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1 Introduction

1.1 Droplet Distributions in Hydrodynamic Systems

The appearance of droplets is an every day phenomenon. We are familiar with water vapor
condensing on cold glasses in winter, on a mirror after having a bath or on the lid of a
cooking pan. When having a shower or using a deodorant in the morning, the day starts
in the presence of droplets. Liquid droplets in a gas occur naturally in the atmosphere
and manifest under different conditions as fog [47, 89], clouds [14, 36, 90, 103, 120], dew
[16, 17, 19, 86] or steam [2, 136].
Furthermore, droplets are technically relevant in many fields, including sprays, humidi-
fiers, heat exchangers [57, 97, 104, 117], combustion chambers, turbines [136] and food
preparation [37].
A rich variety of phenomena is involved in the evolution of droplets. Droplets nucleate
and grow by condensation or evaporate [101], depending on the ambient conditions. They
can collide [61] and coalesce [138], be deformed and break up [122]. In the presence of
gravity, droplets may sediment or drip off a substrate. Further more, chemical reactions
and surfactants can affect the fate of droplets [119].
The size distributions of droplets are typically broad, polydisperse, sometimes mono- or
bidisperse. Sometimes self-similarity in the distributions arises due to the interplay of
several growth processes [18, 30, 51, 52, 83, 142], meaning that a rescaled part of the
droplet distribution is statistically similar to the whole distribution.
Studying the evolution of droplet distributions is a crucial step in enhancing the under-
standing of physical processes in nature like the formation of rain [44, 90] or dew [16, 19].
Heat and mass transport as well as turbulence characteristics are affected significantly by
the distribution of droplet sizes [62]. With online in situ measurements of the droplet
distribution, industrial processes can be monitored and optimized by studying the effect
of the process parameters on the droplet distribution [62, 70, 73].
In the presence of solid walls, wetting properties are important, yielding phenomena like
drop-wise condensation, also called breath figures [3, 4, 18, 46, 52, 53, 91, 92]. In other
cases, interaction with the carrier flow and sedimentation due to gravity dominate the
picture [5, 75, 93, 110].
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1 Introduction

1.2 Aims and Scope of Thesis

The overall aim of this thesis is to investigate the evolution of droplet size distributions in
hydrodynamic systems. For this purpose, two systems were chosen which allow to study
different phenomena affecting the evolution of size distributions.

Breath Figures As a first paradigm we look at the formation of breath figures, where
droplets nucleate on a surface. A natural example for breath figures is dew forming on
leaves (figure 1.1(a)) or spider webs (figure 1.1(b)). The photograph in figure 1.1(a) shows
a broad size distribution of droplets. Sliding down and coalesce of droplets can be observed.
The shape of the droplets is controlled by the wetting properties of the surface.

(a) (b)

Figure 1.1: Breath figures in nature: Dew droplets can be found on two-dimensional substrates
like a leaf (a1) and on effectively one-dimensional substrates like a spider’s web (b2).
1http://commons.wikimedia.org/wiki/File:Dew_drops_on_a_leaf.jpg by Vishesh Bajpai (own work),
CC-BY-SA-3.0 via Wikimedia Commons
2http://commons.wikimedia.org/wiki/File:Dew_on_spider_web_Luc_Viatour.jpg by Luc Viatour (www.lucnix.be),
CC-BY-SA-3.0 via Wikimedia Commons.

The interplay of nucleation, diffusion, coalescence and sliding or dripping creates a self-
similar and strongly correlated droplet pattern, that we study with means of digital image
processing. To this end, we build an experimental setup and we develop an image pro-
cessing algorithm based on the reflection patterns of the droplets to detect droplets in the
range of 3µm to 3mm in radius. Experimental data are compared to molecular dynamic
simulations of droplets on horizontal substrates performed by Blaschke [23]. We extend
the scaling description from Family and Meakin [46] by relating breath figures to fractal
packings. Further more, we develop a model for the lower cutoff of the droplet size dis-

2



1.2 Aims and Scope of Thesis

tribution. We correct for the discrepancies of the description in [46] for the scaling of the
size distribution and the change of the substrate fraction wetted by droplets. Then we
analyze the correlations of the droplet pattern and relate it to the coalescence probability
of droplets. We show that a kinetic equation based on a pairwise coalescence kernel is not
suitable for modeling the evolution of the droplet size distribution.

Phase Separation As a second paradigm, droplets in slowly demixing binary fluids are
investigated. A complex interplay between nucleation, diffusion, collisions and sedimenta-
tion yields an oscillatory behavior of the phase separation process [8, 15, 33, 60, 128–130].
A fully automated experimental setup is designed and constructed to visualize droplets
down to a radius of 3µm. We develop a droplet detection and tracking algorithm in or-
der to accurately measure the droplet size distribution and droplet and flow velocities.
We show that the droplet size distribution undergoes repeated precipitation cycles of nu-
cleation, diffusional growth, collisions and sedimentation. The observed cycle forms an
analogy to the precipitation cycle observed in rain formation. In clouds, the micro-physics
of the droplet evolution is coupled to large scale turbulence (see figure 1.2). The phase
separation experiment however is much simpler because the influence of turbulence on the
droplet dynamics is suppressed.
We study the parameter dependence of the oscillation period and amplitude finding a non-
trivial dependence on the rate of temperature change. Based on a simple model equation
for the droplet growth rate, we derive a prediction for the period and amplitude of the
oscillation in droplet volume fraction. Further more, we predict a bottleneck in droplet
growth that we relate to the evolution of the typical droplet radius in the experiment.

Figure 1.2: Cumulus cloud in
Nepal1. Cloud droplets scatter light
and therefore influence the heat
balance of the earth’s atmosphere.
They couple the micro-physics of
clouds to large scale turbulence.
1http://commons.wikimedia.org/wiki/
File:Cloud_in_nepal.jpg by Krish Dulal
(own work),
CC-BY-SA-3.0 via Wikimedia Commons

In the next chapter 2, we investigate the formation of breath figures. It is followed by
chapter 3 on the phase separation in binary fluids. Finally, we summarize our work and
conclude with chapter 4.
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2 Breath Figures

2.1 Introduction
The first studies of droplet patterns on plates go back to Lord Rayleigh [91, 92] and Aitken
[3, 4]. They were motivated by the following observation: If one aspirates on a cold plate,
the moisture condenses and the droplet pattern reveals dirt or imperfections on the plate.
Depending on the wetting properties of the substrate, either a film is formed which appears
dark, or droplets are created that scatter light [18]. These breath figures are a simple way
of visualizing surface defects. In nature, these patterns can be observed as dew on leaves
at chilly conditions (see figure 1.1(a)). In general, one finds three dimensional droplets
on a two dimensional plane. However, three dimensional droplets can also be found on
one dimensional wires, for example dew droplets on a spider’s web (figure 1.1(b)) or on
grooved surfaces [85]. Drop-wise condensation has been studied experimentally on a variety
of systems. Léopoldès and Bucknall [68] looked at chemical patterned substrates and
found droplets self-assembling and coalescing on the chemical boundaries between different
wetting properties. Other examples for substrates and solvents include GaAs on Si [20],
Ga on GaAs(001) [142] or tin on sapphire [46]. Also droplets on the surface air/paraffin
oil or liquid crystals, or on cyclohexane near the melting point and super-hydrophobic
patterned substrates were studied [17]. Finally, also water droplets on promoted copper
surfaces [57, 117] have been used for investigations.
Technical studies on the evolution of breath figures have been motivated by the effort in
optimizing heat exchangers [57, 97, 104, 106, 117]. The evaporation of droplets [101] and
the condensation of water vapor on the surface of the condenser consumes or releases a
significant amount of latent heat [12]. Additionally, droplets attached to a wall affect the
fluid motion next to it. A distribution of droplets on a wall effectively creates a rough
structure on the wall. If the biggest droplet radii become comparable to the thermal
boundary layer thickness, this will further affect the heat transport [113]. Since the pres-
ence of droplets is a wide spread phenomenon, breath figures are relevant for a variety
of disciplines, including medicine (sterilization process), agriculture (green houses) and
hydrology (production of drinkable water) [17, 82, 86].
Our interest in studying breath figures is motivated by the following two observations:
In the first place, they constitute an example for self-similar droplet distributions with
non-trivial scaling properties [46] that are still not fully understood so far. In numerical
simulations, Meakin, Beysens and coworkers [30, 45, 46, 51, 52, 79, 80, 112] investigated the
evolution of the size distribution of the droplets and extended their analysis to arbitrary
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2 Breath Figures

Figure 2.1: Water droplets on a
glass plate covered by a polyethy-
lene foil at 20℃. Contact line pin-
ning is reduced and the droplets
are almost perfectly spherical
caps. A strong correlation between
droplet sizes within neighborhoods
can be observed.

dimensions of droplets and substrate. Family and Meakin provide theoretical predictions
for the scaling of the size distribution [46], however, the simulated exponents deviate from
the prediction, the origin of the deviation remaining unclear. We will resolve this issue by
a careful analysis of the lower cutoff of the distribution and by comparing breath figures to
fractal packings. In the second place, visual inspection of a breath figures, such as the one
shown in figure 2.1 reveals a strong correlation between droplet sizes within neighborhoods.
To our knowledge, this has not been looked into before, and we want to characterize and
to understand the reason for these correlations.
To measure the droplet size distribution and the correlation between droplet sizes, we
design and construct an experimental setup to produce breath figures in a well controlled
manner. We set up an imaging system with two different resolutions to measure droplet
sizes in the range of 3µm to 3mm. For each resolution, we develop an image processing
algorithm from scratch to fully automatically detect more than 5000 droplets in each image
for a broad range of radii. Taking about 10000 images during each measurement yields
the basis for the statistical analysis of correlations.
In the following, we give a short outline of the structure of the chapter. We start by
reviewing the state of the art modeling of breath figures in section 2.2. In section 2.3,
the experimental setup is introduced and the measurement protocol is explained. We
then describe in section 2.4 the image processing algorithms that we developed in order
to detect the droplets. In section 2.5 we present the experimental results for the droplet
size distribution and the pair distribution function. We compare our experimental results
to our model and to numerical simulations of Blaschke [23]. The chapter is completed by
a discussion in section 2.6.

6



2.2 State of the Art Modeling

2.2 State of the Art Modeling

In this section, we review the state of the art modeling for breath figures. First, we look
at the wetting of substrates by individual droplets in section 2.2.1. Then, in section 2.2.2
we introduce the four stages in the evolution of breath figures which have been discussed
in the literature. We introduce the concept of fractal packings in section 2.2.3, which
will form a starting point for our analysis. Finally, we present a kinetic equation for the
evolution of the droplet size distribution in section 2.2.4.

2.2.1 Wetting of Substrates

In order to understand the properties of droplet distributions on substrates, it is essential
to be familiar with the wetting of substrates by individual droplets. The surface of a liquid
is associated with a surface energy . It originates in the cohesiveness of the molecules that
form the liquid. The molecules that are in the bulk of the fluid are attracted by molecules
from all directions, so the net force is zero. Molecules residing on the surface are attracted
from the bulk molecules yielding a net force normal to the surface plane towards the liquid.
Therefore, it is energetically favorable to minimize the area of the interface between the
two fluids. The energy which is necessary to increase the surface area is called surface
energy or surface tension γ.
In figure 2.2 a sketch of a droplet in a gas phase attached to a solid substrate is shown.
A three phase contact line forms with an apparent contact angle ϑ. The contact angle
is determined by a balance between the surface energy of the liquid-gas (γlg), liquid-solid
(γls) and gas-solid (γgs) interfaces, as sketched in the figure. The balance of the tangential

Figure 2.2: When a liquid droplet is at-
tached to a solid, a three phase contact line
forms. The liquid-gas interface forms an ap-
parent contact angle ϑ. The tangential part of
the liquid-gas surface tension γlg is balanced
by the liquid-solid γls and the gas-solid γgs ten-
sions. The normal component of the liquid-gas
surface tension is balanced by a small deforma-
tion of the substrate.

forces is described by the Young equation

γlg cosϑ = γgs − γls. (2.1)

The normal component of the liquid-gas surface tension is balanced by a small deformation
of the substrate. In case of moving contact lines, advancing and receding contact angles
usually differ from the static contact angle [42]. This phenomenon is known as contact

7



2 Breath Figures

angle hysteresis resulting from pinning of the contact line [115, 116] due to microscopic
geometric imperfections or chemical impurities on the substrate [25, 94]. In general, this
causes irregular droplet shapes, which have been observed in preliminary breath figure
experiments with water droplets on a glass plate, shown in figure 2.3.

Figure 2.3: Water droplets on a
glass plate at 20℃. Contact line
pinning causes irregular shapes
which can be seen by the reflec-
tions on the droplet surface. The
dimensions of the image are 5 × 4
cm. The biggest droplets (diam-
eter ∼1cm) are deformed by grav-
ity, yielding a close to circular con-
tact line.

For precise measurements of the droplet size and a detailed comparison to analytical
models and numerical simulations, it is preferential to suppress pinning effects. Contact
line pinning is smallest if the contact angle is close to 90°, when the liquid-solid and the
gas-solid tensions have the same magnitude. A classical way to achieve this is immersing
borosilicate glass plates into a hydrofluoric acid solution with subsequent silanization [18].
An alternative procedure is to cover the substrate by a thin polyethylene foil. It can be
purchased as cling foil in the supermarket. The resulting droplet pattern consists of fairly
circular droplets as can be seen in figure 2.4.
For small droplets, gravity can be neglected and the droplet shape has the form of a
spherical cap, if pinning can be neglected. The size (i.e. volume) of droplets is given by

s(r,ϑ) = c(ϑ)r3, (2.2)

where c(ϑ) is a geometric function depending on the contact angle [116]

c = π

3
2− 3 cosϑ+ cos3 ϑ

sin3 ϑ
. (2.3)

For a contact angle of ϑ = 90°, the droplet size is given by equation (2.2) with c = 2π/3.

8



2.2 State of the Art Modeling

(a) (b)

(c) (d)

Figure 2.4: Water droplets on a polyethylene foil. Pictures representative for the four different
regimes in the formation of breath figures are shown.
(a) Isolated growth regime (i): Droplets grow to a radius R ∼ 2µm solely limited by diffusion,
coalescences being insignificant.
(b) Intermediate-time regime (ii). Droplets grow to a radius R ∼ 12µm by diffusion and coa-
lescences. The size distribution is quite narrow with a radius polydispersity of about 0.18 [51]
centered around a typical radius growing in time. The wetted fraction saturates at about 55%.
(c) Self-similar size distribution (iii): In the free substrate area between the droplets new genera-
tions of droplets are nucleated creating a bimodal size distribution. Many generations of droplets
form a self-similar tail of the size distribution with a scaling regime. Note that the smallest droplets
are relatively isolated compared to regime (ii). The biggest droplet at the top is relaxing after a
coalescence event and therefore not circular yet.
(d) Steady-state drop-wise condensation (iv): Droplets with a radius r & 0.2lc close to the cap-
illary length get distorted and eventually drip off. The released areas are repopulated by new
generations of droplets. Many self-similar size distributions of type (iii) are growing next to each
other on the substrate. After a few hours a steady-state is reached.
The time scale for the evolution of the droplet pattern depends on the volume flux onto the sub-
strate. The photographs are taken in a measurement with the flux 0.13µm/s. 9



2 Breath Figures

The length scale on which gravity dominates is the capillary length

lc ≡
√
γ

ρg
, (2.4)

where γ denotes the liquid-gas surface tension, ρ is the density of the liquid and g=9.81m/s2

is the gravitational acceleration. For a water droplet on air at 20℃, γ=72.8mN/m and
ρ=0.998g/cm3 giving lc=2.73mm for the capillary length. When the radius of a droplet
exceeds about 20% of the capillary length, it gets distorted and the shape deviates from a
spherical cap [23, 135]. The details of the distortion depend on the contact angle and on
the contact angle hysteresis [104].

2.2.2 Droplet Growth Regimes

Experimental studies of breath figures identified four stages of growth [51]. In figure 2.4
we present images recorded during an experiment, that are representative for the different
regimes. After a big portion of the substrate is released by coalescence and dripping of
big droplets, it is covered by a large number of rather isolated droplets (i) for about one
second. In a subsequent intermediate time regime (ii), the droplets coalesce and form a
distribution which is self-similar in time. This means that the shape of the distribution
remains constant, only the mean droplet size evolves in time. After approximately half
a minute, secondary nucleation sets in and a self-similar droplet size distribution (iii)
develops. Two hours later, the radius of the first droplets gets close to the capillary length
(2.4) and drip off. On the released area new generations of droplets form, yielding a steady
state of drop-wise condensation (iv). In the following, the four regimes are described in
detail. Note that the exact time scales of the regimes depend on the details of the system.
The times given above correspond to an experimental run with a volume flux of 0.13µm/s
onto the substrate.

2.2.2.1 Isolated Droplets (i)

At the beginning, the surface coverage is quite low. Therefore the droplets rarely coalesce
and grow independent of each other. Briscoe and Galvin [31] distinguish two types of
growth in this regime:

Type I: Diffusion Limited Type I growth is limited by diffusion of vapor or heat. Rogers
et al. [95] give a derivation for the growth exponent of the droplet radius. We present
a simplified version here, for a more thorough discussion the reader is directed to the
literature [95]. From a boundary layer of thickness ξ monomers diffuse to the perimeter
of the droplet

V̇ ∼ D

ξ
2πr (2.5)

10



2.2 State of the Art Modeling

where D denotes the diffusion coefficient, r the droplet radius and V the droplet volume.
Hence in dimensionless quantities the radius growth rate reads

ṙ ∼ 1
ξr
. (2.6)

To estimate the evolution of the boundary layer thickness, it is helpful to look at the
depletion of monomers h in the boundary layer, which is proportional to

h ∼ πrξ. (2.7)

On average, the number of monomers entering the growing droplet has to balance the
amount leaving the boundary layer. Averaging over the droplet radius distribution n(r)
leads to the relation ∫

drn(r)ḣ ∼
∫

drn(r)V̇ . (2.8)

Following [95], we introduce averages over the radius distribution

〈f〉 ≡
∫
drn(r)f(r)∫
drn(r) . (2.9)

Inserting (2.6) and (2.7) into (2.8) and applying the product rule for differentiation gives

ξ〈ṙ〉+ 〈r〉ξ̇ ∼ 〈r〉
ξ
. (2.10)

Multiplying by ξ/〈r〉 yields
ξ〈r−1〉
〈r〉

+ ξξ̇ ∼ const. (2.11)

Provided the second term on the left hand side asymptotically dominates over the first
term, the asymptotic scaling of the boundary layer thickness follows [95]

ξ ∼ t1/2. (2.12)

Together with (2.6) one gets the scaling for the droplet radius

r ∼ tµ (2.13)

with the growth exponent µ = 1/4.

Type II: Flux Limited In the other case, the volume flux onto the substrate is limiting
the growth rather than diffusion. The growth rate of the individual droplet volume V is

11



2 Breath Figures

given by
V̇ ∼ F

π(l/2)2 , (2.14)

where F is the volume flux on the substrate and l is the average droplet distance. In
regime (i) coalescences can be neglected, implying that the droplet distance is constant.
As a consequence, we find

V ∼ t and therefore (2.15)
r ∼ t1/3, (2.16)

hence µ=1/3 [79, 123].

Usually in the isolated droplet regime, the droplet radius is difficult to measure in optical
experiments because droplets are smaller than 2µm where the resolution is limited by
diffraction.

2.2.2.2 Intermediate-Time Regime (ii)

After about one second, the droplets are closely packed and start to touch their neigh-
bors. This happens, when the wetted fraction exceeds about 30% [17], compare figure 2.5.
Coalescences of adjacent droplets are observed frequently (compare figure 2.4(b)). The
free space between the droplets is so small that hardly any new droplets are nucleated.
The size distribution is almost uniform [51] with a radius polydispersity of about 18%
[17]. When a big droplet is formed by coalescence, the area is released around it so that
it is relatively isolated for some time. During this time, smaller droplets can catch up and
coalesce to form bigger droplets themselves.
Beysens and cooperators [16, 17, 30, 31, 51] emphasize that the wetted fraction w ap-
proaches a saturation value of about 55% in this regime. The increase of w by the individ-
ual growth of droplets is balanced by the release of substrate area through coalescences.
This results in a droplet pattern that is self-similar in time. The droplet radius distribution
n(r,t) can be rescaled by the typical droplet radius R(t)

n(r,t) ∼ f
(

r

R(t)

)
(2.17)

where f characterizes the asymptotic shape of the distribution. The mean radius grows
according to R ∼ tµ0 with µ0 = 3µ, as can be seen in figures 2.5 and 2.6. Figure 2.5 (left)
shows the mean droplet radius as a function of time, where the growth exponent changes
from 1/3 to 1. Figure 2.5 (right) shows the evolution of the wetted fraction with time,
saturating between 55% and 60%. The growth of an individual droplet is shown in figure
2.6. The factor between the two growth exponents is determined by the dimensions of the
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Figure 2.5: Evolution of the mean droplet radius (left) and the wetted fraction (right) in time.
The growth exponent for the radius changes from µ = 1/3 for isolated droplets (i) to µ0 = 1 for
coalescing droplets (ii), when the wetted fraction is about 30%. The figure is taken from [17],
showing experimental data for type II growth.

droplets δd and the substrate δs [123]

µ = µ0
δd − δs
δd

. (2.18)

Growth exponents 1/4 ≤ µ ≤ 1/3 are observed in experiments. Fritter et al [51] find an
exponent that depends on whether temperature effects play a role or not. The relation
µ0 = 3µ is demonstrated to be quite robust in the experiments of Fritter [51]. Based on a
kinetic equation for the evolution of the droplet size distribution, which will be described
later in section 2.2.4 and a scaling assumption for the droplet size distribution, Rogers et
al. [95] also derive µ0 = 3µ for three dimensional droplets on two dimensional substrates.

2.2.2.3 Self-Similar Size Distribution (iii)

Formation of a Bimodal Distribution When the space between droplets reaches a critical
size, diffusion of the monomers on the substrate towards the droplets is slow. Away from
the droplets the nucleation threshold is reached at some imperfections of the substrate
and secondary nucleation sets in. New droplets nucleate on the areas released through
coalescences of droplets. A bimodal size distribution develops [51], which can be seen in
the photograph in figure 2.4(c). The first generation of droplets continues to grow the way
it did in regime (ii). The portion of substrate which is wetted by these droplets remains
at about 55%. Inbetween the first generation droplets, the new generations of nucleated
droplets form a distinct second part of the size distribution.
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Figure 2.6: Growth of an individual droplet, as published in [18]. The individual droplet grows
with exponent µ = 0.23 between coalescences with adjacent droplets (type I growth). At a coa-
lescence, the radius jumps resulting in steps in the radius evolution. The mean radius grows with
the exponent µ0 = 3µ.

Scaling of Size Distribution First simulations of the droplet size distribution in regime
(iii) were performed by Family and Meakin [45, 46]. The result of their simulation for 3d
droplets on 2d substrates is shown in figure 2.7. The number Ns of droplets of size (i.e.
volume) s at different times are plotted (figure 2.7(a)). One observes the position of the
peak in the size distribution (the oldest droplets) to grow in time. The tail of smaller
droplets follows a power law distribution. The shape of the full distribution simulated in
[46] is constant. This motivates a scaling approach for the description of the droplet size
distribution

n(s,t) ∼ s−θf
(

s

S(t)

)
(2.19)

where S(t) is the typical size of the biggest droplets and n(s) is the number of droplets
per unit area. For θ = 5/3 Family and Meakin [46] find that the distribution of different
times can be perfectly rescaled, which is shown in figure 2.7(b).
Furthermore, they provide an argument based on (2.19) to derive the exponent θ as a
function of the dimensions of the droplets δd and the substrate δs. For 3d droplets on 2d
substrates their derivation is summarized in the following. Family and Meakin calculate
moments of the size distribution without dealing explicitly with the boundaries of the
integrals in [46]. In our exposition here, we will explicity keep track of the boundaries
of integration over the size distribution in order to point out some pitfalls of the original
argument. The size of the biggest droplets is assumed to scale with time according to

S(t) ∼ tz. (2.20)

The volume in the system is proportional to the time t, i.e. the volume flux onto the
substrate is fixed. Using (2.19) for the computation of the total volume per unit area
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(a) (b)

Figure 2.7: Self-similar droplet size distributions, obtained in numerical simulations by Family
and Meakin [46].
Left: The number of droplets Ns of size (i.e. volume) s is plotted for several instances in time.
Right: The number of droplets Ns is rescaled with s5/3 and the droplet sizes s are rescaled by the
size S(t) of the "bump" in the distribution. The rescaled distributions at different times fall on top
of each other. Note that the scaling assumption was used a priori in the design of the numerical
scheme.

gives

t ∼
∫ ∞
s0

sn(s)ds

∼
∫ ∞
s0

s1+θf

(
s

S(t)

)
ds (2.21)

∼ S(t)2−θ ×
∫ ∞
s0/S(t)

x1−θf(x)dx

∼ tz(2−θ).

On the way the substitution x ≡ s/S was used and s0 is the size of the smallest droplets in
the system. The last line follows from the assertion that the integral

∫∞
s0/S(t) x

1−θf(x)dx
does not depend on time. We emphasise, that this is only true if

x1−θf(x)→ 0 for x→ 0 (2.22)

We end up with a relation for the growth exponent of the size S and the exponent of the
size distribution θ

1 = z(2− θ). (2.23)

To pin down the exponent θ, the wetted fraction of the substrate w is considered analogous
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to the volume density of the system (2.22)

w(t) ∼
∫ ∞
s0

s2/3n(s,t)ds

∼
∫ ∞
s0

s2/3−θf

(
s

S(t)

)
ds (2.24)

∼ S(t)5/3−θ ×
∫ ∞
s0/S(t)

x2/3−θf(x)dx.

Family and Meakin argue that since the wetted fraction of the substrate cannot diverge,
the scaling exponent has to be θ = 5/3. Together with (2.23) follows z = 3, hence

S(t) ∼ t3. (2.25)

. In their numerical work, they find z = 2.92, while the rescaling of the size distribution
with the derived value for θ works very well.

Problems in Present Theory We see three problems in the presented theoretical descrip-
tion: At first, it is important to note that the scaling assumption was a priori used in the
construction of the numerical scheme: In each time step, all droplets are rescaled by a
certain factor and then overlapping droplets coalesce to bigger droplets. This way, the
effect of lower or upper cutoffs for the size distribution are obscured.
In real physical systems, however, there is a smallest droplet size. Therefore, one has to
keep track of the upper and the lower bounds of the integrals in (2.22) and (2.25). The
integrals may diverge if the lower bound goes to zero and f(x) does not go fast enough to
zero for x→ 0.
Secondly, the scaling part of the rescaled size distribution is not flat (confer figure 2.7(b)),
but a finite slope of 0.13 is observed. This slope is not explained in the theory presented
by Family and Meakin [46].
Finally, it turns out that the wetted fraction is not a constant in regime (iii), but slowly in-
creasing (confer section 2.5.1.6). The time dependence of w should therefore be accounted
for in the analysis of (2.25).

2.2.2.4 Steady-State Drop-wise Condensation (iv)

Droplets residing on vertical substrates slide down once they reach a critical radius of the
order of the capillary length, defined in equation (2.4) [104]. They coalesce with droplets
on their way, yielding stripes in the droplet pattern. On the stripes, new generations of
droplets are nucleated. After an initial transient, a steady-state is observed [80], where
the size distribution depends on the vertical coordinate. The size distribution of droplets
in the vertical setting was investigated by engineers because of the droplets’ impact on
the performance of heat exchangers [97, 117]. They found a droplet radius distribution of
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the form
n(r) ∼ r−θr with θr ≈ 2.7. (2.26)

Note that this scaling of the radius distribution corresponds to the exponent 5/3-0.13
observed in the simulations of Family and Meakin [46] for the self-similar size distribution
in regime (iii), when transferring radii into sizes (volumes) in (2.26).
Considering pendant droplets on a horizontal substrate, the situation is slightly simpler.
Droplets of a critical radius drip off without sliding and new generations of droplets are
nucleated in the released areas of the substrate, as can be seen in figure 2.4(d). In the
latter setting, the distribution is isotropic and homogeneous in contrast to the vertical
setting making data analysis and theoretical modeling more tractable.
How does droplet distortion and dripping of droplets due to gravity affect the droplet size
distribution? Do we find the same scaling of the size distribution on horizontal substrates
as the one measured on vertical substrates (2.26)?

2.2.3 Characterizing the Droplet Patterns: Fractal Packings

The size distribution of droplets in regimes (iii) and (iv) shows a self-similar pattern:
Taking only a part of the droplet pattern and rescaling the size, it is statistically similar
to the whole original pattern. Loosely speaking, this means that zooming into images of
breath figures, they still look the same. For several orders of magnitude in length scale,
the patterns are scale free. Only when looking at the smallest or the biggest droplets, the
influence of fixed length scales is observed.
Self-similar packings of particles have been studied in great detail in order to characterize
fractal packings [26, 27, 49, 58, 76, 77, 121]. Due to the self-similarity of the droplet
pattern, breath figures can be regarded as a physical example for a fractal packing. Breath
figures evolve from small scales to large scales. A fractal packing however is constructed
vice versa. First big particles are added to the system, then free gaps are subsequently
filled with smaller particles following certain rules. A variety of fractal packings have been
described , which are characterized by a fractal dimension df

N ∼
(
R

r

)df
, (2.27)

Where N is the number of particles in the system, R is the radius of the biggest and r
is the radius of the smallest particles. An example for a fractal packing [76] is shown in
figure 2.8. This packing is created applying the rule that each disc should have exactly
one neighbor. Interestingly the fractal dimenstion of this packing df = 1.64 turns out to
be very close to the fractal dimension of breath figures, which we will determine in section
2.5.1. We will now present another approach that has been used to study the evolution of
the droplet size distribution in regime (ii) [95].

17



2 Breath Figures

Figure 2.8: The random packing pattern
shows 1500 disks. The packing created by
Manna [76] has a fractal dimension of 1.64,
which turns out to be very close to the fractal
dimension of breath figures (confer section
2.5.1). The pattern is produced following
the rule that each droplet has exactly one
touching neighbor.

2.2.4 Kinetic Equation for Evolution of Droplet Size Distribution

Often, the aggregation of clusters is studied with the coagulation equation proposed by
Smoluchowski [108]. It has been applied to breath figures, e.g. to derive the radio between
the growth rates of individual droplets and mean droplet radius [95]. The Smoluchowski
equation for the evolution of the size distribution reads

∂n(s,t)
∂t

= 1
2

∫ s

0
K(s− s′,s′)n(s− s′,t)n(s′,t)ds′ −

∫ ∞
0

K(s,s′)n(s,t)n(s′,t)ds′. (2.28)

The first term on the RHS describes the creation of particles by collisions of smaller ones.
The second term refers to the particles being consumed by collisions with other particles.
This equation is only useful of course, if the factor K(s,s′) is known.
Applying a scaling argument, Family and Meakin [46] show that when rescaling the droplet
sizes by a factor s→ λs, the factor K has to be rescaled according to K → λ1/3K. They
add terms to equation (2.28) to account for the intrinsic growth of individual droplets due
to the volume flux from the vapor onto the droplets.
In the work of Rogers et al. [95] a guess for K(r,r′) is given (now refering to radii instead
of sizes)

K(r,r′) = 2π(r + r′)(ṙ + ṙ′). (2.29)

The radii of the coalescence partners are r and r′. The growth rates ṙ and ṙ′ refer to the
intrinsic droplet growth rates. Equation (2.29) is consistent with the scaling prediction
of [46] mentioned above. Spatial correlations in the droplet pattern are not accounted for
in equation (2.29). As we will show later, the average growth rate of individual droplets

18



2.2 State of the Art Modeling

does not depend on size. Therefore we define a coalescence kernel by

κ(r,r′) ≡ K(r,r′)
2ṙ . (2.30)

It will be used in the analysis of spatial correlations in breath figures (confer section 2.5.3).
Provided the coalescence kernel is known, can the evolution of the droplet size distribution
in regime (iii) to (iv) also be modeled by integration of the Smoluchowski equation (2.28)?
We will try this in section 2.5.4. We now move on to describe the experimental setup that
we designed to study breath figures.
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2.3 Experiment

2.3.1 Experimental Setup

To study the evolution of the droplet size distribution in breath figures, we choose to look
at pendant droplets on a horizontal substrate. Depending on the magnification, different
regimes can be studied. When a low resolution is chosen (44.4 pixel/mm), a large portion
of the substrate can be imaged and measurements for the steady-state regime can be
taken for one or two days. With a high resolution (2.0 pixel/µm), however, it is possible
to study regimes (i) to (iii) on a region released after a coalescence and dripping event. In
the following, the details of the experimental setup are described.

Vapor Cell A sketch of the experimental setup is shown in figure 2.9. The setup is similar
to a steam cooker: A heating plate at the bottom heats a layer of water (about 1cm height)
which evaporates. The vapor is transported by convection to the cooled top plate, where it
condenses. The glass plate is covered with polyethylene yielding a contact angle of about
90° [12] (compare figure 2.10). The droplets grow until they reach a critical size and
drop. Using a constant heating power (16.2 W) and a constant top plate temperature of
20℃, the system is in a steady state after a few hours. The temperature of the top plate
is controlled by a Haake thermostat DC 30 to ±0.02K. A temperature sensor (PT100)
measures the water surface temperature. The amplified signal is acquired by a National
Instruments data acquisition card. The cell and the temperature sensor are coated with
black color to reduce unwanted reflections.

Image Acquisition Images are taken with a JAI BM500 CL 2/3" CCD camera at a
constant frame rate between 0.1Hz and 5Hz with the resolution of 2448×2058 pixels. The
data is transfered by a CameraLink cable to a frame grabber, which controls the camera.
With an Edmund optics macro video zoom lens (f=18-108mm, numerical aperture 1/2.5)
the magnification is adjusted to 44.4pixel/mm of the substrate. Alternatively, with the
macro system and a f=35mm macro objective with aperture 1/2.8 of SCHNEIDER Optics
a magnification of 2034pixel/mm is achieved. The camera is mounted on a custom-made
stand with adjustable vertical and horizontal position and adjustable viewing angle. We
developed a C++ executable based on C and C++ libraries and examples provided by
SaperaLT to operate the camera. The acquisition time of each frame is recorded in a log
file. the frame rate of each image series is calculated from the log file.

Illumination The substrate is illuminated applying a dark field illumination. When the
substrate is clean, the images are dark. Light coming from the side is reflected by the
droplets and projected on the camera chip. Two different devices are used for the illu-
mination. For the low magnification images, a strip with LEDs is wound twice around
a plexiglass plate (see figure 2.9). The LEDs of the two rings have alternating positions.
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Figure 2.9: In the experi-
mental setup water is heated
from below, evaporates and
condenses on a cooled glass
plate coated with polyethy-
lene. The droplets are illumi-
nated with a double ring of
LEDs, mounted on a tailor-
made plexiglass light diffuser.
A high resolution camera
takes images of the droplet
patterns.

The plexiglass acts as a diffuser yielding a homogeneous bright ring. For the high mag-
nification images, a higher light intensity is required. For this purpose, a Zeiss cold light
source KL 2500 is used with a ring-light. The illumination has to be centered around the
optical axis of the camera and the objective, to ensure axial-symmetric reflection patterns
of droplets in the images. The setup is shielded with a cylinder and a black sheet from
stray light.

2.3.2 Experimental Procedure

The cell is cleaned and filled with deionized water to a level of one centimeter. The top
plate is cleaned, dried and covered with dry polyethylene foil. Using gloves air bubbles
and wrinkles are removed carefully. Then the foil is rinsed with deionized water to remove
soluble molecules. After closing the cell, the temperature control and the heating plate
are switched on and the camera is adjusted. After a few hours the system reaches a steady
state and images are taken for one or two days. Typically after two days the foil has to
be replaced.
For measuring the dynamics of the initial droplet growth the central area of a big droplet
is viewed and a long sequence of images is taken. Once the droplet reaches a critical size
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Figure 2.10: Pendant water
droplet on polyethylene (side
view). The contact angle is close
to 90°, and the shape is well
approximated by a hemisphere
(confer section 2.2.1).

it drips off and new droplets are nucleated. If the observed part of the plate is completely
released by the dripping event, the images after the dripping event are saved and the first
part is deleted. If part of the image section is still covered by a big droplet after coalescing
or dripping, the image sequence is deleted completely. For measuring the steady state
distribution, a random area is selected and an image series is taken for one to two days.
The main challenge of the project, however, was not the development of the experimental
setup. It turned out to be very demanding to detect a broad distribution of droplets in
the images simultanously. Most image processing tools work on a specified length scale.
In the following section, the describe the algorithms that we developed from scratch to
detect the droplets in the images automatically.
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2.4 Image Processing

In the images, reflection rings are visible in each droplet, which can be seen on the photo-
graph in figure 2.12. The shape of the reflection pattern depends on the illumination, the
magnification and the droplet size. For each magnification and droplet size we developed
a different image processing algorithm from scratch. The image processing algorithm for
low resolution images (44.4 pixel/mm, see figure 2.4(d)) is described in section 2.4.1. In
the high resolution images (2.0 pixel/µm, see figure 2.4 (a)-(c)), a broad distribution of
droplet sizes is observable. We aim at detecting droplet radii in the range from 3 to 3000
pixels (note that the height of the images is only 2058 pixels). The algorithm for the
droplet detection in high resolution images is outlined in section 2.4.2. It is based on a
detailed analysis of the droplet reflection pattern, which is described in appendix 2.A.
Readers who are not inclined to look into the details of the description of the algorithms
are referred to the summary given in section 2.4.3.

2.4.1 Droplet Detection in Low Resolution Images

The basis of this algorithm was developed by Andrew Scullion during his internship. Two
subalgorithms are developed to detect small droplets (about 4 to 17 pixel radius) and large
droplets (about 14 to 105 pixel radius).
The contrast in the image of small droplets is enhanced by applying a high pass Fourier
filter. Then it is binarized using a threshold and the dark regions (candidates for droplet
centers, confer figure 2.11) in the image within a certain size range are detected. Regions
with a high eccentricity or a large perimeter in comparison to the area are sorted out. The
radius of the dark central region is related to the droplet radius by a quadratic function
found by visual comparison of the result with the image.
To detect the large droplets, the image is binarized based on a threshold directly. Again,
with adjusted thresholds for the maximal eccentricity and the perimeter the dark regions
corresponding to the centers of large droplets are detected. They are related to the droplet
radius with a similar function as the one used for the small droplets.
Finally, the list of small and large droplets detected by the algorithm is combined and
multiple droplet detections are corrected for. Smaller droplets detected on areas where
a large droplet was detected are deleted from the droplet list, too. The algorithm was
validated by viusal comparison of the detected droplet radii with the raw image. Figure
2.11 shows the droplets detected by the algorithm superimposed as circles on the image.
The color corresponds to the droplet radius. Above a certain radius threshold, almost all
(& 999/1000) droplets are safely detected. This allows for automatically detecting and
measuring coalescence events (see section 2.5.3.4 and figure 2.26). The only shortcoming
is that we did not manage to glue the size distributions detected by the two subalgorithms
perfectly together. This is the reason for the peak at r ≈ 0.13lc visible in figure 2.17(a).

25



2 Breath Figures

Figure 2.11: The
droplets which are de-
tected are superimposed
as circles on the image.
The color encodes the
radius of the droplet.
Here we show only the
left top corner of the
image. For scale: the
biggest droplets are
2.4mm in radius.

2.4.2 Droplet Detection in High Resolution Images

For the detection of the droplets in the images with high resolution, the development of
the algorithm was much more demanding. Whereas the algorithm presented above was
programmed within a few days, for the development of the droplet detection algorithm for
the high resolution images several months were needed. Detecting the droplets in these
images is significantly more difficult for two reasons. In the first place, the range of droplet
radii that are to be found is much larger (3 to 3000 pixel in radius). In the second place,
droplets which are only partially visible inside the image can cover large portions of the
image (confer figure 2.4(c)).

The following steps are taken in the image processing algorithm. First, the image is
preprocessed to improve its quality. Secondly, a set of subroutines detects droplets of
several size ranges. Then two different match functions (defined in the appendix 2.A.4)
are used to compare the detected droplets to the image. The definition of the match
functions is based on our study on the droplet reflection patterns, that are presented
in the appendix 2.A. Finally, several methods are used to identify and remove artifacts.
Again, visual comparison of the detection result with the image (see figure 2.12) is used to
validate and optimize the algorithm. The droplet radius can be determined very precisely
by the observation that overlapping droplets coalesce immediatelly.
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2.4.2.1 Preprocessing

The image is filtered with a standard 3 × 3 pixel averaging filter to reduce noise. It is
then deblurred with a Lucy-Richardson algorithm implemented in the MATLAB Image
Processing Toolbox. This is necessary to detect droplets of less than 5 pixel radius. For
the deconvolution, a Gaussian with half width 5 pixel is taken as an estimate for the point
spread function. It is calculated by the blind deconvolution algorithm implemented in the
MATLAB Image Processing Toolbox.

2.4.2.2 Droplet Classes

As the typical features of a droplet image depend on its radius, several subroutines are used
to find "giant" (550 - 3000 pixels), "large" (40-1500 pixels), "medium" (15-90 pixels), "small"
(9-30 pixels), "very small" (7-18 pixels) and "tiny" (3-15 pixels) droplets, respectively.
Furthermore, another subroutine is developed to find "edge" droplets, which are only
partially visible in the image.
The subroutines use different strategies to find droplet centers and to estimate the radius.
Positions and radii are varied to find local maxima of the profile based match (2.110).
Then the gradient based match function is used to get a consistent determination of the
droplet radius for all droplet sizes - independent of the used detection subroutine. Finally,
each subroutine sorts out artifacts in a number of steps, which will be described below
in section 2.4.2.3. The precise order and parameters of match optimization and artifact
reduction is different for each subroutine.
We now move on to introduce the seven subroutines which detect droplets within certain
radius ranges. Each subroutine receives a list of the afore found droplets. These droplets
are removed from the image to avoid parts of the reflection patterns of big droplets to
be misinterpreted as small droplets. Note that the size ranges of the subroutine have
significant overlaps to minimize the number of droplets that remain undetected. Figure
2.12 shows a snapshot as illustrative example, where the color of the droplets corresponds
to the size range of the droplet classes.

Giant Droplets By giant droplets we refer to droplets which have a size comparable to
the size of the field of view with radii in the range 550-3000 pixels. By thresholding the
preprocessed image, the dark central region of the droplet is found. This central region
may not necessarily be entirely visible in the image. The complement of the central region
we denote as “background”. We look for the point which has the highest distance to the
background and define it as the droplet center. By a linear interpolation we can infer the
droplet radius (which may be bigger than the dimensions of the image) from the radius of
the central region.
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Figure 2.12: A typical snapshot showing seven classes of droplets detected by the image processing
algorithm. For illustration, the color of the droplets corresponds to the size range of the droplet
classes (overlaps of the size ranges are cut in halves). Large (red), medium (cyan), small (yellow),
very small (green) and tiny (blue) droplets as well as droplets touching the edge (magenta) are
found in the image.

Large Droplets Large droplets (40-1500 pixels) are also detected by finding the circular
dark central regions with thresholding. Again with a linear function the droplet radius is
estimated. The estimates of radii and positions are improved by optimizing the match to
the image and artifacts are excluded from the droplet list.
The droplets which are found in this way are removed from the preprocessed image. Then
a second routine looks for the large droplets which remained undetected. Some inner
reflection rings are interrupted resulting in less circular central droplet regions. Applying
less rigorous thresholds for the circularity of droplet centers, these regions can be found,
too. Now the distance to the background (i.e. the complement of central regions) is used
to find droplet centers and radii. Again the match to the image is optimized and artifacts
are reduced. The droplet lists of the two routines are combined, double detections are
combined and small droplets enclosed by bigger ones are deleted.

Medium Droplets By thresholding the image and by looking for extended minima in the
image, the centers of medium droplets (15-90 pixel radius) are found. A linear function is
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used to estimate the droplet radius from the radius of the dark droplet center. The match
functions are applied to improve the estimate of the coordinates (radius and position) and
erroneous droplet detections are excluded from the droplet list.

Edge Droplets This subroutine makes several attempts to detect droplets which touch
the edge and are only partially on the image. At first, droplets inside the image bigger than
50 pixel in radius are removed. By thresholding the image, the core regions of medium
and large droplets are found. Then the droplet cores that touch one of the corners of the
image are selected. By analyzing the extrema of the core region pixels (left, right, top
and bottom end of the region), the center and the radius of the cores can be calculated.
With a linear function the droplet radius is computed from the core radius. Then the
remaining droplet cores touching the edge are analyzed. The image containing the cores
is embedded into a bigger matrix. Then the distance of the background (everything but
the droplet cores) is calculated and the distance to the original image is subtracted. Then
extended maxima of this distance difference are detected. From the maxima the position
and the radius of the droplets can be determined, even if the droplet centers are outside
the image. The detected droplets are covered with black disks. Then reflection rings
and regions between concentric reflection rings are detected. They are combined and the
regions touching the edge of the image are selected. Then a similar procedure as described
above is followed to find the droplet positions and radii.
Finally, position and radius of the edge droplets are varied to find an optimal profile
based match. The radius is then determined by the optimum of the gradient based match.
Droplets with a bad match and droplets enclosed by others are deleted.

Small Droplets To find the centers of small droplets (9-30 pixels), small dark regions
in the image are detected by applying different gray value thresholds and searching for
intensity minima. Then the distance of the droplet centers to the background (unwetted
substrate) is taken as an estimate for the droplet radius. Finally the gradient based match
is optimized and artifacts are sorted out.

Very Small Droplets Prior to finding very small droplets (7-18 pixels), afore detected
droplets are removed. By thresholding the image, the background is obtained. The back-
ground consists of unwetted substrate and removed droplets. Small dark regions in the
image (potential centers of very small droplets) are excluded from the background. Then a
short pass filter is applied to the preprocessed image to enhance the contrast between the
reflection ring and the central region of very small droplets. Extended minima in the fil-
tered image contain potential droplet center regions. From these regions, the background
determined before is subtracted. The remaining center regions are taken for droplet cen-
ters and the distance to the background is the corresponding droplet radius. Droplets
with a bad match are excluded from the list and overlaps are removed.
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Tiny Droplets Finally, tiny droplets (3-15 pixels) are detected. By thresholding the
image and by thresholding a short pass filtered image a background image is calculated.
Then an iterative procedure is used up to three times to detect tiny droplets.
For each pixel, the distance to the background is calculated. Local maxima in the distance
are the candidates for droplet centers with the distance being the radius. Now radius and
position are varied to optimize the profile based match and droplets with a bad match are
deleted. Then the radius is determined by optimizing the gradient based match. Again
droplets with a bad match or a high number of apparent overlaps are deleted. Finally the
detected tiny droplets are added to the background.
This procedure is repeated up to three times. A big portion of tiny droplets can be found
this way. To find the residual tiny droplets, the image (with covered droplets) is segmented
with the watershed transformation [55, pp. 417]. For circular regions, the area and the
centroid are used to define droplet radius and position. The droplets are added to the
background.
As a last attempt to find tiny droplets, the image is again segmented by the watershed
transformation and found droplets are covered. Centers of the segmented regions are then
used as starting points for the droplet search by the iterative procedure described above.
Finally, the results are combined and copies and enclosed droplets are deleted.

2.4.2.3 Removing artifacts

In the first steps of droplet detection, many features are erroneous potential droplet can-
didates. On the one hand, there are interruptions of reflectance rings. On the other hand,
droplets which are partly outside the image are difficult to detect. Additionally, when
droplets are densely packed, dark gaps surrounded by several small droplets can easily be
mistaken for droplet centers. Finally, the identification of potential droplet centers relies
on thresholding. As the result is sensitive to the exact values of the threshold (±3 on
a scale 0 to 255 can make quite a difference!) problems arise when the illumination is
changing between measurements. For this variety of reasons, a bunch of criteria is used
to subsequently remove artifacts from the list of detected droplets. For being able to
find almost all droplets, the criteria to detect potential droplet centers are rather relaxed.
Therefore, also the criteria to sort out artifacts should not be too strict. Said this, the
number of unidentified artifacts should be small to get reliable results for the droplet dis-
tribution. Thus a careful combination of criteria has to be applied for identifying as many
artifacts as possible without affecting the detection of real physical droplets.

Droplet Radius Each subroutine is optimized for a certain range of droplet radii. All
droplet detections outside this range are therefore deleted. The ranges of the droplet
detection subroutines have significant overlap to ensure all droplets are covered.
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Edge Distance Droplets with a significant fraction outside the image cannot be detected
safely by the standard routines and are therefore deleted. As described above, a specific
subroutine is implemented to detect edge droplets which are only partially visible inside
of the image.

Match to Image The main purpose of defining the match functions in section 2.A.4 is to
use them as a criterion to distinguish valid droplet detections from artifacts. The profile
based match function (2.110) compares the expected sequence of dark an bright rings with
the image and does a good job in revealing detections which cover several smaller physical
droplets. The gradient based match (2.107) sorts out false droplet detections in free spaces
between physical droplets.

Enclosed Droplets Due to condensation of water vapor the droplets grow continuously. If
the sum of the coalescence radii rc of two neighboring droplets exceed the distance of their
centers, they immediately coalesce and relax to a spherical droplet shape within seconds
(or less for small droplets). Hence the detection of two severely overlapping droplets can be
regarded as an artifact. Often parts of the reflection rings are detected as small droplets.
If small droplets are detected on an area where a big droplet was found, they are deleted.

Multiple Detections To ensure that (almost) all droplets are detected, often several
routines are applied subsequently which are able to detect the same droplet. A copy
finder algorithm detects multiple representations of the same droplet in the droplet list
and replaces them by one instance with the mean value of the representations.

Reduction of Apparent Overlaps Starting point for the droplet detection is usually the
dark central region of droplets. Quite often, however, regions between several adjacent
droplets are erroneously detected as droplet centers. This results in a huge number of
apparent droplet overlaps. To distinguish between real droplets and artifacts, two criteria
are used. Firstly, droplets which overlap with other droplets are likely to be artifacts.
Secondly, real droplets in general have a better match than artifacts. By subsequent
application of these criteria, artifacts can be removed successfully in a number of steps.

2.4.3 Summary
In this section, we mainly summarize the detection algorithm for the high resolution
images. For big droplets, two reflection rings can be seen. Inside the inner reflection
ring, the droplet images show a dark core, also between the reflection rings and outside
the outer ring the image is relatively dark. The size of these alternating dark and bright
regions, as well as their mean intensity and the intensity variation is parametrized.
The backbone of the actual droplet detection algorithm are two match functions (see
appendix 2.A.4). With the first match function, the detection of droplets is compared
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to the image and the match between the outer reflection ring and the area around it.
The second match function is more involved, it compares the image to the parametrized
intensity of the sequence of dark and black regions in the droplet image.
The detection of droplet operates in four steps:

1. Preprocessing of the image with deblurring and smoothing.

2. Detection of potential droplet positions and rough estimate of the droplet radius.

3. Variation of droplet radii and positions to optimize the match to the image.

4. Exclude false droplet detections from the list of droplets.

To detect the large range of droplet radii in the high magnification images (3-3000 pixels),
six different subroutines are optimized each to detect a subrange of droplet radii. A seventh
subroutine is implemented to find droplets which are only partially visible on the image.
For processing low resolution images, only two subroutines are necessary. In this case,
the algorithm only follows the steps 1, 2 and 4 described above. The detection in the low
resolution data works so reliably that coalescence and dripping events can be characterized
by comparing the lists of detected droplets of subsequent frames (see section 2.5.3.4 and
figure 2.26).
Having invested so much effort into the detection of the droplets in the images, we are
very excited about the results that we can get from this procedure.
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2.5 Evolution of the Droplet Size Distribution

In this section our results for the evolution of the droplet size distribution of breath
figures are presented. We detect droplet radii using the image processing described above
(section 2.4). To compare it to the theoretical description of Family and Meakin [45, 46],
radii are converted into sizes (i.e. volumes) using (2.2). We assume a droplet shape of a
hemisphere (compare figure 2.10) for the droplets detected in the high resolution images.
For the droplets in the low resolution images, we cannot be sure about the droplet shape,
because the droplets with radii exceeding 20% of the capillary length (see section 2.2.1.
Therefore the data for these measurements is given in radii.
The present study of breath figures was undertaken in close collaboration with Blaschke,
who set up molecular dynamics type simulations of breath figures [23]. We compare our
experimental results to the numerical data and observe where the physics present in the
experiment is extending the physical mechanisms modelled in the simulation. We therefore
give a short account over the assumptions used implicitly in the setup of the numerical
simulations. For details of the algorithm the reader is referred to the Master Thesis of
Blaschke [23]. In the numerical simulations, volume flux on the substrate is modelled by a
"rain" of monomers of size s0 = 1 onto the substrate. The monomer is put on the substrate
at a random position. In case it hits a free part of the substrate, a droplet of size s0 is
nucleated at that position. In case it overlaps with any other droplet, the two coalesce and
form a bigger droplet conserving volume and the center of mass. Subsequently, overlap
of droplets leads to coalescences, until there are no droplet overlaps in the system. Then
the next monomer "rains" onto the substrate and the step is produced. Periodic boundary
conditions are used. The simulations are stopped at the latest when the diameter of the
biggest droplets reaches 10% of the box length. For the simulations of the steady-state
distribution, droplets larger than a critical radius are removed from the substrate. The
effect of gravity is thus modeled just by dripping, the distortion of the shape is neglected.
Having summarized the setting that we use to obtain our experimental and the numerical
data, we give an outline of the results presented in this chapter. In the first section 2.5.1
the self-similar droplet size distribution of regime (iii) (confer section 2.2.2.3) observed in
the experiment and in numerical simulations of Blaschke [23] are studied. In the second
section 2.5.2 the steady-state size distribution (regime (iv), confer section 2.2.2.4) is ana-
lyzed, which develops in the presence of an upper limit for the droplet radius. In the third
section 2.5.3, the coalescence kernel for pairwise droplet coalescences is inferred from the
pair correlation of the droplet distribution in the experimental and the numerical data.
Following several steps, we are able to analyze and finally to parametrize the different
contributions to the coalescence kernel. In the final section 2.5.4, the Smoluchowski equa-
tion (confer section 2.2.4) is extended by terms accounting for intrinsic droplet growth,
nucleation and dripping. The equation is integrated in time numerically and the result is
compared to the observed distributions.
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2.5.1 Self-Similar Size Distribution

2.5.1.1 Reference length and time scale

The self-similar droplet size distribution was introduced as regime (iii) in section 2.2.2.3.
To compare the experimental data to the numerical data, it is desireable to introduce
dimensionless quantities. Therefore a reference length scale r0 for the droplet radius and
a time scale t0 has to be defined. The numerical simulations of Blaschke are constructed
using a smallest droplet radius r0, which corresponds to the smallest droplet size s0. We
are interested in the time scale at which on average one monomer of size s0 has been
deposited on its wetted area πr2

0. Thus the time scale t0 is related to the volume flux F
on the substrate

Ft0 ≡
s0
πr2

0
= cr0

π
. (2.31)

Equation (2.31) can be interpreted as the definition equation for t0. The time scale t0 is
proportional to the smallest scale r0 resolved in the simulations

t0 = cr0
Fπ

. (2.32)

The choice of a suitable reference length scale r0 is not obvious for the experimental setting.
By comparison of numerical and experimental data, we will later be able to estimate the
radius r0 for the experiment. For the comparison to the numerical data, the dimensionless
time τ ≡ t/t0 was used [23].

2.5.1.2 Growth Rate of the Characteristic Droplet Size

The investigation is started by looking at the evolution of the characteristic droplet radius.
It is computed by dividing the sixth moment of the droplet radius distribution by the fifth
moment

R ≡
∫∞

0 n(r)r6dr∫∞
0 n(r)r5dr (2.33)

where n(r)dr is the number of droplets of a radius in the interval [rr + dr] per unit area.
Figure 2.13(a) shows the evolution of the radius R of the biggest droplets for a typical
measurement. We find that the radius R grows linear in time. This is in line with the
prediction cR3 = S ∼ t3 of Family and Meakin (confer section 2.2.2.3).
Also the total droplet volume per unit area in the system increases linearly in time (see
figure 2.13(b)). The volume V (t) that has been deposited on the area wetted by a big
droplet with radius R(t) is determined by

V (t) = FtπR(t)2. (2.34)

However, this is not the volume of the biggest droplets. Growing droplets coalesce with
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(a) (b)

Figure 2.13: Left: Radius of the biggest droplet as a function of time. It grows linear in time
with the rate Ṙ = 0.43µm/s. The steps in the radius are due to the coalescences of the biggest
droplets in the system.
Right: The droplet volume per unit area increases with the rate F = 0.13µm/s.

their neighbors. Therefore there is an additional volume flux towards the biggest droplets.
They gather the volume S deposited on an area which is bigger than their wetted substrate
area by a gain factor γ

S = cR3 ≡ γFtπR2. (2.35)

Dividing by R2 and taking the time derivative gives

cṘ = γπF. (2.36)

Hence we can calculate the gain factor γ from the measured growth rate of the biggest
radii and the volume flux on the substrate

γ = Ṙc

Fπ
. (2.37)

Alternatively, it can be interpreted as the ratio between the growth rate of the charac-
teristic droplet radius Ṙ and the individual growth rate ṙ. For the experiment, we find
γ = 2.11 ± 0.03, while in the numerical simulations we find a somewhat smaller value,
γ = 1.714± 0.002. Can we understand where this factor of about 2 is coming from?
Beysens and coworkers [17, 51] observed that the wetted fraction in the intermediate time
regime (ii) reaches a saturation value of about 55% (see section 2.2.2 for the definition
of regimes). Considering equation (2.35) and keeping in mind that the flux on the whole
substrate leads to the growth of droplets with radii r ≈ R that wet only 55% of the
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substrate, the gain factor γ can be expected to be

γ = 1
w(r ≈ R) ≈

1
0.55 = 1.8 . (2.38)

In this case, the scaling argument of Family and Meakin [46] (2.25) for a constant wetted
fraction works and the size distribution is indeed described well by equation (2.19) with
θ = 5/3. Rescaling of the size distribution in regime (iii) according to (2.19) works perfectly
for the "bump" in the size distribution, as we will show in section 2.5.1.7. This implies
that the "bump" in the size distribution of regime (iii) is nothing but a continuation of the
distribution forming in regime (ii). Hence the "bump" droplets still occupy about 55% of
the substrate and the argument above leading to (2.38) is also valid for regime (iii). The
difference in the values obtained for γ in the experiment and in the numerics is probably
associated with the slightly different form of the "bump" in the experimental and numeric
droplet size distributions, respectively (compare figure 2.15).

2.5.1.3 Comparing Breath Figures to Fractal Packings

In section 2.2.2.3 the scaling analysis of the droplet size distribution with the approach

n(s,t) = s−θf

(
s

S(t)

)
(2.39)

with θ = 5/3 by Family and Meakin [46] was discussed. We pointed out that it is essential
to include the physics of the smallest droplets into the analysis of the size distribution.
We aim to get an expression for the shape of f(s/S) for s � S. To get an idea for the
behavior of f(x) we look at the way the droplets are "packed" together. To that end, we
regard breath figures as a natural example for a fractal packing (confer section 2.2.3) and
find an alternative way for the calculation of the wetted fraction. We use R = (S/c)1/3

as our unit length scale. Hence the scale of the of the smallest droplets decreases in time
like s0/S(τ) in this unit.

We consider the volume V (s∗) of all the droplets on an area R2 smaller than some size
s∗ � S

V (s∗) =
(
S

c

)2/3 ∫ s∗

0
n(s,t)sds. (2.40)

Within the time dt the volume of these droplets increases to

V (s∗ + ṡdt) =
(S

c

)2/3 ∫ s∗+ṡdt

0
n(s,t)s ds. (2.41)
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Hence the growth in volume of these droplets amounts to

∆V =
(
S

c

)2/3
n(s∗,t)s∗ ṡdt. (2.42)

Considering the droplet distribution as a fractal packing, the area A(s∗) covered by the
droplets smaller than s∗ amounts to

A(s∗) =
(
S

s∗

)df/3 (s∗
c

)2/3
. (2.43)

The volume ∆V deposited on the area A(s∗) within the time dt is then

∆V =
(
S

s∗

)df/3 (s∗
c

)2/3
Fdt. (2.44)

Comparing (2.42) and (2.44) yields an expression for the droplet size distributions for
s∗ � S

n(s∗,t) = F

ṡ
· 1
s∗
·
(
S

s∗

) df−2
3

. (2.45)

2.5.1.4 Growth Rate of Smallest Droplets

As we discussed in section 2.5.1.2, the radius of big droplets grows on average linear in
time, hence

ṡ ∼ Fs2/3. (2.46)

For droplets smaller than some size s1 however, the growth rate may be different.

Experimental Setting In section 2.2.2.1 we presented two types of droplet growth that
have been observed in experiments. Our experimental data is consistent with the assump-
tion (as we will show later with figure 2.16(a)), that the growth of small droplets r ∼ t1/4

is limited by diffusion (type I growth), leading to a growth law

ṡ ∼ Fs−1/3. (2.47)

Hence the full equation for the droplet growth rate is the sum of (2.46) and (2.47), yielding

ṡ ∼ Fs2/3
(

1 + s1
s

)
. (2.48)

At the size s1 the growth law changes from (2.46) to (2.47). Later, in section 2.5.1.8, we
will use it as a fit parameter to rescale our data for the droplet size distribution. The
growth law (2.48) is inserted into (2.45) yielding an expression for the lower cutoff of the
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droplet size distribution

n(s) ∼ 1
1 + s1

s

s−5/3
(
S

s

) df−2
3

. (2.49)

Numerical Setting In the numerical simulations of Blaschke [23] the growth of the small-
est droplets can be approximated by

ṡ ∼ F
(
s1/3 + s

1/3
1

)2
= Fs2/3

(
1 +

(
s1
s

)1/3
)2

. (2.50)

Each droplet gathers the volume flux on a substrate area that is slightly bigger than the
area it wets. The flux on a ring with a width of about s1/3

1 contributes to the droplet
growth. Big droplets, however, are surrounded by a dense packing of smaller droplets
and the effective width of the ring goes to zero with increasing droplet size. As for the
experimental setting before, the growth law (2.50) is inserted into (2.45) yielding

n(s) ∼ 1(
1 +

( s1
s

)1/3
)2 s

−5/3
(
S

s

) df−2
3

. (2.51)

Note that the model for the growth rate of small droplets in the numerical data is prelim-
inary and still a matter of ongoing work.

2.5.1.5 Total Droplet Volume

In the following, we check the applicability of the predictions for the tail of the droplet
size distribution in the experiment and in the numerics. We start with a consistency check
for the total droplet volume. In section 2.2.2.3 it was pointed out that the lower end of
the size distribution has to fulfill the condition

sn(s)→ 0 for s→ 0 (2.52)

in order to get a finite volume per area of the full droplet size distribution. The fractal
dimension of a packing is always smaller than the embedding dimension df < 2. Therefore
(2.52) is fulfilled for both the experimental (2.49) and the numerical (2.51) expression for
the size distribution.

2.5.1.6 Decreasing Porosity

The fraction of the substrate wetted by droplets cannot be expected to be constant in
regime (iii) (confer section 2.2.2.3). We investigate the evolution of the wetted fraction in
order to determine the fractal dimension of breath figures. The fraction of the substrate
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that is wetted by droplets smaller than s1 may be neglected. We therefore focus on the
scaling part of the size distribution

n(s,t) ∼ s−5/3
(
S(t)
s

) df−2
3

. (2.53)

By definition, the surface is covered by a fractal packing completely, when the size of the
smallest particles approaches zero. Hence for the porosity p(t) ≡ 1−w(t), the area fraction
not covered by droplets, we can write

t−σ ∼ p(τ) = 1− w ∼
∫ s∗

0
s2/3n(s,t)ds

∼
∫ s∗

0
s2/3s−5/3

(
S(t)
s

) df−2
3

ds

∼ S(t)
df−2

3

∫ s∗

0
s
df−2

3 −1ds (2.54)

∼ S(t)
df−2

3 s∗
df−2

3 .

Comparing this result to the scaling of the size of the biggest droplets S ∼ t3 (2.25), we
find a scaling relation for the porosity exponent σ

σ = 2− df . (2.55)

This result means that from the time evolution of the porosity the fractial dimension of
the packing can be determined. In figure 2.14, we show how porosity decreases in time.
To improve statistics, five measurements are analyzed and averaged subsequently. For
all measurements, the heating power and the top plate temperature is the same, however
different volume fluxes are observed. This is due to the fact that the volume flux on
the substrate is not perfectly homogeneous and the measurements at the small scales are
taken at different positions of the substrate. To average over several measurements, it is
therefore essential to introduce a time scale indirectly proportional to the volume flux on
the substrate.
In the experiment, a decay of the porosity in time can be observed finding an exponent
σ = 0.16±0.01 In the numerics, however, a different slope is found σ = −0.30±0.01. The
origin of the difference will be discussed in section 2.6.

2.5.1.7 Scaling of the Droplet Size Distribution

Equation (2.55) implies that the breath figures in the experiment have a fractal dimension
of df = 1.84. For the numerically simulated breath figures we find a slightly smaller
fractal dimension df = 1.70. Comparing (2.39) to (2.53) we predict that the tail of f(s/S)
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(a) (b)

Figure 2.14: The free fraction of the substrate p decays with a power law p ∼ τ−σ. In the
experiment (left), a decay of the porosity in time can be observed with an exponent σ = 0.16±0.01.
In the numerics (right), however, a decay of the porosity with σ = 0.30 ± 0.01 is observed. To
compare the experimental to the numerical data, time is expressed in units of t0 (2.32).

scales with (s/S)−0.10 for the numerical data. This is indeed very close to the scaling
correction (s/S)−0.13 observed in the simulations of Family and Meakin [46] (confer figure
2.7). It also fits well to the scaling of the droplet size distribution simulated by Blaschke
(figure 2.15(b)). In figure 2.15(a) we show the experimental data for the droplet radius
distribution in regime (iii). It is consistent with an exponent −0.05± 0.05. However, the
error in the experimental data is too big to judge the exact value of the scaling with size.

2.5.1.8 Lower Cutoff for the Self-Similar Regime

In sections 2.5.1.3 and 2.5.1.4 we derived equations for the tail of the droplet size distribu-
tion. To compare the predictions to the measured droplet size distribution, we rescale the
distribution accordingly. To test (2.49), we rescale the distribution by (1 + s1

s )s5/3 ( s
S

)0.05.
The crossover size s1 is used as a fit parameter. In figure 2.16(a), the rescaled distribution
is shown. The tail of the distribution is flat, in agreement with our prediction (2.49). The
best fit of the data we find for s1 = 1.5 · 103µm3 (r1 = 9µm).

The numerical droplet size distribution is rescaled by
(
1 +

( s1
s

)1/3
)2
s5/3 ( s

S

)0.10 following
(2.51), again using s1 as a fit parameter. The rescaled distribution is shown in figure
2.16(b). Again we observe a flat tail in agreement with our prediction (2.51) for s1 = 0.1
(r1 = 1/3). Note, that the scaling of the lower cutoff in the numerical data is preliminary.
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(a) (b)

Figure 2.15: The droplet size distribution is calculated from experimental (a) and numerical (b)
data. It is rescaled by the exponent θ = 5/3 following (2.39), the droplet sizes are normalized by
the size S of the biggest droplets. The "bump" is found in the evolving size distribution, originating
from the first generation of droplets. The gap separating the bump from the tail comes from the
time delay between first (regime (i)) and secondary (regime (iii)) nucleation. A scaling regime
(filled squares) is easily seen in the numerical data (a), in the experimental data (b) it just starts
to develop. The scaling is consistent with the prediction of the fractal dimension based on the
porosity decay. The black line indicates a scaling exponent −0.05 for the experimental data and
−0.10 for the numerical data. In the experimental data, a transition in the distribution is observed
for droplets with r ≈ r1 = 9µm. The color encodes different times τ distributed logarithmically
from 1.1 to 20.9 for the experimental data and from 1.1 to 83.5 for the numerical data.

2.5.2 Steady-State Droplet Size Distribution

In the previous section, we described the coarsening of the self-similar droplet size distribu-
tion in regime (iii). Of course, the mean droplet size cannot grow indefinitely in a physical
experiment. Once, the radii of the largest droplets reach about 20% of the capillary length
(equation 2.4), gravity cannot be neglected and the droplet shape is distorted (confer sec-
tion 2.2.1). After about two hours (for typical heating rates) the radii almost reach the
capillary length (0.87lc) and the droplets drip off. In the study of the steady-state droplet
size distribution, all length scales are expressed in terms of the capillary length. For the
analysis of the steady-state distribution in this section and in the following we refer to
radii rather than sizes, because the actual size of droplets with r & 0.2lc is not known.
In figure 2.17(a) we show the experimental data for the steady-state droplet radius distri-
bution. We find a scaling of the droplet radius distribution

n(r) ∼ r−θr (2.56)

consistent with θr = 3.0 ± 0.1, which is different to our prediction θr = df + 1 = 2.84.
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(a) (b)

Figure 2.16: The droplet size distribution is calculated from experimental (a) and numerical (b)
data. The experimental data is rescaled according to our prediction (2.49), and the numerical data
is rescaled according to (2.51). In both cases, we find flat tails, i.e. excellent agreement of the
data with the predicted scaling. For the experimental data, we get the best fit with s1 = 1.5µm3

(r1 = 9µm), for the numerical data we find s1 = 0.1 (r1 = 1/3). The color encodes different times
τ distributed logarithmically from 1.1 to 20.9 for the experimental data and from 1.1 to 83.5 for
the numerical data.

However, one may expect the exponent θr = 3.0 from the scaling argument of Family
and Meakin [46], presented in section 2.2.2.3, since the wetted fraction is constant in the
steady-state regime.
For the range of droplet radii from 0.2lc < r < lc we find a second scaling regime with a
different scaling exponent. In this radius range, the shape of the droplets deviates signifi-
cantly from a spherical cap. This has also been observed for droplets on vertical substrates
[104]. We find a sharp cutoff in the radius distribution at rc = 0.87lc. Blaschke also per-
formed simulations where droplets bigger than a certain size are taken from the system
[23]. To compare the numerical to the experimental results, we express the numerical
data on a length scale such that the droplets drip off at the same radius rc = 0.87. The
radius distribution for the numerical data is shown in figure 2.17(b). The numerical data
is consistent with a scaling exponent θr = 2.70 ± 0.1. However, due to the fact, that the
range of sizes in the simulations is very restricted, the scaling regime is very small.

2.5.3 Coalescence Kernel

In the previous section we showed that a modified scaling analysis of the droplet size
distribution is suitable for describing the droplet size distribution of breath figures. A
second approach to describe the evolution of the droplet size distribution is to study a
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(a) (b)

Figure 2.17: Steady-state droplet radius distribution in experimental (a) and numerical data (b).
The radius r is determined from images as shown in section 2.4.
(a) The number of drops of radius r per area n(r) is given in units of the capillary length (2.4).
For r . 0.2lc the radius distribution scales with r−3.0±0.1. This is slightly different to the scaling
predicted with the fractal dimension r−2.84. For 0.2lc < r < 0.87lc a different scaling is observed.
(b) For the numerical data, the length scale is chosen such that the droplets drip off at r = 0.87.
The radius distribution is consistent with a scaling of the form r−2.70, however due to the limited
range of radii that could be simulated the scaling regime is very small.

Smoluchowski type kinetic equation, which was introduced in section 2.2.4. In order to
apply the Smoluchowski equation, the coalescence kernel κ (2.30) for pairwise coalescences
has to be known. In many cases of coarsening phenomena, the size dependence of the
coalescence probability of particles cannot be measured. It must be estimated from theory.
One example is gravitational collection, that will be discussed in section 3.6.2.3.

For breath figures however, we are able to infer the coalescence probability from the pair
correlation of neighboring droplets. To that end, we measure the probability of finding
a droplet of radius r within a distance l of a droplet with radius r′ (section 2.5.3.1). In
section 2.5.3.2 we find that the coalescence kernel scales with the sum of the radii r + r′.
However, we find an increased coalescence probability for droplets of similar size (section
2.5.3.3) compared to the relation (2.29) given by [95] for uncorrelated droplet distributions.
This can be understood by seeing the steady-state distribution (iv) as a superposition of
self-similar distributions (iii). To this end, we analyze the distribution of droplet ages
in section 2.5.3.4. Altogether, this allows us to derive the form of the coalescence kernel
(section 2.5.3.5).
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2.5.3.1 Pair Correlation

By condensation, each droplet grows on average with the rate ṙ.When two droplets overlap,
they coalesce and form a bigger droplet. The volume is conserved, i.e. rnew =

(
r3 + r′3

)1/3.
The coalescence rate Γ (r,r′) of droplets with radii r and r′ per area is

Γ (r,r′) = 2ṙκ(r,r′)n(r)n(r′). (2.57)

To determine the coalescence kernel κ(r,r′) experimentally, we measure the number of
droplet pairs per area p(r,r′,l) with an edge to edge distance smaller than the distance
l = 2∆r (see figure 2.18).

Figure 2.18: Sketch for coalescence of
two droplets with radii r and r′. Within
the time ∆t = l/2ṙ all droplets with an
edge to edge distance ≤ l coalesce.

The droplet pair density p(r,r′,l) for l = 0.25 (in units of capillary length) is shown in figure
2.19. We find a qualitatively similar picture both for the experimental (panel (a)) and the
numerical (panel (b)) data. Most of the droplet pairs involve at least one small droplet.
Pairs of two big droplets are extremely rare. Surprisingly, the number of droplets pairs
with similar radii seems to be relatively high. The big number of droplet pairs involving
small droplets is simply due to the fact, that most of the droplets in the system are small
(see figure 2.17).
The collision rate Γ is related to the droplet pair density p by

∂p

∂l
(r,r′,l = 0)2ṙ = Γ (r,r′) = κ(r,r′)2ṙn(r)n(r′). (2.58)

Note that
p(r,r′,l = 0) = 0 (2.59)

since all overlapping droplets coalesce immediately. Thus to leading order, the number of
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droplet pairs is proportional to l

p(r,r′,l) ≈ l ∂p
∂l

(r,r′,l = 0). (2.60)

The applicability of this approximation will be checked in the next subsection. We there-
fore write

∂p

∂l
(r,r′,l = 0) = p(r,r′,l)

l
= κ(r,r′)n(r)n(r′) (2.61)

which leads to
κ(r,r′) = p(r,r′,l)

ln(r)n(r′) . (2.62)

(a) (b)

Figure 2.19: The color denotes the decadic logarithm of the number density of droplet pairs
p(r,r′,l) with radii r, r′ per unit area l2c within a distance of l = 0.25. Note that a ring around a
droplet with width l = 0.25 is a large area. The number of droplet pairs in this area is O(n2).
Most of the droplet pairs involve at least one small droplet. Pairs of two big droplets are extremely
rare. The numerical data (right) has the same qualitative features as the experimental data (left).
Quantitatively, the numerical data deviate though, what we attribute to a limited range of radii
simulated in the numerics. The white line in the numerical data is a consequence of the construction
of the algorithm: The droplet size takes multiple values of the monomer size s0. The stripe in
the experimental data is an artifact of the image processing, also seen in the steady-state size
distribution in figure 2.17(a).

2.5.3.2 Scaling of Coalescence Kernel

The coalescence kernel κ is shown in figure (2.20). Two features of the kernel can be
observed. In the first place, the kernel increases with the radii of the coalescing droplets.
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In the second place, a peak on the diagonal of the kernel is prominent. This means that
droplets of similar size are more likely to coalesce.

(a) (b)

Figure 2.20: The decadic logarithm of the coalescence kernel κ(r,r′) is encoded by the color.
The coalescence probability of a droplet increases with the radius. the kernel displays a peak on
the diagonal: There is an increased probability that coalescing droplets are of similar size. The
coalescence kernel is calculated by equation (2.62) for l = 0.25. Experimental data is shown on
the left, the numerical data on the right.

With figure 2.18 it can be seen why the coalescence probability increases with the radius
of a droplet. If a droplet grows within the time ∆t by ∆r = ṙ∆t, it coalesces with the
droplets touching the ring with width ∆r around it. The area of this ring is Aring ≈ 2πr∆r
for small ∆r. However, the coalescence partner will also grow by ∆r, forming a ring with
the area 2πr′∆r. The kernel is proportional to the sum of the ring areas

κ(r,r′)2ṙ ∼ 2π(r + r′)2∆r
∆t

for r ∼ r′. (2.63)

As no droplet is distinguished, the coalescence kernel has to be symmetrical in r,r′. Hence
we define

κ(r,r′) ≡ k(r,r′) · 2π(r + r′) (2.64)

with the proportionality factor k. For k(r,r′) ≡ 1 this coalescence kernel is equivalent to
the one guessed by Rogers et al. [95].
Family and Meakin [46] provide a scaling argument why the coalescence kernel can be
expected to scale linear with the radius. To test this prediction we plot κ(r,r′) as a
function of r + r′ (see figure 2.21(a)). Each point corresponds to one bin of droplet pairs
with radii r,r′ in figure 2.20. Most of the points fall on a line with slope 1. It is revealing
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to exclude droplet pairs with 1/3 < r/r′ < 3 from the plot (see figure 2.21(b)). Now all
points are close to a curve with slope 1.

(a) (b)

Figure 2.21: Left: κ(r,r′) is proportional to r+ r′. The solid line is a guide to the eye with slope
1. The coalescence kernel κ is calculated with equation (2.62) for the distance l = 0.25.
Right: The same plot for droplets with non-similar droplet radii (1/3 ≥ r/r′ or 3 ≤ r/r′).

As a second test, we calculate the rescaled coalescence kernel k. Combining equations
(2.62) and (2.64), it is given by

k(r,r′) = p(r,r′,l)
2π(r + r′)ln(r)n(r′) . (2.65)

In figure 2.22, the rescaled coalescence kernel k is shown. The rescaled coalescence kernel
k(r,r′) does not show a scaling dependence on r,r′ anymore, except for the peak at the
diagonal which can clearly be seen now.
We are now in the position to check the approximation (2.60). We calculate k(r,r′) for a
range of distances l and calculate the mean

k0(l) ≡
〈
k(r,r′,l)

〉
r/r′<1/3 , r/r′>3 (2.66)

of all points with r/r′ < 1/3 or r/r′ > 3. Figure 2.23 shows that k0 is roughly constant for
a range of distances l. For very small droplet distances, the statistics gets bad. For large
distances, equation (2.60) does not hold anymore. We find k0 = 1.1 ± 0.1 in agreement
with Rogers et al [95].
The proportionality factor k0 is determined by the condition that for a steady size distri-
bution, the released area by coalescence and dripping has to balance the increase in wetted
area due to condensation and nucleation. Note that k is intrinsically dimensionless. In
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(a) (b)

Figure 2.22: The coalescence kernel is divided by the sum of the radii. The rescaled coalescence
kernel k(r,r′) equation (2.65) does not show any scaling dependence on r,r′ anymore. However,
the peak at the diagonal can clearly be seen. For very big droplets, the rescaled coalescence kernel
is smaller in the experimental data. This may be an effect of dripping and of the droplet distortion
due to gravity. Experimental data is shown on the left, the numerical data on the right, l = 0.25.

particular, it does not depend on the choice of the length scale.

Figure 2.23: The mean value of the rescaled
coalescence kernel k (away from the diago-
nal) is plotted as a function of the distance
l. The value of k does not depend much on
the distance l (beware the scale of the ab-
scissa!). This observation justifies the usage
of the approximation (2.60).

2.5.3.3 Peak on Diagonal

The diagonal values of the rescaled coalescence kernel k1(r) ≡ k(r,r) exhibit only a minor
dependence on r for r . 0.2lc. For big droplets, where the effect of gravity and dripping
cannot be neglected, the coalescence kernel decreases. For the droplet radii in the scaling
regime, we find k1(r) ≈ 2.3± 0.2 for the experimental data.
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(a) (b)

Figure 2.24: Off-diagonal contribution of rescaled coalescence kernel. Note the peak for equal
radii and the minimum for lg (r/r′) ≈ ±0.35. Left: experimental data, right: numerical data, both
evaluated for edge droplet distance l = 0.25. The parametrization given by (2.70) is plotted as a
red line on top of the experimental data.

To account for this minor drift we normalize the rescaled coalescence kernel k by the
corresponding diagonal value, thus defining

j(r,r′) ≡ k(r,r′)
k(
√
rr′,
√
rr′)

. (2.67)

which is plotted in figure 2.24. It turns out that j only depends on the ratio of the two
radii. As a variable we therefore choose

x ≡ log10

(
r

r′

)
. (2.68)

We aim to find a simple parametrization of the off-diagonal contribution of the coalescence
kernel. The peak at x = 0 can be well described by a Lorentz curve

j(x) ≈ 0.05
x2 + 0.05 for x . 0.2. (2.69)

To parametrize the tail for x → ±1 we add a term of second order in 1 − |x| which is
truncated to be positive

j(x) ≈ 0.05
x2 + 0.05 + max (0 ; 0.5− 0.85(1− |x|)2). (2.70)
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Putting equations (2.64) and (2.67) together, we can parametrize the coalescence kernel

κ(r,r′) = κ12π(r + r′)j
(
log10(r/r′)

)
. (2.71)

This parametrization will be used in section 2.5.4 to model the evolution of the droplet
size distribution. We now move on to uncover the cause for the peak on the diagonal.

2.5.3.4 Age Distribution

The arising of the peak in both in the experimental and in the numerical data means,
that droplets have an increased probability of coalescing with droplets of similar size.
Studying an image of a breath figure (see fig 2.25) reveals the origin of that finding: The
distribution of droplets is not homogeneous. In the image we find several regions. In

Figure 2.25: Several genera-
tions of droplets can be seen.
The image can be split into a
number of regions each char-
acterized by a typical droplet
size. As a result there is a
preference for droplets to be
surrounded by other droplets
of similar size.

each region, droplets of a certain size are dominant. This typical size is increasing with
time in each region. This is in line with the coarsening of the droplet distribution due to
droplet growth and coalescence, as discussed in section 2.5.1. Each region has a certain
age being the time since it was released by coalescence or dripping of larger droplets. We
thus conclude that the radii of adjacent droplets are not independent of each other.
We now quantify these correlations by considering the variation of ages since regions were
previously freed by coalescence or dripping events. We suppose that the radius distribution
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in regime (iii) can be described by

n(r,t) = n0r
−θrfr

(
r

R(t)

)
. (2.72)

In the steady-state case, we find that the radius distribution is a superposition of self-
similar distributions of regime (iii). By g(R)dR we denote the probability of finding a
region with the typical radius R. Hence we can write the droplet radius distribution as a
weighted average over these regions

n(r) =
∫ Rmax

R0
n0r
−θrfr

(
r

R

)
g(R)dR

= n0r
−θr

∫ Rmax

R0
fr

(
r

R

)
g(R)dR. (2.73)

In order to test this prediction, we measure the distribution of region ages. The detection
of big droplets by the image processing algorithm presented in section 2.4.1 works very
reliable: All coalescence and dripping events above a certain threshold can be detected by
droplet tracking. If droplets which were found in the previous image n−1, are not detected
in the present image n, the released area is dilated and combined to regions. The regions
are filled and made convex. Then the areas wetted by droplets in the neighborhood which
are detected in the present image n are subtracted from the regions. Finally the regions
are slightly rounded by opening and closing [55, pp 347]. After finding the released ares,
we define an "age image". It has the same size as the original image. We initialize all
pixels with −∞. All pixels belonging to released regions in the image n are set to zero
age.
Going to the next image n+ 1, all age values are incremented by one. Released areas are
set to zero again. After several hours (≈ 1000 images), the complete area has been released
at least once and we can assign an age to each pixel. A plot of the age of regions is shown
in figure 2.26(a). Comparing it to the actual photo (figure 2.26(b)) shows that the typical
droplet radius of a region is highly correlated to the age of the region the droplet resides
in. In section 2.5.1 we showed that the radius R grows linear in time. Having detected
the released areas, we can measure their size distribution (see figure 2.27).
We find that the area distribution exhibits a scaling regime of the form

n(A) ∼ A−θA (2.74)

with θA = 2.2. Note that the biggest released regions are several times larger than the
area wetted by a large, almost dripping droplet. This can be explained by the observation
that typically not isolated pairwise coalescences take place but multi-droplet-coalescences.
However, these multi-coalescence events may be decomposed into a number of subsequent
pairwise coalescences. From the "age images" (like the one shown in figure 2.26(a)) we
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(a) (b)

Figure 2.26: The age of regions is indicated by color (left, decadic logarithm of age in seconds).
The corresponding real image is shown for comparison on the right. Areas which were released
recently are shown in dark blue, they are populated by tiny droplets. Note that the area released
by a multi-coalescence and dripping event can be several times the area wetted by a big droplet
(compare blue region in the center).

calculate the distribution of ages g(t) (see figure 2.28). This distribution can be approxi-
mated by a power law, too. We find that the age distribution scales g(t) ∼ t−1.0 and hence
g(R) ∼ R−1.0, since R ∼ t in any of these regions.

2.5.3.5 Model of Coalescence Kernel

It is instructive to relate the superposition (2.73) to the coalescence probability. In section
2.5.3.2 we showed that the coalescence kernel could be well approximated by

κ(r,r′) = k02π(r + r′) (2.75)

if the droplets were distributed randomly, as suggested by Rogers et al. [95]. The prob-
ability that two droplets of radius r and r′ coalesce, is proportional to n(r)n(r′)κ(r,r′).
Given, that the first droplet has the radius r, the probability of finding a coalescence part-
ner with radius r′ is not independent. With some probability h, both droplets belong to
the same region and have to be chosen from a distribution of the form (2.72) with typical
radius R. With the probability 1 − h, droplets of two different regions with different R

52



2.5 Evolution of the Droplet Size Distribution

Figure 2.27: The size distribu-
tion of released areas follows a
power law with slope θA = 2.2 (ex-
perimental data). Note that the
biggest released areas cover several
of the biggest droplets.

Figure 2.28: The distribution of
droplet ages scales with t−1.0 (ex-
perimental data).
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Figure 2.29: Prediction for off di-
agonal contribution of rescaled co-
alescence kernel. It is based on
equation (2.71) using the rescaled
radius distribution (fig 2.15(b)).

coalesce. Hence we can model the coalescence kernel by

κ(r,r′)
k02π(r + r′) ≈ (1− h) + h

∫ Rmax
R0

n0r
−θrfr( rR)n0r

−θfr( r
′

R )g(R)dR
n(r)n(r′)

≈ (1− h) + h

∫ Rmax
R0

fr( rR)fr( r
′

R )g(R)dR∫ Rmax
R0

fr( rR)g(R)dR
∫ Rmax
R0

fr( r
′

R )g(R)dR
(2.76)

Using the measured rescaled radius distribution f(r/R) and the distribution of typical
droplet radii g(R), the off-diagonal contribution j(r/r′) can be modeled, using h as a free
parameter. For h = 0.13 the prediction (figure 2.29) matches the measured curve (figure
2.24) fairly well.

2.5.4 Kinetic Equation

To describe the evolution of the droplet size distribution, we formulate a kinetic equation
for the growth of droplets. It is based on a coagulation equation proposed by Smoluchowski
[108]. In section 2.5.4.1 we extend this equation by additional terms for growth by vapor
absorption, nucleation and dripping. we continue by transferring the kinetic equation for
the size distribution into an equation for the radius distribution in section 2.5.4.2. This
equation is easier to integrate numerically, which is done in section 2.5.4.3.

2.5.4.1 Model for the Evolution of the Size Distribution

The coagulation equation proposed by Smoluchowski [108] was introduced in section 2.2.4.
We extend it by terms for condensational growth, nucleation and dripping in the spirit of
the simulation scheme of Blaschke [23] (confer the beginning of section 2.5): The number
of droplets growing from size s− s0 to s is the product of the volume flux F in units of s0
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per droplet area π
( s−s0

c

)2/3 and the number density n(s−s0,t). Note that the combination(
s
c

)1/3 is the droplet radius r. A similar term arises for droplets growing from size s to
s + s0. Finally, boundary conditions have to be implemented for the smallest and the
biggest droplet size in the system. We model nucleation by a "rain" of droplets of size s0
on the free fraction of the substrate. Dripping is modeled by a constant dripping rate d
for droplets larger than some critical size sc. Putting these terms together, we arrive at
an explicit kinetic equation for the droplet size distribution.

∂n(s,t)
∂t

=
∫ s/2

s0
κ(s′,s− s′)2ṙn(s′,t)n(s− s′,t)ds′

− n(s,t)
∫ sc

s0
κ(s′,s)2ṙn(s′,t)ds′ (2.77)

+ F

s0
π

(
s− s0
c

)2/3
n(s− s0,t)−

F

s0
π

(
s

c

)2/3
n(s,t)

+ F

s0

(
1−

∫ sc

s0
π

(
s′

c

)2/3
n(s′,t)ds′

)
δs,s0 − dn(s,t)Θ(s− sc).

The dripping rate d is assumed to be very high, such that in each time step virtually all
droplets of size s ≥ sc are removed.

2.5.4.2 Conversion to Radii

To convert the equation for the evolution of the size distribution into an equation for the
radius distribution, we use

n(s) = n(r)
3cr2 . (2.78)

The volume increase due to condensation is proportional to the area wetted by the droplet
beyond the cutoff due to the tail of the distribution

ds

dt
= Fπ

(
s

c

)2/3
(2.79)

where F is the volume flux on the surface. Inserting (2.2) gives the growth rate

ṙ = Fπ

3c . (2.80)
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Thus we can eliminate the flux in equation (2.78)and arrive at

∂n(r,t)
∂t

1
3cr2 =

∫ 2−1/3r

r0
κ(r′,(r3 − r′3)1/3)2ṙn(r′,t)n((r3 − r′3)1/3,t) 1

3c (r3 − r′3)2/3dr
′

− n(r,t) 1
3cr2

∫ rc

r0
κ(r′,r)2ṙn(r′,t)dr′ (2.81)

+ ṙ

cr3
0
n

((
r3 − r3

0

)1/3
,t

)
− ṙ

cr3
0
n(r,t)

+ ṙ

πr3
0

(
1−

∫ rc

r0
πr′2n(r′,t)dr′

) 1
cr2 δr,r0 − dn(r,t) 1

3cr2Θ(r − rc).

We express time t = τt0 in units of t0

t0 ≡
cr0
Fπ

= r0
3ṙ (2.82)

(confer section 2.5.1), giving

∂n(r,t)
∂t

· 1
3cr2 = ∂n(r,τ)

∂τ
· ṙ

cr0r2 (2.83)

for the left hand side of equation (2.82). For simplification we define a nondimensional
dripping rate d̃ ≡ dr0

3ṙ . Multipyling by cr0r2

ṙ and using the nondimensional time τ yields

∂n(r,τ)
∂τ

=
∫ 2−1/3r

r0
2κ(r′,(r3 − r′3)1/3)n(r′,τ)n((r3 − r′3)1/3,τ) r2

(r3 − r′3)2/3dr
′ r0

3

− n(r,τ)
∫ rc

r0
2κ(r′,r)n(r′,τ)dr′ r0

3 (2.84)

+ r2

r2
0
n

((
r3 − r3

0

)1/3
,τ

)
− r2

r2
0
n(r,τ)

+ 1
πr2

0

(
1−

∫ rc

r0
πr′2n(r′,τ)dr′

)
δr,r0 − d̃n(r,τ)Θ(r − rc).

The growth due to condensation can be interpreted as a constant drift in the radius giving[
∂n(r,τ)
∂τ

+ ∂n(r,τ)
∂r

r0
3

]
=

∫ 2−1/3r

r0
2κ(r′,(r3 − r′3)1/3)n(r′,τ)n((r3 − r′3)1/3,τ) r2

(r3 − r′3)2/3dr
′ r0

3

− n(r,τ)
∫ rc

r0
2κ(r′,r)n(r′,τ)dr′ r0

3 (2.85)

+ 1
πr2

0

(
1−

∫ rc

r0
πr′2n(r′,τ)dr′

)
δr,r0 − d̃n(r,τ)Θ(r − rc).
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Note that this equation does not depend on the shape factor c anymore, implying that
the contact angle does not matter for the evolution of the radius distribution (except for
its influence on the dripping - i.e. the cutoff scale for large droplets).

2.5.4.3 Numerical Integration of Model Equation

Model equation (2.86) is integrated for a range of radii. The smallest radius r0 is set to
1, the largest radius to rc = 1000. This range of radii is comparable to the one observed
in the experiment. For the integration of (2.86), the dripping rate d̃ is set to infinity. So
the number of droplets with r > rc is taken to be zero for all times.
The integration is worked out for two different coalescence kernels. In the first run, a
mean field coalescence kernel (2.29) is used. In the second run, a kernel of the form
(2.71) is used. Figure 2.30 shows the result of the integration: The evolution of the size
distribution predicted by equation (2.86) does not match the measured distributions at all.
After a short time τ = 2.8 the wetted fraction approaches 1 with a nonzero slope (compare
figure 2.30(b)). This means that the decrease of the wetted fraction due to the pairwise
coalescence kernel (2.29) does not balance the increase of w due to the condensational
growth of droplets. Using the parametrization (2.71) of the experimentally measured
coalescence kernel does not show a significant difference. Apparently the Smoluchowski
equation does not properly describe the evolution of the droplet distribution. Possible
origins of this deviation are addressed in the discussion.
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(a) (b)

(c) (d)

Figure 2.30: The kinetic equation (2.86) for the evolution of the droplet radius is integrated in
time. In case one (upper panel), the mean field kernel (2.29) is used for the integration. In the
second case (lower panel), the parametrization (2.71) of the experimentally measured coalescence
kernel is taken. The distributions obtained for different times are displayed in the left panel. The
wetted fraction (right) approaches one with a nonzero slope. The decrease of the wetted fraction
due to the pairwise coalescence kernel does not balance the increase of w due to the condensational
growth of droplets in both cases.
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2.6 Discussion
In this section we summarize and discuss our results for the droplet distribution of breath
figures.

• Droplet Growth Rates: In agreement with the literature [46] we find in section
2.5.1.2 that the typical radius R grows linearly in time (compare figure 2.13(a)),
both for the experimental and the numerical case. A linear increase of the total
droplet volume on the imaged part of the substrate (about 1mm2) is observed (see
figure 2.13(b)). The droplets forming the "bump" of the distribution gain 2.1 times
the volume flux on the fraction of the substrate wetted by the "bump" droplets. We
explain this finding in section 2.5.1.2 with means of equation (2.38).

• Scaling of Size Distribution: The "bump" of the size distribution can be rescaled
perfectly by measuring droplet sizes s in units of the typical droplet size S(t) and by
rescaling the size distribution with s5/3, as can be seen in figure 2.15, section 2.5.1.7.
In variance with Family and Meakin’s [46] assumption of a constant wetted fraction
for the whole distribution in regime (iii) we show in section 2.5.1.6 that the porosity
of the system is not constant but decreases with p(t) ∼ t−0.16 for the experimental
and p(t) ∼ t−0.30 for the numerical data (confer figure 2.14). Regarding breath
figures as a physical example for a fractal packing in section 2.5.1.3 leads to the
conclusion, that the packing of droplets has a fractal dimension of df = 1.84 for the
experimental breath figures and df = 1.70 for the numerically simulated ones. This
gives a correction factor (confer equations (2.49) and (2.51)) for the scaling of the
size distribution, fitting perfectly to the presented data in figure 2.15. The difference
in the packing of the numerical and the experimental breath figures may be due to
differences in the physics involved in the nucleation and growth of small droplets,
e.g. the depletion zones around small droplets (confer section 2.2.2.1).

• Lower Cutoff of Scaling Regime: Both in the experimental data and in the nu-
merical data of Blaschke [23] a lower cutoff for the scaling regime can be seen (figure
2.15). We explain the observed cutoff in section 2.5.1.3 by relating the droplet size
distribution to the growth rate of the smallest droplets (2.45). In the experimental
data, the cutoff for small droplets is very prominent: The scaling regime of the size
distribution develops only at late times, just before the biggest droplets start to
be influenced by gravity (confer section 2.2.1). We observe a scaling correction for
the smallest droplets (2.49) consistent with the growth rate expected for diffusion
limited growth (confer section 2.2.2.1). We can rescale the experimental and the
numerical droplet size distribution each to a distribution with a flat horizontal tail.
This result is shown in figure 2.16(a).

• Steady-State Size Distribution: We observe the effect of gravity on the droplet
size distribution for droplet radii close to the capillary length r & 0.2lc in figure
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2.17(a). Remarkably, the scaling of the steady-state distribution (regime (iv), sec-
tions 2.2.2.4 and 2.5.2) differs from the scaling of the self-similar distribution de-
scribed above. The experimental data shows the scaling exponent θr = 3.0 ± 0.1
predicted for constant wetted fraction [46]. It is different to the scaling exponent
θr = 2.7 observed for breath figures on vertical substrates [117] and in the numerics
of Blaschke [23] (see figure 2.17(b)). For the numerical simulations, this may be due
to the limited range of droplet radii that can be simulated. Clearly more work is
required here.

• Coalescence Kernel: The distribution of droplet pairs in a neighborhood shows
a pronounced peak for droplets of similar sizes (see figure 2.19). We explain this
observation in sections 2.5.3.4 and 2.5.3.5 by the assertion that adjacent droplets
have a high probability of both belonging to the same local distribution with the
characteristic radius R (equation (2.76)). Hence the "bump" in the size distribution
of regime (iii) causes the peak on the diagonal of the pair correlation function.
After division of the various factors contributing to the correlation function, even
analogous to the dip in the rescaled size distribution (figure 2.15), we observe local
minima of the correlation function in figure 2.24. We demonstrate in section 2.5.3.5,
that the correction to the mean field coalescence kernel (2.29) can be calculated
(2.76) from the size distribution in regime (iii). We need only a single fit parameter
- the probability of neighboring droplets to belong to the same distribution.

• Kinetic Equation: In section 2.5.4 we extend the Smoluchowski equation (2.28)
introduced in section 2.2.4 by explicit terms for condensational growth, diffusion and
dripping (2.78). By transferring it into an equation for the evolution of the droplet
radius distribution (2.86) we show that the radius distribution is independent of
the contact angle, provided the droplets form spherical caps on the substrate. This
matches our observation that we get comparable data in the experiment and the
numerics. Integrating the evolution equation for the droplet radius (2.86) we find in
section 2.5.4.3 that it does not properly describe the evolution of the distribution.
The fraction of the substrate released by pairwise coalescences does not balance the
increase in the wetted fraction due to condensational growth and nucleation (see
figure 2.30). Probably, multi-coalescences [53] are much more effective in releasing
substrate area than pairwise coalescences. When two rather big droplets coalesce,
many other droplets that happen to be in the way of the new forming droplet get
involved in the coalescence event. In figure 2.26 one can easily see, that multi-
coalescences actually dominate the dynamics. Often, regions are released that are
bigger than the area wetted by two of the largest droplets in the system (confer also
figure 2.27).
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2.A Droplet Reflection Patterns
The image processing algorithm that was described in section 2.4 relies on a detailed study
of the droplet reflection patterns. We first define three different droplet radii in section
2.A.1, which characterize the reflection patterns and relate it to the physical droplet radius.
We then measure the radial intensity distribution as a function of the radius in section
2.A.2. The radial intensity distribution is parametrized in section 2.A.3. On this basis, we
define two match functions in section 2.A.4 to compare droplet detections to the image.
These match function form the backbone of our image processing algorithm.

2.A.1 Definition of Characteristic Radii

For practical purposes three characteristic radii (compare figure 2.31) are defined. The
three of them can only be measured for r & 15µm (check!). We find fixed relations between
the radii that can be extrapolated to small droplets where the resolution is limited by
diffraction. As three characteristic radii we distinguish

• a thin inner reflection ring at radius ri with thickness 2σi,

• a thick outer reflection ring with the outer edge radius ro and thickness 2σo and

• a coalesce radius rc.

Figure 2.31: The
image shows three
droplet radii en-
coded by the color:
The inner reflection
ring ri (blue), the
outer reflection ring
ro (green) and the
coalesce radius rc
(red).
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The radii ri and ro can be directly determined by image processing. We are however
most interested in the coalescence radius rc, which can not be seen in the images. We
observe, that droplets coalesce rapidly when the distance of their centroids is equal to
the sum of their coalescence radii. By image processing, we determine the edge of the
outer ring. By careful comparison of the detected radius ro with the distance of droplets
in images just before a coalescence event, we find that the coalescence radius amounts
to rc = 1.20 · ro (compare figure 2.31). If the image processing algorithm detects several
overlapping droplets, one of them (usually the smaller droplet) is considered to be an
artifact. Therefore the radius rc is vital for removing artifacts in the image analysis (see
2.4.2.3). We now move on to the calculation of radial intensity profiles, forming a basis
for the droplet detection algorithm. In the analysis of our data in section 2.5, we refer to
the coalescence radius as the droplet radius.

2.A.2 Radial Intensity Profiles
To accurately measure the droplet size distribution, a consistent criterion is needed to check
the validity of droplet detections and to define the droplet radius. As a preparatory step,
the radial intensity profile of droplet images is studied. In section 2.A.4 a parametrization
of the profile will be used to define a single smooth function which calculates the match
between the droplet detection and the image for all droplets. Radial intensity profiles
of several hundred sample droplets were calculated and averaged for 20 radius bins (see
figure 2.32). The profile is plotted as a function of r̂, the radial distance from the centroid
normalized by the outer reflection radius ro.

Figure 2.32: Radial intensity
profile of droplets. The colors
correspond to the radius of the
droplets. For small droplets (dark
blue), a Gaussian centered at the
droplet center is observed. The
width is determined by blurring ef-
fects. For slightly bigger droplets
(light blue to green), one reflection
ring is observed. We attribute this
ring to reflections close to the con-
tact line. For large droplets (yel-
low to red), a second inner reflec-
tion ring is visible. It arises due
to double reflections on the droplet
surface.

The form of the reflection pattern of the droplets depends on the droplet radius, as can
be seen in figure 2.12 (rather refer to figure in section 3.1 with stages of droplet growth).
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There are three types of droplet images which have to be distinguished. Tiny droplets
only have one bright maximum in the center, the radial intensity distribution can be
approximated by a Gaussian function (see dark blue curves in figure 2.32). For small
droplets, one bright ring is visible with a dark core (light blue to green curves). The light
is reflected close to the contact line. For big droplets (yellow to red curves), an inner
rather sharp ring appears at r̂ ≈ 0.42 and a bigger bright ring at r̂ ≈ ro − σo. Double
reflections on the droplet surface cause the inner reflection ring.
The peaks in the radial intensity profile are fitted with Gaussian functions. The position
of the inner ring ri scales with the outer edge of the outer ring ro. While the width of the
inner ring 2σi is constant (in units of ro), the width of the outer ring 2σo changes. The
relations can be parametrized by

ri(r) = 0.42r (2.86)
σi(r) = 3.7 (2.87)

σo(r) =
√

4.02 + (0.050r)2 (2.88)
ro(r) ≡ r. (2.89)

2.A.3 Parametrization of the Profile

Going from the droplet center outwards, a sequence of dark and bright regions is observed.
For big droplets, we find an inner dark core in the center for r̂ ≤ rcore,in. It is surrounded
by the inner reflection ring at rcore,in ≤ r̂ ≤ rring,in. Then a relatively dark regions follows
for rring,in ≤ r̂ ≤ rcore,out. It is surrounded by a thick bright reflection ring in the range
rcore,out ≤ r̂ ≤ rring,out. The direct environment of the outer ring rring,out ≤ r̂ ≤ renv
is relatively dark again. Using the radii ri, ro and the ring half widths σi, σo the radii
denoting the edges between dark and bright regions are defined. They correspond to
extrema in the gradient of the intensity profile. The definitions of rcore,in and rcore,out have
to ensure that the result is always positive, though being calculated by a difference of
positive numbers. Special care has to be taken in defining rcore,in and rring,in, as the inner
reflection ring is only present on images of big droplets. To get a consistent description
for all droplet radii, the values of rcore,in and rring,in have to be limited by the inner edge
of the outer reflection ring rcore,out.

rcore,in(r) ≡ min(max(0, ri(r)− σi(r)),rcore,out) (2.90)
rring,in(r) ≡ min(ri(r) + σi(r),rcore,out) (2.91)
rcore,out(r) ≡ max(0, ro(r)− 2σo(r)) (2.92)
rring,out(r) ≡ ro (2.93)

renv(r) ≡ ro(r) + σo(r) (2.94)

Having defined the radii for the edges of the core, ring and environment regions, it is
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possible to calculate the mean intensities of the regions. It is also worthwhile to calculate
the variation of the intensity in the inner core and the outer ring, because a low intensity
variation of these two regions is characteristic. The result is shown in figure 2.33, which
shows that the intensity of the inner core Icore,in, the rings Iring,in, Iring,out and the droplet
environment Ienv depend on the droplet radius. The radius dependence of the mean inten-

Figure 2.33: The intensity of the
inner core Icore,in, the rings Iring,in,
Iring,out and the droplet environ-
ment Ienv depend on the droplet
radius. Also the variation of the
intensity in the inner core δIcore,in
and at the outer ring δIring,out is
measured. The radius dependence
can be well described by power
laws and saturation values (fitted
lines). The fit parameters are
summarized in equations (2.95)-
(2.100).

sities and the intensity variations can be well described by a combination of power laws
and saturation values (see fitted lines in figure 2.33). We use the following parametrization
for the radius dependence of the intensities

I∗core,in(r) = 61 (2.95)
I∗ring,in(r) = 94 (2.96)

I∗ring,out(r) = max
(
104,min

(
24 · r0.55,200

))
(2.97)

I∗env(r) = 7.3 · r0.08 (2.98)
δI∗core,in(r) = 0.83 · r0.56 (2.99)

δI∗ring,out(r) = min
(
78,0.62 · r1.30

)
. (2.100)

We also calculated the standard deviations of the mean intensities and the intensity varia-
tions. The standard deviations don’t exhibit a consistent radius dependence (not shown).
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Therefore, it is enough to compute the averages

∆Icore,in = 2.3 (2.101)
∆Iring,in = 7.6 (2.102)
∆Iring,out = 13 (2.103)

∆Ienv = 8.0 (2.104)
∆δIcore,in = 1.2 (2.105)
∆δIring,out = 3.4. (2.106)

2.A.4 Match Functions

For comparison of the detected droplets with the preprocessed images, two different match
functions are used. The first match function is based on the intensity gradient at the
outer edge of the outer reflection ring only. The second function is constructed from the
parametrization of the averaged radial intensity profile.
On the one hand, the match of droplets is a good criterion to sort out erroneously detected
droplets. On the other hand, the match functions can be applied for the improvement of
the estimate of the droplet radius and position. For this purpose, radius and position are
varied until a local maximum of the match is found.
Both match functions are used where appropriate, as they have different advantages and
shortcomings. The gradient based match function gives reliable results for the determi-
nation of the droplet radius, provided that the prior estimates of the droplet radius and
position are very good. Dark regions between droplets, which can be easily mistaken for
droplets, are distinguishable by a small value of the gradient based match function. The
match function based on the radial intensity profile has a bigger convergence radius for the
optimization of the radius and the position estimate. It gives reasonable results even when
the preliminary estimate of radius and position are not very accurate. However, the opti-
mization of the profile based match can also give a good match for erroneously detected
droplets. Often they can be distinguished from real droplets by posterior calculation of
the gradient based match.

2.A.4.1 Gradient Based Match Function

The gradient based match function is used to detect the edge of the outer reflection ring
ro. It compares the average intensity of two rings ro ≤ r ≤ ro + ∆r (just outside of the
outer reflection ring) and ro −∆r ≤ r ≤ ro (part of the outer reflection ring), as

mgradient = I(r0 ≤ r ≤ r0 +∆r)− I(r0 −∆r ≤ r ≤ r0) (2.107)

where ∆r = 3pixel.
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2.A.4.2 Radial Profile Based Match Function

For the definition of the intensity profile based match function we rely on the parametriza-
tion of the profile outlined in section 2.A.3. To the droplets shall be assigned a good
(positive) match if they have a dark core, a dark environment and bright rings. The
challenge is to interpolate smoothly between the cases of small droplets, where only the
outer ring is visible and the case of big droplets where the inner ring is significant, too.
For small droplets with r < rc = 30 we expect the pixels between rcore,in and rring,in to be
relatively dark (negative sign in match function), for r > rc we expect to see a relatively
high intensity (positive sign). To interpolate smoothly between the two regimes, we define
a prefactor α ranging from α(rc − 20) = −1 to α(rc + 20) = +1

α(r) = −1 for r < rc − 20, r − rc
20 for rc − 20 < r < rc + 20,+1 for r > rc + 20. (2.108)

Each region of the droplet image (cores, rings, environment) contributes to the match
weighted according to its area. We define the areas Ax as the intersection of a disc with
radius x and the image, where the index x denotes ring, core or environment regions. Note
that Ax < πr2

x for droplets touching the edge. We are now in the position to define the
match function

mprofile = − Acore,in
Aenv

·
Icore,in − I∗core,in

∆Icore,in

− Acore,in
Aenv

·
δIcore,in − δI∗core,in

∆δIcore,in

+ α
Aring,in −Acore,in

Aenv
·
Iring,in − I∗ring,in

∆Iring,in

+ Aring,out −Acore,out
Aenv

·
Iring,out − I∗ring,out

∆Iring,out
(2.109)

− Aring,out −Acore,out
Aenv

·

∣∣∣δIring,out − δI∗ring,out∣∣∣
∆δIring,out

− Aenv −Aring,out
Aenv

· Ienv − I
∗
env

∆Ienv

− 1
r2 .

The first two contributions to the match are worked out from the core of the droplet. It
should have a low density (i.e. negative sign in match function) and a small variation of
the intensity. The third contribution corresponds to the inner ring of the droplet. This
region either belongs to the dark core of small droplets (α < 0) or to a bright reflection ring
of large droplets (α > 0). The fourth term represents the most prominent feature of the
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droplets, the bright (outer) reflection ring. It is expected to have a high intensity and an
intensity variation close to the typical value δI∗ring,out. In contrast to the reflection ring the
direct environment of it is expected to be relatively dark (negative sign). The magnitude
of each contribution depends on its relative deviation from the typical values for droplets
of their size. The intensity Icore,in denotes the mean intensity of a droplet’s core in a
certain image. The intensities I∗core,in and ∆I∗core,in correspond to the mean value and its
variation for an ensemble of droplets with the radius r. The intensities Iring,in, Iring,out and
Ienv denote the mean intensities of the inner, outer ring and the droplet’s environment,
accordingly. The prefactors of the form A1−A2

Aenv
give the weight of the relative area to each

contribution which is covered by the feature (core, ring, environment). This makes the
match function also well defined for non-existing droplet cores (Acore,in = 0) or non-existing
inner rings (Acore,in = Aring,in).
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3 Phase Separation

3.1 Introduction

A second experimental system, where the interplay of several droplet mechanisms can be
studied is the phase separation of binary fluids. When the temperture of a binary mixture
is slowly changed, droplets are nucleated. They grow, coalesce and sediment, showing an
oscillatory behaviour during phase separation. They form a full precipitation cycle, which
can be studied in the laboratory. The precipitation cycle at the demixing of binary fluids
has important analogies to the precipitation cycle leading to rain formation in clouds. We
therefore look at the formation of rain focussing on the open question of a bottleneck
in the growth of droplets. With our investigations on the evolution of the droplet size
distribution in demixing binary systems, we aim to shed light on this bottleneck in rain
droplet growth.

3.1.1 Oscillatory Phase Separation of Binary Fluids

Droplets can be present in mixtures of several liquid components. Binary, ternary or even
more complex systems are found in magma [110], alloys [63], cosmetics, pharmacy, food,
oil reservoirs or paint [40]. The form of the phase diagram depends on the contributions
of intermolecular attractive forces and entropy to the free energy of the system [133]. A
binary fluid demixes into two phases, when the composition is in the unstable part of the
phase diagram, inside the so called miscibility gap. This penomenon will be explained by a
simple model in section 3.2. Most binary systems have an upper critical temperature and
demix under cooling. Examples include methanol/hexane [1], cyclohexane/polystyrene
[139] and raw spirit/vegetable oil [130]. Some systems, however, demix under heating, like
water/butoxyethanol [84] or water/lutidine [59].
In many situations, the fluid is subject to a slow temperature change. On the one hand,
this can drive convection [33, 100]. On the other hand, the system demixes, if temperature
is moving into the regime of the miscibility gap. The demixing behavior of binary fluids
subject to a slow temperature ramp has been investigated for a variety of systems, where
oscillations in the heat capacity and in turbidity have been observed [8, 33, 60, 126, 128,
132]. The oscillations originate from a complex interplay between nucleation, diffusion,
coagulation and sedimentation.
In figure 3.1, a series of snapshots of a video showing the phase separation of a mixture
of water and butoxyethanol from [128] is reproduced. The mixture is continuously heated
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Figure 3.1: The series of photographs reproduced from [128] shows a mixture of water and 32%
butoxyethanol, heated with 10k/h for different times. At the beginning of the temperature ramp,
the sample is in one phase (a). When the critical temperature of the mixture is crossed, many
droplets are nucleated (b), yielding a high turbidity of the sample. The droplets coalesce (c) and
two layers with a meniscus inbetween are forming (d). The droplets sediment towards the interface
(e) and the sample clears up. Subsequently, a new nucleation wave sets in (f), the droplets coalesce
and sediment again (g,h). A third cycle is observed in (i,j).

with 10K/h from the one phase regime (a) into the miscibility gap. Once the critical
temperature is reached, many droplets are nucleated and the sample gets turbid (b). The
droplets coalesce (c) and a meniscus forms with a water-rich laxer at the bottom and a
butoxyethanol-rich layer in the top (d). The droplets sediment towards the interface (e)
and the sample clears up. Then a second nucleation wave is observed (f) with subsequent
coarsening and sedimentation (g,h). A third cycle can be seen in (i) and (j).
Note that these repeated cycles in the evolution of the droplet distribution are similar
to the steady-state regime observed in breath figures (confer section 2.2.2.4). Droplets
are nucleated, grow, coalesce and are removed by gravity, yielding space for new genera-
tions of droplets. In breath figures, these cycles are run through by almost independent
distributions in different regions of the substrate simultaneously. In the phase separa-
tion experiment, however, the cycles in the distribution of droplets are synchronized by a
convective flow in each layer of the sample.
By keeping the mass flux in the system constant, more than 20 oscillations during one
experimental run can be observed [8]. The amplitude of the oscillation decreases rapidly,
also the period is decreasing during the temperature ramp. The origin of this drift was
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unclear up to now. Also a dependence of the oscillation period on the driving rate has
been observed [60]. However, as the period changes in each ramp significantly (easily
by a factor of 5, see figure 3.17), it is difficult to determine the driving dependence on
the amplitude. On the one hand, measurements in different geometries suggest that the
oscillation period is not affected significantly by the geometry [130]. This excludes the
convective flow or interface effects to be the dominant mechanisms determining the time
scale of the oscillations. On the other hand, a coupling of the oscillations in the two layers
has been suggested [60].
In this thesis, we aim to clarify the parameter dependence of the oscillation period. There-
fore, we build a fully automated experimental setup and scan the parameter space for the
oscillations in more than 200 measurements. Heating rates are varied over almost three
orders in magnitude and the reduced temperature θ

θ ≡ |T − Tc|
Tc

(3.1)

is varied over two decades, where T is the absolute temperature and Tc is the critical
temperature of the mixture (see section 3.2). Measurements are taken in both layers.
Also the influence of the height, the width of the sample and the starting composition is
tested. The results for the parameter dependence of the oscillation period are presented
in sections 3.6.1.3, 3.6.3.4 and 3.6.4.
We now move on to clouds, where a precipitation cycle of nucleation, diffusional growth,
collisions and sedimentation is described for the formation of so called "warm rain" [66,
pp. 310].

3.1.2 Rain Formation
Clouds Since clouds can enhance or diminish the green house effect of the earth’s atmo-
sphere, a better understanding of cloud physics is important to improve climate models.
This is a challanging enterprise because the micro-physics of clouds is fairly complex [90]:
chemical reactions, thermodynamic coupling of phase transitions between liquid water, va-
por and ice at the presence of a variety of cloud condensation nuclei as well as particle-flow
interactions are at work. On the other hand, clouds are a multi-scale phenomenon with
turbulence involved [24]. Here we focus on the droplet growth in warm clouds where all
layers have temperatures above the freezing point. Hence the complex interplay of cloud
droplets with ice crystals [66] does not have to be considered. Similar to breath figures,
one encounters a broad distribution of droplet sizes in clouds [29, 34, 35, 140]. The droplet
size distribution determines the optical properties of clouds and couples to the motion and
the thermodynamics of clouds.

Laboratory Experiments A key issue to understand warm rain formation is detailed
knowledge about the droplet size distribution and its evolution in time. Theoretical de-
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scriptions based on diffusional droplet growth predict narrow distributions [90], whereas
growth by collisions may introduce bimodal distributions [66, 103]. Field data are avail-
able from aircraft flight campaigns [14, 140] or helicopter flights with the measurement
equipment immersed into the cloud hanging on a rope [105]. An alternative option is to do
measurements on mountain tops [87]. Field data shows broad mono-modal distributions
[29, 34, 35, 140]. It remains unclear however, whether this result is just due to averaging
over large regions within the cloud during measurements and a correct interpretation of
field data remains challenging [140].
Several aspects of droplet growth have been studied in laboratory experiments with well
controlled conditions. Among these are

• Mixing of cloud and clear air [64],

• Collision rates of droplets in wind tunnel experiments [124],

• Droplets in Rayleigh-Bénard convection [141] and

• Nucleation in cloud chambers [109].

These experiments have isolated different mechanisms of cloud droplet growth and try to
mimic typical cloud conditions relevant for the specific mechanism in their experiment.
However, to our knowledge there has not been a single experiment yet where a full precip-
itation cycle (nucleation, diffusional growth, collisional growth, sedimentation) as a whole
can be studied. By investigating the precipitation cycle observed in the phase separation
of binary fluids, we aim to shed light on the cycle leading to the production of warm rain.

Precipitation Cycle A sketch of the described precipitation cycle is shown in figure 3.2.
Upwinds lift warm humid air parcels to colder layers in the atmosphere. The temperature is
decreasing roughly with the adiabatic lapse rate of 1K/100m [114, p. 109] and the relative
humidity increases. Once the water vapor is supersaturated, droplets are nucleated on
cloud condensation nuclei (CCN), such as salt, ammonium sulfate, hydrogen peroxide,
sulfuric acid or nitric acid [114, p. 161]. The supersaturation diffuses to the droplets and
triggers growth to a radius of up to 10µm within O(100s) [90, p. 511]. Droplets continue to
grow by coalescing with other droplets. At a droplet radius of about 50µm sedimentation
velocities of droplets get significant. Sedimenting through layers with smaller droplets,
they collide with smaller droplets on their path, called gravitational collection [90, pp.
617]. Eventually when the droplets have grown to about 2mm radius, the settling velocity
exceeds typical convection velocities in the cloud and the droplets fall down, observed as
rain. If bigger droplets are formed, they break up because the air resistance is bigger than
the surface tension [122].
3.2.
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Figure 3.2: Upwinds
raise cooling air parcels
increasing supersatu-
ration. Droplets are
nucleated and grow by
diffusion to about 10 µm.
The continue to grow
by coalescences, which
may be enhanced by
turbulence. For droplets
of 50µm or larger sedi-
mentation is dominating
and the droplets grow by
gravitational collection of
smaller droplets in their
path.

Bottleneck in Droplet Growth In the described precipitation cycle a bottleneck in
droplet growth is asserted [103, 137]. For droplets smaller than 10µm, growth by conden-
sation of water vapor is effective. Droplets bigger than 50µm easily grow by gravitational
collection. However, in the range between 10 and 50µm (the exact values may depend on
the details of the setting) neither diffusional nor gravitational growth seems to be effective
[90]. Nevertheless, full precipitation cycles within 15 min are observed in nature, raising
the question how the apparent bottleneck is passed on the timescale of minutes. It has
been proposed that the turbulence present in clouds enhances collision rates of droplets
and therefore speeds up droplet growth [24, 38, 44, 99, 103, 120]. Several mechanisms how
turbulence can accelerate droplet growth have been suggested:

• Air Entrainment: Since the water vapor pressure curve is not linear in temperature
but convex, entrainment of cold dry air and mixing with relatively warm humid air
increases the relative humidity [75, 114, p 148].

• Preferential Concentration: Maxey [78] suggested a centrifuge mechanism: Heavy
particles are expelled from high vorticity regions by centrifugal forces. Hence the
particles preferentially concentrate on regions of low vorticity and high shear rates.
Locally increased droplet number concentrations would enhance collision rates [56].

• Collision Efficiency: If the particle response time to the flow τp is of the same order
than the time scale of fluid velocity fluctuations τf , the fluctuations can enhance
relative velocities of particles and therefore increase the number of collisions. This
effect has been studied in great detail by numerical simulations [10, 11, 44, 99] as a
function of the Stokes number St = τp/τf .
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However, it is difficult to judge the relevance of the suggested mechanisms to the broad
range of cloud conditions observed in nature. Air entrainment and preferential concentra-
tion are acting on very large scales compared to the scale relevant for the micro-physics
of droplet growth (nucleation and diffusion). An increase of the collision efficiency is
probably also relevant on the droplet size scale.
Here we focus on the micro-physics that determines the evolution of the droplet size
distribution. We are looking at the processes which are at work below the Kolmogorov
length (O(1cm) for cloud turbulence). Typical Stokes numbers in the experiment are
smaller than 10−6 [67]. Even for a flow with high turbulence intensity with a Kolmogorov
time scale of the order of microseconds, the Stokes number in a binary fluid would not
exceed 10−3. Due to the small density differences of fluids, kinematic particle-turbulence
interactions [120] can hence be ruled out for droplets, even in a turbulent flow.
How do the droplets pass the bottleneck when turbulence effects can be neglected? Can a
bottleneck in droplet growth be seen in the evolution of the droplet size distribution? Are
broad distributions due to averaging or is the distribution at a certain time and location
broad itself?
We aim to shed light on these questions by studying the precipitation cycle that can be
observed in well controlled phase separation experiments with binary fluids. To this end,
we design and construct an experimental setup, which is optimized to image droplets in the
size range of the possible bottleneck. We develop an image processing algorithm to detect
and to track droplets. In contrast to existing droplet tracking algorithms, we explicitly
keep track of the droplet radius and include an assumption for the sedimentation velocity
of droplets. The evolution of the droplet size distribution that we measure is presented
in section 3.6.1.2. We analyze the bottleneck in droplet growth that we find in section
3.6.2.4. In the following, we give an outline of the chapter.

3.1.3 Outline of Chapter
We introduce the main concepts of phase separation in binary fluids starting with a simple
model for the free energy of binary fluids (section 3.2). Then in section 3.3 we present the
model system which we used to study the precipitation cycles. In section 3.4 the experi-
mental setup is described and the experimental protocol is explained. In the next section
3.5, we explain the image processing and droplet tracking algorithm that we developed in
order to measure droplet size distributions and velocities simultaneously. In section 3.6,
our results for the droplet size distribution, droplet volume fraction and droplet number
density are presented. We look at the bottleneck in droplet growth and derive a simple
model for the parameter dependence of the oscillation period and amplitude. The results
are discussed in section 3.7 in light of the questions raised above. Some important material
parameters of our model system are summarized in the appendix 3.A.
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3.2 Binary Fluids: The Φ4-Model

3.2.1 Free Energy Model

A basic physical description of binary fluids can be derived from density functional theory
for the free energy F of binary fluids [28].

F =
∫ [

F0(Φ) + K

2 (∇Φ)2
]
dV. (3.2)

The composition Φ denotes the mass, volume or molar fraction of one component and
serves as the order parameter in the transition from a disordered to an ordered phase.
A prefactor K is introduced for the energy associated with composition gradients. The
potential energy of the homogeneous solution is described by F0(Φ). A simple prototype
will be discussed below to describe the essential concepts of binary fluids.

Interfacial Energy The energy of the composition gradient is modeled by the contribu-
tion K/2(∇Φ)2 to equation (3.2). It costs a lot of energy to form an interface of a sharp
composition gradient. Assuming that the thickness of an interface is constant, it directly
follows from (3.2) that the energy associated with the formation of an interface is propor-
tional to its area. Therefore, physical systems always seek to minimize interfaces between
different phases. This effect was already mentioned in the discussion of the wetting of sub-
strates in section 2.2.1. The surface energy depends on the strength of attractive forces
between the molecules. As the molecule interactions are temperature dependent, so is
the surface energy. This is the origin of the Marangoni effect [102], where temperature
gradients in the system drive a flow induced by surface tension gradients. It can already
be seen from (3.2) that the interfacial tension may increase linearly in leading order with
the composition difference ∆Φ of two phases.

Potential Energy A simple prototype for the potential F0 of a binary fluid is the Φ4-
model [28], providing an approximation for F0(Φ):

F =
∫ [

F0(Φ) + K

2 (∇Φ)2
]
dV =

∫ [
A

2

(
Φ− 1

2

)2
+ B

4

(
Φ− 1

2

)4
+ K

2 (∇Φ)2
]
dV. (3.3)

The prefactors A and B are temperature dependent constants and define the shape of the
potential F0(Φ). In equilibrium, the system is in the global minimum of the free energy.
To ensure that such a minimum exists, the factor B has to be always positive. When A is
also positive, the potential has only one minimum at Φ = 1/2 which is illustrated in figure
3.3(a) (top). The system is in one disordered phase once it reaches equilibrium. In case
A is negative, two minima are present at Φbinodal = 0.5 ± Φ0 with Φ0 ≡

√
|A|/B, shown

in figure 3.3(a) (bottom). In equilibrium, the phases of the system have the compositions
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Φbinodal separated by the so called miscibility gap of the width 2Φ0. A sketch of the phase
diagram is shown in figure 3.3(b). We plot it for the case of A being a monotonously
falling function of temperature, resulting in a lower critical solution temperature (LCST)
Tc. Most binary fluids show upper critical solution temperatures (UCST), as mentioned
in section 3.1.1. The model system that we chose for our experimental investigations (see
section 3.3), however, also has a LCST.

(a) (b)

Figure 3.3: (a) The Φ4-model for the free energy (3.3) is plotted for two sets of variables A,B. The
composition Φ denotes the fraction of one component in the system. If A and B are both positive
(top), the energy potential F0(Φ) has only one minimum at Φ = 0.5 (blue triangle). If A < 0 and
B > 0 (bottom), the energy potential has two minima (blue triangles) at Φbinodal = 0.5±Φ0. The
composition Φ0 is defined by Φ0 ≡

√
|A|/B. Two inflection points (black disks) are present at

Φspinodal = 0.5±
√
|A|/3B.

(b) Sketch of a phase diagram for the case of A being a monotonously falling function of tem-
perature. For low temperature, the two components form a stable mixture for any composition.
This corresponds to the case ((a), top) where the free energy potential has only one minimum.
At the critical temperature Tc, the sign of A changes and two minima in the energy appear. The
binodal (blue triangles) corresponds to the compositions of the minima of the free energy potential
((a),bottom) for a given temperature. The spinodal (black disks) is defined by the inflection points
of the free energy for a given temperature. Outside the binodal the mixture is stable. Between
binodal and spinodal it is metastable and inside the spinodal it is unstable.

3.2.2 Evolution of Composition

Phase transitions are described by the evolution of a so called order parameter. In phase
separation, the composition serves as an order parameter. When the order parameter is
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conserved, as it is the case for phase separation, an appropriate equation of motion for the
order parameter in the absence of a center of mass flow is of the form [28]

∂Φ

∂t
= λ∇2 δF

δΦ

= λ∇2
[
∂F0
∂Φ
−K∇2Φ

]
(3.4)

= λ∇2
[
A

(
Φ− 1

2

)
+B

(
Φ− 1

2

)3
−K∇2Φ

]
.

Following [129] the normalized composition

ϕ ≡
Φ− 1

2
Φ0

(3.5)

is introduced and the time derivative is computed to be

∂ϕ

∂t
= 1
Φ0

∂Φ

∂t
− ϕ 1

Φ0

∂Φ0
∂t

. (3.6)

For the first term, equation (3.5) can be inserted. In the second term, a driving parameter
is identified

ξ0 ≡
1
Φ0

∂Φ0
∂t

. (3.7)

It accounts for the change of the miscibility gap width with temperature and acts as
a source of supersaturation σ ≡ 1 − |ϕ|. The evolution equation for the normalized
composition follows

∂ϕ

∂t
= λ∇2

[
Aϕ+BΦ2

0ϕ
3 −K∇2ϕ

]
− ξ0ϕ. (3.8)

Recalling A < 0, Φ2
0 = |A|/B and introducing an equilibrium diffusion coefficient D ≡

2λ|A| and the interface thickness δ ≡
√
K/|A|, we arrive at a nonlinear diffusion equation

[129]
∂ϕ

∂t
= ∇

[
D

2 (3ϕ2 − 1)∇ϕ
]
− D

2 δ
2∇4ϕ− ξ0ϕ. (3.9)

It is important to note that the diffusion coefficient D(3ϕ2 − 1)/2 depends on the nor-
malized composition. If the system is close to equilibrium, ϕ ≈ ±1 everywhere, then the
diffusion coefficient simplifies to the equilibrium coefficient D. If the system is far from
equilibrium, in the so called spinodal range

− ϕs ≡ −1/
√

3 < ϕ < 1/
√

3 ≡ ϕs, (3.10)
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the diffusion coefficient is even negative. This has been referred to as "uphill" diffusion.
Thus, in this regime, small fluctuations are amplified by diffusion until other terms take
over. The composition where the diffusion changes sign is called the spinodal in the phase
diagram. More generally, the spinodal is defined by the inflection points of the free energy
potential

∂2F0(Φ)
∂Φ2 ≡ 0. (3.11)

3.2.3 Phase Separation Scenarios

For the phase separation of binary fluids, three different regimes have to be distinguished
[129], sketched in figure 3.4. They differ by the type of the temperature protocol and by
the way the system reacts to the temperature change.

3.2.3.1 Very Slow Temperature Change

We consider the already phase separated system. When the change in temperature is very
slow [129], as illustrated in figure 3.4(a) (top)

ξΛ2

D
� 1, (3.12)

where Λ is the system size, the diffusion term in (3.9) balances the driving term ξ0ϕ. The
sketch in figure 3.4(a) (bottom) indicates, that the composition follows the binodal closely.
Typical values for our experiment are ξ=1 · 10−5s−1, Λ=1 · 10−2m and D=1 · 10−10m2/s,
so we are usually not in this regime with our experiments.

3.2.3.2 Quench in Temperature or Pressure

The next simplest, certainly more interesting way one can drive the system is to do
a quench experiment, as sketched in figure 3.4(c). Either temperature or pressure are
changed very fast compared to the time scale of the system’s response. After the quench,
temperature (and pressure) are carefully kept constant and the response of the system
is monitored. Considering (3.7) and the diffusion equation (3.9), this implies that the
driving term is zero after the quench. The evolution of the normalized composition is
determined by diffusion and the formation of interfaces. Depending on how much the
system is driven into the miscibility gap, the system reacts by two distinguished mecha-
nisms. If the temperature changed very much, i.e. the composition is inside the spinodal
range (3.10), the system demixes via so called spinodal decomposition. If the system was
only slightly quenched and the composition is between the binodal and the spinodal, the
system demixes via the formation of droplets.
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(a) (b) (c)

Figure 3.4: Depending on the temperature protocol (top), three different demixing scenarios
(bottom) have to be distinguished.
(a) For very slow temperature changes, the compositions of the two phases follow the binodal by
diffusion.
(b) At intermediate temperature changes, the separation occurs in an oscillatory manner.
(c) For fast temperature quenches, the nucleation of droplets or spinodal decomposition are ob-
served.
The figure is adapted from Rohloff [96] and extended.

Droplet Formation Between the binodal and the spinodal, the system is in a metastable
state. Gibbs [54] formulated two criteria for metastable phases. Metastable phases cor-
respond to local minima of the free energy of the system, which are stable against small
perturbations, i.e. in the convex region of F0(Φ). This includes stability against small
changes over a large area and stability against large changes over small areas. In the
metastable phase, nucleation of droplets sets in at discrete nucleation sites (homogeneous
or heterogeneous), the thermodynamics of fluctuations being important. Let us consider
a system with a composition between binodal and spinodal, on the left hand side (i.e. rich
in component A). As the system is not at the global minimum (i.e. the binodal), it is su-
persaturated in component B. The excess volume of component B diffuses to the droplets
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and is absorbed, whereas the component A diffuses from the droplets into the bulk. The
composition of the droplets is determined by the right branch of the binodal, whereas the
bulk gets to the left branch by expelling excess molecules of component B. The growth
rate of droplets can be measured and used to determine the diffusion coefficient [111].

Spinodal Decomposition If the system is far inside the miscibility gap, the mean field
free energy is concave, and the system is unstable to all perturbations. The system sepa-
rates by spinodal decomposition, which is uniformly in space and has no thermodynamic
barrier [21]. As discussed above, it is characterized by a negative diffusion coefficient.
Small variations of the composition are enhanced, and domains with different composi-
tions develop. The length scale of the domains grow rapidly in time, showing a self-similar
growth comparable to the regime (ii) described in breath figures (confer section 2.2.2.2).

3.2.3.3 Slow Temperature Change

In most realistic scenarios, the temperature change of binary fluids is in an intermedi-
ate regime between the very slow temperature change and a temperature quench (figure
3.4(b)). The simplest way to keep the system in this intermediate regime is to set the
driving parameter ξ0 in the diffusion equation (3.9) to a constant. It is this regime, where
an oscillatory demixing process is observed, as described in section 3.1.1. As illustrated
in figure 3.4(b) (bottom), the composition evolves almost stepwise in time. First, the
composition stays roughly constant while the temperature is increasing. When the sys-
tem is far enough inside the miscibility gap, droplets are nucleated and diffusion on the
scale of droplet distances brings the composition back to the binodal. After the droplets
have disappeared (by coalescences or sedimentation or a combination of both), diffusion
acts on the length scale of the system size again, so the composition cannot follow the
bimodal again. Vollmer et al. [130] suggest a minimal model for oscillation cycles in phase
separation. It is based on the diffusion equation (3.9) and approximates the composition
profile around droplets due to diffusion to get an evolution equation for the supersatura-
tion, which depends on the droplet number density n. The second ingredient is a simple
model equation for the evolution of the droplet number density

dn
dd = νN (Σ)− γn2. (3.13)

Here Σ denotes the supersaturation far off the droplets, νN (Σ) is a supersaturation depen-
dent nucleation rate and γ is a collision probability. Integration of the evolution equation
for the supersaturation based on (3.9) together with (3.13) yields a limit cycle in the phase
separation dynamics. Vollmer et al. [130] show that a nucleation rate depending on the su-
persaturation, removing of droplets by coalescences and a coupling of the droplet number
density to the supersaturation are the essential ingredients for the oscillations. Benczik
and Vollmer [15] considered a reactive flow model with continuously ramped temperature
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and a chaotic advection field to investigate oscillatory phase separation numerically. Both
models are too simplified to predict the time scale for the oscillation period observed in
the experiments [8, 128, 130]. In the experiment, a convective flow is observed, so the
diffusion equation (3.9) is coupled to the Navier-Stokes-Equations, which was discussed
by Cates et al. [33]. We now move on to the description of real binary fluids, focussing
on the model system that we chose for our experimental investigations.
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3.3 Binary Fluids: Real Systems

Oscillations in the demixing process of binary mixtures have been observed in a vari-
ety of systems like methanol/hexane, polystyrene/cyclohexane, water/lutidine and wa-
ter/butoxyethanol (confer section 3.1.1). They all differ in their exact physical and chem-
ical properties, especially in the form of their phase diagram. The free energy of a binary
fluid has several contributions, including binding energy, mixing entropy and rotational
entropy [133]. Each of these terms has a different temperature dependence. In real physi-
cal systems, the free energy is therefore more complicated than assumed in the Φ4-model.
Both upper or lower critical temperatures can be observed in binary fluids. In figure 3.5
we show the phase diagram of the system water/butoxyethanol, which was studied in the
experiment described in section 3.1.1. It shows a miscibility gap which forms above 48℃,
gets wider up to about 80℃ and then closes again. The phase diagrams of binary fluids
are in general not symmetric in Φ, so more terms have to be added to describe the phase
diagram than in the Φ4-model. We now introduce the model system that we chose for our
experimental studies.

Figure 3.5: Phase diagram of wa-
ter/butoxyethanol, taken from [84]. The
lower critical temperature of aqueous solu-
tions of isobutoxyethanol is slightly above
room temperature, being very convenient for
experimental procedures. The lower critical
temperature of the water/n-butoxyethanol
mixture is higher (at 48℃). The system
also shows an upper critical solution tem-
perature. When plotting in terms of the
mole fraction, the phase diagram is quite
asymmetric.
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3.3.1 Model System: Water/Isobutoxyethanol

For visualizing the droplets in the experiment, we decided to use fluorescence after pre-
liminary tests on visualization based on droplet reflection patterns were not promising.
Most fluorescent dyes solve in organic phases. Therefore it is the easiest to use a binary
fluid with an organic and a polar liquid. One example is the water/butoxyethanol system
already used by Vollmer et al. [128], which is cheap and easy to handle. We find that
the fluorescent dye nile red solves in butoxyethanol but not in water. Additionally the
fluorescence is quenched by the water molecules [50]. Hence we get a good contrast in the
fluorescence images of water/butoxyethanol mixtures. The only shortcoming is the rela-
tively high critical temperature of 48℃. By choosing the derivate isobutoxyethanol instead
(see figure 3.5 from [84]), the experiments can be performed close to room temperature.
This allows for unattended automated operation without significant evaporation of cooling
water. Using a system with an upper miscibility gap has the advantage that the sample
can be prepared and stored at room temperature without danger of demixing before the
experiment starts.

The phase diagram of a water/isobutoxyethanol mixture was carefully measured (cf. figure
3.6) by Rohloff with my supervision, analyzing turbidity changes during fast linear tem-
perature ramps. A detailed description can be found in Martin Rohloff’s diploma thesis
[96, pp 16]. The compositions of the left (Φl) and right branch (Φr) were fitted by sixth
and fourth order polynomials, respectively. The mean composition and the composition

Figure 3.6: Phase diagram of wa-
ter/isobutoxyethanol. The critical
temperature was measured to be
25.51 ± 0.03℃, the critical mass
composition is 0.310± 0.004 [96, p
19]. The left branch of the binodal
is fitted by a sixth order polyno-
mial, the right one by a fourth or-
der polynomial. For temperatures
below the binodal, the system is in
one single phase with composition
Φg. For slow temperature changes,
the compositions of the bottom Φb
and the top phase Φt follow the left
and the right branch of the bin-
odal, respectively.
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difference are defined by

Φ̄ = Φr + Φl
2 and (3.14)

Φ0 = Φr − Φl
2 . (3.15)

The phase diagram (figure 3.6) is measured for mass fractions. Using the temperature and
composition dependent density of the two phases (see section 3.A.2), mass fractions are
converted into volume fractions [96, p. 61].

3.3.2 Driving the System

3.3.2.1 Driving Parameters

For real phase diagrams characterized by the compositions Φl and Φr of the left and the
right branch, respectively, the definition of the normalized composition (3.5) has to be
replaced by

ϕ ≡ Φ− Φ̄(T )
Φ0(T ) . (3.16)

In the calculation of the time derivative of the normalized composition, a second driving
term ζ appears due to the shift in the average composition Φ̄ [8]

ζ ≡ 1
Φ0(T )

∂Φ̄(T (t))
∂t

. (3.17)

The diffusion equation (3.9) is extended to

∂ϕ

∂t
= ∇

[
D

2 (3ϕ2 − 1)∇ϕ
]
− D

2 δ
2∇4ϕ− [ζ + ξ0ϕ]. (3.18)

Having chosen a binary system with an approximately symmetric phase diagram for vol-
ume or mass compositions (see figure 3.6), the driving due to the increasing width of the
miscibility gap is the dominant term. In section 3.6.2.2 we show that the driving param-
eter ξ0 (3.7) can be interpreted as the rate of droplet volume production in the whole
sample. There we identify

ξl ≡
1

2Φ0

∂Φl
∂t

(3.19)

ξr ≡
1

2Φ0

∂Φr
∂t

(3.20)

as the rate of droplet volume production in the bottom and in the top layer, respectively.
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3.3.2.2 Temperature Ramp

For the temperature protocol in the experiment, we calculate three different temperature
ramps. They are defined by keeping either ξ0, ξl or ξr constant. Auernhammer et al. [8]
showed that this type of temperature ramps is a good choice for observing a large number
of oscillations during one temperature ramp. In figure 3.7(b) we show that keeping ξ0
constant implies only a small drift in the other two driving parameters ξl and ξr. To
calculate the temperature ramp, we apply the chain rule of differentiation to equation
(3.7)

ξ0 = 1
Φ0

∂Φ0(T (t))
∂t

= 1
Φ0

∂Φ0(T )
∂T

∂T

∂t
. (3.21)

Inversion of (3.21) with finite differences for ∂T
∂t yields

T (t+ δt) = T (t) + ξ0Φ0(T (t))
∂Φ0(T )
∂T (t)

δt. (3.22)

Equation (3.22) is integrated with 10000 uniformly distributed time steps in the range
[t0,tend] chosen such that T (t0) = 25.8°C and T (tend) = 50.0°C [96]. The result is plotted
in figure 3.7(a). Note that for two thirds of the ramp the temperature does not change
by more than 2 K. The raise of the temperature is faster than an exponential. In fact,
a phase diagram with the form of a parabola or a scaling with a higher even power in
Φ0 would give exponential temperature ramps. To compare measurements with different
driving rates we express time in units of the ramp duration tend

τ ≡ t

tend
. (3.23)

To conduct measurements in both layers of the sample, the position of the meniscus
separating the layers has to be known.

3.3.3 Position of the Meniscus

In general, the two equilibrium phases have different densities. The phase with the lower
density forms a top layer, the other one a bottom layer separated by a meniscus. The
volume flux between the phases leads to a change of the position of the meniscus between
the two layers. For the relative height of the bottom layer we define

λ ≡ Λbot
Λbot + Λtop

(3.24)

where Λbot and Λtop denote the absolute height of the bottom and the top layer, respec-
tively. According to the lever rule of binary fluids, the material that is put into the sample
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(a) (b)

Figure 3.7: (a) Temperature ramp for the water/isobutoxyethanol system. The temperature is
varied between 25.8°C and 50°C. The time scale is expressed in units of the ramp duration tend.
The driving ξ0 is kept constant. Note that for two thirds of the ramp the temperature does not
change by more than 2 K. (b) For the temperature ramp shown in (a) the time evolution of the
driving parameters is shown. The driving parameter ξ0 is chosen to be kept constant. Due to the
small asymmetry of the phase diagram, ξr,l is changing slowly with time. The figure is adapted
from [96].

with the global composition Φg is divided between the two layers (compare figure 3.6)

(Λbot + Λtop)Φg = ΛbotΦbot + ΛtopΦtop (3.25)

where Φbot and Φtop denote the compositions of the bottom and the top phase, respectively.
Equation (3.25) can be rearranged to

(Λtop + Λbot)(Φg − Φtop) = Λbot(Φbot − Φtop). (3.26)

The compositions of the two layers depend on temperature T . The position of the meniscus
can be related to the volume compositions of the two phases

λ(T ) = Φg − Φtop(T )
Φbot(T )− Φtop(T ) . (3.27)

In the measurements, it is advantageous to run the experiments with global compositions
Φg where the change of λ, the position of the interface, is minimal. At each run of the
experiment, we want to look at only one of the two layers. If the interface moves through
the field of view of the camera, the analysis of the image data is made even more difficult.
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3.3.4 Material Properties of Binary Fluids
For the physical description of phase separation, a number of material properties is impor-
tant. They all depend on temperature and on the position of the system within the phase
diagram. For the case of slow temperature ramps, the system closely follows the binodal,
so the properties at the binodal are most relevant for our data analysis. The temperature
dependence of the material properties of our model system water/isobutoxyethanol is col-
lected from literature [6, 39, 41, 43, 81, 111, 134] and interpolated. A detailed description is
given in the appendix 3.A. In the following, we summarize the typical temperature depen-
dence of some material properties of binary fluids, that are relevant for the understanding
of the phase separation dynamics.

• Density: The density difference of the two phases is to leading order proportional to
the composition difference of the two phases. A linear interpolation of the densities
of the components hast to be corrected by the molar excess volume (order of 20%
for the density difference). The molar excess volume denotes the difference between
the sum of the volumes of the two single components and the total volume of the
mixture. Also the thermal expansion of the two components has to be taken into
account.

• Viscosity: The viscosity of liquids depends roughly exponentially on temperature
[7]. However, there are corrections to the exponential dependence. Most strikingly,
there is a significant excess viscosity for binary mixtures close to the critical point.
Typically the viscosity of binary mixtures is about 15 to 20% higher than the inter-
polation between the component viscosities for a considerable range of compositions
[32]. This can be explained by an analogy to colloid solutions: Inhomogeneities of
composition, density and local viscosity result in an enhanced shear viscosity [48].

• Interfacial Tension: As we discussed in section 3.2, the interfacial tension increases
with the difference of the compositions of the two phases and vanishes at the critical
point.

• Diffusion: The diffusion coefficient (see section 3.2.2) for the two phases converges
to the same value at the critical point. It is decreasing, when a mixture of a given
composition approaches the binodal (see equation (3.9)), and it also decreases on
the binodal towards the critical point [111].
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3.4 Experiment

3.4.1 Experimental Setup

Measurement Cell and Temperature Control The sample is contained in a fluorescence
cell (10× 10× 33)mm 117.100F-QS made by Hellma GmbH. For studying the influence of
the geometry, also cells with (4× 10× 33)mm and (1× 10× 33)mm as well as (10× 10×
110)mm were ordered. The measurement cell is mounted with micrometer srew adjusted
shift meachanisms to controll the position in all three directions. It is immersed into a
water bath with controlled temperature (see Fig. 3.8). An immersion cooler Haake EK20
is cooling with constant power, and a temperature control module Haake DC30 is heating
the water bath to a preset temperature. Additionally the temperature of the water near
the sample is measured with a PT100 temperature sensor. The temperature is controlled
with an accuracy of 15mK (standard deviation of PT100 signal). Using a magnetic stirrer
the sample is mixed before each experimental run.

Figure 3.8: Sketch of the experi-
mental setup, top view. The light
of a short arc Hg vapor lamp is
collected by a collimator lens (C)
and parallelized by a spherical lens
(L1). A cylindrical lens (L2) forms
a light sheet which is cut by a di-
aphragm (D) and a line aperture
(300 µm width) directly in front
of the sample cell. The light sheet
illuminates a plane of the binary
mixture, a green filter (GF) selects
the wavelength range suitable for
excitation of the dye. The emis-
sion of the fluorescently labeled
phase passes a red filter (RF) and
is projected onto a 5 MP CCD
camera chip. The sample cell is
mounted in a water bath with con-
trolled temperature.

Light Source Finding a proper light source for the illumination of the sample turned
out to be quite difficult. A laser light sheet is not suitable for illumination since it is
unidirectional and the two phases are not index-matched. Each droplet acts as a little
lens which focuses and diffracts the parallel laser light sheet. After passing a short distance
of the sample, the droplets have transformed the uniform light sheet into a pronounced
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stripe pattern, which illuminates the droplets very inhomogeneously. The stripe pattern is
difficult to filter because it evolves in time and the stripe widths are equal to the diameters
of the droplets that shall be detected. Secondly, a reliable light source is required which
can be operated safely without human supervision, as some measurements take more than
30h nonstop. This criterion disqualifies powerful laser systems.
However, to get a good signal from the fluorescently labeled phase, a very bright light
source is required. Also, the light has to be focussed on a small measurement volume (less
than a cube millimeter). Additionally, the illumination must be quite homogeneous and
the divergence of the light sheet should not be very large.
Basic optical principles tell that the luminance of a light source is at best a conserved
quantity in geometrical optics and cannot be increased. It is the power that an area
emmits at a certain angle. If the desired divergence angle is small but the light intensity
shall be high, a light source with a bright but small light emmitting region has to be
chosen. This request disqualifies LEDs and cold light sources, which we used successfully
for the illumination of the breath figures. Last but not least, the light source must have a
high intensity at one of the maxima of the absorption spectrum of the fluorescent dye.
Finally, a mercury short arc lamp (LOT-Oriel, 100W) with a bright light emitting spot
(less than a cube millimeter) gives the best results. It provides a high light intensity, which
is diffuse enough to avoid pronounced stripes (figure 3.9(a)). With a careful chosen set of
lenses, the light can be focussed on the measurement volume with a quite homogeneous
light intensity.

Illumination Optics A sketch of the optical components is given in figure 3.8. The light
is collected by the collimator lens (C) and a bandpass filter (GF) selects the green emission
lines (546 and 577/579nm) for the excitation of the fluorescent dye. The spherical lens
(L1, f=200mm) forms a parallel light beam. The cylindrical lens (L2, f=80mm) focuses
the light normal to the focal plane of the camera increasing the intensity even further. A
spherical diaphragm (D) allows to adjust the amount of light manually. With a narrow slit
of 300µm width directly in front of the measurement cell a vertical light sheet is formed.
The measurement cell is covered by black apertures to shield stray light. The positions
of the light bulb and the lenses has to be adjusted in all three directions to achieve a
homogeneous illumination with maximum intensity in the full measurement volume.

Imaging The fluorescent light from the illuminated plane of the sample is projected by
a f=35mm objective (L3) to the chip of a BM-500CL monochrome progressive scan CCD
camera. Choosing a long tube (about 20cm) between camera and objective enables a
high magnification of the field of view. The camera takes 2058×2448 pixel images with
a maximum frame rate of 15Hz, covering 1.3mm×1.5mm of the sample (1.6 pixel/µm).
With a long-pass filter (RF, edge 594nm) the excitation light is filtered.
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Control The camera, temperature control and magnetic stirrer are connected to a com-
puter. Also the lamp can be switched on and of remotely. Measurements are fully auto-
mated using a LABVIEW program.

3.4.2 Experimental Procedure
After cleaning the measurement cell, it is filled with the binary mixture at a composition
close to the critical composition. For having a small variation of the meniscus position,
we use the composition Φ = 0.32, where the change of the relative bottom layer height λ
(3.24) has a minimum. The fluorescent dye is dissolved in isobutoxyethanol. A stirring
bar is inserted and the cell is sealed with teflon. It is mounted in the temperature bath
and stirred with 1500 rpm for one hour in the one phase regime at 24℃. It was checked
visually that after one hour the sample is mixed completely if not more than 2ml are filled
into the cell. The stirring bar does not fit into thin cells. For filling levels higher than
2cm the stirrer is not able to mix the sample completely. Hence in these cases, mixing is
carried out by shaking manually before inserting it into the water bath.
After this preparation procedure the temperature is set 25.8℃, which is 0.3K above the
critical point. While the sample is demixing and the layers with the meniscus in between
are forming, the illumination and the camera are adjusted. We control the position of
the camera to measure at a distance 0.3mm from the wall. The horizontal position is
centered to the cell and the vertical position is measured. The sample is kept for four
hours at constant temperature without stirring. In this condition almost all droplets are
sedimented and the sample is at equilibrium.
The lamp is switched on and after 10 min we apply a precalculated temperature protocol
(see section 3.3.2.2) where the thermodynamic driving rate ξ0, ξl or ξr is kept constant. To
implement the temperature scan, the temperature of the thermostat is set with a rate of
1 Hz according to the calculated temperature ramp. Once the end temperature is reached
(50℃), the lamp is switched off, and the sample is cooled to 24℃ and stirred for one hour.
Then the next temperature ramp can be started. The measurement procedure is fully
automated, up to 20 subsequent measurements have been taken with one sample. The
total measurement time is limited by bleaching of the dye which is severe after about 20h
exposure, depending on dye concentration and sample volume. The diaphragm and the
line aperture (see figure 3.8) limit the exposure to a sheet which contains the measurement
volume.
Having described our experimental setup and the measurement protocol, we move on to
describe the image processing algorithm that we developed for the analysis of our data.
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3.5 Image Processing and Droplet Tracking

3.5.1 Introduction

To analyze the data that we obtained with our experimental setup described above, we
developed a particle tracking algorithm which uses the droplets as marker particles to
measure the flow field. Droplet positions and radii are detected simultaneously. The radius
can therefore be used as a criterion to identify droplets in subsequent images. Assuming
Stokes law [13, p. 234] the sedimentation velocity can be calculated from the droplet
radius. The droplet velocity is decomposed into sedimentation velocity and advection
by the flow. By subtracting the sedimentation velocity from the droplet velocity, the
advection of all droplets can be used to measure the flow field. With the advective flow
field and the sedimentation velocity of each droplet, its position in the next frame can be
predicted and compared to the image.
We could not simply use existing droplet detection or tracking algorithms. Image pro-
cessing algorithms always have to be specifically adapted to the type of images and the
structure that shall be detected. Insight about the properties of the studied system as
well as the specific questions that shall be addressed by processing the data determine the
bases for the development of the image processing algorithm. For example, peculiarities
of the illumination that is used have to be accounted for. In our case, taking the sedi-
mentation velocity of the droplets based on the detected droplet radius and the density
difference and viscosity at the temperature present when taking the frame is essential for
reliable droplet tracking even with low frame rates.
Previous studies have extensively used particle tracking velocimetry as a measurement
technique to investigate turbulent flows carrying small particles ([65, 72, 74, 88]). To that
end monodisperse tracer particles are added to the fluid whose position is detected by
image processing of high speed camera data. While this procedure is followed successfully
for monodisperse particles in single-phase flows, it is not easily applicable for measuring
flow patterns in demixing binary systems.
Tracer particles cannot be added as they would act as nucleation centers, and therefore
affect the droplet number density. Furthermore, colloidal particles aggregate on the inter-
faces and change the growth and coalescence rate, as [118] have shown. For a review of
the stabilizing effect of colloidal particles in emulsions see [22] and [9].
There also is a broad range of acoustic/electro-acoustic and optical techniques for the
measurement of droplet size distributions, an overview given by [73]. Several laser based
techniques measure chord lengths that have to be transfered into droplet size distribu-
tions ([62]), e.g. focus beam reflectance measurement (FBRM, see e.g. [98]) or optical
reflectance measurement (ORM, see e.g. [70]). However, [71] and [107] have shown that
these techniques give inaccurate results for liquid/liquid dispersions in comparison to im-
age analysis of in situ microscope imaging.
In the following we describe a particle detection and tracking algorithm for polydisperse
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sedimenting particles [67] that was developed in the course of this thesis. Radii and
positions of the droplets are detected simultaneously. The algorithm to process the single
images was programmed by myself. The algorithm for the calculation of flow fields and
the tracking of droplets was developed by Martin Rohloff in his diploma thesis under my
supervision [96].
The first section 3.5.2 describes the image processing algorithm which detects droplets
in separate images. In the next step the flow field is estimated, as described in section
3.5.3. Then the droplets are tracked through a series of images (section 3.5.4). Finally the
velocity field is recalculated based on the droplet trajectories. This procedure allows us to
sort out artifacts (caused e.g. by dirt or overlaps of droplet images) of the image processing,
and to determine Lagrangian particle velocities. In the final section 3.5.5, we validate
the applicability of the assumptions used in the algorithm and the analysis. The image
processing is done with the MATLAB Image Processing Toolbox. The data (typically
20000 images per measurement) is processed on a computer cluster. For simplicity we
restrict our description to the detection of the fluorescently labeled droplets in the bottom
phase. By inverting the images and the direction of gravity the same algorithm can be
used for the dark droplets detected in the top phase.

3.5.2 Processing of Single Images

3.5.2.1 Preprocessing

In a first step, dark spots caused by dirt on the camera chip are removed with a flat field
correction. Further, the image is Fourier filtered and the contrast is optimized. To reduce
the horizontal stripes (illumination from the right) produced by the light dispersion of the
droplets a high pass filter (Gaussian filter with width 5 in horizontal and 200 in vertical
direction) is applied. For reducing the noise, a low pass filter (isotropic Gaussian filter,
σ = 100) is applied. In figure 3.9, a raw image and a preprocessed image of fluorescent
i-BE-rich droplets in the denser water-rich bottom phase are shown. For high droplet
densities, there is a significant number of overlaps of droplet images. Therefore we need
special algorithms to take care of this for detection means.

3.5.2.2 Droplet Detection

The droplets are detected in the preprocessed image using two strategies. The first relies
on thresholding the image, the other uses marker-controlled watershed segmentation. The
first strategy is visualized in figure 3.10 giving an example. All pixels darker than a thresh-
old level (Fig. 3.10(a)) are identified as background (Fig. 3.10(b)). Isolated background
regions are deleted. Then, for each pixel the distance to the background is calculated (Fig.
3.10(c)). Local maxima in this distance map correspond to droplet centers, their distance
to the background being their radius (Fig. 3.10(d)). This procedure is carried out twice
with two thresholds, one being better for finding big droplets, the other for small droplets.
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(a) (b)

Figure 3.9: (a) Raw image and (b) preprocessed image of i-BE-rich droplets in the water-rich
bottom phase with ξ = 1.05 · 10−5s at 25.98± 0.02°C. Horizontal stripes and the vertical intensity
gradient are removed by Fourier filtering.

(a) (b) (c) (d)

Figure 3.10: Sketch of distance based image segmentation. (a) False color plot of two overlapping
images of droplets. (b) Thresholded image. (c) Distance from background. (d) Detected droplets
based on local maxima of distance.

The second strategy is based on the marker-controlled watershed segmentation algorithm
proposed by [55] pp. 422. It is illustrated in figure 3.11. Extended maxima in the image
(Fig. 3.11(a)) are used as marker for the droplets (Fig. 3.11(b)). Lines between these
maxima as well as extended minima are markers for the background. With a sobel filter
the intensity gradient in the image is calculated (Fig. 3.11(c)). The markers are imposed
as minima on the gradient image upon which a watershed transform is operated. The
watershed lines of the intensity gradient correspond to droplet edges. The markers are
needed to avoid over-segmentation. Areas and centroids of the regions enclosed by the
watershed lines are taken for the droplet radii and positions (Fig. 3.11(d)).
Using these two approaches, even small droplets on top of bigger ones and overlapping
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(a) (b) (c) (d)

Figure 3.11: Sketch of watershed image segmentation. (a) False color plot of two overlapping
images of droplets. (b) Bright extended maxima mark droplets, lines in between and dark regions
mark background. (c) Markers are imposed as minima (blue) on gradient image. Watershed lines
follow droplet edges (red). (d) Detected droplets (black) based on regions enclosed by watershed
lines.

images of droplets can be resolved. On the other hand, some droplets are found multiple
times and some imaging artifacts are taken for droplets. If two droplets with radii r1,r2
are detected close to each other (centroid distance less than one radius) with almost the
same radius (ratio 0.7 < r1/r2 < 1.4), they are considered as two detections of the same
physical droplet.

3.5.2.3 Matching to Image

Not fully compensated dirt on the camera chip, overlaps of droplet images or unsharp
droplet images can cause false detections. Hence, a second step is implemented to dis-
tinguish droplets from artifacts and the estimates of the droplet radius r and position
(x,y) [pixels] are compared to the preprocessed image. As characteristics of droplets in
the image, we consider them being brighter than their environment and having a circular
intensity gradient at the edge (figure 3.12). A match function m is defined as

(a) (b)

Figure 3.12: Definition
sketch for the match
function. (a) Idrop de-
notes the mean inten-
sity of the droplet, Iring
the intensity of a ring
around it. (b) (x,y)
is the centroid of the
droplet with radius r,
(xr,yr is the intensity
weighted centroid of the
ring.

96



3.5 Image Processing and Droplet Tracking

m(x,y,r) = A(r) [Idrop(x,y,r)− Iring(x,y,r)]

−B (x− xr)2 + (y − yr)2

r2

(3.28)

where the radius r and the coordinates x, xr, y and yr are given in pixels. The difference
between the mean intensity of the droplet Idrop(x,y,r) and the mean intensity Iring(x,y,r)
of a ring of 3 pixels width around it measures the intensity gradient at the droplet edge
(figure 3.12(a)). By visual comparison of calculated droplet matches with the preprocessed
images an empirical radius dependent prefactor A(r) = 1/

(
30 + r1.3) was determined. It

ensures comparable matches for small and big droplets. Often small droplets are detected
erroneously at the edge of big droplets. In this case, a little part of its halo is covering
the dark background and the remaining part is covering the big droplet. The intensity
weighted centroid of the halo (denoted as xr and yr) is calculated and compared to the
droplet position (figure 3.12(b)). The deviation accounts for this asymmetry and reduces
the value of the match. It is weighted with the empirical prefactor B = 3. For every
droplet found in the droplet detection step, the match with the image is calculated. By
varying radius and position of the droplet a local maximum of the match is found. All
droplets with a match bigger than 0.08 are used for further analysis.

Figure 3.13: The droplets which
are detected by processing the im-
age (without tracking) are super-
imposed as circles on the prepro-
cessed image. The color encodes
the match of the detection to the
image: red denotes a good match,
blue a bad match.

For illustration the droplets detected by processing a single image are shown in figure
3.13. The color encodes the match of the detection to the image: red denotes a good
match, blue a bad match. Many droplets are detected reliably. However, some droplets
are missing and artefacts are taken for droplets. This motivates further processing of
the data. A final step to increase the reliability of the measured size distribution takes
advantage of the time information of image sequences. Tracking the droplets allows to
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sort out unphysical trajectories of artifacts and to find undetected droplets in the image
using its past or future trajectory. To implement this information in section 3.5.4.3 we
must evaluate the flow field and the droplet trajectories in the flow.

3.5.3 Calculation of Flow Field
3.5.3.1 Identification of Droplets in Consecutive Images

Typically droplets with radii 4µm < r < 40µm are detected. While small droplets (r <
10µm) closely follow the flow, large droplets (r > 20µm) are mainly driven by their
buoyancy and do not qualify as tracers. They sediment towards the interface due to
the density difference of the two phases. In a Lagrangian frame, co-moving with the
surrounding fluid, the sedimentation velocity used amounts to the Stokes velocity for a
sphere of radius r, which is [13, p. 234]

used = 2
9
∆ρ gr2

η
. (3.29)

Here ∆ρ denotes the mass density difference between sphere and fluid, g the gravitational
acceleration, and η the dynamic viscosity of the fluid. Hence, the droplet velocity udrop
can be split into a sedimentation and an advection term

udrop(x,y,r,t) = used(r) + uflow(x,y,t). (3.30)

We check the validity of this ansatz in section 3.6.2.3. To track droplets the corresponding
images of droplets in consecutive frames must be identified. To this end, the velocity field
of the previous time step uflow(x,y,t− δt) is taken as an initial guess for uflow(x,y,t). For
each droplet found in one image the position in the next image is predicted using equation
(3.30). The prediction is compared to the droplets found in the image, and the droplet
pair with the closest distance between prediction and actual position and with similar radii
is identified as one physical droplet. In figure 3.14 the droplets in the image are marked
with red circles and the corresponding droplets in the next image with green circles. The
procedure used to determine the flow field, which is indicated by the arrows, is lined out
in section 3.5.3.2. Subsequently in section 3.5.4 we describe details of the scheme adopted
for finding particle trajectories.

3.5.3.2 Determine the Flow Field

In order to calculate the Eulerian flow field uflow(x,y,t) the image is sampled by an equidis-
tant mesh with 25×20 grid points. The grid distance is about 60µm, which is in the order
of the droplet distance. The correlation length of the flow field is about 200µm, so the grid
can resolve the flow structures. A flow correlation time of 30s allows for small frame rates
(order of 1Hz). By subtracting the sedimentation velocity used from the droplet velocity
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Figure 3.14: Fluores-
cently labeled droplets
in the bottom phase
(Fig. 3.9(b)). The ar-
rows correspond to the
flow field. Red circles
mark the droplets found
in the image and green
circles their position and
radius in the next image.

udrop the flow contribution uflow can be calculated: The advection of the N droplets k in
each mesh cell (i) is averaged, incorporating with half weight theM droplets of neighboring
cells (ij):

u
(i)
flow = 1

N +M/2[
N∑
k=1

(ku(i)
drop −

k u
(i)
sed)

+1
2

M∑
k=1

4∑
j=1

(ku(ij)
drop −

k u
(ij)
sed )]

(3.31)

3.5.3.3 Smoothing of Flow Field

The advection field u(i)
flow is smoothed with a weighted average of next-nearest neighboring

cells to eliminate unphysical discontinuities.

ū
(i)
flow = 1

4u
(i)
flow + 1

8

4∑
j=1

u
(ij)
flow︸ ︷︷ ︸

next neighbours

+ 1
16

4∑
j′=1

u
(ij′)
flow︸ ︷︷ ︸

next-nearest neighbours

(3.32)

In figure 3.14 a smoothed advection field is shown together with the matched droplets.
The Eulerian flow field is used to predict the droplet positions in the next image. Note
that the spatial distribution of detected droplets is not homogeneous and some grid points
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can only be calculated by interpolation. For the subsequent analysis of the flow field only
the grid points which are directly computed from droplet displacements are taken into
account.

3.5.4 Particle Tracking

3.5.4.1 Forward Tracking

Now that the advection field and sedimentation velocities for each droplet found in the
image at time t have been determined, the position at time t+ δt can be predicted. This
prediction is matched to the image of t+δt and a local maximum of the match is searched
for. This procedure is illustrated in figure 3.15. Having determined the displacement from
time t to t + δt, the advection field can be recalculated. In the next step, the positions
of droplets tracked from image t to t + δt plus all other droplets also detected in image
t + δt are predicted for the time step t + 2δt. They are compared to the droplets in
image t + 2δt and the procedure is repeated. The identified droplet pairs are sorted into
trajectories, which contain the position and radius values for the different frames. Based
on the trajectories, the flow field uflow(x,y,t) is recalculated according to the procedure
described in section 3.5.3.2.

(a) (b) (c) (d)

Figure 3.15: Forward tracking: (a) Sedimentation velocity (blue, upward) and advection (green,
2 o’clock), (b) predict the next position (red dashed), (c) match the prediction to the next image
(red solid) and (d) build trajectory (black).

3.5.4.2 Backward Tracking

The forward tracking result can be improved by subsequently tracking the droplets back-
wards in time. The positions of droplets at the beginning of the trajectories are predicted
for the time step before and matched to the image (compare figure 3.16). The droplet is
compared to the entries in the other trajectories to merge interrupted trajectories, and to
suppress branching of trajectories. As yet, our tracking algorithm does not account for
the collision of droplets.
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(a) (b) (c) (d)

Figure 3.16: Backward tracking: (a) Sedimentation velocity (blue,upward) and advection (green,
8 o’clock), (b) predict the previous position (red dashed), (c) match the prediction to the previous
image (red solid) and (d) enlarge the trajectory (black).

3.5.4.3 Filtering of Trajectories

Trajectories shorter than three time steps are removed. Finally, all droplets which have
moved by less than half the average advection velocity during the tracked time interval
are deleted. Most likely, those spots are imaging artifacts. Eventually, the flow field is
recalculated once more based on the enlarged and filtered trajectories in order to arrive
at a consistent data set.

3.5.4.4 Depth of Measurement Volume

Having found the trajectories of droplets in the image plane, we need to now the depth
of the measurement volume. To this end, a calibration pattern of black disk was printed
with a laser printer on a transparency. It was glued at the front of the measurement cell,
which was filled with a fluorescent mixture. The position of the camera was shifted in
50µm steps in the direction vertical to the image plane. We find that small patterns can
only be seen when they are directly in the focal plane. Larger ones, however, can also bee
seen when they are slightly off the plane. We therefore assume that the depth in which
a droplet can be detected is to leading order proportional to the droplet diameter. The
precise value of the proportionality prefactor is not known and may depend on the details
of illumination or bleaching of the sample. For the analysis of the data, we use two times
the diameter as the depth where a droplet can be detected. This is probably an upper limit
for the measurement volume. With this assumption for the measurement volume, we get
data for the droplet volume fraction which is consistent with the volume fraction expected
to be created by the temperature drift. This is discussed in more detail in section 3.6.2.2
and shown in figure 3.20. Note that most of our results, namely the oscillation periods,
the shape of the size distribution function and the scaling of droplet number and volume
density do not depend on the precise value of the prefactor for the measurement depth.
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3.5.5 Validation of the Algorithm

The accuracy and the limitations of the algorithm are discussed in great detail in the
Diploma Thesis of Rohloff [96] and in [67]. Here we give only a short summary of the
consistency checks that we performed in order to validate the performance of the tracking
algorithm.

• Visualisation of flow field: The estimated flow field as well as the positions of
droplets in the present and in the subsequent frame were plotted on top of the
preprocessed image for different frames. One example is given in figure 3.14.

• Visualisation of trajectories: We created video sequences where the detected
droplets and the trajectories are shown together with the preprocessed images. One
example can be found in [96].

• Visual comparison of images with size distribution: We compared raw and
preprocessed images with the droplet size distribution given by the algorithm. We
checked that the features of the measured size distribution (e.g. the abrupt occur-
rence of droplets of about 9µm in the first few oscillations, broad distributions in the
first few oscillations and narrow distributions in the end) can actually be identified
in the raw data as well.

• Droplet velocities: We checked the validity of the assumption (3.30), that droplet
velocities are the sum of the flow velocity and the Stokes velocity. This will be
discussed in more detail in section 3.6.2.3.

• Uncertainty in radius detection: For each trajectory we calculated the standard
deviation of the radius detected in the subsequent frames. Averaging over many
trajectories we find that the error is about 20% for small droplets and saturates at
4µm for big droplets [67, 96].

• Trajectory lengths: We calculated the average duration of trajectories as a func-
tion of the radius, finding a roughly linear dependence [67, 96]. For droplets with
a radius of 20µm we find typical trajectory durations of about 25s. Analysis of the
flow fields gives typical horizontal velocities of about 3µm/s. Hence droplets may
move O(75µm) during their detection, which is consistent with our assumption for
the depth of the measurement volume.

• Velocity fluctuations: We find a mean horizontal velocity of zero, whereas the
mean vertical (negative in the bottom layer) and the root mean squared velocities in
the horizontal and the vertical direction oscillate with the same periods as the size
distribution does [67, 96].
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• Correlation length and time: We checked that the typical correlation lengths
(200µm) and times (30s) are well resolved by the grid for the flow field and the
camera frame rate [96].
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3.6 Evolution of the Droplet Size Distribution
In this section the results for our investigations of slowly demixing binary systems are
presented. Some of the results were already presented in Martin Rohloff’s diploma thesis
[96] that was prepared under my supervision. Where appropriate, these results he pre-
sented are reproduced and discussed in a broader context. We analyze the evolution of
the droplet size distribution, and reveal the mechanism which determines the oscillatory
behavior of the system. An analytical model for the oscillation period is suggested and
compared to the experimental findings.

3.6.1 Oscillatory Response of System on Driving
Oscillations of the specific heat capacity and the turbidity of binary mixtures under slow
temperature ramps have been observed in many experimental works [8, 60, 130, 131].
Space-time plots of the turbidity indicate an oscillation of the droplet size distribution.
To understand the origin of the oscillations, it is essential to investigate the evolution of
the droplets size distribution.

3.6.1.1 Oscillation of Droplet Volume Density

Using the image processing algorithm described above we are able to measure the time
dependence of the droplet size distribution. To visualize the oscillations we plot the volume
fraction of droplets as a function of time (figure 3.17). The droplet volume fraction is
proportional to the third moment of the droplet radius distribution

v ≡
∫ ∞

0
n(r)4π

3 r3 dr (3.33)

with n(r) denoting the density of droplets with radius r. It is a good quantity to measure
as it does not strongly depend on the uncertainty in measuring small droplets.
The droplet volume fraction oscillates in both phases with slightly different oscillation
periods. Both a remarkable increase of the oscillation frequency and a decrease of the
oscillation amplitude can be observed in both phases. This was rather unexpected as the
choice of the temperature ramp was intended to give a regular feedback of the system.

3.6.1.2 Oscillation of Droplet Size Distribution

To understand the origin of the oscillations, it is revealing to look at the evolution of
the droplet size distribution. After tracking each individual droplet for at least three
subsequent frames as described above, we get reliable data not only for big droplets but
also for small ones with a radius bigger than 3µm. The evolution of the size distribution
for the full measurement duration of 16h is shown in a false color plot in figure 3.18.
In addition, figure 3.18 also shows the droplet volume distribution for 12 time bins per
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Figure 3.17: A
sample of wa-
ter/isobutoxyethanol
is heated with a con-
stant driving rate
ξ0 = 0.1h−1. The vol-
ume fraction of droplets
oscillates in both phases
as a function of time
with different oscillation
periods. We observe
an increase of the
oscillation frequency
and a decrease of the
amplitude.

oscillation for three very pronounced oscillations. A number of processes are involved in
the evolution of the droplet size distribution (confer section 3.1.1). We drive the system
in a way that supersaturation is created at a constant rate ξ. First droplets are nucleated
on impurities in the system acting as condensation nuclei. Typical droplet distances
measured in the experiment are λ ≈ 50− 150µm. On the length scale of droplet distances
diffusion is quite fast (typical time scale 10 s). The created supersaturation diffuses to
the droplets. At the beginning of the oscillation, we observe the abrupt appearance of a
relatively narrow distribution of droplets with a typical radius of 9µm, which is well above
the detection threshold (3µm). Droplets smaller than this typical radius can be detected,
however they seem to grow very fast to this size. Once the droplets reach a critical radius,
sedimentation becomes significant. Bigger droplets sediment faster than small ones and
grow by collisions with small droplets present in their path. This leads to a broadening of
the size distribution. The peak of the volume distribution gradually shifts to about 27µm
radius. Droplets with radii bigger than 40µm can be detected but are rarely found in the
experiment. The droplets sediment to the interface and the system is clearing up until a
critical droplet density is reached and new droplets are nucleated.
Nice prototypes of the described precipitation cycle are usually observed for the first few
oscillations of a measurement. At later times (i.e. higher reduced temperatures (3.1))
the number density of nucleated droplets is smaller and the droplets grow very fast to a
radius of about 20µm. Also the sedimentation velocities are significantly higher because
the density difference is larger. Therefore the range of observed droplet sizes is much
smaller. Also the first oscillation cycle is usually different to the following ones. As the
first cycle starts with almost no droplets, probably more droplets are nucleated than for
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a b c

a b

c

Figure 3.18: Evolution of the size distribution: number density of the whole measurement of
the bottom phase with ξl = 1.05 · 10−5s−1 (lower left) for a water/isobutoxyethanol mixture on
a decadic logarithmic color scale with unit µm−4. In the other three figures the droplet volume
density is shown for the 12 parts of each oscillation, where a,b, and c correspond to the fourth,
fifth and sixth oscillation in the size distribution.
Repeated precipitation cycles can be observed in the evolution of the size distribution: A rather
narrow peak at 9µm appears at the beginning of the oscillation. The peak gets broader and shifts
towards 27µm. When it has almost disappeared a new peak arises at 9µm and the next cycle
starts.
This figure is reproduced from the Diploma thesis of Rohloff [96].
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the following oscillations. Therefore the number density that is observed is larger than for
the following oscillations. The distribution is broader and the peak of the droplet volume
fraction evolution is flatter.

3.6.1.3 Oscillation Period Dependence on Driving Rate

For each measurement, the driving rate is kept constant. We find, that the oscillation
period not only changes within each experimental run, but it also depends on the driving
rate. To study the driving dependence, we conduct a series of runs with driving rates
varying over almost 3 decades. For the fastest runs with measurement durations of down
to 10 min, only one oscillation period can be observed. In the slowest runs, only small
droplet number densities are observed. They have to be stopped after 30 to 60h because
the dye in the sample is bleached. Figure 3.19 shows that the oscillation period decreases
with increasing driving rate in both layers. The driving dependence is nontrivial, the time
scale for the oscillation is not simply given by ξ−1.

(a) (b)

Figure 3.19: The oscillation period ∆t depends on the driving rate ξr (3.42) for the upper (a) and
on ξl (3.43) for the lower (b) layer of a water/isobutoxyethanol mixture. The colors and symbols
encode different heating rates ξ: black stars, ξ < 6 × 10−6 s−1; blue crosses, ξ < 1.3 × 10−5 s−1;
cobalt circles, ξ < 3 × 10−5 s−1; green triangles, ξ < 6 × 10−5 s−1; red squares, ξ < 3 × 10−4 s−1;
and magenta diamonds, ξ > 3 × 10−4 s−1. In both layers, the oscillation period decreases with
increasing driving rate.

3.6.2 Droplet Growth

To understand what sets the time scale for the oscillation period, we consider the growth
rate of individual droplets. For small droplets, growth by diffusion of supersaturation
dominates. Big droplets however mainly grow by collisions with smaller droplets. Now,
we explore the different growth mechanisms and show how the bottleneck in droplet growth
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is reflected in the evolution of the droplet size distribution. We derive a growth equation
for the typical droplet radius which is inspired by the work of Wilkinson [137].

3.6.2.1 Ostwald Ripening

Droplet growth by diffusion is traditionally investigated with quench experiments (con-
fer section 3.2.3.2), where temperature or pressure are suddenly changed and the time
evolution of the typical droplet radius is observed in scattering measurements [111]. In
this case, a fixed amount of supersaturation is created by the quench and diffuses to the
droplets. The inital stage of droplet growth is described by classical Lifshitz-Slyozov the-
ory [69]. Small droplets have a higher curvature and therefore a higher Laplace pressure.
They dissolve and the material diffuses to big droplets with low Laplace pressure. This
process is known as Ostwald ripening. Lifshitz-Slyozov theory predicts a scale invariant
size distribution with the time evolution of the droplet radius given by

ṙ ∼ Dσ1
r

(1
r̄
− 1
r

)
(3.34)

withD denoting the mutual diffusion coefficient, r̄ is the average radius and σ is a prefactor
with the unit of a length

σ ≡ 2γVmΦe
RT

. (3.35)

The surface tension is denoted by γ, Vm is the molecular volume, Φe is the equilibrium
minority component concentration, R the gas constant and T the absolute temperature.
The temperature dependence of the material properties as well as σ is given in the appendix
3.A. Note that this length scale is subatomar for the water/isobutoxyethanol system due to
the small interfacial tension. Therefore, σ should be regarded as a temperature dependent
prefactor with the unit of a length. It should not be interpreted as an actual length scale
for the droplet sizes undergoing Ostwald ripening. Equation (3.34) implies that the biggest
droplets grow like [137]

ṙ ∼ Dσ 1
r2 . (3.36)

Equation (3.34) can be rewritten as an equation for change of the individual droplet volume
Vi

V̇i ∼ Dσ
(
ri
r̄
− 1

)
. (3.37)

Summing over all droplets yields

˙Vtot =
∑
i

V̇i ∼ Dσ
∑
i

(
ri
r̄
− 1

)
(3.38)

= Dσ

(
Nr̄

r̄
−N

)
= 0. (3.39)
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3 Phase Separation

Hence equation (3.34) can only be valid in situations where the total volume of droplets
is constant.

3.6.2.2 Droplet Volume Production

In the present study, however, the temperature is changed and therefore the total droplet
volume changes in time. We now calculate the droplet volume production rate due to
the temperature ramp. We consider droplets rich in component A in the say top layer,
which is rich in component B. For the moment, sedimentation is neglected. We assume
that diffusion is sufficiently fast so that the droplets and the bulk have equilibrium volume
compositions Φl and Φr (referring to component B, left and right branch of the binodal
in the phase diagram), respectively. The volume of component B which is stored in the
droplet volume δVd and in the bulk volume V − δVd is therefore equal to the volume of B
in the sample volume before

δVdΦl + (V − δVd)Φr = V (Φr − δΦr). (3.40)

Therefore the change in the droplet volume fraction δv ≡ δVd/V is given by

δv = δΦr
2Φ0

. (3.41)

We find ξr to be the growth rate of the droplet volume fraction

v̇ = 1
2Φ0

∂Φr
∂t
≡ ξr (3.42)

in the B rich layer. Analogous we identify

ξl ≡
1

2Φ0

∂Φl
∂t

(3.43)

with the growth rate of droplet volume fraction in the A rich layer. It is worth to note
that the thermodynamic driving rate ξ0 (3.7) derived in section 3.2.3.3 is the sum of the
droplet volume production rate in the top and in the bottom layer.
Hence we now have an estimate what volume fraction of droplets to find in the sample when
sedimentation and advective transport of droplets is not dominant. Figure 3.17 shows that
the volume fraction is increasing in about the first half of the oscillation period. In the
second part, sedimentation is dominant and the droplets leave the layer by sedimenting
towards the interface, where they coalesce with the other layer. As a rule of thumb, the
droplet volume fraction generated in the first half of the period

∆vsd ≡ vmax − vmin (3.44)
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3.6 Evolution of the Droplet Size Distribution

should be about the droplet volume created within half the period

∆vξ ≡ ξ∆t/2. (3.45)

To check test this expectation, ∆vsd and ∆vξ are plotted in figure 3.20. We observe, that
the expected droplet volume production roughly coincides with the measured amplitude
of the volume density oscillations.

Figure 3.20: Comparison of the
created (3.45) and measured (3.44)
droplet volume as a function of
time (3.23). The measured droplet
volume fraction is similar to the
predicted one.

Since typical droplet distances are bigger than typical droplet radii, it is reasonable to
assume that the created droplet volume is distributed evenly on all droplets. Hence the
volume growth rate of individual droplets is on average

V̇drop = ξ

n
(3.46)

with n denoting the droplet number density. This relation can be transfered into an
equation for the droplet radius growth rate

ṙ = 1
4πr2

ξ

n
. (3.47)

Note that this growth law has the same scaling as the one predicted for Ostwald ripening
(3.36) [137], but with a completely different prefactor, as we will see in section 3.6.3.1,
figure 3.24.

3.6.2.3 Growth by Sweeping

For big droplets, another growth mechanism is dominant. Droplets moving relative to
the fluid collide with small droplets which follow the flow. As we combined the tracking
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3 Phase Separation

of droplets with a measurement of the droplet radius, we are able to measure how the
vertical velocity of the droplets depends on the radius. For single spheres in a quiescent
unbounded fluid the sedimentation velocity of a particle is given by the Stokes velocity
[13, p. 234] (3.29)

uStokes ≡
2
9
∆ρg

η
r2 ≡ κr2 (3.48)

with ∆ρ denoting the density difference between particle and fluid, g the gravitational
acceleration and η the viscosity of the bulk fluid [67, 96]. The prefactors to the radius
dependence are abbreviated by

κ ≡ 2
9
∆ρg

η
. (3.49)

We are measuring close to the wall (typical distance 0.3mm) and the droplet distances
are in the range of 50 − 150µm. Therefore it is not obvious how well the Stokes velocity
approximates the motion of droplets relative to the fluid. In figure 3.21 the vertical droplet
velocities are compared to the sedimentation velocity (blue points) due to equation (3.29)
modified by the mean vertical velocity of the flow, which is calculated from the flow
field. The error bar of the Stokes velocity computation represents the deviation of density
difference and viscosity in the considered time interval due to the temperature shift. The
Stokes velocity of a sphere (3.29) appears to describe the average settling rate very well.
We attribute the deviations for small droplet radii to the fact that both the droplet size
distribution and the average flow velocity oscillate. Most of the small droplets can be
found at the beginning of the oscillations, when the average downward flow velocity is
relatively small (see below). The oscillations of the flow velocity that we were observe in
the measurements of the flow field are presented in the Diploma thesis of Rohloff [96].

Figure 3.21: Comparison of the mea-
sured vertical velocity of the droplets
(red) and the Stokes velocity modified
by the mean flow (blue), in the bot-
tom phase at 26℃. The error bar of the
Stokes velocity corresponds to the de-
viation of density and viscosity within
the investigated time interval. The sta-
tistical error of the mean vertical ve-
locity (red) is smaller than the marker
size. The systematic deviation for small
droplets may be attributed to the fact
that most small droplets are observed
at times of small mean vertical flow ve-
locity. The figure is reproduced from
[67].
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3.6 Evolution of the Droplet Size Distribution

Droplets sedimenting with the Stokes velocity (3.29) sweep through a volume Vsweep with
a rate

V̇sweep = πr2used = πκr4. (3.50)

We now want to estimate the growth rate of the biggest droplets. They sediment faster
than the smaller droplets and therefore may collide and coalesce with some efficiency ε
with the droplets in the swept volume Vsweep. The volume growth rate by collisions can
therefore be estimated by [137]

V̇drop = επκr4v (3.51)

with the droplet volume fraction v and the collision efficiency ε. Equation (3.51) can again
be expressed as an equation for the radius growth

ṙ = ε

4κr
2v. (3.52)

The collision efficiency ε is not known a priory and cannot be measured directly. The
efficiency has to be smaller than 1 and depends on droplet radii, density difference between
droplet and fluid and the fluid viscosity. Pruppacher and Klett [90] (p. 470–471) argue
that for small droplets (≤ 10µm) the collision efficiency is in the order of 1− 3% and does
not depend very much on the droplet radii, as viscous effects are dominant over inertia.
However these estimates refer to the case of water droplets in air. We expect ε to be in
the range 0.01 < ε < 1 for our case. We therefore use it as a fit parameter to adjust our
model to the experimental observations.

3.6.2.4 Bottleneck in Droplet Growth

Having derived growth equations for diffusional growth due to the temperature change
(3.47) and the growth by gravitational collection (3.52), we can combine the two equations

ṙ = 1
4πr2

ξ

n
+ ε

4κr
2v. (3.53)

In figure 3.22, the growth rate dependence on the radius is plotted in arbitrary units.
The growth by driving the system is indicated by the blue dashed line, the gravitational
collection is shown by the red dotted-dashed line. The sum of both, the black solid line has
a global minimum at r = rc. This implies a bottleneck in droplet growth resulting from
the minimum in the growth speed for r = rc. The droplets reach the bottleneck radius
very fast by diffusion of supersaturation. It takes them a long time to grow through the
bottleneck, as neither growth by diffusion is changing the radius significantly any more
nor growth by sweeping is efficient yet. Once the droplets overcome the bottleneck, the
growth is accelerated. The bigger the droplets are, the faster they sediment which in return
increases the droplet volume gained by collisions with smaller droplets. This growth law
yields a finite time runaway for the droplet radius. Hence the period is selected by the
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3 Phase Separation

Figure 3.22: Sketch of the radius
growth rate as a function of the radius
(black solid line), equation (3.53). For
small droplets, the diffusional growth
ṙ ∼ r−2 (blue dashed line) is dominant,
for large droplets sweeping ṙ ∼ r2 (red
dotted-dashed line) is dominant. There
is a bottleneck radius where the growth
is slowest.

time the droplets need to cross the bottle neck. We will further explore this insight and
compare it to our experimental data in section 3.6.3.
To calculate the bottleneck radius rc, the two contributions of (3.53) are equated with
each other, giving

rc =
(

ξ

πnεκv

)1/4
(3.54)

for the bottleneck radius.
Is the bottleneck in droplet growth observable in the droplet size distribution? In figure
3.18 we can see that at early stages of the oscillation cycle a peak develops at a mean
radius of 9µm. The tail towards smaller droplets is physical, the detection threshold of
our droplet detection and tracking algorithm is set to 3µm. Also by visual inspection
of videos we observe that droplets appear with a typical radius of 9µm in the first few
oscillations, though some smaller droplets are visible. This is consistent with the growth
law described in (3.47) and a critical radius of about 9µm at the beginning of oscillations.
To this end it is reasonable to conjecture that the typical droplet radius observed in the
droplet size distribution is approximately the bottleneck radius rc of droplet growth.
To test our assumption, we plot the droplet volume weighted average radius and the
prediction (3.54) as a function of time in figure 3.23. We also plot the radius of the
maximum in the volumedistribution shown in figure 3.18, where each oscillation is split
into 12 time bins. The average radius is a rough estimate for the position of the peak in
the droplet size distribution. Since the size distribution is quite broad for a considerable
time of the oscillation period, the average radius varies less than the position of the peak
in the distribution. Comparing the times of the peaks and the minima in the prediction
for rc and the average droplet radius we find excellent agreement. The peak position of
the volume distribution rpeak follows our prediction for rc quite well. Systematically, the
average droplet radius increases before the prediction for the bottleneck radius increases.
This observation may be attributed to the broadening of the size distributions when the
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3.6 Evolution of the Droplet Size Distribution

Figure 3.23: The plot shows the volume weighted average of the droplet radius (blue) as a function
of time (3.23). The peak of the volume distribution (see figure 3.18) is indicated by a black dashed
line. It is follows reasonably well the prediction of the bottleneck radius (3.54) (red). The times
of the peaks and the minima of the curves fit very well. Since the volume distribution is at some
times quite broad and even bimodal, the average radius varies rather less than the peak of the
volume distribution.

collisions start to play a role. For the prediction of rc (3.54) the collision efficiency ε was
set to 0.1. This value is quite reasonable and within the expected interval 0.01 < ε < 1.

3.6.3 Model for Oscillation Period
Based on the growth equation for droplet radii (3.53), a prediction for the time scale of
the oscillation period is worked out. In order to do this, we first have to investigate the
driving dependence of the droplet number density.

3.6.3.1 Droplet Number Density: Scaling with Driving Rate

In figure 3.24(a) the droplet number density of tracked droplets is shown for four different
heating rates. It is observed, that the number of droplets is higher for higher heating
rates. For driving rates about 1-2 ·10−5s−1 very clear oscillations in the droplet number
densities are visible. The oscillations are less pronounced for higher driving rates. For
lower driving rates tracking becomes difficult because the duration of the measurement
increases. Also the tracking algorithm is optimized for droplet number densities typical
for measurements with ξ = O(10−5s−1). For significantly lower droplet number densities
the calculation of the flow field becomes difficult, which is necessary for the prediction of
the droplet position in the subsequent image.
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(a) (b)

Figure 3.24: (a) The droplet number density in the bottom phases of a water/isobutoxyethanol
sample is plotted for different heating rates as a function of time (3.23). The legend gives the
average values for the driving rate ξl for the different curves. The droplet number density increases
with increasing driving rate and decreases in time, because temperature is increasing.
(b) The droplet number density is rescaled by the driving rate ξ. It is plotted as a function of the
reduced temperature θ.

We conjecture that the droplet number density may be proportional to the driving rate ξ.
In figure 3.24(b) the droplet number density is divided by the droplet volume production
rate (ξl in this case) and plotted as a function of the reduced temperature. The peaks
of the rescaled droplet number density compare fairly well for the different driving rates
and show a significant temperature dependence. The number of droplets nucleated at
the beginning of the oscillations may depend on material parameters like the interfacial
tension or the diffusion coefficient, which all depend strongly on the reduced temperature.
In the appendix 3.A the most important material properties of our model systems are
summarized. Up to now we are not aware of any satisfactory prediction for the droplet
number density in slowly driven phase separation of binary mixtures. Assuming that the
droplet number density is proportional to the driving rate, reduces the growth rate of
small droplets to

ṙ = K(θ)
r2 (3.55)

where K(θ) ≡ ξ
4πn is a temperature dependent prefactor. Note that this growth law

is similar to the one expected for the largest droplets in a mixture undergoing Ostwald
ripening (confer section 3.6.2.1). The following line of argument was inspired by ideas of
Wilkinson about the interplay of Ostwald ripening and growth by sweeping [137]. With
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3.6 Evolution of the Droplet Size Distribution

(3.55) the equation for the bottleneck radius (3.54) reads

rc =
( 4K
εκv

)1/4
. (3.56)

3.6.3.2 Theoretical Prediction

We aim to get an expression for the oscillation period of the precipitation cycle ∆t. In
the lowest order approximation, it is the sum

∆t = t1 + t2 (3.57)

of the time t1 it takes to grow by diffusion to the bottleneck radius rc and the time t2 it
takes to reach by collisions the runaway for the droplet radius. Integrating equation (3.55)
with the boundary conditions r(t = 0) = 0 and r(t = t1) = rc yields

t1 = r3
c

3K (3.58)

for the time it takes to grow to the bottleneck radius.
In section 3.6.2.2 it was shown that the droplet volume fraction can be well approximated
(at least for the first half of the oscillation period) by

v(t) = ξ · t. (3.59)

Thus when the droplet radius has grown to rc, the volume fraction is

v(t1) = ξt1. (3.60)

Inserting equations (3.56) and (3.60) into (3.58), we derive the scaling of the time t1

t1 ∼ K−1/7(εκξ)−3/7. (3.61)

We rewrite the growth equation for sweeping (3.52) by inserting (3.59)

ṙ = ε

4κr
2ξt. (3.62)

We integrate (3.62) ∫ r

rc

1
r′2
dr′ = εκξ

4

∫ t

t1
t′dt′ (3.63)

yielding
1
rc
− 1
r

= εκξ

8
(
t2 − t21

)
. (3.64)
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This means that the droplet radius diverges, r →∞, at a finite time t→ ∆t

1
rc

= εκξ

8
(
∆t2 − t21

)
. (3.65)

This gives

∆t =
( 8
εκξ

1
rc

+ t21

)1/2
. (3.66)

for the oscillation period. We insert equations (3.56), (3.58), and (3.59) into 8
εκξ

1
rc

in (3.66)
finding that t1 and ∆t have the same scaling. For the oscillation period ∆t we get

∆t = α
(
Kε3κ3

)−1/7
ξ−3/7 (3.67)

with α being a numerical prefactor. As the droplet radius would grow to infinity at a
finite time, the height of the sample is predicted to have no significant influence on the
oscillation period.

3.6.3.3 Droplet Volume Density: Scaling with Driving Rate

The prediction for the oscillation time scale dependence on the driving rate implies together
with (3.59) that the droplet volume fraction created in each oscillation scales with v ∼ ξ4/7.
In figure 3.25(a) we show the measured droplet volume fraction for different driving rates.
The data for the driving rates ≥ 10−5s−1 are from tracked droplet data, the slowest run is
for droplet data coming from the analysis of individual images. In figure 3.25(b) we show
that the rescaling the droplet volume density with ξ4/7 gives a good agreement between
the measurements.
Hence we have now found the explanation for the decrease of the amplitude in the signal
for the heat capacity and turbidity and the increase of the oscillation frequency observed
in many different experimental studies [8, 33, 60, 125–128]. On the one hand, for higher
reduced temperatures, i.e. if the system is further away from the critical point (irrespecitve
of the fact whether the system has an upper or a lower miscibility gap), the density
difference is higher. Therefore the sedimentation velocities are increased, which increases
the growth rate due to collisions. On the other hand, the number density of nucleated
droplets is smaller, which may be associated with the increase of the diffusion coefficient
and the interfacial tension. Since the droplet number density is smaller, the generated
droplet volume is shared by less droplets and the individual droplets grow faster also in
the diffusional growth regime. Both effects decrease the time that the droplets need to
pass the bottleneck. So the observed oscillation periods decrease further away from the
critical temperature. The decrease of the amplitude is a direct consequence of the decrease
in the oscillation period: When the oscillation period is shorter, less droplet volume can
be created during that time.
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(a) (b)

Figure 3.25: (a) The droplet volume fraction in the bottom phases of a water/isobutoxyethanol
sample is plotted for different heating rates as a function of time (3.23). The legend gives the
average values for the driving rate ξl for the different curves in units of s−1. The droplet volume
fraction increases with increasing driving rate and decreases in time, because temperature is in-
creasing. The data in the range 1.010−5s−1 < ξ < 8.510−5s−1 is calculated from tracked droplets,
the data for ξ = 5.210−6s−1 comes from the analysis of single images without tracking (note that
this measurement took 32h).
(b) The droplet volume fraction is rescaled by the expected driving dependence ξ4/7. It is plotted
as a function of the reduced temperature θ. The peaks of the rescaled droplet volume fraction fall
roughly on top of each other. For fast heating rates the oscillations are not very pronounced and
the agreement is not very good though.

3.6.3.4 Oscillation Period: Scaling with Driving Rate and Reduced Temperature

A more elaborate check of the prediction (3.67) is possible by rescaling the oscillation
periods shown in figure 3.19 with ξ3/7 and plotting them as a function of the reduced
temperature θ. Indeed the oscillation periods fall on one master curve, presented in figure
3.19. This graph is the main result of the presented work on phase separation. Developing a
theoretical prediction for the driving dependence of the oscillation period was the essential
step to be able to create a master plot for the oscillation period. It is difficult to get the
driving dependence from figure 3.19 directly since the dependence on the temperature is
very pronounced.
Comparison of the droplet growth due to the equal partition of the created droplet volume
(3.55) with the growth expected for Ostwald ripening (3.36) suggests that the prefactor
K = ξ/n may be proportional to Dσ. We try this and find for the scaling of the oscillation
period

∆t = α′
(
Dσε3κ3

)−1/7
ξ−3/7 (3.68)
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(a) (b)

Figure 3.26: Plot of temperature dependence of ∆tξ3/7, for the upper (a) and the lower (b) layer
of water/isobutoxyethanol mixtures. The colors and symbols encode different heating rates ξ: black
stars, ξ < 6 × 10−6 s−1; blue crosses, ξ < 1.3 × 10−5 s−1; cobalt circles, ξ < 3 × 10−5 s−1; green
triangles, ξ < 6×10−5 s−1; red squares, ξ < 3×10−4 s−1; and magenta diamonds, ξ > 3×10−4 s−1.
The solid line is a fit for a prediction using (3.67) together with the assumption that K ∼ Dσ.

with one single dimensionless fit parameter α′. We fit equation (3.68) to our data for
the oscillation periods in one of the two layers and get the best fit for α′ = 0.26 assuming
ε = 0.1 as suggested by our fit of the bottleneck radius (confer section 3.6.2.4), presented in
figure 3.26. The same value for the fit parameter α′ gives also a good fit of the data in the
other layer. Eventually, the oscillation period is predicted without any free fit parameter.

3.6.4 Dependence on any other Parameter?

The presented model predicts that the oscillation period does not depend on the height of
the sample. To check this prediction, the oscillations of water/isobutoxyethanol samples
with heights Λ of the bottom phase in the range of 2mm to 50mm were analyzed. For
better comparison of the measurements, the periods are rescaled by the driving dependence
ξ3/7 and by the effective temperature scaling θ2/3. Figure 3.27 shows that the rescaled
oscillation period indeed does not depend significantly on the height of the sample.
Furthermore, we took measurements with cells of width 4mm and 1mm. In both cases,
oscillations with similar periods are observed. However, in the very thin cells (1× 10mm),
the measured oscillations of the droplet size distribution are not very pronounced. This
may be due to the fact that in the very thin cell the convection is supressed. It synchronizes
the nucleation wave by mixing the supersaturation in the sample. We also checked whether
the height of the top layer has an influence on the oscillation period of the bottom layer,
again finding no significant effect. This is in line with the numerical studies of Benczik
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Figure 3.27: The oscillation pe-
riod is measured for several heights
of the oscillating layer. The pe-
riods are rescaled by the influ-
ence of the driving strength ξ
and the effective temperature scal-
ing. Within the measurement er-
ror no influence of the sample
height on the oscillation period is
observed. The measurements were
taken in the bottom phase of wa-
ter/isobutoxyethanol samples.

[15] and the measurements in two different geometries by [130].
Furthermore, we took measurements with different temperature ramps, not keeping ξ but
a combination of ξ and a temperature dependent quantity constant. This way, almost
constant oscillation periods or almost constant amplitudes can be observed. Also in these
cases, our prediction for the oscillation period fits quite well to the data. Still we find
that the most pronounced oscillations for a long fraction of the temperature ramp can be
observed by keeping the driving constant, as suggested in [8].
Finally, we can conclude that the driving rate and the reduced temperature determine the
oscillation period and the geometry and the form of the temperature ramp does not alter
the period significantly in a wide range of parameters.
The amplitude of the droplet volume fraction oscillation, however, depends on the position
of the measurement volume. Close to the meniscus, the droplet volume fraction is higher,
because the droplet volume generated far away from the meniscus sediments through the
fluid towards the meniscus. This implies that the scaling of the volume fraction with the
driving rate and the temperature are conserved, however the prefactor varies with height.
Hence the agreement of expected droplet volumes and measured amplitudes shown in
figure 3.25 is only rough and not perfect.
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3.7 Discussion

3.7 Discussion

In this section we summarize and discuss our results for the phase separation of binary
fluids.

• Droplet Size Distribution: Using a droplet detection and tracking algorithm
developed from scratch for the phase separation of binary fluids (confer section 3.5),
we measure the evolution of the droplet size distribution in time, shown in figure
3.18. The size distribution exhibits pronounced oscillations in time. We observe
a precipitation cycle (section 3.6.1.2), that can be considered as an experimental
analogy to the precipitation cycle in rain formation (confer section 3.1.2). Droplets
are nucleated on impurities present in the system and grow rapidly to a radius of
about 9µm. We show in figure 3.18 that the volume distribution of droplets has a
pronounced peak at this radius. Slowly the droplets start to sediment and coalesce
with smaller droplets. This leads to a broadening of the measured droplet size
distribution. The peak of the volume distribution slowly shifts towards a radius of
about 27µm. Once the droplet radius exceeds 30µm, the sedimentation velocity is
sufficiently fast that to reach the interface within less than a minute. More and more
droplets sediment and leave the system decreasing the droplet number density. This
way the droplet distance increases and the constantly increased supersaturation takes
more time to diffuse to the droplets. When the supersaturation reaches a critical
value, droplets are nucleated and a new precipitation cycle begins.

• Droplet Volume Fraction: Typical droplet volume fractions during the phase
separation process are between 1 and 5% (confer figure 3.17). The volume fraction
shows pronounced oscillations, which are used to measure the oscillation period.
As the droplet volume density is not very sensitive on the number of detected small
droplets, we get also reasonable results for the calculation of the volume fraction from
the analysis of individual images without running the droplet tracking algorithm.
The droplet volume growth rate (3.42), (3.43) we derive in section 3.6.2.2 roughly
fits to the volume production rate observed in the experiment (see figure 3.20). The
mass transport in the system is dominated by the sedimentation of droplets. In
section 3.6.2.3 we show that the sedimentation velocity of droplets fits very well to
the Stokes law (figure 3.21).

• Droplet Number Density: We find in section 3.6.3.1 that the number density of
droplets is proportional to the driving rate and decreases with incresing temperature,
shown in figure 3.24. A satisfactory prediction how the number density is related
to the material parameters is missing up to know. To enable upcoming suggestions
for these relations, the temperature dependence of the relevant material properties
of the studied model system is given in appendix 3.A.
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• Droplet Growth Rate: Two growth mechanisms are explored in section 3.6.2:
Small droplets grow by diffusion of the supersaturation created by the temperature
ramp towards the droplets (3.47). Big droplets sediment with the Stokes velocity and
collide with some efficiency of the order of 0.1 with the smaller droplets contained in
the volume they sweep through (3.52). In section 3.6.2.4 we show that inserting the
droplet number densities and droplet volume fractions measured in the experiment
suggests a bottleneck in droplet growth (3.54) in the range between 9 and 27µm,
as can be seen in figure 3.23. This is almost exactly the radius range where a
bottleneck in the growth of cloud droplets is expected (compare section 3.1.2). The
predicted evolution for the bottleneck radius coincides very well with the peak in
the volume distribution measured in the experiment, as we show in figure 3.23. This
is very strong evidence that we have modeled the droplet growth dynamics in an
appropriate manner (3.53), using only a single fit parameter - the collision efficiency.

• Oscillation Period: The equation for the droplet growth rate (3.53) can be used
to estimate the time scale for the oscillation period. We derive in section 3.6.3.2 that
the period scales with the driving rate ∆t ∼ ξ−3/7 (3.67), which is a nontrivial result.
In figure 3.26 we show that the oscillations measured for two decades in driving rate
in the top layer and almost three decades in driving rate for the bottom phase of
water/isobutoxyethanol mixtures fall on a master plot for each layer by rescaling
the period with ξ3/7. The reduced temperature was varied within two decades. In
section 3.6.3.4 we derive a prediction for the oscillation period (3.68) based on the
assumption that the droplet number density scales with n ∼ ξ/Dσ (confer appendix
3.A for the values of D and σ). Fitting only a single numerical prefactor for the data
of one of the two layers, we also get an acceptable prediction (without fit parameter)
for the data of the other layer (compare figure 3.6.3.4). Varying many parameters
one at a time, we find no significant dependence of the oscillation period (section
3.6.4) on the height of the sample, as shown in figure 3.27, the width, the global
composition or the type of the temperature ramp. This is in perfect agreement
with our prediction for the oscillation period (eqn:deltat). Further more, we show
in figure 3.25, that the droplet volume density scales with v ∼ ξ4/7, which is a
direct consequence of our model for the oscillation period, as outlined in section
3.6.3.3. Finally, we have resolved the riddle of the drift in the oscillation period and
the decrease in the amplitude, that was observed in the literature, as discussed in
section 3.1.1.
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3.A Material Properties of Water/Isobutoxyethanol
For comparison of the measured droplet velocities and oscillation periods with theoretical
predictions, besides the phase diagram, also the density, viscosity, diffusion coefficient and
interfacial tension of the two phases have to be known. The phase diagram of the systems
water/isobutoxyethanol and the technique applied to measure it is presented in section
3.3. The material parameters are taken from literature and interpolated. We plot the
material parameters as a function of the reduced temperature θ (3.1). We compare them
to a scaling ansatz m ∝ θα with m denoting the material property of interest and α its
scaling exponent. In this section, we denote the two liquids in a binary mixture by the
subscripts a and b. The mass, volume and molar fractions Φm, ΦV and Φn refer to the
component a, namely isobutoxyethanol in our case.

3.A.1 Effective Scaling Exponents

For an easy check of theoretical predictions for the temperature dependence of various
measured quantities, the effective scaling exponents to the temperature dependence of the
density difference, viscosity, diffusion coefficient, interfacial tension, molar volume and the
prefactor σ are fitted. The fitted scaling relations are indicated by dahed lines in the
figures of this section. Prefactors and scaling exponents of the form

A = A0 · θα (3.69)

for the θ-dependence are listed in table 3.1.

A0 α

∆ρ 174kg/m3 0.36
ηtop 2.3·10−3Pas -0.05
ηbot 4.8·10−4Pas -0.23
Dtop 1.6·10−9mm2/s 0.89
Dbot 3.6·10−9mm2/s 0.94
γ 1.0·10−2N/m 1.20

Vm,top 5.6·10−5m3/mol 0.13
Vm,bot 1.6·10−5m3/mol -0.04
σtop 7.1·10−11m 1.09
σbot 5.7·10−12m 0.85

Table 3.1: Prefactors and exponents
for effective scaling of density differ-
ence, viscosity, diffusion coefficient, in-
terfacial tension, molar volume and LS-
prefactor with reduced temperature for
water/isobutoxyethanol.

3.A.2 Density

The densities of the phases are determined by the composition, thermal expansion and
molar excess volume. The density of a mixed phase mainly depends on the volume com-
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position
ρ = ma +mb

V
= ρaΦ

V + ρb
(
1− ΦV

)
. (3.70)

Both liquids expand slightly with increasing temperature. For water and isobutoxyethanol,
Doi et al [39] propose a linearly approximation around room temperature T0 = 25℃

ρa,b(T ) = ρa,b(T0))− αa,b(T − T0) (3.71)

with the linear expansion coefficient α. The values for ρa,b and αa,b are given in table 3.2.

isobutoxyethanol water
ρ(25℃) [gcm−3] 0.886255 0.997043
α [gcm−3K−1] 0.968 · 10−3 0.2571 · 10−3

Table 3.2: Densities and thermal expansion coefficients for water and isobutoxyethanol, taken
from [39, 96]

When two liquids are mixed, gernerally the mixture has a volume deviating from the sum
of the individual component volumes. This volume difference per mol is called molar
excess volume. Thus the volume V in equation (3.70) has to be replaced by Videal + nV n

E ,
where Videal is the sum of the volumes of the two components, n is the sum of the number
of molecules in mol and V n

E is the molar excess volume, which is typically negative. Taking
this into account, the density can be formulated in terms of the mass fraction Φm

ρ =
[
Φm

ρa
+ (1− Φm)

ρb
+
(
Φm

Ma
+ (1− Φm)

Mb

)
V n

E

]−1
. (3.72)

A derivation of (3.72) can be found in [96, pp. 61], as well as conversion formulars between
volume, mass and molar fractions. Doi et al [39] give data for the molar excess volume of
the water/isobutoxyethanol system and provide a fit to their data

V n
E (Φn) = Φn(1− Φn)

1−G(1− 2Φn) ·
(
A1 +A2(1− 2Φn) +A3(1− 2Φn)2

)
(3.73)

with the parametersG=0.975, A1=-3.079cm3/mol, A2=1.801cm3/mol andA3=0.839cm3/mol.
They report a slight temperature dependence of the fit parameters, which we do not take
into account.

The density of the bottom, the top phase and the density difference as a function of the
reduced temperature θ is shown in figure 3.28.
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Figure 3.28: The density of the
two phases and the density differ-
ence depend on temperature. Us-
ing equations (3.71), (3.72) and
(3.73) with the coefficients given
by [39], the densities for the wa-
ter/isobutoxyethanol system are
calculated for a range of reduced
temperatures. The density differ-
ence is fitted by a scaling ∆ρ ∼
θ0.36.

3.A.3 Viscosity

We measured the viscosity of isobutoxyethanol with an Ubbelohde viscosimeter type 537
10/I made by Schott. The temperature dependence of the viscosity η [kg/ms] is fitted by

η(T ) = A · 10
B·(20−T )−C·(T−20)2

T+D (3.74)

with temperatures expressed in ℃. The coefficients are given in table 3.3, where the values
for water are taken from [134].

A[kg/ms] B C D

water 1.002 · 10−3 1.3272 0.001053 105
i-BE 3.36 · 10−3 1.730 0.001 108

Table 3.3: Fit coefficients for the viscosity of water and i-BE, defined by equation (3.74), the data
for water is taken from [134].

To interpolate the viscosities for a mixed phase of given mass fraction Φ we use the
composition-dependent viscosities at 25℃for a homogeneous mixture in the single phase
regime given in [81]. The data is fitted with a fifth order polynomial

η(Φ,T = 25◦C) = −40.66Φ5 + 103.44Φ4 − 100.32Φ3

+39.35Φ2 + 0.17Φ+ 0.91.
(3.75)

Assuming that the coefficients of interpolation are not changing substantially in the tem-
perature range of our measurements, a rescaled viscosity η̃(Φ) is defined. It only depends
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on the composition Φ

η(Φ,T ) = η̃(Φ) · ηiBE(T ) + (1− η̃(Φ)) · ηH2O(T ). (3.76)

The viscosities of the two phases are shown in figure 3.29 as a function of temperature. To
check the strong assumption entering this interpolation, we have measured the viscosity of
the two phases at T = 40℃. For both phases it followes the prediction of equation (3.76)
to within 2%. This is sufficiently accurate for our means.

Figure 3.29: The viscosity
of the two phases depends on
temperature. Using equations
(3.74), (3.75) and (3.76) with the
coefficients given by [81, 134],
the viscosities for the wa-
ter/isobutoxyethanol system are
calculated for a range of reduced
temperatures. The viscosities
of the two phases are fitted by
scaling laws ηtop ∼ θ−0.05 and
ηbot ∼ θ−0.23.

3.A.4 Diffusion Coefficient

The diffusion coefficient for the two phases shows a linear dependence on temperature. At
the critical point, the diffusion coefficient D approcheas the same, not vanishing value Dc

D(θ) = Dc + δtop,botθ (3.77)

A fit of the data for the isobutoxyethanol/water system presented by [111] gives Dc =
6.4 · 10−12m2/s, δtop = 2.1 · 10−9m2/s and δbot = 4.1 · 10−9m2/s.
The temperature dependence of the diffusion coefficient is shown in figure 3.30. Be aware
of the limited range of data in [111], which we extrapolate to reduced temperatures θ ≤ 0.1.

3.A.5 Interfacial Tension

The interfacial tension vanishes at the critical temperature. Its dependence can roughly
be represented by a powerlaw

γ(θ) = γ0 · θαγ . (3.78)
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Figure 3.30: The equilibrium
diffusion coefficients of the two
phases depend on temperature.
Using equation (3.77) with the
coefficients determined from the
data presented in [111], the dif-
fusion coefficients for the wa-
ter/isobutoxyethanol system are
calculated for a range of reduced
temperatures. The diffusion coef-
ficients of the two phases are fitted
by scaling laws Dtop ∼ θ0.89 and
Dbot ∼ θ0.94.

The data shown in [6] for water/isobutoxyethanol can be approximated by equation (3.78)
with γ0 = 7.3 · 10−4N/m and αγ = 1.2. Again be aware of the limited range of data in [6],
which we extrapolate to reduced temperatures θ ≤ 0.1.

Figure 3.31: The interfacial ten-
sion of the two phases depend
on temperature. Using equation
(3.78) with the coefficients given
by [6], the diffusion coefficients for
the water/isobutoxyethanol sys-
tem are calculated for a range of
reduced temperatures.

3.A.6 Molar Volume

Another quantity that we need to look at for the comparison of the theoretical prediction
for oscillation periods with the experimental data is the molar volume. It is the volume
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Vm of one mol of the mixture. According to [41], it can be approximated by

Vm = φnV a
m + (1− φn)V b

m (3.79)

with V a,b
m being the apparent molar volumes of the pure components a,b in the binary

mixture. In [41] we find Vm = 124cm3/mol for isobutoxyethanol and Vm = 15.98cm3/mol
for water. The temperature dependence of the molar volume is shown in figure 3.32.

Figure 3.32: The molar volumes
of the two phases depend on tem-
perature. Using equation (3.79)
with the coefficients given by [41],
the molar volumes for the wa-
ter/isobutoxyethanol system are
calculated for a range of reduced
temperatures. The molar volumes
of the two phases are fitted by
scaling laws Vm,top ∼ θ0.13 and
Vm,bot ∼ θ−0.04.

3.A.7 Prefactor in Lifshitz-Slyozov theory
Lifshitz-Slyozov theory for droplet growth [69] (see section 3.6.2.1) uses a lengthscale which
is defined by

σ ≡ 2γVmΦe
RT

, (3.80)

see section 3.6.2.1. The surface tension is denoted by γ, Vm is the molecular volume, Φe is
the equilibrium minority component concentration, R the gas constant and T the absolute
temperature. Apart from the ideal gas constant R, all involved parameters are temperature
dependent. In figure 3.33 we show how the lengthscale depends on temperature.
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Figure 3.33: The prefactor σ
of Lifshitz-Slyozov theory for the
two phases depends on temper-
ature. It is defined by equa-
tion (3.80). We show its tem-
perature dependence for the wa-
ter/isobutoxyethanol system for a
range of reduced temperatures.
Note the subatomar order of mag-
nitude. It should be regarded as a
temperature dependent prefactor
with the unit of a length, rather
than as an actual length scale in-
volved in the process of Ostwald
ripening. The prefactors of the
two phases are fitted by scaling
laws σtop ∼ θ1.09 and σbot ∼ θ0.85.
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4 Summary

In the present thesis, we have studied the evolution of droplet size distributions in two
different hydrodynamic systems. For each setting, we have designed and constructed an
experimental setup, which has been optimized to image droplets from the smallest possible
scale O(µm) to the largest O(mm).

Image Processing The main challenge of the project has been to develop an image
processing algorithm from scratch for each type of images. In high resolution images of
breath figures, we have managed to detect almost 3 decades of droplet radii simultaneously
in each individual image (confer figure 2.12 in section 2.4.2). The formidable reliability of
the droplet detection in the low resolution images has enabled us to detect and characterize
multi-droplet-coalescence and dripping events (see figure 2.25).
For our investigations on polydisperse sedimenting droplets in binary fluids we developed
a droplet detection and tracking algorithm (described in section 3.5) validated to work
reliable for droplet radii down to 3µm (confer figure 3.18). This enabled us to get detailed
knowledge about the evolution of the droplet size distribution in phase separating binary
fluids and to measure droplet and flow velocities (section 3.6.2.3).

Droplet Distribution of Breath Figures For the first time, not only droplet size distri-
butions but also spatial correlations of droplet sizes (section 2.5.3) in breath figures have
been measured (confer figure 2.19). We have extended the scaling theory of Family and
Meakin [46] incorporating the concept of the fractal dimension of packings in section 2.5.1.
Thus we have explained the scaling of the droplet size distribution observed in numerical
simulations and the present experiments (figure 2.15). We have shown how the growth
rate of the smallest droplets affects the lower end of the droplet size distribution (equa-
tion (2.45)). Fully rescaled droplet size distributions for experimental and numerical data
with flat tails are shown in figure 2.16. We have measured a pronounced peak in the pair
distribution function of adjacent droplets (figure 2.19) and established a connection to the
shape of the droplet size distribution in section 2.5.3.5.

Bottleneck in Droplet Growth As a second system, we have studied the oscillations in
the phase separation of binary fluids. We have shown that the droplet size distribution
undergoes repeated precipitation cycles, described in section 3.6.1.2. Starting with a simple
model for the growth rate of droplet radii (3.53), we have predicted in section 3.6.2.4
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the bottleneck in droplet growth on the basis of measured droplet number and volume
densities (3.54). We have demonstrated that the bottleneck in droplet growth describes
the peak of the droplet volume distribution very well, as can be seen in figure 3.23. Hence
there is strong evidence that we arrived at a consistent description of droplet growth in
phase separating binary fluids. We have shown that the number of droplets created in
each oscillation cycle is proportional to the driving rate and has a strong temperature
dependence (compare figure 3.24). However, a satisfactory model for the droplet number
density created by the temperature ramp is still missing.

Oscillation Period and Amplitude Based on our analysis of the bottleneck in droplet
growth, we derived a prediction for the oscillation period (3.67) and amplitude of the
droplet volume fraction in section 3.6.3. With the fully automated experimental setup
(described in section 3.4) we have investigated the parameter dependence of the oscillation
period on the driving rate, temperature and geometry of the sample. In figure 3.26 we
show that the oscillation period scales with the driving rate with a nontrivial exponent
∆t ∼ ξ−3/7 as predicted by our model (3.67). Fixing the only fit parameter by the
oscillation period data of one layer, we get good agreement also with the data of the other
layer. Further more, we find a scaling of the amplitude in the volume fraction oscillation
with v ∼ ξ4/7 in agreement with our model (figure 3.25). Our model implies that the
decrease of the oscillation period and amplitude with increasing temperature is due to the
increase of the density difference between the two phases and the decrease in the number
density, as outlined in section 3.6.3.3. Also in agreement with our prediction, we find no
dependence of the oscillation period on the height of the sample (figure 3.27), the width,
the height of the other layer or the type of the temperature protocol. Finally, we can
conclude, that we solved the riddle of the drift in the oscillation period and amplitude
that was observed in literature (confer section 3.1.1) together with the unknown driving
dependence .
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