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Zusammenfassung

Zufallsblockkopolymere sind Polymere, die aus zwei verschiedenen, zufällig anein-

andergefügten Typen von Blöcken bestehen. Diese Blöcke enthalten jeweils nur eine

Art Monomer und eine gegenseitige Abstoßung führt hierbei zur Domänenbildung.

Wenn diese Domänen unterschiedliche mechanische Eigenschaften besitzen – eine ist

härter, die andere weicher – lassen sich damit beispielsweise gummiartige Werkstoffe

herstellen, die ohne ein chemisches Vernetzungsmittel auskommen. Weiterhin ist die

von Zufallsblockkopolymeren ausgebildete Struktur interessant für Direktmethanol-

brennstoffzellen, wo diese als Protonenaustauschmembranen verwendet werden. Am

Kontakt zwischen Elektroden und Membran kann sich ein ausgedehntes Gebiet bilden,

das sich in seinen Eigenschaften von denen der unmittelbaren Oberfläche (Kontaktflä-

che) und des Volumen unterscheidet: die Interphase.

Wir verwenden für die Simulation der Polymerschmelzen zwei verschiedene vergrö-

berte Modelle, eines mit weichen Wechselwirkungen und ein Lennard-Jones Kugel-

Feder Modell. Im weichen Modell equilibriert die Schmelze schneller, während im

Lennard-Jones Modell die Dynamik und die mechanischen Eigenschaften realistischer

sind. Unser Ziel ist es, Parameter für diese Modelle zu finden, um die equilibrierten

Strukturen des weichen Modells als Ausgangspunkt für das Lennard-Jones Modell

verwenden zu können. Dies ermöglicht die systematische Untersuchung der mecha-

nischen und dynamischen Eigenschaften mittels Computersimulationen. Die gefunde-

nen Parameter führen in beiden Modellen zu Strukturen, die auf Längenskalen ober-

halb weniger Segmentgrößen übereinstimmen. Die Schmelze bildet eine mikroemul-

sionsartige Struktur, wir sehen aber auch eine lamellare Phase. Die Verwendung von

Konfigurationen des weichen Modells als Ausgangspunkt für das Lennard-Jones Mo-

dell führt zu einer Reduzierung der Equilibrierungszeit auf ein Zehntel oder weniger.

Wir analysieren die mechanischen Eigenschaften der gebildeten Domänen sowie der

Grenzflächen. Hier beobachten wir ein stark unterschiedliches Verhalten von Scher-

und Kompressionsmodul.
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In Kontakt mit einem selektiv-attraktiven Substrat bildet sich die Interphase auf bis

zu vier End-zu-End Abständen heraus. Sie zeigt sich in dem Konzentrationsprofil der

Monomerarten, der Fraktionierung von Kettensequenzen zwischen Interphase und Vo-

lumen, den Konformationen der Polymere und ihrer Dynamik. Der lokale Schermodul

in der Interphase entsteht aus einem komplexen Zusammenspiel von Konzentration

und Dichte.



Abstract

Random block copolymers are polymers that consist of two different, randomly as-

sembled types of blocks. Each of these blocks comprises one type of monomer and

a repulsion between these monomers results in domain formation. In case that these

domains have different mechanical properties – one softer, the other one stiffer – such

materials may form rubbers without requiring a chemical cross-linker. The structure

formed by random block copolymers is of interest for designing direct methanol fuel

cells, where they are used as proton exchange membranes. There, an extended region

forms at the contact area between membrane and electrodes, called the interphase,

where the properties differ from those of the immediate interface and the bulk.

We use two different coarse-grained models for the simulation of the polymer melts,

a Lennard-Jones bead-spring model and a model with soft interactions. The melt equi-

librates faster in the soft model, while the dynamics and the mechanical properties are

more accurately described by the Lennard-Jones model. We aim to find parameters for

both models, so that we can use equilibrated configurations of the soft model as starting

configurations of the Lennard-Jones model. This allows us to systematically investi-

gate mechanical and dynamic properties via computer simulations. In both models,

these matching parameters lead to structures which agree on length scales above a few

segment lengths. We observe the formation of microemulsion-like structures as well

as lamellar ones. When using equilibrated configurations of the soft model as start-

ing configurations of the Lennard-Jones model, the equilibration time is reduced by at

least a factor of ten. We analyze the mechanical properties of the domains and their

interfaces and analyze the differences of the shear and the bulk modulus between the

domains and the interface regions.

The contact with a selectively attractive substrate leads to the formation of an in-

terphase which extends up to four end-to-end distances into the bulk. The interphase

becomes evident in the concentration profile of monomer types, the fractionation of

chain sequences between the interphase and the bulk, and the polymers’ conforma-

tions and dynamics. The local shear modulus in the interphase arises from an intricate

interplay between concentration and density profile.

ix





Contents

1 Introduction 1

2 Models and Methods 7
2.1 Random Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Coarse-Grained Models . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 SCMF-Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 MD-Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Bulk Properties 29
3.1 Mapping in the Bulk . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Static Properties . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Conformations . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Dynamical Properties . . . . . . . . . . . . . . . . . . . . . . 38

3.1.4 Equilibration Times After Quench . . . . . . . . . . . . . . . 41

3.1.5 Equilibration After Mapping SCMF on MD . . . . . . . . . . 44

3.2 Local Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Voigt Notation and Moduli . . . . . . . . . . . . . . . . . . . 52

3.2.2 Bulk Modulus . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.3 Shear Modulus . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Global Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Glass Transition . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Shear and Bulk Modulus . . . . . . . . . . . . . . . . . . . . 55

xi



3.4 Local Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Shear and Bulk Modulus . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Correlation of Local Shear Modulus and Shear Stress . . . . . 64

4 Selectively Attractive Substrate 69
4.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Silberberg’s Argument . . . . . . . . . . . . . . . . . . . . . 71

4.1.2 Linear Response Theory . . . . . . . . . . . . . . . . . . . . 73

4.2 Properties of the Interface and Interphase . . . . . . . . . . . . . . . 76

4.2.1 Wall Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Composition Profile . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Segregation at the Substrate . . . . . . . . . . . . . . . . . . 83

4.2.4 Conformations at the Substrate . . . . . . . . . . . . . . . . . 85

4.2.5 Dynamics at the Substrate . . . . . . . . . . . . . . . . . . . 89

4.3 Mapping with a Selective Substrate . . . . . . . . . . . . . . . . . . . 93

4.4 Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Conclusion and Outlook 99



List of Figures

1.1 Types of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Direct Methanol Fuel Cell . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Random block copolymers: sequence . . . . . . . . . . . . . . . . . 8

2.2 Illustration of SCMF simulations . . . . . . . . . . . . . . . . . . . . 22

3.1 Snapshots of the bulk system . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Comparison of gA(r) with gB(r) . . . . . . . . . . . . . . . . . . . . 33

3.3 Comparison of gAB(r) and S(q) . . . . . . . . . . . . . . . . . . . . 34

3.4 Parameters of mapped structures . . . . . . . . . . . . . . . . . . . . 35

3.5 Long run SCMF χ0N = 240 . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Conformational asymmetry . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Dynamical properties, scaled . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Dynamical properties, unscaled . . . . . . . . . . . . . . . . . . . . . 41

3.9 Time evolution of gAB(r) and S(q) in SCMF . . . . . . . . . . . . . 43

3.10 Time evolution of gAB(r) and S(q) in MD . . . . . . . . . . . . . . . 44

3.11 Time evolution of gAB(r) and S(q) in MD with SCMF starting config-

uration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.12 Comparison of equilibration . . . . . . . . . . . . . . . . . . . . . . 47

3.13 MSD: kBT = 0.1 and kBT = 0.3 . . . . . . . . . . . . . . . . . . . . 55

3.14 Shear stress: kBT = 0.1 and kBT = 0.3 . . . . . . . . . . . . . . . . 59

3.15 Bulk modulus: kBT = 0.1 and kBT = 0.3 . . . . . . . . . . . . . . . 62

3.16 Shear modulus: kBT = 0.1 and kBT = 0.3 . . . . . . . . . . . . . . 62

3.17 Shear stress, regions: kBT = 0.3 and kBT = 0.1 . . . . . . . . . . . 63

3.18 Local shear modulus distribution . . . . . . . . . . . . . . . . . . . . 65

3.19 Stress strain locally . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Snapshots of the substrate system . . . . . . . . . . . . . . . . . . . . 70

xiii



4.2 Conformations at wall . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Potentials of the substrates . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Linear response theory: potential shape . . . . . . . . . . . . . . . . 79

4.5 Structure of melt at substrate: SCMF simulations . . . . . . . . . . . 81

4.6 Structure of melt at substrate: MD simulations . . . . . . . . . . . . . 82

4.7 Segregation at substrate . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Profile of Re: Silberberg’s argument . . . . . . . . . . . . . . . . . . 86

4.9 Conformations at substrate . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 MSD at substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.11 Time evolution, mapping at substrate: εAA = 1.1 . . . . . . . . . . . 94

4.12 Time evolution, mapping at substrate: εAA = 1.3 . . . . . . . . . . . 94

4.13 Time evolution, mapping at substrate: εAA = 1.6 . . . . . . . . . . . 95

4.14 Shear modulus profile: εAA = 1.1 . . . . . . . . . . . . . . . . . . . 97

4.15 Shear modulus profile: εAA = 1.3 . . . . . . . . . . . . . . . . . . . 98

4.16 Shear modulus profile: εAA = 1.6 . . . . . . . . . . . . . . . . . . . 98



List of Tables

3.1 Diffusion coefficients SCMF . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Diffusion coefficients MD . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Bulk modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Shear modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Density and binning: kBT = 0.3 and kBT = 0.1 . . . . . . . . . . . . 61

3.6 Bulk modulus: regions . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Local shear modulus: kBT = 0.3 and kBT = 0.1 . . . . . . . . . . . 64

3.8 Local shear modulus distribution . . . . . . . . . . . . . . . . . . . . 66

3.9 Correlation of local shear modulus . . . . . . . . . . . . . . . . . . . 66

4.1 Apparent diffusivity at a selective substrate . . . . . . . . . . . . . . 92

xv





1 Introduction

“Imagination,

not intelligence,

made us human.”

(Terry Pratchett)

When thinking of materials used by humanity throughout its history, those which

come to mind first are the ones which gave their name to ages. The stone age, in which

our forefathers created a variety of tools from stone. After this, the bronze age, when

human discovered how to extract copper from ore and form ever more intricate tools

from its alloy bronze. Finally, there came the iron age where the use of this stronger

metal was mastered.

While these three materials made the headlines, polymers have been, and continue

to be even more so, important materials for usage in our society. The polymers, which

exist in nature, for example fibers, wood and resins, have been in use due to their excel-

lent and varied mechanical properties over all this time. Our prowess in understanding

and creating polymeric materials has grown greatly during the twentieth century. The

ubiquity of polymers in our daily lives, all the plastics that surround us, our clothes,

and a plethora of composite materials, led the later Noble laureate P. J. Flory to suggest

that this development has paved the way to an era “posterity may refer to as the age of

polymers” [Flo73].

Polymers are macromolecules which are assembled by covalently bonding mono-

meric repeat units. The number of these units ranges from several hundred to thou-

sands or even millions, and the size of the polymer greatly influences its mechani-

cal and dynamical properties. One differentiates between homopolymers, which only

consist of one type of monomeric repeat units, and copolymers, which contain two

or more different monomeric repeat units. There are also a multitude of different

architectures. The most simple type of polymers is the linear polymer, where the

monomers form a linear chain. But there are also, to name a few, ring polymers,

1



1 Introduction

Figure 1.1: Types of polymers. These are schematic drawings of some types of poly-

mers. They are, starting on the top left and proceeding clockwise: linear

polymer, ring polymer, branched polymer, comb polymer, and dendritic

polymer.

where the chain is closed, branched polymers, dendritic polymers, and comb poly-

mers [RC03], see figure 1.1. Besides the overall structure of the polymer, the local

properties, like the stiffness, play an important role in its behaviour. Furthermore, the

sequence of monomers in a copolymer influences its structure formation greatly. Di-

block copolymers, which consist of two homopolymer chains, comprised of different

monomers, that have been joined together, have received a lot of attention due to their

accessibility in theory [Lei80, MS94], simulation [YDSN94, WSBM96, MGK99] and

experiment [HHG+94, TWA+07]. A multitude of different phases have been predicted

theoretically [MS94, TM05] and discovered experimentally [HHG+94, TWA+07], de-

pending on the length ratio of the two blocks and the interaction between the different

monomers.

This thesis is, however, about random block copolymers, a special sort of multi-

block copolymers where many different sequences are present in the observed system.

There are two interesting areas of applicability for multiblock copolymers. Multi-

block copolymers, where one component is mechanically stiffer and the other one is

softer, have many uses. These include, but are not limited to biodegradable, load-

bearing implants [GvHS+94], coatings for catheters, latex-free condoms and surgi-

2



Figure 1.2: Direct Methanol Fuel Cell. This schematic shows a direct methanol fuel

cell, where the proton exchange membrane is given by the red area between

anode and cathode. This membrane can be made of random block copoly-

mers, for example sulfonated poly(arylene ether sulfone) [LMO+09].

Reprinted by permission from Macmillan Publishers Ltd: Nature [Kle06],

copyright 2006.

cal gloves [Yod98]. The second area of applicability lies in direct methanol fuel

cells. These fuel cells operate at lower temperatures than reformed methanol fuel

cells, which need these high temperatures to extract hydrogen from methanol. The

methanol is in a solution of water when brought into contact with the anode. At

the anode, a proton is produced and is transported through the polymeric proton ex-

change membrane to the cathode, where it reacts with oxygen, see figure 1.2. The

problems of the currently often-used material, NAFION, [YE77], are its methanol

permeability, and thermal stability. Especially a lower methanol permeability is of

great interest in the research area of direct methanol fuel cells. The thermal prop-

erties of random block copolymers observed in experiments, their proton transport

capability, methanol permeability, and swelling behaviour when in contact with water

[HGK+04, RLM08, LMO+09, BHMW11] show great promise for this type of poly-

meric material to find an application in direct methanol fuel cell membranes. The

properties of a fuel cell membrane are greatly dependent on the chemistry of the poly-

mers and the charges inside it. Our simple computational model is unable to account

for these properties, nonetheless, we are able to investigate the structural and mechan-

ical properties that arise from the domain morphology.

The phase behaviour of random block copolymers has been investigated in mean-

field calculations [FML92, NdlCC93, SS02] and is still subject of research today in

3



1 Introduction

mean-field theory and numerical SCFT [vdHMZ11]. The particle-based simulation of

random block copolymers has not received as much attention, due to the large sys-

tem size and long relaxation times required. The number of different sequences grows

exponentially with the number of blocks, therefore, the system size needed for an

equal representation of every sequence becomes ever more difficult to access. There

have been particle-based simulations regarding the phase diagram of random block

copolymers [HM04], and more recently, an investigation of the structures random

block copolymer melts form [GKKC11]. Thus, we aim to shed some more light on the

properties of random block copolymer melts from a material’s standpoint.

When a polymer melt is in contact with a substrate, as in the case of fuel cell mem-

branes, where the polymer membrane is in contact with the electrodes, a new length

scale, longer than the immediate interfacial region has been observed. There, the prop-

erties of the melt differ from the interface and the bulk properties. This region, called

the interphase [BB95], was observed in homopolymer melts by a change in the glass

transition temperature occurring in this region. When being in the lamellar phase, the

lamellar ordering of a diblock copolymer melt expands far from a selectively attractive

substrate, which has been observed in experiments [MJR+93]. For less ordered sys-

tems, like diblock copolymer melts above the temperature of the bulk order-disorder

transition [MM96] or in our case random block copolymers, an interphase region of

several end-to-end radii is a possibility, in which elastic and dynamic properties differ

from the bulk properties. Determining the size of this interphase region in the less

well-ordered regime of random block copolymers and its elastic and dynamic proper-

ties are two of the main goals of this thesis.

In chapter 2, we start with a description of random block copolymers, and give

an overview of coarse-grained models in general and, specifically, the coarse-grained

models we employ. These are a soft, coarse-grained model and a Lennard-Jones bead-

spring model. We also introduce the simulation techniques used in conjunction with

these models: Single-Chain-in-Mean-Field simulations and Molecular Dynamics.

In chapter 3, we investigate the bulk properties of random block copolymer melts.

For this, we use two simulation methods, Single-Chain-in-Mean-Field simulations

in conjunction with a soft, coarse-grained model, and Molecular Dynamics with a

Lennard-Jones bead-spring model, to find parameters which exhibit the same meso-

scopic structure. We use equilibrated configurations from SCMF simulations as start-

ing configuration for MD, and find that this approach drastically decreases the time

4



we need to achieve equilibrated configurations in MD. In the second part of this chap-

ter, we measure elastic properties of the melt, looking especially at the influence of a

stronger incompatibility of the two monomers on the elastic properties.

The fourth chapter is devoted to the properties of random block copolymer melts

in contact with a selective substrate, searching for signs of the interphase. We start

with the conformations of the chains and the composition at the substrate and find that

the composition close to the substrate can be predicted from the bulk structure in the

case of complete wetting of one type of monomer. The process of mapping configura-

tions of the soft, coarse-grained model to the Lennard-Jones bead-spring model is less

straightforward than in the bulk, we do not find as large a decrease of simulation time

needed for the equilibration of the system. We end this chapter with an investigation

of the shear modulus at the substrate, where we see a sign of the interphase.

Chapter 5, contains a summary of the results and insights we have obtained, as well

as an outlook at the opportunities that lie ahead in the research area of random block

copolymer melts.
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2 Models and Methods

“If I have seen a little further

it is by standing on the

shoulders of Giants.”

(Isaac Newton)

In this chapter we discuss the models and methods used to simulate a random block

copolymer melt. We start with an introduction into the general properties of polymers,

then focusing on random block copolymers. A section concerning coarse-grained

models is followed by two sections, in which we discuss the simulation schemes we

use. These are the Single-Chain-in-Mean-Field simulations in conjunction with a soft,

coarse-grained model and molecular dynamics in conjunction with a Lennard-Jones

bead-spring model. Details of the simulations, especially the numerical methods, are

described in this chapter as well.

2.1 Random Block Copolymers

Random block copolymers are created by assembling homopolymeric blocks in a ran-

dom sequence. In our simulations, we use monodisperse polymers, which means that

the number of blocks, Q, and the block length, m, are held constant. In the description

of random copolymers, and random block copolymers, there are two quantities which

quantify the composition of the chains, f and λ [FML92]. fA = f is the fraction of

A-monomers used to build the chains, and fB = 1 − f denotes the fraction of B-

monomers. The sequence of the chains is described by the four probabilities pIJ with

I, J ∈ {A,B}. Each pIJ gives the probability that a block of type I is followed by a

block of type J . There are only two independent probabilities, since

pAB = 1− pAA
pBA = 1− pBB . (2.1)
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2 Models and Methods

(a) (b)

Figure 2.1: These figures show how the sequences of random block copolymers are

assembled. Each block can be thought of as a prepolymer, figure 2.1(a),

which are then assembled with a random sequence into random block

copolymers, figure 2.1(b).

The probabilities pAA and pBB are also constrained by the value of f through

f = pAAf + (1− pBB)(1− f) (2.2)

this leaves one degree of freedom which is defined as

λ = pAA + pBB − 1 . (2.3)

For the case of f = 1
2
, we can look at the extreme cases. When λ = 1, the probabilities

pAA and pBB have to be 1, which results in a homopolymer blend. Choosing λ = 0

results in pAA = pBB = 1
2
, thus we obtain a completely random mixture of copolymers.

In the third case, λ = −1, pAA = pBB = 0, which means that we have either one, for

odd Q, or two, for even Q, types of alternating block copolymers in the melt. For the

remainder of this thesis we will only consider melts with f = 1
2

and λ = 0.

When going about assembling the random block copolymers, two approaches can

be thought of. First, we calculate the probability of each sequence. The number of

sequences possible for random block copolymers consisting of Q blocks is [HM04]

nsequence(Q) = 2Q−1 + 2Q2−1 (2.4)

withQ2 =
⌈
Q
2

⌉
signifying the next integer which is larger or equal to Q

2
. The number of

symmetric sequences is 2Q2 and 1
2

(
2Q − 2Q2

)
is the number of asymmetric sequences.

The probability of assembling a symmetric sequence is 2−Q, while it is 2−(Q−1) for the

asymmetric sequences. Now we can choose a method of the following two. In the

8



2.1 Random Block Copolymers

first method, we choose the number of chains for our system, and, for each of these

chains, randomly select a sequence according to the probabilities mentioned above.

The second method always chooses multiples of 2Q for the number of chains and

the chains are not chosen randomly. We have chosen the second method, since it

omits fluctuations in the composition for the benefit of having the same composition

of sequences in every system.

The polydispersity index (PDI) is used to describe the mass distribution of a poly-

meric system. It is calculated by dividing the weight average molecular weight, Mw,

by the number average molecular weight, MN . If we take the mass of polymer i asMi,

and the number of polymers of type i as Ni, these quantities are calculated as follows:

MN =

∑
iNiMi∑
iNi

(2.5)

and

Mw =

∑
iNiM

2
i∑

iNiMi

(2.6)

where the sum runs over all possible polymers. For our simulated system, the PDI

is equal to one, for real systems it is greater or equal to one. A PDI close to one

signifies that the distribution of polymer weight has a small variance. There are dif-

ferent methods for achieving a small value of the PDI; for multiblock copolymers, the

reversible addition-fragmentation chain transfer (RAFT) polymerization is preferable

over assembling these copolymers via the coupling of prepolymers [EEV10]. A possi-

ble extension of this approach is the polydispersity of the sequence. Since we use only

chains of the same length, we can calculate the PDI for the number of A-blocks per

chain. This can be done analytically, for a chain of Q blocks,

MN =

∑Q
i=0

(
Q
i

)
i

2Q
(2.7)

and

Mw =

∑Q
i=0

(
Q
i

)
i2∑Q

i=1

(
Q
i

)
i

(2.8)

which yields an expression for the PDI as a function of Q

PDI(Q) =
2Q
∑Q

i=0

(
Q
i

)
i2[∑Q

i=0

(
Q
i

)
i
]2 =

∑Q
i=0

(
Q
i

)
i2
(

1
2

)Q[∑Q
i=0

(
Q
i

)
i
(

1
2

)Q]2 . (2.9)

9



2 Models and Methods

These sums are known from the theory of binomial distributions, so we get, as the

result for the polydispersity of the number of A-blocks of a random block copolymer

melt

PDI(Q) =
Q2

4
+ Q

4
Q2

4

= 1 +
1

Q
. (2.10)

The phase diagram as a function of f , λ, and the incompatibility between the two

types of monomers has been investigated by Fredrickson et al. [FML92] with a Lan-

dau free energy functional. For our set of parameters used to generate the random

block copolymer melt, Fredrickson et al. predicted, with growing incompatibility of

the two types of monomers, "regions of stability for the homogeneous phase, coexis-

tence of two liquid phases, and disordered microphases" which lack any long-range

order. Nesarikar et al. [NdlCC93] agreed with their results for f = 1
2
, but disagreed

with their predictions for different f . Houdayer and Müller used the bond-fluctuation

model [CK88, DB91] to determine the phase diagram of random copolymers [HM02].

They also showed that the structure of a random block copolymer melt after the phase

transition can be expected to be micro-emulsion-like [HM04]. Sung and Yethiraj

[SY05a, SY05b, SY05c] have studied random copolymers in the framework of in-

tegral equation theory. Their results show that no microphase separation will occur

for random copolymers, [SY05a, SY05b], but they find a microphase separation for

random block copolymers with a block length greater than 2 [SY05b]. Subbotin and

Semenov used the weak segregation approach in the search for the type of microphases

formed by a random block copolymers and found many different phases, hexagonal,

bcc, and lamellar, for values of f close but not equal to 1
2

[SS02]. At a value of f = 1
2
,

they predict that there is only a lamellar phase, besides the ubiquitous homogeneous

phases, present in the phase diagram. More recently, there have been studies by von

der Heydt et al. [vdHMZ10, vdHMZ11], using mean-field theory and numerical self-

consistent field theory to investigate the three-phase coexistence between lamellæ and

the two enriched phases of microscopic phase separation. Furthermore, a study us-

ing simulations of random block copolymers through dissipative particle dynamics by

Gavrilov et al. [GKKC11] probes the phase separation for very high incompatibilities

of the two types of monomers, finding a lamellar phase and gyroid structures.

While the properties of random block copolymers have been investigated through a

variety of methods, we want to look at them using particle-based simulations of melts

with chains longer and containing more monomers than earlier investigations. We are

10



2.2 Coarse-Grained Models

interested in the structures they form, their dynamical properties, and their mechanical

properties.

2.2 Coarse-Grained Models

For the simulation of polymers, many different models exist, each with distinctive

properties. Starting at the lowest length and time scales, nm and ns, there are quantum-

chemical [KLM+03] and atomistic simulations [Sun98] which simulate every atom of

the molecule. Due to the large number of atoms in polymers and the intricate interac-

tions between these atoms, the length and time resolution of these simulations is very

limited. For instance, the length scale of different phases when encountering a phase

transition in copolymers, or the time scale to determine properties like the diffusivity

are both not within reach of these simulations. To access these properties, one resorts

to coarse-grained models, where a monomer or even several monomers are represented

by one effective interaction site [Hel75, BBD+00, MP02]. It is possible in these mod-

els to access length scales of several µm and simulation times of µs. The loss of the

atomistic structure, of course, generates problems – loss of friction, compressibility

– which can be remedied by using sophisticated numerical methods. On the far end

of the spectrum lie continuum models [MKS05]. These models, using finite element

methods to simulate the system in contrast to the finite different methods employed in

the aforementioned models, take the description even further away from the molecular

structure. These models are often used in engineering to predict mechanical properties

of macroscopic objects.

The models we employ are in the range of coarse-grained models; coarse enough to

allow simulations on length and time scales where we are able to discover phase sepa-

ration, but fine enough to look at the dynamics and structures of single polymers. We

use two different models, one is faster while the other one keeps more detailed proper-

ties, and search for a way to incorporate the advantages of both in our investigations.

2.3 SCMF-Simulations

SCMF is the abbreviation of Single-Chain-in-Mean-Field simulation, a method that

comprises an ensemble of single chains interacting through a mean field self-consis-

tently generated by them [MS05, DM06]. It is based on self-consistent field theory

11



2 Models and Methods

(SCFT), where polymers are described as flexible threads. SCFT has been used for

many different systems: polymer melts [Hel75], concentrated solutions [NM02], and

a variety of of polymeric structures [BF99, ZQZ+10]. A prominent use of SCFT is

the calculation of the morphologies of diblock copolymer melts. Matsen and Schick

[MS94] used SCFT to calculate the phase diagram of diblock copolymer melts. There

had been phases found in experiment before, which were not in this phase diagram.

Careful re-examination of these phases found them to be unstable, making the experi-

mental phase diagram consistent with the theoretic one [Mat06]. Next to the lamellar

phase, where the polymers form layers, there are the gyroid phase [HHG+94], bcc

spheres, and hexagonal cylinders. This phase diagram was expanded, when another

phase, called O70, was predicted by Tyler and Morse in 2005 [TM05], even before be-

ing observed experimentally by Takenaka et al. two years later [TWA+07]. Although

finite compressibility is also possible in SCFT calculations [YDSN94], SCMF simula-

tions make it easier to describe systems with a finite incompressibility. They have been

used for brushes [WM09], multi-component polymer blends [DMdP+06], and diblock

copolymer thin films [EMS+07]. The SCMF scheme incorporates fluctuations, thus

the escape from local minima in the free energy is facilitated, and also enables the

formation of microemulsions which is not possible in SCFT. Up to a certain extent,

this also allows for the observation of dynamical properties of the system in SCMF

simulations, like diffusivity and autocorrelation functions.

2.3.1 Theoretical Background

We start with a monodisperse homopolymer melt, using the canonical ensemble, in

self-consistent field theory (SCFT). The calculations are based on [SF79, HN81, MS94,

SND96]. First, we write down the partition function of the homopolymer melt

Z ∼ 1

n!

∫ n∏
i=1

D[~ri(s)]P [∆~ri(s)] exp

(
−Hnb[{~ri(s)}]

kBT

)
(2.11)

where each of the n chains is discretized into N monomers. D[~ri(s)] stands for the

path integral over all possible conformation of polymer i, which is discretized over all

monomers ∫
D[~ri(s)] =

∫ N∏
s=1

d3ri(s) (2.12)
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2.3 SCMF-Simulations

so as to sample all positions in space and conformations which the polymers can attain.

∆~ri(s) = ~ri(s+ 1)− ~ri(s) (2.13)

is the distance between two adjacent monomers, s and s + 1, of chain i. In this way,

we can calculate the Boltzmann weight of each segment according to the bonded in-

teraction between two monomers

P [∆~ri(s)] ∼ exp

(
−Hb[∆~ri(s)]

kBT

)
. (2.14)

A harmonic potential is the usual choice for the bonded interaction. For the non-

bonded interaction in the case of a homopolymer melt, we only have to enforce a

homogeneous density in the melt, therefore we use an interaction which punishes de-

viations from the mean value.

Hnb[φ̂]

kBT
= ρc

∫
d3r

κN

2

(
φ̂(~r)− 1

)2

(2.15)

This is already done to accommodate the needs of the SCMF simulations. In SCFT,

most calculations assume an incompressible melt. If this was the case here, we would

use a Dirac δ function as the integrand instead of the Boltzmann weight in equation

(2.11). The dimensionless density φ̂(~r) is calculated from the positions of monomers

φ̂(~r) =
1

ρc

n∑
i=1

N∑
s=1

δ (~r − ~ri(s)) (2.16)

where ρc is the chain density, and κN sets the compressibility of the system. The

isothermal compressibility of the system is given by

κT =
1

κNkBTρc
, (2.17)

see [DM06].

When we go to a more complicated system, a monodisperse homopolymer blend, we

have to accommodate two different types of monomers in the non-bonded interaction

and modify the form of the partition function.

Z ∼ 1

nA!

1

nB!

∫ nA+nB∏
i=1

D[~ri(s)]P [∆~ri(s)] exp

(
−Hnb[φ̂A, φ̂B]

kBT

)
(2.18)
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Here, nA stands for the number of A-polymers and nB for the number of B-polymers.

We leave the bonded interaction unchanged, but the non-bonded interaction is aug-

mented by an additional term, proportional to χ0N , which characterizes the incompat-

ibility of the different types of monomers and χ0 is called the Flory-Huggins parameter

Hnb[φ̂A, φ̂B]

kBT
= ρc

∫
d3r

κ0N

2

(
φ̂A(~r) + φ̂B(~r)− 1

)2

− χ0N

4

(
φ̂A(~r)− φ̂B(~r)

)2

.

(2.19)

With this Hamiltonian, the system is completely described, but in order to calculate

properties of the system, we introduce the complex, fluctuating fields WA and WB,

through a Hubbard-Stratonovich transform, and the collective density functions ΦA

and ΦB through the identity

δ(φ̂A,B − ΦA,B) =

∫ i∞

−i∞
DWA,B exp

(∫
d3rWA,B(ΦA,B − φ̂A,B)

)
. (2.20)

This does nothing to reduce the complexity of the problem, but we will use these fields

later to numerically describe a polymer melt. The partition function, inserting a ‘one‘

in the form of an integral over the functions ΦA and ΦB to the partition function of the

homopolymer blend, equation (2.18), can then be written as

Z ∼ 1

nA!

1

nB!

∫
DΦADΦB

nA+nB∏
i=1

D[~ri(s)]P [∆~ri(s)] . . .

. . . δ(φ̂A − ΦA)δ(φ̂B − ΦB) exp

(
−Hnb[ΦA,ΦB]

kBT

)
(2.21)

Using the equality (2.20) transforms this equation into

Z ∼ 1

nA!

1

nB!

∫
DΦADWADΦBDWB

nA+nB∏
i=1

D[~ri(s)]P [∆~ri(s)] . . .

. . . exp

(
−Hnb[ΦA,ΦB]

kBT
+

∫
d3rWA(ΦA − φ̂A) +

∫
d3rWB(ΦB − φ̂B)

)
.

(2.22)
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Now we separate this integral into its different constituents according to their phys-

ical meaning.

Z ∼
∫
DΦADWADΦBDWB exp

(
−Hnb[ΦA,ΦB]

kBT
+

∫
d3rWAΦA +WBΦB

)
. . .

. . .
1

nA!

nA∏
i=1

D[~ri(s)]P [∆~ri(s)] exp

(
−
∫
d3rWAφ̂A

)
. . . (2.23)

. . .
1

nB!

nA+nB∏
i=nA+1

D[~ri(s)]P [∆~ri(s)] exp

(
−
∫
d3rWBφ̂B

)
The latter two integrals over the conformations of A and B homopolymers can be

interpreted as the partition function QnAA of nA and QnBB of nB non-interacting ho-

mopolymers in an external field WA or WB, respectively. At the same time

exp

(
−Hnb[ΦA,ΦB]

kBT
+

∫
d3r (WAΦA +WBΦB)

)
(2.24)

is the Boltzmann weight of a mixture of two fluids with the density functions ΦA and

ΦB in the external fields WA and WB. This re-ordering yields

Z ∼
∫
DΦADWADΦBDWB exp

(
−Hnb[ΦA,ΦB]

kBT
+

∫
d3r (WAΦA +WBΦB)

)
. . .

. . .
QA[WA]nA

nA!

QB[WB]nB

nB!
. (2.25)

We now rewrite the argument into one exponential function by using the free energy

functional

F [ΦA,ΦB,WA,WB]

kBT
=
Hnb[ΦA,ΦB]

kBT
−
∫
d3r (WAΦA +WBΦB) . . .

− nA ln

(
QA[WA]

V

)
− nB ln

(
QB[WB]

V

)
. . . (2.26)

+ nA

(
ln
nA
V
− 1
)

+ nB

(
ln
nB
V
− 1
)

and receive the final expression which now only consists of integrals over the density

function and the external fields

Z ∼
∫
DΦADWADΦBDWB exp

(
−F [ΦA,ΦB,WA,WB]

kBT

)
. (2.27)

This integral cannot be evaluated, therefore it is approximated by the value at its ex-

tremum by using the saddle-point approximation [HN81], this yields the equations
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which can be used to calculate the field acting on

1

kBT

δF [φA, φB, wA, wB]

δφA
=

1

kBT

δHnb[φA, φB]

δφA
− wA = 0 (2.28)

and the density of the A monomers

1

kBT

δF [φA, φB, wA, wB]

δwA
= − nA
QA

δQA
δwA

− φA = 0 . (2.29)

The equation for the saddle point values of wB and φB are obtained in the same way

by calculating the derivatives F with respect to φB and wB. These four equations have

to be solved self-consistently, using a numerical scheme.

When turning to random block copolymers, the contribution of the single chain

partition functions changes. ForQ blocks, there are 2Q−1+1 different block sequences.

Z ∼
2Q−1+1∏
k=1

1

nk!

∫ nk∏
i=1

D[~ri(s)]P [∆~ri(s)] exp

(
−Hnb[φ̂A, φ̂B]

kBT

)
(2.30)

where nk is the number of polymers of sequence type k and

F [ΦA,ΦB,WA,WB]

kBT
=
Hnb[ΦA,ΦB]

kBT
−
∫
d3r (WAΦA +WBΦB) . . .

· · · −
∑
k

nk

{
ln

(
Qk[WA,WB]

V

)
−
(

ln
nk
V
− 1
)}

(2.31)

now depends on the single chain partition function of each of the 2Q−1 + 1 different

polymers. We introduce an asymmetry in the non-bonded energy, namely that the two

monomers’ volumes differ

Hnb[φ̂A, φ̂B]

kBT
=ρc

∫
d3r

κN

2

(
(1− α)φ̂A(~r) + (1 + α)φ̂B(~r)− 1

)2

(2.32)

− χ0N

4

(
φ̂A(~r)− φ̂B(~r)

)2

. (2.33)

With this change, the energy is no longer symmetric under the exchange of A and B

monomers.

2.3.2 Simulation

The method we use, Single-Chain-in-Mean-Field simulations (SCMF), incorporates

fluctuations and is therefore more than a mean field solution of the equations in the
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last subsection. It is a particle-based simulation where the interaction is mediated

through effective fields. The simulation volume V is subdivided into cubes with an

edge length of ∆L. The volume fraction is calculated for each cube m according to

φ̂A,m({~ri(s)}) =
n∑
i=1

N∑
s=1

γi(s)

ρ0∆L3
Π(~cm, ~ri(s)) (2.34)

where ρ0 is the average monomer density

ρ0 =
nN

V
(2.35)

and γi(s) is a function to determine the type of monomer s of chain i

γi(s) =

{
1 if the monomer is of type A

0 if the monomer is of type B
. (2.36)

The function Π(~c, ~r) smears each monomer linearly over the eight adjacent cubes

Π(~c, ~r) =
∏

α∈{x,y,z}

π(|~rα − ~cα|) with π(d) =

{
1− |d|

∆L
for |d| ≤ ∆L

0 otherwise
.

(2.37)

The bonded interactions inside each chain are calculated by the following harmonic

spring potential
Hb({~ri(s)})

kBT
=

n∑
i=1

N−1∑
s=1

3

2b2
∆~ri(s)

2 . (2.38)

where b is the Kuhn length of each segment and the non-interacting chain is Gaussian

with an end-to-end distance of R2
eo = b2(N − 1).

We can now rewrite equation (2.33) into a form suitable for the grid we have defined

and the non-bonded energy of the system is therefore given by

Hnb[φ̂A, φ̂B]

kBT
=ρc∆L

3

Ncells∑
m=1

κN

2

(
(1− α)φ̂A,m + (1 + α)φ̂B,m − 1

)2

− χ0N

4

(
φ̂A,m − φ̂B,m

)2

. (2.39)

The fields wA are calculated as in equation (2.28),

ŵA,m =
1

ρc∆L3kBT

∂Hnb[φ̂A, φ̂B]

∂φ̂A,m

= κN(1− α)
(

(1− α)φ̂A,m + (1 + α)φ̂B,m − 1
)
− χ0N

2

(
φ̂A,m − φ̂B,m

)
(2.40)
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and wB

ŵB,m =
1

ρc∆L3kBT

∂Hnb[φ̂A, φ̂B]

∂φ̂B,m

= κN(1 + α)
(

(1− α)φ̂A,m + (1 + α)φ̂B,m − 1
)

+
χ0N

2

(
φ̂A,m − φ̂B,m

)
(2.41)

as a function of the local densities φ̂A and φ̂B. The fields can be used to calculate

the difference in the bonded energy when the local density is changed by a small local

density change, δφ̂A or δφ̂B, when a monomer moves. The changes in energy are given

by

Hnb[φ̂A + δφ̂A, φ̂B]−Hnb[φ̂A, φ̂B]

kBT
=ρc∆L

3

Ncells∑
m=1

ŵA,mδφ̂A,m +O
(
δφ̂2
)

(2.42)

and

Hnb[φ̂A, φ̂B + δφ̂B]−Hnb[φ̂A, φ̂B]

kBT
=ρc∆L

3

Ncells∑
m=1

ŵB,mδφ̂B,m +O
(
δφ̂2
)

(2.43)

respectively. With these formulæ for the total energy of the system,

Htotal = Hnb +Hb (2.44)

defined in equations (2.38) and (2.39), we can now proceed to the simulation of the

system in the canonical ensemble.

Monte Carlo

For the simulation of the system in the canonical ensemble, a smart Monte Carlo

method, also called force-bias Monte Carlo, by Rossky et al. [RDF78] is used. First,

we will describe the general Monte Carlo method, introduced by Metropolis et al.

[MRR+53], with a focus on the particle-based system we use. When choosing a test

state, we randomly move a particle, with the probability of a movement by ~R being

constant in a cube of volume (2L)3 around the starting position

W (~R) = Θ(L−Rx)Θ(L+Rx)Θ(L−Ry)Θ(L+Ry)Θ(L−Rz)Θ(L+Rz) . (2.45)

18



2.3 SCMF-Simulations

With this probability density, we can calculate the transition probability, for the attempt

to go from state i to state j by displacing the chosen particle by ∆~rij as

T ∗ij =

∫
d3RW (~R)δ(∆~rij − ~R)∫

d3∆r
∫
d3RW (~R)δ(∆~r − ~R)

. (2.46)

This formula might look overly complicated, however, it is also valid in case we have

boundary conditions of any kind to enforce which restrict the possible positions in

space of the particles. Since one wants to sample the system in the canonical ensemble,

one chooses the acceptance criterion in such a way that the Markovian sequence of

states approximates the canonical partition function. The Boltzmann weight of each

state is given by

πi = exp

(
− Ei
kBT

)
(2.47)

where Ei is the energy of the system in state i. The principle used for the construction

of the transition probability is called detailed balance. When a system is in equilibrium,

the transition from state i to state j has to be as likely as the transition from state j to

state i. Then the transition probability for going from state i to state j is given by

Tij =

{
T ∗ij for T ∗ijπi ≤ T ∗jiπj

T ∗ji
πj
πi

otherwise
. (2.48)

In the case of an isotropic system, the T ∗ij are all equal, and the Monte Carlo method

can be described in the following way:

• Choose a new position for a particle randomly inside a cube with edge length 2L

around it

• If the energy of the new state is lower than the initial state: accept it

• If the energy of the new state is higher, accept it with a probability exp
(
−Ej−Ei

kBT

)
The more general transition probability for the attempted move is written as

PMC,ij = min

(
1,
T ∗jiπj

T ∗ijπi

)
(2.49)

After a move has been attempted in average for each particle, the new state is used

for the calculation of canonical averages of observables. Of course, if we are working

with non-equilibrated systems, they have to be equilibrated before canonical averages

can be taken.
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Smart Monte Carlo

The acceptance rate of the Monte Carlo method has to be tuned with care. It can be

adjusted by changing the box size from which the new position is chosen, but a too

small box will hinder the simulation from covering a large amount of phase space for

the canonical average in a reasonable amount of time, whereas a large box size would

lead to many rejected attempts.

Rossky et al. [RDF78] introduce a method called the smart Monte Carlo method

by making the acceptance of Monte Carlo moves more likely, while, at the same time,

using a larger step size. The idea is based on Brownian dynamics [Erm75, AT87],

using the force to choose trial displacements which are more likely to be accepted.

When describing large particles in a viscous medium, the motion of these particle is

governed by the Langevin equation,

~̈r = −γ~̇r +
~F + ~F
m

(2.50)

where γ is the friction coefficient. The random force ~F emulates the collisions of

the particle with the solvent molecules. An explicit simulation of solvent molecules

would take up an extraordinary amount of computation time, while at the same time

contributing little to the actual behaviour of the system.

The displacement of a particle in a numerical simulation during a time step ∆t can

then be written, using the Smoluchowski equation [Erm75], as

∆~r =
D~F∆t

kBT
+ ~R (2.51)

where ~R is the displacement due to the random force andD is the diffusion coefficient.

Taking

A = D∆t (2.52)

the random displacement is chosen from a Gaussian distribution

W (~R) =
1

(4Aπ)
3
2

exp

(
−R

2

4A

)
. (2.53)

In the smart Monte Carlo method, a movement of a particle by ∆~rij is attempted

according to the probability

T ∗ij =

∫
d3RW (~R)δ

(
∆~rij − A~F

kBT
− ~R

)
∫
d3∆r

∫
d3RW (~R)δ

(
∆~r − A~F

kBT
− ~R

) (2.54)
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2.3 SCMF-Simulations

and accepted, with the probability

PSMC,ij = min

(
1,
T ∗jiπj

T ∗ijπi

)
. (2.55)

When we choose a small value for ∆t, the simulation follows Brownian dynamics. For

a larger value of ∆t this breaks down, but the simulation can still be used to calculate

equilibrium properties of the system. The advantage of this method is that we achieve

a higher acceptance rate PSMC,ij than for PMC,ij with the same step size.

Going back to our system, we now have to write down the force to apply this method.

It is simply

FA(rα,i(s)) = − 1

2∆L
(wA(rα,i(s) + ∆L)− wA(rα,i(s)−∆L))− ∂Hb

∂rα,i(s)
(2.56)

for α ∈ {x, y, z}. For the change in energy and the force acting on the particle in

the new position, there are two approaches. In one, we update the densities and use

the equations (2.38) and (2.39) to determine the energy, and calculate the new fields

according to the equation (2.40) or (2.41), depending on whether we attempt to move

anAmonomer or aB monomer. The results can then be used to calculate the transition

probability, equation (2.55), and then randomly choose whether to accept or reject the

move.

The method described in [DM06] attacks this problem from a slightly different an-

gle. The acceptance probability in equation (2.55) can also be written as

PSMC,ij = min

(
1,
T ∗ji
T ∗ij

exp

(
−Ej − Ei

kBT

))
. (2.57)

We assume that the change in the local densities φ̂A,m and φ̂B,m, and in the fields ŵA,m
and ŵB,m are not large when moving one particle. Therefore, instead of the exact

solution, we use the approximation of equations (2.42) and (2.43), which is accurate

to first order in δφ̂, and we update the fields and densities only after the move has been

accepted. The error in the second order of δφ̂ is then given by

δE = ρc(∆L)3

(
κN − χ0N

2

)
δφ̂2 =

(
κN − χ0N

2

)
ε (2.58)

with

δφ̂ =
1

Nρc(∆L)3
(2.59)
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2 Models and Methods

Figure 2.2: Illustration of SCMF simulations. The opaque polymer chains move in

the mean field symbolized by the blurred monomers of the rest of the

configuration. The chains are propagated according to the interactions

with the field before the field is updated. This figure was generated us-

ing VMD[HDS96].

and therefore

ε =
1

N2ρc(∆L)3
=

V

nN2(∆L)3
. (2.60)

Typical values of ε in our simulations are 1.8 · 10−3. This approach can be taken

one step further, by using a method called the quasi-instantaneous field approximation

[DM06]. In this case, the external fields are held constant, and are only updated after

having attempted a certain number of smart Monte Carlo moves for each particle. It is

paid for by a larger error, [DM06], but makes the parallelization more efficient. When

one updates the densities and fields after several steps, the monomers can be distributed

chainwise among processors, and communication between these processors is only

necessary after the designated update period.

2.4 MD-Simulations

The simulation style we call MD is a combination of the way to propagate the system,

Molecular Dynamics, where the equations of motion for each particle are integrated

numerically, and the model used. This method was first introduced for simple liquids,

for example argon [Rah64]. It took some time before the computers were powerful
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2.4 MD-Simulations

enough to access more complex macromolecules on relevant time and length scales

[vGB77]. Today, molecular dynamics is a well-established simulation method in the

field of polymer science [Bin95, FS02, Rap04].

2.4.1 Potential

The potential we use here is a 12-6 Lennard Jones potential as the non-bonded interac-

tion and a finite extensible nonlinear elastic (FENE) potential for the bonded interac-

tions as first proposed by Grest and Kremer in [GK86]. For the non-bonded interaction

between two beads of type I, J ∈ {A,B}, the basic 12-6 Lennard-Jones potential has

the form

UIJ,0(r) =

{
4εIJ

((
σ
r

)12 −
(
σ
r

)6
)

for r ≤ rc

0 for r > rc
(2.61)

where r is the distance between these beads, σ is the length scale of the potential and

rc is the cutoff distance. In the history of computer simulations, this potential was

first used to describe simple liquids like Argon [Rah64]. Its repulsive part, r−12, gives

rise to a hard-core-repulsion. Together with the attractive part, r−6, which is based

on a dipole-dipole interaction, the potential’s minimum is at rmin = 21/6σ with a

value of UIJ,0(rmin) = −εIJ . The discontinuity of the potential energy at the cutoff

rc is normally remediated by shifting the potential so that it is equal to zero at this

point. We go a step further by eliminating not only the discontinuity in the energy,

but also in the force at this point [SRB+07]. Without a cutoff, the interaction would

have to be calculated between every pair of beads, leading to an uncontrollably large

computational effort for even small systems. This increase in computational effort

would not be vindicated by gains in accuracy of the simulation. We use a polynomial

of first order in r to fix the value of the energy and the force at the cutoff

UIJ(r) =

 UIJ,0(r)− UIJ,0(rc) + (r − rc)∂UIJ,0(r)

∂r

∣∣∣
r=rc

for r ≤ rc

0 for r > rc
. (2.62)

The bonded interaction is governed by a FENE potential

UFENE(r) =

{
−1

2
kr2

0 ln
(

1− r2

r20

)
for r ≤ r0

∞ for r > r0

. (2.63)

The value of r0 is set to 1.5σ [GK86].
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2 Models and Methods

2.4.2 Simulation

For the simulation of the polymers in the Kremer-Grest model, we use the MD simula-

tion package LAMMPS [Pli95]. In MD simulations, the equations of motion are solved

numerically to propagate the system. The LAMMPS code uses spatial decomposition

methods for parallelization. In spatial decomposition, the simulation volume is di-

vided into subvolumes, whose contents are distributed to different processors. Each

subvolume is then simulated on its own processor. Of course, the processors have to

communicate the interactions on particles inside the cutoff distance of their boundary,

as well as when particles cross these boundaries. Depending on the ensemble one

wants to use, however, these equations differ. We will now describe the ensembles,

which will later be used to simulate the systems and the basic method used for the

solution of the equations of motion.

NVE

The first ensemble we mention, although it is the most seldom used one in this work,

is the microcanonical ensemble. In the microcanonical ensemble, the particle number,

the volume and the energy are held constant, therefore the equations of motion to be

solved for the velocity and the momentum are

~̇ri =
~pi
m

~̇pi = ~Fi . (2.64)

NVT

The second ensemble is the canonical one, with the Helmholtz free energy as the ther-

modynamic potential. In the canonical ensemble, the particle number, the volume and

the temperature are held constant. The temperature, as a collective quantity, cannot be

simply fixed to a certain value. To control the temperature, one needs to introduce a

thermostat [Hoo85].

~̇ri =
~pi
m

~̇pi = ~Fi + ζ~pi (2.65)

ζ̇ = ν2
T

(
T (t)

Text
− 1

)
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2.4 MD-Simulations

where T (t) = 2
XkB

∑ ~p2

2m
, with X being the number of the system’s degrees of free-

dom. Hoover showed in his paper that these equations of motion are equivalent to the

canonical ensemble, regardless of the values of the parameters. In the form we use,

from [MCH93], it uses an update frequency νT , to force the temperature back to its set

value Text. Hoover used a different form for the last equation

ζ̇ =
1

Q

(∑ ~p2

m
−XkBT

)
(2.66)

where Q can be thought of as the mass of the thermostat. However, selecting the value

of the mass, or the update frequency, influences the dynamics of the system. For a

low value of the update frequency, it takes a long time for the system to return back

to the desired temperature, which means that taking a canonical average takes a much

longer time. When νT → 0, the equations of motions become the microcanonical ones.

A very high frequency leads to strong temperature oscillations, which are especially

evident when changing the temperature of the system [FS02].

NPT

In the isobaric-isothermal ensemble, with the Gibbs free energy as the thermodynamic

potential, the particle number, pressure and temperature are constant. Thus, we need a

thermostat [Hoo85] and a barostat [Hoo86] to control the intensive quantities temper-

ature and pressure, respectively. The equations of motion by Hoover were improved

by Melchionna et al. [MCH93], and are as follows

~̇ri =
~pi
m

+ η(~ri − ~R0) (2.67)

~̇pi = ~Fi + (η + ζ)~pi

ζ̇ = ν2
T

(
T (t)

Text
− 1

)
(2.68)

η̇ =
ν2
P

NkBText
V (P (t)− Pext)

V̇ = dV η . (2.69)

The pressure P (t) is calculated by

P (t) =
NkBT

V
+

∑
i<j (~ri − ~rj) · ~Fij

dV
, (2.70)
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with the sum running over all pairs of particles, and ~Fij the force between two particles.

The differences to the equations of motion in the canonical ensemble, see equation

(2.65), govern the pressure P , and consequently, the simulation volume size V . The

pressure the system should have is expressed by Pext, and there is, as for the temper-

ature, an update frequency, νP . Since the volume is not constant anymore, its change

follows equation (2.69), where d is the number of dimensions of the simulated system.

When the volume changes, the positions of the particles have to be rescaled as well.

This is done in equation (2.67), with the center of mass ~R0. Again, as for the canon-

ical ensemble, the update frequencies νT and νP can be set to any non-zero value for

the system to sample the isobaric-isothermal ensemble. However, the same restriction

that were mentioned with regard to choosing the update frequency of the temperature

applies to the update frequency of the pressure as well, it should neither be too big nor

too small to yield a result in reasonable time.

NPtT

For a system which is on both sides constrained by an immovable substrate, we use

an anisotropic isobaric-isothermal ensemble. While the temperature is thermostated

regardless of the dimension, the pressure is only barostated tangentially. The equations

of motion in x-direction

ṙx,i =
px,i
m

ṗx,i = Fx,i + ζpx,i (2.71)

and in y/z-direction

ṙy/z,i =
py/z,i
m

+ η(ry/z,i −Ry/z,0)

ṗy/z,i = Fy/z,i + (η + ζ)py/z,i

η̇ =
ν2
p

NkBText
A(P (t)− Pext) (2.72)

Ȧ = dAη

are connected through the thermostat

ζ̇ = ν2
T

(
T (t)

Text
− 1

)
. (2.73)

This type of ensemble is also used for the equilibration of membranes, where one is

interested in a tensionless state. This is achieved by setting Pext to zero [HM10].
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2.4 MD-Simulations

NEMD

The aforementioned methods describe simulations done in equilibrium. When we

look at mechanical properties of the system by deforming it, we need to apply non-

equilibrium MD (NEMD). Tuckerman et al. [TMBK97] developed a method called

SLLOD, based on the DOLLS Hamiltonian for a fluid under shear, see Hoover et al.

[HEH+80]. The equations of motion are for a system at constant volume and constant

temperature, therefore a thermostat is used again, as in equation (2.65).

~̇ri =
~pi
m

+ ~ri~∇ · ~u

~̇pi = ~Fi − ~pi~∇ · ~u+ ζ~pi (2.74)

ζ̇ = ν2
T

(
T (t)

Text
− 1

)
.

The quantity ~u is a flow field introduced in the fluid.

Velocity Verlet

The velocity Verlet algorithm is used for the integration of the NV E equations of

motion (2.64). It derives its name from a method by Verlet [Ver67], used for the

microcanonical ensemble. The equations used today are better suited for numerical

computations. Swope et al. [SABW82] showed them to be equivalent to Verlet’s

integration scheme and Tuckerman et al. brought them into their currently used form

[TBM92]. It is equivalent to using a Adams-Moulton method for the integration of

the velocities and a Taylor expansion for the integration of the position. Both of these

numerical schemes are accurate to second order in ∆t.

The method calculates the velocities of the particles at an intermediate step. It does

not have to store these velocities for further use.

~̇ri

(
∆t

2

)
= ~̇ri(0) +

∆t

2m
~Fi(0)

~ri(∆t) = ~ri(0) + ∆t~̇ri

(
∆t

2

)
(2.75)

~̇ri(∆t) = ~̇ri

(
∆t

2

)
+

∆t

2m
~Fi(∆t)
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3 Bulk Properties

“There is always a

well-known solution to

every human problem –

neat, plausible, and wrong.”

(H. L. Mencken)

Studying a polymeric system in simulations, we start with the bulk properties in this

chapter.

In the first section, which has been accepted as a paper [SMH+11], we explore

static properties, like the radial pair correlation function, the static structure factor of

the composition, and the conformations of the different types of polymers. We show

that we can find parameters in the two different models, the soft, coarse-grained model

and the Lennard-Jones bead-spring model, for which the static properties coincide. In

this section we also elaborate on dynamical properties and compare the time needed to

equilibrate the system. We propose a mapping scheme to use SCMF configurations as

starting points for MD simulations.

The remainder of the chapter is devoted to the calculation of mechanical properties

with the help of MD simulations. It starts with a section describing the methods used

to calculate the shear and bulk moduli of the systems. These methods are applied in

the following two sections. First, to describe the bulk properties of the system, and

then to access the mechanical properties on a more local level.

3.1 Mapping in the Bulk

There have been many efforts to map the parameters of different models, either to

find a way to map bidirectionally between two models [SRB+07] or for using multi-

scale simulations [HK08, PdSK08, VB09], where one switches between different
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3 Bulk Properties

models during a single simulation run, or even between different domains of one

simulation volume. There are also intricate schemes to equilibrate polymeric melts

faster by carefully selecting the conformations of the polymers’ starting configuration

[AEG+03, HM08]. These methods, while being very efficient, are only needed for

longer chains than the ones we use. They are needed for highly entangled melts, since

entanglement is one of the properties the soft, coarse-grained model is unable to repro-

duce. For the chains we study, mapping N = 120 from the soft, coarse-grained model

to N = 60 in the Lennard-Jones bead-spring model, there are so few entanglements

per chain that a less intricate approach is sufficient.

3.1.1 Static Properties

The snapshots shown in figure 3.1 illustrate how the morphology of the melt changes

with growing incompatibility of the two different monomeric repeat units. To tune

the incompatibility of the monomers in the soft, coarse-grained model, we use χ0N

and the asymmetry parameter α. In the Lennard-Jones bead-spring model, we vary

only one parameter, εAA. Already for a small incompatibility in both models, see

panels 3.1(a) and 3.1(d), A and B segments are not randomly mixed but they show a

preference to form clusters, albeit with small differences in composition. The internal

interfaces of these clusters or concentration fluctuations of one type of segment are

rather broad.

For the next set of parameters, εAA = 1.3 and χ0N = 100, a microemulsion-like

structure has formed, cf. panels 3.1(b) and 3.1(e), where the domains are segregated

more strongly and the interfaces can now be clearly determined.

In the final set of parameters, depicted in panels 3.1(c) and 3.1(f), the microemulsion-

like structure has fully formed, and therefore the internal interfaces between the do-

mains are rather sharp. The morphology is characterized by a well-defined character-

istic length scale but no long-range order like in a lamellar phase is established.

Although these snapshots are generated by simulating different models, where there

is no analytical expression to identify matching parameters, they show a striking simi-

larity in their mesoscopic structure in a statistical sense. The first goal of our study is

to identify parameters of the two different models to produce this structural similarity.

We choseRmelt, the root of the mean squared end-to-end distance of a homopolymer

in a melt, as the length scale, which allows us to compare the results of these two

models. The values are Rmelt = 1.2Reo in the soft, coarse-grained model used in
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3.1 Mapping in the Bulk

(a) εAA = 1.1 (b) εAA = 1.3 (c) εAA = 1.6

(d) χ0N = 30 (e) χ0N = 100 (f) χ0N = 240

Figure 3.1: Snapshots for different values of the interaction parameter as indicated be-

low each figure. On the top, the snapshots are from MD simulations while

the bottom figures show snapshots obtained by SCMF simulations. These

figures were produced using VMD[HDS96].

the SCMF simulation and Rmelt = 10.0σ in the MD simulation, respectively. The

quantities, which we used to characterize the static structure, are the static structure

factor of the composition, S(q), as well as the radial pair correlation function of A and

B segments, gAB(r). The structure factor is defined as

S(q) =
1

nN

〈∣∣∣∣∣
n∑
i=1

N∑
s=1

(2γi(s)− 1) exp (i~q~ri(s))

∣∣∣∣∣
2〉

. (3.1)

with γi(s) as in equation (2.36). The choice of values for q is constrained by our

finite simulation box. Since it is cubic, we can only calculate S(q) for values of

q = 2π
L

√
k2
x + k2

y + k2
z where all ki are integers. The A-B pair correlation function
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is defined as

gAB(r) =

∫
d3r1

∫
d3r2 〈ρA(~r1)ρB(~r2)〉 δ(r − |~r1 − ~r2|)∫

d3r1

∫
d3r2 〈ρA(~r1)〉 〈ρB(~r2)〉 4πr2

V

(3.2)

where ρA,B(~r) are the local densities.

The time scale of the structural relaxation of the single-chain conformations and

the morphology is measured in units of the time τ that it takes a center of mass of

a homopolymer, χ0N = 0 or εAA = 1.0, in a homopolymer melt of the same chain

length and number of chains to diffuse a distance on the order of R2
melt; τ = R2

melt/D,

where D denotes the self-diffusion coefficient in a homopolymer melt and R2
melt is the

measured mean squared end-to-end distance of polymers in a homopolymer melt. In

the SCMF simulations we obtain τ = 2.75 · 105 SMC steps, where each segment on

average had the chance of one trial displacement in a SMC step. In the MD simulations

we obtain τ = 2.1 · 107 integration steps.

In order to match the equilibrium structure of the soft, coarse-grained model to the

Lennard-Jones bead-spring model, we have adjusted the parameters incompatibility,

χ0N , and the segmental asymmetry, α, keeping the inverse compressibility, κN = 600

fixed. Varying α does not influence the AB pair correlation function, but the AA and

BB pair correlation functions. By varying this parameter we change the local density

in A- and B-rich domains to better reflect the asymmetry of the Lennard-Jones bead-

spring model. This change of the density of A and B rich domains is depicted in

figure 3.2. It becomes very pronounced for higher values of the incompatibility in the

Lennard-Jones bead-spring model and this change is reproduced by the change of α.

When one changes the value of χ0N , it results in a shift of position and change of

magnitude of the peak in the pair correlation function. A greater value of χ0N shifts

this peak to larger length scales and increases its height.

In figure 3.3 the pair correlation functions are plotted for three sets of parameters,

which show similar structure on a mesoscopic length scale. The analogous data for the

structure factor are displayed in the insets.

Due to the harsh repulsion of the Lennard-Jones bead-spring model, as compared to

the soft interactions of the soft, coarse-grained model which allow segments to overlap,

the two structural properties of both models cannot be reconciled on short length scales

for the pair correlation function and large q-values for the structure factor, respectively.

This difference manifests itself as a peak of the structure factor for MD simulations

around (qRmelt)
2 = 5000, which corresponds to (qσ)2 = 50, and the packing structure
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Figure 3.2: Comparison of gAA(r) + gBB(r). The radial pair correlation function of

A (gA = (gAA + gAB)/2) and B (gB = (gBB + gAB)/2) monomers are

compared for three different sets of parameters in the two different models.

For r > 0.5 · Rmelt, the pair correlation function of A is greater than the

one ofB at higher incompatibility. This is an indication of a higher density

of A.rich domains than of B-rich domains in accordance with our model

parameters. As parameters in the SCMF simulations, κN was always set

to 600, α = 0.01 and χ0N = 30 in 3.2(a), α = 0.02 and χ0N = 100 in

3.2(b); α = 0.05 and χN = 240 in 3.2(c).

of the pair correlation function. At intermediate to large length scales, however, the

equilibrium structure agrees very well for each set of parameters. Let us discuss the

three different sets in turn. For the smallest incompatibilities, χ0N = 30 and εAA =

1.1, we observe a correlation hole in the AB pair correlation function, figure 3.3(a),
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Figure 3.3: Comparison of the radial A-B pair correlation function and the structure

factor for three different sets of parameters. As parameters in the SCMF

simulations, κN was always set to 600, α = 0.01 and χ0N = 30 in 3.3(a),

α = 0.02 and χ0N = 100 in 3.3(b); α = 0.05 and χ0N = 240 in 3.3(c).

but no peak appears, neither in the pair correlation function, nor in the structure factor,

which is displayed in the inset. As the snapshots have already suggested, this value

of interaction strength fails to impose a strong segregation onto the system. When we

increase the interaction strength to χ0N = 100 and εAA = 1.3, see figure 3.3(b), we

observe a formation of a structure on a scale of 1.2Rmelt in the pair correlation function

and a peak in the structure factor at (qRmelt)
2 ≈ 14, which corresponds to a wavelength

of 1.7Rmelt. The position of this peak of the structure factor corresponds to a point of

inflection in the pair correlation function. Increasing the interaction strength further to

χ0N = 240 and εAA = 1.6, cf. figure 3.3(c), the peak of the pair correlation function

shifts to 1.3Rmelt and the peak in the structure factor to (qRmelt)
2 ≈ 11. Again, the
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3.1 Mapping in the Bulk

position of this peak in the structure factor, with a wavelength of 1.9Rmelt, and the

point of inflection of the pair correlation function coincide.

Mean-field theory predicts that at intermediate segregation, random block copoly-

mers form a microphase separated morphology with a characteristic wavelength that

decreases with increasing incompatibility [FM91], as rd ∼ (χ − χcrit)−0.5. This pre-

diction differs from our simulation results. First, the morphology, which we observe

in the simulation, lacks long-range order. Second, the characteristic length scale in-

creases as we increase the incompatibility between unlike segments. We summarize

the results of this subsection in figure 3.4, plotting the pairs of (χ0N,α) and εAA, for

which we found good agreement of the static structure at mesoscopic length scales.

From now on, when referring to the parameters used in SCMF simulations, only men-

tioning the value of χ0N will be synonymous to the pair of values as given in figure

3.4.
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Figure 3.4: Parameters of mapped structures. In this figure we show the parameters we

found to give similar static structures in the two different models. In the

SCMF simulations, κN = 600, α = 0.01 for 30 ≤ χ0N ≤ 75, α = 0.02

for 100 ≤ χ0N ≤ 180 and α = 0.05 for χ0N = 240.

Lamellar Phase

For very long runs, t > 50τ , and the highest incompatibility, χ0N = 240, we have

observed a change in the structure factor. At this large time scale, which take time in

SCMF simulations but are hardly accessible in MD due to the even slower dynamics

at εAA = 1.6, see tables 3.2 and 3.1, a single peak develops in the structure factor, see
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3 Bulk Properties

figure 3.5(a). Since we want to compare the structure formation of MD with SCMF,

we have to stay in the regime which is accessible to both models. However, this is an

indication that the prediction of a lamellar phase, as in [SS02], holds. A snapshot of

this configuration is shown in in figure 3.5(b). This result is also in accordance with

the extensive study of random block copolymer morphologies in a high segregation

regime by Gavrilov et al. [GKKC11].
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Figure 3.5: Long run SCMF χ0N = 240. For a long simulation of the random block

copolymer melt, t ∼ 60τ , we discover a microphase separation into a

lamellar structure. The left figure shows the structure factor with a clearly

discernible peak at (qRmelt)
2 = 9.7 while the snapshot on the right shows

the lamellar structure.

3.1.2 Conformations

In the previous subsection we have demonstrated that one can identify parameters

for the morphology of the soft, coarse-grained model and the Lennard-Jones bead-

spring model at intermediate and long length scales to coincide. In this subsection we

investigate to what extent this structural agreement holds for conformational properties

of individual molecules as well.
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3.1 Mapping in the Bulk

Chain conformations have been analyzed by examining the mean squared radius of

gyration, R2
g,

R2
g =

N∑
i=1

n∑
s=1

〈
(~ri(s)− ~ri,com)2〉 (3.3)

where ~ri,com is the coordinate of the center of mass of polymer i, and the mean squared

end-to-end distance, R2
e . In this analysis we have sorted all chains based on the overall

chain composition. Since all chains consist of 6 blocks there are 7 different types of

chains with 0, 1, 2, 3, 4, 5 or 6 blocks of type B. Conformational properties were av-

eraged for each chain composition. Figure 3.6 shows the change of conformations as a

function of the interaction parameters, εAA and χ0N , for different chain composition.

As the interaction strength increases, the conformations of chains with different com-

position show dissimilarities. With the formation of a microemulsion-like structure,

homopolymer chains become more compact as is evident from the reduced values of

R2
g in figure 3.6(a), compared to the homopolymer melts with εAA = 1.0 and χ0N = 0.

The shrinking of the molecular extension is likely a consequence of the confinement

into corresponding A or B domains. Interestingly, after a well-segregated morphology

forms, εAA ≥ 1.3 and χ0N ≥ 100, the conformations of homopolymer chains are

almost independent of the strength of the interaction and the corresponding changes in

structure observed in figure 3.3.

Chains that contain both A and B blocks become more extended, compared to a ho-

mopolymer melt, as the interaction strength increases. This molecular stretching is the

strongest for chains with 50-50 composition. We also calculated the ratio of 〈R2
e〉/〈R2

g〉
to examine if the stretching or the shrinking of chains affects their Gaussianity. For

Gaussian chains this ratio is 6, [RC03]. Figure 3.6(b) shows that chains with 50-50

A/B composition deviate strongly from the Gaussian behaviour with their ratio being

larger than 6.0 as a sign for extended conformations. Chains with 33 or 67% of A seg-

ments have ratios very close to 6 indicating that, on average, their conformations are

similar to a Gaussian chain. Finally, homopolymer chains (A or B) and chains with

large composition asymmetry have 〈R2
e〉/〈R2

g〉 ratio smaller than 6.0 indicating a more

coiled conformations compared to Gaussian chains.

We emphasize that the same parameters that result in an agreement of the morphol-

ogy between the Lennard-Jones bead-spring model and the soft, coarse-grained model

additionally give rise to good agreement of the conformational properties.
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Figure 3.6: Conformational asymmetry. In these figures, the conformational proper-

ties of the two different models are examined as a function of interaction

strength and the number of B blocks of the chains. The mean squared ra-

dius of gyration, R2
g, normalized by the mean squared end-to-end distance

of the homopolymer melt, is shown in the left figure, 3.6(a), to investigate

the extension of the polymers. The figure to the right, 3.6(b) is used to ex-

amine the Gaussianity of the chains by plotting R2
g/R

2
e . Both figures show

these results for SCMF and MD simulations

3.1.3 Dynamical Properties

In this subsection, we compare the single-chain dynamics of the soft, coarse-grained

model and the Lennard-Jones bead-spring model. In figure 3.7, we present the mean

squared displacement (MSD), and the end-to-end vector autocorrelation

C(t) =

〈
~Re(t) · ~Re(0)

Re(t)Re(0)

〉
(3.4)

as a function of time. The time scale is adjusted by the diffusion coefficient, D, see ta-

bles 3.1 and 3.2. The diffusion coefficient is calculated from the MSD of the polymers’

centers of mass,

g3(t) =
N∑
i=1

〈
(~ri,com(t)− ~ri,com(0))2〉 (3.5)

[PBHK91], by D = lim
t→∞

g3(t)

6t
. The diffusion coefficient decreases by a factor of two

when we compare the disordered melt, χ0N = 0, 30, with the micro-emulsion like,
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3.1 Mapping in the Bulk

χ0N 0 30 100 240

D/Dmelt 1.0 0.88 0.49 0.46

Table 3.1: Diffusion coefficients SCMF. The diffusion coefficients of the polymer

chains in SCMF simulations are calculated for different parameters of the

soft, coarse-grained model

εAA 1.0 1.1 1.3 1.6

D/Dmelt 1.0 0.83 0.25 0.11

Table 3.2: Diffusion coefficients MD. The diffusion coefficients of the polymer chains

in MD simulations are calculated for different parameters of the Lennard-

Jones bead-spring model

χ0N = 100, 240, systems. We can deduce that the formed structure severely restricts

the mobility of the chains. When we compare the MSD for a single segment, the A

segments show a slightly smaller value for large length scales, see figures 3.7(a) and

3.7(b).

The end-to-end vector autocorrelation function in figure 3.7(d) shows that the time

needed for the end-to-end vector to decorrelate undergoes a larger change than the

diffusion coefficient. This time grows by a factor of 5 when we compare χ0N = 30

to χ0N = 100, and a factor of 10 when we compare χ0N = 30 to χ0N = 240. The

influence of the formation of domains and their boundaries becomes more pronounced

in this quantity, while also being noticeable in the MSD.

When looking at the same quantities, MSD and the end-to-end vector autocorrela-

tion function without adjusting the time scale by the diffusion coefficients, see figure

3.8, the dynamical quantities show a significantly different behaviour as a function of

the interaction strength. We examine the MSD of single segments in figures 3.8(a)

and 3.8(b) for A- and B-segments, respectively. For short times, an increase of the

interaction strength does not affect the motion of B-segments, their freedom becomes

constricted only at larger time scales, when the collective motion of the entire chains

dominates. For A-segments, a larger interaction strength also gives rise to a reduction

of mobility at short time scales in the MD simulations. The difference in the MSD

of single segments decreases with longer time scales. In figure 3.8(d), we investigate

the autocorrelation function of the polymers’ end-to-end vector. As in the case of the
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MSD, this dynamical quantity implies the same slower dynamics of the MD melt when

compared to the SCMF model.

ε
AA

=1.0

ε
AA

=1.1

ε
AA

=1.3

ε
AA

=1.6

0.0001 0.001 0.01 0.1 1

t [τD/D
melt

]

0.01

0.1

1

10

M
S

D
 [

R
m

e
lt

2
]

χ
o
N=0

χ
o
N=30

χ
o
N=100

χ
o
N=240

(a) MSD A-segments

0.0001 0.001 0.01 0.1 1

t [τD/D
melt

]

0.01

0.1

1

10

M
S

D
 [

R
m

e
lt

2
]

ε
AA

=1.0

ε
AA

=1.1

ε
AA

=1.3

ε
AA

=1.6

0.01

0.1

1

10

M
S

D
 [

R
m

e
lt

2
]

χ
o
N=0

χ
o
N=30

χ
o
N=100

χ
o
N=240

(b) MSD B-segments

0.0001 0.001 0.01 0.1 1

t [τD/D
melt

]

0.0001

0.001

0.01

0.1

1

10

M
S

D
 [

R
m

e
lt

2
] ε

AA
=1.0

ε
AA

=1.1

ε
AA

=1.3

ε
AA

=1.6

χ
o
N=0

χ
o
N=30

χ
o
N=100

χ
o
N=240

(c) MSD centers of mass

0.001 0.01 0.1 1

t [τD/D
melt

]

0.1

1

R
e
 a

u
to

c
o
rr

e
la

ti
o
n
 f
u
n
c
ti
o
n

ε
AA

=1.0

ε
AA

=1.1

ε
AA

=1.3

ε
AA

=1.6

χ
o
N=0

χ
o
N=30

χ
o
N=100

χ
o
N=240

(d) Re-acf

Figure 3.7: Dynamical properties, scaled. Here we show some dynamical properties of

our SCMF-systems, namely the MSD of 3.7(a) A-segments and 3.7(b) B-

segments. In 3.7(d) the end-to-end vector autocorrelation function demon-

strates the different time scales of these systems. The time is multiplied

with the diffusion coefficient of the random block copolymer melt and di-

vided by the diffusion coefficient of the homopolymer melt. The end-to-

end vector autocorrelation function decorrelates on the same time scale for

MD and SCMF for each set of parameters.
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Figure 3.8: Dynamical properties, unscaled. Here we show some dynamical proper-

ties of our SCMF-systems, namely the MSD of 3.8(a) A-segments and

3.8(b) B-segments. In 3.8(d) the end-to-end vector autocorrelation func-

tion demonstrates the different time scales of these systems. The time scale

is τ of the homopolymer systems. The different dynamics for short time

scales of the two models are clearly visible.

3.1.4 Equilibration Times After Quench

We investigate the structure formation in response to a quench from the disordered

phase in SCMF simulations in the NVT ensemble. For each set of parameters, we

take an equilibrated homopolymer melt as the starting configuration, then distribute

the polymer types, and let the system equilibrate, now with a different α and χ0N .

In figure 3.9, the time evolution of the pair correlation function is presented for

three different values of χ0N and, in the inset, the time evolution is presented for the
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3 Bulk Properties

structure factor. For the smallest interaction strength, χ0N = 30, see figure 3.9(a), the

pair correlation function and the structure factor show that the system equilibrates very

fast; within 0.18τ , its structure has reached an equilibrated state. When we look at the

structure formation at the intermediate interaction strength, χ0N = 100, we estimate

from the pair correlation function, figure 3.9(b), that it takes 0.36τ to equilibrate the

system. This equilibration time is compatible with the time evolution of the structure

factor in figure 3.9(b), but it is more difficult to extract a time scale from S(q). In

case of the highest interaction strength, χ0N = 240, it takes even longer to achieve an

equilibrated structure. From the evolution of the pair correlation function, see figure

3.9(c), we estimate that the system takes about 0.73τ to equilibrate. The failure to

reach equilibrium at 0.36τmelt can, for this large incompatibility, also be inferred from

the structure factor, cf. figure 3.9(c).

In the MD simulations, we adhered to the following simulation setup. We equili-

brated a melt at εAA = 1.0 and then quenched the system to the desired value of εAA.

After the quench, we continued the simulation of the system in the NPT ensemble.

We study the time evolution for the three different values of εAA = 1.1, 1.3 and 1.6,

which we investigated in the last subsection. In figure 3.10, the time evolution of the

pair correlation function is shown for these three different values of εAA and the in-

sets present the corresponding data for the structure factor. In qualitative agreement

with the SCMF simulations, the time to form the equilibrium morphology increases

with the incompatibility. At εAA = 1.1, both measures of structure formation show

an equilibration within 0.23τ see figure 3.10(a). For the intermediate incompatibility,

εAA = 1.3, the equilibration takes 0.7τ , as depicted in figure 3.10(b), and for the high-

est incompatibility, εAA = 1.6, there is a further increase in the equilibration time to

1.7τ .

Quantitatively, the SCMF model attains the equilibrium morphology faster than the

Lennard-Jones bead-spring model when measured in units of the relaxation time of a

single molecule in the disordered state. Moreover, the ratio of time scales

η =
τeq,MD/τmelt,MD

τeq,SCMF/τmelt,SCMF

(3.6)

increases from η = 1.28 at low incompatibilities to η = 2.33 at high incompatibility.

The relative slowing-down of the Lennard-Jones model is partially explained by the

increase of the density in the segregated A-rich clusters. Upon further increase of

εAA, the density inside the well-segregated A-domains increases and eventually leads
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3.1 Mapping in the Bulk

to a vitrification. Note that the glass transition occurs in similar Lennard-Jones bead-

spring models around 1/εAA ≈ 0.42 [BPBB99]. Since the slowing-down and the

glass transition are related to the local, fluid-like packing, which is not captured by

the soft, coarse-grained model, packing effects do not contribute to an increase of the

equilibration time in the SCMF simulations.
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Figure 3.9: Time evolution of the radial A-B pair correlation function and the structure

factor for three different sets of parameters in the SCMF model. κN was

always set to 600, α and χ0N are as follows: 3.9(a) α = 0.01, χ0N = 30;

3.9(b) α = 0.02, χ0N = 100; 3.9(c) α = 0.05, χ0N = 240.
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Figure 3.10: Time evolution of the radial A-B pair correlation function and the struc-

ture factor for three different sets of parameters in the MD simulation.

The parameter εAA was set as follows: 3.10(a) εAA = 1.1; 3.10(b) εAA1.3;

3.10(c) εAA = 1.6.

3.1.5 Equilibration After Mapping SCMF on MD

The previous subsections have shown that the Lennard-Jones bead-spring model and

the soft, coarse-grained model agree in their equilibrium structure at intermediate and

large length scales. Moreover, the SCMF simulations are computationally more effi-

cient because the interactions are softer and the time scale is not affected by the liquid-

like packing of segments. Therefore, it is tempting to use equilibrated configurations

of the SCMF simulations for generating starting configurations for the Lennard-Jones

bead-spring model. It is important to note that the configurations obtained by Single-

Chain-in-Mean-Field simulations capture intermolecular correlations on the scale of
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Figure 3.11: Time evolution of gAB(r) and S(q) in MD with SCMF starting config-

uration. The A-B pair correlation function and the structure factor are

used to estimate the time needed to equilibrate the MD simulation with

the equilibrated SCMF configuration used as an input for three different

sets of parameters. In the SCMF model, κN was always set to 600, α and

χ0N are as follows: 3.11(a) α = 0.01, χ0N = 30; 3.11(b) α = 0.02,

χ0N = 100; 3.11(c) α = 0.05, χ0N = 240.

the molecule’s extension, e.g., the correlation hole in the intermolecular pair correla-

tion function. Otherwise a full single-chain relaxation time, τ , would be required to

establish those correlations [HM08]. All this gives us reason to expect a fast equilibra-

tion of the MD simulations when we start them with SCMF configurations.

Given an equilibrated soft, coarse-grained configuration with chain lengthN = 120,

we construct a starting configuration of the Lennard-Jones model with N = 60 by rep-

resenting the center of mass of two neighboring soft beads by a Lennard-Jones particle.
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Since the soft beads may overlap, we cannot simply switch on the harsh repulsion of

the Lennard-Jones potential. First, we relax the system in the microcanonical ensem-

ble, and restrict the maximum movement per bead and integration step to 0.05σ. At

the same time, we rescale the velocities to put the temperature to kBT/εBB = 1 at

the end of this simulation part by rescaling the velocities to the desired value. After

100 time steps, we switch on the thermostat and equilibrate the system for t = 0.05τ .

Finally, we simulate the system in the NPT-ensemble at P = 0. The time evolution

of the pair correlation function and the structure factor, cf. figure 3.11, show that the

structural equilibration of the system is very fast. Only the local fluid-like packing

has to be established by the equilibration procedure. Both the morphology of A and

B domains and the conformations on intermediate and large length scales as well as

the correlation hole in the intermolecular pair correlation function are already captured

by the SCMF simulations. For all three incompatibilities the desired structure is safely

attained within three million integration steps which is equivalent to 0.14τ . The results

of the last two subsections can be summed up by figure 3.12. It depicts the position

of the first peak of the AB pair correlation function depending on the simulation time

for all three equilibration schemes: SCMF with a random starting configuration, MD

with a random starting configuration, and MD with SCMF starting configurations. The

first two methods take between one and three τ to equilibrate, while the third scheme

only needs a tenth of this equilibration time. To put this graph and the time scales into

perspective, on a single CPU of the type Intel XEON X5570 at 2.93 GHz, 1 τ takes

roughly 3600 hours of computing time when using LAMMPS with a system of this

size, but only 36 hours when we use the SCMF method. Using SCMF configurations

instead of random configurations for the equilibration in MD therefore reduces the

needed computational effort by a factor of ten.
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Figure 3.12: Comparison of equilibration. In this graph, the position of the first maxi-

mum of the A-B pair correlation function is used to gauge the time needed

to equilibrate the SCMF system, the MD simulation with a random start-

ing configuration and the MD simulation with the equilibrated SCMF

configuration used as starting configuration.
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3 Bulk Properties

3.2 Local Mechanical Properties

Besides the local concentration and structural properties like the end-to-end vector and

asymmetry of the polymer, we are also interested in the local mechanical properties

of the random block copolymer melt. Be it shear modulus, bulk modulus, or Young’s

modulus, these quantities are among the most interesting for the design of new mate-

rials and also accessible to experiments. Furthermore, the heterogeneity of our system

means that not only the mechanical properties of the whole simulation volume, but also

these quantities at a more local level grant us insights into the properties of the random

block copolymer melt. The measurement of local elastic properties has been done in

the case of metallic glasses by using atomic force acoustic microscopy [WBK+11].

The method we use is from a paper of Yoshimoto et al., [YJvW+04], which itself

is based on two papers by Lutsko, [Lut88] and [Lut89]. The formulation of local

elastic constants is only valid at non-zero temperature and vanishing external strain. In

[Lut89], there is also a derivation of the local elastic constants for zero temperature, but

this is neither possible nor desirable in molecular dynamics simulations. The following

approach can, in principle, also be applied to the soft, coarse-grained model, but the

softness of the interaction and the concomitant lack of a glass transition temperature

prevents solidification.

When a system is deformed linearly, each position ~r is transformed to ~r ′ via

~r ′ = J~r (3.7)

with the matrix J, the strain tensor is

εij =
1

2

(
JTilJlj − δij

)
. (3.8)

To access the local mechanical properties, Lutsko starts with the local stress tensor,

τ̂ (~r), which can be derived from the momentum flux balance

d

dt
pi (~r) = ∂j τ̂ij (~r) (3.9)

as in [Lut88]. In this section, Latin indices denote Cartesian components, that is i, j ∈
{1, 2, 3}, while Greek indices are used to enumerate different particles. We utilize the

Einstein convention for summation over equal Latin indices. The local momentum is

defined by

pi (~r) =
∑
α

pα,iδ (~r − ~qα) (3.10)
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3.2 Local Mechanical Properties

δ(x) is the Dirac delta function, ~qα is the position of particles α and ~pα is its mo-

mentum. The problem is easier to solve in momentum space, therefore we Fourier

transform the equations (3.9) and (3.10) to

d

dt
pi

(
~k
)

= kj · τ̂ij
(
~k
)

(3.11)

pi

(
~k
)

=
∑
α

pα,i exp (iklqα,l) . (3.12)

We can now evaluate the time derivative in equation 3.11

d

dt
pi

(
~k
)

=
∑
α

(ṗα,i exp (iklqα,l) + ikj q̇α,ipα,j exp (iklqα,l)) (3.13)

and transform the first part of the sum further by∑
α

ṗα,i exp (iklqα,l) = −
∑
α

∂U

∂qα,i
exp (iklqα,l) (3.14)

= −ikj
∑
α<β

(
∂U

∂qαβ
qαβ

)
qαβ,iqαβ,j
q2
αβ

exp (iklqα,l)− exp (iklqβ,l)

ikmqαβ,m

(3.15)

with ~qαβ being the vector connecting particles α and β, and U the potential. We use

these results to reshape equation (3.11) to

τ̂ij

(
~k
)

=
∑
α

pα,ipα,j
m

exp (iklqα,l)

−
∑
α<β

(
∂U

∂qαβ
qαβ

)
qαβ,iqαβ,j
q2
αβ

exp (iklqα,l)− exp (iklqβ,l)

ikmqαβ,m
. (3.16)

We transform the stress tensor back to real space and receive

τ̂ij(~r) =
∑
α

pα,ipα,j
m

δ (~r − ~qα) +
∑
α<β

(
∂U

∂qαβ

)
qαβ,iqαβ,j
qαβ

g(~qα, ~qβ, ~r) (3.17)

with

g (~qα, ~qβ, ~r) =
1

qαβ
δ
([
~r − ~Qαβ

]
⊥

)
θ
(

[~r − ~qα]||

)
θ
(
− [~r − ~qβ]||

)
(3.18)

enforcing that ~r has to be on the connecting line between ~qα and ~qβ . In this equation
~Qαβ is the center of mass of the two particles α and β, the index ⊥ means that only

the component of this vector perpendicular to ~qαβ are taken into account and || results
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3 Bulk Properties

in the component parallel to ~qαβ being used for this part of the calculation. θ(x) is the

Heaviside step function.

We can now use the local stress tensor in equation 3.17 to calculate the local elastic

modulus tensor. Calculating the canonical average before

τij(~r) = 〈τ̂ij(~r)〉ε=0 (3.19)

and after

τ ′ij(~r
′) = |det (J)|J−1

il 〈τ̂lm(~r ′)〉ε
(
JTmj
)−1

(3.20)

the infinitesimal deformation, ε gives access to the local elastic constants

Cijkl(~r) = lim
J→13

∂τij(~r
′)

∂εkl

∣∣∣∣
~r ′=J~r

(3.21)

through the first derivative of local stress with respect to strain at vanishing strain. With

(
JT
)
km
dJml = dεkl + dwkl (3.22)

where w is the rotational part and therefore vanishes, equation 3.21 therefore becomes

Cijkl(~r) =
1

2

(
∂τij(J~r)

∂Jkm

(
JTml
)−1

+
∂τij(J~r)

∂Jml

(
JTkm

)−1
)∣∣∣∣

J=13

. (3.23)

When evaluating equation 3.23, it yields

Cijkl(~r) = CB
ijkl(~r)− CS

ijkl(~r) + CK
ijkl(~r) . (3.24)

The local elastic modulus tensor consists of three parts. The first one, called the Born

term, is explicitly written as

CB
ijkl(~r) =

∑
α<β

(
∂2U

∂q2
αβ

− 1

qαβ

∂U

∂qαβ

)
qαβ,iqαβ,jqαβ,kqαβ,l

q2
αβ

g(~qα, ~qβ, ~r) . (3.25)

This contains the higher derivatives of the potential and is the only term of the three

which remains in the limit T → 0. The second term, CS
ijkl(~r), stems from the stress

fluctuations

CS
ijkl(~r) =

V

kBT
[〈τ̂ij(~r)τ̂kl〉 − 〈τ̂ij(~r)〉 〈τ̂kl〉] (3.26)

where τ̂kl is the global stress tensor. Simulations of poly(methyl methacrylate)

[YPLdP05] showed the stress fluctuation term to be of comparable magnitude to the
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3.2 Local Mechanical Properties

Born term for the shear modulus. Finally, the kinetic term, CK
ijkl(~r), accounts for the

contribution of the particles’ kinetic energy

CK
ijkl(~r) = 2 〈ρ(~r)〉 kBT (δikδjl + δilδjk) . (3.27)

In the already mentioned simulations of PMMA [YPLdP05], the kinetic term was

found to be two orders of magnitude smaller than the Born term.

Having successfully defined the local stress tensor, we adapt it to fulfill the require-

ments of a computer algorithm. Yoshimoto et al. [YJvW+04] subdivided the sim-

ulation volume into equally sized cubic boxes to get a formula for the local elastic

modulus tensor for each box. Since we also use non-cubic boxes later on, we reformu-

late the expressions into a more general form. The local stress tensor from equation

3.17 is averaged over a volume Vm which is part of the total simulation volume, thus

we obtain the locally averaged stress tensor τ̂m

τ̂mij =
1

Vm

∫
Vm

d3rτ̂ij(~r)

=
1

Vm

 ∑
α|~qα∈Vm

pα,ipα,j
m

+
∑
α<β

(
∂U

∂qαβ

)
qαβ,iqαβ,j
qαβ

lαβ
qαβ

 (3.28)

where lαβ is the length of the segment of the line connecting particle α and β which is

inside the volume Vm. If the connecting line does not pass through the volume, this is

zero, this ensures that only particles inside the volume or for which the connecting line

passes through Vm are used for this averaging. When using the whole simulation vol-

ume as Vm, we recover the total stress tensor of the system. The local elastic modulus

tensor of equation 3.24 is likewise averaged over the volume Vm to obtain Cm
ijkl

Cm
ijkl = CB,m

ijkl − C
S,m
ijkl + CK,m

ijkl . (3.29)

The Born term, averaged over Vm, is

CB,m
ijkl =

1

Vm

∫
Vm

d3rCB
ijkl (~r)

=
1

Vm

∑
α<β

(
∂2U

∂q2
αβ

− 1

qαβ

∂Uqαβ
∂qαβ

)
. . . (3.30)

. . . · qαβ,iqαβ,jqαβ,kqαβ,l
q2
αβ

lαβ
qαβ

,
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3 Bulk Properties

the stress fluctuation term becomes

CS,m
ijkl =

V

kBT

[〈
τ̂mij τ̂kl

〉
−
〈
τ̂mij
〉
〈τ̂kl〉

]
(3.31)

and the kinetic term

CK,m
ijkl = 2 〈ρm〉 kBT (δikδjl + δilδjk) , (3.32)

where ρm is the number density of particles in Vm. We have not specified the shape

and size of Vm further. This is done with a specific system in mind, since it should

neither contain too few particles, nor should it be so big as to just mirror the properties

of the whole system. We use boxes which contain on average 31.2 particles. The

size of a box depends on the value of εAA and the temperature, it is on the order of

0.27R3
melt. The bulk properties are calculated from this method by integrating over the

whole simulation box.

3.2.1 Voigt Notation and Moduli

To reduce the number of indices in the equations, we resort to the Voigt notation. In

this notation, a pair of indices is replaced by just one number. In this way, the second-

order stress and strain tensor become, due to their symmetry, 6-dimensional vectors

and the fourth-order tensor Cijkl turns into a second-order tensor. The replacement is

chosen as in [Ray88]:

11→ 1; 22→ 2; 33→ 3; 23→ 4; 13→ 5; 12→ 6 . (3.33)

The two moduli we are most interested in are the shear modulus and the bulk modulus.

Using the abbreviations

C11 =
1

3
(C11 + C22 + C33) (3.34)

and

C44 =
1

3
(C44 + C55 + C66) , (3.35)

we can write down the averaged shear modulus as

G = C44 (3.36)

and the bulk modulus[Ray88]

K = C11 −
4

3
C44 . (3.37)
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3.2 Local Mechanical Properties

3.2.2 Bulk Modulus

The bulk modulus, also called the incompressibility, can also be determined from ther-

modynamic variables, not only from the microscopic properties. The isothermal com-

pressibility is defined as

κT = − 1

V

(
∂V

∂P

)
T

(3.38)

and the bulk modulus K is its inverse

K =
1

κT
. (3.39)

The partition function of the NPT -ensemble is

ZNPT =

∫ ∞
0

dV exp (−βPV )ZNV T (3.40)

with the canonical partition function ZNV T and β = 1
kBT

. The expectation value of the

volume in the NPT -ensemble is calculated as usual from

〈V 〉 = − 1

β

∂ lnZNPT
∂P

. (3.41)

The second logarithmic derivative of the NPT partition function then yields

∂2 lnZNPT
∂P 2

=
1

ZNPT

∂2ZNPT
∂P 2

− 1

ZNPT

(
∂ZNPT
∂P

)2

= β2
〈
V 2
〉
− β2 〈V 〉2 . (3.42)

Thus, we can calculate the isothermal compressibility of the whole system from the

volume fluctuations.

κT = − 1

〈V 〉

(
∂ 〈V 〉
∂P

)
T

= β
〈V 2〉 − 〈V 〉2

〈V 〉
(3.43)

which are a part of the MD simulation scheme we employ.

This measurement of κT also explains the choice of κN = 600. From the simula-

tions in the first section of this chapter, we calculate K = 1
κT

= 10.2 for a homopoly-

mer melt at kBT = 1.0. This, together with the relation in equation (2.17), gives

us a value for κN of 750. These values are very high for SCMF simulations, which

normally employ lower values on the order of κN = 50 [DM06].
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3 Bulk Properties

3.2.3 Shear Modulus

The approach to compare the shear modulus obtained from the local elastic modulus

tensor with a different method is not as straightforward as for the bulk modulus. We

use the local stress tensor from equation (3.28) for this purpose. The shear modulus is

defined as the derivative of shear stress with respect to shear strain

C44 =
∂τ4

∂ε4
. (3.44)

We discussed this using equilibrium molecular dynamics, but we can also apply non-

equilibrium molecular dynamics [YJvW+04]. To this end, we shear the system and

measure the change in shear stress

∆τ4(ε4) = τ4(0)− τ4(ε4) . (3.45)

For small shear strain, where the stress depends linearly on the strain, we can simply

take the ansatz

∆τ4(ε4) = C44ε4 + c0 (3.46)

with a constant c0 and fit this equation to the data. This is an independent approach for

determining the shear modulus, which we also use to try to find a correlation between

the local mechanical stress tensor and the response to external strain.

3.3 Global Moduli

3.3.1 Glass Transition

The glass transition temperature for a Lennard-Jones bead-spring model was found to

be between kBT = 0.425 for P = 0.5 and kBT = 0.49 for P = 2.0 [BPBB99].

We quench our system to access the local mechanical properties in the following sec-

tion. Thus, we look for the indication of a glass transition. In many different systems,

granular matter [NCH97], colloids [ZSVB+06], Lennard-Jones liquids [DGP+99], and

polymers[Roe94, BPBBD98], the emergence of a plateau in the mean-squared dis-

placement of polymers has been identified with being close to the glass transition

temperature. If the plateau is finite,the system is above the glass transition. In our

simulations, we look as an example at the homopolymer melt.

In figure 3.13, the mean-squared displacement is shown for three different tempera-

tures. For the temperatures we investigate later on, kBT = 0.3 and kBT = 0.1, there is
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3.3 Global Moduli

a clearly discernible plateau over several orders of magnitude in time. For kBT = 0.3,

the plateau ends after ∼ 0.02τ . If we want to measure the elastic properties of the

system, its stress must decorrelate on a time scale, which is much larger than the time

it takes us to measure these properties. Thus, the extremely slowed-down dynamics of

the melt at these temperatures is sufficient for our purposes.
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Figure 3.13: The mean-squared displacement for kBT = 0.1 and kBT = 0.3 in the ho-

mopolymer melt with kBT = 1.0 as the reference point. The dynamics of

the melt are slowed down so that we are able to measure local mechanical

properties.

3.3.2 Shear and Bulk Modulus

We start with the examination of the melt’s bulk properties. As noted in subsection

3.2.1, we investigate the bulk and the shear modulus of the system. In order to measure

the quantities, we take equilibrated configurations from section 3.1. The system is

then quenched over a simulation run of 106 simulation steps below the glass transition

temperature, either to a value of kBT = 0.1 or kBT = 0.3. The system continues

to run in the NPT ensemble at vanishing pressure for 4 · 106 steps. We take the NPT

ensemble at this point so that the system can contract and avoid fissures or holes in

the structure. After this, we let it run for 106 steps and write out the volume every 500

time steps – 2.4 · 10−5τ – to calculate the bulk modulus, see table 3.3. We continue

with the equilibration run after switching to the canonical ensemble for 6 · 106 time

steps. Then we continue with taking data for the calculation of the elastic modulus

tensor. The configurations are taken every 200 time steps – 9.5 · 10−6τ –, over 6 · 106

time steps, thus we average over 3 · 104 configurations in total. For computational
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reasons, we subdivide the data run into 24 parts. In each of these parts, we calculate

the elastic modulus tensor according to equations (3.29), (3.30), (3.31), (3.32). The

end result represents an average over these configurations. The bulk modulus in table

3.3 is calculated as described in equation (3.37) and the shear modulus in table 3.4

is calculated as in equation (3.36). We have to note that the ensemble average of

the bulk modulus taken in the isobaric-isothermal ensemble and the one taken in the

canonical ensemble can differ since we are not working in the thermodynamic limit.

To determine the shear modulus via NEMD, see subsection 3.2.3, we apply a constant

shear deformation in the y − z plane. The shear strain is increased by ∆ε4 = 5 · 10−4

every 104 time steps. Again, the stress is calculated as an average over this interval

with a step size of 200 time steps. The linear regime holds at least up to a shear strain

of ε4 = 10−2, and we use these points to calculate the shear modulus of the system as

described in subsection 3.2.3.

The values of the bulk modulus calculated in table 3.3 in the two different ensembles

differ by at most seven percent, for the parameters kBT = 0.1 and εAA = 1.0. If we

were only interested in the bulk modulus of the whole system, the method using the

volume fluctuations would be the computationally preferable approach, as we can see

from the description of the method used.

When looking at the results for the shear modulus, the results of the two methods

agree even better, see table 3.4. Again, the computational effort for the more spe-

cialized approach, this time the NEMD simulation, is at least an order of magnitude

smaller than for the more general approach of calculating the whole elastic modulus

tensor. When differentiating between the contributions of the bonded and the non-

bonded interactions to the Born term of the shear modulus, see equation (3.30), for a

homopolymer melt, the results show that the non-bonded interactions are far more im-

portant. At kBT = 0.1, the Born term has a value of 68.4, with the bonded interaction

contributing 2.9 and the non-bonded ones 65.5 to the final result. At kBT = 0.3, we

find that the bonded interactions’ contribution to the Born term is not as dependent on

the temperature. The total value of 64.9 consists of 2.9 from the bonded interactions

and 62.0 from the non-bonded interactions.

Now we put these values in relation with experimental measurements of the bulk

modulus. For glassy Polystyrene, Meng et al. [MBO+09] measures values of the bulk

modulus of 3 GPa and higher in a glassy system of T = 333K and of 1 GPa and

higher in a melt state. Their Polystyrene melt has the parameters Mn = 92.8 kg/mol
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and MW = 92.8 kg/mol and they measure a glass transition temperature of Tg =

368K at room pressure. With Tg = 0.4εAA in our simulations, and a Kuhn length,

equal to our coarse-grained monomer size of σ = 5nm, [DS04], we can transform our

results into MKSA units. With the Boltzmann constant kB = 1.38 · 10−23, one of our

Lennard-Jones units for the moduli is

kBTg
0.4

1

σ3
= 0.1 MPa . (3.47)

With the calculated bulk modulus, this would result in a value of 5 to 6 MPa, three or-

ders of magnitude smaller than the experimental values. We see that even the Lennard-

Jones bead-spring model is far too soft when calculating the bulk modulus. The glass

having a bulk modulus which is higher by a factor of 6, compared to the molten state, is

commensurate with the experimental observations since we measure at a temperature

which is smaller relative to the glass transition temperature.

Looking at different results for the shear modulus of polystyrene [YW71], gives

us a value of the shear modulus at T = 200K of 1.5 GPa. This experiment was

performed at vanishing pressure, compared to the ones applied in [MBO+09], we can

still assume the shear modulus to be lower by a factor of two. For our simulations,

however, we typically find the shear modulus to be lower by a factor of four. Thus,

in our simulations, we miss a factor of two between shear and bulk modulus, when

compared to experimental values.

As a summary of this calculation, we can state that the Lennard-Jones bead-spring

model is too soft when we consider it on the length scale we assume for the purpose

of coarse-graining.
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kBT = 0.3 kBT = 0.1

εAA NPT NVT NPT NVT

1.0 47.9± 3.2 50.4± 3.5 65.6± 2.2 65.3± 3.6

1.1 50.0± 4.7 52.2± 2.6 67.0± 1.3 67.2± 3.8

1.3 57.8± 1.8 58.3± 6.4 72.5± 1.5 72.9± 3.2

1.6 62.2± 0.5 64.2± 3.4 79.1± 1.3 78.4± 3.4

Table 3.3: Bulk modulus as calculated from the local elastic modulus tensor and the

volume fluctuations for kBT = 0.1 and kBT = 0.3 at different interaction

strengths εAA. Although different ensembles are used for the calculation of

these moduli, they differ only by a few percentage points.

kBT = 0.3 kBT = 0.1

εAA NEMD Tensor NEMD Tensor

1.0 11.9± 0.7 11.5± 1.1 14.6± 0.9 14.3± 1.4

1.1 12.3± 0.7 12.6± 0.8 15.2± 0.3 15.7± 1.0

1.3 14.3± 0.7 15.0± 2.0 16.5± 1.2 17.2± 1.3

1.6 16.0± 0.5 15.9± 1.0 18.4± 0.5 18.9± 0.9

Table 3.4: Shear modulus as calculated from the local elastic modulus tensor and

NEMD simulations at a temperature of kBT = 0.3 and kBT = 0.1 at dif-

ferent interaction strength εAA. The values calculated by these two different

methods agree very well.
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Figure 3.14: The shear stress for two different temperatures, kBT = 0.1 and kBT =

0.3. The dashed lines represent the expected result for the shear stress in

the linear regime from the calculations of the elastic modulus tensor. The

shear stress measured while actually shearing the system is given by the

solid line. As we can see from these figures, assuming linear behaviour

of the shear stress up to a shear strain of ε4 = 0.01 is reasonable.

3.4 Local Moduli

In this section we take the local structure into account to determine its influence on the

local moduli. First we look at the different mechanical properties depending on the

local concentration of the two monomer species. Later on, we investigate a correlation

between the local shear modulus and the shear stress.

3.4.1 Shear and Bulk Modulus

As the structure of the random block copolymer melt becomes microemulsion-like for

higher incompatibilities of the monomers, domains of high concentration of A and B

monomers form. We are interested in the difference of the mechanical properties of

these domains and the interfaces which separate them. To this end, we subdivide our

simulation volume of ≈ (6.25Rmelt)
3 into 203 boxes and assign each box to one of

these three groups. For a box to be A-rich, it has to contain at least ninety percent

A-monomers, a B-rich box contains at least ninety percent B-monomers. The rest of

these boxes define the interfacial regions. The procedure follows the same course as in
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section 3.3 for the elastic modulus tensor and for the NEMD simulations. This time,

however, we average not over the whole simulation volume, but only over the three

types of boxes we have just defined. One box contains on average 31.2 monomers,

which is 0.52 chains. We include εAA = 1.1 in our analysis, a disordered system.

Therefore, the difference between the regions is smaller than for εAA = 1.3 and εAA =

1.6. A more detailed analysis of the number of monomers per box and the number of

boxes assigned to each of the three categories is given in table 3.5. For εAA = 1.1,

only ten percent of the boxes are found to be A- or B-rich. For εAA = 1.3, this value

approaches fifty percent, and the even stronger segregation for εAA = 1.6 becomes

clearly visible with more than sixty percent of boxes being considered either A- or

B-rich.

The bulk modulus, see table 3.6 and figure 3.15, inA-rich regions rises with growing

εAA, as we expect it to. The bulk modulus in the interfacial region and the B-rich re-

gion exhibits a similar behaviour. At the same time, the quenched systems, kBT = 0.3

and kBT = 0.1, do not become denser with rising εAA. The volume of the simulation

box in the NPT ensemble is (6.25Rmelt)
3 for εAA = 1.0 and kBT = 0.3, the same as

for εAA = 1.6 at this temperature.

The shear modulus, see table 3.7 and figure 3.16, in the A-rich region and the in-

terfacial region also grows with rising εAA. However, in the B-rich region, it does not

exhibit a change as big as the bulk modulus. Considering the accuracy of our calcu-

lations, we take the shear modulus in the B-rich regions as being independent of εAA.

While the high value of εAA leads to a system which is as a whole more rigid with re-

spect to compression, the shear modulus grows only in the regions where this stronger

interaction takes effect.

We have not only applied the calculation of the elastic modulus tensor to this prob-

lem, but have also used NEMD simulations to determine this quantity. We proceed

as in section 3.3, where we shear the system with a constant sequence of step strains.

This time, we calculate the local stress tensor for each box, correlating the local stress

with the global strain. We average over boxes of the same type, A-rich, B-rich, and in-

terface, to receive the stress-strain curves. These curves, in comparison with the shear

modulus according to the local elastic modulus tensor, see figure 3.17, are used to cal-

culate the shear modulus in the NEMD scheme for each region. The values are given

for comparison in tables 3.7. Now in contrast to the global shear modulus, where the

maximum difference is seven percent, see table 3.4, this difference rises to ten percent.
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3.4 Local Moduli

A-rich Interface B-rich

εAA number monomers number monomers number monomers

of boxes per box of boxes per box of boxes per box

kBT = 0.3

1.1 406 31.1 7170 31.2 424 31.1

1.3 2075 31.3 3824 31.2 2101 31.1

1.6 2452 31.4 3129 31.2 2419 31.1

kBT = 0.1

1.1 398 31.0 7193 31.2 409 31.0

1.3 1974 31.3 4077 31.2 1949 31.2

1.6 2438 31.2 3142 31.2 2420 31.2

Table 3.5: The number of boxes defined as A-rich, interface, and B-rich and the aver-

age number of monomers contained therein. The results are averaged over

the data acquisition steps for the calculation of the elastic modulus tensor.

kBT = 0.3 kBT = 0.1

εAA A-rich Interface B-rich A-rich Interface B-rich

1.1 53.9± 7.7 52.1± 2.8 51.3± 8.6 70.9± 14.9 67.1± 3.6 64.4± 13.1

1.3 61.7± 10.3 58.6± 8.0 54.6± 8.4 75.7± 6.5 72.1± 3.8 71.3± 5.7

1.6 70.5± 5.6 63.6± 4.2 58.5± 4.4 82.0± 6.3 80.0± 5.4 72.3± 4.9

Table 3.6: The bulk modulus for A-rich regions, the interfacial regions, and B-rich

regions as calculated from the local elastic modulus tensor. An A-rich box

in the simulation volume contains at least ninety percent A-monomers, a

B-rich box contains at least ninety percent B-monomers and the interface

boxes fulfill neither condition.
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Figure 3.15: The bulk modulus for two different temperatures, kBT = 0.1 and kBT =

0.3. For each temperature, the bulk modulus was calculated in the three

regions of high A concentration, high B concentration, and the AB inter-

face via the elastic modulus tensor, see equation (3.37).
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Figure 3.16: The shear modulus for two different temperatures, kBT = 0.1 and

kBT = 0.3. For each temperature, the shear modulus was calculated

in the three regions of high A concentration, high B concentration, and

the AB interface via the elastic modulus tensor.
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Figure 3.17: Shear stress, regions: kBT = 0.3 and kBT = 0.1. The figures on the right

side show stress for kBT = 0.3 and those on the left side for kBT = 0.1

for different εAA. The dashed lines represent the expected result for the

shear stress in the linear regime. The shear stress measured while actually

shearing the system is given by the solid line. Painting a more intricate

picture than in figure 3.14, the shear stress is given for each of the three

regions, high A concentration, AB interface, and high B concentration.
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3 Bulk Properties

A-rich Interface B-rich

εAA Tensor NEMD Tensor NEMD Tensor NEMD

kBT = 0.3

1.1 13.2± 2.9 12.6± 4.9 12.5± 0.7 12.4± 0.6 12.5± 3.2 11.9± 3.3

1.3 15.5± 2.9 15.8± 2.1 13.0± 2.5 13.8± 0.7 12.5± 3.2 12.5± 0.8

1.6 19.1± 1.2 19.7± 1.5 15.4± 1.2 15.5± 1.1 13.2± 1.8 12.8± 2.1

kBT = 0.1

1.1 16.7± 4.0 16.0± 2.9 15.5± 1.0 15.2± 0.3 16.0± 4.0 15.0± 2.2

1.3 19.4± 2.1 17.8± 2.3 16.6± 1.5 16.5± 1.1 15.8± 2.3 15.0± 0.6

1.6 22.9± 1.5 21.9± 1.1 18.0± 1.4 17.8± 0.7 15.8± 2.1 15.4± 1.4

Table 3.7: Comparison of the shear modulus in A-rich regions, the interfacial regions,

and B-rich regions as calculated from the local elastic modulus tensor with

the shear modulus from NEMD simulations at kBT = 0.3 and kBT = 0.1.

An A-rich box in the simulation volume contains at least ninety percent A-

monomers, a B-rich box contains at least ninety percent B-monomers and

the interface boxes fulfill neither condition.

3.4.2 Correlation of Local Shear Modulus and Shear Stress

After having looked at the influence the concentration of the different types of mono-

mers in random block copolymer melts has on the shear and bulk modulus, we turn

now to an analysis of the local elastic constants. We want to find a correlation for

glassy polymer melts between the local shear modulus in the small boxes calculated

from the elastic modulus tensor, as in equations (3.29), and the local shear stress when

the system is sheared. We start with a homopolymer melt, εAA = 1.0. Let us first

look at the distribution of local shear moduli in the case of a homopolymer melt for

kBT = 0.1 and kBT = 0.3. As we see in figure 3.18, there are boxes with negative

shear modulus. These are not unphysical as such [YPLdP05]. The distributions were

fitted with Gaussian distributions, which resulted in the shear modulus, G, and its

standard deviation, σG, in table 3.8.

Now we go on to the correlation of local shear modulus from the elastic modulus

tensor and the one calculated via the local shear stress. We follow the same procedure

as in the previous subsection 3.4.1. For a measure of the correlation, we calculate the

correlation coefficient of the Nbox measurements of G and GNEMD, using again the
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3.4 Local Moduli

global strain with the local stress,

R =

∑Nbox
i=1 (Gi − 〈G〉) (GNEMD,i − 〈GNEMD〉)√∑Nbox

i=1 (Gi − 〈G〉)2∑Nbox
i=1 (GNEMD,i − 〈GNEMD〉)2

(3.48)

and calculate the p-value as an upper boundary of the probability of finding a distribu-

tion of values as in this measurement with no correlation between the quantities.

The results are in table 3.9. The results are very weakly correlated, so we are unable

to reproduce the results by Yoshimoto et al. [YJvW+04], who find a strong correla-

tion, visualized by a scatter plot as in figure 3.19. If there were a stronger correlation

between the shear stress, equivalent to the shear modulus used for the calculation of

the correlation coefficient, the ellipse in this figure would be tilted.
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Figure 3.18: The distribution of the local shear modulus for different numbers of cu-

bic boxes per simulation volume. For large numbers of boxes, which is

equivalent to small boxes, we find negative values of the shear modulus.
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3 Bulk Properties

kBT = 0.3 kBT = 0.1

203 boxes 103 boxes 53 boxes 203 boxes 103 boxes 53 boxes

G 12.1 11.9 12.2 14.7 14.8 14.9

σG 15.9 5.9 2.3 16.2 6.1 2.3

Table 3.8: Comparison of the fitted expectation value of the shear modulus, G, and

its standard deviation, σG, according to the distribution of figure 3.18 for

different numbers of boxes. A Gaussian distribution was used to fit the

results.

kBT = 0.3 kBT = 0.1

203 boxes 103 boxes 53 boxes 203 boxes 103 boxes 53 boxes

R 0.022 0.049 0.013 0.055 0.073 −0.031

p 0.050 0.125 0.882 < 0.001 0.02 0.730

Table 3.9: Correlation between the local shear modulus as calculated from the elastic

modulus tensor and the shear modulus calculated from NEMD simulations.

R is the correlation coefficient, while p gives the upper boundary of the

probability of finding this correlation with no correlation between the two

observables. While p is smaller than 0.05 for kBT = 0.1 and 203 and 103

boxes, the correlation is too small to call these quantities correlated.
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Figure 3.19: Scatter plots of the measured shear stress, the abscissa, versus the ex-

pected shear stress from the local elastic modulus tensor, the ordinate.

The temperature of the system is kBT = 0.1 and the simulation volume

is subdivided into 203 boxes. Each dot is for one box, while the coloring

is used to indicate the density of the dots. Red indicates a high density,

while blue means that the density of dots in the vicinity is low. The solid

black lines drawn show the major and minor axis of an ellipse we would

expect with a higher correlation between these two values.
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4 Selectively Attractive Substrate

“Cuiusvis hominis est errare,

nullius nisi insipientis

in errore perseverare”

(Marcus Tullius Cicero)

In this chapter, we examine the properties of a random block copolymer melt in

contact with a selective substrate. The snapshots in figure 4.1 show the system for three

different sets of parameters in MD and SCMF simulations. As for the bulk simulations,

the agreement of the structure is clearly visible in the snapshots.

We start with an overview of previous work concerning the polymer-solid interfacial

properties and theories, which predict structural properties of our system.

Subsequently, we discuss the potentials used, as well as structural and dynamical

properties of the polymer-solid interface and look for signs of the interphase, which

is one of the main goals of this work as described in the introduction, see chapter 1.

The interphase is a region close to the substrate, which can span several Re, and in

which the properties of the melt differ from the bulk and the interface. We continue

with mapping the soft, coarse-grained model to the Lennard-Jones bead-spring model

and observe the subsequent equilibration. In the end, we measure mechanical proper-

ties of the Lennard-Jones bead-spring model after quenching the melt below the glass

transition temperature.
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4 Selectively Attractive Substrate

(a) εAA = 1.1 (b) εAA = 1.3 (c) εAA = 1.6

(d) χ0N = 30 (e) χ0N = 100 (f) χ0N = 240

Figure 4.1: Snapshots for different values of the interaction parameter as indicated be-

low each figure. The upper snapshots, (a) - (c), are from MD simulations

while the lower figures, (d) - (f), show snapshots obtained by SCMF sim-

ulations. The substrates attract only B monomers. As for the bulk simula-

tions, see figure 3.1, the structures formed in contact with a substrate show

a high similarity between the two different models. These figures were

produced using VMD[HDS96].

4.1 Theoretical Background

The influence of contacts with substrates on random block copolymers has been stud-

ied for selectively attractive substrates using self consistent field equations [GC94].

Investigations in theory and simulation have probed the adsorption of random copoly-

mer chains for a single chain [BHM+08], depending on the correlation of the sequence

[PDS09], and for patterned substrates [SCB98, KKK06]. The influence of the se-

quence distribution of random copolymers on adsorption has been analyzed in a com-

bined experimental and theoretical study by Jhon et al. [JSG+09]. Experimentally,
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4.1 Theoretical Background

the adhesive properties and composition of random copolymers have been studied by

Diethert et al. [DPWMB10]. SCMF simulations have been employed to simulate

the influence of patterned substrates on structure formation for diblock copolymers

[SMK+05, DMS+06, EMS+07, DMS+08] at these substrates.

For diblock copolymers, the ordering at the substrate when close to an order-disorder

transition, has been investigated by Fredrickson [Fre87] who found a longer-range

ordering at the substrate. Milner and Morse [MM96] managed to extract from the static

structure factor of the composition of diblock copolymers in the bulk a prediction of

the composition profile at the substrate.

For polymer glasses, Baschnagel and Binder [BB95] investigated the structural and

dynamical properties of homopolymers which are influenced by a substrate. There

they found signs of an interphase region.

Another interesting area of research is the limited resolution of coarse-grained mod-

els in contact with a wall, see Ramírez-Hernández et al. [RHDdP10] and Müller et

al. [MSD+11]. The length scale of the interface region at the substrate is often on

the order of or shorter than the typical resolution of coarse-grained models. Thus, the

interfacial properties, for example the surface tension are not accurately reproduced

by a coarse-grained model. In these papers, a modification of either the bonded inter-

action or the wall-potential is proposed to fix the discrepancies in surface tension and

chain end density caused by the length scale of the discretization of a coarse-grained

polymer model in contact with a wall.

4.1.1 Silberberg’s Argument

The change of polymer conformations in a melt when confined by a reflecting wall

was first treated by Silberberg [Sil82]. The idea behind his reasoning is that the con-

formation of chains near a wall can be derived from the properties of the bulk. We take

a bulk polymer melt, and put a virtual plane into its middle. This virtual plane acts as

a wall, therefore chains are not allowed to cross it. To this end, we change the chain

conformations of each chain crossing this virtual plane. To describe this process, one

should first designate one chain end as start and the other one as termination. The start

is the chain end which is closer to the wall. Chains are now assigned to the side of

the wall, where the starting end resides. The part of the chain which is on the other

side is then reflected in the plane, so it is situated on the same side of the wall as the

starting end. In this way, the conformation in the direction perpendicular to the wall
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4 Selectively Attractive Substrate

(a) (b)

Figure 4.2: Conformations at wall. These two sketches show the change of the confor-

mations by the virtual wall. Chains crossing the wall are folded to the side

of the wall where the chain end is situated which is closest to the wall.

changes, while the density remains constant on average. This argument only holds for

a non-interacting wall, and is only true in the case that the presence of the wall does

not change the chain end distribution.

Assuming that the chain is Gaussian, Silberberg resorted to random walk statistics

to solve this problem analytically. Since the virtual wall is flat, the problem is reduced

to one dimension, the direction perpendicular to the wall. The number of chains in the

bulk with N segments, which start at x0 and terminate at xN can be approximated by

Ω(x0, xN , N) ' ΩTot 2

b
√

2π
exp

(
−(xN − x0)2

2Reo
2

)
(4.1)

where ΩTot is the total number of chains which start at x0. The mean squared end-to-

end distance then yields the expected result of

< R2
e >=

∫ ∞
x0

dxN(x0 − xN)2 2

Reo

√
2π

exp

(
−(xN − x0)2

2Reo
2

)
= Reo

2 . (4.2)

After reflecting the chains as described above, the number of chains to be found on the

selected side of the virtual wall and starting at position x is

Ω′(x0 = x, xN , N) =
2ΩTot

Reo

√
2π

[∫ ∞
x

dxN exp

(
−(xN − x)2

2Reo
2

)
(4.3)

+

∫ −x
−∞

dxN exp

(
−(xN − x)2

2Reo
2

)]
(4.4)

= ΩTot

(
2− erf

(
2

x√
2Reo

))
. (4.5)
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where erf(x) is the error function. The number of chains terminating at position x can

be determined similarly as

Ω′(x0, xN = x,N) = ΩTot erf

(
2

x√
2Reo

)
. (4.6)

Therefore, the introduction of a wall into the bulk melt does not change the local chain

end density. We now want to look at the x-component of the mean squared end-to-end

distance, < R2
e >x. For this quantity, the sum of two integrals has to be evaluated,

< R2
e >x=

1

2

2

Reo

√
2π

(I1 + I2) . (4.7)

The factor 1
2

stems from the fact that the calculation is performed for chain terminations

and starts at x, so this is needed to counter the double-counting. The integrals are

I1 =

∫ ∞
0

dxN(xN − x)2 exp

(
−(xN − x)2

2Reo
2

)
(4.8)

for chains which start or terminate at x and whose chain terminations are not affected

by the wall,

I2 =

∫ ∞
0

dxN(xN − x)2 exp

(
−(xN + x)2

2Reo
2

)
(4.9)

for chains which start or terminate at x and where the chain termination was on the

other side of the wall.

The calculation of these integrals gives as a result

< R2
e >x

< R2
e >

=

[
1− 4

x√
2Reo

1√
π

exp

(
− x2

2Reo
2

)
. . .

+4
x2

2Reo
2 − 4

x2

2Reo
2 erf

(
x√

2Reo

)]
. (4.10)

4.1.2 Linear Response Theory

In this subsection, we look at the theoretical predictions for composition fluctuations

of a random block copolymer melt in contact with a solid substrate. The idea of linear

response theory in this case is to couple a local perturbation, a wall potential, to the

composition profile. Since we know the static structure factor of the composition in

the bulk, which is the Fourier transform of the composition profile, we know how

this perturbation propagates in momentum space. This knowledge can be transformed

back into real space, via a discrete Fourier transform, and gives us a composition
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profile. We start our calculations with a work by Milner and Morse [MM96]. In this

paper, they derived a response of a symmetric diblock copolymer melt to a selectively

attractive wall potential. When describing a polymer melt confined by two substrates

in the x-direction, one can assume an isotropic behaviour in the directions parallel

to the substrate, thus the problem is reduced to one dimension. The concentration

profile of the melt can be expanded in a Fourier series, decoupling the parallel and the

perpendicular coordinates:

c(x,~r||) =
1

Ad

∑
kx,~k||

c̃(kx, ~k||)fkx,~k||(x,~r||) , (4.11)

with A being the area of the substrate, d the separation of the substrates, c(~r) =

[ΦA − ΦB] (~r) is the concentration difference between A and B monomers in real

space, c̃(~k) its Fourier transform, and

fkx,~k||(x,~r||) =
√

2 exp(i~k||~r||) · cos(kxx) (4.12)

where the ~k|| are arbitrary, two-dimensional vectors and kx = πm/d, where m is

a positive integer. We are working in the regime f = 0.5, which is the reason for

m 6= 0, and the derivative with respect to x at the boundaries vanishes, since we

assume reflecting boundary conditions for a melt confined between two substrates.

Now we proceed to derive the influence of the substrate on the concentration. The

general expression for this coupling is the change in free energy due to the influence

of the substrate

Fsubs = −
∫

d3r c(~r) · Usubs(~r)

= −
∫

dx d2r|| c(x,~r||) · Usubs(x) (4.13)

where the potential only depends on the distance from the substrate. With equations

4.11 and 4.12, this transforms into

Fsubs = −
√

2

Ad

∑
kx,~k||

c̃(kx, ~k||)

∫ d

0

dx cos(kxx)Usubs(x)

∫
d2r|| exp(i~k||~r||) . (4.14)

The potential we use in the SCMF simulations is proportional to exp(−(x/x0)2/2),

therefore an analytical solution for the integral above is only possible if the simulation

box extends to infinity. This is not possible, however, the length scale of the potential,
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x0, is 0.15 Reo, which lets us approximate the integral over x by its limit for d → ∞
with only a very small error. Substituting the potential with

Usubs(x) =
√
π/2x0gN · exp(−(x/x0)2/2) , (4.15)

where gN is the interaction strength of the substrate, in equation 4.14 and evaluating

the integral over x, yields

Fsubs = −
√

2

Ad

∑
kx,~k||

c̃(kx, ~k||)g exp(−(kxx0)2/2)

∫
d2r|| exp(i~k||~r||) . (4.16)

The integral over the plane wave in the plane parallel to the substrate is zero when
~k|| 6= 0, the whole equation reduces to

Fsubs = −
√

2

d

∑
kx

c̃(kx, 0)g exp(−(kxx0)2/2) . (4.17)

The real space response of the melt to this potential is then the Fourier transform of

the product of the compositional structure factor and the potential in momentum space

c(x, 0) =
2

d

∑
kx

cos(kxx)S(kx)g exp(−(kxx0)2/2) (4.18)

where S(kx) is the compositional structure factor introduced in chapter 3, see equation

(3.1). Milner and Morse used a simpler potential

Usubs,δ(x) = U0,δδ(x) (4.19)

in [MM96] with a potential strength U0,δ, which simplifies the calculation and has the

following results:

Fsubs = −
√

2

d

∑
kx

c̃(kx, 0)U0,δ (4.20)

and

c(x, 0) =
2

d

∑
kx

cos(kxx)S(kx)U0,δ . (4.21)

We use this theory later to compare the predictions from the static structure factor of

the composition with actual simulation results.
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4.2 Properties of the Interface and Interphase

In this section, we describe the systems used to simulate a random block copolymer

melt in contact with a solid substrate and elaborate on their properties. In particular,

we find a region which extends several Re from the substrate and shows properties dif-

ferent from the bulk system. This region, called the interphase, will be in the focus of

this description together with the interface between polymer melt and solid substrate.

4.2.1 Wall Potential

The solid wall in the SCMF model is implemented by breaking the periodic boundary

condition in one direction. These boundaries are supplanted by a hard wall which

means that movement through these boundaries is no longer possible. In addition,

to simulate the selectively attractive substrate, we modify the non-bonded interaction,

equation (2.39), by a potential [DMS+08]

Hnb,wall = Hnb + ρc

∫
d3r Uwall(~r)(φ̂A − φ̂B) . (4.22)

Since coarse-grained models are not able to resolve the structure of solid substrates

below their coarse-graining scale, [RHDdP10, MSD+11], we choose a soft potential

that only depends on the distance from the substrate

Uwall(~r) =
gNReo

rwall
exp

(
− x2

2r2
wall

)
. (4.23)

This potential is short-ranged, rwall = 0.15Reo, soft, and selectively attractive to one

type of monomers. For a positive value of gN , it attracts monomers of type B while

repelling monomers of type A, and vice versa for negative values of gN .

For the Lennard-Jones model, we follow a similar strategy. Again, one direction of

the simulation volume is no longer treated with periodic boundary conditions. Then

we implement a wall of Lennard-Jones particles, which interacts differently with the

two different types of monomers. We do not use explicit Lennard-Jones particles, but

integrate over the whole substrate for a potential which is, as for SCMF, only dependent

on the distance from the substrate. With the Lennard-Jones potential

ULJ(r) = 4εwall

((σ
r

)12

−
(σ
r

)6
)

(4.24)
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we are interested in the potential at a distance x from the wall

ULJ,9−3(x) =
4εwall
Vp,wall

∫ ∞
x

dx′
∫ ∞

0

dρ

∫ 2π

0

dφ ρ

(
σ12

(ρ2 + x′2)6
− σ6

(ρ2 + x′2)3

)
=

2πσ3

3Vp,wall
εwall

(
2

15

σ9

x9
− σ3

x3

)
(4.25)

where Vp,wall is the volume of the unit cell of the wall’s lattice. We set Vp,wall to 2πσ3

3

which is equal to a packing fraction of
√

2−3 ≈ 0.35, close to the one of a diamond

lattice, which is 0.34 [AM76]. Thus, the potential we use to simulate a substrate for

the Lennard-Jones particles is

ULJ,wall(x) = εwall

(
2

15

σ9

x9
− σ3

x3

)
, (4.26)

also called the Lennard-Jones 9 − 3 potential. Here the selectivity of the potential is

not achieved through different interaction parameters, but the cutoff. For the substrate

to be attractive, we chose a cutoff of rc = 2.5σ, when we want it to be repulsive, we

choose rc = 0.715σ.
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Figure 4.3: Potentials of the substrates. The two potentials for (a) SCMF and (b) MD

simulations are plotted on the length scale of the simulation program. The

length scale is 1Rmelt = 10σ = 1.2Reo.
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4.2.2 Composition Profile

Now we want to find parameters for the interaction strength, gN and εwall which lead to

a complete wetting of the preferred species. To this end, we look at the volume fraction

as a function of the distance from the substrate. The procedure for SCMF simulations

is the following. First we generate a starting configuration, using a homopolymer melt,

α = 0, χ0N = 0, κN = 600, in a box of dimension 8 · 8 · 16R3
eo, with 6 grid points per

Reo. In the largest dimension, we implement a hard wall at the boundary, the other two

dimensions have periodic boundary conditions. The simulation volume is filled with

8320 chains of 120 monomers each, and simulated for 1.5 · 105 time steps using smart

Monte Carlo simultaneously employing the quasi-instantaneous field approximation.

We use this equilibrated homopolymer melt as the starting configuration for the

random block copolymer in contact with a solid substrate. The parameters of these

simulations are χ0N = 240 with α = 0.05, χ0N = 100 with α = 0.02, and χ0N = 30

with α = 0.01. For the search of interesting systems, we choose

gN ∈ {−10;−5;−1;−0.5; 0; 0.5; 1; 5; 10} .

The simulation is then run for 6 · 105 time steps, after which we compare the volume

fraction profile with the predictions of linear response theory, see figure 4.5. For large

enough distance between the attractive substrates, as used in our simulations, the dif-

ference between the two approaches, a short-range or a delta-function potential, for the

linear response theory is negligible, as can be seen in figure 4.4. This becomes clear

when we consider which values of q contribute when we use a short-range-potential.

These values of q are much larger than the region of the peak, therefore their influence

on the actual composition is very small. We average over the composition profiles of

the two substrates in the simulation box. The choice of gN = −1 for substrates at-

tracting A monomers and gN = 1 for substrates attracting B monomers generates a

composition profile which is very similar to the results of the linear response theory.

In the disordered case, χ0N = 30 in figures 4.5(a) and 4.5(b), there is no long-range

ordering of the melt. For χ0N = 100 and χ0N = 240, see figures 4.5(c) to 4.5(f),

the behaviour is markedly different. The composition profiles in both cases exhibit a

long-range order extending more than 2 Re from the substrate. The composition pro-

files show oscillations which decay exponentially. This is a sign of the interphase, a

longer-range ordering induced by the substrate, which extends further into the simula-

tion volume than the interfacial order which is seen for the disordered state in figures
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Figure 4.4: Linear response theory: potential shape. In these three figures the results

for the linear response theory with a δ-potential are compared with a Gaus-

sian one. There are differences in Figure (a), with χ0N = 30, U0,δ = 0.41,

and g = 0.5, but in (b) with χ0N = 100, U0,δ = 0.14, and g = 0.16 and

(c) with χ0N = 240, U0,δ = 0.08, and g = 0.09 there is no discernible

difference between the results. We use the structure factors from figure 3.3

together with the linear response calculations in subsection 4.1.2.

4.5(a) and 4.5(b).

The simulation procedure for MD is very similar. Again, we start with a homopoly-

mer melt which is confined in one direction by solid substrates, with periodic bound-

ary conditions in the other two dimensions. The starting size of the simulation box is

136 · 68 · 68σ3, with 8320 homopolymer chains of 60 monomers each placed randomly

into the simulation volume. We start with a NV E simulation over 100 time steps,

where the maximal movement of a monomer is restricted to 0.05σ per time step. We

use this restriction to prevent the system from “blowing up”. At the same time we

ramp up the temperature linearly from kBT = 0 to kBT = 1. The wall potential is

made repulsive by using a cutoff of 0.715σ for the Lennard-Jones 9− 3 potential from

equation (4.26). We proceed with a NV T simulation at kBT = 1 for 106 time steps

after which we let the system equilibrate in aNPtT simulation at the same temperature

and Pt = 0 for 107 time steps. The resulting configuration is then used as a starting

configuration for the random block copolymer melt simulation.

The simulation of the random block copolymers continues in the NPtT ensemble at

kBT = 1 and Pt = 0 for 3 · 107 steps. We perform simulations with an attractive wall

potential for A monomers and for B monomers. Starting with a value of εwall = 2.0

we found it to be sufficient for a complete wetting of the substrate by the attracted type
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4 Selectively Attractive Substrate

of monomers in the case of εAA = 1.1, see figures 4.6(a) and 4.6(b), and εAA = 1.3,

see figures 4.6(c) and 4.6(d). For εAA = 1.6 this holds only when the substrate is

attractive to B monomers, see figures 4.6(e) and 4.6(f). Thus we decided to use a

stronger interaction in the case of εAA = 1.6, εwall = 3.0. Again, the linear response

theory gives us a good prediction of the composition profile close to the substrate.

Furthermore, the interphase is clearly visible as well.

We can compare these results to experiments concerning diblock copolymer melts

in contact with a selective substrate. If the temperature is below the value for order-

disorder transition in the bulk, diblock copolymers in experiments arrange themselves

to form a lamellar phase, where the lamellæ is parallel to the substrate [MJR+93].

This behaviour is observed in a mean-field approach with a Ginzburg-Landau free en-

ergy functional, too [TA01]. The distance between the interacting substrates has a

strong influence on the temperature at which the order-disorder transition takes place

[SAK+08], it rises for smaller distances. For temperatures above the order-disorder

transition, linear response theory predicts exponentially decaying concentration oscil-

lations [MM96] which has also been observed in experiments [MRH+97].
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Figure 4.5: Structure of melt at substrate: SCMF simulations. These six figures show

the results for the linear response theory with a δ-potential, compared with

SCMF simulations confined by a selectively attractive substrate for – from

top to bottom – χ0N = 30, χ0N = 100, χ0N = 240. The left figures

show a substrate which is attractive to A monomers while the right figures

show a substrate attracting B monomers. In all cases, gN = ±1 for the

simulation results in a composition that is very similar to the results of the

linear response theory.
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Figure 4.6: Structure of melt at substrate: MD simulations. In these six figures the

results for the linear response theory with a δ-potential are compared with

MD simulations confined by a selectively attractive substrate for – from

top to bottom – εAA = 1.1 and εwall = 2.0, εAA = 1.3 and εwall = 2.0,

and εAA = 1.6 and εwall = 2.0 and 3.0. The left figures show a substrate

which is attractive to A monomers while the right figures show a substrate

attracting B monomers. The composition of the MD simulation is similar

to the linear response theory, for εAA = 1.6 and an A-attractive substrate,

we require a higher value of εwall for a wetting of the substrate.
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4.2.3 Segregation at the Substrate

The composition profile describes where the different monomers can be found. Now

we proceed to a coarser level, namely looking at the distribution of the chains them-

selves. The large number of different sequences, see equation (2.4), means that only

comparably few chains of each sequence exist in the melt. Thus, trying to salvage in-

formation from the spatial distributions of each and every sequence is a daunting task.

For this reason, we group the chains according to the number of A blocks they con-

tain, leaving us with only 7 different groups to look at. The homopolymers constitute

two of these groups, leading to worse statistic in their cases. We sample the densities

according to the position of the monomers, not the chains’ centers of mass.

In the disordered case, the distribution of chains has been addressed by Kłos et al.,

[KRS10]. Their results for the distribution of A homopolymers in a random block

copolymer melt at a selective substrate agrees well with the disordered melt at χ0N =

30 in figures 4.7(a) and 4.7(c). In the disordered melt, the segregation of the chains

is very similar to the composition profile in figures 4.5(a) and 4.5(b). The polymers

consisting mainly of the attracted type of monomer are enriched at the substrate, then

depleted at a distance of 1 Re. For the polymers consisting mainly of the repulsed

monomers, it is the other way around, while the polymers containing the same number

of A and B monomers are depleted in the interface region. The asymmetry parameter

is small, α = 0.01, so we do not expect and do not find a large deviation between

A-attractive substrates, figure 4.7(a), and B-attractive substrates, figure 4.7(c), for the

same absolute interaction strength of the substrate.

When we look at a higher incompatibility, χ0N = 100, the behaviour near the

substrate changes drastically. For a wall potential of gN = ±1, see figures 4.7(d) and

4.7(f), we see composition fluctuations extending 3Rmelt into the bulk. This result is

similar to the pure composition fluctuations we observed in figures 4.5(c) and 4.5(d).

The ordering in the interphase therefore is not only relevant for the concentration of

the monomers, but strongly influences the distribution of the chains as well. The slight

asymmetry between the monomers, α = 0.02, shows itself in the sequence profiles.

For the highest value of the incompatibility we analyze, χ0N = 240, the influence

of the selectively-attractive substrate becomes even more pronounced. The ordering

extends so far from the substrate that we suspect an interference between the both

substrates. It extends at least 4Rmelt into the bulk for gN = ±1, see figures 4.7(g) and

4.7(i).
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Figure 4.7: Segregation at substrate. The segregation of different types of polymers

is shown, sorted by the number of A blocks the chain contains. For each

group of polymers, the graph shows the number of their monomers found

divided by the number of monomers expected in a homogeneous distribu-

tion. The simulation was performed – from top to bottom – for χ0N = 30,

χ0N = 100, and χ0N = 240. The substrate is attractive toAmonomers for

the left figures, neutral for the middle figures, and attractive toB monomers

in the right figures. For χ0N = 100 and χ0N = 240, we see clear signals

of the interphase.
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4.2.4 Conformations at the Substrate

When we analyzed the conformational properties of the different sequences in the

bulk, see subsection 3.1.2, we found them to depend strongly on the sequence of the

polymer. Resolving these two parameters, sequence and distance from the substrate,

will be difficult as we can deduce from the depletion of certain sequences in specific

distances from the substrate, see figure 4.7. We want to observe the change in the

mean squared radius of gyration, R2
g, divided into its two components parallel and

perpendicular to the substrate. We have described the theory for a non-interacting

substrate in subsection 4.1.1. It is uncomplicated to do the comparison for Silberberg’s

approach in a SCMF simulation. To this end, we take a bulk system of homopolymers,

as used in the last chapter, and mirror all conformation in a virtual wall in the middle of

the bulk. This changes the perpendicular part of the mean squared end-to-end distance.

For comparison, we look at a homopolymer melt, confined by two reflecting walls, to

determine the influence of the wall in our case, see figure 4.8(a). For a homopolymer

melt, the change of conformations at a substrate has been investigated in simulations

[KVY88, MBB01] and experiment [JPT+00], which all observed a flattening of the

chains at the substrate. The experiments focused on the parallel part of the radius of

gyration as a function of the distance from the substrate. The profile of this quantity in

our simulation with a neutral wall in figure 4.8(b) is similar to the ones in the literature.

From now on, the binning in the direction perpendicular to the substrate is performed

according to the positions of the polymers’ centers of mass.

The radius of gyration of a polymer is defined as

R2
g =

1

N

N∑
i=1

(~r(i)− ~rcom)2 (4.27)

where ~rcom is the center of mass of the polymer. When we take the x-direction as the

non-periodic dimension of our simulation,

R2
g,⊥ =

1

N

N∑
i=1

(~r(i)x − ~rcom,x)2 (4.28)

and

R2
g,‖ = R2

g −R2
g,⊥ . (4.29)

For the disordered system, χ0N = 30, we observe a flattening of the polymer con-

formations at the substrate, followed by them being extended perpendicular to the
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Figure 4.8: Profile of Re: Silberberg’s argument. In figure (a) we compare the two

parts of the root of the mean squared end-to-end radius, Re =
√
〈R2

e〉,
binned according to the chains’ ends. We use three methods: the calcu-

lation according to Silberberg from subsection 4.1.1 (“Silberberg”), the

SCMF simulation of a homopolymer melt in the bulk (“bulk”), where the

chain conformations are mirrored in a virtual wall in the middle of the sim-

ulation box, and the SCMF simulation of a homopolymer melt confined by

two reflective walls. The simulation in the bulk and Silberberg’s argument

for the perpendicular part of Re agree with each other, while a simple re-

flective wall causes deviations close to the wall. This is also seen in the

parallel part of Re, where the value for the simulations with a wall deviate

from the bulk value close to it. In figure (b) we look at the mean square

of the radius of gyration, binned according to the position of the chains’

centers of mass. In this case, we find a much stronger deviation of the per-

pendicular part at the reflective wall when compared to the “bulk” value.

There is also a much smaller number of chains found in the bin right at the

wall.

substrate at Rmelt = 0.5. The peak is not strong, the profiles for gN = ±1 in figures

4.9(a) and 4.9(c) strongly resemble the melt in contact with a neutral substrate in figure

4.9(b). The conformations appear to be not as sensitive to the influence of the substrate

as the compositional properties.

For the microemulsion-like structure of χ0N = 100, the interphase is apparent in

the profile of the radius of gyration as well, see figures 4.9(d) and 4.9(f). While the
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parallel component ofR2
g shows that the extension of the polymers in parallel direction

is smaller than the bulk value close to the substrate, the perpendicular components

show peaks which mean that the polymers in this region of the peak are stretched in

perpendicular direction. Thus, the formation of layers in the composition profile from

figures 4.5(c) and 4.5(d) becomes visible in the conformation profile, too.

At the highest incompatibility, χ0N = 240, we see an even stronger signal of the

interphase in the perpendicular component of R2
g in figures 4.9(g) and 4.9(g), as well

as in the parallel component. The stretching of the polymers across the layers in the

interphase can be seen extending more than 3Rmelt into the simulation volume. The

asymmetry between the two monomers, α, has a large effect on this profile. For the B-

attractive substrates, see figure 4.9(i), the second peak of the perpendicular component

of R2
g is more pronounced than for the A-attractive substrate in figure 4.9(g).
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Figure 4.9: Conformations at substrate. The parallel and perpendicular components

of the squared radius of gyration are plotted as a function of the distance

from the substrate. The interaction strength – from top to bottom – is

χ0N = 30, χ0N = 100, and χ0N = 240. The systems on the left have

substrates which attract A monomers, the center ones are confined by neu-

tral substrates, and the systems on the left have substrates which attract B

monomers. We see the deformation of polymers in the interphase clearly

in the case of attractive substrates and χ0N = 100, 240.
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4.2.5 Dynamics at the Substrate

For the dynamics at the substrate, we investigate the mean squared displacement of

the centers of mass. Due to the system’s anisotropy, we divide the MSD into the

two components parallel and perpendicular to the substrate. Here, we differentiate

the region close to the substrate into two parts which we designate as interphase and

interface.

We define the perpendicular and parallel parts similarly to the definition of the radius

of the gyration in the last subsection. The total MSD is defined as

g3(t) =
〈
(~r(t)− ~r(0))2〉 (4.30)

which we can divide again into the perpendicular

g3,⊥(t) =
〈
(~rx(t)− ~rx(0))2〉 (4.31)

and parallel

g3,‖(t) = g3(t)− g3,⊥(t) (4.32)

parts.

For the definition of interface and interphase, we adhere to the composition pro-

files in figure 4.5. With the help of these profiles, we take the interface as extending

0.5Rmelt into the simulation volume, and the interphase from 0.5Rmelt to 2.4Rmelt.

For the low incompatibility, χ0N = 30, we notice a slowing-down of the dynamics

perpendicular to the substrate in the interface, when comparing the neutral substrate in

figure 4.10(b) with the selectively attractive substrates in figures 4.10(a) and 4.10(c).

Since the substrate is attractive to one type of monomers, polymers containing this

type prefer to stay in the interface region. The motion parallel to the substrate is

neither slowed down nor enhanced when comparing interface with interphase.

With a higher incompatibility, χ0N = 100, two new properties of the MSD turn up

which are interrelated. A speed-up parallel to the substrate and a slowing-down of the

perpendicular motion appear when we compare the motion of the polymer melt in con-

tact with a neutral substrate in figure 4.10(e) to the motion with a selectively attractive

substrate, see figures 4.10(d) and 4.10(f). The formation of layers allows the chains to

move faster parallel to the substrate in the interface than in the interphase, since they

do not encounter domain boundaries which would slow them down. Perpendicular

to the substrate, it is the other way around. The domain boundaries, which are very
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4 Selectively Attractive Substrate

pronounced in this direction, hinder this type of motion. This layering is visible in the

concentration profile, see figures 4.5(c) and 4.5(d).

When the incompatibility reaches χ0N = 240, the higher value of the asymmetry

parameter α = 0.05 influences the dynamics as well. At this point, the dynamics differ

between the A-attractive substrate in figure 4.10(g) and the B-attractive substrate in

figure 4.10(i). First let us consider the similarities. The layering which extends fur-

ther into the interphase, results in a slowing down of the perpendicular motion, when

compared to the neutral substrate in figure 4.10(h), and an enhanced motion parallel

to the substrate. However, while the perpendicular motion in the interface practically

ceases for theA-attractive substrate, an escape of the interface is still possible for poly-

mers when in contact with a B-attractive substrate. There is also less of a difference

in the motion parallel to the substrate in the interphase for the B-attractive substrate,

while the motion parallel to the substrate in the interface is still greater than in the in-

terphase for the A-attractive substrate. The composition profiles in figures 4.5(e) and

4.5(f), and the segregation of sequences in figures 4.7(g) and 4.7(i) would not suggest

such a great difference, while the R2
g-profiles in figures 4.9(g) and 4.9(i) also show

qualitatively different behaviour between the A- and B-attractive substrates.

These results are summed up in table 4.1, where the apparent diffusivity is given,

normalized by the bulk diffusivity.

The extreme slowing-down of the dynamics perpendicular to the substrate means

that the diffusion of the polymers is hindered strongly once the compositional structure

has been formed. This is in agreement with experimental findings by Diethert et al.

[DPWMB10], who found the statistical copolymer melts in contact with a substrate,

changed their composition profile very slowly after the solvent had evaporated.
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Figure 4.10: MSD at substrate. The parallel and perpendicular components of the

mean squared displacement are plotted for the interface and interphase.

The interaction strength – from top to bottom – is χ0N = 30, χ0N = 100,

and χ0N = 240. The systems on the left have substrates which attract A

monomers, the center ones are confined by neutral substrates, and the

systems on the left have substrates which attract B monomers. When an

interphase forms – figures (d), (f), (g), and (i) – there is a speed-up of the

parallel dynamics in interface and interphase, combined with a slowing-

down of the perpendicular dynamics.
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4 Selectively Attractive Substrate

χ0N gN Interface Interphase

parallel perpendicular parallel perpendicular

−1 1.0 0.6 1.0 0.6

30 0 1.0 0.9 1.0 0.6

1 1.1 0.5 1.1 0.6

−1 1.4 0.2 1.3 0.6

100 0 0.9 0.9 0.9 0.7

1 1.5 0.3 1.3 0.5

−1 1.8 0.002 1.5 0.3

240 0 0.8 1.1 0.8 0.8

1 1.4 0.2 1.5 0.3

Table 4.1: Apparent diffusivity at a selective substrate. The apparent diffusivity is cal-

culated by dividing the parallel component of the measured diffusivity by

the two thirds of the diffusivity of the bulk random block copolymer melt

at the same incompatibility χ0N , and the perpendicular component by one

third of this diffusivity.
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4.3 Mapping with a Selective Substrate

4.3 Mapping with a Selective Substrate

For the mapping procedure from the soft, coarse-grained model to the Lennard-Jones

bead-spring model, we follow the same procedure as in subsection 3.1.5. We decrease

the chain discretization from N = 120 to N = 60 by taking the center of mass of

two neighboring monomers of the soft, coarse-grained model as the monomer in the

Lennard-Jones bead-spring model. The transformation of the coordinates is slightly

different. Since the potential in the Lennard-Jones bead-spring model has a repulsive

component, we map the “x”-coordinate by compressing the melt such that no monomer

can be found within 1σ of the substrate in the starting configurations of the Lennard-

Jones bead-spring model. Then we proceed with NV E simulations with a limited

movement per time step for 100 time steps. Following this is a simulation in the NV T

ensemble for 106 time steps, and then a simulation in tensionless NPtT ensemble for

up to 107 time steps. We look at the concentration profile over this time frame.

Both the disordered system with εAA = 1.1/χ0N = 30, see figure 4.11, and the

highly segregated one with εAA = 1.6/χ0N = 240, see figure 4.13, reach a stable state

within 0.12τ . For the intermediate system with εAA = 1.3/χ0N = 100, see figure

4.12, the time frame we look at appears to be insufficient to achieve or return to the

long-range order of the interphase we observe in various quantities in this chapter.

The regions close to the substrates are the most interesting regions for the ques-

tion of the equilibration after mapping, spanning from 0 to 4 Rmelt and 9.6 to 13.6

Rmelt. While there are fluctuations in the composition of the “bulk” region between

the interphases, even after the equilibration of the system, the structure formed in the

interphase, for values of εAA that lead to microemulsion-like structures in the bulk,

does not change on the observed time scale. Thus, the strong change in the right-hand

interphase composition after mapping for a B-attractive substrate at εAA = 1.3, see

figure 4.12(b), means that we encounter a problem in this case. The equilibration after

mapping for an A-attractive substrate and εAA = 1.3, see the right interphase of figure

4.12(a), also shows a similar, but not quite as drastic behaviour.

At the same time, the lack of structure in the case of the disordered melt, εAA = 1.1,

and the highly ordered structure for the high incompatibility, εAA = 1.6, facilitate the

equilibration.
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Figure 4.11: Time evolution, mapping at substrate: εAA = 1.1. We observe the time

evolution when mapping from the soft, coarse-grained model with χ0N =

30 to the Lennard-Jones bead-spring model with εAA = 1.1. The left

figure shows substrates attracting A-monomers, while the right figure is

for substrates attracting B-monomers. In this parameter set we are still in

the disordered phase so the system equilibrates quickly.
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Figure 4.12: Time evolution, mapping at substrate: εAA = 1.3. We observe the time

evolution when mapping from the soft, coarse-grained model with χ0N =

100 to the Lennard-Jones bead-spring model with εAA = 1.3. The left

figure shows substrates attracting A-monomers, while the right figure is

for substrates attracting B-monomers. We see in both figures that there

is an intermediate change in the composition before the profile becomes

stable.
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Figure 4.13: Time evolution, mapping at substrate: εAA = 1.6. We observe the

time evolution when mapping from the soft, coarse-grained model with

χ0N = 240 to the Lennard-Jones bead-spring model with εAA = 1.6. The

left figure shows substrates attracting A-monomers, while the right figure

is for substrates attracting B-monomers. The strong interaction and the

distinct layering at the outset facilitate a fast equilibration of the system.
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4.4 Mechanical Properties

When comparing mechanical properties of the bulk random block copolymer melt

in section 3.2, we unsuccessfully tried to correlate the shear modulus calculated from

NEMD simulations with the shear modulus from the local elastic modulus tensor. Now

we have a second opportunity to look at the local mechanical properties, this time

depending on the distance from the substrate. We take the MD systems as prepared in

4.2.2 and quench them to kBT = 0.3. Then we let them age in the NPtT ensemble

with Pt = 0 for 4 · 106 time steps, and 3 · 106 time steps after switching to NV T .

For the measurement of the elastic properties as in equation (3.29), we take an av-

erage over 6 · 106 time steps every 200 time steps. One time step was found in section

3.1 to be equivalent to 4.8 · 10−8τ .

For the measurement of the shear modulus in NEMD simulations, we deform our

system. With the “x”-direction as the non-periodic direction, we shear the system by

changing ε4. The strain is increased by ∆ε4 = 5 · 10−4 every 104 time steps and we

calculate the stress for each of these intervals as an average with a step size of 200 time

steps. In the linear regime up to a strain of ε4 = 10−2, we calculate the shear modulus

locally as described in subsection 3.2.3.

The calculations for both methods are performed in slabs parallel to the substrate.

The width of each slab is 3.4σ, therefore we only have to define the subdivision of the

volume differently than in the bulk case.

The results of these simulations are shown for εAA = 1.1 in figure 4.14. In the

vicinity of the substrate, both methods show similar results. They show the lower shear

modulus at the substrate for a B-attractive substrate, see figure 4.14(b). In the case

of an A-attractive substrate, see 4.14(a), there are two effects in the interface region

which counteract each other. While the shear modulus in regions of high concentration

of A-monomers is slightly higher, the density at the substrate is lower than in the bulk.

Thus, the shear modulus in the interfacial region in this case is greater than for the

B-attractive substrate but still differs from the bulk value.

For εAA = 1.3, the results of the calculations of the shear modulus are presented in

figure 4.15. In the vicinity of the substrate, the two methods agree well. The structure

at the interface and in the interphase is represented by a lower shear modulus at the

substrate for a B-attractive substrate, see figure 4.15(b), followed by a higher shear

modulus due to the higher concentration of A-monomers in the next layer. In the
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case of the A-attractive substrate, see 4.15(a), the interplay between lower density and

higher shear modulus of the A-rich domains results in a value of the shear modulus in

the interfacial region which is close to the bulk value.

The strongest interaction of εAA = 1.6 leads to the best agreement of the two dif-

ferent measurements. The profiles of the shear modulus in both methods and for both

types of substrate agree very well up to a distance of 2.5Rmelt from the substrate, see

figure 4.16. The magnitude of the shear modulus here varies the strongest in the three

simulations.
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Figure 4.14: Shear modulus profile: εAA = 1.1. In these two figures we compare the

results for the shear modulus, as calculated from the elastic modulus ten-

sor and NEMD simulations for a random block copolymer melt in contact

with a selectively attractive substrate. The simulations were performed at

kBT = 0.3, εAA = 1.1 and εwall = 2.0. There is a drop of the shear

modulus in both cases at the substrate, due to the lower density in this

region.
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Figure 4.15: Shear modulus profile: εAA = 1.3. In these two figures we compare the

results for the shear modulus, as calculated from the elastic modulus ten-

sor and NEMD simulations for a random block copolymer melt in contact

with a selectively attractive substrate. The simulations were performed at

kBT = 0.3, εAA = 1.3 and εwall = 2.0. We see a signal of the interface

region, as well as a hint of the interphase in the shear modulus profiles.
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Figure 4.16: Shear modulus profile: εAA = 1.6. In these two figures we compare the

results for the shear modulus, as calculated from the elastic modulus ten-

sor and NEMD simulations for a random block copolymer melt in contact

with a selectively attractive substrate. The simulations were performed at

kBT = 0.3, εAA = 1.6 and εwall = 3.0. The layers of the interphase show

up clearly in the profiles of the shear modulus.
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“They wanted facts. Facts!

They demanded facts from him,

as if facts could explain anything.”

(Joseph Conrad)

In this thesis, I have used computer simulations to investigate the single-chain prop-

erties, morphology, dynamics, and local mechanical properties of random block copoly-

mer melts in the volume and in contact with a selective substrate.

In chapter 2 we have described the two distinctly different models and methods we

have used to simulate random block copolymer melts. A soft, coarse-grained model in

conjunction with SCMF simulations was used because of its computational efficiency,

thus being able to equilibrate a system fast and explore the role of model parameters

systematically, while the Lennard-Jones bead-spring model has slower, more accurate

dynamics, and allows us to probe elastic properties due to the harsh repulsion of the

monomers.

In chapter 3, we have investigated the bulk properties of random block copolymer

melts with the help of the two aforementioned model/method combinations. We have

found parameters for the two models which result in similar mesoscopic structure of

and similar conformations in the random block copolymer melt. With increasing in-

compatibility of the two monomer types, both models form microemulsion-like struc-

tures. For a high value of the incompatibility in long-running SCMF simulations, we

have found an indication of a lamellar phase, which is in accordance with mean-field

calculations [FM91, FML92] and recent simulations [GKKC11]. The growing length

scale of the domains with growing incompatibility is, however, in contradiction to the

mean-field predictions [FM91, FML92]. The similarity of the mesoscopic structures

of the two models can be used to significantly reduce the time needed for an equili-

bration in MD simulations. When using equilibrated SCMF configurations as starting

configurations for MD simulations, the equilibration time is reduced by an order of
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magnitude at the least. A comparison of the dynamic properties of the two models,

the mean squared displacement and the end-to-end vector autocorrelation function,

shows differences between the two models for pairs of parameters at which the struc-

tural properties agree. The slowing-down of the dynamics in the Lennard-Jones bead-

spring model is more pronounced than for the soft, coarse-grained model with rising

incompatibility. We have introduced a method to calculate the global and local elastic

properties based on the calculation of the local elastic modulus tensor [Lut88, Lut89].

When comparing experimental results to the global elastic properties of the Lennard-

Jones bead-spring model, the elastic properties from our simulations are three orders of

magnitude too small. However, the relation between shear and bulk modulus is similar

to the one observed in poly(methyl methacrylate) glasses. We have also investigated

the local elastic properties of random block copolymer melts for different degrees of

incompatibility. We see a clear difference of the elastic properties between A-rich,

B-rich domains and their interfaces when the structure of the random block copoly-

mer melt is microemulsion-like. However, we are not able to reproduce a correlation

between the local shear stress and the local shear modulus in a sheared system, which

had previously been found [YJvW+04].

The mapping between the two models, and the way to access elastic properties in

the Lennard-Jones bead-spring model, provide a great opportunity to investigate the

elastic properties of random block copolymer melts in even more detail in the future,

for example under larger deformations.

Finding and describing properties of the interphase of a random block copolymer

melt in contact with a selectively attractive substrate was the main aim of chapter 4.

The linear response theory as used for diblock copolymer melts [MM96] has proven

to be very effective in predicting the composition profile of the melt in contact with a

selective substrate from the static structure factor of the composition of the bulk melt.

The layer-like structure, which forms for incompatibilities that show microemulsion-

like structures in the bulk, gives rise to a region called the interphase [BB95]. The

interphase is even more pronounced when regarding the concentration of the different

polymer species found in a random block copolymer melt, categorized according to

the number of B-blocks they contain. Looking at the conformational profile of the

interphase, we have found an indication of the interphase in observables like the radius

of gyration which is perpendicular to the plane of the substrate. Especially for higher

incompatibility of the monomers, the layering of the composition clearly influences
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the conformations of the polymers. Furthermore, we observe a speed-up of the motion

parallel to the substrate in the interface and interphase regions, while the motion per-

pendicular to the substrate in these two regions is greatly reduced. The mapping from

the soft, coarse-grained model to the Lennard-Jones bead-spring model in the case of a

selective substrate is less straightforward than in the bulk. The low and high values of

incompatibility show a speed-up of equilibration time, whereas the intermediate value,

where a microemulsion-like structure with broad interfaces between domains forms in

the bulk, takes longer to equilibrate due to strong fluctuations in the interphase. Fi-

nally, the local shear modulus in the interface and interphase deviates from the bulk

values as well. The profile of the shear modulus, especially in the interface region,

is the result of an intricate interplay of concentration of monomer types and the local

density in this region.

The fractionation of chain types, dynamical and conformational changes in the in-

terphase, as well as a change in elastic properties, give a very good starting point

for the further investigation and characterization of this small but important region of

polymers in contact with a selective solid substrate. The proportion of the interphase

with respect to the whole volume can be enhanced by using nanoparticles, where each

nanoparticle generates its own interphase. As we have seen from the analysis of the

dynamics, it change significantly in the interface and interphase. We have worked

with fixed sequences, but how would the dynamics change and be influenced by an

(ir)reversible polymerization process? The influence of the coarse-grained model’s

coarseness on the interface [MSD+11] or interphase properties is a topic which merits

investigation for random block copolymers as well.
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