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Tag der mündlichen Prüfung: . . . . . . . . . . . . . . . . . . . . . .



The world that is the most

perfect [is] the one that is at

the same time the simplest

in hypothesis and the richest

in phenomena

(Gottfried Leibniz, Discourse

on Metaphysics, 1686)

Hey! Ho! Let’s Go!

(Dee Dee Ramone, 1976)



iv



Abstract

Fibrous materials are very commonplace in current technological applications.

The study of their mechanics is an interesting topic that has previously been

inspired by applications in the textile and paper industries, but also by mod-

ern composite materials. In many applications, humidity of the ambient at-

mosphere leads to condensation of liquid in a fiber network. Once liquid

interfaces form, capillary effects lead to internal mechanical stresses.

In this work, we investigate the effects of capillary stresses on disordered,

two-dimensional networks of elastic fibers. To that end, we first study the

morphologies and induced stresses of a liquid bridge forming between two

cylindrical fibers. Then, we introduce a two-dimensional model system for

disordered fiber networks with liquid interactions taking place at fiber cross-

ings. After an overview of the topological properties of such a model network,

we introduce a method for computer simulation of an elastic network in the

presence of a wetting liquid that can accumulate in the fiber interstices and

thereby deform the network. We test the model by comparison with analyti-

cal theory in a simple test case, and finally we present computer experiments

characterizing the network deformation as a function of the most important

model parameters, the fiber density and the capillary interaction strength.
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Chapter 1

Introduction

Many materials in technology and biology can be described as networks of

fibers. Especially in textiles and paper, the influence that a wetting liquid

has on these materials can be observed in everyday life. Typical non-woven

fabrics, i.e., disordered fibrous materials, such as wool, cotton or leather, but

also human or animal hair, wick up liquids and form concentrated bundles of

wet fibers.

But also the properties of artificial soft porous media, as for example solid

foams made of elastic polymeric materials, or the disordered assemblies of

fibers found in aerosol filters, vary strongly between the wet and the dry

states. Wetting of macroscopic fiber networks is relevant to many industrial

production processes and applications, in particular in the textile industry.

A large number of reinforced composite materials are based on elastic fiber

networks. To ensure structural integrity of these composite materials, the

fibers have to be glued together by binder materials while the remaining pore

space is filled with a solid material. In both cases, the wetting properties of

the fibers by the fluid binder and filler materials are important parameters in

the production process and have to be carefully controlled.

Many properties of a fiber network undergo large changes when it is ex-

posed to a wetting liquid. The mechanical response of an elastic fiber network

to compression or shear, for example, changes noticeably between the dry

and the wet states. Attractive capillary forces enhance inter-fiber friction,

while lubrication of the fiber contacts may result in the opposite effect. An

additional amount of work is dissipated in discontinuous transitions between

different locally stable configurations of the wetting liquid and the fibers. The

magnitude of this elastocapillary hysteresis will have a large impact on the

mechanics of the network, e.g., the shear or compression moduli, and one

may expect to find a number of liquid saturation regimes related to different
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(a) Mechanical strength (b) Thermal insulation

Figure 1.1: A slab of aerogel, supporting a 2 kg brick (a) and thermally insu-

lating unlit matches from a flame (b) (images by Nasa)

dissipation mechanisms.

One type of material where capillarity is known to have destructive effects

is aerogel (see figure 1.1). This consists of the crosslinked fibers of a gel,

which remain after the solvent of the gel has been replaced with gas. It is an

extremely light material that can nevertheless support large forces and that

acts as a very efficient thermal insulator.

The process of removing the liquid solvent from the gel is very critical in

the production of aerogels, since the appearance of liquid menisci leads to

capillary stresses that will destroy the material. For the same reason, aerogels

are very sensitive to ambient humidity.

A well-studied example of materials where the effect of wetting and capil-

lary interaction has been studied is that of wet granulates, such as sand on

the beach. Here, it is well known that the addition of liquid can change the

mechanical properties dramatically. This fact has been characterized in many

experiments such as those presented in [FGH+05]. In the case of wet gran-

ulates, a simple model of the interaction between pairs of spheres by means

of a liquid bridge has lead to deeper insights into the behavior of the mate-

rial (see [Her05]). The model consists of an attractive force that acts once

two grains have collided and ceases to act once the resulting liquid bridge has
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ruptured at a certain separation of the grains.

In this work, we want to apply a similarly simple model to elongated ob-

jects, specifically cylindrical fibers. Since we impose cylindrical symmetry,

the geometry near the contact point can be described simply by the crossing

angle of the fibers. In systems of cylindrical fibers, liquid will condense at the

crossing points and form filaments between the fibers. These exert torques

on the crossing fibers and tend to align them. New filaments form whenever

fibers touch, and filaments are destroyed in rupture events similar to those

described above for wet granulates. Since fibers are objects with a large as-

pect ratio, they will undergo noticeable elastic deformations in response to

capillary forces.

The balance between capillary forces exerted by a liquid interface and elastic

forces exerted by the substrate the liquid adheres to leads to what is called

elastocapillary effects. A very instructive example of such effects can be seen

when a liquid droplet is deposited on a thin elastic sheet. Py and coworkers

observed in [PRD+07] that capillary forces lead to a wrapping of the sheet

around the droplet into various shapes. The authors called this capillary

origami. In [PnBR10], it is shown that by applying an electric field to the

droplet, this folding process can be controlled.

In biology, elastocapillarity is one of the ways by which plant leaves such as

those of the indian cress (Tropaeolum majus L.) achieve superhydrophobicity.

In [OH04], Otten and Herminghaus describe how hairs on the leaves’ surface

deform under capillary forces induced by the liquid interface of a water droplet.

This elastic deformation leads to an effective repulsion of the droplet from the

surface of the leaf itself. In this way, the droplet is prevented from wetting

the leaf.

Elastocapillary effects are known to lead to structure formation in materials

composed of elastic fibers in contact to a wetting liquid: While pulling a comb

of elastic lamellae out of a bath of silicone oil, Bico observed in [BRMB04]

that the lamellae arranged into hierarchical bundles. In [LFXZ07], the au-

thors address the interplay between the elastic deformation of fibers or hairs

anchored to a surface and the capillary adhesion of these hairs into pairs or

larger bundles. In [PBB+07], further experiments are presented using brushes

of flexible glass and polystyrene fibers in a three-dimensional arrangement.

Similarly, carbon nanotube forests covering a surface are observed to collapse

into bundled cell-like structures when a liquid is evaporated from the ma-

terial (see [CWC+04]). Also, polymer nanobristles have been observed to
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self-organize into helical bundles by elastocapillary coalescence [PKMA09].

The problem of a liquid invading a disordered medium is surveyed in an

extensive review article by Mikko Alava and coworkers in [ARD04].

In [BLL+99], Beckham et al. measure the moisture content in fiber mats

by MRI, and observe the retention of water during drying. Nomura et al.

studied capillary condensation in Aerogels in [NMYO06]. They used 4He as

the wetting liquid, since it has very low surface tension, and therefore avoids

the problem capillary stresses.

Capillary stresses induced by the liquid and the associated fiber deforma-

tions are not specifically addressed in these works, although it is clear that

internal torques induced by capillarity must change the fiber orientations.

A preliminary account of fiber rearrangement effects induced by capillarity

can be found in Skelton’s work [Ske75a], where the question of hysteresis of

the liquid saturation during a cyclic wetting and drying of fibrous filters is

addressed.

Capillarity-induced fiber rearrangements also have an effect on the mechan-

ics of a fiber network. Already in 1952, Cox and coworkers showed in an ana-

lytic study that the orientation of fibers influences the strength of paper and

other fibrous materials significantly [Cox52]. In a more recent study, Chat-

terjee examines the effect of statistical heterogeneities in non-uniform fiber

arrangements on the mechanical properties, stressing that the elastic moduli

depend sensitively on the mean pore size [Cha10, Cha11]. As we will see in

chapter 4, formation and growth pores is one of the major effects capillary

stresses have on the morphology of elastic networks.

In this work, we focus on cylindrical fibers as the constituents of a disor-

dered elastic medium interacting with a wetting liquid. As well as being a

good model for textile fibers, polymers, and fibers in many other technical

applications, cylinders are also the simplest geometrical objects that are elon-

gated and can therefore react to capillary stresses by rotational motions as

well as translations. For this reason, cylinders provide a minimal model for

fibers, similar to spherical beads used to model granulates.

We are interested in disordered arrangements of such cylinders in a me-

chanical system, and therefore use fiber networks as our model system. For

simplicity, we will also neglect surface roughness on the cylinders in our model.

In view of the background of fiber networks of the type found in textiles, the

cylinders should be thought of as having a radius ranging from some 10µm to

a few millimeters, and lengths in the order of centimeters. In this size range,
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formation of droplets and other liquid morphologies attached to the fibers can

be observed.

In nature, condensation of liquids on fibers can be observed in the droplets

forming on spider webs in the mornings. Zheng et al. have studied water

collection on spider silk, as an example system for condensation on micrometric

fibers [ZBH+10].

In technology, capillary condensation in fiber systems occurs, for example, in

aerosol filters. Liew and coworkers studied the water uptake of aerosol filters,

and worked out consequences to their flow resistance and filtering efficiency

in [LC85, CL89], concentrating on micrometric steel wires that do not deform

significantly through capillary stresses.

Different states of a wetting liquid approaching a crossing point of two fibers

have been investigated by Gilet and coworkers [GTV09], who were interested

in designing systems of fibers to guide droplets in a novel digital microfluidics

setup.

In this work, our chief interest is in the effect that a liquid has at the contact

points of fibers in a disordered network, where it will form filaments due to

capillary condensation and exert mechanical forces and torques on the elastic

fibers. To this end, we extend the work of Princen [Pri69a, Pri69b, Pri70]

to describe the shape of liquid filaments between crossed cylinders, and use

numerical methods to derive a model for the capillary torque they exert, in

chapter 2.

Later on, in chapter 3, we will introduce a two-dimensional model system for

disordered fibrous materials, which allows us to simulate the effect of capillary

interactions taking place at the crossing points of fibers.

The first part of chapter 4 is devoted to the specifics of the interaction model.

In this model, the liquid bridges are viewed as mobile crosslinks that appear by

condensation at the crossing points and move along with the crossing points

as the network deforms. In this way, the liquid is transported through the

system and accumulates in regions of strongly bundled fibers.

A similar concept to this is the introduction of reversible crosslinks that can

form when fibers approach each other, and can rupture when they experience

a large strain. This has been used to model crosslinkers in biological networks,

but has the very significant difference that while these crosslinks exist, they

are not freely slidable, i.e., they act just like a fixed crosslink, and they also do

not exert aligning torques. In this field, Xu et al. [XHL+10] have investigated

solutions of polymers with reversible crosslinks and found shear-thickening
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effects. Also, Åström et al. [ÅKVK08] have investigated dense networks with

reversible crosslinks and found that on cyclic compression, these form bundles,

not dissimilar to those that are found in this work, in the results of chapter 4.



Chapter 2

Wetting between Cylindrical

Surfaces

Interfacial tension may induce an attractive interaction between two objects

in contact to a liquid-fluid interface. As a prominent example, these capil-

lary forces give rise to the mechanical stability of wet sand: The presence of

numerous small water bridges forming at the contact points between grains

causes a noticeable cohesion which allows one to build sand castles on the

beach. Completely dry or wet mixtures of sand and water show no cohesive

force because of the absence of interfaces.

Analogously, it is clear that capillary interactions are a key point to under-

standing the properties of wet fibrous materials as well. A theoretical model

of the capillary forces and torques explains the mechanical response of many

systems ranging from wet non-woven fabrics, paper and tissues to fiber-based

composite materials and wet hair. In particular, the mechanical stability of

areogels is strongly affected by the ambient moisture.

In a good approximation, one may consider sand grains as being spherical

particles. Therefore, study of capillary forces between spherical bodies in the

context of wet soils dates back to the middle of the 19th century. However, cap-

illary interaction between strongly elongated bodies, in particular cylindrical

surfaces as a model for fibers, has been rarely addressed.

A study of the Rayleigh-Plateau instability leading to the separation of

a liquid film on a cylindrical fiber into droplets has been done in 1975 by

Roe [Roe75]. Later, McHale described a bistability of liquid morphologies on

a fiber (a barrel state surrounding the fiber and a clamshell state shifted to one

side) in [McH02]. Experiments on this phenomenon have been performed by

Lorenceau et al. in [LCQ04]. Applications to fibrous materials have also been

considered in the literature. Mullins and coworkers observed the way in which
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droplets are captured by fibers in an aerosol filter [MBA04], and the influence

of the relative orientation of its fibers on the flow of droplets through such

a filter [Mul04]. Already in 1975, Skelton measured capillary forces between

fibers during the process of wetting an aerosol filter [Ske75b].

In this chapter, we will first introduce the reader to the fundamental prin-

ciples of wetting on solid substrates. The concept of interfacial and surface

tension and its thermodynamic foundations will be explained in section 2.1

and then applied to the calculation of the equilibrium shapes of liquid bridges

held between two cylindrical surfaces in section 2.2. At least two types of

bridges are encountered for small crossing angles and separation distances:

On the one hand, these are elongated liquid structures called filaments and

on the other hand, localized, droplet-like shapes.

To describe the shape of elongated filaments we will apply an analytical

model which is then compared to the results of numerical calculations based

on energy minimizations. In both approaches we will derive the capillary

torques as a function of the tilt angle which shows a power law behavior at

small angles. The exponent of this power law depends on the volatility of the

liquid: For non-volatile liquids, the liquid volume of a bridge can be regarded

as constant, while the volume of small liquid bridges of volatile liquids is

controlled by the vapor pressure.

The findings of this chapter will enable us to formulate an effective model

for capillary interaction that can be further employed in simulations of elastic

fiber networks, as we will show in chapter 4

2.1 Wetting Liquids on Solid Substrates

Wetting of solid substrates by a liquid is a commonplace phenomenon that

has implications for many technical applications and biological processes. An

example that springs immediately to mind is the coating of frying pans to

make them non-sticking.

In biology, the lotus leaf uses a microstructured surface to induce superhy-

drophobicity, which helps the leaves to clean in rain, since the water droplets

pick up dirt particles but no not stick to the leaf itself. This same effect is

now being used to manufacture self-cleaning surfaces.

In the following sections, we will outline the fundamental physics behind

wetting that determine the shape of a liquid phase that is in coexistence with

an immiscible fluid phase and in contact to a rigid and ideally smooth sub-
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Figure 2.1: Free energy of a liquid vapor below the critical point as a function

of density

strate. Then we apply these principles to the specific geometry of two cylinders

touching in a point. Finally, we present results of numerical minimizations of

the interfacial free energy in this geometry to determine the capillary forces a

liquid filament will exert on the cylinders.

We will assume throughout our analysis that the surfaces under considera-

tion are perfectly smooth and rigid, i.e., there is no microstructure that could

cause pinning of the contact line or contact angle hysteresis. The analysis of

droplets and filaments on rough cylinders is beyond the scope of this work.

2.1.1 Thermodynamic Aspects

We will now introduce the basic thermodynamics involved in the coexistence

of a liquid and its vapor, which is the foundation of wetting phenomena and

liquid-fluid interfaces.

Consider a container of volume V0 with a solid substrate as walls, filled with

vapor (or with a binary liquid mixture). The solid and vapor phase will be

called (s) and (v), respectively, in the following.

Below a critical temperature Tc, the free energy of the vapor as a function

of particle density ρ takes on a shape similar to that depicted in figure 2.1,

where there exists a double tangent connecting two local minima of the free

energy, with the curve of the free energy in between lying completely above

the double tangent. In such a case, the system will decompose into a high-

density liquid phase (l) and a low-density vapor phase (v) in such a way that

the total free energy of the two phases takes on a value on the double tangent.
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Figure 2.2: Phase diagram of a liquid vapor. Shown are the binodal and spin-

odal lines, the temperature range of metastability at a given par-

ticle density, and the decomposition ratio at T according to the

lever rule

Figure 2.2 shows a typical phase diagram of a liquid vapor, with the abscissa

denoting the particle density ρ, and the ordinate temperature T . The phase

diagram of a binary liquid with a miscibility gap has a similar shape, when

one replaces ρ with the particle composition. The solid line, the binodal, is

the liquid-vapor coexistence line, which is constructed by the local minimum

points of the free energy of a phase separating system. Above this line, the

homogeneous vapor phase is thermodynamically favorable, while below it, the

global minimum of the bulk free energy is a phase-separated state. The dashed

line, the spinodal, marks the area where the homogeneous phase is absolutely

unstable. It is defined as the line of vanishing second derivative of the free

energy with respect to density. Inside of the spinodal, the homogeneous phase

will always decompose into a mixed phase throughout the whole system. The

shaded area between the spinodal and the binodal marks the area of metasta-

bility of the homogeneous phase. Within it, nucleation and growth of the

minority phase can take place. The two boundaries meet at the critical point

(Tc, ρc), where all three phases coexist.
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Denoting the total number of particles in the container by N0, the ini-

tial particle density ρ0 = N0/V0 determines the temperature T ∗ where phase

separation starts. At a given temperature T < T ∗, the decomposition is gov-

erned by the lever rule: The total volumes Vl and Vv of phases (l) and (v),

respectively, are given by the particle densities ρl and ρv of the binodal at

temperature T :

(ρ0 − ρl)Vl = (ρv − ρ0)Vv (2.1)

The two separated phases are in equilibrium with each other. The total dif-

ferential dF of the free energy in this ensemble is a sum over that of the two

phases:

dF = SdT + µldNl − pldVl + µvdNv − pvdVv (2.2)

Since the number of particles N0 = Nl +Nv and the total volume V0 = Vl +Vv
are fixed, variation of the free energy of the system to find a minimum leads

to the conditions of equal chemical potentials µl = µv and equal pressures

pl = pv.

2.1.2 Interfacial Energy

In the metastable coexistence regime, formation of the minority phase occurs

by nucleation, i.e., the appearance and growth of liquid droplets or vapor

bubbles, respectively.

For small droplets and bubbles, interfacial contributions in the free energy

play a significant role. The free energy to be gained by enlarging the nucleating

phase out of the metastable phase can be of the same order of magnitude as

the energy needed for the associated enlargement of the interface. Thus, there

is an energy barrier to be crossed for a phase transition to take place.

At the interface between the liquid and vapor phases, the particle density

has to change continuously between the equilibrium values of the two bulk

phases. The associated free energy penalty depends on the density profile of

the interface. To determine this density profile and the associated excess free

energy of the interface, one needs to consider additional contributions related

to density gradients [Saf03] (see also figure 2.1). This excess free energy is

extensive in the interfacial area. It is easy to see that it must be positive,

since if a droplet could decrease its free energy by enlarging its interface,

the minimum energy state would be that where all particles belong to the
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interface, i.e., a homogeneous mixture. This contradicts the assumption that

the homogeneous state is thermodynamically unstable.

One can express these additional contributions in terms of interfacial ten-

sions σij, i, j ∈ {s, l, v} that give the areal densities of the free energy of the

interfaces between phases i and j. The σij correspond to work that has to be

done on the system to change the interfacial areas Aij. Equation (2.2) then

becomes:

dF = SdT+µldNl−pldVl+µvdNv−pvdVv+σlvdAlv+σsldAsl+σsvdAsv. (2.3)

This is the differential of the total free energy of the system. It is to be noted

that the volumes Vi and areas Ai are not independent, since they are coupled

by the particular shape the interface takes on. Therefore, the free energy must

be regarded as a functional of the shape. This implies that in equilibrium, the

pressures pl and pv need not be identical anymore. The chemical potentials

µi, however, are equal in thermodynamical equilibrium.

At a given volume, a free droplet will then always minimize its interfacial

area, so that it acquires a spherical shape. In the general case of a droplet

wetting a solid substrate, the minimal shapes depend on the geometry of the

substrate. In contrast to the case of the free droplet, a multitude of minimal

shapes is possible, although transitions between these minima is typically

associated with free energy barriers.

A full description of the free energy of the liquid would need to take the

energy of particles on the three-phase contact line into account as well. Line

tension terms are commonly neglected, however. The tension τ of the one-

dimensional contact line would give a contribution of τdL proportional to the

line’s length L. However, when the droplets are larger than the typical length

λτ = τ/σlv, line tension contributions to the free energy are insignificant.

Gravitational contributions to the free energy can in some cases also be

important. Comparing surface- and gravitational energies gives rise to another

length scale called the capillary length:

λc =

√
σlv
ρg
. (2.4)

As long as the typical dimensions λ of a liquid droplet satisfy λτ � λ� λc,

line tension effects and gravitational effects do not play a role. For water

at standard conditions, λc ≈ 3.8 mm, and λτ is on the order of nanometers.

Therefore, we will ignore both these effects in the rest of this work.
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2.1.3 The Volume- and Pressure- Ensembles

It is useful to distinguish two different thermodynamical scenarios when con-

sidering a wetting liquid on a surface: The ensembles of constant vapor pres-

sure and of constant liquid volume.

The first ensemble applies to the experimental situation of small droplets

of a volatile liquid in chemical equilibrium with its vapor phase.

In that case, the chemical potential, and in consequence the pressure of

the liquid and vapor phase, is controlled externally. As a consequence, the

difference in pressures between the liquid and vapor phases is also determined

by the prescribed chemical potential.

Equilibrium states in this ensemble are stationary points of the grand canon-

ical free energy

Ω = F − µN = F −∆pVl + pvV0, (2.5)

where F = σlvAlv + σslAsl + σsvAsv is the interfacial part of the free energy.

The last term in equation (2.5) is a constant.

In this ensemble, certain configurations are unstable with respect to ex-

change of particles. For example, in the following section we will see that the

excess pressure of small droplets is determined by their interfacial curvature.

Therefore, all droplets in the system will equilibrate to equal mean curvatures

by exchange of particles through the vapor phase, since the vapor pressure

determines the equilibrium curvature.

The ensemble of constant volumes corresponds to situations where the liquid

is incompressible and non-volatile, meaning that exchange of particles between

liquid and vapor is slow on experimentally relevant timescales. If that is the

case, the volume of liquid in each drop is a conserved quantity in the system,

and can be seen as a constraint in minimizing the free energy to derive the

liquid shapes. Since the droplet volume is constant, only the interfacial parts

of the free energy need to be considered for minimization. The functional to

minimize is then given by

F ′ = F −∆pVl. (2.6)

Here, ∆p is a Lagrange multiplier that has to be chosen such that the volume

constraint is satisfied. It is equal to the excess pressure that the liquid will

have in mechanical equilibrium.

The sets of stationary points of the functionals (2.5) and (2.6) are identical.

Owing to the additional constraint, the set of local minima, i.e., of stable
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shapes, is larger in the second case. For example, a spherical droplet of a

small fixed volume is always stable in the volume ensemble. However, in

the pressure ensemble, the same droplet, in chemical equilibrium with the

ambient vapor phase, represents an unstable saddle point of Ω, and will either

evaporate or grow.

2.1.4 Mechanical Equilibrium

While equation (2.3) gives the conditions for thermodynamic equilibrium, one

has to consider the balance of stresses to identify those liquid morphologies

that are mechanically stable. First we consider the condition of mechanical

equilibrium at the fluid-fluid interface:

The Law of Laplace

Laplace remarked that in mechanical equilibrium, the surface tension of a

spherical droplet, or of any curved fluid interface, would make the droplet col-

lapse unless it was counteracted by an excess pressure ∆p within the droplet.

In general, the work of increasing the interfacial area by a small amount dAlv
must be counteracted by the work needed to increase the volume by dVl, so

that ∆pdVl = σdAlv.

Applying this to a surface element with the two principal radii of curvature

R1 and R2, one can obtain the pressure difference:

∆p = σlv

(
1

R1

+
1

R2

)
= 2σlvH. (2.7)

Here, H is the mean curvature of the surface. The pressure difference ∆p is

called the Laplace pressure.

Since the pressure in one phase will be homogeneous in equilibrium, a direct

consequence of this is that the fluid-fluid interface in mechanical equilibrium

is a surface of constant mean curvature.

Young’s Condition

Young [You05] considered the equilibrium of forces at the three-phase contact

line of a sessile droplet, that is, a droplet sitting on a flat substrate (see

fig. 2.3). Each of the three interfacial tensions results in a force that will strive

to minimize the corresponding interfacial area, and is therefore tangential to

that interface. In order for such a droplet to be stable against movement of the
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Figure 2.3: Balance of forces at the three-face contact line of a sessile droplet

contact line on the solid surface, the projections of the forces onto the surface

must balance. The angle at which the (lv) interface and the (sl) interface

meet is called the contact angle θ, and it is fixed by the condition of force

balance:

σsv = σsl + σlv cos θ. (2.8)

This is Young’s equation for the contact angle. It can only be fulfilled with a

finite θ ∈ (0, π) when σsv < σsl + σlv and σsl < σlv + σsv. If the first of these

conditions is not fulfilled, the contact line spreads outward indefinitely until

the liquid forms a thin film on the whole substrate. This is called complete

wetting. Violation of the second condition leads to complete retraction of the

contact line until the spherical droplet touches the surface at only one point;

this is called a completely non-wetting scenario.

On real surfaces, microscopic roughness will mean that the macroscopically

measured contact angle does not necessarily correspond to the microscopic

angle of the interface with the substrate. In such a case, the contact line may

be pinned to a microscopic ridge, so that effectively one has to introduce an

advancing contact angle θa > θ and a receding contact angle θr < θ (these

are the macroscopic angles one observes when the contact line advances or

recedes along the substrate), or even a velocity-dependent dynamic contact

angle. While cyclically changing the volume of a droplet, the macroscopic

contact angle will then depend on the history of the process. This is called

contact angle hysteresis.

We will neglect the effects of contact angle hysteresis and dynamic contact

angles in this work, assuming our surfaces to be ideally smooth.
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2.1.5 Capillary Condensation

When a porous solid is embedded in liquid vapor, it can be observed that

liquid spontaneously condenses into pores. The reason for this is that the

curved meniscus of a liquid in a small pore, and the associated large negative

Laplace pressure, allow the liquid to condense even below the saturation vapor

pressure. This has been expressed by Lord Kelvin in what is known as the

Kelvin equation, relating the mean curvature H to the supersaturation pv/psat

of the vapor:

ln

(
pv
psat

)
=

∆p

(ρl − ρv)kBT
(2.9)

(see, for example, [Isr91]). This assumes that the Laplace pressure ∆p is

much larger than the pressure difference pv − psat, i.e., it only holds for large

curvatures, and therefore for small liquid droplets.

A consequence of this is that in a system of several droplets, larger droplets

(with a lower vapor pressure) will tend to grow by condensation, while droplets

that are so small that their vapor pressure exceeds that of the system evapo-

rate. This process is known as Ostwald ripening.

2.1.6 Capillary Forces

When a liquid condenses between two solid bodies, the force exerted by the

interfacial stresses along the contact line and the force arising from the pres-

sure difference between liquid and vapor add up to a capillary interaction force

between the two bodies. This can manifest either in an attractive or repulsive

force, or in torques between tilted objects.

To avoid the appearance of phase boundaries, and therefore of stresses in-

duced by surface tension terms, evaporation of the solvent to create an aerogel

needs to be done with careful control of pressure and temperature in order

to avoid the region of nucleation. This process is called supercritical drying,

since it circumnavigates the critical point in the p-T -phase diagram, and is

very laborious.

A straight-forward way to calculate forces and torques caused by capillary

action is to determine the equilibrium value of the interfacial free energy for

a given solid geometry, and then calculate the derivative of this energy with

respect to geometrical parameters. The derivative with respect to the distance

between the bodies gives the force, while the derivative with respect to the
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angle between the two bodies’ orientations gives the capillary torque. The

latter is what interests us in the context of wet fiber networks.

2.1.7 Determining Liquid Morphologies

Coming back to the three-phase scenario of a liquid on a solid substrate (see

Fig. 2.3), we want to minimize the free energy of the liquid with respect to the

shape of the interface in order to determine its equilibrium morphology. We

call the free interface of the droplet with the vapor phase S, and the interface

on the substrate S∗. Since dAsv = −dAsl, the free energy functional of the

liquid interfaces is then

F = σlv

∫
S

dAlv + (σsl − σsv)
∫
S∗

dAsl

= σlv

(∫
S

dAlv − cos θ

∫
S∗

dAsl

)
. (2.10)

This has to be minimized in order to determine the shape of the liquid

interface in a given solid geometry. It is always possible that several shapes

with different topologies that form a local minimum of (2.10) coexist in a

given solid geometry. Conversion between these shapes can be associated with

an energy barrier that needs to be overcome in the course of the necessary

deformations of the interface. Thus, capillary systems can show considerable

hysteresis. It is this kind of hysteresis that, on the microscopic length scale,

leads to contact angle hysteresis when microscopic roughness is present.

Laplace’s condition of constant mean curvature of the free liquid interface,

together with Young’s contact angle and the condition of either fixed Laplace

pressure of fixed liquid volume allow us to explicitly construct an equilibrium

liquid morphology between two cylinders that are very lightly tilted, as will be

shown in section 2.2. Alternatively, numerical minimization of (2.10) allows

us to calculate these shapes for arbitrary tilt, as will be shown in section 2.3.

2.2 Analytical Description of Wetting Between

Cylinders

The specific wetting geometry of two parallel cylinders of equal radius has

been addressed first by H. M. Princen [Pri69a]. Assuming the existence of
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Figure 2.4: Cut through a liquid filament between two cylinders, far away from

the meniscus

equilibrium shapes with a nearly translationally invariant cross section he was

able to predict the Laplace pressure and cross section of the liquid for a given

separation distance and Young’s contact angle. We will call this important

state a “filament” of the wetting liquid. In the following, we will give an

analytic description of this state. We will then show that it can be generalized

to the case of slightly tilted cylinders.

The most important feature of a liquid filament is its translational invariance

over a large length of the fibers. When we assume that the liquid spreads

over a length L along the fiber interstice that is very large compared to the

separation s of the fibers, then it is justified to assume that the cross section

of the liquid will be the same everywhere except very close to the saddle-

shaped terminal menisci at the very ends of the filament. Consequently, the

radius of curvature along the stretch of the filament is essentially infinite in

this approximation. Since the liquid interface is a surface of constant mean

curvature, it follows that in any cross section of the filament between parallel

cylinders, the interface is a circular arc of fixed radius R.

Figure 2.4 gives a sketch of this cross section. It also depicts the following

geometric quantities that will be used from here on: The separation of the
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cylinders is called s, the cylinders’ radius is r, the radius of curvature of the

liquid filament in the cross sectional plane is denoted by R, the contact angle of

the liquid is θ, the angle ϕ determines the position of the three-phase contact

line, w gives the separation of the contact lines between both cylinders and

ε = ϕ+ θ − π
2

is an auxiliary angle.

For convenience, we will rescale all lengths by the radius r of the cylinder.

Consequently, all areas and volumes will be measured in units of r2 and r3,

respectively. Energies and torques are non-dimensionalized by the energy scale

σlv r
2, while the Laplace pressure is expressed in units of σlv/r. The distance

w of the contact lines can be expressed by the cylinder separation as follows:

w = s+ 2(1− cosϕ). (2.11)

The radius of curvature of the free interface is then simply

R =
w

2 sin ε
=
s+ 2(1− cosϕ)

2 sin ε
. (2.12)

The shapes of the filament are therefore parametrized by a single free inde-

pendent parameter, e.g. ϕ, once the separation and radius of the cylinders

and the liquid contact angle θ are prescribed.

In order to calculate the interfacial free energy and liquid volume, it is useful

to know the contour length of the interfaces in the cross section, as well as

the cross sectional area of the liquid:

The contour lengths of the liquid-vapor interface and the liquid-solid inter-

face, Llv and Lls are simply given by:

Llv = 4Rε

Lls = 4ϕ, (2.13)

while the cross sectional area A takes the form

A =
2(ε− sin ε cos ε)R2

sin2 ε
+ 4 sin ε sinϕR− 2(ϕ− sinϕ cosϕ)

sin2 ϕ
. (2.14)

The shape parameter ϕ has a lower bound ϕ< that determines the point

where the two menisci touch. Below this point, no filament can be constructed.

For hydrophobic contact angles (θ > π/2) this is simply ϕ< = 0. For hy-

drophilic contact angles, the limit is determined by

sinϕ< = R(1− cos ε)

= (s+ 2(1− cosϕ<)) (1− sin(θ + ϕ<)) . (2.15)
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The maximum angle is given by the point where the liquid completely engulfs

the cylinders. It is

ϕ> =

{
π for θ < π

2
3π
2
− θ for θ ≥ π

2

. (2.16)

Now consider the total interfacial free energy of such a translationally in-

variant liquid filament with a fixed Volume V = LA. It reads:

F = (Llv − Lls cos θ)L. (2.17)

When the separation s and liquid volume V are given, the filament length

L = V/A and the contour lengths Llv and Lls are functions of ϕ only, according

to equations (2.14) and (2.13).

With this, the value ϕ will take on in mechanical equilibrium can be deter-

mined by finding the minimum of F with respect to ϕ.

2.2.1 Condition of mechanical equilibrium

Employing the interfacial free energy per unit length of the filament f = F/L,

the condition of stationarity with respect to changes in the wetted length is

then simply given by the condition

∂ϕF =
(A∂ϕf + f ∂ϕA)V

A2
= 0, (2.18)

or equivalently

f

A
=
∂ϕf

∂ϕA
= ∂Af = 0. (2.19)

This latter condition can be interpreted in a geometrical way: The tangent

to a point of the graph of the function F (A) has to pass through the origin

f = 0 and A = 0 of the coordinate system. In general, one can show that

∂AF = ∆p = 2σlvH. (2.20)

The relation above can be checked for the particular form of F and A

by explicit calculation. Since we assumed that the free interface in a cross

section follows a circular arc of radius R, and is translationally invariant along

the cylinder axis, the mean curvature H equals 1/2R. Equation (2.19) then

assumes the explicit form

R2(ε+ cos ε sin ε)− 2R(ϕ cos θ+ sin ε sinϕ) + (ϕ− sinϕ cosϕ) = 0. (2.21)
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Solving this equation leads to the radius of curvature R(θ, ϕ) in equilibrium

as a function of the prescribed contact angle θ and the parameter ϕ. One

can then calculate the separation s(θ, ϕ) from equation (2.12). This function

reaches a maximum s∗ at a parameter value ϕmax, meaning that the values of

separation distances s where locally stable liquid filaments are found is limited

by s∗, which depends on the contact angle θ.

The corresponding Laplace pressure ∆p of an equilibrated filament turns

out to be a monotonously increasing function of the distance s up to s∗, where

the filament becomes unstable with respect to a longitudinal redistribution of

liquid. Hence, there is also a maximum Laplace pressure ∆p∗ which cannot

be surpassed by a liquid filament. This maximum pressure is a function of the

contact angle θ.

2.2.2 Modified Princen Model

In this section we will expand the Princen model for parallel cylinders to the

case of small finite crossing angles α → 0 to extract the scaling of the total

liquid volume V of a filament at fixed Laplace pressure ∆p. In a similar

fashion, one can compute the interfacial energy F , torque T , and length L of

the liquid filament. To this end, we will evoke the theory of Princen outlined in

the previous section and modify it to account for the modified local geometry

of tilted cylinders. While the prefactors of the scaling laws for the volume and

torque can only be determined numerically in the generic case of finite Laplace

pressure, an expression valid for asymptotically small Laplace pressures ∆p→
−∞ can be found by purely analytical arguments. Throughout the following

analysis we will assume a zero separation distance s = 0 between the surfaces

of the cylinders, i.e., the two cylinders touch in a single point. The separation

of two cylinder cross sections is then simply given by the angle α and the

distance from the crossing point (see figure 2.5).

We will start with a number of general observations. A simple scaling

relation between the volume of the liquid for a given fixed Laplace pressure

at small crossing angles α � 1 can be obtained from purely geometrical

reasoning: if we scale the dimensions of the two wetted cylinders and the

liquid filament into the direction of the bisecting line (thus decreasing α in a

linear approximation), the liquid filament will stay close to a family of new

equilibrium configurations. Because the curvature of the liquid interface along

the cylinders can be neglected, the local mean curvature and thus the Laplace

pressure will remain unchanged compared to the unstretched configuration.
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Figure 2.5: Two tilted cylinders with liquid filament; the cross section shows

the distances involved

This implies that the volume V , length L and interfacial free energy F will

scale with α−1. This will be confirmed in the following.

In the theory of Princen, the Laplace pressure ∆p of a liquid filament of

given volume in equilibrium is a function of the separation s. We can therefore

expect that when a certain pressure ∆p is prescribed in a configuration of

almost parallel cylinders, a liquid filament will spread to a point where the

surfaces are separated by a certain distance sf . The value of sf will depend

on the prescribed Laplace pressure ∆p < ∆p∗ and material contact angle θ,

but not on the crossing angle α. Since the condition that determines the value

of sf is unaffected by a dilation of the liquid shape and cylinders along the

y-direction, we can expect the asymptotic scaling L ∝ α−1 for the distance of

the terminal menisci from the contact point and V ∝ α−1 for the total liquid

volume of the filament in the regime of α � 1. Similar arguments show that

the torque will scale as α−2 for a fixed Laplace pressure.

The length L of the filament at given Laplace pressure can be calculated

from the separation sf (see figure 2.5):

L = 2
√
sf (4 + sf )α

−1. (2.22)

The separation sf corresponds to a mechanically equilibrated filament at a

Laplace pressure ∆p < ∆p∗ as determined from equations (2.21) and (2.12)

for a radius R = ∆p−1.
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The volume V of the liquid filament can be computed from the integral over

the cross sectional area A perpendicular to the bisecting line:

V = 2

∫ L

0

dy A(y). (2.23)

Here, y denotes the distance of the cutting plane and L the distance of the

terminal meniscus from the kissing point of the cylinders. As we assume the

distortion of the filament due to the tilt of the cylinders to be small, the cross

section of the filament will depend only on the separation distance s, which

itself varies with the lateral position 0 ≤ y ≤ L on the bisecting line. By

applying the theorem of Pythagoras we find, again,

y = α−1
√

(s+ 4)s (2.24)

(see also figure 2.5). For a given Laplace pressure ∆p of the filament the radius

of the meniscus is fixed to R = ∆p−1. This allows us to express the area A

of the filament’s cross section and the corresponding separation distance s by

the local opening angle ϕ of the filament and the auxiliary angle ε.

Solving the equilibrium condition equation (2.21) for the radius R yields the

Laplace pressure as a function ∆pf (ϕf , θ) of the corresponding opening angle

ϕf of the filament close to the terminal meniscus and the material contact

angle θ. Then the maximal opening angle ϕmax, which is attained close to the

terminal meniscus, is determined by the condition ∆p = ∆pf (ϕmax, θ) for a

given Laplace pressure ∆p and contact angle θ. The minimal opening angle

ϕmin of the filament, reached at the contact point, is determined from equation

(2.12) with the condition s(∆p, θ, ϕ) = 0 for a given Laplace pressure ∆p.

Making use of the chain rule of differentiation we are now ready to rewrite

integral equation (2.23) in the form

V (α,∆p, θ) = (2.25)

2

∫ ϕmax

ϕmin

dϕ A(∆p, θ, ϕ)
∂s

∂ϕ
(∆p, θ, ϕ)

∂y

∂s
(α, s(∆p, θ, ϕ)) .

It is evident from the derivative

∂y

∂s
=

2 + s

α
√
s(s+ 4)

(2.26)

of the function y(s) in equation (2.24) that the total volume satisfies the

scaling form V (α,∆p, θ) = α−1 V (1,∆p, θ). The latter integral V (1,∆p, θ)
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can be computed numerically for given Laplace pressure ∆p and material

contact angle θ.

In a similar fashion we can compute the torque T between the two cylinders

for a fixed Laplace pressure ∆p. The forces per length, k, between the two

cylinders are composed of the surface tension forces of the liquid interfaces

and the force of the Laplace pressure; they can be expressed by the force per

unit length

k = 2(cos ε−∆p sinϕ). (2.27)

With this we are able to write the torque T in form of an integral

T = 2

∫ L

0

dy g(α, y) k(y) y (2.28)

with a function

g(α, y) =
(4 + s)s

α(2 + s)
(2.29)

that accounts for the relevant component of the force k. This integral can

be transformed into an integral similar to (2.26) and solved numerically for

different Laplace pressures and contact angles. From the form of the integral

the scaling T (α,∆p, θ) = α−2 T (1,∆p, θ) is evident.

2.2.3 Analytical model for ∆p→ −∞
In this subsection we will compute the volume V , interfacial energy F and

extension L of the liquid filament for asymptotically small Laplace pressures

∆p→ −∞. In contrast to the modified Princen model in the previous subsec-

tion, this model is valid for arbitrary crossing angles α. The fundamental idea

behind the following calculation is a separation of length scales. In the limit

of large negative Laplace pressures, the wetting liquid will always be located

around the kissing point of the two cylindrical surfaces (see figure 2.6). In

this limit, the radius of curvature of the meniscus perpendicular to the tan-

gent plane of the cylindrical surfaces becomes small when compared to the

remaining two dimensions of the filament, and the two cylinders are described

by gently sloping surfaces close to the contact point. The height Hm of the

meniscus is effectively fixed by the Laplace pressure ∆p and the contact angle

θ. This assumption is justified as long as the filament is sufficiently flat, i.e.,

the curvature of the meniscus in the tangent plane to the contact point is
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Figure 2.6: Illustration of the shape of the meniscus in the limit of large nega-

tive Laplace pressures. The left images shows a side view, while in

the right image the cylinders are seen from the top with the pro-

jected shape of the liquid between them sketched in as the blue

area.

much smaller than the out of plane curvature of the contour. Without loss

of generality, we place our Cartesian coordinate system such that the tangent

plane is identical to the xy-plane.

Here, and in what follows, we make use of the dimensionless rescaled height

h = Hm/R; the corresponding Laplace pressure reads

∆p =
2 cos θ

h
. (2.30)

The in-plane contour of the filament is now given by the implicit condition of

fixed height ∆s(x, y) = h(∆p, θ), where ∆s is the width of the gap between

the two cylindrical surfaces close to their contact point. The solution to this

problem is a two-dimensional space curve (x(t), y(t)), where t is a dimension-

less parameter. Placing the kissing point of the cylinders in the coordinate

origin, the gap width ∆s at a point (x, y) can be approximated by

∆s =
1

2

[
sin2α x2 + (1 + cos2α) y2 + 2 sinα cosα xy

]
. (2.31)

The condition ∆s = h can now be written as

(x, y) ·M (x, y)T = 2h (2.32)

with a matrix

M =

(
sin2α sinα cosα

sinα cosα 1 + cos2α

)
. (2.33)
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More generally, equation (2.32) defines a set of isolines of given distance h

between two tilted cylindrical surfaces close to the contact point.

From the elongated shape of the filaments we expect an ellipse for the

contour. This is in accord with the quadratic form (2.32). The lengths of the

principal axes a and b of this ellipse are then related the zeros in λ of

|M− λ1| = 0. (2.34)

Explicit computation of the characteristic polynomial (2.34) yields

λ1 = 1− cosα and λ2 = 1 + cosα . (2.35)

Close to the contact point of the surfaces, any isoline of equal distance h

between two tilted cylinders can be approximated by an ellipse with long and

short axis

a =

√
2h

1− cosα
and b =

√
2h

1 + cosα
, (2.36)

respectively.

Based on this observation, we can calculate the volume V of a small liquid

filament from the two dimensional integral

V =

∫
Ω

dS ∆s(x, y) (2.37)

over the domain Ω, which is bounded by the contour line of the meniscus. For

the case of α = π/2, we find a = b =
√

2h. In this case, the two dimensional

domain Ω is a circle of radius

Rf = 2

√
−cos θ

∆p
, (2.38)

where we used equation (2.30) to express h by the Laplace pressure ∆p and

the contact angle θ. In polar coordinates φ = arctan(x/y) and ρ =
√
x2 + y2

the gap width is ∆s = ρ2/2 and the volume of the circular liquid bridge reads

Vl = 2π

∫ Rf

0

dρ ρ∆s =
4π cos2 θ

∆p2
. (2.39)

For the general case of α 6= π/2, we find by a simple affine transformation in

the tangent plane that the liquid volume of an oblique liquid filament is

Vl =
4π cos2 θ

| sinα|∆p2
≈ 4π cos2 θ |α|−1 ∆p−2. (2.40)
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The length L of such an elliptical filament assumes the form

L = 2a = 4

√
− cos θ

(1− cosα) ∆p
≈ 4
√

2 cos θ |α|−1 (−∆p)−1/2, (2.41)

while the area Als of the cylinders wetted by the liquid is given by

Als = 2πab = − 8π cos θ

| sinα|∆p
≈ −8π cos θ |α|−1 ∆p−1. (2.42)

In the limit of flat filaments one may safely neglect the contribution of the free

liquid interface. Then, the grand canonical interfacial energy F ′ = F −∆p Vl
for a fixed Laplace pressure assumes the form

F ′ = − 4π cos2 θ

| sinα|∆p
. (2.43)

The corresponding capillary torque T is given by the derivative

T =
∂F ′

∂α
= −4π cos2 θ cosα

| sin2 α|∆p
≈ −4π cos2 θ α−2 ∆p−1. (2.44)

The scaling of the above quantities for the case of a constant liquid volume

V can be obtained by solving equation (2.40) for the Laplace pressure:

∆p ≈ −(2π)1/2 cos θ V
−1/2
l |α|−1/2. (2.45)

Inserting the expression (2.45) into expressions (2.41) for the length and (2.44)

for the torque yields the scaling relations

L ≈ 4(2/π)1/4 V
1/2
l |α|−3/4 (2.46)

for the total length and

T ≈ 2(2π)1/2 cos θ V
1/2
l |α|−3/2 (2.47)

for the capillary torque.

Now, we are ready to compare the prefactors of the scaling forms for the

torque obtained in the modified Princen model to the corresponding prefactors

for the elliptical filaments valid for small Laplace pressures ∆p→ −∞. Figure

2.7 shows the prefactor T0 of the torque for different fixed Laplace pressures

in the modified Princen model, arrived at by numerical integration of (2.28),

and multiplied with ∆p in accordance with the expected scaling from (2.44).

The solid line shows equation (2.44). The curves do indeed converge for very

large negative Laplace pressures.

In the next section, we will verify the scaling behavior of the torque for

arbitrary Laplace pressures and crossing angles using numerical minimizations

of the interfacial free energy to obtain exact shapes for the liquid interface.
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Figure 2.7: Coefficient T0 of the capillary torque as a function of contact angle

θ, rescaled by the Laplace pressure. The colored circles are calcu-

lated from the modified Princen model, while the solid black line

corresponds to the asymptotic solution for large negative Laplace

pressures.

2.3 Numerical Computation

In order to find minimal surfaces in nontrivial geometries, numerical minimiza-

tion techniques can be a valuable tool. We used the Surface Evolver package

by Ken Brakke [Bra92] to gain exact numerical solutions for the problem of

wetting between cylinders at finite crossing angles α, without having to resort

to small-angle approximations as we did in section 2.2.

Similar calculations have been done by Bedarkar and Wu [BW09], and by

Virozub et al. [VHB09], albeit in a limited range of parameters, using only

very little data points. Also, the surface evolver approach used in [BW09]

explicitly includes the liquid-solid interface, which makes it prone to numer-

ical instabilities. Consequently, the results we show in the following differ

considerably.

Our primary aim is to characterize the dependence of the interfacial free

energy on the cylinder crossing angle α, so that we may derive the capillary

torques acting between crossing cylinders, over the full range of values for α,

and for different parameters such as contact angle θ, fixed volume V or fixed

Laplace pressure ∆p.
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Figure 2.8: Surface Evolver simulation of a liquid filament between two tilted

cylinders at α = 30◦. In the left image, the cylinders are made

slightly transparent. The right image shows the triangularization

of the liquid interface.

The method is to create a triangular mesh approximating the liquid-vapor

interface, which is topologically equivalent to the liquid morphology one wants

to study. The nodes of the mesh are then moved according to a conjugate

gradient scheme, while observing constraints to keep the nodes of the contact

line tethered to the substrate, and further optional constraints like that of

constant volume. The surface evolver offers a variety of tools to fine-tune the

triangularization of the surface and the minimization procedure. We chose

a fine triangularization close to the contact line, with larger mesh elements

further away (see Fig. 2.8).

The surface evolver minimizes equation (2.6), treating ∆p either as a La-

grange multiplier to satisfy a fixed volume constraint, or as a fixed Laplace

pressure. It is advantageous for numerical speed and stability to only model

the liquid-vapor interface. The surface integrals in (2.10) can then be ex-

pressed as line integrals over the three-phase contact line via Stokes’ theorem.

The same is done for the integral to calculate the volume in (2.6). The surface

evolver calculates these line integrals by summation over the vertices of the

three-phase contact line.

The geometrical problem is again defined as that of two cylinders touching

at at the coordinate origin, and tilted against each other by an angle α. Once
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(a) droplet state (b) filament state

Figure 2.9: The two main liquid morphologies found between cylindrical fibers

in contact

more, we chose the cylinder radius as the basic length scale of the system, and

measure energies in terms of the interfacial energy of a liquid-vapor interface

of unit area. Further parameters of the simulation are either the prescribed

volume V or the Laplace pressure ∆p, the contact angle θ and the crossing

angle α.

In the chosen units, the first integral of equation (2.10) is simply the inter-

facial area, calculated by summation of the triangle areas of the mesh. The

second integral is transformed into a line integral over the three-phase contact

line as follows:

∫
S∗

dAsl =

∫
S∗

n · dAsl =

∫
∂S∗

w · dl. (2.48)

∇×w = n. (2.49)

Here, n is a unit vector normal to the liquid-vapor interface, dAsl is the vec-

torial area element, also pointing normal to the interface, dl is a line element

of the three-phase contact line, and the vector w needs to be chosen such that

it fulfills (2.49). Then, the last equality in equation 2.48 follows from the law

of Stokes.

We chose the first cylinder to be parallel to the y-axis, and a distance d/2

above the origin in z-direction, while the second cylinder is d/2 below the
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origin and forms an angle α with the y-axis. Then we choose

w1 =
1

r

 0(
z − d

2

)
y

xy

 w2 =
1

r

 sinα
(
z + d

2

)
(y cosα + x sinα)

cosα
(
z + d

2

)
(y cosα + x sinα)

(x cosα− y sinα)(y cosα + x sinα)


(2.50)

as vector integrands for the disjunct paths of the three-phase contact line to

conform to condition (2.49) for the two cylinder surfaces, respectively.

We employ two different liquid topologies, pictured in figure 2.9: First, a

state where the liquid wets the cylinders completely around the contact point,

i.e., the liquid is topologically equivalent to a sphere engulfing the cylinder

contact point, with four holes where the cylinders cross the interface (see the

figure 2.9(a)). The second topology is that investigated in section 2.2; here,

the liquid is topologically equivalent to a torus contacting the inner surfaces

of the cylinders (see figure 2.9(b)).

The surface evolver is initialized with a simple vertex structure representing

the respective topology, and containing a volume that is approximately equal

to the value to be investigated. Then, the triangular mesh is refined in a way

that emphasizes the three-phase contact line, and the minimization procedure

is advanced. These steps are repeated until equilibrium is reached. To judge

the convergence of the algorithm, we measure the wetted length L along a

cylinder axis, and continue the minimization until the change of L in one step

of the algorithm is smaller than 0.5% of the smallest vertex length of the

triangular mesh.

Figure 2.9 shows the relaxed states of the liquid in the two different topolo-

gies under investigation. We will call left one (2.9(a)) a droplet state, and the

right one (2.9(b)) a filament state. The droplet state is found to be stable only

for large angles α and small volumes, while the filament state becomes unsta-

ble when α approaches π/2, where it changes into a droplet. However, the

filament state is stable over a very wide range of the model parameters. The

droplet state shows only a slight deviation from a perfectly spherical droplet,

induced by Young’s condition on the cylinder surface. Because of this, it also

shows little variation with the angle α, and is therefore not interesting to us.

To compare the results of the surface evolver with the exact theory as pre-

sented by Princen [Pri70] and in section 2.2, we first investigate the case of

parallel cylinders with a finite separation s. Solving equation (2.21) for the

radius of curvature R, one arrives at a function R(ϕ, θ). Together with expres-

sion (2.12) for the separation s(ϕ, θ), this implicitly defines the relationship
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Figure 2.10: Laplace pressure ∆p vs. separation s of two parallel cylinders

∆p(s), giving the Laplace pressure at a given separation. As mentioned in

section 2.2, there is a maximum separation s∗ beyond which no solutions to

this equation exist.

Figure 2.10 shows this relationship as the blue line. To compare this to

numerics, we initialized the surface evolver with a toroidal liquid topology

between parallel cylinders at constant volume and varied the separation s.

In each step, we waited for convergence of the spreading length L, as stated

above.

Exploring a wide range of separations s at a given volume in the surface

evolver proves difficult, since the same volume of liquid at low separations

will spread out very long, and such an elongated structure is difficult to tri-

angularize sensibly. Since the theory is independent of the prescribed volume,

though, we ran two simulations, visible as two distinct sets of red crosses in

figure 2.10. For both simulations, the agreement with the theoretical curve is

very good. It is to be noted that the simulations remained stable for a bit in

the regime where no stable solutions of the analytical theory are found.

In the following, we will show the numerical findings for the dependence

of the filament state on the angle α, while keeping the separation s = 0

throughout. This scenario of touching cylindrical fibers that can rotate around

their crossing point is what we want to model in the context of two-dimensional

wet fiber networks later on.

To investigate these angular dependencies, we initialize the surface evolver
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Figure 2.11: Wetted length L as a function of the crossing angle α of two cross-

ing fibers at different equilibrium contact angles θ and Laplace

pressures ∆p.

with a toroidal liquid topology at α = π/2 as stated above, and then reduce

the angle α to of 98.5% of its previous value until we reach α = 0.1, thus taking

smaller steps in the regime of small angles, since we expect from section 2.2

that the liquid will spread with a power law in that region. In each step, we

adjust the refinement of the mesh and advance the minimization algorithm

until the length L converges, as described above. We record the angle α, the

total interfacial energy F , the wetted length L and the liquid volume V or the

Laplace pressure ∆p in every step of this quasi static tilting of the cylinders.

To check the assumption that the spreading length L between tilted cylin-

ders is governed by the separation s at a given Laplace pressure, we plot

the wetted length L as function of α in the constant-pressure ensemble (see

Fig. 2.11). It can be seen that the small-angle relationship (2.22) holds for

a very wide range of angles α ∈ (0, π/2). The prefactor ∆x =
√
sf (4 + sf )

gives the lateral distance between the cylinder axes at the point of the terminal

meniscus (see figure 2.5).

We plotted the coefficient ∆x(θ,∆p) from the modified Princen theory,

along with the values for ∆x extracted from a fit of the relation L = ∆xα−1

to the numerical data in figure 2.12.

While the data are in good qualitative agreement, there is a certain bias to-
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Figure 2.12: Comparison of the coefficient ∆x of the scaling of the wetted

length with α to the separation predicted by the theory for a

given Laplace pressure ∆p, as a function of the Young’s contact

angle θ. Surface evolver results are drawn as circles, while the

prediction of the modified Princen model is drawn as lines.

wards lower coefficients, meaning that the assumption that the liquid spreads

to the point of separation that corresponds to the prescribed Laplace pressure

overestimates the spreading behavior.

To calculate the torque that the filament exerts on the cylinders, we cal-

culate the numerical derivative of the interfacial energy with respect to α.

Figures 2.13 and 2.14 show the simulation results of the torque as a function

of α in the constant pressure and constant volume ensembles, respectively.

Again, the scaling behavior predicted at the end of section 2.2.3 holds over a

wide range of angles: In the constant pressure ensemble, the torque varies as

α−2, while in the constant volume ensemble, it varies as α−3/2. Only when α

approaches π/2 can a serious diversion be observed. At that point, the fila-

ment state becomes unstable, and one would expect the liquid to transform

into a droplet state. Since the droplet state is almost spherical, the torque

will therefore vanish at that point.

Figure 2.15 shows the coefficient T0 of the power law for the torque, T =

T0α
−2, in the case of constant pressure. It shows that the capillary torque

vanishes as θ approaches 90◦, and grows larger for smaller contact angles and
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Figure 2.13: Double logarithmic plot of the capillary torque dF/dα as a func-

tion of the crossing angle α of two crossing fibers at different

equilibrium contact angles θ and Laplace pressures ∆p.

smaller prescribed pressure differences. The solid lines in figure 2.15 are nu-

merical solutions of (2.28). Similarly to the comparison of the spreading length

coefficient seen in 2.12, the theory overestimates the coefficient systematically

by a small value.

In the case of constant volume, only small contact angles could be simulated,

because at larger contact angles, liquid filaments with a prescribed volume are

unstable.

The observed scaling is valid for all contact angles θ, Laplace pressures ∆p

and volumes V ; these parameters merely influence the coefficient of the scaling

law. In order to simulate the mechanical response of a system of cylinders to

capillary interactions of filaments that form by capillary condensation at the

crossing points, one would therefore have to implement a torque interaction

mediated by an angular potential at the crossing points of the form

F (α) ∝ αη, (2.51)

where the value of η depends on the ensemble under consideration. If the

vapor pressure of the system is controlled, η = −1 is the correct choice, while

for nonvolatile filaments of equal volume, η = −1/2 needs to be chosen.
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Figure 2.14: Double logarithmic plot of the capillary torque dF/dα as a func-

tion of the crossing angle α of two crossing fibers at different

equilibrium contact angles θ and liquid volumes V .
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Figure 2.15: Prefactor T0 of the power law governing the capillary torque be-

tween cylinders in the constant pressure ensemble, as a function

of the Young’s contact angle θ, for different values of the Laplace

pressure ∆p. The circles are results of the surface evolver calcu-

lations, while the lines are from the modified Princen model.



Chapter 3

Crosslinked Fiber Networks

In order to describe the effect of liquid bridges when they appear in materials

that are composed of large numbers of fibers, a simple model for the arrange-

ment of fibers in this material is needed. We are particularly interested in

disordered fiber networks, as they appear in non-woven fabrics, paper, com-

posite materials, aerosol filters and aerogels. This chapter is devoted to the

description of a simple model of such networks that will allow us to include

the effects of a wetting liquid by applying what we learned about capillary

torques caused by liquid filaments in chapter 2.

A theoretical description of such three dimensional fiber networks is rele-

vant to many industrial processes and applications in the paper and textile

industries. Fiber networks are also found in many living organisms, since their

mechanical properties are flexible and easily controllable by the cell through

production of crosslinking proteins. The mechanical properties of the net-

work are determined by the elasticity of its constituents and the number of

crosslinks in the system, with the latter representing the influence of the net-

work structure on the elasticity.

The strong influence of the internal network structure on elasticity can be

observed on organisms like the sea cucumber, which regulates the elasticity of

its inner skin by controlling the interactions of its collagen fibrils. This inspired

Capadona et al. to design a nanofibrous material whose tensile modulus can

be reversibly tuned by a factor of 40 by varying the degree of linking of the

fibers [CST+08].

In the context of non-woven materials such as wool, van Wyk developed a

simple theory to predict the pressure during compression [Wyk48], assuming

that the compression consists solely in bending of the constituent fibers. Dun-

lop expanded this to allow for static friction and slippage events between the

fibers, allowing him to predict compression hysteresis and acoustic emissions
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during compression in [Dun83]. Computer simulations have been performed

by Beil et al. in [BR02] to quantitatively calculate some parameters in van

Wyk’s theory.

More recently, a number of two dimensional models have been proposed.

In the simplest approach, one assumes that the fibers forming the network

are positioned and oriented according to a uniform distribution within a

square box and along the unit circle, respectively. The crossing points are

then viewed as fixed links between the fibers, leaving the angle between the

fibers either unconstrained, or fixing it to a certain value. These models are

commonly called Mikado models. They have been used by Heussinger and

Frey to describe foams and fiber networks in [HF06b], and to characterize

force chains in random networks in [HF07]. The same type of model was

also used by MacKintosh and coworkers to develop an effective medium the-

ory for fiber networks [DML07], and to study the deformation field in such a

network [HLM03, LHM04].

In these models, the structural properties of the network are controlled

solely by the fiber density. It is known from literature that these systems

develop a finite global elasticity once the fiber density exceeds the point of

rigidity percolation, where rigidly connected clusters of fibers span the whole

system (see, for example, [HLM03]).

In three dimensional fiber networks, fiber entanglement may cause mechan-

ical stiffness even without crosslinking, an effect that does not exist in purely

two dimensional systems. In order to mimic this effect even in two dimensions,

we distribute fixed links between fibers only with a finite probability smaller

than one among the complete set of fiber crossings. We keep the motions of

the fibers at the remaining crossings unconstrained.

As expected we find that the rigidity percolation threshold in terms of the

fiber concentration shows a dependence on the value of the linking probability.

As described in section 2.3, each gliding contact in a wet fiber network

hosts a capillary bridge which tends to align its adjacent fibers, but does not

influence relative motion of the fibers in any other way. In the absence of

permanent links this would cause a complete collapse of the network. This

is yet another motivation to introduce permanent links along with gliding

contacts. The implications of wet contacts, i.e., capillary bridges, will be

explored in the following chapter 4.
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3.1 Crosslinkers

In biological networks, the concept of crosslinkers emerges naturally from

the fact that the individual polymer fibers, for example actin fibers in the

cytoskeleton, are fixed together by crosslinking molecules. These are actin

binding proteins of various kinds that are formed in the cell and typically have

two ends that can both bind to actin filaments. In vitro experiments with actin

and crosslinking molecules have shown that the rheological properties of these

solutions depend very critically on the concentration of crosslinkers in the

solution [BHE+01, TCB06, TCB07]. Cells can produce crosslinking molecules

in order to fine-tune their elastic properties very efficiently. Different kinds of

crosslinking molecules impose different kinds of constraints on the fibers: α-

actinin enforces a parallel orientation, while filamin leaves the crossing angle

free, for example.

Another mechanism by which fibers in three dimensional networks can in-

fluence each other is a purely sterical interaction. Fibers can cross and loop

around each other, making relative motion of the two fibers at the crossing

point impossible because the fibers would have to penetrate each other in

order to separate. Effectively, this type of interaction differs from that of

crosslinking molecules only slightly: In thermal systems, entanglement can be

very transient, giving rise to viscoelastic properties. On the other hand, on

experimentally relevant time scales even in biological systems, the transient

nature of entanglements does not play a significant role. Entangled actin

networks have been studied for example in [KTD+03, WGR+04, GVCB03]

experimentally, and theoretical descriptions have been proposed in [KTD+03,

RFD05, HMFF08], and it has been shown that treating entanglement like a

crosslink is well justified in most cases.

Entanglement naturally occurs in systems of macroscopic fibers as well.

Specifically, non-woven fabrics such as paper and felt are made rigid mainly by

the entanglement of their constituent fibers. Although entanglement naturally

cannot occur in two-dimensional systems, it is straight forward to apply the

concept of a crosslinking site that binds two crossing fibers together in order

to simulate it. Studies like [MKJ95] use this approach to study entangled fiber

networks in two dimensions, although the concept of treating every crossing

of two fibers in two dimensions as a point of entanglement, as it is often used,

may not be ideal.

Throughout this work, we will use the term crosslink or permanent link to

signify a point in our two dimensional networks where we impose a constraint
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on the relative motion of two crossing fibers in order to simulate the effects of

entanglement in a non-woven (i.e., disordered) fiber mat.

In the following, we will describe the most common model of a cross-linked

or entangled network of fibers, and how one can infer the elastic behavior of

such a network from its topological crosslinking properties.

3.2 Random Fiber Networks: Mikado Models

In contrast to regular lattices, the study of biological networks and non-woven

fabrics is concerned with networks where the fibers are arranged without any

prescribed order. The topological properties of such a network play an im-

portant role for the mechanical strength of the whole arrangement, as has

been pointed out above. Therefore, many studies have utilized a simple

two-dimensional model of randomly oriented fibers to study these properties.

These models are sometimes called Mikado models. They all follow a simple

set of rules:

The networks are initialized by depositing a number Nf of straight fibers

of fixed length lf in a square box of size L. These fibers are seen as one-

dimensional lines for the purpose of these models. The choice of boundary

conditions varies throughout the literature, but in our work, we will use peri-

odic boundary conditions, meaning that fibers leaving the box on one end are

continued on the opposite end of the box. The positions of the fiber ends and

the fiber orientations are randomly drawn from a uniform distribution. Hence,

the deposition of fibers is a Poissonian process, i.e., without any spatial and

angular correlations. Figure 3.1 shows an example of such a network.

In the Mikado model proposed by Frey, Heussinger and MacKintosh [HLM03,

HF06b] each crossing point is decorated with a permanent link. Each of these

links fixes two overlapping fibers to each other, i.e., it does not allow a relative

translation of the fibers. However, it still allows them to freely rotate around

the crossing point.

This uniform choice of orientations and positions leads to a certain distribu-

tion of crossing angles α ∈ [0, π] between fibers. Since the probability of two

fibers of unit length crossing each other is much smaller when the fibers are

parallel, the corresponding probability distribution is not uniform. Instead, it

is given by the area of a trapezoid with edge length 1/
√

2:

p(α) =
sinα

2
. (3.1)
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Figure 3.1: A Mikado network of 600 fibers in a box of size L = 10lf , which

therefore has a fiber density of q = 6. The thick black lines mark

the edge of the box, while outside of it periodic images are dis-

played.

We define the number density of fibers per unit area as

q =
Nf

L2
. (3.2)

This is the only control parameter governing the structure of the network.

Another way to characterize the system is to calculate the average distance

〈lc〉 between neighboring crossing points of fibers deposited according to the

above protocol. The Poissonian nature of the deposition process implies that

the distribution of crossing points on a fiber must be uniform as well. There-

fore, there is an average number of lf/〈lc〉 − 1 crosslinks per fiber. Hence, the

probability density function p(lc), with lc being the actually observed dis-

tance between two crosslinks, must follow an exponential, as pointed out by

Heussinger in [HSF07]:

p(lc) =
1

〈lc〉
e−

lc/〈lc〉, (3.3)

with the average distance 〈lc〉. The average distance itself is related to the

fiber density q as follows:

〈lc〉 =
πlf
q

=
πL2

Nf lf
. (3.4)
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In the limit of infinite system sizes L, the average crosslinker distance 〈lc〉
and the fiber length lf are the two only length scales in a Mikado model.

While 〈lc〉 governs the distances between the crossing points constraining the

motion of fibers, stiff fibers still maintain their identity across a freely rotating

link over the whole length of lf .

In contrast to the standard Mikado model, we will introduce a finite proba-

bility pl with which a crossing point is converted into a permanent link. Apart

from the fact that the sites where capillary interaction takes place are always

single contacts where the touching fibers can glide across each other, this is

fully justified by the fact that in real systems, not every fiber contact will

be a point of entanglement. For random assemblies of thin rods in three di-

mensions, Philipse [PV97] calculated the probability that a rod is caged as

a function of the packing fraction, coming to the conclusion that an aver-

age of 5 contacts is necessary to suppress the translations of a rod. Rodney

et al. [RFD05] found in computer experiments that the number of contacts

needed for entanglement varies between 4 and 8, depending on the fiber aspect

ratio. Mikado models with pl = 1 therefore are not accurate descriptions of

entangled three-dimensional fiber mats.

Mikado models have been shown to exhibit different elastic regimes depend-

ing on the average distance of crosslinks, 〈lc〉, which in turn is related to the

fiber density q by equation 3.4. This is described in detail in Heussinger et

al. [HSF07].

MacKintosh and coworkers summarize the influence of the network density

on the elastic properties as follows [HLM03, LHM04]: At very low concen-

trations, the fibers are not globally connected to each other, and the system

behaves as a fluid with zero shear modulus. Upon increasing the concentra-

tion of fibers, a global cluster of connected fibers forms, meaning that there

is a percolation transition of fiber connectivity. When the system is thermal,

i.e., when it has a nonzero temperature and therefore entropic contributions

to the free energy have to be considered, global connectedness means that an

externally imposed shear that moves all the nodes of the network will lessen

the total number of configurations that a fiber between two such nodes can

take. Thus, work has to be done in order to shear the system, and the shear

modulus is non-zero.

On the other hand, systems of macroscopic fibers stretch and bend at en-

ergy scales far above that of the ambient temperature. They are therefore

not subject to thermal fluctuations. In such athermal systems, there is no
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energy cost associated with a relative motion of the nodes as long as the

fibers stretched between those nodes do not need to stretch or bend in order

to accommodate it. Instead, the fibers can rotate around the crossing points

without cost of energy. Only when a sufficient number of further constraints

in the form of further crosslinks is added do these floppy modes of motion

become suppressed. Thus, in athermal systems, there is a rigidity percolation

transition that is different from the percolation of connectivity.

Once a critical value q∗ = (6.67 ± 0.02) of the fiber density is reached, a

globally rigid cluster of fibers forms that can transfer shear forces across the

system [LKT01]. For concentrations slightly above the critical point the shear

modulus behaves as

G ∝ (q − q∗)f (3.5)

with f ≈ 3.0 [HLM03]

In this regime (with q slightly above q∗), the elasticity of the network is

governed by topological properties of the fractal percolation cluster. It is this

regime with its strong dependence on q that enables cells to control their

elastic moduli via crosslinking molecules. In section 3.5 we will further study

this regime for the specific case of pl < 1, which was not previously done.

Increasing q further, the elasticity becomes independent of the system size,

since the divergence of the size of the percolating cluster is now complete.

In this regime, the deformations are dominated by fiber bending. Heussinger

et al.[HF06a, HSF07] identified this regime with the existence of low-energy

bending modes by which the system can lower its elastic energy when an

external deformation is imposed. These modes dominate the elastic response

when the typical bending length

lb ≈
√
κ

µ
(3.6)

is smaller than the distance between crosslinks 〈lc〉. In the above equation, κ

is the bending rigidity of an individual fiber and µ is its stretching modulus.

Once the density q is high enough (and therefore 〈lc〉 low enough) that a fiber

cannot bend significantly between crosslinks, the network behaves more or less

like a continuum solid: The microscopic deformations are homogeneous and

equivalent to the macroscopic deformation (this is called affine deformation),

and the segments must stretch to accommodate the external strain. In this

regime, the shear modulus is mainly dependent on the individual segments’

stretching rigidity µ.
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For this region, Head et al. [HLM03] have pointed out that since all fibers

deform affinely, the shear modulus can be calculated from averaging the elas-

tic energy of one deformed fiber over all fiber orientations. They have also

identified the crossover from non-affine to affine deformations and described

it via the parameter

λ = 〈lc〉
(
〈lc〉
lb

)z
, (3.7)

where the exponent z ≈ 1/3. According to [HLM03], the deformations become

affine at the point where lf/λ is of the order 10.

In the rest of this chapter we will concentrate on the region of fiber densities

where the percolation transition governs the elasticity, since we expect that

it is this low-density regime where internal stresses such as those caused by

capillary interaction have the largest influence on the structure (and therefore

the elasticity) of the network.

3.3 Topological Rigidity

This section will briefly explain the physics of the most important density

regime of elastic fiber networks: That of the rigidity percolation transition,

where elastic properties depend mostly on the network topology. This is the

regime of lowest fiber densitites that still exhibits global rigidity. It is therefore

also the most intersting density regime for wet fiber networks, since the low

density makes rearrangements of the structure through the action of liquid

bridges possible, while the network still offers resistance to the capillary action.

In this regime, the physics are governed by the percolation transition.

Therefore, we will first introduce the fundamental concepts behind percolation

using the example of bond percolation.

Bond Percolation

The theory of bond percolation typically deals with regular lattices. There,

one asks the question whether such a lattice has an open path connecting

its ends when each edge or ”bond” of the lattice is said to be ”open” with a

fixed probability p. The existence of such an open cluster could for example

mean that a porous material lets liquid flow through it, when the open bonds

represent connected pores in the material. Consider the example in figure 3.2.

It shows a square lattice where only bonds marked as open are shown. The
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Figure 3.2: A bond-diluted square lattice at p = 0.51, with the percolating

cluster marked in blue. Image source: Wikipedia

probability of marking a bond open was chosen as p = 0.51 in this case. Shown

in blue is the largest cluster of connected open bonds. It can be seen that this

cluster spans the system and permits liquid to flow from top to bottom. Such

a cluster is said to be percolating.

The study of percolating clusters is first introduced in [BH57] and thor-

oughly explained in [SA95].

Consider a network or lattice with a prescribed topology (either regular or

random, and with a certain coordination number) and with a certain size L

signifying the number of bond lengths of one edge of the box. When each

bond in this network is independently marked open with probability p, the

probability of existence of a percolating cluster is a function of p and L only.

One is usually interested in the limit case of L → ∞. In this case, the

probability of such a cluster existing is either zero or one, and there is a

critical value pc above which an infinite cluster always exists.

In the example of the square lattice, one finds that pc = 0.5 [SA95]. In a

Mikado model, the fiber density q plays the role of p, and the point where a

connected path of fibers throughout the system exists has been shown to lie

at qc = 5.71 [PS74].

To quantify the largest cluster of open bonds in the system, one can measure

the number M of bonds in a subsystem of size L that belong to a certain
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cluster. Then,

P = M(L)/L2 (3.8)

gives the density of bonds in the system that belong to this cluster.

Measuring M(L) for different realizations of networks and different values

of p close to pc in computer experiments shows that it scales as a power law

of the system size L:

M(L) = LD (3.9)

with exponent D. This means that the percolating cluster at p = pc is fractal

with fractal dimension D. Above pc, the exponent D becomes equal to the

dimension of the system, meaning that the cluster has a homogeneous density

and is not fractal.

Another important quantity is the correlation length of the cluster. It is

defined via the two-point correlation function g(r) that measures the proba-

bility that two bonds that are a distance r apart are part of the same cluster.

Computer experiments show that it decays exponentially as

g(r) = exp

(
−r
ξ

)
, (3.10)

where ξ is called the correlation length and is a typical length scale of the

system at a given p. When p approaches pc, the correlation length ξ is observed

to diverge [SA95]:

ξ ∝ (p− pc)−ν (3.11)

Here ν is the exponent with which this lengths scale diverges at p = pc, which

must be measured in computer experiments.

A suitable observable to judge the percolation of a system is the density

P∞, defined as the density P of the largest cluster. When p < pc, the largest

cluster still has a finite size, and thus in an infinite system P∞ must be zero.

Then as p → 1, the density of the largest cluster must also approach one.

Measurements show that P∞ follows a power law as well for L� ξ [SA95]:

P∞ ∝ (p− pc)β, (3.12)

this time with a different exponent β.
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To measure the percolation point in computer experiments with finite sys-

tems, the behavior of these quantities at finite system sizes L must be ad-

dressed. Equation (3.9) shows that for L < ξ, the mass of the largest cluster

inside such a subsystem scales as LD. Above the correlation length, however,

this cannot hold anymore. When one further subdivides the box into boxes

of size ξ, there are (L/ξ)2 boxes of this kind, while within each box the mass

still scales as ξD. So we find the following scaling behavior:

M(L, ξ) =

{
LD L� ξ

ξD
(
L
ξ

)2

L� ξ
(3.13)

Since the density P of the cluster is P = ML2, and since equation (3.13)

states that M ∝ ξD−2L2, it follows that for L > ξ : P ∝ ξD−2.

In other words, for L� ξ the mass M depends on L only, while for L� ξ

any corrections can only be a function of L/ξ since ξ is the only measure of

length in the system.

Using the scaling equations (3.11) and (3.12), the behavior of P∞ becomes

P∞ =

{
L−

β
ν L� ξ

ξ−
β
ν L� ξ

. (3.14)

It is common to express (3.14) and (3.12) in terms of a scaling function:

P∞ = (p− pc)−βf
(

(p− pc)L
1
ν

)
, (3.15)

here f(x) is the scaling function that satisfies f(x) → 1 for x � 1 and

f(x) → (L/ξ)β/ν for x � 1. This form of scaling function must be assumed

for all quantities that scale as (p− pc)β.

This shows that at finite L, the observed point of percolation (i.e., the inflec-

tion point of the curve P∞(p)), will depend on L. When it is plotted against

L
1
ν , the percolation point pc can be extrapolated. We will use this method

of finite size scaling in section 3.5 when we investigate rigidity percolation in

dilute Mikado models with different linking probabilities pl < 1.

3.3.1 Rigidity Percolation

When one measures physical quantities on percolating networks, such as for

example the total resistance of a random square lattice where each bond is

a conductor of unit resistance, one will find different exponents than those
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presented for, e.g., the mass of the percolating cluster. The reason for this is

that not all bonds in the network have the same weight in the calculation of

the resistance: Some resistors can be redundant.

A similar reasoning holds when measuring the shear modulus of a system

of connected fibers. Here, a different effect is added: Even if a network has a

percolating cluster of connected fibers, the shear modulus may be zero, since

the fibers can rotate around their crossings without deforming. Only when

enough crossings exist that these deformation modes cannot accommodate the

given shear deformation does the shear modulus become finite. Heussinger et

al. [HSF07] give a nice illustration of these floppy modes.

So, coming back to the question of rigidity percolation, one must define a

cluster in the system not as an arrangement of connected fibers, but only as

that type of arrangement that is mechanically rigid. In the following section,

we will present a simple estimation method for the rigidity percolation point,

while section 3.4 will give a more thorough computational approach.

3.3.2 Maxwell Counting

Maxwell proposed a simple method to determine percolation in networks of

beams [Max64] by counting degrees of freedom.

Considering first the connectivity percolation, the task is to find the fiber

density qc at which all fibers in an infinite system are connected.

In this picture, one fiber represents one degree of freedom (a fiber is either

connected or not), and a crossing represents one constraint (it connects two

fibers). In Maxwell’s approximation, percolation happens when the number

of degrees of freedom equals the number of constraints.

Since there are Nf = qL2 fibers in the system, and, according to equa-

tion (3.4), the number of crosslinks Nc is

Nc = Nf
lf
〈lc〉

(3.4)
=

Nfq

π
, (3.16)

equating Nf and Nc and solving for q leads to

qc = π. (3.17)

In diluted Mikado networks, the expression for Nc would have to be multiplied

by pl, so that here

qc =
π

pl
. (3.18)
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However, computer simulations show that in fact qc = 5.71 for pl = 1

(see [PS74]).

The reason for this is that Maxwell counting underestimates qc because it

supposes that all constraints are independent, i.e., that every crosslink con-

nects two fibers that have not already been connected by some path. It could

in principle also overestimate qc because not all fibers need to be connected

to have a percolating cluster. Hence, Maxwell counting can neither give an

upper nor a lower bound for qc, only a rough estimate.

The case of rigidity percolation can also be addressed by Maxwell counting.

Here, the degrees of freedom under consideration are the actual modes of

motion that a rigid fiber can undertake. Since a fiber in two dimensions has

one rotational and two translational degrees of freedom, the total number of

degrees of freedom is 3Nf .

Fixed links of the type we introduced in Mikado models bind two degrees

of freedom, the two relative translational motions of the fibers, while leaving

one degree, the rotations around the crossing point. Hence, the number of

constraints is 2Nc, and the point of rigidity percolation becomes

q∗ =
3π

2pl
. (3.19)

However, as we have seen above for the connectivity percolation, this value

may over- or underestimate the true value of q∗ by some amount. Therefore,

it is necessary to determine the actual number of degrees of freedom that are

bound by crosslinks in a Mikado network computationally.

Several studies address the rigidity percolation of regular lattices by means

of explicitly calculating the elastic energy of the bonds and thus measuring

the shear modulus, determining the point of percolation p∗ and the exponent

with which the modulus vanishes at p = p∗. For example, Feng and Sen[FS84]

find for the two dimensional triangular lattice of Hookean springs: pc = 0.58.

However, the approach of purely Hookean springs does not take bending de-

formations into account.

For random Mikado-type networks with bending forces, Lava-Kokko and

Timonen had more success with a sophisticated method to count the degrees of

freedom instead of measuring elastic energies, which enabled them to address

much larger systems. They find a value of q∗ = 6.67 for pl = 1 [LKMT01].

In the following, we will use the same approach for diluted Mikado networks

with pl < 1. To that end, we will first describe the algorithm proposed by
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[JT96] and used in [LKMT01] to characterize the rigidity percolation, and

then present our own results in section 3.5.

3.4 The Pebble Game

Identifying rigid clusters is not trivial since rigidity is non-local: A fiber con-

necting two nodes can constrain the motions of other nodes that are far away.

For example, a large cluster of simply connected fibers can be made rigid by

adding fibers at faraway points in the cluster.

We will now present a method to identify rigidly connected clusters of fibers

in a crosslinked network. This method is known as the Pebble Game algorithm

and has been introduced by Jacobs and Thorpe [JT95, JT96] to study rigidity

percolation on the triangular lattice. It has also been used by Latva-Kokko

and Timonen [LKMT01] to study Mikado networks of fibers with stretching-

and bending rigidity in the case of pl = 1.

The restriction to analyzing only the network topology, not the elastic en-

ergies, means that certain accidental symmetries are not taken into account.

Take for example a set of nodes connected by independent fibers in a way that

the nodes are all collinear. This contrived situation will not actually occur

in a Mikado network, since only two fibers ever cross at the same crossing

point, but it will serve to illustrate this type of geometrical singularity. When

one tries to stretch such an assembly, the only motion the nodes can take

to accommodate that is a stretching of the fibers, hence the system is rigid.

However, if one wants to compress the line of fibers, the fibers can rotate

around the crossing points to accommodate the approaching of the outermost

nodes. This is an example of a buckling instability. This asymmetry does

not occur if the nodes are shifted randomly from their collinear positions by

a small amount. Then, both stretching and compression are floppy.

Another example of such a geometric singularity is illustrated in figure 3.3.

Again, a random displacement of the nodes by a small amount destroys the

symmetry and makes the structure rigid. Since the set of networks containing

such accidental symmetries is of measure zero, one will never encounter them

in a random Mikado network.

Since the Pebble Game only deals with the topology of the network, it

makes statements about the rigidity of the generic version of the network

studied, where generic is taken to mean a topologically equivalent version of

the network without geometric singularities, e.g., one where all nodes have
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(a) floppy (b) rigid (c) second-nearest neighbor
bonds

Figure 3.3: Two geometrically different realizations of a topologically rigid

cluster. The symmetric realization (a) has a floppy mode (in-

dicated by the gray cluster) that arises only from its symmetry.

The generic version (b) cannot undergo this deformation without

stretching the central bond. Figure (c) shows the implementation

of bending stiffness: The yellow bonds represent flexible fibers,

with nodes at the crossing points. The red bond is a second-nearest

neighbor bond that imparts bending stiffness to the horizontal

fiber: Bending of that fiber at the node marked by the arrows will

always deform the red bond. Shown here is the generic version of

the Mikado network with a second-nearest neighbor bond; in the

straight version, bending would be a soft mode.

been displaced by a small and random vector.

This also means that the bending rigidity of the fibers can be implemented in

a simple way: When one introduces second-nearest neighbor bonds connecting

nodes of the same fiber across every crosslink, bending of the fibers is always

associated with a deformation of these second-nearest neighbor bonds. This

is illustrated in figure 3.3(c).

Because of this, we will use the term bond to mean each connection between

fixed links in the network, be it a fiber or a virtual bond introduced across a

link to give the fiber bending rigidity.

The Pebble Game assigns the degrees of freedom of the network to the

crosslinks or nodes. Each node has two degrees of freedom in two dimensions.

Each bond connecting two nodes binds one degree of freedom: The distance

between the two nodes. The algorithm is based on the theorem of Laman

from graph theory [Lam70]:
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(a)

Figure 3.4: A Mikado network of 280 fibers at q = 7. Rigidly connected clus-

ters are marked in color, while fibers not contributing to the net-

work rigidity, including dangling bonds at the ends of fibers, are

gray. The percolating cluster is shown in red. Also visible is a

smaller rigid cluster in yellow.

Theorem 3.1 A generic network in two dimensions with N nodes and B

bonds does not have a redundant bond if no subgraph of the network containing

n nodes and b bonds violates b ≤ 2n− 3.

A redundant bond is a bond that does not bind degrees of freedom, since the

distance of the nodes it connects is already fixed by other constraints. It can

be seen by simple Maxwell counting that a redundant bond must exist when

the Laman condition is violated.

The algorithm works by building up a network bond by bond. Whenever a

bond is added, all subgraphs are checked for the Laman condition to determine

whether the bond is redundant or not. This is done by representing the

degrees of freedom with pebbles. These are imaginary objects associated with

the degrees of freedom of motion of the nodes. A pebble can be either free,

and attached to a node, signifying that this node has one degree of freedom.

Or the pebble can be bound to a bond, signifying that the bond restricts the

motion of the nodes it connects by one degree of freedom (since it fixes their

distance). Initially, each node has two free pebbles attached to it representing

its two degrees of freedom.

When inserting a bond, one must first determine whether it is independent.
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If the two nodes it connects have two free pebbles each, then the distance

between these nodes is not yet fixed. This means that the added bond is

independent. According to the rules of the Pebble Game, all independent

bonds must be covered by one pebble. This pebble is taken from any of the

connected nodes and is now no longer considered free.

When another bond is added, it must again be checked for independence.

If the two adjacent nodes do not initially have two free pebbles each, it could

still be possible to free one of their pebbles that is bound to an independent

bond by covering that bond with a free pebble from another node attached to

it. This is the way the search over the subgraph is performed in the Pebble

Game algorithm.

When it is not possible to free four pebbles at the ends of a newly added

bond, then that bond is redundant. The set of bonds that was unsuccessfully

searched for a free pebble constitutes an overconstrained region in the network,

a subgraph that violates the condition in theorem 3.1. Any bond added to

such a subgraph will be redundant, so that this subgraph need not be searched

again.

After the network is complete, it can be segmented into rigid clusters. To

do this, bonds are sequentially chosen as reference bonds. Then, a virtual test

bond is added between one of the nodes of the reference bond and a second

node. If the rules of the Pebble Game state that the test bond is redundant,

then that node is rigid with respect to the reference bond. Since a bond can

only belong to one cluster, all nodes found to be rigid with respect to the

reference bond belong to the same rigid cluster.

Figure 3.4(a) shows a small Mikado network with two identified rigid clus-

ters. In the following, we will show our results of applying the Pebble Game

algorithm to diluted Mikado networks to find the density P∞ of the percolating

rigid cluster, and thus to identify the rigidity percolation point.

3.5 Results: Rigidity Percolation of Diluted

Mikado Networks in 2D

To analyze the topological rigidity of a Mikado model network with finite

pl, we generate a number of such networks, adding fixed links at crossing

points randomly with probability pl. Then, we add second-nearest neighbor

links across the crosslinks, so that the generic network will be equivalent to a

Mikado model network with fibers of finite bending rigidity.
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Then we employ the pebble game algorithm, segmenting the network into

rigid clusters and identifying the largest cluster. The percolation probability

P∞ of this is then equal to the number of bonds in the cluster divided by the

total number of bonds.

This measurement was performed for system sizes L = (50, 60, . . . , 100)lf ,

for various densities q and for the different crosslinking probabilities pl. For

each combination of parameters, 50 random networks were generated and

analyzed in order to derive the average probability P∞(q, L, pl). Figure 3.5

shows plots of P∞ versus q for varying system sizes and linking probabilities.

As can be seen, the probability of having a percolating cluster goes from

zero to one on increasing the fiber density. The transition is sharper at larger

system sizes L. This was expected from the scaling relation (3.15). We identify

the inflection point, that is, the point where the percolation transition appears

to happen at a certain system size, as the point where P∞ = 1/2.

For pl < 1, the probability of a bond being in the largest cluster becomes

smaller instead of larger with smaller system sizes. This is an indication

that the fractal nature of the percolating cluster changes: When dividing a

large system with a percolating cluster into subsystems, the probability of

a subsystem containing a percolating cluster is now smaller. One possible

reason for this is that at pl < 1, several system-spanning rigid clusters can

overlap, since overlap does not imply linking. On increasing the system size,

the probability that these clusters form a sufficient number of links between

them goes up, so that they can combine into one percolating cluster that only

appears as a single cluster at large system sizes. Therefore, the probability

P∞ in less dense systems can grow with the system size.

From the curves in figure 3.5, the transition points q1/2, defined as the points

where P∞ = 1
2
, have been extracted. They are shown in table 3.2. Expanding

equation (3.15), interpreted in terms of the fiber density, around the percola-

tion point q = q∗, one finds

q1/2(L) = const · L−
1
ν + q∗. (3.20)

This equation holds for any fixed value of q between zero and one, but we

chose 1/2 because it gives the sharpest definition of a percolation point. So,

fitting a power law to q1/2(L) and then plotting it against L
1
ν gives us the

percolation point q∗ at infinite system size. This has been done in figure 3.6.

From these fits, the infinite size limit of the percolation point, q∗, can be

extracted. These points are shown together with the fitted exponents ν in

table 3.1.
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pl q∗ ν

0.4 7.84±0.04 0.93±0.06

0.5 7.75±0.02 0.92±0.05

0.7 7.74±0.01 0.86±0.04

0.9 7.69±0.01 0.85±0.02

1.0 6.676±0.001 0.851±0.002

Table 3.1: Percolation points q∗ for different linking probabilities pl.

As can be seen there, lower linking probabilities require a higher fiber den-

sity to achieve rigidity percolation, as has been expected, for example, from

the constraint counting argument (3.19). Also, due to the change in the frac-

tal structure of the rigid clusters at pl < 1, the correlation length exponent ν

increases by a small amount.

The values for pl = 1 correspond well with the value of 6.6 that Latva-Kokko

and Timonen have calculated in [LKT01] using much the same method.

From looking at figure 3.6, it seems that, while the change in scaling expo-

nent and percolation point is systematic and monotonic with varying pl, the

case of pl = 1, i.e., the classical dry mikado network case, is quantitatively

different. The reason for this is probably in the qualitative change in the frac-

tal structure introduced by the random linking rule. Exploring this further is

beyond the scope of this work.

However, it is to be noted that the wet fiber networks examined numerically

in this work are of necessity far away from the limit case of infinite L exam-

ined here, since large system sizes and fiber densities would impose prohibitive

computational costs. Therefore, it is recommended to refer to table 3.2 and

figure 3.5 for the specific system sizes and linking probabilities given as simu-

lation parameters when judging the topological rigidity of simulated networks.

In particular, the percolation point for pl = 0.5 and L = 12 has been added

to table 3.2, since this is the most frequently used parameter set.
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pl L q1/2 pl L q1/2 pl L q1/2

0.4 50 9.4±0.4 0.7 50 7.9±0.2 0.9 50 7.7±0.2

60 9.1±0.6 60 7.9±0.3 60 7.7±0.2

70 8.8±0.4 70 7.8±0.3 70 7.7±0.1

80 8.6±0.3 80 7.8±0.2 80 7.7±0.1

90 8.4±0.8 90 7.8±0.3 90 7.69±0.05

100 8.3±0.4 100 7.7±0.2 100 7.69±0.05

0.5 50 8.7±0.3 1.0 50 6.6±0.2

60 8.5±0.4 60 6.7±0.2

70 8.3±0.5 70 6.66±0.09

80 8.2±0.4 80 6.66±0.09

90 8.1±0.2 90 6.67±0.08

100 8.0±0.3 100 6.68±0.07

0.5 12 9.4±0.5 0.7 12 8.6±0.4

Table 3.2: Inflection points of the percolation transitions at finite sizes, given

for different system sizes L and linking probabilities pl, as derived

from the curves in figure 3.5. The bottom row gives the inflection

points for the system sizes used in simulations in chapter 4.
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Figure 3.5: The relative mass P∞ of the largest rigid cluster is plotted for

several system sizes, and at various crosslinking probabilities pl.

(a): pl = 0.4 (b): pl = 0.5 (c): pl = 0.7 (d): pl = 0.9 (e): pl = 1.0.

Figure (f) shows all the curves for the largest system size on the

same q-axis.
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3.6 Conclusions
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Figure 3.6: Finite size scaling of the percolation point for different crosslinking

probabilities pl. The inflection point density q1/2 is plotted against

the system size L, rescaled with an exponent ν. The values for the

exponents and offsets can be seen in table 3.1.

In this chapter, we introduced the concept of Mikado model networks, which

represent a common model system to analyze a range of different physical fiber

networks analytically and computationally. We expanded this concept by in-

troducing a finite linking probability pl, which should give a better description

of real entangled fiber networks and non-woven fabrics, as well as allowing us

to introduce new kinds of interaction in rigid network structures at the re-

maining crossing points.

Since we pointed out that the topology of the crosslinked network is known

to have a very large influence on network rigidity, we then focused on analyzing

the influence of this finite pl on topologically induced rigidity. It was found,

as can be expected, that for pl < 1 much higher fiber densities are required in

order to generate a globally rigid network. This effect could be quantified by

using the pebble game algorithm by Jacobs and Thorpe.

With the ingredients introduced so far, i.e., the quantitative analysis of

capillary torques between fibers in chapter 2, and the diluted Mikado model

in this chapter, it will be possible to develop a model for wet fiber networks.

The question of what value of pl to choose for such a model remains to be
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answered. Since there is no apparent way to derive a value of pl that would

represent a realistic three dimensional fiber network in a Mikado model, and

since the number of system parameters is already very large, we will choose

pl = 0.5 throughout the rest of this work.
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Chapter 4

Wet Fiber Networks

In this chapter, we introduce a computer model for crosslinked elastic fibers

that is capable of describing the elastic deformation of the fibers themselves

and the dynamics of such a system. This is in contrast to the previous chapter,

where we only considered the modes of deformation of a network that leave

the individual fibers undeformed.

Now to extend this towards a model where elastic deformations of the fibers

can be tracked in computer simulations, we will introduce a discretized de-

scription of deformed cylindrical fibers and their bending and stretching en-

ergies, which we will then apply to a bead-string type model to calculate the

dynamics of such a fiber. This introduces an additional distinction between

nodes that merely connect two segments of a discretized fiber, and nodes that

represent crosslinks between fibers as described in chapter 3. We will call the

latter supernodes. Ideally, there will be many simple nodes between supern-

odes, so that deformations of the fiber segments between crosslinks can be

taken into account.

Once this is done, we introduce a way of modeling capillary adhesion in this

kind of system by introducing a mobile crosslink-like object that can move

along the fibers and that exerts forces on them that are equivalent to the

capillary forces experienced by wet cylinders.

With this computer model, we will study structure formation and mechan-

ical properties of wet fiber networks. It enables us to examine the growth of

pores driven by capillary forces, which is very relevant to technical application

such as aerosol filters and the resistance of aerogel materials to humidity.
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4.1 Discrete Element Model for Elastic Fibers

In this section, we will present a discretized model to describe the elastic

deformations of cylindrical fibers in a network.

Under the assumption that the non-dimensional thickness, curvature and

twist of an elastic fiber, as well as the strains, are small, the first order elastic

theory by Kirchhoff (see[Kir59, LL86, Dil92, CDL+93]) can be used to describe

an elastic rod.

Kirchhoff’s theory still allows for large rotations, meaning that over the

length of a rod, large deflections can accumulate. The requirement of small

twist need not concern us here, since the model presented here is two-dimensio-

nal, and fibers restricted to a plane do not have twist. Kirchhoff describes the

rod based only on differential-geometrical properties of the curve described

by the fiber’s center line. Thus, the cross sections are assumed to remain

plane and orthogonal to the centerline on deformation. These assumptions

are justified when the rods are sufficiently slender.

In its undeformed state, a rod in this type of theory is an elongated object,

small in two dimensions as compared to the third, extended dimension. The

cross sections of this object are uniform along its length. The center line of the

rod is described by a space curve r(s) with s parametrizing the material points

of the rod. This then gives the unit tangent vector of the rod as t(s) = dr/ds.

Together with two orthonormal vectors a1,2, this forms a basis for the material

points of the rod.

When the rod is deformed from its initial state, its relative extension ε can

be derived from the space curve as follows:

dr

ds
= (1 + ε)t (4.1)

Here, t is now the unit tangent vector of the deformed rod. The bending

deformations C1,2 and twisting deformation M are:

C1,2 =
dt

ds
· a1,2, M =

da1

ds
· a2. (4.2)

Since we restrict our model to rods in a two-dimensional plane, only one

curvature deformation and the extensional strain remain. The elastic energy
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in the framework of the Kirchhoff theory then is given by

Eelastic =
1

2

lf∫
0

ds
(
κC2 + µε2

)
, (4.3)

with the material parameters κ (the bending rigidity) and µ (the stretching

rigidity.

A cylindrical elastic rod of Radius r, length l0f and Young’s modulus Y

exhibits a restoring force of

F =
Y πr2

2l0f
∆l, (4.4)

when stretched by ∆l. The stretching rigidity µ of such a rod therefore

reads

µ = Y πr2. (4.5)

The bending moment of a circular rod is calculated from its second moment

of area; this leads to the following bending rigidity κ:

κ =
1

4
πr4Y. (4.6)

With these expressions, one can for example calculate the equilibrium shape

of a rod under load, by using variational calculus to find the minimum-energy

form of r(s). Kirchhoff noted that this leads to the same Euler-Lagrange

equations as those for the minimum action of a rigid body in motion. This is

known as the Kirchhoff analogy.

Since we intend to simulate the dynamics of elastic rods in a computer,

however, we will need to discretize these equations and derive the interac-

tions between the discretized objects, in order to formulate their Newtonian

equations of motion.

4.1.1 Discretization

For the computer simulations, a finite difference approach is used to discretize

the integrals over the center line of the fibers. Here, a fiber is seen as a string
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Figure 4.1: A discretized elastic rod is described by the positions ri of its

nodes. Segment vectors are denoted as si, and bending angles as

ϕi.

of segments Si, connected by the nodes Ni. The segments are described by

vectors si = (sxi ; s
y
i ) of length li = |si|, connecting nodes at positions ri. The

values corresponding to the undeformed state are denoted by an upper index

of 0. The angle between two consecutive segments is associated with the

corresponding node and is called ϕi. Figure 4.1 illustrates the discretization.

In the simulations, we will discretize each fiber by 10 segments. These

segments will then further be split in two at those points where we wish to

introduce a fixed link to another fiber. The new node generated within the

split segment is then coupled to the corresponding new node of the cross-

ing segment, which was also split. In this way, we implement fixed links as

introduced in section 3.2.

This means that the length of an undeformed segment is not known a priori,

although typically it will be close to the length of a segment without crosslinks,

which we will call ls.

The elastic properties of a continuous fiber are mapped onto the discrete

elements (the segments and nodes) in the fashion of a bead-spring-model, like
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it is used in simulations of polymers: The segments are viewed as massless

extensional springs connecting the nodes, while the nodes carry the mass of

the fiber and are attached to the segments by torsional springs. This approach

is similar to that used by Ning and Melrose to simulate flexible fibers [NM99].

The extensional strain εi of a segment Si is then simply the relative length

difference of a segment from its undeformed state:

εi =

(
li − l0i
l0i

)
(4.7)

Since each segment is straight, it follows that curvature is necessarily associ-

ated with the nodes. In the continuous case, we defined the curvature as the

derivative of the tangent vector with respect to the arc length. Moving from

derivatives to finite differences, the discrete curvature at node Ni is:

Ci =

∣∣∣∣δ2ri
δl2

∣∣∣∣ (4.8)

Taking a central difference approach, this becomes

Ci =
1

l̃i

√
2(1− cosϕi) ≈

ϕi

l̃i
. (4.9)

The approximation holds for small curvatures and hence small angles ϕi. The

effective length l̃i = (li + li+1)/2 is the fiber length associated with the node.

Now the bending and stretching energy integrals from equation (4.3) are

replaced with sums as follows:

Estretch =
∑
Si

Y πr2

2
ε2
i (4.10)

Ebend =
∑
Ni

Y πr4

8
C2
i (4.11)

In this way, bending and stretching energies are assigned to nodes and seg-

ments of a discretized fiber, respectively. The equations show that the typical

scales of the stretching and bending energies, of fibers deformed by unit ex-

tension or unit curvature, are related by the squared aspect ratio:

O(Estretch) ∝ O(Ebend)
l2

r2
. (4.12)
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4.1.2 Dimensionless Variables

It is always advisable to use dimensionless variables in computer simulations,

since numerical accuracy of floating point numbers is best when all the values

are of order one. Therefore, we introduce the following dimensionless variables:

• lengths are measured in terms of the length ls of a segment without

crosslinks, i.e., one tenth of a fiber length: l′ = l/ls.

This ensures that a segment will typically be of length 1.

• masses are measured in the units of the mass of a segment of unit length:

m′ = m/πr2lsρ, where ρ is the mass density of the fiber material.

• energy is measured in terms of the bending energy of a fiber of unit

length and unit curvature: E ′ = E · 8ls/Y πr4.

• dimensionless time, consequently, is measured in units of t′ = t/
√

8ρa4/Y π.

Another dimensionless parameter is the fiber aspect ratio

a =
ls
r
, (4.13)

which we will use instead of a dimensionless radius.

In these units, equations (4.10) and (4.11) become (dropping the primes):

Estretch = 4a2
∑
i

l0i ε
2
i (4.14)

Ebend =
∑
i

ϕ2
i

l0i
≈
∑
i

2

l0i
(1− cosϕi) (4.15)

Here, the strain is εi = (li/l
0
i − 1). The use of the cosine to approximate

ϕ2 in (4.15) avoids the use of an inverse cosine to compute the crossing angle

and therefore increases computational speed. It is a valid approximation for

small curvatures.

4.1.3 Elastic Forces

In order to follow the dynamics of the mechanical system described so far, one

has to calculate the elastic stresses.

In the spirit of the well-studied bead-spring model, we view the segments as

weightless springs and the nodes between the segments as mass points coupled
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(a) Stretching of a segment of initial length
l0 to length l

(b) Bending of a fiber around the node N2

by an angle of ϕ

Figure 4.2: Schematics of the deformation modes associated with elastic en-

ergy costs

to the segments via torsion springs. In this picture, the elastic stresses are

expressed as forces on the nodes. Thus, the problem of solving the dynamics

of the fibers is equivalent to that of solving Newton’s equations of motion for

the sum of all elastic forces on the nodes.

These forces are simply the gradients of the potential functions (4.15) and (4.20)

with respect to the positions of the nodes.

We refer to fig. 4.2 for an illustration of the vectors and angles employed in

this description.

The force a stretched segment exerts on a node is that of a linear spring,

i.e. it is proportional to the relative compression ε = li − l0i /l0 and directed

along the segment. This is the force exerted on node N2 in figure 4.2:

F2 = −4a2 s

l
ε (4.16)

The force on the other node follows from Newton’s third law: F1 = −F2.

A bent node (figure 4.2(b)) exerts a torque on its adjacent segments. The

corresponding force pairs can be calculated by explicitly calculating the deriva-

tives of (4.15) with respect to the node coordinates. The result is best ex-

pressed in terms of the segment vectors as follows:

F1 =
2l0

l2

(
cosϕ

|s12|2
s12 −

1

|s12||s23|
s23

)
(4.17)

F2 =
2l0

l2

[(
1

|s12||s23|
+

cosϕ

|s23|2

)
s23 −

(
1

|s12||s23|
+

cosϕ

|s12|2

)
s12

]
(4.18)

F3 = −2l0

l2

(
cosϕ

|s23|2
s23 −

1

|s23||s12|
s12

)
(4.19)

Again, the indices are those depicted in figure 4.2.
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Figure 4.3: Potential Estretch for segment stretching and compression, plotted

as a function of the strain ε, with a softcore repulsion part for

extremely compressed segments. The inset is a zoom into the

softcore region.

4.1.4 Softcore Repulsion

Numerical experiments have shown that in very occasional cases, single seg-

ments can become extremely compressed, since the simple harmonic potential

allows arbitrary compressions at a finite force. This compression leads to ex-

treme forces due to singularities in some torque force terms for l/l0 → 0, as

will be seen in section 4.2.3. This leads to numerical instabilities. In order to

avoid these, we introduce a piecewise potential function for segment stretching

that amends the harmonic part (4.14) with a softcore repulsion part that di-

verges for ε→ −1. With this modification, the stretching energy per segment

reads:

Estretch =

{
− l0

2

(
ε∗(1 + ε∗)2 l0

l
+ (ε∗)2

)
+ ε∗(1 + ε∗) l

l0
< 1 + ε∗

l0

2

(
l
l0
− 1
)2 l

l0
> 1 + ε∗

(4.20)

The value ε∗ is the maximum compression above which the softcore repul-

sion sets in. Throughout the whole work we chose ε∗ = −0.95. Figure 4.3
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illustrates this potential.

The force law (4.16) then also becomes a piecewise function:

F2 = −4a2 s

l
·

{
l−l0
l0

for l−l0
l0

< ε

ε(1 + ε2)
(
l0

l

)2

for l−l0
l0

> ε
(4.21)

This means that when the segment is compressed below ε∗, an extensional

force will eventually grow large enough to counteract any compressional forces

before the extension reaches zero.

4.2 Liquid Bridges as Mobile Crosslinks

Non-crosslinked fiber contacts in a wet system, as they have been described

and examined in chapter 2, are fundamentally different from the fixed crosslinks

that are used to describe biopolymer networks or entangled fiber networks as

introduced in chapter 3. Those crosslinks impose a hard constraint on the

translational degrees of freedom of the crossing fibers: The fibers are not

allowed to move with respect to each other.

On the other hand, liquid bridges primarily exert torques and do not impede

relative motion. In fact, when the crossing fibers are straight, translations of

the fibers cannot change the liquid morphology (keeping in mind that we do

not consider contact angle hysteresis), and so the interfacial free energy of the

bridge is invariant to these motions. The fibers may freely slide along each

other. Another way to look at this is to say that the liquid bridge itself is

mobile. It can change its position without energetic cost. This means that

pinning of the contact line and friction between the fibers are not considered

in this model.

This outlines the strategy for incorporating liquid bridges in a discrete el-

ement simulation: They constitute a new type of crosslink-like object that is

attached to a pair of segments and exerts forces and torques on them. It is

also mobile: Its position is determined by the crossing points of the fibers it

connects. Furthermore, it can be created and destroyed when contact points

appear or disappear in the course of the dynamics of the network, since liquid

bridges in equilibrium with a vapor phase in the constant pressure ensemble

will also be created by capillary condensation when two fibers approach, and

will evaporate when they rupture because their fibers have been pulled apart.
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The specific way in which we track the creation, destruction and motion of

liquid bridge objects is described further on, in appendix A.2. The following

sections describe our model potential, which is designed to capture the essen-

tial physics derived in the numerical results from chapter 2, and the forces

and torques it gives rise to.

4.2.1 Sliding Contact Bridges

The wetting liquid is incorporated by detecting and tracking crossing points

of fibers and associating each with a potential energy that is a function of

the crossing angle α. This potential should represent the grand canonical free

energy of the interface of the liquid filament that connects the two fibers with

a fixed Laplace pressure, as it has been examined in section 2.3.

A liquid bridge potential should have the following properties:

i) it should capture the power law dependence of the interfacial energy on

the crossing angle α that was observed in chapter 2: The bridge energy

Eb should scale as Eb ∝ α−η, with η = 1 for the ensemble of constant

pressure. Since there are no specially distinguished values of the angle α

apart from π/2 and a small angle αc close to complete alignment, a power

law behavior is also what one expects in this intermediate region.

ii) since the discrete element model deals with segments of finite length, it

should nevertheless not diverge for α → 0. Instead, the capillary energy

associated with the case of α = 0 should represent the wetting energy of

two cylinders of finite length that are completely aligned. This determines

the behavior below the angle αc which determines the point of contact of

the finite segments.

iii) The potential should capture the correct symmetry at α = π

With this in mind, we propose the following function as our liquid bridge

potential:

Eb = β(c+ c2)
η/2

(
1

c
− 1

c+ sin2 α

)η/2

− β (4.22)

Here, β is the non-dimensional difference in wetting energies between a

bridge at α = π
2

and a fully aligned bridge, c is a small number governing the
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Figure 4.4: Model potential of the capillary interaction (4.22) for η = 1 and

c = 0.05. (a) Energy as a function of crossing angle; (b) Capillary

torque, with a guide to the eye to illustrate the power-law behavior

away from the cutoff region. The inset in (b) shows the scaling

behavior as a log-log plot.

Figure 4.5: The limit case of small crossing angles

small angle cutoff of the capillary interaction, and η is the power law exponent.

The motivations behind choosing these parameters will be explained in the

following.

The functional form of this model potential is plotted in figure 4.4.

When a liquid bridge is formed between two crossing segments, it should

model the effects of a wetting liquid forming a filament between these parts

of the fibers. Since it has been established in chapter 2 that the wetting

energy depends largely on the wetted length, it is clear that the power law

behavior ceases to be valid in a discretized model once the full lengths of these

two segments are wet. Instead, once this is the case and the two segments
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top view

side view

Figure 4.6: Sketch of two crossing segments exhibiting minimal (left) and max-

imal (right) wetted surface area

are completely aligned, a new liquid bridge will form between the adjacent

segments which have now come into contact. In this way, liquid filaments are

discretized as sets of liquid bridge objects. A single bridge object must have

a finite energy once the segments are completely aligned.

The model potential 4.22 takes care of this finite angle cutoff by the use of

the parameter c: Once sin2 α ≈ c, the angular dependence of 4.22 becomes

insignificant, and a constant cutoff value takes over. Figure 4.5 shows that

the limiting wetting length is reached at the cutoff angle value αc, for which:

sinαc =
2r

〈l0〉
⇒ c = sin2 αc =

4r2

〈l0〉2
(4.23)

Here the average segment length 〈l0〉 has been considered as the reference

value.

Since energies are measured in terms of the bending energy, β can be seen as

a ratio between wetting energies (as governed by surface tension) and elastic

energies (as governed by the elastic modulus of the fibers).

To quantitatively understand the parameter β, one has to look at the typical

wetting energies of two crossing segments. These vary between a maximum
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value Êmax
b for aligned segments and a minimum Êmin

b for perpendicular ones

(see figure 4.6). The wetting energy is dominated by the solid-liquid contact

area Asl, and can hence be estimated by:

Êb ≈ σlv cos θAsl. (4.24)

Since this area varies between approx. r2 and rls for the two cases depicted

in figure 4.6, and since ls � r, one should choose β as something like

β =
8σlv cos θl2s
πr3Y

. (4.25)

4.2.2 Effective Crossing Angles

In a bent fiber, the tangential orientation varies continuously along the length

of the fiber. Taking the discretization approach detailed above literally, cross-

ing angles would jump discontinuously between straight segments, while stay-

ing constant along a segment. Thus, liquid crossings cannot take all curvature

effects into account, since the curvature is seen as localized in the nodes.

To compensate for this, and to avoid discontinuities in the bridge energies,

the crossing angle between two segments has to be calculated from an interpo-

lated version of the fiber orientations. We choose a linear interpolation of the

discrete orientation angles Φi = arctan(s
y
i/sxi ) of the segments in the Cartesian

plane, such that the interpolated angle acquires a value of Φi at the midpoint

of segment Si, and a value of (Φi+Φj)/2 at the node to neighboring segments

Sj:

Φ̃(t) =

{
Φi−1+Φi

2
+ t(Φi − Φi−1) t < 1

2
Φi+Φi+1

2
+ (1− t) (Φi − Φi+1) t ≥ 1

2

(4.26)

t =
s

li
(4.27)

for a point on segment Si that is a distance t·li away from the segment’s first

node. The angle on the last half of a segment with no neighbor is considered

to be constant, i.e., the fiber end points always have zero curvature.

When the distances sa and sb of a crossing point to the nearest nodes on

the crossing segments are known, the crossing angle is then simply

α̃a,b = Φ̃a(sa)− Φ̃b(sb). (4.28)
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Figure 4.7: Schematic of all nodes influencing the crossing angle of two fibers.

Using this crossing angle enables the liquid bridge to feel the effects of

curvature, even though it is strictly just at the intersection of two straight

segments.

4.2.3 Liquid Forces

Now it remains to calculate the capillary stresses on the fibers. As before, this

is done by calculating the forces, i.e. the potential gradients, on the nodes of

the fibers that interact with a liquid bridge.

Figure 4.7 depicts two crossing segments and their respective nearest neigh-

bors. The term nearest neighbor of a segment Si in the context of liquid

bridges should be taken to mean that segment attached to Si that is closest

to the bridge. In this sense, a segment can have either zero or one nearest

neighbors. The interpolated crossing angle α̃ depends on the positions of all

six depicted nodes. Thus, this system of four segments is the minimal subsys-

tem associated with a liquid bridge. Because the coordinates of all six nodes
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enter the calculation of α̃, a liquid bridge at this crossing will exert a force on

each of these nodes.

Please note that figure 4.7 uses the convention that the segment vectors

point towards the neighboring segments that are nearest to the bridge. The

orientation angles are measured accordingly. Also, the arc length parameters

t1 and t3 follow the convention depicted, i.e., they are measured between the

crossing point and the node towards the nearest neighbor. All these conven-

tions are without loss of generality, although they have to be accounted for in

the simulations.

In the following, we name the coordinates of the six nodes

xi = {rx1 , r
y
1 , . . . , r

x
6 , r

y
6}.

The forces can then be calculated as the gradients of the liquid energy

Eb(α̃(x1, . . . , x12)),

given by equation (4.22) with respect to each node position, while all other

node positions are kept constant.

It proves advantageous to calculate these gradients not in Cartesian space

but rather in the space of a set of generalized coordinates. The subsystem has

twelve degrees of freedom (the two-dimensional coordinates of the six nodes

xi), which can be transformed into the following new coordinates:

• The lengths l1, l2, l3, l4 of the segments

• The non-dimensionalized parameters t1 and t3, corresponding to the

distances of the connecting nodes to the crossing points on segments 1

and 3, normalized by the respective segment lengths.

• The orientation angles Φ1,Φ2,Φ3,Φ4 of the segments in the Cartesian

plane

• The two Cartesian coordinates (xb, yb) of the liquid bridge (i.e., the

crossing point).

These coordinates are the natural ones to define the interpolated angle α̃,

as it was done in equation 4.28. Corresponding to these coordinates are the

principal modes of motion by which α̃ can be changed: Rotations of the

four segments (corresponding to changes in the Φi) and parallel shifts of the
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fibers along each other (corresponding to changes in the ti). The remaining

generalized coordinates are associated with floppy modes that do not change

the liquid morphology: Stretching of the segments around the crossing point

(i.e., changing the li independently), and a translation of the subsystem as a

whole (i.e., changing xb or yb).

These twelve new coordinates will be denoted ξi in the order they appear

in the above list. The transformation function f : ξi → ri is then derived by

elementary geometry as:

rx1 = −l1 cos Φ1(1− t1) + xb

ry1 = −l1 sin Φ1(1− t1) + yb

rx2 = l1t1 cos Φ1 + xb

ry2 = l1t1 sin Φ1 + yb

rx3 = l1t1 cos Φ1 + l2 cos Φ2 + xb

ry3 = l1t1 sin Φ1 + l2 sin Φ2 + yb

rx4 = −l3 cos Φ3(3− t3) + xb

ry4 = −l3 sin Φ3(3− t3) + yb

rx5 = l3t3 cos Φ3 + xb

ry5 = l3t3 sin Φ3 + yb

rx6 = l3t3 cos Φ3 + l4 cos Φ4 + xb

ry6 = l3t3 sin Φ3 + l4 sin Φ4 + yb (4.29)

To calculate the Cartesian gradient of equation (4.22) with α substituted

by the interpolated α̃ as defined in (4.28), we use the chain rule to get

∂E(α̃)

∂ri
=
∂E(α̃)

∂α̃

12∑
j=1

∂α̃

∂ξj

∂ξj
∂ri

(4.30)

The first derivative in the sum of equation (4.30) can be seen as the gradient

of α̃ in the new coordinate system. Then, the operation is a multiplication of

this gradient with the matrix

J−T =
∂f−1(xi1, . . . , xi12)

∂(r1, . . . , r12)

T

. (4.31)

This is the transpose of the Jacobian of the inverse of function f . It can be

calculated most easily by calculating the Jacobian of f and then inverting it,

i.e., by using the inverse function theorem.
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This gives: J−1 =



− cos Φ1 − sin Φ1 cos Φ1 sin Φ1 0 0

0 0 − cos Φ2 − sin Φ2 cos Φ2 sin Φ2

0 0 0 0 0 0

0 0 0 0 0 0
t1 sin Φ3

l1 sinα
− t1 cos Φ3

l1 sinα
− (t1−1) sin Φ3

l1 sinα
(t1−1) cos Φ3

l1 sinα
0 0

t1 sin Φ1

l3 sinα
− t1 cos Φ1

l3 sinα
− (t1−1) sin Φ1

l3 sinα
(t1−1) cos Φ1

l3 sinα
0 0

sin Φ1

l1
− cos Φ1

l1
− sin Φ1

l1

cos Φ1

l1
0 0

0 0 sin Φ2

l2
− cos Φ2

l2
− sin Φ2

l2

cos Φ2

l2

0 0 0 0 0 0

0 0 0 0 0 0

− t1 cos Φ3 sin Φ1

sinα
t1 cos Φ3 cos Φ1

sinα
(t1−1) cos Φ3 sin Φ1

sinα
− (t1−1) cos Φ3 cos Φ1

sinα
0 0

− t1 sin Φ3 sin Φ1

sinα
t1 sin Φ3 cos Φ1

sinα
(t1−1) sin Φ3 sin Φ1

sinα
− (t1−1) sin Φ3 cos Φ1

sinα
0 0

0 0 0 0 0 0

0 0 0 0 0 0

− cos Φ3 − sin Φ3 cos Φ3 sin Φ3 0 0

0 0 − cos Φ4 − sin Φ4 cos Φ4 sin Φ4

− t3 sin Φ3

l1 sinα
t3 cos Φ3

l1 sinα
(t3−1) sin Φ3

l1 sinα
− (t3−1) cos Φ3

l1 sinα
0 0

− t3 sin Φ1

l3 sinα
t3 cos Φ1

l3 sinα
(t3−1) sin Φ1

l3 sinα
− (t3−1) cos Φ1

l3 sinα
0 0

0 0 0 0 0 0

0 0 0 0 0 0
sin Φ3

l3
− cos Φ3

l3
− sin Φ3

l3

cos Φ3

l3
0 0

0 0 sin Φ4

l4
− cos Φ4

l4
− sin Φ4

l4

cos Φ4

l4
t3 sin Φ3 cos Φ1

sinα
− t3 cos Φ3 cos Φ1

sinα
− (t3−1) sin Φ3 cos Φ1

sinα
(t3−1) cos Φ3 cos Φ1

sinα
0 0

t3 sin Φ3 sin Φ1

sinα
− t3 cos Φ3 sin Φ1

sinα
− (t3−1) sin Φ3 sin Φ1

sinα
(t3−1) cos Φ3 sin Φ1

sinα
0 0


(4.32)

The non-interpolated crossing angle α appearing here is to be read as α =

Φ3−Φ1, where the angles are measured according to the convention depicted

in figure 4.7.

The rows of this matrix are the gradients of the new coordinates ξi in

Cartesian space. Using this matrix one can transform the energy gradient in ξ-

space into the Cartesian gradient. The gradient in ξ-space is easily calculated
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from equation (4.27) and (4.28):

∂α̃

∂ξi
=

(
0, 0, 0, 0,−(Φ1 − Φ2),Φ3 − Φ4,−

(
t1 +

1

2

)
, t1 −

1

2
, t3 +

1

2
,−t3 +

1

2
, 0, 0

)
(4.33)

The components of the Cartesian gradient of α̃ are the gradients of the

interpolated crossing angle with respect to the displacements of the six nodes.

Thus, it is convenient to split that vector into six R2-vectors. Multiplying

these with the common prefactor

A := −∂E(α̃)

∂α̃
= −

(c+ c2)η/2η cos α̃ sin α̃
(

1
c
− 1

c+sin2 α̃

)η/2−1

(c+ sin2 α̃)2
(4.34)

gives, by the chain rule, the forces on the respective nodes:

F1 =A

[
(Φ1 − Φ2)

t1
l1 sinα

(
− sin Φ3

cos Φ3

)
+ (Φ3 − Φ4)

t1
l3 sinα

(
sin Φ1

− cos Φ1

)
+

(
t1 +

1

2

)
1

l1

(
− sin Φ1

cos Φ1

)]
F2 =A

[
(Φ1 − Φ2)

(t1 − 1)

l1 sinα

(
sin Φ3

− cos Φ3

)
+ (Φ3 − Φ4)

(t1 − 1)

l3 sinα

(
− sin Φ1

cos Φ1

)
+

(
t1 +

1

2

)
1

l1

(
sin Φ1

− cos Φ1

)
+

(
t1 −

1

2

)
1

l2

(
sin Φ2

− cos Φ2

)]
F3 =A

(
t1 −

1

2

)
1

l2

(
− sin Φ2

cos Φ2

)
F4 =A

[
(Φ1 − Φ2)

t3
l1 sinα

(
sin Φ3

− cos Φ3

)
+ (Φ3 − Φ4)

t3
l3 sinα

(
− sin Φ1

cos Φ1

)
+

(
t3 +

1

2

)
1

l3

(
sin Φ3

− cos Φ3

)]
F5 =A

[
(Φ1 − Φ2)

(t3 − 1)

l1 sinα

(
− sin Φ3

cos Φ3

)
+ (Φ3 − Φ4)

(t3 − 1)

l3 sinα

(
sin Φ1

− cos Φ1

)
+

(
t3 +

1

2

)
1

l3

(
− sin Φ3

cos Φ3

)
+

(
t3 −

1

2

)
1

l4

(
− sin Φ4

cos Φ4

)]
F6 =A

(
t3 −

1

2

)
1

l4

(
sin Φ4

− cos Φ4

)
(4.35)
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The forces in equation (4.35) separate into different terms, each of which

belongs to one of the principal modes of displacement described by the ξi-

Coordinates. Certain modes have no influence on the interpolated angle, and

hence on the liquid bridge energy, which is reflected in the zeros in the gradi-

ent (4.33). Also, certain nodes do not contribute to some of the modes, which

is reflected in the zeros in the matrix (4.32). The ones that remain in (4.35)

can be interpreted as torques and forces contributing to rotations of the seg-

ments and parallel shifts of the fibers along each other, respectively. This is

elaborated in the following paragraphs.

Aligning Torques

The force terms corresponding to the rotational modes are forces acting in

a direction perpendicular to the node’s respective segments. A pair of such

forces, acting on adjacent nodes and corresponding to the variation of their

segments’ orientation, constitute a torque on that segment.

In a configuration where each crossing segment has a nearest neighbor, the

liquid bridge exerts a torque on all four segments as a whole. This torque

is distributed among the segments into separate torques. For example, equa-

tion (4.35) shows one rotational force acting on N1 (the last term), two acting

on N2 (the last two terms) and one acting on N3. N2 experiences the torque

on segment S1 and S2, while N1 and N3 only experience one torque. The

torque force terms act perpendicular to their respective segments, and their

magnitude is governed by the position of the crossing point along the fiber (in

this case, t1).

The prefactors (t1 + 1/2) and (t1 − 1/2) constitute a weighting factor that

emphasizes the torque of the neighboring segment S2 when the crossing point

is closer to this segment, and emphasizes the torque on S1 when it is close to

the middle of S1.

The prefactors involving the segment lengths l1 and l2 take the different

levers of the two segments into account, so that the torque on each segment

before multiplication with the prefactors involving ti has the same magnitude.

This means that the total torque on two neighboring segments always adds

up to the same magnitude, governed by A, and is exactly compensated by the

torque on the segments of the remaining fiber.

It can be easily verified that the torques add to zero. This is to be expected,

because the angle α̃, and therefore the energy Eb(α̃), depends only on the

differences of orientation angles. Therefore, it is invariant under rotations of
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Figure 4.8: Two crossing segments with a liquid bridge

the whole system, so that conservation of angular momentum must apply.

In figure 4.8, the simpler case of two segments with no nearest neighbors is

depicted. Here, the remaining torque force terms form pairs of forces perpen-

dicular to the segments.

Forces

When the fibers are not straight, they can reduce their crossing angle by sliding

along each other. This gives rise to the remaining terms in equation (4.35).

These forces act on the nodes of the crossing segments in such a way that

they strive to shift along the directions of their counterparts. Taking the

example of segment S1, it is pulled along the direction of S3, corresponding to

a change of t3, and moving it to a domain where the interpolated orientation

of S3 is more aligned with S1. It is also pulled along its own direction, toward

the area where its own orientation is more aligned with that of S3.

It is easy to see that those shifting force terms appearing for segment S3 are

the counter-forces of those appearing for segment S1 according to Newton’s

third law.

Modifications for the Case of End-Segments

When one of the segments does not have a nearest neighbor, its orientation

is assumed to be constant with respect to t. That is, the end of a fiber is

always assumed to be straight in this interpolation model. Because of this, the

secondary torque terms and shifting force terms corresponding to the missing

neighbor segment in (4.35) vanish. Also, the primary torque forces on the
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Figure 4.9: Schematic of the subsystem involved in a stretched bridge

end-segment now have a prefactor of 1 instead of t + 1/2, so that the torque

on the end-segment alone compensates the torques on the segments of the

crossing fiber. This can be verified by explicitly calculating the three-segment

case in the same manner as described above.

4.2.4 Stretched Bridges

When the motion of the fibers leads to the disappearance of a crossing, i.e.,

when two segments that previously crossed and formed a liquid bridge slide

off each other (and the liquid bridge doesn’t just wander to a neighboring

segment), the fate of the liquid bridge has to be addressed.

A first approach in this case might be to simply delete the bridge, since

loss of contact will in principle revert the fibers back to a non-bridged state

with the wetting liquid evaporating. This neglects attractive forces exerted

by the bridge stretching between the separated segments, but since in a two-

dimensional model system these forces are insignificant compared to aligning

torques, this seems like a valid approach. However, conservation of energy has

to be considered. It turns out, as we will explain in the following, that the

omission of the attractive force acting during the short time of the rupture

event would violate energy conservation.

In principle, the interfacial free energy of the system need not be continuous:

The energy carried by the liquid bridges represents the free energy of the

wetting liquid. This can undergo jumps towards lower energy levels whenever
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Figure 4.10: A cyclic process violating energy conservation when stretched

bridges are not considered. Figure (b) shows the potential energy

ascribed to the liquid bridge in the states depicted on the left.

The difference between states c and d is the work the bridge has

done on the segments, and that is now unaccounted for.

the liquid morphology becomes unstable. An example for an event of this

kind is the rupture of a liquid bridge between two spheres. In this picture,

the system can be viewed as dissipative: Rupture of a bridge is a dissipative

process, because energy is transferred to the internal degrees of freedom of the

liquid. In this sense, the liquid provides a dissipative channel. This mechanism

of dissipation is widely studied in the area of wet granular systems, where a

very similar principle is applied to simulations of spheres with liquid bridges

between them (see for example [FGH+05, Her05]). Here, a hysteretic force law

captures the bistable nature of the liquid bridge and leads to a mechanism of

dissipation that plays a great role in the dynamics of the system.

The dissipation itself occurs by way of damped capillary waves on the liquid

that are excited by the rupture event. Therefore, energy can only ever be lost

to the liquid system. If a slipped-off bridge is simply deleted, this cannot be

guaranteed, since the bridge might have done work on the system before its

deletion.

Figure 4.10 depicts a sequence of hypothetical events in which two segments

come into contact at α ≈ π/2 (point b). The liquid bridge potential then sets

the segments into rotational motion in order to align them (point c). When



4.2. Liquid Bridges as Mobile Crosslinks 83

s

Figure 4.11: A stretched bridge spanned between a node that has lost contact

to another fiber and the nearest point on that fiber

the segments lose contact at point d, the liquid bridge vanishes and does not

carry energy anymore. Therefore, the internal energy of the system is back

in the same state, and the cycle can begin anew, although the system has

done work on the segments to align them. This is a perpetuum mobile of the

first kind. It can occur only because the information about the work done

by capillary forces is lost when the bridges are destroyed. This can only be

allowed when the amount of work done is equal to the remaining interfacial

energy of the bridge.

Therefore, whenever the two segments associated with a liquid bridge lose

contact, one must consider the bridge between the non-intersecting segments

as still present, and work has to be done against an attractive force between

the segments to rupture the bridge. This work must be at least equal to the

amount of interfacial free energy still stored in the bridge.

These events (when a liquid bridge becomes stretched) must be detected

and handled in the course of a simulation. Disappearance of a fiber contact

occurs in two cases: Either when the end of a fiber glides off another fiber, or

when a kink in the fiber slips off a second fiber (see figure 4.11). In the latter

case, two bridges disappear at the same time, forming a new stretched bridge.

These cases are handled by introducing a new kind of bridge, called a

stretched bridge, that acts over a finite distance. It is stretched between

the node that slipped off the crossing fiber and the nearest point on that

fiber (see figure 4.11), and is either accounts for one or two contact bridges,

depending on the specific case. In addition to the angular dependency intro-

duced before, the capillary energy of a stretched bridge has a dependency on

the separation s as well. It is assumed to drop linearly with the separation

s until a critical separation s∗ is reached. At this point, the bridge ruptures.

Thus, it exerts a constant attractive force (when the orientations are fixed)
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Figure 4.12: Energy of a stretched bridge in the space of angle and separation.

Note that α is plotted on a logarithmic scale to make the energy

landscape more pronounced. The red lines on the bottom mark

lines of constant energy.

from the point where the fibers lose contact until the point of rupture. This

aspect of stretched bridges is akin to the minimal capillary model used in sim-

ulations of wet systems of spherical grains[Her05], where the model potential

as a function of sphere separation is exactly the same.

In order to ensure continuity, the effective angles used for the orientational

part of the interaction are taken at the locus of the tethered node and the

point of the shortest distance on the fiber, respectively. The model potential

for a stretched bridge then takes the form:

Esb =

(
β(c+ c2)

η/2

(
1

c
− 1

c+ sin2 α

)η/2

− β

)(
1− s

s∗

)
. (4.36)

With this model, energy may be lost to the liquid when a bridge forms at

angles α 6= π/2, but at the point of rupture, the residual energy carried by
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the bridge will always be zero. Figure 4.12 illustrates the energy landscape of

this potential.

Figure 4.9 sketches the minimal subsystem influenced by a stretched bridge

and again defines the geometrical parameters that serve as generalized coor-

dinates to derive the forces. Here, the point

P =

(
xa
ya

)
is the point where the stretched bridge is attached on the second fiber. The

generalized coordinates for stretched bridges are then defined as:

ξi = {l1, l2, l3, l4, t, s,Φ1,Φ2,Φ3,Φ4, xa, ya}

Since we assume that the stretched bridge always spans the shortest distance

between fiber and node, it will always be at a right angle with the segment

(the case of a stretched bridge that has slid to the end of a fiber is explained

further down). With these parameters, the node positions are calculated as

follows:

r1 = s sin Φ3 − l1 cos Φ1 + xa

r2 = −s cos Φ3 − l1 sin Φ1 + ya

r3 = s sin Φ3 + xa

r4 = −s cos Φ3 + ya

r5 = s sin Φ3 + l2 cos Φ2 + xa

r6 = −s cos Φ3 + l2 sin Φ2 + ya

r7 = (1− t) l3 cos Φ3 + xa

r8 = (1− t) l3 sin Φ3 + ya

r9 = tl3 cos Φ3 + xa

r10 = tl3 sin Φ3 + ya

r11 = tl3 cos Φ3 + l4 cos Φ4 + xa

r12 = tl3 sin Φ3 + l4 sin Φ4 + ya (4.37)

Since the energy stored in a stretched bridge also depends on the separa-

tion s, the chain rule that has to be used to derive the forces in analogy to



86 Chapter 4. Wet Fiber Networks

equation (4.30) is

∂Esb(α̃, s)

∂ri
=
∂Esb

∂α̃

12∑
j=1

∂α̃

∂ξj

∂ξj
∂ri

+
∂Esb

∂s

12∑
j=1

∂s

∂ξi

∂ξj
∂ri

. (4.38)

The gradients of α̃ and s take the form

∂α̃

∂ξi
=

(
0, 0, 0, 0,Φ3 − Φ4, 0,−

1

2
,−1

2
,
1

2
+ t,

1

2
− t
)

∂s

∂ξi
= (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) (4.39)

The transformation matrix reads as follows (see next page):
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J−1
sb =



− cos Φ1 − sin Φ1 cos Φ1 sin Φ1 . . .

0 0 − cos Φ2 − sin Φ2 . . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 − cos Φ3

l3
− sin Φ3

l3
. . .

0 0 sin Φ3 − cos Φ3 . . .
sin Φ1

l1
− cos Φ1

l1
− sin Φ1

l1

cos Φ1

l1
. . .

0 0 sin Φ2

l2
− cos Φ2

l2
. . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 cos2 Φ3 cos Φ3 sin Φ3 . . .

0 0 cos Φ3 sin Φ3 sin2 Φ3 . . .

. . . 0 0 0 0 . . .

. . . cos Φ2 sin Φ2 0 0 . . .

. . . 0 0 − cos Φ3 − sin Φ3 . . .

. . . 0 0 0 0 . . .

. . . 0 0 l3t cos Φ3+s sin Φ3

l23

l3t sin Φ3−s cos Φ3

l23
. . .

. . . 0 0 −t sin Φ3 t cos Φ3 . . .

. . . 0 0 0 0 . . .

. . . − sin Φ2

l2

cos Φ2

l2
0 0 . . .

. . . 0 0 sin Φ3

l3
− cos Φ3

l3
. . .

. . . 0 0 0 0 . . .

. . . 0 0 sin Φ3(−s cos Φ3+tl3 sin Φ3)
l3

cos Φ3(s cos Φ3−tl3 sin Φ3)
l3

. . .

. . . 0 0 − sin Φ3(l3t cos Φ3+s sin Φ3)
l3

cos Φ3(tl3 cos Φ3+s sin Φ3)
l3

. . .

. . . 0 0 0 0

. . . 0 0 0 0

. . . cos Φ3 sin Φ3 0 0

. . . − cos Φ4 − sin Φ4 cos Φ4 sin Φ4

. . . l3(t−1) cos Φ3−s sin Φ3

l23

l3(t−1) sin Φ3+s cos Φ3

l23
0 0

. . . − (t− 1) sin Φ3 (t− 1) cos Φ3 0 0

. . . 0 0 0 0

. . . 0 0 0 0

. . . − sin Φ3

l3

cos Φ3

l3
0 0

. . . sin Φ4

l4
− cos Φ4

l4
− sin Φ4

l4

cos Φ4

l4

. . . sin Φ3(s cos Φ3+l3 sin Φ3−tl3 sin Φ3)
l3

cos Φ3(−s cos Φ3+l3(t−1) sin Φ3)
l3

0 0

. . . sin Φ3(l3(t−1) cos Φ3+s sin Φ3)
l3

− cos Φ3(l3(t−1) cos Φ3+s sin Φ3)
l3

0 0


(4.40)
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In analogy to equations (4.34) and (4.35), we calculate the energy gradients

with the common prefactors defined as:

A :=− ∂Esb(α̃, s)

∂α̃
= −

(
1− s

s∗

) (c+ c2)η/2η cos α̃ sin α̃
(

1
c
− 1

c+sin2 α̃

)η/2−1

(c+ sin2 α̃)2

B :=− ∂E((α̃, s)

∂s
= β(c+ c2)

η/2

(
1

c
− 1

c+ sin2 α

)η/2
1

s∗

(4.41)

The forces then become:

F1 =A
1

2l1

(
− sin Φ1

cos Φ1

)
F2 =A

[
Φ3 − Φ4

l3

(
− cos Φ3

− sin Φ3

)
+

1

2l2

(
sin Φ1

− cos Φ1

)
+

1

2l2

(
− sin Φ2

cos Φ2

)]
−Bŝ

F3 =A
1

l2

(
sin Φ2

− cos Φ2

)
F4 =A

[
Φ3 − Φ4

l3
t

(
cos Φ3

sin Φ3

)
+

Φ3 − Φ4

l3
ŝ+

t+ 1
2

l3

(
sin Φ3

− cos Φ3

)]
+Btŝ

F5 =A

[
Φ3 − Φ4

l3
(t− 1)

(
− cos Φ3

− sin Φ3

)
− Φ3 − Φ4

l3
ŝ+

t+ 1
2

l3

(
− sin Φ3

cos Φ3

)
+

(
t− 1

2

)(
− sin Φ4

cos Φ4

)]
−B (t− 1) ŝ

F6 =A

(
t− 1

2

)
l4

(
sin Φ4

− cos Φ4

)
(4.42)

Here ŝ is the unit vector pointing from P to r2.

In the following, we will again break these terms down into the different

physical interactions taking place in this scenario.

Aligning Torques

The torque forces from equation (4.35) reappear, with the exception that t

is here fixed to 0 in the case of the first fiber, since the stretched bridge is

tethered to N2.
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Sliding Forces and Torques

The first terms in F4 and F5 are the familiar shift forces inducing a parallel

shift of the fibers along each other, moving the point of attack P to areas of

smaller interpolated contact angle. It is compensated by an equal and opposite

counter-force acting on N2.

The new terms appearing in F4 and F5 correspond to rotational mode of

segment S3 that would also lead to a shift of point P because of the orthogo-

nality condition for the stretched bridge.

Attractive Forces

Lastly, the terms after the prefactors B are the constant central attraction

forces of the stretched bridge. This acts directly on nodeN2, and is distributed

among nodes N4 and N5 according to the respective lever lengths.

Modifications in the Case of End Segments

As in the case of sliding contact bridges, in the case of segment S3 not having

a nearest neighbor, it is assumed to be straight, and hence the parallel shift

forces disappear. The same holds for the additional torque term, which arose

from the orthogonal construction of the stretched bridge. This implies that

the same terms are still valid for the case of point P coinciding with the node

N4, in which case the orthogonality assumption doesn’t hold anymore.

In the case of either S1 or S2 not existing, prefactors of 1/2 in the terms of

F1 . . .F3 change to 1, again in analogy to the contact bridge case.

As before, explicit calculation of the three-segment scenario confirms these

modifications.

4.3 Numerical Integration of Equations of Motion

To simulate the dynamics of the system, Newton’s equations of motion are

integrated. In the following, we will use typewriter font to indicate that we

are talking about the computer representation of an object, such as a segment

or a bridge.

In order to analyze equilibrium configurations or quasistatic deformations,

it is usually preferable to use an energy minimization technique such as the

conjugate gradient method. However, these methods are only effective because

they are allowed to use large displacements in order to find the minimum
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energy configuration. Since we employ bridge objects that can be created or

destroyed according to dynamical events such as fibers coming into contact or

losing contact, we need to take care that these events follow from the physical

dynamics of the system. To this end, we use Newton’s equations of motion,

together with a damping term to ensure that the dynamics are overdamped.

Crosslinks between fibers are implemented by an additional object type,

called a supernode. This is placed at the position of the crossing point, and

the nodes of the two crossing fibers at that point are associated with it. The

liquid bridges are called bridges when the fibers are in contact. Stretched

bridges have a slightly different structure, since they are associated with up

to two segments and one node. They are called sbridges.

The forces arise from the deformation of segments (stretching), nodes (bend-

ing) and (s)bridges (capillary action), as well as a damping term of a viscous

background fluid. This last term manifests in a force on the nodes that is pro-

portional to their velocity. All force terms are accumulated in the supernodes

and divided by the sum of their subnode’s effective lengths (or dimensionless

masses) to give accelerations. At each time step, the set of bridges has to be

reevaluated:

• The cross finding algorithm identifies new crossing points and generates

bridges

• bridges’ associated segments are updated as they slide along the fibers

• Loss of fiber contact is detected, and bridges are transformed into

sbridges accordingly

• When fibers reconnect, sbridges are converted back.

• sbridges are deleted when stretched beyond the rupture distance s∗.

Only after these updates can the new forces be calculated for the next time

step.

The following forces act on any given supernode:

• The stretching forces (4.21) of each connected segment

• The bending force (4.17) of the nodes themselves if they have neighbors,

and either (4.18) or (4.19) if a neighboring node is bent

• The corresponding force terms from equations (4.35) or (4.42) if the

node is part of the minimal subsystem of a bridge or stretched bridge
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• An inertial force Fa = l̃0i ai proportional to the acceleration ai of the

supernode

• A damping force Fd = −γvi proportional to the supernode’s velocity

vi and the damping coefficient γ.

The damping coefficient γ is chosen such that the dynamics of the system are

overdamped.

Verlet Algorithm

After the network is initialized, periodic or Lees-Edwards boundary conditions

are enforced, and then the following steps are taken repeatedly until the kinetic

energy of the system converges.

This implements the Velocity Verlet integration scheme [AT89], which is

frequently used in molecular dynamics simulations because it offers great sta-

bility at a very low computational cost.

1. If a wet network is being simulated, the set of (s)bridges is updated

by recalculating the crossing points of fibers and detecting contact and

rupture events.

2. The sum of all forces on the supernodes are recalculated by setting them

to zero and then looping over all segments, nodes and (s)bridges to

calculate the forces according to equations (4.21), (4.17)-(4.19), (4.35)

and (4.42) and added to the respective nodes. A frictional force term

−γv is added at the end.

3. The first half-step of the velocity-Verlet algorithm: The accelerations

of all supernodes are set to F/l̃0, supernodes are displaced by ∆x =

ẋ∆t+ 1
2
ẍ∆t2. Velocities are adjusted by ∆v = 1

2
ẍ∆t.

4. Positions are made to conform to the periodic or Lees-Edwards boundary

conditions again for detection of crossings. Forces are recalculated as

above.

5. The second half-step: Accelerations are set to F/l̃0 again; velocities are

increased by ∆v = 1
2
ẍ∆t.

During these simulations, elastic, kinetic and interfacial energies are contin-

uously measured, along with the numbers of bridges and the components of
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the elastic and capillary stress tensors. The latter is calculated by evaluating

the force components of all forces transferred across a vertical or horizontal

cut through the system, and averaged over a number of such cuts.

Step size control

The energy landscape of wet network systems as described in this chapter can

occasionally become very steep. When it does, numerical accuracy can only

be maintained by reducing the time step of the integrator. In the following,

the problematic configurations will be outlined and the strategy used to adapt

the simulation time step is presented.

When the two segments cross at a very small angle, some of the gradient

terms involving 1/ sinα in 4.35 become very large. This is not a problem

as long as the interpolated angle α̃ is also small, since the prefactor A also

vanishes in that case. If however a neighboring segment bends away strongly

and the crossing segments are perfectly aligned, the curvature force pushing

the crossing point to the middle of the segment becomes very large. An

adaptive step size algorithm must ensure that the motion arising from this

force can be resolved to the local minimum of this steep potential well (the

point where both segments cross in the middle).

Let the large force term arising from this situation be F, and the corre-

sponding generalized variable of segment shift t. Then a sufficiently small

time step is

τ =

√
leff l sinα

t|F|
. (4.43)

When a bridge exerts a force larger than a certain threshold value, the cor-

responding τ is calculated, the first half-step of the Verlet algorithm is rolled

back, and the step is repeated with a time step of 0.1τ until the suggested

minimum time step does not decrease below 90% of the currently used one

anymore. Only then is the next step again taken with the normal time step.

4.4 Capillary Adhesion of Fibers

The model as presented so far in this chapter is a way of describing and sim-

ulating elastic fibers with an adhesive interaction. In it, the interaction is
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Figure 4.13: Illustration of a fiber bundle adhering by liquid bridges, with

exaggeratedly large crossing angles.

closely modeled after capillary interactions, which have some special proper-

ties, such as aligning torques arising from the liquid morphologies, and a lack

of resistance to parallel translations. Nevertheless, primarily, the interaction

manifests in adhesion of fibers. There is a certain adhesion energy associated

with liquid bridges, and a wet fiber system in mechanical equilibrium will be

characterized by a balance between adhesion forces and elastic forces: The ad-

hesion forces will cause fibers to align into parallel overlapping bundles, thus

gaining adhesion energy, but the necessary deformations are associated with

a cost in elastic energy.

This interpretation of the model potential (4.36) as an adhesion energy

comes from the fact that the interaction leads to alignment of crossing fibers.

Therefore, the energetically preferred state is that where the full length of

the segment is parallel (and therefore in contact to) the crossing segment.

In a bundle of fibers that have completely aligned, the associated energy per

segment length is the energy difference between that of two segments crossing

at right angles and that of two aligned segments. In the system of units

presented in section 4.1.2, this is just β. This is the adhesion energy per

segment length. Each pair of crossing segments in a bundle contributes one

liquid bridge, so that β also becomes the adhesion energy per average segment

length in a bundle of two fibers adhering by capillary action.

In the simulations, such a bundle is formed by chains of segments that are

almost completely aligned, but keep crossing each other (see figure 4.13). The

rules implemented in the simulation for tracking stretched bridges ensure that

the number of bridges always corresponds to the number of paired segments:

A stretched bridge generated by a kink slipping off (and therefore by two

bridges disappearing) covers all four involved segments and accounts for the

forces and energies of the destroyed bridges. Segment pairs that are covered

by stretched bridges cannot form new contact bridges. All this ensures that

the total energy of all bridge objects in a fiber bundle is consistent with the

picture of a constant adhesion energy per length.
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4.4.1 Analytical Solutions for Fibers Rings Adhering to a

Wall

The problem of calculating equilibrium shapes of elastic rods or fibers, i.e., the

study of the variational problem of minimizing Kirchhoff’s elastic energy (4.3)

under certain boundary conditions goes back to Euler, who neglected the ex-

tensional strain part. This reduced problem is known as the Elastica problem,

see for example chapter XIX of [Lov44].

The problem of a two-dimensional representation of lipid vesicles attached to

a wall has been studied by Seifert in [SL90]. This problem is another example

of competition between adhesion and elastic deformation; furthermore, the

elastic energy of a two-dimensional cut through a vesicle wall is also described

by a Hamiltonian that is quadratic in the curvature, which is in this case

usually referred to as the Helfrich Hamiltonian [DH76]. Seifert considers either

the case of a constant area enclosed by the vesicle wall, or a constant pressure

difference between the inside and the outside of the vesicle. Replacing the

vesicle wall with a ring-shaped fiber, only the case of equal pressures makes

physical sense, since there is no energy penalty for changing the enclosed area.

We use this scenario in order to compare the results of simulations of wet

fiber rings adhering to a wall to analytical calculations.

In order to calculate equilibrium shapes of a fiber adhering to a substrate

by finding the centerline curves that minimize the total energy, one needs to

minimize the sum of the elastic energy and an adhesion energy. For a fiber

adhering to a wall over the arc-length range s ∈ (sc, L), where sc defines the

point of contact, where the fiber first adheres, we can write:

Ead = β(L− sc) (4.44)

for the adhesion energy. Here, β is again the adhesion energy per unit length

measured in terms of the bending stiffness κ.

From the extensive literature concerned with the Euler Elastica, it is known

that for the variational problem, it is easiest to parametrize the curve described

by the fiber by giving the orientation Φ as a function of arc length s (see

figure 4.14). Exploiting the mirror symmetry of the problem, we define the

origin of s to be at the top and middle of the adhered fiber ring, as shown

in the figure. In this parametrization, the curvature is simply given by the

derivative of the orientational angle with respect to the arc length: C = Φ̇.
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Figure 4.14: A fiber ring adhering to a wall. The shape is described by a

function Φ(s).

The Cartesian positions of a point on the fiber at arc length s are then:

x =

s∫
0

ds cos Φ(s) (4.45)

y = −
s∫

0

ds sin Φ(s). (4.46)

(4.47)

The elastic energy is then written as

sc∫
0

ds

(
1

2
Φ̇2 + γ(ẋ− cos Φ)

)
. (4.48)

Here, γ(s) is a Lagrange multiplier used later on to enforce a certain lateral

position of the end of the fiber.

The variational problem of finding the shape Φ(s) of a fiber that mini-

mizes (4.48) is equivalent to the Euler Elastica problem, and it is also equiva-

lent to the Euler-Lagrange problem of the gravitational pendulum, when one

interprets s as the time and Φ as the phase of the pendulum. This is known

as the Kirchhoff analogy, and was used by Kirchhoff in his study of flexible

rods [Kir59] that was mentioned earlier in section 4.1.
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Figure 4.15: Shapes of a fiber ring with a circumference of 20 segments that is

attached to a wall (simulated by a stiff fiber) at different capillary

strengths β.

The solution can be expressed in closed form using Jacobi elliptic functions:

Φ(s) = ±2am

(
s

√
A− γ

2
,− 2γ

A− γ

)
, (4.49)

Here, A is an integration constant and am(Φ, k) is the Jacobi amplitude,

defined as the inverse Φ of the elliptic integral of the first kind (see [BSMM01]):

u =

Φ∫
0

dψ√
1− k2 sin2 ψ

; am(u, k) = Φ. (4.50)

To apply this to a ring-shaped fiber adhering to a wall as depicted in fig-

ure 4.14, one needs a boundary condition at the point s = sc where adhesion

starts. This can be derived by variation of the contact point sc. Moving the

contact point by a small amount δs so that a small part of adhering fiber is

loosened, work of the order βδs has to be done against the adhesion potential.

On the other hand, since the part that formerly adhered to a straight wall

with zero curvature is now going to be curved, the bending moment of the

fiber will do an amount of work equal to 1/2Φ̇(sc)
2δs. In equilibrium, these

terms will be equal, so that we get:

Φ̇(sc) =
√

2β (4.51)
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as a boundary condition for the curvature of an adhering fiber. In the appendix

of [SL90], Seifert gives a more general derivation of this boundary condition.

The orientation Φ itself must be continuous in s, since discontinuities cor-

respond to infinite curvatures and thus infinite elastic energies. Therefore,

another boundary condition is that Φ(sc) = π (see figure 4.14). Using these

conditions and the solution (4.49), the integration constant A and the La-

grange multiplier γ can be expressed in terms of the adhesion energy per unit

length β and the curvature C0 = Φ̇(0) at s = 0:

A =
1

4

(
C2

0 + 2β
)

(4.52)

γ =
1

4

(
2β − C2

0

)
. (4.53)

The curvature C0 for a given adhesion potential β is uniquely determined,

but can only be calculated numerically, since it is the solution of an equation

involving elliptic functions. The solid line in figure 4.17 shows the length of

the adhered part as a function of β for a circle of radius R = 40. Below β =

1/(2R2), there is no solution: Circles of unit radius do not adhere to straight

walls when the dimensionless adhesion energy per unit length is smaller than

1/2.

Figure 4.15 shows simulations of ring-shaped fibers adhering to a straight

wall by liquid bridges for several capillary interaction strengths β, simulated

using our model for wet fiber networks. In our model, β is effectively equivalent

to the dimensionless adhesion energy per segment length, as explained in the

beginning of this section. To verify this, we fit the analytical shapes calculated

by (4.49) to the positions of the nodes in the simulations for various β, using

C0 as a fit parameter. Figure 4.16 shows such a fit. From the fit parameter C0,

one can calculate the adhesion potential β that corresponds to the analytically

calculated shape that fits the data best.

It is to be noted that the equilibrium state reached in a simulation will

always differ from the prediction in the continuum model, since the liquid

bridge objects discretize the adhered part. In order to generate one more

bridge, the first unbound node has to be bent until the first unbound segment

touches the wall. Therefore, there is an energy barrier between equilibrium

states, and an associated hysteresis.

This effect can be seen in figure 4.17. Here, we plotted the length L∗ of the

adhered part of the fiber as a function of β for a circular fiber of circumference

40 ls as an orange line. The blue circles correspond to measurements taken
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Figure 4.16: Comparison of the analytically calculated shape of an adhered

fiber ring (shown only in the right half) with a simulation of a

wet fiber ring sticking to a wall by capillary adhesion. The chosen

parameters are β = 0.066 for the simulation and β = 0.05 for the

analytical shape. The simulated ring has a circumference of 40

segments and hence a radius of R ≈ 6.4. Apart from a random

horizontal shift of the simulated ring, C0 is the only fit parameter

from simulations of a circle touching the wall in one point initially. Adhesion

sets in at the point predicted from the continuum model, but the adhered

length stays below the predicted value after that.

The blue triangles are taken from simulations that used the final state of

the simulation at β = 0.08 as a starting condition. Here, the adhered length

measured stays above the predicted value. This is an effect of the hysteresis

caused by the discretization. Nevertheless, the critical value βc could be re-

produced, and the values of L∗ qualitatively follow the behavior predicted by

the continuum model.

These measurements confirm that simulations carried out in the way de-

scribed in this chapter, with liquid bridge objects being created at segment

crossing points, are consistent with the picture of elastic fibers that interact

with each other via an adhesion per unit length of magnitude β. This adhe-
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Figure 4.17: Adhered length of a circular fiber as a function of the adhesion

energy/length. The circles represent simulated systems where the

initial condition was an undistorted circular fiber touching a wall,

while the triangles represent simulations where the initial condi-

tion was an already adhered fiber (taken as the final configuration

of the simulation at β = 0.08.)

sion potential has a finite range, which is equal to zero for fibers that don’t

already interact, and equal to the rupture distance s∗ for interacting fibers,

i.e., it is in itself hysteretic.

Additionally, hysteresis is induced by the discretization itself. Locally, the

interaction implemented here involves torques that are consistent with those

induced by capillary action between cylinders.

4.5 Network Deformation by Weak Liquid Bridges

In this section, we will present our analysis of the morphological and mechan-

ical properties of wet Mikado networks. These have been simulated according

to the procedure detailed above in order to find the equilibrium configurations.

In the course of such a simulation, the internal stresses caused by the liquid

bridges act to deform the elastic network, allowing more bridges to be created

while the fibers align (corresponding to continued capillary condensation while

the action of the liquid interface brings fibers closer together).
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Figure 4.18: The relative increase in the number of liquid bridges on increasing

the capillary strength β, plotted for various network densities q.

The space of control parameters we chiefly explore is spanned by the fiber

density q of the network and the capillary interaction parameter β, governing

the magnitude of the force a liquid bridge can exert in terms of the elastic

modulus of the fibers. We use an exponent of η = −1 for the angular depen-

dence E ∝ α−η of the liquid bridges (see section 4.2.1), corresponding to the

constant pressure ensemble, where the bridges exchange volume with a vapor

phase permeating the system. The aspect ratio of the unit segments is fixed

to a = 0.5, meaning that the length and radius of a fiber have a ratio of 1:20.

This leads to elastic fibers that primarily deform by bending. The system

sizes we were able to simulate in the given parameter ranges are L = 12lf .

First, we study the increase of the number of bridges in the system due to

the action of the bridges at low values of β. Figure 4.18 shows the relative

increase in the number of liquid bridges on increasing β, for a small selection

of different network densities q. The crosslinking of the networks presented

here was performed with a probability of pl = 0.5.

There is a steady increase in the number of bridges of the order of 5% even

for very low values of β; this is caused by the liquid bridges present from the

start that act on fibers that do not need to deform much in order to form new

contacts. This initial increase shows a slight dependency on the fiber density q.

Networks of higher density have fewer easily deformable fibers (since they are
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further along the percolation transition). They also have more liquid bridges

initially, and the fibers are closer together, meaning that less deformation is

necessary to form new contacts. The latter effect seems to dominate, since

denser networks have a slightly larger initial increase of bridges.

For β . 10−3, an increase of the capillary strength has no noticeable effect

on the liquid content. Only when β reaches values around β ≈ 5 · 10−3 does

the effect of β on the liquid content become significant. This is the regime

where formation of new liquid bridges creates enough additional stress in the

network that the additional aligning forces keep the process going, and more

and more fiber segments are drawn into the developing fiber bundles. This

collective effect leads to the segmentation of the network into bundles and

pores, as we will describe later on in section 4.6.

Only when β becomes of order 10−2 could we observe significant morpholog-

ical changes in the network. In the regime of lower β, we resort to the statistics

of the fiber crossing angles α to give information about the deformations that

the weak liquid bridges induce.

Figure 4.19 shows how the distribution of crossing angles α varies on in-

creasing the capillary strength β in the regime where no collective increase

of crossings occurs. The distribution roughly follows the undeformed sine-like

distribution (3.1) derived in chapter 3. We use this to characterize the de-

formations induced by the wetting liquid in the regime of low β, where large

scale rearrangements of the network do not yet take place. The blue lines in

figure 4.19 mark the measured frequencies of a given angle α, with the dark-

ness of the line increasing with the capillary strength β. The gray line is taken

from equation (3.1). While the differences in the distributions are small, it

is still evident that the crossing points in the lowest 10% of crossing angles

are significantly increased with increasing β, while crossings closer to α = π/2

tend to be depleted. In the broad middle range of the spectrum of crossing

angles, no significant change can be observed.

Looking at figure 4.4(b), it is evident that the largest torques act on the

points where the crossing angles are already low, so that the trend in the

plot 4.19 is to be expected. Other than the alignment of fibers that already

cross at relatively low angles (and corresponding very low increase in the

number of liquid bridges as seen in figure 4.18), no significant effect of the

wetting liquid on the network structure could be detected in this regime of

weak capillary interactions.
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Figure 4.19: Distribution of crossing angles α in a network at density q = 10,

on increasing the capillary strength β.

4.6 Observations about Networks Deformed by

Strong Liquid Bridges

Increasing β to larger values, we observe the formation of bundles and pores

in the network. This is a cooperative effect, caused by the capillary action

leading to alignment and therefore to formation of new liquid bridges, until

large accumulations of bridges along bundles of fibers occur. Figure 4.20(a)

shows an example of such a network. The fibers are plotted in yellow, while

the liquid bridges are shaded in blue. Fluctuations in the density of fibers and

crosslinks lead to a coarsening effect, where liquid accumulates in small regions

of perfectly aligned fibers, depleting the surrounding areas of fiber material.

Other areas, where the network is more densely linked, only deform slightly,

and the number of liquid bridges in those areas remains relatively small.

This leads to the formation of pores bounded by bundles of fibers. Fig-

ure 4.20(b) shows the distribution of elastic stress in the network. Fibers

drawn with a large line thickness in this image are more stressed than the

thinner fibers. The color scale denotes the ratio of the bending energy of the

fiber segment to its total elastic energy, meaning that fibers plotted in red are

deformed predominantly by bending, while blue fibers are mainly stretched.
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Figure 4.20: A wet elastic network of 103 fibers with a fiber density of

q = 10.00 and an elastocapillary parameter of β = 0.04 in its

ground state.(a) Distribution of the 5400 capillary bridges that

have formed (light blue). The shaded area depicts the simula-

tion box, which has a size of 10lfib in this case. (b) Distribution

of elastic energies. Line thickness denotes total elastic energy of

a segment (with a minimum thickness so that all lines are visi-

ble), while the color depicts how the elastic energy is distributed

between stretching and bending modes.

It is obvious that the elastic stress builds up at places where the fibers have

to bend at the ends of the bundles adhering by liquid bridges. These bun-

dles are bordered by dense regions that have not deformed significantly, and

in the boundary regions, bending takes place in order to accommodate the

alignment into bundles. Within the bundles themselves, stresses are not very

high, meaning that the fibers were absorbed into the bundles exciting only

relatively soft modes of deformation.

Figure 4.21 is shows the initial and relaxed states of a network with the

structure of the rigid clusters superimposed. The networks were segmented

into rigidly connected clusters with the pebble game algorithm as described

in section 3.4. There is a percolating rigid cluster colored in purple, along

with some smaller rigid clusters in other colors and some floppily connected

segments drawn in gray.



104 Chapter 4. Wet Fiber Networks

(a) (b)

Figure 4.21: A network at density q = 10, with the rigid clusters colored. Grey

fibers are not part of a rigid cluster. Figure 4.21(a) shows the

initial, undeformed state, while figure 4.21(b) shows the network

after relaxation with a capillary strength of β = 0.1.

Comparing the morphology of the relaxed network to the structure of rigid

clusters, it is apparent that the floppy (gray) regions have mostly been ab-

sorbed into bundles, leaving behind large pores (with the exception of some

floppy strands connecting bundled regions). The denser rigid clusters remain

mostly undeformed; only the percolating cluster has undergone some neces-

sary deformations to accommodate the formation of bundles.

The images in figures 4.6 and 4.21 are typical representations of the simula-

tion results we analyzed. In the following, we will analyze in more detail how

the formation of bundles and pores is influenced by the two principal control

parameters, the network density q and the capillary interaction strength β.

4.7 Morphological Transitions

In order to quantify the formation of pores observed in wet fiber networks,

we employ the maximum covering radius transform described in [MMJ+08].

This is a method to analyze pore sizes, and is used, for example, with confocal

microscopy reconstructions of fiber networks.
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Figure 4.22: Covering Radius Transform of a wet fiber network (detail). Color

encodes the maximum covering radius; Fibers are green for better

visibility.

The network is first digitized into square cells (we use a set of 1000× 1000

cells here), where each cell is marked as containing either some fiber material

or nothing. Then, the Euclidean distance map is computed. This assigns to

each empty cell the value of the Euclidean distance from the center of the

cell to the center of the nearest cell occupied by a fiber. From this map, the

maximum covering radius transform is obtained by assigning again to each cell

a value that corresponds to the largest circle that covers the cell in question

and does not cover any cells occupied by a fiber. In other words, out of the set

of all circles that have a radius equal to the value of their Euclidean distance

map (and therefore touch a fiber tangentially without covering any fibers),

the largest one that covers a given cell is chosen. That cell is then assigned

the value of the circle’s radius. In this way, the maximum covering radius

function maps the cells of the system to the associated pore size.

Figure 4.22 shows an example of the covering radius transform function of a

relaxed fiber network, in a detailed zoom. The fibers are drawn in green, and

the covering radius transform is plotted in a color scale ranging from black to

yellow. The covering radius transform finds the largest circles that fit into the

pores and measures the pore size distribution by the radii of these circles. As

suggested in [MMJ+08], we calculate the histogram of the maximum covering

radius function to describe the distribution of pore sizes in the system.
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Figure 4.23: Covering Radius Transforms of networks at q = 12.5, with β

increasing in equal steps from left to right and top to bottom.

The first image is taken at β = 0.01, and the last at β = 0.05, in

steps of 0.005.

Figure 4.23 shows a series of maximum covering radius transform images

taken from simulations of a network with a density value of q = 12.5 and differ-

ent capillary strengths β = 0.01, . . . , 0.05. The growth of pores on increasing

β can be easily observed.

In figure 4.24, the distribution of pore sizes in the system is plotted for

various values of β as cumulative distribution functions. On increasing β,

some of the smallest pores collapse and are therefore destroyed. Also, a small

number of very large pores appears when β is increased to large values, and
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Figure 4.24: Cumulative distribution function of pore sizes in a network of

q = 12.5, for various capillary strengths β

on the whole the distribution becomes very wide.

Figure 4.25 shows the average value of the pore sizes as a function of β for

several different networks. Most of the curves follow a characteristic shape:

While at low capillary strengths the structure of the network does not change

much, there is a certain point where the pores start to grow on increasing

the capillary strength β. At very high capillary strengths, a plateau value is

reached and the pore size fluctuates but does not increase further. The point

where significant deformation of the network by the liquid bridges starts is

shifted to higher capillary strengths for denser networks, while the largest

pores found in the plateau region decrease in size for denser networks.

At network densities below q ≈ 10, our pore size analysis is not exact enough

to distinguish the onset point of the linear deformation regime. The curves in

figure 4.25 were calculated from simulation results of networks created with the

linking probability pl = 0.7, and using a simplified formulation of the model

that does not include stretched liquid bridges. For comparison, the inset shows

the same curve calculated with the same simulation protocol as used in the

beginning of this chapter. We could identify no significant deviations in the

structures and behavior of the networks between the two different simulation

methods.

From the pore size data, we extracted the point βonset at which the regime of
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Figure 4.25: Average pore size as a function of the elastocapillary parameter

β for different crosslinking densities.

linear increase of the pore sizes starts. We did this by fitting a line to the linear

regime of each curve, and extrapolating it to the point where the average pore

size equals that of the undeformed network. In figure 4.26, these onset values

are plotted against q. Also marked in the figure are the points of connectivity

percolation qc and of rigidity percolation q∗ for a network of this size L and

crosslinking probability pl. The points and error bars mark the results of the

extrapolation of the onset point from curves of the type as seen in figure 4.25.

Below q = 12, no such extrapolation was possible due to limited resolution

of our pore size analysis. The values show a reasonably linear trend, and

extrapolation of this trend to vanishing capillary strengths leads to a network

density that lies close to the point of connectivity percolation, and a small

but significant distance below the point of rigidity percolation.

Figure 4.27 shows the probability of a fiber being part of the largest con-

nected (blue) or rigid (green) cluster of a network at the same parameters as

the networks used to plot figure 4.26. The area where we extrapolated the

zero crossing of the line in figure 4.26 to be is at q = 8.1± 0.3 and is marked

in gray. In that region, the network can be expected to have a percolating

connected cluster of fibers, but the probability of rigidity percolation is still
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Figure 4.26: Minimum capillary strength at the onset of pore growth as a

function of crosslinking density, as obtained from linear fits to

pore size curves. A linear fit extrapolates the trend to the point of

vanishing capillary strength, which lies between the connectivity

percolation point qc and the rigidity percolation point q∗.

very low.

Below the extrapolated point, already vanishingly small capillary stresses

lead to a deformation of the network, meaning that the network becomes

floppy below q ≈ 8.1. Since rigidity percolation of dry networks happens

at a somewhat higher density, it is to be concluded that the liquid bridges,

connecting some of the non-crosslinked points together and thereby changing

the network structure, can make connected but floppy networks rigid.

To address the height of the plateau regions seen in figure 4.25, we plot

the average pore size as a function of the density q in figure 4.28. The lines

for different capillary strengths β appear to converge against a limiting value

once the liquid bridges cannot expand the pores any further.

A possible limit to the size of pores in the network can be seen in the

structure of the network itself. When a set of connected fibers forms a loop, a

pore in the network that is bounded by this loop of connected fibers can only

grow further by stretching the bounding fibers. Smaller pores can also grow by

rearranging fibers through bending and rotations around the free hinges of the

crossing points, but once a pore is bounded by a loop of connected segments,
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Figure 4.27: Percolation transitions of the connectivity and rigidity of a net-

work at pl = 0.7 and L = 12. Plotted are the probabilities of a

segment being part of the largest connected (blue) or the largest

rigid (green) cluster, as a function of fiber density q. The con-

nectivity percolation occurs around qc = 8.0± 0.2, while rigidity

percolates around q∗ = 8.6± 0.4. The shaded region corresponds

to the 95% confidence interval of the extrapolated qonset.

further growth of the pore is only possible through stretching deformations,

which cost significantly more energy.

Therefore, the pore structure of the network is bounded by the pore size

of an ingrained mesh, meaning a mesh of all the loops formed by crosslinked

fibers in the system.

We used a graph coloring algorithm to identify the set of connected loops

and measure its size distribution. The algorithm is described in appendix A.3.

The radii of the loops (defined as half their diameters) are plotted with open

symbols in figure 4.28. While the observed pore sizes in the wet networks are

still significantly lower than the sizes given by the ingrained mesh, it is still

apparent that the ingrained mesh constitutes an upper limit for the pore size.

An alternative morphological quantity of interest is the length of the aligned

bundles of fibers that we observe at larger β. To measure this, we plot the

correlation function of the angle between pairs of segments. This is defined as
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Figure 4.28: Average pore size as a function of the network density q, for

various capillary strengths β. The open symbols represent the

average sizes of the elementary cycles in the network.

the averages

S(r) =
〈
cos2(Φi − Φj)

〉
(r)− 1

2
,

where the Φi are the orientation angles of the segments, and r is the distance

between their centers. The averages are performed over all pairs of segments

that do not belong to the same fiber. When fibers are aligned in long bundles,

their orientations will be correlated over distances comparable to the bundle

length. Figure 4.29 shows plots of these correlation functions on a logarithmic

abscissa. They show an exponential decay over a small range of distances, and

then drop off quickly when the distance reaches the magnitude of the fiber

length lf .

In figure 4.30, we plotted the correlation lengths λ extracted from fits to the

exponential parts of the correlation functions, where they scale as exp(r/λ).

The quantity λ is a measure of the average length of a bundle of aligned

fibers. The curves look very similar to those seen in figure 4.25, but show

significantly larger fluctuations, which is why we elected to focus our analysis

on the measurements of the pore size.
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Figure 4.29: Angular correlation functions of fibers in a network at q = 12.5,

for increasing capillary strengths β.
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Figure 4.30: Plot of the angular correlation length versus elastocapillary pa-

rameter for various crosslinking densities q.
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4.8 Elastic Response

Figure 4.31 shows the distribution of stresses through the system. It was

calculated by summing up the elastic and capillary forces transferred over a

set of vertical and horizontal cuts through the simulation box. This enabled us

to measure the average values of the stress tensor and their spatial distribution

through the system.

As can be observed here, the distributions widen when the capillary strength

β is increased, meaning that absolute stresses grow larger locally. While the

shear stress remains low on average, the average normal stress becomes more

negative when the capillary action becomes stronger. This means that the

capillary forces drive network to shrink, although actual shrinkage is prevented

by the periodic boundary conditions.
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Figure 4.31: Histograms of the normal (a) and shear (b) components of the

stress tensor in a network of density q = 9, for varying capillary

strengths β.
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

We set out in this work to develop a model that enables us to analyze the effect

that a wetting liquid has on the morphology and structure of a disordered

network of elastic fibers. As a starting point, we considered the problem of

finding the interfacial shape of a liquid condensing at the crossing point of two

smooth and straight cylinders, in chapter 2. In an analytical approach to the

problem, we considered two different approximations. The first is based on the

theory of Princen [Pri69a, Pri69b, Pri70] and is valid for small crossing angles

of the cylinders. The second is valid for arbitrary crossing angles, but only

for large negative Laplace pressures. We verified that the asymptotic case of

small Laplace pressures is reproduced by the Princen theory, and derived the

scaling exponents for the interfacial free energy, the liquid volume, the Laplace

pressure, the wetted length and the torque as a function of the crossing angle.

We verified these scaling behaviors in numerical minimizations of the free

energy, and compared the scaling coefficients derived from numerics and from

analytical theory.

As a result, we are able to characterize the capillary torque that arises

between the two fibers as a power law with an exponent that depends solely

on the thermodynamic ensemble of the wetting problem, and that is valid for

a very wide range of crossing angles.

In order to describe the elastic network, we amended the well-known Mikado

model to the case of diluted crosslinks. In this way, we are able to allow

for rearrangements and transport of liquid through the network. Since this

amendment introduces an additional parameter (the crosslinking probability

pl), we investigated the influence of this parameter on the elastic properties

of a diluted Mikado network. To do this, we implemented the Pebble Game
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algorithm by Jacobs and Thorpe [JT95] to investigate the topological rigidity

of diluted Mikado networks. In this way, we were able to identify rigidly

connected clusters. We could reproduce the literature results for the undiluted

case, and found a shift in the rigidity percolation with pl, accompanied by a

qualitative change in the topological properties of rigid clusters in the network.

With these ingredients, we were able to develop a new model suitable for

computer simulations of wet elastic networks. In this model, fibers are elasti-

cally deformed by liquid bridges at the contact points, which leads to capillary

cohesion of the fibers. This is a very effective way to simulate wet fiber sys-

tems, since the effect of the wetting liquid is accounted for by only a small

number of discrete liquid bridge objects, obviating the need to simulate the

fluid dynamic problem of the liquid in parallel.

We had to invest some effort in order to arrive at such a model in which the

translational forces and the torques behave consistently. Since the capillary

action is governed by the crossing angles, both aligning torques and transla-

tional forces arise, the latter being induced by the curvatures of the fibers.

We therefore introduced an interpolation scheme to smear out the curvature

over the whole of the discretized fiber length, and calculated the resulting

forces. Additional force terms arise when liquid bridges lose contact and be-

come stretched. It is of great importance to ensure proper tracking of the loci

of liquid bridges, and to account for formation and rupture events. Doing this

in a computationally efficient way is the key point to applying this kind of

model. While models for wet systems of spheres that take a wetting liquid

into account by means of liquid bridge objects are already widely used, the

equivalent description for elongated elastic fibers is, to our knowledge, new,

and is the main achievement of this work.

Applying this model to Mikado networks, we found that for low interfa-

cial tensions and high elastic moduli of the fibers, the distribution of crossing

angles in the system is changed slightly. Once the capillary interaction be-

comes stronger and crosses a threshold, cooperative effects set in, in which

the aligning action of the liquid bridges leads to new fiber crossings, and new

liquid bridges appear as a consequence. This leads to bundling of the fibers

mediated by large accumulations of liquid bridges, and consequently to the

growth of pores in the network. The latter effect is interesting for many appli-

cations such as aerosol, where the pore structure influences the efficient, and

composite materials, where it influences the mechanical properties.

The threshold value of the capillary interaction strength depends on the
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concentration of fibers in the network. Our investigations show that even

below the rigidity percolation point, the presence of liquid bridges organizes

the fibers into larger cell structures that give the network a higher rigidity, as

evidenced by the fact that the point where vanishingly small capillary forces

do not start the cooperative process of bundling anymore lies in the interval

between the point of connectivity percolation and that of rigidity percolation.

For the limit case of large interfacial tensions and low elastic moduli, we

found that the process of bundling and pore growth is limited by the internal

structure of the network, and identified an upper limit of the pore size given

by the mesh of connected loops.

5.2 Outlook

5.2.1 Lattice Gas simulations

We have also taken some preliminary steps to replace the discrete bridge model

presented in chapter 4 with a bulk description of the liquid using a lattice gas

approach. To this end, we modeled the liquid as an Ising spin-system on a

square lattice of N sites, where each spin pointing up represents condensed

liquid, and each spin down represents vapor. The lattice has a spacing of

width d. For each cell of the lattice, the total length of fibers passing through

the cell is measured and called li, where the index i runs over all cells. We

modified the Ising model to include preferential wetting on the fibers, so that

the total energy of the lattice gas reads:

E = − ε
2

N∑
i=1

∑
j∈ni

sisj −
ε

2
√

2

N∑
i=1

∑
j∈nni

sisj − δ
∑

i:si=+1

li. (5.1)

Here, ni indicates the set of the nearest neighbors of cell i, while nni is the set

of the four next-nearest, diagonal neighbor cells. The parameter δ is used to

tune the wettability of the fibers, and it results in an effective two-dimensional

line tension

τ =
ε

d
. (5.2)

Lukas et al. have used a similar model in [LGP97] to simulate fluid imbibition

in random fiber assemblies under gravity, without taking elastic deformations

of the fibers into account.
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Figure 5.1: Lattice gas simulation of a liquid wetting a Mikado-type random

network of infinitely stiff fibers. The system has a size of 800x800

lattice sites, with the parameters η = δ = 1, and contains 203

fibers of length 200d and 8 ·104 up-spins. The spins were averaged

over 109 Monte Carlo steps, and the average occupancy of each

cell by a positive spin is plotted as the blue color gradient.

The equilibrium state lattice gas system is examined by Monte Carlo sam-

pling, using the Metropolis-Hastings algorithm (see, for example, [FS02]). In

particular, we use non-local Kawasaki dynamics. This means that we choose

a cell with a spin of +1 (up) and another cell with a spin of −1 (down) at

random and attempt to swap the two spin states. Figure 5.1 shows the result

of such a sampling of the lattice gas states in the presence of a fiber network.

It is similar to the images in [LGP97]. The liquid condenses on the fibers and

preferentially fills the small pores at the crossing points.

To extend this type of analysis to elastic fibers, we perform alternate Monte

Carlo moves of the spin system and of the fiber network. A Monte Carlo move

of the fiber network consists of attempting to displace a randomly chosen

node of a fiber to a random point within a circle of radius d of its original

position. Afterwards, the total energy of the system, summing over (5.1) and

over the elastic energy according to (4.14)-(4.15), is calculated, and the step
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(a) Initial system (b) Monte-Carlo average

Figure 5.2: An example of a lattice-gas simulation of an elastic wet fiber net-

work. Figure 5.2(a) shows the initial condition of the network (red

lines) and the spin states (blue: spin up, white: spin down), while

5.2(b) shows the averaged network configuration and lattice gas

state (as a blue-white color gradient). The system parameters are

the same as in figure 5.1.

is accepted according to the Metropolis choice. A prefactor ζ that weighs

the elastic energy contribution is used to control the relative strength of the

capillary and elastic energies. This parameter plays the same role as β in the

Discrete Element Model.

In order to avoid contrived moves of the fibers that would separate a fiber

from its already accumulated liquid layer, and therefore be associated with

a large energy cost, the spins of the lattice gas system are displaced locally

to ensure that the fiber is covered by the same number of up-spins after the

move. Special care has to be taken to ensure that these combined moves,

moving the liquid and fibers simultaneously, obey the condition of detailed

balance.

Figure 5.2 shows the initial state and Monte Carlo sampling of an elastic

fiber network embedded in a lattice gas. Since Monte Carlo simulations are

thermal, and the network system is in thermal equilibrium with the liquid,

the fibers undergo large fluctuations. Nevertheless, it can be observed that

bundling of fibers and concentration of the liquid in areas of high fiber con-
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centration still takes place.

Simulations of this kind need a lot of CPU-time, since it takes on the order

of 108 accepted Monte Carlo steps until the system reaches thermal equilib-

rium, although the used system sizes with 800 × 800 lattice sites and 2000

fiber nodes are already very small. Also, this approach can only describe mi-

croscopic fibers that are in thermal equilibrium with the wetting liquid. The

class of materials that were described in this thesis, such as textile fibers, pa-

per, or fibrous composites, consist of macroscopic fibers that do not undergo

thermal fluctuations. The thermal systems accessible by these Monte Carlo

Simulations are rather applicable to crosslinked elastic gels in the presence of

a binary liquid. The fluctuations observed in Monte Carlo simulations render

morphological analysis of the kind presented in chapter 4 difficult.

However, the fact that a similar coarsening effect of the liquid structure

in areas of high fiber density could be observed in simulations that treat the

wetting liquid as a bulk object, rather than using discrete liquid bridge ele-

ments, corroborates the findings achieved using the discrete model presented

in section 4.2.1.

5.2.2 Lees-Edwards shearing

In order to drive the system from the outside, we started to apply an ex-

ternal shear via Lees-Edwards boundary conditions, as described already in

section 4.3. Since large external shears will drive a number of fibers to align-

ment, we expect to induce the formation of more liquid bridges that will then

form further bundles that cannot be destroyed completely by reversing the

shear. Therefore, the system should show hysteretic behavior during a cyclic

shearing process.

Figure 5.3 shows a simulation where the shear was increased to a relative

shear strain of εxy = 0.5 and then reduced back to zero. Plotted are the

average shear stress (in green) and the number of liquid bridges (in blue).

The shearing builds up a stress in the system that is not completely released.

The number of liquid bridges also irreversibly increases.
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Figure 5.3: Shear stress σxy and number of liquid bridges as a function of

applied shear strain εxy during a cyclic quasistatic shearing.
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Appendix A

Implementation Details

A.1 Data Structures

The following internal data structures are used to represent a (wet) fiber

network.

A.1.1 Supernodes

A Supernode primarily describes a physical position of a point on a given

fiber. The following attributes are stored:

• pos: Position (x, y) of the periodic image of the node within the main

simulation box.

• real_pos: Absolute position of the node.

• forcesum: Sum of all the forces acting on this supernode (always equals

the sum over the forces on its child nodes).

• velocity: Current velocity.

• derivs: Array of vectors storing higher time derivatives of the position

for the Gear Algorithm.

• nodes: Pointer to a list of node-Objects. All elements in this list are

nodes of fibers crosslinked at the supernode’s position.

• xbox/ybox: Integers storing the index of the periodic box copy the su-

pernode lies in (used for Lees-Edwards)
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A.1.2 Nodes

The class node is derived from the class supernode. It inherits the positions

and derivatives from its supernode. It also stores:

• leff: Effective length of fiber mass associated with the node

• leff_naught: Equilibrium value.

• cos_phi: Cosine of the outer angle between the two attached segments

• E: Stored bending Energy

• force: Accumulated Force acting on this node

• connections: Pair of pointers to the attached segment objects.

All functions moving the supernodes take care of updating the relevant

subnodes.

A.1.3 Segments

A segment represents a length of fiber between two nodes. It has the following

attributes:

• l: Length

• l_naught: Equilibrium length

• E: Stretching Energy

• nodes: Pair of pointers to the node objects at the ends

• cells: Set of pointers to the cells the segment currently occupies

• fiber: Pointer to the fiber object the segment belongs to.

A.1.4 Fibers

Fiber objects keep track of the individual fibers and provide access to the

constituting elements for external algorithms. They provide functions for

splitting, adding and deleting segments and traversing the segment list.
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A.1.5 Bridges

A Bridge object represents a sliding contact between two segments. It holds

the following data:

• pos: Position of the periodic image of the crossing

• segments: Pair of pointers to the crossing segments

• (wx1, wy1, wx2, wy2): “winding numbers” giving the number of simula-

tion box lengths in each direction by which the segments 1 and 2 have

to be translated to produce a crossing in the periodic simulation box.

A.1.6 Stretched Bridges

A stretched bridge (sBridge) represents a Bridge whose segments have lost

contact (either because one of them was at the end of the fiber and the other

has slid off, or because a wedge of two segments has slid off a third, crossing

segment). In this case, the liquid doesn’t immediately redistribute itself into

the liquid reservoir, but rather remains in the form of a liquid bridge between

the fibers until it is stretched beyond a certain maximum separation smax. In

addition to the information carried by a bridge object, sBridges thus have

to store the identities of the node they are attached to, the point P on the

connected fiber that corresponds to the smallest distance to the node, and the

separation s.

A.2 Tracking of Bridges

A.2.1 Keeping track of bridges in the driver routines

In order to always have a list of bridges at the current crossing points, keeping

track of the motions of these crossing points as well as creation and annihila-

tion events occurring when segments start or cease to cross each other, crossing

points of all segments have to be recalculated at each time step.

However, since the cessation of a contact bridge is always associated with the

creation of a stretched bridge, simple recalculation of all crossing points does

not suffice. The set of all existing bridges has to be tracked, their positions

have to be updated, and when their respecting segments cease to cross, a

stretched bridge has to be created connecting those segments. At the same
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time, pairs of hitherto non-crossing segments have to be rechecked to track

the formation of new contact bridges.

In order to do this effectively, a tree structure keeps track of all segment

pairs that are already accounted for by a contact bridge. The cross finding

algorithm checks this structure first to avoid recalculating those segment pairs.

Since these pairs are stored in a search tree structure, this lookup is associated

with a computing time cost proportional to the logarithm of the number of

segment pairs. This keeps the cost of this operation reasonable.

The driving algorithms of the molecular dynamics programs call an update

routine once for each existing bridge before advancing one time step. Also,

the global cross finding algorithm is called to account for new bridges. The

following subsection describes how the update routine tracks the fate of a

bridge.

A.2.2 Determining the fate of a single bridge

After each time step, when all the nodes have been moved, it is necessary

to recalculate the positions of the bridges. To this end, the function deter-

mining whether and where two segments cross is called on the two segments

associated with the bridge. If it returns a valid coordinate, this is set as the

bridge’s current position, then the crossing angle and associated parameters

are recalculated and updated as well.

When it is found that the two segments do not cross anymore, a range of

possibilities has to be checked in turn to determine the fate of this bridge.

These possibilities are checked in order, and any positive finding terminates

the search for the fate of the bridge. Therefore, it makes sense to search

for events in order of likelihood, with the exception of checks that rely on a

previous check having failed.

The possibilities written in italics are optional and are not usually compiled

into the code.

• Sliding to a neighboring segment: Both of the neighboring segments

(if they exist) of each of the two segments are checked for a crossing with

the respective other segments. If one is found, the pointers indicating

the segments the bridge is attached to are adjusted accordingly and the

bridge is associated with the new segment.

• Sliding to a different segment of the fibers: Since crossing points of fibers

that are almost parallel can move very quickly, it is possible that a
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contact bridge traverses several segments during a time step. Therefore,

segments further away from the original ones are checked for a new

crossing in turn.

• Sliding off an end-segment: When one of the segments is the ter-

minal segment of a fiber and no sliding to a different neighbor could

be detected, it is assumed that the bridge traversed the segment to the

end of the fiber and has to be transformed into a stretched bridge. The

associated segments remain unchanged.

• A kink sliding off a segment: It is checked whether one of the partic-

ipating segments has a neighbor that also used to cross the same partner

segment. If this is the case, the segments formed a kink that has moved

away from the one crossing segment. Accordingly, two stretched bridges

connecting the middle node to the crossing segment are created, and

both original bridges are deleted.

• A kink sliding off a kink: In this special case, the same check as above

has to be performed for neighboring segments. The resulting stretched

bridges connect the two nodes.

If none of these possibilities turn out to be true in a particular case, an

error is logged and the bridge is deleted. If these errors occur too often, more

of the optional checks have to be activated.
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Figure A.1: Flowchart depicting the algorithm that determines the fate of a

contact bridge
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A.3 Detection of Elementary Loops

To analyze the underlying elastic mesh of crosslinked fibers, the set of ele-

mentary loops in the graph of crosslinked nodes is determined. To this end,

a depth-first spanning tree of the graph is constructed with an edge coloring

method as follows:

1. At first, all supernodes are set to color “white”. Starting with the first

supernode, step 2 is performed recursively with a depth of 0 on all

supernodes that are still “white”. (This assumes that the graph is con-

nected).

2. The visited supernode is colored “gray” and assigned the current depth-

value. The nearest neighbor nodes are recursively visited with a depth-

value increased by 1 and their predecessors are set to the current supern-

ode. The segment connecting the current supernode and the neighbor

is colored “black”.

3. After all neighbors have been visited, the node is colored “black”.

At this point, the segments and nodes that make up the spanning tree are

colored black. The depth-value of each supernode gives the number of steps

along the tree from the first supernode, and the predecessor points to the

node above in the tree.

All segments colored “white” (i.e. are not part of the spanning tree) define

an elementary cycle: If one of these segments is added to the tree, it will

contain a cycle. These loops are identified as follows:

1. Start at the node of a white segment that has the lower depth value.

2. Go to the supernode’s predecessor and add the connecting segment to

the cycle until the white segment’s other supernode is reached

This algorithm follows the spanning tree upwards from the end to the be-

ginning of a “white” segment. The result is a set of sets of segments that

define loops in the crosslinked network graph.
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List of Symbols

Chapter 2

σlv surface tension of the liquid-vapor interface

V0 Container volume

(s), (l), (v) solid, liquid and vapor phase

F Free energy

p pressure

∆p Laplace pressure

H Mean curvature

psat Saturation vapor pressure

r fiber radius

θ Young’s contact angle

ϕ see fig. 2.4

ε ϕ+ θ − π/2

w distance of the contact lines (see fig. 2.4)

R radius of curvature of the liquid-vapor interface

Llv contour length of the liquid-vapor interface

Lls contour length of the liquid-solid interface

A cross-sectional area of the liquid filament

F interfacial free energy

V liquid volume

α fiber-fiber crossing angle

L Wetted length

Chapter 3

α fiber-fiber crossing angle

lf fiber length

L system size

Nf number of fibers in the system

Nc number of crosslinks

lc distance between crosslinks on a fiber
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q fiber length per unit area

G shear modulus of the network

pl probability of converting a fiber intersection into a fixed link

p probability of defining a bond as open

pc critical value of p for bond percolation

qc criticial value of q for connectivity percolation in a Mikado network

P probability of a bond to be part of a certain cluster

ξ correlation length

M(L) number of bonds in a box of size L that belong to a certain cluster

P∞ probability for a fiber to be part of the largest rigid cluster

ν correlation length exponent

β exponent with which P∞ grows in the vicinity of pc.

q1/2 value of q where P∞ = 1/2

q∗ rigidity percolation point

Chapter 4

L system size

Nf number of fibers in the system

Y Young’s modulus

s arc length

C curvature

S segment

N node

s segment vector

l length of a segment

l0 length of the undeformed segment

lf fiber length

ls = 0.1lf length of an undeformed segment without crosslinks

l̃ effective length associated with a node

r position vector

ϕ external angle / orientation jump at a node

Φ segment orientation angle

Φ̃ interpolated orientation angle (see eq. (4.27))

α̃ interpolated crossing angle (see eq. (4.28))

A =
dE(s)b

dα

B = dEb

ds

Fi force exerted on node Ni
t dimensionless distance of a bridge from the nearest node on a fiber
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β Capillary interaction strength parameter

η powerlaw exponent for capillary interaction

c finite segment length cutoff of the liquid bridge potential

α fiber-fiber crossing angle

σlv surface tension of the liquid-vapor interface

s stretch of a stretched bridge

s∗ stretched bridge rupture distance

Eb energy of a bridge

Esb energy of a stretched bridge

r fiber radius

a fiber aspect ratio ls/r

t tangent vector

κ bending rigidity

µ stretching rigidity

ε extensional strain

ε∗ threshold strain for softcore repulsion (= 0.95)

T torque

q fiber length per unit area

θ Young’s contact angle
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ordered media. Advances in Physics, 53(2):83–175, March 2004.

[AT89] M. Allen and D. Tildesley. Computer Simulation of Liquids.

Clarendon Press, Oxford, 1989.

[BH57] Simon Broadbent and John Hammersley. Percolation processes I.

Crystals and mazes. Proceedings of the Cambridge Philosophical

Society, 53:629–641, 1957.

[BHE+01] A. Bausch, U. Hellerer, M. Essler, M. Aepfelbacher, and E. Sack-

mann. Rapid stiffening of integrin receptor-actin linkages in en-

dothelial cells stimulated with thrombin: A magnetic bead mi-

crorheology study. Biophysical Journal, 80(6):2649–2657, June

2001.

[BLL+99] H.W. Beckham, J. Leisen, H.S. Lee, W.W. Carr, S.B. Warner,

Esra Coskuntuna, and Fred Kim. Fundamentals of Moisture

Transport in Textiles. National Textile Center, (November

1999):1–10, 1999.

[BR02] N.B. Beil and W.R. Roberts. Modeling and Computer Simulation

of Compressional Behavior of Fiber Assemblies. Textile Research

Journal, 72(4):341–351, 2002.

[Bra92] K. Brakke. The Surface Evolver. Experimental Mathematics,

1(2):141–165, 1992.

[BRMB04] J. Bico, B. Roman, L. Moulin, and A. Boudaoud. Adhesion: Elas-

tocapillary coalescence in wet hair. Nature, 432:690, 2004.



136 Bibliography

[BSMM01] Bronstein, Semendjajew, Musiol, and Muehlig. Taschenbuch der

Mathematik. Verlag Harri Deutsch, 5 edition, 2001.

[BW09] A. Bedarkar and X.F. Wu. Capillary torque in a liquid bridge

between two angled filaments. Journal of Applied Physics,

106(11):113527–113527, 2009.

[CDL+93] B.D. Coleman, E.H. Dill, M. Lembo, Z. LU, and I. Tobias. On the

Dynamics of Rods in the Theory of Kirchhoff and Clebsch. Archive

for Rational Mechanics and Analysis, 121(4):339–359, 1993.

[Cha10] Avik Chatterjee. Nonuniform fiber networks and fiber-based com-

posites: Pore size distributions and elastic moduli. Journal of

Applied Physics, 108(6):063513, 2010.

[Cha11] Avik Chatterjee. A simple model for characterizing non-uniform

fibre-based composites and networks. Journal of physics. Con-

densed matter : an Institute of Physics journal, 23(15):155104,

April 2011.

[CL89] J. Conder and T. Liew. Fine Mist Filtratoin by Wet Filters–II :

Efficiency of Fibrous Filters. Wire, 20(1), 1989.

[Cox52] H. Cox. The Elasticity and Strength of Paper and other Fibrous

Materials. British Journal of Applied Physics, 3(MAR):72–79,

1952.

[CST+08] Jeffrey Capadona, Kadhiravan Shanmuganathan, Dustin Tyler,

Stuart Rowan, and Christoph Weder. Stimuli-responsive polymer

nanocomposites inspired by the sea cucumber dermis. Science

(New York, N.Y.), 319(5868):1370–4, March 2008.

[CWC+04] Nirupama Chakrapani, Bingqing Wei, Alvaro Carrillo, Pulickel M.

Ajayan, and Ravi S. Kane. Capillarity-driven assembly of two-

dimensional cellular carbon nanotube foams. Proceedings of the

National Academy of Sciences of the United States of America,

101(12):4009–12, March 2004.

[DH76] H.J. Deuling and W. Helfrich. The curvature elasticity of fluid

membranes : A catalogue of vesicle shapes. Journal de Physique,

37(11):1335–1345, 1976.



Bibliography 137

[Dil92] Ellis Harold Dill. Kirchhoff’s theory of rods. Archive for History

of Exact Sciences, 44(1):1–23, 1992.

[DML07] M. Das, F. MacKintosh, and A. Levine. Effective medium the-

ory of semiflexible filamentous networks. Physical Review Letters,

99(3), July 2007.

[Dun83] J. Dunlop. On the Compression Characteristics of Fibre Masses.

Journal of the Textile Institute, 74(2):92–97, March 1983.

[FGH+05] Z. Fournier, D. Geromichalos, S. Herminghaus, M. Kohonen,

F. Mugele, M. Scheel, M. Schulz, B. Schulz, C. Schier, R. See-

mann, and A. Skudelny. Mechanical properties of wet granular

materials. Journal of Physics-Condensed Matter, 17(9, Sp. Iss.

SI):S477–S502, March 2005.

[FS84] S. Feng and P.N. Sen. Percolation on Elastic Networks - New

Exponents and Threshold. Physical Review Letters, 52(3):216–

219, 1984.

[FS02] Daan Frenkel and Berend Smit. Understanding Molecular Simu-

lation. Academic Press, 2 edition, 2002.

[GTV09] T. Gilet, D. Terwagne, and N. Vandewalle. Digital microfluidics

on a wire. Applied Physics Letters, 95(1):014106, July 2009.

[GVCB03] M. Gardel, M. Valentine, J. Crocker, and A. Bausch. Microrhe-

ology of entangled F-actin solutions. Physical review letters,

91:158302, 2003.

[Her05] Stephan Herminghaus. Dynamics of wet granular matter. Ad-

vances in Physics, 54(3):221–261, May 2005.

[HF06a] C. Heussinger and E. Frey. Floppy modes and nonaffine de-

formations in random fibernetworks. Physical Review Letters,

97(10):105501/1–4, 2006.

[HF06b] C Heussinger and E Frey. Stiff polymers, foams, and fiber net-

works. Physical Review Letters, 96(1):017802/1–4, January 2006.

[HF07] C. Heussinger and E. Frey. Force distributions and force chains

in random stiff fibernetworks. European Physical Journal E,

24(1):47–53, September 2007.



138 Bibliography

[HLM03] D. A. Head, A. J. Levine, and F. C. MacKintosh. Distinct regimes

of elastic response and deformation modes of cross-linked cy-

toskeletal and semiflexible polymer networks. Physical Review E,

68(6, Part 1):061907/1–15, December 2003.

[HMFF08] Felix Hoefling, Tobias Munk, Erwin Frey, and Thomas Franosch.

Entangled dynamics of a stiff polymer. Physical Review E, 77(6,

Part 1):060904/1–4, June 2008.

[HSF07] Claus Heussinger, Boris Schaefer, and Erwin Frey. Nonaffine rub-

ber elasticity for stiff polymer networks. Physical Review E, 76(3,

Part 1), September 2007.

[Isr91] Jacob Israelachvili. Intramolecular & Surface Forces. Academic

Press, 1991.

[JT95] D. Jacobs and M. Thorpe. Generic Rigidity Percolation: The Peb-

ble Game. Physical Review Letters, 75(22):4051–4054, November

1995.

[JT96] D. Jacobs and M. Thorpe. Generic rigidity percolation in two

dimensions. Physical Review E, 53(4):3682–3693, April 1996.

[Kir59] G. Kirchhoff. Ueber das Gleichgewicht und die Bewegung eines

unendlich duennen elastischen Stabes. Journal f̈ı£¡r die reine und

angewandte Mathematik, 56:37–67, 1859.

[KTD+03] M. Keller, R. Tharmann, M.A. Dichtl, A.R. Bausch, and E. Sack-

mann. Slow filament dynamics and viscoelasticity in entangled

andactive actin networks. Philosophical Transactions of the Royal

Society of London Series A-Mathematical Physical and Engineer-

ing Sciences, 361(1805):699–711, April 2003.

[Lam70] G. Laman. On graphs and rigidity of plane skeletal structures.

Journal of Engineering Mathematics, 4(4):331–340, October 1970.

[LC85] T. Liew and J. Conder. Fine mist filtration by wet filtersâĂŤI.
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Gerd Schröder-Turk. Robust Pore Size Analysis of Filamentous

Networks from Three-Dimensional Confocal Microscopy. Biophys-

ical Journal, 95(12):6072–6080, 2008.

[Mul04] Benjamin Mullins. Effect of fiber orientation on fiber wetting

processes. Journal of Colloid and Interface Science, 269(2):449–

458, January 2004.

[NM99] Z.M. Ning and J.R. Melrose. A numerical model for simulating

mechanical behavior of flexiblefibers. Journal of Chemical Physics,

111(23):10717–10726, December 1999.

[NMYO06] R. Nomura, W. Miyashita, K. Yoneyama, and Y. Okuda. Dy-

namics of capillary condensation in aerogels. Physical Review E,

73(3):1–4, March 2006.

[OH04] Alexander Otten and Stephan Herminghaus. How Plants Keep

Dry: A Physicist’s Point of View. Langmuir, 20(6):2405–2408,

March 2004.

[PBB+07] C. Py, R. Bastien, J. Bico, B. Roman, and A. Boudaoud. 3D ag-

gregation of wet fibers. Europhysics Letters, 77(4):44005, February

2007.

[PKMA09] B. Pokroy, S. Kang, L. Mahadevan, and J. Aizenberg. Self-

organization of a mesoscale bristle into ordered, hierarchical he-

lical assemblies. Science (New York, N.Y.), 323(5911):237–40,

January 2009.
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