)
+ <_ - <5 T ) aa (
Z 252 \/ 1+ 62) ( Q;W Q
Hsv,p
m2 15m? 3
+ THYTVPTPE 4 THH
(m +2)(m + 4) Z coe <m+2)<m+4)§(“)
p<v<p ’
3 O QUEQETIN 43 3 QUIRIR 43 QURGRY
a<p (a<B)#y a<p
v,u<p Vs p Hsv,m
THROR +3 3 TR RW)] 5.15
m + 2 QZ# + Z (6707 (67684 Y ( )
(u<v),p “<” n

with 7 = %(1—%), T =11- Vl[;geZ), r=—1,r=2m —1, w =1 and the

(10)
A= (QR Qfée)) | (5.16)

with the above separation for both Q7; and only T#* on the diagonal of the
matrices (). We further separate the diagonal part p!)” = RX” (i.e. where the
replica indices are identical) of the tensor R} from the rest of it with a # §3.
The simplification resulting from it will become apparent in the next section.
We solve this equation by calculating the saddle points of the exponential
with respect to the tensors Qh3, T4 and R[; and the parameters z,. This
task will be simplified by the symmetry of replicas of the m-component spin
glass in the next section.

matrix A3 is given by

5.3 Solving the Saddle Point Equations

The saddle points of equation (5.15)) determine the free energy f.(qz) and
the probability distribution P%(qz). With the probability distribution, we
will be able to calculate the mean, [q;]o, and the variance, [¢2]o — [qr]3, of
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qr- This quantities will finally reveal the finite size scaling of the free energy
fluctuations via equation (5.2]) and (5.11]). As replica symmetry holds in the
large-m limit, we can make the ansatz

ocﬁ - Q(S;wa Téw =0
Ry = Pou, P’ =padu and 2, = 2. (5.17)

Since we have the relation Q%; = (s59) s/(glyo)> (and similar relations for 7" and

R) from above and assume isotropy of the lattice, we can neglect correlations
between different components p, v [41], [44]. Furthermore, the tensor T* was
chosen to be traceless, which implies T#* = 0, due to the assumption of
isotropy.

The partition function simplifies to

N —1
27 (qz) / (

7r
+7'mn(n—1)P*+

)" dze= 2N narzmm "Z/dAaﬁ exp (N [Tmn(n —1)Q?

Q3

1 2 1 - —1)(n—2
+wmn(n —1)(n — 2)QP? + 2wmn(n — 1)Qde} > (5.18)

We see that the exponent is proportional to Nm, which serves as the large
parameter in the following saddle point calculation. Differentiating the ex-
ponent with respect to each of the various integration variables yields the
saddle point equations

0=7Q — Q*— P*+ Ppy (5.19)
0=7P—2QP + Qpq (5.20)
1 2z 1 (—1)

0=pg— =pil= ~+ —20)P 5.21
Pa 62pd(ﬁ2 m) Q ( )

qL < Dd 2 (
qr _ , 5.22)

m (5 + 7rs)
where line 3 and line 4 can be combined to
pa—20P =& (5.23)
m’

For convenience, we substitute /% by ¢. In terms of ¢, the free energy

fe(q) (which is the replica limit n — 0 of w the logarithm of
equation (5.18))), is
Iz ¢’

Bfe(q) = const. + pag — = —

2
Q7P ZQP — 2QP? + 2QPp,.
2 A —2m) QTR Q20 20 by

(5.24)
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We proceed by solving the saddle point equations (5.19)), (5.20]) and (5.23))

above, at and below the critical temperature. These solutions will be used in
the last section of this chapter to calculate the scaling behaviour of the free
energy fluctuations via the exact connection to bond chaos.

5.3.1 Above and at the critical temperature

Above (7 < 0) and at the critical temperature (7 = 0), the Ising spin glass
is replica symmetric, just as the m-component spin glass. Therefore the
solutions of the saddle point equations in Ref. [78] apply in our case, too.
Above T, and for ¢ = 0, they are Q = 0, P =0 and py = 0. For ¢ # 0, we
find the solution for small ¢ by noticing that it is not possible to fulfill the
saddle point equations with the ansatz @) = O(q) and P = O(q) . Hence, in
first order in ¢, the solution is pg = ¢ + O(¢*), @ = O(¢?) and P = O(¢?).
Even more, for Q and P of order ¢?, it is neither possible to fulfill the saddle
point equations. Therefore, the final solution is pg = q + o(¢*), Q = o(¢?)
and P = o(q?) (and that is all we need to know, as the free energy in that
case is dominated by the terms coming from p,). Inserting this solution into

the free energy (equation (5.24])) gives

810 = 5 (1- =) + o (5.29)

At T,, which implies 7 = 0, the probability distribution P.(g) oc e=NmA#/e(@)
consists of two parts with different dominating exponents depending on €
being smaller or larger than N~1/6

3
e—Nm% €& Nfl/G

. (5.26)
e_NmT N71/6 < e

We understand this by noticing that for ¢ < 7/, i.e. ¢ < €2 < 1, we find the

. . 2 2
solution from above the critical temperature, 3f.(q) = % (1 — \/ﬂj> +0O(q").

The solution in the different limit €2 < ¢ < 1is Bf(q) = +¢* + %qQ +
O(e*, ¢*), see Ref. [78]. The crossover value of N~'/6 in the separation of the
free energy stems from the fact that in both cases, the dominating part of
P°(q) ~ e~Nm/<(@ has an exponent of order 1. In the crossover region, € ~ g,
we therefore find € = O(N~'/6). Below N~'/6 the solution for €2 < ¢ < 1
is dominating, while above N~/ the other limit, ¢ < € < 1, applies.
From these results, the same free energy fluctuations follow as in the Ising
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spin glass, see Ref. [54]. They are

AFy = _% log(1 — 52) — %2 +LOO/N)  above T, (5.27)

1
AFy = & logN +0O(1) at T.. (5.28)

5.3.2 Below the critical temperature

We can not solve the saddle point equations for general ¢ and € (where € is
solely contained in 7'). Due to this, we derive the solutions for ¢ = 0 and
e = 0 and calculate corrections to them perturbatively. The exact solution
for ¢ =0 is

P
Q=71 (5.29)
pa = 0.

By the way, the solution linear in 7" for () is 1 — 7', which is consistent with
our result for qg)(sgs@ from section

To find the solution for € = 0, we rewrite the saddle point equations
and in terms of the new variablesa =Q + Pand b=0Q — P

T—17

(a—b)—a*=0 (5.30)

(T 4+ pa)a —

T—17

(T — pa)b + (a—b) — b =0. (5.31)

For e = 0, implying 7 = 7/, they have the solution ag = 7+pg and by = 7—py
(for a,b # 0) and therefore

Q=T (5.32)
(5.33)

P=pi=1"50

With equation (5.24) we get 5fo(q) = Bfo = %7’3. We will use this free energy
as the reference free energy, as e = 0 implies that both copies have identical
bonds, and it is the free energy of two unconstrained systems. Taking the
possibility of b = 0 into account (the solution with a = 0 is an unphysical
one), this solution (with @ = 7 4 p;) maximizes the free energy for ¢ > 7 —
272 := qga, instead of the solution with b = 7 — py. In terms of Aq = ¢—qga
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it is (to lowest order in Agq)

O=pP— T+ Pa
2
Aq
= .34
Pd T+1_27_, (5.34)
and the difference to (fj is
Afo(q) = coAG?, (5.35)

with ¢y = m. The probability distribution of the large deviations ap-
proximation of finding a given link overlap gz, for € = 0 then is

PO(g) = {const. q € [0, qpal (5.36)

_ 3 .
e~ Nmeohd”  otherwise.

However, in the thermodynamic limit the true probability distribution Py(q)
for e = 0 consists of a d-peak at the replica symmetric link overlap qg4. The
finite size corrections to this peak should be the dominating part of Py(q).
As the large deviations approximation does not display this behaviour, see
equation (5.36)), we conclude that the d-peak at gg4 is generated by the finite
size corrections to this approximation, the small deviations. Unfortunately,
we are not able to calculate them. Therefore we have to resort to other
methods to estimate them and find the value of € up to which the small
deviations are the dominating part of the probability distribution P.(q) (as
we expect the dominance of small deviations to carry over for small non-zero
€). This will be done later. First we will calculate corrections to the first
solution of the large deviations approximation, fy, in various different limits
of finite € and gq.

Solution for € — oo

This limit, or equivalently 77 — —o0o, corresponds to uncorrelated bonds
between copy 1 and 3. To find the free energy in this case we take the
leading order (in 7’) of equation ([5.20))

); (5.37)
insert it into equation (5.19) and find (again in leading order)

_ Iz 2
0= (7+ F>Q — Q. (5.38)
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For 7' = —o00, Q = 7, P is zero and py is equal to q. The free energy difference
to fo (the unconstrained case) is

2 q2

Bula) = Bfo = apa— H+ OWh) = T+ 0. (5.39)

Perturbative solution for ¢2 < ¢ < 1

In this limit, it is useful to apply the saddle point equations in terms of a and
b, equation and . We take the solution found for e = 0 as the
undisturbed solution ag and by (resp. Qo, Py and pgo from equations
and ) and insert a = ag+a; and b = by + by, where the index 1 denotes
the first order corrections for small e. We get (with A7 =7 — 7' > 0)

62(12

_ ATPpao—pd1a . €q°
ay = _W :>Q1 T 4r2(l-27) (5 40)
by = ATpgo—pdibo P = _€q ’
L= " r—pao L= "
. : 2 : .
and the correction to pg is psn = —5%. Plugging these results into equa-

tion (5.24]) for the free energy, the difference to the unconstrained solution,
Jo, is

21+ 1

42 4 4
o € ¢ + O(e*q") (5.41)

Bfla) = Bfo =

Perturbative solution for ¢ < €2 < 1

The suitable reference solution in this limit is the one with ¢ = 0, equations
. We introduce corrections for small ¢ to this solution as ) — 7+ AQ,
P — 0+AP and p; — 0+ Ap,;. Equation then follows to be (in lowest
order) AP — 2QAP + QAp; = 0. Combined with equation ([5.23]) we find

T'AP — 2QAP + Q(q + 2QAP) =0, (5.42)

where ¢ is treated as a first order perturbation as well. The solution for AP
is

2
Tq <1 g €q
AP = — — : 5.43
T —2r+2r2  1-2r 47(1 — 27) (543)
This leads to AQ = 0 and
! _9 . 2
Apa =g T gt _d <4 (5.44)

—or+2rz  1-2r 2(1-27)
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The result for the free energy then is

4.2 3

(q) — — O(q°). 5.45
Bfe(a) = Bfo 6ra o ¢ T (¢°) (5.45)
The restriction €2 < 1 is basically unnecessary and we could calculate the free
energy in the limit ¢ < min(1,€?). However, since the regime of large € will
not contribute to the sample-to-sample-fluctuations, we separate it explicitly
at this point, and write 8f.(¢) — Bfo(q) = f(€)g* with f(e) = e4m for

small e. For large ¢ — oo, f(e) is equal to 3, which follows from the free

energy in the limit € — oo (equation ([5.39)) derived previously.

5.3.3 The overlap distribution P’(q)

As it turned out in the calculation of the saddle points in the previous
subsection, it was practical to work with ¢ instead of qr. For the further
procedure, we will keep this variable. The exact connection between the
free energy fluctuations and bond chaos, equation in the large devia-

tions approximation, becomes f2AF% = w I.° defa(e) ([a*)o—[a?13) +

(N_i)mﬂz fooo dega(€)[q?]o, where we used

(@) = m" / dg " P*(g) = m"[¢*. (5.46)

The probability distribution P°(g) ~ e~ NmAfe(@=fo(@) in the low tem-
perature phase separates into four parts, depending on the range of €. For
€ < N~Y* the contribution to the probability distribution of ¢ of both equa-
tions and (both with f.(q) ~ €*q?) is negligible. Therefore it
is approximately a constant in that range for all ¢ € [0, ggal, which follows
from the solution for € = 0 below 7. Equation implies that P°(q) has
an exponentially decaying tail for ¢ > gpa with e V@224 We define
a function ©(q — gga) which combines both properties. As already pointed
out, instead of this plateau in P°(q) there should be a ¢ peak at ¢ = gga
which we do not see in our calculation. This is due to the fact that we have
neglected finite size corrections to the free energy which are dominating in
the regime of small € and which we will implement in the next subsection.
Both solutions we found perturbatively in equation and equa-
tion (5.45) produce a probability distribution of the form e~V mbercla® with
different constants c,, but hold in different ranges of ¢, depending on the re-
lation of €2 and ¢. The order of € determining the crossover from one regime
to the other is where €2 is of the same order as ¢ and Net¢? (in the range

N~Y* <« € < €) is of order one such as to be the dominating part of the free
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energy. This leads to e ~ N~'/% as the crossover value. For even larger €, we
have e~ N"/(99" where we introduce a finite cut-off value ¢, (independent of
N), above which we will be able to neglect the fluctuations of the free energy,
as will become clear below. Thus we get the final result

O(q — qpa) €< N7U/4
e—chle4q2 N—1/4 Lek N—1/8

0
Pe <Q) 0.8 e—chze4q2 N_1/8 << c << 60 (547)
emef(e)q2 60 < 67
with Cl = 217(;;1 and Cy = m

5.3.4 The overlap distribution at ¢ =0

The probability distribution P%(q) from equation is the large devia-
tions approximation to the true distribution P.(¢). For small € it does not
exhibit the d-peak at ¢ = gga, which is the dominating part of the distribu-
tion for € = 0 (due to replica symmetry). It is generated from the finite size
corretions to the free energy, AF, (which scale with a subdominant power
of the system size), and its dominance for small € reaches up to a crossover
value where the large deviations approximation takes over. Unfortunately,
the finite size corrections to the free energy are impossible to calculate, but at
least we know from Ref. [48] that they grow as N'™¥ at e = 0, with y = 2/5,
see also chapter |3 (to be precise, it is the scaling of the ground state energy
we have found there, but we expect it to hold for the free energy as well).
We assume that this scaling is independent of the value of €, at least for
small e. We then find that the large deviations result from equation ([5.47)
dominates the d-peak at ¢ = qma as long as NmfB(f.(qga) — fo) > N3/,
Since qga = O(1), it follows that this is the case when N*/° < Ne* (as we

have found P%(q) oc e~ N™e<'a® in hoth regimes for € in between N~'/4 and
€o ) or N-110 < e. We then have
Srs(q — qra) e << N71/10
P.(q) oc § e~ Nexc'd” N1 < e < (5.48)

e Nf(9e? € < €.

The function dps(q — gra) denotes the finite size scaling properties of the §
peak at gqga. The new regime completely replaces the first two regimes we
calculated in equation ((5.47)). For the regime e <« N~ which we deduced
from the large deviations result at € = 0, this can be well understood, as the
plateau we found there doesn’t have a physical interpretation.

134



CHAPTER 5. FLUCTUATIONS OF THE FREE ENERGY

100 ¢ ¥ : .
b . m=12 ————
m=10 ———
3 m=9 ———
10 - m=8 —e
m=7 —=—
(\l__\ m=6 —
SE\I m=5 ——e—
S) 1 F m=4 ——— 5
\Q__ m=3 ———
g Q=14 ——
I %
0.1 | ; _
001 . MR | . MR | . MR | . M
0.01 0.1 1 10 100

Nm™ "y,

Figure 5.1: Finite size scaling plot of the variance of the link overlap at
temperature 7' = 0.6. See text for explanation.

In order to calculate the free energy fluctuations with the exact connection
to bond chaos, we need the expressions [(¢:?)?] — [¢*]? and [¢}3], resp. [¢?] —
[¢°]? and [¢%]. In the regime N~Y/10 < ¢ < ¢y we have an explicit expression
at hand to calculate them via [ dg¢**P?(¢) (with n = 1,2). The last regime
in equation (5.48) can be neglected in the next section , which leaves us
with the first regime, the finite size scaling of the d-peak. For this regime,
we resort to a finite size scaling ansatz of the form

([(a2')] = [ar]") = N Fin(N7e) (5.49)

1
m?
for ¢ < N7/ and with a scaling function JF,,(x), with F,,(0) = const..
Similarly, we assume that in this regime [¢}°] can be written as

L[ab) = Gul) (5.50)

with an exponent p and a scaling function G,,(x). These scaling functions
and exponents will enter the calculation of the fluctuations below. In the
following, we will discuss the properties of the scaling functions and support
their introduction by numerical investigations from the parallel tempering
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Monte Carlo simulation presented in chapters [2] and [] by repeating the line
of argument that led to figure [4.6]

Due to replica symmetry in the large-m limit we are considering in this
chapter, the link overlap distribution in the thermodynamic limit consists
of a single § peak. Therefore, the variance of this distribution for finite
system sizes, which corresponds to the left hand side of equation ([5.49)),
must vanish with the system size, as N™®. So far a is unknown, but we
can adapt the parallel tempering simulation of the chapters [2| and {4 for the
m-~-component spin glass with finite connectivity to this case. There, we were
able to measure mean and variance of the distribution of the link overlap.
The only adjustment here is to link each spin with each other, instead of
using the Bethe lattice of finite connectivity. Again, we have to take the
breaking of replica symmetry for small component numbers into account. As
we have seen in chapter , there is a critical component number meg(7T),
above which the system is independent of the number of components and
thus replica symmetry holds (the large-m limit), while it is broken below.
This means, that we have to take care to deduce the finite size scaling of
the variance of the link overlap, i.e. the scaling exponent «, from the replica
symmetric regime. As the critical number of spin components meg(7") scales
with the system size as mg ~ N#m (with p,, = 2/5 for the SK-model) at
T = 0 [45]146], we conjectured in chapter that this scaling holds throughout
the low temperature phase, see equation (3.6) as meg(7) ~ NFm. If the
number of components m that is initially available is larger than meg (7))
we expect replica symmetry, and for m < meg(7) broken replica symmetry.
When plotting the variance (Ag}?)? of qi® against the rescaled variable z =
Nm~/#m  we should find the replica symmetric regime for small z, whereas
for larger x the variance should cross over to a constant variance, which is
a property of broken replica symmetry. This is precisely what we observe in
figure |5.1] although the crossover is so slow that we do not see the expected
plateau yet.

The parallel tempering Monte Carlo algorithm is described in chapter [2]
For maximally available component numbers from 3 to 12, we use system
sizes from N = 64 up to N = 256 in the temperature range of [0.6,1.6]
here. In that way we produced for two different replicas (with the same set
of coupling constants since we are considering € = 0) at least 64 statistically
independent sets of spin configuration for every temperature. From these,
we calculated the variance of the link overlap (Aqi3)? = [(¢}?)?] — [¢*]? at
T = 0.6. In order not to have a different estimate for o from every single
maximal number of components m, we rescale the z-axis as described above
to find the universal scaling of (Ag}?)?. Therefore after rescaling the system
size N with m~/#m we have to scale the y-axis (Aq:?)? with the appropriate
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power of m to make the data collapse to a single scaling function. This scaling
function then is independent of m and we can deduce the universal scaling
with the system size as N~% in the replica symmetric region. Independence
of m is achieved by scaling (Aqi?)? with m. Figure shows the results
for the various component numbers. As in chapter [4 for smaller component
numbers, it is possible to get to larger system sizes, since less temperatures
are needed for the parallel tempering algorithm.

According to the scaling ansatz above, we have m=2(Aqi3)? ~ (Nm~/#m) =y =a/tm
at € = 0. This can be rewritten as m®/#m=2(Ag}*)? ~ (Nm~1/#m)=% which
is the expression we compare to the numerical results. The data in Fig.
show on the one hand that o/p,, —2 ~ 1 (which can be deduced from the
proper scaling of the y-axis as m(Ag¢:?)?) and on the other hand that o ~ 1.4,
which we find for small . The observation a/p,, — 2 ~ 1 implies o ~ g.
Together with the second, more direct, observation of «, the data show that
a > g, and as we will see below, this is all we need to know.

The scaling exponents § and p are unknown, too. However, we let the
scaling functions of this subsection cross over smoothly to the large devia-
tions approximation of the link overlap distribution, where we have explicit
expressions at hand to calculate [(¢}%)?] — [¢+%]? and [¢}?], i.e. for e > N—1/10
(to this end it is necessary to make the scaling functions F and G depend
on m, denoted by the index m in the equations and ) This
reveals scaling relations in the next section, which make the explicit values
of the exponents of 3 and p irrelevant for the calculation of the free energy
fluctuations.

5.4 Calculation of the sample-to-sample Fluc-
tuations

It remains to calculate [¢"]y for N™V/19 < ¢ < ¢, insert it into the equa-

tions (5.2) and (5.11) and adjust the scaling ansatz of the previous section

in such a way to connect both regimes properly. We apply the saddle point
method to write for € with N7/ < e < ¢ (with P%(q) = /\i/e*BNmfé(q) and
q

the normalization constant N)

1 [e.9]
o= [ dagre et e) (5:51)
qJ0

Here, we set the upper bound from 1 to oo, which introduces only exponen-
tially small errors. Further, we neglect the term of order ¢* in the exponent,
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L(3)

and get (Wlth -/\[q = m)

1 > n—
["]o = r'(l) / dv s (Nmeye') /2
3) Jo
(Nmcaet)™2 _ n+1
= . 5.52
This finally yields
1
21
[0 = 5 Vet (5.53)
3
o= ———. 5.54
10~ G (554

Now, we can calculate the sample-to-sample-fluctuations through equations
and by taking the leading order in N of every integral into account.
The first integral, Iy, (with fo(e) = 2€* + O(€®) for small €) separates into
three integration intervals corresponding to the three regimes of the proba-
bility distribution P.(q). We neglect the range of € > ¢y, because it gives
a contribution of order 1 which we are not interested in. For the part
€ < N7Y10 we have the scaling ansatz for [(¢}®)?] — [¢}%]? = m?([¢*] —
[*]?) = m?N~*F,,(NP). This ansatz must match m?([¢*o — [¢*]2) from
the neighbouring regime (the large deviations regime) at the crossover point
e = N1 With this restriction we force the small deviations and the
large deviations approximations to describe a single probability distribution
P.(q). At the crossover point, in the large deviations regime, it goes as
N72e78 ~ N75/5 (see equations and (5.54)). For the other regime, we
let the scaling function F,,(z) decay as =7 /m? for x — oo with an exponent
7. Inserting this ansatz, we have m?([¢*]o — [¢*[3) = N~ (NON"V10)™" at

the crossover point and the exponent v obeys (3 — &) = & — «, in order to

- 1_0) 5
match the scaling of N=/% from the neighbouring regime.

For the integral Iy, this leads to

Iy = /
0
€0 —5

NB—1/10 g
~ 2N_°‘_4’6/ dxFp(x)r® + N2 de—+ ...
0 N-—1/10 (65

N—l/lO €0 1
de 26SN~“F, (N” / de 263 ——
€= ( 6) + N-—1/10 €= 2(N02€4)2

~ const. N~ 55~97F 1 const.,N~8/5, (5.55)

as long as v > 4. If v < 4, this part of the free energy fluctuations is of
order O(N~8/%). Together with the leading prefactor N? of the first integral
in equation (5.2)), we find that AF? scales at least as N/,
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We still have to estimate the leading scaling behaviour of the second
integral of equation (5.2). For this purpose we apply the scaling ansatz
%[q?] = Gn(N*¢). The scaling function G,,(z) should have the properties
Gr(z) “=° 27 /m and Gp(z) "= const. and should scale as N~'e~* for
¢ = N1 in order to match the neighbouring regime, similar to above. This
yields the scaling relation p = % + % and contributes to the free energy
fluctuations as (with gs(€) = €3 + O(¢€°) for small ¢)

122=/
0

_12_2
= const.3N 5 5 + const.y

N*l/lO €0 3

dee* G (NP¢) +/ de—

N-—1/10 €2N02€4 e
log N

N
provided that n > 4. If n < 4 the first part of the integral is O(N~!)
instead. In the second route to chaos, B*?AFZ = %[21 + MIM,
this integral has the leading prefactor N. Hence, the scaling exponent of the
leading contribution of AF% from this part is % — M#Q(T]A)' Together with
equation we find the leading scaling exponent of the sample-to-sample-

fluctuations with the system size, AFy ~ N*, to be

14 « 2 6 3 6 (5.57)
=max |-, - ——— ——— [ —a |, —— ——— . .
a 55 2 max(7,4) \5 '10  5max(r, 4)
This equation looks not very promising at first. However, we can further
restrict the range of possible values of . The second part can be written as

% + (g - a) (% — m> We see that it is < % for o > g, which we found
3

10°

(5.56)

numerically in the previous section. The third part is at most equal to
for any finite value of 7 it is smaller. Hence, we finally find % <u< 1%.

Further limitation of the exponents we use can be deduced from the first
route to chaos. As described in section [5.1] it is similar to the second route
such that we can apply the same scaling ansatze as above. However, there are
two major differences. The first difference are the functions f;(e) and g;(¢)
(instead of fy(e) and gs(€)), which can be approximated by 2me® + O(e?),
resp. ™+ O(e*). The second difference is the minus sign in front of I;;. The
integral itself is positive. However, as the fluctuations can not be negative,

N-1)

the leading order of —%[ 11 must be compensated by the leading order

of the second part (N_41)ﬂ ‘7 12. The calculations follow those from the second

route to chaos. The contribution from I;; is

€0
Iy =m® / def1(€)([¢Y] = [¢3]%) ~ const.s N~ 35~ 4 const. N ~3/2 + ...
0
(5.58)
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From I;5 we get
€0 P 1
Iy = m/ degy (€)[q?] ~ const.; N~ 1 + const.s N~7/12. (5.59)
0

Comparing the leading orders of both integrals (and taking their leading

prefactors N? and N into account), we find that 1% — 2 must be equal to

5n
max [1¢ —a— %(g —a), 1] (the second part of N1, is definitely subdominant,
since it can not cancel the leading term of N2I;;, which is at least N'/2).
Hence 7 is equal to or larger than % This limitation shows no contradiction
to the result of % <u< % we found from the second route to chaos.

In summary, we find the sample-to-sample fluctuations of the free energy
Fy to scale with the system size as N*, with % < u < 1%. The result is
given in equation . There, we have found three different contributions
to the scaling of the free energy fluctuations of which we are interested in the
largest one. From a numerical investigation, using the Monte Carlo parallel
tempering algorithm, we found a > g and can therefore neglect the second
contribution. Even more, p > % is only possible if n > 12 (for n < 12 the
third term on the right hand side of equation (5.57)) is at most equal to %),
which seems not very likely. In any case, the fluctuations are far from being
trivial as they do not fall into any of the four known universality classes of
extreme value statistics described in the introduction.

The result of this chapter was derived involving a variety of mathematical
technicalities. However, it is based on a few assumptions. As the technical-
ities shall not prevent the reader from understanding the main assumptions
leading to the result % <u< 13—0, we repeat them in the following. First of all,
we have adapted the exact connection between bond chaos and the sample-
to-sample fluctuations of the free energy to the case of the m-component
spin glass in the large-m limit. This involved solely mathematically exact
manipulations and the derivation can therefore not be contested. Second,
bond chaos is calculated via a large deviations approximation (with the help
of the replica method) for the free energy of two systems, constrained to have
a certain link overlap. We saw that this approximation can not hold for small
deviations, which we are not able to calculate directly. Third, we had to im-
plement these small deviations for the region of small €. For this purpose, we
resorted to the earlier result of the scaling of the small deviations for e = 0
from Ref. [48], and deduced from it a crossover value of € below which the
small deviations dominate the probability distribution P,(qr), while above
the large deviations dominate. The small deviations regime was then cov-
ered by a scaling ansatz, which involves three different exponents. Assuming

this ansatz to cross over smoothly to the large deviations regime, we had to
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introduce two additional scaling exponents. Supported by numerical results,
we found u to depend on only three of the five exponents. Finally, we could
limit p to the range of % <pu< %, with p > % only for 7 > 12, which makes
1 exactly equal to % very likely. Nevertheless, to ensure pu = %, it would be
necessary to measure 7, which should be feasible.

It should be mentioned that the exponent u = % was earlier suggested in
Ref. [45]. However, this derivation was footed on a wrong assumption, which
was a gap in the eigenvalue spectrum of the inverse susceptibility matrix.
This gap was later shown not to exist in Ref. [46]. The derivation in this
chapter is completely different from the one in Ref. [45].

How does the result of p = % relate to other spin glass models? First of
all, the sample-to-sample fluctuations in the m-component model differ from
those of the spherical model, which follows the Tracy-Widom distribution as
N1/3. A single universality class of replica symmetric mean-field spin glass
models is therefore ruled out, and the difference of both models in the low
temperature phase is further substantiated (though their free energies are
equal in the thermodynamic limit [38, [41]). Furthermore, the fluctuations
probably differ from those of the Ising spin glass as well, as they are favoured
to scale as N/, If they scaled as N'/4, which is the alternatively favoured
scaling behaviour, equal scaling of the m-component spin glass demands
n = 24, which is far from being likely. Hence, our computation of u proves
the m-component spin glass to be an interesting spin glass model in its own
rights.
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Chapter 6

Conclusion

What have we learned after all? We can certainly say that the m-component
spin glass shows a variety of astonishing and unique properties, which makes
it a valuable member of the spin glass family. To begin with, it was shown
how to apply or adjust succesful methods of statistical physics to the case of
the m-component spin glass, like the Cavity method, the parallel tempering
Monte Carlo algorithm, an analytical investigation of spin glasses on Bethe
lattices reminiscent of the Cavity method and the calculation of bond chaos
and the sample-to-sample fluctuations of the free energy.

Making use of the Cavity method by a self-consistent effective-field ap-
proach, we observed a phase transition which is as odd as interesting. It will
be very exciting to see whether these results can contribute to a general pic-
ture describing the low temperature phase of vector spin glasses, admitting
that most of the results are restricted to the vicinity of the phase transition.
The common picture of the phase transition of the m-component spin glass
on a Bethe lattice is a transition from a paramagnetic phase (with a value
of zero of each of the different order parameters we have employed) into a
low temperature phase (with a non-zero value of each of the different order
parameters), for which there seems to be no freezing in time in contrast to
the usual picture of spin glass phase transitions. Instead we find a dynamical
configuration of spins, resp. of the local fields of the spins, which is subject to
rotations in thermal equilibrium (explicitly not due to thermal fluctuations).
As expected, the transition is accompanied by an unusual phase transition,
the generalized Bose-Einstein condensation (for which the local fields use
only a fraction of the available m components and this fraction scales with
the system size as N#m). However, there is an interesting temperature de-
pendence of the effective number of components meg(7), which we find to
be closely related to the rotations of the configuration of local fields. This
relation stems from the fact that at the critical temperature there is either
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a one-dimensional configuration of local fields (which is frozen in time) or a
two-dimensional configuration which rotates in the twodimensional plane it
spans. For lower temperatures there occur more and more of these rotations
resulting in a complex dynamical nature of the low temperature phase. It
must be emphasized that it is the simulation of single Bethe lattices (devel-
oped in this thesis) which allows us to get rid of thermal fluctuations which
usually prevent detecting such underlying mechanisms of the phase transi-
tion. A further result of this approach is the stability of replica symmetry in
the large-m limit.

In addition to these numerical results we have been able to confirm the
stability of replica symmetry analytically in section[d.3] There we presented a
method how to expand the free energy of the m-component spin glass in terms
of overlaps g,s around the saddle point of the fully connected model with
k,m — oo, in both a power series in % and % Furthermore we calculated
the sample-to-sample fluctuations of the free energy of the fully connected
version of our model and found that they are different from other prominent
spin glass models and do not fall into any of the known universality classes
of extreme value statistics. The final result for the scaling of the sample-to-
sample fluctuations is Fiy ~ N* with < < 2 and probably p = £. This
scaling is different from finitely connected models which obey Fy ~ N'/2 and
from the spherical and the Ising spin glass. Even more, the fully connected
m-component spin glass is not a member of any known universality class of
extreme value statistics, see the discussion at the end of chapter [f|

The general picture of the phase transition is completed by two addi-
tional observations. On the one hand, the spin-spin-correlations in the low
temperature phase scale with the system size in a power law dependence
with the scaling exponent p,,, which initially was found within the gener-
alized Bose-Einstein phase transition. This property is reminiscent of the
Kosterlitz-Thouless transition of the XY ferromagnet (for which there is no
long range order and a vanishing order parameter), though we can define
the order parameter of the m-component spin glass in such a way to make it
finite in the thermodynamic limit (without loosing the scaling property). On
the other hand we observe replica symmetry breaking if the effective number
of components is found to be larger than the maximally available number of
components m. To explain it the other way round, there is a large-m limit
for finite system sizes as long as the maximal number of components is larger
than meg(7), for which replica symmetry holds. In particular, replica sym-
metry breaking happens when the complex superposition of rotations needs
more than the available m components. Then, the displayed behaviour in
m dimensions is only the projection onto the m dimensional space of more
complex underlying dynamics, which happen in a higher dimensional space
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(and would be replica symmetric in that space). Unfortunately, we have not
been able to confirm this picture of replica symmetry breaking by the ana-
lytical approach in section [4.3], possibly because there is no replica symmetry
breaking for an analytical continuation in a power series in % around the
m — oo-limit, or it does occur only for advanced breaking schemes such as
2-RSB or full RSB.

Is it possible to relate our findings to results from other publications?
So far, the phase transition of the vector spin glass in the large-m limit
has not been intensively investigated. However, a phase transition of this
model is observed on low dimensional lattices and for the fully connected
SK model, accompanied by the power law scaling of the order parameter as
N~#m consistent with our results [47]. Replica symmetry breaking is gen-
erally expected to happen similarly to the scenario presented here (i.e. for
m < meg(T)), though the temperature dependence of meg(7") has so far not
been observed [41), 145, [46, [47]. In fact, the technique of iterating the configu-
ration of mean fields is the key to these results as it overcomes the influence
of thermal fluctuations, which are usually still large enough to obscure the
underlying nature of the transition in the vicinity of T,.. The observation
of a very low number of effective components at the critical temperature re-
lates the m-component spin glass closely to XY- and Heisenberg spin glasses,
which have been investigated in low dimensions [32, 33, 34], 35, 00, OT]. In
Ref. [90], 91] it has been reported that the ground state of the XY spin glass
on a square lattice with bimodally distributed bonds is unique up to the
global rotation of all spins, similar to the observation of a rotating config-
uration of fields in this thesis (although the inherent dynamic implied by
the results of this thesis has not been reported). The main question of in-
terest in all of these publications was whether there is a spin glass phase
transition at a finite temperature and whether there is a chiral glass tran-
sition decoupled from the spin glass transition. In this thesis we have not
investigated a chiral glass transition, which is not directly applicable due to
the inhomogeneous structure of Bethe lattices compared to square and cubic
lattices. Therefore we can not contribute to the question of a spin-chirality
decoupling. Even more, analysing configurations of effective fields on single
low dimensional lattices exhibits a critical temperature far above 7, found in
the cited publications (we have done such a simulation, though the Cavity
method is obviously not really appropriate for these low dimensional lattices
as it is based on the assumption of large loops (resp. a locally tree like lattice
structure); In low dimensional lattices, loops are small and do not scale with
the system size). However, we suggest a possible relation between chirali-
ties and the observed rotations in thermal equilibrium. For this purpose, we
notice that the Kosterlitz-Thouless transition of the unfrustrated XY ferro-
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magnet (which we have found the phase transition of the m-component spin
glass to be reminiscent of) is explained by the occurence of vortices, which
are singular spin configurations in which one sums up a total angle of mul-
tiples of 27w when going around a closed path containing the centre of the
vortex, see figure[6.1] The vortices are bound in pairs in the low temperature
phase, whereas they become unbounded above the phase transition. With-
out going into detail, it is this binding which is responsible for the phase
transition [49, 53]. In case of the frustrated XY spin glass, one sums up an
angle of 2 when going around an unfrustrated plaquette, whereas the total
angle is 7 in case of a frustrated plaquette [5]. This is precisely the basic
consideration of the chirality picture. Therefore, in case of a frustrated spin
system, we find half-vortices, which are expected to determine the physics
in the low temperature phase, see Ref. [02] for an analytical description of
the XY spin glass in two dimensions. Though we can not present a similar
theory for the m-component spin glass, it is not far from being likely that
these ordering phenomena result in a rotation of the local fields, possibly
due to the inhomogeneous structure of the Bethe lattice concerning the size
and distribution of loops. Be that as it may, this open point needs further
investigation beyond this thesis.

7 TN
/=N
VYN
VN S

\/7/

Figure 6.1: Schematic plot of a vortex for which the spins rotate once anti-
clockwise on travelling anticlockwise around the centre. In the low temper-
ature phase, vortices are bound in pairs.

The manifestation of replica symmetry breaking of the m-component spin
glass on a Bethe lattice as a complex rotation in a more than m dimensional
space is hardly comparable with the ”peculiar” replica symmetry breaking of
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CHAPTER 6. CONCLUSION

the threedimensional Heisenberg spin glass, reported in Ref. [93],[94]. Besides
the fact that the three-dimensional Heisenberg spin glass is suspicious of
exhibiting a one step broken replica symmetric solution, i.e. a scenario of
replica symmetry breaking different to the full hierarchical replica symmetry
breaking of Parisi, the results found in publications on Heisenberg spin glasses
do not allow for an interpretation in the sense of the results of this thesis.
The predicted replica symmetric range close to 7. has not been reported
either.

The analytical investigation of section [4.3| has to be related to the publi-
cations of de Almeida et al., Ref. [41], and Viana, Ref. [44], [50]. In Ref. [41] it
was shown that replica symmetry is broken in the fully connected model of
the m-component spin glass for all finite m. We have found the m-component
spin glass to be replica symmetric for m — oo, but have not been able to
reproduce the breaking of replica symmetry for finite m by expanding around
the m — oo-limit in a power series in % It might be possible that replica
symmetry breaking occurs in higher orders or advanced breaking schemes.
However, it might also be that it is not possible to continue the free energy
from m — oo to finite m for the reason that the method only works for
tree like lattices, which requires the limit N — oo. Alas, this limit requires
m — oo for replica symmetry as the necessary number of components to have
a replica symmetric spin glass scales as N#™ such that the corrections in m
vanish for N — oo. Therefore it might be useful to extend the calculation
by using finite m as in Ref. [41] (and presented partially in appendix
and to compare both starting points.

The situation is different in case of the expansion in % There, we find
coexistence of replica symmetry and broken replica symmetry up to the or-
der 1%2 of the free energy (which involves the overlaps g.s up to order %)
As already discussed at the end of this section, this discovery needs to be
further investigated. On the one hand it is possible that replica symmetry is
restored when calculating the overlaps in order % (similar to the expansion
in %) On the other hand, if coexistence really holds it gives a new start-
ing point to analyze the breaking of replica symmetry of the m-component
spin glass for finite connectivities and finite component numbers, regarding
the possible phase transition from replica symmetry to broken replica sym-
metry presented in figure .7, Concerning the work of Viana, who initially
found the upper critical dimension (above which mean field theory holds, i.e.
replica symmetry in this case) and the lower critical dimension (below which
Edwards-Anderson order vanishes) are, surprisingly, both equal to eight [44]
(but later found dypper = 14 and suggested that it might be even higher, see
Ref. [50]), our result suggests the upper critical dimension to be co. Regard-
ing the lower critical dimension (where the phase transition vanishes), the
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Bethe lattice should be above any d; as its structure is in between the fully
connected lattice and finite dimensional lattices.

Regarding different aspects of this thesis (especially the nature of the
phase transition), it would be very interesting to go beyond the Bethe lat-
tice approximation and, for instance, to introduce corrections in % due to
the loops of the lattice which lead to a feedback of a spin onto itself. Nev-
ertheless, in this thesis, the m-component spin glass shows new and unique
properties and in some aspects allows for more accurate statements compared
to the Ising spin glass. Beyond that, this thesis provides some interesting
observations and it will be exciting to see whether these can be confirmed in
future studies.
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APPENDIX A. EFFECTIVE FIELD APPROACH

Appendix A

Self-consistent effective-field
approach

In order to find a relation how to calculate the cavity field ho from the cavity
fields le e ﬁk, we have to calculate two spin expectation values, resulting
on the one hand from equation and on the other hand from the parti-
tion function of a spin in a single field ho. The self-consistent effective field
approach assumes that both spin expectation values are equal, i.e. that fzo
produces the same expectation value (5p). (if 5y is solely subject to this field)
as the cavity partition function . The generalized result of calculating
the partition function of a single spin in a single field will be used frequently

in this section. Therefore, we take an arbitrary vector field h instead of hg
and calculate the general partition function Z of the spin § in this field

Z = /dms 5(m — (5)%) exp {B?ﬁ} : (A.1)

Using the integral representation of the d-function with an integration pa-
rameter z, this becomes a Gaussian integral for 5. We introduce a positive
constant ¢ to ensure convergence of this integral and get

~ 100+c dz - -

7- /_ g fasew {605 + 2(m — (%)} (A2)

:/loo+6%exp {5222/4z+2m_mln3}' (A.3)
—icotc 27T 2 T

We solve this integral by a saddle point approach with the large parameter
m. To do so, we extract a factor m from the first term in the exponent by

substituting 3 /\/m — k' and solve the saddle point equation 5 (62(h’ )2 /4z+
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z — 3Inz) = 0 with the relevant solution z = 2° = § (1 +/ 1+ 452(5’)2).

Apart from irrelevant constants, the partition function then is
- 5 1
Z = exp {m(ﬁQ(h’)Q/lle + 29— 3 In zo)} : (A4)

We obtain the spin expectation value <§>C by differentiating Z with respect
to h (as it is the partition function of the spin § in this field)

10mZ  ph 24h

Wle=5 7 o

- __ (A.5)
1+ /1 +482(h)?

Substituting 5 and h back to the specific notation 5, and EO, we have found
the first spin expectation value (5p). of the spin §j in a single field ho.

To derive the spin expectation value from equation resulting from
the cavity approach, we have to calculate this partition function. It consists
of an integral over 5y, and of the product of the partition functions Z;. As
these have a similar structure as the partition function (A.1]), which we have
just calculated, we can use the result of equation for the partition

functions Z; by repeating this calculation with the substitution h— JiSo +
h; in equation (A.1). The solution of the saddle point equations for the

parameter z; then is z) = }1 (1 + \/1 +432(J;s0" + 52)2) and the partition

function Z, is

k
- 1
Zy = /dmso 5(m — §5°) exp {m Z(ﬁz(hg + Ji80)2 /420 4 20 — 5 lnz?)} ,
i=1
(A.6)

with §p" = $5/y/m. We see explicitly that the formulation solely in terms of
cavity vector fields is not sufficient for m-component spins, as we do not pro-

duce a partition function of a spin in a single field, alike to Z ~ Trexp {ﬁﬁ? }

from equation (A.1)). Therefore, we confine ourselves to reproduce the spin
expectation value of equation . That is what we call the self-consistent
effective field approach.

To find (Sp). resulting from equation (A.6), we use again a saddle point
approach to solve the integral for the parameter z from the integral represen-
tation of the d-constraint &(m — s5%), and additionally for the m components
of the spin §5. However, there is a mathematical subtlety involved. As the
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number of integration variables is m + 1 and therefore of the same size as the
large parameter m, the saddle point method can not be used. Nevertheless,
it is possible to circumvent this problem. As the spins only occur as 3% and
as h:-,sB’ in the terms J? + 2Jil;i/56' + @/2, we can apply an orthogonal trans-
formation ¢ = O35, which projects the spin into the eigenbasis of the space of
the cavity fields h;. This space is at most k-dimensional (since there are only
k fields sz involved) and the product Oﬁf reduces from m components to k.
As we can carry out the remaining Gaussian integrals of the redundant m —k
components of §, resp. ¢, the saddle point method is applicable afterwards
and we get

_ " dz k 20 (72 PINE 1 2 0
Z=[ 5 / d* exp (m; [5 (B2 + 2J,(ORNE " + J2) /42!
+z0—11nz0+z(1—(£’)2)]—m_klni). (A7)
o2 2 T
The saddle point equations are
1
2(1 - (t)?)
k -

=1 g

In both equations (A.8)) and (A.9) we can use the inverse orthogonal trans-
formation. Multiplying equation (A.8]) with 25;, we have

(5o)e Zk: 232J,0h;

1= (502 & 420

As the definition of a saddle point is to produce the dominating weight of the
partition function, the saddle point value of ¢, resp. §, we have just found is
indeed the expectation value of 3y, (Sp).. Therefore, we have substituted it
in equation . Now, we can connect this result to the expectation value
from equation (|A.5)) of the spin §j in a single field ho. Equation can be
rewritten as Fhy = —-2< and in combination with equation (A.10) we find

1—(50)2

(A.10)

ho=)_ Qﬁ‘]ihi, (A.11)

where we substitute the spin expectation value (8p). from equation (A.5))
as well in z{ = § (1 + \/1 FAB2(J2 + 205V + E?)), which makes it a
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complicated implicit equation for EO. However, it finally reveals the effective
cavity field hg, which produces the same spin expectation value as the cavity
partition function from equation ([2.6).
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Appendix B

Appendix to Section 5.3

B.1 Additional expression for ¢*(5)

A second useful expression for ¢g¥(&) from equatlon 1’ is derived by ex-
panding exp(kIn g,(5)) with g,(¢) from equation and separating the
overlaps into the zeroth order contribution qaﬂ( ) in L and into the first order

k
(1)

contribution qg; as (and analoguously for the four-spin overlaps).

gr (&) = (kIn (1 + — Zq BOROL 4+ =5 24k2 Z ngzgagaléazgg))
uvnp

)\4
— exp [k(% qugagag 5 O dihohalolol
aﬁ

a,B,7,8
Hsvsm,p

1 v, M . , 9 1
-5 %Zqzﬂ oo+ s D dotahelo)’ +05))]

o,3,7,6
TR N
2 4
— exp |k A_Z( /“/(0)_'_1 MV(D)U“OV—F A Z #WIP(O)O_MJVUUUP
s LAY Qop pdes %% T 50 Qapys 9a989495
a,B,v,6
W TR N

- % ST ZQNV(O)U%B * +O(k3)>}

(B.1)

We separate the first term, exp (%2 S as qgg(o)agag), from the rest, for
v
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which we expand the exponential and get

)\2 v v v
= exp (— Z qgﬁ(o)agaﬂ ( % Z q. (I)U“aﬁ

y 20 1
24k Z g O ototolol — Zq#“a“o—g +O(ﬁ)). (B.2)

a,B3,v,6
Hvsm,P

It is feasible to expand this calculation to higher orders in %

B.2 Convenient form of the free energy

We show how to derive a convenient expression for the free energy of the
m component spin glass on a Bethe lattice in terms of g,. To this end we
separate the known site- and bond-contributions tof the free energy on the
Bethe lattice (see section into effective field contributions 7;;, which
denote the effective field onto the spin 5; solely due to its neighbour 5;. The
usual free energy on a Bethe lattice is

Fehd EU 43R
i (i)

_ —Nk< i ) +NT( -5 Trp? )
where
k+1
) =exp(8) " 7;51) (B.3)
j=1
k k
pY =exp(BY fudi+ B iud; + BJ,;6:5;) (B.4)
=1 =1

Analoguously to chapter 2] we define a cavity field by summmg over the single
contributions, 7;;, of all neighbouring spins but one as Z 1 Thij = h and the
local field H; as Z;Hll Tij = H; within this notation. Their distributions
will enter the derivation of equation . We denote the distributions
by P®D(R) = Q(H) and P®) (k) = Q(h) resp. (the index k + 1 or k resp.
denotes the number of neighbours involved to define the corresponding field).
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The free energy per spin can be written as

Bf =k / d"h P (R) In Tr, e
Ck+1

E, / A" hyd™hy PP (hy) PP (y)
x In Tral,me’g‘]‘?l&ﬁﬁl&l*ﬁ?&?. (B.5)

We see that the free energy of a spin glass on a Bethe lattice can be
expressed by the distribution of cavity fields. In the same way we can cal-
culate the free energy with the replica technique (by regarding n copies of
the same spin glass and sending n to zero in the end). For instance the
site-contribution is

In TrpZ — hm <ln Trge exp(f Z Z 755075 ) (B.6)

For the bond-contribution there is a similar formulation for the replicated
system. We define the cavity- and local fields for every single replica (h$) and

extend the joint distribution to & x n fields (which we denote by Pék)(ho‘)).
The free energy is then found to be

nﬁf —kln TrU/HdmhaPY(Lk—l-l)(ﬁa)e,@Za Hoego

k41

In TI'U?Jg EJ

/ Hdmhadmhap (ha)Pr(Lk) (ﬁg)e,&]za FHGSHROG RS (B?)

So far we have only reformulated the usual expression of the Bethe lattice
free energy. Now, we define the weight function g, (), which we have al-
ready derived in the previous section, in a different, but consistent way (to

equation (4.3)
gk 3) = / Hdmh“P(’“)(h"‘) N (B.8)

To see the consistency of both definitions of g, (), we have to understand
that the conditional distribution Q(,)(5|5\") of finding &, given 5 (which
is one of the k+ 1 neighbours of &) corresponds to the probability of finding
0o calculated with the partition function of &y being subject to the effective
field 77y, (The effective field 7jy; is the field on to &y solely produced by the
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interaction with 5%)). With this correspondence we find the definitions of
both order parameters g, and g(.) (from equation(4.3)) to be equal

=E; H Tr,wa H Q) (507150
/H d™n* P, (i7™) exp(3 Z Z N0i"00")
_ /Hdmhapjj(ha) exp(BZh%B“). (B.9)

The final step that leads to equation (4 is to insert the expression for
g¥(3) of equation (B.8) (and the correspondmg expression for gft1(7)) into
equation . However, we will additionally use an alternative formulation
of the free energy, which we derive by making use of equation (4.6))

k+1
nBf = klnTr,g"(5) — i

In <TrTgfL(F)TrggfL(6’)
-1
X /de( )Tr, exp ﬁJZ GOTY) )(TrTgn( )) )
k 1
= klnTrgFtt — 5 (ln Trg® + In Trgk“) ~ 3 (ln Trg® +In Trgkﬂ)

_k 1
=3 (hl TrgF™ —1In Trgffb) ~3 < In Trg® + In Trgﬁ“) . (B.10)

B.3 The free energy in terms of the overlaps

To split the free energy, we use equation (4.8)) first of all for the first term in

equation (B.10)

(1 Zng s+ s S hotesalat) /]
P
2
(s S e 5 )
z:v uvnp
N o)z 2 o) () At pmp(0)2
:Z ((qaﬁ )+ kqaﬁ 4op ) + 18k (qaﬁ'y(s ) (B.11)
a,B a,B3,7,6
v PRZ/NS

Further terms are of higher order either in % or in n (for the replica limit,

we only need to know the leading order in n). For the second term in equation
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(IB.10) we get:

k+1

1 by L k Trg,
5 In(Trg;) 5 <ln(Trgn) +In ( Tugh )>

A\ »
= —In(Trgy) — 2 D _(das")", (B.12)

o,B
v

where the third term in the first line corresponds to equation (B.11)), but

we only account for the zeroth order term in % of it, as there is no prefac-

tor k as in the derivation of equation (B.11)). The logarithm of the Trace
4.10

of g* is evaluated using equation (4.10) and equation (4.8 (with g% o
exp( Za 5 Qg O"uO' %) in zeroth order)

A2 v v
In(Trg*) = In [Tr exp (? Z qgﬁ(o)agaﬁ (1 + — Z ¢ (1)0“0‘5’
a6

A A\
urnp(0) v (0) 2
tom O s ozUzozas—g—k(anﬁ ota5)’)|
a,B,v,6 a,B
yV,15p v

Az 17 1 Az 17 1
=1In [Tr exp (? Z qgﬁ(o)agaﬁ)} +1In [Tr exp (7 Z qgﬁ(o)agaﬁ)
aﬂ a,B
1/ 1 v v
(1 + — Z q“ )0“06 + — 24k Z qﬁjﬁ’;g U“Uﬁafjog
u vn p

zq 72)’)  (Trexe z ote))]

=1In [Tr exp (? Z qgg(o)agag)} +1n [1 + )\— (Q§Z(O)QZZ(1))
.8

2k <
,u v
my prnp(0
N 24k (qaﬂw 8k: Z Qapys qaﬂ qms ] (B.13)
o0 a,8,7,6
H,v,m,P [TR7R N

We insert the resulting terms, separate them according to their order in
% and get
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)\2 v(0 )\2 v(0 v
mnBfy = — Z(qgﬁ( ))2 — InTrexp (5 Z qgﬁ( )agaﬁ) (B.14)
8 a8
Oy _ A 0)y2
mnffi = —— Z ” (quZf; )
a,ﬂ,'y,(s
RN
+3 Z 0o s (o + )
a,B,v,6
KV, P

This computation can be extended to higher orders. We have calculated
the free energy in order 1%2 (which we use in section {4.3.3])

A2 y A v
mnffo = 1 Z(qﬁg(”)Q T Z (QZ[;Z@(O))Q

o, a,B3,7,6

v v, P
A° pnp©2(0)y2 A2 v (0) pv(1)
~ 1440 Z (dapoos )~ — 9 Z(qaﬁ Gap )
a,B3,7,6,0,¢ o,
n,v,m,p,0,% MoV
2
v (0) np(1) pvnp(0) A v (0) npO©2(0) urvnpO©(0)
[ > did N as + D) D i g Tamons
a.Bys a,8,7,5,0,¢
Rz Hyvsm,p,0,P
), 1mp(0) ©2(0) nrnp©P(0)
Z qaﬁ Ty 9oy Yapyoes
«,3,7,6,0,¢
wv,m,p,0,%
LAt 0 A (1) npOB(0) puvnpOB(0)
nvnp pv np Hynp
- ‘[_ > ahs s s + - 24 D s e o
a,B,v,6 ,B3,7,6,0,¢
Vi1, p myvsn,p,0,P

8
(0) wmpd(0) | A vnp(0) ©Bst(0) uumpOdst(0)
S > s Ve T D s vy Uario

a,3,7,5,0,¢ ,,7,6,0,0,i,j
u,v,n,p,@ vy, p,0,P,5,t

A® urnp(0) ©2(0) st(0) uvnpOPst(0)
o D s G damao

@,3,7,8,0,0,1,j
1, p,0,P,s,t

>‘8 0 0) ©®(0) st vnpO©dst(0
+o > a0 e Vg g (B.15)

,3,7,6,0,,i,5
1ovn,p,0, P8,
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B.3.1 Computation for m, k£ — oo and corrections in %
First of all, we evaluate the Trace of T'. To this end, we introduce the single
vector ¢, which is a list of the spin components = 1,--- ,m of every single
spin 0, a = 1,--- ,n. Afterwards, we write the d-constraint in evaluating
the Trace in T in its integral representation §((&,)2 —m) = [ Laea((Fa)®-m),
and introduce a parameter € to ensure convergence of the following Gaussian
integrals. Then, we can calculate T' as (with M/ = 2(¢ — 24)das — N¢l5)

/ H \CZ% mzoé(e_z‘)) /dm"aexp ( - %O‘TM(ZQ)O')

/Hd’Za mZa(e—Za)— V21 (B.16)
V2 det M(zq)

So far the calculation is not restricted to any special case. The integrals are
solved by sadddle point methods. To evaluate corrections for finite compo-
nent numbers, we are going to expand around the saddle point of T in a power

series in % An expansion of the matrix term yields (with z, = z + Az,,

M(zo) = Mo(z) + AM(Az,) = My + AM(z,) and omitting the explicit
dependence of My on z)
Indet M(z,) = Trin M(z,)
= Trin(My + AM(z,)) = Trin (Mo(1 + My 'AM(z,)))
= Trin(Mo) + Trin (1 + My 'AM (2,))

% qyk+1
= Trin(My) + Tr Z ( k): (Mg AM (z4))F. (B.17)
k=1
With it, we get
Trexp ( Z q’“’(O) (e—(2+Aza))
m 1
X exp(——Tr In(My) — 3 TrMy AM (z,)
m m k+1
+ ZTr(M "AM(2,))* + o) My AM(z,))F). (B.18)
k=3

The saddle point equation for the parameter z is

1—TrM; ' (2) =0, (B.19)
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which cancels the first order terms in Az,, m Y. Az, and —2TrM; ' AM (z,)

in equation . Then, equation consists solely of Gaussian inte-

grals in exp(2Tr(My ' AM(2,))?). To see this, we note that the term AM (z,)

is a matrix with the entries 2Az, on its diagonal. We expand the exponen-

tial exp [%2 > 52 3 1) s Tr(My ' AM (z,))F] into its power series. This gives

us the corrections in order # and higher after solving the Gaussian integrals

with the substitution As, = /mAM (z,) (which yields exp(ZTr(My ' AM (z,))?) —
exp(1Tr(M; )2 As?) such that it is clearly a Gaussian integral). The result-

ing contributions to In 7" (up to fourth order) are

1 1 _
InT =mn(e—z— %Trln(Mg) ~ S InTr(M;1)? +

1
+ Ty + +...), (B.20)

with the corresponding expression for 75, T3 and T} given in the thesis.

v (0)

B.4 Calculating o in spherical coordinates

To prove that the overlap qgg(o) is different from zero only if © = v, we calcu-

late qg,ﬁ?) using spherical coordinates (for the calculation of qéoﬁ) see Ref. [41]).

We align the z-axis along the spin &,,. The single components of this spin are
oh) = \/mcos Oy m_s and 0¥, = /m cos Oy y,_3 511 Oy _o. The Jacobian of
the transfomation into spherical coordinates is [, sin ©4,1(Sin ©p2)? - -+ (SIn O 1p—2)™ 2.
The transformation makes the product ¢, g to be equal to cos ©3,,_2, such
that the exponent in the following calculation is independent of the angles
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O of replica o’. We then have

2 L 22 -1
¢, = /dm’"”aag,crg/eA2 2 dapFadp <Tr exp(? Z qag5a65)>

= / dnrlz[(\/mm‘l)a(ﬁ—m) / d"¢ / d"@lg(sin@a,l)-~~d"®mgﬂ ((5in O gm—2)""7)

«
A2 A2 o A2 I
X €T T Lpal Qa5 €08 Op.m 27 3 akar 489098 | [ 008 O m—2y/ 1T SIN Oy 12 €OS O pr 13

X (/d”?“ I;I(ﬁm_lﬁ(?g—m) /dn¢/dn@1 1;[ (5i0O1) -~ d"Ops [ ((sinOpn2)™2)

[0}

2 2 2 Lo\ —1
« 6%mn+>‘7 Zﬁ;&a’ o/ gMm CcOS @g,m_z—‘r% Zﬁ,a;ﬁa’ qaﬁaa(rg)

_92 A2
- / "0 H (sin®g m—2)m 2’5 Lol GarpmcosOp,m—2
Bl

. m—2 . . m—3
x/ dO s m—2 ( sin @afym,g) COS Op/ ym—2SIN Oy 2 / dOy m—3 ( sin @a/,m,g) coS Oy’ m—3

2
X (/dn_l@ H (sin @ﬂ,m—z)m_Qe% 2pal da’ 5™ €08 Og,m—2
ptal

. m—2 . m—3\ 1
X / d@a/’m_g ( S @a’,m—2) / d@a/,m_g ( S11 @a’,m—3) )
0

The last line follows after evaluating the integral for O,/ ,,—3. The same
is true for four-spin overlaps which contain a single component different to
the other ones. To show how the calculation of four-spin overlaps works we
calculate the simplest instances, ¢4 = ((¢#)*) and q4 = ((c")?(c%)?).

«
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g1 =((ch)")

= /d"r g(ﬁm_l)é(r2—m)/dn¢/dn@11;[ (sin@a,l)‘“dn@mdn (510 Oam—2)" %)

[0}

A2 A2 . A2 o 4
X 7MY Xl ot g 005 Opim—2+ 5 3 arar 057095 (/1 o8 O gt 1 s)

<( / d"rl](m “Ho(r2—m) / d"¢ / d"@lg (sin©u1) - A"z [ ((sin O pn2)™ 2

67

2 2 2 RN |
X e%mn+>\7 Zﬁ;éo/ qalﬁmcos eﬁ»m—2+/\7 Zﬂ,ayéa’ qaﬁUaa'ﬂ>

_9 A2
= / "0 H (Sin SF m—2)m 2e’T Lpstol dargmcos O m—2
G
4

X / dO s m—2 ( sin @a/,m,g) me? ( cos @a/,m,Q)

2
X (/dn_l@ H (Sin @B,m—Q)m_2€% 2ol ol g €08 O, m—2
B

m—2 -1
X / d@a/,m_g(sin@a/,m_ﬁ )
2 2

3 [ dOu 2 (5inOum-z)" " (08 Oum—)” _ 3m (B.22)
m+ 2 f d®a’,m—2 ( sin @a’,m—Q)m_2 m+2 ‘ '
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_ / e (/"o / &' / d"@1 [] (5in©as) - @O [] (5100 n2)™?)

« 7

X (ﬁcos@a — 2) (\/Ecos@a m—3 SN Og/ 2)2

2
% €>‘2 mn+2- Zﬁ;&a’ Qo 3mcos Og m 2+ Z@ astal 1ap0aldp

/dn H m 1 T' B /dn¢/dn®1 sin @a,l) .. .dn@m_Q H ((Sin @a,m—2)m_2)

«

2 -1
v 6)\2 mn+2- Z/@?ﬁa/ Qo gmcos Op m 2+ Zﬂ astal qagaa(rg)

. m—2 . 2
= m? / dO s m—2 ( sin @alﬂn_g) ( oS Oy m—2 sin @a/7m_2)

2

X / d@a’,me ( sin @a’,mf?))m_g ( COS @o/,mf?))

X </d@ar,m2(sin @af,mg)m_Z/d@a:,mg(sin @a/,m,g)m_g)

f d®a’,m—2 ( sin @a,7m_2>m—2 ( COS ®a’,m—2) 2 f d@a/’m_g ( sin ®a’,m—3) mes m2

m 2 [ dO s m2(5M O 2)™ " [ dOs 5 (5N O 5)™ m+2
(B.23)

-1

B.5 Wick’s theorem

In this section we apply Wick’s theorem to the case of the m-component spin
glass in the limit m — oco. The theorem allows for the calculation of expec-
tation values of higher order correlation functions of identically distributed
Gaussian variables (z,, =y, T., T4) in terms of their two-point correlation
functions, as (r,zprcrq) = (Tap){Terq) + (Toxe)(Tpra) + (Toxa){Tp,), DY
taking all possible combinations into account.

In case of the m-component spin glass we want to use the theorem for
the computation of four-spin overlaps. However they are not defined as
Gaussian random variables. Therefore we can not directly use it for the
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B.5. WICK’S THEOREM

four-spin overlaps as for instance for ¢4 = ((UZ;)4>
/ 2 - 9 o
= /dmna H 5((6a)2 - m) (O-Z/)Zie)\7 ZQQBUQU@/ <Tr€% anﬁga0ﬂ>
— / (;l—n’j /dmnge_ D a Ra ((Ea)2_m) (UZ;)ZL@% anﬂﬁaﬁﬁ/ (Tre¥ an;;&a&ﬁ,).
T n
(B.24)

At this point we can rewrite this expression in order to evaluate the four-

’ = 12, A2 -

. . . . ’ dmn g (gt 4672@1(0—&) +95- anﬁdadﬁ
spin overlap with a Gaussian weight, as ((¢”,)*)¢ . = / (ar)

[ dmnge~ T 2a(Ga)?+ % X aapFads
(the indices refer to a Gaussian expectation value depending on the saddle
point value of z, = 2z, — A%¢2 + A%qq1, omitting to explicitly introduce a
factor e for convergence of the Gaussian integrals)

- 2 S
o= T 2a(6e) 2 5 dapFads

dnza my , z !
0= [ Gt e (B.25)

(2m)"

2 JE—
Tre% ZQQBUQU,@

We apply Wick’s theorem for ((0"))%)¢. = 3((051)2%@ (note that the
combinatorics require a closer look for the other four-spin overlaps, for in-
stance for go11). The expectation values of each two-spin overlap is known,
it is ((6")2)¢. = o and <O’5:O’E:>G,x = 11 (which are finite). However,
these overlaps do not contribute to the saddle point equation for z,, resp.
Zo (as they are not of the order €™ ). Therefore the saddle point equa-
tion is the same for both the nominator and the denominator in equa-

tion (B.25)). It is ﬁ(ma + N2q — Ny — %lndet M(a;a)) = 0 with the

solution zy = % + \/% + A2¢q1, see the calculation of g,3 within the thesis.

Finally these contributions cancel and we get
1 = 3. (B.26)

The results for other overlaps are reported in equation (4.20). They hold as
long as using the saddle point method for m — oo in this context is correct
(i.e. that the terms not regarded to the saddle point never become too large),
and our result is the same as if we had used Wick’s theorem directly. This
procedure is supported by the findings of the previous section that ¢, = %
and p, = M5, which simplifies to 3 = 3¢5 (from ((o%)*) = 3((d%)?)?) resp.
1 = ¢2° ({(o8)*(%)?) = ((64)%)?, as the overlap ¢/7 is only different from
zero for p = v) in the limit m — oo.
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B.6 Diagonalisation and inverse of M

B.6.1 Replica Symmetry

We illustrate the matrices My and M; ' in a short hand notation with the
simplification n = 2 and m = 2. It is

r — Naqi 0 — N 0
o 0 xr — /\2(]11 0 _)\26111
Mo = g 0 x— Nqu 0 (B27)
0 —)\26111 0 xr— )\2(]11
and
%‘i‘ )\111211 0 )\29;1211
0 Ly Mg 0 Maui
-1 X X X
Myt = o 0 S L X 02 . (B.28)
v Mgy ’ = 1 Mgy
0 2 0 T + 2

To set n to two is an oversimplification. To confirm that (My)(My)~! = 1,
we have to be careful to take the replica limit n — 0. For instance we find

(Mo)(Mo) 11! = (z—M2q01) (A4 220) — (n—1)A%q11 24 = 1 and (M) (M) =

T

2 2 2
(z — )\26111)% - )\26111(% + >\_q211) —(n— 2))\26111% =0

T

The diagonalisation is done by finding the eigenvalues x and x — n/\QqQ)
with the orthonormal eigenvectors (each of the vectors has degeneracy m and

the vertical dots represent m — 3 entries which are zero such that there is a
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single non-zero entry for each replica)

1
1 L O (n—1)24n—1
\65 V2 : 0
0 0
. . 1
; : 2212 0
0 0 0 1
1 _ 1 : (n—1)24n—1
\65 , and 6/5 and 0 :
: . 2
. : 2219 i
0 0 0 N
7n 0 : 0
: 0 :
0 0
(B.29)

The first m eigenvectors belong to the eigenvalue o< x — n)\zqﬁ)) and the other
m(n — 1) vectors to the eigenvalue oc z. The inverse of My is calculated by
the orthogonal transformation M, ' = UD~'UT with D being the diagonal
matrix of My and U being the orthonormal matrix consisting of columns
which correspond to the normalized eigenvectors of My. As can be seen from
equation and we have to calculate various powers t of Tr(M; ')

and their derivations with respect to qg?. The explicit expressions of this

terms are not very enlightening and we omit to present them explicitly.

B.6.2 1-RSB

In case of 1-RSB the diagonalisation of M is done similar to above (with
T —y=2(e—2) — N2 — Nq12). An example for My with n =4, m =1
and r = 2 is

Y- )\26111,2 —>\2Q11,2 —/\2(111,11 _AQQH,H
—/\2(111 2 Yy — /\26111 2 —)\2(111 11 —)\26111 11
My — ; ' d k . (B.30
0 —)\26111711 Yy — >\2Q11,11 Yy — )\QC_I11,2 )\26111,2 ( )
—)\2911,11 Yy — )\2Q11,11 —)\26111,2 y— )\2Q11,2

Additionally to the eigenvalues ox y (with the first m eigenvectors in eq. (B.31)))
and o< y — rA%(qu12 — qu1,11) — nA’quin (with the other (only!) m(r — 1)2
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eigenvectors) from the replica symmetric matrix in equation (B.31)), we find
the eigenvectors

0 1
L . \/(n/r—l)Q—l—n/r—l
V2 ; 0
0 0
. 1
: 212 0
0 0 L
_ 1 \/(n/rfl)QJrn/rfl
V2 : . :
0 and 0 : ) (B.31)
) 2 :
: 2242 )
B n/r—1
0 0 \/(n/r71)2+n/r71
0 : 0
0 :
0 0

to the eigenvalue o< y — rA*(q112 — q11,11) with degeneracy m(2 — 1) (The
vertical dots represent mr — 3 entries which are zero such that there is a
single non-zero entry for each block of replicas). The inverse matrix is (again
depicted for n =4, m =1 and r = 2)

r=Lgon/r=l 1 1 /el 1 S EI B 41

yr xron xr3n yr xTom xr3n xTrom xr3n Tom xr3n

—Logmml 1 pml g omfrol 1 — 141 S U

Mfl — yr Tromn xr3n yr Tom r3n xTromn xr3n Taon r3n
0 — Ly S NI =l g/l 1 1 /el 1
Tomn x3n Ton r3n yr xron xsn yr Tomn r3n
ST I ST I S S 7 RS W 5 OIS i SR
xon r3n ron xr3n yr xron r3n yr xon xr3n

(B.32)

We again omit the explicit expressions of the various powers of M; ' and its
derivations with respect to qﬁé, qg?u and yo (yo is an additional variable
in the 1-RSB case), which we have to use in the corresponding equations

: ) (0 :
to (4.14) and (4.22) that determine ¢y, q171; and yo up to fourth order in
< in the 1-RSB case.
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B.6.3 One step broken replica symmetry solution

We exemplify the computations in case of 1-RSB by the determining equation
for the overlap qﬁmg in zeroth order

2
(00) __ d 1RSB
—mn(r —1)q;, 4 = dqg% InT, o
_mn < A2 & A2 " 7”/\4Q§(B11
2 Yo —TA2Aq  (yo — rA2Aq)?
d 11 1 N2q\)
+OO(%) (1 -t 2 o 11211 2)) (0) _ (00)
dQ11,2 Yo Ty T(Yo —1rA2Aq) (Yo —TA?Aq) N1.2=%N1.0
1 7")\2%201)1
=(r—1)g\ly = —1 '
(r=Vaniz - Yoo — rA2Aqp * (Yoo — rA2Aqp)?

(B.33)

The penultimate line is the determining equation for all higher orders in i

besides that we have to add higher order terms of In 7" as in equation (4 of

the replica symmetric calculation. For qﬁ))n this equation is equatlon 4.29

and for y, it is equation (4.20) (saddley(q§1 9, qﬁ)u))

B.7 Maximizing the free energies with respect
to r

The free energy in terms of the overlaps qa is written down in equation
- Since we have used the equation of ”motlon” . to write down f;
in this way, this part of the free energy is no longer stationary with respect
to the ¢’s in the 1-RSB case. Nevertheless it still gives the correct value for
the free energy. Therefore it is only necessary to minimize f, with respect to
r and as. To do so, we use the following equation

S 9 ] 9 2y 7 2
mn fo = mnz((qlz) + (r = 1)(qu2)” + (n —r)(qu1,11) ) o (E

)

mn
— —(yo + AQ(]2,2 — )\2Q11,2)

2
m n _ 1/ 3Te(MyghH)*  10(Tr(My1)?)?
"y in My + D (M t)? —( 0 0

g Mo+ g O g e T g, e

). (B.34)

We explicitly calculate the derivative of the free energy in order # to see
that the free energy is independent of r. If we insert the known dependence
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on 12, ¢11,11 and yo of the terms depending themselves on M,, we can
differentiate the free energy both with respect to r and . With fl—i’ =0 and

the only implicit dependence on r through ql—lrn it follows:

A3 \2 1 1 1
mn dro = mnz [(Q?(l)z + 911 2T 2(111 2) - (q[1)(1)11 + Q11 1t 2911 11)2
1 dQ112 1 dgts
+2(r — 1)@??27” o 27“q(1)?,11m2 7]
mn: 1 dyo L dyoe 1 (dy02 2 2
mn - — A2 Aqges — A
* 2 [y00m2 dr  yoom?2r dr (Yoo — rAN2Aqoo)m?r \ dr
1 1 A2 dQ11 11
S In(y) — = In(y — rA2Aq) —
+ r2 n(y) r2 n(y —rA"Ag) (Yoo — rA2Aqoo)m?  dr
. >\2C]9(1),11 <dy02 _ )\gA 2 dA(102)]
(Yoo — 1A2Aqoo)?m?2 \ dr o2 dr
ﬁ[ 1 _ 1 B 2 dy()g
2 (Yoo)?r? (97)%r2 ygom? dr
2 dy 2 dxd? 272 dQH 11 6/\2(1(1)(1),11 dz?
rydom? dr r(z0)3m2 dr o m2@P)? dr (yoo — rA2Aqoe)tm? dr
1d ( 3Tr(Myt)* 10(Tr(M0_1)3)2> (B.35)
mdr \(Tr(My ')2)2  3(Te(M; ')?)? .

In second order (which is the order in which replica symmetry is broken with
full-BSB) we find

d A2 dgii 1y
%51302 Z[QQ??A%z — 2rg)Y 1 ]

dr
T % [%AQM + )\72( dq;;“ —rAgo1) — )\dchzlnw}
d ; 3Tr(My*h)* 10(Tr(My1)3)?
+ [0] = 0w o ( RO Sn T )
=0 (B.36)

We used yoo = A, Agoo = 0 and ¢19, = ¢ff ;; = 1 — 1 and counted only those
terms, which contribute to the regardmg order for example only the terms of
order i of the saddle point corrections, which are itself already of order %
This result does not enable us to distinguish between stability and breaking
of replica symmetry.
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B.7. MAXIMIZING THE FREE ENERGIES WITH RESPECT TO R

B.7.1 Maximizing f,

In order — the free energy of the broken replica symmetry ansatz with bonds

dlstrlbuted according to the +-J model (where q§1 = 0) can be written as

)\2
1-RSB RS (1) np(l) pvnp(0)
By =615 +—4 E ( ey E o Uvs  9apys
o, a,B,7,6
BV H,v,m,p

)\2 1 1
= T (r=D(gi)* + (0= )(@iin)?)
>\4 1 1 1 0 0
— Sl 20— 1)ali e +40r— D) (r—2)ailagiti + 1= D —2)(r=3)g{ Vsl

1 1 0 0
F4(r=1)(n=r)ai s +200=1) =2 (n—r)a gl + =) (=) (n-2r)ai} gl |

Mo 0 1 0
—§QE1?11 [4(7” 1)(n— 7’)951)2Q§1)1+2(7”_1)(7’_2)(” T)qg1)2Q§1)11+<7" 1)(n—r)(n— 27’)951)251%1)11

1 1 0
+2(n—7“)q§1?11q22)+4(7“—1)( >Q§1)11Q§1)1+4(n_7”) (n_QT)qg1)11qg1)1+2(7"_1>2(n_7”>CI51?11Q§1)11

0
+4(r = )(n =)0 — 2r)gl gl + (0= 1) = 20) (0 = 3r)alVraith) -
(B.37)

The result in order 75 is (r — 1)(]51)2 = rq§1)11 (see within the thesis). If

we plug it into the free energy we find 3 f 1-RSB = BfEs.

(1)

In case of Gaussian bonds we find ¢;;7 = ¢()\), with the free energy

Bf55 s The general solution for broken replica symmetry is (r — 1)(]51)2 =
rqﬁ?n — ¢(A). As pointed out in the thesis, the contributions of all sums
depending linearly on the first order overlaps are the same for replica sym-

metry and 1-RSB. When we calculate the contributions from the first line in

equation [B.37, we find

A2 Z uu(l) } : ), mp(1) prnp(0) _ CO‘)QV
a,B a,,7,6
MoV VM, P

for both ansédtze. We see that the free energy is the same for the replica
symmetric ansatz and the 1-RSB ansatz as it does not depend on r, even in
case of Gaussian bonds.
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Appendix C

Introducing bond chaos

We want to derive equation (5.7)) in detail. To this end, we note that 2 5 log Z
can be rewritten in terms of derlvatlves of Ji; and Jj; as

%log Zy = glog Tre M
1 /
_ 5,5 — Jii5:5;
Zy <2\/ Z %% 2\/1—15 ; ! j>
0
log 2y — — i—— log Z 1
Z ”&]’ 08 21 2(1—t)ZJ”8Jij g2, (C1)
1<J 1<)
and analoguously for a% log Z!. This gives
0 0
Eja lotha—logZ’
1 0
E; Y ( Z hair loth——Q(l_t)ZJij@loth>
1<j,k<l 1<j

1 0
( Zjlaj,, logZT—mZ;JklﬁkllogZT) (C.2)

We can further manipulate the right hand side by an integration by parts
(with the short hand notation of o for the corresponding terms of equa-
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tion (C.2))) by making use of the independence of the different sets of bonds

EyJ o = / ced e T T

2, O
/ dJe b Q/QaJ' Jlho

ij

0

=F
7o

Ik, (C.3)

followed by a second integration by parts for the second integration variable

3 / 7//2 a
JklaJ/O_/ ~dJye T /QJkIaJ/

o 0
_g,-2 2, 4
Toan o (C4)

In case of the term E;J;;Jy0 we get

o 0

Ey T Juo = Ey (5 9
1 JijTeio = By ( D 5o

0) (C.5)

With these manipulations equation (C.2)) is

0 0 1 0 0 9dlogZ 0logZ,
Ey=log Zy~—log Z. = E — :
Tot 8 er 08 > Lm aJn oJ. aJl dJL
1<j,k<l R R
B 1 o 0 8logZ;810th B 1 0 0 O0logZ. dlogZ,
A1 —7) 0w dJj; O0Ju  OJj 41 —-t)Tr0J),0Ji; 0J),  0Jy
1 0 0 0dlogZ OlogZ, dlog Z! dlog Z,
- E - .
* 41 —-t)1—71)0Jw 0Ji; O0Ji  0J;5 } + B Z 0Jy;  0Ji;
(C.6)

In the last term of the penultimate line the links J;; and Jj,; are different,
since the case (ij) = (kl) is represented in the last line. The single terms of
the right hand side are nothing but thermal averages of the link between two
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spins. To see this, we present this transformation for two instances:

dlog Z;,  dlogTre P 5\/ 5 Tr(5:5; )= 6] 1— t<~ 5
8J,~j aJZ] Tre—AH: N 3t

*logz, 0 B/ 5 Te(5:5;)e 74
dJ;0J;, aJ,gl Tre—AH:

—BH:

Tr (5:57)(5k5))e P Tre Pt — Tr(5,5;)e P Tr (5,5, )e
=0 5 2
(Tre—0™:)

= N (1= )t (((5:55) (55))e — ((5:57))e((5k50))e) (C.7)

Each derivative with respect to Ji;, Ji; or Ji; generates spin averages taken
with respect to the interpolation parameter t or 7 and further gives a prefac-

tor of 34/t N , 0 N, By/ T or ﬂ\/_ (depending on the partition function
Zy or Z! the derivative is taken of). In principle, we have to take not only
two, but up to four derivatives in each term of equation (C.6)). Fortunately,

terms with three and four derivatives cancel each other (we omit this lengthy
calculation), such that E; gt log Z,-Z 5. log Z becomes

T SR (G CE(CENRICEND

1<j,k<l

x ({(5:85) (5k50))r — ((5:5)))-{(5k50)) )

b5 1 o
TN e e Z;((Sisj))t«sisj))ﬁ (C.8)

0
log Zt

B
E
7ot or

p log Z! =

which is equal to equation ({5.7]), when changing the indices of the sum to
1,7,k L.

Additionally to the derivation of equation we want to describe the
manipulations leading to equation (5.9)), in which the spin averages have
been expressed by link overlaps. There, we shift the thermal averaging over
partition functions with interpolating parameters ¢t and 7 to a single common
symbol ((-)) and introduce four different replicas, labelled by numbers 1 to 4
and the interpolating parameter according to which they are averaged, where
the replicas 1 and 2 have interpolating parameter ¢ and replica 3 and 4 have
parameter 7. For instance, for ((5;5;)(5,5))): we write ((5;"5;'")(s1."5")) (as
both links are averaged commonly with respect to the same parameter ¢) and
for ((55;))¢((5:5))): we write ((5;"5;"")(53°°51*")) (as both links are averaged
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separately but with the same parameter ¢). Equation (5.7]) then becomes

0 d / —»lt —»lt —»lt —1t\ (1 237 237\ =37 237
By log Zig—log ) = — N2 N Ekl: ( S (ST SV (57 5T))
1]
<(§;1t8_}'1t>(S_];2t§22t)(5378_}'37—)(3_])@37—5237))

<(S_;1t8] )(S_];»ltgilt)<3 478—]»47')(S—’;STS—Z»BT))_|_<(S—»ilt8—;1t)(8—];2ts—z2t)(s 47'8—;47')(8—1;37537'»)

62 1 —»lt—»lt —»37'—»37' 2
TN VIo: \/ﬁEJZ (5i"s3)(5i77s5°T)) —m?N)  (C.9)

Now we introduce the link overlap as, for instance in case of the two replicas 1
Do\ oo 1t o1ty (=37 =3

and 3, g = 5ty S (S5 = w5 5) -
m2N ) . Expressed in terms of link overlaps and separating the sum over ijkl,

a single term in equation (C.9) as -, ., (si s (st SN (ETS TS =

> (S5 s Zkl(s_l;lts_zltxs_’;&— si°) becomes N*(N—1)* (qp'+Nm?) (g1’ +
Nm ) When we insert these transformations into equation ((C.9)) the con-
tributions involving the term Nm? cancel and we find

a 5. ﬁ4 N — 2
5 08 215 log 7, = ( T ) Ei{(a?)’ — ai’a?® — ai'a® + ai’al?)

or
BN-1) 1
8 1—ty1—171

Assuming replica symmetry in the large-m limit, we end up with equa-

tion ([5.9)).

Ej~—

- Es{qr’)- (C.10)
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Appendix D

Replica calculation for two
constrained copies

In this appendix we present the basic steps of the calculation of the n-times
replicated partition function of two copies of the same spin glass (with pos-
sibly different sets of bonds), which are constrained to have a mutual link
overlap qr. The n-times replicated partition function of this system is

n

1 . 2
EﬂwwﬂmﬂHvamsz<é%mﬂ%in

a=1

<o (L S RGOS + LSS a0 (0.

a 1<) a i<j

First we integrate over the disorder, i.e. over the basic independent sets of
bonds of K;;(e), K and KJ; from equation (5.10), which we take be Gaus-
sian with unit variance. The Gaussian integrals yield (omitting irrelevant
prefactors)

n

m2
EJZZJ(QL) ox Trg, H (5(QL - N Z sta wea - m))

a=1

Ii5 _(10) 410) L 30430 1 39 30
<o (5 2[5 + s ) + (e )],
(i5)

(D.2)

We prepare a Hubbard-Stratonovich transformation by reordering the sums
over the spins (with u, v denoting the spin components and «, 3 the replica
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indices) and get

n

2
12ty (an) o< e I (3o = =y 2 (L ionl)” - 7))

a=1

5 E 50
X exp (4N |:Z (Z Sz(;lroo)zsz(zlz,(g m Z Z Sz,u,a wﬁ

o, 7
pov

3e) (3e
Eua 'Eug) ]) (Dg)
B )

vV

We write the d-constraint in its integral representation with the parameters z/,
n 1 (10) (3e)\2 m?2 _ [i00 dz!,

as Hazl (5(qL_N(N—1) Zuu (Zz Siu,asil/,a) _ﬁ» - f 400 (Hoc 2 ) exp <

qL Y, #h + Za%y 2 N(]\lf—l) (ZZ 35;00)652(32)2 - >, ngm—> With the substi-

tution z, =

Z[X
N-1

N — 1Ddzo\ _(nv_ s
EJZQAqL)oc/(H%)e (N ) S0t T

67

5 ¢
xTrz, exp <4N [Z ( ' E;OQ “1/% —|—Z <52 m) (Z 35;11,?0)181(37%)2

i a, i,V
uu

( (3¢) (3e) (3¢)
mz  Shuass) +Z } izmiw]). (D.4)

In the next step we introduce the new integration variables Q. v(10) Qi v(3¢)

and R!7 5 by the Hubbard-Stratonovich transformation, which reduces the

10) (092 o

quadratic dependence on spin component products as ( i SinaSiv.g

linear dependence. For instance, the transformation yields

2 10) (10))2 Y 10) (10
e% Z%ﬁf (Zz SEH,;SEV,Q)) . / (H /“/>€ 252 Za<5 (QZB)QJFZ Ot<ﬂ Qgﬁ Z’L Eugz 51/[;

af
o,
v
—1
2 S (Zis(29) 257 Xa ( o rat ) (REG)?+ 00 Rl i sunsiova
e2N “£a,uv iSip,a8 'Lua < H R > 23 g B \/1+ s /
Qa, i,V

and analoguously for QZE(SE) and R with a # §. Furthermore we split the
tensor (7,5 into its diagonal and off-diagonal part } a.s Q5 = 2 Za<ﬁ Qs+
wv
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APPENDIX D. CONSTRAINED REPLICA CALCULATION

23 e T+ 300, (Qaa + Ti) (for both QU and Q). There, T} is
a traceless tensor, i.e. Z“ THr = (. Now, the Trace over the spins can be
carried out. To this end we note that the sum over the sites ¢ = 1--- N
in the exponential, which includes the dependence of the spins (denoted as
the external exponent), in fact gives N times the same integral. Therefore,
we expand this integral into its power series and write the constraint é(m —
§%) in its integral representation, which includes the term e~ We see
that evaluating the Trace reduces to solving Gaussian integrals and only the
combinations including quadratic terms in s&?) and sgj) survive. However,
we find it more appropriate to carry out the Trace using spherical coordinates.
For the various cases (with z,y, z denoting different spins and 4, j, k¥ denoting

different components) we get

(2:)*(y;)* = S
(2:)?(2;)? = — w
(z:)*(y;)*(2)® = S2y
() () () = Y w
4 9 3M 9,
(ZEZ) (yj) = m—-f-Q m s
(D.5)
_ 2/ m™ !

where S, = is the surface of the m-dimensional sphere with

r'(5)

radius y/m. Afterwards we reexponentiate the resulting terms in Qgg(lo),

QZ';,(SE) and RZ; Together with the first part exponential of the Hubbard-
Stratonovich transformation, which was independent of evaluating the Trace
over the spins, we finally end up in equation ((5.15)).
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