Modelling and simulation of surface
morphology driven by ion bombardment

Dissertation
zur FErlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultaten
der Georg-August-Universitat zu Gottingen

vorgelegt von
Emmanuel Oluwole Yewande
aus Ibadan/Nigeria

Gottingen 2006



D7

Referent: PD. Dr. Alexander K. Hartmann
Korreferent: Prof. Dr. Hans Hofsaf3

Tag der miindlichen Priifung: 02.05.2006



Abstract

Non-equilibrum surfaces, at nanometer length scales, externally driven via
bombardment with energetic particles are known to exhibit well ordered
patterns with a variety of applications in nano-technology. These patterns
emerge at time scales on the order of minutes. Continuum theory has been
quite successful in giving a general picture of the processes that interplay to
give the observed patterns, as well as how such competition might determine
the properties of the nanostructures. However, continuum theoretical de-
scriptions are ideal only in the asymptotic limit. The only other theoretical
alternative, which happens to be more suitable for the characteristic length-
and time-scales of pattern formation, is Monte Carlo simulation.

In this thesis, surface morphology is studied using discrete solid-on-solid
Monte Carlo models of sputtering and surface diffusion. The simulations
are perfomed in the context of the continuum theories and experiments. In
agreement with the experiments, the ripples coarsen with time and the rip-
ple velocity exhibits a power-law behaviour with the ripple wavelength, in
addition, the exponent was found to depend on the simulation temperature,
which suggests future experimental studies of flux dependence. Moreover,
a detailed exploration of possible topographies, for different sputtering con-
ditions, corresponding to different materials, was performed. And different
surface topographies e.g. holes, ripples, and dots, were found at oblique
incidence, without sample rotation. With sample rotation no new topogra-
phy was found, its only role being to destroy any inherent anisotropy in the
system.
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AES: Auger electron spectroscopy
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AKPZ: anisotropic KPZ (see KPZ)
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PSSR profiles from simultaneous sputtering and rotation
QD: quantum dot

RHEED: reflection high-energy electron diffraction
SEM: scanning electron microscope

SIMS: secondary ion mass spectroscopy

SRIM: stopping and range of ions in matter
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Height, width, and depth
are the three phenomena
which | must transfer into
one plane to form the ab-
stract surface of the pic-
ture, and thus to protect
myself from the infinity of
space.

Max Beckmann

Introduction

Surface morphology evolution is a major focus of extensive research on non-
equilibrium processes at surfaces. One such non-equilibrium process is sur-
face growth, whereby a solid surface advances through the addition of new
material, that crystallizes in a manner dictated by the lattice structure of the
underlying solid [I]. Another non-equilibrium process is surface sputtering,
a process by which material is removed from a solid surface through the im-
pact of energetic particles. Both processes drive the material surface out of
equilibrium, and, apart from the academic interest in a better understanding
of nonequilibrium systems, are widely studied partly due to the importance
of interface structure to the synthesis of multilayer thin-film semiconductor
devices, for opto-electronics and other applications.

The interest of the material physics community on surface sputtering, in
particular, is partly due to its critical role in the fabrication [2] and analy-
sis [3] of surface structures of technological importance at nanometer length
scales. And partly due to the self-organization and ordering of the patterns
that emerge from the stochastic ejection of material from the surface; i.e,
correlation from randomness []. Thus, understanding the effects of particle
radiation on solid surfaces is one of the fundamental problems in materials
science [A} 6], and would enhance the control of the technologically important
process of nanopatterning. Computer simulations are of vital importance in
the study of natural phenomena, as they bridge the gap between experiments
and analytic theories. This study concerns the modelling and simulation of
surface features arising from ion beam bombardment, as well as the morphol-
ogy of the surface itself, with prolonged sputtering. Thus, several discrete
atomistic models are examined, in line with experimental results, and the
continuum theory. The most successful atomistic model, for simulating ion-
induced sputtering of surfaces at nanometer length scales (in particular at
high fluences), is the one introduced by Hartmann, Kree, Geyer, and Kolbel,



which we shall simply refer to as the HKGK model. This model is based
on the same assumptions as the continuum models, and is applied in this
work to study problems of interest. Note that the continuum theory is, so
far, the most successful analytic theory that provides explanations for the
behavior of sputtered, out-of-equilibrium, surfaces. Thus, it is the only an-
alytic theory we shall consider in this study. Another possibility is to use
linear response theory, but this has been ruled out as a viable quantitative
theory of radiation erosion [4].

This work is organized as follows: In the next chapter, we discuss a few
experiments from which we can summarize the overall, common features of
sputtered surfaces. In our discussion, we consider amorphous and semicon-
ductor (single, and AIII/BV alloys) materials, and metallic materials, as
separate groups, in order not to confuse the reader with differing characteris-
tics which at times arise due to the different classes of materials. A summary
of the main features is provided at the end of the chapter, so as to indicate
our focus in the discussion of the continuum theory.

In chapter Bl, we shall discuss the main ideas of the linear and non-linear
continuum theory, starting with the dynamic scaling of interface fluctua-
tions. While the linear continuum theory is very successful in describing the
time evolution of sputtered surfaces, and quantitatively explains the results
of some experiments, its quantitative predictions do not agree with others.
Thus, we shall discuss a few extensions, of the continuum theory, that has
been proposed to account for the formation of semiconductor quantum dots.
Finally, we shall discuss the theory of simultaneously rotated and sputtered
surfaces.

Having examined the experimental results and the continuum theoretical
explanations, we proceed in chapter Bl to a consideration of discrete atom-
istic models that may be employed to simulate the naturally discrete surface
at nanometer length scales. We shall consider sputter erosion models, and
surface diffusion models. Also, we shall consider those models that combine
both sputtering and surface diffusion in a single iterative step. In chapter
Bl we shall discuss how we have implemented the sputter-erosion model and
surface diffusion models used in our work. In this chapter we focus mainly
on the HKGK sputter-erosion model and the two more realistic surface diffu-
sion models. Extensions of the HKGK model to include lateral erosion and
sample rotation are also considered.

In chapter [, the results of our simulations are presented and discussed. In
the chapter, we first studied ripple motion after which we used the extended
versions of the HKGK model to explore all possible topographies, constrained
by experimental parameters that lead to pattern formation; as well as the
effects of sample rotation on these possible topographies. Our main results



are as follows. In our study of ripple propagation, we found a transition
from the already known power-law behavior of the ripple wavelength as a
function of time, at low temperatures, to a more rapid exponential behavior,
at higher temperatures. The higher temperature behavior which we reported
for the first time, to our knowledge, has recently received an experimental
verification. However, the precise temperature at which the transition oc-
curs remain an open question, which we believe can be answered through
simulations with our model, in further studies.

By varying the collision cascade parameters in our model, we observe six
different possible topographies, corresponding to six parametric regions. The
variation is done within the framework of simulations of the stopping and
range of ions in matter (SRIM); which reveal the values, of these collision
cascade parameters, that are realistic as pertains to experiments. We found
an upper bound, in the lateral straggle of the ion beam after penetration, for
clear ripple formation. Beyond this upper bound, we found the formation of
nano-sized islands, that are expected to exhibit quantum confinement; i.e, for
off-normal incidence sputtering without sample rotation. But we found these
dots to be formed with some background noise, in the form of one-dimensional
structures oriented parallel to the ion beam direction. Subsequent inclusion
of sample rotation then shows that rotation only destroys any anisotropy in
the system.

Finally, in the last chapter, we give a general conclusion with a few sug-
gestions for further studies.



All life is an experiment.
The more experiments you
make the better.

Ralph Waldo Emerson

Experiments

There is a huge amount of literature on the experiments studying the effects
of material surface morphology induced by ion bombardment, at nanometer
length scales, ion fluxes of the order of 10 ions cm~2 sec™!, and time scales
of minutes. In this chapter, we present an overview of the common features
of the topography evolution on amorphous, single semiconductor, alloy semi-
conductor, and metallic materials; i.e those features that are relevant to this
work.

2.1 Amorphous and Semiconductor
Materials

The bombardment of solid surfaces by a beam of energetic particles can
lead to the production of atomic recoils and defects within the solid and
the ejection or sputtering of surface atoms, with the consequent erosion of
the solid. But, in addition, surface atomic relaxation effects which may be
mediated by the irradiation, and/or mediated by surface diffusion also occur,
hence, the morphology of the surface may be very complex [7].

Evidence of ripple structures on the surfaces of sputtered amorphous SiOq
and crystalline single semiconductor Ge surfaces have been provided in ex-
periments by Chason et. al. [8,[9, 10, [TT]. In these experiments ion incidence
angles 6 = 55° - 60°, and fluxes ~ 10 cm™2 sec™! were used. They observed
a sputter yield ~ 5 SiOy molecules/ion, which was considerably reduced to
0.1 molecules/ion with light ion (H) bombardment. The three-dimensional
structure of the roughened surfaces were examined ex-situ with atomic force
microscopy (AFM), where a well defined ripple topography was found (Fig.
1) with the wave vector of the ripples being parallel to the direction of the
incident ion beam [§]. They used in situ x-ray reflectivity to investigate nm
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scale variations in the morphology of SiO, surfaces as a result of Xe and H ion
bombardment, at 500°C [9]. During the bombardment of nominally smooth
surfaces by 1 keV Xe, they found a linear increase of the surface roughness
with the fluence (the fluence is the number of incoming ions per unit area).
On the other hand, bombardment of initially rough surfaces by 0.2 - 1 keV
H results in an exponential decrease in roughness with fluence, at a rate that
increases with the energy. This smoothening by H ion bombardment has a
rate that is also energy dependent, but the energy dependence is different for
both cases, which rules out a simple relation between material removal and
surface morphology. The observed ripple structure, however, is not resolved
on a higher length scale [see Fig. 21 (b)].

Figure 2.1: (a) 1 um? AFM image of a Xe sputtered steam grown SiOs film. The
ion beam is incident at an angle of 54.9° from normal (at room temperature), with
surface projection perpendicular to the observed ripples. (b) 100 ym? AFM image
of same sample as in (a); the ripple structure of (a) is not resolved on this length
scale, but a random texture is quite evident with rms roughness comparable to
(a), with no preferred orientation or frequency. (After Mayer et. al. [§]).

They also observed ripples, oriented perpendicular to the ion beam direc-
tion and with wavelengths on the order of 200 nm, on sputtered crystalline Ge
surfaces [I1]. At a higher temperature of 350°C, the surface roughens expo-
nentially with time, with an initial sublinear time dependence. The surface
remains crystalline during sputtering at 250°C and above; the roughening
does not saturate in this crystalline phase whereas it does in the amorphous
phase, clearly demonstrating differing roughening and smoothing kinetics
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depending on the structure of the surface. At 250°C (see Fig. 2ZZ2) the expo-
nential roughening is faster. At150°C and below (see Fig. Z2), they observed
that the Ge surface is amorphized by the ion impact and the roughness satu-
rates (the flux remaining fixed at 2.5 x 102 cm~2 sec™! for this, and higher
temperatures) to a steady state small value that does not increase even after
prolonged sputtering.

04F )
E 0.2
Py 350°C
% 0.0
c (b)
K -
o4
Q
o
8 0.2
a 250 °C
S o0
? o2 L— (c) R ano
P’_A-o porh oo o N
.00, i 150 C

PEEE T U R N N T T W1
0 0.5 1.0 1.5 20
Sputter Time (10%s)

Figure 2.2: Ge surface roughening kinetics at different substrate temperatures.
For 1 keV Xe ion sputtering with flux 3.2 x 10'2 cm=2 sec™!. Solid lines are the re-
sults of theoretical calculations discussed in their paper. The surface is crystalline,
and the roughening is exponential in (a) and (b). The surface is amorphized in
(c), and the roughening saturates. (After Chason et. al. [I1])

Habenicht et. al., in their experiments on Xe-ion sputtering of graphite
surfaces, found ripples oriented perpendicular to the ion beam for 6 < 6.
[Figs. (a) and (b)]. For # > 6., they found ripples oriented parallel
to the ion beam direction [Fig. (c)]. They found that 6. lies between
60° and 70°. The wavelength of these ripples were between 40 - 70 nm,
and the ripples were found to vanish with increasing ion fluences. At such
high fluences, where the ripples vanish, they found that the surface exhibits
a roughness governed by the Kardar-Parisi-Zhang (KPZ) equation. Ripple
structures whose orientation depends on the ion beam direction, as described
above, have been found on numerous other sputtered surfaces of amorphous
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Figure 2.3: STM micrographs (lateral size 1 um) of 5 keV Xet eroded HOPG

017 —2.

surfaces. (a) - (c): irradiation fluence of 3 x 10'" ions cm™%; incident angle 6 =

30°, 60°, and 70°, respectively. (After Habenicht et. al. [12]).

materials, single semiconductor materials [I3, 4}, 15, 06, 07, 18, 19], and
ATIII/BV-alloy semiconductor materials [20]. In Ref. [20], the ripples were
found to vanish with increasing temperature; and for InP, extensive cone
formation (no ripples) occurs at 100°C. Also, no ripple formation occurs
when the sample is cooled to -30°C, where surface diffusion is limited. Thus,
Ref. [20] shows the importance of surface diffusion in sputter-induced ripple
and cone development.

Figure 2.4: Topography of sputtered silicon surfaces. Left: implantation with 20
0% ions cm™2 . Middle: implanta-
tion with 20 keV Art at room temperature, fluence 3 x 10 ions cm~2. Right:
implantation with 20 keV Net at 120K, fluence 1.7 x 10" ions cm ™2 . In all cases

0 = 45°. (After Carter et. al. [21]).

keV Ne™ at room temperature, fluence 4 x 1

In contrast to the low-energy studies, high energy bombardment of Si
surfaces by Carter et. al. at room temperature produced ripples only with
Ar ions [21]. With the other inert gas ions (Xe, Ne) ripples were found for
temperatures below room temperature (120K or 200K), using the same ion
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characteristics (see Fig. EZ4). Their observation was done with scanning elec-
tron microscopes (SEM) and AFM. They observed that the ripples propagate
on the surface with a vanishingly small velocity, which was not measured [14].
At 0° incidence and to much higher fluences, surface roughness was much less
and there was no sign of any periodic ripple structures. They found no rip-
ple formation for incidence angle 0 - 40°. AFM observations of irradiated
surfaces for all bombardment temperatures showed no changes in the sur-
face morphology as a function of time after cessation of bombardment (in
agreement with Ref. [§]).

Figure 2.5: Focussed ion beam micrographs of silicon surface sputtered with 30
keV Ga ions. The arrow indicates the projection of the ion beam onto the surface.
The erosion times are indicated on the profiles. (After Habenicht et. al. [22]).

Ripple propagation was quantitatively measured by Habenicht et. al. in
Ref. [22], where they also observed and measured the coarsening (i.e increas-
ing wavelength) of the ripples with time. Later on, we compare our results
with the results of this experiment, hence, we will discuss it in more detail
than the other experiments. They monitored the evolution of 30 keV Ga-ion
sputtered Si(100) surfaces, § = 30°, in real time using SEM and focussed ion
beam microscopy (FIBM) [22]. The typical ion current density was 7.5 X
10" ¢cm™2 sec™!; the current density has been varied between 104 and 10'°
cm~2 sec™!. In this experiment, the ripples were observed to propagate, on
the surface plane, parallel to the ion beam direction (Fig. ). Contrary to
the linear continuum theory, they found that the ripple wavelength X is not
constant with time. For erosion time ¢t ~ 1 - 135 min, a ripple coarsening
(Fig. ZH) of the form A ~ t%° was found [see Fig. (a)]. They also per-
formed a quantitative study of the ripple motion and found a nonuniform
ripple velocity v. After an initial plateau of constant velocity, for A = 100
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Figure 2.6: Ripple coarsening, and velocity dispersion. (a): measured ripple
wavelength as a function of t. (b): measured velocity dispersion of the ripple
propagation with rising wavelength. (After Habenicht et. al. [22]).

nm, a power-law behavior v ~ A~ was found [seeFig. G (b)].

However, instead of ripples, a relatively disordered arrangement of mounds
were found by Chey et. al. [23, 24]. They studied crystalline germanium
surfaces, during low-energy sputtering, using in situ scanning tunneling mi-
croscopy (STM) [23]. The Ge(001) surfaces were bombarded by 240 eV Xe
ions, with a fAluxd] of 1.6 pA em~2, and inclination 50° to the vertical. They
obtained a sputter yield of 0.7 Ge atoms per Xe-ion impact. At T ~ 270°C
the character of the surface morphology changes from the relatively disor-
dered arrangement of mounds to a more regular pattern of pits (see Fig. E1).

On the other hand, no surface pattern (neither ripple nor pits) was re-
ported in the experiments of Eklund et. al. [4], on the off-normal incidence
(0 = 60°) sputtering of graphite surfaces with 5 keV Ar ions. The experi-
mental parameters varied in the study were the ion flux J (6.9 x 10 ions
em~? sec™!, and 3.5 x 10 ions cm™2 sec™!), the fluence Q = Jt (10'°,
107 and 10'® ions cm™?), and the substrate temperature 7' (~ 300, 600, and
900K). They used a scanning tunneling microscope (STM) to examine the
sputtered surfaces. Instead of ripple structures, they found rough surfaces

Lan ion/charge current density of 1 C/(cm?sec)a 6.24 x 108 ions/(cm?sec) ~ 1 A/cm?,

hence, 1 pA/cm? ~ 6.24 x 10'? ions/(cm?sec)
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Figure 2.7: STM images of Ge(001) after 42 min sputtering with 240 eV Xe ions
at a substrate temperature of 270°C. (b) Subsequent annealing at 270°C for 20
min. (After Chey et. al. [24]).

whose scaling is governed by the KPZ equation. They observed the slow
(less than linear) divergence of the correlation length ¢ with the fluence; at
the highest fluence £ exceeds the image size. Within the uncertainties of the
experimental data, £ does not appear to depend on the flux.

Experiments by Facsko et. al. showed that normal incidence sputtering of
the surfaces of semiconductor alloys, particularly gallium-antimonide (GaSb)
and indium-antimonide (InSb) surfaces [25], can serve as a very attractive al-
ternative to the production of self-organized semiconductor quantum dots in
the Stranski-Krastanov growth mode in molecular-beam epitaxy and metal-
organic vapor epitaxy; in which coherent island formation occurs during the
growth of lattice-mismatched semiconductors. They found (6 = 0°) a highly
regular pattern of hexagonal dots whose specific size and shape depended on
the ion fluence (and energy, see Fig. Z8). After about 40 secs. (equivalent
to a fluence of 4 x 10" ¢cm™2), small dots with an average diameter of 18
nm appear, as seen from the SEM images. Hexagonal ordering is already
present in the shape, although some irregularities occur, and the dot density
is 4.5 x 10'° cm~2. The dot diameter grows to 34 nm up to an exposure time
of 200 secs. (fluence of 2 x 10'® cm™2). After 400 secs. the dot diameter
was b0 nm, approximately equaled the period, the hexagonal order is fully
developed and represents the final stage of the dot formation.

The pattern does not change further, for longer exposure times, and the
surface front propagates into the material with aconstant velocity of 1.5 nm
sec™! as the sample is eroded. A cross-sectional high-resolution transmission
electron microscope (HTEM) image of the nanostructures (after 400 secs.
exposure) revealed that the dots have a cone-like shape, and are covered by
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Figure 2.8: Scanning electron micrographs of quantum dot patterns on GaSbh
surfaces induced by Ar" sputtering with ion energies of (a) 100 eV, (b) 500 eV. The
dots show an hexagonal ordering with a characteristic wavelength that depends on
ion energy. The insets show the corresponding distribution of the nearest-neighbor
distance [number of dots versus distance (nm)]. (After Facsko et. al. [27]).
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an amorphous layer of ~ 2 nm thickness (a similar amorphous cover was
found by Gago et. al., as shown in Fig. ZXd)). The cone-like dots themselves

Figure 2.9: AFM images of Si(100) substrate sputtered by 1.2 keV Ar" at normal
incidence for 6 min (a), and 960 min (b). The bars in (a) and (b) represent 277 nm,
and 831 nm, respectively. (c): Cross-sectional HRTEM multibeam image along
the (110) direction of the sputtered sample; inset of (¢): high-resolution image of
one of the nanocrystals on the main panel. (After Gago et. al. [26]).

are crystalline, with the same orientation and crystalline structure as the
GaSb substrate. For 6 > 0, they observed ripples of wavelength 35 nm.
Similar results have been obtained by Gago et. al. [26] for normal incidence,
low-energy sputtering of Si surface with Ar ions (see Fig. 2Z0).

Formation of surface ripples is problematic in applications like secondary
ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES) and ion
milling. SIMS is one of the most widely used techniques for the dopant
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profiling of semiconductors, AES is an important tool in the structural char-
acterization of multilayers, and ion milling is a technique for shaping or
removing unwanted parts on surfaces. In a typical SIMS or AES apparatus
the primary ions are incident at # > 0, which leads to ripple formation and,
hence, to rapid degradation of the depth resolution, as well as changes in
the secondary ion yield. Zalar [28] demonstrated that ripple formation can
be overcome by simultaneous sputtering and sample rotation. Cirlin et. al.
have shown that such sample rotation can remove ripple patterns, if they are
already present on the surface before the onset of rotation, or suppress their
formation, if rotation is started from the onset of sputtering [29]. In both
cases the rotation can lead to a considerable smoothening of the surface.
They also observed that sample rotation does not always suppress surface
roughening, as the surface subjected to simultaneous sputtering and rotation
still roughens in some cases, though at a slower rate than without rotation
[3,29]. With this insight from the experiments, we later implemented sample
rotation in our simulations, to see its effect on the observed topographies.

With simultaneous sample rotation as the solid surface is sputtered, a
highly regular hexagonal pattern of close-packed mounds or cones has been
reported for oblique incidence sputtering of InP surfaces, by Frost et. al.,
using 500 eV Ar ions incident at § = 40° [30]. The lateral size (\,,) and
height of the cone-like structures increase with the fluence, or sputter time
t, according to the power-law \,, ~ t%26. But, for longer times, the mounds
saturates (i.e. A, becomes constant) and the topography changes from a
more irregular to a highly regular hexagonal pattern of mounds. Without
sample rotation, they did not find any evidence of ripple formation. Instead,
they found cone-like oriented structures, where the orientation depends on
the ion beam direction, as in the case of ripple formation.

2.2 Metallic Materials

Since this work is not concerned with metallic surfaces, the anomalous be-
havior of such surfaces (i.e relative to amorphous surfaces) is briefly discussed
here, in order to have an overall picture of nm scale surface patterning with
ion beams.

In contrast with the patterns observed on amorphous materials and semi-
conductors amorphized by the ion beam (described in the preceeding sec-
tion), topographic features arising from ion sputtering of single metals, with
isotropic surfaces, have been shown to reflect the substrate symmetry. For
instance, under the same sputtering conditions as on amorphous surfaces (i.e
low-energy ions, 6 > 0) square pits have been observed on Cu(001) [31] and
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Ag(001) B2, B3]; hexagonal pits on Pt(111) [34], Au(111) [35], and Cu(111)
[36]. In the case of anisotropic metallic surfaces, the asymmetry induces
a self-aggregation at the surface, leading to the formation of characteristic
ripple-like structures whose orientation depends on a crystallographic direc-
tion. For instance, ripples with crests oriented along (110) have been found
on Ag(110) [37].

The same dependence of the orientation on a crystallographic direction
was observed for ripples patterned on a Cu(110) surface, provided 0 < 6 < 6,

(see Fig. EZT10). This was demonstrated by Rusponi et. al. in [32, B8], where

Figure 2.10: Ripple patterns on Cu(110) after ion sputtering at Tg = 180K
for & = 45°. The arrow indicates the ion beam direction; the ripple orientation
depends on a crystallographic direction. (After Rusponi et. al. [32]).

the wave-vector of ripples obtained from 1 keV Ar™ sputtering of Cu(110)
at 180K, were shown to be parallel to the (110) direction. But, for 8 > 6.,
the ripple orientation depends only on the ion beam direction; independent
of the crystallographic direction.

For # = 0, at Ts = 180K, the surface is rough; at 250 < Ty < 270K,
the surface is characterized by a well-defined ripple structure with A ~ 20
nm, and wave-vector parallel to (110); this ripple structure is degraded at
Ts = 320K; and another ripple structure with A ~ 100 nm, and wave-vector
perpendicular to (110) is obtained for 350 < T < 360K.

2.3 Summary

In the experiments, different methods (STM, SEM, AFM, FIBM, RHEED,
and x-ray reflectivity) have been used to probe sputtered surfaces at nanometer-
scales, and a range of ion fluences of the order of 10 - 10'®ions/cm?. The
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X-ray based techniques allows the in situ and real time study of surface mor-
phology. Whereas with the microscopes (e.g STM), the surface features have
to be frozen by cooling to a lower temperature, usually around 200K, before
the (e.g STM) topographs are taken. From studies of the time evolution of
the morphology of various surfaces in these experiments one may draw the
following general conclusions.

Stochastic surface particle removal or deposition roughens the surface and
creates additional surface defects, whereas relaxation processes, via surface
diffusion or radiation-induced viscous flow, smoothens the surface. The ob-
served surface morphologies evolve as a result of a balance between these two
processes. Normal incidence sputtering have been shown to be an attractive
alternative, to lithographic techniques, in the production of uniform quan-
tum dots on material surfaces. For off-normal incidence sputtering of amor-
phous/semiconductor surfaces, periodic ripples with a characteristic length
scale have been observed. Such ripples are either oriented perpendicular to
the ion beam projection on to the surface plane, for small incidence angles,
or parallel to the projection, for incidence angles close to grazing. On other
materials, also at off-normal incidence, an array of mounds and pits were
found; no ripples. Other experiments have reported no surface patterns; no
mounds, no ripples.

The patterns formed on metallic surfaces have been found to reflect the
substrate symmetry; mound and pits on symmetric surfaces, and ripples
(below room temperature) on asymmetric surfaces. For small incidence an-
gles the ripples have been found to depend on the crystallographic direction,
whereas for high incidence angles the ripples depend on the ion-beam direc-
tion. Formation of ripples on such asymmetric metallic surfaces, at § = 0,
depends on the substrate temperature; from rough surface at T = 180K, a
ripple topography develops at T" = 250K. This ripple is degraded at 320K,
but another clear ripple of longer wavelength appears at 350K with wave
vector rotated by 90°.

As we shall see in the next chapter, some of these observations are well
described by the continuum theory. In the next chapter, we shall discuss
the major concepts of the continuum theory, and its successful description of
surface morphology induced by ion bombardment. More detailed comparison
of the theory to specific experiments can be found in Ref. [39]. Also, as seen
in some of the experiments, the time evolution of the surface roughness is of
great interest, thus, in the next chapter, we shall first discuss the scaling of
interface fluctuations before discussing the continuum theory.



It is the theory that decides
what can be observed.

Albert Einstein

Continuum Theory

3.1 Introduction

The continuum theoretical description of interface morphology pertains to
modelling the evolution of the interface height by means of deterministic and
stochastic partial differential equations. These equations are very power-
ful and successful tools for understanding the behaviour of diverse interface
phenomena. They typically assume the interface to be defined by some con-
tinuous function (i.e, the interface is a continuum of points), which implies
that one focusses only on the asymptotic coarse-grained properties, instead
of the discrete short length-scale details; i.e, those “details” that do not affect
the surface morphology. Continuum theory provides a good understanding of
the interplay and competition between the processes that govern the interface
evolution.

The continuum equations can be derived either from a discrete model of
the system, if already known, or by exploiting symmetry principles [I]. The
rest of the chapter is organized as follows: in the next section we start with
a brief treatment of the scaling of interface height fluctuations, as is com-
monly referred to in the literature of various interface phenomena. Next, we
discuss the linear continuum theory, followed by the non-linear continuum
theory; as pertains to static sputtered surfaces. And, finally, we discuss the
theory of rotated substrates. While these theories were proposed specifically
for the self-organized nanopatterns on amorphous surfaces, a number of ex-
periments on crystalline surfaces have demonstrated that the explanations
and predictions apply to crystalline surfaces as well.

16
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3.2 Scaling of Interface Fluctuations

The roughness of many natural surfaces, or interface between two media,
follow simple scaling laws, which are quantified using scaling exponents. The
exponents characterize the time evolution of the roughness of an externally
driven surface at small length scales; comprising of two different regimes: a
growth regime (I), and a steady-state regime (II), of the surface roughness.

The surface is described by a discrete single-valued (i.e. no overhangs)
function h(r,t) of the points r on the surface at time ¢. The surface roughness
W is defined to be the root-mean-squared (rms) fluctuation in the surface
height A(r,t), i.e,

W(L0) = [ S lhlx. 1) — () (3.1)

where (h(t)) is the average surface height at time ¢. The surface is expected to
saturate, i.e, crossover to regime II, when the typical wavelength of these fluc-
tuations £(t) (also called the correlation length) is of the order of the system
size; thus, the scaling hypothesis characterizes finite-size effects. Suppose we
characterize regime I with the growth exponent 3, then, W = k;t? in regime
I, and W = ko = W in regime II; where k; and ky are constants. Since £(t)
grows to &(t) ~ L, then we should expect the saturation time ¢, to grow with
system size, which implies that W, must be size dependent. If we character-
ize this with the steady-state exponent, or (saturation) roughness exponent,
a, then Wy = k3 L®. To conclude, we can characterize the size dependence of
ts with the time, or dynamic, exponent z; i.e, ty = kyL* (see Fig. Bl). Thus,

t8 fort << L% ie, t <t

W(L,t) ~ { LY fort>> L% ie t >t (3.2)

Indeed these power laws have been observed in numerous experiments on
surface growth, e.g. 3D island formations, and 2D epitaxial growths during
vapor deposition. They have also been observed in sputtering experiments.
The three exponents «, 3 and z are related, and this relation can be obtained
by assuming that all scaling relations hold at the transition to steady-state
roughness, i.e, combining W ~ t% ~ (L*)% with W ~ L% gives the scaling
law

a = fz. (3.3)

The relation (B2) is often expressed with a scaling function f(u), i.e,

W(L,t) = L‘{f(%) (3.4)
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Figure 3.1: Tllustration of the scaling regimes: data collapse for the ballistic
deposition model in 1D. In the first regime, for the three different system sizes,
the surface width W increases with time ¢ as W ~ t7, after which saturation is
achieved at t = t; ~ L?. At ts a crossover to the steady state regime occurs, such
that W ~ L% To achieve a collapse of the data for the three system sizes, the
width and time have been re-scaled according to: W — W/L® ¢t — t/L*. We
found «, B, and z to be 0.427, 0.305, and 1.4, respectively.

where f(u) ~ u? for u << 1, and f(u) = constant, for v >> 1. The
ballistic deposition growth model is a good example of the dynamic scaling,
as saturation of the width is rapidly achieved. The result of simulations
performed with this model is shown in Fig. B, as an illustration of the two
regimes.

Now, at saturation, t = t; ~ L* due to { ~ L (i.e, L ~ &). This implies
ts ~ &% o1, & ~ té/z. It should be noted that regime I can be splitted, for more
complex systems, due to different rates, or non-linearities. For instance, the
growth regime can consist of an initial transient (as in ballistic deposition,
for t < 1 [1]) in which poisson growth occurs with 3 = 1/2. These exponents
are believed to be universal, and unique to the specific process responsible
for the surface morphology, independent of the microscopic details of the
system; i.e, depending only on the conditions of height evolution (sputtering
or growth).

To summarize, the morphology of the interface between two media, at
least one of which is dense, exhibits dynamic scaling. The exponents of such
scaling characterize, and are unique to, the specific process governing the
morphology. Such a process (with exponents «, and z,, for instance), is
universal (thus defining a universality class) in the sense that its presence
elsewhere, in a seemingly completely different phenomenon, give rise to ex-
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actly the same scaling exponents (a, and z,). At large lengthscales, however,
the surface is smooth and independent of these exponents.

3.3 Effect of Each Component of a General
Continuum Equation

In the continuum theory, the surface morphology is modelled with partial
differential equations (PDE). We begin by discussing the effect of the coeffi-
cients of each terms in one such general, lowest order PDE. In a time interval,
ot, the surface height changes by an amount 0h = h(r,t) — h(r,t + 6t), given
by

§h = vV?h(r) — KV*h(r) + %(Vh(r))z, (3.5)

i.e in the absence of shot noise and anisotropies. The effects of each coefficient
in Eq. (B3) is explored in Fig. B2 for the 1D case. E.g, considering their effect
on a single Fourier component of the height profile, h(k,t) = ho(k, t)sin(k - r)
where k = kz, and r = x2; the evolution of an arbitrary surface can then be
understood as a superposition of the Fourier components. In the first term
on the RHS, V2h(r), being negative, relaxes the surface h(r) by a factor
of v; thus if v < 0, the surface is unstable against any perturbation and
the fluctuations (in the surface height) tend to grow [Fig. (a)], thereby
maximizing the exposed surface area, and reducing the ratio of the tangential
force per unit area on the surface, which is why it is referred to as a negative
surface tension. If v is positive, the surface is stable against any perturbation,
and relaxes as shown in Fig. (a). In the second term, V*h(r) increases
h(r) by an amount K. With the prefactor —|K]|, it relaxes the surface as
shown in Fig. (b), for K = 0.1 and 0.3. Without this [i.e —K as in (B3),
the surface again grows, as for K = -0.3. This second term arises from a
coarse grained continuity equation, and is discussed in section EE2. The third
term is the non-linear term (Vh(r))?, accounted for by the KPZ theory. Tt
allows for some interesting localized control of the surface topography, as seen
in the simple profile of Fig. (c), since it can spread a surface protrusion,
or flatten its peak, or reproduce two, albeit smaller but higher, copies of the
protrusion, due to lateral growth, with increasing magnitude A\. However, if
A < 0 [Fig. (d)], the peak remains the same while the sides are eroded,
so called lateral erosion. Note that (Vh(r))? > 0, and tends to destabilize
the surface; a trend that is reversed for A\ < 0.

Anisotropies give rise to different coefficients v, or A\, or K, along the
different directions, and breaks the symmetry with respect to rotation, trans-
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Figure 3.2: Plots of h(x,t + dt) versus z, to see the effects (local) of each term
of eq. on an arbitrary surface. The black lines represent the initial, §t = 0,

profile h(z,t). (a): A=K =0. (b): v =0.4. (c) and (d): v =04, K = 0.1.




3.4 Linear Theory 21

lation, reflection etc. Noise arises from the stochastic nature of local surface
modification, as a result of random collisions of atoms in the near surface,
induced by the ion bombardment; and makes the exact dh in a time inter-
val 0t non-deterministic. Finally, these terms either increase or reduce the
surface width, as may be easily inferred from our discussion, as well as from

Fig. B2

3.4 Linear Theory

In the seminal theory of P. Sigmund on ion-beam sputtering of amorphous
and poly-crystalline targets, it was shown that the spatial energy distribution
E(r) of an impinging ion may be approximated by a two-dimensional Gaus-
sian of widths ¢ and u, parallel and perpendicular to the ion beam direction,
respectively. Using this gaussian distributed kinetic energy [H0, ET],

E(r) =

) (5:6)

€
(27m)3/20 p? exp(— 202 22

of an impinging ion of total energy e with average penetration depth a, the
normal erosion velocity v = —9d;h at the point of impact, may be computed
[42, 39] as

v :pm/RdrcI)(r)E(r). (3.7)

Where the integral is taken over the region R of all the points at which the
deposited energy contributes to the total power € of all the ions that strike
the impact point within the range of the distribution. p,,, which depends
on the surface binding energy and scattering cross-section, is a proportion-
ality constant between power deposition and rate of erosion. ®(r) is a local
correction to the uniform flux Jy.

This provided the starting point upon which almost all the theoretical
analysis of the morphology of sputtered surfaces, are based. The linear theory
of Bradley and Harper (BH) is the first analytic attempt in this direction,
and it is quite successful in providing an explanation of the physics behind
the peculiarities of ion beam sputter erosion.

3.4.1 Bradley-Harper Theory

According to the BH theory, the time evolution of the interface height h(r,t)
is given by the following linear deterministic equation,

Oih = —vo + vyduh + (02N + (,02h — DV*V2h; (3.8)
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provided that there is no redeposition of eroded material, negligible reflection
of ions at grazing incidence [43], and that the local slopes are small enough
for non-linear effects, and shadowing effects, to be insignificant. Except
for the last term, all the other terms in (B.) arise from (B7); i.e. since
0th = —v. The last term arises from the continuity equation for diffusion
of surface atoms (described in detail in section EEZ). wvg(¢) (a function of
the local angle of incidence v of the ion) is the erosion velocity of a flat
surface; and gives an estimate of the speed of the surface while the solid is
being eroded, i.e, h(z,y,t) = hog — vot (hg is the initial height of the surface).
G = JraY, () /n = I, and ¢, = cI'y are effective surface tensions, arising
from the erosion process. ¢ = JraYy(¢)/n, Yy is the sputter yield of a flat
surface, and n is the number of atoms per unit volume in the amorphous solid.
I,(¢) and I'y(¢)) are dimensionless parameters which describe the curvature
dependence of the sputter yield. D is the surface diffusion constant induced
by thermal diffusion. A shortcoming of (BF) is that the coefficients are
expressed in terms of the local impact parameters instead of experimental
parameters, e.g, ¢ instead of 6; this is remedied in [A2, B9], and discussed
below.

If we consider, in k-space a periodic perturbation, with wave vector k =

(ky, ky), of the form
h(k,t) = —vgt + haexpli(k - r — wt)], (3.9)

where the amplitude

halt) = ha(0) exp(Re), (3.10)
then ([B3) gives
R = —Cokl — (k2 — D(K2 4+ k)?, w = —vphs, (3.11)

i.e, since V*V?h = (kj + k2K, +k2k2 +ky)ha expli(k-r —wt)]. For R > 0, the
amplitude grows exponentially with time, hence the wave vector k* observed
experimentally is the one for which R is maximum, i.e, for which 0, R = 0,
and 02 R < 0. Below some critical angle v, both ¢, and ¢, are negative and
in the absence of the surface diffusion term, there is no characteristic length
scale (since k* = 0 or \* = 00). Whereas an interplay with the diffusion term
(D > 0) exibits a characteristic lengthscale \* = 27 /k*, where

oGl
k= 2Dy’ (3.12)

(k = |k| = |k,2| or |k,y|). Suppose ¢ is the angle between the wave-vector
k and the ion beam projection (which is here assumed to be parallel to the
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r-axis), then, k, = kcos¢ and k, = ksing. And we may re-write the ripple
amplification rate R (BI), as

R(¢) = —((yc08’9 + (sin®¢)k* — DE™. (3.13)
We see that for R > 0 only two orientations are possible, corresponding to
the maximum of R(¢). That is, since R(¢) is either maximum when ¢ = 0
(k = kz) if [I'y| > |I'y|, in which case R(¢) decreases from |I',| to |I')| as
¢ — 90° or when ¢ = 90° (k = ky) if |[I'y| > |[';|, in which case R(¢)
decreases from |I'y| to |I';| as ¢ — 0.

Note that if the curvature dependence of the sputter yield is neglected,
I'y =T, = 0 which implies ¢ = 0 and R < 0, i.e, ripple formation is not
possible. Thus, ripple formation is due to the curvature dependence of the
sputtering yield (captured by the coefficients I'(¢))), whereby troughs are
preferential eroded to crests which makes the surface unstable against peri-
odic perturbation, with a consequent exponential growth of the amplitude.
Note also that the second term on the RHS of (B) arises from variations
(due to changing local incidence ) in the tilt-dependent erosion velocity
along the x—direction, which is parallel to the projection of the ion beam
direction onto the surface plane; and leads to the non-zero w in (B11]), along
the z-direction. In other words, due to the broken symmetry when tilting
the ion beam [22] at an angle 6 to the surface normal, in the x — z plane,
the ripples with k = k,& should propagate along the positive (negative) x
direction if v, is positive (negative).

Although Eq. BS) gives a satisfactory explanation of ripple formation,
as well as a correct prediction of the ripple wavelength and orientation, it
fails to explain a number of experimental features, such as the saturation of
the ripple amplitude [44, 45, 46|, the observation of rotated ripples [32], and
the appearance of kinetic roughening [4l, @7]. These shortcomings are known
to be remedied with inclusion of non-linear effects into the theory.

3.4.2 Theory of Makeev, Cuerno, and Barabasi

Makeev et. al. mapped a calculation of the coefficients, that characterize the
topography evolution during sputter-erosion, from the local coordinate frame
to the laboratory reference frame. They also considered higher(third)-order
linear terms, and the shot noise arising from the random arrival of the ions
on to the surface plane. With these calculations, they proposed the following
stochastic, linear, partial differential equation for the time evolution of the
surface height,

Oh = —vg + Y0sh + v, 0oh + v, 0o h + Q02 h + Q4y 0,0 h
—KV*h +n(z,y,1). (3.14)
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Where the coefficients are explicitly given in Ref. [39], and n(x, y, t) represents
the randomness resulting from the stochastic nature of ion arrival to the
surface,

(n(x, t)n(x', 1)) = D'o(x =x)6(t = 1), (n(x,1)) =0, (3.15)

i.e, uncorrelated both in space and time, and with zero mean. The amplitude
of the fluctuations, D', is directly proportional to the average incoming par-
ticle flux. Thus, here one can obtain a continuum theoretical explanation of
the experimentally observed topographies by plotting the coefficients using
the experimental parameters.

Note that in (BI4) the higher (third) order linear terms merely serve as
corrections to the ripple propagation velocity, which, following our treatment
in section B:ZT], leads to

w = —kg + Qukl + Quykakl, (3.16)

and have no further effect on the surface morphology. In general, odd order
terms only contribute to the surface translation. (BI) implies that, for small
incidence angles, ripples propagate parallel to the ion beam direction with
velocity

Q, Q.
V(A Ay) = —7 + 127T2F + 472 )\Zy, (3.17)

Y

that is, it also depends on the most relevant Fourier mode perpendicular to
ion beam direction. However, for the isotropic case the coefficients €2, and
€, are negligible, if § < 60°, compared to v [39]; thus the main contribution
to the ripple velocity comes from the ~0,h term. This implies that the
interface morphology is exactly as explained in the BH equation in section
BTl except that we now have coefficients that can be calculated directly
from the experimental parameters, i.e, vj; — v, ¢ — v, and D — K, so that

R = —vkl — vk, — K(K2 + k). (3.18)

Thus only the surface tension coefficients determine the surface topography,
and their interplay gives rise to the phase diagram shown in Fig. B3 In this
figure, ripples oriented perpendicular to the ion beam direction are formed in
region I, while ripples oriented parallel to the ion beam direction are formed
in region II.

When evaluating contributions from higher-order derivative corrections
to (BI4l) and from the inclusion of the first-derivative component resulting
from radiation-induced viscous flow in Ref. 48], it was shown that higher than
fourth-order processes only weakly modify ripple parameters. The inclusion
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Figure 3.3: Ripple orientation phase diagram for the isotropic case ¢ = u = 1,
in the linear regime. Region I: v, < v, < 0; region II: v, > v,. (After Makeev et.
al. [39)).

of radiation-induced viscous flow is also of weak influence, though it leads to
a much larger reduction in growth rate, but can attain a critical value that
inhibits any ripple formation; particularly for small ion-incidence angles and
energies. The inclusion of viscous-flow relaxation, however, is only relevant
in radiation-amorphized materials.

3.5 Non-linear Theory

In the preceeding section, the interface height evolution has been described
as a linear anisotropic function of the mean local slopes, in which the height
fluctuations increase exponentially with the sputtering time. But, as already
mentioned, some experiments have reported a saturation of the ripple am-
plitude, as well as the observation of kinetic roughening at long sputtering
times. The correction for these limitations is discussed in the next section,
where the time evolution of the interface height is seen to also depend on non-
linearities inherent in the system. But before discussing these corrections, we
shall first discuss the Kardar-Parisi-Zhang (KPZ) equation, a paradigm of
interface propagation, which will come up quite often in subsequent sections.
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3.5.1 The Kardar-Parisi-Zhang Equation

Although the KPZ equation was originally proposed as a systematic analytic
treatment of the static and dynamic fluctuations of growing interfaces (e.g,
eden growth model, ballistic aggregation etc.) [49] or propagating fronts (e.g,
flame front, fluid flow through porous media), there are strong indications
that it is applicable to the treatment of sputtered surfaces as well; at least
at long time-scales. According to the KPZ equation,

A
@h:%V%A~§W%f+n, (3.19)

interface growth is isotropic and stable in the small slope regime, since, in
the first term on the RHS, the surface is relaxed by the same amount v > 0
along the x and y directions. The noise term 7 is as defined in Eq. (B1H).
As local surface slopes increase, non-linearities become important and are
responsible for the unusual properties of the interface. Note that if A\, = 0,

BI9) reduces to
oth = v, V*h + 1, (3.20)

which is known as the Edwards-Wilkinson (EW) equation. The finite size
fluctuations of an interface governed by the EW equation is characterized by
the exact exponents [I]

2 — 2 —
a:—daﬁ: d

2 4

If v, = A\, = 0 in (BI9), we get the random deposition model: 9;h = n; in
this case, a is undefined (i.e, « = 00), and § = 1/2.

The exact scaling exponents of the KPZ equation are known only in 141
dimension, where o = 1/2, z = 3/2; i.e, @ and [ satisfy the scaling relation
a + z = 2. The non-linear coupling A, is expected to be irrelevant at higher
spatial dimensions (i.e, d > 3), due to the existence of a critical dimension
at d = 2 in which the non-linear coupling is only marginally relevant, and
in which direct numerical simulations may be hampered by a large crossover
regime [49]. Simulations in 2 + 1 dimensions yield z in the neighborhood of
1.7 [1]. Due to this critical dimension, phase transitions are possible between
different universality classes. That is, since the irrevance of A, (A, =~ 0)
results to the EW universality class; and, the irrelevance of both coefficients
(v, = A\, = 0) result to the random deposition universality class.

Assuming a quenched noise, by supposing that the sample surface is very
rough initially, then the effects of shot noise (or annealed noise) in ([BI9)

2 =2. (3.21)
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may be neglected for all but the longest times [50], leaving us with the deter-
ministic KPZ equation. Using scaling arguments, it was shown in Ref. [51]
that if the initial roughness scales as L* then

z=min(2,2 — o) and o =2 — z, (3.22)

i.e, « = min(0, ap). This implies z has an upper bound of 2, below which
it depends on o as z = 2 — ap; and o = 0(z = 2) for ag > 0. But these
predictions have not yet been tested in 2 and higher spatial dimensions.

3.5.2 The Kuramoto-Sivashinsky Equation

According to Cuerno and Barabdasi (CB) [42], the limitations of the BH model
can be corrected by the inclusion of noise and non-linear terms to B8 In
other words, the time evolution of a sputtered surface is described by the
noisy Kuramoto-Sivashinsky equation (KS) [52],

Oh = —|va|02h — |1 |02h + %(amh)Q + %(@h)z
—KV*V2h + . (3.23)

i.e, assuming a reference frame moving with velocity vy along the vertical.
The non-linear coefficients x, and yx, describe the tilt-dependent erosion
rate, in analogy with the nonlinear coefficient in the Kardar-Parisi-Zhang
(KPZ) equation. The KS equation has previously been used to model flame
front (interface) propagation and diffusive instabilities of chemical waves.
The linearized KS equation has a band of unstable modes with wave vector
smaller than a threshold value. In the isotropic KS equation (v, = v, = v;
Xz = Xy = X), an interplay between the linear instability v and the non-linear
coupling x between the unstable modes leads to a state of chaos is space and
time [53, B0].

Applied to sputtering phenomena Eq. (B23) is known as the Cuerno-
Barabasi (CB) continuum model. They explicitly calculated the coefficients
in terms of physical (experimental) parameters characterizing the sputtering
process, for o = u. When fully developed, the surface has a cellular structure,
where each cell is either a rounded protrusion on the surface (x > 0) or a
rounded hole (y < 0). These cellular structures are not periodic in space
and time, but rather, appear and disappear chaotically with time. Using the
isotropic, noisy KS equation, it was shown in Ref. [50] that the mean cell
width scales as (K/|v|)!/2, and the mean cell height scales as |v|/|x|. And,
since both v and x are proportional to the ion flux J; and are independent
of the sample temperature 7", the mean cell width does not depend on J; or

T.



3.5 Non-linear Theory 28

3.0 -

2.0
a ! 117

10} n

|
0.0 ‘
7 30 60 90
o

Figure 3.4: Ripple orientation phase diagram for the isotropic case o = p =1, in
the nonlinear regime. Region I: v, < 0, v, <0, x; < 0, xy < 0. Region II: v, <0,
vy <0, Xe > 0, xy < 0. Region III: v, > 0, v, < 0, xz > 0, xy < 0 (After Cuerno
and Barabési [42)).

As shown in Fig. B4 Cuerno and Barabasi found the existence of three
phases, with boundaries defined by a and 6; and with the scaling behaviour
dependent on the relative sign of v,, v, X, and x,. Note that v, < 0, x, <
0for 0 <6 <m7/2.

If the diffusion is isotropic, and the characteristic lengthscale A\, = /K/|v|
that arises as a result of the competition and interplay between the negative
surface tension and surface diffusion is of the order of the lengthscale of the
system [ (i.e [ ~ \.), the nonlinear terms and noise play very little or no
role in the surface morphology, and the surface conforms to the BH linear
theory, such that a ripple morphology dominates, with ripples oriented along
the direction (x or y) which presents the largest absolute value for its sur-
face tension coefficient(i.e ripples are expected in regions I, IT and III for all
theta). The (anisotropic) large lengthscale behavior I >> X, is expected to
be different, since both nonlinearities and noise may now be relevant; conse-
quently, they discussed some possible scenarios, based on the result availlable
in the literature for some of its limits, as follows.

One may expect both v, and v, to change to positive values in a renormal-
ization group analysis of the KS equation in 2 + 1 dimensions [A2]. Indeed,
it is well established that in 1 + 1 dimensions, the scaling behaviour of the
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KPZ equation is the same as that of the Kuramoto- Sivashinsky (KS) equa-
tion [64, BA, BE, B7]. Though in 2 + 1 dimensions, there is evidence that
KPZ and KS equations are in the same universality class as well [58], but it
is still unclear whether, or not, this is the case; since different groups have
reported different results [59, 60, G1].

Since v > 0, implies a relaxation of the surface, the surface diffusion
term will then be insignificant (K < 1, v > K) to the relevant surface
relaxation mechanism. The scaling properties are then described by the
anisotropic KPZ (AKPZ) equation. The AKPZ equation predicts algebraic
scaling (surface width grows algebraically, and saturates) if x,x, > 0; in
which case the non-linear terms are relevant. This is the case in region I,
with exponents o = 0.38 and z = 1.6; i.e, surface is characterized by KPZ
equation in 241 dimensions [62,63]. If x,x, < 0, in which case the non-linear
terms are irrelevant since they tend to cancel each other, the AKPZ equation
predicts a logarithmic scaling (a = 0); i.e, width grows logarithmically.

Where v, > 0 and v, < 0 (region III), the negative v, may change to a pos-
itive value such that the scaling is again logarithmic (AKPZ), since x,x, <
0. But there is no consensus as yet on the asymptotic scaling behaviour of
the KS equation in (2 + 1) dimensions [64], since direct simulations [65] have
not been conclusive, and analytic treatments by different groups have led to
different conclusions [58, K9).

Park et. al. [66] discussed the behavior of, or relevance and non-relevance
of nonlinearities and the noise in Eq. (B2Z3) to be governed by the time scale
of modification; where they demonstrated a clear separation between the
linear and nonlinear behavior. For erosion times ¢t < 7 (crossover time),
the nonlinear terms are irrelevant; ripples are formed, as predicted by the
linear BH theory, with an amplitude, and hence surface width, that grows
exponentially with erosion time. For ¢ > 7, the nonlinear terms stabilize
the surface width, and completely determine the surface morphology. They
destroy the ripple morphology generated in the linear regime, when x,x, >
0, and lead to a rough phase governed by kinetic roughening. While they
result in a long and apparently rough transient regime, followed by a new
morphology of rotated ripples, when x,x, < 0. This rotated ripple phase is
stable against the noise (i.e the noise term is irrelevant here).

The CB model does not predict a coarsening effect A o ¢* in timeﬂ, in
contrast to experiments [30}, 22, 32]. Tt also foresees o = 0 for 6 > ...

Wery recently, a continuum theory has been proposed in Ref. [68] to address this issue
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3.6 Extensions

The exact forms of the continuum theory discussed in the preceeding sec-
tions are at times not satisfactory to specific problems, which neccessitates
an extension of the theory by addition of relevant terms. Such pertinent
extensions are discussed in this section.

3.6.1 The Theoretical Model of Chason et. al.

In other to account for the quantitative difference between the BH theory
and their experiments [I1], Chason et. al. proposed the following theoretical
model. The model includes the effects of relaxation via viscous flow (F') to
the amplification rate R,, so that the surface spatial frequency spectrum is
given by

[h(a, )" = |ho(a)* exp(Rgt) + (aq/ Ry exp(Ryt) — 1]. (3.24)

R, represents the balance between the relaxation rates Fq and Dg* by vis-
cous flow (F') and surface diffusion (D) respectively, and the structure depen-
dent roughening rate Sq? by sputtering (S). ho(q) is the initial roughness
spectrum. The preferred wave vector ¢* is the resultant of the competing
processes, and occurs at the maxima of R, (if S, sputtering, dominates) or
minima of R, (if the smoothening combination of viscous flow, and diffusion,
dominates). Solving the extremal equation for the crystalline phase (F' = 0)
gives ¢* = (S/2D)"? and Ry = S*/4D. S # S(T), thus, as D increases at
high temperatures, R} decreases and the surface roughens more slowly than
at a lower temperature T' > 250°C. Since S ~ f, where f is the ion flux, the
model also predicts that R, depends on the square of the ion flux; a behavior
they have observed.

3.6.2 Normal Incidence Quantum Dot Formation

A quantum dot (QD) is a particle of matter so small (e.g of nanometer di-
mensions) that the addition or removal of an electron changes its properties
in some useful way. Thus, their fabrication and physical properties are of
interest due to their potential applications in nanotechnology, in particu-
lar, optoelectronics. It was demonstrated by Facsko and collaborators [25]
that ion beam sputtering (Art on crystalline GaSb) is a more attractive
alternative to two previously used methods of quantum dot manufacture:
Epitaxy; and lithographic techniques of spontaneous growth of semiconduc-
tor QDs in the Stranski-Krastanov growth mode. The sputtering method is
cost effective, and can produce small, high density dots, with a uniform size
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distribution. It was also demonstrated, simultaneously, by Rusponi and col-
laborators [38, [69] that such normal incidence sputtering [of metallic copper
(Cu) and silver (Ag) surfaces] produces uniform depressions or holes.

Kahng et. al. [70] have shown that the formation of ordered QDs instead
of the random hillocks and depressions predicted by the linear theory, and
observed in some experiments, is due to the relevance of non-linear terms.
Assuming that ion-induced effective diffusion and thermally activated surface
diffusion are the main relaxation mechanisms [7T], the following equation was
proposed for the height evolution of the sputtered surface,

Oh = v,02h + v, 00 h + %(%)2 + %(ayh)z
—K,03h — Ky, h — Ky, 02050 + 1. (3.25)

Under normal incidence, the coefficients in this equation are isotropic, and
there is rotational symmetry, thus the equation that guides the height evo-
lution of sputtered surfaces at normal incidence, may be written as

dh = vV2h + %(Vh)Z — KVih+n, (3.26)

where V = i0,+j0,, V* = V-V = 92407, (Vh)? = Vh-Vh = (9,h)*+(0,h)?,
Up=Vy =V, Xa =Xy = X, Ko = K, =K, and K, = K, + K, = 2K.

The ion-induced effective diffusion is dominant at low temperatures, while
thermal diffusion is dominant at high temperatures. The coefficients are given
in Ref. [70]. The quenched form of ([B26) was used in their numerical inte-
gration, in order improve the uniformity of the dots. The noiseless (save for
the quenched noise, in the random initial surface configuration) integration
reveals the non-linear nature of the QDs.

As shown in Fig. B3, in the early stages [Fig. (a) and (d)], when
non-linearities are irrelevant, the surface is dominated by small wavy per-
turbations (or non-oriented, due to the isotropy, short ripples) generated by
the interplay between the ion-induced instability and surface relaxation. Af-
ter some characteristic time 7, these structures turn into isolated by closely
packed islands, if x > 0 [Fig. (b)], or holes [Fig. (e)], if x < 0. At
times t > 7, the non-linear terms lead to kinetic roughening of the surface
at large length scales 2, [70)], and while the QDs or holes do not disappear
[Fig. B (c) or (f), respectively], the substrate on which they exist becomes
rough, destroying the overall island/hole uniformity and ordering. This loss
of uniformity is shown in the increased width of the island height distribu-
tion at later times, implying a higher fluctuation in the island height at later
times.

The crossover time 7 can be monitored, through the surface width, as
the crossover time from the regime of the exponential growth of the surface
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Figure 3.5: (a) - (¢): Surface morphologies predicted by Eq. 820, for x = 1 at
different stages of surface evolution. The pictures correspond to ¢t = 4.0, 5.8, and
8.0 x 10%, respectively. (d) - (f): The same as in (a) - (c), but for x = -1. (After
Park et. al. [66]).

roughness, to the regime of the steady-state roughness; since it has been
demonstrated [66] that the non-linear terms are responsible for the saturation
of the surface roughness. Thus, ordered and uniform QDs, or holes, can be
obtained only at the crossover between the linear and non-linear regimes, i.e,
at t ~ 7; and the dot size, though independent of the flux and temperature,
may be tuned by changing the ion energy.

3.7 Theory of Simultaneously Rotated and
Sputtered Surfaces

As mentioned earlier, ripple formation is a nuisance in a number of surface
processing and analysis applications (e.g SIMS, AES). In this case the prob-
lematic ripples can be prevented from forming, or removed by Zalar rotation
[28]; a procedure in which the sample is simultaneously rotated as it is being
sputtered. Such concurrent rotation and sputtering leads, in many cases, to
remarkably smooth surfaces [(2, 29]. In some instances, simultaneous rota-
tion and sputtering still roughens the surface, albeit at a slower rate than
without rotation. A theoretical understanding of the former case is provided
in the next section (BZTl), from the continuum theory; and that of the latter
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case is discussed in section B2

3.7.1 Pattern Suppression, Smoothening,
and Roughening

If the projection of the ion-beam is inclined at ¢; to the z-axis, as is the case
for a rotating substrate, and the wave vector k, of some Fourier mode, is
inclined at ¢y, to the z-axis, then in Eq. BI3) ¢ — ¢ — ¢;. If we include an
additional term F for viscous flow [I1, &], Eq. (BI3) becomes

Rig = —Fk — [Gocos* (¢ — ) + Gsin®(9 — 6K — Dk (3.27)

where F' = ~,/(2u,) (F > 0), v, is the surface tension, and p, is the viscocity
(as p, — o0, FF — 0). Though R, = R — Fk, R, may still be positive
and ripple formation possible in the presence of the enhanced smoothening
due to ion bombardment induced viscous flow, provided that F' < F; where
R—F.k = 0. One may calculate F, by assuming that R, (F.) = Ry (k) =0,
where k,, is the value of k for which R,y is maximum (which for simplicity
of calculation we here assume to be zero). Since we are already familiar with
the maximum amplitude growth rate occuring along a direction parallel or
perpendicular to the ion beam projection, and recalling that ( = cI', we may

re-write (B27) as

R, = —Fk + c|[l'|k* — DK*, (3.28)
which implies

F,=c|l'|k — Dk (3.29)
Thus Oy R,(F.) = 0 yields

_
kn=1\/3p5" (3.30)

_ el TN e[/
F. =Pl S5 —D< 3D> _2D<3D) . (3.31)

Thus for ripple formation to occur on materials with low viscocity F' must
be less than F,, since R, < 0 if F > F,, where F, is given by Eq. (831

Considering Eqs. (B8)) and ([BY), if we assume a reference frame moving
with velocity vy along the erosion direction, we have

i.e,

DUk, 1)] = Ruolh(k, ). (3.32)
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which has the solution |h(k,t)| = |h(k,0)| exp(R,ot). Since keeping the ion
beam direction fixed and rotating the substrate is equivalent to keeping the
substrate fixed and rotating the ion beam, sample rotation is introduced into
the theory [73] by letting ¢; evolve with time as ¢;(t) = wt + ¢;(0) = wt; i.e,
assuming that the initial ¢ (¢;(0)) is zero. So that [73],

(k1) = 10k, 0) exp( Ry t) exp (L2 2sinio(uot — ). (3.9

where
Ry = —Flk — g(rgg +T,)k? — DE*. (3.34)

Thus |h(k,t)| either grows (R, > 0) or decays (R.,x < 0) exponentially
with time, the second exponential factor simply superimposing a periodic
oscillation on this overall increase or decrease. In other words R, is the
analogue of R, with sample rotation, and the effect of sample rotation on
the ripple amplification rate is to transform |I'| — |Tayv| = [Tz +1',|/2, which
implies a second cut-off

C|Pav| 3/2
3D ) '

I', and I'y are always negative {1], [73]. Assuming 6 < . (in which case
r,<r,<o0,or|I'y| >|I'y|), and suppose F' < F,,, then 0 > (I', +T,)/2 >
[',. This implies R,,; < R, for all values of k, i.e, amplitude growth rate is
suppressed with sample rotation, as observed in the experiments. If ' > F_,
(ie, 0 < F,,,, < F < F.), R.ot < 0 whereas R, > 0, which implies that
the ripples that would have been produced without rotation are suppressed
with rotation and a smooth surface is obtained instead; in agreement with
experiments (e.g, [3, 29, [(2]). If FF < F,,,, there are k values with R,.,; > 0
hence the surface roughens albeit at a slower rate than without rotation.
However, even though R,,; > 0 ripples can not be formed because of the
rotational symmetry about the z-axis; the nature of the roughening in this
case is influenced by non-linear corrections (i.e, as in the KS equation).

Thus, according to Ref. [73], the smoothing effects of viscous flow and
surface self-diffusion can prevail over the roughening effect of curvature-
dependent sputtering, when a sample is rotated while being sputtered. This
leads to a smoothening of the surface, prevents ripple formation if sample is
rotated from the beginning of the sputtering, or removes ripple patterns, if
sample rotation begins after pattern formation. This predicts a transition
from a smooth to a rough interface as the sample temperature is increased;
assuming that the surface remains crystalline as it is heated to higher tem-
peratures 73, [T1].

F,

Crot 2D( (335)
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3.7.2 Topography and Dynamic Scaling

A theory of the dynamic scaling of ion-sputtered rotating surfaces was pro-
posed in Ref. [B0]. Starting from the noiseless version of Eq. (B23), and
considering a rotating frame of reference (X,Y,Z) corresponding to non-
zero azimuth ¢ (as in rotated samples) in which the ion beam travels in the
X — Z plane before impact, Bradley showed that the surface height evolution
is governed by the isotropic equation,

1
o = vayViu — DV*V2u + §XaV(Vu)2. (3.36)

where u(z,y,t) = h(z,y,t) — ho + vot. vav = (Vz + 1), Xav = 2(Xz + Xy)-

As mentioned in section ([BZI) rotating the sample around the z-axis
with constant angular velocity w, during sputtering, is equivalent to letting
¢ evolve with time as ¢ = wt. When w is small ripples can still form, with
an orientation that depends on ¢ and rotates with the beam. But when w is
large, it is as if the sample were bombarded from all ¢; there is isotropy and
rotational symmetry (i.e, no ripples in this case). Thus there is a maximum
w = w,, above which ripples will not be formed. Suppose we rotate at this
maximum w = w,,, below which ripples can still be formed, (BI12) and BI3)
implies that the growth rate of these ripples is

Vav
Ry = -2, 3.37
o = (337)
Let A, be the first appreciable amplitude, then (BI0) implies that the time
for this to occur may be written

g, = 2D A (3.38)

" Ay ha(0) |
ie, t,, ~ D/v3y, which implies w,, ~ viy,/D. Ripples are formed when
w << Wy, and are absent when w >> w,,.

Therefore, according to this theory, a simultaneously sputtered and ro-
tated (with angular velocity w >> v3,/B) surface has rotational symmetry.
And, when surface slopes become appreciable, is either in the isotropic KS
universality class if vay < 0, or in the KPZ class if vay > 0. As regards the
topography, when non-linearities are significant and the dynamic scaling is
that of the KS equation, the surface either consists of rounded protrusions
(dots), if xay > 0, or rounded basins (holes), if xay < 0. Whereas if the
dynamic scaling is that of the KPZ equation and the sputtering time is suf-
ficiently long, the topography consists of paraboloids of revolution. In other
words, the expected scaling behavior is as discussed in sections and

BT
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The coefficients appearing in (B36) have been calculated in Ref. [74]
where it was shown that dot formation is possible only in specific regions
(e.g 0 < p and a < o) of parameter space for which v,, < 0 and x4, < 0.



Progress is possible only if
we can train ourselves to
think about programs with-
out thinking of them as
pieces of executable code.

Edsger Dijkstra

Modelling for Computer
Simulations

In order to study the system at atomic length scales, where the surface is not
continuous, discrete models are used. Such discrete models (e.g, as in studies
of surface growth by atom deposition and aggregation) are of vital impor-
tance because they provide an essential link between the continuum theory
and experiments, and, if the results are in good accord with experiments,
can throw more light into the short length scale behavior of the system, and
possibly also guide future experiments. As surface modification by ion bom-
bardment is known to be governed only by the processes of sputter-erosion
and surface diffusion, any model aimed at understanding the different mor-
phologies must address these two processes.

Binary collision approximation (BCA) codes have traditionally been used
as a computer simulation method for studying the effects of ion bombard-
ment of solids, like, for instance, ranges of implanted species and damage
distributions resulting from the collision cascade [75]. In the BCA, each ion
trajectory is constructed as a series of repulsive two-body encounters with
initially stationary target atoms, and with straight line motion between col-
lisions. Its major limitations are that it breaks down: at low energies; when
the ion has simultaneous interactions with more than one target atom; and,
when collisions between moving atoms become significant. These limitations
can not be ignored in this study, expecially the first one, since most surface
patterns are formed from low energy sputtering.

Molecular dynamics (MD) simulation can, in principle, be applied since
it has the advantage of being truly dynamical; in the sense that Newton’s
equations are solved to obtain the dynamical evolution of the system. How-
ever, it is quite impractical, at least in the length- and time-scales for which
experimental observations are possible, due to a number of limitations: fore-

37
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most is the fact that MD simulations are extremely time consuming, and,
even with the most sophisticated state-of-the-art supercomputers [76] one
must use (e.g, in MBE) MD rates which are about 10 orders of magnitude
faster than typical MBE growth rates, to speed up the simulation. Also, the
typical MD simulation time is of the order of 1072 - 1075 secs. [77], far below
the time at which relevant surface features develop.

In addition, one needs to know the accurate interatomic potential, which
is, in general not known. Though, the problem of an accurate interatomic po-
tential maybe solved via ab-initio (or first principles, or Car-Parrinello) MD,
where the forces are calculated directly, from electronic structure calculations
that are performed as the MD trajectory is generated, thus considering the
electronic variables as active degrees of freedom (for a review of ab-initio
methods, see Ref. [78]). As a result of these limitations, MD simulations
have only been used to study adatom creation, and crater formation on time
scales on the order of pico-seconds (1071 secs.) after ion impact [79].

Hence, in this study we only consider simulations using the Monte Carlo
method. However, this approach has its limitations too, as will be seen later,
but it suits our purpose considerably since the surface morphology, as a
whole, is independent of the details of the dynamics of single constituents of
the interface but rather, that the interactions between them either roughens
or relaxes the interface. The resulting configurations can then be sampled
by assigning statistical weights to them as in simulated annealing. Also,
determining the overall scaling behavior of the surface might, depending on
non-linearities, require simulations at (long) times outside the reach of BCA
and MD.

4.1 Sputtering Models

In this section, we shall consider some discrete models of sputtering, and
discuss their implementation on the computer. And in section B2, due to
the important role of surface diffusion, we will look at different discrete mod-
els of surface migration used in computer simulations of epitaxial growth on
vicinal surfaces; as well as their continuum theoretical interpretation. Any of
these surface migration models can be combined with a model of the sputter-
ing process to accurately simulate the nanometer length scale topographies
arising from sputter-erosion; depending on the experimental constraints.
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4.1.1 Cascade Model

In this model [80], the collision cascades, arising from impinging ions, are
simulated in the binary collision approximation, using a screened Coulomb
potential, identical to the Krypton-Carbon (Kr-C) potential, to describe the
interactions between colliding atoms. Atoms emerging, outwards from the
local surface, from these cascades are allowed to sputter when their energy
exceeds the surface binding energy FE, = 7.5eV, derived from the heat of
sublimation; redeposition of sputtered atoms is not allowed. The simulation
has been done using a modification of the COSIPO (computer simulation in
polycrystals) code, with the surface area limited to L? = 100 x 100 atoms
(about 20 x 20 nm?), and the target divided into boxes which contain a
single carbon atom, with periodic boundary conditions. Actually, the code
is designed for ion energies above 1 keV (i.e, since BCA breaks down at low
energies). According to them, shadowing effects are taken into account by
demanding that all collisions occur below the instantaneous surface position
at the impact site.

After the completion of a collision cascade originated by each impinging
ion, they simulate surface diffusion with a Wolf-Villain type model (see E2Z2).
The simulations suggest that ion bombardment creates self-affine, rough sur-
faces, with scaling exponents [W(({h)) ~ (R)¥ W ~ L% a ~ 0.25 — 0.47,
independent of relaxation mechanism, for angles of incidence in the range
0°—60°, smoother surfaces (lower «) corresponding to larger angles; 3" ~ 0.3,
0.20 —0.23 (2 =1.6 —2.1), 0.14 — 0.17 (2’ = 1.9 — 2.6), without relaxation,
with [ = 1 (nearest neighbor hopping), and with [ = 2 hopping, respectively,
independent of  [RT]. These scaling exponents do not conform to any known
nonequilibrium growth model.

4.1.2 HKGK Model

During the sputtering process, the rate of erosion of surface material, at a
point on the surface, is proportional to the average power deposited there by
impinging ions of uniform flux Jy (see section BZl). Thus, one may simulate
the sputtering process by defining the surface as a d-dimensional grid (1 <
d < 2) and then eroding surface particles with a probability p. proportional to
the power deposited there by impinging ions. This approach, with p, oc E(r),
is referred to as the Gaussian model, due to the Gaussian form E(r) in Eq.
(BH). In other words, it simulates directly the surface morphology arising
from the spatial distribution (B) of the kinetic energy of an impinging ion.

This model was introduced by Hartmann, Kree, Geyer, and Kolbel [82]
to simulate sputter erosion, and a similar approach has subsequently been
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taken by other simulation studies of ion-beam sputtering (see section EET33)).
In the next section, we shall discuss some variants of this model. All of them
assume the Gaussian distributed energy of an impinging ion within the bulk
of the material, such that the energy received by a substrate atom decays
exponentially with increasing distance from the centroid.

4.1.3 Combined Models

Some models have combined the two competing processes of sputtering and
surface diffusion such that either of them can occur in a single iteration. Such
models are discussed as follows

Stochastic Model of Cuerno et al.

The (14 1)D model of Cuerno et al. [86] is defined on a square lattice of
lateral size L, with periodic boundary conditions in the horizontal direction,
which represents a 1D surface, with surface points i (1 < ¢ < L); the vertical
direction being the surface heights, h;. A site is randomly chosen and subject
to erosion with probability p, or diffusion with probability 1 — p; both being
mutually exclusive events.

The sputter yield Y (¢) may be written as [87, 8§]

Y(¢) = yo + 110 + 420", (4.1)

where yg, y; and ys are constants, which are chosen here such that Y (0) = 0.5,
Y (n/2) = 0, and with a maximum value Y (¢,,) = 1 for 7/3 < ¢, < 47/9
rad. The general requirement is that yo > 0, y; > 0, and yo < 0 [87]. Note,
due to the discrete nature and the normalization constant of 7 (no overhang),
only ¢ = 0,45°,63.4°, 71.6° are possible; e.g in both cases of Fig. 1(b) in their
paper, Y (¢) = 0.5.

If erosion is chosen, the local angle of the ion trajectories to the surface
normal, ¢ = tan"[(hiy 1 — hi_1)/21] (I is a unit lattice spacing along the
horizontal direction), is computed and the erosion rule is applied with proba-
bility Y'(¢); i.e, if random number is greater than Y'(¢), abort, else proceed to
erosion rule. Erosion rule (box rule): Count the number of occupied neigh-
bors inside a square box of size 3x3 lattice spacing centered on the chosen
site 7, and erode with probability p., which is proportional to the number of
cells in the box [see Fig. 1(b) of [86]]. Thus, this box rule favors erosion of
troughs in preference to crests, thereby creating the well-known instability.
An analytic form for p, is given in Ref. [88].

If, on the other hand, diffusion is favored, a diffusive move of the parti-
cle i to a nearest neighbor site is attempted with hopping probability (i.e,
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normalized hopping rates) w;_.; = [1 + exp(AH,;—;/kgT)| ", where AH;_¢
is the energy difference between the final and initial states of the move;
H = (J/1?) > iy (hi — h;)?, 1, is a unit lattice spacing along the vertical
direction, and J is a coupling constant.

The continuum equation for this model has been derived in [88], using
the master equation approach, based on the assumption that the interface
evolution is a Markov process. It was shown that the model belongs to the
isotropic KS universality class [i.e, described by ([B24])].

Variants of the HKGK Model

In Ref. [64], sputtering and diffusion are mutually exclusive events. In each
MC iteration, a surface site is randomly picked for impact (f = 0°), and
a Gaussian distribution, of width o, centered on a point d units below the
impact point, selects a solid particle. If the particle selected is active, i.e
if it has at least a vacant nearest-neighbour or next-nearest-neighbour site
to which it can migrate, then it is ejected if sputtering is the chosen event,
otherwise the iteration ends; the choice is governed by a parameter r =
rs/rp, where rg is the attempt rate for a sputtering event per site, and
rp (=1) is the attempt rate for a diffusive event of an active particle; such
that the probability of eroding the particle is ps = rN/(rN + N,), where
N = L,xL,, and N, is the number of active particles. If diffusion is the
chosen event, an active particle is randomly selected from the list of all active
particles, and migration to a randomly selected vacant neighboring site is
allowed/disallowed based on the metropolis algorithm. Note, if N, = 0 (flat
surface), ps = 1; they have considered r¢ << rp; and used a = o = 1,
the value of p used was not reported, could be p = 0. The temperature
has been arbitrarily chosen, bearing in mind that, it must be set sufficiently
low in order for the solid not to melt or evaporate; but if too low, diffusion
attempts are rarely successful and the rate of thermal diffusion is reduced.
Furthermore, N, increases with simulation time, hence sputtering becomes
less likely and diffusion becomes more and more likely.

Similar to Ref. [82], an atomistic model that describes the surface as a
height field h(i,7), where 7,7 denote atomized cells of a 2D grid with pe-
riodic boundary conditions, was developed in Ref. [83]. However, when an
ion reaches the surface, they allow energy deposition with a probability that
depends on the local incident angle and is defined through an approach re-
ported elsewhere; but if energy deposition occurs, then surface atoms are
eroded with a probability proportional to the Sigmund distribution, with
parameters, obtained through a SRIM [84] simulation of 1 keV Ar-ion sput-
tering of Cu, a = 3.5, 0 = 3.0, and u = 2.6. Their surface mobility entails
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discrete jumps, from a randomly chosen site 7, j to a randomly chosen nearest
neighbor site k, [, if [V2h(i, j)| or [V?h(k,l)| (which represents the local cur-
vature) exceeds a given threshold value ,,,, = 3; provided that this increases
the difference |V2h(i, 7)| — V2h(k,1)|.

The kinetic Monte Carlo (KMC) model in Ref. [TT3] uses the same sput-
tering mechanism as in Ref. [82], but the choice of the reference frame is
different. Here, they used the same reference frame as in Ref. [39], to de-
scribe the local coordinates of the incident ion relative to the impact point;
and they scaled the sputter yield for a flat surface by a factor equal to the
ratio of the energy deposited on a rough surface to the energy deposited on
a flat surface. Surface diffusion is described by assigning an Arrhenius type
hopping rate, I' = ve~(PatnE)/ksT " tq each surface atom with an activation
energy proportional to the local bond coordination; where v = 103571 is
the attempt frequency, Ej is the activation energy for adatom hopping, n is
the number of nearest neighbors, and Ej, is a bond energy. The effects of
energy deposited by ions, on diffusion, was ignored as it is dissipated quickly,
relative to the rate of any diffusive event.

4.2 Surface Diffusion Models

It was shown by Krug et. al. [89] that nonequilibrum conditions generically
generate a surface diffusion current, which only depends on the local surface
inclination VA, and can not be derived from a generalized chemical potential
as expressed in Mullins’ theory of equilibrium surface diffusion. In other
words, the microscopic origin of the diffusion current in out-of-equilibrium
surfaces, is in the tilting (local or non-local) of the surface, h — h+ Or - Vh,
which induces a preference for particles to move either uphill or downhill
(see section EZT]). In the case of particle deposition, the height increases
with each (local) additional particle, whereas in particle removal, the height
decreases with each particle loss (i.e provided there is no redeposition, as
might be the case in the vicinity of a crater).

Much insight, into the nature of this diffusion current of adatoms has
been gained by simulations of growth by MBE. In such simulations, imple-
mentation of adatom creation via atom deposition is a trivial increment of
the height of a randomly chosen i by one (i.e, h(i,t) — h(i,t) + 1); which, by
itself, represents a time evolution of the surface height. However, such height
evolution does not conform to experimental findings; despite the inclusion of
noise. Extensive research has shown that inclusion of local constraints, which
allow or disallow a displacement of the adatom, from the chosen site i, are
crucial; and in fact are responsible for the resulting time evolution of the
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interface. Hence, there exists some discrete models that capture the essen-
tial physics of surface migration, where such migration is viewed as either
a free or a constrained random walk of adatoms (which maybe reversible or
irreversible) in search of highly coordinated positions, guided by the rule to
maximize the bonding or number of the nearest neighbors.

Since surface diffusion also play a crucial role in the determination of the
surface morphology of sputtered materials, the intensive study of the process
in MBE simulations affords us ready-made models to be inculcated into our
simulations. Hence we take a look at the relevant mechanisms of a few such
models, starting with a continuum description.

4.2.1 Continuum Description

In discrete limited-mobility atomistic surface growth models, surface diffusion
implies the migration of each adatom (additional atom), until incorporation
onto the surface, according to some constraint; e.g, surface energy minimiza-
tion, increase (or maximization) of local coordination, minimization of some
scalar field, etc. Such constraints classify the model, with unique scaling ex-
ponents which differ in each spatial dimension. Due to the SOS constraint,
growth can be described on a coarse-grained level by the continuity equation
(for conserved particle current)

% = -V j+ F+nxt), (4.2)
where j is the local diffusion current, a function of the derivatives of h, n
has the same properties as ([BI0), with D = FQ?; F is the incoming particle
flux, and Q2 = a laﬁ is the surface cell volume with lattice constants a; and
a in the growth direction and in the d-dimensional substrate, respectively.

If we define a scalar field K, as in Ref. [90], which is a function of h and
its various differential forms V"h, (Vh)", where m and n are integers, and
the acceptable form is subject to symmetry considerations, then j may be
expressed as a gradient of the scalar field K; i.e,

j(r,t) = =-VK, (4.3)
where
K = kh —oV?h + o(Vh)> + - - -. (4.4)

In other words there is a net current downhill for positive slope of K, which
increases with increasing slope; or, a net current uphill for negative slope of
K which increases with decreasing slope. Physically, the downhill (uphill)
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current constitute a current of adatoms (vacancies). The most general form
of the continuity equation (fE2) can be written as
oh 2 4 2 2

a:th—vVh+QV (Vh)* +---+ F +n, (4.5)
where all coefficients are positive. Eq. () describes the time evolution
of the height of a growing interface with conserved growth kinetics in the
asymptotic limit.

In the discrete SOS models, the adatoms are allowed to hop within a finite
diffusion length (discrete points) of [ sites. These models fall into either of
two sets: limited mobility and unlimited mobility models.

4.2.2 Limited Mobility Models

These are the irreversible, limited mobility, dynamical growth models in
which only newly arrived particles (adatoms) can diffuse. On arrival, the
adatom diffusion is instantaneous, and it is permanently incorporated into
the substrate without any further possibility of motion, once it has found its
final site (which choice depends on the constraints of the model, as already
mentioned).

Wolf-Villain (WV) Model

In this model [O1], adatom diffusion is constrained by the the need to mawi-
mize the local coordination number. A newly arrived particle is incorporated
into the substrate, at the deposition site, if the local coordination number
is maximum at, within a finite distance [ from, this site; otherwise, it is al-
lowed to diffuse to the site with the highest coordination number within a
distance [. Here, an incorporated adatom with lateral nearest neighbors can
still diffuse, if it can find a final site with higher coordination number. This
model has been claimed to asymptotically belong to the EW (see section

B0l universality [R9)].

Das Sarma-Tamborenea (DT) Model

In this model [92], a newly arrived particle sticks to the deposition site if,
on deposition, it will have at least a lateral nearest neighbor; i.e, a coordina-
tion number of 2 or more, arising from the neighbor beneath it and one, or
more, in-plane nearest neighbors. Otherwise, it is allowed to search, within
a finite diffusion length [, and diffuse to a final site with higher coordination
number than at the original deposition site. Note that if the deposition site
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has a coordination site of 2, and there is a site, within a distance [, with
a coordination number of 4 (maximum), the adatom is still incorporated at
the deposition site. In other words, this model tries to increase, but not
neccessarily maximize, the local coordination number, in contrast with the
WV model. The DT and WV models, though with very similar behaviors in
(14 1)D simulations, are quite distinct in (2 4 1) D systems, where they be-
have differently after an initial crossover [93]; with suppression of nucleation
and deposition noise, via the noise reduction technique [04]. A continuum
description of this model via the scalar field K is [95]

K=oV + %[1 — exp(—C|Vh|?)]. (4.6)

Discrete Models for Conserved Growth Equations

The basic idea, according to Kim and Das Sarma [90], is to design discrete
growth algorithms that are replicas of the corresponding continuum growth
equations on a discretized system. This will enhance an extraction of the
scaling exponents of these continuum models from simulations. Comparing

Egs. (E2) and ([{3)) in the absence of particle influx, yields

oh

—) = (V’K 4.7

O = (v, (47)
thus (%> < 0, =0, > 0, for K on maxima, intermediate, and minima,

respectively. Depositing particles on surfaces inevitably leads to height vari-
ations, with local maxima, intermediate and minima. If, as in Fig. Bl we
assume one layer deposition per unit time, then in unit time, on average, 0,
1, and 2 particles are deposited on local maxima, intermediate, and minima
respectively [90]. This implies, using total derivatives for this discrete sys-

tem, (%) —1 <0, =0, >0, for local surface maxima, intermediate, and
minima respectively. Thus (%> — 1 is approximately proportional to <%).

But in order to have the exact form of the continuum equation, K must be
computed to determine which points are the true local minima of K, since
this will be different for different models [depending on which terms of Eq.
(D) are relevant)].

The simulation algorithm is as follows: a surface site i is randomly se-
lected, and the scalar field K, is computed for both the selected site 7 and its
nearest neighbors, assuming that one particle has been added on the site z.
Then, let the incoming particle diffuse, and stick, to a randomly selected site
among the sites with K, < K;. If, however, K; < K,, then the newly arrived
particle is incorporated into the substrate at site i, instead. The derivatives
are calculated by noting that for a discretized system h(x) is not continuous,
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m I

Figure 4.1: An arbirary growth profile, after a monolayer deposition in unit
time. The darker colour represents the initial height profile. M, m, and I, are
local maxima, minima, and intermediate points respectively.

hence the smallest increment (in the derivative) Az — @’ (the lattice spacing
a’ =1, by convention), which implies

Vh = L{[h(r +1) — ()] + [h(r — 1) — h(r)]},
V2h = Vh(r 4+ 1) — Vh(r) = h(r + 2) — 2h(r + 1) + A(r). (4.8)

Among this set are

Family Model. In this model [96], the adatoms diffuse to the local height
minima sites within range [; thus K = xh, and the constraint is local height
minimization, or local surface energy minimization for surface hamiltonian
H o< Ah. The model is well studied and is described on a coarse-grained
level by the EW equation (B20) [97], hence the model asymptotically belongs
to the EW universality class.

Larger Curvature Model. In this case adatoms diffuse to sites with min-
imum K = —V?2h, i.e, maximum curvature [90]. The dynamical exponents
associated with this model are

a=4-d)/2; z=4;,0=(4-4d)/8, (4.9)

Non-linear Curvature Model. In this model, K = —vV?h + o(Vh)?%.
Renormalization group analysis of this model by Lai and Das Sarma yield
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exponents
a=A—-d)/3; z=8+d)/3;8=(4—d)/8+d), (4.10)

where d is the substrate dimension [98].

All three cases pertain to conserved current and nonconserved noise; the
noise is not conserved since particles are continually coming onto the surface
from the incident flux. As regards the scaling, however, it had been pointed
out in [99] (see also [I00]) that several of the limited mobility models do
not obey conventional scaling, and that those which do scale are expected to
belong to the EW universality.

In the following two sections, we shall consider the unlimited mobility
surface diffusion models. In this set, all particles that are not fully coordi-
nated, whether newly arrived or previously deposited, can diffuse by nearest-
neighbor hopping between deposition events. A newly deposited particle
might excite a surface atom to hop into some neighboring site, hence, in the
absence of this excitation, the model must ensure that the appropriate equi-
librium phase is recovered; i.e, detailed balance is required. In other words,
surface hopping is a reversible process in this case.

4.2.3 The Hamiltonian Model

Here, it is assumed that surface diffusion is controlled by the same Hamilto-
nian H that controls the roughening of a facet in the absence of deposition
(to simulate surface growth, random deposition is added to it). This is im-
plemented on the computer by randomly selecting an adatom (which may
be a newly deposited particle or a surface particle that can still diffuse) on
a lattice site ¢, and allowing it to make a hopping attempt to a randomly
selected nearest-neighbor site j, with probability 1 — p; where p (p < 1) is
the probability that it does not attempt the hop. If it does attempt the
hop, then the hopping is accepted with probability p,—.;. p is determined
from a correspondence between the ratio (1 — p)/p and the ratio D/F of
the diffusion constant of particles on a flat surface to the incoming parti-
cle flux, determined from experiments. For isotropic diffusion on terraces,
with dimers as stable clusters, experiments yield D/F = 105 — 10'? [T0T];
i.e p ~ 10712 — 1075, which implies hopping attempts are amost always ac-
cepted, as expected. In order to observe the effects of kinetic roughening
within reasonable time in simulations, much smaller ratios D/F are used.
The Metropolis algorithm is known to preserve detailed balance, and to
accurately sample, in a short time, the thermodynamic states in which a
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system spends most of its time, thus, it can be implemented, to sample the
hopping history of the adatoms, with the normalized hopping rates [102]

1
2%kpT

Pij = [1+exp<LAHi_,j>]l - 1[1—tamh<

kT 5 AHM)] L(4.11)

where AH,_,; = Hy — H, is the energy difference between the final and initial
states of the move, and the surface energy is defined through the Hamiltonian
of an SOS model [T02, 03]

1 n
H:§J;|h,~—hj| (4.12)
27.]

where (7, j) implies that a single term in the sum arise from two neighboring
sites, and the 1/2 takes care of the double counting due to index reversal in
the summation (i.e, since (i,j) = (j,7)). The integer n is unrestricted, the
choice of its value depends on the required tendency of adatom diffusion.

For instance, we consider the n =1 and n > 1 models in 1D on a vicinal
surface of large terraces separated by single steps. Such terraces (see Fig.
1 of [37]) are atomically smooth regions on the surface, and serve as the
initially flat surface prerequisite to deposition, and sputtering experiments.
They are obtained via ion beam treatment (bombardment) of the surface,
followed by annealing by heating the sample to very high temperatures, and
finally, cooling it to low temperatures.

Figure 4.2: An illustration, for the Hamiltonian model in 1D. The light-colored,
lettered, squares are possible adatom positions, as referred to in the text. The
dark (brown) squares are parts of the substrate. A height scale is shown on the
right.

In the following, we use the illustration in Fig. to see the significance
of n. Away from a step edge (b — c¢), diffusion is isotropic, i.e, AH = 0
and w;_,; = 1/2 (this is true for all n), since surface is flat. AH = —2J (i.e,
Hy— H; =2J —4J) for a hop to an ascending step edge (b — a in Fig. E2),
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and +2J (i.e, Hy—H; = 4J—2J) for a hop away from an ascending step edge
(a — b). A hop onto an ascending step (e — d) is unfavored (w;_; < 1/2);
for instance, AH = 2J (i.e, Hf — H; = 4J — 2J) in the n = 1 model, but
AH > 2] (i.e 2"J) for n > 1, with higher ns requiring higher energy. In
the n = 1 model this hop requires the same amount of energy as a hop away
from the ascending-step edge, whereas for n > 1, this hop requires a higher
amount of energy than a hop away from a step edge.

Thus, ascending-step edge attraction, or attachment, is strong for all n;
but while a hop away from a step edge is equally probable in both opposing
directions [step climb (higher-plane) and in-plane hop] for n = 1, it is more
favored for in-plane hop than higher-plane hop in n > 1 models. On the other
hand, a hop down a descending step (d — e) is more favored (w;_; > 1/2),
as it lowers the surface energy (AH = —2J). Though the surface energy
is unchanged for a hop away from a descending step edge (d — c¢) in the
n = 1 model, it is actually preferred in the n > 1 model. Likewise, a hop to
a descending step edge (¢ — d) has no effect on the surface energy for the
n = 1 model, whereas it is unfavored for n > 1.

A summary of the properties of the Hamiltonian model is as follows: in
all cases, a diffusion bias occurs at step edges only, where there is a strong
tendency for adatom attachment to an ascending step. For all n, diffusion is
completely isotropic, at least two lattice spacings, away from an ascending
step edge. This isotropy in diffusion extends up to a descending step in the
n = 1 model, distinct from n > 1 which discourages hopping to a descending
step edge (with decreasing likelihood of hopping as n increases); i.e, for n >
1 (n = 1) diffusion is isotropic up to at least two (zero) lattice spacings
from a descending step. Though, a hop up an ascending step is unfavored,
a hop down a descending step is favored. However, it was shown in Ref.
[T02] that a preference for uphill diffusion, exhibited in the ascending step
edge attraction, and repulsion from a descending step edge, both of which
constitute Schwoebel effect, is negative when n = 1; absent for n = 2; and
positive for n > 2. This slighly different scenario has been attributed to
simulation configurations of lower step separation, than in the above picture,
which considers configurations with widely separated steps. Nevertheless, the
above argument qualitatively explains the increase of the Schwoebel barriers.

4.2.4 The Arrhenius Model

In this model, the hopping rate k(E, T') of adatoms is taken to be of Arrhenius
form [104]

k(E,T) = k,exp(—E/kgT) (4.13)
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where the vibrational frequency of a surface adatom k, = 2kgT'/h, T is the
substrate temperature, and h is planck’s constant, and E is an energy barrier
to hopping. The energy barrier comprises of the energy needed to break the
bond with the vertical nearest neighbor (FE,,), i.e substrate atom immedi-
ately below the hopping atom, to break possible bonding with lateral (in-
plane) nearest neighbors (FEj,, assuming a negligible next-nearest neighbor
coupling), and barrier to possible step-edge diffusion (i.e, Schwoebel energy
barrier F.).

In Ref. [T04], the energy barriers add up to E = E,, +n,Ej, + Fy, where
n, = 0,...,2d is the number of in-plane nearest neighbors (d = 1, 2 is the sub-
strate dimension). Only positive Schwoebel energy barriers are considered,
and hops up are more difficult (see below) to prevent unphysical growth be-
haviour which otherwise result at higher temperatures due to reducing only
downward interlayer transport. This model seems to be the most realistic of
all surface diffusion models, since surface diffusion is an activated process,
obeying Arrhenius dynamics. For instance, even if two sites are equivalent
sites on a terrace, a particle must, in general, overcome an energy barrier in
order to hop from one site to another.

The algorithm proposed by [104] for detecting the vicinity of a step edge
is based on the expected coupling, of the hopping adatom, to the number of
next nearest neighbors (by) in the plane below its final site; if by < 2d and
the number of next nearest neighbors b; in the plane below the initial site is
2d, then there must be a lower-plane vacancy (or step edge) in the vicinity
of that final site. Thus, an adatom that attempts to hop to the vicinity of a
step edge, must overcome a step edge barrier, i.e, E, > 0 if (2d) = b; > by,
and zero otherwise. An illustration, in the 1D case, is given in Fig. L3 The

Figure 4.3: An illustration, for the Arrhenius model in 1D. The light-colored,
lettered, squares are possible adatom positions, as referred to in the text. The
dark (brown) squares are parts of the substrate.

SOS constraint implies F,, = ko > 0 in all cases. Ey, = 0 for hop f < e
since b; = by = 2; and b — a since b; = 1,by = 2. Whereas E,. > 0 for hops
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g — h, since b; = 2 and by = 1; and d — ¢ since b; = 2 and by = 0. Note
that n,, =0 for f - e;n, =1ford — e and b — c.



| would advise him who
wishes to imitate (simulate)
well, to look closely into life
and manners, and thereby
to learn to express them
with truth.

Quintus Horatius Flaccus
(Horace)

Monte Carlo Simulations with
the HKGK Model

In chapter Bl we described different atomistic solid-on-solid models used in
Monte Carlo simulation studies of the morphology of surfaces externally
driven out of equilibrium with energetic particles. In this chapter we shall
discuss how we have implemented the models applied in our study. To model
surface evolution driven by ion sputtering, we have included surface roughen-
ing via sputtering and surface smoothing via surface diffusion. A simulation
step consists of: (i) a sputtering attempt of surface atoms within a finite
area (< L?), in the vicinity of the ion impact; and, (ii) a possible diffusion
sweep. The simulation time ¢ is measured in terms of these steps (i.e. in
units of the number of ions/surface atom) and corresponds to the fluence in
experiments. The ratio of sputtering step/diffusion sweep is as governed by
typical experimental rates. The sputtering process is simulated as a combi-
nation of ion motion and erosion of atoms 105, [T06]. In our study, we have
focussed on the HKGK sputter-erosion model. Our results are discussed in
chapter Bl In this chapter, we mention a few details, which have not already
been mentioned in chapter @] that are specific to our implementation of the
models.

In the introduction of the HKGK model to the literature, only the erosion
of the uppermost surface atoms were considered, which implies weaker nonlin-
ear effects. Non-linear effects are known to be crucial to surface morphology,
hence, later on in section BTl we account for stronger non-linearities by ex-
tending the model to include lateral erosion (see Fig. B3). Thus, in addition
to the previous erosion of only the uppermost atoms in a multi-layered col-
umn (see Fig. B.3)), we also consider the erosion of lower surface atoms in the
column; provided that they have at least a vacant lateral nearest neighbor.

The rest of the chapter is organized as follows: in section Bl we give

52



5.1 Surface Erosion 53

details of our simulations using the previous version of the HKGK model. In
sections BETTl, and BET2, we discuss our extension of the model to include
lateral erosion, and sample rotation, respectively. Finally, in section we
will discuss specific details of how we have implemented the surface diffusion
models, as well as the values of the parameters, used in this work.

5.1 Surface Erosion

In our simulations of surface topography evolution using the HKGK model

(described in section ET.2), the material surface is defined by a time-dependent
discrete height function h(z,y,t) [(2+1)D model] which is initially flat, i.e,

h(z,y,0) =constant. Periodic boundary conditions are assumed on the sur-

face plane.

Figure 5.1: Sketch showing the reference frames, and the ellipsoid of energy
distribution.

The ion source, at some random position in a plane directly above the
surface plane, projects the ions along a trajectory inclined at # to the vertical
and with azimuth ¢. For the ion motion, periodic boundary conditions are
assumed along the horizontal (i.e. parallel to the surface plane). After pene-
trating the solid through a depth a, measured along the ion trajectory, each
ion comes to rest and distributes its kinetic energy e within an ellipsoid with
the final stopping position of the ion as centroid (see Fig. BI). A surface
atom is eroded with a probability proportional to the energy E(r) deposited
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there, as given by Eq. (B8, i.e.

€
(27320 112

[z + a]? B x2+y2>

Er) = 202 242

exp(— (5.1)
We use a primed reference frame (z/, ¢/, 2’), with origin at the impact
point and in which the z’-axis coincides with the ion trajectory, for the local

Figure 5.2: Dependence of ripple orientation on incidence angle 6, and azimuth
¢. The bar represents a projection of the ion beam direction on to the surface
plane. This projection makes angle ¢’ = m/2 — ¢ with the left boundary, as shown
in (a). ¢ = 22° 6 = 50° and 80° in (a) and (b) respectively. The chart gives a
rough estimate of the number of monolayers eroded.

coordinates of a surface point; whereas for the ion motion, before penetration,
we use the real cartesian coordinate (z, y, z) system [82, [[05] (see Figs. Bl
and 1.3)). All parameters depend on the experimental parameters like type of
material, ion energy, and angle of incidence. For amorphous materials they
can be estimated using the SRIM (the stopping and range of ions in matter)
simulation package [84]. Except where otherwise stated, a = 6.0, 8 = 50.0°,
¢ = 22.0°, and € is chosen to be (27)%20u?. Lateral system sizes L up to
512 have been studied.

We obtained ripple topographies, at off-normal incidence, whose orienta-
tion depends on both € and ¢ (see Fig. E2). For small 6 [Fig. (a)], the
ripple wave vector k is parallel to the projection; whereas for large 6 [Fig.
(b)], k is perpendicular to the projection. Note that the ripples (whose
troughs are the dark lines) obtained in Fig. (b) are different from the
ones obtained in (a). In this model, it is assumed that bulk vacancies
do not contribute to the surface topography, and overhangs are not allowed
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[i.e, solid-on-solid (SOS)]. Shadowing effects are included, and desorption
excluded; thus enabling comparison with continuum models.

5.1.1 Model extension: lateral erosion

In this section, we extend the HKGK sputter-model with the inclusion of
lateral erosion. This has the effect of relaxing the surface, expecially as local
surface slopes increase. That is, since lower (surface) particles in a column
may now be eroded due to their being closer to the stopping point of ion
than topmost atom in column. As an illustration, see erosion of atoms at
positions 1 and 2 in Fig. B3l In the previous version of the model, only
the topmost surface atoms were considered for erosion; i.e, only the scenario
occuring at positions 3 or 4 in Fig. B3, without that occuring at 1 or 2. In the
illustration (Fig.E3), dj = z+a is the distance of the surface atom, from the

final stopping point of the ion, along the ion trajectory. Andd, = /2" + y”,
is the distance of the surface atom perpendicular to the ion trajectory.

L
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Figure 5.3: Sketch showing collision cascade ellipsoid, and relaxation of surface
as a result of lateral erosion. Erosion of atom at position 1 or 2 triggers the
relaxation, which ensures there is no overhang; the atom at position 3 or 4 is only
eroded, without surface relaxation.

In analogy with the continuum theory, this modification (representative
of non-linear effects) leads to a more rapid saturation of the surface width as
shown in Fig. B4l As seen in the figure, the previous version (without lateral
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erosion) also stabilizes the rapid growth of the surface roughness, albeit at
much longer times than in the extended version (with lateral erosion). Which
shows that the previous version only has weak nonlinearities whereas the
extended version accounts for stronger non-linear effects. This extension of
the model is used in sections and

O Previous

[LARLRRLARNLRRRR RNl RN RR Y=

MR R A g

e e O

200 400 600 800
t

[
(= A INTERTRIN]

00

Figure 5.4: Effect of the inclusion of lateral erosion on the surface width. The
circle symbols represent data (average of 50 realizations) obtained using the pre-
vious version, and the square symbols represent data obtained using the extended
(i.e. including lateral erosion) version. o = 3.3, u = 1.7, a = 5.4, and kgT = 0.1
eV.

5.1.2 Model extension: sample rotation

A number of experiments have reported the effects of rotation on surface
morphology, with explanations from the continuum theory. As we shall see
later in section B3, there is the need to implement Zalar rotation in the
HKGK sputter-erosion model. Such Zalar rotation, at constant angular ve-
locity w, is implemented by keeping the substrate static and then rotating
the ion beam (which is equivalent to keeping the ion beam direction fixed
and rotating the substrate [73]). This we simulate by choosing ¢ randomly
such that 0 < ¢ < 2m, since, in the large w limit, it is as if the solid were
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sputtered from all angles ¢ [50]. Surface profiles without, and with, rotation
are shown in Figs. (a) and (b), respectively.

This implementation of sample rotation is used to obtain the results pre-
sented in section B3

Figure 5.5: Effect of sample rotation, as implemented in the simulation. (a)
Sputtering alone. (b) Simultaneous sputtering and rotation. ¢t = 3, a = 6, § =
50°, 0 =3, u= 1.5, kgT = 0.1 eV.

5.2 Hopping dynamics

Surface diffusion is believed to be a thermally activated, unlimited(-mobility)
process; driven only by the need to minimize the surface energy. But, in
the introduction of the HKGK model to the literature of surface sputtering
phenomena, the crucial role of surface diffusion mechanisms, on the result-
ing surface morphology, was emphasized; while using the Hamiltonian and
the Wolf-Villain surface diffusion models. So, we first consider, in section
BT, both unlimited mobility models in our study of ripple propagation and
coarsening, where we found the n = 2 Hamiltonian model to be qualitatively
similar to the Arrhenius model (without Schwoebel barriers). Hence, later
on (expecially in sections and B3]), we focus mainly on the thermally
activated Arrhenius surface diffusion model. These surface migration models
are fully described in sections B2l and B2 Here, we only mention the
specific points as regards our work.
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5.2.1 Hamiltonian Model

With this model, we simulate surface diffusion precisely as described in sec-
tion B2 using a temperature of T = 0.2 J/kp; i.e, using the same tem-
perature as in Ref. [82]. A diffusion sweep is initiated after every 0.001 L2
erosion attempts. Although no exact mapping is possible we can estimate
that the temperature "= 0.2J/kp in this model corresponds roughly to the
temperature 7' = 0.2 eV /kp used in the second model below; i.e, it is above
room temperature, and mimics thermal spikes (see below). The estimate is
based on a comparison of the pure diffusion mechanism without sputtering
such that they lead to comparable values of the roughness. Note that this
temperature is below the roughening transition of this model [T(02].

Initially, for times less than about 1.4 ions/lattice site, the surface is rough
and then the formation of ripples starts. In Fig. B0l the time development of

Figure 5.6: Surface profiles at a substrate temperature of 0.2.J kgl and at different
times. Starting from top-bottom, left-right, t=0.5, 1.5, 4.0, 9.0, 14.0 and 20.0
ions/atom. Ion beam direction, indicated by the bar, is perpendicular to ripple
orientation. The scales show the surface height measured from the lowest height.

a sample surface topography is shown for the Hamiltonian diffusion model.
Initially ripples are formed, they propagate slowly and then disappear at
longer times. We observed the same scenario for the Arrhenius model (pre-
sented below), hence, we do not include the corresponding figure for 7" = 0.2
eV/kp here. The long-time behavior, where the ripples have disappeared,
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has already been studied in Ref. [82].

5.2.2 Arrhenius Model

Our temperature is measured in units of eV /kp in this model, where T' ~
0.02 eV/kp corresponds to room temperature. ko = 2kgT'/h is the vibra-
tional frequency of a surface adatom, i.e. a hopping attempt rate; h is
Planck’s constant. The hopping attempt rate is very high, with a corre-
sponding low hopping probability that results from Eq. (I3); which slows
down the simulation. Thus we incorporate the factor exp(-Eg/kgT) into the
rescaled attempt rate such that the hopping rate reads

AE
k(B T) =kl (——) 2
(B.7) = kLexp(—7 (52)
where k1 = k0 exp(—%) is a much lower hopping attempt rate, AE =

n,Enn + Esp. This physical attempt rate, in comparison with the ion cur-
rent density used in experiments, determines the ratio between the number
of sputtering steps and the number of surface diffusion steps made in the
simulation. A discussion of parameter optimization and a rescaling of the
temperature with the parameters is given in Ref. [I07]. Note, finally, that
for atoms on top of planes, which are far from down edges, AE = 0, i.e. each
hop is accepted, independently of the temperature.

In the experiments, we typically have N = 1 x 10 atoms/cm? on the
surface. Since the typical experimental ion current density is of the order
F = 7.5 x 10Mions/(cm? sec), this implies a flux of ¢ = F/N ~ 0.75 ion
atom™! sec™!. From the values given above, we get effective hopping attempt
rates ky of around 200 1/s for room temperature, hence 200 sweeps of the
diffusion mechanism correspond to 0.75ions per surface atom. Thus, with
this model, we initiate a diffusion sweep every ¢L?/k1 = 0.0037L? erosion
steps.

Here, one can choose a temperature corresponding to the physical tem-
perature present in the experimental system. A naive guess is to use room
temperature kgl = 0.02eV, at which the experiments usually are carried
through. The resulting structures are shown in Fig. B, for intermediate as
well after long sputtering times. We cannot observe clean ripples. The reason
is that this kind of diffusion mechanism is too slow at room temperature to
effectively counteract the strong roughening due to our model of sputtering,
which possesses a particularly high sputtering yield. Hops are almost always
prevented if an atom has in-plane neighbors, so the mechanism is not very
effective on a rough surface. Since the surface relaxation is essential for the
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Figure 5.7: Sample surface topography for a small system (L=128), for the Arrhe-
nius MC diffusion mechanism at surface temperature equal to room temperature,
after ¢ = 100 ions/atom. No clear ripples can be observed. Similar results were
observed for almost all time, except the very early ones.

formation of ripples [41], it needs locally higher than room temperatures to
produce clean ripples in our model. This happens indeed in experiments,
since most of the kinetic energy, carried by the incoming ion, is converted
into lattice vibrations, hence the surface is locally strongly heated. Here, we
do not know the spatio-temporal distribution of the local temperature. Ei-
ther one would have to perform MD simulations, or include heat conduction
in the model, both making the treatment of large systems over long time
scales infeasible. Instead, we are choosing a higher but constant effective
temperature T', which is a good first approximation.

Now, we want to estimate this effective temperature. The most basic
approach is to describe the energy carried by the ions as a constant inflow of
energy at the surface, fix the temperature far away from the surface to room
temperature and solve the stationary heat-conduction equation to calculate
the temperature at the surface [I08]. The resulting temperature depends
strongly on the ion energy, the ion current density, and the thermal conduc-
tivity of the material. For experimentally reported parameters, temperature
rises up to 1500K (0.155eVky') are found [T08]. This shows that high effi-
cient temperatures, even in the stationary state, may be achieved. However,
in the experiments of Habenicht et al. [22] only small average ion current
densities have been used, which result in a temperature rise at the surface of
only few K.

This does not mean that one can use a temperature close to room tem-
perature as effective temperature. The reason is that right after impact, the
surface is strongly heated close to the melting temperature and the quickly
cooled again, i.e. a thermal spike occurs [I09]. Furthermore, the surface is
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sputtered using a focused ion beam (of diameter 30 nm), which is moved
relatively slowly over the surface and which exhibits a large spot current
of 15uA/cm?. Hence, under the ion beam, for several short time intervals,
surface diffusion is greatly enhanced. Marks has calculated [I10] the spatio-
temporal development of the temperature after ion impact by solving the
dynamic heat-conduction equation, resulting in a temperature profile T(r,t)
as function of time t and distance r from the point of impact. The initial
distribution T(T,O) is given by a step function with T(T,O) being the melt-
ing temperature of the material for » < ry and being the room temperature
elsewhere. The initial radius ry is determined such that the thermal energy
inside this semi sphere equals to the energy carried by the ion. Marks found
that the surface is heated strongly right after the impact and is cooled down
to temperatures close to room temperature within few ps. Qualitatively and

Figure 5.8: Surface profiles at a substrate temperature of 0.1eV/kp with the
Arrhenius diffusion model. Starting from top-bottom, left-right, t=0.5, 1.5, 4.0,
9.0, 14.0 and 20.0 ions/atom. In both cases, depicted here and in Fig. 1, ripples
propagate along a direction opposite to that of the ion beam.

quantitatively similar profiles have been observed in MD simulations [I11]
as well. We apply his equation, using the parameters for ion energy and ion
current density in the spot as given above, to determine an effective tem-
perature (with 7o = 1.56nm in our case). The basic idea is that in a time
interval At, the number of hops governed by the temperature T(O,t) at the
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impact point should be the same as under the effective temperature 7"

/ON ko eXp<_kB?7(£?),t)) dt = Atk exp(—é—?) : (5.3)

We have neglected here the temperature dependence of ky. When including
it, we found that the resulting effective temperature changes only slightly.
We have chosen At, as the average time between two ions arriving in a circle
with area 7rZ under the ion beam spot, resulting in At = 1.4 x 10°ps. For the
energy barrier, we have chosen AE = Esg + 3ENy + Eg, which corresponds
to atoms along edges of islands/steps. Using these parameters, we found an
effective surface temperature of 7' = 1200K, i.e. considerably higher than
room temperature. In this calculation it is assumed that only the energy
carried by the ions hitting the “target area” mr2 contribute to the heating
of the surface inside the area. If one takes into account that also the ions
hitting the neighborhood of the target area contribute to the heating inside
the area, even higher effective temperatures can expected.

The exact effective temperature depends on many parameters as ion en-
ergy, ion current density, heat conduction, surface roughness etc. We are here
interested only in universal effects, not in modelling a specific experimental
setup. For this reason, we use the above result only as a guideline and study
several temperatures of, and above, this order of magnitude. Hence, for the
further analysis of ripple movement, we consider high effective temperatures
for the Arrhenius MC model, such that the surface diffusion is indeed able to
act as an effective smoothing mechanism (see Fig. B8). At such higher tem-
peratures we observe some universal features for both diffusion mechanisms,
as presented in section

For surface diffusion we start to concentrate on the Arrhenius diffusion
mechanism from section B2, for the rest of this work. We use an effective
temperature of kgT = 0.1 eV.
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Results and Discussion

In this chapter we shall present and discuss the results of our study [T05, [T06]
of self-organized pattern formation on, and the morphology of, ion sputtered
surfaces by means of Monte Carlo simulations. The sputtering and surface
diffusion models, as well as the simulation parameters, used in this study
have been discussed in chapter Bl

Motivated by the experiment of Ref. [22], we first study ripple propaga-
tion and coarsening. In this experiment, the observed velocity dispersion of
propagating ripples raised the question of whether, or not, it was due to a
crossover to the non-linear regime. In the KPZ model, non-linearities are
shown to arise from the attachment of newly deposited particles, to the sides
of protrusions on growing surfaces; this is analogous to lateral erosion of par-
ticles. Indeed, it was demonstrated in section (see Fig. B2), that lateral
erosion of a surface protrusion occurs if the nonlinear coefficient is negative.
But in the earlier version of the HKGK model [82], no such lateral erosion
of particles was considered. Thus, one may expect weak nonlinearities in
the earlier version, which implies that it should not be able to reproduce
the velocity dispersion; if strong or increasing non-linearities are responsible
for it. Hence, in the next section, we have used the earlier version of the
HKGK model, in which the erosion of only the topmost surface atoms are
considered.

Using an extension of the HKGK model that includes lateral erosion (see
section B.I.Tl), we explore the full topographic features of the model in sec-
tion B2 vis-a-vis the effects of collision cascade parameters on the surface
morphology. By so doing, in a certain parameter regime, we obtained oblique
incidence dot formation, without sample rotation. Since dots have previously
been found to arise from simultaneously rotated and sputtered surfaces, this
raises the question of the role of concurrent rotation as the surface is sput-
tered. Does rotation widen the sputtering conditions under which dots are

63
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formed? Does it create different and/or “better” dots? Or, since sample ro-
tation has been shown, in experiments and theory, to considerably smoothen
surfaces that are simultaneously sputtered, does it then reduce the height
and /or width of the dots?

In order to answer these questions we used another extension of the
HKGK model, described in section -T2, in which sample rotation was incor-
porated (according to a hint given in the theory in section BZZZ). The results
of such simulation of simultaneous sputtering and rotation are presented in
section B3, which rounds up the chapter.

6.1 Ripple Coarsening and Propagation

In the experiments of Ref. [22] the ripples generated during gallium ion beam
erosion of silicon were observed to propagate with a velocity that scales with
the ripple wavelength as v ~ \¥, where k ~ 0 initially, and k = -1.5 after a,
crossover wavelength A\. =~ 100 nm. In this section we focus on intermediate
times, where the transition, observed in the experiments, may likely occur.
Our results corroborate the experimental observation, but in addition, we
find that while the ripple coarsening [ (t)] follow a power law at low tem-
peratures, the trend is exponential at high temperatures; where the ripples
first come to rest before vanishing.

Some profiles of the time evolution of the surface topography have already
been shown in sections B2l and (Figs. il and B8, respectively). In
this section we first explain how we study the movement of the ripples. Then,
we present and discuss our simulation results.

6.1.1 Ripple Kinematics

In order to monitor the ripple propagation on the computer, we assign the
crest points of the ripples to clusters (see Fig. [6.]l), and then monitor the mo-
tion of these clusters. A cluster of crest points is defined as the set of surface
points with height h(x,y,t) > h. and nearest neighbor distance [ < [., where
h. and [, are cut-off surface height and distance between neighboring cluster
points respectively. We have chosen our cut-off height to be a function of the
average height (h) of the configuration, and the height difference d;, between
the maxima and minima of the surface; i.e, h. = (h) + pd;, where p is some
fixed percentage. In this way clusters with about the same proportionate
sizes can be followed from the beginning of ripple formation until complete
disappearance of the ripples. Furthermore, we have used [. = 2. Different,
unconnected ripples should, in general, generate different clusters. We also
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require that the number N of elements in a cluster be large enough to allow
for statistical analysis, here we have chosen N > 10 elements.

Figure 6.1: Surface profile for time 3 ions/atom (thermodynamic diffusion model,
T = 0.2J/kp, L = 128). In the second figure (on the right) the clusters formed
from the profile on the first figure are printed on top of the profile.

The propagation of the ripples is studied by calculating the time rate of
change of the position of the centre of mass of a cluster

> X

X = 1
XcoMm Zl m; ; (6 )

where the summation is over all the elements of the cluster. We have assumed
a homogeneous system composed of unit mass particles, such that the center
of mass of a cluster is xcpr = N7, x;. The ripple wavelength is given by
A = 27/n, n being the average expectation value of the Gaussian fitted to the
peak of the structure factor S(k,t) = |h(k,t)|?>. Where h(k,t), the fourier
transform of the surface height h(r,t) at time ¢, with mean (h), is given by

h(k,t) = L™ "[h(r,t) — (h)]e™™. (6.2)

r

Fig. &1 shows one profile of the surface for system size 128 x 128 at time
t = 3 ions/atom; in the second figure, we print the clusters on top of their
corresponding ripples. As seen in the figure of the clusters, application of
periodic boundary conditions neccessitates the need to first unfold toroidal
clusters before calculating the position of their center of mass. As time
increases, local surface slopes VA increase, and since the non-linear effects
depend on the square of Vh they will dominate by scaling down surface
relaxation mechanisms [I]. These non-linear effects are responsible for the
disappearance of ripples (Fig. b.f]) at long times, and for the transition of
the surface topography from a periodic ripple pattern to a rough topography
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with self-affine scaling [39, 4]. We thus expect fluctuations in the position of
the centre of mass due to disappearing ripples; the fluctuations are averaged
out by using systems of size 512x512 with a large number of clusters such
that the ripple velocity at any time is an average of the velocities of all the
ripples at this time.

6.1.2 Results

The results are obtained, as already mentioned, for square lattices of size
512 x 512, with periodic boundary conditions, and as an average over fifty
different realizations.

t (iong/atom)

Figure 6.2: Ripple wavelength, A, measured in lattice units, as a function of
time, t. The inset shows the time dependence of the ripple propagation velocity,
v (measured in lattice units per ion per atom). Both results are for the kinetic
diffusion mechanism, at a substrate temperature of kgT = 0.1eV.

Figure 2 is the plot of the ripple wavelength (circle symbols) versus time
measured in units of the number of ions per atom; its inset is a plot of the
projection of the ripple velocity along the ion beam direction, versus time,
both at the estimated effective temperature of kgT = 0.1 eV corresponding
to the experimental conditions from Ref. [22].

A plot of wavelength versus time in Fig. reveals that for short times
A ~ t¢, where ¢ = 0.32, consistent with experimental results 0.5 and 0.26 of
Ref. [22] and Refs. [38, B0]. But we observed a power-law behavior only in
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the initial stages of ripple formation, the wavelength becoming constant in
time at the later stage.

The velocity shows a power-law behavior over a larger time interval, re-
sulting in v ~ t~%7 as obtained from inset of Fig. This is in excellent
agreement with the experimental result v ~ ¢~ of Habenicht et al. [22].
A difference is that for smaller times a constant velocity was observed in the
experiments, while we do not see any clean ripples for smaller times than the
power-law regime. Combining both scaling results gives v ~ A=2!_in good

— QN

Figure 6.3: Plot of the ratios €2,/ and €2, /7, of the linear coefficients appearing
in Eq. BI0). 0 =3.0, p=1-2.5.

agreement with the exponent —2 of continuum theory [39] [see Eq. (BI17) in
section B2, provided that the linear coefficients €2, and €2, are not negligi-
ble in this anisotropic collision cascade case. A calculation of the higher-order
linear coefficients 2, and €2, for the anisotropic collision cascade cases o =
3.0 and p, ranging from 1 to 2.5, indeed reveals their significance, relative
to the first-order linear coefficient ~y, for our simulation parameters (see Fig.
E3)). Thus, our result for the velocity dispersion is in agreement with both
the experiment and the continuum theory. Which implies that higher-order
linearities are responsible for the observed dispersion.

Now we turn to higher effective subtrate temperatures, corresponding
e.g. to higher ion currents and/or materials with lower heat-conductivity.
Figures and are plots of the ripple wavelength (circle symbols) as a
function of time, at respective temperatures kg1 = 0.2J and kgT = 0.2¢eV;
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Figure 6.4: Ripple wavelength, )\, measured in lattice units, as a function of time,
t. The main inset shows the time dependence of the ripple propagation velocity,
v (measured in lattice units per ion per atom); the smaller inset is a magnified
view of v(t) ~ 0 in the main inset. The bold line in the main plot is a fit of the
simulation data to an exponential function. The line drawn in the insets are to
guide the eyes. Both results are for the thermodynamic diffusion mechanism, at a
substrate temperature of 0.2 J k;l.

using the first and second models of surface diffusion respectively. In both
models, the ripples disappear after a while, i.e. the ripple wavelength diverges.
Considering the lifetime of the ripples from first appearance to annihilation,
the wavelength increases exponentially with time as A ~ exp(pt), p = 0.029
(Fig. ), in the first model, while it increases with time according to the
inverse law A(t) ~ 1/(c1 — cot) with ¢; = 0.083 and ¢2 = 0.0036 (Fig. 6EH) in
the second model. To investigate the origin of the difference, we performed
also simulations with the Arrhenius model, but with the Schwoebel term set
to zero. In this case the result was very similar to result in Fig. of the
thermodynamic model (which has no Schwoebel term here), and we obtained
a behavior A ~ exp(0.036¢). On the other hand, when we set the energy in
the Schwoebel term to twice its value, Esp = 0.3eV, the result is very similar
to Espg = 0.15eV. This shows that the Schwoebel barrier plays an important
role in the pattern formation process.

The insets of Figs. and are plots of the ripple velocity (line with
square symbols) as a function of time. Irrespective of which surface diffusion
mechanism is employed, the velocity is at first almost independent of time,
then it disperses after a transition time ¢,.. This initial plateau is similar
to the plateau observed in the experiments, but the drop in velocity is very
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Figure 6.5: Same plot as in Fig. but for the Arrhenius diffusion mechanism,
for a substrate temperature of 0.2 eV/kg. In both figures, the line with circle
symbols represent the wavelength while the line with square symbols represent the
velocity. In the main plot the bold line is a fit of the data to an inverse law.
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Figure 6.6: Ripple velocity as a function of ripple wavelength, for the thermody-
namic and, in the inset, for the Arrhenius surface diffusion mechanism.
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abrupt, no clear power law is visible then. Moreover, the ripples finally come
to rest before completely disappearing, as seen in the smaller inset of Fig.
We find, however, that at the lower temperature in the kinetic model,
the ripples do not stop moving until their disappearance. Figure shows
the dependence of the ripple velocity on the wavelength for kgT = 0.2eV
resp 0.2, their order of magnitude relationship is about the same as in the
experiment. We see in Fig. B that the trend in velocity variation is the same
at high temperatures but the magnitude increases with temperature, as one
would expect from the temperature dependence of the surface diffusion. But
we only observed a power-law scaling at temperatures below kgT =~ 0.18¢V .
This indicates that the presence of power-law scaling of ripple wavelength
and velocity, and the corresponding exponents, depend on the time scale of
observation (Fig. [62), as well as on the effective temperature.

| I A P FEI— |
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Figure 6.7: Temperature dependence of the ripple velocity; for the Hamiltonian
model. Temperature is in units of J k;l.

It seems that the increase in magnitude of the velocity, when measured at
same time (¢ < t,) but different temperatures, does not continue indefinitely
in our model. In Fig. there is very little difference in the magnitudes of
the velocity at temperatures 2.0 and 5.0Jk5'; even though the temperature
difference is very high. This saturation behaviour is also displayed in the
ripple wavelength at the same higher temperatures, as seen in Fig. B8 In
principle, one can still fit an exponential law to the data, except that the

decay constant p in the exponential becomes very small (It has the respec-
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tive values of 0.029, 0.018, 0.0031, and 0.003 from the lowest to the highest
temperature.).

So for very high effective temperatures we could equally well fit a power-
law. Hence, there may be some “critical substrate temperature”, above which
the wavelength remains nearly constant in time; and the velocity, after some
time t¢,., drops instantaneously to zero. Nevertheless, the temperature where
such a “transition” will take place, is probably unphysically high (see be-
low), so that the material used in the experiment would start to evaporate
before reaching this point. But other materials, in combination with high
ion currents, might quite display such a behavior. Up to the publication of
this work [T05], we were only aware of one set of room-temperature experi-
ments [22]. But recent experiments [R5, [[T3] on sputtered silicon surfaces at
elevated temperatures (500°C and above) have confirmed our results of the
exponential increase of the wavelength (or exponential decrease of |k|) with
time at higher temperatures. It would still be very interesting to see, whether
the disappearance of the coarsening can be seen in experiments at higher ef-
fective temperatures corresponding to high ion currents and/or higher lab
temperatures.

Our results for the second diffusion model also indicate that in A(t) ~
1/(c1 —cat), co approaches zero with increasing temperature. Here, where we
can measure the temperature in real units, it is clear that the “transition”
to almost non-coarsening ripples, takes place at unrealistically high temper-
atures 2 — 5eV/kp, where the material starts to evaporate. To summarize,
ripple propagation depends on the effective substrate temperature as well as
diffusion mechanism. At around so-far experimentally realized temperatures,
ripples propagate, from first appearance, with decreasing velocity until dis-
appearance without full cessation of motion. At high effective temperatures,
however, immediately after ripple formation, the ripples move with constant
velocity for some time, after which they begin to deccelerate (insets of Figs.
B4 635) and after some time, depending on the diffusion model, the ripples
stop moving but keep disappearing gradually. At the same time the ripple
structure is gradually being washed out, and in the final stage the ripples are
completely wiped out. The ripple wavelength is always increasing in time at
high temperatures, while at low effective temperatures it initially increases
with time, and later becomes constant. At long times the ripples vanish [82].

6.2 Morphological Regions

According to the continuum theory (see sections B-A2 and BR2), ripples
arise, for all 8, from the curvature dependence of the sputter yield. In the
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Figure 6.8: Temperature dependence of the ripple wavelength; for the Hamilto-
nian model.

absence of non-linearities, the # dependent negative surface tension coeffi-
cients v, being different along the parallel and perpendicular directions to
ion projection, govern the ripple orientation. However, contrary to the pre-
dictions of the continuum theory (see Figs. B3 and BA), no ripples were
observed in Ref. [14] for § < 40° under Xe ion irradiation of Si.

In this section, we dicuss possible topographies, relevant to experimental
sputtering conditions, that are obtainable from this model. We show that the
angle 6, around which ripple formation occurs depends on the longitudinal
straggle o of the ion beam, with higher ¢ resulting in lower 6,.; and our results
indicate the crucial role of i to ripple formation. We found a transition from
hole topography at an early time, to ripple topography at a later time, for
the same cascade parameters. Also, in this section, we show dots/nanosized
islands similar to those observed in Refs. [25, B0], and predicted in Refs.
[70, [74] without sample rotation; arising from a transition from the ripple
phase, to the QD phase, as the cascade parameters are varied beyond the
isotropic case of the continuum theory.

The rest of the section is as follows: first we present the profiles obtained
from our simulation, using the HKGK model with lateral erosion (as dis-
cussed in section BILT]). These profiles show the possible topographies for
collision cascade parameter combinations accessible to experiments. This will
be followed by an analysis of the 2D power spectral density, which allows us
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to determine quantitatively an upper bound for clear ripple formation, and
other results of the cascade parameters for which oblique incidence dot for-
mation is possible, without sample rotation.

6.2.1 Possible Topographies

In this section we obtain the possible topographies relevant to the experi-
ments, by systematically varying the values of ¢ and g, mimicing different
material combinations; in contrast with previous studies where only single
values of these parameters were used. This leads to different surface topogra-
phies, as shown below.
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Figure 6.9: Different topographic regions (# = 50°, a = 6). Region I: rough
surface; II: holes; III: clear ripples oriented perpendicular to ion beam direction;
IV: short ripples (resulting from increased p); V: dots; VI: non-oriented structures.
The short arrows indicate the evolution of the boundaries between different regions
with respect to time. Hence, region III grows at the expense of region I, while
region II describes only a short transient. The long dashed arrows indicate the
directions referred to in Fig. G108

We have studied about fifty different (o, ) combinations. We observed
six different types of the qualitative behavior, corresponding to six different
regions in the (o, ) space. In Fig. B0, these six topographic regions are
indicated for ¢ = 3 ions/surface atom, at which almost all the surface to-
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pographic features are distinct; the corresponding profiles are shown in Fig.
ET0. The boundaries shown in this sketch do not represent sharp transitions
from one topography to another, as we shall see below (in Figs. and
E18). Rather we observe often a smooth crossover from one behavior to the
other. For this reason, we have represented them in the manner shown in
Fig. B9 Also, we have focussed on a typical time, corresponding to time
scales often used in experiments, which exhibit a rich behavior as a function
of the straggling parameters ;1 and o. Only one systematic change of the
boundaries occurs with time, which is described below. Finally, although the
sketch is specifically for § = 50°, similar “phases” also occur at other values
of 0, with slight deviations at the boundaries. We performed SRIM simu-
lations [84] to estimate the following experimental parameters, that might
yield parameter combinations shown in the figure. Please note that the fol-
lowing list is just to give a few examples. Region V: 1.5 - 1.7 keV Ne-ion
sputtering of Cu; 1.2 - 1.4 keV Ne-ion sputtering of Ge. Region IV: 650 - 800
eV Ne-ion sputtering of Si. Region III: 800 eV - 1.1 keV Ar-ion sputtering
of Si; 550 - 700 eV Ne-ion sputtering of C. With fluences of the order of 104
- 10 ions/cm2. Note that for most materials and parameter combinations
o < u, hence the region VI might be difficult to access.

{il} e}

Figure 6.10: Profiles for parameters chosen from each topographic region in Fig.
B3 0=50,a=61t=30 IL.o=1,u=051I:0c=1, u = 1.5; III: ¢ = 3,
w=15;IVie=4, un=25;V:o =5, u=5; VI: ¢ =0.5, u = 5. The bar denotes
the ion beam direction.



6.2 Morphological Regions 75

Also, SRIM simulations reveal that very large ¢ and pu, i.e, beyond the
values considered here, are impractical, since they can only occur for a higher
a. Whereas, the value of a is itself restricted by the range of ion energies that
lead to ripple formation. We are not aware of an experimental study of the
sputtering behavior where the parameters are varied systematically in the o
- i plane. Hence, when using these parameters in experiments, one might be
able to observe new surface topographies.

A brief description of each topographic region in Fig. I0, including the
behavior at later times ¢ > 3 (ions/surface atom), is as follows:

i".
|-ﬂ l

Figure 6.11: Surface profiles of region I (relatively smooth) of Fig. B9, o = 1,
i = 1. From top-bottom, left-right, ¢t = 3, 20, 40, and 90. The bar denotes the
ion beam direction. The topography evolves from a relatively smoother surface,
at early times, to hole topography at intermediate times, and finally, to ripples at
longer times.

Region I: rough surface [see Fig. B0 (I)] which, as time increases, evolves
to a hole topography. The sizes of the holes grow and finally coalesce to
a rippled topography at long times (Fig. B10]). Note that the surface is
rough here only in comparison to its initial flatness. It is actually smoother,
relative to the other regions, as can be seen from the height scales (see also
the calculation in Fig. B20).

Region II: holes are already prominent in this region [see Fig. B0 (II)];
here the number of holes increase with time, and again ripples are formed at
long times, but at an earlier time than as in region I (not shown as separate
figure). The number of holes decrease when increasing the sputtering depth
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Figure 6.12:  Surface profiles of region II (holes), ¢ = 3 ions/atom (¢ = 1,
uw = 1.5). Top row; § = 50°, a =5 (a), a = 6 (b), and a = 7 (c). Bottom row;
a=6,60=40° (d), 45° (e), and 60° (f). In (a) - (c), the number of holes decrease
with increasing penetration depth a, while in (d) - (f), the number of holes increase
with increasing 6, until ripple formation occurs at 6 = 60° (f).

a [Fig. (a) - (c)]. On the other hand, if we vary 6, the number of holes
increase with increasing 6 [Fig. (d) - (f)]. Ripples can be formed here at
this time (¢ = 3) if € is increased beyond 6, ~ 60°.

Region III: the ripple phase [82, [105]. Having observed in regions I and IT
that holes evolve into ripples with time, we studied this region from the very
earliest times (¢t = 0 - 3) but found only very tiny holes, i.e not as pronounced
as in region II, in the course of ripple formation (see Fig. EI3). 6, ~ 30°
in this region. Thus, comparing regions I, II and III, there seem to be two
different processes of ripple formation. Ripples can be formed quickly by
evolving directly from a slightly rough surface, or they can be formed slowly
via the creation of holes, which coalesce to ripples at longer times. Note that
in regions I and II, the resulting ripple wavelength is smaller than the size of
the holes generated at smaller time, while in region III the ripple wavelength
is larger than the tiny holes.

To summarize the dynamical behavior observed in regions I - ITI, for long
(but finite) times ripples are formed everywhere, but region III grows at the
expense of the two other regions. Region II represents only a short transient
behavior. It might extend further to larger values of ¢ in a very narrow
range between regions I and III, but we cannot resolve this with our limited
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Figure 6.13: Surface profiles of region 11, at very early times. From left-right,
t=0.1, 0.2 and 0.5 ions/atom (¢ = 3, p = 1.5, § = 50°, a = 6). The surface
remains rough, i.e, no hole topography of the type shown in Figs. GI1 and

number of parameter combinations. Please note that at very long times,
beyond the usual time scales accessible in standard experiments, nonlinear
effects become more important and the ripples vanish [82, [[05]. Also, it was
shown in the simulations of Ref. [82], that the ripples in this region rotate by
90° with increasing fluence (the same result was obtained in the experiments
of Ref. [89], and predicted in Ref. [66]).
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Figure 6.14: 60 =30°, a =6, u = 1.5; 0 =2 (a); 0 = 3 (b); and 0 = 5 (c).
Within region III, higher ¢ result to lower 6,.

In the case of smaller angles, e.g. 6§ = 30° (Fig. EI4), the hole region
expands to o = 2, i.e, ripple formation is shifted to higher o, at this typical
time. Which implies ripple formation is shifted to later times (beyond typical
experimental fluences) for lower angles of incidence. This indicates that
there might be a lower critical angle 6., below which no ripple formation
happens even at long times. Such an effect has been observed in experiments
[T4] of Xe-ion sputtered Si, where below 6, = 40° no ripples were found
at finite but long ion fluences. For even smaller angles like § = 20°, we
indeed do not observe ripple formation within the times (i.e. fluences) we can
reach in our simulations. Note that a general statement about the existence
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of such an angle 0,.(u, o) would require simulations up to very large times
for all parameters studied here, which is beyond the numerical capacities.
Hence, we remain with the statement that our numerical results indicate
that such critical angles indeed exist, without the possibility to determine
them precisely.

Region IV: consists of a mixture of dots and short ripples, which even-
tually give way to the dot “phase” (region V), as o increases. Hence, this
region is an intermediate stage between regions III, V, and VI.

Region V: consists of dots. These dots are formed on some ripple-like
structures oriented parallel to the ion beam direction, as discussed below in
more detail. Noting that our model is a solid on solid model on a square
lattice, the dots are not unsimilar to the QDs predicted by theory [70, [74]
and observed in experiments [25) 26].

Region VI: consists of non-oriented structures exhibiting a typical length
scale, but only a slight orientational preference parallel to the ion beam. This
region, as mentioned above, is probably difficult to access in experiments.

6.2.2 k-Space

A closer look at the dot profiles of region V in Fig. reveals the presence
of some underlying large-scale structures. We now discuss this region and
its adjacent regions III and V in more detail. The underlying structure is
clearly seen in a 2D structure factor, S(k) = (h(k)h(—k)). Where h(k), the
fourier transform of the height profile h(r,t), with mean (h) = _h(r,t)/L?
is given by Eq. (&2). The 2D structure factor shown in Fig. has been
obtained from an average of 600 independent runs, for parameter along u = 4
(top row), and along o = 3.0 (bottom row). In these diagrams the structure
factor for the k-vector (k,, k,) = (0, 0) is displayed in the center and the
corners represent the values for (k,, k,) = 2m(£1/8, £1/8).

The case of u = 4.0, when moving from small values of ¢ to larger values
(i.e. left-right in Fig. B.9) is shown in the top row of Fig. Small values
of o fall within region VI, where we see a typical wavelength, but only a
slight preferential orientation. This translates to a ring visible in the S(k)
plot. Note that there is a slight preference for an orientation parallel to the
ion beam, being visible via two peaks in S(k) at wave vectors perpendicular
to the ion beam (see also the real-space profile, of region VI, in Fig. BEI0).
When increasing o, one moves into regionV. Here a line perpendicular to the
ion beam emerges in the structure factor rather abruptly around o = 1. This
line represents the underlying 1D structures parallel to the ion beam, being
visible in Fig. Note that the dots emerge on top of these structures; in
the 2D structure factor their signal is too weak to be visible.
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Figure 6.15: 2D structure factor (L=128). Top, along p = 4 in Fig. left-
right: ¢ = 0.5, 1.0, 1.5, and 3.0. Bottom, along ¢ = 3, left-right: p = 0.5, 1.0,
1.5, and 3.0. In this diagram, the structure factor for the k-vector (k;, ky) = (0,
0) is displayed in the center, and the corners represent the values for (k,, ky) =
2m(+1/8, +1/8).

On the other hand, along o = 3.0, we initially see an orientation (bottom
row of Fig. E1H), spread around ion beam direction (for instance, at p =
1.0), with a more restricted range of k£ which is typical of the thin wobbly
ripples. As u increases, we move to the region V as discussed above, but we
do not observe an abrupt change, because for a large range of values of p,
ripples, dots and the underlying structures with parallel orientation, to ion
beam direction, coexist (see below). To study the crossover from one region
to the other in a quantitative way, it might be more instructive to look at
order parameters which are numbers rather than the full 2D structure factor.
We first define a quantity @ = S™(ky)/S™(kj), where S™(kj) is the
maximum, for k parallel (perpendicular) to ion beam direction. This quantity
detects the change of orientational order by comparing the relative intensities
of the bright spots in Fig. along the two directions. A separation of the
2D structure factor into regions, for the purpose of this analysis, is shown in
Fig.

Along ¢ = 4 from region VI into region V we expect a rather abrupt
change of the behavior from the visual inspection of the 2D structure factor
(top row of Fig. EIH). The behavior of () when changing o at p = 4 is
displayed in the inset of Fig. BI7 For small values of o, i.e. in region
VI, there is only a slight preference of structures parallel to the ion beam
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Figure 6.16: Separation of the 2D S(k) (first image top and bottom) into regions
(in black from second image), for the purpose of our analysis. The letters 1, r, b,
denote line, ring and background, respectively; and the symbols, L and ||, denote
the perpendicular and parallel directions, respectively; as referred to in the text.
The white regions are excluded from the analysis.

(corresponding to k) which leads to small values ). When going beyond
o = 1, i.e. when moving into region V, the domination of the longitudinal
structures increase, leading to a growth of ().

We, furthermore, want to go beyond studying the height of peaks of
S(k) by examining the presence or absence of a typical length scale in the
system. This length scale is visible in the 2D structure factor via bright spots
(oriented) or a bright ring. For this purpose, we also look at the relative
weights

fo S(k)da

of certain areas in the 2D structure factor, where the integration da extends
over areas A,/A, of k-points. The indices x,y = [,,b, refer to k values on
the line, ring and background (outside line and ring) respectively, as shown
in the upper part of Fig. E.I0. The white regions, in this figure, are excluded
from our analysis, because they contain a superposition of k’s on both the
line, and the ring. A plot of ¢, is shown in Fig. E.I1, other combinations
(not shown) yield results within formation not going beyond the study of Q.
For q,;, we observe an abrupt change around o = 1 with the ring becoming
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Figure 6.17: Plot of the quantities g, , and @ (inset) as functions of o, along
1 = 4.0, as described in the text. The lines are to guide the eyes.

almost indistinguishable (¢, , ~ 1) from the background for o > 1, signaling
the disappearance of a typical length scale around o = 1. Note that g,
stays almost constant for the full region V, in contrast to the behavior of Q.

Now, we turn to the behavior along the 0 = 3 line, i.e. when moving
from region I, into region III, then IV and finally V. The behavior of () as
a function of u (bottom row of Fig. E1H) is displayed in the inset of Fig.
BEI8 The crossover, around p ~ 2, from the ripple region (II) where kj wave
vectors dominate () < 1) to the region V where £ -structures dominate is
clearly visible. The same result is obtained, when again studying not only
peaks, but integrated structure factors over certain selected areas. Hence, we
also study k-vectors parallel and perpendicular to the ion beam (x,y =||, L),
as shown in the lower part of Fig. BI8 Also g,/ exhibits a strong growth
for p > 2, i.e. when moving into region III.

Finally, a study of g/, ¢;/» and ¢, as functions of o, shown in Fig. B.19,
again confirms the loss of a certain length scale when moving into region V.
This is again visible via the disappearance of weight on the ring in the 2D
structure factor with respect to the background [see Fig. E15]. In any case,
we have mainly looked at snapshots at time ¢ = 3, corresponding to typical
experimental fluences of 10'%ions/cm? (as already stated above). Hence, the
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Figure 6.18: Plot of the quantities ¢, s and @ (inset) as a function of y, along
o = 4.0, as described in the text. The lines are to guide the eyes.

location of the exact boundaries between the different regions, is not our
main focus. We only want to demonstrate, that indeed order-parameter-
like functions can be defined. The full information is contained in the 2D
structure factors.

Next, we consider the predictions of the continuum theory, as pertains to
this study. In the asymptotic limit, the morphology of sputtered surfaces may
be described by the noisy KS Eq. Note that erosion of surface material
tends to maximize the exposed area, so-called negative surface tension, hence,
for the sputtering phenomena, this instability constraints the coefficients v,
and v, to be negative. At early times, the local slopes are small enough in
most of the regions for us to ignore the nonlinearities; we are therefore left
with a noisy Bradley-Harper equation [41]. Henceforth, in our calculation of
the coefficients of the continuum equations, we set Jp = 1 (see Ref. [39]). A
plot of the coefficients v for our parameter range, along o = 3, is shown in
Fig. |v;| and |y, | are nonzero almost always, which implies the presence
of two length scales. Hence, according to the linear continuum theory, ripples
parallel and perpendicular to the ion beam direction are always present in
the system; the one observed is the one for which |v| is highest; i.e, with the
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Figure 6.19: Plot of the quantities g;, and g/, (a), and ¢, (b), as functions of
o, along p = 4.0. The lines are to guide the eyes.
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Figure 6.20: Plot of the surface tension coefficients v, and v, [of Eq. (B23)]
versus u, along o = 3.0, for our simulation parameters. In the inset is the plot of
v, and v, versus o, along p = 4.0. 6 = 50°, a = 6.0.

highest amplitude-growth rate
R = |v|k* — Dk* where v = min(v,,v,). (6.4)

We now consider the behavior along the above discussed ¢ = 3 and u =
4 lines within the linear theory. In Fig. the values of v, and v, are
shown as functions of p (main plot) and o (inset) along these lines. For the
case 11 = 4 (see inset), we observe that v, > 0 for all values of o, hence the
preferential orientation is always parallel to the ion beam, as observed. To
understand the crossover from region VI to region V, perhaps one has to
consider nonlinear terms. For the o = 3 line, we observe |v,| = |v,| for p <
1, which is compatible with the behavior in region I, where no preferential
orientation is observed. For 1 < pu < 2.5, |v,| > |vy| which implies the
dominance of ripples with kj (i.e, with wavelength A\ = 27/2D/|v,|), as we
have seen in region III and partly in the crossover region IV. In region IV
ripples are still present, but dominate less.

For p above this range, the structures with k£, dominate. However, the
positive value of v, for higher p is contrary to our results, since it implies a
preferential smoothening along the parallel direction. We have not observed
such smoothening, here probably nonlinear effects are more important. If we
consider the maximum of |v,| and |v,| for the region where v, < 0 and/or
vy < 0, then we see that this maximum is obtained in region V for large p.
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Since larger |v| implies a higher tendency to maximize the exposed surface
area, i.e. increased roughening, one should expect rougher surfaces in region
V. Indeed we observe that region V is rougher than e.g. region III, as we
shall see in the next section.

6.2.3 Roughness, and growth exponent

In this section we want to examine the fluctuations of the interface width.
But, before we proceed, we should recall that regions I and II eventually
evolve to a similar rippled topography as in region III; region IV is an inter-
mediate stage; and VI is hardly experimentally accessible. Therefore, we are
interested in two different scaling regions, i.e, arising from ripple-yielding, as
well as dot yielding parameters. We use the finite-size scaling behavior of
the surface width/roughness, as described in section

I X [ o
i0 thO 1000

Figure 6.21: Surface width W versus time, o = 3, u = 1.5 (region I1I), § = 50°.
In the inset is a plot of the consecutive (s for ¢ = 20 — 200, where the lower and
upper cutoffs are seen to occur at t = 35 and 150 respectively.

In the following roughness analysis, we rescale the time unit such that L?
particles are eroded in unit time, which is analogous to the measure of time in
simulations of epitaxial growth on vicinal surfaces. We obtained our scaling
exponents from an average of 600 independent runs. Fig. is a plot of
the surface width W (t) for L = 128, we determine the actual scaling region
of 3 from the consecutive slopes [I] of W (t) for ¢ > L*; shown in the inset
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of Figs. and where a fit to this region gives f = 0.327 £+ 0.001,
and [ = 0.665 4+ 0.003 for the topographic regions (see Fig. EX) III and
V respectively; i.e., the long-time scaling behavior for sputtering conditions
coinciding with the respective regions. Please note that the data shown in
the insets of Figs. and were only used to determine the correct
scaling region, for the actual fit in the main plots.

Figure 6.22: Surface width W versus time, o = 5, u = 5 (region V), 6 = 50°.
The inset shows two scaling regions ¢ = 40 — 140 and ¢t = 1000 — 1800, which yields
0 = 0.665 and 0.137 respectively.

Our exponents are different from the scaling, 5 = 0.25, of the KPZ equa-
tion in (2+1) dimensions [T, [[T2], which shows that for these parameter
choices, either one or both of the negative surface tension coefficients, in the
noisy KS equation, do not change to positive values in a renormalization
group analysis. That is, if indeed, this atomistic model which is known to
accurately describe the morphology of sputtered surfaces at early and long
times [82, 85, [T05], can be represented by the noisy KS equation, in the
asymptotic limit, as expected for the sputtering phenomenon.

6.3 Rotated Substrate

In this section we consider the effect of sample rotation on the topographies
observed in the previous section, as mentioned in the introduction to the
chapter.

Sample rotation is known to affect the topography of concurrently sput-
tered surfaces. For instance, a number of experiments have shown that ripples
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can be removed or suppressed by simultaneous sputtering and sample rota-
tion [29, [(2]; so called Zalar rotation. This has been explained theoretically
[50, [73], as described in section B with the requirement that the angular
speed be high enough for the surface topography to be different from the
non-rotated case. Such rotation leads to a remarkable smoothening of the
pre-roughened surface. It has been shown that concurrent rotation and sput-
tering leads to oblique ion-incidence quantum dot formation [30), [74]. In the
experiments of Ref. [30], described in chapter [, oriented cones were observed
for off-normal incidence without sample rotation, whereas, a highly regular
hexagonal pattern of cones (or mounds) was found with sample rotation.

In section we showed the possibility of dot formation without sam-
ple rotation. In this section, we present results which indicate that sample
rotation removes the underlying one-dimensional structures observed in sec-
tion B2 in the dot region, thus smoothening the substrate upon which the
dots form. In addition to this, with rotation, we found that all other re-
gions evolve to non-oriented structures with time. We have already shown,
in section BT, how sample rotation may be implemented in the HKGK
simulation model, following the insight gained from the continuum theory of
rotated surfaces [B0, [73]. As in the previous section, the continuum theory
is employed to understand the results presented here.

6.3.1 Profiles and discussion

Here, we consider the topographic regions in Fig. B9, along o = 1, 3, and 5,
under simultaneous rotation; i.e, in order to see the effect of sample rotation
on all the observed topographies. The obtained profiles are shown in Fig.
.23, for samples rotated from the onset of sputtering (in all profiles shown
in this section, kT = 0.1 eV).

As seen from this figure, no anisotroppy can be found with substrate rota-
tion, as expected from the theory. However, hole formation is not suppressed,
since we still get the same holes observed in section B2, in the hole region.
This is not surprising, since the continuum theory predicts roughly equal
erosion rates along both directions for parameters in the hole region (see
Fig. £20), hence there is no anisotropy to be destroyed. Also, with rotation
(as seen in Fig. B.23), oriented ripple patterns in region III are replaced by
non-oriented structures, and the one-dimensional structures in region V are
no longer present. In order to see this more clearly we consider the surface in
Fourier space, i.e, using the 2D structure factor. This is shown in Fig. G241

According to the continuum theory (see section B1), although the broken
symmetry that arises from tilting the ion beam to the surface normal is still
present (i.e, v, may not equal v,), it is no longer relevant in creating an
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Figure 6.23: Profiles obtained from simultaneous sputtering and rotation. ¢ =
3, a=6,0=>50°. Left - right columns: ¢ = 1, 3, and 5, respectively. Top row -
bottom row: p =5, 2, 1.5, 1, and 0.5, respectively.
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Figure 6.24: 2D structure factors of the profiles in Fig. Left -right columns:
o =1, 3, and 5, respectively. Top row - bottom row: pu = 5, 2, 1.5, 1, and 0.5,
respectively.
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anisotropy in the system since there now exists an effective surface tension
coefficient v,, = v, + 1, which is the same along both directions (see Fig.
for a plot of these coefficients). The same argument applies to the nonlinear

Figure 6.25: The coefficients, v4, and xgay, of the iKS equation B3] for the
rotated case, as functions of u. (a) o = 0.5, (b) 0 = 1.0, (¢) 0 = 3.0, and (d) o =
5.0.

coefficient ,,. The result is that the surface roughens with time, with lower
Vav (Vaw | 0) corresponding to higher roughness; for instance, one sees that
|Vaw| increases in Fig. £20] as well as the increasing height difference on the
greyscale charts on the profiles of Fig. B23 Surfaces in the parameter range
for which 0> v,, > -1, are relatively smoother. With time, non-oriented
structures emerge, as shown in Fig. 6.20, due to the isotropy; except for very
low longitudinal straggle, 0 = 1, where no structure was found up to the
longest simulation times. Since v,, # 0, the surface is not randomly rough,
which explains the presence of the non-oriented protrusions. Note that with
increasing o, the |v,,| ~ 0 interval is reduced.

When the local surface slopes become significant (with prolonged sputter-
ing), nonlinearities become relevant in (B.30). It has been shown that, where
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(c) (d)

Figure 6.26: Time evolution of the rough topography equivalent to rotation of
region I of Fig. B9 o = 3, u = 0.5. (a) -(d): ¢t = 3, 40, 90, and 150, respectively.

ion induced effective surface diffusion is the dominant relaxation mechanism,
and for 6 = 0, crossover to the nonlinear regime either gives rise to dot forma-
tion (if x4, > 0), or hole formation (if x4, < 0). This is consistent with our
results, where we found dots for the parameters at which yx,, > 0 in Fig.
(i.e, for p 2 3). But, though y,, < 0 for the region where we found the holes,
hole formation is not as widespread as Fig. .20 seems to indicate. More-
over, the hole topography eventually evolves to non-oriented structures at
long times (see Fig. B27). For non-oriented structures, simulations at longer
times reveal only slight changes in the structures; no dot formation (see Fig.
E2]). Also, prolonged sputtering of the dot region, with rotation, only seems
to affect the height distribution of the dots. The profiles are shown in Fig.
B29 Fig. 623 indicates a change of the effective negative surface tension
coefficient v,, to positive values, which implies a smoothening, and dynamic
scaling that falls into the KPZ universality class; i.e, as predicted by [50).
This smoothening is exhibited by our results, i.e, in the removal of the rough
1D structures by sample rotation. But this figure (i.e, the positive v, in Fig.
B629) also imply that the sputtering process itself no longer maximizes the
exposed surface area, but instead, tends to minimize it.
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(c) (d)

Figure 6.27: Time evolution of the hole topography in region II of Fig. B9 with
sample rotation. o = 1, p = 1.5. (a) - (d): t = 3, 40, 90, and 150, respectively.

(b)

(c) (d)

Figure 6.28: Time evolution of the non-oriented structure equivalent to rotation
of region IIT in FiglEA o = 3, p = 1.5. (a) - (d): ¢ = 3, 40, 90, and 150,
respectively.
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(d)

Figure 6.29: Time evolution of the dot structures equivalent to rotation of region
V in Fig. oc=3,pu=>5 (a)-(d): t =3, 90, 150, and 250, respectively.
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Conclusions

When a solid surface at nanometer length scales is exposed to a uniform flux
of ions (of the order of 10"ions cm™2 sec™!), for time scales of the order of
minutes, surface patterns or structures of important technological applica-
tions may emerge. The mechanisms governing the surface morphology are
well understood, from the continuum theory, as a result of the interplay be-
tween two competing processes. The roughening processes of surface erosion,
which tends to maximize the exposed surface area. And the smoothening
processes of surface material transport which is driven by the tendency to
minimize the exposed area. In other words, sputtering energizes the surface,
and thus leads to the erosion of surface material. Whereas, surface diffu-
sion tends to minimize the surface energy. If the ions are incident normal to
the surface, erosion is isotropic and the surface develops a cellular structure
which, after prolonged sputtering, may give rise to surface protrusions (dots),
or basins (holes), depending on the sputtering conditions. The dynamic scal-
ing of the surface height fluctuations is expected to belong to the isotropic
Kuramoto-Sivashinsky universality class.

With oblique incidence, however, surface particle removal is anisotropic,
and, since the erosion velocity is tilt dependent and the sputter-yield is curva-
ture dependent, the sputtering rate along a parallel direction to the ion beam
direction is different from that along a perpendicular direction. Hence, for
small incidence angles, surface particles self-organize into periodic patterns
with wave-vector parallel to the ion beam direction. Whereas, for incidence
angles close to grazing, the wave vector of the ripple-like structures is per-
pendicular to the ion beam direction. The dynamic scaling, in this case(i.e.
0 > 0), is that of the anisotropic KS equation. The wavelength of the ripple
structures can be calculated from the continuum theory. Initially, the rip-
ple amplitude grows exponentially with time, but later stabilizes, when the
local surface slopes become significant enough for nonlinearities to be rele-
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vant, either to a steady-state value or to a much slower growth rate. There
are numerous experimental and computer-simulation corroboration of the
predictions of the continuum theory.

Among the several predictions of the linear continuum theory is that, due
to the tilt dependence of the erosion rate, ripples should propagate with a
constant velocity, parallel to the surface, and along the ion beam direction.
Also, the wavelength of these ripples is independent of time. Both of these
predictions have been contradicted by experiments. In the experiments [22,
38, the ripples have been found to coarsen with time, i.e. A = A(¢). But
only power-law behaviors in the wavelength-time relationship have previously
been found, to our knowledge. Also, the ripple velocity was found to be
nonuniform with time.

We have studied the surface sputtering phenomena by means of Monte
Carlo simulations, in relation to the continuum theory and experiments.
When the model was introduced to the literature of surface sputtering phe-
nomena, the crucial role of surface diffusion mechanisms, on the resulting
surface morphology, was emphasized; while using the Hamiltonian and the
Wolf-Villain surface diffusion models. It is believed that surface diffusion
is a thermally activated process, and the surface material transport is not
limited to a single iterative step (i.e unlimited mobility); driven only by the
need to minimize the surface energy. Thus in this study we mainly focus on
the thermally activated Arrhenius surface diffusion model. But, we first con-
sider both unlimited mobility models in our study of ripple propagation and
coarsening, where we found the n = 2 Hamiltonian model to be qualitatively
similar to the Arrhenius model (without Schwoebel barriers).

We summarize our results in the following sections.

7.1 Ripple coarsening and motion

We have obtained the formation and propagation of the ripples with both
diffusion mechanisms used in turn. Furthermore, we have obtained the same
trend in the behavior of ripple velocity and wavelength as observed experi-
mentally and predicted theoretically. But, in addition to the experimental
results, we find a drastic change in the ripple coarsening and propagation
as temperature increases; for instance we found deviations from power-law
into exponential or inverse-law behavior in the wavelength-time relationship,
and in addition, the ripples first stop moving before vanishing completely.
We find that, at very high effective temperatures, the behavior of the ripple
velocity is characterized by two regions, separated at the transition time. In
the first region it is constant and in the second region it decreases rapidly
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to zero. Between the two regions a power-law dependence can be observed
for some small time interval. Whereas, around so-far experimentally realized
temperature, the velocity-time relationship obeys a power-law.

Furthermore, at high effective temperatures, the wavelength increases ex-
ponentially with time in the thermodynamic diffusion model(and in the Ar-
rhenius diffusion model without the Schwoebel term) and obeys an inverse
law for the Arrhenius model including the Schwoebel barrier. An experimen-
tal verification of our higher temperature results has recently been provided
in Ref. [85], where the ripple wavelength was found to increase exponentially
with the sputtering time at elevated temperatures (500 - 700°C, and 657°C
in Ref. [I13]) on ion patterned Si(111) surfaces.

In addition, we find further strong dependencies on the effective substrate
temperature; as the temperature increases the magnitude of the velocity
also increases. The transition time between constant and decreasing velocity
was found to decrease with increasing temperature. Our results indicate
an approach towards a saturation behaviour of velocity or wavelength with
increasing effective substrate temperature, where the wavelength is expected
to become time independent. However, this may happen at an unphysically
high temperature.

Strong nonlinearities seem not to be responsible for the observed velocity
dispersion, since we have observed the same behavior with this sputtering
model which at most only has weak nonlinearities.

7.2 Morphological regions and oblique inci-
dence dot formation

We have covered a range of experimentally relevant values of the collision cas-
cade parameters in the HKGK model. And, in order to explain the results
in the context of the continuum theory, we have considered the predictions
of the theory beyond the circular-symmetric collision cascade case 0 = u =
1. We found a strong influence of the lateral straggle u on the surface mor-
phology. Below an upper bound p &~ 2, clear ripple formation is possible.
Depending on the longitudinal straggle o, ripples appear on different time
scales, and through two different creation mechanisms. These ripples persist
on intermediate time scales, but disappear again, as found in previous stud-
ies for one parameter combination, on longer times scales. Above the upper
bound i & 2 nanosized islands were found for longitudinal straggle o 2 1.7.
These structures appear, from our studies, to be stable on longer time scales.
Also, we found the possibility of different threshold 6,, above which ripple
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formation is possible, as in the experiment; our results indicating that high
value of the longitudinal straggling result in lower value of 6,.

Comparison of our results with the continuum theory, reveal that dot
formation is the result of the interplay between two (ripple-like) structures
of perpendicular orientation: i.e, structures with wave vector either paral-
lel or perpendicular to the ion beam direction. The tendency, due to the
low incidence angle, is for the ripples with wave vector parallel to the ion
beam direction to dominate. However, at high perpendicular straggle, ripple-
like structures with wave vector perpendicular dominate by pinching off (or
shortening), the ripples with wave vector parallel, into dots. This seems to
suggest a possible structural difference between dots formed from off-normal
incidence sputtering, where there is a broken symmetry as a result of tilting
the ion beam to the surface normal, and dots formed from normal incidence
sputtering, where there is no such broken symmetry.

We found that the scaling of the fluctuations in the surface height de-
pends on the collision cascade parameters; whereby the roughness becomes
saturated much earlier in the ripple region than in the dot region. Our re-
sults indicate the possibility of a yet unobserved dot topography; i.e 8 > 0,
without rotation.

7.3 Rotated substrates

Our simulations indicate that no new dots are formed with sample rotation.
Rather, rotation destroys any anisotropy in the system. It has already been
shown that the shape of the ion-induced collision cascade determines whether
dots, or ripples, or other topographies occur; i.e, without sample rotation.
For ripple yielding parameters, rotation destroys the anisotropy that leads
to ripple formation, thus yielding non-oriented structures instead of ripples.
For dot-yielding parameters, rotation enhances the isotropy in the system
(due to the dots) by removing the underlying anisotropy (the 1D ripple-like
structures oriented parallel to the ion beam direction). Thus, our results
indicate the possibility of only two surface structures under prolonged simul-
taneous sputtering and sample rotation at off-normal incidence: dots, and
non-oriented cell-like structures. According to a previous study, these dots
are restricted to u = 3 and o 2 1.
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7.4 Outlook

The main focus of the study has been on 6§ < 6., but § > 6. might yield
some interesting results. Expecially, as regards dot formation. For instance,
the dots emerge with the ripple-like structures oriented parallel to the ion
beam direction. These structures are dominant in the high p region, whereas
the ripples oriented perpendicular to the ion beam direction are dominant
in the low u region (for # < 6.). However, for § > 0. ripple structures,
oriented parallel to the ion beam direction, are known to be dominant in
the low u region. Thus, if the dots always emerge with these structures, of
parallel orientation, perhaps they are formed in the low u region for 8 > 6.
with or without rotation. Another possibility in further studies, is to use
other non-Gaussian energy distributions along the lines of Ref. [43] where an
exponential distribution was found to be more realistic at grazing incidence.

Also, we have studied the two unlimited mobility surface diffusion mod-
els in the literature. Though not in great detail, nevertheless, we have found
the same topographies, while alternating both. We found the presence of
Schwoebel barriers to only affect the form of the wavelength-time relation-
ship; i.e, inverse law instead of exponential law at high temperatures. A
detailed study of the differences between the two models is promising, expe-
cially to clarify the role of Schwoebel barriers in more detail. In the course of
this study, a variation of the power n in the Hamiltonian model (say n = 1
model) gave some profiles that are different from the ones shown here. Thus
one could take a look at this, and try to explain why it is so different from the
usual topographies. Moreover, it will be interesting to consider the unlimited
mobility models as well.

In the thermally activated Arrhenius surface diffusion model, the effect of
Schwoebel barriers can be studied by simply including the relevant term in
the energy equation. However, it is not that simple in reality, at least as far
as metallic materials are concerned. For instance, on such metallic surfaces, a
diffusion bias is often discussed relative to some crystallographic direction. It
will be interesting to consider such spatially-directional constraints in further
studies; possibly by introducing different energy barriers to step edges along
different spatial directions.

Although there are very strong indications that the HKGK model, with
a suitable choice of coefficients, might belong to the KS universality class,
it will be worth while to derive its continuum representation, either using
the master equation approach (along the lines of Ref. [8§]), or some other
method [1].

In future experiments, a systematic study covering the full parameter
space, at least in the range o < u will be very interesting. So far, to our
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knowledge, this has not been done. Furthermore, one could investigate the
small-time behavior, i.e. the ripple formation process, experimentally. In
this way one could verify whether the two different creation mechanisms we
have observed, hole-coalescence and creation from a rough surface, can be
observed in experimental systems.

Finally, smoothening could be included in the sputtering behavior, along
the lines of Ref. [IT4]. This has been discussed in the continuum theory [71],
as effective surface relaxation. We have not implemented it explicitly in the
sputtering mechanism, because it is implicit in our surface diffusion mech-
anism, manifested in the higher effective temperature, due to local heating
(i.e, in thermal spikes) of the surface at the impact point.



Bibliography

.-L. Barabasi an . B. Stanley, Fractal Concepts in Surface Growt
1] A.-L. Barabasi and H. E. Stanley, F I C n S G h
(Cambridge University Press, Cambridge, 1995).

[2] Harold F. Winters and J. W. Coburn, Surf. Sci. Rep. 14, 161 (1992).

[3] Eun-Hee Cirlin, John J. Vajo, and T. C. Hasenberg, J. Vac. Sci. Technol.
B 12, 269 (1994).

[4] Elliot A. Eklund, R. Bruinsma, and J. Rudnick, Phys. Rev. Lett. 67,
1759 (1991).

[5] G. Carter, Erosion and Growth of Solids Stimulated by Atom and Ion
Beams, edited by G. Kiriakidis, G. Carter, and J. L. Whitton (Martinus
Nijhoff, Hingham, MA, 1986), pp 70-79.

(6] J. L. Vossen and W. Kern, Thin-Film Processes (Academic, New York,
1978).

[7] G. Carter, J. Phys. D: Appl. Phys. 34, R1 (2001).

[8] T. M. Mayer, E. Chason, and A. J. Howard, J. Appl. Phys. 76, 1633
(1994).

[9] E. Chason and T. M. Mayer, Appl. Phys. Lett. 62, 363 (1993).

[10] E. Chason, J. Y. Tsao, K. M. Horn, S. T. Picraux, and H. A. Atwater,
J. Vac. Sci. Technol. A 8 (3), 2507 (1990).

[11] E. Chason, T. M. Mayer, B. K. Kellerman, D. T. Mcllroy, and A. J.
Howard, Phys. Rev. Lett. 72, 3040 (1994).

[12] S. Habenicht, W. Bolse, K. P. Lieb, K. Reimann, and U. Geyer, Phys.
Rev. B 60, R2200 (1999).

[13] K. Elst, W. Vandervorst, J. Alay, J. Snauwaert, and L. Hellemans, J.
Vac. Sci. Technol. B 11, 1968 (1993).

[14] G. Carter and V. Vishnyakov, Phys. Rev. B 54, 17647 (1996).

[15] Z. X. Jiang and P. F. A. Alkemade, Appl. Phys. Lett. 73, 315 (1998).

100



BIBLIOGRAPHY 101

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]
[31]

J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro,
Phys. Rev. Lett. 82, 2330 (1999).

T. K. Chini, M. K. Sanyal, and S. R. Bhattacharyya, Phys. Rev. B 66,
153404 (2002).

J. Kim, D. G. Cahill, and R. S. Averback, Phys. Rev. B 67, 045404
(2003).

T. K. Chini, F. Okuyama, M. Tanemura, and K. Nordlund, Phys. Rev.
B 67, 205403 (2003).

S. W. MacLaren, J. E. Baker, N. L. Finnegan, and C. M. Loxton, J.
Vac. Sci. Technol. A 10, 468(1992).

G. Carter, V. Vishnyakov, Yu. V. Martynenko, and M. J. Nobes, J.
Appl. Phys. 78, 3559 (1995).

S. Habenicht, K. P. Lieb, J. Koch, and A. D. Wieck, Phys. Rev. B 65,
115327 (2002).

S. Jay Chey, Joseph E. Van Nostrand, and David G. Cahill, Phys. Rev.
B 52, 16696 (1995).

S. Jay Chey, Joseph E. Van Nostrand, and David G. Cahill, Phys. Rev.
Lett. 76, 3995(1996).

S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H.
L. Hartnagel, Science 285, 1551(1999).

R. Gago, L. Vazquez, R. Cuerno, M. Varela, C. Ballesteros, and J. M.
Albella, Appl. Phys. Lett. 78, 3316 (2001).

S. Facsko, H. Kurz, and T. Dekorsy, Phys. Rev. B 63, 165329 (2001).
A. Zalar, Thin Solid Films 124, 223 (1985).

E. -H. Cirlin, J. J. Vajo, R. E. Doty, and T. C. Hasenberg, J. Vac. Sci.
Technol. A 9, 1395 (1991).

F. Frost, A. Schindler, and F. Bigl, Phys. Rev. Lett. 85, 4116 (2000).

M. Ritter, M. Stindtmann, M. Farle, and K. Baberschke, Surf.Sci. 348,
243 (1996).



BIBLIOGRAPHY 102

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]
[43]

[44]
[45]

[46]

[47]

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, Phys. Rev. Lett.
81, 2735 (1998); and references therein.

G. Costantini, F. Buatier de Mongeot, C. Boragno, and U. Valbusa,
Phys. Rev. Lett. 86, 838 (2001).

Thomas Michely and George Comsa, Nucl. Instrum. Methods Phys. Res.
Sect. B 82, 207 (1993).

M. V. Ramana Murty, T. Curcic, A. Judy, B. H. Cooper, A. R. Woll,
J. D. Brock, S. Kycia, and R. L. Headrick, Phys. Rev. Lett. 80, 4713
(1998); M. V. Ramana Murty, T. Curcic, A. Judy, B. H. Cooper, A. R.
Woll, J. D. Brock, S. Kycia, and R. L. Headrick, Phys. Rev. B 60, 16956
(1999).

J. Naumann, J. Osing, A. J. Quinn, and I. V. Shvets, Surf. Sci. 388,
212 (1997).

S. Rusponi, C. Boragno, and U. Valbusa, Phys. Rev. Lett. 78, 2795
(1997).

S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, Phys. Rev. Lett.
81, 4184 (1998); and references therein.

M. A. Makeev, R. Cuerno, and A.-L. Barabasi, Nucl. Instr. and Meth.
in Phys. Res. B 197, 185 (2002).

P. Sigmund, Phys. Rev. 184, 383 (1969).

R. Mark Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A 6, 2390
(1988).

R. Cuerno and A.-L. Barabési, Phys. Rev. Lett. 74, 4746 (1995).

M. Feix, A. Hartmann, R. Kree, J. Munoz-Garcia, and R. Cuerno, Phys.
Rev. B 71, 125407 (2005).

K. Wittmaack, J. Vac. Sci. Technol. A 8, 2246 (1990).

J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro,
J. Vac. Sci. Technol. A 18, 115 (2000).

J. J. Vajo, R. E. Doty, and E.-H. Cirlin, J. Vac. Sci. Technol. A 6, 76
(1988).

H.-N. Yang, G.-C. Wang, and T.-M. Lu, Phys. Rev. B 50, 7635 (1994).



BIBLIOGRAPHY 103

[48]
[49]
[50]
[51]
[52]

[53]
[54]
[55]
[56]

[57]

[58]
[59]
[60]

[61]
[62]
[63]

[64]

[65]

G. Carter, Phys. Rev. B 59, 1669 (1999).

M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).
R. Mark Bradley, Phys. Rev. E 54, 6149 (1996).

J. Krug and H. Spohn, Phys. Rev. A 38, 4271 (1988).

Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys. 55, 356 (1976); G.
I. Sivashinsky, Acta Astronaut. 4, 1177 (1976); Y. Kuramoto, Chemi-
cal Oscillations, Waves, and Turbulence (Springer, Berlin, 1984); G. 1.
Sivashinsky, Acta Astronaut. 4, 1177 (1977); G. 1. Sivashinsky and D.
M. Michelson, Prog. Theor. Phys. 63, 2112 (1980).

B. Nicolaenko, Physica D 20, 109 (1986).
V. Yakhot, Phys. Rev. A 24, 642 (1981).
S. Zaleski, Physica D 34, 427 (1989).

K. Sneppen, J. Krug, M. H. Jensen, C. Jayaprakash, and T. Bohr, Phys.
Rev. A 46, R7351 (1992).

F. Hayot, C. Jayaprakash, and Ch. Josserand, Phys. Rev. E 47, 911
(1993).

C. Jayaprakash, F. Hayot, and R. Pandit, Phys. Rev. Lett. 71, 12 (1993).
V. S. L'vov and I. Procaccia, Phys. Rev. Lett. 69, 3543 (1992).

I. Procaccia, M. H. Jensen, V. S. L’vov, K. Sneppen, and R. Zeitak,
Phys. Rev. A 46, 3220 (1992); V. S. L’vov and 1. Procaccia, Phys. Rev.
Lett. 72, 307 (1994); C. Jayaprakash, F. Hayot, and R. Pandit, ibid. 72,
308 (1994).

R. Cuerno and K. B. Lauritsen, Phys. Rev. E 52, 4853 (1995).
D. E. Wolf, Phys. Rev. Lett. 67, 1783 (1991).

R. Bruinsma, Surface Disordering: Growth, Roughening, and Phase
Transitions, eds. R. Jullien et al. (Nova Science, New York, 1992).

E. S. Tok, S. W. Ong, and H. C. Kang, Phys. Rev. E 70, 011604 (2004).

J. T. Drotar, Y. P. Zhao, T. M. Lu, and G. C. Wang, Phys. Rev. E 59,
177 (1999).



BIBLIOGRAPHY 104

[66]

[67]
[68]

[69]

[70]

[71]
[72]
73]
[74]
[75]
[76]
[77]

[78]

[79]

[30]

[81]
[82]

[83]

S. Park, B. Kahng, H. Jeong, and A.-L. Barabasi, Phys. Rev. Lett. 83,
3486 (1999).

M. Rost and J. Krug, Phys. Rev. Lett. 75, 3894 (1995).

J. Munoz-Garcia, M. Castro, and R. Cuerno, Phys. Rev. Lett. 96,
086101 (2006).

S. Rusponi, G. Costantini, F. B. de Mongeot, C. Boragno, and U. Val-
busa, Appl. Phys. Lett. 75, 3318 (1999).

B. Kahng, H. Jeong, and A.-L. Barabasi, Appl. Phys. Lett. 78, 805
(2001).

M. A. Makeev and A.-L. Barabasi, Appl. Phys. Lett. 71, 2800 (1997).
E. -H. Cirlin, Thin Solid Films 220, 197 (1992).

R. Mark Bradley and E. -H. Cirlin, Appl. Phys. Lett. 68, 3722 (1996).
F. Frost, Appl. Phys. A 74, 131 (2002).

K.M. Beardmore, N. Grgnbech-Jensen, Phys. Rev. E 57, 7278, 1998.
A. Kobayashi and S. Das Sarma, Phys. Rev. B 37, 1039 (1988).

J. M. Thijssen, Computational Physics, (Cambridge University Press,
Cambridge, 1999).

D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Theory and Im-
plementation, in Modern Methods and Algorithms of Quantum Chem-
istry (p. 301-449), Editor: J. Grotendorst, (NIC, FZ Jlich 2000).

E. M. Bringa, R. E. Johnson, and R. M. Papaléo, Phys. Rev. B 65,
094113 (2002).

I. Koponen, M. Hautala, and O.-P. Sievanen, Phys. Rev. B, 54, 13502
(1996).

Details are provided in Table 1 of Ref. [80].

A. K. Hartmann, R. Kree, U. Geyer, and M. Kélbel, Phys. Rev. B 65,
193403 (2002).

M. Stepanova and S. K. Dew, Appl. Phys. Lett. 84, 1374 (2004).



BIBLIOGRAPHY 105

[84] J. F. Ziegler, J. P. Biersack, and K. Littmark, The Stopping and
Range of ITons in Matter (SRIM), (Pergamon, New York 1985); see also
http://www.srim.org/.

[85] A.-D. Brown and J. Erlebacher, Phys. Rev. B 72, 075350 (2005).

[86] R. Cuerno, H. A. Makse, S. Tomassone, S. T. Harrington, and H. E.
Stanley, Phys. Rev. Lett. 75, 4464 (1995).

[87] G. Carter, B. Navinsek, and J. L. Whitton, in Sputtering by Parti-
cle Bombardment, edited by R. Behrisch (Springer-Verlag, Heidelberg,
1983), Vol II.

[88] K. B. Lauritsen, R. Cuerno, and H. A. Makse, Phys. Rev. E 54, 3577
(1996).

[89] J. Krug, M. Plischke, and M. Siegert, Phys. Rev. Lett. 70, 3271 (1993).
[90] J. M. Kim and S. Das Sarma, Phys. Rev. Lett. 72, 2903 (1994).
[91] D. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

[92] S. Das Sarma and P. I. Tamborenea, Phys. Rev. Lett. 66, 325 (1991);
P. I. Tamborenea and S. Das Sarma, Phys. Rev. E 48, 2575 (1993).

[93] P. Punyindu Chatraphorn, Z. Toroczkai, and S. Das Sarma, Phys. Rev.
B 64, 205407 (2001).

[94] J. Kertész and D. E. Wolf, J. Phys. A 21, 747 (1988); D. E. Wolf and
J. Kertész, Europhys. Lett. 4, 651 (1987).

[95] C. Dasgupta, S. Das Sarma, and J. M. Kim, Phys. Rev. E 54, R4552
(1996); C. Dasgupta, J. M. Kim, M. Dutta, and S. Das Sarma, ibid. 55,
2235 (1997).

[96] F. Family, J. Phys. A 19, L441 (1986).

[97] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. A 381,
17 (1982).

[98] Z.-W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).

[99] M. Plischke, J. D. Shore, M. Schroeder, M. Siegert, and D. E. Wolf,
Phys. Rev. Lett. 71, 2509 (1993).

[100] S. Das Sarma and S. V. Ghaisas, Phys. Rev. Lett. 71, 2510(1993).



BIBLIOGRAPHY 106

[101] Y. W. Mo, J. Kleiner, M. B. Webb, and M. G. Lagally, Phys. Rev.
Lett. 66, 1998 (1991); E. Kopatzki, S. Giinther, W. Nichtl-Pecher, and
R. J. Brehm, ibid. 284, 154 (1993).

[102] M. Siegert and M. Plischke, Phys. Rev. Lett. 73, 1517 (1994).

[103] For the general form of the hamiltonian H as well as the phase tran-
sition that may occur due to the role of its coefficients, see: M. Siegert
and M. Plischke, Phys. Rev. Lett. 68, 2035 (1992).

[104] P. Smilauer, M. R. Wilby, and D. D. Vvedensky, Phys. Rev. B 47, 4119
(1993).

[105] E. O. Yewande, A. K. Hartmann, and R. Kree, Phys. Rev. B 71, 195405
(2005).

[106] E. O. Yewande, R. Kree, and A. K. Hartmann, Phys. Rev. B 73, 115434
(2006).

[107] T. Shitara, D. D. Vvedensky, M. R. Wilby, J. Zhang, J. H. Neave, and
B. A. Joyce, Phys. Rev. B 46, 6815 (1992).

[108] J. Melngailis, J. Vac. Sci. Technol. B 5, 469 (1987).

[109] W. Primak, Phys. Rev. 98, 1854 (1955).

[110] N.A. Marks, Phys. Rev. B 56, 2441 (1997).

[111] D. Saada, J. Adler, and R. Kalish Phys. Rev. B 59, 6650 (1999).
[112] J. G. Amar and F. Family, Phys. Rev. A 41, 3399 (1990).

[113] Ari-David Brown, Jonah Erlebacher, Wai-Lun Chan and Eric Chason,
Phys. Rev. Lett. 95, 056101 (2005).

[114] P. Bedrossian, J. E. Houston, J. Y. Tsao, E. Chason, and S. T. Picraux,
Phys. Rev. Lett. 67, 124 (1991).



Emmanuel O. Yewande
Von-Ossietzky Strafle 44
D-37085 Gottingen

Geburtsdatum: 19. Juli 1971
Geburtsort: Ibadan/Nigeria
Staatsangehorigkeit: Nigerianisch

Bildungsgang
03/1994 B.Sc. in Physik an der Universitat Ibadan, Nigeria
06/1999 M.Sc. in Physik an der Universitit Ibadan, Nigeria
08/2002 Diplom in verkiirzte Angelegenheit Theorie, Abdus Salam
International Centre for Theoretical Physics, Trieste, Italy
05/2006 Promotion in Physik an der Universitat Gottingen

Berufserfahrung
11/1995-08/2001 Lehrer (Gymnasium), Oyo State teaching service
commission, Nigeria
Auszeichnung
05/2001 Scholarship of the ICTP for the diploma
program
Publikationen

e E. O. Yewande, R. Kree, and A. K. Hartmann, Physical Review B 73,
115434 (2006).

e E. O. Yewande, A. K. Hartmann, and R. Kree, Physical Review B 71,
195405 (2005).

e E. O. Yewande, Y. Moreno, F. Kun, R. C. Hidalgo, and H. J. Her-
rmann, Physical Review E 68, 026116 (2003).

Vortragen

e DPG, Berlin, 2005. Titel: Topography of simultaneously sputtered and
rotated solid surfaces: a numerical study

e DPG, Regensburg, 2004. Titel: Non-linear effects in a simulation model
of sputter-erosion

Gottingen, 22. Marz 2006.



	Title
	Abstract
	Dedication
	Acknowledgements
	List of Abbreviations
	Table of Contents
	List of Figures
	 Introduction
	Experiments
	Amorphous and Semiconductor  Materials
	Metallic Materials
	Summary

	Continuum Theory
	Introduction
	Scaling of Interface Fluctuations
	Effect of Each Component
	Linear Theory
	Bradley-Harper Theory
	Theory of Makeev, Cuerno, and Barabási

	Non-linear Theory
	The Kardar-Parisi-Zhang Equation
	The Kuramoto-Sivashinsky Equation

	Extensions
	The Theoretical Model of Chason et. al.
	Normal Incidence Quantum Dot Formation

	Theory of Simultaneously Rotated and Sputtered Surfaces
	Pattern Suppression, Smoothening,  and Roughening
	Topography and Dynamic Scaling


	Modelling for Computer Simulations
	Sputtering Models
	Cascade Model
	HKGK Model
	Combined Models

	Surface Diffusion Models
	Continuum Description
	Limited Mobility Models
	The Hamiltonian Model
	The Arrhenius Model


	Monte Carlo Simulations with the HKGK Model
	Surface Erosion
	Model extension: lateral erosion
	Model extension: sample rotation

	Hopping dynamics
	Hamiltonian Model
	Arrhenius Model


	Results and Discussion
	Ripple Coarsening and Propagation
	Ripple Kinematics
	Results

	Morphological Regions
	Possible Topographies
	k-Space
	Roughness, and growth exponent

	Rotated Substrate
	Profiles and discussion


	Conclusions
	Ripple coarsening and motion
	Morphological regions and oblique incidence dot formation
	Rotated substrates
	Outlook

	Bibliography
	Curriculum Vitae

