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Abstract

Chemotaxis, the directed motion of cells in a chemical gradient, plays a central role in the life of
both prokaryotes and eukaryotes. It is crucial for various processes like wound healing, cancer
metastasis or embryogenesis. One of the most widely studied model organisms for eukaryotic
chemotaxis is the amoeba Dictyostelium discoideum, which shares many of its biochemical
pathways with mammalian cells. When starved for about 6 hours, D. discoideum becomes
chemotactic to the chemoattractant cAMP, and shows directional motion in gradient profiles
whose magnitudes range over 4 decades. It has been shown that a difference of as few as
100 occupied receptors between the two ends of a cell could lead to chemotaxis [Song et al.,
Eur. J. Cell Biol., 85(9-10), 2006]. The mechanisms that translate external gradients into a
directed motion of eukaryotic cells remain unclear – the biochemical pathways are not entirely
unraveled, and the interactions between the various intracellular components have not been
fully understood.

It is common to divide eukaryotic chemotaxis into three stages: directional sensing, po-
larization, and motility. Directional sensing refers to the first stage of chemotaxis, where
intracellular components rearrange as a response to the gradient. In particular, an intracel-
lular symmetry breaking occurs. Some signaling components accumulate at the part of the
membrane experiencing the highest concentration of chemoattractant, while others move to-
ward the side of lowest concentration. In recent years, several phenomenological models have
been proposed to account for this initial breaking of symmetry. The difficulty in modeling
directional sensing is three-fold. First, D. discoideum as well as mammalian neutrophils are
extremely sensitive to minute gradients of cAMP. Second, a cellular response is observed for
gradients ranging over 4 orders of magnitude. Third, the cells are able to adapt their response
to a change in the gradient direction. To reproduce these experimental facts, existing models
all assume a basic signaling system with at least one local and one diffusive species, whose
interaction leads to the localization of a reporter. In this thesis, we show how coupling bistable
kinetics to this basic system allowed for a noise-driven symmetry breaking inside the cell (see
chapter 2).

The various models for directional sensing reproduce the experimentally observed asymme-
try to a qualitative extent. Quantitatively however, their predictions differ. To experimentally
test such models, we used a combination of microfluidics and photouncaging to expose indi-
vidual D. discoideum to gradients as well as uniform concentrations of cAMP (see chapter
3). Under these conditions, we monitored the intracellular dynamics of PHCRAC − GFP, a
GFP-tagged marker of directional sensing. Our results strongly suggest that, during the first
30 seconds of stimulation with cAMP, the amount of translocated PHCRAC−GFP to the cell
membrane depends on the total number of occupied receptors, regardless of the stimulus. Lo-
cally on the cell membrane, the amount of PHCRAC −GFP is independent of the stimulation
amplitude, but the area of the membrane where PHCRAC−GFP translocates increases as the



receptor occupancy goes up.
The second and third stages of chemotaxis are polarization and motility, respectively.

Polarization refers to the tendency of a cell to assume an elongated shape, with a stable
leading edge from which pseudopodia are extended. Motility corresponds to the last stage
of chemotaxis, where the cell actually moves. We quantitatively measured the chemotactic
motility of D. discoideum in linear gradients of chemoattractant (see chapter 4). Previously
it was hypothesized that the accuracy of chemotactic motion was limited by the signal to
noise ratio, which compares the amplitudes of the stochastic fluctuations to that of the ideal
signal in the intracellular chemotactic pathway [Ueda and Shibata, Biophys. J., 93(1), 2007].
Based on the signal to noise ratio, a universal data scaling can be found. We were able to
rescale our data as well as earlier data from the literature onto one curve. To further describe
chemotactic cell motion, the cell tracks were analyzed using a generalized Langevin equation,
which separated the deterministic component of motion from stochastic contributions. The
evolution of the parameters of the Langevin equation with the gradient is reported for wild-
type cells and for a cytoskeletal mutant. We found that, in a gradient, the deterministic part
of the Langevin equation was similar for both cell types, while the stochastic part differed.

ii



Introduction

Chemotaxis, the directed motion of cells in a chemical gradient, plays a central role in the
life of both prokaryotes and eukaryotes. The intracellular biochemical pathways of bacterial
chemotaxis have been thoroughly investigated, and detailed models of prokaryotic chemotaxis
are available [128]. In the case of eukaryotic chemotaxis however, the signaling pathways are
less well known. Eukaryotic chemotaxis is crucial for various processes like embryogenesis [71],
cancer metastasis [21], or wound healing [102]. One of the model organisms for eukaryotic
chemotaxis is Dictyostelium discoideum. This amoeba, easy to genetically manipulate and to
grow in a laboratory, has chemotactic pathways that were highly conserved during evolution.
These pathways can be found almost identically in mammalian neutrophils, even though the
two species are separated by millions of years in the phylogeny [79].

Dictyostelium discoideum is an amoeba of roughly 10 µm in size that lives in the soil,
where it feeds on bacteria [58]. First discovered in 1935 by Kenneth Raper in a forest of North
Carolina, it belongs to the group of social amoebae, also called the cellular slime molds. As
long as life conditions are favorable, i.e. as long as food supplies are sufficient, they are in a
vegetative state and multiply by mitosis while living isolated from each other. This is called
the growth phase of their life cycle. Once there is no more nutrient available however, the
amoebae start aggregating, forming a multicellular organism whose shape evolves in time as
can be seen on figure 1, showing the life cycle of D. discoideum. After 24 hours of starvation,
the aggregate forms a structure consisting of a stalk and a fruiting body. One of the most
striking events following aggregation is the differentiation of the originally identical cells into
two kinds, stalk cells that are essentially dead, and spores that are in the fruiting body. If the
spores are blown off by the wind and fall on a soil area containing nutrient, the cells become
vegetative again, thus completing the life cycle. Note that, instead of the social cycle, a sexual
cycle can also be observed under well-defined external conditions [58].

Starved D. discoideum can detect gradients of the chemical cyclic AMP (cAMP). After
roughly 6 hours of starvation, about 50000 receptors to cAMP are uniformly expressed on the
cell membrane [109]. It has been shown that a difference of as few as 100 occupied receptors
between the front and back of the cell was sufficient to trigger a chemotactic motion in the
direction of the gradient of cAMP [109]. The cells are able to detect gradients with midpoint
concentrations spanning 4 orders of magnitude [30, 109]. The same type of sensitivity has
been found in mammalian neutrophils [135, 43]. How is a cell able to sense this molecular
gradient and translate it into a motion in the direction of the chemoattractant source? This
question can be answered on different levels. On the biochemical level, it is important to know
all the players of the intracellular chemotactic pathway. The knowledge of the biochemical
components is however not the final answer. It is also necessary to know how the different
players interact with one another. With computing power increasing, it has become easier
to build descriptive models of the cell, which incorporate all of these components [72]. But
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Figure 1: (a) Sketch of the life cycle of D. discoideum, by D. Brown and J.E. Strassmann. (b)
Corresponding picture. Scale not given by the authors, but the mound (lower right corner) is
roughly 3 mm wide. Image c©M.J. Grimson and R.L. Blanton, Biological Sciences Electron
Microscopy Laboratory, Texas Tech University. Both images can be found on http://www.
dictybase.org. 2
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Introduction

because the different networks inside a cell can be quite complex, and because all components
are not yet known, it is also useful to build simple models that can capture the essential
experimental features. In these types of models, the identification of the biological actors with
the model variables is mostly conjecture. When a cell detects a gradient of cAMP, and before
starting to move, intracellular components rearrange themseves within the cell. In particular,
an intracellular symmetry breaking occurs. Some signaling components accumulate at the
side of the membrane experiencing the highest concentration of chemoattractant, while others
move toward the side of lowest concentration. This stage of chemotaxis, which happens within
the first 30 seconds of exposure to a gradient of chemoattractant, is known as directional
sensing. Most of the models of directional sensing share a general feature. They are based
on at least two species, one of which diffuses in the cytosol, and the other which is on the
cell membrane (for more details, see the review of models in chapter 2). In most models,
the diffusing species plays the role of an inhibitor, while the local species plays the role of
an activator. The inhibitor is supposed to diffuse quickly enough so that its intracellular
concentration profile is uniform. The diffusive species therefore reflects the average external
concentration of chemoattractant. The profile of the activator on the cell membrane reflects the
profile the external gradient of chemoattractant. The interaction between these two species
leads to the asymmetric localization of a reporter on the cell membrane. The differences
between the existing models come from the details of the interaction between the inhibitor
and the activator. In chapter 2, we show how coupling bistable kinetics to the basic system
of activator/inhibitor allowed for a noise-driven symmetry breaking inside the cell.

All models of directional sensing qualitatively reproduce the observed symmetry breaking
within the cell. Quantitatively, however, the predictions of these models differ. Up to now,
and with the notable exception of work presented in [132, 72], no quantitative experiments
were performed on directional sensing, which could help to discriminate between the existing
models. We performed systematic experiments using a strain of D. discoideum expressing
PHCRAC −GFP, an intracellular marker of directional sensing [80]. When stimulated with a
gradient of cAMP, PHCRAC−GFP shows a biphasic translocation to the membrane [132]. We
focused on the first phase of translocation. Using flow photolysis, a combination of microflu-
idics and photouncaging [10], we stimulated individual cells with different well-defined, stable
gradients of cAMP and monitored the intracellular dynamics of PHCRAC −GFP in response
to these stimuli. The quantitative evolution of the intracellular response with the gradient
is reported in chapter 3. It was hypothesized that the first PHCRAC − GFP translocation
was a local response, not a response depending on the difference of intracellular components
between the two ends of the cell. For the first time, we tested this hypothesis quantitatively
by comparing the first phase of PHCRAC−GFP translocation in response to gradients and to
uniform stimuli.

The chemotactic motion of D. discoideum in various gradients of cAMP has been studied
extensively over the past decades. In chapter 4, we used microfluidic devices to produce the
stable, linear gradients that the cells were subjected to [109]. It has been recently shown that
the accuracy of chemotaxis of D. discoideum depends on both the midpoint concentration
of cAMP and the absolute gradient experienced by the cell [34]. Because chemical reactions
are stochastic processes, Ueda and Shibata hypothesized that the accuracy of chemotactic
motion is limited by the amount of stochastic fluctuations propagating through the intracel-
lular chemotactic pathway [119]. They defined a signal to noise ratio (SNR), which was found
to be correlated with the experimental results on chemotactic efficiency of Fisher et al. [30].
Estimating the SNR at each point of the microfluidic device, we showed that all data, from
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our experiments as well as from earlier sources from the literature, could be collapsed onto
one curve if the chemotactic efficiency of the cells were plotted as a function of the SNR. Fi-
nally, we used a Langevin equation to describe the chemotactic motion of cells in the different
gradients used, enabling us to observe the influence of the gradient on both the stochastic and
deterministic components of motion. This analysis was reproduced both for wild-type cells
and for mutants lacking SCAR/PIR121, a key regulator of the actin cytoskeleton, allowing us
to quantify the difference in motion of both cell types.
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Chapter 1

Biological background

Chemotaxis is the directional migration of cells in a chemical gradient. If the cell migrates
up the gradient of chemical, the chemical is called a chemoattractant. In the opposite case,
it is termed a chemorepellent. Both prokaryotes and eukaryotes can respond chemotactically
to chemical signals. In the case of several bacteria (the most famous one being E. coli)
all the steps of the chemotactic pathway are known [128]. This doesn’t mean that bacterial
chemotaxis is completely understood: for example, it is known that E. coli can sense temporal
gradients of chemoattractant, but there are still debates on whether it can also sense spatial
gradients [116]. Still, knowing all the biochemical players was definitely an important step
in unraveling the mechanisms of bacterial chemotaxis. In the case of eukaryotic chemotaxis
however, parts of the signaling pathway are still being uncovered, and the relationships between
the different biochemical components are not as clear [113]. Eukaryotic chemotaxis is crucial
in as various processes as embryogenesis [71], cancer metastasis [21], or wound healing [102].
One of the model organisms for eukaryotic chemotaxis is the social amoeba Dictyostelium
discoideum. When starved, these amoebae can respond chemotactically to cAMP, and forms
aggregates of about one million cells [14], This aggregation is only the first part of a survival
mechanism that will see 20% of the cells die and form a stalk, on the top of which the 80%
remaining cells will form a fruiting body and turn into spores. Interestingly, the chemotactic
pathways of D. discoideum were highly conserved during evolution and can be found almost
identically in mammalian neutrophils, even though the two species are separated by millions of
years in the phylogeny [79]. In this chapter, I will give an introductory overview of the current
knowledge of the chemotactic pathway of D. discoideum, concentrating mostly on the pathway
used in chapter 3 of this thesis. The most crucial informations will be shortly summarized in
the remaining chapters when needed.

1.1 General view of eukaryotic chemotaxis

It has become common to divide eukaryotic chemotaxis into three processes: directional sens-
ing, polarization and motility (see for example the review articles [24, 32, 90, 113]).

Directional sensing refers to the first stage of chemotaxis, occurring in D. discoideum
within the first 10 seconds after the application of an external gradient of chemoattrac-
tant. During this stage, the cells reads the external gradient and responds by spatially
rearranging several of its intracellular biochemical components. In particular, signaling



1.1. General view of eukaryotic chemotaxis

components accumulate to the part of the membrane experiencing the highest concentra-
tion of chemoattractant. This accumulation can be visualized in fluorescence microscopy
using proteins bound to the green fluorescent protein (GFP) [80, 52]. An example of
such a marker of directional sensing is shown on figure 1.1a.

Polarization refers to the tendency of a cell to assume an elongated shape along an anterior-
posterior axis, with a stable leading edge (defining the front of the cell) from which
pseudopodia are extended, and a retracting uropod (defining the back of the cell). A
D. discoideum cell can polarize as a response to a gradient, typically within one minute
after the gradient has been applied. However, spontaneous polarization in the absence
of asymmetric external cues is also observed [108].

Motility is the last stage of chemotaxis and corresponds to the actual motion of the cell.
There can also be motility in the absence of an external stimulus.

Series of Models Proposed to Account for Directional
Sensing and Polarization

Fig. 2 illustrates some of the ideas that have been put forward to
explain direction sensing and polarization. An early proposal, based
on the temporal mechanism of chemotaxis in Escherichia coli, holds
that a eukaryotic cell extends “pilot pseudopodia” in random direc-
tions (16, 46, 47). Those extended up the gradient experience a
positive change in chemoattractant concentration and are reinforced
whereas those projected down the gradient receive a negative signal
and are extinguished. The random walk of pseudopodia tends to
move the cell steadily toward the attractant. A second proposal rea-
sons that a gradient applied to a cell must first contact the cell on one
side (48). This “first hit” triggers a rapid inhibitory response that
spreads across the cell and prevents the posterior from responding.
When the gradient is repositioned, there is again an initial contact
and the direction of the response is reset.

A third class of models is based on powerful internal “positive
feedback” loops. Signaling molecules are selectively amplified at the
anterior of the cell and thereby localize the response (49, 50). Several
models link a positive action at the front of the cell to an opposing
action at the back. In the “mechanical restriction” model an extension
at the front of the cell is physically coupled to a retraction at the back.
In the “intermediate depletion” model highly cooperative binding at
the front limits the availability of free signaling molecules at the back
of the cell (51). Finally, the “local excitation-global inhibition” model
proposes that directional sensing depends on a balance between a
rapid, local “excitation” and a slower global “inhibition” process (15,
16, 52–54). Receptor occupancy controls the steady-state levels of
each process, and the difference between the two regulates the re-
sponse. Because inhibition depends on average receptor occupancy,
its steady-state level is less than that of local excitation at the front
of the cell. At the back, the situation is reversed.

Many of these concepts are useful to our understanding of direc-
tional sensing and polarization, but none can account for observed
responses under all experimental paradigms. The “pilot pseudopo-
dia” model cannot explain how a completely immobile cell that is
unable to extend projections is still able to amplify a stable external
gradient (Fig. 1, left). The “first hit” inhibition model cannot ac-
count for the ability of a cell to sense a gradient formed by lowering
the concentration from an initially high uniform level.2 The “posi-
tive feedback” models provide large amplification, but once initi-
ated the response becomes relatively independent of the external
signal. This property is useful for polarization but is inconsistent
with the ability of an unpolarized cell to respond to rapid shifts in
directional input. The mechanical restriction model is incompatible
with the capacity of a paralyzed cell to sense the external gradient

(Fig. 1, left). The “intermediate depletion” model requires strong
cooperative binding and cannot account for the ability of the cell to
respond over a wide range of stimulus concentrations.

The “local excitation-global inhibition” model is consistent with
many features of the chemotactic responses. Cells respond to
changes in receptor occupancy and adapt when occupancy is held
constant. The model accounts for transient responses, the direc-
tional responses to spatial gradients, and for observed responses to
combinations of temporal and spatial stimuli. It is also consistent
with the ability of the cell to respond to gradients with a wide range
of midpoint concentrations. However, the model lacks the large
amplification afforded by positive feedback and does not explain
the slow reactions of polarized cells to shifts in the external gradi-
ents (see Fig. 1, right). A comprehensive, predictive scheme for
directional sensing and polarization will likely bring together ele-
ments from a number of these models.

Directional sensing of chemoattractants occurs within the sig-
naling pathway after G protein activation and before the accumu-
lation of PIP3. During directional sensing and polarization there is
surprisingly little redistribution of the upstream components and
biochemical reactions in the signaling pathway. In unpolarized
cells, the chemoattractant receptors and G proteins are distributed
uniformly along the cell membrane, whereas receptor occupancy
closely mirrors the shallow concentration gradient of chemoattrac-
tant (Fig. 3) (55–57).2 Cell polarization leads to only subtle changes
in these parameters; the G protein subunits acquire a slightly
asymmetric distribution toward the front of the cell, and the on and
off rates of cAMP binding are faster at the anterior end (55, 58). G
protein activation has not been directly imaged, but its kinetics
suggests that it is not sharply confined to the front of cells whether
or not they are polarized. During chemoattractant stimulation, the
G protein !- and "#-subunits remain dissociated as long as recep-
tors are occupied (59). It is difficult to envision then how the G
proteins would be inactivated at the back of the cell where receptor
occupancy is only slightly lower than at the front. Rather, it seems
likely that a global inhibitory process offsets G protein activation at
the back of the cell and thereby localizes responses to the front.

The accumulation of PIP3 at the cell anterior is an early point
where strong asymmetric activation of the signaling pathway is
observed (Fig. 1). This was first shown in D. discoideum by visu-
alization of these PIs with a variety of GFP-tagged PH domain-2 P. Devreotes and C. Janetopoulos, unpublished observations.

FIG. 1. Unpolarized D. discoideum cells are equally responsive at
all points on their perimeters whereas polarized amoebae have re-
stricted sensitivity. Cells expressing PHCrac-GFP sense a gradient of
cAMP released from a micropipette. A latrunculin-treated cell (top panel,
left) displays PHCrac-GFP binding to the membrane on the side of the cell
exposed to gradient emanating from pipette 1 (dot), and then rapidly (within
60 s) translocates to the other side when pipette 2 (dot) is turned on.
Polarized cells initially chemotax toward pipette 1 (top panel, right). When a
competing gradient from pipette 2 (dot) is turned on, they either turn or
continue forward. (The rear of cell b is actually closer to pipette 2.) Time
between frames in right panels is 30 s.

FIG. 2. Salient models proposed to explain chemotaxis and polar-
ity. Each panel indicates the same cell at an initial and an advanced stage
of gradient sensing. In the gradient represented by the yellow shading, the
highest concentration is on the right. In the “pilot pseudopodia” model,
pseudopodia are reinforced only when they detect an increasing concentra-
tion (!dC/dt). In the “first hit inhibition” model, an inhibitory molecule (red
line) diffuses rapidly through the cell or along the membrane and blocks the
back of the cell from responding further. “Positive feedback loops” of internal
signaling components (green arrows) have also been proposed to amplify the
shallow gradient across the cell. “Mechanism restriction” models invoke the
cytoskeleton (red arrows) to couple an extension at the front of the cell to a
retraction in the back. The “intermediate depletion” model proposes that
binding of a limited internal signaling component (gray dots) is highly
cooperative. The excitation-inhibition model proposes that the response de-
pends on a balance between rapid excitation and slower inhibition processes.
Excitation (E, green) reflects local receptor occupancy whereas an inhibition
(I, red) reflects average receptor occupancy across the cell.
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Fig. 2 illustrates some of the ideas that have been put forward to
explain direction sensing and polarization. An early proposal, based
on the temporal mechanism of chemotaxis in Escherichia coli, holds
that a eukaryotic cell extends “pilot pseudopodia” in random direc-
tions (16, 46, 47). Those extended up the gradient experience a
positive change in chemoattractant concentration and are reinforced
whereas those projected down the gradient receive a negative signal
and are extinguished. The random walk of pseudopodia tends to
move the cell steadily toward the attractant. A second proposal rea-
sons that a gradient applied to a cell must first contact the cell on one
side (48). This “first hit” triggers a rapid inhibitory response that
spreads across the cell and prevents the posterior from responding.
When the gradient is repositioned, there is again an initial contact
and the direction of the response is reset.

A third class of models is based on powerful internal “positive
feedback” loops. Signaling molecules are selectively amplified at the
anterior of the cell and thereby localize the response (49, 50). Several
models link a positive action at the front of the cell to an opposing
action at the back. In the “mechanical restriction” model an extension
at the front of the cell is physically coupled to a retraction at the back.
In the “intermediate depletion” model highly cooperative binding at
the front limits the availability of free signaling molecules at the back
of the cell (51). Finally, the “local excitation-global inhibition” model
proposes that directional sensing depends on a balance between a
rapid, local “excitation” and a slower global “inhibition” process (15,
16, 52–54). Receptor occupancy controls the steady-state levels of
each process, and the difference between the two regulates the re-
sponse. Because inhibition depends on average receptor occupancy,
its steady-state level is less than that of local excitation at the front
of the cell. At the back, the situation is reversed.

Many of these concepts are useful to our understanding of direc-
tional sensing and polarization, but none can account for observed
responses under all experimental paradigms. The “pilot pseudopo-
dia” model cannot explain how a completely immobile cell that is
unable to extend projections is still able to amplify a stable external
gradient (Fig. 1, left). The “first hit” inhibition model cannot ac-
count for the ability of a cell to sense a gradient formed by lowering
the concentration from an initially high uniform level.2 The “posi-
tive feedback” models provide large amplification, but once initi-
ated the response becomes relatively independent of the external
signal. This property is useful for polarization but is inconsistent
with the ability of an unpolarized cell to respond to rapid shifts in
directional input. The mechanical restriction model is incompatible
with the capacity of a paralyzed cell to sense the external gradient

(Fig. 1, left). The “intermediate depletion” model requires strong
cooperative binding and cannot account for the ability of the cell to
respond over a wide range of stimulus concentrations.

The “local excitation-global inhibition” model is consistent with
many features of the chemotactic responses. Cells respond to
changes in receptor occupancy and adapt when occupancy is held
constant. The model accounts for transient responses, the direc-
tional responses to spatial gradients, and for observed responses to
combinations of temporal and spatial stimuli. It is also consistent
with the ability of the cell to respond to gradients with a wide range
of midpoint concentrations. However, the model lacks the large
amplification afforded by positive feedback and does not explain
the slow reactions of polarized cells to shifts in the external gradi-
ents (see Fig. 1, right). A comprehensive, predictive scheme for
directional sensing and polarization will likely bring together ele-
ments from a number of these models.

Directional sensing of chemoattractants occurs within the sig-
naling pathway after G protein activation and before the accumu-
lation of PIP3. During directional sensing and polarization there is
surprisingly little redistribution of the upstream components and
biochemical reactions in the signaling pathway. In unpolarized
cells, the chemoattractant receptors and G proteins are distributed
uniformly along the cell membrane, whereas receptor occupancy
closely mirrors the shallow concentration gradient of chemoattrac-
tant (Fig. 3) (55–57).2 Cell polarization leads to only subtle changes
in these parameters; the G protein subunits acquire a slightly
asymmetric distribution toward the front of the cell, and the on and
off rates of cAMP binding are faster at the anterior end (55, 58). G
protein activation has not been directly imaged, but its kinetics
suggests that it is not sharply confined to the front of cells whether
or not they are polarized. During chemoattractant stimulation, the
G protein !- and "#-subunits remain dissociated as long as recep-
tors are occupied (59). It is difficult to envision then how the G
proteins would be inactivated at the back of the cell where receptor
occupancy is only slightly lower than at the front. Rather, it seems
likely that a global inhibitory process offsets G protein activation at
the back of the cell and thereby localizes responses to the front.

The accumulation of PIP3 at the cell anterior is an early point
where strong asymmetric activation of the signaling pathway is
observed (Fig. 1). This was first shown in D. discoideum by visu-
alization of these PIs with a variety of GFP-tagged PH domain-2 P. Devreotes and C. Janetopoulos, unpublished observations.

FIG. 1. Unpolarized D. discoideum cells are equally responsive at
all points on their perimeters whereas polarized amoebae have re-
stricted sensitivity. Cells expressing PHCrac-GFP sense a gradient of
cAMP released from a micropipette. A latrunculin-treated cell (top panel,
left) displays PHCrac-GFP binding to the membrane on the side of the cell
exposed to gradient emanating from pipette 1 (dot), and then rapidly (within
60 s) translocates to the other side when pipette 2 (dot) is turned on.
Polarized cells initially chemotax toward pipette 1 (top panel, right). When a
competing gradient from pipette 2 (dot) is turned on, they either turn or
continue forward. (The rear of cell b is actually closer to pipette 2.) Time
between frames in right panels is 30 s.

FIG. 2. Salient models proposed to explain chemotaxis and polar-
ity. Each panel indicates the same cell at an initial and an advanced stage
of gradient sensing. In the gradient represented by the yellow shading, the
highest concentration is on the right. In the “pilot pseudopodia” model,
pseudopodia are reinforced only when they detect an increasing concentra-
tion (!dC/dt). In the “first hit inhibition” model, an inhibitory molecule (red
line) diffuses rapidly through the cell or along the membrane and blocks the
back of the cell from responding further. “Positive feedback loops” of internal
signaling components (green arrows) have also been proposed to amplify the
shallow gradient across the cell. “Mechanism restriction” models invoke the
cytoskeleton (red arrows) to couple an extension at the front of the cell to a
retraction in the back. The “intermediate depletion” model proposes that
binding of a limited internal signaling component (gray dots) is highly
cooperative. The excitation-inhibition model proposes that the response de-
pends on a balance between rapid excitation and slower inhibition processes.
Excitation (E, green) reflects local receptor occupancy whereas an inhibition
(I, red) reflects average receptor occupancy across the cell.
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Figure 1.1: (a) Directional sensing: translocation of PHCRAC −GFP (a marker of directional
sensing, see section 1.5) in a cell treated with Latrunculin A (a drug inhibiting actin poly-
merization). First, the cell is exposed to a gradient of cAMP coming from pipette 1. Then,
pipette 1 is turned off and pipette 2 is turned on. Within 60 seconds, the translocation changes
side. (b) Effect of polarization on chemotaxis. First, polarized cells migrate towards pipette 1.
When additionally, pipette 2 is turned on, cell a turns around but cells b and c continue in their
original direction. Both figures taken from [24]. No scale is given in the article from which
these pictures are taken, but a Latrunculin-treated cell has probably a diameter ∼ 10 µm,
and the polarized cells should be roughly 15-20 microns long.

Directional sensing has been shown to be separable of both motility and polarization. In-
deed, when cells are treated with Latrunculin A, an inhibitor of actin polymerization (and
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Chapter 1. Biological background

therefore an inhibitor of polarization and of cell motion), intracellular proteins can still translo-
cate in a response to a gradient, and accumulate at the part of the cell experiencing the highest
extracellular concentration of cAMP [80]. The response can also adapt to a change in the gra-
dient direction: if the direction of the gradient is switched, so is the intracellular translocation
(see figure 1.1a) [80].

In polarized and motile cells, the existence of feedback loops between actin and signaling
molecules from the leading edge has been established [96]. It is also known that, when the
direction of chemoattractant gradient is changed, a polarized cell can either rearrange its front
and back, or keep the same front and turn towards the new gradient direction, showing an
influence of polarization on directional sensing (see figure 1.1b) [24, 130].

In chapter 3, we will probe the sensitivity of directional sensing using different gradients of
chemoattractant. It is has been established that there are at least four parallel pathways that
regulate different aspects of chemotaxis [113]. In this chapter, we are focusing mainly on the
components of the PI3K/PTEN pathway and their interactions. The PI3K/PTEN pathway
will be essential for the experiments reported in chapter 3.

1.2 The receptors to cAMP

In D. discoideum four receptors to cAMP have been identified, named cAR1 to cAR4, that
are expressed at different stages of the life cycle. When the cells are vegetative, there is no
receptor to cAMP. The gene coding for cAR1 (cAMP Receptor 1), is the first to be expressed
after initiation of starvation, and its expression peaks 6 hours after the onset of starvation [55]
(see figure 1.2). At this point in time, there are roughly 70,000 receptors uniformly distributed
around the cell membrane. It is interesting to note that the expression of cAR1 depends on
the presence of cAMP pulses during early development [81]. Moreover, it is known that the
stimulation of a D. discoideum cell with cAMP induces the production and release of cAMP
by the cell [101]. There is therefore a feedback loop between the production of cAMP and the
expression of cAR1.

Within 6 to 9 hours of starvation, the gene coding for cAR1 is down-regulated while the
gene encoding cAR3 starts to be expressed. As seen on figure 1.2, the maximal number of
cAR3 around the cell is an order of magnitude lower (5,000 sites around the cell) than the
maximum number of cAR1. The two other cAMP receptors, cAR2 and cAR4 are expressed
later in development. In our work, we will be interested in events occurring between 6 and 8
hours of starvation. The most important receptor for us is therefore cAR1.

When cAR1 is bound to cAMP, it undergoes phosphorylation with a half-time of about 45
s. The fraction of phosphorylated receptors rises with the applied concentration of cAMP [125].
Phosphorylated receptors have a roughly four times lower affinity for cAMP than non-phos-
phorylated receptors [18]. This means that, at a given concentration of cAMP, the number
of phosphorylated receptors bound to cAMP is four times smaller than what the number of
bound non-phosphorylated receptors would be. This phenomenon is termed loss of ligand
binding. When the chemoattractant is removed, dephosphorylation of cAR1 occurs with a
half-time of 2.5 minutes [125].

The dissociation kinetics between cAMP and cAR1 is multiphasic, with time constants
of the order of seconds [118]. When a cell is subjected to a gradient of cAMP, binding and
unbinding are faster at its leading edge than at its back [118].

In D. discoideum, the cAMP receptors are uniformly distributed around the membrane
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Figure 1.2: Expression of cAR1 (empty squares) and cAR3 (filled squares) as a function of
starvation time. Figure taken from [55].

and stay uniformly distributed even when the cell is polarized in a gradient of chemoattrac-
tant [131].

1.3 G proteins

The different cAMP receptors are transmembrane proteins linked to G2, a heterotrimeric G-
protein, i.e. a G-protein consisting of three subunits1. These subunits are called α2, β and γ.
When cAMP binds to a receptor, the G-protein gets activated: the GDP on the Gα2 subunit
is exchanged for a GTP, which promotes the dissociation of G2 into the Gα2 monomer and a
Gβγ complex [51]. During continuous stimulation, the G-protein stays dissociated, whether
the external stimulus is a uniform concentration of cAMP [51] or a gradient of cAMP [132].
The activation of the G-protein reaches a steady-state level that depends on the local external
concentration of chemoattractant, with higher concentrations of cAMP leading to more acti-
vation (see figure 1.3). In the case of a gradient stimulus, the extent of activation is bigger at
the front of the cell, where there is a higher receptor occupancy, than at the back of the cell.
When the stimulus is removed, the G-protein heterotrimer reassociates. Evidence suggests
that the Gβγ is the complex transducing the response from the receptors to the downstream
chemotactic pathway, while the Gα subunit binds G2 to cAR [113].

1.4 Ras proteins

Dissociation of the G-protein leads to the activation of guanine nucleotide exchange factors
(GEFs), which catalyse the exchange of GDP for GTP in proteins of the Ras family, thereby
activating them. Proteins of the Ras family are small GTPases that regulate as various
cellular processes as mitosis, motility, chemotaxis, endocytosis. D. discoideum has five Ras

1G-protein is the abbreviation for guanine nucleotide-binding protein.
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Chapter 1. Biological background

(Figure 1A). A quantitative analysis demonstrated that the
kinetics of intensity changes in the membrane-associated
and cytosolic PHCrac-GFP pools were inversely related (Fig-
ure 1E), indicating that there is a transient and quantitative
translocation of PHCrac-GFP from the cytosol to the mem-
brane. PHCrac-GFP returned to the cytosol while the cell was
still exposed to cAMP and the receptors were still occupied
(Figure 1, A and C). The time from the addition of the
stimulus to the peak of the response was designated as Tmax,
and the maximal level of a transient response was measured
as maximum difference Rmax between the levels of cytosolic
PHCrac-GFP before and after application of the stimulus
(Figure 1E and Supplementary Figure S1).

Covisualizing cAMP-triggered Activation of G-proteins
and PHCrac-GFP Translocation in Single Living Cells
Dissociation of heterotrimeric G-proteins triggered by the
binding of cAMP to a cAR1 receptor is the first excitation
event leading to PHCrac-GFP translocation (Jin et al., 1998;
Parent et al., 1998). G-protein dissociation can be monitored
using FRET changes between G!2CFP and YFPG" (Janeto-
poulos et al., 2001). To relate the spatio-temporal changes in
cAMP exposure to the resulting G-protein dissociation, and
to PIP3 accumulation (as reflected by PHCrac-GFP relocaliza-
tion), it would be ideal to measure these events in a single
cell. However, because of the technical difficulty in accu-
rately and simultaneously measuring intensity changes of
CFP, YFP, and Alexa 594, we first determined the dynamics
of PHCrac-GFP translocation to the membrane while also
analyzing the field of applied cAMP (Figure 1). We then
measured both G-protein dissociation by FRET and PHCrac-
GFP translocation, using the dynamics of PHCrac-GFP as an
indicator of the cAMP stimulation (Figure 2). Because the
FRET signal between Ga2CFP and YFPG"# is weak and the
GFP spectrum overlaps the spectra of CFP and YFP, it was
necessary to image the two signaling steps in separate cells
in order to obtain precise FRET measurements. FRET
changes between G!2CFP and YFPG"# were revealed in one
latrunculin-treated cell (G cell), and the membrane translo-
cation of a GFP-tagged PH domain fusion protein was mon-
itored in a nearby latrunculin-treated cell (PH cell), which
was within 10 $m of the G cell and thus exposed to the same
cAMP stimulus (Figure 2, B and C). In these cells, both the
cAMP receptors and the G-protein subunits are uniformly
distributed on the cell membrane (Figure 2B; Xiao et al., 1997;
Jin et al., 2000). We excited the cells with a 454-nm laser line
and acquired spectral images in 8 channels from 464 to 534
nm with approximately a 1-s interval between each succes-
sive image. Each pixel of the image contains data corre-
sponding to an emission spectrum resulting from both CFP
and YFP fluorescence in the G cell, and from GFP in the PH
cell. Spectrally resolved time-lapse images of a G cell and a
neighboring PH cell were acquired upon stimulation by a
uniform field of cAMP added at time 0. Under these condi-
tions, PHCrac-GFP transiently translocated from the cytosol
to the plasma membrane (Figure 2, B and E). G-protein
dissociation was assessed as a loss of FRET, detected as a
(donor) CFP intensity increase and a simultaneous (accep-
tor) YFP intensity decrease (Figure 2, B, F, and G). The
digitally separated CFP and YFP channels of the G cell
showed a clear increase in the CFP signal and a correspond-
ing decrease in the YFP signal around the entire cell mem-
brane with time after exposure to cAMP (Figure 2B). The
emission spectra across the entire membrane demonstrated
a cAMP-triggered FRET loss (Figure 2D), which was similar
in magnitude to the spectral changes measured previously
in a population of cells using a spectral fluorometer (Jane-

Figure 2. Single-cell FRET measurement of heterotrimeric G-protein
dissociation in a uniform cAMP field. (A) Diagram shows how G-protein
dissociation induced by cAMP binding to the receptor can be monitored
by the loss of FRET between CFP and YFP tagged to the G! and G"
subunits, respectively. It also shows the membrane translocation of PHC-

rac-GFP to monitor cAMP stimulation. (B) cAMP, 1 $M, was uniformly
applied at time 0. Fluorescence images of cAMP-triggered G-protein dis-
sociation in the G cell and PHCrac-GFP translocation in the PH cell. In-
creased CFP and decreased YFP signal intensities around the G cell mem-
brane at 10.2 and 20.4 s indicate G-protein subunit dissociation that
simultaneously reduces quenching of CFP and excitation of YFP. Tran-
sient PHCrac-GFP translocation to all regions of the plasma membrane was
clearly observed at 10.2 s in a nearby PH cell. Supplementary Videos
video2.avi and video3.avi show the full time course of CFP and YFP
intensity changes in a single living cell after cAMP stimulation, respec-
tively. Images were captured at 1.1-s intervals and are replayed at five
frames/s. (C) Regions of interest used for quantitative analysis of G-
protein activation and membrane translocation of PHCrac-GFP in a uni-
form field of cAMP. (D) Combined emission spectra of the membrane
region of the G cell before and after the addition of cAMP at time 0. On
uniform stimulation with cAMP, a significant increase in the CFP emission
signal near 475 nm and a reciprocal decrease in the YFP emission near 528
nm were observed, consistent with a loss of FRET upon subunit dissoci-
ation. (E) Temporal changes in membrane associated PHCrac-GFP after
exposure of the cell to the same uniform field of cAMP. (F) Temporal
changes in the G-protein dissociation at the cell membrane after stimula-
tion, reflected as a CFP (M-CFP, black) signal intensity increase and a
paralleled YFP (M-YFP, gray) signal decrease. (F) Uniformly applied
cAMP stimulation triggered G-protein dissociation, reflected as CFP sig-
nal intensity increase and YFP signal decrease. Means and SEs for each
time points are shown as temporal changes in the G-protein dissociation at
the membrane after stimulation by 2 $M cAMP (n ! 6).
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tion occurs with a significant time lag after initial changes in
receptor occupancy and G-protein activation, suggesting
that activation of G-proteins provides a simple, intracellular
translation of the external gradient and the amplification of
the external gradient must hence be achieved further down-
stream in the signaling pathway. Our results are consistent
with the idea that the extent of G-protein activation in dif-
ferent regions of the cell surface reflects the local cAMP
receptor occupancy (Iijima et al., 2002; Devreotes and Jane-
topoulos, 2003).

A Higher Dose of Homogeneously Applied
Chemoattractant Leads to Faster Adaptation
Models of chemotactic gradient sensing need to account for
two aspects of cellular behavior: i) transient activation, fol-
lowed by adaptation when cells are exposed to uniform
increases in chemoattractant concentration (as seen in the
transient nature of PHCrac-GFP translocation to the plasma
membrane) and ii) development of strong intracellular bio-
chemical asymmetry in response to chemoattractant gradi-
ents. A “local excitation, global inhibition” model has been
proposed to explain these behaviors (Parent and Devreotes,
1999), according to which the extent of receptor activation
determines the strengths of two opposing processes: a local
excitatory one and a global inhibitory one. The balance of
these two processes is assumed to control the activities of
two enzymes with opposing chemical functions, PI3K (a

kinase) and PTEN (a phosphatase). Changes in this balance
lead to alterations in PIP3 levels on the inner cell membrane.
Local excitation, reflecting local levels of receptor occu-
pancy, increases the recruitment and activation of PI3K and
decreases membrane-bound PTEN, whereas the proposed
global inhibition, determined by the cell’s average receptor
occupancy, deactivates PI3K and promotes reassociation of
PTEN with the membrane (Devreotes and Janetopoulos,
2003, Janetopoulos et al., 2004).

Although there seems to be general agreement that the
primary intracellular stimulus is provided through G-pro-
tein activation and that excitation involves activation of
PI3K, the biochemical components responsible for the inhib-
itory process are currently unknown. Consequently, we can
only indirectly draw inferences about the nature of those
components by measuring the effects of their activities. To
investigate the relationship between stimulus strength and
the speed at which inhibition induces adaptation, we ex-
posed cells to different doses of homogeneously applied
cAMP. We reasoned that if excitation rises quickly and
plateaus, and the effects of inhibition increase more slowly
after receptor activation, then initially PIP3 levels would
increase until at some point (Tmax) the activities of PI3K and
PTEN would be equally strong and the net change in the
level of PIP3 would be zero. Further increase of the inhibi-
tory components would then cause PIP3 to decrease. A
smaller Tmax after a stronger uniform stimulus would there-

Figure 9. G-protein activation after a sudden
exposure to a steady cAMP gradient. (A) Com-
parison of G-protein activation (CFP images)
and PHCrac-GFP translocation. Frames were
captured at 1.06-s intervals and selected frames
were shown. Regions of interest for the data
reported in B and C are also shown. (B) Dynam-
ics of the PHCrac-GFP membrane association in
the front of the PH cell. (C) G-protein activation
in the front (black) and back (gray) of the G cell,
measured as the increase of CFP intensity. Sim-
ilar results were obtained five times. (D) and (E)
Kinetics of G-protein dissociation in the front
and back of cells in response to cAMP gradients
with different steepness but similar cAMP con-
centration in the front of the cells. Micropipette
filled with 1 or 3 !M of cAMP was moved from
1500 !m away to !10 !m (D) or 50 !m (E) from
the cells at 0 s. These movement generated gra-
dients with similar cAMP concentration in the
front of the cells but different steepness of
!100% (D) or 20% (E), respectively, which were
estimated from the measurement of a stable
gradient shown in Supplementary Figure S2.
G-protein activation in the front (black) and
back (gray) of G cells, measured as the increase
of CFP intensity, are shown. Means " SE of
each time point (n # 10 and 18 for D and E,
respectively) are shown as temporal changes in
the G-protein dissociation in the front and back
after stimulation. To estimate the relative differ-
ence in G-protein activation, after reaching the
steady states, between the front and back side of
cells, we first calculated Means, $It/I0CFP/n,
where n is the number of the time points; the
first time point is 27s and the last time point is
100 s. (D) 118.4 " 1.3% (front) and 108 " 1.7%
(back); (E) 121.5 " 2.7% (front) and 118 " 1.4%
(back). Relative difference in D: (118.4% % 1)/
(108% % 1) % 1 # 130%; in E: (121.5% % 1)/
(118% % 1) % 1 # 19.3%.

Signal Transduction Events and Chemotactic Responses

Vol. 16, February 2005 685

(b)

Figure 1.3: Xu et al. [132] monitored the dissociation of the G protein using fluorescence
resonance energy transfer (FRET) microscopy (for the principle, see the original paper by
Förster [31], and for the biological application, see e.g. [99, 53]). Gα2 was tagged with CFP
and Gβγ with YFP. Upon dissociation of the G protein, a loss of YFP fluorescence is observed,
concomitant to an increase of the CFP fluorescence. (a) Intensity levels of CFP and YFP
upon uniform stimulation of the cell, averaged around the membrane, and normalized by the
intensity before stimulation. A uniform stimulus of cAMP leads to a uniform dissociation
level of the G protein around the cell. (b) Intensity level of CFP upon gradient stimulation,
averaged over the front of the cell (black) and the back of the cell (gray). A gradient stimulus
leads to a higher level of dissociated G protein at the front of the cell than at the back. Both
figures taken from [132].
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1.5. The PI3K/PTEN pathway

proteins that have both unique and overlapping functions [65]. RasG activates PI3K, one of
the key enzymes in the chemotactic pathway investigated in this thesis. It has been shown
that RasG is uniformly distributed around the cell membrane, in the absence or presence of
chemoattractant [95]. In a gradient of cAMP, activation of Ras proteins happens only in the
half of the cell experiencing the highest concentration of chemoattractant. The directional
activation of Ras is independent of the presence of F-actin, as cells treated with Latrunculin
A, an inhibitor of actin polymerization, also show asymmetric activation (see figure 1.4a). Ras
activation also does not require PI3K activity, as seen in cells treated with LY294002, a drug
inhibiting the activation of PI3K [95]. The directional activation of Ras is – as of now – the
first known amplified asymmetric response of D. discoideum in a gradient of chemoattractant.
This activation is also the first known response that adapts when D. discoideum is stimulated
by a uniform concentration of cAMP: whereas cAR1 is always bound by cAMP and the G
protein stays dissociated, the level of activated Ras peaks roughly 10 seconds after the stimulus
has been applied, and decreases to its pre-stimulus level within a minute [95].

 

JCB • VOLUME 167 • NUMBER 3 • 2004510

 

events using the F-actin polymerization inhibitor latrunculin
A (LatA). After LatA treatment, cells became progressively
rounder and stopped moving (Parent et al., 1998). Consistent

with previous findings, under these conditions, there was a re-
duced amount of F-actin associated with the Triton X-100–
insoluble cortical fraction and chemoattractant stimulation did

Figure 4. Differential regulation between PI3K translocation and Ras activation. (A and B) Effect of LatA on the translocation of GFP-tagged PhdA-,
N-PI3K1–, and RBD-expressing wild-type cells and pten null cells. Asterisk indicates the position of the micropipette (B). These images were captured !30 s
after changing the micropipette position. The behaviors were consistently observed over five independent sessions. Translocation kinetics of RBD were
obtained from a time-lapse recording of GFP-RBD–expressing wild-type cells. Fluorescence intensities of the upper and lower plasma membranes were
quantitated as Et (see Materials and methods). (C) Effect of LatA on Akt/PKB activation. Akt/PKB assays were performed as described in Fig. 1. Data are
representative of at least three independent experiments. (D) N-PI3K1 is recruited into the Triton X-100–resistant cytoskeleton in response to chemoattractant
stimulation. Cytoskeletal fractions (see Materials and methods) were subjected to SDS-PAGE. Actin and N-PI3K1 recruitment were assessed with Coomassie
stain or anti-GFP antibody, respectively. Ras activation was assayed using an aliquoted lysate. Graph shows an average of the results that were obtained
from four independent experiments. (E) Fluorescent images of GFP-tagged N-PI3K1–expressing wild-type cells. Cells were treated with (right) or without
(left) 0.01% Triton X-100 before fixation by 3.7% formaldehyde.
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as high as the initial peak (Hall et al., 1988). The initial
F-actin peak is similar in timing to Ras activation and PI3K
translocation. Therefore, we examined if F-actin polymeriza-
tion was needed to locally activate leading-edge signaling

Figure 3. Spatial-temporal activation of Ras during chemotaxis. (A and B) The localization of GFP-RBD in wild-type vegetative cells (A) or aggregation-
competent cells (B) was imaged. Translocation of GFP-RBD was imaged after stimulation with cAMP as described previously (Funamoto et al., 2001).
(C) Translocation kinetics of GFP-tagged PhdA, CRAC-PH, N-PI3K1, and RBD in wild-type cells were obtained from time-lapse recordings. The graphs rep-
resent an average of data of movies taken from at least three separate experiments. The fluorescence intensity of membrane-localized GFP fusion protein
was quantitated as Et as defined in Materials and methods. (D) Translocation of indicated GFP proteins in pi3k1/2 null cells or wild-type cells treated with
50 !M LY294002 for 20 min before cAMP stimulation. (E–I) Fluorescent images of GFP-RBD expressing wild-type cells (E and F), pi3k1/2 null cells (G), or
pten null and myr-PI3K expressing cells (I) chemotaxing in a gradient of chemoattractant. An asterisk indicates the position of the micropipette. Fluorescent
images of GFP-RBD and myr-PI3K1–expressing pi3k1/2 null cells (H, left) or GFP-RBD-expressing pten null cells (H, right) are shown. The sites producing
multiple pseudopodia are marked with arrowheads.

(b)

Figure 1.4: (a) A Ras-binding domain is tagged with GFP to monitor the activation of RasG.
As a response to a gradient, RasG is activated asymmetrically. Green asterisk: position of
the pipette emitting cAMP. The cell is treated with Latrunculin A. (b) PI3K translocation in
response to a uniform stimulus of cAMP.

1.5 The PI3K/PTEN pathway

1.5.1 PI3K/PTEN

GTP-bound Ras proteins activate phosphatidylinositol 3-kinases (PI3K), enzymes which cat-
alyze the formation of the membrane bound phospholipid phosphatidylinositol (3,4,5)-triphos-
phate (PI(3, 4, 5)P3 or PIP3) from the membrane bound phosphatidylinositol (4,5)-biphos-
phate (PI(4, 5)P2 or PIP2) [113]. In D. discoideum 6 different PI3 kinases have been identi-
fied, that all have a Ras-binding domain (RBD). In a stimulated cell, PI3K translocates from
the cytosol to the cell membrane (see figure 1.4b), even when PI3K activity is repressed by
treatment with LY294002. In a uniform concentration of cAMP, the translocation of PI3K to
the membrane is transient. In a gradient of chemoattractant, PI3K localizes to the leading
edge of the cell. In cells treated with Latrunculin A and stimulated with cAMP, PI3K does
not translocate to the membrane, suggesting that actin might be important for PI3K localiza-
tion [95]. In non-developed cells, a G protein-independent Ras/PI3K/F-actin feedback loop
was identified [96].

The enzyme catalyzing the degradation of PI(3, 4, 5)P3 to PI(4, 5)P2 is the phosphatase
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Chapter 1. Biological background

and tensin homolog deleted on chromosome 10 (PTEN). In resting cells, a fraction of PTEN is
uniformly distributed on the cell membrane. Upon stimulation with a uniform concentration
of cAMP, PTEN dissociates from the membrane and diffuses into the cytosol within the first
10 seconds of stimulation. This response is however transient, and PTEN reassociates with
the cell membrane within a minute. In a gradient of cAMP, PTEN accumulates at the rear
of the cell [35, 48]. Contrarily to PI3K, whose translocation on the membrane depend on the
presence of actin, dissociation of PTEN from the membrane also occurs in Latrunculin treated
cells [49].

In a gradient of cAMP, PI3K and PTEN therefore show reciprocal localization, which
results in the creation of a strong internal gradient of phospholipids, with accumulation of
PI(3, 4, 5)P3 at the leading edge of the cell and of PI(4, 5)P2 at the rear of the cell. It has been
shown that the localization of PI3K is independent of the intracellular level of PI(3, 4, 5)P3,
and is independent of PTEN. The localization of PTEN is also not regulated by PI(3, 4, 5)P3.
PTEN has a PI(4, 5)P2 binding domain which is important both for its localization on the
membrane and for its phosphatase activity [49]. This means that PI(4, 5)P2 is both the
product of PTEN and a binding site for PTEN.

1.5.2 PH-domain proteins

Proteins containing a plecsktrin-homology domain (PH domain) can bind to PI(4, 5)P2 and
preferentially to PI(3, 4, 5)P3 [46]. In D. discoideum, PH domain proteins include CRAC
(cytosolic regulator of adenylyl cyclase), PhdA (PH domain containing protein A) and Akt/PKB
(protein kinase B). Upon uniform stimulation, PH domain proteins translocate uniformly to
the membrane and it has been established that the translocation profile of PHCRAC (the PH
domain of CRAC) matches the increase in the level of PI(3, 4, 5)P3 [46]. PH domain proteins
are therefore widely used as a proxy for PI(3, 4, 5)P3 production (see for example [113] and
references therein).

It is interesting to note that, in cells treated with Latrunculin A and stimulated with
cAMP, PH domain proteins translocate to the membrane (see figure 1.1a) even though PI3K
does not. This suggests the existence of a low basal level of PI3K associated to the membrane
before stimulation, which is activated by Ras upon stimulation [95].

Uniform exposure of D. discoideum to cAMP triggers two phases of CRAC transloca-
tion [86] correlated with two phases of actin polymerization [20]. The first phase consists in
a rapid and transient CRAC translocation/actin polymerization within the first 10 seconds
of stimulation. The second phase starts after 40 seconds of exposure to cAMP and consists
in the apparition of patches of CRAC on the membrane [86], which are associated with the
formation of pseudopodia, and in a second phase of actin polymerization, lasting over several
minutes [20]. The second peak of PI(3, 4, 5)P3 formation/actin polymerization can be inhib-
ited by incubating the cells in the PI3K inhibitor LY294002. However, the first phase of the
response is surprisingly insensitive to LY294002 treatment. This is also the case in pten− cells
treated with LY294002, indicating that the transient loss of PTEN from the plasma membrane
is not the reason of the first PI(3, 4, 5)P3 peak. This could suggest that very few PI(3, 4, 5)P3

molecules can trigger actin polymerization during the first phase of the response, and that the
second phase of the response requires an amplification of the phospholipid signaling, rendered
impossible in cells treated with LY294002 or in pi3k1−/2− cells. Or this could also suggest
the existence of a parallel pathway controlling the first peak of a actin polymerization. The
first phase of the response exists only if the cells are developed for less than roughly 7 hours.
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1.6. Parallel pathways

After 7 hours of development, cells spontaneously assume a polarized shape along an anterior-
posterior axis. When this is the case, the initial phase of actin polymerization does not exist
and the cells turn around to adapt to a change in gradient direction, keeping the same front.
In 5-hour starved cells, however, new pseudopods can be extended and a new front can be
created in response to a change in gradient direction [20, 130].

1.5.3 PLC

Phospholipase C (PLC) hydrolyzes PI(4, 5)P2 into two cytosolic second messengers, diacylglycerol
(DAG) and inositol (1,4,5)-triphosphate (I(1, 4, 5)P3). It is moreover known that PLC is ac-
tivated by Gα2 upon stimulation by cAMP [57]. Work from the Van Haastert group [57, 64]
showed that PLC regulates the localization of PTEN on the membrane: in plc− cells, there is
no dissociation of PTEN from the membrane upon stimulation with a uniform concentration
of cAMP. Similarly, PTEN does not localize at the rear and side of plc− cells, as it does in
wild-type cells. The mechanism for PTEN regulation by PLC was proposed in [64] (see also
figure 1.5). First, activation of Gα2 upon stimulation by a gradient of cAMP leads to a local
degradation of PI(4, 5)P2 depending on the external local concentration of cAMP. Upgradient,
more PLC is activated, leading to a PI(4, 5)P2 gradient inside the cell in the opposite direction
of the external cAMP gradient. PTEN colocolizes with PI(4, 5)P2, leading to a gradient of
PI(3, 4, 5)P3 in the direction of the cAMP gradient. The PI(3, 4, 5)P3 at the leading edge of
the cell leads to actin polarization which in turn will enable the activation of PI3K at the
leading edge. At the rear of the cell, presence of PI(4, 5)P2 allows for binding of PTEN. The
gradients of localized PTEN and PI3K are thus stabilized. This mutual spatial exclusion of
PI3K and PTEN leads to symmetry breaking.

PLC in PI(3,4,5)P3-mediated chemotaxis (Keizer-Gunnink et
al., 2007). 8CPT-cAMP inhibits PLC through G!1. Consistent
with our model, inhibition of PLC by 8CPT-cAMP at the
leading edge will lead to higher levels of PI(4,5)P2 and
subsequently more membrane-bound PTEN upgradient.
The resulting gradient of PI(4,5)P2 and PTEN will mediate
an opposite gradient of PI(3,4,5)P3; therefore, the cells move
downgradient and 8CPT-cAMP is a repellent. PLC, PTEN,
and PI3K are all essential components of this 8CPT-cAMP–
induced polarity switch. Although PI3K and PLC are not
essential for chemotaxis (Drayer et al., 1994; Loovers et al.,
2006; Takeda et al., 2007) these and previously described
results (Keizer-Gunnink et al., 2007; Van Haastert et al., 2007)
show they are key components of the directional sensing
pathway, especially at low cAMP concentrations. Indeed,
the localized production of PI(3,4,5)P3 may be sufficient to
orientate the cell. Moreover, the defects in PKB/Akt activa-
tion described here clearly indicate a further role for PLC
and PI(3,4,5)P3 in the more complex and physiological pro-
cess of aggregation.

In summary, this study shows that PLC plays an impor-
tant role in the regulation of PI3K-mediated chemotaxis and
the role of PI(4,5)P2 in this process. PLC controls cAMP-
mediated PI(3,4,5)P3 formation by repressing the association
of PTEN with the plasma membrane. This provides an ad-
ditional regulatory layer to the signaling pathways regulat-
ing PI(3,4,5)P3-mediated chemotaxis in Dictyostelium and
suggests a novel mechanism for the generation of PI(3,4,5)P3
gradients within the cell.
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Figure 6. Model of PLC-mediated PI(3,4,5)P3 formation at the
leading edge of chemotaxing cells. The model contains of two
regulatory loops: first, a PLC-regulated PI(4,5)P2/PTEN loop (indi-
cated in red) inhibiting PI(3,4,5)P3 degradation; and second, a PI3K/
F-actin loop (indicated in green) providing PI(3,4,5)P3 formation
and pseudopod extension. cAMP binding to the cAR1 receptor
leads to the activation of G!2 and subsequently in activation of PLC
at the leading edge of the cell. Activation of PLC results in the
degradation of PI(4,5)P2 at the leading edge and translocation of
PTEN to the rear of the cell. The resulting gradient of PI(4,5)P2/
PTEN mediates an opposite PI(3,4,5)P3 gradient. PI3K and PTEN are
localized at sites of their effector; hence, PI(3,4,5)P3 induced F-actin
and PI(4,5)P2, providing stabilization of the gradient and pseudo-
pod extension from the leading edge.

A. Kortholt et al.

Molecular Biology of the Cell4778

Figure 1.5: Proposed mechanism for the regulation of the PI3K/PTEN pathway by PLC. In
red: PI(4, 5)P2/PTEN loop. In green: PI(3, 4, 5)P3/F-actin loop. Up and down arrows show
activation and inhibition, respectively, by the two pathways. Figure taken from [64].

1.6 Parallel pathways

Whereas phospholipid signaling and the PI3K/PTEN pathway described above are relevant
for chemotaxis, it has been shown that cells lacking their 5 PI3Ks and PTEN were still able to
perform chemotaxis [44], showing that intracellular PI(3, 4, 5)P3 gradients were not necessary
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Chapter 1. Biological background

for chemotactic motion. This suggests the existence of parallel pathways mediating chemo-
tactic signaling. In this section, we briefly discuss the other known pathways of chemotaxis.

1.6.1 PLA2

Van Haastert et al. [121] and Chen et al. [19] showed the existence of a pathway involving the
phospholipase A2 (PLA2) in chemotaxis. When either PLA2 or PI3K are inhibited, chemotaxis
in shallow gradients is inhibited. In steep gradients, both of the pathways have to be inhibited
to prevent chemotaxis2. Chen et al. showed that, upon stimulation, the first phase of actin
polymerization could be supported by the PLA2 pathway [19]. It was suggested that Ca2+ is
a regulator of PLA2. The exact roles of PLA2 are still unclear though. PLA2 is cytosolic and
stays cytosolic upon stimulation with cAMP [59].

The experiments showing that chemotaxis is inhibited when both PLA2 and PI3K are
inhibited were performed on cells starved for about 5 to 7 hours, where the cells are not
polarized. When cells are starved for more than 7 hours, they assume a polarized shape and
are able to respond to gradient of cAMP even in the absence of both PLA2 and PI3K [126].
This suggests yet another existing pathway of chemotaxis, that becomes operational only after
7 hours of development.

1.6.2 sGC

Veltman et al. showed that, in polarized cells (starved for at least 7 hours), two pathways of
chemotaxis are mediated by a soluble guanine cyclase (sGC) [126]. The sGC protein localizes
to the existing leading edge of the polarized cells, where it interacts with F-actin. The product
of sGC, cyclic guanosine monophosphate (cGMP) inhibits de novo pseudopodia formation at
the back of the cell by interacting with myosin II [126, 16]. Because the level of activation
of sGC is the same in 5-hour starved unpolarized cells and in 7-hour starved polarized cells,
Veltman et al. propose that intrinsic prepolarization is a prerequisite for strong chemotaxis
by sGC [126].

1.7 Cytoskeleton regulation

A rearrangement of the cytoskeleton, and particularly an actin polymerization at the front
and actomyosin formation at the back are necessary for cell motion. How does the pathway
mentioned above influence the direction of motion? The answer is not yet clear.

At the front of the cell, actin polymerization is stimulated by the action of the Arp2/3
(actin related proteins 2 and 3) complex, which initiates new barbed ends at the end of an
existing actin filament. First, Rac guanine-nucleotide-exchange factors (GEFs), that contain a
PH-domain, activate small G proteins called Rac (small G proteins are proteins homologous to
the Gα unit of the G trimeric protein). Rac effectors of the WASP (Wiskott-Aldrich syndrome
protein) and SCAR/WAVE (suppressor of cAMP receptor; also known as WAVE) family
activate in their turn the Arp2/3 [6]. One of the proteins in the SCAR/WAVE family is SCAR.
It is known that SCAR binds to 4 different proteins to form an inactive complex [11]. One of
these proteins is PIR121, which is encoded by the pirA gene. When pirA is disrupted, mutant
cells show large protrusions, a high proportion of filamentous actin (F-actin) compared to the

2Unfortunately, the exact value of the gradient is not given in the articles.
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total cellular actin, and an increased rate of pseudopod formation all over the cell [11]. Overall,
the phenotype of pirA− cells is consistent with an overactivation of SCAR. When a double
scar−/pirA− mutant is constructed, the F-actin content of the cell returns to its wild-type
value. The presence of the SCAR complex is however not required for the chemoattractant-
induced actin polymerization, as both in pirA− and in scar−/pirA− mutants, addition of
cAMP leads to a rise in the level of F-actin [11]. In the last chapter of this thesis, we will
perform quantitative chemotaxis experiments on scar−/pir− mutants.

At the back of the cell, myosin II assembly is controlled by the nucleotide cGMP and PAKa.
High cGMP levels PAKa is localized at the back of the cell and is phosphorylated by Akt/PKB
in a PI3K-dependent fashion. In cells migrating in a gradient of chemoattractant, myosin II
filaments are also present at the sides of the cells. This provides the mechanism to suppress
lateral pseudopodia in chemotaxing cells, enabling a more directed cell trajectory [120].
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Chapter 2

A bistable model for directional
sensing

Chemotactic D. discoideum are able to crawl up gradients of cAMP over a wide range in
gradient magnitudes. It has previously been shown that a difference in occupancy of as little
as 100 receptors between front and back of the cell was sufficient to trigger a chemotactic mo-
tion [109]. A typical cell having about 50 000 receptors1, this means that a relative difference
in receptor occupancy as low as 0.2% is sufficient to induce a chemotactic response [109]. The
mechanism that transduces such a small gradient into a directed motion is still not well known,
but its main characteristic is the appearance of a breaking of symmetry within the cell, with
some biochemical reactions being confined to the front of the cell, while others are restricted to
the back of the cell. One of the first known symmetry-breaking events is the phosphorylation
of the phospholipid PIP2 into PIP3 on the membrane, at the front of the cell [36]. At the
back of the cell, no such phosphorylation occurs [48]. This phosphorylation can be visualized
by fluorescence microscopy using green fluorescent protein (GFP) constructs. Indeed, some
proteins contain a domain – called a pleckstrin homology (PH) domain – that binds PIP2
and, more specifically, PIP3 [46]. Tagging PH-domain proteins with GFP, we observe an
asymmetric fluorescence around the cell membrane when the cell senses a gradient of cAMP
(see figure 2.1), showing the asymmetric production of PIP3. This early stage of chemotaxis
is known as directional sensing. In this chapter, we will present a model of directional sensing
that we developed [8].

2.1 Models of directional sensing

There are several difficulties in modeling directional sensing, i.e. the asymmetric recruitment
of proteins to the membrane of a cell stimulated by a gradient of chemoattractant. First,
the cell should essentially be able to respond to gradients independently of the the average
concentration it is being exposed to: as seen in Fisher et al. [30] and Song et al. [109], the
gradient response spans over 4 orders of magnitude of midpoint concentrations (see figure 2.2).
If we convert the concentration gradient into a difference in receptor occupancy between the
front half of the cell (i.e. the half facing the gradient source) and its back half (i.e. the half
opposite the gradient source), we see that D. discoideum are extremely sensitive to minute

1It was shown in [55] that at the peak of the expression, the cells had 70 000 receptors. In this chapter,
we adopt the number of 50 000, used in [109].
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Figure 2.1: A protein containing a PH-domain, CRAC, has been tagged with GFP. On this
picture, we see a translocation of CRAC to the front of the cell (where the external concen-
tration of cAMP is maximal) and not to the back. This asymmetric translocation is one of
the first occuring responses of D. discoideum to a gradient of cAMP.

asymmetries: they are chemotactic as soon as roughly 100 receptors more are occupied at
the front than at the back, out of a total of about 50 000 receptors [109]. Second, at the
intracellular level, Janetopoulos et al. [52] have shown that the asymmetry of PH-domain
proteins is 5 times bigger than the asymmetry of the gradient, thus giving evidence for a strong
intracellular amplification of the chemoattractant stimulus. Third, the mechanism should be
reversible: if the gradient direction is reversed, so is the motion of the cell and the position
of front and back are exchanged [80] 2. In the case of D. discoideum a last requirement
is usually coupled to the ones just mentioned. It is known that a uniform concentration
of cAMP induces a uniform translocation of PH-domain proteins to the membrane of the
cell, indicating the transformation of PIP2 to PIP3 everywhere around the cell [82]. This
translocation is transient, as the cell adapts to its new environment [82]. When the models are
able to reproduce this last requirement, they can also reproduce another experimental feature:
when the cells are stimulated by a gradient, PH-domain proteins first translocate uniformly
around the cell membrane, and then only does the asymmetric translocation occur3.

Because PH-domain proteins translocate asymmetrically for midpoint concentrations rang-
ing over 4 orders of magnitude, a communication between the front and back of the cell has
to be assumed. Biologically, communication implies the existence of a diffusing species in the
cytosol of the cell. This diffusing species has yet to be identified experimentally, but is present
in all models of directional sensing. Its main characteristic is that its concentration profile
should be uniform inside the cell. If we assume that the production of the diffusing species
occurs at a constant rate kp, that its degradation rate is k−1 and its diffusion coefficient is
Dm, the evolution of the concentration c(x, t) of the diffusing species is given by [85]:

∂c(x, t)
∂t

= Dm∆c(x, t)− k−1c(x, t) + kp (2.1)

2At least if the cells have been treated with Latrunculin A, a drug preventing actin polymerization.
3The first translocation is not necessarily uniform, as mentioned in [132], and as we saw in our experiments

reported in the next chapter. Nevertheless, apart from the very complex model from Meier-Schellersheim et
al. [72], no model addresses the possible asymmetry of the first translocation.
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Figure 2.2: Velocity component perpendicular to the gradient direction (squares), in the
gradient direction (diamonds) and speed (circles) of starved D. discoideum in a gradient of
cAMP. The gradient value can be read on the lower x-axis, and the corresponding midpoint
concentration on the upper x-axis. In the region where the cells are chemotactic (gray region),
there are roughly 100 receptors more occupied at the front of the cell than at the back, out of
a total of about 50 000 receptors. Figure and numbers taken from [109].

In steady-state, the characteristic length of the problem is λ =
√
Dm/k−1 [85]. If we approx-

imate the cell by a cylinder, with a production of the diffusing species restricted to one end
of the cylinder, about 95% of the molecules are localized within 3λ from the source [85]. A
typical value for the degradation rate of molecules in the cell is k−1 = 1 s−1 [85]. Having
a uniform profile of concentration then implies to have λ ∼ L, where L is the length of the
cell. A cell being roughly 10 µm large, this means that the diffusion coefficient Dm should be
of order 100 µm2/s. The steady-state profile of concentration c(x) is shown on figure 2.3 for
different values of the diffusion coefficient Dm. Depending on the models, putative candidates
for the diffusing species are cAMP, cGMP, Ca2+, heterotrimeric G-protein subunits, small
G-proteins or inositol phosphates, that all have Dm ∼ 100µm2/s.

In the following paragraphs, we will look at different simple models used to explain direc-
tional sensing [73, 77, 112, 75, 39, 91, 67, 70, 68]. When summarizing these models, we will
follow the classification introduced by Iglesias and Levchenko in [47] to distinguish between
two kinds of description: the ones that use bistable dynamics and others. There also exists
more realistic and biologically oriented models, that try to incorporate as many known or pu-
tative biochemical reactions as possible at the price of an increasing complexity [106, 107, 72].
In particular, Meier-Schellersheim et al. developed in [72] a new software called Simmune
(http://www.simmune.org), that allows users to enter their own reaction network, and sim-
ulates the network for them. This descriptive approach was successful in predicting two un-
reported patterns of changes in the concentration and location of PI3K and PTEN. Because
of its high degree of detail however, and its many assumptions on existence of biochemical
components, it is hard to extract the fondamental characteristics of this model, which is why it
will not be reviewed here. It would be interesting to reduce the model of Meier-Schellersheim
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taken for the degradation rate and the second-messenger

production rate were k!1 " 1 s!1 and kP " 1 !Ms!1,
respectively (Fig. 1). A diffusion coefficient of Dm " 1

!m2 s!1 yields a space constant of " " 1 !m. The concen-
tration of the second messenger is very high near the place

of production and falls off steeply to zero values at a few

micrometer away from the source. For Dm " 10 !m2 s!1 ("
" 3.3 !m), the second-messenger concentration in the
steady state still exhibits a noticeable gradient, but with a

diffusion coefficient of Dm " 100 !m2 s!1 (" " 10 !m),
the concentration profile is nearly flat. Because production

and degradation rates are kept constant, the total amount of

second-messenger molecules in the cell is the same in all

three cases.

The effect of second messenger degradation on signal

localization is complementary to that of diffusion speed,

due to the space constant " " #Dm/k!1. A lower degra-

dation rate will lead to stronger dispersal of signals in the

cell, and also to a larger total concentration, i.e., stronger

signals. In contrast, high degradation rates will lead to more

localized signals, but unavoidably the total concentration

will decrease. To overcome a lower concentration, the pro-

duction rate must be increased accordingly. The results

show that, to allow the formation of a steep gradient, the

space constant " must be #1 !m. Thus, gradient transduc-
tion by a second messenger such as cAMP with a diffusion

coefficient over 100 !m2 s!1 requires a degradation rate
above 100 s!1, implying a half-life below 10 ms.

Receptor-coupled second-messenger production
in chemoattractant gradients

In Dictyostelium cells, receptor molecules are probably uni-

formly distributed around the cell’s periphery (Xiao et al.,

1997). Because chemoattractant molecules can reversibly

bind to the receptors, the fraction of active receptors de-

pends on the local chemoattractant concentration. We as-

sume that the activated receptors locally couple to effector

enzymes that then produce second-messenger molecules at

the inner face of the plasma membrane. The subsequent

diffusion/degradation of second messenger will take place

at the cell’s inner surface (i.e., the plasma membrane in the

case of phospholipid second messenger) or in the cell’s

volume (i.e., the cytosol for a soluble second messenger like

cAMP).

We consider a spherically shaped cell with radius r " 5

!m, placed in a chemoattractant concentration gradient
causing a 60–40% linear gradient in receptor activity; i.e.,

60% and 40% of the receptors are active at the front and

back, respectively, or formally (see Methods): R!*f " 0.6, R!*b
" 0.4, the mean fraction of active receptors R!* " 0.5 and

the difference from the mean $R* " 0.1.

The second-messenger gradient profile was analyzed for

the three values of the diffusion coefficient Dm: 1, 10, and

100 !m2 s!1, assuming a degradation rate of k!1 " 1.0 s!1,

a maximum production rate kR " 1.0 !Ms!1. The linear
receptor gradient of 60–40% (Fig. 2, dotted line) then

results in a linear second-messenger gradient of 59–41%,

55–45%, and 51–49% for the three values of Dm. In Eq 4,

the slope of the second-messenger gradient relative to the

gradient of active receptors is given by the factor F. Because

the factor F is always smaller than 1, the resulting second-

messenger gradient cannot be steeper than the gradient of

receptor activity. As encountered already in the case of the

FIGURE 1 Diffusion of second messenger produced at one face of a

cylindrical cell. Concentration profiles of second messenger in the steady

state for different diffusion coefficients Dm; L " 10 !m and k!1 " 1.0 s!1.

Slow diffusion leads to a localized signal and fast diffusion leads to

dispersal of the gradient.

FIGURE 2 Diffusion of second messenger produced as a gradient in a

spherical cell. Steady-state second-messenger concentration profiles at or

just below the cell’s surface were calculated for different diffusion coef-

ficients using a 60–40% gradient of receptor activity (dotted line), a

degradation rate of k!1 " 1.0 s!1 and radius r " 5 !m. The data are
normalized to 0.5 at the center of the cell. Diffusion leads to dissipation of

the gradient. The gradient is almost completely lost with a fast-diffusing

molecule (Dm " 100 !m2 s!1), while the intracellular gradient becomes
increasingly proportional to the receptor activity gradient at Dm "
1 !m2 s!1.
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Figure 2.3: A cell is approximated as a cylinder of length L = 10 µm. Production of the
diffusing species occurs on one of the sides of the cylinder (in gray on the figure), with a
constant rate kp = 1 µMs−1. Degradation occurs everywhere uniformly with a rate k−1 =
1 s−1. The steady-state profile of concentration c(x) is shown for different values of the
diffusion coefficient Dm. For the concentration profile to be uniform within the cell, we need
λ =

√
Dm/k−1 ∼ L. Figure and numbers taken from [85].

et al. to a simpler one, or to analyse it using network analysis tools [7].
Before summarizing the simple models mentioned above, and because bistable dynamics

play such an important role in many of them (as well as in our model), we will devote a first
section to explaining what bistable dynamics are.

2.1.1 Bistable systems in a nutshell

We base ourselves on the first chapter of Mikhailov’s book, Foundations of Synergetics, I - Dis-
tributed Active Systems (Springer, 1994) [74]. Consider an extended one-dimensional chemical
system, where the concentration p(x, t) of a species P is governed by a reaction-diffusion equa-
tion:

∂p

∂t
= f(p) +D

∂2p

∂x2
(2.2)

In this equation, D is the diffusion coefficient of the species P and f(p) contains the
information about the reactions that P undergoes. Let us now look for a propagating solution
to this equation:

p(x, t) = p(x− ct) = p(ξ) (2.3)

where c is the velocity of propagation and ξ = x− ct is our new variable. Then the above
reaction-diffusion equation is equivalent to:

− cdp
dξ

= f(p) +D
d2p

dξ2
(2.4)
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Figure 2.4: Example of a potential U(p) having two local minima at p1 and p3, and one local
maximum at p2. If a particle (shown in red) is at p1 and that a strong enough perturbation
is applied to it, it can overcome the potential barrier and go to p3.

Let us rewrite this equation as:

D
d2p

dξ2
= −cdp

dξ
− f(p) (2.5)

Forgetting about our initial problem of the evolution of the concentration of a species P in
a reaction-diffusion system, we see that this last equation can be understood as the equation
of motion of a particle of mass D. The position of the particle would be denoted by p, while
time would be called ξ. The forces acting on the particle would be a friction force with a
constant friction coefficient c, and an external force f(p). Now, assume that f(p) derives from
a potential U(p), that has two local minima at p1 and p3 and one local maximum at p2 with
p1 < p2 < p3. Such a potential is shown on figure 2.4. At stable equilibrium, the mass will
be either in p1 or in p3 (p2 being an unstable equilibrium position). Under the action of an
external perturbation on the particle, the system could go from one of these stable positions
to the other. For this to happen, the perturbation has to be sufficiently large to overcome
both the friction on the particle and the potential barrier.

Let us now go back to our original problem, and still consider a potential U(p) with two
minima. What we have just seen is that the concentration can have two stable values, p1 and
p3. A perturbation can drive the concentration p of the species P from one stable state to the
other. This perturbation spreads as a wave, called a trigger wave, travelling with a velocity c.
What is the velocity c of this trigger wave? It depends on the function f(p). One particular
case where an analytical result for c can be obtained is when f(p) is a cubic polynomial [74]:

f(p) = −p3 + αp2 + βp+ γ = −(p− p1)(p− p2)(p− p3) (2.6)

It can then be shown that:
c =

p1 + p3 − 2p2

2
(2.7)

In other words, if (p1 + p3) > 2p2, the wave velocity is positive and a sufficiently big pertur-
bation will lead to a transition from p1 to p3 (or the perturbation will decay if the system is
already in the state p3). In the opposite case, the transition will be from p3 to p1 (or will
decay if the system is already in the state p1).
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In the more general case where nothing is assumed on the particular shape of f except
that it has three zeros at p1 < p2 < p3, with p1 and p3 being the stable equilibrium positions
of the system, it can be shown that the trigger wave velocity c is proportional to the integral
J defined as:

J =
∫ p3

p1

f(p)dp (2.8)

and c is of the same sign as J , so that if J > 0, then c > 0 and domains of p3 will grow, while
domains of p1 will grow if J is negative.

For more information on bistable systems, the reader is referred to [74].

2.1.2 Bistable dynamics in directional sensing - general idea

How can we use the formalism of bistable dynamics to model directional sensing? The general
idea is to have a chemical scheme following bistable kinetics, such as [47]:

dx

dt
= f(x) = −ax+ s

x2 + b

x2 + c
(2.9)

where x represents the concentration of a species X, and where s is the external stimulus.
Degradation of X occurs at rate a, the denominator of the fraction allows for saturation of
the production of X and the numerator accounts for autocatalytic production of X (usually
arising through a positive feedback loop). The function f(x) and the potential U(x) from
which it derives are sketched for different values of the external stimulus s on figure 2.5a.
Depending on the relative values of a, b, c and s, the system can have one or two stable
fixed points (where f(x) = 0 and f ′(x) < 0, corresponding to a local minimum of U). In
theory, it is possible to calculate analytically where these fixed points are. However, this
involves solving a cubic equation, whose solution is not straightforwardly interpretable. For
this reason, we restrict ourselves to the particular example used by Iglesias and Levchenko
in [47], a = 2, b = 1 and c = 11. Then, bistability occurs for s = 12 (green curve). For
s = 11 (blue curve), only one fixed point exists, at a low value of x. On the contrary, for
s = 13 (red curve), only the high fixed point exists. If s varies along the cell such that at
the front of the cell only the high fixed point exists, and at the back of the cell only the low
fixed point exists, breaking of symmetry can occur. However, if this were the only mechanism,
symmetry breaking would happen only in a very narrow range of gradients, for which the
midpoint concentration is around s = 12.

Because directional sensing is efficient over a wide range of midpoint concentrations, a
second species Y is usually assumed, which inhibits the effect of the activator X. The inhibitor
Y can be either produced from X or from the stimulus directly. Its diffusion coefficient is big
enough for the concentration of Y to be uniform all over the cell at any moment. When the
cell is placed in a gradient, both the concentrations of X and Y increase. Because Y diffuses in
the cytosol of the cell though, its concentration is averaged out. At the front of the cell, there
is more activator than inhibitor, whereas at the back of the cell, the situation is opposite. As
a result, the response is inhibited at the back but remains at the front, leading to an amplified
asymmetrical response. The difference between the models essentially comes from the manner
in which X and Y interact.
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Figure 2.5: Plot of (a) f(x) and (b) the corresponding potential U(x) for a = 2, b = 1, c = 11
and different values of s. For s = 11 (blue curve), only one steady state exists, at a low value
of x. For s = 12, the system is bistable (green curve). For s = 13, the lower steady state is
lost (red curve). If s varies along the cell (as is the case in a gradient), spatial patterning can
occur. Figures adapted from [47].

2.1.3 Model overview

As a quick overview, the main properties of each model are summarized in table 2.1 for the
bistable models and in table 2.2 for the non-bistable ones. We evaluate each model’s ability
to produce an asymmetric response in response to a shallow (∼ 1%) gradient, and note if the
mechanism for directional sensing is reversible. We also mention the ability of the models
to reproduce adaptation in a uniform chemoattractant concentration. The biological basis of
each model is given, and we comment on the model’s performance.

2.1.4 Turing instability in directional sensing [73]

One of the first models of chemotaxis was proposed by Meinhardt in 1999 [73]. It was meant
to be a very general model, aiming at presenting more a generic (theoretical) scheme that
could lead to directional sensing, rather than being a realistic (biological) mechanism. At
the core of the model are two species, a local activator A and a long-range inhibitor B (of
concentration a(x, t) and b(x, t) respectively). The activator has autocatalytic dynamics, with
a local concentration that depends on the local concentration of the external stimulus. The
inhibitor is assumed to be uniformly distributed inside the cell, and takes for value at each
time the average concentration of a(x, t), that we will write ā(t). This amounts to saying
that B is a rapidly diffusing species produced from A. "Rapidly diffusing" here means that
the diffusion coefficient of B should be big enough so that at each point in time, the amount
of B inside the cell is uniform. Because of the interaction between A and B, the only place
where the activator is not inhibited is the front of the cell. The way that the model was
implemented by Meinhardt, a cell was able to polarize in response to gradients of 1% across
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Model Asym. Rev. Adapt. Biol. Comments

Meinhardt [73] " " " %

Generic mechanism. Spatial
patterns do not remain even
if the stimulus keeps being
applied, contrarily to experi-
ments.

Narang et
al. [77] " % " PI cycle

The intensity of the response
is independent of the stim-
ulus. Adaptation happens
at the receptor level in the
model, which is not the case
is D. discoideum.

Subramanian
and
Narang [112]

" " " %

Generic adaptation mecha-
nism coupled to the PI cycle
of [77].

Mori et
al. [75] " " % Rho-GTPase

The response is maintained
even after the stimulus is re-
moved, which is not the case
in D. discoideum.

Gamba et
al. [39] " " "

PI3K/PTEN
cycle

Noise-driven translocation.
In a uniform concentration
of chemoattractant, random
patches of translocation
occur. In a gradient, the
first uniform translocation is
not seen.

Postma
and Van
Haastert [85]

" % " % The system gets locked.

Beta et al. [8] " " " %

Noise-driven bistable system.
The intensity of the response
is roughly independent of the
stimulus.

Table 2.1: Comparison of the bistable models of directional sensing. We review the mod-
els’ abilities to produce an asymmetric response in a shallow gradient of chemoattractant
(“Asym.”), and note if the mechanism is reversible (“Rev.”). Adaptation in a uniform con-
centration of chemoattractant is shown in column “Adapt.”. If the authors explicitly base
themselves on a biochemical pathway, we mention it in column “Biol.”. Last, we comment on
the results of the model and give the main disagreements with experiments, if they exist.
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Model Asym. Rev. Adapt. Biol. Comments
Postma
and Van
Haastert [85]

% " " %
Not enough amplification at
shallow gradients.

Rappel et
al. [91] " % " cGMP

Does not allow for two fronts
at the same time, disproved
in [52].

Levchenko
and Igle-
sias [67]

" " " PI3K/PTEN

The inhibitor was supposed
to be PTEN and to be
slightly more localized at the
front of the cell, disproved
in [35].

Ma et al. [70] " " " PI3K/PTEN

The model assumes that
binding sites for PI3K (resp.
PTEN) are created (resp.
destroyed) when a receptor
is locally activated. Ex-
periments later showed that
this could actually be the
case through a feedback loop
PI3K/actin [96] and the hy-
drolysis of PIP2 (binding site
of PTEN) by PLC [64].

Levine et
al. [68] " " "

Heterotrimeric
G-protein

Assumes the same produc-
tion rate of activator and in-
hibitor – quite a strong con-
straint. Achieved by suppos-
ing that the activator is Gα

and the inhibitor Gβγ , which
are supposed to be unbound
at the front, and bound at
the back of the cell, dis-
proved in [132].

Table 2.2: Comparison of non bistable models of directional sensing. Columns as in table 2.1.
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the cell membrane4. One problem encountered though was that the cell would not be able
to follow a change in gradient direction. To solve this problem, Meinhardt postulated several
possible mechanisms, only one of which could probably be relevant for D. discoideum. He
hypothesizes the existence of a second inhibitor (C, of concentration c(x, t)), that acts locally
and has a longer time constant than the activator. The equations used by Meinhardt are:

∂a(x, t)
∂t

= s(x, t)
a2(x, t)/b(t) + ba

(sc + c(x, t))(1 + saa2(x, t))
− raa(x, t) (2.10)

∂b(t)
∂t

= ā(t)− rbb(t) (2.11)

∂c(x, t)
∂t

= bca(x, t)− rcc(x, t) (2.12)

where s(x, t) is the concentration of the external signal S, and all small letters with indices
are reaction rates. Looking at these equations, we can qualitatively understand why the
model would lock into one direction if the third variable C were not introduced. Indeed, A
exhibits bistable dynamics. Applying a gradient corresponds to applying a perturbation that
destabilizes the system. The value of A goes to one fixed point in the front half of the cell and
to the other fixed point in the back half of the cell. Once the system is in this configuration,
it is stable, and the cell can only reverse its front and back if a big enough perturbation is
applied. If one first applies a gradient of a given value for a time long enough so that the
cell can show a polarized distribution of A, and then reverses the gradient direction (keeping
the same absolute value for the gradient), the perturbation is not big enough to reverse the
polarization of the cell5. This problem is solved when the third variable C is introduced.
However, the polarization of A then disappears even if the external gradient keeps being
applied, in contradiction with experiments on D. discoideum [82].

2.1.5 A model based on the phosphoinositide cycle [77, 112]

A first version [77]

The Meinhardt model represents a generic way to achieve directional sensing, but the putative
biological mechanism thought of by Meinhardt (Ca2+ induced release of Ca2+) was not consis-
tent with experiments. In 2001, Narang et al. [77] proposed a more biological model based on
receptor desensitization and on an actual metabolic cycle in D. discoideum , the phosphoinosi-
tide cycle. The aim of the model was to explain the experimental observation that, apparently,
the amount of translocation of PH-domain proteins depended neither on the absolute value
of the gradient used [82], nor on the midpoint concentration of chemoattractant [28].

As in Meinhardt’s approach, autocatalysis is an essential part of Narang et al.’s model. In
the model scheme, three pools of components are described: the membrane posphoinositides
(P ), the cytosolic inositol and its phosphates (I), and phosphoinositides in the endoplasmic
reticulum (Ps). The total concentration of phosphoinositides (P +Ps inside the whole cell) is
constant. Binding of cAMP to cAR1 leads to the formation of P and I, and a positive feedback

4Here, and everywhere in the remainer of this chapter, we will say that a cell is in a polarized state if it
shows an asymmetric distribution of a given chemical X. This is not the usual definition of polarization, as
given by Devreotes and Janetopoulos in [24].

5Changing the translocation is possible if the gradient direction is switched and at the same time the
gradient value is increased though.
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loop on P is assumed, that leads to autocatalytic behavior and the creation of a leading edge.
This leading edge would spread by diffusion weren’t it for the action of I, which diffuses in
the cytosol and plays the role of an inhibitor. At the back of the cell, the concentration
of I promotes the transfer of membrane phosphoinositides from the plasma membrane to
the endoplasmic reticulum, reducing the amount of P in the membrane, and increasing the
amount of Ps at the back. This model exhibits bistable behavior and both the values of its
fixed points, as well as the overall shape of the polarization pattern, do not depend on the
gradient used. They rely only on the kinetic parameters and diffusion coefficients of the three
variables. This satisfies the aim that the authors wanted to achieve, and the experimental
observations from [82, 28] are reproduced. The model also describes adaptation in a uniform
concentration of cAMP, although they assume that adaptation happens at the receptor level,
which was disproven by Janetopoulos et al. [51]. One issue of the model is that it is not able to
describe the change in the polarization direction as the gradient direction is changed. In the
same way as Meinhardt’s model, the Narang et al. model gets locked in a given configuration.
To remedy to this problem and take into account that adaptation occurs downstream of the
receptor level, Subramanian and Narang modified this initial model in a subesquent article,
published in 2004 [112].

A second version [112]

In this modification of the original model, Subramanian and Narang took into account the
fact that adaptation occurred downstream of the receptor level. They therefore included an
adaptation module in their new model. Because the molecular mechanism of adaptation is un-
known, Subramanian and Narang postulated a generic form for the adaptation dynamics and
coupled the adaptation module to the Narang et al. model. Doing so, the model can reproduce
the translocation of posphoinositides to the leading edge of the cell, as well as adaptation in
a uniform concentration of chemoattractant. Contrarily to the first model, the geometry of
the posphoinositide distribution depends on the chemoattractant profile. For a chemoattrac-
tant gradient whose midpoint value is small or large, the translocation of posphoinositides is
essentially uniform (only one stable fixed point exists). Intermediate midpoint values lead to
a polarized translocation (two stable fixed points exist, the system is bistable), and the size
of the translocation goes up with the midpoint value of the chemoattractant. Three other
experimental results were reproduced, that were not reproduced by the first model. The first
one is the ability of a cell to reverse its polarization (i.e. the translocation) when the gradient
direction is changed. In other words, the system is not locked anymore in its polarized state.
This is made possible by the adaptation module. Subramanian and Narang also reproduced an
experimental observation from Devreotes and Janetopoulos in [24]. Devreotes and Janetopou-
los showed that, if cells are already chemotaxing towards a gradient source and that a second,
competing gradient is turned on, some of the cells turn around toward the new gradient while
some others continue their way towards the first gradient. Subramanian and Narang explain
this variability in cellular behavior by pointing out that, according to their model, the ability
of a cell to be influenced by a second gradient depends on the degree of prepolarization of the
cell. The strength of the signal required to create a peak of membrane posphoinositides (P )
in the new gradient direction increases as the prepolarization is bigger. The last result that
the model can explain is spontaneous polarization. Assuming that the cells are in a uniform
concentration of chemoattractant, and considering that this concentration fluctuates (because
of thermal noise), the authors show that a noisy ligand concentration is enough to trigger
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spontaneous polarization of the cell in their model.

2.1.6 Wave-pinning in a bistable system

The model proposed by Mori et al. [75] is interesting by its simplicity. The authors want to
model polarization, and assume that it comes from an exchange between a membrane and a
cytosolic form of a signaling protein. Their model is based on the conversion between an active
membrane form of the protein (A) and its inactive cytosolic counterpart (B) (see figure 2.6).
The total concentration of A and B is fixed for a given cell, which reminds of the model of
Narang et al. [77]. The conversion of A into B is based on bistable dynamics, and the evolution
of the concentration a and b of species A and B is given by:

∂a

∂t
= DA

∂2a

∂2x
+ f(a, b) (2.13)

∂bb

∂t
= DB

∂2b

∂2x
− f(a, b) (2.14)

where f(a, b) = b(k0 + γa2

K2+a2 ) − δa is the interaction function that leads to bistable kinetics
(k0, K, δ are constants), DA is the diffusion coefficient of A on the membrane and B is the
diffusion coefficient of B in the cytosol (DA � DB). Cytosolic diffusion of B is fast enough
so that the concentration of B in the cytosol is essentially uniform at all times. The response
is characterized by the localization of A on the membrame. The system, being bistable, needs
a perturbation to get from its initial state to its final state. The perturbation is given by the
gradient of chemoattractant. As a result, the cell polarizes in the direction of the gradient,
i.e. A accumulates at the front of the cell. Polarization occurs through the propagation of
a wavefront on the membrane, a typical result of bistable dynamics. The propagation stops
once the region of A reaches a given size, depending only on the total amount of A and B
inside the cell, not on the external stimulus (which also reminds of [77]). This is what the
authors term "wave-pinning". In this model, the cell polarizes in response to a uniform signal
subject to noise-induced fluctuations (which reminds of [112]). The system is also able to
reverse its polarity if the direction of the gradient is changed. Another prediction is that the
polarization remains even if the signal is removed. This is the case for neutrophils, but not
for D. discoideum. The putative biochemical basis for such a model are molecules of the Rho-
GTPase family, that are in their active GTP form on the membrane and in their GDP-inactive
form in the cytosol. In D. discoideum however, the polarization is already present upstream
of the activation of Rho-GTPases.

2.1.7 Directional sensing viewed as a phase separation [39]

Gamba et al. [39] used a reaction-diffusion lattice model that describes PI3K and PTEN enzy-
matic activity, recruitment to the plasma membrane, and diffusion of their phosphoinositide
products. The big difference between [39] and other models of directional sensing is that
Gamba et al. have performed stochastic simulations of the reaction and diffusion processes,
using a tesselation of more than 10,000 sites to represent the cell’s membrane. This was made
possible at the expense of a considerable computational effort: simulations were performed
on a 99 dual-processor nodes Beowulf cluster [2800 MHz Athlon processors with 4 Gbyte of
memory each]. The reactions and diffusion processes that were simulated were:
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cover essential features common to disparate GTPase net-
works found in distinct cell types. (We could even speculate
that such elementary biochemistry could have endowed po-
larizability to early protocells before signal transduction
pathways had evolved to their current level of complexity.)
All the behaviors described above can be explained in the

context of a specific property of a reaction diffusion system
that we term wave-pinning (WP), namely, the evolution of a
decelerating front that becomes stationary after transient
behavior. This mechanism differs from those based on local
excitation and global inhibition (LEGI) models, or diffusive
instability of the Turing type (2,21,24–27) in ways that will
be specified below. We explain how wave-pinning occurs,
and reveal its fundamental properties which are interesting
from both a biophysical and a mathematical perspective.

Properties of Rho GTPases

We highlight the wave-pinning mechanism in the context of
the known Rho-GTPase biochemistry, although other pro-
teins could be candidates for similar wave-based phenomena
(28,29).
The Rho GTPase family, whose best studied members are

Cdc42, Rac, and Rho, is conserved from amoeba to mam-
malian cells. These three members play a central role in cell
motility (30,31), yeast budding (13), cytokinesis, and wound
healing (32). Each Rho GTPase cycles between the plasma
membrane (active GTP-bound form) and cytosol (inactive
GDP-bound form, Fig. 1 a) with conversions facilitated by
GAPs, GEFs, and GDIs (33). Rates of transition (34), relative
rates of diffusion (35), and concentrations typical of rest and
polarized states (36) are known.
Spatial zones of Rho GTPase activity are important for cell

polarization (32). In yeast, active Cdc42 localizes to a single
zone on the plasma membrane marking the bud assembly
site. In echinoderms, a zone of active Rho determines the site
of cleavage-furrow formation during cytokinesis (37). In
neutrophils and other motile cells, Cdc42 and Rac have been
associated with putative cell front, and Rho with the cell back
(but see (38), and note that details likely differ between cell
types). A comparison between neutrophils andDictyostelium
discoideum, for example, reveals that Cdc42 and Rho are
missing in the latter. (RacB could be playing a role similar to
Cdc42 (39).) These differences make it even more significant
that in some cell types or conditions, a single Rho GTPase
can act as a basic polarizing unit.
Experimental evidence suggests that Rho GTPase cycling

is directly responsible for the polarization response. In yeast,
for example, the accumulation of Cdc42 at sites of polarized
growth depends crucially on a gene that codes for a single
Cdc42 GEF (13). We and others (19–21) have hypothesized
that exchange between membrane and cytosolic forms plays
a practical role in generating robust cell polarity, and in this
article, we explain how this mechanism could work at the
level of each individual Rho-protein.

Mathematical modeling

Mathematical models of cell polarization and gradient sens-
ing date back to work by Meinhardt and Gierer in the 1970s
(1). (Recent models based on known biochemistry include
(3,19–21,23,40–43), and are reviewed in (44–46). Theoreti-

FIGURE 1 (a) A schematic diagram of the membrane translocation cycle

of a typical Rho family GTPase and its approximation by the A–B RD

system. The inactive cytosolic form diffuses much faster than the active
membrane-bound form and is approximately uniformly distributed. (b)
Schematic diagram, showing the assumed one-dimensional spatial geometry

of the cell in a side view. The axis 0 , x , L represents a cell diameter

(length L ! 10 mm) with no-flux boundary conditions. Membrane thickness
is exaggerated for visibility. Active/inactive Rho proteins are represented by

solid/open disks, and assumed to diffuse along the axis of the cell in both

membrane and cytosol. Polarization corresponds to concentration of the
active form in the membrane at the nascent cell front. Typical profiles of

active (a) and inactive (b) proteins, and the position of the sharp front, xf, is
shown in the lower panel.
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Figure 2.6: The wave-pinning model of Mori et al. [75]. (a) Model of the membrane translo-
cation cycle of a Rho-GTPase by the A−B reaction diffusion system. (b) Side-view of a cell.
Active Rho proteins are shown by the full circles, their inactive version is shown by the empty
circles. The system polarizes, with active proteins concentrating on a region of size xf . The
axis 0 < x < L represents a cell diameter. Figures taken from [75].
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PI3K(cytosol) + Rec(i) ↔ PI3K · Rec(i)
PTEN(cytosol) + PIP2(i) ↔ PTEN · PIP2(i)
PI3K · Rec(i) + PIP2(i) → PI3K · Rec(i) + PIP3(i)
PTEN · PIP2(i) + PIP3(i) → PTEN · PIP2(i) + PIP2(i)
PIP2(i) → PIP2(j)
PIP3(i) → PIP3(j)

The first four equations show reactions, the two last ones describe diffusion. In these
equations, i represents a membrane site and j is one of its nearest neighbors. Rec(i) is the
receptor at site (i). The probability of performing a reaction on a given site is proportional
to the reaction rates and local reactant concentrations. One essential point to bring forward
is that the authors are able to reduce their model to a bistable model with molecular noise.
In the absence of stimulus, the amount of proteins on the membrane is at equilibrium. This
equilibrium point becomes metastable when a gradient is applied, and the transition to the
stable state is driven by molecular noise, underlying the importance of the stochastic aspect of
the model. At the front of the cell, the stable point is one where PIP3 is high, whereas at the
back of the cell, the stable point is such that PIP2 is high. As the gradient is turned on, several
patches of PIP3 appear at different locations on the membrane, that either shrink or coalesce,
depending on the outer gradient of cAMP and on their positions on the cell membrane. In the
end, a phase separation occurs between a region with high concentration of PIP3 and a region
with a low concentration of PIP3. This model is very interesting because of its stochastic
component, and is conceptually very close to the one that we proposed in [8]. It is able to
reproduce polarization in the presence of a gradient, but – because of stochasticity – cells
are unable to polarize in a consistent direction when the receptor activation in too low. In
other words, there is no directional response under a certain stimulus threshold. Thanks to
the constant molecular noise, the system is not frozen in a given state and can adapt to new
gradient directions. In the case of a uniform stimulus, the initial uniform state decays to a
polarized state, accounting for self-polarization. From their article, it seems that the model of
Gamba et al. does not account for the initial uniform translocation seen when a cell is placed
in a gradient of chemoattractant.

2.1.8 The diffusion-translocation model [85]

Postma and Van Haastert proposed in [85] a model of directional sensing where there is no
inhibitor. The model is implemented in the following way (see also figure 2.7):

1. before receptor stimulation, a small number of inactive effector molecules is bound to
the membrane;

2. upon receptor stimulation, the membrane-bound effector molecules are activated, leading
to the production of phospholipids (that are the second-messenger molecules);

3. because more phospholipids are on the membrane, more effector molecules can translo-
cate from the molecule to the membrane;

4. more effector molecules are therefore available on the membrane and can be activated
by the external stimulus, leading to the production of even more phospholipids.
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Figure 2.7: The diffusion-translocation model of Postma and Van Haastert [85]. The model
relies on a positive feedback loop, whose steps are depicted here. Few inactive effectors are
bound to the membrane until (A) a receptor is activated, (B) which activates the membrane
bound effector and leads to the production of second-messenger molecules (the phospholipid).
(C) Because the phospholipid concentration increases, more effector can translocate from the
cytosol to the membrane and (D) this leads to a signal amplification since the receptor can
now activate more effectors, leading to more phospholipids produced. Figure taken from [85].
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There are therefore two species that can diffuse, an effector that is identified to a PH-
domain protein and diffuses in the cytosol, and a phospholipid to which the PH-domain
protein can bind, and diffuses on the membrane. The phospholipid promotes its own pro-
duction by allowing more effector molecules to sit on the membrane, therefore enhancing the
number of effector molecules synthesizing phospholipids (autocatalysis). The exact behavior
of the model depends on the form assumed for P (x), the production rate of the second mes-
senger. At first, the authors assume a linear amplification of the receptor occupancy. The
steady-state distribution of the effector molecules on the membrane is then asymmetric. How-
ever, the asymmetry is reduced at low average background concentrations. The authors then
propose to increase by a factor 5 or 10 the proportionality constant between P (x) and the re-
ceptor occupancy to get a better asymmetry at low background concentrations. However, this
deteriorates the response at high background concentrations. To enhance the model’s ability
to respond to shallow gradients (1% instead of their typical ∼ 10% example), the authors also
point out the possibility to incorporate a nonlinearity in P (x). This nonlinearity is however
not ideal as it freezes the system: the effector and activator molecules are all at the existing
leading edge of the cell, and the cell cannot respond to a change in the gradient direction.

2.1.9 The first-hit model

Rappel et al. proposed in [91] what came to be known as the "first-hit" model. The authors
argued that what was important for gradient sensing was the temporal component of the
gradient. Indeed, it is experimentally impossible to apply a gradient instantaneously, and the
cell always sees a temporal gradient before it sees a stable spatial gradient. The model assumes
that the membrane receptor of cAMP, cAR1, can be in three different states: quiescent,
activated or inhibited. Transitions from quiescent to activated are triggered by the binding
of cAMP to the receptor. When the receptors are activated, they trigger the production of
an intracellular chemical messenger, hypothesized to be cGMP. The cGMP then diffuses in
the cytosol and turns the quiescent receptors to their inhibited state. The inhibited receptors
become quiescent at a constant chemical rate. The mechanism of the model is therefore the
following: as cAMP diffuses from a micropipette, a gradient establishes, and the part of the
cell closest to the pipette (the front) gets activated first, leading to the production of cGMP.
There is then a competition between the diffusion of cAMP outside of the cell and the diffusion
of cGMP inside the cell. If on the length scales involved, the diffusion of cGMP inside the
cell is faster than the diffusion of cAMP outside of the cell, the first chemical to reach the
back of the cell will be cGMP. As a result, the quiescent receptors at the back of the cell will
be inhibited, and an asymmetry in the active receptors will be created. A schematic of the
model can be found on figure 2.8. The drawback of the model is that it can not reproduce
the behavior of a cell to which two simultaneous gradients are applied. Indeed, in this model,
at most one front of the cell can exist at a time. However, experiments conducted later by
Janetopoulos et al. [52] showed that two fronts of PH-domain proteins could exist, if cAMP
was diffusing out of two micropipettes located at two diametrically opposed positions (see
figure 2.9).
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Figure 2.8: The first hit model of Rappel et al. [91]. Before stimulation, the receptors are in
a quiescent state. When stimulated with cAMP, the receptors get activated, leading to the
production of internal cGMP. Internal cGMP diffuses in the cytosol of the cell and inhibits the
quiescent receptors, pre-empting activation in the back of the cell, where the external cAMP
arrives more slowly. Figure taken from [91].

Figure 2.9: Two micropipettes filled with cAMP (in red) are brought close to a cell marked
with CRAC-GFP (green). If the gradients of cAMP created on both sides are the same, CRAC
translocates to both sides of the cell, disproving the first-hit model prediction. Figure taken
from [52].
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2.1. Models of directional sensing

2.1.10 Local excitation, global inhibition (LEGI) [67, 70]

A first version [67]

In 2002, Levchenko and Iglesias [67] proposed a mechanism that would account both for the
asymmetry and the reversibility of the directional sensing process. Their idea was to have two
species, one local activator called A and one global inhibitor I that diffuses in the cytosol. The
diffusion of I should be fast enough compared to its production so that the level of I is uniform
in the cytosol. More precisely, calling S the external concentration of chemoattractant, the
equations read:

dA

dt
= kaS − k−aA (2.15)

∂I

∂t
= kiS − k−iI +D∇2I (2.16)

where ka, ki are the production rates of A and I, k−a, k−i are their degradation rates, and D
is the diffusion coefficient of the inhibitor in the cytosol. In steady-state, the concentration of
A is therefore locally reflecting the external signal S while the concentration of I should be
uniform inside the cell and reflect the averaged signal concentration.The activator promotes
the transition from a quiescent state R of a protein to its activated state R∗, while the
inhibitor has the opposite effect. The output from the model is the concentration of R∗ on the
membrane of the cell, or an effector downstream of R∗. The aim of the model is to reproduce
two experimentally observed behaviors:

• in presence of a spatially uniform signal S, there is a transient uniform production of
R∗ that disappears after a given time (time depending on the rate constants chosen in
the model);

• if the external signal is a gradient, there should be an internal gradient of R∗ produced,
that amplifies the external gradient.

These two behaviors can be correctly reproduced by the model. If the equation for the
production of R∗ was just

dR∗

dt
= k1AR− k−1IR

∗ (2.17)

we would have a steady state where R∗ = k1Rtot
A/I

k1+k−1A/I
, assuming that the local concen-

tration Rtot = R + R∗ is conserved. This mechanism does not amplify the external gradient
however. To get a better amplification, Levchenko and Iglesias assumed a couple of feedback
loops. The way the putative biochemical pathway is implemented, the response still depends
on the local ratio of activator to inhibitor. When this ratio is high (typically at the front of the
cell), the concentration of R∗ is high, whereas the concentration of R∗ is low when A/I is low
(at the back of the cell). In other words, there is a high translocation of R∗ at the front of the
cell and a low (or no) translocation of R∗ at the back of the cell. The amount of amplification
of the external signal (i.e. what a "high" and "low" concentration of R∗ quantitatively means)
is strongly dependent on the rate constants chosen for the simulation. One major advantage
of this model over the Meinhardt model is that the translocation can switch direction if the
gradient direction is switched. A problem of the LEGI model is the identification of the acti-
vator and the inhibitor that the authors made with biological species. Levchenko and Iglesias
proposed that the activator was PI3K and the inhibitor PTEN. According to the LEGI, PTEN
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Chapter 2. A bistable model for directional sensing

should have a roughly uniform concentration inside the cell, with a slight localization at the
front of the cell. Unfortunately, Funamoto et al. [35] showed that PTEN localizes at the back
of the cell. To reproduce this experimental fact, Ma et al. suggested a new version of LEGI
in [70].

A second version [70]

The second version of the LEGI model contains two independent LEGI modules, one describing
the accumulation of PI3K and the other one describing the accumulation of PTEN. In the PI3K
module, activation of the receptors leads to more binding sites for PI3K. On the contrary, in
the PTEN module, receptor activation destroys binding sites for PTEN. Therefore, a gradient
of PI3K appears on the cell membrane, pointing in the same direction as the cAMP gradient.
Similarly, a gradient of PTEN develops, pointing in the opposite direction of the gradient
of cAMP. PI3K promotes the phosphorylation of PIP2 into PIP3 at the front, while the
conversion of PIP3 to PIP2 is increased by PTEN at the back of the cell. This leads to a
polarized distribution of PIP3, with an accumulation at the front of the cell. A schematic of
the model is shown on figure 2.10

Figure 2.10: Receptor occupancy regulate two LEGI modules. The first LEGI module de-
scribes the kinetics of PI3K, the second one describes the kinetics of PTEN. Eα is the
membrane-bound activator of the species α, while Iα is the global inhibitor for species α
(Iα diffuses freely in the cytosol). BSα is an inactive binding site for the species α, and BS∗α is
its activated version. Receptor activation promotes the production of binding sites for PI3K
and the destruction of binding sites for PTEN. This leads to an accumulation of PIP3 at the
front of the cell. Figure taken from [70].
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2.1. Models of directional sensing

2.1.11 The balanced inactivation model

Another approach proposed by Levine et al. [68] to model directional sensing is the following.
They assume equal production rates for the activator and the inhibitor. The inhibitor can
either be in its cytosolic form B or be bound to the membrane and is then called Bm. The
activator is called A, and can react with the membrane-bound version of the inhibitor:

dA

dt
= kaS − k−aA− kiABm at the membrane (2.18)

∂Bm
∂t

= kbB − k−bBm − kiABm at the membrane (2.19)

∂B

∂t
= D∇2B in the cytosol (2.20)

At the membrane, the boundary condition is:

D
∂B

∂n
= kaS − kbB (2.21)

for the outward pointing normal derivative of the cytosolic inhibitor B. In this case, the
reporter is the activator A. The assumption of equal production rates for the activator and the
inhibitor ensures that A remains only at the front of the cell; there is a clear spatial asymmetry
of A when the cell is stimulated, and the behavior of the cell is spatially ”switch-like". To
compare this model with the LEGI model presented in section 2.1.10, we can note that, whereas
the standard LEGI acts basically like a division, with a reporter concentration depending on
the ratio between the activator and inhibitor concentrations, the balanced inactivation model
acts like a subtraction between the activator and inhibitor levels, which explains the absence
of activator at the back of the cell. One should note that the assumption of equal production
rates of activator and inhibitor is a very strong one, and the authors assume this hypothesis
to be met by identifying the activator with the Gα subunit of the heterotrimeric G protein,
while the role of the inhibitor would be played by the Gβγ subunit of the G protein. Indeed,
it is known that the G protein dissociates when D. discoideum is stimulated with cAMP. The
assumption is therefore that Gβγ reassociates to Gα at the back of the cell during a gradient
stimulus, whereas the G protein stays dissociated at the front of the cell. Unfortunately, this
hypothesis is contradicted by experiments presented by Xu et al. in [132], where the authors
use FRET to monitor the dissociation of the G protein as D. discoideum were put in a uniform
concentration or a gradient of cAMP. In their article, Xu et al. show that the G protein stays
in a dissociated state at the front and at the back of the cell when the cell is stimulated by a
gradient of cAMP. The direct identification of activator and inhibitor with G protein subunits
therefore seems risky. The proposed mechanism is interesting from a theoretical point of
view, but finding two biochemical species produced at the exact same rate remains a serious
challenge.
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Chapter 2. A bistable model for directional sensing

2.2 A bistable mechanism triggered by internal noise6

2.2.1 Motivation for a our model

The motivation for our model of directional sensing comes from two experimental facts. The
first one is the robustness of chemotactic motion over three orders of magnitude in gradient
steepness (between 10−2 and 10 nM/µm). Within this interval, the chemotactic velocity is
only weakly dependent on the gradient. Schematically, one can understand this graph as
showing two behaviors: one “off" behavior, where the cell shows its basal motility and one
“on" behavior, where the cell moves with a chemotactic velocity that depends very weakly on
the gradient steepness. The off and on modes can be thought of as two stable fixed points of a
bistable system. Our aim was to propose a bistable mechanism that would respond identically
to gradients of different steepnesses. The second fact that we wanted to introduce was that
the cell environment is by definition noisy. In our proposed mechanism, the intrinsic cell noise
is used to drive the transition between the two stable fixed points of the bistable system.
If there were no sources of noise in the cell, this model would not work and the cell would
be stuck in one state or the other. It should also be mentioned that the model proposed is
just a generic model, and that no particular biochemical constituents were identified. This
can be considered as a drawback, but on the other hand, in several of the existing articles
presenting a simple model for directional sensing, the identification of biochemical components
is a conjecture, when not a guess, and does not bring much to our biological understanding of
the cell. However, it is known that biological networks and chain reactions can be reduced to
bistable systems, as shown in [2]. Of all the models described in the previous section, the ones
that exhibited a constant response for gradients of different steepnesses were either unable
to adapt to a change in the gradient direction [77], or the polarization would remain even
after the gradient was removed [75], which is inconsistent with experiments. The non bistable
models predict a response that gets stronger for increasing gradients. In my opinion, the most
interesting model of chemotaxis is the one proposed by Gamba et al. in [39]. In their case,
it is also the noise that drives the transition to a polarized state. The only feature that the
model doesn’t show is the initial transient uniform translocation of PIP3 on the membrane,
that occurs when a cell is stimulated with either a gradient or a uniform concentration of
cAMP. This is a feature that we would like to reproduce in our model.

2.2.2 The model

Basic idea

The idea behind the model is to have a reporter, P , whose concentration p obeys bistable
dynamics and translocates to the front of the cell only when the cell is put in a gradient of
cAMP. Here, the front of the cell designates as usual the half of the cell where the external
cAMP concentration is maximal. Schematically, the two stable states of p should have values
1 and 0. When a gradient of cAMP is applied, the front of the cell should go to 1, while
the back should stay at 0. The way we chose to implement this asymmetry was by having a
trigger wave velocity changing sign at the middle of the cell: perturbations can then lead to
the propagation of one state in the upper part of the cell, while they lead to the propagation
of the other state in the lower part of the cell. How can we achieve such a behavior? We base

6This work was published as C. Beta, G. Amselem and E. Bodenschatz, New Journal of Physics, 10,
083015 (2008). The article is reproduced at the end of the chapter.
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2.2. A bistable mechanism triggered by internal noise

our model on the well-known scheme of a localized activator and a global inhibitor. Where the
ratio between the local activator and inhibitor concentrations is higher than a given threshold,
the wave velocity is positive and state 1 propagates. Conversely, state 0 propagates where
the ratio between the local activator and inhibitor concentrations is lower than the chosen
threshold. To summarize, there are three parts in our model:

• a local activator, global inhibitor scheme;

• an intermediate species, called Q thereafter, comparing the local concentrations of acti-
vator and inhibitor;

• the reporter P that follows bistable dynamics and whose value depends on the value of
Q.

These three parts are detailed in the following pages.

Local activator, global inhibitor

We consider a one-dimensional cell (the extension to two dimensions is straightforward and
is just computationally more demanding), where the activator A and the inhibitor B are
produced locally proportionally to the concentration s of the external chemoattractant S,
the inhibitor B diffusing in the cytosol while the activator A stays on the membrane. The
equations are:

da

dt
= kas− k−aa+ k+a (2.22)

∂b

∂t
= kbs− k−bb+ k+b +D∇2b (2.23)

In these equations, ka and kb are the rate constants for the production of A and B from
S, k−a and k−b are the degradation rates of A and B and we also account for self-production
of A and B via the kinetic constants k+a and k+b. As the diffusion of B in the cytosol has the
effect of averaging the external signal, a simplified way of writing the kinetic equation for the
concentration b of the species B is to consider the spatial average s̄ of the concentration s:

db

dt
= kbs̄− k−bb+ k+b (2.24)

Writing this assumes that the time needed for the homogenization of B inside the cell is
smaller than the time constants related to the production and degradation rates of B. The
stationary concentrations of A and B read:

a =
kas+ k+a

k−a
and b =

kbs̄+ k+b

k−b
(2.25)

Local comparison of activator and inhibitor concentrations

We introduce an intermediary species Q that is created by B and degraded by A, so that the
evolution of its concentration q is given by:

dq

dt
= kqb− k−qaq (2.26)
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Assuming that we are at equilibrium, we get for the steady state concentration of Q:

q =
kq
k−q

b

a
(2.27)

Bistable kinetics

We now assume that there exists a species P that follows bistable kinetics. This can be
achieved by postulating the following reaction-diffusion equation for p:

∂p

∂t
= v

p2

p2 +K
− k3p+Dp∇2p (2.28)

The first term on the right-hand side of the equation corresponds to cooperative binding with a
Hill coefficient of 2, the second term takes degradation into account and the last one shows the
diffusion of P along the membrane (we do not assume any cytosolic diffusion). The chemical
reactions that involve P are written:

2P + E
k1−⇀↽−
k−1

X k2−→ 3P + E , P k3−→ P′′ . (2.29)

where E is an enzyme and X is an enzyme-substrate complex. The Michaelis-Menten constant
K is then equal to:

K =
k−1 + k2

k1
(2.30)

We should now look for the fixed points of the system. They are the solutions of:

v
p2

p2 +K
− k3p = 0 (2.31)

which reduces to:
k3p

(
p2 − v

k3
+K

)
= 0 (2.32)

and, defining e1 = v
k3
, gives three roots:
p1 = 0 (stable fixed point)

p2 = e1
2

(
1−

√
1− 4K

e21

)
(unstable fixed point)

p3 = e1
2

(
1 +

√
1− 4K

e21

)
(stable fixed point)

(2.33)

As mentioned in section 2.1.1, the velocity of the trigger wave is proportional to:

J =
∫ p3

p1

f(p)dp (2.34)

=
∫ p3

0

(
v

p2

p2 +K
− k3p

)
dp (2.35)

= −k3
p2

3

2
+ vp3 − v

√
K arctan

(
p3√
K

)
(2.36)
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We want the velocity of the trigger wave to change sign in the middle of the cell, which implies
that J has to change sign. In other words, p3 or K (or both) have to vary across the cell in
order for the sign change to occur. The stable fixed point p3 depends itself on v, k3 and K.
One way to implement the change of sign of J across the cell is to have a varying K. We
require for k−1 to depend on the concentration q: k−1 = k̃−1q. As we need K to vary over
the cell, we need to have k−1q � k2, which amounts to:

k̃−1
kq
k−q

b

a
� k2 ⇔ k̃−1

kqk−a
k−qk−b

(kbs̄+ k+b)
(kas+ k+a)

� k2 (2.37)

and leads to K ≈ K̃q with K̃ ≈ ˜k−1/k1. The wave-velocity is zero at the middle of the cell,
which implies

− k3
p2

3

2
+ vp3 − v

√
K arctan

(
p3√
K

)
= 0 (2.38)

at the middle of the cell, and gives a relationship between the different quantities at play. To
make the next calculations easier, we now make several simplifying assumptions on the different
values of the rate constants, which we will keep throughout the chapter, unless otherwise
mentionned. First, we take kq = k−q, so that q = b/a. Then, we take ka = k−a � k+a and
kb = k−b � k+b, so that

q =
b

a
≈ s̄

s
(2.39)

Replacing p3 by its value in equation 2.38, and calling γ = K/e2
1, we get:

1
4

(
1 +

√
1− 4γ

)
+
γ

2
−√γ arctan

[
1

2
√
γ

(
1 +

√
1− 4γ

)]
= 0 (2.40)

which can be numerically solved to yield γ ≈ 0.21. In the middle of the cell, and taking into
account our simplifying assumptions mentioned in the previous paragraph, we have q ≈ 1, so
that the condition for zero wave velocity at the middle of the cell becomes:

K̃/e2
1 ≈ 0.21 (2.41)

2.2.3 Simulations

We simulated equations 2.22, 2.24 and 2.28 on a one-dimensional domain with periodic bound-
ary conditions, representing an “unfolded” membrane. The length of the membrane is L = 10,
discretized with a grid length ∆x = 0.02. In [109], the gradients used were linear across the
cell. Because in our case the membrane is unfolded, the stimulus we have to apply is sinu-
soidal: s = s̄+smax sin

(
2π
L x
)
. The equations are integrated using a forward Euler scheme and

a nearest-neighbor representation of the Laplacian operator. The time step used is ∆t = 0.1.
The rate constants and diffusion coefficient used can be found in table 2.3. The transition
between the two stable states is triggered by localized random perturbations. These pertur-
bations have a fixed width of ∆x̃ = 0.08 and their location is randomly chosen from a uniform
distribution on the membrane. Their amplitude is taken from a uniform distribution betweem
p1 and p3 (which are the two stable fixed points of the system). They occur at random times,
with a waiting time between two perturbations taken from a uniform distribution. The mini-
mum waiting time is 0 and the maximum waiting time ∆noisetmax. We call ∆noiset the average
waiting time between two perturbations.
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Parameter Value
ka 50 Production rate of A
k−a 50 Degradation rate of A
k+a 0.01 Self-production of A
kb 3 Production rate of B
k−b 3 Degradation rate of B
k+b 0.01 Self-production of B
k1 200 Production of P
k̃−1 87
k2 0.14
k3 1000
ẽ0 k3/k2

DP 0.1 Diffusion coefficient of the reporter P on the membrane
∆noiset 0.05 Average waiting time between two perturbations

Table 2.3: Parameters used in the simulations. The values listed are dimensionless. To convert
them to quantities with dimensions, the reader is referred to table A.2 of the article, reprinted
at the end of this chapter.

2.2.4 Results of the model

Response to a spatial gradient, response to a uniform concentration

The model was meant to simulate polarization of a cell in a gradient, as well as adaptation
in response to a uniform concentration. It is therefore expected to perform well on these two
features, which it does, as can be seen on figure 2.11. The spikes seen on the profile of p are
the random perturbations that are applied to the system, and trigger the transition from one
stable state to the other. Adaptation imposes a relationship between the rates constants of
A and B. We want to have an activator A that rises faster than the inhibitor B, so that
initially the fixed point is p3 = 1 everywhere around the cell. This implies ka > kb, and leads
to an initial uniform translocation. This translocation should decay as the cell adapts, and
the fixed point of the system should become p1 = 0 on the membrane. This means that the
final concentration of B should be higher than the final concentration of A, for all values of
the uniform signal s̄:

kas̄+ k+a

k−a
<
kbs̄+ k+b

k−b
. (2.42)

If there is no signal (s̄ = 0), there should also be no translocation, so we need to have

k+a

k−a
<
k+b

k−b
. (2.43)

One very simple way to satisfy the condition in equation 2.42 for all values of s̄ is to have
ka = k−a and kb = k−b. However, this condition can be relaxed. It will just impose an upper
bound on the value of s̄ for which there is adaptation: for values s̄ > s̄0 with

s̄0 =
[
k+b

k−b
− k+a

k−a

] [
ka
k−a
− kb
k−b

]−1

(2.44)

there is no adaptation. Note that s is the extracellular concentration of cAMP. It is more
meaningful to talk in terms of receptor occupancy. To convert a concentration into a receptor
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occupancy, one usually assumes Michaelis-Menten kinetics at the receptor level. At concentra-
tions much bigger than the Michaelis-Menten constant Kd, the receptor occupancy saturates.
In other words, if s̄0 is much bigger than Kd, there will always be adaptation.
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Figure 2.11: Spatial response to (a) a relative gradient of 1% and (b) to a uniform concentration
s = 0.1. The spikes seen on the profile of p are the random perturbations applied, that trigger
the transition from one state to the other. (c) Temporal response to a sudden jump in external
concentration s. At each moment in time, the profile of p is averaged over the cell membrane.
We observe a transient uniform translocation.

2.2.5 Predictions

We now turn to the predictions of the model.

The region of translocation increases with the gradient

The model predicts a threshold for directional sensing. Indeed, for translocation to occur,
ones needs to have locally more activator than inhibitor (a > b). Having fixed the reaction
constants, if we apply a gradient s(x) = s̄ + smax sin(2πx/L), there will be no translocation
as long as

ka(s̄+ smax) + k+a

k−a
<
kbs̄+ k+b

k−b
. (2.45)

If condition 2.45 is not verified, there will be translocation on the part of the cell such that

ka[s̄+ smax sin(2πx/L)] + k+a

k−a
<
kbs̄+ k+b

k−b
. (2.46)
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which leads to
x <

L

2π
arcsin

[
1

kasmax

(
k−a

kbs̄+ k+b

k−b
− k+a − s̄ka

)]
(2.47)

and a maximal translocation size of L/2 (half of the cell). This behavior is schematically
shown on figure 2.12

Figure 2.12: The size of the translocation goes up with the gradient. The concentration a of
the activator is shown in bold, the concentration b of the inhibitor in a dashed line. (i) For a
uniform stimulus uniform, a < b and no translocation occurs. (ii) For a directional stimulus,
there is no translocation at shallow gradients. (iv) If the gradient is steep enough, the part of
the cell where a > b will show a translocation. The limiting case is shown in (iii).

The intensity of the translocation depends weakly on the steepness of the gradient

The intensity of the translocation is given in our model by the value of the stable fixed point
p3. According to equation 2.33, we have

p3 =
e1

2

(
1 +

√
1− 4K

e2
1

)
(2.48)

where K ≈ K̃ b
a and K̃

e21
≈ 0.21. Considering an external signal s(x) = s̄[1 +α sin(2π

L x)], where
α is the strength of the gradient, we find that the maximal variation of p3 is proportional to
(1 + α)−1/2 ∼ 1− α/2 for small values of α. It is independent of the midpoint concentration
of the concentration profile.

Note that it would be possible to have an intensity of translocation completely indepen-
dent of the gradient. If we want to have p3 = 1 independent of the stimulus, we see from
equation 2.32 that we need to introduce the condition K + 1 = v/k3, which is what we did in
the main text of our article [8].

The time of response goes up at low gradients

The translocation is established via a trigger wave, whose velocity depend on the ratio of
inhibitor to activator, as shown on figure 2.13a. We see that for values of q = b/a between
0.5 and 2, the wave velocity depends linearly on q. The shallower the gradient, the smaller
the difference between a and b, resulting in a slower wave propagation. Therefore, the time to
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reach steady state increases. To characterize this time, we have defined the deviation of the
system state at time t from the ideal steady-state solution as:

δ(t) =
1
N

N∑
i=1

√
(pi(t)− p̃i)2, (2.49)

where N is the number of grid points along the cell membrane, pi(t) is the value of p at
position i and time t, and p̃i s the ideal steady-state solution, which should be 0 for a < b and
p3 ≈ 1 for b > a. The evolution of δ is shown on figure 2.13b for gradients of different slopes
(and a fixed midpoint concentration s̄ = 10). To obtain the characteristic time scale of the
response, we fitted an exponential to these curves, of the form C e−t/τ

∗
+D. We plotted the

evolution of τ∗ as a function of the gradient on figure 2.13c. The response time increases at
low gradients.

(a) (b) (c)

Figure 2.13: (a) Trigger wave velocity as a function of the ratio q = b/a. As the gradient
gets shallower, q becomes closer to 1 and the trigger wave velocity is small. (b) Evolution of
δ(t) for different values of the relative gradient. The midpoint concentration is s̄ = 10. These
curves were fitted by a exponential of the form C e−t/τ

∗
+ D, and the characteristic time τ∗

is plotted on figure (c) as a function of the gradient.

2.2.6 Exploration of the parameter space

Time scale of the fluctuations

The transition we observe is triggered by random perturbations, occurring at random times.
The average waiting time between two perturbations is an important parameter of the model.
If the average waiting is smaller than the time scale of the trigger wave propagation, no pattern
will be able to emerge and the system will be dominated by perturbations. If the average
waiting time is infinitely long, no perturbations will be triggered. On figure 2.14a, we plotted
the evolution of δ(t) for different values of the average waiting time ∆noiset

∗. This evolution
was fitted by an exponential of the form C e−t/τ

∗
+D, and we plotted the characteristic time

scale τ∗ on figure 2.14b. Note that at very small values of ∆noiset
∗, the system goes very fast to

its steady-state, but this steady-state is one that is dominated by noise (the offset D from the
exponential fit is not such that D � 1). As ∆noiset

∗ increases, the system gets more precise
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(D decreases) but also slower. The model is therefore good to work with in an intermediate
range of ∆noiset

∗, where the response is both precise (δ < 0.05) and fast (time of response
smaller than 5 seconds, which is the biological time scale for a response [132]). On figure 2.14,
we see that this corresponds to 25 ≤ ∆noiset

∗ ≤ 750 ms.

(a) (b)

Figure 2.14: (a) Evolution of δ(t) for different values of the average waiting time ∆noiset
∗.

These curves were fitted by an exponential of the form C e−t/τ
∗

+ D, and the characteristic
time τ∗ is plotted on figure (b) as a function of ∆noiset

∗. At values of ∆noiset
∗ lower than 25

ms, the system goes to a steady state in less than 500 ms, but this steady state is dominated
by the perturbations – no directional translocation is observed. At values of ∆noiset

∗ bigger
than 750 ms, the system takes more than 5 seconds to reach the polarized steady-state, which
is more than the biological timescale mentionned in [132].

Fluctuations in the value of K̃

We have imposed the constraint K̃/e2
1 = γ ≈ 0.21 (equation 2.41) to obtain a trigger wave

velocity that changes sign in the middle of the cell. Note however that there will still be a
translocation even if this condition is not verified, as long as the trigger wave velocity changes
sign at some arbitrary point x∗ on the membrane. We will then have two domains of unequal
size. Let us assume that K̃ fluctuates (the situation where e1 fluctuates can be treated exactly
in the same way). The trigger wave velocity will change sign at a point x∗ where the ratio
q = b/a is not equal to 1, and such that K̃q = γe2

1. We consider a profile of concentration
s(x) = s̄(1 + α sin(2πx/L)), where α is the strength of the gradient. We can then show that,
as long

(1− α)γe2
1 <

k̃−1 + k2(1− α)
k1

and (1 + α)γe2
1 >

k̃−1 + k2(1 + α)
k1

(2.50)

there will be a biphasic response.
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2.3. Summary

2.3 Summary

The model we proposed combines the main advantage of the LEGI model, which is the ability
to reverse the polarization in response to a change of the gradient direction, with the advantage
of a bistable dynamics, which is the amplification of low asymmetries. The model was made
to reproduce five experimental properties:

1. there is a translocation over a wide range of gradients, and the translocation remains as
long as the gradient is kept on - this is assured by the LEGI type mechanism,

2. there is a distinct front and back over the range of gradients where the cell responds -
this is done by the bistable module,

3. the mechanism should be reversible: done by the LEGI module,

4. as much as possible, the translocation should be constant over a wide range of gradients
(this would reproduce the two-states-like behavior of the chemotactic velocity): done by
the bistable module,

5. there is adaptation when the cell is uniformly stimulated (i.e. we see a temporary uni-
form translocation): implies an inequality relationship between the production constants
of A and B.

As a consequence of these five experimental properties, the model makes four predictions:

1. there is a threshold gradient below which the cell does not respond (consequence of the
relationship between the production constants of A and B, made to reproduce adapta-
tion),

2. the size of the translocation goes up with the gradient and reaches a maximum (conse-
quence of the bistability).

3. the intensity of the translocation is roughly constant over the range of gradients where
the cell responds (consequence of the bistability).

4. the time of response goes up when the gradient goes down (consequence of the bistability)

As a final note, the model we proposed is actually very close to Meinhardt’s [73]. We were
able to get rid of Meinhardt’s slow inhibitor (called C in [73]) because we impose fluctuations
in our system, that trigger a transition from one state to the other.
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1. Introduction

Chemotaxis is the directed movement of a cell towards a chemical source. It is of fundamental
importance for many biomedical processes including wound healing, cancer metastasis and
morphogenesis of the nervous system [1]–[3]. Directed locomotion of bacteria has been
intensively investigated and detailed models of prokaryotic chemotaxis are available [4]. On the
other hand, directional motion of eukaryotic cells is more complex. Here, less is known about
the chemotactic signaling pathways that link the membrane receptor input to rearrangements
of the cytoskeleton and directed actin polymerization [5]. Eukaryotic cells like neutrophils or
the social amoeba Dictyostelium discoideum can detect chemoattractant gradients as shallow as
a 1% difference in concentration between the front and the back of the cell and exhibit robust
directional motion over a large range of different gradient steepnesses [6]–[8].

This response behavior cannot be achieved by simple amplification or any other linear
mapping of the external gradient into the cell. Instead, it can be expected that highly nonlinear
interactions govern the early stages of chemotaxis, generally referred to as directional sensing.
During the first 10 s after gradient exposure, an intracellular symmetry breaking occurs that
is reflected in asymmetric spatial distributions of numerous proteins across the cell [9]. These
subcellular reorganizations have been experimentally observed by fluorescence microscopy
imaging of various green fluorescent protein (GFP)-tagged constructs. Among these redistrib-
uting components, the small GTPase Ras, pleckstrin homology (PH) domain proteins, and the
p21-activated kinase A (PAKa) have been identified, see [10] and references therein. Although
a complete picture of the precise role of these individual players is still missing, it is generally
assumed that the asymmetric rearrangement of proteins during directional sensing controls
the downstream events that lead to actin driven membrane protrusions and, ultimately, cell
locomotion [11].

Numerous efforts have been undertaken to develop mathematical descriptions of
directional sensing. Since many molecular details of the chemotactic signaling network remain
unknown, most models proposed to date consequently focused on abstract, low-dimensional
descriptions. The most common approach is based on two-component activator/inhibitor
kinetics. Combining slow diffusing, locally acting excitatory components with a rapidly
diffusing, global inhibitor (local excitation/global inhibition (LEGI) models) amplification of
the external gradient signal is obtained [9, 12, 13]. Other variants have been proposed, like
the ‘first hit’ [14] and the ‘intermediate depletion’ model [15]. While the former is unable to
adapt to subsequent changes in the direction of the initial gradient stimulus, the latter suffers
from a strong dependence on the average chemoattractant concentration that is not observed
in experiments. Intracellular symmetry breaking via a Turing instability in response to external
gradient stimuli has been considered by Meinhardt [16]. This approach was later refined and
adapted to specifically describe the dynamics of asymmetric localization of phosphoinositides
such as PIP3 at the leading edge of migrating cells [17, 18]. As more and more elements
of the chemotactic pathway are identified, first attempts were made to capture directional
signaling in high-dimensional realistic models [19]. Here, the authors simulate a complex
signaling network to describe temporally multiphasic responses in membrane translocation
events following gradient stimulation. Current modeling efforts focus on stochastic effects that
influence the distribution of occupied receptors across the membrane and become important for
directional sensing in shallow gradients [20]–[23].
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In [8], we performed a quantitative study of chemotactic motion of the eukaryotic
micro-organism D. discoideum. Chemotaxis of Dictyostelium cells was characterized in well-
controlled linear chemoattractant gradients using microfluidic technology. In this study, we
observed chemotactic responses for gradient signals that range over three orders of magnitude in
gradient steepness (between 10−2 and 10 nM µm−1). Within this interval, chemotactic motion
was robust and showed only a weak dependence of the chemotactic velocity on the gradient
steepness. This has prompted us to look for models that respond with an identical symmetry
breaking to gradient stimuli of very different steepness.

The models summarized in the previous paragraph do not meet this condition. Gamba
et al have designed a model of directional sensing that is based on phase separation of membrane
phospholipids into PIP2- and PIP3-rich domains, mediated by phosphoinositide diffusion and
the enzymatic activity of phosphatidylinositol 3-kinase (PI3K) and its counteracting
phosphatase PTEN [24, 25]. Their diffusion-limited phase separation model accounts for a
strong symmetry breaking even at shallow gradients. But it does not show the initial transient
uniform response to both isotropic and gradient stimuli that is observed in experiments on
phosphoinositide signaling in chemotactic cells [26]. Recently, Levine et al proposed a model
that takes the switch-like nature of gradient sensing into account and, at the same time, also
reproduces the transient response dynamics correctly [27]. Their ‘balanced inactivation model’
is composed of a two-component activator/inhibitor system. Under gradient stimulation, this
model exhibits a clear symmetry breaking into an activated front and a back, where activation
is vanishing. Note, however, that activation levels at the front depend on the external signal and
scale linearly with the gradient steepness.

Here, we propose a mechanism where the activated and quiescent states at the front and
back of a cell are independent of the external gradient signal as long as a critical gradient value
is exceeded. We achieve this property by building our model on the simple pattern formation
paradigm of bistability: an underlying LEGI-type activator/inhibitor system is combined
with an autocatalytic step that results in an identical symmetry breaking event for arbitrary
gradient inputs. Note that our model is restricted to the initial symmetry breaking during
directional sensing. Down-stream cytoskeletal responses like the protrusion and bifurcation of
pseudopods [28] or the dynamics of complex actin structures in the cell cortex [29] are not
described by our model. In the following sections, we first introduce the underlying idea of
a bistable model for directional sensing and later present numerical simulations of a specific
kinetic example.

2. Bistable model

We assume that the chemotactic pathway is mediated by a membrane-bound species P. It
lives on the cytosolic side of the plasma membrane and is diffusively mobile along the inner
membrane surface. The formation of P will depend on extracellular chemoattractant signals that
are communicated to the inside of the cell via transmembrane receptors. In the presence of P,
downstream events are initiated that influence actin polymerization and rapid reorganization of
the cytoskeleton. In this simplified picture, directional sensing is defined as the formation of
an asymmetric membrane distribution of P in response to an extracellular gradient signal. The
asymmetry in P will result in asymmetric stimulation of cytoskeletal activity that controls the
formation of membrane protrusions and directional cell movement.
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In general, the dynamics of P on the inner side of the plasma membrane follows a
reaction–diffusion equation

ṗ = f (p) + DP∇
2 p, (1)

where p denotes the concentration of P and DP the coefficient of diffusion along the membrane.
Note that throughout this work, physical quantities are given in dimensionless variables. They
have been non-dimensionalized by the reference quantities that can be found in appendix A.
Quantities that carry a dimension are marked with an asterisk. The kinetics of P formation and
degradation depends on the external chemoattractant signal and is summarized in the interaction
function f . For the model presented here we require that the form of f leads to bistability in
the dynamics of P. This typically implies that the local kinetics ṗ = f has three fixed points,
p1 < p2 < p3, where p1 and p3 are linearly stable and p2 is unstable [30]. Here, we assume that
the two stable fixed points p1 and p3 are independent of the external chemoattractant signal S,
whereas the unstable fixed point p2 depends on S (see appendix B for the more general case, in
which both p2 and p3 are depending on S).

Cellular systems are noisy, so that localized transitions from one fixed point to the other
can occur. Due to diffusive coupling, such perturbations may induce similar transitions at
neighboring locations, so that transitions from one fixed point to the other can spread through
the system in the form of a trigger wave. Their shape and velocity are uniquely defined. Let
p = p(ξ) with ξ = x − ct denote a transition from p1 to p3, that spreads with velocity c through
the system, i.e. p → p1 (p → p3) for ξ → ∞ (ξ → −∞). The sign of the trigger wave velocity
c is determined by the sign of the integral [31],

A =

∫ p3

p1

f (p) dp. (2)

Depending on the sign of c, domains of p3 (c > 0) or p1 (c < 0) will grow, so that the system
eventually converges to one of the two stable fixed points4.

As the central assumption of our model, it is required that the trigger wave velocity changes
sign across a cell that is exposed to an external gradient in the chemoattractant S (s denoting the
concentration of species S). In particular, in the front half of the cell, pointing towards higher
chemoattractant concentrations, the wave velocity shall be positive, so that p eventually takes
the value of the stable fixed point p3. In the back half of the cell, c is negative and p converges
to p1. The interface between the two membrane fractions of high and low P concentration is
formed by a frozen trigger wave of zero velocity.

How can such a dependence of the dynamics of P on the external chemoattractant signal
arise? We assume that the receptor input is transmitted to the P-signaling system via a two-
component activator/inhibitor module that shows similar dynamical behavior as previously
proposed LEGI-type models of directional sensing [12]. The system shall have the following
properties: (i) both activator and inhibitor are produced locally proportional to the external
chemical signal. (ii) The activator A is an immobile, membrane bound species, so that its
concentration a on the membrane reflects the external gradient across the cell. (iii) The inhibitor
B is a cytosolic, fast diffusing component. Assuming that diffusive spreading of the inhibitor

4 Note that there is also a trigger wave solution with p → p1(p → p3) for ξ → −∞(ξ → ∞). The propagation
velocities of these two solutions always have an identical absolute value and opposite sign. For a more thorough
treatment of bistable systems the reader is referred to standard textbooks, see e.g. [31] and references therein.
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Figure 1. General idea of a bistable model for directional sensing. We consider
a one-dimensional cell of length L . Three different stimulation scenarios
are schematically displayed. (a), (d) and (g) show the external stimulus s.
(b), (e) and (h) display the concentrations of activator (a, bold) and inhibitor
(b, dashed). In (c), (f) and (i) the main dynamical variable p can be seen. On
the left, stimulation with a stationary linear gradient is displayed. The middle
column exhibits the spatial distribution of a, b and p across the cell under a
stationary, spatially uniform stimulation as shown in (d). On the right-hand side,
the temporal evolution in response to a uniform, stepwise increase in the external
chemoattractant concentration is shown. Here, (g)–(i) display the time evolution
of the mean values of s, a, b and p averaged across the cell.

occurs instantaneously, its concentration b is proportional to the midpoint concentration of the
external gradient everywhere in the cell. This is illustrated in figure 1(b), where the activator
and inhibitor concentrations are shown across the one-dimensional projection of a cell exposed
to an external gradient stimulus as indicated schematically in figure 1(a). (iv) The sign of the
trigger wave velocity depends on the ratio of the activator and inhibitor concentrations a and b
and has to change across a cell that is exposed to an external gradient. In the example described
below, we have, c = 0 for a = b, c > 0 for a > b, and c < 0 for a < b. Perturbations in p then
induce a convergence to p = p3 in the front and to p = p1 in the back of the cell as shown in
figure 1(c). (v) Inhibitor levels are slightly higher than the averaged activator concentration in
stationary cases. Under this condition, the entire membrane will be eventually driven to p = p1

for uniform, stationary levels of chemoattractant, since c < 0. This situation is schematically
illustrated in figures 1(d)–(f). (vi) Production and degradation of the inhibitor are slower than the
corresponding timescales of the activator dynamics, i.e. upon uniform stimulation, the activator
reaches stationary levels earlier than the inhibitor, see figures 1(g) and (h). For intermediate
times, the activator may thus exceed the concentration of the inhibitor, so that a transient
response of p = p3 can be observed uniformly across the cell as displayed in figure 1(i). For
longer times, perturbations will decay to p = p1 as required for stationary cases.
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6

3. Kinetic example and numerical simulations

Let us now turn to a simple example that fulfills the general requirements outlined in the
previous section. We will first describe the specific model composed of an activator/inhibitor
system (LEGI module) that couples to an autocatalytic membrane bound species P (bistable
module). We then present a numerical analysis of the one-dimensional model and an example
of a two-dimensional simulation.

3.1. Model

3.1.1. LEGI module. The external chemoattractant signal S acts on a two-component LEGI-
type activator/inhibitor system. According to condition (i), we require that both the activator
A and the inhibitor B are produced proportional to the external chemoattractant signal S.
Furthermore, A and B are part of other metabolic pathways, so that they are continuously formed
and degraded independently of the external signal S,

S
ka

+
−→ A, A′

k̃a
+

−→ A A
ka
−

−→ A′′, (3)

S
kb

+
−→ B, B′

k̃b
+

−→ B, B
kb
−

−→ B′′. (4)

The S-independent production and degradation reactions ensure that both species exhibit a
residual background concentration in the absence of S. As required by conditions (ii) and (iii),
the activator A is an immobile, membrane bound component, while the inhibitor B spreads in
the cytosol by diffusion. If cytosolic diffusion of B occurs quickly, we can approximate the
production of B to depend on the averaged concentration of S, s̄ =

∫
s dx , at each location in

the cell. We thus obtain the following kinetics for A and B:
da

dt
= ka

+s + k̃a
+ − ka

−
a,

db

dt
= kb

+s̄ + k̃b
+ − kb

−
b. (5)

Here, we have assumed that the concentrations of species A′ and B′ for the endogenous
production of A and B are constant (large reservoirs). The numerical values of the rate constants
of activator and inhibitor kinetics do not matter as long as conditions (v) and (vi) are fulfilled.
The values that were chosen for our numerical simulations can be found in the caption of
figure 3.

We assume that the action of the activator/inhibitor system on downstream events in the
signaling pathway is determined by the ratio of activator and inhibitor concentrations [12]. Such
a dependence can occur via a third species Q that is formed and decomposed depending on the
presence of the activator and inhibitor,

Q′ + B
k4

−→ Q + B, Q + A
k−4

−→ Q′′ + A. (6)

Again, we assume a constant substrate concentration Q′ (large reservoir), so that the kinetics of
Q is

dq

dt
= k4b − k−4a q. (7)

If the dynamics of Q is fast compared to the timescales of the LEGI system, the concentration
of Q will be determined at all times by the ratio of activator and inhibitor concentrations,

q =
k4

k−4

b

a
. (8)
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For simplicity, we take k4 = k−4, so that q = b/a. The concentration of Q is the readout quantity
of the LEGI module.

3.1.2. Bistable module. Following the general outline in section 2, the LEGI module transmits
the receptor input signal S to the bistable signaling system of a membrane bound species P.
In general, temporal changes in the concentration of P, dp

dt = f (p), will be determined by
production and degradation terms,

f (p) = v+(p) − v−(p). (9)

For our specific example, we assume an autocatalytic production of P that takes place in an
enzymatic reaction following Michaelis–Menten-type kinetics. Degradation of P is taken to be
linear, so that

2 P + E
k1


k−1

X
k2

−→ 3 P + E, P
k3

−→ P′′. (10)

We take cooperative binding effects into account by introducing a Hill coefficient α (in the
present example, we set α = 2). Under the assumption of a quasi-steady-state, the concentration
of the enzyme–substrate complex X is constant. With the total enzyme concentration e0

conserved, the well-known Michaelis–Menten rate law can be derived for the production of P.
We thus find the following expression for the interaction function f :

dp

dt
=

v p2

p2 + K
− k3 p ≡ f (p). (11)

Here, v = k2e0 denotes the maximal reaction velocity and K = (k−1 + k2)/k1 the Michaelis
constant. The shape of the interaction function f can be seen in figure 2. It has two stable
fixed points p1 and p3, and an unstable fixed point p2, for which p1 < p2 < p3. The fixed points
are determined by

k3 p

(
p2

−
v

k3
p + K

)
= 0. (12)

How is the dynamics of the species P linked to the LEGI module and thus to the external signal
S? As a key property, our model has to fulfill condition (iv). The latter requires that the trigger
wave velocity, i.e. the integral (2), changes sign across a cell that is exposed to an external
gradient in S. This can be achieved if we assume that the unstable fixed point p2 depends on
the concentration of Q, i.e. on the ratio of activator and inhibitor concentrations, while the two
stable fixed points are independent of Q. To obtain such a dependence, we require K + 1 = v/k3,
so that equation (12) reduces to

k3 p(p − p2)(p − 1) = 0. (13)

In this case, the two stable fixed points become p1 = 0 and p3 = 1, and the unstable fixed point
is p2 = K . The dependence of p2 on the ratio of the activator and inhibitor concentrations is now
implemented by choosing K = K̃ q. Since K = (k−1 + k2)/k1, the q-dependence of K implies a
q-dependence of at least one of the rate constants, e.g. k−1 = k̃−1q, with k̃−1 � k2. Note that
from the condition K + 1 = v/k3, it also follows that v/k3 = k2e0/k3 has to depend on q.
We achieve this by assuming that the total enzyme concentration is e0 = ẽ0(K̃ q + 1) with
k2ẽ0/k3 = 1.

The value of K̃ has to be chosen such that the trigger wave velocity changes sign across
a cell that is exposed to a chemoattractant gradient. Under a gradient stimulus, the activator
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Figure 2. The interaction function f (p) for a > b (black), a = b (dark gray),
and a < b (light gray), corresponding to positive, zero and negative trigger wave
velocities, respectively. The arrows denote the flow in one-dimensional phase
space defined by the sign of the temporal derivative ṗ = f (p). The roots of f
are fixed points, where p1,3 are stable (bold circles) and p2 is unstable (open
circle).

and inhibitor concentrations change from a > b to a < b across the cell, see figure 1(b). We
therefore require that the integral (2),

A =

∫ 1

0

[
vp2

K + p2
− k3 p

]
dp

= v − v
√

K arctan
1

√
K

−
k3

2
(14)

and thus the trigger wave velocity, is zero for a = b. This ensures an opposite sign of the trigger
wave velocity in the parts of the cell where a > b and a < b, respectively. In figure 2, f (p) is
shown for a > b (black) b = a (dark gray) and a < b (light gray) to illustrate this. Under the
condition that A = 0 for a = b, equation (14) leads to the relation

√
K arctan 1

√
K

= 1 −
1

2(K +1)
,

which can be solved numerically to yield K̃ = 0.4357.
In the preceding discussion, several restrictions were imposed on the choice of the model

parameters to ensure that p3 is independent of q and to enforce a zero trigger wave velocity for
q = 1. In appendix B, we have analyzed the robustness of our model under conditions where
these restrictions, in particular the condition K + 1 = v/k3, are relaxed.

3.2. Numerical simulations

3.2.1. Equations and parameters. We have performed numerical simulations of equation (1)
for the dynamics of p, where f is given by equation (11). The activator and inhibitor dynamics
are based on equations (5). The parameter values can be found in the caption of figure 3.
Simulations are performed on a one-dimensional domain of length L = 10 that is discretized
with a grid length of 1x = 0.02. To mimic a two-dimensional cut through a circular cell,
periodic boundary conditions are imposed. A linear gradient stimulus that spans from s̄ − smax

to s̄ + smax then maps onto the cell perimeter in the form of a sine function, s = s̄ + smax sin(2π

L x).
The time step is 1t = 0.001 and for the diffusion constant of P we choose DP = 0.1, a typical
value for membrane diffusion. The system of equations is integrated numerically using a
forward Euler scheme and a nearest-neighbor representation of the Laplacian operator.
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Figure 3. Numerical simulations of equations (1) and (5) with f as given in
equation (11). (a) Gradient stimulus of 1%. (b) Directional response of p for a
stationary gradient stimulus as shown in the panel above. (c) Uniform stimulus
with a value of s = 0.1. (d) Quiescent membrane under stationary uniform
stimulation with s = 0.1. (e) Time evolution of a uniform stimulus. At time = 10,
s is uniformly switched from 0 to 0.1. (f) Response in p, averaged across the cell
perimeter, to a uniform increase in s as shown in the panel above. The parameters
are k1 = 200, k̃−1 = 87, k2 = 0.14, k3 = 1000, ẽ0 = k3/k2, ka

+ = ka
−

= 50, k̃a
+ =

0.01, kb
+ = kb

−
= 3, k̃b

+ = 0.01 and DP = 0.1. Random perturbations are applied
with an average waiting time of 1noiset = 0.05.

We assume that the cellular system is noisy, so that, on a microscopic level, the quantity p
undergoes random fluctuations. From time to time, fluctuations add up and become sufficiently
large to induce a local transition between the two stable fixed points of the system. In our
simulations, noise is taken indirectly into account by initiating random localized transitions
between the two fixed points. The positions of perturbations are randomly chosen from
a uniform distribution across the cell. The perturbations are 1x̃ = 0.08 in size and their
amplitudes are uniformly distributed between 0 and 1. Also the waiting times between such
perturbations is random and drawn from a uniform distribution that extends from zero to some
maximal waiting time. Depending on the sign of the trigger wave velocity, perturbations may
grow or decay.

3.2.2. Response to shallow gradients. Numerical simulations were performed to mimic
stimulation with directional and uniform cues. In figure 3(b), a p-profile is shown that results
from exposure to a linear gradient in s across the cell. The gradient stimulus is shown in
figure 3(a) and corresponds to a sine profile along the perimeter of a circular cell. Figure 3(d)
displays the concentration of P under exposure to a uniform level of s that can be seen in
figure 3(c). For the same simulation, the temporal evolution of the averaged p-level along the
membrane is displayed in figure 3(f). Here, s undergoes a uniform, stepwise increase from s = 0
to s = 0.1 at t = 10, figure 3(e). The presence of random perturbations is reflected by the spiky
shape of the p-profiles in figures 3(b) and (d) and the slight fluctuations in the averaged p-level
displayed in figure 3(f).
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(a) (b)

Figure 4. (a) Threshold behavior in the activator/inhibitor system. The
response to gradients of different slopes and identical midpoint are displayed
for the activator (bold) and the inhibitor (dashed). (i) Spatially uniform,
(ii) subthreshold, (iii) threshold and (iv) superthreshold gradient stimuli.
(b) Dependence of the trigger wave velocity on the ratio of activator and inhibitor
concentrations, q = b/a. For values of q = 0.5 . . . 2, a linear relation between
q and the trigger velocity is observed.

One of the outstanding characteristics of directional sensing in eukaryotic cells is an
extraordinary sensitivity to shallow gradients. Experiments have shown that concentration
differences as low as 1% between the front and the back of a cell can be identified [6]–[8].
The bistable mechanism we propose here can account for a reliable performance of directional
sensing over a large range of gradient steepnesses. An example for sensing of shallow gradients
is shown in figures 3(a) and (b). A gradient in S that is ranging from s = 9.9 to 10.1 across the
cell is sufficient to induce a clear symmetry breaking: in the front half of the cell, p converges
to the stable fixed point of p3 = 1, in the back it takes the value of the second stable fixed point
p1 = 0. Although the limit for detection of shallow gradients will be ultimately determined by
the noise level of the system, the constant values of the fixed points p1,3 ensure that our model
shows an almost identical response over a wide range of gradient stimuli. Only two features of
the response dynamics depend on the gradient steepness and are described in the following.

3.2.3. Threshold for directional responses. The fraction of the membrane with p = 0 is
slightly larger than the p = 1 part. This asymmetry increases for decreasing gradients. It
is caused by the inhibitor level that always exceeds the averaged activator concentration as
required by condition (v) in section 2. This is schematically shown in figure 4(a). With
decreasing gradient, the membrane fraction for which a > b becomes smaller until it disappears
for

ka
+(s̄ + smax) + k̃a

+

ka
−

6
kb

+s̄ + k̃b
+

kb
−

. (15)

Here, s̄ denotes the average concentration of S over the cell and smax the maximal deviation from
the average, i.e. the gradient stimulus spans from s̄ − smax to s̄ + smax across the cell.

3.2.4. Timescale of directional responses. The time it takes to establish a directional response
increases with decreasing gradient. The reason for this is a dependence of the trigger wave
velocity on the ratio of activator and inhibitor concentrations, q = b/a. This dependence is
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(a) (b)

Figure 5. Dependence of the response time on the gradient. (a) Temporal
evolution of the deviation δ of the actual system state from the complete
directional response for different gradients, see main text for a definition of δ.
(b) Characteristic response time τ∗ obtained from exponential fits to the curves
in panel (a). Asterisks denote quantities that carry a dimension, see appendix A.

displayed in figure 4(b). The shallower the gradient, the smaller the difference between a and b,
so that the trigger wave velocity is confined to small values around zero. This results in a slower
growth of perturbations and thus in longer transient times to establish a directional response. For
values of q = 0.5, . . . , 2, a linear relation between q and the trigger wave velocity is found.
In this regime, which spans up to gradients of about 50%, the model can be operated safely.
Situations outside this range are not considered here5.

We have characterized the dependence of the response time on the gradient steepness.
To this end, we define the deviation of the actual system state from a complete directional
response as

δ(t) =
1

N

N∑
i=1

√
(pi(t) − p̃i)

2
, (16)

where N is the number of grid points along the cell membrane and p̃i = 0 or 1 for a < b
or a > b, respectively6. Following exposure to a gradient, δ will decay as p approaches the
response state p̃. In figure 5(a), the decay of δ is shown for a selection of different gradients.
We determine the response time by fitting with an exponential of the form C e−t/τ + D with the
fit parameters C, D and τ . The latter is taken as the characteristic timescale of the response. In
figure 5(b), the timescale τ is shown for gradients ranging from 1 to 10%. At shallow gradients,
increased response times are observed. For gradients above 4%, τ stabilizes at values below 3
and is only weakly dependent on the gradient steepness.

5 For smaller q, a strong nonlinear increase of the velocity is observed. Towards larger q, a qualitative change in
the dynamics of the model takes place, when the two fixed points p2 and p3 coincide. In our case, this occurs for
q = 2.297. For q > 2.297, the q-independent fixed point at p = 1 becomes unstable while the q-dependent fixed
point turns stable and takes values larger than one.
6 The idealized response state is time independent. It is determined by the stationary profiles of a and b under the
respective gradient stimulus.
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Figure 6. Dependence of the response time on the frequency of random
perturbations. (a) Temporal evolution of the deviation δ of the actual system
state from the complete directional response for different average waiting
times 1noiset∗ between perturbations, see main text for a definition of δ.
(b) Characteristic response time τ∗ obtained from exponential fits to the curves
in panel (a). Asterisks denote quantities that carry a dimension, see appendix A.

3.2.5. Influence of noise. The presence of noise is an essential prerequisite for our bistable
model of directional sensing. Without noise, the p-signaling system cannot initiate transitions
between the two stable fixed points p1 and p3 in response to changes in the external signal S.
As explained above, noise is indirectly taken into account by imposing localized perturbations
that are randomly distributed in space and time (see the paragraph on equations and parameters
at the beginning of this section). How does the response dynamics of the model depend on these
random perturbations?

The essential parameter that influences the response dynamics is the waiting time between
the application of individual perturbations. The waiting times are random and drawn from a
uniform distribution between zero and some maximal waiting time. Two limiting cases can
be distinguished. For infinitely long waiting times, no response to external stimuli will occur
since no transitions from the quiescent state p = 0 to the fixed point at p = 1 are initiated. In
the limit of waiting times that are much shorter than the characteristic timescale of the trigger
wave velocity, the system is dominated by perturbations, so that no coherent response profile
can form. We have performed a series of numerical simulations, in which we systematically
investigated the influence of the average waiting time 1noiset between perturbations on the
response dynamics of the model. Again, we recorded the temporal behavior of the deviation
δ of p from the target response state p̃; for a definition of δ see equation (16).

In figure 6(a), the time evolution of δ is shown for a number of different average waiting
times 1noiset . For small 1noiset , the high frequency of perturbations prevent a relaxation to the
complete response state and δ takes a finite value different from zero. As 1noiset increases,
δ is converging to values close to zero indicating a clear directional response of the system.
However, for large 1noiset , perturbations become rare and strongly increased decay times of δ are
observed. To quantify the characteristic decay times, an exponential decay function C e−t/τ + D
is fitted to the δ(t)-profiles. The resulting values of the characteristic response timescale τ are
displayed in figure 6(b). It shows a steep increase for short average waiting times and levels off
to a linear increase for growing 1noiset .
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Figure 7. Example of a two-dimensional simulation of equations (1) and (5)
with f as given in equation (11) on a circular domain. (a) The activator and
inhibitor concentrations a and b are shown on the membrane and in the cytosol,
respectively, for a 10% gradient across the cell. (b) Directional response of p
on the membrane, corresponding to the activator/inhibitor distributions shown
in (a). The parameters are k1 = 200, k̃−1 = 87, k2 = 0.14, k3 = 80, ẽ0 = k3/k2,
ka

+ = ka
−

= 50, k̃a
+ = 0.01, kb

+ = kb
−

= 3, k̃b
+ = 0.01, DP = 1 (membrane diffusion

of P), DB = 100 (cytosolic diffusion of B) and 1noiset = 0.025.

3.2.6. Two-dimensional example. We have performed two-dimensional simulations of our
model. Contrary to the previous computations, where the cytosolic concentration of the inhibitor
B was taken proportional to the average stimulus across the cell s̄, we now take cytosolic
diffusion of B explicitly into account,

db

dt
= kb

+s + k̃b
+ − kb

−
b + DB∇

2b, (17)

with DB the corresponding cytosolic diffusion constant. Simulations were performed in polar
coordinates on a circular domain of radius r = 4. Angle and radius were discretized with 1r =

0.2 and 1θ = 2π/80, respectively, the time step was 1t = 10−6 until t = 4 and 1t = 10−4 for
larger times.

In figure 7, an example of a simulation is displayed that corresponds to a two-dimensional
cut through a circular cell. The cell is exposed to an extracellular gradient in S that points in
the upward direction and changes by 10% across the cell. On the left-hand side, figure 7(a),
the activator and inhibitor concentrations are shown on the membrane and in the cytosol,
respectively. Note that due to the finite diffusion constant of B, a slight gradient in the cytosolic
inhibitor concentration can be observed. In figure 7(b), the distribution of P along the membrane
is displayed. It can be seen that two domains of p = 1 and p = 0 are formed that are connected
by narrow interfaces in the regions where the activator and inhibitor concentrations are equal,
a = b. These interfaces correspond to stationary trigger waves.

4. Discussion

We have proposed a mechanism for directional sensing based on bistable dynamics of a
membrane bound autocatalytic component P. Our model is constructed of two modules: the
external signal S acts on a two-variable, LEGI-type activator/inhibitor system, which controls
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the autocatalytic kinetics of a bistable species P. In section 3, we presented a kinetic example
that fulfills the requirements for bistable directional sensing that were explained in section 2.

Let us summarize the predictions of our model. They do not depend on the specific choice
of the kinetic equations (5) and (11) as long as the conditions explained in section 2 are fulfilled.

(1) The response in p to a spatially uniform increase in s is uniform in space and transient in
time.

(2) The response to a gradient in s is asymmetric and bimodal in space, i.e. p = p3 in the front
(towards higher s) and p = p1 at the back of the cell (toward lower s). It is stationary in
time and can be reserved by reversing the direction of the external gradient stimulus.

(3) The amplitude of responses in p to uniform and directional stimuli depends neither on the
mean concentration of S nor on the steepness of gradients in S as long as condition (15) is
not fulfilled. The reason for this is that the two stable fixed points p1 and p3 are independent
of the external stimulus S.

(4) There is a threshold to trigger a response in p, i.e. uniform stimuli have to exceed a certain
minimal increase in s and directional stimuli have to exceed a minimum gradient steepness,
see condition (15). This is due to an inhibitor concentration that exceeds the averaged
activator levels as illustrated in figure 4(a) for the gradient case.

(5) For a directional response, the membrane fraction with p = p3 decreases in size for
decreasing steepness of the extracellular gradient. This can be seen from figure 4(a) as
well.

(6) The time it takes for an asymmetric distribution of p to establish depends on the gradient
steepness, see figure 5. It increases for shallower gradients since the trigger wave velocity
depends on the ratio of activator and inhibitor concentrations, see figure 4(b).

The properties (1) and (2) have been experimentally established and form the basis of previous
LEGI-type directional sensing models [26]. To assess the validity of our present model,
experiments are required that focus on the predictions (3)–(6). In particular, systematic mapping
of the intracellular response as a function of the external gradient signal is needed. The one-
dimensional simulations can then be compared to two-dimensional confocal cuts through the
cell body.

Systematic experiments rely on techniques to produce well-controlled gradient signals with
high spatiotemporal resolution. In the recent literature, several experimental efforts are reported
to perform quantitative experiments on chemotaxis and on the intracellular rearrangement
of proteins related to directional sensing [32, 33]. In particular, advances in microfluidic
technology have opened up new perspectives to construct devices for quantitative migration
experiments [8, 34, 35] and for well-controlled single cell stimulation, see [36] and references
therein. In a recent publication, we have presented a technique for controlled directional
stimulation of chemotactic cells based on the photochemical release of signaling substances
in a microfluidic chamber [37]. We suggest that this approach may provide the basis to
experimentally test the modeling predictions made here.

In earlier modeling work, it has been speculated that autocatalytic steps are involved in
membrane phospholipid kinetics [17]. In the more recent literature, the role of phospholipid
signaling is controversially discussed in the light of current experimental findings [38, 39].
It has been suggested that PI3K is not essential for directional movement under strong
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stimuli but plays an important role for directional sensing in shallow gradients [40]. However,
no ultimate consensus has been reached about the role of phosphoinositide signaling in
the chemotactic pathway. In the present work, we therefore do not propose any explicitly
biochemical assignment to the model components A, B and P. The specific reaction scheme that
leads to equation (11) is a simplistic example, intended to illustrate the dynamics of a bistable
directional sensing mechanism. It is not supported by direct biochemical evidence. Other kinetic
schemes can be found that fulfill the assumptions of section 2 equally well.

We have proposed a generic mechanism of directional sensing that is based on bistable
dynamics. In particular, our model combines a LEGI-type activator/inhibitor module with
an additional bistable reaction. The activator/inhibitor part of the model does not involve
any autocatalytic terms or other nonlinear interactions. Thus it will not generate any self-
organized structures on its own. Only in combination with the additional bistable component
are the characteristic properties of a pattern forming system introduced. This allows us to
combine the advantages of a LEGI model—adaptation after uniform stimuli, independence of
the midpoint concentration—with the switching dynamics of a bistable system. To show the
desired dynamical behavior, only a number of general conditions have to be fulfilled (listed in
section 2). As a result, we obtain a model that shows a clear and almost identical symmetry
breaking over a large range of gradient input signals. This is in contrast to earlier models,
where a dependence of the directional response on the gradient steepness [27] or the midpoint
concentration is observed [15, 16]. In such models, nonlinear behavior is typically introduced
directly at the level of the activator/inhibitor system. In comparison, our combined model allows
for more flexibility in creating the desired response dynamics.

Similar to previous models of directional sensing, our model is restricted to the initial
stages of gradient sensing. Note that this is only a limited part of the entire chemotactic
process, which involves complex cytoskeletal mechanics and shape deformations leading to
the formation of pseudopods and actual cell movement. An integral model that includes a
description of cell polarization and motility remains the ultimate future goal of modeling efforts
in this field.
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Appendix A. Dimensionless variables

Throughout this work, physical quantities have been non-dimensionalized by the reference
quantities listed in table A.1. For example, the concentration of species X is given as the non-
dimensional value

x =
x∗

c∗
, (A.1)

where x∗ is the concentration in mol l −1. Similarly, length and time parameters are normalized
by l∗ and t∗. Here, we have marked quantities that carry a dimension with an asterisk. The
non-dimensionalized model parameters can be found in table A.2.
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Table A.1. Reference quantities used to non-dimensionalize physical quantities.

Notation Units Quantity

c∗ 1 mol l −1 Concentration
t∗ 1 s Time
l∗ 1 µm Length

Table A.2. Non-dimensionalized model parameters.

Parameter

k1 = k1 ∗ (c∗)2t∗
k−1 = k−1 ∗ t∗
k̃−1 = k̃∗

−1c∗t∗

k2 = k2 ∗ t∗
k3 = k3 ∗ t∗
k4 = k4 ∗ t∗
k−4 = k−4 ∗ c ∗ t∗
ka

+ = ka∗
+ t∗

k̃a
+ = k̃a∗

+ t∗/c∗

ka
−

= ka∗
−

t∗
kb

+ = kb∗
+ t∗

k̃b
+ = k̃b∗

+ t∗/c∗

kb
−

= kb⊃
− t∗

K = K ∗ /(c∗)2

K̃ = K̃ ∗/c∗

v = v ∗ t ∗ /c∗
e0 = e0 ∗ /c∗
ẽ0 = ẽ∗

0c∗

DP,B = DP,B ∗ t ∗ /(l∗)2

Appendix B. Robustness

In the main text, several restrictions are imposed on the choice of the model parameters. Here,
we will investigate the robustness of our model by relaxing the most severe of these restrictions.

B.1. Relaxing the condition K + 1 =
v

k3

In the main text, we required K + 1 = v/k3. This condition ensured that the fixed point p3

became p3 = 1, independent of the external gradient. We will now drop this restriction. The
Michaelis constant K still depends on the external gradient, K = (k̃−1q + k2)/k1, but no relation
with the maximal reaction velocity v is assumed. The parameter v may take a constant value,
independently of K . Solving equation (12) gives the general expressions for the two fixed points

p2 =
e1

2

(
1 −

√
1 −

4K

e2
1

)
, (B.1)
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p3 =
e1

2

(
1 +

√
1 −

4K

e2
1

)
, (B.2)

where we have introduced the notation e1 = v/k3. As K depends on the external gradient, p3

will now also change as a function of the gradient signal.
Optimally, parameters are chosen such that the trigger wave velocity is zero in the middle

of the cell. This leads to a clearly defined, equally sized front and back part of the cell
under gradient stimuli. The sign of the trigger wave velocity is determined by the integral in
equation (2), A =

∫ p3

p1
f (p) dp. With f (p) as given in equation (11), we find

A = −k3
p2

3

2
+ vp3 − v

√
K arctan

(
p3

√
K

)
(B.3)

as the general form of equation (14) in the case of p3 6= 1. We now substitute the solution
(B.2) for p3 into equation (B.3) and introduce the notation γ = K/e2

1, where K ≈ K̃ q with
K̃ = (k̃−1 + k2)/k1, k̃−1 � k2. From equation (B.3) we then obtain

1

4
(1 +

√
1 − 4γ ) +

γ

2
−

√
γ arctan

[
1

2
√

γ
(1 +

√
1 − 4γ )

]
= 0 (B.4)

as the condition for zero wave velocity. This equation can be solved numerically to yield
γ ≈ 0.21. In the middle of the cell, we have q = 1 and K = K̃ . Equation (B.4) thus restricts
the choice of K̃ and e1, so that K̃/e2

1 ≈ 0.21 is fulfilled.

B.2. Dependence of p3 on the external gradient

Relaxing the condition K + 1 = v/k3 introduces a dependence of p3 on the external gradient
signal s = s̄[1 + α sin( 2π

L x)], where x denotes the spacial coordinate running along the cell
perimeter. How strong is this dependence? From equation (B.2) we can see that the variation of
p3 with the external gradient is proportional to7

√
K ∝

√
K̃

b

a
∝

√
1

1 + α sin( 2π

L x)
. (B.5)

For small gradient steepness α the maximal variation is proportional to
√

1/(1 + α) ≈ 1 − α/2.
It becomes stronger for steeper gradients but does not depend on the midpoint concentration s̄.

B.3. Fluctuations in the choice of parameters: robustness

After relaxing the condition K + 1 =
v

k3
, equation (B.4) led to a constraint in the choice of the

ratio K̃/e2
1. This constraint arose from the requirement that the trigger wave velocity should be

zero in the middle of the cell. However, for a directional response to occur we do not need to
fulfill this condition precisely. As long as the trigger wave velocity becomes zero somewhere
inside the cell, we will observe a biphasic membrane response with one part of the membrane
showing p = p1 and the other part showing p = p3, although now the two parts will not be of

7 We maintain the assumptions that k̃−1 � k2 and ki
+ � k̃i

+ for i = a, b.
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equal size any more. Thus, we may allow for fluctuations in the parameters K̃ and e1 as long as
equation (B.4) is satisfied at some position x∗ along the cell membrane, with 0 < x∗ < L and
L the length of the cell perimeter.

Let us first assume that e1 is fixed and K̃ may fluctuate, so that K̃ 6= γ e2
1, i.e. the trigger

wave velocity will not be zero in the middle of the cell. Away from the cell center, we have
q 6= 1. Here, a zero trigger wave velocity may result if K̃ q = γ e2

1. Note however that the
ratio of activator and inhibitor concentrations q = b/a is determined by the external gradient
s = s̄[1 + α sin( 2π

L x)]. The tolerable range of fluctuations in K̃ will thus depend on the steepness
α of the external gradient. In particular, we obtain8.

(1 − α)γ e2
1 <

k̃−1 + k2(1 − α)

k1
(B.6)

and

(1 + α)γ e2
1 >

k̃−1 + k2(1 + α)

k1
. (B.7)

From this estimate we conclude that we will observe a biphasic response as long as fluctuations
in K̃ remain on the order of the gradient steepness. Similar relations are found for fluctuations
in e1, i.e. v and/or k3, while keeping K̃ constant.
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Chapter 3

Directional sensing of D. discoideum

In the previous chapter, we gave an overview of different models of directional sensing. We
now turn to experiments in order to validate or infirm the suggested theoretical mechanisms.
We used a combination of microfluidics and caged-component photolysis to apply well-defined
gradients of chemoattractant to chemotactic D. discoideum cells. One commonly used marker
of directional sensing is the Pleckstrin-Homology domain of CRAC, the Cytosolic Regulator
of Adenylyl Cyclase (PHCRAC). In our work, we used mutants expressing PHCRAC − GFP,
enabling us to directly observe the intracellular dynamics of PHCRAC. When the cell senses a
gradient of cAMP, PHCRAC−GFP is recruited to the front of the cell, where the concentration
of external chemoattractant is maximal. Two successive phases of PHCRAC − GFP translo-
cation have been reported [132] (see section 3.1). In our experiments, we quantified the first
phase of PHCRAC − GFP translocation in different gradients of cAMP, keeping the relative
gradient fixed but varying the absolute value of the gradient. We compared the translocation
of PHCRAC − GFP for cells in gradients with the one for cells stimulated with a uniform
concentration of cAMP. It was found that both experiments gave similar results if the total
number of occupied receptors were similar, indicating that the first phase of PHCRAC −GFP
translocation in a gradient is a local effect, not the result of the comparison of the number of
occupied receptors between the two ends of the cells.

3.1 Overview of the chemotaxis pathway

As already mentioned in the first chapter of this thesis, D. discoideum becomes chemotactic
to cAMP after about 5 hours of starvation. Over the past years, a large amount of research
has been done to understand the chemotaxis mechanism in D. discoideum. However, the
details of the chemotactic pathway are still not well known, as we miss both a knowledge
of part of the players molecular of chemotaxis, and on how these players interact with one
another. In this section, we will give a very short overview of the chemotactic pathway
relevant to our experiments. For a more complete view, the reader is referred to chapter 1 and
references therein. The part of the cell which is closer to the chemoattractant source will be
called the front of the cell, while the part of the cell in the region where the chemoattractant
concentration is the lowest will be called the back of the cell. When the cell is crawling
by extending pseudopods, we call the part of the membrane from which the pseudopod is
projected the leading edge. An illustration of the chemotactic pathway taken from a recent
review by Bagorda and Parent [6] is shown on figure 3.1.
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Chapter 3. Directional sensing of D. discoideum

3.1.1 The cAMP receptors

Cells that are chemotactic are able to sense a gradient of chemoattractant concentration. In
D. discoideum, four different receptors that bind the chemoattractant cAMP were identified,
labeled cAR1 to cAR4 [81]. These receptors are expressed sequentially throughout the devel-
opment of D. discoideum and for our matter, the most relevant receptor is cAR1. After 6 hours
of starvation, about 70 000 of these receptors are uniformly expressed over the cell membrane,
in the presence or absence of a chemoattractant [82]. There is no spatial rearrangement of
cAR1 on the membrane during chemotaxis[131].

cAR1 is linked to a guanine nucleotide-binding protein (G-protein). The G-protein is
trimeric, and its subunits are called α, β and γ. When activated, the α subunit loses a
GDP, which is replaced by a GTP. Moreover, the α subunit dissociates from βγ, that form
a dimeric subunit. Thirteen α subunits have been identified, numbered from α1 to α13. In
D. discoideum, cAR1 is linked to the Gα2βγ protein [113]. Like the cAR1 receptors, the G
proteins are always uniformly distributed on the cell membrane [82]. They remain dissociated
as long as receptors are occupied [51].

3.1.2 Downstream pathway in a very small nutshell (see figure 3.2)

After the dissociation of Gα from Gβγ, the βγ subunit acts as the main transducer of chemo-
tactic signals [6], and is probably a subunit that is necessary and sufficient for the transmission
of the cAMP signal [111]. The Gβγ activates Ras at the front of the cell, which in turn ac-
tivates the phosphoinositide 3-kinase (PI3K). This enzyme converts the membrane-bound
phospholipid phosphatidylinositol (4,5)-biphosphate (PIP2) into phosphatidylinositol (3,4,5)-
triphosphate (PIP3). At the same time, phosphatase and tensin homolog (PTEN) localizes
at the back and side of the cell, most likely under the regulation of a phospholipase called
PLC [64]. PTEN degrades PIP3 into PIP2, so that a gradient of PIP3 is formed along the cell
membrane, with PIP3 at the front of the cell and not at the back. It is important to underline
that the initial symmetry-breaking of the cell (i.e. the inital localized activation of Ras) is
still not understood.

As stated, an intracellular1 gradient of PIP3 is formed. Knowing the shape of this gradient
was one of the aims of the experimental work presented in this chapter. PIP3 has a binding
site for pleckstrin-homology (PH) domain proteins. In D. discoideum, these proteins include
CRAC (cytosolic regulator of adenylyl cyclase), PhdA (PH-domain-containing protein) and
Akt/PKB (protein kinase B). These proteins serve as proxies for the observation of PIP3 on the
membrane: when the cells are not stimulated, PH-domain proteins are uniformly distributed
in the cytosol, and they translocate to the membrane sites where PIP3 is formed after PI3K
activation (see figure 3.2 for a simple sketch of the pathway). In our experiments, we used a
GFP construct, PHCRAC − GFP, to monitor the localization and amount of PHCRAC in the
cell.

3.1.3 Cytoskeleton regulation

A rearrangement of the cytoskeleton, particularly actin polymerization at the front and acto-
myosin network formation at the back are necessary for cell motion. How does the pathway

1Note that “intracellular” does not mean “cytosolic”: PIP3 is bound to the cell membrane, and the gradient
of PIP3 is therefore intracellular, along the cell membrane.
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3.1. Overview of the chemotaxis pathway

(a)

(b)

Figure 3.2: (a) cAMP binds to the cAR receptor, which is coupled to a Gαβγ protein. (b) After
binding of cAMP, Gβγ dissociates from Gα and activates Ras, which activates PI3K, which
phosphorylates the membrane-bound phospholipid PIP2 into PIP3. Thereafter, proteins that
have a PH-domain, like CRAC, can bind to PIP3.
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Chapter 3. Directional sensing of D. discoideum

mentioned above influence the direction of motion? The answer is not yet clear. What we
mention here was taken from a review by Bagorda and Parent [6].

At the front of the cell, Rac guanine-nucleotide-exchange factors (GEFs), that contain a
PH-domain, activate small G proteins called Rac (small G proteins are proteins homologous to
the Gα unit of the G trimeric protein). Rac effectors of the WASP (Wiskott-Aldrich syndrome
protein) and SCAR/WAVE (suppressor of cAMP receptor mutation) family activate in their
turn the Arp2/3 (actin related proteins 2 and 3) complex. Arp2/3 is a protein stimulating
actin polymerization by initiating new barbed ends at the end of an existing actin filament.
At the back of the cell, myosin II assembly is controlled by cGMP (cyclic GMP) and PAKa.
Experiments suggested that PAKa is itself activated by Akt [63].

3.1.4 Feedback loops

Of course, the reactions mentioned above are just part of the known biochemical players and
of the way they interact with each other. There is for example an indication that a G protein-
independent Ras/Pi3K/F-actin circuit regulates the basic cell motiility [96]. We do not know
if and how this circuit is interrupted during chemotaxis. It is however known that F-actin is
not necessary for PI3K signaling in a gradient, as cells that are treated with Latrunculin A (a
drug preventing actin polymerization, presumed to bind in a 1:1 way to actin monomers [134])
still show PH-domain localization at their front [80, 82] (see figure 3.3), even though PI3K
does not translocate to the front of the cell [95]. This would suggest the existence of a low
basal level of PI3K associated to the membrane before stimulation, which is activated by Ras
upon stimulation [95].

Figure 3.3: Visualization of CRAC in cells treated with Latrunculin A, an inhibitor of actin
polymerization. The asterisk indicates the position of the micropipette out of which cAMP
diffuses. The cells have been stimulated for 90 seconds. Scale bar: 12 µm. Picture taken
from [80].

3.1.5 More details on the PI3K/PTEN pathway and plan of attack

By using mutants lacking PI3K, Hoeller and Kay showed in [44] that chemotaxis could occur
without intracellular gradients of PIP3. However, the values of the gradients needed to elicit
chemotaxis in PI3K-null mutants were not mentioned in [44]. Van Haastert et al. then
showed in [121] that the PI3K pathway was crucial to chemotaxis in shallow gradients, and
the translocation of PHCRAC−GFP at shallow gradients was reported by Bosgraaf et al. [15].
However, the term “shallow gradient” is ill-defined: what is reported as a shallow gradient
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3.1. Overview of the chemotaxis pathway

in [15] is an absolute gradient of 500 pM/µm of cAMP. Still, not much is known about the
effect of the midpoint concentration of cAMP on directional sensing. Calling c0 the midpoint
concentration of cAMP and ∆c the difference of concentration between front and middle of
the cell, we define the relative gradient as ∆c/c0. It is unclear if the important quantity to
take into account is the relative gradient, or the absolute difference of concentration ∆c. It has
been argued by Janetopoulos et al. that the relative gradient was the most important factor
determining PHCRAC−GFP translocation [52]. This led to a model based on a local activation,
global inhibition mechanism (LEGI, see chapter 2) [52, 70]. On the other hand, Xu et al.
argued that at constant relative gradients, the translocation of PHCRAC−GFP showed different
behaviors depending on the midpoint concentration used [132]. A detailed and complex model
of the cell’s directional sensing pathway was developed by Meier-Schellersheim et al. [72], which
accounts for the observations made by Xu et al. This model differs significantly from the LEGI
model as one of its key components is a local inhibitor, whose biological identity yet has to
be found. The existence of such a local inhibitor was however strongly suggested by further
experiments of Xu et al., reported in [133]. One of the biological issues with the model of
Meier-Schellersheim et al. is that it assumes recruitment of PI3K to the membrane of the cell.
However, in the case of cells treated with Latrunculin, no such recruitment has been shown
to occur [95]. As Xu et al. used Latrunculin-treated cells, the model published in [72] is likely
not the final answer to the directional sensing mechanism, even if it correctly reproduces the
experimental results of [132].

Xu et al. reported a biphasic translocation of PHCRAC −GFP to the cell membrane [132,
72]. The second phase of translocation was always found to be directional. It is the translo-
cation reported by Bosgraaf et al. in [15]. The first phase of translocation was found to be
either uniform or directional, depending on the value of the midpoint concentration used (see
figure 3.4). At a high midpoint concentration (1 µM), the first translocation was uniform,
while it was asymmetric at midpoint concentrations smaller than 100 nM [72]. In these exper-
iments, the relative gradient p was kept fixed (p = 0.33) and the midpoint concentration c0

was varied. Calling R the cell radius (R = 5 µm [132]), and taking the origin of our coordinate
system in the center of the cell, the concentration profile is then written as: c(y) = c0(1 + p

Ry)
for −R ≤ y ≤ R.
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Figure 3.4: Translocation of PHCRAC − GFP to the cell membrane for different gradients
c(y) = c0(1 + p/Ry). The relative gradient was fixed to p = 0.33. Purple curve: front of the
cell. Blue curve: back of the cell. (a) c0 = 1 µM (b) c0 = 100 nM. (c) c0 = 10 nM. The back
of the cell only shows a translocation for c0 = 1 µM. Graphs taken from [72].
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Chapter 3. Directional sensing of D. discoideum

In [132], the authors used a micropipette to create their gradients. To observe the estab-
lishment of the gradient, they mixed the red fluorescent dye Alexa 594 with the cAMP. We
retrieved the fluorescence information from one of their published movies showing the evolu-
tion of the gradient with time (see figure 3.5). To establish the gradient, a micropipette was
first positioned 1 mm away from a cell and then quickly moved within 100 µm of the cell. The
evolution of the concentration profile with time at a distance d from the pipette center can
then be expressed with the help of the complementary error function [84]:

c(d, t) =
α

d
erfc

(
1
2
d− r0√
Dt

)
(3.1)

where r0 is the radius of the pipette, α depends on the concentration of chemical in the pipette,
and D the diffusion coefficient of the chemical considered. The characteristic time scale for
the establishment of the gradient is then given by τ = (d − r0)2/(2D). In the case of Xu
et al., we found from their movie that at the back of the cell, τ ∼ 1.6 s, while at the front
τ ∼ 1.0 s. This implies that the concentration profile reaches 50% of its steady state value
in roughly 11 seconds. Because the first translocation of PHCRAC − GFP occurs within the
first 10 seconds of stimulation, one may therefore ask what is the influence of this varying
concentration profile of cAMP on the response.

In our work, we will combine the use of microfluidics and chemical photolysis to establish
stable spatial gradients in a time of the order of 1 second [10, 5]. The main aim of our work
is to quantify the first PHCRAC − GFP translocation in stable gradients. Xu et al. reported
that the spatial extent of the first translocation of PHCRAC−GFP depended on the midpoint
concentration of cAMP, but used only 3 different midpoint concentrations. We aim at taking
more quantitative data and see how the influence of the midpoint concentration is reflected
in the PIP3 formation. Moreover, we do not know how the amount of PHCRAC − GFP i.e.
the amount of PIP3 locally produced depends on the gradient used: do gradients eliciting a
bigger translocation also lead to more local production of PIP3? Last, all experiments made
by Xu et al. and Janetopoulos et al. involve cells treated with Latrunculin. To evaluate the
importance of the actin cytoskeleton in the first phase of PHCRAC − GFP translocation, we
will not use Latrunculin-treated cells in our experiments.

3.2 Experiment

As just mentioned, the aim of the experiment is to quantify the early response of D. dis-
coideum to given gradients of cAMP. By early response, we here mean the first translocation
of PHCRAC−GFP to the membrane, which is one of the first tractable intracellular directional
events. We needed to apply a temporally stable gradient of cAMP to different cells. Moreover,
the establishment of the gradient was meant to be as fast as possible. For this purpose, the
use of caged compounds in microfluidics seemed to be an adapted technique: as shown in [10],
a stable gradient of cAMP can then be reached in roughly a second, and Bae et al. showed
that uncaging a component upstream of a cell was the fastest way to deliver it to the cell [5].
A total of 428 different cells were stimulated. Each cell was stimulated only one time.

71



3.2. Experiment

0 50 100 150 200
0

20

40

60

80

100

Time (s)

F
lu

o
re

sc
en

ce
 in

te
n

si
ty

 (
a.

u
.)

Figure 3.5: Evolution of the concentration of cAMP at the front of the cell (red) and at its
back (blue). The pipette is brought within 100 µm of the cell at time t = 30 s. The data
were fitted with a complementary error function (dashed lines). The characteristic time scales
were found to be τ ∼ 1.6 s, and τ ∼ 1.0 s at the back and front of the cell, respectively.
The concentration profile reaches 50% of its steady-state value in roughly 11 seconds. Data
extracted from supplementary video 6 in [132].

3.2.1 Caged cAMP

Principle

A caged compound is a species that remains biologically inert until it is activated by light.
The molecule that we aim to activate is bound to a chemical group, the cage, that hinders the
natural biological activity of the considered molecule. The bond between the molecule and
the cage is photolabile, that is it can be broken when light is flashed on it. Typically, the light
is in the UV range, with a wavelength around 350 nm [1, 41]. In our case, D. discoideum are
responsive to cAMP so we will use caged cAMP, with a 4,5-dimethoxy-2-nitrobenzyl (DMNB)
caging group (Invitrogen, Carlsbad, CA). cAMP as well as its caged version are shown on
figure 3.6.

We used a near-UV laser (λ = 405 nm) to uncage the cAMP. The absorption spectrum of
DMNB-caged cAMP is shown on figure 3.7. The absorption at 405 nm is approximately 10%
only of that at 350 nm, where the uncaging efficiency is maximal [78]. An estimation of the
amount of released material in our experiments is reported in the next section.

Combination with microfluidics

One way to create a gradient would be to put the cells on a Petri dish in a solution of caged
cAMP, and uncage cAMP next to them. However, the gradient produced in this way would
be varying with time: the profile of concentration builds up as the uncaging takes place, and
is then smeared out by diffusion. For this reason, we flowed caged cAMP in a microfluidic
channel, and uncaged on a spot. The uncaged cAMP was then advected with the flow, and
established a gradient in the direction perpendicular to the flow. The use of microfluidics also
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Chapter 3. Directional sensing of D. discoideum

Figure 3.6: cAMP (left) and DMNB caged cAMP (right).

Figure 3.7: Absorption spectrum of DMNB caged cAMP. Irradiation at wavelengths between
280 and 420 nm results in the liberation of free cAMP [78]. We used a near-UV laser at
λ = 405 nm to uncage the cAMP. At such wavelength, the uncaging efficiency is not maximal
and only a fraction of the caged cAMP was uncaged. Figure taken from [78].
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enabled us to stimulate each time previously unstimulated cells: by starting to uncage cAMP
next to cells located downstream of the channel and stimulating cells that were always more
upstream, were are sure that the cells had been stimulated only once. Moreover, microfluidics
prevented intercellular communication and ensured that cellular waste products were washed
away.

3.2.2 Microfluidics

Principle

The microfluidic channels were built using standard soft lithography techniques, see e.g. [129]
for a review and [76] for our precise protocol. The channels used were simple straight channels,
25 µm high, 500 µm wide and 3 cm long (see figure 3.8). After loading the cells in the channel,
a gentle flow of caged cAMP was applied (5 µL/hr, which corresponded to an average velocity
of 111 µm/s).

Figure 3.8: Microfluidic channels used for the directional sensing experiments. The cells are
loaded in the channel, and caged cAMP is then flown through one of the inlets. The x axis is
in the direction of the flow.

Flow profile in the channel

The flow profile can be calculated making several approximations. The Reynolds number,
measuring the relative importance of inertia and viscosity, is given by:

Re =
UL

ν
(3.2)

where U is the characteristic flow speed, L a characteristic length scale and ν is the kinematic
viscosity. In our case, U ∼ 100µm/s, L = 25µm is the height of the channel and ν =
10−6m2/s, so Re ∼ 10−4 � 1. The flow is laminar and dominated by viscosity. The equations
we have to solve to get the flow profile are therefore:

−∇p+ µ∆u = 0 (3.3)
∇ · u = 0 (3.4)

where p is the pressure, µ is the dynamic viscosity of water, and u is the flow velocity. The
aspect ratio of the microfluidic device is moreover much bigger than one, as the channel width
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Chapter 3. Directional sensing of D. discoideum

is 20 times bigger than its height. In this case, we can make the lubrication approximation,
leading to a parabolic flow profile in z:

u(z) =
3
2
ū

[
1− 4

(
2z
L

)2
]

(3.5)

where we have taken the origin of the z axis in the middle of the channel, called ū the mean
speed of the flow and L the height of the channel. In the y direction, the flow profile is
essentially plug-like.

3.2.3 Gradient of cAMP

In this part, we derive analytically the concentration profile of cAMP around the cell, and
estimate the amount of uncaged material.

Concentration profile of cAMP

Experiment We used a near-UV laser (λ = 405,nm) mounted on a confocal microscope
(Olympus Fluoview 1000) to perform the uncaging. In the focal plane, the uncaging region
was a spot of radius 1.6 µm. The uncaging was monitored using DMNB-caged fluorescein.
Fluorescein is, as its name suggests, a fluorescent molecule that has its peak absorption at
around 500 nm and its peak emission around 520 nm (see figure 3.12a). When it is caged
however, the fluorescence disappears. DMNB-caged fluorescein was flown at 111 µm/s in an
empty microfluidic channel, and the uncaging laser was turned on for 30 seconds. The uncaged
fluorescein was both advected with the flow and diffused in the direction perpendicular to
the flow. The stationary fluorescein profile thus obtained is shown on figure 3.9. In the
region where the cell would typically be, the concentration profile was approximately linear
(figure 3.9b). However, fluorescein has a diffusion coefficient Dfluo = 364µm2/s [4], different
from the diffusion coefficient of cAMP DcAMP = 444µm2/s [26]. The concentration profile of
uncaged cAMP is therefore different from the profile of uncaged fluorescein. We now show
how to recover analytically both of these profiles.

Analytic solution We described the evolution of the concentration c(x, y, t) of uncaged
material by the following convection-diffusion equation:

∂c

∂t
+ u(z)

∂c

∂x
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
+ aδ(x)δ(y) (3.6)

where u(z) is the flow speed (see section 3.2.2), a is the uncaging rate, and D is the diffusion
coefficient of the chemical considered (fluorescein or cAMP). The uncaging is idealized as a
point source positioned at the origin. This equation would be complex to solve, but can be
simplified thanks to an elegant argument due to Taylor [115]. Taylor considered a flow in
a cylindrical channel of radius R, and asked how an infinitesimally thin stripe of chemical
would evolve in this pipe (figure 3.10). Diffusion was neglected in the direction of the flow,
and considered only in the radial direction. As shown on figure 3.10, the stripe will tend to
be stretched, following the parabolic flow profile u(r) = u0(1 − r2/R2). At the same time
however, the chemical will diffuse across the channel and its concentration profile will be
smoothed. The characteristic time needed to obtain a homogeneous profile of concentration
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3.2. Experiment

(a) (b)

Figure 3.9: (a) Stable fluorescein profile. The uncaging laser was focused in the upper left
corner, at the position of the black spot. This black spot is due to the photobleaching of
the caged fluorescein under the uncaging laser. A sketch of the cell is shown in blue. (b)
Concentration profile of fluorescein along the vertical dashed line shown on figure (a). The
cell’s approximate position is indicated by grayed area. At the cell’s scale, the concentration
profile is approximately linear. The red solid line shows the linear approximation of the
concentration profile around the cell.

in the radial direction is approximately τ ∼ R2/D. The concentration profile is then a plug
of width approximately W ∼ u0τ , where u0 is the maximal flow velocity, in the center of the
channel. By cutting the plug into many stripes, it is possible to reperform the same analysis:
each of these stripes will be stretched by the parabolic flow profile, and then homogenized by
diffusion in a time τ . After a time t = Nτ , the initial stripe will have undergone N diffusive
steps of size W, and the total width of the plug profile will be:

W (t = Nτ) ∼
√
NW ∼

√
u2

0h
2

D
t (3.7)

so that the effective diffusion coefficient in the direction of the flow is

Dx ∼
u2

0h
2

D
∼ Pe2D (3.8)

where we have introduced the Péclet number Pe = u0R/D. This analysis was first done by
Taylor in 1953 and the phenomenon has been termed Taylor dispersion. The analysis is only
valid on times scales bigger than the diffusive time scale τ . Moreover, the exact relationship
between Dx and Pe depends on the geometry of the channel. There is however one caveat with
this argument: diffusion was neglected in the axial direction. The effective diffusion coefficient
is in D−1, implying that a solute having a very high diffusion coefficient D should have a very
small effective diffusion. This discrepancy was solved in 1956, as Aris complemented Taylor’s
work [3] to the case of channels of arbitrary cross-section, and to arbitrary diffusion coefficients.
In the case of a rectangular channel, Aris proved that the effective diffusion coefficient Dx was
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W~u0τ


W~u0R2/D


W~[u0
2h2t/D]1/2


(a) 

(b) 

(c) 

(d) 

t=0 

t<<R2/D 

t~R2/D 

t~NR2/D 

Figure 3.10: Taylor dispersion. (a) An infinitesimally thin stripe of chemical in a circular pipe
of radius R. (b) The parabolic flow in the pipe deforms the stripe (u0 is the flow speed in
the center of the pipe). (c) Because of diffusion across the pipe, the parabolic concentration
profile is smoothed into a plug profile. This happens on a characteristic time τ ∼ R2/D. (d)
The plug can be decomposed into many thin stripes who undergo the same processes (a)-(c).
Figure taken from [110].
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given by:

Dx = D

(
1 +

Pe2

210

)
(3.9)

where the Péclet number is given by Pe = ūh/D, with ū the average speed velocity and h the
height of the channel.

The evolution of the concentration c(x, y, t) can then be described by the following convection-
diffusion equation:

∂c

∂t
+ ū

∂c

∂x
= Dx

∂2c

∂x2
+Dy

∂2c

∂y2
+ aδ(x)δ(y) (3.10)

where Dy = D. This equation can be solved by first finding its Green function, solution of:

∂G

∂t
+ ū

∂G

∂x
= Dx

∂2G

∂x2
+Dy

∂2G

∂y2
+ aδ(t)δ(x)δ(y) (3.11)

By Fourier-transforming in x and y and Laplace-transforming in time, we get:

G̃(kx, ky, s) =
a

−k2
xDx − k2

yDy − ıūkx + s
(3.12)

for the transform G̃ of G, where s, kx and ky are the conjugate variables of t, x and y
respectively. Reverse-transforming, one gets:

G(x, y, t) =
a

4
√
DxDyt

exp
[
−(x− ut)2

4Dxt

]
exp

[
− −y

2

4Dyt

]
(3.13)

so the solution of 3.10 is:

c(x, y, t) =
∫ t

0

a

4
√
DxDy(t− t′)

exp
[
−(x− u(t− t′))2

4Dx(t− t′)

]
exp

[
−y2

4Dy(t− t′)

]
dt′ (3.14)

The profile c(x, y) calculated in this way for fluorescein, with a diffusion coefficient Dfluo =
364µm2/s, is shown on figure 3.11. As can be seen, there is a good agreement between the
analytical solution and the experimental results. The calculated profile of cAMP as a function
of time is shown on figure 3.11b. After 1.3 seconds of uncaging, the concentration profile of
cAMP is stable (the relative change between two consecutive times is smaller than 1%).

Estimating the amount of uncaged cAMP

We tested two different methods to estimate the fraction of caged cAMP that was uncaged by
the laser. First, in our group, Albert Bae and Christian Westendorf tried quantifying directly
the amount of cAMP released after uncaging using High Pressure Liquid Chromatography
(HPLC). However, the amounts uncaged were to small to get an estimate of the uncaging
efficiency.

We therefore turned to an indirect method to estimate the amount of uncaged cAMP, and
used again DMNB-caged fluorescein. Because the caging group used was the same for fluores-
cein and cAMP, we expected the relase dynamics of both compounds to be similar. First, we
made a calibration curve by measuring the fluorescence of solutions of different concentrations
of fluorescein. To prevent photobleaching, the fluorescein was flown in a microfluidic channel
(height: 24 µm, width: 500 µm) at a rate of 3.8 µL/hr (mean flow speed: 88 µm/s). As could
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Figure 3.11: (a) Analytically calculated concentration profile of fluorescein at time t = 2 s
(red line), compared with the experimental results (black dots). (b) Concentration profile of
cAMP at different times, calculated using equation 3.14. The times (in seconds) are shown
on the color bar. The concentration profile is stable after t = 1.3 s. Parameters used:
Dfluo = 364µm2/s, DcAMP = 444µm2/s, u = 111µm/s, x = 42µm (corresponding to the
position of the red dashed line in figure 3.9a).

be expected, the intensity of the solution of fluorescein scaled linearly with its concentration
(see figure 3.12b). Then, we flowed caged fluorescein in a microchannel. The fluorescence
of the caged fluorescein was slightly higher than the background fluorescence. That allowed
us to quantify the amount of fluorescein already uncaged in the solution: 0.4% of the caged
fluorescein was uncaged. We then uncaged the solution of caged fluorescein on a spot using
the uncaging laser, as already mentioned above. This created a gradient of fluorescein in the
direction perpendicular to the flow (see figure 3.9a). As can be seen on figure 3.9a, a dark
spot appears on the picture at the location of the uncaging. This dark spot is due to the
bleaching of the uncaged fluorescein by the uncaging laser. The bleaching in turn implies
that the fluorescence values obtained from figure 3.9a can not be directly compared to the
calibration curve from figure 3.12b.

To know which fraction of the fluorescein was bleached under the laser spot, we flowed
caged fluorescein in a microfluidic channel and stopped the flow. We then uncaged caged
fluorescein on a spot, and monitored the evolution of the fluorescence intensity at the location
of the uncaging laser spot. By scanning on a single line in the center of the spot, we were able
to observe the evolution of the intensity with a time step of the order of the millisecond. The
evolution of the intensity with time is shown on figure 3.13a. As the uncaging laser was turned
on (at time ton), the fluorescence intensity jumped, indicating the release of the fluorescein
molecules. As the uncaging laser was turned off (time toff ), the fluorescence intensity jumped
again, before eventually decaying. Between ton and toff , we see the effect of both uncaging
and bleaching. The second increase of the fluorescence intensity, at times bigger than toff ,
is due to the uncaging reaction still continuing. The newly uncaged fluorescein molecules
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are then not subject to bleaching anymore [17]. Diffusive mixing explains the final decay of
fluorescence. The ratio of the average fluorescence intensity at times after2 and before toff
gives us the ratio of bleached fluorescein. Using this ratio, we can compare the intensity of the
fluorescence on figure 3.9a to the intensities from the calibration curve on figure 3.12b. The
evolution of the amount of uncaged fluorescein as a function of the laser power is summarized
on figure 3.13b.
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Figure 3.12: (a) Absorption (blue) and emission (green) spectra of fluorescein. Red line: wave-
length of the imaging laser. Data taken from http://www.invitrogen.com. (b) Fluorescence
intensity of different solutions of fluorescein. As could be expected, the intensity of the solu-
tion of fluorescein scales linearly with its concentration. Black dots: experimental data, red
line: linear fit.

Varying the cAMP gradient

Varying the cAMP gradient can be achieved in three different ways: by changing the concen-
tration of the solution of caged cAMP, by adjusting the laser power, or by using a different
flow speed. Changing the flow speed will have the effect of changing the shape of the con-
centration profile, whereas the two other methods keep the shape of the profile fixed. The
concentration of uncaged material is a linear function of the concentration of the caged solu-
tion: if the concentration of the solution of caged cAMP is doubled, with all other parameters
fixed, the uncaging will release twice as much cAMP. The effect of changing the laser power on
the amount of caged fluorescein released was already shown on figure 3.13b. On figure 3.14a,
we plotted the profile of fluorescence along the line shown on figure 3.9a for different powers
of the uncaging laser. On figure 3.14b, all these curves are renormalized by their maximum
value. For laser powers between 5 and 60%, all curves collapse on one, which shows that the
relative gradient is kept constant while we change the laser power. For curves made with a
laser power higher than 60%, the bleaching under the laser spot displaces the peak of fluo-
rescence further downstream, which explains why the curves do not superpose. Still, if there

2but before diffusion becomes important on our length scale.
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Figure 3.13: (a) Evolution of the average fluorescence under the uncaging spot. The uncaging
laser was turned on between ton and toff (shaded area). (b) Evolution of the amount of
uncaged fluorescein (in percent of the original concentration of caged material flown in the
channel), as a function of the laser power (in percent of the maximal power of the laser).

were no bleaching, we would expect all the curves to collapse onto one. The same behavior
would be observed if we were to keep the laser power constant but changed the concentration
of the caged fluorescein concentration.

Using equation 3.14 to analytically calculate the profile of cAMP, we found that the con-
centration profile around the cell (assumed to have a radius R = 5 µm) could be approximated
by a linear one. The relative gradient was p = 0.46, so that the concentration profile around
the cell could be written as:

c(y) = c0(1 + 0.46 ∗ y/R) (3.15)

where we have taken the center of our coordinate system at the center of the cell and −R ≤
y ≤ R.

3.2.4 Cell culture

We used the Wf38 cell line, a generous gift of P.N. Deverotes, Johns Hopkins University. The
Wf38 cell line expresses the PH domain of CRAC fused to GFP (PHCRAC − GFP) into a
wild-type AX3 background. The cells were grown on a dish in the axenic medium HL-5 until
they became confluent. They were then resuspended in a shaking phosphate buffer solution
(PB, volume: 20 mL). After one hour of starvation, the cells were supplied with 60 µL of
cAMP (Sigma) every 6 minutes for five hours. After six hours of starvation, the cells were
removed from the shaking culture, centrifuged, and loaded into the microfluidic channel used
for the experiment. After having been allowed to settle on the cover glass of the microfluidic
channel for about 5 minutes, a flow of caged cAMP was turned on for 20 to 30 minutes before
the stimulations began. This allowed for the possible clumps of cells to deaggregate.
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Figure 3.14: (a) Gradient of fluorescein obtained at different laser powers. (b) Curves of
figure (a) normalized by their maximal value. All curves made using powers betwen 5 and
60% collapse onto one, showing that the relative gradient is kept constant while we change
the laser power. The curves made at a laser power higher than 60% do not superpose with
the other ones because photobleaching under the laser spot displaces the peak of fluorescence
further downstream. If there were no bleaching, all curves would superpose. The colorbar
shows the laser power used (in %).

3.2.5 Microscopy parameters and protocol

We imaged the cells using a confocal microscope (Olympus Fluoview 1000). The Olympus
Fluoview 1000 has two lasers, one that we used for imaging (λ = 488 nm) and the other one
that we used for uncaging (λ = 405 nm). To prevent photobleaching, the imaging laser power
was set to 8 % of its maximal power. We used a 60X objective (NA=1.4), and an additional
digital zoom of 3X. In the end, our image was 256 by 256 pixels wide, where the pixel size was
278 nm. This is above the theoretical resolution limit, given by the diameter of the Airy disk:
0.51 ∗ λ/NA ≈ 180 nm in our case. The pixel residence time for the imaging was chosen to be
the smallest possible on this microscope, which was 2 µs. An image was taken every second.
Cells were imaged during 50 to 60 seconds.

The uncaging laser was turned off during the first 10 seconds of the imaging, and then
turned on during the remaining time of the experiment. The uncaging laser was put 30 pixels
away (8.3 µm) from the top border of the image as well as 30 pixels away from the left border
of the image. The field of view was chosen so that the cell would be positioned in the lower
right quadrant of the imaging region. Because different cells have different shape and size,
and that cells are randomly moving in the microfluidic channel, it was impossible to control
exactly the position of the cell at the beginning of the stimulation, but they were all in the
lower right quadrant of the imaging region at the beginning of the uncaging (see figure 3.9a).
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3.3 Image processing

We monitored the evolution of the fluorescence of PHCRAC −GFP in the cytosol and on the
membrane of the cells. The image processing was made using customized code in Matlab (The
Mathworks).

3.3.1 Finding the cell

The cell was found using a procedure based on the isodata algorithm [93]. The steps were:

1. apply a gaussian blurring;

2. choose a threshold value (in our case, half of the maximal pixel value of the image);

3. calculate the mean value ma (mb) of the pixels above (below) this threshold;

4. update the threshold to (ma +mb)/2;

5. repeat steps 2 and 3 until the threshold has stabilized, or for a maximum of 20 times.

Once the threshold had been found, and because some parts of the cytosol could be slightly
darker than what the threshold actually was, the image was filled using the Matlab command
imfill. The membrane region was then defined as the outer 3 pixel zone (0.7 µm), and the
rest of the cell defined the cytosol (see figure 3.15).

Figure 3.15: Left: original image taken with the microscope. Right: the cell has been auto-
matically found using the Isodata algorithm. Blue: cytosol. Red: membrane.

3.3.2 Quantifying the fluorescence intensity

The average background intensity of each image was subtracted to the whole image. When
PHCRAC−GFP bound to the newly formed PIP3 on the membrane, the fluorescence intensity
raised on the membrane. It will be important in the next part of our work to define where the
translocation occurs. To do so, we needed to define a threshold above which the fluorescence is
considered sufficiently important for us to say that there has been a translocation. We defined
this threshold in the following way: during the first 10 seconds of imaging, when no stimulus
was applied, we calculated the ratio ri of the fluorescence value mi of each membrane pixel i
with the average cytosolic fluorescence value κ̄:

ri =
mi

κ̄
for each membrane pixel i (3.16)
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We then took the average value r̄ as well as the standard deviation σ of all the ri obtained
during the first 10 seconds of imaging. We defined our threshold for bright pixels as It =
r̄ + 2σ. Moreover, to get rid of possible noisy bright isolated pixels, and as we know both
from the literature (see for example the pictures in [86, 132]) and from our experiments that
PHCRAC − GFP makes patches on the membrane, we defined a minimal patch size, as well
as a minimum patch life below which we considered that the bright pixels seen were the
consequence of noise in the imaging system. First, we divided the cell into 40 angular sectors.
Patches were defined as 8-connected elements of at least 3 pixels (0.3µm2). We noted at each
time to which angular sector each patch belonged. If an angular sector contained patches for
more than 3 consecutive seconds, all patches within this sector and during this time were kept.
Otherwise, they were discarded (see figure 3.16).

Figure 3.16: Left: original image. Right: the bright pixels have been found automatically on
the membrane. Purple: pixels belonging to a patch. Green: bright pixels due to noise (see
text for details).

3.4 Results

We monitored the evolution of both the cytosolic and the membrane intensity as a function
of time.

3.4.1 Defining a response

When PHCRAC −GFP is recruited to the membrane, the fluorescence intensity in the cytosol
drops. A typical time series of the cytosol fluorescence intensity is shown on figure 3.17a. How
can we distinguish this drop from the noisy fluorescent signal of non stimulated cells? We
took time series of 14 unstimulated D. discoideum over one minute, and computed at each
time step their (spatial) mean cytosolic intensity. A typical time series for one cell is shown on
figure 3.17b. For each of the 14 time series, we calculated the temporal average of the mean
cytosolic intensity, as well as its standard deviation. We found that the standard deviation,
i.e. the amplitude of the fluctuations, was of the order of 5% of the mean. The fluctuations
are likely due to intracellular flows and cell movements. To exclude non-responsive cells from
our processing, we defined a response as a drop in cytosolic intensity that was at least 8%
of the mean initial cytosolic value (this value being calculated over the first 10 seconds of
the experiment, when no stimulus was applied). All the time series were moreover evaluated
manually. Indeed, if cells get out of the confocal plane, they show a drop of their cytosolic
intensity that can be bigger than the threshold, but these cells should not be taken into account
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as responsive cells. Furthermore, we excluded from our analysis all prepolarized cells, in the
sense that they showed a translocation of CRAC-GFP on their membrane prior to stimulation,
and were likely not to respond in the same way as naive, unpolarized cells. We defined the
response of a cell as its relative drop in cytosolic fluorescence:

response =
cytosolic drop

mean initial cytosolic intensity
(3.17)
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Figure 3.17: (a) Mean cytosolic fluorescence of a stimulated cell. The stimulus is turned
on at t = 10 s (red line) and stays on until the end of the experiment. (b) Mean cytosolic
fluorescence of an unstimulated cell as a function of time. The fluorescence fluctuates due to
cell motion and to intracellular flows.

3.4.2 Cytosolic response

The evolution of the cytosolic response as a function of the applied gradient is shown on
figure 3.18a. Each point represents the average response for an experiment on a given day.
There were at least 2 responsive cells per day (average number of responsive cells per day: 11),
and similar experimental conditions were repeated one to five times on different experimental
days. The error bar shows the standard error. An overall increase of the cytosolic response
with the gradient is observed. This increase is even clearer if the results of experiments made
in the same conditions are averaged (figure 3.18b). However, by averaging over different
experimental days, we loose information on cell-to-cell variability. In the rest of this part, we
will therefore not average our results.

3.4.3 Membrane response

Angular range of translocation, patch fluorescence

There are two ways that the cytosolic depletion could be reflected on the membrane: either
the region of the membrane where PHCRAC−GFP translocates (i.e. the region where PIP3 is
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Figure 3.18: (a) Cytosolic response as a function of the cAMP gradient. Each point is the
average response for one experimental day. The error bar shows the standard error. The
response increases with the gradient (red line: linear fit). (b) Average cytosolic response as a
function of the cAMP gradient, when we average similar experiments made on different days.

formed) could increase in size, or the size of the translocation region could stay the same, only
with more PIP3 produced locally, which would be reflected by an increase in PHCRAC−GFP
fluorescence. These two possibilities are not mutually exclusive.

At each time, we computed the number of angular sectors in which there were patches of
PIP3. At the time ttr where this number was maximum (time of maximum translocation), we
computed the angular range of the PIP3 patches on the membrane (which is just the number
of angular sectors multiplied by the angle of each sector, here π/20). The evolution of this
angular range with the gradient is shown on figure 3.19a, showing an increase of the fraction
of the membrane where PIP3 production takes place at higher gradients. The angular range
is clearly correlated with the cytosolic depletion, as shown on figure 3.19b. As reported in
Xu et al. [132] for the case of Latrunculin-treated cells, the translocation does not cover the
whole membrane (the angular range is smaller than 2π, and even smaller than π in most
of our experiments). The average fluorescence of the PIP3 patches at time ttr is shown on
figure 3.20a as a function of the gradient. For each cell, the fluorescence of the PIP3 patches
was normalized by the mean cytosolic intensity before stimulation. No correlation between
the gradient and the patch fluorescence is observed. As shown on figure 3.20b, there is also no
correlation between the average fluorescence intensity at time ttr and the cytosolic depletion.

Next, we computed the average fluorescence of the PIP3 patches at the time tbr where
the fluorescence of the PIP3 patches was maximal. The results are shown on figure 3.21,
where we have also plotted the angular range of the translocation at time tbr. The evolutions
of the time of maximal translocation ttr, as well as the time of maximal fluorescence tbr
are shown as a function of the gradient and the cytosolic response on figure 3.22. As a
first point, the time at which the most PIP3 has been synthesized, tbr, is bigger than the
time of maximum translocation ttr, which indicates that there is a build-up of PIP3 with
time (figure 3.22). Second, we observe a decrease of ttr as the cytosolic depletion increases,
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Figure 3.19: Angular range of the PIP3 patches on the cell membrane at the time ttr where
the translocation is maximal, as a function of (a) the gradient and (b) the cytosolic depletion.
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Figure 3.20: Average fluorescence of the PIP3 patches on the cell membrane at the time ttr
where the translocation is maximal, as a function of (a) the gradient and (b) the cytosolic
depletion. The fluorescence was normalized by the mean cytosolic intensity before stimulation.
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Figure 3.21: (a) Average fluorescence of the patches of PIP3 at time tbr. (b) Angular range of
translocation at time tbr.

indicating that a signal leading to a weak response will also lead to a longer response time.
Third, the average fluorescence intensity of the PIP3 patches at time tbr does not depend on
the cytosolic depletion, possibly indicating a saturation process. Last, the angular range at
tbr is independent of the cytosolic response, and is smaller than the angular range at time ttr
by a factor of 1 to 5, indicating that regions where PIP3 builds up are restricted in space.

Asymmetry

We have reported that the angular range of the translocation did not cover the whole cell
circumference. Are the patches of fluorescence at random locations on the membrane, or is
there already, in this first stage of directional sensing, a directional response? To answer this
question, we divided the cell into two parts, front and back, defined as the angular region
in the direction of the gradient and opposite the gradient, respectively. We then defined the
asymmetry α, a function of the number of super-threshold pixels belonging to patches in the
front (nfront) and back (nback) of the cell:

α = 2
nfront

nfront + nback
− 1. (3.18)

If all the patches are localized at the front half of the cell, this ratio is equal to one, while
it has a value of 0 is there are as many patches at the front and at the back of the cell. If
the patches are localized at the back of the cell, α = −1. We plotted α as a function of the
gradient at times ttr and tbr on figure 3.23. It is plotted as a function of the cytosolic depletion
on figure 3.24. In all the experiments, α had a value bigger than 0, indicating that there were
always more patches at the front of the cell than at its back. Moreover, the asymmetry at
time ttr goes down with the gradient, which reflects the fact that PIP3 is synthesized on larger
portions of the membrane, and not only at the front of the cell.
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Figure 3.22: (a), (b) Time ttr at which the angular range of translocation on the membrane is
maximal, as a function of the gradient and the cytosol response. (c), (d) Time tbr at which the
average patch fluorescence is maximal, as a function of the gradient and the cytosol response.
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Figure 3.23: Asymmetry as a function of the gradient (a) at the time of maximal translocation
ttr, and (b) at the time tbr where the patch intensity is at its maximum.
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Figure 3.24: Asymmetry as a function of the cytosolic response (a) at the time of maximal
translocation ttr, and (b) at the time where the patch intensity is at its maximum.
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3.4.4 Fraction of responding cells

At a given gradient, not all cells respond. The fraction of responding cells is shown on
figure 3.25a as a function of the gradient of cAMP. The curve shows a sharp increase at
low gradients, which could be an indication that we are doing our experiments at the lower
limit of the cell’s ability to detect a gradient. On figure 3.25a, one point does not fit on the
overwhole curve, namely the point at a gradient of 28 nM/µm for which only 40% of the
cells respond. For this experiment, the cytosolic depletion is also lower than what would be
expected (figure 3.18a). We can only speculate on the causes of this observed behavior: it is
possible that the cells did not develop as well on that day as they otherwise did, or that there
was a mistake in the dilution of the caged cAMP solution used on this particular day. However,
if the fraction of responding cells is plotted as a function of the average cytosolic response of
the responding cells, this point fits on the overall curve (figure 3.25b). A likely explanation
for the correlation observed on figure 3.25b is that each cell responds differently to the same
applied gradient, and that there exists a threshold gradient for PHCRAC−GFP translocation.
It is likely that this threshold varies from cell to cell and that at a given gradient, some cells
will respond whereas others will not. Preliminary experiments were conducted to test this
hypothesis. We stimulated three cells at a low gradient without observing any response, and
then applied a higher gradient that elicited a translocation. The cells were then stimulated
one more time at the original low gradient, and no translocation could be observed. These
experiments are not easy to conduct, for two reasons. First, one has to use a gradient that
elicits a response in a part of the population, and find a cell that does not respond. Second,
one has to track this cell for at least 5 minutes: each stimulus lasts one minute and the waiting
time between each stimulation should be of the order of one minute, to allow for the effect
of the previous stimulus to decay. During these five minutes, severe photobleaching occurs,
which impairs our ability to observe a translocation. It would be worthwhile to conduct such
experiments again with another marker of PIP3 than PHCRAC − GFP, such as PhdA-GFP,
reported to give a better fluorescence signal [36].

3.5 Discussion

We have seen that the cytosolic depletion increases with the gradient, a feature that can
be reproduced by most of the models presented in chapter 2. However, we also observed an
asymmetric first translocation of PHCRAC−GFP on the cell membrane in the range of gradients
used. This asymmetric translocation can be reproduced only by the model of Gamba et al. [39]
or of Meier-Schellersheim et al. [72]. In all other models, which are based on a deterministic
local excitation, global inhibition scheme, the first translocation of PHCRAC−GFP is predicted
to be uniform, while only the second translocation would be asymmetric [8, 70, 68]. In the
model of Gamba et al. however, the distribution of PIP3 on the cell membrane is asymmetric
over a wide range of gradients, but PIP3 is always produced also at the back of the cell.
Because of this, the only remaining model having a chance to be correct is the one of Meier-
Schellersheim et al. This model supposes the action of a local inhibitor, which has yet to
be identified. It is worth noting that our experiments agree with the ones of Xu et al. [132]
even though our cells were not treated with Latrunculin, contrarily to the cells used in [132],
showing that the actin cortex plays no crucial role, and does not prevent the establishment
of the first asymmetric translocation of PHCRAC − GFP. Moreover, we reported that, at a
population level, and at a given stimulus, some cells would not respond. This underlines

91



3.5. Discussion

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Gradient (nM/µm)

F
ra

ct
io

n
 o

f 
re

sp
o

n
d

in
g

 c
el

ls

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Cytosolic depletion

F
ra

ct
io

n
 o

f 
re

sp
o

n
d

in
g

 c
el

ls
(b)

Figure 3.25: (a) Fraction of responding cells as a function of the cAMP gradient. (b)Fraction
of responding cells as a function of the mean cytosolic response.

the importance of cellular individuality in directional sensing. A further step in the model
of Meier-Schellersheim et al. would be the incorporation of stochasticity in the biochemical
networks used, which would then enable to reproduce the individual behaviors experimentally
observed.

Can we relate the first PHCRAC −GFP translocation to cell motion? It has been hypoth-
esized by Ueda and Shibata [119] that a cell’s chemotactic efficiency was directly related to
the difference in production of a second messenger between front and back of the cell. More
precisely, because chemical reactions are stochastic processes, both recepor binding and the
signals at the level of the second messenger contribute a certain amount of noise. It is then
possible to define a signal to noise ratio (SNR), which was found to be in direct relationship
with the cell’s chemotactic efficiency. This will be discussed in more details in chapter 4, where
we will show that the SNR is indeed a quantity describing accurately cellular chemotaxis for
all types of gradients used (section 4.6.4). For the time being, it is sufficient to know that
such a SNR can be calculated. Is the SNR also the important quantity in the PHCRAC−GFP
translocation? We plotted the cytosolic depletion as a function of the SNR on figure 3.26c.
On this figure and on the following ones, we averaged the results of experiments made in the
same conditions, in order to average out the cell-to-cell variability. There is a global increase
of the cytosolic depletion with the SNR, but the plot appears to be very noisy. This is a first
indication that the first PHCRAC − GFP translocation and cellular motility are maybe not
directly related. We wanted to further test this hypothesis. On figure 3.26a, we plotted the
evolution of the cytosolic response as a function of ∆R, the difference of receptor occupancy
between front and back of the cell, calculated as:

∆R =
Rtot

2L

[∫ L

0

c(y)
c(y) +Kd

dy −
∫ 0

−L

c(y)
c(y) +Kd

dy

]
(3.19)

where L = 5 µm is the cell radius, Rtot = 80 000 [119] is the total number of receptors around
the cell membrane, and Kd = 180 nM [119] is the dissociation constant of cAMP with the
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Chapter 3. Directional sensing of D. discoideum

receptor cAR1. There is a clear correlation between the cytosolic depletion and ∆R. However,
note that in our experiment, as the same time as ∆R increases, the total number of occupied
receptors R∗ also increases. The total number of occupied receptors was estimated using the
formula:

R∗ =
Rtot

2L

∫ L

−L

c(y)
c(y) +Kd

dy (3.20)

It appears on figure 3.26b that R∗ and the cytosolic response are also clearly correlated.
To test the idea that the total number of occupied receptors R∗ was the quantity de-

termining the extent of the first PHCRAC − GFP translocation, and not ∆R, we stimulated
the cells with a uniform concentration of cAMP. This can be conveniently done using the
same microfluidics setup, but by uncaging on a line (perpendicular to the flow direction, see
figure 3.27a) instead of uncaging on a spot [10]. We stimulated 316 individual cells and mon-
itored their cytosolic response. The evolution of the cytosolic response to a uniform stimulus
as a function of the number of occupied receptors is shown on figure 3.27b (red dots). The
black dots show the cytosolic depletion for the gradient stimulus, also plotted as a function
of the total number of bound receptors (same data as in figure 3.26b). Both curves fit well
onto each other, strongly indicating that the first PHCRAC−GFP translocation in a gradient
is indeed due to a local mechanism, and that no comparison between front and back is made.

3.6 Conclusion

In this chapter, we used a combination of microfluidics and photouncaging to apply stable
and well-defined gradients of cAMP to developed D. discoideum cells. The gradients were
established in roughly one second, which is 10 times faster than what had been previously
used [132]. The relative gradient was kept fixed, but the absolute gradient was changed. We
saw an increase in the cytosolic depletion of PHCRAC − GFP as the absolute gradient was
increased, corresponding to an increase in the midpoint concentration. This corresponded to
in an increase of the spatial extent of the translocation of PHCRAC −GFP on the membrane,
indicating a production of PIP3 on more sites at higher gradients. Locally however, the amount
of PIP3 was independent of the gradient. We found no correlation between the signal to noise
ratio, which compares the amount of second messenger between front and back of the cell,
and the cytosolic response. This was a first indication that the observed response was maybe
a local mechanism, not an integrated one where front and back of the cell would be compared.
There is moreover a close agreement between the response of uniformly stimulated cells and
that of cells in a gradient, when the number of occupied receptors around the membrane are
similar. This is one more element contributing to the hypothesis that the first PHCRAC−GFP
translocation in cells subject to a gradient is a local response, depending on the total number
of occupied receptors and not on the difference of occupied receptors between the two ends of
the cell.
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Figure 3.26: (a) Cytosolic response as a function of the difference in receptor occupancy
between front and back of the cell ∆R. (b) Cytosolic response as a function of the total
number of bound receptors R∗ around the cell. (c) Cytosolic response as a function of the
signal to noise ratio at the level of the G-protein. The SNR is found to be in direct correlation
with the chemotactic motion of the cells (see chapter 4 of this thesis and [119]), but is of little
help in predicting the CRAC translocation.
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Figure 3.27: (a) Uniform fluorescence profile after uncaging on a line (shown in red). The
cell is sketched in blue. (b) Cytosolic response as a function of the total number of occupied
receptors for a gradient stimulus (black points) and for a uniform stimulus (red points). As can
be seen, all data fall on the top of each other, strongly indicating that the first PHCRAC−GFP
translocation is a local response.
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Chapter 4

Chemotaxis of Dictyostelium
discoideum and description by a
Langevin equation

In the previous chapter, we quantified the intracellular response of the PH-domain protein
CRAC to gradients of cAMP. The gradients were applied for at most 50 seconds, and we
focused on an intracellular response occurring within the first 10 seconds of stimulation. We
can now ask what happens at larger time and spatial scales: in this chapter, we will quantify
the migration of D. discoideum over 40 minutes in a stable linear gradient of cAMP 1. The
gradients were produced using microfluidic gradient mixers already described in [109]. Because
in our experiments, the difference in receptor occupancy between the front and the back of
the cell is of the order of 350 receptors at most, out of around 23 000 occupied receptors, it
is necessary to take into account the stochasticity of ligand-binding to fully understand the
chemotactic response. In this respect, a signal to noise ratio (SNR) can be defined, based on
both the midpoint concentration and the gradient value [119]. We will see that the SNR is
in direct relationship with the chemotactic index of the cells. Moreover, the fraction of cells
that respond chemotactically depends on the SNR.

In chemotaxis assays, the migration of a whole population is usually monitored, and the
average behavior is typically reported. It is however also known (and we saw it ourselves
in the last chapter) that each cell might behave differently – there is biological diversity.
Moreover, as can be seen on videos of chemotactic cell motion (see movie online at http://www.
lfpn.ds.mpg.de/biophysics/documents/movies/chemotaxis.mov for a vertical gradient of
1.7 nM/µm, pointing upwards), cells do not necessarily move straight in the gradient direction,
or with a constant speed. By calculating only average quantities (like the average speed of a
cell population), one looses the biological variability observed in cell motion. Our aim in the
second part of the chapter is to describe chemotactic motion not with averaged quantities, but
with histograms: using a method pioneered by Siegert et al. [105], we will model cell motion
using a generalized Langevin equation.

The raw data that I will analyze has been taken by Matthias Theves as part of his Diplo-
marbeit [117].

1Strictly speaking, the gradient of cAMP is constant and the concentration profile of cAMP is linear.
However, it seems that the term “linear gradient" is commonly used in the literature to describe a linear
concentration profile of a chemical.

http://www.lfpn.ds.mpg.de/biophysics/documents/movies/chemotaxis.mov
http://www.lfpn.ds.mpg.de/biophysics/documents/movies/chemotaxis.mov


Chapter 4. Chemotaxis of Dictyostelium discoideum and description by a Langevin equation

4.1 Background

Chemotaxis of Dictyostelium discoideum has been an ongoing area of research for the past 60
years, and analysis of the chemotactic motion of the amoebae under a gradient of cAMP has
been the subject of numerous articles. The most recent is from Fuller et al. [34], where the
authors systematically changed the slope and midpoint concentration of the chemoattractant
gradient and monitored cell migration under these conditions. Using tools from information
theory, they showed that at low midpoint concentrations, the main source of noise in the
gradient sensing process comes from the detection of the chemoattractant at the receptor
level, whereas at high midpoint concentrations, the main source of noise comes from the
intracellular chemotactic pathway. This was a result already pointed out by Ueda and Shibata
in [119], where the authors defined a signal to noise ratio (SNR) for the chemotactic signal
and correlated it with the cellular chemotactic behavior.

In [34], the authors used a microfluidic device to generate an exponential concentration
profile, where the relative gradient seen by a cell is constant in all parts of the channel. The
first use of microfluidic devices to monitor D. discoideum chemotaxis was done in the lab of
Eberhard Bodenschatz [109], where the concentration profiles were linear: the absolute gradi-
ent was constant across the microfluidic device. Song et al. [109] reported a threshold gradient
for chemotactic cell motion, which they correlated to the difference in receptor occupancy be-
tween the front and back of the cell. The main result of the paper is shown on figure 4.1a,
where the average velocities of cells in a gradient of cAMP are shown. The decrease of the
chemotactic velocity at steep gradients is explained by the authors of [109] by the simultaneous
rise in the midpoint concentration, which saturates the receptors. In the current chapter, we
will use the same device as Song et al. and complement their approach by taking into account
the stochasticity of ligand-binding and of chemical reactions to explain when a cell population
responds chemotactically [119].

Before the development of microfluidic devices, diffusion chambers were used to monitor
chemotactic cell motion. Varnum and Soll reported the evolution of both the chemotactic
index (a measure of the accuracy of chemotactic motion), and of the cell speed as a function
of the gradient [124]. The result concerning the chemotactic index are consistent with the
ones found in [109]. The evolution of the accuracy of chemotaxis (a measure related to the
chemotactic index) of D. discoideum was also reported by Fisher et al. [30], and here again,
the results are consistent with [124, 109]. The evolution of the speed observed in [124] was
not reported in later experiments and could not be reproduced in [109].

In this chapter, the experiments of Song et al. were repeated using both wild-type cells
and putatively defective chemotaxis mutants, namely SCAR/PIR null mutants (for the role
of SCAR, see chapter 1 or section 4.7). Moreover, to investigate the influence of the midpoint
concentration on the gradient sensing process, a few experiments were conducted with a similar
value of the absolute gradient and a different value of the midpoint concentration. The cells
were automatically tracked and analyzed using a Langevin equation.

4.2 Experimental setup

The experiments described in this chapter were conducted by Matthias Theves [117]. In his
work, Matthias found and tracked the cells over time. In this section, I will summarize his
experimental protocol and in particular show the limits of the automated cell segmentation
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observed. In the case of  10 -8 M cAMP, cells moved at exactly 

the same rates immediately after addition as they did before 

addition or 20 min after addition. In the case of  10 -7 to  10 -5 

M cAMP, cells reduced their rates of  movement within 30 s 

after addition to the constant, depressed levels that are pre- 

sented in Fig. 2. 

Cyclic AMP Reduces Motility under Gradient 

Conditions 

To test the effects of  different concentrations of cAMP on 

cell motility under gradient conditions and to compare the 

effects of  different concentrations of  cAMP on cell motility 

and chemotaxis under gradient conditions, we dispersed ag- 

gregation-competent amebae on the bridge of  a chemotaxis 

chamber (6) that contained a test solution of  cAMP in one 

trough ("source") and a solution of  buffered salts lacking 

cAMP in the opposing trough ("sink"). Test solutions were 

varied between 10 -9 and 10 -5 M cAMP, and the approximate 
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FIGURE 2 The average rate of cell motility (A) and the average 

chemotactic index (B) as a function of cAMP concentration. (A) 

Each circle represents the average rate of 50 individually analyzed 

amebae. The closed circles represent amebae in homogeneous 

solutions of cAMP (nongradient conditions) at the respective con- 

centrations. The open circles represent amebae in gradients of 

cAMP. In the latter case, the average concentration of cAMP at the 

cell body during the period of analysis was calculated by the 

diffusion equation (see text for Discussion). (B) Each circle repre- 

sents the average chemotactic index (C.I.) for 50 individually ana- 

lyzed amebae. This value was calculated according to the proce- 

dure outlined in Materials and Methods. Note that the chemotactic 

indices were calculated for the same populations of amebae that 

were analyzed in A for single cell motility (open circles). 

concentration of cAMP at the position of  an ameba halfway 

through the period of  analysis was calculated by the diffusion 

equation, assuming that in the short period during which cell 

motility was monitored, the trough with test solution func- 

tioned as an infinite source, and the trough with buffer alone 

functioned as an infinite sink. Both the rate of  motility and 

the chemotactic index were calculated for each of  50 cells 

analyzed at each test concentration of  cAMP. The average 

rates of  motility and the average chemotactic indices are 

plotted as unfilled circles in Fig. 2, a and b, respectively. Just 

as in the case of  nongradient conditions (filled circles in Fig. 

2a), the average rates of  cell motility at calculated cAMP 

concentrations of  10 -l° to l0 -s M were roughly the same as 

those of cells in buffered solution lacking cAMP. At calculated 

concentrations of  cAMP > l0 -g M, motility was depressed in 

roughly the same concentration-dependent fashion as under 

nongradient conditions. The highest average chemotactic in- 

dex was observed at 10 -9 and l0 -s M cAMP, concentrations 

that did not depress the rate of  motility. At l0 -7 M cAMP, 

the average chemotactic index was -75% of peak value, and 

the average rate of  cell motility was ~66% of the maximum 

value. At a cAMP concentration of  l0  -6 M,  the average 

chemotactic index approached zero and the average rate of  

motility was ~50% of the maximum value. These results 

demonstrate that the sensitivity of  single cell motility to 

concentrations of  cAMP >10 -s M are similar under nongra- 

dient and gradient conditions, and indicate that the assump- 

tions employed to calculate the concentration of  cAMP at the 

position of  the cell body are valid. 

Cycl ic  A M P  Reduces the Frequency o f  Turn ing 

To test whether turning is also affected by concentrations 

of  cAMP that suppress the rate of  motility, we measured both 

the frequency and degree of  turning over a 21-min migration 

period of  aggregation-competent amebae in 10 -s and l0 -5 M 

cAMP under nongradient conditions. The averaged results 

for 27 and 19 individual amebae, respectively, are presented 

in Table I. At l0 -s M cAMP, the average cell turned 2.8 times 

per l0 min and at l0 -5 M, the average cell turned 1.3 times 

per 10 min. Therefore, the frequency of  turns was reduced 

54% by a concentration of  cAMP that reduced the average 

rate of  motility 57%. When the number of  turns was calcu- 

lated as a function of  distance traveled (average number of  

turns per l0/~m), no difference was observed at noninhibitory 

(10 -s M) and inhibitory (10 -5 M) concentrations of cAMP. 

In the former case, the number of  turns per l0 um was 0.27, 

and in the latter case 0.29. No significant difference was 

observed in the average degree of  turning for cells in l0 -s M 

cAMP and in l0 -5 M cAMP (Table I). 

TABLE I 
A Comparison of Turning and Cell Shape for Amebae Migrating in 10 -8 and I0 -s M cAMP under Nongradient Conditions 

cAMP 

concentration 

NO. of 

individual Average 

cells Average rate of frequency of Average degree of Average cell Average shape 

measured motility 4- SD turning 4- SD turning 4- SD length 4- SD index 4- SD 

M 

10 -8 

10-s 

(~m/min) (turns110 rain) f~m) 

27 10.37 4- 6.2 2.8 + 1.4 67.8 4- 27.9 22.5 4- 8.3 0.42 + 0.15 

19 4.44 4- 2.3 1.3 4- 1.3 78.4 4- 47.6 15.1 4- 3.4 0.59 4- 0.20 

P value <0.001 <0.005 NS <0.001 <0.005 

NS, not significant. 
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Figure 4.1: (a) Evolution of the velocity perpendicular to the gradient direction vx (squares),
the chemotactic velocity vy in the gradient direction (diamonds) and the speed v (circles) as a
function of the gradient of cAMP. Figure taken from [109]. (b) Evolution of the speed of cells
in a uniform background of cAMP (filled circles) or in a gradient whose midpoint is given by
the horizontal axis (empty circles). Figure taken from [124].
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algorithm he used, which will be of crucial importance for the rest of the chapter.

4.2.1 Cells

Wild-type AX3 cells were grown on Petri dishes in HL5 medium (ForMedium Ltd., 7 g/L
yeast extract, 14 g/L peptone, 0.5 g/L KH2PO4, Na2HPO4) until the dish was confluent. The
cells were then resuspended in a shaking culture at a concentration of 2 · 106 cells/mL and
starved in phosphate buffer (15 mM KH2PO4, 1mM Na2HPO4, pH=6.0) for 1 hour before
being pulsed with cAMP for 4 hours (60 µL of cAMP every 6 minutes). After these 5 hours
of starvation, the cells were removed from the shaking culture, centrifuged, and injected into
the microfluidic gradient mixer.

4.2.2 Microfluidics

The gradient mixer used for these experiments is the same as the one described by Song et al.
in [109], and is derived from an original design by Jeon et al. [54]. It consists of two inlets that
join in a mixing cascade, as shown on figure 4.2a. Cyclic AMP is injected at a concentration
cmin in one of the inlets and at a concentration cmax in the other inlet. As a result, a linear
gradient of cAMP is formed in the main channel of the gradient mixer. In our case, the width
of the main channel is 525 µm, while its height is 50 µm. Using an average flow speed of 320
µm/s, the gradient of cAMP is linear over a 320 µm wide central region in the main channel.
This is shown on figure 4.2b, where the central region of the microgradient is visualized using
fluorescein (Invitrogen, Carslbad, CA).

(a) (b)

Figure 4.2: (a)The microfluidic gradient mixer used for the chemotaxis experiments. Figure
taken from [92]. (b) Profile of the gradient visualized using fluorescein: at our flow rate, the
gradient is linear in the central part of the main channel, in a region 320 µm wide (shown by
the blue rectangle). The scale bar is 90 µm large. Figure taken from [117].

As can be seen on figure 4.2a, there are two more ports in the gradient mixer apart from
the inlets used for chemoattractant or buffer injection. One of them is used to load in the cells,
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while the other one is an outlet. Apart from providing a convenient way to produce gradients,
the use of microfluidics prevents intercellular communication and washes out cellular waste
products.

4.2.3 Experiment

Three different areas along the channel were monitored, and pictures were taken at a frame
rate of 6/min. A typical snapshot of from the experiment is shown on figure 4.3a. We used a
CoolSNAP CCD (Princeton Instruments) to take the pictures, with a resolution of 1024x1024
pixels. The cells were observed with a 10X objective (Olympus plan achromat, NA=0.40),
leading to a resolution of 0.6409 µm per pixel. How does this resolution compare with the
diffraction limit? Using green light with wavelength λ = 550 nm, the smallest details we
should be able to observe are of the order of r = λ/(2NA) ≈ 690nm, which is comparable to
our pixel size. Images were taken using differential interference contrast (DIC) microscopy.
For the principle of DIC microscopy, the reader is referred to a review by Pluta [83].

4.3 Image processing

The image processing consisted of two steps. First, the cells were found and then were tracked
over time.

4.3.1 Finding the cells

Principle

DIC microscopy, explained in more detail in [83], enables to see otherwise transparent objects
by converting a gradient of optical paths into an intensity gradient. The steeper the gradient,
the higher the contrast on the resulting image. Depending on the configuration of the DIC
setup, positive gradients of optical path along a reference direction (also called the shear
direction) are converted into brighter or darker regions. A typical snapshot of the cells seen
under DIC microscopy is shown on figure 4.3.

To find the cells, Matthias convolved the original DIC image with the following kernel [56]:

K(x∗, y∗) = exp
(
− x∗2

2σ2
x∗

)
exp

(
− y∗2

2σ2
y∗

)
sgn(x∗) (4.1)

where (x∗, y∗) is the coordinate of a point in a reference frame rotated by an angle θ, with θ
the angle of the DIC shear vector. The shape of the convolution kernel is shown on figure 4.4a
for φ = 37.5◦, σx∗ = 10 pixels, σy∗ = 1 pixel. The result of the convolution can be seen
on figure 4.4b. The cells now have a uniform intensity, distinct from the background, which
enables us to use a simple intensity threshold to find them. This threshold was automatically
found using the Isodata algorithm adapted from [93] and already described in section 3.3.1.

Limitations

As all automated methods of image segmentation, this one is not exempt from errors. To
estimate the error, we manually found the outlines of 56 cells in a frame, and computed the
position of their centroids. We then compared the position of these manually found centroids
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Figure 4.3: (a) Image of cells in the gradient mixer using DIC microscopy. (b) Enlarged
regions showing individual cells. The shear direction is the direction of the line separating the
dark from the bright region. Scale: 1 pixel corresponds to 0.6409 µm.

with the corresponding positions given by the segmentation algorithm. The precision of the
algorithm depends on the three parameters of the gaussian convolution kernel, σx∗ , σy∗ , and
θ. First, we fixed the variances σx∗ = 10 pixels, σy∗ = 1 pixel of the gaussians and varied the
angle θ. As expected, the minimum error was found for θ around the shear direction, θ = 37.5◦

(figure 4.5a). Then, keeping θ = 37.5◦ fixed, we varied σx∗ and σy∗ . The average error on the
position of the cells’ centroids is shown on figure 4.5b. As can be seen on this figure, different
combinations of parameters allow to process the data equally well. We circled with a black line
a region of parameters giving a mean error between 1.7 and 1.9 pixels, and a standard deviation
of the mean between 0.7 and 0.8 pixels. Matthias chose σx∗ = 10 pixels, σy∗ = 1 pixel, for
which the error in 1.8± 0.8 pixels. This result is very important for the rest of the chapter: if
we want to be accurate in our estimate of the cells’ velocities, the cells should move at least
2.6 pixels in one time step.

4.3.2 Cell tracking

The cell tracking algorithm was adapted from an existing algorithm by Crocker and Gier [22],
based on log-likelihood maximization. A complete description of the algorithm can be found
in [117]. To briefly summarize, the algorithm considers that each cell is a Brownian particle.
The probability Pi(δi,∆t) that cell i makes a step of size δi in a time ∆t can then be analyt-
ically expressed. Moreover, because cells are supposed to be independent of each other, the
probability that cell 1 makes a step δ1, cell 2 a step δ2,. . . , cell N a step δN is given by the
product of the individual probabilities: P (δ1, . . . , δN ,∆t) =

∏N
i=1 Pi(δi,∆t). The algorithm

performs a maximization of P (δ1, . . . , δN ,∆t), which gives the most likely positions of the
particles at time t+ ∆t, knowing their positions at time t.
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Figure 4.4: .
(a) Convolution kernel used in the algorithm to automatically find the cells. (b) Image

resulting from the convolution of the original microscopy image and the 2D gaussian kernel.
(c) Result of the isodata algorithm to threshold the convolved image, showing the cells found
by the algorithm. (d) Comparison of the manually found edges and centers of mass of the
cells (green) with the automated procedure (red). The outlines of the cells are different, but

the center of mass is reasonably well found (mean error: 1.8 pixels, see main text).
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Figure 4.5: (a) Mean error on the position of the centroid found by the automated algorithm,
as a function of the angle θ. Error bars show the standard deviation. As expected, the error
gets minimum around θ = 37.5◦, which is the direction of the shear of the DIC image. Other
parameters: σx∗ = 10 pixels, σy∗ = 1 pixel. (b) Mean error on the position of the center of
mass found by the automated algorithm, as a function of σx∗ and σy∗ , for θ = 37.5◦. The
black line circles adjacent parameters that give similar results: the mean error is then between
1.7 and 1.9 pixels, with a standard deviation between 0.7 and 0.8 pixels.

4.4 What gradient does the cell see?

Before looking at the experimental results, let us think about the gradient seen by the cell.
First of all, the cell is an obstacle that disturbs the flow, so the gradient around the cell is
distorted by the cell’s presence [9]. Second, we have to translate a concentration of cAMP
into an amount of occupied receptors on the cell’s surface.

4.4.1 Flow effects

The effect of a flow on the external gradient of cAMP has been studied in Beta et al. [9].
Using Comsol Multiphysics, the authors simulated a three-dimensional flow in a microchannel
in which a cell was sitting. Starting from a linear concentration profile upstream of the cell,
they computed the concentration profile of cAMP around the cell, changing the flow speed,
the relative height of the cell and the channel, and the elongation and orientation of the cell.
Two effects counterbalance each other. The first one is what the authors called the shielding
effect, that causes a cell to be exposed to a concentration gradient lower than the one expected
if the cell were not there. For simplicity, consider a 2D flow and a 2D cell (see figure 4.6a).
At the cell’s midpoint, the concentration of cAMP is c0. Because the streamlines divide at
the middle of the cell, if the diffusion effects are negligible compared to the convection effects,
the cell would experience a uniform concentration of cAMP of c0. We can now consider the
other extreme case, where diffusion effects are more important than convection effects. In
the upper half of the cell (y > 0), the concentration in the boundary layer is lower than in
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the bulk. Because of this, there will be a diffusive flux towards the boundary layer, that will
tend to increase the local concentration of cAMP. Similar reasoning for the lower half of the
cell (y < 0) shows a decrease of the local concentration of cAMP. In other words, diffusion
increases the gradient seen by the cell. To compare the effects of diffusion and convection, the
authors introduce the two-dimensional Péclet number:

Pe2D =
vπr

D
(4.2)

where D is the diffusion coefficient of cAMP, r is the radius of the cell and v is the flow speed.
This Péclet number can be extended to 3D, where it is written (see equation (14) in [9]):

Pe3D =
Lcell,x
D

hv0(3− 2h) (4.3)

where Lcell,x is the length of the cell in the direction of the flow (see figure 4.6b), h is the ratio
of the cell height and the channel height, and v0 is the average flow velocity at mid-height
of the channel. As a rule of thumb, the authors conclude that a Péclet of the order of 1 will
assure gradient deviations below 10%. In our case, the channel’s height is 50 µm, the cell’s
height is about 4 µm, the diffusion coefficient of cAMP is 400µm2/s, the length of the cell
along the flow is around 10 µm, and the mean flow velocity at mid-height of the channel is
476 µm/s. This gives a Péclet of 2.45, which ensures that the deviations from the imposed
gradient are less than 5% (see [9]).

(a) (b)

Figure 4.6: (a) A 2D circular cell in a 2D flow of chemoattractant. The chemoattractant
profile is a linear gradient upstream of the cell. (b) Definition of Lcell,x, the length of the cell
in the direction of the flow. Both figures taken from [9].

4.4.2 Receptor occupancy

How does a gradient of cAMP expressed in nM/µm translate in terms of difference in receptor
occupancy between front and back of the cell? The reversible binding of cAMP to a receptor
can be written:

cAMP + Rec
k1−⇀↽−
k−1

cAMP·Rec (4.4)
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where k1 is the binding rate of cAMP to a free receptor Rec, k−1 is its unbinding rate,
cAMP·Rec is an activated receptor (bound to cAMP), and the total number of receptors is

Rtot = [Rec] + [cAMP · Rec] (4.5)

At equilibrium:

d[cAMP · Rec]
dt

= k1[cAMP][Rec]− k−1[cAMP · Rec] = 0 (4.6)

So that

k1[cAMP](Rtot − [cAMP · Rec])− k−1[cAMP · Rec] = 0 (4.7)

⇔[cAMP · Rec] = Rtot
[cAMP]

[cAMP] +Kd
(4.8)

where we have defined Kd = k1/k−1. For a concentration of cAMP equal to Kd, half of the
receptors of the cell are occupied. The value of Kd has been determined to be 230 ± 45 nM
by Dormann et al. [25]. The fraction ρ of occupied receptors is therefore:

ρ =
[cAMP]

[cAMP] +Kd
(4.9)

Let’s now assume that the cell measures the cAMP gradient surrounding it by averaging the
number of occupied receptors in its upper half and comparing it to the average number of
occupied receptors in its lower half. Consider a 1D cell and call ym the coordinate of the
middle of the cell, yb the coordinate at its bottom and yt the coordinate at its top. The cell’s
length is L, and the concentration profile of cAMP c(y) is linear in y:

c(y) = ay (4.10)

where y = 0 corresponds to the bottom of the gradient region. In the upper half of the cell,
the average number of occupied receptors is:

Rup =
Rtot

L

∫ yt

ym

c(y)
c(y) +Kd

dy =
Rtot

L

∫ yt

ym

ay

ay +Kd
dy (4.11)

=
Rtot

L

[
L

2
− Kd

a
ln
(
ayt +Kd

aym +Kd

)]
(4.12)

Similarly, in the lower half of the cell, the average number of occupied receptors is:

Rlow =
Rtot

L

[
L

2
− Kd

a
ln
(
aym +Kd

ayb +Kd

)]
(4.13)

The difference of receptor occupancy between front and back is:

∆R = Rup − Rlow =
RtotKd

aL
ln
[

(aym +Kd)2

(ayb +Kd)(ayt +Kd)

]
(4.14)

=− RtotKd

aL
ln
[
1− (aL)2

4(aym +Kd)2

]
(4.15)

(4.16)
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A cell is typically 10 µm long, so if we consider a cell in the middle of the gradient region, at
a position ym = 160 µm, we can safely approximate ∆R by:

∆R ' KdRtotaL

4(aym +Kd)2
(4.17)

If we want to know what happens for a 2D cell, we have to calculate :

∆R =
Rtot
2π

[∫ π

0

a(ym + L/2 sinφ)
a(ym + L/2 sinφ) +Kd

dφ−
∫ 2π

π

a(ym + L/2 sinφ)
a(ym + L/2 sinφ) +Kd

dφ

]
(4.18)

where L is now the cell’s diameter. The calculations get lengthy, and the result is:

∆R =
2RtotKd

π
√

(aym +Kd)2 − (aL/2)2
arctan

[
aL/2√

(aym +Kd)2 − (aL/2)2

]
(4.19)

Doing the same approximation as in the 1D case, which is that L� ym in general, we get:

∆R ' KdRtotaL

π(aym +Kd)2
(4.20)

In both the 1D and the 2D calculation (and this could be extended to 3D), the difference
in receptor occupancy is therefore proportional to

a

(aym +Kd)2
(4.21)

which shows the importance of both the slope of the concentration profile a and of the mid-
point concentration aym. The analysis presented here slightly differs from the one shown in
Song et al. [109] in that we average the receptor occupancy in each half of the cell. In [109],
the authors compared the receptor occupancy at the very top of the cell (where the concen-
tration is maximal, cmax) to the receptor occupancy at the very bottom of the cell (where the
concentration is minimal cmin). This is equivalent to having a concentration profile looking
like a step function, with all the receptors of the lower half of the cell sensing a concentration
cmin and all the receptors of the upper half of the cell sensing a concentration cmax. Using
our formula, we will therefore get lower estimates of the difference in receptor occupancy than
in [109].

4.5 Preprocessing: excluding cell tracks

After these preliminaries, we move on to the data processing. First, we explain why several
cell tracks were excluded before performing the analysis.

4.5.1 Excluding cell tracks based on their length

The tracking algorithm, described in section 4.3.2, is not always able to find a complete cell
trajectory. For example, this is the case when two cells run into each other, and the centroids
of these two cells become undistinguishable. It also happens that the position of the cell’s
centroid jumps too large of a distance between two consecutive frames for the algorithm to
be able to connect the dots. For this reason, the cell tracks are sometimes interrupted. The
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Figure 4.7: Typical histogram of the length of the cell tracks found by the tracking algorithm.
As a total, 6342 tracks were identified. More than 60% of them are shorter than one minute.

histogram of length of all cell tracks is shown on figure 4.7, for one typical experiment. As
can be seen, more than 60% of the tracks are shorter than one minute.

In our later analysis, we will need to calculate the average velocity along a cell track. The
greater the number of points in a track, the more accurate this average velocity will be. It is
therefore important that our track be not too short, and we want to discard all tracks that
are shorter than a given length. On the other hand, if the threshold length is too high, we
will retain too few tracks. We decided arbitrarily to put the threshold at 60 points (keeping
tracks longer than 10 minutes). In our particular example shown on figure 4.7, this left us
with 247 tracks out of the initial 6342.

4.5.2 Excluding pre-polarized cells coming from the top of the channel

As already mentioned in 4.2.2, the cAMP gradient does not cover the whole width of the
gradient mixer. Some cells are near the top of the channel, where there is no gradient. These
can be cells that have crawled up the gradient and reached the top, or ones that were already
at the top of the channel at the beginning of the experiment. These cells show a random
motion and sometimes crawl down into the gradient region. It then takes them some time
to sense the gradient and go back to the top of the channel again. Examples of such tracks
are shown on figure 4.8. This behavior in itself is very interesting: it tells us how long it
takes for a prepolarized, moving cell, to sense a gradient pointing in the direction opposite its
motion. It is however a different behavior than the one we would like to quantify, which is
the chemotactic motion of non-prepolarized cells. For this reason, we excluded these tracks
from the analysis. In the example mentioned above, 6 tracks showed this behavior. This left
us with 241 cells to analyze.

4.5.3 Excluding immobile cells and choice of the time step

In a population of cells, there are always a few cells that are not motile (whether the cells are
in a gradient or in buffer). In all the articles on chemotactic cell motion [127, 30, 109, 34] it
is considered normal to take into account only the moving cells in the analysis of cell motion.
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Figure 4.8: Examples of cells starting their motion at the top of the channel, where there
is no gradient of cAMP. The cell starts to go down the gradient before realizing that the
gradient points up, and crawling up again. This kind of tracks was excluded from the later
data processing. Solid line: borders of the gradient mixer. Dashed line: limits of the gradient
region. Axis labels: pixel coordinate (pixel size: 0.6409 µm).

This introduces an arbitrary parameter in the data processing: we have to decide when a
cell is immobile and when it is not. In our case, we base our exclusion criterion on the cell’s
displacement. The time step used to calculate the cell’s velocities will be chosen based on our
exclusion criterion. We have shown that the error on the position of the cell centroid was on
average 1.8± 0.8 pixels. Between two consecutive time steps, the cell moves a distance d. For
this distance to be accurately measured, it has to be bigger than the error of the segmentation
algorithm, i.e. d > 1.8 + 0.8 = 2.6 pixels, equivalent to 1.7 µm.

We excluded cells that were not fulfilling this requirement as follows. First, we enclosed
the trajectories in circles and defined the track length by the length of the circle diameter (see
figure 4.9a). The distribution of track length is shown on figure 4.9b. We chose to keep all
trajectories whose enclosing circle had a diameter larger than 30 µm. Because the cell tracks
were at least 10 minutes long, the cells’ speeds were on average 3 µm/min. This ensures that
1.7 µm were covered on average in 40 seconds, which will be the time step used in the rest of
this chapter to calculate velocities. The choice of keeping cell tracks that were longer than 30
µm comes from a compromise. The longer the threshold length, the smaller time step we can
use, but the more cell tracks we discard. The smaller the threshold length, the more cells we
can keep, but the bigger the time step has to be, which reduces the number of points in each
track. In the end, out of the 241 tracks that we had above, 221 remained.

4.6 Chemotactic behavior in different gradients

Now that the data have been preprocessed, we come to the analysis of cell motion as a
function of the gradient. When cellular chemotaxis is assayed, it is common to report two
average quantities: the cells’ average speed v̄, and their average chemotactic index (CI), which
is defined differently by different groups. Varnum and Soll [124] defined the chemotactic index
for each cell as the length of the path in the gradient direction divided by the total length
of the track, i.e. CI = v̄y/v̄ where v̄y is the average velocity in the gradient direction. Note
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Figure 4.9: (a) Example of a circle enclosing a cell track. In the rest of the chapter, we discard
all cells whose enclosing circles have a diameter smaller than 30 microns. Axes: position, in
microns. (b) Distribution of track lengths.

that this definition implies to calculate v̄, whose value depends on the time step used. This
is the definition used in the recent article by Fuller et al. [34]. Other groups define the
chemotactic index as the average cosine of the angle between the cell’s direction and the
gradient, i.e. CI = vy/v. Up to a numerical factor, this is the definition used by Fisher
et al. in [29, 30]. The CI defined in this way does not depend on the time step used, but
it also does not take into account the tortuosity of the path followed by the amoeba. We
used the first definition of the chemotactic index. The efficiency of cellular chemotaxis is
then characterized by comparing the different values of these average quantities, obtained
under different experimental conditions. Different experimental conditions may correspond
to different mutants lacking or overexpressing given genes, and put in the same gradient of
chemoattractant (see for example [44, 36]). Or one might want to characterize, like we do,
the chemotaxis of wild-type cells in different profiles of chemoattractant [30, 109]. In this
section, we show the evolution of the chemotactic index and of the average speed of all cells as
a function of the gradient applied. A quantitative understanding of this evolution is yielded
by introducing the signal-to-noise ratio (SNR), which takes into account the noise due to the
stochasticity of chemical reactions in the chemotactic pathway, and compares this noise to the
average chemotactic signal seen [119].

4.6.1 Stationarity of the velocity histograms with time

We plotted on figure 4.10 a typical histogram of the the velocities vx, vy and of the speed
v of cells as a function of time. In this particular case, the histograms were stationary from
between 5 and 50 minutes after the gradient was turned on. In a couple of experiments, the
histograms were stationary starting from the tenth minute on. For this reason, we will consider
only the data taken between 10 and 50 minutes. The non-stationarity during the first five to
ten minutes of the experiment may be explained by the fact that the gradient of cAMP takes
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time to establish. At the end of the experiment, after 50 minutes, the faster cells have reached
the top of the channel, and the slow ones are the only remaining.

4.6.2 Cellular velocity as a function of the gradient

We plotted on figure 4.11 the mean velocities vx, vy and v of all cells as a function of the
gradient strength. The error bars show the standard error. The results are qualitatively
similar to the ones of Fisher et al. [30], and agree quantitatively with Song et al. [109] and
Theves [117]. In most of the cases (filled circles), the concentration in the microfluidic channel
was 0 on one side and cmax on the other. For these points, the lower x-axis shows the gradient
of cAMP applied (in nM/µm), while the upper x-axis shows the midpoint concentration in the
microfluidic channel (in nM). In some cases (empty circles), however, the lower concentration
in the channel was set to a non zero value. In these cases, we decided to plot the points at their
correct gradient value (lower x-axis), but the midpoint concentration shouldn’t be read from
the upper x-axis. We will see later how we can build a parameter that takes into account both
the amplitude of the gradient and the midpoint concentration seen. For the time being, we
can however note that the midpoint concentration plays a role in the ability of a cell to sense a
gradient (contrarily to what was concluded in [109] within their experimental precision). For
example, for the empty circles at a gradient of 0.03 nM/µm, the midpoint concentration is
105 nM. The chemotactic index of these cells is clearly different from the chemotactic index
of the cells that experience the same absolute gradient but a midpoint concentration of 5 nM.
However, the average speeds of both these cell populations are similar. The case where no
gradient is applied (cmin = cmax = 0) has been drawn artificially at a midpoint concentration
of 0.005 nM.

4.6.3 Difference in receptor occupancy

In Song et al. [109], the authors provide a tentative explanation for the observed evolution
of the chemotactic velocity vy as a function of the gradient. They estimate the difference in
receptor occupancy between front and back of the cell, and show that the cells behave chemo-
tactically when this difference is on the order of 10 receptors, but not below. In section 4.4.2
we showed that, in the case of a 2D cell, ∆R depended both on the slope a of the concentration
profile and on its midpoint aymt:

∆R =
KdR0aL

π(aym +Kd)2
(4.22)

where Kd is the binding constant of cAMP to the cAMP receptor on the cell membrane, R0 is
the total number of receptors on the membrane and L is the length of a cell. On figure 4.12, the
evolution of ∆R with the gradient and the midpoint concentration is shown, with Kd = 230
nM [25], R0 = 70 000 [25] and L = 10 µm [109]. In our device, when the concentration profile
runs from 0 to cmax, the increase of the absolute gradient is simultaneous to an increase in
the midpoint concentration value. Because of this increase in the midpoint concentration,
receptors saturate and the difference in receptor occupancy between front and back decreases
for steep gradients. We plotted the evolution of the chemotactic index as a function of ∆R on
figure 4.12c. It appears that the difference in receptor occupancy is not perfectly correlated
the observed behavior: at same values of ∆R, different chemotactic behaviors can be observed,
and different values of ∆R lead to the same chemotactic behavior. Note moreover that on
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Figure 4.10: Typical evolution of the (a) vx, (b) vy and (c) v histograms with time for all
cells. The time step used to calculate the velocity is 40 seconds. The histograms are binned
by time ranges of 5 minutes, dark blue being the earliest histogram measured (between 0 and
5 minutes after the gradient has been turned on) and red being the latest histogram measured
(between 45 and 50 minutes after the gradient has been turned on). The histograms are
stationary between 5 and 55 minutes.
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Figure 4.11: Evolution of the velocities (a) vx, vy, (b) the speed v, and (c) the chemotactic
index with the gradient for all cells. The first point (plotted at a midpoint of 0.005 nM)
had no gradient applied, and was drawn at a non-zero midpoint concentration because of the
logarithmic scale. The filled circles show the experiments for which the cAMP concentration
in the channel went from 0 to a value cmax. The empty circles correspond to points where the
lower concentration in the channel was set to a nonzero value. For these points, one cannot
read the midpoint concentration from the upper x-axis. For the empty circles at a gradient of
0.03 nM/µm, the midpoint concentration was 105 nM. For the empty circle at 0.14 nM/µm,
the midpoint concentration was 75 nM. For the empty circles at 0.29 nM/µm, the midpoint
concentration was 70 nM.
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figure 4.12c, the empty circles are systematically below the filled ones: cells experiencing a
given difference in receptor occupancy chemotax less well when the midpoint concentration
is raised. This strongly suggest that the data could be quantitatively explained if we had a
quantity combining both the effect of the midpoint concentration and the gradient. Moreover,
we see on these graphs that the maximal difference in receptor occupancy is of the order of
350 receptors. When this is the case, on average 23 000 receptors are occupied. It is therefore
important to take into account the fluctuations in the binding/unbinding process, which is
the aim of the next paragraph.
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Figure 4.12: (a) Difference in receptor occupancy calculated using equation 4.19, as a function
of the gradient. The concentration profiles run from cmin to cmax. The value of cmin is indicated
by the colorbar. The gradient spans over 350 µm. (b) Difference in receptor occupancy, with
our experimental conditions shown by the dots. Note that the maximal difference in receptor
occupancy is of the order of 350 receptors, out of a total of 70 000. (c) Evolution of the
chemotactic index with the difference in receptor occupancy ∆R. There is no one-to-one
relationship between the chemotactic index and the difference in receptor occupancy. (d)
Average speed as a function of ∆R.
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4.6.4 Signal to noise ratio

The stochasticity of receptor binding and its impact on D. discoideum chemotaxis has been
studied theoretically in recent articles by Rappel and Levine [89, 88]. At the lower limit of
detection, the relationship between the chemotactic index of a cell and the fluctuations of
the chemoattractant binding on the receptor was experimentally quantified by Van Haastert
and Postma [122]. In the following section, we will follow the more general approach of Ueda
and Shibata [119] to understand the effect of the fluctuations of cAMP binding on gradient
sensing.

It seems reasonable to assume that the number of binding events in two nonoverlapping
time intervals are independent, and that moreover the probability distribution of binding
events during a time interval depends only on the length of this time interval. If we add to
these two properties the fact that the probability to have two binding events in a very small
time interval should essentially be zero, we get the result that binding is a Poisson process.
This has been confirmed experimentally by Ueda et al. in [118]. In a uniform concentration
C of cAMP, the number of occupied receptors R∗ is :

R∗ = Rtot
C

C +Kd
(4.23)

where Kd is the dissociation constant (see section 4.4.2). The stochastic fluctuations δR∗

about the steady state R∗ have a variance given by:〈
(δR∗)2

〉
=

Kd

C +Kd
R∗ (4.24)

The proof of this equation is given in Appendix A. The signal to noise ratio is then defined
as:

SNR =
R∗√
〈(δR∗)2〉

(4.25)

This is the SNR describing the fluctuations of receptor occupancy for a cell in a uniform
concentration of cAMP. In our case, the cells are in a gradient of cAMP, and what we would
like to calculate is the noise in the differences in active receptors between front and back. This
was done by Ueda and Shibata in [119], and we will follow their approach in this paragraph.
For the details of the calculations, the reader is referred to [119]. If the gradients we are using
are shallow (the difference of concentration over the cell ∆C is very small compared to the
midpoint concentration C), the difference in occupied receptors between front and back can
be approximated by2:

∆R∗ = gR
∆C
C

R∗

2
(4.26)

where we have defined the gain gR of the binding reaction as

gR =
d logR∗

d logC
=

Kd

Kd + C
. (4.27)

and where R∗ is the average number of occupied receptors around the cell. The noise in the
differences in active receptors between front and back can then be approximated by:

σ2
∆R∗ = gRR∗ (4.28)

2In appendix A we give the general formula for the SNR without making any approximation on the strength
of the gradient.
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so that the SNR is given by:

SNR =
∆R∗

σ∆R∗
=

∆C
2
√
C

√
KdRtot

C +Kd
(4.29)

The SNR is calculated at the middle of the channel for each experiment. The evolution of
the SNR with the gradient is shown on figure 4.13b. Note that the difference in SNR for cells
experiencing the same gradient but different midpoint concentrations is more marked than the
difference that we had observed in the receptor occupancy (compare figures 4.13b and 4.12b).
The chemotactic index of the cells as a function of the SNR is plotted on on figure 4.13c. The
correlation between chemotactic index and SNR is clearer than it was between chemotactic
index and difference in receptor occupancy. However, we have taken into account only the
noise at the receptor level. After the binding of cAMP to the cAR1 receptor, a sequence of
numerous intracellular reactions are triggered, that lead to chemotactic motion (see chapter 1
for an overview of the biological details). Along this biological pathway, both the signal and
the noise are propagated. Imagine that we have the following reactions:

C +R
k1−⇀↽−
k−1

R∗ R∗ +X
k2−→ R∗ +X∗ X∗

k−2−→ X (4.30)

and define the following time constants:

τR = (k1C + k−1)−1 τX = (k2R
∗ + k−2)−1 (4.31)

as well as the gains of the two reactions:

gR = K1 (K1 + C)−1 gX = K2

(
K2 +R∗

)−1 with Ki =
ki
k−i

(4.32)

Then, Shibata and Fujimoto [104] showed that the fluctuations in the second reaction can be
written as:

σ2
X =

[
gXX∗ + g2

X

τR
τR + τX

σ2
R

R∗
(X∗)2

]
. (4.33)

The first term of 4.33 corresponds to the intrinsic noise of the second reaction. The second
term corresponds to the propagation of the noise of the first reaction to the second reaction,
and is termed extrinsic noise. If the time constant of the input noise τR is much smaller than
τX , the noise is averaged out.

Equation 4.33 can be generalized to a biological pathway with much more than 2 reac-
tions. However, Ueda and Shibata considered in [119] only the first biochemical event of the
intracellular pathway after the binding of cAMP to cAR1, which is the dissociation of the
G protein. Still, they were able to fit quite well the data of Fisher [30], and related the ex-
perimentally observed chemotactic efficiency from [30] to their theoretically estimated SNR
after dissociation of the G protein. The basis of the formula is equation 4.33, which has to be
slightly adapted for a cell experiencing a gradient, and becomes3:

SNR =

[
∆X∗2

σ2
∆X

]−1/2

=

[
1

gXX∗

(
R∗

∆R∗

)2

+
τR

τX + τR

(
σ2

∆R

∆R∗

)2
]−1/2

(4.34)

3As earlier, this equation is valid for shallow gradients, when ∆C � C. For the general case, the reader is
referred to Appendix A.

115



4.6. Chemotactic behavior in different gradients

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
20

0.5

1

1.5

2

2.5

Concentration gradient (nM/ µm)

S
N

R

 

 

    0

   10

  100

 1000

10000

(a)

 0

 0.5

 1

 1.5

 2

 2.5

0.001 0.01 0.1 1 10
S

N
R

Concentration gradient (nM/µm)

(b)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 0.5 1 1.5 2 2.5

C
h

e
m

o
ta

c
ti

c
 i

n
d

e
x

SNR

(c)

 5

 6

 7

 8

 9

 10

 11

 12

0 0.5 1 1.5 2 2.5

S
p

e
e

d
 (
µ

m
/m

in
)

SNR

(d)

Figure 4.13: (a) SNR at the receptor level calculated using equation 4.29, as a function of the
gradient. The concentration profiles run from cmin to cmax. The value of cmin is indicated by
the colorbar. The gradient spans over 350 µm. (b) SNR at the receptor level, with the dots
indicating where the experimental data was taken. Lines: theoretical curves for the different
values of cmin. (c) Chemotactic index as a function of the SNR. (d) Average speed as a function
of the SNR. Empty/filled circles as in figure 4.11.
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where X is the second-messenger, here the G-protein, which gets activated (X∗) when a ligand
binds to the receptor R. We have plotted on figure 4.14a the evolution of the SNR as a function
of the gradient of cAMP4. As for the difference in receptor occupancy and the SNR at the
receptor level, the SNR after dissociation of the G protein shows a maximum whose value and
position depend on both the gradient and the value of cmin. At a given value of cmin, the SNR
is small both at low and high gradients. The average chemotactic index is shown as a function
of the SNR on figure 4.14b. There is a clear correlation between the SNR and the chemotactic
index. This correlation reflects the correlation between the average chemotactic velocity vy
and the SNR (figure 4.14c). The average speed is shown on figure 4.14d as a function of
the SNR. Looking only at the experiments where the concentration profile starts at 0 (filled
circles), we see that the speed goes up with the SNR, and reaches a plateau. Because the
experiments with an offset concentration (empty circles) do not fit on this graph however, the
SNR is likely not the quantity which explains cellular speed.

Collapsing the data from different sources

In the previous paragraph, we computed the average chemotactic index for cells in one exper-
iment. We now test the formula for the SNR further, and estimate the SNR at each position
of the cell tracks, for all experiments. The cells’ velocity vy and speed v was calculated at
each time, enabling us to define the chemotactic index CI = vy/v. The data was then binned
according to the SNR using a bin size of 0.05. In this case, different experiments contribute to
the same bin for the SNR. The results of the binning are showed on figure 4.15. We compared
our data with the existing data from the literature [34, 30] (see figure 4.16). The compari-
son with Fuller et al., where the authors systematically changed the midpoint concentration
and the gradient that the cells were experiencing using exponential gradients, is shown on
figure 4.16b. Note that in Fuller et al., the data was taken with a time step of 5 seconds,
smaller than our time step of 40 seconds, which has an influence on the value of the CI. Note
also that we do not know which cells were excluded from the data processing in [34]. Still, the
agreement between the datasets is very reasonable. The comparison with the data of Fisher
et al. is shown on figure 4.16d. We used the same time step as in [30], as well as the same
definition of the CI as in [30]. The data of Fisher’s shows a slight discrepancy with ours, which
could be explained by three factors. First, the SNR changes across the gradient chamber, and
we do not know the distribution of cells in the chamber. Because of this, the average SNR seen
by the cell population could be different than the SNR in the middle of the chamber. Second,
in the absence of a flow, diffusion increases the gradient around the cells (see section 4.4).
The midpoint concentration stays the same however. This would shift the data of Fisher et
al. towards higher values of the SNR. Last, the cell lines used in Fisher et al. and in our
experiments are different (X22 in [30], AX2 in our experiments).

Also note that the SNR that we use is a a combination of the noise at the receptor level
and at the intracellular level. By construction of the SNR, the noise at the receptor level
dominates at low midpoint concentrations, while the intracellular noise dominates at high
midpoint concentrations [119]. This interplay between the two noise contributions and their
relative importance was the main conclusion of Fuller et al. [34], who used an information-
theoretic framework to characterize chemotactic cell motion.

4As above, the SNR has been calculated at the middle of the channel.
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Figure 4.14: (a) SNR after binding of cAMP to cAR1 and dissociation of the G protein, as
a function of the gradient. Lines: theoretical curves for the different values of cmin, with
values of the parameters taken from [119]. The dots indicate where the experimental data was
taken.(b) Chemotactic index, (c) average chemotactic velocity vy and (d) average cell speed
as a function of the SNR. Empty/filled circles as in figure 4.11.
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Figure 4.15: The SNR was calculated at each position of the cell track for all experiments, as
were the chemotactic velocity vy and the chemotactic index. Both quantities vy and CI were
then binned according to the SNR, with a bin size of 0.05. (a) Average chemotactic velocity
vy as a function of the SNR. (b) Average CI as a function of the SNR.

4.6.5 Fraction of long tracks

As mentioned earlier, we took into account only the tracks that were longer than 30 microns.
The fraction of these tracks also shows a correlation with the SNR, as shown on figure 4.17.
Taken together with the previous result, we see that the SNR is both responsible for the number
of cells that exhibit a chemotactic behavior (figure 4.17b) and for the average chemotactic index
of these cells (figure 4.14b).

4.6.6 Angle histogram, speed as a function of the angle

A cell’s trajectory is not a perfect straight line in the gradient direction. Is the cell moving
up the gradient because it makes more steps in the correct direction than in the opposite one
(as shown on the angle histogram, figure 4.18a), making each step with the same speed, or
are the steps in the gradient direction faster than the other ones? We can plot the cell’s speed
as a function of its angle of propagation. The result is shown on figure 4.18b, where we have
averaged the cell speed over bins of range 20 degrees. What we can see on this figure is that
the speed in the gradient direction (θ between 0 and 180 degrees) is bigger than the speed
in the direction opposite the gradient (θ between 180 and 360 degrees). This is in agreement
with what has been reported by Fisher et al. [30] and by Gruver et al. [42].

4.7 Chemotaxis of SCAR/PIR null mutants

4.7.1 Chemotactic index, speed

The same experiments were repeated using SCAR/PIR-null mutants. By activating Arp2/3,
SCAR is a key regulator of the actin cytoskeleton, and SCAR/PIR-null mutants show a peri-
odic polymerization and depolymerization of actin filaments [50]. Because amoeboid motion
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Figure 4.16: (a) Comparison of our data (filled/open black circles as in figure 4.11) with the
data from Fuller et al. [34] (blue circles), when the chemotactic index is plotted as a function
of the gradient of cAMP. For the data of Fuller et al., the gradient was calculated at the
middle of the exponential gradient mixer.(b) Same data, plotted as a function of the SNR. (c)
Comparison of our data (filled/open black circles as in figure 4.11) with the data from Fisher
et al. [30] (red circles: data from figure 5 in [30], green circles: data from figure 6 in [30]),
when the chemotactic index is plotted as a function of the gradient of cAMP. (d) Same data,
plotted as a function of the SNR. We used the same time step and the same definition of the
chemotactic index as Fisher et al. in these two latter figures.
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Figure 4.17: Fraction of tracks longer than 30 µm as a function of (a) the gradient and (b)
the SNR. Empty/filled circles as in figure 4.11. The red line shows a linear fit of the data.
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Figure 4.18: (a) The angle histogram is peaked in the direction of the gradient. (b) Average
speed of a cell as a function of its angle of propagation. When the cell is going in the gradient
direction, its speed is higher than when it goes in the opposite direction. Error bars show the
standard error.
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is due to actin polymerization, it was expected that these mutants chemotact poorly to cAMP.
The chemotaxis of vegetative cells to folic acid was already reported to be impaired in [11].

Our experimental results are summarized on figure 4.19. Note that there is still a correla-
tion between the chemotactic velocity and the SNR, indicating that the SNR at the G-protein
level is still a good quantity to describe chemotactic cell motion, even if the chemotactic
pathway has been disrupted. This tends to confirm the claim of Ueda and Shibata that the
most important intracellular noise term comes from the G-protein dissociation [119]. We can
compare the results from the SCAR/PIR mutants to that of the wild-type (WT) cells (see
figure 4.20). Surprisingly, at a given SNR, the chemotactic index of the SCAR/PIR mutants
is equal or higher than the chemotactic index of the wild-type cells. This is due to a simi-
lar chemotactic velocity vy between both cell lines (figure 4.20b), but a smaller speed of the
SCAR-PIR mutants compared to the WT cells (figure 4.20c).
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Figure 4.19: Evolution of the velocities (a) vx, vy, (b) the speed v, and (c) the chemotactic
index with the gradient for all cells. The first point, drawn at a midpoint of 0.005 nM,
corresponds to the case where no gradient is applied, and is drawn artificially at a non-
zero midpoint concentration because of the logarithmic scale. In all experiments, the cAMP
concentration in the channel goes from 0 to a value cmax. (d) Evolution of the chemotactic
index, (e) of the chemotactic index, and 4.19f of the average cell speed with the SNR.

4.7.2 Fraction of long tracks

In [11], Blagg et al. reported that the SCAR/PIR mutants were twice slower than the WT
cells, and less chemotactic. The authors assessed the chemotaxis of vegetative cells to folic
acid, but we could have naively expected the same result to hold for the chemotaxis of starved
cells to cAMP. From our experiments, we however found the speed of the mutants to be
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Figure 4.20: Comparison of the WT cells (filled circles) with the SCAR/PIR mutants (empty
circles). (a) Chemotactic index, (b) chemotactic velocity vy and (c) speed v, as a function of
the SNR. At similar values of the SNR, the speed of the SCAR/PIR mutants is lower than
that of the WT cells, but the chemotactic velocity vy is comparable for both cells lines, leading
to a higher chemotactic index for the SCAR/PIR mutants.

slower by a factor of roughly 80% compared to the WT cells, and their chemotactic index to
be higher than the one of the WT cells. This qualitative difference between Blagg’s results
and ours could be explained by the fact that Blagg et al. analyzed the cells at the population
level and, as far as can be understood from their article, did not make a distinction between
immobile and mobile cells. We did this distinction by excluding all tracks smaller than 30 µm,
as explained in section 4.5. We plotted the fraction of tracks longer than 30 µm as a function
of the SNR on figure 4.21a and compared it to the wild-type cells (figure 4.21b). At a given
SNR, the fraction of tracks moving over more than 30 microns is smaller for the SCAR/PIR
mutants than for the WT cells. We conclude that the mutants are indeed impaired in their
motility: in a buffer solution, 20% of them only move a distance of more than 30 microns,
compared to 50% of the wild-type cells. This fraction increases with the SNR, but stays lower
than the fraction of WT. In other words, the mutants that chemotact have a similar behavior
to the WT cells 4.20, but a smaller fraction of the population acts chemotactically. This could
explain the results of Blagg et al. at the population level.

4.8 Summary

To summarize this section, we have seen that both the absolute value of the gradient and the
midpoint concentration were important for the efficiency of gradient sensing. Because of the
very low difference in the receptor occupancy between front and back of the cell (maximally
350 more occupied receptors at the front than at the back, out of a total of 70,000 receptors),
stochastic effects become important. A quantity taking into account the slope of the concen-
tration profile, its midpoint concentration and the stochastic fluctuations is the signal to noise
ratio (SNR). Considering the noise at the receptor level and its propagation at the level of
the G protein, it is possible to observe a rescale our datasets with data taken earlier from the
literature. The agreement with data from [34] taken in microfluidic devices is in particular
very good, even though the gradients used in [34] are exponential and ours are linear. The
number of cells that responds chemotactically is also increasing with the SNR. When a key
regulator of the actin cytoskeleton, SCAR, is disrupted, the average cell speed is reduced but
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Figure 4.21: (a) Fraction of tracks longer for the SCAR/PIR mutants, as a function of the
SNR, and (b) comparison with the WT cells. Under similar SNR conditions, more of the
SCAR/PIR mutants are immobile.

the chemotactic velocity stays comparable to the chemotactic velocity of the WT cells. Both
for the WT cell and the SCAR mutants (data not shown) the speed of the cells depend on their
direction of propagation: steps made in the gradient direction are faster than steps opposite
the gradient direction.

Up to now, we have been interested only in average quantities. In the next section, we will
describe histograms, and reproduce them using a generalized Langevin equation.

4.9 The Langevin equation

In the previous part of this chapter, we assessed the chemotactic performance of a population
of cells using average quantities over time, such as the average velocity of cells in the gradient
direction, or the chemotactic index. This approach is standard in the literature. However,
these average quantities can only convey a limited information about cell motion. By defini-
tion, they do not tell anything about the fluctuations inherent in cell motility. Therefore, two
different cell lines may exhibit a very different motion under the same external conditions, but
time-averaged quantities such as the average speed, average velocity in the gradient direction
or chemotactic index might still be the same for both cell types. To fully characterize chemo-
tactic motion, one has to go beyond a description in terms of average quantities, and take
into account the temporal fluctuations of cell velocities. In the rest of this chapter, we achieve
this aim by modeling the motion of chemotactic cells using a Langevin equation. The shape
of the deterministic and stochastic components of the Langevin equation is found directly
from the experimental motility data, using a method introduced in [105]. We analyze the
motion both wild-type and SCAR/PIR mutants using this analysis. For a given cell type, the
evolution of both stochastic and deterministic parts of the Langevin equation as a function of
the gradient is discussed. Then, it is shown that, in a gradient, the deterministic components
characterizing the motion of both cell lines are similar. However, the stochastic components
differ between the wild-type and mutant cells.
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4.9.1 The early times of a theory of Brownian motion

When he introduced his theory of Brownian motion in 1905 [27], Einstein described the po-
sition of a Brownian particle at discrete time intervals making two important assumptions.
First, all Brownian particles should move independently from one another (no correlation in
space). Second, the time interval considered should be big enough so that the motion of a
single Brownian particle at one time step is not correlated with its motion at the previous
time step (no correlation in time). Einstein’s approach was a probabilistic one: starting from
the number of particles that underwent a given displacement in one time step, he was able
to derive the diffusion equation for the density of Brownian particles. The average square
displacement of a particle after a time τ is then given by the usual formula:

< x2(τ) >= 2Dτ (4.35)

where D is the diffusion coefficient of the particle. Three years later, the same result was
recovered by Paul Langevin by the means of what he claims to be an “infinitely more simple
demonstration" [66]. Langevin describes the motion of a Brownian particle using Newton’s
equation of motion, where the particle is subject to a viscous drag η and to a random force
F . This random force maintains the thermal agitation of the particle, whose velocity would
otherwise go to zero:

m
d2x

dt2
= −ηdx

dt
+ F (4.36)

Integrating the above equation and using equipartition of energy, Langevin then arrived to
the result:

< x2(τ) >=
2kBT
η

[
τ +

m

η
(e−

η
m
τ − 1)

]
=

2kBT
η

[
τ + τc(e−τ/τc − 1)

]
(4.37)

where we have introduced τc = m/η. Einstein had shown in [27] that the diffusion coefficient
of a species was related to temperature and to the drag coefficient by:

D =
kBT

η
(4.38)

At times longer than τc = m/η, we therefore recover Einstein’s result. The time τc represents
the characteristic time between two collisions, after which the particle has lost its memory
about its previous state. It is a correlation time. At times shorter than τc, the motion of the
particle is not randomized through multiple shocks with other particles and should therefore
be ballistic, which is also what we recover from equation 4.37.

In 1913, Karl Przibram observed the motion of Paramecia under a microscope [87]. By
computing the average squared distance covered by the Paramecia at different times, he was
able to show that, within the precision of his experiment, the motion of the organism was
diffusive.

4.9.2 Introducing correlations in Brownian motion

In 1920, Reinhard Fürth [37] complemented Einstein’s theory of Brownian motion by adding
a correlation in the motion of a Brownian particle. He considered a particle moving on a
line. If the particle is moving to the right at time t, it has a probability p to go the right at
time t + τ and a probability (1 − p) to go the left. In the case of Brownian motion without
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correlation, p = 0.5. In the case where the motion is strongly correlated (p ∼ 1), Fürth recovers
equation 4.37 for the expression of the average quadratic displacement of the particle, only
the characteristic time is now given by:

τc =
1

2(1− p)
(4.39)

Written as a function of τc, the dimension n of the space in which the walk takes place, and
the diffusion coefficient D of the Brownian walker, Fürth’ s formula for the average squared
displacement of a correlated Brownian walker reads:

< x2(τ) >= 2nD
[
τ + τc(e

− τ
τc − 1)

]
(4.40)

In the same article [37], Fürth applies his formula to describe the motion of Paramecium. The
presence of a persistence time makes Fürth’s description more precise than Przibram’s [87].
Since then, analyzing cell motion by the means of a Langevin equation became the topic
of numerous articles (see e.g [38], [98], [97], [103], [100]). One should note that describing
cell motion using a Langevin equation has no physical or biological foundation. A Brownian
particle has a mass, is subject to friction, and is randomly moving because of the constant
shocks that it receives from neighboring molecules. The Langevin equation of a Brownian
particle is describing a passive process. On the contrary, cell movement is an active process
that has most likely little to do with the cell’s mass or with random external forces. In this
case, the Langevin equation can be used as an efficient and practical tool that separates the
deterministic component of motion from its stochastic contributions.

4.9.3 Recent applications of a Langevin equation to cell motion

Generic models

In the beginning of the 1990ies, Schienbein and Gruler [98] described the motion of granulo-
cytes using two independent Langevin equations. One of the equations was accounting for the
speed of the cells v while the other one described the evolution of their angle of propagation
θ. As the authors themselves put it, their description amounts to comparing “the migrating
cells [. . . ] with a driven car where the amount of speed, adjusted by the gas pedal, and the
moving direction, adjusted by the steering wheel, can be independently altered”. The authors
also took into account that granulocytes, when subject to an electric field, move towards the
positive electrode:

∂v

∂t
= γ(v − vt) + Γv(t) (4.41)

∂θ

∂t
= −kPE sin θ + Γθ(t) (4.42)

where vt represents the target speed of the cell, E is the electric field and kP quantifies the
effect of the electric field on the cell motion. The noise terms Γv(t) and Γθ(t) satisfy:

< Γi(t) >= 0 < Γi(t)Γj(t′) >= δijqiδ(t− t′) (4.43)

The fit of these equations on their experimental data is good, but not perfect, as can be seen
on figure 4.22. In particular, the tails of the experimental speed distribution are larger than
the theoretical gaussian fit.
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Figure 2. Stationary speed distribution of granulocytes. The dots represent 

experimental results (original data of Franke and Gruler, 1990; At = 10 see). The 

solid line is the theoretical function [equation (7)] obtained by a least-square fit 

(G = 17 #m/min and q,,/~JT~=9 #m/min).  

The steady state distribution, I,V~t(v), is a Gaussian centred at G: 

Wst(V)= W 0 exp(-q~?--~ (v -G)2) .  (6) 

The constant W 0 is obtained from the normalization condition, ~ Kt(V) dv = 

1. This integral can be solved and the steady-state speed distribution, W~t(v), 
can be approximated by: 

, . .  / 7v / 7o 1,,,., 
.1 

(7) 

if S~ exp(--G/qv(v- G)2) dv is small compared with ~ .  (This inequa- 

lity holds for a narrow out-of-origin centred distribution (G> q,v/qJT~).) 

Equation (7) is a good approximation at least for granulocytes. In Fig. 2 the 

measured speed distribution function is fitted by the theoretically predicted 

curve (the ratio of So_~ exp(_Tjqv(V_Vs)2) dv and ~ is smaller than 

1%). The speed distribution is Gaussian, as predicted by the model. 

The ratio of the speed, G, and the width of the distribution, qx/~/~, can be 

regarded as the signal-to-noise ratio of the chemokinetic response. Franke and 

Gruler (1990) used this ratio as a control parameter: A preparation is regarded 
as good when the signal-to-noise ratio is larger than 1.5. 
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Figure 5. Galvanotaxis dose-response curve of human granulocytes: the polar 
order parameter, (cos ~0), as a function of the electric field strength. The dots 
represent the actual measured polar order parameter (Franke and Gruler, 1990; 
At= 10 sec). The solid line is a theoretical prediction [equation (20)] with 

K~(=4.5 mm/V) as a fitting parameter. 

K R dc 
~b(t)= --k~ (C+KR) z dx sin q~(t)+F(t). (21) 

The coefficient k~ quantifies the mean effect of the cellular signal t ransduct ion/  

response system in case of chemotaxis.  As in galvanotaxis, the chemotaxis  

dose-response curve yields only the ratio of the coefficient, k~ and of the noise 

strength, q~. The experimentally determined value for 2k~ is 9 m m  for 

granulocytes (Gruler, 1990). 

As ment ioned,  the stationary solutions depend only on K G, (=q~/(2kr)). 

Thus,  it is not  possible to determine the quantities q~ and ke separately. Access 

to these quantities can be obtained if instat ionary solutions of equat ion (16) are 

regarded. This will be shown in the following sections. 
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Figure 4.22: (a) Speed distribution W (v) of granulocytes. The dots are the experimental
data and the line is a fit of the model to the data. There is no electrical field applied.(b)
Average of cos θ (order parameter) for different values of the electrical field. The dots are the
experimental data and the line is the theoretical prediction. Figures taken from [98].

In 1997, Shenderov and Sheetz [103] recorded the random motion of D. discoideum for up
to 2 hours. They calculated the turning rate of the cells (in rad/s) and saw that there was
an anticorrelation between the turning rate and the speed of cells: in a population, the faster
cells had a lower turning rate (i.e. had a more directed motion) that slower cells (see 4.23a).
This observation contradicts the original assumption of Schienbein and Gruler, according
to whom speed and turning are two independent mechanisms. Moreover, Shenderov and
Sheetz observed oscillations in the cells’ velocity autocorrelation (see 4.23b). Both of these
observations were accounted for by introducing a memory term in the Langevin equation
describing cell motion:

dvi(t)
dt

= −γvi(t)− β
∫ t

−∞
vi(τ)e−α(t−τ)dτ + Γi(t) (4.44)

where i = {x, y}, Γi has zero mean and is not correlated in time (< Γi >= 0, < Γi(t)Γj(t′) >=
qδijδ(t−t′)). It can then be shown that the cell motion becomes oscillatory under the condition:(

α− γ
2

)2

<
β√
2π

(4.45)

A toy model describing chemical reactions leading to a memory term was proposed in [103],
but the actual mechanism for a memory is still unclear to these days.

The most recent phenomenological Langevin-type model of eukaryotic chemotactic motion
was presented by Hu et al. in [45]. There, the authors described the time evolution of the
angle of propagation of a cell in a gradient of chemoattractant. The study focused on the
impact of stochastic receptor dynamics on the already biased random motion of a cell in a
gradient of chemoattractant. One key assumption of the model was however that cell speed
is independent the angle of propagation, which is not what we experimentally found (see
section 4.6.6).
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(a) (b)

Figure 4.23: (a) Anticorrelation between the turning rate and the speed of cells.(b) Oscillations
in the cells’ velocity autocorrelation. Figures taken from [103].

A more quantitative approach

The models used in the previous section can be analyzed analytically and are quite simple.
They aim at describing the data qualitatively. With computing power and digital cameras
becoming more and more accessible over the years, it became possible to track automatically
cells for several hours, and to fit a generalized Langevin equation to their motion. This
was first done by Selmeczi et al. [100] in 2005, monitoring the motion of HaCaT cells. The
method of Selmeczi et al. to get to the parameters of the Langevin equation will be given
in more detail in section 4.10 and is based on a method pioneered by Siegert et al. [105].
The main result of the article is that no model is assumed, rather the form of the Langevin
equation comes directly from the data. This is what makes the article interesting: from the
data, the authors are able to deduce that the damping is linear with the velocity, that the
Langevin equation should have a memory term of a given shape, and that the noise term
should be proportional to the velocity. After Selmeczi’s paper, three other groups worked
on the random locomotion of D. discoideum. At Princeton, Li et al. [69] used a Langevin
equation to describe the motion of starved D. discoideum. The approach was different than
that of Selmeczi’s because a very general Langevin equation was assumed and its parameters
were then fitted to the data. Moreover, whereas Selmeczi et al. found a Langevin equation
for the cell’s speed, Li et al. did not take into account cellular speed in their analysis and
described cell motion by the cell’s angle of propagation. A couple of months later, Takagi et
al. [114] described the random motion of vegetative and starved D. discoideum. They assumed
the following Langevin equation to describe the evolution of the cell’s speed:

dv

dt
= α0 + α1v + α2v

2 + β2

∫ t

−∞
v(t− t′)e−γt′dt′ + (σ0 + σ1v)Γ(t) (4.46)
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and fitted the parameters to their experiment. To do so, they had to run simulations of
equation 4.46 for different values of all the parameters and find the set of parameters that
reproduced the data the most accurately. Even more recently, Boedeker et al. [12] used the
same method as Selmeczi et al. to get – from the data – the parameters of a Langevin equation
describing the motion of developed and non-developed cells, in different constant backgrounds
of cAMP. They found a much simpler equation than 4.46, which contained no memory term
and in which the damping term was linear. The noise term was multiplicative. None of the
above works considered the motion of starved D. discoideum in a gradient of cAMP. In the
next part of the chapter, we will use the same method as Boedeker et al. to write a Langevin
equation capturing the characteristics of chemotactic cell motion.

4.10 Langevin analysis of the cell tracks

4.10.1 Principle

Consider a cell moving in the microfluidic channel. We define a fixed reference frame (O, ex, ey)
with the x-axis pointing in the flow direction and the y-axis pointing in the gradient direction.
Following Selmeczi [100], we will analyze the cell motion in a reference frame moving with the
cell. We therefore define e‖ to be a unit vector in the direction of the instantaneous velocity
v(t) of the cell, while e⊥ is a unit vector perpendicular to e‖. The angle between the cell’s
instantaneous velocity v(t) and the horizontal is called θ (see figure 4.24).

The cells’ velocities were computed using a time step ∆t = 40 seconds, as explained in
section 4.5. From the velocity vectors ~vj calculated at times tj = j∆t (j = 1, 2, 3, . . . ), we
computed the acceleration vectors ~aj = (~vj+1 − ~vj)/∆t. To separate the deterministic part
from the stochastic part of motion, we wanted to use a generalized Langevin equation to
describe the data:

v̇(t) = F(v(t)) + R(v(t))Γ(t). (4.47)

In this equation, F(v) is a deterministic force5, R(v) is the noise amplitude, and Γ(t) is the
noise term, that satisfies

< Γi(t) >= 0 and < Γi(t)Γj(t′) >= δijδ(t− t′) (4.48)

where Γi indicates the i-th component of Γ. The aim of our work was to determine the
functions F(v) and R(v) from the experimental data. This can be achieved using conditional
averaging, as we now explain. Call v the amplitude of the velocity v and θ(t) its angle with
the horizontal. Then, in order to find F‖(v), one should ideally calculate (see e.g [94]):

F‖(v0) = lim
dt→0

1
dt

〈
[v(t+ dt)− v(t)] · e‖(t)

〉
v(t)=v0

(4.49)

where e‖(t) = v(t)
v . The perpendicular component F⊥(v0) is found in a similar way, by

replacing e‖ in the above expression by e⊥. Practically, we approximated this exact expression
by:

F‖(v0) ≈ 1
∆t
〈
[v(t+ ∆t)− v(t)] · e‖(t)

〉
|v(t)−v0|≤∆v, |θ(t)−θ0|≤∆θ

(4.50)

5In our case, this “force” is of course not a force in the sense of Newton’s law. However, for lack of a better
terminology, we will refer to the “forces” that drive cell motion.
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Figure 4.24: Definition of the axis that will be used for the analysis of cell motion: e‖ is
a unit vector in the direction of the instantaneous velocity v(t) of the cell, and e⊥ is a unit
vector perpendicular to e‖. The angle between the cell’s velocity v(t) and the horizontal is θ.

where ∆t is the (discrete) experimental time interval, v(t) is within ∆v of v0, and the angle
θ(t) is within ∆θ of θ0, the angle that v0 makes with the horizontal.

The noise terms are calculated according to:

RijRjk(v0) =
1

∆t
< [(v(t+ ∆t)− v(t)) · ei(t)− Fi(v0)∆t]×

[(v(t+ ∆t)− v(t)) · ek(t)− Fk(v0)∆t] >|v(t)−v0|≤∆v, |θ(t)−θ0|≤∆θ

(4.51)

4.10.2 Chapman-Kolmogorov

The method mentioned above to determine the coefficients of a Langevin equation from a
stochastic dataset was pioneered by Siegert et al. [105, 33, 60, 61]). As noted in [105], writing
that the noise is δ-correlated (< Γi(t)Γj(t′) >= δijδ(t − t′)) is equivalent to writing that the
system has no memory: the dynamics of the system depend only on its current state, not
on what has happened before. In other words, the system is Markovian and we can define a
probability to go from a velocity v0 at time t0 to a velocity v1 at time t1 = t0 + ∆t. This
probability does not depend on the previous states v−n that the system was in at previous
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times tn = t0−n∆t (n ∈ N∗). We can then write, considering a time ti such that t0 ≤ ti ≤ t1:

p(v1, t1|v0, t0) =
∑
vi

p(v1, t1|vi, ti)p(vi, ti|v0, t0) (4.52)

This is the Chapman-Kolmogorov equation, and gives us a condition under which we are al-
lowed to use the analysis presented above. Strictly speaking, having the Chapman-Kolmogorov
equation satisfied does not imply that the process we are studying is Markovian. It is a nec-
essary condition, but not a sufficient one [61]. However, it is often (if not always) taken as a
sufficient condition in the literature. We checked the that the Chapman-Kolmogorov equation
was verified for all our data sets. The velocities vx and vy were each binned into 20 bins
and the time step used was 40 seconds (t1 = t0 + 80 seconds, ti = t0 + 40 seconds). To
compare both sides of the equation, one had to compare 2D probabilities: v0 = (vx0, vy0)
was kept fixed, while one computed p(v1 = (vx1, vy1), t1|v0 = (vx0, vy0), t0) for all values of
v1 = (vx1, vy1). To ease the visual representation, we did not plot the 2D probability but
considered the one-dimensional probability p(vy1, t1|vx1, t1,v0 = (vx0, vy0), t0) for all values
of vx1 at a given v0. Examples of such probabilities are shown on figure 4.25 for different
v0 = (vx0, vy0) and vx1, where both sides of the Chapman-Kolmogorov are plotted. It is seen
that the Chapman-Kolmogorov condition is verified, which allows us to continue with our
Langevin analysis of cell motion.
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Figure 4.25: Checking the Chapman-Kolmogorov condition. Red dots: lhs of equation 4.52.
Black line: rhs of equation 4.52). (a)(vx0, vy0) = (−4, 8) µm/min, vx1 = −4µm/min
(number of points contributing to the histogram: 39). (b)(vx0, vy0) = (0.3, 0.8) µm/min,
vx1 = −4µm/min (number of points contributing to the histogram: 127).

4.10.3 Conditional averaging - deterministic terms

In the following, we use a typical dataset to describe how we find the functional forms of the
deterministic part F(v, θ) and the stochastic part R(v, θ) of equation 4.47. The data used for
this example come from an experiment where the concentration profile ran from 0 to 500 nM
(gradient: 1.7 nM/µm, SNR in the middle of the channel: 0.7). We used a constant binning
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size for the angle ∆θ = 20◦.For the speed, we divided the range into 20 bins of equal size:

∆v =
vmax − vmin

20
(4.53)

For each bin of (v, θ), the acceleration along and perpendicular to the movement direction was
calculated, as explained in subsection 4.10.1. All of these quantities are a priori functions of
the speed of the cell v and its angle of propagation θ (θ = 90◦ being the gradient direction).

Deterministic part of the perpendicular acceleration (F⊥(v, θ))

The deterministic term F⊥(v, θ) is plotted as a function of v for different angles on figure 4.26.
Each point on figure 4.26 is an average over data coming from different tracks. We call nv,θ
the number of points that contribute to the value of F⊥(v, θ). At a given angle, the force
perpendicular to the cell’s motion does not depend significantly on the speed v of the cell.
For each angle θ0, we averaged the values taken by F⊥(v, θ0), and defined F⊥(v, θ0) = F⊥(θ0).
We used a weighted average, where the weight of each point was given by nv,θ. In figure 4.27,
we plotted F⊥(θ) as a function of θ. There is a clear dependence of F⊥(θ) on θ, which is
cosine-like (see figure 4.27). We write:

F⊥(θ) = F1 cos θ. (4.54)

This shows that the cell tends to align with the gradient. For a cell going in the flow direction
(θ = 0◦), F⊥(θ = 0◦) is positive: the cell has a tendency to go up the gradient. For a cell
going opposite the flow direction, F⊥(θ = 180◦) is negative, which also means that the cell
is pushed in the gradient direction (to see this, recall that the frame of reference is rotating
with the cell). A cell going in the gradient direction has F⊥(θ = 90◦) = 0, so the only force
acting on it is parallel to the cell motion, which is the gradient direction. Similarly if the cell
is going opposite the gradient direction, at θ = 270◦.

Deterministic part of the parallel acceleration (F‖(v, θ))

Let us now turn to the deterministic component of the parallel acceleration. Contrary to
F⊥(v, θ), which turned out to be independent on the speed of the cell v, there is a clear
dependence of F‖(v, θ) on v. This is shown on figure 4.28. We fitted a second-order polynomial
to these curves:

q(v, θ) = α(θ) + γ(θ)v2. (4.55)

As above, the fit is weighted by the number of points nv,θ that contribute to each value of
F‖(v, θ). As F‖ is a priori a function of θ, the fitting parameters α(θ) and γ(θ) should also
depend on θ. It turns out that γ is relatively constant for different θ (see figure 4.29a), but
that α does depend on the cell’s direction. This dependency can be fitted with a sine function
with an offset, as shown on figure 4.29b. We write:

α(θ) = α0 + F2 sin θ. (4.56)

On figure 4.29c, we plotted arctan[(α(θ) − α0)/F⊥(θ)] as a function of θ. All points collapse
on the line y = x, showing that arctan[(α(θ)− α0)/F⊥(θ)] = θ and therefore that F1 = F2.
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Figure 4.26: Plots showing the deterministic term of the acceleration in the perpendicular
direction, F⊥(v, θ), as a function of v for different values of θ. (a) θ = 10◦ (roughly the flow
direction), (b) θ = 90◦ (gradient direction), (c) θ = 190◦ (roughly opposite the flow direction),
(d) θ = 270◦ (opposite gradient direction). Each point is the average over data coming from
different cell tracks, as explained in section 4.10.1. The red line shows the weighted average
of the black points, where each point is weighted by nv,θ (see main text).
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Figure 4.27: Evolution of the average deterministic term F⊥(θ) as a function of θ. The error
bars represent the 95 % confidence intervals.

4.10.4 Conditional averaging - stochastic terms

Mixed noise term

The cross-correlation of the perpendicular and the parallel acceleration, as well as the autocor-
relations of the parallel and the perpendicular accelerations, are shown on figure 4.30. We see
that we can neglect the cross-correlation of the acceleration compared to the autocorrelations,
which is why we will consider that there is no mixed noise term. We also calculated the mixed
noise term, and we indeed saw that the mixed noise had no dependence on the speed or the
angle of propagation of the cell, and that it was averaging to zero.

Perpendicular noise

The perpendicular noise was calculated according to the formula:

R⊥(v0)2 = ∆t

〈(
v(t+ ∆t)− v(t)

∆t
· e⊥(t)− F⊥(v0)

)2
〉
|v(t)−v0|≤∆v, |θ(t)−θ0|≤∆θ

. (4.57)

The evolution of the perpendicular noise term with the angle of propagation θ is shown on
figure 4.31. At each angle, we fitted the noise in the perpendicular direction by a first-order
polynomial q(v, θ) = r1,⊥(θ) + r2,⊥(θ)v. As for the deterministic part, the fits were weighted
by the number of points nv,θ contributing to each value of R⊥(v, θ). The evolution of the offset
r1,⊥(θ) and the slope r2,⊥(θ) is shown on figure 4.32a and 4.32b respectively. No dependence
on the angle was observed.

Parallel noise

The parallel noise is calculated according to the formula:

R‖(v0)2 = ∆t

〈(
v(t+ ∆t)− v(t)

∆t
· e‖(t)− F‖(v0)

)2
〉
|v(t)−v0|≤∆v, |θ(t)−θ0|≤∆θ

. (4.58)
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Figure 4.28: Plots showing the deterministic component of the acceleration in the parallel
direction, F‖(v, θ), for different values of θ. (a) θ = 10◦ (roughly the flow direction), (b)
θ = 90◦ (gradient direction), (c) θ = 190◦ (roughly opposite the flow direction), (d) θ = 270◦

(opposite gradient direction). Each point is the average over data coming from different cell
tracks, as explained in section 4.10.1. The solid lines are fits by a second-order polynomial
q(v, θ) = α(θ) + γ(θ)v2, where each point is weighted by nv,θ.
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Figure 4.29: Evolution of the fitting parameters α and γ with θ. (a) The damping term γ
can be considered as independent of the angle of propagation θ . (b) The term α shows a
sine-like dependence with θ, with an offset α0. Error bars are 95 % confidence intervals on
the fit values. (c) Evolution of arctan[(α(θ)− α0)/F⊥(θ)] with θ. The black line is the curve
y = x, which is plotted to guide the eye.

The evolution of the parallel noise term with the angle of propagation θ is shown on fig-
ure 4.33. At each angle, we fitted the noise in the parallel direction by a first-order polynomial
q(v, θ) = r1,‖(θ) + r2,‖(θ)v. The evolution of the offset r1,‖(θ) and the slope r2,‖(θ) is shown
on figure 4.34a and 4.34b respectively. No dependence on the angle was observed.

Estimating the noise without binning on the angle

Because none of the noise terms depend on the angle of propagation θ, we recalculate them
without binning the data on the angle θ:

R⊥(v0)2 = ∆t

〈(
v(t+ ∆t)− v(t)

∆t
· e⊥(t)− F⊥(v0)

)2
〉
|v(t)−v0|≤∆v

(4.59)

The resulting evolution of the perpendicular and parallel noise are shown on figure 4.35,
fitted by a first-order polynomial q⊥,‖(v) = r1,⊥,‖ + r2,⊥,‖v.

Putting the results together

Putting everything together, we can now write the Langevin equation describing chemotactic
cell motion:

dv

dt

∣∣∣∣
‖

= −γv2 + α0 + F sin θ + (r1,‖ + r2,‖v)Γ‖(t) (4.60)

dv

dt

∣∣∣∣
⊥

= F cos θ + (r1,⊥ + r2,⊥v)Γ⊥(t). (4.61)

For the lack of better names, we will call α0 a “propelling force” and F (F = F1 = F2) a “force
in the gradient direction”. In the absence of a gradient (F = 0), the quantity α0 leads to
the cells having a target speed v0 =

√
α0/γ if α0 > 0, or damps cellular motion if α0 < 0.

As mentioned earlier, the two quantities α0 and F are of course not forces in the classical,
Newtonian, sense on the term.
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Figure 4.30: Autocorrelation of the parallel acceleration (red), the perpendicular acceleration
(black), and cross-correlation (blue).

4.10.5 Evolution of the parameters of the Langevin equation

We have seen in section 4.6.4 that the SNR could explain quantitatively the evolution of the
chemotactic velocity vy. We however also saw that it was unable to explain quantitatively the
evolution of the cellular speed v. It was shown in [12] that the parameters of the Langevin
equation describing the random motion of starved D. discoideum depended on the uniform
background of cAMP surrounding the cells. In our case, we propose that two quantities
might play a role in cellular motion, namely the SNR and the average concentration of cAMP
surrounding the cell. In the following, we will discuss the evolution of the parameters of the
Langevin equation with the SNR and the midpoint concentration.

Friction coefficient

The friction coefficient is plotted as a function of the SNR on figure 4.36a and 4.36b re-
spectively. The plotted quantity is, for each experiment, the average γ over all angles of
propagation and the error bars show the standard deviation. As before, filled circles indicate
an experiment where the concentration profile goes from 0 to cmax, and empty circles indicate
an experiment where the low concentration cmin is different from 0. From our data, we cannot
see any influence of the SNR or the midpoint concentration on the friction coefficient. For the
wild-type cells, the friction coefficient therefore appears to be a constitutive property of the
cells, independent of the external conditions.

Propelling force

We plotted the propelling force α0 as a function of the SNR and the midpoint concentration
on figure 4.37. No systematic trend appears on these plots. The value of α0 is in most cases
negative, indicating a constant damping of cellular motion.
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Figure 4.31: Plots showing R⊥(v, θ) for different values of θ. (a) θ = 10◦ (roughly the flow
direction), (b) θ = 90◦ (gradient direction), (c) θ = 190◦ (roughly opposite the flow direction),
(d) θ = 270◦ (opposite gradient direction). Each point is the average over data coming from
different cell tracks, as explained in section 4.10.1. The solid lines are weighted fits by a
first-order polynomial q(v, θ) = r1,⊥(θ) + r2,⊥(θ)v, where the weight of each point is given by
nv,θ.
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Figure 4.32: Evolution of the fitting parameters (a) r1,⊥(θ) and (b) r2,⊥(θ) with the angle θ.
Error bars show the 95% confidence interval on the fit value.

Force in the gradient direction

The last parameter of the deterministic part is the force in the gradient direction. The
amplitude of this force is plotted as a function of the SNR and of the average background
concentration on figures 4.38a and 4.38b respectively. The error bars shown on the plots
represent the 95% confidence interval on the fit values. There is a clear increase of the
force with the SNR, reflecting the increase in the chemotactic velocity vy with the SNR. The
evolution of the force with the SNR reflects the evolution of the chemotactic velocity vy with
the SNR, with an onset and a linear increase (compare figures 4.38b and 4.14c).

Noise offset

The offset of the noise terms are shown on figure 4.39 as a function of the SNR and of the
midpoint concentration. We see that the noise in the parallel and the perpendicular direction
have similar offset values. It is hard to see a trend on the figures plotted, as a function of the
SNR or of the midpoint concentration.

Noise slope

The slope of the noise terms are shown on figure 4.40 as a function of the SNR and of the
midpoint concentration. Here also, there is no clear trend on the plots. The slope of the noise
in the perpendicular direction has a value slightly higher than its counterpart in the parallel
direction for midpoint concentrations up to 10 nM.

4.11 Simulating the data

We used a simple Euler-Maruyama scheme to simulate our Langevin equation [62], using the
parameters retrieved from the data. The time step of the simulation was the time step used
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Figure 4.33: Plots showing R‖(v, θ) for different values of θ. (a) θ = 10◦ (roughly the flow
direction), (b) θ = 90◦ (gradient direction), (c) θ = 190◦ (roughly opposite the flow direction),
(d) θ = 270◦ (opposite gradient direction). Each point is the average over data coming from
different cell tracks, as explained in section 4.10.1. The solid lines are fits by a first-order
polynomial q(v, θ) = r1,‖(θ) + r2,‖(θ)v.

140



Chapter 4. Chemotaxis of Dictyostelium discoideum and description by a Langevin equation

0 90 180 270 360
0

2

4

6

8

10

θ(degrees)

r 1,
||(θ

) 
(µ

m
/m

in
3/

2 )

(a)

0 90 180 270 360

−0.4

−0.2

0

0.2

0.4

0.6

θ(degrees)

r 2,
||(θ

) 
(m

in
−1

/2
)

(b)

Figure 4.34: Evolution of the fitting parameters (a) r1,‖(θ) and (b) r2,‖(θ) with the angle θ.
Error bars show the 95% confidence interval on the fit value.

for the conditional averaging (40 seconds). We simulated 100 tracks, with each track being
200 points long. This corresponds to a track that lasts for 33 minutes. The data are very well
reproduced by the model, as can be seen on figure 4.41. The dependence of the speed on the
angle θ, reproduced on figure 4.41e, is due to the gradient force F in the y direction.

One feature that we do not capture however is the cellular individuality. Indeed, if we plot
the cells according to the two usual quantities used to describe their motion, which is their
mean speed v̄ and their chemotactic index (CI), we find figure 4.42a for the experiments and
figure 4.42b for the simulations. The conditional averaging treats all the cells in the same way,
and the result of the conditional averaging is therefore the average behavior of the cellular
population. In the next section, we make an attempt to reproduce the biological diversity by
dividing the data into 4 regions, as sketched on figure 4.42a. The four regions were delimited
by the average speed and the average chemotactic index of the cell population (see figure).

4.12 Langevin analysis of four subpopulations

We performed exactly the same analysis as above on the 4 cell subpopulations shown on
figure 4.42a. The evolution of the friction coefficient, the propelling force and the force in the
gradient direction are shown on figure 4.43. The friction coefficient does not depend on the
subpopulation, but the propelling force and the force in the gradient direction do. As might
be expected, there is a positive propelling force only in regions 2 and 4, at high values of the
mean speed. The value of the force in the gradient direction has an uncertainty of more than
100% in regions 1 and 2. In regions 3 and 4, the force in the gradient direction is positive, a
consequence of the high CI of the corresponding cells. The fit parameters for the stochastic
terms in the parallel and the perpendicular directions are shown on figure 4.44. The slope of
the noise in the parallel direction r2,‖ is essentially zero in all regions except region 1. In the
perpendicular direction, the slope takes a non-zero value in regions 1 and 3, which are the
regions of slow speed. The offset of the noise is higher in regions 2 and 4 than in regions 1
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Figure 4.35: (a) Noise in the parallel direction and (b) in the perpendicular direction, calcu-
lated without binning on the angle θ and fitted by a first order polynomial.

and 3, showing that the basal noise increases when the speed increases. The offset of the noise
in region 4 is lower than the offset in region 2, indicating that fast, chemotactic cells (from
region 4) exhibit less noise than fast, non-chemotactic cells (from region 2). For the fast cells
in regions 2 and 4, the perpendicular noise is bigger than the parallel noise.

However, even if we divide the cell population into these four subpopulations, the ex-
perimental spread in the (v̄, CI) plane is still not reproduced (see figure 4.45). One way to
artificially reproduce the spread could be to pick the parameters of the Langevin equation
randomly from a distribution, for each simulated track. It would of course be much more
satisfactory to get the parameters from the data itself. This would mean to repeat the same
procedure of conditional averaging on each individual cell. Is this idea realistic? The track
length that we would need would be much longer than what we currently have (we have
roughly 25 points per track), in order to get good statistics on the behavior of each cell. If
for example we want to keep our bin size for the angle of π/9 and assume that we have a cell
that always goes up the gradient, we have to consider 9 bins for the angle. If moreover the
cell explores roughly speeds varying from 5 to 15 µm/min, which is not atypical, this would
correspond to 10 bins for the speed. Even if not all the bins are full, having 20 points per
bin on average (which is what we currently have when we do the analysis for the whole cell
population) means that the tracks should be at least 1800 points long. Taking an image every
10 seconds would imply that the data should span over five hours... For a cell that crawls up
the gradient with a chemotactic velocity of vy = 4 µm/min on average, this means that the
gradient region should be more than 1 mm long. This is a lower estimate since we considered
only 90 bins. Apart from the technical difficulties that there are to create a linear, stable
profile of concentration over this length scale, we also run into biological problems, as the cells
develop and are not reacting in the same way to the same stimulus after 6 hours of starvation
or after 11 hours. As this method is clearly not feasible, it would be useful to take more data
using our current setup, with the hope to see groups of cells with a similar behavior emerging.
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Figure 4.36: Friction coefficient as a function of (a) the SNR and (b) of the cAMP midpoint
concentration. Each data point is the average over the different γ evaluated at different angles
of propagation, as explained in the main text. The error bars are the standard deviation of
these values of γ at different angles. Empty/filled circles as in figure 4.11.
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Figure 4.37: Propelling force as a function of (a) the SNR and (b) of the cAMP midpoint
concentration. Empty/filled circles as in figure 4.11.
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Figure 4.38: Amplitude of the force in the gradient direction as a function of (a) the SNR and
(b) the cAMP midpoint concentration . There is a clear correlation between the amplitude
of the force and the SNR. The line in (a) is here to guide the eye. Empty/filled circles as in
figure 4.11.

4.13 Langevin analysis of the SCAR/PIR mutants

We proceeded in the same way for the data taken with the SCAR/PIR mutants. The param-
eters of the deterministic part of the Langevin equation are summarized on figure 4.46. The
parameters describing the stochastic part are shown on figures 4.47 and 4.48. A comparison
with the parameters describing the chemotaxis of WT cells is found on figures 4.49 and 4.50.

As for the WT cells, the force increases with increasing SNR. The friction coefficient is
higher than the friction coefficient of the WT cells at SNR lower than 0.2, but quickly goes
down to similar values than for the WT cells above 0.2. From the plots, we see that the
friction goes down both with midpoint concentration and the SNR. We conjecture that the
most meaningful quantity to look at is the SNR, and that it is the gradient that rescues the
phenotype of the SCAR/PIR null cells, not the midpoint concentration. An experimental
verification could be made by tracking SCAR/PIR mutants in uniform backgrounds of con-
centration of cAMP, and perform the same Langevin analysis on the cells. It would then
be possible to see if the friction coefficient depends on the background concentration. The
value of α0 shows the same kind of behavior with the midpoint concentration as for the WT
cells. The propelling force is nonzero when the SCAR/PIR cells are in buffer or in a very
low background of cAMP (midpoint concentration 0.005 nM, corresponding to ∼ 30 of bound
receptors only, out of 70 000). It is then goes down to 0 until midpoint concentrations of 5
nM (roughly 3500 bound receptors), and increases for higher concentrations.

Concerning the stochastic part, note that the offset of the noise in the parallel direction
increases with the SNR. This increase is simultaneous to a decrease in the slope of the noise
in the parallel direction. The parameters describing the noise in the perpendicular direction
are essentially independent of the external gradient.
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Figure 4.39: Offset of the (a) parallel noise r1,‖ and (b) of the perpendicular noise r1,⊥ as
a function of the SNR. (c), (d) As a function of the midpoint concentration. Empty/filled
circles as in figure 4.11.
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Figure 4.40: Slope of the (a) parallel noise r2,‖ and (b) of the perpendicular noise r2,⊥ as a
function of the SNR. (c), (d) As a function of the midpoint concentration. Empty/filled circles
as in figure 4.11.
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Figure 4.41: Simulated (black) and experimental (red) histograms of (a) vx, (b) vy, (c)v and
(d) the angle θ. (e) Simulated (black) and experimental (red) relationship between the speed
v and the angle of propagation θ.

147



4.13. Langevin analysis of the SCAR/PIR mutants

0 5 10 15
!1

!0.5

0

0.5

1

Mean speed (µm/min)

C
I

3

1 2

4

(a)

0 5 10 15
−1

−0.5

0

0.5

1

Mean speed ( µm/min)
C

I
(b)

Figure 4.42: Cells in the (Mean speed, Chemotactic index) plane. Each point represent a
cell. The vertical red line is the mean speed of the population, the horizontal red line is the
mean CI of the cell population. (a) Experimental data. (b) Simulation. The simulation does
not reproduce the experimental cellular individuality. The region number, used in the next
section, is indicated on figure (a).
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Figure 4.43: (a) Friction coefficient, (b) propelling force and (c) force in the gradient direction
for each subpopulation. The friction coefficient does not depend on the subpopulation, but
α0 and F do.
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Figure 4.44: Slope of the stochastic term in the (a) parallel and (b) perpendicular directions.
Offset of the stochastic terms in the (c) parallel and (d) perpendicular direction.
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Figure 4.45: Cells in the (Mean speed, Chemotactic index) plane. Each point represent a cell.
(a) Experimental data. (b) Results of the simulations for the four regions, combined into one
plot. The experimental spread in the speed is not reproduced.

4.14 Summary of the stochastic modeling

In this section, we showed that we could describe the average chemotactic behavior using a
Langevin equation, whose parameters depend on the SNR. This Langevin equation does not
take into account the intrinsic cell-to-cell variability. On average, the population of cells acts
if it were feeling a force in the gradient direction, and the amplitude of this force increases
as the SNR increases. For WT cells, the damping term of the equation is, within its error
bars, independent of the gradient. The Langevin equation also contains what we called a
propelling force (α0), whose dependence on the midpoint concentration or the SNR is not
straightforward. This propelling force is positive for fast cells, and negative or zero for slow
ones (figure 4.43b). More experiments would have to be carried out, in uniform backgrounds
of concentrations and in gradients whose midpoint concentration would be varied, to help
understand the evolution of α0 with the external stimulus.

The analysis using a Langevin equation proved to be useful in characterizing the motion
of mutants. In our work, we used SCAR/PIR null mutants, who were supposedly defective in
chemotaxis. In buffer or under weak gradients (SNR smaller than 0.2) the apparent friction
coefficient is greater for SCAR/PIR mutants than for WT cells. This shows that the damping
coefficient reflects a biological property (it is different in WT and SCAR cells), which can be
influenced by the external conditions (the friction coefficient for SCAR/PIR cells decreases
with the SNR). The force experienced by the WT and SCAR cells is similar under similar
conditions, as is the value of α0. The deterministic part of the Langevin equation is therefore
the same for both the WT and the SCAR population, as soon as the SNR is bigger than 0.2.
What explains the difference in cell motion between WT cells and SCAR/PIR null mutants
is the stochastic component of the Langevin equation. In particular, the noise component
parallel to cell motion is systematically smaller for the SCAR/PIR mutants than for the WT
cells. This can be related to the original observation of Blagg et al. [11] that the SCAR/PIR
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Figure 4.46: Evolution of the deterministic parameters of the Langevin equation for the
SCAR/PIR mutants. (a), (b) Evolution of the friction coefficient with the SNR and the
midpoint concentration. The friction coefficient decreases with the SNR. This is in contrast
with the WT cells, for which the friction coefficient was independent of the external condi-
tion.(c), (d) Evolution of α0. As for the WT cells, α0 is negative in most of the experiments.
No clear trend can be observed from our data, whether as a function of the SNR or the mid-
point concentration. (e), (f) Evolution of the force. As for the WT cells, the force increases
with the SNR. 151



4.14. Summary of the stochastic modeling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

r 2
,|

| 
(m

in
-1

/2
)

SNR

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.001 0.01 0.1 1 10 100 1000 10000

r 2
,|

| (
m

in
-1

/2
)

Midpoint concentration (nM)

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

r 2
,⊥

(m
in

-1
/2

)

SNR

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.001 0.01 0.1 1 10 100 1000 10000

r 1
,⊥

 (
m

in
-1

/2
)

Midpoint concentration (nM)

(d)

Figure 4.47: Analysis of the SCAR/PIR mutants. Slopes of the stochastic terms in the (a),
(b) parallel and (c), (d) perpendicular directions. The slope of the noise in the perpendicular
direction r2,⊥ is not significantly influenced by the external conditions. On the contrary, the
slope of the noise in the parallel direction r2,‖ decreases with the SNR.
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Figure 4.48: Analysis of the SCAR/PIR mutants. Offsets of the stochastic terms in the (a),
(b) parallel and (c), (d) perpendicular directions. The SNR has an influence on the offset of
the noise in the parallel direction, r1,‖: the value of r1,‖ increases with increasing SNR (the
line in (a) is there to guide the eye). No definitive conclusion can be drawn for the offset of
the noise in the perpendicular direction r1,⊥.

153



4.14. Summary of the stochastic modeling

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

γ 
(µ

m
-1

)

SNR

(a)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

0.001 0.01 0.1 1 10 100 1000 10000
α
0 

(µ
m

.m
in

-2
)

Midpoint concentration (nM)

(b)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

F
o

rc
e

 (
µ

m
.m

in
-2

)

SNR

(c)

Figure 4.49: In all graphs, the filled circles show the parameters of the Langevin equation for
the WT cells, while the empty circles represent the SCAR mutants. The friction coefficient
(a) is higher for SCAR mutants than for WT cells at low values of the SNR (<0.2). Above,
the wild-type values are recovered. We see on (b) and (c) that α0 and F for both cell types
fall on the same curve. At high SNR values, the deterministic part of the Langevin equation
is therefore similar for both cell types.
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Figure 4.50: In all graphs, the filled circles show the parameters of the Langevin equation
for the WT cells, while the empty circles represent the SCAR mutants. All experiments were
taken into account. (a), (b) The noise offsets in both the parallel and the perpendicular
directions are lower for the SCAR mutants. (c) The slope of the noise in the parallel direction
decreases with the SNR for the SCAR mutants and reaches the WT value for a SNR∼ 1. (d)
The slope of the noise in the perpendicular direction is similar for SCAR and WT cells.
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mutants initiate fewer protrusions during chemotaxis than the WT cells.
In the future, it would be interesting to use mutants known to be defective in their basal

motility (for example, cells overexpressing PTEN), or in their chemotactic behavior (such as
PI3K/PTEN null mutants), and reproduce the Langevin analysis on them. We would then
be able to see how the different parameters of the Langevin equation change depending on
the mutants. It might very well be that similar phenotypes (i.e. similar values of the average
speed v̄ and the chemotactic index) are reproduced by different combinations of parameters
of the Langevin equation, showing different modes of cell motion.
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Conclusions and outlook

Chemotaxis of D. discoideum has been studied for over 60 years [13]. The first stage of
chemotaxis, directional sensing, has been attracting considerable experimental and theoreti-
cal interest. We performed quantitative experiments at the single-cell level to test the existing
models of directional sensing. Our experimental results can only be reconciled with the com-
plex and detailed model of Meier-Schellersheim et al. [72]. It would be worth trying to reduce
this model to a simpler one, using for example network analysis tools. Moreover, the model
assumes the existence of several biochemical components, which would need to be identified.
Our experiments also underlined the importance of cellular individuality, by showing that at
a given gradient, not all cells would show a PHCRAC−GFP translocation. One open question
is then related to the sensitization of the gradient sensing process: if a cell does not respond to
a given gradient, will it respond if stimulated repeatedly? In other words, is there a memory
in the directional sensing process? Single-cell experiments as performed in chapter 3 of this
thesis would probably take too long if one would like to do statistics on a large number of cells.
One way to apply gradients rapidly and monitor the intracellular dynamics of many cells at
the same time would be to use the gradient mixer described in chapter 4, where buffer would
be introduced into one inlet and caged cAMP into the other inlet. Uncaging the cAMP would
then lead to a rapid stimulation of all cells in the microfluidic channel with different gradients,
depending on each cell’s position. Alternatively, one could also use simple, straight microflu-
idic channels as the ones used in chapter 3, through which caged cAMP would be flown.
Uncaging on a triangular region as wide as the channel would create a gradient of cAMP,
whose amplitude could be changed by varying the shape of the triangle [10]. As stochastic-
ity appears to be an increasingly important aspect of biological processes, performing such
quantitative experiments at the limit of detection would be of great interest in unraveling
the mechanisms of chemotaxis. These studies could be combined with the use of mutants
overexpressing or underexpressing biochemical components of the chemotactic pathway. The
component limiting the detection of low concentrations of cAMP could thus be identified.

The chemotactic index of D. discoideum in gradients of cAMP has been quantitatively
studied by different groups, using various methods to generate gradients, from pipettes to
diffusion chambers and microfluidics. We measured the chemotactic index of D. discoideum
migrating in a microfluidic channel where stable, linear gradients of cAMP were produced. If
plotted as a function of the gradient of cAMP, no systematic relation between the different
data sets is observed. Based on work by Ueda and Shibata [119], we calculated the signal to
noise ratio (SNR) at the level of the G-protein for each cell, at each position in the microfluidic
channel. We also measured the chemotactic index of all cells at all positions of their tracks.
When plotted as a function of the SNR, the chemotactic index of our experiments as well as
experiments published in the literature superpose to one single curve. Several questions can
be raised based on this result. First, it would be interesting to test the formula for the SNR



further. In particular, the SNR depends on the total number of cAR1 receptors expressed by
the cells, and on the total number of G-proteins. By monitoring the chemotaxis of mutants
overexpressing (or underexpressing) cAR1 or the G-protein, and plotting their chemotactic
index as a function of the SNR, we would have a direct experimental verification of the for-
mula for the SNR. Second, the formula for the SNR takes into account only two reactions,
and assumes that the major loss of information occurs at the level of the receptor binding
and G-protein dissociation. If this is the case, the asymmetric activation and translocation of
intracellular markers of directional sensing should be strongly correlated with the SNR. This
could be verified by simultaneously tracking the chemotactic motion of mutants expressing a
GFP-tagged marker of directional sensing (PH-domain, Ras-binding domain), and monitoring
their intracellular fluorescence intensity. It would also be important to monitor the intracellu-
lar fluorescence of cells treated with Latrunculin A, to ensure that the amount of translocation
seen is not influenced by actin polymerization. In these latter experiments however, the use of
microfluidics to create a gradient would be problematic. Indeed, Latrunculin A treated cells
attach less well to surfaces than non-treated cells, and get therefore easily washed away by a
flow.

Chemotactic motion has been traditionally quantified using time-averaged quantities, such
as the average velocity in the gradient direction or the chemotactic index. Yet, these average
quantities can only convey limited information about cell motility – all fluctuations are by
definition averaged out. To go beyond this traditional description of cell motion, and describe
the fluctuations inherent in cell motility, we quantified cellular chemotactic motion based on a
Langevin equation for two different cell lines and in different gradients. One important result
of our analysis was to determine which part of the Langevin equation was modified under
these different experimental conditions. This analysis would prove particularly useful when
the motion of a mutant defective in chemotaxis is monitored, and could be used as a tool
to quantify cell motion. Moreover, using mutants would also help relating the parameters of
the Langevin equation to biological quantities. For the time being, the analysis based on the
Langevin equation has no predictive power, and is purely descriptive. The long-term goal of
research on chemotaxis would be to know and understand enough of the chemotactic pathways
to be able to predict what the Langevin equation describing cell motion is, based on the cell
genotype.
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Appendix A

Stochastic chemical kinetics equation
and signal to noise ratio

In this Appendix, we first consider a cell in a uniform concentration of chemoattractant C.
We show that the number of bound receptors follows a Poisson distribution, as observed
experimentally by Ueda et al. [118], and then derive formula 4.24, giving the the signal to
noise ratio (SNR) at the receptor level. Then, following Ueda and Shibata [119], we consider a
cell exposed to a gradient of chemoattractant and derive the formula of the SNR at the second
messenger level.

A.1 The number of bound receptors follows a Poisson distribu-
tion

Receptor binding is described by the chemical equation:

C +R
k1−⇀↽−
k−1

R∗ (A.1)

where C is the ligand, R is a free receptor, R∗ is an occupied receptor, and R+R∗ = R0. The
evolution of R∗ with time is given by:

dR∗

dt
= k1CR0 − (k1C + k−1)R (A.2)

and at equilibrium, the number of occupied receptors is:

R∗ = R0
C

C +Kd
, (A.3)

where we have definedKd = k1/k−1. The above equation is deterministic. Let us now consider
reaction binding as a stochastic process, and write down the probability P (n, t) of having n
bound receptors at time t. This probability obeys the so-called Master equation (see [123]),
which in our case is given by:

∂P

∂t
(n, t) = k1CR0 [P (n− 1, t)− P (n, t)]+(k−1+k1C) [(n+ 1)P (n+ 1, t)− nP (n, t)] . (A.4)

To obtain this equation, we write down the probability P (n, t + dt). There a three ways of
obtaining n occupied receptors at time t+ dt:



A.2. Perturbation of the steady state

• n − 1 receptors are occupied at time t, and binding of a receptor gives a contribution
k1CR0dt to P (n, t+ dt),

• or there are n+ 1 occupied receptors at time t, and unbinding from one of them gives a
contribution (k1C + k−1)(n+ 1)dt,

• or there are already n occupied receptors at time t, and no reaction occurs in the time in-
terval dt, which happens with probability P (n, t) [1− k1CR0dt− (k1C + k−1)dt]. Inside
the brackets, we have written the total probability (equal to 1) minus the probability
that one of the reactions take place.

Summing all these contributions and taking the limit dt→ 0, we obtain the Master equation.
At steady state, we have P (n, t) = P (n) and ∂P

∂t (n, t) = 0. The above partial differential
equation then reduces to a recurrence relation:

P (n+ 1) =
n

n+ 1
P (n) +

k1CR0

(n+ 1)(k−1 + k1C)
[P (n)− P (n− 1)] . (A.5)

This recurrence relation leads to the following relationship between P (n) and P (0):

P (n) =
1
n!

(
k1CR0

k−1 + k1C

)n
P (0) (A.6)

with P (−1) = 0. Because the probability should be normalized to 1, we have:

∞∑
n=0

1
n!

(
k1CR0

k−1 + k1C

)n
P (0) = 1 (A.7)

which leads to:

P (0) = exp
[
− k1CR0

k−1 + k1C

]
and P (n) = exp

[
− k1CR0

k−1 + k1C

]
1
n!

(
k1CR0

k−1 + k1C

)n
,

(A.8)
showing that the number of bound receptors follows a Poisson distribution. The average
number of bound receptors is k1CR0

k−1+k1C
, which is also what was found above when we were

considering the deterministic chemical rate equation. As an aside, now that we have the
Master equation, we can multiply both of its sides by n, and sum over all values of n. We
then get an equation for the average value of occupied receptors 〈n〉:

d 〈n〉
dt

= k1CR0 − (k1C + k−1) 〈n〉 . (A.9)

This is exactly the rate equation that we wrote at the beginning of the section.

A.2 Perturbation of the steady state

Receptor binding consists of two reactions, a forward reaction (from R to R∗) and a backward
reaction (from R∗ to R). Each of these chemical reactions is a Poisson process. Because
the two reactions are independent, the variance of the total increment of R∗ is the sum of
the variances associated to each of these reactions. For the forward reaction, the associated
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variance during time ∆t is k1CR∆t, and for the backward reaction it is k−1CR
∗∆t. At time

scales much bigger than the time scale of production of molecules, and when the total number
of molecules is large, we can approximate the Poisson process by a Gaussian process (see
e.g. Gillespie [40]). The deterministic chemical rate equation can then be transformed into a
chemical Langevin equation [23]:

dR∗

dt
= k1CR− k−1R

∗ + η(t) (A.10)

where η(t) is Gaussian white noise with mean 〈η(t)〉 = 0 and autocorrelation〈
η(t)η(t′)

〉
= (k1CR+ k−1CR

∗)δ(t− t′). (A.11)

Substituting the steady-state values of R and R∗ in this equation, we get:〈
η(t)η(t′)

〉
=

2k−1C

C +Kd
R0δ(t− t′). (A.12)

We now linearize the chemical Langevin equation about the steady state of the concentrations,
denoted by Rst and R∗st. We write R = Rst +δR and R∗ = R∗st +δR∗. Because we always have
R+R∗ = R0, we need to have δR = −δR∗. The Langevin equation describing the fluctuations
δR∗ about the steady state R∗st is therefore given by:

dδR∗

dt
= −(k1C + k−1)δR∗ + η(t). (A.13)

Note that we haven’t assumed any fluctuation of the outside concentration of chemoattractant
C. The fluctuations that we write just reflect the stochastic nature of the chemical reaction.
The noise intensity

〈
(δR∗)2

〉
is then given by (see for example [136]):

〈
(δR∗)2

〉
=

〈
η(t)2

〉
2(k1C + k−1)

=
Kd

C +Kd
R∗st, (A.14)

which is the result we are using in equation 4.24.

A.3 Signal to noise ratio in a reaction cascade

Following Ueda and Shibata [119], we consider the binding of cAMP to the cAMP receptor,
which leads to the dissociation of the G protein. The chemical reactions at play can be written:

C +R
k1−⇀↽−
k−1

R∗ R∗ +X
k2−→ R∗ +X∗ X∗

k−2−→ X (A.15)

where as before C is the ligand, in our case cAMP, R and R∗ represent unbound and bound
receptors respectively (R+R∗ = Rtot), andX andX∗ represent the G protein in its unactivated
(i.e. associated) and activated (i.e. dissociated) state, respectively (X + X∗ = Xtot). The
gain of a chemical reaction quantifies the change in the output of the reaction as its input is
changed. In our two reactions, the gains are given by:

gR =
∂ logR∗

∂ logL
=

KR

KR + C
gX =

∂ logX∗

∂ logR∗
=

KX

KX +R∗
(A.16)
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where we have called KR = k−1/k1 and KX = k−2/k2. First consider a uniform concentration
of cAMP. The average number of occupied receptors R∗ and the average number of dissociated
proteins X∗ are then given by

R∗ = Rtot
C

C +KR
X∗ = Xtot

R∗

R∗ +KX
(A.17)

Shibata and Fujimoto showed that the noise in the first reaction could be expressed as:

σ2
R = gRR

∗. (A.18)

For the second reaction, there are two contributions to the stochastic fluctuations, one com-
ing from the fluctuations in R∗, termed the extrinsic noise, and the other coming from the
stochasticity of the G protein dissociation reaction. The noise can then be expressed as:

σ2
X = gXX∗︸ ︷︷ ︸

intrinsic noise

+ g2
X

τR
τR + τX

σ2
R

(
X∗

R∗

)2

︸ ︷︷ ︸
extrinsic noise

(A.19)

In the case where the concentration profile is not uniform, all these quantities can be
defined locally. At a given position y, the concentration of chemottractant is C(y), and the
local densities of occupied receptors R∗(y) and of active second messenger X∗(y) are given
by:

R∗(y) =
Rtot
L

C(y)
C(y) +KR

X∗(y) =
Xtot

L

R∗

R∗ +KX/L
(A.20)

where L is the length of the cell1. The gains of the reactions can be locally expressed as:

gR(y) =
KR

KR + C(y)
gX(y) =

KX

KX +R∗(y)L
(A.21)

and the time constants are:

τR(y) =
1

k1C(y) + k−1
τX(y) =

1
k2R∗(y)L+ k−2

. (A.22)

Locally, the amplitude of the noise of the receptor-binding reaction is then:

σ2
R(y) = gR(y)R∗(y) (A.23)

and the amplitude of the noise of the second reaction is:

σ2
X(y) = gX(y)X∗(y) + gX(y)2 τR(y)

τR(y) + τX(y)
σR(y)2

(
X∗(y)
R∗(y)

)2

(A.24)

We now have all the ingredients needed to define the signal to noise ratio at the G-protein
level. We assume, as in [119], that the important signal is the difference ∆X∗ in number of
activated G-protein between front and back of the cell:

∆X∗ =
∫ L/2

0
X∗(y)dy −

∫ 0

−L/2
X∗(y)dy (A.25)

1For simplicity, we consider a 1D cell.

162
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If we assume that the there is no correlation between the chemical processes occurring at
different locations, the total noise is given by the sum of the contributions of all local noise
terms:

σ2
∆X∗ =

∫ L/2

−L/2
σ2
X(y)dy (A.26)

which can be integrated numerically. The signal to noise ratio is then readily calculated:

SNR =
|∆X∗|
σ∆X∗

(A.27)
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