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Chapter 1

Introduction

Cortical neurons encode information into trains of action potential (AP). The
spiking activities of individual cortical neurons are sparse and the average firing
rates are very low (several Hz or even lower) as revealed by experiments (Burns &
Webb, 1976; Destexhe & Paré, 1999; Margrie et al., 2002; DeWeese et al., 2003)
and theoretical estimate of the energy budget for the brain (Attwell & Laughlin,
2001; Laughlin & Sejnowski, 2003; Lennie, 2003). In general a strong degree
of irregularity in the spike trains is observed and responses of single neurons to
repeated sensory stimuli show large variability (Softky & Koch, 1993; Shadlen
& Newsome, 1998; DeWeese et al., 2003). These characteristics limit the signal
encoding ability of single neurons. Neuronal circuits, however, are able to function
in a very fast way and can detect fast signal within a short time course as observed
in behavioral experiments (Populin & Yin, 1998; VanRullen & Thorpe, 2001;
Stanford et al., 2010). For example, monkeys are able to discriminate different
colors in less than 30 ms (Stanford et al., 2010). To encode fast changing signals
a large population of neurons is usually involved that can transmit the signal into
its population averaged firing rate.

Dynamical response of neuronal populations

Cortical neurons with a low average firing rate can in principle encode fast chang-
ing signals through population response. The linear response theory of neuronal
populations has been first formulated in Knight (1972a,b) and later generalized in
Gerstner (2000) where artificial noise models were applied, e.g., a random chosen
threshold value or resetting potential. The linear response theory for a popula-
tion of more realistic cortical neuron models with realistic noise was developed
recently (Brunel et al., 2001; Lindner & Schimansky-Geier, 2001; Fourcaud &
Brunel, 2002; Fourcaud-Trocme et al., 2003; Naundorf et al., 2005). In such stud-
ies, the diffusion approximation has be applied to the large amount of poisson-like
synaptic inputs each neuron receives. The synaptic input can therefore be divided
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into a mean input current part and a Gaussian noise part. If the finite duration
of synaptic filtering is ignored, e.g. an instantaneous synapse, the synaptic noise
can be approximated as a Gaussian white noise, otherwise a colored noise with
finite correlation time provides a good description (Fourcaud & Brunel, 2002).
Each neuron in a population receives an independent realization of the Gaussian
random noise. A signal received by the population can be encoded into both the
mean current part and the noise part, which provide two separate channels in the
population encoding. Traditionally, the mean input channel is the focus of at-
tention for research (Brunel et al., 2001; Fourcaud-Trocme et al., 2003; Naundorf
et al., 2005; Köndgen et al., 2008). But recent experimental and theoretical stud-
ies have shown that both of the two encoding paradigms are important and the
noise coded signal can even be faster and more efficiently (Lindner & Schimansky-
Geier, 2001; Silberberg et al., 2004; Boucsein et al., 2009). The linear response
is an important characteristics of the dynamics of neuronal populations and is
essential for the self-consistent mean field theory of network properties (see e.g.
Geisler et al. (2005)). The aim of this thesis is to understand some important
and intriguing aspects of the linear response of cortical neurons.

High cutoff frequency in the dynamical response of

neuronal ensembles

Recent experiments have observed surprisingly high cutoff frequency for action
potential encoding of cortical neurons driven by fluctuating input currents (Könd-
gen et al., 2008; Boucsein et al., 2009; Higgs & Spain, 2009). In a seminal paper
Köndgen et al. (2008) showed that the transmission function of layer 5 pyramidal
neurons for a noisy sinusoidal signal does not decay until about 200 Hz. Later
experiments confirmed such high cutoff frequencies for signals encoded in both
the mean current and noise strength (Boucsein et al., 2009) and in other types
of cortical neurons (Higgs & Spain, 2009). In an early experiment fast response
properties were observed also for step change in the stimuli (Silberberg et al.,
2004). Previous theoretical studies of biophysical neuron models, however, pre-
dicted cutoff frequencies of the order of the average firing rate or the inverse
membrane time constant (below 20 Hz), much lower than experimental observed
values (Fourcaud-Trocme et al., 2003; Fourcaud-Trocme & Brunel, 2005; Naun-
dorf et al., 2005). Thus, the origin of the high cutoff frequencies found in cortical
neurons is currently not well understood. Numerical investigation of conductance
based models and reduced one-variable neuron models suggested that details of
AP generation can strongly influence the dynamical response of neuronal popula-
tions (Fourcaud-Trocme et al., 2003; Fourcaud-Trocme & Brunel, 2005; Naundorf
et al., 2005). What is missing, however, is a transparent understanding of how
and when the population cutoff frequency can dissociate from the basic single
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neuron timescale set by the mean firing rate and the time constant of membrane
potential relaxation.

Unique features of AP initiation in cortical neurons

Two characteristic features of the AP generation of cortical neurons have been
revealed in experiments recently (Naundorf et al., 2006). In the V̇ − V pseudo
phase plane, where V (t) is the membrane potential, the AP waveforms of corti-
cal neuron were found to have a very fast onset rapidness and a large threshold
variability. Extensive numerical simulation showed that these two features can
not be achieved together in classical Hodgkin-Huxley type models with realis-
tic parameters (Naundorf et al., 2006; Baranauskas et al., 2010) (but see also
(McCormick et al., 2007; Yu et al., 2008)). One main assumption in Hodgkin-
Huxley type models is the independent opening of sodium channels (Hodgkin &
Huxley, 1952). A new model which introduced cooperativity of sodium channel
opening among neighboring channels, was proposed to reproduce the two features
(Naundorf et al., 2006). The hypothesis was supported in in vitro experiment by
applying Tetrodotoxin (TTX) to reduce the sodium channel density. Both the
amplitude of AP and its onset rapidness was effectively reduced when TTX was
applied and by wash-out of TTX the fast onset reappeared, which support the
existence of cooperativity among sodium channel opening. One of the aims of
this thesis is to understand the functional implication of these unexpected fea-
tures in the AP initiation of cortical neurons and to relate them to the dynamical
response properties through analytical tractable neuron models.

One-variable spiking neuron model

There is a large class of one-variable integrate-and-fire (IF) neuron models exten-
sively used for theoretical investigation and network simulations. The IF neuron
has a long history since its introduction more than one century ago by Lapicque
(Lapicque, 1907). These models capture, more or less, some basic aspects of AP
generation in real neurons. In the long-standing Leaky integrate-and-fire (LIF)
model, only the leak current is included. The model neuron integrates input
and fires a spike when the membrane potential reaches a threshold value. The
Quadratic IF model (QIF) or equivalently, the Theta neuron, captures the dy-
namics for type I neurons near the threshold (Ermentrout, 1996). The exponential
IF (EIF) model, in which an exponential spike generating current is introduced
to mimic the voltage dependent activation of sodium current, provides a good
fit to more complex conductance based neuron models and to experimental data
(Fourcaud-Trocme et al., 2003; Badel et al., 2008).

Since there is no restoring variable in the one-variable models, a reset mech-
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anism is usually adopted: when the membrane potential reaches some threshold
value, the truncation point of the AP waveform, it is reset to a resetting poten-
tial after a possible refractory time. Therefore, an absorbing boundary condition
needs to be assigned at the truncation point of APs in the neuron’s phase space.
In an IF neuron model, the absorbing boundary behaves as a point of no return
which does not exist in the dynamics of real neurons and is always needed to be
assigned, say it in infinity or at finite value. In the nonlinear IF models, e.g., the
EIF and QIF models, the boundaries can be taken at infinity, since these models
exhibit finite time blow-up. In the IF models with linear dynamics, e.g. the LIF
model and the perfect integrator, finite boundaries are needed. Nevertheless, a
finite absorbing boundary might introduce severe artifacts in the dynamical re-
sponse of the model neurons. For example, the linear response of the LIF model
to a noise coded signal with white noise or to a current coded signal with colored
noise, shows a flat transmission function, which means the model neurons can
follow an arbitrary high frequency signal faithfully. For the nonlinear IF models,
the linear response to sinusoidal signals can only be solved numerically except
for the high frequency limit, which were found to decay as power laws. We will
introduce a new kind of one-variable spiking neuron model with piecewise lin-
ear dynamics and a finite threshold, in which the linear response can be solved
analytically and the boundary induced artifacts can be separated out.

Axonal initiation of action potential

Real neurons are spatially extended objects and have complex morphology. Where
APs are generated is important for synaptic integration and signal encoding. Al-
though it has been known for a long time that APs are initiated in the axon, only
recently the proximal axon was revealed to be the position of the AP initiation
site of cortical neurons (Palmer & Stuart, 2006). Many physiological properties
at the axon initial segment (AIS) were found to be specifically arranged for the
AP initiation and different from other parts of the neuron, e.g., a higher sodium
channel density and specialized potassium channels (Yu et al., 2008; Kole et al.,
2008; Fleidervish et al., 2010).

The functional implications of the AIS organization are not well understood
yet. It has been claimed that the AIS can enhance coincident detection in audi-
tory neurons (Kuba et al., 2006). The location and length of AIS were found to be
plastic and influenced by experience (Grubb & Burrone, 2010; Kuba et al., 2010).
The back propagation to the soma of the APs initiated at AIS was suggested to
be the reason for the fast AP onset and large variability of AP generation ob-
served at soma (Yu et al., 2008), but this is still in controversy (Naundorf et al.,
2007; Baranauskas et al., 2010).

In modeling spatially extended neurons, the complex morphology of real neu-
rons could be simplified to a dendritic tree using the cable theory and further to
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a nerve cylinder described by the multi-compartment model (Rall, 1959, 1977).
The cable equation has been applied in neuroscience as a simplified description
of nerve cylinder for a long time (Hodgkin & Rushton, 1946). The stochastic
properties of depolarization of a passive nerve cylinder were studied for synap-
tic inputs homogeneous along the cable modeled as white noise or colored noise
(Wan & Tuckwell, 1979; Tuckwell & Walsh, 1983; Tuckwell et al., 1984, 2002). To
investigate the functional role of the AIS, we will further assume the membrane
potential along the axon as a Gaussian random field with a given correlation
function. By combing the Gaussian neuron model with the linear cable equation,
the firing properties of a nerve cylinder could be investigated. In this way we can
study the functional effect of AP initiation at the AIS theoretically.

Structure of the thesis

The thesis is organized as follows. In Chapter 2 the relation between the AP onset
rapidness and the cutoff frequency in dynamical response is investigated assuming
the external synaptic noise is a Gaussian white noise. In Chapter 3 we consider
an intrinsic mechanism, i.e. cooperativity in the sodium channels opening, that
produces a large AP onset rapidness and an external factor, i.e. correlation in the
synaptic noise that is essential for obtaining a high cutoff frequency for a current
coded signal. In Chapter 4 a general piecewise linear model is constructed which
includes the models introduced in previous chapters as limit cases. It could be
designed to match the stationary and dynamical response of the EIF model and
allows one to extract the AP onset rapidness for cortical neurons. In Chapter
5 the signal encoding properties of spatially extended neurons are investigated
by combining the Gaussian neuron model and the linear cable equation and the
functional effect of axonal AP initiation is investigated. The last chapter is a
summary and perspective opened up by the results in this thesis.



6 Introduction



Chapter 2

Spike onset dynamics and

population response

In this chapter an analytically solvable model which explicitly describes the dy-
namical AP initiation process will be presented to investigate the relation between
the AP onset rapidness and the cutoff frequency in the dynamical response of neu-
ronal populations. A neuron initiates an AP if the membrane potential passes an
unstable fixed point, the voltage threshold. In the leaky integrate-and-fire (LIF)
model, for which the linear response is known analytically (Brunel et al., 2001;
Lindner & Schimansky-Geier, 2001), the unstable fixed point coincides with the
absorbing boundary and a spike is triggered immediately when the membrane
potential reaches this threshold. As a consequence, boundary induced artifacts
dominate the response for high signal frequencies in the LIF model (Fourcaud-
Trocme et al., 2003; Fourcaud-Trocme & Brunel, 2005; Naundorf et al., 2005).
One important advantage of our new model is that such boundary induced ar-
tifacts can be separated out mathematically, isolating the physically meaningful
part of the response function. This allows us to obtain an explicit relation be-
tween the large AP onset rapidness (Naundorf et al., 2006) and the high cutoff
frequency behaviors in the dynamical response of cortical neurons observed re-
cently for both mean current coded signals and noise coded signals (Köndgen
et al., 2008; Boucsein et al., 2009; Higgs & Spain, 2009).

2.1 An analytically solvable model with an unsta-

ble fixed point

The simplest voltage dynamics that exhibits both a stable fixed point (the resting
potential) and an unstable fixed point (the voltage threshold) has a piecewise
linear membrane current, composed of a leak current for low potential and a
linear spike generating current for high potential (see Fig. 2.1A). The model (we
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call it r − τm model) is defined by the following Langevin equation

τmv̇ = f(v) + µ+ ση(t) , (2.1)

where

f(v) = −v +Θ(v − v0) (r + 1)(v − v0)

=

{

− v , −∞ < v ≤ v0

r(v − vt) , v0 < v ≤ vb
(2.2)

Here v is the membrane potential relative to the resting potential, τm is the
membrane time constant, r is the AP onset rapidness with τm

r
representing the

time constant for AP initiation, and Θ(v) is the Heaviside step function. µ
is the mean input current and σ is the amplitude of synaptic noise. η(t) is a
Gaussian white noise which satisfies 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = τmδ(t− t

′
). For

convenience we take τm as the unit of time in analytical calculation.
A neuron receives a large amount of synaptic inputs and each one is very

weak, therefore the diffusion approximation can be applied. A Gaussian white
noise provides a good approximation if the postsynaptic current can be taken as
a sum of delta pulses. The color noise case will be studied in next chapter, which
plays an important role in understanding the high cutoff frequency for a current
coded signal. The crossing point v0 of the two pieces sets the rheobase current,
which will be used as the unit of voltage, v0 = 1. The threshold potential vt is
related with v0 by vt = (1 + 1/r)v0. In Fig. 2.1B, traces of membrane potential
with three different onset rapidness r are shown. We can see that the larger is
r, the faster is the spiking of the neuron. Distinct from the quadratic integrate-
and-fire (QIF) model and exponential integrate-and-fire (EIF) model, there is no
finite time blow-up here. So we need to truncate the AP at some finite voltage
vb. When the membrane potential reaches vb, it is reset to a voltage vr and stays
there for an absolute refractory period τr. Since we are mostly interested in the
fluctuation driven regime with a low firing rate, the effect of the refractory period
is not important and we will keep τr explicitly only in the analytical analysis, but
take τr = 0 in numerical simulation.

The Fokker-Planck equation (FPE) corresponding to Eq. (2.1) has the fol-
lowing form (Risken, 1984)















∂tP1(v, t) + ∂v

(

− v + µ− 1

2
σ2∂v

)

P1(v, t) = 0 , −∞ < v ≤ v0

∂tP2(v, t) + ∂v

(

r(v − vt) + µ− 1

2
σ2∂v

)

P2(v, t) = 0 , v0 < v ≤ vb

(2.3)

where P1(v, t) and P2(v, t) are the probability densities P (v, t) for the membrane
potential v located within −∞ < v ≤ v0 and v0 < v ≤ vb respectively.
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Figure 2.1: A, illustration of the model. B, V (t) trajectories for identical noise
and three different values of r in the noise driven regime.

Defining the probability currents J(v, t) within two membrane potential ranges
as

J1(v, t) =

(

− v + µ− 1

2
σ2∂v

)

P1(v, t) ,

J2(v, t) =

(

r(v − vt) + µ− 1

2
σ2∂v

)

P2(v, t) , (2.4)

the FPE then becomes the equation for probability conservation,

∂tP (v, t) + ∂vJ(v, t) = 0 . (2.5)

From the reset assumption, an absorbing boundary condition is assigned at vb,

P2(vb, t) = 0 , (2.6)

and the probability current at the reset point vr has a jump

J1(v
+
r , t)− J1(v

−
r , t) = J2(vb, t− τr) . (2.7)

Since the probability density should be continuous at vr,

P1(v
+
r , t)− P1(v

−
r , t) = 0 , (2.8)

Eq. (2.7) implies

∂vP1(v
+
r , t)− ∂vP1(v

−
r , t) = ∂vP2(vb, t− τr) . (2.9)

In addition, the probability density and its first derivative should be continuous
at v0,

P1(v0, t) = P2(v0, t) ,

∂vP1(v0, t) = ∂vP2(v0, t) . (2.10)
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Finally the normalization condition of the probability density requires that

lim
v→−∞

P1(v, t) = 0 . (2.11)

With these boundary conditions the solution of the FPE (2.3) is uniquely deter-
mined. The instantaneous firing rate in the population is given by the probability
current into the absorbing boundary

ν(t) ≡ J2(vb, t) = −1

2
σ2∂vP2(vb, t) . (2.12)

2.2 Stationary solutions

When the mean input current µ and noise amplitude σ are constant, the system
is homogeneous and possesses a stationary solution with a constant probability
current, e.g. J1(v) = J2(v) = ν0, where ν0 is the stationary firing rate. We denote
the stationary probability density P0(v) as P01(v) and P02(v) for the two pieces
respectively, which satisfy

(

− v + µ− 1

2
σ2∂v

)

P01(v) = 0 , −∞ < v ≤ vr
(

− v + µ− 1

2
σ2∂v

)

P01(v) = ν0 , vr < v ≤ v0
(

r(v − vt) + µ− 1

2
σ2∂v

)

P02(v) = ν0 , v0 < v ≤ vb (2.13)

Utilizing the boundary conditions Eq. (2.6-2.11) , we solve Eq. (2.13) and
obtain

P01(v) =
ν0
σ
e−

1
σ2

(v−µ)2
(

2

∫
v0−µ
σ

max(v,vr)−µ
σ

ey
2

dy

+

√

π

r
e(1+

1
r
) 1
σ2

(v0−µ)2
(

Erfc

(

µ− v0√
rσ

)

− Erfc

(

µ+ v̇b√
rσ

)))

,

P02(v) =
ν0
σ

√

π

r
e

1
rσ2

(µ+r(v−vt))2
(

Erfc

(

µ+ r(v − vt)√
rσ

)

− Erfc

(

µ+ v̇b√
rσ

))

,

(2.14)

where v̇b = r(vb−vt). From Fig. 2.2 we see that that a large r make the probability
higher for finding the membrane potential located around the resting potential,
while multiplying the firing rate can increase the probability above the threshold.
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Figure 2.2: Dependence of the stationary probability density on the membrane
potential with firing rate 5 Hz (A) and 10 Hz (B). Parameters used here and in
other figures in this chapter: τm = 10 ms, µ = 0, vr = 0, τr = 0 and vb = 10 if
not denoted otherwise.

The stationary firing rate ν0 can be obtained by using the normalization
condition of the probability density,

∫ vb
−∞ P0(v) dv = 1,

ν−1
0 =

√
π

∫ (µ−vr)/σ

(µ−v0)/σ

ey
2

Erfc(y) dy

+
π

2
√
r
e(1+

1
r
) 1
σ2

(v0−µ)2Erfc

(

µ− v0
σ

)(

Erfc

(

µ− v0√
rσ

)

− Erfc

(

µ+ v̇b√
rσ

))

+

√
π

r

∫ (µ+v̇b)/
√
rσ

(µ−v0)/
√
rσ

dxex
2

(

Erfc(x)− Erfc

(

µ+ v̇b√
rσ

))

+ τr . (2.15)

Fig. 2.3 shows the dependence of the stationary firing rate ν0 on µ and σ. We
see that ν0 becomes insensitive to r when r is large (r > 10). When r → ∞, the
second and third terms in Eq. (2.15) vanish and ν0 converges to the stationary
firing rate for the LIF model with the threshold at v0,

ν−1
0,LIF

=
√
π

∫ (µ−vr)/σ

(µ−v0)/σ

ey
2

Erfc(y) dy + τr . (2.16)

The dependence of the stationary firing rate on the truncation point vb is
mainly through the third term, which has the limit behavior 1

r
log vb and is sup-

pressed when r is large. From Fig. 2.4, we see the dependence of ν0 on vb is quite
weak when r is not small (r > 1) in the low rate regime.

For the probability density P01(v), the dependence on vb is mainly contained
in the factor ν0 when vb is large. We define the dimensionless density P̃01(v), such
that P01 = ν0√

D
P̃01(v) where D = 1

2
σ2 is the diffusion constant. In the large vb

limit P̃01(v) does not depend on vb. The values of the density and its derivative
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Figure 2.3: The dependence of stationary firing rate on the mean input current
(A) and the noise strength (B) in the noise driven regime.
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2.2 Stationary solutions 13

0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

10
0

10
1

σ

ν 0 (
H

z)

 

 
r=1
r=1 app
r=1 Kramers
r=10
r=10 app
r=10 Kramers
r=100
r=100 app
r=100 Kramers

Figure 2.5: Comparison of the stationary firing rate ν0 with its approximation
Eq. (2.18) (labeled as ’app’) and the Kramers rate for different r.

at v0 will be needed later in the study of linear response,

P̃01(v0) ≃
√

π

2r
e

1
rσ2

(v0−µ)2Erfc

(

− v0 − µ√
rσ

)

,

P̃
′
01(v0) ≃ − 1√

D

(

1 +
v0 − µ√

D
P̃01(v0)

)

. (2.17)

For small σ, a simple approximate form can be found for the stationary firing
rate in the noise driven regime µ < v0,

ν−1
0 ≃

√
πσ

v0 − µ
e

(v0−µ)2
σ2 +

2π√
r
e(1+

1
r
)
(v0−µ)2
σ2 . (2.18)

The second term in the above formula is the Kramers rate for the r − τm model
when r is finite. When r is large the first term dominates and gives the Kramers
rate for the corresponding LIF model with the threshold at v0. In deriving Eq.
(2.18) from Eq. (2.15), we have replaced the complementary Error functions with
argument at v0 in the second term with 2, and applied a partial integration for
the first term after replacing the Error function with 2, keeping only the leading
term. Eq. (2.18) provides a good approximation when the firing rate is low
and is better than the pure Kramers rate, as we can see from Fig. 2.5. The
approximation is better for small and large r than for medium r.
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2.3 Linear responses and relation to the LIF model

An input signal to a population of neurons can be encoded into two separate
channels: the mean synaptic current and the amplitude of synaptic noise. In the
r−τm model the linear response for both signal encoding paradigms can be solved
analytically using the Green’s function method. The solutions are expressed in
terms of the parabolic cylinder functions defined in the appendix.

2.3.1 Linear response to a current coded signal

To obtain the linear response of the r−τm model for a mean current coded signal
in the Fourier domain, we choose µ(t) = µ + ε cos(ωt). The instantaneous firing
rate can then be written as ν(t) = ν0 + ε|ν1c(ω)|cos(ωt− φc(ω)) when ε is small.
Here |ν1c(ω)| is the transmission function and φc(ω) is the phase lag, both of
which are functions of the signal frequency ω.

The probability densities can be expanded as

P1(v, t) = P01(v) + εP11(v, t) + · · · ,
P2(v, t) = P02(v) + εP12(v, t) + · · · , (2.19)

where ’· · · ’ represents higher order terms in ε. The FPE at the first order in ε is
then given by

∂tP11(v, t) = ∂v(v − µ+D∂v)P11(v, t)− cos(ωt)P
′
01(v) , −∞ < v ≤ v0

∂tP12(v, t) = ∂v(−rv + rvt − µ+D∂v)P12(v, t)− cos(ωt)P
′
02(v) , v0 < v ≤ vb

(2.20)

Factoring P11 and P12 as follows

P11(v, t) =
1

2

(

e−iωtq1(v) + eiωtq∗1(v)
)

e−(v−µ)2/4D ,

P12(v, t) =
1

2

(

e−iωtq2(v) + eiωtq∗2(v)
)

e(rv
2−2(rvt−µ)v)/4D , (2.21)

where the asterisks represent complex conjugate, we obtain

Dq
′′
1 (v)−

(

(v − µ)2

4D
− iω − 1

2

)

q1(v) = e(v−µ)2/4DP
′
01(v) ,

D

r
q
′′
2 (v)−

(

(v − vt + µ/r)2

4D/r
− iω

r
+

1

2

)

q2(v) =
1

r
e−(rv2−2(rvt−µ)v)/4DP

′
02(v) .

(2.22)
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Substituting Eq. (2.19) and Eq. (2.21) into the boundary conditions Eq. (2.6-
2.11), we see that q1 and q2 satisfy the following boundary conditions,

lim
v→−∞

q1(v) = 0 , (2.23)

q2(vb) = 0 , (2.24)

q1(v0) = q2(v0)e
∆02 , (2.25)

q
′
1(v0) = q

′
2(v0)e

∆02 , (2.26)

q1(v
+
r )− q1(v

−
r ) = 0 , (2.27)

q
′
1(v

+
r )− q

′
1(v

−
r ) = q

′
2(vb)e

∆01+iωτr , (2.28)

where

∆01 = ((vr − µ)2 + (rv2b − 2(rvt − µ)vb))/4D ,

∆02 = ((v0 − µ)2 + (rv20 − 2(rvt − µ)v0))/4D . (2.29)

The left sides of Eq. (2.22) have the form of parabolic cylinder equations. Eq.
(2.22) can then be solved using the Green’s function method with the solutions
expressed using the parabolic cylinder functions. The Green’s functions, denoted
as g1(v, y) and g2(v, y), which are solutions of the following equations

Dg
′′
1 −

(

(v − µ)2

4D
− iω − 1

2

)

g1 = δ(v − y) ,

D

r
g

′′
2 −

(

(v − vt + µ/r)2

4D/r
− iω

r
+

1

2

)

g2 = δ(v − y) , (2.30)

are given by

g1(v, y) = − 1

D

{

ψ2(y)ψ1(v), v < y

ψ1(y)ψ2(v), y ≤ v < v0

g2(v, y) =
r

ψ3(vb)D

{

Y1(y)ψ3(v), v0 ≤ v < y

ψ3(y)Y1(v), y ≤ v < vb
(2.31)

which satisfy the boundary conditions Eq. (2.23) and Eq. (2.24). Note that
φ2(v) will not appear in the final expressions.
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The solutions of Eq. (2.22) are given by

q1(v) = − 1

D

(

ψ2(v)

∫ v

−∞
ψ1(y)P

′
01e

(y−µ)2/4Ddy

+ψ1(v)

∫ v0

v

ψ2(y)P
′
01e

(y−µ)2/4Ddy

)

+k1

{

ψ2(vr)ψ1(v), v < vr

ψ1(vr)ψ2(v) + a
(

ψ2(vr)ψ1(v)− ψ1(vr)ψ2(v)
)

, vr ≤ v < v0

q2(v) =
1

ψ3(vb)D

(

Y1(v)

∫ v

v0

ψ3(y)P
′
02(y)e

−(ry2−2(rvt−µ)y)/4Ddy

+ψ3(v)

∫ vb

v

Y1(y)P
′
02(y)e

−(ry2−2(rvt−µ)y)/4Ddy

)

+k2Y1(v) , v0 < v ≤ vb (2.32)

k1, k2 and a are fixed by the boundary conditions (2.25-2.28). We then have

q
′
2(vb) = − 1

D
e−∆01−iωτr(A+B)

(

ψ1(vr) + (Y1ψ
′
1 − Y

′
1ψ1)e

∆1−∆0−iωτr

)−1

,

(2.33)

with

A =

∫ v0

−∞
ψ1(y)P

′
01e

(y−µ)2/2σ2

dy

=
1

1− iω
e(v0−µ)2/4D

(

ψ1P01 −
√
D iωΦ1P

′
01 −

ν0√
D
iωΦ1(vr)e

∆0+iωτr

)

,

B =
e∆02

ψ3(vb)

∫ vb

v0

(

(ψ3ψ
′
1 − ψ

′
3ψ1)Y1(y)

−(Y1ψ
′
1 − Y

′
1ψ1)ψ3(y)

)

P
′
02(y)e

−(ry2−(rvt−µ)y)/4Ddy

=
e(v0−µ)2/4D

1 + iω/r

(

− ψ1P01 −
√
D
iω

r
Φ1P

′
01 +

ν0√
rD

e∆1(Y2ψ
′
1 − Y

′
2ψ1)

)

,

(2.34)

where

∆0 = ((vr − µ)2 − (v0 − µ)2)/4D = (v0 − vr)(2µ− v0 − vr)/4D ,

∆1 = ((rv20 − 2(rvt − µ)v0)− (rv2b − 2(rvt − µ)vb))/4D

= (v0 − vb)(2µ− v0 − v̇b)/4D . (2.35)

In evaluating A and B we have used the recurrence relations of parabolic cylin-
der functions presented in the appendix and the fact that P̂01(v) ≡ P01(v)e

(v−µ)2/4D
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and P̂02(v) ≡ P02(v)e
−(rv2−(rvt−µ)v)/4D satisfy the parabolic cylinder equation:

DP̂
′′
01(v)−

((v − µ)2

4D
− 1

2

)

P̂01(v) = 0 ,

D

r
P̂

′′
02(v)−

((v − vt + µ/r)2

4D/r
+

1

2

)

P̂02(v) = 0 , (2.36)

as can be easily proved from Eq. (2.13), so we have

P̂01(v) ∝ U
(

− 1

2
,−v − µ√

D

)

,

P̂02(v) ∝ U
(1

2
,−v − vt + µ/r

√

D/r

)

. (2.37)

Therefore, they are parabolic cylinder functions with the same arguments as ψ1(v)
and ψ3(v), ψ4(v) respectively. The integration in A and B can then be performed
by partial integration as is usually done for orthogonal functions and only some
surface terms are left.

The constants ∆0 and ∆1 have physical meaning in the Kramers approxima-
tion of the model. They measure the ratio of the potential difference between vr
and v0 or v0 and vb, and the diffusion constant D respectively.

At linear order in ε, the instantaneous firing rate is

ν(t) = −D∂vP (vb, t)
= ν0 −

ε

2
D
(

e−iωtq
′
2(vb) + eiωtq

′∗
2 (vb)

)

e(rv
2
b−2(rvt−µ)vb)/4D

= ν0 + ε|ν1c(ω)| cos(ωt− φc(ω)) , (2.38)

where ν1c(ω) = −Dq′
2(vb)e

(rv2b−2(rvt−µ)vb)/4D is the complex response function. The
absolute value of ν1c(ω) is the transmission function, while its phase angle gives
the phase lag φc(ω) of the linear response, φc(ω) = arg(ν1c(ω)). ν1c(ω) can be
decomposed into two parts,

ν1c(ω) = νLow1c (ω) + νHigh
1c (ω) , (2.39)

with

νLow1c (ω) =
ν0√
D

iω

(1− iω)(1 + iω/r)
×

(1 + 1/r)(ψ1P̃01 −
√
DΦ1P̃

′
01)− (1 + iω/r)Φ1(vr)e

∆0

ψ1(vr)e∆0+iωτr + (Y1ψ
′
1 − Y

′
1ψ1)e∆1

,

νHigh
1c (ω) =

ν0√
rD

1

1 + iω/r

(Y2ψ
′
1 − Y

′
2ψ1)e

∆1

ψ1(vr)e∆0+iωτr + (Y1ψ
′
1 − Y

′
1ψ1)e∆1

. (2.40)
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2.3.2 Linear response to a noise coded signal

For a noise coded signal, we have σ(t) = σ + εcos(ωt). Similar to the current
coded signal case, the probability densities can be divided into

P1(v, t) = P01(v) + εσP21(v, t) + · · · ,
P2(v, t) = P02(v) + εσP22(v, t) + · · · , (2.41)

and the FPE become

∂tP21(v, t) = ∂v(v − µ+D∂v)P21(v, t) + cos(ωt)P
′′
01(v) , −∞ < v ≤ v0

∂tP22(v, t) = ∂v(−rv + rvt − µ+D∂v)P22(v, t) + cos(ωt)P
′′
02(v) , v0 < v < vb

(2.42)

Factoring the densities as

P21(v, t) =
1

2

(

e−iωtq1(v) + eiωtq∗1(v)
)

e−(v−µ)2/4D ,

P22(v, t) =
1

2

(

e−iωtq2(v) + eiωtq∗2(v)
)

e(rv
2−2(rvt−µ)v)/4D , (2.43)

we then get the following equations

Dq
′′
1 (v)−

(

(v − µ)2

4D
− iω − 1

2

)

q1(v) = −e(v−µ)2/4DP
′′
01(v) ,

D

r
q
′′
2 (v)−

(

(v − vt + µ/r)2

4D/r
− iω

r
+

1

2

)

q2(v) = −1

r
e−(rv2−2(rvt−µ)v)/4DP

′′
02(v) .

(2.44)

The solutions of Eq. (2.44) are obtained by the Green’s function method de-
scribed in the case of a current coded signal,

q1(v) =
1

D

(

ψ2(v)

∫ v

−∞
ψ1(y)P

′′
01e

(y−µ)2/4Ddy + ψ1(v)

∫ v0

v

ψ2(y)P
′′
01e

(y−µ)2/4Ddy

)

+k1

{

ψ2(vr)ψ1(v), v ≤ vr

ψ1(vr)ψ2(v) + a
(

ψ2(vr)ψ1(v)− ψ1(vr)ψ2(v)
)

, vr < v ≤ v0

q2(v) = − 1

ψ3(vb)D

(

Y1(v)

∫ v

v0

ψ3(y)P
′′
02(y)e

−(ry2−2(rvt−µ)y)/4Ddy

+ψ3(v)

∫ vb

v

Y1(y)P
′′
02(y)e

−(ry2−2(rvt−µ)y)/4Ddy

)

+k2Y1(v) , v0 < v ≤ vb (2.45)
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where q1 and q2 satisfy the boundary conditions (2.25-2.28) as for a current coded
signal. Solving k1, k2 and a, we obtain

q
′
2(vb) =

1

D
e−∆01−iωτr

(

ψ1(vr) + (Y1ψ
′
1 − Y

′
1ψ1)e

∆02−∆01−iωτr

)−1

×
(

ν0
D
ψ1(vr)e

(vr−µ)2/4D + A +B

)

(2.46)

where

A =

∫ v0

−∞
ψ1(y)P

′′
10e

(y−µ)2/2σ2

dy

= e(v0−µ)2/4D

(

P
′
01ψ1 +

iω

2− iω

(

1√
D
P01Φ1

−(iω − 1)

(

Υ1P
′
01 +

ν0
D
Υ1(vr)e

∆0+iωτr

)))

,

B =
e∆02

ψ3(vb)

∫ vb

v0

(

(ψ3ψ
′
1 − ψ

′
3ψ1)Y1(y)

−(Y1ψ
′
1 − Y

′
1ψ1)ψ3(y)

)

P
′′
02(y)e

−(ry2−(rvt−µ)y)/4Ddy

= e(v0−µ)2/4D

(

− P
′
01ψ1 +

ν0
D
e∆1(Y3ψ

′
1 − Y

′
3ψ1)

+
1

2 + iω/r

(

− iω√
D
Φ1P01 −

1

r
(iω − 1)iωΥ1P

′
01 −

ν0
D
e∆1(Y3ψ

′
1 − Y

′
3ψ1)

))

.

(2.47)

The instantaneous firing rate is given by

ν(t) = −(D + εσ cos(ωt))∂v(P02 + εσP22)|vb
= ν0 + εσ|ν1n(ω)| cos(ωt− φn(ω)) , (2.48)

where ν1n(ω) is the complex response function given by

ν1n(ω) =
ν0
D

−Dq
′
2(vb)e

(rv2b−2(rvt−µ)vb)/4D (2.49)

and φn(ω) = arg(ν1n(ω)) is the phase lag. Again ν1n(ω) can be decomposed into
two parts,

ν1n(ω) = νLow1n (ω) + νHigh
1n (ω) , (2.50)

with

νLow1n (ω) =
ν0
D

iω(iω − 1)

(2− iω)(2 + iω/r)

×
(1 + 1/r)( iω

1−iω
φ1P̃01 + 2

√
DΥP̃

′
01) + (2 + iω/r)Υ(vr)e

∆0

ψ1(vr)e∆0+iωτr + (Y1ψ
′
1 − Y

′
1ψ1)e∆1

,

νHigh
1n (ω) =

ν0
D

1

2 + iω/r

(Y3ψ
′
1 − Y

′
3ψ1)e

∆1

ψ1(vr)e∆0+iωτr + (Y1ψ
′
1 − Y

′
1ψ1)e∆1

. (2.51)
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2.3.3 Evaluation of the results

The analytical expressions for ν1(ω) can be easily evaluated using Mathemat-
ica, where the Whittake D function D−a− 1

2
(x) = U(a, x) is implemented. The

function V (a, x) can then be evaluated using the relation

πV (a, x) = Γ(
1

2
+ a)(sin πaU(a, x) + U(a,−x)) . (2.52)

See the appendix for more details of the properties of parabolic cylinder functions.
Note that in evaluating such expressions, large numbers will appear and then can-
cel with each other. To do this accurately, one needs to reset the precision of
calculation in Mathematica to a higher value, otherwise one will observe artificial
oscillations at high signal frequencies. For the figures here, the maximum num-
ber of extra digits of precision was set to be 1000. Numerical simulations were
performed to generate spike trains within a fixed duration T using the second
order Runge-Kutta method (Honeycutt, 1992a). The complex response function
ν1c(ω) is then given by

ν1c(ω) =
2

εNeT

Ne
∑

i=1

Ns
∑

j=1

e−iω tij , (2.53)

where Ne is the number of trials, Ns the number of spikes in the duration T in
one trial, tij the jth spike in the ith trial, and ε the amplitude of input signal.
The duration T for each trial was taken such that the average number of spikes
N̄s is N̄s = 106 according to the relation T = N̄s/ν0 for both signal encoding
paradigms. For numerical calculations of ν1n(ω), we use the following formula,

ν1n(ω) =
2

εσNeT

Ne
∑

i=1

Ns
∑

j=1

e−iω tij . (2.54)

Note that compared with the case for a current coded signal, there is an additional
factor 1

σ
from the definition (2.41).

In Fig. 2.6-2.8, we plot the linear response for different r. Note that the fre-
quency f in the figures are related to the angular frequency ω here by ω = 2πf .
We see that νLow1 (ω) dominate for the low and intermediate frequency range, while
the νHigh

1 (ω) parts are responsible for the high frequency limit. Here and in the
following, both cases are referred to when the subscripts ’c’ and ’n’ are dropped.
In fact, as shown later, the νHigh

1 (ω) parts reflect mainly the artifacts from the
absorbing boundary condition. It is the νLow1 (ω) parts which are physically rel-
evant and reflect the influence of onset dynamics on the dynamical response.
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Figure 2.6: The normalized transmission functions ν1(ω)/ν1(0.1) and phase lags
for a current coded signal (A,B) and for a noise coded signal (C,D) with r = 1
and ν0 = 5 Hz. The dashed and solid lines are theoretical results and the points
are from numerical simulation using Eq. (2.53) and (2.54).
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Figure 2.7: The normalized transmission functions ν1(ω)/ν1(0.1) and phase lags
for a current coded signal (A,B) and for a noise coded signal (C,D) with r = 10
and ν0 = 5 Hz.
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Figure 2.8: The normalized transmission functions ν1(ω)/ν1(0.1) and phase lags
for the current coded signal (A,B) and for the noise coded signal(C,D) with
r = 100 and ν0 = 5 Hz.

2.3.4 Relation to the LIF model

Large r limit

In the large r limit, the r − τm model has the same dynamics as the LIF model
and one can therefore expect them to possess the same dynamical response. We
have proven this relation for the stationary firing rate (2.16). Now we will show
that for linear response this also holds: the νLow1 (ω) parts of the linear response
give exactly the results of the LIF model, while the νHigh

1 (ω) parts decay to zero.
When r → ∞, P01(v0) → 0 and P

′
01(v0) → −ν0/D. Some of the parabolic cylinder

functions in the formulas for the linear response have zero or infinity arguments.
By applying corresponding formula in the appendix to them, we find in particular
that Y1e

∆1 → 0, Y
′
1e

∆1 → 1, Y2e
∆1 → 0, Y

′
2e

∆1 → 0, Y3e
∆1 → 0 and Y

′
3e

∆1 → 0
in the large r limit. Substituting these into the expressions of ν1c(ω) and ν1n(ω),
we find that in the large r limit, the νHigh

1 (ω) parts decay to zero and

νLow1c (ω) → ν0√
D

iω

iω − 1

Φ1(v0)− Φ1(vr)e
∆0

ψ1(v0)− ψ1(vr)e∆0+iωτr
,

νLow1n (ω) → ν0
D

iω(iω − 1)

2− iω

Υ1(v0)−Υ1(vr)e
∆0

ψ1(v0)− ψ1(vr)e∆0+iωτr
, (2.55)

which are exactly the linear response of the LIF model with the threshold at v0
(Lindner & Schimansky-Geier, 2001).



2.3 Linear responses and relation to the LIF model 23

Large ω limit

In the high signal frequency limit, the linear response is shaped exclusively by
the absorbing boundary at vb and therefore is expected to be similar for every
integrate-and-fire model with finite vb. As we will show later, taking a large vb can
suppress the boundary induced artifacts. Note that in models with the boundary
at infinity, e.g., in QIF and EIF models, the vb → ∞ limit is taken by default and
therefore, the boundary induced artifacts are suppressed. In our model, however,
we are allowed to take only a large but finite vb due to the linear dynamics. So
if we fix vb and apply the large ω expansion as given in the appendix to all the
parabolic cylinder functions, the high frequency limit of the linear response can
be obtained: ν1c(ω) → ν0√

D
1√
ω
eiπ/4 and ν1n(ω) → ν0

D
. These are provided solely by

νHigh
1 (ω), while the νLow1 (ω) parts decay to zero exponentially. This demonstrates

that the linear response of r− τm model possesses the same high frequency limit
as the LIF model, originating from the reset assumption at the truncation point
vb of the AP waveform.

2.3.5 Step response

The linear response for a small step change εΘ(t), where Θ(t) is the Heaviside
step function, on the mean input current and on the noise level can be calculated
using the transfer function we have obtained,

νc(t) = ε
1

2π

∫ +∞

−∞
H(ω)ν∗1c(ω)e

iωtdω ,

νn(t) = ε
σ

2π

∫ +∞

−∞
H(ω)ν∗1n(ω)e

iωtdω , (2.56)

Here the asterisks represent the complex conjugate and H(ω) = πδ(ω)− i/ω is
the Fourier transform of the Heaviside step function. In Fig. 2.9 we compare
the theoretical results with numerical simulations for a step change in the mean
input and in the noise level. The inverse Fourier transform in Eq. (2.56) are
evaluated using Matlab. We see that the response is much faster for a noise coded
signal than for a mean current coded signal, which is suggested by experiments
(Silberberg et al., 2004). The larger is r, the faster is the response speed of a
population of model neurons to a step change. Note that in the LIF model,
the onset rapidness is infinite large and the response function for a noise coded
signal keeps a constant value in the large ω limit, therefore can be taken out of the
integral leading to a step change in the instantaneous firing rate immediately. For
a step change in the mean input, the response is much slower and there is a much
weaker dependence on r as compared with a step change in the noise amplitude.
Note that for the theoretical results there are only negligible differences between
using ν1(ω) and νLow1 (ω).
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One usually used argument for the faster response to a change in the noise
level goes as follows: assuming the probability density is insensitive to a fast
change in the stimulus, then the change of the firing rate is directly proportional
to the change in the noise level and therefore an instantaneous response from the
definition of instantaneous firing rate,

ν(t) = −1

2
σ2∂vP2(vb, t) .

But by solving the linear response analytically, we find this argument is valid
only for the LIF model. As given in Eq. (2.56), the response to a step change
is determined by the response function ν1n(ω) which determines the response to
each frequency component in the stimulus. From Section 2.3.2,

ν1n(ω) =
ν0
D

−Dq
′
2(vb)e

(rv2b−2(rvt−µ)vb)/4D

=
ν0
D

−
(ν0
D

− νLow1n (ω)− νHigh
1n (ω)

)

. (2.57)

The first term is from the change in the noise level directly, while the three terms
in the bracket is from the change in the probability density. The above mentioned
intuitive argument takes into account only the first term. As will be shown in
next section, the νHigh

1n (ω) part is suppressed by both a large onset rapidness r
and a large boundary value vb, and represents the boundary induced artifact.
In the r → ∞ limit, the νHigh

1n (ω) part is zero from the infinite large r and the
νLow1n (ω) part has a high frequency limit ν0

D
, which makes the contribution from

the change of the probability density (terms in the bracket) negligible. When
r is finite, however, the first term is concealed by a term from the changing
in the probability density and the response is determined by the properties of
the physiologically relevant term νLow1n (ω). Since νLow1n (ω) decays to zero at high
frequency, there is no instantaneous component in the step response.

2.4 Large vb limit and separation of boundary in-

duced artifacts

2.4.1 Large vb limit

When the absorbing boundary is far from the unstable fixed point, i.e., vb ≫ vt,
the large argument expansion can be applied to the parabolic cylinder functions
with arguments at vb. The expressions for the linear response are significantly
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Figure 2.9: The instantaneous firing rate for a step change in the mean in-
put(upper panel) and noise amplitude(lower panel) at t = 0 for r = 10, 100.
ν(t) changes from 5 Hz to 7 Hz in both cases. The solid lines are theoretical
results from the linear response, Eq. (2.56). Note that the contributions from
νHigh
1 (ω) are negligible. The differences between simulation and theory are from

higher order contributions.

simplified and the dependence on vb becomes transparent. First note that

Y1(v0) e
∆1 ≃

√

D/r

(

ψ3(v0) · sin π(−iω/r + 1/2)

− 2π

D/r

1

Γ(−iω/r + 1)
ψ4(v0)

)

ex
2
1/4−iω/r lnx

= −
√

D/rU

(

− iω/r +
1

2
,
r(v0 − vt) + µ√

rD

)

ex
2
1/4−iω/r lnx

= −
√

D/r φ12(v0) e
x2
1/4−iω/r lnx (2.58)

where x = r(vb−vt)+µ√
rD

, x1 =
v0−µ√
rD

, φ12(v) ≡ U
(

− iω/r + 1
2
, r(v−vt)+µ√

rD

)

and we have

used Eq. (2.88) in the appendix. Note that φ12(v) satisfies the same parabolic
cylinder equation as ψ3(v) and ψ4(v). Similarly, we have

Y2(v0) e
∆1 = −

√

D/r iω/r φ12(v0) e
x2
1/4−iω/r lnx · 1

x

Y3(v0) e
∆1 =

√

D/r iω(1 + iω/r) φ12(v0) e
x2
1/4−iω/r lnx · 1

x2
. (2.59)
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The linear response becomes,

νLow1c (ω) =
ν0√
D

iω

(1− iω)(1 + iω/r)
×

(1 + 1/r)(ψ1P̃01 −
√
DΦ1P̃

′
01)− (1 + iω/r)Φ1(vr)e

∆0

ψ1(vr)e∆0+iωτr −
√

D/r(φ12ψ
′
1 − φ

′
12ψ1)ex

2
1/4−iω/r lnx

,

νHigh
1c (ω) =

ν0
r(vb − vt) + µ

−iω/r
1 + iω/r

×
√

D/r(φ12ψ
′
1 + rφ

′
12ψ1)e

x2
1/4−iω/r lnx

ψ1(vr)e∆0+iωτr −
√

D/r(φ12ψ
′
1 − φ

′
12ψ1)ex

2
1/4−iω/r lnx

. (2.60)

for a current coded signal and

νLow1n (ω) =
ν0
D

iω(iω − 1)

(2− iω)(2 + iω/r)
×

(1 + 1/r)( iω
1−iω

Φ1P̃01 + 2
√
DΥP̃

′
01) + (2 + iω/r)Υ(vr)e

∆0

ψ1(vr)e∆0+iωτr −
√

D/r(φ12ψ
′
1 − φ

′
12ψ1)ex

2
1/4−iω/r lnx

νHigh
1n (ω) =

ν0
(r(vb − vt) + µ)2

iω(1 + iω/r)

2 + iω/r
×

√

D/r(φ12ψ
′
1 + rφ

′
12ψ1)e

x2
1/4−iω/r lnx

ψ1(vr)e∆0+iωτr −
√

D/r(φ12ψ
′
1 − φ

′
12ψ1)ex

2
1/4−iω/r lnx

. (2.61)

for a noise coded signal.

We see that νHigh
1 (ω) are strongly suppressed when vb is large. The νLow1 (ω)

parts, on the contrary, show a much weaker dependence on vb, see Fig. 2.10 and
2.11. νLow1 (ω) depend on vb mainly through a frequency dependent phase lag,
characterizing the time lag to the truncation point vb of the AP. When ω is not
small (ω ≥ 1), the contribution from ψ1(vr) term is negligible compared to the
other terms in the denominator in the expressions of the linear response. The
expressions for νHigh

1 (ω) are further simplified,

νHigh
1c (ω) ≃ ν0

r(vb − vt) + µ

iω

r + iω
,

νHigh
1n (ω) ≃ − ν0

(r(vb − vt) + µ)2
iω(1 + iω/r)

2 + iω/r
. (2.62)

Above formulas describe the behavior for low and intermediate frequencies, while
for even higher signal frequency the large vb approximation is not valid any more.
In such a frequency range, the νHigh

1 (ω) parts in the response function will follow
the large ω limit as given in section 2.3.4 and have the same limit behavior as
the LIF model.
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Figure 2.10: Dependence of the linear response on the truncation point vb for a
current coded signal (A,B) and for a noise coded signal (C,D) with r = 10 and
ν0 = 5 Hz.
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current coded signal (A,B) and for a noise coded signal (C,D) with r = 100 and
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2.4.2 Threshold models and boundary induced artifacts

In an integrate-and-fire (IF) model with linear dynamics, an absorbing boundary
at some finite membrane potential vb needs to be assigned. It is known that the
absorbing boundary condition at vb can induce severe artifacts in the dynam-
ical response of a population of neurons. The boundary vb marks a "point of
no return", which is not present in a biophysical dynamical model of AP initi-
ation. As a consequence, the transmission function for a noise coded signal in
the LIF model, for instance, does not decay at high signal frequencies (Silberberg
et al., 2004; Lindner & Schimansky-Geier, 2001). Ideally one would thus wish to
separate the response function into a physically meaningful part νphy1 (ω) and a
part containing all artifacts such that νphy1 (ω) = ν1(ω) − νabs1 (ω). νphy1 (ω) must
have the following properties: i) νphy1 (ω) approaches the static susceptibility when
ω → 0, specifically, νphy1c (ω) → ∂ν0

∂µ
and νphy1n (ω) → 1

σ
∂ν0
∂σ

; ii) νphy1 (ω) → 0 when

ω → ∞; iii) no essential dependence on the truncation point vb. The artifac-
tual part from the absorbing boundary should have the following properties: i)
negligible contribution for signal frequency in the physiologically relevant range
f ≤ 1kHz, i.e., |νabs1 (ω)| ≪ |νphy1 (ω)|, where f = ω/2π; ii) strong dependence on
the truncation point vb. We will show that such an isolation of the biophysically
meaningful response is possible in our model.

2.4.3 Separation of boundary induced artifacts

The decomposing of ν1(ω) into two additive components has exactly the features
required for the separation of the boundary induced artifacts. From Eq. (2.62),
we see νHigh

1 (ω) are strongly dependent on vb and νHigh
1 (ω) → 0 when vb → ∞,

as can also be seen from Fig. 2.10, 2.11 and 2.13. When ω → 0, νHigh
1 (ω) are

negligible compared with νLow1n (ω) and are strongly suppressed by increasing of
vb. That νHigh

1 (ω) capture all artifactual contributions imposed by the absorbing
boundary condition is finally confirmed from the high frequency behavior

νHigh
1c (ω) → ν0√

D

1√
ω
eiπ/4 = lim

ω→∞
ν1c(ω) = lim

ω→∞
νLIF1c (ω) ,

νHigh
1n (ω) → ν0

D
= lim

ω→∞
ν1n(ω) = lim

ω→∞
νLIF1n (ω) , (2.63)

that are identical in every IF model with the absorbing boundary at finite volt-
age. As a consequence, neglecting the νHigh

1 (ω) parts in the response function
eliminates any boundary induced instantaneous response components. These
results establish that νLow1 (ω) captures the behavior of ν1(ω) for low and in-
termediate frequencies and decays to zero in the high frequency limit. When
ω → 0, νLow1c (ω) → ν1c(0) = ∂ν0

∂µ
and νLow1n (ω) → ν1n(0) = 1

σ
∂ν0
∂σ

, since νHigh
1 (ω)

are negligible there. As shown in Eq. (2.60) and (2.61), νLow1 (ω) also exhibit
only a weak dependence on the position of the truncation point. Therefore, we
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have νHigh
1 (ω) = νabs1 (ω) and νLow1 (ω) = νphy1 (ω). The biophysically meaningful

predictions of the model can thus be revealed by examining νLow1 (ω) in isolation.

2.5 Low rate limit

In the fluctuation driven regime, low rate approximation corresponds to small σ
limit. For small σ, the arguments v0−µ√

D
and v0−µ√

rD
are large and the large argument

expansion for the parabolic cylinder functions can be applied. By replacing the
stationary firing rate with the Kramers rate at the same time, we obtain

νLow1c (ω) ≃ ν0
v0 − µ

v0D

Γ(1− iω/r)

(1− iω)(1 + iω/r)
exp

(

− iω

r
log(xx1)

)

,

νLow1n (ω) ≃ ν0
2(v0 − µ)2

v0D2

Γ(1− iω/r)

(2− iω)(2 + iω/r)
exp

(

− iω

r
log(xx1)

)

,

(2.64)

where x = r(vb−vt)+µ√
rD

and x1 = v0−µ√
rD

. Here we have dropped corrections at the

order of rDω2

(v0−µ)2
and Dω2

(v0−µ)2
. This means that the above formulas are valid only

for ω ≪ v0−µ√
rD

, as can be seen from Fig. 2.12. The νHigh
1 (ω) parts are negligible in

this frequency range. The linear responses thus decay as a combination of power
law and exponential decay in the low rate limit. When r is large, the r−τm model
behaves like a low-pass filter with the cutoff frequency insensitive to r. Above
formulas are consistent with the adiabatic responses given by ν1c(0) = ∂ν0

∂µ
and

ν1n(0) =
∂ν0
∂D

, if the Kramers rate for ν0 is used.

2.6 High frequency behavior: r and fc

For the biophysically relevant response function νLow1 (ω), we take vb ≫ vt and
apply the large argument expansion for the parabolic cylinder functions with
argument at vb and large ω expansion for those with arguments at vr and v0. We
then obtain

νLow1c (ω) ≃ ν0√
D

−
√
2(1 + 1

r )iω
√

iω/r − 1

(1− iω)(1 + iω/r)(
√

iω/r +
√

iω/r − 1)

(

P̄01√
r
− i

√
D√

iω − 1
P̃

′
01

)

× exp

(

− π

4r
ω + ix1

√

iω/r − 1− x21
4

+
iω

2r
(1− log(ω/r) + 2 log(x))

)

,

νLow1n (ω) ≃ ν0
D

√
2(1 + 1

r )iω
√

iω/r − 1

(2− iω)(2 + iω/r)(
√

iω/r +
√

iω/r − 1)

(

2
√
DP̃

′
01 + i

√

iω/rP̄01

)

× exp

(

− π

4r
ω + ix1

√

iω/r − 1− x21
4

+
iω

2r
(1− log(ω/r) + 2 log(x))

)

,

(2.65)
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Figure 2.12: The low rate approximation for the linear response with r = 10, 100
and ν0 = 0.01, 0.1 and 1 Hz. A and C are for a current coded signal; B and D
are for a noise coded signal. Solid lines are the accurate results from Eq. (2.40)
and (2.51); dashed lines are the low rate approximations from Eq. (2.64).

where x = r(vb−vt)+µ√
rD

, x1 =
v0−µ√
rD

and P̃01(v) =
√
rP̄01(v). Here corrections at order

ω2/x2 and Q1(
v0−µ√

D
)/
√
ω are ignored, where Q1(v) is the first correction term for

large ω expansion, see Eq. (2.96) in the appendix. The above formulas give the
high frequency behavior of νLow1 (ω) in the biophysical relevant regime. Fig. 2.13
compares the approximations Eq. (2.62) and Eq. (2.65) with the exact values
for different r. The approximations agree quite well with the exact values for
νHigh
1 (ω) for a wide scope of signal frequencies, ranging from quite low to quite

high frequencies, and νLow1 (ω) for high signal frequencies.

When r → ∞, P̄01(v0) →
√

π
2

and P̃
′
01(v0) → − 1√

D
, so

∣

∣

∣

P̄01(v0)√
DP̃

′
01(v0)

∣

∣

∣
→

√

π
2
. As

a result, for large ω, νLow1n (ω) decays as

νLow1n (ω) ∝ 1
√

ω/r
exp(−π

4
ω/r) . (2.66)

depending essentially only on ω/r and the cutoff frequencies are determined by
the time constant τm/r for the AP initiation. νLow1c (ω) behaves a bit differently
for small and large r, with

νLow1c (ω) ∝ 1

ω/r
exp(−π

4
ω/r) , (2.67)
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Figure 2.13: The asymptotic approximation Eq. (2.65) for νLow1 (ω) (A, C) and
Eq. (2.62) for νHigh

1 (ω) (B, D) in the linear response with r = 1, 10, 100 and
ν0 = 5 Hz. For the νLow1 (ω) parts we normalize with the theoretical values at
f = 0.1 Hz.

for small r, and

νLow1c (ω) ∝ 1√
ω
exp(−π

4
ω/r) , (2.68)

for large r. We see that for a noise coded signal the cut-off frequency is determined
solely by the shorter time constant τm/r, that is, by the AP onset dynamics. So
the cutoff frequency fc for a noise coded signal follows fc ∝ r and dissociates from
τm. In the LIF model, r is infinite large, so the response function is flat and no
attenuation at high frequency occurs for a noise coded signal. Note that a linear
relationship fc ∝ r was previously conjectured by Naundorf et al. (2007) based
on dimensional analysis. Fig. 2.14 shows the behavior of νLow1 (ω) with increasing
r and how the cutoff frequency fc changes with r for different ν0. For the LIF
model, |ν1n(ω)| starts at zero signal frequency with a value ∂ν0

∂D
and saturates

to a constant ν0
D

at large frequency. So in our model there will be a transition
between these two plateaus before the decaying of transmission function, since in
large r limit it reduces to the LIF model. To characterize the decaying property
and avoid the transition region, we extract the cutoff frequencies at which the
normalized transmission function decays to 1/

√
10, which is smaller than the

value usually adopted. The increasing of fc with the firing rate ν0 is from the
stochastic double resonance phenomenon: the transmission function will develop
a peak for some optimal signal frequency before decaying when ν0 is larger than



32 Spike onset dynamics and population response

10
0

10
2

10
4

10
−4

10
−2

10
0

A

f(Hz)

A
m

pl
itu

de
 ν

1cLo
w

 

 

r=1
r=10
r=100
r=1000
r=∞

0 50 100

50

100

150

200

250

300B

r

f c (
ν 1c

) 
(H

z)

10
0

10
2

10
4

10
−4

10
−2

10
0

C

f(Hz)

A
m

pl
itu

de
 ν

1nLo
w

 

 

r=1
r=10
r=100
r=1000
r=∞

0 50 100

500

1000

1500

2000

2500

3000D

r

f c (
ν 1n

) 
(H

z)

Figure 2.14: Left, the normalized transmission function νLow1 (ω)/ν1(0.1) for a
current coded signal (A) and for a noise coded signal (C) with different r. ν0 =
5 Hz. Right, the variation of the cut-off frequency (B for a current coded signal
and D for a noise coded signal) with the onset rapidness r for different firing
rates: ν0 = 1, 5, 10, 20, 30, 40 Hz from lower to upper curves.
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some value and behave as a band-pass filter, which can shift the cutoff frequency
to a higher value (Plesser & Geisel, 1999). It can be very large when the onset
rapidness r is large and ν0 is not very low (> 1 Hz here) for a noise coded signal.
When the stationary firing rate is low, the cutoff frequency becomes insensitive
to r. This can be understood from the low firing rate behavior of νLow1n (ω). In
the low rate limit, we find νLow1c (ω) ∝ 1

1−iω
and νLow1n (ω) ∝ 1

2−iω
for large r from

Eq. (2.64), therefore the cutoff frequency is insensitive to the onset rapidness r
when r is large.

For a current coded signal, on the contrary, the decay of νLow1c (ω) is constrained
by the membrane time constant and approaching the behavior of the LIF neurons
in the large r limit, as shown in Fig. 2.14A. Therefore, fast AP onset can enhance
the response speed for a noise coded signal much more significantly than for a
current coded signal in the case of white noise. In order to realize a high cutoff
frequency for a current coded signal as observed in experiments, other factors,
e.g., the correlation time of noise, need to be taken into account.

2.7 r = 0 case: a new kind of perfect integrator

If we let r = 0 in the r − τm model, the evolvement of membrane potential
will follow a Brownian motion with a drift term µ − v0 when v > v0. In this
special case our model resembles the perfect integrator (Gerstein & Mandelbrot,
1964), also called the simplest integrate-and-fire model (Knight, 1972a), but with
a soft boundary at v = v0, in the sense that the probability for finding the
membrane potential lower than 0 decays as e−(v−µ)2/σ2

. In the Perfect Integrator
model, the neuron performs Brownian motion in the whole range of membrane
potential lower than the threshold with the input current as a drift force. The
linear response of the model has been obtained (Bulsara et al., 1994; Fourcaud
& Brunel, 2002). One drawback of this model is that the stationary firing rate is
zero when the mean input current is zero, no matter how strong is the synapse
noise. But the cortical circuits usually sustain in a so called balanced state,
where the mean input current to a neuron is near zero from cancelation between
excitatory and inhibitory synaptic inputs and the neuron is driven to fire spikes
mainly by synaptic noise. When we add a soft barrier here, the neuron can be
driven to fire by both the mean input current and the synaptic noise.

The stationary probability density P0(v) and the stationary firing rate can be
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obtained directly by taking r → 0 in Eq. (2.14) and (2.15),

P01(v) = ν0 e
−(v−µ)2/σ2

(

2

σ

∫ (v0−µ)/σ

(max(v,vr)−µ)/σ

ey
2 dy

+
1

v0 − µ
e(µ

2−v20)/σ
2

(e
2
σ2

(v0−µ)vt − e
2
σ2

(v0−µ)v0)

)

,

P02(v) =
ν0

v0 − µ
(e

2
σ2

(v0−µ)(vt−v) − 1) ,

ν−1
0 =

√
π

∫ (µ−vr)/σ

(µ−v0)/σ

ey
2

Erfc(y) dy

+

√
π

2

σ

v0 − µ
e(µ

2−v20)/σ
2

Erfc((µ− v0)/σ)(e
2
σ2

(v0−µ)vt − e
2
σ2

(v0−µ)v0)

+
1

2

σ2

(v0 − µ)2
(e

2
σ2

(v0−µ)(vt−v0) − 1)− vt − v0
v0 − µ

. (2.69)

For µ = v0, there are

P01(v) =
ν0
D
e−v2/σ2

(

σ

∫ (v0−µ)/σ

(max(v,vr)−µ)/σ

ey
2 dy + vt − v0

)

,

P02(v) =
ν0
D
(vt − v) ,

ν−1
0 =

√
π

∫ −vr/σ

−v0/σ

ey
2

Erfc(y) dy +
√
π
vt − v0
σ

+
(vt − v0)

2

σ2
. (2.70)

We see from Eq. (2.70) that the model neuron can be driven to fire by purely
synaptic noise, more realistic compared with the perfect integrator model. Note
that a reflecting boundary at the resting potential was introduced in (Fusi &
Mattia, 1999).

To obtained the linear response for r = 0, the following replacements for the
parabolic cylinder functions should be made,

ψ3(v) = eav , ψ4(v) =
1

2a
e−av , (2.71)

where a =
√

(µ−v0)2

4D2 − iω
D

. They are solutions of the homogeneous parts of the

FPE (2.30) and (2.44) when r = 0 and satisfy the same normalization condi-
tion, ψ

′
3(v)ψ4(v)− ψ3(v)ψ

′
4(v) = 1. Correspondingly, according to the recurrence
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relation satisfied by the parabolic cylinder function, we obtain

Φ3(v) =

√

D

r
(ψ

′
3(v)−

µ− v0
2D

ψ3(v)) =

√

D

r
(a− µ− v0

2D
)eav

Υ3(v) =

√

D

r
(Φ

′
3(v)−

µ− v0
2D

Φ3(v)) =
D

r
(a− µ− v0

2D
)2eav

Φ4(v) =

√
rD

iω
(ψ

′
4(v)−

µ− v0
2D

ψ4(v)) = −
√
rD

iω
(a+

µ− v0
2D

)
1

2a
e−av

Υ4(v) =

√
rD

iω
(Φ

′
4(v)−

µ− v0
2D

Φ4(v)) =
rD

(iω)2
(a+

µ− v0
2D

)2
1

2a
e−av ,

(2.72)

and

Y1(v) = ψ3(v)ψ4(vb)− ψ3(vb)ψ4(v)

=
1

2a
(ea(v−vb) − ea(vb−v)) (2.73)

Y2(v) = ψ4(v)Φ3(vb)−
iω

r
ψ3(v)Φ4(vb)

=
1

2a

√

D

r
((a− µ− v0

2D
)ea(vb−v) + (a+

µ− v0
2D

)ea(v−vb)) (2.74)

Y3(v) = ψ4(v)Υ3(vb)−
iω

r
(1 +

iω

r
)ψ3(v)Υ4(vb)

=
1

2a

D

r
((a− µ− v0

2D
)2ea(vb−v) − (a +

µ− v0
2D

)2ea(v−vb)) . (2.75)

Substituting these functions into the linear response for positive r, Eq. (2.40)
and (2.51), we get the results for r = 0 case,

ν1c =

(

ψ1(vr)e
∆0 − (

1

a
ψ

′
1 sinh a(vt − v0) + ψ1 cosh a(vt − v0)e

∆1

)−1

×
(

1

1− iω

(

ψ1P02 −
√
Dφ1P

′
02 − iωφ1(vr)e

∆0

)

−ν0
D
(
1

a
K1ψ

′
1 +K2ψ1)e

∆1

)

, (2.76)

ν1n =

(

ψ1(vr)e
∆0 − (

1

a
ψ

′
1 sinh a(vt − v0) + ψ1 cosh a(vt − v0))e

∆1

)−1

×
(

iω − 1

2− iω

(

iω

1− iω
φ1P02 + 2

√
DΥ1P

′
02 + iωΥ1(vr)e

∆0

)

+
ν0
D

(1

a
K3ψ

′
1 +K4ψ1)e

∆1

)

, (2.77)
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where

K1 =
1

2

( 1

a + µ−v0
2D

ea(vb−v0) +
1

a− µ−v0
2D

ea(v0−vb)
)

,

K2 =
1

2

( 1

a + µ−v0
2D

ea(vb−v0) − 1

a− µ−v0
2D

ea(v0−vb)
)

,

K3 =
1

2

(a− µ−v0
2D

a + µ−v0
2D

ea(vb−v0) − a + µ−v0
2D

a− µ−v0
2D

ea(v0−vb)
)

,

K4 =
1

2

(a− µ−v0
2D

a + µ−v0
2D

ea(vb−v0) +
a+ µ−v0

2D

a− µ−v0
2D

ea(v0−vb)
)

, (2.78)

and ∆0 and ∆1 are defined in Eq. (2.35). In the r → 0 limit, ∆1 is also simplified:
∆1 =

1
2D

(µ− v0)(vb − v0).

For the perfect integrator, there is a complementary relation between ν1c and
ν1n (Pressley & Troyer, 2009), which is not held any more when the leak current
is taken into account.

Note that the above results have a default assumption, vr < v0. This is
reasonable for r > 0 when we study the influence of AP onset on dynamical
response. But now there is no spiking generating membrane current, vr can be
adopted at a value larger than v0. Here we provide also the results for this case.
For simplicity we take v0 = 0 without losing generality.

When vr > 0, the stationary solutions of the FPE (2.3) with r = 0 satisfy

(

− v + µ− 1

2
σ2∂v

)

P01(v) = 0 , −∞ < v ≤ 0

(

µ− 1

2
σ2∂v

)

P02(v) = 0 , 0 < v ≤ vr

(

µ− 1

2
σ2∂v

)

P02(v) = ν0 , vr < v ≤ vt (2.79)

The stationary probability density P01(v) and P02(v) are easy to find,

P01 =
ν0
µ
e−

1
σ2

(v2−2µv)(e−
µ
D
vr − e−

µ
D
vt) ,

P02 =
ν0
µ

(e
µ
D
(v−max(v,vr) − e

µ
D
(v−vt) , (2.80)

ν−1
0 =

√
π

2

σ

µ
(e−

µ
D
vr − e−

µ
D
vt) eµ

2/σ2

Erfc(µ/σ)

+
1

µ
(vt − vr)−

σ2

2µ2
(e−

µ
D
vr − e−

µ
D
vt)) . (2.81)
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For µ = 0, there are

P01(v) =
ν0
D
e−v2/σ2

(vt − vr) ,

P02(v) =
ν0
D
(vt −max(v, vr)) ,

ν−1
0 =

√
π

σ
(vt − vr) +

1

σ2
(v2t − v2r) . (2.82)

The linear response for current and noise coded signal are

ν1c =
ν0
D

(

ψ1(0)(e
−µvr

2D cosh avr − e−
µvt
2D cosh avt)

+
1

a
ψ

′
1(0)(e

−µvr
2D sinh avr − e−

µvt
2D sinh avt)

)−1

×
(

D

µ
(e−

µ
D
vr − e−

µ
D
vt)Υ1(0) +

K5

a
ψ

′
1(0) +K6ψ1(0))

)

, (2.83)

ν1n =
ν0
D

(

ψ1(0)(e
−µvr

2D cosh avr − e−
µvt
2D cosh avt)

+
1

a
ψ

′
1(0)(e

−µvr
2D sinh avr − e−

µvt
2D sinh avt)

)−1

×
(

1

a
ψ

′
1(0)((sinh avr − sinh avt)e

−µvt
2D − µ

D
K5)

+ψ1(0)((cosh avr − cosh avt)e
−µvt

2D − µ

D
K6)

+
1

2− iω
(−iω

√
D

µ
φ1(0) + 2(iω − 1)Υ1(0))(e

− µ
D
vr − e−

µ
D
vt)

)

,(2.84)

where a =
√

µ2

4D2 − iω
D

, ψ1(v), φ1(v) and Υ1(v) are parabolic cylinder functions

defined in the appendix, and

K5 =
1

2

(

1

a+ µ
2D

(e(a−
µ
2D

)vr − e(a−
µ
2D

)vt) +
1

a− µ
2D

(e(−a− µ
2D

)vr − e(−a− µ
2D

)vt)

)

,

K6 =
1

2

(

1

a+ µ
2D

(e(a−
µ
2D

)vr − e(a−
µ
2D

)vt)− 1

a− µ
2D

(e(−a− µ
2D

)vr − e(−a− µ
2D

)vt)

)

.

(2.85)

2.8 Discussion

In this chapter we solve the linear response analytically in a spiking neuron model
which includes explicitly the AP initiation process for an uncorrelated synaptic
noise (white noise). The boundary induced artifacts are separated out mathe-
matically. Our model includes the LIF model and the perfect integrator model
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as limiting cases. For a noise coded signal, the resulting response speed from the
biophysically relevant part is characterized by the AP onset dynamics. The high
frequency behavior dissociates from the membrane time constant and is deter-
mined solely by the shorter time constant that characterizes the AP initiation
process. A fast AP onset can significantly enhance the cut-off frequencies. The
stationary firing rate also plays a role in further lifting the cutoff frequency.

For a mean current coded signal, however, the AP onset rapidness is not so
effective a factor in shifting the cutoff frequencies towards higher values. The
membrane time constant plays a filtering effect no matter how large the AP
onset rapidness is. Other factors and mechanisms have to be included to break
the confinement by the membrane time constant. We recall that in the LIF
model the response to a mean coded signal with a white noise is confined by the
membrane time constant, but for a colored noise the confinement is broken and
the response function does not decay at high signal frequencies (Brunel et al.,
2001). Therefore the correlation in synaptic noise may play an important role in
lifting the cutoff frequency, which will be considered in next chapter.
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2.9 Appendix: parabolic cylinder functions

The parabolic cylinder functions U(a, x) and V (a, x) are two independent solu-
tions of the Weber’s equation,

d2y

dx2
−

(

1

4
x2 + a

)

y = 0 , (2.86)

and are normalized to satisfy U
′
(a, x)V (a, x) − U(a, x)V

′
(a, x) = −

√

2
π

, where

the prime represents derivative with respect to x (Abramowitz & Stegun, 1970).
Note that there is the relation U(a, x) = D−a− 1

2
(x) between the function U(a, x)

and the Whittake function Da(x). The function V (a, x) is related to U(a, x) by

πV (a, x) = Γ(
1

2
+ a)(sin πa U(a, x) + U(a,−x)) , (2.87)

from which there are

U(a,−x) = π

Γ(1
2
+ a)

V (a, x)− sin πa U(a, x) ,

V (a,−x) = Γ(1
2
+ a)

π
cos2 πaU(a, x) + sin πa V (a, x) . (2.88)

The parabolic cylinder functions satisfies the following recurrence relations:

U
′
(a, x) +

1

2
xU(a, x) + (a+

1

2
)U(a + 1, x) = 0

U
′
(a, x)− 1

2
xU(a, x) + U(a− 1, x) = 0

xU(a, x) − U(a− 1, x) + (a+
1

2
)U(a + 1, x) = 0

V
′
(a, x)− 1

2
xV (a, x)− (a− 1

2
)V (a− 1, x) = 0

V
′
(a, x) +

1

2
xV (a, x)− V (a+ 1, x) = 0

xV (a, x)− V (a+ 1, x) + (a− 1

2
)V (a− 1, x) = 0 . (2.89)

The parabolic cylinder functions ψ1(v) etc. used in solving the FPE for the
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linear response are defined by

ψ1(v) = U

(

− iω − 1

2
,−v − µ√

D

)

= Diω
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ψ4(v) =
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√
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√

D/r

)

Υ4(v) =

√

πD
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(

− iω/r − 3

2
,−v − vt0 + µ/r

√

D/r

)

Y1(v) = ψ3(v)ψ4(vb)− ψ3(vb)ψ4(v)

Y2(v) = ψ4(v)Φ3(vb)− iω/rψ3(v)Φ4(vb)

Y3(v) = ψ4(v)Υ3(vb)− iω/r(1 + iω/r)ψ3(v)Υ4(vb) . (2.90)

In deriving the large vb limit we introduce a new function

φ12(v) = U

(

− i
ω

r
+

1

2
,
r(v − vt) + µ√

rD

)

, (2.91)

which satisfies the same equation as ψ3(v) and ψ4(v).
Some useful relations can be derived from Eq. (2.89),

(1− iω)Υ1(v) =
v − µ√
D

Φ1(v) + ψ1(v)

Υ3(v) = −v − vt + µ/r
√

D/r
Φ3(v)− iω/rψ3(v)

(1 + iω/r)Υ4(v) = −v − vt + µ/r
√

D/r
Φ4(v)− ψ4(v) , (2.92)
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and

ψ4(v)Φ3(v)− iω/r ψ3(v)Φ4(v) =
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For zero arguments, there are
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Large argument expansion

For x≫ 0,

U(a, x) ∼ e−x2/4x−a−1/2
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where the ’. . .’ represents higher order terms. The expansions for negative argu-
ments are obtained by applying Eq. (2.88).
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Large ω expansion

For |a| ≫ 0,

Da(x) ∼
1√
2
exp(ix

√
a+

a

2
(ln(a/e)− iπ))× (

N−1
∑

n=0

in(2a)−n/2Qn(x) +O(| a |−N))

(2.96)

where Q0(x) = 1, Q1(x) = −x(x2−6)

12
√
2

.



Chapter 3

Toward high cutoff frequencies for

current coded signals

In the preceding chapter, we found that the AP onset rapidness is an important
factor for the dynamical response of a neuronal population. With the assump-
tion of uncorrelated synaptic noise (Gaussian white noise), the cutoff frequency
for a noise coded signal is found to be proportional to the AP onset rapidness,
and therefore can be very large since the onset rapidness of cortical neurons was
found to be very large in experiments (Naundorf et al., 2006). For a current
coded signal, however, the response is confined by the membrane time constant.
To achieve high cutoff frequencies for current coded signals as observed in exper-
iments (Köndgen et al., 2008; Boucsein et al., 2009; Higgs & Spain, 2009), other
factors have to be taken into account.

One important factor we did not include until now is the correlation time in
the synaptic noise. The synaptic inputs received by cortical neurons usually have
a finite correlation time (colored noise) due to the synaptic decay time constant
τs. For real neurons, τs varies from several to hundreds of millisecond, induced
by the fast (AMPA- and GABAA-mediated) and slow (NMDA- and GABAB me-
diated) synapses. In the experiments which observed the high cutoff frequency
phenomena, the injected currents are composed of a deterministic periodic part
and a noise part with finite correlation time in a large range (Köndgen et al.,
2008). On theoretical side, Brunel et al. (2001) found that the response function
in the LIF model does not decay for a current coded signal with a colored noise,
while for a white noise it decays as a power law. Therefore the inclusion of cor-
relation in synaptic noise may have the effect of breaking the confinement by the
membrane time constant. The flat response function reflects the infinite response
speed at the threshold and therefore an artifact induced by the absorbing bound-
ary, as for a noise coded signal with white noise in this model. For more realistic
neuron models, like the EIF model and conductance based models, the transmis-
sion functions show a low-passed behavior and the cutoff frequencies could be
enhanced with a large AP onset rapidness in the appearance of synaptic correla-
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tion (Fourcaud-Trocme et al., 2003; Naundorf et al., 2005; Fourcaud-Trocme &
Brunel, 2005).

The canonical Hodgkin-Huxley (HH) type models seem not able to reproduce
the unique features of the AP waveform observed in experiments, the very high
onset rapidness together with large threshold variability, according to numeri-
cal simulations using multi-compartment models (Naundorf et al., 2006; Huang,
2009). In the experiments, the so called kink behavior was found to disappear
by applying TTX to reduce the sodium channel density, and reappear by wash-
ing the drug out it (Naundorf et al., 2006). This suggests that there might be
cooperativity among the sodium channels such that the opening of one channel
per se can influence the open probability of its neighboring channels. In HH
types neuron models, ion channels are taken as independent units with their
open probability as a continuous function of the membrane potential (Hodgkin &
Huxley, 1952). Cooperativity among ion channels has not been observed directly
for sodium channels, but has been observed for many other kinds of ion channels
and neurons (Undrovinas et al., 1992; Molina et al., 2006; Marx et al., 1998; Bray
& Duke, 2004; Saito et al., 1988). The characterization of channel cooperativity
has been investigated using one and two-dimensional Ising models (Liu & Dil-
ger, 1993). Under the assumption of channel cooperativity, a phase transition in
conductance based models was found through a mean field approach when the
interaction strength among sodium channels increases up to some critical value
(Huang, 2009). The sodium channel activation curve is found not to increase
continuously, but have a sharp threshold and changes from very low level to some
finite value suddenly which results in a large AP onset rapidness. There are also
some preliminary experimental results supporting the existence of a discontinuity
in the sodium channel open probability (M. Gutnick, private communication).

In this chapter we will introduce a model that incorporates such a disconti-
nuity in the spike generating current that would be induced by the cooperative
opening of sodium channels. We will then investigate its functional effect on the
dynamical response of a neuronal population. What we find here is a mutual
enhancement between the step change and correlation in synaptic noise. If only
with a step change, the response function for a current coded signal is still con-
fined by the membrane time constant; but even a small subthreshold step change
can have a significant effect for a colored noise although it might have quite weak
effect for a white noise. The cutoff frequency can be very large with both a step
change and a colored noise included. Therefore the appearance of a step change
in the spike generating current effectively corresponds to a large AP onset rapid-
ness. This has an intuitive explanation: If we push the step change to be large,
the model will behave like the LIF model, which possesses a flat response func-
tion. So for a finite step we can expect a significant enhancement of the cutoff
frequency with a colored noise.
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3.1 Step change in sodium influx and its modeling

To make analytical investigation possible, we will use a linear spike generating
current same as that in the r− τm model in the preceding chapter. At a voltage
v0, which set the rheobase current, the intrinsic current has a step change ∆v̇.
The dynamics is described by the following piecewise linear Langevin equation,

τmv̇ = f(v) + µ+ ση(t) , (3.1)

where

f(v) =

{

− v , −∞ < v ≤ v0

r(v − vt0) , v0 < v ≤ vb
(3.2)

where τm is the membrane time constant and r is the rapidness of AP onset. For
convenience we take τm as the unit of time in analytical calculation. µ is the mean
input current and σ is the amplitude of synaptic noise. Here η(t) is a Gaussian
white noise which satisfies 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = τmδ(t − t

′
). The colored

noise case will be studied later. At v0 there is a step change, r(v0−vt0)−(−v0) =
∆v̇, from which vt0 is given by

vt0 = (1 +
1

r
)v0 −

1

r
∆v̇ . (3.3)

We will use v0 as the unit of voltage, v0 = 1. When the membrane potential
reaches the truncation point vb of the AP waveform, it is reset to a voltage vr
and stays there for a refractory period τr.

∆v̇ can be quite large if there is some finite probability that a sodium channel
open suddenly. Here is a simple estimation. Assuming there is a one percent
chance that one channel per µm2 open suddenly, then the induced change in the
rate of change of membrane potential, denoted as ∆v̇, will be ∆v̇ ≈ 0.01 ∗ g1 ∗
100 mV/Cm ≈ 1 mV/ms, where g1 = 10 pS/µm2 is the conductance of a single
sodium channel and Cm = 1µF/µm2 is the specific capacitance of the membrane.
Using, say, 10 mV as the unit of voltage and 10 ms as the unite of time, this
corresponds to ∆v̇ ≃ 1 in the above model, which is large enough to have a
significant effect on the cutoff frequency as we will see later.

The existence of a solution for the Langevin equation (3.1), however, is not
guaranteed, since the dynamics at v0 is not continuous. Here we will assume
such a solution does exist. In the next chapter we will construct a more general
model, which include the present model as a well-defined limit case and we will
show that the two approaches give exactly the same results.

The Fokker-Planck equation (FPE) corresponding to Eq. (3.1) has the fol-
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Figure 3.1: Illustration of the model.
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∂tP1(v, t) + ∂v

(

− v + µ− 1

2
σ2∂v

)

P1(v, t) = 0 , −∞ < v ≤ v0

∂tP2(v, t) + ∂v

(

r(v − vt0) + µ− 1

2
σ2∂v

)

P2(v, t) = 0 , v0 < v ≤ vb

(3.4)

where P1(v, t) and P2(v, t) are probability densities of the membrane potential v
with −∞ < v ≤ v0 and v0 < v ≤ vb respectively. The probability currents are
defined by

J1(v, t) =

(

− v + µ− 1

2
σ2∂v

)

P1(v, t) ,

J2(v, t) =

(

r(v − vt0) + µ− 1

2
σ2∂v

)

P2(v, t) . (3.5)

The probability density and the flux should be continuous at v0, which requires

P1(v0) = P2(v0)

∂vP1(v0) +
2∆v̇

σ2
P1(v0) = ∂vP2(v0) . (3.6)

Other conditions are the same as that for the r − τm model in the previous
chapter. The continuity and normalization conditions require that

P2(vb, t) = 0 ,

P1(v
+
r , t)− P1(v

−
r , t) = 0 ,

∂vP1(v
+
r , t)− ∂vP1(v

−
r , t) = ∂vP2(vb, t− τr) ,

lim
v→−∞

P1(v, t) = 0 . (3.7)
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These conditions set the boundary conditions of the system. The probability
current into the absorbing boundary at vb gives the instantaneous firing rate

ν(t) ≡ J2(vb, t) = −1

2
σ2∂vP2(vb, t) . (3.8)

3.2 Stationary solutions

When the mean input current µ is constant, the stationary probability densities,
denoted as P01 and P02 for the two pieces respectively, satisfy

(

− v + µ− 1

2
σ2∂v

)

P01(v) = 0 , −∞ < v ≤ vr
(

− v + µ− 1

2
σ2∂v

)

P01(v) = ν0 , vr < v ≤ v0
(

r(v − vt0) + µ− 1

2
σ2∂v

)

P02(v) = ν0 , v0 < v ≤ vb (3.9)

where ν0 is the stationary firing rate.
Solving the above equation using the boundary conditions Eq. (3.6) and (3.7),

the stationary probability densities are given by

P01(v) =
2ν0
σ

e−
1
σ2

(v−µ)2
(
∫

v0−µ
σ

max(v,vr)−µ
σ

ey
2

dy

+
1

2

√

π

r
eA

(

Erfc

(

µ− v0 +∆v̇√
rσ

)

− Erfc

(

µ+ v̇b√
rσ

)))

,

P02(v) =
ν0
σ

√

π

r
e

1
rσ2

(r(v−vt0)+µ)2
(

Erfc

(

µ+ r(v − vt0)√
rσ

)

− Erfc

(

µ+ v̇b√
rσ

))

,

(3.10)

where v̇b = r(vb − vt0) and

A =
1

σ2
((v0 − µ)2 +

1

r
(r(v0 − vt0) + µ)2) =

1

σ2
((v0 − µ)2 +

1

r
(v0 −∆v̇ − µ)2) .

From Fig. 3.2 we see that with the step change ∆v̇ increasing, the probability
distribution of the membrane potential tends to localize near the resting potential.

By using the normalization condition of the probability density, ν0 reads

ν−1
0 =

√
π

∫ (µ−vr)/σ

(µ−v0)/σ

ey
2

Erfc(y) dy

+
π

2
√
r
eAErfc

(

µ− v0
σ

)(

Erfc

(

µ− v0 +∆v̇√
rσ

)

− Erfc

(

µ+ v̇b√
rσ

))

+

√
π

r

∫ (µ+v̇b)/
√
rσ

(µ−v0+∆v̇)/
√
rσ

dxex
2

(

Erfc(x)− Erfc

(

µ+ v̇b√
rσ

))

+ τr . (3.11)
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Figure 3.2: Dependence of the stationary probability density on the membrane
potential for ∆v̇ = 0.5 (A, B) and ∆v̇ = 2 (C, D). Parameters used here and in
other figures in this chapter: τm = 10 ms, µ = 0, vr = 0, τr = 0 and vb = 10 if
not denoted otherwise.

When r → ∞ or ∆v̇ → ∞, the stationary firing rate approaches to the result in
the LIF model with a threshold at v0, as given in Eq. (2.16).

We will define the dimensionless density P̃01(v), such that P01(v) =
ν0√
D
P̃01(v)

where D = 1
2
σ2. In the large vb limit, P̃01(v) does not depend on vb and the

values of the density and its derivative at v0 will be needed later,

P01(v0) ≃ ν0√
D

√

π

2r
e

1
rσ2

(µ−v0+∆v̇)Erfc

(

µ− v0 +∆v̇√
rσ

)

=
ν0√
D
P̃01(v0) ,

P
′
01(v0) ≃ −ν0

D

(

1 +
v0 − µ√

D
P̃01(v0)

)

=
ν0√
D
P̃

′
01(v0) . (3.12)

When ∆v̇ is large,

P01(v) ≃ ν0 e
− 1
σ2

(v−µ)2
(

2

σ

∫
v0−µ
σ

max(v,vr)−µ
σ

ey
2

dy +
1

µ− v0 +∆v̇
e

1
σ2

(v0−µ)2
)

,

(3.13)

and

P01(v0) ≃ ν0
µ− v0 +∆v̇

,

P
′
01(v0) ≃ −ν0

D

(

1 +
v0 − µ

µ− v0 +∆v̇

)

. (3.14)
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Figure 3.3: Dependence of the stationary firing rate on the noise strengh σ for
∆v̇ = 0 (A), ∆v̇ = 0.5 (B), ∆v̇ = 1 (C) and ∆v̇ = 5 (D). Dashed lines are
approximation from Eq. (3.16) and Eq. (3.17).

These resemble the probability density in the LIF model with a correction of
the order of 1/∆v̇. So the step change at v0 behaves like a partial absorbing
boundary. In deriving Eq. (3.13) we have used the asymptotic expansion for the
complementary error function,

Erfc(x) ≃ 1√
πx

e−x2

, (3.15)

when x is large.
We will be most interested in the noise driven regime, µ − v0 < 0. The low

rate approximation for the stationary firing rate now depends on the value of ∆v̇.
When ∆v̇ + µ < v0, we have

ν−1
0 ≃

√
πσ

v0 − µ
e

(v0−µ)2
σ2 +

2π√
r
e

1
σ2

((v0−µ)2+ 1
r
(v0−∆v̇−µ)2) . (3.16)

When ∆v̇ + µ > v0, we have

ν−1
0 ≃

√
πσ(

1

v0 − µ
+

1

µ− v0 +∆v̇
) e

(v0−µ)2
σ2

≃
√
πσ∆v̇

(v0 − µ)(µ− v0 +∆v̇)
e

(v0−µ)2
σ2 . (3.17)

Fig. 3.3 compares the approximation with the exact value of ν0.
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3.3 Linear responses: directly solving the FPE

The linear response can be solved analytically for the present model. Here we
will solve the FPE at the linear order directly using the Green’s function method.
The procedure is similar to that in the last chapter. The results are expressed
with the parabolic cylinder functions defined in the appendix in Chapter 2. Note
that there needs a replacement for vt → vt0 in the definitions. Same as before,
the arguments of the probability density and the parabolic cylinder functions are
adopted at v0 if not denoted explicitly.

3.3.1 Linear response to a current coded signal

When a weak sinusoidal signal is added to the mean input, µ(t) = µ+ ε cos(ωt),
the instantaneous firing rate can then be written as ν(t) = ν0+ ε|ν1c(ω)|cos(ωt−
φc(ω)) when ε is small. Here |ν1c(ω)| is the transmission function and φc(ω) is
the phase lag, both of which are functions of signal frequency ω.

At linear order, the probability densities can be expanded as

P1(v, t) = P01(v) + εP11(v, t) + · · · ,
P2(v, t) = P02(v) + εP12(v, t) + · · · , (3.18)

where ’· · · ’ represents higher order terms in ε. The FPE at the linear order in ε
are then given by

∂tP11(v, t) = ∂v(v − µ+D∂v)P11(v, t)− cos(ωt)P
′
01(v) , −∞ < v ≤ v0

∂tP12(v, t) = ∂v(−rv + rvt0 − µ+D∂v)P12(v, t)− cos(ωt)P
′
02(v) , v0 < v ≤ vb

(3.19)

Factoring P11(v, t) and P12(v, t) as follows

P11(v, t) =
1

2

(

e−iωtq1(v) + eiωtq∗1(v)
)

e−(v−µ)2/4D ,

P12(v, t) =
1

2

(

e−iωtq2(v) + eiωtq∗2(v)
)

e(rv
2−2(rvt0−µ)v)/4D , (3.20)

where the asterisks represent complex conjugate, we obtain

Dq
′′
1 (v)−

(

(v − µ)2

4D
− iω − 1

2

)

q1(v) = e(v−µ)2/4DP
′
01(v) ,

D

r
q
′′
2 (v)−

(

(v − vt0 + µ/r)2

4D/r
− iω

r
+

1

2

)

q2(v) =
1

r
e−(rv2−2(rvt0−µ)v)/4DP

′
02(v) .

(3.21)
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Substituting Eq. (3.18) and Eq. (3.20) into the boundary conditions Eq. (3.6-
3.7), we see that q1(v) and q2(v) satisfy the following boundary conditions,

lim
v→−∞

q1(v) = 0 , (3.22)

q2(vb) = 0 , (3.23)

q1(v0) = q2(v0)e
∆02 , (3.24)

q
′
1(v0) +

∆v̇

2D
q1(v0) = q

′
2(v0)e

∆02 , (3.25)

q1(v
+
r )− q1(v

−
r ) = 0 , (3.26)

q
′
1(v

+
r )− q

′
1(v

−
r ) = q

′
2(vb)e

∆01+iωτr , (3.27)

where

∆01 = ((vr − µ)2 + (rv2b − 2(rvt0 − µ)vb))/4D ,

∆02 = ((v0 − µ)2 + (rv20 − 2(rvt0 − µ)v0))/4D . (3.28)

Eq. (3.21) can be solved using the Green’s function method. The Green’s
functions are the same as in Chapter 2. Following the same procedure, we then
get

q
′
2(vb) = − 1

D
e−∆01−iωτr(A+B)

(

ψ1(vr) + (Y1ψ
′
1 − Y

′
1ψ1)e

∆1−∆0−iωτr

)−1

,

(3.29)

with

A =

∫ v0

−∞
ψ1(y)P

′
01e

(y−µ)2/2σ2

dy

B =
e∆02

ψ3(vb)

∫ vb

v0

(

(ψ3ψ
′
1 − ψ

′
3ψ1)Y1(y)− (Y1ψ

′
1 − Y

′
1ψ1)ψ3(y)

+
∆v̇

2D
ψ1(ψ3Y1(y)− Y3ψ3(y))

)

P
′
02(y)e

−(ry2−(rvt−µ)y)/4Ddy , (3.30)

where we have defined

∆0 = ((vr − µ)2 − (v0 − µ)2)/4D ,

∆1 = ((rv20 − 2(rvt0 − µ)v0)− (rv2b − 2(rvt0 − µ)vb))/4D . (3.31)

At linear order in ε, the instantaneous firing rate is

ν(t) = −D∂vP (vb, t)
= ν0 −

ε

2
D
(

e−iωtq
′
2(vb) + eiωtq

′∗
2 (vb)

)

e(rv
2
b−2(rvt−µ)vb)/4D

= ν0 + ε|ν1c(ω)| cos(ωt− φc(ω)) , (3.32)
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where ν1c(ω) = −Dq′
2(vb)e

(rv2b−2(rvt0−µ)vb)/4D is the complex response function.
The integrals in Eq. (3.30) can be performed explicitly using the properties

of the parabolic cylinder functions, as in the last chapter. We then reach the
following expressions for the response function ν1c(ω),

ν1c(ω) = νLow1c (ω) + νHigh
1c (ω)

νLow1c (ω) =
(

ψ1(vr)e
∆0+iωτr + (Y1ψ

′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1
)−1

×
(

i(ω + ω
′
)

(1− iω)(1 + iω′)
(ψ1P01 −

√
DΦ1P

′
01)

− iω

1 − iω

ν0√
D
Φ1(vr)e

∆0 − iω
′

1 + iω′
∆v̇√
D
Φ1P01

)

, (3.33)

νHigh
1c (ω) =

(

ψ1(vr)e
∆0+iωτr + (Y1ψ

′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1
)−1

× 1

1 + iω′
ν0√
rD

e∆1(ψ
′
1Y2 − ψ1Y

′
2 +

∆v̇

2D
ψ1Y2) , (3.34)

and φc(ω) = arg(ν1c(ω)) is the phase lag.
The decomposing into two additive terms is similar to that in the r − τm

model. In Fig. 3.4 A, B and Fig. 3.5 A, B, the transmission function and the
phase lag for a current coded signal with r = 1 and r = 10 respectively are shown.
The numerical results are obtained by solving Eq. (3.1) directly using the RK2
method (Honeycutt, 1992a), which agree with the theoretical values very well.

3.3.2 Linear response to a noise coded signal

For a noise coded signal, there is σ(t) = σ + εcos(ωt). The probability densities
can be divided into

P1(v, t) = P01(v) + εσP21(v, t) + · · · ,
P2(v, t) = P02(v) + εσP22(v, t) + · · · , (3.35)

and the FPE becomes

∂tP21(v, t) = ∂v(v − µ+D∂v)P21(v, t) + cos(ωt)(P
′′
01(v) + δ(v − v0)

∆v̇

D
P01) ,

∂tP22(v, t) = ∂v(−rv + rvt − µ+D∂v)P22(v, t) + cos(ωt)P
′′
02(v) . (3.36)

where the Dirac δ function comes from the step change of the derivative of prob-
ability density at v0, as given in Eq. (3.6).

Factoring the densities as

P21(v, t) =
1

2

(

e−iωtq1(v) + eiωtq∗1(v)
)

e−(v−µ)2/4D ,

P22(v, t) =
1

2

(

e−iωtq2(v) + eiωtq∗2(v)
)

e(rv
2−2(rvt0−µ)v)/4D , (3.37)
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Figure 3.4: The normalized transmission functions ν1(ω)/ν1(0.1) and phase lags
for a current coded signal (A,B) and for a noise coded signal (C,D) with r = 1,
∆v̇ = 0.5 and ν0 = 5 Hz. The dashed and solid lines are theoretical results and
the points are from numerical simulation using Eq. (2.53) and (2.54).
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Figure 3.5: The normalized transmission functions ν1(ω)/ν1(0.1) and phase lags
for a current coded signal (A,B) and for a noise coded signal (C,D) with r = 10,
∆v̇ = 0.5 and ν0 = 5 Hz.
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we then get the following equations

Dq
′′
1 (v)−

(

(v − µ)2

4D
− iω − 1

2

)

q1(v) = −e(v−µ)2/4D

×(P
′′
01(v) + δ(v − v0)

∆v̇

D
P01(v)) ,

D

r
q
′′
2 (v)−

(

(v − vt0 + µ/r)2

4D/r
− iω

r
+

1

2

)

q2(v) =
−1

r
e−(rv2−2(rvt0−µ)v)/4DP

′′
02(v) .

(3.38)

Solving Eq. (3.38) using the Green’s function method, we get

q
′
2(vb) =

1

D
e−∆01−iωτr

(

ψ1(vr) + (Y3ψ
′
1 − Y

′
3ψ1)e

∆02−∆01−iωτr

)−1

×
(

ν0
D
ψ1(vr)e

(vr−µ)2/4D + A +B +
∆v̇

D
P01

)

, (3.39)

where the term ∆v̇
D
P01(v0) is from the δ function part for P

′′
0 (v) at v0 and

A =

∫ v0

−∞
ψ1(y)P

′′
01e

(y−µ)2/2σ2

dy ,

B =
e∆02

ψ3(vb)

∫ vb

v0

(

(ψ3ψ
′
1 − ψ

′
3ψ1)Y3(y)− (Y3ψ

′
1 − Y

′
3ψ1)ψ3(y)

+
∆v̇

2D
ψ1(ψ3Y3(y)− Y3ψ3(y))

)

P
′′
02(y)e

−(ry2−(rvt0−µ)y)/4Ddy . (3.40)

The instantaneous firing rate is

ν(t) = −(D + εσ cos(ωt))∂v(P02 + εσP22)|vb
= ν0 + εσ|ν1n(ω)| cos(ωt− φn(ω)) , (3.41)

where ν1n(ω) is the complex response function given by

ν1n(ω) =
ν0
D

−Dq
′
2(vb)e

(rv2b−2(rvt0−µ)vb)/4D . (3.42)

Performing the integral in Eq. (3.40), the response function ν1n(ω) is found
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to be decomposed into two terms,

ν1n(ω) = νLow1n (ω) + νHigh
1n (ω)

νLow1n (ω) = (ψ1(vr)e
∆0+iωτr + (Y1ψ

′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1)−1

×
(

i(ω + ω
′
)

(2− iω)(2 + iω′)
(− iω√

D
Φ1P01 + 2(iω − 1)ΥP

′
01)

+
iω(iω − 1)

2− iω

ν0
D
Υ(vr)e

∆0 +
∆v̇

D

iω
′

2 + iω′ (iω − 1)Υ1P01

)

,

νHigh
1n (ω) = (ψ1(vr)e

∆0+iωτr + (Y1ψ
′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1)−1

× 1

2 + iω′
ν0
D
e∆1(Y3ψ

′
1 − Y

′
3ψ1 +

∆v̇

2D
ψ1Y3) , (3.43)

and φn(ω) = arg(ν1n(ω)) is the phase lag. Fig. 3.4 C, D and Fig. 3.5 C, D, show
the transmission function and the phase lag for a noise coded signal with r = 1
and r = 10 respectively. The numerical results agree with the theoretical values
very well.

3.4 Large vb limit and separation of boundary in-

duced artifacts

When the absorbing boundary is far from the AP initiation point, i.e. vb ≫ v0,
we can apply the large argument expansion to parabolic cylinder functions with
argument at vb. The expression for the linear response is simplified and the
dependence on vb becomes transparent. Without any change from Section 2.4,
we have

Y1(v0) e
∆1 ≃ −

√

D/r φ12(v0) e
x2
1/4−iω/r lnx

Y2(v0) e
∆1 ≃ −

√

D/r iω/r φ12(v0) e
x2
1/4−iω/r lnx · 1

x

Y3(v0) e
∆1 ≃

√

D/r iω(1 + iω/r) φ12(v0) e
x2
1/4−iω/r lnx · 1

x2
, (3.44)

where x = r(vb−vt0)+µ√
rD

, x1 = −v0+∆v̇+µ√
rD

and φ12(v) = U
(

− iω/r + 1
2
, r(v−vt0)+µ√

rD

)

.

In the large vb limit, P0(v0) and P
′
0(v0) are given in Eq. (3.12). ν1c(ω) is then
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simplified to

νLow1c (ω) ≃ ν0√
D

(

ψ1(vr)e
∆0+iωτr −

√

D

r
(φ12ψ

′
1 − φ

′
12ψ1 +

∆v̇

2D
φ12ψ1)e

x2
1/4−iω/r lnx

)−1

×
(

iω(1 + 1/r)

(1− iω)(1 + iω/r)
(ψ1P̃01 −

√
DΦ1P̃

′
01)−

iω

1− iω
Φ1(vr)e

∆0

− iω

r + iω

∆v̇√
D
Φ1P̃01

)

, (3.45)

νHigh
1c (ω) ≃ ν0

r(vb − vt) + µ

−iω/r
1 + iω/r

×
√

D/r(φ12ψ
′
1 − φ

′
12ψ1 +

∆v̇
2Dφ12ψ1)e

x2
1/4−iω/r lnx

ψ1(vr)e∆0+iωτr −
√

D/r(φ12ψ
′
1 − φ

′
12ψ1 +

∆v̇
2Dφ12ψ1)ex

2
1/4−iω/r lnx

.(3.46)

For ν1n(ω), there is

νLow1n (ω) ≃ ν0
D

(

ψ1(vr)e
∆0+iωτr −

√

D

r
(φ12ψ

′
1 − φ

′
12ψ1 +

∆v̇

2D
φ12ψ1)e

x2
1/4−iω/r lnx

)−1

×
(

iω(1 + 1/r)

(2− iω)(2 + iω/r)
(−iωΦ1P̃01 + 2(iω − 1)

√
DΥP̃

′
01)

+
iω(iω − 1)

2− iω
Υ(vr)e

∆0 +
iω

′
(iω − 1)

2 + iω′
∆v̇√
D
Υ1P̃01

)

(3.47)

νHigh
1n (ω) ≃ ν0

(r(vb − vt0) + µ)2
iω(1 + iω/r)

2 + iω/r
×

√

D/r(φ12ψ
′
1 − φ

′
12ψ1 +

∆v̇
2Dφ12ψ1)e

x2
1/4−iω/r lnx

ψ1(vr)e∆0+iωτr −
√

D/r(φ12ψ
′
1 − φ

′
12ψ1 +

∆v̇
2Dφ12ψ1)ex

2
1/4−iω/r lnx

.

(3.48)

When ω is not small (ω ≥ 1), the contribution from ψ1(vr) term is negligible
compared to the other term in the denominator in the expressions of the linear
response. We then have

νHigh
1c (ω) ≃ ν0

r(vb − vt0) + µ

iω

r + iω
,

νHigh
1n (ω) ≃ − ν0

(r(vb − vt0) + µ)2
iω(1 + iω/r)

2 + iω/r
. (3.49)

We see that νHigh
1 (ω) are strongly suppressed when vb is large. The νLow1 (ω) parts,

on the contrary, depend on vb mainly through a frequency dependent phase lag,
characterizing the time lag to the truncation point vb of the AP.

The decomposing of ν1(ω) into two additive components has exactly the
features required for the separation of boundary induced artifacts, as outlined
in section 2.4.2 in Chapter 2. Therefore, we have νHigh

1 (ω) = νabs1 (ω) and
νLow1 (ω) = νphy1 (ω). The biophysically meaningful predictions of the model thus
comes from νLow1 (ω).
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3.5 Linear response: limit behavior

3.5.1 Large r limit and large ω limit

In the large r limit, the ∆v̇ term in the linear response approaches to zero as 1√
r
.

Without any change, the argument for the r − τm model can be used here. The
νHigh
1 (ω) parts decay to zero and the νLow1 (ω) parts of the linear response give

exactly the results for the LIF model when r → ∞.
By using the large ω expansion of the parabolic cylinder functions, the high

frequency limit of the linear response can be obtained: ν1c(ω) → ν0√
D

1√
ω
eiπ/4 and

ν1n(ω) → ν0
D

, the same as the LIF model. These are provided solely by νHigh
1 (ω),

while the νLow1 (ω) parts decay to zero exponentially. In the high signal frequency
limit, the linear response is shaped exclusively by the absorbing boundary at vb
and therefore is expected to be similar for every integrate-and-fire model with
finite vb.

3.5.2 Large ∆v̇ limit

In the large ∆v̇ limit, we can start from the large vb limit Eq. (3.45) and (3.47),
since the large vb limit is obtained through the large argument expansion about
r(vb−vt0)√

rD
which is large when ∆v̇ is large. The large arguments expansion now is

further applied to the parabolic cylinder functions with argument at r(v0−vt0)√
rD

. It

is easy to check φ12(v0)e
x2
1/4−iω/r lnx → 0 as 1/∆v̇ and

(

− φ
′
12(v0) +

∆v̇

2D
φ12(v0)

)

ex
2
1/4−iω/r lnx →

√

r

D
. (3.50)

If we start from the accurate formulas for linear responses, Eq. (3.33) and (3.43),
we will find that Y1(v0)e

∆1 → 0 as 1/∆v̇ and (−Y ′
1 (v0) +

∆v̇
2D
Y1(v0))e

∆1 → 1.
Additionally, note that when ∆v̇ → ∞,

P
′
01(v0) → −ν0

D
,

∆v̇P01(v0) → −ν0 . (3.51)

We then find that the νHigh
1 (ω) parts approach to zero as 1/∆v̇ and 1/∆v̇2

for a current coded signal and a noise coded signal respectively. Finally we have

ν1c → ν0√
D

iω

iω − 1
(Φ1 − Φ1(vr)e

∆0)/(ψ1 − ψ1(vr)e
∆0) ,

ν1n → ν0
D

iω(iω − 1)

2− iω
(Υ1 −Υ1(vr)e

∆0)/(ψ1 − ψ1(vr)e
∆0) , (3.52)

which are solely from the νLow1 parts and are exactly the linear response for the
LIF model with a threshold at v0. Therefore, if we let ∆v̇ → ∞, the linear
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Figure 3.6: The normalized transmission functions ν1(ω)/ν1(0.1) with step change
∆v̇ = 1, 5, 10 and for the corresponding LIF model results.

responses to both a current coded signal and a noise coded signal will approach
the results of the LIF model. For a finite ∆v̇, the step change is expected to play
the role of an absorbing boundary partially and will shape the linear response
significantly.

3.5.3 High frequency behavior: effect of the step change

with white noise

Fig. 3.6 shows the dependence of the transmission function on ∆v̇, and how the
linear response change with the inclusion of a step change ∆v̇ at v0. We have
proven that when ∆v̇ → ∞, the linear responses approach that of the LIF model
with a threshold at v0. Fig. 3.6 shows this behavior clearly. The cutoff frequency
for a noise coded signal can be shifted to arbitrary high signal frequency with a
large ∆v̇. For a current coded signal, the effect of increasing ∆v̇ is not significant
and the membrane time constant still confines the high frequency response.

3.6 Effect of correlation time τs

3.6.1 Modeling correlated synaptic noise

The postsynaptic input usually have a finite correlation time, due to the filtering
of the afferent spike trains by the synapses. This can be approximated well by a
deterministic mean input and a color noise with a correlation time τs (Tuckwell,
1988).

For a colored noise, the dynamics is described by the following two dimensional
Langevin equation,

τmv̇ = f(v) + µ+ ǫ(t) ,

τsǫ̇ = −ǫ+ ση(t) , (3.53)
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where

f(v) =

{

− v , −∞ < v ≤ v0

r(v − vt0) , v0 < v ≤ vb
(3.54)

Here η(t) is a Gaussian white noise which satisfies 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 =
τmδ(t− t

′
). ǫ is a colored noise described by an Ornstein-Uhlenbeck (OU) process

with 〈ǫ(t)〉 = 0 and 〈ǫ(t)ǫ(t′)〉 = σ2τm
2τs

exp(−|t− t
′ |/τs).

For the dynamical response, a small sinusoidal signal ε cos(ωt) will be added,
such that µ(t) = µ + ε cos(ωt) for a current coded signal and and ǫ(t) → (1 +
ε cos(ωt))ǫ(t). For a current coded signal, the Langevin equation Eq. (3.53)
will be solved using the second order Runge-Kutta method (Honeycutt, 1992b)
and the linear response are obtained through Eq. (2.53). While for a noise coded
signal, the algorism in Honeycutt (1992b) is not applicable, since now the variance
of the colored noise is time dependent. We will use the Euler method (see e.g.,
Milshtein & Tret’yakov (1994)) for a noise coded signal.

3.6.2 Stationary firing rate ν0

In Fig. 3.7, we show the dependence of the stationary firing rate ν0 on the
correlation time τs for different step change ∆v̇. The AP onset rapidness r is
fixed to be r = 10. We see that the correlation time has a significant impact on
ν0, but the influence of the step change on ν0 is quite weak. When ∆v̇ changes
from 0 to 5, there is only a weak influence when τs is small. We will see later
that even a small step change, has a significant influence on the linear response.

3.6.3 Interplay of τs and r without a step change

In the LIF model, the linear response for a mean coded signal with colored noise
has a flat (not attenuated at high signal frequency) transfer function. The present
model approaches to the LIF model when r → ∞ or ∆v̇ → ∞. So the cutoff
frequencies are expected to increase with both r and ∆v̇. Let us first check how
the response function changes with the increasing of r when ∆v̇ = 0. For a
fixed τs, the cutoff frequencies are shifted to higher values with the increasing
of r, as seen from Fig. 3.8. As in the white noise case, the absorbing boundary
introduces artifacts for the high frequency response. But as shown in Fig. 3.8,
the artificial part of the linear response is significant only for small r and is
suppressed by a large vb as we found in the white noise case (compare with
Fig. 2.10). When r is not small (r > 1), the transmission functions for the
physiological relevant signal frequencies are not influenced by the increase of vb.
When r → ∞, the model reduces to the LIF model and possesses a flat response
function, with the limit value calculated analytically in Brunel et al. (2001) for
small τs, limω→∞ ν1c(ω) =

Aν0
σ

√ τs
τm

, where A ≈ 1.3238.
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Figure 3.7: The dependence of stationary firing rate ν0 on the correlation time
τs with different step change ∆v̇. From A to D the step change are : A, ∆v̇ = 0,
B, ∆v̇ = 0.5, C, ∆v̇ = 1, D, ∆v̇ = 5. In each figures the curves from upper to
lower are for τs = 1, 5, 10, 20 ms respectively. r is fixed to be 10.

Fig. 3.9 shows the transmission functions with r fixed. With the increasing
of τs, the transmission function is shifted towards to high frequencies. The en-
hancement is significant only for a large AP onset rapidness. The high cutoff
frequencies can be readily understood by increasing r or including a step change
∆v̇ in the white noise case for a noise coded signal. A finite correlation time
can further enhance the high frequency response to a noise coded signal, but the
effect is not significant, as can be seen from Fig. 3.10. We will focus on the mean
current coded signal here

3.6.4 Interplay of τs and ∆v̇

We have proven that when ∆v̇ → ∞, the stationary and the linear responses of
the model reduce to that for the LIF model in the white noise case. So with the
including of correlation in synaptic noise, the cutoff frequencies are expected to
be further enhanced by ∆v̇ and resemble the LIF model which has a flat transfer
function for the colored noise.

Fig. 3.11 shows that when τs and r are fixed, the cutoff frequencies increase
with ∆v̇. When r is large, the attenuation of the transmission function in the
biophysically relevant frequency range has already become quite weak, so the step
changes do not have much impact there. Roughly speaking, a step change in the
spike generating current effectively increases the AP onset rapidness and provides
an efficient way to enhance the cutoff frequency in the dynamical response under
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Figure 3.10: Dependence of the normalized transmission function |ν1(ω)/ν1(0.1)|
on τs for a current coded signal (A, C) and a noise coded signal (B, D). A, B,
r = 10; C, D, r = 100.

the condition of correlated noise. For a given step change and AP onset rapidness,
Fig. 3.12 shows the responses in high frequency range are significant enhanced
and the cutoff frequency is shifted to hundreds Hz. Comparing Fig. 3.9 with Fig.
3.12, we can see clearly a similar effect in increasing the high frequency response
by a large onset rapidness and a step change in the spike generating current.

3.7 Discussion

In this chapter we have studied the influence of a step change in the AP generating
current and of the correlation in the synaptic current on the dynamical response.
If the correlation time of the synaptic current is ignored, the linear response
will approach the LIF model when the step change is large. Therefore the cutoff
frequency is still confined by the membrane time constant in the white noise case.
Note that for the linear response we mean only the biophysically meaningful part
with the artifactual parts from the absorbing boundary eliminated. When the
correlation time in synaptic noise is taken into account, however, both a large
AP onset rapidness and a step change in the spike generating current have the
effect of breaking the confinement by the membrane time constant. The response
shows a low pass behavior, but with the cutoff frequencies shifted towards the
high frequency regime. The step change provides an efficient way to obtain a large
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Figure 3.11: Variation of the response |ν1c(ω)| with increasing ∆v̇ for different τs
and r.
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onset rapidness. Even for a small sub-threshold step change the cutoff frequency
in the colored noise case can reproduce the hundreds HZ cutoff frequency in the
linear response, although it has almost no effect on the stationary firing rate and
the linear response for the white noise case.

For a colored noise, the artifactual behavior in the response function for high
signal frequency appears for small AP onset rapidness, but we found it is sup-
pressed with the increasing of boundary vb, with the response function for low
and intermediate frequencies not influenced. This suggests that theoretically an
isolation of boundary induced artifacts in the colored noise case is also possible.
The high frequency limit of the linear response in the LIF model was obtained
in (Brunel et al., 2001). In the LIF model, however, the transmission function
has no attenuation at high signal frequency resulting from the infinite response
speed at the threshold. The results there reflect mainly the contribution from the
absorbing boundary. The stationary firing rate of the LIF model for a colored
noise has been solved analytically for small or large correlation time τs, that is,
for τs

τm
≪ 1 or τs

τm
≫ 1 (Brunel et al., 2001). The method might be generalized to

the piecewise linear model we have constructed in this thesis, which provides an
interesting future direction.



Chapter 4

A general piecewise linear model

In this chapter, we will construct a general piecewise linear model which enables
a close relation with the biologically detailed models like the EIF model. This
general 3-piece model allows us to study the relation between the details of spike
generation and the dynamical response in depth. It includes models presented in
previous chapters as limit cases. Mimicking the EIF model with the 2-piece model
(Chapter 2) is only qualitative, in the sense that they both include the unstable
fixed point for spike initiation. In this new model, we can disassemble the spike
generating current into sub-threshold and supra-threshold parts and concentrate
on the role of each part played in the dynamical response separately. By check-
ing these aspects carefully, we will give a procedure for finding the parameters
of the 3-piece model which can reproduce the stationary and dynamical response
of the EIF model very well, and therefore also of conductance based models and
presumably even real cortical neurons. The 3-piece model can also be applied
to the study of a bistable system. Both the HH model and the two-variable FN
model have regimes of bistable dynamics, which was used to model experimental
data (Longtin, 1993). Chow & White (1996) proved that when the fluctuations
of sodium channels are included, the dynamics of the HH model can be approx-
imated by a bistable system and the firing rate is approximated by the barrier
penetration rate in a double well, which has be studied using the Kramers rate
approximation. In this application of the model, we will provide an analytical
result for the linear response of a bistable system.

4.1 Description of the model

The 3-piece model is defined by the following Langevin equation

τmv̇ = f(v) + µ+ ση(t) , (4.1)
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where

f(v) =











− v , −∞ < v ≤ v0 piece 1

r1(v − vt1) , v0 < v ≤ v1 piece 3

r(v − vt0) , v1 < v ≤ vb piece 2

(4.2)

Here v0 is the crossing point of the left piece (piece 1, the leak current region)
with the middle piece (piece 3), and v1 is the crossing point of the middle piece
with the right piece (piece 2). vt1 and vt0 are the zero-crossing points of the
middle piece and right piece respectively, given by vt1 = (1 + 1

r1
)v0 and vt0 =

1
r
((r − r1)v1 + (1 + r1)v0), where r1 and r are the slopes of the middle piece

and the right piece respectively. r1 can be positive or negative, with r1 = 0
as a well defined limit case, as illustrated in Fig. 4.1 A, B and C. When the
membrane potential reaches an absorbing boundary vb, it is reset to a voltage vr
and stays there for a refractory period τr. When r > 0 (Fig. 4.1A, B and C),
the model describes an excitable system for the AP generation process. When
r1 is positive and r is negative, the model describes a N-shape dynamics for a
bistable system, with the two stable fixed point at 0 and vt0, and an unstable
fixed point at vt1. We will present a general results for all these cases. A Gaussian
white noise η(t) will be used for the synaptic noise, which satisfies 〈η(t)〉 = 0 and
〈η(t)η(t′)〉 = τmδ(t− t

′
). For the bistable system, an absorbing boundary is put

near the stable fixed point vt0 and the dynamics describe the barrier penetration
in a double well.

The Fokker-Planck equation corresponding to Eq. (4.1) has the following form



































∂tP1(v, t) + ∂v

(

− v + µ− 1

2
σ2∂v

)

P1(v, t) = 0 , −∞ < v ≤ v0

∂tP3(v, t) + ∂v

(

r1(v − vt1) + µ− 1

2
σ2∂v

)

P3(v, t) = 0 , v0 < v ≤ v1

∂tP2(v, t) + ∂v

(

r(v − vt) + µ− 1

2
σ2∂v

)

P2(v, t) = 0 , v1 < v ≤ vb

(4.3)

where P1(v, t), P3(v, t) and P2(v, t) are the probability densities of membrane
potential v with −∞ < v ≤ v0, v0 < v ≤ v1 and v1 < v ≤ vb respectively.

Defining the probability currents by

J1(v, t) =

(

− v + µ− 1

2
σ2∂v

)

P1(v, t) ,

J3(v, t) =

(

r1(v − vt1) + µ− 1

2
σ2∂v

)

P3(v, t) ,

J2(v, t) =

(

r(v − vt0) + µ− 1

2
σ2∂v

)

P2(v, t) , (4.4)
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Figure 4.1: Illustration of the model. A, positive r1, B, r1 = 0, C, negative r1,
D, positive r1 and negative r, a bistable system.

the FPE then becomes the equation for probability conservation,

∂tP (v, t) + ∂vJ(v, t) = 0 . (4.5)

The boundary conditions are the same as described in the previous chapters. At
the absorbing boundary vb,

P2(vb, t) = 0 . (4.6)

At the resetting point vr

P1(v
+
r , t)− P1(v

−
r , t) = 0 , (4.7)

∂vP1(v
+
r , t)− ∂vP1(v

−
r , t) = ∂vP2(vb, t− τr) , (4.8)

from the continuity of the probability density and probability current at vr and
the resetting condition. At v0 and v1, there are

P1(v0, t) = P3(v0, t) ,

∂vP1(v0, t) = ∂vP3(v0, t) ,

P3(v1, t) = P2(v1, t) ,

∂vP3(v1, t) = ∂vP2(v1, t) . (4.9)

Finally the normalization condition of the probability density requires that

lim
v→−∞

P1(v, t) = 0 . (4.10)
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With these boundary conditions the solution of the FPE (4.3) is uniquely deter-
mined. The instantaneous firing rate in the population is given by the probability
current through the absorbing boundary

ν(t) ≡ J2(vb, t) = −1

2
σ2∂vP2(vb, t) . (4.11)

4.2 Stationary solutions

When the mean input current µ and the noise strength σ are constants, the system
is homogeneous and possesses a stationary solution with a constant probability
current, i.e., J1 = J3 = J2 = ν0, where ν0 is the stationary firing rate. We denote
the stationary probability densities as P01(v), P03(v) and P02(v) for the three
pieces respectively. From the continuity of probability current, there are

J1(v) = J3(v) = J2(v) = ν0 , (4.12)

which is equivalent to

(

− v + µ− 1

2
σ2∂v

)

P01(v) = 0 , −∞ < v ≤ vr
(

− v + µ− 1

2
σ2∂v

)

P01(v) = ν0 , vr < v ≤ v0
(

r1(v − vt1) + µ− 1

2
σ2∂v

)

P03(v) = ν0 , v0 < v ≤ v1
(

r(v − vt0) + µ− 1

2
σ2∂v

)

P02(v) = ν0 , v1 < v ≤ vb (4.13)

Utilizing the boundary conditions Eq. (4.6-4.10) , above equations are solved,

P01(v) =
2ν0
σ2

e−
1
σ2

(v2−2µv)

(
∫ v0

max(v,vr)

e
1
σ2

(y2−2µy)dy

+ eA
∫ v1

v0

e−
1
σ2

(r1y2−2(r1vt1−µ)y)dy + eA+B

∫ vb

v1

e−
1
σ2

(ry2−2(rvt−µ)y)dy

)

,

P03(v) =
2ν0
σ2

e
1
σ2

(r1v2−2(r1vt1−µ)v)

(
∫ v1

v

e−
1
σ2

(r1y2−2(r1vt0−µ)y)dy

+eB
∫ vb

v1

e−
1
σ2

(ry2−2(rvt−µ)y)dy

)

,

P02(v) =
2ν0
σ2

e
1
σ2

(rv2−2(rvt0−µ)v)

∫ vb

v

e−
1
σ2

(ry2−2(rvt0−µ)y)dy . (4.14)
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where

A =
1

σ2
(v20 − 2µv0 + r1v

2
0 − 2(r1vt1 − µ)v0)

= − 1

σ2
(1 + r1)v

2
0

B =
1

σ2
(rv21 − 2(rvt0 − µ)v1 − (r1v

2
1 − 2(r1vt1 − µ)v1))

= − 1

σ2
(r − r1)v

2
1 . (4.15)

This can be further simplified after the signs of r1 and r are assigned and the
stationary firing rate ν0 is obtained from the normalization condition,

∫ vb

−∞
P0(v)dv = 1 , (4.16)

which are presented in the Appendix.

4.3 Linear responses

4.3.1 Linear response to a current coded signal

Consider a weak sinusoidal signal encoded in the mean input, µ(t) = µ+ε cos(ωt),
where ε is small. At the linear order, the probability densities can be expanded
as

P1(v, t) = P01(v) + εP11(v, t) + · · · ,
P3(v, t) = P03(v) + εP13(v, t) + · · · ,
P2(v, t) = P02(v) + εP12(v, t) + · · · , (4.17)

where ’· · · ’ represents higher order terms in ε. The Fokker-Planck equation at
the linear order in ε is then given by

∂tP11(v, t) = ∂v(v − µ+D∂v)P11(v, t)− cos(ωt)P
′
01(v) , −∞ < v ≤ v0

∂tP13(v, t) = ∂v(−r1v + r1vt1 − µ+D∂v)P13(v, t)− cos(ωt)P
′
03(v) , v0 < v ≤ v1

∂tP12(v, t) = ∂v(−rv + rvt0 − µ+D∂v)P12(v, t)− cos(ωt)P
′
02(v) , v0 < v ≤ vb

(4.18)

where D = 1
2
σ2 is the diffusion constant.

Factoring P11(v, t), P13(v, t) and P12(v, t) as follows

P11(v, t) =
1

2

(

e−iωtq1(v) + eiωtq∗1(v)
)

e−(v−µ)2/4D ,

P13(v, t) =
1

2

(

e−iωtq3(v) + eiωtq∗3(v)
)

e(r1v
2−2(r1vt1−µ)v)/4D ,

P12(v, t) =
1

2

(

e−iωtq2(v) + eiωtq∗2(v)
)

e(rv
2−2(rvt0−µ)v)/4D , (4.19)
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where the asterisks represent complex conjugate, we obtain

Dq
′′
1 (v)−

(

(v − µ)2

4D
− iω − 1

2

)

q1(v) = e(v−µ)2/4DP
′
01(v)

Dq
′′
3 (v)−

(

(r1(v − vt1) + µ)2

4D
− iω +

r1
2

)

q3(v) = e−(r1v2−2(r1vt1−µ)v)/4DP
′
03(v)

D

r
q
′′
2 (v)−

(

(v − vt0 + µ/r)2

4D/r
− iω

r
+

1

2

)

q2(v) =
1

r
e−(rv2−2(rvt0−µ)v)/4DP

′
02(v)

(4.20)

where in the equation for q3(v), we did not divide r1 from both sides, since we
will also study the case r1 = 0. When r1 6= 0, q3(v) shares a similar equation to
q2(v). Substituting Eq. (4.17) and Eq. (4.19) into the boundary conditions Eq.
(4.6-4.10), q1, q3 and q2 satisfy the following boundary conditions,

lim
v→−∞

q1(v) = 0 , (4.21)

q2(vb) = 0 , (4.22)

q1(v0) = q3(v0)e
∆02 , (4.23)

q
′
1(v0) = q

′
3(v0)e

∆02 , (4.24)

q3(v1) = q2(v1)e
∆03 , (4.25)

q
′
3(v1) = q

′
3(v1)e

∆03 , (4.26)

q1(v
+
r )− q1(v

−
r ) = 0 , (4.27)

q
′
1(v

+
r )− q

′
1(v

−
r ) = q

′
3(vb)e

∆01+iωτr , (4.28)

where

∆01 = ((vr − µ)2 + (rv2b − 2(rvt0 − µ)vb))/4D ,

∆02 = ((v0 − µ)2 + (r1v
2
0 − 2(r1vt1 − µ)v0))/4D ,

∆03 = ((rv21 − 2(rvt0 − µ)v1)− (r1v
2
1 − 2(r1vt1 − µ)v1))/4D . (4.29)

Eq. (4.20) can be solved using the Green’s function method. The homoge-
neous parts of Eq. (4.20) have the form of Weber’ equation whose solutions are
the parabolic cylinder functions (Abramowitz & Stegun, 1970). The homogeneous
equation for q1(v) keeps unchanged for the different models we are discussing, as
illustrated in Fig. 4.1. Its solution is expressed with the parabolic cylinder func-
tions defined in Chapter 2. When r > 0, the parabolic cylinder functions used
for piece 2 are also given in Chapter 2. But different choice for r1 and r with
positive or negative sign did make the Weber’s equations different. For example,
when r1 < 0, the equation for q3 needs to be rewritten as

D

|r1|
q
′′
3 (v)−

(

(v − vt1 + µ/r1)
2

4D/|r1|
+
iω

r1
− 1

2

)

q3(v)

=
1

|r1|
e−(r1v2−2(r1vt1−µ)v)/4DP

′
03(v) (4.30)
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and the parabolic cylinder functions as the solution of the homogeneous equation
for q3(v) are different from the positive r1 case. Similar is for the r < 0 case.
With the parabolic cylinder functions as defined in the Appendix, the Green’s
function can be constructed and the solutions for the inhomogeneous equations
can be written down. Similar to that in Chapter 2, the Green’s functions are

g1(v, y) = − 1

D

{

ψ2(y)ψ1(v), v < y

ψ1(y)ψ2(v), y ≤ v < v0

g3(v, y) =
|r1|

ψ5(v1)D

{

ψ5(y)ψ6(v), v0 ≤ v < y

ψ5(v)ψ6(y), y ≤ v < v1

g2(v, y) =
|r|

ψ3(vb)D

{

Y1(y)ψ3(v), v1 ≤ v < y

ψ3(y)Y1(v), y ≤ v < vb
(4.31)

which satisfy the boundary conditions Eq. (4.21) and Eq. (4.22). The solutions
of Eq. (4.20) are given by

q1(v) = − 1

D

(

ψ2(v)

∫ v

−∞
ψ1(y)P

′
01e

(y−µ)2/4Ddy

+ψ1(v)

∫ v0

v

ψ2(y)P
′
01e

(y−µ)2/4Ddy

)

+k1

{

ψ2(vr)ψ1(v), v < vr

ψ1(vr)ψ2(v) + a
(

ψ2(vr)ψ1(v)− ψ1(vr)ψ2(v)
)

, vr ≤ v < v0

q3(v) =
1

D

(

ψ5(v)

∫ v

v0

ψ6(y)P
′
03(y)e

−(r1y2−2(r1vt1−µ)y)/4Ddy

+ψ6(v)

∫ v1

v

ψ5(y)P
′
03(y)e

−(r1y2−2(r1vt1−µ)y)/4Ddy

)

+bψ5(v) + cψ6(v) , v0 < v ≤ v1

q2(v) =
1

ψ3(vb)D

(

Y1(v)

∫ v

v1

ψ3(y)P
′
02(y)e

−(ry2−2(rvt−µ)y)/4Ddy

+ψ3(v)

∫ vb

v

Y1(y)P
′
02(y)e

−(ry2−2(rvt−µ)y)/4Ddy

)

+k2Y1(v) , v0 < v ≤ vb (4.32)

k1, k2, a, b and c are free parameters and will be fixed by the boundary conditions
(4.23-4.28). After some algebra, we then get

q
′
2(vb) = − 1

D
e−∆01−iωτr(A+B +G)

(

ψ1(vr)

−(Y1(v1)(ψ1Y
′
6 − ψ

′
1Y6)− Y

′
1 (v1)(ψ1Y

′
5 − ψ

′
1Y5))e

∆02+∆03−∆01−iωτr

)−1

(4.33)
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with

A =

∫ v0

−∞
ψ1(y)P

′
01(y)e

(y−µ)2/2σ2

dy (4.34)

B =
e∆02+∆03

ψ3(vb)

∫ vb

v1

(

(ψ1Y
′
5 − ψ

′
1Y5)ψ

′
3(v1)− ψ1Y

′
6 − ψ

′
1Y6)ψ3(v1))Y1(y)

−(ψ1Y
′
5 − ψ

′
1Y5)Y

′
1 (v1)− ψ1Y

′
6 − ψ

′
1Y6)Y1(v1))ψ3(y)

)

×P ′
02(y)e

−(ry2−(rvt0−µ)y)/4Ddy , (4.35)

G = e∆02

∫ v1

v0

(

(ψ1Y
′
6 − ψ

′
1Y6)Y5(y)− (ψ1Y

′
5 − ψ

′
1Y5)Y6(y)

)

×P ′
03(y)e

−(r1y2−(r1vt1−µ)y)/4Ddy . (4.36)

Following the convention in previous chapters, the arguments of the parabolic
cylinder functions and of the probability density are taken at v0 unless denoted
explicitly.

At the linear order in ε, the instantaneous firing rate is given by

ν(t) = −D∂vP (vb, t)
= ν0 −

ε

2
D
(

e−iωtq
′
2(vb) + eiωtq

′∗
2 (vb)

)

e(rv
2
b−2(rvt0−µ)vb)/4D

= ν0 + ε|ν1c(ω)| cos(ωt− φc(ω)) , (4.37)

where

ν1c(ω) = −Dq′
2(vb)e

(rv2b−2(rvt0−µ)vb)/4D (4.38)

is the complex response function.

The integrals in Eq. (4.33) can be performed as outlined in Chapter 2. Note,
however, that since the definitions of the parabolic cylinder functions as the so-
lutions of homogeneous parts in Eq. (4.20) are different for positive and negative
signs of r1 and r, the derived functions encountered in performing the integral,
defined through applying the recurrence relations for the parabolic cylinder func-
tions, are different for different signs in piece 2 and piece 3. For example, in
performing the integral in Eq. (4.36), we need to define the following functions,
φ5(v), ψ6(v), and Y51(v), Y52(v), which are different for positive and negative r1.
So we need to calculate for the three cases (corresponding to A, C and D in Fig.
4.1) separately.

A good thing is that the linear responses share the same finial expressions for
three cases. We find that the expression for ν1c(ω) can be decomposed into two
parts,

ν1c(ω) = νLow1c (ω) + νHigh
1c (ω) , (4.39)
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with

νLow1c (ω) = (ψ1(vr)e
∆0+iωτr + ((ψ1Y

′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

((

1

1− iω
− 1

1 + iω/r1

)

(ψ1P01 −
√
DΦ1P

′
01)

− ν0√
D

iω

1− iω
Φ1(vr)e

∆0

+

(

1

1 + iω/r
− 1

1 + iω/r1

)

(ψ1Y
′
5 − ψ

′
1Y5)P02(v1) e

∆6

+
√

D|r1|
(

1

r1

1

1 + iω/r1
− 1

r

1

1 + iω/r

)

(ψ1Y
′
51 − ψ

′
1Y51)P

′
02(v1) e

∆6

)

νHigh
1c (ω) = (ψ1(vr)e

∆0+iωτr + ((ψ1Y
′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

× 1

1 + iω/r

ν0
√

|r|D
((ψ1Y

′
5 − ψ

′
1Y5)Y

′
2 − (ψ1Y

′
6 − ψ

′
1Y6)Y2)e

∆7 .

(4.40)

where ∆0 = ((vr − µ)2 − (v0 − µ)2)/4D is the same as in Chapter 2 and

∆6 = (r1v
2
0 − 2(r1vt1 − µ)v0)− (r1v

2
1 − 2(r1vt1 − µ)v1)/4D ,

∆7 = ((r1v
2
0 − 2(r1vt1 − µ)v0)− (r1v

2
1 − 2(r1vt1 − µ)v1)

+(rv21 − 2(rvt0 − µ)v1)− (rv2b − 2(rvt0 − µ)vb))/4D . (4.41)

4.3.2 Linear response to a noise coded signal

For a noise coded signal, we have σ(t) = σ + εcos(ωt). Similar to the case of a
current coded signal, the probability densities can be divided into

P1(v, t) = P01(v) + εσP21(v, t) + · · · ,
P3(v, t) = P03(v) + εσP23(v, t) + · · · ,
P2(v, t) = P02(v) + εσP22(v, t) + · · · , (4.42)

and the FPE becomes

∂tP21(v, t) = ∂v(v − µ+D∂v)P21(v, t) + cos(ωt)P
′′
01(v) , −∞ < v ≤ v0

∂tP23(v, t) = ∂v(−r1v + r1vt1 − µ+D∂v)P23(v, t) + cos(ωt)P
′′
03(v) , v0 < v ≤ v1

∂tP22(v, t) = ∂v(−rv + rvt0 − µ+D∂v)P22(v, t) + cos(ωt)P
′′
02(v) , v0 < v ≤ vb

(4.43)
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Factoring the densities as

P21(v, t) =
1

2

(

e−iωtq1(v) + eiωtq∗1(v)
)

e−(v−µ)2/4D ,

P23(v, t) =
1

2

(

e−iωtq3(v) + eiωtq∗3(v)
)

e(r1v
2−2(r1vt1−µ)v)/4D ,

P22(v, t) =
1

2

(

e−iωtq2(v) + eiωtq∗2(v)
)

e(rv
2−2(rvt0−µ)v)/4D , (4.44)

we then get the following equations

Dq
′′
1 (v)−

(

(v − µ)2

4D
− iω − 1

2

)

q1(v) = −e(v−µ)2/4DP
′′
01(v)

Dq
′′
3 (v)−

(

(r1(v − vt1) + µ)2

4D
− iω +

r1
2

)

q3(v) = −e−(r1v2−2(r1vt1−µ)v)/4DP
′′
03(v)

D

r
q
′′
2 (v)−

(

(v − vt0 + µ/r)2

4D/r
− iω

r
+

1

2

)

q2(v) = −1

r
e−(rv2−2(rvt0−µ)v)/4DP

′′
02(v)

(4.45)

The left sides of Eq. (4.45) have the same forms as Eq. (4.20), therefore the
definitions of the parabolic cylinder functions and the Green’s functions are the
same as that for a current coded signal. The differences are from the source terms
on the right sides. The solutions of Eq. (4.45) are given by

q1(v) =
1

D

(

ψ2(v)

∫ v

−∞
ψ1(y)P

′′
01e

(y−µ)2/4Ddy

+ψ1(v)

∫ v0

v

ψ2(y)P
′′
01e

(y−µ)2/4Ddy

)

+k1

{

ψ2(vr)ψ1(v), v < vr

ψ1(vr)ψ2(v) + a
(

ψ2(vr)ψ1(v)− ψ1(vr)ψ2(v)
)

, vr ≤ v < v0

q3(v) =
−1

D

(

ψ5(v)

∫ v

v0

ψ6(y)P
′′
03(y)e

−(r1y2−2(r1vt1−µ)y)/4Ddy

+ψ6(v)

∫ v1

v

ψ5(y)P
′′
03(y)e

−(r1y2−2(r1vt1−µ)y)/4Ddy

)

+bψ5(v) + cψ6(v) , v0 < v ≤ v1

q2(v) =
−1

ψ3(vb)D

(

Y1(v)

∫ v

v1

ψ3(y)P
′′
02(y)e

−(ry2−2(rvt0−µ)y)/4Ddy

+ψ3(v)

∫ vb

v

Y1(y)P
′′
02(y)e

−(ry2−2(rvt0−µ)y)/4Ddy

)

+k2Y1(v) , v0 < v ≤ vb (4.46)

k1, k2, a, b and c are free parameters and will be fixed by the boundary conditions
(4.23-4.28).
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The instantaneous firing rate is

ν(t) = −(D + εσ cos(ωt))∂v(P02 + εσP22)|vb
= ν0 + εσ|ν1n(ω)| cos(ωt− φn(ω)) , (4.47)

where ν1n(ω) is the complex response function given by

ν1n(ω) =
ν0
D

−Dq
′
2(vb)e

(rv2b−2(rvt0−µ)vb)/4D

=
(

ψ1(vr)− (Y1(v1)(ψ1Y
′
6 − ψ

′
1Y6)

−Y ′
1 (v1)(ψ1Y

′
5 − ψ

′
1Y5))e

∆02+∆03−∆01−iωτr
)−1

×
(

e−(vr−µ)2/4D(−A +B − F )− ν0
D
(Y1(v1)(ψ1Y

′
6 − ψ

′
1Y6)

−Y ′
1 (v1)(ψ1Y

′
5 − ψ

′
1Y5))e

∆02+∆03−∆01−iωτr
)

, (4.48)

with

A =

∫ v0

−∞
ψ1(y)P

′′
01(y)e

(y−µ)2/2σ2

dy , (4.49)

B =
e∆02+∆03

ψ3(vb)

∫ vb

v1

(

(ψ1Y
′
5 − ψ

′
1Y5)ψ

′
3(v1)− ψ1Y

′
6 − ψ

′
1Y6)ψ3(v1))Y1(y)

−(ψ1Y
′
5 − ψ

′
1Y5)Y

′
1 (v1)− ψ1Y

′
6 − ψ

′
1Y6)Y1(v1))ψ3(y)

)

×P ′′
02(y)e

−(ry2−(rvt0−µ)y)/4Ddy , (4.50)

F = e∆02

∫ v1

v0

(

(ψ1Y
′
6 − ψ

′
1Y6)Y5(y)− (ψ1Y

′
5 − ψ

′
1Y5)Y6(y)

)

×P ′′
03(y)e

−(r1y2−(r1vt1−µ)y)/4Ddy , (4.51)

and φn(ω) = arg(ν1n(ω)) is the phase lag.

After performing the integration in Eq. (4.48), we find ν1n(ω) is decomposed
into two parts,

ν1n(ω) = νLow1n (ω) + νHigh
1n (ω) , (4.52)
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with

νLow1n (ω) = (ψ1(vr)e
∆0+iωτr + ((ψ1Y

′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

×
((

1

2− iω
− 1

2 + iω/r1

)

(− iω√
D
φ1P01 + 2(iω − 1)Υ1P

′
01)

+
ν0
D

iω(iω − 1)

2− iω
Υ1(vr)e

∆0

+

(

1

2 + iω/r
− 1

2 + iω/r1

)

√

|r1|√
D

(ψ1Y
′
51 − ψ

′
1Y51)P02(v1) e

∆6

+(
1

2 + iω/r1
− r1

r

1

2 + iω/r
)(ψ1Y

′
52 − ψ

′
1Y52)P

′
02(v1) e

∆6

)

νHigh
1n (ω) = (ψ1(vr)e

∆0+iωτr + ((ψ1Y
′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

× 1

2 + iω/r

ν0
D
((ψ1Y

′
5 − ψ

′
1Y5)Y

′
3 − (ψ1Y

′
6 − ψ

′
1Y6)Y3)e

∆7 . (4.53)

Again, this form for linear response to a noise coded signal is the same for
r1 < 0, r1 > 0 and r < 0, although the derivation should be done separately for
the three cases. The r1 = 0 case can be obtained as a limit case from the above
formula.

4.3.3 r1 = 0 case

The result for the r1 = 0 could be obtained similar to that in Section 2.7. By
doing the replacement

ψ5(v) = eav, ψ6(v) =
1

2a
e−av ,

Y5(v) =
1

2a
(ea(v1−v) − ea(v−v1)) ,

Y6(v) =
1

2
(ea(v1−v) + ea(v−v1)) , (4.54)

where a =
√

(µ−v0)2

4D2 − iω
D

, and other replacement as given in the Appendix, we

can get the linear response for r1 = 0 from Eq. (4.40) and (4.53),

νLow1c (ω) = (ψ1(vr)e
∆0+iωτr + ((ψ1Y

′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

(

1

1− iω
(ψ1P01 −

√
DΦ1P

′
01)−

ν0√
D

iω

1− iω
Φ1(vr)e

∆0+iωτr

+
1

1 + iω/r

(

(ψ1Y
′
5 − ψ

′
1Y5)P02(v1) + (

1

a
K1ψ

′
1 +K2ψ1)P

′
02(v1)

)

e∆6

)

νHigh
1c (ω) = (ψ1(vr)e

∆0+iωτr + ((ψ1Y
′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

× 1

1 + iω/r

ν0√
rD

((ψ1Y
′
5 − ψ

′
1Y5)Y

′
2 − (ψ1Y

′
6 − ψ

′
1Y6)Y2)e

∆7 , (4.55)
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and

νLow1n (ω) = (ψ1(vr)e
∆0+iωτr + ((ψ1Y

′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

×
(

1

2− iω
(− iω√

D
φ1P01 + 2(iω − 1)Υ1P

′
01)

+
ν0
D

iω(iω − 1)

2− iω
Υ1(vr)e

∆0+iωτr

+
1

D

iω

2 + iω/r
(
1

a
K1ψ1

′ +K2ψ1)P02(v1) e
∆6

+
2

2 + iω/r
(
1

a
K3ψ

′
1 +K4ψ1)P

′
02(v1) e

∆6

)

νHigh
1n (ω) = (ψ1(vr)e

∆0+iωτr + ((ψ1Y
′
5 − ψ

′
1Y5)Y

′
1 − (ψ1Y

′
6 − ψ

′
1Y6)Y1)e

∆7)−1

× 1

2 + iω/r

ν0
D
((ψ1Y

′
5 − ψ

′
1Y5)Y

′
3 − (ψ1Y

′
6 − ψ

′
1Y6)Y3)e

∆7 , (4.56)

where K1 etc. are defined as

K1 =
1

2

( 1

a + µ
2D

ea(v1−v0) +
1

a− µ
2D

ea(v0−v1)
)

, (4.57)

K2 =
1

2

( 1

a + µ
2D

ea(v1−v0) − 1

a− µ
2D

ea(v0−v1)
)

, (4.58)

K3 =
1

2

(a− µ
2D

a + µ
2D

ea(v1−v0) − a + µ
2D

a− µ
2D

ea(v0−v1)
)

, (4.59)

K4 =
1

2

(a− µ
2D

a + µ
2D

ea(v1−v0) +
a+ µ

2D

a− µ
2D

ea(v0−v1)
)

. (4.60)

Note that in the limit r1 → 0, ∆6 is simplified to ∆6 =
1
2D

(v0 − µ)(v1 − v0).

4.4 Limit behaviors

4.4.1 Large ω limit

When r > 0, the large ω limit can be obtained silimar to that in the last two
chapters. Applying the large ω expansion as given in the appendix of Chapter
2, the 3-piece models have the same large ω limit as the LIF model, ν1c(ω) →
ν0√
D

1√
ω
eiπ/4 and ν1n(ω) → ν0

D
.

4.4.2 v1 → v0 limit: relation to the previous models

When v1 → v0 and r(v1 − vt0) → −v0, that is, continuous at v0, the dynamics
becomes the same as that for the r − τm model in Chapter 1. It can be easily
checked that the linear response for 3-piece model reduces to that for the r− τm
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model. Similar limits also include r1 → r, r1 → −1 and r → ±∞ with r1 > 0. In
all these limits, the results obtained for 3-piece model reduce to the r−τm model.
These limits can serve as a cross-checking for the calculation in this chapter.

When v1 → v0, but v̇ has a step change ∆v̇, the linear responses will reduce to
the results obtained in Chapter 3. First, there is a step change for the derivative
of the probability density at v0 from Eq. (4.12),

P
′
02(v0)− P

′
01(v0) =

∆v̇

D
P01(v0). (4.61)

For the parabolic cylinder functions, there are the following limit behaviors which
can be deduced from the recurrence relation for them,

Y5(v0) → 0 , Y
′
5 (v0) → −1 ,

Y6(v0) → −∆v̇

2D
, Y

′
6 (v0) → 0 , (4.62)

and

√

|r1|Y51(v0) →
√
D ,

√

|r1|Y
′
51(v0) → −v0 − µ

2
√
D

,

r1Y52(v0) → v0 − µ ,

r1Y
′
52(v0) → iω − (v0 − µ)2

2D
,

√

|r1|(ψ1(v0)Y
′
51(v0)− ψ

′
1Y51(v0)) → iωφ1(v0) . (4.63)

Note also that ∆6 → 0 and ∆7 → ∆1 where ∆1 was defined in Eq. (3.31) in
Chapter 3.

Substituting these into Eq. (4.40) and Eq. (4.53), we get

νLow1c (ω) →
(

ψ1(vr)e
∆0 + (Y1ψ

′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1
)−1

×
(

i(ω + ω
′
)

(1− iω)(1 + iω′)
(ψ1P01 −

√
DΦ1P

′
01)−

iω

1− iω

ν0√
D
Φ1(vr)e

∆0

− iω
′

1 + iω′
∆v̇√
D
Φ1P01

)

νHigh
1c (ω) →

(

ψ1(vr)e
∆0 + (Y1ψ

′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1
)−1

× 1

1 + iω′
ν0√
rD

e∆1

(

ψ
′
1Y2 − ψ1Y

′
2 +

∆v̇

2D
ψ1Y2

)

, (4.64)
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and

νLow1n (ω) → (ψ1(vr)e
∆0 + (Y1ψ

′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1)−1

×
(

i(ω + ω
′
)

(2− iω)(2 + iω′)
(− iω√

D
Φ1P01 + 2(iω − 1)ΥP

′
01)

+
iω(iω − 1)

2− iω

ν0
D
Υ(vr)e

∆0 +
∆v̇

D

iω
′

2 + iω′ (iω − 1)Υ1P01

)

νHigh
1n (ω) → (ψ1(vr)e

∆0 + (Y1ψ
′
1 − Y

′
1ψ1 +

∆v̇

2D
ψ1Y1)e

∆1)−1

× 1

2 + iω′
ν0
D
e∆1

(

Y3ψ
′
1 − Y

′
3ψ1 +

∆v̇

2D
ψ1Y3

)

, (4.65)

which are exactly the results we obtained in Chapter 3.

4.4.3 Large vb limit

When r < 0, there is no large vb limit, since the argument r(vb−vt0)+µ√
|r|D

is usually

not large. When r > 0, the vb dependence can be put explicitly if vb is large. Eq.
(2.59) in Chapter 2 can be applied here immediately,

(Y1ψ
′
1 − Y

′
1ψ1) e

∆1 = −
√

D/r(φ12ψ
′
1 − φ

′
12ψ1)e

∆vb

(Y2ψ
′
1 − Y

′
2ψ1) e

∆7 = −
√

D/r iω/r(φ12ψ
′
1 − φ

′
12ψ1)e

∆vb
1

x

(Y3ψ
′
1 − Y

′
3ψ1) e

∆7 =
√

D/r iω(1 + iω/r)(φ12ψ
′
1 − φ

′
12ψ1)e

∆vb
1

x2
, (4.66)

where x = r(vb−vt0)+µ√
rD

, φ12(v) = U
(

− iω/r + 1
2
, r(v−vt0)+µ√

rD

)

and

∆vb = ((r1v
2
0 − 2(r1vt1 − µ)v0)− (r1v

2
1 − 2(r1vt1 − µ)v1)

+
1

r
(r(v1 − vt0 + µ)2)/4D − iω/r ln x . (4.67)

Note that φ12(v) satisfies the same parabolic cylinder equation as ψ3(v) and ψ4(v).

For νLow1 (ω), only the denominator depends on vb. In the large vb limit, the
dependence exists through a complex phase. νHigh

1 (ω), on the contrary, show a
much stronger dependence on vb. Substituting Eq. (4.66) into the νHigh

1 parts of
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the linear responses, we get

νHigh
1c (ω) ≃ ν0√

rD

iω/r

1 + iω/r
×

−
√

D/r ((ψ1Y
′
5 − ψ

′
1Y5)Y

′
31 − (ψ1Y

′
6 − ψ

′
1Y6)Y31)e

∆vb

ψ1(vr)e∆0+iωτr −
√

D/r((ψ1Y
′
5 − ψ

′
1Y5)φ

′
12 − (ψ1Y

′
6 − ψ

′
1Y6)φ12)e∆vb

νHigh
1n (ω) ≃ ν0

D

iω(1 + iω/r)

2 + iω/r
×

√

D/r ((ψ1Y
′
5 − ψ

′
1Y5)φ

′
12 − (ψ1Y

′
6 − ψ

′
1Y6)φ12)e

∆vb

ψ1(vr)e∆0+iωτr −
√

D/r((ψ1Y
′
5 − ψ

′
1Y5)φ

′
12 − (ψ1Y

′
6 − ψ

′
1Y6)φ12)e∆vb

(4.68)

When ω is not small (ω ≥ 1), the contribution from ψ1(vr) term is negligible
compared to the other terms in the denominators of the above equations. The
expressions for νHigh

1 (ω) are further simplified,

νHigh
1c (ω) ≃ ν0

r(vb − vt0) + µ

iω

r + iω
,

νHigh
1n (ω) ≃ − ν0

(r(vb − vt0) + µ)2
iω(1 + iω/r)

2 + iω/r
, (4.69)

Following the same arguments in the previous Chapters, the νHigh
1 (ω) parts

represent the artifacts from the absorbing boundary. While the νLow1 (ω) parts
represent the biophysical relevant linear response. In the following we will con-
sider only the νLow1 (ω) parts in studying the properties of the linear response.

4.5 Influence of details of AP generation on the

dynamical response

We are studying one-variable neuron models with the dynamics described by a
piecewise linear function f(v), Eq. (4.2). This means that the dynamics possesses
discontinuity in the derivative of the f(v) or even in f(v) itself. For the latter
case, we have investigates its influence on the dynamical response in last chapter.
Here we will investigate the influence of the discontinuity in the derivative of f(v),
i.e., the influence of sharp edge, on the dynamical response. Some parameters
of the models and of the stimulus will be used throughout this section: vr = 0,
vb = 10, τr = 0, and µ = 0, σ = 0.6.

4.5.1 Influence of sub-threshold dynamics

Since in our models a leak current and a linear spike generating current are always
included, there is at leat one sharp edge existed in the subthreshold region. But
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0 v
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Figure 4.2: Schematic illustration of exaggerating the edge (A) and cutting the
edge (B) within the subthreshold region.

most one-variable models, like the EIF and QIF models, have smooth subthresh-
old dynamics. To see how the sharp edge in the subthreshold dynamics influences
the linear response, we start from the r− τm model and add the third piece to it
by ’exaggerating the edge’ or ’cutting the edge’ within the subthreshold region,
as illustrated in Fig. 4.2A and B. The right piece of the r−τm model is described
by v̇ = 1+ 1

r
with r = 10 and 100. For exaggerating the edge, we fix v0 = 0.8, and

let the slope of the third piece change through r1 = −2, −1, 0.5. For cutting the
edge, we check three different choices of the rheobase current, v0 = 0.8, 0.6, 0.4,
and take r1 = 0. These manipulations change the subthreshold dynamics and the
rheobase currents. So we can expect the stationary firing rate will be changed, as
shown in Fig. 4.3. Fig. 4.4 and 4.5 show the normalized linear response to both a
current coded signal and a noise coded signal. We see the linear responses do not
change much after these manipulations, although the subthreshold dynamics are
obviously changed. However, the absolute value of the response amplitude does
change due to the different rheobase current. This suggest that the dynamical
responses are shaped mainly by the dynamics near the spike initiation threshold.
Note that we are considering the noise driven regime. If there is a large mean
input, then some manipulation stated above may result change for dynamics near
the threshold and will be included in the situation in next section.

4.5.2 Influence of spike initiation dynamics

We consider three ways to modify the spike initiation dynamics in the 3-piece
models, as illustrated in Fig. 4.6. In Fig. 4.6A and B, the slopes of piece 1 and
piece 2 are fixed, given by the lines v̇ = −v and v̇ = 1 + 1

r
respectively, while

the slope of piece 3 is varied, within which the AP initiation threshold is passing.
This can be done by either fixing the rheobase current v0 and changing the slope
of the third piece r1 (Fig. 4.6A), or by fixing the AP initiation threshold vt1 and
changing the slope r1 (Fig. 4.6B). In Fig. 4.6C, piece 1 and piece 3 are fixed
and the slope r of piece 2 is varied with the threshold crossing occurred within
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Figure 4.3: The stationary firing rate ν0 for the 3-piece model corresponding to
the cases of exaggerating the edge (A) and cutting the edge (B).
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Figure 4.4: The normalized transmission functions |ν1(ω)/ν1(0.1)| for the 3-piece
model from exacting the edge, corresponding to Fig. 4.2A. Parameters: v0 = 0.8,
r1 = −2,−1, 0.5.
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Figure 4.5: The normalized transmission functions |ν1(ω)/ν1(0.1)| for the 3-piece
model from cutting the edge, corresponding to Fig. 4.2B. Parameters: v0 =
0.8, 0.6, 0.4, r1 = 0.

piece 3 or within piece 2. The linear responses are shown in Fig. 4.7, 4.8 and 4.9
for these cases. There is a transition between two different decaying behaviors,
controlled by the two pieces in the spike generating current. We see that in the
supra-threshold region, a sharp edge could cause local minimum developed in the
transmission function for some specific signal frequency. This results from the
interference of the two time constants in the spike initiation process.
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0

Figure 4.6: Schematic illustration of manipulations for the spike initiation dy-
namics. A, v0 is fixed and r1 is varied. B, AP initiation threshold vt1, i.e., the
zero crossing point of the piece 2, is fixed and the slope r1 is varied. C, The
middle piece is fixed and the slope r of piece 2 is varied.



84 A general piecewise linear model

10
0

10
2

10
−2

10
0A

r=10

f(Hz)

A
m

pl
itu

de
 ν

1c

 

 

10
0

10
2

10
−2

10
0B

r=10

f(Hz)

A
m

pl
itu

de
 ν

1n

 

 

10
0

10
2

10
−2

10
0C

r=100

f(Hz)

A
m

pl
itu

de
 ν

1c

 

 

10
0

10
2

10
−2

10
0D

r=100

f(Hz)

A
m

pl
itu

de
 ν

1n

 

 

r
1
=0.5

r
1
=2

r
1
=5

r
1
=0.5

r
1
=2

r
1
=5

r
1
=0.5

r
1
=2

r
1
=5

r
1
=0.5

r
1
=2

r
1
=5

Figure 4.7: The normalized transmission functions |ν1(ω)/ν1(0.1)| for the 3-piece
model corresponding to Fig. 4.6A. Parameters used are: v0 = 0.6, r1 = 0.5, 2, 5,
r = 10, 100.
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Figure 4.8: The normalized transmission functions ν1(ω)/ν1(0.1) for the 3-piece
model corresponding to Fig. 4.6B. Parameters used are: vt1 = 0.8, r1 = 0.5, 2, 5.
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Figure 4.9: The normalized transmission functions ν1(ω)/ν1(0.1) for the 3-piece
model corresponding to Fig. 4.6C. Parameters used are: v0 = 0.6, v1 = 1. For
A and B, r1 = 10, r = 5, 20, 100. Threshold crossing occurred within the middle
piece (piece 3). For C and D, r1 = 0.5, r = 5, 10, 100. Threshold crossing occurred
within the right piece (piece 2).
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4.6 Fitting the EIF model with a 3-piece model

One question remained to be addressed is how the piecewise linear model is related
to more biophysical realistic models. Here we will compare it with the EIF model,
which can reproduce the conductance based models and the experimental data
very well (Fourcaud-Trocme et al., 2003; Badel et al., 2008).

The EIF model is defined by the Langevin equation

τmV̇ = f(V ) + µ+ ση(t) , (4.70)

with

f(V ) = VL − V +∆T exp(
V − VT
∆T

) , (4.71)

where V is the membrane potential, VL is the resting potential, VT is the voltage
threshold where f

′
(VT ) = 0. The membrane potential of the model neuron can

reach infinity in a finite time, then it is reset to a resetting potential VR after a
refractory period τr.

Both the EIF and piecewise linear models include the AP initiation process
explicitly characterized by passing an unstable fixed point of the membrane po-
tential. There are three important characteristic quantities in the one-variable
spiking neuron models: the rheobase current, the spike initiation threshold, which
is the unstable fixed point, and the onset rapidness. We construct a 3-piece model
as illustrated in Fig. 4.10. The left piece describes the leak current, the same
as in the EIF model. The middle piece is taken to be tangent to the EIF model
at VT , which ensures the two models have the same rheobase current. The right
piece passes the spike initiation threshold of the EIF model, which make the two
models have the same unstable fixed points. The slope r of the right piece is
determined together with the absorbing boundary vb by fitting to the f −I curve
of the EIF model. The right piece crosses with the middle piece at v1. The three
piece model is then described by

τmv̇ = f(v) + µ+ ση(t) , (4.72)

where

f(v) =











− v , −∞ < v ≤ v0 piece 1

− v0 , v0 < v ≤ v1 piece 3

r(v − vt0) , v1 < v ≤ vb piece 2

(4.73)

Here v is the membrane potential relative to the resting potential. The f − I
curve of this model is given by

ν−1
0 = log

µ− vr
µ− v0

+
v1 − v0
µ− v0

+
1

r
log

r(vb − vt0) + µ

µ− v0
, (4.74)
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0 v
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Figure 4.10: Illustration of fitting a 3-piece model to the EIF model. The left
piece is from the leak current. The middle piece is tangent to the EIF model, so
v0 is fixed. The right piece passes the unstable fixed point vt0 with a slope chosen
to fit the f − I curve. Extending the left and right piece of the 3-piece model to
cross at a point give a 2-piece model.

which describes a type I neuron, that is, the firing rate rising up from zero at
the rheobase current. The first logistic term in the right side of above equation
is characteristic for the LIF model, which is much faster and qualitative different
from the square root behavior in the EIF model. But with the second term from
the middle piece of the model which gives a linear rising f-I curve, the total rate
of the initial rising is weakened and the f-I curves of the two models can match
with each other. Note that the later growing of the f − I curve is controlled
mainly by the slope r of the right piece.

In Badel et al. (2008) the dynamic I − V curve of L5 pyramidal neurons are
measured, which can be fitted by an EIF model very well. The parameters for
the EIF model obtained there is: VL = −57 mV, VT = −42 mV, ∆T = 1.51 mV,
τm = 17.2 ms. Following the procedure outlined above we get v0 = 13.48,
vt0 = 18.81 in the corresponding 3-piece model. By fitting the f − I curves
for the two models, we find r = 100 and vb = 50, as seen from Fig. 4.11A . With
all the parameters fixed, we further check the f − I curve with white noise. It
turns out that the two models agree with each other quite well. Fig. 4.11B shows
a comparison for σ = 10mV.

From the 3-piece model, there is a corresponding 2-piece model (the r − τm
model) obtained by extending the left and right piece in the 3-piece model with
a crossing point at v00. This 2-piece model has a larger rheobase current and
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Figure 4.11: The f − I curves for the EIF model and the 3-piece model. A,
f − I curves for a constant current; B, for a noisy current (Gaussian white noise,
σ = 10mV). The f − I curve for the corresponding 2-piece model is also shown.
The parameters for the EIF model are from experiments (Badel et al., 2008).

the f − I curve does not agree with the EIF model well, especially for a noisy
current (Fig. 4.11B). However, this 2-piece model is related to the 3-piece model
by the cutting the edge procedure in the subthreshold region as we discussed in
last section. We can therefore expect that they share the same linear response
behavior. This reminds us that we can get other similar models by fixing v0 and
choosing a small slope r1 for the middle piece. Then the f − I curve of the EIF
model can be fitted even better. But this change does not influence the value of
r and the linear response behavior.

Following the same procedure, we fit the EIF model with the parameters
given in Fourcaud-Trocme et al. (2003), which are obtained from fitting the f −
I curve of the Wang-Buzsáki model (Wang & Buzsáki, 1996) designed for the
hippocampal interneurons. We reach the value r ≃ 10 for this EIF model. The
difference between the onset rapidness reflects the different properties between
cortical pyramidal neurons and hippocampal interneurons. Note that for the EIF
model in Fourcaud-Trocme et al. (2003), different vb are required to fit the f − I
curve for constant and noisy currents with a range of input current as in Fig.
4.11.

In Fig. 4.12 we compare the linear response of the EIF model and the 3-piece
model with parameters determined above, which show a good agreement for low
and intermediate signal frequencies. Note that the amplitude is not normalized.
If we want to study the behavior of the linear response, like the cutoff frequency,
then the 2-piece model also gives a good resemblance. This supports the usage
of the 2-piece model in the previous chapters.
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Figure 4.12: Comparison of the linear response for the EIF model (from Badel
et al. (2008)) and the fitted 3-piece model. Parameter: µ = 8.5 mV, σ = 10 mV,
ν0 = 10 Hz.

4.7 Signal encoding through barrier penetration

in a bistable system

For r1 > 0 and r < 0, the 3-piece model describes a bistable system, as illustrated
in Fig. 4.1D. This corresponds to barrier penetration in a double well. The
Kramers rate is the same as that for the two piece model in Chapter 2, since the
curvature of the barrier is the same for the r−τm model and for the 3-piece model.
The theoretical result for the stationary firing rate is given in the Appendix. To
see the influence of r1 and r, we choose their values as in Fig. 4.13 and plot
the stationary firing rate ν0 for different r1 and r. In Fig. 4.13A, we fixed the
unstable fixed point and the slope r, while the slope r1 takes values 1, 10, 100.
We see that the stationary firing rate decrease with the increasing of r1 from Fig.
4.14A and becomes insensitive to r1 when r1 is large. This results from the fact
that the height of the barrier increases with r1 when r1 is small and insensitive
to r1 when r1 is large. In Fig. 4.13B, r1 is fixed and r change from 1, 10 and 100.
We see that the stationary firing rate ν0 is insensitive to r.

The linear responses are decomposed into two pieces as for other cases of the
piece-wise linear models. The νHigh

1 parts give the same high frequency behavior
as in the LIF model, therefore reflect the contribution from the absorbing bound-
ary. Specifically, the νHigh

1n part gives an instantaneous component in the linear
response. In Fig. 4.15 we show the dependence of the linear response on r1 and
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A B

v

v̇

0 v

v̇

0

Figure 4.13: Schematic illustration of the 3-piece model describing a bistable
system with different r1 and r. A, r is fixed and r1 is variable; B, r1 is fixed and
r is variable.
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Figure 4.14: The stationary firing rate of the 3-piece model corresponding to Fig.
4.13 with vt1 = 1 and vt0 = 2. A, r = −1 and r1 = 1, 10 and 100; B, r1 = 10 and
r = −1,−10 and − 100.
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Figure 4.15: The linear response of the 3-piece model for a current coded signal
(A and C) and for a noise coded signal (B and D) corresponding to Fig. 4.13
with vt1 = 1 and vt0 = 2. A, B, r = −1 and r1 = 1, 10 and 100; C, D, r1 = 10
and r = −1,−10 and − 100.

r corresponding to Fig. 4.13 with the right stable fixed point vt0 not far from the
unstable fixed point. We see that the linear response does not change much with
the increasing of r1 when r is fixed as shown in Fig. 4.15A and B. The slope r
has a strong impact on the linear response and the cutoff frequencies are shifted
significantly toward high signal frequency for a large |r| as shown in Fig. 4.15C
and D. There is also some interference occurred (Fig. 4.15 C), which produce
some local minimum.

4.8 Discussion: membrane dynamics and dynam-

ical response

Although the spike slope factor ∆T in the EIF model provides a measure for
the speed of spike initiation, it is not very transparent to tell how fast the spike
initiation dynamics is compared with the passive membrane dynamics. In other
word, the spike slope factor ∆T controls the AP onset process but does not
measure directly the onset rapidness. For instance, we do not know how much
faster the spike initiation process in the cortical neurons than the hippocampal
interneurons although both are well described by an EIF model with a slope factor
1.51 mV and 3.48 mV respectively. By fitting a 3-piece model to the EIF model,



92 A general piecewise linear model

we approximate the exponential spike generating current with a linear current
whose slope directly measures the ratio between the effective time constant for
spike initiation and the membrane time constant. The piecewise linear model
provides a good description for the f − I curve with constant current, with
noisy current and the linear response for low and intermediate signal frequencies.
The resulting onset rapidness for the EIF model describing cortical pyramidal
neurons and hippocampal interneurons are 100 and 10 respectively. We can see
clearly that the AP initiation process is much faster for cortical neurons than for
hippocampal interneurons. This large onset rapidness underlies the high cutoff
frequency observed in cortical neurons. As we showed extensively in the last
chapter, a large onset rapidness like 100 can easily push the cutoff frequencies
to hundreds Hz when even a small correlation time is taken into account for a
current coded signal. For a noise coded signal even white noise is enough to
produce a hundreds Hz cutoff frequency for r = 100, as showed in Chapter 2.
Note that the cutoff frequency is influenced also by the membrane time constant,
therefore the difference between the cutoff frequencies for cortical neurons and
interneurons might not be so large due to the smaller membrane time constant
for interneurons.

The normalized behavior of the dynamical response, like the cutoff frequency,
is found to be insensitive to the modification of subthreshold dynamics. The
fitting results thus also support using the simpler 2-piece model as presented in
Chapter 2 and Chapter 3. Following these steps from the EIF to 3-piece to 2-piece
model, we reach a much simplified description for the spike initiation dynamics
and at the same time keep qualitatively the essential dynamical response proper-
ties in the noise driven regime. In this sense, the piecewise linear model provides
an analytically solvable and realistic model for the study of dynamical response
of real neurons.
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4.9 Appendix

Stationary solution simplified

The stationary solution Eq. (4.14) can be further simplified. For r1 > 0 and
r > 0,

P01(v) =
ν0
σ
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1
σ2

(v−µ)2
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2
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(max(v,vr)−µ)/σ

ey
2

dy

+

√

π

r1
eA

(

Erfc

(−v0 + µ√
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(4.75)

where v̇1 = r(v1 − vt0) and v̇b = r(vb − vt0)

A =
1

σ2
(1 +

1

r1
)(v0 − µ)2

B =
1

σ2
(
1

r
− 1

r1
)(r(v1 − vt0) + µ)2 (4.76)

The stationary firing rate ν0 can then be obtained by using the normalization
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condition of the probability density,
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For r1 < 0 and r > 0,
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For r1 = 0 and r > 0,
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Definition of parabolic cylinder functions

r1 > 0 and r > 0
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Y52(v) = ψ6(v)Υ5(v1)− iω/r1(1 + iω/r1)ψ5(v)Υ6(v1) (4.84)
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Y52(v) = ψ5(v)Υ6(v1)− iω/r1(1 + iω/r1)ψ6(v)Υ5(v1) (4.86)
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r1 > 0 and r < 0

When r > 0, the parabolic cylinder functions and their combinations need were
defined in Chapter 2. When r < 0, some modifications are required,
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) = Diω/|r|−1(−

v − vt0 + µ/r
√

D/|r|
)

Υ3(v) = U(−iω/|r|+ 3

2
,−v − vt0 + µ/r

√

D/|r|
) = Diω/|r|−2(−

v − vt0 + µ/r
√

D/|r|
)

ψ4(v) =

√

πD

2|r|V (−iω/|r| − 1

2
,−v − vt0 + µ/r

√

D/|r|
)

Φ4(v) =

√

πD

2|r|V (−iω/|r|+ 1

2
,−v − vt0 + µ/r

√

D/|r|
)

Υ4(v) =

√

πD

2|r|V (−iω/r + 3

2
,−v − vt0 + µ/r

√

D/|r|
)

Y1(v) = ψ3(v)ψ4(vb)− ψ4(v)ψ3(vb)

Y2(v) = ψ3(v)Φ4(vb) + iω/r ψ4(v)Φ3(vb)

Y3(v) = ψ3(v)Υ4(vb)− iω/r(1 + iω/r)ψ4(v)Υ3(vb) (4.88)
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and some useful formulas from the recurrence relations,

ψ3(v)Φ4(v) + iω/rψ4(v)Φ3(v) =
√

D/|r|

ψ
′
3(v)Φ4(v) + iω/rψ

′
4(v)Φ3(v) = −v − vt0 + µ/r

2
√

D/|r|
ψ3(v)Υ4(v)− iω/r(1 + iω/r)ψ4(v)Υ3(v) = −(v − vt0 + µ/r)

ψ
′
3(v)Υ4(v)− iω/r(1 + iω/r)ψ

′
4(v)Υ3(v) = iω/r +

(v − vt0 + µ/r)2

2D/|r|

r1 = 0 and r > 0

In this case, the parabolic cylinder functions for piece 3 should be replaced by the

following functions, ψ5(v) = eav, ψ6(v) =
1
2a
e−av where a =

√

(µ−v0)2

4D2 − iω
D

. They

satisfy the condition ψ
′
3(v)ψ4(v)−ψ3(v)ψ

′
4(v) = 1. Correspondingly, according to

the recurrence relations satisfied by the parabolic cylinder functions, Eq. (2.89),
we define

φ5(v) =

√

D

r
(ψ

′
5(v)−

µ− v0
2D

ψ5(v)) =

√

D

r
(a− µ− v0

2D
)eav

Υ5(v) =

√

D

r
(Φ

′
5(v)−

µ− v0
2D

Φ5(v)) =
D

r
(a− µ− v0

2D
)2eav

φ6(v) =

√
rD

iω
(ψ

′
6(v)−

µ− v0
2D

ψ6(v)) = −
√
rD

iω
(a+

µ− v0
2D

)
1

2a
e−av

Υ6(v) =

√
rD

iω
(Φ

′
6(v)−

µ− v0
2D

Φ6(v)) =
rD

(iω)2
(a+

µ− v0
2D

)2
1

2a
e−av

(4.89)

and

Y5(v) = ψ5(v1)ψ6(v)− ψ6(v1)ψ5(v)

=
1

2a
(ea(v1−v) − ea(v−v1))

Y6(v) = ψ
′
5(v1)ψ6(v)− ψ

′
6(v1)ψ5(v)

=
1

2a
(ea(v1−v) + ea(v−v1))

Y51(v) = ψ6(v)Φ5(vb)−
iω

r1
ψ5(v)Φ6(v1)

=
1

2a

√

D

r1
((a− µ− v0

2D
)ea(v1−v) + (a+

µ− v0
2D

)ea(v−v1))

Y52(v) = ψ6(v)Υ5(v1)−
iω

r1
(1 +

iω

r1
)ψ5(v)Υ6(v1)

=
1

2a

D

r1
((a− µ− v0

2D
)2ea(v1−v) − (a+

µ− v0
2D

)2ea(v−v1)) . (4.90)



Chapter 5

Dynamical AP encoding in spatially

extended neurons

In preceding chapters we treated a neuron as a "point" constructing one-variable
spiking neuron models to study the AP encoding properties for time-varying
signals. Real neurons, however, are spatially extended objects with many func-
tional parts, like the soma, axon, dendrite and Ranvier nodes. Where the APs
are generated could play an important role in the response properties of cortical
neurons.

Axonal AP initiation has long been observed in cortical neurons (for a review,
see Stuart et al. (1997)). The exact location, however, has only recently been
found in the proximal part of the axon, the axon initial segment(AIS), using
voltage sensitive dye imaging (Palmer & Stuart, 2006). Further experiments
have confirmed this observation (Inda et al., 2006; Hedstrom & Rasband, 2006;
Meeks & Mennerick, 2007; Yu et al., 2008; Kole et al., 2008; Fleidervish et al.,
2010). Patch-clamp and imaging experiments have revealed that the physiological
properties of the AIS are different from the soma (Clark et al., 2009). The AIS
has a higher sodium channel density than the soma, but there is a discrepancy
between the ratios obtained from different approaches, ranging from larger than
10 fold to about 3 fold (Kole et al., 2008; Fleidervish et al., 2010). The threshold
for AP generation is lower at the AIS than at the soma (Kole & Stuart, 2008).
The passive membrane time constant at the AIS might also be different for the
soma, AIS and axon. For the GABAergic pyramidal cells there are axo-axonic
synapses specially targeted at the AIS from Chandelier cells (for a review, see
e.g., Howard et al. (2005)), which can modify the input conductance there and
therefore, the passive membrane time constant and the electrotonic length at the
AIS.

The functional implication of the AP initiation at the AIS is not well under-
stood. APs back propagate to the soma after their generation at the AIS, which
was reported to make the AP waveform at the soma develop a faster initiation
speed and was suggested to explain the fast AP onset observed in cortical neurons
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(McCormick et al., 2007; Yu et al., 2008). But the effectiveness of this mechanism
is still in controversy (Naundorf et al., 2007; Baranauskas et al., 2010). To realize
it in multi-compartment modeling, a very high sodium channel density at the AIS
and a long passive dendrite are required, which seems not to be fulfilled in real
neurons (Huang, 2009; Baranauskas et al., 2010). Recently it was suggested that
the latency resulting from AIS initiation of APs can enhance coincidence detec-
tion in the auditory system (Kuba et al., 2006). Furthermore, the position and
length of the AIS were found to be plastic due to experience (Grubb & Burrone,
2010; Kuba et al., 2010).

In this chapter we will study the functional effect of the axonal AP generation
on signal encoding by combining the linear cable equation with the Gaussian neu-
ron model, which assumes the membrane potential as a Gaussian random field
and AP generation as a threshold crossing process. The axon will be taken as
a homogeneous cable and the soma as a point at the end of the cable. This
framework allows for an analytical investigation of the voltage coherence along
the cable and the signal encoding properties. A boundary condition which incor-
porates the sub-threshold dynamics will be assigned at the soma. We will first
derive the Green’s functions for a homogeneous cable of one or two compartments.
We then study the transmission of the correlation function along the axon and
calculate the spike-triggered average voltage and spike-triggered variance at soma
when spikes are generated at AIS. We further study the dynamical response at
axon when a signal is injected into soma. The simplicity of the Gaussian neuron
model allows theses important quantities to be studied analytically.

5.1 The cable equation

The cable theory provides an important theoretical framework to investigate the
sub-threshold dynamics of spatial extended neurons (Tuckwell, 1988). Taking into
account the ’core conductor’ property, that the resistance for ions flowing across
the membrane is much larger than flowing along the cable, the nerve cylinder can
be described by the one dimensional cable equation. For a homogenous axon, the
cable equation reads

cm
∂V (x, t)

∂t
=

ra
2rL

∂2V (x, t)

∂x2
− im , (5.1)

where V is the membrane potential relative to the resting potential, cm the specific
membrane capacitance, im the membrane current per unit area, ra the radius of
axon and rL the intracellular resistivity. Taking the linear approximation for the
membrane current, im = V/rm with rm the specific membrane resistance, the
linear cable equation is given by

τm
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− V (x, t) , (5.2)
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Figure 5.1: Illustration of the geometry and dynamics of the model used. A,
the two-compartment model; B, the Gaussian neuron model; C, the correlation
function for the membrane potential at the soma as given by Eq. (5.38); D, the
membrane potential at soma, the middle of the AIS and the end of the AIS.

where τm = cmrm is the membrane time constant and λ =
√

rarm
2rL

the electrotonic

length. λ sets the spatial scale of the cable, which is about 400 µm at the axon
(Shu et al., 2006). In the linear cable equation (5.2), only the leak current is
included. We will use a two-compartment homogenous cable to model the AIS
initiation of APs in real neurons, with each compartment describes by Eq. (5.2),
as illu in Fig. 5.1A. Details of the model will be given later. For numerical
simulation of real neurons, multi-compartment models are used extensively, in
which other ion currents, like the sodium current and potassium current for spike
generating, will be included in the membrane current im in Eq. (5.1).

The cable equation was found of importance in describing the neuron axon
in 1940s (Hodgkin & Rushton, 1946). The Rall model was then developed for
dendritic neurons (Rall, 1959, 1977). Assuming a homogeneous distribution of
synaptic inputs along the cable modeled as either a white noise or an OU process
(colored noise), the coherence properties, like the variance and covariance of
the membrane potential, were analyzed theoretically (Wan & Tuckwell, 1979;
Tuckwell & Walsh, 1983; Tuckwell et al., 1984, 2002). Here we will combine the
linear cable equation and the Gaussian neuron model to investigate the functional
effect of AP initiation at the AIS.
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5.2 Membrane potential as a Gaussian random

field

Gaussian random fields provide an important tool to study the threshold cross-
ing process in neuroscience (Jung, 1994). In Wolf & Geisel (1998) it was used to
investigate the singular structure in the orientation map in visual cortex. The
model is then used to study the functional implication of large threshold variabil-
ity in AP generation in cortical neurons (Naundorf, 2005), and the correlation
property of pair neurons (Burak et al., 2009; Tchumatchenko et al., 2010).

In the Gaussian neuron model, the stochastic property of the membrane po-
tential is described by a stationary smooth Gaussian random field with a given
correlation function, C(τ) = 〈V (t)(V (t + τ))〉. A spike is generated whenever
the membrane potential cross a threshold from below (Fig. 5.1B). The formal
results of the model are expressed with C(τ) and its derivatives. The advantage
of this model is its analytical solvability for many important quantities, like the
spike-triggered average and the dynamic response, which are accessible only nu-
merically or analytically tractable only in very limited cases in the Fokker-Planck
equation formalism, as used in preceding chapters.

In the rest of this section, we will outline the model for a point neuron following
Naundorf (2005) . The spike activity is described by the neural response function
ρ(t) =

∑

j δ(t− tj) where tj is the time for the jth spike and δ(t) is the Dirac δ

function which satisfies
∫ +∞
−∞ δ(t)dt = 1. In the Gaussian neuron model,

ρ(t) = δ(V (t)− ψ0)|V̇ |Θ(V̇ (t)) , (5.3)

where ψ0 is a constant threshold and Θ(x) is the Heaviside step function used in
previous chapters. The step function in above expression ensures that only the
threshold crossing from below is counted. The instantaneous firing rate is given
by

ν(t) =

∫ +∞

−∞
dV (t)dV̇ (t)δ(V (t)− ψ0)|V̇ |Θ(V̇ (t))P (V (t), V̇ (t)) , (5.4)

where P (V (t), V̇ (t)) is the joint probability density of V (t) and V̇ (t). Since V (t)
and V̇ (t) are assumed to be stationary Gaussian processes, the cross-correlation
between them vanishes, 〈V (t)V̇ (t)〉 = 0. Denote the variance of V (t) and V̇ (t) as
σ2
V and σ2

V̇
, then the correlation matrix for a point neuron with constant threshold

is given by

C =

(

〈V (t)2〉 − V 2
0 〈V (t)V̇ (t)〉

〈V (t)V̇ (t)〉 〈V̇ 2(t)〉

)

=

(

σ2
V 0
0 σ2

V̇

)

, (5.5)

where V0 = 〈V (t)〉 is the expected value of membrane potential and we will take
V0 = 0. Note that in Naundorf (2005), the voltage threshold was taken as an dy-
namical variable and the correlation matrix is three dimension. When the spatial
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dimension is included, the correlation matrix will be a higher dimension matrix,
depending on the independent random variable included, as will be detailed in
the next sections. The probability density for a point neuron is given by

P (V (t), V̇ (t)) =
1

2π
√

detC
exp

{

−1

2

(

V (t)

V̇ (t)

)T

C−1

(

V (t)

V̇ (t)

)

}

=
1

2πσV σV̇

{

−1

2

(

V (t)2

σ2
V

+
V̇ 2(t)

σ2
V̇

)

}

. (5.6)

The integrals in Eq. (5.4) could be performed explicitly and the stationary firing
rate is given by

ν0 =
σV̇

2πσV
exp(− ψ2

0

2σ2
V

) . (5.7)

When a small current ε exp(iωt) is injected, there will be an filtered voltage
f(t) added to the membrane potential which is determined by the subthreshold
dynamics, while the membrane voltage is still assumed to be a Gaussian random
process. Generally, f(t) is given by

f(t) = εG̃(iω) exp(iωt) , (5.8)

where G̃(iω) is the Fourier transform of the Green’s function which determines
the neuron’s response for a δ pulse input. For a point neuron, f(t) is just the
input signal after a low pass filter,

f(t) = ε
1

1 + iωτm
exp(iωt) . (5.9)

Replacing V (t) → V (t) + f(t) in Eq. (5.4), the double integral could be
performed. Keeping terms till the linear order of ε,

ν(t) = ν0 + εν1(ω)e
iωt . (5.10)

where ν0 is given by Eq. (5.7). The response function ν1(ω) reads

ν1(ω) =
1

2πσV
e
− ψ2

0
2σ2
V (

σV̇ ψ0

σ2
V

+

√

π

2
iω)G̃(iω)

= ν0
ψ0

σ2
V

(1 + iτeffω)G̃(iω) , (5.11)

where

τeff =

√

π

2

σ2
V

ψ0σV̇
(5.12)

is an effective time constant.
For a spatially extended neuron, we will assume that at every point along

the axon the membrane potential V (x, t) is a Gaussian random variable and has
the above prosperities. The relation between different positions in the axon are
determined by the cable equation.
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5.3 Transfer function for a homogeneous cable

Now we will determine the Green’s functions which tell the voltage at position x
along the cable, V (x, t), given the voltage or input current at x = 0. The soma
is taken as a point at x = 0 and its voltage is denoted as Vs, i.e., Vs(t) ≡ V (0, t).
Since we are most interested on the effect of the AIS, which is much shorter than
the electrotonic length λ at axon, an semi-infinite cable will be adopted.

5.3.1 Simple ball-and-stick model

For comparison, we will first ignore the existence of the AIS and the specific prop-
erties there, and consider a homogeneous cable in a simple ball-and-stick model.
The axon is taken as a semi-infinite homogeneous cable, with the electrotonic
length λ and membrane time constant τm. The soma and axon are assumed to
have the same membrane time constant. We will take λ as the unit of length. By
applying the Laplace transform, the cable equation (5.2) becomes

∂2V (x, s)

∂x2
− (1 + τms)V (x, s) = 0 . (5.13)

Assuming that the voltage at infinity remains finite, there is

V (x, s) ≡ Vs(s)G̃1(x, s) = Vse
−x

√
τms+1 , (5.14)

where G̃1(x, s) is the Laplace transform of the Green’s function G1(x, t).
Now taking into account the subthreshold dynamics at soma,

τm
dVs
dt

= −Vs + µ+
1

AgL
Ia , (5.15)

where A is the area of soma and gL is the leak conductance at soma. µ(t) is a
Gaussian random input current with a given correlation function. Ia is the lateral
inward current into the soma which is proportional to the gradient of the voltage
at x = 0,

Ia(t) =
πr2a
rLλ

∂

∂x
V (x, t)|x=0 . (5.16)

Substituting Eq. (5.16) into Eq. (5.15), we get

τm
dVs
dt

= −Vs + µ+K
∂

∂x
V (x, t)|x=0 , (5.17)

whereK = πr2a
AgLrLλ

is a dimensionless constant. Using the values rm = 1 MΩ·mm2,

ra = 1 ∼ 2 µm, rL = 1 kΩ · mm, gL = 1 MΩ−1 · mm−2, A = 0.01 ∼ 0.1 mm2, we
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have K ∼ 1. But obviously this description is oversimplified. We will take K as
a free parameter.

Performing Laplace transform to Eq. (5.17),

τmsVs(s) = −Vs(s) + µ(s) +K
∂

∂x
G̃1(x, s)Vs(s)|x=0

= −Vs(s) + µ(s)−K
√
τms+ 1Vs(s) , (5.18)

Vs(s) is then determined as a function of input current into the soma,

Vs(s) =
1

τms+ 1 +K
√
τms+ 1

µ(s) . (5.19)

Correspondingly, from Eq. (5.14),

V (x, s) ≡ G̃2(x, s)µ(s)

= e−x
√
τms+1 1√

τms+ 1(
√
τms+ 1 +K)

µ(s) . (5.20)

To obtain the Green’s function in the time domain, the following formulas for
Laplace transform will be used

e−b
√
s ⇒ b

2
√
πt3

exp

(

− b2

4t

)

, b ≥ 0 (5.21)

e−b
√
s

√
s(
√
s+K)

⇒ eKb+K2t Erfc

(

K
√
t+

b

2
√
t

)

, b ≥ 0 (5.22)

where Erfc(x) is the complementary error function defined as

Erfc(x) =
2√
π

∫ ∞

x

e−x2

dx . (5.23)

From Eq. (5.14) and Eq. (5.20), we obtain

V (x, t) = G1(x, t)⊗ Vs(t)

= G2(x, t)⊗ µ(t) , (5.24)

where G1(x, t) and G2(x, t) are the corresponding Green’s functions in the time
domain for a homogeneous cable with a given random function Vs(t) and µ(t) at
x = 0 respectively,

G1(x, t) =
x

2τm
√

π(t/τm)3
e−t/τme−τmx2/4t , (5.25)

G2(x, t) =
1

τm
eKxe(K

2−1)t/τm Erfc

(

K
√

t/τm +
x

2
√

t/τm

)

. (5.26)

Here ’⊗’ represents convolution, defined as

f1(t)⊗ f2(t) =

∫ t

0

f1(t− τ)f2(τ)dτ . (5.27)

Note that G1(x, t) satisfies G1(x, t)|x→0 = δ(t). Both G1(x, t) and G2(x, t) decay
to zero with the increasing of x and t.
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5.3.2 Two-compartment cable

To investigate the effect of different physiological properties between the AIS and
other parts of the axon, we consider a two-compartment cable, as illustrated in
Fig. 5.1A. For the AIS part (region 1, 0 ≤ x < x1) and the axon part (region
2, x1 ≤ x < ∞), the membrane time constants and electrotonic lengths are τ1,
λ1 and τ2, λ2 respectively. At x = 0 (the soma), there are two parameters τm
and the coupling constant K. The injected current at soma is µ(t). Note that
when τ1 = τ2 = τm and λ1 = λ2 the two-compartment cable reduces to the simple
ball-and-stick model.

In the two regions, the cable equations after applying Laplace transform are

λ21
∂2V (x, s)

∂x2
− (1 + τ1s)V (x, s) = 0 , 0 ≤ x < x1

λ22
∂2V (x, s)

∂x2
− (1 + τ2s)V (x, s) = 0 , x1 ≤ x <∞ (5.28)

The boundary conditions are as follows. At x → ∞, there is V2(x, s) → 0. At
x = 0, the dynamics is given by Eq. (5.17),

τm
dVs
dt

= −Vs + µ+K
∂

∂x
V1(x, t)|x=0 . (5.29)

At x1, there are

V1(x1, t) = V2(x, t), (5.30)

∂

∂x
V1(x, t) =

∂

∂x
V2(x, t)|x=x1 (5.31)

which reflect the continuity of the membrane potential and the lateral current.
With these boundary conditions, the voltage at a position x along the axon

is determined as a function of the input current at the soma. For 0 ≤ x < x1 we
have

V1(x, s) ≡ µ(s)G̃3(x, s)

= µ(s)
(√

1 + τ2s sinh(
x1 − x

λ1

√
1 + τ1s)

+
λ2
λ1

√
1 + τ1s cosh(

x1 − x

λ1

√
1 + τ1s)

)

×
(

((1 + τms)
√
1 + τ2s+K

λ2
λ1

(1 + τ1s)) sinh(
x1
λ1

√
1 + τ1s) +

(
λ2
λ1

(1 + τms)
√
1 + τ1s+K

√
1 + τ1s

√
1 + τ2s) cosh(

x1
λ1

√
1 + τ1s)

)−1
,

(5.32)
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from which there is

Vs(s) = µ(s)
[√

1 + τ2s sinh(
x1
λ1

√
1 + τ1s) +

λ2
λ1

√
1 + τ1s cosh(

x1
λ1

√
1 + τ1s)

]

(

((1 + τms)
√
1 + τ2s+K

λ2
λ1

(1 + τ1s)) sinh(
x1
λ1

√
1 + τ1s) +

(
λ2
λ1

(1 + τms)
√
1 + τ1s+K

√
1 + τ1s

√
1 + τ2s) cosh(

x1
λ1

√
1 + τ1s)

)−1
.

(5.33)

This gives

V1(x, s) = Vs(s)G̃4(x, s) , (5.34)

with

G̃4(x, s) =

√
1 + τ2s sinh(x1−x

λ1

√
1 + τ1s) +

λ2
λ1

√
1 + τ1s cosh(x1−x

λ1

√
1 + τ1s)√

1 + τ2s sinh(x1
λ1

√
1 + τ1s) +

λ2
λ1

√
1 + τ1s cosh(x1

λ1

√
1 + τ1s)

. (5.35)

For x > x1, there is

V2(x, s) = Vs(s)G̃5(x, s) (5.36)

with

G5(x, s) =
λ2

λ1

√
1 + τ1s exp(−x−x1

λ2

√
1 + τ2s)√

1 + τ2s sinh(x1

λ1

√
1 + τ1s) +

λ2

λ1

√
1 + τ1s cosh(x1

λ1

√
1 + τ1s)

.(5.37)

For the two-compartment cable, we have obtained the Laplace transform of
the Green’s functions. Since the Gaussian random field V (x, t) is assumed to be
stationary, its stochastic properties can be obtained using the Green’s function at
Fourier domain by applying the Wiener-Khinchintheorem after the replacement
s→ iω.

5.4 Spike-triggered average

Spike-triggered average provides an important framework for characterizing the
response property according to the spike trains of neurons. In Gaussian neuron
model the spike-triggered average can be calculated analytically. The theoretical
results in Gaussian neuron model are presented through the correlation function
C(τ) and its derivatives, independent of the concrete form of C(τ). Each choice
of the correlation function C(τ) defines a special kind of model. We will choose
the correlation function of Vs(t), the voltage at soma, as a difference of two
exponentials,

CV s(τ) = 〈Vs(t)Vs(t+ τ)〉 = σ2
V

τD − τR

(

τDe
− |τ |
τD − τRe

− |τ |
τR

)

. (5.38)
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This correlation function is two times differentiable at τ = 0. It describes the
correlation function of a white noise after two times filtering, a slow decay with
time constant τD after a fast rising period with time constant τR mimicking the
realistic synaptic filtering. When τD = τR = τ , the correlation function takes the
form

CV s(τ) = σ2
V

(

1 +
|τ |
τD

)

e
− |τ |
τD . (5.39)

The correlation function of V̇s(t) is obtained as

CV̇s
(τ) = −C ′′

Vs(τ) =
σ2
V

τD − τR

(

1

τR
e
− |τ |
τR − 1

τD
e
− |τ |
τD

)

. (5.40)

For τ = 0, there are CVs(0) = σ2
V and CV̇s

(0) =
σ2
V

τDτR
≡ σ2

V̇
. The power spectral

is given by

Ps(w) =
2σ2

V

τD − τR

(

τ 2D
1 + τ 2Dω

2
− τ 2R

1 + τ 2Rω
2

)

. (5.41)

In performing numerical evaluation to visualize the results, we use the following
parameters: τm = 10 ms, τD = 10 ms, τR = 1 ms and σV = 5 mV. The constant
threshold is ψ0 = 10 mV. Fig. 5.1C is the correlation function of the membrane
potential at the soma, as given by Eq. (5.38). Three trajactories of the membrane
potential at the soma, the middle of the AIS and the end of the AIS are shown
in Fig. 5.1D.

Given the correlation function at x = 0, the stationary covariance of V (x, t)
and V̇ (x, t) at position x can be expressed in the Fourier domain by implementing
the Green’s function obtained in the previous section,

CV x(τ) = 〈V (x, t)V (x, t+ τ)〉

=
1

2π

∫ ∞

−∞
dωeiωτ Ps(ω)|G̃(iω)|2

CV̇ x(τ) = −C ′′
V x(τ)

=
1

2π

∫ ∞

−∞
dωeiωτ ω2Ps(ω) |G̃(iω)|2 , (5.42)

where G̃(iω) is the Fourier transform of the Green’s function (obtained by re-
placing s with iω in the Laplace transform of the Green’s function). For the
simple ball-and-stick model and two-compartment cable, it represents G̃1 and G̃4

respectively. When τ = 0, Eq. (5.42) gives σ2
V x and σ2

V̇ x
, the variance of V (x, t)

and V̇ (x, t).

The covariance 〈Vs(t− τ)V (x, t)〉 and 〈Vs(t− τ)V̇ (x, t)〉 can also be expressed
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in a similar way through the Green’s function by the cross-correlation theorem,

CsV x(τ) = 〈Vs(t− τ)V (x, t)〉

=
1

2π

∫ ∞

−∞
dωeiωτ Ps(ω) G̃(iω) ,

CsV̇ x(τ) = 〈Vs(t− τ)V̇ (x, t)〉

=
1

2π

∫ ∞

−∞
dωeiωτ iωPs(ω) G̃(iω) . (5.43)

For the ball-and-stick model, the integrals in Eq. (5.43) can be performed
explicitly. We will present the results in the Appendix, together with the small
x approxmation for the covariance Eq. (5.42).

In Gaussian neuron model, the spike-triggered average voltage and variance
are defined as

V̄s(τ, x) =
1

ν0x
〈Vs(t− τ)δ(Vx(t)− ψ0)|V̇x(t)|θ(V̇x(t))〉

=
1

ν0x

∫∫∫ ∞

−∞
dVs(t− τ)dV̇x(t)dVx(t)Vs(t− τ)δ(Vx(t)− ψ0)|V̇x(t)|

×θ(V̇x(t))PSTV (Vs(t− τ), V̇x(t), Vx(t)) , (5.44)

STV (τ, x) =
1

ν0x
〈(Vs(t− τ)− V̄s(τ, x))

2δ(Vx(t)− ψ0)|V̇x(t)|θ(V̇x(t))〉

=
1

ν0x

∫∫∫ ∞

−∞
dVs(t− τ)dV̇x(t)dVx(t)V

2
s (t− τ)δ(Vx(t)− ψ0)|V̇x(t)|

×θ(V̇x(t))PSTV (Vs(t− τ), Vs(t), V̇x(t), Vx(t))− V̄ 2
s (x) , (5.45)

where ν0x is the stationary firing rate at position x,

ν0x =
σV̇ x

2πσV x

e
− ψ2

0
2σ2
V x . (5.46)

PSTV (Vs(t− τ), V̇x(t), Vx(t)) is the probability density function defined by

PSTV (Vs(t− τ), V̇x(t), Vx(t)) =

1

(2π)3/2
√

det C(τ, x)
exp











−1

2





Vs(t− τ)

V̇x(t)
Vx(t)





T

C−1(τ, x)





Vs(t− τ)

V̇x(t)
Vx(t)















.

(5.47)
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The correlation matrix C(τ, x) is defined as

C(τ, x) =





〈V 2
s (t− τ)〉 〈Vs(t− τ)V̇x(t)〉 〈Vs(t− τ)Vx(t)〉

〈Vs(t− τ)V̇x(t)〉 〈V̇ 2
x (t)〉 〈V̇x(t)Vx(t)〉

〈Vs(t)Vx(t)〉 〈V̇x(t)Vx(t)〉 〈V 2
x (t)〉





=





σ2
V CsV̇ x(τ) CsV x(τ)

CsV̇ x(τ) σ2
V̇ x

0

CsV x(τ) 0 σ2
V x



 . (5.48)

The determinant of C(τ, x) is

Det(C(τ, x)) = σ2
V σ

2
V̇ x
σ2
V x − CsV̇ x(τ)σ

2
V x − CsV x(τ)σ

2
V̇ x

(5.49)

where the first and third terms have very close values and the contribution from
the second term is small compared with other two terms.

Performing the double integration, we obtain

V̄s(τ, x) =
1

ν0x

1

2πσ3
V x

exp

(

− ψ2
0

2σ2
V x

)(
√

π

2
σ2
V xCsV̇ x(τ) + ψ0σV̇ xCsV x(τ)

)

=

√

π

2
σ−1

V̇ x
CsV̇ x(τ) + ψ0σ

−2
V xCsV x(τ) , (5.50)

STV (τ, x) =
1

ν0x

1

2πσV̇ xσ
5
V x

exp

(

− ψ2
0

2σ2
V x

)(

σ2
V̇ x

(ψ2
0 − σ2

V x)C
2
sV x(τ) +

√
2πψ0σV̇ xσ

2
V xCsV x(τ)CsV̇ x(τ) + σ4

V x(σ
2
V σ

2
V̇ x

+ C2
sV̇ x

(τ))

)

− V̄ 2
s (x)

= σ2
V − σ−2

V xC
2
sV x(τ)−

(

√

π

2
− 1

)

σ−2

V̇ x
C2

sV̇ x
(τ) . (5.51)

Fig. 5.2 shows the variation of the spike-triggered voltage and spike-triggered
variance with x at the spiking time (τ = 0) for different membrane time constant
τ1 at the AIS assuming the AIS and axon have similar electrotonic length. The
membrane time constant at the AIS does not have a significant influence on the
spike-triggered average. Since the time delay for observing AP at soma is quite
short ( about 0.1ms, see e.g., Palmer & Stuart (2006)), the spike-triggered vari-
ance measures the variation of the threshold for AP generation at soma. From
Fig. 5.2B, the STV is only about 1 percent of the variance of membrane potential
at soma. So the STV can explains about 10-20 percent of the threshold variability
at soma, which suggests that the experimentally observed large threshold vari-
ability in Naundorf et al. (2006) reflects an intrinsic feature in the AP generator.
Note that from Eq. (5.51) the spike-triggered variance does not depend on the
choice of voltage threshold.
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Figure 5.2: Dependence of the spike-triggered average voltage (A) and variance
(B) at soma on the position of AP evoked along the axon. Note that τs = 10 ms
corresponds to the simple ball-and-stick model. Parameters used: ψ0 = 10,
λ2

λ1
= 1. x1 = 0.2 λ1.

5.5 Linear response

With the expressions for the Green’s functions and the covariances along the axon,
the linear response at a position x where an AP is initiated can be obtained from
Eq. (5.11).

5.5.1 Two coupled Gaussian neurons

Before investigating the linear response in a spatial extended neuron, we first
check a simpler system composed of two coupled point Gaussian neurons (or two
coupled point-like compartments), in which only one neuron receives input sig-
nals and the APs are initiated at the other neuron. The two neurons connect
with each other through a coupling strength c. They have different membrane
time constants. This is a simplified system for the axonal AP initiation we are
studying. The neuron which receives external input has a given correlation func-
tion, say, Eq. (5.38). In the Appendix, we derive the linear response analytically.
A shorter membrane time constant at the AP initiation part has the effect of in-
creasing the cutoff frequency for dynamical signal encoding, as can be seen from
Fig. 5.3. A stronger coupling between the two neurons also leads to enhance-
ment of high frequency response. Similar effects are expected to be observed in
the two-compartment axon.

5.5.2 Two-compartment cable

For a two-compartment cable, the effect of the AIS initiation of APs can be
studied. The simple ball-and-stick model is included here as a specific case when
τ1 = τ2 = τm and λ1 = λ2.
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Figure 5.3: Dependence of transmission function on the membrane time constant
τ1 at the AP initiation compartment for different coupling constant c. A, c = 1;
B, c = 5.

When a small signal εeiωt is injected at soma, the filtered signal felt at position
x in the AIS is given by

f(x, t) = εG̃3(x, iω)e
iωt . (5.52)

The covariances at x are given by Eq. (5.42-5.43), with the Green’s function
changed to G̃4(x, iω). The variances of V (x, t) and V̇ (x, t) are then given by
σ2
V x = CV x(0) and σ2

V̇ x
= CV̇ x(0). The linear response at position x then has the

following form

ν1x(ω) =
1

2πσV x
e
− ψ2

0
2σ2
V x (

σV̇ xψ0

σ2
V x

+

√

π

2
iω)G̃3(x, iω)

= ν0x
ψ0

σ2
V x

(1 + iτeffω)G̃3(x, iω) , (5.53)

where

τeff =

√

π

2

σ2
V x

ψ0σV̇ x

(5.54)

is an effective time constant.
From Fig. 5.4 and 5.5, we see that compared with a homogeneous axon, the

high frequency response is enhanced strongly when the membrane time constant
at the AIS is shorter than soma and axon and a stronger coupling constant
between soma and AIS increases the normalized response further. The linear
response does no change much when the AP initiation position moves from the
middle of the AIS to the end of it. Note that the absolute response amplitude at
zero frequency decrease with the coupling constant as 1/K, as can be seen from
the Green’s function. This is different from the coupled Gaussian neurons, where
the response at zero frequency approaches to a limit value independence of the
coupling constant c for c→ ∞.
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Figure 5.4: Dependence of transmission functions on the time constant τ1 at AP
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Figure 5.5: The same as Fig. 5.4, but with λ2/λ1 = 10.
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5.5.3 Relation between spike-triggered average and linear

response

The spike-triggered average voltage is the linear term in the voltera expansion of
the neuron’s response and is therefore related to the linear response. In fact the
linear response can be readily obtained from the spike triggered average voltage.
The Fourier transform of V̄s(x, τ) normalized by the power spectrum PVs(ω) give
the linear response to a small sinusoidal component in the soma voltage, which
is related to a small soma injected current by G̃3(0, iω). We then have

ν1(ω) = ν0x
˜̄Vs(iω, x)G̃3(0, iω)/PVs(ω) , (5.55)

which reproduces exactly the linear response result Eq. (5.53). Note that the
factor ν0x is from the normalization we have used in the definition of the spike-
triggered average voltage. This proves the equivalency between the linear reverse-
correlation approach and the linear response in the Gaussian neuron model.

5.6 Discussion

Two aspects about the possible functional role of AP initiation at the AIS were
checked in this chapter. First we addressed the question whether it exhibits a
strong influence on the threshold variability of somatic AP generation. Here we
calculated the spike-triggered average analytically in the Gaussian neuron model.
The spike-triggered variance constitutes only a small fraction of the variability of
the voltage at the soma. From extensive simulation studies (Huang, 2009), the
conditions that axonal AP initiation can have significant influence on the somatic
AP waveform was found previously. A long passive dendrite and an extremely
high sodium channel density at the AIS seems to be essential for reproducing the
key features observed at the soma, which seems not fulfilled in cortical neurons
(Fleidervish et al., 2010). This suggests that the characteristic features from
recording at the soma reflect intrinsic properties of the cortical AP generation
process. Secondly, the linear response of APs generated at the AIS was studied
in the Gaussian neuron model. The membrane time constant at the AIS could be
different from axon and soma. A shorter membrane time constant at the AIS was
shown to enable a faster high frequency response compared with the homogeneous
axon. Similarly, a response enhancement was found if the electrotonic length is
chosen much longer at the AIS than in the axon. If the longitudinal resistance is
assumed to be equal, then this reflects the influence of the membrane resistance.
The chandelier cells specifically targeted at the AIS of pyramidal neurons (Howard
et al., 2005). One characteristic feature of chandelier cells is its terminals usually
climbing upwards along the AIS and targeted at a large range of the AIS of
pyramidal neurons, not just a point (Somogyi et al., 1982). These terminals thus
can modulate the passive membrane conductance of the AIS effectively, which
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can change the characteristic temporal and spatial scales at the AIS and therefore
effectively modulate the linear response behavior of cortical neurons to dendritic
and somatic synaptic integration. The physiological properties at the AIS have
not been characterized completely yet and many controversies persist, due to
the difficulty of directly recording from this small compartment. In principle,
however, the passive properties of the AIS could be significantly different from
the soma. For example, the low threshold for AP initiation at the AIS was found
to be resulted from a higher resting potential at the AIS than at the soma (Kole
& Stuart, 2008). Investigating the influence of these difference on signal encoding
is an important further direction for research.
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5.7 Appendix

Results for the simple ball-and-stick model

According to Eq. (5.24), the expected value of V (x, t) with the voltage at soma
a given gaussian random function is

〈V (x, t)〉 = 〈Vs(t)〉
∫ t

0

x

2
√

π(t′/τm)3
e−t

′
/τme−τmx2/4t

′
dt

′
/τm

=
1

2
〈Vs(t)〉

(

e−xErfc

(

x

2
√

t/τm
−
√

t/τm

)

+exErfc

(

x

2
√

t/τm
+
√

t/τm

))

. (5.56)

When the subthreshold dynamics of the soma is included, characterized by Eq.
(5.17), the expected value of V (x, t) is given by

〈V (x, t)〉 = µ0

∫ t

0

eKxe(K
2−1)t

′
/τm Erfc

(

K
√

t′/τm +
x

2
√

t′/τm

)

dt
′
/τm ,

(5.57)

where µ0 = 〈µ(t)〉 is the expected of the input current. The above integral can
be performed explicitly. For K 6= 1,

〈V (x, t)〉/µ0 =
1

K2 − 1
eKxe(K

2−1))t/τm Erfc

(

K
√

t/τm +
x

2
√

t/τm

)

+
1

2

1

K + 1
e−xErfc

(

x

2
√

t/τm
−

√

t/τm

)

−1

2

1

K − 1
exErfc

(

x

2
√

t/τm
+
√

t/τm

)

. (5.58)

For K = 1,

〈V (x, t)〉/µ0 =
1

4

(

e−xErfc

(

x

2
√

t/τm
−
√

t/τm

)

−(1 − 2x− 4t/τm)e
xErfc

(

x

2
√

t/τm
+
√

t/τm

))

−
√

t

πτm
e−t/τm− x2

4t/τm . (5.59)

The stationary value is

〈V (x, t)〉|t→∞ =
µ0

K + 1
e−x . (5.60)
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Taking x = 0 in Eq. (5.58) and Eq.(5.59), we obtain the average voltage at
soma,

〈Vs(t)〉/µ0 =
1

K2 − 1
(e(K

2−1)t/τm Erfc(K
√

t/τm)−K Erfc(
√

t/τm)) +
1

K + 1
,

(5.61)
for K 6= 1 and

〈Vs(t)〉/µ0 =
1

2
− (

1

2
− t/τm) Erfc(

√

t/τm)−
√

t

πτm
e−t/τm , (5.62)

for K = 1.

〈Vs(t)V (x, t)〉 can also be calculated directly using the Green’s function,

〈Vs(t)V (x, t)〉 =

∫ t

0

x

2
√

π((t− t′)/τm)3
exp

(

− t− t
′

τm
− τmx

2

4(t− t′)

)

〈Vs(t
′
)Vs(t)〉dt

′
/τm

=
σ2V

τD − τR

τD
2

×
(

exp

(

− x

(

1 +
τm
τD
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1
2
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Erfc
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2
√

t/τm
−

√

t/τm

(

1 +
τm
τD

)
1
2
)

+exp

(

x

(

1 +
τm
τD

)
1
2
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Erfc

(
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2
√

t/τm
+

√

t/τm

(

1 +
τm
τD

)
1
2
))

−(τD ↔ τR) . (5.63)

When t→ ∞, we get the stationary variance,

〈Vs(t)V (x, t)〉 → σ2
V

τD − τR
(τDexp(−x(1 + τm

τD
)
1
2 )− τRexp(−x(1 + τm

τR
)
1
2 )) .

(5.64)

The linear approximation for the correlation function Eq. (5.42) can be ob-
tained analytically. For small x, Eq. (5.42) becomes

CV x(τ) ≈ 1

2π

∫ ∞

−∞
dωeiωτ P s(ω)(1− x(

√
1 + iτmω +

√
1− iτmω)) .(5.65)

For the small x approximation to be correct, there exists a cutoff frequency ωc =
1

x2τm
and contribution from frequency higher than ωc should be ignorable.

The first term in the above equation give just Eq. (5.38), the covariance at
the soma. The contribution from the second and third terms can be calculated
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by utilizing the following Fourier transformation formulas

1

2π

∫ ∞

−∞
dωeiωt

√
iω + ρ

iω + β

=
1√
πt
e−ρt + (ρ− β)

1
2 e−βtErf((ρ− β)

1
2 (t)

1
2 ) , t > 0 (5.66)

1

2π

∫ ∞

−∞
dωeiωt

√
iω + ρ

−iω + β

=







− 1√
πt
e−ρt + (ρ+ β)

1
2 eβtErfc((ρ+ β)

1
2 (t)

1
2 ) , t > 0

(ρ+ β)
1
2 eβt , t < 0

(5.67)

where Reρ ≥ 0 and Reβ > 0. Eq. (5.66) can be found in Campbell & Foster
(1961). These formulas can be obtained by contour integration where the pole
and branch cut both can have contribution to the integration.

Substituting these formulas into Eq. (5.65) we get

CV x(τ) ≈ σ2
V

τD − τR
(τDexp(−|τ |

τD
)− τRexp(−|τ |

τR
))

−x σ2
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Expanding CV̇ x(τ) for small τ we find the time giving the maxim value is τc =
x2τm. Note that we have used small x approximation, which gives a cutoff fre-
quency ωc = 1

x2τm
. The corresponding time scale is just τc, which means that

we can not probe the property of neurons occurred smaller than τc under the
linear approximation. So we will take σ2

V̇ x
= CV̇ x(τc), while for σ2

V x we still take
σ2
V x = CV x(0),

σ2
V x = CV x(0)
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In the simple ball-and-stick model, the linear response ν1x is given by
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1

2πσV x
e
− ψ2

0
2σ2
V x (

σV̇ xψ0

σ2
V x

+

√

π

2
iω)

1√
1 + iτmω(

√
1 + iτmω +K)

e−x
√
1+iτmω

= ν0x
ψ0

σ2
V x

1 + iτeffω

(
√
1 + iτmω +K)

√
1 + iτmω

e−x
√
1+iτmω

(5.72)

where

τeff =

√

π

2

σ2
V x

ψ0σV̇ x

(5.73)

is an effective time constant. For low frequency the phase shift will develop a min-
imum at ω = 1/

√
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m = K+2
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. For large ω,there are the following limit behavior,
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Results in coupled point Gaussian neurons

The dynamics of two coupled Gaussian point neurons is defined by

τ1V̇1 = −V1 + c(V2 − V1) ,

τ2V̇2 = −V2 + c(V1 − V2) + µ , (5.75)
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where τ1, V1(t) and τ2, V2(t) are the membrane time constant and membrane
potential of neuron 1 and neuron 2 (or compartment 1 and compartment 2) re-
spectively. µ(t) is the injected current to neuron 2. c is the coupling strength
between the two neurons. This two coupled neurons provide a simplified system
for the two-compartment homogeneous cable. We will derive the Green’s func-
tion corresponding to a current injected in neuron 2, which tells the response at
neuron 1 to a δ pulse input. Spikes is assumed to be triggered at neuron 1. The
correlation function of neuron 2 is assumed to have the form given in Eq. (5.38).
We will calculate the linear response at neuron 1.

Eq. (5.75) can be solved by performing the Laplace transform,

V1(s) =
c

1 + c+ τ1s
V2(s)

=
c

(1 + c+ τ1s)(1 + c+ τ2s)− c2
µ , (5.76)

According to Eq. (5.76), the correlation function of V1 is given by
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where PV2 is the power spectrum of neuron 1, given by Eq. (5.41).

Performing the integral,
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where τH = τ1/(1 + c) and
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The stationary firing rate ν0 of neuron 1 is

ν0 =
σV̇1

2πσV1

exp(− ψ2
0

2σ2
V1

) . (5.81)
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The effective time constant as defined in Eq. (5.12) is given by
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When a small current εeiωt is injected at soma, from Eq. (5.76) the filtered
signal at position x is given by

f1(t) = ε
c

(1 + c+ iωτ1)(1 + c+ iωτ2)− c2
eiωt , (5.83)

and therefore the linear response reads
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(5.84)

Note that when c→ 0, the neuron 1 will not be influenced by the injected current
at neuron 2, and will take the resting potential. The stationary firing rate will
also decay to zero exponentially, as seen from Eq. (5.81). Therefore at zero
coupling the linear response will also be zero. When c→ ∞, the two neurons are
synchronized, V1 = V2 = µ, and the response is independent with c.
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Chapter 6

Summary and Perspective

In this thesis, the properties of signal encoding in cortical neurons were investi-
gated theoretically through analytical solvable neuron models. Cortical neurons
can encode noisy time-varying signals through population encoding. The dy-
namical response to fast changing signals was observed to have cutoff frequencies
much higher than inverse membrane time constant and the average firing rate,
which is unexpected from previous theoretical studies. We addressed this problem
by constructing analytically tractable spiking neuron models, which include the
spike initiation process explicitly. This new kind of models has piecewise-linear
dynamics with each piece having clear physical meaning and providing analyti-
cal tractability. We showed that the artifactual behavior that results from the
truncation of the AP waveform can be mathematically isolated, resulting to a
biophysically meaningful response function. Since cortical neurons are spatially
extended and APs are generated in the proximal axonal segment, we also inves-
tigated the AP encoding properties in spatially extended neurons assuming the
membrane potential as a Gaussian random field.

In Chapter 2, a simple spiking neuron model with two linear pieces in its
dynamics was constructed to investigate the relation between the spike onset
rapidness of individual neurons and the cutoff frequencies of the dynamical re-
sponse in a population of neurons by assuming the synaptic noise to be a Gaussian
white noise. We found that when the external signal is encoded in the variance
of synaptic noise, the cutoff frequency is directly scaled with the onset rapidness
of individual neurons. But for a signal encoded in the mean input current, the
cutoff frequency is confined by the membrane time constant. Since in cortical
neurons the spike onset was observed to be very fast, we thus reached a quanti-
tative understanding for the high cutoff frequency for the noise coded signal. For
mean coded signals other factors apparently need to be taking into account.

In chapter 3 we more specially studied one mechanism that leads to a large
AP onset rapidness and considered the effect of a finite correlation time in the
synaptic noise. Cooperative opening of sodium channels has been proposed to
explain the fast onset observed in neurophysiological experiments. A directive
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consequence of this cooperativity is a step change in the open probability of
sodium channels, which can result in a step change in the spike generating current.
We incorporated this step change into our models and studied its role in the
linear response to a time-varying signal. We found that a step change in the
spike generating current can enhance the cutoff frequency and corresponds to
an effective increase of the onset rapidness. In the large step change limit, the
model was proved to reduce to the LIF model at the linear order. By taking into
account the temporal correlations in the synaptic noise, we found that the cutoff
frequency can be significantly enhanced towards high frequency especially when
the onset rapidness is large, and the confinement by the membrane time constant
for a current coded signal is broken. When a step change was included, significant
enhancement on the cutoff frequency in the colored noise case was observed even
for a small step size, although the effect is negligible for white noise. It was
previously found that in the LIF model the response function for a mean coded
signal does not attenuate at high cutoff frequency when the correlation time in
the synaptic noise is included. Our results thus showed that for current coded
signals the high cut-off frequency phenomenon can be understood if the AP onset
rapidness is large (including the case for a step change in the spike generating
current) and the correlation time in the synaptic noise is finite.

Thus our conclusions from this chapter are that if the AP onset rapidness
is very large, then the high cutoff frequency phenomenon can be understood by
its own, since real synaptic correlation is finite ranging from several milliseconds
to hundreds of milliseconds. If the onset rapidness is not so large, then the
cooperativity induced step change in the spike generating current may explain
the high cutoff frequency well. Although experiments suggest that the spike
onset is fast, what is measured in experiments is the slope in the phase plot
at some V̇ , say 10 mV/ms. It corresponds to a slope at the exponential spike
generating curve at that point, but does not give directly the effective AP onset
rapidness. In our work we define an effective time constant to describe the spike
initiation process.We approximated the spike initiation process using an effective
linear current with its slope measuring the ratio between the membrane time
constant and the effective spike initiation time constant and defined as the AP
onset rapidness.

In chapter 4 we constructed a general piecewise linear model which includes
the previously constructed models as limiting cases and are still analytically solv-
able. This model describes the subthreshold dynamics and spike initiation by two
separate parts and therefore can be used to study the influence of different parts
of the spike initiation process on the dynamical response. We find that the sub-
threshold part mainly influences the stationary response and has little influence
on the dynamical response. We further construct a 3-piece model which has the
same rheobase current and spike initiation threshold as the EIF model, while the
spike onset rapidness can be obtained by fitting the f − I curve. The resulted
3-piece model reproduces the f −I curve very well and in addition provides good
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agreement for the linear response. The fitted onset rapidness for cortical neurons
is 100, while for hippocortical interneurons, the resulted onset rapidness is 10.
The large onset rapidness for cortical neurons could easily give cutoff frequen-
cies at hundreds Hz for both fast and slow synaptic correlations. It is thus very
plausible to propose that the high onset rapidness underlies the surprising recent
experimental observation of high cut-off frequencies in cortical neurons.

In Chapter 5, we studied signal encoding in spatially extended neurons and
the functional consequence of the AIS initiation of APs. The axon was modeled as
a homogeneous cable with two compartments describing the AIS and the other
part of axon. The soma was taken as a point at the end of the cable with
a dynamics taking into account the leak current. By combing the linear cable
equation and the Gaussian random field assumption we calculated the correlation
functions along the axon and the spike-triggered average at soma when spikes are
triggered at the AIS. The spike-triggered variance accounted for only a small
fraction of the variability of membrane potential observed in experiments. We
calculated the linear response analytically when an oscillating signal is injected
into the soma and found that a small time constant at the AIS can enhance the
high frequency response significantly and increase the cutoff frequencies. Thus
an additional specialization of the AIS membrane may further augment high
frequency encoding in cortical neurons.

In one-variable spiking neuron models, an absorbing boundary is usually re-
quired and the membrane potential is reset there to some subthreshold value
to restart the temporal evolution. An absorbing boundary at a finite value of
membrane potential has been shown to produce severely artifactual behavior in
the dynamical response, e.g., a transmission function without attenuation at high
signal frequency. In the piecewise linear models that we have constructed in this
thesis, the linear response can be solved analytically and the artifacts induced
by the absorbing boundary can be separated out mathematically. The resulting
biophysically relevant part depends on the absorbing boundary only through a
frequency dependent phase lag, which reflects the soliton behavior of APs. The
resulting response function decays for high frequencies as a combination of power
law and exponential decay. One should note that in the nonlinear IF neuron mod-
els the absorbing boundary can be sent to infinity, which makes the transmission
function decay in general as power law. This decaying behavior, however, is de-
termined by the ratio between the spike generating current and its derivatives at
the limit v → ∞, i.e., by the dynamics at the position of the (infinite) bound-
ary. Whether an infinite threshold introduces some artifacts in the dynamical
response calls for further mathematical investigation.

The dynamical response of a nonlinear system is controlled by its intrinsic time
constants. In neuron system, the membrane time constant is a slow time constant
compared with the fast AP onset process which plays an important role in shaping
the dynamical response. We defined an effective fast time constant characterizing
the AP onset process by introducing a linear spike generating current. The AP
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onset rapidness is defined as the ratio between the slow and the fast time constant.
We provided a way to extract the AP onset rapidness for a type I neuron by fitting
a piecewise linear model to an EIF model. In this way we show clearly that the
cortical neurons has a very large AP onset rapidness which allows for high cutoff
frequencies in the linear response.

In summary, the works in this thesis provide a novel theoretical foundation
and machinery to study signal encoding in the neuronal population through ana-
lytically tractable spiking neuron models which include the AP initiation process
explicitly. Obviously there are some future direction and extension of the present
work. First, the analytical study of the high frequency behavior in the colored
noise case. This should provide a definite relation that governs the interaction of
the external and intrinsic time constants: the membrane time constant τm, the
effective time constant for the spike initiation process and the correlation time
of the synaptic noise. The functional effect of AIS in signal encoding also could
profit from further investigation using nonlinear multi-compartment models. It
is hoped that the exact and analytical results presented in this thesis will provide
rational guidance and help to quantitatively control such investigations.



Bibliography

Abramowitz, M. & Stegun, I. A. (1970). Handbook of Mathematical functions.
(New York: Dover).

Attwell, D. & Laughlin, S. B. (2001). An energy budget for signaling in the grey
matter of the brain. J Cereb Blood Flow Metab, 21, 1133–45.

Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W., & Richardson,
M. J. E. (2008). Dynamic I-V curves are reliable predictors of naturalistic
pyramidal-neuron voltage traces. J Neurophysiol, 99, 656–66.

Baranauskas, G., Mukovskiy, A., Wolf, F., & Volgushev, M. (2010). The deter-
minants of the onset dynamics of action potentials in a computational model.
Neuroscience, 167, 1070–90.

Boucsein, C., Tetzlaff, T., Meier, R., Aertsen, A., & Naundorf, B. (2009). Dy-
namical response properties of neocortical neuron ensembles: multiplicative
versus additive noise. J Neurosci, 29, 1006–10.

Bray, D. & Duke, T. (2004). Conformational spread: the propagation of allosteric
states in large multiprotein complexes. Annu Rev Biophys Biomol Struct, 33,
53–73.

Brunel, N., Chance, F. S., Fourcaud, N., & Abbott, L. F. (2001). Effects of
synaptic noise and filtering on the frequency response of spiking neurons. Phys
Rev Lett, 86, 2186–2189.

Bulsara, A. R., Lowen, S. B., & Rees, C. D. (1994). Cooperative behavior in the
periodically modulated wiener process: Noise-induced complexity in a model
neutron. Phys. Rev. E, 49, 4989–5000.

Burak, Y., Lewallen, S., & Sompolinsky, H. (2009). Stimulus-dependent correla-
tions in threshold-crossing spiking neurons. Neural Comput, 21, 2269–308.

Burns, B. D. & Webb, A. C. (1976). The spontaneous activity of neurones in the
cat’s cerebral cortex. Proc R Soc Lond B Biol Sci, 194, 211–23.



130 BIBLIOGRAPHY

Campbell, G. A. & Foster, R. M. (1961). Fourier integrals for practical applica-
tions. (Princeton, N.J: D. Van Nostrand).

Chow, C. C. & White, J. A. (1996). Spontaneous action potentials due to channel
fluctuations. Biophys J, 71, 3013–21.

Clark, B. D., Goldberg, E. M., & Rudy, B. (2009). Electrogenic tuning of the
axon initial segment. Neuroscientist, 15, 651–68.

Destexhe, A. & Paré, D. (1999). Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo. J Neurophysiol, 81, 1531–
47.

DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in auditory
cortex. J Neurosci, 23, 7940–9.

Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony.
Neural Comput, 8, 979–1001.

Fleidervish, I. A., Lasser-Ross, N., Gutnick, M. J., & Ross, W. N. (2010). Na+

imaging reveals little difference in action potential-evoked Na+ influx between
axon and soma. Nat Neurosci, 13, 852–60.

Fourcaud, N. & Brunel, N. (2002). Dynamics of the firing probability of noisy
integrate-and-fire neurons. Neural Comput, 14, 2057–110.

Fourcaud-Trocme, N. & Brunel, N. (2005). Dynamics of the instantaneous firing
rate in response to changes in input statistics. J Comput Neurosci, 18, 311–21.

Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How
spike generation mechanisms determine the neuronal response to fluctuating
inputs. J Neurosci, 23, 11628–40.

Fusi, S. & Mattia, M. (1999). Collective behavior of networks with linear (VLSI)
integrate-and-fire neurons. Neural Comput, 11, 633–52.

Geisler, C., Brunel, N., & Wang, X.-J. (2005). Contributions of intrinsic mem-
brane dynamics to fast network oscillations with irregular neuronal discharges.
J Neurophysiol, 94, 4344–61.

Gerstein, G. L. & Mandelbrot, B. (1964). Random walk models for the spike
activity of a single neuron. Biophys J, 4, 41–68.

Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients,
asynchronous states, and locking. Neural Comput, 12, 43–89.

Grubb, M. S. & Burrone, J. (2010). Activity-dependent relocation of the axon
initial segment fine-tunes neuronal excitability. Nature, 465, 1070–4.



BIBLIOGRAPHY 131

Hedstrom, K. L. & Rasband, M. N. (2006). Intrinsic and extrinsic determinants
of ion channel localization in neurons. J Neurochem, 98, 1345–1352.

Higgs, M. H. & Spain, W. J. (2009). Conditional bursting enhances resonant
firing in neocortical layer 2-3 pyramidal neurons. J Neurosci, 29, 1285–99.

Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J Physiol,
117, 500–544.

Hodgkin, A. L. & Rushton, W. A. H. (1946). The electrical constants of a
crustacean nerve fibre. Proc R Soc Med, 134, 444–79.

Honeycutt, R. L. (1992a). Stochastic runge-kutta algorithms. i. white noise. Phys.
Rev. A, 45, 600–603.

Honeycutt, R. L. (1992b). Stochastic runge-kutta algorithms. ii. colored noise.
Phys. Rev. A, 45, 604–610.

Howard, A., Tamas, G., & Soltesz, I. (2005). Lighting the chandelier: new vistas
for axo-axonic cells. Trends Neurosci, 28, 310–6.

Huang, M. (2009). Spatial-temporal dynamics of patten formation in the cerebral
cortex. Ph.D. thesis, University of Göttingen, Germany.

Inda, M. C., DeFelipe, J., & Munoz, A. (2006). Voltage-gated ion channels in the
axon initial segment of human cortical pyramidal cells and their relationship
with chandelier cells. Proc Natl Acad Sci USA, 103, 2920–2925.

Jung, P. (1994). Threshold devices: Fractal noise and neural talk. Phys. Rev. E,
50, 2513–2522.

Knight, B. W. (1972a). Dynamics of encoding in a population of neurons. J Gen
Physiol, 59, 734–766.

Knight, B. W. (1972b). The relationship between the firing rate of a single neuron
and the level of activity in a population of neurons. experimental evidence for
resonant enhancement in the population response. J Gen Physiol, 59, 767–778.

Kole, M. H., Ilschner, S. U., Kampa, B. M., Williams, S. R., Ruben, P. C.,
& Stuart, G. J. (2008). Action potential generation requires a high sodium
channel density in the axon initial segment. Nat Neurosci, 11, 178–186.

Kole, M. H. P. & Stuart, G. J. (2008). Is action potential threshold lowest in the
axon? Nat Neurosci, 11, 1253–5.



132 BIBLIOGRAPHY

Köndgen, H., Geisler, C., Fusi, S., Wang, X. J., Lüscher, H. R., & Giugliano, M.
(2008). The dynamical response properties of neocortical neurons to temporally
modulated noisy inputs in vitro. Cereb Cortex, 18, 2086–97.

Kuba, H., Ishii, T. M., & Ohmori, H. (2006). Axonal site of spike initiation
enhances auditory coincidence detection. Nature, 444, 1069–72.

Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates Na+

channel distribution at the axon initial segment. Nature, 465, 1075–8.

Lapicque, L. (1907). Recherches quantitatives sur l’excitation électrique des nerfs
traitée comme une polarisation. J. Physiol. (Paris), 9, 620–635.

Laughlin, S. B. & Sejnowski, T. J. (2003). Communication in neuronal networks.
Science, 301, 1870–4.

Lennie, P. (2003). The cost of cortical computation. Curr Biol, 13, 493–7.

Lindner, B. & Schimansky-Geier, L. (2001). Transmission of noise coded versus
additive signals through a neuronal ensemble. Phys. Rev. Lett., 86, 2934–2937.

Liu, Y. & Dilger, J. P. (1993). Application of the one- and two-dimensional Ising
models to studies of cooperativity between ion channels. Biophys J, 64, 26–35.

Longtin, A. (1993). Stochastic reasonance in neuron models. J Stat Phys, 70,
309–27.

Margrie, T. W., Brecht, M., & Sakmann, B. (2002). In vivo, low-resistance, whole-
cell recordings from neurons in the anaesthetized and awake mammalian brain.
Pflugers Arch, 444, 491–8.

Marx, S. O., Ondrias, K., & Marks, A. R. (1998). Coupled gating between
individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science,
281, 818–821.

McCormick, D. A., Shu, Y., & Yu, Y. (2007). Neurophysiology: Hodgkin and
huxley model–still standing? Nature, 445, 1–2.

Meeks, J. P. & Mennerick, S. (2007). Action potential initiation and propagation
in ca3 pyramidal axons. J Neurophysiol, 97, 3460–3472.

Milshtein, G. N. & Tret’yakov, M. V. (1994). Numerical solution of differential
equations with colored noise. J. Stat. Phys., 77, 691–715.

Molina, M., Barrera, F., Fernandez, A., Poveda, J., Renart, M., Encinar, J.,
Riquelme, G., & Gonzalez-Ros, J. M. (2006). Clustering and coupled gating
modulate the activity in KcsA, a potassium channel model. J. Biol. Chem.,
281, 18837–18848.



BIBLIOGRAPHY 133

Naundorf, B. (2005). Dynamics of population coding in the cortex. Ph.D. thesis,
University of Göttingen, Germany.

Naundorf, B., Geisel, T., & Wolf, F. (2005). Action potential onset dynamics
and the response speed of neuronal populations. J. Comput. Neurosci., 18,
297–309.

Naundorf, B., Wolf, F., & Volgushev, M. (2006). Unique features of action po-
tential initiation in cortical neurons. Nature, 440, 1060–3.

Naundorf, B., Wolf, F., & Volgushev, M. (2007). Neurophysiology: Hodgkin and
huxley model - still standing? (reply). Nature, 445, E2–E3.

Palmer, L. M. & Stuart, G. J. (2006). Site of action potential initiation in layer
5 pyramidal neurons. J Neurosci, 26, 1854–1863.

Plesser, H. E. & Geisel, T. (1999). Markov analysis of stochastic resonance in a
periodically driven integrate-and-fire neuron. Phys. Rev. E, 59, 7008–7017.

Populin, L. C. & Yin, T. C. (1998). Behavioral studies of sound localization in
the cat. J Neurosci, 18, 2147–60.

Pressley, J. & Troyer, T. W. (2009). Complementary responses to mean and
variance modulations in the perfect integrate-and-fire model. Biol Cybern,
101, 63–70.

Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity.
Exp Neurol, 1, 491–527.

Rall, W. (1977). Core conductor theory and cable properties of neurons. In Kan-
del, E.R., J.M. Brookhardt, and V.M. Mountcastle eds. Handbook of physiol-
ogy, cellular biology of neurons. (Bethesda, MD: American Physiology Society).

Risken, H. (1984). The Fokker-Planck equation: Methods of solution and appli-
cations. (Springer Verlag).

Saito, A., Inui, M., Radermacher, M., Frank, J., & Fleischer, S. (1988). Ultra-
structure of the calcium release channel of sarcoplasmic reticulum. J Cell Biol,
107, 211–219.

Shadlen, M. N. & Newsome, W. T. (1998). The variable discharge of cortical
neurons: implications for connectivity, computation, and information coding.
J Neurosci, 18, 3870–96.

Shu, Y., Hasenstaub, A., Duque, A., Yu, Y., & McCormick, D. A. (2006). Mod-
ulation of intracortical synaptic potentials by presynaptic somatic membrane
potential. Nature, 441, 761–5.



134 BIBLIOGRAPHY

Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., & Tsodyks, M. (2004).
Dynamics of population rate codes in ensembles of neocortical neurons. J
Neurophysiol, 91, 704–9.

Softky, W. R. & Koch, C. (1993). The highly irregular firing of cortical cells
is inconsistent with temporal integration of random EPSPs. J Neurosci, 13,
334–50.

Somogyi, P., Freund, T., & Cowey, A. (1982). The axo-axonic interneuron in the
cerebral cortex of the rat, cat and monkey. Neuroscience, 7, 2577–607.

Stanford, T. R., Shankar, S., Massoglia, D. P., Costello, M. G., & Salinas, E.
(2010). Perceptual decision making in less than 30 milliseconds. Nat Neurosci,
13, 379–85.

Stuart, G., Spruston, N., Sakmann, B., & Häusser, M. (1997). Action poten-
tial initiation and backpropagation in neurons of the mammalian cns. Trends
Neurosci, 20, 125–131.

Tchumatchenko, T., Malyshev, A., Geisel, T., Volgushev, M., & Wolf, F. (2010).
Correlations and synchrony in threshold neuron models. Phys Rev Lett, 104,
058102.

Tuckwell, H. C. (1988). Introduction totheoretical neurobiology, Volume I and
II. (Cambridge: Cambridge University Press).

Tuckwell, H. C. & Walsh, J. B. (1983). Random currents through nerve mem-
branes. I. Uniform poisson or white noise current in one-dimensional cables.
Biol Cybern, 49, 99–110.

Tuckwell, H. C., Wan, F. Y., & Wong, Y. S. (1984). The interspike interval of a
cable model neuron with white noise input. Biol Cybern, 49, 155–67.

Tuckwell, H. C., Wan, F. Y. M., & Rospars, J.-P. (2002). A spatial stochastic
neuronal model with Ornstein-Uhlenbeck input current. Biol Cybern, 86, 137–
45.

Undrovinas, A., Fleidervish, I., & Makielski, J. (1992). Inward sodium current at
resting potentials in single cardiac myocytes induced by the ischemic metabolite
lysophosphatidylcholine. Circ. Res., 71, 1231–1241.

VanRullen, R. & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid
visual categorisation of natural and artifactual objects. Perception, 30, 655–68.

Wan, F. Y. & Tuckwell, H. C. (1979). The response of a spatially distributed
neuron to white noise current injection. Biol Cybern, 33, 39–55.



BIBLIOGRAPHY 135

Wang, X. J. & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in
a hippocampal interneuronal network model. J Neurosci, 16, 6402–13.

Wolf, F. & Geisel, T. (1998). Spontaneous pinwheel annihilation during visual
development. Nature, 395, 73–8.

Yu, Y., Shu, Y., & McCormick, D. A. (2008). Cortical action potential back-
propagation explains spike threshold variability and rapid-onset kinetics. J
Neurosci, 28, 7260–7272.



136 BIBLIOGRAPHY



Acknowledgements

First I would like to thank my advisor Prof. Fred Wolf for leading me into the
fascinating field of theoretical neuroscience. His enthusiasm and deep insight for
science have guided me through the thesis research and will continue to be my
source of inspiration and courage.

Thanks to Prof. Tobias Moser and Prof. Eberhard Bodenschatz for being
my thesis committee members and for their suggestions and discussions on the
research project. Thanks to Prof. Kree Reiner for being the second referee of
my thesis and Prof. Marc Timme and Dr. Alexander Gail for being in my
examination board.

Thanks to Prof. Theo Geisel for heading the vigorous department and making
the wonderful dynamical symposium possible. Thanks to Prof. Michael Gutnick
and Prof. Ilya Fleidervish for the warmly hospitality which makes the staying in
Israel a memorial experience and for the discussion on my work. Thanks to Prof.
Benjamin Lindner, Prof. Elisha Moses, Dr. Demian Battaglia and Dr. Tzvetomir
Tzvetanov for suggestions and comments on my work.

Thanks to my colleagues Min, Tatjana, Mike, Pinar, Georg, Demian, Andreas,
Raoul, Wolfgang, Anna, Michael, Lars, Lishma, Nikolai, and many others for the
discussion and warm help in scientific and non-scientific problems.

Thanks to Corrinna Trautsch, Kathraina Jeremias, Tanja Gindela, Regina
Wunderlich and Dr. Tobias Niemann for administrative support. Thanks to
York-Fabian Beensen and Georg Martius for the kind help related to computers.

Thanks to Min, Tzvetomir, Jin for spending so much wonderful time together.
Thanks to Angelina and Christa for the kind help.

Finally, I would like to thank my parents for the support in the past years.
Thanks to my wife Xuejie, for giving a new meaning to my life and unlimited
supporting.



138 Curriculum Vitae



Curriculum Vitae

Forename: Wei
Surname: Wei
Date of Birth: Jun. 08, 1979
Place of Birth : Liaoning, P. R. China
Citizenship: China

Address: Am Fassberg. 17
37077, Göttingen

Phone: +49(0)17664818884
Email: wei@nld.ds.mpg.de

Education

2007-2011 PhD study in Neurosciences,
Max-Planck-Institute for Dynamics & Self-organization, Göttingen
Advisor: Prof. Fred Wolf

2002-2007 Ph.D in Theoretical Physics,
Peking University
Advisors: Prof. Da-Hai Lu and Prof. Shi-Lin Zhu

1998-2002 B.E in Aeronautic Engineering,
Shenyang Institute of Aeronautic Technology

Teaching Experience

2008-2009 Teaching assistant for Mathematical Physics II,
Department of Physics, Göttingen University

2004-2005 Teaching assistant for Quantum Mechanics (A and B),
Department of Physics, Peking University



140 Curriculum Vitae

Publications

On High Energy Physics

1. W. Wei, X. Liu, and Shi-Lin Zhu, D wave Heavy Mesons, Phys. Rev. D 75
(2007) 014013.

2. W. Wei, P-Z Huang and Shi-Lin Zhu, Strong decays of DsJ(2317) and
DsJ(2460) , Phys. Rev. D 73 (2006) 034004.

3. W. Wei, L. Zhang and Shi-Lin Zhu, The possible JPCIG = 2++2+ state
X(1600), Int.J.Mod.Phys. A21 (2006) 4617.

4. W. Wei, P-Z. Huang, H-X Chen and Shi-Lin Zhu, Spin 3
2

pentaquarks,
JHEP 0507 (2005) 015.

On Neuroscience

1. W. Wei and F. Wolf, Spike Onset Dynamics and Response Speed in Neu-
ronal Populations, Phys. Rev. Lett. 106 (2011) 088102.

2. W. Wei and F. Wolf, The bandwidth of temporal population coding is set
by the dynamics of action potential initiation, in preparation.

3. W. Wei and F. Wolf, An analytical tractable model for dynamic action
potential encoding in spatially extended neurons, in preparation.

4. X-J. Chen, W. Wei, F. Wolf and D. Battaglia, Interacting subcircuits in a
primary visual cortex column, in preparation


	Contents
	List of Figures
	Introduction
	Spike onset dynamics and population response
	An analytically solvable model with an unstable fixed point
	Stationary solutions
	Linear responses and relation to the LIF model
	Linear response to a current coded signal
	Linear response to a noise coded signal
	Evaluation of the results
	Relation to the LIF model
	Step response

	Large vb limit and separation of boundary induced artifacts
	Large vb limit
	Threshold models and boundary induced artifacts
	Separation of boundary induced artifacts

	Low rate limit
	High frequency behavior: r and fc
	r=0 case: a new kind of perfect integrator
	Discussion
	Appendix: parabolic cylinder functions 

	Toward high cutoff frequencies for current coded signals
	Step change in sodium influx and its modeling
	Stationary solutions
	Linear responses: directly solving the FPE
	Linear response to a current coded signal
	Linear response to a noise coded signal

	Large vb limit and separation of boundary induced artifacts
	Linear response: limit behavior
	Large r limit and large  limit
	Large  limit
	High frequency behavior: effect of the step change with white noise

	Effect of correlation time s
	Modeling correlated synaptic noise
	Stationary firing rate 0
	Interplay of s and r without a step change
	Interplay of s and 

	Discussion

	A general piecewise linear model
	Description of the model
	Stationary solutions
	Linear responses
	Linear response to a current coded signal
	Linear response to a noise coded signal
	r1=0 case

	Limit behaviors
	Large  limit
	v1v0 limit: relation to the previous models
	Large vb limit

	Influence of details of AP generation on the dynamical response
	Influence of sub-threshold dynamics
	Influence of spike initiation dynamics

	Fitting the EIF model with a 3-piece model
	Signal encoding through barrier penetration in a bistable system
	Discussion: membrane dynamics and dynamical response
	Appendix

	Dynamical AP encoding in spatially extended neurons
	The cable equation
	Membrane potential as a Gaussian random field 
	Transfer function for a homogeneous cable
	Simple ball-and-stick model
	Two-compartment cable

	Spike-triggered average
	Linear response
	Two coupled Gaussian neurons
	Two-compartment cable
	Relation between spike-triggered average and linear response

	Discussion
	Appendix

	Summary and Perspective
	Bibliography
	Acknowledgements
	Curriculum Vitae

