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1. Introduction

There is a crack in everything,
that’s how the light gets in.

(Leonard Cohen)

Diffusion processes are ubiquitous in nature. The first report on diffusion was
given by the Scottish botanist Robert Brown in 1828, who observed the erratic
movement of pollen suspended in liquidﬂ Although Brown himself postulated
that erratically changing microscopic forces induce the irregular motion of the par-
ticles, nearly a century had to pass before Einstein explained Brownian motion in
one of his seminal 1905 papers [37], validating the molecular kinetic theory of heat.
It so happened that in the same year the term random walk entered the scientific lit-
erature. In a letter to Nature [[I00], K. Pearson asked the community for a solution
of the two-dimensional random walk. The approximate solution was provided by
Lord Rayleigh in the same issue [/8]. Diffusion phenomena and random walks
are intimately connected. The study of random walks and Brownian motion has
shaped our understanding of fluctuation phenomena far beyond the dispersion of
pollen suspended in liquid. The range of applications includes the dynamics of
stock prices, thermal noise, and random perturbations in various physical, biolog-
ical and chemical systems.

A hallmark of Brownian motion and ordinary random walks is a mean square
displacement which increases linearly with time. This is frequently expressed in
the heuristic “square-root” relation

X(t) ~ t1/2,

in which X(f) estimates the position of the process after a time ¢t. Over the past
decades a number of phenomena have been discovered which violate this behavior,
yet exhibit a similar heuristic scaling with time,

X(H) ~tH 0<p#2

ILike many wealthy scientists of his day, Brown had his results published privately as a pamphlet
which he distributed to friends, colleagues and the press. In 2001, a copy of A Brief Account of
Microscopical Observations Made in the Months of June, July and August 1827 on the Particles Con-
tained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic
Bodies was sold for $ 80, 000 by B & L Rootenberg — Fine Rare Books.
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ped When this occurs we speak of anomalous diffusion. Depending on the value of the
exponent , these phenomena have been categorized as subdiffusive (1 > 2) and
superdiffusive (u < 2).

Superdiffusive motion, also known as enhanced diffusion, has been observed in
a number of physical systems, ranging from the pioneering work of Richardson on
turbulent diffusion [I08]], chaotic dynamical systems [45H47] [143], dynamics
of tracer particles in turbulent flows [[[04], transport in inhomogeneous rocks [I11]]
and micelle diffusion [06], to millennial climate changes [B4] and planetary-scale
turbulent circulation [I125]. The contemporary focus on dynamics on the meso-
scopic scale [[70} [7T]] has revealed anomalous diffusion phenomena in living biolog-
ical cells, such as protein dynamics on DNA strands [1353]], the motion of molecular
motors on actin fibers [d [7Z] and enhanced translocation of molecules on networks
of microtubuli [29]. Furthermore, enhanced diffusion has been observed in an-
imal locomotion, examples are the movement of bacteria and plankton [72] O3],
motion of amoeba [[73] and the foraging strategies of albatrosses and spider mon-
keys [[106] 0127] and human saccadic eye-movement during visual search [20 23].
Large fluctuations, often a signature of superdiffusive motion, have also been ob-
served in a variety of economical systems, for example price fluctuations of indi-
vidual companies [102] [[03] and market indices [49].

A variety of theoretical tools have been devised in order to understand these
anomalous diffusion phenomena. Generalizing the concept of ordinary random
walks, Scher and Montroll introduced continuous time random walks (CTRW) in a
study of dispersion in amorphous solids [I13]]. Since then, CTRW have found wide
application, for instance in the description of diffusion of earthquake epicenter af-
tershocks [53], bacterial chemotaxis [114]] and of intermittent chaotic systems [143]],
to give a few examples, additional ones can be found in [91]]. The reason for its pop-
ularity is the fact that both sub- and superdiffusive phenomena can be modeled by
CTRW in an appealing fashion.

A class of random walks known as Lévy flights has advanced our understanding
of enhanced diffusion more than anything else. Unlike ordinary random walks
which consist of independent random increments with a typical scale, single steps
of a Lévy flight occur on all scales due to divergent moments in step size. Although
their mathematical foundation was developed by Lévy and Khintchine [63} [74] at
the same time as Richardson reported the first experimental discovery of enhanced
diffusion, the great value of Lévy’s work to the physicists remained unappreciated
until the 1980’s, when fractals and chaotic dynamical systems became a hot topic,
and a further decade passed before the first concise collection on Lévy flights in
physics [I17] and popular articles [[64] [16] appeared.

When Lévy flights successfully mimic single realizations of stochastic quanti-
ties, the equations which govern the time evolution of probability densities are
no longer of the Fokker-Planck type. Until very recently Lévy flight models were
given in terms of rate models or within the CTRW scheme, which despite differ-

10



ences in their form possess similar dynamical properties. The recent introduction
of fractional calculus [04] to the study of anomalous diffusion not only unified a
number of microscopic approaches, but also greatly advanced our understanding
of them [B5] I2T]]. In fractional evolution equations, ordinary differential operators
are replaced by generalized non-local integro-differential operators, which share
some feature with their integer counterparts but cover a much wider range of pos-
sibilities. In early phenomenological models for anomalous diffusion, for example
diffusion on fractals [0, fractional differential operators were introduced in an
ad-hoc fashion. However, unlike the Fokker-Planck equation which represents the
canonical evolution equation for ordinary diffusion, a zoo of fractional generaliza-
tions exists, each depicting a different physical situation, which is often not readily
deduced from the equation itself. Despite their similarity in appearance to ordinary
Fokker-Planck equations, fractional Fokker-Planck equations exhibit a vast range
of dynamical properties. Therefore, the ad-hoc introduction of fractional operators
must be carried out with care, and a phenomenological approach of this kind must
be solidly justified. A series of recently published papers were devoted to bridging
the gap between microscopic rate equations and the appropriate fractional Fokker-
Planck equations. For example, a popular fractional Fokker-Planck equation for
subdiffusion can be obtained from an underlying CTRW with scale-free waiting
time distributions [10} [T]]. Further examples can be found in [[86] 89].

Lévy flight models and fractional evolution equations have been particularly
successful in two branches of physics, nonlinear dynamics and statistical physics.
Although the mathematics is similar, the interpretation and treatment of the equa-
tions involved can differ, compare for example the recent analogous reviews by
Metzler and Klafter [88] and Zaslavsky [141]]. In chaotic systems, Lévy flights and
a variant of them known as Lévy walks, introduced by Geisel et. al. [45], model
irregular but deterministic trajectories. The associated fractional Fokker-Planck
equations can be interpreted within the framework of thermodynamics of chaotic
systems [[I5]. On the other hand, Lévy flights are frequently employed in statisti-
cal physics by means of fractional Langevin equations, in which Lévy stable white
noise serves as a highly fluctuating perturbation to a deterministic dynamics [[79].
Anomalous noise and deterministic evolution represent independent components
of the dynamics. The associated evolution equations generally violate ordinary
Gibbs-Boltzmann thermodynamics, and Lévy flights in statistical mechanics typ-
ically model non-equilibrium phenomena. In fact, fractional Langevin dynam-
ics and the associated fractional Fokker-Planck equations can be related to non-
extensive generalizations of Gibbs-Boltzmann thermodynamics known as Tsallis
statistics [26] [23]. Fractional Fokker-Planck equations of this type have at-
tracted much attention in the past [60].

A number of superdiffusive processes evolve in inhomogeneous environments
which can be described as external position dependent force fields or potentials.
Generally, external fields change the dispersion properties of randomly moving

11
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particles [BI]. The influence of external forces can be drastic, especially if they
represent a quenched random disorder [B] [[9) [18]. External forces, potentials or
inhomogeneities can be incorporated into ordinary diffusion equations in a straight-
forward manner by appropriate position dependent drift and diffusion coefficients.
In subdiffusive systems spatial inhomogeneities generally pose no problem, because
subdiffusion is intrinsically a temporal anomaly; spatial inhomogeneity and tem-
poral anomaly represent independent components of the equations involved. In
contrast to the above, external fields are a subtle issue in superdiffusive fractional
evolution equations. Due to the spatially non-local nature of fractional integro-
differential operators, no generic way of including position dependent external
fields exists, and various possible ways correspond to various physical situations,
see for example [25].

The impact of external fields on superdiffusive motion has been studied primar-
ily and extensively within the generalized Langevin scenario [0 £} B6] which to
this day seems to be considered the standard framework for superdiffusion in ex-
ternal fields. However, this approach imposes severe restrictions on the range of
systems it can describe. Due to the violation of Gibbs-Boltzmann thermodynam-
ics mentioned above, the fractional Langevin scheme is inappropriate for systems
which are thermally inconspicuous.

However, a variety of superdiffusive phenomena occur in a thermally equili-
brated medium, for example the intracellular translocation mechanisms mentioned
above. The observed enhanced diffusion is caused by the complex topology of the
structures on which random motion evolves and not by anomalous noise. The
same reasoning applies to random motion on complex scale-free networks, which
have attracted much attention recently [2]. Examples of such networks are the in-
ternet [3l], metabolic networks [G8] and social networks such as the cooperation
network of film-actors and citation of scientific collaborators [@]. Random motion
on scale-free networks is generally anomalous as well [59] [61] 65 B7]] and has been
investigated in the light of epidemics spreading on these structures [I8] B9 129].
Superdiffusion in scale-free networks is caused by a scale-free connectivity, rather
than scale-free fluctuations in a random force. The study of dispersion phenom-
ena on complex networks is particulary important, because it can be used as a
basis for devising optimal search strategies in modern technological scale-free net-
works [Il B2]]. In a similar vein, early ideas of optimal search strategies of for-
aging animals [66] have recently been investigated in models incorporating Lévy
flights [ (7, (28, 23]

For some reason, inhomogeneities in scale-free networks and search strategies
have evaded scientific attention. This seems surprising not only because intracellu-
lar translocation generally occurs on hetero-polymeric media, but also because the
inhomogeneous distribution of resources in an animal’s habitat is known to impact
on the foraging strategy in some cases [62][/2]]. A possible explanation might be the
fact that these inhomogeneities are bounded in magnitude and typically fluctuate



as a function of position about some mean value, and the popular approach of
fractional Langevin dynamics is asymptotically trivial for such external fields.

Moreover, contemporary models for random motion in complex environments
are based on microscopic rate equations, and predictions rely largely on numerical
simulations. An exception are models which assume a homogenous, isotropic en-
vironment. Unlike superdiffusion in chaotic systems and in non-equilibrium statis-
tical mechanics, which are equipped with standard fractional evolution equations,
a unifying fractional approach which combines scale-free topological features with
external inhomogeneities is still missing, and universal features of these systems
have yet to be revealed.

In this thesis the novel concept of topological superdiffusion is introduced. Based
on a plausible underlying mechanism which combines scale-free topological struc-
tures and the requirements of Gibbs-Boltzmann statistics, we mold a fractional
Fokker-Planck equation which is suitable for the description of the majority of su-
perdiffusive phenomena to have been discovered in experiments in the recent past.
The approach unifies a number of models which exhibit identical behavior despite
their differences in details, and permits a treatment by the powerful tool of frac-
tional calculus [21]]. The approach is general enough to be applicable to any of the
aforementioned intracellular translocation phenomena, such as motion of regula-
tory proteins on folded DNA strands or relaxation dynamics on complex scale-free
inhomogeneous networks.

The differences between topological superdiffusion and other popular fractional
approaches is established in a detailed scaling analysis and for paradigmatic sys-
tems such as the harmonic potential and escape dynamics in a double well poten-
tial, see also [25]. In addition, we map the fractional Fokker-Planck equation onto
a fractional Schrodinger equation, which permits a treatment and interpretation in
terms of quantum mechanical concepts.

Within this new approach we predict that topologically superdiffusive processes
exhibit a rich palette of behaviors when external inhomogeneities are present, un-
like fractional Langevin dynamics which is unaffected by bounded external fields.
We investigate in detail topological superdiffusion in periodic potentials [24]. A
generalized Bloch theory is devised and band-spectra of superdiffusive process are
computed and compared. The band structure of superdiffusion in periodic po-
tentials is not only very appealing, but also reveals a number of important conse-
quences, for example a high sensitivity of transient dynamics to small changes in
temperature, a behavior not seen in ordinary diffusion.

Subsequently, we investigate the impact of random potentials in the paradig-
matic system of diffusion on rapidly folding linear hetero-polymers [22]]. We show
that superdiffusive relaxation dynamics in external fields is strongly susceptible
to the overall structure of the potential, as opposed to ordinary diffusion which
primarily depends on magnitude variations of the inhomogeneity. Comparing the
asymptotics of various degrees of superdiffusion, reflected in the Lévy exponent 1,

13
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universal, with a discontinuous change in behavior in the limiting case of ordinary
diffusion.

In both periodic and random potentials, a perturbation analysis reveals that re-
laxation dynamics is typically fastest for intermediately superdiffusive processes,
and slow for nearly diffusive processes and strongly superdiffusive Lévy flights.
This is rather counterintuitive and vastly different from the common belief that the
response to external fields decreases with the degree of enhanced diffusion. Our
results suggest that search strategies in inhomogeneous environments are optimal
for Lévy flights with intermediate Lévy exponents. This prediction is confirmed in
a number of experimental observations [20] 23] @27.

As an example, we address the issue of optimal random search in a phenomeno-
logical model for human saccadic eye movements. We show that saccadic eye
movements can be described as Lévy flights in a inhomogeneous landscape of vi-
sual salience. The similarity between model trajectories and real saccadic trajecto-
ries is striking, despite the fact that neither memory effects nor spatial hierarchies
of processing are involved. The model is equivalent to topological superdiffusion
on large scales and predicts intermediate values of the Lévy exponent for optimal
search, which is confirmed by psychophysical experiments.

This thesis is organized as follows. Chapter 2| comprises the fundamentals of
ordinary diffusion, Lévy flights and superdiffusion. In chapter 3} the central ideas
leading to topological superdiffusion are provided along with the novel fractional
Fokker-Planck equation. The approach is compared to various others in chap-
ter[d] In chapters[fland [} topological superdiffusion is investigated in periodic and
quenched random potentials, respectively. The main results, consequences, impli-
cations and perspectives on forthcoming research are provided in the discussion at
the end. Technical and supplementary information is provided in the Appendices.



2. Everything You Always Wanted to Know About
Superdiffusion, but Were Afraid to Ask

A journey of a thousand miles
begins with a single step.

(Lao Tzu)

This chapter offers an introduction to contemporary theoretical concepts for the
description of superdiffusive phenomena. The theory of ordinary random walks is
discussed and basic related concepts such as the central limit theorem, the Wiener
process, stochastic differential equations, and the Fokker-Planck equation (FPE) are
explained. Subsequently, superdiffusive random walks known as Lévy flights are
introduced, characterized and compared to ordinary random walks. We present
the mathematical framework of fractional dynamics, which is intimately connected
to anomalous diffusion. Particular emphasis is placed on generalized Langevin dy-
namics, which is the most popular and thoroughly investigated scenario in which
Lévy flights play a role. We derive and investigate the associated fractional Fokker-
Planck equation (FFPE). The physical implications of this approach are critically
investigated, and the subtleties concerning canonical fractional generalizations of
ordinary diffusion are revealed. We present a recently developed theory of su-
perdiffusion from temporal subordination which obeys ordinary Gibbs-Boltzmann
thermodynamics, as opposed to generalized Langevin dynamics which does not.
The contents of this chapter represent the current state of the art research on su-
perdiffusive motion.

2.1. Random Walks

Random walks in physics, mathematics and other fields of research are usually
introduced as a sum of independent identically distributed random variables X;,.
These random variables can be interpreted as the single steps a random walker
takes, and the sum

N
Yy = Z X, (2.1)
n=1

15
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represents the location of the random walker after N steps. Without loss of gener-
ality we restrict ourselves to one-dimensional random walks, i.e. X;;, Yy € R. In
the following we assume that single displacements possess the same probability
density function (pdf)

px(x) = (5(Xy — x)). 22)
Furthermore, we assume that px(x) is an even function of position, a step of spe-

cific length into one direction is just as likely to occur as a step of the same length
into the opposite direction,

px(x) = px(—x). (2.3)
If px(x) decreases with distance sufficiently rapidly, the expectation value of each

step X, vanishes and the second moment is given by the variance ¢?, i.e.
(X,) =0, and <X,%> = o2. (2.4)
The typical size of a step X can be quantified by the root of the second moment,
X ~o. (2.5)
Equation implies
(Yn) =0,  and <Y12\,> = No2. (2.6)

Heuristically, the typical value of the sum Yy as a function of the number of steps
N is given by
Yy ~ oV/N. 2.7)

The sum increases with the square root of the number of steps, a fundamental
property intrinsic to all processes which are founded on the simple random walk
picture. For example, all ordinary diffusion processes exhibit this behavior.

2.1.1. The Central Limit Theorem

The probability density py, (y) for finite N depends on the density px(x) of the
single steps and is not defined in the limit N — oo, simply because all moments
(Y@} o< N are divergent in that limit. However, the probability density of the sum
converges to a Gaussian, if the sum is properly rescaled. This is the key statement
of the central limit theorem [B8]]. In other words, the random variable

Yy

Zn =~ i (2.8)

has a well defined limit density, i.e.

) ) Yn 1 72
_ R ) 2.
1\1[1_1:110 pZN(Z) Z\}l—rgo <5 (O‘ N Z>> \/?_[ exp ( > ) (2.9)



2.1. Random Walks

Figure 2.1.: The central limit theorem graphically. The trajectories on the right are realizations
Xn = (x1,x2), of two different two-dimensional random walks. The red trajectory was gener-
ated from a single step density px(x1,y2) = 7 exp [—(x? 4+ x3)]. The blue random walk
consists of single steps equally distributed among the four points of the compass with step
length |X| = 1. The left panel is a magnification of the region indicated by the little square. On
this microscopic scale the difference in single step probabilities is obvious but cannot be noticed
on large scales, the trajectories on the right can not be distinguished from each other.

This is a very important result. Irrespective of the functional properties of the single
step density px(x), the rescaled sum has a Gaussian density, which is why the
Gaussian pdf plays such a universal role in stochastics and physics.

The universality of the Gaussian as a limit distribution of a wide class of random
walks is depicted graphically in figure

2.1.2. The Wiener Process

If the individual steps are associated with time, random walks become stochastic
processes. If the requirements for the central limit theorem are fulfilled, the uni-
versality of the Gaussian limit distribution leads to a universal stochastic process,
known as the Wiener process W(t), named after Norbert Wiener for his mathemati-
cal treatment of Brownian motion [I37]]. Assume that each step in the random walk
takes a time At such that after N steps the time

t = NAL. (2.10)

R

/

T

17
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has elapsed. Identifying W(t) with Yy in (2.1) we have

N
W(t) = Z AW, with AW, = X,,. (2.11)
n=1
In the limit
N — oo and At — dt, with t= NAt (2.12)

the quantity W(t) becomes a time continuous process, provided we scale the vari-
ance o of single steps AW,, appropriately as

o= VAt — Vdt. (2.13)
The sum (2.11)) becomes an integral in this limit, i.e.

W(t) = /dW(t’). (2.14)

0

The infinitesimal increments dW(t) are stochastically independent, the moments
are given by

<dW2”+1> =0 and

1+n
(dwr2) = 2 r(\%z T g e, (2.15)

Odd moments vanish, the variance is dt and all higher moments are O(dt?). The
typical value of a random increment is thus O(y/dt). Since the increments are
independent, the process W(t) is Markovian and the propagator p(w, t|w’, ') of
finding a value W(t) = w at time t, provided that W(#') = w/, is a spreading
Gaussian,

1 w—w')? ,
p(w, t|w',t') = mexp <—ﬁ) with  t>+t.  (2.16)

The process W(t) is known as the Wiener process and plays a very important role
in physics. The sample paths of W(t) are continuous but nowhere differentiable.

Figure [2.2] depict a few trajectories of the Wiener process as a function of time.
Each curve is very wiggly.
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Figure 2.2.. Realizations of the
Wiener process W(t) as a func-
tion of time with initial condition
W(0) = 0. Trajectories are con-
tinuous but nowhere differentiable.
The time evolultion of the conditional
probability p(w, t|0,0) is given by i ]
equation (2.16). 0 2 4 6 8 t 10

2.2. Physics

The Wiener process represents the most widely used stochastic process in theoreti-
cal physics, but also in many other sciences. And there is a reason for it. Quite often
the smooth time evolution of, say, a particle is perturbed by an erratic random force
which consists of microscopic, uncorrelated kicks. Whenever the kicks are small
enough in magnitude such that on the scale of interest the trajectory of the parti-
cle is a continuous function of time, the Wiener process emerges quite naturally in
the evolution equations which correctly describe the system. More precisely, let a
physical system evolve according to

%= F(x,t). (2.17)

If the system is subjected to a highly irregular non-deterministic fluctuating force
I'(t) with zero mean and no temporal correlation relative to the typical observation
time, i.e.

(r)y =0, (MON()) = 8t~ 1), (218)
the complete dynamics is described by the stochastic differential equation also
known as a Langevin equation,

%= F(x,t) +/D(x,t) T(¢). (2.19)

The function D(x, t) > 0 quantifies the influence of the stochastic force on the dy-
namics. Usually, the fluctuating force is assumed to be Gaussian white noise. The
Gaussian nature of the noise, however, is difficult to extract from the expectation
values (2.18). In fact, no Gaussian has an infinite variance. It is a pathological
and unattractive property of I'(t). Also, differential equations implicitly contain
a limiting procedure which does not have to be defined because everyone knows
them anyway. The limiting procedure which leads to (2.19), however, is ambigu-
ous and may lead to trouble, misunderstanding and superfluous discussions with
colleagues. For a transparent discussion of the problem of interpreting stochastic
differential equations the reader is urged to consult [A4]].
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The difficulties can be eased by rewriting the the differential equation (2.19) as

dX(t) = F(X,t)dt + /D(X, t) dW(t), (2.20)

which gives a more intuitive picture of the mathematics, because we can connect it
more precisely to the original difference equation

AX(t) = X(t + At) — X(t) = E(X(t), ) At + /D(X(1), ) AW (£ A),  (2.21)

of which represents the limit At — 0. At each point f in time the increment
AX(t) consists of a deterministic drift F(X(t),t)At proportional to At as in any
ordinary dynamical system, and a random perturbation /D (X(t),t) AW(t; At),
where

AW(t; At) = W(t + At) — W(t) (2.22)

is the difference of a Wiener process taken at two times separated by At. AW (t; At)
is a Gaussian random variable with zero mean and a variance of At. Note that
the factor \/D(X(t),t) is evaluated at the beginning of each time interval in the
difference equation (2.21). This is important, because the integration of such an
equation gives different results depending on where in the interval [t, t + At] the
function D is evaluated. One must provide this information in order to interpret
the stochastic differential equation unambiguously. The definition above is
known as the Ito-interpretation, and in the following we will cling to it exclusively.
The technical treatment of stochastic differential equations in this way is much less
prone to errors and easier in many ways. For example one can compute the first
two moments of dX () without a problem,

(dX(t)) = (F(X(t),t))dt  and
<dX(t)2> — (D(X(t), 1)) dt + O(dF?). (2.23)

Therefore, dX(t) = O(+/dt) and realizations X(t) are generally non-differentiable.
The evolution of the propagator p(x, t|xo, tg) for such processes is governed by
the Fokker-Planck equation (FPE)

0 p(x, t|xp, tg) = (—OxF(x,t) + %6926 D(x,t)) p(x, t|xo, to), (2.24)

which can be obtained from (see Appendix [B). Processes X(t) which solve
a Langevin equation and possess a propagator solving the FPE are known as dif-
fusion processes. Their realizations are continuous, wiggly functions of time. Ob-
serve that when F = 0 and D = Dy in the Langevin equation ([2.20), we have
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X(t) = v/DodW(t) and consequently X(t) = /DoW(t).The variance of the pro-
cess is
<X2(t)> — Dyt. (2.25)

The function D(x, t) is known as the diffusion coefficient. The FPE for the Wiener
process (Dg = 1) is given by

1
0r p(x, t|xo, tg) = Edi p(x, t|xo, to), (2.26)

consistent with the explicit form provided by equation (2.16).

2.2.2. Probabilistic Models

The description of a physical system in terms of a Langevin equation and the as-
sociated FPE is reasonable whenever the ansatz of deterministic evolution with
additive white noise can be made. However, the range of application of these con-
cepts is much wider. If we start with a purely probabilistic model then quite often
the system behaves asymptotically as a diffusion process. Say a system is correctly
described by a master equation,

0: p(x, txo, to) = /dy [w(x|y,t) p(y, t[xo, to) — w(y|x, t) p(x, tixo, to)], (2.27)

where the rate of transition w(x|y, t) from y to x is defined as
) 1
w(xlyt) = lim —=p(xt+ Aty )  xFy. (2.28)

A Kramers-Moyal expansion of the rate yields an evolution equation in terms of
differential operators [109],

00 _ax n
Ot p(x, t|xo, o) = H %mn(x,t)p(x,ﬂxo, to)- (2.29)
n=1 :

The coefficients my, (x, t) are the conditional moments of the rate, i.e.

my(x,t) = I (dX( /dy x—y) w(x|y,t). (2.30)

In numerous applications the rates possess typical spatial and temporal scales o

and 7, respectively. On scales much larger than these, the coefficients in (2.30) with
n > 2 become negligible and the series can be approximated by the first two terms,

1
0: p(x, t|xo, to) = (—6x mq(x,t) + za,% my(x, t)) p(x, t|xo, to), (2.31)
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Figure 2.3.: Langevin dynamics in a thermally equilibrated system. A mass (red object) is
attached to a Hookean spring and is emerged in a liquid of high viscosity such that the motion
is overdamped. The spring is attached to an ideal gas (blue, little objects in container) and
energy transfer is permitted by means of a piston or a membrane (gray area). Each degree of
freedom in the ideal gas has a typical energy (E) which defines the temperature kT = B L
On a double-logarithmic scale the distribution of energies p(E) (qualitative sketch on the lower
left) is confined to a range around that value. The harmonic potential V(x) = x? as a function
of displacement is indicated by the green curve. The Gibbs-Boltzmann equilibrium ps(x) o
exp [—Bx?] is superimposed in blue.

which is identical to if we let m; = F and my = D. Therefore, even purely
stochastic models can be interpreted in terms of deterministic dynamics subjected
to Gaussian white noise. On scales for which represents an accurate approxi-
mation , the trajectories of the process may be considered continuous. An example
of this is given in section3.2.1} in which an FPE for a hopping process along a linear
extended hetero-polymer is derived.

2.3. Thermodynamics

Although Langevin equations can be employed for all sorts of systems, they are
of particular importance for modeling the influence of a thermal heat bath on de-
terministic dynamics. A paradigmatic system is depicted in figure An over-
damped particle is attached to a Hookean spring which interacts with an ideal
gas at temperature T. The dynamics of the particle is described by the Langevin
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equation

dX = — ﬁj—; dt 4+ v2dW, (2.32)

where the potential V(x) = x? reflects the harmonic potential energy of the spring,
B = (kgT)~! is the inverse temperature, and v/2dW are random increments in-
duced by momentum transfer from the heat bath in the microscopic time interval
dtﬂ The FPE for the stochastic position variable X(t) is given by

0: p(x, t|xo, to) = <2ﬁ 0xx+ 63%) p(x, t|xo, to). (2.33)

This process was first investigated by Uhlenbeck and Ornstein in 1930 [Mﬂ Two
basic properties of this FPE reflect the underlying thermodynamical properties of
the complete system. First, the stationary density is given by the Gibbs-Boltzmann
equilibrium,

ps(x) o< exp [-BV(x)] = exp [—ﬁxz] , (2.34)

and detailed balance is fulfilled [[I09]. The inconspicuous thermal behavior of equa-
tion (2.32) and is directly linked to the fact that in thermal equilibrium, each
degree of freedom has a characteristic typical energy of ~ kpT, reflected in the typ-
ical microscopic scale of the noisy increment of the Wiener process dW. This is no
longer the case if dW is replaced by a more general type of white noise, as will be
revealed below.

2.4. A Tale of Tails

In section 2.1] two basic conditions had to be fulfilled, in order for the central limit
theorem to ensure that the properly rescaled sum had the Gaussian limiting
density [2.9). First, the single steps X, of the random walk had to be stochastically
independent. Furthermore the variance (X2) had to be well defined. Unfortu-
nately, quite a number of densities fail to possess a well defined variance. For
instance

1
_ M x[ > 1
xX) = = O<u<?2, 2.35
px(x) 2{0 X <1 (2.35)

does not. This is not an unusual phenomenon. For example, if we generated a
random number Z on a computer by dividing two normally distributed random

There is a factor of v/2 ornamenting the Wiener increment dW in equation which seems
arbitrary but isn’t. It will be useful at later stages of our investigation.

2For some reason the process is known as the Ornstein-Uhlenbeck process and not, as one might
expect from the ordering of the authors of the cited paper the Uhlenbeck-Ornstein process.
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Figure 2.4.. Random numbers with divergent moments. The left panel depicts a sequence of
N = 10, 000 random numbers generated from the density (2.35). In order to estimate the range
of values the common logarithm of the absolute value of Z, is shown. The right panel shows

the averages M;(N) (blue) and M;(N) (red) defined by equations and (2.38) as function
of sample size N. With increasing N the averages do not converge.

numbers X and Y the density of the result is given by

1

(0(X/Y —z)) = AT

(2.36)

which shows the same asymptotic behavior as with u = 1. More details on
how to generate random numbers with power law densities numerically are pro-
vided in Appendix [E|and in [BI]]. Divergent variances are not just a mathematical
peculiarity. In fact if we generated aset {Z, },_; , of numbers on a computer and

tried to estimate the expectation values (Z )2 and (Z?) by a finite sample of size N,

2
zn> (2.37)
N
> 72 (2.38)

and investigate the averages M1 (N) and M;(N) as functions of sample size N, we
would see that they diverge. The divergence of M;(N) illustrated in figure
strikes us as somewhat surprising because the density is symmetric and one
might guess that (Z) vanishes.

All pdfs which behave asymptotically as the inverse power law lack a well
defined variance. This property implies an absence of scale in random numbers
drawn from these pdfs. Scale-free densities appear in many natural system such as
income distributions (Pareto’s law) [[6] BF], the distribution of body sizes of terres-
trial animals [84]], city sizes [140] [42]], and the fluctuation of market indices [49], to
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give only a few examples. An interesting collection of power laws in nature can be
found in [I15]].

Of course one could argue that in a realistic system there needs to be a natural
cut-off beyond which the inverse algebraic decay no longer holds, and is replaced
by a faster decay such that no divergent variance is observed. This argument is a
metaphysical one as long as it cannot be repudiated by an experiment. After all,
individual measurements give finite values even if the underlying density lacks a
scale. Therefore, as long as no evidence for a cut-off is given by experiments, it is
safe to assume the absence of one. Furthermore, even when the inverse power law
is truncated, the convergence of averages such as (2.37) and (2.38) is very slow [82].

2.4.1. Lévy Flights

Consider now a random walk consisting of independent increments AL;,. After N
steps the position is denoted by Ly,

N
Ly = z AL,,. (2.39)
n=1

Unlike the random walk defined by , the increments AL, are drawn from a pdf
par(l) which asymptotically follows a power law,

1 .
pAL(l) ~ |l|1+“’ with 0<pu <2 (2.40)

For simplicity we assume that pay () is symmetric, i.e.

par(l) = par(=1). (2.41)

For the range of exponents u given in (2.40), the variance of the location after N
steps (L%,) is not defined, simply because the variance of each single step (AL2)
is not. Note also that although the density py;(I) is symmetric, when p < 1 the
expectation value (L,) is divergent despite the symmetry (2.41).

The question is now whether a properly rescaled position variable Ly has a limit
distribution, and if so what it is. This question was first thoroughly investigated
and answered by Khintchine and Lévy [63] [74]. The answer is a generalization of
the central limit theorem discussed above. For a sum with symmetrically
distributed increments according to (2.40), one can find a number o such that the
random variable

_ Ly
In=—Sn (2.42)
has a limit pdf
Gu(z) = lim (8(Zy —2)), (2.43)
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which depends on the exponent p. The limit pdf G,,(z) is known as the symmetric
Lévy stable law of index p. The index is also commonly referred to as the Lévy
exponent. G, (z) has a simple form when expressed as a Fourier integral,

Gu(z) = %T / dk e~ k== Ikl* (2.44)

This holds for all values of p € (0,2]. When p = 1 the Lévy stable law is the
Cauchy pdf , whereas when p = 2 the Gaussian pdf is recoveredﬁ Generally,
it is difficult to give an explicit expression for G,(z). However, Lévy stable laws
can be expressed in terms of Fox H-functions [I31]]. Asymptotically, the stable laws
exhibit the same behavior as their underlying microscopic step pdf par (1), i.e.

1

Therefore, trajectories Ly possess a self-similar geometric structure.
The scaling factor in suggests that the location Ly increases with distance
as
Ly ~ Nk, (2.46)

Comparing this to the analogous equation (2.7) for ordinary random walks, we see
that Ly increases faster since u < 2. This is the reason why these types of random
walks are known as Lévy ﬂightﬁ

2.4.2. Lévy Stable Processes

Proceeding in the same way as in section[2.1.2} a continuity limit of the sum (2.39)
leads to a time-continuous process L, (t) which is a generalization of the Wiener
process W(t). Processes L, (t) are known as symmetric Lévy stable processes. We
let t = NAt and carry out the limit

N — oo, and At — dt, (2.47)
keeping t fixed. The parameter o in (2.42) must be scaled with At according to

o= At/H — di/m, (2.48)

3Note that an asymptotic tail with u = 2 still yields a logarithmically divergent second moment.
However, the stable law G,(z) is still a Gaussian. Thus, for the ordinary central limit theorem a
finite variance represents a sufficient but not a necessary condition.

4The term flight is intended to indicate fast movement as opposed to the word walk. However, this
can lead to some confusion, because another class of random walks known as Lévy walks
are superdiffusive as well. The difference between Lévy flights and Lévy walks is the amount of
time that elapses during a displacement. For a Lévy flight this time is zero, whereas for a Lévy
walk the time duration of a step is proportional to the distance of the step.
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which deviates from the scaling relation (2.13) appropriate for ordinary random

walks. With (2.47) and (2.48) the sum (2.39) yields a generalization of the inte-
gral (2.14), i.e.

t
La(t) = / dL. (). (2.49)
0

Lévy stable processes share a number of features with the Wiener process. For
example, the infinitesimal increments are unbiased and independent,

(8(dx — dL, (1)) = (8(dx + dLu(t))), (2.50)

and

(8(dx — dLy(t)) 8(dx’ — dL,(¥))
= (8(dx —dLy(t))) (6(dx" —dLy(t))) t £+t, (2.51)

respectively. Lévy stable processes are also continuous in probability, that is the
probability P(|L,(f+ At) — L, (t)| > €) of L, (t) exiting an e-ball in the limit At — 0
vanishes,

lim P(|Lu(t+ A1) ~Ly(t)] > €) =0 ¥ e>0. (2.52)

Symmetric Lévy stable processes are Markovian with a propagator given by a
spreading Lévy stable law

p(x,t|x, to) = %r /dke‘ik(x—x‘))_|k|u(t_t0) (2.53)
1 X — Xp

= G t > ty. 2.54

(t—to)/n ¥ ((t _ to)l/u) 0 @54)

which is a direct consequence of the generalized central limit theorem. The heuris-
tic increase of L, (t) with time

Lu(t) ~ t'/# (2.55)

appears in the argument of G,, in (2.54) and reflects the time-continuous analogous
expression to (2.46). When 1 = 2 the propagator is Gaussian, and comparing (2.53)
with (2.16) we see that L,(t) is proportional to the Wiener process, i.e.

Lo(t) = V2W(t). (2.56)

A striking difference between L, (t) for u < 2 and W(¢) is that single realizations
of L, (t) are almost certainly discontinuous everywhere. If u < 2 the propaga-
tor violates the Lindberg condition [A4]], that is the integrated probability of exit-
ing a small e-ball in a small time interval At decreases more slowly than At and
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Figure 2.5.: Realizations of a Lévy
stable process L, (t) with intermedi-
ate exponent p = 1 (Cauchy pro-
cess). Each realization is discontinu-
ous everywhere as opposed to real-
izations of the Wiener process W(t)
(compare to figure 2.2). The condi-
tional pdf p(x,|0,0) for this process
is given by

A

Figure 2.6.: Two dimensional Lévy stable processes with various exponents p. A: A strongly
superdiffusive process (u = 3/4). B: the two-dimensional Cauchy process (u = 1). C: A
weakly superdiffusive process (1 = 3/2). Each panel shows two realizations in blue and red.

consequently

1 ,
Jim — /| dlp(Li+ AL #A0 ¥ e>0 (2.57)
1-l'|>e

The time evolution of a number of realizations of a Lévy stable process with u =1
(Cauchy process) is shown in figure As a function of time the trajectories are
characterized by discontinuous jumps on all scales, the effect of which increases
with decreasing Lévy index p.

The typical geometry of realizations of two-dimensional Lévy stable processes
are depicted in figure Three types of processes are compared, a strongly su-
perdiffusive process (1 = 3/4), a process with intermediate exponent (1 = 1), and
a weakly superdiffusive process (1 = 3/2). The points visited by a Lévy flight form
a fractal with fractal dimension p if the dimension of the embedding space d > 2.
Typically, Lévy processes consists of clusters connected by large scale jumps (also
known as rare events). Clusters consist of smaller cluster which are connected by
jumps of the size of the cluster and so on.
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2.5. Fractional Calculus

The propagator of a Lévy stable process generalizes the Gaussian of the
Wiener process. The appropriate generalization of the diffusion equation (2.26)
leads to the concept of fractional kinetics, in which ordinary differential operators
are replaced by non-local, singular integro-differential operators and the evolution
equations are knows as fractional diffusion equations, or fractional Fokker-Planck
equations (FFPE). The mathematics of fractional integro-differentiation, or frac-
tional calculus is a powerful tool for the study of anomalous diffusion and has con-
tributed considerably to its understanding in the recent past [31] 55 B8] (4]
One can generally distinguish two approaches. The earliest utilization of frac-
tional evolution equations for the description of anomalous transport were phe-
nomenological justified by the fact that they modeled the observed effects suffi-
ciently well [05 [12]]. Despite their success, phenomenological models must be
scrutinized with care, not only because the underlying physics is often difficult to
extract from FFPEs, but also because the implementation of fractional operators
introduces a vast variety of often very different possible behaviors. Therefore, a
lot of effort has been invested recently in order to establish various FFPEs on solid
underlying physical principles, see for example [L1] 80} BF].

2.5.1. The Mother of Them All

For simplicity we consider a system which is located at the origin at t = 0, and
let p(x,t) = p(x,t|0,0). This implies no loss of generality because the propaga-
tor (2.53) is homogeneous in space and time. Its Fourier transform (defined by [D.2)
attains a very simple form,

pk,t) = e 1M, (2.58)

Obviously, p(k, t) fulfills
0:p(k,t) = —|k|* p(k, t). (2.59)

For u = 2 equation is just an ordinary diffusion equation in Fourier space,
because the multiplication by —k? is equivalent to the Laplacian in position coordi-
nates. But also for u # 2 equations (2.58) and (2.59) appear rather harmless. Notice
however, that for u < 2 the propagator p(k, t) is not analytic at k = 0. Since p(k, t)
is the characteristic function of p(x, ), this is a signature of the divergent moments
of L,(t).

Formally, we may apply the inverse Fourier transform on equation and
obtain

0r p(x, 1) = AY?p(x, 1), (2.60)

which defines the operator Ay /2 as the inverse Fourier transform of a multiplica-
tion by —|k|*. The symbol Aﬁf/ ? indicates that the operator is obtained by raising
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?ﬁ the ordinary Laplacian A, to a fractional power (/2 less than unity. As such, rais-

‘ ing the Laplace operator to a fractional power is just a symbolic undertaking. But
since A is Hermitian on commonly used function spaces, the spectral decomposi-
tion theorems of functional analysis imbues A*/? with meaning. Still, the physi-
cal implication of the generalized diffusion equations and do not say
much about the properties of the processes they describe. These become more ob-
vious when the position representation of the fractional Laplacian is scrutinized.

Explicitely, equation reads

7 ) — p(x,t
01 p(x,t) = A *p(x,t) = Cu [ dy? (Tx)_m’fiu ), (2.61)

where C,, = (1 + p)sin(7rp/2) /7. The derivation of this representation is pro-
vided in Appendix[A]l Thus, the fractional diffusion equation (2.61) has the form of
a master equation

01 pl(x,t) = [ dy [w(xly) p(y, ) = w(yl) pla, 1)), 262
with a homogenous non-local transition rate
Cu
= 2.
w(xly) = =t 2.63)

The representation tells us more about the structure of the process, for exam-
ple that L, (t) is a jump process. Note also that the rate is singular, and that
the integral in converges because two singularities cancel. The divergence
in the rate implies that trajectories are discontinuous everywhere unlike those of
pure jump processes which have integrable rates and jumps are interspersed with
intervals on which single realizations are constant. Singular rates are typical for
processes which are generated from superdiffusive Lévy stable processes. The frac-
tional diffusion equations and represent the simplest type of superdif-
fusive FFPE, of which a number of more complicated ones will be investigated in
forthcoming chapters.

A few more words need to be said about the fractional Laplacian A*/2, In the
limit g — 2, the fractional Laplacian A*/? converges to the ordinary Laplacian
A, the proof of which is somewhat involved [I41l]. Also, the square root of the
Laplacian A1/2 is not to be confused with the first derivative, i.e.

AVZ2 L, (2.64)

since

—|k| # —ik. (2.65)
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One is tempted to generalize equation to exponents u beyond the interval
(0,2]. This is certainly possible for the fractional Laplacian. However, the resultant
operator is no longer a stochastic one. In other words, when applied to a probabil-
ity density, the result will generally violate the requirements of positivity.

2.6. Generalized Langevin Dynamics

A number of physical systems behave superdiffusively because their deterministic
evolution is perturbed by an additive, highly fluctuating white noise which lacks
a scale, in contrast to the common Gaussian white noise. A change in position AX
within a small time interval At due to the random force follows an inverse power
law such that the variance is divergent. Thus, it seems reasonable to generalize the
Langevin equation by replacing the ordinary Wiener increment with a Lévy
stable one, i.e.

dX = F(X,t)dt + [D(X, £)]"/*dL,. (2.66)

The function D(x, t) > 0 is the generalized diffusion coefficient and quantifies the
influence of the noise as a function of position and timeﬂ When p = 2 equa-
tion (2.66) is reduced to an ordinary Langevin equation, since Ly(t) = +2W(t).
Again, this stochastic differential equation is the limit of the difference equation

X(t+ At) = X(£) + F(X(£), ) At + [Du(X(£), )]Y* AL, (t, A), (2.67)
in the limit At — 0, where
AL, (t, At) = Ly (t + At) — Ly(t), (2.68)

Hence, equation is an Ito-stochastic differential equation. Processes X ()
which can be generated from it share a number of properties with Lévy stable pro-
cesses. Due to the anomalous increment dL,, it is clear that X(¢) lacks the same
moments as L,(t). Consequently, realizations of X(t) are structurally similar to
those of L,(t). They possess discontinuous sample paths, a fractal structure and
disperse superdiffusively. Since represents a generalization of the ordinary
Langevin equation, it is reasonable to assume that a generalization of the Fokker-
Planck equation governs the evolution of the propagator of the process X(t). The
derivation of the ordinary FPE from the underlying Langevin equation given in
Appendix Bl relies on the existence of short time moments of the process and can-
not be employed when the noise is Lévy stable. However, the correct general-
ization can be established by means of characteristic functions. This was done
achieved [B9] for the special case of non-multiplicative noise, i.e. a constant gener-
alized diffusion coefficient D(x, t) = Dy, for alternative approaches see [28] [LOT].

>The power of 1/p which appears in the random force may seem a bit arbitrary at this point. Don’t
worry. It isn't.
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We proceed in a similar fashion, including the more general case of possibly time
dependent multiplicative noise. Symmetric Lévy stable processes are Markovian,
and from the generalized Langevin equation it follows that X(t) is a Markov
process as well. Consequently, the conditional pdf obeys the Chapman-Kolmogo-
rov equation

p(x, t+ At|xg, ty) = /dy p(x, t+ Atly, t) p(y, t|xo, to)- (2.69)
We expand p(x, t + At|y, t) into a Fourier integral,
plx, t+ Atly, t) = % /dk e V) @ (k, t + At|y, t). (2.70)
The function
Ok, t + Atly, t) = / dx K6 p(x, t 4 Aty b). @.71)

is the conditional characteristic function of the pdf. The terms exp[+iky] in equa-
tions and are practical. Because of them, the characteristic function can
be expressed as a conditional expectation value of an exponential of the increment
AX(t) = X(t+ At) — X(t) as

Ok, t+ At|y, t) = <eikAX(t)‘X(t) - y> . 2.72)

Inserting (2.70) into (2.69), subtracting p(x, t|x, tp) from both sides, dividing by At
and performing a Fourier transform with respect to the coordinate x yields

_ _ ww (@K t+ Aty t) — 1
atp(k/t|x0/t0):Al%r_%/dyeky{ ( At|y ) }P(%ﬂxo,to)- (2.73)

It remains to investigate the behavior of the expression in brackets as At — 0. To
this end, we insert the rhs of the difference equation into (2.72) which gives

Ok, t + Atly, t) =
<exp (ik [F(X(t), f AL+ [D(X(1), )] /* ALu(t,At)D \ X(t) = y> (2.74)

Since the process X(t) and the increments AL, (t, At) are stochastically indepen-
dent, we can factorize the expectation value,

O (k, t + Atly, t) = (exp (ik F(X(t), t)At)| X(t) = y)
<exp (ik [D(X(t), )] /" ALL(t, At)) ‘ X(t) = y>. (2.75)
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The first factor evaluates to
(exp (ik F(X(1), AR X(t) = y) = exp (ikF(y, 1)AL), 2.76)

the second one is given by

(exp (ik [D(X(), )]/ ALu(t, A1) ) | X(t) = y ) =
<exp (ik [D(y, t)]"/* AL(t, At)>>. (2.77)

In order to compute the expectation value on the right, we employ the Fourier
representation of the conditional pdf (2.53) of the symmetric Lévy stable process
and we find

<exp (ik [D(y, t)]/* AL(t,At))> = exp (— |k|* D(y, t)At) . (2.78)

Combining equations (2.76) and (2.78) the characteristic function reads,

O (k, t + At|y, t) = exp (ik F(y, t) — |k|* D(y, t)At) (2.79)
= 1+ ik F(y, t)At — |k|* D(y,t) At + O(AF?), (2.80)

and thus ok A .
fim SEAHAY ) =1 r o kE Dy, 8. 2.81)

At—0 At
Substituting into (2.73) we obtain the FFPE in Fourier space, explicitly

0 p(k, t|xo, tg) = /dyeiky [ik F(y,t) — |k|* D(y, t)] p(y, t|xo, to). (2.82)
An inverse Fourier transformation yields the FFPE in position representation, i.e.
0r p(x, t|xo, to) =

/dy {/ dkeik(y—x)ik} F(y,t) p(y, t|xo, to)

— /dy {/ dkeik(y—x)|k|“] D(y,t) p(y, t|xo, to). (2.83)

The terms in brackets can be evaluated by partial integration. They reflect an ordi-
nary first order derivative and a fractional Laplacian of order p,

/ dke ¥ 0¥ ik = —§(y —x)V,  and (2.84)

/ dke k=) k[ = —5(y — x) AL, (2.85)
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With these expression we finally obtain the FFPE for the generalized Langevin

equation (2.66),
0r p(x, t|xo, tg) = [—VxF(x,t) —I—A?/ZD(x,t)} p(x, t|xo, to). (2.86)

Both the force coefficient F(x, ) and generalized diffusion coefficient D(x, f) may
depend on position x and time ¢t. For u = 2 the fractional Laplacian is reduced to
the ordinary second derivative and we recover an ordinary Fokker-Planck equa-
tion . The factor of 1/2 present in and missing in stems from the
fact that the diffusive Lévy stable process Ly(t) is not identical to W(t) but rather

Ly(t) = V2W(t).

2.6.2. Physics, Again

The FFPE is by far the most investigated generalized Fokker-Planck equation
for superdiffusive motion [40] 41} [60] B8] which is based on a plausible underlying
physical process. Comparing with the ordinary FPE we see that Lévy sta-
ble white noise introduces an anomalous diffusion term, whereas the drift term
remains unaffected. The physical implications of this are revealed most transpar-
ently when D(x, t) = 1 and in a gradient force field

F=—pdV/dx,
where V(x) is a potential. In this case is given by

dv
ai’ P(x/ t|x01 tO) = [ﬁvxa + A§/2:| p(xl t’xOI tO) (287)

The key feature of this type of FFPE is the violation of ordinary Gibbs-Boltzmann
thermodynamics. Neither is the stationary solution to the Gibbs-Boltzmann
equilibrium, i.e.

ps(x) #e V), (2.88)

nor is detailed balance fulfilled. Consider the harmonic potential V(x) = x2, which
is investigated in detail in section This system can be solved [60] and the
stationary solution is given by the Lévy stable law

1 , |k|*
_ 1 _ i 2.
polx) = o [k exp( zkx+2u/3), (2.89)
which is clearly different (for u < 2) from the Gaussian expected for Gibbs-Boltz-
mann thermodynamics.
In figure[2.7)the generalization of the physical system discussed in figure[2.3] sec-
tion is depicted. As opposed to the ordinary system the ideal gas is prepared
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Figure 2.7.: Generalized Langevin dynamics of a mass attached to a harmonic spring coupled
to a Lévy ideal gas. The situation is similar to the paradigmatic case depicted in figure
above. The mass (red object) is submerged in a liquid of high viscosity such that the motion
is overdamped. The Lévy ideal gas (red, little objects in container) transfers momentum to the
coupled system by means of a piston or a membrane (gray area). In contrast to the ordinary
ideal gas in figure[2.3] in the Lévy ideal gas the energies are distributed according to a power
law among the degrees of freedom . The pdf of the energies of the Lévy ideal gas (red line)
is compared to the pdf of an ordinary ideal gas (blue dotted line). The potential V(x) = x?
(green curve) is the same as in figure The stationary pdf ps(x) of the mass deviates from
the Gibbs-Boltzmann equilibrium exp(—ﬁxz) as is indicated by the superimposed blue dotted
curve.

such that the kinetic energy of individual degrees of freedom is distributed ac-
cording to a inverse power law with divergent variance. Consequently, the energy
transfer to the coupled systems is strongly fluctuating. These fluctuations follow
an inverse power law as well [#2]. Still, individual increments of energy transfer
to the coupled system are uncorrelated. Therefore the dynamics of the mass can be
modeled by the generalized Langevin equation

dX = —2BXdt+dL, with p<2. (2.90)

For any initial condition, the mass will equilibrate to the Lévy stable stationary
density (2.89). At first glance, this seems paradoxical, because nothing indicates a
violation of ordinary statistical physics on the microscopic scale. The reason why
ordinary Gibbs-Boltzmann thermodynamics fails here is the non-equilibrated state
of the ideal gas in figure In thermal equilibrium each degree of freedom has
approximately the same amount of energy of the order of kgT which defines the
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temperature as an intensive quantity [I07]. This typical energy scale is not well
defined for the Lévy gas, hence temperature cannot be defined in the usual way.

2.6.2.1. A Lévy Gas on the Computer

A very simple numerical experiment illustrates this unusual behavior: A set of
N > 1 random numbers €, > 0 are generated which model the energies of indi-
vidual degrees of freedom of an ideal gas. The total energy E of the gas is scaled,
such that E = Y, e, = N. The temperature T can be defined as the energy per
degree of freedom, T = E/N = 1/N 5, €,. The volume containing the gas is split
into Ny = O(1) smaller volumes, each one containing N /N, degrees of freedom,
see figure The total energy E and temperature T of the subsystems is com-
puted and compared. First we treat an ordinary, thermally equilibrated ideal gas.
Thermal equilibrium implies an equipartition of energy between the degrees of
freedom, each one having approximately the same energy €, ~ T with some vari-
ance [I07]. We model this by random numbers €, which are uniformly distributed
in some finite interval. Therefore, the temperature of each subsystem fluctuates
around the temperature T of the original system with a standard deviation of pro-

portional to 1/4/N/Ng which is very small for N > 1. In this case temperature

is an intensive quantity. Likewise, the total energy of each subsystem is approxi-
mately E/N, and thus an extensive quantity.

If we prepare a Lévy ideal gas in a similar fashion, a different behavior is ob-
served. We generate the individual energies € from a scale-free power law and
normalize the total energy as above. We define the temperature in the same fash-
ion as the energy per degree of freedom, i.e. T = 1/N ¥, €,. However, equipar-
tition of energies (e, ~ T) is no longer valid, because some degrees of freedom
possess an energy of the order of the total energy. Therefore, if we distribute the
N degrees of freedom equally into N subsystems and compute the total energy
and temperature of each one, both quantities fluctuate heavily and are not even re-
motely the same for each subsystem. The total energy is neither an extensive, nor
the temperature an intensive quantity.

This example shows that generalized Langevin equations such as and
their associated FFPEs describe non-equilibrium phenomena. For these a num-
ber of generalizations of Gibbs-Boltzmann thermodynamics have been developed
in which entropy is non-extensive and temperature non-intensive [[I05] I23]. The
connection to generalized Langevin dynamics has been discovered recently and is
discussed in detail in [14] 26} BQ]. The question remains of why the coupled system
can equilibrate despite the fact that the thermal bath is not equilibrated. This is a
consequence of the idealization of overdamped motion. If the complete Newtonian



2.6. Generalized Langevin Dynamics

Ordinary ideal gas
G Gq Gy G3
N [10°] 3 1 1 1
T[] 20 || 19.95 | 19.96 | 20.09
E[]] 100 || 33.25 | 33.27 | 33.46
Lévy ideal gas
G Gy Gy G3
N [10°] 3 1 1 1
T[] 20 || 10.48 | 47.85 | 1.66
E[]] 100 || 17.47 | 79.75 | 2.76

Figure 2.8.: Ordinary thermodynamics is inadequate for Lévy ideal gases. A set of N =
300,000 random energies €, are generated from a uniform distribution [0, 1] reflecting the prop-
erties of an ordinary ideal gas (blue) and a scale-free density p(e) oc e~ 7(red). The energies
€, represent the microscopic degrees of freedom (gray dots) of the large container. The total
energy was normalized to the same value of E = 100 in some arbitrary units J. The tem-
perature is defined as the average energy of each degree of freedom T = 1/N Y €, and is
defined to be 20° in some arbitrary units. The system is split into three subsystems, each one
containing 100, 000 degrees of freedom The total energy and temperature of each subsystem
is computed. The subsystems containing an ordinary ideal gas have approximately the same
temperature (blue bars) and approximately a third of the total energy (see table), whereas the
subsystems containing the Lévy gas have variable temperature (red bars), e.g. the container in
the center has a temperature 28 times larger than that of the container on the right.

equations of motion are included, i.e.

dU = —28Xdt — Udt +dL, (2.91)
dx = U, (2.92)

the system does not possess a stationary state [80].

The reasoning presented above suggest that Lévy flights are generally a non-
equilibrium phenomenon. This is certainly true when a system is correctly de-
scribed by generalized Langevin dynamics in which a segregation of deterministic
drift and stochastic force can be motivated. However, due to the non-local nature
of Lévy flights, the FFPE represents only one out of many possible general-
izations of the FPE.

2.6.3. Probabilistic Models, Again

The Langevin approach is suitable whenever a separation of deterministic evolu-
tion and additive stochastic force can be justified which is often the case in physical
systems. For a number of stochastic phenomena observed in biological, ecological
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and econophysical systems, this segregation cannot be easily motivated. Conse-
quently, stochastic models based on the more fundamental master equation are
required. However, the expansion ideas of section[2.2.2]showed that rate equations
for ordinary random walks can also be interpreted within the ordinary Langevin
picture.

Thus it seems natural to address this issue when confronted with superdiffu-
sive rate equations. In other words, does the FFPE for generalized Langevin dy-
namics represent the canonical limit of underlying superdiffusive rate equations?
This question is more difficult to answer. The most prominent probabilistic mod-
eling scheme is the Continuous Time Random Walk (CTRW) introduced by Scher
and Montroll in a study of anomalous diffusion in amorphous solids [II3]. Since
then the CTRW scheme has received a lot of attention and still represents one of
the most popular tools for investigating anomalous diffusion phenomena, rang-
ing from transport in intermittent chaotic systems [143] to fluctuation phenomena
financial markets [83]. A marvelous overview on CTRWs is provided in [E[Iﬂ
Anomalous CTRW are intimitely connected with fractional diffusion equations,
and since their invention considerable effort has been devoted to draw a one-to-
one correspondence between various CTRW models and analogous fractional evo-
lution equations [B8] B9)]. For example, when a CTRW evolves in a homogeneous
environment, the asymptotic behavior is governed by the FFPE of a free Lévy stable
process (2.60). Furthermore, when an external field or an inhomogeneous environ-
ment is incorporated into a subdiffusive CTRW model, one can generally establish
the equivalence to a subdiffusive FFPE [I1]|.

However, combining superdiffusive CTRW with inhomogeneous environments
is a subtle matter and no canonic FFPE can be obtained. This is not surprising, since
only in these systems the non-local nature of transitions and the inhomogeneity
are found in the spatial domain. Only when the rates which incorporate the spatial
inhomogeneity as well as the non-local spatial transitions are fine tuned, can the
FFPE be derived from an underlying CTRW model [86]. Nonetheless, the
generalized Langevin scenario has been regarded as the canonic generalization of
the Fokker-Planck equation until very recently, when topological superdiffusion

was introduced [22] 24] 25].

2.7. Fractal Time Processes

Since generalized Langevin dynamics violates ordinary Gibbs-Boltzmann thermo-
dynamics, one may conjecture that Lévy flights are strictly a non-equilibrium phe-
nomenon and that superdiffusion is absent in properly equilibrated systems. This,

®This article also contains a greatly entertaining historical synopsis of random walks, stochastics
and statistics.



2.7. Fractal Time Processes

Figure 2.9.. A Lévy stable process (blue)
generated by a strongly inhomogeneous
temporal sampling of a two-dimensional
realization of the Wiener process (gray).
The exponent of the operational time den-

sity 294) is = 1.

however, is not so. The first FFPE to describe superdiffusion in Gibbs-Boltzmann
equilibrium and which is based on a plausible underlying microscopic dynamics is
the subordination idea developed in [119], extended in [120], and thoroughly inves-
tigated in [25]. In the subordination scenario, the process X(t) = X(7(t)) evolves
with an operational time 7(f) which is a strongly fluctuating function of the phys-
ical time ¢ [B8]. This type of irregular temporal sampling occurs in a number of
physical situations, for example temporal fluctuations near phase transitions [54],
superdiffusion from anomalous drift [[/5], and phenomena with scale-free memo-
ries, see [BY] and references therein. The operational time is a monotonically in-
creasing stochastic process itself. In operational time the dynamics are governed
by an ordinary Langevin equation

dX(7) = F(X(1))dT +dW(7). (2.93)

The process X (t) is superdiffusive as a function of physical time ¢, if the operational
time increments AT are drawn from an inverse power law defined on the positive
real axis such that the first two moments diverge, i.e.

1

p(AT) ~ ATlJrli/Z

AT > At, 0<pu<2. (2.94)

The case of vanishing force (F = 0) in two dimensions is illustrated in figure
In this case W(t) is simply the Wiener process, but X () = W(7(t)) is a process
subordinated to it. The irregular sampling of physical time 7(t) causes X(t) to be
a Lévy stable process with W(t) as a support. In fact, for a density of operational
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time increments as (2.94) and F = 0 one can show that X(f) = L,(t). The corre-
sponding conditional pdf p(x, t|xo, to) in physical time is governed by the FFPE for
symmetric Lévy stable processes [120],

0r p(x, t|xo, to) = Ag/Zp(x,ﬂxo, to). (2.95)

For non-vanishing force the correct FFPE is given by

01 p(x, txo, to) = — (=L, rp)*'* p(x, t]x0, to) (2.96)
(see [120] for a detailed derivation), where

1
La,rp = ~ViF(x,1) + 5AD(x,1) (2.97)

is the ordinary Fokker-Planck operator. Comparing with the FFPE for generalized
Langevin dynamics (2.86), we see that the FFPEs are only identical in the force free
case (free superdiffusion) or when p = 2 (ordinary diffusion). Raising the entire
Fokker-Planck operator to a fractional power may seem a bit unusual. However,
since L, rp is skew-symmetric it can be spectrally decomposed and functions of
L, pp can be computed with ease. The eigenvalues E(k) of L, rp are non-positive
and the spectrum of —(—L, rp)H/2 is given by

Es(k) = —(—E(k))** <0, (2.98)

which is non-positive as well. Because the operators £, pp and — (=L, pp)" /2 com-
mute superdiffusive subordinated processes are consistent with Gibbs-Boltzmann
thermodynamics. If, for example, D(x,t) = 1 and F(x,t) = —AdV(x)/dx the sta-
tionary solution ps(x) = exp [—-V] to 0; p = Lrp p itis also the stationary solution
to (2.96).

2.8. Summary

Superdiffusive phenomena are accounted for by models based on random walks
known as Lévy flights. Unlike ordinary random walks, Lévy flights lack a scale
in their jump length statistics. Based on Lévy flights, Lévy stable processes can
be defined which serve as an anomalous noise in generalized Langevin dynamics
and generalize the Wiener process. In the associated generalization of the Fokker-
Planck equation, non-local, fractional integro-differential operators replace the or-
dinary diffusion term. However, generalized Langevin dynamics violates ordinary
Gibbs-Boltzmann thermodynamics and is only valid for systems in which superdif-
fusion is a consequence of thermal non-equilibrium, corresponding to only a re-
stricted set of physical situations. However, due to its formal similarity to the ordi-
nary Fokker-Planck equation, the appealing concept of additive anomalous noise,



2.8. Summary

the existence of a microscopic picture, and the fact that all ordinary diffusion pro-
cesses are governed by a Fokker-Planck equation, generalized Langevin dynam-
ics has been considered the canonic generalization of the Fokker-Planck equation.
Consequently, Lévy flights and superdiffusion in general have been stigmatized as
non-equilibrium phenomena. The concept of topological superdiffusion, the cen-
tral idea of this work, will redeem Lévy flights, as will be revealed in the next
chapter.
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3. Topological Superdiffusion

In this respect the master
equation approach is a much
more complete description.

(C. W. Gardiner)

In this chapter we will introduce the concept of topological superdiffusion. Based
on the paradigmatic case of random motion along a linear folded hetero-polymer,
we develop a novel fractional generalization of the Fokker-Planck equation (FPE).
Despite the fact that this fractional Fokker-Planck equation (FFPE) describes Lévy
flights in an inhomogeneous environment, thermodynamic requirements such as
Boltzmann equilibrium and detailed balance are met. We show that only either in
the diffusion limit or when the external field vanishes is the FFPE for topological
superdiffusion identical to the one which corresponds to generalized Langevin dy-
namics. We demonstrate that topologically superdiffusive processes can be map-
ped onto a quantum mechanical system defined by a fractional Hamiltonian con-
sisting of a modified kinetic term and an effective potential, indicating that topolog-
ical superdiffusion can be understood in terms of quantum mechanical concepts.
We briefly discuss the example of topological superdiffusion in the harmonic po-
tential. Finally we introduce further generalizations of the idea and present an
FFPE suitable for systems of arbitrary dimension. We summarize with a discus-
sion on Lévy flights in thermal equilibrium, and argue that the FFPE developed in
this chapter is applicable to a variety of superdiffusive phenomena in nature which
cannot be explained in terms of the generalized Langevin approach, and have so
far resisted a description by fractional kinetics.

3.1. Preliminary Considerations

In topologically superdiffusive systems long tailed spatial transitions are generated
by the complex topology on which random motion evolves, as opposed to exter-
nal anomalous Lévy stable white noise present in generalized Langevin dynamics
(section[2.6) and fractal temporal sampling observed in the subordination scenario
(section2.7). The concept of topological superdiffusion is best understood in terms
of the model systems depicted in figure
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Figure 3.1.: Two examples of superdiffusion arising in complex topologies. A: A thermally ac-
tivated particle (blue circle) performs an ordinary random walk on a hetero-polymer. The chain
is submerged in a solvent which serves as a heat bath. Thermal conformational changes lo-
cations far apart along the chemical axis of the chain approach each other in Euclidean space.
The particle may then initiate a long range jump in chemical coordinates. B: A random walker
(blue circle) evolves on a small world network [2]. As the process evolves the walker will even-
tually be located on a site with a long range connection and may jump to a distant region in the
network.

On the left a particle is loosely attached to a linear polymer. Thermally activated,
the particle performs a next-neighbor random hopping process along the chain.
If the polymer is in solution and rapidly changing its conformational state, two
positions which are far apart along the chemical axis of the chain may approach
in Euclidean space. Due to the folding, long range (measured in chemical coordi-
nates) transitions may occur. This effect enhances the dispersion of a particle along
the chain, an effect which is believed to play a role in protein motion along DNA
strands [[L6] [[35] [136]], active transport on semiflexible intracellular polymers [29]
and random walks on cytoskeletal motors [77].

A similar system, known as a small world network (SWN), is depicted in fig-
ure . Recently, these networks were introduced [130] as models for scale-free
real world networks [2] such as metabolic networks [B8] and the internet [3], and
have also been employed as models for linear folded polymers [62]. The absence
of a typical scale arises rather naturally in real world random networks and is not
a rare peculiarity [O]. In addition to the uniform local connectivity a small frac-
tion of long range connections are either added to or replace the local connec-
tions. Random motion on these structures is important to the understanding of
disease spreading in social networks and signal dispersion in biological networks,
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see e.g. [02]]. In the figure a random walker is moving on a small world network.
During the process the walker will eventually be located on a site with a long range
connection and may jump to a distant region in the network. Clearly, enhanced dif-
fusion in such a system is caused by the complex connectivity of the structure on
which the process evolves. In [69] it was shown that the spatio-temporal scaling
of dispersion on small world networks is rather different from that expected for
ordinary diffusion.

Figure 3.2.: Random motion on two dimensional randomly connected graphs. Depending on
the connectivity structure random motion on these graphs exhibits different types of asymptotics.
Ordinary as well as enhanced diffusion may occur. The difference in connectivity is highlighted
by a subset of vertices (red) and their connections (blue) A: On a locally connected graph a
random walk is diffusive on scales larger than the typical connection length. B: Connection
lengths follow an inverse power law with and thus lack a scale. A random walk on this type of
graph is superdiffusive on scales greater than the typical inter-vertex spacing.

Figure[3.2)illustrates a two-dimensional system in which enhanced diffusion may
be caused by the topological features. Each random graph consists of a number of
vertices uniformly distributed in the plane. Each vertex connected to a subset of
other vertices by a small number of connections. The number of connections as
well as the planar coordinates of the vertices are identical in both graphs. How-
ever, the connectivity structure is different. The graph in figure is locally
connected, i.e connection lengths possess a typical scale. The displacements of a
random walk on such a graph have a typical length scale defined by the typical
connection length. On large scales, a random walk on such a graph is diffusive.
In figure connection lengths follow an inverse power law with divergent vari-
ance. Connection lengths and consequently jump lengths of a random walk on
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such a graph lack a typical scale. A random walk on this type of graph is superdif-
fusive, a quality caused exclusively by the connectivity properties of the graph.

At first glance, a distinction between the underlying mechanisms (i.e. additive
noise vs. topological structure) which cause the stochastic motion may seem unnec-
essary. Ordinary, run-of-the-mill Markov processes generally possess typical time
and length scales. This implies that these processes can either be approximated
by or asymptotically converge to ordinary diffusion processes on relevant spatio-
temporal scales. The dynamics is always governed by a FPE, regardless of whether
the stochastic motion originates in the geometrical complexity of the system or in
a rapidly fluctuating external force. Of course, different underlying mechanisms
lead to different drift and diffusion coefficients of the FPE. However, the existence
of a FPE implies that on relevant scales the dynamics can be interpreted in terms
of the associated Langevin equation. That is, on appropriate scales these processes
may be understood as evolving according to a deterministic dynamics subjected to
an external stochastic force.

Based on this reasoning, we may expect that when Lévy flights evolve in exter-
nal potentials or inhomogeneities, the appropriate, universal and all encompass-
ing framework of description is the generalized Langevin scheme introduced in
section or equivalently a FFPE which segregates into deterministic drift and
fractional diffusion terms. The success of the Langevin framework for ordinary
processes, and the fact that the concept of deterministic dynamics subjected to
additive fluctuating forces is so appealing to a physicist’s mind, might explain
why the fractional Langevin approach has attracted so much attention in recent
years [40 B1] B6 [60]. Since generalized Langevin dynamics violates basic prin-
ciples of thermodynamic equilibrium, it is not surprising that Lévy flights have
been categorized as non-equilibrium phenomena, absent in thermally equilibrated
systems.

In the following we will show that this reasoning is incautious and hasty. Lévy
flights occur in a number of thermally inconspicuous systems. Furthermore, the
generalized Langevin approach is inadequate for systems in which enhanced dif-
fusion is caused by the topology of the substrate on which the process evolves.
We will demonstrate that when long tailed spatial transitions are possible, a novel
fractional generalization of the FPE must be used. The FFPE for topological su-
perdiffusion cannot be separated into in deterministic and stochastic components,
it is purely probabilistic. Thus, a description in terms of a stochastic differential
equation is not possible for these systems. Equipped with the FFPE developed be-
low, a variety of superdiffusive phenomena can be investigated which are known
to obey ordinary Gibbs-Boltzmann thermodynamics.
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3.2. Random Motion on a Folding Polymer — A Paradigm

Let us begin with a detailed analysis of the model system briefly mentioned above
and depicted in figure B.IA. A particle (e.g. an enzyme, exciton or electron) is
loosely attached to a inhomogeneous polymer (e.g. a DNA strand or linear protein)
of length L in solution at temperature T. Thermal activation by the environment
causes the particle to jump randomly along the chain with a typical waiting time
T at a given site. A potential V(x) at each monomer site x reflects the energetic
inhomogeneity of the chain. The potential quantifies the energy of the particle
when it is attached to the associated monomer. If the moving particle is thermally
equilibrated with its environment, the probability of finding the particle attached
to monomer x is proportional to the Boltzmann factor exp [— 3V (x)]. Note that the
coordinate x quantifies distance in chemical space, i.e along the chain, as opposed
to distance in Euclidean space. In the following we assume that the microscopic
distance between adjacent monomers a is much smaller than the chain length , i.e.
a < L.

The quantity of interest is p(x, t|xo, to), the conditional probability density func-
tion (pdf) of finding the particle at site x at time ¢ given that it was initially (¢()
located at xq. If we neglect memory effects, we can model the random motion of
the particle as a Markovian jump process X(t). The propagator belonging to this
type of process is governed by the master equation (for convenience we abbreviate

p(x,t) = p(x, t|xo, to))
0 plx,t) = [ dy [wlxly,t) ply,t) — w(ylx, 1) ple, ) 1)

The rhs of (3.1) defines the linear stochastic operator L(t), i.e. (3.1) can be writ-
ten as

0rp = La(t) p. (3.2)

The integral representation Ls(x|y, t) of L£y(t) in position coordinates is

Lu(ely, ) = el ) = | [ dynlyle, )] o= ). 63)

The master equation is defined by the time dependent rate w(x|y, t) of making a
transition from a monomer at y # x to an adjacent monomer at x within a short
time interval At at time ¢, i.e.

1
w(xly,t) = lim = p(x t+Atyt)  x#y. (3.4)

Since we wish to describe a system with Gibbs-Boltzmann statistics, we model ther-
mal transitions between adjacent sites y and x as

yox: wldyt) o e VRV, (35)
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The exponential in is the consequence of two basic assumptions. We assume
that the probability of jumping to a target site x decreases as the potential at that
site V(x) increases. Furthermore, we assume that hopping between monomers
depends on the energetic difference with respect to the thermal energy scale kg T =
B~1. A more general approach is discussed in sectionbelow.

Let us now take into account the geometrical complexity of the system. We as-
sume that transitions may only occur if the corresponding sites are in close prox-
imity in Euclidean space, in other words if

R(x,t) —R(y, )| <u, (3.6)

where R(x,t), R(y,t) € R3 denote the Euclidean coordinates of the two monomers
x and y. Since the polymer is subjected to conformational changes, the distance
between two given sites changes over time. In a nearly linear chain the particle
jumps exclusively between neighboring sites along the chemical axis, whereas in a
more complex conformational state locations far apart along the chemical coordi-
nate may be contiguous in Euclidean space. In this case long range transitions may
occur as well. Incorporating the thermal component of a transition between two
sites as well as the topological constraints imposed by the conformational state of
the polymer it is reasonable to make the following ansatz for the rate,

w(x|y,t) = %e—ﬁ[v(x)—V(y)]/Z G(x,y; t). 3.7)

The function G(x, y; t) takes into account the geometrical constraints imposed by
the configuration of the polymer in Euclidean space,

1 if |R(x,t)—R(yt)|<a,

) (3.8)
0 otherwise.

G(x, y;t) = {

This definition of the geometrical constraint factor implies a symmetry, namely
G(x,y;t) = G(y,x;t). Note that the thermal factor is time independent, reflect-
ing thermal equilibrium with the environment and ordinary thermodynamics, i.e.
the stationary solution ps(x) to is the ordinary, off-the-shelf Gibbs-Boltzmann
equilibrium,

ps(x) oc e BV, (3.9)

Clearly, at any time the condition of detailed balance is fulfilled,
w(x|y, t) e VW) = w(y|x, t) e BV, (3.10)

The parameter 7 in (3.7) is the typical waiting time at a given location. The rate de-
fined by (3.7)) together with the master equation (3.1) represent a model for random
motion of a particle along a polymer in solution. Although equipped with a fair
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Figure 3.3.: Flexible linear polymers in solution. Depending on the microscopic structure of
the polymer and properties of the solvent three qualitatively different conformational dynamics
can be distinguished. A: A nearly rigid, extended chain makes no long or intermediate range
contacts. B: A coiled polymers exhibits intermediate connections below a typical length o. C:
A completely flexible polymers is typically in conformational states with long range connections
on all scales. Arrows indicate conformational changes over time.

amount of appeal and beauty, the model as such defies further investigation. Mas-
ter equations are generally impossible to solve, with the exception of a few very
trivial cases. Furthermore, in the model defined above, the devil is in the details.
For a polymer in solution, which is subjected to thermal conformational changes,
the geometrical constraint factor G(x, y; t) is extremely complex, especially as a
function of time. It is rapidly fluctuating in an unpredictable manner. However,
matters can be simplified if the conformational changes occur on a much smaller
time scale than the hopping of the particle along the chain, as will be shown below.

Let us first turn our attention to a number of cases which are particularly interest-
ing and important from a physical point of view. These are depicted in figure
The simplest case is a nearly rigid, extended polymer lacking long range contacts
(figure B.3A). The topology of the coiled polymer in figure permits interme-
diate range transitions below a typical length o, in addition to nearest neighbor
hopping. The fully flexible polymer allows transitions on all scales (figure B.3[C).
For each of these systems a useful approximation of the master equation can be
obtained.

3.2.1. Rigid chains

Consider the polymer depicted in figure 3.3]A. In this case only nearest neighbor
hopping occurs. Rigidity and nearest neighbor hopping provide a geometrical con-
straint factor G(x, y; t) which is time independent and homogeneous in chemical

&
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space,
G(x,y;t) =g(x—y)  with (3.11)
2(x) = % (5(x — a) + 6(x +a)) . (3.12)

Inserted into (3.7)), we discover that the master equation (3.1) is simplified slightly.
Letting

s(x) = e PV/2) and  gi(x) = ePVI/2 p(x, 1) (3.13)

we obtain

00 plx1) = 5= (5(2) [u(x + @) + el — )] — () [s(x ) +5(x — a))) . (3.14)

This can be slightly rearranged as

0rp(x,t) = ﬁs(x) ge(x+a) +qi(x —a) — 2qt(x)1

2T a2
—;—,qut( ) {S(Ha)“(;z_ 1)~ 250 (315

On scales much larger than the inter-monomer spacing a and times much larger
than the typical waiting time 7, the process is asymptotically governed by the dif-

fusion limit of (3.14), i.e.

. a?

T,a—0 with D = o (3.16)
defining the diffusion coefficient D of the system. The diffusion coefficient deter-
mines the way spatial and temporal microscopic scales depend on each other in
order for the limit to be meaningful. Since the diffusion coefficient appears as a
prefactor in both terms of it may be absorbed by rescaling time t — t/D,
equivalently and without loss of generality we may set D = 1. The terms in square
brackets in converge to 0%g;(x)/0x* and 0s(x)/0x? in this limit. Reinsert-
ing (3.13), the master equation reads

orp = e_ﬁv/erﬁv/zp — peﬁv/er_ﬁV/2 (3.17)
=Lp, (3.18)

where A denotes the Laplace operator. Although structurally similar to the original
master equation, the representation of the stochastic operator £ in (3.17) does not
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seem very familiar. Yet if we expand both Laplacians, sort terms and scrutinize
their relationship, we obtain

Lp=(-VF+A)p  where (3.19)
F(x) = -8 d‘:iix). (3.20)

Interestingly, the operator L is in fact an ordinary Fokker-Planck operator, describ-
ing deterministic gradient dynamics in the potential V subjected to Gaussian white
noise. Therefore, on scales larger than the inter-monomer spacing, random mo-
tion along a inhomogeneous polymer can be modeled by the associated Langevin
equation

dX(t) = p d‘g—g) dt + dW(t), (3.21)
in which dW(t) is the differential of the Wiener process. Asymptotically, the dy-
namics segregates into additive deterministic and stochastic forces. In the limit
given by the original jump process X(f) becomes a diffusion process with
continuous sample paths. Thermodynamic properties such as detailed balance and
Gibbs-Boltzmann equilibrium are still valid in this limit. This can easily be checked
by employing the representation of £ in instead of the frequently used rep-
resentation (3.19)).

3.3. Mean Field Theory for Non-Local Transitions

Let us now turn our attention to the more interesting cases of rapidly folding poly-
mers, figure and C. Because the conformational changes of the polymer in
solution are thermal, the time dependent geometrical constraint factor G(x, y; )
can be interpreted as a stochastic process itself. From a physical point of view it is
of no use and also impossible to study the microscopic dynamics of G(x, y; t). In-
stead, we need to think of the system as consisting of an ensemble of N polymers
labeled i, each one in a random conformation at time ¢ characterized by G;(x, y; t).
The conformational state represents a disorder implicitly contained in the operator
L(t) of the master equation (3.1). Information about the typical behavior of the
system can be gained by averaging the master equation over the disorder. In other
words, we will study

0: [p] = [Lm(t) pl, (3.22)

where [-] = 1/N ¥,(+); denotes the disorder average. The average on the rhs poses
a problem because generally the disorder average [L(t) p] does not factorize into
ILm()][p]- However, if the conformational changes of the polymer occur on a
much faster time scale than the hopping of the particle, p(x, ) can be assumed to
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be approximately constant on time scale typical for G(x, y; ) and we may assume
that

[£m(t) p] = [Lm(D][P]- (3.23)
This is a mean field approximation. The operator is replaced by its expectation

value. Inserted into the master equation (making the notational change [p] — p)
we obtain

orp(x,t) = [ dy {[w(xly, D1 p(n,H) — [w(lx. Dl p(x, )}, (324)

where

[w(x|y, )] = e PVEIVWIRIG(x, y; 1)]. (3.25)

The disorder average [G(x, y; t)] is just the probability P(|R(x, t) — R(y,t)| < a) of
finding monomers x and y at a distance from each other less than a in Euclidean
space, for

R(y, t)| —a)] (3.26)
R(y,t)| < a), (3.27)

[G(x, y; )] = [x(IR(x, 1)

= P(|R(x,t) —
where x(z) is the characteristic function which is unity when z € [0,1] and zero
otherwise. If the conformational dynamics are equilibrated with respect to the ther-
mal bath, the probability on the rhs of does not depend on time. In addition
to the symmetry of interchanging x and y we may assume homogeneity along the
chemical axis. All this implies that the probability is a function p which merely
depends on chemical distance |x — y/, i.e.

P(IR(x,t) = R(y, )| < a) o< p(|x — y[). (3.28)

Thus, the mean field approximation yields a temporally homogeneous master equa-
tion with time independent rates,

1
w(xly) = —e PVEITVWI2Zp(|x — y)) (3.29)

Although the function p(I) with I = |x — y| depends on the folding properties of the
polymer, it is reasonable to assume that it decreases monotonically with distance .
A jump process governed by this rate clearly fulfills detailed balance, since

w(x|y)e PYW) = w(y|x)e BVE), (3.30)
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3.3.1. The Coiled Polymer

We ambitiously apply the above reasoning to the coiled polymer depicted in fig-
ure 3.3B. Qualitatively, the state of such a polymer is characterized by a typical
length scale o, above which long range transitions are highly unlikely to occur.
The length scale o represents a natural cutoff in the PDF p(I) of making a transi-
tion of length [ in chemical space. We therefore expect all the moments of p(I) to
exist, i.e.

— (M =2 / dl p(1) 1" (3.31)

Inserting the mean field rate (3.29) into (3.1) and performing a Kramers-Moyal ex-
pansion [I09] of the rates we obtain

x 1 0\"
e =3 (~35) Datvyptan), (332)
where 1
xX) = - /dy (y — x)" e PV =VWI2 (|x — y|). (3.33)

Expanding the exponential exp [V (y)/2] around x, we can express the Kramers-
Moyal coefficients D, (x) in terms of the moments A,, as

_ 1S Awk vy | (9 C v
Dy(x) = =X 0 3 ) ¢ . (3.34)

Inserted into (3.32), this gives the evolution equation of the propagatorﬂ

18 ¢ n+k O\" svye | (9 ¢ —BV(x)/2
0; p(x,t) ;Z ( ) e 35 ) ¢ p(x,t). (3.35)

Apart from the mean field approximation no further approximations have been
made so far, the evolution equation is equivalent to the disorder averaged
master equation.

Irrespective of the exact shape of the jump length probability p(I), the situation
depicted in figure [3.3|B suggests that the moments depend on the natural length
scale o as

Agy = a3, 07", Agpy1 =0 meN. (3.36)

!Here and in the following we employ brackets [-] to restrict the action of differential oper-
ators to whatever functions appear inside the brackets, for example 0y a(x) [0x b(x)] c(x) =

a' (x)b' (x)c(x) + a(x)b" (x)c(x) + a(x)b' (x)c'(x)
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Odd moments vanish because p(I) is even, the prefactor a,,, is independent of o
and is determined by the functional features of p(I). Without loss of generality we
can assume that the second moment is identical to 0 and thus a4, = 1. Again,
the dynamics on scales much larger than the natural cutoff o is governed by the
canonical diffusion limit,

2

o, 7T—0 with D, = > (3.37)

In this case, the diffusion coefficient D, contains the cutoff o in the numerator as
opposed to the inter-monomer spacing a. In the above limit only two terms (1, k =
1,1and n,k = 2,0) in (3.35) are nonvanishing, because

A
lim 2% = 2 D agy Sy 1. (3.38)

o1—0 T

Inserting this into (3.35) yields

0 w2 | 9 pvip] . @
0:p(x,t) =D, | —2—e —e +@ p(x,t)

0x ox
o (— 2w+ 2 pa (3.39)
SO ox ox2 ) P b '
where F(x) = —AdV(x)/dx. The disorder averaged master equation for the ran-

dom walk along coiled polymers with limited long range transitions is asymptot-
ically equivalent to an ordinary FPE identical the one obtained for the linear rigid
chain. On scales larger than the cutoff parameter o the particle becomes diffu-
sive. The possibility of initiating intermediate jumps only increases the effective
speed of dispersion quantified by D, as compared to the diffusion coefficient D of
the linear chain. The increase in dispersion speed is proportional to the number of
monomers contained within the cutoff length o as can easily be checked combining
equations (3.16) and (3.37), i.e.

% - (%)2 (3.40)

However, the diffusive nature of dispersion is not changed when long range tran-
sitions of finite variance come into play.

3.4. The FFPE for Topological Superdiffusion

The situation changes drastically when scale-free long range transitions between
monomers can occur. When the polymer is flexible, for example when the chemical



3.4. The FFPE for Topological Superdiffusion

bonds between monomers can be rotated freely, the typical conformational states
are more erratic and globular, see figure 3.3C. The 3-dimensional state of such a
chain can be regarded as a random walk in Euclidean space [B2] B5]. In these ran-
dom walk models, the probability p(I) of finding two distant sites x and y = x + [
in close proximity in Euclidian space is related to the return probability of the 3-
dimensional random walk. The function p(I) is generically an inverse power law,
p(1) oc |1+ for |I| > a. The exponent depends on the underlying random
walk model for the polymer configuration but is typically less than unity [122]]. In
the following we assume that

pll) = =5 (3.41)

pat [ |1]~(+H) | >a, 0<pu<2
0 otherwise.

The prefactor pat /2 ensures the proper normalization of p(I) to unity. The inter-
monomer spacing a represents the minimal jump length. If the exponent u < 2,
the density p(!) lacks a finite variance, even worse, when p < 1 the expectation
value (I) diverges. The statistics of jump lengths along a random polymer lack a
typical scale (see figure[2.4]for consequences of this). We cannot apply the Kramers-
Moyal expansion for p < 2 inn order to obtain the asymptotic behavior of the
propagator. Instead, we will work with the disorder averaged master equation
directly. Inserting the jump length PDF into the rate (3.29), the master equation
reads

pat —BV(x eBV(y)/2 ot
0rp(x,t) = 5= e PVI/2 / dy |x_y|zﬂl(+y” )
|x—y|>a

~BV(y)/2
_ V2 p(x 1) / dy ’e (3.42)

[x—y[>a
Note that the integrals are restricted to a region |x — y| > a. We now investigate the
asymptotic limit of , letting a, T — 0. In order for this to make any sense the
ratio a* /T must be kept constant. This scaling relation of the microscopic quantities
reflects the underlying fractal structure of the process, which is determined by the
exponent in the power law (3.41). The generalized diffusion coefficient D is defined

in analogy to (3.16) as
. T a*
, 0 th D= _ — . 3.43
e wi 2T(1 4 p) sin(mrp/2) ( T ) (343)

The choice of the prefactor in the definition of D may seem a bit peculiar and ar-
bitrary at this point. It will become useful below. Note that the units of the gener-
alized diffusion coefficient are not the same as in ordinary diffusion. Substituting

2
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g$ s(x) and g¢(x) as defined in (3.13) we may carry out the limit as follows

_ D1 9:(y)
Otp(x,t)—D}Zg%Cu s(x) / dy =y

=yl >a

—a(v) | dy% , (3.44)

x—y]>a

where Cy, = I'(1 + p) sin(7rp/2) /7. Adding two terms +5(x)q¢(x) Jjy_y~a dv |y —
x|~(1+1) yields

Dl q:(x)
atp(x,t)—Dclzl_r)%C” s( / dy |x— ’H“

|x—y|>a

—gi(x / dy > ‘x ﬁ(ﬁ) . (3.45)

|x—y|>a

Both integrals are now regularized and the limit is well defined, yielding

0 p(x,t) = { c [ ay” y|w) ) Cu [ dy%}. (3.46)

Note that in the limit the resulting rates w(x|y) are not normalizable. Therefore, as
mentioned earlier, the process is not a pure jump process in this limit. In fact, tra-
jectories become discontinuous almost everywhere in this limit. However, the limit
can be carried out since the resultant singularities cancel, and equation canbe
interpreted consistently. The integrals appearing in equation are symmetric
generalized fractional Laplaciang|(see Appendix defined by

(a2f) (x) = G / ay W =Fx) (3.47)

|x — y[tT

Using this notation and inserting the definitions (3.13) of s(x) and g:(x), the dy-
namics of the propagator can be cast into a more concise form:

2The term fractional Laplacian originates in the behavior of that operator in Fourier space, in
which A#/2 is just a multiplication by —|k|* extending the Fourier representation of the ordinary
Laplacian (—k?) to exponents u € (0,2).
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Orp=Lyup

What you see here is the FFPE for topological superdiffusion. Without a doubt
this equation does have esthetic value. In addition, it represents the centerpiece
of this work, as everything that we report in forthcoming chapters more or less
revolves around it. Again, the similarity to the underlying master equation is ob-
vious. Trivially, in equation detailed balance is fulfilled. The solution to
L,ps = 01is always ps x exp [—BV]. If properly normalizable this solution is the
stationary state of the system, that is to say Gibbs-Boltzmann equilibrium is re-
tained in the limit (3.43). Since the rhs of does not change if a constant offset
Vp is added to the potential, we may always choose V| such that the stationary
state if it exists is normalized to unity,

ps(x) = e BV with /dx ps(x) = 1. (3:49)

Hence topological superdiffusion is thermodynamically sound. For p = 2 equa-
tion (3.48) is identical to , in other words £, is an ordinary Fokker-Planck
operator in this case,

Ly=Lrp for n=2. (3.50)

If BV = 0, that is either in the absence of an external potential or in the high tem-
perature limit 3 — 0 all the exponentials in (3.48) are unity and £, is reduced to
the fractional Laplacian of free superdiffusion,

L,=A*? for BV =0. (3.51)

Equations and show that the topological FFPE coincides with the FFPE
describing additive Lévy stable noise (sections and the FFPE associated with
highly fluctuating temporal behavior (section 2.7) when either u = 2 or BV = 0.
However, for 0 < p < 2 and non-vanishing 3V the topological superdiffusion does
not portray a situation equivalent to any of the FFPE discussed so far. More specif-
ically, the dynamics governed by £, can not be recast into a generalized Langevin
description such as

dX = F(X,t)dt + D(X, t) dL,(t). (3.52)

This can be explained intuitively as follows: In topological superdiffusion, large
magnitude jumps are caused by the underlying geometrical constraint of the sys-
tem, they depend on energetic properties of the target location just as much as on
the current position. This is not the case for generalized Langevin dynamics, where
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the probability of an additive stochastic increment does not depend on the possible
values the process X(t) may aquire in the future.

Although the derivation of the FFPE was based on the specific example of
random hopping on a rapidly folding hetero-polymer in mean field, the range of
its application is much wider. Whenever the probability rate of a master equation
can be expressed as

w(x|y) oc e BVEO=VWI2 £(x — ) with

—

f(l)o<|l|1+‘i for |I|>xy) and 0<pu<2,

the asymptotics is governed by the FFPE given in (3.48). In other words, when
thermal and geometrical components of the probability of making a transition y —
x represent independent factors, the geometrical component decays according to
an inverse power law as a function of distance with divergent variance, and the
thermal factor describes ordinary Gibbs-Boltzmann thermodynamics the FPE must
be generalized as above.

Mathematically, the FFPE describing topological superdiffusion is different from
the FFPEs associated with generalized Langevin dynamics and subordination, com-
pare equation to equations and in sections [2.6) and 2.7} respec-
tively. Yet the question must be addressed of whether all these generalizations
imply substantial deviations in their dynamical properties, apart from the fact that
the generalized Langevin approach violates Gibbs-Boltzmann thermodynamics. In
chapter [ the various FFPEs are compared in the paradigm of superdiffusion in
the harmonic potential and escape dynamics in a double well potential. It will be
shown that the dynamical properties of topological superdiffusion are indeed very
different from any of the other superdiffusion models encountered so far.

The most drastic difference occurs when superdiffusion is modulated by an ex-
ternal potential with variable but limited magnitude. These type of potentials are
frequently encountered in physical systems. The hetero-polymer in figure 3.1] is
a good example. If each monomer type has a particular energy associated with
it, the potential as a function of chemical coordinates is clearly a potential with
variable but limited magnitude. Another example we mentioned earlier is the dis-
persion of foraging animals in their habitat, which can be successfully described
by Lévy flight models [30] [/3] 127] 128]]. Usually, an animal’s habitat is inhomoge-
neous and this inhomogeneity must be taken into consideration by a modulation
of the dynamics [85]. We will show in section that the asymptotics of general-
ized Langevin dynamics is trivial in any bounded potential, an indication that this
modeling scheme fails for these type of systems. On the contrary, in topologically
superdiffusive systems bounded potentials do have a significant impact on the dy-
namics. This will be discussed in chapters [f] and [f] on superdiffusion in periodic
and quenched random phase potentials, respectively.
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3.5. The Fractional Schrodinger Equation

The operator £, defined in (3.48) is not symmetric, for the probability rate w(x|y)
of making a transition y — x is not necessarily the same as the probability rate
w(y|x) of making a transition in the reverse direction,

w(x|y) # w(ylx) (3.53)

However, the property of detailed balance provides us with a transformation
S1/2, by which the evolution equation can be cast into symmetric form (see Ap-
pendix|C). In fact, any stochastic evolution equation of the type 0; p = L p can be
recast into symmetric form, as long as a solution to £ p = 0 exists and detailed bal-
ance is fulfilled. Despite the fact that a symmetrization introduces a number of an-
alytical techniques by which the problem is more likely to be bludgeoned into sub-
mission, one does not usually gain a deeper understanding of the dynamics by this,
see for example section [B.6]on generalizations of topological superdiffusion. How-
ever, recasting the FFPE into symmetric form yields a fractional Schrodinger
equation which consists of two terms, an anomalous kinetic term and an effective
potential term. This formal equivalence to quantum mechanical wave propaga-
tion entails a number of valuable analogies which promote the understanding of
topological superdiffusion.

Adopting Dirac notation from quantum mechanics, the transformation we seek
may be expressed as

SY2 = exp [-BV(X)/2] (3.54)
_ / dxe PV |x) (1] (3.55)

The position operator X is simply a multiplication by x, i.e.
X = /dxx |x) (x]. (3.56)

Since X is symmetric S'/2 is, too. It represents a multiplication by the function
exp [—BV(x)/2], the “square root” of the solution to £,,ps = 0. The integral kernel
of S'/2 is given by

<x‘51/2‘y> = e PV 25(x — y). (3.57)
Normalizability of exp[—BV] is not required for the transformation to be applica-
ble. Now we insert

p=5Y2]y)  and (3.58)
L, = —SY/?Hs1/2 (3.59)
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into (3.48), obtaining a fractional Schrodinger equation for the wave function [1)),

01 |9) = —H [w). (3.60)

The Hamiltonian H in is indeed symmetric. Note, however, that this Schro-
dinger equation is missing the factor ifi, which we could formally introduce by
mapping time on the imaginary axis, t — ifi t. In terms of momentum and position
operators the Hamiltonian reads

H=|P|* + U, (X). (3.61)

This Hamiltonian describes the motion of a particle with an anomalous kinetic term
|P|* in an effective potential U, (x). The anomalous kinetic term is an imprint of
the superdiffusive nature of the original process. Intuitively, for a given kinetic
energy the momentum increases when v is decreased. The original potential V(x)
determines the effective potential

U, (x) = ePV(X)/2 A1/2,=BV(2)/2. (3.62)

which also depends on the Lévy index p. If we modify the kinetic term by varying
p the effect is balanced by a change of the effective potential. This is plausible,
because Gibbs-Boltzmann equilibrium, i.e.

ps(x) = e_ﬁv(x), (3.63)

does not depend on p. In the ordinary diffusion limit the effective potential can be
computed easily,

BB 2 "

U=<|5(V)"=V"]. 3.64

230 o0
When p # 2 matters are more involved. The equivalence of the FFPE for topologi-
cal superdiffusion and the fractional Schrodinger equation is more than formal. In
fact, fractional Schrodinger equations have just recently been introduced to quan-
tum mechanics an have been investigated in detail by Laskin [67] 68]].

3.5.1. Topological Superdiffusion in the Harmonic Potential

The interplay between the anomalous kinetic term |P|* and effective potential term
U, (X) is most transparent in the harmonic potential, which we will discuss in more
detail in section 4.4} If V(x) = x? the effective potential is

U(x) = ~—=(2B)*/*T (”T“) o (—g %,- ’37"2) , (3.65)
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Figure 3.4.: The effective potential U, (x) Z

for superdiffusion in the harmonic poten- =l

tial V(x) = x* for B = 1. The 5L ]
curves represent effective potentials for :

a set of values of the Lévy index p = I

{0.1, 0.5, 1.0, 1.5, 2.0}. The red and blue -

curves correspondto p = 0.1 and © = 2, O,

respectively, the intermediate hues to the ‘ ‘
intermediate Lévy indices. -4 -2 0 2 X

where

az ala+1)z?2  ala+1)(a+2)23
(o, yiz)=14+22 z Z 4 3.66
(@ 7;2) Tty 02 Ty s+ 3 T (3.66)

The function @ is a confluent hypergeometric function [B0, pp. 1013]. When p = 2
the effective potential is quadratic in x, because all terms in the series expansion
vanish due to the factor « + 1 = 0 in the numerator in each term, and (3.65)) reduces
to

Up(x) = [/3x2 - 1] ) (3.67)

consistent with (3.64). When p € (0,2) the series expansion cannot be truncated
and the effective potentials contains terms of all orders of x>. The effective potential
for a set of Lévy exponents u forﬂ B = 1is depicted in figure For superdiffusive
systems the effective potentials possess a more pronounced trough at the origin
and a greater increase as x — Foo. The smaller the exponent p, the stronger the
effect, exactly balancing the superdiffusive kinetic term such that the Gaussian

Ps(x) = e P2 (3.68)

is the stationary state and identical for all superdiffusive systems in the harmonic
potential. This is in sharp contrast to generalized Langevin dynamics in the har-
monic potential [[60] in which the stationary state does depend on the Lévy index
u and is a Gaussian only when p = 2 (see section [f.4). The dynamical properties
of topological superdiffusion on one hand and generalized Langevin dynamics on
the other are compared in detail in the next chapter.

3The value 3 = 1 can be considered without loss of generality, since a coordinate transforma-
g Y
tion x — B~1/2x, t — B~H/2t yields an Schrodinger equation for the wave function ¢(x,t) =

B2y (B’l/zx, ﬂ’“/zt) with an effective potential U (x) = f~*/2U (/3’1/23() independent of

X

—
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3.5.2. Perturbation Theory for Weak Potentials

Generally, it is very difficult to solve the fractional Schrodinger equation for
a given potential. Even the simpler task of finding the spectral decomposition of
H is generally a hopeless enterprise. An method which often yields useful results
is the perturbation expansion of the Hamiltonian in the vicinity of some Hy for
which the spectral decomposition is known. The example of the harmonic po-
tential given above represents the simplest case of an external potential without
bounds. Whenever V is unbounded, so is the effective potential U, in the frac-
tional Hamiltonian , and U, (X) cannot be considered as a small perturbation
of free superdiffusion, i.e.

Ho = [P|*. (3.69)

However, in a variety of physical applications the potential V(x) varies as a func-
tion of position but is bounded in magnitude, |V| < V;, or possesses a typical
variance,

lim % / dx V2(x) = V3, (3.70)
L

where we set the spatial average of V(x) to zero, which we may, because an offset

to V(x) does not change the effective potential U, (x). Furthermore, we may set

Vo =1, (3.71)

without loss of generality (this can be accomplished by the appropriate rescaling
of the inverse temperature 3 — f3/V}). Potentials of this type are appropriate for
models in which spatial inhomogeneities need to be taken into account, such as the
hetero-polymer discussed above. As opposed to generalized Langevin dynamics,
which is trivial in these types of potentials (see section [£.3.4), they reflect the most
interesting class of potentials for topologically superdiffusive systems.

Examples of potentials of this kind are periodic potentials (chapter [5) and ran-
dom phase potentials (chapter [f), two examples of which are schematically de-
picted in figure For various values of 3 and p, the associated effective po-
tentials are shown as well. The effective potential decreases in magnitude with 3.
Also, just as in the case for the harmonic potential, U, (x) differs for various values
of . Nonetheless, the qualitative shape differs only little. When V' (x) is bounded,
so is the effective potential U,. In this case the effective potential can be treated as
a perturbation to (3.69), the magnitude of which is quantified by the perturbation
parameter $3. If 3 is small the effective potential Uy, (x) is approximately given by

2
U, ~ —g ARV % {ar2v? —vartvy, (3.72)

When 3 < 1, the effective potential is small and the fractional Hamiltonian can be
treated by perturbation theory. The approximation (3.72) is superimposed on the
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V(X)4 ' ' ] Uz} 1 Uu(X)of

2 0 2 X 2 0 2 X 2 0 2 X

Figure 3.5.: Two examples of bounded potentials V(x) with limited variance and their associ-
ated effective potentials U, (x). Top: V(x) = v/2 cos(x), bottom: a potential with a Gaussian
power spectrum, uncorrelated random phases and unit variance. Effective potentials U, (x) are
shown in the middle and right column for 3 = 0.5 and 3 = 1.4, respectively. Two values for the
Lévy exponent were chosen and are distinguished by color, p = 1 (blue) and 2 (red). The high
temperature approximation for U, (x), equation is superimposed in grey.

effective potentials depicted in figure (3.5). The agreement with the exact effective
potential is still satisfactory even when 3 ~ 1. Since f3 is an inverse temperature,
the results obtained from (3.72) and (3.61) will be valid in the high temperature

regime.

3.6. Generalizations of the Approach

The fractional generalization of the FPE derived and discussed above rests on a
number of assumptions made for the transition rate w(x|y) of the underlying mas-
ter equation. First, the rate segregates into independent thermal and topological
components,

1 _ _
w(xly) = —e PVEOVWIZp(|x — y)). (3.73)

If the topological factor p(I) decreases with distance asymptotically as |I|~(1*+#)
the fundamental FFPE is obtained. The thermal component of the rate,
exp(—pB[V(x) — V(y)]/2), fulfills two basic requirements often met in physical sit-
uations, namely that the probability of initiating a jump y — x decreases with
increasing potential at the target location, and that it increases with increasing po-
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tential at the source location y. The degree to which the potential at the source
and target location contribute to the probability is balanced in the thermal factor in
equation (3.73). Source and target locations contribute only by their difference,

AV = J[V(x) ~ V(y)], (374)

a potential offset is irrelevant. This last assumption may be relaxed while retaining
the other features of the dynamics. If in the exponential in instead of AV we
insert

AV =cV(x)—(1—-0c)V(y) with  ¢€][0,1], (3.75)

a more general rate is obtained,
w(xly) = e PV p(fx — y[)eb-V) (3.76)

The parameter ¢ controls the influence of source and target location on the rate.
When ¢ = 0, the rate is independent of the potential at the target location. The
opposite extreme case ¢ = 1 depicts a situation in which the transition depends
solely on the target location. When ¢ = 1/2 the offset invariant rate is re-
covered. The dynamics defined through still fulfills detailed balance, the
associated master equation possesses Boltzmann equilibrium, and transition rates
increase with increasing potential at the source location and decrease with increas-
ing potential at the target location.

When ¢ # 1/2 the rate depends on the potential offset. If the entire potential is
increased by a constant V() the w(x|y) retains the same form, however the waiting
time constant 7 is effectively changed,

exp[BVo(2c —1)]

Thus, when ¢ < 1/2 (higher influence of the source location) an increase of the
potential increases the typical rate at which transitions occur, whereas when ¢ >
1/2 an increase of the potential by V| decreases the rate.

When ¢ # 1/2 a fractional generalization of the FPE can be obtained in a manner
analogous to the one by which we obtained the FFPE for ¢ = 1/2. It is instructive
to treat the case p = 2 (ordinary diffusion) first. In this case we must replace
p(|x —y|) in (3.76) by 6(x — y) A, and substitute the rate into the master equation
which gives the following diffusion equation,

VoV+Vy =  1-— (3.77)

drp=e PV A=Y 1 p(1=00BV A p=cBV. (3.78)

Expanding the sandwiched Laplacians, this equation can be recast into the familiar
shape of an FPE,

mp:{—VF+%AD}p (3.79)
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Drift and diffusion coefficients can be expressed in terms of the potential V(x),
inverse temperature 3 and parameter c as

F(x) = —cﬁi—‘;D(x) and (3.80)
D(x) =2 exp[—B(2c — 1)V (x)]. (3.81)

Two particular cases are of special interest. If we let c = 1/2 we recover the usual
diffusion equation in a gradient force field,

F =-B%¥
c=1/2 = D =2 (3.82)
hp = {ﬁvg—g +A} v,

which we have met in sections(3.2.1jand [3.3.1}, When transitional rates are solely de-
termined by the potential at the source site (c = 0), we obtain an evolution equation
without drift term. The inhomogeneity of the environment is entirely incorporated
in the position dependent diffusion coefficient D(x),

F =0
c=0 = D =2exp|[BV] (3.83)
d;p =3iADp.

The Ito-stochastic differential equation for the process with a propagator evolving
according to equation (3.83) reads (see Appendix[B)

dX () = \/D(X)dW(t). (3.84)

Intuitively this is clear. The diffusion coefficient increases with the potential at a
given location. The local speed of dispersion increases with the local diffusion coef-
ficient, which in terms of Langevin dynamics is equivalent to an increased variance
of the noise.

Proceeding along the same lines of reasoning, we may generalize equation
for topologically superdiffusive systems. For these systems the Laplacian must be
replaced by its fractional generalization A*/2, The generalization thus obtained is

drp=e PV AR/2 (1) BV p—p e =BV A1/2 p=cBV (3.85)

When p = 2 we recover the diffusion equation (3.19). Basic thermal proper-
ties, Boltzmann equilibrium, detailed balance etc., of the ordinary FPE remain un-
changed, only the topological features of the evolution equation are altered in equa-
tion (3.85). A more careful procedure analogous to the one presented in section [3.4]

2

3

65



3. Topological Superdiffusion

o
&
s

66

leads to the same equation. Clearly, when ¢ = 1/2 equation is identical
to (.48), corresponding to thermal transitions which depend on potential differ-
ences only. In this case a description in terms of a stochastic differential equation
fails to exist.

However, when ¢ = 0 the second term on the rhs of equation vanishes,
since A*/21 = 0, and the generalized FFPE becomes

0:p=A*2Dp with D(x) =PV, (3.86)

Again, a drift term is missing and the generalized diffusion coefficient is not con-
stant. As opposed to the general case ¢ # 0 and the most interesting case in terms
of applications, ¢ = 1/2, the generalized FFPE for topological superdiffusion is in
fact equivalent to a generalized Langevin equation when ¢ = 0,

dX(t) = [D(x)]V*dL,(t), (3.87)

since (3.86) and are special cases of equations and (2.66). In other

words, the marginal case ¢ = 0 of topological superdiffusion is equivalent to gen-
eralized Langevin dynamics with multiplicative Lévy stable noise.

The transition properties of the physical system one wishes to describe deter-
mine the correct choice of ¢ € [0,1]. While the values ¢ = 1/2 and ¢ = 0 depict
situations which one frequently encounters in physics, other values may be the
correct choice in biological, econophysical, optimal search algorithms and various
other systems. The intermediate case is of pronounced importance, since it reflects
the situation in which transitions depend on potential differences only. It is also the
only situation for which an alternative description in terms of a fractional Hamil-
tonian of the form

H=|P|"+U, (3.88)

exists. Despite the fact that for any value of ¢ € [0, 1] detailed balance is fulfilled
and the problems can be recast into symmetrical form by the transformation (3.54),
the resulting evolution equation for the field |) is different, especially the appeal-
ing separation into kinetic and potential term in and the quantum mechanical
interpretation this entails are only valid when ¢ = 1/2.

3.6.1. Higher Dimensions

The FFPE (3.48) is suitable for one-dimensional systems, examples of which are
depicted in figure Many other systems exists, such as the random graph in
figure for which a higher dimensional variant of the FFPE is called for. As
a matter of fact, this generalization is straightforward and can be obtained in a
similar fashion as the one presented above.
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When the process X(t) evolves in R” and is subjected to a potential V(x) with
x € R" the FFPE for the PDF p(x, t) is obtained when the topological component
of the transition probability x — y asymptotically follows an inverse power law,

w(ylx) oc [x —y|~" e (0,2). (3.89)

In this case the probability p(I) of initiating a jump of length I obeys a power law

as well,
p(1) oc 17(HR), (3.90)

The generalization of (3.48)) to higher dimensions then reads
dp(x,t) = e BYOI2ARZBV (/2 p(x 1) — p(x, t) PV /2 AL2 =BV (/2 (3.07)

The n-dimensional generalization of the Laplacian in (3.91)) is defined by

w2 2T ((un)/2) T [f(y) = F(X)]
MR = = R _/ "y (392)

In Fourier space it reflects a multiplication by —|k|*, a behavior identical in all
dimensions.

3.7. Discussion

When random walks with a well defined variance of step size or ordinary diffu-
sion processes are subjected to an external field, or evolve in an inhomogeneous
environment, the dynamics of the propagator is always governed by the FPE. Con-
sequently, the dynamics can always be interpreted as evolving according to some
deterministic dynamics perturbed by a stochastic noisy force. For a physicist, this
is a very pleasant way to think about things. Thus, the first attempts and by far
most frequently encountered generalizations of the FPE suitable for superdiffusive
processes under the influence of an external force follow the same lines of reason-
ing, the generalized Langevin scheme discussed in the previous chapter.
However, the concept of topological superdiffusion, in which the topological
complexity is responsible for enhanced transport, shows that the stochastic force
picture is not only false in a number of situations, but also a very restrictive way of
thinking. Depending on the physical situation, other generalizations of the FPE are
appropriate. In particular, systems which are known to evolve in thermodynamics
equilibrium cannot be successfully described by generalized Langevin dynamics.
The FFPE derived above is suitable for a number of systems which are superdif-
fusive, their thermal inconspicuousness notwithstanding. Not only does this new
framework represent a new technique to analyze a great class of superdiffusive

3
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systems which evolve in inhomogeneous environments, it also clears away the
common misunderstanding that superdiffusive phenomena are a non-equilibrium
phenomenon. Topologically superdiffusive systems can generally not be treated
in terms of stochastic differential equations, the dynamics cannot be interpreted as
being deterministic, perturbed by a possibly non generic noisy force. The inter-
pretation is purely probabilistic. Consequently, whenever superdiffusion occurs in
an inhomogeneous environment, the correct choice of FFPE depends on the un-
derlying cause of enhanced transport, and the generalized Langevin scheme is not
necessarily the appropriate modeling framework. In fact all models in which an
ad hoc separation of deterministic evolution and fluctuating force are made are
an embarrassment, and can only be trusted if fluctuation dissipation arguments
can be relied upon to gain information about the noise. Recalling a number of
situation which are known to be superdiffusive, namely dispersion on foraging
animals in their habitat [30] [73] [27], stock price dynamics [102] [[03], millennial
climate changes [34], random walks on linear polymers [22] 4] R5| [22] and hu-
man eye-movements [23]], to mention only a few, it is rather questionable whether
a separation into independent deterministic and fluctuating forces can be made
for these systems. These systems can be accounted for more plausibly by purely
probabilistic models of the type developed in above.



3.7. Discussion
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4. Comparison of Models

"The time has come," the
Walrus said, "To talk of many
things."

(Lewis Carroll)

This chapter is devoted to a detailed comparison of the various mechanisms which
lead to superdiffusive behavior. We compare diffusion on scale free inhomoge-
neous structures (topological superdiffusion) with superdiffusion induced by ano-
malous noise (generalized Langevin dynamics) and by strong temporal fluctua-
tions (subordinated superdiffusion). A scaling analysis is applied to the associated
fractional Fokker-Planck equations (FFPEs). Not only does this type of analysis for-
tify our intuition about different superdiffusive mechanismes, it also reveals general
properties of the dynamics, irrespective of the chosen external potential. Whereas
topological and subordinated superdiffusion respond identically to spatio-tem-
poral scaling, generalized Langevin dynamics exhibits a different response. The
scaling analysis exposes a crucial difference between topological superdiffusion
and generalized Langevin dynamics in bounded potentials. Although generalized
Langevin dynamics is asymptotically trivial in these types of potentials, topological
superdiffusion exhibits non-trivial behavior. We investigate the paradigmatic case
of superdiffusion in the harmonic potential and escape dynamics in a double-well
potential.

4.1. Motivation

In chapters]and [f|we showed that when Lévy flights evolve in external potentials,
the type of fractional evolution equation to govern the dynamics depends on the
underlying physical model. The non-local nature of Lévy flights requires differ-
ent FFPEs for the description of topologically superdiffusive motion, subordinated
processes and generalized Langevin dynamics. However, the formal differences
between the FFPEs do not automatically imply essential differences in the dynam-
ics. In the following we will investigate and compare all FFPEs by means of scaling
techniques, and show that they possess strikingly different properties.
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4.2. Of Apples, Pears and Potatoes

Let us recall the different principles which lead to superdiffusion and the associ-
ated FFPEs introduced in previous chapters. All FFPEs permit the incorporation
of an external inhomogeneity. In topological superdiffusion this inhomogeneity
is modeled by a potential V(x), in generalized Langevin dynamics and subordi-
nated superdiffusion by an external force F(x). We will focus on gradient forces
F(x) = —dV(x)/dx and compare the different dynamics for specific choices of
V(x).

I: Topological Superdiffusion

0t p(x,t) = /dy [w(xly) p(y, t) —w(y|x) p(x,t)]

e Scale free
topologies w(x|y) ~ e BIV(x)=V(y)l/2 |x — y’*(lﬂi)
e Gibbs-Boltz- I

mann  ther-
d )
modynamics O p = e BVIZARI2BV/2 1y oPV/2ARI2=BV/2 (47
at p = ET p

The key characteristics of topological superdiffusion are summarized in the box
above. The FFPE originates from an underlying master equation describing a jump
process in which the probability rate w(x|y) of jumping from y to x segregates into
independent thermal and geometrical components. Topological superdiffusion is
caused by an underlying scale-free topology and obeys ordinary thermodynamics.
In the following we will refer to the operator describing topological superdiffusion
as L.

On the other hand, the FFPE for generalized Langevin dynamics describes su-
perdiffusion due to anomalous Lévy stable white noise. It is obtained from a
stochastic differential equation in which the ordinary Wiener increment dW is re-
placed by the differential dL,,0f the symmetric Lévy stable process of index , i.e.

(5(1 = Lu(t))) = 2iﬂ [ ke 42)



4.2. Of Apples, Pears and Potatoes

Il: Generalized Langevin Dynamics

dv
dX = - dt+dL
e Anomalous Lévy BdX g

stable noise U

e Non-extensive , P
thermodynamics Orp = (ﬁVV + A" ) p

afp:ENp

(4.3)

The operator describing generalized Langevin dynamics in an external potential
V(x) will be denoted by Ly. Ordinary Gibbs-Boltzmann thermodynamics is gen-

erally violated by generalized Langevin dynamics.

lll: Subordinated Superdiffusion

e strong temporal
fluctuations

e Gibbs-Boltzmann Y
thermodynamics

dp=—(—BVV' —A)"?p
orp=Lsp, Ls=— (—ﬁpp)”/2

(4.4)

Similar to generalized Langevin dynamics, subordinated superdiffusion is gov-
erned by a stochastic differential equation. However, superdiffusion is a result
of strong temporal fluctuations. The associated evolution operator L is obtained
by raising the ordinary Fokker-Planck operator Lrp to a fractional power of /2.
Like its topological sibling, subordinated superdiffusion obeys ordinary Gibbs-

Boltzmann statistics.

4.2.1. Sometimes They Agree, But Mostly They Do Not

Comparing the definition of the stochastic operators defined in the boxes above,

we see that they generally differ, i.e
Lr# LN # Ls.

(4.5)

S
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Only for vanishing potential (V = 0), or equivalently if 3 = 0 do all three operators
describe free superdiffusion,

BV =0 =  Lp=Ly=Ls=AY2 (4.6)

Likewise, in the ordinary diffusion limit (1 = 2) they all coincide with ordinary
Fokker-Planck operator Lrp,

w=2 = Lr=LN=Ls= /3VV’ + A. 4.7)

The situation is sketched qualitatively in figure The operators are depicted as

Figure 4.1.. Qualitative comparison of the
operators L7, Ly and L. Each operator
is represented by a sheet in an “operator
space”. The sheets are spanned by vary-
ing the parameters p and 3. On the bound-
ary u = 2 all three operators are identi-
cal to the ordinary Fokker-Planck operator
LrpBVV' + A. When 3 = 0 they coin-
cide with the free superdiffusive fractional
Laplacian A*/2. The “difference” between
Lt , Ly and L increases as f3 increases
and p decreases.

sheets in an abstract operator space parameterized by 3 and p. The sheets coincide
when 3 = 0 and/or when p = 2. The figure also indicates that the “difference” be-
tween L1, Lg and Ly increases either when 3 increases and /or when p decreases.

4.3. Scaling Laws

In the following we will investigate the behavior of the FFPEs (4.), and
when the original spatio-temporal coordinates (x, t) are transformed to new ones,
(z, T). Suppose we have a stochastic operator £(«), a parameter set denoted by «,
and an evolution equation

Orp = L(a)p. (4.8)

When the system is transformed into the new coordinate system by
z=x/y and 4.9)
T=1t/8(y), (4.10)



4.3. Scaling Laws

the relation
q(z,t) =vp(rz, g(y) 1) (4.11)

between the original probability density function (pdf) p(x, t) and the pdf g(z, T)
in the new coordinates induces a map

L(x) — L(@) (4.12)

between the former operator £(«) and the operator L () governing the evolution
of g(z, T) in the new coordinate system, i.e.

~

09 =L(a)q. (4.13)

If the temporal scaling function g1 (y) is chosen appropriately, the transformation
may leave the operator form invariant. Form invariance implies that only the pa-
rameters are changed by the transformation, i.e.

L(@) = L(@), (4.14)

a relation from which useful dynamical properties can be obtained. When even the
parameters remain unchanged under the transformation, i.e.

a=a (4.15)

we speak of invariance under scaling or symmetry with respect to it.

Often, particular scaling regimes are of more interest than others. For example,
one frequently wishes to investigate the behavior on large spatial scales. This cor-
responds to the study of the rescaled operator for a scaling factor y > 1.

4.3.1. Ordinary Diffusion

For p = 2 all superdiffusive FFPEs coincide with the common FPE describing dif-
fusion in an external potential, i.e.

3 p(x, 1) = (de\(/iix) + Ax) p(x,1). (4.16)

With g(y) = Y% in equation (4.10) we find a form invariant description in the new
coordinates,

0. q(z,7) = (/svzd‘;(j) " Az> 2(z,7), (417)

where the potential Vis expressed in terms of V and z as

V(z) = V(yz). (4.18)

S
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In other words V is just V at the different location. The magnitude of the potential
remains unaltered. The potential cannot be “scaled away”. The spatio-temporal
scaling

z=x/y and T=t/y? 4.19)

is typical for ordinary diffusive motion.

4.3.2. Free Superdiffusion
When BV = 0 all FPPEs are reduced to

3 p(x,t) = A% p(x, 1), (4.20)
The behavior of the generalized Laplacian A*/2 under scaling is given by
2 1 e
AP = WAQ-‘/ , (4.21)

which can be obtained from the definition

A2 ) — T R)sin(/2) / ay V) — f)] (4.22)

U |x —y[HH

Thus, the coordinate transformation appropriate for (4.20) is

z=x/y and (4.23)
v (4.24)

which yields an invariant evolution equation for the new density g(z, 7), i.e.

- q(z,7) = A *q(z, 7). (4.25)

Comparing the coordinate scaling for superdiffusion with that appropriate for or-

dinary diffusion, we see that the temporal scaling function g(y) is proportional
to Y as opposed to the y?-scaling in (4.19). Since equations (4.20) and (4.25) are

identical, and p(x, t) and g(z, T) are related according to (4.11), the pdf p(x, t) must
satisfy

p(x,t) =vplyx, vt). (4.26)
The rhs of (4.26) must be independent of v, hence p(x,t) can only depend on the
ratio x /t/#. More specifically, letting y = (Dt)~ ¥ we can write

p(x,t) = (D)"Y L, (x/(Dt)l/”) , (4.27)



4.3. Scaling Laws

with [ dx L, (x) = 1 and some constant D. Without having to compute time depen-
dent expectation values or even giving an explicit expression for the function L,
the canonical spatio-temporal behavior of superdiffusion is given by the argument
of L, in (#.27), i.e.

X(t) ~ (Dt)V/* (4.28)

The parameter D is the generalized diffusion coefficient with units [length]*/[time].
The function L, is the symmetric Lévy-stable law of index 1, i.e.

Lu(x) = %T / dk e~ kx—Ikl", (4.29)

4.3.3. Topological Superdiffusion

Proceeding swiftly, we examine the scaling properties of topological superdiffusion
and investigate the FFPE (&.I). Without loss of generality, we examine the scaling
properties of the equivalent fractional Schrodinger equation (see section[3.5) for the
wave function

PY(x, 1) = PV 2p(x, 1), (4.30)
From (4.1) we obtain
at 1/)(x, t) = _HT l!)(x, t)/ (431)
where the Hamiltonian
Hr = —AY? + U(x) (4.32)

is symmetric and the effective potential U(x) is given by
U(x) = ePV (/282 =BV ()/2 (4.33)

Rescaling the spatial coordinate x according to and combining equations (4.31),
(4.32) and (4.33) yields
0 h(yz t) = % (AL VORI AR VOS2 y(yz,h). (434)

The prefactor 1/y* can be absorbed by the appropriate scaling of time (i.e. equa-
tion (4.24)). Thus, in the new coordinate system the process is governed by a form
invariant FFPE,

O p = [Au/2 _ oBV/2 An/2 e*ﬁ‘7/2} . (4.35)

The rescaled wave function ¢ is expressed in terms of 1 by

¢(z,7) = y(yz, v"1). (4.36)
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The potential appearing in V in (4.35) is the same as V in (4.33) at the rescaled
location, i.e.

V(z) = V(yz). (4.37)

Although the exponent in the spatio-temporal scaling differs from the canonical
scaling of ordinary diffusion, the relation between the potentials is the same as in
ordinary diffusion, i.e there is no prefactor depending on scaling factor y. This
implies that the potential V has an impact on the dynamics on all spatio-temporal
scales. Since the potential quantifies an energy in many applications, equation
can be interpreted as a signature of the extensive nature of the energy in topologi-
cally superdiffusive systems.

4.3.3.1. Potentials with a Length Scale

In a number of physical situations external potentials are of finite variation and
exhibit a typical length scale &. This implies that the potential depends solely on
the ratio x/¢, i.e. V = V(x/&). Examples are periodic potentials for which &
reflects the wavelength. A periodic potential of wavelength & can be expanded
into a Fourier series

V(x/&) =S Vaexp [2mix/E], (4.38)

in which the dependence on x/¢ is rather obvious. Note however that periodic-
ity is not necessary. In chapter [f| random phase potentials are investigated which
are nonperiodic but nevertheless possess a length scale defined by the correlation
length also denoted by &. These potentials are frequently defined as

V(x/E) = / dk ¢ (k) ek +iks /&, (4.39)

where the phases 9(k) = —9(—k) are uncorrelated random variables and the func-
tion ¢ (k) is related to the power spectrum S(k) by

d(k)p(k') = 27S(k)s(k — K'). (4.40)

The scaling analysis above suggests a choice of y = & which yields an FFPE (4.35)
independent of &. The solution of the original equation 1(x,t) may then be ex-
pressed in terms of ¢(z, T) as

P(x, t) =& T P(x/E, t/EN), (4.41)

in which the function ¢ is £-independent. Hence, in topological superdiffusion a
typical length scale £ drops out as a parameter.
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4.3.3.2. x"-Potentials

Often, randomly moving particles are bound by potentials which increase with
increasing distance from the origin. These types of potentials are usually modeled
by an even power of x as

V(x) =x"  witheven n. (4.42)

In this situation the choice )
y=p3"" (4.43)
is wise, because it yields a fractional Schrodinger equation (4.32) with an effective
potential U(z) in the new coordinates, which is independent of the parameter j3,
ie.
U(z) = &"/2A e #12, (4.44)

and we can express Y (x, t) in terms of ¢(z, T) as

P(x,t) = B d)(/b’””x, ﬁ”/”t) : (4.45)

Consequently it suffices to investigate a system with 3 = 1 and subsequently em-
ploy equation (4.45) for the complete range of j3.

4.3.4. Generalized Langevin Dynamics

When scaled, generalized Langevin dynamics exhibits a rather different behavior.
In (x, t)-coordinates the FFPE (4.3) reads

0r p(x,t) = (ﬁvxi—‘; +A§/Z) p(x,t). (4.46)

In this equation, a clash occurs. The drift and anomalous diffusion terms possess a
different natural response to spatial scaling. Substituting the spatio-temporal scal-
ing relation for superdiffusion (z = x/y, T = t/y") we obtain in (z, T)-coordinates

01 q(z,7) = (ﬁvzf‘i—z + Ay 2) 9(z,7), (4.47)

which is form invariant to (4.46). However, the potential in the new coordinates
V(z) is given by
Gy Virz)

As opposed to the analogous relation derived for topological superdiffu-
sion, a p-dependent factor ?>~* in the denominator of (4.48) effectively changes

&
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the magnitude of the potential. Therefore, different superdiffusion processes see
different potentials on different scales. For example, if we investigate the system
on a coarser scale (y > 1), we must choose a potential with a lowered magnitude if
we wish to utilize a form invariant FFPE. In topologically superdiffusive systems,
a length scale & of the potential effectively drops out as a parameter of the system
by choosing the appropriate value y = &. In generalized Langevin dynamics this
is generally impossible, and the wavelength of a periodic potential or the correla-
tion length of a random phase potential represents an essential parameter of the
system.

Taking this train of thought a bit further, we discover that the seemingly harmless
factor y>~* implies a rather far reaching consequence. If the potential is of finite
variation, i.e.

V()| < Vo, (4.49)

the impact of the potential on the asymptotics of the process vanishes, because as
v — oo the potential tends to zero. Only in the diffusion limit (1 = 2) is equa-
tion (4.48) reduced to . Alternatively, one may incorporate the factor y*~2
into the parameter 3 as

B=B/V"" (4.50)

and leave the potential V unchanged. For systems coupled to a heat bath, this
can be interpreted as follows. When u = 2 the parameter 3 is an inverse energy
and represents an inverse temperature, i.e. 3 = (kgT)~!. The temperature T is
an intensive quantity in ordinary Gibbs-Boltzmann thermodynamics, and remains
unchanged under scaling, in other words B =8 In systems driven by Lévy sta-
ble white noise (1 < 2), the temperature is affected by scaling and is no longer an
intensive quantity. Therefore, these systems describe situations which violate or-
dinary thermodynamics. However, generalizations of ordinary Gibbs-Boltzmann
statistics exists in which requirements on thermodynamics quantities are relaxed
and which can be related to generalized Langevin dynamics [26] 123].

Equivalently, one can deduce the behavior under coordinate transformation in
terms of the stochastic differential equation

dv
dX = —ﬁﬁdt —dL,. (4.51)
To this end we compute the scaling behavior
dL,(y"7) = ydL,(7) (452)

of the Lévy stable differential dL,(t), which is easily obtained from the pdf for
Lu(t),1ie.

p(x,t) = (5(Lu(t) —x)) = %T / dk eIkt 5 0, (4.53)
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Rescaling spatial and temporal coordinates as above, the generalized Langevin
equation for the new process

Y(1) =y ' X(y¥7) (4.54)

has the same form as (4.51), i.e.

~dV
dY = —BWdT —dL,. (4.55)
The potential V and parameter B are
V(z) = V(yz) and (4.56)
B=v"2p. (4.57)

which is equivalent to the rescaled FFPE (4.47). In rescaled coordinates, the in-
fluence of the potential becomes smaller on larger scales. Intuitively, as we ob-
serve the system on increasing spatial scales, the likelihood of extreme kicks by the
anomalous Lévy stable noise is increased. With respect to the noisy influence the
deterministic drift becomes less important.

4.3.5. Subordinated Superdiffusion

The scaling behavior of subordinated superdiffusion is easily obtained by combin-
ing the associated FFPE in (x, t)-coordinates

% p(x,t) = — (—Lyrp)? p(x, 1) (4.58)

with the scaling behavior of the ordinary diffusion processes (4.19). The subscript
x in the Fokker-Planck operator denotes the current coordinate. With z = x/y and
T = t/y*, the FFPE for the pdf in the new coordinates is given by

0:q(z,7) = — (—Lopp)"? q(2,7), (4.59)
where the operator £, rp is defined by the rhs of (£.17), i.e.

1

L,rp= ?»Cyz,FP- (4.60)

The exponent p/2 in the FFPE (4.58) ensures the appropriate superdiffusive scal-
ing, so the prefactor 2 is transformed into y~*. The relation implies for

subordinated processes
V(z) = V(yz), (4.61)
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the same result we obtained for ordinary diffusion and topological superdiffusion.
Consequently, external potentials aquire the same importance for subordinated
processes as for topological superdiffusion. The scaling analysis alone cannot ex-
tract dynamical differences of both types of superdiffusion. On the other hand,
subordinated superdiffusion is similar to generalized Langevin dynamics in the
sense that both are derived from underlying stochastic differential equations which
seem mathematically akin.

4.4. Relaxation in the Harmonic Potential

The dynamical differences of various types of superdiffusion become particularly
transparent in the paradigmatic case of the harmonic potential V(x) = x2. Re-
laxation properties in the harmonic potential are universal in the sense that many
potentials can be locally approximated by them. Ordinary diffusion in this type
of potential is known as the Ornstein-Uhlenbeck process [124]. We compare relax-
ation dynamics of topological superdiffusion, generalized Langevin dynamics and
subordinated superdiffusion. Although the parameter 3 may represent different
physical quantities in different models and FFPEs, in the following we will inter-
pret B as an inverse temperature § < T~!, and concentrate on the differences in
spatio-temporal scaling with respect to changes in the temperature T.

4.4.1. Topological Superdiffusion

Topological superdiffusion in the harmonic potential is governed by the fractional
Schrodinger equation

o p(x,t) = — (A;‘/ 24 Uu(x)> W(x, ) (4.62)

with an effective potential U(x) which can be expressed in terms of the confluent
hypergeometric function @ («, y; z) as

Uy (x) = —%T(zﬁ)“/zr (HT”) @ (—g %; ﬁsz) where  (4.63)

2 3
Oayz) =14 X2 pdatDz  alatl)at2)z

AT Cs N TR GV i) K TR (464

The effective potential depends on the Lévy exponent i such that the anomaly in
the kinetic term is exactly balanced in Gibbs-Boltzmann equilibrium. The station-
ary state is

Ps(x) = e P2, (4.65)



4 4. Relaxation in the Harmonic Potential

which is independent of u. For a set of Lévy exponents i the corresponding effec-
tive potentials are depicted in figure Although it is impossible to solve (#.62)
exactly, we may employ the scaling properties of section Equation (4.45)
with n = 2 yields

¥(x, t) = B2 qa(/sl/ 2x, BH/? t) . (4.66)

Denoting typical spatial and temporal scales by & and 7, respectively, one readily
infers from how & and 7 scale with the parameter 3, or alternatively the
temperature T,

Ex B Y2 xTY?  and (4.67)
T ox BH2 o TH2, (4.68)

The temperature dependence of the spatial scale & can also be extracted from
the stationary solution (£.65). Since topological superdiffusion always implies or-
dinary thermodynamics, the energy scale (E = &2 in the harmonic potential) is
always proportional to the temperature T, i.e.

E=&>xT. (4.69)

Thus, the exponent u does not appear in (#.67). Only the temperature dependence
of the temporal scale 7 is affected by the exponent , the anomaly of the process is
a temporal one. The ordinary Ornstein-Uhlenbeck process (1 = 2) is characterized
by a relaxation time linear in T. If u < 2, relaxation to the stationary state is faster
at high relative temperatures, i.e.

T2 <T for T>1 (4.70)

and slower when the temperature is low,

T*2>T for T<1. .71

Clearly, the typical time scale T as well as the typical energy scale E = &2 increase
with temperature. Their ratio 7/&2 as a function of T quantifies in terms of £2 how
much time elapses until energy is distributed within this typical energy range,

T

g o T with = %‘ ~1. (4.72)
If © = 2 then 7 vanishes and in units of £? the typical time scale of equilibration
is temperature independent. On the other hand, p < 2 implies that 1 < 0. Thus,
relaxation in terms of energy is faster for high and slower for low temperatures.
Note, however, that the canonical relation

EH
- = const. (4.73)

is fulfilled for topological superdiffusion in the harmonic potential.

2
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4.4.2. Subordination

Of course, all of the above applies to subordinated superdiffusion as well, since
it exhibits a scaling behavior identical to that of topological superdiffusion. Be-
cause Lg is just a power of the ordinary Fokker-Planck operator, the solution p(x, t)
for subordinated superdiffusion in the harmonic potential can be computed in
a straightforward fashion. Since the ordinary Fokker-Planck operator fulfills de-
tailed balance, we can map the FPE onto the symmetric Schrédinger equation,

0t = —Hppy where (4.74)
Hrp=-—-A+U and (4.75)
U(x) = B(Bx* —2). (4.76)

The Hamiltonian Hrp has a discrete spectrum and can be decomposed according
to
Hep =Y AP (4.77)
n

The eigenvalues depend linearly on the label n and are given by [[109]
An =4fBn with n e N. (4.78)

The Hamiltonian Hg associated with £ has the same spectral measure as Hrp (the
operators commute) and the spectral decomposition of H g reads

Hs =S ()" Py. (4.79)

n

Following the lines of reasoning explained in detail in Appendix |C] and utilizing
equation (C.52), we can express the conditional pdf p(x,t) = p(x, t|xg, tp) in terms
of eigenvalues A, and eigenstates ¥, (x) of Hrp as

p(x, t) = e B 4 B2 > exp [— (43 n)“/2 t] P ()1, (0), (4.80)

n=1

where the eigenfunctions 1), (x) can be expressed in terms of Hermite polynomi-

als [43] pp. 143],

1/2
o) = (%) H,(v/2Bx) e P<. (4.81)

C2mpl \

The only difference from the ordinary Ornstein-Uhlenbeck process is an anoma-
lous, sublinear dependence of the relaxation times on the label 7 (see the exponen-

tial in (4.80)).
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4.4.3. Generalized Langevin Dynamics

Generalized Langevin dynamics in the harmonic potential is one of the rare cases
for which an explicit solution of the FFPE can be computed [60]. The generalized
Langevin equation

dX = -2 Xdt+dL, (4.82)

is linear and the associated FFPE is given by
0rp(x,t) = (Zﬁvxx—FA?/z) p(x,t). (4.83)

For the initial condition
p(x,0) = 8(x). (4.84)

the solution p(x, t) can be expressed as a Fourier integral, i.e.

p(x,t) = %T /dk exp (—ikx Rk [1 - e—f/TD . (4.85)

Comparing to (4.29) we see that p(x, t) is at all times a Lévy stable law of index u
with time dependent generalized diffusion coefficient D(¢), i.e.

p(x,t) = D VH(t) L, (x/Dl/”(t)> with (4.86)
D(t) = &+ [1 —et/ T] . (4.87)

For all 1 € (0,2] a stationary solution exists and is given by

py(x) = 2iﬂ [k exp (—ikr + 4 K1) (4.88)

The stationary state depends on p and is only identical to Gibbs-Boltzmann equilib-
rium for the boundary case of ordinary diffusion (1 = 2). The spatial and temporal

scales & and T in equations and (4.88) in terms of p and j3 are

E'I’L = T = ——. 4.89
From this we obtain their scaling with T, i.e.

£ox BVH o T (4.90)

Tx B! T (4.91)

Comparing to the analogous expressions derived for topological superdiffusion,
i.e. equations and (4.68), we discover a totally different scaling with T. The

—
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Figure 4.2.: The scaling exponents 1 050 /’ ]
(solid line) and ¢ (dashed line) of disper- i L’

sion time per energy (7/52) as functions ’ O: ,’

of the Lévy exponent p in topological su- | )/

perdiffusion (and subordinated superdiffu- i ’

sion) and generalized Langevin dynamics
in the harmonic potential as defined by

equations and (4.93). -2.0L .’ ‘ ‘

-1.5F )/ .

scaling relations and inform us that the temporal scale 7 is unaffected
by the anomalous exponent p, and the linear temperature dependence is identical
to the one of the ordinary Ornstein-Uhlenbeck process. However, p(x,t) as well
as the stationary solution ps(x) possess algebraic tails depending on p. Therefore,
in contrast to the situation previously discussed, the anomaly in systems described
by resides in the spatial domain. Intuitively this is clear, the anomalous incre-
ments dL,, are “added” to the stochastic quantity X(t) in the generalized Langevin

equation (4.82).

The relation restates the nonlinear temperature dependence of energy, i.e.
E =& T?H, (4.92)

which is to be compared to the thermally inconspicuous relation observed in
topologically superdiffusive systems. Equation states that the formal identifi-
cation of the parameter 3 with an inverse temperature remains a formal one in gen-
eralized Langevin dynamics, since T is not an energy. Combining and
we obtain the ratio 7/&2 of dispersion time per energy, i.e.

2

T (=1-2 (4.93)
U

2 o T¢ with
The temperature scaling is determined by the exponent ¢ which is quite different
from the exponent 1 observed in topologically superdiffusive systems, see equa-
tion . As expected, for u = 2 the ratio 7/£? is independent of T. Similar to
the exponent 7 (i.e equation [£.72)) the exponent ¢ is negative for u < 2. However,
the physical consequences are more pronounced since ¢ < 7, in factas p — 0 the
exponent ¢ diverges. Both exponents 1 and ¢ as functions of the Lévy exponent p
are shown in figure

Note, however, that the canonical relation also holds in systems described
by generalized Langevin dynamics. In table[d.1] the various scaling behaviors with
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temperature T of different quantities of topological superdiffusion, subordinated
superdiffusion and generalized Langevin dynamics in the harmonic potential are
summarized.

ExxTP |t TP | T/EHF < TP | /&% o TP
Lrp p=1| 1/2 1 0 0
Lr p=]| 1/2 p/2 0 u/2—1
Ls p=| 1/2 | n/2 0 u/2—-1
Ly p=| 1/u 1 0 1-2/u

Table 4.1.: Scaling behavior of various quantities with temperature. Topological and subordi-
nated superdiffusion (L7 and Ls) and generalized Langevin dynamics (Ly) in the harmonic
potential are compared to the ordinary Ornstein-Uhlenbeck process (Lrp). Spatial and tem-
poral scales are denoted by & and T, respectively. The quantity &/ reflects the canonical
quotient of superdiffusion and T/E2 dispersion time per energy in the harmonic potential. All
quantities scale with T as T where p is different in each case. For topological superdiffu-
sion, the anomalous exponent p appears in the time scale, as opposed to generalized Langevin
dynamics where only & depends on it.

4.4.4. Trajectories, Relaxation and Spectra

The analysis above showed that the spatio-temporal scaling behavior and the scal-
ing with the parameter 3 differs considerably in various superdiffusive processes.
Geometrical differences are particularly obvious when single realizations X(t) of
all types of processes are compared. For u = 2 realizations X(t) are continuous
(Ornstein-Uhlenbeck process), and the stationary density is Gaussian, i.e.
ps(x) = e B, (4.94)
Since the fractional generalizations involve non-local fractional operators, the tra-
jectories are discontinuous.
In figure[4.3) a number of trajectories of the Ornstein-Uhlenbeck process are com-
pared to realizations of generalized Langevin dynamics, topological and subor-
dinated superdiffusion. Generalized Langevin dynamics is characterized by fre-
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Figure 4.3.: Realizations X(t) of the Ornstein-Uhlenbeck process (A) compared to generalized
Langevin dynamics (B) topological superdiffusion (C) and subordinated superdiffusion (D) in the
harmonic potential. The Lévy exponent for the superdiffusive processes was set to 4 = 1 the
parameter 3 was set to unity. The red curves indicate the stationary density ps(x), the Gibbs-
Boltzmann equilibrium exp(—ﬁxz) in (A), (C) and (D) and the Lévy stable law (equation )
in (B). The dotted line in (B) is identical to the Gaussian and serves as a reference.

quent, large excursions, taking the system to a position distant from the equilib-
rium value x = 0. Large kicks are interspersed with relaxation periods in which the
linear Hookean force in takes the system back to the equilibrium value. Note
that the stationary state for generalized Langevin dynamics is no longer Gaussian
but a Lévy stable law given by equation (4.88).

The topologically superdiffusive process exhibits large scale trajectory excur-
sions as well, but they are restricted to an interval approximately given by the
width of the Gaussian stationary state. Furthermore, the trajectories do not display
periods of linear relaxation towards the origin. Intuitively this is clear, since in
topological superdiffusion no segregation into deterministic drift and anomalous
additive noise can be made. Qualitatively, the trajectories evolve similarly to free
superdiffusion in the interval defined by the length scale & ~ v/B. The subordina-
tion process exhibits long waiting times and infrequent but large scale jumps.

Figure 4.4|depicts the solutions p(x, t) of the FFPEs for 4 = 1 and the FPE of the
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p(x;t)

=1 C t=10 | X
10°

Figure 4.4.: Temporal evolution of the propagator p(x,t) of the Ornstein-Uhlenbeck process
(black line), generalized Langevin dynamics (blue line), topological superdiffusion (red line) and
subordinated superdiffusion (green line). Parameters were 3 = 1 for each process and u =1
for the superdiffusive processes. The Gaussian stationary density of the Ornstein-Uhlenbeck
process is given by the dashed line. Each panel shows p(x, t) at different times ¢, which are to
be compared to the typical relaxation time of the diffusion process, T = 1/4.

Ornstein-Uhlenbeck process. The inverse temperature is identical for all systems
(B = 1). On small spatial scales and for small times, the pdfs of the superdiffusive
processes coincide and display a pronounced cusp at the origin as opposed to the
Gaussian shape of the Ornstein-Uhlenbeck density. On large spatial and small tem-
poral scales all processes deviate from one another considerably. As time evolves,
p(x,t) of the topological and subordinated superdiffusive processes attain Gaus-
sian shape, whereas the p(x,t) of generalized Langevin dynamics remains Lévy
stable at all times.

Dynamical differences of the three types of superdiffusion are also visible in the
spectra of L1, Ls and L. The eigenvalues A, are given by,

(L= Ay) 0y =0, (4.95)

in which £ is one of the above operators and the 6, denote the corresponding
eigenstates. In all cases the spectrum is discrete.
The spectrum of £y can be computed for the harmonic potential [60]. It is given
by
Ly : Ap = 2pBun. (4.96)

—
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Figure 4.5.: Spectrum of eigenvalues A, for
the three kinds of superdiffusion in the har-
monic potential. Blue, red and green symbols
show the eigenvalues of generalized Langevin
dynamics, topological superdiffusion and sub-
ordinated superdiffusion, respectively. Sym-
bols differentiate between the two Lévy expo-
nents © = 6/5 and 4/5. The parameter (3
was set to 1.

For all Lévy exponents i the eigenvalues increase linearly with n. Furthermore, A,
is proportional to 3, consistent with the expected temporal behavior of generalized
Langevin dynamics (see equation [#.91)).

Since Lg is a fractional power of the ordinary Fokker-Planck operator Lrp the
spectrum of the former is easily computed from the the spectrum of the latter
and reads

Ls:  Ag= (4pn)"2. (4.97)

It is a matter of misfortune and lack of dexterity that the author was unable to
determine the eigenvalues of L1 analytically. However, the scaling relation
states that

Lr: A= BH2A,, (4.98)

where A, is independent of 3. The /2 behavior of A, in and 1@) reflects
the anomalous temporal behavior of subordinated and topological superdiffusion
with respect to temperature scaling, which we have already encountered in equa-
tion (4.68). Comparing the spectra, we deduce that each superdiffusive process can
be faster than the other two, depending on the temperature regime. In figure
the first few eigenvalues for the processes are depicted. The spectra for two Lévy
exponents, 1 = 6/5 and 4/5, are shown.

Concluding, we can say that the different types of mechanisms which induce su-
perdiffusive motion exhibit strong dynamical differences in the paradigmatic ex-
ample of the harmonic potential, and we expect that these differences will also be
present in more complicated external fields.

4.5. Escape Dynamics in a Double Well

An important concept for modeling a variety of physical systems is escape dy-
namics over a potential barrier. In a number of physical situations a system may
reside in either of two potentially favorable states and move from one to the other
by crossing the barrier which separates the potential minima. This type of system
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p(x.t)
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Figure 4.6.: Evolution of the pdf p(x, t) in the double well potential V(x) (D) at three different
times: t = 0.01 (A), 0.05 (B) and 1.0 (C) for 3 = 5.0 and u = 1. Ordinary diffusion (black) is
compared to topological (red) and subordinated (blue) superdiffusion Initially the pdf is centered
in the left minimum, i.e. p(x,0) = &(x + 1). The stationary state is represented by the dashed
line. The diffusion process equilibrates quickly within the left potential well and does not pass
the barrier for short times. In contrast, the superdiffusive processes transfer probability even for
small times and remain peaked at x = —1 for much longer.

has served as a paradigm for a number or ordinary diffusion processes [I09]. In a
model for millennial climate changes Ditlevsen investigated generalized Langevin
dynamics in a double well potential [B3], and showed that the escape rate over the
barrier depends on the spatial separation of the potential minima, unlike ordinary
diffusion which is affected only by the difference between potential extrema. The
results obtained by Ditlevsen are consistent with the scaling analysis of general-
ized Langevin dynamics, which showed that a typical length scale (in a double
well the distance between potential minima) represents an important parameter

(see section [£.3.4).

Here, we will compare topological and subordinated superdiffusion to ordinary
diffusion in the escape dynamics scenario. Recall that both superdiffusive mecha-
nisms obey ordinary Gibbs-Boltzmann statistics and possess the same spatio-temp-
oral scaling behavior.

We proceed by showing that both processes differ strongly in their relaxation in

2
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Figure 4.7.: The shape of py (x, t) (left) and pr(x, t) (right) for subordinated (blue) and topolog-
ical (red) superdiffusion at t = 0.05, 3 = 5.0 and Lévy exponent u = 1.

the same kind of potential. As a generic double well potential we choose
Vix) =xt—4x? +1 (4.99)

depicted on the lower right in figure Initially a particle is placed at the potential
minimum at x = —1, i.e. p(x,0) = 6(x 4+ 1). The solutions p(x, t) are depicted at
three different times (t = 0.01, 0.05, 1.0) in ﬁgurefor a value 3 = 5.0 and an ex-
ponent i = 1. The fractional diffusion equations are mapped onto the correspond-
ing Hamiltonian H and subsequent spectral decomposition H = Y, A,P, where
the A, and P, are eigenvalues and projectors onto the corresponding eigenspaces.
Solutions p(x, t) were then expressed in term of these quantities.

Let us first note that the time-scales of the relaxation processes for the case of
normal diffusion and for Lévy-processes differ vastly. The typical times of the con-
centration equilibration (being the inverse of the largest nonzero eigenvalue) are:
Tc = 20.36 for the diffusion process, 7 = 4.51 for subordinated superdiffusion
(0 = 1) and 7¢ = 3.93 for topological superdiffusion (u = 1). A much greater
value of 7¢ for the ordinary diffusion process is not surprising. In a short time it
equilibrates within the left potential well. However, due to the continuity of its
sample paths, the diffusion process accumulates probability in the right potential
well only after a long time. In comparison, the subordinated process can pass the
potential maximum at x = 0 even for short times, a direct consequence of the pos-
sibility of initiating a long jump from left to right. The transmission of probability
through the potential barrier is compensated by a slower equilibration within the
left potential well, in which p(x, t) for both subordinated and topological superdif-
fusion stays sharply peaked around x = —1.

Despite their qualitative similarities in the overall shape of p(x, t), subordination
and topological superdiffusion are quite distinct on close inspection, as is shown in
figure .7 To illustrate the difference between the processes the densities py (x, t)
and pr(x,t) are depicted on the left and right potential well normalized to unity



4.5. Escape Dynamics in a Double Well

r(t)
Figure 4.8.: The time dependent rate r(t) of
probability transfer from one potential well to the 0.10 1
other. The curves correspond to ordinary diffu-
sion (black), subordinated superdiffusion (blue)
and topological superdiffusion (red). Parame- i
ters are 3 = 5 and p = 1, the initial condition is -
p(x,0) =o6(x+1). 001

0.001 0.010 0.100 1.000 t

on the corresponding sub-interval, i.e.

pr(x,t) = 0 Pé; ;2 ) and (4.100)
I C))

Clearly, the shapes differ strongly on the two sides of the potential. The subordina-
tion process equilibrates faster on both sides of the potential barrier. The topologi-
cal process attains a comparatively higher probability in regions of high potential.

In order to reveal the differences in barrier penetration, we consider the time
dependent total probability in the right potential well, i.e.

_ / dx p(x, 1), (4.102)

and the time dependent rate () of probability transfer which is defined as

1d

r(t) = —5 = In[1/2-Q(1)]. (4.103)

In the limit t — oo, the pdfs approach the equilibrium according to
p(x,t) = ps(x) — (ps(x) — po(x)) e ™! with A; > 0. (4.104)

where ps(x) and po(x) denote the stationary and initial states of the system, re-
spectively. Therefore, the rate approaches the lowest eigenvalues as t — oo, i.e.
r(t) — A1 the inverse of which quantifies the relaxation time. In other words,
the function r(f) measures how fast the probability transfer across the barrier ap-
proaches the its quasi-equilibrium value. For the same parameters as in flgures-
and [4.7] the rate r(t) is depicted in figure 1.8 For ordinary diffusion the rate is ini-
tially zero and increases as soon as the process equilibrates within the left potential

—
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well. It then levels off to a constant value proportional to the probability flux across
the barrier. In contrast, if the system is superdiffusive, the probability transfer rate
is nonzero even for small times. Note that the subordinated process penetrates the
barrier at relatively high but almost constant rate for the entire time, whereas for
topological superdiffusion the rate is initially smaller but increases for large times
beyond the rate of the subordinated process.

4.6. Discussion

The detailed comparison of various superdiffusive fractional Fokker-Planck equa-
tions revealed important dynamical differences between generalized Langevin dy-
namics, topological and subordinated superdiffusion. The respective underlying
physical principles which cause the enhanced diffusion, i.e. anomalous additive
noise, scale-free topologies and strong temporal fluctuations, exhibit different dis-
persion characteristic when an external potential is present, although their behav-
ior is identical when the potential is absent. Consequently, one is advised to be
cautious and take into account the underlying physics when employing the frac-
tional approach. Topological and subordinated superdiffusion are adequate for
situations in which the stationary state is independent of the Lévy exponent u, and
both FFPEs respond identically to spatio-temporal scaling. However, the relaxation
properties of topological superdiffusion on one hand and subordinated superdif-
fusion on the other in the harmonic potential as well as in the double well deviate
from one another considerably.

In generalized Langevin equations bounded potentials can be effectively scaled
away and play no role on large scales, which is the reason why Lévy flights in these
potentials have attracted no attention in the past. However, in topological superdif-
fusion these potentials cannot be scaled away, and it is reasonable to assume that
they influence the dynamics globally. We therefore predict that, if random motion
on scale-free topologies is modulated by a variable and bounded external field, the
dispersion properties will be changed in an essential fashion.



5. Periodic Potentials

On 31 December 1970, the
band officially split.

(The Beatles Anthology)

In this chapter we investigate the impact of external periodic potentials on su-
perdiffusive motion. We develop a Bloch theory for Lévy flights, based on the
fractional Schrodinger equation introduced in section We show that a num-
ber of interesting and bizarre phenomena occur when Lévy flights evolve in peri-
odic potentials, contrasting with generalized Langevin dynamics which is trivial in
bounded potentials. A systematic study of the spectral band structure as a function
of Lévy exponent, inverse temperature and Bloch phase shows that superdiffusion
is remarkably different from ordinary diffusion in periodic potentials. Lévy flights
are strongly affected by the specific functional shape of the potential, as opposed
to ordinary diffusion processes which respond primarily to the magnitude varia-
tion of the potential. We demonstrate that even strongly superdiffusive processes
are highly susceptible to external periodic potentials. The asymptotic behavior is
quantified by the generalized diffusion coefficient as a function of inverse temper-
ature, Lévy exponent and type of potential. At low temperatures, the generalized
diffusion coefficient exhibits a significant dependence on the shape of the poten-
tial. Counterintuitively, the asymptotic behavior does not depend on the Lévy ex-
ponent, except in the ordinary diffusion limit in which the generalized diffusion
coefficient as a function of Lévy exponent is discontinuous. The high temperature
regime is treated by perturbation theory, which reveals a universal behavior for
all periodic potentials. Finally, we examine relaxation in finite systems. We show
that the effect of the potential on the relaxation time is least pronounced for inter-
mediate values of the Lévy exponent, which may explain why these types of Lévy
flights are observed in target location strategies of foraging animals and human
visual search.

The results we present are a first step towards an understanding of superdiffu-
sive dynamics on topologically complex structures exposed to external inhomo-
geneities, such as random motion of particles on complex polymeric media and
random motion on scale-free networks.
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5.1. Motivation

Why study random motion in periodic potentials at all? There are countless phe-
nomena in physics and biology, which are successfully described by random walk
models. In many of these systems the quantity of interest, e.g. a diffusive particle,
a foraging animal, or a fluctuating stock price evolves in an inhomogeneous envi-
ronment which has an influence on the dynamics. For instance, a foraging animal
which intends to survive is more likely to remain in a habitat offering safety and
food; the animal is less attracted by regions without these resources. Quite often
the degree of inhomogeneity as a function of position fluctuates around some aver-
age value and possesses a typical variance. Furthermore, it is frequently equipped
with a typical length scale. When the external inhomogeneity has some degree of
regularity, it can be modeled by a periodic potential, which combines the properties
of boundedness, typical magnitude variability and length scale.

What happens when Lévy flights evolve in external periodic potentials? We
must answer this question in order to understand the dynamic properties of a large
class of systems. A number of examples from physics and biology which fall into
this class are schematically depicted in figure The first system is a special case
of a hetero-polymer, introduced in sections[3.1]and .2} and figure[3.1} If the hetero-
polymer consists of a small number of monomer types arranged regularly along
the chain, the external potential V(x) of the chain will be periodic. In the example
depicted in figure 5.T|A, the polymer consists mainly of one type of monomer in-
terspersed at regular intervals with another type of monomer at a lower potential.
When a particle randomly hops along such a chain, it will eventually be trapped for
some time in a potential minimum. Compared to random motion along a homoge-
neous chain, the dispersion is slowed down. When configurational changes permit
long range transitions, the dispersion of the particle along the chain is governed by
the fractional Fokker-Planck equation (FFPE) for topological superdiffusion
derived in the last chapter. The interplay between local trapping in potential min-
ima and long range transitions due to configurational changes of the chain can be
investigated quantitatively based on this FFPE.

Two-dimensional examples of topologically superdiffusion in periodic environ-
ments are sketched in figure and C. In one panel a random graph is depicted,
similar to the one shown in B.2B. The distribution of connection lengths in the
graph follows a power law and lacks a well defined variance. In contrast to the
graph in [3.2B, the vertices in figure are not scattered uniformly in the plane
but concentrate periodically in clusters. This affects the asymptotic spreading of a
particle which randomly moves on such a graph.

It is particularly important to understand the interplay between anomalous dis-
persion and inhomogeneous environments in a great class of biological systems,
such as the spreading of foraging animals in their habitat and the dispersion of
an epidemic in an ecosystem. On one hand, a number of species are known to
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Figure 5.1.: Three examples of topological superdiffusion in periodic potentials. A: A polymer
which consists mainly of one type of monomer (blue) interspersed at regular intervals with an
energetically more favorable monomer (red). B: A random graph with scale-free connection
lengths and periodically modulated vertex concentration. C: A Lévy flight evolving in a two
dimensional periodic potential, schematically describing animal foraging in an inhomogeneous
resource landscape.

spread superdiffusively in their habitat, examples of which are the albatross [127]],
oceanic microzooplankton [[72]], soil amoebas [[73]], fruit flies [B0] and even spider
monkeys[I06]. On the other hand, resources which are crucial to an animal’s sur-
vival are generally not concentrated uniformly in the environment. Experiments
show that resource inhomogeneities determine to a large extent the spreading be-
havior of some life forms [52] B5]]. From a population dynamics perspective, it is
essential to investigate the impact of external inhomogeneities on the dispersion of
animal specimens theoretically, especially in the light of extinction probabilities of
endangered species due to habitat fragmentation [I33]]. The FFPE developed in the
previous chapter offers a means to study these effects. Resource inhomogeneities
can be modeled by the variability of the external potential. An idealized trajec-
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tory of a superdiffusive model specimen in an inhomogeneous two-dimensional
resource distribution is depicted in figure5.T|C.

Most certainly, resource inhomogeneities in an animal’s habitat and monomer
types along a real hetero-polymer are not strictly periodic. However, trapping in
potential minima or inhabitation of regions with a high level of resources does oc-
cur in periodic potentials just as much as in potentials with a higher degree of irreg-
ularity. Therefore, any insight which is gained from studying topological superdif-
fusion in periodic potentials will be applicable to more realistic inhomogeneities as
well. A detailed and more complicated investigation of random potentials is given
in chapter|[6}

Inhomogeneities in superdiffusive processes have received little attention in the
past, partially because generalized Langevin dynamics is trivial in bounded poten-
tials (see section {4.3.4), and these types of potentials were regarded as an inconse-
quential perturbation of free superdiffusion, but also because no other straightfor-
ward and physically plausible way of incorporating these potentials into known
models existed.

5.2. Bloch Theory for Superdiffusive Processes

In the following we will generalize ideas originally obtained for the quantum me-
chanical description of electrons in periodic crystal lattices. When a free electron is
subjected to a periodic potential, the combination of translation invariance of the
kinetic energy term in the Hamiltonian with the periodicity of the potential energy
term leads to a number of general properties of the spectral decomposition of the
associated Hamiltonian. The eigenstates as well as the spectra of such Hamiltoni-
ans fulfill certain requirements, all of which are embraced in what is usually known
as Bloch theory, see for example [[7]. It will become clear below that a generalization
for topologically superdiffusive processes in periodic potentials is straightforward.

Let us begin with the FFPE for a topologically superdiffusive process evolving
in an external potential, i.e.

0rp = e PV/IZ ARI2eBYVI2 ) _ 1 oPV/2 ARI2 p=BV /2, 0<u<2 6.1)

Ordinary diffusion is recovered for p = 2. In section 3.5\ we showed that under a
suitable transformation (3.54) the FFPE turns into a fractional Schrodinger equation
(FSE) for the wave function |), i.e.

0 ) = — (IP*+ U (X)) |[y)  where (52)
(<) = P(x, 1) = exp (BV(x)/2) p(x,b).

Clearly, the anomalous kinetic term |P|* = —A#/2 is translation invariant for all
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values of u € (0, 2]. The effective potential U(x) is obtained from V(x) by
U(x) = BV (x)/2 A1/2 =BV (x)/2 (5.3)

A separation ansatz for the wave function

(x[p) = ¥(x,t) = e P ¢(x), (54)

yields the stationary fractional Schrodinger equation (SFSE) for the eigenfunction
|¢p) with energy E,
(IP"+U(X) - E)[¢) = 0. (5.5)

This is the equation that we must solve.
We wish to investigate periodic potentials of wavelength 277A, i.e.

V(x) = V(x+2mnA) with n € Z. (5.6)
Furthermore, we assume that V' is bounded and without loss of generality we let
L / dxV(x) =0  and ! / dx V?(x) = V§ (5.7)
27TA B 27A S '
27A 27A

The quantity V| reflects the typical magnitude variation over one period. For con-
venience we will work with a dimensionless version

v(x) = V(x)/Vo (58)

of the potential and an effective potential strength ¢ which quantifies the magni-
tude variations of the potential in units of kT, i.e.

1 Vo

:—V = .
€= V0B = 50T

(5.9)

For example, when the effective potential is much less than unity, ¢ < 1, the situa-
tion corresponds to either a weak potential or a high temperature. When ¢ >> 1 the
opposite is the case. The effective potential in then depends only on two pa-
rameters, the Lévy exponent u and the effective potential strength defined above,

U(x) = 0 AR/2 pmev(x), (5.10)
The periodicity requirement entails that the effective potential is also 277A-

periodic, i.e.
U(x) = U(x 4 27nA), with n € Z. (5.11)

—

99



5. Periodic Potentials

€%
5

100

Therefore, the FSE consists of a translation invariant anomalous kinetic term
and a periodic potent1a1 term, and a Bloch theoretic treatment sounds promising.
Defining the “bra” (k| by

(k| f) = / dax e f(x (5.12)

and multiplying equation (5.5) by it from the left yields the stationary FSE in Fourier
representation,

(E — [k|*) / dk' Uk — k) g(K') = (5.13)

Since the effective potential is a periodic function, we may express the Fourier
transform of it as a discrete sum of Dirac é-functions,

U(k) =27y 6(k—ky) U, with k,=n/A, neZ (5.14)
n

The Fourier coefficients U, are defined by (see Appendix

N 1 .
Uy =5~ / dax U (x) e/, (5.15)
27A

The central merit of Bloch theory is the fact that any solution to (5.13) is of the form

P(x) = g(x)  with ge€]0,1]. (5.16)

The quantity g is referred to as the Bloch phase and the function 6(x) has the same
period as the effective potential, i.e.

O(x) = 0(x +27nA), with n € Z. (5.17)

The Fourier transform ¢ (k) of the wave function ¢(x) can be expressed in terms of
the Fourier coefficients 6, of the periodic component 0(x) as

$(k) =27y 8(k+(q—n)/A) by, (5.18)
where ,
6= 5~ / dx 0(x) e=m/2, (5.19)
27A

Substituting the expansion (5.14) of the effective potential and the expansion (5.18)
of the wave function into equation (5.13) yields a sum (after a somewhat cumber-
some rearrangement of indices)

(E—\n/)\—q/)\]“—ﬁo> 0, — ; Uy Oy = 0. (5.20)
m+*n
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Letting

(n|@) = o, (5.21)
we immediately see that (5.20) is a discrete stationary Schrodinger equation de-
fined by a Hamiltonian H(g) which is parameterized by the Bloch phase g, more
precisely,

H(q) |6) = E(q)16) - (5.22)

The matrix elements of the Hamiltonian read
1 .
(n|H(g) m) = Hum(q) = 557 Im = q1" Sum + Un—m. (5.23)

Since (5.20) is a discrete matrix equation, the eigenvalues and eigenstates can be
labeled by a discrete index n. However, since H,,(q) depends on the Bloch phase,
so do the energy levels, i.e.

E=E.(g9) with neZ gqgel0,1]. (5.24)

The functions E,(q) are commonly referred to as the energy bands of the original
SFE (5.5). When the effective potential strength ¢ vanishes, the FSE is equiv-
alent to unperturbed superdiffusion, and the energy bands EY(g) and eigenfunc-
tions ¢! (q) are given by

n—gql*
A

Ed(q) = and  ¢Y(q) = VA, (5.25)

The combination of discrete level index n and continuous Bloch phase g € [0, 1]
spans the entire real axis R in this case. With k = (n — gq) /A the well known result
for the spectral decomposition of [P|* alias A*/2 is obtained,

EOk) = |k|* and  ¢p(x) =€*,  with keR. (5.26)

In the discrete Schrodinger equation (5.20) the Fourier coefficients of the effective
potential can be expressed as a function of Fourier coefficients

Sn(e) = % / dx g0 () —inx/A (5.27)
27A

of the exponential exp[ev(x)]. These coefficients can either be evaluated analyti-
cally, or a expansion of the exponential of the integrand leads to a series in powers
of effective potential strength ¢ weighted by the Fourier coefficients of powers of
the original potential v(x), i.e.

ek

S(e) =1+ 3 & k. (5.28)
k=1""

—
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The coefficients U, are obtained by Fourier expansion of the definition of U(x),

. 1 R
u, = ~ ; Sn—m(€) |m|*sm(—¢). (5.29)

Denoting complex conjugation by (-), the coefficients appearing in equation (5.20)

are given by
1

Upm = 55 ; Sui(e) [ = m|*5_p(—e) (5.30)
and )
-2 R —
Uo = m; |m|" Re [sm( ) sm(g)} . (5.31)

In the following we wish to compare the properties of the band spectra of various
superdiffusive processes, each defined by a Lévy exponent p. For a comparison the
energy is not a suitable quantity, because it represents a different physical quan-
tity for different values of pu. In other words, depending on p, the quantity E has
different units. Therefore, it is more sensible to compute the generalized crystal
momentum defined by

kn(q) = AEq(q)'/¥, (5.32)

since this quantity is dimensionless and independent of A, irrespective of the spe-
cific value of pu chosen. Furthermore, it is identical in all freely superdiffusive
processes,

kp()=In—q] neZ qel0,1], pe(0,2] (5.33)

When inserted into equation (5.20) along with the expressions (5.30) and (5.31), the
Schrodinger equation is given in terms of the functions s, (¢),

((w(g))“— (@) +2 3 |ml*Re [§m<—e>§m}> 6,
+ S Susi(e) 1= m[*Si_m(—€) 8, = 0. (5.34)

m+#n,l

The investigation below will be based on this equation. Parameters of this equa-
tion are the Lévy index u and the effective potential strength ¢. It is generally very
difficult if not impossible to solve this equation for a given external potential V(x).
We must rely on the numerical diagonalization of the associated matrix and ap-
proximation methods in order to obtain the generalized crystal momentum «;(q)
as a function of the Bloch phase g and for a given set of parameters p and ¢. From
a numerical point of view, equation is a much better starting point than the
original SFSE. In addition, a perturbation theoretic treatment, valid for weak effec-
tive potentials, can be carried out more easily on (5.34).
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5.3. Bands

We investigate in detail the quantity k,(gq) for four paradigmatic potentials V' (x).
Each potential reflects a situation frequently encountered in physical modeling.
The potentials are qualitatively sketched in figure The simplest type of poten-
tial is the cosine, shown in figure[5.2A.

In contrast to the cosine, the square wave potential (figure[5.2B) is characterized
by sharp boundaries between two constant potential levels. In terms of the co-
polymer example discussed in chapter [} we expect the square wave potential to
be an appropriate choice for a chain which consists of two monomer types arranged
in alternating segments of fixed length.

Two additional typical potentials are depicted in figures and 5.2D. These
types of potentials are adequate for polymers consisting of one type of monomer
interspersed at regular intervals with a different type of monomer. When the
rare type is energetically higher, the potential along the chain will possess local-
ized peaks (figure 5.2C). Conversely, if the interspersed monomers are energeti-
cally more favorable, then V(x) will consists of a succession of localized potential

troughs (figure5.2D).

i -2 0 2 X}X 4 2 0 2 Xbu

Figure 5.2.: Periodic potentials frequently encountered in physical systems. The simple cosine
(A), the square wave potential (B), a potential possessing localized peaks (C), and the same
potential with opposite bias, the localized trough potential. (D) Each potential has zero mean
and unit variance.

5.3.1. Band Gaps Everywhere

We begin with the simplest type of potential, the cosine of wavelength 277A, zero
offset and unit variance, i.e.

v(x) = V2 cos(x/A). (5.35)
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Figure 5.3.: Superdiffusion in the cosine potential. The generalized crystal momentum «;(g)
(defined by ) as a function of the Bloch phase 4. Each panel depicts the structure of the
first few bands for various Lévy exponents (u = 1/2, 1, 3/2, 2). Linestyles label the effective
potential strength, ¢ = 0 (dashed line), ¢ = 1/4 (—)and ¢ = 1 (—).

Inserted into equations (5.27), the Fourier coefficients s, (¢) appearing in (5.34) can
be expressed in terms of the Bessel functions I,,(z) [B0 p. 900 ff],

Su(e) = Ii(V2e). (5.36)

After substitution into the Schrédinger equation (5.34), the generalized crystal mo-
mentum «,(q) can be computed numerically for a given set of parameters {y, ¢}.
Figure 5.3|depicts k, (g) for a number of Lévy exponents p and two effective po-
tential strengths e. The limiting case of ordinary diffusion (1 = 2) is shown in
the right panel of the figure. Clearly, the band structure depends strongly on the
Lévy exponent u. Therefore the transient dynamics is different for various values
of pn. The lowest band k((g) determines the dispersion in the potential on scales
larger than the wavelength of the potential. When the effective potential strength
is low (red bands), only the lowest band is affected by the potential, because a band
gap of approximately the same magnitude appears in every system. The upwards
shift of k,,(g) in the upper bands is most pronounced when the process is strongly
superdiffusive (u = 1/2). This implies that on small scales these highly superdif-
fusive processes relax faster. When the effective potential strength is increased, the
band structure differs vastly for different values of p. On one hand, higher bands
of the ordinary diffusion process are nearly unaffected by a strong potential. On
the other hand, the same bands in the strongly superdiffusive systems are almost
independent of the Bloch phase g. However, the decrease of the lowest band is
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strongest in both the ordinary diffusion process and the strongly superdiffusive &

process. It is least pronounced for intermediate values of the Lévy exponent p.
Thus, moderately superdiffusive processes are least slowed down by the external
potential, a matter investigated in detail in section[5.4]

0 0.5 €

Figure 5.4.: Superdiffusion in the cosine potential. The quantity ,(¢) as a function of effective
potential strength £. The panels depict the band structure of systems defined by Lévy exponents
n=1/2,1,3/2and 2. Upper and lower boundaries of the bands are marked by blue and red
lines, respectively. The spectral measure vanishes in the gaps (white zones).

These effects are particularly visible in figure 5.4 which depicts k,(g) as a func-
tion of potential strength ¢ for the same set of Lévy exponents. Each band # is
bounded by the upper and lower values , (0) and «,(1). When g spans the interval
[0,1], the gray area is filled. Increasing the potential strength leads to band split-
ting, the degree of which is most pronounced for low Lévy exponents. Obviously,
relaxation is different for various types of Lévy flights in the cosine potential. How-
ever, given a fixed Lévy exponent p, the effect of band width reduction increases
smoothly as the effective potential strength is increased. Intuitively speaking, the
transient dynamics of superdiffusion in the cosine potential does not hold any sur-
prises with increasing effective potential.

5.3.2. Dancing Bands

In more complicated and realistic potentials this simple response to increasing ef-
fective potential strength vanishes into thin air. Consider the square wave potential
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0 0.5 € 0 0.5 € 0 0.5 € 0 0.5 €

Figure 5.5.: Superdiffusion in the square wave potential. k, (¢) as a function of effective poten-
tial strength ¢. A detailed description of the figure is provided in the caption of figure [5.4}

defined by
2n—1 2n+1 : 7
o(x) = +1 == <.x/)\ < = with n € (5.37)
-1 otherwise.
The Fourier coefficients
Son(e) =0 and (5.38)
- B 2(-=1)" .
Son+1 (6) = m Sll’lh(c‘:) (539)

can be computed in a flash.

This potential exhibits a far more complicated band structure than the softly
varying cosine. The bands «,(q) for the square wave potential as a function of
potential strength are shown in figure The choice of Lévy exponents is the
same as for the cosine spectra. The band structure of the ordinary diffusion dis-
plays the most transparent response to increasing effective potential strength. Due
to the high abundance of harmonic frequencies in the square wave, the effect of
mode coupling leads to increasing gaps between all neighboring bands. Thinning
of bands increases smoothly as the effective potential strength is increased.

Contrasting with this simple behavior, the band structure of the superdiffusive
processes is far more complicated. Neighboring bands approach and repel each
other. Band twists occur, and the global structure is rather complex. The effect is
most pronounced for small Lévy exponents.
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Figure 5.6.: Superdiffusion in the square wave potential. The crystal momentum «,(gq) as a
function of the Bloch phase g is shown for two, only slightly different effective potential strengths,
e = 0.45 (blue) and ¢ = 0.55 (purple). The red circle indicates the region of high susceptibility
towards changes in potential strength.

Consequently, the transient dynamics of superdiffusive processes is strongly sus-
ceptible to changes in effective potential strength. That is, for a given potential
strength ¢, only a slight increase by é¢ may change «,(g) extensively. Figure
shows the crystal momentum as a function of the Bloch phase g at two similar po-
tential strengths, ¢ = 0.45 and ¢ = 0.55. A change in potential strength of small
magnitude affects the band structure of ordinary diffusion only slightly, whereas
the superdiffusive system with u = 1/2 displays a striking difference in the area
indicated by the red circle.

5.3.3. The Ups and Downs

A rather bizarre phenomenon occurs when Lévy flights evolve in potentials in
which the periodic inhomogeneity is localized in a small region relative to the
wavelength, such as the localized peak and trough potentials shown in figure
and [p.2D. In order to compute the quantity ,(7), we model these potentials as

vi(x) = £ a(cos(x/2A))* +b. (5.40)

The relevant parameter in is the exponent y which controls the degree of
localization of the peaks and troughs. The parameters a and b are chosen such that
the potentials v4 (x) have zero mean and unit variance. The + sign determines the
bias of the potential, i.e. potential peaks (+) or potential troughs (—).
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Figure 5.7.: A comparison of the band structure of the crystal momentum «,(g) as a function of
the Bloch phase in the localized peak (A) and localized trough (B) potentials. Lévy exponents
are p = 1/2, 1 and 2. The effective potential strengths ¢ are 0 (dashed line), 1/4 (—) and 1
(—). The potentials v(x) depicted above the band panels are given by equation for a
peak parameter Y = 32 and bias +1.

In figure5.7the band structure of Lévy flights in potentials of identical shape but
opposite bias are compared. The effective potential strength ¢ was set to 1/4 (blue
bands) and 1 (red bands).

The effect of the localized peak potential (figure [5.7]A) is similar for all values
of the Lévy exponent. Gaps are present between all adjacent bands, their size in-
creases with increasing potential strength. However, the dynamics on scales larger
than the wavelength of the potential differs for each p. The arc of the lowest band is
reduced most strongly in the diffusive system, whereas when pt = 1/2 nearly no re-
sponse of the lowest band occurs. This is plausible, since potential peaks only pose
an obstacle for the ordinary diffusion process, which is local and needs to over-
come each peak diffusively. Lévy flights, which are intrinsically non-local, possess
a non zero probability of jumping past a potential peak without even sensing its
presence.

Comparing this to the localized trough potential (figure [5.7B), we see that the
effect on the lowest band is reversed. A superdiffusive particle is trapped in the
potential troughs more strongly than an ordinary diffusive one. At first sight this
is a rather counterintuitive phenomenon. We will attempt to give a physical ex-
planation of this in section [5.4| on asymptotics. Furthermore, the band structure
is far more complicated when p = 1/2, observe for instance «,(g) for n = 2, 3 in
panels A and B. Note also that the shape of the bands varies substantially when the
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Figure 5.8.: A comparison of the band structures of k,(¢) as a function of ¢ in the localized
peak (A) and localized trough (B) potentials. Lévy exponent, peak and parity parameters for the
potentials are identical to the ones chosen in figure [6.7] (refer to for more details).

potential strength is changed. Figure [5.8|illustrates this fact even better. Increasing
¢ leads to a smooth thinning of bands in the localized peak potential, and a com-
plex structure of k,(g) in the localized trough potential, including avoided band
crossings and twists.

However, the limiting case of ordinary diffusion shows identical bands in either
potential, which is not surprising. When p = 2 the evolution equation is local.
A diffusive particle has only the choice of making a transition to the neighboring
locations; it can not differentiate between potential troughs and peaks. The bias of
the potential is only crucial for superdiffusive motion. Transition probabilities of a

Figure 5.9.: The structure of k, () for a su-
perdiffusive process (1 = 1/2, left panel)
compared to ordinary diffusion (0 = 2,
right panel) for the potentials depicted in
the top row. The bands corresponding
to the given potentials are depicted in the
same color. The effective potential strength
¢ is 1/2. The dashed line shows the situ-
ation of vanishing potential. Potential pa-
rameters are identical to those chosen in

figure[5.7}
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Figure 5.10.: «,(¢) as a function of effective potential strength ¢ for u = 1/2 (left panels)
compared to ordinary diffusion (u = 2) in the localized peak potential (A) and the localized
trough potential with the same shape and opposite bias (B). Potential parameters are identical
to those chosen in figure 5.7}

Lévy flight are determined by the interplay of the non-local jump statistics with the
specific shape of the potential. Localized potential peaks are largely ignored by a
Lévy flight if the peaks have a small width relative to the wavelength of the poten-
tial; the particle tunnels though them. In the localized trough potential, however,
possible low energy target sites of hopping are sparse, and the dispersion of Lévy
flights in such potentials is strongly affected.

This is an important result. In terms of the model of a randomly hopping particle
on a hetero-polymer, it implies that as soon as long range transitions are permit-
ted due to folding, the specific structure of the potential has a large effect on the
dispersion of the particle.

5.4. Asymptotics

Let us now focus on the asymptotics of topological superdiffusion in periodic po-
tentials. The dynamics on large spatial scales relative to the wavelength of the
potential (x > A) is governed by the crystal momentum « at small values of the
associated wave number, i.e. k < A~!. In terms of the Bloch phase, this is equiv-
alent to g < 1. The dynamics on large temporal scales is dominated by the small
energies E and hence the spectrum of « near the origin. Therefore, it suffices to
investigate the properties of the lowest band k((q) for g < 1.

In figure the crystal momentum «(gq) for superdiffusion and ordinary dif-
fusion is compared in the four potentials given in the top row. The dashed line
in each panel is the dispersion relation of a freely moving particle, i.e. ko(gq) = 4.
Recall that a linear g-dependence implies that the propagator of the process is Lévy
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Figure 5.11.: Asymptotic behavior of superdiffusion (1 = 1/2) and ordinary diffusion (u = 2)
in the potentials displayed in the top row. The asymptotics is governed by the behavior of
the lowest band ky(q) for 4 < 1. Symbol type and color are associated with the color of
the potentials. The slope of «y(g) is the effective length & which is related to the generalized
diffusion coefficient and defined by equation (5.43). The effective potential strength ¢ is set to
1/2.

stable, since Eo(q) = «o(q)* = g* and thus
plg,t) me 1 (5.41)

Figure shows that for the chosen potential strength ¢, both Lévy exponents u
and all the potentials, the asymptotic g-dependence is still linear. However, the
slope & of the curves is decreased by the potential, i.e.

ko(q) =&q and  Eo(q) = &HqH. (5.42)

The quantity £ can be interpreted as a typical length scale of the system. Because
of the second equation in (5.42), it is related to the generalized diffusion coefficient
by

&= Dy. (5.43)

Since the length scale (and consequently D) is decreased by an external potential,
each process is slowed down. However, since the g-dependence remains the same,
the propagator is still Lévy stable on large scales. One can think of the process
on large scales as evolving in a homogeneous environment of which the position
coordinate is rescaled by a factor &.
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Figure 5.12.: The effective length scale & (¢) in the asymptotic limit as a function of the potential
strength . Two superdiffusive processes (1 = 1/2 and 1) are compared to ordinary diffusion
(1 = 2). Each curve corresponds to the potential depicted in the top row in the same color.

Comparing the change of effective length scales & in various external potentials,
we see that Lévy flights respond strongly to the bias of the potential. The curves
of the square wave and the cosine potential are nearly identical. & is decreased
only slightly by the localized peak potential and strongly affected by the localized
trough potential. In contrast, the asymptotics of ordinary diffusion is nearly unaf-
fected by the potential shape, consistent with Kramers escape theory [44].

Figure shows the length scale & as a function of effective potential strength ¢
in an ordinary diffusion process, a moderately superdiffusive process and a strongly
superdiffusive process in the aforementioned potentials. The ordinary diffusion
process displays a similar decrease of &(¢) for all potentials. Conversely, both su-
perdiffusive processes exhibit substantial differences in (&) which increase for in-
creasing potential strength.

Comparing the effective length scales for each pu in the localized trough poten-
tial (blue lines), we see that the moderately superdiffusive process (1 = 1) is least
affected by the potential. When p = 1/2 a particle is bound to spend more time in
the potential minima, when u = 2 it is less able to overcome the potential barrier.
The intermediate case (1 = 1) represents a compromise in terms of least impact
of an external field on the dynamics. This may explain why Lévy flights with in-
termediate exponents  ~ 1 are predominantly observed in foraging strategies of

animal species [B0} 72 [73] 127] and human visual search [23].
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5.5. Universal Behavior in Weak Potentials

The results presented in the previous sections relied on the numerical diagonal-
ization of the Schrodinger equation (5.34). The low temperature and the weak po-
tential regime can be treated by a perturbation expansion in the effective potential
strength, since

Vo
= 1. 44
T K (5.44)

In this case, the effective potential U (5.3) can be approximated as
1
Un —ea2o+ e <A“/2 02 — 20 AM/2 v) , (5.45)

which is correct to second order in €. Expanding the potential v(x) in a Fourier
series yields approximate expressions for the Fourier coefficients,

~ 1 1 N ~

u, ~ Tt (|n|“vn—Ee;vn_m(|n|“—2|m|“) vm) . (5.46)
The energy bands E,;(q) of a Schrodinger equation such as can be expanded in
the neighborhood of the energy bands EV(q) = |n/A — q/AJ* of the free Hamilto-
nian HY = |P|* as a perturbation series [[]. Depending on whether the Bloch phase
q is near the Bragg plane (i.e. 4 ~ 1/2), two different expressions are obtained for
the energy levels of the perturbed Hamiltonian.

5.5.1. Energy Levels Distant to the Bragg Planes

When g % 1/2, the energy difference E)(q) — E%(g) of two arbitrary levels n # m
of the free Hamiltonian is of O(1). In this case the energy levels of the perturbed
system can be expressed in terms of quantities belonging to the unperturbed sys-
tem by

U |?
q) — ED(q)

For |U| < 1 the O(U3)-term can be neglected. The Fourier coefficients of the
effective potential on the rhs of equation (5.47)) are obtained from (5.46), and read

E.(9) = E%(q) + Uy + m; £ +Oo(Ud). (5.47)

—~ 1 R
[Un? 7 e® | 8%, (5.48)
and ,
Uy = ﬁsz S Iml* 0| (5.49)
m

Thus, the modification of the levels due to the weak potential is of the second order
in the effective potential strength .
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5.5.2. Energy Levels Near the Bragg Planes

When g ~ 0, 1/2 or 1 the degenerate energy levels n and 1 — n of free propagation,
namely E9(q) = |n/A —q/A|* and EY_,(q) = |n/A— (g — 1)/A|* cause a diver-
gence in the denominator in the expansion which is no longer valid in this
case. Instead, the energy levels near a Bragg plane become non-degenerate and
split into two levels linearly in U [,

Ex(@) — En(q) and  E{,(g) = E[,(q), (5.50)
where the correct modification in terms of the energies of the free systems is given
by

Ex(9) ~ Ej(q) + [Upu | + Uo
1 ~ ~
~ EX(q) + T (5 20— 1# [0 1| + € 5 [m|* |vm|2> (5.51)
m

The second term explains why a band split linear in ¢ is only observed for the
lowest two bands in the cosine potential (figure [5.4), since the Fourier coefficients
Up,—1 vanish except for 2n — 1 = +1. Potentials with higher non-vanishing modes
possess a linear split between additional bands, see for example the band structure
of the localized peak and trough potentials in figure Although the bias of the
potentials influences the band structure of these potentials on the entire range of
potential strengths, the behavior is identical in the weak potential regime, since
the additional terms in equation depend only on the absolute value of the
Fourier coefficients of the potential.

5.5.3. Asymptotic Behavior in Weak Potentials

The asymptotic behavior in weak periodic potentials is determined by the lowest
band (n = 0) and small values of the Bloch phase (7 < 1). Combining equa-

tions (5.48) and (5.49) with equation (5.47) yields

1 In —m|
~ 10 -2
En(q) = En(q) — 3¢ m;(m—ql“— T

Bl — [ |6m12) (5.52)

for all bands. Substituting n = 0 and rearranging the sum gives

1 m2H m2H
Eo(q) ~ E(q) — —¢€2 z?mz( + —2m“>. 5.53
o)~ Fol) =5 3 1w\ G =gy =g T T+ i — g 559
With EJ(q) = (9/A)"* we obtain
Eo(q) = Eo(q) [1 —8e2 Yy |5m|2gu(q/m)] , (5.54)
m>0
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in which the function g,(z) is given by

1 1 1
gu(z) = 8z ((1 —zZ)H —zH + (1+z)H—z¢ 2) ' (555)

Equation states that a weak periodic potential decreases the dispersion speed
by a factor proportional to €2, so the characteristics of the dispersion are not changed
since Eg(q) ~ EJ(q). The degree to which the term in brackets in is decreased
depends on the structure of the potential represented by the Fourier coefficients vy,
as well as the Lévy exponent p in the factor g, (q/m).

Consider now the asymptotic limit g — 0. This limit is equivalent to z — 0 in

equation (5.55), i.e.

1 u=2
li = 5.56
zgﬁg“&) {% 0<u<2. (5:56)

As z — 0 the function g, (z) does not converge uniformly on the interval of Lévy
exponents (0,2]. The Lévy exponent u = 2 describes ordinary diffusion possesses
an exceptional limit. The effect on the generalized diffusion coefficient

Eo(Ak)

is quantified by relative difference to the unperturbed dynamics, i.e.
6D, =1-Dj. (5.58)
The rescaled potentials v(x) have unit variance and thus

2y Om|? = 1. (5.59)
m>0

Inserting the limit of g, (z) into (5.56), taking (5.59) into account and replacing the
effective potential strengths by the original physical quantities V and kgT yields

2
lim 6D, = <ﬁ> {1 w=2 (5.60)
k—0 kgT I O<u<?2
This is a rather interesting result. The dispersion speed of all processes is decreased
quadratically by a weak periodic potential in the ratio Vy/kpT. Furthermore, on
large scales the magnitude is independent of the Lévy exponent 1, and hence uni-
versal for all Lévy flights. Only the marginal case of ordinary diffusion is an excep-
tion, being slowed down by a factor of 4. The response to an external potential dis-
plays a discontinuity at u = 2. In terms of the physical example of random motion
on a hetero-polymer, this result implies that as soon as folding dynamics permit

ix\ﬁb
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Figure 5.13.: The generalized diffusion coefficient D, (¢) as a function of effective potential
strength ¢ for a chosen set of Lévy exponents listed in the lower left corner and assigned dif-
ferent symbols. For each Lévy exponent three potentials (inset) are compared and labeled by
color. The dashed and dotted lines represent the results obtained from perturbation theory
(equations and(5.58)), for superdiffusion and ordinary diffusion, respectively.

long range transitions, a quantitatively different dispersion speed is predicted by
equation (5.60). However, changing the exponent of long range transition proba-
bilities by different folding dynamics does not alter the dispersion speed as long
the effective strength of the potential on the polymer remains the same.

The universal behavior for i1 < 2 seems to be contradicting the results obtained
above, namely the strong dependence of band structures on properties of the po-
tentials, such as the bias and shape, as well as strong variation as a function p.
Actually, the universal behavior is only observed for weak potentials and in the
asymptotic limit. In figure the generalized diffusion coefficient is shown as
a function of effective potential strength for the set of potentials sketched in the
insets. The results obtained by perturbation theory (i.e. equation (5.57)) are rep-
resented by the dotted (1 < 2) and dashed (1 = 2) lines. For the set of Lévy
exponents listed in the lower left corner, the generalized diffusion coefficient was
computed numerically. In the weak potential regime the numerics coincide nicely
with the predictions given by perturbation theory. For all Lévy exponents p < 2 the
generalized diffusion coefficient as a function of ¢ is identical. The marginal case of
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Figure 5.14.: Relaxation properties of superdiffusion processes in finite systems. The quantity
Gu(A/L) (see equation ) is depicted for various system sizes L in units of wavelength A as
a function of Lévy exponent u (solid lines). Each panel corresponds to the potential shown in the
inset. The symbols depict the results obtained from numerical diagonalization of equation (5.34).
The non-uniform limit L — oo is shown in red.

ordinary diffusion pu = 2 is an exception. For strong effective potential strengths,
ordinary diffusion and Lévy flights behave in a somewhat complementary fashion.
For the Lévy flights the curves still coincide for a given potential. The behavior is
still universal in that respect. Yet each curve differs for each potential, reflecting the
sensitivity of Lévy flights to potential shape. When p = 2 the situation is reversed.
While D, (¢) of the ordinary diffusion process fails to coincide with the rest of the
curves, it remains largely the same when the potential is changed.

Recently, a number of studies [12] proposed that Lévy flights with in-
termediate exponents pu ~ 1 are optimal when employed in search strategies of
foraging animals. The results obtain above suggests that on large scales, the spe-
cific choice of exponent is irrelevant to the dispersion speed, as long as p < 2.
However, our results are a consequence of a limiting procedure, the physical plau-
sibility of which needs to be investigated with care, especially because the limit is
attained non-uniformly. In the next section we show that the idea of optimal inter-
mediate Lévy exponents is still valid in finite systems, even if they span orders of
magnitude of the typical wavelength of the potential.
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Figure 5.15.: For the set of Lévy exponents listed in the upper right the quantity G,(A/L) is
shown as a function of relative inverse system size A/L for the cosine potential. The inset shows
the same curves on a semi-logarithmic scale. The red lines depict the limits lim, ;o G.(A/L)
for u = 2 (upper line) and p < 2 (lower line).

5.6. Finite Systems

So far we have considered systems of infinite physical extent. In the study of ordi-
nary diffusion processes this usually poses no problem. The evolution operators in-
volved are local, and boundary effects can be neglected on relevant spatio-temporal
scales. In the realm of superdiffusion more care is appropriate, since fractional op-
erators are non-local and may respond to the system’s boundary more strongly. In
fact, boundary effects come in various shapes in superdiffusive systems, see for
example [27] 36l 87] 144]).

We consider a finite system of length 277 which is modulated by a periodic
potential of much shorter wavelength 2774, i.e.

A< L. (5.61)

In a finite system the Hamiltonian in equation has a discrete spectrum. Each
continuous band E,(g) splits into M = L/A discrete energy eigenvalues, which are
obtained by evaluating E,(q) at g, = mA/L with m = 1...M. The lowest wave
number in a finite system is given by

ky =L71, (5.62)
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the smallest value of the Bloch phase g, is thus given by the ratio of wavelength

and system size, i.e.

A
n=7 (5.63)

The relaxation time of the process is related to the lowest eigenvalue of the spec-

trum by
1 1

- Eo(q1)  Eo(A/L)’
and quantifies the amount of time that elapses until a localized initial density

spreads over the entire system. We define the relative change in relaxation time
compared to the unperturbed system as

(5.64)

Tc

ot =1 /10 — 1, (5.65)

where 70 = L* denotes the relaxation time of a freely moving particle. Applying
the results obtained from perturbation theory we obtain

57, ~ 2Gu(A/L) where (5.66)
Gu(A/L) =2'Y gu(A/Lm) [Ow|*. (5.67)
m>0

Since g,,(z) and |0,,|? are non-negative and g, (z) is monotonically decreasing with
decreasing z, the function G, (A/L) is certainly larger than the first summand, and
a lower bound to 47 is given by

5t ~ e2g,(A/L). (5.68)

Note that G, (z) = gu(z) for the cosine potential which has only one non-vanishing
Fourier component.

The relative increase in relaxation time 47, is thus determined by the value of
the function G,(z) at small but non-zero arguments z = A/L. Figure depicts
Gu(A/L) as a function of Lévy exponent u for a given set of system size wavelength
ratios. Each panel gives the results for the one of the potentials. Superimposed and
denoted by symbols are the numerical results for G,(A/L). The red line indicates
the limit obtained above. Note the discontinuity at u = 2. As opposed to the
behavior in an infinite system, the curves corresponding to large but finite systems
show a pronounced minimum at intermediate values of u. Even for very large
systems, the function G, (z) diverges beyond any value as u — 0.

The rate of convergence is very different for various Lévy exponents, as is in-
dicated in figure for the cosine potential. The figure shows the behavior of
Gu(A/L) as a function of A/L for a set of exponents p. The limits of 1/4 for the
Lévy flights and 1 for ordinary diffusion are indicated by the red lines. All pro-
cesses attain their limit quickly, except for those which are nearly diffusive (1 S 2)

i
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and those which are extremely superdiffusive (1 =~ 0). The semi-logarithmic plot
(inset) shows that a convergence of these processes is very slow.

Consequently, in any real and hence finite system, the effect of an external po-
tential on the speed of dispersion is least pronounced for Lévy flights with u ~ 1,
consistent with the observation that these type of Lévy flights are employed as
search strategies.

5.7. Discussion

The investigation of topological superdiffusion in periodic potentials revealed a
number of interesting and important effects. The spectral band structure which
we obtained by means of a Bloch theory for superdiffusion strongly depends on
the Lévy exponent as well as the functional form of the periodic potential. The
superdiffusive processes (1 < 2) generally possess band structures with greater
complexity than ordinary diffusion processes (1 = 2). Consequently, the tran-
sient dynamics of superdiffusion in periodic potentials exhibits a higher degree of
variability. Even small changes in the effective potential strength can change the
relaxation properties of the superdiffusive processes, whereas ordinary diffusion
responds smoothly to parameter changes.

The comparison of a potential with localized peaks on one hand, and localized
troughs on the other, showed that superdiffusion is rather different in each poten-
tial, although ordinary diffusive dispersion is identical in both potentials. There-
fore, unlike ordinary diffusion processes which are solely affected by magnitude
variations of the external potential, superdiffusion processes are susceptible to the
precise shape of the potential. These results are relevant to a number of systems
in which scale-free topologies induce enhanced diffusion, such as random motion
of regulatory proteins on folded DNA strands and other intracellular translocation
processes, and we predict that these systems possess a rich variety of relaxation
dynamics.

The perturbation analysis revealed two key properties of the asymptotics of topo-
logical superdiffusion. Although the transient dynamics in a given external poten-
tial varies with p, the asymptotic behavior is universal for all superdiffusive pro-
cesses (1 < 2) in a given potential, because the generalized diffusion coefficients
for various Lévy exponents are identical in the perturbative regime. An exception
is the limiting case of ordinary diffusion (1 = 2). In terms of the physical exam-
ple of random motion on a folding polymer, this result implies that the folding
statistics of the chain play no role for the dispersion speed along a chain, as long
as scale-free transition occur. Conversely, the generalized diffusion coefficient for
superdiffusion depends on the form of the potential, and does not depend on it
for ordinary diffusion. Compared to the unbiased cosine potential, superdiffusive
processes are slowed down strongly by periodic trough potentials, and are least
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affected by potential peaks.

The investigation of relaxation to the stationary state in finite systems demon-
strated that processes with intermediate Lévy exponents are least affected by ex-
ternal potentials. The reduction of dispersion speed is greatest for nearly diffu-
sive processes but also for processes with small exponents (strong superdiffusion).
Based on this result, we predict that Lévy flights with intermediate exponents are
optimal when employed for target location strategies in variable environments.
This is supported by the observation that foraging animals perform Lévy flights
with exponents near unity. We speculate that Lévy strategies may be a useful tool
in computational search strategies as well, and that Lévy flights with 1 ~ 1 will be
most efficient.

We believe that our analysis of topological superdiffusion in periodic potentials
is not only important for the reasons given above, but also because in the popular
modeling framework of generalized Langevin dynamics, periodic potentials do not
give interesting results, and have thus not been considered a source of interesting
dynamical behaviors. Furthermore, the results presented will be valid for the wide
range of rate models which are asymptotically governed by the fractional Fokker-
Planck equation studied here.

i
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All generalizations are false.
Including this one.

(Mark Twain)

We extend the analysis presented in the last chapter to random potentials. First we
investigate topological superdiffusion in random phase potentials, which represent
a popular model for random environments with typical variance and correlation
length. We compute the density of states for the generalized crystal momentum
and compare the dynamics in four typical potentials with different power spectra.
We show that the density of states depends on the statistical properties of the ran-
dom potential, and generally exhibits a complex behavior as a function of effective
potential strength. As opposed to the dynamics in periodic potentials for which
the complexity of the spectral band structure increases with decreasing Lévy ex-
ponent 1, the density of states for random potentials exhibits the highest degree
of complexity for diffusive processes. Concerning relaxation speed on finite scales,
we demonstrate that moderately superdiffusive processes are least affected by ex-
ternal potentials. Ordinary diffusion and superdiffusion with a Lévy exponent
above a critical value . are slowed down on large scales and sped up on scales
smaller than the correlation length of the external potential. Surprisingly, strongly
superdiffusive processes are slowed down even on small scales. We show that
the generalized diffusion coefficient, which quantifies the asymptotic dispersion
speed, is independent of the type of potential and identical for all superdiffusive
processes (1 < 2) but different for ordinary diffusion (u = 2). A perturbation theo-
retic treatment predicts that in weak random potentials transient dynamics differs
considerably for various Lévy exponents, the greatest deviations from the typical
behavior being observed for nearly diffusive (1 ~ 2) as well as strongly superdif-
fusive (u ~ 0) processes. In a simple model for topological superdiffusion on a ran-
dom co-polymer, we investigate the influence of relative monomer concentration
on the dynamics. Unlike ordinary diffusion which is independent of the relative
abundance of each monomer type, the dispersion speed of a superdiffusive parti-
cle is considerably affected. Consequently, when polymer folding permits scale-
free transitions along the chain, more information than the relative abundance of
monomer types is needed to correctly estimate dispersion speeds. We believe that
this insight will be relevant for the understanding of random motion on biological
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macromolecules, such as protein dynamics on DNA strands.

6.1. Motivation

Investigating topological superdiffusion in random environments is important for
a number of reasons. The periodic potentials studied in chapter [5| certainly repre-
sent an idealized scenario. There is no such thing as a perfectly periodic polymer
or resource distribution in an animal’s habitat. Even though external forces may
fluctuate around a typical value with a typical degree of variability and possess a
typical length scale, they usually exhibit a certain degree of irregularity.

A number of prominent systems possess dynamical properties which are rather
different in regular and random environments, even when the degree of external
irregularity is small. For example, a one-dimensional ordinary random walk in a
periodically modulated environment is recurrent, but transient if a small random
perturbation is added [I18]. A similar effect occurs in disordered one-dimensional
quantum mechanical systems, which exhibit spectral properties absent in regular
potentials [B].

From a modeling point of view, it is crucial to understand which phenomena are
linked to what specific ingredients of the model. Are the predictions of the general-
ized Bloch theory for periodic environments also accurate in random environments
for which the theory is inappropriate?

Generalized Langevin dynamics in quenched random force fields has been stud-
ied extensively in recent years [A0 &1} B6]. However, the quenched fields consid-
ered were unbounded, and in chapter [l we saw that generalized Langevin dynam-
ics is asymptotically trivial in bounded potentials.

How does the random environment interfere with superdiffusion on scale-free
topologies, how can it be quantified and how does it depend on the potential
strength and the Lévy exponent u? These questions will be addressed below. The
results will not only be essential to the understanding of particle dynamics on fold-
ing hetero-polymers but also to ecological processes such as foraging strategies of
animals in inhomogeneous resource environments, which have attracted much at-
tention recently [12] [76] 134].

Figure[6.T|depicts a situation analogous to that depicted in figure[5.JA. Instead of
a periodically arranged set of monomers of variable energies, a random sequence
of monomers results in a random potential defined along the chemical axis of the
chain. The folding dynamics permits long range transitions, and at each point
in time the neighborhood topology has a structure qualitatively sketched on the
right in figure The arcs between two pairs of monomers indicate that they are
adjacent in Euclidean space.

In figure[6.2)two-dimensional examples of topological superdiffusion in inhomo-
geneous random environments are depicted. The random graph in figure |6.2A is
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Figure 6.1.: Left: A random hetero-polymer, consisting of randomly arranged monomers. The
types of monomers are distinguished by color and reflect the local potential. The random ar-
rangement of monomer leads to a random potential V(x) defined along the chemical axis of the
chain. Right: The neighborhood topology of a random hetero-polymer in a folded conformation.
Circular arcs indicate proximity in Euclidean space.

similar to the scale-free graphs depicted in figures[3.2B and [5.IB. The probability of
finding a connection of a certain length lacks a scale. As opposed to the previous
systems, the graph in figure has a random inhomogeneous vertex concentra-
tion in the plane.

A model trajectory of a foraging animal in a inhomogeneous resource landscape
is shown in figure [6.2B. Unlike the strongly idealized periodic landscape in fig-
ure5.1[C, the landscape depicted here is more irregular as a function of position.

In the following we investigate the fractional Fokker-Planck equation (FFPE) for
topological superdiffusion

Orp = e PVIZ ARIZoBVI2y _ p oBV /2 AR/2 p=BYV /2 O<nu<2 (6.1)

for random potentials V. As in the previous chapter, our analysis is based on the
spectral properties of the fractional Hamiltonian

H=|P|*+U(X), with (6.2)
U(x) = ePV/2AH/2e=BY /2, (6.3)

Since V is a random quantity, so is the effective potential U. The spectral proper-
ties of the Hamiltonian are different for every realization in the potential ensemble.
Typical spectral properties of the system are given by the potential ensemble av-
erage, denoted by (- ),,. Since the random potential reflects a quenched disorder
which does not change over time, the ensemble average does not commute with
the expectation value for the stochastic process, and must be carried out as the
final step in the computation.
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Figure 6.2.: Topological superdiffusion in random environments. A: A random graph with scale-
free connection lengths and inhomogeneous vertex concentration in the plane. B: A model
trajectory of a foraging animal in a inhomogeneous resource landscape. Dark regions reflect a
high abundance of resources, bright regions a low abundance.

6.2. Random Potentials
We consider random potentials with vanishing mean and a variance V3, i.e.
(V(x))y, =0 and <V2(x)>v = V2. (6.4)

Furthermore, we assume a stationary potential ensemble which implies that the
correlation function C(x) depends only on distance, i.e.

(V)V(y)y = Clx —yl). (6.5)
The power spectrum S(k) is defined as the Fourier transform of the correlation
function,

S(k) = / dx e C(x). 6.6)
Stationarity entails that the Fourier transform
V(k) = / dx e V(x) ©6.7)

of the potential itself is uncorrelated and related to the power spectrum by

<x7(k)x7(kf)>v = 27S(k)s(k — k), (6.8)
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where ( - ) denotes complex conjugation. The spatial scale is quantified by the cor-
relation length

1 o0
ES V- (B O/dx (V(x) = (V)(V(0) = (V)))y - (6.9)

Since (V) = 0, the correlation length is just the integrated correlation function,
normalized by V2, ie.

1 o0
&= V—go/dx C(x). (6.10)

Equation implies that the variance V2 is proportional to the total power in the
potential, and the power spectrum at k = 0 can be related to the correlation length,

27V2 = / dkS(k) and  26V2 = 5(0). (6.11)

This yields an equation for the correlation length in terms of the power spectrum,
__ 75(0)
2[5 dkS(k)

In the comparison between potential types we will investigate different power
spectra with equal variances and correlation lengths.

£ (6.12)

6.2.1. Modeling Random Environments with Random Phases

A simple, straightforward and elegant way of modeling random potentials retain-
ing the attributes of amplitude variability and typical spatial scale is the random
phase scheme. The Fourier transform of the potential can be separated into its
absolute value ¢ (k) and a phase factor, i.e.

V(k) = ¢p(k) e with $(k) > 0. (6.13)

Generally, ¢(k) and 9(k) are random functions of k. A random phase potential is
generated by a deterministic ¢ (k) and uncorrelated random phases (k) which are
uniformly distributed in the interval [0, 27),

1/27 0e€|02mr
o) ={ Y/ 0, 27) (6.14)
0 otherwise.

Since V/(x) is real, the random phases (k) fulfill
—9(k) = 9(—k). (6.15)

2
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Figure 6.3.: Various types of random phase potentials with unit variance (Vy = 1) and corre-
lation length &. Each panel depicts a realization of V(x) derived from a power spectrum S(k)
shown in the upper right inset. The associated correlation function C(x) is shown in the upper
left inset. A: A potential with Heaviside power spectrum and oscillatory correlation function. B:
A potential with Gaussian spectrum and correlation function. C: A potential with exponentially
decreasing spectrum D: A potential with an exponentially decreasing correlation function. The
analytic expressions for S(k) and C(x) are provided in table 6.1}

A realization of a random phase potential can be obtained from a realization of
the random phases d(k) and a prespecified power spectrum, because ¢(k) can be
obtained from S(k) by

b(k)p(K') =275 (k)8 (k — k'), (6.16)
and V(x) is obtained by an inverse Fourier transformation,

V(x) = %T / dk ¢ (k) e~ ike+90), 6.17)

A universal feature of these potentials is that at any position the potential values are
evenly distributed around the expectation value. The integral on the rhs of (6.17)
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is a sum over independent random variables, and the probability density function
(pdf) for V(x) at any point must be a Gaussian centered at (V),, = 0,

1 v?
(0(v—=V(x)))y = ——=exp 2| (6.18)
\/27V3 0
a consequence of the central limit theorem.
| S(K) | C(») |

Table 6.1.: Four types of power 5 ]
spectra S(k) and correlation func- A || 25 O([k — 7/2£]) 7(x/E)2 sin(7rx/2¢)
tions C(x) yielding random poten-
tials V(x) appropriate for the de- B 2& exp [
scription of various physical sys-

tems. A: A Heaviside spectrum B:
A Gaussian spectrum, C: An ex- C| 2fexp _T]
ponentially decreasing spectrum
D: An exponentially decreasing D 2 exp [_?}
correlation function.

In the following we concentrate on four different types of random phase po-
tentials, each one defined by a specific power spectrum. The spectra are gauged
such that the variance of the potentials Vg and the correlation length & are identical
for all potentials. Expressions for the power spectra and correlation functions are
listed in table the potentials are labeled by A, B, C, and D. A realization of each
potential is depicted in figure |6.3|as well as the associated spectra and correlation
functions. The power spectrum in A is given by a Heaviside function © with a
cut-off at k = 71/2&. The correlation function decays in an oscillatory fashion and
the potential has a random wavelike shape with a wavelength of approximately
4¢. System B describes a potential type frequently encountered in physical model-
ing. The power spectrum and correlation function are Gaussian. Systems C and D
represent complementary situations. In each system either the power spectrum (C)
or the correlation function (D) decrease exponentially with k& or x/&, respectively.
The potentials in D possess non-differentiable realizations, because the correlation
function is not analytic at the origin. Note that from A to D the potentials possess
a higher degree of structure on smaller scales due to higher amounts of power in
the tails of the spectrum, although in each case the correlation length as defined by

equation is the same.
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6.3. Density of States and Return Probability

In chapter [f| important aspects of the transient dynamics of topological superdif-
fusion in periodic potentials were revealed by the band structure of the crystal
momentum Ky (g). The emergence of bands and gaps in the spectrum is a conse-
quence of the periodicity of the potentials. For random potentials the spectrum
does not split into bands. The analogous quantity in this case is the density of crys-
tal momenta p, (k) which is related to the density of energy eigenvalues pg(E). The
Laplace transform of pg(E) is the return probability Py() of being at the initial lo-
cation averaged over all possible initial locations. These quantities will be defined
and computed for various random phase potentials below.
We begin with the fractional Schrédinger equation

0r 1) = —HI[w). (6.19)
where the Hamiltonian is given by (6.2). Formally, equation (6.19) is solved by

1) = e M|y . (6.20)

The spectral decomposition of H can be applied to the operator exp[—H¢], i.e.

o0
e — / e EtdP, 6.21)
0

in which {Pa} scp(r) is the spectral family of H. Equation is a generalization
of the expansion of a bounded operator into a countable set of eigenvalues and
eigenvectors. More details on spectral decomposition of operators with continuous
spectra are provided in Appendix[C The conditional pdf p(x, t|y,0) of the process
can be expressed in terms of the spectral family as

p(x,tly,0) = eﬁ[v(x)v(y)]/2/eEthE(x, v), (6.22)
0
where
Pe(x,y) = (x[PEly) (6.23)
is the position representation of the projector Pr. We define a density operator
.1
p= Lh—>n;oz dx |x) (x| (6.24)

where the limit is to be understood as the last step of any computation that involves
p. What is the use of this? With p we can express positional averages easily as
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brackets. For example, the trace

Tr (e7Hp) = / e EtdTr (Pep) (6.25)
0
leads to
Tr (Pep) = Llirgo%/dxpg(x,x). (6.26)

This trace defines a measure

u(E) = Tr (Pep) (6.27)
on the positive real axis which is independent of the initial condition. Alternatively,
one could have obtained this measure by averaging over an ensemble of random
potentials. The measure defined by reflects statistical properties of the en-
semble of random potentials as opposed to properties of a single realization. The
density of states p(E) is defined as the concentration of energies in an infinitesimal
interval dE in the vicinity of E,

p(E)dE = u(E 4+ dE) — u(E). (6.28)

A quantity of interest in the theory of random walks is the probability Py(t) of
being located at the initial location x after time ¢, averaged over all possible initial
locations, i.e.

1
Po(t) = lim ¢ / dx p(x, tx, 0). (6.29)

The asymptotic behavior of Py(t) determines a number of properties of the pro-
cess, such as whether the process is recurrent or transient [9]]. Combining equa-

tion (6.22) with (6.30) and (6.29) gives

Py(t) = lim e_Et% / dxdP(x, x). (6.30)

L—oo

Therefore, the return probability is just the Laplace transform of the density of
eigenvalues, i.e.

Py(t) = / dE e Et p(E). (6.31)
0

Before we compute the density of states, we need to establish the reference point of
free superdiffusion. A freely superdiffusive particle is governed by the conditional

pdf (see section

p(x, tly) = %r / dk e~ k(x—y)—Ik*, (6.32)

#

—
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Equation (6.29) yields for the return probability
17 — k|t
Po(t) = 5 / dk e kIt 6.33)

Substituting E = |k|*, changing the integration variable and comparing with (6.31)
we obtain for the density of eigenvalues of a symmetric Lévy stable process,

1
0 _ 1/u—1
E)=—E . 6.34
P(E) = (6.34)
Depending on the Lévy exponent v, the density of eigenvalues is either an increas-
ing or decreasing function of E or constant for the intermediate case u = 1. Per-
forming a Laplace transform on (6.34) with respect to E, we obtain

Tl=

1 _
Py(t) = ;F(l +1/p)t k. (6.35)
Since the functional form of p(E) depends on the Lévy exponent p, the density of
the crystal momentum

k = EY/H (6.36)

is more suitable for a comparison between different superdiffusive systems. The
density of crystal momenta is expressed in terms of the density of eigenvalues as

pic(K) = px 1 pp (kM). (6.37)

Inserting (6.34) into (6.37), we see that irrespective of the value of p, this density is
constant for all free Lévy stable processes, i.e.

1

pelk) = . (638)

In the following we drop the subscript k and refer to the density of crystal mo-

mentum p(k) as the density of states. External random potentials will change the

properties of p(k). We investigate this quantity as a function of Lévy exponent p
and effective potential strength

Vo
€= .
2kgT

Figure[6.4] depicts p(k) for strong (1 = 1/2) and intermediate (u = 1) superdif-
fusion and ordinary diffusion (4 = 2) in potentials with Heaviside and Gaussian
power spectra and two effective potential strengths, e = 0.5 and ¢ = 1. As a func-
tion of «, all densities display a pronounced trough (relative to free superdiffusion)
on length scales of the order of the correlation length, i.e. kK ~ 1/&. Furthermore,

(6.39)
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Figure 6.4.: Density of states p(«) for processes with exponents 1 = 1/2, 1 and 2. Effective
potential strengths are ¢ = 0.5 (A and C) and 1.0 (B and D). A realization of each type of
random potentials is shown in the insets. A and B correspond to potentials with flat power
spectrum S(k), C and D to potentials with Gaussian power spectrum (see table . The
constant density pO(K) = 1/7 corresponding to vanishing potential is indicated by the dashed
line.

p(k) increases in the asymptotic regime «k < 1/&, because all processes are slowed
down on scales larger than the correlation length £. The magnitude of this effect
is quantified by the density at k = 0. For a given effective potential strength ¢, the
value p(0) is the same for all types of random potentials, and the details of the po-
tentials become irrelevant on large scales. Figure|6.5|depicts p(«) for all four types
of potentials, which serves to illustrate this fact.

Compared to superdiffusion, ordinary diffusion exhibits the most complex shape
of p(k) and is thus most susceptible to the detailed structure of the potential. The
opposite behavior was observed in periodic potentials. While p(k) for superdiffu-
sive processes depends only weakly on the potential type (figure[6.5A), the densi-
ties of ordinary diffusion processes vary strongly with potential type (figure [6.5B).

Figure6.6|depicts the density of states for various values of the effective potential
strength ¢. A superdiffusive process (1 = 1) is compared to ordinary diffusion
(1 = 2) in potentials with Heaviside and Gaussian power spectra. The complexity
of p(k) increases with increasing effective potential strength ¢. The magnitude of

#
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Figure 6.5.. The density of states p(x) at an effective potential strength ¢ = 0.5 in all four
types of potentials provided in table [6.1} A superdiffusive process (A) is compared to ordinary
diffusion (B). The dotted lines indicates the density pO(K) = 1/ corresponding to vanishing
potential strength.

response is greater for ordinary diffusion.

6.4. Dynamics in Weak Potentials

The weak potential (and equivalently high temperature) regime corresponds to
effective potential strengths much smaller than unity,

Vo
2kgT
and can be treated by perturbation theory. The quantity ¢ will serve as the pertur-
bation parameter. Introducing a rescaled potential

o(x) = VLOV(x), (6.41)

we may approximate the effective potential U (equation (6.3))) in terms of v by

—e<1, (6.40)

1
U~ —gA“/zv—i—Eez <A”/202—20A“/20), (6.42)

which is correct to second order in . First, we consider a process on a finite support
of size 27rL. In this case the potentials v and U can be expanded into a Fourier
series, whereby the respective Fourier coefficients read

Uy = ﬁ / dax e™/L y(x) and (6.43)
27L

. 1 .

Oy = 5 / dx ™ /L U (x). (6.44)
27L
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Figure 6.6.: The density of states p(k) for a range of effective potential strengths ¢, two values
of u and two types of potentials. A: p = 1 and Heaviside S(k), B: p = 2 and Heaviside
S(k), C: p = 1 and Gaussian S(k), D: p = 2 and Gaussian S(k). The dotted line represents

PO(k) =1/m.

By (6.42) they are related according to

~ 1 1 R ~

u, ~ Tut <|n|“vn—E‘e;vn_m(|n|”—2]m|“) vm) . (6.45)
The coefficients 7,, can be written as

Op = e " with ¢, >0 and 9, € [0,27). (6.46)

For a random phase potential, the discrete set of phases 9, constitutes the random-
ness. The positive components ¢, are identical for each realization in the ensemble.
The eigenvalues of the Hamiltonian for a small effective potential U are ap-
proximately given by

. Ups—n? .
E,~E%+ Uy + ; % with n € Z, (6.47)
m#En 1 m
where
EY = |k,|*  with k,=n/L, neZ, (6.48)
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denote the eigenvalues of the unperturbed process. Since the rhs of (6.47) is iden-
tical for n and —n, it is sufficient to consider positive indices only. Inserting equa-
tions (6.45) and (6.46) into (6.47) we find a second order ¢ correction to EY, i.e.

Eomkio2|y o=kl s gl (6.49)
2 T [l 1 P~ 2

This equation annunciates an interesting albeit subtle implication. The correction
term on the right contains only the non-random components ¢, of the poten-
tial (6.46). Up to second order in the effective potential strength, the randomness of
the potential does not contribute and E,, is the same for each realization of v. The
quantities ¢, are related to the power spectrum by

¥ = 5= S(/L), (6:50)

and the eigenvalues E;; can be expressed in terms of S as

2 2u
_qn_ £ [Fem | u
En=ln =51 Z e ]u—k“ Z|k I#5(k (6.51)

Note that the indices 0 and 21 are excluded from the first sum over m in (6.51). The
denominator is zero for these values of m and the limit L — oo must be taken with
care, if we wish to remain unshocked by singular integral kernels. We split up the
integral into a harmless part and a more sensitive one,

E(ky) = ky
2 k2 "
+ = Ak S(k — 2k
2 mZO o) (kn + k)" — ki "
- k) {
+— Ak S(k ) (6.52)
27 0<mz7é2n B N T

where Ak = 1/L. We may now carry out the limit Ak — 0. The first sum in (6.52)
becomes an ordinary Riemann integral, whereas the second one is to be understood
as a Cauchy integral due to the singularity. However, the singularity poses no
problem as the integral is convergent. The limit yields

E(k) = k*

oo

£ 1 1
B 2_/ { (k) — (ke T L= kjql = (kfa)" 2} - (659)

0
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The £2-term represents the weak potential modification of the k*-behavior of the
unperturbed system. It consists of the total power S(g) of the random phase poten-
tial weighted by the strange function in curly brackets which is singular at g = 2 k.
The correlation length & of the random phase potential is implicitly contained in the
power spectrum S(g). We can express the power spectrum in terms of a rescaled
dimensionless power spectrum s(k) as

5(q) = 27 & s(qé). (6.54)

This is useful, for s(q) does not depend on &. The power spectrum s(k) fulfills
T 1
5(0)=— and / dks(k) = 5. (6.55)
0

Inserting (6.54) into (6.53), we can express E(k) as

E(k) = k* (1 gy / ds(x) gu(kE /x)) , (6.56)
0
where ) )
1
gu(®) = g ((1+z)u—zu+ TR —2). (6.57)

Equations and are generalizations of the analogous expressions de-
rived for the asymptotic band for periodic potentials, i.e. equations (5.54) and (5.55)
in section Annoyingly, the eigenvalues E(k) still depend on the correlation
length &. Defining the dimensionless energy e(k) by

E(k) = e(k&)/EH, (6.58)

the correlation length finally drops out as a parameter. We have

e(k) = k* (1 - 462Gu(k)> , (6.59)
with .
Gulk) =2 [ das(q) gu(k/q). (6.60
0

The function G, (k) quantifies the effect of the external potential on the spectrum
and depends solely on the rescaled power spectrum s(g) weighted by the singular
part of the integrand, i.e. g,.(k/q).

7
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6.4.1. Asymptotics in Weak Potentials

The asymptotic regime is governed by the behavior of e(k) for k < 1. The values
of G (k) in this limit are given by

. 1 =2
lim G, (k) = 6.61
tim G (k) {1/4 w<?2, (6:61)
because
, 1 n=2 T 1
il_r}%gu(z) = {1/4 L2 and O/dq s(q) = 5 (6.62)

Consequently, neither the statistical properties of the potential ensemble reflected
by the power spectrum s(k) nor the choice of Lévy exponents p have an impact
on the dynamics on large scales. The exception is the diffusion limit (1 = 2), for
which the modification differs by a factor of 4. This is precisely the same result
which we obtained for the asymptotic behavior for weak periodic potentials, see

equations (5.54) and (5.55), section[5.5.3]

6.4.2. Transient Dynamics

Equation states that the dynamics on a given length scale x ~ k™! deviates
from free evolution by a factor proportional to the square of the effective potential ¢,
weighted by a factor G, (k) which is associated with that length scale. For example,
when G, (k) > 0 the dispersion speed on length scales x ~ k=1 is slowed down,
whereas when G, (k) < 0 dispersion speed is increased.

Figure [6.7] depicts both integrands in (6.60), the power spectrum s(q) and the
singular quantity g, (k/q) as a function of g on a semi-logarithmic scale. The power
spectra shown correspond to the random phase potential types shown in figure[6.3]
and listed in table The function g, (k/q) is shown for a set of Lévy exponents
p. The singularity g = 2k is denoted by the gray dashed line. The value of G, (k)
depends strongly on the location of the singularity with respect to the region in
which the power spectra display a high degree of variability.

Qualitatively, three regimes can be distinguished. On scales much larger than
the correlation length (k < 1), the left branch of g,(k/q) (i.e. g4 < 2k) does not
contribute to the integral, only the limiting behavior of the right branch (i.e. g >
2k) does. Since g,,(k/q) is positive for g > 2k, the dispersion is slowed down on
scales much larger than the correlation length. The limits of ¢, (k/q) given in
are attained for values of g > k. Note, however, that the convergence differs for
various Lévy exponents . Convergence is weak for exponents slightly less than
2 (quasi-diffusive processes) and slightly larger than 0 (extremely superdiffusive
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Figure 6.7.: Power spectra s(q) and the weight g, (k/q) as a function of wave number g at
k = 0.1 corresponding to the relaxation properties on scales an order of magnitude larger than
the correlation length &. Power spectra for the paradigmatic potentials (table [6.1) are shown in
color. For the Lévy exponents listed in the upper right the function g, (k/q) is superimposed.
The singularity at g = 2k and the chosen value for k are indicated by the dashed grey and solid
gray line, respectively.

processes). Therefore, the range of validity of the limits computed for G, (k) is
small for these marginal values of the Lévy exponent.

On scales much smaller than the correlation length (k > 1), the singularity is lo-
cated in a g-range in which the power spectra s(q) nearly vanish. Only the product
of the left branch of g,(k/q) with s(g) contributes to the integral. The functional
form of g, (k/q) on the left of the singularity signals an interesting effect. For Lévy
exponents greater than some critical value p, the function g, (k/q) is negative, i.e.
relaxation is enhanced on small scales. However, strongly superdiffusive processes
(e.g. 1 = 0.1) exhibit a positive left branch of g,,(k/q). As a result, these processes
are slowed down even on small scales. A possible explanation of this phenomenon
is a pronounced pinning effect exerted by potential minima which outweighs the
enhanced sampling of the vicinity of potential minima. The critical Lévy exponent
Hc can be computed from equation (6.57). With z = 1 and g,,(1) = 0 we may solve

2
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Figure 6.8.: The function G, (k) for a rep-
resentative set of Lévy exponents i. Each
panel is labeled according to the types of
potentials defined in table Realizations
of the corresponding random potentials are
sketched in the lower left inset. The limits 1
and 1/4 of G, (k) as k — 0 for p = 2 and
u < 2, respectively, are indicated by the gray
lines.

fOf He,
pe=2-—1n3/In2 ~ 0.415. (6.63)

For Lévy exponents u > . the function g, (k/q) possesses a strictly negative left
branch. When p < p, this is no longer the case. On very small scales all processes
evolve quasi-free, since as k/q — oo the function g, (k/q) approaches zero.

The greatest variability of G, (k) occurs on length scales of the order of the corre-
lation length &, i.e. k ~ 1. In this regime the singularity of g, (k/q) coincides with
the region in which the power spectra exhibit the highest degree of variation. Gen-
erally, the interplay of both integrands in leads to negative values of G, (k) in
this regime. As a consequence, relaxation is most enhanced on length scales of the
order of the correlation length.

Figure[6.8illustrates the various behaviors in all three regimes. The factor G, (k)
is shown on a semi-logarithmic scale for three of the four paradigmatic random
potentials. Qualitatively, the curves are similar for each type of potential. Ask — 0
the asymptotic values of equation are attained, and a pronounced trough
exists for values k ~ 1. This is also the region of greatest difference between po-
tentials. As k — oo the function G, (k) vanishes in all cases. Comparing between



6.5. Asymptotics

potential types, we see that processes evolving in the potential with a Heaviside
power spectrum (figure[6.8A) display the highest degree of variation as a function
of scale k. Note also that for the marginal processes of quasi-diffusion (u slightly
less than 2) and strong superdiffusion (u slightly greater than zero), the functions
Gy (k) do not approach their asymptotic value even on scales orders of magnitude
greater than the correlation length. Consequently, these marginal processes are
sensitive to the boundaries of the system even if the size of the systems is many
orders of magnitude larger than their correlation lengths.

6.5. Asymptotics

The results obtained in the previous section are correct for small effective potential
strengths ¢. For greater values of the effective potential strengths we expect devi-
ations from the predictions made by perturbation theory. In order to investigate
the effect of external random potentials of arbitrary strength, we diagonalize the
Hamiltonian in numerically for an ensemble of random potentials. Analogous
to the procedure introduced in section we compute the generalized diffusion
coefficient E(k: o)

Dy(e) = lim % (6.64)
as a function of effective potential strength .

The generalized diffusion coefficient D, (¢) is shown in figure Two superdif-
fusive processes (1 = 1/2 and 1) are compared to ordinary diffusion (1 = 2) in
the four potential types shown in the lower left inset. Symbols differentiate be-
tween the generalized diffusion coefficients associated with potential types, colors
indicate the corresponding Lévy exponent. The results obtained from perturbation
theory are superimposed as dashed (14 = 2) and dotted (1 < 2) lines. The figure
shows that the asymptotics are independent of the small scale details of the poten-
tials, i.e. for a given process the functions D, (¢) coincide. Furthermore, D (¢) is
nearly the same for the superdiffusive processes. The boundary case of ordinary
diffusion represents an exception and exhibits a different e-dependence. In the
weak potential limit (¢ — 0), the curves coincide with the predictions provided by
perturbation theory. Thus, the qualitative features predicted by the perturbation
theoretic treatment can be extrapolated to the regime of higher effective potential
strengths.

6.6. Strange Kinetics on Co-Polymers

In random phase potentials values are distributed symmetrically with respect to
the mean (V) = 0, i.e. a potential of a given value V is just as likely to occur as —V,

7
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Figure 6.9.: The generalized diffusion coefficient D, (¢) as a function of effective potential
strength ¢. Ordinary diffusion (1 = 2) is compared to a moderately (1 = 3/2) and a strongly
(. = 1/2) superdiffusive process in the four types of random phase potentials depicted in the
lower left. The data are distinguished by color (Lévy exponent) and symbols (type of potential).

due to the Gaussian density of potential values. Although random phase potentials
are a realistic model for a number of inhomogeneous environments, the are not
appropriate when the distribution of potential values possess a bias towards higher
or lower values with respect to the mean. In the following we investigate to what
extent a bias in the external potential impacts on topological superdiffusion. We
base our analysis on the simplest possible system of a polymer in which a potential
bias is directly connected to the relative concentration of two types of monomers
which are randomly arranged along the chain.

Here comes the model. We define the potential along the polymer chain in the
following fashion,

V(x) = g Un f(X = xp). (6.65)

n=1

The x,, denote the positions of the monomers in chemical coordinates. The coefti-
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Figure 6.10.: Model copolymers consisting of two types of monomers (red and blue dots) of
variable relative abundance c. Red and blue monomers are associated with high (v4) and low
(v-) potentials.

cients v, are random numbers drawn from the pdf
p(v) =(1—-c)d(v—v_)+cd(v—oy). (6.66)

Thus, the potential can only aquire the two values v_ and v, representing a chain
which consists of two types of monomer only. The parameter c is the relative con-
centration of monomers with a potential v_. The term f(x — x,,) in equation
represents the microscopic spatial range o of the potential. This factor is assumed
to be a Gaussian with a width of o, i.e.

f(x) =exp <—x2/202> : (6.67)

The situation is depicted in figure[6.10} A number of model co-polymers are shown,
each with a different value of c. The red and blue dots represent monomer types
of high (v;) and low (v_) potential. At low c the chain is nearly homogeneous,
consisting of the blue type of monomer interspersed with red monomer impurities
leading to potential barriers along the chain. The opposite scenario is described by
a high value of c. In this case the low abundance of the blue type of monomer yields
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sparsely distributed potential troughs along the chain. The average and variance
of the potential depend on the relative concentration ¢ € [0, 1] and the potential
difference, i.e.

(v) =(1—c)v_+coy (6.68)
<(v - <v>)2> = (1 —c)cév? (6.69)

where
dv=v4 —0_. (6.70)

The quantities c and 6v are the parameters of the system. In section[6.2l we showed
that the relaxation depends only on the effective potential strength ¢ = V{y/2kgT,
where V3 is the variance of the potential. Since we wish to investigate relaxation
dynamics as a function of the relative abundance c, we gauge the potential differ-
ence 6v such that the variance in equation is unity,

o= — 1 (6.71)

Va=c)c

Proceeding along the same lines as in section we compute the density p(k)
of the crystal momentum « (equation (6.37)). We choose an intermediate effective
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potential strength ¢ = 0.5 and compare the properties of p(k) as a function of the
concentration parameter c for a set of Lévy exponents u. The results are depicted in
figure Each panel shows the crystal momentum densities p(«x) computed for
the Lévy exponent p shown in the upper left. In each panel the results obtained for
low, intermediate and high values of the concentration ¢ are plotted with different
symbols. The functions p(k) for the ordinary diffusion process (panel C) are nearly
indistinguishable. Therefore, the influence of the potential bias is negligible; relax-
ation dynamics solely depends on the overall variance of the potential. This result
is in accordance with the behavior in periodic potentials with non-zero bias. The
ordinary diffusion process is insensitive to the particular shape of the potential.

This behavior is not observed for the superdiffusive processes (panels A and B).
The shape of the function p(k) depends on the value of the relative concentration c.
This dependence is most pronounced for strongly superdiffusive processes. Note
also that the highest response to the external potential is observed for high values of
¢, i.e. potentials with sparsely distributed potential troughs, whereas low values of
c (potential peaks) induce the least pronounced response. The highest deviations
occur in the asymptotic regime ko < 1. Since a high density implies a decrease
in dispersion speed, Lévy flights are slowed down more efficiently by potential
troughs than by potential peaks.

The effect of potential bias on the asymptotics of superdiffusive random mo-
tion on the co-polymer is best quantified by the generalized diffusion coefficient
D,(e) defined in the previous section (6.64). For the same set of values for the
relative concentration parameter c, the quantity Dy (e) as a function of effective
potential strength is shown in figure [6.12] The blue curves (ordinary diffusion)
are identical for all values of c. They coincide with the predictions made by per-
turbation theory in the small e-regime (dashed line). The generalized diffusion
coefficients of the superdiffusive process (u = 1) are different for each value of c.
For ¢ = 0.05 (sparse potential peaks) the decrease of D, (¢) with increasing ¢ is
least pronounced, whereas when ¢ = 0.95 (sparse potential troughs) the process
is slowed down most severely. Only in the weak potential regime (¢ < 1) do the
curves coincide with the perturbation theoretic prediction (dotted line).

For a fixed value of effective potential strength ¢ = 0.5, the c-dependence of the
generalized diffusion coefficient D (c) is depicted in figure Three processes
are compared, u = 1/2, 1 and 2. The ordinary diffusion remains nearly unaltered
when c is changed, contrasting with the generalized diffusion coefficient of the
Lévy flights, which are monotonically decreasing with the abundance of potential
troughs. Furthermore, the generalized diffusion coefficients for the superdiffusive
processes are nearly identical.

We conclude that the dynamics of superdiffusive processes in random potentials
does depend on the specific structure of the potentials involved, in particular the
potential bias plays an important role for the dispersion speed. In order to make
predictions for the relaxation properties of these processes, higher order statistical
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Figure 6.12.: The generalized diffusion coefficient D, (¢) as a function of effective potential
strength. Ordinary diffusion (blue) is compared to a superdiffusive process (red) in potentials
with variable concentration parameter c. The choice of values of ¢ represents potentials with
sparse potential peaks (c = 0.05), sparse potential troughs (c = 0.95) and with vanishing parity
(c = 0.5). The dashed (1 = 2) and dotted (1 < 2) lines indicate the results obtained from
perturbation theory.

Figure 6.13.: The generalized diffusion coef-
ficient D, (c) as a function of the relative con-
centration parameter ¢. Two superdiffusive
processes (1 = 1/2 and 1) are compared to
ordinary diffusion (u = 2). The effective po-
tential strength is ¢ = 0.5.




6.7. Discussion

properties need to be taken into account. Knowledge of the variance of the po-
tential, which is the only crucial attribute when the effective potential strength is
small, is insufficient.

6.7. Discussion

In this chapter we have provided a detailed analysis of the interplay between en-
hanced diffusion on scale-free topologies and random inhomogeneous environ-
ments. The results are relevant to a number anomalous dispersion phenomena, for
instance intracellular translocation processes such as protein dynamics on DNA
strands. Our analysis revealed that a number of results obtained for periodic poten-
tials are also valid for random phase potentials, for instance a universal asymptotic
behavior for all superdiffusive processes which is different from that of ordinary
diffusion. Therefore, these properties can be considered a universal feature of topo-
logical superdiffusion in bounded potentials in general. On the other hand, some
crucial differences appear when the external potential is irregular. For example,
strongly superdiffusive processes with a Lévy exponent less that the critical value
te =~ 0.415 are slowed down in their relaxation even on scales smaller than the
correlation length &, a behavior not observed in ordinary diffusion and moderately
superdiffusive processes.

The very simple model for enhanced diffusion on a random co-polymer showed
that superdiffusive motion strongly depends on the relative concentration of mo-
nomer types, a behavior absent in ordinary diffusion which depends solely on
the overall variance of the random potential. Consequently, in order to fully un-
derstand the impact of the random potential on superdiffusive motion on folded
hetero-polymers, one is required to take the relative abundance of different types
of monomers into account.

7
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7. The Ecology of Visual Search

And these visions of Joanna
are now all that remain.

(B.D.)

In this chapter we present a phenomenological model for the generation of human
saccadic eye movements. We show that human visual scanpaths exemplify the idea
of optimal superdiffusive search in inhomogeneous environments. In the model
saccadic scanpaths are described as Lévy flights which evolve in a inhomogeneous
salience field. Our model successfully accounts for the geometry of visual scan-
paths, although neither memory mechanisms nor spatially hierarchical processing
is involved. The model is supported by measurements on the saccadic magnitude
distribution which follows an inverse power law with an exponent 1 = 0.73. We
compute the relaxation time as a function of the Lévy exponent p, and show that
the geometry of human visual scanpaths can be interpreted in terms of an optimal
search strategy.

7.1. Human Eye Movements

When humans, primates and various other mammals visually investigate their en-
vironments, they actively reposition their gaze in a combination of head and eye
movements. This is necessary because the visual resolution required for detailed
visual processing is sufficiently high in only a small central area of the retina known
as the fovea. The diameter of the fovea in humans is approximately 1° of visual an-
gle. In the periphery of the visual field the resolution is poor, because the density
of photo receptors and ganglion cells is comparatively small. Qualitatively, pe-
ripheral vision is used for detection and foveal visual for recognition. This kind
of architecture is a trade-off between the required degree of resolution for detailed
visual analysis of objects in focus, and the amount of visual information that can be
processed by the visual system. In fact, if the resolution of the retina were as high
as in the fovea everywhere, the optic nerve would have a diameter greater than
the diameter of the human brain. The transition between foveal vision and periph-
eral vision has no sharp boundary. Retinal resolution decreases continuously as a
function of distance from the fovea.
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Figure 7.1.: A topographic map of the visual semi-field onto the superior colliculus of a monkey
(left). Small areas near the fovea and large areas in the periphery are mapped onto equal areas
in the superior colliculus (after [II0]). This topographic map can be modeled by a complex
logarithm (right) of the visual semi-field (after [13]).

This is illustrated in figure which depicts a topographic map of a polar coor-
dinate grid on one half of the visual field onto the superior colliculus, a brain area
which encodes visual information and is involved in the programming of saccadic
eye moments [[[37]. The visual resolution is proportional to the inverse of the area
of visual field which is contained in the associated area in the superior colliculus.
The map of the visual field onto visual areas in the brain can be modeled by the
complex logarithm of the visual field. An image on the visual field is distorted
by this map such that regions near the fovea are magnified and peripheral areas
shrink (see right panel in figure [7.1).

The loss of visual acuity is compensated by a succession of rapid eye movements
known as saccades [[138]]. Saccades actively reposition the center of gaze in order to
foveate regions of interest in the visual environment. The succession of gaze shifts
is referred to as a scanpath. The eyes are held relatively stable during fixations
which last until the next saccade occurs. The magnitude of saccades ranges from
~ 0.1° of visual angle to 100° with an average of approximately 5°. Gaze shifts
of higher magnitudes are usually accompanied by head movements. The duration
of a typical saccade is approximately 20 — 50 ms which is small compared to the
duration of a fixation, which is typically 50 — 500 ms. The scanpaths of two subjects
scanning the image of a party scene are depicted in figure

Usually the gaze is attracted by regions of high visual salience, and scanpaths
connect these regions. A number of factors determine the degree of visual salience,
ranging from low level image properties such as high contrast and contour lines
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5 10 15
Figure 7.2.: Human saccadic eye movements. Upper left: The visual stimulus, an image
of various physicists attending a party at the Department of Nonlinear Dynamics, Max-Planck
Institut fir Strémungsforschung, Goéttingen, Germany. Upper right: Eye movements of two
subjects (also physicists) were recorded for 20 seconds and superimposed on the image in
blue and red. Fixations are indicated by dots. Bottom: Vertical (blue) and horizontal (red)
components of one of the scanpaths as a function of time.

to high level semantic properties of the scene such as faces, food and (generically)
opposite sex.

Two more common features of human scanpaths can be observed in figure
When a subject is confronted with a natural image more than once, the scanpaths
observed in each trial are not the same. Although salient regions remain salient
in successive trials, the paths connecting them differ between trials and cannot be
predicted. They are stochastic. Figure shows the beginning of a number of
scanpaths on the same image. In each trial the subject was fixating the center of the
image.

Furthermore, saccades of small lengths are more frequent than long saccades.
A histogram of saccadic magnitudes is depicted on the right in figure The
frequency decreases monotonically as a function of saccadic magnitude.

151



7. The Ecology of Visual Search

152

0 2 4 6 8 X
Figure 7.3.: Typical properties of human saccadic eye movements on natural scenes. Left:
When presented with an identical natural scene individual scanpaths (distinguished by color)
differ from trial to trial. They are stochastic. Right: Short saccades are more frequent than
long ones. The relative frequency n(x) = N(x)/Ni of saccadic magnitudes x measured in

degrees of visual angle decreases monotonically with x. The total number of saccades was
Niot = 791 and N(x) denotes the number of saccades in a bin of size Ax = 0.64°.

7.2. Contemporary Theories

The factors which determine whether a saccade is initiated towards a specific loca-
tion in the visual field are numerous. The scanpaths depicted in figure|7.2{ suggest
that visual processing can be split into local processing by small saccadic eye move-
ments, interspersed with long range saccades which govern the global processing
of the scene. Two possible complementary theories have been devised to explain
these observations. On one hand, memory effects may play a role. If the visual sys-
tem remembers what areas of the visual field have been processed and decreases
the probability of initiating saccades to that region, it will eventually initiate a long
saccade to a distant salient region. On the other hand, a hierarchy of spatial scales
may explain the structure of human scanpaths. For instance, if two independent
neural architectures govern local and global processing and trigger short and long
saccades with low and high frequencies respectively, the resultant scanpath would
consist of small clusters of local trajectories connected by long range transitions.
Either theory is attractive and one or both effects seem to be a necessary ingre-
dient for generating scanpaths with the observed properties. However, a recent
study suggested that memory effects play no role in covert visual attention, which
is believed to feed peripheral information to brain areas responsible for eye move-
ments [57]. Furthermore, no evidence presently exists for spatially hierarchical
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Eckelmann

Figure 7.4.: Operational definition of visual salience by eye movements. The salience field s(x)
can be defined on the image as the approximate density of fixation points. The fixations of the
scanpaths depicted in figure [7.2]lead to the salience field shown on the right. Dark and bright
areas indicate regions of high and low visual salience, respectively. The number of fixations was
N = 1475.

processing of visual information. Below, we will introduce a model for saccadic
human eye movements in which neither memory effects nor a segregation into
spatial hierarchies is necessary. Nevertheless the structure of saccadic scanpaths
our model predicts is strikingly realistic.

7.3. A Phenomenological Model

We wish to devise a model which takes into account three essential facts about
human scanpaths. In the model, scanpaths are realizations of a stochastic process
which evolves in a variable salience landscape. First we assume that saccadic tran-
sitions from a position y in the two-dimensional visual field to a position x are
stochastic and occur with a transition rate w(x|y). This rate depends on the visual
salience at the target location s(x) and the current position s(y). A number of fac-
tors determine the salience of a visual input, ranging from low level characteristics
such as contrast and contours to high level semantic contents. Thus, it is difficult
to quantify visual salience of a natural scene in terms of properties of the stimulus
alone. In our model we take an operational approach. We quantify visual salience
s(x) by the probability of finding the gaze of a human subject at the location x. This
idea is depicted in figure

We assume that the transition rate y — x is proportional to the salience at the
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target location s(x) and inversely proportional to the salience at the current posi-
tion, i.e. s(y). Furthermore, we assume that the probability of initiating a saccade
decreases with distance |x — y|. We assume that memory effects can be neglected.
Therefore, the probability density function (pdf) p(x, t) of finding the gaze at a po-
sition x at time ¢ for an initial condition p(x,0) = &(x) is governed by the master
equation

O p(xt) = /dx [w(xly) p(y, t) = w(y[x) p(x, £)] (7.1)

with a rate
w(xly) = s(x) f(Ix =y s~ (y). (7.2)

The inverse proportionality of the salience at the current position y takes into ac-
count the assumption that the duration of a fixation at the position y is proportional
to the salience s(y), because the mean waiting time 7(y) is given by

_ 1 _ s(y)
") = Taxwlly) ~ Jdxs(x) f(x—y]) 73)

If the salience s(x) fluctuates on scales smaller than the function f(|x —y|), the
denominator in (7.3) can be approximated by the average salience (s(x)). Without
loss of generality we assume that (s(x)) = 1, in which case equation implies
that

T(y) ~ s(y)- (7.4)

The stationary pdf ps(x) can be computed from the rate because detailed bal-
ance is fulfilled. We obtain

ps(x) o< 82(x). (7.5)

Thus, one can obtain the salience by measuring the stationary pdf of saccadic scan-
paths. In equilibrium, the pdf of finding the gaze at a location x increases quadrat-
ically with the salience at that location. In our model the frequency of saccadic
magnitudes is reflected by the function f(|x — y|) which appears in the rate (7.2).
Averaging the dynamics over a number of salience fields, we see that this function
is proportional to the probability of initiating a saccade of length x = |x —y|.

Although probabilistic approaches have been applied to various problems in eye
movement research such as the perception of ambiguous figures [{], the specific
functional form of saccadic magnitude distributions has attracted surprisingly little
attention. However, this form has a profound impact on the geometry of scanpaths.
The simple model defined above is able to generate model scanpaths which appear
strikingly similar to realistic scanpaths if the appropriate choice for the function
f(|x —yl) is made.
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Figure 7.5.: Model scanpath on the salience field depicted in figure[7.4] Left: A scanpath with a
magnitude distribution which follows an inverse power law (equation (7.6)) with a Lévy exponent
w = 1. Center: A model scanpath with exponentially distributed saccadic magnitudes with
a small average magnitude. Right: A model scanpath with exponentially distributed saccadic
magnitudes with a large average magnitude.

7.4. The Lévy Flight Nature of Saccadic Eye Movements

Saccadic magnitudes x range between xy ~ 0.1° and x; ~ 100° of visual angle
with an average of x, ~ 5°. These numbers show already that the monotonically
decreasing function depicted in figure[7.3|cannot be a function with a typical width
such as a Gaussian or an exponential. For instance, if the pdf for saccadic magni-
tudes were an exponential p(x) = x,!exp(—x/x,), the probability P(x > 75°)
of observing a saccadic length greater than 75° would be less than one in a million
(i.e. P(x > 75°) = 3.05 x 10~7), a situation clearly not observed in reality. If, on the
other hand, the pdf for saccadic magnitudes decreases as an inverse power, then
long range saccades are more likely to occur. Thus it is reasonable to investigate
the model with a function

1 .
f(|X — Y|) X m with ue (0, 2) for |X — YI > X, (76)

which yields a pdf
p(x) o T with pe (0,2)  for |x—y|> xo. (7.7)

for the saccadic length x.

For exponents p in the given interval and a constant salience s(x) = sg, the model
scanpaths are Lévy flights with Lévy exponent . In figure[7.5/model scanpaths for
various choices for the saccadic magnitude statistics are compared. The salience
tield is the one depicted in figure The red curve shows a Lévy flight scanpath
with p = 1. Without memory effects and without hierarchical processing the scan-
path has a geometry very similar to the observed scanpaths shown in figure
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Figure 7.6.: The probability P(x) of finding
a saccadic magnitude larger than a value x
as a function of x on a double-logarithmic
scale. The blue line is a fit with a slope
of m = —0.73. The integrated density de-
creases as P(x) ~ x~%73, which implies that
the pdf is given by equation with a Lévy
exponent of © = 0.73. The function P(x)
was computed from 1791 real saccadic mag-
nitudes. The deviation for large magnitudes is
a boundary effect caused by the limited size of -2 0 log[x]
the image displayed on the computer screen.

The scanpath evolves in local regions of high salience and jumps from one salient
region to a distant region, thereby efficiently scanning the entire salience field. The
Lévy flight nature is essential for this geometry, as is easily conceived when a dif-
ferent type of saccadic magnitude pdf is assumed. In the central panel in figure
model scanpaths possess a pdf for saccadic magnitudes with a small typical scale.
As expected, the trajectory never leaves the localized region of high salience (in
this case the Eckelmann anomaly mentioned in figure and never reaches dis-
tant salient regions. The right panel illustrates the situation that emerges when
the pdf for saccadic magnitudes has a typical but larger scale. The resultant scan-
path jumps erratically between salient regions but spends no time in them for local
processing.

The Lévy flight nature of human saccadic eye movements is confirmed by the
data depicted in figure[7.6] We collected saccadic magnitudes from scanpaths mea-
sured for a number of images and estimated the probability P(x) of initiating a
saccade with a magnitude large than x. On a double-logarithmic scale P(x) is well
approximated by a line with a slope of —0.73. This slope implies for the pdf p(x)
for saccadic magnitudes (equation (7.7)) a Lévy exponent p = 0.73. Consequently,
the data support the Lévy flight theory for human scanpaths.

7.5. Temporal Optimization

What is a possible explanation of this? We will try to answer this question in the
light of temporal optimization. A temporal optimization strategy for scanning the
visual field is plausible, because under natural conditions speed is a crucial ingredi-
ent for survival. A recent experiment supports the assumption of an optimization
strategy for visual scanpaths [4§]]. In this experiment a subject who was not able to
move her eyes had to compensate for the deficiency by rapid head movements. The
resultant saccadic head movements had a remarkably similar structure to natural
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saccadic eye movements of healthy subjects.

Why do we observe an intermediate value of p in human visual scanpaths? By
means of the model introduced above and the concept of topological superdiffu-
sion we can provide an answer to this question. The typical time needed to dis-
tribute an ensemble of scanpaths over the entire visual field is given by the relax-
ation time 7. of the stochastic evolution operator defined by the rhs of the master
equation and the rate (7.2). This relaxation time is related to the largest eigen-
value E1 < 0 of the operator, i.e.

1

5 (7.8)

Te =

The spectrum of eigenvalues depends on the statistical properties of the salience
s(x) and the Lévy exponent p. Defining a potential V(x) by

V(x) = —2log[s(x)], (7.9)

the master equation (7.1)) in combination with the rate (7.2) and the pdf for saccadic
magnitudes (7.6) is identical to the fractional Fokker-Planck equation (FFPE) for
topological superdiffusion,

orp = e~ VI2pAR26V /2 p—p eV/2A1/2e=V /2 (7.10)
=Lup (7.11)

with p € (0,2] which is valid on scales larger than the minimal saccadic length
xo. Equation (7.9) states that regions of high visual salience correspond to low
potentials V(x) and vice versa. The spectrum of £,, can be computed by first map-
ping the FFPE onto a fractional Schrodinger equation. The transformation is given

by (3.58) and (3.59) and yields

0; [¥) = —H[YP)
with a symmetric Hamiltonian

H = |P|*+ U(X) where
U(x) = eV(x)/zAg/ze—V(x)/Z’

with the same spectrum as £, (apart from a minus sign). Human eye movements
can thus be described by fractional quantum mechanics,which is charming.
Figure 7.7 depicts histograms of the relaxation times 7. for an ensemble of 500
salience fields s(x) and different values of the Lévy exponent . Instead of salience
fields extracted from experimental data, we chose model salience fields similar to
the random phase potentials studied in chapter[f|with a Gaussian power spectrum.
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Figure 7.7.. Histograms of relaxation times 7. for different Lévy exponents p on a semi-
logarithmic scale. The mean of each histogram is indicated by the vertical line segments in
the respective color on the upper boundary. 1y denotes the relaxation time for a system with
uniform salience s(x) = 1. Histograms were computed for an ensemble of 500 model salience
fields 16 samples of which are shown on the right.

The correlation length of the salience fields was chosen to coincide with the typical
spatial scale of salient regions in natural images. The parameter 1 in the figure is
the relaxation time for a uniform salience field (s(x) = 1).

The histograms show that scanpaths with intermediate Lévy exponents (1 = 1/2
and 1) relax most efficiently in the ensemble of salience fields. The average relax-
ation time (7.) is smallest for these scanpaths. The scanpaths with marginal Lévy
exponents (1 = 0.3 and 2) are affected more strongly by the salience fields. This
confirms the results obtained chapters[§and|f for topological superdiffusion in pe-
riodic and random phase potentials, respectively. The histograms are shown on a
semi-logarithmic scale. Therefore, the standard deviation from the mean strongly
depends on the LeVy exponent . The standard deviation is smallest for inter-
mediate values of u and greatest for the marginal values. This implies that these
scanpaths are least robust to statistical fluctuations in the salience ensemble.

7.6. Discussion

We showed that a simple phenomenological model for the generation of saccadic
eye movements is able to reproduce scanpaths with a geometry very similar to
scanpaths observed in experiments. The crucial ingredient in this model is the in-
verse power law in the frequency of saccadic magnitudes which implies that scan-
paths are Lévy flights. The model does not rely on memory effects or hierarchical
processing of visual information and supports the idea that neither of these mech-
anisms play an important role the generation of saccadic eye movements.



7.6. Discussion

In the light of temporal optimization our model predicts an intermediate Lévy
exponent u in the saccadic magnitude distribution. This is confirmed by our data.
Furthermore, scanpaths with p ~ 1 are more robust against statistical fluctuations
in the visual environment. We conclude that Lévy flights represent an efficient
strategy for visual search.
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8. Perspectives

Look out kid.

(Bob Dylan)

We investigated superdiffusive motion in inhomogeneous environments. Based
on a plausible underlying Lévy flight model, we devised a novel fractional gen-
eralization of the Fokker-Planck equation suitable for systems in which superdif-
fusion is caused by scale-free topological features of the system. This fractional
Fokker-Planck equation combines the anomalous dispersion characterized by the
Lévy exponent u with external inhomogeneities represented by an external poten-
tial V(x). The interplay between long range scale-free transitions and the influence
of the external potential is modeled such that the requirements of ordinary Gibbs-
Boltzmann statistics are met. Consequently, our approach is appropriate for a va-
riety of systems in which the stationary state is solely determined by the external
potential and is independent of the topological features of the system.

The fractional generalization of the Fokker-Planck equation unifies a number of
models which exhibit similar behaviors despite their differences in detail. More-
over, the approach permits a treatment within the framework of fractional calculus
by which a deeper understanding of the dynamics can be gained, and results can
be extracted from the model which are not readily available in more complicated
microscopic rate models. The equivalence to a fractional Schrodinger equation pro-
vides an interpretation in terms of concepts known from quantum mechanics.

Unlike ordinary random walk models, which generically lead to a description
in terms of an ordinary Fokker-Planck equation, scale-free non-local transitions
lead to different fractional generalizations, depending on the underlying physics.
In a detailed comparison of topological superdiffusion to the popular approach
of generalized Langevin dynamics and subordinated superdiffusion, we showed
that the various generalizations exhibit considerable dynamical differences in the
paradigmatic case of the harmonic potential and escape dynamics in the double
well scenario.

In a great variety of physical systems potentials are encountered which possess a
limited variability and a typical length scale. Examples are resource distributions in
the habitats of foraging animals and the potentials defined along inhomogeneous
polymers. Generalized Langevin dynamics is asymptotically trivial in bounded
potentials, a possible reason why superdiffusive processes in these types of poten-
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tials have received no attention in the past.

We investigated topological superdiffusion in periodic potentials and random
phase potentials. This study revealed a number of interesting phenomena. The
spectral bands and consequently the transient dynamics of superdiffusive pro-
cesses in periodic potentials, which we obtained by a generalized Bloch theory,
exhibit a far more complex structure than the spectrum of ordinary diffusion in the
same potentials. The susceptibility to changes in temperature or effective potential
strength is much higher for superdiffusive processes. Surprisingly, the asymptotic
spreading speed as quantified by the generalized diffusion coefficient is universal
for all superdiffusive processes, with the exception of the boundary case of or-
dinary diffusion. Furthermore, the asymptotics is independent of the functional
form of the external potential, as long potential values are distributed symmetri-
cally about the mean. When potential values possess a bias, for example when the
potential consists of localized peaks or localized troughs, this has a profound ef-
fect on the dispersion speeds of superdiffusive processes unlike those of ordinary
diffusion which are only affected by the variance of the potential.

These results cast a new light on enhanced dispersion phenomena observed in
translocation of intracellular proteins along polymeric media with complex topolo-
gies. On one hand, the generalized diffusion coefficient does not depend on the
Lévy exponent u and thus the topological features of the system. On the other
hand, a detailed knowledge of the potential shape of the polymeric medium is re-
quired in order to fully understand the dynamics.

Another important aspect is relaxation in finite systems. The universal asymp-
totic behavior mentioned earlier is valid only in the idealized case of an infinite
system. Our analysis of relaxation in finite systems showed that an external in-
homogeneity has the least effect on moderately superdiffusive processes charac-
terized by intermediate Lévy exponents, whereas quasi-diffusive processes with
a Lévy exponent slightly less than 2, and strongly superdiffusive processes with
very small Lévy exponents exhibit a relatively strong response. These results sug-
gest that Lévy flights with the appropriate tail may play a role in search strategies
employed in nature.

We addressed the issue in a study of human saccadic eye movements. Within
a simple phenomenological model we were able to show that saccadic eye move-
ments can be described as Lévy flights in a inhomogeneous landscape of visual
salience. The similarity between model trajectories and real saccadic trajectories is
striking, despite the fact that neither memory effects nor spatial hierarchies of pro-
cessing are involved. We showed that the typical relaxation time for an ensemble of
salience fields is smallest for intermediate Lévy exponents, and that the robustness
with respect to statistical fluctuations in salience is highest for these processes.

Concerning optimal search strategies, our approach represents a promising can-
didate for efficient minima search in complex energy landscapes, which may be ap-
plied to problems frequently encountered in the statistical mechanics of disordered



and frustrated systems. One cannot generally determine the absolute minimum of
the energy in these systems, because the number of possible configurational states
increases exponentially with system size and the energy hyper-surface is ragged.
A number of random walk strategies have been devised and optimized in the past
in order to obtain valuable estimates on the absolute potential minima of such sys-
tems. In these strategies, a walker in configurational space randomly picks a new
target location. If the energy at the chosen location is smaller than the energy at the
current location, the move is accepted. If, on the other hand, the target energy is
higher, the move is only accepted with a small probability. This way the walker can
overcome local potential barriers. In all of these strategies an annealing procedure,
a “cooling” of the system with time, plays a role, effectively decreasing the accep-
tance rate of higher energies. A strategy based on Lévy flights evolving in a ragged
energy landscape is plausible, because large potential barriers can be overcome by
long range transitions in configuration space. However, contemporary models for
Lévy flights in external potentials violate Gibbs-Boltzmann thermodynamics and
the stationary state depends on the Lévy exponent u. More crucially, temperature
is not well defined and the simulated annealing procedures are ambiguous. Due to
these drawbacks, Lévy flight algorithms have never been employed in this context.
In our approach, however, temperature is well defined, and we conjecture that the
concept of topological superdiffusion may serve as a source for new and more ef-
ficient search strategies for minima localization in frustrated systems such as spin
glasses.

We are convinced that our fractional approach represents a useful framework for
the study of random motion on scale-free networks. Contemporary models lack
a straightforward way of incorporating external inhomogeneities, yet our results
suggest that these inhomogeneities play an important role for the dynamics.

The fractional Fokker-Planck equation for topological superdiffusion is a stochas-
tic evolution equation. In reaction-diffusion equations, spatio-temporal patterns
emerge due to the interaction of local nonlinear dynamics with spatial dispersion,
generally modeled by a Laplacian. These types of models have been used for a
number of ecological systems. A paradigmatic system is local predator prey dy-
namics combined with diffusive dispersion in a two-dimensional homogeneous
habitat. Since the dispersion of a number of animal species cannot be modeled
correctly by ordinary diffusion, it seems plausible to generalize common reaction
diffusion equations, and include the possibility of enhanced diffusion as well as
the inhomogeneity of the environment. The concept of topological superdiffu-
sion introduces a very natural way of taking these properties into account, sim-
ply by replacing the ordinary Laplacian in ordinary reaction-diffusion equations
by the stochastic operator for topological superdiffusion. We believe that these
types of models not only possess a rich palette of behaviors, but may also provide
the ground for raising questions concerning optimal survival strategies in com-
petitive ecological networks. We reckon that these models offer new perspectives
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ﬁ P on robustness of ecological networks against external perturbations such as habitat
fragmentation and pollution, the effects of which are poorly understood in our day.
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A. Fractional Calculus

In 1695, only shortly after Leibniz and Newton had developed standard calculus,
Leibniz wrote in a letter to I'Hospital: “Thus it follows that d'/2x will be equal to
x vV dx : x, an apparent paradox, from which one day useful consequences will be
drawn.” Nearly 300 years had to pass until these useful consequences were discov-
ered by physicists who were trying to find a suitable framework for the description
of anomalous diffusion processes [88] and other fields of physics [B5]. The concept
of differentiation to fractional order was employed somewhat earlier by mathe-
maticians, especially complex analysists, because, as is indicated below fractional
integrals and differentials behave elegantly under common integral transforms, see

e.g. [04].

A.1l. Fractional Integration

Incidentally, the most natural way to introduce fractional differentiation is based
on the generalization of the n-fold iterated integral of a function f(x) which can be
expressed as

BP0 = oy [ f - (A1)

Clearly, if the expression on the right hand side of (A.1) is differentiated n times we
recover f(x), i.e.
di’l
g ol f(x0) = f(x). (A2)
The prefactor 1/(n — 1)!in the definition (A.1) can be replaced by 1/T'(n). Substitut-

ing any positive real number o > 0 for the integer 1, one obtains a straightforward
generalization of n-fold integration to fractional order,

AF0) = o [y f)E -y and (A9
xlg f(x) = ﬁ /dyf(y)(}/ —x)*, (A4)
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where we distinguish between the right- and left-handed fractional integrals I
and .I, respectively. These fractional integral operators are defined for suitable
functions f(x). In physical applications one frequently encounters fractional inte-
grals with specific boundary values, for example the Riesz-Weyl fractional integral
operators _I¥ and I on one hand and the Riemann-Liouville operator oI on
the other.

The generalization of n-fold integration to fractional order « is far more than
just a well defined mathematical peculiarity. It can be employed as a useful tool
when integral transforms aid the solution of a mathematical problem. Numerous
properties of n-fold integration are conserved by their fractional generalization,
such as their behavior under composition and differentiation, for example

8P = 15T and (A.5)
dn n+o __ o
g ol = aly (A.6)

A.2. Fractional Differentiation

A fractional differential operator ;DY of order u which is frequently used in the
theory of anomalous diffusion is given by the n'h ordinary derivative of the frac-
tional integral of order 0 < n —pu < 1, where n = [u] + 1, and [p] denotes the
integer part of 1, in other words

DEF) = S ) and (A7)
DY f(x):cfxn JE (). (A8)

Note that the distinction between left- and right-handed fractional integration is
passed on to fractional differentiation, fractional derivatives are not symmetric
with respect to interchanging their subscripts. The definitions (A.7) and im-
ply that

an = W = (—].) XDa with m = O, 1, 2, . (A9)
Hence, fractional differentiation for integer m is proportional to ordinary differen-
tiatiorﬂ By sequential partial integration equation @ can be written as

n—1 (k) n
D f(x) = k;) r(ler—k(a_)“)(x —a)f g ;xn F(x). (A.10)

'In order to recover symmetry for integer values of the exponent m one frequently encounters an
alternative definition of the left-handed fractional derivative, namely D} = (—1)”% JIH

which includes the prefactor (—1)" in the definition.
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Therefore, the operations of fractional differentiation and integration generally do
not commute.

A.2.1. Examples

An interesting property of fractional differentiation can be read off equation (A.10)
directly, namely that the fractional derivative of a constant does not vanish, for
example the “square root” derivative of 1 is

1
oDY?1 = N & 1/2, (A.11)
More generally, we have
rb+1) _
xb= 2T 7 yb-n A12
ODXx r(b—ﬂ+1)x 7 ( )

the fractional derivative of a pure polynomial is a pure polynomial. The fractional
derivative of an exponential function e™?* is given by

«DE e P* = %e‘px, (A.13)

aside from the pre-factor, fractional differentiation has no effect on the exponen-
tial. The examples given above coincide with the well known results of ordinary
differentiation when p is an integer.

A.3. The Fractional Laplacian A*/2

As noted earlier one distinguishes between left and right handed fractional deriva-
tives. This distinction is necessary and not surprising because fractional differen-
tiation is intrinsically nonlocal as opposed to ordinary differentiation. However,
countless physical models are symmetric with respect to coordinate reversal. The
regular Laplacian A appearing in a diffusion equation is left unaltered by the co-
ordinate reversal. What is the fractional generalization of A? Consider the set of
functions which possess bounded derivatives at infinity, i.e. lim, .+, f% () < oo.

Letting 2 — oo equations (A.7) and (A.§) yield

I (m)

oo DEf(x) = ﬁ / dy—(x]_c y)(:fl_n and (A.14)
7 (n)

«DEf(x) = ﬁ /dy(yix%' (A.15)
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In the derivation of the fractional Laplacian we restrict ourselves to fractional ex-
ponents u in the following interval

€ (0,2]. (A.16)

The fractional Laplace operator Ay /2 is defined by

1
AM2=__  °  (  pHL DH ith 0<pu<?2. A17
X 2COS(7T[J/2) ( e ¢} x+x oo) w1 <H_ ( )

The prefactor in ensures that the operator has a simple representation in
Fourier space and that it coincides with the ordinary Laplacian when p — 2. In
order to derive an integral representation of A*/2 it is instructive to treat the cases
0 <p<landl < pu < 2separately.

A.3.1. A*2onthe Interval 0 < pu < 1

Partial integration of equations (A.14) and (A.15) with n = [u] + 1 = 1 yields
) = f(x)]
D f(x 2z )u+1 , (A.18)
and
DE £(x) W)] . (A.19)
Inserting and into the def1n1t10n -, taking into account that
—1/2I(—p) cos(mu/2) = T(1 + p) sin(7u/2)/m (A.20)
we obtain
M1+ p)sin(np/2) [, fx+y)+ flx—y) —2f(x
0
n |x — y|t*x

A.3.2. A*2onthelnterval 1 < u < 2

We proceed analogously to the previous case. With n = 2 two partial integrations

of equations (A.14) and (A.15) give

DE ) / a0 = F) — () x—y), A2

(x —y)t*
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and

Ry O / 4y ) = F) + F ) =), A

(y —x)t+m

Luckily, when the expressions on the right are inserted into the terms con-
taining f’(x) in the integrand cancel and we end up with an integral representa-

tions identical to (A.21) and (A.22).

A.3.3. The Boundary Casesyu=1and u =2

The boundary cases for the exponent u require some care. Although the defini-
tion (A.17) does not give a useful result when p € {1,2} is inserted, the limits p —
1 and p — 2 can be interpreted consistently. Since lim,,_,;T(1 + p) sin(7rp/2) = 1

the operator A,lc/ % is well defined, i.e.

AV £ () :711 / dy S W) = F0)] (A.25)

Clearly, A1/2 # V = d/dx, since the “square-root” of the Laplacian is symmetric,
whereas the first derivative is nof} The limit 4 — 2 is more involved, however one
can show that in this limit the fractional Laplacian reduces to the ordinary second
derivative [I12].

In summary, for u € (0, 2] the integral representation of the fractional Laplacian
AM/? is given by

(1 sin(7rp/2 — f(x
The key characteristics of fractional differential operators are apparent in equa-
tion (A.26): They are non-local regularized singular integral operators. Whilst each
integral on the rhs of diverges by itself, their difference converges and can
be interpreted consistently. However, care needs to be taken, when one applies
common operations such as partial integration.

A.3.4. Simplicity in k-Space

The great technical benefit of fractional calculus is strikingly apparent when the
problems at hand are reformulated in Fourier space. The Fourier representation

2In the literature the symbol V* is frequently used instead of A*/2which can lead to some confu-
sionif u = 1.
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of A;’f/ ? has a particularly simple form. If we define the Fourier transform of a
function f(x) by

FIA0) = F) = [ dxe™ fl), (427)
the transformed equations (A.14), and read
Fl-oD* fl(k) = (=ik)* f(K), (A.28)
F[DX f](k) = (ik)* f(k)  and (A.29)
F(AH2 f)(k) = —|k|* f (k). (A.30)

Thus, in Fourier space fractional differentiation of order u is equivalent to a mul-
tiplication by |k|*. Because of this, the investigation of equations containing frac-
tional differential operators is usually much easier when expressed in Fourier space.

The simplicity of equations (A.28), (A.29) and (A.30) is often a reason to chose the
latter as definitions of fractional derivatives. On the other hand, the corresponding
integral representations (A.14), and offer a more direct picture of the
characteristic properties of the corresponding operator. For example, the propaga-
tor of the Cauchy process obeys

0, Pk, t) = —IK| p(k, (A31)

in Fourier space, a simple equation indeed. An inverse Fourier transform yields

drp(x,t) = (A*2p)(x,t) (A.32)
= [dyfe(xly)p(y.H) - w(ylx)p(x, ) (A33)

where »
w(xly) = (xﬂ—W (A.34)

In contrast to the Fourier representation the position representation shows that that
the fractional operator A*/2 is non-local, involves singularities and appearing in

the example given above describes a jump process with divergent rates, all facts
not readily available in equation (A.31).

A.3.5. Examples

As opposed to the asymmetric fractional derivative of a constant which is non-
vanishing (see (A.11)) the fractional Laplacian of a constant is zero, i.e.

AM21 = 0. (A.35)



A.3. The Fractional Laplacian A*/2

Another important example is the fractional Laplacian of a Gaussian (see for in-
stance sections and [4.4) which turns out to be

Al exp [~ 2] = 2 [ dk cos(kx) k2 A36
Pl-5 =1\ cos(kx) kM e (A.36)
0
242 (14p 1 2P

where 1F(«, ; x) is a confluent hypergeometric function [50] pp. 1013].
The paradigmatic case of the fractional Laplacian in physics is the evolution
equation for the propagator of the symmetric Lévy stable process of index v, i.e.

orp(k, t) = —|k|* p(k, 1), (A.38)
which is solved by
p(k,t) = exp(—|k|"t). (A.39)

Employing the position representation of the fractional Laplacian, it is obvious that
a process with a propagator of this type is a jump process governed by a master

equation (A.33) with a rate

M1+ p)sin(7p/2) 1
0 (x —y)ttr

w(xly) = (A.40)

A.3.6. Higher Dimensions

To complete the picture, let us briefly mention that the form (A.30) of the fractional
Laplacian can be generalized to arbitrary dimensions n. If we let f(x) be a function

on R" and denote by f(k) the corresponding Fourier transform, then A*/2 defined
by the n-dimensional variant of equation (A.30), i.e.

FIAM2 f](k) = —|k[*f(k) (A41)

yields upon Fourier inversion a slightly more involved but structurally similar in-
tegral representation in position space,

N2 p gy = 2T () 7dny [f(y) = f(0] (A42)

LN
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B. Langevin Dynamics and the Fokker-Planck
Equation

A number of Markov processes can be described by Langevin dynamics, in which
single realizations of the process are modeled by stochastic differential equations.
Usually, the forces acting on the system segregate into a deterministic possibly non-
linear drift and a stochastic force modeled by Gaussian white noise, i.e.

dX = —F(X,t)dt + /D(X, t) dW. (B.1)

The Gaussian white noise is represented by the differential of the Wiener process
W(t). In the following we assume that the value X(f) of the process at time t and
the increment dW(t) are stochastically independent. Under these circumstances
equation is known as an Ito-stochastic differential equation [44]].

The conditional pdf p(x, t|xg, tp) of the process satisfies the Chapman-Kolmogo-
rov equation (CKE) [&4],

p(x, t|xo, to) = /dz p(x, tlz, ') p(z,t'|xo, to), >t >, (B.2)

because X(t) is a Markov process. Expanding p(x, t|z,t') in powers of differential
operators yields

0; p(x, t|xo, to) = Z

n=1

1

5 (=0x)" mu(x, 1) p(x, t]x0, to)- (B3)

This is known as the Kramers-Moyal expansion [I09]. The expansion coefficients
my(x, t) are the short time conditional moments of the process X(t), i.e.

e, t) = Jim (X (4 AF) = X(0]'[X(6) = ) (B.4)
_ % (AX(8)"|X () = x). (B.5)

The moments can be obtained from the stochastic differential equation (B.1) and
the moments of the Wiener increments dW which are given by

(dW) =0 <dw2> — dt (B.6)

2141(3/2 + 1)
2n+1 2n+2 1+n
<dW > =0 <dW > = NG dt*™", neN. (B.7)
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Taking this into account, the infinitesimal moments of the displacement d X (¢) read

(dX(t)) = (F(X(t), 1)) dt,

and

<dx(t)2> - <D(X(t),t) dw2>

0

~

(B.8)

+ 2r<F(X(t), t)\/D(X(t),1) dW> dt + O(dt?). (B.9)

The second term in vanishes because the Wiener increment is independent of

the process X(t), the expectation value factorizes, and (dW) = 0 and thus

<dX(t)2> = (D(X(t), 1)) dt + O(dF?).
All higher infinitesimal moments fulfill
(dX(H)" =0(d?), n>3.

Inserted into the definition of the short time moments, we see that

my(x,t) = =< D(x,t) n=2

(dX(1)"|X(t) = x) Fx,t)  n=1
dt

0 n > 3.

(B.10)

(B.11)

(B.12)

Consequently, the Kramers-Moyal expansion terminates at n = 2, and the condi-

tional pdf for ordinary Langevin dynamics is governed by the FPE, i.e.

0r p (x, t|xg, tg) = {—axF(x,t) + %632( D(x,t)} p(x,t|xp, to) -

(B.13)



C. Homogeneous Detailed Balanced Stochastic
Operators

In this Appendix some standard techniques are comprised which are helpful in the
study of homogenous stochastic evolution equations such as

orp = Lp. (C.1)

Temporal homogeneity implies that the stochastic operator £ is independent of
time. Furthermore, we require the condition of detailed balance. This condition
is most transparent if equation represents a master equation and the integral
kernel of L is given by

Lxly) = w(aly) — ( [ dyeotvl) ) ot - ). €2
Generally, the rate w(x|y) and thus L(x|y) are not symmetric, i.e.
w(x[y) # w(ylx). (C3)
However, detailed balance guarantees that the rates fulfill
w(xly) ps(y) = w(ylx) ps(x) ¥V x#y, (C4)
where p; is the solution to
Lps=0. (C.5)

If ps can be normalized properly and w(x|y) # 0 for all x and y, then ps(x) is the
unique stationary solution to and all initial conditions pg(x) will converge to
it. For natural boundary conditions detailed balance is also fulfilled by FPEs with
position dependent drift and diffusion coefficients, i.e.

0; p(x, t|xp, to) = (—ax F(x)+ %6§D(x)) p(x, t|xo, to), (C.6)

although this is more difficult show [I09)]. The stationary solution, expressed in
terms of F(x) and D(x) is given by

1 [
D) exp |:2 / dx

F(x)
D(x")

ps(x) o (C.7)

175



C. Homogeneous Detailed Balanced Stochastic Operators

QJ

176

The FFPE for topological superdiffusion

derived in chapter 3| fulfills detailed balance with Gibbs-Boltzmann equilibrium

ps(x) = exp [-BV(x)] (C.9)

as the stationary state.

The analysis of the evolution equation relies on a symmetrization of the oper-
ator £ and subsequent spectral decomposition. Adopting Dirac notation we can
define a symmetric transformation S'/2 which is a multiplication by the root of the

solution p,(x) to (C.5), i.e.
S1/2 — / /ps(x) dPy, (C.10)

where Py is the spectral measure of the position operator X, thatis dP, = |x) (x| dx.
The integral kernel of S'/2 is given by

<x‘51/2‘y> =/ ps(x)6(x — ). (C.11)

Inserting

p=S"21p) and L =-SY2HS"1/?, (C.12)
into (3.48) we obtain a fractional Schrodinger equation
0 [9) = —H ). (C13)

for the wave function |1). The Hamilton operator H is symmetric. For example the
integral kernel H(x|y) for the master equation (C.2) is given by

H(xly) = —ps ?(x) L(x|y) pi/*(x)
= H(y|x), (C.14)

because of the condition (C.4). The transformed FFPE for topological superdiffu-
sion reads

3 [¥) = — (A“/Z - u(X)) 1Y) with (C.15)
U(x) = eBV3)/27126=BV()/2, (C.16)

The operator defined by the rhs of (C.15) is clearly symmetric.



C.1. Properties of the Wave Function |)

C.1. Properties of the Wave Function |1)

Stochastic evolution according to can now be interpreted in terms of quantum
mechanical concepts. However, because the Schrodinger equation is missing
the imaginary prefactor the interpretation differ a little. Given an initial (t = tp)
condition for the wave function (x|¢o) = P(x, ty) the Schrodinger equation (C.13)
is formally solved by

i) = e M1 |yg), (C.17)

where (x|1;) = YP(x,t) is the wave function at time t. The pdf p(x,t) can be ob-
tained from it by the transformation (3.58). The wave function ¥(x, t) has a num-
ber of properties which are related to the requirements the original pdf p(x, t) must
meet. The normalization condition [ dx p(x,t) = 1 requires that

/ dxe BV 2y (x, 1) = 1. (C.18)

Furthermore, y(x, t) is nonnegative because p(x, t) is. If we define the “bra” (1|
by (1hs|x) = e BV(*)/2, equation (C.18) may be written more concisely as

(s hr) = 1. (C.19)

Although the Hamiltonian H is self-adjoint in some appropriate Hilbert space
9, for example £2(C, dx) neither |s) nor |{;) need to be elements of §, because
neither

(Ps|hs) = /dx e PV () nor (C.20)
(Pe|he) = /dx PV () p2(x, 1) (C.21)

need to exist. Nevertheless, for all practical purposes it is safe to assume that both
functions are elements of §), because the bracket (1s|y;) is known to be unity
and virtually all quantities of interest can be expressed in terms of the sandwich

(Ps| - | Pr). If exp [=BV] can be normalized then [¢s) € £2(C, dx) represents the
stationary state of (C.13) and is an eigenstate of H and thus of e~ with eigenvalues

0 and 1, respectively. In this case we have

(Ps|ps) =1 and (C.22)
Po = [1s) (¥s] - (C.23)

The operator P\ projects onto the stationary state |1;), i.e.

Po [Ys) = Po [Yr) = |s) - (C.24)
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Geometrically, the state vector |{;) may be interpreted as evolving in the affine
subspace i defined by

U= [1hs) + (1= Po)$). (C.25)
Therefore, the length of |1;) is always greater than or equal to unity, i.e.
(Wt r) = (Ps|hs) + (616) with 16) € U (C.26)
> 1.

Equality is attained only when ;) = |1s). Equation (C.26) only makes sense if for
every a vector |¢)in the domain of H the product (¢|1);) exists.

C.2. Spectral Decomposition

The symmetry of the Hamiltonian in (C.13) implies that H can be spectrally decom-
posed, i.e.

H = / AdP,, (C.27)

where the self-adjoint projectors P, are parameterized by the real number A and
are referred to as the spectral family associated with H. The integral is a type of
Lesbeque-Stieltjes integral, in which a spectral measure P, is assigned to each Borel
set A C R. The elements of the spectral family satisfy a number of conditions. Let
4, and U, be the subspaces that P,, and P, project on, respectively. If u < A then
ﬂﬂi g ﬂ)\ ’ ie.

Pu<Py if p<A. (C.28)
P, is monotonously increasing with A. Furthermore, they fulfill
111’1’(1) P}H—e = P;\. (C29)
€E—

In case P, is discontinuous at A the value of P, at this point is given by the rhs limit.
For general self-adjoint operators two more conditions hold, namely

P.owo=10, and P =1, (C.30)

from which the resolution of unity,
1= / dP, (C31)

can be obtained. Since H is derived from a stochastic operator £ one can show that
Px = 0 for A < 0 and we may set the lower boundary in (C.30) to zero, i.e.

Pe=10 Y e>0. (C.32)



C.2. Spectral Decomposition

This is a generalization of the statement that H does not possess negative eigen-
values. The spectral decomposition (C.27)) yields a meaningful expression of the
exponential exp [—H¢] or any other function of H in terms of the spectral family,

e HE = / e MdP,. (C.33)
0

The spectrum o (H) may have both, continuous and discrete components, i.e.
o(H) = o.(H) U op(H) C R. (C.34)

If A € o(H) then P, changes in any neighborhood of A and any neighborhood of A
has a nonzero Lesbeque measure. If A € 0;,(H) then P, is discontinuous at A, i.e.
PA # Pa_o and A is an eigenvalue of H.

C.2.1. Stationary Systems

If P # () then A = 0 is an eigenvalue of H with eigenstate |s), because in this
case P, is discontinuous at A = 0 (i.e. P_g = () # Py). In this situation |{s)can be
normalized and Py = |¢5) (1s|. With this we may rewrite (C.33) as

o0
e‘Ht:/e_MdP;\
0
(o)

— P+ / e M APy = |0s) (] + / e M P, (C.35)
0+ 0+

Therefore, as t — oo the evolution operator will eventually be a projection onto
the stationary state, i.e.
lim e " = P, (C.36)

t—oo

C.2.2. Discrete Spectra

If 0. (H) = () the operator has a pure point spectrum of a countable set of eigenval-
ues A,. The projective measure is then given by

Pr=> 0(A —A)Py (C.37)

for these type of systems. The function O(x) is the Heaviside step function and the
P, are the projectors onto the subspaces corresponding to A,. The differential dP,

reads
dP, = z 5(An — A)PrdA, (C.38)
n
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and from (C.27)) we obtain the discrete spectral decomposition
—Ht —Ant
e " =Y e "MPy, (C.39)
; n

and
z P,=1. (C.40)
n

Note however, that a discrete spectrum does not imply that a stationary solution
exists. In other words, Py = () may still hold or equivalently Ay > 0. An example
for this type of spectrum is ordinary diffusion in the inverse harmonic potential.
Furthermore, the existence of a stationary state (i.e. Py # () does not imply a
purely discrete spectrum, as for example diffusion in the potential V(x) = |x|.
Both examples are discussed in [[109].

C.2.3. Computing Expectation Values

The quantum mechanical formalism and spectral decomposition are both very use-
ful for computing expectation values of the stochastic system. For example, the
expectation value of some function of the process(F(X(t))) may be expressed as

(FX(1)) = [ dxF(x) plx, b
_ <1!)s Fe—H(t—to) 11,0> (C.41)

F— / dx F(x) |x) (x| (C.42)

in which the operator

represents a multiplication by F(x). More complicated expectation values can be
expressed along the same lines and aquire an unusually compressed form, for ex-
ample

<ﬁ Pi(X(ti))> = <11)s ﬁe+HtiFithi 1p0> (C.43)
1=0

i=1

i=1

n—1
= <1[)S F, I‘l e*H(ti*ti—l)Fiil

1P0> (C.44)

in which the sequence of times ¢, > t,_1 > ... > t; > ty = 0is descending ordering
of time and the operators F; are defined analogously to (C.42). In we see
that multi time expectation values only depend on the time differences t; — t;_4
reflecting the temporal homogeneity of the process.

One can now utilize the spectral decomposition (C.33), insert it into expressions
such as and (C.44), and obtain complicated expectation values as functions
of the spectrum and its measure.



C.2. Spectral Decomposition

C.2.3.1. Examples

One is frequently interested in the autocorrelation function of some function of a
stationary process, i.e.

Cr(t) = (F(X(8)) = (F(X))5) (F(X(0)) = (F(X));))s
= (F(X(1)) F(X(0))), — (F(X));, (C45)

where the subscript in the expectation value (-), denotes the stationarity, i.e. [{y) =
|1s). The first term is of the form given in equation (C.44) and reads

(F(X(1) F(X(0))), = (s

Since the process is stationary, we may insert the spectral decomposition (C.35) and

obtain
(v,

Recall that Py = |1ps)(1s|. Thus, the first term reduces to (F(X))2. Defining the
measure pur(A) = (Ps|FPAF|1Ys) and inserting (C.47) into (C.46) we obtain

(0.¢]

Cr(t) = / e Mdur(A). (C.48)
0+

FeHt F‘¢S> . (C.46)

o0

FerMF|e) = (Wl FPOF ) + [ VA (Wil FPAF) . (C47)

0+

Therefore, the correlation of any observable F of any process which fulfilled the
requirements stated initially vanishes as t — oco. The decay is a weighted sum of
exponentials.

The conditional pdf p(x, t|xg, to) can be computed along the same lines. First
define two observables

X = |x) (x| and  Xo = |xp)(xo] - (C.49)
The conditional pdf is defined by
(0(X(#) —x) 8(X(to) — x0))

p(x, t|xo, to) = 6(X(to) — x0)) ) (C.50)
Rewriting in Dirac notation yields
(s [xe M=o |y )
p(x,t|x0, tO) = <1PS‘XO‘II)O>
_ (x[s) —H(t—tg)
= Tl <x‘e x0> (C.51)

—~
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Assuming a spectral decomposition of the form (C.35) the terms on the rhs of (C.51)
can be computed with ease and the conditional pdf is given by

p(x,t|xo, to) = ps(x) p(xO /—“ f)d (x|Py|xo) - (C.52)
S

Thus, quite generally the probability of finding the process at the location x at a
time f is not only the stationary probability but also independent of the initial con-
dition as t — tyg — oo.



D. The Fourier Transform

An indispensable tool for the study of fractional dynamics is the Fourier transform,
since fractional differential operators are much easier to deal with in Fourier space.
The Fourier transform exists in two forms, discrete and continuous. Both versions
are related. Quite often one is annoyed if one wishes to determine the prefactors
involved in either case, especially when dealing with convolutions, that is trans-
forms of products of functions, and if one wishes to express the discrete transform
as a special case of the continuous one. Here we collect a number of definitions
and identities such that the reader will not be confused about the transform when
it appears in the text and that equality symbols can be used instead of vague pro-
portionality symbols.

What follows is applicable to one-dimensional systems, generalizations to n di-
mensions is straightforward. The Fourier transform is based on the identity

5(x) = %/dx e'kx, (D.1)

in which 6(x) is the Dirac §-function. In stochastics, we usually define the Fourier

transform f (k) of an appropriate function f(x) as
flk) = /dx e* f(x). (D.2)

Note that there is not 1/v/27 prefactor in this definition which is commonly used
in quantum mechanics. In stochastics the prefactor is omitted because if f is a pdf

then f is the characteristic function and is it often useful to rely on the fact that

f(0) = 1 which follows from the fact that pdfs are normalized to unity. Combin-
ing (D.T)) and (D.2) we see that the inverse Fourier transform is

1 o~
fla) =5 / ke F(k). (D.3)
The Fourier transform of the product,

h(x) = f(x) g(x), (D.4)

is proportional to the convolution of the transforms of each factor if both functions

‘?/
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on the rhs of vanish on the boundary,

W) = 5 [ @k flk—K) §K)

= 5 [ 5= K) FK)

= o (F*8) 0 = o (3+7) . D5)
On the other hand the transform of the convolution
H(x) = [ dy f(x=y)g(y) 0.6)
is just the product of the transforms,
H(k) = f(k) g(k). (D.7)

Another simple but very useful transformation is that of a plane wave of wave
number k), ‘
Pr (x) = 7%, (D8)

which yields a é-function at kg modified by a prefactor of 27,
bx, (k) = 271 8(k — ko). (D.9)

The discrete Fourier transform is used for functions which are periodic, in other
words,

f(x) = f(x+nL) ne . (D.10)

Periodic functions can be expanded into a series of plane waves with wave num-
bers related to the periodicity of the function, i.e.

fx)=5% e ¥ £ with ky = 2?, ne . (D.11)
n

The discrete Fourier coefficients ﬁl are determined by integrating the function over
one period, i.e.

L/2
T o 1 ik, x
fn = 7 // dx e f(x) (D.12)
—L/2

Inserting equation (D.11)) into the definition (D.2) we obtain the relation between
the continuous transform f (k) and the Fourier coefficients f,,

flk) =275 8(k — kn) fo- (D.13)



Again, if we let ¢, (x) be a plane wave satisfying condition (D.10),

we see that R B

Moreover, if both functions in the product (D.4) are periodic we must admit that,
after rearranging indices a little bit, /1(k) has the same form as 1} ie.

h(k) = 27 /dk’ S FuGn 6k —kn — K) (K — k)
=27y fu @ 8(k — (kn +kn))
n,m
=275 fum@n 8k —kn)

=27 Iy 8(k — k), (D.16)

with Fourier coefficients ki, which are determined by a discrete convolution of the
Fourier coefficient f,, and g,

T =S fum&m. (D.17)
m

Note the lack of prefactor 27t in this equation.
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E. Generating Random Numbers with Divergent
Moments Numerically

In order to investigate superdiffusive phenomena by computer simulation quasi-
random numbers with power law densities are required. Most programming lan-
guages provide methods for uniformly distributed random numbers X € [0, 1].
Provided that such a method is available, it is straightforward to obtain random
numbers Y with a pdf py(y) which is an inverse power law of y. The problem
consists of finding a function f with an inverse f~! such that the pdf of Y = f(X)
fulfills the posed requirements.

E.1. Transforming Random Variables

When a random variable X with a pdf px(x) is transformed by a one-to-one func-
tion f with an inverse f~!, the random variable Z = f(X) has the density

02(2) = (8(z— £(X))) (E1)
= [dxs(z= f(2) px(x) (E2)
= px(f(2)) ] (2). (E.3)

The function

J(z) = ’df_—l(z) (E.4)

dz

is the Jacobian of the inverse f 1. Reversing the procedure, equation can be
employed to generate random numbers with a specified density pz(z), in which
case the function f(x) must be determined. This is a simple task if we let X be
uniformly distributed in the interval [0, 1], i.e.

1 0<x<1
= - E.5
Px(x) {0 otherwise. ()
. . . _1 .
This implies f~! > 0 and from (E.4) we obtain
df 1z
pz(z) = - )~ (E.6)

dz
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Integration yields the probability Pz(z) of finding a value Z < z,
4
Poz) = [ 4 pa(2), (E7)
which is one-to-one and can be inverted. Combining equations (E.6) and (E.7)
yields

f(x) =P, (x). (E.8)

E.1.1. Example: Exponentially Distributed Random Variables
Let Z € [0, o) with a pdf

pz(z) = pe " with u>0. (E.9)
Inserting (E.9) into (E.7) yields Pz(z) = 1 — e~** and from (E.8) we obtain
7= f(X) = —% log(1 — X). (E.10)

If X € [0,1) is uniformly distributed, the variable Z will have the desired exponen-

tial density (E.9).

E.2. Generating Random Numbers with a Power Law
Density

Let X € [0, 1] be uniformly distributed as above. Furthermore, we define a new
random variable S, which can take the two values £1 with equal probability,

ps(s) = 5 [5(s +1) + 5(s —1)]. (E11)

Combining X and S according to

= _ __YoS i
Y = fu(X,S) = 1= x)i/ with  u >0, (E.12)
produces a random variable Y with a symmetric inverse power law density
u —(14p)
Yo J 1yl Yo <[yl < o0
= 2J0 E.13
pr(y) 2 {O otherwise. (E13)

If 11 € (0,2], the second moment (Y?) diverges. If 1 € (0, 1] the expectation value
(Y) does, too.



E.3. Random Numbers with Lévy Stable Densities

E.2.1. Finite Intervals

A number of situations require random numbers within finite intervals, for exam-
ple [—y1, —yo] U [yo, y1] with 0 < yo < y1. If we wish to restrict the pdf to a
finite support, we must generalize the transformation a little. More specifi-
cally, we must choose

Yoy1S
Y = £,(X,S) = . (E.14)
9 [yl (1 X) +y x] "™

This type of transformation yields the appropriate density

u ly[~(+w) yo <yl <m
i T ; (E.15)
1/yy —1/yg) |0 otherwise,

which is identical to (E.13) in the limit y; — oo.

pY(y) = 2(

E.3. Random Numbers with Lévy Stable Densities

Although it is straightforward to generate random numbers with a density which
follows an inverse power law, the matter is more subtle if py(y) is required to be a
symmetric Lévy stable law

Lu(y) = %T / dk e~ kv k", (E.16)

Not only does L,(y) deviate from the density (E.13) for small values of y, the

behavior .

L#(y) ~ |y|1+u (E17)

for large arguments (|y| > 1) is only asymptotically correct. In fact, a series expan-
sion of (E.16) shows that L, (y) consists of an infinite number of algebraic tails [O0],

12 (=D e -
Lu(y) = ;kzl Y M1+ ky) sin(7uk/2). (E.18)

and only the leading term (k = 1) decreases as |y|~(17#). Therefore, the difference
between the leading term and the remainder of the sum decreases only as a power,
and hence slowly, with distance. For some special choices of the Lévy exponent
matters can be simplified. For example, when p = 1 equation reduces to

Li(y) = : (E.19)
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A random variable Y with this density can be obtained by dividing two normally
distributed random variables X; and X5,

Y = X1 /Xo. (E.20)

However, no explicit form of L, (y) is known for general p. Consequently, equa-
tion (E.7) cannot be integrated and no inverse of the result can be computed. Luck-
ily, other means of generating random numbers with stable densities have been
devised which extend the idea of dividing normally distributed random num-

bers [B1]].
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