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1. Introduction

1.1 Luminous stars and the Humphreys-Davidson (HD)
limit

One of the open questions in stellar evolution theory is the explanation of the so called
Humphreys-Davidson limit (Humphreys & Davidson 1979), a luminosity limit in the
Hertzsprung-Russel diagram (HRD), above which no stable stars are observed. For high
temperatures this limit is temperature dependent, whereas for cooler supergiants it is in-
dependent of temperature. Figure1.1shows the upper part of the observed HRD for the
Galaxy and the Large Magellanic Cloud, indicating the HD limit by a solid line. Empiri-
cally, it implies the following relation between luminosity and temperature (Humphreys
& Davidson 1979):

log L
L�

= 5.42 + 2.34 log Teff

104K
for 15000K ≤ Teff ≤ 30000K

log L
L�

= 5.8 for 3000K ≤ Teff ≤ 15000K

whereL� = 3.85·1033 erg sec−1 is the solar luminosity andL andTeff are the luminosity
and effective temperature, respectively. In the vicinity of the temperature dependent part
of the HD limit a particularly interesting class of luminous blue supergiants having tem-
peraturesTeff between 8000K and 27000 K and luminosities ofL

L�
≈ 106 is encountered.

These so called luminous blue variables (LBVs) or S Dor stars may be characterised as
follows (Humphreys R.M. & Davidson K.1994).

LBVs show photometric variability over a wide range of amplitudes and time scales.
The most spectacular variations are giant eruptions during which the star can become
brighter by more than 2m in the visual band. Examples for giant eruptions areη Car’s
dramatic outburst from 1837 to 1860 and P Cyg’s behaviour around 1600. After these
major outbursts the stars may fade rapidly and remain relatively quiescent for long pe-
riods. Although the timescales for the giant eruptions remain uncertain, hundreds to
thousands of years seem to be reasonable estimates for the frequency of these events.
During eruptions, the luminosity of the objects stays approximately constant, although a
variation of one magnitude in bolometric brightness was reported for the famousη Car
eruption (Davidson 1988). Figure1.2 gives some examples for observed eruptions of
LBVs in the HR diagram. Dashed lines indicate the transitions from quiescence (maxi-
mum temperature) to visual maximum (minimum temperature) at constant luminosity.
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CHAPTER 1. INTRODUCTION

Figure 1.1: The Hertzsprung-Russel diagram for the galactic and LMC supergiants.
The position of the ZAMS and selected evolutionary tracks with mass loss are shown as
dashed lines. The solid line defines the approximate upper boundary of the supergiant
luminosities. The positions of the peculiar starsη Car and P Cyg in the Milky Way and
S Dor in the LMC are indicated. Both figures are taken from Humphrey and Davidson,
1979.
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1.1. LUMINOUS STARS AND THE HUMPHREYS-DAVIDSON (HD) LIMIT

Figure 1.2: A schematic HR diagram for the most luminous stars. The dashed lines
represent the LBV transition from quiescence (•) to the eruption (+) stage. The most
luminous cool supergiants are also plotted. The empirical HD limit is shown as a solid
line. The figure is taken from Humphreys and Davidson, 1994.

Smaller eruptions of 1-2m are observed on time scales of 10-40 years and might even
look semi regular at times. At visual maximum, the stars atmosphere is considerably
expanded, while the luminosity remains practically unchanged. The visual brightening
is caused by a shift of the emission from ultraviolet to visual wavelengths. Superimposed
on these long-term normal eruptions are smaller oscillations of about half a magnitude,
acting on the time scale of months to a few years. In addition, microvariations of≤ 0.1m,
which have also been reported for normal supergiants, have been observed for individual
LBVs.

Associated with the LBV eruptions are high mass loss rates of typically10−5 − 10−4

M�yr−1, being 10-100 higher than those of normal supergiants with comparable lumi-
nosities. If one includes the giant eruptions in this estimate, the mass loss rates can be as
high as10−2 M�yr−1 (Davidson 1988).

Most LBVs show some evidence for circumstellar ejecta. In the case ofη Car it is
even opaque enough to obscure the star and clearly visible as the “homunculus” nebula
(see figure1.3). Usually the presence of a ring nebula or circumstellar shell produced by
the high mass loss is more common. Spectroscopic analyses of the ejecta show that they
are nitrogen and helium enriched, i.e., presumably CNO-processed material has brought
to the surface by mixing and mass loss, implying that LBVs are evolved stars.

To summarise, an LBV may be defined as an evolved, very luminous hot supergiant
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CHAPTER 1. INTRODUCTION

Figure 1.3: Image of the homunculus nebula surrounding the supergiantη Car, as taken
by the HST (Jon Morse, University of Colorado, and NASA).

which suffers irregular eruptions like, e.g., S Dor and AG Car, or more rarely giant erup-
tions asη Car and P Cyg. Eruptions and variability are usually attributed to an instability
which results in a considerably enhanced averaged mass outflow, leading to the forma-
tion of an expanded atmosphere at visual maximum. The visual brightness variations
are caused by a shift in the stars spectral energy distribution. Many mechanisms for the
instability driving the mass outflow have been discussed in the past, but no consensus
about the correct interpretation has been reached so far.

1.2 Instability mechanisms

The first instability mechanism envisioned for these stars was theε-mechanism (Ledoux
1941, Schwarzschild & Harm 1959). This mechanism is energised in the stellar core
and depends on nuclear reactions. According to Ziebarth (1970), the mass above which
stars become unstable with respect to theε-mechanism lies at 94M�. However, this
process is strongly damped by internal composition gradients. Therefore evolved stars
like LBVs are unlikely candidates for this instability. Studies of its non-linear evolution
by Appenzeller (1970) remain inconclusive since the amplitude of the pulsation was

4



1.2. INSTABILITY MECHANISMS

enhanced in this simulation by artificial energy input.
De Jager (1984) proposed that the instabilities might be caused by strong turbulent

pressure gradients in the convective zones of the envelope. However, this process is
only efficient for temperatures below6000K, since for higher temperatures the relative
contribution of convection to the luminosity amounts to at most one per cent and the
contribution of the turbulent pressure to the total pressure reaches at maximum10−6.

Other instability mechanisms that have been discussed are connected to the high in-
trinsic luminosities of LBVs, which are close to the so called Eddington limit. This is an
upper limit to the luminosity to mass ratio for a static stellar envelope. The Eddington
factor is usually defined by

Γ =
κL

4πcGM

wherec is the speed of light,G the gravitational constant,L the luminosity andM the
mass of the star. It is calculated considering only the contribution of electron scattering
to the opacityκ. If Γ exceeds unity, the acceleration due to radiation pressure exceeds
the gravitational acceleration and the star can no longer stay in hydrostatic equilibrium.
Typically, LBVs have Eddington factors of∼ 0.5 or higher. Motivated by this fact,
Davidson (1988) and Appenzeller (1988) have proposed a modified Eddington limit, i.e.,
one in which the opacity is temperature dependent. Due to an opacity maximum around
T ≈ 15000K, caused by singly ionised elements of the iron group, the luminosity can
exceed the Eddington luminosity locally thus resulting inΓ ≥ 1, which is thought to
destabilise the star. However, LBVs with effective temperatures up to≈ 35000K have
been observed.

An explanation in the same direction was proposed by Langer (1998). He argued
that stellar rotation can reduce the Eddington luminosity considerably by including the
centrifugal acceleration into the force balance which reads

gtotal = ggrav + grot + grad

The maximum radiative acceleration is reduced by the centrifugal acceleration. How-
ever, in his approach he assumed the radiation field to be spherically symmetric, even
in the presence of stellar rotation. As Glatzel (1998) pointed out, this contradicts von
Zeipels theorem of gravity darkening (von Zeipel 1924, Tassoul 1978), which predicts
vanishing flux at the equator for critical rotation. Langer (1999) argued that according to
a generalised von Zeipels theorem derived by Kippenhahn (1977), stellar rotation may
either enhance or decrease the radiative flux on the equator, depending on the internal
rotation law. However, to our knowledge, no significant deviations from the classical
von Zeipels theorem have been reported.

Other mechanisms invoke instabilities located below the photosphere of the LBVs.
The famousκ-mechanism, that drives theδ Cephei pulsations, has also been proposed
as an explanation for LBVs by Moskalik and Dziembowski (1992). However, this has
not been verified (cf.Glatzel & Kiriakidis 1993b, Stothers & Chin 1993).
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CHAPTER 1. INTRODUCTION

In his “geyser model”, Maeder (1988, 1992) claims that subphotospheric density in-
versions are responsible for instability and variability in LBVs. They are connected to
the convection zones in the stellar envelope and caused by a negative entropy gradient
caused by inefficient convection, which can be expressed as

∂s

∂r
∝ 1

u2
s

∂p

∂r
− ∂ρ

∂r

whereus is the local sound speed,p the pressure andρ the density. If the (negative)
pressure gradient is not big enough, a positive density gradient, and hence a density
inversion, is needed to provide the negative entropy gradient prescribed by the theory
of convection adopted. Since a deviation from adiabatic behaviour is needed to have a
significant negative entropy gradient in convection zones, this effect is only observed in
the outer layers of stellar envelopes.

In incompressible fluids, density inversions lead to Rayleigh-Taylor instabilities, which
Maeder claims to cause the observed LBV behaviour. However, density inversions are
not only observed in the envelopes of LBVs, but also in a variety of other “normal” stars,
which according to Maeder, should then also be unstable. This is not the case. Phys-
ically, the Rayleigh-Taylor instability has the same origin as the convective instability,
namely a negative entropy gradient, but with the additional assumption of incompress-
ibility. It seems therefore inconsistent to examine a convective stratification with respect
to Rayleigh-Taylor instabilities. Therefore, it is questionable, if density inversions play
an important role in the explanation of the LBV phenomenon.

Stothers and Chin (1993, 1994) argued that dynamical instabilities could be respon-
sible for the observed outbursts in LBVs. They assume adiabatic changes of state and
that the stellar envelope is acoustically separated from the core of the star by the opacity
peak due to the contribution of heavy elements aroundT = 200000K. On this basis
they derive the approximation

σ2 ≈
(3〈Γ1〉 − 4)

∫ R
r∗
pd(r3)∫ R

r∗
1
3
r2ρd(r3)

, 〈Γ1〉 =

∫ R
r∗

Γ1pd(r3)∫ R
r∗
pd(r3)

for the lowest eigenfrequencyσ of the stellar pulsation spectrum (Stothers 1999b). Γ1 is
the adiabatic index,R the stellar radius andr∗ denotes the bottom of the stellar envelope.
Highly questionable in this approach is the neglect of a surface term of comparable
order to the integrals (see appendixA). If the mean adiabatic index〈Γ1〉 drops below
4
3
, σ2 becomes negative, which corresponds to instability. Since in radiation pressure

dominated envelopes as, e.g., the envelopes of LBVs, the adiabatic indexΓ1 is close to
4
3
, the value ofΓ1 < 4

3
in the ionisation zones of H and He is sufficient to provide a

mean adiabatic index of〈Γ1〉 < 4
3
. Using this approach, Stothers (1999a) analysed the

envelopes of prominent LBVs and found them to lie well within the realm of dynamical
instability.

However, Glatzel and Kiriakidis (1998) argued, that the adiabatic approximation is
invalid for the considered stellar models and the non-adiabatic analysis should be used
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1.2. INSTABILITY MECHANISMS

Figure 1.4: HR diagram containing the evolutionary tracks of eight stars (dotted lines)
with the initial chemical composition(X,Y, Z) = (0.746, 0.25, 0.004) and the initial
masses indicated. Unstable phases are denoted by solid lines, and thick lines correspond
to dynamical growth rates|σi| > 0.1 in dynamical units. Together with the observed
position ofη Car the location of the HD limit is shown as a dashed line. The figure is
taken from Kiriakidis, Fricke & Glatzel, 1993.

instead. Furthermore, the assumption that the stellar envelope is completely dynamically
isolated from the stellar core seems questionable. Rather, the whole star must be tested
for dynamical instability. In particular, the fundamental mode remains largely unaffected
by the inversion of the sound speed aroundT = 200000K and therefore the assumptions
made do not hold. The neglect of the surface term is a severe error in the calculation.
Finally, repeating the analysis of Stothers and Chin (1993, 1994), Glatzel and Kiriakidis
(1998) did not find any dynamical instability. To summarise, this approach suffers from
physical misconcepts (adiabatic approximation) and severe errors (surface terms) which
casts doubt on the suggestion that dynamical instabilities play an important role in the
explanation of the LBV phenomenon.

When investigating the stability of extreme helium stars, Gautschy and Glatzel (1990a)
found unexpected new modes in the stellar pulsation spectrum which were called “strange
modes”. These modes provide resonances among the acoustic modes thus leading to
instabilities. They are associated with growth rates in the dynamical regime. Subse-
quently they have also been identified in a variety of other stars, including Wolf-Rayet
stars (Glatzel, Kiriakidis & Fricke 1993) and massive stars (Glatzel & Kiriakidis 1993a).
Furthermore, they are not limited to spherical symmetry (Glatzel & Kaltschmidt 2002,
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CHAPTER 1. INTRODUCTION

Glatzel & Mehren 1996). Kiriakidis et al. showed (1993), that the boundary of the do-
main in the Hertzsprung-Russel diagram above which all stellar models are unstable -
irrespective of their metallicity -, coincides with the observed HD limit. As an example,
the results of their linear stability analysis of stellar models with initial chemical compo-
sition (X, Y, Z) = (0.746, 0.25, 0.004) is shown in figure1.4. Solid lines in the diagram
correspond to unstable phases, thick lines to those with extremely high growth rates
(|σI | > 0.1 in dynamical units). The observed HD-limit is shown as a dashed line. For
stars with higher metallicity the instability region covers the whole range above the HD-
limit and can even extend down to the main sequence. From this point of view, strange
mode instabilities may therefore be suspected to be related to the LBV phenomenon.

1.3 Objectives of this study

This work is dedicated to the study of strange mode instabilities in the non linear regime.
To this end, we have to construct stellar envelope models of LBVs having stellar param-
eters that fall into the instability domain of the HR diagram identified by Kiriakidis et
al. (1993). Using the Riccati method (Gautschy & Glatzel 1990b), we shall verify in a
second step that these models suffer from multiple strange modes instabilities.

Then, the evolution of the instabilities will be followed into the non linear regime
by direct numerical simulations. Strange mode instabilities, which act on the dynami-
cal timescale, generate sound waves, which travel outwards and steepen to form shock
waves with the result of global stellar pulsation.

For the models considered, a new phenomenon has appeared: After several pulsa-
tions a shocks is captured in the hydrogen ionisation zone and starts to oscillate on
timescales much shorter than the dynamical one. Therefore, the question has to be ad-
dressed, whether the rapid shock oscillations observed in the numerical simulations are
of physical origin, or numerical artifacts. If they are found to be of physical origin, an
adequate numerical treatment of the different timescales involved has to be developed,
as the rapid shock oscillations limit the integration time-step appreciably, preventing a
long term study of the model.

For selected models, the strange mode instability was found to transfer mass from the
inner region of the stellar envelope into its outer parts, which, due to the Lagrangian
description adopted, leads to a reduced resolution in the instability region. As a con-
sequence, the driving instability is suppressed and the mass flow out of the instability
domain ceases. Should the mass flow observed in the early phases of the evolution of
the instabilities indicate an outburst associated with mass flow of the object, this nu-
merical problem would be crucial and ultimately provide a wrong answer to the basic
question, whether strange mode instabilities are related to the LBV phenomenon. This
calls for a solution of the resolution problem in the instability region. For this purpose a
grid reconstruction algorithm will be developed.

This study consists of the following stages: In the first part, the basic equations and
methods will be presented. In particular, the construction of initial models, their linear

8



1.3. OBJECTIVES OF THIS STUDY

stability analysis and the non linear simulation of the instabilities will be discussed in
general there. In the second part, these methods will be applied to models for LBVs in-
cluding a review of their stability properties and the non linear evolution of strange mode
instabilities they are suffering from. Subsequently, three research papers are presented,
which address the following questions: The first paper investigates the origin of rapid
shock oscillations, the second paper is dedicated to the adequate numerical treatment of
the different timescales involved in their numerical simulation. The third paper deals
with grid reconstruction required by the mass flow out of the instability domain caused
by the instability itself. A summary together with a discussion of the presented results
follows.
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Part I

Basic equations and methods
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2. Stellar structure

2.1 Equations of stellar structure

In this section the equations of stellar structure are presented. For the present study,
rotation and magnetic fields are neglected and we restrict ourselves to a spherically sym-
metric configuration. Appropriate for this situation is the Lagrangian description of
hydrodynamics, i.e., the timet and the massm inside a sphere of radiusr are the inde-
pendent variables. The dependent variables are the radiusr, the pressurep, the density
ρ, the temperatureT and the luminosityL.

2.1.1 Mechanical equations

In the Lagrangian description mass conservation implies that the massm inside a sphere
of radiusr is given by to the integral of the densityρ over the volume of the sphere. In
differential form this may be expressed as (see, e.g.,Kippenhahn & Weigert 1990)

∂r

∂m
=

1

4πr2ρ
(2.1)

Momentum conservation requires that the acceleration∂2r
∂t2

of a mass shell is com-
posed of the gravitational acceleration−Gm

r2 (G is the gravitational constant) and the
acceleration4πr2 ∂p

∂m
caused by the pressure gradient. It may thus be written as

∂p

∂m
= − Gm

4πr4
− 1

4πr2

∂2r

∂t2
(2.2)

In the case of a hydrostatic configuration, the acceleration caused by the pressure gradi-
ent balances the gravitational acceleration and we have∂2r

∂t2
= 0.

2.1.2 Energy conservation

The luminosityL passing through a spherical mass shell of a star may be affected by
the following heat sinks and sources: Firstly, if nuclear reactions are taking place inside
the shell, the nuclear energy generated and any energy losses caused by the escape of
neutrinos have to be taken into account. Secondly, the heat content of the shell may

13



CHAPTER 2. STELLAR STRUCTURE

change with time. The change of the luminosity across the mass shell is therefore given
by

∂L

∂m
= ε− ∂q

∂t
(2.3)

whereε is the specific nuclear energy generation rate, including possible energy losses
by neutrinos, andq is the specific heat content. According to the first law of thermody-
namics, the change of the heat content of a mass element is composed of a change of its
internal energydE and the mechanical workpdV done on its surroundings. Therefore,
equation2.3may also be written as

∂L

∂m
= ε− p

ρ2

∂ρ

∂t
− ∂E

∂t
(2.4)

Alternatively, using the second law of thermodynamics (dq = Tds, wheres is the spe-

cific entropy) and introducing the definitionsα = d log ρ
d log p

∣∣∣
T

andδ = − d log ρ
d log T

∣∣∣
p

the relation

∂L

∂m
= ε− cp

∂T

∂t
+
δ

ρ

∂p

∂t
(2.5)

can be derived (see, e.g.,Kippenhahn & Weigert 1990). cp is the specific heat at constant
pressure. Depending on the context, different formulations of energy conservation may
be appropriate.

2.1.3 Energy transport

For the stellar models considered in this study, energy is transported by convection and
radiation. The luminosityL is therefore composed of a convective (Lcon) and a radiative
(Lrad) part. In the interior of a star, energy transport by radiation can be described by a
diffusion equation, i.e., the radiative luminosity is proportional to the mean free path of
the photons and the gradient of the energy density. Expressing the gradient of the energy
density in terms of the temperature gradient we obtain

∂T

∂m
= −GmT

4πr4p
∇ (2.6)

with

∇ = ∇rad =
3

16πacG

κpLrad

mT 4
(2.7)

wherea is the radiation constant,c the speed of light andκ the Rosseland mean of the
opacity of the stellar matter (see section2.1.5).

Convection sets in when the temperature gradient becomes too steep. According to
the Schwarzschild criterion for the onset of convection, this is the case if

d log T

d log p
≥ d log T

d log p

∣∣∣∣
ad

(2.8)

Then∇ in equation2.6 is equal to∇mlt, which is determined here by use of the mixing
length theory (Böhm-Vitense 1958).
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2.2. STELLAR ENVELOPE MODELS

2.1.4 Equation of state

To close the system of equations a relation between pressurep, densityρ and temperature
T is needed. This is determined by the properties of the stellar matter. For the models
considered, the stellar matter can be described as a mixture of ideal gas and radiation.
Pressurep and internal energyE are then given by

p =
R

µ
ρT +

1

3
aT 4 (2.9)

E =
3

2

R

µ
T +

aT 4

ρ
+ Eion (2.10)

R is the gas constant andµ the mean molecular weight, which depends on ionisation.
Eion contains the contribution of ionisation to the internal energy. It has to be calculated
from statistical equilibrium of the different ionisation states using the Saha equation.
Ionisation energies are provided by atomic physics (see, e.g.,Kippenhahn & Weigert
1990).

2.1.5 Opacity

The Rosseland mean of the opacity is calculated from the frequency dependent opacity
coefficientκν by averaging with the frequency dependent fluxFν :

κ =

∫∞
0
κνFνdν∫∞

0
Fνdν

(2.11)

For large optical depths the fluxFν is determined by the Planck functionBν(T ), and we
get

1

κ
=

π

acT 3

∫ ∞
0

1

κν

∂Bν(T )

∂T
dν (2.12)

The opacity coefficientκν has to be determined by atomic physics. In this study, the
OPAL tables (Iglesias, Rogers & Wilson 1992, Rogers & Iglesias 1992) have been used
for the Rosseland mean of the opacity.

2.2 Stellar envelope models

In the present study, the evolution of strange mode instabilities in the non-linear regime
is examined. Since the stellar core remains largely unaffected by this type of instability,
it is sufficient to restrict the computations to the stellar envelope, replacing the stellar
core by suitable boundary conditions. Stellar envelopes can be constructed for given
luminosityL, effective temperatureTeff massM and chemical composition(X, Y, Z),
i.e., the observed chemical composition and position in the HR diagram together with an
estimate for the mass.

15



CHAPTER 2. STELLAR STRUCTURE

In the case of a hydrostatic stellar envelope in thermal equilibrium, equations2.1,
2.2, 2.4and2.6are considerably simplified. All time derivatives and the nuclear energy
generation vanish. Therefore, the luminosity is constant in the envelope, and the problem
is reduced to a third order ordinary differential system:

∂r

∂m
=

1

4πr2ρ
(2.13)

∂p

∂m
= − Gm

4πr4
(2.14)

∂T

∂m
= −GmT

4πr4p
∇ (2.15)

∇ is determined according to the mixing length theory. To integrate equations2.13-
2.15, three boundary conditions are needed. One of them is given by the effective tem-
peratureTeff atm = M . Using the Stefan Boltzmann law

L = 4πR2σSBT
4
eff (2.16)

the radiusR of the photosphere is determined by the given luminosity and effective
temperature. (The Stefan Boltzman constantσSB is equal toac

4
.) The third boundary

condition is provided by the photospheric pressurepeff . It can be estimated by integrating
the equation of hydrostatic equilibrium2.13 and the definition of the optical depthτ ,
dτ = −κρdr, from infinity to the photosphere. Denoting the opacity at the photosphere
by κeff

peff =
2

3

GM

R2

1

κeff

(2.17)

is obtained. With these boundary conditions the differential system2.13-2.15 poses
an initial value problem which is integrated from the photosphere to some maximum
temperatureTmax. The numerical integration can be carried out by standard methods.
We use a Runge-Kutta predictor corrector scheme which is accurate to fourth order (see,
e.g.,Press et al. 1992).
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3. Linear stability analysis

3.1 Radial perturbation equations

We consider the stability of hydrostatic envelope models with respect to infinitesimal
radial perturbations. Let the hydrostatic background model be given by the functions
r0(m), p0(m), T0(m) andL0(m) and the corresponding perturbations be denoted by
r′(m), p′(m), T ′(m) andL′(m) such that

x(m, t) = x0(m) + x′(m, t) for x ∈ {r, p,T,L} (3.1)

Assuming the perturbations to be infinitesimal, equations2.1, 2.2 ,2.5 and2.6 together
with the equation of state and the opacity yield to first approximation a system of linear
differential equations for the perturbations. Since the background model is time inde-
pendent, the separation ansatz

x′(m, t) = x1(m) · eiωt for x ∈ {r, p,T,L} (3.2)

represents a solution and yields a system of ordinary differential equations with indepen-
dent variablem andω as a parameter. Together with suitable boundary conditions we
obtain a boundary eigenvalue problem for the eigenfrequencyω. In general,ω will be
complex, i.e.,ω = ωR+iωI . Depending on the sign ofωI , perturbations will grow or de-
cay exponentially. Negative values ofωI indicate instability, positive values correspond
to damped oscillations.

A form of the linear perturbation equations, which is particularly suitable for a nu-
merical treatment was given by Baker and Kippenhahn (1962). Apart from a slight
modification which avoids singularities in the coefficients (Gautschy & Glatzel 1990a)
we adopt essentially their notation. Convection is treated in the standard frozen in ap-
proximation (seeBaker & Kippenhahn 1965), i.e., the convective flux is kept constant
and equal to its value in the hydrostatic envelope. The complete set of equations, includ-
ing terms arising from nuclear energy generation which vanish for the envelope models
considered here, then reads

x2ζ ′ = C∗4(3ζ + C5p− C6t) (3.3)

x2l′ = C∗1(C∗10

dL0

dm
l − [(iσ) + C10C12]p+ [(iσ)C2 − C10C11]t) (3.4)

p′ = −(4 + C3σ
2)ζ − p (3.5)

t′ = C7(−4ζ + C13l + C8p− C9t) (3.6)
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ζ, l, p andt are the relative perturbations of radius, luminosity, pressure and tempera-
ture, respectively. The independent variable isln p0. Correspondingly, dashes denote
derivatives with respect toln p0, i.e. [. . . ]′ = d

d ln p0
[. . . ]. σ = ω

√
R3/3GM is the

eigenfrequency normalised to the global free fall timeτff andx = r/R is the relative
radius.

The coefficients in equations3.3-3.6are given by

C1 =

√
4πρ

G

4πr4P 2δ

mLρ
, C2 =

cpρT

Pδ

C3 =
4πr3

m
ρ, C4 =

Pr

Gmρ

C5 = α, C6 = δ

C7 = ∇0, C8 =

(
∂ log κ

∂ logP

)
T

C9 = 4−
(
∂ log κ

∂ log T

)
P

, C10 =
ε

L

4πr4P

GmC1

C∗10 =
4πr4P

LGmC1

, C11 =

(
∂ log ε

∂ logP

)
T

C12 =

(
∂ log ε

∂ log T

)
P

, C13 =
L

LR
(3.7)

wherecp is the specific heat at constant pressure,LR the radiative luminosity andρ =
3M

4πR3 the mean density of the star. All quantities in equations3.7refer to the background
model. To avoid singularities in the coefficientsC∗1,4 = x2C1,4 are used instead ofC1

andC4. The latter diverge asr−2 for r → 0. For envelope modelsC10, C11 andC12

vanish.

3.1.1 Boundary conditions

Together with two inner and two outer boundary conditions the system of the linear
ordinary differential equations3.3-3.6poses a boundary eigenvalue problem. Two of the
boundary conditions are obtained from the condition that the solution has to be regular
atx = 0:

3ζ + C5p− c6t = 0

c∗10
dL0

dm
l − (iσ + C10C11)p+ (iσC2 − C10C12)t = 0 (3.8)

The choice of the outer boundary conditions is ambiguous, since the boundary of the
model does not coincide with the physical boundary of the star. For the thermal outer
boundary condition we require the Stefan Boltzmann law to be valid, which in its linear
form reads

2ζ − l + 4t = 0 (3.9)

18



3.1. RADIAL PERTURBATION EQUATIONS

For the mechanical outer boundary condition we consider three possibilities:

p = 0

(4 + 3σ2)ζ + p = 0

αp− δt = 0 (3.10)

The first condition corresponds to a force free boundary. The second condition is appro-
priate for an isothermal atmosphere and was derived by Baker and Kippenhahn (1965).
They showed, that in this case the gradient of the relative pressure perturbation has to
vanish at the outer boundary. Finally, the third condition implies a vanishing Lagrangian
density perturbation.

Even if the ambiguity in the mechanical outer boundary condition seems unsatisfac-
tory, it turns out to have negligible influence on the results of the linear stability analysis.
This is due a strong gradient of the sound speed just below the photosphere, which leads
to an almost complete reflection of sound waves, thus reducing the influence of the outer
boundary condition.

3.1.2 Approximations

The solution of the perturbation equations3.3-3.6(see section3.4) yields a spectrum of
eigenfrequenciesσ and the corresponding eigenfunctions with the relative perturbations
of radius (relative Lagrangian displacement), pressure, temperature and luminosity as
components. Both modes and stability properties may have various physical origins. To
distinguish between different types of modes and different physical processes several ap-
proximations to equations3.3-3.6may be considered. To obtain a continuous transition
from the exact treatment to the approximation, it is convenient to introduce a parameter
Φ with Φ = 1 corresponding to the exact problem andΦ→ 0,∞ to the approximation.

Secular approximation

Disregarding the restoring forces responsible for the existence of acoustic modes, the
secular spectrum is isolated. This is achieved by introducing the parameterΦ into the
Euler equation according to

p′ = −(4 + Φ · C3σ
2)ζ − p (3.11)

The limit Φ → 0 corresponds to vanishing acceleration. Should the considered mode
still exist in the secular approximation is has to be of thermal origin. Vice versa, should
the considered mode disappear in this limit, it has a mechanical origin.

Usually the acoustic and secular spectra are well separated, where the ratio of secular
and acoustic eigenvalues corresponds to the ratio of Kelvin-Helmholtz and dynamical
timescale. In the normalisation chosen this implies|σ| � 1 for the secular spectrum.
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CHAPTER 3. LINEAR STABILITY ANALYSIS

Adiabatic approximation

The local dynamical timescaleτdyn is defined as the time needed by a sound wave to
travel across a shell of thickness∆r. The local thermal timescaleτtherm is the time
needed to radiate the heat content of this shell at the local luminosity. Due to the depen-
dence on∆r only the ratio of these timescales is well defined:

τtherm

τdyn

=
4πr2ρcpTcs

L
(3.12)

The adiabatic approximation is valid if the timescale for the changes of state is small
compared to that for heat exchange, i.e., if the ratio of thermal to dynamical timescale is
large. From equation3.12we deduce that the deviations from adiabaticity increase with
the luminosity to mass ratio.

In the adiabatic approximation an algebraic relation between relative temperature and
pressure perturbations exists:t = ∇ad · p. It decouples and closes the mechanical part
of the perturbation equations (3.3and3.5), thus reducing the problem to a second order
differential system. This may be written as a second order differential equation of the
form

Lζ = σ2ζ (3.13)

Together with the boundary conditions3.8and3.10the differential operatorL is self ad-
joint. Thus equation3.13represents a standard Sturm-Liouville problem, which implies
that all eigenvaluesσ2 are real. Thereforeσ is either real or purely imaginary corre-
sponding to neutrally stable oscillations or non oscillatory instabilities. On the basis of
a variational principle for equation3.13a sufficient condition for dynamical instability
can be derived (see, e.g.,Cox 1980): If the volumetric pressure weighted mean of the
adiabatic indexΓ falls below4/3, the star is dynamically unstable.

From the exact problem the adiabatic approximation is obtained by introducingΦ into
the equation for energy conservation according to

l′ = C1 · Φ · (iσ)(−p+ C2t) (3.14)

and taking the limitΦ→∞.

NAR approximation

For stars characterised by large deviations from adiabatic behaviour the non-adiabatic
reversible (NAR) or zero thermal timescale approximation provides an appropriate de-
scription. Writing the differential of the entropy as

ds = cp
α

δ

(
dp

p
− Γ1

dρ

ρ

)
(3.15)

it is evident that the entropy can be kept constant by requiring either the term in brackets
or the specific heat to vanish. The first case corresponds to the adiabatic, the second
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3.2. THE WORK INTEGRAL

to the NAR approximation. Physically, the NAR-approximation implies that, due to a
negligible specific heat of the envelope, luminosity perturbations cannot be sustained.
Changes in the heat content of the stellar matter are radiated away instantly. Therefore,
this approximation is valid if the ratio of thermal to dynamical timescaleτtherm/τdyn is
much smaller than unity. Should an instability exist in the NAR-limit the classicalκ-
mechanism is ruled out as its origin, since this Carnot-type process relies on a finite heat
capacity.

Writing the coefficientC1 in equation3.7as

C1 =
r2

0p0

Gmρ0

√
ρ0

Γ1p0

∇ad
τtherm

τdyn

(3.16)

we see that the NAR-approximation is equivalent to the limitC1 → 0 (τtherm/τdyn ∝ cp).
Therefore, it can be obtained from the exact problem by introducingΦ into the equation
of energy conservation according to

l′ = C1 · Φ · (iσ)(−p+ C2t) (3.17)

and considering the limitΦ → 0. ForΦ = 0 the solutions of the system3.3-3.6exhibit
an additional symmetry: Since the term proportional toiσ vanishes, the solutions occur
in complex conjugate pairs, i.e., withσ = σR + iσI σ

∗ = σR − iσI is a solution too.
The physical meaning of this symmetry is the time reversibility of the system (hence the
termnon-adiabaticreversible approximation).

3.2 The work integral

The work integral is a widely used tool to identify which regions in the star drive or
damp pulsations (see, e.g.,Baker & Kippenhahn 1962or Cox 1980). For many cases
it allows to identify the particular physical mechanisms responsible for instability. In
general, it is interpreted as the amount of energy transferred within one pulsation period
from thermal to mechanical energy by a Carnot-type process. This interpretation cannot
hold for instabilities present in the NAR approximation, since Carnot processes rely on a
finite specific heat. Furthermore, the work integral is derived for quasi periodic motions
assuming a small ratioσI/σR. For the instabilities considered this ratio can be of order
unity, thus violating the prerequisite of periodicity. In other words, a meaningful time
average, necessary to define the work integral, does not exist.

To overcome this problem, Glatzel (1994) gave an alternative derivation of the work
integral, replacing the ill defined time average by an ensemble average over equivalent
states of the system. Considering a previously determined eigenfunction, the ambiguity
in its phase factor is used to define the average (for a complete derivation, see appendix
B). The result is the expression

σi
σr
∝
∫
dV

1

ρ
Im(∆p†∆ρ†∗) (3.18)
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for the work integral, which may be interpreted in the usual way ((·)† denotes the spatial
part of the eigenfunction and(·)∗ complex conjugation). The sign of the integrand in
equation3.18determines whether a region in the star has a damping or exciting influ-
ence. The regions inducing instability, and with additional information also the mecha-
nism responsible for it may thus be identified.

For an algebraic relation between (Lagrangian) pressure and density perturbation
∆p† = C · ∆ρ† with C ∈ R the integrand in equation3.18 vanishes, implying sta-
bility (σI = 0). Physically, a phase shift between pressure and density perturbation is
necessary for instability. The algebraic relation implies vanishing phase shift.

We note, that in general instability is attributed to the classicalκ mechanism, once
driving is found close to an opacity maximum. However, as the work integral only indi-
cates the position of driving, this conclusion has to be drawn with caution. For example,
in ionisation zones opacity maxima and low values ofβ are often found simultaneously
(β is the ratio of gas pressure to total pressure). Thus instabilities depending on a low
value ofβ andκ-instabilities cannot be distinguished on the basis of the differential work
integral.

3.3 Mode interaction

Considering the acoustic spectrum of stellar models as a function of stellar parameters
such as mass or effective temperature, crossings of eigenfrequencies, i.e., mode res-
onances, are a common phenomenon. The basic properties of mode interactions will
be discussed briefly in this section following the analysis by Cairns (1979) and Glatzel
(1987).

Let us consider a system with two complex eigenfrequenciesσ1 andσ2. If σ1 andσ2

are independent, they are given by separate dispersion relations:

D1(σ1) = 0 and D2(σ2) = 0 (3.19)

If, however, a physical coupling between the modes exists, the two eigenfrequencies are
the solutions of a single dispersion relation of the form

D1(σ) ·D2(σ) = ε(σ) (3.20)

whereε(σ) characterises the coupling of the modes. For weak coupling, i.e., forε �
D1, D2, the solution of equation3.20is approximately given by equation3.19. If, how-
ever,D1 andD2 have common roots, i.e., if the “independent” eigenfrequenciesσ1 and
σ2 cross each other, the conditionε� D1, D2 cannot be satisfied. In this case, i.e., at the
resonances ofσ1 andσ2, the coupling between the modes has to be taken into account.

At a mode crossingσ1 = σ2 =: σc, whereσ1 andσ2 are determined by equation3.19
we introduce the differenceδ of the uncoupled eigenvalues and the difference∆ of the
correct eigenvalueσ and the uncoupled eigenvalueσ1 as new variables:

δ = σ2 − σ1 and σ = σ1 + ∆ (3.21)
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3.3. MODE INTERACTION

Using equations3.19and3.21we expandD1 andD2 in terms of∆ andδ and obtain to
first order in the approximation:

D1(σ) = ∆
∂D1

∂σ

∣∣∣∣
σc

D2(σ) = (∆− δ) ∂D2

∂σ

∣∣∣∣
σc

(3.22)

Sinceε is assumed to be small we may writeε(σ) ≈ ε(σc). Inserting this together with
equation3.22into equation3.20a quadratic equation for∆ is obtained. Its solution is
given by

∆ =
σ2 − σ1

2
±

[
(σ2 − σ1)2

4
+

ε(σc)
∂D1

∂σ

∣∣
σc
· ∂D2

∂σ

∣∣
σc

] 1
2

(3.23)

Sufficiently far for the resonance (i.e., if the first term in brackets is much larger than the
second one) the coupling term containingε may be neglected and we get the uncoupled
eigenvaluesσ = σ1 andσ = σ2 as a solution. Near the crossing point we haveσ1 ≈ σ2

and the solution is given by

∆ = ±

[
ε(σc)

∂D1

∂σ

∣∣
σc
· ∂D2

∂σ

∣∣
σc

] 1
2

(3.24)

Let us now consider the case whereD1, D2 and ε are real functions. Then the sign
of the term under the square root of equation3.24 determines whether we get a pair
of complex conjugate eigenvalues or a pair of non-crossing real eigenvalues (provided
σ1 andσ2 are real). The first case, where the eigenvaluesσ are given by a complex
conjugate pairσ = σ1 ± i |∆|, is usually addressed as “instability band”. The second
case, where the real eigenfrequencies avoid each otherσ = σ1 ± |∆|, is addressed as
“avoided crossing”. Qualitatively, these coupling schemes are still valid ifσ1 andσ2 are
complex. The modification then consists of a superposition of the coupling effect and
the intrinsic imaginary parts ofσ1 andσ2. Coupling via avoided crossing and instability
band is illustrated in Figure3.1.

3.3.1 Stability of massive main-sequence stars

Mode coupling is found in a stability analysis of massive main sequence stars (Glatzel &
Kiriakidis 1993a). These authors considered a zero age main sequence for the chemical
compositionX = 0.7, Y = 0.27, Z = 0.03 with masses betweenM = 40M� and
M = 120M�. The linear stability analysis was performed following the frequencies
of the lowest order modes as a function of the mass of the star, i.e., with respect to the
previous section, the mass corresponds to the physical parameterλ in Figure3.1.

Figure 3.2 shows the real (σr) and imaginary (σi) parts of the lowest order radial
eigenfrequencies as a function of the mass of the models. Following the frequencies
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Figure 3.1: Coupling schemes for the resonance of two modes. Real and imaginary
parts of the eigenfrequenciesσ1 andσ2 are given as a function of some parameterλ.
The decoupled frequencies (left hand side) may couple to form an avoided crossing or
an instability band (right hand side).

from low to high masses, a bewildering complexity of the modal diagram is encountered,
including various mode crossings.

In order to classify the different modes, their counterparts in the NAR approximation
have been calculated. The result is shown in Figure3.3, where eigenfrequencies are neu-
trally stable or occur in complex conjugate pairs, according to the discussion presented
in section3.1.2. This facilitates the mode classification considerably. From Figure3.3
we deduce, that two sets of modes are necessary to describe the modal diagram, one
of which, consisting of neutrally stable modes with almost constant frequency, may be
identified with the ordinary acoustic spectrum. The second set, consisting of complex
conjugate mode pairs (labelled bySn) is formed at frequencies aboveσr ≈ 6 by merg-
ing and coupling of neutral modes, corresponding to mode coupling by instability bands.
Having very high imaginary parts, the real parts of the eigenfrequencies decrease with
mass, thus crossing the ordinary acoustic spectrum.

By gradually switching on the irreversible term in the energy equation the frequen-
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3.3. MODE INTERACTION

Figure 3.2: Real (σr) and imaginary (σi) parts of the eigenfrequencies normalised by the
global free fall time of the lowest order radial modes as a function of mass for ZAMS
models. In (a) large dots indicate unstable modes. This figure is taken from Glatzel &
Kiriakidis, 1993a.
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Figure 3.3: Same as Figure3.2, but according to the NAR approximation. Note that
eigenvalues occur in complex conjugate pairs. This figure is taken from Glatzel & Kiri-
akidis, 1993a.

cies of theSn modes could be followed continuously to their counterparts in the exact
problem, thus enabling a classification of modes in Figure3.2. During this process,
the symmetry of the eigenvalues is lost, i.e., the complex conjugate unstable (Snu) and
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damped (Sns) NAR branches do not show any symmetry or relation in the exact prob-
lem. Except for theS1u branch, which is unstable for masses above58M� all S modes
become stable in the exact treatment. Within the first threeSn pairs onlyS1u and
S3u show interactions with the ordinary acoustic spectrum, where crossings with ordi-
nary modes above the first (withS1u) or third (withS3u) overtone have unfolded into
avoided crossings.

This discussion demonstrates that the NAR approximation is useful when interpret-
ing modal diagrams, since then the mode coupling phenomena are obtained in their pure
form. For the models considered by Glatzel and Kiriakidis (1993a), the NAR approxima-
tion yields only qualitatively correct results and eigenfrequencies can differ significantly
in the exact treatment and the NAR approximation. For other objects, such as Wolf-
Rayet stars, the NAR treatment yields even quantitatively correct results (seeGlatzel,
Kiriakidis & Fricke 1993andKiriakidis, Glatzel & Fricke 1996).

3.3.2 Physical interpretation

Mode coupling phenomena are well known in many branches of physics as, e.g., hydro-
dynamics (Hansen et al. 1976, Glatzel 1987) and plasma physics (Chen 1987). There,
the occurrence of avoided crossings and instability bands is sometimes explained in
terms of the “pseudo energy” of the interacting modes: Avoided crossings occur if two
modes cross whose energy has the same sign. If the sign differs instability bands are
generated. In this case growing amplitudes may be interpreted by an exchange of energy
among the modes, while the total energy of the system is kept constant. However, in the
case of stellar pulsations, no suitable definition for the mode energy has been found so
far.

In the context of stellar oscillations, resonances between modes were first discussed
by Osaki (1975) who investigated the non-radial adiabatic pulsations of a10M� star.
Since then, also instabilities associated with mode coupling phenomena have been iden-
tified in a variety of stars both for radial and non-radial perturbations. These include ex-
treme helium stars (Glatzel & Gautschy1992), massive stars (Glatzel & Kiriakidis 1993a,
Glatzel & Kiriakidis 1993b, Kiriakidis, Fricke & Glatzel 1993, non-radial:Glatzel &
Mehren 1996), Wolf-Rayet stars (Glatzel, Kiriakidis & Fricke 1993, non-radial:Glatzel
& Kaltschmidt 2002), Luminous Blue Variables (Kiriakidis 1992) and the central stars
of planetary nebulae (Gautschy 1993). In all cases large deviations from adiabatic be-
haviour appear to be important, i.e., for instability the ratio of thermal to dynamical
timescale has to be small for a large fraction of the stellar envelope. In other words, the
ratio of luminosity to mass has to be large (> 104 in solar units). All models with these
properties exhibit a pronounced core-envelope structure.

Mode coupling may provide the impression of additional modes (see section3.3.1).
Their unexpected appearance gave rise to the term “strange modes”. Concerning their
physical origin Gautschy & Glatzel (1992) argued that strange modes are of acoustic
rather than of thermal origin (Shibahashi & Osaki 1981; Zalewski 1992). A mechanical
origin is supported by the fact that the frequencies of strange modes are related to the
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sound travel time between the stellar surface and the position of the outermost opac-
ity peak (Glatzel & Kiriakidis 1993b). Finally, the instabilities associated with strange
modes do exist in the NAR approximation. This proves their mechanical origin, since in
this approximation thermal modes as well as the classical instability mechanisms (κ and
ε) are excluded.

In a subsequent publication, Glatzel (1994) considered the perturbation problem for
vanishing luminosity perturbations (NAR-approximation) and in the limit of negligible
gas pressure (β � 1). He showed, that under these conditions the pressure perturbation
is proportional to the density perturbation for high and low wavenumbers. For low wave
numbers the sound velocity defined by this proportionality is given by

c2
κ =

dp

dρ

∣∣∣∣
κ

=
4κρ
−κT

p0

ρ0

(3.25)

whereκρ andκT denote the logarithmic derivatives of the opacity with respect to density
and temperature, respectively. It becomes imaginary for positive values ofκT , which
corresponds to evanescent acoustic waves. As a consequence, regions havingκT > 0 act
as acoustic barriers dividing the star into several acoustic cavities, each of them providing
a separate acoustic spectrum. Each opacity peak (atlog T ≈ 5.3, 4.7, 4.0, due to heavy
elements, HeII and HeI ionisation, respectively) is associated with a region havingκT >
0, and therefore with an acoustic barrier whose position may change during the evolution
of the star. The acoustic spectrum may therefore be understood as a superposition of
different sets of modes belonging to the various acoustic cavities and resonances between
them.

With respect to a mechanism of the instabilities Glatzel (1994) demonstrated that a
phase shift between pressure and density perturbation is a necessary condition for in-
stability (see section3.2). For high and low wavenumbers the proportionality between
pressure and density perturbation implies a vanishing phase lag and thus only allows for
neutrally stable oscillatory modes. However, in an intermediate range of wave numbers
whose width depends onβ pressure and density perturbation are connected by a differ-
ential relation, which provides a phase shift between them and thus produces damped
and excited solutions in complex conjugate pairs (NAR-approximation). According to
this study in addition to short thermal timescales dominant radiation pressure is essential
for the instability to exist. These conditions prevail in the extended envelopes of hot and
luminous objects.

3.4 Numerical method

To solve the perturbation equations3.3-3.6 together with the boundary conditions3.8,
3.9and3.10we use a method proposed by Gautschy and Glatzel (1990b). It is based on
the Riccati method introduced by Scott (1973) and advanced by Davey (1977). As a first
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step the four dependent variables are redistributed to two complex vectors:

u =

(
ζ
l

)
and v =

(
t
p

)
The system3.3-3.6can then be written in the form

Λu′ = Au + Bv

v′ = Cu + Dv (3.26)

with Λ = diag(x2, x2) and2×2 matricesA, B, C andD, which contain the background
coefficients of equations3.3-3.6. Introducing the2× 2 Riccati matrixR and its inverse
S = R−1 by

u = Rv (3.27)

v = Su (3.28)

a nonlinear matrix differential equation forR and S, respectively, is obtained using
equations3.26:

ΛR′ = AR + B− ΛR(CR + D) (3.29)

ΛS′ = Λ(C + DS)− S(A + BS) (3.30)

These non linear matrix differential equations are the Riccati equations. In the standard
form Λ is the unit matrix. For givenR or S v or u satisfy a linear differential equation:

v′ = (CR + D)v

u′ = Λ−1(A + BS)u (3.31)

Both the boundary conditions at the centre (3.8) and at the surface (3.9, 3.10) can be
written in the form

Eu = Fv (3.32)

whereE andF are2 × 2 matrices, which can be read off from equations3.8-3.10. For
the Riccati matrixR and its inverseS these conditions imply

R = E−1F and S = F−1E (3.33)

Depending on which of the matricesE or F is singular atx = 0, 1 this yields unam-
biguous values for the Riccati matrixR or its inverseS there. Thus the boundary value
problem has been transformed into an initial value problem. The matricesR or S can
then be integrated from the boundariesx = 0, 1 towards some pointxfit within the
integration interval. Requiring the variablesu andv to be continuous atxfit we have

uin(xfit) = uout(xfit) (3.34)

vin(xfit) = vout(xfit) (3.35)
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where the indices “in” and “out” denote the quantities determined by the integration
from x = 0 andx = 1 to xfit, respectively. For the matricesR andS the continuity
requirements imply

(Rin(xfit)− (Rout(xfit))v = 0

(Sin(xfit)− (Sout(xfit))u = 0 (3.36)

A necessary condition for equations3.36to have non-trivial solutions is

det(Rin(xfit)− (Rout(xfit)) = 0

det(Sin(xfit)− (Sout(xfit)) = 0 (3.37)

The only free parameter in these equations is the complex eigenfrequencyσ. There-
fore they represent the dispersion relation forσ and the problem of determining the
eigenfrequencies has thus been reduced to finding the (complex) root of a complex equa-
tion. The latter can be achieved iteratively by using, e.g., a complex secant method (see,
e.g., Castor 1971). If xfit corresponds to one of the boundaries the standard Riccati
method described by Davey (1977) is recovered. Apart from singularities inR andS,
the Riccati procedure can may be applied equivalently either in terms ofR or S. To
avoid singularities, the equations forS or R are used, if| det R| or | det S| exceeds
unity, respectively.

One of the main advantages of the Riccati method is that initial guesses for the eigen-
valuesσ can be obtained independently and without any previous knowledge by evalu-
ating the determinant function3.37. Another advantage is that the independent variable
can easily be changed to achieve the optimal resolution for the integration. In the stellar
centre the relative radiusx = r0/R changes rapidly, whereasln p0 varies quickly in the
outer envelope. Therefore,x andln p0 are chosen as independent variables for the in-out
and out-in integration, respectively.

Once the eigenvalues are known and the Riccati matricesR andS have been deter-
mined, equations3.31can be integrated to calculate the eigenfunctions. Starting with
the values ofv atxfit as determined by equation3.36the integration is performed from
the fit point towards the boundaries.u is then determined byR andv usingu = Rv.
We emphasise that for numerical stability,v andR have to be integrated in opposite
directions. Moreover,R andv must not be integrated simultaneously.

Compared to other shooting methods, the Riccati method has the advantage that at
least one direction of integration is numerically stable, where the freedom in the choice
of xfit may be used to guarantee numerical stability. It turns out that the stability require-
ments still allow for a wide range of possible values forxfit. The remaining freedom is
used to provide a functional behaviour of the determinant function which allows for fast
and robust eigenvalue iteration. For optimum convergence it may be necessary to use
different values ofxfit for different modes.
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To study the final results of strange mode instabilities in massive stars their evolution
has to be followed into the non linear regime. After the linear phase of exponential
growth the amplitudes saturate due to non-linear effects such as energy dissipation by
shock waves. Whether strange mode instabilities ultimately lead to the loss of mass from
the object depends on the amplitude reached. If velocity amplitude exceeds the escape
velocity at the stellar surface mass is lost to the interstellar medium. Glatzel et al. (1999)
have reported, that for particular models the amplitude has exceeded the escape velocity,
but so far this has not been verified (Dorfi & Gautschy 2000). If mass loss is found to be
a periodic process, mean mass loss rates could directly be determined from non-linear
simulations.

The instabilities investigated here have been identified not only for radial, but also
for non-radial perturbations (Glatzel & Mehren 1996; Glatzel & Kaltschmidt 2002) with
growth rates that are comparable to those found for radial instabilities. The results of
purely radial calculations therefore have to be interpreted with some caution. Consider-
ing the spatial structure of the nebula surrounding LBVs, such as the Homunculus nebula
surrounding Eta Carinae (Figure1.3), non-radial calculations appear to be indicated.

The results of the non-linear simulation of the evolution of strange mode instabilities
strongly depend on an appropriate numerical treatment. In particular, special attention
has to be paid to the strict conservativity of the applied difference scheme, since the ki-
netic energy contained in the perturbation is typically smaller than the total energy of the
system by several orders of magnitude. Even if the conservation of the total energy is ap-
proximately satisfied, violation of strict conservativity can therefore lead to considerable
errors. This problem is overcome by the use of a fully conservative difference scheme,
like that proposed by Fraley (1968) and Samarskii and Popov (1969). It relies on a
Lagrangian description and time discretisation is fully implicit. A consistent extension
of the code to two dimensions based on the method of support operators (Samarskii et.
al. 1981; Ardelyan & Gushchin 1982) is currently being developed (seeChernigovski,
Glatzel, & Fricke 2000).

4.1 Relaxation of initial models

The spatial distribution of gridpoints of an envelope integration as described in section
2.2 is in general not compatible with the numerical scheme used in the dynamical cal-
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culations. In particular, the number of gridpoints is too high. After the construction of
the hydrostatic envelope model it is therefore adapted to a suitable grid with a reason-
able number of gridpoints (∼ 500-1000) but still properly resolving ionisation zones and
instability regions.

For incompatible difference schemes, numerical errors induce perturbations with am-
plitudes in the non-linear regime. This problem may be overcome by damping the arti-
ficial perturbations using dissipation and viscosity or by a pseudo time evolution of the
grid (Dorfi & Drury 1987; Dorfi & Feuchtinger 1995; Dorfi 1998). Using these tech-
niques, however, the stellar models have to be perturbed externally to trigger the physical
instability and envelope pulsations. Typically, initial velocity amplitudes of the order of
10 km sec−1 amounting to 10 per cent of the local sound speed are then required (see,
e.g.,Dorfi & Gautschy 2000).

In our approach the adaption of the hydrostatic envelope model to a suitable grid is
achieved by reintegrating the envelope using the same difference scheme as that applied
for the dynamical calculations and using the results of the standard envelope integra-
tion as initial guesses for the integration procedure. It implies, that - apart from the
initial boundary values - only the convective flux is taken from the predetermined enve-
lope model. Using this approach, hydrostatic equilibrium is satisfied to within round-off
errors, rather than toO( 1

N
), which is the difference between incompatible difference

schemes (N is the number of gridpoints). Thus, no artificial, numerically induced per-
turbations are present and no additional damping is required. Physical instabilities and
stellar pulsations then develop without any further (unphysical) external perturbation
from numerical noise, which (for the models considered here) corresponds to velocities
of the order of a few cm sec−1.

4.2 Non-linear equations

The evolution of instabilities of a stellar envelope is followed into the non-linear regime
assuming spherical symmetry and adopting a Lagrangian description. Rotation and mag-
netic fields are neglected. The independent variables are the timet and the (normalised)
masss which is defined byds = ρ(r, 0)r2dr. For application of the Fraley scheme
(Fraley 1968), the equations to be solved are written as

∂

∂t

(
1

ρ

)
=

∂(r2v)

∂s
(4.1)

∂v

∂t
= −r2∂p

∂s
− 4πGMr

r2
(4.2)

∂ε

∂t
= −p∂(r2v)

∂s
− ∂(r2(Frad + Fcon))

∂s
(4.3)

Frad = −θr2∂T

∂s
(4.4)
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They correspond to mass conservation (4.1), momentum conservation (4.2), energy con-
servation (4.3) and the diffusion equation for energy transport (4.4). ρ, p, T , r, v andε
denote density, pressure, temperature, radius, velocity and specific internal energy, re-
spectively, and∂

∂t
is the substantial time derivative. Apart from a factor4π Mr is the

mass inside a sphere of radiusr,G is the gravitational constant and

θ =
4acT 3

3κρ
(4.5)

is the diffusion coefficient, which contains the radiation constanta, the speed of light
c and the opacityκ. The latter is given by the OPAL tables (Iglesias, Rogers & Wil-
son 1992; Rogers & Iglesias 1992). Frad andFcon are the radiative and the convective
flux, respectively. The latter is kept constant during the evolution and equal to its initial
value, in accordance with the standard frozen in approximation (seeBaker & Kippen-
hahn 1965). The system of equations is closed by the definition of the velocityv = ∂r

∂t

and the equations of statep = P(ρ, T ) andε = E(ρ, T ).
Since the instabilities are localised in the outer envelope, the evolution of the core is

neglected. Its properties are taken into account by imposing time independent boundary
conditions (i.e., by prescribing luminosity, [vanishing] velocityv and [constant] radius)
at the bottom of the envelope. At the outer boundary, the gradient of heat sources is
required to vanish:

grad(divF ) = 0 (4.6)

This boundary condition implies (by using equations4.1,4.3 and4.4) boundary values
for the temperatureT and the pressurep. It is chosen to ensure that outgoing shocks pass
the boundary without reflection.

4.3 Numerical method

The equations governing the evolution of instabilities in the stellar envelope (equations
4.1-4.4) are discretised on a staggered mesh such that the radiusr, the velocityv, the
radiative and convective fluxFrad andFcon and the mass inside a sphere of radiusr (in-
cluding the mass of the core)Mr/4π are defined on the nodes of the grid, whereas the
densityρ, the pressurep, the specific internal energyε, the temperatureT and the diffu-
sion coefficientθ are defined in the cells of the grid. Thus we obtain for the discretised
form of equations4.1-4.4(

1

ρ̂i
− 1

ρi

)
· 1

τ
=

(Ri+1 · v(0.5)
i+1 −Ri · v(0.5)

i )

mi

(4.7)

v̂i − vi
τ

= −Ri ·
(g

(α)
i − g

(α)
i−1)

mi

− 4πGMri

r̂iri
(4.8)
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ε̂i − εi
τ

= −g(α)
i ·

(Ri+1 · v(0.5)
i+1 −Ri · v(0.5)

i )

mi

−
Ri+1 · (F (σ)

rad,i+1 + Fcon,i+1)

mi

+
Ri · (F (σ)

rad,i + Fcon,i)

mi

(4.9)

Frad,i = −θi · r2
i ·
Ti − Ti−1

mi

(4.10)

i denotes the number of the corresponding node/cell, withi increasing outwards.mi =
ρi(r

3
i − r3

i−1)/3 denotes the mass of celli andmi = 1
2
· (mi +mi−1) the mass associated

with nodei, respectively.g is the sum of pressurep and artificial viscosity (volume or
tensor artificial viscosity).

θi =
√
θi−1(pi−1, Ti−1) · θi(pi, Ti) (4.11)

maps the diffusion coefficient to the nodes of the grid.Ri is given by

Ri =
1

3
(r̂2
i + r̂iri + r2

i ) (4.12)

The definition of the velocity

r̂i − ri
τ

= v
(0.5)
i (4.13)

and the equations of state

pi = P(ρi, Ti) (4.14)

εi = E(ρi, Ti) (4.15)

close the system of equations.
The scheme is implicit with respect to time where quantitiesx̂ andx refer to the time

tn+1 andtn, respectively. (tn+1 = tn + τ , τ is the variable integration timestep.)α and
σ ∈ [0, 1] are free weight parameters, and time averaging is done according to

x(α) = α · x̂+ (1− α) · x (4.16)

In the presented simulations, the valuesα = σ = 1 have been adopted.
For time integration the system of equations4.7-4.10is split into the mechanical part,

consisting of equations4.7-4.8, and the energy part consisting of equations4.9-4.10.
Then time integration proceeds according to the following scheme:

1. KeepingT̃ andF̃rad fixed the mechanical part of the equations is advanced in
time. This yields values for the velocitỹv and the pressurẽp at timetn+1.

2. Keepingṽ andp̃ fixed, the energy part of the equations is advanced in time. This
yields values for the temperaturẽT and the radiative flux̃Frad at timetn+1.
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3. Using ṽ, p̃, T̃ andF̃rad as new guesses at the timeleveltn+1 integration according
to (1) and (2) is repeated iteratively until the full set of equations is satisfied to
within prescribed accuracy.

Since we apply an implicit difference scheme, the time advancement of each of the
steps (1) and (2) has to be done iteratively. The convergence of the procedure (1)-(3) can
be considerably accelerated, if an explicit time integration is used for the first iteration
step of (1) and (2). Then the scheme is still fully implicit since the values thus obtained
are used only as initial guesses.

For each of the steps (1)-(3) an individual error bound may be defined. Convergence
is controlled using the following criterion based on al2-norm:

1

N

(∑
i

f 2
i

) 1
2

< Ex (4.17)

wherefi denotes the relative error of a physical quantity in gridpoint or celli andN is
the total number of gridpoints.Ex is one of the prescribed error boundsEmech, Eenerg
andEtot (corresponding to the mechanical part, the energy part and the complete system
of equations, respectively) and the sum extends over all gridpoints.f 2

i contains the
weight-function of thel2-norm which is chosen to be proportional to the mass of the
corresponding cell,f 2

i ∝ mi.
The timestepτ is adjusted to provide optimal convergence for the various iteration

cycles described above. For this purpose, a range is specified for the number of iterations
within the mechanical and energy parts and the complete system. If the number of
iterations leaves this range, the timestep is reduced or increased accordingly.

4.3.1 Validation of the code

One of the major problems connected with numerical simulations is the validation of
the code, in particular the tuning of numerical parameters such as the artificial viscosity.
The latter is needed to handle shock waves, but on the other hand leads to a damping of
physical instabilities, thus possibly introducing artefacts.

Apart from standard tests, as, e.g., the Noh shock tube problem (Noh 1987), the code
is required to reproduce correctly the results of an independent linear stability analysis
(see chapter3): Once the code is given an unstable hydrostatic stellar envelope model as
initial condition, the result of the integration has to resemble the predetermined growing
mode or a superposition thereof, without any further external perturbation. As long as the
amplitudes are sufficiently small, i.e., in the linear regime of exponential growth, growth
rates and periods of unstable modes provided by the simulation have to be identical with
the eigenvalues determined by the independent linear stability analysis.

This requirement strongly reduces the range of admissible numerical parameters and
guarantees that the result of the simulation is caused by the physical rather than by a
numerical instability or by inconsistencies in the initial conditions.
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5. Luminous blue variables

5.1 Hydrostatic envelope models

In this section, two envelope models for LBV’s will be discussed. Their positions in
the HR diagram have been chosen to match the parameters of the prominent LBV P
Cygni, and of an LBV in an eruption phase located above the HD limit (cf. Figure1.2).
Figure5.1 shows an HR diagram, indicating the position of the models considered by
(×). The evolutionary tracks are labelled with the masses of the corresponding zero age
main sequence (ZAMS) stars.

In Table5.1 the stellar parameters used for the P Cygni model and the eruptive LBV
model (M50) are presented. Luminosity, temperature and chemical composition for P
Cygni have been adopted from Pauldrach and Puls (1990) and Najarro et al. (1997).
The mass of P Cygni is highly uncertain. While stellar evolution calculations indicate a
mass of about50M� (El Eid & Hartmann 1993), observational data implyM ≈ 23M�
(Pauldrach & Puls1990, Najarro, Hillier & Stahl 1997). For our study we have adopted a
value for the mass of P Cygni close to that supported by the observations. The prevailing
mass of the eruptive LBV model M50 was taken from stellar evolution calculations.

In Figure5.2 the internal structure of the envelope model of P Cygni is shown. Tem-
peratureT (a) densityρ (b), the ratioLcon/L of convective to total luminosity (c), the

Table 5.1: Stellar parameters for the models considered. In addition to the luminosity
L, the massM , the effective temperatureTeff and the chemical composition(X, Y, Z)
the stellar radiusR, the ratio of envelope mass to total massMenv/M , the dynamical
timescaleτdyn, the escape velocityvesc and the Eddington factorΓ are given too.

logL/L� M/M� Teff [K] X Y Z
P Cyg 5.88 26.5 19300 0.31 0.67 0.02
M50 6.07 50 10000 0.70 0.28 0.02

R[1012cm] Menv/M τdyn[sec] vesc[cm sec−1] Γ
P Cyg 5.41 4.3 · 10−3 1.2 · 105 2.29 · 107 0.43
M50 25.23 3.9 · 10−2 8.5 · 105 3.36 · 107 0.36
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Figure 5.1: HR diagram containing the evolutionary tracks of eight stars (dotted
lines) with the initial (ZAMS) masses indicated and the initial chemical composition
(X,Y, Z) = (0.7, 0.28, 0.02), except for the90M� track which corresponds to the ini-
tial chemical composition(X, Y, Z) = (0.73, 0.26, 0.01). Unstable phases are denoted
by solid lines and thick lines correspond to dynamical growth ratesσi < −0.1. Together
with the observed positions of R 127, AG Car and P Cyg the location of the HD limit is
shown as a dashed line. The positions of the envelope models studied are indicated by
(×). This figure is taken from Kiriakidis, Fricke & Glatzel, 1993.

ratio τth/τdyn of thermal to dynamical timescale (d), the ratioβ of gas pressure to total
pressure (e) and the sound speedcs (f) are presented as a function of relative radius. The
model exhibits a pronounced core-envelope structure, indicated by the steep gradients of
temperature and density aroundr/R ≈ 0.15. Only 0.43 per cent of the stellar mass are
contained in the envelope. A density inversion occurs aroundr/R ≈ 0.95. We note that
the stratification containing a density inversion is not unstable here, since it is located
in a convection zone. The corresponding buoyancy driven instability has already been
taken into account within the treatment of convection (see the discussion in section1.2).
At most 40 per cent of the luminosity are transported by convection.

From Figure5.2 we deduce, thatτtherm/τdyn is small for a significant fraction of the
envelope, implying that the adiabatic approximation in not valid there (cf. section1.2).
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Figure 5.2: TemperatureT and densityρ (cgs units), the ratioLcon/L of convective to
total luminosity, the ratioτth/τdyn of thermal to dynamical timescale, the ratioβ of gas
pressure to total pressure and the sound speedcs (cgs units) as a function of relative
radius for the envelope model of P Cygni.

Rather the non-adiabatic reversible (NAR, seeGautschy & Glatzel 1990b) or zero ther-
mal timescale approximation is a much better approximation in the envelopes of LBVs
(see section3.1.2). Forr/R ≤ 0.1 changes of state are adiabatic.

The ratio of gas pressure to total pressureβ = pgas

p
is pretty small for the major part

of the stellar envelope, implying that radiation pressure is dominant and thus favouring
strange-mode instabilities. The sound speed exhibits a pronounced maximum around
r/R ≈ 0.2. It is related to the opacity peak due to the contribution of heavy elements
and partially separates the stellar envelope into two acoustic cavities. The two sets of
modes thus generated are involved in the occurrence of strange modes and associated
instabilities (see section3.3).

The eruptive LBV model M50 exhibits a similar structure as the model for P Cygni
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Figure 5.3: Same as Figure5.2, but for the eruptive LBV model M50.

(Figure5.3). Here the stellar core contains96.1 per cent of the total mass and at most
45 per cent of the total luminosity are transported by convection. No density inversion is
present.

5.2 Linear stability analysis

Using the method described in section3.4 the lowest order eigenmodes for the LBV
models considered in this study have been calculated. The variation of the frequencies
has then been followed continuously from the exact treatment to the NAR approxima-
tions by switching off the irreversible term in equation3.17(Φ → 0). The results are
presented in Figure5.4 for the eruptive LBV model M50 and the model for P Cygni.
Real (σR) and imaginary (σI) parts of the eigenfrequencies are given there as a function
of the parameterΦ, whereΦ = 1 corresponds to the exact problem andΦ = 0 to the
NAR approximation.
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Figure 5.4: Lowest order eigenmodes for the model M50 (a) and the model of P Cygni
(b). Real (σR) and imaginary (σI) parts of the eigenfrequencyσ (normalised to the global
free fall time) are shown as a function of the parameterΦ. Φ = 0 andΦ = 1 correspond
to the NAR limit and the exact problem, respectively.

For the model M50 (Figure5.4.a) the real part of the eigenfrequencies varies only
slightly for a large range of the parameterΦ. Small changes inσR occur only for values
Φ < 0.2. When switching off the irreversible term, the imaginary parts of the eigen-
frequencies decrease due to a reduced damping, i.e., the modes become more unstable.
Below Φ ≈ 0.2 changes in the growth and damping rates become more pronounced,
which is due to the crossings of the real parts of the eigenfrequencies. Local minima of
the imaginary parts can in general be attributed to the crossings of the real parts of the
eigenfrequencies. Note, that according to the general properties of the NAR approxima-
tion for Φ = 0 the eigenvalues form complex conjugate pairs. In the exact problem, only
eight modes were found to be unstable with growth rates|σI | ∝ O(0.1), whereas at least
14 modes modes are unstable with higher growth rates in the NAR approximation. Thus
the NAR limit yields only qualitatively correct results.

The counterpart of Figure5.4.a for the model of P Cygni is shown in Figure5.4.b.
Contrary to M50, mode interactions already take place for values ofΦ close to unity
with pronounced variations both in the real and imaginary parts of the eigenfrequencies.
Similar to M50 the general trend of decreasing imaginary parts forΦ→ 0 is recovered.
Examples for mode interaction by an instability band and an avoided crossing may be
found atΦ ≈ 0.3, σR ≈ 10, σI ≈ 1.9 andΦ ≈ 0.9, σR ≈ 7.5, σI ≈ 3, respectively. In
the exact treatment four unstable modes have been identified.
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Figure 5.5: Real parts (ζR, solid lines) and imaginary parts (ζI , dashed lines) of the
Lagrangian displacement (1) and the differential work integralW ′ (2) as a function of
relative radius for the eigenmode havingσR = 2.02 andσI = −0.18 of the model M50
(a), and for the eigenmode havingσR = 2.69 andσI = −0.17 of the model for P Cygni
(b).

5.2.1 Eigenfunctions and work integrals

In this section the most unstable eigenmodes of M50 and the model for P Cygni will be
discussed. Figure5.5 shows real and imaginary parts of the Lagrangian displacement
component of the eigenfunction (left panels) and the corresponding differential work
integrals (right panels) as a function of relative radius for M50 and the model of P Cygni,
respectively. The differential work integral is given by

W ′ =
d

dr

∫
dV

1

ρ
Im(∆p†∆ρ†∗)

= 4πr2pIm

(
∆p†

p

∆ρ†∗

ρ

)
(5.1)

and determines whether a region of the star has a driving or damping influence (see sec-
tion 3.2and appendixB). Positive values of the differential work integral correspond to
driving, whereas negative values correspond to damping. Eigenfunctions are determined
only up to a complex constant. This ambiguity is transferred to the work integrals and
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therefore the differential work integrals shown here have been normalised to their max-
ima. We note that the sign of the integral ofW ′(r) determines whether a mode is stable
(W < 0) or unstable (W > 0).

The Lagrangian displacement corresponding to the eigenvalueσ = 2.02−0.18i for the
model M50 (Figure5.5.a) rapidly decreases towards the centre of the star. Atr/R = 0.9
its amplitude has already dropped by two orders of magnitude. The kinetic energy con-
tained in the perturbations being proportional to|ζ|2 has then dropped by four orders of
magnitude which justifies the restriction of the analysis to envelope models. The interior
of the star remains largely unaffected by the instability. In the non-adiabatic analysis
an arrangement scheme for eigenvalues and eigenfunctions does not exist. Therefore
node-counting of the eigenfunctions is irrelevant.

The oscillatory character ofW ′(r) is typical for strange modes (seeGlatzel 1994).
Although the driving indicated by the differential work integral aroundr/R ≈ 0.9 co-
incides with the HeII-ionisation zone, it is not caused by theκ-mechanism. The latter
would be the standard conclusion but is erroneous. Rather the low value ofβ found there
simultaneously is the cause of the instability, which is proven by the fact that the mode
remains unstable in the NAR-limit (see Figure5.4).

The Lagrangian displacement corresponding to the eigenvalueσ = 2.69 − 0.17i of
the model for P Cygni (Figure5.5.b) shows a behaviour similar to that found for the
eigenvalueσ = 2.02− 0.18i of M50. Due to the higher effective temperature, the HeII-
ionisation zone is located closer to the stellar surface than for M50. Accordingly, the
driving region associated with the low value ofβ lies also closer to the photosphere.

5.3 Non-linear evolution of instabilities

Using the numerical method described in chapter4, the evolution of the strange-mode
instabilities identified in section5.2 was followed into the non-linear regime. For the
simulations unstable hydrostatic envelope models have been used as initial conditions
without any further additional external excitation. The instabilities transfer mass from
the instability region to the outer parts of the envelope and thus reduce the grid resolution
in the inner envelope. The resolution of the instability region, however, severely affects
the final result of the instability. Therefore, the simulations had to be stopped if the
resolution became insufficient to resolve the unstable regions of the envelope adequately.

Figure5.6shows the evolution of the unstable model M50. A sequence of snapshots
of the density distribution of the stellar envelope corresponding to time intervals of∼8
days is presented. The edge of the stellar core is located atr/R0 ≈ 0.07.

By the instability sound waves are generated in the inner envelope. These waves
steepen to form shocks, which travel outwards and successively inflate the envelope. The
shocks are characterised by a steep density gradient (see, e.g., at timet ≈ 2.6 · 107 sec
aroundr/R0 ≈ 1). Thus the envelope is inflated to 2.4 initial radii (t ≈ 4.0 ·107). In this
phase the velocities at the stellar surface reach 40 per cent of the escape velocity. Around
t = 4 · 107 sec the envelope starts to recollapse and the shock situated atr/R0 ≈ 1.1 is
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stalled. Subsequently this shock is captured in the hydrogen ionisation zone and varies its
mean position only slightly by 0.2r/R0 on the dynamical timescale. Following shocks
emerging from the instability region do not penetrate this structure. The captured shock
becomes unstable itself and starts to oscillate rapidly on a timescale comparable to the
sound travel time across the width of the shock.

Figure5.7shows the evolution of instabilities in the model for P Cygni. Here the edge
of the stellar core is located atr/R0 ≈ 0.1. Similar to M50 outwards travelling shock
waves successively inflate the envelope. A sequence of shocks located atr/R0 ≈ 0.9,
1.2 and 1.9. may be identified in the snapshot at timet = 4.9 · 107 sec. In this phase
of the evolution, velocity amplitudes of 55 per cent of the escape velocity are reached.
Aroundt ≈ 7 · 107 sec, when the outer envelope still expands and the inner envelope is
already falling inwards again, a shock is captured in the hydrogen ionisation zone. As
for M50 the captured shock is unstable and starts to oscillate rapidly. Subsequent shocks
emerging from the instability region do not pass the captured shock.
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Figure 5.6: Non-linear evolution of instabilities in the envelope of the eruptive LBV
model M50. Presented is a sequence of snapshots of the colour coded density distribution
(cgs units) at the times [sec] indicated. The time interval between subsequent snapshots
corresponds to∼ 8 days. Unit of length is the initial radius.
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Figure 5.7: Same as Figure5.6, but for the model of P Cygni.
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6. Captured shocks

Instabilities of captured shocks in the envelopes of mas-
sive stars1

M. Grott2, W. Glatzel2, and S. Chernigovski3

2Universitäts-Sternwarte Göttingen, Geismarlandstr .11, 37083 Göttingen, Germany
3Institut für Analysis und Numerik, Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract The evolution of strange mode instabilities into the non
linear regime has been followed by numerical simulation for an
envelope model of a massive star having solar chemical compo-
sition,M = 50M�, Teff = 104K andL = 1.17 · 106L�. Con-
trary to previously studied models, for these parameters shocks
are captured in the H-ionisation zone and perform rapid oscilla-
tions within the latter. A linear stability analysis is performed to
verify that this behaviour is physical. The origin of an instability
discovered in this way is identified by construction of an analyt-
ical model. As a result, the stratification turns out to be essential
for instability. The difference to common stratification instabili-
ties, e.g., convective instabilities, is discussed.

Key words: hydrodynamics - instabilities - shock waves - stars:
mass-loss - stars: oscillations - stars: variables: other.

6.1 Introduction

Massive stars are known to suffer from strange mode instabilities with growth rates in
the dynamical range (Kiriakidis, Fricke & Glatzel 1993, Glatzel & Kiriakidis 1993).
The boundary of the domain in the Hertzsprung-Russel diagram (HRD) where all stellar
models are unstable - irrespective of their metallicity -, coincides with the observed
Humphreys-Davidson (HD) limit (Humphreys & Davidson 1979). Moreover, the range

1This paper has been submitted to MNRAS (Grott et al. 2003a)

49



CHAPTER 6. CAPTURED SHOCKS

of unstable models covers the stellar parameters for which the LBV (luminous blue
variable) phenomenon is observed.

The high growth rates of the instabilities indicate a connection to the observed mass
loss of the corresponding objects. To verify this suggestion, simulations of their evolu-
tion into the non linear regime have been performed. In fact, for selected models Glatzel
et al. (1999) found the velocity amplitude to exceed the escape velocity (see, however,
Dorfi & Gautschy 2000).

In this paper we report on a stellar model, which in the HRD is located well above
the HD-limit, however, at lower effective temperature than the model studied by Glatzel
et al. (1999). As expected, this model turns out to be linearly unstable with dynamical
growth rates. When following the non linear evolution of the instabilities, shocks form
in the non linear regime. The latter is customary in pulsating stellar envelopes (see, e.g.,
Christy 1966). Contrary to the “hotter” model studied by Glatzel et al. (1999), however,
these shocks are captured by the H-ionisation zone after a few pulsation periods. The
captured shock starts to oscillate rapidly with periods of the order of the sound travel
time across the H-ionisation zone, while its mean position changes on the dynamical
timescale of the primary, strange mode instability. This phenomenon is described in
detail in section 3.1. Assumptions and methods on which the calculations are based
are given in section 2. We emphasise, that in this publication, we concentrate on the
oscillations of the captured shock. The phenomenon of shock capture by H-ionisation
itself is not investigated here and will be studied in a separate paper.

Apart from a detailed description of the shock oscillations found by numerical sim-
ulation the aim of the present paper consists of identifying their origin. This will be
achieved by a linear stability analysis in section 3.2. It excludes a numerical origin and
attributes the oscillations to a secondary high frequency instability in the shock zone. To
identify the physical origin of the instability an analytical model is constructed in section
4. Our conclusions follow.

6.2 Basic assumptions and methods

6.2.1 Construction of initial model

We investigate a stellar model having the massM = 50M�, chemical composition
X = 0.7, Y = 0.28, Z = 0.02, effective temperatureTeff = 104K and luminosity
L = 1.17 · 106L�. These parameters have been chosen to ensure instability of the
model. In the Hertzsprung-Russell diagram (HRD) it lies within the instability region
identified by Kiriakidis et al. (1993) (c.f. their figure 2). As only the envelope is af-
fected by the instability, the model was constructed by standard envelope integration
using the parameters given above. The stellar core and nuclear energy generation are
disregarded. Convection is treated in the standard mixing-length theory approach with
1.5 pressure scale heights for the mixing length. The onset of convection was determined
by the Schwarzschild criterion. For the opacities, the latest versions of the OPAL tables
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(Iglesias, Rogers & Wilson 1992, Rogers & Iglesias 1992) have been used.

6.2.2 Linear stability analysis

Having constructed a hydrostatic envelope model its stability with respect to infinites-
imal, spherical perturbations is tested. The relevant equations corresponding to mass,
energy and momentum conservation and the diffusion equation for energy transport are
given in Baker & Kippenhahn (1962) (hereafter BKA):

ζ ′ = C4(3ζ + C5p− C6t) (6.1)

l′ = (iσ)C1(−p+ C2t) (6.2)

p′ = −(4 + C3σ
2)ζ − p (6.3)

t′ = C7(−4ζ + C13l + C8p− C9t) (6.4)

ζ, l, p andt are the relative perturbations of radius, luminosity, pressure and temperature,
respectively, and dashes denote derivatives with respect toln p0. σ is the eigenfrequency
normalised to the inverse of the global free fall timeτff =

√
R3/3GM . The coefficients

Ci are determined by the background model whereC13 denotes the ratio of total and
radiative luminosity. The other coefficients are defined in BKA. For the general theory
of linear non-adiabatic stability, we refer the reader to Cox (1980) and Unno (1989).

The coupling between pulsation and convection is treated in the standard frozen in
approximation, i.e., the Lagrangian perturbation of the convective flux is assumed to
vanish. This is justified since the convective flux never exceeds 10% of the total energy
flux. Moreover, the convective timescale is much longer than the dynamical timescale of
the pulsations considered. The solution of the perturbation problem has been determined
using the Riccati method (Gautschy & Glatzel 1990). As a result of the linear non
adiabatic (LNA) stability analysis we obtain periods and growth or damping rates of
various modes together with the associated eigenfunctions.

6.2.3 Non-linear evolution

Having identified an instability by the LNA analysis its growth is followed into the non-
linear regime. Assuming spherical symmetry, we adopt a Lagrangian description and
choose as independent variables the time t and the massm inside a sphere of radiusr.
The evolution of an instability is then governed by mass conservation,

∂r3

∂m
− 3

4πρ
= 0 (6.5)

momentum conservation,

∂2r

∂t2
+ 4πr2 ∂P

∂m
+
Gm

r2
= 0 (6.6)
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energy conservation,

∂L

∂m
− P

ρ2

∂ρ

∂t
+
∂E

∂t
= 0 (6.7)

and the diffusion equation for energy transport,

∂T

∂m
− 3κ(L− Lkonv)

64π2acr4T 3
= 0 (6.8)

whereρ, p, T , L, andE denote density, pressure, temperature, luminosity and specific
internal energy, respectively.a is the radiation constant,c the speed of light andG the
gravitational constant. For consistency, the equation of statep(ρ, T ) and the opacityκ are
identical with those used for the construction of the initial model. In accordance with the
LNA stability analysis, convection is treated in the frozen in approximation, i.e.,Lkonv
is taken to be constant during the non-linear evolution and equal to the initial value. For
the treatment of shocks artificial viscosity is introduced by substitutingP = P +Q with
(v is the velocity)

Q =

{
C0ρ(div v)2 div v < 0

0 div v ≥ 0
(6.9)

andC0 > 0 (von Neumann - Richtmyer form of artificial viscosity).
For some difference schemes including the Fraley scheme, which the present method

is based on, this form of the artificial viscosity can give rise to undesired, unphysical
oscillations (see, e.g.,Buchler & Whalen 1990). To avoid these, artificial tensor viscosity
is usually used (Tscharnuter & Winkler 1979). In order to be sure that the oscillations
observed are not caused by the form of the artificial viscosity, we have run tests both with
volume and tensor viscosity. As a result, shock oscialltions are found independently for
any form of the artificial viscosity. As the von Neumann - Richtmyer viscosity allows
for a straightforward formulation of the boundary conditions discussed below, we have
for convenience chosen to work with it.

The inert hydrostatic core provides boundary conditions at the bottom of the envelope
by prescribing its time independent radius and luminosity there. As the outer bound-
ary of the model does not correspond to the physical boundary of the star, boundary
conditions are ambiguous there. We require the gradient of heat sources to vanish there:

grad(divF ) = 0 (6.10)

This boundary condition is chosen to ensure that outgoing shocks pass through the
boundary without reflection. The numerical code relies on a Lagrangian, with respect
to time implicit, fully conservative difference scheme proposed by Fraley (1968) and
Samarskii & Popov (1969) Concerning tests of the code, we adopted the same criteria
as Glatzel et al. (1999).
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Figure 6.1: TemperatureT and densityρ as a function of relative radius of the initial
model (a1-a2), and the model at5 · 107 sec (b1-b2). Velocityv and Mach numberM
are shown as a function of relative radius for the model at5 · 107 sec in (c) and (d),
respectively

6.3 Numerical results

6.3.1 The evolution of the stellar model

Density and temperature of the initial model as a function of relative radius, are shown in
figures6.1.a1-6.1.a2. The stratification exhibits a pronounced core-envelope structure,
which is typical for stellar models in this domain of the HRD. More than96 per cent of
the mass is concentrated in the core, which extends to less than 5 per cent of the total
radius. It remains in hydrostatic equilibrium and is not affected by the instability.
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Table 6.1: Unstable modes of the initial model.σr denotes the real part andσi the
imaginary part of the eigenfrequencyσ normalised by the global free fall time.

σr 0.53 1.22 1.66 2.12 2.26 3.34 3.86
σi -0.06 -0.18 -0.13 -0.20 -0.12 -0.04 -0.04

The initial model has been tested for stability and been found unstable on dynamical
timescales. This instability will be referred to as primary instability hereafter. With re-
spect to its physical origin, it is a strange mode instability, which has been identified in a
variety of stars including Wolf-Rayet-stars, HdC-stars and massive stars (like the present
model). Strange modes appear as mode coupling phenomena with associated instabil-
ities whenever radiation pressure is dominant. The latter is true for a large fraction of
the radius in the present model. The linear stability analysis of the initial model reveals
several unstable modes. Eigenfrequencies of the most unstable ones, i.e., their real (σr)
and imaginary parts (σi), are presented in table6.1.

The evolution of the linear instabilities was followed into the non-linear regime by
numerical simulation using the hydrostatic model as initial condition. No additional
initial perturbation of the hydrostatic model was added. Rather the code was required to
pick the correct unstable modes from numerical noise. By comparing growth rates and
periods obtained in the simulation with the results of the LNA analysis, the linear regime
of the evolution was used as a test for the quality of the simulation.

In the non-linear regime sound waves travelling outwards form shocks and initially
inflate the envelope to2.5 initial radii. Thus velocity amplitudes of107[cm/sec] are
reached. One of the subsequent shocks is captured around the H-ionisation zone at
relative radiusr/R = 0.58 and3.6 < log T < 4.7. The mechanism responsible for the
shock capturing will not be studied in this publication. Rather, we will investigate the
oscillations on the shock front and show that they are of physical origin. A snapshot at
time t = 5 · 107sec of the situation containing the captured shock is shown in Figures
6.1.b1 and6.1.b2. Figure6.1.c shows the velocity as a function of relative radius at
this instant. Sound waves are generated in the region aroundr/R ≈ 0.1 and travel
outwards, growing in amplitude and steepening. In the snapshot one such wave is located
at r/R ≈ 0.25. The captured shock front is located atr/R ≈ 0.58 and the outer
envelope is collapsing onto it. The small panel in Figure6.1.c shows the details of
the region containing the captured shock, indicating the grid resolution by (×). Within
the Lagrangian description,∼ 150 of the 512 gridpoints used are concentrated in the
shock zone. Figure6.1.d shows the Mach numberM = v/vs as a function of relative
radius for the snapshot (vs is the local sound speed). The Mach number changes by 3.5
across the shock front aroundr/R ≈ 0.58.

After the formation of the captured shock its position varies only weakly by≈ 0.2
relative radii on the timescale of the primary instability (see figure6.2.b). Superimposed
on this variation is a much faster oscillation, whose timescale is related to the sound
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Figure 6.2: The velocityv at the boundary (a), the relative position of the shock front
(b) and the relative luminosityL/L0 at the boundary on two different scales (c1-c2) as a
function of timet.

travel time across the shock (≈ 105 sec). It is even more pronounced in the run of
the luminosity (figure6.2.c2). The onset of the fast oscillation with the capturing of
the shock by the H-ionisation-zone is illustrated in figures6.2.a and6.2.c1, where the
velocityv and relative luminosityL/L0 at the outer boundary are shown as a function of
time. Up to≈ 4 · 107 sec the velocity varies on the timescale of the primary instability
and the luminosity remains approximately constant due to the low heat capacity of the
envelope of the star. After≈ 4 · 107 sec, when the shock has been captured by the H-
ionisation-zone, luminosity and velocity vary on the shorter timescale of the secondary
shock oscillation. The luminosity perturbation has its origin in the shock. Due to the low
heat capacity the luminosity perturbation remains spatially constant above the shock.

In principle, the high-frequency secondary oscillations of the shock could be caused
numerically. However, the results are largely independent of the numerical treatment
and parameters, which has been verified by extensive numerical experiments suggesting
a physical origin of the phenomenon. In section6.3.2, we shall argue in favour of the
latter by presenting a linear stability analysis providing an instability with appropriate
frequencies and growth rates.
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6.3.2 Stability analysis of a model containing a captured shock

In this Section we shall initially assume and then prove a posteriori, that the secondary
oscillations of the captured shock described in section6.3.1are caused by physical pro-
cesses. We perform a linear stability analysis of a background model by assuming that
the dependent variables radius, pressure, temperature and luminosity may be expressed
as the sum of a background contribution and a small perturbation:

x(m, t) = x0(m, t) + x1(m, t) for x ∈ {r, p,T,L} (6.11)

The background coefficientsx0(m, t) may be regarded as time independent, i.e.,x0(m, t) =
x0(m), as long as the perturbations vary on much shorter timescales as the background,
i.e., as long as the condition

d log x0(m, t)

dt
� d log x1(m, t)

dt
(6.12)

holds. d
dt

denotes the Lagrangian time derivative. Thus, the variations on dynamical
timescales of the model containing the captured shock are regarded as stationary with
respect to the anticipated much faster instability. Eigenmodes with periods of the order
of the dynamical timescale suffer from the competition with the variation of the “back-
ground” model, whereas the approximation holds for those with much shorter periods.
For the model considered, the approximation is correct for|σ| > 100. Should unstable
eigenmodes of this kind exist, this would prove the instability and the high frequency os-
cillations of the captured shocks to be of physical origin. Therefore, the results of a linear
stability analysis of such a model are meaningful, as long as the obtained frequencies are
interpreted properly.

A problem with this strategy is that the numerical simulations provide only the super-
position of the slow dynamical and the secondary, fast oscillations. The linear stability
analysis, however, requires a - on the fast oscillations - stationary background model. It
is obtained by an appropriate time average over a numerically determined sequence of
models. “Appropriate” means, that the average has to be taken over times longer than
the short period oscillations and shorter than the dynamical timescale. Thus all physical
quantitiesQ(m, t) are averaged according to

<Q(m)> =
1

te − ts

∫ te

ts

Q(m, t)dt (6.13)

wherets andte are the beginning and the end of the averaging interval and satisfy the
requirements discussed above.ts has been varied between4 · 107 sec and5 · 107 sec
(after the formation of the shock front) and the averaging interval between5 ·105 sec and
1 · 106sec. All averages exhibit qualitatively the same behaviour and the LNA stability
analysis is largely independent of the averaging parameters. The results presented in the
following were obtained forts = 5 · 107 sec andte = 5.05 · 107 sec.

56



6.3. NUMERICAL RESULTS

ζ| | 
2ζ| | 

2

r/R r/R

Φ
Φ

Φ
Φ =0

=1=1

=0

1e−30

1e−25

1e−20

1e−15

1e−10

1e−05

1

0.55 0.56 0.57 0.58 0.59 0.6 0.61
1e−60

1e−50

1e−40

1e−30

1e−20

1e−10

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 6.3: Modulus of the Lagrangian displacementζ as a function of relative radius for
the eigenfrequenciesσr = 4651.7, σi = −119.6 (Φ = 0, solid lines) andσr = 4837.2,
σi = −83.9 (Φ = 1, dotted lines). The right panel shows details for the shock zone.

With these assumptions, the linear perturbation equations6.1-6.4, which have been
derived for a strictly static background model, remain valid even for the situation studied
here, except for the momentum equation6.3, which has to be modified according to:

p′ = −(4 + C3σ
2)ζ −Q1p with Q1 = −∂p0

∂m

4πr4
0

Gm
(6.14)

Q1 6= 1 accounts for the deviations from hydrostatic equilibrium.
As a result of the linear stability analysis (withQ1 6= 1), the expected unstable modes

having high frequencies have been identified. E.g., a typical mode of this kind satisfying
the assumptions discussed has the frequencyσr = 4837.2 and the growth rateσi =
−83.9.

In a second step, we investigate the influence of deviations from hydrostatic equilib-
rium, i.e., the deviations fromQ1 = 1. For this purpose we rewrite equation6.14as

p′ = −(4 + C3σ
2)ζ − p+ Φ(1−Q1)p (6.15)

with 0 ≤ Φ ≤ 1. The limitsΦ = 0 andΦ = 1 correspond to hydrostatic equilibrium
and the averaged model containing the shock, respectively. The influence of deviations
from hydrostatic equilibrium is then studied by varyingΦ between 0 and 1. Following
the mode havingσr = 4837.2 andσi = −83.9 at Φ = 1 to Φ = 0 its frequency and
growth rate changes toσr = 4651.7 andσi = −119.6. The moduli of the correspond-
ing Lagrangian displacements, which indicate the kinetic energy of the pulsations, are
shown in Figure6.3as a function of relative radius. The energy of the pulsation is con-
centrated aroundr/R ≈ 0.58 and drops off exponentially above and below. As a result,
neither eigenvalues nor eigenfunctions differ significantly forΦ = 0 andΦ = 1, i.e.,
the assumption of hydrostatic equilibrium is justified for the unstable modes considered.
Therefore, we will assume hydrostatic equilibrium in a further discussion and investi-
gation of the secondary instability, i.e., all subsequent results were obtained assuming
Φ = 0.
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Table 6.2: Unstable modes of the averaged model.σr denotes the real part andσi the
imaginary part of the eigenfrequencyσ normalised by the global free fall time.

σr 0.92 2.22 3.31 4.74 6.08 7.48 8.79 10.1 11.4 140.4
σi -0.05 -0.33 -0.32 -0.25 -0.29 -0.18 -0.21 -0.24 -0.12 -0.1
σr 154.4 162.9 157.2 179.6 202.0 413.6 447.3 487.5 541.4 4651.7
σi -0.05 -35.4 -0.08 -27.8 -17.6 -30.4 -26.3 -54.9 -0.35 -119.6

The results of a LNA stability analysis according to equations6.1-6.4 and Section
6.2.2 for the averaged model are summarised in Table6.2, where representative values
for the eigenfrequencies of unstable modes are given. Three sets of unstable modes
may be distinguished. Low order modes withσr between0.9 and9 have growth rates
of the order of0.2, i.e a ratio of σi

σr
≈ 0.1. They can be identified with the primary

instability. However, their periods compete with the variation of the background model
and therefore these modes have to be interpreted with caution. The properties of two
classes of high order unstable modes with frequenciesσr between140 and4650 are in
accordance with our approximation. One of them has high growth rates with a ratio
of σi

σr
≈ 0.1, the second low growth rates with a ratio ofσi

σr
≈ 5 · 10−4. The latter

may be identified with high order primary instabilities, whereas the former are attractive
candidates for the secondary, shock front instabilities sought.

For further discussion, we consider eigenfunctions and the corresponding work in-
tegrals of representative members of the different sets of modes. The work integral is
a widely used tool to identify the regions in a star, which drive or damp the pulsation.
Glatzel (1994) has shown, that the concept of the work integral is not necessarily re-
stricted to small values of the damping or growth rate. By replacing the conventional
time average by an ensemble average it can be extended to arbitrary values ofσi

σr
. In any

case, one arrives at the expression

W (r) =
σi
σr
∼
∫ r

0

πr′
2
p Im

(
p†ρ†∗

)
dr′ (6.16)

for the work integral, whereIm(z) denotes the imaginary part ofz, ()∗ denotes complex
conjugation andp†, ρ† denote the spatial parts of the eigenfunctions of the relative pres-
sure and density perturbations, respectively.p is the pressure of the background model.
The sign of the integrand in equation6.16determines, if a region of the star damps or
drives the pulsation, whereIm(p†ρ†∗) < 0 corresponds to driving andIm(p†ρ†∗) > 0 to
damping. Some authors (e.g. BKA) uselog p instead ofr as independent variable and
therefore obtain an opposite sign of the differential work integral for driving and damp-
ing influence. To match this convention,−W (r) is shown in figures6.4.b, i.e., driving
regions correspond to positive−W (r), damping regions to negative−W (r).

According to its eigenvalues the mode corresponding toσr = 2.22, σi = −0.33
was identified as a primary instability. This is supported by the Lagrangian displace-
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Figure 6.4: Lagrangian displacementsζ (a) and integrated workintegrals (b) as a func-
tion of relative radius for the eigenfrequenciesσr = 2.22, σi = −0.33 (1), σr = 157.2,
σi = −0.08 (2) andσr = 162.9, σi = −35.4 (3) of the averaged model.

ment componentζ of the eigenfunction and the work integral shown in figure6.4.a1 and
6.4.b1. The shock front acts as an acoustic barrier causing the eigenfunction to vanish
above it (figure6.4.a1). The work integral (figure6.4.b1) exhibits two driving regions
which coincide with the opacity peaks atlog T = 5.3 (caused by the contributions of
heavy elements) andlog T = 4.7 (He-ionisation). The stability properties are not af-
fected significantly by the shock region.

The counterparts of figures6.4.a1 and6.4.b1 for a weakly unstable high frequency
mode havingσr = 157.2, σi = −0.08 are shown in figures6.4.a2 and6.4.b2. Again, the
isolating effect of the shock front causes the dramatic variation of the amplitude around
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r/R0 = 0.6. However, in contrast to the eigenfunction presented in figure6.4.a1 the
amplitude is now significant above and negligible below the shock. High order modes
of this kind in general exhibit strong damping. For the mode considered the shock effi-
ciently screens the inner damping part of the stellar envelope. Thus the region below the
shock contributes only weak damping which is overcome by the driving influence of the
shock as shown by the work integral in figure6.4.b2.

Apart from splitting the acoustic spectrum by an acoustic barrier into two sets of
modes associated with the acoustic cavities below and above the shock, respectively,
the shock itself gives rise to a third set. Lagrangian displacement and work integral
for a typical member of this set havingσr = 162.9, σi = −35.4 are shown in figures
6.4.a3 and6.4.b3. The amplitude of this unstable mode reaches its maximum on the
shock and drops off exponentially above and below. Note its oscillatory behaviour on
and close confinement to the shock. The real parts of this set of eigenfrequencies of
≈ 200 − 500 correspond to periods ofΠ ≈ 8 · 104 − 2 · 105 sec, which are observed
in the luminosity perturbations (cf. figure6.2.c2) induced by the shock oscillations.
The work integral (figure6.4.b3) shows, that the shock is driving this instability, and
that the regions above and below do not contribute. Moreover, the basic assumption of
stationarity of the averaged model holds for the frequencies and growth rates obtained.

Thus we have identified an instability by linear analysis of an averaged model, which
resembles the shock oscillations observed in the numerical simulations, both with respect
to timescales and spatial structure. We therefore conclude, that the shock oscillations
are not numerical artifacts. Rather they have a physical origin and are caused by an
instability whose mechanism will be investigated in detail in the following sections.

6.3.3 Approximations

In order to gain further insight into the physical processes responsible for the instabil-
ity, different approximations in equations (3.3)-(3.6) have been considered. To obtain
a continuous transition from the exact treatment to the approximation, we introduce a
parameterΦ with Φ = 1 corresponding to the exact problem andΦ → 0,∞ to the ap-
proximation. The numerical results, i.e. the eigenvalues of the shock front instabilities,
are followed as a function ofΦ.

IntroducingΦ into the Euler equation as

p′ = −(4 + Φ · C3σ
2)ζ − p (6.17)

the limit Φ → 0 corresponds to vanishing acceleration and implies the elimination of
acoustic modes from the spectrum, which then only consists of secular modes. Applica-
tion of this limit to the shock instabilities has not revealed any unstable modes. Rather
the eigenvalues have diverged. This excludes a thermal origin of both the unstable modes
and the instability mechanism. For a proper treatment of the instability, the mechanical
acceleration has to be taken into account.

IntroducingΦ into the equation for energy conservation as

l′ = C1 · Φ · (iσ)(−p+ C2t) (6.18)
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the adiabatic limit is obtained byΦ → ∞. The latter implies(−p + C2t) = 0, i.e. the
algebraic adiabatic relation between pressure and temperature perturbation. No unstable
modes have been found following the shock instabilities into the adiabatic limit.

IntroducingΦ into the equation for energy conservation as

l′ = C1 · Φ · (iσ)(−p+ C2t) (6.19)

Φ→ 0 corresponds to the so called NAR-limit (Non-Adiabatic-Reversible limit) (Gautschy
& Glatzel 1990). Although this approximation - like the adiabatic approximation - im-
plies constant entropy, it does not represent the adiabatic limit(−p + C2t) = 0. Rather
it is equivalent toC1 → 0. SinceC1 is related to the thermal and dynamical timescales
τth andτdyn by

C1 =
τth
τdyn
∇ad

√
C3C4

Γ
(6.20)

this approximation is also being referred to as the zero thermal timescale approximation
(Γ and∇ad are the adiabatic indices). Physically, it means that the specific heat of the
envelope is negligible and luminosity perturbations cannot be sustained. In particular,
this approximation rules out the classicalκ-mechanism as the source of an instability -
should it exist in the NAR-limit - since this Carnot-type process relies on a finite heat
capacity. When following the frequencies of the modes belonging to the shock front
instabilities into the NAR-limit, periods and growth rates change only slightly (by at
most 10 per cent). Thus the NAR-approximation may be regarded as a satisfactory
approximation and will form the basis of our investigations in the following sections.

6.4 An analytical model

6.4.1 Three-Zone-Model

The modal structure identified in section6.3.2with three sets of modes associated with
three acoustic cavities (inner envelope, shock and outer envelope) suggests the construc-
tion of a three zone model. In order to enable an analytical solution, the coefficients of
the differential equations are kept constant in each zone.

According to the previous section the NAR-approximation is sufficient to describe the
shock front instabilities. The equation of energy conservation is then satisfied identi-
cally and luminosity perturbations vanish. Thus we are left with a system of third order
comprising the mechanical equations and the diffusion equation with zero luminosity
perturbation.

Further reduction of the order of the differential system is achieved by considering
its coefficients which depend on the properties of the averaged model. In figure6.5 the

coefficientsC5 = α = ∂ log ρ
∂ log p

∣∣∣
T
≈ 1

β
andC7 = ∇ = d log T

d log p
are shown as a function

of relative radius.β denotes the ratio of gas pressure to total pressure. The coefficients
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Figure 6.5: The coefficientsC5 = α (a) andC7 = ∇ (b) of the averaged model as a
function of relative radius.

C4 = −d log r
d log p

andC3 = 4πr3ρ
Mr

may be regarded as constant all over the envelope. Approx-
imate values areC4 ≈ 1

3
andC3 ≈ 3. The latter holds because almost the entire mass

is concentrated in the stellar core. From figure6.5 we deduce that radiation pressure is
dominant except for the shock zone. Therefore we replace the diffusion equation3.6by
the algebraic equation of state for pure radiation (p = 4t) in the inner and outer envelope.
On the other handC7 = ∇ can - to first approximation - be regarded as singular in the
shock zone. According to equation3.6this requires the expression(−4ζ+C8p−C9t) to
vanish there. Thus the differential diffusion equation is replaced by an algebraic relation
in all three zones, reducing the system to second order.

Adopting the alternative notation (Baker & Kippenhahn 1962) C6 = δ, C8 = κp and
C9 = 4 − κT , whereδ is the negative logarithmic derivative of density with respect to
temperature at constant pressure,κp the logarithmic derivative of opacity with respect
to pressure at constant temperature andκT the logarithmic derivative of opacity with
respect to temperature at constant pressure, and choosing the relative radiusx as the
independent variable, we are left with the following set of equations:

1

ψ

dζ

dx
=

1

3
(3ζ + αp− δt) (6.21)

1

ψ

dp

dx
= −(4 + 3σ2)ζ − p (6.22)

t =

{(
1

4−κT

)
(κpp− 4ζ) x ∈ [a, b]

1
4
· p x ∈ [0, a) or x ∈ (b, 1]

(6.23)

a andb denote the lower and upper boundary of the shock zone. The transformation of
the independent variablesln p0 → x introduces the factorψ, which is constant within the
framework of the three-zone-model, and given by an appropriate mean of the quantity
−1
C4x

. In generalψ is negative and of order unity.
We are thus left with a system of second order consisting of the mechanical equations

(continuity and Euler equations) which is closed by the algebraic relations0 = −4ζ +

62



6.4. AN ANALYTICAL MODEL

C8p − C9t andp = 4 · t for the shock region and the inner/outer regions, respectively.
We rewrite it as:

dζ

dx
= A1,2 · ζ +B1,2 · p (6.24)

dp

dx
= C · ζ +D · p (6.25)

where

A1,2 =

{
ψ
(

1 +
4δ
3

4−κT

)
x ∈ [a, b]

ψ x ∈ [0, a) or x ∈ (b, 1]
(6.26)

(6.27)

B1,2 =

ψ
(
α
3
−

δκp
3

4−κT

)
x ∈ [a, b]

ψ
(
α
3
− δ

12

)
x ∈ [0, a) or x ∈ (b, 1]

(6.28)

(6.29)

C = −ψ(4 + 3σ2) (6.30)

D = −ψ (6.31)

and the subscript1 denotes the values of the coefficients in the shock region, the subscript
2 values in the inner and outer regions. We introduce new variables by

ζ̂ = e
∫
A1,2dx · ζ (6.32)

p̂ = e
∫
Ddx · p (6.33)

The system6.24-6.25then reads

dζ̂

dx
= B1,2 · p̂ · e

∫
Ddx · e−

∫
A1,2dx (6.34)

dp̂

dx
= C · ζ̂ · e−

∫
Ddx · e

∫
A1,2dx (6.35)

These equations are equivalent to the following single second order equation:

d

dx

(
1

C
· e
∫
Ddx · e−

∫
A1,2dx · dp̂

dx

)
− e

∫
Ddxe−

∫
A1,2dx ·B1,2 · p̂ = 0 (6.36)

Mathematical Structure of the Problem

Equation6.36may be written as

d

dx

(
e
∫
Ddx · e−

∫
A1,2dx · dp̂

dx

)
+ 4 · ψ · e

∫
Ddxe−

∫
A1,2dx ·B1,2 · p̂

+3σ2 · ψ · e
∫
Ddxe−

∫
A1,2dx ·B1,2 · p̂ = 0 (6.37)
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and has the form

d

dx

[
q(x)

d

dx
p̂

]
− w(x)p̂+ λu(x)p̂ = 0 (6.38)

with q(x) > 0 in the integration interval. However,u(x) is positive in the inner and
outer regions and negative in the shock region, i.e.,u(x) changes sign in the integration
interval. (This holds also forw(x).) Therefore, this problem is not of Sturm-Liouville
type. On the other hand, if we consider each zone separately with boundary conditions
p̂ = 0, equation6.38describes a Sturm-Liouville problem. In the shock zone we define
eigenvaluesλ = −σ2 and thus haveu(x) > 0, w(x) > 0, for the inner and outer zones
we getu(x) > 0, w(x) < 0 by definingλ = σ2.

For a Sturm-Liouville problem, the eigenvalues are real and form a sequence

λ1 < λ2 < λ3 < λ4 < . . . (6.39)

Furthermore,λ1 may be estimated on the basis of the variational principle

λ1 = min
p̂

∫ 1

0
q(x) |p̂′|2 dx+

∫ 1

0
w(x) |p̂|2 dx∫ 1

0
u(x) |p̂|2 dx

(6.40)

Thereforeλ1 = −σ2
1 is positive in the shock zone, sincew(x) is positive there. This

means that we have purely imaginary eigenfrequenciesσj = ±i
√
λj with positiveλj

and

|σ1| < |σ2| < |σ3| < |σ4| < . . . (6.41)

Thus the shock zone provides unstable eigenfrequencies.
Sincew(x) is negative in the inner and outer zones, we cannot guaranteeλ1 to be

positive there. For sufficiently largej, however,λj will always become positive. As a
consequence, all eigenfrequenciesσj = ±

√
λj will become real for sufficiently high

orderj ≥ n and satisfy:

|σn| < |σn+1| < |σn+2| < |σn+3| < . . . (6.42)

In principle, the mathematical structure of the problem allows for imaginary pairs of
eigenfrequencies at low orders in the inner and outer zones. For the particular parameters
studied in the following sections, however,λ1 turned out to be positive, i.e.,n = 1 and
all eigenfrequencies are real.

Even if equation6.37together with the boundary conditionsp̂ = 0 atx = 0 andx = 1
(three-zone-model) is not of Sturm-Liouville type, the differential operator

D =
d

dx

(
q
d

dx

)
+ λu− w (6.43)

in equation6.38can be shown to be self adjoint with the boundary conditionsp̂ = 0 at
x = 0 andx = 1. Therefore the eigenvaluesλ are real and we do expect only real or
purely imaginary eigenfrequenciesσ, i.e., we will not be able to reproduce the complex
eigenfrequencies of the exact problem in this approximation.
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Results

Assuming the coefficientsC andB1,2 to be constant, equations6.34and6.35are solved
by the Ansatẑp, ζ̂ ∝ ekx. For the wavenumbersk we get

k = ±
√
B1,2 · C (6.44)

Thus the general solutions reads

p̂ =


a1 · e

√
B2Cx + a2 · e−

√
B2Cx x ∈ [0, a)

b1 · e
√
B1Cx + b2 · e−

√
B1Cx x ∈ [a, b]

c1 · e
√
B2Cx + c2 · e−

√
B2Cx x ∈ (b, 1]

(6.45)

a1,2, b1,2 andc1,2 are integration constants and have to be determined by the requirements
of continuity and differentiability of̂p atx = a andx = b and the boundary conditions
atx = 0 andx = 1. For the latter we choosêp = 0, which implies

a2 = −a1 and (6.46)

c2 = −c1 · e2
√
B2C (6.47)

Together with the requirements of continuity and differentiability this yields the disper-
sion relation

(
√
B1C −

√
B2C)e

√
B2Ca + (−

√
B1C −

√
B2C)e−

√
B2Ca

(
√
B1C +

√
B2C)e

√
B2Ca + (−

√
B1C +

√
B2C)e−

√
B2Ca

· e2
√
B1C(a−b) =

(
√
B1C −

√
B2C)e

√
B2C(b−1) + (−

√
B1C −

√
B2C)e−

√
B2C(b−1)

(
√
B1C +

√
B2C)e

√
B2C(b−1) + (−

√
B1C +

√
B2C)e−

√
B2C(b−1)

(6.48)

where the eigenfrequenciesσ are contained in the coefficientC. In general, the roots of
equation6.48have to be calculated numerically, using, for example, a complex secant
method. Separate spectra for the three isolated zones may be obtained by assuming
the boundary conditionŝp = 0 at x = a, b instead of continuity and differentiability
requirements. We are then left with the dispersion relations

1 =
(
√
B1C −

√
B2C)e

√
B2Ca + (−

√
B1C −

√
B2C)e−

√
B2Ca

(
√
B1C +

√
B2C)e

√
B2Ca + (−

√
B1C +

√
B2C)e−

√
B2Ca

(6.49)

1 =
(
√
B1C +

√
B2C)e

√
B2C(b−1) + (−

√
B1C +

√
B2C)e−

√
B2C(b−1)

(
√
B1C −

√
B2C)e

√
B2C(b−1) + (−

√
B1C −

√
B2C)e−

√
B2C(b−1)

(6.50)

1 = e2
√
B1C(a−b) (6.51)

for the inner, outer and shock zones, respectively.
For the averaged model we haveB1 ≈ −4ψ and dominant radiation pressure implies

B2 ≈ 1
4
ψ. Inserting these values into equations6.49-6.50we are left with√

ψ2

4
(4 + 3σ2)a =

(2n+ 1)π

2
n ∈ Z (6.52)√

ψ2

4
(4 + 3σ2)(b− 1) =

(2n+ 1)π

2
n ∈ Z (6.53)
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Table 6.3: Eigenfrequenciesσ (σr: real part,σi: imaginary part) of the three-zone-model
having the parametersB1 = −4ψ,B2 = ψ

4
, a = 0.57, b = 0.59, ψ = −1

σr 12.01 16.78 18.55 24.86 25.83 31.29 34.67
σi 0 0 0 0 0 0 0
σr 0 0 0 0 0
σi 7.21 52.43 97.77 143.11 188.46

Thus we have realσ, i.e., neutrally stable modes, if the inner and outer regions are
considered separately, in accordance with the discussion in section6.4.1. For the shock
region equation6.51yields

2
√

4ψ2(4 + 3σ2)(b− a) = 2πni n ∈ Z (6.54)

These solutions correspond to purely imaginaryσ implying instability. The solutions of
equations6.52-6.54can be used as initial guesses for the numerical iteration of equation
6.48, the dispersion relation of the three-zone-model. Some representative eigenvalues
of the three-zone-model are given in Table6.3.

Once the eigenfrequencies are determined, the corresponding eigenfunctions are given
by

p =


a1 · eψx · e

√
B2Cx + a2 · eψx · e−

√
B2Cx x ∈ [0, a)

b1 · eψx · e
√
B1Cx + b2 · eψx · e−

√
B1Cx x ∈ [a, b]

c1 · eψx · e
√
B2Cx + c2 · eψx · e−

√
B2Cx x ∈ (b, 1]

(6.55)

The factoreψx is due to the transformation fromp to p̂.
Typical eigenfunctions are presented in figures6.6.a1-6.6.a3. Three types of modes

may be distinguished belonging to the three zones of the model. Real eigenfrequencies
are associated with the inner and outer region. Except for the shock region they are os-
cillatory and reach their maximum in the respective region. “Shock modes” correspond
to unstable and damped modes (purely imaginary pairs of eigenvalues). They oscillate
in the shock region and are evanescent elsewhere. We note the correspondence of figures
6.6.a1 and6.4.a1,6.6.a2 and6.4.a2 and6.6.a3 and6.4.a3, i.e., the results of the analyt-
ical model resemble those of the exact analysis. The influence of the shock position on
the modal structure may also be studied within the framework of the three-zone-model.
As long as the width of the shock zone and the coefficientB1 are not varied, the “shock
modes” are not affected. The dependence on the shock position of the neutrally stable
“inner” and “outer” modes is shown in figure6.6.b. Moving the shock position outwards,
the frequencies of the inner modes decrease, whereas those of the outer modes increase,
according to the variation of the length of the corresponding acoustic cavities. This leads
inevitably to multiple crossings between the frequencies of the inner and outer modes,

66



6.4. AN ANALYTICAL MODEL

(a1)

a

(b)

2p

2p σr

2p

r/R

(a2)

r/R

r/R

(a3)

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1e-45
1e-40
1e-35
1e-30
1e-25
1e-20
1e-15
1e-10
1e-05

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.610.55
0.001

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.80.750.70.650.60.550.50.450.4
10

15

20

25

30

35

Figure 6.6: Eigenfunctions for the three-zone-model with the parametersB1 = −4ψ,
B2 = ψ

4
, a = 0.57, b = 0.59, ψ = −1, and the frequenciesσr = 44.04, σi = 0 (a1),

σr = 43.53, σi = 0 (a2),σr = 0, σi = 188.46 (a3). (b): Eigenfrequenciesσr of neutrally
stable modes as a function of the positiona of the lower boundary of the shock region
for fixed b− a = 0.02 andB1 = −4ψ,B2 = ψ

4
, ψ = −1.

which unfold into avoided crossings (see, e.g.,Gautschy & Glatzel 1990). Mode interac-
tion by instability bands is excluded here according to the general discussion in section
6.4.1.

Interpretation

The three-zone-model reproduces the effects of the shock front regarding important as-
pects: The front acts as an acoustically isolating layer which separates the inner and
outer part of the envelope. As a result, these parts provide largely independent spectra.
This may be illustrated by the variation of the position of the shock front. Apart from the
expected spectra associated with the inner and outer envelope, an additional spectrum of
modes is generated by the shock region itself.

Comparing eigenfunctions of the averaged and the analytical model (figures6.4.a1-a3
and figures6.6.a1-a3), we find a strikingly similar behaviour. In particular, the confine-
ment of the unstable shock modes is present in both cases. Due to constant coefficients,
however, the analytical model reproduces neither decreasing amplitudes nor increasing
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spatial frequencies towards the stellar centre.
We have identified unstable modes in the shock zone of the analytical model. They

resemble those of the shock instabilities of the averaged model, and are related to the
sound travel time across the shock zone. Its radial extent is primarily responsible for
their high frequencies.

The analysis in section6.4.1 has shown, that the sign ofu(x) in equation6.38 is
responsible for the instability in the shock region. This sign is determined by the term
B1

ψ
, which is given by

B1

ψ
=
α

3
−

δκp
3

4− κT
(6.56)

Estimating the various terms in equation6.56, we find that the sign ofκp determines the
sign of B1

ψ
. A dependence on the sign ofκp of the instability, however, is not recovered

in the exact problem, which can be tested by replacingκp with −κp there. The exact
problem is not affected by this substitution. Thus we conclude, that the analytical model
does not provide correct results in this respect and needs to be refined to describe the
instability properly. In order to investigate the origin of the instability, some of the
simplifying assumptions of the analytical model need to be dropped. In this direction, a
more realistic model of the shock zone will be presented in the following section.

6.4.2 Shock-Zone-Model

Our study of the three-zone-model in section6.4.1has shown, that inner, outer and shock
zones may to good approximation be treated separately by assuming suitable boundary
conditions, e.g., vanishing pressure at boundaries and interfaces. Moreover, the instabil-
ities of interest are not provided by the inner and outer zones. Therefore we restrict the
following study to the shock zone by applying the boundary conditionsp(a) = p(b) = 0.
Within the framework of the analytical model the coefficients of the perturbation equa-
tions are taken to be constant with the values given in section6.4.1.

Contrary to section6.4.1we will not replace the diffusion equation by an algebraic
relation here, as this turned out to lead to erroneous results. However, we still adopt the
NAR-approximation. The set of equations considered then reads:

1

ψ

dζ

dx
=

1

3
(3ζ + αp− δt) (6.57)

1

ψ

dp

dx
= −(4 + 3σ2)ζ − p (6.58)

1

ψ

dt

dx
= ∇(−4ζ + κpp− (4− κT )t) (6.59)

1

ψ

dl

dx
= 0 (6.60)
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Written in matrix form this yields

1

ψ

d

dx


ζ
p
t
l

 =


1 α

3
− δ

3
0

−(4 + 3σ2) −1 0 0
−4∇ ∇κp −∇(4− κT ) 0

0 0 0 0



ζ
p
t
l

 (6.61)

The differential equation is solved by an exponential dependence∝ eikx of the dependent
variables. Thus we arrive at the linear algebraic equation

1− ik
ψ

α
3

− δ
3

0

−(4 + 3σ2) −1− ik
ψ

0 0

−4∇ ∇κp −∇(4− κT )− ik
ψ

0

0 0 0 − ik
ψ



ζ
p
t
l

 =


0
0
0
0

 (6.62)

This equation has a non trivial solution only if the determinant of the matrix vanishes,
which provides a quartic equation for the wavenumberk. One of its roots is zero, the
remaining three roots are determined by the following cubic equation:(

ik

ψ

)3
1

∇(4− κT )
+

(
ik

ψ

)2

+(
ik

ψ

)(
−

4
3
δ

(4− κT )
− 1

∇(4− κT )
(1− α

3
(4 + 3σ2))

)
︸ ︷︷ ︸

d1

+

(
−1 +

α

3
(4 + 3σ2)− 1

(4− κT )

(
δ

3
κp(4 + 3σ2) +

4

3
δ

))
︸ ︷︷ ︸

d2

= 0 (6.63)

In the limit of large∇ they may be given in closed form:(
ik

ψ

)
1,2

= −d1

2
±
√
d2

1

4
− d2 (6.64)

(
ik

ψ

)
3

= −∇(4− κT ) (6.65)

The general solution to the perturbation problem consists of a superposition of four fun-
damental solutions associated with the four roots for the wavenumber, two of which are
oscillatory (those associated withk1 andk2). The dispersion relation is then derived by
imposing four conditions. In addition to the boundary conditionsp = 0 atx = a, b, we
require the two non oscillatory fundamental solutions not to contribute to the eigensolu-
tion. The latter is then only determined byk1 andk2:

p = h1 · eik1x + h2 · eik2x (6.66)
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whereh1 andh2 are integration constants. They are determined by the boundary condi-
tionsp = 0 atx = a, b, which imply

k1 − k2 =
2πn

(a− b)
(6.67)

wheren ∈ Z denotes the order of the overtone. Using equation6.64we get

d2
1

4
− d2 = − π2n2

ψ2(a− b)2
(6.68)

With the definitions ofd1 andd2 (equation6.63) we arrive at a quadratic equation in
σ2. Expanding the coefficients ofσ2 in terms of 1

∇ and assumingπ
2n2

(a−b)2 to be large, we

obtain to lowest order in1∇ :

σ4
9
6
α2

∇2(4− κT )2
− σ2

(
α− δκp

(4− κT )

)
+

π2n2

ψ2(a− b)2
= 0 (6.69)

Defining

∇̃ =
∇2(4− κT )2

9
6
α2

(6.70)

this equation has the solutions

σ2
1,2 =

∇̃
2

(
α− δκp

(4− κT )

)
±

∇̃
2

(
α− δκp

(4− κT )

)√√√√1− 4

∇̃
π2n2

ψ2(a− b)2

1(
α− δκp

(4−κT )

)2 (6.71)

In the NAR-approximation, eigenfrequencies come in complex conjugate pairs, i.e.,
complex eigenfrequencies imply instability. According to equation6.71, complex eigen-
frequencies, and therefore instability, are obtained, if∇ is finite andn is sufficiently
large. For fixedn we obtain in the limit of large∇ (expansion of the root):

σ2
1 =

1

4

π2n2

ψ2(a− b)2

1(
α− δκp

(4−κT )

) (6.72)

σ2
2 = ∇̃

(
α− δκp

(4− κT )

)
− 2π2n2

ψ2(a− b)2

1(
α− δκp

(4−κT )

) (6.73)

Equation6.72describes the eigenfrequencies of the decoupled shock modes discussed
in section6.4.1, i.e., the second order analysis of the previous section is contained in the
limit ∇ →∞ of the present approach. Instabilities described by equation6.71resemble
those of the averaged model, rather than those given by equation6.72for positive values
of κp. We conclude that a finite but large value of the stratification parameter∇ =
d log T
d log p

is essential for instability. However, assuming∇ → ∞, which was done in the
investigation of the three-zone-model (section6.4.1), is an oversimplification.
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6.5 Conclusions

When following the non linear evolution of strange mode instabilities in the envelopes
of massive stars, shock fronts were observed to be captured in the H-ionisation zone
some pulsation periods after reaching the non linear regime. This effect is not observed
in models of very hot envelopes (such as the massive star model investigated by Glatzel
et al. (1999)), due to hydrogen being ionised completely. The shocks trapped in the
H-ionisation zone perform high frequency oscillations (associated with the sound travel
times across the shock zone) confined to its very vicinity, whereas the remaining parts of
the envelope vary on the dynamical timescale of the primary, strange mode instability.
By performing an appropriate linear stability analysis the high frequency oscillations
were shown to be due to a physical instability, rather than being a numerical artifact.

An analytical model for the secondary, shock zone instabilities has been constructed.
As a result, high values of∇ were found to be responsible for instability. Contrary to
the common stratification (convective, Rayleigh-Taylor) instabilities driven by buoyancy
forces and thus associated with (non radial) gravity modes, however, the instabilities
found here are associated with spherically symmetric acoustic waves. An extension of
the stability analysis to non radial perturbations would be instructive, since we expect the
acoustic instabilities identified here - similar to strange mode instabilities (seeGlatzel &
Mehren 1996) - not to be restricted to spherical geometry. Such an investigation would
also reveal buoyancy driven instabilities, which we believe not to be relevant for the
following reasons: Their typical timescale is much longer than that of the acoustic insta-
bilities, which will therefore dominate the dynamics. Moreover, in addition to gravity,
the acceleration due to the shocks velocity field has to be taken into account and is likely
to stabilise the stratification with respect to convective instabilities. With respect to the
aim of this paper to identify the secondary, shock oscillations and their origin, a non
radial analysis is beyond the scope of the present investigation and will be the subject of
a forthcoming publication.

Since the oscillations are a physical phenomenon - rather than a numerical artifact -
they should not be damped by increasing the artificial viscosity as one would neglect a
physical process whose influence on the long term behaviour of the system cannot yet be
predicted. On the other hand, following the shock oscillations by numerical simulation
for more than a few dynamical timescales is not feasible due to the small timesteps
necessary to resolve them. The confinement of the oscillations to the very vicinity of
hydrogen ionisation, however, indicates a solution of the problem by means of domain
decomposition: The stellar envelope is decomposed into three domains: below, around
and above the shock. Only the narrow shock region needs high time resolution, the inner
and outer zones merely require the dynamical timescale to be resolved. The development
of a code following this strategy is in progress.

Even if the appearance of the shock oscillations has so far prevented us from perform-
ing simulations in excess of several dynamical timescales, the velocity amplitudes reach
a significant fraction of the escape velocity. This indicates that pulsationally driven mass
loss may be found in appropriate simulations. Whether the new code will allow for the
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corresponding long term simulations and thus possibly for the determination of mass
loss rates, remains to be seen. Preliminary results will be published in a forthcoming
paper.
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7. Domain decomposition

Simulation of stellar instabilities with vastly different time-
scales using domain decomposition1

M. Grott2, S. Chernigovski3 and W. Glatzel2

2Universitäts-Sternwarte Göttingen, Geismarlandstr .11, 37083 Göttingen, Germany
3Institut für Analysis und Numerik, Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract
Strange mode instabilities in the envelopes of massive stars lead
to shock waves, which can oscillate on a much shorter timescale
than that associated with the primary instability. The phenomenon
is studied by direct numerical simulation using a, with respect to
time, implicit Lagrangian scheme, which allows for the variation
by several orders of magnitude of the dependent variables. The
timestep for the simulation of the system is reduced appreciably
by the shock oscillations and prevents its long term study. A pro-
cedure based on domain decomposition is proposed to surmount
the difficulty of vastly different timescales in various regions of
the stellar envelope and thus to enable the desired long term sim-
ulations. Criteria for domain decomposition are derived and the
proper treatment of the resulting inner boundaries is discussed.
Tests of the approach are presented and its viability is demon-
strated by application to a model for the star P Cygni. In this in-
vestigation primarily the feasibility of domain decomposition for
the problem considered is studied. We intend to use the results as
the basis of an extension to two dimensional simulations.

Key words: hydrodynamics - instabilities - shock waves - stars:
oscillations - stars: variables: other - stars: individual: P Cygni.

1This paper has been accepted for publication by MNRAS (Grott et al. 2003b)
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7.1 Introduction

Sufficiently luminous objects, such as massive stars, are known to suffer from strange
mode instabilities with growth rates in the dynamical range (Kiriakidis, Fricke & Glatzel
1993, Glatzel & Kiriakidis 1993). The boundary of the domain in the Hertzsprung-
Russel diagram (HRD) above which all stellar models are unstable - irrespective of their
metallicity -, coincides with the observed Humphreys-Davidson (HD) limit (Humphreys
& Davidson 1979). Moreover, the range of unstable models covers the stellar parameters
for which the LBV (luminous blue variable) phenomenon is observed (for a review see
Humphreys & Davidson 1994).

The high growth rates of the instabilities indicate a connection to the observed mass
loss of the corresponding objects. To verify this suggestion, simulations of their evolu-
tion into the non linear regime have been performed. In fact, for selected models Glatzel
et al. (1999) found the velocity amplitude to exceed the escape velocity (see, however,
Dorfi & Gautschy (2000)).

To identify a possible connection between non linear pulsations and outbursts in lu-
minous blue variables Grott, Glatzel & Chernigovski (2003) have studied the evolution
of an initial model located in the HRD well above the HD limit. In this study, the shocks
formed in the non linear regime are captured by the H-ionisation zone after a few pul-
sation periods. These captured shocks start to oscillate rapidly with periods of the order
of the sound travel time across the H-ionisation zone, while its mean position changes
on the dynamical timescale of the primary, strange mode instability. Grott et al. (2003)
have shown, that this shock front oscillation is of physical origin and therefore must not
be disregarded. In particular, the phenomenon should not be eliminated by increasing
the artificial viscosity. We note that the representation of the phenomenon requires the
correct treatment of extreme gradients of the dependent variables, implying their vari-
ation by several orders of magnitude. It is achieved by use of a, with respect to time
implicit Lagrangian scheme.

The rapid shock oscillations, which are confined to a narrow region in the vicinity of
the shock front, require an inhibitively small timestep and thus prevent long term sim-
ulations. In the present paper we propose an approach based on domain decomposition
to surmount the difficulty of vastly different timescales in various regions of the stellar
envelope and thus to enable the desired long term simulations. In this procedure the
various domains within the envelope are to be treated separately and according to their
intrinsic timescales. We expect this decomposition to speed up the calculations consid-
erably. An even higher speedup will be achieved when applying domain decomposition
to two dimensional simulations. In this sense, the present investigation may be regarded
as a preliminary study for decomposition in two dimensions.

The basic equations and assumptions are introduced in Section7.2. The domain de-
composition approach is discussed in detail in Section7.3, including a derivation of
criteria for domain decomposition and an investigation of the proper treatment of the
resulting inner boundaries. Moreover, tests of the approach are presented there. Its via-
bility is demonstrated by application to a model of the star P Cygni in section7.4. Our
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conclusions follow.

7.2 Basic equations and assumptions

The evolution of instabilities of a stellar envelope is followed into the non-linear regime
assuming spherical symmetry and adopting a Lagrangian description, i.e. the indepen-
dent variables are the time t and the massMr inside a sphere of radiusr. The equations
to be solved (see, e.g.,Cox 1980) are given by mass conservation,

∂r3

∂Mr

− 3

4πρ
= 0 (7.1)

momentum conservation,

∂2r

∂t2
+ 4πr2 ∂p

∂Mr

+
GMr

r2
= 0 (7.2)

energy conservation,

∂L

∂Mr

− ε− p

ρ2

∂ρ

∂t
+
∂E

∂t
= 0 (7.3)

and the diffusion equation for energy transport,

∂T

∂Mr

− 3κ(L− Lconv)
64π2acr4T 3

= 0 (7.4)

whereρ, p, T , L, andE denote density, pressure, temperature, luminosity and specific
internal energy, respectively.a is the Stefan-Boltzmann constant,G the gravitational
constant andc the speed of light. We emphasise that∂

∂t
is the substantial time derivative.

For the opacitiesκ, the latest versions of the OPAL tables (Iglesias, Rogers & Wilson
1992, Rogers & Iglesias 1992) have been used. Convection is treated in the standard
frozen in approximation (seeBaker & Kippenhahn 1965), i.e. the convective luminosity
Lconv is kept constant and equal to the luminosity of the hydrostatic initial model. Since
the instabilities are localised in the outer envelope, the evolution of the core can be
neglected. Its properties are taken into account by imposing time independent boundary
conditions (e.g. by prescribing luminosity, [vanishing] velocityv and [constant] radius)
at the bottom of the envelope. For the envelope model, the nuclear energy generation
rateε vanishes. At the outer boundary, the gradient of heat sources is required to vanish
(F is the heat flux):

grad(divF ) = 0 (7.5)

This boundary condition implies (by using equations7.1,7.3 and7.4) boundary values
for the temperatureT and pressurep. It is chosen to ensure that outgoing shocks pass
through the boundary without reflection. The set of boundary conditions prescribing
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Figure 7.1: Normalised time derivatives of the velocityv as a function of gridpoint, for
two typical states of the system. Decomposition into three (a) and two (b) subdomains
(Dl,Dsh,Dr) as indicated by the dashed lines is suggested.

values for the velocity and luminosity at the bottom and values for the pressure and
temperature at the top of the envelope will be denoted by(v, L)(p, T ) in the following.

The numerical code relies on a Lagrangian, with respect to time implicit, fully con-
servative difference scheme proposed by Fraley (1968) and Samarskii & Popov (1969).
As a consistent extension the two dimensional version of the code currently under de-
velopment (also implicit and Lagrangian) is based on the method of support operators
originally suggested by Samarskii et al. (1981) and Ardelyan & Gushchin (1982). For
a thorough description of the method of support operators we refer to Shashkov (1996).
To handle shock waves, artificial viscosity is used. Concerning tests of the code, we
adopted the same criteria as Glatzel et al. (1999). We emphasise, that conservativity of
the numerical scheme is of fundamental importance when simulating instabilities in a
stellar envelope. Considering the distribution of internal, gravitational and kinetic en-
ergy we find, that the kinetic energy can be smaller than, e.g., the gravitational energy
by several orders of magnitude. Appropriate simulations of stellar instabilities require
the correct representation of the kinetic energy, and therefore energy conservation with
high accuracy is indispensable. The difference scheme adopted here guarantees energy
conservation.

7.3 Domain decomposition

7.3.1 Motivation for domain decomposition

The stellar envelope model representing a massive star with massM = 50M�, effec-
tive temperatureTeff = 104K and luminosityL = 1.17 · 106L�, which was considered
by Grott et al. (2003), suffers from strange-mode-instabilities. These cause pulsations
with velocity amplitudes of 0.5vesc and inflate the envelope to2.5 initial radii. After
several pulsation periods a shock front is captured in the H-ionisation zone. The latter
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is prone to secondary instabilities and oscillates on very short timescales connected to
the sound travel time across the front. These instabilities are caused by the stratification,
but not driven by buoyancy (Grott, Glatzel & Chernigovski 2003). Resolving the rapid
oscillations of the shock front reduces the timestep to very small values. This is compu-
tationally extremely expensive and effectively inhibits the desired long term study of the
system.

In order to enable the treatment of the problem the integration interval is decomposed
such that the small and quickly varying shock region is integrated with small time steps
and the remaining major part of the envelope is calculated using large time steps. This
strategy of domain decomposition is common in computational fluid dynamics (see, e.g.,
Wu 1999andWu & Zou 2000). For the treatment of interfaces between the various do-
mains and the associated inner boundary conditions for purely hyperbolic systems, we
refer the reader to these publications. We stress, however, some fundamental differences
to the previous studies: One of them concerns the different character of the system of
equations. So far, only purely hyperbolic systems have been considered, whereas we
apply domain decomposition to a composite system of hyperbolic and parabolic equa-
tions. Moreover, we adopt a numerical scheme which is implicit in time. Again, this is
in contrast to previous studies which use explicit schemes.

7.3.2 Criterion for domain decomposition

In this section a criterion for the proper choice of the boundaries of the various domains
evolving on different timescales and therefore treated with different time steps will be
presented. Considering the time derivatives of various physical quantities the velocityv
is found to vary most rapidly and therefore determines the time step.

Figure 7.1 shows the time derivatives of the velocity for two typical states of the
system, where Figure7.1.a corresponds to rapid shock oscillations around gridpoint 310.
In this case, domain decomposition as indicated by the dashed lines is suggested. Figure
7.1.b represents a situation, in which the outer envelope is collapsing onto the shock
(at gridpoint 410). Rapid variations are now also found above the shock. Accordingly,
decomposition into two domains (as indicated by the dashed line) seems appropriate.
Depending on the state of the system, we therefore need to split the domain of integration
into two or three subdomains.

The size of the various domains is determined by comparing the time derivatives of
velocity and temperature with the corresponding derivatives on the shock front. There-
fore, as a first step, the position of the shock front has to be determined. For the models
studied, the latter is defined by the maximum temperature gradient. The boundaries of
the shock zone are then defined by the requirement, that the time derivative at their po-
sition corresponds to a given fraction1/k of the time derivative at the shock. In other
words, the set of gridpointsDsh belonging to the shock zone may be characterised by

Dsh =

{
n :

∣∣∣∣∂v∂t
∣∣∣∣
n

>
1

k

∣∣∣∣∂v∂t
∣∣∣∣
sh

∧
∣∣∣∣∂T∂t

∣∣∣∣
n

>
1

k

∣∣∣∣∂T∂t
∣∣∣∣
sh

}
(7.6)

79



CHAPTER 7. DOMAIN DECOMPOSITION

wheren denotes the number of the gridpoint and derivatives with indexsh correspond
to their maximum values found in the shock region. Accordingly, the zones below and
above the shock are determined by

Dl = {n : n ≤ min(Dsh)} (7.7)

Dr = {n : n ≥ max(Dsh)} . (7.8)

The parameterk corresponds to the ratio of timesteps inDl,r andDsh, which favours
large values ofk. On the other hand, the size ofDsh increases withk, suggesting smaller
values. Therefore optimum results will be obtained for a mean choice. For the consid-
ered model a value ofk = 15 turned out to be satisfactory. If the size of the domainsDl
or Dr drops below a given value, they are considered to be part of the shock zone, and
we arrive at a decomposition into two subdomains. For the model considered the whole
grid consists of 512 gridpoints and the zones have a minimum size of 64 gridpoints.

After decomposition, the quickly varying regionDsh is integrated first with timesteps
τ1, τ2, . . . , τn. Then the domainsDl and/orDr are integrated with the timestepτ =
τ1 + τ2 + · · ·+ τn. The decomposition implies artificial boundaries and boundary condi-
tions between the domainsDl andDsh andDr andDsh, respectively. An inconsistency
is introduced, if in a first approach the explicit inner boundary conditions are either kept
fixed, or linearly extrapolated in time. Both cases are contained in the following extrap-
olation prescription:

Ybound = αY

(
(Y − Yold)

τold
· τ ′ + Y

)
+ (1− αY ) · Y (7.9)

Y stands forp, T , v, L, andαY ∈ [0, 1] is a free extrapolation parameter, which may
be chosen independently for each variable.Y refers to the current,Yold to the previous
value of the variable.τold is the last,τ ′ the current timestep. How the inconsistency may
be treated will be discussed in the following sections.

Once the integration of all domains has been performed, one subsequent timestep is
done without decomposition. We shall refer to it as the relaxation timestep. Relaxation
prevents accumulation of residual errors.

7.3.3 The iteration procedure

A mathematically consistent way of integrating the different domains, which solves the
problem of artificial fixed boundary conditions is the following iterative procedure:

1. The computation is started at timet andDl,Dsh andDr are integrated with fixed
boundary values(v, L)t and(p, T )t for each domain. The subscriptt denotes
values at timet.

2. New boundary values(v, L)t+τ and(p, T )t+τ are obtained by integration of the
adjacent domain. With these boundary values the integration1 is repeated.
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Figure 7.2: Snapshot of the sound travel timeτcour (a) and the diffusion timeτdiff (b)
across a cell as a function of gridpoint.

This iterative procedure implies implicit boundary conditions and successively elimi-
nates the errors introduced by the artificial boundaries. 4-5 iteration cycles produce sat-
isfactory results. However, this approach is computationally even more expensive than
integrating the entire domain with small timestepsτ1, . . . , τn. Concerning the present
problem, it is therefore not relevant and has been applied only for comparison with other
methods discussed below. However, for the corresponding two dimensional problem the
computational effort might be significantly reduced by the procedure as the inversion of
the most ill-conditioned matrix occurring there is anN2-process.

7.3.4 Overlapping domains

One method to reduce the error caused by the fixed inner boundary conditions consists
of using overlapping domains of computation. We emphasise that the system considered
here is composed of hyperbolic and parabolic differential equations. We first consider
the hyperbolic part, i.e., the mechanical equations. Any errors or perturbations in this
part produced at the boundaries of the domains propagate with finite speed into the do-
main of computation along the characteristics of the equation. For our set of equations,
perturbations propagate with velocitiesv ± cs, wherecs denotes the speed of sound. If
the domains overlap such that the time for error propagation across the overlap is larger
than the integration timestepτ , we may discard the flawed values close to the boundary
and keep only the correct values for the subsequent timestep. This condition implies

τ <
∑
i

li
vi + csi

(7.10)

where the sum of individual sound travel times is to be taken over all overlapping cells.
li denotes the thickness of celli.

Concerning the parabolic part of equations7.1-7.4, i.e. the diffusion equation for en-
ergy transport, perturbations travel across the grid with infinite speed. Therefore, the
procedure suggested for the hyperbolic part of the equations can in principle not be
carried over to the parabolic part. Rather physical quantities change on the diffusion
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timescale, which is given byτdiff = l2ρcp
3κρ

4acT 3 (cp is the specific heat at constant pres-
sure). Consequently, we expect the effect of the perturbations to be small far from the
boundary if the timestepτ is sufficiently small, i.e. :

τ <
∑
i

l2i ρicpi
3κiρi
4acT 3

i

(7.11)

where the sum of individual diffusion times again extends over all overlapping cells.
In Figure7.2 a snapshot of the sound travel time (Figure7.2.a) and diffusion time

(Figure7.2.b) across a cell is given as a function of gridpoint. The sound travel time
across the overlapping region is larger than a typical timestep (approximately 1 per cent
of the global free fall time) for an overlap of∼ 8 cells (condition7.10). However, while
the diffusion time across the overlapping region is bigger than the timestep even for a
small overlap in the bottom part of the envelope, condition7.11cannot be satisfied in
the outer envelope for a reasonable number of overlapping cells. The latter is due to the
small heat capacity there (implying the ratio of thermal and dynamical timescales to be
small) and in accordance with the validity of the non-adiabatic-reversible approximation
(NAR-approximation), which has been shown for this particular stellar model by Grott
et al. (2003). How satisfactory results may be obtained even if condition7.11 is not
satisfied will be discussed in the following section.

7.3.5 Inner boundary conditions

On the basis of the domain decomposition procedure described above, various inner
boundary conditions and their consequences will be investigated in this section. In any
case, overlapping domains have been used. The tests presented here have been per-
formed at various times with similar results. Therefore the results may be regarded to be
independent of the particular state of the system. In the tests, the luminosityL turned out
to be the most sensitive quantity concerning the errors introduced by the inner bound-
aries. This is due to the fact, that in our difference scheme it is only accurate to first
order. ThereforeL is required to be reproduced satisfactorily compared to the results of
the approach without decomposition.

In Figure7.3 the luminosity is given as a function of gridpoint around the boundary
betweenDl andDsh, which is more sensitive than the boundary betweenDsh andDr
with respect to the decomposition procedure. For comparison, results obtained without
decomposition are shown as solid lines. Dotted lines correspond to results with decom-
position, where the left and right columns illustrate those before and after relaxation,
respectively.

1. Figure7.3.a shows the result obtained using the(v, L)(p, T ) boundary condition,
i.e., velocity and luminosity were prescribed at the left, and temperature and
pressure at the right boundary, respectively. This condition implies a
discontinuity of the luminosity (a1) and leads to an unacceptable relative error (∼
15 per cent) after relaxation (a2).
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Figure 7.3: The luminosity as a function of gridpoint around the boundary betweenDl
andDsh at gridpoint 264. Results obtained without decomposition are shown as solid
lines. Dotted lines in the left and right columns correspond to decomposition without (1)
and with (2) relaxation, respectively.(v, L)(p, T ) and(v, L)(v, L) boundary conditions
have been used in (a) and (b), respectively, the iteration procedure (4 cycles) has been
applied in (c) with the(v, L)(p, T ) boundary condition.

2. Figure7.3.b shows the result obtained using the(v, L)(v, L) boundary condition.
The latter is motivated by the discontinuity of the luminosity for the previously
discussed(v, L)(p, T ) boundary condition. Rather than the considerable
discontinuity ofL we expect a more tolerable discontinuity of its derivative for
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the(v, L)(v, L) boundary condition. In fact, the results given in figure7.3.b1 are
satisfactory. After relaxation the relative error in the luminosity is of the order of
10−3 (figure7.3.b2). However, in this case the error ofL directly enters the
boundary conditions for the subsequent timestep and leads to an accumulation of
the error at the interface. This problem can be removed partially by switching
between different interfaces for subsequent timesteps. The remaining error can
then spread sufficiently and does not influence the further integration
significantly.

3. Figure7.3.c shows the result obtained using the iteration procedure described in
section7.3.3. After four iteration cycles it is comparable to that obtained with the
(v, L)(v, L) boundary condition. By performing more iteration cycles the
accuracy could be improved even more. However, the iteration procedure is
computationally much more expensive than the alternatives discussed and
therefore of no practical use.

We thus conclude, that using the domain decomposition procedure together with over-
lapping domains and(v, L)(v, L) boundary conditions, and switching between different
interfaces, yields satisfactory results at low computational cost.

7.3.6 Validation of the domain decomposition procedure

The domain decomposition procedure with overlapping domains and(v, L)(v, L) bound-
ary conditions has been compared for validation with the original approach using no de-
composition. The comparison starts at6.47 · 107 sec, i.e., well after the formation of the
shock and the associated instability, and extends to6.58 · 107 sec. The typical periods
of unstable strange modes driving the pulsations of the star are of the order of5 · 106

sec, whereas the modes carrying the stratification instabilities of the shock front have
periods of∼ 105 sec. Therefore, the test covers approximately 0.2 periods of the overall
envelope pulsations and 10 periods of shock oscillations.

Convergence and error control is done using the following criterion based on al2-
norm:

1

N

(∑
i

f 2
i

) 1
2

< E (7.12)

wherefi denotes the relative error of a physical quantity in gridpoint or celli andN
the total number of gridpoints.E is the prescribed error bound and the sum extends
over all gridpoints.f 2

i contains the weight-function of thel2-norm which is chosen to be
proportional to the mass of the corresponding cell,f 2

i ∝ mi. Thus the various regions
of the star contribute to the error in a different way and domain decomposition using
the same error bound in all domains will result in different accuracies for the various
domains and compared with the approach without domain decomposition. Accordingly
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Figure 7.4: The velocity as a function of gridpoint with (dashed line) and without (solid
line) domain decomposition after5 ·105 sec (a1) and1.1 ·106 sec (b1) of simulated time.
All simulations start att = 6.47 ·107 sec (after the formation of the shock front) with the
same initial model. In Figures (a2) and (b2) velocities obtained with decomposition are
taken104 sec (a2) and5·104 sec (b2) later than their counterparts without decomposition,
respectively. This physically irrelevant phaseshift reduces the differences between the
two approaches significantly. For comparison, the velocity and the density after1.1 · 106

sec of simulated time are presented as a function of relative radius in figures (b3) and
(c), respectively (without decomposition).

the error bound has to be adapted to the domains contribution to the numerical error.
On the other hand, as an identical error control cannot be guaranteed, results with and
without decomposition are expected to differ slightly.

In the following figures7.4 and7.5, solid lines correspond to the approach without
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Figure 7.5: Gravitational (a), kinetic (b), thermal (c) and total (d) energy as a function
of time. Solid and dashed lines correspond to simulations without and with domain
decomposition, respectively.

decomposition, dotted lines refer to decomposition. Figure7.4shows the velocityv as a
function of gridpoint after5 · 105 sec (figure7.4.a1) and1.1 · 106 sec (figure7.4.b1) of
simulated time, respectively. For comparison, the velocity and the density after1.1 · 106

sec of simulated time are also presented as a function of relative radius in figures (b3)
and (c), respectively (without decomposition). The shock is located atr/R ≈ 0.95 and
resolved by approximately 150 gridpoints. The high resolution of the shock zone is
necessary to represent its oscillations (Grott, Glatzel & Chernigovski 2003).

Considering5 · 105 sec of simulated time, domain decomposition yields excellent
agreement with the original approach up to the position of the shock front (at grid point
320). Around the shock front the results differ slightly, whereas above it the agreement
between the two approaches is again satisfying. The agreement may be found to be even
better, if a phaseshift in time of about104 sec between the results discussed is taken into
account, i.e., if results of the original approach are compared with those obtained104

sec later with decomposition (figure7.4.a2). We emphasise, that the time interval cor-
responds to five oscillation cycles of the shock front instability, and implies a phaseshift
of only π

5
. With respect to the fact that the phaseshift is physically irrelevant, we thus

regard the agreement as fully satisfying.
After 1.1 · 106 sec of simulated time the differences become more pronounced, in
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particular in the vicinity of the shock (now at gridpoint 300). Similar to the previous
discussion, however, including a suitable phaseshift of5 ·104 sec a reasonable agreement
may be achieved (Figure7.4.b2).

Figure7.5shows the gravitational (Figure7.5.a), kinetic (Figure7.5.b), thermal (Fig-
ure7.5.c) and total energy (Figure7.5.d) of the envelope as a function of time. We note
that the kinetic energy given in figure7.5.b is seven orders of magnitude smaller than
either the gravitational or thermal energy. It may be referred to as the energy of the pul-
sation and is therefore of central interest in the present context. Its variation with time is
one order of magnitude smaller than that of the gravitational energy, which itself is one
order of magnitude smaller than that of the thermal energy. Therefore the variation of
the total energy is dominated by the thermal energy.

Domain decomposition reproduces the gravitational energy perfectly. This can be
attributed to the use of overlapping domains, since without them considerable disagree-
ment is found. The latter consists of oscillations of the solution around the curve given
in Figure7.5.a. With respect to kinetic (Figure7.5.b), thermal (7.5.c) and total energy
(7.5.d), the agreement is satisfactory up to the time6.55 · 107 sec. The deviations at later
times can be partially attributed to the phase shift discussed above.

To summarise, our comparisons prove the domain decomposition procedure to pro-
vide reliable and satisfactory results. We emphasise that domain decomposition violates
the conservativity otherwise inherent in the numerical scheme. How this violation of
conservativity contributes to the discrepancies discussed is an open question.

7.3.7 Speed-Up of the calculations

In order to estimate the speed-up achieved by the domain decomposition procedure, we
assume that the number of iterationsI needed to solve the implicit equations with pre-
scribed accuracy is not changed by decomposition, i.e., for convergenceI iterations are
required in the shock regionDsh integrated with timestepτ and the same number of
iterationsI are needed to integrate the domainsDl andDr with time stepk · τ . More-
over, we assume thatI iterations are required to integrate with timestepτ and without
decomposition.

We denote the number of gridpoints byN and the size of the domainsDl, Dsh and
Dr byNl,Nsh andNr, respectively. (Nl,Nsh andNr include the overlap.) Integratingk
timestepsτ without decomposition then requires

O1 = k ·N · I (7.13)

operations. Decomposing the grid into two or three domains, we need for the integration
of the same time interval

O2 = Nl · I + k ·Nsh · I and (7.14)

O3 = (Nl +Nr) · I + k ·Nsh · I (7.15)
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Estimated Measured
Domains Size ofDsh Overlap Speed-Up Speed-Up

3 160 16 2.75 2.42
3 160 32 2.72 2.36
3 192 16 2.34 2.15
3 192 32 2.32 2.14
2 272 16 1.77 1.61
2 272 32 1.76 1.56
2 288 16 1.68 1.67
2 288 32 1.67 1.61

Table 7.1: Estimated and measured speed-up for a grid withN = 512 points and de-
composition into 2 and 3 domains with two different overlaps.

operations, respectively. Thus we expect a speed-up of the calculations by decomposi-
tion by a factor of

s2 =
O1

O2

=
kN

Nl + kNsh

and (7.16)

s3 =
O1

O3

=
kN

(Nl +Nr) + kNsh

, (7.17)

respectively. It essentially depends onNsh andk. For largek it is approximately given
by N/Nsh. However, for largek, Nsh increases too (see section7.3.2). A comparison
between the estimated and measured speed-up is presented in Table7.1. For the hypo-
thetical case of largek, Nsh = 16 and an overlap of8 gridpoints we obtain a speed-up
by a factor of16. This situation could in principle be realised for shock oscillations with
smooth spatial structure which can be represented by a small number of gridpoints. This
example demonstrates the power of the method when applied to a suitable situation.

Compared to the one dimensional case, a considerably higher speed-up is expected
if decomposition is applied to two dimensional problems, since it reduces the size of
matrices to be inverted, the latter being aN2 operation in the worst case for iterative
methods and the matrices considered.

7.4 Application to a P Cygni model

We apply the method discussed above to a stellar envelope model with parameters close
to those observed for the star P Cygni. Concerning luminosity, effective temperature
and chemical composition for this object, various authors (Najarro, Hillier & Stahl 1997
and Pauldrach & Puls 1990) agree that these parameters should lie in the vicinity of
L = 752.5 · 103L�, Teff = 19300K andX = 0.31, Y = 0.67, Z = 0.02. The most un-
certain parameter of P Cygni is its mass. Standard stellar evolution calculations indicate
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Figure 7.6: Densityρ as a function of radius (in units of the initial radius) and time for
an envelope model of P Cygni (top panel). The corresponding contour plot is given in
the bottom panel. Strange mode instabilities, but no shock oscillations are resolved in
these diagrams.
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in the bottom panel. Note that the luminosity variations take place on the dynamical
timescale.
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Figure 7.10: Luminosity in units of the initial luminosity as a function of radius (in units
of the initial radius) and a time interval appropriate to resolve the shock oscillations (top
panel). The corresponding contour plot is given in the bottom panel. Note that the rapid
photospheric luminosity perturbations are defined at the captured shock (atr/R0 ∼ 1.5).
Below the shock, luminosity perturbations are governed by strange mode instabilities
operating on the dynamical timescale.
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a mass ofM = 50M� (El Eid & Hartmann 1993), whereas spectroscopic observations
are consistent with masses down toM = 23M� (Pauldrach & Puls 1990). For our simu-
lations we adoptM = 26.5M�, a value supported by the observation. Even with a more
conservative mass ofM = 50M�, the model is known to be unstable with respect to
strange modes (Kiriakidis, Fricke & Glatzel 1993). The higher value ofL/M adopted
here amplifies the tendency towards instability through shorter thermal timescales.

The simulation of strange mode instabilities in P Cygni starts from the envelope model
in hydrostatic equilibrium without any external perturbations. Strange mode instabil-
ities develop from numerical noise, pass the linear regime of exponential growth and
form multiple shocks in the non-linear domain. One of these shocks is captured in the
H-ionisation zone and starts oscillating on timescales of the order of the sound travel
time across the front (∼ 0.5 days), whereas its mean position varies on the dynamical
timescale (∼ 10 days). In this phase of the evolution on two different timescales domain
decomposition is used to speed up the calculation considerably.

Figure7.6shows the densityρ as a function of radius (in units of the initial radius) and
time for the envelope model of P Cygni. The corresponding contour plot is given in the
bottom panel. Note, that contour lines here and in the following are not always closed,
since during the evolution of the star e.g. the density drops to values lower than those
of the initial model. After reaching the non-linear regime att =∼ 20 days, shocks are
formed in the outer envelope, travelling outwards and inflating the envelope successively
up to 4.5 initial radii. During this period, the surface velocity reaches 55 per cent of the
escape velocity att = 75 days. After∼ 80 days the envelope starts to collapse, and a
shock originating atr/R ≈ 0.6 at timet = 70 days is then captured in the H-ionisation
zone aroundr/R ≈ 1.5 at t ≈ 85 days. Subsequent shocks, generated by the primary
strange mode instability, are confined to the region below the captured shock.

Figure7.7 is the analogue to Figure7.6 for the temperatureT . The shocks discussed
above can easily be identified in the contour plot. Note the steep temperature gradient at
the captured shock after its formation.

Figure7.8 shows the luminosity in units of the initial luminosity as a function of ra-
dius (in units of the initial radius) and a time interval before the shock capturing. The
luminosity varies on the dynamical timescale by 10 per cent, corresponding to a bolo-
metric variation of∼ 0.1m. It is defined in the inner envelope and remains constant with
respect to radius above. There, luminosity perturbations cannot be sustained due to the
low specific heat and the associated short thermal timescales. These luminosity varia-
tions remind of the microvariations in P Cygni, described by, e.g., de Groot, Sterken &
van Genderen (2001). These authors report on cyclic behaviour of the visual brightness
with amplitudes of∼ 0.1m and cycle lengths between 10 and 25 days, best fitting a
quasi-period of17.3d.

Figure7.9shows the densityρ as a function of radius (in units of the initial radius) in
the vicinity of the captured shock and a time appropriate to resolve the shock oscillations.
In particular, the corresponding contour plot in the bottom panel shows variation on two
different timescales. It exhibits both shock oscillations with a mean period of∼0.5 days
and the evolution on the dynamical timescale, as indicated by the variation of the shock
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position betweenr/R0 ≈ 1.56 andr/R0 ≈ 1.54.
Figure7.10 shows the luminosity in units of the initial luminosity as a function of

radius (in units of the initial radius) and a time interval appropriate to resolve the shock
oscillations. The rapid photospheric luminosity perturbations are defined at the cap-
tured shock (atr/R0 ∼ 1.5) and remain constant above it (see discussion of Figure
7.8). The variation amounts to 20 per cent, corresponding to∼ 0.2m bolometrically.
Below the shock, luminosity perturbations are governed by strange mode instabilities
operating on the dynamical timescale. The photometric luminosity perturbation is there-
fore a superposition of two effects, dominated by the fast oscillations induced by the
shock. We emphasise, however, that the one dimensional calculations presented here
have to be interpreted with caution, since massive stars are known to suffer also from
non-radial instabilities (Glatzel & Mehren 1996). Whether the captured shocks survive
the deformations induced by non-radial instabilities or become unstable themselves with
respect to non-radial perturbations, remains to be tested by at least two dimensional cal-
culations. They might break apart and could then contribute to the entire variation by
stochastically adding high-frequency perturbations to the cyclic perturbations on the dy-
namical timescale induced by strange mode instabilities. On the other hand, from the
observations discussed by de Groot et al. (2001), no indications for the stability prop-
erties of the captured shock found here can be inferred, since the time resolution of the
data is not sufficiently high (∼ one measurement per day).

Another effect of the primary strange mode instability consists of a mass transfer
from the instability region into the outer parts of the stellar envelope. Owing to the
Lagrangian approach chosen here, this implies a reduced spatial resolution in the inner
part of the stellar envelope. Simultaneously, grid points are concentrated around the
captured shock. For reliable calculations, however, a high resolution of the instability
region is indispensable. Otherwise, the physical strange mode instability generating
acoustic energy and shock waves is suppressed. Thus, due to insufficient resolution, the
simulation discussed had to be stopped after∼100 days of simulated time. To overcome
the difficulty grid reconstruction is necessary. A corresponding algorithm, consistently
inserting and eliminating gridpoints during the calculation is currently being developed
and will be commented on in a forthcoming publication.

7.5 Conclusions

Motivated by the discovery of high frequency shock oscillations in pulsating stars con-
fined in a narrow region, we have developed a procedure for an efficient treatment of
such phenomena. The integration domain is decomposed into several subdomains ac-
cording to the various, vastly different timescales present in the configuration. To save
computing time, these domains are integrated according to their respective timescales.

Criteria for the choice and decomposition of the computational domains have been de-
rived. Decomposition implies artificial inner boundaries which require suitable bound-
ary conditions. How these have to be chosen in order to minimise the numerical error
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(compared to the approach without decomposition) has been discussed. An overlap of
the domains was found to be necessary to produce satisfactory results.

The decomposition technique has been tested and validated by comparison with re-
sults obtained without decomposition. The major effect of decomposition was found to
consist of a delay in time (phaseshift) with respect to the original calculation. The lat-
ter is regarded as physically largely irrelevant. Otherwise the numerical quality of the
results was proven to be satisfactory.

For the models considered, decomposition was found both theoretically and by nu-
merical tests to reduce the computational costs by approximately a factor of two. The
speed-up critically depends on the size of the rapidly varying domain. Although a re-
duction of computing time by 50 per cent sounds moderate, it is of practical relevance
considering the duration of several weeks for a complete simulation. The intended ex-
tension of the procedure to two dimensional problems will yield an appreciably higher
speed-up than that for the one dimensional model considered here, since the iterative
inversion of some matrices there requires of the order ofN2 operations. Moreover,
decomposition in two dimensions may reduce the size of matrices to be inverted such
that fast direct methods (requiring of the order ofN operations) become most efficient,
whose application would then imply a further acceleration of the computation.

We have applied the method to a model for the star P Cygni, paying special attention
to the adequate treatment of the different timescales involved.
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8. Grid reconstruction

A grid reconstruction procedure for the simulation of stel-
lar instabilities 1

S. Chernigovski3, M. Grott2 and W. Glatzel2

2Universitäts-Sternwarte Göttingen, Geismarlandstr .11, 37083 Göttingen, Germany
3Institut für Analysis und Numerik, Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract The simulation of stellar instabilities requires a suf-
ficient resolution of shocks, ionisation zones and instability re-
gions. Resolution problems in the latter occur in simulations of
the evolution of strange mode instabilities, if a Lagrangian de-
scription is used and the instability leads to a mass transfer in
the stellar envelope. This necessitates a reconstruction of the La-
grangian grid. A grid reconstruction procedure suitable for the
simulation of stellar instabilities and pulsations is presented and
verified. This includes a systematic study of the influence of grid
resolution and artificial viscosity on the result of numerical calcu-
lations.

Key words: hydrodynamics - instabilities - stars: mass-loss -
stars: oscillations - stars: variables: other.

8.1 Introduction

Sufficiently luminous objects, such as massive stars, are known to suffer from strange
mode instabilities with growth rates in the dynamical range (Kiriakidis, Fricke & Glatzel
1993; Glatzel & Kiriakidis 1993). The boundary of the domain in the Hertzsprung-
Russel diagram (HRD) above which all stellar models are unstable - irrespective of their
metallicity -, coincides with the observed Humphreys-Davidson (HD) limit (Humphreys
& Davidson 1979). Moreover, the range of unstable models covers the stellar parameters

1This paper has been submitted to MNRAS (Chernigovski et al. 2003)
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for which the LBV phenomenon is observed (see, e.g.,Humphreys & Davidson 1994and
van Genderen 2001).

The high growth rates of the instabilities indicate a connection to the observed mass
loss of the corresponding objects. To verify this suggestion, simulations of their evolu-
tion into the non linear regime have been performed. In fact, for selected models Glatzel
et al. (1999) found the maximum velocity to exceed the escape velocity (see, however,
Dorfi & Gautschy 2000).

For a further study of a possible connection between strange mode instabilities and
mass loss, we have constructed a stellar envelope model with massM = 23M�, effective
temperatureTeff = 19300K, luminosityL = 752.5 · 103L� and chemical composition
X = 0.31, Y = 0.67, Z = 0.02. These values correspond to the parameters of the LBV
P Cygni as derived by Pauldrach & Puls (1990) and Najarro et al. (1997). The model
suffers from violent strange mode instabilities which generate sound waves and shocks
in the interior of the stellar envelope and transfer mass into the outer regions. We take
this as an indication for an outburst of the object associated with mass loss. However,
due to the Lagrangian description adopted the grid resolution in the instability region
aroundlog T ≈ 5.3 is decreased by the mass transfer. As a consequence of insufficient
resolution the instability is suppressed and the mass flow ceases. With respect to the
anticipated connection between strange mode instabilities and mass loss, a solution of
this numerically induced problem is crucial. A grid reconstruction procedure which
guarantees a sufficient resolution in the instability region is therefore necessary.

Subject of this paper is the development and validation of a grid reconstruction proce-
dure satisfying the requirements discussed above. The basic equations and assumptions
are introduced in Section7.2and a detailed motivation for the study is presented in Sec-
tion 8.2. The influence of grid resolution and artificial viscosity on the simulation of the
evolution of strange mode instabilities into the non-linear regime is studied in Sections
8.3.2and8.3.3. The grid reconstruction procedure is discussed in detail in Section8.3.4
and verified in Section8.3.5. Our conclusions follow.

8.2 Basic equations and assumptions

8.2.1 Initial models and relaxation

Hydrostatic envelope models are constructed for given massM , effective temperature
Teff , luminosityL and chemical compositionX, Y, Z by integration of the initial value
problem posed by the equations of hydrostatic equilibrium, mass conservation and en-
ergy transport. Convection is treated in the standard mixing-length approach with 1.5
pressure scaleheights for the mixing length. The onset of convection is determined by
the Schwarzschild criterion. For the opacities, OPAL tables (Iglesias, Rogers & Wilson
1992; Rogers & Iglesias 1992) are used. In an envelope model the stellar core and en-
ergy generation there are disregarded. For the subsequent dynamical calculations, the
detailed treatment of the stellar core is replaced by imposing suitable boundary condi-
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tions at the bottom of the envelope. This is justified, since the core remains unaffected
by the instabilities investigated here.

The envelope integration provides a spatial distribution of gridpoints that is is in
general not compatible with the numerical scheme used in the dynamical calculations.
Moreover the number of gridpoints is too high. Therefore the hydrostatic envelope model
and its dependent variables have to be adapted to a grid suitable for the dynamical cal-
culations. Otherwise the numerical errors induce perturbations with amplitudes in the
non-linear regime. The problem may be overcome by damping the artificial perturba-
tions using dissipation and viscosity or by a pseudo time evolution of the grid (Dorfi
& Drury 1987; Dorfi & Feuchtinger 1995; Dorfi 1998). Using these techniques, how-
ever, the stellar models have to be perturbed externally to trigger the physical instability
and envelope pulsations. Typically, initial velocity amplitudes of the order of 10 km
sec−1 amounting to 10 per cent of the local sound speed are required (see, e.g.,Dorfi &
Gautschy 2000).

In our approach the adaption of the hydrostatic envelope model to a suitable grid is
achieved by reintegrating the envelope using the same difference scheme as that applied
for the dynamical calculations and using the results of the standard envelope integration
as initial guesses for the integration procedure. It implies, that - apart from the initial
values - only the convective flux is taken from the predetermined envelope model. Us-
ing this approach, hydrostatic equilibrium is satisfied to within round-off errors, rather
than toO( 1

N
), which is the difference between incompatible difference schemes (N is

the number of gridpoints). Thus, no damping of artificial numerically induced perturba-
tions is required. Physical instabilities and stellar pulsations then develop without any
further (unphysical) external perturbation from numerical noise, which (for the models
considered here) corresponds to velocities of the order of a few cm sec−1.

8.2.2 Non-linear evolution

The evolution of instabilities of a stellar envelope is followed into the non-linear regime
assuming spherical symmetry and adopting a Lagrangian description. The independent
variables are the timet and the Lagrangian mass coordinates which we define byds =
ρ(r, 0)r2dr. The equations to be solved (see, e.g.,Cox 1980) are then given by mass
conservation,

∂

∂t

(
1

ρ

)
=

∂(r2v)

∂s
(8.1)

momentum conservation,

∂v

∂t
= −r2∂p

∂s
− 4πGMr

r2
(8.2)

energy conservation

∂ε

∂t
= −p∂(r2v)

∂s
− ∂(r2(Frad + Fcon))

∂s
(8.3)
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and the diffusion equation for energy transport

Frad = −θr2∂T

∂s
(8.4)

whereρ, p, T , r, v andε denote density, pressure, temperature, radius, velocity and spe-
cific internal energy, respectively. We emphasise that∂

∂t
is the substantial time derivative.

Mr is the mass inside a sphere of radiusr,G the gravitational constant and

θ =
4acT 3

3κρ
(8.5)

is the diffusion coefficient, which contains the radiation constanta, the speed of light
c and the opacityκ. For consistency with the hydrostatic envelope integration,κ is
again taken from the OPAL tables (Iglesias, Rogers & Wilson 1992; Rogers & Iglesias
1992). Frad andFcon are the radiative and the convective flux, respectively. The latter
is kept constant during the evolution and equal to its initial value, in accordance with
the standard frozen in approximation (seeBaker & Kippenhahn 1965). In this study
we consider only models where this approximation is satisfied, i.e., where the turnover
timescale of convection is much larger than the dynamical timescale and the fraction of
energy transported by convection is not significant. The system of equations is closed
by the definition of the velocityv = ∂r

∂t
and the equations of statep = P(ρ, T ) andε =

E(ρ, T ). For consistency, the latter have to be identical to those used for the construction
of the initial model.

Since the instabilities are localised in the outer envelope, the evolution of the core
can be neglected. Its properties are taken into account by imposing time independent
boundary conditions (i.e., by prescribing luminosity, [vanishing] velocityv and [con-
stant] radius) at the bottom of the envelope. At the outer boundary, the gradient of heat
sources is required to vanish:

grad(divF ) = 0 (8.6)

This boundary condition implies (by using equations8.1,8.3 and8.4) boundary values
for the temperatureT and the pressurep. It is chosen to ensure that outgoing shocks pass
through the boundary without reflection.

The numerical code relies on a Lagrangian, with respect to time implicit, fully con-
servative difference scheme proposed by Fraley (1968) and Samarskii & Popov (1969),
which will be discussed in detail in the following section. To handle shock waves, ar-
tificial viscosity is used. Concerning tests of the code, we adopted the same criteria as
Glatzel et al. (1999).

8.2.3 Difference equations

The equations governing the evolution of instabilities in the stellar envelope are dis-
cretised on a staggered mesh such that the radiusr, the velocityv, the radiative and
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convective fluxFrad andFcon and the massMr inside a sphere of radiusr (including
the mass of the core) are defined on the nodes of the grid, whereas the densityρ, the
pressurep, the specific internal energyε, the temperatureT and the diffusion coefficient
θ are defined in the cells. In this scheme, equations8.1- 8.4may be written as

(
1

ρ̂i
− 1

ρi

)
· 1

τ
=

(Ri+1 · v(0.5)
i+1 −Ri · v(0.5)

i )

mi

(8.7)

v̂i − vi
τ

= −Ri ·
(g

(α)
i − g

(α)
i−1)

mi

− 4πGMri

r̂iri
(8.8)

ε̂i − εi
τ

= −g(α)
i ·

(Ri+1 · v(0.5)
i+1 −Ri · v(0.5)

i )

mi

−
Ri+1 · (F (σ)

rad,i+1 + Fcon,i+1)

mi

+
Ri · (F (σ)

rad,i + Fcon,i)

mi

(8.9)

Frad,i = −θi · r2
i ·
Ti − Ti−1

mi

(8.10)

i denotes the number of the node/cell, withi increasing outwards.mi = ρi(r
3
i−r3

i−1)/3 is
the mass of celli andmi = 1

2
·(mi+mi−1) the mass associated with nodei, respectively.

g is the sum of pressurep and artificial viscosityQ. The latter is given by

Q =

{
C0ρ(div v)2 div v < 0

0 div v ≥ 0
(8.11)

with the viscosity parameterC0 > 0.
θi =

√
θi−1(pi−1, Ti−1) · θi(pi, Ti) defines the diffusion coefficient on the nodes of the

grid. Ri is given by

Ri =
1

3
(r̂2
i + r̂iri + r2

i ) (8.12)

The definition of the velocity

r̂i − ri
τ

= v
(0.5)
i (8.13)
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Figure 8.1: Lagrangian displacementζ as a function of relative radius for the mode
havingωR = 2.133 · 10−4 sec−1, ωI = −3.149 · 10−5 sec−1 (a). The corresponding work
integral as a function of relative radius is given in (b).

and the equations of state

pi = P(ρi, Ti) (8.14)

εi = E(ρi, Ti) (8.15)

close the system of equations.
The scheme is implicit with respect to time where quantitiesx̂ andx refer to the time

tn+1 andtn, respectively. (tn+1 = tn + τ , τ is the variable integration timestep.)α and
σ ∈ [0, 1] are free weight parameters, and time averaging is done according to

x(α) = α · x̂+ (1− α) · x (8.16)

In the presented simulations, the valuesα = σ = 1 have been adopted.

8.3 Grid reconstruction

8.3.1 Motivation

We have constructed a stellar envelope model with parameters appropriate for the star P
Cygni. Concerning luminosity, effective temperature and chemical composition for this
object, various authors (Najarro, Hillier & Stahl 1997andPauldrach & Puls 1990) agree
that these parameters should lie in the vicinity ofL = 752.5 · 103L�, Teff = 19300K
andX = 0.31, Y = 0.67, Z = 0.02. The most uncertain parameter of P Cygni is
its mass. Standard stellar evolution calculations indicate a mass ofM = 50M� (El
Eid & Hartmann 1993), whereas spectroscopic observations are consistent with masses
down toM = 23M� (Pauldrach & Puls 1990). For the simulations we have adopted
M = 23M�, the value supported by the observation. Even with a more conservative
mass ofM = 50M�, the model is known to be unstable with respect to strange mode
instabilities (Kiriakidis, Fricke & Glatzel 1993). The higher value ofL/M adopted here
amplifies the tendency towards instability through shorter thermal timescales.

104



8.3. GRID RECONSTRUCTION

lo
g 

ρ

r/R

t=0.7 days

(b)

lo
g 

ρ

r/R

t=0.13 days

(a)

lo
g 

ρ

r/R

t=2.7 days

(c)

1e−14

1e−12

1e−10

1e−08

1e−06

0.0001

0.01

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1e−10
0.05 0.25

1e−05

1e−14

1e−12

1e−10

1e−08

1e−06

0.0001

0.01

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05 0.251e−10

1e−05

1e−14

1e−12

1e−10

1e−08

1e−06

0.0001

0.01

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1e−10
0.05 0.25

1e−05

Figure 8.2: Snapshots of the densityρ as a function of relative radiusr/R after 0.13
(a), 0.7 (b) and 2.7 (c) days of simulated time for an envelope model of the star P Cygni.
Details of the instability region are shown in the small panels. The grid resolution is
indicated by dots.
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Table 8.1: Results of a linear non-adiabatic stability analysis for a model of the star P
Cygni. FrequenciesωR and growth ratesωI of some representative high and low order
unstable strange modes are given in units of [10−5 sec−1]. NegativeωI corresponds to
instability.

ωR 0.378 0.878 0.946 0.993 1.040
ωI -3.237·10−6 -1.233·10−2 -1.142·10−3 -8.911·10−3 -9.012·10−3

ωR 1.087 1.203 1.296 1.389 21.33
ωI -5.460·10−3 -3.437·10−3 -5.711·10−3 -1.969·10−3 -3.149
ωR 25.05 38.88 44.18 46.42 49.55
ωI -3.890 -7.806 -8.428 -7.154 -8.721

We have performed a linear stability analysis of the model using the Riccati method
(Gautschy & Glatzel 1990) and identified various unstable modes. The results of the
analysis are summarised in Table8.3.1, where eigenfrequencies of some low and high
order unstable strange modes are given. The Lagrangian displacement component of a
high order eigenfunction is shown as a function of relative radius in Figure8.1.a. It is
oscillatory and confined between0.05 < r/R < 0.12, at the edge of the stellar core
and close to the opacity peak aroundlog T ≈ 5.3. (In this region inversions of both
the sound speed and the density do occur.) The corresponding work integral is given
in Figure8.1.b. It indicates the region which drives the pulsation and is responsible for
the instability. (For a discussion of the applicability of the concept of the work integral
in the case of highly non-adiabatic pulsations see Glatzel (1994).) Although this region
coincides with the opacity maximum, the mechanism driving the instability cannot be
the classicalκ-mechanism, since the modes are unstable also in the NAR-limit (see,
e.g.,Gautschy & Glatzel 1990), which implies vanishing specific heat. Rather, this is
a strange mode instability, caused by the low ratio of gas pressure to total pressureβ,
which is found for this model in the vicinity of the opacity peak.

Using the numerical procedure described in Section7.2we have investigated the non-
linear evolution of instabilities of this model, which is dominated by high order modes
due to their extremely large growth ratesωI . Figure8.2shows snapshots of the density
ρ as a function of relative radiusr/R after 0.13, 0.7 and 2.7 days of simulated time. (R
is the initial radius of the model.) The instability generates sound waves atr/R ≈ 0.05
thus forming a sequence of shocks (Figure8.2.a), which then travel outwards, thereby
transferring mass into the outer parts of the envelope. Owing to the Lagrangian approach
chosen here, this leads to a decreased grid resolution as can be seen in Figures8.2.b
and8.2.c. Subsequent unstable sound waves appearing atr/R ≈ 0.05 can then not be
resolved any longer. As a consequence the instability is suppressed and the mass flow
out of the instability domain ceases. This fact would be crucial should the instability, as
suspected, lead to an outburst of and mass loss from the object.

The simulation of the non linear evolution of instabilities in stellar envelopes requires
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an adequate resolution of shocks, ionisation zones and instability regions. For this pur-
pose, various approaches have been proposed to overcome resolution problems (see,
e.g., the adaptive grid algorithms used by Stellingwerf (1975) and Dorfi & Feuchtinger
(1991). With respect to shocks and zones exhibiting large gradients of the density, the
resolution problem is solved intrinsically by the Lagrangian description adopted here.
However, a sufficient resolution of the instability region driving the pulsation and mass
flow is not guaranteed by the Lagrangian and any of the other mentioned approaches. A
systematic study of the influence of grid resolution on the non-linear evolution of strange
mode instabilities will therefore be given in the following section.

8.3.2 The influence of resolution

The influence of grid resolution on the simulation of dynamical instabilities in stellar
envelopes is studied on an envelope model having the parametersM = 45M�, Teff =
33890 K, L = 537 · 103L� and the chemical compositionX = 0.7, Y = 0.28 and
Z = 0.02. It has been chosen for the resolution study for two reasons. Firstly, the
linear non-adiabatic stability analysis provides only one unstable mode with frequency
ωR = 1.99 · 10−5 sec−1 and growth rateωI = 3.98 · 10−7 sec−1 and this facilitates the
comparison with the non-linear simulation and its validation. Secondly, this model has
been studied previously by Dorfi & Gautschy (2000) and been denoted M45. Thus our
results can be compared directly to those obtained with the Vienna-RHD code. Dorfi &
Gautschy (2000) found, that M45 reaches a stable limit cycle and pulsates regularly with
pulsation amplitudes reaching 15 per cent of the escape velocity at the stellar surface.
As Dorfi & Gautschy (2000) we will refer to it as M45 in the following.

Adopting the parameters of M45, three configurations with a resolution of 256, 512
and 1024 gridpoints were constructed, which will be referred to as R256, R512 and
R1024, respectively. The results of the simulations are summarised in Table8.3.2, where
the growth ratesωI , the frequenciesωR, the maximum velocities normalised to the es-
cape velocity, the grid resolution (total number of gridpoints) and the resolution of the
instability zone (number of gridpoints there) betweenT = 1 · 105 K and = 3.1 · 105

K are presented. For comparison, the results of the independent, linear, non-adiabatic
stability analysis (LNA) and the results obtained by Dorfi & Gautschy (2000) are also
given there. The LNA was performed using the Riccati method (seeGautschy & Glatzel
1990).

The results of the non-linear simulations are shown in Figure8.3for the models R256
(first row), R512 (second row) and R1024 (third row). The absolute value of the velocity
|v| as a function of time at the outermost gridpoint is given on a logarithmic scale for
the entire integration interval in the first column of Figure8.3, the velocityv for two
pulsation periods in the non-linear regime in the second column. The third column
contains the corresponding periodograms, i.e., the power spectral density as a function
of frequency.

The power spectral density (PSD) was calculated from the time series of the velocity
v starting at the timet when the pulsation amplitude has saturated, i.e., the linear regime
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Table 8.2: Growth ratesωI , frequenciesωR, the maximum velocities normalised to the
escape velocity, total number of gridpoints and number of gridpoints in the instability
region betweenT = 1·105 K andT = 3.1·105 K for various models. For comparison, the
results of an independent, linear, non-adiabatic stability analysis (LNA) and the results
obtained by Dorfi & Gautschy (2000) (M45) are also given.

Resolution of
Model ωR [sec−1] ωI [sec−1] vmax/vesc Grid Resolution instab. region
LNA 1.99 · 10−5 3.98 · 10−7 - - -
M45 2.01 · 10−5 - 0.15 500 -
R256 1.98 · 10−5 2.73 · 10−7 0.09 256 84
R512 1.97 · 10−5 3.45 · 10−7 0.15 512 160
R1024 1.98 · 10−5 3.94 · 10−7 0.18 1024 350
R512V5 1.99 · 10−5 3.34 · 10−7 0.21 512 160
R512V50 1.99 · 10−5 3.34 · 10−7 0.19 512 160
R512V250 1.98 · 10−5 3.32 · 10−7 0.15 512 160
R512V1000 1.97 · 10−5 3.34 · 10−7 0.16 512 160
C512 1.98 · 10−5 3.94 · 10−7 0.16 512/672 160/320

of exponential growth of the time series at the beginning of the simulation has been dis-
carded. This corresponds tot ≈ 8.5·106 sec,t ≈ 6.5·106 sec andt ≈ 5.8·106 sec for the
models R256, R512 and R1024, respectively. For the Fourier transform an equidistantly
sampled time series was obtained by interpolation. Before calculating the periodogram,
the data was weighted with a triangular window. To achieve a higher frequency resolu-
tion, oversampling was used while calculating the discrete Fourier transform. The width
of the peaks depends on the number of sampled periods.

In the first column of Figure8.3, the exponential growth of the velocityv in the lin-
ear regime, when the physical instability has overcome the level of numerical perturba-
tions [O(103 cm sec−1)], is clearly visible for all considered models. The corresponding
growth rates have been calculated from the slope of the increase of the velocityv and
are indicated by the solid lines. The extrapolation of these lines tot = 0 indicate that in
all cases the pulsations commence from a contribution of the order of a few cm sec−1 in
the unstable mode to the initial numerical noise. Comparing these growth rates with that
of the independent linear, non-adiabatic stability analysis, they are lower by∼ 31, 13
and one per cent for the models R256, R512 and R1024, respectively. Furthermore, the
pulsation amplitude reached increases with the grid resolution from 9 to 18 per cent of
the escape velocity. Our model R512, which has a resolution comparable to M45, yields
similar results as those reported in Dorfi & Gautschy (2000).

In the second column of Figure8.3the final form of the velocity curve of the pulsation
is shown for the considered models. More details become visible with increasing grid
resolution. The most striking feature is an additional local maximum in the pulsation ve-
locity for the model R512, which becomes even more pronounced for the model R1024.
Moreover, the increasing branches of the velocity curves become steeper with increasing
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Figure 8.3: The velocityv as a function of time during the entire integration interval (1)
and two periods of the final pulsation (2) for the models R256 (a), R512 (b) and R1024
(c). The corresponding periodograms are given in column (3).

resolution.

This behaviour may also be read off from the periodograms given in the third column.
Whereas for the model R256 the main contribution to the pulsation is the fundamental
mode, the contribution of the higher overtones increases with resolution. For the model
R1024 the first overtone contributes even more than the fundamental mode. Note, that
the width of the various peaks depends on the number of sampled periods, which was
smaller for R1024 due to the higher computational effort. The period of the fundamental
mode is in very good agreement with that of the LNA, differing by at most 1 per cent.
The deviations from the results discussed in Dorfi & Gautschy (2000) may be caused by
the fact that these authors do not include any convective flux in their calculation.

We conclude that with respect to resolution, the most sensitive quantities are the
growth rate of the instabilityωI , the pulsation amplitude (vmax) and the form of the
final pulsation. For the model considered, a minimum resolution of∼1000 gridpoints
should be used for reliable results. As will be shown in section8.3.5, the resolution
of the instability region is primarily responsible for a correct reproduction ofωI . vmax

and the form of the pulsation depend primarily on the dissipation incorporated in the
simulation, which will be demonstrated in the next section.
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Figure 8.4: Same as Figure8.3, but for the models R512V5 (a), R512V50 (b),
R512V250 (c) and R512V1000 (d).

8.3.3 The influence of artificial viscosity

One of the consequences of an enhanced resolution is the reduction of the intrinsic vis-
cosity of the difference scheme. Therefore, we have systematically investigated the in-
fluence of the artificial viscosity parameterC0. To save computing time, the tests were
carried out with a moderate grid resolution of 512 gridpoints (model R512), andC0 was
varied between 5 and 1000. The value adopted in the models R256, R512 and R1024
was 500.

The results of the calculations are shown in Figure8.4and summarised in Table8.3.2.
The models R512V5, R512V50, R512V250 and R512V1000 correspond to calculations
with C0 = 5, 50, 250 and 1000, respectively. The pulsation frequenciesωR and the
growth ratesωI turned out to be largely independent of the value of the artificial viscosity.
In the linear regime the influence of artificial viscosity is negligible. Therefore growth
ratesωI , which are determined from the exponential growth of the instabilities in the
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linear regime, are not expected to depend onC0.
The pulsation amplitudes, however, strongly depend on artificial viscosity andvmax

varies between 15 and 21 per cent of the escape velocity. The periodograms show an
increased power in the higher harmonics with decreased artificial viscosity. This is in
line with the steeper gradients and a more detailed substructure of the velocity curves.

Artificial viscosity - in contrast to the resolution dependent intrinsic viscosity of the
difference scheme - is unimportant in the linear regime. In the non-linear regime, both
effects play a significant role concerning the pulsation amplitudes and the form of the
final velocity curves. Thus, for the study of mass loss, a reduction of artificial viscosity
is not sufficient and a high resolution of the instability region is necessary to guarantee
reliable results. One way to achieve an appropriate resolution consists of continuously
inserting gridpoints during the simulation whenever necessary. Details of such a proce-
dure are presented in the following section.

8.3.4 Numerical Procedure

The insertion of new grid points during a simulation poses two problems: Firstly, the
smoothness of the grid, i.e., the slow variation of the length of neighbouring grid cells,
has to be guaranteed. Otherwise, the errors when calculating grid derivatives can cause
unphysical oscillations of the solution. Secondly, the definition of the variables velocity,
temperature, internal energy, etc. on the new gridpoints has to be chosen such, that
equations8.7-8.10 are satisfied, which is not guaranteed by interpolation. As for the
relaxation of initial models, small errors in these equations can lead to large artificial
oscillations, which is most pronounced in the almost hydrostatic inner regions.

In the approach presented, the grid resolution is increased by inserting new nodes in
the middle of the cells of the reconstruction area. Subsequently, the gridpoints at the
inner and outer edges of this area are redistributed such that the smoothness of the grid
is guaranteed. This yields the radiir̃i of the new grid. The maximum variation of the
length of neighbouring cells was required to be less than 10 per cent.

To overcome the second problem, an approach similar to the relaxation procedure
described in section8.2.1was followed. In a first step, the right hand sides of equations
8.8 and8.9 are evaluated at the current timeleveltn on the old grid. Denoting them by
φv,i andφε,i we obtain

φv,i = −r2
i ·

(gi − gi−1)

mi

− 4πGMr,i

r2
i

(8.17)

and

φε,i = −gi ·
(r2
i+1 · vi+1 − r2

i · vi)
mi

−
r2
i+1 · (Frad,i+1 + Fcon,i+1)

mi

+
r2
i · (Frad,i + Fcon,i)

mi

(8.18)
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In the second step,φv,i, φε,i, vi andFcon,i are interpolated (using monotonic, rational,
cubic Hermite interpolation, see, e.g.,Dougherty, Edelman & Hyman 1989) on the new
gridpoints and denoted bỹφv,i, φ̃ε,i, ṽi andF̃con,i.

TemperatureT̃i and the pressurẽpi on the new grid̃ri are then determined by the
equations

− r̃2
i ·

(g̃i − g̃i−1)

m̃i

− 4πGM̃r̃,i

r̃2
i

= φ̃v,i (8.19)

and

−g̃i ·
(r̃2
i+1 · ṽi+1 − r̃2

i · ṽi)
m̃i

−
r̃2
i+1 · (F̃rad,i+1 + F̃con,i+1)

m̃i

+
r̃2
i · (F̃rad,i + F̃con,i)

m̃i

= φ̃ε,i (8.20)

We drop thẽ· for readability, use the diffusion equation for energy transport (equation
8.10) and the definition of the mass of a cell/node and are left with

1

2

[
mi +

1

3
ρi−1(r3

i − r3
i−1)

]
×
[
φv,i · r2

i + 4πGMri

]
+r4

i (pi − pi−1) = 0 (8.21)
1

2

[
mi +

1

3
ρi−1(r3

i − r3
i−1)

]
×
[
φε,i ·mi + pi(r

2
i+1vi+1 − r2

i vi)

+ Frad,i+1 + Fcon,i+1 − Fcon,i]

+r4
i · θi(Ti − Ti−1) = 0 (8.22)

This is an initial value problem, sinceTi−1 andpi−1 are completely determined by the
corresponding values at nodesi and i + 1 and in cellsi. Together with the equation
of state for the density (equation8.14), the system can be solved iteratively, e.g., by a
standard Newton method.

For the next integration step the densityρi−1 (via the equation of state), the massmi−1

and the radiative fluxFrad,i (via the diffusion equation for energy transport) are then
calculated usingTi−1 andpi−1.

We note, that the procedure presented violates the conservativity otherwise inherent
in the numerical scheme, since the interpolation errors inφ̃v,i, φ̃ε,i, ṽi and F̃con,i are
retained. The relative errors in mass, momentum and energy conservation thus generated
depend on the region where grid reconstruction is applied and amount to∼ 10−4 for the
inner and∼ 10−7 for the outer envelope. A more detailed study of the consequences of
conservativity violation by the grid reconstruction is presented in the following section.
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Figure 8.5: Same as Figure8.3, but for the model C512.

8.3.5 Validation of the grid reconstruction procedure

To study the influence of the proposed grid reconstruction procedure in long term simu-
lations, the following test was carried out: On the basis of model R512, the resolution of
the instability region aroundlog T ≈ 5.3 was switched between 160 and 320 gridpoints
every 100 timesteps using the procedure discussed above. We will refer to this test as
model C512 in the following.

The test calculation covers∼ 6.8 · 106 sec and consists of∼ 200000 integration
timesteps, corresponding to 2000 grid reconstructions. The results of the simulation are
shown in Figure8.5 and are summarised in Table8.3.2. C512 excellently reproduces
the growth rateωI , as can be read off from Figure8.5.a1. This is an immediate conse-
quence of the increased resolution of the instability region. As expected, the pulsation
amplitude (vmax) lies between those of models R512 and R1024 and is thus consistent
with the resolution study in section8.3.2. The final form of the pulsation, shown in Fig-
ure8.5.a2, does not differ significantly from that obtained for the model R512 (compare
Figure8.3.b2). This is confirmed by the periodogram in Figure8.5.a3, which exhibits
only a slightly smaller contribution of the first overtone compared with Figure8.3.b3.
We thus conclude that violation of conservativity and dissipation caused by the grid re-
construction has a negligible influence on the results of the calculation.

The final relative error in the mass of the stellar envelope was found to be 1 per cent. It
is made up of the errors of the individual reconstructions, which for C512 are of the order
of ∼ 10−4. Usually, grid reconstruction in the instability region will become necessary
only a few times for a complete simulation, thus reducing the final error to at most10−3.

8.4 Conclusions

The study of the non-linear evolution of strange mode instabilities in a model of the
star P Cygni turned out to suffer from an insufficient resolution of the instability region.
This is due to a Lagrangian description together with a mass flow out of the instability
domain caused by the instability itself. As a consequence of the insufficient resolution
and an increased dissipation in the driving regions of the stellar envelope, the instability
is suppressed and the mass flow out of the instability domain ceases. This fact would
be crucial should the instability, as suspected, lead to an outburst of and mass loss from
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the object. Thus the development of a grid reconstruction algorithm was necessary to
guarantee a sufficient resolution.

Reconstruction of the grid, in particular inserting new grid points, can cause artificial
oscillations. To avoid them, the grid reconstruction procedure presented here consists
of two steps: Firstly, new gridpoints are inserted into the reconstruction domain and the
adjacent regions, such that the grid remains smooth. Then the stellar envelope is reinte-
grated on the reconstructed grid with prescribed velocity fieldv(r) and convective flux
Fcon(r). The latter are derived from their values on the previous grid by interpolation.
This approach does not suffer from unphysical oscillations.

By comparison to results obtained without grid reconstruction the procedure was
tested and validated. The solution does not become affected by additional unphysical
features and the effect of the approach may be explained in terms of modified resolu-
tion. Although violation of conservativity did not imply any severe consequences, it
would still be preferable to maintain the conservativity otherwise inherent in the numer-
ical scheme. An attempt in this direction might consist of using the degrees of freedom
in the interpolation step of the grid reconstruction procedure to achieve conservativity.
Whether a modified functional minimisation approach as proposed by Chernigovski &
Novac (1996) can provide values for the variables, which at least minimise the errors in
the conserved quantities, remains to be seen.

The presented method might also be incorporated in the rezoning step of an arbitrary
Lagrangian Eulerian (ALE) technique to guarantee numerical stability and to avoid ar-
tificial oscillations (for an introduction to ALE see, e.g.,Hirt, Amsden & Cook 1997).
In this method, the procedure of filling-in new gridpoints is replaced by moving the grid
according to the special requirements, which consist of properly resolving the instability
region. An occasional remapping of the nodes of the grid to their original positions may
be a suitable prescription for the grid motion.
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9. Summary

9.1 Summary of results

In this study we have followed the evolution of strange mode instabilities in massive stars
into the non-linear regime. We have constructed stellar models which in the HR diagram
are situated in the instability region previously identified by Kiriakidis et al. (1993). As
expected, the models turned out to suffer from multiple strange mode instabilities.

The evolution of the instabilities was then followed into the non-linear regime by di-
rect numerical simulations. As an effect of the instability, sound waves are generated
in the inner envelope, which travel outwards and steepen to form shock waves, which
accelerate the outer mass shells and successively inflate the envelope. The instabilities
act on the dynamical timescale, which for the objects studied corresponds to a few days.
In this process, the outer mass shells of the envelope reach∼ 50 per cent of the escape
velocity. Contrary to the results obtained by Glatzel et al. (1999) for hot massive stars,
no pulsationally driven mass loss was found for the considered cool objects investigated
here. A previously unknown phenomenon consists of capturing of shock waves in the
hydrogen ionisation zone. The captured shock then starts to oscillate on timescales much
shorter than the dynamical one. For the models studied by Glatzel et al. (1999), hydro-
gen is always completely ionised due to their high effective temperature. A detailed
summary of the physics of shock oscillations, their appropriate numerical treatment and
the grid reconstruction procedure is presented in the following subsections.

9.1.1 Paper I: Captured shocks

As a first step, the origin of the shock oscillations observed in numerical simulations
had to be clarified. In principle, the observed rapid oscillations could have been numer-
ical artifacts. The only independent way to distinguish between physical and numerical
instability is a linear stability analysis, which was therefore applied to the stellar enve-
lope containing a captured shock. The analysis differed from the standard linear stability
analysis as described by, e.g., Baker and Kippenhahn (1962), because the non-vanishing
background flow had to be taken into account. As a result of the analysis, unstable modes
with appropriate frequencies and high growth rates were identified. These are localised
in the shock zone and excited there. Thus we have proven that the shock oscillations are
of physical origin.
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In a second step, a simplified analytical model of the envelope containing a captured
shock was constructed to clarify which physical parameters are responsible for the insta-
bility. As a result, the shock was shown to split the envelope into three quasi-independent
acoustic cavities, each of them providing a separate spectrum of eigenmodes. Thus, a
detailed study of the origin of the instability could be restricted to the zone containing
the captured shock. On the basis of this shock zone model, we could show that the strat-
ification of the envelope, in particular the temperature gradient, is responsible for the
instability.

9.1.2 Paper II: Domain decomposition

Since the captured shock oscillates on timescales much shorter than the dynamical one,
the integration timestep is strongly limited. This inhibits the long term study of the
system. Therefore, having proven the shock oscillations to be of physical, rather than
numerical origin, an adequate numerical treatment of the problem had to be developed.
It takes advantage of the fact that the timescales present are vastly different.

The procedure consists of the following steps: We first divide the domain of com-
putation into three subdomains, according to the different time variation of dependent
variables in these regions. Thus we obtain a rapidly varying shock region, and, with
respect to these rapid changes, quasi hydrostatic domains above and below the captured
shock. All domains are then advanced in time separately according to their intrinsic
timescales. For the time integration, boundary conditions had to be prescribed at the do-
main interfaces. The quality of the results strongly depends on the definition of proper
boundary values. The different computational domains overlap. After advancing all
domains by the same timeτ they are reassembled such that the flawed values of the
overlapping grids are discarded. Thus the errors introduced by the artificial inner bound-
aries are minimised. Although the procedure is not conservative, the influence of the
violation of conservativity on the results were shown to be small.

Using the procedure developed, the computing time can be reduced by a factor of∼
2.5 for the models considered. The speedup mainly depends on the size of the rapidly
varying domain.

9.1.3 Paper III: Grid reconstruction

Another effect of the instabilities consists of a mass transfer from the instability region
of the stellar envelope to its outer parts. In the Lagrangian description adopted here this
leads to a loss of gridpoints and resolution in the instability region. As a consequence,
the driving instability is suppressed and the mass flow out of the instability domain
ceases. To overcome this numerical problem, a grid reconstruction algorithm has been
developed.

Reconstruction of the grid, in particular inserting new grid points, can cause artificial
oscillations. To avoid them, the grid reconstruction procedure developed consists of two
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steps: Firstly, new gridpoints are inserted into the reconstruction domain and the adja-
cent regions, such that the grid remains smooth. Then the stellar envelope is reintegrated
on the reconstructed grid with prescribed velocity field and convective flux. The latter
are derived from their values on the previous grid by interpolation. This approach does
not suffer from unphysical oscillations. The procedure violates the conservativity oth-
erwise inherent in the applied difference scheme. However, this effect was found to be
negligible for the models considered.

The influence of grid resolution on the simulation of the non-linear evolution of
strange mode instabilities has been studied systematically. The pulsation amplitudes
reached, as well as the final form of the pulsation, were found to depend sensitively on
resolution, e.g., an insufficient number of gridpoints in the instability region can reduce
the pulsation amplitudes by a factor of 2.

9.2 Conclusions

Stellar models situated in the instability region of the HR diagram identified by Kiri-
akidis et al. (1993) pulsate with large amplitudes and the outer envelope reaches veloc-
ities comparable with the escape velocity. However, from the present study, we cannot
confirm pulsationally driven mass loss, as reported by Glatzel et al. (1999). The discrep-
ancy might be due to the formation of a captured, rapidly oscillating shock in the cool
models considered here. It appears to have a damping influence on the primary instabil-
ity. Captured shocks are not present in the models studied by Glatzel et al. (1999), since
hydrogen is always completely ionised there.

As our models are restricted to the optically thick regime, line driving of mass loss
is disregarded a priori. Whether a corresponding acceleration in the optically thin at-
mosphere could provide the missing link to the observed mass loss remains to be seen.
In any case do the high pulsation velocities provide further evidence for a connection
between strange mode instabilities and the observed HD limit (Humphreys & Davidson
1979). Another strong indication for a relation between strange mode instabilities and
the LBV phenomenon is the mass flow out of the instability region found in models
for P Cygni. This causes numerical difficulties which still prevent a further simulation,
although they have been partially solved in the present investigation.

The luminosity variations induced by the captured shocks remind of the microvaria-
tions observed for certain LBVs (as, e.g., in P Cygni (de Groot, Sterken & van Genderen
2001)). We emphasise, however, that the one dimensional calculations presented here
have to be interpreted with caution, since massive stars are known to suffer also from
non-radial instabilities (Glatzel & Mehren 1996). Whether the captured shocks survive
the deformations induced by non-radial instabilities or become unstable themselves with
respect to non-radial perturbations, remains to be tested by at least two dimensional
calculations. They might break apart and could then contribute to the entire variation
by stochastically adding high-frequency perturbations to the cyclic perturbations on the
dynamical timescale induced by strange mode instabilities.
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9.3 Future research

Future research concerning the evolution of instabilities in stellar envelopes should in-
clude the refinement of numerical techniques. A step in this direction could be the use
of arbitrary Lagrangian Eulerian (ALE) techniques (for an introduction to ALE see, e.g.,
Hirt, Amsden & Cook 1997). These combine a Lagrangian description with a motion
of the computational grid, i.e., the time integration is split into different phases. In a
first step the considered equations are integrated in time explicitly or implicitly using
a Lagrangian description. The second step consists of a remapping of the nodes of the
grid (rezoning phase). The grid reconstruction procedure presented here might be incor-
porated in the rezoning phase of such a method to guarantee numerical stability and to
avoid artificial oscillations. The procedure proposed here for the definition of the new
grid could then be replaced by moving the grid according to the requirement of properly
resolving the instability region. An occasional remapping of the nodes of the grid to
their original positions may be a suitable prescription for the grid motion.

Although violation of conservativity of the grid reconstruction procedure did not im-
ply any severe consequences, it would still be preferable to maintain the conservativity
otherwise inherent in the numerical scheme. An attempt in this direction might consist
of using the degrees of freedom in the interpolation step of the procedure to achieve
conservativity. Whether a modified functional minimisation approach as proposed by
Chernigovski & Novac (1996) can provide values for the variables, which at least min-
imise the errors in the conserved quantities, remains to be seen.

As mentioned above, a physical effect that should be included in the calculations is
the line driving in the optically thin regime. Due to the Doppler shift the velocity field
induced by the primary instability yields an enhanced absorption of and acceleration by
radiation. Whether this effect can be modelled by suitably adjusting the Rosseland mean
of the opacity remains to be investigated.

Finally, as the growth rates of non-radial instabilities are of the same order as those
for radial perturbations (Glatzel & Mehren 1996; Glatzel & Kaltschmidt 2002), multi-
dimensional simulations should be carried out. We expect that they will lead to pulsation
velocities comparable to the radial case. Whether the combination of radial and non-
radial instabilities eventually leads to pulsationally driven mass loss remains to be seen.
First progress in the direction of the development of an appropriate method for multi-
dimensional simulations has already been made (Chernigovski, Glatzel, & Fricke 2000).
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A. On a criterion for adiabatic instability

Starting from the integral expression

σ2 = −
∫ R

0
r3 d

dr
[(3Γ1 − 4)p] δr

r
dr∫ R

0
r4ρ δr

r
dr

(A.1)

for the eigenvalueσ2 given by Ledoux (1945) Stothers (1999b) approximatesδr/r by a
Heaviside function to estimate the lowest eigenfrequencyσ of the radial acoustic spec-
trum. r∗ denotes the position of the discontinuity of the Heaviside function. Integration
by parts of the nominator then yields

σ2 =

∫ R
r∗

3r2[(3Γ1 − 4)p]dr + r∗
3
[(3Γ1|r∗ − 4)p|r∗ ]∫ R

r∗
r4ρdr

(A.2)

Therefore, equation 3 in Stothers (1999b) should read

σ2 =
(3〈Γ1〉 − 4)

∫ R3

r∗3
pd(r3)∫ R3

r∗3
1
3
r2ρd(r3)

+
r∗3[(3Γ1|r∗ − 4)p|r∗ ]∫ R3

r∗3
1
3
r2ρd(r3)

(A.3)

with

〈Γ1〉 =

∫ R3

r∗3
Γ1pd(r3)∫ R3

r∗3
pd(r3)

(A.4)

Contrary to equation 3 in Stothers (1999b), equationA.3 contains an additional indefinite
surface term comparable to the integral term. The surface term does not allow equation
A.3 to be interpreted as a criterion for dynamical instability.
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B. The work integral

The work integral is a widely used tool in stellar pulsation theory to determine, which
regions of the stellar envelope drive or damp the pulsations. On the basis of a time aver-
age, it is only defined for quasi-periodic motions (see, e.g.,Cox 1980). However, Glatzel
(1994) showed that the concept can be extended to the non-periodic case by use of an
ensemble average. Here we present his derivation of the work integral, supplementing
the missing calculation steps.

The work integral specifies the energy per time transferred from the background to
the perturbation. We consider the mechanical part of the pulsation equations (continuity
and Euler equation), which in one dimension and in the Eulerian description read

∂ρ

∂t
= −∇(ρv)

∂v

∂t
= −1

ρ
∇p−∇Φ

The linearisation of these equations may be obtained in the Eulerian approach by apply-
ing the linearisation operator̃(.). It commutes with∇ and ∂

∂t
(see, e.g.,Cox 1980) and

we are left with

∂ρ̃

∂t
= −∇(ρṽ)

∂ṽ

∂t
= −1

ρ
∇p̃+

1

ρ2 (∇p)ρ̃−∇Φ̃

whereṽ, ρ̃ andp̃ are the Eulerian perturbations of velocity, density and pressure, respec-
tively. v, ρ andp refer to the hydrostatic background model. The problem is simplified
considerably in the Cowling approximation, where the perturbations of the gravitational
potential are assumed to be negligible, i.e.Φ̃ ≈ 0. In particular, the Cowling approxi-
mation is justified for a core-envelope structure of the stellar model.

In order to derive the work integral, we switch to the Lagrangian description. This is
achieved by using the relation

f̃ = ∆f − ξ(∇f)
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between Eulerian perturbations̃f and Lagrangian perturbations∆f . For the time evo-
lution of the perturbations we assume a dependence of the formeiωt. We note that
ξ = ṽ/iω and∂ξ/∂t = ṽ. Application to the continuity equation yields

∂

∂t
(∆ρ− ξ∇ρ) = −∇(ρṽ)

⇔ iω∆ρ− iωξ∇ρ = −∇(ρṽ)

⇔ ∆ρ− ξ∇ρ = −∇(ρξ)

⇔ ∆ρ+ ρ(∇ξ) = 0 (B.1)

The Euler equation can be rewritten as

∂2ξ

∂t
= −1

ρ
∇(∆p− ξ∇p) +

1

ρ2∇p(∆ρ− ξ∇ρ)

⇔ ∇(∆p) = −ρ∂
2ξ

∂t2
+

(
∇2p− 1

ρ
(∇p)(∇ρ)

)
ξ (B.2)

Multiplying B.2 with ∂ξ
∂t

and usingB.1 we obtain

∂

∂t

[
1

2
ρ

(
∂ξ

∂t

)2

+

(
1

ρ
(∇p)(∇ρ)−∇2p

)
1

2
ξ2

]
=

−∆p
1

ρ

∂∆ρ

∂t
−∇

(
∂ξ

∂t
∆p

)
(B.3)

IntegratingB.3 over the volume of the star, and assuming that the surface term, i.e., the
acoustic flux across the surface, vanishes, we are left with

∂

∂t

∫
dV

[
1

2
ρ

(
∂ξ

∂t

)2

+

(
1

ρ
(∇p)(∇ρ)−∇2p

)
1

2
ξ2

]
=∫

dV

(
−∆p

1

ρ

∂∆ρ

∂t

)
(B.4)

If ∆p(∂∆ρ/∂t) is a complete differential with respect to time, e.g., if the phase lag
between pressure and density perturbation vanishes, i.e., for a relation of the form∆p ∝
∆ρ, equationB.4 provides a - not necessarily positive definite - conserved energy like
quantity, which may be identified with the “energy” of the pulsation. The right hand side
of equationB.4 corresponds to thepdV work associated with a perturbation and forms
the basis of the derivation of the classical work integral.

Contrary to the classical analysis, however, we cannot interpret the work integral here
as thermal energy transferred into mechanical energy. Moreover, for non-periodic mo-
tions to be considered here, the time integral over one period cannot be defined. Rather,
we take an ensemble average of equationB.4, regarding (ξ,∆p,∆ρ) as a previously de-
termined eigenfunction. A proper ensemble is provided by the fact, that the eigenfunc-
tions are determined only up to a complex factor, accounting for the initial conditions.
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The most general form of a real eigensolution of a physical quantityQ is given by

Q = Re(eiωr−ωi+iαaQ†(r))

whereQ† denotes the spatial part of the eigenfunction and the ambiguity is described by
the complex numbera exp(iα) with phase factorα ∈ [0, 2π] and amplitudea > 0. The
ensemble average is then given by

< Q >=
1

2π

∫ 2π

0

Qdα

Without loss of generality we choosea = 1 and apply the ensemble average to equation
B.4:

∂

∂t

{∫ 2π

0

dα

∫
dV

[
1

2
ρ

(
∂

∂t
Re(eiωrt−ωit+iαξ†)

)2

+

(
1

ρ
∇p∇ρ−∇2p

)
1

2

(
Re(eiωrt−ωit+iαξ†)

)2
]}

=

∫ 2π

0

dα

∫
dV

[
−Re(eiωrt−ωit+iα∆p†)

1

ρ

∂

∂t
Re(eiωrt−ωit+iα∆ρ†)

]
⇔ ∂

∂t

{∫ 2π

0

dα

∫
dV

[
1

4
ρ

(
∂

∂t
(eiωrt−ωit+iαξ† + e−iωrt−ωit−iαξ†∗)

)2

+

(
1

ρ
∇p∇ρ−∇2p

)
1

4

(
(eiωrt−ωit+iαξ† + e−iωrt−ωit−iαξ†∗)

)2
]}

=

∫ 2π

0

dα

∫
dV

[
−1

4
(eiωrt−ωit+iα∆p† + e−iωrt−ωit−iα∆p†∗)

× 1

ρ

∂

∂t
(eiωrt−ωit+iα∆ρ† + e−iωrt−ωit−iα∆ρ†∗)

]
⇔ ∂

∂t

{∫
dV

[
1

2
ρ
(
e−2ωit(ω2

r + ω2
i )ξ
†ξ†∗
)

+

(
1

ρ
∇p∇ρ−∇2p

)
1

2

(
e−2ωitξ†ξ†∗

)]}
=

∫
dV

[
−1

ρ

1

4
e−2ωit

(
(−iωr − ωi)∆p†∆ρ†∗ + (iωr − ωi)∆p†∗∆ρ†

)]
⇔ −ωi

∫
dV

[
1

2
ρ
(
ω2
r + ω2

i

)
+

1

2

1

ρ
(∇p∇ρ−∇2p)

]
ξ†ξ†∗

=

∫
dV

1

ρ

1

4
[iωr(∆p

†∆ρ†∗ + ∆p†∗∆ρ†)]

+

∫
dV

1

ρ

1

4
[ωi(∆p

†∆ρ†∗ + ∆p†∗∆ρ†)]
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⇔ ωi

∫
dV

[
ρ
(
ω2
r + ω2

i

)
+

1

ρ
(∇p∇ρ−∇2p)

]
ξ†ξ†∗

+
1

ρ

1

2
(∆p†∆ρ†∗ + ∆p†∗∆ρ†)

= ωr

∫
dV

1

ρ
Im(∆p†∆ρ†∗) (B.5)

The integral on the right hand side of equationB.5 is one of the representations of the
classical work integral. Provided, the integral on the left hand side and the pulsation
frequencyωr do not vanish we have

W =
ωi
ωr
∝
∫
dV

1

ρ
Im(∆p†∆ρ†∗) (B.6)

The sign of the integrand in equationB.6 indicates whether a region of the star has a
driving or damping influence. The differential form of the work integral is given by

dW

dr
=

d

dr

∫
dV

1

ρ
Im(∆p†∆ρ†∗)

= 4πr2pIm

(
∆p†

p

∆ρ†∗

ρ

)
(B.7)

EquationB.7can be compared to equation C8 in Baker & Kippenhahn (1962) by switch-
ing to the independent variablelog p. This yields

dW

d log p
=

dW

dr

dr

d log p

= 4πr2pIm

(
∆p†

p

∆ρ†∗

ρ

)
dr

d log p

= 4πr2pIm

(
∆p†∗

p

∆ρ†

ρ

)
r2p

GMrρ

= 4π
p2r4

GMrρ
Im

(
∆p†∗

p

∆ρ†

ρ

)
whereas the result reported in Baker & Kippenhahn (1962) is

dW

d log p
= 4π2 p2r4

GMrρ
Im

(
∆p†∗

p

∆ρ†

ρ

)
The difference by a factorπ is not relevant, since due to the ambiguity in the eigenfunc-
tion the differential work integral is determined only up to a real factor anyway.
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