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Abstract

We study driven granular gases in two dimensions. First we present systems of smooth particles
between two vibrating walls. For these intrinsically inhomogeneous systems we measure all
hydrodynamic fields for a wide range of inelasticities and system sizes using Event-Driven
Molecular Dynamics simulations. Relating the locally measured pressure to the local density
and temperature, we construct a constitutive relation. This relation can be considered as a
local equation of state up to moderate inelasticities while it depends on the global system
parameters for higher inelasticities. We also test the generalization of Fourier’s law of thermal
conductance, which relates the local heat flux to the local density and temperature gradients.
We find reasonable agreement for moderately inelastic systems that are not too inhomogeneous.
Furthermore, we present local velocity distributions of these systems and find that they do not
scale. In particular, the distribution of the velocity component perpendicular to the walls differs
from the one parallel to the walls. The Maxwell-Boltzmann distribution is found to be only a
rough estimate as we find overpopulated high velocity tails that also depend on the position in
the sample. Even a signature of the driving mechanism can be found in those tails. Finally
we turn to homogeneously driven systems of rough particles with Coulomb friction. For these
systems we analytically calculate the full dynamic evolution and stationary state values of the
translational and rotational granular temperatures in mean field theory and find good agreement
with Event-Driven Molecular Dynamics simulations.
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Zusammenfassung

In der vorliegenden Dissertation geht es um getriebene granulare Gase in zwei Dimensionen.
Zunächst werden Systeme glatter Kugeln zwischen zwei vibrierenden Wänden betrachtet.
Solche Systeme sind immer inhomogen. Mit Hilfe ereignisgesteuerter Molekulardynamik-
Simulationen messen wir alle hydrodynamischen Felder für einen großen Bereich von Sys-
temparametern. Durch Verknüpfen des lokal gemessenen Drucks mit der lokalen Dichte
und Temperatur erhalten wir eine konstitutive Gleichung. Diese kann für Systeme, die nicht
allzu inelastisch sind, als Zustandgleichung aufgefasst werden, während sie für stärker in-
elastische Systeme von den globalen Systemparametern abhängt. Außerdem überprüfen
wir eine Verallgemeinerung des Fourier’schen Wärmeleitungsgesetzes, das den lokalen
Wärmestrom als Funktion der lokalen Dichte- und Temperaturgradienten ausdrückt. Dies
funktioniert gut für mittlere Inelastizitäten, solange die Systeme nicht allzu inhomogen
sind. Außerdem zeigen wir, dass die räumlich aufgelöste Geschwindigkeitsverteilung der
Teilchen nicht durch ein Skalengesetz beschrieben werden kann, sondern dass das Ver-
halten nicht-universell ist. Insbesondere unterscheidet sich die Verteilungsfunktion für die
Geschwindigkeitskomponente senkrecht zur Wand von der für die Komponente parallel zur
Wand, und hohe Geschwindigkeiten werden viel häufiger beobachtet, als es eine Maxwell-
Boltzmann-Verteilung voraussagen würde. Zudem finden sich charakteristische Merkmale
des Treibens in der Wahrscheinlichkeitsverteilung für hohe Geschwindigkeiten in der Mitte
des Systems wieder. Zum Schluss werden homogen getriebene Systeme rauer Kugeln mit
Coulomb’scher Reibung präsentiert. Für diese Systeme führen wir eine analytische Berech-
nung der zeitlichen Entwicklung der granularen Translations- und Rotationstemperaturen in
Molekularfeldnäherung durch und beobachten eine gute Übereinstimmung mit Simulationen.
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1. Introduction

Granular materials have attracted much scientific attention in the last two decades. This is not
surprising since granular materials are ubiquitous. For example, more than half the world’s
raw materials are found in a granular state leading to a large industrial interest. Industrial
aims are, to mention a few, improving granular flow through pipes, better compacting ground
coffee or building longer lasting roads, whose beds consist of gravel, i.e. granular materials.
Granular matter is being intensively studied in two major phases1: the “gas” phase, in which the
grains are fluidized and interact by near-instantaneous collisions, and the static and quasi-static
phases, of which sand-piles constitute a typical example. Intermediate (liquid-like) phases are
considered as well. None of these regimes is close to being fully understood. In this thesis we
will focus on the gas phase of granular materials.

The standard paradigm of a granular gas is a collection of hard spheres whose inelastic col-
lisions are characterized by a constant coefficient of normal restitution, i.e. in a collision the
particles lose a fraction of their relative velocity. This model can be extended to rough par-
ticles with Coulomb friction [WB86]. Essentially all difficulties and many of the interesting
features pertaining to granular gases can be traced to the fact that macroscopic grains experi-
ence dissipative interactions on the grain scale. This distinguishes them from molecular gases.
Most states of granular matter are meta-stable (e.g., the ground state of a sand-pile is one
in which all grains rest on the floor), and energy is not conserved (i.e., it “disappears” into
the internal degrees of freedom). Therefore a continuous energy injection is vital in order
to maintain non-static steady states. Without forcing, a gas of inelastic spheres would col-
lapse, even in the absence of gravity. Thus granular gases are inherently of non-equilibrium
nature, and many well internalized notions have to be revisited. In particular, the applicabil-
ity of hydrodynamics [GS95, GZBN97, BDKS98, SG98, Gol03] is still an object of debate
[DLK95, TG98, Kad99, Gol00, Tos04] – despite the similarities between hydrodynamics of
elastic hard-sphere systems and granular hydrodynamics, concerning e.g. the appearance of
instabilities [JNB96, LMS02a, LMS02b, MPSS04].

The non-trivial nature of these stationary states has been elucidated in experiments of vibrat-
ing grains. In this context the field witnessed the use of increasingly sophisticated measure-
ment methods ranging from ultra fast photography, to MRI and gamma-ray tracking methods
[Gol03]. These methods also allow the study of dynamic properties, e.g., the internal structure

1the term “phase” is not meant in the thermodynamic sense here
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2 1. Introduction

of a shock [RBSS02, BMSS02], since typical mean free paths in granular media can be of the
order of centimeters or larger. Some of the most striking features found in experiments of the
stationary state are the oscillon excitation [UMS96, UMS98, US00], non-Gaussian velocity dis-
tributions [OU98, UO01, LCG99, RM00] and cluster formation [KWG97, FFL99, FWE+99].
Furthermore, numerous known hydrodynamic instabilities have been shown to have granular
counterparts [Gol03, Sun03, God03].

Among the major achievements on the theoretical side are the development of hydrody-
namic descriptions [SG98, BDKS98, MGSB99] and ring kinetic theory [vNEB98] of fric-
tionless (i.e. smooth) granular gases, the discovery of the mechanism of clustering in gran-
ular gases [GZ93, GTZ93], and some of its interesting consequences (such as the Maxwell
demon effect [vdWvdMVL01]), and the discovery of the source of the normal stress differ-
ences as a Burnett effect [SG98, BDKS98, SGN96, GS96]. Other systems, such as needles
[AGZ98, HAZ99, VT04], have been studied as well. Although not of direct experimen-
tal relevance, the homogeneous cooling state has been studied in great detail, see e.g. Refs.
[GTZ93, LHMZ98, HOB00, HHZ00] and references therein.

Kinetic theory is one very successful theoretical approach to studying granular systems at fluid
densities, see e.g. Refs. [vNEB98, BDS99, Duf01, Gol03] and references therein. Particular
applications to driven granular gases can be found in Refs. [BC98, vNE98, CLH00, KBN01,
BTF01]. Much of this work is based on the Boltzmann or Boltzmann-Enskog equation, mod-
ified for inelastic collisions. One method to solve this nonlinear equation is based on the local
equilibrium distribution [JS83], which is only known for the elastic case. For systems with
strongly inelastic collisions, the stationary state is unknown so that a systematic discussion of
transport properties within kinetic theory is severely hampered.

Granular hydrodynamics is the other major approach. Hydrodynamic studies [GZBN97,
BRMM00, LMS02b, MPSS04] have been motivated partly by the search for an understanding
of temperature and density profiles [GZBN97], but also by experiments on hydrodynamic-like
instabilities [JNB96]. The standard way of solving the hydrodynamic field equations requires
expressing the pressure in terms of the density and temperature, usually by an equation of
state. Using the global quantities several proposals for an equation of state have been made,
either interpolating between the high and low density limit [GZBN97, Lud01] or invoking
the Boltzmann-Enskog equation [BT02b] for inelastically colliding particles. It is not clear
whether an equation of state also holds for the local hydrodynamic fields in a strongly driven,
non-equilibrium system, where the fields are very inhomogeneous. There have also been sev-
eral experimental investigations [WHJ95, EFL00] attempting to extract either an equation of
state or more generally a scaling relation for the corresponding variables. To close the set of
hydrodynamic equations a second constitutive relation is needed. In classical hydrodynamics
this relation is usually given by Fourier’s law of thermal conductance. For granular media it
is known that, in general, the heat flux does not obey this law [JR85, SG98]. In addition to
the usual coefficient of thermal conductivity, relating the heat flux to the temperature gradient,
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a new transport coefficient is necessary that expresses a contribution of the density gradient.
Measuring all these hydrodynamic fields, testing several proposed equations of state as well as
the generalized Fourier law and extracting transport coefficients for the heat flux from computer
simulations for a wide range of parameters is a major focus of this thesis.

Computer simulations are a key tool in studying granular systems. Their importance lies in
their ability to track the trajectory of every single particle, a task that would be beyond available
experimental techniques, especially in three dimensions. Most simulations of vibrated granu-
lar gases have been based either on the very efficient event-driven (ED) molecular dynamics
algorithm, cf. Refs. [Rap88, Lub91, LHB94, MB97, LM98, BT02b] and references therein,
or the direct-simulation Monte Carlo method (DSMC) [Bir94, BC98, BRMM00, PLMV99,
BMPV01] and its generalization including collisional transfer called Enskog-Simulation Monte
Carlo (ESMC) [MS96, BDS97]. While DSMC (or ESMC) is a powerful tool for solving the
Boltzmann (or Boltzmann-Enskog) equation numerically, one of the disadvantages of DSMC
compared to ED is that DSMC does not allow for clustering on the grain scale. ED simulations,
as used in this thesis, very efficiently numerically integrate Newton’s equations of motion while
only assuming the time of collisional contact to be small compared to the free flight time.

The driving mechanism is a crucial point of any model describing driven granular fluids. Easy
to describe theoretically are homogeneous driving mechanisms. One approach utilizes stochas-
tic bulk heating by uncorrelated random forces, which act on every particle at every instant of
time [WM96, vNE98, vNETP99, BBR+02, HCZ+05]. In Ref. [BTF01] random coefficients
of restitution were considered with a probability distribution allowing for values both smaller
and greater than one. However, this yields non-universal properties depending on the spe-
cific form of this distribution. The multiplicative bulk driving defined in terms of stochastic
collision rules in Ref. [CLH00] is similar in spirit. Compared to homogeneous bulk driving,
a driving mechanism which acts only at the boundary of the system is much closer to experi-
ments. In Ref. [GZBN97] the energy influx at the boundary has been modeled by a heuristically
motivated ansatz for the heat current, while Refs. [BC98, RC02] assume heating at the bound-
ary through thermal walls. Closest to experiments but hardest to analyze are vibrating walls
[MB97, BRMM00, BT02b, HMOZ04]. While homogeneously driven rough spheres will be
considered as well, most of this thesis deals with systems of smooth particles driven by vibrat-
ing walls in an idealization that has been used before in, e.g., Refs. [BRMM00, BT02b], and
with slight modifications in Refs. [MB97, DP98, Kum98, Kum99b].

If the system is driven through the boundaries, inhomogeneous density and temperature pro-
files are measured [BT02b, HMOZ04]. For low densities the computed temperature profiles
agree well with hydrodynamic theory [GZBN97, BRMM00]. For moderate or high densities
the profiles are not well understood with the exception of almost elastically colliding particles.
To our knowledge the full stress tensor, including potential contributions, has only been com-
puted for freely cooling systems [LS00]. In simulations of driven granular gases [BC98] the
collisional part of the stress tensor has not been measured. In Ref. [BT02b] the stress tensor
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is not measured directly but instead computed from an assumed local equation of state. Simi-
larly, there is a collisional contribution to the heat flux (in addition to the kinetic part) that – to
our knowledge – has been neglected in all previous simulations found in the literature. In the
simulations presented here both components of the stress tensor and the heat flux are measured
directly.

Inspired by experiment [RM00], a lot of emphasis has been put on the tails of the velocity
distribution functions, which were found to be overpopulated as compared to a Maxwellian. In
fact, all intermediate types of decay between a Gaussian and an exponential have been observed
[PLMV99, BT02b, vZM04, BRM03]. In addition, mixtures [BT02b, BT02a, PCMP03] and
rough spheres [Lud95] have been investigated as well as hydrodynamic instabilities such as
convection [LCB+94, RRC00] and pattern formation [LCRD96]. The velocity distributions
shown here are of very high accuracy. In particular, the tails have been measured for a range of
up to forty standard deviations in the velocity which is about ten times of what can be found in
the literature. This reveals surprising new details of the velocity distributions not seen before,
e.g. the signature of the particular driving at the boundary can be discovered in the tails of the
velocity distribution in the middle of the system.

In this thesis we present event-driven simulations of inelastic smooth spheres in two dimen-
sions confined between two vibrating walls without gravity. Our focus is on the stationary
state, which is reached when dissipation by particle collision equals energy injection due to the
vibrating walls. We show stationary state profiles of the density, the granular temperatures, the
full stress tensor (including collisional contributions), and the full heat flux (again, including
collisional contributions). These hydrodynamic fields are shown to be strongly inhomogeneous
due to the driving walls — even in the range of parameters, where clustering is only a minor
effect. This has led us to:

(a) derive a constitutive equation by relating the measured hydrodynamic fields, granular tem-
perature T (x), area fraction φ(x) and pressure p(x), at each point x. We then check whether
this constitutive equation is universal or whether it depends on global system parameters of the
model, like the aspect ratio of the cell, the overall area fraction or the coefficient of restitution
of the disks. For moderately inelastic systems (α = 0.9) the constitutive equation is (almost)
independent of the remaining global system parameters so that the constitutive equation can
be interpreted as a local equation of state for a driven granular gas in the stationary state, even
though the latter is highly inhomogeneous with heterogeneous temperature and density pro-
files. In contrast, for strongly inelastic systems (α = 0.5) the constitutive equation depends
significantly on the global system parameters so that the concept of a local equation of state
cannot be sustained in this case.

(b) check Fourier’s law of thermal conductance and its generalization for granular materials
which connects the heat flux to the gradients of the temperature and density profiles. Addition-
ally, we extract the transport coefficients connected to the heat flux, i.e. the heat conductivity
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κ and the “new” transport coefficient µ. This requires extremely precise measurements of the
hydrodynamic fields, especially of the density and temperature profiles in order to limit the
fluctuations of their gradients. The generalized Fourier law is a very good approximation as
long as the systems are not too inelastic and as long as the gradients do not become too large –
as expected for a gradient expansion. Consequently the best agreement is found for moderately
dense and quasi-elastic to moderately inelastic systems. We also compare the measured heat
flux to the theoretical prediction of Jenkins and Richman [JR85] and find that the theory is
very good for quasi-elastic systems (coefficient of restitution α ≥ 0.99). Finally, we quantify
the improvement obtained when fitting the measured heat flux to the generalized Fourier law
instead of to the plain Fourier law.

We furthermore discuss the one-particle distribution function in the stationary state and show
that:

(c) the local distribution fx(x, vx) of vx, the velocity in the direction of driving, is not a function
of the rescaled variable vx/

√
Tx(x) alone. Similarly, curves of fy(x, vy) cannot be mapped

onto a master curve for different x, when plotted against vy/
√
Ty(x). Here Ti(x) denotes the

local granular temperature associated with the translational motion in the i-direction. We find
deviations from scaling at small and large arguments.

(d) the local velocity distributions fx and fy have high-velocity tails whose decay ranges from
stretched exponential to almost Gaussian. For this purpose we have measured the velocity
distribution of up to forty standard deviations on the velocity axis. The particular type of
decay depends on the position in the sample, the overall particle density and the coefficient of
restitution. Furthermore, the decay of fx for large velocities is generally different from that of
fy.

All these results have been obtained for vibrated systems of smooth particles, i.e. we have ig-
nored sliding friction and tangential restitution. While theories for smooth particles capture a
vast amount of phenomena of granular materials, at least qualitatively, it is known that fric-
tion does play an important role [vZKG+04]. Unfortunately, it is severely more complicated
to analytically analyze systems of frictional particles, because the collision rules for Coulomb
friction are far more complex. In this thesis we also investigate systems of frictional particles.
To keep the analysis simple, we restrict ourselves to the homogeneously driven systems and a
parameter range where clustering does not play an important role. In this regime all hydrody-
namic fields are very homogeneous. We will therefore focus on the dynamic evolution and the
stationary state values of the mean translational and rotational temperatures. Results of an ana-
lytic mean field theory using a Pseudo-Liouville-Operator ansatz agree well with event-driven
simulations. Because the calculation is quite elaborate when the full Walton model [WB86] is
used, even for this rather simple question of stationary state temperatures, we calculate effec-
tive coefficients of tangential restitution in various levels of approximation. When comparing
the analytical results using these effective coefficients to simulations of particles with Coulomb
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friction, we find that the simplest approximation already yields qualitative agreement. Only the
full Walton model, though, is able to predict the correct behavior for the full range of param-
eters. We conclude that the simplest approximation introduced in this thesis may be a good
starting point for future investigations of frictional particles but we must admit that realistic
Coulomb friction is a subtle problem.

The outline of this thesis is as follows: In chapter 2 we introduce the model and specify the
driving mechanisms. In chapter 3 we non-dimensionalize the system and briefly discuss the
balance of injected and dissipated energy. In chapter 4 we define the hydrodynamic fields
used for vibrated systems. In chapter 5 we briefly introduce the reader to the Event Driven
simulation algorithm and discuss some details of how to measure hydrodynamic fields in an
ED simulation. In chapter 6 we present data from our simulations for the profiles of the density,
the temperature, the components of the stress tensor, the heat flux, and the local energy loss. In
chapter 7 we relate the local density, pressure and temperature to “experimentally” derive an
equation of state and check its universality. In chapter 8 we relate the local heat flux to the local
gradients of the temperature and density, test the validity of the generalized Fourier law and
evaluate the corresponding transport coefficients. In chapter 9 we discuss velocity distribution
functions and their scaling behavior. Finally we turn to homogeneously driven systems of rough
particles with Coulomb friction in chapter 10, where we focus on the granular temperatures and
discuss various levels of approximations to the full collision rules and their shortcomings. In
chapter 11 we will give a short summary and an outlook.



2. Modelling Granular Gases

Granular materials are defined as materials whose elementary constituents are macroscopic
solid particles. The particles being macroscopic implies that they interact dissipatively. These
are the two defining properties of a granular medium. The energy dissipated in the collisions
will be transformed to internal energy, i.e. it will eventually be transformed to heat. This leads
to an increase of the thermodynamic temperature of the particles. For a single collision this
increase can often be neglected1. It is therefore legitimate to assume the additional internal
energy, that is produced in collisions, to be radiated off (in vacuum) or absorbed and carried
away quickly by a surrounding background medium, e.g. air. Because granular materials are of
importance mainly around room temperature (or below), thermodynamic fluctuations (kBT ≈
4 × 10−21 J) are negligible compared to the kinetic energy of a granular particle which is
typically much greater than 10−16 J2. Here, kB denotes Boltzmann’s constant. For the rings
of Saturn, which are another important granular gas, this separation of scales is even larger.
These arguments have led to a description of granular materials by models that do not conserve
energy but only momentum. From now on thermodynamic temperatures will no longer be
considered and all further references to temperatures will refer to granular temperatures, i.e.
the square of the fluctuations around the mean velocity of the particles. Furthermore we will
ignore interactions of the particles with a surrounding medium, such as air, and thus assume
the particles to be in a vacuum environment.

We investigate driven granular gases in two dimensions consisting of N identical inelastic hard
particles of diameter a, mass m, and moment of inertia I . These are confined to a rectangular
box with edges of length Lx and Ly in a vacuum zero-gravity environment. We consider both
disks and spheres. Two-dimensional particles have three degrees of freedom, two translational
ones and one rotational. For smooth particles this reduces to two (translational) degrees of
freedom. The inelastic nature of the collisions is often modelled by a constant coefficient of
normal restitution α, i.e. in a collision the particles lose a fraction of their relative velocity.
When realistic particles collide, they also experience friction reducing their relative rotational

1At room temperature the specific heat of most (condensed) materials is of the order 103 J/[kg K] (e.g. steel (iron)
∼ 0.5 × 103 J/[kg K], common minerals ∼ 1.3 × 103 J/[kg K]). The energy dissipated in a collision is usually
less than 20% of the kinetic energy of the particle and thus leads to an increase of the particle’s (thermodynamic)
temperature ∆T < 10−4v2 K (where v is the dimensionless velocity in units of m/s). For typical collisions of
relative velocity . 10 m/s this is negligible (∆T = 10−2 K � Troom ≈ 300 K).

2Kinetic energy of steel (iron) beads of 1 mm diameter (density 7.87 g/cm3) and velocity 1 m/s is ∼ 10−6 J.
Equivalently, kBT corresponds to a velocity (change) of ∼ 10−7 m/s.

7
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motion. As will be discussed below, this can be described by two more dimensionless material
constants, the coefficient of Coulomb friction µ (for sliding) and the coefficient of tangential
restitution β0 for sticking contacts.

The canonical 2-dimensional spherical particle is a disk. If a system of spheres is considered we
simply assume that three-dimensional particles are confined to motion in 2 dimensions. This
can be accomplished by perfectly smooth walls that do not interact with the spheres (except for
confining their motion to two dimensions by elastically and smoothly repelling the spheres),
even though the particles themselves may not be perfectly smooth. If the particles are consid-
ered to be smooth to begin with, there is no difference between disks and spheres. For rough
particles the only difference between disks and spheres lies in their moment-of-inertia-to-mass
ratio q := 4I/[ma2] being 1/2 instead of 2/5.

To maintain a non-trivial stationary state energy must be injected continuously. Driving a
granular material can be realized through the boundaries, i.e. a local heating [HHL98, LSM99,
SMR99, SM01] or homogeneously, e.g. by a random energy source in different variations
[PLMV98, BSS99, vNE98, vNETP99, CLH00, CLH02]. We will use boundary induced as
well as homogeneous bulk driving.

Driving through the boundaries is accomplished by vibrating the walls perpendicular to the x-
direction in an idealized saw-tooth manner (see below), while periodic boundary conditions are
imposed in the y-direction. Fig. 2.3 on page 13 shows a typical snapshot of a vibrated system.
Clearly, the system is not homogeneous but shows an increased density in the middle of the
system.

Homogeneous driving has no close experimental equivalents but is easier to analyze. At a fixed
frequency every particle gets a kick of random strength and direction drawn from a Gaussian
distribution of fixed driving temperature. Details will be given below. Experimental setups that
may be approximated by this model are an air table or a mono-layer of particles on a vibrating
plane under gravity [OU98]. In both cases the particles stay very close to the underlying plane
and can only move parallel to it. When we use a two-dimensional description of this system
the driving can be considered random, indeed. Even homogeneously driven systems experience
spatial variations of the density, for example, if the system is large enough and/or sufficiently
inelastic compared to the driving. In that case clustering can occur like in the freely cooling
case [GZ93] and/or the formation of patterns can be observed [OU98, OU99].

In the simple model used here the system evolves in time solely through ballistic center-of-
mass motion, binary inelastic collisions and, depending on the driving mechanism, particle-
wall collisions or homogeneous driving.
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Figure 2.1.: Sketch of 2 colliding particles in the center-of-mass reference frame. Shown are the relative
velocity of the contact points g, the impact angle γ, and the angle γ12 between the relative translational
velocity of the particles and their contact normal.

2.1. Binary Collisions

The inelastic nature of inter-particle collisions is the most important characteristic of granular
media. We will use the Walton Model [WB86] – introduced below – to describe collisions of
inelastic frictional particles. The Walton model can be formulated in terms of coefficients of
incomplete normal and tangential restitution [FLCA94, HHZ00] and is thus a generalization
of the collsion rules for rough particles with constant coefficients of restitution [HZ97]. The
special case of smooth particles is contained in this description.

2.1.1. Collisions with Incomplete Normal and Tangential Restitution

Before we come to the details of the Walton model, we briefly recall the binary collision
rules for collisons with incomplete normal and tangential restitution [HZ97, WB86, FLCA94,
HHZ00].

Consider two colliding particles. Their center-of-mass velocities and angular velocities before
a collision shall be denoted by v1, v2, ω1 and ω2. Post-collisional quantities are primed. The
relative velocity of the contact point is given by

g = v1 − v2 +
a

2
n̂ × (ω1 + ω2) . (2.1)
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The relative velocity after collision is given by

n̂ · g′

= − α(g, n̂) (n̂ · g) with α(g, n̂) ∈ [0, 1], (2.2)

n̂ × g
′

= − β(g, n̂) (n̂ × g) with β(g, n̂) ∈ [−1, 1] (2.3)

where α(g, n̂) and β(g, n̂) are the coefficients of restitution, which in general depend on g

and n̂. We will later assume α to be constant and allow β to depend on the angle γ between
g and n̂ in order to account for the different energy loss mechanisms of sliding and sticking
contacts in the Walton model (cf. next section). The impact angle satisfies γ ∈ [ π

2 , π], such
that cos γ = n̂ · g/|g| < 0. The values α = 1 and β = −1 describe perfectly smooth and
perfectly elastic particles, while α = 1 and β = +1 describe perfectly rough and perfectly
elastic particles. These two cases conserve energy. If α < 1 and/or |β| < 1 energy will not be
conserved but decreased in each collision. Very often these coefficients α and β are assumed
to be constants.

The two constitutive equations (2.2) and (2.3) plus the conservation laws for linear and angular
momenta determine the post-collisional velocities

v
′

1 = v1 + ∆vpp, v
′

2 = v2 −∆vpp,

ω
′

1 = ω1 + ∆ωpp, ω
′

2 = ω2 + ∆ωpp (2.4)

where

∆vpp = − (1 + α)

2
(n̂ · v12) n̂ − η n̂ ×

(
v12 × n̂ +

a

2
ω12

)

∆ωpp =
2η

qa

(
n̂ × v12 +

a

2
n̂ × (n̂ × ω12)

)
(2.5)

with v12 = v1 − v2, ω12 = ω1 + ω2,

η ≡ η(γ) ≡ η(β(γ)) :=
q

1 + q

1 + β(γ)

2
, (2.6)

such that 0 ≤ η(β) ≤ q
q+1 < 1, and

q :=
4I

ma2
(2.7)

(q = 0.4 for homogeneous spheres, q = 0.5 for homogeneous disks).

2.1.2. The Walton Model for Rough Particles with Coulomb Friction

Although the widely used collision rules based on constant coefficients of restitution faithfully
reproduce many of the experimental findings [TV02, WHP01, HZ97, WP02], constant coeffi-
cients of restitution are known to correspond only approximately to reality [GZ99, RPBS99,
BP01]. In particular, they cannot describe frictional dry sliding. A now commonly accepted
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model for frictional contacts is based on work by Walton [WB86]. For every collision it
chooses the more appropriate of two types of dissipative interactions, either Coulomb fric-
tion (for sliding contacts) or incomplete tangential restitution (with a constant coefficient of
tangential restitution – for sticking contacts). The criterion is based on the size of the an-
gle between the relative velocity of the contact point and the line between the two centers of
masses. Even though this model is very simple, it describes the experimental data surprisingly
well [FLCA94]. Since the Walton model for Coulomb friction can be expressed in terms of an
impact-dependent coefficient of tangential restitution [FLCA94, HHZ00], its implementation
in simulations is straightforward, while theoretical analyses are significantly more complicated
[HHZ00, Her00, HMOZ04].

The Walton model [WB86] contains three (constant) material parameters: the coefficient of
normal restitution α, the coefficient of Coulomb friction µ for sliding contacts, and the coeffi-
cient of tangential restitution β0 for sticking contacts. As mentioned above this three-parameter
model can be translated to a velocity dependent coefficient of tangential restitution

β(γ) = min

[
−1 − 1 + q

q
(1 + α)µ cot γ, β0

]
, (2.8)

that depends on all three material constants as well as the impact angle γ in a collisions. For
details see, e.g., Refs. [FLCA94, HHZ00, Her00]. Inserting Eq. (2.8) into Eq. (2.6) leads to
η ≡ η(γ) = min

[
1+α

2 µ, η0

]
. The critical angle γ0 which marks the transition between sliding

and sticking contacts is given by

c := − cot γ0 =
q

1 + q

1 + β0

1 + α

1

µ
> 0 . (2.9)

These equations are valid for 2 dimensions just as well as for 3 dimensions.

Fig. 2.2 shows how the coefficient of tangential restitution β(γ) varies as a function of the
impact angle γ for different values of the coefficient of Coulomb friction µ.

2.1.3. Smooth Particles

Even though the simulation is capable of dealing with rough particles, for the sake of analytical
simplicity all simulations of boundary driven systems presented will be for smooth particles.
In that case, g = v12, µ = 0, and β0 = −1 such that Eqs. (2.5) simplify to [BSHP96]

∆vpp = −(1 + α)

2
(n̂ · v12)n̂

∆ωpp = 0

(2.10)

(and each particle conserves its rotation for all times). Therefore we only have to consider
translational motion when dealing with smooth particles, i.e. the number of degrees of freedom
reduces to 2.
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Figure 2.2.: Velocity dependent coefficient of tangential restitution as a function of the impact angle γ
for various values of the coefficient of Coulomb friction µ.

2.2. Homogeneous Bulk Driving

We drive the system homogeneously by modifying the velocity of every particle at each time
of agitation t such that the velocity of the i-th particle changes according to

v′
i(t) = vi(t) + vdr ξi(t) (2.11)

where, once again, post-collisional quantities are primed. The driving velocity vdr sets the
time (velocity) scale and defines the driving temperature Tdr := mv2

dr. The components of
the vector ξi(t), which are denoted by ξi,x(t) and ξi,y(t), are uncorrelated Gaussian random
numbers with zero mean and variance

〈ξi,k(t) ξj,l(t′)〉{ξ} = δijδklδ(t − t′) . (2.12)

Here δij and δkl are Kronecker deltas and δ(t − t′) is the Dirac delta function. The stochastic
driving rule in Eq. (2.11) leads to an average rate of change of temperature

∆T/∆t = Hdr , with Hdr = fdrTdr , (2.13)

after every driving time step ∆t = f−1
dr .
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Periodic Boundary Conditions

Periodic Boundary Conditions
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Figure 2.3.: Model of N disks, driven in the x-direction with periodic boundary conditions in the y-
direction.

2.3. Boundary Induced Driving

We drive the system through the walls perpendicular to the x-direction while periodic boundary
conditions are imposed in the y-direction. When a particle collides with a driving wall, energy
is injected into the system. This can be modeled in different ways, for example by drawing
a new velocity from a Maxwellian distribution of a given wall temperature [GZBN97] or by
assuming that the wall has a coefficient of normal restitution that is greater than one. Both of
these mechanisms have no close experimental equivalents, though. A more realistic model is to
assume a vibrating wall moving either in a symmetric (e.g. sinusoidal) or in an asymmetric (e.g.
saw-tooth) way [MB97, Kum98, Kum99a]. In addition, the walls can be inelastic and/or rough
modeled by a normal and/or tangential coefficient of restitution for particle-wall collisions.
Here we restrict ourselves to saw-tooth driving of smooth elastic walls in the limit of vanishing
amplitudes A and diverging frequency ν such that Aν =: vdr/2 is a constant. This ensures that
the driving walls are always located at the same positions. Fig. 2.3 shows a typical snapshot.
We will now write down the collision rules for collisions between a particle and an ideally
vibrating wall for arbitrary inelasticity and roughness of the walls. To be even more general
we will consider the 3D case first before we simplify it to two dimensions. These 3D collision
rules are, in fact, the same as for binary collisions, Eqs. (2.4) and (2.5), where the particle
representing the wall is considered to have infinite mass. This leads to the following simple
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expressions for the real particle’s change of translational and rotational velocity, v and ω,
respectively, due to a collision with wall l (with normal vector n̂l pointing into the system)

v
′

= v + 2∆vpw, ω
′

= ω + 2∆ωpw (2.14)

where post-collisional quantities are primed and

∆vpw = − (1 + αw)

2
(n̂l · v + vdr) n̂l − ηw n̂l ×

(
v × n̂l +

a

2
ω
)

∆ωpw =
2ηw

qa

(
n̂l × v +

a

2
n̂l × (n̂l × ω)

)
. (2.15)

Here ηw = ηw(γ) := q(1 + βw(γ))/(2(1 + q)), q = (4I)/(ma2), and vdr ≥ 0 is the velocity
of the vibrating wall as described above. The three parameters used in the Walton model, αw,
µw, and β0,w have the same meanings as the corresponding ones for binary collisions but may
have different values. βw(γ) is defined correspondingly, cf. Eq. (2.8).

Considering only walls in the x-direction ∆vpw and ∆ωpw can be written more explicitly for
the left/right wall as

2∆vpw = [−(1 + αw)vx ± vdr] êx − 2ηw

([
vy −

a

2
ωz

]
êy +

[
vz +

a

2
ωy

]
êz

)

2∆ωpw =
4ηw

qa

([
−vz −

a

2
ωy

]
êy +

[
vy −

a

2
ωz

]
êz

)
. (2.16)

In 2 dimensions all changes of the translational velocity that are proportional to êz vanish, i.e.
the last term in the expression for ∆vpw. Rotational changes, in contrast, must be proportional
to êz such that the first term in ∆ωpw vanishes.

Smooth Elastic Walls

Even though the simulation developed is capable of running in 2 or 3 dimensions with or with-
out gravity, with arbitrary inelasticity and roughness of the particles and the walls (or without
walls) – and has been tested extensively in all regimes – all boundary driven simulations pre-
sented here will be for two dimensional zero-gravity systems of smooth particles with smooth
elastic walls performing the saw-tooth driving described above. In that case the collision rule
for a particle colliding with the left/right wall (in x-direction) simplifies further to

v
′

x = −vx ± vdr, v
′

y = vy, (2.17)

where, again, post-collisional quantities are primed. As will be discussed in detail in chapter 3
we will measure velocities in units of vdr and masses in units of m.



3. Dimensional Analysis and Energy
Balance

The model system contains three independent length scales: the diameter a of a disk and the
sizes of the box edges Lx and Ly. In addition, there is one independent velocity scale, the
driving velocity vdr, and one independent mass scale, the mass of a disk m. Except for the
initial positions and velocities of the particles there are no further dimensional quantities in
this system that can be chosen and set independently. The stationary state is expected to be
independent of the initial conditions. We will therefore measure all lengths in units of the
particle diameter a, all times in units of a/vdr and all energies in units of mv2

dr in order to non-
dimensionalize the system. Note that there are no other time and energy scales. We thus intro-
duce the following dimensionless variables: box sizes L̃x = Lx/a and L̃y = Ly/a, granular
temperatures T̃x = Tx/(mv

2
dr) and T̃y = Ty/(mv

2
dr), stress tensor (momentum flux density)

σ̃ = σ a2/(mv2
dr), heat flux (energy flux density) q̃ = q a2/(mv3

dr), and local energy loss
(dissipation density) ζ̃ = ζ a3/(mv3

dr). For (microscopic) definitions of these hydrodynamic
fields the reader is referred to chapter 4. In the stationary state all dimensionless observables
like T̃ , σ̃, q̃, and ζ̃ are independent of the driving velocity and, in general, can only depend
on the position r and the remaining 6 independent dimensionless system parameters, which
characterize the system completely: the number of disks N , the two edges of the system L̃x

and L̃y in units of a, and the three dimensionless material constants: the coefficients of normal
restitution α, Coulomb friction µ (sliding), and tangential restitution β0 (sticking).

Simulation results, starting in chapter 6, will be presented using dimensionless units as de-
scribed above. For simplicity of the notation we will refrain from indicating dimensionless
quantities by a tilde. This should cause no confusion, because quantities having a physical
dimension will no longer occur starting in chapter 6 (except for appendix C).

In the following we distinguish between the two cases considered in this thesis: vibrated sys-
tems of smooth particles and homogeneously driven systems of rough particles with Coulomb
friction.

15
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3.1. Vibrated Systems of Smooth Particles

Vibrated systems are investigated for smooth disks only, reducing the number of independent
dimensionless system parameters to 4. In addition, we are interested in the macroscopic limit
(only), which is taken such that N → ∞ and Ly → ∞ with a fixed line density λ := N/Ly of
particles. Thus, in the macroscopic limit the number of system parameters is further reduced to
Lx, λ, and α. It is important to keep Lx finite, otherwise the driving would become a negligible
marginal effect and energy balance would not work: energy input occurs only at the boundaries,
while energy dissipation is a bulk phenomenon.

Energy Balance

It is instructive to estimate the average or global granular temperature T := m
2N

∑N
i=1 |vi|2 by

balancing the energy input at the walls and the energy loss due to particle collisions in the bulk.
We do this in a slightly more general setting than needed for the simulations presented later
and allow in addition for inelastic collisions with the perfectly smooth wall, characterized by a
coefficient of restitution αw. The appropriate generalization of the collision rule (2.17) includes
both the driving velocity vdr and the coefficient of restitution αw for particle-wall collisions. It
can be deduced from Eq. (2.16) by setting ηw = 0 and reads

v
′

x = −αwvx ± vdr, v
′

y = vy . (3.1)

The special case vdr = 0 and αw > 1 provides an alternative driving mechanism, which,
however, does not give rise to a stationary state, as will be shown below.

The average energy gain ∆Epw due to a particle-wall collision is estimated from Eq. (3.1) by
averaging the kinetic energy before and after the collision with a Maxwellian velocity distribu-
tion with (global) temperature T . This gives

∆Epw =
m

2

(
v2
dr + 4αw

√
T

2πm
vdr − (1 − α2

w)
T

m

)
. (3.2)

The collision frequency of particles with the left (right) wall is estimated by

fpw =
N

Lx

√
T

2πm
, (3.3)

where we have assumed the density to be spatially homogeneous throughout the system.

When two disks collide in the bulk, the average change in total energy is computed similarly to
(3.2) from (2.4) and (2.5) by averaging pre- and post-collisional kinetic energy, which yields

∆Epp = −1 − α2

2
T . (3.4)
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Finally, the number of particle-particle collisions per time is given approximately by Enskog’s
collision frequency [vNE98]

fpp =
N − 1

Lx
λaχ

√
Tπ

m
, (3.5)

where χ is the pair correlation function at contact of a corresponding elastic gas in thermal
equilibrium. Since χ is not exactly known, we resort to the widely used Henderson approxi-
mation [Hen75]

χ ≈ 1 − 7φ/16

(1 − φ)2
(3.6)

for numerical purposes. It may be viewed as a heuristic rational approximation to the virial
expansion of χ and is the two-dimensional equivalent to the Carnahan-Starling approximation
[CS69, HM86] for a three-dimensional hard-sphere gas. Additional higher-order terms to the
Henderson approximation, which are proportional to φ3/(1−φ)4, have turned out to be irrele-
vant for our purposes and will therefore not be taken into account. Eq. (3.6) has been calculated
for elastic systems. It has been found, though, the it is also a good approximation for inelastic
systems [SM01].

Summing over energy loss in the bulk and energy gain at the right and left wall, and assuming
N − 1 ≈ N , we obtain for the total change in granular temperature

dT

dt
≈ 2fpwEpw + fppEpp

N
=

m

Lx

√
T

2πm

(
v2
dr + 4αw

√
T

2πm
vdr − εeffψ

π

2

T

2m

)
. (3.7)

Here the effective dissipation coefficient

εeff := ε+
2

π

1 − α2
w

ψ
(3.8)

is given in terms of the coefficient of restitution for particle-wall collisions αw as well as

ε := 1 − α2 , ψ :=
√

2χλ . (3.9)

We briefly discuss two special cases:

a) For vdr = 0 no stationary state is reached in general. Both energy gain (due to driving with
αw > 1) and energy loss increase or decrease like T 3/2 depending on the sign of εeff , resulting
in Haff’s law

dT

dt
= −εeffψ

2Lx

√
π

2m
T 3/2 , (3.10)

which has been discussed extensively in the different context of freely cooling granular gases.
Here the temperature continues to decrease (εeff > 0) or increase (εeff < 0) depending on
whether dissipation or driving wins. This was also confirmed by simulations (not presented).

b) For vdr > 0 and εeff > 0 the granular temperature adjusts to the driving so that the stationary
state with dT/dt = 0 is characterized by the quadratic equation

mv2
dr + 2αwvdr

√
2mT

π
− εeffψ

π

2
T = 0 (3.11)
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Figure 3.1.: Dimensionless global granular temperature T
mv2

dr

as a function of (εψ)
−1 defined in Eq.

(3.9). Comparison between simulations and the simple energy-balance argument, Eq. (3.13), as well as
with the refined version, Eq. (3.14). The inset shows the same graph but on on a non-logarithmic scale.

for the global temperature T . The solution of (3.11) is

T

mv2
dr

=

(
2

π

)3( αw

εeffψ

)2(
1 +

√
1 + (π/2)2 εeffψ/α2

w

)2

, (3.12)

which is independent of the initial data as expected. For αw = 1 this simplifies further to

T

mv2
dr

=

(
2

π

)3

(εψ)−2
(
1 +

√
1 + (π/2)2εψ

)2
, (3.13)

where ε, ψ, and χ are given in Eqs. (3.9) and (3.6).

In Fig. 3.1 we plot the prediction for the (dimensionless) global granular temperature T/(mv2
dr)

from Eq. (3.13) for systems driven by elastic walls as a function of (εψ)−1 and compare it with
simulations. For very small values of (εψ)−1, corresponding to high density and/or high in-
elasticity, the simulations deviate significantly from this simple theory’s prediction. For larger
values, (εψ)−1 & 0.1 the agreement is reasonable. In addition, we show the result

T

mv2
dr

=
1

2π (εψ)2

(
1 +

√
1 + 2εψ

)2
(3.14)

of a more refined calculation, which uses a pseudo-Liouville-operator approach to kinetic the-
ory which is shown in appendix C. Eq. (3.14) yields a better agreement with the data for
intermediate values of (εψ)−1. Please note the very simple argument in appendix C.6 (page
135) showing how to easily get from Eq. (3.13) to Eq. (3.14).
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3.2. Homogeneously Driven Systems of Rough Particles
with Coulomb Friction

Homogeneously driven systems are investigated with periodic boundary conditions. Since we
are interested in the macroscopic limit N → ∞, Lx → ∞, and Ly → ∞ with a fixed number
density ρ0 = N/(LxLy) of particles, the number of system parameters further reduces to ρ0,
α, µ, and β0 in the macroscopic limit.

Estimating the average global granular temperature is more difficult here because it is known
[HZ97, LHMZ98] that equipartition of energy between translational and rotational degrees of
freedom is violated for rough particles interacting dissipatively. This makes a simple energy
balance argument similar to the one for smooth particles, as presented in the last section, almost
as elaborate as the more refined version. For a discussion see page page 94 in chapter 10, Sec.
10.3.1. Details of the analytic calculation can be found in appendix C.
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4. Definition of Microscopic and
Coarse-Grained Observables

4.1. Summary: Granular Hydrodynamics

In this chapter we will show in detail how to microscopically calculate (measure) the hydrody-
namic fields in an event-driven molecular dynamics simulation. The outcome will be the four
hydrodynamic or balance equations (in 2 dimensions) plus exact expressions for the hydrody-
namic fields (definitions will be given later in this chapter)

0 = Dtρ(r, t) + ρ(r, t)∇r · V (r, t) (4.1)

0 = mρ(r, t)DtVl(r, t) − ∂k σkl(r, t) (4.2)

0 = ρ(r, t)DtT (r, t) + ∇r · q(r, t) − ζ(r, t) + σkl(r, t) ∂kVl(r, t) (4.3)

where Eq. (4.1) is the continuity or mass balance equation, (4.2) are the momentum balance
equations, and (4.3) is the energy balance equation. Dt := ∂/∂t + V (r, t) · ∇r denotes the
material derivative. Eq. (4.1) is straight forward to see, the other ones will be derived in this
chapter, including expressions for the stress tensor σ, the heat flux q and the energy sink ζ .

4.2. Microscopic Fields

Let us define the microscopic fields similar to Ref. [GG01]. They can be expressed in terms of
the microscopic distribution function

fmic(r,v, t) :=
1

m

N∑

i=1

mi δ(r − ri(t)) δ(v − vi(t)), (4.4)

where m := 1
N

∑N
i=1mi, and mi, ri(t), and vi(t) are the mass, position and velocity of

particle i at time t, respectively. In our simulations, all particles have the same mass, mi = m,
but it does not hurt to write down the more general case here.
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The microscopic mass density ρmic
m (r, t), momentum density pmic(r, t) and energy density

Emic(r, t) are given as usual proportional to the zeroth, first, and second moment of the veloc-
ity, i.e. in 2 dimensions

ρmic
m (r, t) := m

∫

R2

d2vfmic(r,v, t) =
N∑

i=1

mi δ(r − ri(t)), (4.5)

pmic(r, t) := m

∫

R2

d2v fmic(r,v, t) v =

N∑

i=1

mivi(t) δ(r − ri(t)) (4.6)

Emic(r, t) :=
m

2

∫

R2

d2v fmic(r,v, t) |v|2 =
N∑

i=1

mi

2
|vi(t)|2 δ(r − ri(t))

=

N∑

i=1

Ei(t) δ(r − ri(t)). (4.7)

Here Ei(t) is the energy of particle i at time t. Accordingly, we define the partial energy
densities Emic

x/y (r, t) := m
2

∫
R2 d

2v fmic(r,v, t) v2
x/y and the number density

ρmic(r, t) :=

∫

R2

d2vfmic(r,v, t) =
1

m
ρmic

m (r, t) . (4.8)

If the particles are not perfectly smooth, they do not conserve their rotational velocity. This
leads to one more degree of freedom in 2 dimensions. Thus, the distribution function fmic

becomes fmic(r,v,ω, t). Of course, in that case we would have to integrate over dω in Eqs.
(4.5) - (4.7), too. All those additional integrations yield 1. Furthermore, the energy density
Emic defined above changes its name to translational energy density Emic

tr and we define the
angular momentum density pmic

rot and the rotational energy density Emic
rot

pmic
rot (r, t) = I

∫

R

dω fmic(r,v,ω, t) ω =

N∑

i=1

Iiωi(t) δ(r − ri(t)) (4.9)

Emic
rot (r, t) =

I

2

∫

R

dω fmic(r,v,ω, t) |ω|2 =
N∑

i=1

Ii
2
|ωi(t)|2 δ(r − ri(t))

=

N∑

i=1

Erot,i(t) δ(r − ri(t)). (4.10)

where I := 1
N

∑N
i=1 Ii. Here, Ii is the moment of inertia of particle i and ωi(t) is its rota-

tional velocity at time t. The total energy density will thus be Emic = Emic
tr + Emic

rot . Since
hydrodynamic fields will be presented for smooth particles only, we will not consider pmic

rot and
Emic

rot any further. Additionally, we no longer write down the explicit time dependence of the
particles’ positions and velocities to improve the readability.
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4.3. Coarse-Graining the Fields

4.3.1. Densities of Mass, Momentum, and Energy, Velocity, and
Temperature

Like in Ref. [GG01] we introduce a local coarse-graining function Φ(r) such that∫
Φ(r) d2r = 1 and define the coarse-grained distribution function as well as the local

time-dependent mass density ρm(r, t), momentum density p(r, t) and energy density E(r, t)

f(r,v, t) :=

∫
Φ(r − r′) fmic(r′,v, t) d2r′ =

1

m

N∑

i=1

mi Φ(r − ri) δ(v − vi) , (4.11)

ρm(r, t) :=

∫
Φ(r − r′) ρmic

m (r′, t) d2r′ =

N∑

i=1

mi Φ(r − ri)

=m

∫

R2

d2v f (r,v, t), (4.12)

p(r, t) :=

∫
Φ(r − r′) pmic(r′, t) d2r′ =

N∑

i=1

mivi Φ(r − ri)

=m

∫

R2

d2v f (r,v, t) v, (4.13)

E(r, t) :=

∫
Φ(r − r′) Emic(r′, t) d2r′ =

N∑

i=1

Ei Φ(r − ri)

=
m

2

∫

R2

d2v f (r,v, t) |v|2. (4.14)

The coarse-grained partial energy densities Ex(r, t) and Ey(r, t), and the coarse-grained num-
ber density ρ(r, t) are given correspondingly. The (coarse-grained) local mean velocity or
velocity field is defined as

V (r, t) := p(r, t)/ρm(r, t) (4.15)

and the (coarse-grained) local temperature in two dimensions is defined as

ρ(r, t) T (r, t) :=
m

2

∫

R2

d2v f (r,v, t) |v − V (r, t)|2

= E (r, t) − 1

2
ρm(r, t)|V (r, t)|2. (4.16)

Again, the total temperature T (r, t) is the sum of the partial temperatures Tx(r, t) and Ty(r, t)

given accordingly, ρ(r, t) Tx/y(r, t) = Ex/y(r, t) − 1
2ρm(r, t)V 2

x/y(r, t).

Note that the non-coarse-grained versions of the velocity field and the temperature are mean-
ingless. The same is true for the hydrodynamic fields of the stress tensor, the heat flux and the
energy sink that will be defined in the next section.
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4.3.2. Stress Tensor

The stress tensor σkl(r, t) consists of two parts, a kinetic or free streaming part σkin
kl (r, t) and

a collisional or potential one, that is due to interactions between the particles, σ int
kl (r, t). In the

following we will derive expressions for both parts.

Consider the change of the momentum density p(r, t) in a time interval ∆t at fixed position
r where ∆t is thought to be infinitissimal but we keep the ∆ to indicate that changes due to
collisions are non-differentiable.

∂

∂t
p(r, t) =

N∑

i=1

mivi

∂

∂t
Φ(r − ri) +

1

∆t

N∑

i=1

(∆[mivi]) Φ(r − ri) (4.17)

Using the summation convention, the l-th vector component of the first term can be re-written
as

N∑

i=1

mi vi,l
∂

∂t
Φ(r − ri) = − ∂

∂rk

(
N∑

i=1

mi vi,k vi,l Φ(r − ri)

)
(4.18)

because the partial time derivative of Φ(r − ri) only acts on the ri ≡ ri(t) while the diver-
gence acts on r but leaves the ri and vi untouched since the quantities of the i-th particle do not
depend on the coarse-grained position r. We now write vi ≡ vi(t) = V (r, t)+ ṽi(r, t) where
V (r, t) is the local mean velocity as defined in Eq. (4.15) and ṽi(r, t) := vi − V (r, t) is the
fluctuation velocity of particle i compared to the (local) velocity field. In this notation we get
vi,k vi,l = (Vk(r, t)+ ṽi,k(r, t)) (Vl(r, t)+ ṽi,l(r, t)) = Vk(r, t)Vl(r, t)+ ṽi,k(r, t)ṽi,l(r, t)+

Vk(r, t)ṽi,l(r, t) + Vl(r, t)ṽi,k(r, t). Since
∑N

i=1mi ṽi(r, t)Φ(r − ri) = 0 we get∑N
i=1mi vi,k vi,l Φ(r − ri) = ρm(r, t)Vk(r, t)Vl(r, t)+

∑N
i=1mi ṽi,k(r, t) ṽi,l(r, t) Φ(r − ri).

Defining

σkin
kl (r, t) := −

N∑

i=1

mi ṽi,k(r, t) ṽi,l(r, t) Φ(r − ri), (4.19)

and using the mass balance equation (4.1) and the material derivative Dt := ∂/∂t + V (r, t) ·
∇r, Eq. (4.17) can be written as

ρm(r, t)Dt V (r, t) =
1

∆t

N∑

i=1

(∆pi) Φ(r − ri) +
∂

∂rk
σkin

kl (r, t) êl (4.20)

(summation over k and l in the last term). Note that the kinetic part of the stress tensor
σkin

kl (r, t) is symmetric.
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We will show now that 1
∆t

∑N
i=1(∆pi) Φ(r − ri) can be written as the divergence of a tensor

which we will identify as the collisional part of the stress tensor. Because we only have binary
collisions we can write

1

∆t

N∑

i=1

(∆pi) Φ(r − ri) =
1

∆t

N∑

i=1

N∑

j=1

j 6=i

(∆pi|j) Φ(r − ri), (4.21)

where ∆pi|j is the change of momentum of particle i due to a collision with particle j. Bi-
nary collisions due to the collision rule given in Eq. (2.4, 2.5) conserve momentum, ∆pi|j =

−∆pj|i. Therefore, the r.h.s. of Eq. (4.21) can be written as

− 1

2∆t

N∑

i=1

N∑

j=1

j 6=i

(∆pi|j) (Φ(r − rj) − Φ(r − ri)) (4.22)

Using the identity

∇r ·
(

rij

∫ 1

0
Φ(r − ri + srij) ds

)
=

∫ 1

0

d

ds
Φ(r − ri + srij) ds = Φ(r − rj) − Φ(r − ri)

(4.23)

where rij := ri − rj , the term (4.22) can be written as ∂
∂rl
σint

kl (r, t) êk with

σint
kl (r, t) := − 1

2∆t

N∑

i=1

N∑

j=1

j 6=i

(∆pi|j,k) rij,l

∫ 1

0
Φ(r − ri + srij) ds (4.24)

Note that – for smooth particles – the collisional part of the stress tensor is symmetric be-
cause the momentum transfer occurs along the connecting line between the two particles for
all collisions. This means that every collision adds the same amount to σkl as to σlk, leading to
σkl ≡ σlk (because the kinetic contribution is always symmetric).

To summarize, with the total stress tensor defined as σ(r, t) := σkin(r, t) + σint(r, t) the l-th
vector component of the momentum density balance equation reads

ρm(r, t)DtVl(r, t) = ∂k σkl(r, t) (4.25)

where ∂k := ∂
∂rk

and k is assumed to be summed over all spatial dimensions. Using ρm(r, t) =

mρ(r, t) yields Eq. (4.2).

Practically measuring the stress tensor in the simulations, we face the problem that we do not
know the final value (i.e. the time average of the stationary state) of the velocity field when
we start measuring, i.e. we do not have the quantity ṽi(r, t) but only vi(t) - and thus cannot
measure σkin(r, t) as given in Eq. (4.19). Through direct measurement in the simulations only
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moments of the velocity distribution are accessible. Remembering that ṽi(r, t) = vi(t) −
V (r, t) we rewrite Eq. (4.19) as

σkin
kl (r, t) := −

(
N∑

i=1

mi vi,k(r, t) vi,l(r, t) Φ(r − ri)

)
− ρ(r, t)Vk(r, t)Vl(r, t) . (4.26)

Here the kinetic part of the stress tensor is expressed solely in terms of moments of the velocity
distribution, as it has been done for the temperature in the second line of Eq. (4.16).

4.3.3. Heat Flux and Energy Sink

Similar to the stress tensor the heat flux also has a kinetic and a collisional contribution. In
addition we derive an expression for the local energy loss.

Consider the change of the energy density E(r, t) in an (infinitissimal) time interval ∆t at fixed
position r,

∂

∂t
E(r, t) =

N∑

i=1

Ei
∂

∂t
Φ(r − ri) +

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri) . (4.27)

The first term equals

N∑

i=1

Ei
∂

∂t
Φ(r − ri) = −∇r ·

(
N∑

i=1

Ei vi Φ(r − ri)

)
(4.28)

for the same reasons as has been discussed in the last section for Eq. (4.18). Here we write
Ei = mi

2 |V (r, t) + ṽi|2 = mi
2 |V (r, t)|2 + mi

2 |ṽi(r, t)|2 + miṽi(r, t) · V (r, t). If, for the
sake of simplicity, we assume V (r, t) = 0 (the general case is treated in appendix A) the term
within the parentheses at the right hand side of Eq. (4.28) can be written as

qkin(r, t) :=

N∑

i=1

mi

2
|ṽi(r, t)|2 ṽi(r, t) Φ(r − ri) (4.29)

which we identify as the kinetic part of the heat flux. For non-zero velocity fields this definition
is still valid while there will be additional terms within the parentheses at the right hand side of
Eq. (4.28), cf. appendix A.

Using the definition of the temperature, Eq. (4.16), and the mass balance equation (4.1), both
for V (r, t) = 0, we get

ρ(r, t)
∂

∂t
T (r, t) =

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri) −∇r · qkin(r, t) .
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Let us now take a look at 1
∆t

∑N
i=1(∆Ei) Φ(r − ri). It can be transformed into the divergence

of the collisional part of the heat flux and the local energy loss term when we remember that
we deal with instantaneous binary inelastic collisions. It is

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri) =
1

∆t

N∑

i=1

N∑

j=1

j 6=i

(∆Ei|j) Φ(r − ri), (4.30)

where ∆Ei|j is the change of energy of particle i due to a collision with particle j. Writing
∆Ei|j = 1

2

(
∆Ei|j + ∆Ej|i

)
+ 1

2

(
∆Ei|j − ∆Ej|i

)
we find that

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri) =
1

2∆t

N∑

i=1

N∑

j=1

j 6=i

(∆Ei|j + ∆Ej|i) Φ(r − ri)

+
1

2∆t

N∑

i=1

N∑

j=1

j 6=i

(∆Ei|j − ∆Ej|i) Φ(r − ri) (4.31)

The first term is the total local loss of energy ζ(r, t) due to the sum of all collisions between
particles i and j,

ζ(r, t) :=
1

2∆t

N∑

i=1

N∑

j=1

j 6=i

(∆Ei|j + ∆Ej|i) Φ(r − ri) . (4.32)

This term vanishes for elastic collisions, ζ(r, t) ≡ 0, because in the elastic case ∆Ei|j =

−∆Ej|i. In Sec. 6.5 we show simulation results of ζ(r, t) for the stationary state.

To show that the second term of the r.h.s. of Eq. (4.31) can be interpreted as the collisional part
of the heat flux we note that it can be written as

− 1

4∆t

N∑

i=1

N∑

j=1

j 6=i

(∆Ei|j − ∆Ej|i) (Φ(r − rj) − Φ(r − ri)) . (4.33)

Using again the identity (4.23) and rij := ri − rj , the term (4.33) can be written as −∇r ·
qinto(r, t) with

qinto(r, t) :=
1

4∆t

N∑

i=1

N∑

j=1

j 6=i

(∆Ei|j − ∆Ej|i) rij

∫ 1

0
Φ(r − ri + srij) ds . (4.34)

Therefore, with q(r, t) := qkin(r, t)+qinto(r, t) we can write for the case with a zero velocity
field

ρ(r, t)
∂

∂t
T (r, t) = −∇r · q(r, t) + ζ(r, t) . (4.35)
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The general case of non-zero velocity fields is treated in appendix A. In agreement with the
literature [BDS97, Gol03] the energy balance equation reads

ρ(r, t)DtT (r, t) = −∇r · q(r, t) + ζ(r, t) − σkl(r, t) ∂kVl(r, t) . (4.36)

It is shown in appendix A that there is an additional term to the collisional part of the heat flux,
cf. Eq. (A.7), which stems from the term in Eq. (4.28), qintv(r, t) = −σint(r, t) · V (r, t).
Thus the collisional part of the heat flux for non-zero velocity fields reads

qint(r, t) = qinto(r, t) + qintv(r, t) . (4.37)

For practical measurements it is necessary again to write the kinetic contribution of the heat
flux in terms of moments of the velocity distribution. When we put everything together we get
for the total heat flux

q(r, t) = qkin(r, t) + qinto(r, t) + qintv(r, t)

=

N∑

i=1

mi

2
|vi|2vi Φ(r − ri) + qinto(r, t) (4.38)

− E(r, t)V (r, t) +mρ(r, t)|V (r, t)|2V (r, t) − σ(r, t) · V (r, t) .

Here the heat flux q(r, t) has been expressed solely in terms of moments of the velocity distri-
bution, collisional terms (qinto is given in Eq. (4.34)) and σ(r, t). Note that σ(r, t) includes
kinetic and collisional contributions. Details of the calculation can be found in appendix A.



5. Measuring Observables in Simulations

5.1. Event Driven Simulations of Vibrated Systems

Following, e.g., Refs. [Rap88, Lub91, LHB94, LM98, HHZ00] we performed Event Driven
(ED) simulations in two dimensions with periodic boundary conditions in the y-direction. In
the x-direction we used fixed walls. An ED simulation is a specialized and very efficient
Molecular Dynamics (MD) simulation, i.e. we numerically integrate Newton’s equations of
motion. In a standard MD simulation this is done by simultaneously advancing all particles by
a sufficiently small time step. In an ED simulation we check in an efficient way [Lub91] which
collision event will take place next and advance the involved particles exactly up to the instant
of the collision. We then update those particles’ velocities according to the collision rules (2.4)
or (2.14) and proceed to the next collision event. This means that we analytically integrate the
time between collision events and numerically find the next collision event. Here the average
time step is of the order of the time between two collisions, and it varies from collision to
collision. That allows for much larger (average) time steps than in standard MD simulations,
where the time step chosen must be small enough to avoid particles overlapping significantly
at any instant of time. In particular, the time steps must be much smaller than the average time
between two collisions. In an ED simulation, by construction, the particles can never overlap.
That means that the ED algorithm is suitable for binary collisions of hard core particles only
– it cannot simulate multi-particle contacts and it does not work if there are forces between
the particles. Of course, forces that do not depend on the position of the other particles, e.g.
gravity, can be included if it is possible to integrate them analytically.

While a naive way of finding the next collision consumes CPU time proportional to N 2 (where
N is the number of particles) using a heap tree requires CPU time proportional to N lnN only,
cf. [Lub91]. Subdividing the total box into smaller sub-boxes that contain only a few parti-
cles each further accelerates the algorithm. Collisions with walls and crossing the boundary
between sub-boxes count as (collision) events, too. Details of the algorithm used can be found
in Refs. [Lub91, HHZ00] and references therein. The problem of inelastic collapse character-
istic of the ED algorithm [MY92, MY94, MBD94, CGM95, GZ96, EP97, GSB+98, Gol03], is
handled by using normal restitution coefficients that depend on the time elapsed since the last
collision event (TC model) [LCRD96, LM98, LG03]. If a particle collides twice within a very
short time interval the second collision is assumed to be elastic.

29
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We initialize the system by placing the particles on a triangular lattice with a Gaussian velocity
distribution. To let the correlations of the initial state relax, the system is evolved elastically
with periodic boundary conditions in the y-direction and elastic non-vibrating walls in the x-
direction for an average of 100 collisions per particle. Then we switch on the driving of the left
and right wall and the dissipation for particle-particle-collisions. Before we start measuring the
observables we let the system relax further until, at time t0, it has reached a stationary state, as
indicated by the total kinetic energy, which fluctuates around a time-independent mean value.

5.2. Details of the Measurement of the Kinetic and
Collisional Contributions

5.2.1. In the Bulk

Hydrodynamic fields in the stationary state are measured by subdividing the box into cells Vr

of area |Vr|, centered at position r = (x, y). In our simulations we choose the cells Vr as
narrow stripes along the y-direction (for a discussion see below). To measure the distribution
function, for example, we count the number of particles f(r, vx, vy, t)|Vr|dvxdvy at time t in
cell Vr with an x-component of the velocity between vx and vx + dvx and y-component of the
velocity between vy and vy + dvy .

Local observables fluctuate as a function of time. To eliminate these fluctuations of an observ-
able A(r, t) we average over a (long) time interval of length τ and compute

Astat(r) :=
1

τ

∫ t0+τ

t0

dt A(r, t) (5.1)

as a Riemann sum by repeating single measurements at fixed time intervals, summing them up
and dividing by the number of measurements.

Speaking in terms of Sec. 4.3.3 we choose

Φ(r) =
Θ(|x| − Lx/2)Θ(|y| − Ly/2)

|Vr|
(5.2)

which means that the size of the cell is given by |Vr| = LxLy. We choose narrow (Lx �
1) stripes along the y-axis (Ly = Ly). The coarse-grained positions are denoted by r =

(x, y). When measuring the collisional contributions, we do not calculate the integral I :=∫ 1
0 Φ(r − ri + srij) ds for each collision. Instead we use I = 1/(2|Vr |) for those cells in

which the center of mass of exactly one particle is located at the instant of the collision. Should
both particles’ centers of mass be located in the same cell then this cell is assigned weight
I = 1/|Vr|, for all other cells I = 0. Because we are interested in long-time averages only, the
error we make in a single measurement averages out for long times.
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Coarse-grained measurements in space and time of certain observables may depend on the
coarse-graining resolution. For example, this was demonstrated for the stress tensor in shear-
flow driven granular systems in Ref. [Gol98, GG01]. Our measurements of observables in the
stationary state, however, should not suffer from such effects for two reasons: First, we could
not detect any significant non-zero local velocity field in the simulated systems and, second,
because of the long-time average needed to obtain stationary-state quantities.

Subdividing the box not only in the x-direction but also in the y-direction, we have never found
any significant dependence of the (long-time-averaged) hydrodynamic fields on y, the coordi-
nate parallel to the driving walls. Yet, stripe states, which are homogeneous in y, but have an
enhanced density in the middle of the sample, are known to exhibit instabilities with respect
to density fluctuations in y [LMS02a, LMS02b]. A marginal stability analysis [LMS02b] of
granular hydrodynamics (for α close to one) determines the conditions under which such phe-
nomena occur. As far as a comparison can be made, our systems fall into the stable region.
Hence, we choose the cells Vr as stripes along the y-direction, for which we write Vx, and
compute the hydrodynamic fields with spatial resolution in x-direction only. Thus, we also
write ρ(x) instead of ρ(r) and change the notation accordingly for all other quantities. In the
simulations the stripes Vx were all chosen to have equal width Lx/201, the temporal resolution
of our measurements was set to ∆t = 1, and the long-time average typically involves 107 –
109 collision events.

Kinetic Contributions

As already mentioned in chapter 4 all kinetic contributions can be expressed in terms of mo-
ments of the velocity distribution. To measure the k-th moment Mk,i(r, t) of the local distri-
bution of the i-th component (i = x or i = y) of the velocity vi at time t we sum vk

i over all
particles in Vr and divide it by the size of the cell |Vr|, Mk,i(r, t) := 1

|Vr|
∑

n v
k
n,i(t). Here,

vk
n,i is the i-th component of the velocity of particle n taken to the power of k. The sum over
n runs over all particles in cell Vr. Similarly we define the k-th moment Mk(r, t) of the local
distribution of the velocity v at time t, Mk(r, t) := 1

|Vr|
∑

n |vn(t)|k.

Of particular interest are the particle density ρ(r) = M0(r) or the area fraction φ(r) :=

ρ(r)πa2/4 and the two components i = x, y of the granular temperatures Ti(r) =
m
M0

(r)
(
M2,i(r) −M2

1,i(r)
)

. The total granular temperature in 2 dimensions is, as defined
above, T (r) := (Tx(r) + Ty(r))/2.

The kinetic parts of the stress tensor and heat flux can be measured accordingly, see Eqs. (4.26)
and (4.38).
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Collisional Contributions

In addition to the kinetic contributions both the stress tensor and the heat flux have contribu-
tions due to interactions of the particles, see Sec. 4.3.3. Here we show how to implement the
measurements of the collisional contributions in our simulations.

Let us first consider the stress tensor. Suppose there is a collision at time t of particle k with
another particle, then the momentum change of particle k will contribute to the stress tensor
an amount proportional to lki (t)∆pk

j (t). Here lki (t) is the i-th component of the vector of
length a/2 pointing from the center of disk k to its collision contact point, and ∆pk

j (t) is the
j-th component of the momentum change of particle k during this collision. To compute the
collisional part of the stress tensor we need the total change of momentum in the time interval
[t − ∆t, t] in the cell Vr so that we have to keep track of all collisions n occurring at times
tn ∈ [t−∆t, t], for which at least one collision partner kn (i.e. its center of mass) is located in
cell Vr at time tn [LM98]

σint
ij (r, t) =

1

∆t

1

|Vr|
∑

tn

∑

kn

lkn
i (tn)∆pkn

j (tn) . (5.3)

The particle number kn of each such collision can take on one or two values, depending on
whether one or both collision partners are located in cell Vr. Similar to the other hydrodynamic
fields, in a second step σint(r, t) is averaged over time in order to get the collisional part
of the stress tensor in the stationary state, cf. Eq. (5.1). The corresponding local pressure
p(r) := −tr (σ(r)) /2 is defined as usual as the negative trace of the stress tensor divided by
the space dimension.

Computing the collisional part of the heat flux vector according to Eq. (4.34) in Sec. 4.3.3 is
very similar to the collisional part of the stress tensor. We need the change of energy in the
time interval [t − ∆t, t] in the cell Vr so that, again, we have to keep track of all collisions n
occurring at times tn ∈ [t− ∆t, t], for which at least one collision partner kn (i.e. its center of
mass) is located in cell Vr at time tn,

qinto
i (r, t) = − 1

∆t

1

|Vr|
∑

tn

∑

kn

lkn
i (tn)

1

2

(
∆Ekn|ekn(tn) − ∆E

ekn|kn(tn)
)
, (5.4)

where k̃n is the collision partner of kn, ∆Ekn|ekn(tn) = m
2

(
v′2

kn
− v2

kn

)
is the change of en-

ergy of particle kn due to the collision with particle k̃n, and 1
2

(
∆Ekn|ekn(tn) − ∆E

ekn|kn(tn)
)

=

− m
2

1+α
2 (n̂ · v

kn
ekn

)(n̂ · [vkn + vekn
]). Again, the particle number kn of each such collision

can take on one or two values depending on whether one or both collision partners are located
in cell Vr. Again, qinto(r, t) is averaged over time according to Eq. (5.1).



5.2. Details of the Measurement of the Kinetic and Collisional Contributions 33

The local energy loss term has only a collisional part. It is given by Eq. (4.32) which translates
to

ζ(r, t) =
1

∆t

1

|Vr|
∑

tn

∑

kn

1

2

(
∆Ekn|ekn(tn) + ∆E

ekn|kn(tn)
)
, (5.5)

where 1
2

(
∆Ekn|ekn(tn) + ∆E

ekn|kn(tn)
)

= −m
2

1−α2

4 (n̂ · v
kn

ekn
)2.

5.2.2. At the Wall

Collisional Contributions

We also want to measure these quantities exactly at the wall. The collisional part can be com-
puted almost as described above, by assuming the wall to be a particle of infinite mass. Then,
in Eqs. (5.5), (5.4), and (5.3), we sum over the (real) particles only – and leave out the wall. To
account for the fact that the sum no longer runs over each particle twice, each event has to be
assigned twice the weight. Thus, the energy loss term, Eq. (5.5), at the left/right wall – which
is a gain term for driving walls, of course – reads

ζ(∓Lx/2) =
1

τLy

∑

tn

∆Ekn|wall(tn) . (5.6)

Here we have used τ instead of ∆t to indicate that we are already talking about the time-
averaged (and y-independent) quantities in the stationary state. For the collision rule used for
particle-wall collisions in the simulations presented later, Eq. (2.17), this simplifies to

ζ(∓Lx/2) =
1

τLy

∑

colls

(v′2x − v2
x) , (5.7)

where v′x is the x-component of the particle’s post-collisional velocity. The collisional part of
the heat flux, Eq. (5.4), at the wall becomes

qinto
i (∓Lx/2) = − 1

τLy

∑

tn

lkn
i (tn)∆Ekn|wall(tn) . (5.8)

which simplifies to qinto
y (∓Lx/2, t) = 0 and

qinto
x (∓Lx/2) = ± 1

2

1

τLy

m

2

∑

colls

(v′2x − v2
x) . (5.9)

for the collision rule used in this paper, Eq. (2.17), since lkn
x (tn) = ∓1/2 for the left/right wall

while lkn
y (tn) = 0.

Similarly the collisional part of the stress tensor exactly at the wall can be obtained.
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Kinetic Contributions

One could be tempted to think that there is only a collisional contribution to any observable
exactly at the wall. But there is a second part, which could be called its kinetic contribution
directly at the wall. It arises when a distribution density is calculated from the distribution of
collisions with the wall and has to be taken into account in a way similar to the measurement of
the velocity distribution directly at the wall (see chapter 9). The basic idea is to define a virtual
box of size Ly∆x around the wall and calculate how much time a particle spends within the
box before and after hitting the wall. This defines the weights assigned to the particle’s pre-
and post-collisional kinetic contributions to the observable.

Consider the contribution of a single particle to the time average of an observable A per unit
cell in a cell of size Ly∆x,

1

τLy∆x

∫
A(vx, vy)B(t)dt , (5.10)

where τ is the averaging time interval and B(t) is the characteristic function, i.e. B(t) = 1

while the particle is within the cell and zero, otherwise. Let us first consider the cell to be in
the bulk, far away from the walls. Choose the total time interval such that the particle passes
the cell exactly once and let ∆x be small enough such that no collision occurs while the particle
is within the cell. In this case the integral simply yields A(vx, vy)∆t where ∆t is the time the
particle spends within the cell, i.e. ∆t = ∆x/|vx|. That means that this particle’s contribution
to A is assigned a weight 1/|vx|, where vx is the x-component of its own (constant) velocity
while in the cell.

Now consider the stripe ∆x to be confined by a wall on one side and choose the magnitude of
∆x such that the particle will encounter no collisions within ∆x (neither before nor after hitting
the wall). The wall is considered outside ∆x. The time interval τ is chosen long enough such
that the particle will enter ∆x, hit the wall, and leave ∆x within this time interval (thus passing
∆x twice). Here, the contribution of the single particle to the time average of observable A per
unit cell will be

1

τLy∆x

∫
A(vx, vy)B(t)dt =

1

τLy

(
A(vx, vy)

|vx|
+
A(v′x, v

′
y)

|v′x|

)
(5.11)

where the unprimed quantities vx and vy denote the particle’s velocity components prior to
the collision with the wall while v′x and v′y are the post-collisional quantities. To average the
observable A over a long time interval τ we have to sum up the right hand side of Eq. (5.11)
for all particles colliding with the wall during the time interval τ .

Finally, consider the wall to be inside the stripe of width ∆x. Since ∆x will eventually be
taken to zero, it must be centered around the wall. This means that, compared to the situation
above, the particle will spend only half the time within ∆x – both before and after hitting the
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wall – because only a stripe of width ∆x/2 is accessible to the particle. The other half of the
stripe is behind the wall. This yields a kinetic contribution that is a factor of 2 smaller than in
the case, where the wall is not within the box but immediately outside of it. On the other hand,
the collisional contribution to the observable A is non-zero now because in this case it includes
the collision with the wall.

This method can be applied to the stress tensor as well as to the heat flux. As an example,
consider the kinetic part of the heat flux (energy flux density) qkin infinitely close to the wall –
but excluding the wall – this means

qkin =
m/2

τLy

∑

colls

(
|v|2

(
sgn(vx)

vy

|vx|

)
+ |v′|2

(
sgn(v′x)

v′y
|v′x|

))
, (5.12)

where the sum runs over all collisions between a particle and the wall in the time interval τ .
Including the wall in the box yields an additional factor of 1/2 as discussed above.

For smooth walls (as used in the simulations), v ′y = vy . This simplifies the kinetic contribution
to the heat flux exactly at the wall (i.e. including the wall) to

qkin(∓Lx/2) =
1

2

1

τLy

m

2

∑

colls

(
±(v′2x − v2

x)

(|v′x| + |vx|) vy

)
. (5.13)

The post-collisional velocities (primed) are given by the collision rule, Eq. (2.17). For long-
time averages the y-component of the heat flux is expected to average to zero which is con-
firmed by our simulations. The x-component of the kinetic part of the heat flux at the wall turns
out to be identical to the collisional part, Eq. (5.9). If we take an infinitissimal step inside the
cell then the kinetic part will be twice this value and the collisional term will vanish, yielding
the same total heat flux at the wall, as expected.
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6. Hydrodynamic Fields in Simulations of
Vibrated Systems

In this chapter we discuss hydrodynamic fields from simulations of vibrated systems of smooth
particles, as computed from Eqs. (4.11) – (4.16) and (4.26), (4.38), (5.3), (5.4), and (5.5). Due
to the absence of a local velocity field V , these equations simplify accordingly. We have
performed simulations for a wide range of system parameters α, N , Lx, and Ly, and present
examples thereof below. Comparing systems with various inelasticities we face the problem
of stationary temperatures that are orders of magnitude apart. To have all these systems relax
to the same stationary temperature we will introduce an adjusted driving mechanism before
discussing hydrodynamic fields in detail.

The following sections show the profile of each hydrodynamic field for four examplary sys-
tems, i.e. two different coefficients of restitution at two different densities. After that, the
coeffient of restituion will be varied over the full range for two different densities. Finally, we
present variations in the hydrodynamic fields with the box edge Lx, where Lx is varied over
the full range for two different coefficients of restitution.

Due to the rich behavior of the systems studied, this chapter is primarily a descriptive collection
of (selected) data from our simulations. Some relations between the fields will be touched as
well but the very interesting tests of constitutive relations will be deferred to chapters 7 and
8, where we will relate to each other various hydrodynamic fields that are discussed in this
chapter on a stand-alone basis. First we will discuss the question of a local equation of state
in chapter 7, relating the pressure p(x), density ρ(x), and temperature T (x). In chapter 8 we
will check Fourier’s law of thermal conductance and its generalization for granular gases which
relates the heat flux q(x) to the gradients of the temperature d

dxT (x) and the density d
dxρ(x).

6.1. How to Scale the Driving as a Function of the
Coefficient of Restitution

Before we present hydrodynamic fields we show how to drive the system in order to have a
well-defined elastic limit. Energy balance, Eq. (3.14) chapter 3, suggested – and Fig. 3.1 con-
firmed – that the spatially averaged stationary total temperature is approximately proportional

37
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Figure 6.1.: Dynamic time evolution of the spatially averaged total granular temperature T as a function
of dimensionless time (i.e. time in units of [a/v0]) for systems with the same number of particles N =

256 and the same geometry (Lx = 20, Ly = 25) but various coefficients of restitution, 0.5 ≤ α ≤
0.99999. Depending on the coefficient of restitution each system is driven with its peculiar driving
velocity ε ≡ 1 − α2 and started with an initial temperature T0 = ε2. Shown are the temperatures
divided by (1 + α)2 to improve the data collapse for higher inelasticities (α < 0.9).

to ε−2 with ε ≡ 1 − α2 for α close to unity. Therefore, we must drive a system of particles
with a given coefficient of restitution α with a driving velocity

vdr = ε = 1 − α2 (6.1)

in dimensionless units to have systems with different coefficients of restitution relax to approx-
imately the same final temperature. In other words, we drive the system in this chapter with a
physical driving velocity vdr = εv0 and measure velocities in units of v0, i.e. times in units of
a/v0.

Simulations confirm the suggested driving: Fig. 6.1 shows the relaxation of the granular tem-
peratures as a function of time. For systems with the same number of particles N = 256

and identical geometry (Lx = 20 and Ly = 25) we vary the coefficient of restitution
0.5 ≤ α ≤ 0.99999. Each system is driven according to Eq. (6.1) and started with an ini-
tial temperature T0 = ε2. All these systems relax to approximately the same final temperature
T . Especially for systems that are not too inelastic the agreement is very good. The relaxation
time for reaching the steady state becomes longer the more elastic the systems are. In the per-
fectly elastic case (with zero driving) the relaxation time is infinite since any initial temperature
will prevail forever. To improve the data collapse for moderate to high inelasticities the mea-
sured temperature is divided by (1 + α)2. This makes no difference for α close to one. The
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origin of this additional factor is unclear to us but the same factor is found to also improve the
data collapse of the components of the stress tensor and the heat flux.

Deduced Dependencies on the Coefficient of Restitution

Dimensional analysis shows that the density is proportional to v0
dr, temperatures and stresses

are proportional to v2
dr while the heat flux is proportional to v3

dr. Combined with the energy
balance argument, Eq. (3.14), this leads to a mean stationary temperature and mean stationary
stresses that are approximately independent of the coefficient of restitution for quasi-elastic
systems. The global density is, of course, also independent of the coefficient of restitution.
Since a freely evolving system of perfectly elastic particles between two elastic walls (i.e. the
limit ε → 0) has zero heat flux and zero local energy loss, we expect those fields to vanish
with ε for ε → 0. The same argument holds for the gradients of the density and temperature.
Additionally, the spatial variation (“profiles”) of all hydrodynamic fields are expected to depend
on ε, of course. This is confirmed by the simulations shown later in this chapter.

6.2. Density and Temperature Profiles

We first present data for the density and temperature to demonstrate that the systems considered
are strongly inhomogeneous even for collisions with α = 0.9 and moderately low densities.
These and all other hydrodynamic fields will be shown for four exemplary systems, two dif-
ferent densities at two different coefficients of restitution: Systems (a) and (b) use Lx = 20,
Ly = 25, N = 256 corresponding to φ0 ≡ a2N/(4LxLy) = 0.4 and λ = 10.24, while sys-
tems (c) and (d) use Lx = 50, Ly = 25, N = 240 corresponding to φ0 = 0.15 and λ = 9.6.
The coefficient of restitution is α = 0.9 for systems (a) and (c) while it α = 0.5 has been used
for systems (b) and (d).

In the main graphs of Figs. 6.2 we show the local area fraction φ(x) (full green lines), the x-
and y-component of the granular temperature, Tx(x) and Ty(x) (dashed blue and dotted red
lines), as well as the isotropic or total temperature T (x) = [Tx(x) + Ty(x)]/2 (dashed-dotted
indigo lines) for four different sets of parameters on a semi-logarithmic scale. The particle size
is indicated by the circles in the corners of the graphs and the inset shows the density profiles
on a linear scale. Fig. 6.2 (a) is typical for systems with quite elastic collisions (α = 0.9) and
moderately high densities (φ0 = 0.4), whereas Fig. 6.2 (b) shows the same system with higher
inelasticity α = 0.5. Figs. 6.2 (c) and (d) show rather dilute systems (φ0 = 0.15), again at two
different inelasticities, a moderate one (α = 0.9) and a strong one (α = 0.5). We note that
all quantities are symmetric in x as expected. Except for a small area of approximately one
disk diameter next to the walls (indicated by the vertical lines), the area fraction is a monotonic
function for either half of the system with the maximum value in the middle of the system. The
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Figure 6.2.: Spatial profiles of the area fraction φ (full green lines in the main graphs (semi-logarithmic
scale) and in the insets on a linear scale) and granular temperatures Tx (dashed blue lines), Ty (dotted red
lines), and T (dash-dotted indigo lines) from simulations for 4 typical systems on a semi-logarithmic
scale: (a) α = 0.9, Lx = 20, λ = 10.24, N = 256, φ0 = 0.4, corresponding to a mean free path
`/Lx ≈ 0.023, (b) same as (a) but for α = 0.5, (c) α = 0.9, Lx = 50, λ = 9.6, N = 240, φ0 = 0.15,
corresponding to a mean free path `/Lx ≈ 0.033, (d) same as (c) but for α = 0.5. The insets show
the profile of the area fraction on a linear scale. Even for moderately low densities and inelasticities the
systems are highly inhomogeneous.

temperatures Tx, Ty , and T are monotonic as well with the lowest temperatures in the middle
of the sample.

The reason for the increased density next to the wall in Fig. 6.2 (a) is an effective attractive
potential of the wall due to entropic effects: Once a disk gets closer to the wall than one disk
diameter, it can only receive hits from within the box but no hits from the direction of the
wall. Thus the particle is pushed closer to the wall [RY84, HM86]. This effect is partially
compensated by the driving walls, which add momentum to any particle hitting the walls. To
support this explanation we have also investigated systems of half the size −0.5 ≤ x/Lx ≤ 0,
half the number of particles and with an elastic wall at x = 0. The resulting hydrodynamic
fields (not shown) are almost identical to the ones in Figs. 6.2 except for a small region of about
one diameter close to x = 0 where the aforementioned effect is particularly visible.
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Figure 6.3.: Spatial profiles of the stress tensor components −σxx (blue lines), −σyy (red lines), −σxy

(green lines), their kinetic parts ρTx ≡ −σkin
xx (indigo lines) and ρTy ≡ −σkin

yy (orange lines), as well as
their collisional contributions −σint

xx (cyan lines) and −σint
yy (magenta lines) for the same systems as in

Figs. 6.2. Note that the xx-component is constant throughout the system for all parameters (except for
a marginal region of about one particle diameter) while the yy-component displays a dip in the middle
of the sample. For both components the collisional part of the stress tensor is important and may not be
neglected.

In systems exhibiting so called stripe states [LMS02a, LMS02b], which are homogeneous in
y, but have an enhanced density in the middle of the sample, we have sometimes observed an
oscillatory instability of a central dense cluster in the x-direction [KM04], in particular if α is
low and Lx is large. However, these oscillations occur on far shorter time scales compared to
the time interval τ , over which we average to obtain stationary-state quantities. Hence, these
oscillations are completely averaged out in the data presented.

6.3. Stress Tensor and Pressure

For an isotropic system the xx- and the yy-component of the stress tensor would be equal
and the negative of the pressure. We therefore define the local pressure p(x) := −[σxx(x) +

σyy(x)]/2 and always show the the negative of the components of the stress tensor. In Figs. 6.3
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we show the components of the negative stress tensor −σxx(x), −σyy(x), and −σxy(x) as well
as their kinetic and collisional contributions for the same four different sets of parameters as
shown in Figs. 6.2. The off-diagonal component −σxy of the stress tensor is always vanishingly
small. The xx-component, −σxx, is constant within the sample except for a boundary layer
close to the driving walls. −σyy displays a dip in the center of the sample, which is more
pronounced for the more dilute and more elastic system in Fig. 6.3 (c) as well as in the denser
and more inelastic system in Fig. 6.3 (b). It is hardly visible in the strongly inelastic, dilute
system of Fig. 6.3 (d). Furthermore, −σyy increases considerably over a broad range in the
more dilute systems in Figs. 6.3 (c) and (d) when moving from a driving wall towards the
center of the system. Currently, the origin of both x-dependences of −σyy is not clear to us
even though it seems that the dip stems from the kinetic contribution through the anisotropy
of the granular temperatures (Tx 6= Ty). While the stationary-state condition ∇ · σ = 0 and
homogeneity in y require σxx and σxy to be constant in x on general grounds, cf. Eq. (4.1), this
is not the case for σyy . We have carefully checked that the x-dependence of σyy is not caused
by a shear instability associated with a non-zero velocity field V (x) in the system. Thus, there
are normal stresses present in the simulated systems, and they depend on x.

If the equation of state of the ideal gas held, the local pressure p(x) would be related to the
local temperature and density according to p(x) = ρ(x)T (x) = (4/π)φ(x)T (x). For our
systems the kinetic part of the stress tensor is diagonal and each component is simply related
to the corresponding temperatures −σkin

xx (x) = ρ(x)Tx(x) and −σkin
yy (x) = ρ(x)Ty(x). Hence

the difference between the negative of the measured stress tensor and the ideal gas behavior is
due to collisions. From Figs. 6.3 it can be seen that the stress tensor deviates strongly from the
ideal gas behavior. Consequently, collisions contribute significantly. Here the collisional part
has been measured directly in the simulations and not only estimated by approximate theories
as has been done elsewhere [BRMM00, BT02b].

We have also estimated the global mean free path ` for our simulated systems according to Eq.
(9) in Ref. [GZBN97] which expresses ` solely as a function of the global area fraction φ0. In
our notation it reads ` ≈ =

√
2

πφ0

1−φ0/φc

1−(1−
√

3/8)φ0/φc)
, where φc = π/[2

√
3] ≈ 0.9069. For the

denser systems with φ0 = 0.4 shown in graphs (a) and (b) of Figs. 6.2 – 6.5 as well as in the
left graphs of Figs. 6.6 – 6.11 this yields ` ≈ 0.46 (in units of the diameter of the disks, that is
`/Lx ≈ 0.023). For the thinner systems with φ0 = 0.15, shown in graphs (c) and (d) of Figs.
6.2 – 6.5, one gets ` ≈ 1.64, that is `/Lx ≈ 0.033. For the systems studied in the right graphs
of Figs. 6.6 – 6.11 we get ` ≈ 2.56, that is `/Lx ≈ 0.032. Thus, in all cases the mean free path
` is much smaller than the scales governing the spatial variations of the hydrodynamic fields,
which are of order Lx.
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Figure 6.4.: Spatial profiles of the x-component of the heat flux (main graphs) and the local energy
loss (insets) for the same systems as in Figs. 6.2. The full indigo lines show the heat flux qx while
the dotted red lines represent the kinetic and the dashed blue lines the collisional contribution. Clearly,
the collisional heat transfer is an important contribution to the heat flux. Depending on the system
parameters the highest dissipation, i.e. the maximum of the absolute value of the local energy loss (i.e.
the minimum of ζ) takes place somewhere between the walls and the middle of the sample.

6.4. Heat Flux

In the main graphs of Figs. 6.4 we show the x-component of the heat flux qx as a function of
the normalized position x/Lx as well as its kinetic and collisional contribution for the same
four systems as displayed in Figs. 6.2 and 6.3. The y-component vanishes as expected. The
x-component of the heat flux is anti-symmetric about the middle of the sample and linear to
zeroth approximation. It is directed towards the center of the system at all positions. This is not
surprising since everywhere in the sample net energy flows from the walls towards the center
where part of the energy is being dissipated while the remaining part flows further towards the
center. In the middle of the system the net flow must vanish for symmetry reasons. In contrast,
a system of perfectly elastic particles driven by a vibrating wall on one side and dissipating
energy through collisions with an inelastic wall on the other side is expected to yield a linear
temperature gradient and, consequently, a constant heat flux. This has been confirmed by
simulations (not shown).



44 6. Hydrodynamic Fields in Simulations of Vibrated Systems

6.5. Local Energy Loss

In a y-independent stationary state with zero mean velocity at all positions, as we expect and
find it in our simulations, Eq. (4.36) can be integrated to yield

qx(−Lx/2) − qx(+Lx/2) =

Lx/2∫

−Lx/2

ζ(x)dx (6.2)

This is confirmed by our simulations: In the stationary state the energy input at the walls is
balanced by the energy dissipated due to collisions in the entire system. That means that the
energy loss rate ζ(x) should scale like the heat flux qx(x) divided by Lx. Of course, the shape
of the profile is different, in general.

In the insets of Figs. 6.4 (a) - (d) we show the local energy loss profile ζ as a function of the
normalized position x/Lx for the four systems already considered in Figs. 6.2, 6.3, and the
main graph of 6.4. We see that in all those cases the maximum energy loss (maxx |ζ(x)|)
occurs somewhere between the wall and the middle of the system, at x ∼ ±0.3 Lx for the
dense systems and at x ∼ ±0.2 Lx for the dilute systems.

6.6. Gradients of the Density and Temperature

Since we carefully designed the simulations to yield very precise high resolution density and
temperature profiles that become very smooth for sufficiently long runs it is possible to extract
the gradient fields for the density and temperature.

Figs. 6.5 show the density and temperature gradients of the four systems of Figs. 6.2. Since
the gradients are much more sensitive to fluctuations than the underlying fields we will later
show smoothed gradients in Figs. 6.12 – 6.13 and 6.20 – 6.21. Here, though, we show the
unsmoothed raw data. For better visualization, the temperature gradient has been multiplied
by a factor of ten, i.e. we show 10 d

dxT (x) (dashed lines) and d
dxρ(x) (solid lines). The two

moderately inelastic systems (a) and (c) reveal temperature gradients that are linear to first
approximation. The two strongly inelastic systems (b) and (d) show temperature gradients that
are linear in the middle only. To the same order of approximation, the density gradient is linear
in system (a) only, which is moderately dense and moderately inelastic. It is shaped like an
oblique “z” in the three other cases.
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Figure 6.5.: Spatial profiles of the density and temperature gradients for the same four systems as in
Figs. 6.2. The full blue lines show the density gradients d

dxρ(x) while the dashed red lines show the
temperature gradients multiplied by 10 for better visualization, 10 d

dxT (x).

6.7. Variation of the Coefficient of Restitution α at Fixed
System Sizes

In this section we compare all hydrodynamic fields for various coefficients of restitution, 0.5 ≤
α ≤ 0.99999. In all figures presented the left graph shows simulations with Lx = 20, Ly = 25,
and N = 256, corresponding to a total area fraction of φ0 = 0.4, while the right graphs show
simulations with Lx = 80, Ly = 25, and N = 256, corresponding to a total area fraction of
φ0 = 0.1. Note that the color code is the same for all Figs. 6.6 – 6.13.

Density and Temperature

Figs. 6.6 and 6.7 compare the area fraction (density) and temperature profiles for various coef-
ficients of restitution. The temperature profiles have been divided by (1 + α)2 to improve the
data collapse for the more inelastic systems (α < 0.9). This enhances the fit significantly for
moderate to high inelasticities while making no difference for α close to one. For almost elastic
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Figure 6.6.: Spatial profiles of the area fraction φ(x) for a moderately dense and a dilute system for
various inelasticities each. The left graph shows the same system size and number of particles presented
in Figs. 6.2 (a) for various values of α. The right graph displays the same system as the left one except
that here Lx = 80 instead of 20, leading to a total area fraction φ0 = 0.1 instead of φ0 = 0.4 in left
graph. The insets show quasi-elastic systems and a fit discussed in Sec. 6.9.1. Clearly, the profiles
become flatter as the systems become more elastic.

systems the profiles are almost flat. With increasing inelasticity the middle of the systems be-
comes denser and cooler. In addition, the density profile changes its shape from near-quadratic
to bell-shaped when changing the inelasticity from quasi-elastic to inelastic. In both graphs
the insets show the quasi-elastic runs, α close to one, with additional fits that are discussed in
Sec. 6.9.1. Note that the density profiles as well as the temperature profiles show the highest
inhomogeneities between α = 0.6 and α = 0.8. For higher inelasticities, e.g. α = 0.5, the
profiles flatten out a bit. This may be due to the collective motion of a central dense cluster in
the strongly inelastic cases.

Stresses

Figs. 6.8 and 6.9 compare the xx- and the yy-components of the rescaled stress tensor −σ/(1+

α)2 for the same systems as in Figs. 6.6 and 6.7, i.e. for two different densities (left: φ0 = 0.4,
right: φ0 = 0.1) and various inelasticities (0.5 ≤ α ≤ 0.99999). We can see clearly that
the profiles for the xx-component (Figs. 6.8) are similar in shape for all systems. For the
dense systems (left graph of Figs. 6.8) they all lie within a region around the quasi-elastic case
represented by the black bold line. For the more dilute system (right graph of Figs. 6.8) the
mean value of −σxx/(1 + α)2 decreases monotonically with increasing α. Again, the black
bold line (the lowest in magnitude) represents the quasi-elastic case α = 0.99999.
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Figure 6.7.: Spatial profiles of the rescaled temperature T/(1 + α)2 for the same systems as in Figs.
6.6. (Left: φ0 = 0.4, right: φ0 = 0.1). Again, the insets show quasi-elastic systems and a fit discussed
in Sec. 6.9.1, and again the profiles become flatter as the systems become more elastic.

The behavior of the yy-component of the rescaled stress tensor −σyy/(1 + α)2 (Figs. 6.9) is
more interesting: While the mean value still lies in a region around the quasi-elastic case (black
bold lines) the shape of the profiles depends strongly on the system parameters. Additionally,
−σyy reveals a dip in the middle of the sample for all systems. As expected, in the quasi-
elastic case the yy-component is very similar to the xx-component both in magnitude and in
shape (compare Figs. 6.9 with Figs. 6.8), in particular also the yy-component is almost constant
throughout the sample (black bold lines). Increasing the inelasticity a bit from the quasi-elastic
limit (see, for example, the double-dotted-dashed green lines (α = 0.95) in Figs. 6.9) causes
−σyy(x)/(1 + α)2 to increase in the middle of the sample and in a wide region around the
middle (−0.35 . x/Lx . 0.35). Close to the walls −σyy(x)/(1+α)2 is significantly reduced.
For higher inelasticities the behavior depends on the density. For the higher density systems
(left graph of Figs. 6.9) the overall value of the yy-component of the rescaled stress tensor
decreases for increasing inelasticity while the dip in the middle at x = 0 becomes more and
more pronounced. In the lower density systems (right graph) the behavior is far less monotonic:
If the inelasticity is increased a bit (see, for example, the dashed blue line (α = 0.9)), the dip
becomes more pronounced while the “peaks” at x ∼ 0.2 further increase in magnitude. For
α = 0.8 (dotted magenta line) the dip is deepest while the peaks have already come down a
bit. For even higher inelasticities the dip flattens out and the overall value of −σyy/(1 + α)2

decreases again, see α = 0.5 (cyan full line).

Heat Flux

Figs. 6.10 show the rescaled heat fluxes qx/(ε[1 + α]2) for the systems of Figs. 6.6 – 6.9: For
two densities (left: φ0 = 0.4, right: φ0 = 0.1) and various inelasticities (0.5 ≤ α ≤ 0.99999)
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Figure 6.8.: Spatial profiles of the xx-component of the rescaled stress tensor (−σxx/(1 +α)2) for the
same systems as in Figs. 6.6. (Left: φ0 = 0.4, right: φ0 = 0.1). While the mean value of the stress is a
non-trivial function of the coefficient of restitution and the system size, it is constant (except for a small
boundary region) for all systems as expected.
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Figure 6.9.: Spatial profiles of the yy-component of the rescaled stress tensor (−σyy/(1 + α)2) as in
Figs. 6.8 (for the same systems as in Figs. 6.6). (Left: φ0 = 0.4, right: φ0 = 0.1). Again, the mean value
of the stress is a non-trivial function of the coefficient of restitution and the system size. In addition,
the shape of the profiles depends on the system parameters and −σyy reveals a dip in the middle for all
systems.

we compare the x-component of the rescaled heat flux. As described in the beginning of
this chapter we expect the heat flux to vanish in the elastic limit. Therefore, we multiply the
measured qx by ε−1 to confirm this hypothesis. In Figs. 6.10 we plot qx/(ε[1 + α]2) and
find that all profiles collapse approximately, at least for small inelasticities. This confirms
the hypotheses just described. Note that the heat flux profiles are very close to linear for the
quasi-elastic cases while they become curved for higher inelasticities.
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Figure 6.10.: Spatial profile of the rescaled heat flux qx/(ε[1 + α]2) for the same systems as in Figs.
6.6. (Left: φ0 = 0.4, right: φ0 = 0.1). Clearly, the scaling suggested captures the correct order of
magnitude while the shape of the profile collapses onto one (linear) master curve in the quasi-elastic
limit only.

Local Energy Loss

In Figs. 6.11 we compare the local energy loss for various inelasticities (0.5 ≤ α ≤ 0.99999)
and two different area fractions (left: φ0 = 0.4, right: φ0 = 0.1), i.e. the same systems as in
Figs. 6.6 – 6.10. The top row shows ζ/(ε[1 + α]2) as a function of x/Lx. We see that for very
dilute and/or quasi-elastic systems the dissipation is highest in the middle of the sample while
for higher densities and/or higher inelasticities the dissipation (i.e. the absolute value of ζ) is
highest somewhere between a wall and the middle, at x ∼ ±0.3 Lx for the denser systems
and at x ∼ ±0.15 Lx for the dilute systems. The bottom row compares the local energy loss
to an estimate by the following simple argument: One would expect the local energy loss to
be proportional to the local collision frequency per area – approximately given by Enskog’s
collision frequency per area ∝ ρ2χ

√
T , cf. Eq. (3.5) – times the average change of energy

per collision, approximately given by −εT/2, cf. Eq. (3.4). According to Eq. (C.83) and the
arguments given in appendix C.6 a correct averaging procedure would yield another factor of
2. Therefore, we expect the energy loss at position x to be

ζest(x) := −
√
π ερ2(x)χ(x)T 3/2(x) , (6.3)

or ζ/ζest to be 1 throughout the system. Here, χ(x) denotes the Henderson [Hen75] approxi-
mation for the pair correlation at contact, Eq. (3.6), evaluated locally using φ = φ(x). Eq. (6.3)
is in agreement with Ref. [JR85]. Clearly, for the quasi-elastic systems this argument is very
good while strong deviations are observed for moderate to high inelasticities.
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Figure 6.11.: Spatial profiles of the rescaled local energy loss for the same systems as in Figs. 6.6.
(Left: φ0 = 0.4, right: φ0 = 0.1). The top row shows ζ/(ε[1 + α]2) with ζ as given in Eqs. (4.32)
and/or (5.5). The bottom row shows ζ/ζest with ζest as given in Eq. (6.3). ζest estimates the local energy
loss by multiplying the theoretical values of the local collision frequency and the average energy lost
per collision at that position in the sample. For quasi-elastic systems the estimate is very good. For
higher inelasticities the deviations become stronger: For moderately high densities the dissipation close
to the walls is higher than estimated by the this simple argument. However, in the middle of the sample
the dissipation is lower. For lower densities the dissipation is higher throughout the sample except for a
very small region in the middle.

Gradients

For the systems considered here (vdr = ε) we expect the gradients to vanish for ε→ 0 because
there are no gradients in the limit of elastic particles in a box with elastic walls. As an expansion
to lowest order in ε we therefore expect the gradients to be proportional to ε. Since both
the density and temperature profiles are symmetric around x/Lx = 0 we expect them to be
proportional to const∓ (x/Lx)2 to lowest order in x.
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Figure 6.12.: Spatial profile of the density gradient for the same systems as in Figs. 6.6. For the higher
density systems (left graph) we observe strong fluctuations of the density gradient for quasi-elastic
systems close to the walls. In the middle of the systems the data collapse is very good. For lower
density systems the data collapse works only for systems that are not too inelastic (α & 0.99). For
higher inelasticities the density gradient becomes non-monotonic.
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Figure 6.13.: Spatial profile of the temperature gradient for the same systems as in Figs. 6.6. Compared
to the density gradients the temperature gradients are much more similar in shape for all systems and the
data collapse works better for all systems. Again, a very good data collapse is observed for α & 0.99.

In Figs. 6.12 and 6.13 we show the smoothed density and temperature gradients both divided
by ε for the systems presented in Figs. 6.6, i.e. as a function of α for two different densities.
Again, we observe approximate scaling in the elastic limit where the profiles become linear.
For the more inelastic systems the gradients become curved.
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6.8. Variation of the Density for Fixed Coefficients of
Restitution

In this section we show all hydrodynamic fields for various sizes of the box edge 20 ≤ Lx ≤
8000 (i.e. for various area fractions 0.001 ≤ φ0 ≤ 0.4 at fixed line density N/Ly = 10.24)
for two fixed values of the restitution coefficient α = 0.9 (left graphs) and α = 0.99 (right
graphs). Again, we use N = 256 and Ly = 25. Note that the color code is the same again for
all Figs. 6.14 – 6.21.

Density and Temperature

In Figs. 6.14 and 6.15 we show the rescaled density and temperature profiles, φ(x)Lx and
T (x) respectively, for various sizes of the box edge Lx corresponding to various area fractions.
Clearly, the density inhomogeneities become more pronounced as the total density decreases.
For example, the long-dashed red lines in Figs. 6.14 representing an area fraction of φ0 = 0.4

are flatter than the ones for φ0 = 0.2 (dotted blue lines). For very dilute systems all density
profiles can be represented by a master curve, cf. also Sec. 6.9.2. For example, the dashed
bold black lines representing Lx = 8000, corresponding to an area fraction of φ0 = 0.001

are hardly distinguishable from the curves for Lx = 400 (φ0 = 0.02, full magenta lines). For
moderately high area fractions we observe overall concave density profiles (see, for example,
the profile for φ0 = 0.4 depicted by the long-dashed red line in the left graph of Figs. 6.14).
For low area fractions the peak increases and for quasi-elastic systems the shape of the profile
stays concave. For moderate to high inelasticities the shape of the profile changes and we find
a bell-shaped master curve (dashed black line). Cf. also Figs. 6.22.

Such a master curve is also found for the temperature profiles (Figs. 6.15) but the change
in the flattening of the profile for higher densities is much weaker. On the other hand the
overall value of the temperature depends more strongly on Lx for more elastic systems, e.g. the
mean temperature for Lx = 20 is approximately 60 % larger than the one for extremely dilute
systems.

Stresses

In Figs. 6.16 and 6.17 we compare the components of the stress tensor (multiplied by Lx as
implied by the scaling of the density and temperature) for two fixed coefficients of restitution,
α = 0.9 (left graphs) and α = 0.99 (right graphs). Again, we observe scaling for the dilute
limits. The shape of the profiles does not change very much for −σxx(x). Its mean value
increases with increasing density. For −σyy(x) we observe a considerable change in the shape
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Figure 6.14.: Spatial profile of the rescaled area fraction (density) φ(x)Lx for fixed inelasticities (α =

0.9 in the left graph, α = 0.99 in the right graph) for various system sizes Lx. For large Lx (φ0 . 0.01)
the density profiles fall on top of each other. We observe a rising inhomogeneity as the systems become
more dilute. For very dilute systems (φ0 . 0.01) we observe data collapse.
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Figure 6.15.: Spatial profile of the temperature profiles T (x) for the same systems as in Figs. 6.14.
Here, the shape of the profile changes considerably less than for the density profiles. Again, we observe
scaling for φ0 . 0.01.

of the profiles for the more inelastic (α = 0.9) case only. For α = 0.99 the shape is almost
unchanged for all sizes of the box edge Lx. Here, too, we observe scaling in the dilute limit.

Heat Flux

In Figs. 6.18 we compare the heat flux for two fixed inelasticities (left: α = 0.9, right: α =

0.99) and various sizes of the box edge 20 ≤ Lx ≤ 8000 (or area fractions 0.001 ≤ φ0 ≤ 0.4).
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Figure 6.16.: Spatial profile of the xx-component of the rescaled stress tensor −σxx(x)Lx for the same
systems as in Figs. 6.14. The shape of the profiles does not change significantly but the mean value of
the stress decreases with decreasing densities. For φ0 . 0.01 we observe scaling.
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Figure 6.17.: Spatial profile of the yy-component of the rescaled stress tensor −σyy(x)Lx for the same
systems as in Figs. 6.14. The shape of the profiles does not change very much for α = 0.99 but it does
for α = 0.9. For φ0 . 0.01 we observe scaling.

Since the temperature profiles are quadratic in x/Lx in first approximation we expect – inspired
by Fourier’s law of thermal conductance – that the heat flux profile should be approximately
linear and proportional to L−1

x when plotted as a function of x/Lx. As will be discussed
in chapter 8 Fourier’s law has to be generalized for granular materials but it still gives the
correction intuition. As predicted we find that the heat flux scales with L−1

x for low enough
densities. For higher densities the scaling suggested captures the correct order of magnitude. In
good approximation the profiles are linear in all cases but the slope becomes greater for denser
systems. In the dilute limit we observe a slope that is independent of the density.
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Figure 6.18.: Spatial profile of the rescaled heat flux qx(x)Lx/ε for the same systems as in Figs. 6.14
(for fixed inelasticities [α = 0.9 in the left graph, α = 0.99 in the right graph] for various system sizes
Lx). Here, too, the scaling suggested captures the correct order of magnitude. In good approximation
the profiles are linear in all cases but the slope becomes greater for denser systems. In the dilute limit
we observe a slope that is independent of the density.

Local Energy Loss

In Figs. 6.19 we show the rescaled energy loss rate ζ (as in the first row of Figs. 6.11) for
two fixed coefficients of restitution (left: α = 0.9, right: α = 0.99) and various sizes of the
box edge 20 ≤ Lx ≤ 800, corresponding to global area fractions 0.4 ≥ φ0 ≥ 0.01. For
both inelasticities we see that the maximum dissipation is in the middle of the system for low
densities while it is not in the middle for higher densities: The curvature of the energy loss ζ
in the middle of the system changes its sign when the global area fraction is increased from
φ0 = 0.1 to φ0 = 0.2 (for α = 0.9) or φ0 = 0.3 (for α = 0.99). While the scaling suggested
captures the correct order of magnitude for all systems, we observe excellent scaling for the
dilute limit only.

Gradients

Considering the overall scaling of the gradients with Lx, remember that we do not consider
systems of fixed densities and varying Lx but rather systems of fixed line density λ = N/Ly .
That means that the (global) density is proportional to L−1

x , while the mean temperature of the
system is independent of Lx for low densities according to Eq. (3.13). Therefore we expect the
gradient of the density to be proportional to L−2

x when plotted as a function of x/Lx, while the
gradient of the temperature should be proportional to L−1

x when plotted as a function of x/Lx.
See also the discussion of the low density limit in Sec. 6.9.2.
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Figure 6.19.: Spatial profile of the rescaled dissipation rate ζL2
x/ε for the same systems as in Figs. 6.14

(for fixed inelasticities [α = 0.9 in the left graph, α = 0.99 in the right graph] for various system sizes
Lx). For dilute enough systems we observe an approximate data collapse.
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Figure 6.20.: Spatial profile of the rescaled density gradient d
dxρ(x)L

2
x/ε for the same systems as in

Figs. 6.14 (left: α = 0.9, right: α = 0.99). Here, too, the scaling suggested captures the correct order
of magnitude for all densities while the shape of the profile strongly depends on the system size/density.
In the dilute limit the data collapse becomes excellent.

Finally, Figs. 6.20 and 6.21 show the smoothed rescaled gradients for various sizes of the
box edge Lx for the same systems presented in Figs. 6.14. Again, we observe scaling for
the dilute limit. For the quasi-elastic systems in the right graphs (α = 0.99) we find that the
density gradient as well as the temperature gradient are linear to first approximation. While the
temperature gradients approximately scale for all densities, the density gradients are steeper
for more dilute systems. For moderately inelastic systems (α = 0.9, left graphs) only the
temperature gradients are approximately linear for all densities while the density gradients
change from linear profiles for dense systems to an oblique “z” shape for dilute systems.
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Figure 6.21.: Spatial profile of the rescaled temperature gradient d
dxT (x)Lx/ε for the same systems as

in Figs. 6.14 (left: α = 0.9, right: α = 0.99). The data collapse captures the correct order of magnitude
for all densities and also the shape of the profile does not depend too much on the system size/density.
In the dilute limit the data collapse becomes excellent again.

6.9. Summary of Scaling Behavior

We have presented hydrodynamic fields of the density, temperature, stress tensor, heat flux,
energy loss, and gradients of density and temperature for a wide range of parameters in vibrated
systems. These profiles are by no means universal but depend on the specific choice of the
parameters. Nevertheless for the quasi-elastic limit and/or the dilute limit we were able to
extract scaling laws that will be summarized in the following.

6.9.1. Quasi-Elastic Limit

Driving the system with a driving velocity vdr = ε (where ε = 1 − α2) as suggested by the
energy balance equation (3.13) works well for systematically studying quasi-elastic systems
as this driving leads to a final temperature that is almost independent of the coefficient of
restitution.

Density

The global density is, of course, independent of the coefficient of restitution. However, the
shape of the profile does depend on the coefficient of restition. To first order in ε, the (middle
of the) profile is given by

φ(x) = φ(0) − cφ ε (x/Lx)2 , (6.4)
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where φ(0) is the area fraction in the middle of the system. cφ is a positive constant that
does not depend on ε but depends slightly on Lx. Of course φ(0) is a function of ε. This is
confirmed by simulations: The insets of Figs. 6.6 show two parameter fits according to Eq.
6.4 to the measured density profiles. Clearly, the agreement is very good in the middle of the
systems.

Temperature

The global temperature is approximately independent of the coefficient of restitution if the
system is driven with a driving velocity vdr = ε. Simulations show that the temperature is not
exactly independent of α but instead better approximated by (1 + α)2.

Similarly to the density profile, to first order in ε, the (middle of the) temperature profile is
given by

T (x) = T (0) + cT ε (x/Lx)2 , (6.5)

where again T (0) is the temperature in the middle of the system (i.e. the minimum of the
temperature) and cT is a positive constant that does not depend on ε but depends slightly on
Lx. Again, the minimum of T (0) depends on ε. A comparison with simulations, see the
insets of Figs. 6.7 where two parameter fits according to Eq. (6.5) are shown, yields very good
agreement in the middle of the systems.

Stress Tensor

The stress is found to be diagonal, σxy(x) ≈ 0. In the quasi-elastic limit the anisotropy
σxx(x) 6= σyy(x) vanishes and σxx(x) ≈ σyy(x) (except for boundary effects). The xx-
component is almost constant throughout the systems for all coefficients of restitution. The
yy-component is close to constant in the quasi-elastic limit only. For higher inelasticities −σyy

is significantly smaller closer to walls, goes through a maximum and displays a dip in the mid-
dle of the systems. Its overall magnitude is smaller than that of −σxx. The kinetic parts of the
xx- and yy-components of the stress tensor are equal to −ρ(x)Tx(x) and −ρ(x)Ty(x), respec-
tively. Therefore, we expect the stress tensor components to also be approximately proportional
to (1 + α)2 which is confirmed by the simulations for the full range of α.

Heat Flux, Local Energy Loss, and Gradients

Simulations confirm that the heat flux in the y-direction vanishes, qy(x) ≈ 0, and that qx(x) is
anti-symmetric in x as expected. In the elastic limit we find qx(x) to be close to linear in x and
proportional to ε. As expected, also the local energy loss ζ(x) shows a linear dependence on ε,
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too, to first order in ε. The y-component of the density gradient, d
dyρ(x), vanishes as expected

for all systems. The x-component is proportional to ε (to first order in ε) as suggested by Eq.
(6.4). The behavior of the temperature gradient is the same as for the density gradient, cf. Eq.
(6.5), to lowest order in ε.

6.9.2. Low Density Limit

We have seen that, once Lx is large enough, all hydrodynamic field profiles can be collapsed
onto master curves for each hydrodynamic field when plotted versus x/Lx. More precisely,
we find an integer number n for each hydrodynamic field ψ such that Ln

xψ(x/Lx) becomes
independent of the size of the box edge Lx. This scaling has been observed for low global area
fractions, φ0 . 0.01, as discussed above. In the following we will summarize the results and
state n for all hydrodynamic fields.

Density

We have seen that the relative local area fraction Lx φ(x) plotted versus x/Lx exhibits scaling.
Thus, n = 1. Before we go on to the other hydrodynamic fields, we study the scaling of
the density profile in more detail in Fig. 6.22, where we compare density profiles φ(x)/φ0 of
systems with the same degree of inelasticity α = 0.9 and the same line density λ = 10.24, but
different values of the box edge 1280 ≤ Lx ≤ 20000, corresponding to global area fraction φ0

between 6 · 10−3 and 4 · 10−4. The relative local area fraction φ/φ0 is seen to be a function of
x/Lx only and does not depend separately on Lx and φ0. For global area fraction φ0 & 0.01

then the data collapse ceases to hold and the hight of the peak reduces as can be seen in Figs.
6.14 in Sec. 6.2.

A hydrodynamic approach to quasi elastic, driven granular gases by Grossman et al. in Sec. II D
in Ref. [GZBN97] predicts for low-density systems that the mean free path in units of Lx

depends only on the line density according to `/Lx = 1/(
√

8λ). When computed for the
situation of Fig. 6.22, one gets the small numerical value `/Lx ≈ 0.03, indicating that ` is not
a relevant length scale for the master curve of the rescaled spatial density profiles. The theory
of [GZBN97] also makes a prediction for the relative local area fraction φ(x)/φ0 in terms of
the solution of a first-order differential equation. This differential equation includes one free
parameter, which we have fitted in order to match the solution (dotted line in Fig. 6.22) at
x = 0 with the master curve from our simulations. The agreement is reasonable, showing that
inelasticities of α = 0.9 are at the borderline of the scope of this otherwise powerful approach
to quasi elastic, driven granular gases.
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Figure 6.22.: Master curve for rescaled local area fraction in different low-density systems with the
same line density [α = 0.9, λ = 10.24, `/Lx ≈ 0.03]. The dotted line corresponds to the theoretical
prediction of Ref. [GZBN97].

Temperature, Stress Tensor, Heat Flux, Energy Loss, and Gradients

As expected, cf. Eq. (3.13), the temperature profiles do not depend (very much) on Lx and
exhibit scaling without any rescaling, so n = 0. The scaling is very good for dilute systems.
For the stress tensor n = 1, i.e. σ(x/Lx) ∝ L−1

x , since in the dilute limit we expect the ideal
gas law to hold. Again, scaling is very good for dilute systems while it yields merely the correct
order of magnitude for higher densities. For the heat flux n = 1, i.e. qx(x) ∝ L−1

x . This can
be understood when we take a look at the rate at which energy is injected into the system at
the walls. From Eq. (3.4) in Sec. 3.1 we know that the average energy a particle gains when
colliding with a wall is proportional to L−1

x . On the other hand, the density at the wall is
proportional to L−1

x as has been discussed above. Therefore we expect the heat flux to be
proportional to L−2

x , i.e. it is proportional to L−1
x when plotted versus x/Lx. In the middle of

the system the heat flux vanishes. For the energy loss ζ(x) we find n = 2. As discussed above,
ζ(x) integrated over the entire system must be twice the heat flux at either wall. Therefore,
ζ(x/Lx) ∝ L−2

x . Differentiating Eq. (6.4) in Sec. 6.9.1 with respect to x we see that, as a
function of x (rather than x/Lx), the density gradient would have the same n as the density
itself. Plotted as a function of x/Lx, as we have done, n increases by one, because x2 reduces
to x while the power of Lx does not change. Thus, we find n = 2 or d

dxρ(x/Lx) ∝ L−3
x

With the same arguments as for the density gradient the value n for the temperature gradient is
increased by one compared to the temperature itself, i.e. n = 1 or d

dxT (x/Lx) ∝ L−2
x .



7. Local Equation of State in Vibrated
Systems

Hydrodynamic approaches [GZBN97, BRMM00, LMS02b] to granular gases as introduced in
chapter 4 require the knowledge of constitutive relations in order to close the fundamental set
of equations (4.1). In two dimensions these four equations contain eleven hydrodynamic fields:
the density ρ, the 2D velocity field V , the temperature T , the 2×2 stress matrix σ, the vector of
the heat flux q, and the energy loss ζ . Very often the stress tensor is assumed to be symmetric
which leaves us with ten hydrodynamic fields. The standard way to reduce the number of
fields starts by decomposing the stress tensor into a hydrostatic part and one that depends on the
velocity field. Since a homogeneous velocity field is equivalent to a fluid at rest the stress tensor
can only depend on spatial derivatives of the velocity field. Furthermore, the hydrostatic part
is usually assumed to be isotropic and referred to as the hydrostatic pressure p – an assumption
that is only a rough approximation for granular systems as we have seen in chapter 6. For the
sake of simplicity we consider the pressure to be isotropic here. Using a Stokes friction ansatz
this allows us to write the stress tensor of a viscous fluid in two dimensions as

σkl = −pδkl + ηS [∂kVl + ∂lVk − (∇r · V ) δkl] + ηB (∇r · V ) δkl (7.1)

where ηS is the shear viscosity and ηB is the bulk viscosity. Eq. 7.1 reduces the number of
hydrodynamic fields to eight. [Note: Inserting Eq. (7.1) into the momentum balance equation
(4.6) and assuming ηS and ηB to be constant in space yields the Navier-Stokes equation in 2
dimensions. Also note that the velocity field V vanishes in all systems studied in this thesis,
reducing the Navier-Stokes approximation of the stress tensor, Eq. (7.1), to the hydrodynamic
pressure.] What remains to be done in order to close the hydrodynamic equations is to relate
the pressure p as well as the heat flux q and the energy loss ζ to the remaining four fields for the
density ρ, the velocity V , and the temperature T . In the last chapter we have already estimated
the energy loss ζ in terms of the density and the temperature, cf. Eq. (6.3). In this chapter we
will focus on relating the pressure to these fields. In the next chapter we will do so for the heat
flux.
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Figure 7.1.: Semilogarithmic parametric plots of the function G(φ) from the local equation of state
(7.2) for different systems [α = 0.9, Ly = 25, 0.01 ≤ `/Lx ≤ 0.05]. Also shown are the theoretical
predictions from Eqs. (7.3), (7.4), and Eq. (4) in Ref. [Lud01].

7.1. Deriving a Constitutive Equation

In the last chapter it has been shown that a driven granular gas is intrinsically inhomogeneous.
Therefore it is only natural to investigate how the local values of the granular temperature T (x),
pressure p(x), and density ρ(x)—resp. area fraction φ(x) = ρ(x)π/4 in our units—are related
to each other. For this purpose we observe in Figs. 6.2 and 6.3 that T (x), p(x), and φ(x) are
all symmetric in x. Moreover, and this is crucial, φ(x) is monotone in x for either sign of x
(except for a boundary layer of approximately one diameter in width close to a driving wall,
which we ignore). Therefore one can invert the function φ(x) for positive x. Upon inserting
x = φ−1

(
φ(x)

)
into the local pressure and temperature, we arrive at the constitutive equation

p(x)

ρ(x)T (x)
= G

(
φ(x)

)
(7.2)

with some function G.



7.2. Universality of the Constitutive Equation for Low to Moderate Inelasticities 63

7.2. Universality of the Constitutive Equation for Low to
Moderate Inelasticities

Fig. 7.1 shows parametric plots on a semilogarithmic scale of the function G with the values of
p(x)/[ρ(x)T (x)] plotted against those of φ(x) for all x (except for those in the boundary layer
mentioned above). In order to utilize a broad range of φ-values, Fig. 7.1 contains data from 11
different systems, all of which have the same coefficient of restitution α = 0.9 and the same
height Ly = 25, but different widths Lx and different global area fractions φ0. For not too large
values of φ these data merge quite nicely, indicating that there is only a weak dependence of G
on the global system parameters Lx and φ0 in the corresponding parameter range. In this case
the constitutive equation (7.2) can be interpreted as the local equation of state of the system.
The horizontal line in Fig. 7.1 marks ideal-gas behavior, from which G deviates due to the
collisional contribution to the pressure. These deviations increase significantly with increasing
φ.

The long-dashed dark green line in Fig. 7.1 corresponds to the function

G(φ) = 1 + (1 + α)φχ , (7.3)

where χ stands for the pair correlation function at contact of the associated elastic hard-sphere
gas in thermal equilibrium1. Since χ is not known exactly, we estimate it by the Henderson
[Hen75] approximation, Eq. (3.6), for numerical purposes. In the context of granular gases,
Eq. (7.3) already occurred in Ref. [JR85] and later in a global equation of state for the homo-
geneous situation of a freely cooling granular gas [GS95]. In Ref. [SM01] the pair correlation
function has been studied in a homogeneously driven inelastic system with periodic boundary
conditions. It was found to be nearly independent of the coefficient of restitution and well
approximated by the Henderson approximation, Eq. (3.6). In Ref. [BT02b] this form of G was
used in the local equation of state (7.2) to get a theoretical prediction for p(x) from simulations
of T (x) and φ(x) in a driven granular gas. Fig. 7.1 reveals that this works generally quite
well for up to rather high local area fractions φ(x) . 0.5. In even denser systems agreement
still holds for the well fluidized parts. Deviations from Eq. (7.3) start to occur when entering
the transition zones to the frozen-out stripe of particles in the center of these high-density sys-
tems. The dashed-double-dotted black line in Fig. 7.1 corresponds to the interpolation formula
[GZBN97]

G(φ) =
φc + φ

φc − φ
(7.4)

for 0 ≤ φ < φc, which connects the behavior of dilute (van der Waals) and dense (ordered)
elastic hard-sphere systems. Here φc := π/(2

√
3) ≈ 0.91 denotes the area fraction for ordered

closed packings in two dimensions. Eq. (7.4) was applied to quasi-elastic granular gases in Ref.
[GZBN97], and even for our simulations with α = 0.9 there is agreement with the local data

1The expression (7.3) for G with α = 1 is known from the exact equation of state p/(ρT ) = 1 + 2d−1φχ of a
d-dimensional elastic hard-sphere gas in thermal equilibrium [HM86].
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Figure 7.2.: Same as Fig. 7.1 but for more inelastic systems [α = 0.5, Ly = 25, 0.01 ≤ `/Lx ≤ 0.1].

in the low-density regions up to φ(x) . 0.4. In addition, the most dense regions of regularly
ordered, frozen-out particles in the center of the high-density systems are described correctly,
too. Yet another interpolation formula for G, which is rather accurate for an elastic hard-sphere
gas even in the vicinity of the freezing transition, was put forward in Eq. (4) in [Lud01] and is
depicted by the dashed red line in Fig. 7.1. Thus, the crossover between fluidized and frozen-
out behavior in the inelastic, driven systems, originating from the transition zone at the border
of the solidified stripe of particles in the system center, is very smooth in comparison to the co-
existence region of the freezing transition for an equilibrated elastic gas. Moreover, the location
of the crossover depends on the global system parameters. Since both interpolation formulae,
(7.4) and the one from [Lud01], were tailored for elastic systems in thermal equilibrium, it is
surprising to find such a good agreement with the local data for driven inelastic hard-sphere
gases with restitution α = 0.9.

7.3. Non-Universality of the Constitutive Equation for
Higher Inelasticities

When lowering the coefficient of restitution α from 0.9 to 0.8 (not shown), there are only little
changes to the plot in Fig. 7.1. In particular, the spread of the data pertaining to different
systems increases, even for low densities. Still one may be inclined to interpret (7.2) as a local
equation of state—at least approximately. This situation is intermediate to the previous with
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α = 0.9 and the following for strongly inelastic systems with coefficient of restitution α = 0.5.
Indeed, Fig. 7.2 reveals major discrepancies in the local pressure, which are due to the systems
with global area fractions above φ0 ≈ 0.2. The discrepancies occur even at positions in the
sample where the local area fractions are below 0.2 and where all the more dilute systems, i.e.
those with φ0 ≤ 0.2, agree reasonably with the proposal (7.3). The concept of a local equation
of state is therefore not sustainable any more for such strongly inelastic systems, and (7.2)
merely plays the role of a local constitutive equation, which depends in addition on the global
system parameters.
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8. Fourier’s Law and its Generalization
for Vibrated Systems

It is a characteristic feature of hydrodynamics of inelastically colliding particles that a heat
current can be generated not only by a nonuniform temperature but also by density inhomo-
geneities. If the spatial variations of temperature or density are restricted to long wavelengths,
one would expect a gradient expansion to hold. The simplest constitutive equation for the heat
flux is thus a straightforward generalization of Fourier’s law of thermal conductance, as dis-
cussed in the literature, cf. Refs. [CC70, JR85, BMD96, DBS97, SG98]. Chapman–Enskog
expansions of both the Boltzmann and the Boltzmann–Enskog equations predict that the heat
flux of an inelastic system is given by

q(r, t) = − κ∇rT (r, t) + µ∇rρ(r, t), (8.1)

where κ is the heat conductivity and µ is a new transport coefficient. This new transport
coefficient has no analogue for elastic systems, for which Fourier’s law of thermal conductance
predicts the heat flux to be proportional to the temperature gradient.

This chapter is divided into two parts. First we will compare our simulational data for the heat
flux and the local energy loss to a theory by Jenkins and Richman [JR85]. In the second part
we will discuss how to extract the transport coefficients from our data, show them as a function
of the coefficient of restitution for various densities, and compare the prediction using both
transport coefficients to the one by Fourier’s law.

8.1. Comparison of Heat Flux and Energy Loss to the
Literature

Few theoretical descriptions exist for the transport coefficients that include collisional contri-
butions, especially for two-dimensional systems. Brey, Dufty et al. [BMD96, DBS97] have
calculated transport coefficients in d dimensions based on kinetic theory but their results are
given in terms of integrals to be solved. Ignoring collisional contributions, Sela et al. [SG98]
have calculated the transport coefficients by means of kinetic theory up to Burnett order for
dilute three dimensional systems.
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To our knowledge the only theoretical calculation yielding the transport coefficients for 2D
systems solely in terms of the system parameters and without assuming extremely dilute sys-
tems has been performed by Jenkins and Richman [JR85] back in 1985. They find for small
inelasticities ε� 1,

κJR =

[
4
2 + 3φχr(r2 − 3

4ε)

χ(8r + 15ε)
(2 + 3φχr) +

8φ2χr

π

]√
T

π

µJR =
3π2αε

4χ(8r + 15ε)
(2 + 3φχr)

(
2χ+ φ

dχ

dφ

)(
T

π

) 3
2

, (8.2)

where r := (1+α)/2 and, again, ε = 1−α2. Similarly, Jenkins and Richman [JR85] calculate
the energy loss rate ζ . They obtain

ζJR = −16 εφ2χ(T/π)3/2 (8.3)

which is the same result as already estimated in Sec. 6.7, Eq. (6.3). For the pair correlation
at contact χ we use the Henderson approximation [Hen75], Eq. (3.6), again. This allows the
derivative of χ by φ to be calculated analytically. Clearly, from Eqs. (8.2) we see that, to
first order in ε, Jenkins and Richman [JR85] predict κJR to be constant in ε, while µJR is
proportional to ε.

Inserting the local temperature T (x) and local area fraction φ(x) from our simulations into
Eqs. (8.2) and (8.3), we obtain spatially dependent transport coefficients κJR(x) and µJR(x) as
well as a prediction for the local energy loss ζJR(x). In Figs. 8.1 the resulting heat flux (dashed-
double-dotted dark green lines in the main graph) and energy loss (double-dashed-dotted dark
green lines in the inset) from Eqs. (8.1) and (8.3) are shown for six different systems. The
agreement to the directly measured data (full indigo/magenta lines) is very good for simulations
with α ≥ 0.99. The agreement is reasonable even up to α ∼ 0.96. For larger inelasticities the
theoretical curves capture the correct order of magnitude, but overestimate the curvature of
qx(x) and underestimate the maximum of the absolute value of the energy loss |ζ(x)|.

Alternatively we can use the global or mean temperature T0 and area fraction φ0 to evaluate
Eqs. (8.2). The difference between the resulting constant transport coefficients κJR0

and µJR0

and the local ones κJR(x) and µJR(x) is only a few percent for α ≥ 0.99. The difference
in the corresponding heat fluxes is even less, because the strongest inhomogeneities in the
transport coefficients occur in the middle of the sample where the gradients of temperature
and density vanish. The heat flux, computed using the constant transport coefficients κJR0

and
µJR0

, is also shown in Figs. 8.1 for comparison (dashed orange lines). The fluctuations of the
transport coefficients with x increase with increasing inelasticity, e.g. for α = 0.9 we find
κJR(0)/κJR0

≈ 1.5. In addition, Figs. 8.1 shows a two-parameter fit (dotted black lines) of Eq.
(8.1) to the directly measured data (full indigo lines) that will be discussed in the next section.



8.1. Comparison of Heat Flux and Energy Loss to the Literature 69

-0.4 -0.2 0 0.2 0.4
x / Lx

-0.1

-0.05

0

0.05

0.1

Sy
st

em
:  

α=
0.

9,
 L

x=2
0,

 L
y=2

5,
 N

=2
56

, φ
0=0

.4 qxLx/ε
fit to Eq. (8.1) [rescaled]
qJRLx/ε global, Eqs. (8.1, 8.2)
qJRLx/ε local, Eqs. (8.1, 8.2)

ζLx
2
/ε

ζJRLx
2
/ε, Eq. (8.3)

-0.4 -0.2 0 0.2 0.4
-0.2

-0.18

-0.16

-0.14

-0.12

-0.1 a)

-0.4 -0.2 0 0.2 0.4
x / Lx

-0.1

-0.05

0

0.05

0.1

Sy
st

em
:  

α=
0.

99
, L

x=2
0,

 L
y=2

5,
 N

=2
56

, φ
0=0

.4 qxLx/ε
fit to Eq. (8.1) [rescaled]
qJRLx/ε global, Eqs. (8.1, 8.2)
qJRLx/ε local, Eqs. (8.1, 8.2)

ζLx
2
/ε

ζJRLx
2
/ε, Eq. (8.3)

-0.4 -0.2 0 0.2 0.4
-0.2

-0.18

-0.16

-0.14

-0.12 d)

-0.4 -0.2 0 0.2 0.4
x / Lx

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Sy
st

em
:  

α=
0.

9,
 L

x=4
0,

 L
y=2

5,
 N

=2
56

, φ
0=0

.2 qxLx/ε
fit to Eq. (8.1) [rescaled]
qJRLx/ε global, Eqs. (8.1, 8.2)
qJRLx/ε local, Eqs. (8.1, 8.2)

ζLx
2
/ε

ζJRLx
2
/ε, Eq. (8.3)

-0.4 -0.2 0 0.2 0.4

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

b)

-0.4 -0.2 0 0.2 0.4
x / Lx

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Sy

st
em

:  
α=

0.
99

, L
x=4

0,
 L

y=2
5,

 N
=2

56
, φ

0=0
.2 qxLx/ε

fit to Eq. (8.1) [rescaled]
qJRLx/ε global, Eqs. (8.1, 8.2)
qJRLx/ε local, Eqs. (8.1, 8.2)

ζLx
2
/ε

ζJRLx
2
/ε, Eq. (8.3)

-0.4 -0.2 0 0.2 0.4
-0.07

-0.06

-0.05

-0.04 e)

-0.4 -0.2 0 0.2 0.4
x / Lx

-0.02

-0.01

0

0.01

0.02

Sy
st

em
:  

α=
0.

9,
 L

x=8
0,

 L
y=2

5,
 N

=2
56

, φ
0=0

.1 qxLx/ε
fit to Eq. (8.1) [rescaled]
qJRLx/ε global, Eqs. (8.1, 8.2)
qJRLx/ε local, Eqs. (8.1, 8.2)

ζLx
2
/ε

ζJRLx
2
/ε, Eq. (8.3)

-0.4 -0.2 0 0.2 0.4
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01 c)

-0.4 -0.2 0 0.2 0.4
x / Lx

-0.02

-0.01

0

0.01

0.02

Sy
st

em
:  

α=
0.

99
, L

x=8
0,

 L
y=2

5,
 N

=2
56

, φ
0=0

.1 qxLx/ε
fit to Eq. (8.1) [rescaled]
qJRLx/ε global, Eqs. (8.1, 8.2)
qJRLx/ε local, Eqs. (8.1, 8.2)

ζLx
2
/ε

ζJRLx
2
/ε, Eq. (8.3)

-0.4 -0.2 0 0.2 0.4
-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02 f)

Figure 8.1.: Comparison of the heat flux qx(x) and the local energy loss ζ(x) from our simulations to
the predictions of Ref. [JR85] using local and global transport coefficients. In addition, we show a fit
of Eq. (8.1) to our data. Clearly, the agreement between the fit and the measured heat flux is very good
for all systems. The theory of Ref. [JR85] also describes the data very well for α = 0.99 (right graphs)
and greater (not shown). For these small inelasticities there is virtually no difference using constant or
x-dependent transport coefficients in Eq. (8.1). For higher inelasticities (left graphs, α = 0.9) there
are significant deviations between the simulations and the predictions of Ref. [JR85]. Additionally,
for higher inelasticities inserting the global values φ0 and T0 into Eq. (8.2) is significantly worse than
inserting the local ones.
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8.2. Transport Coefficients From Simulations

8.2.1. The Fitting Procedure

To estimate the transport coefficients from our data, we assume that both κ and µ do not depend
on the position x, i.e. we assume them to be constant throughout the box. It is then straight-
forward to extract them from a fit of our data to the above expression (8.1) by the following
procedure.

From our simulations we know the values of qx, ∂xT , and ∂xρ at a certain number Ñ of
positions in the sample, where Ñ depends on the resolution chosen and ∂x = d/dx. We label
those Ñ positions x1, x2, ..., x eN and define four Ñ -dimensional vectors

Q :=
(
qx(x1), qx(x2), ..., qx(x eN

)
)

∂T :=
(
∂xT (x1), ∂xT (x2), ..., ∂xT (x eN

)
)

∂ρ :=
(
∂xρ(x1), ∂xρ(x2), ..., ∂xρ(x eN

)
)

∆ := ∂ρ − c∂T , where c := ∂T · ∂ρ/|∂T |2.

(8.4)

We want to find those transport coefficients κ and µ that minimize the error |χ|2 when writing

Q = −κ∂T + µ∂ρ + χ = (−κ+ cµ)∂T + µ∆ + χ . (8.5)

It is easy to see that, by construction, ∆ is perpendicular to ∂T , i.e. ∆ · ∂T = 0. Thus, χ

must be perpendicular to both ∂T and ∆ to minimize the error |χ|2 while fulfilling Eq. (8.5).
That leads to the following transport coefficients

µ = Q ·∆/|∆|2

κ = −Q · ∂T /|∂T |2 + cµ .
(8.6)

These transport coefficients are shown in the left graphs of Figs. 8.2 and 8.3 and will be dis-
cussed later. A quantitative measure of the error, i.e. the deviations between the fit and the
measured heat flux is given by |χ|2, where χ can be calculated by inserting Eqs. (8.6) into Eq.
(8.5).

To quantify the contribution to the heat flux that is due to density inhomogeneities we compare
Eq. (8.1) with the fitted transport coefficients (8.6) to a (one-parameter) fit to Fourier’s law.
Fitting to Fourier’s law is equivalent to setting µ = 0 in the expression for κ in Eqs. (8.6) and
yields κF = −Q · ∂T /|∂T |2 and χF = Q + κF∂T . The relative error

R1 :=
|χF |
|χ| − 1 (8.7)

relates the deviations between the measured data and a fit to Fourier’s law |χF | on the one hand
to the deviations between the measured data and the two-parameter fit |χ| on the other hand.
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This gives a quantitative measure for the improvement of the fit when the generation of heat
flux due to density inhomogeneities is taken into account in addition to the one generated by
temperature gradients. Another quantitative measure for the importance of the new transport
coefficient is given by the contribution to the fit that is perpendicular to the temperature gra-
dient. In units of the best fit to Fourier’s law it quantifies the relative contribution that can be
generated by the density gradient only. It is given by

R2 :=
|µ∆|

|κF ∂T | . (8.8)

Note that κF = κ − cµ. Both quantitative measures R1 and R2 are shown in the right graphs
of Figs. 8.2 and 8.3 and will also be discussed below.

8.2.2. Discussion of Transport Coefficients

The dotted black lines in Figs. 8.1 show that the two-parameter fit according to Eq. (8.1) with
Eqs. (8.6) is very good for all coefficients of restitution α and all global area fractions φ0

presented. In a large region in the middle of each system the fit is hardly distinguishable from
the directly measured heat flux. For higher inelasticities (α . 0.7 − 0.8) and lower densities
(φ0 . 0.1 − 0.2) the fit becomes worse. This is not surprising because in these cases the
gradients increase significantly leading to a failure of the gradient expansion, Eq. (8.1).

In the left graph of Figs. 8.2 we show both transport coefficients κ (full red lines) and µ/ε
(full dark green lines) as a function of the coefficient of restitution α for a very wide range of
coefficients of restitution 0.2 ≤ α ≤ 0.999 for moderately dense systems, Lx = 20, Ly = 25,
N = 256, φ0 = 0.4. The left graph of Figs. 8.3 shows the same observables for 0.5 ≤ α ≤
0.999 for a total area fractions φ0 = 0.2. The blue lines show κF from a fit to Fourier’s law.
The dashed orange and light green lines show the global κJR0

and µJR0
/ε from Eqs. (8.2).

Both transport coefficients, κ and µ/ε, extracted from our data are non-monotonic in α. Start-
ing at inelastic systems and increasing α, the thermal conductivity κ first decreases, goes
through a minimum and then sharply increases again to tend to a non-zero constant in the
elastic limit for all densities studied. The other transport coefficient is divided by ε because we
assume µ ∝ ε. Its behavior depends on the density. For moderate densities (Figs. 8.2), coming
from inelastic systems, µ/ε first increases with increasing α, reaches a maximum and finally
decreases again. This maximum is in the vicinity of the minimum of κ but clearly not at the
same value of α. For lower density systems (Figs. 8.3), µ/ε first decreases when the inelastic-
ity is reduced, reaches a minimum, and sharply increases again. It is not clear whether it will
reach a maximum and decrease again or keep increasing and possibly reach a finite value.

The insets show a magnification of the quasi-elastic region and reveal that the measured coeffi-
cient of thermal conductivity κ is in good agreement with the predictions by Jenkins and Rich-
man [JR85] for α ≥ 0.99 and moderately dense systems (Figs. 8.2). For higher inelasticities
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Figure 8.2.: The left graph shows the transport coefficients κ and µ/ε for systems with Lx = 20,
Ly = 25, and N = 256, corresponding to a line density λ = 10.24 and a total area fraction φ0 = 0.4.
We compare the values obtained from our simulations with the corresponding predictions from Ref.
[JR85], Eqs. (8.2), for 0.2 ≤ α ≤ 0.999. Note, however, that the theory in Ref. [JR85] assumes quasi-
elastic systems – therefore agreement is not expected for values of α that are not close to one. The inset
of the left graph shows a magnification of of the quasi-elastic regime. The right graph quantifies the
importance of µ by showing R1 and R2 as defined in Eqs. (8.7) and (8.8), and discussed in the text.

significant deviations are observed. Since Jenkins and Richman [JR85] assume quasi-elastic
systems we cannot expect their results to be valid for higher inelasticities. Still, their theory
yields the correct order of magnitude of the measured κ for all α. As to µJR0

the deviations
to µ are quite strong. The discrepancy of µ (more than one order of magnitude in most cases)
is unclear to us. For lower densities (Figs. 8.3) it has not been possible to obtain the trans-
port coefficients for sufficiently elastic systems to judge whether or not the measured data will
converge to the predictions by Jenkins and Richman [JR85].

Soto et al. [SMR99] have performed molecular dynamics (MD) simulations to study µ for a
very dilute granular gas on a vibrated plane under gravity. They made use of the non-monotonic
behavior of the temperature within such systems to extract µ at that position where the tem-
perature gradient vanishes – a method that works in the presence of gravity only, even though
their results are virtually independent of the magnitude of gravity. This suggests that it should
be valid for zero-gravity environments, too. In comparisons we find that their coefficient µ is
always much smaller than ours, up to one order of magnitude. This suggests that the evaluation
of µ is a subtle task and µ might depend on global system parameters – similarly to the local
equation of state in chapter 7. Other reasons might be that zero-gravity environments behave
qualitatively different than gravitational ones and, probably most importantly, the simulations
of Ref. [SMR99] apply to very low densities only and not to 0.1 ≤ φ0 ≤ 0.4. Furthermore, the
difficulties in our fitting procedure increase considerably as α → 1. In this limit the temper-
ature gradient and the density gradient both become linear in x and thus proportional to each
other, see Figs. 6.12 and 6.13 (page 51) and Eqs. (6.4) and (6.5) on page 57. Consequently, it
is not possible for α→ 1 to determine two parameters from the fit unambiguously. Finally, we
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Figure 8.3.: Same as Fig. 8.2 but for systems with Lx = 40, corresponding to a total area fraction of
φ0 = 0.2. Compared to Fig. 8.2 the dip in κ is shifted towards elastic systems and µ/ε does not decrease
again. Of course, the plain µ still vanishes for α → 1. The right graphs are qualitatively similar to the
ones in Fig. 8.2.

expect the transport coefficients to be x-dependent and not constant as assumed in our fitting
procedure.

To estimate the degree of inhomogeneity of the transport coefficients in x we have divided the
sample box into an inner and an outer part and fitted the heat current using data from either
half of the box only. The scattering of the data from the inner and outer part is shown in Fig.
8.4 (indigo and magenta lines, respectively) and provides a rough measure for the effects of
inhomogeneous transport. The results for the outer half (magenta lines) are almost identical to
the ones for the full system (black lines). This is also true for the inner part (indigo lines) except
for the weakly inelastic systems for which the absolute value of the heat flux in the middle of
the sample is so small that statistical fluctuations dominate. This shows that the determination
of the transport coefficients clearly needs further investigation, especially in the quasi-elastic
regime.

Let us now turn to the importance of the new transport coefficient µ. The right graphs of Figs.
8.2 and 8.3 show the quantitative measures (R1 and R2) of the contribution to the heat flux that
is not proportional to the temperature gradient. The main graphs show R1 as defined in Eq.
(8.7) and the insets show R2 as defined in Eq. (8.8). From the main graphs as well as from the
insets we see that the contribution that is not proportional to the temperature gradient becomes
negligible in the elastic limit, as expected. The insets further show that this contribution is never
greater than 30% for all systems studied and that it is more important for larger inelasticities.

The peaks in R1 (main graphs) approximately indicate the border line up to which Eq. (8.1) is
a good approximation to the measured heat flux. As already mentioned, fits to Fourier’s law
are hardly distinguishable from the ones to Eq. (8.1) for quasi-elastic systems. For moderately
inelastic systems, shown to the right of the peaks in the right graphs of Figs. 8.2 and 8.3, the
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Figure 8.4.: Transport coefficients κ and µ/ε for the same systems as in Fig. 8.2 (Lx = 20, Ly = 25,
and N = 256, corresponding to a line density λ = 10.24 and a total area fraction φ0 = 0.4). In
addition we show here the values for the transport coefficients obtained for the inner (indigo) or outer
part (magenta) only. The inset compares κ from our simulations to the value of Ref. [JR85].

two-parameter fit works well while Fourier’s law already fails – leading to a high value of R1.
For even lower inelasticities, shown to the left of the peaks, Eq. (8.1) starts to fail, too, such that
neither description is able to faithfully reproduce the directly measured heat flux. This causes
R1 to decrease.



9. Absence of Scaling for Velocity
Distributions in Vibrated Systems

Finally, we examine the local velocity distributions of the driven granular gas in the stationary
state. We distinguish between the local distribution

fx(x, vx) :=
1

ρ(x)

∫

R

dvy fstat(x, vx, vy) (9.1)

at position x of the velocity component vx in the direction of the driving and the distribution

fy(x, vy) :=
1

ρ(x)

∫

R

dvx fstat(x, vx, vy) (9.2)

of the velocity component vy perpendicular to the direction of the driving. By definition, these
velocity distributions are normalized to unity.

In order to determine fx and fy from the simulation we use two different methods. The first one
extracts them directly according to their definitions (9.1) and (9.2) from fstat in the following
way: We count the number of particles f(r, vx, vy, t)|Vr|dvxdvy at time t in cell Vr with an x-
component of the velocity between vx and vx + dvx and y-component of the velocity between
vy and vy + dvy and average over a long time interval. One disadvantage of this method is that
it yields a smeared-out velocity distribution, which is spatially averaged over the width of the
strip Vx centered around x. This is of practically no importance in the middle of the simulation
box, but strongly disturbing for resolving the subtleties which occur close to the driving walls
and are presented in Sec. 9.1. The second way of measuring the velocity distributions avoids
this problem: To get fi (i = x or y) we keep track of all those particles which pass the line
parallel to the y-axis at position x within a very long time interval of length τ and whose ith
component of the velocity lies in a small interval of width ∆v around vi. Let us enumerate
these particles by ni and denote their velocity components by v(ni)

x and v(ni)
y . Then one has (in

the limits τ → ∞ and ∆v → 0)

ρ(x) fi(x, vi) =
1

τ∆vLy

∑

ni

1

|v(ni)
x |

, (9.3)

because for i = x, resp. i = y, the right-hand side of (9.3) is equal to
∫

R

dvy
|Fx(x, vx, vy)|

|vx|
resp.

∫

R

dvx
|Fx(x, vx, vy)|

|vx|
. (9.4)

75
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Here, Fx(x, vx, vy) := vxfstat(x, vx, vy) denotes the x-component of the (differential) current
density in the stationary state at position x of particles with velocity components vx and vy.

As compared to the first method of measuring velocity distributions, this one is also statistically
more effective for determining rare events, such as the high-velocity tails in Sec. 9.2. However,
as far as fx(x, vx) is concerned for small vx, the second method is inferior to the first, because
(9.3) assigns a large weight to the relevant events and therefore amplifies statistical fluctuations,
too.

9.1. Effects of the Discontinuity at a Driving Wall

Particle-number conservation at a driving wall requires the incoming particle flux at the wall
to be equal to the outgoing flux. For the velocity distribution fx this implies the boundary
condition [BRMM00]

fx(∓Lx/2, vx) =Θ(±vx − vdr)

(
1 ∓ vdr

vx

)
fx(∓Lx/2,−vx + vdr) , (9.5)

which must hold for all vx > 0. Here Θ(z) := 1 for z ≥ 0, respectively Θ(z) := 0 for z < 0,
denotes Heaviside’s unit-step function and vdr = 1 in our units chosen. (Note that we use
a driving velocity vdr = v0 here instead of vdr = εv0 as used in chapter 6). The boundary
condition (9.5) relates the distribution fx of velocities prior to a collision with the wall to the
one after a collision with the wall. In contrast, the velocity distribution fy must obey the usual
reflection symmetry in vy everywhere in the system, that is

fy(x, vy) = fy(x,−vy) (9.6)

for all |x| ≤ Lx and all vy > 0.

We measured the velocity distribution fx(x, vx) at 25 different positions in a moderately in-
elastic system with coefficient of restitution α = 0.9. Fig. 9.1 shows the rescaled velocity
distribution f̃x(x, vx/

√
Tx(x)) := fx(x, vx)

√
Tx(x), measured using method one. At the

driving walls f̃x is seen to obey the boundary condition (9.5). When moving from a driving
wall towards the center of the system, the gap in f̃x gets gradually smeared out, and f̃x becomes
more and more symmetric. Clearly, even for this moderately inelastic system f̃x does not scale
for different x. The two extreme cases for x = −Lx/2 and x = 0 are shown together in Fig.
9.2. The data for f̃x at the wall was obtained with the second method for measuring velocity
distributions. This result is in agreement with Direct-Simulation-Monte-Carlo results in Ref.
[BRMM00] and Molecular-Dynamics simulations in Ref. [BT02b].



9.1. Effects of the Discontinuity at a Driving Wall 77

-3 -2 -1  0  1  2  3
-0.5
-0.4
-0.3
-0.2
-0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PSfrag replacements

x/Lx

vx/
p

Tx(x)

Figure 9.1.: Rescaled velocity distributions f̃x for different x. [System parameters: α = 0.9, Lx = 20,
λ = 10.24 (N = 256, φ0 = 0.4)]
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Figure 9.2.: Two rescaled velocity distributions f̃x from Fig. 9.1: at the left wall and in the middle of
the system.
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Figure 9.3.: Combined plot of rescaled velocity distributions of the same system as in Figs. 9.1 and
9.2: f̃x in the middle of the sample (green crosses), f̃y at a driving wall (red squares), and f̃y in the
middle (blue triangles). Also shown is a centered Gaussian with unit variance (black solid line). The
inset shows the central part of the main graph with the (1433/2964/1340) data points being smoothed
(running average over (41/85/38) data points).

9.2. Non-Universal High-Velocity Tails

Our main result for the velocity distributions is the non-scaling and multiformity of their tails.
In order to observe these phenomena, extensive simulations for capturing rare events are re-
quired and the data have to be analyzed on a logarithmic scale. In contrast, on a linear scale
the rescaled velocity distributions seem to collapse approximately, as was observed previously
by e.g. [GZBN97, MSS04]. As an example we show in Fig. 9.3 the rescaled distributions
f̃y(x, vy/

√
Ty(x)) := fy(x, vy)

√
Ty(x) in the middle of the sample (x = 0) and at a driving

wall (x = ±Lx/2) for the same moderately inelastic system (α = 0.9) as in Figs. 9.1 and 9.2.
Clearly, the curves are reflection-symmetric in vy. For comparison, we have also included the
symmetric distribution f̃x in the middle of the system. Deviations are visible for small veloc-
ities only, as the inset of Fig. 9.3 shows. The corresponding Gaussian (solid line) in Fig. 9.3
suggests that the velocity distributions are close to but not identical to a Maxwellian. The ap-
proximate data collapse, observed on this level of accuracy in Fig. 9.3, even continues to hold
if the coefficient of restitution of the gas is varied in a not too large extent. In considerably
more inelastic systems, such as for α = 0.5, this is not true any longer. For example, the peak
of f̃x measured in the middle of the system would be considerably broader and flatter than the
ones of f̃y in the center and at the wall (not shown).
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Figure 9.4.: Rescaled velocity distributions f̃x in the middle of the sample (green crosses), f̃y at a
driving wall (red squares), and f̃y in the middle (blue triangles) as in Fig. 9.3, but here smoothed data
are shown on a semi-logarithmic scale and velocities of much higher absolute values are included. The
solid line is a centered Gaussian with unit variance. Different parts of the figure represent different
systems with decreasing global area fraction φ0 (left to right) and decreasing coefficient of restitution α
(top to bottom). The remaining system data are Lx = 20, λ = 10.24 (N = 256) for the left column and
Lx = 50, λ = 9.6 (N = 240) for the right column. The insets show | ln f̃i|−1 on a double-logarithmic
scale to determine the decay exponent β from (9.7). The dashed line is the best linear fit to f̃x in the
middle of the sample, the solid line to f̃y in the middle, and the dotted line to f̃y at the wall. Part a)
corresponds to the system of Fig. 9.3.



80 9. Absence of Scaling for Velocity Distributions in Vibrated Systems

In contrast, Fig. 9.4 a) shows the same data of Fig. 9.3 on a semi-logarithmic scale and includes
also velocities of much higher absolute values. From this figure it is evident that scaling does
not hold in the high-velocity tails of the distributions either. Similar observations were made
before in e.g. [BT02b, vZM04, BRM03]. The type of decay in the high-velocity tails is differ-
ent for f̃x and f̃y, and also depends on the position in the sample, the coefficient of restitution
α, and the global area fraction φ0. This is illustrated by examples of different systems in Fig.
9.4. In the insets we show | ln f̃i|−1 on a double-logarithmic scale in order to determine the
decay exponent β defined by

ln f̃y

(
0, vy/

√
Ty(0)

) |vy|→∞∼ −
∣∣vy/

√
Ty(0)

∣∣β (9.7)

for f̃y in the middle of the sample. The exponent is defined accordingly for f̃y at the wall and f̃x

in the middle of the sample. For the moderately inelastic systems with α = 0.9 in the first row
of Fig. 9.4, the asymptotics has been clearly reached. We note that β is different for the different
distributions, and also depends on the global area fraction φ0. Upon lowering α (top to bottom
in Fig. 9.4) and/or decreasing the global area fraction φ0 (left to right), the tails of f̃y get more
and more populated, that is, β decreases. In very simple terms, this may be understood from
the fact that (i) the largest typical velocities are always of the order of vdr = 1 (see also Fig.
9.5) and (ii) that vdr/

√
Ti(x) increases up to 20 with decreasing α and decreasing φ0. Hence,

a Maxwellian velocity distribution would not be able to supply enough probability to particles
with velocities of the order of vdr, instead higher-populated tails are needed. This argument
suggests different behavior in different velocity regions so that the distributions cannot be fitted
to the functional form (9.7) over the entire range of velocities [vZM04]. Indeed, such a behavior
can be seen in Fig. 9.4 d), e) and f). The final asymptotics could not always be deduced from the
simulations, even though our data include velocities which are up to 40 times bigger than the
appropriate granular velocities

√
Ti. This applies to f̃y in the middle of the sample in part e),

where we suspect that the final asymptotics has not been reached. An asymptotic analysis of
f̃x in the middle of the sample is even more problematic due to particles that reach the system
center from a driving wall without undergoing a collision. These particles give rise to the side
peaks of f̃x in parts e) and f), which have prevented us from determining β in these cases.

Fig. 9.4 contains smoothed data as in the inset of Fig. 9.3, and the scales of the horizontal axes
are determined by the square root of the appropriate granular temperatures. For comparison,
Fig. 9.5 shows the unsmoothed data corresponding to Fig. 9.4 f), plotted directly versus vi (in
units of vdr). The side peaks of

√
Tx(0)fx(0, vx) in the middle of the sample (green crosses in

Fig. 9.5) are due to the above-mentioned particles which fly from a driving wall to the system
center without undergoing a collision. Concerning the distribution of the y-component of the
velocity in the middle of the sample (blue triangles in Fig. 9.5) we find for the vast majority
of particles that |vy| is less than 80% of the driving velocity. It is in the region of this highest
velocity observed for

√
Ty(0)fy(0, vy) in the middle of the sample (blue triangles), where√

Tx(0)fx(0, vx) in the middle of the sample (green crosses) changes abruptly its slope.
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Figure 9.5.: Velocity distributions for the system in Fig. 9.4 f), but with unsmoothed data and without
rescaling of the horizontal axis.

The exponent β has also been determined experimentally in a strongly driven gas so that gravity
effects are small [RM00]. A value β ≈ 1.55 was measured for a gas with coefficient of
restitution α ≈ 0.93. It was found to be remarkably independent of the global area fraction φ0,
which was varied from 0.05 to 0.3. We have also simulated the system of [RM00] with zero
gravity (not shown) and reproduced their value for β. Even though the experimental data cover
a wide range of velocities, some of the interesting phenomena discussed in Fig. 9.4 cannot be
observed in this range. For the same reason the significance of the particular value β ≈ 1.55

should not be overestimated.

Simulations of a driven granular gas in a circularly shaped box also yield stretched Gaus-
sian tails [vZM04]. In addition, evidence is given that β depends only on the coefficient of
restitution and the average ratio of the number of particle-wall collisions and particle-particle
collisions. For homogeneously driven systems the tail of the velocity distribution was the-
oretically predicted [vNE98] to be governed by the decay exponent β = 3/2. Simulations
of homogeneously driven systems [MSS01, BT03] observed the exponent β = 3/2 only for
unrealistically low values of the coefficient of restitution.
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10. Homogeneously Driven Systems of
Spheres with Coulomb Friction

Incorporating Coulomb friction turns out to be quite challenging. For this reason we restrict our
analysis of frictional particles to homogeneously driven systems. The driving mechanism has
been specified in Sec. 2.2, see page 12. Binary collisions with Coulomb friction are modeled
using the Walton model, cf. Sec. 2.1.2, page 10.

In a homogeneously driven system, the long-time averages of all hydrodynamic fields are ho-
mogeneous. Instead it is interesting to study the mean translational and rotational temperatures,
their stationary ratio, and their relaxation to the steady state. In this chapter we will present
and discuss an analytic mean field calculation to obtain differential equations for the full time
evolution of the translational and rotational temperature. Technical details of the calculation
can be found in appendix C.

Since the analytic calculations are very elaborate we will introduce and probe various sim-
plifications to the collision rules for Coulomb friction (the Walton model, Eq. (2.8)). These
simplifications (labeled models B through D) will be introduced in Sec. 10.2. Model A is the
well-known model of constant tangential restitution, model E is the full Walton model. All
these models can be expressed in terms of effective coefficients of tangential restitution. Us-
ing these effective coefficients, we will analytically calculate the differential equations for the
time evolution of the translational and rotational energies and compare the results to the one
obtained using the full Walton model. In Sec. 10.3 we discuss the steady state, first analytically
and then compare the results to Event-Driven simulations by Stefan Luding [HCZ+05]. The
algorithm of the simulations used in this chapter is very similar to the one used for vibrated
systems [Lub91]. In Sec. 10.4 we turn our attention to the approach to the steady state before
we summarize the results for homogeneously driven systems with Coulomb friction in Sec.
10.5.

One way of simplifying the collision rules is to consider the tangential restitution averaged over
all impact angles γ. This reduces the problem to one with a constant coefficient of tangential
restitution that depends on the three parameters of the Walton model, i.e. the coefficient of nor-
mal restitution, the coefficient of Coulomb friction, and the coefficient of tangential restitution
for sticking contacts. For this purpose we need to know the probability distribution of impact
angles as discussed in the next section.

83
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10.1. Impact-Angle Probability Distribution

The assumption of “molecular chaos” implies a homogeneous distribution of the collision pa-
rameter b = a sin γ12 which is simply related to the angle γ12 between the relative translational
velocity v12 and the contact normal n̂ according to cos γ12 = v12 · n̂/|v12|, see Fig. 2.1.
Hence the probability distribution of sin γ12 is constant, P ′

12(sin γ12) ≡ 1. (The “prime” indi-
cates probability functions of the sine or the cosine of the angle.) A uniform probability P ′

12

implies that the distribution of the angle P12(γ12) = − cos γ12, so that grazing contacts appear
less probable than central collisions when a fixed interval dγ12 is considered. The uniform
P ′

12(sin γ12) is in agreement with our numerical data for very smooth particles, see full lines
[P12(γ) ≡ P ′

12(sin γ)] and triangles [simulations of very smooth particles] in Fig. 10.1. For
rougher particles P12(γ) is not a good approximation to the simulational data. Instead, the real
P (γ) must be used as will be discussed below.

In general, the impact angle γ between the relative velocity of the contact point g and the
contact normal n̂ is different from the angle γ12 between the relative translational velocity v12

and the contact normal n̂, as displayed in Fig. 2.1. The two angles are identical only in the
case of smooth particles or in the limit of vanishingly small rotational velocities. In the general
case we compute P ′(cos γ) by averaging over all binary collisions

P ′(cos γ) =

〈
δ

(
cos γ − g · n̂

|g|

)〉

coll

. (10.1)

This average can only be computed approximately. We assume that the translational and rota-
tional velocities of the colliding particles are distributed according to Gaussians with a temper-
ature Ttr for the translational and a temperature Trot for the rotational velocities. Within this
approximation the above average is given explicitly by

P ′(cos γ) =
J
(
δ
(
cos γ − g·n̂

|g|

))

J(1)
(10.2)

with the phase space integral

J(X) =

∫
dΓ1dΓ2 (v12 · n̂) Θ(−v12 · n̂) δ(|r12| − 2a) X ,

where X = X(Γ1,Γ2), and the phase space element

dΓk = d2rkd
2vkdωke

−mv2
k/(2Ttr)e−Iw2

k/(2Trot)

for k = 1, 2.

The remaining integrals can be computed analytically, yielding the following expression for
the impact angle distribution

P (γ) = − (1 +R/q) cos γ

(1 + [R/q] cos2 γ)3/2
. (10.3)
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Figure 10.1.: Plots of the probability distribution of γ from simulations (symbols) and from Eq. (10.3)
with R values from the simulations. The arrows indicate the corresponding γ0. The parameters are (a)
α = 0.95, µ = 0.5 and variable β0, and (b) α = 0.95, β0 = 0.4 and variable µ. Reasonable agreement
is observed between the simulations and P (γ) as given in Eq. (10.3).

Here we have introduced the ratio of rotational and translational temperatures R := Trot/Ttr

and recall q = I/(ma2). The probability distribution P (γ) is compared to the results of our
simulations in Fig. 10.1. Reasonably good agreement is observed. With increasing rotational
temperature, grazing contacts (small γ) become more and more frequent due to the increasing
rotational contribution. On the other hand, head-on collisions (large γ) become less probable.

10.2. Differential Equations for the Time Evolution of
Temperatures

In the following we present different approximations for frictional particles, referred to as mod-
els A-E. For every model we calculate differential equations for the time evolution of the trans-
lational and rotational temperatures in mean field theory. Model A is the well known model
using constant coefficients of normal and tangential restitution, cf. e.g., Refs. [JR85, HZ97].
Model E implements Coulomb friction as introduced by Walton [WB86]. While model A is
the mean field solution for rough particles with a constant coefficient of tangential restitution,
model E is the mean field solution for particles with Coulomb friction. Models B through D are
approximations to model E that may be simpler to deal with but have significant shortcomings.

The starting point of our mean-field approach is the theory of Ref. [HZ97] for a freely cooling
gas of rough particles with a constant coefficient of tangential restitution (β = const., corre-
sponding to the limit µ→ ∞). The theory is based on a pseudo–Liouville–operator formalism
and on the assumption of (i) a homogeneous state, (ii) independent Gaussian probability dis-
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tributions of all degrees of freedom, i.e. all components of the translational and the rotational
velocities, and (iii) the assumption of “molecular chaos”, i.e. subsequent collisions are uncor-
related. The agreement with simulations is very good as long as the above assumptions are
valid [LHMZ98].

The main outcome of this approach is a set of coupled time evolution equations for the trans-
lational and rotational MF temperatures Ttr and Trot [HZ97] which can be extended to also
describe arbitrary energy input (driving) [CLH00, CLH02, Lud03]. Given the random driving
temperature Tdr and an energy input rate fdr, as defined above, one just has to add the positive
rate of change of translational energy Hdr, see Eq. (2.13), to the system of equations [CLH00].

10.2.1. Model A: Constant Coefficient of Tangential Restitution β = β0

We recall the results of the mean field theory for the model with a constant coefficient of
tangential restitution which is obtained from the general case in the limit µ → ∞ (see Eqs.
(14) in Ref. [LHMZ98]). The system of coupled equations in 2D reads:

d
dtTtr(t) = Hdr + G

[
−AT 3/2

tr +BT
1/2
tr Trot

]

d
dtTrot(t) = 2G

[
B′T 3/2

tr − CT
1/2
tr Trot

]
,

(10.4)

Note the choice of signs which lead to positive coefficients. Based on more physical argu-
ments, coefficient A quantifies the dissipation of translational energy, B and B ′ correspond
to the interchange of energy between the translational and rotational degrees of freedom, and
C describes the dissipation of rotational energy. The coefficient G sets the time-scale of the
system, i.e. the collision rate (per particle) τ−1 = (1/2)GT

1/2
tr , with

G =
16

a
√
πm

φ χ . (10.5)

Here χ denotes the pair correlation function at contact. In the approximation proposed by
Henderson [Hen75, Hen77, VL82, JR85, SK99], χ = (1 − 7φ/16)/(1 − φ)2, it depends only
on the area fraction of the granular gas φ = πa2N/V . The four constants A, B, B ′ and C read

A = Ar +Aη0
, Ar :=

1 − α2

4
, (10.6)

Aη0
:=

η0

2
(1 − η0) , (10.7)

B′ = B = Bη0
:=

η2
0

2q
, and (10.8)

C = Cη0
:=

η0

2q

(
1 − η0

q

)
. (10.9)

where

η0 := η(β0) =
q(1 + β0)

2(q + 1)
, (10.10)

with η(β) being defined in Eq. (2.6).
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10.2.2. Model B: Averaged Simplified Coulomb Friction → β = 〈β(γ12)〉γ12

A first step beyond the above theory with a constant η0 = η(β0), is the replacement of β(γ) by
its average

〈β〉 =
π∫

π/2

dγ P (γ)β(γ) . (10.11)

The integral over γ from π/2 to π has to be split into two parts, one corresponding to the range
π/2 < γ < γ0 for which there is Coulomb sliding and β is given by Eq. (2.8), and a second
part corresponding to the range γ0 ≤ γ ≤ π, for which there is sticking with constant β = β0

(see Fig. 2.2). The critical angle γ0 is given by c, cf. Eq. (2.9).

To simplify the computation, we use the approximation P (γ) ≈ P12(γ) = − cos (γ), such
that1

〈β〉12 = −1 + q+1
q (1 + α)µ ln (c+ f) . (10.12)

with the abbreviation
f :=

√
1 + c2 . (10.13)

The averaged coefficient of tangential restitution 〈β〉12 must be inserted into η in Eq. (2.6).
Thus we obtain the same set of coefficients as in Eqs. (10.6)-(10.9) with η0 replaced by

η1 := η(〈β〉12) =
η0

c
ln (c+ f) . (10.14)

In this approach, only the average value of β is considered and fluctuations of β with γ are
neglected. Furthermore the difference between γ and γ12 has been ignored in the averaging
procedure. In contrast to model A this is the simplest model to incorporate an approximate
Coulomb friction via the coefficient of Coulomb friction µ in 〈β〉12 = 〈β〉12(µ).

10.2.3. Model C: Averaged Real Coulomb Friction → β = 〈β(γ)〉γ(R)

In model C we again replace β(γ) by its average but use the correct impact angle probabilty
distribution function P (γ) from Eq. (10.3) in the averaging procedure. The result2 is an R-
dependent averaged coefficient of tangential restitution

〈β〉(R) = −1 +
q + 1

q

1 + α

4

µ

x
ln

[
R
q (f − c)2(xf̃ − f + cR

q )

(xf̃ − f − cR
q )2(xf̃ + f − cR

q )

]
(10.15)

1simplifying the result we have used the identity (1 − cos γ0)/(1 + cos γ0) = (c + f)2

2obtained using Maple
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with

x2 ≡ x2(R) := 1 +R/q , (10.16)

f̃ ≡ f̃(R) :=
√

1 + x2c2 (10.17)

and f defined in eq.(10.13). Note that x is an implicit function of time through R. For R → 0

(i.e. x → 1) Eq. (10.15) reduces to Eq. (10.12) – as expected. For R → ∞ (x → ∞) there is
no friction and 〈β〉(R) → −1.

We formally get the same differential equations (10.4) but with non-constant coefficients A =

A(R), B′ = B = B(R), and C = C(R) which are obtained by replacing η0 by η(〈β〉(R)) in
Eqs. (10.6)-(10.9). These coefficients are implicitly time dependent.

Constant tangential restitution limit

In the limit µ→ ∞, c→ 0. In that case model C reduces to model A.

Weak friction limit

For µ → 0, c → ∞ we recover smooth spheres with 〈β〉 → −1. A series expansion to lowest
order in µ (equivalent to lowest order in c−1) of Eq. (10.15) reads

〈β〉(R) = −1 +
q + 1

q
(1 + α)

µ

x

{
| ln (µ)| + ln (x) + ln

(
2η0

1 + r

)}
+ O(µ3) , (10.18)

expressed in terms of x and µ.

As long as x stays finite (which is the case for a driven system) the leading order is thus
µ| ln (µ)| for small µ. For x → 1, Eq. (10.18) yields the same result as Eq. (10.12) in leading
order in c−1.

Comparison of model B and model C

Due to the implicit nature of model C it is rather difficult to work out its predictions, e.g., for the
ratio of temperatures. Therefore, we present here the mean tangential restitution from models
A, B, and C in Fig. 10.2. Note that 〈β〉 for model C depends not only explicitly on µ but also
implicitly through R. To keep the discussion simple, we present results only for some constant,
representative values of R. The mean restitution for large R is smaller (or equivalently, the
corresponding µ is larger) than for small R. Models B and C become indistinguishable in the
limit R→ 0, as expected.
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Figure 10.2.: Expected mean tangential restitution, 〈β〉, as function of the friction coefficient µ for
models A, B, and C. The parameters used are α = 0.95, β0 = 1.0 (for A, B) and different R = 1.0,
0.40, and 0.15 (model C: solid lines from right to left).

10.2.4. Model D: Simplified Coulomb Friction → β = β(γ12)

In this section and in the following one, we discuss a coefficient of tangential restitution which
depends on γ. Model D is defined by approximating γ ≈ γ12, which is strictly true for perfect
head-on collisions or perfectly smooth particles only (µ = 0 (or equivalently β0 = −1). We
again obtain the same differential equations (10.4) for Trot and Ttr with the coefficients

A = Aµ = Ar + [Aη0
+A∗] /f3 (10.19)

B = Bµ = [Bη0
+B∗] /f

B′ = B′
µ =

[
Bη0

+B′∗] /f3

C = Cµ = [Cη0
+ C∗] /f ,

and f defined in Eq. (10.13). The correction terms due to Coulomb sliding are denoted by an
asterisk. Defining

B̃∗ := −η0c
2

2q
= − 2η3

0

qµ2(1 + α)2
≤ 0 , (10.20)
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which will be recovered as the correction term to B in model E, cf. Eq. (10.23), they read

B∗ = − η0B̃
∗

(f + 1)2
≥ 0 ,

B′∗ = −(2f + 1)

(f + 1)2
η0B̃

∗ = (2f + 1)B∗ ≥ 0 ,

A∗ = q
(
|B̃∗| −B′∗

)
, and

C∗ =
1

2q
(η1f − η0 − 2B∗) , (10.21)

expressed in terms of B̃∗ [cf. Eq. (10.20)], f [cf. Eq. (10.13)], η0 [cf. Eq. (10.10)], η1 [cf. Eq.
(10.14)], and q [cf. Eq. (2.7)]. The terms B∗ and B′∗ are strictly positive, while the dissipation
correction terms A∗ and C∗, in principle, can change sign. Note also that B∗ and B′∗ are not
identical here. All coefficients depend on the system parameters only. They are constants in
time – in contrast to model C (and E as will be shown later).

Constant tangential restitution limit

In the limit µ → ∞, one has c → 0, i.e. E → 0, and f → 1, and all correction terms
{A∗, B∗, B′∗, C∗} → 0 so that one obtains Eqs. (10.4)-(10.9). Note in particular that the
coefficients Bµ and B′

µ are equal only in the limit µ→ ∞ [HZ97].

Weak friction limit

In the limit µ→ 0 (c→ ∞, f → c), the lowest order expansion in c−1 leads to an approxima-
tion of the coefficients in Eqs. (10.19), where we have used η0/c = µ(1 + α)/2:

Bµ =
η0

q

1 + α

2
µ+ O

(
µ2
)

(10.22)

B′
µ =

1

q

(
1 + α

2

)2

µ2 + O
(
µ3
)

Aµ = Ar +
1 + α

4
µ+ O

(
µ2
)

Cµ =
1

2q

1 + α

2
µ

(
| ln (µ)| + ln

(
4η0

1 + α

)
− 2

η0

q

)
+ O

(
µ2
)
.

From Eqs. (10.22), we learn that B ′
µ is second order in µ, whereas Bµ is first order in µ,

reflecting an asymmetry in the energy transfer rates. On the other hand, Aµ ≈ Ar is almost
constant, whereas Cµ depends on µ logarithmically which is an artifact of our approximation
γ12 ∼ γ, see Eq. (10.25) below.
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10.2.5. Model E: Real Coulomb Friction → β = β(γ)

Finally, we present the MF theory of the full Walton model. That means we use β(γ), instead
of β(γ12), to compute the coefficients. The calculation is similar to the one for 3D in Ref.
[HHZ00] and is presented in appendix C. We obtain the following coefficients, to be inserted
into Eqs. (10.4),

A = Ãµ(R) = Ar +
[
Aη0

+ Ã∗
]/

f̃3 (10.23)

B = B̃µ(R) =
[
Bη0

+ B̃∗
]/

f̃3

B′ = B̃′
µ(R) =

[
Bη0

+ B̃′∗
]/

f̃3

C = C̃µ(R) =
[
Cη0

+ C̃∗
]/

f̃3 ,

with the tilded asterisked correction terms

B̃∗ = −η0c
2

2q
= − 2η3

0

qµ2(1 + α)2
≤ 0 , (10.24)

B̃′∗ = − 2f̃ + 1

(f̃ + 1)2
η0x

4 B̃∗ ≥ 0

Ã∗ = q
(
|B̃∗| − B̃′∗

)
, and

C̃∗ = −x2B̃∗ ≥ 0 ,

where f̃ ≡ f̃(R) =
√

1 + x2c2 as introduced in Eq. (10.17). x, c, and q have been defined in
Eqs. (10.16), (2.9), and (2.7), respectively. Interestingly, we find now a negative B̃∗ together
with positive coefficients B̃′∗ and C̃∗. The coefficients Ã∗ and B̃′∗ are constructed in a way
similar to A∗ and B′∗. In B̃′∗ there appears an additional factor of x4 and f is replaced by f̃ .
Like in model C but in contrast to models A, B, and D, here the coefficients are again implicit
functions of time.

In conclusion models D and E appear similar in shape but there are several striking differences:
(i) The division by f and f 3 in model D is in contrast with the division by f̃3 in model E, (ii)
the term B̃∗ is always negative, while B∗ is positive, (iii) the term C̃∗ is always positive, while
the sign of C∗ is not determined a-priori, (iv) among the correction terms of model E, only
B̃∗ is independent of R, and (v) the MF theory for the full Walton model appears in a simpler
form, especially the term C̃∗.

Constant tangential restitution limit

The limit of constant tangential restitution can be reached by taking the limit µ → ∞. In this
case c → 0, f̃ → 1 and thus all additional coefficients Ã∗, B̃∗, B̃′∗, and C̃∗ vanish such that
Eqs. (10.4)-(10.9) are recovered.



92 10. Homogeneously Driven Systems of Spheres with Coulomb Friction

Weak friction limit

In the limit µ → 0 (c → ∞, f̃ → xc) an expansion to the lowest order in µ leads to an
approximation of the coefficients in Eqs. (10.23) when we remember that η0/c = (1 + α)µ/2:

B̃µ(R) = − 1

2qx3

1 + α

2
µ+ O

(
µ3
)

(10.25)

B̃′
µ(R) =

1

q

(
1 + α

2

)2

µ2 + O
(
µ3
)

Ãµ(R) = Ar − q
(
B̃µ(R) + B̃′

µ(R)
)

+ O
(
µ3
)

C̃µ(R) = −x2B̃µ(R) + O
(
µ3
)
.

Since x = x(R) approaches one in the weak friction limit, both B̃µ(R) and C̃µ(R) are propor-
tional to µ in leading order. To lowest order in µ, Eq. (10.25) predicts Ãµ(R) = Ar + O(µ),
i.e. proportional to µ0, while B̃′

µ(R) is proportional to µ2.

For µ� 1, Eqs. (10.4) with (10.25) simplify to

d

dt
Ttr(t) = Hdr −GT

3/2
tr

(
1−α2

4 + O(µ)
)

(10.26)

which means that in the limit of low friction the differential equations for Ttr and Trot decouple.
In the non-driven case this leads to surviving rotational energy (not shown, cf. appendix C.7),
similar to Refs. [HHZ00, Gol04].

10.3. Steady State

Before discussing the approach to the stationary state in the next chapter, we first elucidate the
stationary state and compare results of our simulations to various levels of refinements of the
mean field theory.

10.3.1. Analytical Results

By imposing d
dtT

stat
tr =0 and d

dtT
stat
rot =0 one gets the steady state values of the rotational and

the translational temperatures as has already been discussed in some detail in chapter 3. For
models A, B and D, the coefficients in the differential equation do not depend on R (or x).
Therefore the solution is simply

T stat
rot = RstatT stat

tr , and T stat
tr =

(
Hdr

GI

)2/3

, (10.27)
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with
Rstat = B′/C , and I = A−BRstat , (10.28)

as discussed in more detail for all models in the following.

Model A

For model A, the equilibrium steady state ratio of rotational to translational energies is

Rstat =
qη0

q − η0
(10.29)

and the energy dissipation factor is

I =
1 − α2

4
− η0

2
(1 − η0) −

η3
0

2(q − η0)
. (10.30)

Note here again that model A does not contain any dependence on the coefficient of friction µ.

Model B

Model B evolves from model A, by just replacing η0 by η1(µ) = (η0/c) ln (c+ f) from Eq.
(10.14) in the above two Eqs. (10.29) and (10.30), so that, e.g.,

Rstat =
qη1

q − η1
=

q(η0/c) ln (c+ f)

q − (η0/c) ln (c+ f)
.

In the limit of small µ � 1, the leading order terms are Rstat ≈ (1 + α)µ| lnµ|/2 and
I ≈ 1−α2

4 + O(µ| lnµ|).

Model D

From model D, the following, more complex terms are obtained:

Rstat
µ =

B′
µ

Cµ
=

[Bη0
+B′∗]

[Cη0
+ C∗]

1

f2
≈

µ�1
(1 + α)µ| lnµ|

and

Iµ = Aµ −BµR
stat
µ ≈

µ�1

1 − α2

4
+ O(µ) ,

so that, asymptotically for µ� 1, model D leads to behavior similar to that of model B.
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Model E

Formally, we can write down Eqs. (10.27) for model E, too. Instead of using Eqs. (10.28),Rstat

must be extracted (numerically) from the second equation in Eqs. (10.4) with the coefficients
from Eqs. (10.23) or, equivalently, from Eq. (C.58) in appendix C, Sec. C.2.2. The left hand
side vanishes in the stationary case (dTrot/dt = 0). As will be shown below there is always a
unique solution for Rstat. With this solution for Rstat at hand, the first equation in Eqs. (10.4)
with the coefficients from Eqs. (10.23) or, equivalently, Eq. (C.31) in appendix C, Sec. C.2.1

can be written in the form T stat
tr =

(
Hdr

GI

)2/3
again. Here I is a nonlinear function of Rstat

whose particular form can be easily seen from Eq. (C.31) in appendix C, page 122.

To check if there is always a solution for R ≥ 0 we check if there is always a solution x ≥ 1

by considering Eq. (C.58), page 128. For µ → ∞ we see from Eq. (2.9) that cot γ0 → 0

and thus it is easy to see that Eq. (C.58) reduces to the quadratic equation yielding x2 =(
1 − 1

1+q
1+β0

2

)−1
> 0, i.e. there is exactly one root x ≥ 1, i.e. T stat

rot /T
stat
tr ≥ 0. For cot2 γ0 >

0 there is also exactly one solution x ≥ 1 as will be shown in the following proof.

Proof: First we show that there is always at least one solution: We have to find the zeros of

f(x) =

(
η2
0x

2

2q
−(x2 − 1)

η0

2
(1 + x2 cot2 γ0)

)
cot2 γ0

+
η2
0

q

(
(1 + x2 cot2 γ0)

3/2−1 − 3

2
x2 cot2 γ0

)
. (10.31)

The last term in the big parentheses, which is proportional to η2
0

q , is always greater then zero. So

is the first part of the first term, η2
0x2

2q . The remainder, which is proportional to (x2−1), is always
negative. Now it is easy to see that for x = 1, f(x) > 0. For x→ ∞, f(x) → −∞ because the
highest power of x is x4 with a negative sign. Since the function is continuous, there is always
a solution for x such that f(x) = 0. [By the way: This is different for freely cooling systems
where the rotational energy can survive while the translational energy decreases according to
Haff’s law [HHZ00], cf. appendix C.7.]

Now we show that the solution is unique. For this purpose we re-write Eq. (10.31) as

f(x) =
η0

2

(
1 + x2

[
cot2 γ0 −

(
1 − η0

q

)]
−x4 cot2 γ0

)
cot2 γ0

+
η2
0

q

(
(1 + x2 cot2 γ0)

3/2−1 − 3

2
x2 cot2 γ0

)
. (10.32)
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It can be easily seen that for cot2 γ0 ≥
(
1 − η0

q

)
there is exactly one solution because in this

case the only negative contribution to f(x) is proportional to x4. For cot2 γ0 <
(
1 − η0

q

)
we

show that the derivative d
dxf(x) < 0 ∀ x by noting that

√
1 + x2 cot2 γ0 < 1 + q

3η0

(
2x2 cot2 γ0 +

[
1 − η0

q

]
− cot2 γ0

)

for
[
1 − η0

q

]
− cot2 γ0 > 0. Here we have used that q

η0
> 1 for all possible parameters. Since

the slope of f(x) is negative for all x > 1 there is only one zero. 2

Models C and E for small µ

As already mentioned for model E, the coefficients in the differential equations depend onR for
models C and E, so that the steady state values have to be computed numerically for a general
choice of parameters. Analytical results can only be achieved in the limit µ � 1, where we
can use the expansions of the coefficients introduced in Secs. 10.2.3 and 10.2.5.

For model C we obtain to lowest order in µ, the dissipation factor I ≈ Ar and, using η2 =

(η0/2) ln c,

Rstat ≈
µ�1

2η2

c

√

1 +

(
η2

cq

)2

+
2

q

(η2

c

)2
≈

µ�1

1 + α

2
µ| ln (µ)| . (10.33)

For model E we find again I ≈ Ar and

Rstat ≈
µ�1

2η0

c

√

1 +

(
η0

cq

)2

+
2

q

(η0

c

)2
≈

µ�1
(1 + α)µ , (10.34)

very similar in shape to the result from model C, besides the logarithm ln c that is hidden in the
definition of η2. This leads to the qualitative difference in asymptotic behavior between models
C and E: The correct asymptotic behavior for small µ is Rstat ∝ µ. Note again that the more
refined model E leads to a simpler analytical result than the approximated model C.

Discussion

The expansions for small µ� 1 show that the result forReq based on model E, see Eq. (10.34),
disagrees with all other models. In model E we find that Rstat vanishes linearly as µ → 0,
whereas models A-D predict a slower decrease, encoded in the µ| lnµ| dependence. Models A
and B have the same analytical form for Rstat if expressed in terms of η0 for model A and in
terms of η1 for model B. Similarly, models C and E have the same functional dependence on η,
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if η2 is used for model C and η0 for model E. The comparison of the models for arbitrary values
of µ will be given in the next section, where we also present the results of our simulations and
compare them to the predictions of the various mean field models.

10.3.2. Comparison with Simulations

In this section the steady state predictions from our models are confronted with the numeri-
cal simulation results. Note that we present results for rather high densities and dissipation,
where our assumptions about homogeneity of the system and the Gaussian shape of the ve-
locity distributions is not strictly true anymore. However, we want to stress the point that the
present theory is astonishingly close to the numerical simulation with experimentally relevant
parameters even when the most basic assumptions are somewhat questionable.
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Figure 10.3.: Simulation results (symbols) and theory (lines) for the parameters φ = 0.34, N =

11025, α = 0.95, and µ = 0.5, plotted against the maximum tangential restitution β0: (a) Translational
temperature T stat

tr , and (b) rotational temperature T stat
rot , plotted against β0, and scaled by T stat

tr (µ = 0),
the mean field value for smooth particles.

In Figs. 10.3 (a) and (b) and Fig. 10.32 the equilibrium rotational and translational temperatures
and their ratio R are compared for α = 0.95, µ = 0.5 and different values of β0. Note that
the data in (a) and (b) are scaled with the expression for µ = 0. The symbols correspond to
simulation data, with the error bars showing the standard deviation from the mean values. The
lines correspond to different refinements of the theoretical approaches, i.e. models A, B, D, and
E.
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Figure 10.4.: Ratio of rotational and translational temperatureR, plotted against β0 for the same system
as in Fig. 10.3.

For β0 ≈ −1, the simulations agree with all theoretical predictions; for β0 ≈ 1, large dis-
crepancies are evident. The more refined a model used, the better the quality of agreement.
The qualitative behavior of the data is best captured by model E, and we relate the remain-
ing quantitative deviations to the fact that the simulations involve rather high density φ and
comparatively strong dissipation α.

Variation of µ – translational temperature

In Fig. 10.5 we plot the translational temperature in the same way as in Fig. 10.3 (a), but now,
we keep the values β0 = 0.4 (a) and β0 = 1.0 (b) fixed and vary µ. Furthermore, we compare
data for α = 0.99 and α = 0.95 in one plot and observe satisfactory agreement between
simulation results and the full mean field theory, model E. (The predictions from models A and
B are only shown for α = 0.99.)

For (realistic) values of β0 = 0.4, see Fig. 10.5 (a), one obtains a transition from the µ = 0

limit to the µ→ ∞ value of the kinetic energy, over two orders of magnitude in µ, whereas for
β0 = 1.0, see Fig. 10.5 (b), the kinetic energy first decays with µ but then increases again to
the equilibrium temperature of smooth particles, since no energy is dissipated due to tangential
friction for µ→ ∞ and β0 = 1.0.
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Figure 10.5.: Translational temperature T stat
tr scaled by the mean field value for smooth particles

T stat
tr (µ = 0), plotted against µ, for the parameters as in Fig. 10.3. The tangential restitution coeffi-

cients are fixed to (a) β0 = 0.4, and (b) β0 = 1.0. Data with normal restitution α = 0.99 (solid symbols
and thick lines) and α = 0.95 (open symbols and thin lines) are compared.

We remark that model A, with β = β0 and the limit µ → ∞ is inadequate to model the
µ-dependency of the data, as expected. It is correct only in the limit µ → ∞. Approach
B only shows qualitative agreement with our simulation data, whereas theory D shows good
quantitative agreement for small µ. The agreement seems better for weak normal dissipation
α = 0.99, as compared to the cases with α = 0.95. The deviations between simulations and
model D in the intermediate range of µ are due to values of R of the order of unity, for which
the assumption γ12 ≈ γ is not true, as pointed out above.

For weaker normal dissipation r, one obtains a stronger reduction of the translational temper-
ature in the range of strongest total dissipation (around µ ≈ 0.4). This is due to the compara-
tively stronger contribution of tangential dissipation. However, as in the previous section, the
agreement between simulations and model E is satisfactory.

Variation of µ – rotational temperature

In Fig. 10.6 we plot the ratio of rotational and translational temperature in the same way as in
Fig. 10.4, but now, like in Fig. 10.5, we keep the values β0 = 0.4 (a) and β0 = 1.0 (b) fixed
and vary µ. We also compare data for α = 0.99 and α = 0.95 in one plot. For the values of
β0 examined (see Fig. 10.6) one observes a smooth transition of R over about two orders of
magnitude in µ, from the value R = 0 (in the limit µ = 0) to the value R = β0 (in the limit
µ→ ∞). Note that the observation R = β0 is coincidence, since the correct asymptotic result
for large µ is R = 2(1 +β0)/(9− 5β0). Again, the agreement between simulations and model
E is excellent.
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Figure 10.6.: R plotted against µ, for the same parameters as in Fig. 10.5. The tangential restitution
coefficients are again fixed to (a) β0 = 0.4, and (b) β0 = 1.0.
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Figure 10.7.: (a) Deviation from equipartition, 1 − R, plotted against the inverse friction coefficient,
µ−1, and (b) ratio of rotational and translational temperature, R, plotted against µ, both for the same
simulations as in Fig. 10.5 (b). Note the double-logarithmic scale of these plots.

All models agree qualitatively in the large µ-limit, even though the quantitative agreement with
simulations is again best caught by model E, as can be seen in Fig. 10.7 (a).

The remaining question is the asymptotic behavior for very small µ, as can be viewed in Fig.
10.7 (b), and as discussed theoretically in Sec. 10.3.1. The quantitative behavior of R for small
µ is tested by a power law fit of the numerical values, according to an expression R = bµr.
The fit gives r = 1.00(4), for α = 0.99, β0 = 0.4 or 1.0 and r = 0.99(4), for α = 0.95,
β0 = 0.4 or 1.0. Thus the asymptotic behavior is proportional to µ, in excellent qualitative and
quantitative agreement with the prediction of model E.
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10.4. Approach to the Steady State

10.4.1. Close to the Steady State

Provided the system is sufficiently close to steady state, we can linearize the set of Eqs. (10.4)
around T stat

tr and T stat
rot . This is particularly simple for models A, B, and D, where the coeffi-

cients in the differential equation do not depend on R and hence can be solved analytically for
the stationary state. We set Ttr(t) = T stat

tr (1 + δTtr(t)) and Trot(t) = T stat
rot (1 + δTrot(t)) and

obtain the linearized dynamic equations

d

dt
δTtr = GT stat

tr

{(
3

2
A+

BB′

2C

)
δTtr +

BB′

C
δTrot

}

d

dt
δTrot = 2GCT stat

tr {δTtr − δTrot} . (10.35)

This set of linear equations is easily solved to yield two relaxation rates λ1 and λ2. In a stable
stationary state they must be positive and they are. Here we present only results for the simplest
model (A) and postpone the general discussion to the next paragraph, where the full dynamic
evolution towards steady state will be examined.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

λ

β0

λ1
λ2
0

Figure 10.8.: Relaxation rates λ1,2, close to steady state for α = 0.95 as a function of β0.

In Fig. 10.8, we plot the two relaxation rates as a function of β0 for a fixed value of α = 0.95. In
the limit of smooth spheres one of the rates vanishes because the rotational energy is conserved
in that limit. For β0 ∼ −0.84 the two rates are equal and for increasing β0 the difference
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between the two rates increases monotonically with β0, such that for perfectly rough spheres
the larger rate is about fourteen times the smaller one. Such a pronounced separation of time
scales is familiar from the cooling dynamics of the same model, see Ref. [HHZ00]. There it was
shown that the ratio of translational to rotational energy, R, relaxes fast to its stationary value,
whereas both the translational as well as the rotational energy decay on the same, much longer
time scale. This point will be discussed in a more general setting (model E and relaxation from
an arbitrary initial condition) in the subsequent paragraph.

10.4.2. Full Dynamic Evolution

In Fig. 10.9, the full dynamic evolution of the translational and rotational temperatures with
time is shown for two simulations with N = 11025, φ = 0.0866, α = 0.95, β0 = 1.0,
and different values for the coefficient of friction. In both situations the agreement between
simulations and the numerical solution for the MF theory of the full Walton model, model
E, is good – not only concerning the limiting values and the asymptotes, but also the time
dependence during the two regimes (i) equilibration between Ttr and Trot, and (ii) approach to
final steady state.
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Figure 10.9.: Evolution of temperatures with rescaled time, with τ−1 = (1/2)GTtr(0)1/2, for simula-
tions with N = 11025, φ = 0.0866, α = 0.95, β0 = 1.0, and (a) µ = ∞, (b) µ = 0.5.

10.5. Discussion

A dynamic MF theory for the full time evolution of the translational and rotational tempera-
tures of a homogeneously driven two-dimensional granular gas has been presented. Particle
collisions were modeled using the Walton model [WB86], i.e. with normal dissipation, tangen-
tial restitution (sticking) and Coulomb friction (sliding). The Walton model can be formulated
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in terms of a coefficient of tangential restitution, which depends on the impact angle γ. Using
a Pseudo-Liouville operator we have computed the distribution of impact angles as well as the
mean field dynamics and steady state values of the translational and rotational temperatures.

In addition to the mean field theory of the Walton model (“model E”), we discussed three
levels of approximation in order to simplify the differential equations of the time evolution.
The crudest approximations including Coulomb friction (“model B” and “model C”) assume
that an effective constant coefficient of tangential restitution exists and can be computed by
averaging over the angular distribution of impact angles. For model C this averaged coefficient
depends on the current values of the translational and rotational temperatures and thus on time.
Even simpler is model B where the rotational contribution to the impact angle is neglected,
leading to a coefficient of tangential restitution that only depends on global system parameters.
The closest approximation (“model D”) to the full mean field theory (“model E”) keeps the
dependence of β(γ) on the impact angle γ but, like for model B, the contribution of the rotation
of the particles to the impact angle is neglected.

The predictions of the increasingly refined models of frictional dissipation as well as the full
MF theory have been compared to simulations of a randomly driven mono-layer of spheres
using an Event Driven algorithm. Emphasis has been put on the stationary state which is char-
acterized by two temperatures, Ttr and Trot, one for the translational and one for the rotational
degrees of freedom. Guided by the MF approach we discovered a rich phenomenology like
a non-trivial dependence of the stationary state temperatures on the model parameters. For
example, the translational temperature is non-monotonic as a function of maximal tangential
restitution β0 and also non-monotonic as a function of Coulomb friction µ, provided β0 is
sufficiently large.

All models predict steady state values of the translational and rotational temperatures, which
are considerably improved as compared to the model without friction (“model A”), which as-
sumes constant coefficients tangential restitution (see Figs. 10.5 and 10.6). All approximations
A-E agree in the limit of large friction, where the tangential restitution becomes independent
of the impact angle (see Fig. 2.2). Qualitative agreement between models B-D and simulations
is achieved also for intermediate values of µ. However in the limit µ → 0 all approximations
break down and only the complete mean field solution (“model E”) is in agreement with the
simulations (see Fig. 10.7 (b)). In particular model E predicts the linear dependence of the ratio
of temperatures, R = Trot/Ttr, on the friction coefficient µ that is observed in the simulations
and was used in Ref. [JZ02] to derive an approximate kinetic theory of frictional particles.

Sticking contacts become more important relative to sliding contacts for fixed µ and decreasing
β0. In this regime models B and D seem reasonable, but lead to poor quantitative agreement
as β0 approaches 1. The mean field theory of the full Walton model (“model E”) leads to
reasonable agreement for all values of β0. For weak dissipation, α→ 1, the agreement is very
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good – for stronger dissipation, we relate the deviations to the failure of both the homogeneity
assumption and the molecular chaos assumption.

The mean field theory of the full Walton model (“model E”) as well as model C lead to two
highly non-linear coupled differential equations for the translational and rotational tempera-
tures. In contrast, models B and D reduce to the same simple differential equations (10.4) that
have been found for the dynamic behavior of rough particles with a constant coefficient of tan-
gential restitution (“model A”). The only difference is that the constant coefficients A, B, B ′,
and C for model A that must be used in the simple differential equations (10.4) become more
complicated functions of the global system parameters for models B and D. For very high fric-
tion (µ→ ∞) sliding becomes a negligible effect compared to sticking and all approximations
as well as the mean field theory of the full Walton model simplify to the model with a constant
coefficient of tangential restitution (“model A”).

Linearizing the dynamic MF equations around the steady state leads to an eigenvalue problem
with two relaxation rates, one of them being related to the equilibration between the transla-
tional and the rotational degrees of freedom, while the other one controls the approach of the
system to its steady state. For strong coupling, the former process is much faster, so that there is
a clear separation of time scales, which has been discussed already for a freely cooling system
in the absence of driving.

In conclusion, realistic Coulomb friction turned out to be a subtle problem as only the mean
field theory of the full Walton model predicts the effects of friction for all values of µ and β0.
All simplifications are both qualitatively and quantitatively wrong in some parameter range.
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11. Summary and Outlook

In this thesis we have explored two-dimensional driven granular gases in Event-Driven simula-
tions. Our main focus was on the steady-state properties of a granular gas of smooth particles
driven by vibrating walls. These systems depend not only on the global density but also on
the distance between the driving walls as this distance must stay finite in order for boundary
induced driving to be effective. We have measured the hydrodynamic fields for a wide range
of parameters for these non-equilibrium stationary systems. In particlular, the full stress tensor
and the full heat flux, both including collisional contributions have been obtained. These colli-
sional contributions are often ignored and have not been measured before in vibrated systems.

In a quest for a local equation of state we have related the local pressure to the local temperature
and density. This allowed us to obtain a constitutive relation for the pressure directly from
the simulations and test its dependency on the system parameters. It has never been verified
before whether a local equation of state indeed exists for driven granular gases, even though
various proposals have been used. For small inelasticities the constitutive relation extracted
from the simulations is largely independent of the global system parameters and can therefore
be regarded as a local equation of state. In systems of higher inelasticity, the constitutive
relation does depends on the global area fraction as well as on the geometry of the sample.
This makes the hydrodynamic description severely more complex, even though it does not
question it in general.

The generalization of Fourier’s law of thermal conductance for granular systems relates the
local heat flux to local gradients of density and temperature. Again, its validity has never
been tested. To do so, we fitted the measured heat flux to the generalized Fourier law and
extracted the corresponding transport coefficients which we assumed to be constant throughout
the sample. As long as the temperature and density inhomogeneities stay sufficiently low and
the systems are not too inelastic, the fit to the measured data is very good. In particular, the
two-parameter fit is still very good at moderate inelasticities where the standard Fourier law
fails. For larger gradients and/or stronger inelasticities the fit becomes worse and deviations
can no longer be ignored. Plotting the corresponding transport coefficients as a function of
the coefficient of restitution exhibits a strikingly non-monotonic behavior. The details of this
non-monotonicity depend on the global area fraction.

Furthermore, we have measured local velocity distributions. In particular, the method used
allowed us to obtain the very-high-velocity tails in much greater detail than usually found in the

105



106 11. Summary and Outlook

literature. These tails are different for the two velocity components parallel and perpendicular
to the driving walls. Moreover, they depend on the position in the sample as well as on the
coefficient of restitution and the global area fraction. Interestingly, even in the middle of the
sample a signature of the driving walls can be found in the high velocity tails.

Finally we explored homogeneously driven systems of rough particles with Coulomb friction
as described by the Walton model. Using a Pseudo-Liouville operator we calculated the dy-
namic evolution of the translational and rotational granular temperatures in mean field theory
and compared the results to Event-Driven simulations. The agreement is very good even though
we assumed Gaussian velocity distributions, molecular chaos, and spatial homogeneity in the
analytic calculations. Additionally, we have introduced effective coefficients of tangential resti-
tution in three levels of approximation to the full Walton model. Using these coefficients to
calculate the mean field granular temperatures we find that the crudest approximation already
captures the behavior of the simulations qualitatively, while only the full Walton model is able
to predict the correct behavior for the full range of parameters.

To conclude, one has to acknowledge that the stationary state of a driven granular gas is by
no means universal. In contrast to the corresponding elastic systems it shows peculiar features
that depend on the details of the driving mechanism as well as on the geometry of the system,
the boundary conditions and the precise values of the system parameters.

We plan to extend our studies in various directions. As a further step towards full granular
hydrodynamics of realistic particles it is straightforward to also investigate hydrodynamic fields
and velocity distributions of rough particles with Coulomb friction between vibrating walls.
Again, the question arises to what extent the additional parameters affect the local equation
of state, generalization of Fourier’s law, and velocity distributions. In this context it would be
particularly interesting to study the effects of gravity for better comparison with experiments
and also to investigate three-dimensional systems. Polydisperse mixtures of particles with
different material constants and different sizes could be studied as well. Finally, one might
also investigate other driving mechanisms, like vibrations with finite frequency and non-zero
amplitude. Other possibilities are sinusoidal driving, walls at fixed temperatures, and sheared
systems. Work along these lines is in progress.



A. Heat Flux for Non-Zero Velocity Fields

Here we recall the derivation of the general case where the velocity field V (r, t) is non-zero. In
this case, arriving at an equation similar to (4.35) is a little more elaborate but straightforward.
The result will be Eqs. (4.36) and (4.37). When it cannot be assumed that the velocity field is
zero the term within the parentheses at the right hand side of Eq. (4.28) on page 26 reads

N∑

i=1

(mi

2
|V (r, t)|2(V (r, t) + ṽi(r, t)) +

mi

2
|ṽi(r, t)|2(V (r, t) + ṽi(r, t))

+miṽi(r, t) · V (r, t)(V (r, t) + ṽi(r, t))
)

Φ(r − ri) (A.1)

Noting that
∑N

i=1miṽi(r, t) Φ(r − ri) = p(r, t) − ρm(r, t)V (r, t) = 0, this simplifies to

N∑

i=1

(mi

2
|V (r, t)|2 V (r, t) +

mi

2
|ṽi(r, t)|2 ṽi(r, t)

+
mi

2
|ṽi(r, t)|2 V (r, t) +mi [ṽi(r, t) · V (r, t)] ṽi(r, t)

)
Φ(r − ri)

As already defined in Eq, (4.29), the kinetic part of the heat flux is

qkin(r, t) :=
N∑

i=1

mi

2
|ṽi(r, t)|2 ṽi(r, t) Φ(r − ri) (A.2)

Noting that
∑N

i=1
mi
2 |ṽi(r, t)|2 V (r, t) Φ(r − ri) = ρ(r, t) T (r, t) V (r, t) and∑N

i=1mi [ṽi(r, t) · V (r, t)] ṽi(r, t) Φ(r − ri) = σkin
kl (r, t) Vl(r, t) ek (sum over double

indices) we can write

∂

∂t
E(r, t) =

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri) −∇r ·
(m

2
ρ(r, t) |V (r, t)|2 V (r, t)

+qkin(r, t) + ρ(r, t) T (r, t) V (r, t)

+σkin
kl (r, t) Vl(r, t) ek

)
(A.3)
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Using E(r, t) = m
2 ρ(r, t) |V (r, t)|2 + 2

dρ(r, t) T (r, t), where d is the dimension we get

∂

∂t

[
2

d
ρ(r, t) T (r, t)

]
+

∂

∂t

[m
2
ρ(r, t) |V (r, t)|2

]
=

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri)

− V (r, t) · ∇r

(m
2
ρ(r, t) |V (r, t)|2

)

− m

2
ρ(r, t) |V (r, t)|2 ∇r · V (r, t)

−∇r · qkin(r, t)

− V (r, t) · ∇r [ρ(r, t) T (r, t)]

− ρ(r, t) T (r, t) ∇r · V (r, t)

−∇r ·
(
σkin

kl (r, t) Vl(r, t) ek

)
(A.4)

The material derivative Dt is defined as Dt := ∂/∂t+ V (r, t) · ∇r. Therefore, we get

Dt

[
2

d
ρ(r, t) T (r, t)

]
+Dt

[m
2
ρ(r, t) |V (r, t)|2

]
=

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri)

− m

2
ρ(r, t)|V (r, t)|2 ∇r · V (r, t)

−∇r · qkin(r, t)

− ρ(r, t) T (r, t) ∇r · V (r, t)

−∇r ·
(
σkin

kl (r, t) Vl(r, t) ek

)
(A.5)

Using the mass balance equation Dtρ(r, t) + ρ(r, t)∇r · V (r, t) = 0 this reduces to

ρ(r, t)Dt

(2

d
T (r, t) +

m

2
|V (r, t)|2

)
=

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri)

−∇r · qkin(r, t)

−∇r ·
(
σkin

kl (r, t) Vl(r, t) ek

)
(A.6)

Noting that σkin
kl (r, t) = σkl(r, t) − σint

kl (r, t) and defining

qintv(r, t) := −σint
kl (r, t)Vl(r, t) ek ≡ −σint(r, t) · V (r, t) (A.7)

we write

ρ(r, t)Dt

(2

d
T (r, t) +

m

2
|V (r, t)|2

)
=

1

∆t

N∑

i=1

(∆Ei) Φ(r − ri)

−∇r · [qkin(r, t) + qintv(r, t)]

−∇r · (σkl(r, t) Vl(r, t) ek) (A.8)
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The last term of Eq. (A.8) is given by −∂k(σkl(r, t) Vl(r, t)) = −σkl(r, t) ∂kVl(r, t) −
Vl(r, t)∂kσkl(r, t). Its last part can be transformed using the momentum balance
equation, mρ(r, t)DtVl(r, t) + ∂kσkl(r, t) = 0 such that −Vl(r, t)∂kσkl(r, t) =

mρ(r, t)Vl(r, t)DtVl(r, t) = m
2 ρ(r, t)Dt|V (r, t)|2.

Therefore, we get

ρ(r, t)DtT (r, t) =
1

∆t

N∑

i=1

(∆Ei) Φ(r − ri)

−∇r · [qkin(r, t) + qintv(r, t)]

− σkl(r, t) ∂kVl(r, t) (A.9)

The term 1
∆t

∑N
i=1(∆Ei) Φ(r − ri) can be treated exactly as shown in Sec. 4.3.3. It yields the

energy loss term ζ(r, t) , cf. Eq. (4.32), and the part of the collisional contribution to the heat
flux qinto(r, t), cf. Eq. (4.34), that present for zero-velocity fields, too. The result is given in
Eqs. (4.36), (4.37), and (4.38).
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B. Simple Energy-Balance Argument for
Two Distinctively Driven Walls

For two different walls with coefficients of restitution αw1
and αw2

driven by different driving
velocities vdr1 and vdr2 a careful consideration of the two walls, analogous to Eq. (3.7), yields
the very similar result

dT

dt
=
m

Lx

√
T

2πm

(
v2
dr + 4α̃w

√
T

2πm
vdr − εeffψ

π

2

T

2m

)
, (B.1)

where ψ and εeff have been introduced in Eqs. (3.9) and (3.8), respectively. Note that εeff is
a function of αw, which will be defined in Eq. (B.2). Additionally α̃w and vdr have not been
defined, yet. They are given by

v2
dr :=

v2
dr1

+ v2
dr2

2
≥ 0, α2

w :=
α2

w1
+ α2

w2

2
≥ 0, α̃wvdr :=

αw1
vdr1 + αw2

vdr2

2
≥ 0 .

(B.2)

With
ψeff := εeffψ/α̃w (B.3)

the final result of the simple energy balance argument for the stationary state temperature with
two distinct walls is

T =

(
2

π

)3 mv2
dr

ψ2
eff

(
1 +

√
1 + (π/2)2 ψeff/α̃w

)2

. (B.4)

Of course, this equation simplifies to Eq. (3.12) for two identical walls and further simplifies
to Eq. (3.13) if those identically driven walls are elastic.
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C. Time Evolution of Energies Using a
Pseudo-Liouville Operator Approach

C.1. Time Evolution in Terms of the Pseudo-Liouville
Operator

We show here in detail the derivation of the dynamic equations (10.4) with coefficients for
model E, Eqs. (10.23) and (10.24), in chapter 10 as well as the refined balance equation (3.14)
in chapter 3. Using a pseudo-Liouville operator approach we calculate differential equations
for the x- and y- component of the translational temperature as well as the (z-component of
the) rotational temperature for the two-dimensional problem. The beginning of the calculations
will be very general. Special cases will be implemented as late as possible in order to use the
same calculation for different settings, e.g. free cooling, homogeneously driven and driven
through the walls. For comparison we will cite the free cooling result of the 3D problem in
Sec. C.2.3.

Let the vectors of position, translational and rotational velocity of a particle k, in a two-
dimensional plane (x,y) with only vertical spin (z), be defined as rk = (rk,x, rk,y, 0),
vk = (vk,x, vk,y, 0), and ωk = (0, 0, ωk) .

The time evolution of a dynamic variable A(t) that depends on time only through the positions
and velocities of N particles, can be determined by means of a pseudo-Liouville operator L+

for t > 0

A(t) = exp(iL+t)A(0) . (C.1)

The pseudo-Liouville operator L+ can be decomposed into four parts L+ = L0+Lpp
+ +Lpw

+ +

LHdr
+ . The first one, L0 describes the free streaming of particles

L0 = −i
N∑

k=1

vk · ∇rk
, (C.2)

the second and third one describe hard-core particle-particle (pp) and particle-wall (pw) colli-
sions. Since the wall can be interpreted as an infinitely large particle at a fixed position, those
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two parts are very similar. Finally, LHdr
+ , can be used to model any type of homogeneous

driving, e.g. stochastic driving as used in chapter 10.

The particle-particle contribution Lpp
+ is a sum over all possible pairs of particles (k, l),

Lpp
+ =

1

2

∑

l 6=k

T kl
+ , where

T kl
+ = i (vkl · r̂kl) Θ(−vkl · r̂kl) δ(|rkl| − a) (bkl

+ − 1)

(C.3)

describes hard-core collisions between particles k and l. The operator bkl
+ replaces the linear

and angular momenta of the two particles k and l before collision by the corresponding ones
after collision, according to Eqs. (2.4) and (2.5). Θ(x) is the Heaviside step–function, and
we have introduced the notation rkl = rk − rl and r̂kl = rkl/|rkl|. Equation (C.3) has the
following interpretation. The factor vkl · r̂kl gives the flux of incoming particles. The Θ- and
δ-functions specify the conditions for a collision to take place. A collision between particles
k and l happens only if the two particles are approaching each other which is ensured by
Θ(−vkl · r̂kl). At the instant of a collision the distance between the two particles has to vanish
when two particles touch, which is expressed by δ(|rkl| − a). Finally, (bkl

+ − 1) generates the
change of linear and angular momenta according to Eqs. (2.4) and (2.5).

The particle-wall contribution is a sum over all possible pairs of one particle and one wall,
where the sum of l runs from 1 to the number of walls in the system NW ,

Lpw
+ =

NW∑

l=1

N∑

k=1

TWlk
+ , where

TWlk
+ = i (n̂l · vk) Θ(−n̂l · vk) δ

(
|n̂l · (rk − wl) | −

a

2

)
(bWlk

+ − 1) ,

(C.4)

where n̂l is the normal vector of wall l pointing into the system and w l some point of wall l.
(bWlk

+ −1) generates the change of linear and angular momentum of particle k according to the
particle-wall collision rule (2.17).

The ensemble average, 〈...〉t , of a dynamic variable, A, is defined by

〈A〉t =

∫
dΓρ(0)A(t) =

∫
dΓρ(t)A(0)

=

∫ N∏

k=1

(d2rkd
2vkdωk) ρ(t)A(0) .

(C.5)
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Here ρ(t) = exp (−iL†
+t) ρ(0) is the N -particle distribution function, whose time develop-

ment is governed by the adjoint L†
+ of the time evolution operator L+. Differentiating equation

(C.5) with respect to time yields

d

dt
〈A〉t =

∫
dΓρ(0)

d

dt
A(t) =

∫
dΓρ(0)iL+A(t)

=

∫
dΓρ(0) exp (iL+t)iL+A(0)

=

∫
dΓρ(t)iL+A(0) = 〈iL+A〉t .

(C.6)

We are interested in the following averaged energies per particle

1

2
Tx/y := Ex/y =

1

N

N∑

i=1

m

2
v2
i,x/y

1

2
Trot := Erot =

1

N

N∑

i=1

I

2
ω2

i,z (C.7)

as well as the total translational energy Etr = Ex + Ey and the total kinetic energy E =

Etr + Erot. If the system is invariant under exchange of x and y, Tx = Ty = Ttr. This is the
case for a homogeneously heated system without walls like in chapter 10.

Assuming a homogeneous density distribution and Gaussian velocity distributions the N -
particle distribution function is given by

ρ(t) ∝
∏

k<l

Θ(|rkl| − a) exp

{
−
(

Ex

Tx(t)
+

Ey

Ty(t)
+

Erot

Trot(t)

)}
(C.8)

where the product of Heaviside functions accounts for the excluded area (volume). Hence we
get three coupled differential equations for the time evolution of the translational and rotational
energies. Additionally, we restrict the homogeneous driving to the translational degrees of
freedom and get

1

2

d

dt
Tx/y(t) =

d

dt
〈Ex/y〉t = 〈iL+Ex/y〉t = Hdr + 〈iLpp

+ Ex/y + 〈iLpw
+ Ex/y〉t

1

2

d

dt
Trot(t) =

d

dt
〈Erot〉t = 〈iL+Erot〉t = 〈iLpp

+ Erot〉t + 〈iLpw
+ Erot〉t (C.9)

where iLpp
+ is the pseudo-Liouville collision operator for particle-particle collisions and iLpw

+

is the pseudo-Liouville operator for particle-wall collisions as defined above. Hdr = fdrTdr

is the homogeneous driving term where fdr is the driving frequency and Tdr is the driving
temperature. For a homogeneously driven system, Tx = Ty = Ttr. In that case we can replace
the x/y by tr but have to multiply the left hand side by two because Ttr describes two degrees
of freedom.
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C.2. Particle-Particle Contribution 〈iLpp
+ Ex/y/tr/rot〉t to

d
dtTx/y/tr/rot(t)

To minimize the number of indices we show here the particle-particle contribution of the time
derivative of Tx/y. For Ttr we only have to add the x- and y-contributions and divide by two.
For Trot nothing changes except ∆Ex/y [as later given in Eq. (C.15)] has to be replaced by
∆Erot [as later given in Eq. (C.53)] and, of course, in the very next equation (C.10) we need to
replace the |vn,x/y|2 by |ωn|2. The particle-particle contribution to the time derivative of Tx/y

is given by

〈iLpp
+ Ex/y〉t

(∗)
= 〈iLU+Ex/y〉t = 〈1

2

∑

k 6=l

iT kl
+ Ex/y〉t = 〈1

2

N∑

k=1

N∑

l=1
l6=k

iT kl
+ Ex/y〉t

= 〈1
2

N∑

k=1

N∑

l=1
l6=k

iT kl
+

1

N

N∑

n=1

m

2
|vn,x/y|2〉t

(∗∗)
=

1

2N
〈

N∑

k=1

N∑

l=1
l6=k

m

2
iT kl

+ (|vk,x/y|2 + |vl,x/y|2)〉t

=
1

2N

N∑

k=1

N∑

l=1
l6=k

m

2

∫ N∏

n=1

drj,xdrj,ydvj,xdvj,ydωj ρ(r,v,ω) iT kl
+ (|vk,x/y|2 + |vl,x/y|2)

(∗∗∗)
=

1

2N
N(N − 1)

∫ N∏

n=1

d2rjd
2vjdωj ρ(r,v,ω) iT 12

+

m

2
(|v1,x/y|2 + |v2,x/y|2)

(C.10)

The equality (∗) holds because the free streaming of particles yields no change in energy. (∗∗)
holds because iT kl

+ |vn,x/y|2 = 0 if n 6= k and n 6= l. Finally, (∗ ∗ ∗) is true because this
distribution function ρ (Maxwell-Boltzmann distribution) is invariant under permutation of the
components. Defining

dΓ : =

N∏

j=1

d2rjd
2vjdωj

∏

l 6=j

Θ(|rjl| − a) exp

(
−

N∑

k=1

[
mv2

k,x

2Tx(t)
+
mv2

k,y

2Ty(t)
+

Iω2
k

2Trot(t)

])

(C.11)

and using the definition of iT 12
+ , Eq. (C.3), we can write

〈iLpp
+ Ex/y〉t = −N − 1

2
∫
dΓ

∫
dΓ (r̂12 · v12) δ(|r12| − a)Θ(−r̂12 · v̂12) ∆Ex/y .

The change of partial energy ∆Ex/y := m
2 (b12+ − 1)(v2

1,x/y + v2
2,x/y) that results from a

collision of particle 1 and 2 depends only on the phase space variables of particle 1 and 2.
Since we assume spatial homogeneity this change of energy can only depend on the relative
distance vector r12 = r1 − r2 as well as the relative translational and rotational velocities
v12 = v1 − v2 and ω12 = ω1 + ω2. Further, we assume instantaneous collisions. Therefore
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the change of energy can only depend on the direction of the distance vector r̂12 = r1−r2

|r1−r2| .
Now we can perform the integrations over d2r3 . . . d

2rN , d2v3 . . . d
2vN and dω3 . . . dωN . The

integration over d2v3 . . . d
2vN and d2ω3 . . . d

2ωN are simple Gaussian integrals. To integrate
over d2r3 . . . d

2rN we introduce two more two-dimensional integrals over two-dimensional δ
functions, δ2(r) := δ(rx)δ(ry),

∫
d2R1d

2R2δ
2(R1 − r1)δ

2(R2 − r2). The pair correlation
function is defined as

g(|R1 − R2|)
V 2

:=

∫ N∏
j=1

d2rj
∏
l 6=j

Θ(|rjl| − a)δ2(R1 − r1)δ
2(R2 − r2)

∫ N∏
j=1

d2rj
∏
l 6=j

Θ(|rjl| − a)

, (C.12)

where V is the area of the system. Using R12 := R1 − R2 and not writing down the explicit
time dependence of the temperatures any more we obtain

〈iLpp
+ Ex/y〉t = −N − 1

2V 2

(
m

2πTx

)(
m

2πTy

)(
I

2πTrot

) ∫
d2R1d

2R2d
2v1d

2v2d
2ω1dω2 ×

g(|R12|) exp

(
−m

2

[
v2
1,x + v2

2,x

Tx
+
v2
1,y + v2

2,y

Ty

]
− I

2

ω2
1 + ω2

2

Trot

)
×

(R̂12 · v12) δ(|R12| − a)Θ(−R̂12 · v̂12) ∆Ex/y.

Since the change of energy ∆Ex/y depends only on R12 = R1 − R2, v12 = v1 − v2,
ω12 = ω1 + ω2 we introduce the variables

r := R1 − R2, v :=
v1 − v2√

2
, ω :=

ω1 + ω2√
2

R := R1, V :=
v1 + v2√

2
, Ω :=

ω1 − ω2√
2

. (C.13)

The Jacobian of this transformation is 1. The expression to integrate over is independent of R

such that integration over d2R yields the area V . We write r = r r̂ in polar coordinates (r, φr)

and can integrate over dr. The integrals over d2V and dΩ are plain Gaussians. We obtain

〈iLpp
+ Ex/y〉t = − 1√

2
a n0 g(a)

(
m

2πTx

) 1
2
(

m

2πTy

) 1
2
(

I

2πTrot

) 1
2
∫
dφrdvxdvydω ×

(r̂ · v) Θ(−r̂ · v̂) exp

(
−m

2 v
2
x

Tx
+

−m
2 v

2
y

Ty
+

− I
2ω

2

Trot

)
∆Ex/y.

(C.14)

with the number density n0 := (N − 1)/V ≈ N/V .
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C.2.1. PP Contribution 〈iLpp
+ Ex/y〉t to the Change of Translational Energy

To solve the integrals above we need to take a look at the change of energy ∆Ex/y(r̂,v,ω):

2

m
∆Ex/y := (b12+ − 1)(|v1,x/y|2 + |v2,x/y|2) = (|v′1,x/y|2 + |v′2,x/y|2) − (|v1,x/y|2 + |v2,x/y|2)

(2.4)
= (|v1,x/y + ∆vx/y|2 + |v2,x/y − ∆vx/y|2) − (|v1,x/y|2 + |v2,x/y|2)

= 2 |∆vx/y|2 + 2 v12,x/y ∆vx/y

(2.5)
= 2

(
1 + α

2

)2

(r̂12 · v12)
2 (r̂12 · êx/y)

2

+ 2η2
[(

v12 − r̂12[r̂12 · v12] +
(a

2

)
[r̂12 × ω12]

)
· êx/y

]2

+ 2η(1 + α)(r̂12 · v12)(r̂12 · êx/y)
[(

v12 − r̂12[r̂12 · v12] +
(a

2

)
[r̂12 × ω12]

)
· êx/y

]

− (1 + α)(r̂12 · v12)(r̂12 · êx/y)(v12 · êx/y)

− 2η
[(

v12 − r̂12[r̂12 · v12] +
(a

2

)
[r̂12 × ω12]

)
· êx/y

]
(v12 · êx/y)

= (1 + α)2(r̂ · v)2 (r̂ · êx/y)
2 + 4η2

[(
v − r̂[r̂ · v] +

(a
2

)
[r̂ × ω]

)
· êx/y

]2

+ 4η(1 + α)(r̂ · v)(r̂ · êx/y)
[(

v − r̂[r̂ · v] +
(a

2

)
[r̂ × ω]

)
· êx/y

]

− 2(1 + α)(r̂ · v)(r̂ · êx/y)(v · êx/y)

− 4η
[
(v − r̂[r̂ · v] +

(a
2

)
[r̂ × ω]

)
· êx/y

]
(v · êx/y)

(C.15)

where, again, v12 := v1 − v2, ω12 := ω1 + ω2 and η = q
1+q

1+β
2 with β = β(γ)

(2.8)
=

constmin (| cot γ|, | cot γ0|) being a function of | cot γ| := |g·r̂|
|g×r̂| and g

(2.1)
= v12 + a

2 r̂12 ×
ω12 =

√
2(v + a

2 r̂ × ω). Annotation: It can be checked easily that

2

m
∆Etr =

2

m
(∆Ex + ∆Ey)

= −(1 − α2)(r̂ · v)2 + 4η(η − 1)(|v|2 − (r̂ · v)2) + (aη)2|r̂ × ω|2

+ 2aη(2η − 1) (r̂ × ω) · v
(C.16)

as usual. In that case we could easily integrate over dφr to yield 2π because we could freely
choose the coordinate system for integrating over v. Calculating 〈iLpp

+ Ex〉t and 〈iLpp
+ Ey〉t

separately requires some extra work because our coordinate systems are fixed. Because it
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does no harm to postpone the integration over dφr – not even for the case of ∆Etr – we first
substitute

ω⊥ :=
√

2 (r̂ × ω)

g :=
√

2
(
v +

a

2
(r̂ × ω)

)
=

√
2v +

a

2
ω⊥, (C.17)

The Jacobian of this substitution is 1/23/2 . Eq. (C.14) becomes

〈iLpp
+ Ex/y〉t = − 1

2π3/2
a n0 g(a)

(
m

4Tx

) 1
2
(
m

4Ty

) 1
2
(

I

4Trot

) 1
2
∫
dφrdgxdgydω⊥ (r̂ · g) Θ(−r̂ · ĝ) ×

exp

(
−m

[
(g − a

2ω⊥) · êx

]2

4Tx
− m

[
(g − a

2ω⊥) · êy

]2

4Ty
− I|ω⊥|2

4Trot

)
∆Ex/y

(C.18)

where the change of partial energy reads

2

m
∆Ex/y =

(1 + α)2

2
(r̂ · g)2 (r̂ · êx/y)

2 + 2η2
[
(g − r̂[r̂ · g]) · êx/y

]2

+ 2η(1 + α)(r̂ · g)(r̂ · êx/y)
[
(g − r̂[r̂ · g]) · êx/y

]

− (1 + α)(r̂ · g)(r̂ · êx/y)((g − a

2
ω⊥) · êx/y)

− 2η
[
(g − r̂[r̂ · g]) · êx/y

]
((g − a

2
ω⊥) · êx/y) .

(C.19)

Again, it can be easily checked that

2

m
∆Etr =

2

m
(∆Ex + ∆Ey)

= −(1 − α2)

2
(r̂ · g)2 + 2η(η − 1)

(
|g|2 − (r̂ · g)2

)
+ aη g · ω⊥

(C.20)

Now we express r̂ and g in polar coordinates such that the angle between r̂ and g is called γ
and the angle between r̂ and ex is called φr, r̂ → φr (r̂ is already normalized) and g → (g, γ).
Remembering that ω⊥ ∝ r̂ × ω and ω · r̂ = 0 we get:

r̂ · êx = cos (φr), r̂ · êy = sin (φr) (C.21)

r̂ · g = g cos γ, g · ω = gω⊥ sin γ

g · êx = g cos (φr − γ), g · êy = g sin (φr − γ)

ω⊥ · êx = ω⊥ sin (φr), ω⊥ · êy = −ω⊥ cos (φr)
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The Jacobian of this transformation is g. We get

〈iLpp
+ Ex/y〉t = − 1

2π3/2
a n0 g(a)

(
m

4Tx

) 1
2
(
m

4Ty

) 1
2
(

I

4Trot

) 1
2

3
2
π∫

π
2

dγ

∞∫

0

dg

∞∫

−∞

dω⊥

2π∫

0

dφr g
2 cos γ ×

exp

(
− m

4Tx

[
g2 cos2 (φr − γ) − agω⊥ sinφr cos (φr − γ) +

a2

4
ω2
⊥ sin2 φr

])
×

exp

(
− m

4Ty

[
g2 sin2 (φr − γ) + agω⊥ cosφr sin (φr − γ) +

a2

4
ω2
⊥ cos2 φr

])
×

exp

(
− Iω2

⊥
4Trot

)
∆Ex/y .

(C.22)

In this notation the changes of partial energies read

2

m
∆Ex =

1 − α2

2
g2 cos2 γ cos2 φr +

[
2η(η − 1)g2 sin2 γ + aηgω⊥ sinγ

]
sin2 φr

+
[
(1 + α)

{
(2η − 1)g sin γ +

a

2
ω⊥
}
g cos γ − 2ηg2 sinγ cos γ

]
sinφr cosφr ,

(C.23)

2

m
∆Ey =

1 − α2

2
g2 cos2 γ sin2 φr +

[
2η(η − 1)g2 sin2 γ + aηgω⊥ sin γ

]
cos2 φr

−
[
(1 + α)

{
(2η − 1)g sin γ +

a

2
ω⊥
}
g cos γ − 2ηg2 sin γ cos γ

]
sinφr cosφr ,

(C.24)

and

2

m
∆Etr =

2

m
(∆Ex + ∆Ey) = −(1 − α2)

2
g2 cos2 γ + 2η(η − 1)g2 sin2 γ + aηgω⊥ sin γ

which is in agreement with [HCZ+05]. Additionally, we define

A :=
ma2

16

[
sin2 φr

Tx
+

cos2 φr

Ty
+

q

Trot

]
=

ma2

16Ttr
x2

1,

B :=
ma

8A

[
sinφr cos (φr − γ)

Tx
− cosφr sin (φr − γ)

Ty

]
=

2

a

x2

x2
1

, and

C :=
m

4

[
cos2 (φr − γ)

Tx
+

sin2 (φr − γ)

Ty

]
−AB2 =

m

4Ttr

(
x2

3 −
x2

2

x2
1

)
(C.25)

where Ttr := (Tx + Ty)/2, x2
1 := Ttr

Tx
sin2 φr + Ttr

Ty
cos2 φr + qTtr

Trot
, x2 := 1

2(Ttr

Tx
+ Ttr

Ty
) sin γ +

1
2 (Ttr

Tx
− Ttr

Ty
) sin (2φr − γ), and x2

3 := Ttr

Tx
cos2 φr + Ttr

Ty
sin2 φr. Substituting p1 :=

√
Cg for
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g and p2 :=
√
A (ω⊥ − Bg) for ω⊥ leads to Gaussian integrals over p1 and p2, which can be

solved easily to yield

〈iLpp
+ Ex/y〉t = − 3

8
√
π
a n0 g(a)

(
m

4Tx

) 1
2
(
m

4Ty

) 1
2
(

I

4Trot

) 1
2

×
3
2
π∫

π
2

dγ cos γ

2π∫

0

dφr
m

2

λ1,x/y + Bλ2,x/y√
AC5

,

(C.26)

where the energy changes, (2/m)∆Ex/y = λ1,x/yg
2 + λ2,x/ygω⊥ have been expressed using

λ1,x :=
1 − α2

2
cos2 γ cos2 φr + 2η(η − 1) sin2 γ sin2 φr

+ [(1 + α)(2η − 1) − 2η] sin γ cos γ sinφr cosφr

λ2,x := aη sin γ sin2 φr + (1 + α)
a

2
cos γ sinφr cosφr

λ1,y :=
1 − α2

2
cos2 γ sin2 φr + 2η(η − 1) sin2 γ cos2 φr

− [(1 + α)(2η − 1) − 2η] sin γ cos γ sinφr cosφr

λ2,y := aη sin γ cos2 φr − (1 + α)
a

2
cos γ sinφr cosφr ,

(C.27)

Special Case 1: PP Contribution 〈iLpp
+ Etr〉t Assuming an Isotropic Translational

Temperature Ttr

Assuming an isotropic temperature Tx(t) = Ty(t) = Ttr(t) for all times, Eq. (C.26) simplifies
significantly: The coefficients A, B, and C, Eq. (C.25), simplify to Ã = A|Tx=Ty = ma2

16Ttr
x̃2

1 =
ma2

16Ttr

x2

x2−1
, where x̃2

1 = x2
1|Tx=Ty = 1 + qTtr/Trot and x2 = 1 + Trot/[qTtr], B̃ = B|Tx=Ty =

2
a

sin γ
ex2
1

= 2
a

x2−1
x2 sin γ, and C̃ = C|Tx=Ty = m

4Ttr

(
1 − sin2 γ

ex2
1

)
= m

4Ttrx2

(
1 − (x2 − 1) cos2 γ

)
,

i.e. all three become independent of φr while still being functions of Tx and Ty. Additionally,
B̃ and C̃ depend also on γ. Then the integration over φr in Eq. (C.26) can be performed to yield
a factor π. We get

〈iLpp
+ Ex/y〉t = −3

8

√
π a n0 g(a)

(
m

4Ttr

)(
I

4Trot

) 1
2

3
2
π∫

π
2

dγ cos γ
m

2

λ̃1 + B̃λ̃2√
ÃC̃5

, (C.28)

where λ̃1 = 1−α2

2 cos2 γ + 2η(η − 1) sin2 γ and λ̃2 = aη sinγ. Eq. (C.28) can be simplified
to yield

〈iLpp
+ Ex/y〉t = −3

4

√
π

m
a n0 g(a)T

3
2

tr x
4

3
2
π∫

π
2

dγ

(
1−α2

2 cos3 γ + 2η
(
η − 1

x2

)
sin2 γ cos γ

)

(1 − (x2 − 1) cos2 γ)5/2
,

(C.29)
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Note that 〈iLpp
+ Ex〉t = 〈iLpp

+ Ey〉t = 1
2〈iL

pp
+ Ex/y〉t. We will go on evaluating 〈iLpp

+ Ex/y〉t.

Up to this point we have not specified, whether we are going to use constant coefficients of
restitution or Coulomb friction. All this is hidden in η which is either a constant or a function
of γ. We are interested in the Coulomb friction case so we use η = η(γ). We introduce the
notation η = 1+α

2 µmin {| cot γ0|, | cot γ|} ≡ min {η0,
1+α

2 µ| cot γ|} with η0 := q
1+q

1+β0

2

and obtain

〈iLpp
+ Etr〉t = −3

2

√
π

m
a n0 g(a)T

3
2

tr x
4

{
2

3

1 − α2

x4

+

γ0∫

π
2

dγ
cos γ

(1 + (x2 − 1) cos2 γ)5/2

(
2µ

1 + α

x2
sinγ cos γ + µ2(1 + α)2 cos2 γ

)

+4η0

(
η0 −

1

x2

) π∫

γ0

dγ
cos γ sin2 γ

(1 + (x2 − 1) cos2 γ)5/2





(C.30)

After performing the last integration the result can be written in the form

d

dt
Ttr = Hdr −GT

3/2
tr {Ar

+
η0

2

1 − η0x
2

(1 + x2 cot2 γ0)3/2
+
η0

2

x2 cot2 γ0

(1 + x2 cot2 γ0)3/2

− η2
0 tan2 γ0

(
1 − 1+3

2x
2 cot2 γ0

(1 + x2 cot2 γ0)3/2

)}
(C.31)

where G = 4
√

π
m a n0 g(a), which is the same as Eq. (10.5), and Ar = 1−α2

4 .

Special Case 2: PP Contribution 〈iLpp
+ Ex/y〉t for Smooth Particles

For smooth disks or spheres, η = 0. Going back to Eq. (C.26) the simplified lambdas read

λ1,x :=
1 − α2

2
cos2 γ cos2 φr − (1 + α) sin γ cos γ sinφr cosφr

λ2,x := (1 + α)
a

2
cos γ sinφr cosφr

λ1,y :=
1 − α2

2
cos2 γ sin2 φr + (1 + α) sin γ cos γ sinφr cosφr

λ2,y := − (1 + α)
a

2
cos γ sinφr cosφr .

(C.32)
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They have to be inserted into Eq. (C.26). We get

〈iLpp
+ Ex/y〉t = −3

√
π

m
a n0 g(a)

(
Ttr

Tx

) 1
2
(
Ttr

Ty

) 1
2
(
qTtr

Trot

) 1
2

T
3
2
tr ×

3
2
π∫

π
2

dγ cos γ

2π∫

0

dφr

1−α2

2
cos2 γ
sin2 γ

± (1 + α)
[

x2

x2
1

− sinγ
]
cos γ sinφr cosφr

√
x2

1

(
x2

3 −
x2
2

x2
1

)5
,

(C.33)

where x2
1 := Ttr

Tx
sin2 φr + Ttr

Ty
cos2 φr + qTtr

Trot
, x2 := 1

2(Ttr

Tx
+ Ttr

Ty
) sin γ + 1

2(Ttr

Tx
−

Ttr

Ty
) sin (2φr − γ), and x2

3 := Ttr

Tx
cos2 φr + Ttr

Ty
sin2 φr as defined in the lines below Eq. (C.25).

An easier approach for smooth particles is to perform the integration over φr before doing
anything else. Especially, we want to avoid substitution (C.17). Therefore, we go back to Eq.
(C.14) with ∆Ex/y as given in Eq. (C.15). Since η ≡ 0 for smooth particles, ∆Ex/y simplifies
to

2

m
∆Ex/y = (1 + α)2(r̂ · v)2 (r̂ · êx/y)

2 − 2(1 + α)(r̂ · v)(r̂ · êx/y)(v · êx/y) (C.34)

such that we can do the integration over dφr. Therefore, we integrate

2π∫

0

dφr

(
r̂ · v Θ(−r̂ · v̂)

2

m
∆Ex

)
=

2π∫

0

dφr

(
v cos (φr − φv) Θ(− cos (φr − φv))

2

m
∆Ex

)

=
4

3
(1 + α)

(−1 − α

5
(1 + 3 cos2 φv) + 2 cos2 φv

)
v3

=
4

3

(
Fx + F0 cos2 φv

)
v3 =: v3 2

m
∆Ẽx

(C.35)

and
2π∫

0

dφr

(
r̂ · v Θ(−r̂ · v̂)

2

m
∆Ey

)
=

2π∫

0

dφr

(
v cos (φr − φv) Θ(− cos (φr − φv))

2

m
∆Ey

)

=
4

3
(1 + α)

(−1 − α

5
(4 − 3 cos2 φv) + 2 sin2 φv

)
v3

=
4

3

(
Fy −F0 cos2 φv

)
v3 =: v3 2

m
∆Ẽy

(C.36)

with Fx := (1 + α)−1−α
5 = −1

5(1 + α)2, Fy := (1 + α) 6−4α
5 = (1 − α2) + 1

5(1 + α)2 =

(1 − α2) −Fx and F0 := (1 + α) 7−3α
5 = (1 − α2) + 2

5(1 + α)2.

[Consistency check: v3 2
m∆Ẽtr = v3 2

m∆Ẽx + v3 2
m∆Ẽy = 4

3(1 − α2)v3. This is a function
of v = |v| only. Thus, when calculating the total change of energy the integration over dφv ,
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2π∫
0

dφv v
3 2

m∆Ẽtr = 2π 4
3 (1 − α2)v3, simply yields a factor of 2π.] Inserting Eqs. (C.35) or

(C.36) into Eq. (C.14) and integrating over dω we get

〈iLpp
+ Ex/y〉t = − 1√

2
an0 g(a)

(
m

2πTx

) 1
2
(

m

2πTy

) 1
2

2π∫

0

dφv

∞∫

0

dv v ×

exp

(
−m

2

[
v2 cos2 φv

Tx
+
v2 sin2 φv

Ty

])
v3∆Ẽx/y

(C.37)

where

v3∆Ẽx/y =
2

3
m v3

(
Fx/y ±F0 cos2 φv

)
. (C.38)

The integration over v is a Gaussian type integral and we get

〈iLpp
+ Ex/y〉t = −a n0 g(a)

2π

√
π

m

1√
TxTy

2π∫

0

dφv

Fx/y ±F0 cos2 φv

(
cos2 (φv)

Tx
+ sin2 (φv)

Ty

) 5
2

(C.39)

The remaining integral is an elliptic integral, more precisely number 2.581,3 in Gradshteyn
[GR65], page 157 with a := T−1

x , b := T−1
y and k2 := max (1 − a

b , 1 − b
a ), where we assume

without loss of generality b < a. Defining k2
ba := 1 − b

a we get:

2π∫

0

dφv

Fx/y ±F0 cos2 φv
(

cos2 (φv)
Tx

+ sin2 (φv)
Ty

) 5
2

=

2π∫

0

dφv

Fx/y ±F0 cos2 φv
√
a cos2 (φv) + b sin2 (φv)

5

=
1

√
a

5

2π∫

0

dφv

Fx/y ±F0 cos2 φv
√

1 − k2
ba sin2 (φv)

5 =:
Fx/y√
a

5 f1(kba) ±
F0√
a

5 fc(kba)

(C.40)

where

f1(k) =
4

3

2k(2 − k2)

(1 − k2)2
EllipticE(k, 1/k) +

4

3

3 − 2k2

k(1 − k2)
EllipticF(k, 1/k) (C.41)

and

fc(k) = −4

3

1 − 2k2

k(1 − k2)
EllipticE(k, 1/k) +

8

3k
EllipticF(k, 1/k) (C.42)

with

EllipticE(k, 1/k) =

k∫

0

√
1 − t2/k2

1 − t2
dt

EllipticF(k, 1/k) =

k∫

0

1√
(1 − t2/k2)(1 − t2)

dt

(C.43)



C.2. Particle-Particle Contribution 〈iLpp
+ Ex/y/tr/rot〉t to d

dtTx/y/tr/rot(t) 125

For a < b and k2
ab := 1 − a

b we get:

2π∫

0

dφv

Fx/y ±F0 cos2 φv
√
a cos2 (φv) + b sin2 (φv)

5 =

3
2
π∫

−π
2

dφv

Fx/y ±F0 cos2 φv
√
a cos2 (φv) + b sin2 (φv)

5

=

2π∫

0

dφv

Fx/y ±F0 cos2 (φv − π
2 )

√
a cos2 (φv − π

2 ) + b sin2 (φv − π
2 )

5 =

2π∫

0

dφv

Fx/y ±F0 sin2 φv
√
a sin2 (φv) + b cos2 (φv)

5

=
1

√
b

5

2π∫

0

dφv

Fx/y ±F0 sin2 φv
√

1 − k2
ab sin2 (φv)

5 =:
Fx/y√
b

5 f1(kab) ±
F0√
b

5 fs(kab)

(C.44)

where

fs(k) =
4

3

1 + k2

k(1 − k2)2
EllipticE(k, 1/k) +

4

3

1

k(1 − k2)
EllipticF(k, 1/k) (C.45)

Therefore we get

〈iLpp
+ Ex/y〉t = −a n0 g(a)

2π

√
π

m
Ttr

3
2 ×

{
Θ(Tx − Ty)

(
Ty

Ttr

) 3
2

√
Ty

Tx

(
Fx/yf1(kxy) ±F0fs(kxy)

)

+ Θ(Ty − Tx)

(
Tx

Ttr

) 3
2

√
Tx

Ty

(
Fx/yf1(kyx) ±F0fc(kyx)

)
}

(C.46)

This can also be expressed without fs(k) by noting that

2π∫

0

dφv

Fx/y ±F0 cos2 φv
√
a cos2 (φv) + b sin2 (φv)

5 =
1

√
b

5

2π∫

0

dφv

Fx/y ±F0 sin2 φv
√

1 − k2
ab sin2 (φv)

5

=
1

√
b

5

2π∫

0

dφv

(Fx/y ±F0) ∓F0 cos2 φv
√

1 − k2
ab sin2 (φv)

5 =:
Fx/y ±F0

√
b

5 f1(kab) ∓
F0√
b

5 fc(kab)

(C.47)

which yields

〈iLpp
+ Ex/y〉t = −a n0 g(a)

2π

√
π

m
Ttr

3
2 ×

{
Θ(Tx − Ty)

(
Ty

Ttr

) 3
2

√
Ty

Tx

(
(Fx/y ±F0)f1(kxy) ∓F0fc(kxy)

)

+ Θ(Ty − Tx)

(
Tx

Ttr

) 3
2

√
Tx

Ty

(
Fx/yf1(kyx) ±F0fc(kyx)

)
}

(C.48)
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where Ttr = 1
2 (Tx + Ty), kxy :=

√
1 − Ty

Tx
, kyx :=

√
1 − Tx

Ty
, Fx := −1

5(1 + α)2, Fy :=

(1 − α2) + 1
5(1 + α)2 = (1 − α2) − Fx and F0 := (1 − α2) + 2

5(1 + α)2. Here again Θ(.)

is the Heaviside step function such that Θ(0) := 1
2 . Noting that Fx/y ±F0 = Fy/x we get the

final result

〈iLpp
+ Ex/y〉t = −a n0 g(a)

2π

√
π

m
Ttr

3
2 ×

{
Θ(Tx − Ty)

(
Ty

Ttr

) 3
2

√
Ty

Tx

(
Fy/xf1(kxy) ∓F0fc(kxy)

)

+ Θ(Ty − Tx)

(
Tx

Ttr

) 3
2

√
Tx

Ty

(
Fx/yf1(kyx) ±F0fc(kyx)

)
}

(C.49)

As a consistency check we validate that indeed for Tx = Ty we get 〈iLpp
+ Ex〉t = 〈iLpp

+ Ey〉t =
1
2 〈iL

pp
+ Etr〉t because Θ(0)Fy/x +Θ(0)Fx/y = 1

2(Fx +Fy) = 1
2 (1−α2) and for Tx = Ty we

find kxy = kyx = 0 and f1(0) = 2π. That means: If a system without walls etc. ever reaches
Tx = Ty then this will prevail forever. This is expected for the stationary state without walls.

For Tx = 0 and Ty = 0, of course we get 〈iLpp
+ Ex〉t = 〈iLpp

+ Ey〉t = 0.

If at some instance of time Tx = 0 while Ty 6= 0, the integrations simplify because we do not
have to integrate over vx any more but instead vx ≡ 0. In this case we use Cartesian instead of
polar coordinates. When vx = 0 we get (starting from Eqs. (C.37) and (C.38))

〈iLpp
+ Ex/y〉t = − 1√

2
a n0 g(a)

(
m

2πTy

) 1
2

∞∫

−∞

dvy exp

(
−m

2

|vy|2
Ty

)
|vy|3

[
∆Ẽx/y

]
vx=0

(C.50)

with

|vy|3
[
∆Ẽx/y

]
vx=0

=
2

3
m |vy|3Fx/y . (C.51)

Thus we get

Tx = 0 ⇒ 〈iLpp
+ Ex/y〉t = −4

3

1√
mπ

a n0 g(a) Fx/y T
3
2
y

Ty = 0 ⇒ 〈iLpp
+ Ex/y〉t = −4

3

1√
mπ

a n0 g(a) Fy/x T
3
2
x

(C.52)

in agreement with Eq. (C.49) when we remember that lim
Tx/y→0

(Tx/y/Ty/x)2f1(kyx/xy) = 8
3 and

lim
Tx/y→0

(Tx/y/Ty/x)2fc(kyx/xy) = 0.

It can be easily seen that for Tx = 0 we get 〈iLpp
+ Ex〉t > 0, while 〈iLpp

+ Ey〉t < 0 – indepen-
dently of α.
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C.2.2. PP Contribution 〈iLpp
+ Erot〉t to the Change of Rotational Energy

Similarly to 〈iLpp
+ Ex/y〉t in section C.2.1 we can calculate 〈iLpp

+ Erot〉t. The calculation is
very similar until Eq. (C.26) as we will see. Obviously, the calculation is identical to the one
for 〈iLpp

+ Ex/y〉t until Eq. (C.14). Instead of ∆Ex/y we need

2

I
∆Erot := (b12+ − 1)(|ω1|2 + |ω2|2) = (|ω′

1|2 + |ω′
2|2) − (|ω1|2 + |ω2|2)

(2.4,2.5)
=

16η2

a2q2
|r̂ × v|2 + 4

η

q

(
η

q
− 1

)(
|ω|2 − (r̂ · ω)2

)
− 8η

aq

(
2
η

q
− 1

)
(r̂ × v) · ω.

(C.53)

Using the notation introduced in Eqs. (C.13), (C.17), and (C.21) this can be written as

2

m
∆Erot =

2η2

q

(
|g|2 − (r̂ · g)2

)
− aη g · ω⊥ =

2η2

q
g2 sin2 γ − aη gω⊥ sin γ (C.54)

Eq. (C.54) reveals that, indeed, the calculation for 〈iLpp
+ Erot〉t stays identical to the one for

〈iLpp
+ Ex/y〉t shown in Sec. C.2.1 until Eq. (C.26) where we have to use

λ1,rot :=
2η2

q
sin2 γ and λ2,rot := −aη sin γ (C.55)

instead of λ1/2,x/y [as defined in Eq. (C.27)]:

〈iLpp
+ Erot〉t = − 3

8
√
π
a n0 g(a)

(
m

4Tx

) 1
2
(
m

4Ty

) 1
2
(

I

4Trot

) 1
2

×
3
2
π∫

π
2

dγ cos γ

2π∫

0

dφr
m

2

λ1,rot + Bλ2,rot√
AC5

.

(C.56)

where A and B are defined in Eq. (C.25).

Special Case 1: PP Contribution 〈iLpp
+ Erot〉t Assuming an Isotropic

Translational Temperature Ttr

Assuming an isotropic temperature Tx = Ty(t) = Ttr(t) for all times simplifies Eq. (C.56)
significantly, exactly as Eq. (C.26) is simplified to Eq. (C.29) in Sec. C.2.1. Since λ1,rot and
λ2 are already independent of φr integration over φr yields a factor 2π and we get

〈iLpp
+ Erot〉t = −3

2

√
π

m
a n0 g(a)T

3
2

tr x
4

3
2
π∫

π
2

dγ
sin2 γ cos γ

(1 − (x2 − 1) cos2 γ)5/2
2η

(
η

q
− x2 − 1

x2

)
.

(C.57)
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Exactly like for 〈iLpp
+ Ex/y〉t up to this point we have not specified, whether we are going

to use constant coefficients of restitution or Coulomb friction. All this is hidden in η which
is either a constant or a function of γ. For Coulomb friction we introduce the notation η =
1+α

2 µmin {| cot γ0|, | cot γ|} ≡ min {η0,
1+α

2 µ| cot γ|} with η0 := q
1+q

1+β0

2 . Again, this
leads to a splitting of the integral. Performing the integration over γ yields

1

2

d

dt
Trot = GT

3/2
tr

{
1

(1 + x2 cot2 γ0)3/2

(
η2
0x

2

2q
−(x2 − 1)

η0

2
(1 + x2 cot2 γ0)

)
(C.58)

+
η2
0 tan2 γ0

q

(
1 − 1+3

2x
2 cot2 γ0

(1 + x2 cot2 γ0)3/2

)}

Finally, from Eqs. (C.31) and (C.58) the conversant reader may see the coefficients in Eqs.
(10.23).

Special Case 2: PP Contribution 〈iLpp
+ Etot〉t Assuming an Isotropic Total

Temperature Ttot

Adding Eqs. (C.31) and (C.58) and assuming an isotropic temperature Tx = Ty = Ttr = Trot

(which makes x2 = 1 + Trot/[qTtr] independent of the temperatures, x2 = 1 + 1/q) we find

3

2

d

dt
Ttot = Hdr −GT

3/2
tot

{
Ar +

η0x
2

2

1

(1 + x2 cot2 γ0)1/2
−η

2
0

2

x4

(1 + x2 cot2 γ0)3/2

− η2
0x

2 tan2 γ0

(
1 − 1+3

2x
2 cot2 γ0

(1 + x2 cot2 γ0)3/2

)}
(C.59)

where, cf. Eq. (2.9), x2 cot2 γ0 = q
1+q

(1+β0)
2

(1+α)2
1
µ2 because Ttr = Trot. This can be easily solved

for the stationary temperature in this approximation

T stat
tot =

(
Hdr

G

) 2
3
{
Ar +

η0x
2

2

1

(1 + x2 cot2 γ0)1/2
−η

2
0

2

x4

(1 + x2 cot2 γ0)3/2

− η2
0x

2 tan2 γ0

(
1 − 1+3

2x
2 cot2 γ0

(1 + x2 cot2 γ0)3/2

)}− 2
3

(C.60)

Of course this is a very crude approximation since it is known [HZ97, LHMZ98] that energy
equipartition is violated for inelastically colliding rough particles.
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How does the ratio of rotational and translational temperature behave reaching the steady state?
Is there a constant ratio Trot/Ttr ? To answer this question we divide Eq. (C.58) by Eq. (C.31)
where dTrot/dt

qTtr/dt = dTrot/dt
qTtr/dt to find

0 = (1 + x2 cot2 γ0)
3/2 Hdr

GT
3/2
tr

−Ar+
η0

2

2 − q

q

(
1+x2 cot2 γ0

)

+η2
0

(
1 − 2

q2(x2 − 1)

)(
x2

2
+tan2 γ0

(
(1 + x2 cot2 γ0)

3/2 − 1−3

2
x2 cot2 γ0

))

If Trot/Ttr approaches a constant value for late times close to the steady state then the corre-
sponding x solves this equation.

For a simple energy balance as in chapter 3 – but for rough particles – one has to add Eqs.
(C.15) and (C.54) to find

2

m
∆Etot = −(1 − α2)

2
(r̂ · g)2 + 2η([1 + 1/q]η − 1)

(
|g|2 − (r̂ · g)2

)
. (C.61)

This has to be averaged over all v and ω and used instead of Eq. (3.4) to yield a corresponding
simple energy argument. Therefore we calculate

〈∆Etot〉{v,ω} =

(
m

4πTtot

) 3
2
∫
dgxdgydω⊥ exp

(
−m|g − a

2ω⊥|2 + I|ω⊥|2
4Ttot

)
∆Etot

(C.62)

Now we express g and ω⊥ in polar coordinates, Eq. (C.21) and make the same substitution as
after Eq. (C.25), p1 :=

√
Cg for g and p2 :=

√
A (ω⊥ −Bg) for ω⊥ where the coefficients are

defined in Eq. (C.25), Ã∗ = ma2

16Ttot
(1+q), B̃∗ = 2

a
sin γ
1+q , and C̃∗ = m

4Ttr

q
1+q

(
1 − (1/q) cos2 γ

)
.

We get

〈∆Etot〉{v,ω} =

(
m

4πTtot

) 3
2

3
2
π∫

π
2

dγ

∞∫

0

dp1

∞∫

−∞

dp2 p1
1√

Ã∗C̃∗2
exp

(
−p2

1 − p2
2

) m
2
λtot

p2
1

C̃∗
,

(C.63)

where λtotg
2 = 2

m∆Etot, i.e. λtot = − (1−α2)
2 cos2 γ + 2η([1 + 1/q]η − 1) sin2 γ. Thus we

get

〈∆Etot〉{v,ω} =
m

4π

(
m

4Ttot

) 3
2

3
2
π∫

π
2

dγ
λtot

C̃∗2
√

Ã∗
. (C.64)
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C.2.3. For Comparison: PP Contributions for 3D Systems

For comparison, we quote the result for three dimensions [HHZ00, Her00]:

3

2

d

dt
Ttr(t) = Hdr −G3DT

3/2
tr

{
Ar +

η0

2

1 − η0x
2

1 + x2 cot2 γ0

+
η0

2

(
arctan (x cot γ0)

x cot γ0
− 1

1 + x2 cot2 γ0

)}
,

(C.65)

and

3

2

d

dt
Trot(t) = G3DT

3/2
tr



η0

1 −
(
1 − η0

q

)
x2

1 + x2 cot2 γ0

−η0

2
(x2 − 1)

(
arctan (x cot γ0)

x cot γ0
− 1

1 + x2 cot2 γ0

)}
,

(C.66)

where G3D = 8
√

π
m a2 n0 g3D(a). The pair correlation at contact g3D(a) can be estimated by

the Carnahan-Starling approximation [CS69] for a 3D elastic hard sphere gas that depends on
the volume fraction only: g3D(a) ≈ 1−φ/2

(1−φ)3
.

C.3. Particle-Wall Contribution 〈iLpw
+ Ex/y/tr/rot〉t to

d
dtTx/y/tr/rot(t)

Here we consider the change of Tx/y due to collisions between a particle and wall at x = 0 or
x = Lx. The calculation is very similar to the one for the particle-particle contributions shown
in Sec. C.2. Because we consider the system to be symmetric and homogeneous it is sufficient
to consider 2N collisions of particle 1 with the left wall. These considerations stand behind the
equalities marked by (*) and (**) in the following equation

〈iLpw
+ Ex/y〉t = 〈iLU+Ex/y〉t = 〈

2∑

l=1

N∑

k=1

iTWlk
+ Ex/y〉t

(∗)
= 2〈

N∑

k=1

iTW1k
+ Ex/y〉t

= 2〈
N∑

k=1

iTW1k
+

1

N

N∑

n=1

m

2
|vn,x/y|2〉t =

2

N
〈

N∑

k=1

m

2
iTW1k

+ |vk,x/y|2〉t

=
2

N

N∑

k=1

m

2

∫ N∏

n=1

drx
ndr

y
ndv

x
ndv

y
ndω

z
n ρ(r,v,ω) iTW1k

+ |vk,x/y|2

(∗∗)
=

2

N
N

∫ N∏

n=1

d2rnd
2vndω

z
n ρ(r,v,ω) iTW11

+

m

2
|v1,x/y|2.

(C.67)
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Using the definition of dΓ, Eq. (C.11), and the definition of iTW11
+ , Eq. (C.4), we can write

〈iLpw
+ Ex/y〉t = − 2∫

dΓ

∫
dΓ (n̂1 · v1) Θ(−n̂1 · v1) δ

(
|n̂1 · (r1 − w1) | −

a

2

)
∆Ex/y

where n̂1 is the normal vector of wall number 1 and w1 is a point on the surface of wall
number 1. For example, for the left wall being at x = −Lx/2, n̂1 = êx. For w1 one could
use (−Lx/2, 0, 0). The change of partial energy ∆Ex/y := m

2 (bW11
+ − 1)|v1,x/y|2 that results

from a collision of particle 1 with wall number 1 depends only on the phase space variables
of particle 1. Now we can perform the integrations over d2r2 . . . d

2rN , d2v2 . . . d
2vN and

dω2 . . . dωN . The integration over d2v2 . . . d
2vN and d2ω2 . . . d

2ωN are simple Gaussian inte-
grals. To integrate over d2r2 . . . d

2rN we introduce two more two-dimensional integrals over
two-dimensional δ functions, δ2(r) := δ(rx)δ(ry),

∫
d2R1d

2R2δ
2(R1 − r1)δ

2(R2 − r2).
Using R12 := R1 − R2 and the definition of the pair correlation function, Eq. (C.12), we
obtain

〈iLpw
+ Ex/y〉t = − 2

A2

(
m

2πTx

) 1
2
(

m

2πTy

) 1
2
(

I

2πTrot

) 1
2
∫
d2R1d

2R2d
2v1dω1 ×

g(|R12|) exp

(
−m

2

[
v2
1,x

Tx
+
v2
1,y

Ty

]
− I

2

ω2
1

Trot

)
×

(n̂1 · v1) δ
(
|n̂1 · (r1 − w1) | −

a

2

)
Θ(−n̂1 · v̂1) ∆Ex/y.

where
2

m
∆Ex/y := (bW1

+ − 1)|vx/y|2 = |v′x/y|2 − |vx/y|2
(2.14)

= |vx/y + 2∆vx/y|2 − |vx/y|2

= 4 |∆vx/y|2 + 4 vx/y ∆vx/y

(2.15)
= (1 + αw)2(n̂1 · v)2 (n̂1 · êx/y)

2 + 4η2
[(

v − n̂1[n̂1 · v] +
(a

2

)
[n̂1 × ω]

)
· êx/y

]2

+ 4η(1 + αw)(n̂1 · v)(n̂1 · êx/y)
[(

v − n̂1[n̂1 · v] +
(a

2

)
[n̂1 × ω]

)
· êx/y

]

− 2(1 + αw)(n̂1 · v)(n̂1 · êx/y)(v̂ · êx/y)

− 4η
[(

v − n̂1[n̂1 · v] +
(a

2

)
[n̂1 × ω]

)
· êx/y

]
(v̂ · êx/y) .

(C.68)

For walls in the x-direction we get n̂1 = êx and thus ∆Etr simplifies to
2

m
∆Etr = −(1 − α2

w)(n̂1 · v)2 + 4ηw(ηw − 1)(|v|2 − (n̂1 · v)2)

+ η2
wa

2|n̂1 × ω|2 + 2ηw(2ηw − 1)a (n̂1 × ω) · v .
(C.69)

In general, ηw = q
1+q

1+β
2 , where β = β(| cot γ|) (2.8)

= constmin (| cot γ|, | cot γ0|) is a

function of | cot γ| := |g·n̂1|
|g×n̂1| and g

(2.1)
= v + a

2 n̂1 × ω is a function of n̂1, v and ω.

Now we could continue similarly as in Sec. C.2.1 by performing substitution (C.17).
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C.3.1. PW Contribution 〈iLpw
+ Ex/y〉t for Smooth Particle-Wall Interactions

For smooth particle-wall interactions the rotational energy remains unchanged when a particle
collides with a wall and we have to consider the change of translational energy only. In addition
ηw = 0. We want to be more specific about the walls in order to improve the readability. We
choose our coordinate system such that the wall is at x = 0, n̂1 = êx, w = (0, 0, 0). We
note that

∫
d2R1d

2R2 g(|R12|) δ
(
Rx

1 − a
2

)
= Ly V , as can be easily seen when writing down

and inserting g(R12|)/V 2: The integrals over d2R1 and d2R2 can be solved trivially (in the
numerator and in the denominator). Then, we substitute R̃i := ri − r1 for i = 2..n and
R̃1 := r1. That way, all the integrals over Heaviside’s step functions cancel and we get∫
d2R̃1 δ

(
R̃x

1 − a
2

)
/
∫
d2R̃1 = Ly/V = 1/Lx.

We ommit the index 1 of v1 and ω1 and get

〈iLpw
+ Ex/y〉t = − 2

Lx

(
m

2πTx

) 1
2
(

m

2πTy

) 1
2
(

I

2πTrot

) 1
2
∫
d2vdω×

exp

(
−m

2

[
v2
1,x

Tx
+
v2
1,y

Ty

]
− I

2

ω2
1

Trot

)
vx Θ(− vx) ∆Ex/y(v,ω).

(C.70)

Here, the integration over dω can be performed trivially, and (since ηw = 0) the change of
energy simplifies to

∆Ex(v) =
m

2

[
−(1 − α2

w) v2
x − 2αw vdrvx + v2

dr

]
= ∆Ex(vx, vdr), ∆Ey(v) = 0.

(C.71)

Therefore we get

〈iLpw
+ Ey〉t = 0 and

〈iLpw
+ Ex〉t = − 2

Lx

(
m

2πTx(t)

) 1
2
(

m

2πTy(t)

) 1
2
(

I

2πTrot(t)

) 1
2
∫
d2vdω×

exp



−m

2

(
|vx|2
Tx(t) + |vy |2

Ty(t)

)

1
+

− I
2 |ω|2)
Trot(t)


 vx Θ(− vx) ∆Ex

= − 2

Lx

(
m

2πTx(t)

) 1
2

0∫

−∞

dvx exp

(
−m

2

v2
x

Tx(t)

)
vx ∆Ex(vx, vdr)

=
m

Lx

(
m

2πTx(t)

) 1
2

∞∫

0

dvx exp

(
−m

2

v2
x

Tx(t)

) [
−(1 − α2

w) v3
x + 2αw vdrv

2
x + v2

drvx

]

=
mv2

dr√
2πLx

√
Tx

m

[
1 +

√
2π αw

√
Tx(t)

mv2
dr

− 2 (1 − α2
w)

(
Tx(t)

mv2
dr

) ]
.

(C.72)
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Written in a form that is well-defined also for vdr = 0 the final result is

〈iLpw
+ Ex〉t =

Tx
1
2

Lx

1√
2πm

[
mv2

dr +
√

2π αw m

√
Tx(t)

m
vdr − 2 (1 − α2

w) Tx(t)

]
. (C.73)

C.4. Total Time Derivative of Partial Temperatures d
dtTx/y(t)

for Smooth Particles

For a system with 2 identical walls in the x-direction and periodic boundary conditions in the
y-direction we insert Eqs. (C.49) and (C.73) into Eq. (C.9) to obtain:

1

2

d

dt
Tx(t) =

d

dt
〈Ex〉t = 〈iLpp

+ Ex + 〈iLpw
+ Ex〉t

= − a n0 g(a)

2π

√
π

m
Ttr

3
2 ×

{
Θ(Tx − Ty)

(
Ty

Ttr

) 3
2

√
Ty
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(
Fy/xf1(kxy) ∓F0fc(kxy)

)

+ Θ(Ty − Tx)

(
Tx

Ttr

) 3
2

√
Tx

Ty

(
Fx/yf1(kyx) ±F0fc(kyx)

)
}

+
Tx

1
2

Lx

1√
2πm

[
mv2

dr +
√

2π αw m

√
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m
vdr − 2 (1 − α2

w) Tx

]

= m

(
Ttr

m

) 3
2


 1√

2π

1

Lx

√
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Ttr


mv

2
dr

Ttr
+

√
2π αw

√
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Ttr

√
mv2

dr

Ttr
− 2 (1 − α2

w)
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Ttr




− a n0 g(a)

2
√
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{
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(
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) 3
2

√
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2

√
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Fx/yf1(kyx) ±F0fc(kyx)

)
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(C.74)

1

2

d

dt
Ty(t) =

d

dt
〈Ey〉t = 〈iLpp

+ Ey〉t + 〈iLpw
+ Ey〉t

= −a n0 g(a)

2π

√
π

m
Ttr

3
2 ×

{ Θ(Tx − Ty)
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) 3
2

√
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(
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+ Θ(Ty − Tx)

(
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2

√
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(
Fx/yf1(kyx) ±F0fc(kyx)

)
}

+ 0

(C.75)
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C.5. Energy Balance for Smooth Particles in the Stationary
State

Assuming an isotropic temperature Ttr = Tx = Ty we find by adding Eqs. (C.74) and (C.75)

1

2

d

dt
Ttr(t) =

d

dt
〈Etr〉t =

d

dt
〈Ex〉t +

d
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〈Ey〉t = 〈iLpp
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+ Ex〉t + 〈iLpp

+ Ey〉t

=m

(
Ttr

m

) 3
2


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
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

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√
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)
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
mv
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√
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

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π(1 − α2)

)
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For the stationary state the time derivative must vanish which leads to the following quadratic
equation in

√
Ttr (assuming Ttr 6= 0)

0 =
1√
2π

1

Lx


mv

2
dr

Ttr
+

√
2π αw

√
mv2

dr

Ttr
− 2 (1 − α2

w)


− a n0 g(a)

√
π(1 − α2) . (C.77)

This can be simplified and multiplied by Ttr to yield

0 = −
[
2 (1 − α2

w) +
√

2 π a n0Lx g(a)(1 − α2)
]√

Ttr
2
+ αw

√
2πmv2

dr

√
Ttr +mv2

dr .

(C.78)

For vdr = 0 this implies Ttr = 0 or εeff = 0 where εeff has been defined in Eq. (3.9). For a
discussion cf. chapter 3.

For εeff 6= 0 Eq. (C.78) can be re-written as

0 =
√
Ttr

2 − 2 αw

√
mv2

dr

√
π

2

(εeffψ)−1

π

√
Ttr −mv2

dr

(εeffψ)−1

π
(C.79)

with ψ and εeff as defined in Eq. (3.9).

For εeff > 0 we find

√
Ttr =

√
mv2

dr

√
π

2

√
(εeffψ)−1

π

[√
(εeffψ)−1 α2

w +

√
2 + (εeffψ)−1 α2

w

]
(C.80)
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or

Ttr =
mv2

dr

2π
ψ−2

eff

(
1 +

√
1 + 2ψeff/αw

)2
(C.81)

with ψeff as defined in Eq. (B.3) – and using α̃w = αw since we have calculated the case of
identical walls here.

C.6. Why and How Do the Simple and the Refined Energy
Balance Differ?

The result for the stationary temperature using the Liouville-Operator approach, Eq. (C.81),
differs from the one obtained by the simple energy balance argument in chapter 3, Eq. (3.12).
This is due to the fact that in chapter 3 we averaged the collision frequency independently of
the change of energy instead of calculating the average of the fluctuating collision frequency
times the change of energy, i.e we calculated

〈vx · Θ(vx)〉 · 〈1〉 =

√
Ttr

2π
instead of 〈vx · 1 · Θ(vx)〉 =

√
Ttr

2π
(ok!),

〈vx · Θ(vx)〉 · 〈vx〉 =
Ttr

2
instead of 〈vx · vx · Θ(vx)〉 =

Ttr

π
(not ok), and

〈vx · Θ(vx)〉 · 〈v2
x〉 =

√
T 3

tr

2π
instead of 〈vx · v2

x · Θ(vx)〉 = 2

√
T 3

tr

2π
(not ok).

(C.82)

Indeed: We can obtain exactly the same result as calculated using the Pseudo-Liouville-
Operator approach, Eq. (C.81), from the simple calculation leading to Eq. (3.12) by replacing

√
Ttr

2 → π

2

√
Ttr

2
and

√
Ttr

3 → 2
√
Ttr

3
(C.83)

in Eq. (3.7). Doing so for two distinct walls, from appendix B we see that instead of Eq.
(B.4) we obtain the final result of the refined theory for two distinct walls and perfectly smooth
particles and walls

Ttr =
mv2

dr

2π
ψ−2

eff

(
1 +

√
1 + 2ψeff/α̃w

)2
, (C.84)

with the definitions from Eqs. (3.9), (B.2), and (B.3).
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C.7. Artifact of the Walton Model: Surviving Rotational
Energy without Driving

For freely cooling 3D systems it has been found [HHZ00] that for sufficiently small µ the
Walton model predicts the rotational energy to survive while the translational energy keeps de-
creasing according to Haff’s law [Haf83] for all times. While it has been argued [HHZ00] that
probably this behavior is an artifact due to the assumption of zero cohesion forces between the
particles it is not completely impossible that a surviving rotational energy might be observable
for certain materials. For 2D systems we find the same behavior in simulations as well as in
the MF theory of the full Walton model, model E. Model A, B or D do not predict a surviving
rotational energy – in contradiction to simulations: In models A, B, and D the coefficients in
Eq. (10.4) are constants and thus they all predict qualitatively similar behavior.

As can be seen from Eq. (10.26) for Hdr = 0 the asymptotic behavior of the translational
temperature will follow Haff’s law [Haf83], namely Ttr = bt−2 with some constant b > 0. If
we insert this solution for Ttr, Eq. (10.26), with Hdr = 0 into the differential equation for Trot,
Eq. (C.58), we see that R must increase for all times for sufficiently small µ.

Proof: First we show that R cannot approach zero by contradiction: If R approached zero (that
means x→ 1) then, for small enough µ (and small enough R), the combination R C̃µ(R), as it
appears in Eq. (10.4), would become negligible in comparison with B̃′

µ(R), cf. to Eq. (10.25).
Therefore, Trot would increase while Ttr would continue to decrease. Thus R would increase
again which is contrary to the assumption that R would approach zero.

Now we show that R cannot reach an asymptotic value for sufficiently small µ (as it would
happen for large enough µ, especially for µ → ∞), again by contradiction: Let us assume R
reaches an asymptotic value (that means R = const < ∞). Then we see from B̃′

µ(R) and
C̃µ(R) in Eqs. (10.25) with Trot(t) = RTtr(t) = bRt−2 that for sufficiently small µ � 1 Eq.
(C.58) simplifies to

− 2
bR

t3
=

d

dt

bR

t2
=

d

dt
Trot(t)T

3/2
tr (C.85)

= −2G

(
b

t2

) 3
2


1 + b

4

R
q√

1 + R
q

µ+ O
(
µ2
)



which simplifies to
√

1 + R
q = G

√
b 1+b

4q µ. If µ < 4q
1+b

1
G
√

b
there is no positive R that solves

this equation. Therefore, the ansatz Trot(t) = RTtr(t) with a constant R for late times must
be wrong. 2

Instead, for sufficiently small µ, R→ ∞.
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To lowest order in µ for late times (R � 1), Eq. (C.58) or, equivalently, Eqs. (10.4) with Eqs.

(10.25) reads d
dtTrot(t) = −2G 1+b

4
√

qµTtr(t)T
1
2

rot(t) = −2Gb 1+b
4
√

qµT
1
2
rot(t) t

−2. The solution

for this differential equation is
√
Trot(t) = const + Gb 1+b

4
√

qµt
−1. This prediction has been

confirmed by simulations (not shown). The three-dimensional equivalent can be found in Ref.
[HHZ00].
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granular gases. Phys. Rev. E, 53(5):5382, 1996. 11

[BSS99] C. Bizon, M. D. Shattuck, and J. B. Swift. Linear stability analysis of a vertically
oscillated granular layer. Phys. Rev. E, 60:7210–7216, 1999. 8

[BT02a] A. Barrat and E. Trizac. Lack of energy equipartition in homogeneous heated binary
granular mixtures. Granular Matter, 4(2):57–63, 2002. 4

[BT02b] A. Barrat and E. Trizac. Molecular dynamics simulations of vibrated granular gases.
Phys. Rev. E, 66:051303, 2002. 2, 3, 4, 42, 63, 76, 80

[BT03] A. Barrat and E. Trizac. Random inelasticity and velocity fluctuations in a driven
granular gas. Eur. Phys. J. E, 11(1):99–104, 2003. 81

[BTF01] A. Barrat, E. Trizac, and J. N. Fuchs. Heated granular fluids: the random restitution
coefficient approach. Eur. Phys. J. E, 5(2):161–170, 2001. 2, 3

[CC70] S. Chapman and T. G. Cowling. The Mathematical Theory of Nonuniform Gases.
Cambridge University Press, London, 1970. 67

[CGM95] P. Constantin, E. L. Grossman, and M. Mungan. Inelastic collisions of three particles
on a line as a two-dimensional billiard. Physica D, 83:409, 1995. 29

[CLH00] R. Cafiero, S. Luding, and H. J. Herrmann. Two-dimensional granular gas of inelastic
spheres with multiplicative driving. Phys. Rev. Lett., 84:6014–6017, 2000. 2, 3, 8, 86

[CLH02] R. Cafiero, S. Luding, and H. J. Herrmann. Rotationally driven gas of inelastic rough
spheres. Europhys. Lett., 60(6):854–860, 2002. 8, 86

[CS69] W. F. Carnahan and K. E. Starling. Equation of state for nonattracting rigid spheres.
J. Chem. Phys., 51(2):635–636, 1969. 17, 130

[DBS97] J. W. Dufty, J. J. Brey, and A. Santos. Kinetic models for hard sphere dynamics.
Physica A, 240:212–220, 1997. 67

[DLK95] Y. Du, H. Li, and L. P. Kadanoff. Breakdown of hydrodynamics in a one-dimensional
system of inelastic particles. Phys. Rev. Lett., 74(8):1268–1271, 1995. 1

[DP98] B. Drossel and T. Prellberg. Dynamics of a single particle in a horizontally shaken
box. Eur. Phys. J. B, 1:533–543, 1998. 3

[Duf01] J. W. Dufty. Kinetic theory and hydrodynamics for rapid granular flow: A perspective.
e-print cond-mat/0108444, 2001. 2

[EFL00] S. Fauve E. Falcon and C. Laroche. Experimental study of a granular gas fluidized
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