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1. Introduction

The properties desired for practical applications of polymer materials often can not
be achieved with a single polymer species. For instance, a common requirement
is that of stiffness and high fracture resistance at the same time. Yet, enhancing
the stiffness usually leads to more brittle materials. A way to improve the ma-
terial is to combine different polymer species with complementary properties, for
instance glassy and rubbery polymers. This is not straightforward, since different
polymer species typically are immiscible. The reason is that in macromolecules the
entropy of mixing is reduced by a factor of the degree of polymerisation, so that
small energetic incompatibilities suffice to induce phase separation. Therefore,
many polymer blends are not perfectly mixed, but reveal droplets of the minor-
ity species in the matrix of the majority component. In high-impact polystyrene,
for instance, polybutadiene rubber particles dispersed in the matrix of stiff but
brittle polystyrene only moderately lower the stiffness but considerably raise the
toughness, since the fracture energies are absorbed by yield processes initiated by
the rubber particles [1, 2]. In other cases, superior properties are achieved with a
homogeneous blend of miscible polymers. An example is polystyrene blended with
poly(phenyleneoxide) [1], which also combines a high modulus with acceptable
fracture resistance. Hence the issues of miscibility and the morphology of phase
separated states are important for the design of polymeric materials.

In the present thesis we consider two possible ways of enhancing the compatibil-
ity of distinct polymer species: copolymerisation and crosslinking. In copolymers,
separation is hampered by linking the monomers or prepolymers of both species
covalently into hybrid macromolecules. Their miscibility is not unlimited: the
typically nonzero width of the distribution of chain compositions still allows for
macroscopic phase separation. In addition, the compositional heterogeneity gives
rise to the possibility of microphase separation with small-scale composition modu-
lations. The phase behaviour of random block copolymers is discussed in chapter 2,
which also includes a more detailed introduction into this field.

The second way of preventing macrophase separation considered in the present
thesis is crosslinking. The introduction of a sufficient number of permanent cross-
links into a well-mixed (homo-)polymer blend generates a network that eventually
turns the liquid into a gel, i.e. an amorphous solid. With both species being likewise
part of the network, macroscopic phase separation is inhibited. The rigidity of the
gel network only allows for local segregation on length-scales approximately up to
the mesh size. The phase behaviour of crosslinked homopolymer blends is discussed
in chapter 3, including pre-transitional composition fluctuations and the freezing-in
of fluctuations by the network. A more detailed introduction is also given there.
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2. Random copolymer melts

2.1. Introduction

Melts of linear random copolymers, i.e. chains composed of two chemically differ-
ent species of monomers “A” and “B” in random sequences, exhibit a rich phase
behaviour because of the competition between the repulsion of the two species,
usually referred to as incompatibility, and the forces favouring the mixed state.
Besides the entropy of mixing, which would also be present, e.g., in a homopoly-
mer system, these forces are due to the permanent bonds between A and B in the
copolymer that prevent complete separation of the two species. For long chains,
the distribution of the fractions of A and B monomers in the chain is typically nar-
row, hence macroscopic phase separation only yields a small gain in energy. The
separation of A and B can, however, also be achieved by the formation of domains
on a smaller length-scale; this phenomenon is termed microphase separation.

Systems of regular copolymers, e.g. di- and triblock copolymers, and copolymers
blended with homopolymers, have been investigated in detail both theoretically [3–
6] and experimentally [7–11]. These systems are known to phase separate on a
mesoscopic scale with a variety of morphologies, e.g. lamellæ, hexagonally ordered
cylinders, spherical domains on a bcc lattice or bicontinuous phases [1, 6, 12].

Phase separations in compositionally heterogeneous copolymer systems were first
addressed by Scott [13] within a mean-field theory of multi-component demixing
based on the Flory-Huggins theory of polymer solutions [14]. The description of the
melt is coarse-grained, i.e. it disregards the conformations of the individual chains.
Scott calculated the spinodal, i.e. the limit of stability of the homogeneously mixed
state against separation into macroscopic phases, for arbitrary distributions of
chain compositions. Bauer [15] extended the theory to assess the coexistence of
multiple phases. In particular, he suggested an algorithm to compute the equilib-
rium transition points, which are generally located at smaller incompatibility (i.e.
higher temperature) than the spinodal, except in the case of a symmetric compo-
sition. His method was applied to the case of random copolymers by Nesarikar
et al. [16], who computed the phase diagram for various chain lengths and compo-
sitions, and compared them to the results obtained within the Landau approach
by Fredrickson et al. [17] (see below).

The first theory of microphase separation in random copolymer melts was re-
ported by Shakhnovich and Gutin [18]. Within a mean-field Landau approach
with a microscopic description of the conformational entropy and a phenomeno-
logical incompatibility term, they considered a single copolymer chain of infinite
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2. Random copolymer melts

length, with symmetric composition and an uncorrelated sequence. Fredrickson
et al. [17, 19], starting from a microscopic model, developed a theory for random
block copolymers containing a finite number Q of prepolymer blocks of uniform
size. The A-B sequences are taken to be Markovian, ranging from alternating
chains (ABAB...) via uncorrelated sequences to homopolymeric chains. While the
former are predicted to undergo a direct transition from the homogeneous mixture
to a microphase separated state, melts of uncorrelated or almost homopolymeric
chains reveal an intermediate regime with two coexisting macroscopic phases over
a temperature range of the order 1/Q. The formation of microphases is stud-
ied employing a variational first-harmonic ansatz with four possible morphologies
lamellar, hexagonal and bcc lattices, and a superposition of randomly oriented
sinusoidal modulations of the local composition. The characteristic wavelength
of the microphases is reported to be infinite at the transition for uncorrelated or
homopolymeric statistics and finite for alternating chains, and to decrease upon
going deeper into the microphase separated region.

The results for macrophase separation into two phases within the multi-compon-
ent theory and the Landau theory are compared in ref. [16]. While the predictions
agree reasonably for melts with symmetric composition containing equal amounts
of A and B blocks, for which the transition is of second order within mean-field
theory, the results are found to disagree considerably in the asymmetric case, where
the transition is of first order. Monte-Carlo simulations by Houdayer and Müller
for random copolymer chains [20, 21] show major deviations from both mean-field
theories, which are partly attributed to the effect of fluctuations. A separation
into two homogeneous phases is found only for melts of almost homopolymeric
chains, which remix on further decrease in temperature. Due to the limited sys-
tem size in the simulations, the discrimination between a homogenous mixture and
a microphase separated state is difficult. The authors of [21] interpret the remixed
state as the coexistence of three phases, two homogeneous phases and a possi-
bly microstructured third phase with symmetric composition, over an extended
temperature range, as predicted for Q = 2, i.e. diblock copolymer/homopolymer
blends, by Janert and Schick [4]. For Q = 3, Houdayer and Müller have analysed
the composition of the three phases and found that the melt fractionates accord-
ing to the chain sequences: while the two macrophases predominantly consist of
homopolymeric chains, the third phase is mainly populated by copolymer chains.
A theoretical description of the coexistence of two homogeneous phases with an,
in contrast to [16], microstructured third phase was given by Subbotin and Se-
menov [22] for melts having symmetric or nearly symmetric composition within
a mean-field Landau approach extending ref. [17]. According to their theory, the
melt first splits into two macroscopic phases, from which a lamellar third phase
separates. The theory includes the case of slightly asymmetric compositions, for
which hexagonal and cubic morphologies are predicted to occur on further cooling.

First accounts of the effect of fluctuations were given in refs. [23, 24]; in contrast
to mean-field theory, they predicted that the random copolymer melt was stable
against microphase separation. Later it was shown [25], however, that these results

4



2.1. Introduction

were due to the neglect of a term in the effective Hamiltonian that had wrongly
been considered irrelevant in [17] and [23, 24], with dramatic consequences in the
fluctuation theory. For strongly correlated chain sequences, corresponding to large
block sizes or strong Markovian correlation, the inclusion of the previously dropped
term restores the microphase separation. The transition is rendered weakly first-
order, yet the period and amplitude of the microphases match the mean-field
predictions [25]. The jump in the order parameter is reported to decrease with
the block size and the correlation parameter, in agreement with the findings of
Houdayer and Müller [20, 21]. Using a Ginzburg criterion these authors found
that mean-field theory breaks down in a temperature range of the order Q2/M
about the transition point, with M denoting the length of the blocks.

A branch of the theory of random copolymers not covered here is the application
to the protein folding problem. The native state of the protein is identified with a
frozen state of the random copolymer system, in which only a few conformations
of the chain are accessible. The freezing transition may or may not precede the
microphase transition [26].

The experimental situation is less clear. There is evidence of both separation into
macroscopic phases [27, 28] and microphases [29–31]. To our knowledge, the ther-
modynamic properties of the microphase separation of a well-defined system were,
however, reported only recently [30], for the case of randomly grafted copolymers,
which is not directly comparable to linear block copolymers (a theory of randomly
grafted copolymers is given in [32]). The existence of microphase separation is also
well-known for polyurethanes [31, 33]; yet these system reveal a certain complexity
going beyond the limits of our theoretical description: besides having a large seg-
mental polydispersity, they contain soft and hard segments, and the formation of
microdomains is strongly affected by hydrogen bonding and sometimes crystallisa-
tion. Ryan et al. [31] studied the microphase transition in a polyurethane system
with suppressed crystallinity, yet with considerable polydispersity in the chain
lengths. A rigorous discrimination between the disordered and the microphase
separated state is difficult [33].

The starting point of our investigations is the microscopic model for random
block copolymers proposed by Fredrickson et al. [17], from which we derive an ex-
pression for the disorder-averaged free energy in the replica formulation. To assess
the coexistence of multiple homogeneous phases, the free energy is coarse-grained
and expressed in terms of a multi-component theory with a separate density for
each mean chain composition. This free energy is shown to be identical to the
Flory-Huggins free energy of ref. [15] for incompressible melts, so that our equa-
tions for the phase equilibria are equivalent to those in ref. [16]. The latter are
solved with an implementation of the algorithm suggested in [15].

To study microphase separation, the average free energy is expressed in terms
of an effective free energy functional of the local monomer density and the local
difference of the concentrations of A and B monomers. The latter is referred to
as the charge density by analogy to electric charges, despite of the opposite sign
and the different range of the interaction. The effective free energy is expanded
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2. Random copolymer melts

in a Landau series in order to carry out the disorder average. The resulting free
energy is similar but not equal to that of [17]. Substantial differences arise from
certain approximations made in [17] that qualitatively change the microphase sep-
aration behaviour: they neglect the structure-dependence of the free energy that,
in our theory, allows for determining the favoured morphology of the microphases.
Furthermore, these approximations lead to the incorrect prediction that, at their
onset, the microphases are characterised by an infinite wavelength (except in melts
of predominantly alternating chains). A careful analysis shows that microphases
set in with a large but finite length scale.

Comparing the predictions for the coexistence of macroscopic phases within both
approaches, multi-component theory and Landau theory, we find agreement for the
symmetric case, in accordance with Nesarikar et al. [16]. In the asymmetric case,
the transition is of first order, and the truncated Landau series is no longer valid.

To assess fractionation and the coexistence of a microstructured phase with ho-
mogeneous phases, we use a caricature of the fractionated state, in which (only) the
homopolymeric chains may separate from the rest to constitute two macrophases,
coexisting with a possibly microphase separated remaining phase. Keeping the
spatial dependence of the free energy only on the quadratic level, we rule out the
established mechanism for microphase separation based on the subtle balance be-
tween the spatial dependence of the quadratic and quartic terms in the Landau
expansion as described, e.g., in ref. [17]. Hence we are able to show that pure
fractionation, i.e. the segregation of chains according to their sequences, suffices to
promote microphase separation as suggested in ref. [21], independent of the con-
ventional mechanism. Moreover, in contrast to ref. [22], our ansatz allows for the
direct investigation of fractionation, since we explicitly account for different chain
statistics in different phases.

2.2. Polymer models

In the following we shall develop a statistical mechanical model for random copoly-
mer melts. To keep it as simple and tractable as possible, the model will reflect
only the essential features of the polymer system. In particular, chemical details
of the monomer units and effects of polydispersity, i.e. different chain lengths, are
neglected. Moreover, we shall concentrate on the case of linear polymer chains –
aside from the nonlinear structures produced by crosslinking, which are considered
in chapter 3.

2.2.1. Linear homopolymers

Random copolymers and homopolymer blends have some fundamental properties
in common with ordinary homopolymers, hence it is useful to start with a model
for simple homopolymers as a basis for the description of random copolymers in
section 2.2.2, and of crosslinked homopolymer blends in section 3.2.

6



2.2. Polymer models

Ree

Figure 2.1: Coarse-graining
of a polymer chain. The orig-
inal contour (thick line) is
approximated by a chain of
straight segments (solid ar-
rows). The dashed arrow in-
dicates the end-to-end vec-
tor Ree.

Chain connectivity

The most prominent feature of polymers is their connectivity, i.e. the fact that the
monomer units are linked into macromolecules. Out of the various possible topolo-
gies like trees or stars we pick the simplest one, namely linear chains, consisting of
bifunctional monomers binding to (at most) two other monomer units.

On a small length-scale, the geometrical and other properties of the polymer
strongly depend on the chemical details of the monomer species. The positions
and orientations of neighbouring units in the chain are correlated due to usually
quite restricted bond angles and bond lengths, and less rigid, but still constrained
bond rotation angles. Typically, the amplitudes of the thermal oscillations of bond
lengths and angles are of the order of 3% and 3-5%, respectively [34], and can often
be neglected. The potentials for bond rotation angles generally exhibit multiple
minima, three in the case of single bonds between tetravalent carbon atoms. The
energy barriers in-between are typically larger than kBT , yet small enough to allow
for frequent transitions between the possible states [34], giving rise to a diversity of
possible chain configurations that grows large with the number of rotating bonds.
In turn, the correlations between two monomers decay with their distance along
the chain contour [1, 34–36], so that the details of the monomer properties are
effectively masked on a larger length-scale. The decay length, the persistence
length, is a measure for the stiffness of the polymer.

A coarse-grained picture allowing for the calculation of distribution functions of,
e.g., the end-to-end distance of the chain, can be obtained as follows [1, 14, 35]:
The polymer chain is divided into L pieces of equal number of subunits or arc-
length l, and their endpoints are connected with straight segments having a mean
square length a2; this procedure is illustrated in fig. 2.1. Provided l is much
larger than the persistence length, the orientations of the segments are practically
uncorrelated, so that the contour of the segment chain formally equals the path of
a Brownian particle or a random walk1. Consequently, the distance vector of two
segments approximately follows a Gaussian distribution, with a mean square dis-
tance proportional to the number of segments in-between. For instance, the mean
square end-to-end distance of the segment chain is given by R2

ee := 〈R2〉 = La2. In
the construction, the segment size a is chosen such that the mean square end-to-

1 Strictly speaking, this only holds true if the volume occupied by the monomers can be ne-
glected, since the polymer chains cannot overlap. This issue will be discussed in section 2.2.1.
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2. Random copolymer melts

end distances of the segmented and the real chain coincide. This also holds for the
radius of gyration Rg, an alternative measure for the chain extension appearing in
the low momentum expansion of the scattering factor of single polymer chains. It
is defined as the mean square distance between the monomers, i.e.

R2
g :=

1

2n2

n∑

i,j=1

〈
(ri − rj)

2〉 (2.1)

for a linear chain of n monomers located at ri, where i = 1, . . . , n.
Up to this point, the choice of the number of segments l is arbitrary, in the range

from the persistence length to the arclength of the polymer, and the segment size a
is determined depending on l. This arbitrariness can be removed by requiring
not only the average coil size, but also the length of the fully extended chain
(roughly speaking the arclength) to be the same for the real polymer (Rmax) and
the segmented one (La). (The average size of the individual segments is assumed
to be unaffected by the stretching of the chain.) It follows that a is given by the
Kuhn length aK := 〈R2〉/Rmax, which, like the persistence length, is a measure for
the stiffness of the polymer. In fact, both quantities take similar values [1].

The Gaussian approximation made above can be tested explicitly for simple
models like the freely jointed chain, in which adjacent monomers are linked by
bonds having fixed length and random orientation. It turns out that the approx-
imate distribution of the end-to-end distance, even for a chain as short as five
units, is in good agreement with the exact result [1]. Hence it seems well justified
to employ the Gaussian chain model, which offers invaluable advantages in the
analytical treatment.

Gaussian model

To parametrise the model for Gaussian chains, we consider a melt of N poly-
mer chains containing L segments each, thus neglecting effects of polydispersity.
The position of segment s on chain i in the d-dimensional space is denoted as
Ri(s) ∈ R

d where i = 1, . . . , N and s = 1, . . . , L. The distance vector between
neighbouring segments on the chain, in thermal equilibrium, is taken to follow a
Gaussian distribution with zero average and a root mean square length of b, which
can be interpreted as the Kuhn length of the polymer. The chain configuration is
described by the Wiener Hamiltonian

HW := kBT · d

2b2

N∑

i=1

L−1∑

s=1

(Ri(s+ 1) − Ri(s))
2 . (2.2)

The pre-factor of kBT in eq. (2.2), which cancels out with the factor of 1 / kBT in
the Boltzmann weight and yields a temperature-independent partition function,
reflects the entropic nature of the distribution of chain configurations.

In the case of Gaussian chains, the radius of gyration defined in eq. (2.1) (with L
segments instead of n monomers) can be calculated analytically. The mean square
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2.2. Polymer models

distance of two monomers i and j of the same chain is given by 〈(Ri − Rj)
2〉 =

|i−j|a2, hence Rg = La2/6 (up to corrections of the order L−1, which are due to not
fully accounting for the segments at the chain ends). To indicate the dependence
on the chain length, the radius of gyration will be also referred to as RL. Obviously,
the average end-to-end distance and the radius of gyration of the Gaussian chain
are related via Ree =

√
6RL.

Excluded volume

The analogy of the polymer contour with a random walk, used to derive the ideal
chain model in the previous section, must be taken with a pinch of salt. It had been
obtained considering only short-range interactions of subunits being neighbours
on the polymer chain, disregarding the long-range intramolecular interactions of
subunits that are close in space, yet distant along the chain contour.

In the case of homopolymers, the most important example is the steric hindrance
or interference: In contrast to the path of a Brownian particle, a polymer chain
may not cross itself, since the subunits occupy a certain volume, the excluded vol-
ume. For long chains, many of the configurations of the ideal chain predicted by
the Gaussian model are ruled out. Since extended configurations are more likely
to “survive”, it appears that the mean extension of real chains must be larger than
predicted. This is indeed the case for dilute polymer solutions, especially in a
good solvent, which interacts more favourably with the polymer than the poly-
mer itself, thus amplifying the interference effect and leading to polymer swelling.
Conversely, the effect is counteracted by poor solvents. In some systems, the ef-
fective attraction due to the poor solvent is comparable to the self-repulsion of the
polymer, depending on temperature. At the θ temperature, in an ideal solution,
the two interactions just cancel, and the polymer chains adopt the configurations
of the ideal Gaussian chain.

Measurements and theoretical considerations show that in polymer melts the
chain configurations are also nearly ideal, with only small distortions [1, 14]. This
is because of the intermolecular forces not taken into account so far: for the in-
terference of two portions of polymer, it is irrelevant whether they belong to the
same chain or not, and there is no reason to discriminate between the according
intermolecular and long-range intramolecular interactions. In a polymer melt, the
chains could avoid self-interference by assuming a more extended shape, but only
at the cost of more frequent collisions with other chains. Therefore, the shape and
size of coils effectively remain unchanged despite steric hindrance.

Nevertheless, it is necessary to account for the excluded volume effect in the
model as a means of limiting compressibility, since the copolymer systems discussed
in the present thesis could break down in the absence of repulsive forces: In a
copolymer melt, the attraction between monomers of the same kind could induce
the collapse onto one point in space per species. In a crosslinked melt, the network
favour the contraction onto a single point. To model steric repulsion we shall use

9



2. Random copolymer melts

the usual excluded volume interaction [14], adapted to polymer melts,

HEV := kBT · µ
2

N∑

i1,2=1

L∑

s1,2=1

U
(
Ri1(s1) − Ri2(s2)

)
, (2.3)

with a control parameter µ and short-ranged function U(|R|) normalised according
to
∫

dV U(|R|) = 1 and mostly idealised by a delta-shaped function throughout
this thesis. The pre-factor kBT reflects the entropic (or steric) nature of the volume
exclusion. Essentially, the Hamiltonian (2.3) counts and penalises each contact of
monomers with an energy proportional to µ · kBT .

2.2.2. Random block copolymers

As opposed to homopolymer chains, copolymers are composed of different types
of subunits. We consider a melt of linear random block copolymers built of two
monomer species, denoted as “A” and “B”, that energetically tend to demix. Pro-
vided the block length is larger than the Kuhn length, the coarse-grained Gaus-
sian model from section 2.2.1 can be supplemented, without loss of generality, to
account for the non-uniform composition of the chains. The resulting model is
identical to the one proposed in [17] by Fredrickson et al..

Monomer species and incompatibility

Each monomer in the melt is assigned an attribute

qi(s) :=

{

+1, monomer s on chain i is of type A

−1, monomer s on chain i is of type B
(2.4)

indicating its type. These qi(s) will be referred to as the monomer charges. The
incompatibility of A and B monomers can be modelled with a Hamilton function
similar to the Coulomb interaction of electric charges, yet with opposite sign to
penalise contacts of A and B monomers:

HC := −χ
2

N∑

i1,2=1

L∑

s1,2=1

qi1(s1)qi2(s2) ·W (|Ri1(s1) − Ri2(s2)|) (2.5)

Each pair of monomers yields an attractive or repulsive contribution, depending on
whether they are of the same species or not, weighted with respect to their distance.
The weight W (R) is assumed to decay rapidly with R to yield a local interaction,
and it is taken to be normalised according to

∫
dV W (|R|) = 1. Throughout this

thesis, W (R) will mostly be idealised to be delta-shaped. The incompatibility
parameter χ > 0 sets the overall scale of the interaction, and it is the main control
parameter of the system, determining the phase state of the copolymer melt.

Aside from the incompatibility (2.5), the monomers of both types are assumed to
have identical properties, so that the chain connectivity and the excluded volume
interaction from section 2.2.1 can be used without modification.

10



2.2. Polymer models

Chain sequences

To complete the definition of the model it is necessary to precisely specify the
kind of randomness determining the sequences of A and B along the chains.
The sequences are not subjected to thermal equilibration, since the chains are
(co-)polymerised via covalent bonds, which are stable on the time scales of the
mixing and demixing processes (and far beyond). Hence the charges qi(s) indicat-
ing the monomer species are quenched random variables.

In our model, each copolymer chain is composed of Q homopolymeric blocks
which, for simplicity, are taken to have the same length M regardless of their type,
hence L = MQ. Due to the blockiness, qi(s) = qi(s

′) for monomers s and s′

residing on the same block.
We confine ourselves to a stationary copolymerisation process, in which the

copolymerisation rates may depend on the species of the newly added block and
the actual end of the growing chain, but are constant in time. This corresponds
to steady reaction conditions, in particular with continuous replenishment of con-
sumed monomers. The A/B block sequences can then be modelled as Markov
chains with a (constant) transition matrix

M :=

(
pAA pBA
pAB pBB

)

. (2.6)

Its elements indicate the conditional probabilities paa′ (with a, a′ ∈ {A,B}) that
a block of a given type a is followed by a block of type a′ in the chain. The
probabilities are related to the rate constants kaa′ via paa′ ∝ kaa′ca′ , with the
concentration ca′ of monomer a′ in the solution. Furthermore, we assume that A
and B monomers start new growing chains in the same ratio as they would occur
in an infinite chain, so that the average composition is constant over the whole
length of the chains rather than following a gradient. In the simple case that
kAB = kBA, this means that A and B blocks are initiated in proportion to their
abundance in the solution, i.e. by an initiator being “blind” for the species. With
this assumption, the chain sequences can be described by a stationary Markov
chain.

As pAB = 1 − pAA and pBA = 1 − pBB due to the normalisation of probability,
M has only two independent entries. The eigenvalues of M are unity and

λ := pAA − pBA = pBB − pAB. (2.7)

The respective eigenvectors read (p, 1−p)T , corresponding to the stationary process
with an overall fraction

p :=
pBA

pAB + pBA
(2.8)

of A monomers in the final copolymer, and (−1,+1) corresponding to the non-
stationary part. We parametrise the matrix in terms of the overall composition p
and the eigenvalue λ, which determines the average correlation along the chain.

11



2. Random copolymer melts

It ranges from λ = +1 leading to homopolymeric chains (“AA. . . ” or “BB . . . ”),
via λ = 0 for uncorrelated chains, to λ = −1 corresponding to alternating chains
(“ABAB . . . ”). Strictly alternating chains, however, require a symmetric compo-
sition, i.e. equal amounts of A and B in the final polymer. In general, the range
of λ depends on p via

1 − 1

max(p, 1 − p)
≤ λ ≤ 1. (2.9)

Charges on distinct chains are taken to be uncorrelated, so the probability dis-
tribution P ({qi(s)}) of sequences in the melt factorises into single-chain distribu-
tions p,

P
(
{qi(s)}

)
:=

N∏

j=1

p
(
{qj(s)}

)
(2.10)

with p
(
{qi(s)}

)
defined by the above considerations. The chain sequences enter

the calculation in the form of moments of the charges qi(s) with respect to the
disorder average

[ · · · ] :=
∑

{qi(s)}
· · · P

(
{qi(s)}

)
(2.11)

over the chain sequences. The lowest moment is the average composition

q := [qi(s)] = 2p− 1; (2.12)

the higher moments [qi1(s1) qi2(s2)] etc. are computed in appendix C.1.

2.2.3. Dimensionless representation

For convenience, we measure all length-scales in essentially units of the segment
size and introduce dimensionless positional variables

ri(s) =

√
2d

b
Ri(s). (2.13)

The volume of the sample is rescaled as V ′ = (2d/b2)d/2V , and we introduce the
overall density

̺′0 := NL/V ′ . (2.14)

The normalisation of U and W , rescaled similarly, can be restored by introducing
U ′(r) := (b2/2d)d/2 U(R) and W ′(r) := (b2/2d)d/2W (R), which generates a pre-
factor of V ′/V in the excluded volume and incompatibility interaction. It can be
absorbed into rescaled interaction parameters

µ =:
V

2V ′ · µ
′ and χ =:

V

2V ′ · kBT · χ′, (2.15)
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2.3. Partition function and mean free energy

where the irrelevant artificial factors of 2 are introduced to match the convention in
the literature. The new parameter χ′ ∝ 1/T is chosen such that the incompatibility
Hamiltonian is formally proportional to kBT like HW and HEV, so the Boltzmann
weight is independent of T . We choose the energy scale such that kBT = 1;
“cooling” towards demixing is then accomplished, instead of by lowering T , by
raising χ, which therefore will also be referred to as the “inverse temperature”. To
keep the notation simple, we drop the primes,

V ′ → V, ̺′0 → ̺0, U ′ → U, W ′ →W, µ′ → µ, χ′ → χ, (2.16)

so that, expressed in the new variables, the Wiener Hamilton and the Hamiltonians
of excluded volume and incompatibility read

HW =
1

4

N∑

i=1

L−1∑

s=1

(ri(s+ 1) − ri(s))
2 , (2.17)

HEV =
µ

4

N∑

i1,2=1

L∑

s1,2

U
(∣
∣ri1(s1) − ri2(s2)

∣
∣
)

(2.18)

and

HC = −χ
4

N∑

i1,2=1

L∑

s1,2

qi1(s1)qi2(s2)W
(∣
∣ri1(s1) − ri2(s2)

∣
∣
)
.

The total Hamiltonian is denoted as HT := HW +HEV +HC.

2.3. Partition function and mean free energy

The central quantity to derive the properties of the random copolymer melt in
thermal equilibrium is the partition function, which, for a given realisation {qi(s)}
of chain sequences, reads

Z
(
{qi(s)}

)
=

∫

Dri(s) exp
(

−HT ({ri(s)}, {qi(s)})
)

, (2.19)

where
∫
Dri(s) denotes the integral over all chain configurations. As we are inter-

ested in the typical behaviour of random copolymers, it is, besides being practically
impossible, also pointless to consider a particular realisation of sequences. More-
over, the melt is assumed to be self-averaging in the thermodynamic limit, so it
appears natural to compute the disorder-averaged free energy

F := −
[
lnZ

(
{qi(s)}

) ]
= lim

n→0

1 − Zn
n

, (2.20)
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2. Random copolymer melts

with the sequences average (2.11). Using the replica-trick (see appendix A.1), the
average of the logarithm has been expressed in terms of disorder averaged powers
of Z,

Zn :=
[ (
Z
(
{qi(s)}

))n ]
. (2.21)

For integer n, Zn can be interpreted as the partition function of n independent
copies (replicas) of the original melt, with, however, identical chain sequences.
With replicated positional variables rαi (s), enumerated by the replica index α =
1, . . . , n, and with the replicated total Hamiltonian

HT
n

(
{rαi (s)}, {qi(s)}

)
:=

n∑

β=1

HW
(
{rβi (s)}

)
+HEV

(
{rβi (s)}

)
+HC

(
{rβi (s)}, {qi(s)}

)
, (2.22)

we obtain the disorder-averaged replicated partition function

Zn =

[ ∫

Drαi (s) exp
(

−HT
n

(
{rαi (s)}, {qi(s)}

))
]

. (2.23)

2.4. Multiphase coexistence

One approach to the phase diagram of random copolymers is based on the idea
of a multi-component mixture: the chains are divided into components according
to the total content of A-monomers per chain. For a given number Q of blocks,
this content ranges from 0 ·M to Q ·M , yielding (Q+ 1) different species. Within
this picture of a multi-component fluid, the phase diagram consists of a series
of phase separation transitions into more and more macroscopic phases, up to
(Q + 1) according to Gibbs’ phase rule. These transitions have been worked out
by Nesarikar et al. [16] following Bauer’s approach [15], which is based on the
Flory-Huggins theory [37–40] for polymer solutions.

In the following we shall derive the free energy used in ref. [15] and the multi-
component phase diagram from our microscopic model. Besides providing a mi-
croscopic derivation of the theory, this also establishes the link between the coarse-
grained multi-component theory and the full microscopic theory discussed later.

2.4.1. Crushed polymer approximation

For the discussion of phase separation into homogeneous phases, implying concen-
tration changes on macroscopic length-scales, fluctuations on length-scales smaller
than the radius of gyration RL of a single chain are expected to be negligible.
Hence we expand the monomer positions about one of the end points

r α
i := r α

i (s = 1), (2.24)
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2.4. Multiphase coexistence

yielding
r α
i (s) =: r α

i + ∆r α
i (s) ∀ s. (2.25)

In the crushed polymer approximation, we let ∆r α
i (s) = 0, so the Wiener Hamil-

tonian HW vanishes and we only need to integrate over a single position vector per
chain. Eq. (2.23) then becomes

Zn =

[ ∫

Drαi exp
(

−HEV
n

(
{rαi }

)
−HC

n

(
{rαi }, {qi}

))
]

(2.26)

with qi = 1
L

∑L
s=1 qi(s) denoting the mean monomer charge of chain i as defined in

eq. (2.31) and with the integral measure Drαi :=
∏n

α=0

∏N
i=1 ddrαi . The replicated

Hamiltonians of the excluded volume and incompatibility interaction in the crushed
polymer approximation are given by

HEV
n =

µL2

4

n∑

α=1

∫

ddx

( N∑

i1=1

δ
(
x − rαi1

)
)( N∑

i2=1

δ
(
x − rαi2

)
)

(2.27)

and

HC
n = −χL

2

4

n∑

α=1

∫

ddx

( N∑

i1=1

qi1 δ
(
x − rαi1

)
)( N∑

i2=1

qi2 δ
(
x − rαi2

)
)

, (2.28)

where we have replaced the short-ranged functions U(r) and W (r) by delta func-
tions, consistent with the neglect of small-scale fluctuations.

2.4.2. Multi-component picture

The partition function in the crushed polymer approximation contains the monomer
charges only summed over entire chains, see eq. (2.28). This naturally leads
to the multi-component picture, in which the chains are divided into (Q + 1)
classes l ∈ {0, . . . , Q} according to their mean charge L · ql with

ql :=
2l −Q

Q
. (2.29)

The replicated monomer density of component l in the αth replica reads

ραl (x) := L

N∑

i=1

δqi,ql
· δ(x − rαi ), (2.30)

where

qi :=
1

L

L∑

s=1

qi(s) ∈
{
− 1, −1 + 2

Q
, . . . , 1

}
. (2.31)

15



2. Random copolymer melts

denotes the charge of chain i divided by L, i.e. the mean monomer charge of chain i.
Due to the blockiness of the copolymer sequences, the possible values of qi differ
by multiples of 2M/L = 2/Q.

The component densities are introduced as order parameters by functional in-
tegration of Zn over {ραl (x)}, fixing their physical values (2.30) with the aid of
delta-functions:

Zn ≡
∫

Dραl Zn · δ
(

ραl (x) − L

N∑

i=1

δqi,ql
· δ(x − rαi )

)

≡
∫

Dραl Dρ̂αl (x) Zn · exp

{

i

n∑

α=1

Q
∑

l=0

∫

ddx ρ̂αl (x)

×
(

ραl (x) − L

N∑

i=1

δqi,ql
· δ(x − rαi )

)}

. (2.32)

In the second step, the delta-functions have been expressed by their integral rep-
resentation with auxiliary fields {ρ̂αl (x)} as integrational variables. The measures
Dραl and Dρ̂αl comprise the integrations over ραl (x) and ρ̂αl (x) for all α = 1, . . . , n
and l = 0, . . . , Q. The introduction of the order parameters will help to reduce
the many-chain to a single-chain problem and to integrate out the microscopic
degrees of freedom later. For simplicity, we restrict our consideration to the in-
compressible limit, where the monomer density is spatially homogeneous, given
by L

∑N
i=1 δ(x − ri) = ̺0, so that the excluded volume interaction (2.28) just

contributes a constant nµL2̺2
0V/4. Omitting this irrelevant constant we arrive at

Zn =

∫

Dραl Dρ̂αl Drαi

[

exp

{

− iL
∑

i,l,α

δqi,ql
ρ̂αl (r α

i )

}]

× exp

{

i

n∑

α=1

Q
∑

l=0

∫

ddx ρ̂αl (x)ραl (x) +
χ

4

n∑

α=1

L∑

l,l′=0

qlql′

∫

ddx ραl (x)ραl′(x)

}

. (2.33)

2.4.3. Quenched average and reduction to a single-chain

problem

In the following, we shall carry out the disorder average and reduce the many-chain
problem to a single-chain problem. To average over the charges of the chains we
define the probability

pl := P (qi = ql) (2.34)

that a chain contains exactly l blocks of type A. It is computed according to the
chain statistics of section 2.2.2. (In the case of uncorrelated sequences (λ = 0), for
example, the number of A blocks follows a binomial distribution with parameters
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2.4. Multiphase coexistence

p = (1 + q)/2 and Q.) Since the compositions of distinct chains are independent,
the charge average in eq. (2.33) factorises:

[

exp
{

− iL
∑

i,l,α

δqi,ql
ρ̂αl (r α

i )
}
]

=
N∏

i=1

(
Q
∑

l=0

pl exp

{

−iL
n∑

α=1

ρ̂αl (r
α
i )

})

, (2.35)

which allows for reducing Zn to a single chain partition function,

Zn =

∫

Dραl Dρ̂αl

(
Q
∑

l=0

pl

n∏

α=1

∫

ddx exp {−iLρ̂αl (x)}
)N

× exp

{

i

n∑

α=1

Q
∑

l=0

∫

ddx ρ̂αl (x)ραl (x) +
χ

4

n∑

α=1

L∑

l,l′=0

qlql′

∫

ddx ραl (x)ραl′(x)

}

. (2.36)

2.4.4. Effective free energy

The most favourable state of a macroscopically segregating melt should be at most
weakly degenerate, so it is safe to assume replica-symmetric order parameters, cf.
appendix A.1. With

ρ̂αl (x) = ρ̂l(x) (2.37)

ραl (x) = ρl(x), (2.38)

the partition function can be expressed as

Zn :=

∫

DρlDρ̂l exp
{
− nF

(
{ρl(x), ρ̂l(x)}

)
+ O(n2)

}
. (2.39)

in terms of the effective free energy F . The latter is given by

F
(
{ρl(x), ρ̂l(x)}

)
:=

− i

Q
∑

l=0

∫

ddx ρ̂l(x)ρl(x) − χ

4

Q
∑

l,l′=0

qlql′

∫

ddx ρl(x) ρl′(x) −N

Q
∑

l=0

pl ln al, (2.40)

where

al :=

∫

ddx exp {−iLρ̂l(x)} . (2.41)

In deriving eqs. (2.39) and (2.40) we have used that ln
(∑

l pl(al)
n
)

= n
∑

l pl ln(al)+
O(n2), since

∑

l pl = 1, so that the summation over l and the logarithm can be
carried out in reverse order up to corrections of the order n2.
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2. Random copolymer melts

2.4.5. Saddle point approximation

As all terms in (2.40) are extensive, the integration over the fields ρl(x) and ρ̂l(x)
can be evaluated with saddle point integration, i.e. by approximating

Zn ≈ exp
{
− nF

(
{ρ̄l(x), ¯̂ρl(x)}

)
+ O(n2)

}
(2.42)

with the saddle point values ρ̄l(x) and ¯̂ρl(x) that make F stationary. To eliminate
the auxiliary fields ρ̂, they are integrated out on the saddle point level,

δF
δρ̂l(x)

∣
∣
∣
∣
{ρ̂l=¯̂ρl}

= 0 ⇒ ¯̂ρl(x) =
i

L
ln

(
al

NLpl
ρl(x)

)

, (2.43)

yielding

F
(
{ρl(x)}

)
:= F

(
{ρl(x), ¯̂ρl(x)}

)

=
1

M

∫

ddx

{

1

Q

Q
∑

l=0

ρl(x) ln ρl(x) − χM

4

( Q
∑

l=0

ql ρl(x)

)2
}

, (2.44)

where we have omitted the additive constant N
∑Q

l=0 pl ln(NLpl). Thus, the dis-
order averaged free energy is given by

F = lim
n→0

1 − Zn
n

= F
(
{ρ̄l(x)}

)
+ const.. (2.45)

Within mean-field approximation, the saddle point {ρ̄(x)} is interpreted as the
equilibrium value of the order parameter.

Scaling with the block size

From eq. (2.44) we can read off that changing the block size just leads to a rescaling
of χ and the energy scale; hence in principle, it suffices to consider the case M = 1.

2.4.6. Flory-Huggins free energy

The effective free energy (2.44) is essentially equal to that used in [15], which
we shall demonstrate in the following. In ref. [15], compositions are expressed in
terms of the content of A monomers without counting B monomers as “negative
charges”, so that the composition of chains of component l is given by

cl := l/Q = (ql + 1)/2. (2.46)

Thus, the local composition and its second moment at point x read

c̄(x) :=

Q
∑

l=0

cl ρl(x)/̺0 and c̄2(x) :=

Q
∑

l=0

c2
l ρl(x)/̺0. (2.47)
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2.4. Multiphase coexistence

Substituting ql into eq. (2.44) and omitting

1

M

∫

ddxχM̺0

Q
∑

l=0

(cl − 1
2
)2 ρl(c) = χ̺0NL

Q
∑

l=0

pl (cl − 1
2
)2 (2.48)

as an additive constant yields

F
(
{ρl(x)}

)
=

1

M

∫

ddx

{

1

Q

Q
∑

l=0

ρl(x) ln ρl(x)+χMρ2
0

(

c̄2(x)−(c̄(x))2
)
}

, (2.49)

which is exactly the free energy of the copolymer melt of ref. [15]. It should be
noted that eq. (2.48) and thus the above derivation only hold in the incompressible
limit.

2.4.7. Multiphase equilibria

With the effective free energy eq. (2.49) at hand, we now can study phase separated
states. As pointed out in section 2.4.5, it is sufficient to discuss the case of block
size one, so we let M = 1 and L = Q in the following. To consider the coexistence
of K ≤ L+1 homogeneous phases with different composition in analogy to [15], we
divide the total volume V into K disjoint sub-volumes V (k) with

∑K
k=1 V

(k) = V .
Each species is allowed to have a different density in each sub-volume:

ρl(x) =: ρ
(k)
l for x ∈ V (k). (2.50)

In phase equilibrium, the chemical potential of a species l must be the same in all
phases. We define the number N

(k)
l of chains of species l in phase k and the total

number of chains in phase k, which is given by N (k) :=
∑L

l=1N
(k)
l . To compute the

chemical potentials, we eliminate the densities in favour of the particle numbers,

N
(k)
l /N (k) = ρ

(k)
l /̺0. (2.51)

Due to incompressibility,

V (k) = V
N (k)

N
, (2.52)

so that the free energy (2.49), up to additive constants, is given by

F
(

{N (k)
l }

)

=
K∑

k=1

N (k)





L∑

l=0

N
(k)
l

N (k)
ln
N

(k)
l

N (k)
+
χL̺0

4

(
L∑

l=0

ql
N

(k)
l

N (k)

)2


 . (2.53)

With the chemical potential µ
(k)
l of species l in phase k defined as

µ
(k)
l :=

∂F
(
{N (k)

l }
)

∂N
(k)
l

∣
∣
∣
∣
∣
Nl=const.

, (2.54)
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2. Random copolymer melts

the equilibrium condition reads

µ
(k)
l = µl for k = 1, ..., K , (2.55)

with a common chemical potential µl of species l in all phases. The constraints
∑K

i=1N
(k)
l = const. in the derivative in eq. (2.54) are taken into account with

the aid of Lagrange multipliers. Equating the chemical potentials according to
eq. (2.55) and substituting back the particle numbers with densities, we finally
arrive at

̺0 =

L∑

l=0

ρ
(k)
l (2.56)

and

ρ
(k)
l

̺0
=

pl exp

{

χ̺0L

4

[

2ql

L∑

l′=0

ql′
ρ

(k)
l′

̺0

−
( L∑

l′=0

ql′
ρ

(k)
l′

̺0

)2
]}

K∑

k′=1

V (k′)

V
exp

{

χ̺0L

4

[

2ql

L∑

l′=0

ql′
ρ

(k′)
l′

̺0
−
( L∑

l′=0

ql′
ρ

(k′)
l′

̺0

)2
]} (2.57)

for k = 1, . . . , K. The volume fractions {V (k)/V } and the densities {ρ(k)
l } have to

be determined self-consistently as solutions of eqs. (2.56), (2.57). The constraints

K∑

k=1

V (k)ρ
(k)
l = NL and

K∑

k=1

V (k) = V (2.58)

are implicitly satisfied. Equations (2.56), (2.57) are equivalent to eqs. (12), (13)
of reference [15].

Numerical solution

In [15], Bauer proposed a simple algorithm, a fixed point iteration, to determine
the phase equilibrium. Adapted to the present formulation (2.56), (2.57), it looks
as follows:

1. Guess the number K of phases; over-estimating is safe (see step 7).

2. Define an initial estimate for the volume fractions v(k) := V (k)/V and the

average compositions (charge densities) σ(k) :=
∑L

l=0 ql ρ
(k)
l of the phases.

3. Compute the partial densities ρ
(k)
l according to eq. (2.57).

4. Compute σ(k) and ρ(k) :=
∑L

l=0 ρ
(k)
l . Rescale v(k) → v(k) · ρ(k)/̺0 to enforce

incompressibility (in an incompressible melt, ρ(k) should equal ̺0).

5. Calculate a measure for the difference between the new and the old values
of v(k) and σ(k), e.g., the sum of the absolute values of all differences.
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2.5. Inhomogeneous phases

6. Repeat steps 3–5 until the discrepancy falls below a pre-defined threshold.

7. If the number of phases K is overestimated, the calculation may produce
phases with zero volume or multiple phases with identical composition. Delete
the zero-volume phases and join the phases with equal composition.

To compute the phase diagram over an extended range of χ, it turns out to be
useful to count down χ from the upper to the lower limit, using the result of each
iteration as the initial estimate for the next. (The reverse way is barred since the
iteration fails to generate new phases from scratch; on lowering χ, the number of
phases decreases stepwise.) We have implemented the algorithm to compute phase
equilibria; two examples are shown in fig. 2.2.

2.4.8. Results

The multi-component theory predicts a series of phase separations into more and
more phases, which are extensively discussed in ref. [16]. Melts with symmetric
and asymmetric composition behave qualitatively different. In the asymmetric
case p 6= 0, new phases appear with zero volume and minority composition at
the transition points; the transitions are of first order. Upon increasing χ, they
grow and achieve a more and more moderate composition. The compositions and
volume fractions of the phases are shown in fig. 2.2(a) for L = 10, λ = 0 and
p = 0.3. In the symmetric case p = 0.5, each phase coexists with its mirror image
for reasons of symmetry. On cooling, the homogeneous phase first splits into two
parts with equal volume and opposite compositions 0.5̺0 ± ∆σ in a second-order
transition. A third phase comes in with zero volume and symmetric composition
in a first-order transition; on increasing χ, this phase eventually splits into two
with opposite composition and so on. The symmetric case with L = 10 and λ = 0
is shown in fig. 2.2(b).

The distribution of the charges qi of the chains becomes narrower with increasing
chain length. As a consequence, the compositional difference of the phases and the
“windows” ∆χ between successive phase transitions become smaller. In the limit
L → ∞ of infinite chain length, the theory predicts the separation into arbitrary
many phases with equal composition (the variance of the charge per chain goes
to zero), which is obviously nonsensical. This is in agreement with the finding of
ref. [18] that for chains of infinite length, macrophase separation does not occur.

2.5. Inhomogeneous phases

As pointed out by Fredrickson et al. [17], a random copolymer melt may exhibit,
besides separation into homogeneous phases, also more exotic phases that are
characterised by strongly inhomogeneous concentrations. To study such phases,
concentration fluctuations on all length-scales must be taken into account, so that
the crushed polymer approximation is unsuitable for this purpose. In this section
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Figure 2.2.: Separation into multiple phases within Flory-Huggins theory. The
lines indicate the compositions σ(k) and volume fractions v(k) of the phases, re-
spectively, for M = 1, L = 10 and λ = 0. The asymmetric case p = 0.3 is shown
in panel (a), the symmetric case p = 0.5 in panel (b).
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2.5. Inhomogeneous phases

we review the work of Fredrickson et al. [17] and extend it in several respects: We
discuss compressible melts and show that compressibility favours phase separation.
To include the case of short blocks and chains, our theory avoids continuum ap-
proximations, and it is shown that chains built of short blocks behave qualitatively
different from chains with very large blocks. Aside from a Landau expansion, we
also present the full nonlinear theory, which will be used to derive multiphase
coexistence in terms of the charge density instead of the component densities of
section 2.4.

2.5.1. Order parameters

The impossibility of keeping track of the large number of charge and positional
variables makes it desirable to introduce order parameters that disregard the con-
formations of individual chains. Like the pressure of a gas in a box, this would
provide a more suitable description of the meso- or macroscopic state of the sys-
tem. Technically, the introduction of order parameters will also help to reduce the
original many-chain problem to a single chain problem. As pointed out before, the
component densities of section 2.4.2 are unsuited to describe spatially structured
phases. Instead, we choose use the local monomer density ρ(x) and the local im-
balance of type A and B monomers, the charge density σ(x), the replicated Fourier
components of which are given by

ραk :=
N∑

i=1

L∑

s=1

eikrα
i (s) and σαk :=

N∑

i=1

L∑

s=1

qi(s)e
ikrα

i (s), (2.59)

respectively. While the k 6= 0 components of ρ will be suppressed by imposing
incompressibility, those of σ will allow for detecting phase separation, for discrim-
inating between macroscopic or microscopic separation, and for determining the
morphology of a microphase separated state. The k = 0 components are con-
stant, given by the total number NL of monomers and the asymmetry q NL of
the global composition. Note that ρ0 differs from the previously defined average
density ̺0 = NL/V in real space by a factor of V .

2.5.2. Effective free energy

Our starting point is the replicated partition function eq. (2.23). Like in sec-
tion 2.4.2, the order parameters (2.59) are introduced by integration over delta
functions. With an analogous notation for the integral measures we obtain

Zn :=

∫

DραkDρ̂αkDσαkDσ̂αk exp
(

− nFn

(
{ρk, ρ̂k, σk, σ̂k}

))

(2.60)
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2. Random copolymer melts

with an effective free energy

nFn

(
{ρk, ρ̂k, σk, σ̂k}

)
:= −i

n∑

α=1

∑′

k

(
ρ̂αkρ

α
−k + σ̂αkσ

α
−k

)

+
µ

4V

n∑

α=1

∑′

k

ρα−kUkρ
α
k − χ

4V

n∑

α=1

∑′

k

σα−kWkσ
α
k

−N ln

[〈

exp

(

− i
n∑

α=1

∑′

k

L∑

s=1

(ρ̂αk + q(s) · σ̂αk) e−ikrα(s)

)〉]

+ C. (2.61)

The free energy (2.61) is already expressed in the single-chain formulation, with the
positional variables rα(s), the charges q(s) and the according sequence average [. . . ]
of the remaining chain, and with the respective Wiener average

〈
· · ·
〉

:=

∫
Drα(s) · · · exp

{

− 1
2

∑n
α=1

∑L−1
s=1

(
rα(s+ 1) − rα(s)

)2
}

∫
Drα(s) exp

{

− 1
2

∑n
α=1

∑L−1
s=1

(
rα(s+ 1) − rα(s)

)2
} . (2.62)

The summations
∑′

k run over all nonzero vectors in reciprocal space, Uk and Wk

denote the Fourier components of the (isotropic) range functions U(r) and W (r).
The constant C originates from the normalisation of the Wiener average and from
the k = 0 contributions which have been omitted from the sums; it will be dropped
in the following.

Because all terms in (2.61) are extensive, the partition function can be evaluated
by saddle point integration, i.e.

Zn ≈ exp
(
− nFn

(
{ρ̄k, ¯̂ρk, σ̄k, ¯̂σk}

))
· const. (2.63)

Consequently, the disorder averaged free energy reads

F = lim
n→0

Fn

(
{ρ̄k, ¯̂ρk, σ̄k, ¯̂σk}

)
+ const. (2.64)

and the saddle point values of the order parameters are interpreted as the equilib-
rium state of the system.

To eliminate the auxiliary fields ρ̂ and σ̂ on the saddle-point level, it turns out
to be convenient to solve the saddle point equations with respect to the physical
fields ρ and σ for the auxiliary fields ρ̂ and σ̂:

∂Fn

∂ραk
=
∂Fn

∂σαk
= 0 ⇒ ρ̂ = − iµ

2V
Ukρ

α
k and σ̂ = +

iχ

2V
Ukσ

α
k ; (2.65)

insertion into eq. (2.61) yields

nFn

(
{ρk, σk}

)
:= − µ

4V

n∑

α=1

∑′

k

ρα−kUkρ
α
k +

χ

4V

n∑

α=1

∑′

k

σα−kWkσ
α
k

−N ln

[〈

exp

(

1

2V

n∑

α=1

∑′

k

L∑

s=1

(

χWk q(s) σ
α
k − µUk ρ

α
k

)

e−ikrα(s)

)〉]

. (2.66)
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2.5. Inhomogeneous phases

Rescaled fields

In general, the complexity of the sequence statistics hampers carrying out the
disorder average in the effective free energy in the exact form (2.66), thus Fn will
be expanded about the incompressible, homogeneous solution ρk = σk = 0. In this
expansion, the charges appear in the form of moments [q(s1)q(s2) . . . q(sν)]. We
replace the {q(s)} by the centred charges, i.e. their deviation

q̌(s) := q(s) − q (2.67)

from the mean charge q, since the moments of the latter are simpler to compute in
the case of asymmetric melts. To absorb the terms in the mean charge q occurring
in the effective free energy, we introduce rescaled order parameter fields

Ωα
k := µUkρ

α
k − q χWkσ

α
k and Ψα

k := χWkσ
α
k (2.68)

and obtain

nFn

(
{Ωk,Ψk}

)
:=

1

4V

n∑

α=1

∑′

k

((
1

χWk
− q2

µUk

)

Ψα
−kΨα

k − 2q

µUk
Ψα

−kΩα
k − 1

µUk
Ωα

−kΩα
k

)

−N ln

[〈

exp

(

1

2V

n∑

α=1

∑′

k

L∑

s=1

(

q̌(s) Ψα
k − Ωα

k

)

e−ikrα(s)

)〉]

. (2.69)

It might seem more natural to redefine the charge density rather than the monomer
density. However, with definition (2.68) the saddle point value of the shifted
density field is of the order O(Ψ2) instead of O(Ψ) under certain conditions. To
obtain a consistent expansion of the effective free energy to, e.g., fourth order in Ψ,
it is then sufficient to expand to only second order in Ω.

2.5.3. Stability of the homogeneous phase

To discuss the spinodal, i.e. the stability limit of the homogeneous phase, we
expand (2.69) to second order in Ψ and Ω, yielding

nFn ≈ N

8V 2

n∑

α=1

∑′

k

{

−
(

2V

NµUk

+D(k2)

)

Ωα
−kΩα

k − 4qV

NµUk
Ωα

−kΨα
k

+

(
2V

NχWk

− 2V q2

NµUk
− (1 − q2)S(k2)

)

Ψα
−kΨα

k

}

(2.70)

with the discrete version of the Debye function D(k2) and the charge density
correlator S(k2) defined in appendix C.3.1 and C.3.2. The excluded volume pa-
rameter µ is assumed to be large enough to prevent the collapse to a globular state
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2. Random copolymer melts

by limiting modulations of the mass density. Thus, we expect an instability of
the homogeneous state to charge density fluctuations, whereas the mass density
should remain noncritical. Consequently, we may integrate out the mass density
fluctuations; the substitution of Ω with its saddle point value

Ω̄α
k ({Ψα

k)} = − q

1 +NµUkD(k2) / 2V
Ψα

k + O(Ψ2) (2.71)

finally yields

nFn ≈ N

8V 2

∑′

α,k

(
2V

NχWk
− (1 − q2)S(k2) − q2D(k2)

1 +NµUkD(k2) / 2V

)

Ψα
−kΨα

k,

(2.72)
with the shorthand

∑′
α,k :=

∑n
α=1

∑′
k .

Incompressible melts

We first consider the incompressible limit µ→ ∞, so that density fluctuations are
suppressed. In this limit, eq. (2.72) becomes

nFn ≈ N

8V 2

∑′

α,k

(
2V

NχWk

− (1 − q2)S(k2)

)

Ψα
−kΨα

k, (2.73)

with the quadratic coefficient indicating the inverse susceptibility to charge density
fluctuations. The homogeneous state is stable for small χ and becomes unstable
at some value χs to fluctuations either at k2 = 0 or at finite k2, depending on the
location of the maximum of Wk · S(k2).

In the simplest case M = 1, i.e. “no blockiness” and Q = L, the function S(k2)
only depends on x = λ exp {−1/(2k2)}, cf. appendix C.3.2:

S(k2)
∣
∣
M=1,Q=L

= L
1 + x

1 − x
− 2

x(1 − xL)

(1 − x)2
. (2.74)

It can be shown to increase strictly monotonically as a function of x for L ≥
2 (for L = 1, it is identically equal to one). This implies a decrease with k2

for predominantly homopolymeric chains (λ > 0) and an increase with k2 for
predominantly alternating chains (λ < 0).

For λ > 0, the homogeneously mixed state becomes unstable with respect to
long wavelength fluctuations first, so that the shape of the incompatibility inter-
action W (r) can be approximated by a delta-function. For λ < 0 in contrast,
the instability is expected to occur at short wavelengths, so we must take into ac-
count the nonzero interaction range ℓ0 > 0. For Wk ∝ exp{−(kℓ0)

2}, for instance,
Wk · S(k2) decays to zero for large k2, so that the maximum of this expression is
located at a finite value of the order k ∼ 1/ℓ0, corresponding to microscopic phase
separation on length-scales of the order ℓ0. A neglect of ℓ0 would have lead to the
unphysical result of phase separation on infinitely small scales in this case.
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2.5. Inhomogeneous phases

For general block size M , the stability limit for charge density fluctuation modes
with a particular wavenumber k reads

χs(k
2) :=

2

M̺0Wk
· M2Q

(1 − q2)S(k2)
, (2.75)

hence the spinodal is given by

χs := min{χs(k
2)}. (2.76)

For λ ≥ λL(M,Q), eq. (2.75) is minimised by k = 0, so that χs = χs(0). The
spinodal for λ < λL and the threshold λL(M,Q) itself must, in general, be com-
puted numerically. For M = 1 we have λL(M = 1, Q) = 0 according to the above
discussion, in case of long chains it is approximately given by −0.3.

For large block sizes M and λ ≥ λL, where it is justified to take the continuum
limit and letWk = 1, we recover the result of Fredrickson et al. [17] for the spinodal:

Mχs̺0 =
2(1 − λ)

(1 − q2)(1 + λ)
(
1 − 2λ

Q
1−λQ

1−λ
)

|λ|Q≪1≪Q≈ 2(1 − λ)

(1 − q2)(1 + λ)
(2.77)

In the limit of large M and Q there are analytic expressions for λL =
√

3− 2 ≈
−0.27 and for the spinodal

Mχs̺0 ≈
2(1 − λ)4 − 2(λ+ 2 +

√
3)2(λL − λ)2

(1 − q2)(1 − λ)(1 − λ2)
, (2.78)

in the vicinity of λL, cf. eq. (3.14) of reference [17].

Compressible melts

The stability of compressible melts is determined by the full quadratic func-
tional (2.72). Density fluctuations affect charge fluctuations only for asymmetric
mixtures (q 6= 0), whereas for q = 0, charge and density fluctuations decouple on
the quadratic level. In general, there are be higher-order couplings which are not
considered here.

In an asymmetric melt, density fluctuations tend to destabilise the homogeneous
state Ψ = 0 and hence shift the spinodal to lower values of χ, corresponding to
higher temperatures, see eq. (2.72). This is intuitively clear: A compressible system
can lower its energy by condensing regions of energetically favourable contacts
and diluting regions of unfavourable contacts. These regions are characterised by
large and small |Ψ(x)|, respectively. Hence for q 6= 0, the formation of small
charge density fluctuations Ψk induces, and is faciliated by, density fluctuations
Ωk according to eq. (2.71), see also the following section.
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Figure 2.3.: Coupling of mass and charge density Ω and Ψ. Zones of high absolute
charge density are condensed. For q 6= 0, the mass density is modulated propor-
tional to the charge density (panel (a)). In the symmetric case, its wavelength is
half as large as that of the charge density modulations (panel (b)).

2.5.4. Landau expansion

To address macro- and microphase separation beyond mere stability considera-
tions, we require the Landau expansion of the free energy up to fourth order in
the charge density. For small compressibility, i.e. large µ, the density field turns
out to be of the order Ψ2 at the saddle point:

Ω̄α
k ({Ψα

k}) =

(

− q

1 +NµUkD(k2) / 2V
Ψα

k

+
(1 − q2)/4V

1 + 2V/(NµUkD(k2))

∑′

k′

S2(k
′,k − k′)

D(k2)
Ψα

k′Ψα
k−k′

)

+ O(Ψ3, Ψ2

µ2 )

µ→∞−−−−→ 1 − q2

4V

∑′

k′

S2(k
′,k − k′)

D(k2)
Ψα

k′Ψα
k−k′ + O(Ψ3), (2.79)

with the third order vertex function S2 defined in appendix C.3.3. As pointed
above, a compressible melt can lower its energy by diluting regions with small |Ψ|
and condensing those with large |Ψ|, corresponding to high and low densities of
A-B contacts, respectively. In the asymmetric case, the charge density fluctuates
about q̺0; w.l.o.g. we may assume q > 0 in this paragraph. In a sinusoidal
modulation of Ψ(x) with small amplitude, characterised by a single wavevector k,
the minima and maxima correspond to small and large values of |Ψ|, respectively.
Consequently, the induced mass density modulations follow the charge density
as discussed in section 2.5.3. In a symmetric melt in contrast, the charge density
fluctuates about zero mean, so that all extrema of the above sinusoidal modulation
imply a high modulus |Ψ|. As predicated by eq. (2.79), the induced mass density
modulations therefore oscillate with half the wavelength, i.e. with wavenumber 2k.
Both cases are illustrated in fig. 2.3.

The saddle point (2.79) of Ω does not vanish for µ → ∞. This is not in
contradiction with incompressibility, since the physical mass density is given by
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2.5. Inhomogeneous phases

ρk = (Ωk + Ψk) / µUk and vanishes in any case for µ → ∞. At the same time, the
bulk modulus diverges, and the effect of the quadratic coupling survives the limit
and contributes additional fourth order terms in Ψ to the Landau expansion.

For incompressible or nearly incompressible melts, we have Ω̄ = O(Ψ2), hence
the effective free energy can be expanded consistently to fourth order in Ψ and
just to second order in Ω. Subsequently, we integrate out the density field Ω on
the saddle point level according to eq. (2.79); the resulting effective free energy is
given in appendix C.4. Concentrating on the incompressible limit and restricting
the discussion to replica-symmetric solutions, i.e. Ψα

k = Ψk for α = 1, . . . , n, we
obtain

F rs
inc := lim

n→0
Fn

∣
∣Ψ

α
k
=Ψk

µ→∞

=
N

8V 2

∑′

k

(
2V

NχWk

− (1 − q2)S(k2)

)

ΨkΨ−k

+
Nq(1 − q2)

24V 3

∑′

k1,2,3

S3(k1,k2) δP3
ν=1 kν ,0

Ψk1Ψk2Ψk3

+
N

128V 4

∑′

k1,2,3,4

(

(1 − q2)2 S2(k1,k2)S2(k3,k4)

D((k1 + k2)2)
− 1

3
S4(k1,k2,k3)

)

× δP4
ν=1 kν ,0

Ψk1Ψk2Ψk3Ψk4

+
N

128V 4

∑′

k1,2

(

S5(k1,k2) − (1 − q2)2 S(k2
1)S(k2

2)
)

Ψk1Ψ−k1Ψk2Ψ−k2

+ O(Ψ5) , (2.80)

with the vertex functions S3, S4 and S5 defined in appendix C.3.3. This free energy
can now be probed with an ansatz for Ψ corresponding to macro- or microscopic
phase separation.

Comparison to the free energy of Fredrickson et al.

Fredrickson et al. apply a couple of approximations to the effective free energy:

a) They take the limit of continuous blocks and chains and expand to leading
order in 1/Q.

b) They ignore the decay of correlations within neighbouring blocks, assuming r(s1) ≈
r(s2) for s1,2 residing on the same or on adjacent blocks.

c) They consider small λ just up to linear order.
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These approximations lead to

F FML ≈ NM2Q

8V 2

∑′

k

(
2

̺0χM
− (1 − q2) s(Mk2)

)

ΨkΨ−k

+
NM3Qq(1 − q2)(1 + 6λ)

24V 3

∑′

k1,2,3

δP3
ν=1 kν ,0

Ψk1Ψk2Ψk3

+
NM4Q2(1 − q2)2(1 + 4λ)

64V 4

∑′

k1,2

gD

(
L(k2

1 + k2
2)
)
Ψk1Ψ−k1Ψk2Ψ−k2 (2.81)

with Wk = 1 and the continuum limits gD(Lk2) ≈ D(k2)/L2 and s(Mk2) ≈
S(k2, |λ| ≪ 1)/LQ of the second-order vertex functions defined in appendix C.3.2.
The correspondence to eq. (3.2) in ref. [17] can be established via g(k2R2

M) ↔
gD(k2) and G2(k

2) ↔ M(1 − q2)s(k2)/4. As the saddle point integrations are
carried out in a different order, the expansion looks slightly different in [17], but
it is equivalent to eq. (2.80) for small {Ψk}, i.e. in the range of validity, see also
appendix C.6.

In the following we show that approximation (a), i.e. taking the limit Q → ∞,
is not entirely justified. For simplicity we consider the case of symmetric melts
(q = 0) with uncorrelated sequences (λ = 0) and keep approximation (b), so that
the cubic term vanishes and the vertex functions take a simple form. For finite Q
we obtain

F rs
inc ≈ NM2Q

8V 2

∑′

k

(
2

M̺0χWk
− D(M)(k2)

M2

)

ΨkΨ−k

+
NM4Q

192V 4

∑′

k1,2,3,4

δP4
ν=1 kν ,0

Ψk1Ψk2Ψk3Ψk4

+
NM4Q2

64V 4

∑′

k1,2

(
D(k2

1 + k2
2)

M2Q2
− 1

Q

)

Ψk1Ψ−k1Ψk2Ψ−k2 (2.82)

with the discrete Debye function D(M)(k2) of a single block defined in eq. (C.32).
The approximation of ref. [17], by contrast, lead to

F FML ≈ NM2Q

8V 2

∑′

k

(
2

M̺0χ
− gD(Mk2)

)

ΨkΨ−k

+
NM4Q2

64V 4

∑′

k1,2

gD

(
L(k2

1 + k2
2)
)
Ψk1Ψ−k1Ψk2Ψ−k2 (2.83)

for λ = 0 and q = 0. This amounts to dropping the term 1/Q and the whole
middle term of eq. (2.82) as contributions that are formally subdominant in Q
compared to the remaining biquadratic term. However, the gain in free energy
due to microphase separation turns out to be of the order 1/Q itself. Moreover,
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2.5. Inhomogeneous phases

the omitted middle term, corresponding to
∫
ddxΨ4(x) in space, is the only one

depending on the spatial structure of a microphase separated state beyond the
mere wavenumber. Therefore, besides disabling the consideration of short chains,
the approximations made in [17] also lead to qualitatively different results, as will
be shown in the following.

Free energy of microphase separated melts

We describe the spatial structure of the microphases with the first-harmonic ansatz
suggested in ref. [17]

Ψ
(m)
k′ := Ψm ·

√
8

M2Q
· V√

2m

m∑

i=1

(δk′,kni
+ δk′,−kni

) , (2.84)

with an amplitude Ψm and a wavenumber k as variational parameters. The mor-
phology is determined by lattice vectors {ni}mi=1. We consider three particular
lattices, which are chosen because they occur in the microphase separation of reg-
ular block copolymers [3, 6]: lamellæ (m = 1), hexagonally arranged cylinders
(m = 3) and spherical domains on a body centred cubic lattice (m = 6). These
lattices are defined in appendix B.1. The real microphase morphology is, however,
expected to be disordered due to the randomness of the sequences.

With the ansatz (2.84) the structure-dependent quartic term of eq. (2.82) reads

NM4Q

192V 4

∑′

k1,2,3,4

δP4
ν=1 kν ,0

Ψ
(m)
k1

Ψ
(m)
k2

Ψ
(m)
k3

Ψ
(m)
k4

=
N

3Q
· cm · Ψ4

m, (2.85)

where

cm :=







3/2 for m = 1 (lamellæ),

5/2 for m = 3 (cylinders),

15/4 for m = 6 (bcc spheres),

(2.86)

see eq. (B.11). For simplicity, we take Wk = 1 corresponding to W (r) = δ(r) in
real space, so the Landau expansion (2.82) becomes

Fm(Ψm) := F({Ψ(m)
k })

= N

(
2

M̺0χ
− D(M)(k2)

M2

)

Ψ2
m +N

(
D(2k2)

L2
− 1 − cm/3

Q

)

Ψ4
m. (2.87)

Free energy of macroscopically separated melts

We now derive the free energy of a macroscopically separated state in terms of the
Landau expansion, assuming λ = 0 to simplify the vertex functions (the expressions
for correlated sequences are analogous). For macroscopic phases, the dominant
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2. Random copolymer melts

wavenumber is zero, hence we let k = 0 in the vertex functions. With Wk = 1 we
obtain

F hom := N
M2Q

8

(
2

̺0Mχ
− (1 − q2)

)

· 1

V

∫

ddx
(
Ψ(x)

)2

+N
M3Qq(1 − q2)

24
· 1

V

∫

ddx
(
Ψ(x)

)3

+N
M4Q2

64
· (1 − q2)(1 − 3q2)

3Q
· 1

V

∫

ddx
(
Ψ(x)

)4

+N
M4Q2

64

(

(1 − q2)2 − (1 − q2)(1 − 3q2)

Q

)

·
(

1

V

∫

ddx
(
Ψ(x)

)2
)2

. (2.88)

In the simplest case, q = 0, the volume will split into two parts V1 and V2 of equal
size and opposite composition due to symmetry,

Ψ(x) =







+
√

8
M2Q

Ψhom for x ∈ V1

−
√

8
M2Q

Ψhom for x ∈ V2.
(2.89)

The arbitrary factor
√

8 /M2Q is introduced to simplify the expression

F hom = N

(
2

̺0Mχ
− 1

)

Ψ2
hom +

M4Q2

128

(

1 − 1 − 1/3

Q

)

Ψ4
hom, (2.90)

which can formally be treated as the case “m = 0” of the microphase free en-
ergy (2.87) with c0 = 1 and k = 0.

2.5.5. Microphase separation

The microphase free energy eq. (2.87) bears the following problem: For large k,
the quartic coefficient becomes negative, because D(k2) decays to zero for large
argument. Fredrickson et al. ignore the term (1−cm/3)/Q, so that their coefficient
remains nonnegative. An obvious way of removing the ill-definedness is to drop
the k dependence of the quartic term. This is in the spirit of the usual Ginzburg
Landau expansion, which keeps terms like (∇Ψ)2 but no space dependence on
the quartic level. Yet, in this approximation, the homogeneously phase separated
state would always be lower in energy than the microphase separated one, since
cm > c0 = 1 for m ∈ {1, 3, 6} and since D(M)(k2) decreases with k2. If at all,
microphases set in with nonzero k.

To discuss microphase separation, we are thus forced to keep the k-dependence of
the quartic term. We ensure its positivity by introducing a cutoff for large k of the
order of the inverse radius of gyration 1/RM = 1/

√
M , avoiding the range where

the coefficient falls below zero. The cutoff is well justified, since local demixing on
length-scales smaller than the extension of a single block is physically impossible.
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2.5. Inhomogeneous phases

At a given wavenumber k, the amplitude minimising the free energy acquires a
nonzero value

Ψ2
m =

−
(

2
M̺0χ

− D(M)(k2)
M2

)

2
(
D(2k2)
L2 − 1−cm/3

Q

) (2.91)

for χ exceeding the stability limit χs(k
2) = 2M/̺0D

(M)(k2). In this case, eq. (2.87)
becomes

Fm(k2) = −N
4

(
2

M̺0χ
− D(M)(k2)

M2

)

(
D(2k2)
L2 − 1−cm/3

Q

)

2

. (2.92)

For k below the cutoff, the denominator is positive, hence this expression is minimal
for the smallest cm. Out of the considered microphase structures, the lamellar
morphology yields the lowest free energy.

Separation on large length-scales

Before minimising with respect to the wavenumber, we consider the case k = 0,
which includes the possibility of macroscopic phase separation with c0 = 1. As
discussed earlier, the difference in the free energies of a micro- and a macrophase
separated state is always positive for k → 0. It is given to leading order in 1/Q by

∆Fm(0) := Fm(0) − F0(0) =
N

4

(
χs − χ

χ

)2
cm − 1

Q
> 0. (2.93)

As anticipated, this difference is lost when applying the approximations made in
eq. (2.81) as anticipated.

For nonzero k, macrophase separation is excluded, thus the smallest cm corre-
sponds to the lamellar structure and the hexagonal and the cubic lattice are always
unfavourable. In the following, we can therefore assume cm < 3.

Small blocks (block size one)

If the “blocks” just consist of a single monomer, i.e. M = 1, the free energy (2.92)
of the phase separated states reads

Fm(k2) =
N

4

(

1 − χs

χ

)2

4
(
D(2k2)
L2 − 1−cm/3

L

) . (2.94)

with χs = 2
M̺0

. Since the numerator is independent of k, the free energy of

the microscopically separated state is always lowered by increasing k2 (up to the
cutoff), which compensates for the disadvantage of requiring cm > c0 = 1. Hence,
microphase separation is favoured for any χ > χs. The optimal wavenumber kopt

is nonzero and independent of χ, given by the cutoff introduced above.
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2. Random copolymer melts

Larger blocks

If M > 1, the numerator is no longer independent of k. The typical scale of
D(M)(k2) is k ∼ R−1

M = 1/M . We expect microphase separation to occur at very
small k at its onset and expand D(M)(k2) for small argument up to quadratic order,
as was done in ref. [17], as well.

In the case λ = 0 under consideration, the spinodal reads χs = 2/M̺0, see also
section 2.5.3. We introduce the dimensionless squared wavenumber x := k2R2

M =
Mk2 and minimise the free energy per chain,

f(x) :=
Fm

N
=

1

4

(
D(M)(x/M)

M2
− χs

χ

)2/(
D(Qx/L)

L2
− 1 − cm/3

Q

)

, (2.95)

in a quadratic expansion with respect to x to find the optimal domain size of the
microphase separated state. The optimal wavenumber kopt becomes nonzero for
χ > χ0 with

χ0/χs =

(

1 − (M2 − 1) (Q− (1 − cm/3))

L2 − 1

)−1

= 1 +
M2 − 1

M2
Q−1 +

(M2 − 1)(M2cm/3 − 1)

M4
Q−2 + O(Q−3). (2.96)

Below this threshold, kopt = 0, and thus the competing macrophase separated state
is more favourable (see above). As pointed out before, microphases either set in
with finite wavenumber or not at all.

To determine the point χm where microphase separation with optimal wavenum-
ber kopt =: xopt/M becomes energetically equivalent to macroscopic segregation,
we solve f ′(xopt) = 0 for xopt. Within an expansion to linear order in (χ− χ0)/χ,
we determine the zero of the excess free energy of the microphase separated state,

∆Fm(k2
opt) := Fm(k2

opt) − F0(0). (2.97)

Microphases and homogeneous phases become energetically equivalent at χ = χm

with

χm/χs = 1 +
M2 − 1

M2
Q−1 +

M2 − 1

M2

√
2
3
(cm − 1) Q−3/2

+
(cm − 2

3
)M4 − (cm + 1)M2 + 1

M4
Q−2 + O(Q−5/2); (2.98)

for M ≥ 2, the lamellar morphology yields the lowest χm. The result χm/χs − 1 =
1/Q of ref. [17] is recovered to leading order in 1/Q in the limit of continuous
blocks (large M).

The optimal wavenumber kopt =
√

xopt/M at χ = χm is given by

xopt(χ = χm) =
√

3
2
(cm − 1) Q−3/2 + (cm − 1)Q−2 + O(Q−5/2) . (2.99)
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2.5. Inhomogeneous phases

Here, the result x = 0 of ref. [17] can be recovered in the limit Q → ∞, yet this
implies dropping the leading order term.

For long chains, i.e. Q ≫ 1, the free energy difference between micro- and
macrophases grows roughly proportional to (χ− χm)2 on further increase of χ:

∆Fm(k2
opt) = −N

4

(

1 − M2(1 + 18cm) − 48

12M2
Q−1

) (
χ− χm

χs

)2

−N

√

(cm − 1)(M2 − 1)2

6M4
Q−3/2

(
χ− χm

χs

)

+ O(Q−2) . (2.100)

Numerical results

We now provide some examples to illustrate the calculation. For different Q and
M we have calculated the inverse temperatures χ0, at which the optimal wavenum-
ber of lamellar microphases becomes nonzero, and χm, at which the lamellæ be-
come energetically equivalent to the macroscopically separated state. While χ0

can be computed analytically according to eq. (2.96), the point χm and the opti-
mal wavenumber at χm have been determined numerically using the fourth order
Landau free energies of the macrophase separated and the lamellar microphase
separated state. These data are shown in tables 2.1, 2.2 and 2.3.

For M = 1, the numerical solution predicts microphase separation with k =
∞, or zero wavelength, at χm = χs, because the cutoff ℓ0 for k has not been
implemented therein. The correct value would depend on ℓ0.

The case Q = 2 is somewhat special, as well: in this case, the melt can be
conceived as a symmetric blend of homopolymers and diblock copolymers without
any compositional disorder. The diblocks and homopolymers can arrange in well-
ordered layers with a wide range of possible spacings. Moreover, the distance of
χm to the spinodal χs is roughly proportional to 1/Q, which is relatively large for
Q = 2. In this range, the fourth order Landau expansion used in the numerical
procedure probably is no longer valid.

For longer chains of larger blocks, i.e. for M > 1 and Q ≥ 3, the values of χ0, χm

and xopt indeed follow the analytic predictions of eqs. (2.96), (2.98) and (2.99) for
M → ∞, with an accuracy increasing with Q, as is to be expected. For Q ≥ 5, the
ratio χm/χs of the microphase transition point and the spinodal, and the lattice
constant k/RM of the microphases in terms of the radius of gyration of the blocks
depend only weakly on the block size.

2.5.6. Flory-Huggins theory for the charge density

In the following, we shall establish the link between the multi-component theory
of section 2.4 and the Landau theory of the present section. To this end it will
be shown that the full microscopic theory in terms of the charge and mass density
includes the Flory-Huggins theory of multiphase coexistence. The starting point is
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Q = 2 Q = 3 Q = 5 Q = 10 Q = 20
M = 1 1 1 1 1 1
M = 2 1.429 1.273 1.157 1.077 1.038
M = 5 1.571 1.366 1.209 1.100 1.049
M = 10 1.380 1.217 1.104 1.051
M = 20 1.383 1.219 1.105 1.051

Analytic theory:

M → ∞ 1.600 1.385 1.22 1.105 1.051

Table 2.1.: Onset χ0/χs of nonzero k in lamellar microphases for finite M and for
M → ∞, computed according to eq. (2.96)

.

Q = 2 Q = 3 Q = 5 Q = 10 Q = 20
M = 1 1 1 1 1 1
M = 2 1.656 1.391 1.208 1.093 1.043
M = 5 1.854 1.534 1.279 1.122 1.056
M = 10 1.556 1.290 1.126 1.058
M = 20 1.561 1.292 1.127 1.058

Analytic approximation:

M → ∞ 1.912 1.537 1.285 1.127 1.059

Table 2.2.: Onset χm/χs of lamellar microphases determined numerically for finite
M . The analytic approximation for M → ∞ is computed according to eq. (2.98).

Q = 2 Q = 3 Q = 5 Q = 10 Q = 20
M = 1 ∞ ∞ ∞ ∞ ∞
M = 2 0.59 0.250 0.099 0.031 0.011
M = 5 0.75 0.253 0.099 0.031 0.011
M = 10 0.254 0.099 0.031 0.011
M = 20 0.255 0.099 0.031 0.011

Analytic approximation:

M → ∞ 0.431 0.222 0.0975 0.0324 0.0109

Table 2.3.: Wavenumber square x = k2R2
M at χ = χm determined numerically

for finite M . The analytic approximation for M → ∞ is computed according to
eq. (2.99).
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2.5. Inhomogeneous phases

the effective free energy (2.66), which is evaluated in the crushed polymer approx-
imation, i.e. for r α(s) = rα. Focusing on macroscopic phases, we let W (r) = δ(r)
and U(r) = δ(r) and obtain

nFn

(
{ρα, σα}

)
= −µ

4

n∑

α=1

∫

ddx
(
ρα(x)

)2
+
χ

4

n∑

α=1

∫

ddx
(
σα(x)

)2

−N ln

Q
∑

l=0

pl

∫
dn·dr

V n
exp

(

− Lµ

2

n∑

α=1

ρα(rα) +
Lχ ql

2

n∑

α=1

σα(rα)

)

(2.101)

in the real space representation, where ql = (2l/Q−1) and pl denote the component
charges and fractions of section 2.4.2 and 2.4.3. The expression (2.101) is further
simplified with a replica-symmetric ansatz ρα(x) = ρ(x) and σα(x) = σ(x). In
anticipation of the replica limit n → 0, the summation over l and the logarithm
may be carried out in reverse order (cf. section 2.4.4), yielding

F := lim
n→0

Fn := −µ
4

∫

ddx
(
ρ(x)

)2
+
χ

4

∫

ddx
(
σ(x)

)2 −N

Q
∑

l=0

pl ln al , (2.102)

where

al :=
1

V

∫

ddx exp

(

− Lµ

2
ρ(r) +

Lχ ql

2
σ(r)

)

. (2.103)

Multiphase equilibria

Like in section 2.4.7, to study the separation into multiple homogeneous phases,
we split the volume into K ≤ Q+1 parts V (k), in which the density and the charge
density may take different values

ρ(x) =: ρ(k)

σ(x) =: σ(k)

}

for x ∈ V (k) . (2.104)

Due to the conservation of the volume, the particle number and the charge, we
have

K∑

k=1

v(k) = 1,
K∑

k=1

v(k)ρ(k) = ̺0 =
NL

V
and

K∑

k=1

v(k)σ(k) = q ̺0 , (2.105)

where v(k) := V (k)/V denote the K volume fractions.
The effective free energy (2.102) with the above ansatz must be minimised with

respect to {ρ(k)}, {σ(k)} and v(k); the constraints (2.105) are taken into account
by means of Lagrange multipliers. This leads to the equations

ρ(k) = ̺0

Q
∑

l=0

pl
al

exp

{

−µL
2
ρ(k) +

χL ql

2
σ(k)

}

, (2.106)

σ(k) = ̺0

Q
∑

l=0

pl
al

ql exp

{

−µL
2
ρ(k) +

χL ql

2
σ(k)

}

, (2.107)
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and

ρ(k) = Λ − µL

4

(
ρ(k)
)2

+
χL

4

(
σ(k)
)2
, (2.108)

with al given by

al =
K∑

k=1

v(k) exp

{

−Lµ
2
ρ(k) +

Lχql

2
σ(k)

}

. (2.109)

One of the three Lagrange multipliers, Λ, cannot be eliminated immediately and
must be determined from eqs. (2.106-2.108), as well.

In eqs. (2.106–2.109), the block size M merely occurs as a pre-factor of µ and χ
and can be absorbed into rescaled parameters (cf. section 2.4.5), so it suffices to
consider just the case M = 1 and Q = L.

Weakly compressible melts

For low compressibility, i.e. for µ ≫ 1, the particle density can be expanded in
powers of 1/µ,

ρ(k) = ̺0 + C(k)µ−1 + O(µ−2) . (2.110)

With eqs. (2.110) and (2.108) it follows that

ρ(k) − ρ(k′) =
χ

2̺0

((
σ(k)
)2 −

(
σ(k′)

)2
)

· µ−1 + O(µ−2) , (2.111)

i.e. the density variations are asymptotically proportional to the square of the
variation of the charge density, like in Landau theory. The insertion of eq. (2.111)
into equations (2.106), (2.107) yields

ρ(k) = ̺0

Q∑

l=0

pl
a′l

exp

{
χL

4̺0

(

2̺0ql σ
(k) −

(
σ(k)
)2
)}

+ O(µ−1) (2.112)

σ(k) = ̺0

Q
∑

l=0

ql
pl
a′l

exp

{
χL

4̺0

(

2̺0ql σ
(k) −

(
σ(k)
)2
)}

+ O(µ−1), (2.113)

where

a′l =
K∑

k=1

v(k) exp

{
χL

4̺0

(

2̺0qlσ
(k) −

(
σ(k)
)2
)}

. (2.114)
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Incompressible limit

In the incompressible limit, the terms of order 1/µ vanish, and the equations (2.112),
(2.113) reduce to

̺0 = ρ(k) = ̺0

Q
∑

l=0

pl
a′l

exp

{
χL

4̺0

(

2̺0ql σ
(k) −

(
σ(k)
)2
)}

(2.115)

σ(k) = ̺0

Q
∑

l=0

ql
pl
a′l

exp

{
χL

4̺0

(

2̺0ql σ
(k) −

(
σ(k)
)2
)}

(2.116)

Although ρ(k) = ̺0 for all k in the incompressible limit, theK equations (2.115) are
required to determine the K volume fractions {v(k)}, which are hidden in the {a′l}
and which define the state of the system together with the charge densities. The
system of equations (2.115), (2.116) is equivalent to eqs. (2.56), (2.57) of the multi-
component theory discussed in section 2.4 after summation over the components
according to

ρ(k) :=

Q
∑

l=0

ρ
(k)
l and σ(k) :=

Q
∑

l=0

qlρ
(k)
l . (2.117)

Numerical solution

The fixed point iteration for the multi-component theory of section 2.4.7 can be
easily adapted to the current formulation (2.115), (2.116):

1. Guess the number K of phases; over-estimating is safe (see step 5).

2. Define an initial estimate for the volume fractions v(k) and the compositions
σ(k) of the phases.

3. Compute ρ(k) and σ(k) according to eqs. (2.115) and (2.116). To enforce
incompressibility, rescale v(k) → v(k) · ρ(k)/̺0.

4. Measure the difference between the old and new values of v(k) and σ(k), e.g.,
the sum of the absolute values of all differences.

5. Drop phases with zero volume and join phases with identical composition

6. Repeat steps 3–5 until the discrepancy falls below a pre-defined threshold.

Again, to compute the phase diagram over an extended range of χ, it is useful to
count down χ from the upper to the lower limit, using the result of each iteration as
the initial estimate for the next. To save computer time it is advisable to compute
the component-resolved densities

ρ
(k)
l := ̺0 pl

(
K∑

k′=1

v(k′) exp

{
χL

4̺0

(
σ(k) − σ(k′)

)(
σ(k) + σ(k′) − 2ql̺0

)
})−1

(2.118)
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as intermediate results, since they appear in ρ(k) as well as in σ(k). The physical in-
terpretation of eq. (2.118), however, becomes evident only in the multi-component
picture of section 2.4.7.

Symmetric melts

In a symmetric blend, each phase coexists with its “mirror image” of equal size,
in which A and B blocks are exchanged. To discuss the transition from one to
two homogeneous phases we can therefore assume σ(1) = −σ(2) =: σ and v(1) =
v(2) = 1/2. With this ansatz, the equations (2.115) are identically satisfied; the
two equations (2.115) are equivalent and yield

σ

̺0
=

(Q−1)/2
∑

l=0

2 pl
1 + 2l

Q
tanh

{
Mχ

2
(1 + 2l) σ

}

(2.119)

for odd Q, and

σ

̺0
=

Q/2
∑

l=1

2 pl
2l

Q
tanh

{
Mχ

2
(2l) σ

}

(2.120)

for even Q.
In the case of homopolymer blends (Q = 1) and diblock copolymers (Q = 2),

we obtain

σ

̺0
= tanh(Mχ · σ/2) and

2σ

(1 + λ)̺0
= tanh(Mχ · σ) , (2.121)

respectively. Obviously the case Q = 2 can be obtained from the case Q = 1 with
the substitutions σ → 2σ/(1+λ) and χ→ (1+λ)χ, which is intuitively clear: The
neutral AB diblocks are uniformly distributed and just dilute the homopolymer
blend.

2.5.7. Macrophase separation: Flory-Huggins and Landau

theory

In order to compare the predictions of the multi-component theory and the Lan-
dau theory for macroscopic separation into two phases, we extend the respective
treatment of section 2.5.4 to asymmetric blends, sticking to λ = 0 for the sake of
simplicity. To faciliate the physical interpretation we substitute back the rescaled
field Ψk = χσk. The Fourier components indicate only the deviation from the
mean value, thus the corresponding relation in real space reads

σ̃(x) := σ(x) − q̺0 =
1

χ
Ψ(x). (2.122)
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In terms of σ̃, the effective free energy (2.88) for macroscopic phase separation is
given by

F · 8

NM2Qχ2
= a · 1

V

∫

ddx
(
σ̃(x)

)2
+ b · 1

V

∫

ddx
(
σ̃(x)

)3
(2.123)

+ c · 1

V

∫

ddx
(
σ̃(x)

)4
+ e ·

( 1

V

∫

ddx
(
σ̃(x)

)2
)2

(2.124)

with

a :=
2

̺0Mχ
− (1 − q2), b :=

Mq(1 − q2)χ

3
, (2.125)

c :=
M2(1 − q2)(1 − 3q2)χ2

24
, e :=

M2Q
(
(1 − q2)2 − (1−q2)(1−3q2)

Q

)
χ2

8
. (2.126)

Due to the nonlocal biquadratic term it is, except in the symmetric case, not
permitted to employ the usual Maxwell construction as it was done in [16, 17].
Instead we have to consider an ansatz for two phases with compositions σ1,2 and
volume fractions v1,2 and to minimise F with respect to σ̃1,2 (the volume fractions
can be eliminated with v1 +v2 = 0 and with the charge conservation v1σ̃1 +v2σ̃2 =
0), as was done, e.g., in ref. [22] for a similar free energy. The minimisation is
performed in appendix C.5. The phase separated state is given by

σ1,2 = q̺0 −
b

4c
± 1

4c

√

b2(3c+ e) − 8ac2

c+ e
(2.127)

and

v1,2 =
1

2
± b

2c

√

c2(c+ e)

b2(3c+ e) − 8ac2
, (2.128)

with a free energy F ∝ (b2 − 4ac)2. The phase separation transition occurs at
a = b2/(4c), where F = 0; this corresponds to χ = χh with

χh =
2

M̺0
· 1 − 3q3

(1 − q2)(1 − 7q2/3)
. (2.129)

Symmetric melts

In the symmetric case q = 0, the phase transition point χh coincides with the
spinodal χs, corresponding to a = 0 in eq. (2.123). For χ > χh, the melt is
separated in two phases of equal size and opposite composition,

σ1,2 = ±
√

−2a

2(c+ e)
, (2.130)

in agreement with the results of the multi-component theory to leading order
in (χ− χs), see fig. 2.4(a).
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Figure 2.4.: Separation into two homogeneous phases within multi-component
theory (solid lines) and Landau expansion (dotted lines). The lines indicate the
mean charge density σ of the phases. Panel (a) and (b) show the symmetric case
and the case q = 0.06, respectively.

Asymmetric melts

In the asymmetric case, with q > 0 w.l.o.g, the phase equilibrium for χ = χh(1+ ǫ)
in the vicinity of the transition is given by

v1 = 1− (1 − 3q2)(1 − 7
3
q2)

4q2Q
(
(1 − q2) − 1−3q2

3Q

) ǫ+ O(ǫ2), (2.131)

v2 =
(1 − 3q2)(1 − 7

3
q2)

4q2Q
(
(1 − q2) − 1−3q2

3Q

) ǫ+ O(ǫ2) (2.132)

and

σ1/̺0 = q + σ̃1/̺0 = q + O(ǫ), (2.133)

σ2/̺0 = q + σ̃2/̺0 = −1 − 2
3
q2 − 13

3
q4

(1 − 3q2)2
q + O(ǫ); (2.134)

the result for q < 0 can be obtained analogously. According to Landau theory,
the second phase hence comes in with zero volume and with mean compositions
σ1,2 being approximately symmetric about zero for not too large q. A comparison
of both theories if shown in fig. 2.4(b) for q = 0.06. The evolution of the new
phase in the vicinity of the transition, as predicted by the Landau theory, deviates
qualitatively from the Flory-Huggins results.

Nesarikar et al. [16] have argued that the discrepancy between the predictions
arises from the loss of information due to the global disorder average carried out
in Landau theory. We believe that this argument is incorrect: as we have shown in
section 2.4.7, the descriptions of macrophase coexistence within multi-component
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and Landau theory are fully equivalent. While the multi-component theory is
correct to all orders in σ, the Landau series must in practice be truncated to limit
the computational effort. This restricts the range of validity to small values of the
order parameters and leads to wrong predictions for first-order transitions.

2.6. Fractionation

In Monte-Carlo simulations [21], Houdayer and Müller observed the coexistence of
a microstructured phase with two homogeneous phases over an extended range of
temperatures. For the simplest example, homopolymer/diblock copolymer blends,
the coexistence of homogeneous and microscopically structured phases has been
studied in [4, 41]. A theory for the coexistence of micro- and macrophases in
random block copolymers with uncorrelated sequences (λ = 0) and symmetric or
nearly symmetric composition has been reported by Subbotin and Semenov [22].
Extending the Landau approach of ref. [17], they find that the three-phase coexis-
tence preempts the microphase separation of the entire melt. This approach will
be discussed briefly in section 2.6.8.

An important feature of the three-phase state not explicitly covered in ref. [22]
is the fractionation with respect to the chain sequences. According to ref. [21],
the predominantly homopolymeric chains prefer the A- or B -rich macrophase, re-
spectively, whereas the microstructured phase is mainly populated by copolymeric
chains. The microphase separation in the third phase is faciliated or even enabled
by fractionation. By expelling the homopolymeric chains, fractionation effectively
increases the affinity of the residual phase to form microdomains. At the same
time, the homopolymer part can form homogeneous phases with almost complete
separation of A and B . Technically, the removal of homopolymeric chains due
to fractionation changes the coefficients of the Landau expansion and eventually
shifts the instability of the quadratic term to finite wavelengths. This is an impor-
tant difference to the established mechanism for microphase separation [17], which
rests upon the subtle balance of the k-dependence of the quadratic and the quartic
Landau coefficients, see section 2.5.5.

In the following, we shall develop a theory for the coexistence of homogeneous
and microstructured phases with fractionation. Our motivation is two-fold: be-
sides studying the three-phase coexistence, we will show that pure fractionation,
i.e. the segregation of chains according to their sequences, suffices to promote mi-
crophase separation as suggested in ref. [21]. For simplicity, we concentrate on the
symmetric case and use a caricature of the fractionated state, in which (only) the
homopolymeric chains are allowed to separate from the rest into two macrophases
that coexist with the possibly microphase separated remaining phase. By keeping
the spatial dependence of the free energy only on the quadratic level, we rule out
the established mechanism for microphase separation of ref. [17].

The limitation of particle exchange between the phases to strictly homopoly-
meric chains is severe, since their statistical weight decreases dramatically with
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the number Q of blocks per chain, and it restricts the theory to small values of Q.
Nevertheless, the approach is able to demonstrate the potential of fractionation an
alternative mechanism for microphase separation, independent of the established
one discussed in section 2.5.5. Moreover, in contrast to ref. [22], our ansatz allows
for the direct investigation of the partitioning of chains, since we explicitly account
for different chain statistics in different phases.

2.6.1. Landau free energy

The basis for the investigation of macro- and microphase separation and fractiona-
tion will be the Landau expansion of the effective free energy. Like in section 2.5.4,
we trace out the monomer density field and take the incompressible limit. More-
over, we let k = 0 in the higher-order vertex functions to simplify the expressions
and to rule out the conventional mechanism for microphase separation studied in
section 2.5.5. The discussion will be restricted to the symmetric case q = 0 with
a replica-symmetric ansatz. The resulting Landau free energy per chain, in terms
of the Fourier components {σk} of the charge density (2.59), is given by

f({σk}) =
1

4N2L2

∑′

k

(
2L2

S(k)
− χL

)

σkσ−k

+
q2
2 − q4/3

8 q4
2 N

4L4

∑′

k1,2,3,4

σk1σk2σk3σk4 δ
P

kν ,0 +
q4 − q2

2

8 q4
2 N

4L4

∑′

k1,2

σk1σ−k1σk2σ−k2 (2.135)

with the vertex function S(k2) defined in appendix C.3.2 and the average correla-
tion of the pairs and quadruples of the charges on a chain,

q2 :=
1

L2

L∑

s1,2=1

[q(s1)q(s2)] and q4 :=
1

L4

L∑

s1,2,3,4=1

[q(s1)q(s2)q(s3)q(s4)], (2.136)

respectively. The derivation of (2.135), retaining the spatial dependence of the
quartic terms, is given in appendix C.6. The effective free energy (2.135) is equiv-
alent to that in [17], except that it does not contain any approximation for long
chains or small λ, and that the k dependence in the quartic terms has been dropped
here. The deviation from eq. (2.80) is due to a different method of tracing out the
auxiliary fields; the expansions are equivalent in the vicinity of the instability of
the homogeneously mixed state (cf. appendix C.6).

Instability

The least stable wavenumber depends on the correlation parameter λ. Below a cer-
tain threshold λL, the minimum of the quadratic coefficient is located at nonzero k,
indicating the instability to microphase separation on increasing incompatibility.
For larger λ, the minimum is located at k = 0, corresponding to an instability with
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2.6. Fractionation

respect to macroscopic phase separation. The threshold λL depends on the lengths
of the blocks and chains; for large M and Q, it is given by λL = (

√
3 − 2) [17].

We first consider micro- and macrophase separation in the unfractionated melt;
these considerations are the basis for the subsequent discussion of fractionation.

2.6.2. Microphase separation

As pointed out above, a melt with λ < λL becomes unstable with respect to
microphase separation on increasing incompatibility at some point χ = χm. The
corresponding free energy depends on the morphology of the microphases; for
simplicity, we employ a lamellar ansatz σ (x) := σm cos(kn · x) like in section
2.5.4, with an arbitrary unit vector n. The amplitude σm and the wavenumber k
are subjected to optimisation. Inserting this ansatz into (2.135) yields

fmps =
(χm − χ)L

8

(
σm

̺0

)2

+
q2
2 + q4
64 q4

2

(
σm

̺0

)4

. (2.137)

The instability occurs at χm = 2L/S(k2
opt) with an optimal wavenumber kopt given

by the location argmaxk>0 {S(k2)} of the maximum of S(k2). The optimal ampli-
tude, in principle obtained by minimisation of the effective free energy, yet bounded
by physical limits, is given by

σ2
m/̺

2
0 = min

{
3q3

2

q4

(
χ

χm
− 1

)

, 1

}

(2.138)

for χ ≥ χm. The bounds σm = ±̺0 correspond to separation into pure A and B
at the peaks of the charge density modulation, which is the physical limit for local
phase separation (see also the remark in section 2.6.4).

2.6.3. Macroscopic phase separation

Here and in the following we shall concentrate on the case λ > λL, for which the
copolymer melt undergoes macroscopic phase separation on increasing incompati-
bility at the point χh = 2/(Lq2). Due to symmetry we may consider the separation
into two phases with equal volume V/2 and opposite composition σ(x) := ±σh with
σh ≥ 0. Similar to section 2.5.7 we obtain the following effective free energy per
chain for the macroscopically separated state:

fhom :=
(χh − χ)L

4

(
σh

̺0

)2

+
q4

12 q4
2

(
σh

̺0

)4

, (2.139)

The optimal charge density amplitude is determined by minimisation of fhom with
respect to σh, like in the previous section bounded by the physical limit. The
limit is given by the composition σmax of that moiety of chains that contains an
above-average number of A blocks. Hence,

σ2
h/̺

2
0 = min

{
3q3

2

q4

(
χ

χh
− 1

)

,
(
σmax

)2
/̺2

0

}

; (2.140)
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σmax will be computed numerically.

2.6.4. Free energy of fractionation

According to the Landau expansion (2.135), microphase separation seems to be
always less favourable than macroscopic demixing in the case λ > λL under consid-
eration, since we have dropped the k-dependence in the quartic terms which could
compensate for the increase of the quadratic coefficient like in the theory of sec-
tion 2.5.4. As anticipated, microphase separation can nevertheless become possible
if the melt fractionates as suggested by Houdayer and Müller [20, 21], splitting into
a homopolymer rich part separating macroscopically and a residual part possibly
becoming able to form microphases thanks to a reduced homopolymer content.

To substantiate this mechanism, we consider a caricature of the three-phase
coexistence, in which (only) the homopolymeric chains are allowed to separate

from the rest. We assume that a fraction γ ∈ [0, 1] of the N · nhp = N
(

1+λ
2

)Q−1

homopolymers in the melt is expelled from the rest to form macrophases, while
the residual melt possibly undergoes microphase separation. In this case, the free
energy per chain f

(fr)
tot of the fractionated melt can be written as the weighted

sum of the free energies of a macrophase separated homopolymer blend and of
the remaining mixture, plus a term accounting for the entropy loss due to the
partitioning:

f
(fr)
tot = γnhpf

(fr)
hom + (1 − γnhp)f

(fr)
mps + f

(fr)
ent . (2.141)

Fractionation will occur as soon as the excess free energy

∆f := f
(fr)
tot − fhom (2.142)

of the fractionated melt compared to the unfractionated one becomes negative.
The entropy term f

(fr)
ent is necessary since the influence of the system size on the

free energy has been neglected so far and since the two fractions are treated as
separate systems despite of the possible exchange of homopolymers. The reduction
of the accessible volume, γnhpV and (1 − γnhp)V instead of V for the γnhpN
separated homopolymer chains and the residual melt, respectively, leads to a loss
of entropy. It is partly compensated for by the entropy gain due to the multitude
of ways to divide the polymer chains into the two fractions γ and 1 − γ. Up to
constants, the net loss of entropy is given by

f
(fr)
ent = −

(
γnhp ln(γnhp) + (1 − γnhp) ln(1 − γnhp)

)

︸ ︷︷ ︸

volume reduction

+ nhp

(
γ ln γ + (1 − γ) ln(1 − γ)

)

︸ ︷︷ ︸

indistinguishability

. (2.143)

The pure homopolymer fraction will separate into an A- and a B -rich macrophase.
Its free energy per chain is given by (2.139), yet with q

(fr)
2,4 = 1, χ

(fr)
h = 2/L and
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σ
(fr)
max = 1, i.e. adapted to the sequence statistics of homopolymers:

f
(fr)
hom :=

(χ
(fr)
h − χ)L

4

(

σ
(fr)
h

̺0

)2

+
1

12

(

σ
(fr)
h

̺0

)4

, (2.144)

where
(

σ
(fr)
h /̺0

)2

= min

{
3q3

2

q4

(
χ

χh
− 1

)

, 1

}

. (2.145)

Provided the degree of fractionation γ is large enough, the residual fraction will
separate microscopically. Its free energy per chain can be computed by analogy to
section 2.6.2, yet with adapted chain statistics, i.e. with

q
(fr)
2 := (1 − γnhp)q2 + γnhp, q

(fr)
4 := (1 − γnhp)q4 + γnhp (2.146)

and

S(fr)(k2) := (1 − γnhp)S(k2) + γnhpD(k2); (2.147)

D(k2) denotes the discrete Debye function defined in appendix C.3.1. We obtain

f (fr)
mps =

2L2/S(fr)(k2
opt) − χL

8

(

σ
(fr)
m

̺0

)2

+

(
q
(fr)
2

)2
+ q

(fr)
4

64
(
q
(fr)
2

)4

(

σ
(fr)
m

̺0

)4

(2.148)

and
(
σ(fr)

m /̺0

)2
= min

{

3
(
q
(fr)
2

)3

q
(fr)
4

(

χS(fr)(k2
opt)

2L
− 1

)

, 1

}

; (2.149)

the optimal wavenumber kopt is given by kopt = argmaxk>0

{
S(fr)(k2)

}
. Finally, the

effective free energy has to be minimised with respect to the degree of fractionation,
the optimal value of which is denoted as γopt.

The choice for the maximal amplitude of the charge density in the microphases
must be taken with caution: the value ±̺0 corresponds to demixing into pure
A and B at the extrema of the sinusoidal modulation. This is only possible on
length-scales smaller than the extension of the chains, since A and B blocks are
permanently linked and can’t be separated arbitrarily far. For small wavenumbers,
it would thus be necessary to choose a smaller limit than one, yet it is difficult
to ascertain the appropriate value. To avoid this difficulty we introduce a cut-
off for k larger than a minimal value kmin, which is estimated as follows: If the
chains are stretched into a linear form, however with the individual blocks retain-
ing their unperturbed radius of gyration RM , the maximum thickness of lamellæ
having charge-density amplitude ̺0 is about 2QRM , corresponding to a minimum
wavenumber of

kmin = π/QRM . (2.150)
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Figure 2.5.: Squared optimal wavenumber in units of k2
min as a function of the

degree of fractionation. (a) Q = 2, λ = 0, and M = 2, 3, 4, 5, 10. (b) M = 2,
λ = 0, and Q = 2, 3, . . . , 6. (c) Q = 2, M = 10, and λ = −0.4,−0.2, . . . , 0.6. (d)
Q = 3, M = 10, and λ = −0.4,−0.2, . . . , 0.6.

2.6.5. Domain sizes

Up to a certain degree of fractionation, the predicted optimal wavenumber kopt

is zero. For small Q, it eventually starts to grow with increasing γ, and possibly
reaches the range of sensible values kopt & kmin. For a given number of blocks
per chain, the onset of nonzero kopt is nearly independent of the block size M ,
and kopt(γ) is roughly proportional to kmin, i.e. to the inverse unperturbed radius
of gyration of the blocks, see fig. 2.5(a). On increasing Q, the curve kopt(γ) is
shifted towards larger γ (apart from the step from Q = 2 to Q = 3), as illustrated
in fig. 2.5(b) for M = 2, λ = 0 and Q = 2, 3, . . . , 7. Beyond Q = 6, reasonably
high or even nonzero kopt are no longer attained at all. This is presumably due to
the oversimplification of considering the fractionation of strictly homopolymeric
chains only. The statistical weight of the latter decreases dramatically with in-
creasing Q, so that their contribution becomes negligible. A more general model

48



2.6. Fractionation

−.05−.05

.00.00

.05.05

.10.10

0.50.5 0.60.6 0.70.7 0.80.8 0.90.9 1.01.0

∆
f

∆
f

γγ

.94

.96

.98
1.00

1.02
1.04
1.06
1.08

(a)

.75

.80

.85

.90

.60

.65

.70

.75

2.2 2.4 2.6 2.8 3.0

γ
o
p
t

k
o
p
t/
k

m
in

χ/χh

γopt

kopt/kmin

(b)

−.01

−.05

.00

2.2 2.4 2.6 2.8 3.0

∆
f

χ/χh
(c)

Figure 2.6.: Fractionation for Q = 2, M = 10 and λ = 0. (a) Excess free energy
of the fractionated state as a function of the degree of fractionation for different
values of χ. (b) Optimal degree of fractionation and optimal wavenumber versus
χ/χh. (c) Excess free energy of the fractionated state with optimal wavenumber
and degree of fractionation as a function of χ/χh.

should consider the fractionation of a wider class of nearly homopolymeric chains.

An increasing correlation parameter λ reduces the fraction of alternating chains
in favour of homopolymeric chains, which prefer macrophases. Consequently, the
onset of nonzero wavenumbers requires a larger degree of fractionation, as shown
in figs. 2.5(c) and 2.5(d) for Q = 2 and Q = 3 with M = 10.

2.6.6. Diblocks

For diblocks, i.e. for Q = 2 regardless of the sequence, the effective free energy of
the fractionated state reveals a local minimum at a high degree of fractionation,
see fig. 2.6(a). The global minimum is located at smaller γ ≈ 0.4 . . . 0.5, at the
onset of nonzero wavenumbers, where k ≪ kmin. Hence we are led to assume that
the situation is more correctly described by the local minimum, which we denote
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Figure 2.7.: Phase behaviour for Q = 2, M = 10 as a function of λ. (a) Onset of
macrophase separation and fractionation. Lines: Landau theory; symbols: multi-
component theory (transition to two and three macrophases). (b) Squared optimal
wavenumber of the microphases with fractionation.

as γopt. Fig. 2.6(b) shows γopt and kopt as a function of χ/χh for a block length
of M = 10. The corresponding excess free energy ∆f of the fractionated and
microphase separated relative to the macroscopically separated state are shown in
fig. 2.6(c). It suggests that fractionation sets in at about χ = 2.4χh, with γ ≈ 0.8
and k ≈ 0.7 kmin. Both γopt and kopt grow with increasing χ: more and more of
the homopolymeric chains are expelled to their separate phases, and the lamellæ
in the residual phase become thinner.

With the above method we compute the onset of fractionation χf as a function of
the correlation parameter λ for λ > λL = −0.33. It is shown in fig. 2.7(a) together
with the onset χh of macroscopic phase separation in the unfractionated melt for
M = 10. The wavenumber characterising the microphases is shown in fig. 2.7(b).
The data for χh agree well with the known results, see, for instance, ref. [4].

For sufficiently large λ, i.e. not too close to λL, the data for χf also show quali-
tative agreement with the transition from macroscopic to microstructured phases
as predicted in ref. [4]. According to the latter, supported by the data of ref. [21],
these microphases are, however, unfractionated in an intermediate temperature
regime, with fractionation setting in at lower temperatures.

For λ just above λL, the melt is already nearly able to microphase separate, and
microphase separation requires only weak fractionation. The according wavenum-
ber is smaller than kmin, yet this doesn’t matter since the amplitude is much smaller
than unity. In this range, the restriction to k > kmin is too rigorous; presumably
this is why the computed χm does not join χh (and the onset χm of unfractionated
microphase separation) at λL.

Fig. 2.7(a) includes the phase separations from one to two, and from two to three
macroscopic phases as predicted by the multi-component theory of section 2.4.7.
It seems that the transition to three macroscopic phases occurs earlier than frac-
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Figure 2.8.: Excess free energy of the fractionated state as a function of the degree
of fractionation for different values of χ/χ∗

f , with χ∗
f chosen such that ∆f = 0 for

χ = χ∗
f and γ = 1. (a) Q = 3, M = 10 and λ = 0. (b) Q = 4, M = 10 and λ = 0.

tionation. However, our ansatz for fractionation is quite restrictive. A greater
freedom would lead to a lower free energy and thus to an earlier onset of fraction-
ation, so it is unclear whether fractionation is preceded by the coexistence of three
macroscopic phases or not.

2.6.7. Larger block numbers

For triblocks, i.e. Q = 3 regardless of the chain sequence, the excess free energy
of the fractionated and microphase separated state with optimal wavenumber and
degree of fractionation is shown in fig. 2.8(a) for M = 10 and different values
of χ. The local minimum at γ = 1 is not very pronounced, so it is difficult to
decide whether the system is more adequately described by the local minimum
at full fractionation or at some smaller value of γ (bounded from below by the
requirement kopt & kmin). For larger numbers of blocks, i.e. for Q between 4 and
7, the excess free energy no longer exhibits a local minimum at large γ at all, see
fig. 2.8(b) for Q = 4 (the graphs for Q = 5 and Q = 6 are shifted to higher γ, but
otherwise look similar). To avoid this difficulty, which is presumably due to the
too restrictive ansatz for fractionation, we abstain from optimising with respect to
γ for Q ≥ 3 in the following. Instead, we keep γ fixed and minimise the free energy
just with respect to the amplitudes of the charge density and the wavenumber q
describing the microphases.

The resulting onset of fractionation is plotted in fig. 2.9. Panel (a) shows χf as
a function of λ for Q = 3, M = 10 and different choices of γ = 0.8, 0.9, 0.95, 0.99
and 1. The curves have been cut off for kopt < 0.7 kmin. Apparently, the results
for γ = 1 yield a good estimate for χf over the whole range of λ > λL = −0.45.
Panel (b) shows χf versus γ for Q = 4 and M = 2, 3, 5 and 10. Like fig. 2.8(b) it
suggests that the optimal γ is rather small, yet γ is bounded from below by the
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Figure 2.9.: Onset of fractionation for fixed degree of fractionation. (a) χf(λ) for
Q = 3, M = 10 and γ = 0.8, 0.9, 0.95, 0.99 and 1, cut off at q/kmin < 0.7. (b) χf(γ)
for Q = 4 and M = 2, 3, 5 and 10.

requirement of a sufficiently large wavenumber kopt & kmin, cf. section 2.6.4.
The coexistence of a microstructured phase with two macrophases found here

was also observed in [21] for Q = 3. For technical reasons, it was only studied for
the cases Q = 2 and 3 therein.

2.6.8. Implicit fractionation

In the following we outline an alternative approach to three-phase coexistence,
suggested and discussed for uncorrelated sequences (λ = 0) by Subbotin and Se-
menov [22]. For simplicity, we confine ourselves to the symmetric case q = 0. The
starting point is the effective free energy density

f({σk})/Q =
2

(2NL)2

∑′

k

(
Mk2

3
− χM

2
+ 1

)

σkσ−k

+
4

3 (2NL)4

∑′

k1,2,3,4

σk1σk2σk3σk4 δ
P

kν ,0

+
4(Q− 1)

(2NL)4

∑′

k1,2

gD

(
L(k2

1 + k2
2)
)
σk1σ−k1σk2σ−k2 , (2.151)

which differs from (2.135) by the expansion of the second-order vertex functions
for small arguments and long blocks and chains, and by the restored k-dependence
of the biquadratic term. Subbotin and Semenov consider the ansatz

σ(x) =







+σ0 for x ∈ V1,

−σ0 for x ∈ V2,

σm · cos
(
kx
)

else

(2.152)
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in real space, with two macroscopic phases in the subvolumes V1 and V2 of equal
size (for reasons of symmetry) and a lamellar microphase in the remaining volume.
The volume fraction pm of the microphase is considered to be small. After insertion
of the ansatz (2.152), the effective free energy (2.151) is expanded to first order
in pm and minimised with respect to pm, σ0 and σm in this approximation.

According to the above approach of ref. [22], the copolymer melt first separates
into two macroscopic phases at χh = 2/M . The lamellar third phase starts to
grow at χf = χh

(
1 +Q−1 + 0.474Q−3/2

)
with initially zero volume and nonzero

amplitude of the order 1/Q. More complicated microphases are predicted to appear
on further cooling.

2.6.9. Summary and discussion

In this section, we have studied the coexistence of macro- and microphases with
fractionation, i.e. the partitioning of the chains according to their sequences, using
a simple picture of the fractionated state, in which (only) the homopolymeric
chains were allowed to separate from the rest. Because of this simplification,
the model is restricted to chain lengths of up to five blocks per chain, since the
statistical weight of the strictly homopolymeric chains decreases rapidly with Q.
Furthermore, we were forced to introduce a large-scale cutoff for the domain sizes
to prevent the theory from predicting unphysically large degrees of separation.
Due to the approximations, the three-phase coexistence could not be computed
with as good accuracy as in ref. [22].

We have demonstrated that fractionation constitutes an alternative mechanism
of enabling microphase separation. In the established theory by Fredrickson et al.

[17], the instability of the quadratic term of the Landau expansion is always located
at k = 0, and microphase separation is only possible due to the subtle balance of
the k-dependences of the quadratic and the quartic term. To rule out this possi-
bility, we have dropped the k-dependence of the Landau coefficients except on the
quadratic level. Fractionation allows the chains to sort themselves according to
their preference of micro- or macrophases. From the point of view of the poten-
tial microphase, the homopolymers are sorted out, which increases the affinity to
microphase separation, eventually shifting the instability of the Landau expansion
to finite wavelengths. The homopolymer rich part, on the other hand, can sepa-
rate macroscopically, yielding almost complete separation of A and B . As we have
shown, the free energy gain due to macro- and microphase separation outweighs
the loss of entropy due to fractionation at sufficiently low temperature. Moreover,
our approach, in contrast to that of ref. [22], allows for the direct observation of
fractionation, since the different chain statistics in different phases are considered
explicitly.
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2.7. Discussion and conclusions

Starting from the microscopic description of random block copolymer melts sug-
gested by Fredrickson et al. [17], we have derived an effective free energy for this
system in two different formulations, averaged over the quenched randomness by
means of the replica method: First, in terms of component densities, classifying
all chains with respect to their overall composition, disregarding their sequence
and their conformation and thus yielding a coarse-grained description. Second,
in terms of the local density of monomers and the charge density, i.e. the local
difference in the concentrations of A and B monomers.

For incompressible melts, we have shown the multi-component free energy to
be equivalent to the free energy of ref. [15] usually obtained with a Flory-Huggins
approach, and we have recovered the results of Nesarikar et al. [16] for the coexis-
tence of multiple homogeneous phases. The phase equilibria have been computed
using the algorithm proposed in [15]. Our derivation establishes the link to the
alternative formulation in terms of the particle and charge density obtained from
the same model. Like in [17], this non-coarse-grained formulation was the basis
for a Landau expansion approach capable of describing both fundamental mech-
anisms of phase separation in a random copolymer system: the separation into
macroscopic phases and the formation of a microscopically structured phase. Al-
though focusing on the incompressible case, our derivation initially retains effects
of compressibility. For the incompressible case we obtained a free energy similar,
but not identical, to that of ref. [17]. Substantial differences arise from certain
approximations made in [17]: aiming at the case of a high number Q of blocks
per chain and a large block size M , Fredrickson et al. neglected terms in the free
energy appearing subdominant in 1/Q. The potential gain in the free energy asso-
ciated with microphase separation is, however, of the order 1/Q, as well, hence the
neglect of these terms is unjustified. With an analytical approximation based on
the full free energy expansion, we found that microphases set in with finite wave-
length, in contrast to the prediction in [17]. The analytic approximation has been
complemented with data obtained by numerical minimisation of the free energy
expansion. For very small “blocks”of just a single monomer, i.e. M = 1, the theory
predicts the phase behaviour to be highly sensitive to the sequence correlation: the
melt either remains homogenous or microphase separates on the smallest possible
length-scale, which is bounded from below by the diameter of a monomer.

In the limit of infinite block and chain lengths, we recover the results of Fredrick-
son et al. [17], apart from the microphase wavelength at the transition. In the
case of symmetric chains and uncorrelated sequences, the spinodal temperature
is proportional to the block length, and the temperature range of two-phase co-
existence is of the order 1/Q. The microphases set in with large domain spacing
and become narrower on going deeper into the microphase separated regime. In
polyurethanes with suppressed crystallisation, Ryan et al. [31] measured the do-
main spacing as a function of temperature for two different chain lengths by means
of small-angle X-ray scattering. Due to a considerable polydispersity of block and
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chain lengths, the microphase transition was stretched over a finite temperature in-
terval. Ryan et al. observed that the domain spacing, after an increase during the
transition attributed to chain stretching, decreases with decreasing temperature
in agreement with the theory. Moreover, the transition temperature was found
to increase with the molecular weight. However, the prepolymer blocks used in
ref. [31] reveal a considerable amount of polydispersity, and the two components
have molecular weights differing by nearly a factor of 20; thus it is difficult to
compare the results directly to the ideal case of the theory discussed here.

Coarse-graining the theory in terms of monomer and charge densities, which
allows for using the exact free energy instead of an expansion, we have shown the
equivalence to the multi-component theory of ref. [16] for multiphase equilibria.
The multi-component theory is correct to all orders in the local composition, hence
leads to the proper mean-field description of the coexistence of two (or more)
phases. By comparison we found, in accordance with ref. [16], that the Landau
theory based on the fourth-order expansion accurately describes the two-phase
coexistence to leading order for the symmetric case, yet fails for asymmetric melts,
where the transition is of first order. In the latter case, the range of validity of the
Landau expansion is exceeded because of the finite jump of the order parameter.

Monte-Carlo simulations by Houdayer and Müller suggest the possibility of the
coexistence of homogeneous and microstructured phases, dependent on the frac-
tionation of the chains according to their sequence: homopolymeric chains pre-
fer macrophases (rich in A or B), copolymeric chains prefer the microstructured
phase [21]. A Landau theory of the three-phase state, however without explicit con-
sideration of fractionation, was given by Subbotin and Semenov [22]. To study said
three-phase coexistence, especially the effects of fractionation, we have developed
and employed a caricature of the three-phase state, in which the homopolymeric
chains were allowed to “choose” between micro- and macrophases. Because of the
rapid decrease in the statistical weight of the strictly homopolymeric chains with
the number Q of blocks per chain, this simplified picture is limited to small values
of Q. We have shown that fractionation is sufficient to enable microphase separa-
tion, since the homopolymeric chains hampering microphase separation are sorted
out into the macrophases, thus increasing the affinity to microdomain formation in
the remainder. In particular, we have shown that this mechanism is an alternative
to the theory of Fredrickson et al. [17], in which a subtle balance of the spatial
dependence of the quadratic and fourth-order terms in the Landau expansion is
required for microphase separation.
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3. Crosslinked homopolymer
blends

3.1. Introduction

Blends of chemically distinct polymers are usually incompatible [42], i.e. they have
a strong tendency to phase separate, since the entropy of mixing, compared to
the mixture of monomers, is suppressed by a factor of the degree of polymerisa-
tion, so that small repulsive forces are effectively amplified. These systems can be
addressed, for instance, with the Flory-Huggins theory [14, 37–40], originally devel-
oped for homopolymers in solution, but applicable to molten homopolymer blends,
as well [43]. For symmetric blends consisting of two species in equal amounts,
mean-field theory predicts a second-order transition to macroscopic phases at a
critical temperature T0. The transition, however, is rendered first order by fluctu-
ations [44]; for asymmetric blends it is first order, anyway.

As first pointed out by de Gennes [45], crosslinks introduced at high tempera-
tures, in the homogeneously mixed state, counteract and possibly inhibit macro-
scopic phase separation. With a Landau free energy derived by an analogy to po-
larisation in a dielectric medium, de Gennes showed that strong crosslinking in the
well mixed blend enhances the stability of the homogeneous phase. Macroscopic
demixing is replaced with microphase separation occurring at a critical incompat-
ibility, corresponding to a demixing temperature Tc < T0 that decreases linearly
with the number of crosslinks. According to this theory, the scattering intensity
in the mixed state reveals a maximum at a nonzero wavenumber of the order of
the inverse mesh size of the network and vanishes for q → 0 and q → ∞. As the
microphase separation temperature is approached, the peak diverges as 1/(T−Tc),
and its location anticipates the length-scale of the microdomains. The issue of mix-
ing and the size and morphologies of microdomains is of practical importance in
the design of polymer blends, which can exhibit mechanical and optical properties
superior to those of the pure component, since these properties also depend on the
microscopical structure; see, e.g., [46–48].

Experimental investigations were performed by Briber and Bauer on blends of
deuterated polystyrene and poly-vinylmethylether (dPS/PVME) in a near-critical
composition. The samples were crosslinked in the mixed state by γ-ray irradiation
to different degrees and measured by small angle neutron scattering (SANS) [49].
The results largely confirmed de Gennes’ predictions, with deviations in the propor-
tionality constants probably due to the very approximate derivation of de Gennes’
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3. Crosslinked homopolymer blends

theory – apart from the small wavenumber behaviour of the scattering function.
In contrast to the prediction, the latter does not vanish at q = 0. Briber and
Bauer conjectured that the residual zero-angle intensity is due to concentration
fluctuations present at the time of crosslinking, “frozen-in” in the network. Simi-
lar experiments were performed by Jinnai et al. [50] on blends of deuterated and
protonated polybutadiene (dPB/hPB), crosslinked by thermally decomposed per-
oxide. Unlike Briber and Bauer, Jinnai et al. found only a very small temperature
dependence in the SANS profiles of the crosslinked blends, which they attributed
to having measured far away from the microphase separation temperature that
was out of reach due to strong crosslinking and due to the weak temperature
dependence of the incompatibility of dPB/hPB.

de Gennes’ model has been modified by various authors regarding different
aspects, in particular the issue of the small q scattering intensity. To account
for the fluctuations present prior to preparation and preserved in the gel, Ben-
hamou et al. [51] refined the analogy to a dielectric by including a Debye-Hückel
screening of the “charges”, which permits long-range inhomogeneities and leads to
a non-vanishing zero-angle scattering. The screening length is determined self-
consistently, by assuming that the scattering intensity at q = 0 is not affected
by the crosslinking as long as the temperature remains unchanged after prepara-
tion [52]. Approaching microphase separation, the computed scattering intensity
develops a peak that finally diverges as predicted in [45]. The q = 0 limit is nonzero
by construction, and far enough above Tc, the function decreases monotonically.

In an alternative approach, Read et al. considered a blend of polymer chains
anchored at both ends to randomly chosen fixed points in space [53] in order to
account for the pinning of chains due to the crosslinks. With an RPA calculation,
they obtain a scattering function revealing the desired nonzero value at q = 0,
which is also shown to originate partly from frozen fluctuations. In contrast to de
Gennes’ prediction, the peak evolving close to microphase separation diverges as
1/(T − Tc)

2 instead of 1/(T − Tc). Read et al. furthermore investigate the effects
of asymmetric compositions and of applied strain. Studies of crosslinked systems,
based on the microscopic model by Panyukov and Rabin [54], were reported by
Sfatos and Shakhnovich [55]; as far as homopolymer blends are concerned, these
authors, however, do not go beyond de Gennes’ results.

Monte Carlo studies of crosslinked polymer blends on a lattice were performed
by Lay et al. [56]. During crosslinking, the incompatibility interaction was turned
off, corresponding to a well mixed blend far from phase separation. The authors
find qualitative agreement with de Gennes’ predictions at finite wavenumber, with
a peak in the scattering function. The corresponding length-scale is, however,
twice as large as expected, which Lay et al. attribute to larger cooperative rear-
rangements on scales beyond the strand length. They also find slight contractions
of strands connecting chains of the same type “AAA” and extensions of strands
connecting chains of the opposite type “ABA”.

The critical behaviour of the original model by de Gennes (not accounting for
pre-crosslinking fluctuations) was examined in [57] in a renormalisation group ap-
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proach. Stress-induced ordering and effects of strain have been studied in [53],
[58] and [59]. Stepanow and coworkers extended the model in [45] by an in-
homogeneous rigidity (treated as annealed) to account for the disorder of the
crosslinks [60]. The importance of the latter was also stressed in [58] and [61],
pointing out that it destroys a potential long-range order in the microphases. The
kinetics of microphase separation has been assessed in [62]. An early review of
crosslinked polymer blends can be found in [63]. Related systems are, e.g., cross-
linked blends in solution [64], non-permanently crosslinked polymer blends [65],
interpenetrating and semi-interpenetrating networks, [66–69] and [70, 71], cross-
linked diblock copolymer melts [72, 73], nematic elastomers [74] and mixtures of
crosslinked polymers with nematic liquid crystals [75].

Our starting point is a Landau expansion for the free energy in terms of two
order parameters: the local imbalance of the concentrations of the two polymer
species associated with phase separation, and the local static density correlations
signalling amorphous solidification. The free energy is derived from a model ex-
tending previous work on the gelation of homopolymers [76, 77]. The model covers
both demixing and gelation in a microscopic fashion, allowing to treat the freezing-
in of fluctuations and microphase separation without ad hoc assumptions. As it
turns out, the crosslinked blend is controlled by three parameters, the chemical
potential of the crosslinks and the incompatibilities (or inverse temperatures) at
the instants of crosslinking and measurement. These parameters set three length-
scales, which rule the phase diagram and the scattering functions, viz. the mean
localisation length in the gel and the correlation lengths of critical demixing fluc-
tuations prior to crosslinking and at the time of measurement. We calculate the
degree of stabilisation of the mixed regime due to crosslinking and discuss the neu-
tron and X-ray scattering functions in the mixed state, including the region close
to microphase separation. To achieve a rough understanding of the microphase
separated state itself close to the transition, we determine the amplitude and the
wavelength, assuming simple lattices structures for the separation pattern as a
caricature of the real microphase state: lamellæ, hexagonally ordered cylinders
and spheres on a bcc lattice. Since the randomly crosslinked system is unlikely
to reveal long-range order [58, 61], we also consider a random morphology with
a characteristic wavelength. The optimal morphology is determined taking into
account the compositional asymmetry and the compressibility of the blend. Our
calculations are performed on the level of mean-field and Gaussian approximation.
As pointed out by Benhamou et al. [64], the nonclassical region is small, hence the
mean-field approximation should be largely valid. A short account of our main
results is given in [78]; the microscopic derivation and a discussion of the effects of
asymmetry and compressibility are reported in [79].
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3. Crosslinked homopolymer blends

3.2. Model

In the following, we shall extend the model for homopolymers laid out in sec-
tion 2.2.1 to include the incompatibility of the two homopolymer species blended
together. In the style of [77], we shall also account for the constraints introduced by
crosslinking, which, together with the entropy of mixing, counteract the phase sep-
aration driven by the incompatibility. The crosslinks obviously generate branched
structures; yet, the polymers in the initial polymer blend are still assumed to be
linear chains.

3.2.1. Homopolymer species and incompatibility

Even aside from their distinct “identities”, the monomers of the two species in the
blend will generally not have the same properties. However, our aim is to study
the interplay of demixing and gelation, and not the effect of different degrees of
polymerisation or occupied volumes, for example. Hence it is permitted to simplify
the picture by assuming that the species merely differ in their specific interaction.
The model from section 2.2.1 can be retained nearly without modification, apart
from the inclusion of incompatibility.

Instead of indicating the monomer types by assigning charges, as it is necessary
in the case of random copolymers due to the huge number of possible sequences, the
two chain types can just be treated separately. We consider a melt containing NA

andNB chains of type A and B . The monomer positions are given by Ra,i(s), where
a = A,B denotes the species, i = 1, . . . , Na the chain number and s = 1, . . . , L
the location within the chain. In analogy to the copolymers of section 2.2.2, the
incompatibility of the two species is modelled by the Hamiltonian

HC := −χ
2

∑

a1,2=A,B

Na1∑

i1=1

Na2∑

i2=1

L∑

s1,2=1

(2δa1,a2 − 1)W (|Ra1,i1(s1) − Ra1,i2(s2)|) . (3.1)

Each monomer pair in the melt yields an attractive or repulsive contribution de-
pending on whether the monomers are of the same type or not. It is weighted ac-
cording to the distance by a local function W (R), which is taken to be normalised
by
∫

dV W (|R|) = 1. The incompatibility parameter χ sets the magnitude of the
interaction, being one of the principal control parameters in the system.

3.2.2. Brownian chain model

Since homopolymer chains are essentially featureless and homogeneous along the
contour — there are no charge patterns as in copolymers, we may switch to the
Brownian chain model with continuous instead of discrete chains. This corre-
sponds to taking the continuum limit of an infinite number of infinitely small
monomers per chain, while retaining the original radius of gyration of the poly-
mer. The discrete monomer index s is substituted by a continuous arclength
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variable t := s/L ∈ [0, 1], and the sums and difference quotients are replaced by
integrals and derivatives,

L∑

s=1

f(s) → L ·
∫ 1

0

dt f(Lt) (3.2)

and

Ra,i(s+ 1) − Ra,i(s) → 1

L

dR̃a,i(t)

dt
with R̃a,i(t) := Ra,i(Lt). (3.3)

Adapted to the blend of continuous chains, the Hamiltonians (2.2), (2.3) and (3.1)
for chain connectivity, excluded volume and incompatibility read

HW = kBT · d

2Lb2

∑

a=A,B

Na∑

i=1

∫ 1

0

ds

(

dR̃a,i(s)

ds

)2

, (3.4)

HEV = kBT · λL
2

2

∑

a1,2=A,B

Na1∑

i1=1

Na2∑

i2=1

∫ 1

0

ds1ds2 U
(∣
∣R̃a1,i1(s1) − R̃a1,i2(s2)

∣
∣

)

(3.5)

and

HC = −χL
2

2

∑

a1,2=A,B

Na1∑

i1=1

Na2∑

i2=1

∫ 1

0

ds1ds2 (2δa1,a2 − 1)

×W
(∣
∣R̃a1,i1(s1) − R̃a1,i2(s2)

∣
∣

)

, (3.6)

where the arclength variable t has been renamed s. Deviating from the notation
of chapter 2, the excluded volume parameter is denoted as λ instead of µ here
to avoid the collision with the parameter µ related to crosslinking, which will be
introduced in section 3.2.4.

3.2.3. Dimensionless representation, choosing the energy

scale

To simplify the expressions it is convenient to introduce dimensionless positional
variables

ra,i(s) =

√

2d

Lb2
R̃a,i(s), (3.7)

so that all lengths are measured in units of the radius of gyration, up to a
numerical factor of order one depending on the dimensionality of space. The
rescaled sample volume is V ′ = (2d /Lb2)d/2V . The normalisation of U and W is
rescaled similarly, yet can be restored by introducing U ′(r) := (Lb2/2d)d/2U(R)
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and W ′(r) := (Lb2/2d)d/2W (R), which generates a pre-factor of V ′/V in the ex-
cluded volume and incompatibility interaction. In anticipation of the results of the
subsequent analysis, to make the basic quantities look as simple as possible later,
we substitute

λ =:
V

V ′ · L
2̺′0 · λ′ and χ =:

V

V ′ · L
2̺′0 · kBT · χ′, (3.8)

where

̺′0 :=
(NA +NB)

V ′ =
N

V ′ (3.9)

denotes the number density of chains with respect to the rescaled volume, and
with N := NA +NB the total number of chains.

Like in the case of random copolymers, we choose the new parameter χ′ such
that the incompatibility Hamiltonian is formally proportional to kBT like HW

and HEV. In the Boltzmann weights exp(−βH), with H being the sum of all three
Hamiltonians, β and kBT cancel. The explicit temperature dependence of the
partition function is eliminated, so that temperature as an independent parameter
can be dropped. Since the temperature nevertheless influences the system via
χ′(T ) ∝ 1/T , the parameter χ′ will also be referred to as the inverse temperature.
Effectively, we have chosen the energy scale according to kBT = 1, without giving
up the ability to control the temperature.

To keep the notation simple, we drop the primes indicating the rescalings of
V , ρ, χ and λ. Expressed in the new variables, the Wiener Hamilton and the
Hamiltonians of excluded volume and incompatibility then read

HW =
kBT

4

∑

a=A,B

Na∑

i=1

∫ 1

0

ds

(
dra,i(s)

ds

)2

, (3.10)

HEV = kBT · λ

2̺′0

∑

a1,2=A,B

Na1∑

i1=1

Na2∑

i2=1

∫ 1

0

ds1ds2 U
′(∣∣ra1,i1(s1) − ra1,i2(s2)

∣
∣
)

(3.11)

and

HC = −kBT · χ

2̺′0

∑

a1,2=A,B

Na1∑

i1=1

Na2∑

i2=1

∫ 1

0

ds1ds2

× (2δa1,a2 − 1)W ′(∣∣ra1,i1(s1) − ra1,i2(s2)
∣
∣
)
. (3.12)

The total Hamiltonian is denoted as HT := HW +HEV +HC.

3.2.4. Permanent crosslinks and partition function

The most interesting properties of the polymer blend are due to the possible intro-
duction of crosslinks, leading to a polymer network that inseparably connects A
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and B chains and that eventually drives the transition from a liquid to an amor-
phous solid. We consider the case of the randomly introduced chemical crosslinks,
covalent bonds with a high binding energy. Like the intramolecular bonds in the
individual polymer chains, they are permanent on the time scale of demixing pro-
cesses and consequently treated as quenched randomness. Physical gelation, the
association of macromolecules via temporary bonds of much lower energy, such as
hydrogen bonds, is a likewise interesting problem, yet it is not part of the discussion
here.

Following Goldbart et al. [77], the crosslinks are modelled as hard constraints,
forcing two randomly chosen monomers to occupy exactly the same location. Re-
gardless of how it is generated, a specific realisation of crosslinks is defined by a
set of index pairs {(ae, ie, se, a′e, i′e, s′e)}Me=1 indicating that link number e connects
monomer on site se of chain ie of type ae to monomer s′e on chain i′e of type a′e,
where M is the total number of crosslinks. Hence only those configurations are
admitted that satisfy

rae,ie(se) = ra′e,i′e(s
′
e) for e = 1, . . . ,M. (3.13)

The constraints shall be purely geometric, so that the introduction of crosslinks
leaves the relative statistical weights of the allowed configurations, at least a priori,
unaffected, i.e. proportional to exp(−βHE). This assumption is not fully correct,
though:

First, a sufficiently high degree of crosslinking induces the transition from a
liquid to an amorphous solid, in which the monomers are partly localised. The
translational and rotational symmetries are spontaneously broken, only a fraction
of the states really assumes a nonzero weight. Yet, the symmetry breaking techni-
cally occurs only at the stage of minimising the free energy, the partition function
still contains all the configurations that meet condition (3.13).

Second, the introduction of crosslinks gives rise to closed loops, and a complete
definition of the crosslinked would have to comprise not only the identities of the
bonded monomer pairs, but also the topology of the loops: Typically, some loops
will be interlocked, hence only a fraction of the configurations satisfying (3.13)
is accessible in reality. (Mere entanglements of unconnected chains slow down
but do not inhibit transitions between different parts of the configuration space.)
In principle, the broken ergodicity should be taken into account in the partition
function. However, since no analytical, microscopic way of treating the topological
constraints properly is known so far, they are treated as annealed. This widely
used approximation corresponds to a network of phantom chains that may freely
pass through each other and themselves, although overlapping is forbidden by the
excluded volume interaction. In the vicinity of the gelation transition, which our
analysis focuses on, the number of crosslinks per macromolecule is of the order
one, so the density of loops is low and the number and influence of interlockings
is small.

We define the partition function of the crosslinked blend, relative to that of a
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3. Crosslinked homopolymer blends

melt of uncrosslinked, non-interacting chains, as

Z̃({(ae, ie, se, a′e, i′e, s′e)}Me=1) :=
〈

e−β(H
EV+HC)

M∏

e=1

δ
(
rae,ie(se) − ra′e,i′e(s

′
e)
)
〉W

, (3.14)

where

〈
O
[
{ra,i(s)}

]〉W
:=

∫

Dra,i(s) O
[
{ra,i(s)}

]
e−βH

W

/
∫

Dra,i(s) e−βH
W

(3.15)

denotes the expectation value of an observable O in the uncrosslinked, noninter-
acting melt, i.e. with respect to the Wiener Hamiltonian. The integral

∫
Dra,i(s)

is the path integral over all possible configurations of all chains.
The tilde shall indicate that eq. (3.14) is not entirely the physical partition func-

tion, insofar as the Gibbsian factors for the indistinguishability of identical chains
are missing. Due to the randomness and the huge variety of clusters produced by
crosslinking, the proper inclusion of indistinguishability is a very complicated task.
However, as pointed out in detail by Goldbart et al. [77], the Gibbsian factors don’t
affect the relevant physical observables: For the canonical ensemble with a specific
realisation of crosslinks, these factors are constant and cancel out in thermal av-
erage, since they occur likewise in the statistical weight and in the normalisation.
In the following, eq. (3.14) will therefore be referred to as “the” partition function.

3.2.5. Thermal averages in the presence of crosslinks

For convenience, we define a notation for the thermal average in the presence of a
particular set

C := {(ae, ie, se, a′e, i′e, s′e)}Me=1 (3.16)

of crosslinks:

〈
O
[
{ra,i(s)}

]〉

C :=

〈
∏M

e=1 δ
(
rae,ie(se) − ra′e,i′e(s

′
e)
)
O
[
{ra,i(s)}

]〉T

〈
∏M

e=1 δ
(
rae,ie(se) − ra′e,i′e(s

′
e)
)〉T

, (3.17)

for arbitrary observables O. The average 〈. . .〉T is taken with respect to the total
Hamiltonian HT.

3.2.6. Disorder averages and Deam-Edwards distribution

For the characterisation of crosslinked polymer blends, the consideration of a sam-
ple with a specific realisation of crosslinks is either insufficient or infeasible: While
the properties of a small sample are not representative, those of a macroscopically
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3.2. Model

large one, though typical by virtue of self-averaging, are practically impossible
to compute. Thus, the physical quantities must be averaged explicitly over the
quenched disorder of crosslinks.

As a matter of course, the according probability distribution depends on the
way the crosslinks are introduced. A very natural and convenient choice was
proposed by Deam and Edwards [80], based on two ideas: First, only those pairs
of monomers have a chance to be crosslinked that are nearby in the native melt.
In other words, the more compatible the set of disorder is with the primary melt,
the more likely its implementation is. Second, in real experiments the number
of crosslinks fluctuates from sample to sample, being controlled by a chemical
potential. Hence, for the probability of a given set C of M crosslinks, we choose
the Deam-Edwards distribution

PM(C) = N−1 · (µV/ 2N)M

M !
Z̃p(C). (3.18)

The partition function Z̃p measures the compatibility of the constraints with the
native melt by counting the number of compliant states; the factor µV/ 2N can
be interpreted as the fugacity of the crosslinks. As indicated by the subscript,
Z̃p reflects the situation prior to crosslinking and has to be computed with the
according values of λ = λp and χ = χp. To avoid unnecessary complications,
the crosslinked monomer pairs will be expressed as tuples rather than sets in the
following1, so that differently ordered but otherwise identical crosslink realisations
are counted separately, see eq. (3.19). The over-counting is compensated by the
factor of M ! in the denominator.

The disorder average of an arbitrary observable O with respect to PM reads

[
O
(
{ra,i(s)}

)]
:=

∞∑

M=0

(
∑

a1,a′1

∑

i1,i′1

∫ 1

0

ds1

∫ 1

0

ds′1 · · ·
∑

aM ,a′M

∑

iM ,i′M

∫ 1

0

dsM

∫ 1

0

ds′M

× PM

(

{(ae, ie, se, a′e, i′e, s′e)}Me=1

)

O
(
{ra,i(s)}

)

)

, (3.19)

hence the normalisation constant N in eq. (3.18) is given by

N =

〈

e−β(H
EV
0 +HC

0 ) · exp

{
µV

2N

∑

a,a′,i,i′

∫ 1

0

dsds′ δ
(
ra,i(s) − ra′,i′(s

′)
)
}〉W

0

(3.20)

The Hamiltonians HEV
0 and HC

0 in the average 〈. . . 〉W0 in eq. (3.20) have to be
evaluated for the conditions at the instant of crosslinking, λp and χp.

Since our crosslinking procedure depends on the state of the system at the time
of preparation, the final gel will permanently remember this state to a certain
extent, even if the external conditions are changed afterwards. In other words,

1Nonetheless we will stick to curly braces in the notation.
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3. Crosslinked homopolymer blends

the properties of the sample depend on the history of preparation, which can
become arbitrarily complicated if external conditions change during preparation
or between multiple preparation steps. Hence it is important to stress that by
using the Deam-Edwards distribution (3.18), we restrict the discussion to systems
prepared by an instantaneous, one-step crosslinking process. The final sample is
characterised by the external conditions, essentially the values of χ, at the times
of crosslinking and measurement.

3.3. Order parameters

The examination of crosslinked homopolymer blends requires two order parame-
ters, one to detect gelation and one to detect phase separation of the two polymer
species, which are considered in the following.

3.3.1. Gelation order parameter

To detect the transition from the liquid to the amorphous solid state, we use an
order parameter initially proposed in the context of spin glasses by Edwards and
Anderson [81], adapted to polymer gelation by Goldbart et al. [77]:

Q̄k1 ... kg :=
∑

a=A,B

Na∑

i=1

∫ 1

0

ds
〈
exp

(
ik1ra,i(s)

)〉

C . . .
〈
exp

(
ikgra,i(s)

)〉

C , (3.21)

with g = 1, 2, . . . and k1, . . . ,kg 6= 0. As defined in eq. (3.17), the symbol 〈. . . 〉C
denotes the thermal average in presence of a particular realisation C of crosslinks,
i.e. prior to disorder averaging. For g = 1, eq. (3.21) is the thermal average of

Qk :=
∑

a=A,B

Na∑

i=1

∫ 1

0

ds eikra,i(s) , (3.22)

that is, the monomer density in Fourier space.
To see how Q̄k1 ... kg discriminates between liquid and gel, we consider the thermal

expectation value 〈exp(ikra,i(s))〉C of the density of a single monomer (a, i, s) in
Fourier space. In a liquid, the monomer is delocalised and explores the sample
volume uniformly in the course of time, thus

〈exp(ikra,i(s))〉C = 0 (a,i,s) delocalised (3.23)

except for k = 0. In a solid, at least some of the monomers are localised. For such
a monomer, 〈exp(ikra,i(s))〉C fails to vanish identically and can be written as

〈exp(ikra,i(s))〉C = eikca,i(s)ρ̄a,i,s(k) (a,i,s) localised , (3.24)
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3.3. Order parameters

where ca,i(s) is the centre of its localisation, and ρ̄a,i,s(k) denotes the Fourier trans-
formed shape of the localised density, shifted to the origin. Insertion into (3.21)
yields

Q̄k1 ... kg =
∑

a=A,B

Na∑

i=1

∫ 1

0

ds ρ̄a,i,s(k1) . . . ρ̄a,i,s(kg) ei(k1+...+kg)ca,i(s); (3.25)

where the integral and the sums are understood to include just the localised
monomers.

Although the average total density Q̄k might seem already sufficient to detect
gelation, this is in fact not the case [77]: In contrast to a globular or crystalline
solid, the amorphous solid generated by crosslinking is macroscopically translation-
ally (and rotationally) invariant (MTI), since the localisation centres ca,i(s) are
distributed randomly and homogeneously over the sample. Therefore, the phase
factors in eq. (3.25) interfere destructively, and Q̄k1 ... kg 6= 0 only if k1+. . .+kg = 0,
which is only possible for g ≥ 2.

To summarise, the g ≥ 2 values of the order parameter (3.21) can distinguish
between the liquid state and the amorphous solid,

Q̄k1 ... kg

∣
∣
∣
k1+...+kg=0

{ = 0, liquid
6= 0, gel.

(3.26)

Globular and crystalline states go beyond the scope of this thesis; their signature
in the order parameter is discussed in [77].

Order parameter hypothesis Following [76, 77], we develop a hypothesis for
the order parameter Q̄k1 ...kg , which we shall use in the variational determination
of the equilibrium state of the gel. In general, only a fraction fgel of monomers,
the gel fraction, will be localised, while the remaining sol fraction (1 − fgel) stays
delocalised. To describe the gel fraction, we adopt the generalised Einstein model,
in analogy to Einstein’s model of crystalline solids, in which every atom is localised
independently by a harmonic potential. The monomers {(a, i, s)} of the gel fraction
are supposed to be independently localised about random points ca,i(s) in isotropic
harmonic potentials. The density of such a monomer is given by eq. (3.24) with
ρ̄a,i,s(k) = exp(−k2/ 2τa,i(s)) and an inverse squared localisation length of τa,i(s).
These assumptions lead to

Q̄k1 ...kg =
∑

a=A,B

Na∑

i=1

∫ 1

0

ds ei(k1+...+kg)ca,i(s) · e−(k2
1+...+k2

g)/ 2τa,i(s) (3.27)

with the sums and integrals just including the gel fraction. As pointed out before,
the phase factors interfere destructively unless

∑g
γ=1 kγ vanishes due to MTI, thus

Q̄k1 ...kg = δk1+...+kg,0 · fgel

∫ ∞

0

dτ p(τ) exp
(

−
(
k2

1 + . . .+ k2
g

)
/ 2τ

)

, (3.28)
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3. Crosslinked homopolymer blends

where

p(τ) =
∑

a=A,B

Na∑

i=1

∫ 1

0

ds
〈
δ(τ − τa,i(s))

〉

C (3.29)

denotes the distribution of square localisation lengths; the sums in (3.29) again are
restricted to the localised monomers. The distribution p(τ) and the gel fraction fgel

will be determined in saddle-point approximation.

3.3.2. Phase separation order parameter

The separation of A and B chains or monomers can be recognised by the local
imbalance of their concentrations,

Sk :=

NA∑

i=1

∫ 1

0

ds e−ikrA,i(s) −
NB∑

i=1

∫ 1

0

ds e−ikrB,i(s). (3.30)

As in the case of random copolymers, eq. (3.30) will be referred to as the charge
density, conceiving the two species as “charges” +1 and −1. While in a homoge-
neously mixed liquid or gel, the disorder averaged equilibrium value [〈Sk〉C] van-
ishes, it becomes nonzero in a phase separated state, reflecting the A/B segregation
pattern.

The structure factors

S(k) := 1
N

[〈SkS−k〉C] and Sgl(k) := 1
N

[〈Sk〉C 〈S−k〉C] (3.31)

describe the disorder averaged charge correlations. While Sgl measures the time
persistent part, S measures the sum of both, static and volatile correlations. Phys-
ically, the glassy correlation function Sgl detects the charge correlations that origi-
nate from thermal fluctuations that have been frozen-in at the instant of prepara-
tion, and from the disorder due to the randomness of the crosslinks. The scattering
structure factor S additionally measures the thermal fluctuations at the time of
measurement. From a mathematical point of view it might seem more natural to
consider, besides Sgl, the connected correlation or variance

Sth(k) := 1
N

[
〈SkS−k〉C − 〈Sk〉C 〈S−k〉C

]
= S(k) − Sgl(k) (3.32)

instead of S; however, the latter is more directly related to scattering experiments
(see below).

3.3.3. Relation to scattering experiments

The gelation order parameter (3.21), at least for g = 2, and the structure fac-
tors (3.30) are closely related to scattering experiments (for an introduction to
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3.3. Order parameters

neutron and X-ray scattering in polymers, see, for example, [82–84]). The differ-
ential scattering cross section of a sample containing N scattering centres is given
by

1

N

d2σ

dΩdE
=
ko

ki

S(k, ω), (3.33)

where ki and ko denote the moduli of the ingoing and outgoing wavevector. The
momentum and energy transfers are k := ko − ki and ~ω. In the first Born
approximation, the dynamic structure factor or scattering function is given by

S(k, ω) =
1

2π~N

∫

dt

〈 N∑

i=1

b∗i e
−ikri(0)

N∑

j=1

bje
ikrj(t)

〉

e−iωt, (3.34)

where ri(t) and bi denote the position at time t and the scattering length (or atomic
scattering factor) of centre number i, respectively. (The scattering function S(k)
should not be confused with the charge density Sk.) The type of radiation used
in the experiment determines whether the measurement focuses on static or dy-
namic properties: To achieve a sufficiently high spatial resolution, i.e. wavelengths
comparable to interatomic distances, the energy of X-rays must be of the order
of 10 MeV. Hence modulations due to atomic motion, having a typical energy
smaller by orders of magnitude, can’t be resolved. As the momentum transfer k
is small compared to the wavenumbers of the incident and the scattered light, we
can drop the factor ko/ki ≈ 1 in eq. (3.33), so that the integral cross section is
given by

(
dσ

dΩ

)(X-ray)

=

∫ ∞

0

d(~ω)
d2σ

dΩdE
=

〈 N∑

i=1

b∗i e
−ikri

N∑

j=1

bje
ikrj

〉

. (3.35)

The energy of neutrons with suitable wavelengths, on the other hand, are com-
parable to the thermal energy, leading to a considerable energy transfer caused by
the interaction with atomic motion. In particular, it is possible to measure the
elastic scattering function characterised by ω = 0,

(
dσ

dΩ

)(el)

=
d2σ

dΩdE

∣
∣
∣
∣
ω=0

∝ lim
t→∞

〈 N∑

i=1

b∗i e
−ikri(0)

N∑

j=1

bje
ikrj(t)

〉

; (3.36)

in the last step we have used that in the integral over all times t, the weight of
small t is negligible. Because of the decay of thermal correlations, the thermal
average in eq. (3.36) factorises for large t, hence

(
dσ

dΩ

)(el)

=

〈 N∑

i=1

b∗i e
−ikri

〉〈 N∑

j=1

bje
ikrj

〉

, (3.37)

yielding the persistent part of the correlations in the sample. Eq. (3.37) can be
split into the so-called coherent scattering function of the self-interference of single
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3. Crosslinked homopolymer blends

atoms (i = j) and the incoherent scattering function of the interference of distinct
atoms (i 6= j),

(
dσ

dΩ

)(el)

=
N∑

i=1

|bi|2
∣
∣
〈
eikri

〉∣
∣
2

︸ ︷︷ ︸

=:( dσ
dΩ)

(el)

coh

+
∑

i6=j
b∗i bj

〈
e−ikri

〉〈
eikrj

〉

︸ ︷︷ ︸

=:( dσ
dΩ)

(el)

incoh

. (3.38)

To apply these results to our polymer blend, we identify the scattering centres
with the monomers and assume that all monomers of a given species reveal the
same (real) scattering length, i.e. (b0 ± b1) for A and B monomers, respectively, so
that

(
dσ

dΩ

)(X-ray)

= b20
〈
|Qk|2

〉

C + 2 b0b1 Re 〈Q−kSk〉C + b21
〈
|Sk|2

〉

C , (3.39)

(
dσ

dΩ

)(el)

= b20 |〈Qk〉C|2 + 2 b0b1 Re
(
〈Q−k〉C 〈Sk〉C

)
+ b21 |〈Sk〉C|2 (3.40)

and
(

dσ

dΩ

)(el)

coh

= (b20 + b21) Q̄k,−k + b0b1 · . . . (3.41)

The contributions of Q and S can, in principle, be separated varying b0 and b1 by
means of isotopic substitution [82] in neutron scattering or heavy atom labelling
in X-ray diffraction [85]: For instance, the incoherent cross section of deuterium is
a factor of 40 smaller than that of hydrogen. Indeed, in both, [49] and [50], one of
the two homopolymer species was deuterated. In this case, practically b0 ≈ 0, so
that, apart from numerical factors,

1

N

(
dσ

dΩ

)(el)

coh

≈ 1

N

[
Q̄k,−k

]
(3.42)

and
1

N

(
dσ

dΩ

)(el)

≈ 1

N

[
|〈Sk〉C|2

]
= Sgl(k) (3.43)

after disorder averaging. The according expression for the X-ray cross section,

1

N

(
dσ

dΩ

)(X-ray)

≈ 1

N

[ 〈
|Sk|2

〉

C
]

= S(k) (3.44)

can be obtained by setting b0 = 0 by heavy atom labelling. Roughly speaking,
we may refer to S(k) and Sgl(k) as the (incoherent) X-ray and neutron scattering
function, respectively, and to Q̄k,−k as the coherent neutron scattering function.

It should be noted that deuteration may have a significant effect on the mis-
cibility of polymers; for example, critical mixtures of deuterated and protonated
polybutadiene become immiscible below 99.2 °C [50]. Thus in practice, the distinc-
tion of the contributions of the monomer density and the charge density may be
difficult in some cases.
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3.4. Derivation of an effective free energy

The aim of this section is to derive an effective free energy of the crosslinked
homopolymer blends modelled in section 3.2. We shall use the dimensionless rep-
resentation, taking the distance dependence of the excluded volume and incom-
patibility interactions to be delta-shaped, i.e. U(r) = W (r) = δ(r).

As the first step, we perform the disorder average of the free energy using the
replica trick, which effectively leads to the partition function of (n+1) copies of the
system. This partition function is subsequently expressed as the integral over an
effective partition function that depends on fields closely related to the order pa-
rameters Q̄k1 ...kg and Sk defined in section 3.3; the microscopic variables {ra,i(s)}
are integrated out. The corresponding effective free energy will allow us to deter-
mine, for instance, the most probable values of the order parameters which can
be interpreted, within mean-field approximation, as the equilibrium state of the
system.

3.4.1. Disorder averaged free energy

In this section, we formally compute the disorder average of the free energy, i.e.

the average of the logarithm of the partition function (3.14). With the replica trick
described in appendix A.1, we express the mean free energy as

F := −
[
ln Z̃ (C)

]
= lim

n→0

1 − Zn
n

, (3.45)

where
Zn :=

[(
Z̃(C)

)n
]

(3.46)

denotes the disorder average of the nth power of the partition function. The Deam-
Edwards distribution (3.18) produces an (n+ 1)th factor of the partition function
in the disorder averaged free energy,

Zn =
1

N
∞∑

M=0

(µV / 2N)M

M !

∑

a1,a′1

∑

i1,i′1

∫ 1

0

ds1ds
′
1 · · ·

∑

aM ,a′M

∑

iM ,i′M

∫ 1

0

dsMds′M

× Z̃p

(
{(ae, ie, se, a′e, i′e, s′e)}

) (

Z̃
(
{(ae, ie, se, a′e, i′e, s′e)}

))n

. (3.47)

As indicated by the subscript “p”, the additional partition function must be eval-
uated at the conditions (χp, λp) of crosslinking. The normalisation constant N
is defined in eq. (3.20). For nonnegative integer n, we can make the nth power
of Z̃ explicit, and interpret Z̃p(C)(Z̃(C))n as the partition function of a system
comprising (n+1) independent copies of the original system, the replicas, with the
same realisation C of disorder in each copy.

We introduce the following notation for the replicated system: The monomer po-
sitions in the αth replica (α = 0, . . . , n) are denoted as {rαa,i(s)}, and the replicated
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total Hamiltonian is defined as HT
n := HW

n +HEV
n +HC

n , where

HW
n =

1

4

n∑

α=0

∑

a=A,B

Na∑

i=1

∫ 1

0

ds

(
drαa,i(s)

ds

)2

, (3.48)

HEV
n =

1

2̺0

n∑

α=0

λα
∑

a1,2=A,B

Na1∑

i1=1

Na2∑

i2=1

∫ 1

0

ds1ds2 δ
(
rαa1,i1(s1) − rαa2,i2(s2)

)
(3.49)

and

HC
n = − 1

2̺0

n∑

α=0

χα
∑

a1,2=A,B

Na1∑

i1=1

Na2∑

i2=1

∫ 1

0

ds1ds2

× (2δa1,a2 − 1) δ
(
rαa1,i1(s1) − rαa2,i2(s2)

)
. (3.50)

The respective expectation values are denoted as 〈. . .〉Tn , 〈. . .〉Wn and so on; for n =
0, this definition coincides with the notation used in eq. (3.20). The values of λ
and χ are chosen according to

λα =
{
λp, if α = 0,
λm, otherwise,

and χα =
{
χp, if α = 0,
χm, otherwise,

(3.51)

to account for the potentially different states of the preparation ensemble, de-
scribed by Z̃p in the zeroth replica, and the measurement ensemble, described by Z̃
in the other replicas. It is useful to introduce some notation for the (d · (n + 1))-
dimensional vectors x̂ residing in the replicated space and the canonical basis {eα}
for the (n + 1)-dimensional replica space,

x̂ :=
(
x0, . . . ,xn

)
=:

n∑

α=0

xα ⊗ eα. (3.52)

With this notation and the explicit expression for Z̃ given in eq. (3.14) we obtain

Zn =
1

N
∞∑

M=0

(µV/ 2N)M

M !

∑

a1,a′1

∑

i1,i′1

∫ 1

0

ds1ds
′
1 · · ·

∑

aM ,a′M

∑

iM ,i′M

∫ 1

0

dsMds′M

×
〈

e−H
EV
n −HC

n

M∏

e=1

n∏

α=0

δ
(
rαae,ie(se) − rαa′e,i′e(s

′
e)
)

〉W

n

. (3.53)

By changing the order of the average and the summations we express the products
of delta functions as the exponential function of a single delta function, so that Zn
becomes

Zn = Zn

/
Z0 , (3.54)
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with the (rescaled) replicated partition function

Zn :=

〈

e−H
EV
n −HC

n exp

(
µV

2N

∑

a,a′,i,i′

∫ 1

0

dsds′δ
(
r̂a,i(s) − r̂a′,i′(s

′)
)
)〉W

n

. (3.55)

In the last step, the product of delta functions has been replaced by a (d · (n+1))-
dimensional one in the replicated space with r̂a,i(s) := (r0

a,i(s), . . . , rna,i(s)).

3.4.2. Effective free energy

To faciliate the introduction of fields corresponding to the order parameters, we
define shorthands for the replica versions of the order parameters Q and S of
section 3.3, yet without thermal averaging,

Qα
k :=

∑

a=A,B

Na∑

i=1

∫ 1

0

ds eikrα
a,i(s), Qk̂ :=

∑

a=A,B

Na∑

i=1

∫ 1

0

ds eik̂r̂a,i(s) ,

and Sαk :=
Na∑

i=1

∫ 1

0

ds
(

eikrα
A,i(s) − eikrα

B,i(s)
)

. (3.56)

We rewrite the Hamiltonians of the excluded volume and the incompatibility in-
teraction as

HEV
n =

1

2N

n∑

α=0

λα
∑′

k

Qα
kQ

α
−k and HC

n = − 1

2N

n∑

α=0

χα
∑′

k

SαkS
α
−k , (3.57)

where
∑′

k denotes the sum over nonzero k. The quasi-Hamiltonian that originates
from the constraints due to the crosslinks can be recast similarly,

− µV

2N

∑

a,a′,i,i′

∫ 1

0

dsds′ δ
(
r̂a,i(s) − r̂a′,i′(s

′)
)

= − µ

2NV n

∑′

k̂

Qk̂Q−k̂ = − µ

2NV n

( n∑

α=0

∑′

k

Qα
kQ

α
−k +

∑

k̂

Qk̂Q−k̂

)

, (3.58)

with
∑′

k̂ denoting the sum over nonzero k̂. For technical reasons, this sum is split

into the single replica sector of vectors k̂ = x ⊗ eα with a nonzero entry x in just
one replica, and the higher replica sector of k̂ with nonzero entries in at least two
replicas; the according sum is denoted as

∑

k̂. The zero replica sector, i.e. terms

with k = 0 and k̂ = 0̂, has been omitted since it only contributes an additive
constant to the free energy.

Now we can introduce the effective free energy by means of a Hubbard-Strato-
novich transformation (see appendix A.2) for each Sαk , Qα

k and Qk̂ with k · n > 0
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3. Crosslinked homopolymer blends

or k̂ · n̂ > 0, respectively, where n and n̂ are arbitrary nonzero vectors. The
restriction to half-spaces is necessary due to the interdependence of the order
parameters with opposite wavevectors: Corresponding to real-valued fields in real
space, they are the complex conjugates of each other, and hence no independent
degrees of freedom. The transformations yield

Zn = Bn ·

∫

DnΨDnΩ D̄Ω exp
{

−nFn

(
{Ψ,Ω}

)}

∫

DψDω exp
{

− nFden

(
{ψ, ω}

)}
, (3.59)

where the effective free energies per replica of the numerator, Fn, and of the
denominator, Fden, are given by

nFn

(
{Ψ,Ω}

)
:=

N

2

n∑

α=0

∑′

k

(
1
χα

∣
∣Ψα

k

∣
∣
2
+ 1

λ̃α

∣
∣Ωα

k

∣
∣
2
)

+
N

2

∑

k̂

1
V −nµ

∣
∣Ωk̂

∣
∣
2

− ln

〈

exp

{ n∑

α=0

∑′

k

(
Ψα

kS
α
−k + i Ωα

kQ
α
−k

)
+
∑

k̂

V −nµΩk̂Q−k̂

}〉W

n

(3.60)

and

nFden

(
{ψ, ω}

)
:=

N

2

∑′

k

(
1

χp
|ψk|2 +

1

λp − µ
|ωk|2

)

− ln

〈

exp

{
∑′

k

(
ψkS−k + iωkQ−k

)
}〉W

, (3.61)

with λ̃α := λα − V −nµ. The constant

Bn = exp
(
N
2
(−nλm + nq2χm + ((n + 1)V −n − 1)µ)

)
= 1 + O(n) (3.62)

contains the contributions from the zero replica sector; it just yields an additive
constant to the free energy and thus will be dropped. The integral runs over
the real and imaginary parts of the fields; the integral measures are specified in
appendix D, eq. (D.68). The sums over the wavevectors are not restricted to half
spaces; the fields are continued to the whole wavevector space via Ωα

−k := (Ωα
k)∗

and so forth. With the effective free energies depending only linearly on Q and S,
the chains are decoupled, and the many-chain problem can be reduced to a single-
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3.4. Derivation of an effective free energy

chain problem:

nFn

(
{Ψ,Ω}

)
:= N

2

∑′

α,k

(
1
χα

∣
∣Ψα

k

∣
∣2 + 1

λ̃α

∣
∣Ωα

k

∣
∣2
)

+ N
2

∑

k̂

1
V −nµ

∣
∣Ωk̂

∣
∣2

−NA ln

〈

exp

{
∑′

α,k

(+Ψα
k + i Ωα

k)

∫ 1

0

ds e−ikrα(s) +
∑

k̂

Ωk̂

∫ 1

0

ds e−ik̂r̂(s)

}〉W

n

−NB ln

〈

exp

{
∑′

α,k

(−Ψα
k + i Ωα

k)

∫ 1

0

ds e−ikrα(s) +
∑

k̂

Ωk̂

∫ 1

0

ds e−ik̂r̂(s)

}〉W

n

(3.63)

with the shorthand
∑′

α,k :=
∑n

α=0

∑′
k . The monomer positions of the remain-

ing single chain are denoted as {r̂(s)}, the according Wiener average is given

by 〈· · · 〉Wn ∝
∫
Dr(s) · · · exp

(
− 1

2

∫ 1

0
ds
(dr̂(s)

ds

)2)
.

3.4.3. Expectation values of the order parameters

We define the expectation value

〈
· · ·
〉F
n

:=

∫

DnΨDnΩ D̄Ω · · · exp {−nFn ({Ψ,Ω})}
∫

DnΨDnΩ D̄Ω exp {−nFn ({Ψ,Ω})}
(3.64)

with respect to the effective free energy in order to compute moments of the aux-
iliary fields Ω and Ψ introduced by the Hubbard-Stratonovich transformations.
These moments are connected to thermal averages of the moments of the order
parameters Q and S, which will permit us to determine the equilibrium state of
the melt later. These relations are derived in appendix D. For the expectation
values required to assess the stability of the liquid and the mixed state and to
examine charge fluctuations, we obtain

[
Q̄k

]
= iN

λm−µ lim
n→0

〈Ωα
k〉Fn with α ≥ 1, (3.65)

[
Q̄k1 ...kg

]
= N

µ
lim
n→0

〈Ωk̂〉
F
n for g ≥ 2, with k̂ =

g∑

γ=1

kγ ⊗ eγ , (3.66)

[〈Sk〉C] = N
χm

lim
n→0

〈Ψα
k〉Fn with α ≥ 1 (3.67)

and

[〈SkS−k〉C] = N2

(χm)2

(

lim
n→0

〈
Ψα

kΨα
−k

〉F
n
− χm

N

)

with α ≥ 1,

(3.68)

[〈Sk〉C〈S−k〉C] = N2

(χm)2
lim
n→0

〈
Ψα1

k Ψα2
−k

〉F
n

with α1,2 ≥ 1 and α1 6= α2.

(3.69)
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3.4.4. Shifted density field

In asymmetric blends, in which there is an excess of either A or B chains, variations
of the mass density, even without changing the local ratio of A and B monomers,
imply variations of the charge density, because the average monomer charge

q := (NA −NB)/N (3.70)

is nonzero. Technically, this gives rise to a bilinear term in Ψα
kΩα

−k in the effective
free energy (3.63), hidden in the logarithmic contributions. The coupling compli-
cates tracing out the density field, which is useful since we are mainly interested in
the phase separation behaviour of the system, in particular for low compressibil-
ity, where density fluctuations are small, anyway. In the incompressible limit, the
bilinear coupling of Ψα

k and Ωα
k can be circumvented by rescaling the single-replica

density field to “absorb” the asymmetry:

Ω̃α
k := Ωα

k − iqΨα
k (3.71)

(An analogous rescaling was done in the discussion of random copolymer melts
in section 2.5.2.) The effective free energy as a function of Ψα

k, Ωk̂ and the new

variable Ω̃α
k reads

nFn

(
{Ψ, Ω̃,Ω}

)
:=

N

2

∑

k̂

1

V −nµ

∣
∣Ωk̂

∣
∣
2

+
N

2

∑′

α,k

((
1

χα
− q2

λ̃α

)
∣
∣Ψα

k

∣
∣2 +

i q

λ̃α

(

Ω̃α
kΨα

−k + Ψα
kΩ̃α

−k

)

+
1

λ̃α

∣
∣Ω̃α

k

∣
∣2
)

−NA ln

〈

exp

{
∑′

α,k

(

i Ω̃α
k +

2NB

N
Ψα

k

)∫ 1

0

ds e−ikrα(s) +
∑

k̂

Ωk̂

∫ 1

0

ds e−ik̂r̂(s)

}〉W

n

−NB ln

〈

exp

{
∑′

α,k

(

i Ω̃α
k − 2NA

N
Ψα

k

)∫ 1

0

ds e−ikrα(s) +
∑

k̂

Ωk̂

∫ 1

0

ds e−ik̂r̂(s)

}〉W

n

.

(3.72)

The logarithmic contributions now produce a coupling only at higher order (see
section 3.5.7), and the explicit bilinear term vanishes in the incompressible limit
λp, λm → ∞, where terms proportional to 1/λ̃α can be neglected. In this limit,
fluctuations of the physical monomer density are suppressed,

[
Q̄k

]
= iN

λm−µ lim
n→0

〈
Ωα

k

〉F
n

= iN
λm−µ lim

n→0

〈
Ω̃α

k + iΨα
k

〉F
n

λm→∞−−−−→ 0, (3.73)

in contrast to the fluctuations of the corresponding field Ω̃. Hence, nonzero values
of Ω̃α

k or Ωα
k are not in contradiction with incompressibility.
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3.5. Analysis

In the following, we will analyse the free energy of the polymer blend. We start by
determining the degree of stability of the mixed state before and after crosslinking,
which permits us to draw a phase diagram in terms of the degree of crosslinking
and the conditions at measurement. Subsequently, we discuss the relevant length-
scales in the system and how they rule the demixing correlations that show the
preservation of pre-crosslinking fluctuations and give notice of a nearby microphase
transition. Finally, we discuss the microphase separated state, considering differ-
ent regular and random morphologies, and we study the effects of asymmetric
composition and compressibility.

3.5.1. Mean-field approximation

As the effective free energy (3.63) is extensive, we may apply the saddle point
approximation to eq. (3.59) in order to calculate expectation values of Ω̃, Ω and Ψ.
The integral in the numerator is replaced by the value of the integrand, evaluated

at the saddle point (Ψ̄, Ω̄) := {Ψ̄α
k,

¯̃Ωα
k, Ω̄k̂} making it stationary with respect to

variations of Ω̃, Ω and Ψ; the denominator is treated analogously. Neglecting
additive constants, we can express the free energy as

F = lim
n→0

(
Fn(Ψ̄,

¯̃Ω, Ω̄) − Fden(ω̄, ψ̄)
)
. (3.74)

This procedure corresponds to the mean-field level of approximation, where fluc-
tuations are neglected, and the expectation values of the fields are approximated
by their saddle point values

〈
Ψα

k

〉F
n
≈ Ψ̄α

k,
〈
Ω̃α

k

〉F
n
≈ ¯̃Ωα

k and
〈
Ωk̂

〉F
n
≈ Ω̄k̂. (3.75)

The saddle point values are the solutions of the stationarity conditions

∂Fn

∂Ψα
−k

∣
∣
∣
∣
(Ψ̄,Ω̄)

= 0,
∂Fn

∂Ω̃α
−k

∣
∣
∣
∣
∣
(Ψ̄,Ω̄)

= 0 and
∂Fn

∂Ω−k̂

∣
∣
∣
∣
(Ψ̄,Ω̄)

= 0. (3.76)

3.5.2. Stability of the homogeneously mixed liquid

One solution of the stationarity conditions (3.76) is the point Ω̄ = ¯̃Ω = Ψ̄ =
0 corresponding to the homogeneous liquid. To assess its stability, we consider
the Landau expansion to leading order about this point, concentrating on the
incompressible limit:

2n

N
Fn(Ψ̄,

¯̃Ω, Ω̄) =
∑′

α,k

gD

(
k2
) ∣
∣Ω̃α

k

∣
∣
2
+
∑

k̂

(
1

µ
− gD

(
k̂2
)
)
∣
∣Ωk̂

∣
∣
2

+
∑′

α,k

(
1

χα
− (1 − q2) gD

(
k2
)
)
∣
∣Ψα

k

∣
∣2 + O

(

Ω̃2,Ω2,Ψ2
)

, (3.77)
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with the Debye function gD(k2) defined in appendix D.2.1. (For the Landau expan-
sion retaining terms due to compressibility see section 3.5.7.) In anticipation of the
replica limit n → 0, we have taken V −n → 1. From the quadratic coefficients, we
can read off the stability limits for the homogeneously mixed liquid against gela-
tion and demixing before and after crosslinking: As the Debye function decreases
monotonically with k from one to zero, they are given by

µ < 1, χp <
1

1 − q2
, and χm <

1

1 − q2
. (3.78)

The incompressible limit guarantees the stability against mass density inhomo-
geneities (λp, λm > µ).

It should be noted that the conditions (3.78) for χp, χm indeed denote the limits
of stability. In mean-field theory, the phase separation transition for symmetric
blends is of second order, so the phase transition point and the spinodal coincide. In
asymmetric blends the transition is of first order, occurring already at lower χ, and
the spinodal just indicates the breakdown of stability of an undercooled mixture.

3.5.3. Crosslinking in the homogeneously mixed state

A liquid polymer blend cooled below the demixing threshold will separate macro-
scopically. Gelation in this state would result in just two pieces of gel, one rich in
A chains, the other rich in B chains. It is much more interesting to consider a gel
prepared from a homogeneous melt, as this still has a tendency to phase separate,
yet into microphases rather than macroscopic ones. Moreover, it exhibits nontriv-
ial charge correlations, which reflect both the situation at measurement and at
the time of preparation. Therefore, the discussion will be restricted to systems
prepared by crosslinking in a (possibly undercooled) homogeneously mixed blend,
i.e. χp < 1/(1 − q2).

Upon gelation, the saddle point value Ω̄k̂ = 0 will become unstable, so the
Landau expansion of the effective free energy must be complemented by the next-
to-leading-order term in Ωk̂ and the term coupling Ωk̂ and Ψα

k.

2n
N
Fn({Ψ,Ω}) =

∑

k̂

(
1
µ
− gD

(
k̂2
))∣
∣Ωk̂

∣
∣2 +

∑′

α,k

(
1
χα − (1 − q2) gD

(
k2
))∣
∣Ψα

k

∣
∣2

−
∑

α1 6=α2

∑′

k1,2

(1 − q2) gΨ2Ω

(
k2

1,k
2
2

)
Ψα1

k1
Ψα2

k2
Ωk̂ · δk̂+k1⊗eα1+k2⊗eα2 , 0̂

− 1
3

∑

k̂1,2,3

g3

(
k̂1, k̂2

)
Ωk̂1

Ωk̂2
Ωk̂3

· δk̂1+k̂2+k̂3,0̂
+ O

(
Ω4
k̂
,Ψ4

k

)
; (3.79)

the vertex functions gΨ2Ω(k2
1,k

2
2) and g3(k̂1, k̂2) are defined in appendix D.2.1. On

the mean-field level, gelation in the mixed state is not affected by the one-replica
density field, the terms in Ω̃ have therefore been omitted in eq. (3.79), see also
section 3.5.7.
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To determine at which amount of crosslinking the gelation transition occurs,
and how the order parameter Q̄ looks like in the gel, we make a guess for the
saddle point values of Ω and Ψ, which is verified subsequently. For the moment
we assume that the external conditions remain unchanged after preparation, i.e.

χm = χp < 1/(1 − q2). Expecting that the introduction of crosslinks increase the
stability of the mixed state, which is indeed shown in 3.5.4, we assume that the
saddle point value of Ψ̄ remains zero. Following [76, 77], we consider the order

parameter hypothesis ¯̃Ωα
k = 0,

Ψ̄α
k = 0 and Ω̄k̂ = δk̃,0 · fgel

∫ ∞

0

dτ p(τ) exp(−k̃2/2τ), (3.80)

the latter being the adaption of hypothesis (3.28) to the replica-field formulation.
The gel fraction fgel of chains that are localised chains and the distribution p(τ)
of localisation lengths have to be determined self-consistently according to the
stationarity conditions (3.76). The shorthand k̃ :=

∑n
α=0 kα denotes the sum of

the (n+1) spatial vectors in k̂. The saddle point of Ωk̂ is assumed to vanish except

for k̃ = 0, cf. section 3.3.1 and eq. (3.66).

The first two of the stationarity conditions (3.76) are satisfied identically for
any fgel and p(τ). This also holds true when using the exact formulation (3.72)

of the effective free energy, since
〈
e−ikrα(s) exp

{∑

k̂′ Ω̄k̂′

∫ 1

0
ds′eik̂′r̂(s′)

}〉W

n+1
= 0,

because the Wiener average vanishes unless the involved wavevectors sum to zero
within each replica.

On the saddle point (3.80), the third condition in (3.76) is independent of the
charge density and of χp and χm, and the task of determining q and p(τ) on the
saddle-point level is exactly the same as in the pure gelation problem in [76, 77].
Hence we may adopt the result therein, which in the present notation reads

Ω̄k̂ =

{

0, for µ ≤ 1 (liquid),

δk̃,0 · µ(µ− 1) · w
(

k̂2 / 2(µ− 1)
)

, for µ > 1 (gel),
(3.81)

with the scaling function w(x) defined in appendix D.3, decaying from w(0) = 2
to zero on the scale x ∼ 1. For µ ≥ 1, the gel fraction is approximately given
by fgel ≈ 2(µ− 1).

3.5.4. Stability of the mixed gel

As long as the amount of crosslinks stays below the critical value for gelation, the
crosslinks do not affect the stability versus phase separation, and the separation
still occurs at χm = 1/(1− q2). In the following, we shall therefore concentrate on
the case of gels prepared from a homogeneous melt, i.e. µ > 1 and χp < 1/(1−q2),
and compute the stability limit of the mixed regime, which corresponds to the
saddle point value Ψ = 0.
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The stability of this saddle point is determined by the eigenvalue spectrum of
the Hessian matrix of the effective free energy (3.72) with respect to Ψα

k, evaluated
at the saddle point (3.80):

1

N

∂2Fn

∂Ψα1

k1
∂Ψα2

k2

∣
∣
∣
∣
∣
{Ψ̄,Ω̄}

= δk1+k2,0 ·
δα1,α2

χα1

− δk1+k2,0 ·
(1 − q2)

∫ 1

0

ds1ds2

〈

e−ik1(r(s1)−r(s2)) exp

{

µ
∑

k̂

Ω̄k̂

∫ 1

0

ds e−ik̂r̂(s)

}〉W

n

〈

exp

{

µ
∑

k̂

Ω̄k̂

∫ 1

0

ds e−ik̂r̂(s)

}〉W

n

,

(3.82)

where we have used that Ω̄k̂ = 0 for k̃ 6= 0 and that the Wiener averages vanish
unless the wavevectors in each replica sum to zero. There is no coupling between
different wavevectors, thus the Hessian matrices for different k can be considered
independently. We restrict the discussion to a weak gel, i.e. µ − 1 ≪ 1, so that
the saddle point value of Ωk̂ is small, and eq. (3.82) can be approximated by its
expansion to first order in Ω̄k̂:

∂2Fn

∂Ψα1

k ∂Ψα2

−k

∣
∣
∣
∣
{Ψ̄,Ω̄}

≈ N (1 − q2) · Aα1 α2(k) , (3.83)

with the approximate Hessian A ∈ R(n+1)×(n+1) given by

A(k) :=








c −b · · · −b
−b a

. . .
...

...
. . .

. . . −b
−b . . . −b a







, (3.84)

and depending only on the scalar wavenumber k := |k| ≥ 0 due to isotropy. The
entries of A(k) read

a :=

(
1

(1 − q2)χm

− gD

(
k2
)
)

, (3.85)

b := µ(µ− 1) gΨ2Ω

(
k2
)
w
(

k2 / (µ− 1)
)

(3.86)

with the explicit value (3.81) of the gelation order parameter, and

c =

(
1

(1 − q2)χp
− gD

(
k2
)
)

. (3.87)
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Figure 3.1.: Stability of the mixed gel. (a) Stability parameter λ2(k) for χm =
1/(1− q2) as a function of k2. (b) Spinodal χc(µ) as a function of the asymmetry
q for the liquid (µ < 1) and gels with different strengths (µ = 1.1 and µ = 1.5).

(The approximate Hessian (3.84-3.87) can alternatively be derived from the ex-
pansion (3.79) by replacing Ωk̂ with Ω̄k̂.)

The stability of the homogeneous state is equivalent to the positivity of the
matrix A. In the limit n→ 0, the eigenvalues are given by

λ1(k) := c and λ2(k) := a+ b, (3.88)

which are non and n-fold degenerate, respectively; see eq. (D.87) in appendix D.4.1.
Because the gel is prepared from a mixed liquid, the first eigenvalue, which

indicates the stability of the melt before crosslinking, is always positive, so the
stability condition reduces to λ2 > 0, or equivalently, χm < χc(µ) with

(1− q2)χc(µ) := 1
/

max
k

{

gD

(
k2
)
− µ(µ− 1) gΨ2Ω

(
k2
)
w
(

k2 / (µ− 1)
)}

. (3.89)

Figure 3.1(a) shows λ2(k) for χm = 1/(1 − q2). With increasing χm, the whole
curve is shifted to smaller values, and the minimum, located at kc > 0, even-
tually becomes negative, indicating a finite wavelength instability against phase
separation. The corresponding wavenumber reads

kc := argmaxk>0

{

gD

(
k2
)
− µ(µ− 1) gΨ2Ω

(
k2
)
w
(

k2 / (µ− 1)
)}

. (3.90)

We consider a weak gel, thus µ(µ − 1) ≈ µ − 1. Furthermore, w
(
k2/(µ − 1)

)

decays fast with k, so that the Debye function can be approximated by the leading-
order expansion gD(k2) ≈ 1 − k2/3, and gΨ2Ω ≈ 1 even by its k → 0 limit. In this
approximation, kc results from

0 =
∂λ2

∂k2

∣
∣
∣
∣
k=kc

≈ 1

3
+ w′

(

k2
c / (µ− 1)

)

, (3.91)
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which leads to k2
c ≈ 1.61 (µ− 1) and (1− q2)χc − 1 ≈ 0.98(µ− 1). The numerical

analysis without these approximations yields

k2
c = 1.61 · (µ− 1) + 1.75 · (µ− 1)2 + O

(
(µ− 1)3

)
(3.92)

and

(1 − q2)χc − 1 = 0.98 · (µ− 1) + 0.70 · (µ− 1)2 + O
(
(µ− 1)3

)
. (3.93)

To summarise, the gel network stabilises the mixed state, shifting the phase sep-
aration threshold χc to higher values corresponding to lower temperatures. Like-
wise, an asymmetric composition leads to a higher stability limit. Both effects can
be seen in fig. 3.1(b), which shows the spinodal χc as a function of the asymme-
try q for the liquid and two gels generated with different amounts of crosslinking.
Moreover, the demixing instability first occurs for nonzero wavenumbers, indicat-
ing that the macroscopic phase separation is replaced by microphase separation in
the gel state. This issue will be addressed in section 3.5.7.

3.5.5. Phase diagram

This section deals with the phase diagram of crosslinked blends in the symmetric
case NA = NB, for which the spinodals and the phase separation lines coincide,
hence we let q = 0. (The spinodals of asymmetric blends can, however, be recov-
ered by replacing χ with (1 − q2)χ).

The state of the gel depends on the history of gelation, which, in our model,
is fully characterised by two parameters: The incompatibility χp at the time of
preparation, and the strength µ of crosslinking. However, these parameters are
fixed upon preparation, so that the phase diagram of a particular sample is one
dimensional, just depending on the incompatibility (or inverse temperature) χm at
the time of measurement.

Nevertheless, to achieve an overview it would be useful to draw a three-dimen-
sional diagram with additional axes for χp and µ as fixed parameters, so to speak
“stacking”the one-dimensional phase diagrams of all possible gels. In gels prepared
from a homogeneous melt, i.e. χp < 1, the gelation and phase separation thresholds
are independent of χp, see eqs.(3.81), (3.89) and (3.90). Hence, the cross sections
of the diagram for different χp < 1 are identical, so it is not necessary to draw
the χp axis. It should be noted that, in contrast to the transition lines, the charge
density fluctuations do indeed depend on the temperature at preparation; they
will be discussed in section 3.5.6.

The phase diagram in the χm-µ-plane, with χp as a fixed parameter, is shown
in fig. 3.2. The dashed line µ = 1 separates the gel state and the liquid state. The
latter is further divided into a mixed and a macroscopically phase separated liquid
at χp = 1 (solid line). The dotted line χm = χc indicates the transition from the
homogeneous to a microphase separated gel.
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Figure 3.2: Phase diagram
of the symmetric polymer blend
(schematic) in the χm-µ-plane,
crosslinked in the homogeneous
state (χp < 1).

3.5.6. Charge density correlations in the mixed gel

To obtain the charge density correlations defined in section 3.3.2 we study the sec-
ond moments of the auxiliary fields Ψα

k. The latter are calculated on the Gaussian
level, i.e. with the second-order expansion of the effective free energy,

〈
Ψα1

k Ψα2

−k

〉F
n+1

≈
∫

dn+1Ψ Ψα1
(
Ψα2

)∗
exp
{
−γ N

2
Ψ†A(k)Ψ

}

∫
dn+1Ψ exp

{
−γ N

2
Ψ†AΨ

} =
A−1

α1 α2

γ N
, (3.94)

where γ denotes the asymmetry parameter

γ := 1 − q2. (3.95)

The elements A−1
α1 α2

of the inverse of the Hessian matrix (3.84) are computed in
appendix D.4.2. With these elements and with eqs. (3.68) and (3.69) we obtain

S(k) ≈ 1

χ2
m

(
1

γ
lim
n→0

A−1
αα

∣
∣
∣
α>0

− χm

)

=
γ

(γχm)2

(
b (λ1 + b)

λ1 · λ2
2

+
1

λ2
− γχm

)

(3.96)

and

Sgl(k) ≈
1

χ2
m

· 1

γ
lim
n→0

A−1
α1 α2

∣
∣
∣α1 6=α2
α1,2>0

=
γ

(γχm)2
· b (λ1 + b)

λ1 · λ2
2

. (3.97)

(The eigenvalues and the off-diagonal entry b of A are defined in eqs. (3.86)
and (3.88).) The variance or connected correlation is given by

Sth(k) = S(k) − Sgl(k) =
γ

(γχm)2

(
1

λ2

− γχm

)

. (3.98)

Restriction to symmetric blends

In the following discussion of S(k), Sgl(k) and Sth(k) and the inherent length
scales, we shall confine ourselves to the case of symmetric blends, yet without loss
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of generality: The scattering functions of the asymmetric case are recovered via
multiplication by γ = (1 − q2) and the rescalings χp → γχp and χm → γχm.
Furthermore, the distance to phase separation is replaced with the distance to
the spinodal in the asymmetric case. In the range between the equilibrium phase
transition and the spinodal, the results then describe the undercooled mixture.

Length-scales

The correlation functions are characterised by three length-scales which are deter-
mined by the parameters (µ, χp) of preparation and the conditions χm at measure-
ment (as pointed out above, we concentrate on the symmetric case, q = 0):

First, there is the typical localisation length of the monomers in the gel fraction,
i.e. the mean mesh size of the gel. From eq. (3.81) we can infer that this length-scale
is roughly given by 2π ξl with

ξl := 1 /
√

µ− 1. (3.99)

Second, there is the decay length of the pre-critical demixing fluctuations with k
prior to gelation. This approximately reads ξp/2π with

ξp := 1 /
√

1 − χp. (3.100)

Fluctuations towards macroscopic demixing can also occur in the gel, at the
time of measurement, provided the network is weak enough to permit large-scale
displacements (see the following part for details). The third length scale is the
correlation length ξm/2π of these fluctuations, given by

ξm := 1 /
√

χc(µ) − χm ≈ 1 /
√

1 − χm. (3.101)

The last approximation is only valid for µ− 1 ≪ 1 and χm not too close to χc, i.e.

for small ξl and ξm.
The three length-scales measure, or are given by, the inverse distance to the phase

transitions of gelation and demixing in the pre-crosslinking blend, and microphase
separation in the gel; hence they grow large when approaching their respective
transitions. Ignoring the factor of 2π, we shall refer to ξl, ξp and ξm as “the
localisation length” or “mesh size” and “the correlation lengths” of the preparation
and measurement ensemble, respectively.

In the following we shall essentially discuss three limiting regimes, in which
the correlation functions are determined by one of the three length-scales. These
regimes are illustrated in fig. 3.3 (a modified version of fig. 3.2). The plot includes
the paths, or histories, of three samples. The vertical part of the path (grey)
indicates the preparation conditions µ and χp by its height and horizontal position;
the incompatibility χm at the time of measurement is indicated by the end point
(black). The phase separation line refers to χm only. The three paths describe (A)
a gel prepared in a liquid very close to demixing, i.e. with ξp ≫ ξl, ξm; (B) a very
weak gel, i.e. with ξl ≫ ξp, ξm, and (C) a gel measured very close to microphase
transition, i.e. with ξm ≫ ξl, ξp.

84



3.5. Analysis

liquid
separated
phase

mps gel
B

A

C

mixed liquid

mixed gel

0 1

1

µ

χp, χm

Figure 3.3: Histories of dif-
ferent samples visualised by
different paths. The verti-
cal parts (grey) and the dots
(black) indicate the prepara-
tion parameters (µ, χp) and
the conditions χm at mea-
surement, respectively. The
three exemplary paths show a
gel prepared close to demix-
ing (A), a weakly crosslinked
gel (B) and a gel measured
close to microphase separa-
tion (C).

Glassy correlations

The glassy correlation function Sgl(k), which describes the persistent charge in-
homogeneities, consists of two parts: the “frozen-in” fluctuations, which originate
from the thermal fluctuations present at the instant of crosslinking that are par-
tially preserved by the network, and the precursors of microphase separation, which
are seeded by the frozen-in fluctuations and the disorder due to the randomness of
crosslinking; these precursors grow large on approaching the microphase transition.

Sufficiently far away from the transition, i.e. for small ξm, Sgl is dominated by the
frozen pre-crosslinking fluctuations, with a high weight at zero wavenumber and
decaying with k. Prior to preparation, the fluctuations decay on the scale kξp ∼ 1,
yet the gel network can only preserve structures larger than or comparable to its
localisation length. Hence the larger of the two lengths ξp and ξl determines the
scale of the frozen fluctuations:

In a gel prepared close to phase separation, i.e. ξp ≫ (ξl, ξm) ≫ 1, corresponding
to path “A” in fig. 3.3, the pre-crosslinking fluctuations are large-scaled enough
to be frozen-in in the network. In this case, eq. (3.96) can be approximated for
small k ≪ ξ−1

p by

Sgl(k) ≈
1

(
c21 + 1

2
ξ2
l /ξ

2
m

)2 · ξ2
p

1 + k2ξ2
p/3

(3.102)

with a constant c21 := 1 − 1
2
ξ2
l (χc − 1)

∣
∣
ξl→∞ ≈ 0.5, see eq. (3.89). Thus, Sgl(k)

is proportional to ξ2
p and decays on the scale k ∼ ξ−1

p of the fluctuations of the
preparation ensemble. An example is shown in fig. 3.4(a).

In a weak gel, crosslinked just beyond the gelation threshold, i.e. ξl ≫ (ξp, ξm) ≫
1 (path “B”), the mesh size of the network is large, and the frozen correlations are
cut off at the inverse localisation length ξ−1

l . For small k, the glassy correlations
are approximately given by

Sgl(k) ≈ ξ4
m/ξ

2
l · w(k2ξ2

l ) , (3.103)
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Figure 3.4.: Correlation functions in the limiting scenarios: (a) Gel prepared close
to phase separation: Sgl, Sth and S in units of 4ξ2

pξ
4
m/ξ

4
l for ξ2

l = 102, ξ2
p = 103

and ξ2
m = 10. (b) Weak gel : Sgl, Sth and S in units of ξ2

m for ξ2
l = 102, ξ2

p = 10
and ξ2

m = 10. (c) Measurement close to microphase separation: Sgl, Sth and S in
units of ξ4

m/ξ
2
l for ξ2

l = 102, ξ2
p = 10 and ξ2

m = 103. The wavenumber squares are
measured in units of k2

c .

hence they decay on the scale k ∼ ξ−1
l , yet grow when approaching microphase

separation. An example is given in fig. 3.4(b).
The cross-over between the two cases discussed so far is demonstrated in fig. 3.5,

showing Sgl(k)/Sgl(0) far from the microphase transition for ξl = 10. For the
leftmost curve, the correlation length of the pre-crosslinking fluctuations is much
larger than the localisation length of the gel, ξ2

p = 105 ≫ ξ2
l = 100, so that the

fluctuations are accurately frozen-in, and Sgl decays on the scale k ∼ ξ−1
p . Upon

decreasing ξp, the curves are shifted to higher k until the correlation length becomes
comparable to the localisation length, which eventually cuts off the preservation of
the fluctuations at k ∼ ξ−1

l . The inset shows the half width at half maximum k1/2

of the curves in the main plot; it increases with decreasing ξp until it saturates at
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Figure 3.5: Scale crossover
in the glassy correlation
function Sgl, normalised to
the value at k = 0:
crossover from preparation
close to demixing to a
weak gel, with χm = 0.1,
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to right). Inset: Half-
width k2
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ing over from ξ−2
p to ξ−2

l

(dashed line).

about ξl = 10−2 (dashed line).
Close to microphase separation, i.e. ξm ≫ (ξl, ξp) ≫ 1, corresponding to path

“C” in fig. 3.3, Sgl(k) is dominated by the critical fluctuations towards microphase
separation, seeded by the frozen-in randomness in the gel. In the absence of
crosslinks, there would be large-scale fluctuations towards macroscopic demixing.
In the gel, displacements are bounded from above roughly by the localisation
length, so that Sgl(k) develops a peak at about kc ≈ 1.6 ξ−1

l , where λ2 becomes
small (see eq. (3.92)); an example is shown in fig. 3.4(c). On approaching the
microphase transition, the peak diverges as λ−2

2 (k), and the glassy correlations
approximately follow

Sgl(k) ∝ bλ−2
2 ≈ ξ−2

l w(k2ξ2
l )

(
ξ−2
m + c2 · (k2 − k2

c)
2
)2 (3.104)

with a constant c2 = w′′(k2
cξ

2
l )
/ (

2k2
c

)
.

Thermal fluctuations

Whereas Sgl(k) describes the time-persistent part of the correlations, so to speak
their mean value, the function Sth(k) measures their variance due to thermal fluc-
tuations. Interestingly, it is independent of the conditions at the time of cross-
linking, so there are only two competing length-scales, ξl and ξm, and two limiting
situations: The weak gel and the gel measured close to microphase separation.

In a weak gel, where ξl ≫ ξm ≫ 1, corresponding to path“B” in fig. 3.3, the ther-
mal fluctuations are hardly restricted by the network. They are only suppressed on
scales larger the localisation length ξl, i.e. for k ≪ ξ−1

l . Apart from a dip at k = 0,
Sth(k) therefore looks like critical fluctuations towards macroscopic demixing, see
fig. 3.4(b). Provided ξm is not too small, Sth(k) reduces to

Sth(k) ≈
ξ2
m

1 + k2ξ2
m/3

, (3.105)
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for small k, decaying with a half width of k1/2 ≈
√

3/ξ2
m.

Close to microphase separation, i.e. ξm ≫ ξl ≫ 1 (path “C” in fig. 3.3), the
strong critical fluctuations are strongly suppressed by the rigidity of the network
on scales larger than the localisation length. In this regime,

Sth(k) ∝ λ−1
2 ≈ 1

ξ−2
m + c2 · (k2 − k2

c)
2

(3.106)

with the constant c2 defined near eq. (3.104), hence Sth(k) develops a peak at about
kc ∼ ξ−1

l , as shown in fig. 3.4(c). On approaching the microphase transition, the
peak diverges as ξ2

m.

Scattering structure factor

The behaviour of the structure factor S = Sgl + Sth in the three limiting regimes
can be inferred from the behaviour of Sgl and Sth. A weak gel (path “B” in fig. 3.3)
preserves only a small amount of the pre-crosslinking fluctuations and hardly hin-
ders thermal fluctuations, so that S(k) ≈ Sth(k) in this case, which decays on the
scale k ∼ ξm, see fig. 3.4(b).

In the other two cases, thermal fluctuations are suppressed by the rigidity of the
network, and S(k) ≈ Sgl(k). In a gel prepared close to phase separation (path “A”
in fig. 3.3), the structure factor decays on the scale k ∼ ξp, see fig. 3.4(a)), whereas
a gel measured close to microphase separation (path “C” in fig. 3.3) reveals a peak
at k ∼ kc, diverging at the transition, see fig. 3.4(c).

The crossovers between the three regimes are illustrated in fig. 3.6. Panel (a)
shows the crossover between a gel prepared close to demixing and the situation
close to microphase separation, driven by increasing ξm at constant ξp ≫ ξl for
a comparably strong gel. Initially, S(k) is dominated by the well-preserved pre-
crosslinking fluctuations with large weight at small k. On growing ξm, S(k) devel-
ops a peak at k ∼ kc, which diverges as the microphase separation is approached.
The opposite case is plotted in panel (b), where the closeness ξp to phase sepa-
ration prior to crosslinking is increased at fixed ξm ≫ ξl for a comparably high
gel strength. Whereas the peak at k ∼ kc remains roughly constant, we observe
the build-up of intensity at low k due to the frozen-in fluctuations. Panel (c)
shows the crossover from a weak gel to a gel prepared close to demixing. In the
weak gel, the frozen-in fluctuations are cut off on the scale k2

1/2 ∼ 3/ξ2
m (vertical

line). As ξp increases, the pre-crosslinking fluctuations become stronger and more
long-ranged, hence the weight at low k grows, and the half width k2

1/2 of S(k)

eventually decreases as 1/ξ2
p. The crossover from a weak gel to a gel near the

microphase transition can finally be seen in panel (d). For small ξm, the structure
factor is dominated by the partially frozen-in fluctuations, cut off at about k . ξl.
The demixing fluctuations increase with ξm, but are damped on length-scales larger
than ξl by the rigidity of the network. This effectively leads to a peak at k ∼ kc,
a precursor of microphase separation. An overview over the basic features of Sgl,
Sth, and S in the three regimes is given in tab. 3.5.6.
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Figure 3.6.: Scale crossover in the structure factor S(k). (a) From preparation
near demixing to approaching microphase separation. . . : ξ2

m = 101, 103, 105 for
ξ2
p = 103 and ξ2

l = 101 (b) . . . and vice versa: ξ2
p = 101, 103, 105 for ξ2
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l = 103 and ξ2

m = 101. Vertical line: k2 = 3ξ−2
m . (d) From a weak gel to

approaching mps: ξ2
m = 101, 102, 103, 104 for ξ2

l = 102 and ξ2
p = 101.

Liquid and gel phase

In the decay of the scattering functions in a gel prepared close to demixing, exam-
ined in the previous paragraphs, we have already seen the freezing-in of disorder
in the gel. Nevertheless, it is interesting to complement this observation by com-
paring the correlations of the blend in the liquid and the gel phase, measured at
the preparation conditions χp = χm =: χ. They are given by

S(l) = χ−2

(
1

χ−1 − gD(k)
− χ

)

, S
(l)
gl = 0, (3.107)
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(A) ξp ≫ (ξl, ξm) (B) ξl ≫ (ξp, ξm) (C) ξm ≫ (ξl, ξp)

preparation near demixing weak gel measurement close to
microphase separation

Sgl(k) ∝
{

ξ2
pξ

4
m/ξ

4
l for ξl ≫ ξm

ξ2
p for ξl ≪ ξm

∝ ξ4
m/ξ

2
l divergence ∝ ξ4

m/ξ
2
l

decay on scale k ∼ ξ−1
p decay on scale k ∼ ξ−1

l peak at k ∼ kc ∝ ξ−2
l

Sth(k) — ∝ ξ2
m divergence ∝ ξ2

m

decay on scale k ∼ ξ−1
m peak at k ∼ kc ∝ ξ−2

l

S(k) ∝
{

ξ2
pξ

4
m/ξ

4
l for ξl ≫ ξm

ξ2
p for ξl ≪ ξm

∝ ξ2
m divergence ∝ ξ4

m/ξ
2
l

decay on scale k ∼ ξ−1
p decay on scale k ∼ ξ−1

m peak at k ∼ kc ∝ ξ−2
l

Table 3.1.: Behaviour of Sgl(k), Sth(k), and S(k) = Sgl(k) + Sth(k) in the limiting
regimes corresponding to paths “A”, “B” and “C” in fig. 3.3. Note that Sth(k) is
independent of ξp.

S(g) = χ−2

(
1

χ−1 − gD(k)
− χ

)

and S
(g)
gl = χ−2 b

λ1λ2
> 0, (3.108)

where (l) and (g) stand for liquid and gel. The X-ray scattering function S cov-
ering both thermal fluctuations and static correlations, is equal in both cases, left
unaffected by the introduction of crosslinks, whereas the glassy correlation func-
tion is nonzero only in the crosslinked sample. This is another indication that the
fluctuations present at the time of crosslinking partially become frozen-in. (The
thermal fluctuations Sth = S − Sgl are diminished in equal measure.)

Comparison to phenomenological theories

In the following, we shall compare our correlation functions to the results of the
phenomenological theories of de Gennes, Benhamou et al. and Read et al.. By
analogy to polarisation in a dielectric medium, de Gennes [45] found the free
energy of a crosslinked polymer blend to be given by

f =
1

2

∑′

k

(

χc − χm + k2 +
C

k2

)

ΨkΨ−k (3.109)

with a constant C describing the rigidity of the gel. The free energy (3.109) reveals
an instability at finite wavelength and thus predicts the transition to a microphase
separated state. In scattering experiments, Briber and Bauer [49] confirmed this
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prediction but also found a nonzero scattering intensity at k = 0, in disagreement
with eq. (3.109), which they correctly attributed to the freezing-in of demixing fluc-
tuations during preparation. To account for the preserved fluctuations disregarded
in [45], Benhamou et al. [51, 52] complemented eq. (3.109) with a Debye-Hückel
screening of the charges, the screening length 1/κ determined such that the zero
angle scattering intensity is not affected by the crosslinking:

f =
1

2

∑′

k

(

χc − χm + k2 +
C

κ2 + k2

)

ΨkΨ−k (3.110)

Our result, in the quadratic approximation and with the almost replica-symmetric
ansatz Ψα = (1 − δα,0)Ψ for a gel prepared from a homogeneous liquid, reads

f =
1

2

∑′

k

(
1

χm
− gD(k2) + µ(µ− 1)w

(
k2/(µ− 1)

)
)

ΨkΨ−k

≈ 1

2χm

∑′

k

(

1 − χm − χm

3
k2 + χmµ(µ− 1)w

(
k2/(µ− 1)

))

ΨkΨ−k (3.111)

see, e.g., eq. (3.83) or eq. (3.138). Obviously, the microscopic theory agrees with the
phenomenological theory, apart from the shape of the localisation term assumed
to be Lorentzian in eq. (3.110). The screening length and the elasticity constant
can be unambiguously identified with the localisation length and the strength of
the gel network, respectively, which are computed from our model without ad hoc
assumptions.

An explicit account for the freezing-in of fluctuations due to the localisation of
chains in the gel was first reported by Read et al. [53]. They considered a blend
of homopolymers, anchored to randomly chosen points in space at both ends in
an ad hoc approach to mimic the effect of crosslinking. Read et al. computed the
volatile and persistent charge correlations

Sth(k) =
1

χc − χm + k2 − C/k2
, Sgl(k) =

C2/k4 · |ρ0k|2
(χc − χm + k2 − C/k2)2 , (3.112)

with ρ0k denoting the frozen-in charge density, indeed finding a nonzero value of
Sgl(k) in the limit k → 0. Close to microphase separation, the corresponding
results of our theory are approximately given by

Sth(k) ∝
1

χc − χm + c2 · (k2 − k2
c )

2
(3.113)

Sgl(k) ∝
µ(µ− 1)w(k2ξ2

l )
(
χc − χm + c2 · (k2 − k2

c)
2
)2 (3.114)

see eqs. (3.106) and (3.104); the constant c2 is defined near eq. (3.104). The ad
hoc treatment of gelation of ref. [53] and our microscopic description agree in
predicting the glassy correlations to diverge twice as strongly as the thermal ones
on approaching the microphase separation transition.
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3.5.7. Microphase separation

At χm = χc, the homogeneous gel ultimately becomes unstable with respect to
phase separation. As we have seen in section 3.5.4, the instability first occurs for
nonzero wavenumbers, indicating that the gel undergoes microscopic rather than
macroscopic phase separation.

Fourth order Landau expansion

To discuss microphase separation, we require the Landau expansion of the effective
free energy to fourth order in Ψ,

nFn

(
Ψ, Ω̃,Ω

)
=

N

2

n∑

α=0

∑′

k

(
1

χα
− q2

λ̃α
− (1 − q2)gD(k2)

)

Ψα
kΨα

−k + i qN

n∑

α=0

∑′

k

1

λ̃α
Ψα

kΩ̃α
−k

+
N

2

n∑

α=0

∑′

k

(
1

λ̃α
+ gD(k2)

)

Ω̃kΩ̃−k +
N

2

∑

k̂

(
V n

µ
− gD(k2)

)

Ωk̂Ω−k̂

− N

2
(1 − q2)

∑

α1 6=α2

∑′

k1,2

∑

k̂3

gΨ2Ω(k1,k2) Ψα1
k1

Ψα2
k2

Ωk̂3
· δ

k1⊗eα1+k2⊗eα2+k̂3, 0̂

− N

6

∑

k̂1,2,3

g3(k̂1, k̂2) Ωk̂1
Ωk̂2

Ωk̂3
· δk̂1+k̂2+k̂3,0̂

+
N

3
q(1 − q2)

n∑

α=0

∑′

k1,2,3

g3(k1,k2) Ψα
k1

Ψα
k2

Ψα
k3

· δk1+k2+k3,0

− iN

2
(1 − q2)

n∑

α=0

∑′

k1,2,3

g3(k1,k2) Ψα
k1

Ψα
k2

Ω̃α
k3

· δk1+k2+k3,0

− N

24
(1 − q2)(1 + 3q2)

n∑

α=0

∑′

k1,2,3,4

gΨ4(k1,k2,k3) Ψα
k1

Ψα
k2

Ψα
k3

Ψα
k4

· δk1+k2+k3+k4,0

+
N

8
(1 − q2)(1 + 3q2)

n∑

α=0

(
∑′

k

gD(k2) Ψα
kΨα

−k

)2

+ O
(
Ψ5, Ω̃3,Ω4,Ψ3Ω̃,Ψ3Ω,Ψ2Ω2, Ω̃2Ω

)
(3.115)

with gΨ4 defined in appendix D.2.1. In analogy to section 2.5.4, we integrate out
the density field Ω̃ on the saddle point level to second order in Ψ, where

¯̃Ωα
k =

−i q

1 + λ̃αgD(k2)
Ψα

k

+
i (1 − q2)

2
(
1/λ̃α + gD(k2)

)

∑′

k2,3

g3(k2,k3)Ψ
α
k2

Ψα
k3

· δk+k2+k3,0. (3.116)
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3.5. Analysis

For low compressibility or in the symmetric case we have Ω̃ ∼ Ψ2, so that the ex-
pansion to second order in Ω̃ and to fourth order in Ψ is consistent. As the physical
density is proportional to 1/(λm−µ) and thus vanishes in the incompressible limit
for any Ω̃, the nonzero saddle point value is not in contradiction with this limit.
For a discussion of eq. (3.116), see section 3.5.9.

We restrict the discussion to weak gels just beyond the transition, i.e. µ−1 ≪ 1
and χ − χc ≪ 1, so both Ψ̄ and Ω̄ are small. In the vicinity of the microphase
transition, the second-order coefficient becomes very small and is strongly affected
by the coupling of Ψ and Ω, despite of the smallness of the latter. In contrast, the
coefficients of the third-order term (if present at all) and the fourth-order term are
of the order one, so that the coupling is negligible and we can let Ω̄ = 0 therein.
This allows us to disregard the effect of Ψ̄ on Ω̄: a shift in Ω̄ would be of the
order Ψ2 and contribute only to fourth in Ψ, where the influence of gelation can
be neglected anyway. Hence we can approximate Ω̄ by eq. (3.81). Inserting the
saddle points of Ω̃ and Ω into eq. (3.115) we obtain

nFn

(
Ψ
)

:= nFn

(
Ψ, ¯̃Ω, Ω̄

)
=

N

2

n∑

α1,2=0

∑′

k

(

(1 − q2)Aα1 α2(k) −
q2 gD(k2) · δα1,α2

λ̃α1(1 + λ̃α1gD(k2))

)

Ψα2

k Ψα2

−k

+
q(1 − q2)N

3

n∑

α=0

∑′

k1,2,3

g3(k1,k2)

(

1 − 3g3(k1,k2)

2(1 + λ̃α)

)

Ψα
k1

Ψα
k2

Ψα
k3

· δk1+k2+k3,0

+
(1 − q2)N

8

n∑

α=0

∑′

k1,2,3,4

(

(1 − q2)g3(k1,k2)g3(k3,k4)

gD

(
(k1 + k2)2

)

(

1 − 1

1 + λ̃α

)

− 1 + 3q2

3
gΨ4(k1,k2,k3)

)

Ψα
k1

Ψα
k2

Ψα
k3

Ψα
k4

· δk1+k2+k3+k4,0

+
(1 − q2)N

2

n∑

α=0

(

q2 +
1 − q2

4(1 + λ̃α)

)(
∑′

k

gD(k2) Ψα
kΨα

−k

)2

(3.117)

with the matrix elements Aα1 α2 of A defined in eq. (3.84). Some of the terms
due to tracing out Ω̃ survive the incompressible limit λ̃α → ∞, yielding additional
fourth-order terms in Ψ to the effective free energy, which in this limit is given by

n

(1 − q2)N
Fn

(
Ψ
)

=

1

2

n∑

α1,2=0

∑′

k

Aα1 α2(k) Ψα2

k Ψα2

−k +
q

3

n∑

α=0

∑′

k1,2,3

g3(k1,k2) Ψα
k1

Ψα
k2

Ψα
k3

· δk1+k2+k3,0

+
1

8

n∑

α=0

∑′

k1,2,3,4

(

(1 − q2)g3(k1,k2)g3(k3,k4)

gD

(
(k1 + k2)2

) − 1 + 3q2

3
gΨ4(k1,k2,k3)

)

× Ψα
k1

Ψα
k2

Ψα
k3

Ψα
k4

· δk1+k2+k3+k4,0
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+
q2

2

n∑

α=0

(
∑′

k

gD(k2) Ψα
kΨα

−k

)2

. (3.118)

Symmetric case: lamellar phases

We first discuss of microphase separation for the symmetric case q = 0, where
the third-order term and the biquadratic term in eq. (3.118) vanish. The remain-
ing fourth-order term depends on the separation pattern. We consider a simple
lamellar microphase state with sinusoidal modulations in real space,

Ψ̄α
k′ =

{

0, for α = 0,
(
δk′,k + δk′,−k

)
ψ, otherwise

(3.119)

which is replica-symmetric apart from the zeroth replica reflecting the preparation
ensemble. The wavelength 2π/k and the amplitude ψ ≥ 0 are variational param-
eters subject to optimisation. Other simple structures, viz. hexagonally ordered
cylinders and spheres on a bcc lattice, lead to higher free energies; the same holds
for superpositions of sinusoidal charge density modulations like eq. (3.119) hav-
ing equal wavelength but random orientations. As will be shown in sections 3.5.8
and 3.5.9, these conclusions, however, depend on the symmetry and compressibility
of the blend. Inserting the ansatz (3.119) into eq. (3.118) yields

2 · f (k, ψ) := 2
N
· lim
n→0

Fn({Ψ}) ≈ 2λ2(k) · ψ2 + g4(k
2) · ψ4 (3.120)

with λ2 defined in eq. (3.88) and

g4(k
2) :=

1

2

(
(g3(k

2))2

gD(4k2)
+ 2 (gD(k2))2 − gΨ4(k2)

)

= 1 − 2

3
k2 + O(k4) . (3.121)

At the onset of the microphase separation, the optimal wavenumber is given
by kc defined in eq. (3.90), and the amplitude is infinitely small. For χm > χc,
amplitude and wavelength must be determined by variational optimisation of f ,
which can be done analytically for ψ, leading to

ψ2
min(k) = − λ2(k)

g4(k2)
and f (k, ψmin) = −(λ2(k))

2

2 g4(k2)
(3.122)

To determine the optimal wavenumber we expand ∂f(k,ψmin)
∂(k2)

= 0 about k2 = k2
c

and obtain

k2
min − k2

c =
−∂ ln g4(k2)

∂(k2)

2 ∂2λ2(k)
∂(k2)2

∣
∣
∣
∣
∣
∣
k=kc

· χm − χc

χm χc
+ O

(

(χm − χc)
2
)

. (3.123)
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3.5. Analysis

For small µ− 1, we can expand the proportionality constant in powers of (µ− 1),
which finally leads to

k2
min − k2

c =
−∂ ln g4(k2)

∂(k2)

∣
∣
∣
k=0

2 · w′′
(

lim
µ→1

k2
c

µ−1

) · (χm − χc)(µ− 1) + . . .

≈ 1.09 · (χm − χc)(µ− 1) + O
(
(χm − χc)

2, (µ− 1)2
)
, (3.124)

in agreement with numerical results. The optimal amplitude is given by ψmin(kmin),
which is zero at the microphase transition. An expansion in powers of χm − χc

(and µ− 1) yields

ψ2
min =

χm − χc

χ2
c g4(kc)

+ O
(
(χm − χc)

2
)

= (χm − χc) + O
(
(χm − χc)

2, (µ− 1)
)
. (3.125)

Hence, we find a second-order phase transition, with the squared amplitude of
the microphase separation pattern, as well as the shift of inverse square of the
spatial period, depending linearly on the distance (Tc −T ) to the transition. (The
functional form of the period should, however, be taken with a pinch of salt, since
it strongly depends on the detailed choice of the model through the correlation
function g4(k).)

3.5.8. Effects of compositional asymmetry

As we have seen in sections 3.5.2, 3.5.4 and 3.5.6, an asymmetric composition
q 6= 0 just leads to a rescaling of the spinodals χp = 1/γ, χm = χc and the
charge correlations S, Sgl, Sth. However, due to the third-order term proportional
to q in the Landau free energy (3.118), both the macrophase separation of the
uncrosslinked liquid and the microphase separation of the gel become first-order
transitions for q 6= 0, and the spinodals no longer coincide with the equilibrium
phase transition point.

In the following we shall discuss the effect of asymmetry on the equilibrium
microphase transition point χt ≤ χc. Since within mean-field theory, the mi-
crophase transition is unaffected by frozen fluctuations, the incompatibility χp

prior to preparation is nearly irrelevant. The only constraint is that the gel is
required to be prepared from a homogeneous mixture, no matter whether this is
an undercooled or the equilibrium state.

The typical domain size of the microphases is more or less given by the localisa-
tion length ξl of the gel, so we can drop the k-dependence of the higher-order terms
in the Landau free energy. With the ansatz Ψα

k = (1−δα,0) Ψk corresponding to the
mixed state in the preparation ensemble and replica-symmetric phase separation
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in the measurement ensemble, this leads to the rescaled free energy density

f ({Ψ}) := lim
n→0

Fn ({Ψ})
N(1 − q2)

=
1

2

∑′

k

λ2(k) ΨkΨ−k +
q

3

∑′

k1,2,3

Ψk1Ψk2Ψk3 · δk1+k2+k3,0

+
q2

2

(
∑′

k

ΨkΨ−k

)2

+
1 − 3q2

12

∑′

k1,2,3,4

Ψk1Ψk2Ψk3Ψk4 · δk1+k2+k3+k4,0. (3.126)

with λ2(k) defined in eq. (3.88).
Besides the lamellar microphases discussed in section 3.5.7, we now consider two

additional morphologies: Cylindrical phases with parallel orientation, aligned on
a honeycomb lattice in the perpendicular plane, and spherical domains on a body
centred cubic lattice. The three morphologies are shown in fig. B.1. They are
chosen because they are known to appear in the microphase separation of regular
block copolymer melts [3, 6]. Although a randomly crosslinked blend will probably
reveal only local order, the regular structures are useful to construct a simple and
tractable ansatz for the microphase separated state:

Ψk′ =
Ψ√
m

m∑

i=1

(δk′, kni
+ δk′,−kni

) (3.127)

with the lattice vectors {ni} defined in appendix B.1 and m = 1 for lamellæ,
m = 3 for hexagonally ordered cylinders and m = 6 for spheres on a bcc lattice.
The wavenumber k and the amplitude Ψ of the charge density modulations have
to be determined by minimisation of the effective free energy. The optimal wave
obviously is given by kc defined in eq. (3.90), so we can make use of

λ2(kc) =
1

(1 − q2)χm

− 1

(1 − q2)χc

. (3.128)

With the lattice ansatz (3.127), the evaluation of the higher-order sums in
eq. (3.126) amounts to counting the number of possible “loops” of two, three and
four lattice vectors that add to zero; this is carried out in appendix B.1. We have
∑′

k ΨkΨ−k = 2Ψ2, independent of the morphology, and

∑′

k1,2,3

Ψk1Ψk2Ψk3 · δk1+k2+k3,0 = c
(m)
3 Ψ3, (3.129)

∑′

k1,2,3,4

Ψk1Ψk2Ψk3Ψk4 · δk1+k2+k3+k4,0 = c
(m)
4 Ψ4 (3.130)

where

c
(1)
3 = 0, c

(3)
3 = 4/

√
3, c

(6)
3 = 4 ·

√

2/3, (3.131)

c
(1)
4 = 6, c

(3)
4 = 10, c

(6)
4 = 15. (3.132)
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Thus, the free energy density becomes

f(Ψ) :=
χ−1

m − χ−1
c

1 − q2
· Ψ2 +

qc
(m)
3

3
· Ψ3 +

(

2q2 +
(1 − 3q2)c

(m)
4

12

)

· Ψ4 (3.133)

In the symmetric case, the free energy (3.133) is minimised by the lamellar
ansatz, which corresponds to the smallest c4. For m = 1, the third-order term
vanishes even if q 6= 0, so the transition remains second order and the spinodal
indeed indicates the equilibrium phase transition point with respect to lamellæ.
For cylinders and bcc spheres, in contrast, the equilibrium transition point χt is
shifted according to

1

(1 − q2)χt
− 1

(1 − q2)χc
=

(
qc

(m)
3 /3

)2

4
(
2q2 + (1 − 3q2)c

(m)
4 /12

) =

(
qc

(m)
3

)2

72q2 + 3(1 − 3q2)c
(m)
4

=







8q2

45 − 27q2
=

24

135
q2 + O(q4) for m = 3 (cylinders),

32q2

135 − 189q2
=

32

135
q2 + O(q4) for m = 6 (bcc spheres).

(3.134)

In the asymmetric case, the bcc spheres yield the lowest equilibrium transition
point of the three possibilities possibilities, i.e. microphases first occur with bcc
symmetry. This is to be expected, as the lowest surface to volume ratio of the
minority phase is minimal for spherical domains, and it is in agreement with the
finding of Alexander and McTague [86] of a general preference for bcc symmetry
in crystal nucleation. It should be noted that, for large q2, the right hand side
in the last line of eq. (3.134) diverges; in this case the transition is strongly first
order, and the Landau expansion breaks down.

3.5.9. Effects of compressibility

The influence of compressibility on the phase separation behaviour becomes ap-
parent in the saddle point (3.116) of the density field Ω̃, which takes a nonzero
value in a phase separated state. For simplicity we restrict the discussion of com-
pressibility effects to the symmetric case, where the shifted and the original density
fields coincide. In this case eq. (3.116) reduces to

Ω̄α
k ≡ ¯̃Ωα

k =
i

2
(
1/λ̃α + gD(k2)

)

∑′

k2,3

g3(k2,k3)Ψ
α
k2

Ψα
k3

· δk+k2+k3,0. (3.135)

As described by eq. (3.135), a compressible system can avoid unfavourable A-B
contacts and lower its energy by diluting mixed regions having many such contacts,
which are characterised by a small absolute charge density, and condensing regions
that are rich in either A or B , which have a high absolute charge density. For
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Figure 3.7: Coupling of mass and
charge density Ω and Ψ. Zones of large
absolute charge density are condensed,
and hence the mass density is modu-
lated with half the wavelength of the
charge density modulations.

Ψ(x)

Ω(x)

example, in the case of lamellar microphases described by a single wavevector k

as in eq. (3.119), eq. (3.135) predicts density field modulations having wavevector
k1 = ±2k, i.e. with twice the wavenumber of the charge density modulations. This
is intuitively clear: Along one spatial period of the charge density modulations,
their modulus or square, and thus the mass density, oscillates twice, corresponding
to the half wavelength or the double wavenumber; this is illustrated in fig. 3.7.

The saddle point of Ω̃ does not vanish for µ → ∞. As pointed out before, this
is not in contradiction with incompressibility, since the physical density is given
by Qk ∼ (Ω̃k + i qΨ)/(λm − µ) and vanishes in any case for λm → ∞. While
the physical density becomes infinitely small in the incompressible limit, the bulk
modulus diverges. The effect of the quadratic coupling described above therefore
survives the limit, contributing additional fourth-order terms in Ψ to the Landau
expansion.

To study microphase separation in the symmetric but compressible case, we let
q = 0 in eq. (3.117). Furthermore, we drop the k dependence in the higher-order
vertices, since in the approximation, the domain size is determined by kc or the
localisation length of the gel. (The k-dependence is only necessary to compute the
domain size deeper in the phase separated state.) Thus we have

nFn

(
Ψ
)

=
N

2

n∑

α1,2=0

∑′

k

Aα1 α2(k) Ψα2
k Ψα2

−k +
N

8

n∑

α=0

1

1 + λ̃α

(
∑′

k

Ψα
kΨα

−k

)2

+
N

12

n∑

α=0

∑′

k1,2,3,4

(

1 − 3

2 (1 + λ̃α)

)

Ψα
k1

Ψα
k2

Ψα
k3

Ψα
k4

· δk1+k2+k3+k4,0. (3.136)

With the ansatz Ψα = (1 − δα,0)Ψ, and with

λeff := 1 + λ̃α = λm + 1 − µ/V n ≈ λm for α ≥ 1, (3.137)

the effective free energy simplifies to

f(Ψ, k) := lim
n→0

1
N
Fn

(
Ψ
)

=
1

2

∑′

k

λ2(k) ΨkΨ−k +
1

8 λeff

(
∑′

k

ΨkΨ−k

)2

+
1

12

(

1 − 3

2 λeff

)
∑′

k1,2,3,4

Ψk1Ψk2Ψk3Ψk4 · δk1+k2+k3+k4,0 . (3.138)
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To account for the potential randomness of the microphase pattern, we ex-
tend the lamellar ansatz of section 3.5.7 by allowingfor a superposition of Z one-
dimensional waves, each with identical wavenumber k but random phase Φz and
wavevector orientation nz, i.e.,

Ψk′ =
Ψ√
Z

Z∑

z=1

(
ei Φzδk′,−knz + e−i Φzδk′,knz

)
, (3.139)

corresponding to 2Ψ/(V Z1/2) ·∑Z
z=1 cos (knzk

′ + Φz) in real space. The optimal
number of orientations will be determined later. A few examples of such random
morphologies are shown in fig. 3.8, the number of phases ranging from 1 to 1000.

We assume that none of the orientations nz are collinear, and thus the quadratic
sums in eq. (3.138) yield

∑′

k′

λ2(k
′)Ψk′Ψ−k′ = 2λ2(k) Ψ2 and

∑′

k′

Ψk′Ψ−k′ = 2Ψ2. (3.140)

Computing the fourth-order sum in eq. (3.138) again amounts to counting the
number of possible closed loops of orientations. Because of the randomness, the
existence of quadruples of orientations able to form a closed loop is very unlikely,
except for the degenerate planar case of pairs of opposite vectors (±nz,±nz′), and
hence we disregard non-planar loops. Single orientations allow for the construction
of quadruples (nz,nz,−nz,−nz) that can be ordered in

(
4
2

)
= 6 ways. Quadruples

(±nz,±nz′) of two pairs of different orientations can be ordered in 4! = 24 different
ways, and there are 1

2
Z(Z − 1) such pairs. Thus, the quartic sum in eq. (3.138)

yields

∑′

k1,2,3,4

Ψk1Ψk2Ψk3Ψk4 · δk1+k2+k3+k4,0 =
12Z(Z − 1) + 6Z

Z2
Ψ4

= 12

(

1 − 1

2Z

)

Ψ4. (3.141)

Inserting the sums into the free energy density we obtain

f(Ψ, k) = λ2(k) · Ψ2 +

((

1 − 1

λeff

)

−
(

1 − 3

2λeff

)
1

2Z

)

· Ψ4. (3.142)

As expected, the minimisation of f with respect to k yields k = kc as defined in
eq. (3.90). The phase transition point coincides with the spinodal χc, which in the
symmetric case is not affected by compressibility. The fourth-order term, however,
depends on λeff and the number Z of orientations. It has to be positive for all Z
to guarantee stability, thus we have to require that

λeff > 1. (3.143)
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(a) (b) (c)

(d) (e) (f)

Figure 3.8.: Superposition of lamellæ raving random orientations in real space in
two dimensions. The pictures show an area of 10 by 10 wavelengths, and the local
amplitude is indicated by the grey scale in arbitrary units for Z = 1, 5, 10, 50, 100
and 1000 orientations (from (a) to (f)).

The sign of the O(Z−1) term determines the optimal number of random orienta-
tions. For low compressibilities, i.e. for λeff > 3/2, the term is negative and the free
energy grows with an increasing number of orientations, hence the simple lamellar
morphology is favoured. For a rather compressible system having, in contrast,
1 < λeff < 3/2, the effective free energy decreases with increasing Z, favouring an
“infinite” number of orientations and hence a random pattern.

3.6. Discussion and conclusions

In this chapter we have studied various properties of weakly crosslinked homopoly-
mer blends. Of particular interest were the enhancement of stability of the mixed
regime, the scattering functions, i.e. the volatile and persistent concentration fluc-
tuations, and the properties of the microphase separation transition replacing the
macroscopic phase separation. Our investigations were performed on the basis of
a Landau free energy derived from a comprehensive microscopic model. The latter
accounts for both fundamental aspects in the system, viz. phase separation and
gelation, following a modern vulcanisation theory [77] free of ad hoc assumptions,
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and treating quenched and annealed randomness systematically. Distinguishing
between the preparation ensemble and the measurement ensemble, i.e. the system
at the instant of crosslinking and at the time of measurement, respectively, our
theory is able to quantify the degree to which demixing fluctuations in the blend
are frozen-in by crosslinking.

In accordance with the de Gennes’ prediction [45] and with virtually all other
works on the subject, we have found the range of compatibility to be extended
proportional to the degree (µ − 1) of gelation and the occurrence of a peak in
the scattering functions at a wavevector kc (often denoted as k∗) growing linearly
with (µ−1), as well. The latter approximately corresponds to the typical dimension
of the strands between adjacent crosslinks or to the mesh size of the network. Some
authors emphasise that they find larger domain sizes, i.e. a proportionality constant
differing from de Gennes’ by a factor of two or four; see, e.g., [49] or [56]. Lacking
the exact relation between the localisation length of the gel and the typical strand
length, we are unable to comment on this point. Yet, in the light of the rough
estimate of the rigidity constant in [45] and of the high degree of disorder in the
crosslinks implying a huge bandwidth of strand lengths, these deviations are rather
small and not surprising. We have found, however, a substantial difference to [45]
regarding the magnitude of the peak in the scattering functions, in agreement with
Read et al. [53]: On approaching microphase separation, the peaks of S(k) and
Sgl(k) diverge as λ−2

2 ∝ (T − Tc)
−2 instead of (T − Tc)

−1. The frozen-in disorder
due to pre-crosslinking fluctuations and due to the random crosslinks seeds local
rearrangements, leading to persistent concentration fluctuations that announce the
onset of microphase separation. The purely thermal fluctuations grow as (T−Tc)

−1,
as predicted by de Gennes.

The most obvious deviation of the experiments from the theory in ref. [45] is the
non-vanishing scattering intensity at zero scattering angle in the measurements.
Briber and Bauer conjectured [49] that it originates from the frozen-in fluctuations,
which was confirmed by several authors [51–53], however using phenomenological
approaches with certain restrictions: Benmouna and Bettachy extended de Gennes’
analogy to a dielectric by a Debye-Hückel screening term, which allows for (e.g.
frozen-in) inhomogeneities on large length-scales. The screening length can be
determined by assuming that the scattering functions of the uncrosslinked blend
and the gel, measured at the preparation temperature, coincide [52]; as we have
shown in section 3.5.6, this indeed holds true for the X-ray scattering function.
This model does not explicitly account, though, for a fundamental property of
the system: the localisation of polymer chains due to crosslinks. Read et al. [53]
mimicked the immobilisation of the chains due to crosslinking by assuming that the
chains are pinned at either end to randomly chosen points in space. As mentioned
before, their (X-ray) scattering function diverges as (T −Tc)

−2 and reveals nonzero
intensity at zero wavenumber. Yet, the ad hoc treatment only yields a caricature
of the gel network, and it neither allows for the potential motion of crosslinks in
the gel nor permits assessing the influence of the preparation conditions on the
scattering intensities.
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3. Crosslinked homopolymer blends

Our present approach describes both phase separation and gelation in a micro-
scopic manner, without resorting to ad hoc assumptions. Besides reproducing the
peak in the scattering functions including its scaling near the microphase transi-
tion, and detecting the existence of the zero-angle scattering, we have also investi-
gated the influence of the preparation conditions and the crossover between three
limiting regimes, viz. preparation near demixing, measurement near demixing and
weak gelation.

Furthermore, we have achieved a rough picture of the microphase separated state
in the vicinity of the transition by assuming a regular or random morphology,
taking into account the effects of compositional asymmetry and compressibility.
As is to be expected from geometric considerations, lamellæ are advantageous in
the symmetric case, while asymmetric melts favour a cubic lattice. Sufficiently
compressible systems have been shown to prefer a random morphology. Due to
the quenched randomness in the system, we expect only local ordering; according
to Panyukov and Rubinstein [58], long-range order can, however, be restored by
the application of stress, forcing local lamellæ to rotate into the direction of least
modulus.

Although the microphase transition in the symmetric case is of second order
within mean-field theory, it is likely to be rendered first-order by fluctuations, as
was shown for generic systems with isotropic, finite-k instabilities by Brazovskĭı [44]
and for block copolymer melts by Fredrickson and coworkers [5, 87]. The nonclas-
sical region is, however, predicted to be small by Benhamou et al. [64].
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4. Conclusions and outlook

We have studied the phase behaviour of two different kinds of molten heteropoly-
mers with quenched randomness: random block copolymer melts and crosslinked
homopolymer blends. In both systems, the frustration between the enthalpy of
mixing and entropic forces hampers or prevents macroscopic phase separation,
giving rise to microstructured phases with a variety of possible morphologies.

In chapter 2 we have addressed random block copolymers using different ap-
proaches derived from the same microscopic model. By coarse-graining the model,
disregarding the conformations of the individual chains, we have recovered the mul-
ticomponent picture by Nesarikar et al. [16], which divides the copolymer chains
into species according to their content of A and B monomers and determines the
chemical equilibrium separately for each species. Due to the coarse-graining, the
theory is restricted to separations into macroscopic phases, for which it is exact
on the mean-field level also in the case of first order transitions. The analytic
equilibrium conditions have been solved numerically. The alternative approach by
Fredrickson et al. [17], based on a fourth-order Landau expansion of the effective
free energy of the system, retains the microscopical details of the model and is thus
capable of describing the separation into microscopic phases. We have extended
the theory by Fredrickson et al. in different ways. We have shown that certain ap-
proximations for long blocks and chains in ref. [17] are inconsistent. For instance,
they lead to the incorrect predictions that the system is insensitive to the mi-
crophase morphology and that the microphases reveal an infinite domain spacing
at their onset in the symmetric case. According to our calculation, microphases in
a symmetric melt always set in with finite wavelength and lamellar morphology.
Abstaining from using said approximations, we have also been able to consider
the case of short blocks and short chains, finding considerable deviations from the
long-chain predictions. Furthermore, we have discussed the effects of compressibil-
ity, which faciliates phase separation and leads to a higher spinodal temperature
in the asymmetric case. Comparing the predictions of the Landau theory and the
multicomponent theory for macroscopic phase separation shows that the Landau
expansion is only correct for nearly symmetric melts. For asymmetric melts, the
transition becomes first-order and the Landau expansion breaks down.

Monte-Carlo simulations by Houdayer and Müller [21] suggest a fractionation of
the melt according to the chain sequences, leading to the coexistence macro- and
microphases, with homopolymeric chains preferring the former and copolymeric
chains preferring the latter. In order to study the coexistence of homogeneous and
microstructured phases, and, in particular, fractionation as a mechanism enabling
microphase separation, we have set up a simple fractionation scheme. We have
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shown that fractionation is sufficient to enable microphase separation, without
requiring the subtle relation between the spatial dependence of the second and
fourth-order vertices of the Landau expansion necessary in the conventional theory
by Fredrickson et al. [17]. Moreover, unlike ref. [22], our approach allows for the
direct observation of the partitioning of the chains onto the three phases according
to their sequence.

In chapter 3 we have developed a comprehensive model for randomly cross-
linked homopolymer blends describing both gelation and phase separation in a
microscopic fashion free of ad hoc assumptions. Moreover, our model accounts for
different external conditions prior to and after preparation. In agreement with ex-
periments [49] and previous phenomenological theories [45, 52, 53], we have found
the stability of the mixed state to be enhanced by the introduction of crosslinks.
We have computed the degree of stabilisation quantitatively for symmetric and
asymmetric blends. Furthermore, our theory allowed us to calculate the scatter-
ing functions describing volatile and glassy, i.e. persistent, demixing fluctuations.
Independently varying the conditions in the preparation and measurement ensem-
bles and the amount of crosslinking, we have identified three regimes, in which the
glassy fluctuations are dominated by either the pre-crosslinking fluctuations that
are frozen-in into the gel network, by fluctuations seeded by frozen-in disorder,
or by the fluctuations towards microphase separation. The latter are peaked at
wavenumbers of about the inverse localisation length of the gel; they announce,
and diverge at, the microphase transition.

The microphase separated state itself has been investigated considering different
morphologies, including a random pattern. In incompressible symmetric systems,
the lowest free energy is achieved by a lamellar lattice with a wavelength that
corresponds to the localisation length of the gel and that only slightly varies with
temperature on going deeper into the phase separated regime. Asymmetric com-
positions lead to a first-order transition, and the favoured microphase morphology
are spherical domains of the minority component on a bcc lattice the matrix of the
majority component in this case. Although mostly focusing on the incompressible
limit, we have also studied the effects of compressibility, which partly contribute
even in the incompressible limit. Moreover, we have shown that sufficiently com-
pressible system prefer a random morphology to the regular microphase patterns.

Further steps

To generalise our theory of fractionation discussed in section 2.7 to the case of
longer chains, it would be helpful to extend the class of polymer sequences allowed
to “choose” between micro- and macrophases. Moreover, we have concentrated
on fractionation of symmetric systems so far; it would be interesting to consider
the asymmetric case, as well. Further points worth taking into account are the
effects of fluctuations and polydispersity of blocks and chains. Since the enthalpy
of mixing increases with the length of blocks and chains, whereas the entropy
of mixing per chain is fixed, polydispersity has a major influence on the phase
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behaviour of real copolymer melts. It can lead to fractionation with respect to
the chain length: the longest chains separate first to form microstructured phases,
which coexist with the disordered phase of smaller chains [31].

In the discussion of crosslinked homopolymer blends in chapter 3, we concen-
trated, for the sake of simplicity, on the case of chains with equal degree of poly-
merisation before crosslinking. It would be interesting to disengage from this
idealisation and to also study blends in which the two chain types have different
lengths (still being monodisperse within the species); this should be technically
straightforward. (The consideration of polydispersity would probably require ma-
jor modifications of our theory.) A further possible extension is to consider a
probability of crosslinking that depends on the monomer species involved. Such a
model would cover, as limiting cases, interpenetrating and semi-interpenetrating
networks, in which only chains of the same type or even chains of only one of the
two types are crosslinked, respectively. It might also appear natural to go beyond
mean-field theory, although, as pointed out before, mean-field theory is largely
valid in the case of homopolymer blends [64].

Our technique appears well-suited to consider other crosslinked systems of in-
teracting particles, as well. In our group, there are currently activities on nematic
elastomers, with the long-term goal of developing a theory for spider silks [74].
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Appendix

A. Mathematical tools

A.1. Replica technique

In the study of systems with quenched randomness, attention is paid mostly to the
generic, i.e. average, system rather than to an instance with a particular realisation
of disorder. Within the framework of statistical mechanics, this necessitates the
computation of the mean free energy, thus basically the average logarithm of the
partition function Z, which is often difficult. The replica trick, first proposed by
Edwards and Anderson [81], reduces this task to the usually much easier calculation
of the averages of integer powers of Z.

A.1.1. Basic idea

The replica method is based on two observations: First, the logarithm of x can be
expressed as a limit involving the nth power of x,

ln x = lim
n→0

xn − 1

n
. (A.1)

Second, for natural n ∈ N, the nth power of the partition function can be written
as an explicit product. With the symbolic notation Z =

∫
DX e−βH(X), where X

runs over accessible states of the system, we obtain

Zn = Z · Z · . . . · Z
︸ ︷︷ ︸

n times

=

∫

DnX e−β(H(X1)+H(X2)+...+H(Xn)). (A.2)

Apparently, eq. (A.2) can be interpreted as the partition function of an n-fold
replicated system with n identical and independent (i.e. non-interacting) copies of
the original system, the replicas. In replica calculations, adopting this interpre-
tation, these n copies are considered explicitly. The disorder averaged partition
function Zn of the replicated system and the mean free energy per replica Fn are
defined through

Zn := exp (−βFn) := [Zn] , (A.3)

where the disorder average is denoted by square brackets. After analytic contin-
uation to non-integer n, eq. (A.1) can be used to relate Zn and Fn to the desired
mean free energy F = −kBT [lnZ] of the original, unreplicated system by

F = −kBT · lim
n→0

Zn − 1

n
= lim

n→0
Fn. (A.4)
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A.1.2. Replica symmetry

Usually, the averaged replicated partition function Zn of a disordered system,
defined in eq. (A.3), can only be computed approximately. A common method,
also used in the present thesis, is to introduce a macroscopic order parameter φ and
to express Zn as the integral of an effective function Zn(φ), with the microscopic
states integrated out. On the mean-field level, Zn is approximated by maximum
of Zn over φ; the corresponding value of φ can be interpreted as the macroscopic
equilibrium state of the system.

The effective partition function is typically maximised using variational meth-
ods, making it necessary to guess a parametrisation of the order parameter and
to decide whether it shall be replica-symmetric, i.e. invariant under permutations
of the replicas, or if replica-symmetry breaking (RSB) is permitted. The latter al-
lows a more proper description of systems with many degenerate ground-states and
predicts a lower free energy than the replica-symmetric ansatz in such a case. How-
ever, replica-symmetry breaking schemes are rather intricate and an unnecessary
complication for the purposes of the present thesis, so we don’t further elaborate
on RSB here. An introduction to replica symmetry breaking in the context of spin
glasses is given in [88].

A.2. Hubbard-Stratonovich transformations

The Hubbard-Stratonovich transformations serve to linearise a quadratic exponent
by means of Gaussian integration over an additional variable:

e+a(|w|2−2Re(jw∗)) = a
π

e−a|j|
2

∫

d(Rez)d(Imz) e−a(|z|
2−2Re(zw∗)+2Re(zj∗)) (A.5)

and

e−a(|w|
2−2Re(jw∗)) = a

π
ea|j|

2

∫

d(Rez)d(Imz) e−a(|z|
2−2iRe(zw∗)+2iRe(zj∗)) (A.6)

for a > 0 and w, j, z ∈ C.
With these transformations we decouple the chains in the interactions and to

reduce the many-chain problem to a single-chain problem. Furthermore, the aux-
iliary variables introduced in eqs. (A.5), (A.6) serve as macroscopic order param-
eters, in favour of which we can trace out the microscopic degrees of freedom to
obtain a simpler, effective description of the system (see, e.g., section 3.4.2 and
appendix D).
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B. Microphase morphologies

B. Microphase morphologies

To investigate microphase transition in both random copolymer melts and cross-
linked homopolymer blends, we assume that the phase separation pattern can be
described by a first-harmonic ansatz with a dominant wavenumber k and a definite
lattice structure:

Ψk′ = Ψ
V√
2m

m∑

i=1

(δk′,+kni
+ δk′,−kni

) , (B.7)

characterised by lattice vectors ni ∈ G := {ni | i = 1 . . .m} and an amplitude Ψ.

B.1. Lattice structures

Following Fredrickson et al. [17], we consider three particular morphologies, which
are known to occur in the microphase separation of regular copolymer melts [3, 6]:

lamellæ (m = 1): Alternating sheets rich in A and B ; one-dimensional order.
Lattice vector: n1 = (1, 0, 0)T

cylinders (m = 3): Close-packed, i.e. hexagonally arranged, cylindrical domains,
A in B or vice versa; two-dimensional order. Lattice vectors: n1 = (1, 0, 0)T ,
n2 = (−1/2,

√
3/2, 0)T and n3 = (−1/2,−

√
3/2, 0)T .

bcc spheres (m = 6): Spherical A-rich domains in B , or vice versa, on a body
centred cubic lattice in real space; three-dimensional order. Lattice vectors
of the corresponding fcc lattice in Fourier space: n1 = (1, 1, 0)T/

√
2, n2 =

(0, 1, 1)T/
√

2, n3 = (1, 0, 1)T/
√

2, n4 = (1, 0,−1)T/
√

2 n5 = (−1, 1, 0)T/
√

2
and n6 = (0,−1, 1)T/

√
2.

Note that a ∈ G ⇒ −a /∈ G; therefore we introduce the symmetrised set of lattice
vectors, G

+ := {n |n ∈ G ∨ −n ∈ G}. For m > 1, the set G of lattice vectors is
not minimal in the sense of linear independence: for any two vectors a 6= b ∈ G,

(a) (b) (c)

Figure B.1.: Regular lattices used in the ansatz for the morphology of the mi-
crophase separated state: lamellæ (a), hexagonally arranged cylinders (b) and
spherical domains on a bcc lattice (c).
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loop type lamellæ cylinders bcc spheres

2-loop 2 6 12

3-loop 0 12 48

4-loop planar 6 90 396
nonplanar – – 144
total 6 90 540

Table B.1.: Number of closed loops of p lattice vectors (“p-loops”) for different
morphologies. The 4-loops are divided into planar and extra-planar loops.

the difference a− b is included in G+. Rather, the vectors are rather chosen such
that the ki ∈ G+ point towards the directions of all nearest-neighbour lattice sites.

For compressible homopolymer blends with crosslinks, we additionally consider
a superposition of randomly oriented lamellæ, which is discussed in section 3.5.9.

Wavevector sums Inserting the ansatz (B.7) into the expansion of the Landau
free energy of the random copolymer melt or the crosslinked homopolymer blend
yields sums of the type

∑′

k1,...,p

f2(k1, . . . ,kp−1)Ψk1 · · ·Ψkpδ
Pp

ν=1 kν ,0

=
Ψp · V p

(2m)p/2

∑′

k1,...,p

f2(k1, . . . ,kp−1)

p
∏

ν=1

(
m∑

µ=1

(δkν ,+knµ + δkν ,−knµ)

)

δPp

ν′=1
kν′ ,0

= Ψp · V p

(2m)p/2

∑

k1,...,p∈G+

f2(k1, . . . ,kp−1) δk1+...+kp,0 . (B.8)

In the quadratic sum the vertex function can be factored out, so that

1

V 2

∑

k′

f(k′
2
)Ψk′Ψ−k′ = Ψ2 · f(k2)

2m

∑

k1,2∈G+

δk1+k2,0 = Ψ2 · f(k2) . (B.9)

The higher order sums depend strongly on the morphology of the microphases.
In the simplest case f(k1, . . .) = 1, computing these loops amounts to counting
the number of closed loops that can be constructed with the vectors in G+. In
general, the loops must also be classified with respect to their shape, i.e. intra- or
extra-planar, as distinct shapes yield distinct values of the vertex functions. The
counting and classification have been done, e.g., in ref. [6], with the results shown
in table B.1. For f(k1, . . .) = 1, the third- and fourth-order sums read

1

V 3

∑

k1,2

Ψk1Ψk2Ψ−k1−k2 = Ψ3 ·







0 for m = 1 (lamellæ),
√

2/3 for m = 3 (cylinders),

2/
√

3 for m = 6 (bcc spheres)

(B.10)
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and

1

V 4

∑

k1,2,3

Ψk1Ψk2Ψk3Ψ−k1−k2−k3 = Ψ4 ·







3/2 for m = 1 (lamellæ),

5/2 for m = 3 (cylinders),

15/4 for m = 6 (bcc spheres).

(B.11)
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C. Random copolymers: Auxiliary materials

C.1. Correlation of remote charges

The disorder of chain sequences of random copolymers enters the Landau expansion
of the according effective free energy: the vertex functions contain moments

[
q(s1) · · · q(sm)

]
(C.12)

of monomer charges. In general, the moments correlate the monomers on different
sites of a chain (charges on distinct chains are uncorrelated). In the following, we
will compute these charge moments and use them to simplify the expressions for
the vertex functions defined in section C.3. To compute these charge moments, we
require the correlation between two charges on different sites of a chain. We define
the probability vector

p(s) :=

(
pA(s)

pB(s)

)

=

(
pA(s)

1 − pA(s)

)

(C.13)

indicating the probabilities that monomer s is of type A or B . For monomers s1,2

on the same block, obviously p(s1) = p(s2); the a priori probability vector reads
p(s) = (p, 1 − p)T . From the definition of the disorder in section 2.2.2 we know
that the charges on neighbouring blocks depend via

p(s±M) = Mp(s) (C.14)

with the transition matrix (2.6). We diagonalise M,

M̃ = DMD−1 =

(
λ 0
0 1

)

with D =

(
1 − p −p

1 1

)

(C.15)

and compute

M∆M = D−1 M̃D = D−1

(
λ∆M 0

0 1

)

D (C.16)

=

(
1 − (1 − p)(1 − λ∆M) p(1 − λ∆M)

(1 − p)(1 − λ∆M) 1 − p(1 − λ∆M)

)

=:

(

M∆M
AA M∆M

BA

M∆M
AB M∆M

BB

)

,

(C.17)

so that we can generalise eq. (C.14) to

p(s1) =

(

M∆M
AA M∆M

BA

M∆M
AB M∆M

BB

)

p(s2), (C.18)

with two monomers s1,2 located ∆M blocks apart (regardless of the positions
within the blocks).
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C.1.1. Charge moments

As the charges are block-wise equal, it is convenient to introduce the block number

σ(s) := min
z∈Z

{
z ≥ s/M

}
∈ {1, 2, . . . , Q}. (C.19)

The expectation value of a single charge is given by [q(s)] = 2p − 1 = q, see
eq. (2.12); the second moment is computed as follows:

[q(s1)q(s2)] = P
(
q(s2) = q(s1) = +1

)
− P

(
q(s2) = −q(s1) = +1

)

P
(
q(s2) = q(s1) = −1

)
− P

(
q(s2) = −q(s1) = −1

)

= p ·
(
M∆M
AA − M∆M

AB

)
+ (1 − p) ·

(
M∆M
BB − M∆M

BA

)

= 1 − (1 − q2)
(
1 − λ|σ(s2)−σ(s1)|) , (C.20)

NB including the case σ(s1) = σ(s2). The higher moments can be calculated
analogously.

C.1.2. Centred charges

In section 2.5.2 the density field is manipulated to make the vertices of the free
energy expansion contain the moments of the centred charges q̌(s) = q(s) − q,
because the centred version yields simpler expressions than the original ones. We
obtain

[q̌(s1)] = 0 (C.21)

[q̌(s1)q̌(s2)] = (1 − q2)λ|σ(s2)−σ(s1)| (C.22)

[q̌(s1)q̌(s2)q̌(s3)] = −2q(1 − q2)λmax{σ(s1,2,3)}−min{σ(s1,2,3)} (C.23)

for sν in arbitrary order and

[q̌(s1) · · · q̌(s4)] = (1 − q2)λσ(s4)−σ(s1)
(
4q2 + (1 − q2)λσ(s2)−σ(s3)

)
(C.24)

[q̌(s1) · · · q̌(s5)] = − 2q(1 − q2)λσ(s5)−σ(s1)

×
(

4q2 + (1 − q2)
(
λσ(s3)−σ(s4) + λσ(s2)−σ(s3)

))

(C.25)

[q̌(s1) · · · q̌(s6)] = (1 − q2)λσ(s6)−σ(s1) ×
(

4q2(1 − q2)
(
λσ(s4)−σ(s5) + λσ(s3)−σ(s4) + λσ(s2)−σ(s3)

)

+ (1 − q)2λσ(s4)−σ(s5)+σ(s2)−σ(s3) + 16q4
)

(C.26)

for {sν} with block numbers σ(s1) ≤ σ(s2) ≤ · · · ≤ σ(s6) in ascending order.
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C.2. Wiener correlator

The vertex functions appearing in the Landau expansion of the effective free en-
ergy (2.69) are essentially sums over the replicated version of Wiener correlators
of the type

〈

exp

{

− i

z∑

ζ=1

kζr(sζ)

}〉

= δPz
ζ=1 kζ ,0 exp

{

−
∑

ζ,ζ′

min{sζ − sζ′}kζkζ′

}

= δPz
ζ=1 kζ ,0 exp

{
1

2

∑

ζ,ζ′

|sζ − sζ′|kζkζ′
}

, (C.27)

averaged with respect to the Wiener Hamiltonian (2.17). (A derivation of the
continuous chain analogue of eq. (C.27) can be found in [77]; the transfer to discrete
chains is straightforward.) The replicated correlator factorises in the replica index
and vanishes unless the wavevectors sum to zero within each replica,

〈

exp

{

− i

z1∑

ζ1=1

kζ1 · rα1(sζ1) − . . .− i

zm∑

ζm=1

kζm · rαm(sζm)

}〉

=

〈

exp

{

− i

z1∑

ζ1=1

kζ1r(sζ1)

}〉

. . .

〈

exp

{

− i

zm∑

ζm=1

kζmr(sζm)

}〉

(C.28)

for pairwise distinct α1, . . . , αm, where 〈 · · · 〉 in the first line of eq. (C.28) denotes
the replicated Wiener average (2.62).

C.3. Vertex functions

In this section we define and partially compute the correlation vertex functions
occurring in the Landau expansion of the effective free energy (2.69).

C.3.1. Discrete Debye function

The simplest vertex function, containing no charge moments, reads

D(k2) :=

L∑

s1,2=1

〈
e−ik(r(s1)−r(s2))

〉
=

L∑

s1,2=1

e−k
2|s2−s1|

=
1 + e−k

2

1 − e−k2 · L − 2e−k
2
(1 − e−k

2L)

(1 − e−k2)2
; (C.29)

its characteristic scale is the inverse square radius of gyration of the chains, 1/R2
L =

1/L. For Lk2 ≪ 1, we can expand

D(k2) = L2 − L2 − 1

3
· (Lk2) +

L2 − 1

12
· (Lk2)2 + O

(
L2 · (Lk2)3

)
. (C.30)
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For long chains it is justified to approximate D(k2) by its continuum limit. To that
end, the number L of monomers and the effective bond length b (see eq. (2.2)) are
rescaled as L → L · f and b → b/

√
f , so that the radius of gyration of the chain

is conserved. In section 2.2.3, the units were chosen such that initially b = 1;
effectively, the scaling of b → b/

√
f leads to rescaled k2 → k2/f . The continuum

limit f → ∞ yields the Debye function defined in appendix D.2.1,

lim
L→∞

D(k2)

L2

∣
∣
∣
∣
b2=1/L

= gD(Lk2) =
e−Lk

2 − 1 + Lk2

(Lk2)2/2
. (C.31)

We also define the single-block analogue of D(k2),

D(M)(k2) :=

M∑

t1,2=1

e−k
2|t2−t1| =

1 + e−k
2

1 − e−k2 ·M − 2e−k
2
(1 − e−k

2M)

(1 − e−k2)2
. (C.32)

C.3.2. Second-order charge correlator

The quadratic vertex of the charge density field contains the correlation function

S(k2) :=
L∑

s1,2=1

[q̌(s1)q̌(s2)]

1 − q2

〈
e−ik(r(s1)−r2(s2))

〉
=

MQ∑

s1,2=1

λ|σ(s2)−σ(s1)| · e−k2|s2−s1|

= Q ·D(M)(k2) +
sinh2(Mk2/2)

sinh2(k2/2)
· 2λe−Mk2

1 − λe−Mk2

(

Q − 1 − (λe−Mk2
)Q

1 − λe−Mk2

)

, (C.33)

the long wavelength limit of which reads

lim
k→0

S(k2)

M2Q
=

1 + λ

1 − λ
− 2λ

Q
· 1 − λQ

(1 − λ)2
. (C.34)

Eq. (C.34) can be expanded in powers of λ yielding

S(k2) = Q ·D(M)(k2) + 2(Q− 1)λe−k
2

(
1 − e−Mk2

1 − e−k2

)2

+ O(λ2) . (C.35)

Continuum limits The function S(k2) depends on the number Q and the size M
of the blocks, and we can take the continuum limit in both. For the limit of con-
tinuous blocks, the effective bond length b has to be rescaled like in the continuum
limit of D(k2) to preserve the radius of gyration, and we obtain

lim
M→∞

S(k2)

M2Q

∣
∣
∣
∣
b2=1/M

=

gD(Mk2) +
sinh2(Mk2/2)

(Mk2)2
· 8 λe−Mk2

1 − λe−Mk2

(

1 − 1 − (λe−Mk2
)Q

Q (1 − λe−Mk2)

)

. (C.36)
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For a large number Q of discrete blocks, where λQ becomes small unless λ = ±1,
we have

lim
Q→∞

S(k2)

Q
= D(M)(k2) +

sinh2(Mk2/2)

sinh2(k2/2)
· 2 λe−Mk2

1 − λe−Mk2 . (C.37)

Taking both limits (in arbitrary order) yields

s(Mk2) := lim
M,Q→∞

S(k2)

QM2

∣
∣
∣
∣
b2=1/M

= gD(Mk2)+
sinh2(Mk2/2)

(Mk2)2
· 8 λe−Mk2

1 − λe−Mk2 , (C.38)

which corresponds to 4 ·G2(Mk2) /M(1 − q2) of reference [17].

C.3.3. Higher-order correlators

The charge moments introduce a block-wise ordering of the monomer index (see
section C.1.2). To compute the sums in the vertex functions they must therefore be
split into partial sums with definite order. The computational effort for this chiefly
combinatorial problem grows exponentially with the degree of the vertex. Hence
we shall abstain from carrying out the sums in the higher-order correlators defined
in the following, aside from an approximation for long and nearly uncorrelated
chains in section C.3.4.

Charge-charge-mass correlation The vertex function of the Ψ2Ω term in
the free energy expansion is given by

S2(k1,k2) :=

L∑

s1,2,3=1

[q̌(s1)q̌(s2)]

1 − q2

〈

e−i
P3

ν=1 kνr(sν)
〉∣
∣
∣
k3=−k1−k2

=
L∑

s1,2,3=1

λ|σ(s2)−σ(s1)| e−
P

ν,ν′ min{sν ,sν′}kνkν′
∣
∣
k3=−k1−k2

, (C.39)

which for opposite k1,2 reduces to the quadratic charge correlator,

S2(k,−k) = L · S(k2). (C.40)

From eq. (C.40) it follows that

S2(0, 0) = M3Q2

(
1 + λ

1 − λ
− 2λ

Q
· 1 − λQ

(1 − λ)2

)

. (C.41)

Charge-charge-charge correlation For the Ψ3 term we require

S3(k1,k2) :=
∑

s1,2,3

[q̌(s1)q̌(s2)q̌(s3)]

2q(1 − q2)

〈

e−i
P3

ν=1 kνr(sν)
〉∣
∣
∣
k3=−k1−k2

=
L∑

s1,2,3=1

λmax{σ(s1,2,3)}−min{σ(s1,2,3)} e−
P

ν,ν′ min{sν ,sν′}kνkν′
∣
∣
k3=−k1−k2

. (C.42)
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Fourth-order charge correlations There are two different fourth-order vertex
functions, originating from a single-replica and a two-replica term, respectively:

S4(k1,k2,k3) :=

L∑

s1,2,3,4=1

[q̌(s1)q̌(s2)q̌(s3)q̌(s4)]
〈

e−i
P4

ν=1 kνr(sν)
〉∣
∣
∣
k4=−

P3
ν=1 kν

= (1 − q2)
∑

s1,2,3,4

λσ
′

4−σ′1
(
4q2 + (1 − q2)λσ

′

2−σ′3
)

× e−
P

ν,ν′ min{sν ,sν′}kνkν′
∣
∣
k4=−

P3
ν=1 kν

(C.43)

and

S5(k,k
′) :=

∑

s1,2,3,4

[q̌(s1)q̌(s2)q̌(s3)q̌(s4)]
〈

e−ik(r(s1)−r(s2))
〉〈

e−ik′(r(s3)−r(s4))
〉

= (1 − q2)
∑

s1,2,3,4

λσ
′

4−σ′1
(
4q2 + (1 − q2)λσ

′

2−σ′3
)
e−k

2|s2−s1|−k′2|s4−s3| , (C.44)

both defined with the renumbered block indices {σ′
ν} := {σ(sν)} sorted in ascend-

ing order σ′
1 ≤ σ′

2 ≤ σ′
3 ≤ σ′

4.

C.3.4. Long chain approximation

In the following approximations, the sums in the higher-order vertex function can
be expressed in terms of the discrete Debye function D(k2) of (C.30): Assuming
small sequence correlations λ ≪ 1, the correlators are expanded just up to first
order in λ. Furthermore, we let k2(s1−s2) ≈ 0 for |σ(s1)−σ(s2)| ≤ 1, neglecting the
decay of correlations of monomers located on the same block or on neighbouring
ones; this is justified as a coarse-graining in the case of chains of many small
blocks. These approximations are suggested in [17], together with the neglect of
subdominant terms in the number of blocks Q, consistent with the coarse-graining.

With coarse-grained blocks, eq. (C.35) becomes

S(k2) ≈ (1 + 2λ)QM2 − 2λM2 + O(λ2) . (C.45)

For the third-order correlators, the above approximations lead to

S2(k1,k2) ≈ (1 + 2λ)MD
(
(k1 + k2)

2
)
− 2λM3Q + O(λ2) (C.46)

and

S3(k1,k2) ≈ (1 + 6λ)M3Q− 6M3λ + O(λ2); (C.47)

the fourth-order correlators reduce to

S4(k1,k2,k3) ≈ 4q2(1 − q2)
{

(1 + 14λ)M4Q− 14λM4
}

+ (1 − q2)2
{

(1 + 4λ)M2
(

D
(
(k1 + k2)

2
)

+D
(
(k2 + k3)

2
)

+D
(
(k3 + k1)

2
))

− (1 + 14λ) · 2M4Q+ 16λM4
}

+ O(λ2) (C.48)
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and

S5(k,k
′) ≈ 4q2(1 − q2)

{

(1 + 14λ)M4Q− 14λM4
}

+ (1 − q2)2
{

(1 + 4λ)M2
(

M2Q2 + 2D
(
k2 + k′

2)
)

− (1 + 14λ) · 2M4Q+ 16λM4
}

+ O(λ2). (C.49)

C.4. Landau free energy of compressible melts

The fourth-order Landau expansion of the effective free energy (2.69), with the
shifted density field Ω traced out up to quadratic order in Ω, reads

Fn

(
Ω̄,Ψ

)
≈

N

8V 2

∑

α

∑′

k

(
2V

NχWk

− (1 − q2)S(k2) − q2D(k2)

1 +NµUkD(k2)/2V

)

Ψα
kΨα

−k

+
Nq(1 − q2)

24V 3

∑

α

∑′

k1,2

(

S3(k1,k2) −
3/2 · S2(k1,k2)

1 +NµUk3D(k2
3)/2V

)

× δk1+k2+k3,0 Ψα
k1

Ψα
k2

Ψα
k3

+
N

128V 4

∑

α

∑′

k1,2,3,4

(

(1 − q2)2 · S2(k1,k2)S2(k3,k4)

D
(
(k1 + k2)2

)
+ 2V/(NµUk1+k2)

− 1

3
S4(k1,k2,k3)

)

δP4
ν=1 kν ,0

Ψα
k1

Ψα
k2

Ψα
k3

Ψα
k4

− N(1 − q2)2

128V 4

1

1 + 2V/(NL2µU0)

∑

α

(
∑′

k

S(k2)Ψα
kΨα

−k

)2

+
N(1 − q2)2

128V 4

∑

α1,2

∑′

k1,2

S(k2
1)S(k2

2) Ψα1
k1

Ψα1
−k1

Ψα2
k2

Ψα2
−k2

− N

128V 4

∑

α1 6=α2

∑

k1,2

S5(k1,k2) Ψα1
k1

Ψα1
−k1

Ψα1
k2

Ψα1
−k2

+ O(Ψ5,Ω3). (C.50)

Eq. (C.50) retains a finite excluded volume parameter and the possibility of replica-
asymmetric solutions. In the compressible case, the saddle point eq. (3.135) of the
density field is proportional to Ψ, so that the expansion to fourth order in Ψ is not
systematic; the inconsistency is, however, removed for large µ, where Ω̄ → O(Ψ2).
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C.5. Extended Maxwell construction

In section 2.5.7 we have a fourth-order Landau free energy of the type

F (φ) = a · 1

V

∫

ddx
(
φ(x)

)2
+ b · 1

V

∫

ddx
(
φ(x)

)3
(C.51)

+ c · 1

V

∫

ddx
(
φ(x)

)4
+ d ·

( 1

V

∫

ddx
(
φ(x)

)2
)2

, (C.52)

describing the separation into macroscopic phases. Due to the nonlocal last term,
ordinary Maxwell construction can’t be used to determine the minimum of (C.51).
Instead we employ an explicit ansatz for the separation into two macroscopic phases
with compositions φ1,2 and volume fractions v1,2:

φ(x) =

{

φ1, x ∈ V1

φ2, x ∈ V2

(C.53)

where |V1,2| = v1,2 V . The field φ(x) describes the deviation from zero mean;
moreover, the melt occupies the whole available volume, hence we can eliminate
v1,2 with the side conditions

v1 + v2 = 1 and v1φ1 + v2φ2 = 0. (C.54)

Minimisation of the free energy (C.51) with respect to φ1 and φ2 leads to the
solution φ1φ2 = 0 corresponding to the single-phase state and to

φ1,2 = − b

4c
± 1

4c

√

b2(3c+ d) − 8ac2

c+ d
, (C.55)

v1,2 =
1

2
± b

2c

√

c2(c+ d)

b2(3c+ d) − 8ac2
(C.56)

corresponding to the phase separated state, in which the free energy is given by

Fsep = − (b2 − 4ac)2

64c2(c+ d)
. (C.57)

The two-phase region is defined by Fsep < 0 or, equivalently, a < b2/4c. For

a =
b2

4c
− ǫ, (C.58)

the compositions and volume fractions are given to first order in ǫ by

v1 = 1− 2c2

b2(c+ d)
ǫ, φ1 =

c

b(c + d)
ǫ,

v2 =
2c2

b2(c+ d)
ǫ and φ2 = − b

2c
− c

b(c + d)
ǫ. (C.59)
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C.6. Alternative Landau expansion

In this section we shall derive the Landau expansion of the free energy used in
section 2.6. We start from the effective free energy (2.61) in terms of the physical
charge and monomer density and the auxiliary fields. First, we integrate out the
physical charge density on the saddle point level,

∂Fn

∂ρα−k

∣
∣
∣
∣
ρα

k
=ρ̄α

k

= 0 ⇒ ρ̄αk = i
2V

µUk
ρ̂αk. (C.60)

Insertion into eq. (2.61) and taking the incompressible limit µ → ∞ yields

nFn

(
{ρk, ρ̂k, σk, σ̂k}

)
:= −i

n∑

α=1

∑′

k

σ̂αkσ
α
−k − χ

4V

n∑

α=1

∑′

k

σα−kWkσ
α
k

−N ln

[〈

exp

(

− i
n∑

α=1

∑′

k

L∑

s=1

(ρ̂αk + q(s) · σ̂αk) e−ikrα(s)

)〉]

, (C.61)

where we have omitted the constant C of eq. (2.61). The logarithmic contribution
is expanded in powers of ρ̂ and σ̂; subsequently, we trace out the density field ρ̂ on
the saddle point level. With the substitutions Ωα

k = i · 2V ρ̂αk and Ψα
k = −2iV σ̂αk,

this task is formally almost identical to expanding, and tracing out Ω in, eq. (2.69)
in the incompressible limit. Hence we can adopt the results of section 2.5.4 and
appendix C.4. Restricting the discussion to the replica-symmetric case σαk = σk

and σ̂αk = σ̂k we obtain, to fourth order in σ̂,

f := lim
n→0

1
N
Fn

(
{σk, σ̂k}

)

= − χ

4NV

∑′

k

σ−kWkσk − i

N

∑′

k

σ̂kσ−k +
1 − q2

2

∑′

k

S(k2)σ̂kσ̂−k

− i
q(1 − q2)

3

∑′

k1,2,3

S3(k1,k2) δP3
ν=1 kν ,0

σ̂k1 σ̂k2 σ̂k3

+
1

8

∑′

k1,2,3,4

(

(1 − q2)2 S2(k1,k2)S2(k3,k4)

D((k1 + k2)2)
− 1

3
S4(k1,k2,k3)

)

× δP4
ν=1 kν ,0

σ̂k1 σ̂k2 σ̂k3 σ̂k4

+
1

8

∑′

k1,2

(

S5(k1,k2) − (1 − q2)2 S(k2
1)S(k2

2)
)

σ̂k1 σ̂−k1 σ̂k2 σ̂−k2 . (C.62)

The auxiliary charge density field σ̂ is eliminated perturbatively, which in the
symmetric case q = 0 yields

σ̂k =
i σk

NS(k2)
+ O(σ3) (C.63)
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and

f =
1

2N2M2Q

∑′

k

(
M2Q

S(k2)
− M̺0χWk

2

)

σkσ−k

+
1

8N4

∑′

k1,2,3,4

S2(k1,k2)S2(k3,k4)/D
(
(k1 + k2)

2
)
− 1

3
S4(k1,k2,k3)

S(k2
1)S(k2

2)S(k2
3)S(k2

4)

× δP4
ν=1 kν ,0

σk1σk2σk3σk4

+
1

8N4

∑′

k1,2

S5(k1,k2) − S(k2
1)S(k2

2)
(
S(k2

1)S(k2
2)
)2 σk1σ−k1σk2σ−k2 + O(σ5). (C.64)

In the case q = 0 under consideration, the expansions (C.64) and (2.80) are
equivalent in the range of validity, i.e. for small amplitudes σ and Ψ, respectively.
Yet version (C.64), used in a similar form in ref. [17], requires a higher computa-
tional effort as can be seen above: besides the derivation of its precursor (C.62),
comparable to the derivation of version (2.80), it also requires the perturbative
elimination of the auxiliary field.
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D. Homopolymer blends: Auxiliary materials

D.1. Relation between order parameters and auxiliary fields

To establish the relation between the order parameters defined in section 3.3 and
the corresponding fields in the effective free energy (3.60), it is helpful to extend Zn
to a generating functional for Q and S. We define the replica-Helmholtz free

energy Φn(U,W ) as

exp
(
− nΦn(U,W )

)
:=

〈

exp

{
1

2N

n∑

α=0

∑′

k

(

χαSαkS
α
−k − λ̃αQα

kQ
α
−k

)

+
µ

2NV n

∑

k̂

Qk̂Q−k̂

− 1

N

n∑

α=0

∑′

k

(
W α

kS
α
−k + Uα

kQ
α
−k

)
− 1

N

∑

k̂

Uk̂Q−k̂

}〉W

n

〈

exp

{
1

2N

∑′

k

(
χ0SkS−k − (λ0 − µ)QkQ−k

)
}〉W

, (D.65)

so that Zn = Bn · exp(−nΦn(U = 0,W = 0)). The fields U and W are the
generators for Q and S and should not be confused with the range of the excluded
volume and incompatibility interactions, which have been taken to be delta-shaped.
The replica-Helmholtz free energy is related to the free energy via

F = lim
n→0

Φn(0, 0), (D.66)

where the additive constant originating from Bn, the contribution of the zero
replica sector, has been neglected. Apart from a modification of the Hubbard-
Stratonovich transformations (see appendix A.2) due to the presence of the source
fields, the decoupling can be done as before. As pointed out in section 3.4.2, the
Fourier components of the order parameters for opposite wavevectors are depen-
dent. Therefore, the auxiliary fields are introduced only for kn > 0 and k̂n̂ > 0,
yielding

exp
{

− nΦn(µ, U,W )
}

= exp

{

− 1
2N

n∑

α=0

∑′
k

(
1
χα

∣
∣W α

k

∣
∣
2 − 1

λ̃α

∣
∣Uα

k

∣
∣
2
)

− 1
2N

∑

k̂

1
V −nµ

∣
∣Uk̂
∣
∣
2

}

×

∫

DnΨDnΩ D̄Ω exp

{

−nFn

(
{Ψ,Ω}

)

−
n∑

α=0

∑′

k

(
1
χα Ψα

kW
α
−k + i

λ̃α
Ωα

kU
α
−k

)

−
∑

k̂

1
V −nµ

Ωk̂U−k̂

}

∫

DψDω exp
{

− nFden

(
{ψ, ω}

)}
, (D.67)
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with Fn and Fden defined in eqs. (3.60) and (3.61). The integral measures read

Dω :=
∏

k

† N

2πλ̃0
dReωk dImωk Dψ :=

∏

k

† N

2πχ0
dReψk dImψk,

DnΩ :=

n∏

α=0

∏

k

† N

2πλ̃α
dRe Ωα

k dIm Ωα
k, DnΨ :=

n∏

α=0

∏

k

† N

2πχα
dRe Ψα

k dIm Ψα
k

and

DΩ :=
∏

k̂

†N dRe Ωk̂ dIm Ωk̂

2πV −nµ
, (D.68)

where
∏†

k and
∏†

k̂ denote the products over all nonzero k and higher-replica k̂,

restricted to half spaces kn > 0 and k̂n̂ > 0, respectively. The relation between
expectation values and moments of the physical order parameters Q and S and
those of the associated fields Ω and Ψ can now be established in two steps.

We first equate the derivatives of the replica-Helmholtz free energy with respect
to the source fields U and W taken before and after decoupling, i.e. from eq. (D.65)
and from eq. (D.67), evaluated at U = W = 0. For instance,

i

λ̃α

〈
Ωα

k

〉F
n

(D.67)
=

∂ exp(−nΦn)

∂Uα
−k

∣
∣
∣
∣
U=W=0

(D.65)
=

〈Qα
k〉Pn
N

(D.69)

with the average 〈 . . . 〉Pn with respect to the replicated total Hamiltonian of the
uncrosslinked system plus the quasi-Hamiltonian of the constraints,

〈
· · ·
〉P

:=

〈

· · · exp
(

−µV
2N

∑

a,a′,i,i′

∫ 1

0
dsds′ δ

(
r̂a,i(s) − r̂a′,i′(s

′)
))〉T

n
〈

exp
(

−µV
2N

∑

a,a′,i,i′

∫ 1

0
dsds′ δ

(
r̂a,i(s) − r̂a′,i′(s′)

))〉T

n

. (D.70)

The averages 〈 · · · 〉Pn , in turn, are related to disorder averaged thermal expecta-
tion values of physical observables O

(
{ra,i(s)}

)
depending on the monomer posi-

tions. In appendix A of ref. [77] it is shown that

[

〈O0〉C,0 〈O1〉C · · · 〈Og〉C
]

= lim
n→0

〈

O0

(
{r0

a,i(s)}
)
· · · O0

(
{rga,i(s)}

)〉P

n
, (D.71)

where 〈O0〉C,0 denotes the thermal average performed at the crosslinking condi-
tions (λ0, χ0). Eqs. (D.69) and (D.71) imply that

N · lim
n→0

〈
Ωα

k

〉F
n

=







−i(λ0 − µ)
[
〈Qk〉C,0

]
, α = 0,

−i(λ− µ)
[
〈Qk〉C

]
, else.

(D.72)

The averages of Ωk̂ and Ψ and higher-order averages can be transformed similarly.
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D.2. Vertex functions

In the following, we define and compute the vertex functions appearing in the Lan-
dau expansion of the effective free energy (3.63), which are integrals over Wiener
correlators of the type
〈

exp

{

− i

z∑

ζ=1

k̂ζ · r̂(sζ)
}〉W

n

= δPz
ζ=1 k̂ζ ,0̂

exp

{
1

2

∑

ζ,ζ′

|sζ − sζ′| k̂ζ · k̂ζ′
}

(D.73)

with the Wiener measure defined below eq. (3.63); a derivation of eq. (D.73) can
be found in [77]. The correlator vanishes unless the wavevectors sum to zero in
each replica. If just single-replica quantities are involved, the correlator factorises,

〈

exp

{

− i

z1∑

ζ1=1

kζ1 · rα1(sζ1) − . . .− i

z1∑

ζ1=1

kζm · rαm(sζm)

}〉W

n

=

〈

exp

{

− i

z1∑

ζ1=1

kζ1r(sζ1)

}〉W

. . .

〈

exp

{

− i

zm∑

ζ1=1

kζmr(sζm)

}〉W
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for pairwise distinct α1, . . . , αm, where 〈 · · · 〉W denotes the unreplicated Wiener
average.

D.2.1. Definition of the vertex functions

The second-order coefficients of the Landau expansion are governed by the Debye
function

gD

(
k2
)

:=

∫ 1

0

ds1ds2

〈

e−ik(r(s1)−r(s2))
〉W

=

∫ 1

0

ds1ds2

〈

e−ik̂(r̂(s1)−r̂(s2))
〉W

n

=
e−k

2 − 1 + k2

k4/2
= 1 − 1

3
k2 + 1

12
k4 + O(k6), (D.75)

the scattering function for a non-interacting Gaussian chain.
The third-order correlators

g3

(
k1,k2

)
:=

∫ 1

0

ds1ds2ds3

〈

e−i
P3

ν=1 kνr(sν)
〉W
∣
∣
∣
∣
k3=−k1−k2

=

∫ 1

0

ds1ds2ds3

〈

e−i
P3

ν=1 k̂ν r̂(sν)
〉W
∣
∣
∣
∣
k̂3=−k̂1−k̂2

(D.76)

and

gΨ2Ω

(
k1,k2

)
:=

∫ 1

0

ds1ds2ds3

〈

e−ik1(r(s1)−r(s3))
〉W〈

e−ik2(r(s2)−r(s3))
〉W

=

∫ 1

0

ds1ds2ds3

〈

e−ik1rα1 (s1)−ik2rα2(s2)−ik̂r̂(s3)
〉W

n

∣
∣
∣
∣α1 6=α2

k̂=−k1⊗eα1−k2⊗eα2

(D.77)
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describe the correlation between three one-replica fields and the correlation be-
tween two one-replica-fields and a higher-order replica field, respectively.

Finally, the fourth-order correlator is given by

gΨ4

(
k1,k2,k3

)
=

∫ 1

0

ds1ds2ds3ds4

〈

e−i
P4

ν=1 kνr(sν)
〉W
∣
∣
∣
∣
k4=−

P3
ν=1 kν

. (D.78)

Lamellar case The third- and fourth-order correlators depend on the direction
of the wavevectors. In particular, we require the ”lamellar” case, in which all
wavevectors are collinear. We note that g3(k,−k) = gD(k2) and define

g3(k
2) := g3(k,k) =

−(e−4k2 − 1 + 4k2 − 8k4) + 64(e−k
2 − 1 + k2 − 1

2
k4)

12k6

+
2(e−k

2 − 1 + k2)

k4

= 1 − k2 + 3
4
k4 + O(k6) , (D.79)

gΨ2Ω(k2) := gΨ2Ω(k,−k) =
−e−2k2

+ (8 + 2k2)e−k
2
+ 4k2 − 7

k6

= 1 − 2
3
k2 + 17

60
k4 + O(k6) (D.80)

and

gΨ4

(
k2
)

:= gΨ4

(
k,k,−k

)

=
144k4 − 60k2(9 + 4e−k

2
) + 784(1 − e−k

2
) − (1 − e−4k2

)

18k8

= 1 − 2
3
k2 + 11

30
k4 + O(k4). (D.81)

D.3. Scaling function for the gelation order parameter

The localisation lengths τ of monomers in the gel fraction of a crosslinked ho-
mopolymer melt or blend are distributed according to the distribution p(τ); see
section 3.5.3. The fraction of the gel and the distribution are determined from
the self-consistent solution of the saddle-point equations (3.76) with the order pa-
rameter hypothesis (3.80). The gelation order parameter, essentially the Laplace
transform of p(τ), is proportional to a scaling function ω(x), which is computed
in [77] in the asymptotic regimes of small and large x. For convenience, we define
a rescaled version of ω,

w(k2) := 2 · ω
(√

8k2/3
)
, (D.82)

This also absorbs a factor of two arising from the different length-scale used in [77]
(the Wiener Hamiltonian used therein differs from eq. (3.10) by a factor of two).
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Figure D.2: Scaling function ω(k)
versus k: Asymptotic expressions
and interpolated function.
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D.3.1. Interpolation formula

The scaling function ω(k) defined in [77] can be described asymptotically by

ω(x) ≈
{

ω1(x) := 1 − 0.4409x2 + 0.1316x4 for x≪ 1,

ω2(x) := 3
(

π2x6

8· 1.678
)1/4

e−
√

2· 1.678 x
(

1 + 27
40

√
2·1.678 x

)

for x≫ 1.
(D.83)

In order to access the whole range of 0 < x < ∞ we interpolate between the
asymptotic regimes using the interpolation formula

ω(k) ≈







ω1(x), for x < 1
2
,

ωip(x), for 1
2
≤ x < 2,

ω2(x), for x ≥ 2,

(D.84)

with the interpolating rational function

ωip :=
b0 + b1x

1 + a1x+ a2x2 + a3x3
. (D.85)

The coefficients a1 = −0.055, a2 = 0.165, a3 = 0.139, b0 = 1.023 and b1 = −0.194
are chosen such that the value and first derivative of ωip(x) coincide with those of
ω1(x) at x = 1/2 and with those of ω2(x) at x = 2; an additional sampling point
is the numerical value ω(x = 1) = 0.664.

D.4. Hessian matrix of the effective free energy

The stability considerations and the calculation of charge density fluctuations are
based on the matrix of the second derivatives of Fn with respect to the charge
density fields Ψα

k. This Hessian matrix A ∈ R(n+1)×(n+1) is of the form

A =








c −b · · · −b
−b a

. . .
...

...
. . .

. . . −b
−b · · · −b a







. (D.86)
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D.4.1. Eigenvalue spectrum

For integer n > 1, the eigenvalues of A are a+ b, which is (n− 1)-fold degenerate,
and

(
a + (1 − n)b + c ±

√

(a + b(1 − n) − c)2 + 4nb2
)
/2, both non-degenerate.

The corresponding eigenvectors read (0, 1,−1, 0, . . . , 0)T , (0, 0, 1,−1, 0, . . . , 0)T ,

. . . ,(0, . . . , 0, 1,−1)T and
(

1
2b

(
a+(1−n)b−c±

√

(a+ b(1 − n) − c)2 + 4nb2
)
, 1, . . . , 1

)T
,

respectively. In the replica-limit n→ 0, the eigenvalues read

λ1 = c and λ2 = a + b, (D.87)

which are non- and n-fold degenerate, respectively.

D.4.2. Inverse matrix

The inverse matrix of A is given by

A−1 =










c d d · · · d

d a b · · · b

d b a
. . .

...
...

...
. . .

. . . b

d b · · · b a










, (D.88)

where

a =
ac+ (2 − n)bc + (1 − n)b2

(1 − n)b2c+ (2 − n)abc− nb2(a + b) + a2c

n→0−−→ ac + 2bc+ b2

(a+ b)2c
, (D.89)

b =
b(c+ b)

(1 − n)b2c+ (2 − n)abc− nb2(a + b) + a2c

n→0−−→ b(c + b)

(a + b)2c
, (D.90)

c =
a+ (1 − n)b

ac+ (1 − n)bc− nb2
n→0−−→ 1

c
(D.91)

and

d =
b

ac+ (1 − n)bc− nb2
n→0−−→ b

(a + b)c
. (D.92)
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