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Chapter 1

Introduction

T
he phenomenon of the air that rises over hot surfaces must have been
observed already in the early stages of human’s interest in the natural

phenomena. However, it was not until 1900 that someone scientifically coped
with the problem – Henri Bénard was the first who, in the frame of his
doctoral thesis, undertook systematic experimental research of the layer of
fluid heated from below (Bénard, 1901). In this experiment he observed the
regular cellular pattern of hexagonal convection cells. In 1916 John William
Strutt, Lord Rayleigh, explained the phenomenon in terms of a buoyancy
driven instability (Lord Rayleigh, 1916). Although we know today that
the pattern observed in Bénard’s experiment was caused by temperature
dependent surface tension rather than by buoyancy, the buoyancy driven
convection in the layer of fluid heated from bellow and cooled from above is
today referred to as “Rayleigh-Bénard convection”. Surface tension induced
convection is nowadays known as “(Bénard-)Marangoni convection”.

Motivation for investigation of Rayleigh-Bénard convection is manifold.
In nature thermal convection is an omnipresent phenomenon on a wide range
of scales — in the Earth’s core and mantle, atmosphere, oceans and stars. In
industrial applications whenever heat transfer must be considered thermal
convection enters in various forms — in nuclear reactors, in crystallisation
processes, in solar heating devices. Most of the flows mentioned are (or
can be) turbulent. On a more fundamental level laboratory experiments on
thermal convection have attracted attention as particularly simple systems,
where transition to turbulence and its properties can be studied (Busse,
1978).

One striking property of a turbulent flow is appearance of patches of
ordered structures on the otherwise turbulent background. The phenomenon
is interesting per se, as it implies some degree of order in otherwise disordered
turbulent flow. But the motivation for the research of the structures can also
be found in both technical applications as well as in nature. An example of
technical application is the research of the influence of the flow structures
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Figure 1.1: Gravity anomalies in the Southeast Pacific derived from ERS-1 Geodetic
Mission data. Note the elongated anomalies perpendicular to the East Pacific Rise
crossing troughs and older fracture zones to the west continuously. Note the increase
in wavelength away from the mid-ocean ridge. (Picture and caption from Marquart
et al. (1999). Reprinted with kind permission from Blackwell Publishing Ltd.)

(on all scales) on the comfort of passengers in cabins of airplanes and trains.
The small scale structures in geophysical context were found in the grav-

ity anomaly field below the cooling oceanic lithosphere as shown in Fig. (1.1)
(Marquart et al., 1999). These structures could be explained by the results
presented in Chapter 4.

This work will give answers to some questions about the properties of
turbulent Rayleigh-Bénard convection regarding spatio-temporal organiza-
tion of turbulent structures on different scales, their influence on the gen-
eral dynamics of the flow and geometry dependence of the structures and
the flow itself. Organized structures in the velocity and temperature field
distinguished from the turbulent background are already found in differ-
ent types of turbulent flows. In thermal convection thermal plumes present
a well known example. In this thesis a new type of organized structure
is discovered inside the boundary layers of convective turbulent flow. Its
characteristics are presented and the mechanism of its formation proposed.
Further, using different time series analysis methods new information is
gathered about the organization of the flow on large and intermediate scales
in the bulk. These pieces of information are collected by means of laboratory
experiments in tanks with two geometries – cubical and cylindrical. Finally,
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the influence of the shape of the container on the flow is investigated and it
is shown that there are significant effects of the shape on the flow which are
often overlooked in literature.

The thesis is organized as follows: In Chapter 2 the theoretical back-
ground of the problem is given. In Chapter 3 the basic experimental setup
and methods are described. Their specific variations will be detailed in the
parts where they were used (this refers mostly to the arrangement of tem-
perature probes in the cells). Chapter 4 deals with the small scale coherency
in the boundary layers — visualization method is presented which served to
discover a new type of the structures in the thermal turbulent convection,
their statistical characteristics are presented and possible mechanisms of
their production are discussed. Also, the structures are compared with the
small scale structures in isothermal flows. In Chapter 5 coherent structures
in the bulk are studied. It is shown that, contrary to the traditional cascade
picture of the turbulence, only two scales dominate the flow. In Chapter 6
the effect of the shape of the container is investigated and it is found that
the very center of the cell can feel the influence of the wall shape, even if
all other experimental conditions are left the same. This is an important
result because in the literature the experimental results are often compared
without regard to the shape of the container. In Chapter 7 the results of the
thesis are summarized. The thesis ends with three appendices. Appendix
A contains technical data about the equipment used in the experiments. In
Appendix B some more important computer programs programmed in the
course of the thesis are listed. Finally, Appendix C contains photographs
from visualization of the flow using thermochromic liquid crystals.
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Chapter 2

Theoretical background

I
n this chapter only the general theoretical background is given as a frame-
work for the thesis. The theoretical and experimental results are pre-

sented later in the respective chapters.

2.1 Governing equations

The exact equations for a heat conducting viscous fluid in the gravity field
can be simplified in a wide range of applications without significant influence
on the final results. Oberbeck (1879) and Boussinesq (1903) independently
derived approximations of the equations for the flows in which because of
small temperature variations all fluid properties (cV — specific heat at con-
stant volume, ν — kinematic viscosity, α — coefficient of volume expansion
and k — coefficient of thermal conduction) are assumed constant, except
for density when it causes buoyancy. Using the results of the analysis of
the validity of the Boussinesq–Oberbeck approximation carried out by Gray
and Giorgini (1976) it can be shown that for the parameter range used in
this work the approximation is valid. On the basis of this approximation for
small (≤ 10◦C) temperature differences between the bottom and the top of
the fluid layer the density ρ is

ρ = ρ0 {1− α(θ − θ0)} , (2.1)

where ρ0 is the density of the fluid at the temperature θ0 of the bottom of
the layer and α is the constant coefficient of volume expansion.

The equations of motion follow from the law of the conservation of mo-
mentum and are:

∂t~u + (~u · ∇)~u = −∇P + ν∇2~u− gα(θ0 − θ)k̂ , (2.2)

where g is the magnitude of the acceleration due to gravity, P = p/ρ0 + Φ,
p being the isotropic pressure at the given position when there is no strain,

11



Φ the gravitational potential (~g = −∇Φ), ~u is the velocity vector, ν the
kinematic viscosity and k̂ the unit vector with direction −~g.

The continuity equation expresses the conservation of mass. In the light
of Boussinesq–Oberbeck approximation the fluid is considered incompress-
ible so the continuity equation reads:

∇ · ~u = 0 . (2.3)

Finally, the energy (heat) equation expresses the law of the conservation
of energy. Assuming that the internal heating is negligible it reads:

∂tθ + (~u · ∇)θ = κ∇2θ , (2.4)

where κ = k/ρ0cv is the thermal diffusivity.
The equations (2.2) – (2.4) are the basic hydrodynamic equations. Sup-

plemented by the equation of state (2.1) they form the basic system used in
the fluid dynamics if Boussinesq–Oberbeck approximation is valid.

2.2 Stability problem

Consider an infinite horizontal layer of fluid in which a steady adverse tem-
perature gradient is maintained and there are no motions

θ ≡ θ(z) and ~u = 0 . (2.5)

The pressure distribution is then governed by the equation

∂zp = ρ~gk̂ , (2.6)

where ρ is given by (2.1). From (2.4) it follows that the temperature distri-
bution is governed by the equation

∇2θ = 0 . (2.7)

The solution of (2.7) is
θ = θ0 − βz , (2.8)

where β is the adverse temperature gradient which is maintained. For the
density it follows from (2.8) and (2.1)

ρ = ρ0(1 + αβz) . (2.9)

Equation (2.6) can now be integrated to give

p = p0 − gρ0(z +
1
2
αβz2) . (2.10)
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Let now the initial state given by equations (2.5), (2.8), (2.9) and (2.10)
be slightly perturbed, and let ~u′ ≡ (u′, v′, w′), θ′ and p′ denote small pertur-
bations of velocity, linear temperature profile and pressure, respectively. By
ignoring terms of second and higher orders in the perturbations, equations
(2.2), (2.4) and (2.3) give

∂t~u
′ = −∇

(
p′
ρ0

)
+ ν∇2~u′ + gαθ′k̂ , (2.11)

∂tθ
′ = βw′ + κ∇2θ′ , (2.12)
∇ · ~u′ = 0 . (2.13)

It proves convenient to make these equations nondimensional. One pos-
sible way to do it (the choice of scales is not unique) is to choose the distance
between the plates L as the length scale, the thermal diffusion time L2/κ
as the time scale and the difference of the plates’ temperatures ∆θ ≡ βL as
the temperature scale. Then the equations describing the problem are

∂t~u = −∇p + Pr∇2~u + RaPrθk̂ , (2.14)
∂tθ − w = ∇2θ , (2.15)
∇ · ~u = 0 , (2.16)

where all variables are nondimensional and

Ra =
gα∆θL3

κν
(2.17)

is the nondimensional Rayleigh number and

Pr =
ν

κ
(2.18)

is the nondimensional Prandtl number. The appropriate boundary condi-
tions for rigid boundaries are

w =
∂w

∂z
= θ = 0 at z = 0 and z = 1 . (2.19)

It is now possible to perform the stability analysis in terms of normal
modes, and finally find the critical values of the nondimensional parameters
for the flow to become unstable and the wavelength of the most unstable
mode (e.g. Chandrasekhar, 1981). The result of the procedure is that inde-
pendently of the Prandtl number the critical Rayleigh number is Rac ≈ 1708.

The stability analysis becomes very complicated at the parameter space
away from the onset of the instability as the nonlinear effects become impor-
tant. Nevertheless, the large number of experiments on the subject deliver a
quite satisfactory picture of the flow types for different regions in the para-
meter space. This knowledge is summarized in Fig. (2.2). Additionally (not
shown in the picture), Castaing et al. (1989) found for the Helium gas at
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Figure 2.1: Régime diagram in Ra-Pr parameter space according to Krishnamurti
(1970b) and Busse (1981). The dashed line is the result of somewhat inconsistent
measurements (Krishnamurti, 1970b). Points denote parameters used in the thesis.

roughly 5 K (Prandtl number between 0.65 and 1.5) two turbulent régimes
which they named “soft” and “hard” turbulence. The distinction is based
on different scaling of the heat transport with Rayleigh number, which co-
incides with different distribution of local temperature fluctuations in the
center of the container. The soft turbulence occurs for Rayleigh numbers
106 < Ra < 4 · 107 and has a Gaussian distribution and the hard turbulence
occurs for 4 · 107 < Ra < 1013 and has exponential tails in the distribution.

An interesting feature of the thermal convection is that by increasing Ra
for given Pr the flow undergoes a number of discrete transitions, remain-
ing in each régime for a finite range of Rayleigh numbers (Krishnamurti,
1970a). The transition to turbulence through a number of régimes is a
somewhat special feature of the Rayleigh-Bénard convection (shared with
Couette flow and flow between spheres when the outer cylinder or sphere is
at rest, respectively) as in many other flows (like Poisseuille flow through the
annulus between the two long concentric cylinders, pipe flow, Couette flow
with inner cylinder at rest) the transition from laminar to turbulent flow is
direct (Busse, 1981). This property of Rayleigh-Bénard convection together
with relatively simple experimental setup makes the system appropriate for
investigation of the transition to turbulence.

The experiments in this work are performed in water (Pr ≈ 7) and at
Rayleigh number range from 5 × 108 to 2 × 109. For this parameter space
the flow is in the hard turbulence régime.
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2.3 Turbulence

Although the meaning of the notion “turbulence” is intuitively clear, there
is no generally accepted definition of turbulence. None of the existing de-
finitions are completely satisfactory either because it can not be applied
unambiguously in experiments or because it does not coincide with the in-
tuitive physical concept of turbulence. The following are four attempts of
the definition of turbulence according to Busse (1981).

The mathematical approach is to separate a laminar from a turbulent
flow on the basis of uniqueness of the solutions of the underlying equations.
The conductive state in Rayleigh-Bénard convection is unique and when the
Ra reaches some critical value more than one solution is possible. The crit-
ical values of the governing parameters of a flow can often be analytically
determined which makes the method unambiguous. On the other hand, it
can not distinguish between the time independent and time dependent flow
intuitively connected to turbulence. Thus, the onset of time dependence
seems to be a suitable criterion for the definition, which leads to the next
attempt. The shortcomings of this approach are that (i) time dependence
often occurs in the form of periodic waves, which contradicts aperiodic time
dependence one intuitively associates with turbulence; (ii) the transition
depends on the history of the particular experiment and can only approxi-
mately be predicted on the basis of the external parameters of the system;
(iii) the judgment if a flow is time dependent may depend on the frame of
reference of the observer. Finally, it is possible to define transition to tur-
bulence as appearance of the first random elements in the time dependence
of the system. This definition seems to work well if the random behavior
is preceded by a periodic or quasi-periodic time dependence and is in ac-
cordance with intuitive perception of turbulence. For instance, Gollub and
Swinney (1975) found a fairly distinct onset of broadband noise in the fre-
quency power spectrum preceded by periodic and quasi-periodic states in
Couette flow.

Of course, the flow to be dealt with in this work is far from the onset
and is turbulent independent of the choice of definition.

Tennekes and Lumley (1982) overcomes the difficulties of precise defini-
tion of turbulence by simply listing some of the characteristics of turbulent
flows. These characteristics are:

• irregularity — this makes statistics the main approach to turbulence
problems,

• diffusivity — which causes rapid mixing and increased rates of mo-
mentum, heat and mass transfer; in the Rayleigh-Bénard problem the
strong mixing due to turbulence causes the time average of tempera-
ture to be constant across the central part of the container whereas the
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Figure 2.2: Schematic sketch of the temperature profile in the Rayleigh-Bénard
convection: linear profile of the conduction state (dashed line) and a profile in a
turbulent state (solid line).

total temperature drop is (on average) confined to the narrow thermal
boundary layers (Fig. (2.2)),

• large Reynolds numbers (or equivalent control parameter, like in this
work the Rayleigh number)

• three-dimensional vorticity fluctuations — an important vorticity-main-
tenance mechanism known as vortex stretching is absent in two-dimen-
sional flow,

• dissipation,

• continuum — even the smallest scales in a turbulent flow are much
larger then molecular scales.

Finally, it should be emphasized that turbulence is a feature of a flow and
not of a fluid. That is why most of the dynamics of turbulence is the same
independent of the fluid if the control parameters and the boundary and
initial conditions are the same.

2.4 Coherent structures

Coherent structures can be defined as patterns of motion which can be
clearly distinguished from the turbulent background and occur repeatedly
in time or space. This quite general definition enables treatment of, for
example, small scale vortical structures in the boundary layers as well as
one single large scale roll as coherent structures.

Different types of flows produce different patterns, although some of
them share certain similarities. In turbulent Rayleigh-Bénard convection
the structures can be observed on different length scales. An extensive
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Figure 2.3: Structures in a convection cell according to Zocchi et al. (1990).

study of these structures was done by Zocchi et al. (1990). From direct
visualization they obtained the qualitative picture for the hard turbulence
régime described briefly in the following. There are two types of structures:
those which live in the bulk — the plumes and the spiraling swirls, and the
ones living along the boundary layers — the waves. The plumes hit the
boundary layers and excite waves; the waves are sustained by the coherent
large scale flow, and they further decay to spiraling swirls if inertia dominates
over buoyancy, or plumes if buoyancy dominates. The plumes are carried
with the large scale flow and excite new waves as they hit the opposite
plate (Fig. (2.3)). It should be mentioned here that the plumes can have
both (quasi)cylindrical stem as well as a sheet-like one as observed by some
researchers (e.g. Funfschilling and Ahlers, 2004).

Another type of coherency is found by Sano et al. (1989). They found
coherent oscillation in temperature signal measured near the plates. They
also found that this frequency equals the circulation frequency of the large
scale flow (which is U/4L, where U is the velocity of the large scale flow and
L is the height of the aspect ratio one container) and that the phase shift
of the cross spectrum of two bolometers positioned at the opposite plates is
180◦. Recently, Qiu and P.Tong (2002) put this into question and suggested
that the coherent frequency equals U/2L instead.

The central topic of this thesis is the investigation of coherent structures
in turbulent Rayleigh-Bénard convection on different scales and in different
regions of the container.
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Chapter 3

Experimental setup and
methods

I
n this chapter the general experimental setup is described which is common
for all experiments done within the scope of the thesis. The experimental

details important for particular experiments are described in the respective
chapters.

3.1 Cells

The experiments are performed in a cubical and a cylindrical cell.
The cubical cell (Fig. (3.1)) has sides of 20 cm. The sidewalls are made of

1 cm thick plexyglas. The bottom and the top plates are 1 cm thick copper
plates coated with silver for protection against corrosion. Electrical film
heaters1 are attached to the bottom plate and it is heated with a constant
heat flux. The temperature of the top plate is regulated by circulating water
from a thermostat through pipes welded to the top plate. In order to avoid
horizontal temperature gradient on the top plate two shorter winding pipes
are used rather then one longer. The plate temperatures were uniform in
space and time to better then 0.1 K. The top and the bottom plates and
the side wall were held together with stainless posts with insulating spacers
between the posts and the plates. The walls and the plates are sealed by
placing rubber O-rings in between them.

For the experiments in the cylindrical cell a cylindrical inset made of 3
mm thick plexyglas is put in the cube described above. Everything else (top
and bottom plates, temperature regulation, etc.) remains the same. Having
the walls with different geometries but exactly the same other conditions
makes it possible to investigate the influence of the geometry on the flow.

The whole cell is (except for the visualization experiment) packed in a
1All technical data about equipment used in the work are given in Appendix A
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Figure 3.1: Photography of the cubical cell used in the experiments.

styrofoam box with 4 cm thick walls which insulates the convection cell from
the environmental temperature oscillations. Inside the box four ventilators
are placed to mix the air around the convection cell. This ensures that the
temperature around the sides of the convection cell is the average between
the top and the bottom plate temperature, and that there is no periodic
vertical oscillation of the air in the surroundings caused by buoyancy.

A 13 mm travel translation stage with the resolution of 10 µm can be
mounted above a hole in the center of the top plate. This enables precise
vertical positioning of thermistors used in temperature profile measurements
and correlation measurements.

The cells were filled with water. Before the water was put into the cell it
had always been degassed using a vacuum pump, so that no bubbles could
form on the plates in the course of the experiment. In the visualization
experiments a pH indicator was dissolved in the water as described in detail
in Section 4.1 — this, however, did not change the properties of the fluid.

3.2 Thermistors and temperature measurement

Local temperature in the cells is measured with thermistors, electronic com-
ponents that exhibit a large change in resistance with a change in their body
temperature. The ones used in the experiments are of NTC (“Negative Tem-
perature Coefficient”) type, i.e. the resistance of a thermistor decreases with
the increase of its body temperature. It consists of a thermal probe welded
to insulated extension leads and coated with epoxy resin for complete insu-
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Figure 3.2: Schematic picture of the temperature measurement process in a box
filled with water (1). A thermistor (2) is connected to the Wheatston bridge (3)
as a resistance arm. As the temperature generally oscillates the bridge is unbal-
anced, that is the voltage (4) on the bridge oscillates. The voltage is measured
and transported to the computer using PCI Bus Data Acquisition Board (5). The
time–voltage pairs are saved to the computer disc (6). From the voltage data the
resistivity of the thermistor is calculated in each moment and finally from the re-
sistivity the temperature is determined using the calibration data.

lation when immersed in conductive fluids. The thermal time constant of
the thermistors is 14 ms. Temperature measurement with a thermistor is an
intrusive method and it is of great importance to have a probe which does
not significantly change the properties of the flow. The properties of the
flow around an obstacle are given by a parameter called “Reynolds number”
Re = UL/ν, where U is the typical velocity of the flow, L is the length scale
of the obstacle and ν is the kinematic viscosity of the fluid. The diameter
of the thermistor is 400 µm, the velocity scale (chosen to be the maximum
of time averaged velocity measured vertically from the plate to the center of
the cell) is found to be about 7 mm s−1 for typical conditions of the exper-
iments (Xin et al., 1996), and the viscosity of water at 20◦C is 10−6m2s−1.
All these gives Re < 3. Typically, thermistors are positioned in the flow us-
ing a tube with a diameter of 1 mm. For this obstacle the Reynolds number
is Re = 7. For these two Reynolds numbers the flow is known to have two
small attached eddies behind the obstacle (Tritton, 1992), but the flow is
not disturbed for more then the size of the obstacle in downstream direction
so that the flow properties are not significantly influenced by the probes.

All thermistors are calibrated individually against a digital thermometer
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with a 100 Ω platinum sensing element (“Pt100”). Temperature is measured
by connecting a thermistor to a Wheatston bridge as a resistance arm. As
the temperature generally oscillates the bridge is unbalanced. The voltage
on the bridge is then measured and transferred to the computer using a
PCI Bus Data Acquisition Board. The board represents a unipolar (that is,
always positive) signal as an unsigned 12 bit number, which for the total
range of 0 – 20 mV (a setup typically used in the measurements) gives a
resolution of 4.9 µV. The resistance of the thermistor is then calculated
from it. The temperature is determined from the calibration data using
spline interpolation between the calibration points2. The resolution of the
voltage measurements on the bridge of 4.9 µV corresponds to a resolution
of 0.3 Ω on the thermistor, which finally enables the temperature to be
determined with precision better then 10−5 K. The measurement process is
shown schematically in Fig. (3.2).

2Software programed for the purposes of the work is listed in Appendix B
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Chapter 4

Coherent structures in the
boundary layers

I
n this chapter the experiment and the results of the research of the small
scale coherent structures are presented. All results are gained from the

experiment in the cubical cell described in Section 3.1. The observation in
the cylindrical cell and comparison of the phenomenon in the two geometries
is postponed to Chapter 6.

4.1 Experiment

The flow in the boundary layers is visualized using the “pH method” (Baker,
1966). The pH indicator “thymol blue”1 is dissolved at a concentration of
about 10−4 per weight in the water. The solution is titrated with HCl
and NaOH just to the acid side of the end point of the indicator so that
the solution was orange yellow. If a small electrical potential difference is
applied between the upper and lower plates, such that the lower plate is used
as cathode, then the H+ ions near the lower plate are drawn to that plate
where they react to H2 leaving an excess of OH− ions there. This leads to a
local increase of the pH value at the lower plate and the solution changes its
color to dark blue. Once a darkened fluid particle is carried away from the
electrode, it loses through diffusion its pH contrast with the environment
and turns orange yellow again. In order to get the layer of dye on the plate as
thin as possible the solution must be titrated carefully and the voltage must
be chosen as small as possible. The voltage applied between the electrodes
in the experiments was typically 1.2 – 3 V. At higher voltages, the blue dye
is separated from the plate and probes regions in which the flow is clearly
three dimensional instead of nearly parallel to the boundary.

1pH = − log10[H
+] is a measure of the hydrogen ion concentration, [H+]. A pH

indicator is a dye that changes color when pH changes. The “thymol blue” indicator used
in the thesis is orange yellow for pH < 9 and dark blue for pH ≥ 9.
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Figure 4.1: View of the bottom plate. The line AB is the main diagonal of the
plate perpendicular to the mean large scale flow (which is from the lower left to the
upper right corner. A few streaks are marked with arrows.

If in the thin dyed fluid layer there are regions where the flow converges
and, as a consequence, regions where it diverges, then the layer will not
stay uniformly dark — the dye will collect in the converging region and the
undyed fluid from the bulk will replace the dyed one in the diverging region.
Thus the dye marks the areas of convergence which will be shown in the
next Sections to form a regular pattern, that is, a coherent structure.

In order to acquire quantitative data, photographs of the bottom plate
of the cell were taken with a 5 megapixel CCD camera. One photograph was
taken every 60 s so that consecutive pictures are statistically independent.
The camera was operated with software which enables programming of the
interval shooting and was connected to the computer via the serial port. A
grid of equally spaced lines at intervals of 2 cm was drawn with a graphite
pencil on the plate for calibration of the pictures. The positions at which
streaks cross either the main diagonal perpendicular to the mean flow (AB
in Fig. (4.1)) or where they cross the diagonal labeled CD in Fig. (4.1)
(translated for 2

√
2 cm from AB in downstream direction) is determined

manually using a commercial software for digital image editing.
In the coarse of the work a piece of software was developed (“StreakView”,

see Appendix B) which draws the difference of two pictures pixel by pixel.
It was used to make the difference of a picture with streaks and the “back-
ground” (picture without the streaks) so that only streaks (in ideal case) are
left as the result. That way the streaks are easily identifiable. An example
is shown in Fig. (4.2).
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Figure 4.2: Photograph of the lower plates processed with ”StreakView” software.
The mean large scale flow is from the upper left to the lower right corner.

4.2 Observation

The basic observation is that dark fluid accumulates in streaks aligned with
the mean wind (Figs. (4.1) and (4.2)). Streaks appear in groups within
which there is an apparent periodicity. The streaks are advected by the
mean circulation and lift off the plate when they approach a sidewall. The
number of visible streaks increases with downstream distance and the first
ones appear shortly before they reach the diagonal of the bottom plate
perpendicular to the mean flow (the line AB in Fig. (4.1)). Streaks are
uniformly distributed over AB or CD which indicates that they are not
related to possible defects in the plate.

If the voltage between the plates is increased, the thickness of the dyed
layer would be increased as described in the previous section. In this case
it is possible to observe some properties of the flow on top of the boundary
layers. Fig. (4.3) shows such a case. The “waves” as described by Zocchi
et al. (1990) (cf. Fig. (2.3)) are clearly identifiable in the upstream part of
the flow. Note that they are visible only when the layer of dye is thicker
then the boundary layer, which proves the findings of Zocchi et al. (1990)
that they live on the interface between the boundary layer and the bulk.
The streaks, on the other hand, are visible when the layer of dye is thinner
then the boundary layer, which means that they live in the boundary layers.

The experiments were performed for several Rayleigh and Prandtl num-
bers and across the two diagonals as summarized in Table 4.1 in the first
three columns.
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Figure 4.3: Visualization of the flow over the bottom plate, with dye layer thicker
then the boundary layers. The large scale mean flow is from the lower left to the
upper right corner. The ”waves” sketched in Fig. (2.3) are here clearly visible in
the upstream part of the flow (circular structures).

4.3 Mechanism of streak formation

In order to exactly define the area where the streaks appear it is now nec-
essary to define the thermal boundary layer more exactly. Although several
definitions of the thickness of the boundary layer can be found in the lit-
erature, the differences in the values obtained in different ways are minor
and unimportant for this work. The measurement of the temperature profile
with a resolution of 125 µm at Ra = 1.3× 109 and Pr = 6.7 is shown in Fig.
(4.4). The thermal boundary layer is then defined as the distance at which
the extrapolation of the linear part of the profile equals the mean temper-
ature in the bulk and for this case the thickness is 1.8 mm. For the range
of Rayleigh and Prandtl numbers in this work the measured thicknesses of
the thermal boundary layer varied by at most for about 10%.

The appearance of streaks indicates that blue dye is swept together by
the flow. The convergence of the flow towards the lines where streaks form
requires that fluid rises above the streaks and that downwellings exist in
between streaks. A pattern of closed streamlines producing a single streak
would be a pair of counterrotating vortices superposed on, and aligned with,
the mean flow.

Although the streak distribution is uniform over the plate in the direc-
tion perpendicular to the flow, the histogram of the streak separations has
a pronounced peak. The bar charts in Fig. (4.5) are examples of the dis-
tributions for Ra = 1.3 × 109 and Pr = 6.7 across the line CD (lefthand
picture) and across the main diagonal AB (righthand picture). The peaks
have values between 6 mm and 10 mm for the range of parameters inves-
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Figure 4.4: The mean temperature as function of distance z from the top plate for
Ra = 1.3 ·109 and Pr = 6.7. The intersection of the solid lines defines the thickness
of the boundary layer (see text).

tigated. Furthermore, the distribution towards larger distances seems to
have an exponential tail. These two features — the pronounced peak and
the exponential tail — give rise to two approaches to the explanation of
the distribution. On one hand the peak can be interpreted as a hint at
an underlying periodicity. This idea leads to linear stability analysis and
solution of the perturbed equation in terms of normal modes. On the other
hand, the exponential distribution is typical for many stochastical processes
in nature and motivates the explanation in terms of statistics. Both of these
approaches are presented in the next two sections.

4.3.1 Linear stability analysis

The thermal boundary layer itself is stable with respect to convection within
that layer as can easily be proved by comparing the actual Rayleigh number
with the critical one for the onset of convection. The critical Rayleigh num-
ber for rigid–free boundaries is 1000 (Chandrasekhar, 1981) and with the
imposed horizontal flow on the upper boundary (due to the large scale mean
flow) it becomes even higher. The actual Rayleigh number of the boundary
layer in the experiment is Ra ≈ 560, that is, below the critical value for the
onset of convection. However, the hot fluid of the boundary layer at the
bottom plate underneath the cold bulk is Rayleigh-Taylor unstable (as well
as, of course, the cold boundary layer on top of the hotter bulk at the upper
plate). In this section the linear stability analysis of the system “boundary
layer – bulk” is carried out taking into account the shear flow caused by the
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Figure 4.5: Two experimental histograms of streak separations. Lefthand figure
shows the separations across the diagonal CD and is based on 134 photographs
showing a total of 1277 streaks. The righthand figure shows the histogram for the
main diagonal AB and is based on 56 pictures showing the total of 305 streaks.

large scale wind. The model used in the calculation is shown in Fig. (4.6).
Let the basic state be defined by the local time averaged values of the

velocity and temperature, ~U(z) and T0(z), respectively, and let this state be
slightly perturbed, so that

T (x, y, z) = T0(z) + T ′(x, y, z) (4.1)
~u(x, y, z) = ~U(z) + ~v(x, y, z) (4.2)

where T (x, y, z) and ~u(x, y, z) are total temperature and velocity at (x, y, z)
respectively, and T ′(x, y, z) and ~v(x, y, z) are temperature and velocity per-
turbations, respectively. The x axes is chosen to be in the direction of the
large scale mean flow ~U(z), that is, parallel to the streaks as shown in Fig.
(4.1). The linear stability problem is described by the following equations:

∂t~v + (~v · ∇)~U + (~U · ∇)~v = −1
ρ∇p + ν∇2~v − ~gαT , (4.3)

∇ · ~v = 0 , (4.4)
∂tT + (~v · ∇)T0 + (~U · ∇)T = κ∇2T . (4.5)

These equations can be nondimensionalized using the total thickness of
the investigated layer zmax as length scale, the maximal averaged velocity
U(zmax) as velocity scale and the temperature difference between the plate
and zmax as temperature scale. Taking k̂ · ∇× and k̂ · ∇×∇× of the nondi-
mensional momentum equation gives together with the nondimensional heat
equation the following system:

(∂t + ~U(z)∂x)η + dU(z)
dy ∂yw = Re−1∇2η , (4.6)

(∂t + ~U(z)∂x)∇2w − d2U(z)
dz2 ∂xw − Re−1∇2∇2w = RaRe−2Pr−1∇2

hT ′, (4.7)

(∂t + ~U(z)∂x)T ′ + w dT0(z)
dz = Re−1Pr−1∇2T ′ , (4.8)
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Figure 4.6: Model used for the calculation of the most unstable mode using linear
stability analysis. The velocity is scaled with its maximal value, temperature with
the temperature difference between the value at the top of the computational do-
main and the value at the plate and the length is scaled with the half of the height
of the computational domain.

where η ≡ k̂ · ∇ × ~v is the vertical component of the vorticity, w ≡ ~v · k̂
is the vertical velocity component, ∇2

h ≡ ∂2
x + ∂2

y and Re = UL
ν is the

nondimensional Reynolds number. The solution is searched in terms of
normal modes, so that the dependence of ~v and T on x, y, and t is supposed
to be of the form eσtei(kxx+kyy). For any fixed wave numbers kx and ky

the equations (4.6)–(4.8) pose an eigenvalue problem with the growth rate
σ as eigenvalue. The boundary conditions used to complete the eigenvalue
problem are ~v = 0 and T = 0 at z = 0 and z = zmax. The eigenvalues are
computed numerically with a Chebychev spectral method.

In order to check the influence of the large scale mean flow velocity on
the wavelength of the most unstable mode the result of the calculation with
real temperature and velocity profiles taken from Tilgner et al. (1993) is
compared with the calculation with the same temperature profile and the
mean large scale velocity set to zero2. The Rayleigh and Prandtl numbers in
this experiment were Ra = 1.1 · 109 and Pr = 6.6. The most unstable mode
turns out to be unaffected by the large scale wind — velocity is apparently

2The temperature profile in the paper and in the thesis were actually measured at the
upper plate and the model is tailored for the lower plate, but as the system is vertically
symmetric it is trivial to transform the profile so that it can be used with the model, or to
transform the model for use with the profile at the upper plate. In the thesis the former
was done.
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Figure 4.7: Measured temperature profile for Ra = 1.3 · 109, Pr = 6.6 (diamonds)
and aproximation used for some computations (solid line). Temperature and length
are nondimensionaled (see Fig.(4.6)). T ∗ is the temperature at the plate.

too small to play a significant role except that it gives a preference to lon-
gitudinal over transverse vortices. This result makes it possible to perform
the calculations using the real temperature profile measured in the cubical
cell described in Section 3.1 (the profile is shown in Fig. (4.4)) despite the
fact that the velocity was not measured at all in the framework of the thesis.

Next, the dependence of the wavelength of the most unstable mode (λ) on
the total thickness of the examined layer (zmax) was investigated. A simple
approximation shown in Fig. (4.7) was used for the temperature profile and
Rayleigh and Prandtl numbers were Ra = 1.3 · 109 and Pr = 6.8. The result
is presented in Fig. (4.8). For zmax > 8 mm the wavelength λ saturates to
the value ≈ 8.4 mm. This result makes it possible to compute λ using as
total depth zmax any value greater then 8 mm.

Now the wavelength λ and the corresponding growth rate σ can be com-
puted for the real temperature profile shown in Fig. (4.4) (see footnote 2)
and zmax = 20 mm. The wavelength of the most unstable mode turns out to
be λ = 8.8 mm and the growth rate σ = 0.6 s−1. The computed λ is in very
good agreement with the measurements — the histogram of the streak sep-
arations has the peak at about that value (Fig. (4.5)). On the other hand,
the computed growth rate combined with the advection velocity implies that
there should be at least seven times as many visible streaks on the diagonal
CD than on AB (Fig. (4.1)). In reality, this factor is approximately 1.5.

The fact that the wavelength of the structures calculated under assump-
tion that they originate from Rayleigh-Taylor instability agrees with the
measurement, but the growth rate is much larger then measured, can be
explained as follows. If the structures are visualized far away from the place
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Figure 4.8: The value of the wavelength of the most unstable mode (diamonds)
becomes independent of the value of zmax and saturates to 8.4 mm (solid line).

they originate, then the linearized equations do not model the phenomenon
adequately, because the nonlinear term in the Navier–Stokes equation starts
to play an important role by limiting further exponential growth. That is,
the observed growth rate is smaller then the calculated because the obser-
vation is done in the régime beyond the exponential growth.

From the results in this Section it can be concluded that Rayleigh-Taylor
instability is a reasonable explanation for the streak formation, but the
visualization was done too far away from the position where the disturbances
originate to be modeled completely by linearized equations.

In the next section another approach is employed to explain the ob-
served small scale coherent structures, based on the assumption that they
are formed by a stochastic process.

4.3.2 Stochastic process

In the previous attempt to explain the mechanism of the streak formation,
the peak in the histogram of separations was interpreted as the result of
periodicity. Alternatively, the distribution of the streak separations and the
distribution of the number of streaks in any moment in time (Fig. (4.11))
can be explained in terms of a stochastic process as follows.

Consider a diagonal (AB or CD on Fig. (4.1)) of length L and denote
by x the distance along the diagonal from one of its end points (Fig. (4.9)).
For simplicity, it will be assumed that all structures have the same lateral
size δ. If a streak at location x is created by a pair of vortices, the streak is
surrounded by a vortex of size δ/2 on each side and the structure extends
from x− δ/2 to x + δ/2. The point at x− δ/2 will be called the “left edge”
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Figure 4.9: Geometry of the problem described in the text.

of the coherent structure.
Denote by p dx the probability to find a left edge in an interval dx.

The probability density p is independent of x as justified by the uniform
distribution of the streaks along the diagonal observed experimentally. The
probability to find a segment of length l free of left edges is then e−pl.
In order to compute the experimental histogram, the finite length of the
diagonal must be taken into account. If two streaks are separated by a
distance D, the leftmost of the two streaks must have a left edge at a distance
of at most (L−D − δ) from the left end of the diagonal so that the second
streak still fits onto the diagonal. Left edges are equally distributed in the
interval [0, L−δ]. The probability to find two streaks separated by a distance
between D and D + dD is equal to the probability that a streak picked at
random is in the interval [0, L − D − δ], multiplied by the probability not
to find a left edge over a distance (D − δ), multiplied by the probability to
find one in the following interval dD, which is all taken together equal to

L−D − δ

L− δ
e−p(D−δ)p dD .

To be able to compare the experimental histogram constructed with the
bin size ∆D with the theoretical one, in the probability given above dD
must be replaced with ∆D and the whole expression must be multiplied
with the total number of streaks NpN observed, where Np is the number of
photographs used in the evaluation and N is the average number of streaks
per photograph. The theoretical histogram of streak separations then reads:

H(D) =

{
L−D−δ

L−δ pe−p(D−δ)∆DNpN , δ < D < L− δ

0 , otherwise .
(4.9)

This expression is used to fit the histogram of streak separations like the
ones in Fig.(4.5)
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Another quantity to be found is the probability distribution for the num-
ber of streaks in any one photograph (that is, at any moment). Let P (n, l)
be the probability to find n streaks at any given time in an interval of length
l. P (n, l) can be computed recursively as follows. The probability not to
find a streak in the interval of total length l is

P (0, l) =

{
1 , l < δ

e−p(l−δ) , l ≥ δ .
(4.10)

The probability to find n left edges in the interval l is the probability not to
find a left edge of a structure up to location x, multiplied by the probability
to find one immediately afterwards, multiplied by the probability to find
(n − 1) further streaks in the remaining interval, integrated over all x in
which the left edge of a structure can be located:

P (n, l) =

{
0 , l < nδ∫ l−δ
0 pe−pxP (n− 1, l − x− δ) dx , l ≥ nδ .

(4.11)

The parameter δ is now chosen to have the value at which the experimen-
tal histogram of separations has the maximum and p is found so that P (n, l)
fits the experimental histogram of separations as well as possible. The fact
that δ — the size of the whole structure needed to produce a streak — is cho-
sen to be a constant implies the assumption that all vortices have the same
size. This is probably not a realistic assumption and leads to an error in the
prediction of separation for very small distances as will be explained later.
The p found this way is then plugged into the expression (4.9) for H(D)
and the fit H(D) to the experimental histogram of the number of streaks
per picture can now be verified. The results of this procedure are shown in
Figures (4.10) and (4.11). It can be seen that the experimental data can be
very well fitted by the model without the assumption of periodicity in the
streak separations.

The assumption that δ is equal for all structures is the reason that H(D)
equals zero for D < δ which obviously poorly reproduces the histogram for
small D. In order to better reproduce the observed data in this region, a
more complex model using a distribution of δ instead of its constant value
could be employed. On the other hand, that procedure would introduce
more adjustable parameters, but would not contribute much to illuminating
the phenomenon, so that the accuracy of the model for small D is sacrificed
in favor of simplicity.

Values of δ defined as the distance at which the separation distribution
has the peak are determined for different values of Rayleigh and Prandtl
numbers reached in the experiments with a goal to determine a dependence
of δ on the parameters. The experimental histograms are constructed with
bin size 2 mm, which slightly influences the determination of δ, nevertheless
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Figure 4.10: The bar chart is a histogram of the streak separation on the line CD
in Fig. (4.1), and the solid line is the theoretical curve given by Eq. (4.9) (for
∆D = 0.2 mm, δ = 6 mm and p = 0.82).
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Table 4.1: Minimal streak separation δ determined for different Ra and Pr according
to the procedure described in the text.

Ra Pr
Position
(see Fig. 4.1) δ

(mm)

5.0× 108 6.5 CD 10
1.3× 109 6.7 CD 6
1.3× 109 6.7 AB 8
1.4× 109 3.6 CD 8
2.0× 109 6.2 CD 10

no evident tendency in change of δ could be found for the modest range of
parameters in the experiments. The result is presented in Table 4.1. Of
course, it is not to be expected that δ does not scale with Ra and/or Pr, but
the range of parameters that could be reached in this work was too small to
notice it.

4.3.3 Comparison with streaks in isothermal shear flows

Periodic streamwise vortices are well known from isothermal momentum
boundary layers where they have periodicity length of about 100 wall units
(Smith and Metzler, 1983), where one “wall unit” is ν1/2(dU/dz)−1/2, ν
is the viscosity and dU/dz the velocity gradient at the wall. Hence, the
expected peak of the streak separations for the cell at hand would be 85
mm, which is a distance ten times bigger then actually measured. This is
not surprising, as the periodicity of 100 wall units occur at much higher
Reynolds numbers then in the convection cell where the Reynolds number
based on the thickness of the viscous boundary layer and the velocity at the
edge of the boundary layer is less then 30.

Transient energy growth is a theory that successfully explains the stream-
wise vortices in isothermal boundary layers. The linear stability analysis
gives critical parameters for exponential growth of an initial perturbation
and energy methods give conditions for no energy growth. In the case where
the flow parameters are smaller then critical for exponential growth but
higher then critical for energy growth the transient energy growth can oc-
cur for moderate time t > 0 although the perturbation eventually decays
for t → ∞. The reason is the nonorthogonality of the linearized stability
problem, which can cause e.g. the transient growth as large as 1010 times
the energy of the initial perturbation in a viscous channel flow (Reddy and
Henningson, 1993). In order to find out if this mechanism causes also the
formation of the streaks in turbulent Rayleigh-Bénard convection the cal-
culations of Reddy and Henningson (1993) and Butler and Farell (1992)
were extended by inclusion of a linear temperature profile and the buoyancy
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Figure 4.12: Temperature signatures of streaks measured at the distance of about
1/8 of the thermal boundary layer thickness from the plate.

force. However, at the parameters relevant for the experiment, no significant
transient amplifications occurs, so that this mechanism must be excluded.

4.4 Outlook

Further experiments over a larger span of Rayleigh and Prandtl numbers
would be helpful to gain more information about the streaks in the bound-
ary layers of the turbulent thermal convection. The visualization method
presented in Section 4.1 is possible only in water. In order to achieve other
values of the parameters it is necessary to use different media so it is help-
ful to develop other methods for the streak detection which would not be
dependent on a specific fluid.

Knowing the relative temperature of a streak compared to the surround-
ing fluid would enable detection of the streaks in any fluid where the tem-
perature can be measured in the boundary layers. With this motivation in
mind a less extensive study of the temperature signature of a streak was
performed. The measurements were done as follows. The thermistor was
fixed at a point in the boundary layer and the temperature was measured
for a certain period of time. Times at which a streak hits the thermistor
and when it leaves it were noted. The temperature signal is then checked
at that times. A representative result is shown in Fig. (4.12).

Analyzing several pictures like Fig (4.12), an approximate criterion for
determining a streak based only on temperature signal can be established.
This criterion is:

(the maximal temperature in the streak) > 〈T 〉+ b× rms(T) on the hot
plate,
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or

(the minimal temperature in the streak) < 〈T 〉 − b× rms(T) on the cold
plate,

where rms(T) is the local rms of the temperature, 〈T 〉 the local mean tem-
perature, and b the factor of magnitude of about 2.5. In Fig. (4.12) the
threshold value of rms(T) of 1.3◦C corresponds to b = 2.5.

A similar approach is based on velocity measurements. As a pair of
counterrotating vortices push the fluid, which was originally near the plate,
in between them the resulting streak must have lower velocity then the
surroundings. Thus, by measuring momentary horizontal velocity field in
the boundary layers the stripes of low velocity fluid are the streaks described
in this Chapter.
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Chapter 5

Coherent structures in the
bulk

A
distinct feature of turbulent Rayleigh-Bénard convection in a closed
container is the coherent large scale mean flow (by different researchers

also called “wind” or “large scale circulation” — LSC) which spans the
height of the container and has a single cellular structure. It was discovered
by Krishnamurti and Howard (1981) using flow visualization and many of its
features are still extensively studied, for instance its sustaining mechanism,
the magnitude and the direction of the velocity field or influence on the heat
transport. In this chapter the large scale circulation is studied mainly by
means of temperature measurements at different positions in the cell.

Additionally, on the length scales between the largest scale in the flow
and the small dissipation scales two prominent length scales are discovered
and their origin explained. The fact that only two length scales dominate the
flow in the bulk contradicts the classical idea of fully developed turbulence
in which eddies of all sizes are present in the flow and energy cascades from
larger eddies to eddies of the next smaller size. Furthermore, measuring the
spatial correlation and time power spectra the validity of Taylor hypothesis
could be tested. Before the sections in which the large scale circulation
and structures on intermediate scales are studied the experimental setup
is described and some important length and time scales in the flow are
calculated.

5.1 Experimental setup

The experiments are performed in the cubical cell with thermistors described
in Chapter 3. For the fine resolution temperature measurement used to re-
solve the thermal boundary layer the following setup was used. The trans-
lation table was fixed on the plexyglas plate which is fixed on top of the
container’s upper copper plate. It is positioned so that the thermistor can
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Figure 5.1: Schematic view of the upper plate with a thermistor hold by the trans-
lation table.

be lowered through a hole in the middle of the plate. The thermistor leads
are drawn through a stainless steal tube with the outer diameter 0.8 mm
and 120 mm long. The tube is then fixed in the translation table holder.
On the thermistor side the leads protrude for about 15 mm out from the
tube and are bent in the U shape so that the thermistor can touch the plate
when lowered into the cell (Fig. (5.1)).

Simultaneous measurements along the vertical axes of the cell were done
with a thermistor array consisting of nine thermistors evenly spaced 20 mm
one from another, the first one being 20 mm from the upper plate. The
thermistors were attached to a steel tube so that the leads were drawn
between the tube and the rubber coating around the tube. The leads on the
thermistor side were bent perpendicular to the tube so that the thermistors
were about 15 mm away from the tube. This is a compromise between the
wish to measure exactly in the middle of the cell and the need to measure
as far away from the holder as possible to avoid the influence of the holder
on the flow at the place where the temperature was measured. The leads
were drawn through the tube which was hold in place by a holder above the
hole in the middle of the upper plate.

The sampling frequency was typically 4.4 Hz which ensured that the
power spectra of the temperature oscillations cover the whole range of fre-
quencies up to (or very near to) the dissipation range. Additionally, it
ensures that the 50 Hz disturbance from the electrical network (and some
other disturbances) are aliased to the high frequency end of the spectra, so
that they do not influence the analysis.

The flow visualization is performed using thermochromic liquid crystals
– a chemical agent which when dissolved in water react to changes in tem-
perature by changing color. Using the crystals it is possible to visualize both
velocity and temperature instantaneous fields in the cell and to some extent
test the theoretical assumptions.
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Figure 5.2: Positions of thermistors used for simultaneous temperature measure-
ments and their labels used in text. Thermistors are at distances 20 mm one from
another, thermistors 1 and 9 are at 20 mm from the upper and lower plates, re-
spectively.

5.2 Some important scales in turbulent convection

One of the characteristics of turbulent convection is the existence of several
specific length scales, some of which assume specific roles in the description
and analysis of the flow. Before proceeding to the determination of the
coherent structures in the bulk, a few important length and time scales are
calculated in this Section. These are: the largest length scale, the length
scales at which the energy and the temperature variance are dissipated,
Bolgiano length, diffusion time, turnover time and the time scale which
separates the inertial and the dissipation range.

The energy is supplied to the flow through the temperature difference
over the distance between the plates. This distance (that is, the height of
the cell, L) is the largest length scale in the flow.

Given the mean velocity of the large scale flow in the cell, a time scale
of one turnover can be determined. The mean velocity is U = 9.8 mm s−1

(see Section 5.3.1), so that the turnover time is 4L/U ≈ 80 s.
The kinetic energy is dissipated by the viscosity on the so called “Kol-

mogorov length”, η. Since the small scale motions tend to have small time
scales, one can assume that these motions are statistically independent of
the relatively slow large scale flow. Hence, the small scale motion should
depend only on the kinematic viscosity and the rate at which the energy is
supplied from the large scale motion. Dimensional analysis then gives for
the small scale length (Tennekes and Lumley, 1982)

η = (ν3/εu)1/4 , (5.1)
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Figure 5.3: Temperature dissipation spectrum at position 20 mm from the plate.
The narrow peak at high frequency end is aliased 50 Hz noise from the electrical
network.

where ν is the kinematic viscosity and εu is the rate of kinetic energy supply.
It is now reasonable to assume that the rate of energy supply from larger to
smaller scales equals the rate of dissipation. The rate of the energy supply
is proportional to the reciprocal of the time scale of the larger eddies, u/L,
where u is the velocity scale of the large eddies. The kinetic energy per unit
mass in the large scale turbulence is proportional to u2. This gives for the
dissipation rate εu:

εu ∼ u3/L . (5.2)

Thus the dissipation rate can be estimated from large scale dynamics and
the Kolmogorov scale can be determined as (Tennekes and Lumley, 1982)

η ∼ L

(
uL

ν

)−3/4

= L Re−3/4 . (5.3)

For the Rayleigh number Ra ≈ 109 typically used in the experiments the
Reynolds number Re ≈ 1400 which gives Kolmogorov length of the order of
magnitude 1 mm.

Analogous to the Kolmogorov scale thermal fluctuations are smoothed
out on the scale determined by the thermal diffusivity κ. This so called
“inner thermal scale” can be estimated as (Grossmann and Lohse, 2004)

ηθ = κ3/4ε−1/4
u = Pr−3/4η , (5.4)

which for Pr = 7 and η = 1 mm gives ηθ ≈ 1/4 mm.
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The thermal diffusion time scale is the time needed for heat to diffuse
over the length L. For κ = 0.144 mm2 s−1 (water at 20◦C) this scale is
L2/κ = 2.8× 105 s.

For well developed thermal convection, characterized with high Rayleigh
numbers, the largest and the smallest scales are clearly divided by the range
of scales. This range can again be divided into the range of scales where
buoyancy is the important driving force and the range of smaller scales where
inertial force is dominating. The length dividing these two regions is called
“Bolgiano length”. This length can be estimated as (Skrbek et al., 2002)

lB =
ε
5/4
u

ε
3/4
θ (gα)3/2

∼ Nu1/2L

(RaPr)1/4
, (5.5)

where g is the acceleration due to gravity, α is the thermal expansion co-
efficient, εθ is the dissipation rate of temperature variance and Nu is the
Nusselt number (ratio of total heat flux to the molecular heat flux). The
first expression in (5.5) yields local values of the Bolgiano length if the local
dissipation rates are used. The second expression is obtained on dimensional
grounds and is an integral quantity characteristic for the entire volume of
the apparatus (Skrbek et al., 2002). This characteristic value of lB for the
cell at hand is of the order lB ≈ 5 mm.

In the case of temperature fluctuations T (t) the contribution to the total
variance from those components in T̂ (f) whose frequencies lie between f and

f + df is given by
∣∣∣T̂ (f)

∣∣∣
2

df , where T̂ (f) is the Fourier transform of T (t)

T̂ (f) =
∫ +∞

−∞
T (t)e−2πft dt . (5.6)

The power spectrum P (f) represents the dependence of the quantity
∣∣∣T̂ (f)

∣∣∣
2

on the frequency f . A specific frequency fp at which the dissipation spec-
trum f2P (f) (Hinze, 1959) has a peak defines the time scale f−1

p at which
the dissipation range starts. The temperature dissipation spectrum at posi-
tion 20 mm from the plate is shown in Fig. (5.3). The time scale f−1

p in that
point is 2 s. As going towards the center of the cell the time scale increases
and in the center it is about 6 s. Zhou and Xia (2001) found that f−1

p in
the cell center coincides with Bolgiano time scale (which relates to Bolgiano
length lB) for Rayleigh number range at least from 4.1× 108 to 1.85× 1010

and for Prandtl number Pr ≈ 4 (water).

5.3 Large scale circulation

As described in Section 2.4 the coherent large scale flow carries the plumes
discharged from a boundary layer to the opposite plate, where they make
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Figure 5.4: Histograms of the temperature fluctuations (averaged over symmetrical
positions) from the local mean. Positions are labeled as described in Fig. (5.2).

a perturbation which causes new plumes to be discharged and so on. But
the plumes are not only passive objects carried by the mean flow — they
“feed” the large scale mean flow through the impulse they exert on the flow
as they are ejected from the boundary layers. Thus the “plumes ejection –
large scale flow” is a self sustaining process. Recently an extensive experi-
mental study of the origin of the large scale flow was performed by means of
shadowgraph visualization and PIV measurements (Xi et al., 2004). In that
study the answer is given whether the plumes initiate the large scale flow or
is it the other way round. In short, the finding is that the plumes appear
at the beginning of the process, and that they raise (or fall) vertically with-
out a horizontal velocity component. The vertically moving plumes produce
vortices surrounding them and these vortices generate the initial horizontal
motion of the flow field. Two types of interactions were identified: (i) di-
rect plume–vortex interaction and (ii) plume–plume interaction via vortices.
These interactions as well as the interaction and merging of the vortices lead
to grouping or merging of plumes, which in turn generate vortices of larger
scale. Finally, a coherent circulatory motion is formed spanning the whole
cell.

The large scale circulation has a two dimensional structure and occu-
pies only a limited fraction of the total volume — the “intermediate mixing
zone”. Its thickness will be estimated in Section 5.3.2. This region is domi-
nated by the plumes. Figure (5.4) shows the histograms of the temperature
fluctuations from the local mean. Clearly, the histogram of the tempera-
ture fluctuations near the plate is highly skewed due to the large number of
plumes in that region, unlike the histogram of the fluctuations in the center
of the cell.
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Figure 5.5: Arbitrary chosen sections of the temperature time series 20 cm from
the upper plate (left) and 20 cm from the lower plate.

5.3.1 Coherency

Ejections of plumes from a boundary layer can be easily detected by temper-
ature measurements in the plane of the large scale flow. Figure (5.5) shows
temperature time series (with the local mean subtracted) near the top (left
picture) and the bottom plate. Obviously there are occasional excursions
of hot fluid near the bottom plate and cold fluid near the upper plate and
these excursions originate from the plumes. A typical power spectrum of
the temperature oscillations is presented in Fig. (5.6).

The peak at f0 = 0.011 Hz in the power spectrum (corresponding to
the period of ≈ 90 s) can be connected to the velocity of the large scale
flow. The key phenomenon responsible for the oscillation is the clustering of
plumes through the hydrodynamical interaction as described above. When
such a cluster hits the opposite boundary layer a large perturbation causes
a large temperature oscillation. Furthermore, a large number of new plumes
is produced which makes another cluster and the process repeats. The
frequency f0 of the low frequency peak in the power spectrum (Fig. (5.6)) is
thus the frequency at which the cluster of plumes hits the thermistor. The
frequency f0 is dependent on the Rayleigh number and it first appears at
the transition from soft to hard turbulence, at Rac ≈ 5×107 (Qiu and Tong,
2001).

It is now of interest to determine the phase between the oscillation on
the thermistor 20 mm beneath the upper plate and the one 20 mm above
the lower plate. The phase π would mean that strong oscillations occur
alternately at the plates, i.e. that at any given time only one group of
plumes exists in the container. A phase 0 would mean that the oscillations
occur at the same time, i.e. that at any time there are two “packages” of
plumes traveling through the cell. The spectral coherence is the amplitude
of the cross spectrum normalized by the original power spectra:

Cohij(f) =
|T̂i(f) T̂j(f)|2
Pi(f) Pj(f)

. (5.7)
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Figure 5.7: Coherence and phase of the thermistors placed 20 mm beneath the
upper plate and the one placed 20 mm above the lower plate.

Fig. (5.7) shows the coherence and phase of the two thermistors. The
phase at the frequency f0 is indeed ≈ π which means that the plume clusters
are being emitted alternately from the opposite plates. The coherent oscil-
lation has a frequency 0.011 Hz as seen from the pronounced peak. Another
peak at twice that frequency is also clearly detectable in the coherence as
well as in the power spectra. Its origin is explained in Qiu and Tong (2001).

The mean maximal velocity of the large scale flow could not be mea-
sured directly in the framework of this thesis, but it can be estimated from
other works. For instance, Tilgner et al. (1993) directly measured the ve-
locity at the similar Ra as in this work, but in a somewhat smaller cell
(L = 180 mm) and got U ≈ 6 mm s−1. The velocity can also be estimated
using the scaling of the Péclet number (Pe = UL/κ). Qiu and Xia (1998)
found Pe = 0.28Ra0.51. For Ra = 1.5 × 109 used in this work this gives
U ≈ 9.8 mm s−1. With this velocity U/4L = 0.012 s−1 which is very close
to f0 which proves that the temporal temperature coherent oscillation is
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connected to the (spatial) large scale circulation.

5.3.2 Spatial modes

Instead of looking at the temperature at a single thermistor or pair of ther-
mistors as in the correlation or coherency calculations, it is possible to con-
struct a quantity using the instantaneous temperature on all thermistors:

Cij =
∑
n

Ti(tn)Tj(tn) = Cji (5.8)

As Cij is a real symmetric matrix it has real eigenvalues and real and or-
thogonal eigenvectors. These eigenvectors can thus be used to construct
mutually uncorrelated modes:

Mm(t) =
N∑

i=1

aimTi(t), m = 1, . . . N (5.9)

where N is the number of thermistors (in the experiments nine thermistors
were used) and (a1m, . . . aNm) is the m-th eigenvector of Cij . The eigenvalues
and eigenvectors are calculated as described in Press et al. (1995), Ch. 11.1.

Valuable information can now be gained by studying the power spectra
of the time series of the individual modes Mm(t). Figure (5.8) shows the
eigenvectors and the power spectra of the corresponding modes.

From these pictures it can be seen that the modes which correspond to
the strong temperature oscillations at the two outermost thermistors relative
to all others contain most power (graphs denoted by a and i). The next
mode containing the most power is the one corresponding to the oscillation
of the thermistors 2 and 8 (b in Fig. (5.8)) whereas the other modes contain
insignificant amount of power. This enables identification of the region of
thermistors 1 and 2 as the “intermediate mixing zone”, that is the region
where the large scale flow and plumes dominate. The thickness of the region
is thus ≈ L/4. Moreover, there is a clearly identifiable oscillation at ≈ 0.01
Hz in this region, whose origin is already explained earlier.

5.4 Coherent structures on intermediate scales

In order to detect spatial structures on intermediate scales spatial correlation
is employed as a convenient tool. The spatial correlation of temperature at
positions i and j separated by ∆z is defined as:

gs(∆z) =
〈Ti · Tj〉√〈

Ti
2
〉
·
√〈

Tj
2
〉 (5.10)

where Ti and Tj are the temperature fluctuations about the local average at
positions i and j, respectively and angle braces denote temporal averaging.
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Figure 5.8: Eigenvectors (left) and the power spectra of the corresponding modes.
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Figure 5.8: (continued) Eigenvectors (left) and the power spectra of the correspond-
ing modes.
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Figure 5.8: (continued) Eigenvectors (left) and the power spectra of the correspond-
ing modes.
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When ∆z = 0, Ti = Tj and the correlation is equal to 1 by definition. On
the other hand, for large ∆z it is to be expected that the two quantities are
uncorrelated, that is gs(∆z) → 0 for large ∆z.

Spatial correlation indicates a distance over which the motion at one
point significantly affects that at another (Tritton, 1992), so it may be used
to assign a length scale to the turbulent flow. The way the length scale
will be defined depends on the general form of the correlation function. For
instance, it can be defined as

∫∞
0 gs dz, or, if the curve has a negative region,

the value of z at which gs is a minimum or at which it first becomes negative,
or it can be defined as the distance in which gs falls to 1/e (Tritton, 1992).
A scale defined in one of these ways corresponds to the larger structures of
the flow. For detection of the small scales (e.g. Kolmogorov scales at which
dissipation occurs) other methods are used.

A wish to divide a turbulent flow into an interacting flow of different
length scales has its origin in the concept of turbulence as having a cascade
of energy from large eddies towards smaller ones, the energy being dissipated
by the eddies with the smallest size. Thus a class of eddies is identified by its
typical size, or “length scale”, different classes of eddies having different roles
in the turbulent flow. On the other hand, many researchers challenge such a
picture of turbulence. For instance, Warhaft (2000) says, “The experimental
evidence shows that the large and small scales are strongly coupled and that
the traditional cascade picture, which promotes the notion of universality,
is a crude representation”. In this Chapter two prominent length scales
in the intermediate scale region will be detected and it will be shown using
visualization with thermochrystals that the two scales are indeed connected,
but it doesn’t yet prove neither of the two approaches, especially as no
interaction with the dissipation scales can be deduced with the methods
used.

In an oversimplified picture an “eddy” is a swirling blob of fluid. A
better, but more abstract, definition of an eddy of size l = 2π/k (where
k is the wave number) is that it is a disturbance containing energy in the
vicinity of k. It may be now tempting to think of an eddy as a disturbance
having a narrow peak in the power spectrum, but that would be a wrong
picture. The narrow peak in the power spectrum corresponds to the slowly
damped oscillations in the spatial correlation because the correlation and
the power spectrum are a Fourier pair (as shown by the equations 5.12).
Such oscillations are characteristic of the wavelike disturbances, but not
eddies. An eddy is a localized structure and it should loose its identity
through interaction with other eddies within one or two of its wavelengths.
Therefore, an eddy is a structure with a fairly broad peak in the power
spectrum, preventing oscillations in the correlation (Tennekes and Lumley,
1982).
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5.4.1 Two prominent scales

In the experiment the spatial correlation is calculated using measurements
with the array of nine thermistors arranged as described in Section 5.1 and
Fig. (5.2) and one additional movable thermistor. The movable thermistor
was positioned on the same vertical axes at different heights between the
fixed thermistors. There are two advantages of such a setup. Firstly the
correlations can be calculated for many distances and secondly high res-
olution measurements (1 mm) can be done in points of interest, which is
important if a length scale of the respective size has to be identified.

The interesting result is that the correlations calculated from (5.10) at
all positions can be well fitted by the sum of two exponential functions:

gt(z) = a0 e(−z/L1) + (1− a0) e(−z/L2) , (5.11)

where z is the separation of the probes and a0, L1 and L2 are the constants
to be found. The experimental correlations and the fit (5.11) are shown in
Fig. (5.9). The parameters used in the fit are given in Table 5.1.

In the spirit of the discussion above, constants L1 and L2 can now be
identified as two typical eddy sizes which dominate the flow at intermediate
scales. As can be seen from Table 5.1 the two scales differ for one order
of magnitude. The smaller scale, L1, is of the order of magnitude of the
boundary layer, which hints to its origin — the smaller eddies are produced
from parts of the detached boundary layer. The bigger eddies have the size
of the mixing zone thickness, and are probably produced by shearing in the
mixing zone.

Figure (5.10) shows the visualization of the flow in a large part of the
upper half of the cell. The thermochromic liquid crystals are blue at the
warm end of the temperature range and red–brown at the cold end. The
narrow brown stripe just beneath the upper plate is the ≈ 2 mm thick
boundary layer. Two plumes with mushroom like heads can be identified as
detached boundary layer. The thickness of these structures is about 5 mm
which equals the size L1. The eddies denoted in the picture with “A”, “B”
and “C” are of the order of magnitude of L2. More photos taken randomly

Table 5.1: Parameters used in the fit shown in Fig. (5.9). Distance from the plate
is normalized with the height of the cell.

Distance from the plate a0 L1 [mm] L2 [mm]

0.1 0.82 5.2 37.2
0.2 0.81 – 43.4
0.3 0.77 6.2 39.0
0.4 0.65 – 30.8
0.5 0.46 5.4 25.8
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Figure 5.9: Spatial correlations of the temperature at (from top to bottom) 20
mm, 60 mm and 100 mm from the plate (points) and the fit to the sum of two
exponential functions given by (5.11) (solid line) in semi-log scale.
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Figure 5.10: Visualization of the flow in the upper half of the cell using thermocrys-
tals. With “A”, “B” and “C” are denoted the eddies with size L2. For details see
the text. The vertical bright line is the holder for thermistors positioned along the
central axis of the cell.

in time are presented in Appendix C to show that the characteristics of the
flow in Fig. (5.10) is not a special case, but that these two scales are indeed
dominating in the scale region investigated. The visual attractiveness of the
photos is certainly another reason to show them in the Appendix.

The dependence of the scales L1 and L2 on the distance from the plate
are shown in Fig. (5.11). The larger eddies have its maximum size 43.4
mm in the mixing zone and become somewhat smaller as going towards the
center of the cell where they are 25.8 mm in size. On the other hand the
eddies which originate from the boundary layer have approximately constant
value throughout the cell.

According to the Wiener-Khinchin Theorem the Fourier transform of the
spatial correlation is the spatial power spectrum:

gt(z) =
∫∞
−∞ P (k) e2πikz dk (5.12a)

P (k) =
∫∞
−∞ gt(z) e−2πikz dz . (5.12b)

If gt(z) is given by (5.11) the corresponding power spectrum is:

P (k) = 2
(

a0L1

1 + 4π2k2L2
1

+
(1− a0)L2

1 + 4π2k2L2
2

)
. (5.13)

Now the relative contributions of the eddies with sizes L1 and L2, respec-
tively, to the total power can be calculated. The total power of the eddies
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Figure 5.11: Dependence of the size of the eddies on the distance from the plate.

with size L1 reads

P1 = 2
∫ ∞

0

2a0L1

1 + 4π2k2L2
1

dk = a0 . (5.14)

Similarly the contribution to the total power from the eddies with size L2 is

P2 = 2
∫ ∞

0

2(1− a0)L2

1 + 4π2k2L2
2

dk = 1− a0 . (5.15)

The total power P is equal to unity by definition (it is the Fourier trans-
form of the correlation function which equals one at the origin), so that the
relative contributions of the small and large eddies to the total power equal
the values of the prefactors a0 and (1− a0), respectively.

The dependence of P1/P on the distance from the plate is shown in Fig.
(5.12). P1/P decreases from 0.82 near the plate to 0.46 in the bulk center,
that is, the small scale eddies dominate near the plate whereas the large
scale ones are equally developed in the center of the cell. The fact that
the small eddies contribute more to the total power near the plate is not
surprising as they originate from the detached boundary layer. It is though
at first sight somewhat surprising that they contribute about 50% to the
total power even in the center of the cell. It must be kept in mind though
that this is the relative contribution to the total power and the total power
is quite small there compared to the mixing zone, so that the total number
of small edddies reaching the core is indeed small as well as the number of
big eddies.
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5.4.2 Temperature as passive scalar

Because of buoyancy, temperature is in Rayleigh-Bénard convection gener-
ally regarded as an active scalar rather then a passive one. However, Zhou
and Xia (2001) found a characteristic passive scalar scaling of the second-
order temperature structure function in a certain region of the container
in water at Rayleigh numbers between 4.1 × 108 and 1.85 × 1010 and for
Prandtl number Pr ≈ 4 . Also in mercury temperature was found to show
a passive character (Segawa et al., 1997). On the other hand, Belmonte and
Libchaber (1995) found that temperature is not a passive scalar in gas. As
Zhou and Xia (2001) state, these are not necessarily contradicting results, as
the Prandtl number varies significantly in the experiments, and a difference
in Prandtl number implies a difference in Reynolds number for the same
Rayleigh number.

A characteristic of a passive scalar in a turbulent velocity field is the
formation of narrow fronts. Large scale velocity structures (eddies) form
converging and diverging separatrix and saddle points. If a passive scalar
field (temperature) exists in the flow, a temperature front will occur at the
diverging separatrix. The front separates the cool and warm fluids entrained
by the two counter flowing structures (Warhaft, 2000). A result of the forma-
tion of such structures is the typical “cliff–ramp” structure (strong gradient
– weak gradient) in the temperature time series (e.g. Shraiman and Siggia
(2000), Holzer and Siggia (1994), Warhaft (2000)) because of a strong gradi-
ent in a front and a weak gradient in the eddy which follows. The cliff–ramp
structures are large scale structures (order of the larger eddies), but the front
itself is sharp and thus manifested at small scales. This introduces direct
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interaction of large and small scales and contradicts the simple cascading
idea of turbulence. It is interesting to see if such structures exist in the flow
at hand – if yes, they could provide an alternative explanation for the source
of small scale structures (of size L1) detected in the flow, especially in the
core region where visualization proves that the plumes are quite rare.

Firstly, the dissipative scale of the passive scalar will be determined,
so that it can be compared with L1. The characteristic magnitude of the
velocity gradient is (Shraiman and Siggia, 2000)

γ =
v

L2
, (5.16)

where v is the rms velocity fluctuation at a point and L2 is the large scale
in which the scalar is stretched and rolled up. Because of incompressibility,
the scalar acquires structures on progressively smaller scales l(t). Molecular
diffusion becomes dominating on the scale where the diffusion rate becomes
comparable to the rate of strain, κ/η2

p ≈ γ. This defines the dissipation
scale for the passive scalar:

ηp ≈
(

κL2

v

)1/2

= L2Pe−1/2 . (5.17)

Using the rms velocity v from Tilgner et al. (1993) and L2 determined above
(Table 5.1) the dissipation scale for temperature as passive scalar ηp is about
2 mm throughout the cell. This is about a factor of two smaller then L1,
which makes the assumption reasonable that structures with size L1 are (at
least partially) due to the strong gradient temperature fronts. As shown in
Fig. (5.13), the cliff–ramp structures can indeed be found in the temperature
time series together with symmetric peaks originating from plumes.

In Fig. (5.14) another cliff–ramp structure is shown. The beginning and
the end of the structure are marked with arrows. The horizontal dashed lines
denote the rms temperature at the point. The size of the whole structure
(between the two arrows) is 14.8 s and the front — from the beginning to
the peak of the structure — lasts for 1.4 s. That is, the front is an order of
magnitude smaller then the whole structure.

Although the structures such as those presented in Figures (5.13) and
(5.14) are shown to exist in the flow, they are relatively rare in comparison
with the symmetric peaks which are signature of plumes. Also, the ampli-
tude of the cliff–ramp structures are generally smaller then the amplitudes
of the plumes, this difference being larger in the intermediate mixing zone
and smaller in the center of the container. Thus, the conclusion can be made
that the temperature in Rayleigh-Bénard convection (at least at Rayleigh
and Prandtl numbers in this work) partly behaves as a passive scalar and
contributes to the formation of the structures on the smaller scale L1 through
formation of fronts, but this contribution is smaller then the contribution of
the plumes. A more precise quantitative investigation of the significance of
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the relative contributions could be made by using the thermometry with the
thermocrystals, because the particles can be used both to visualize the large
eddies and to measure the temperature gradients at their edges (as seen in
the photos in Appendix C).

5.4.3 Taylor hypothesis

In experimental work it is quite inconvenient to measure the spatial power
spectrum of temperature directly because it would require a dense array of
thermo-sensors in the flow. That is the reason that measured spectra are
mostly in the frequency domain. On the other hand theoretical work often
refers to spatial spectra. For this reason it is convenient to have a way to
relate the two of them. In the case where there is a large mean flow U such
that the small fluctuations are swept by it this can be done using the Taylor
hypothesis (Tennekes and Lumley, 1982)

k =
f

U
, (5.18)

where f is the frequency and k is the wave number. In the case where the
mean advection velocity vanishes the relation between wave number and
frequency is not so obvious any more. Nevertheless it was suggested that
the spatial and time spectra are then related by the sweeping relation (L’vov,
1991)

k =
f

v
, (5.19)

where v is the root mean square velocity.
In the experiment the temperature power spectra are measured in the

frequency domain at the points shown in Fig. (5.2) and the spectra in
the wave number domain are calculated from (5.13). As the temperature
is measured along the vertical axis through the cell center the mean flow
at the measurement points is either zero (in the cell center) or horizontal
(elsewhere) so the relation (5.19) should be used. The spatial spectrum
(5.13) can be transformed to its frequency counterpart and then fitted to the
measured spectra at respective places in the cell by choosing the velocity v.
By inspection of v determined this way and the agreement of the measured
and calculated spectra it is possible to test the validity of Taylor hypothesis.

The total power is

P =
∫ ∞

−∞
P (f) df =

∫ ∞

−∞
P (k) dk , (5.20)

so that
P (f) df = P (k) dk . (5.21)

From (5.19) is dk = 1/v df , so that

P (f) =
1
v
P (k) . (5.22)
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Figure 5.15: Measured power spectra (diamonds) and the power spectra given by
(5.23) (solid lines) at positions, top to bottom, 20 mm, 60 mm and 100 mm from
the plate.
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Figure 5.16: Velocity v used to fit the power spectra (5.23) to the measured power
spectra scaled down with the factor of 4 (diamonds) and the root mean square of
the vertical velocity fluctuations in a similar cell at the same Rayleigh number from
Tilgner et al. (1993) (crosses). Velocities are made nondimensional using the height
of the cell and the thermal diffusivity, and the distance from the plate is scaled with
the height of the cell.

The temporal power spectrum is then

P (f) = 2

(
a0L1/v

1 + 4π2f2(L1
v )2

+
(1− a0)L2/v

1 + 4π2f2(L2
v )2

)
. (5.23)

Figure (5.15) shows the fits at positions 20 mm, 60 mm and in the center
of the cell using previously determined L1, L2 and a0 (Table 5.1). The
theoretical spectrum (5.23) can be well fitted to the measured spectrum
in the large and inertial scale range (about two and a half decades). It
starts to deviate from the measured spectrum at about the frequency fp

(Section 5.2 and Fig. (5.3)) where the dissipation range starts. There are
two possible reasons for this discrepancy: either the exponential function is
not appropriate approximation for the correlation at small scales (scales in
the dissipation range) or the Taylor hypothesis is not valid in that range.

It can be shown that the correlation at the origin must have first deriva-
tion equal to zero, so that there is a certain range about the origin where
exponential function is not appropriate approximation. However, the dis-
crepancy in the power spectrum stretches to the scale as large as Bolgiano
length and in that range there are enough measurement points to prove
that the exponential function is indeed a good fit for the correlation. Thus,
although there is some small scale where the exponential function is not a
good approximation it is certainly much smaller then Bolgiano length. From
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that it can be concluded that possibly inappropriate use of the exponential
function as approximation for the correlation at a small scale does not cause
the discrepancy in the power spectrum.

The assumption that the Taylor hypothesis is too simple way to trans-
form the spectra seems to be more reasonable. In Fig. (5.16) the velocity v
(scaled down with the factor of about 3) used in (5.23) for the fits and the
root mean square of the vertical velocity fluctuations measured in a similar
cell and the same Rayleigh number (Tilgner et al., 1993) are compared. The
fact that they have a similar form is a hint that the rms of velocity is indeed
important in transforming the spectra between the frequency and wave num-
ber domain as supposed by e.g. L’vov (1991) and Ching et al. (2004). On
the other hand the difference in magnitude shows that taking rms velocity
as only transformation parameter is too simple. That is because not only
the fluctuations of the turbulent velocity field plays a role, but probably a
complicated interplay of the coherent structures on different scales as well.

5.5 Overview of scales in the flow

This Chapter will be closed with an overview of the scales in Rayleigh-
Bénard convection discussed in previous and in this Chapter. All the scales
are measured or calculated for the rectangular container with height 200
mm, aspect ratio one, Ra ≈ 109 and Pr ≈ 7.

Table 5.2: Overview of the scales discussed in the thesis.

Scale Size in mm

thermal inner scale 0.25
Kolmogorov scale 1

thermal boundary layer thickness 2
thermal front (passive scalar) 2

smaller intermediate scale (L1) 5
Bolgiano length 5

peak in distribution of streak distances 10
larger intermediate scale (L2) 30

container height 200

60



Chapter 6

Influence of the container
shape on the flow

T
he problem of convective flow can be described using nondimensional
equations (Chapter 2) and only three nondimensional parameters —

Rayleigh and Prandtl numbers explicitly and the aspect ratio through the
boundary conditions. The fact that the shape of the container does not
enter the flow description could provoke the impression that it does not
influence the details of the flow (at least away from the boundaries). In
fact, the experimental results in small aspect ratio cells (especially the ones
with the aspect ratio one, which are often performed), are always compared
without regard to the container’s shape. Two canonical shapes mostly used
in experiments are a cylinder and a cube. In this chapter experimental
results are presented which show that the shape of the container actually
plays a role in the properties of the flow, including the coherency properties
described in the Chapters 4 and 5. The results of this study are of interest to
geophysical community as well as for industrial applications. In geophysics
the real flows in nature are mostly laterally unconfined, which in laboratory
experiments is hard to achieve. For that reason it is important to know the
influence of the walls to the experimental results which are then used to
explain real natural phenomena. To the industrial applications it may be
of interest that change in the shape of a container can change temperature
oscillations or pattern formation properties.

6.1 Experiments

Two types of experiments were performed: (i) visualization near the bound-
ary layers and (ii) temperature measurements at different positions in the
cells.

Visualization was used to collect qualitative information about the direc-
tion of the velocity field of the large scale flow. It is performed using the pH
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Figure 6.1: Influence of the container tilting on the direction of the flow in a cube.
In the leveled cube the flow is across the diagonal on the plates (left) and in the
tilted cube the flow is parallel to the sides.

method as described in Section 4.1, the only difference being that a higher
voltage was applied between the plates. This has the effect that the dyed
layer is thicker then in the experiments with visualization in the boundary
layer, so that a part of the large scale flow in the intermediate mixing zone
is dyed as well. Photographs of the lower plates were then taken every 2 s
and analyzed. Also they were composed to movies (one for the cylinder and
one for the cube) in such a way that the movie shows the velocity field in
fast motion, about 10 times faster then in reality. This makes it possible to
envisage the variability of the velocity field on slower time scales.

Temperature measurements were performed in different parts of the cell
along the vertical axes using the same method and at the same positions as
described in Section 5.1.

All experiments were carried out in a cylindrical and a cubical cell. In
order to isolate the influence of the shape on the flow, the experiments in
the cylinder were done so that the cylindrical tube was inserted in the cube
and all other conditions (plates, heating, cooling, insulation) were left the
same. The cylindrical tube is made of 3 mm thick plexyglass and the cubical
setup is described in Section 3.1.

Additionally, the experiments were performed in the containers tilted for
a small angle (typically 3–4◦). This has an effect on the large scale flow. In
the tilted cylinder the large scale flow can not change its horizontal direction
as easily as in the leveled one, it is “locked” in one direction. In the cube
the direction of the large scale flow is relatively stable, but by tilting the
container its direction can be changed from a flow across the diagonals in the
leveled container to a flow parallel to the walls in the tilted container (Fig.
(6.1)). Note that the container is supported on one side, not in a corner.
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t=0 s t=60 s

t=240 s t=480 s

Figure 6.2: Example of the horizontal oscillation of the large scale mean flow in the
cylinder. In the course of 8 minutes the flow changed direction for almost 90◦.

This method enables investigation of the influence of the large scale flow on
the temperature oscillations in the interior of the cell.

6.2 Velocity field

The large scale flow velocity above the lower plate in the cube is across
the diagonal. Spontaneously the direction can change from one diagonal to
the other and this happens roughly at the time scale of one hour. In the
cylinder the flow changes its direction much more vividly. The horizontal
direction fluctuations occurs on the time scale of roughly one minute and
the destruction of the large scale flow as well as the direction reversals are
more often then in the cube (actually, the flow reversals were not observed
in the cube during the experiments; also, most experimental works about
the wind reversals are done in cylindrical cells, e.g. Niemela et al. (2001),
K.R.Sreenivasan et al. (2002)). An example is shown in the series of pho-
tographs spanning the time of 8 minutes (Fig. (6.2)). In that period the
flow oscillates for about 50◦(the direction of the large scale flow is denoted
with arrows).

By tilting the cylindrical container for 4◦ it can be achieved that the
flow becomes more similar to the flow in the cube in the sense that it stays
“locked” in one direction for a longer time then in the leveled container.
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Figure 6.3: Root mean square profiles in the cube (squares) and the cylinder (cir-
cles).

Similarly, tilting the cube the flow direction can be affected as sketched in
Fig.(6.1). In this way the total path a parcel of fluid travels is smaller then
in the case when the flow is across the diagonal and is the same as in the
case of a cylindrical container.

By any of these manipulations the magnitude of the velocity was not
changed as will be shown later using temperature measurements.

6.3 Temperature field

The root mean squares (rms) of the temperature in the leveled cube and
cylinder are shown in Fig.(6.3). As the definition for the boundary layer
alternative to the one presented in Section 4.3 the position of the maximum
rms can be used. Comparison of the rms profiles then shows that the thick-
nesses of the thermal boundary layers are the same in the cube and the
cylinder. No differences can be identified also in the region up to z/L = 0.1.
But at the position z/L = 0.2 the difference in the rms appears and be-
comes always larger up to the center of the cell. It is somewhat surprising
that the influence of the walls has the strongest effect on the temperature
fluctuations at the point with the biggest distance from the walls and no
influence on the temperature near the walls.

Figure (6.4) shows the rms profiles in one half of the cells (both leveled
and tilted) obtained by averaging the rms’ at symmetrical positions labeled
1 to 9 in Fig. (5.2). It can be seen that in the center of the cylindrical
cell the root mean square is almost double that in the cubical one if both
cells are leveled. Closer to the wall the relative difference becomes smaller,
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Figure 6.4: Root mean squares in the leveled cubical and cylindrical containers and
the containers inclined for 2◦and 4◦at positions 1 to 5.

but the rms remains always bigger in the cylinder then in the cube in the
region shown in the figure. By tilting the containers (that is, by making the
large scale flow more similar in the two cells, as explained in the previous
section), the rms in the center of the cube increases and the rms in the
cylinder decreases, but they do not become the same. On the other hand,
they do become of the same magnitude at the positions z/L = 0.1 and
z/L = 0.2, that is in the region identified in Section 5.3 as “intermediate
mixing zone”.

In order to find out the reason for such a behavior the histograms of the
temperature fluctuation in the central region of the cells are compared as
shown in Fig. (6.5). The first assumption was that the fluctuations in the
center of the cell are caused by plumes which escape the mixing zone and
reach the core and that there is a different amount of them in the different
setups. The relative influence of the plumes can be estimated by comparing
the tails of the histograms for the centers of the investigated cells. Contrary
to the expectation there is no difference in the number of plumes, so that
this assumption had to be rejected.

A better explanation gives the investigation of the large scale flow. The
temperature time series were recorded at the positions 1 and 9 in the leveled
and the inclined containers and the power spectra were calculated. For each
container the spectra at the given positions are then averaged. The result
is presented in Fig. (6.6). The low frequency peak corresponding to the
turnover time as explained in Section 5.3 can be identified in all setups.
The peak appears at approximately the same frequency for all containers
— 0.0118 Hz in the leveled cylinder, 0.0128 Hz in the inclined cylinder,
0.0118 Hz in the inclined cube and 0.0107 in the leveled cube. In the leveled
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Figure 6.5: Histograms of the temperature oscillations at position 6 in different
experimental setups.

cube the turnover frequency is the smallest, but the total path traveled is
longer, because the horizontal part of the flow is across the diagonals (that
is, the path is for the factor (2

√
2+2)/4 longer), so that the velocity can be

considered approximately the same all containers. This implies that tilting
a container for a small angle does not influence the average velocity of the
large scale flow.

The striking difference, on the other hand, is in the width of the peaks.
The width of a peak in a power spectrum is a measure of the life time of
an oscillation. Thus it can be inferred from Fig. (6.6) that the life time
of the large scale rolls are not the same. In many models of convection in
a closed box not much attention is payed to the fact that the large scale
circulation has a certain finite life time, that is, it appears and disappears
— the findings in this thesis proves such models to be oversimplified. Fur-
thermore, the comparison of the power spectra in Fig. (6.6) shows that the
life times are shape dependent and thus a good candidate for explanation of
the temperature fluctuation dependence on the shape of the container.

According to Grossmann and Lohse (2004) the root mean square of the
temperature in the center of the cell scales as

rms(T ) ∼ (εbulkη
2
θκ
−1)1/2 (6.1)

where εbulk is the thermal bulk dissipation rate, ηθ = κ3/4ε
−1/4
u is the inner

thermal length scale, εu is the kinetic bulk dissipation rate and κ is the
thermal diffusivity. Grossmann and Lohse (2000) estimate the thermal bulk
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Figure 6.6: Power spectra of the temperature time series in different cells. Each
spectrum is average of the spectra at symetrical positions 1 and 9.

dissipation rate as

ε′bulk =
λθ

λu

U∆2

L
(6.2)

where λθ and λu are the thicknesses of the thermal and the velocity boundary
layers, respectively, U is the velocity scale (taken to be the average velocity
of the large scale flow), ∆ is the temperature scale (difference between the
temperatures of the lower and the upper plate) and L is the length scale
(height of the container). All scales used in the last two equations are the
same in the containers with different shapes and can not reproduce the
observed difference. Moreover, Daya and Ecke (2001) found experimentally
that the temperature fluctuations in the center of the cells scale differently
with Rayleigh number in a cylinder and a cube, which implies that the
difference can not be simply in a constant prefactor.

It is now possible to test the assumption that the properties of the large
scale roll are responsible for the fluctuations in the center of a cell. These
properties result in different power spectra around the turnover frequency.
The area under the peak in the power spectrum has dimensions [K2 s−1],
that is the dimension of the thermal dissipation rate. It is now possible to
take the ratios of the root mean squares in the centers of different containers
taking the thermal dissipation rate to be proportional to the area under the
peak in the power spectrum, instead of being as given by (6.2). Denoting
with subscripts i and j the different experimental setups, the ratios of the
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rms’ in the center of the cells calculated from

rmsi(T )
rmsj(T )

=
√

εbulk,i

εbulk,j
(6.3)

agree quite well with the ratios measured experimentally, as presented in Ta-
ble (6.1). The linear dependence of rms(T ) on

√
εbulk is shown in Fig. (6.7).

6.4 Conclusion and outlook

In this Chapter it was shown that the temperature oscillations in the middle
of the cell are sensitive to the shape of the container. As a plausible expla-
nation, based on the experimental measurements, the different properties
of the large scale circulation, particularly its life time, is offered. In order

Table 6.1: Comparison of the ratios of the rms’ in given experimental setups cal-
culated from (6.3) and the ones measured directly.

Eq. (6.3) direct measurement

leveled cube, inclined cube 0.73 0.67
leveled cube, inclined cylinder 0.59 0.57
leveled cube, leveled cylinder 0.55 0.53

inclined cube, inclined cylinder 0.81 0.85
inclined cube, leveled cylinder 0.76 0.80

inclined cylinder, leveled cylinder 0.94 0.94
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to completely understand the phenomena and find theoretical expressions
for the scaling of the root mean squares of temperature, experiments which
concentrate on the detailed properties of the large scale flow in differently
shaped containers should be performed.
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Chapter 7

Summary

By means of experimental methods the coherency on different scales was
studied in turbulent Rayleigh-Bénard convection.

On the length scale of the boundary layers a new type of coherent struc-
tures was discovered. The structures were visualized using an electrochem-
ical method which enables visualization in the very vicinity of the plates.
Further, the statistical properties of the structures were analyzed. Finally,
two possible mechanisms of their formation were proposed — the first is
based on the assumption that they result from Rayleigh–Taylor instability
and that their separation is periodic in the direction perpendicular to the
large scale mean flow, and the second connects their formation to a stochas-
tic process excluding periodicity in the separation. Both theories give good
agreement with the experiment and it will be necessary to make measure-
ments on a wider range of control parameters to make a final decision on
the mechanism. As the particular visualization method used in this work
is applicable only in water as the working fluid, alternative measurement
methods were proposed.

On the large length scale — the scale of the container — the study of self
organization in the turbulent flow was performed by means of simultaneous
temperature measurements at different places in the container. Different
regions of the flow could be detected as well as alternating temperature
oscillations of the lower and upper part of the flow.

Using measurements of spatial correlations of the temperature field two
length scales have been determined in the bulk. These two scales agree
with the sizes of coherent structures visualized using thermochromic liquid
crystals. It has been shown that the smaller of the two structures originate
mostly from the detached thermal boundary layer, but some may also form
in the bulk as passive scalar fronts. It is striking that in the hard turbulence
régime the flow is dominated only by two length scales and not by a broad
range of scales.

Measuring the spatial correlation (which is equivalent to the spatial
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power spectrum) and temporal power spectra at fixed points it was shown
that the Taylor hypothesis is not valid. The consequence is that tempo-
ral spectra, obtained from the single probe fixed in space, do not provide
the same information as the spatial correlation, so that it is necessary to
measure both to reveal the properties of the flow.

Finally, using the observation of the visualized small scale structures and
the measurements of the temperature fluctuations used in the study of the
large scale coherency, the influence of the container shape on the flow was
investigated. The experiments were performed in the containers with shapes
mostly used in the study of Rayleigh-Bénard convection — a cylinder and a
cube. The important differences in the velocity field of the large scale wind
as well as in the temperature fluctuations in the fluid core were found. It is
important to be aware of these differences as the measurements in cubical
and cylindrical containers in the literature are mostly compared without
regard to the shape. Additionally, a source of the difference and a hint for
the scaling relations for the fluctuations were proposed.
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Appendix A

Technical data

In this Appendix technical data about the equipment and material used in
the experiments is listed.

Thermistors

For all temperature measurements thermistors produced by the company
“Thermometrics, Inc.”, type AB6C8-BR14KA103K were used. The ther-
mistors are of NTC (“negative temperature coeficient”) type, that is, their
resistance decreases as the the temperature increases. According to the
method by which electrodes are attached to the ceramic body the ther-
mistors belong to the bead type thermistors which have leadwires directly
sintered into the ceramic body. The body is encapsulated in a glass coating.
The other characteristics of the thermistors are:

• zero-power resistance at 25◦C: 10 kΩ± 10%

• nominal diameter of the body: 0.36 mm

• nominal diameter of the leads: 0.03 mm

• thermal time constant1: 14 msec

PCI Bus Data Acquisition Board

The board was used to measure voltage drop on the Wheatstone bridge and
transfer the data to computer. It is product of “Keithley Instruments, Inc.”,
type KPCI-1801HC with software configurable 64 single-ended or 32 differ-
ential input channels and software configurable individual gains for each

1The thermal time constant is the time required for a thermistor to change 63.2% of
the total difference between its initial and final body temperature when subjected to a
step function change in temperature under zero-power conditions.
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input channel. In all measurements differential inputs were used to reduce
noise to signal ratio according to the recommendations of the producer. Nor-
mally, the range of measurements was 0 – 20 mV. The board represents a
unipolar signal as 12 bit number, which ensures the resolution of 4.9 µV. For
this range the maximum throughput is 75 ksamples/s which is three orders
of magnitude more then actually needed in a typical experiment.

Wheatston bridges

Wheatston bridges were self produced using two resistors with nominal val-
ues 10kΩ and 20kΩ and a potentiometer produced by “Bourns”, type 3590S-
2-203. The exact values of each resistor were determined. Before each
measurement the exact value of the potentiometer resistance was calculated
using a known resistance in the place of the thermistor. The bridges were
put in a metal chassis for shielding against the noise. The bridges were
supplied with a voltage of approximately 1 V.

pH indicator

For visualization of the streaks in the boundary layers pH indicator Thymol
Blue was used, provided by “Sigma-Aldrich Co.” This is actually Thymol-
sulfonphthalein with the chemical formula C27H30O5S.

Camera

Interval photographs of the streaks were taken with 5 Megapixel camera
Coolpix 5700 produced by “Nikon”. Following are some more important
characteristics of the camera:

• CCD sensor: high resolution 0.67” CCD; total number of pixels: 5.24
Megapixel

• maximal picture size: 2560 × 1920 pixel

• lenses: Nikkor-Zoom

• focus: 8.9 to 71.2 mm (corresponds to 35 to 280 mm Leica format)

• apperture: 2.8 to 4.2

• storage media: CompactFlash Cards Type I and II, Microdrive (512MB,
1GB)

• data formats: JPEG, TIFF, NEF and QuickTime movies
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Heating and cooling

The container was cooled from above using a cooling thermostat RC-6-CS
produced by “Lauda”:

• working temperature range: -35 – 150 ◦C, temperature can be regu-
lated digitally using a potentiometer with the resolution 0.1◦C

• cooling capacity at 20◦C: 0.3 kW

• pressure pump: max. pressure 0.32 bar, max flow 20 l/min

The lower plate was heated with two electrical film heaters produced by
“Telemeter Electronic”, model HK-5179-R50.4-L12-B glued to the outside
of the plate. Each film has a size 101.6 mm × 203.2 mm and a resistance
50.4 Ω. The heaters were supplied with constant power.

Thermochromic liquid crystals (TLC)

Thermochromic liquid crystals were used for the flow visualization in Chap-
ter 5 (see also Appendix C). The crystals are microencapsulated TLC slur-
ries 50–100 µm with the application range from 15◦C (red) to 25◦C (blue).
The crystals are a product of “Hallcrest Inc.”.
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Appendix B

Computer programs

In this Appendix programs made for different purposes in the framework of
the thesis are listed and explained to some details.

B.1 Hardware Control

RBScan The program is written in C++ and has a graphical user interface.
Its purpose is manifold:

• setup PCI Bus Data Acquisition Board (see Appendix A), start
measurement and save the measured data (Fig. B.1),

• convert measured voltage to temperature data and save to file (in
different possible formats) (Fig. B.2),

• perform Fourier transformation (Fig. B.3) and

• interface to other console programs for data analysis or hardware
control (described bellow), Fig. (B.4).

volt front, res front, gpbi Console programs for measurement of voltage
and resistance from the front panel (volt front and res front, respec-
tively) and resistance or voltage from channels of the rear modules
(gpbi) of “Keithley” multimeter type 2700.

read keithley Reads measured data from the Keithley 2700 Multimeter
and saves it to computer disk in text format suitable for further analy-
sis. The console program is written in C.

B.2 Data Analysis

coherence Console C program for calculating coherence and phase shift of
temperature oscillations in two points in the convection box (Section
5.3.1).
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Figure B.1: RBScan, setup window.

crosscorelation, corr space Console C programs for calculating tempo-
ral and spatial correlations.

eigenmodes Console C program for calculating modes and its spectra as
defined in Section 5.3.2.

fourier Console C program for calculating power spectra of time series,
with the possibility of low, high and band pass filtering.

StreakView The program takes two pictures and calculates the difference.
It was used to get a clearer view of the streaks in the visualization
experiments, Section 4.2. Typically, difference of a picture without
streaks (background) and a picture with streaks was calculated, leaving
in ideal case only the streaks. The actual results are pictures like the
one in Fig. (4.2). The program has features of fine tuning contrast and
threshold and calculating the position of a mouse click on the resulting
picture. The graphical user interface is shown in Fig. (B.5).

length conv The program converts distances determined from the digital
images to real distances, based on calibration data. A cubic spline
interpolation is done using a routine provided by Numerical Recipes
(Press et al., 1995).
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Figure B.2: RBScan, conversion of voltage measured on the Wheatstone bridges to
temperature.

Figure B.3: RBScan as interface to other programs.
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Figure B.4: RBScan, setup for Fourier transformation.
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Figure B.5: StreakView graphycal user interface.

worm Console program written in C for calculating the histograms of streak
separations and streak distribution in space.

poiss streak Console program written in C for calculation of the number
of streaks per photo (Eq. (4.10) and (4.11)).

rti Console program written in Fortran for linear stability calculations de-
scribed in Section 4.3.1.
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Appendix C

Flow visualization with
thermochromic liquid crystals
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Figure C.1: Flow visualization in the part of the upper half of the cell. The bright
vertical line is the thermistor holder.
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