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Abstract

Random binary block copolymers emerge from linking permanently and at random
prepolymer blocks of two different chemical species A and B. The competitive interplay
of conformational entropy, connectivity within one polymer, temperature-dependent
incompatibility between A and B, and incompressibility gives rise to a complex phase
behavior with a variety of possible morphologies of A- and B-rich domains. Technical
applications of the self-organized structures in block copolymers include nanoscale
templates and medical drug delivery via copolymer micelles.

For random Q-block copolymers, this work addresses theoretically the conjectured
coexistence of macroscopic phase separation and a structured phase of microscopic A- and
B-rich domains. Sequence fractionation according to the copolymers’ internal structure
promotes the coexistence of phases with different morphologies in equilibrium, as is
revealed by a theory with explicit account for the exchange of individual sequences. In
our semi-microscopic model, one block comprises M identical segments. The Markovian
block-type sequence distribution is characterized by the type correlation λ of adjacent
blocks and the global A content. Our focus is on block copolymer distributions with
A � B exchange symmetry, for which phase transitions from the disordered state
are continuous within mean-field theory. Upon increasing the incompatibility χ (by
decreasing temperature) in the disordered state, we observe the formation of the known
global, ordered phases: for λ > λc, two coexisting macroscopic A- and B-rich phases,
and for λ < λc, a microstructured (lamellar) phase with nonzero wave number, k(λ). In
addition, we encounter a fourth region in the λ-χ plane where these three phases coexist
with different, for Q ≥ 3 non-Markovian, sequence distributions. The three-phase
region is reached, either from the macroscopic phases via a third lamellar phase that
is rich in alternating sequences, or starting from the lamellar state, via two additional
homogeneous, homopolymer-enriched phases; in both cases, the incipient phases have
zero volume fraction. The four regions of the phase diagram meet at a multicritical
point (λc, χc), at which A-B segregation vanishes. Since our analytical method assumes
weak segregation for the lamellar phase, it proves reliable particularly in the vicinity of
(λc, χc). For random triblock copolymers, Q = 3, we find that both the character of this
point and the critical exponent of the segregation amplitude change substantially with
the number M of segments per block: The lamellar wave number vanishes continuously
on approach to (λc, χc) only for M < 7. The results for Q = 3 in the continuous-chain
limit M →∞ are compared to numerical self-consistent field theory (SCFT), which is
accurate at larger segregation.
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1 Introduction

1.1 Introduction: Constrained self-assembly

Segregation phenomena are ubiquitous in everyday situations: oil and vinegar strive to
demix in salad dressings, only after considerable stirring do they compromise to form
an emulsion. Complete segregation, however, can be hampered by linkage of different

Figure 1.1: Marbles: “disordered” (left) and with colors arranged into “microdomains” (right).

components into one object. Each marble in fig. 1.1, for example, combines multiple
colors in its interior. An associated problem you may have experienced when sorting
the heap of reprints on your desk is that one article often matches two or more of the
named folders you neatly prepared in your register.

Interesting phenomena arise from this kind of frustrated ordering in block copolymers,
which are composed of permanently linked prepolymers, called blocks, of chemically
different, inmiscible (incompatible) monomer types (cf. fig. 1.2). The effective repulsion
between different monomer types increases with increasing Flory incompatibility pa-
rameter χ [37], which is usually inversely proportional to temperature, or with growing
degree of polymerization of the blocks. Increasing the incompatibility causes a sponta-

A B

A B A

B A B B

Figure 1: Examples of linear, binary (AB) diblock, triblock and quadblock
copolymers.

A

B

A

B

∼ 50 nm A

Figure 2: Lamellar phase separation. The blow-up of the domain structure
visualizes the self-assembly for random symmetric triblock copolymers.

1

Figure 1.2: Examples of linear, binary (AB) diblock,
triblock and quadblock copolymers.
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CHAPTER 1. INTRODUCTION

neous symmetry breaking in an isotropic and homogeneous melt of block copolymers.
Macroscopic phase separation is impossible if all copolymers have the same internal
sequence of connected, different blocks. Instead, determined by the block length, a
periodic pattern of domains enriched in either of the monomer types can be formed,
with periods of approximately 10− 100 nm [54], see, e.g., fig. 1.5 below. Due to these
domain sizes, which are larger than the average diameter of a single chemical unit,
but small relative to the system size, structured phases are often termed microphases;
for an overview see, e.g., refs. [11, 12]. The morphology of the domain pattern, e.g.
lamellae, spherical micelles, cylinders on a hexagonal lattice, a bicontinuous phase, to
name a few, depends on the average composition, the block-length distribution, and the
incompatibility, cf. the phase diagram for diblock copolymers in ref. [80].

Both in their mixed state and in their self-organized structures, block copolymers
have widespread applications ranging from everyday plastics and adhesives to micro-
electronics and medical drug delivery by copolymer micelles [12, 93]. Block copolymer
lithography makes use of the self-assembly of block copolymers, directed by structured
surfaces, in order to create specific nanoscale patterns or to improve the order of a
given chemically patterned substrate [29, 126, 115]. In genetic engineering, synthesis of
protein-based block copolymers with peptide blocks promises precisely tunable structures
enabled by the inherent ordering abilities of proteins [96].

1.2 Block copolymers

Some properties of block copolymers can be attributed to the parent condensed matter
category ‘soft matter’, where order is attained on a meso- or macroscopic rather than
on a molecular scale [71]. In all polymer blends, the rapid decay of the entropy
of mixing with increasing degree of polymerization favors phase separation already
at moderate incompatibilities [98], particularly macroscopic phase separation in a
blend of incompatible homopolymers (polymers composed of one monomer type only).
Separation into a periodic structure of microscopic domains, however, is a distinctive
feature of block copolymers and stems from the conflict between configurational entropy,
connectivity of the inmiscible blocks within one polymer, incompatibility, and in
many cases incompressibility. Arranging the connected blocks into the domains costs
configurational entropy; therefore, microphase separation requires relatively large blocks
compared to homopolymer lengths at which macroscopic phase separation occurs [83].

The synthesis of block copolymers emerged with the discovery of ‘living’ polymeriza-
tion, an anionic, termination-free method initiated by electron transfer to monomers
which can be attached sequentially to reactive ends [121]. This technique allows syn-
thesis of, amongst others, monodisperse polymers with equal molecular weight and
pure block copolymers of the type ABA, AB, and ABC, without their respective
homopolymers. An example of the first, triblock sequence, is the thermoreversible
elastomer poly(styrene)-poly(butadiene)-poly(styrene) (SBS), one representative of the
high-impact, rubbery copolymers commercially named Kraton [77]. In order to tailor
properties of copolymers, e.g., to achieve toughness and high elasticity combined with
bending rigidity as in the example just mentioned, prepolymers with the desired speci-
fications are covalently linked [117, 124, 71]. Some of the tuned properties of a block

4



1.3. RANDOM BLOCK COPOLYMERS
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Figure 1. Chemical structures of some common block types.

1

Figure 1.3: Chemical structures of some common block types; see, e.g., [54].

copolymer in its homogeneously mixed state are bound to be lost in an inhomogeneous
state with A- and B-rich domains, intriguing new properties may arise. Thus, knowl-
edge about the phase behavior of block copolymers is essential for an advantageous
application of their self-assembly.

1.3 Random block copolymers

Heterogeneous block copolymers with a random distribution of compositions and block
sequences (fig. 1.4 shows possible triblock copolymer sequences) exhibit a greater variety
in morphology of the possible phases. The heterogeneity in chemical composition

B B B

A A B

B A B

AAA

Figure 1.4: Random AB triblock copolymers.

and sequence can arise both from the instantaneous statistical nature of the copoly-
merization process (instantaneous heterogeneity), and from a steady change in the
ratio of concentrations of the different monomer types in the reaction bath (conversion
heterogeneity) [114, 113]. Inevitable in some synthesis methods of block copolymers,
chemical heterogeneity poses challenges as well as opportunities in technical applications.
Given a variance in composition (content of one monomer type) among the copolymers,
the system’s free-energy optimization cannot only result in several microstructured
single-phase morphologies, but also in coexistence of various macroscopic, homogeneous
phases with different compositions. From a theoretical point of view, random A-B block
copolymer melts are multi-component systems with inherent disorder and competing
interactions: entropy and the connectivity of blocks of different types within one copoly-
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CHAPTER 1. INTRODUCTION

mer favor mixing, whereas the incompatibility interaction tends to separate A- from
B-blocks [11, 42]. While the entropic contributions to the free energy of a copolymer
melt dominate at high temperatures, the mainly energetic incompatibility becomes
more important at low temperatures. Throughout this work the focus is on melts of
random binary (A-B) multiblock copolymers, the chains being linear and monodisperse
with respect to their length for the sake of tractability.

1.4 Experiments

Transmission electron microscopy (TEM) micrographs gave the first information on pat-
terns in block copolymer systems [56, 122, 23]. With experiments on single-component
poly(styrene)-poly(isoprene) (PS-PI) diblocks, each experiment with another compo-
sition of the diblocks, Khandpur et al. [72] mapped out a phase diagram that covers
various morphologies. Besides the classical ordered microdomain structures (lamel-
lae, spheres on a bcc lattice, hexagonally arranged cylinders), experiments revealed
interconnected minimal surface morphologies such as the ordered bicontinuous double
diamond (OBDD) [2, 122] and the gyroid phase [53] (the latter structure, hard to
distinguish from the former in scattering images, has been confirmed by theory to be a
stable equilibrium phase [80]). Extensive studies with small angle X-ray and neutron

orientation this is accompanied by distinct necking of
the sample, often starting at one of the grips and
traversing the length of the sample upon further
deformation up to about 300% strain. The stable necking
behavior is consistent with the drop in load observed
in the stress-strain curve at the yield point (Figure 2).
It is a consequence of the material having a relatively
high yield stress and low strain hardening beyond the
yield point.25 During necking the dimensions of the
sample cross section decreased to about 50-60% of the
initial value in both lateral directions (y,z). Sample
deformation in the direction perpendicular to the lamel-
lae did not result in any noticeable necking. Rather,
uniform drawing of the sample was observed, with its
cross-section dimensions decreasing continuously in
both x and y directions. It should be noted that unan-
nealed samples behaved differently during perpendicu-
lar deformation. Distinct necking behavior was ob-
served, with the sample dimensions decreasing only in

the direction of the y axis. The different behavior of
annealed and unannealed samples during perpendicular
deformation will be discussed in a subsequent report.26
Samples with the diagonal lamellar orientation also
deformed uniformly, and no noticeable necking process
could be observed.
At higher strain beyond yield, as shown in Figure 2b,

the samples exhibit strain hardening. Thus, the me-
chanical response of the material during the initial
deformation can be described as elastic-plastic. How-
ever, deformation to high strains transforms the mate-
rial behavior from plastic to rubber-elastic. This trans-
formation has been described for unoriented lamellar
structures5-7 as well as oriented block copolymer samples
with cylindrical morphology.27 Figure 3 shows the
stress-strain curves measured during unloading after
deformation to 200% in the parallel and perpendicular
directions. Upon release of the load a residual strain of
about 30% is measured in both cases. The mechanical
behavior shown in Figure 3 is characteristic of a weakly
cross-linked elastomer with a rigid filler. The elastic
modulus obtained by fitting a standard rubber-elasticity
model to the low-strain part of the curve for the parallel
orientation, as shown in Figure 3, yields a modulus of
about 1.2 MPa. This is reasonable for PB rubber having
an entanglement molecular weight of about 2000.2 Upon
subsequent deformation the samples exhibit nearly
reversible rubber-elastic behavior, each following its
unloading curve in Figure 3.
(b) Microstructural Transformations. 1. The

Initial Undeformed State. The roll-casting process
achieves a high level of orientation and order in the
lamellar block copolymer films. Further annealing above
the glass-transition temperature of PS relaxes the
residual stresses from processing and enhances the
perfection of the level of ordering of the morphology.15
Figure 4a shows the 2D SAXS pattern of an annealed
roll-cast film of lamellar morphology before deformation.
The SAXS pattern of the initial state exhibits sharp
reflections with up to five discernible orders indicating
a high degree of lamellar orientation perpendicular to
the stretching direction with a lamellar period of 27 nm.

Figure 3. Stress-strain curves during loading of lamellar
samples to 300% strain and subsequent unloading. Initial
lamellar orientation relative to the stress direction: parallel
(large-dashed line); perpendicular (small-dashed line); solid
line: predicted curve for an ideal rubber with Young’s modulus
of 1.2 MPa.

Figure 4. Morphology of the initial unstretched state: (a) SAXS pattern (intensity represented on logarithmic scale); (b) TEM
image of the initial state of a textured block copolymer.

Macromolecules, Vol. 33, No. 17, 2000 Lamellar Block Copolymer Films 6505

Figure 1.5: Lamellar state in a film of poly(styrene-butadiene-styrene) (SBS); lamellar period
27 nm: a) small angle X-ray scattering (SAXS) pattern (intensity on logarithmic scale), b)
transmission electron microscopy (TEM). Reprinted with permission from [23]. Copyright 2000
American Chemical Society.

scattering (SAXS/SANS) techniques [56, 51, 52], cf. fig. 1.5, provided more insight
into the width of the domain interfaces and into the location of single copolymers
particularly in microphase-separated states. For example, Hashimoto et al. found that
the end blocks of alternating sequences accumulate in the domain interface regions [55].
Another observation concerned the chain conformations in microphase-separated states:
block copolymer chains are usually elongated in the direction normal to the interfaces
and shortened parallel to the interface [123]. In a series of fractionation and scanning
electron microscopy studies, Mirabella et al. [85, 86] characterized the compositional
heterogeneity of linear low-density poly-ethylenes (with short-chain branches only)
and identified a phase coexistence as responsible for mechanical properties completely
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1.5. THEORETICAL STUDIES: AN OVERVIEW

different from those of the constituents: an extraordinary high fracture toughness arises
from the formation of a dispersed soft phase in a hard semi-crystalline matrix.

1.5 Theoretical studies: an overview

The first theoretical studies on polymers date back as far as to the 1930s. Kuhn,
originally trying to explain the scaling of the viscosity with molecular weight in polymer
melts, pioneered the mapping of coarse-grained polymer conformations onto random
walks [74]. A feature of polymer melts appealing to theorists is that the ideal random
walk statistics applies better to the conformations of polymer chains in a dense melt
than to those of diluted polymers, cf., e.g., [71, 117]. Therefore, polymer melts will be
addressed in the calculations of the present work.

The fact that the entropy of mixing per monomer in solutions of high molecular
weight polymers (‘high polymers’) is drastically reduced, compared to the solution of
the same volume fraction of single monomers, motivated Flory’s and Huggins’s works on
the thermodynamics of high polymer solutions [34, 35, 66, 68]. Spinodal decomposition
of a single-liquid phase due to the low entropy of mixing of high polymers in solution
was predicted by Huggins [67]. The resulting, prominent Flory-Huggins theory of
demixing in polymer blends (see also [37]) incorporates this entropy reduction in a phe-
nomenological expression for the free energy, motivated by a mean-field, incompressible
lattice description similar to the lattice model for a binary liquid. Since the theory
assumes uncorrelated placement of monomers onto the lattice, it disregards any other
characteristics of polymers, particularly the connectivity. For an incompressible blend of
A and B homopolymers, which occupy fractions vA, vB of the system and have degrees
of polymerization NA, NB, respectively, the proposed free energy per monomer is

fFH

kBT
= χFHvAvB +

vA
NA

ln vA +
vB
NB

ln vB. (1.1)

In this expression, the scalar incompatibility parameter χFH quantifies the interaction
between A and B monomers. For the usual case of repulsion between A and B, χFH > 0,
the first term in eq. (1.1) drives AB segregation, whereas the last two terms, resembling
the (reduced) entropy of mixing per monomer, favor mixing.

Scott was the first to address phase separation in copolymer mixtures, taking into
account the chemical heterogeneity of copolymers [102, 103]. Based on modified Flory-
Huggins equations for polymer mixtures [36], he calculated the limit of thermodynamic
stability (spinodal) of the mixed, single-phase state (see, e.g., [20]) against macroscopic
phase separation as a function of the variance in chemical composition (fraction of one
segment type in a copolymer).

1.5.1 Multi-component theory: macroscopic phase separation

Bauer [13] extended Flory-Huggins theory and Scott’s coarse-grained description, deter-
mining not only the spinodal of the mixed state, but also the equilibrium compositions of
multiple coexisting, homogeneous phases created by phase separation. This method was
refined and applied to random AB copolymers by Nesarikar et al. [91], who computed
phase diagrams for various average compositions and degrees of polymerization. Within

7



CHAPTER 1. INTRODUCTION

this multi-component picture, copolymers are distinguished solely according to their
type-A content, while the spatial extension, comprising the particular sequence and the
conformation, is disregarded. Increasing incompatibility results in successive transitions
to a growing number of macroscopic, homogeneous phases differing in composition.
Also based on Flory-Huggins theory, phase coexistence with tricritical points has been
analyzed for a mixture of one random AB copolymer with A and B homopolymers [18].

1.5.2 Microstructured phases

Taking into account both the internal chain structure and possibly the random distri-
bution of block sequences, however, is crucial for the description of phase separation
on microscopic scales [76, 108, 18, 41, 42], e.g., for a lamellar variation of the local
density of A blocks, as sketched in fig. 1.6. Identifying this collective density as an

A B

A B A

B A B B

Figure 1: Examples of linear, binary (AB) diblock, triblock and quadblock
copolymers.

A

B

A

B

∼ 50 nm A

Figure 2: Lamellar phase separation. The blow-up of the domain structure
visualizes the self-assembly for random symmetric triblock copolymers.

1

Figure 1.6: Lamellar phase separation. In the blow-up, the self-assembly into A- and B-rich
domains is exemplified for random triblock copolymers.

order parameter in a Landau approach to phase transitions [75], Fredrickson, Milner,
and Leibler [41, 42] started out from a semi-microscopic model to derive the free energy
cost associated with spatial composition variations in a random block copolymer melt.
They introduced a model of block sequence generation according to a Markov process,
resulting in a random distribution with only two parameters to be specified: the global
A content, and a correlation parameter λ that quantifies the preference for continuing
a sequence with a block of the same type as the reactive end. Fredrickson et al. [42]
obtained a truncated free-energy functional by treating the model in the limit of Q� 1
blocks per chain and with some approximations regarding the block-type correlations.

For equal global A and B contents, the phase diagram shows a line of instabilities
of the mixed, disordered state, divided into two parts by an isotropic Lifshitz point
[61, 60],[22, p. 184] at a critical correlation λc (cf. fig. 1.7). Upon crossing the line by
increasing incompatibility, two different ordered (phase) states are possible, depending
on λ. For λ > λc, a pair of macroscopic, homogeneous phases emerges, one with an
excess of A, the complement with an excess of B blocks. For λ < λc, one spatially
structured phase with finite wave number, often called microphase, appears. Within
mean-field theory, ordered phases emerge from the disordered state via continuous phase
transitions in random block copolymers with A� B exchange symmetry.
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Figure 1.7: Qualitative mean-field
phase diagram with the spinodal lines
of the disordered state of a Markovian,
symmetric block copolymer melt. Mi-
crophase separation into an ordered
state of A- and B-rich domains with
finite wave number (here lamellae) oc-
curs to the left of the Lifshitz point.

Although equilibrium states with an ordered structure of A- and B-rich domains
in random block copolymers are in the focus of our predominantly analytical study,
nonequilibrium patterns can obviously arise in copolymers, too. Without claiming
completeness, we mention some related studies on the dynamics in the vicinity of
a phase transition. For a blend of very long copolymers, each composed of nearly
one monomer type only, a glassy state with frozen-in dynamics has been shown to
impede the segregation on increasing the incompatibility [15]. In biopolymers such
as proteins, freezing may occur due to the restricted number of thermodynamically
accessible conformations. Sfatos et al. find that for flexible polymers the frozen state
shows a microdomain structure, whereas for stiff polymers freezing takes place first
and suppresses microphase formation [106]. Finally, analyzing instead of a random
block copolymer melt that undergoes microphase separation the related model system
of the constituent, unconnected A and B monomers [27], one finds that macroscopic
phase separation is preferred. The transition from the disordered state is discontinuous,
however, and Cahn-Hilliard composition waves [21] with period-doubling precede this
macroscopic phase separation. Different from the structured, equilibrium phase in the
random block copolymer melt (where the basic length scale is set by the size of a block),
these waves exist only as a dynamic, transient solution to the set of partial differential
equations that describe this kind of phase separation. Yet, the dependence of the
wavelength on the distance to the spinodal is comparable to that of the equilibrium
state in the copolymer system [27].

1.5.3 Influence of fluctuations on the ordered microphase

The nature of the phase transition to an ordered, nonuniform state with finite wave
number in block copolymer melts has been a matter of active and controversial discussion.
The continuous microphase transition or order-disorder transition (ODT) established in
mean-field theory for symmetric block copolymers has been predicted to be affected by
order-parameter fluctuations [16, 40].

Some authors first deduced a complete stability of the disordered, homogeneous state
against microphase separation [107, 27], but later found that the Landau free energy
must contain a local term neglected earlier [108, 42], which restores the microphase
separation as a weak first-order transition [50]. Several attempts to improve on the mean-
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field calculations [40, 26, 107, 27] by considering fluctuations of the small-amplitude
order parameter employ the weak crystallization theory for the liquid-solid transition
developed by Brazovskĭı et al. [16, 17]. This theory predicts fluctuation-induced first-
order transitions for isotropic or nearly isotropic systems with an infinite-component
order parameter, each component of which is associated with a finite wave number
(in the copolymer system, a spatially varying composition field). Since for these
systems ordering is degenerate with respect to several directions of the wavevector,
fluctuations must be considered not around an isolated point, but in all directions
perpendicular to a hypersphere in reciprocal space [120]. The Brazovskĭı model has been
applied amongst others to the nematic-smectic C phase transition in liquid crystals [87],
slightly anisotropic antiferromagnets with large-wavelength superstructure [16], and to
the Rayleigh-Bénard convective instability in a fluid layer between infinite horizontal
plates [119].

Fredrickson and Helfand [40] placed also the effective Hamiltonian of a symmetric,
single-component diblock copolymer melt into the class analyzed by Brazovskĭı and
performed a Hartree approximation for this system. Though the free-energy functional
does not feature a third-order term, the calculation yields a first-order transition [40, 25]
at a higher incompatibility than the continuous microphase transition obtained from
the mean-field analysis by Leibler [76]. Apart from the nature of the phase transition,
the amplitude and the wave number of the microstructured phase were not altered
significantly compared to the mean-field predictions.

Specifically for diblocks, the width of the temperature region dominated by fluctuations
has been shown to decay with an inverse power of the degree of polymerization [40, 89].
For the polydisperse system of random block copolymers, a more complicated dependence
ensues: fluctuations become less important with increasing block length, but also with
decreasing number of blocks per chain [62].

In conclusion, a mean-field description should be adequate for random block copoly-
mers with a small number of blocks addressed in this work, particularly in the case of a
large number of segments per block.

1.5.4 Routes from macroscopic to microscopic phase separation:
Phase coexistence?

Macroscopic phase separation in random block copolymers is found to be restricted to
certain ranges of incompatibility χ, block-type correlation λ, and number Q of blocks
per polymer. On the one hand, the mean-field calculations for large Q of Fredrickson et
al. [42] showed that at a given correlation λ > λc, the range of incompatibilities, within
which macroscopic, homogeneous phases coexist, shrinks inversely proportional to Q.
On the other hand, the critical correlation λc (larger values of λ increase the preference
for homopolymers), above which macroscopic phase separation occurs at all, increases
with Q: Upon increasing in a random block copolymer melt the number Q of blocks
per polymer and thereby the number of different A-B-sequences, the relative variance
in A content (composition) decreases as 1/

√
Q. Accordingly, the energy reduction of

two A-rich and B-rich, homogeneous phases relative to the disordered state diminishes,
such that the limit Q→∞ eventually thwarts macroscopic phase separation, except
for a homopolymer blend [104, 118, 62].

10
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Monte Carlo simulations for symmetric random block copolymer melts with different
Q were performed by Houdayer and Müller [62, 63]. They observed macroscopic phase
separation for small Q only (deviating from the mean-field results [42]), in a λ-range
shrinking with increasing Q.

Additionally, in those simulated systems with macroscopic phase separation, further
increase of the incompatibility in the two coexisting homogeneous phases produced a
remixed state [63]. This observation lent support to the hypothesis of a coexistence of
two homogeneous phases with a third microstructured phase of symmetric composition.

A simulation result for phase coexistence in a binary blend of A homopolymers and
ABA triblock copolymers [109] is shown in fig. 1.8.

22 INTRODUCTION

Fig. 1.6. Snapshot of the total A segment density from a field-based simulation
of a model of an incompressible melt blend of A homopolymer with ABA tri-
block copolymer. Higher A density is shown as light. The larger light droplets
represent a homogeneous macrophase that is rich in A homopolymer, while
the more finely structured background shows an inhomogeneous cylindrical
mesophase rich in the triblock copolymer. The dimensions of the simulation
cell are 256 Rg × 256 Rg, where Rg is the radius of gyration of a triblock
copolymer. Reproduced from Sides and Fredrickson (2003).

effects of field fluctuations on equilibrium thermodynamic and structural quan-
tities relevant to inhomogeneous polymers. When implemented numerically, such
strategies amount to field-theoretic computer simulations of discretized field the-
ories such as eqn (1.8).

Figure 1.8: A-segment density graph of a
field-based simulation of a molten blend of
A-homopolymer with ABA-triblocks. Light
regions: A-rich macroscopic phase, dotted re-
gions: microphase (hexagonally arranged B-
rich cylinders) of ABA. Simulation cell size
256RG × 256RG, RG copolymer radius of gy-
ration. Reprinted from [109], Copyright 2003,
with permission from Elsevier.

For random diblock copolymers (Q = 2), phase coexistence has been predicted by
simulation [88], and within mean-field by solutions of the self-consistent field theory
(SCFT) equations [70, 90]. The latter calculations, however, obtained contradicting
results for the phase states: a coexistence of different, asymmetric lamellae or a one-phase
region of so-called nonperiodic lamellae.

Still, as yet, the details of the route from macroscopic to microstructured phase
separation, possibly proceeding via a three-phase coexistence, remained largely unclear.

1.6 Outline of this work

In an attempt to bridge this gap, this work aims at an analytical picture of three-
phase coexistence in random block copolymers, enabled by sequence exchange between
subsystems with different morphologies, called sequence fractionation.

Starting from a microscopic model that captures the essential interactions, we first
derive an effective Hamiltonian in a field coupled to the local difference of A and B
segment densities. This field corresponds to the order parameter for A-B separation
mentioned above [76, 42].

In order to study spatially structured, ordered phases analytically, we assume small
field amplitudes (weak-segregation limit) and consequently expand in the field, resulting
in a free-energy functional. Whereas the random sequence model follows Fredrickson
and co-workers [42], our derivation of the free-energy functional for structured phases
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follows a different approach and is valid for another system class. Approximations and
restricting assumptions made in ref. [42] (partially pointed out in [125]) are avoided,
particularly that of a large number Q of blocks per copolymer, which led to dropping
free-energy terms subdominant in Q. Contrastingly, we specifically address random
block copolymers with small Q, allowing us to calculate explicitly the contributions
of individual sequences to the global structure functions in the free-energy functional.
(With this focus, we also have to abstain from a coarse-graining of adjacent blocks’
correlations adopted in [125].)

For macroscopic phase separation, a closed free-energy expression can be derived
within the framework of multicomponent theory without the need to resort to an
expansion in the order-parameter amplitude.

With a superposition of the free energies of lamellae and homogeneous phases, we arrive
at an ansatz for a multi-phase coexistence, parameterized by sequence concentrations
and volume fractions. Via sequence fractionation, this coexistence of phases with
different morphologies can attain a lower free energy than a single global phase: Each
sequence class prefers that phase – homogeneous or spatially structured – which matches
best its (non)uniform internal structure, characterized amongst other features by the
number of bonded A-B contacts. As a result, the homogeneous phases and the coexisting
microstructured phase display different equilibrium concentrations of the same sequence
class. Our phase diagrams are calculated for global sequence distributions with A� B
exchange symmetry, which for Markovian sequence distributions is equivalent to equal
A and B content. This symmetry causes the sequence distributions of two A-rich
and B-rich, homogeneous phases to map onto each other by permutation of A and
B. The individual distributions of these two phases, though different in composition,
are not called fractionated, since they maintain the global concentration of a sequence
class, e.g., of AAB/BBA in random symmetric triblock copolymers. The A-rich phase
in this system successively substitutes BBA chains with AAB chains, inversely the
B-rich phase. In contrast, we define sequence fractionation to alter the sequence class
concentrations in parts of the system such that microstructured phase separation is
favored in one part, while macroscopic phase separation occurs in another part.

The analytical fractionation approach is explored in most detail for the symmetric tri-
block copolymer system [58, 59]. In the control-parameter plane spanned by block-type
correlation λ and incompatibility χ (cf. fig. 1.7), we can delineate a three-phase coexis-
tence region of two homogeneous, A- and B-rich phases and one lamellar (micro)phase,
flanked by a region of global macroscopic phase separation on one side, and by one of
global lamellar phase separation on the other side. An increase of the incompatibil-
ity in a macroscopically phase-separated state results in a third, lamellar phase with
zero volume fraction (called shadow, following the nomenclature of [110]), with finite
amplitude, and, compared to the global sequence distribution, enriched in alternating
sequences. Conversely, if the first instability is towards lamellar phase separation, upon
increasing incompatibility two additional A- and B-rich homogeneous phases appear as
shadows with finite amplitude. In effect, four states, viz. the aforementioned, and the
disordered, homogeneous state, coincide at a multicritical point.

The character of this point is found to depend subtly on the model block copolymers’
internal structure, namely the number of segments per block. For triblock copolymers
with a small number (M < 7) of discrete segments per block, the wave number of the
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incipient lamellar phase vanishes continuously on approach to the multicritical point (the
latter being therefore of the Lifshitz type), and the order-parameter amplitude vanishes
linearly. For triblock copolymers with higher numbers of segments per block, particularly
including the limit of continuous chains, the wave number of the ordered state attains
a finite value discontinuously when reaching the multicritical point along the line of
macroscopic phase separations. In the latter case, for correlation parameters at which
the free energy’s global minimum indicates lamellar phase separation, a macroscopically
phase-separated state corresponding to a local minimum of free energy still persists
as a metastable state, and vice versa. In these cases, the critical exponent ψ for the
order-parameter amplitude is found to be ψ = 0.5.

Detailed sequence-concentration diagrams of the coexisting phases show the sequence
partitioning according to their morphologies. Except at the multicritical point itself,
the shadow phases emerge with a finite deviation from the global, λ-defined sequence
distribution.

The theory for the three-phase coexistence is seen to apply also to ‘random’ symmetric
diblock copolymers.

The structure of this work is as follows:

• In chapter 2 we introduce the model system, the interactions, and the field-based
description.

• The partition function is set up in chapter 3, and the saddle-point evaluation
yields a free-energy functional that allows for the study of equilibrium phases. In
section 3.3, we analyze the behavior of the distribution-averaged structure function
which determines the wave number of the instability of the disordered state. For
Markovian sequence distributions, we define the critical block-type correlation
λc for the wave number to change from zero to a finite value and classify the
multicritical points for random triblock copolymer melts. Before exploring the
possibilities of three-phase coexistence, free energies are derived for the global
ordered states in random block copolymers with A� B exchange symmetry, viz.
lamellae and two homogeneous A- and B-rich phases.

• Decomposing the structure functions explicitly into the individual sequences’
contributions allows us to formulate and analyze a three-phase coexistence ansatz
with sequence-selective exchange, in chapter 4. This free-energy superposition is
optimized for the parameters, viz. volume fraction and sequence concentrations, of
the coexisting phases, and we compute the phase transition lines between global
phase-separated states and three-phase coexistence.

• Our main results, the phase diagrams as a function of block-type correlation λ and
incompatibility χ, are presented in chapter 5, as well as additional information
on the volume fractions, the wave numbers, the sequence distributions of the
coexisting states with fractionation, and the scaling at the multicritical point. We
briefly discuss results of a numerical self-consistent field theory (SCFT) study
for random continuous triblock copolymers, which complements our analytical
method [59]. SCFT is not part of this thesis.

• Chap. 6 summarizes the work, concluding with some perspectives.
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2 Model

This chapter introduces the basic ingredients of the microscopic model underlying the
theoretical description. First, we specify the block copolymer system, multidisperse
with regard to composition and sequence, and the random distribution resulting from a
Markovian growth process. Next, three interactions are identified as the most important
contributions to the Hamiltonian: the bonded potential between monomers or segments
adjacent on one chain, the excluded volume interaction and the incompatibility between
all segments in the system. Finally, we define the collective density field suitable for the
detection of inhomogeneous type distribution in the case of A-B-segregation.

2.1 Random A-B sequences

Our model system is a melt of N linear, random AB block copolymers in a volume Ṽ .
All copolymers have degree of polymerization L = QM , and are divided into Q blocks,
each of which comprises M identical segments (either of type A or of type B),

block 1• • • • •
M

block 2◦ ◦ ◦ ◦ ◦
M

...
—

block Q• • • • •
M

. (2.1)

The statistical character and the effective length of these model segments will be
explained in the context of the intra-chain bond potential in section 2.2.1. Both types
of segments are assumed to have the same molecular weight and statistical length.

In order to formulate the effectively repulsive interaction between segments of different
types (see section 2.2.3), we introduce a binary variable qj(s) for the type of segment s
on copolymer j,

qj(s) =

{
+1, s of type A,
−1, s of type B,

(2.2)

which is equal for segments within the same block β (the block number β(s) is defined
in eq. (B.9) in the appendix). By definition, the mean qj(s) of various blocks, e.g., of
one block copolymer, quantifies the A excess of that entity. The average A excess of
a block copolymer sequence in a random distribution is denoted as q , related to the
global A concentration or probability, p, via q = 2p− 1.

A random sequence distribution has to be specified by at least one further parameter
for the variance in A content and the degree of blockiness. In our minimal model,
block sequences of fixed, finite length are generated by a random copolymerization
process with Markovian statistics [42]: the type of a block attached to a reactive end of
a growing copolymer is correlated solely with the type of the end block. The vector
(pA(β), 1− pA(β))T of probabilities to find A, respectively B, at block β transforms to
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(pA(β ± 1), 1− pA(β ± 1))T via the transition matrix M̂

M̂ =

(
1− pBA pAB
pBA 1− pAB

)
, (2.3)

where pJK , J,K ∈ {A,B}, is the conditional probability that a block of type J is
attached to one of type K. The pJK are proportional to the corresponding reaction
rates rJK and to the concentrations cA, cB of reactive A, respectively B, blocks in
the reaction bath: pJK ∝ cJrJK. Stationary values shall be guaranteed by steady
feeds of both (prepolymer) block types to the reaction bath and rule out a conversion
heterogeneity such as described in [113]. Moreover, the rates at which a reactive block
of a given type starts a new copolymer or binds to a growing copolymer shall be equal.
Thereby, the parameters of the distribution become homogeneous and apply at any
position or block number within a copolymer. The first parameter of the sequence
distribution is the mentioned, global A probability p and appears in the stationary
probability vector associated with the eigenvalue 1 of M̂ ,

p :=
pAB

pAB + pBA
. (2.4)

A second parameter drawn from M̂ accounts for the sequence polydispersity and
measures the type correlation of blocks adjacent on a chain or the average length of
subsequences of one type: 1

λ := (1− pAB − pBA) ∈ [−1,+1] . (2.5a)

The block-type correlation λ proves to be the second eigenvalue of the transition matrix
M̂ and belongs to the non-stationary part of the process (aside from the limiting cases
λ = ±1, the process is ergodic with detailed balance, such that the stationary vector
is unique [105]). Positive values of λ signal a preference for homopolymers, λ = 0
describes ideal, i.e., uncorrelated random block sequences with a binomial composition
distribution, and for negative values of λ alternating sequences prevail:

λ =





+1 : homopolymers only, · · · and · · ·,
0 : sequence distribution with uncorrelated block types,
−1 : strictly alternating seq. only, · · · and · · ·.

(2.5b)

The Markovian synthesis process amounts to creating the simplest nontrivial sequence
distribution with two parameters, p and λ, only. Elements of the transition matrix
expressed by p and λ, for general and for symmetric (p = 1/2 or q = 0), Markovian

block copolymers, can be found in appendix B.2. A diagonal representation of M̂ serves
to compute the probabilities of individual sequences in the global λ-distribution and
the moments of A excess in this distribution. Note that Markovian block copolymer
distributions with q = 0 display A � B exchange symmetry, which we will use in
chap. 3 below. Solely the property q = 0 of an otherwise arbitrary sequence or sequence

1Other models introduce instead of λ the normalized length variance of subsequences of one type as a
parameter for the polydispersity of the block copolymers, see, e.g., [25].
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distribution does not imply A � B exchange symmetry; consider for example the
quadblock sequence BAAB.

An individual block copolymer in the distribution can contain 0 to Q blocks of type
A, which defines Q+ 1 components distinguished by the A content. This component
classification in the ‘crushed polymer approximation’ (see, e.g., [13], [91]) is sufficient to
study separation into homogeneous phases, cf. section 3.5 below. However, it neglects
differences in the block-type sequence (for example, AAB- and ABA-chains both have
A content 2/3), and usually also in the conformations, details of the internal copolymer
structure which are crucial for ordering at finite wavelengths. The number of possible
different sequences (without directionality) increases exponentially with the number of
blocks, Q, and is given by

N (Q) = 2Q−1 + 2d
Q
2
e−1, (2.6)

(see the derivation and the definition of sequence classes in appendix B.1).

Once generated, the block-type sequences remain fixed, i.e., thermal averages affect
only the copolymers’ conformations and center-of-mass positions. For a finite number
of different sequences, a concentration for each sequence is well-defined in the thermo-
dynamic limit. Hence, for finite Q, the quenched randomness [19] due to the fixed block
types can be effectively translated to a multi-component system of compound particles
with internal interactions.

2.2 Interactions

2.2.1 Polymer chain connectivity

Most of the unusual statistical behavior of polymers in general can be traced back to
the linking of many chemically identical repeat units or monomers into a macromolecule.
The entropy per monomer related to the positioning of polymers in a given volume
is much smaller than that for the mixture of the constituting single monomers.2 The
phenomenological Flory-Huggins theory [65, 34] accounts for this reduced entropy simply
with a prefactor of the inverse degree of polymerization, cf. eq. (1.1), but neglects the
actual connected structure of polymers: An assumption implicit in the Flory-Huggins
mean-field treatment is that monomers of each type can be placed onto the lattice sites
without correlations between linked monomers. Here instead, we choose to consider
the connectivity via a potential, which imposes further constraints, but which also
affords the chains with additional conformational entropy. This potential is categorized
as bonded since it acts between nearest neighbors along the chain only. Explicitly,
we will focus on linear polymer chains formed by covalent bifunctional bonds. Since
the typical energy of a covalent bond (∼ 5 eV) is by orders of magnitudes larger than
that of a contact between non-adjacent segments (∼ 0.1 eV) or the thermal energy at
moderate temperatures, the linear sequence can be considered as fixed on the time
scale of experiments [49]. For the connectivity we will not distinguish between A and B
monomers, assuming that the weights for chain configurations of a copolymer are equal

2To grasp this fact intuitively, start to count the number of ways to arrange a collection of single
LEGO® blocks in a cylindrical container. Then, try to fit some pillars build of the same blocks into
the container and repeat the counting.
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to those of a polymer made up of identical units, i.e., a homopolymer. The motivation to
approximate connectivity by an idealized, coarse-grained potential is both mathematical
tractability and the expectation that atomistic details of the constituting molecules will
not severely influence mesoscopic observables as the average coil size [99, Ch. 2]. In
the fluid state, polymers can switch between a large number of conformations whose
weights are determined by the Boltzmann statistics. The fact that in the vast number
of isomeric states of a polymer, stretched conformations have by far less realizations
than coiled ones, is reflected in the Gaussian-chain model [28, 117], whose derivation
will be sketched here.

Assuming a given length ` for each bond along a polymer backbone, an individual
steric conformation can be described by the angles between consecutive bonds. These
are the bond angle ϑ between two adjacent bonds and the torsion angle ϕ formed by
a bond with the plane of its two preceding bonds (cf. fig. 2.1). Usually, the angles
take some preferred values depending on the potentials for bending and torsion. For
carbon-carbon bonds in polyethylene, for instance, the bond rotation potential has
three minima with respect to the torsion angle ϕ, corresponding to staggered relative
positions or maximal separation of the H atoms of the methyl groups [38, Ch. 2],[82].
However, these bond angles will be subjected to fluctuations, and the angle correlation

These are the figures to be used in the explanation of the model.
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Figure 1: Bond rotation angles of the polymer backbone.
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Figure 2: Construction of an ideal polymer-chain representation.
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Figure 2.1: Bond angles and loss of directional
correlations with chemical distance.

between a given chain section (parallel to z in fig. 2.1) and another section will die
off with increasing number of in-between monomers, i.e., with chemical distance. The
associated degree of flexibility of a polymer can be expressed via a length scale: On an
intermediate level of resolution (∼ nm), the polymer chain appears as a smooth curve,
along which one can introduce an arc-length parameter l ∈ [0, lc], lc the total contour
length, and a tangential vector field n(l) which indicates the local chain direction. A
normalized function Kor(∆l) measures the directional correlation depending on the
distance ∆l along the chain,

Kor(∆l) = 〈n(l) · n(l + ∆l)〉or , (2.7)

and decays to zero for ∆l→∞. This correlation in turn defines the persistence length

lp :=

∫ ∞

0
d∆l Kor(∆l), (2.8)

a typical chain section over which the direction is memorized. Now, resolving the chain
only down to a minimal length scale larger than lp, the following reduction of the
configurational variables is suitable in order to obtain statistical information on the
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Figure 1: Construction of an ideal polymer chain representation.
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Figure 2: Interactions forming part of the Hamiltonian.
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Figure 2.2: Construction of
an ideal-chain representation
with effective segments bs re-
placing equal-sized portions
of the original polymer with
total contour length lc. The
end-to-end vector Re is indi-
cated by a dashed arrow.

polymer shape, such as, e.g., the distribution of the end-to-end vector: Linear segments
(vectors bs, s = 1, . . . , L, in fig. 2.2) each replace a chain portion with an arc-length
longer than lp and a corresponding number of chemical units, such that the directions
of subsequent segment vectors are uncorrelated.3 The end-to-end vector is

Re =

L∑

s=1

bs, (2.9)

and the independent angle degrees of freedom are concentrated at the junction points
with coordinates Rs, s = 0, 1, . . . , L. With equal average sizes 〈bs · bs〉 = b2 of the
segments (〈·〉 the average over all chain conformations), the mean squared end-to-end
distance of this freely jointed segment chain is

〈
R2
e

〉
:= 〈Re ·Re〉 =

L∑

s,s′=1

〈bs · bs′〉 =

L∑

s,s′=1

〈bs · bs′〉δs,s′ = Lb2. (2.10)

and must coincide with the average squared diameter of the real coil. By construction,
this chain representation resembles a random walk [74], with the well-known probability
distribution particularly for the end-to-end vector Re (cf. fig. 2.2). For a chain consisting
of a large number of such independently, identically distributed segment vectors, the
central limit theorem states that the probability distribution of the resulting end-to-end
vector is Gaussian,

P(Re) =

(
d

2π 〈R2
e〉

)d/2
exp

{
− dR2

e

2 〈R2
e〉

}
, (2.11)

with d the spatial dimension. Even for a few segments, the exact distribution can be
shown to be approximated extremely well by a Gaussian [117, Ch. 2], Therefore, the
random-walk statistics can be assumed to hold also for the vectors Rss′ connecting any
two (non-adjacent) junction points s, s′:

〈
R2
ss′
〉

=
∣∣s− s′

∣∣ b2. (2.12)

3The additional constraint that segments may not overlap will be addressed in the next section.
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This implies self-similarity of the Gaussian chain, hence the possibility to rescale
eq. (2.10) with a new number Lr and a new average size br of the model segments
according to Lrb

2
r = Lb2. Consequently, the decrease of the average segment density

%p inside the polymer’s typical volume with increasing degree of polymerization is
approximately described by the fractal relation

%p ≈
L

R3
e

∝ L−1/2. (2.13)

The universal dependence eq. (2.10) of the mean squared end-to-end distance on the
segment number itself does not fix the length b. This ambiguity can be removed if the
dimensions of a polymer both in the maximally stretched and in the coiled state are
accessible by measurement. Then, the so-called Kuhn length b [117] is determined in
accordance with the following criteria:

• Number L and length b of the model segments are chosen such that the ideal chain
law R2

e = Lb2 gives the observed squared end-to-end distance
〈
R2
〉

= R2
e. Instead

of the end-to-end distance, scattering experiments often measure the radius of
gyration, which is the r.m.s. distance either of all monomers from the center of
mass or between all pairs of monomers (if all monomers have the same mass),

R2
g =

1

L

L∑

s=0

〈(
Rs −

1

L

L∑

s′=0

Rs′

)2〉
=

1

2L2

L∑

s,s′=0

〈
(Rs −Rs′)

2
〉
. (2.14)

For an ideal chain, using eqs. (2.10) and (2.12), one finds R2
g = Lb2

6

(
1 + 3

L + 2
L2

)
,

thus Rg is related to the end-to-end distance via R2
g = R2

e/6 to leading order in L.

• The added average lengths of the segments reproduce the maximal chain length
(to be determined experimentally), called the total contour length lc, Lb = lc,
which combined with the first condition Lb2 = R2

e gives b = R2
e/lc.

• The Kuhn length b must be larger than the persistence length lp. Assuming for
the directional correlation eq. (2.7) an exponential with decay constant lp and in
the limit lp � lc, the Kuhn length fulfills b = 2lp [117, Ch. 2].

Lower and upper length bounds for the scaling eqs. (2.12) and (2.13) are, respectively, the
persistence length lp and the contour length lc of the real polymer, i.e., lp < b < Re < lc.

4

In terms of the model segments bs := Rs − Rs−1, s = 1, . . . , L, the single-chain
connectivity potential that yields the Boltzmann weight eq. (2.11) is

HC, s.c. = kBT
d

2b2

L∑

s=1

bs · bs = kBT
d

2b2

L∑

s=1

(Rs −Rs−1)2 , (2.15)

i.e., a chain of harmonic springs with constants dkBT/b
2. This connectivity potential

is based on the number of available configurations of a polymer, therefore entropic in
nature and proportional to kBT .

4Some studies, including more recent ones [1], question the ability of the Kuhn length to correctly
describe the configurational statistics especially in polymer dynamics and small-scale structures.
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2.2. INTERACTIONS

The ideal-chain scaling can be formally extended to infinitesimally small length scales
in the limit

L→∞, b→ 0 with Lb2 = const. = R2
e (2.16)

referred to as the continuous Gaussian or Brownian chain (with finite coil diameter).
This limit process results in a rather artificial object with lc = R2

e/b→∞, according to
the above mentioned procedure. However, the continuous-chain model proves to describe
well the properties of certain real polymers, in a range of resolutions between their
persistence length and real contour length l̃. Determined by one single parameter, viz.
Re, the continuous-chain version is suited for numerical treatment of polymer models,
see e.g. [39]. Therefore, including the limit of continuous polymer blocks later will allow
us to compare with numerical results for the phase diagrams of random copolymer melts.
For a continuous Gaussian chain with dimensionless arclength parameter s ∈ [0, 1], the
connectivity becomes

HC, s.c. = kBT
d

2R2
e

∫ 1

0
ds

∣∣∣∣
dR(s)

ds

∣∣∣∣
2

. (2.17)

Here and in the following, we write R(s) instead of Rs for the dependence on the
arc-length parameter, respectively the segment index.

2.2.2 Excluded volume

The ideal Gaussian (or ‘phantom’) chain model described in the last section tacitly
ignores the finite volume occupied by one segment, i.e., the constraint that segments
may not overlap. In general, this constraint induces also intra-chain correlations between
segments distant along the chain, but frequently close in space, which repel each other
at small distances. For polymer solutions, the global result for the chain dimension is
found to be a swelling as compared to the ideal-chain scaling eq. (2.10), for example

R2
e ∝ L6/5 (2.18)

according to Flory’s mean-field treatment for polymers in a good solvent and to
Edwards’ self-consistent field approach [37, 30]. Determination or estimation of the
effective intermolecular pair potential U for a given polymer (solution), necessary to
assess the excluded volume parameter ve, for spherical monomers

ve :=

∫
ddR

(
1− e−U(R)/(kBT )

)
,

is a theory in itself which may be appreciated in standard polymer textbooks [28, 98]
as well as in more specialized treatises [99].

Remarkably, the excluded volume effect is less pronounced in dense polymer melts
(the systems we focus on) than in most polymer solutions [28, 117], a fact which
may become plausible given the following argument, cf., e.g., ref. [28]: The excluded
volume interaction penalizes contacts between any two segments and hence is roughly
proportional to c2, with c the segment concentration. The corresponding repulsive forces
are then proportional to c · ∇c and are exerted not only between segments on the same
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CHAPTER 2. MODEL

Figure 2.3: Repulsive forces acting on
a polymer segment in a dense melt due
to both non-adjacent segment on its own
chain and segments on foreign chains.

chain, but also between segments residing on different chains. At high concentrations,
the chains in the melt are entangled, the segment concentration c becomes almost
uniform, and thus the gradients |∇c| small. Because of the strong interdigitation, a
single segment is on average surrounded by equal amounts of segments of its own
chain and of foreign chains (except perhaps for the terminal segment; see fig. (2.3)).
Intra-chain repulsion acts in favor of chain swelling, opposed by the forces experienced
by segments of other chains, such that the intra- and interchain parts of the excluded
volume force approximately cancel. Without further interactions, polymers in a dense
melt thus display the ideal-chain behavior, a phenomenon first explained by Flory [37,
ch. 12], theoretically founded by Edwards [31], and corroborated by neutron scattering
[73]. (Effective depletion of the excluded volume forces may occur also in polymer
solutions with a poor solvent at the θ-temperature, where the swelling is hindered by
the polymer-solvent repulsion [38].)

To summarize, our restriction to copolymer melts allows us to keep the ideal-chain
conformational statistics as a reasonable approximation. However, due to the form of
the incompatibility interaction which effectively creates an attraction between segments
of the same type (cf. sec. 2.2.3 below), we have to introduce a short-ranged repulsion
between any two segments irrespective of their type. In the following calculations, it
will turn out essential to start with a finite compressibility, in order to later impose
incompressibility, a condition approximately realized in many dense polymer melts [98].
For our purposes, it suffices to model the excluded volume interaction as

Hev = kBT
κ

2%̃0

N∑

j1,j2=1

L∑

s1,s2=1

(j1,s1)6=(j2,s2)

U
(
|Rj1(s1)−Rj2(s2)|

)
, (2.19)

with %̃0 the average segment density, κ a nonnegative strength parameter and U(R) a
nonnegative, short-ranged and normalized shape function with units of a density. The
subscript j of a segment position vector Rj(s) indexes the chain, the argument s the
segment number within the chain. Since segments that occupy the same site reduce
translational entropy, the excluded volume repulsion has a chiefly entropic origin, such
as the connectivity, reflected in the prefactor of kBT in eq. (2.19).
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2.2. INTERACTIONS

2.2.3 Incompatibility

The interactions of polymer chains with identical repeat units considered so far can
be completed by one further potential in order to model co- instead of homopolymer
chains, provided that prepolymers A and B do not differ in their Kuhn lengths (a
non-vital assumption to keep the model tractable) and, more importantly, provided
that single-chain conformations remain mostly unaltered on (de)mixing A and B.

On intermediate length scales, uncharged molecules attract each other via van der
Waals interactions. If the attraction between segments of different types is smaller than
between equal ones, which is more frequent than the opposite behavior [98, Ch. 4.2],
there is a net repulsion between A and B. This effective repulsion is experienced for
example by a segment of type A, which is translated from a surrounding of pure A to
an average surrounding of equal amounts of A and B segments. By expressing contact
probabilities of all pairs of segment types in terms of global A and B concentrations,
the energy change on mixing A and B can be estimated in a mean-field fashion [117,
Ch. 4.1],[98, Ch. 4.2]. Though this conventional definition applies strictly only to the
original lattice model by Flory and Huggins [37], we shall allude to it as a motivation
for the strength parameter of our incompatibility interaction: The incompatibility in a
binary system is defined as a local, scalar quantity via the difference in contact energies
(see fig. 2.4)

χ :=
z

2

2uAB − uAA − uBB
kBT

, (2.20)

where z is the coordination number of a monomer, and, for continuous positions,
corresponds to the average number of nearest neighbors.

uAB

uAA

uBB
Figure 2.4: Mean-field surrounding of a segment in
a binary copolymer melt (lattice version) and pair
potentials that define the incompatibility.

Defined as an energy ratio per lattice site, χ depends on the lattice cell volume, and
thus in a continuous-space description must be supplemented by specifying the average
monomer density %̃0. With contributions from the pair interaction potentials, but also
based on an averaging process over the surrounding of a segment, χ contains an enthalpic
(E) and an entropic (F) part, and, according to the mean-field definition, is of the form
χ = χE

T +χF. Since usually χF � χE, the main contribution to χ is enthalpic, such that
approximately, χ is inversely proportional to temperature, and increasing incompatibility
is equivalent to cooling. Values of the dimensionless incompatibility parameter for
various polymer blends can be found in [8, Ch. 19]. A more detailed analysis of the
thermodynamics of polymer blends, especially of the correlations in the liquid, relating
them to microscopic features using the Ornstein-Zernike integral equation, can be
found in refs. [100, 101]. These studies reveal, supported by results from scattering
experiments, that in general, the effective χ can be a nonlocal, wavenumber-dependent
quantity due to long-ranged correlations and can depend in a more complicated manner
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CHAPTER 2. MODEL

on temperature and average density. Helfand [57] argued that the thermodynamical
meaning of the dimensionless parameter χ was unclear and proposed a different, but
less common definition of incompatibility. For our present minimal, mesoscopic model,
however, in which separate potentials account for polymer connectivity and excluded
volume, we can resort to a scalar strength parameter χ with the motivation introduced
above. Accordingly, we formulate the incompatibility potential as

Hχ = −kBT
χ

2%̃0

N∑

j1,j2=1

L∑

s1,s2=1

(j1,s1)6=(j2,s2)

(
qj1(s1)− q

) (
qj2(s2)− q

)
W
(
|Rj1(s1)−Rj2(s2)|

)
,

(2.21)
with a nonnegative, normalized, and short-ranged shape function W (R). The type
variables qj(s) (see eq. (2.2)) and a positive value of χ guarantee that contacts of different
segment types are unfavorable, whereas segments of equal types attract each other.
Subtracting q from each type variable merely adjusts the zero of the incompatibility
potential for the case of a global excess of one type.

2.3 Total dimensionless Hamiltonian

HC

Hev

Hχ

Figure 3: Interactions forming part of the Hamiltonian.
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x
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!
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Figure 4: Saddle-point contours for density interaction field.

2

Figure 2.5: Parts of the total Hamiltonian:
A-B incompatibility Hχ, polymer connectivity
HC, excluded volume interaction Hev.

After enumerating the basic intra- and interchain interactions on a mesoscopic level,
viz. the harmonic connectivity of segments within an ideal Gaussian chain, the excluded
volume and the incompatibility interaction between all segments in the system (cf.
fig. 2.5), we can assemble the total Hamiltonian H,

H : = HC +Hev +Hχ. (2.22)

For convenience, and for consistency with standard notation, we rescale spatial coordi-
nates Rα with the Kuhn segment length b and the spatial dimension d as

rα :=

√
2d

b
Rα, α = 1, 2, . . . , d. (2.23)

In effect, we obtain dimensionless monomer positions rj(s), segment vectors bj(s) :=
rj(s)−rj(s−1), and a dimensionless system volume V . The corresponding dimensionless
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2.3. TOTAL DIMENSIONLESS HAMILTONIAN

average segment density, in the incompressible case constant throughout the system, is

%0 :=
NL

V
=

(
b√
2d

)d
%̃0. (2.24)

The potential shape functions U and W are rescaled accordingly as

(
b√
2d

)d
U(R) =: U(r),

(
b√
2d

)d
W (R) =: W (r) (2.25)

(keeping, for simplicity, the symbols U and W ), and the dimensionless strength parame-
ters κ and χ are multiplied with a factor two just for the sake of uniform representation.
In terms of the rescaled quantities and in units of kBT , the three parts of H are

HC =
1

4

N∑

j=1

L∑

s=1

(
rj(s)− rj(s− 1)

)2
=

1

4

N∑

j=1

L∑

s=1

bj(s) · bj(s), (2.26a)

Hev =
κ

4%0

N∑

j1,j2=1

L∑

s1,s2=1

U
(
|rj1(s1)− rj2(s2)|

)
, (2.26b)

Hχ = − χ

4%0

∑

j1,j2

∑

s1,s2

(
qj1(s1)− q

) (
qj2(s2)− q

)
W
(
|rj1(s1)− rj2(s2)|

)
. (2.26c)

Anticipating the thermodynamic limit N →∞, we have already omitted the restrictions
on the sums in the excluded volume and incompatibility interaction eqs. (2.19), (2.21),
which subtracted each segment’s self-contribution.

Recall that the Gaussian chain connectivity and excluded volume interactions con-
ceptually are effective potentials, which are obtained after integrating-out microscopic
degrees of freedom. Due to their chiefly entropic origin, these parts of the Hamiltonian
are originally proportional to kBT , cf. eqs. (2.15) and (2.19). In contrast, the incompati-
bility is assumed to be dominantly energetic and therefore, in the normalized eq. (2.26c),
appears with a temperature-dependent strength parameter χ ∝ T−1. In the following,
the energy scale is chosen such that kBT is unity.

2.3.1 Note on the number M of segments per block

As to satisfy statistical independence of adjacent model segment vectors, one segment
in the idealized Gaussian-chain connectivity (cf. section 2.2.1) usually represents a
large number of chemical repeat units. One interpretation of M is, of course, the
length or degree of polymerization of one block. Another picture arises, if we restrict
ourselves to blocks with a constant r.m.s. end-to-end distance (which must be much
larger than the persistence length lp): a small number M of segments per block, i.e., a
large number of chemical units per segment, indicates that orientational correlations
decay slowly along the polymer’s contour. Blocks with larger M , in the limit M →∞
continuous blocks, resemble a fast decay of the orientational correlations. Hence, within
the Gaussian-chain approximation for the connectivity, M can also be interpreted as
a measure of flexibility of the polymeric filament. There are models for intra-chain
potentials tailored specifically to incorporate bending stiffness of a polymer, e.g., the
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CHAPTER 2. MODEL

wormlike- or persistent-chain model [98, 39, 117]. Nonetheless, it seems worthwhile
to first analyze block copolymers with Gaussian-chain connectivity and to study the
influence of the parameter M on the phase behavior.

2.4 Field representation of the potentials

Preparing for the calculations in the next chapter, we aim at a field-based representation
of our model Hamiltonian. In the non-bonded interactions, we can transform from the
set of all segment positions {rj(s)} and types {qj(s)} to two density fields:

• The excluded volume interaction, eq. (2.26b) can be rewritten as

Hev =
κ

4%0

∫
ddr

∫
ddr′

N∑

j1,j2=1

L∑

s1,s2=1

δ
(
r − rj1(s1)

)
U
(
|r − r′|

)
δ
(
r′ − rj2(s2)

)

=
κV 2

4%0

∫
ddr

∫
ddr′ %(r)U

(∣∣r − r′
∣∣)%(r′), (2.27)

with a first field, the local, total segment density5

%(r) :=
1

V

N∑

j=1

L∑

s=1

δ
(
r − rj(s)

)
= %A(r) + %B(r), (2.28)

i.e., the sum of type-A and type-B segment densities %A and %B. Given that
U ≥ 0, the excluded volume interaction is seen to suppress spatial variations of
the total segment density, eq. (2.27).

• The incompatibility interaction, eq. (2.26c), can be reformulated in analogy to
eq. (2.27) as

Hχ = −χV
2

%0

∫
ddr

∫
ddr′

[
%A(r)− 1 + q

2
%(r)

]
W
(∣∣r − r′

∣∣)
[

1− q
2

%(r′)− %B(r′)

]

=: −χV
2

4%0

∫
ddr

∫
ddr′ σ(r)W

(∣∣r − r′
∣∣)σ(r′), (2.29)

with a second field that is sensitive to the fixed types of the segments, the local
excess of A segments6,

σ(r) :=
1

V

N∑

j=1

L∑

s=1

(
qj(s)− q

)
δ
(
r − rj(s)

)
=
(
1− q

)
%A(r)−

(
1 + q

)
%B(r),

(2.30)
or the weighted difference of segment densities due to A and B. The ensemble
average of this density field detects phase separation into A- and B-rich domains
and has been introduced as an order parameter in refs. [76, 42]. Note that in

5A differentiable, coarse-grained density field would consist of, e.g., Gaussians instead of δ peaks.
6An alternative approach distinguishes A segment densities produced by different sequences [32, 7, 6]
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our model the incompatibility potential eq. (2.21), respectively eq. (2.29), is zero
for the state of uniform densities, in which %A and %B have the constant values
(1 + q)/2 and (1− q)/2 equal to the global A and B fractions. Since W ≥ 0, the
incompatibility promotes spatial inhomogeneities of σ.

Via the interplay of annealed positions and frozen-in types of the copolymer segments,
mean-field modes of % and σ will turn out to be coupled for nearly incompressible melts.
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3 Free energy and global equilibrium states

In this chapter, we analyze A-B phase separation in random, binary block copolymer
melts starting from the canonical partition function. First, we derive a single-chain,
effective Hamiltonian in terms of collective densities and conjugated interaction fields.
The evaluation at the saddle point in the incompressible limit results in a free-energy
functional of an order-parameter field indicating A-B separation. An expansion of the
functional will show that a second-order structure function is decisive for the wave
number and thus the morphology of a global phase-separated state which appears when
increasing the incompatibility χ in the disordered state. This structure function is
related to the mean-field scattering function of the homogeneous melt. In a symmetric,
Markovian sequence distribution, either macroscopic or structured, lamellar phase
separation takes place (cf. fig. 3.1), depending on the block-type correlation λ. The
multicritical point (λc, χc), which separates macroscopic and lamellar phase separation,
is found to change qualitatively with M , the number of segments per block, for Markovian
triblock copolymers. In preparation for the analysis of fractionation in the next chapter,
we calculate the free-energy densities of the ordered states and specify the dependence
on the sequence probabilities in an A� B exchange-symmetric, but otherwise arbitrary
distribution. For random sequences with a small number Q of blocks per chain, i.e.,
for melts with a small degree of sequence polydispersity, we can compute explicitly
the contributions of individual sequences. With these expressions at hand, we will
go on in chapter 4 to identify in addition to the global, ordered states a new state,
viz. the coexistence of three phases, an A-rich one, a B-rich one, both homogeneous,
and a lamellar phase. This coexistence will be shown to be enabled by sequence
fractionation , i.e., the occurrence of subsystems with sequence distributions different
from the global (λ-defined) distribution.

A-B-mixed, homogeneous state

χ global A-B-separated state:

?

micro-structured

χ global A-B-separated state:

?

macroscopic, A-/B-rich

χ global A-B-separated state:

?

Figure 3.1: First instability of
the mixed state towards a global
A-B-separated state with micro-
or macroscopic A- and B-rich
domains.
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CHAPTER 3. FREE ENERGY AND GLOBAL EQUILIBRIUM STATES

3.1 Free-energy functional

3.1.1 Partition function

Our derivation of the free-energy functional is presented in some detail in this section,
in order to create a sound basis for the sequence fractionation ansatz which follows.
With the contributions eqs. (2.26) to the total Hamiltonian H, we set up the normalized
canonical partition function

Z =

1∏
ν Nν !

∫
D [rj(s)] e−H

(
{qj(s)}, {rj(s)}

)

1

N !

∫
D [rj(s)] e−HC

(
{rj(s)}

) . (3.1)

The symbol D [rj(s)] denotes the measure of the NLd-fold integration over the segment
coordinates (in the case of continuous-chain polymers, the functional integrations over
the contours rj(s), s ∈ [0, 1]). The system referred to in the numerator consists of
N =

∑
ν Nν interacting block copolymers, where Nν is the number of copolymers of

block-type sequence ν. A sequence ν is characterized by the set of (blockwise equal)
segment types {qν(s)}Ls=1. Assuming copolymers of identical block-type sequence to
be indistinguishable (although a polymer is a particle with internal interactions), the
combinatorial prefactor 1/

∏
ν

(
Nν

)
! reflects the usual over-counting correction in the

partition function [46]. The partition function in the denominator is a product of single-
chain partition functions of N identical, non-interacting Gaussian chains (cf. eq. (2.26a)),
the factor 1/N ! again accounting for indistinguishability. The normalization allows
us to calculate from Z the free energy of the block copolymer melt relative to that
of a disordered, single-component polymer melt with uniform densities and with no
interactions but connectivity. In the following,

Ω :=
1

N !

∏

ν

(
Nν

)
! (3.2)

will be used as a shorthand for the combinatorial prefactors. The contributions due to
eq. (3.2) will become important for a coexistence of phases in subsystems with different
sequence distributions, which we will analyze in chap. 4.

In the thermodynamic limit, a set of probabilities {pν : = Nν/N} defines the distri-
bution over the different sequences realized in a random, binary Q-block copolymer
(see eq. (2.6) for the actual number N (Q) of different sequences). For a Markovian
distribution with A� B exchange symmetry, p = 1/2 or q = 0, the pν will be defined
solely by the block-type correlation parameter λ. Owing to our focus on a copolymer
distribution with a finite number N of sequences, we can avoid to employ the replica
method, which is often used to address a system with quenched disorder [125]. A brief
note on the self-averaging properties of this system may be in order here. The model of
random block-type sequences with the incompatibility interaction eq. (2.26c), in which
the interaction between a pair of segments depends on their types, corresponds to site
disorder rather than to, e.g., bond randomness in the Sherrington-Kirkpatrick model of
spin glasses [84, 92]. With short-ranged non-bonded potentials, self-averaging of the
free energy can be expected [78, 112].
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3.1. FREE-ENERGY FUNCTIONAL

In order to detect an instability toward a spatially structured, ordered phase, a
Fourier representation of the fields that determine the free-energy functional proves to
be convenient. The Fourier modes σk and %k of the collective A-excess density and the
total segment density (cf. eqs. (2.30) and (2.28)) are, respectively,

σk =
1

V

N∑

j=1

L∑

s=1

(
qj(s)− q

)
eik·rj(s) and %k =

1

V

N∑

j=1

L∑

s=1

eik·rj(s), (3.3)

and, following eqs. (2.27) and (2.29), the non-bonded parts of the Hamiltonian read

Hχ +Hev = −NLχ
4%2

0

∑

k 6=0

σkWkσ−k +
NLκ

4%2
0

∑

k 6=0

%kUk%−k, (3.4)

where Wk, Uk are the Fourier-transformed shape functions of incompatibility and
excluded volume interaction, respectively. The average segment density is %0 = NL/V .
By definition of the densities and potential shapes, σ−k is the complex conjugate, σ∗k, of
σk, analogously for %k, Wk and Uk. Since the imaginary parts thus cancel in eq. (3.4),
we can assume Wk, Uk to be real-valued. For a finite total volume V = LdV , the allowed
wavevectors have components kα ∈ 2π

LV
Z, α = 1, . . . , d. Fourier transforms of smooth

densities and potentials drop to zero at large wave numbers k := |k|, such that the sum
over k is actually bounded.1 Then, the partition function eq. (3.1) can be expressed as

Z =
1

Ω

〈
exp

{
NL

4%2
0

∑

k 6=0

(
χWk |σk|2 − κUk |%k|2

)}〉

HC

(3.5)

=
1

Ω

〈
exp

{
NL

4%2
0

∑

k 6=0

(
χWk

[
(Reσk)2 + (Imσk)2

]
− κUk

[
(Re%k)2 + (Im%k)2

])}〉

HC

with the connectivity average for N Gaussian chains,

〈
·
〉

HC

:=

∫
D [rj(s)] (·) exp

{
−1

4

N∑

j=1

L∑

s=1

(
rj(s)− rj(s− 1)

)2}

∫
D [rj(s)] exp

{
−1

4

N∑

j=1

L∑

s=1

(
rj(s)− rj(s− 1)

)2}
, (3.6)

called conformational average in the following.

3.1.2 Hubbard-Stratonovich transformation

In order to linearize the exponent in (3.5) in %k and σk and thus to arrive at a product
of single-chain partition functions, we make use of the Hubbard-Stratonovich (HS)
transformation [116, 64] (see appendix A.1). This method couples the collective density
modes of mutually non-interacting chains to the modes of conjugated fields σ̂ and %̂,
called interaction fields. In mean-field theory, they will be determined self-consistently

1Consistently, the field theory applied here, which rests on smooth functions, cannot make predictions
on molecular scales.
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CHAPTER 3. FREE ENERGY AND GLOBAL EQUILIBRIUM STATES

by the collective densities due to all chains. Due to the symmetry of the Fourier-
transformed densities and potential shapes, interaction fields must strictly be introduced
only for the set of k-vectors in a half-space, k · e > 0, with an arbitrary unit vector e.
Since we are free to define interaction fields for all k, we introduce real-valued integration
variables σ̂′k, σ̂′′k, %̂′k, %̂′′k, to be the components of complex fields %̂, σ̂ (cf. appendix A.1)
as follows:

σ̂k :=

{
σ̂′k + iσ̂′′k, k · e > 0,
σ̂′k − iσ̂′′k, k · e < 0,

%̂k :=

{
%̂′k + i%̂′′k, k · e > 0,
%̂′k − i%̂′′k, k · e < 0.

(3.7)

For convenience in the following transformation and without loss of generality, we restrict
the discussion to potential shapes with Wk ≥ 0, Uk ≥ 0 for all k (e.g., Gaussians). In
the HS-transformed partition function, the terms originally quadratic in the collective
densities are reflected in Gaussian probability distributions of the interaction fields:

Z =
1

Ω

〈∫
D[σ̂]

∫
D[%̂] exp

{
−NL

4%2
0

∑

k 6=0

(χWkσ̂kσ̂−k + κUk%̂k%̂−k)

}
(3.8)

× exp

{
NL

2%2
0

∑

k 6=0

[
χWkRe (σ̂kσ

∗
k) + iκUkRe (%̂k%

∗
k)
]}〉

HC

,

with the shorthands for the integrations along the real axis R,

∫
D[σ̂] :=

∏

k

NLχWk

2π%2
0

∫

R
dσ̂′k

∫

R
dσ̂′′k and

∫
D[%̂] :=

∏

k

NLκUk

2π%2
0

∫

R
d%̂′k

∫

R
d%̂′′k. (3.9)

(The real part operations in eq. (3.8) are strictly redundant due to the symmetries
of the densities and the interaction fields.) Given that the interaction fields do not
contain any chain-specific variables, integrations over the segment positions {rjν (s)}
are seen to affect the second line of eq. (3.8) only and hence can be interchanged with
the integrations over the interaction fields. By virtue of the HS transformations, the
Fourier modes of the A excess σ and the total segment density %, eq. (3.3), now appear
linear in the exponent of eq. (3.8) and can be conveniently decomposed into single-chain
contributions, grouped according to the block-type sequence ν:

σk =
1

V

∑

ν

Nν∑

jν=1

L∑

s=1

(
qν(s)− q

)
eik·rjν (s) and %k =

1

V

∑

ν

Nν∑

jν=1

L∑

s=1

eik·rjν (s). (3.10)

This allows us to exploit the fact that the conformational average eq. (3.6) is a product
of single-chain weights, whereby the second line of eq. (3.8) factorizes. Consequently, in

Z =
1

Ω

∫
D[σ̂]

∫
D[%̂] exp

{
−NL

4%2
0

∑

k 6=0

(
χWkσ̂kσ̂−k + κUk%̂k%̂−k

)}∏

ν

ẑNνν (3.11)

all copolymers with sequence ν contribute the same single-chain partition function ẑν ,

ẑν [σ̂, %̂] =

〈
exp

{∑

k 6=0

L∑

s=1

1

2%0

(
χWkσ̂k

(
qν(s)− q

)
+ iκUk%̂k

)
e−ik·r(s)

}〉
, (3.12)
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where
〈
·
〉

denotes the conformational average for a single Gaussian chain,

〈
·
〉

:= lim
V→∞

1

V
(4π)−Ld/2

∫
D [r(s)] (·) exp

{
−1

4

L∑

s=1

(
r(s)− r(s− 1)

)2
}
. (3.13)

Dropping the subscript jν of a copolymer’s coordinates in eq. (3.12) is possible, since
our model assumes the same conformational statistics for all copolymers irrespective of
their block-type sequence. With eqs. (3.11) and (3.12), the partition function Z can be
cast into the form

Z =

∫
D[σ̂]

∫
D[%̂] exp

{
−Nĥ [σ̂, %̂]

}
, (3.14)

with the effective Hamiltonian ĥ per polymer,

ĥ [σ̂, %̂] =
L

4%2
0

∑

k 6=0

(
χWkσ̂kσ̂−k + κUk%̂k%̂−k

)
−
∑

ν

pν ln
ẑν [σ̂, %̂]

pν
. (3.15)

The combinatorial prefactor Ω, eq. (3.2), has been evaluated by the usual Stirling
approximation using pν = Nν/N . Thereby, we have arrived at and will continue to
analyze an expression in the interaction fields, not in the collective densities, contrasting
with the procedere in, e.g., refs. [76, 42]. We note that the exponent in the partition
function eq. (3.14) is extensive, with the effective Hamiltonian eq. (3.15) being an
analytic function of the interaction fields, which justifies the following saddle-point
evaluation.

3.1.3 Saddle-point approximation and effective Hamiltonian

In comparison to the original expression eq. (3.5), the partition function in eqs. (3.11),
(3.14) has not yet been approximated, but merely reformulated with interaction fields σ̂
and %̂ that act equally on each copolymer, but may be nonuniform in space. In general,
it is neither feasible to perform the integrations in eq. (3.14) nor to solve the set of
implicit, coupled saddle-point equations for the interaction fields, which follow from the
conditions 0 = (∂ĥ/∂σ̂k)|σ̂=τ̂ and 0 = (∂ĥ/∂%̂k)|%̂=ω̂, cf. eqs. (3.15) and (3.12):

τ̂k
%0

=
∑

ν

pν

〈
1

L

L∑

s=1

(
qν(s)− q

)
eik·r(s)

〉

Ĥν

, (3.16a)

ω̂k

%0
=
∑

ν

pν

〈
1

L

L∑

s=1

ieik·r(s)

〉

Ĥν

(3.16b)

with modified single-chain averages
〈
·
〉
Ĥν according to

Ĥν [τ̂ , ω̂] := HC, s.c. −
1

2%0

∑

k 6=0

∑

s

(
χWk

(
qν(s)− q

)
τ̂k + iκUkω̂k

)
e−ik·r(s). (3.17)

Here and in the following, τ̂ and ω̂ denote the saddle-point values of the interaction fields
σ̂ and %̂. At the instability of the disordered homogeneous (A-B-mixed) state, in which
the collective densities are uniform, σk = 0, %k = 0 for k 6= 0, the saddle-point values
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τ̂k and ω̂k must vanish, too2. This follows, since by inspection of eqs. (3.5) and (3.11),
averages of the interaction fields and of the collective densities are proportional to each
other, as we show for the averages of σ̂ and σ (which are identical) in appendix A.3.1.
Therefore, in the vicinity of the saddle-point values near the instability, we may expand
the effective Hamiltonian eq. (3.15) in powers of the fields σ̂ and %̂ and truncate the
resulting series3.

In doing so, we specialize to systems for which the phase transition to an A-B
separated state is continuous. Within mean-field theory, continuous phase transitions
can be expected if the expansion contains only vertices of even order in σ̂ (see, e.g.,
[76, 9, 48]). For our expansion, this can be shown for block-type sequence distributions,
which are globally invariant under A � B exchange, such that a sequence ν and its
complement ν, cf. the definition in appendix B.1, have equal concentrations. The
restriction to Markovian sequences is not necessary at this point. Subsystems with
altered sequence distributions, created by fractionation, which we will analyze later,
must display the A� B symmetry of the global distribution, too.

In the following, the short-ranged shape functions W (r) and U(r) of the non-bonded
interactions will be approximated by δ-functions, Uk = Wk = 1, since our focus is on
A-density modulations with wavelengths large compared to the typical range of segment
interactions. Moreover, this limit eliminates any interaction radius and therefore seems
to be consistent with the mean-field approximation.

Aiming at the saddle-point of the density interaction field ω̂ near the instability, we
write out the expansion of eq. (3.15) first with consideration only for the lowest-order
terms in %̂, i.e., up to second order in %̂ and up to combined third order in %̂, σ̂:

ĥ[σ̂, %̂] =
∑

ν

pν ln pν +
1

8%2
0

∑

k 6=0

(
2Lχ− χ2

∑

ν

pνSν
(
k2
) )

σ̂kσ̂−k (3.18)

+
κ2

8%2
0

∑

k 6=0

(
2L

κ
+D

(
L, k2

))
%̂k%̂−k

− i χ
2κ

16%3
0

∑

k1,k2 6=0,

k2 6=k1

∑

ν

pνS
(α)
ν (k1,k2 − k1) σ̂k1 σ̂k2−k1 %̂−k2

+O
(
%̂3
k, %̂

2
kσ̂

2
k, σ̂

4
k, . . .

)
,

In eq. (3.18), we have introduced symbols for structure or vertex functions, which are
based on Gaussian-chain averages of exponentials (cf. appendix C.1),

〈
exp

{
−i

n∑

r=1

kr · r(sr)
}〉

= δ∑
r
kr,0 exp

{∑

r<r′
|sr − sr′|kr · kr′

}
, (3.19)

and in principle can be computed (the effort depending on the sequence distribution):

2The trivial solution to eqs. (3.16a) is τ̂k = 0, ω̂k ∝ δk,0.
3The limit of small field amplitudes and gradients is often termed the ‘weak inhomogeneities’ or ‘weak

segregation’ limit [76, 40, 5, 39].
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The symbol Sν
(
k2
)

denotes the second-order structure function for sequence ν,

Sν
(
k2
)

:=

L∑

s1,s2=1

qν(s1)qν(s2)
〈

e−i(k1·r(s1)+k2·r(s2))
〉

(3.20)

=
L∑

s1,s2=1

qν(s1)qν(s2)e|s2−s1|k1·k2δ−k2,k1=:k

=
L∑

s1,s2=1

qν(s1)qν(s2)e−|s2−s1|k
2
.

Particularly for homopolymers (hp), for which qhp(s) has the same value for all s,
Shp

(
k2
)

is denoted as

D(L, k2) :=
L∑

s1,s2=1

e−|s2−s1|k
2
. (3.21)

since at least the continuous-chain version is known as the Debye function [24]. The
three-point structure function S

(α)
ν is defined as

S(α)
ν (k1,k2) :=

L∑

s1,s2,s3=1

qν(s1)qν(s2)
〈

e−i(k1·r(s1)+k2·r(s2)+k3·r(s3))
〉
. (3.22)

Explicit calculations of the structure functions will be relegated to sec. 3.3.3 and
appendices C.2 to C.6. In the following, symbols S without subscript ν denote averages
of the respective structure functions over the given sequence distribution {pν}, such as
for the second-order structure function,

S(k2) :=
∑

ν

pν Sν(k2) =
∑

ν

pν

L∑

s1,s2=1

qν(s1)qν(s2)e−|s2−s1|k
2
. (3.23)

For Markovian (λ-defined) sequences, the averages
∑

ν pν(λ)qν(s1)qν(s2) · · · qν(sn) can
be computed in closed form as a function of λ and the set of segment distances in blocks,
{∆β(si, sj)}, cf. appendix B.3, which allows for the calculation of the global structure
function without specifying the contribution of each sequence. In order to allow for
the coexistence of arbitrary (symmetric) distributions in subsystems, however, we will
have to compute the functions for individual sequences. The physical meaning of S(k2)
and its rôle for the phase behavior, especially for Markovian block copolymers, will be
analyzed in detail in section 3.3.

Returning to the set of saddle-point equations for the density interaction amplitudes,
0 = (∂ĥ/∂%̂k)|%̂=ω̂, derived from the expansion eq. (3.18), we obtain

κω̂k = i
χ2

4%0

∑

k1 /∈{0,k}

S(α)(k1,k − k1)
2L
κ +D (L, k2)

τ̂k1 τ̂k−k1 +O
(
τ̂4
k

)
, k 6= 0, (3.24)

i.e., to lowest order, a quadratic dependence on the (as yet undetermined) saddle-
point amplitudes τ̂k of the A excess interaction field. The excluded volume interaction
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with strength κ, eq. (2.19), had been introduced in our model merely to prevent
unbounded spatial variations of the total density, which might arise from energetically
favored compression of A- or B-rich regions (see fig. 3.2 and the discussion in sec. 3.1.4
below). Now, insertion of eq. (3.24) into the expansion eq. (3.18) eliminates the density
interaction modes at the saddle point, κω̂k, in favor of τ̂k and produces positive terms
of fourth order in τ̂ , essential for the positive definiteness of the complete fourth-order
terms. Consequently, the density interaction modes do not influence the instability
of the disordered, homogenous state (cf. sec. 3.2), but assure the stability of an A-B
phase-separated state. Even the incompressible limit, κ→∞, which enforces uniform
total segment density and thus ω̂k → 0, k 6= 0, does not qualitatively change the
situation in that the product κω̂k gives a finite contribution. The remaining terms ∝ τ̂4

k

have to be extracted from eq. (3.15) to arrive at a consistent expansion in τ̂k up to
fourth order. This yields, in the incompressible limit κ→∞, the free-energy functional
per chain

f [τ̂ ] =
∑

ν

pν ln pν +
(Lχ)2

4%2
0

∑′

k

(
1

Lχ
− S(k2)

2L2

)
τ̂kτ̂−k

+
(Lχ)4

3 · 27%4
0

{
3

∑′

k1,k2 6=−k1,k3

S(α)(k1,k2)S(α)(k3,−k1 − k2 − k3)

L4D
(
L, (k1 + k2)2

)

−
∑′

k1,k2,k3

S(β)(k1,k2,k3)

L4

}
τ̂k1 τ̂k2 τ̂k3 τ̂−k1−k2−k3

(3.25)

+
(Lχ)4

27%4
0

∑

k1,k2 6=0

S(γ)(k2
1, k

2
2)

L4
τ̂k1 τ̂−k1 τ̂k2 τ̂−k2 +O

(
τ̂6
k

)
,

with the fourth-order structure functions

S(β)(k1,k2,k3) :=
∑

ν

pν

L∑

s1,s2,s3,s4=1

qν(s1)qν(s2)qν(s3)qν(s4)
〈

e−i
∑4

r=1 kr·r(sr)
〉
, (3.26)

S(γ)(k2
1, k

2
2) :=

∑

ν

pν

L∑

s1,s2,s3,s4=1

qν(s1)qν(s2)qν(s3)qν(s4) e−k
2
1 |s2−s1|−k22 |s4−s3|,

(3.27)

and the restricted sum ∑′

k1,...,kn

() :=
∑

k1,...,kn 6=0∑n
r=1 kr 6=0

(). (3.28)

The functional eq. (3.25) still contains the amplitudes of τ̂ , the saddle-point of the A
excess interaction field, which remain to be determined in order to extract the free-energy
density of an A-B phase-separated state. Consequently, at the saddle-point level, to
which we adhere, we assign τ̂ the rôle of the order parameter, since the average of σ̂
(which we can identify with the saddle-point value τ̂) and the average of σ are identical,
as mentioned earlier. However, the correlations of a collective density are not simply
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proportional to those of its interaction field. Particularly for the covariances of σ̂ and σ,
we have the relations

〈σk1σ−k2〉H − 〈σk1〉H 〈σ−k2〉H

= 〈σ̂k1 σ̂−k2〉Nĥ − 〈σ̂k1〉Nĥ 〈σ̂−k2〉Nĥ −
2%2

0

NLχ
δk1,−k2 , (3.29)

where 〈·〉H is the canonical average, and 〈·〉Nĥ is the average with the effective Hamilto-
nian eq. (3.15) from eq. (3.11); for details see appendix A.3.1. Therefore the vertices in
eq. (3.25) differ from the vertices of an expansion in the A excess density σ, derived in
refs. [76, 42] (apart from differences due to restrictions, e.g., to continuous chains with
many blocks, which we do not impose), cf. appendix A.3.2.

Since at this stage we are interested in the instability of the disordered, homogeneously
mixed state and its close vicinity, we can first neglect the wave-vector dependence in
the coefficients of the terms ∝ τ̂4

k in the functional eq. (3.25). This is in the spirit
of a Landau free energy [48, chap. 5] and amounts to ignoring spatial variations of
fourth-order correlations (in section 3.4.2, we will relax this approximation). Evaluation
of the higher-order structure functions in the limit kr → 0 gives moments of composition
(A excess) of the given sequence distribution {pν} (cf. appendix B.3). For arbitrary
order n, these moments are defined as

mn :=
1

Ln

∑

ν

pν

L∑

s1,...,sn=1

qν(s1) . . . qν(sn), n ∈ N. (3.30)

Particularly, |mn| ≤ 1 per definition of the q(s), cf. eq. (2.2). The simplified quartic terms
of eq. (3.25) feature the squared second and the fourth moment via the relationships

m2 = S(k2 = 0)/L2 = S(α)(k1 = 0,k2 = 0)/L3, (3.31)

m4 = S(β)(k1 = 0,k2 = 0,k3 = 0)/L4 = S(γ)(k2
1 = 0, k2

2 = 0)/L4

(in appendices B.3.1 and B.3.2, m2 and m4 are explicitly computed for Markovian
sequence distributions). Observing the different restrictions on the sums in eq. (3.25),
we obtain the simplified free-energy functional

f0 [τ̂k] =
∑

ν

pν ln pν +
(Lχ)2

4%2
0

∑′

k

(
1

Lχ
− S(k2)

2L2

)
τ̂kτ̂−k

+
(Lχ)4

3 · 27%4
0

{
(
3m2

2 −m4

) ∑′

k1,k2 6=−k1,k3

τ̂k1 τ̂k2 τ̂k3 τ̂−k1−k2−k3

+ 2m4

∑

k1,k2 6=0

τ̂k1 τ̂−k1 τ̂k2 τ̂−k2

}
+O

(
τ̂6
k

)
.

(3.32)

Again, we note that the term with coefficient ∝ m2
2 in eq. (3.32), essential for the

stability of the functional’s expansion up to fourth order, stems from contributions of
the density interaction field (hence, omitting from the start the density field in our
description would have led to erroneous results even in the incompressible case).
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3.1.4 Generalized density field modulations and asymmetric distributions

The contributions eq. (3.24) of the density interaction field can be interpreted as the
result of a reorganization process which necessarily involves both the order-parameter
field and the total density interaction field: Incompatibility between A and B does
not only favor domains where segments of one type accumulate, but also an increased
total density in these A- or B-rich domains, and a reduced density in the in-between
A-B-mixed regions. Given for instance a sinusoidal A excess modulation about zero,

 0

spatial coordinate x

q = 0A excess σ(x)
compression κ ∆ρ(x)

 0

spatial coordinate x

q = 0.2A excess σ(x)
compression κ ∆ρ(x)

Figure 3.2: Coupling of A excess and generalized density/compression modes, for symmetric
(left panel) and asymmetric (right panel) distributions of block copolymers.

such as in the left panel of fig. 3.2, the mode with half the wavelength of the A excess
remains for the generalized density fluctuations according to eq. (3.24). The A� B
exchange-symmetric distributions considered here constitute a ‘critical plane’ in the
parameter space of global A excess, block-type correlation, and incompatibility,

{
q , λ, χ

}
.

For asymmetric sequence distributions, modulations of A excess and total segment
density have equal periodicities (cf. the right panel of fig. 3.2), since domains with a large
excess of only one segment type are separated by regions with a smaller excess. In this
case, the lowest-order term in the equivalent of eq. (3.24) is linear in τ̂k, cf. also [125].
Accordingly, asymmetric distributions undergo first-order transitions to A-B-separated
states, as indicated also by mean-field theory [76, 18, 125]. A generalization of the
second-order vertex of eq. (3.25) and of S(k2), eq. (3.23), to arbitrary sequences or
sequence distributions can be found in appendix A.2.

3.2 Instability of the disordered state

As mentioned above, we still have to optimize the free-energy functional eq. (3.32),
respectively eq. (3.25), with respect to the order-parameter amplitudes τ̂k, which due
to τ̂ = 〈σ〉H are those of the anticipated A-B modulation. Granted that all coefficients
of the free-energy functional are positive at sufficiently small incompatibilities Lχ, and
that the fourth-order coefficients remain positive, a nonzero mode τ̂k can arise only
if the sign of the second-order coefficient of this mode changes to negative. Upon
increasing incompatibility Lχ (lowering temperature), the disordered, homogeneously
mixed state is destroyed by that mode whose coefficient changes sign first (see the
model free-energy function in fig. 3.3). By inspection of the second-order coefficients in
eqs. (3.25) and (3.32), the global second-order structure function, eq. (3.23), determines
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Figure 3.3: Single-harmonic contributions to a sample free-energy function f , pointing to a
disordered state at low incompatibilities Lχ (left panel), and to a microstructured morphology
as the first instability on increasing Lχ (right panel), indicated by minima at nonzero order-
parameter amplitudes and finite wave number.

via its maximum, max
k

S(k2), the critical wave number k0 of the instability, viz.

k0 = argmax
k

S(k2). (3.33)

Accordingly, the instability occurs at the critical incompatibility

Lχ0 =
2L2

S(k2
0)
. (3.34)

Given the critical wave number k0, we have to locate the minima of the free-energy
functional on the axis τ̂km , viz., the order-parameter amplitude of the coexisting A-
and B-rich domains (or macroscopic phases, if k0 = 0), as sketched in fig. 3.3. This
minimization will be performed in sections 3.4 and 3.5.

The form of the free-energy functional, eq. (3.25) or eq. (3.32), suggests that Lχ,
the product of incompatibility χ and degree of polymerization L, is the main control
parameter to determine phase separation. This is seen most easily for the symmetric
mixture of A and B homopolymers, in which the moment m2 = S(0)/L2 equals one
for any L and macroscopic phase separation occurs at a fixed value Lχ0 = 2/m2.
For a random distribution of Q-block copolymers in turn, the function S(k2)/L2 is
characteristic of the average type correlation on a chain, S(k2)/L2 ≤ 1 for any L.
Especially, given the sequence distribution and the structure of the instability, there is
still a scaling of the critical incompatibility with L or with M , the number of statistical
segments per block. Varying the sequence distribution, M is found to be decisive for
the critical wave number of the instability as a function of block-type correlation, as
detailed below.
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3.3 Global structure function and multicritical point

As we have seen in sec. 3.2, the second-order coefficient of the functional eq. (3.25) or
eq. (3.32) sets the limit of stability of the disordered, homogeneously mixed state of
a symmetric sequence distribution. More precisely, the maximum of the second-order
structure function S

(
k2
)

determines the incompatibility at which a phase separation
takes place, and the maximum position indicates the wave number of the A-B modulation
to emerge. In view of the significance of S

(
k2
)

for the instability, we briefly digress to
establish its connection with a measurable observable of the disordered melt. According
to eqs. (3.23) and (C.8), the function S

(
k2
)

is a Fourier-transformed, intra-chain density-
density correlation sensitive to segment types, averaged over all copolymer sequences
in the melt. Within saddle-point approximation, the second-order coefficient of our
functional defines the A excess density-density correlation of the entire, homogeneous
melt with (weakly) incompatible A and B segments as well. The A excess density-density
correlation in turn is proportional to the scattering intensity, accessible in experiments
in which one segment type can be tagged [43], or generally, if A and B segments have
different scattering amplitudes.

From the quadratic term of our effective Hamiltonian, cf. eq. (3.18) or eq. (3.25), we
obtain the variance of the interaction field σ̂ at the saddle-point level as

〈σ̂kσ̂−k〉cov := 〈σ̂kσ̂−k〉Nĥ − 〈σ̂k〉Nĥ 〈σ̂−k〉Nĥ =
2%2

0

NLχ

(
1− LχS(k2)

2L2

)−1

. (3.35)

By observing the relation eq. (3.29), we can derive the variance of the collective A excess
density at wave vector k, and hence the scattering function Σ(k2). In effect, we have

Σ(k2) ∝ 〈σkσ−k〉cov ∝
(

1

S(k2)
− NLχ

%2
0

)−1

. (3.36)

An equivalent expression has been derived in random phase approximation (RPA),
in the linear response regime [44, 76, 18], see appendices A.2.2 and A.3. Fitting of
experimental scattering data to a theoretical curve of the form of eq. (3.36) may be used
to obtain parameters of a block copolymer melt, e.g., the effective incompatibility [54].

3.3.1 Multicriticality for symmetric Markovian sequence distributions

For Markovian sequence distributions with zero global A excess, solely the block-type
correlation parameter λ decides whether the maximum position of S

(
k2
)

is located
at zero or at a finite wave number. In the former case, the disordered state becomes
unstable with respect to macroscopic phase separation, in the latter case to microphase
separation [76, 41, 42]. Upon decreasing λ, the maximum position of S

(
k2
)

attains a
nonzero value at a critical correlation λc(M), depending on the number M of segments
per block. The corresponding point in the λ-χ plane, at which the lines of macroscopic,
respectively lamellar phase separations meet (recall the sketch in fig. 1.7), is termed
a multicritical point, since the parameter regions of the disordered state, macroscopic
phase separation, lamellae, and of the conjectured three-phase coexistence must meet
at this point, too.
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For a λ-distribution of Q-block copolymers with M segments per block, S
(
k2
)

can
be calculated from the probabilities of all type combinations of two segments with a
given intra-chain distance (in blocks) using the transition matrix M̂ (cf. eqs. (B.13) and
(C.14) in the appendix):

S
(
k2
)

= QD(M,k2) +
2λe−Mk2 sinh2

(
Mk2

2

)

(
1− λe−Mk2

)
sinh2

(
k2

2

)




Q−

1−
(
λe−Mk2

)Q

1− λe−Mk2





(3.37)

with the dimensionless wave number k2 := b2k̃2/(2d) and k̃ the physical wave number.
The discrete Debye function D(L, k2) is given in eq. (C.6). In order to assign in the
subsequent fractionation scheme to each λ the morphology of the disordered state’s
global instability, we distinguish two parts of the line of instabilities:

• For λ > λc (e.g., λc = −1/3 for Q = M = 3), the maximum of S(k2) is at k0 = 0,
so, according to eq. (3.33), the instability of the disordered state in a λ-distribution
with λ > λc is toward two macroscopic, homogeneous, A- and B-rich phases. This
macroscopic phase separation sets in at (see eqs. (3.34) and (3.31))

Lχ0(λ) =
2

m2({pν(λ)} . (3.38)

• For λ < λc, the maximum of S
(
k2
)

at k0 > 0 indicates that the instability of the
disordered state is with respect to a lamellar phase.

For continuous Gaussian block copolymers (parameterized by an arc-length instead of
an integer segment index) with unaltered chain radius of gyration, the structure functions
are computed in the combined limit M → ∞, b2 → 0, Mb2 = const., abbreviated as
limM→∞, preserving the given finite number of blocks (Q = 3 for our sample system of
random triblocks) and the rms end-to-end distance Rblock =

√
Mb. In this case, the

wave number is conveniently rescaled with Rblock. For a λ-distribution of continuous
Q-block copolymers, the global second-order structure function is

s
(
k2
)

:= lim
M→∞

S
(
k2/M

)
/M2 (3.39)

=Qd(1, k2) +
2λe−k

2
sinh2

(
k2

2

)

(
1− λe−k2

)
k4/4




Q−

1−
(
λe−k

2
)Q

1− λe−k2




,

now with k2 := R2
blockk̃

2/(2d), and the continuous Debye function (cf. eq. (C.7))

d(`, k2) :=
e−`k

2 − 1 + `k2

k4/2
. (3.40)

3.3.2 Multicriticality for triblock copolymers

Now, we discuss the line of instabilities of the disordered state toward a global, ordered
state specifically for the case of Markovian, symmetric triblock copolymers, Q = 3. In
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CHAPTER 3. FREE ENERGY AND GLOBAL EQUILIBRIUM STATES

this system, the change of the peak position of the global structure function at the
critical correlation λc(M) induces the following transition from macroscopic to lamellar
phase separation:

a) For M ≤ 6, the maximum of S
(
k2
)

is located at k0 = 0 for all λ ≥ λc(M) and
grows continuously from k0 = 0 when λ falls below λc(M). Thus, the critical
value of the correlation λc(M) is reached when the second derivative of S

(
k2
)

at
k = 0 changes sign:

λc(M) = −1

2

(
1− 1

M

)
, M ≤ 6. (3.41)

b) For M > 6, however, a second maximum of S
(
k2
)

at k > 0 evolves already
for λ > λc(M). Now, the critical value λc of λ is the one at which the second
maximum (pointing to a metastable lamellar phase) attains a higher value than
the one at k = 0, and thus, λc is accessible numerically only.

Continuous triblocks realize case b), consistent with the case of triblocks with M > 6
discrete segments. The wave number of the global ordered (lamellar) state, k0(λ),
jumps discontinuously to zero as λ approaches λc = −0.464 from below. The lamellar
phase persists as a metastable state for λ > λc, as well as macroscopic phase separation
(two homogenous phases) for λ < λc. Remarkably, we find this discontinuity of the
global wave number precisely for the broader class of triblock copolymers with M > 6
segments per block, whereas the literature on copolymer mixtures seems to report only
the behavior a) (see, e.g., [18, 70]), associated with a Lifshitz point [61].

3.3.3 Structure functions for individual triblock sequences

In order to address subsystems with sequence distributions different from the global
(λ-defined) distribution in the next chapter, we will have to decompose the global
second-order structure function eq. (3.23) into the contributions Sν(k

2) of individual
sequences. Here, we provide our results for the sequence-specific Sν(k

2) of random
symmetric triblock copolymers, Q = 3, the sample system throughout this work. This
system features six different sequences, which fall into only three distinct sequence
classes defined by the topology and number of unfavorable intra-chain A-B contacts
(cf. appendix B.1), and which we index as follows:

1 : JJJ ; homopolymers; all block-types equal, (3.42a)

2 : JKK; two adjacent blocks of equal type, (3.42b)

3 : JKJ ; strictly alternating block-types, (3.42c)

J,K ∈ {A,B}, J 6= K. One class comprises a pair of sequences, such as AAB and BBA,
related by permutation of A and B, for which the structure functions and moments
appearing in the functional eq. (3.25), respectively (3.32), relevant for the A � B
exchange-symmetric case, are identical. For a λ-distribution of random triblocks, the
probabilities of these sequence classes are:

p1(λ) =
(1 + λ)2

4
, p2(λ) =

1− λ2

2
, and p3(λ) =

(1− λ)2

4
. (3.43)
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3.4. LAMELLAR PHASE SEPARATION

The individual structure functions eq. (3.20) for each of the sequence classes defined in
eq. (3.42) are

S1(k2) = D(3M,k2) =
3M(1 + e−k

2
)

1− e−k2
− 2e−k

2
(1− e−3Mk2)

(1− e−k2)2
, (3.44a)

S2(k2) = −D(3M,k2) + 2D(2M,k2) + 2D(M,k2), (3.44b)

S3(k2) = D(3M,k2)− 4D(2M,k2) + 8D(M,k2) (3.44c)

(as an example, S2(k2) is derived in appendix C.3). While the maximum of S1(k2) is
located at k = 0, the maxima of S2(k2) and S3(k2) are at k > 0, cf. fig. 3.4, due to the
characteristic correlation length of identical segments within copolymers of the sequence
classes 2 and 3.

Sν(k
2
) for M=Q=3
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Figure 3.4: Structure
functions Sν(k2) for the
triblock sequence classes
defined in eq. (3.42), for
M = 3 segments per
block.

The continuous-chain versions can be constructed in analogy with the continuous
Debye functions, e.g., the structure function eq. (3.44b) for sequence class 2 is

s2(k2) := lim
M→∞

S2

(
k2/M

)
/M2 = −d(3, k2) + 2d(2, k2) + 2d(1, k2), (3.45)

again with k2 := R2
blockk̃

2/(2d). In the following, Sν(k2) or S
(
k2
)

refer to the structure
functions for chains with discrete segments; the number M of segments per block is
usually not listed as an argument separately. The continuous-chain versions are denoted
with sν(k

2), s
(
k2
)
, etc. In order to obtain the continuous-chain limit of expressions

that involve second-order structure functions, the discrete versions, Sν
(
k2
)
, are to be

replaced by M2sν(Mk2). For a quantitative comparison of wave numbers, note the
different scales, viz. segment, respectively block size, for discrete, respectively continuous
chains, eqs. (3.37) and (3.39).

For practical reasons, the explicit calculation of sequence-specific structure functions
is limited to distributions with a comparatively small number of different sequences, i.e.,
to a small number Q of blocks, since the number of sequences grows exponentially with
Q, cf. eq. (2.6). Instead of six sequences in the case of random triblock copolymers,
already 10 different sequences are present in a random quadblock copolymer melt, and
20 in a random pentablock copolymer melt.

3.4 Lamellar phase separation

A spatially periodic structure of A- and B-rich domains destabilizes the disordered state,
if the critical wavenumber k0, cf. eq. (3.33), is nonzero. This nonzero wave number of the
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CHAPTER 3. FREE ENERGY AND GLOBAL EQUILIBRIUM STATES

instability is called km. In a Markovian (λ-defined) sequence distribution, pν = pν(λ),
this is the case only for block-type correlations λ < λc, see section 3.3.1. In a subsystem
with a different set of sequence probabilities, structured phase separation may occur
also for λ > λc. For A� B exchange-symmetric block copolymer melts, the structured
phase consistent with the symmetry has a single wave-vector direction only, since plane
interfaces between A- and B-rich domains, i.e., lamellae, yield the lowest free energy
[76, 94, 125]. Moreover, the emerging lamellae can be assumed to be dominated by
a single wave number also on depart from the transition (but not too far), i.e., for
Lχ > Lχ0. Consequently, the simplest parameterization for the order-parameter field τ̂
is a single mode with an arbitrary, but fixed unit normal n of the domain interfaces.
The parameters are the wave number km = k0 > 0, the wave vector being k = kmn,
and the amplitude τ̂km :

τ̂k = τ̂km (δk,kmn + δk,−kmn.) (3.46)

Evaluating the free-energy functional eq. (3.25) or eq. (3.32) for a structured phase rests
on small order-parameter amplitudes, i.e., weak A-B separation, which is reasonable
close to the phase transition (often called order-disorder transition in the case of a
structured phase).

3.4.1 Simplified lamellar free energy

Inserting eq. (3.46) into the simplified free-energy functional eq. (3.32) yields

f(km, τ̂km) =
∑

ν

pν ln pν+
(Lχ)2

2%2
0

(
1

Lχ
− S

(
k2

m

)

2L2

)
τ̂2
km +

(Lχ)4

64%4
0

(
m2

2 +m4

)
τ̂4
km , (3.47)

an expression valid only for incompatibilities Lχ above the critical Lχ0 for the lamellar
state, cf. eq. (3.34). The stability of eq. (3.47) is guaranteed by the fourth-order
coefficient, which is nonnegative for an arbitrary sequence distribution. Since the fourth-
order coefficient does not depend on k in the simplified description, the lamellar profile
continues to display the initial wave number km also at Lχ > Lχ0. The type correlation
length of the sequence (distribution) is encoded solely in the second-order structure
function S(k2). Subsequent minimization of the free-energy functional eq. (3.47) with
respect to the amplitude τ̂km gives the optimal amplitude τ̂m,

τ̂2
m

%2
0

=
16

(Lχ)2

S
(
k2

m

)

2L2
− 1

Lχ

m2
2 +m4

with km := argmax
k>0

S(k2). (3.48)

With this amplitude, the free-energy density of the lamellar phase is

fm =
∑

ν

pν ln pν −

(
S(k2

m)

L2
− 2

Lχ

)2

m2
2 +m4

, Lχ ≥ Lχ0 :=
2L2

S(k2
m)
. (3.49)

In preparation for the analysis of fractionation, which allows for arbitrary symmetric
sequence distributions, we specify the dependence on the sequence probabilities and
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rewrite fm from eq. (3.49) in the form

fm =
∑

ν

pν ln pν −

(∑
ν pνSν(k2

m)

L2
− 2

Lχ

)2

(∑

ν

pνm2,ν

)2
+
∑

ν

pνm4,ν

, km := argmax
k>0

∑

ν

pνSν(k2), (3.50)

again for Lχ ≥ Lχ0. In this form, km is seen to depend on the sequence concentrations,
km = km({pν}); thereby, S(k2

m) and Lχ0 become functions of the pν as well. The first
phase diagrams in chapter 5 are based on the lamellar free-energy density eq. (3.50).

3.4.2 Free energy with wave-number dependence of fourth-order
coefficients

In an effort to explore the possible parameters of a lamellar phase in more detail,
we restore the wave-number dependence in the fourth-oder coefficients of eq. (3.25).
Inserting into eq. (3.25) a single-harmonic profile analogous to eq. (3.46), but with a
yet undetermined wave number k, we obtain

f(k, τ̂k) =
∑

ν

pν ln pν +
(Lχ)2

2%2
0

(
1

Lχ
− S(k2)

2L2

)
τ̂2
k (3.51)

+
(Lχ)4

64%4
0

((
S(α)(kn, kn)

)2

L4D(L, 4k2)
− S(β)(kn, kn,−kn)

L4
+ 2

S(γ)(k2, k2)

L4

)
τ̂4
k .

(Note that the higher-order structure functions, defined in eqs. (3.22), (3.26), (3.27),
and computed in appendix C.5.2, are independent of the unit normal n.) Again, the
instability of the disordered state toward the lamellar phase (of zero amplitude) occurs
at Lχ0, cf. eq. (3.34), with the critical wave number km = argmaxS(k2) > 0. For Lχ
above Lχ0, however, the wave number kopt that maximizes the lamellar amplitude τ̂k,

τ̂2
k

%2
0

=
16

(Lχ)2

S
(
k2
)
/(2L2)− 1/(Lχ)

(
S(α)(kn, kn)

)2

L4D(L, 4k2)
− S(β)(kn, kn,−kn)

L4
+ 2

S(γ)(k2, k2)

L4

, Lχ ≥ Lχ0,

(3.52)
and thus minimizes the free-energy density, is no longer confined to km, due to the
dependence of the denominator in eq. (3.52) on k. Instead, kopt must be searched at
each Lχ among all k in a constrained neighborhood of km,

kopt := argmax
k∈U(km)

S
(
k2
)
/(2L2)− 1/(Lχ)

(
S(α)(kn, kn)

)2

L4D(L, 4k2)
− S(β)(kn, kn,−kn)

L4
+ 2

S(γ)(k2, k2)

L4

, (3.53)

U(km) :=
{
k : Lχ ≥ 2L2/S

(
k2
)
≥ 2L2/S

(
k2

m

)}
.

Hence, the optimization of the amplitude results in a change of the lamellar wave number
with increasing Lχ, such that kopt = kopt(Lχ; {pν}). (In the simplified lamellar free-
energy density, only the amplitude changes on increasing Lχ.) In evaluating eq. (3.25)
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and keeping the contribution of one dominant wave number, we again address values of
Lχ not too far from the lamellar instability. Inserting the optimal amplitude determined
by kopt into eq. (3.51), we arrive at the lamellar free-energy density

fm =
∑

ν

pν ln pν (3.54)

−

(
S(k2

opt)− 2L/χ
)2

(
S(α) (koptn, koptn)

)2

D
(
L, 4k2

opt

) − S(β) (koptn, koptn,−koptn) + 2S(γ)
(
k2

opt, k
2
opt

)
,

for Lχ > 2L2/S
(
k2

opt

)
> Lχ0.

3.5 Macroscopic phase separation

If the maximum of the second-order structure function is located at zero wave number,
the free-energy functional eq. (3.32) indicates an instability of the disordered state toward
the separation into two macroscopic A-, respectively B-rich phases, each internally
homogeneous in A content. The apparent conflict with restricting the summations in
eq. (3.32) to order-parameter modulations, with k 6= 0, stems from the fact that this
functional addresses the free energy of a structured, one-phase state with an infinite
number of A- and B-rich domains. Two or more macroscopic phases cannot be covered
by a structured, single-phase ansatz in the limit k→ 0, except at zero order-parameter
amplitude. However, the incompatibility Lχ0 of the instability toward two homogeneous
phases can be read off from the second-order terms of eqs. (3.25) or (3.32), cf. eq. (3.34):

Lχ0 :=
2

m2
=

2∑
ν pνm2,ν

(3.55)

(at higher incompatibilities, separations into more than two homogeneous phases may
arise, cf., e.g., [91]).

In order to calculate the free-energy density in macroscopic phase separation, we
have to derive a real-space version of the free-energy functional which allows for
a correct ansatz of multiple homogeneous phases before taking the thermodynamic
limit.4 Fortunately, by redefining our set of variables for the cases in which eq. (3.32)
indicates macroscopic phase separation, we can derive for the free energy of coexisting
homogeneous phases a closed expression that is not limited to small order-parameter
amplitudes or weak A-B segregation. Such an expression is preferable to the expansion
for our analysis of the transition from the macroscopically separated, two-phase state
to a three-phase coexistence. The latter transition can in general occur at any finite
amplitude of the two homogeneous phases, at an incompatibility considerably larger
than that of the transition between disordered and macroscopically phase-separated
state, see fig. 5.1 below. Given that, in the mean-field approach to homogeneous phases,
a copolymer chain can only experience and contribute to interaction fields uniform

4Taking the limit km → 0 in the free energy of one lamellar phase, eq. (3.49), amounts to interchanging
thermodynamic and long-wavelength limit and fails to reproduce the expansion of eq. (3.74) below.
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within one phase, we may replace a copolymer’s set of segment types and positions by a
single position vector rj and by an A excess q̃j equal to the average over all segments on
that copolymer j (cf. fig. 3.5). Effectively, the internal A-B sequence and conformational

q̃ = 1

q̃ = 1/3

q̃ = 1/3

q̃ = −1/3

q̃ = −1

2

Figure 3.5: Reduced degrees of
freedom of a “crushed” triblock
copolymer: center-of-mass position
and overall A excess q̃.

degrees of freedom, irrelevant in the presence of uniform fields, are pre-averaged in this
coarse-grained “crushed polymer” picture.

In a distribution of Q-block copolymers, we distinguish (Q+ 1) components by their
composition or A-excess,

q̃c :=
2c−Q
Q

= −q̃Q−c, c ∈ {0, 1, . . . , Q} , (3.56)

where the component index c is the number of A-blocks. All copolymers with the same
number of A-blocks contribute as structureless particles to one component density

%c(r) =
L

V

N∑

j=1

δq̃j ,q̃cδ(r − rj), c ∈ {0, 1, . . . , Q} , (3.57)

(the factor L accounts for the original number of segments, in order to preserve the
average density NL/V ). The overall number of copolymers of component c is Np̃c.
With these component densities, the total segment and A excess densities are

%(r) =
∑

c

%c(r), σ(r) =
∑

c

q̃c%c(r), (3.58)

and the canonical partition function to calculate is

Z =
1

Ω

N∏

j=1

(∫
ddrj
V

)
exp

{
V 2

4%0

∫
ddr

(
χ
(
σ(r)

)2
− κ
(
%(r)

)2
)}

. (3.59)

Again introducing interaction fields, the derivation of the free-energy functional is
performed analogously as in sec. 3.1 for structured, ordered phases, but is more straight-
forward, since the averages over chain conformations are obsolete. Application of the
(pointwise) Hubbard-Stratonovich transformation with interaction fields σ̂, %̂ results in
the effective Hamiltonian per copolymer

h̃ =
V 2

4N%0

∫
ddx

(
χ
(
σ̂(x)

)2
+ κ

(
%̂(x)

)2
)
−
∑

c

p̃c ln z̃c +
∑

ν

pν ln pν , (3.60a)
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analogous to eq. (3.15). In this expression, the single-component partition functions are

z̃c :=
1

V

∫
ddx exp

{
L

2%0

(
χq̃cσ̂(x) + iκ%̂(x)

)}
. (3.60b)

In eq. (3.60a), the terms pν ln pν reflect the combinatorial factor Ω.

3.5.1 Multiple homogeneous phases

The general ansatz of H ≤ (Q+ 1) coexisting macroscopic phases, each with uniform
values of the fields,

V %̂(x) = %̂(h) =
∑
c
%̂

(h)
c ,

V σ̂(x) = σ̂(h) =
∑
c
q̃c%̂

(h)
c ,





x ∈ V (h), h ∈ {1, . . . ,H} , (3.61)

and with volume fractions v(h) := |V (h)|/V , yields

h̃ =
Lχ

4%2
0

∑

h

v(h)
(
σ̂(h)

)2
+
Lκ

4%2
0

∑

h

v(h)
(
%̂(h)

)2
−
∑

c

p̃c ln z̃c +
∑

ν

pν ln pν ,

z̃c =
∑

h

v(h) exp

{
L
(
χq̃cσ̂

(h) + iκ%̂(h)
)

2%0

}
(3.62)

For convenience, the volume fraction of one phase, labeled h0, can be eliminated
immediately in favor of the volume fractions of the (H − 1) remaining phases. Now, the
set of saddle-point equations 0 = ∂h̃/∂σ̂(h), 0 = ∂h̃/∂%̂(h), 0 = ∂h̃/∂v(h), becomes

τ̂ (h)

%0
=
∑

c

q̃c
p̃c
z̃c

exp

{
L
(
χq̃cτ̂

(h) + iκω̂(h)
)

2%0

}
(3.63a)

ω̂(h)

%0
= i
∑

c

p̃c
z̃c

exp

{
L
(
χq̃cτ̂

(h) + iκω̂(h)
)

2%0

}
(3.63b)

0 =
Lχ

4%2
0

((
τ̂ (h)

)2
−
(
τ̂ (h0)

)2
)

+
Lκ

4%2
0

((
ω̂(h)

)2
−
(
ω̂(h0)

)2
)

(3.63c)

−
∑

c

p̃c
z̃c

(
exp

{
L
(
χq̃cτ̂

(h) + iκω̂(h)
)

2%0

}
− exp

{
L
(
χq̃cτ̂

(h0) + iκω̂(h0)
)

2%0

})
,

where again we denoted the saddle-point values of σ̂(h), %̂(h) as τ̂ (h), ω̂(h). Multiplication
of eqs. (3.63b) or (3.63a) with their volume fractions v(h) and summation over h shows
that the conditions of fixed global values of density and of A excess,

∑

h

v(h)τ̂ (h) =
∑

c

p̃cq̃c = q ,
∑

h

v(h)ω̂(h) = i%0, (3.64)

are fulfilled (note that ω̂ is related to the saddle point of the density via ω̂ = i 〈%〉H).
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By inserting eqs. (3.63b) into eqs. (3.63c), we can solve for the difference in κω̂(h)

between any phase and the phase labeled h0:

iκ
(
ω̂(h) − ω̂(h0)

)

%0
= −χ

(
τ̂ (h)

)2 −
(
τ̂ (h0)

)2
4%20L
κ − i%0

(
ω̂(h) + ω̂(h0)

) . (3.65)

In the incompressible limit, the density in each phase must be %0, accordingly ω̂(h) = i%0

for each h, such that for κ→∞, one obtains

iκ
(
ω̂(h) − ω̂(h0)

)

%0
= −χ

(
τ̂ (h)

)2 −
(
τ̂ (h0)

)2

2%2
0

, (3.66)

i.e., a quadratic dependence of the generalized density differences on the A excess
amplitudes, similar to eq. (3.24). Then, by multiplying numerator and denominator of
eqs. (3.63a) with a factor exp(−iLκω̂(h0)/(2%0)) and inserting eq. (3.66), we arrive at
the set of implicit equations for the amplitudes in the incompressible limit,

τ̂ (h)

%0
=
∑

c

q̃c
p̃c
zc

exp

{
q̃c
Lχ

2%0
τ̂ (h) − Lχ

4%2
0

(
τ̂ (h)

)2
}
, (3.67)

with the component partition functions

zc =
∑

h′

v(h′) exp

{
q̃c
Lχ

2%0
τ̂ (h′) − Lχ

4%2
0

(
τ̂ (h′)

)2
}
. (3.68)

The saddle-point values of the detailed component densities from eq. (3.57), 〈%(h)
c 〉H,

are contained in eq. (3.67) as

〈%(h)
c 〉H
%0

=
p̃c
zc

exp

{
q̃c
Lχ

2%0
τ̂ (h) − Lχ

4%2
0

(
τ̂ (h)

)2
}
. (3.69)

The condition that the sum
∑

c() over all component densities in one phase must be
%0 in the incompressible case, is important in an iterative solution algorithm used to
determine the volume fractions.

3.5.2 Two symmetric homogeneous phases

Now, we address the case relevant for our phase coexistence scheme later, viz., two, A-
and B-rich, homogeneous phases in A� B exchange-symmetric distributions of block
copolymers. The ansatz consistent with the symmetry is for two homogeneous phases
in equally sized regions of the system, with A excess values of equal magnitude but
opposite sign, τ̂ (1,2) = ±τ̂h. With this ansatz, the component partition functions from
eq. (3.68) are

zc = exp

{
−Lχ

4%2
0

τ̂2
h

}
cosh

{
q̃c
Lχ

2%0
τ̂h

}
, (3.70)

and the implicit equation for the A excess (order-parameter) amplitude is

τ̂h

%0
= 2

dQ
2
e∑

c=0

q̃cp̃c tanh

{
q̃c
Lχτ̂h

2%0

}
(3.71)
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(since components c and Q− c have equal probabilities in the symmetric case). The
free-energy density becomes

fh =
Lχ

4%2
0

τ̂2
h − 2

dQ
2
e∑

c=0

p̃c ln cosh

{
q̃c
Lχτ̂h

2%0

}
+
∑

ν

pν ln pν . (3.72)

3.5.3 Two symmetric homogeneous phases in random triblock copolymers

For random triblock copolymers, Q = 3, four different compositions are possible and
define the components according to eq. (3.56). Relating the component probabilities
p̃c in a symmetric distribution to the probabilities of the sequence classes defined in
eq. (3.42) (needed for the description of a lamellar phase),

p̃0 = p̃3 =
p1

2
, p̃1 = p̃2 =

p2 + p3

2
=

1− p1

2
. (3.73)

the free-energy density of two homogeneous phases takes the form

fh =
Lχτ̂2

h

4%2
0

− (1− p1) ln cosh

{
Lχτ̂h

6%0

}
− p1 ln cosh

{
Lχτ̂h

2%0

}

+
∑

ν

pν ln pν , provided Lχ > Lχ0 :=
2

m2
=

18

1 + 8p1
(3.74)

(with the moments m2,1 = 1 and m2,2 = m2,3 = 1/9). For macroscopic phase separation,
the homopolymer concentration p1 is seen to be the only relevant parameter of the
triblock sequence distribution. In eq. (3.74), the amplitude τ̂h is determined by the
implicit equation

τ̂h

%0
=

1− p1

3
tanh

{
Lχτ̂h

6%0

}
+ p1

{
tanh

Lχτ̂h

2%0

}
. (3.75)

Along with gradual exchange of B- with A-rich subspecies within one sequence class in
the A-rich phase, conversely for the B-rich phase, the amplitude of macroscopic phase
separation increases.
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4 Three-phase coexistence with sequence
fractionation

Here, we analyze the possible coexistence of phases with different morphologies via
sequence selection among coexisting subsystems. This mechanism is called sequence
fractionation. Our aim is to calculate the free energy of the coexistence and compare
it to that of the global, ordered state which forms upon increasing incompatibility in
the disordered state of the overall sequence distribution. Optimization of our multi-
phase free energy will show that both global macroscopic and global lamellar phase
separation, upon further increasing incompatibility, become unstable toward a coexistence
of two homogeneous, A- and B-rich phases and one lamellar phase. Due to sequence
fractionation, the coexistence of subsystems with different morphologies can attain a
lower free energy than one global ordered state. Starting from global macroscopical
phase separation,the two homogeneous cloud phases (we adopt the terms ‘cloud’ and
‘shadow’ phase from [110]) expel mainly alternating block copolymer sequences with
internal A-B contacts into an emerging third, lamellar shadow phase. In the subsystem,
the accumulation of alternating sequences induces a peak of the structure function at
nonzero wave number and thus a lamellar structure, whereas the structure function of
the global distribution indicates macroscopic phase separation. Conversely, a lamellar
(cloud) phase expels chiefly homopolymers into two additional homogeneous shadow
phases. The deviation of the shadow’s sequence distribution from the global, λ-defined
distribution is found to be discontinuous (cf. sec. 5.3 below). The topology of the phase
diagrams we will derive is shown in fig. 4.1.
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Figure 4.1: Qualitative phase di-
agram of symmetric random block
copolymers with fractionated three-
phase coexistence. Global instabil-
ities of the disordered state: solid
(red) line: macroscopic phase sep-
aration for λ > λc, dashed (green)
line: lamellar order-disorder transi-
tion (ODT) for λ < λc. Sequence
fractionation creates an in-between
state with three coexisting phases.
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CHAPTER 4. FRACTIONATED THREE-PHASE COEXISTENCE

4.1 General fractionation ansatz

Starting from a system with given global sequence probabilities {pν} in a volume V ,
we consider a partitioning into subsystems, indexed by P , with different morphologies,
whose equilibrium sequence probabilities may deviate from the global ones (fractiona-

tion). The variable sequence probabilities n
(P )
ν := N

(P )
ν /N (P ), also called concentrations,

and volume fractions v(P ) := V (P )/V of all coexisting subsystems have to be obtained
by minimization of the total free energy. With incompressibility, the volume fractions
correspond to number fractions, v(P ) = N (P )/N . As in chapter 3, we will consider the
free energy per chain, i.e., the free-energy density. Assuming, as usual, the thermody-
namic limit for each subsystem, the total free-energy density ffrac is a weighted sum of
the free-energy densities of the subsystems,

ffrac

(
{v(P ), n(P )

ν }
)

=
∑

P

v(P )f (P )
(
{n(P )

ν }
)

!
= min . (4.1)

Since we accounted for the indistinguishability of copolymers of equal sequence already
in the calculation of the free-energy density of one ordered state, cf. eq. (3.2), there is no
need to introduce additional mixing entropy terms for the case of coexisting subsystems.

4.2 Symmetry considerations

The A� B exchange symmetry, valid for the globally symmetric distributions, must
hold for each of the coexisting subsystems, too. In this context, we consider as only one
subsystem the set of homogeneous phases or domains in macroscopic phase separation
and refer to it as a homogeneous bi-phase in this chapter. Hence, in globally symmetric

A-rich B-richlam.

BBBAAA

ABABAB

AABBBA

Figure 4.2: Sequence class exchange between homogeneous phases (macroscopic phase sepa-
ration) and lamellae (microphase separation) in random triblock copolymers; arrows indicate
expected net fluxes and show the symmetry with respect to A- and B-rich representative.

distributions, the sequence exchange between subsystems of different morphologies
can take place only within the sequence classes (introduced in appendix B.1), the
A- and B-rich representatives always being transferred in equal amounts. Figure 4.2
illustrates the situation we expect for symmetric triblock copolymers, which fall into
the three sequence classes defined in eq. (3.42). Especially, the two homogeneous phases’
difference in A content needs not to be taken into account in the sense of sequence class
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fractionation. The sums over individual sequences in the lamellar free-energy density,
e.g., in eq. (3.50), can be obviously reduced to sums over sequence classes, since one
sequence and its complement have equal concentrations and identical structure functions,
cf. sec. 3.3.3. This symmetry reduces the independent probabilities in analyzing the
coexistence conditions, and in the following, we will use the index ν for sequence classes .

4.3 Constraints at fixed global sequence distribution

The constraints that impose incompressibility, number conservation, and the fixed set
of global concentrations {pν} are

1 =
∑

P

v(P ), (4.2a)

1 =
∑

ν

n(P )
ν , (4.2b)

pν =
∑

P

v(P )n(P )
ν . (4.2c)

For Markovian sequence distributions, the global concentrations at a given λ are {pν(λ)}.
The constraints eq. (4.2) reduce further the number of independent parameters of the
coexisting subsystems.

4.4 Three-phase coexistence conditions

Now, we derive the equilibrium conditions specifically for two coexisting subsystems in
a symmetric distribution: one bi-phase, comprising two homogeneous, A- and B-rich
phases, and one with lamellar structure. This state is called three-phase coexistence.

In general, the free-energy minimization can be performed with Lagrange multipliers
for each of the constraints, or, the number of variables can be reduced immediately by
inserting the constraints eqs. (4.2), owing to their simple form. Here, we take a route
in-between. First, we use explicitly constraint eq. (4.2a) to eliminate one of the volume
fractions, and eqs. (4.2b) to eliminate one concentration per subsystem.

Following eq. (4.1), the free-energy density ffrac is then a linear combination of the
free-energy densities fm, eq. (3.54) (or eq. (3.50)), of a lamellar phase with volume
fraction v, and fh, eq. (3.72), of a homogeneous bi-phase with volume fraction (1− v):

ffrac := vfm

(
{n(m)

ν }
′
)

+ (1− v)fh

(
{n(h)

ν }
′
)
, (4.3)

where {n(m)
ν }′ denotes the set of independent concentrations. Similarly,

∑′

ν will be used
to denote the sum over all sequence classes ν whose concentrations have been chosen as
independent variables.

Second, via introducing Lagrange multipliers µν for the constraints eq. (4.2c), the
function f̃frac to be extremized becomes

f̃frac = vfm

(
{n(m)

ν }
′
)

+ (1− v)fh

(
{n(h)

ν }
′
)
−
∑′

ν

µν

(
v n(m)

ν + (1− v)n(h)
ν

)
. (4.4)
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Minimization of f̃frac requires the partial derivatives to vanish. Differentiation with
respect to the independent concentrations gives

µν =
∂fm

∂n
(m)
ν

, µν =
∂fh

∂n
(h)
ν

, (4.5a)

and differentiation with respect to the volume fraction gives

fm −
∑′

ν

n(m)
ν µν = fh −

∑′

ν

n(h)
ν µν , (4.5b)

with

n(h)
ν =

pν − v n(m)
ν

1− v (4.5c)

according to eqs. (4.2c). Equations (4.5a) demand, for each sequence class ν, the
chemical potentials in the coexisting subsystems to be equal, and eq. (4.5b) states that
the grand free-energy density be equal in both subsystems. Since the concentrations

n
(h)
ν are thus eliminated, we can simplify the notation and write nν := n

(m)
ν for the

concentrations in the lamellar phase.

Given the block-type correlation λ of the global distribution and the incompatibility
Lχ, the next step is to insert into the equation system (4.5) the derivatives µν of the
subsystem’s free-energy densities fm and fh. On the basis of eqs. (3.50), (3.54), and

(3.72), we have calculated these derivatives analytically (setting pν → n
(m)
ν , respectively

pν → n
(h)
ν ), see sec. 4.4.2 specializing to the triblock system below. At this point,

the computation of structure functions and moments for individual sequence classes,
exemplified in sec. 3.3.3, turns out to be vital. Especially, eq. (3.54) requires the
sequence-specific fourth-order structure functions, cf. appendix C.6. Next, eqs. (4.5)
have to be solved for the independent parameters, (v, {nν}′), that determine the two
subsystems, lamellae and homogeneous bi-phase.

Obviously, the subsystems can coexist with nonzero volume fractions only if ffrac,
eq. (4.3), reaches a lower value than the minimum of fm({pν(λ)}, χ) and fh({pν(λ)}, χ),
i.e., than the free-energy density of a global ordered state with λ-distribution:

∆ffrac := ffrac

(
v, {nν}

′ |λ, χ)
)
−min

[
fm ({pν(λ)}, χ) , fh ({pν(λ)}, χ)

]
!
< 0. (4.6)

Hence, this inequality defines the coexistence region in the λ-χ plane, and the set of
points at which ∆ffrac vanishes constitutes the boundary of this region, indicating an
instability of the system. The numerical procedure to locate, within the λ-χ plane,
points of solutions conforming the condition (4.6) is described in sec. 4.4.3 below.
Anticipating our results shown in chapter 5, we indeed find an extended region of three-
phase coexistence, see, e.g., the phase diagram for random continuous-chain triblock
copolymers in fig. 5.9. In the λ-χ plane, the three-phase region is located above the
critical line Lχ0(λ) of the disordered state, cf. fig. 4.1, separating the region of global
lamellar states which extends to λ→ −1 and the region of homogeneous bi-phase states
which extends to λ→ +1. Both regions of global ordered states and the three-phase
region meet at the multicritical point (λc, Lχc).
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4.4. THREE-PHASE COEXISTENCE CONDITIONS

4.4.1 Transition lines to the three-phase region

Upon gradually increasing χ in the global homogeneous bi-phase, the latter becomes
unstable at a critical incompatibility χ(h), and in the λ-χ plane, the function χ(h)(λ)
represents the transition line to the three-phase region determined by (4.6). Conversely,
starting in the three-phase region, the transition line is approached by decreasing χ and
is defined by the limit

∆ffrac = ffrac

(
v, {nν}

′ |λ, χ
)
− fh ({pν(λ)}, χ) −→

χ→χ(h)
0. (4.7)

This means that the lamellar phase must disappear (or become indistinguishable from
the homogeneous bi-phase) on the line χ(h)(λ). In principle, this can be realized in
three ways, with the following implications for the lamellar phase:

volume fraction vanishes: v → 0, (4.8a)

concentrations approach λ-defined ones: nν → pν(λ), or (4.8b)

amplitude vanishes: τ̂m → 0 (4.8c)

Analysis of the free-energy densities eqs. (3.50) (or (3.54)) and (3.72) contributing
to ∆ffrac and solutions to eqs. (4.5) show that only the first limit is realized. This
limit excludes the alternatives (4.8b) and (4.8c), i.e., nν 6= pν(λ) and τ̂m 6= 0 on the
transition line χ(h)(λ). On this line, the lamellar phase with vanishing volume fraction
is called a shadow phase, the coexisting homogeneous bi-phase a cloud phase. With the
information of a lamellar shadow phase, the computation of the line χ(h)(λ) is simplified,
in that we can transform eqs. (4.5) into a set of equations for the parameters {nν}, χ(h)

at fixed λ.

While the concentrations {nν} of the lamellar shadow deviate from the λ-defined
ones on the line χ(h)(λ), those in the homogeneous bi-phase cloud are restricted to
the λ-defined concentrations. Approaching this line from the three-phase region, the
deviations of the sequence concentrations in the majority subsystem from the λ-defined
concentrations tend to zero linearly in v,

n(h)
ν − pν(λ) = (pν(λ)− nν) v +O

(
v2
)
, (4.9)

according to eqs. (4.5c). For v > 0, both subsystems acquire sequence concentrations
deviating from the global ones.

The phase transition line χ(m)(λ) from the region of global lamellar states to the
three-phase state is determined analogously to eq. (4.7) by the limit

∆ffrac = ffrac

(
v, {nν}

′ |λ, χ
)
− fm ({pν(λ)}, χ) −→

χ→χ(m)
0, (4.10)

where now v and {nν}′ are volume fraction, respectively independent concentrations in
the (disappearing) homogeneous bi-phase. Also in this case, v → 0, nν 6= pν(λ), and
τ̂h 6= 0 on the line χ(m)(λ), on which accordingly, the homogeneous bi-phase is called a
shadow phase.
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In constructing the free-energy superposition eq. (4.3), we assume for the free-energy
density of the lamellar subsystem the one-mode ansatz and the expansion in the order-
parameter amplitude leading to eq. (3.50). In contrast, the free-energy density of the
homogeneous bi-phase, eq. (3.72), is exact within the “crushed polymer” picture and
hence is in its validity not limited to small amplitudes. As a consequence, the result for
the transition line χ(h)(λ) of the homogeneous bi-phase cloud might be more reliable
than that for the line χ(m)(λ).

4.4.2 Random triblock copolymers

For random triblock copolymers, we solve the equation system (4.5) with the lamellar
free-energy density fm both in the simplified form, eq. (3.50), and in the form obtained
by the enhanced theory, eq. (3.54). For the free-energy densityfh of the homogeneous
phases, we use the expression eq. (3.74). Here, the solution strategy is sketched for
the vicinity of the transition from the global homogeneous bi-phase state to the three-
phase region. In this case, the independent variables are chosen as the parameters

of the lamellar subsystem, v, n2 := n
(m)
2 and n3 := n

(m)
3 , cf. the sequence classes in

sec. 3.3.3. At a given (λ, χ), we determine the (candidate) parameter vector [v, n2, n3]
as the solution to the equation system eqs. (4.5), i.e., as a zero of the gradient vector
∇(v, n2, n3)ffrac. Subsequently, the solution vector has to be tested to be within the
domain of definition, cf. appendix D.2, and ffrac has to be verified to be smaller than
fh, cf. inequality (4.6).

In an attempt to visualize the differentiations which have to be computed analytically
prior to solve eqs. (4.5), we write out explicitly the expression ffrac, cf. eq. (4.3), for the
triblock system, using the simplified version eq. (3.50) for fm:

ffrac

= v





3∑

ν=1

nν lnnν −

(∑3
ν=1 nνSν(k2

m)− 2L/χ
)2
/L4

(∑3
ν=1 nνm2,ν

)2
+
∑3

ν=1 nνm4,ν





+ (1− v)
3∑

ν=1

n(h)
ν lnn(h)

ν

+ (1− v)

{
Lχτ̂2

h

4%2
0

−
(
n

(h)
2 + n

(h)
3

)
ln cosh

{
Lχτ̂h

6%0

}
− n(h)

1 ln cosh

{
Lχτ̂h

2%0

}}
.

(4.11)

The structure functions Sν(k
2) are given in sec. 3.3.3, and the moments are m2,2 =

m2,3 = 1/9, m2,1 = 1 and m4,2 = m4,3 = 1/81, m4,1 = 1. In eq. (4.11), the lamellar
wave number km is a function of n2 and n3 via

km := argmax
k>0

∑

ν

nνSν(k2), (4.12)

but needs not to be differentiated with respect to n2, n3 in the system (4.5), since per
definition 0 = (∂

∑
ν nνSν(k2)/∂k)|k=km . Similarly, the amplitude of the homogeneous

phases, τ̂h, determined by the implicit equation

τ̂h

%0
=
n

(h)
2 + n

(h)
3

3
tanh

{
Lχτ̂h

6%0

}
+ (1− n(h)

2 − n
(h)
3 )

{
tanh

Lχτ̂h

2%0

}
, (4.13)
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depends on the concentrations n
(h)
2 , n

(h)
3 , but needs not to be differentiated with respect

to n
(h)
2 and n

(h)
3 , since 0 = (∂fh/∂τ̂)|τ̂=τ̂h . Analytical expressions for the derivatives of

fm and fh for the triblock system are given in appendix D.1.
The fact that the second line of eq. (4.11) depends solely on the sum of the concen-

trations n
(h)
2 and n

(h)
3 simplifies the system (4.5) for the computation of the parameters

n2, n3, and χ(h) on the three-phase boundary, cf. sec. 4.4.1, in random triblocks.
For the case that the homogeneous bi-phase is expected to be the minority subsystem

(or the shadow phase), the parameters v(h), n
(h)
2 , and n

(h)
3 are chosen as independent

variables, and the above-sketched calculations are performed analogously.

4.4.3 Solution algorithm

In order to solve the system (4.5), we employ a Newton-type procedure using the
following steps, exemplified for random triblock copolymers and for the variables
(v, n2, n3) of the conjectured lamellar minority subsystem:

1. At a given set (λ, χ) of block-type correlation and incompatibility, guess start
parameter vector x0 := [v0, n2,0, n3,0]T (λ, χ). The sensitivity regarding the start
vector impedes completely automatized scans in the λ-χ plane.

2. Iteratively, apply Newton scheme

x1 = x0 −H−1 (x0)∇ffrac (x0) , (4.14)

with H the Hessian of the system (4.5).

3. Stop if either the desired relative precision ε := |x1−x0|
|x0| or a given maximal number

of iterations has been reached. In the latter case, and if H gets singular during
the iteration, restart from step 1.

4. To ensure that ffrac (x1) is a minimum, check H for positive definiteness, i.e.
calculate its eigenvalues.

5. Once obtained a solution vector [v, n2, n3], check it to be included in the set (D.5).
From the concentrations n2, n3, calculate km(n2, n3), respectively kopt(n2, n3|χ).
Particularly, the critical incompatibility Lχ0(n2, n3) = 2L2/

(∑
ν nνSν(k2

m)
)

of
the assumed lamellar subsystem must be smaller than Lχ.

Convergence, especially while approaching the multicritical point (λc, Lχc), can be
achieved only for start vectors very close to the actual solution. Therefore, proceeding
on a three-phase transition line (see section 4.4.1) toward (λc, Lχc), we use the solution
at one value of λ as the start vector for the solution at an adjacent value of λ. The
resolution for λ is chosen between 5 · 10−4 far from λc and 10−5 near λc, and between
10−3 and 10−4 for Lχ. In the vicinity of (λc, Lχc), entries of the start vector have to be
even closer to the actual solution and are obtained by extrapolating solutions on the
boundary line. Finally, the result vector is calculated with a relative precision ε = 10−12

of its modulus. Uniqueness of solutions of the nonlinear equation system (4.5) cannot be
proven here. However, the determined χ(h)(λ), respectively χ(m)(λ), are lower bounds

57



CHAPTER 4. FRACTIONATED THREE-PHASE COEXISTENCE

for the transition incompatibilities to three-phase coexistence in our model, since at
each λ, we initialize the scan of the domain of definition, eq. (D.5), with the global
concentrations pν(λ) at χ0(λ).
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5 Phase behavior with fractionation

In this chapter, we present a selection of the results drawn from our fractionation theory,
i.e., the three-phase transition lines and detailed information about the subsystems
within the coexistence region of random symmetric triblock copolymers. While the
focus here is on the coexistence of one subsystem with two homogeneous phases and
one with lamellar structure, the phase diagrams naturally include the critical lines of
global macroscopic and lamellar phase separations of the disordered state. The behavior
at the multicritical point (λc, Lχc), at which regions of the global ordered states, of
the three-phase coexistence, and of the disordered state meet, is found to depend on
the parameter M , the number of segments per block. Sequence distribution diagrams
visualize the sequence fractionation among the coexisting subsystems and the deviations
from the global Markovian sequence distribution. Also for random diblocks, a symmetric
mixture of AA and BB with AB, we find a three-phase coexistence with subsystems
of different AB concentrations. A brief comparison with numerical SCFT results for
continuous-chain triblocks is provided at the end of this chapter.

5.1 Triblocks with a small number of segments per block

Here, we discuss our results for the phase diagram with three-phase coexistence region
for random symmetric triblock copolymers with M = 3 segments per block, shown in
fig. 5.1. This phase diagram is representative of the phase behavior of triblocks with
M < 7 segments per block. In order to explore the emergence and growth of the various
phases, we follow the path indicated by arrows in the plot, starting at a supercritical
block-type correlation λ > λc = −1/3. In this case, the instability of the disordered state
is toward global macroscopic phase separation, as is indicated by the peak of the global
structure function S(k2) at zero wave number (see the solid curve in the bottom inset
of fig. 5.1), cf. the critical wave number eq. (3.33) and eq. (3.41). Upon increasing the
incompatibility Lχ along the bottom vertical arrow, the line χ(h) (dotted) marks the
onset of three-phase coexistence via a fractionated lamellar shadow phase (with volume
fraction v(m) = 0) according to sec. 4.4.1. This lamellar shadow emerges with nonzero
amplitude, and with nonzero wave number, since the sequence distribution in the
lamellar subsystem is enriched in alternating sequences (see fig. 5.14 below) and hence
S(k2) in the subsystem has a peak at nonzero k (see also the individual Sν(k2) in fig. 3.4).
Upon further increase of the incompatibility (along the top vertical arrow), the lamellar
volume fraction grows. Now, keeping Lχ constant, and proceeding toward smaller values
of λ along the horizontal arrow, the volume fraction of the lamellar subsystem increases
further. At some λ < λc, one reaches the boundary χ(m) of three-phase coexistence, and
lamellae take over to be the cloud phase with v(m) = 1. Consistently, starting at λ < λc
from the disordered state, the latter undergoes lamellar phase separation on the dashed
part of the critical line χ0(λ), due to the peak of S(k2) at a nonzero wave number in
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Figure 5.1: Phase diagram for random triblock copolymers with M = 3 segments per block.
The line χ0(λ) indicates the instabilities of the disordered state: solid (red) macroscopic phase
separation into two homogeneous, A- and B-rich phases, dashed (green) lamellar phase separation
or order-disorder-transition (ODT). The dotted (purple) line χ(h) marks the transition to three-
phase coexistence, at which the two homogeneous phases are the cloud and the lamellar phase
the shadow, the dot-dashed (blue) line χ(m) the lamellar cloud boundary. A circle (◦) marks the
multicritical point. Bottom inset: second-order structure function in the global λ-distribution,
at λ = 0 (solid), at the critical correlation λc = −1/3 (dotted), and at λ = −0.5 (dashed). In
this and the following plots, the length scale is the average chain size, Rchain := Re/

√
d. Top

inset: Sketch of three-phase coexistence.

the λ-defined distribution (cf. the dashed curve in the bottom inset). Upon crossing
the boundary line χ(m) from the region of global lamellae, two additional homogeneous
phases with a sequence distribution enriched in homopolymers appear as shadow.

At the critical block-type correlation λc, the maximum at k0 = 0 of the global
S(k2) broadens (see the dotted graph in the bottom inset in fig. 5.1), announcing
the continuous growth of the instability’s wave number from zero upon decreasing
λ. We observe this Lifshitz character of the transition from global macroscopic to
global lamellar phase separation for all random triblock systems with M < 7, cf. the
case discussed before eq. (3.41), while the exact position of the Lifshitz point (λc, Lχc)
depends on M . The Lifshitz point (λc, Lχc) of diverging lamellar wavelength also limits
the three-phase coexistence region toward low incompatibilities.

The phase diagram in fig. 5.1 has been computed using the simplified description
eq. (3.50) of the lamellar free energy. Within this description, the wave number km of
global lamellae (hatched region in fig. 5.1) at fixed λ remains constant upon increasing
Lχ. Consequently, the lamellar cloud boundary of three-phase coexistence is confined
to the half-plane λ ≤ λc. Upon crossing the boundary to three-phase coexistence at a
given λ, the lamellar wave number can be shifted only via fractionation, by altering
the sequence distribution of the lamellar subsystem. The change of the wave number
inside the three-phase region, not shown here, is as follows: upon increasing Lχ, the
sequence fractionation proceeds and thereby the wave number in the lamellar subsystem
increases, i.e., the lamellar wavelength decreases.
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The lamellar wave numbers on the boundaries of the fractionated three-phase coexis-
tence as a function of λ are displayed in fig. 5.2. The wave number of the fractionated
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Figure 5.2: Wave number of the
lamellar phase as a function of λ for tri-
blocks with M = 3. Dot-dashed and
dashed (blue, green) line: global lamel-
lar phase and lamellar cloud at λ < λc,
in the range Lχ0 ≤ Lχ ≤ Lχ(m) be-
tween the ODT and the transition
line v(m) = 1 to three-phase coexis-
tence (hatched region in fig. 5.1). Dot-
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shadows (v(m) = 0) on the line χ(h),
which is located mainly in the region
λ > λc. Inset: blow-up around the
multicritical point (◦), showing the
multi-valued curve for λ . λc.

lamellar subsystem vanishes at the Lifshitz point (λc, χc), as does the wave number of
the global lamellar phase. The inset in fig. 5.2 shows in more detail the behavior of the
lamellar shadow’s wave number in the vicinity of the Lifshitz point. For λ . λc, the
three-phase region can be entered, starting from a homogeneous bi-phase cloud, at two
different values of Lχ, with two distinct wave numbers of the lamellar shadow.

This remarkable feature can be seen in the enlarged phase diagram fig. 5.3, showing
the boundary lines and a map of the lamellar subsystem’s volume fraction around the
Lifshitz point. The lamellar shadow boundary of three-phase coexistence displays a
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v
(m)

-0.35 -0.345 -0.34 -0.335 -0.33 -0.325

block-type correlation λ

 9.5

 9.6

 9.7

 9.8

 9.9

 10

in
c
o
m

p
a
ti
b
ili

ty
 L

χ

 0

 0.2

 0.4

 0.6

 0.8

 1

2 hom.

lam.

Figure 5.3: Three-phase coexistence
boundaries around the multicritical (Lif-
shitz) point with volume fraction v(m) of
the lamellar subsystem for triblocks with
M = 3. Line styles as in fig. 5.1.

reentrant behavior: upon increasing Lχ at fixed λ . λc, the line χ(h) is crossed two
times. (Reentrance has been observed in statistical physics, e.g., also for the melting of
polydispersed hard spheres [10].) Especially, χ(h)(λ) does not reach the multicritical
point along a path λ ↓ λc, but via a spiraling path invading the region λ < λc.

Another observation is that due to the presence of the three-phase coexistence region,
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the region of global lamellae with diverging wavelength in the vicinity of the Lifshitz
point becomes effectively restricted to a very small region of the λ-χ plane. Given the
alternative of sequence fractionation, a system with λ . λc, starting from the disordered
state, reaches the homogeneous bi-phase nearly avoiding the global lamellar state with
diverging wavelength, via intermediate three-phase states. At larger Lχ, the bi-phase
is suppressed again in favor of three-phase coexistence, which allows for lamellae with
finite wavelength in a fractionated subsystem.

Four homogeneous phases in a triblock copolymer melt

According to the results shown in fig. 5.1, the three-phase coexistence prevails in a large
region of the λ-χ plane. Whether the three-phase coexistence persists at incompatibilities
Lχ far above the critical line Lχ0(λ) is a question beyond our scope here, since our
expression for the lamellar free energy is reliable for small order-parameter amplitudes
only. Within the multi-component or “crushed polymer” theory, which can account
solely for macroscopic phase separation into multiple homogeneous phases, cf. sec. 3.5,
we obtain for λ > λc the scenario of a coexistence of four homogeneous phases at higher
Lχ, e.g., for λ = 0 at Lχ = 16.04. More precisely, the theory yields a direct separation
of two into four homogeneous phases, the two new phases emerging with zero volume
fraction, but with finite amplitudes τ̂h,2 and −τ̂h,2 different from those of the already
existing two phases, τ̂h,1 and −τ̂h,1. The finding that for triblocks, two homogeneous
phases with increasing Lχ are immediately followed by four within the multicomponent
theory, is at first surprising, since earlier studies have suggested successive separations
into two, three, . . . , homogeneous phases for all symmetric copolymer melts [91, 125].
The absence of any sequence with equal A and B contents in the triblock system might
explain why a third, homogeneous phase with zero amplitude does not appear. More
than four homogeneous phases are impossible, since for triblocks there are only four
components according to A content. Taking into account structured phases, however,
the fractionated three-phase coexistence discussed above sets in at lower Lχ and thus
precedes the coexistence of four homogeneous phases.

5.1.1 Scaling of the order-parameter amplitude at the multicritical point

With the numerical solution of the three-phase equilibrium conditions particularly
for the transition lines, we are able to access the order-parameter amplitudes in the
coexisting cloud and shadow phases. All these amplitudes vanish on approach to the
multicritical point. The scaling of the order-parameter amplitude as a function of
∆λ := |λ − λc| along the boundary lines of three-phase coexistence with λ ↑ λc is
shown in fig. 5.4, for three cases: The amplitudes of fractionated lamellar shadows
(coexisting with homogeneous clouds, on the part λ < λc of the dotted line in fig. 5.3)
are marked by open diamonds, those of lamellar cloud phases (on the the dot-dashed
line in fig. 5.3) by solid triangles, those of the coexisting homogeneous shadows by
open squares. According to the fit performed to the latter case, the amplitudes vanish
approximately linearly in ∆λ at the Lifshitz point, indicating a critical exponent ψ ≈ 1.
The same exponent is obtained from the plots of the lamellar amplitudes.

62



5.1. TRIBLOCKS WITH A SMALL NUMBER OF SEGMENTS PER BLOCK

10
-4

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

10
-1

o
rd

e
r-

p
a
ra

m
e
te

r 
a
m

p
lit

u
d
e
 τ̂

m
/ρ

0

distance to multicrit. point ∆λ = |λc - λ|

3-phase boundaries

fit 7.8(1) ∆λ
0.992(2)

 (9 datap.)

hom. shadow (λ < λc)

lam. cloud (λ < λc)

lam. shadow at λ < λc

Figure 5.4: Decay of the order-
parameter amplitudes as a function
of |λ − λc|, proceeding toward the
multicritical point on the boundaries
of three-phase coexistence, which
are located in the region λ < λc for
triblocks with M = 3, see fig. 5.3.

Analytical determination of the critical exponent for M < 7

For triblocks with M < 7, the Lifshitz behavior at the multicritical point (λc, χc) implies
that the wave number km of the global lamellar instability and of the lamellar cloud
vanishes continuously on approach to (λc, Lχc), see also fig. 5.2. More specifically, km

as a function of ∆λ is a square root,

km ∝ (∆λ)1/2 , λ ↑ λc, (5.1)

as can be derived from an expansion in ∆λ of the maximum S(k2
m) for a λ-distribution,

cf. eq. (3.37). Given that the line χ0(λ) has nonzero slope at (λc, χc), the decay of km

with ∆χ := χ− χc occurs with exponent 1/2, too.
The continuous decay of km at (λc, χc) allows us to analytically extract the exponent

of the order-parameter amplitude in the lamellar subsystem at (λc, χc) from the equation
system (4.5) for the lamellar cloud line χ(m) (see sec. 4.4.1). In the vicinity of (λc, χc),
we can solve this system for the deviations of the sequence concentrations in the

homogeneous bi-phase shadow from the global concentrations, ∆nν := n
(h)
ν − pν(λ),

with a power-series ansatz

∆nν(∆λ) =
∑

j

cνj (∆λ)j . (5.2)

In the representative case of M = 3, consistent expansion up to (∆λ)4 yields, along the
line χ(m):

∆nν = −144
√

6

55
(∆λ)2 +O

(
(∆λ)3

)
, ν = 2, 3. (5.3)

By inserting these concentration differences into an expansion of χ(m) − 2L/S(k2
m),

which determines the order-parameter amplitude τ̂m (cf. eq. (3.48)) of the lamellar cloud
phase with λ-distribution, we find the critical exponent ψ = 1 for τ̂m,

τ̂m ∝ ∆λ, λ ↑ λc. (5.4)

This result corroborates the findings for the exponent from the numerically determined
values of the lamellar cloud amplitude.
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Moreover, we find that the slope of the instability line χ0(λ) of the disordered state
toward global lamellar phase separation and the slope of the lamellar cloud boundary
χ(m)(λ) of the three-phase coexistence region are equal at (λc, χc):

χ(m)(λ)− χ0(λ) ∝ (∆λ)2 , λ ↑ λc. (5.5)

Hence, for λ . λc, there is a nearly direct transition from the disordered state to
three-phase coexistence, as can be observed in fig. 5.3.

5.2 Triblocks with more segments per block and
continuous-chain limit
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Figure 5.5: Phase diagram
for continuous-chain triblocks,
with line styles as in fig. 5.1.
The multicritical point (◦)
is located at (λc, Lχc) =
(−0.464 00, 11.316). Crosses
indicate the end points of
the lines of metastable, global
phase separations of the dis-
ordered state, macroscopic for
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λ > λc (+). Bottom inset:
global second-order structure
function s(k2) at λ = −0.45
(solid), at λc (dotted), and
at λ = −0.47 (dashed); the
length scale is Rchain.

Representative of triblocks with M ≥ 7 segments per block, we analyze the phase
diagram for random, continuous-chain triblocks, shown in fig. 5.5. For M = 7, a detail
of the phase diagram at the multicritical point is provided in fig. 5.6. Again, as in the
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Figure 5.6: Detail of the
phase diagram for triblocks
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(λc, Lχc) = (−0.428 19, 10.883).
At (λc, Lχc), the lamellar wave
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the continuous-chain limit, cf.
fig. 5.8 below.
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case M < 7, for λ > λc and increasing Lχ in the two homogeneous phases, the dotted
line χ(h) marks the emergence of a lamellar shadow in addition to the homogeneous
bi-phase cloud. Starting from a point on χ(h), the lamellar volume fraction grows both
with increasing Lχ and with decreasing λ. Upon decreasing λ, the lamellar phase takes
over to be the cloud on the dot-dashed line χ(m), indicating in turn a fractionated
homogeneous bi-phase shadow.

In comparison to the case M < 7, see fig. 5.1, the three-phase coexistence region
is found to be larger, again restricting the predictions to values of Lχ that do not
exceed considerably those of the ODT. The multicritical point is not only located at a
smaller critical block correlation λc and a higher incompatibility, but is also qualitatively
different: As discussed in sec. 3.3.2, the wave number of the global instability of a
disordered triblock melt with λ-distribution is discontinuous at λc for M ≥ 7. Thus
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Figure 5.7: Lamellar wave number
for continuous-chain triblocks. Dot-
dashed, dashed (blue, green) line:
global lamellar phase and lamellar
cloud (v(m) = 1) at λ < λc; dot-
ted (purple) line: lamellar shadow
(v(m) = 0) at λ > λc; solid (light-
green) line: metastable global lamel-
lae due to a second peak of s(k2),
shown at λ = −0.4625 (triangle)
in the bottom inset. Circles mark
the wave numbers of the coexist-
ing states at the multicritical point,
crosses (×, +) indicate the end
points of the lines of metastable,
global phase separations, cf. fig. 5.5.

when reaching λc from above, the morphology of the global ordered state changes
from two homogeneous phases (critical wave number k0 = 0) to one lamellar phase
with finite wave number k0,c. This feature is revealed in more detail in the plot of
lamellar wave numbers in fig. 5.7. At the multicritical point, both the wave number
of the global instability and the wave number of lamellae in a fractionated subsystem
as a function of ∆λ tend to the nonzero value k0,c = 0.326π. Due to the two peaks
of the global structure function s(k2) near multicriticality (see the bottom inset in
fig. 5.7), metastable global lamellae occur in a small range of block-type correlations,
−0.461 23 ≥ λ > λc, where the free-energy functional’s absolute minimum indicates
global macroscopic phase separation. Conversely, global macroscopic phase separation
persists as a metastable state for −0.5 < λ < λc (at λ = −0.5, the second derivative of
s(k2) at k = 0 changes sign according to eq. (3.39)). The metastable lines, whose end
points are hardly resolvable in fig. 5.5, appear in fig. 5.8 as continuations of the two
parts of the line χ0(λ) which indicate the stable structures emerging from the disordered
state. Possibly due to the intersection of these metastable continuations, we find for
λ < λc that the transition line χ0(λ) from the disordered to the global lamellar state
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and the lamellar cloud transition line χ(m)(λ) to three-phase coexistence differ in their
slopes at multicriticality, in contrast to the behavior at the Lifshitz points for M < 7. A
map of the lamellar volume fraction around the multicritical point is shown in fig. 5.8,
too (note the zoom to an even smaller region than in fig. 5.3). Upon increasing Lχ
from the transition line χ(h) at λ > λc, the lamellar volume fraction grows rapidly to
reach a nearly constant value of about 0.6.

Enhanced theory with wave-number dependence of fourth order

In this section, we refine the analysis of the fractionation scenario by accounting for the
wave-number dependence of the fourth-order coefficients of eq. (3.25), which lead to
the enhanced expression eq. (3.54) for the lamellar free energy instead of the simplified
version eq. (3.50). Figure 5.9 shows the results of this more detailed calculation for
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the phase diagram of continuous-chain triblocks. First, we find the region of global
lamellar phase separation to be larger than in fig. 5.5 and, in marked contrast to the
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results we could obtain with the simplified free energy, to extend into the half-plane
λ > λc. The main virtue of the expression eq. (3.54) is precisely to open the possibility
of global lamellae also at λ > λc, since the optimal wave number kopt, cf. eq. (3.53), is
not fixed by the global sequence distribution as km, but may change upon increasing
Lχ. Second, the transition line χ(h) between global macroscopic phase separation and
the three-phase region at λ > λc is located at lower Lχ than the line calculated with
the simplified free energy, cf. fig. 5.5. In effect, the enhanced description of the lamellar
subsystem in our fractionation scheme, which rests on a superposition of free energies,
is seen to increase the tendency toward lamellar phase separation.
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dashed), and of lamellar shadow with
v(m) = 0 (dotted); top right inset:
order-parameter amplitude in lamellar
shadow at Lχ(h)(λ = −0.2) = 9.688.

The graph of the wave numbers in fig. 5.10 suggests that on the lamellar shadow line
(v(m) = 0, λ > λc), smaller wave numbers are realized than in the simplified picture, cf.
fig. 5.7. As mentioned above, the corresponding incompatibilities χ(h) are smaller, too,
and accordingly, the amplitudes on this line. Indeed, the inset shows a lamellar shadow
amplitude, which is still reasonably small at λ = −0.2, a value not in the ultimate
vicinity of the multicritical point. The line χ(h) therefore may be regarded as consistent
with the expansion in the order parameter, Lχτ̂/%0, assumed for the lamellar phase, cf.
eq. (3.25), not only in the closest vicinity of (λc, Lχc). Moreover, on the line χ(h), the
cloud is the homogeneous bi-phase, whose amplitude is calculated exactly.

At a given λ < λc, however, the global lamellar wave number is found to increase
substantially in the range χ0 < χ < χ(m). Due to the rather large lamellar amplitudes
on the part of the line χ(m) at λ < λc, the validity of the predictions for this part of
χ(m) is restricted.

The region of global lamellar phase separation at λ > λc is in fig. 5.9 bounded toward
larger Lχ by the line χ(m), which indicates a reentrance into the three-phase coexistence.
Numerical SCFT results, shown in fig. 5.16 below, predict instead that the lamellar
cloud line lies entirely in the half-plane λ > λc and thus global lamellar phase separation
is always favored at sufficiently large incompatibilities.
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5.2.1 Scaling of the order-parameter amplitude at the multicritical point

Within our simplified description of the systems with M ≥ 7, both transition lines
to three-phase coexistence, χ(h) and χ(m), are single-valued as a function of λ around
the multicritical point (despite the discontinuity of the wave number k0 at the critical
correlation λc). In this case, the numerical results along both lines χ(h) and χ(m) can
be used to determine the critical exponent ψ for the decay of the order-parameter
amplitude (see fig. 5.11). Evaluating the amplitude of the lamellar cloud and shadow,
respectively, we find ψ = 0.5 along both lines consistently. In order to validate this
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Figure 5.12: Order-parameter am-
plitude of homogeneous bi-phase
cloud and of lamellar shadow on
the line χ(h) for continuous-chain tri-
blocks, with enhanced expression for
the lamellar free energy, cf. fig. 5.9.

result, we analyze in fig. 5.12 the scaling of the order-parameter amplitude on approach
to the multicritical point for the same system, but with the enhanced theory, which had
led to a different location of the transition lines, cf. figs. 5.9 and 5.5. The amplitudes, in
this case evaluated on the line χ(h), of both lamellar shadow and homogeneous bi-phase
cloud vanish for λ ↓ λc with an exponent of ψ = 0.5, which corroborates the findings
for continuous-chain triblocks with the simplified theory. We conclude that the critical
exponent of the order-parameter amplitude for triblocks with M ≥ 7 is ψ = 0.5, distinct
from the exponent ψ = 1 for the systems with M < 7, cf. eq. (5.4).
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5.3 Sequence fractionation for triblocks

In this section, we return to a central aim of this work, viz., the analysis of the sequence
fractionation or partitioning between coexisting subsystems of different morphologies.
To this end, we can exploit the detailed information on the three-phase region obtained
from the solution of the coexistence conditions, cf. sec. 4.4.

λ-distribution

ABA + BAB AAB + BBA

AAA + BBB

λ = 0.2

λ = 0

λ = -0.2

λ = -0.4

λ = λc

λ = -0.5

fractionation:

Figure 5.13: Sequence distribution triangle for random continuous-chain triblocks at various
block-type correlations, with the enhanced analytical expression for the lamellar free-energy,
cf. the phase diagram in fig. 5.9. The triangle is spanned by the unit vectors nν (not drawn)
pointing from the center (+, origin of the coordinate system) to the vertices, each labeled
by one sequence class ν. Within the triangle, one sequence distribution {pν} is represented
as a point. The vector p of this point relative to + determines each concentration pν via
p · nν = 3 (pν − 1/3) /2, i.e., the larger the projection of the vector p onto nν , the higher is
the concentration pν . The origin corresponds to equal concentrations of all sequence classes
(pν = 1/3, ν = 1, 2, 3). Distributions defined by λ lie on the (red) curve, with λ ranging from
−1 at the triangle’s bottom left vertex to +1 at its top. Solid symbols on this curve mark the
sequence distribution of the cloud phase(s) at the boundary line(s) of three-phase coexistence.
Off-curve solid symbols mark the distributions of the coexisting shadow phases. Open symbols
display the distributions of the coexisting subsystems at equal volume fractions (v(m) = 0.5).

For triblocks, the optimization of the subsystems’ distributions proceeds via selection
out of three sequence classes, cf. eq. (3.42). Therefore, a distribution triangle allows
for a compact map of coexisting distributions in systems characterized by different
values of λ within one diagram. In this way, fig. 5.13 depicts sequence fractionation
starting from several global distributions of continuous-chain triblocks. The data
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have been obtained with the enhanced theory for the lamellar subsystem, cf. fig. 5.9.
Each vertex of the triangle represents one of the sequence classes, one point within
the triangle one A�B exchange-symmetric sequence distribution (for details of the
encoding see the figure caption). The sets for three supercritical values of the block-type
correlation, λ > λc, λ = 0.2 (diamonds), λ = 0 (circles), and λ = −0.2 (up triangles),
visualize the following fractionation mechanism: On the curve of λ-distributions, the
solid symbol marks the sequence distribution of the homogeneous cloud phase(s) on
the boundary χ(h) of fractionated three-phase coexistence. A solid symbol of the same
shape and color to the bottom right of the curve marks the distribution of the coexisting
lamellar shadow phase (with zero volume fraction). The finite deviation of the lamellar
shadow’s sequence distribution from the λ-distribution indicates that the transition to
three-phase coexistence is discontinuous. Upon increasing incompatibility, the lamellar
phase’s volume fraction increases (cf. fig. 5.8), and its sequence distribution departs
ever more from the λ-distribution (the open symbols to the bottom right of the λ-curve
display lamellae at 0.5 volume fraction). Sequence class 2 (AAB/BBA) substantially
accumulates in the lamellar phase, also class 3 (ABA/BAB). Moreover, since the
ratio of these two sequence concentrations differs from the λ-defined ratio p2(λ)/p3(λ),
the fractionated sequence distribution in the lamellar phase does not ensue from
merely expelling homopolymers into the coexisting homogeneous phases at a constant
concentration ratio of the two other sequence classes. (The shifted concentration ratios
become visible in the detailed distribution chart for the case λ = 0, in fig. 5.14.) As the
volume fraction of the homogeneous, initial cloud phase(s) decreases, their distribution
(at volume fraction 0.5 marked by open symbols to the top left) deviates increasingly
from the λ-curve, showing in turn a particular depletion in AAB/BBA sequences.

For λ = −0.4, the reentrant behavior of the three-phase boundary line, cf. fig. 5.9,
gives rise to two sets of coexisting distributions (down triangles). Upon increasing Lχ
in the two homogeneous phases, the three-phase region appears with a lamellar shadow
(nearly on the curve of λ-distributions, shift to the bottom hardly visible), which grows
with Lχ in volume fraction until it becomes a lamellar cloud (now the symbol on the
curve of λ-distributions) coexisting with two homogeneous shadows (triangle shifted
slightly to the top). The homogeneous shadows are enriched in homopolymers and
depleted from alternating sequences. Upon further increasing Lχ, the global lamellar
phase gives way to a three-phase coexistence again. The topmost triangle represents
the distribution of the homogeneous bi-phase shadow at this reentrance. For λ ≤ λc,
the lamellar cloud line is the only three-phase boundary. The topmost symbols for the
critical and subcritical correlations λ = λc and λ = −0.5 show the distributions of the
coexisting homogeneous shadows which deviate markedly from the λ-distributions.

A detailed sequence distribution diagram for the three-phase coexistence at λ = 0 is
displayed in fig. 5.14. The representation of all six species’ concentrations additionally
visualizes the segregation within a sequence class into A- and B-rich subspecies between
the two homogeneous phases. Using again the two homogeneous phases’ A � B
exchange symmetry in a globally symmetric distribution, only the distribution of the
A-rich, homogeneous phase is shown; the chart for the B-rich phase is obtained by
exchanging letters A and B in the key. Consistent with fig. 5.13, fractionation is
seen to be effective already on the boundary χ(h): The sequence class concentrations
of the emerging lamellae can be immediately distinguished from the λ-distribution
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Figure 5.14: Detailed sequence distributions of the coexisting phases at λ = 0 with enhanced
theory (sec. 5.2), cf. fig. 5.13. Leftmost chart: λ-distribution of the disordered melt. Pairs
of charts: distributions of the A-rich, homogeneous and of the lamellar phase; left: on the
boundary χ(h) of three-phase coexistence; right: at a lamellar volume fraction of v(m) = 0.5.

of the cloud. The chart for a lamellar volume fraction v(m) = 0.5 shows that the
distribution of the lamellar subsystem does not change substantially with increasing Lχ.
However, the increasing volume fraction of the lamellar subsystem efficiently depletes
the homogeneous phases, the former cloud, from alternating sequences. Along this
route, the homogeneous phases achieve to increase their amplitude.

5.4 Three-phase coexistence for random symmetric diblocks

Single-component diblock copolymers have been investigated in a vast number of studies
both experimentally and theoretically [72, 76, 81]. The phase behavior of ternary
mixture of symmetric AB diblocks with equal amounts of A and B homopolymers,
referred to as random symmetric diblock copolymers in our context, has received
considerable attention, too [18, 69, 70]. Even the coexistence of subsystems with
different morphologies and homopolymer concentrations has been already reported
[88]. Detailed, yet partially contradicting results on the phase behavior of this system
are thus available, some of them with account for order-parameter fluctuations [90].
Nonetheless, we analyze the random symmetric diblock system here, in order to test
both the consistency of our fractionation ansatz and its ability to predict a coexistence
of different morphologies in the most simple case.

For diblocks, inspection of the global S(k2), cf. eqs. (3.37) and (3.39), yields the Lifshitz
behavior at (λc, χc) for any number M of segments per block, which allows us to restrict
the discussion to continuous-chain diblocks. The calculations have been performed with
the enhanced theory for the lamellar free energy from sec. 3.4.2. As depicted in fig. 5.15,
we can identify for the diblock system a large three-phase coexistence region in the λ-χ
plane. However, it is central to observe that this three-phase coexistence is qualitatively
different from the fractionated coexistence in the triblock system we considered before,
due to the extremely low sequence ‘polydispersity’ of the symmetric diblock system.
Only one sequence class concentration can be varied independently in this system,
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Figure 5.15: Phase diagram for
random symmetric, continuous-
chain diblock copolymers. Line
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cate the (metastable) transitions
from two to three homogeneous
phases predicted by multicompo-
nent theory.

e.g., that of AB chains, pAB = (1 − λ)/2, such that all possible distributions are
parameterized by the block-type correlation λ. Hence for any partitioning, all coexisting
subsystems must have Markovian distributions confined to the plane of fig. 5.15, and
sequence fractionation in the sense of non-Markovian distributions in subsystems is
barred. Not visible in fig. 5.15, upon changing the global AB concentration at a given

incompatibility, the AB concentration n
(m)
AB in the lamellar subsystem remains constant

within the three-phase region, as well as n
(h)
AB in the two homogeneous phases. The

dotted, vertical lines in fig. 5.15 indicate the concentrations n
(m)
AB , respectively n

(h)
AB,

of coexisting lamellae and the two homogeneous phases at Lχ = 6.55. When varying
the global AB concentration along the horizontal line connecting these lines, only the
volume fraction of the coexisting subsystems changes. At a fixed incompatibility Lχ,
we can identify the region of AB contents where we find a three-phase coexistence with
a “mixing gap”. A global, ordered phase is not stable in this region, analogous to the
density range in the liquid-gas phase transition.

By computing the instability of the two homogeneous phases at λ > λc within
multicomponent theory, cf. sec. 3.5 and appendix E.1, we find metastable transitions to
three homogeneous phases at the incompatibilities marked by crosses in fig. 5.15. These
transitions occur at values of Lχ very close to, but slightly above the lamellar shadow
line v(m). Indeed, the third homogeneous phase is predicted by multicomponent theory
to set in with zero volume fraction as does the lamellar shadow, and with almost equal
AB concentration. This is yet another consistency test for our fractionation scheme. As
may be expected, the free-energy density ffrac of the three-phase coexistence including
a lamellar phase is lower than that of the hypothetical three homogeneous phases.
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5.5. CONTINUOUS-CHAIN TRIBLOCKS ANALYZED WITH SCFT

5.5 Random continuous-chain triblocks analyzed with
numerical SCFT

In large parts of this thesis, Markovian, A � B exchange-symmetric distributions
of triblock copolymers, Q = 3, serve as prototype of the systems which can undergo
nontrivial sequence fractionation in the sense that the distributions of the subsystems
deviate both quantitatively and qualitatively from the global distribution. In the study
[59], we have chosen the triblock distributions not only due to their analytical tractability,
but also seeking to enable a comparison with the results for continuous-chain triblocks
from a complementary mean-field approach, viz., numerical self-consistent field theory
(SCFT) [57, 81, 39]. A description of the numerical SCFT calculations performed by
M. Müller can be found in [59], too, as well as a brief account of the underlying theory.
An overview of the phase behavior of continuous-chain triblock copolymers obtained
with numerical SCFT shall be given here.

5.5.1 Three-phase coexistence lines

In fig. 5.16, we present the boundary lines of three-phase coexistence, determined from
numerical SCFT (left) and from the analytical approach (right). First, we note that
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Figure 5.16: Phase diagram for random continuous-chain triblocks, calculated with numerical
SCFT (left) and with analytical approach (right). Instabilities of the disordered state: solid
(red): macroscopic phase separation; dashed (green): ODT. Dotted (purple): homogeneous
bi-phase cloud boundary χ(h), dot-dashed (blue): lamellar cloud boundary χ(m) of three-phase
coexistence. (On the ODT line and on χ(m), the location of SCFT data points is additionally
indicated by symbols.)

beyond the mean-field approximation, the analytical approach and SCFT have different
additional limitations, such that their results for the location of three-phase boundaries
are complementary. The most prominent feature of the SCFT results is the location of
the entire three-phase coexistence region in the half-plane λ > λc of the λ-χ diagram.
Consequently, SCFT predicts the three-phase region to be significantly smaller than
the analytical method, and global lamellae to occur at large incompatibilities for all
λ. In the enhanced version of the analytical theory, using the lamellar free energy

73



CHAPTER 5. PHASE BEHAVIOR WITH FRACTIONATION

eq. (3.54), the part of the lamellar cloud boundary near the multicritical point extends
into the half-plane λ > λc, too. In the vicinity of the multicritical point, due to small
lamellar amplitudes, the results of the analytical approach become accurate. In this
region, however, the free-energy differences between competing states – disordered,
global lamellae, three-phase coexistence, two homogeneous phases – become minuscule,
which poses numerical difficulties for the SCFT calculations. Hence, there is no regime
where both approaches are simultaneously reliable, and a direct comparison is difficult.
The predictions for the cloud line χ(h) of the homogeneous phases obtained by SCFT
and by the analytical method match quite well, whereas the agreement for the lamellar
cloud points, on the line χ(m), is less satisfactory. Numerical SCFT results for these
points (solid triangles) do not extend below λ = −0.025 due to the mentioned subtle
free-energy differences in this region which control the phase behavior. In the analytical
approach, the shape of χ(m) is bound to be more sensitive to the approximation of small
lamellar amplitudes than that of the other three-phase boundary, at which the lamellar
phase is the shadow and all amplitudes are smaller.

5.5.2 Sequence fractionation

Despite the different location of the three-phase boundaries, the sequence distributions
of the coexisting subsystems, obtained by both methods, reveal the same mechanism
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Figure 5.17: Detailed sequence distributions of the coexisting phases in random, continuous-
chain triblocks at λ = 0 obtained with SCFT (left) and with the enhanced version of the
analytical method (right), cf. fig. 5.14. Leftmost chart: λ-distribution of the disordered state and
of the cloud. Pairs of charts: distributions of the A-rich, homogeneous and the lamellar phase;
left: at the homogeneous cloud boundary; right: at the lamellar cloud boundary of three-phase
coexistence (SCFT), respectively at a lamellar volume fraction of 0.5 (analytical method).

of fractionation, cf. fig. 5.17. Particularly visible is the preference of the fractionated
lamellar phase for AAB/BBA sequences. According to the results from the analytical
method, the accumulation is more pronounced already at the onset of fractionation
on the homogeneous cloud line χ(h) of three-phase coexistence (cf. the central charts).
Since the value for the incompatibility χ(h) is higher than that obtained with SCFT, the
macroscopic separation into A- and B-rich subspecies is at a more advanced stage, too.
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5.5. CONTINUOUS-CHAIN TRIBLOCKS ANALYZED WITH SCFT

5.5.3 Discussion

The analytical method and numerical SCFT constitute complementary approaches,
which both have their benefits and limitations. In combination, they may provide a
comprehensive mean-field picture of the phase behavior of random continuous-chain
triblocks. For this system, both methods consistently reveal a three-phase coexistence
region separating the regions of global lamellar and global homogeneous bi-phase states.

Like the analytical method, numerical SCFT invokes a mean-field approximation,
but it avoids the assumptions of small order-parameter amplitudes and a single-mode
description for the lamellar phase. Thus, it provides appropriate mean-field predictions
for large regions of the phase diagram, but due to numerical problems fails as the
multicritical point is approached and both wave numbers and free-energy differences
decrease. Moreover, the applicability of numerical SCFT is severely restricted to
distributions with a small number of different sequence classes, i.e., to a small number
of different components.

On the one hand, our analytical mean-field approach is restricted in its validity,
whenever a structured (lamellar) phase is addressed, to small lamellar order-parameter
amplitudes or to the proximity of a continuous order-disorder transition. On the other
hand, since we can rest on analytical expressions as far as to the formulation of the
equilibrium conditions, we are able to explore accurately the vicinity of the multicritical
point (λc, χc). Moreover, given the analytical form of the structure functions that decide
on the critical behavior, we can explicitly study the influence of the model parameter
M , the number of segments per block.
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6 Summary and Discussion

In this work, we have studied the equilibrium phase behavior of random symmetric AB
block copolymers with a fixed small number Q of blocks per polymer. Our aim has
been to investigate the possible coexistence of subsystems with different morphologies,
here a lamellar phase and two homogeneous phases, within an analytical mean-field
approach. For this purpose, we have first defined a microscopic model with a minimal set
of interactions and calculated free energies of the basic phase-separated states, detailing
the dependence on the sequence distribution. On this basis, we have formulated the free
energy of a partitioned state with account for sequence exchange between subsystems
and derived the coexistence conditions. The resulting picture of three-phase coexistence
provides insight into the mechanism of sequence fractionation: Each of the coexisting
phases is found to accumulate preferably those sequences that match best its morphology.

6.1 Summary

The model system is a melt of different Q-block polymer chains (sequences), generated
from polymer blocks of type A and B, following a Markov process with correlation
parameter λ. Each block contains M segments. Segments within one chain are bonded
irreversibly, interacting via connectivity, segments on different chains experience two non-
bonded interactions: incompatibility with strength χ ∝ 1/T , which favors accumulation
of segments of equal type and separation of segments of different types, and excluded
volume interaction of strength κ, which prevents unphysical instabilities.
First, we review our way of deriving the free energy.

Free-energy functional

Starting from the Hamiltonian of this model, we have set up in chap. 3 the normalized
canonical partition function Z including the Gibbs over-counting correction for identical
chains. Although the indistinguishability of chains is irrelevant for a global state of the
system, it has to be accounted for if thermodynamic equilibrium can be reached by
the formation of coexisting subsystems with chain exchange. Such a coexistence can
then be described transparently, without using the grand-canonical ensemble, within
the canonical ensemble as well, yielding a superposition of the subsystems’ free-energy
functionals, cf. chap. 4, which has to be minimized with respect to volume fractions and
sequence concentrations. For the evaluation of Z, eq. (3.1), we have chosen to apply
to each Fourier mode of the fields of A segment excess (σk) and total segment density
(%k) a Hubbard-Stratonovich (HS) transformation. This transformation decouples the
fields from the inter-chain interactions and replaces terms quadratic in σ and % by
bilinear terms σσ̂ and %%̂, at the cost of introducing new integration variables σ̂ and %̂,
called interaction fields. As a result of this procedure, an effective Hamiltonian ĥ of σ̂
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and %̂ arises, and the integrand of Z is expressed by products of single-chain partition
functions for each sequence ν, ẑν [σ̂, %̂]. The latter, being integrals over single-chain
conformations only, can be calculated expanding the exponential up to, in principle,
any order in σ̂ and %̂. In the thermodynamic limit, the integrations over σ̂ and %̂ can
then be performed using the saddle-point method. The saddle-point values τ̂k and ω̂k,
i.e., the averages of σ̂k and %̂k, can be shown to equal the averages of the original fields
σk, respectively %k, which vanish in the disordered homogeneous melt for k 6= 0. Hence,
if upon increase of the incompatibility χ, the disordered state becomes unstable toward
A-B separation at χ0, the amplitudes τ̂k, ω̂k remain small near χ0 in the case of a
continuous phase transition (valid for A � B exchange symmetry). This enables us
to derive the saddle-point equations from an expansion of the effective Hamiltonian
ĥ in σ̂k and %̂k and to eliminate from ĥ the density interaction field %̂. The result
is an expansion solely in the field τ̂ , the order parameter, up to fourth order, i.e., a
free-energy functional f [τ̂ ] of Landau form. The novel feature in our derivation is to use
a decoupling method which naturally leads to an expansion in the interaction field, not
in the original A excess density, a route deviating from earlier derivations of free-energy
functionals for block copolymer melts [76, 42], cf. appendix A.3. Also, the sequence
heterogeneity has been addressed without resorting to the replica method.

Instability and structure function

The second-order coefficients of the free-energy functional are determined by an averaged
sequence-structure function S(k2), which can be related to the mean-field scattering
function of the melt, cf. sec. 3.3. Its maximum yields the inverse of the critical
incompatibility χ0, the instability of the disordered state, and the maximum position
k0 determines the mode τ̂k0 whose second-order coefficient vanishes at χ = χ0. The
structure function S(k2) has been calculated analytically in terms of the sequence
probabilities pν and the functions for individual sequences ν, particularly also for
Markovian distributions with correlation parameter λ. For triblock copolymers, S(λ, k2)
turns out to depend critically on the number M of segments per block:

1. M < 7: For λ above a critical λc, the maximum of S(λ, k2) is located at k0 = 0,
indicating macroscopic phase separation at χ = χ0(λ) into two homogeneous, A-
respectively B-rich, phases. Upon decreasing λ below λc, the maximum position
k0 of S(λ, k2) increases continuously from zero, km > 0 indicating an instability
of the disordered melt toward a lamellar A excess variation with wave number
km. The continuous increase of k0 identifies the multicritical point (λc, χc), with
χc = χ0(λc), as a Lifshitz point.

2. M ≥ 7: As in the case M < 7, for large λ, the maximum position of S(λ, k2) is
k0 = 0, but upon decreasing λ, S(λ, k2) develops a second maximum at a wave
number km > 0. The second maximum (corresponding to a metastable lamellar
phase) reaches equal height as the maximum at k0 = 0 at a correlation λc which
depends on M . Thus, at χc = χ0(λc), the lamellar instability emerges with a
finite wave number km > 0 in contrast to the Lifshitz behavior. This result holds
in the limit of continuous-chain triblocks, too.
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In studies on block copolymers so far, albeit mostly for the cases of either large Q or
Q = 2, the multicritical point (λc, χc) had been assumed to be always of Lifshitz type.

The fourth-order coefficients of the free-energy functional f [τ̂ ] contain several sequence-
structure functions, which we have computed analytically for individual sequences. Due
to the contributions of the density interaction field %̂, eliminated at the saddle point, the
fourth-order terms are positive for a sufficiently large compression modulus, guaranteeing
a nonzero, but finite amplitude τ̂m of an ordered state not too far from the instability
χ0. Keeping for a lamellar structure the contribution of the dominant mode with wave
number km (respectively kopt, which varies with χ in the enhanced theory, cf. sec. 3.4.2)
only, minimization of f [τ̂ ] with respect to the amplitude gives the free energy fm of a
lamellar state.

The free energy fh of a homogeneous bi-phase state (generally, of multiple homo-
geneous phases) has been obtained using a description with component densities and
again applying a HS transformation, cf. sec. 3.5. Since an expansion is not necessary in
this case, the result is valid for arbitrary amplitudes.

In both fm and fh, we have specified the dependence on the sequence concentrations.

Fractionated three-phase coexistence

The analytical expressions for the free energies fm and fh of lamellae, respectively
homogeneous bi-phase, have been employed in a superposition ansatz

ffrac = vfm + (1− v)fh

for the free energy of a possible three-phase state, with yet undetermined sequence
concentrations and volume fraction v. The constraint of fixed global λ-defined concen-
trations has been incorporated via chemical potentials acting as Lagrange multipliers.
Subsequently, we have minimized the free-energy function ffrac with respect to the
independent parameters, in the case of triblocks, the volume fraction v of one subsystem
and two concentrations. With analytically computed partial derivatives of ffrac, we
have arrived at a set of equilibrium conditions which has been solved numerically for
the parameters.

Indeed, there is a region in the λ-χ plane, in which the minimized free energy density
ffrac(λ, χ) results to be smaller than that of the λ-defined global ordered (lamellar or
bi-phase) state. This implies the existence of a third ordered state, viz., three-phase
coexistence, which destabilizes the known ordered states at the boundary lines of the
detected region, χ(h)(λ) toward the region of global bi-phase states and χ(m)(λ) toward
the region of global lamellar states. These lines meet at the multicritical point (λc, χc)
and separate the region of global lamellar states from the region of global bi-phase
states, see, e.g., fig. 5.9.

Starting from the global homogeneous bi-phase and increasing χ, at the transition χ(h)

an infinitesimal volume fraction (shadow) emerges, which displays lamellar structure
with finite wave number and finite amplitude. This shadow phase accumulates those
copolymer sequences, which, due to incompatibility of A and B blocks, match better
a lamellar order than the homogeneous bi-phase order. Consequently, the sequence
concentrations in this shadow phase are radically different from the concentrations in
the homogeneous bi-phase cloud, see fig. 6.1, cf. also figs. 5.13 and 5.14. This process,
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Figure 6.1: Sequence class concentrations of coexisting phases in continuous-chain Markovian
triblocks at λ = 0 as a function of Lχ, starting from the lamellar shadow line χ(h), cf. fig. 5.5.

exemplified for the transition line χ(h), is called fractionation. Figure 6.1 shows the
concentrations in the initial shadow phase to change only moderately upon further
increasing χ, suggesting that fractionation is efficient from the start. With increasing
lamellar volume fraction, the coexisting homogeneous bi-phase is progressively depleted
from ‘mismatching’ sequences.

Multicritical behavior

The model comprises a variety of systems, differing in the parameters Q, M , and λ.
Our analytical approach has proven suited to study in detail the phase behavior in
dependence on these parameters, since the global structure functions S(k2), respectively
s(k2), decisive for the critical behavior, have been obtained in closed form as functions of
Q, M , and λ, see eqs. (3.37) and (3.39). This has enabled us to explore particularly the
effect of varying the parameter M , the number of segments per block, on the system’s
behavior near the multicritical point (λc, χc).

For Markovian symmetric triblocks (Q = 3), the fractionation theory corroborates
that the behavior at the multicritical point depends sensitively on M : For a small
number of segments per block, M < 7, the wave number of the global instability of
the disordered state vanishes continuously as λ ↑ λc (Lifshitz behavior). Consistently,
approaching (λc, χc) from the three-phase region, the wave number in the lamellar
subsystem (of any volume fraction) vanishes. For more segments per block, M ≥ 7,
including the continuous-chain limit, the wave number of both global lamellae and of
lamellar subsystems remains nonzero at (λc, χc). This implies a discontinuous change in
the wave number from homogeneous to lamellar phases when passing through (λc, χc).

The critical dependence on M is reflected also in the scaling of the order-parameter
amplitude on approach to (λc, χc): For the finite amplitudes on the transition lines
to the three-phase region, the critical exponent is ψ = 1 for M < 7, and ψ = 0.5 for
M ≥ 7. The multicritical behavior for random symmetric triblocks is summarized in
table 6.1.
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segments M per block critical exponent ψ wave number at (λc, Lχc)

M < 7 1 0

M ≥ 7 0.5 nonzero

Table 6.1: Critical exponents of order-parameter amplitude τ̂ on approach to the multicritical
point (λc, Lχc) and lamellar wave number at (λc, Lχc) for random symmetric triblocks.

We note that the multicritical behavior for M ≥ 7 is obviously related to the
intersection at (λc, χc) of the global instability lines, which on both sides of (λc, χc)
continue as transition lines to metastable, global ordered phases, cf. fig. 5.8. A reason
for the discontinuity of the wave number at (λc, χc) in this case might be that increasing
M increases the effective strength of the incompatibility (∝ M2) between blocks,
without substantial change of Lχc. Concomitantly, the tendency toward lamellar phase
separation with finite wavelength increases.

For diblocks, Q = 2, we find a three-phase coexistence region, too, but there is no
critical dependence on M , especially (λc, χc) is a Lifshitz point for all M .

For Q ∈ [4, 5, . . . , 9], preliminary studies of the global structure function S(k2) for
various M , including the continuous-chain limit respectively, have not indicated a
double-peak of S(λ, k2) around the conjectured critical correlation λc. A tentative
conclusion is that these systems neither show a nonzero lamellar wave number at (λc, χc)
nor metastable states in the vicinity of this point, such as detected for Q = 3 and
M ≥ 7. However, without calculating the actual three-phase transition lines, these
studies are not more than a hint, since only the value λc of a Lifshitz point can be
determined analytically from S(k2) or s(k2), cf. sec. 3.3.2. Thus, the tedious method
of curve-analyzing the global structure function has to scan a considerable λ-range at
each Q and M .

6.2 Discussion

The route from macroscopic to structured phase separation is detected to be funda-
mentally different from that proposed, e.g., by Leibler et al. [76, 42], who found, with
increasing χ, a direct transition from a global bi-phase to a global lamellar state. Ac-
cording to our analysis, instead, the two regions of global ordered states are separated
by a wedge of three-phase coexistence emanating from the multicritical point, see
fig. 5.9 for λ > λc near (λc, χc). (The enhanced version of the lamellar free energy, cf.
eq. (3.54), allows for a global lamellar phase at λ > λc.) Via the free-energy function
for a fractionated three-phase coexistence, ordered states of the system beyond global
morphologies are taken into account, resulting in the following transition: On increasing
χ, a structured phase first becomes stable in a subsystem with vanishing volume fraction
and with a sequence distribution different from the global one. Thereby, the system is
enabled to change gradually from the homogeneous bi-phase to the lamellar state. The
transition from the homogeneous bi-phase to three-phase coexistence indeed occurs at a
smaller χ(h) < χL than the direct transition to global lamellae conjectured by Leibler
from the free-energy comparison of global states only.
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A fractionation mechanism similar to that driven by incompatibility in a fixed
sequence distribution is found to be at work when comparing Markovian distributions
with different λ, cf. fig. 5.1: Starting from a global homogeneous bi-phase and decreasing
λ continuously, the transition to a global lamellar state is not abrupt, but is initiated
by the emergence of an infinitesimal volume fraction with sequence concentrations
deviating from that of the homogeneous cloud. Upon further decreasing λ, the volume
fraction of the shadow increases until the global lamellar state is reached.

The correlation parameter λ determines the average length LA of pure A subsequences
for all copolymers in the system (or the length of B subsequences; LB = LA for
symmetric systems). Characterizing the systems by this parameter, the region of three-
phase coexistence corresponds to a range of global LA values for which one ordered
state with a single morphology is unstable. Instead, two sequence distributions, which
correspond to different values LA and therefore allow for different ordered phases, coexist
in subsystems, their volume fractions dictated by the global distribution. The range of
unstable global LA values or distributions can be seen as the analogue of the density
window of phase coexistence at a discontinuous liquid-gas transition. In general, a set of
fixed chemical potentials for each sequence class, to be realized by a coupled copolymer
reservoir, would play the role of constant pressure at the transition. For the ‘random’
diblock system, cf. sec. 5.4, we had identified the concentration nAB as the analogue of
density; at fixed χ, the concentrations nAB of the coexisting subsystems do not change
upon varying the global AB concentration, only the volume fractions.

For global macroscopic phase separation of Markovian block copolymers at λ > λc,
the critical region L(χ − χ0), within which the mean-field approximation fails, has
been estimated with the help of a Ginzburg criterion by Houdayer and Müller [62].
Following this study, the Ginzburg number Gi scales as Gi ∝ Q2/M , i.e., the critical
region does not shrink simply with the degree of polymerization L = QM , in contrast
to the result of the analysis for homopolymers. Precisely for small Q, which have been
considered here, the mean-field predictions should therefore be reliable, the reliability
increasing with M . This validates the prediction of a nonzero lamellar wave number at
multicriticality, the non-Lifshitz behavior, particularly for continuous-chain triblocks.

6.3 Perspectives

An obvious continuation of this work is to study the supposed three-phase coexistence
and the character of the multicritical point for Markovian block copolymers with a
larger number Q of blocks. As regards the multicritical behavior, the closed form of
the global structure function S(k2|λ,Q,M) for these systems should in principle allow
for a systematic way to extract the possibly critical dependence on M , the number of
segments per block.

Arbitrary sequence distributions beyond the Markovian distributions become accessi-
ble and can be analyzed with sequence-specific structure functions as computed in this
thesis. Of interest in this context might be those sequences or sequence distributions
whose structure gives rise to competing wave numbers and thus to metastable, ordered
phases, such as observed here for Markovian triblocks with M ≥ 7 at multicriticality.

Phase coexistence with sequence fractionation could be analyzed also for random
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symmetric, but (weakly) compressible block copolymer melts with finite κ, cf. the
density interaction modes, eq. (3.24), represented in fig. 3.2.

Similarly, interesting features of the phase behavior may arise for random block
copolymers without A� B exchange symmetry, cf. the structure function in appendix
A.2, which instead of the lamellar state display ordered morphologies such as micelles
or hexagonally arranged cylinders [76, 95, 79]. The discontinuous phase transitions
in this system class, however, call for a different way of computing the free energies.
As mentioned earlier, the transition from the disordered to a global structured state
already for symmetric systems is expected to be weakly first-order due to fluctuations
[16, 40]. The effects of fluctuations on the transition lines to three-phase coexistence
remain to be explored, especially to address the possible existence of a structured, but
disordered micro-emulsion around the multicritical point of mean-field theory.

Based on the general derivation of the effective Hamiltonian and the vertex functions
within the presented mean-field framework, the description of a structured phase might
be improved, e.g., by considering the sixth order in the expansion. With such a refined
description, the three-phase coexistence might turn out to be shifted in favor of the
structured phase.

Another generalization is to consider block copolymers built from more than two
segment types.

Phase coexistence enabled by component selection in a multi-component system may
be of interest not only for random block copolymers, but also for a broader class of
polydisperse systems, cf., e.g., refs. [110, 33, 111]. To those systems with relatively
low degree of polydispersity, the presented field-based approach with vertex functions
calculated individually for each component might be applicable.

Returning to copolymers, fractionation may produce structured phases in subsystems
beyond the ordered microstructured phases. Long random copolymers, for example,
are expected to display frozen, random structures in coexistence with domains of
macroscopic phase separation. Moreover, the influence of constraints on the occurrence
of a structured phase could be studied: e.g., how does a micellar phase of diblocks,
constrained at low temperatures by introducing crosslinks between different chains,
behave upon increasing temperature above the order-disorder transition? Finally, non-
equilibrium phase separation in heterogeneous block copolymers with dynamical pattern
formation poses more challenging questions.
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A Derivation of the free energy functional
for structured phases

A.1 Hubbard-Stratonovich transformation

The Hubbard-Stratonovich (HS) transformation [116, 64] originates in the idea to
express an exponential quadratic in one variable by an integral of a Gaussian in another
variable, e.g., for one real-valued variable x and α ∈ R, α > 0:

eαx
2

=
(α
π

)1/2
∫

R

dy e−αy
2+2αxy, (A.1a)

e−αx
2

=
(α
π

)1/2
∫

R

dy e−αy
2+i2αxy. (A.1b)

Applied to the evaluation of partition functions, it can be employed to transform a
part of the Hamiltonian quadratic in a complex field w (e.g., a Fourier mode of a
density) to a term linear in w, at the cost of introducing conjugated fields û and v̂,
which couple linearly to the real and the imaginary part of w and which each have a
Gaussian probability density:

eα|w|
2

=
α

π

∫∫

R
dûdv̂ e−α(û2+v̂2)+2α(ûRew+v̂Imw), w, û, v̂ ∈ C, α ∈ R, α > 0; (A.2a)

e−α|w|
2

=
α

π

∫∫

R
dûdv̂ e−α(û2+v̂2)+i 2α(ûRew+v̂Imw) (A.2b)

=
α

π

∫∫

R
dudv e−α

{
(u+iRew)2+(v+iImw)2

}
+i 2α

{
(u+iRew)Rew+(v+iImw)Imw

}
,

u, v ∈ R. (For convenience, the fields û and v̂ may be combined into one complex field
ŵ := û+ iv̂, note however, that for saddle-point evaluation, the integrations over û and
v̂ have to be extended independently to C in eq. (A.2b).) Rescaling the conjugated
variable with an arbitrary c ∈ R, c > 0 gives generalizations of eq. (A.1), such as

eαx
2

=
( c
π

)1/2
+∞∫

−∞

dy e−cy
2+2
√
cα xy, α, c ∈ R, α, c > 0. (A.3)

A.1.1 Saddle points and thermodynamic limit

In eq. (A.2a), the saddle-point values of û and v̂,û, v̂, are simply

û = Rew and v̂ = Imw, such that û
2

+ v̂
2

= |w|2. (A.4a)
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In eq. (A.2b), the saddle-point values of û and v̂ lie on the imaginary axis, which is
taken into account by the path parameterization in the second line. In this case,

û = iRew, v̂ = iImw, and û
2

+ v̂
2

= −|w|2. (A.4b)

Per definition, the variance of a conjugated field with respect to its saddle point in
terms of the original field component is proportional to α−1. Thus, for α ∝ N , N the
particle number, the variance vanishes proportional to N−1 in the thermodynamic limit
N →∞. For example, the integral in eq. (A.2a) could be again rewritten as

e−H[w] := eα|w|
2

=
α

π

∫∫
dûdv̂ eα|w|

2−α{(û−Rew)2+(v̂−Imw)2}, (A.5)

showing that the variance of û with this measure is

〈|û− Rew|2〉H[w] = α−1 ∝ N−1, (A.6)

independently of the realization of the original field w or the system configuration
(analogously for v̂ − Imw). Thus, each integral in eqs. (A.2) is dominated by the
contribution of the saddle-point value of a conjugated (interaction) field in terms of the
original field. Neither a subsequent configurational average, e.g., with the Gaussian-chain
weight, nor the choice of c in eq. (A.3) affect this saddle-point relation.

A.1.2 Application to our partition function

The inner integrals in eq. (3.8) due to the HS transformations have, for any set of
polymer configurations, S, the (exact) saddle points

σ̂′k = Reσ
(S)
k , σ̂′′k = Imσ

(S)
k , (A.7a)

%̂′k = iRe%
(S)
k , %̂′′k = iIm%

(S)
k (A.7b)

of the interaction fields in terms of the collective densities. For the components of
the interaction field %̂ at one k, the situation is sketched in fig. A.1. From eqs. (3.5)

HW

Hev

Hχ

Figure 3: Interactions forming part of the Hamiltonian.

HC

Hev

Hχ

Figure 4: Interactions forming part of the Hamiltonian.

CC

C1C1

C2C2

C3C3

−a−a aa Re!̂′

Im
!̂

′

Re!

Re!̂′′

Im
!̂

′′

Im!

Figure 5: Saddle-point contours for density interaction field.

2

Figure A.1: Saddle-point contours, cf., e.g., [14], for components of the density interaction
field. The limit a→∞ eliminates the contributions from C1 and C3, and the integral along C2,
parallel to the real axis, is dominated by the contribution at the saddle point (•).

and (3.11), we can moreover confirm that ensemble averages of modes of the collective
densities and of the conjugated interaction fields with the weight of eq. (3.11), i.e.,
including the configurational average, are proportional to each other (cf. appendix A.3.1).
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A.2 Quadratic theory for arbitrary sequence distributions

In the general case of arbitrary Gaussian-chain copolymer sequences or (non-Markovian)
sequence distributions without A� B exchange symmetry, the expansion of the effective
Hamiltonian ĥ, cf. eq. (3.15), up to second order in σ̂, %̂ is

ĥ[σ̂, %̂] =
∑

ν

pν ln pν (A.8)

+
1

8%2
0

∑

k 6=0

(
2Lχ− χ2

∑

ν

pν
∑

s1,s2

(
qν(s1)− q

)(
qν(s2)− q

)
e−|s2−s1|k

2
)
σ̂kσ̂−k

− i χκ
4%2

0

∑

k 6=0

∑

ν

pν
∑

s1,s2

(
qν(s1)− q

)
e−|s2−s1|k

2
σ̂k%̂−k

+
κ2

8%2
0

∑

k 6=0

(
2L

κ
+
∑

s1,s2

e−|s2−s1|k
2

)
%̂k%̂−k +O

(
%̂3
k, %̂

2
kσ̂k, %̂kσ̂

2
k, σ̂

3
k, . . .

)
.

Elimination of ρ̂ with the saddle-point relation analogous to eq. (3.24) shows that the
generalization of the second-order structure function S(k2) in eq. (3.25), decisive for
the instability of the disordered, homogeneous state, reads

S̃
(
k2
)

=
∑

ν

pν
∑

s1,s2

qν(s1)qν(s2)e−|s2−s1|k
2−

(∑
ν pν

∑
s1,s2

qν(s1)e−|s2−s1|k
2
)2

∑
ν pν

∑
s1,s2

e−|s2−s1|k2
. (A.9)

Here, ν indexes individual sequences, not sequence classes. The last term vanishes only
if each sequence ν and its complement ν, cf. eq. (B.5), have equal concentrations in the
melt. Note that the general expression eq. (A.9) has to be considered especially for a
single (asymmetric) sequence.

A.2.1 Relation to random phase approximation

The second-order structure function eq. (A.9) is proportional to the function Fq, q = k2,
defining the scattering function of the disordered melt within random phase approxima-
tion (RPA) [76, 45], see sec. A.2.2 below. This can be seen by rewriting eq. (A.9) using
the definition of our type variable, q(s) = δs,A − δs,B, where δs,J = 1, if s is of type J ,
and zero otherwise. First, we have

∑

ν

pν
∑

s1,s2

qν(s1)qν(s2)e−|s2−s1|k
2

(A.10)

=
∑

ν

pν
∑

s1,s2

(
δ(ν,s1),A − δ(ν,s1),B

) (
δ(ν,s2),A − δ(ν,s2),B

)
e−|s2−s1|k

2

= SAA
(
k2
)

+ SBB
(
k2
)
− 2SAB

(
k2
)

cf. the correlation defined in eq. (A.20) below. Similarly, using 1 = δs,A + δs,B, we find

∑

ν

pν
∑

s1,s2

qν(s1)e−|s2−s1|k
2

= SAA
(
k2
)
− SBB

(
k2
)

(A.11)
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and ∑

ν

pν
∑

s1,s2

e−|s2−s1|k
2

= SAA
(
k2
)

+ SBB
(
k2
)

+ 2SAB
(
k2
)
, (A.12)

which finally gives for S̃(k2)

S̃
(
k2
)

= 4
SAA

(
k2
)
SBB

(
k2
)
−
(
SAB

(
k2
))2

SAA (k2) + SBB (k2) + 2SAB (k2)
, (A.13)

proportional to the response function eq. (A.19).

A.2.2 Response function within RPA

The RPA approach employs the fluctuation-response theorem to calculate the response
function of the copolymer melt, cf., e.g., [117]. Generally in linear response, the Fourier

amplitudes Φ
(A)
k of an A (excess) density wave due to an excitation Ψ (with amplitudes

Ψk) that acts on A segments only, are

Φ
(A)
k = αχkΨk, (A.14)

with response coefficients αχk. First, the aim is to determine the response without
incompatibility between segment types A and B (sometimes called athermal case),

Φ
(A)
k = αkΨk. (A.15)

In order to calculate αk for the incompressible system, one introduces an internal field
Ψ̂ which acts both on A and on B segments and which imposes conservation of the sum
of A and B segment densities:

Φ
(A)
k = αAAk

(
Ψk + Ψ̂k

)
+ αABk Ψ̂k (A.16)

Φ
(B)
k = −Φ

(A)
k = αBBk Ψ̂k + αBAk

(
Ψ̂k + Ψk

)
(A.17)

(since A and B waves must have equal amplitudes, but opposite signs in the incom-
pressible system). Herein, αJKk is the coefficient for the response of J segments due to
an excitation of (chemically coupled) K segments on the same copolymer. Solving for
Ψ̂k, one finds

Ψ̂k = − αAAk + αBAk

αAAk + αABk + αBAk + αBBk

Φ
(A)
k (A.18)

and thus for the response coefficient without AB repulsion, using αBAk = αABk for the
correlation functions,

αk =
αAAk αBBk −

(
αABk

)2

αAAk + αBBk + 2αABk

. (A.19)

The αJKk are Fourier-transformed density-density correlations (due to connectivity only)
of type J with type K segments residing on one copolymer, averaged over the sequence
distribution, e.g., the correlation of A with A is

αAAk =
∑

ν

pν
∑

s1,s2

δ(ν,s1),Aδ(ν,s2),A e−|s2−s1|k
2

=: SAA
(
k2
)
, (A.20)
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for Gaussian chains with discrete segments, cf. sec. C. The function eq. (A.19) is seen
to be (up to a prefactor) the second-order structure function eq. (A.9), cf. eq. (A.13).

On the basis of the αk, the response with incompatibility χ can be calculated with

the following mean-field argument. The excitation Ψk is augmented by χΦ
(A)
k , since A

density modulations now act attractively on type A segments,

Φ
(A)
k = αk

(
Ψk + χΦ

(A)
k

)
⇒ 1

αχk
=

1

αk
− χ. (A.21)

A.3 Relation between second-order vertices of functionals in
σ̂ and in σ and relation to scattering function

Our free-energy functional is not a series expansion in the Fourier amplitudes of the
physical A excess density,

σk =
1

V

N∑

j=1

L∑

s=1

(
qj(s)− q

)
eik·rj(s), (A.22)

but in the amplitudes of a conjugated interaction field σ̂. Ensemble averages of the
density σ and the interaction field σ̂ are proportional to each other, their covariances
or field fluctuations are not (cf., e.g., [97]), as detailed in sec. A.3.1. Therefore the
coefficients in our functional cannot be directly identified with inverse density (σ-)
correlation functions of the melt. Yet, as long as we only address ensemble averages
within mean-field theory we are free to expand the free-energy functional in terms of
the interaction field, which then serves as an order parameter. With this choice, the
vertices thus do not coincide with those in the free-energy functional in, e.g., ref. [42],
but recover the results of the latter theory on the Gaussian level, as will be shown
below, in sec. A.3.2.

A.3.1 Averages and covariances of the collective density σ and its
conjugated field σ̂

In order to highlight differences that arise in the coefficients of the free-energy functional,
particularly regarding the relation between the second-order coefficient and the inverse
scattering function, we consider the relation for the covariances

〈σk1σk2〉cov := 〈σk1σk2〉H − 〈σk1〉H〈σk2〉H. (A.23)

For better traceability of this derivation, the Hamiltonian is reduced to incompatibility
and connectivity. Introducing an auxiliary field h that couples linearly to σ, the first
two moments of the collective A excess density are obtained as

〈σk1〉H =
∂ lnZσ
∂h−k1

∣∣∣∣
h=0

(A.24a)

〈σk1σk2〉cov =
∂2 lnZσ

∂h−k1∂h−k2

∣∣∣∣
h=0

. (A.24b)
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from the (generating) partition function

Zσ :=

〈
exp

{
NLχ

4%2
0

∑

k

σkσ−k + σkh−k

}〉

HC

, (A.25)

where we dropped the combinatorial prefactor Ω.

The HS transform induces additional integrations over the modes of the interaction
field σ̂ (cf. eq. (3.7)),

Zσ (A.26)

=

〈∫
D[σ̂]

∏

k

exp

{
−NLχ

4ρ2
0

σ̂kσ̂−k −
%2

0

NLχ
hkh−k +

NLχ

2%2
0

σ̂k

(
σ−k +

2ρ2
0

NLχ
h−k

)}〉

HC

=

∫
D[σ̂] exp

{
− %2

0

NLχ

∑

k

(
hk −

NLχ

2%2
0

σ̂k

)(
h−k −

NLχ

2%2
0

σ̂−k

)
+
∑

ν

Nν ln zν [σ̂]

}
,

with

zν [σ̂] =

〈
exp

{
χ

2%0

∑

k

σ̂k
∑

s

(
qν(s)− q

)
e−ik·r(s)

}〉
(A.27)

(with
〈
·
〉

the single-chain average eq. (3.13)). Thus, for the averages one has

〈σk1〉H =
∂ lnZσ
∂h−k1

∣∣∣∣
h=0

= 〈σ̂k1〉Nĥ, (A.28a)

for the variances, however:

〈σk1σk2〉cov

= − 2%2
0

NLχ

∂

∂h−k1

{
1

Zσ

∫
D[σ̂]

(
hk2 −

NLχ

2%2
0

σ̂k2

)

× exp

{
− %2

0

NLχ

∑

k

(
hk −

NLχ

2%2
0

σ̂k

)(
h−k −

NLχ

2%2
0

σ̂−k

)
+
∑

ν

Nν ln zν [σ̂]

}}∣∣∣∣∣
h=0

= −〈σ̂k1〉Nĥ〈σ̂k2〉Nĥ + 〈σ̂k1 σ̂k2〉Nĥ −
2%2

0

NLχ
δk1,−k2

= 〈σ̂k1 σ̂k2〉cov −
2%2

0

NLχ
δk1,−k2 (A.28b)

A.3.2 Comparison with Fredrickson et al.

The order and set of approximations as well as the order-parameter field in our free-
energy functional are different from those chosen by Fredrickson et al. [42]. We expand
the effective Hamiltonian in eq. (A.26) (at h = 0) in the amplitudes of the interaction
field σ̂ (which, according to the saddle-point relation, must be small if those of the
collective density are). The authors of ref. [42] first introduce functional integrations
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over both σ and an auxiliary field σ̂, the latter to fix σ to the physical collective density.
In our model notation of eq. (A.26), this procedure amounts to writing

Zσ =

∫
D[σ̂, σ] exp

{∑

k

(NLχ
4%2

0

σkσ−k +
(
iσ̂−k +h−k

)
σk

)
+N

∑

ν

pν ln ẑν [σ̂]

}
, (A.29)

with the single-sequence partition functions

ẑν [σ̂] :=

〈
exp

{
− i

V

∑

k

σ̂−k
∑

s

(
qν(s)− q

)
eik·r(s)

}〉
(A.30)

Then, they expand the logarithm of the partition function up to fourth order in the field
σ̂, in order to eliminate σ̂ at the saddle point in favor of the (averaged) collective density
σ. In doing so, Fredrickson et al. restrict their theory to the limit of many blocks per
chain and perform the expansion with certain further approximations, which we do not
impose. Observing these restrictions, the vertex functions arising in the expansions
of their functional and of (A.27) can be mapped onto each other. Our second-order
vertex function in a λ-distribution and for q = 0, is for discrete segments given by S(k2)
from eq. (C.14), and in the continuous-chain limit by s(k2), eq. (C.15). The function
s(x)/Q gives the function G2 (x) /(C2M) (eq. (B.19) in ref. [42]) when invoking the
approximations of large Q and |λQ| � 1 of ref. [42]. Thus, the relation to our discrete
structure function in the symmetric case (f = 1/2 or C2 = 1/4) is

G2

(
k2
)

=̂
1

4L
S
(
k2/M

)
. (A.31)

With this correspondence, Fredrickson et al. obtain, from their terms quadratic in σ̂,
the saddle point

σ̂k =
iV 2

4NLG2 (k2)
σk, (A.32)

and the effective Hamiltonian (per chain) up to second order

L

8%2
0

∑

k

(
1

G2 (k2)
− 2χ

)
σkσ−k. (A.33)

The inverse coefficient of this quadratic term then gives the Fourier-transformed A
excess density-density correlation or variance within saddle-point approximation,

4%2
0

NL

(
1

G2 (k2)
− 2χ

)−1

u 〈σkσ−k〉cov , (A.34)

and is therefore in ref. [42] identified as the scattering function Σ(k2) ∝ 〈σkσ−k〉cov

measurable in experiments (not to be confused with our function S(k2)).
On the other hand, expanding the effective Hamiltonian in eq. (A.26) in our interaction

field σ̂ yields the second-order term

Lχ

4%2
0

∑

k

(
1− χS

(
k2/M

)

2L

)
σ̂kσ̂−k=̂

Lχ

4%2
0

∑

k

(
1− 2χG2

(
k2
))
σ̂kσ̂−k, (A.35)
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cf. eqs. (3.18) or (3.25), the =̂ indicating that the left-hand expression reverts to the
right-hand expression with the approximations of ref. [42] for the structure function,
cf. eq. (A.31). Obviously, the instability occurs at the same incompatibility χ in both
cases. If we now insert the variance of our field σ̂ at the saddle-point level from the
coefficient in eq. (A.35), cf. eq. (3.35), into the relation eq. (A.28b), we can recover the
(mean-field) variance of the A excess density as

2%2
0

NLχ
(
1− 2χG2 (k2)

) − 2%2
0

NLχ
u 〈σkσ−k〉cov , (A.36)

which is the result from eq. (A.34). Due to the different order of saddle-point and
small-amplitudes approximation, and due to the restriction to many-block chains in
ref. [42], we abstain from comparing the fourth-order terms and the lamellar free energy.
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B Composition and sequence distribution
of random Q-block copolymers

B.1 Number and classes of Q-block sequences

Here, our goal is to motivate the contributions to N (Q) (cf. eq. (2.6)), the number
of possible different sequences or species in a Q-block copolymer melt. Due to the
symmetry with respect to the two ends of a polymer, N (Q) is smaller than 2Q for Q ≥ 2.
First, we single out the set of sequences with a symmetry of the following kind: We
depict a sequence in a folded state, with two branches of equal length emanating from
the folding point. The general procedure to generate a sequence in this set is to assign
different types to the two opposite blocks on different branches, as in the example

dQ
2
e

· · · 1

· · ·
Q

or generally q(β) = −q(Q+ 1− β), β ∈ {1, . . . , Q}, (B.1)

with dxe := min (n ∈ N : n ≥ x). According to this prescription, starting from the
folding point, only the types of the inner blocks on one branch, e.g., of those with
numbers from 2 to dQ2 e, can be chosen freely among A and B. Since we do not distinguish
the two ends of a polymer, the permutation of the end’s block-types is equivalent to the
simultaneous permutation of the types of all blocks with numbers 2 to bQ2 c and hence
does not contribute another factor 2 for the number of different sequences in this set.
Hence the number of sequences in this set (for Q even, the A� B exchange-symmetric
sequences) is

Nsymm(Q) = 2d
Q
2
e−1. (B.2)

A sequence from the second, disjoint set, without the above mentioned symmetry, is
generated by fixing the type of at least one block β as equal to that of the opposite
block on the other branch as q(β) = q(Q+ 1− β). Therefore, this second set comprises

Nasymm(Q) = 2Q−1 (B.3)

sequences, and the total number of different species is

N (Q) = Nsymm(Q) +Nasymm(Q) = 2d
Q
2
e−1 + 2Q−1. (B.4)

In this context, we define the complement ν of a sequence ν as the sequence obtained
from ν by exchanging A and B,

qν(s) = −qν(s) ∀s = 1, . . . , L (B.5)

(for Q even, ν and ν can actually be the same sequence, such as AABB and BBAA
from the first, symmetric set). In globally A� B exchange-symmetric distributions, ν
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and ν have equal concentrations and coincide in the structure functions of even order
(see, e.g., eq. (C.9) below). For these distributions, it is convenient to combine ν and
ν into one sequence class. An example is the sequence class indexed by 2 for triblock
copolymers, {AAB,BBA}.

B.2 Transition matrix and block-type correlation of Markovian
sequences

In terms of the global probability p to find a block of type A and the correlation λ of
the types of adjacent blocks (defined in section 2.1), the transition matrix reads

M̂ =

(
p(1− λ) + λ p(1− λ)

(1− p)(1− λ) 1− p(1− λ)

)
. (B.6)

Note that for ideal random Q-block sequences with λ = 0, the composition (or A
content) distribution is binomial and thus has variance p(1− p)/Q. For the special case
p = 1/2 (symmetric random block copolymers) mostly referred to in this work, M̂ is

M̂ =
1

2

(
1 + λ 1− λ
1− λ 1 + λ

)
, (B.7)

thus a block of the same type is attached with probability (1 + λ)/2. Powers of M̂ are
needed to compute the type correlation of non-adjacent blocks and can be accessed via
the diagonalization

M̂ =

(
p 1

1− p −1

)

︸ ︷︷ ︸
T̂

(
1 0
0 λ

)

︸ ︷︷ ︸
D̂

(
1 1

1− p −p

)

︸ ︷︷ ︸
T̂−1

. (B.8)

Since M segments of the same type form one block, and in order to address single
monomer positions for the structure functions in section C, it is convenient to introduce
the block number of segment s as

β(s) = d s
M
e. (B.9)

The conditional probabilities to find segment s2 of type J , separated from segment s1 of
type K on the same chain by ∆β := |β(s1)−β(s2)| blocks, with J,K ∈ {A,B} mapped
onto the matrix indices {1, 2}, are, according to (B.8), the entries of the matrix

M̂∆β =

(
p+ (1− p)λ∆β p(1− λ∆β)

(1− p)(1− λ∆β) 1− p+ pλ∆β

)
. (B.10)

B.3 Moments of composition distribution

Basic characteristics of the block-type sequence distribution are the variance in A
content (composition) and higher moments, determined by averaged intra-chain type
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correlations. For a Markovian distribution defined by p and λ, they can be calculated
using the transition matrix M̂ presented in appendix B.2. These moments however do
not distinguish sequences which have equal A contents, but different internal topologies
of A-B contacts.

For a given sequence ν, the nth moment of composition is simply the nth power of
the net type A excess of this sequence:

mn,ν :=
1

Ln

(
L∑

s=1

qν(s)

)n
, n ∈ N. (B.11)

The corresponding nth moment of a distribution of sequences, characterized by the
sequence concentrations {pν}, is defined as

mn :=
1

Ln

∑

s1,...,sn

[
qν(s1)qν(s2) · · · qν(sn)

]
pν

(B.12)

=
1

Ln

∑

ν

pν
∑

s1,...,sn

qν(s1)qν(s2) · · · qν(sn).

In a λ-defined distribution, the average [f(q(s1), . . . , q(sn))]λ over all sequences can be
performed using the conditional probabilities in (B.10) and the average A content p,
which determines the first moment as q := m1 = 2p− 1. In order to obtain the second
moment, we compute the type correlation of two segments on the same chain whose
block numbers differ by ∆β ∈ {0, . . . , Q− 1}, corrected for the average A excess q :

[(
q(s1)− q

)(
q(s2)− q

)]
λ

:=
∑

ν

pν(λ)
(
qν(s1)− q

)(
qν(s2)− q

)
(B.13)

= M̂∆β
AAp− M̂

∆β
BAp− M̂

∆β
AB(1− p) + M̂∆β

BB(1− p)− q2

= (1− q2)λ∆β

Analogously as in eq. (B.13), we calculate the type correlation of three segments whose
two smallest block distances are given by ∆β1 and ∆β2:

[(
q(s1)− q

)(
q(s2)− q

)(
q(s3)− q

)]
λ

(B.14)

= [q(s1)q(s2)q(s3)]λ − q
∑

1≤i<j≤3

[(
q(si)− q

)(
q(sj)− q

)]
λ
− q3

= −2q(1− q2)λ∆β1+∆β2 = −2q(1− q2)λβ(s3)−β(s1)

In the following, the type variable will always be defined relative to the average A
excess, (

q(s)− q
)
→ q(s), (B.15)

and the moments correspondingly as centered moments,

mn :=
1

Ln

∑

ν

pν
∑

s1,...,sn

(
qν(s1)− q

)
· · ·
(
qν(sn)− q

)
, (B.16)

95



APPENDIX B. COMPOSITION AND SEQUENCE DISTRIBUTION OF RANDOM
Q-BLOCK COPOLYMERS

in order to free the expressions from products of lower moments and powers of q . With
this definition, four segments have the type correlation

[q(s1)q(s2)q(s3)q(s4)]λ (B.17)

= 4q2(1− q2)λβ(s4)−β(s1) +
(
1− q2

)2
λβ(s4)−β(s3)+β(s2)−β(s1)

In eqs. (B.14) and (B.17), we assumed a prior permutation of the segment indices {sj}
such that i < j ⇒ β(si) ≤ β(sj), to avoid extensive use of minima and maxima of the
block distances.

B.3.1 Second moment

Summing eq. (B.13) over all segments’ block distances ∆β gives the second-order
moment in a Markovian, λ-defined sequence distribution:

m2 :=
1

L2

L∑

s1,s2=1

[q(s1)q(s2)]λ (B.18)

=
1− q2

L2





M∑

s1,s2=1

Q+ 2M2
Q−1∑

∆β=1

(Q−∆β)λ∆β





= (1− q2)
M2

L2



Q+ 2

(
(Q+ 1)− d

dλ
λ

)
λ

Q−2∑

∆β′=0

λ∆β′





=
1− q2

Q2

Q(1− λ2)− 2λ(1− λQ)

(1− λ)2

=
1− q2

Q



1 +

2λ
(
Q− 1−∑Q−1

n=1 λ
n
)

Q(1− λ)





=
1− q2

Q

{
1 +

2λ
∑Q−2

n=0 (Q− 1− n)λn

Q

}

with the representation in the last line of eq. (B.18), particularly suitable for small Q.
(Note the trivial result q2 = 1− q2 in the case λ = +1.) For symmetric triblocks (q = 0
and Q = 3) one finds:

m2 =
1

3
+

2λ(2 + λ)

9
. (B.19)
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B.3.2 Fourth moment

From eq. (B.17), we derive the fourth moment in a symmetric (q = 0), λ-defined
distribution:

m4 :=
1

L4

L∑

s1,s2,s3,s4=1

[q(s1)q(s2)q(s3)q(s4)]λ (B.20)

=

{
Q+ 6

Q−1∑

∆β2=1

(Q−∆β2)

︸ ︷︷ ︸
Q(Q−1)/2

+ 8

Q−1∑

∆β1=1

(Q−∆β1)λ∆β1

+ 12

Q−2∑

∆β1=1

Q−1−∆β1∑

∆β3=1

(Q−∆β1 −∆β3)λ∆β1+∆β3

+ 24

Q−2∑

∆β1=1

Q−1−∆β1∑

∆β2=1

(Q−∆β1 −∆β2)λ∆β1

+ 24

Q−3∑

∆β1=1

Q−2−∆β1∑

∆β2=1

Q−1−∆β1−∆β2∑

∆β3=1

(Q−∆β1 −∆β2 −∆β3)λ∆β1+∆β3

}
· 1

Q4

=
3Q− 2

Q3
+

4λ (3Q− 4)
(
Q− 1−∑Q−1

n=1 λ
n
)

Q4(1− λ)︸ ︷︷ ︸
L2

−
12λ2

{
Q
(

2λQ−1 − (Q− 1)(1− λ) + 4
)
− 6

∑Q−1
n=0 λ

n
}

Q4(1− λ)3

︸ ︷︷ ︸
L3

with the expanded expressions suitable for small Q:

Q4L2 = 4λ(3Q− 4)

Q−2∑

n=0

(Q− 1− n)λn (B.21)

and

Q4L3 = 12λ2
Q−4∑

n=0

(n+ 1) (Q− 2− n) (Q− 3− n)λn (B.22)

(the last term appears if four pairwise different block numbers are possible and thus is
relevant for Q > 3 only).
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C Structure functions

In this chapter, we compute the structure functions, technically vertex functions of the
free-energy functional, for the A� B symmetric case, cf. eqs. (3.18), (3.25), and (3.32).
For the definitions, we choose the expressions for individual block-type sequences ν; the
average over any sequence distribution is a superposition of the form eq. (3.23). As a
prerequisite, we derive general features and the number of independent arguments of
the structure functions, in sec. C.1. Subsequently, we calculate the structure functions,
averaged over a λ-defined sequence distribution1 in sec. C.5, and sequence-specific in
sec. C.6.

Wave numbers k := |k| are normalized with the rms end-to-end distance b of a Kuhn
statistical segment [in the continuous-chain limit, with a block’s rms end-to-end distance√
Mb], k2 := b2k̃2/(2d) [k2 := Mb2k̃2/(2d)], where k̃ is the physical wave number.

C.1 Gaussian-chain conformational averages

Here, we derive the Fourier modes or characteristic functions of the conformational
probability density of a Gaussian chain (with discrete segments), which appear in the
vertices of the expansions eqs. (3.18), (3.25), and (3.32). With the normalization of the
single-chain measure, anticipating the thermodynamic limit, V →∞,

lim
V→∞

1

V

∫
D[r(s)] exp

{
−1

4

L∑

s=1

(
r(s)− r(s− 1)

)2
}

= lim
V→∞

1

V

∫
ddr(0)

∫
D[b(s)] exp

{
−1

4

L∑

s=1

b(s) · b(s)

}
= (4π)Ld/2, (C.1)

and using

r(sr) = r(0) +

L∑

s=1

b(s)Θsr−s (C.2)

(Θ the discrete Heaviside function), the n-point correlations are
〈

exp
{
−i

n∑

r=1

kr · r(sr)
}〉

(C.3)

= lim
V→∞

1

V
(4π)−Ld/2

∫
ddr(0) exp

{
−i

n∑

r=1

kr · r(0)
}

×
∫
D[b(s)] exp

{
−1

4

L∑

s=1

b(s) · b(s)− i
n∑

r=1

kr ·
L∑

s=1

b(s)Θsr−s

}
.

1Diagrammatic techniques for the calculation of vertex functions in a Landau free energy of AB
multiblock copolymers, with a replica approach, may be found in [3, 4]. Explicit expressions ensue
only for special distributions.
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Evaluation of eq. (C.3) with min(a, b) = (a+ b− |a− b|)/2 gives

〈
exp

{
−i

n∑

r=1

kr · r(sr)
}〉

(C.4)

= δ∑
r
kr,0 exp

{
−

L∑

s=1

( n∑

r=1

krΘsr−s

)2
}

= δ∑
r
kr,0 exp

{
−

n∑

r,r′=1

kr · kr′

L∑

s=1

Θmin(sr,sr′ )−s

}

= δ∑
r
kr,0 exp

{
−1

2

n∑

r,r′=1

(sr + sr′)kr · kr′ +
1

2

n∑

r,r′=1

|sr − sr′ |kr · kr′

}

= δ∑
r
kr,0 exp

{
n∑

1=r<r′

|sr′ − sr|kr · kr′

}
.

with δ the Kronecker symbol in d dimensions. Due to the uniformity of the probability
density with respect to the coordinates of a single chain’s center of mass, contributions
to the characteristic function arise only if the n wave vectors sum to zero. The
conformational average (C.4) can be computed similarly for continuous Gaussian chains
(see e.g. [47], appendix B: Wiener correlator), with the same result.

In order to sort and calculate the contributions to n-point structure functions, eq. (C.4)
can be rewritten for ordered segment indices {sj}, such that i < j ⇒ si ≤ sj , as

δ∑
r
kr,0 exp

{
n∑

1=r<r′

|sr − sr′ |kr · kr′

}
(C.5)

= δ∑
r
kr,0 exp

{
n∑

r′=1

sr′

[(
kr′ +

∑

r<r′

kr

)2
−
(∑

r<r′

kr

)2
]}

= exp

{
−
n−1∑

r=1

(
sr+1 − sr

) ( r∑

r′=1

kr′

)2
}
.

C.2 Debye function

C.2.1 Discrete segments

The second-order structure or density-density correlation function of a homopolymer
(subsequence) of length L is, with

〈
·
〉

the conformational Gaussian-chain average
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calculated in eq. (C.4), for discrete segments

D(L, k2) :=
L∑

s1,s2=1

〈
e−i
(
k1·r(s1)+k2·r(s2)

)〉∣∣∣∣
k:=k1

(C.6)

=
L∑

s1,s2=1

e−|s2−s1|k
2

= L+ 2
L∑

s1<s2

e−(s2−s1)k2 = L+ 2
L−1∑

∆s=1

(L−∆s) e−∆s k2

= L
1 + e−k

2

1− e−k2
− 2e−k

2 1− e−Lk
2

(
1− e−k2

)2 .

C.2.2 Continuous-chain limit

The structure function for a continuous-chain Gaussian homopolymer, comprising `
blocks of equal length, is

d(`, k2) = 2

∫ `

0
ds1

∫ s1

0
ds2 e−(s1−s2)k2 =

e−`k
2 − 1 + `k2

k4/2
(C.7)

Here, k is rescaled with the rms end-to-end-distance of a block.

C.3 Second-order structure function

The second-order structure function Sν(k2) for an arbitrary sequence ν of length L is

Sν(k2) :=
L∑

s1,s2=1

qν(s1)qν(s2)
〈

e−i(k1·r(s1)+k2·r(s2))
〉∣∣∣

k:=k1

=
L∑

s1,s2=1

qν(s1)qν(s2)e−|s2−s1|k
2
, (C.8)

and thus, generally, a polynomial in exp(−k2), a property which can be exploited
at small Q and L to find the maxima with respect to k. By construction, Sν(k

2) is
nonnegative for all k. In compact form, each Sν(k

2) can be represented as a linear
combination of Debye functions, cf. sec. C.2. The required splitting of the sums can
be exemplified for a simple case, the structure function for class 2, AAB/BBA, of the
triblock copolymer sequences, cf. eqs. (3.44):

S2(k2) =

{
2M∑

s1,s2=1

+
3M∑

s1,s2=2M+1

−2
2M∑

s1=1

3M∑

s2=2M+1

}
e−|s2−s1|k

2
(C.9)

= D(2M,k2) +D(M,k2)−
(
D(3M,k2)−D(2M,k2)−D(M,k2)

)

= −D(3M,k2) + 2D(2M,k2) + 2D(M,k2).
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C.4 Three-point and fourth-order structure functions

Structure functions of two and three wave vectors appear in the fourth-order vertices of
eq. (3.25). The local fourth-order vertex (∝

∫
ddr τ̂4(r) in real space) comprises two

terms: The first term in eq. (3.25) due to the density interaction modes features the
square of the three-point correlation

S(α)
ν (k1,k2) :=

L∑

s1,s2,s3=1

qν(s1)qν(s2)
〈

e−i
∑3

r=1 kr·r(sr)
〉
. (C.10)

The second term contains the structure function

S(β)
ν (k1,k2,k3) :=

L∑

s1,s2,s3,s4=1

qν(s1)qν(s2)qν(s3)qν(s4)
〈

e−i
∑4

r=1 kr·r(sr)
〉
. (C.11)

The structure function in the nonlocal (‘squared gradient square’) fourth-order vertex is

S(γ)
ν

(
k2

1, k
2
2

)
(C.12)

:=

L∑

s1,s2,s3,s4=1

qν(s1)qν(s2)qν(s3)qν(s4)
〈

e−i(k1·r(s1)+k3·r(s3))
〉〈

e−i(k2·r(s2)+k4·r(s4))
〉
.

= Sν
(
k2

1

)
Sν
(
k2

2

)
.

In terms of the second-order structure functions Sν(k2) for each sequence ν, cf. eq. (C.8),
and the sequence concentrations pν , the averaged S(γ)

(
k2

1, k
2
2

)
can be expressed as

S(γ)
(
k2

1, k
2
2

)
=
∑

ν

pνSν
(
k2

1

)
Sν
(
k2

2

)
(C.13)

and therefore is nonnegative for an arbitrary sequence distribution {pν} for all k1, k2.

C.5 Structure functions in a symmetric Markovian sequence
distribution

C.5.1 Second-order structure function

Inserting the type correlation of two segments ∆β blocks apart, eq. (B.13), into eq. (3.23)
and performing the sum over all pairs, yields the expression eq. (3.37) for the second-
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order structure function S
(
k2
)

in a (Markovian) λ-distribution:

S
(
k2
)

=
L∑

s1,s2=1

[q(s1)q(s2)]λ e−|s2−s1|k
2

(C.14)

=
L∑

s1,s2=1

λ|β(s2)−β(s1)|e−|s2−s1|k
2

= Q
M∑

s1,s2=1

e−|s2−s1|k
2

+ 2

Q−1∑

∆β=1

(Q−∆β)λ∆β
M∑

s1=1

(∆β+1)M∑

s2=∆βM+1

e−|s2−s1|k
2

= QD(M,k2) +
(
D(Q,Mk2 − ln(λ))−Q

) M∑

s1,s2=1

e−(s2−s1)k2

= QD(M,k2) + 2λ
e−Mk2

1− λe−Mk2


Q−

1−
(
λe−Mk2

)Q

1− λe−Mk2




sinh2
(
Mk2

2

)

sinh2
(
k2

2

)

(this expression had been given earlier in [125]). The argument Mk2 − ln(λ) of the
Debye function is symbolic notation: powers of e−k

2
in eq. (C.6) must be replaced by

the respective powers of λe−Mk2 .

Continuous-chain limit

For a Markovian distribution of continuous-chain Q-block copolymers one obtains

s
(
k2
)

:= lim
M→∞

S
(
k2/M

)

M2
(C.15)

= Qd
(
1, k2

)
+ 8λ

sinh2
(
k2

2

)
e−k

2

k4
(
1− λe−k2

)


Q−

1−
(
λe−k

2
)Q

1− λe−k2


 .

Here, k is rescaled with the block size, as in eq. (C.7).

C.5.2 Three-point and fourth-order structure functions

Here, we sketch our approach in computing the structure functions in the fourth-order
vertices, eqs. (C.10) to (C.12), of a λ-distribution for general Q, which requires extended
sorting of the multiple sums and applying combinatorics. As an example, we give the
derivation of S(α) in a λ-distribution; S(β), S(γ), and the continuous-chain versions are
constructed similarly.
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Three-point structure function

The three-point structure function in the local fourth-order vertex is

S(α) (k1,k2) (C.16)

:=
L∑

s1,s2,s3=1

[q(s1)q(s2)]pν

〈
e−ik1·(r(s1)−r(s3))−ik2·(r(s2)−r(s3))

〉

=
L∑

s1,s2,s3=1

[q(s1)q(s2)]pν e|s2−s1|k1·k2−|s3−s2|(k1·k2+k22)−|s3−s1|(k1·k2+k21)

For a Markovian sequence distribution, it can be expressed in terms of the block-type
correlation parameter λ :

S(α) (k1,k2) = S(α) (k2,k1) (C.17)

=
L∑

s1,s2,s3=1

λ|β(s2)−β(s1)|e|s2−s1|k1·k2−|s3−s2|(k1·k2+k22)−|s3−s1|(k1·k2+k21)

Splitting the sums according to the possible combinations of block distances between
the sj and observing the symmetries results in the following summands of eq. (C.17):

Q

M∑

s1,s2,s3=1

e|s2−s1|k1·k2−|s3−s2|(k1·k2+k22)−|s3−s1|(k1·k2+k21), (C.17a)

2

Q−1∑

∆β=1

(Q−∆β) (C.17b)

×
M∑

s1,s2=1

(∆β+1)M∑

s3=∆βM+1

e|s2−s1|k1·k2−(s3−s2)(k1·k2+k22)−(s3−s1)(k1·k2+k21),

2

Q−1∑

∆β=1

(Q−∆β)λ∆β (C.17c)

×





M∑

s1=1

(∆β+1)M∑

s2,s3=∆βM+1

e(s2−s1)k1·k2−|s3−s2|(k1·k2+k22)−(s3−s1)(k1·k2+k21)

+
M∑

s2=1

(∆β+1)M∑

s1,s3=∆βM+1

e(s1−s2)k1·k2−(s3−s2)(k1·k2+k22)−|s3−s1|(k1·k2+k21)



 ,
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and

2

Q−2∑

∆β=1

Q−∆β−1∑

∆γ=1

(Q−∆β −∆γ) (C.17d)

×
{
λ∆β

M∑

s1=1

(∆β+1)M∑

s2=∆βM+1

(∆β+∆γ+1)M∑

s3=(∆β+∆γ)M+1

e−(s3−s2)(k1+k2)2−(s2−s1)k21

+ λ∆β+∆γ
M∑

s1=1

(∆β+∆γ+1)M∑

s2=(∆β+∆γ)M+1

(∆β+1)M∑

s3=∆βM+1

e−(s2−s3)k22−(s3−s1)k21

+ λ∆γ

∆β+1)M∑

s1=∆βM+1

(∆β+∆γ+1)M∑

s2=(∆β+∆γ)M+1

M∑

s3=1

e−(s1−s3)(k1+k2)2−(s2−s1)k22

}
.

The first term, eq. (C.17a), is Q times the function

G̃(M,k2
1, k

2
2, k

2
+)

:=
M∑

s1,s2,s3=1

e|s2−s1|k1·k2−|s3−s2|(k1·k2+k22)−|s3−s1|(k1·k2+k21) (C.18)

= M + 2

{
M∑

s1=s2<s3

e−(s3−s2)k2+ +
M∑

s3=s2<s1

e−(s1−s2)k21 +
M∑

s3=s1<s2

e−(s2−s1)k22

+
M∑

s1<s2<s3

e−(s2−s1)k21−(s3−s2)k2+ +
M∑

s1<s3<s2

e−(s3−s1)k21−(s2−s3)k22

+
M∑

s3<s1<s2

e−(s1−s3)k2+−(s2−s1)k22

}
,

with k+ := k1 + k2, which can be expressed as

D
(
M,k2

+

)
+D

(
M,k2

1

)
+D

(
M,k2

2

)
− 2M (C.19)

+ 2
{
G
(
M,k2

1, k
2
2

)
+G

(
M,k2

1, k
2
+

)
+G

(
M,k2

+, k
2
2

)}
,
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with D the Debye function, eq. (C.6), and the function

G
(
L, k2

1, k
2
2

)

:=

L∑

s1<s2<s3

e−(s2−s1)k21−(s3−s2)k22 = G
(
L, k2

2, k
2
1

)
(C.20)

=

L−2∑

∆s=1

L−1−∆s∑

∆t=1

(L−∆s−∆t) e−∆s k21−∆t k22

=
e−(k21+k22)

(
1− e−k

2
1

)(
1− e−k

2
2

)

×



L−

2− e−k
2
1 − e−k

2
2(

1− e−k
2
1

)(
1− e−k

2
2

)

+
e−k

2
1−Lk22

(
ek

2
1 + e−k

2
1 − 2

)
− e−k

2
2−Lk21

(
ek

2
2 + e−k

2
2 − 2

)

(
e−k

2
2 − e−k

2
1

)(
1− e−k

2
1

)(
1− e−k

2
2

)



 .

The second term, eq. (C.17b), can be written as

2

Q−1∑

∆σ=1

(Q−∆σ)

M∑

s1,s2=1

(∆σ+1)M∑

s3=∆σM+1

e|s2−s1|k1·k2−(s3−s2)(k2·k+)−(s3−s1)(k1·k+)

= 2

Q−1∑

∆σ=1

(Q−∆σ) e−∆σMk2+ (C.21)

×
M∑

s3=1

{
M∑

s1=1

e−(s3−s1)k2+ +
M∑

s1<s2

e−(s3−s2)k2+−(s2−s1)k21 +
M∑

s2<s1

e−(s3−s1)k2+−(s1−s2)k22

}

=
(
D
(
Q,Mk2

+

)
−Q

)

×





sinh2
(
Mk2+

2

)

sinh2
(
k2+
2

) e−k
2
+ − e−(M+1)k2+

1− e−k
2
+

{
F
(
M,k2

1, k
2
+ − k2

1

)
+ F

(
M,k2

2, k
2
+ − k2

2

)}



,

with the function

F
(
L, k2

1, k
2
2

)
:=

L∑

s1<s2

es1k
2
1+s2k22 (C.22)

=
ek

2
2

1− ek
2
2





ek
2
1+k22 − eL(k21+k22)

1− ek
2
1+k22

−
eLk

2
2

(
ek

2
1 − eLk

2
1

)

1− ek
2
1



 .
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The third summand, eq. (C.17c), can be written as

(
D
(
Q,Mk2

1 − ln(λ)
)
−Q

)
(C.23)

×





sinh2
(
Mk21

2

)

sinh2
(
k21
2

) ek
2
1 − e(M+1)k21

1− ek
2
1

{
F
(
M,k2

+ − k2
1,−k2

+

)
+ F

(
M,k2

2 − k2
1,−k2

2

)}




+
(
D
(
Q,Mk2

2 − ln(λ)
)
−Q

)

×





sinh2
(
Mk22

2

)

sinh2
(
k22
2

) ek
2
2 − e(M+1)k22

1− ek
2
2

{
F
(
M,k2

+ − k2
2,−k2

+

)
+ F

(
M,k2

1 − k2
2,−k2

1

)}


 ,

and the three summands of eq. (C.17d) as two times the expression

G
(
Q,Mk2

1 − ln(λ),Mk2
+

) sinh
(
Mk21

2

)

sinh
(
k21
2

)
sinh

(
Mk2+

2

)

sinh
(
k2+
2

)
sinh

(
M(k2+−k21)

2

)

sinh
(
k2+−k21

2

) (C.24)

+G
(
Q,Mk2

+,Mk2
2 − ln(λ)

) sinh
(
Mk2+

2

)

sinh
(
k2+
2

)
sinh

(
Mk22

2

)

sinh
(
k22
2

)
sinh

(
M(k2+−k22)

2

)

sinh
(
k2+−k22

2

)

+G
(
Q,Mk2

1 − ln(λ),Mk2
2 − ln(λ)

) sinh
(
Mk21

2

)

sinh
(
k21
2

)
sinh

(
Mk22

2

)

sinh
(
k22
2

)
sinh

(
M(k21−k22)

2

)

sinh
(
k21−k22

2

) .

Restricting the morphology to a lamellar phase with a single wave vector k, we need
two rather simple combinations of arguments in eq. (C.17): The first is

S(α) (k,−k) =

L∑

s3=1

L∑

s1,s2=1

[q(s1)q(s2)]pν e−|s2−s1|k
2

= LS
(
k2
)
, (C.25)
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and the second is S(α) (k,k), which for a λ-distribution becomes

S(α) (k,k) = S(α) (−k,−k) (C.26)

=Q

{
2D
(
M,k2

)
+D

(
M, (2k)2

)
− 2M + 2

{
2G
(
M,k2, (2k)2

)
+G

(
M,k2, k2

)}}

+
(
D
(
Q,M(2k)2

)
−Q

)

×





sinh2
(
M(2k)2

2

)

sinh2
(

(2k)2

2

) + 2
e−(2k)2 − e−(M+1)(2k)2

1− e−(2k)2
F
(
M,k2, (

√
3k)2

)




+ 2
(
D
(
Q,Mk2 − ln(λ)

)
−Q

)

×





sinh2
(
Mk2

2

)

sinh2
(
k2

2

) +
ek

2 − e(M+1)k2

1− ek2

{
F
(
M, (
√

3k)2,−(2k)2
)

+ F
(
M, 0,−k2

)}




+ 4G
(
Q,M(2k)2,Mk2 − ln(λ)

) sinh
(
Mk2

2

)

sinh
(
k2

2

)
sinh

(
M(2k)2

2

)

sinh
(

(2k)2

2

)
sinh

(
M(
√

3k)2

2

)

sinh
(

(
√

3k)2

2

) .

Local four-point structure function

Again with reordered segment indices si, i = 1, 2, 3, 4, such that the block numbers
β(si) fulfill β(si) < β(sj) if i < j, and k+ := k1 +k2 +k3, the local four-point structure
function S(β) in a λ-distribution reads:

S(β) (k1,k2,k3)

=
L∑

s1,s2,s3,s4=1

λβ(s4)−β(s3)λβ(s2)−β(s1) (C.27)

× e|s2−s1|k1·k2+|s3−s1|k1·k3+|s3−s2|k2·k3−|s4−s1|k1·k+−|s4−s2|k2·k+−|s4−s3|k3·k+ .

The computation can be performed analogously as that for S(α) in a λ-distribution,
but we do not present it here, since our fractionation theory requires the functions for
individual sequences anyway.

C.6 Sequence-specific three-point and fourth-order structure
functions used in the fractionation scheme

In the case of a few different sequences only, the structure functions can be calculated
for each sequence, in order to allow in the free-energy optimization for subsystems with
sequence distributions different from the global, λ-defined one (fractionation). The
second-order structure functions of individual triblock sequences, Q = 3, had been given
in sec. 3.3.3. Here, we give explicit expressions for the fourth-order vertices s(α)(k,k),
s(β)(k,k,−k), and s(γ)(k2, k2) needed in the specific case of a lamellar phase with wave
vector k = ±kn in continuous-chain block copolymers.
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C.6.1 s
(α)
ν for individual sequences

For triblock copolymers, the three-point structure functions for each of the sequence

classes defined in eq. (3.42), s
(α)
ν (k,k), read:

s
(α)
1 (k,k) = g̃(3, k2), (C.28a)

s
(α)
2 (k,k) = −g̃(3, k2) + 2

(
g̃(2, k2) + g̃(1, k2) + ∆g̃(2, 3, k2) + ∆g̃(1, 3, k2)

)
, (C.28b)

s
(α)
3 (k,k) = g̃(3, k2)− 4

(
g̃(2, k2)− 2g̃(1, k2)

)
(C.28c)

− 4
(

∆g̃(2, 3, k2)−∆g̃(1, 3, k2)− 2∆g̃(1, 2, k2)
)
,

with

g̃(`, k2) : = 6

∫∫∫ `

0
ds1ds2ds3 e|s2−s1|k

2−2|s3−s2|k2−2|s3−s1|k2 (C.29)

=
1

12k6

(
− e−4`k2 + 64e−`k

2
+ 24`k2e−`k

2 − 63 + 36`k2
)

and

∆g̃(`1, `2, k
2)

: =

∫∫ `1

0
ds1ds2

∫ `2

`1

ds3 e|s2−s1|k
2−2|s3−s2|k2−2|s3−s1|k2 (C.30)

=
1

24k6

(
e−4`1k2 − e−4`2k2 + 4e−(4`2−3`1)k2 − 3e−4(`2−`1)k2 − 4e−`1k

2
+ 3
)
.

Diblocks

For the symmetric AB diblock sequence, the function is

s
(α)
AB(k,k) = −g̃(2, k2) + 4

(
g̃(1, k2) + ∆g̃(1, 2, k2)

)
, (C.31)

for homopolymers with two blocks accordingly s
(α)
AA(k,k) = s

(α)
BB(k,k) = g̃(2, k2).

C.6.2 s
(β)
ν for individual sequences

s
(β)
1 (k,k,−k) = c̃(3, k2), (C.32a)

s
(β)
2 (k,k,−k) = −c̃(3, k2) + 2

(
c̃(2, k2) + c̃(1, k2) + ∆c̃(2, 3, k2)

)
, (C.32b)

s
(β)
3 (k,k,−k) = c̃(3, k2)− 4

(
c̃(2, k2)− 2c̃(1, k2)

)
(C.32c)

+ 4
(

∆c̃(1, 2, k2)− 2∆2c̃(1, 2, 3, k
2)
)
,
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with

c̃(`, k2) (C.33)

:= 8

∫ `

0
ds1

∫ `

s1

ds2

∫ `

s2

ds3

∫ `

s3

ds4 e

{
(s2−s1)+(s4−s3)−(s3−s2)−(s3−s1)−(s4−s1)−(s4−s2)

}
k2

+ 8

∫ `

0
ds1

∫ `

s1

ds3

∫ `

s3

ds2

∫ `

s2

ds4 e

{
(s2−s1)+(s4−s3)−(s2−s3)−(s1−s3)−(s4−s1)−(s4−s2)

}
k2

+ 8

∫ `

0
ds1

∫ `

s1

ds3

∫ `

s3

ds2

∫ `

s2

ds4 e

{
(s2−s1)+(s4−s3)−(s2−s3)−(s3−s1)−(s4−s1)−(s4−s2)

}
k2

=
1

18k8

(
e−4`k2 − 784e−`k

2 − 240`k2e−`k
2

+ 783− 540`k2 + 144`k4
)
,

∆c̃(`1, `2, k
2) (C.34)

:= 8

∫ `1

0
ds1

∫ `1

s1

ds3

∫ `2

`1

ds2

∫ `2

s2

ds4 e

{
(s2−s1)+(s4−s3)−2(s3+s4−s2−s1)

}
k2

+ 16

∫ `1

0
ds1

∫ `1

s1

ds3

∫ `2

`1

ds2

∫ `2

s2

ds4 e

{
−(s3−s1)+(s4−s2)

}
k2 ,

and

∆2c̃(`1, `2, `3, k
2) := 2

∫ `1

0
ds1

∫ `1

s1

ds2

∫ `2

`1

ds3

∫ `3

`2

ds4 e(3s2+s1−3s3−s4)k2 (C.35)

+ 8

∫ `1

0
ds1

∫ `1

s1

ds3

∫ `2

`1

ds2

∫ `3

`2

ds4 e(−s3+s1−s4+s2)k2 ,

where we omit the lengthy results of the integrations for ∆c̃ and ∆2c̃ (these types of
integrals can be evaluated with the aid of maple).

Diblocks

Again, for the symmetric AB diblock sequence, one finds

s
(β)
AB(k,k,−k) = −c̃(2, k2) + 4c̃(1, k2) + 2∆c̃(1, 2, k2), (C.36)

and s
(β)
AA(k,k,−k) = s

(β)
BB(k,k,−k) = c̃(2, k2) for homopolymers (two identical blocks).

C.6.3 s
(γ)
ν for individual sequences

According to eq. (C.12), the functions s
(γ)
ν (k2, k2) are obtained as the squares of the

second-order functions sν(k2), which for triblocks can be found in sec. 3.3.3.

Diblocks

For the symmetric AB diblock sequence, one has

s
(γ)
AB(k2, k2) =

{
−d(2, k2) + 4d(1, k2)

}2
. (C.37)
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D Three-phase equilibrium conditions for
random triblock copolymers

D.1 Derivatives

From eq. (3.50), the simplified version of the lamellar free energy, and eqs. (3.44), one
reads off the following derivatives of fm with respect to the independent concentrations

n2 := n
(m)
2 , n3 := n

(m)
3 :

∂fm

∂nν

=

{
2χ
(
Sν
(
k2

m

)
−D

(
3M,k2

m

))

χS (k2
m)− 2L

+
16

81

9
(

1− 8(n2 + n3)/9
)

+ 5
(

1− 8(n2 + n3)/9
)2

+ 1− 80(n2 + n3)/81

}

×

(
S
(
k2

m

)
− 2L/χ

)2
/L4

(
1− 8(n2 + n3)/9

)2
+ 1− 80(n2 + n3)/81

+ ln
nν

1− n2 − n3
, ν = 2, 3, (D.1)

where S(k2
m) and km are functions of n2, n3 via

S(k2) = D
(
3M,k2

)
+ n2

(
S2(k2)−D

(
3M,k2

))
+ n3

(
S3(k2)−D

(
3M,k2

))
(D.2)

and
km := argmax

k>0
S(k2), (D.3)

such that the derivative of the maximum of S(k2), S(k2
m), with respect to n2 is simply

S2(k2
m), analogously for n3, since (∂S(k2)/∂k)|k=km = 0.

The derivatives of fh from eq. (3.74) with respect to the concentrations n
(h)
2 , n

(h)
3 are

∂fh

∂n
(h)
ν

= ln

{
4

(
cosh

Lχτ̂h

6%0

)2

− 3

}
+ ln

n
(h)
ν

1− n(h)
2 − n

(h)
3

, ν = 2, 3, (D.4)

with the amplitude τ̂h/%0 of the homogeneous phases from eq. (4.13).

D.2 Constraints

At a given point (λ, χ), the independent parameters (v, n2, n3) of a lamellar subsystem
in random triblocks do not only have to solve eqs. (4.5), but also have to take physically
reasonable values, further restricted by the global (λ-defined) distribution and by the
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TRIBLOCK COPOLYMERS

demand that lamellae can exist at all in the subsystem. This means that the parameters
have to be within the domain of definition

V :=

{(
v ∈ [0, 1], n2 ∈

[
0,min

(
1,
p2(λ)

v(2)

)]
,

n3 ∈
[
0,min

(
1− n2,

p3(λ)

v(2)

)])
: (D.5)

km(n2, n3) > 0 and Lχ0(n2, n3) ≤ Lχ
}
.

With the enhanced form eq. (3.54) of the lamellar free energy, the wave number
kopt(n2, n3|χ) has to be tested instead of km(n2, n3).
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E Macroscopic phase separation in the
“crushed polymer” approach

E.1 Two and three homogenous phases in random diblocks

In a random symmetric diblock melt with AB-content pAB = (1 − λ)/2 < 2/3, two
homogenous phases emerge from the disordered state at

Lχ0 =
2

1− pAB
=

4

1 + λ
, (E.1)

with the amplitude τ̂h,2 for Lχ > Lχ0 determined by

τ̂h,2

%0
= (1− pAB) tanh

{
Lχτ̂h,2

2%0

}
. (E.2)

Within the “crushed polymer” approach, a coexistence of three homogeneous phases,
one A-rich, one B-rich, and one balanced in A and B, arises at higher incompatibilities.
The equations for the amplitude τ̂h,3 and for the joint volume fraction v of the A-rich
and the B-rich phase in this coexistence are

τ̂h,3

%0
=

(1− pAB) sinh

{
Lχτ̂h,3

2%0

}

v cosh

{
Lχτ̂h,3

2%0

}
+ (1− v) exp

{
Lχτ̂2

h,3

4%2
0

} , (E.3a)

1 =

(1− pAB) cosh

{
Lχτ̂h,3

2%0

}

v cosh

{
Lχτ̂h,3

2%0

}
+ (1− v) exp

{
Lχτ̂2

h,3

4%2
0

} +
pAB

v + (1− v) exp

{
Lχτ̂2

h,3

4%2
0

} .

(E.3b)

The corresponding free-energy density of three homogeneous phases is

fh,3 = v
Lχτ̂2

h,3

4%2
0

− (1− pAB) ln

{
v cosh

{
Lχτ̂h,3

2%0

}
+ (1− v) exp

{
Lχτ̂2

h,3

4%2
0

}}
(E.4)

− pAB ln

{
v + (1− v) exp

{
Lχτ̂2

h,3

4%2
0

}}
+ (1− pAB) ln(1− pAB) + pAB ln pAB

The transition incompatibility from two to three homogenous phases can be obtained
iteratively only, by computing within the three-phase coexistence the volume fraction
(1− v) of the phase balanced in A and B and decreasing Lχ until (1− v) reaches zero.
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List of frequently used symbols

b statistical segment length in a Gaussian chain
bj(s) (dimensionless) vector of segment s on chain j
β(s) block number of segment s, eq. (B.9)
c component index in the “crushed polymer” theory for multiple homoge-

neous phases
D(L, k2) Debye structure function of a discrete Gaussian homopolymer chain

(section), eqs. (3.21) and (C.6)
d space dimension
∆β difference in block numbers of two segments
HC Gaussian-chain connectivity of N polymers, eq. (2.26a)
HC, s.c. single-chain connectivity, eq. (2.15)
Hev excluded volume interaction, eq. (2.26b)
Hχ incompatibility interaction, eq. (2.26c)

ĥ effective Hamiltonian per chain

k̃ wave number in physical units

k wave number, rescaled with the radius of gyration of a segment,
√

2d/b,
or of a block,

√
2d/
√
Mb

κ strength parameter of excluded volume/compressibility interaction
L number of (model) segments per copolymer, L = QM
λ block-type correlation of adjacent blocks in Markovian sequences, eqs. (2.5)
M number of segments per block
mn nth moment of type (A excess) distribution, m1 := q
µ

(P )
ν chemical potential of sequence class ν in subsystem (phase) P
N (Q) number of different sequences (realizations) of random Q-block copolymers

n
(P )
ν concentration of sequence class ν in subsystem (phase) P
ν sequence (class)
ν complement sequence to ν, obtained from ν by exchange of A and B
p global probability to find a block of type A/ A concentration in a random

block copolymer melt
pν probability/concentration of sequence (class) ν in a random block copoly-

mer melt
Q number of blocks in a copolymer, eq. (2.1)
q = 2p− 1 average A excess in a random copolymer melt
qj(s) type (A excess) of segment s on chain j

Rchain = Re/
√
d, average chain size; length scale in plots of chapter 5

Re rms end-to-end distance of a polymer chain
Rg radius of gyration, eq. (2.14)
rj(s) position of segment s on chain j
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%0 dimensionless average segment density
% total segment density field, eq. (2.28)
%̂ interaction field conjugated to %, the total segment density
Sν
(
k2
)

second-order structure function for sequence (class) ν, eq. (3.20)
S
(
k2
)

global second-order structure function, eq. (3.23), in a λ-distribution
eq. (C.14)

σ A excess density field, eq. (2.30)
σ̂ interaction field conjugated to σ, the A excess density
τ̂ saddle-point (mean-field) value of σ̂, field conjugated to σ
χ strength parameter of incompatibility between A and B; χ ∝ T−1

χ(h) homogeneous cloud transition line to three-phase coexistence

χ(m) lamellar cloud transition line to three-phase coexistence
ψ critical exponent of order-parameter amplitude
v volume fraction of minority subsystem in a fractionated coexistence

v(m) volume fraction of lamellar subsystem
z coordination number on a lattice or average number of nearest neighbors
ẑν single-sequence partition function, eq. (3.12)
Z canonical partition function
ω̂ saddle-point value of %̂, field conjugated to %
Ω combinatorial (indistinguishability) prefactor in the partition function,

eq. (3.2)[
·
]
pν

average over the block-type sequence distribution〈
·
〉

conformational average for a single Gaussian chain〈
·
〉
HC

conformational average for N Gaussian chains

dxe := min (n ∈ N : n ≥ x)
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