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Introduction  

 

Introduction 

 

Every day we use movements to interact with our environment. Even a relatively 

simple movement, such as reaching to a target requires the integration of multiple 

sensory signals from different modalities. Furthermore, with the same sensory input 

our actions and the goals of such actions are influenced by the context of the current 

situation (e.g. thirst or hunger) as well.  

 

 This thesis deals with the transformation of sensory information into goal directed 

reach movement plans in the brain and the influences of the contextual information on 

reach planning. It consists of five research articles dealing with the different aspects 

of the topic. Two different but complimentary approaches were used to investigate 

reach planning and how it is influenced by certain task rules or perturbations of the 

environment. First, I measured the spiking activity of single neurons in two brain 

areas of macaque rhesus monkeys, the dorsal premotor cortex (PMd) and the parietal 

reach region (PRR), both known to be involved in the planning of reach movements. 

The macaque rhesus monkey provides a good model organism as its reach capabilities 

are highly developed and similar to those of the human. Further, its cognitive abilities 

allow investigating influences of cognitive factors such as task rules, on reaching 

behavior and underlying brain function. Second, psychophysical methods were used 

to measure behavioral parameters of human reaching and motor learning behavior.  

 

The thesis is organized in three chapters dealing with the cortical representations of 

reach plans, influence of reference frames on reach plans, and reach adaptation, 

respectively. At the beginning of each chapter a brief introduction provides a 

summary about the current literature and is followed by the original manuscripts.  

 

The first chapter of the thesis deals with neuronal encoding of reach planning and 

consists of three original research articles and manuscripts. In the first manuscript, we 

investigate how spatial tuning properties of neurons in PMd and PRR are influenced 

by task rules and whether the neural encoding of the reach goal differs when the 

physical reaches are identical but the task rule is different. The second manuscript 

focuses on inter- and intra-areal response latencies and how these are modulated by 
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task rules. The relative timing of reach goal encoding between PMd and PRR can be 

helpful in parsing out the direction of information flow within the frontoparietal reach 

network. The third manuscript explores situations in which the neuronal ensembles 

need to encode several equally likely possibilities instead of one pre-defined reach 

goal. Here, we characterize how the neurons in PMd and PRR respond to such 

multiple potential motor goals, and which of these available options are represented in 

these brain areas.  

 

The second chapter deals with reference frames, which were investigated with 

psychophysical methods in humans and summarized in one manuscript. Unlike 

electrophysiology, psychophysical studies cannot yield information about neural 

activity in specific brain areas but can provide insights into possible neural 

mechanisms influencing behavioral parameters. The manuscript investigates how the 

relative position of a spatial instruction stimulus and the reach goal with respect to the 

eye and the hand influences behavioral parameters of reaching. Depending on whether 

the hand, eye, or a combination of both is used as a reference point, parameters such 

as reaction times and reach precision could be affected by the different neuronal 

processes during a reach.  

 

The third chapter deals with reach adaptation as a form of motor learning. One 

manuscript analyzes reach adaptation and generalization in a human psychophysical 

study. Learning to correct for a disruption at one point in space transfers to other 

locations, and a study of the pattern of such transfers provides clues about how such 

kind of learning is implemented in the brain.  
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I. Frontoparietal reach network 

I.I. Premotor and parietal cortex 

The ability for goal-directed reaching is highly developed in primates, including 

humans. Every day we execute hundreds of reach movements which are aimed at 

specific objects. Normally, these movements are guided by vision, but we are also 

able to reach to auditory or somatosensory defined targets. For those goal-directed 

movements multimodal sensory information has to be combined in order to compute 

the position of objects that serve as targets for goal-directed movements. In a classical 

feed-forward view visual information about the location of object is processed via the 

posterior parietal cortex as part of the dorsal processing pathway and transmitted to 

the frontal premotor cortex. The premotor cortex in turn, projects to the primary 

motor cortex (M1). While the parietal areas were thought to deal with multisensory 

integration (for review see Colby and Goldberg, 1999), combining multimodal 

sensory inputs to a visuo-spatial map, premotor and motor cortex were known to deal 

with the planning, initiation and directing of voluntary movements (Godschalk et al., 

1981; Weinrich and Wise, 1982; Wise and Mauritz, 1985). 

However, during the last years it has been shown that the parietal cortex itself is 

important for movement planning and decision making. The involvement of parietal 

cortex in movement planning was shown in electrophysiology studies in monkeys 

(e.g.: Mountcastle et al., 1975; Gnadt and Andersen, 1988), in human imaging studies 

(Grafton et al., 1992; Connolly et al., 2000; Connolly et al., 2003; Medendorp et al., 

2005) as well as in lesion studies. Patients with a damage of the posterior parietal 

cortex (PPC), besides other possible deficits, were shown to suffer from deficits in 

localization of objects leading to problems in reaching (optic ataxia: Balint, 1909; 

Rondot, 1977), and from the inability to plan movements (apraxias: Geshwind & 

Damasio, 1985) and to form the shape of the hand appropriately in preparation to 

grasp an object (Perenin and Vighetto, 1988; Goodale and Milner, 1992). These 

studies suggest that PPC is involved in integrating multisensory spatial information 

for the planning of goal directed movements. The PPC and the premotor cortex, 

which is located in the frontal cortex, form a highly interconnected network for 

movement planning (Pandya and Kuypers, 1969; Jones and Powell, 1970; Kurata, 

1991; Johnson et al., 1996; Caminiti et al., 1999; Marconi et al., 2001; Tanne-Gariepy 

et al., 2002; Battaglia-Mayer et al., 2003). Within this network, various sub-areas are 
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specialized for different effectors (Snyder et al., 1997; Connolly et al., 2000; 

Rushworth et al., 2001). For example, the lateral intraparietal area (LIP), which lies at 

the lateral part of the intraparietal sulcus, and the anatomical connected frontal eye 

fields (FEF) in the rostral bank of the arcuate sulcus are specialized for the planning 

of eye movements (Bruce and Goldberg, 1985; Bruce et al., 1985; MacAvoy et al., 

1991; Mazzoni et al., 1996; Snyder et al., 1997; Snyder et al., 2000). Similarly, area 

AIP in the parietal and F5 in the ventral premotor cortex are specialized for hand 

(grasping) movements. Firing rate in neurons in these areas encode different grip 

types (e.g. power grip versus precision grip) as well as the wrist orientation of the 

hand (Rizzolatti et al., 1987; Rizzolatti et al., 1988; Sakata and Taira, 1994; Baumann 

et al., 2009) prior to the upcoming movement. Reach movement planning, in contrast, 

is encoded by the dorsal premotor cortex (PMd) and the functionally defined parietal 

reach region (PRR) (Weinrich et al., 1984; Wise et al., 1986; Kurata, 1989; Kurata, 

1993; Snyder et al., 1997; Batista et al., 1999; Colby and Goldberg, 1999; Connolly et 

al., 2000; Rushworth et al., 2001; Calton et al., 2002). Anatomically, PRR overlaps 

mainly with the medial intraparietal area (MIP) and might include parts of area V6a 

and area 5. The following sections will focus on the properties of PMd and PRR since 

the electrophysiological recordings reported in the first part of this thesis have been 

conducted in these two areas. Figure 1 shows a schematic surface plot of a macaque 

monkey brain and MRI scans from one of the monkeys in which the experiments were 

done.  

PRR

PMd

frontal sagittal axial

PRR

M1PMd

PFC

IPS

 

 

 

Figure 1: Right: Schematic surface plot a macaque monkey brain. The blue patches label the two 

brain areas, PMd and PRR, in which electrophysiological investigations were done. Note that for 

PRR the surface is labeled even though it lies within the intraparietal sulcus. Left: MRI scans from 

monkey A. Within the slices recording positions for PRR (top row) and PMd (bottom row) are 

marked. PFC: prefrontal cortex; PMd: dorsal premotor cortex; M1: primary motor cortex; IPS: 

intraparietal sulcus; PRR: parietal reach region 
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I.II. Anatomical connections 

The parietal occipital area (PO), which lies in the rostral bank of the parieto-occipital 

sulcus deep in the medial wall of the hemisphere, is the input structure for visual 

information into PRR (i.e. MIP). Area PO itself receives input from the primary visual 

cortex (Colby et al., 1988) and is reciprocally connected with PRR (Colby et al., 

1988; Blatt et al., 1990). Anatomical studies of retrograde tracer injections in PMd 

show that it is robustly and reciprocally connected with PRR (Pandya and Kuypers, 

1969; Jones and Powell, 1970; Kurata, 1991; Johnson et al., 1996; Caminiti et al., 

1999; Petrides and Pandya, 1999; Marconi et al., 2001; Tanne-Gariepy et al., 2002; 

Battaglia-Mayer et al., 2003). PMd itself projects, beside other connections, to the 

primary motor cortex as well as direcly to the spinal cord (Rizzolatti and Luppino, 

2001). Note that the described connections are not the complete projections of PRR 

and PMd, but just meant as an overview.  

 

I.III. Motor planning activity 

Neurons in PMd and PRR are thought to be involved in reach movement planning. 

Electrophysiology studies in monkeys have shown that in both areas neurons are 

spatially selective for the direction of an upcoming reach. The firing rate of a single 

neuron is modulated by the direction of the upcoming reach, with reaches in the 

preferred direction of the neuron leading to increases in its firing rate. The response of 

the same neuron is diminished if the monkey is preparing a reach in the opposite 

direction whereas it responds at some intermediate level if the upcoming reach is in 

orthogonal directions. The activity in PMd and PRR thought to relate to motor 

planning rather than execution, because the neurons can become active up to several 

seconds before the actual movement starts. In so-called delay-reach tasks the neuron 

gets active - with some latency - as soon as the monkey knows the reach goal even if 

it has to withhold its movements up to several seconds (e.g.: Gnadt and Andersen, 

1988; Snyder et al., 1997; Batista and Andersen, 2001). However, those tasks do not 

allow differentiating whether the activity of the neurons does really reflect movement 

planning or rather reflects the visual memory encoding the spatial location of the 

instruction stimulus. The dissociation between visual memory and motor goal tuning 

is possible with an anti-reach task (Crammond and Kalaska, 1994; Gail and Andersen, 
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2006). In these tasks the monkey sees a peripheral spatial instruction stimulus and, 

depending on the current valid task rule, it has to reach, starting from a central 

position, either toward this spatial cue or opposite to it. If a neuron’s response varies 

with the position spatial instruction stimulus regardless of whether it has to reach 

toward or opposite to it, it would indicate that the neuron reflects visual memory. If, 

in contrast, a neuron’s response varies with the movement direction, irrespective of 

whether the direction is defined by direct reach or anti-reach instruction that would 

indicate that the response of the neuron is related to the direction of the reach and the 

neuron is therefore tuned for the motor goal.  

 

I.IV. Context integration 

In order to define a reach goal it is not sufficient to gather all spatial information 

about the objects in our environment. In our daily life, we often encounter several 

objects of which we interact with only selected ones. Internal states can influence our 

decision about a reach goal. At a table, we choose a glass of water when we are thirty 

but a sandwich when we are hungry. In a different situation, abstract learned rules 

might decide our motor behavior. We know the visuomotor association of stopping at 

a red traffic light, and walking at a green one. The information about the context, 

which might be an internal state or a learned visuomotor association, has to be 

integrated with the spatial information about objects in the environment to define the 

final reach goal/motor plan. How and where does this integration happen? 

 

It is known that neurons in the frontal areas of the cortex are selective for task rules 

(Boussaoud and Wise, 1993; Asaad et al., 1998; Wallis et al., 2001; Wallis and Miller, 

2003). This was e.g. tested in a task (match-to-sample task) where a monkey was 

presented sequentially with images of two objects and depending on the current task 

rule had to release a lever either if the two objects were the same (same-rule) or if 

they were different (different-rule). Neurons in the prefrontal cortex (PFC), rostral to 

the arcuate sulcus, were selective for these task rules. For example, they responded 

whenever the same-rule was valid but not for the different-rule, or vice versa (Hoshi 

et al., 1998; Wallis et al., 2001; Johnston and Everling, 2006). Similarly, PFC neurons 

were shown to represent arbitrary visuomotor associations in different tasks (Asaad et 

al., 1998; White and Wise, 1999; Everling and Desouza, 2005) Furthermore, human 
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imaging data also show activation of PFC during learning of arbitrary cue-response 

associations (Boettiger and D'Esposito, 2005; Hanakawa et al., 2006). 

Within the fronto-parietal reach network, neurons even though mainly selective for 

the direction of an upcoming movement, are also modulated by a certain context or a 

task rule. Neurons in the premotor cortex e.g. respond differently if different cues 

instruct the same movement or, if different rules instruct the same behavioral response 

(Boussaoud and Wise, 1993) and they also show selectivity to task rules in the above 

mentioned match-to-sample task (Wallis and Miller, 2003). More recently, it has been 

shown that a population of neurons in the PPC also encodes the currently valid task 

rule (Stoet and Snyder, 2004; Gail and Andersen, 2006; Gail et al., 2009). In the 

above mentioned anti-reach tasks, for both PMd and PRR (Crammond and Kalaska, 

1994; Gail and Andersen, 2006) it has been shown that during a delay, in which the 

monkey already knows the reach goal but is not allowed to execute the movement, 

neurons indeed encode the upcoming motor goal and not just the position of the 

spatial cue. This is true for nearly all spatially tuned neurons and shows that at this 

processing level the spatial information is already integrated with the contextual 

information. However, some of those neurons, if analyzed during an earlier time 

window after the onset of the cue, represent the spatial position of the cue instead of 

the motor goal. Those neurons therefore show a dynamic visuomotor tuning, i.e. they 

are first visually tuned but after a while, when the context information is integrated, 

the same neuron switches its representation and the tuning now encodes the motor 

goal. These examples show evidence that within the fronto-parietal reach network the 

integration of spatial information with the contextual information is achieved. But 

where within this network does the integration of the context information with the 

spatial information about object happen, such that context dependent goal-directed 

reaching is possible? 

Within the fronto-parietal reach network the anatomical position of the premotor 

cortex makes it an ideal candidate as an interface for integrating the spatial sensory 

information about reach goal positions with contextual information. As mentioned 

above PMd receives projections from the dorsal pathway via PRR (Pandya and 

Kuypers, 1969; Jones and Powell, 1970; Kurata, 1991; Johnson et al., 1996; Caminiti 

et al., 1999; Marconi et al., 2001; Tanne-Gariepy et al., 2002; Battaglia-Mayer et al., 

2003) and from the frontal cortex (Barbas and Pandya, 1987; Lu et al., 1994; Wise et 

al., 1997). In the classical feed forward view, PMd would combine the spatial 
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information received via the parietal cortex with the context information received via 

the prefrontal cortex into a motor goal. This information of the motor goal would then 

be sent to M1, which is the output stage to the spinal cord. If this strict feed-forward 

view is true, why then do we see contextual tuning and modulation also in PRR, 

which has no direct connection to M1? One interpretation for parietal motor goal 

tuning comes from a theoretical approach (Brozovic et al., 2007), which suggested 

that a feedback projection from motor output structures to sensory motor layers 

instead of classical feed-forward projections mediates the visuomotor transformation. 

The integration of the context within this network is achieved by gain-field 

mechanisms. In such a mechanism the directional tuning of a neuron would be 

constant for different contexts (i.e. a given neuron would always respond best if the 

upcoming reach is to the right), but the overall strength of the response would change 

with the context (i.e. the same neuron would be more active if the upcoming (e.g. 

rightward) reach is directed towards a spatial cue than if the reach is directed 

opposite). In the first research article of this thesis, we tested this prediction of the 

model for the visuomotor transformations in the fronto-parietal reach network. A 

further prediction from the model is that the motor goal should be represented earlier 

in PMd than in PRR. The second research article of this PhD-thesis tested this 

prediction. Furthermore it investigates the influence of spatial remapping rules as well 

as motor commands on motor goal latencies within PMd and PRR.  
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Behavioral/Systems/Cognitive

Implementation of Spatial Transformation Rules for
Goal-Directed Reaching via Gain Modulation in Monkey
Parietal and Premotor Cortex

Alexander Gail, Christian Klaes, and Stephanie Westendorff
Bernstein Center for Computational Neuroscience, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany

Planning goal-directed movements requires the combination of visuospatial with abstract contextual information. Our sensory environ-
ment constrains possible movements to a certain extent. However, contextual information guides proper choice of action in a given
situation and allows flexible mapping of sensory instruction cues onto different motor actions. We used anti-reach tasks to test the
hypothesis that spatial motor-goal representations in cortical sensorimotor areas are gain modulated by the behavioral context to achieve
flexible remapping of spatial cue information onto arbitrary motor goals. We found that gain modulation of neuronal reach goal
representations is commonly induced by the behavioral context in individual neurons of both, the parietal reach region (PRR) and the
dorsal premotor cortex (PMd). In addition, PRR showed stronger directional selectivity during the planning of a reach toward a directly
cued goal (pro-reach) compared with an inferred target (anti-reach). PMd, however, showed stronger overall activity during reaches
toward inferred targets compared with directly cued targets. Based on our experimental evidence, we suggest that gain modulation is the
computational mechanism underlying the integration of spatial and contextual information for flexible, rule-driven stimulus–response
mapping, and thereby forms an important basis of goal-directed behavior. Complementary contextual effects in PRR versus PMd are
consistent with the idea that posterior parietal cortex preferentially represents sensory-driven, “automatic” motor goals, whereas frontal
sensorimotor areas are stronger engaged in the representation of rule-based, “inferred” motor goals.

Introduction
The same visual scene can lead to very different actions taken
depending on the behavioral context. In a real boxing match, the
face of your opponent is the direct goal of your arm movement. In
a show fight, the face is not the goal of the movement but still
guides it. Planning a reach toward a visual target object or infer-
ring a reach goal from the position of an object according to a
spatial transformation rule requires context-specific sensorimo-
tor transformations (Gail and Andersen, 2006). Here, we test how
the frontoparietal reach network flexibly creates context-specific
motor-goal representations.

Spatially flexible cue–response mapping, as in a pro-reach/
anti-reach task, requires integration of spatial sensory informa-
tion with the context. Computational models suggest that this
flexibility can be achieved with contextual gain modulation of
spatially selective neurons (Salinas, 2004; Brozović et al., 2007),
equivalent to gain field mechanisms suggested for multisensory
integration (Andersen et al., 1985; Zipser and Andersen, 1988;
Boussaoud et al., 1993, 1998; Brotchie et al., 1995; Galletti et al.,

1995; Salinas and Abbott, 1996; Snyder et al., 1998; Salinas and
Thier, 2000). If the idea of gain modulation for space– context
integration holds true, then spatially selective neurons in primate
cortical sensorimotor areas, like the parietal reach region (PRR)
and the dorsal premotor cortex (PMd), should be upregulated
and downregulated by the behavioral context.

Spatial sensory information presumably reaches the frontopa-
rietal sensorimotor network via the posterior parietal cortex
(Colby et al., 1988; Blatt et al., 1990; Marconi et al., 2001). Asso-
ciative goal selection criteria or arbitrary transformation rules are
believed to exert their influence on motor planning via prefrontal
and premotor areas (Rushworth et al., 1997; Wise and Murray,
2000; Toni et al., 2001; Wallis and Miller, 2003). Both PMd and
PRR have been shown to express sustained spatially selective
activity during movement planning (Weinrich and Wise,
1982; Andersen et al., 1985; Boussaoud and Wise, 1993;
Kalaska, 1996; Wise et al., 1997; Andersen and Buneo, 2002;
Cisek, 2007), predominantly representing motor goals (di Pel-
legrino and Wise, 1993; Crammond and Kalaska, 1994; Gail
and Andersen, 2006). We compare contextual modulations in
PRR and PMd to test whether the two areas represent inferred
versus directly cued motor goals differently. Posterior parietal
cortex, for example, was hypothesized to mainly represent fast
“automatic” motor goals (Desmurget et al., 1999; Pisella et al.,
2000), as in pro-reaches.

We tested whether and how motor-goal representations in
PRR and PMd are modulated by context-specific spatial transfor-
mation rules during reach planning. We used a memory-guided

Received March 5, 2009; revised June 13, 2009; accepted June 16, 2009.
This work was supported by the Federal Ministry for Education and Research (Germany) Grants 01GQ0433 and
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pro-reach/anti-reach task with partial precuing to investigate
contextual modulations that were either independent or depen-
dent of the spatial tuning. We tested separately the effect of con-
text on either the response amplitude or the directional selectiv-
ity. Our results are consistent with the idea of space– context
integration by a gain modulation mechanism. Additionally, we
found complementary effects of context on motor-goal represen-
tations in PRR and PMd, which indicate different mutual roles of
the two areas in context-specific visuomotor integration and
motor-goal representation.

Materials and Methods
Tasks and control of behavioral parameters. Two male rhesus monkeys
(Macaca mulatta; S and A) were trained to perform a memory-guided
anti-reach task with partial precuing (Fig. 1a). Two visual cues, one
spatial and one contextual, were presented to the subjects either simul-
taneously or at different points in time (19 inch ViewSonic LCD VX922;
5 ms off– on– off response time). The contextual cue (transformation
rule) consisted of a green (pro-reach) or blue (anti-reach) frame around
the eye and hand fixation points and instructed the subject to reach either
toward (pro) or diametrically opposite to the spatial cue (anti). The
peripheral spatial cue was located at one of four possible positions (0, 90,
180, and 270°) with an eccentricity of 9 cm [14.5° visual angle (VA)]
relative to the fixation point. The motor goal was only defined uniquely,
once both cues were known to the subject.

The monkey initiated a trial, by fixating a small red square in the center
of the screen (eye fixation tolerance, 2.5– 4.0° VA; 224 Hz CCD camera;
ET-49B; Thomas Recording) and touching an adjacent white square of
the same size (hand fixation tolerance: 4.0° VA, touch screen mounted
directly in front of the video screen; IntelliTouch; ELO Systems). After a
short period of 500 –1000 ms (fixation period), the precue appeared for
200 ms. The precue could be either the contextual and the spatial cue at
once [rule and spatial condition (RS)], only the spatial cue [spatial-only
condition (S)], only the contextual cue [rule-only condition (R)], or
nothing [null condition (N)], leading to four different memory condi-
tions. After the precue, the monkey had to keep eye and hand fixation for
800 –2000 ms (memory period). Depending on the memory condition,
additional information was given to the monkey at the end of memory
period. In the R, S, and N conditions, the missing information required
to fully specify the reach goal (the spatial cue, the contextual cue, or both)
was briefly flashed during the 170 ms go cue period. In the RS condition,

no additional information was shown. Simultaneously, with the presen-
tation of the second cue, the hand fixation square disappeared (“go”
signal) and the monkey had to reach toward the instructed goal within a
maximum of 700 –1000 ms (movement period; 4.9° VA reach tolerance)
and hold the goal position for 300 – 400 ms (feedback period). The mon-
key received visual feedback about the correct movement goal, which
consisted of a filled circle of the same color as the contextual cue and was
presented at the goal location during the feedback period. Eye fixation
had to be kept throughout the trial; otherwise, the trial was aborted
immediately. Liquid reward and acoustic feedback indicated correct
(high pitch tone, reward) or incorrect (low pitch tone, no reward)
behavior.

Pro-trials and anti-trials were randomly interleaved from trial to trial
(�400 trials per data set) and the four memory conditions were ran-
domly mixed in small blocks (10 –20 trials of same condition per block).
To test the contextual influence on motor planning, only the results of
the RS and R conditions (transformation rule available during the
planning phase of the movement) are meaningful and presented here
(Fig. 1b).

Animal preparation and neural recordings. After training of the task,
both monkeys were implanted with titanium head holders that were
custom-fit to their heads based on computer-tomographical surface re-
construction of the skull (3di GmbH). After recovery and additional
training, each monkey was implanted with two magnetic resonance im-
aging (MRI)-compatible recording chambers, also custom-fit to the
skull. One chamber was placed above PRR [Horsley Clarke coordinates:
6 mm/�8.5 mm (monkey S/A) lateral; �10 mm/�9.5 mm anterior], the
other chamber above PMd (13 mm/�13.5 mm lateral; 17 mm/19.8 mm
anterior). Presurgical structural MRI was used to position the chambers
(Fig. 1c). Postsurgical MRIs, showing the chamber relative to the brain,
verified the correct chamber positions and allowed precise targeting of
the desired anatomical structure. Sustained, direction-selective, neural
responses during center-out reach planning was used as a physiological
signature in both areas to confirm the imaging-based positioning. Both
chambers were implanted contralaterally to the handedness of the mon-
key (A, left hemisphere; S, right hemisphere). All surgical and imaging
procedures were conducted under general anesthesia.

For the extracellular recordings, up to four microelectrodes in each
cortical area in a five-channel microdrive (“mini-matrix”; Thomas Re-
cording) were used simultaneously. In most sessions, simultaneous
recordings were conducted in both areas. The raw signals were pream-
plified (20�; Thomas Recording), bandpass filtered, and amplified (154

a b

c

Figure 1. Memory-guided anti-reach task with precuing. a, The left sequence shows an example of a pro-trial, and the right, an example of an anti-trial. Subjects had to maintain eye fixation
(central dark spot) throughout the trial and hand fixation (central white spot) until the go instruction (disappearance of the white spot). The reach goal was defined by the combination of a context
cue (colored central frame), indicating the pro/anti transformation rule, and a color-neutral spatial cue, which was presented at any of four different peripheral screen positions (0, 90, 180, 270°).
Cues could be presented before (precue period) or after a variable memory period (go cue period), simultaneously or separately. In the example, the context and the spatial cue are both presented
during the precue period. To be rewarded, the subject had to make a reach toward the previous spatial cue position (pro-reach) or to the opposite side (anti-reach). The arrows and dotted circles are
for demonstration purpose only and were not shown to the subjects. b, In this study, we compare conditions in which the subjects either had full information on the upcoming motor goal
(transformation rule and spatial cue presented as precue; RS condition) or only the context information available (transformation rule presented as precue, spatial cue during go cue period; R
condition). c, Extracellular signals from multiple individual neurons were recorded simultaneously in PRR and PMd (regions of interest for monkey S) while the monkeys performed the task.
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Hz to 8.8 kHz; 400 – 800�; Plexon), before on-line spike-sorting was
conducted (Sort Client; Plexon). In addition to spike times, the spike
waveforms were recorded and later subjected to off-line sorting for op-
timal isolation quality (Offline Sorter; Plexon).

Animal care and all experimental procedures were conducted in ac-
cordance with German law (Animal Welfare Act).

Selection of neural data. All recorded and sufficiently well isolated
units, regardless of their tuning properties, were included in the neu-
ral data analyses unless explicitly stated otherwise. We analyzed the
neural activity during the last 300 ms of the memory period (i.e.,
activity succeeding the precue with a time lag of at least 500 ms, and
immediately preceding the go cue). This period was chosen to extract
movement planning activity without confounding effects of (1) im-
mediate visual input from the cue stimuli, or (2) transition phases
from visual to motor-goal tuning (Gail and Andersen, 2006), or (3)
visual and somatosensory input and motor-control signals related to
movement initiation.

Analyses of neuronal directional selectivity. Directional selectivity was
quantified with a directional tuning vector (DTV), which is defined as the
vector average across all center-out cue directions ui

3 (unit vectors)
weighted with the corresponding mean neural spike rates across trials
with this cue direction (rij) and normalized to the total mean spike rate
across all trials for the neuron j as follows:

DTVj � �
i�1

4

rijui
3��

i�1

4

rij.

The length of the resulting vector is between 0 and 1 and is a measure of
the tuning strength. Its direction will be referred to as preferred direction
(PD) of a neuron. The DTV was computed separately for pro-trials and
anti-trials and was defined relative to the position of the spatial cue, not
relative to the movement goal.

Significance of the directional selectivity was tested with a nonpara-
metric one-way ANOVA (Kruskal–Wallis; Matlab; Mathworks) with the
four different visual cue directions as groups and sample sizes defined by
the number of identical trial repetitions. The ANOVA was calculated
independently within each transformation rule (pro/anti) and precuing
condition (total of 2 � 4 � 8 combinations).

The relative difference in PD between pro-trials and anti-trials in the
RS condition indicates whether the tuning of a neuron in the given time
window reflects the visual cue or the reach goal position. We quantified
this difference with the tuning direction difference index (DD) as
follows:

DD � PDA � PDP.

PDP and PDA are the preferred directions of a neuron in pro-trials and
anti-trials, respectively. A DD of �0° indicates idealized visual tuning. A
DD of �180° means opposing PDs (relative to the cue position), which
indicates idealized motor-goal tuning.

Analyses of contextual modulations. We tested three different effects of
the context on the neuronal activity and quantified each of them with a
contextual modulation index: gain modulation of spatially selective neu-
rons (i.e., amplitude changes independent of changes in directional
selectivity [gain modulation (GM)], changes in directional selectivity
independent of changes in overall neural response strength [selectivity
modulation (SM)], and direct modulation of neuronal activity levels
independent of spatial tuning [direct modulation (DM)]).

Contextual gain modulation is characterized by amplitude changes of
spatial tuning, independent of changes in directional selectivity. It is
defined as follows:

GM �
rP

RS � rA
RS

rP
RS � rA

RS,

where rP
RS and rA

RS are the mean spike rates for pro-trials and anti-trials in
the RS condition. Since most neurons in PRR and PMd are spatially
highly selective with a DD of around �180° (see Results), large absolute
GM values indicate strong gain modulation effects of the spatial motor-
goal tuning by the context.

Contextual selectivity modulation is characterized by changes in direc-
tional selectivity independent of changes in response amplitude. To quantify
contextual selectivity modulation, we computed the contrast of the normalized
DTV length between pro-trials and anti-trials in the RS condition as follows:

SM �
�DTVP� � �DTVA�
�DTVP� � �DTVA�,

where DTVP and DTVA are the normalized directional tuning vectors for
pro-trials and anti-trials. A positive SM indicates that a neuron is more
strongly tuned in pro-trials than in anti-trials, and vice versa for negative
values. Values close to zero indicate that tuning selectivity is not modu-
lated by the transformation rule.

Both GM and SM quantify modulations of spatial tuning by context.
GM and SM are independent of each other in that each can change
without affecting the other by varying parameters of hypothetical tuning
functions (supplemental material S1, available at www.jneurosci.org).
This does not mean that a single cell could not simultaneously have a high
GM and SM. In fact, for neurons that are very strongly modulated by the
context the activity in one of the two conditions (pro or anti) may be so
weak that the tuning becomes arbitrarily shaped, which can lead to large
GM and SM values and “random” DD values.

Direct context modulation can be quantified by differences in the
memory activity between pro-reaches and anti-reaches in the R condi-
tion, since these differences reflect contextual influence independent of
any spatial tuning. We defined the direct context modulation as the contrast
of the average activities between pro-trials and anti-trials as follows:

DM �
rP

R � rA
R

rP
R � rA

R.

rP
R and rA

R are the mean spike rates in the R condition for pro-trials and
anti-trials, respectively. A positive DM indicates neurons that are more active
in pro-trials. A negative DM indicates stronger activity in anti-trials. Values
close to zero indicate neurons indifferent to the transformation rule.

Note that all modulation indices are nonparametric and do not require
fitting of any predefined tuning functions.

All contextual modulations were statistically analyzed on the level of
individual neurons and, additionally, on the population level. We used
bootstrap methods (n � 100 samples) to estimate the confidence limits
of all indices (GM, SM, DM, and DD) for each individual neuron. The
trial-by-trial spike rates were randomly permuted with repetitions,
whereas the assignment of each trial to a certain direction, transforma-
tion rule, and memory condition was kept unchanged. GM, SM, and DM
were considered significant if the 95% confidence limit did not overlap
with zero. DD was considered to significantly deviate from motor-goal
tuning if the circular confidence interval did not overlap with 180°.

On the population level, we estimated the to-be-expected distributions of
all indices when assuming random data (shuffle test; n � 100 * number of
used neurons). We randomly permuted trial-by-trial spike rates across the
two transformation rules, while keeping the cue direction and memory con-
dition unchanged. This procedure eliminated any effect of the transforma-
tion rule. For the GM, SM, and DM, t tests were used to quantify deviations
of the population means from zero. Additionally, a Bartlett test was used to
test for deviations of the original distribution’s variance from the normally
distributed shuffled data. A positive Bartlett test indicates contextual modu-
lations beyond what is expected because of random variations, even if the
distribution of indices is centered at zero (i.e., even when there is no bias of
the index toward either propreference or antipreference). To test whether a
distribution of DD across the population of neurons deviates significantly
from the predefined �180° direction, we used circular statistics to compute
the 95% confidence limits according to the following:

d � arccos��2n(2R2 � n��,1
2 )

4n � ��,1
2

R
�,

where R � nr. n is the number of samples, r is the mean resultant vector
length of the angular direction data (here, DD indices), and � is the
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inverse of the � 2 cumulative distribution function with a confidence
limit of 1 � � (Zar, 1999).

To quantify the correlation between the signs and strengths of differ-
ent forms of contextual modulation in individual neurons, we computed
Pearson’s cross-correlation coefficients of the different indices across the
population of neurons. To make the modulation indices scale-invariant,
we normalized the modulation indices to the variances of their respective
distributions as follows:

zi �
xi

�i
.

Here, i is the considered index (GM, SM, DM), x is the value of the index,
and � is the variance of the index distribution over the cell population.
Note that this normalization is only for easier comparison of the modu-
lation strengths in the scatter plots of Figure 7. The cross-correlation
coefficient is independent of this linear scaling, which is applied within
each index distribution. To test whether different types of modulation
tend to occur in complementary neuronal subpopulations, regardless of
the “direction” of modulation (i.e., propreference vs antipreference), we
also compared the absolute values of the different modulation indices.
We used Spearman’s rank correlation to account for the non-normal
distribution of absolute modulation indices.

Results
Both monkeys performed the task with high accuracy. The per-
centage of overall correct trials was 78% (monkey S) and 86%
(monkey A) in the RS condition, and 75% (S) and 83% (A) in the
R condition. Error trials were mainly attributable to early trial
abortion (mostly breaks in ocular fixation) but not attributable to
a confusion of the “pro” and “anti” rules. The percentage of
correct pro-reach and anti-reach decisions in otherwise-correct
trials was 98% (S) and 99% (A) in the RS condition, and 94% (S)
and 99% (A) in the R condition. The performance of both mon-
keys showed no significant difference between pro-trials and
anti-trials in the RS condition ( p � 0.05, paired t test), and a mini-
mal difference in the R condition (S: mpro � 95%, manti � 94%, p �
0.008; A: mpro � 99%, manti � 98%, p � 0.003, paired t test).

A total of 258 neurons from PRR (monkey S, 99; A, 159) and
193 from PMd (S, 75; A, 118) were recorded. Regardless of their
spatial tuning properties, we tested all recorded neurons for di-
rect context modulation (i.e., modulations of neuronal response
amplitude by the context independent of directional selectivity)
during the late memory period in the R condition (DM) (see
Materials and Methods). For analyzing the effect of context on

directional tuning properties (GM and SM) (see Materials and
Methods and supplemental material S1, available at www.
jneurosci.org, for details on modulation indices), we used a sub-
set of neurons that had significant directional selectivity in at least
one of the two spatial transformation conditions (pro/anti) dur-
ing the late memory period of the RS condition. A total of 205
(79%) neurons in PRR [S, 71 (71%); A, 134 (84%)] and 132
(68%) neurons in PMd [S, 56 (75%); A, 76 (64%)] fulfilled this
criterion. Data from both monkeys showed the same results and
will be presented jointly (for comparison of the two monkeys, see
supplemental material S2, available at www.jneurosci.org).

Contextual gain modulations of motor-goal tuning
When the reach goal was known to the monkeys during the mem-
ory period (RS condition), most of the spatially selective neurons
in PRR (82.0%) and PMd (72.2%) were tuned for the motor goal,
as was expected from previous results (Crammond and Kalaska,
1994; Gail and Andersen, 2006). Some individual neurons in the
current study showed “classical” motor-goal tuning, which was
independent of the spatial transformation rule that led to this
motor goal (i.e., independent of the context). In the example
neuron (Fig. 2a), the preferred directions for procondition and
anticondition were opposite to each other when measured rela-
tive to the position of the cue, which means they were aligned
with the motor goal (tuning direction difference DD not different
from 180°; p � 0.05; bootstrap test) (see Materials and Methods),
and their response strength as well as the directional selectivity
did not differ between the pro and the anti condition (GM and
SM not different from 0; p � 0.05; bootstrap test) (see Materials
and Methods and below). The population of neurons in both
areas on average represented the direction of the motor goal and
not the cue position. In other words, the distribution of DD
across the population of neurons did not deviate from 180° nei-
ther in PRR (circular mean, 179 � 8° SEM) (see Materials and
Methods) nor in PMd (mean, 184 � 10°) (Fig. 2b). To be in-
cluded in this analysis, the cells had to be significantly tuned in
both spatial transformation conditions (pro/anti). This criterion
was met by 133 (52%) of all neurons in PRR [S, 50 (51%); A, 83
(52%)] and 79 (41%) of all neurons in PMd [S, 35 (47%); A, 44
(37%)].

To test for contextual effects on spatial tuning properties, we
distinguished between contextual GM and contextual SM (see

Figure 2. Motor-goal tuning in PRR and PMd during the late planning phase of reach movements. The example cell (a) shows classical motor-goal tuning, characterized by a PD depending on
the motor goal and not the cue (DD not significantly different from 180°), as shown in the polar plot (middle). The response strength and selectivity were independent of the behavioral context (GM
and SM not different from zero). Raster plots and spike density functions for pro (light gray) and anti (dark) trials are shown for the two most active directions (here, 90 and 270°) during the late
memory period. Time 0 marks the onset of the go cue period. The mean firing rate during the fixation period is provided for comparison (dashed line). Spike density curves are smoothed with a
Gaussian kernel (� � 50 ms; dark lines, mean; light area, SE) for presentation purposes only. Also, polar tuning functions are interpolated for presentation purposes only, whereas all analyses are
conducted nonparametrically on the original spike data. b, Tuning DDs in PRR (top) and PMd (bottom) indicate that neurons in these areas are preferentially motor-goal tuned. Most individual
neurons do not deviate significantly from 180° (light gray bars); a few do according to their bootstrap confidence limits (dark bars). The circular distributions of the DD for all neurons in each area do
not significantly deviate from 180°. Note that because of symmetry the distribution of absolute values (�DD�) are plotted, whereas circular statistics are applied to the original DD values.
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Materials and Methods and supplemental material S1, available
at www.jneurosci.org). Figure 3a shows two example neurons
that were gain modulated by the behavioral context. The first
neuron (top) was highly active in pro-trials, but responded only
weakly in anti-trials. The preferred direction, representing the
motor goal, remained unchanged (DD not significantly different
from 180°), as did the directional selectivity (SM not different
from zero). The second neuron (bottom row) showed the oppo-
site preference and responded strongly in anti-trials, but only
weakly in pro-trials. Again the spatial tuning encoded the motor
goal in both rule conditions in a similar manner. Twenty-one
percent (43 of 205) of neurons in PRR and 37% (49 of 132) in
PMd had a significant GM when tested in individual neurons
(Fig. 3b). There was a significant difference between the numbers
of significant pro-preferring and anti-preferring neurons in PRR
(31 pro, 12 anti; p � 3.7 � 10�3; � 2 test) but not in PMd (28:21;
p � 0.05) (for the number ratios, see Fig. 6c). On the population
level, in both areas the GM values were more broadly distributed
(i.e., on average, had higher absolute values) than the GM of the
shuffled data (PRR, p � 10�10; PMd, p � 10�10; Bartlett’s test),
indicating contextual gain modulation (Fig. 3b) (see also Fig. 6a).
In PMd, the GM distribution additionally had a significant bias
toward anti-preferring neurons (m � �0.08; p � 8 � 10�4; t
test) (i.e., neurons in PMd were on average more active during
the planning of anti-reaches). In PRR, the GM distribution was
centered on zero (m � 0.021; p � 0.05; t test) (see also Fig. 6b).

Contextual modulations of directional selectivity
In addition to a modulatory effect on the gain of the motor-goal
tuning, context also modulated the directional selectivity of many
neurons in our experiment (Fig. 4). In the first example (Fig. 4a,
top), the tuning of the neuron, which was highly selective for
pro-reaches to the left, became bimodal in the case of anti-
reaches (i.e., was active for leftward and rightward anti-reaches).
The second example (Fig. 4a, bottom) shows another neuron that
was spatially tuned in pro-trials but not tuned in anti-trials.
Twenty-six percent (54 of 205) of neurons in PRR and 25% (33 of
132) in PMd had a significant SM (Fig. 4b). There was a signifi-

cant difference between the numbers of significant pro-
preferring and anti-preferring neurons in PRR (45 pro, 9 anti;
p � 3.2 � 10�7; � 2 test) but not in PMd (18:15; p � 0.05) (see also
Fig. 6c). Correspondingly, the population distribution of SM (Fig.
4b) in PRR shows a shift toward positive values (m � 0.11; p � 2.0 �
10�7; t test), indicating a bias toward greater directional selectivity in
pro-trials than in anti-trials (see also Fig. 6b). In PMd, there was no
shift of the population mean toward pro-preferring or anti-
preferring selectivity (m � 0.02; p � 0.05; t test). SMs were more
widely distributed in the original data than in the shuffled data in
both areas (Bartlett’s test: PRR, p � 2.4 � 10�4; PMd, p � 4.7 �
10�6), indicating significantly stronger modulation of tuning selec-
tivity than expected by chance (see also Fig. 6a). The SM values in
PMd had a trend to be bimodally distributed, indicating simulta-
neous presence of neurons with rather strong modulation of direc-
tional selectivity preferring either pro-reaches or anti-reaches.

Direct context modulation
Modulation of motor-goal tuning in PMd and PRR requires that
the contextual information about the currently valid transforma-
tion rule is accessible to these cortical regions. How strongly is
this transformation rule represented in PRR and PMd neurons at
a time when only the rule (pro/anti) and not the complete motor
goal is known to the monkey (i.e., independent of any spatial
representations)? The direct context modulation index (DM)
compares the level of neuronal activity during the memory pe-
riod in the R condition, when contextual but not spatial informa-
tion is available. Sixteen percent (42 of 258) of neurons in PRR
and 25% (49 of 193) in PMd had a significant DM (Fig. 5). There
was no significant difference between the numbers of significant
pro-preferring and anti-preferring neurons in either PRR (24
pro, 18 anti; p � 0.05; � 2 test) or PMd (23:26; p � 0.05) (Fig. 6c).
The balance between propreference and antipreference was also
reflected in the fact that the distributions of DM values were
centered at zero in PRR (mean m � 0.011; p � 0.05; t test) and
PMd (m � 0.013; p � 0.05) (Fig. 6b). The variances of the DM
distributions were significantly larger than the variances of the

Figure 3. Contextual gain modulation of motor-goal tuning in PRR and PMd. a, Examples of neurons with a high absolute GM indicating stronger activity for either pro-reaches (top) or
anti-reaches (bottom), with invariant motor-goal tuning preference (DD not significantly different from 180°) and selectivity (SM not significantly different from zero; conventions are as in Fig. 2a).
The anti-preferring neuron (bottom) was also one that fulfilled the strict criteria for an ideal contextual gain modulation of motor-goal tuning: the neuron was significantly tuned in pro and anti trials,
had a significant GM, the DD was not significantly different from 180°, and the SM not significantly different from zero. (Note that the tuning vectors shown in the polar plot are not normalized,
resulting in unequal length for pro and anti trials despite equally strong tuning; the SM is computed with normalized tuning vectors.) b, Distribution of GM across the neuronal populations
(conventions are as in Fig. 2b). In PMd (bottom), there was a significant bias toward negative values (mean, �0.08; gray triangle; t test) indicating on average stronger antipreference in PMd, but
not in PRR (top; white triangle). The GM distributions in both areas were broader than for the shuffled data (dashed line; �d � �s; Bartlett’s test) indicating significant modulation effects in both
areas. Significance levels were as follows: *p � 0.05, **p � 0.01, ***p � 0.001.
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shuffled DM data in both areas (PRR, p � 9.1 � 10�4; PMd, p �
1.1 � 10�7; Bartlett’s test) (Fig. 6a).

Complementary contextual modulations in PRR and PMd
Figure 6 summarizes the contextual modulation effects on the
gain of tuned neural responses (GM) and their directional selec-
tivity (SM), together with the direct neural responses to the con-
text information itself (DM). When compared with the shuffle
prediction, contextual gain modulation showed the strongest ef-
fect, both in PRR and PMd (Fig. 6a). Yet directional selectivity
modulation and direct contextual modulation indices were also
significantly larger than expected by chance in both areas. The
bias of the contextual modulation effects in terms of a proprefer-
ence/antipreference were complementary in the two areas (Fig.
6b): Contextual gain modulations in PMd were biased toward
antipreference [i.e., tuned responses were on average 15%
(GM � �0.08) higher during anti-reaches compared with pro-
reaches, whereas in PRR gain modulations on average were bal-
anced]. In contrast, directional selectivity modulations in PRR
were biased toward propreference; i.e., spatial tuning was on av-
erage stronger in pro-reaches compared with anti-reaches by
20% (SM � 0.11), whereas in PMd, selectivity modulations on
average were balanced. In PRR, the fraction of individual neurons
being biased toward higher response amplitudes or stronger di-
rectional selectivity was larger in pro-reaches compared with
anti-reaches, whereas in PMd the number of individually modu-
lated neurons was balanced (Fig. 6c).

Different types of modulation in different
neuronal populations?
The contextual gain and selectivity modulation indices (GM and
SM) per se are independent of each other (supplemental material
S1, available at www.jneurosci.org). But one could imagine that,
in individual neurons, the different modulation effects are corre-
lated. This would be the case if two types of modulation are the
phenomenological consequences of one and the same underlying

computational mechanism, or if the underlying processes caus-
ing the different types of modulation interfere with each other.
There was no correlation in either PRR or in PMd between GM
and DM (rPRR � 0.1, pPRR � 0.05; rPMd � 0.03, pPMd � 0.05), SM
and DM (rPRR � 0.13, pPRR � 0.05; rPMd � 0.07, pPMd � 0.05), or
SM and GM (rPRR � 0.06, pPRR � 0.05; rPMd � 0.03, pPMd � 0.05)
(Fig. 7a– c).

Two reasons could account for a lack of correlation between
GM, SM, and DM. Either there was no interaction between the
underlying processes that caused the gain and the selectivity
modulations, but they still occurred within the same neurons; or
these processes affected complementary neuronal subpopula-
tions. If different neuronal subpopulations were affected by
contextual gain and selectivity modulations, then high absolute
values in GM and DM should be paired with low absolute values
of the SM, and vice versa. In PRR, absolute values of SM were
negatively correlated with absolute values of both GM (r � �0.3;
p � 0.005; Spearman’s rank correlation) and DM (r � �0.32; p �
0.003) (Fig. 7d–f). In PMd, only SM and DM were negatively
correlated (r � �0.36; p � 0.006).

High absolute GM values do not necessarily mean that the
neurons have to be gain modulated in an “ideal” way (i.e., in a
multiplicative manner, as depicted in the example of Fig. 3a).
Neurons with substantial GM might also have a high absolute SM
value, which means, in principle, they might not have the typical
unimodal directional tuning. In fact, a high absolute GM indi-
cates a weak response of the neuron in either pro-reaches or
anti-reaches. This can lead to weak or undefined directional tun-
ing in the nonresponsive condition, and hence to high SM values.
The lack of correlation between GM and SM, together with the
anticorrelation of absolute GM and SM values in PRR, indicates
that such interdependencies of GM and SM were not very com-
mon. To identify those cells that fulfilled all criteria for an ideal
contextual gain modulation, we used an additional strict set of
constraints that is compatible with the idea of gain modulation
proper. We found that 48% (44 of 92) of cells that had a signifi-

Figure 4. Contextual selectivity modulation of motor-goal tuning in PRR and PMd. a, Examples of cells with a high absolute SM, indicating stronger directional selectivity for either pro-reaches
or anti-reaches, but having the same response strength for both conditions on average across all reach directions (GM not significantly different from zero; conventions are as in Fig. 2a). The
modulation resulted in different forms of tuning [e.g., bimodal (top) or nonselective (bottom) tuning functions during anti-reach planning]. b, Distribution of SM across the neuronal populations
(conventions are as in Fig. 2b). There was a significant bias for positive (pro-preferring) values in PRR (top), but not in PMd (bottom), indicating on average stronger directional selectivity during
pro-reach planning in PRR, like the examples shown in a. The SM distributions in both areas were broader than those of the shuffled data (dashed line; �d ��s; Bartlett’s test) indicating significant
modulation effects in both areas (conventions are as in Fig. 3).
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cant GM were (1) tuned in both context
conditions, but did not have a significant
SM and did not show a change in pre-
ferred direction, or (2) were only tuned in
the corresponding context condition (i.e.,
in the pro condition if they had a positive
GM, or in the anti conditions if they had a
negative GM) (PRR, 26 of 43, 60%; PMd,
18 of 49, 37%).

Discussion
We found strong modulation effects of
behavioral context on the predominant
motor-goal tuning in PRR and PMd. We
propose gain modulation as a mechanism
to achieve flexible goal-directed visuomo-
tor remapping in a context-specific man-
ner. Second, we found different types of
modulation with complementary biases
in PRR and PMd. PRR showed stronger
directional selectivity during the planning
of reaches toward directly cued (pro)
compared with inferred (anti) goals.
PMd, however, showed stronger overall
activity during reaches toward inferred
compared with directly cued goals.

Contextual modulations in PRR
and PMd
Behavioral context affected neural activity
in PRR and PMd in two major ways, either
by directly driving neurons (direct con-
text modulation, DM) or by modulating
spatial motor-goal representations (con-
textual gain/selectivity modulations, GM/
SM). Both types of context modulation
can be predicted from the hidden-layer
properties of a neural network model
(Brozović et al., 2007). Gain-field modu-
lation evolved in this model as a conse-
quence of learning context-specific spatial
cue–response mapping, equivalent to our
anti-reach task. Gain modulation of spa-
tially selective neurons is the key principle
underlying the spatial transformation
mechanism in this model, similar to previ-
ous models of multisensory integration for
spatial reference frame transformations
(Zipser and Andersen, 1988; Salinas and
Abbott, 1996). Gain modulation during
multisensory integration for eye or hand
movements had previously been found in
the posterior parietal cortex (Andersen et
al., 1985; Brotchie et al., 1995; Galletti et al.,
1995; Snyder et al., 1998; Batista et al., 1999;
Nakamura et al., 1999; Buneo et al., 2002)
and frontal areas (Boussaoud et al., 1993,
1998; Mushiake et al., 1997; Cisek and
Kalaska, 2002). In contrast, here we have
shown gain modulation effects in PRR and
PMd for remapping visuospatial informa-
tion onto reach motor goals according to
abstract cognitive transformation rules.

Figure 5. Direct context modulation in PRR and PMd independent of spatial tuning. a, Examples show a pro-preferring cell
(left), which was continuously more active in the memory period of pro-trials than during anti-trials (R condition). In the anti-
preferring cell (right), the contextual modulation appeared later (i.e., only �500 ms before the go cue). b, Distribution of DM
across the neuron populations. In PRR (top) as in PMd (bottom), the distributions were unbiased (i.e., centered at zero). The
distribution of DM in both areas was broader than that of the shuffled data (dashed line; �d � �s; Bartlett’s test) indicating
contextual modulation effects (all conventions are as in Fig. 3).

a b c

Figure 6. Summary of the strength and bias of contextual modulations in PRR (black) and PMd (gray). a, Strength of
contextual modulations. Both areas showed contextual modulations of all three types (GM, SM, and DM; Bartlett’s test;
significance levels are as in Fig. 3), with GM being the strongest. The � ratio indicates the width of the distribution of
modulation indices relative to the width of the distribution of the shuffled data (see Materials and Methods) (Figs. 3–5). b,
Pro/anti bias in the population mean. PRR and PMd showed complementary pro/anti biases in the mean contextual gain
and selectivity modulation (GM and SM; mean � SEM; t test). c, Pro/anti bias in the number of modulated neurons. The
relative number of neurons with a propreference versus an antipreference was higher in PRR for GM and SM, but balanced
otherwise (� 2 test).
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Gain modulation of neurons with motor-goal tuning was
partly accompanied by modulation of the directional selectivity.
This is consistent with the idea that a contextual gain modulation
network builds the computational basis for the remapping pro-
cess. Gain modulation then does not imply multiplicative mod-
ulations in the strict mathematical sense, but rather a summation
of bell-shaped tuning functions (directional tuning) with a gain
function (contextual tuning), which is passed through a recur-
rent network with nonlinear transfer properties (Salinas and Ab-
bott, 1996; Brozović et al., 2007, 2008). Such a computational
architecture results in gain modulations, which may not only
affect the amplitude but also the shape of the tuning functions.
This can be observed to varying extend for neurons within the
same sensorimotor layer (Brozović et al., 2007).

Direct context modulation, as observed during the R condi-
tion, is also very plausible in the light of a gain modulation net-
work. It is predicted for the sensorimotor (“hidden”) layer of the
network model, when only contextual information but no spatial
information is available (Brozović et al., 2007), and all inputs are
a priori additive. The impact of the context input in directly
driving the neurons might be relatively weak, and only unfold to
its full modulatory potential when the neuron is additionally

driven by strong spatial input (Abbott and
Chance, 2005). Because of their latency
(Fig. 5, right example), we do not attribute
the direct context modulations to the sen-
sory properties of the context cue, but
rather to the behavioral relevance of the
cue (Boussaoud and Wise, 1993; Snyder et
al., 1997; Toth and Assad, 2002; Stoet and
Snyder, 2004; Nakayama et al., 2008).

Neurons in PMd had previously been
reported to be modulated by context,
since task rules had an effect on spatial
selectivity (di Pellegrino and Wise, 1993;
Crammond and Kalaska, 1994). Spatially
selective responses were shown to be de-
pendent on whether the motor goal was at
the same position as the visual cue or at a
default location (di Pellegrino and Wise,
1993). In contrast to our data, the strong
condition dependency in the study of di
Pellegrino and Wise is attributable to the
fact that, in the default condition, the vi-
sual cue did not contain any relevant spa-
tial information. Hence the modulation
did not reflect an effect of contextual-
specific spatial remapping, but rather an
effect of motor planning based on spatial
remapping versus nonspatial stimulus–
response associations (Crammond and
Kalaska, 2000). In contrast, in our exper-
iment, the visual cue location was always
relevant for the reach direction and the
context modulations are the consequence
of two different spatial transformation
rules. Crammond and Kalaska reported a
substantial fraction of cells in PMd with a
significant interaction effect of a remap-
ping rule on the reach-related response
during the late phase of an instructed de-
lay period (Crammond and Kalaska,
1994). Their finding could reflect a similar

gain mechanism as observed here. However, they could not ana-
lyze specific effects of context on gain or selectivity of directional
tuning because of their experimental protocol. Also, both previ-
ous studies could not compare the effects in PMd with PRR, in
which gain modulation effects on directional tuning by spatial
transformation rules, to our knowledge, have not been shown
before.

Differences between PRR and PMd
Spatial motor-goal tuning in PRR and PMd, in part, was differ-
ently affected by contextual modulations. First, PMd neurons
were on average stronger active by 15% during planning of anti-
reaches, but only if spatial information was already available, i.e.,
in the RS but not in the R condition, negative bias of GM, but not
DM. We interpret this as an indication for the need of overruling
a “default” movement plan (pro-reach) induced by the visual cue
(Schlag-Rey et al., 1997; Everling et al., 1999), which might oth-
erwise dominate. The stronger activity in PMd during anti-
reaches in this view reflects the learned counterbalance of the
network, which is necessary to compensate for the imbalance
between pro-reaches and anti-reaches in terms of cue–response
congruency. The counterbalance is only necessary in conditions

Figure 7. Interdependence of contextual modulations in PRR and PMd. a– c, Pairwise cross-correlations between the three
modulation indices. The Pearson correlation of the three modulation indices (r and p values given at the bottom of the diagrams)
across neurons shows that none of the indices in either PRR or PMd were significantly correlated. d–f, Pairwise cross-correlation of
the absolute values of the modulation indices for PRR (top) and PMd (bottom) separately. In PRR, SM–DM (f; top) and SM–GM (e;
top) were negatively correlated [i.e., strong GM and DM modulations implied weak SM modulations, and vice versa (Spearman’s
rank correlation)]. In PMd, only SM and DM showed negative correlations (f ). The underlying rose plots (gray circular histograms)
illustrate the frequencies of relative modulation strengths.
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in which a spatial cue was already presented, to suppress a default
pro-movement (RS condition), but not when only the rule is
known and no specific default plan yet exists (R condition). En-
hanced activation because of spatial cue–response incongruence
was found previously in the supplementary eye fields during the
planning of antisaccades (Schlag-Rey et al., 1997; Amador et al.,
2004). Stronger responses during planning of prosaccades com-
pared with antisaccades, however, were found in the posterior
parietal area LIP (lateral intraparietal area) (Gottlieb and Gold-
berg, 1999). We found a higher fraction of individual neurons in
PRR with a pro-preferring bias in response strength, but no bias
in the average population response.

Second, neurons in PRR were more directionally selective dur-
ing planning of pro-reaches (positive bias of SM corresponding to 20%
stronger selectivity). This might reflect conflicting input to PRR
specifically during planning of anti-reaches. Opposing input
could result from bottom-up visuospatial information about the
(remembered) cue location or default reach goal, on the one
hand, and top-down projections of spatial motor-goal informa-
tion from motor-tuned output stages, on the other hand (Brozo-
vić et al., 2007). Despite predominant motor-goal tuning on the
population level (Gail and Andersen, 2006), the combination of
such opposing inputs could explain the strongly reduced direc-
tional selectivity, which was found in many PRR neurons mainly
in the anti-reach condition.

Together, the complementary effects of context on motor-
goal representations indicate that posterior parietal cortex might
more strongly represent stimulus-driven default or automatic
movement plans (Desmurget et al., 1999; Pisella et al., 2000),
whereas premotor cortex counterbalances this with predominant
representations of rule-guided “inferred” movement plans.

Different contextual modulations in different
neuronal populations
In PRR, those neurons that show strong gain modulation (high
absolute GM) tended to have weak directional selectivity modu-
lation (low absolute SM), and vice versa. This suggests that gain
and selectivity modulations are the result of two separate under-
lying mechanisms, which affect different neuronal subpopula-
tions. Gain and direct modulations, on the other hand, did not
show such mutual exclusiveness. These findings are consistent
with our predictions based on the previous model (Brozović et
al., 2007). If the reduced directional selectivity in anti-reaches is
indeed a consequence of conflicting independent bottom-up
visuospatial and top-down motor-goal input to PRR, then we
would not expect the GM/DM versus SM to necessarily be large in
the same neurons. In PMd, we could not identify a systematic
relationship or correlation pattern between the different types of
contextual modulations.

Gain modulation as universal mechanism for
flexible remapping
The contextual gain modulation of motor-goal representations
in PMd and PRR strongly suggests gain-field mechanisms for
flexibly mapping spatial sensory information onto spatial motor-
goal representations according to arbitrary transformation rules.
Based on our data, we propose that gain modulation is used by
the brain not only in sensorimotor areas to achieve reference
frame transformations driven by multisensory input (Andersen
et al., 1985; Zipser and Andersen, 1988; Boussaoud et al., 1993,
1998; Brotchie et al., 1995; Galletti et al., 1995; Buneo et al., 2002),
but also in the frontoparietal reach network to achieve contextu-
ally modulated, goal-directed visuomotor remapping, as previ-

ously suggested theoretically (Salinas, 2004; Brozović et al.,
2007). Our current data support this idea by providing first ex-
perimental evidence for context-specific gain modulations of
spatial motor-goal tuning in PRR and PMd, which could denote
the key underlying principle of flexible goal-directed behavior.
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Supplemental Material 
 
S1: Relation between GM and SM 

We use the GM and the SM to measure two different types of contextual modulation of 

directionally tuned cells: decreased (or increased) overall activity for one of the two 

transformation rules, on the one hand, and reduced (or enhanced) spatial selectivity, on 

the other hand. To be good indicators for these modulations, the indices should be 

selective and independent. Figure S1 shows how GM and SM independently change as a 

function of either tuning amplitude A or width κ of idealized von Mises tuning curves. 

The von Mises distribution is given by: 
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where I0 is the modified Bessel function of order zero. Figure S1 shows that for an 

idealized motor-goal cell with identical tuning width in both task conditions, a change of 

the amplitude in one task condition only results in a change of the GM without 

influencing the SM. Note that non-normalized tuning vectors are plotted. Normalized 

tuning vectors in the left half of the graph would have equal lengths for pro and anti. Note 

also that in case the response completely vanishes for one transformation rule, the SM 

becomes arbitrarily high even without systematic change in κ (far left). With additional 

random fluctuations, as typical for empirical neural data, this effect of high SM values 

would have to be expected for GM values smaller but close to one. If, on the other hand, 

we only modify the tuning width without changing the overall activity (in a normalized 

von Mises distribution the area under the curve does not change if κ is changed), then 

only the SM changes and the GM remains unchanged. Since empirical neuronal tuning 
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functions not necessarily exactly fit von Mises functions in all cases, we decided to use 

our non-parametric approach. Our modulation indices (GM, SM) reflect contextual 

modulations of average amplitude and selectivity independently and without the 

requirement of a certain exact tuning shape.  
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S2: Results in individual monkeys  

Population data for the individual monkeys (Fig. S2) show that contextual modulations in 

both animals are very similar. Due to the similarity we pooled the data for the main 

manuscript. In both monkeys DCMi distributions were unbiased in PRR (S: m = 0.006, p 

= 0.69; A: m = 0.014, p = 0.34; t-test) and PMd (S: m = 0.018, p = 0.44; A: m = 0.010, p 

= 0.67), but broader than the distribution of the shuffled data, except for PRR in monkey 

S (PRR S: p = 0.17, A: p = 0.0022; PMd S: p = 6.3 x 10-4, A: p = 3.38 x 10-4; Bartlett 

test). CGM distributions were unbiased in PRR (S: m = 0.0026, p = 0.88; A: m = 0.035, p 

= 0.064; t-test) and negatively (anti) biased in PMd (S: m = -0.095, p = 0.013; A: m = -

0.064, p = 0.025) for both animals. In both areas CGM distributions are broader than 

expected by chance in both monkeys (PRR S: p = 3.1 x 10-4, A:  p < 10-4; PMd S: p < 10-

10, A: p < 10-10; Bartlett test). The CSM distributions consistently showed a positive bias 

in PRR (S: m = 0.14, p = 7.56 x 10-5; A: m = 0.086, p = 4.81 x 10-4) and no bias in PMd 

(S: m = -0.028, p = 0.53; A: m = 0.054, p = 0.13). Again CSM distributions in both areas 

are broader than expected by chance (PRR S: p = 0.0011, A: p = 0.032; PMd S: p = 

0.0018, A: p = 0.0014; Bartlett test). 
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S3: Gain-modulation of motor-goal versus visual tuning 

The idea that visual cue locations are flexibly mapped onto arbitrary motor-goals by gain-

modulation mechanisms implies that at the intermediate level of the visuomotor 

transformation one should expect gain-modulated visual tuning, rather than gain-

modulated motor-goal tuning. After all, motor-goal tuning is considered the outcome of 

the transformation process, not the intermediate representation. Why did we then see 

gain-modulation of motor-goal tuning in PRR and PMd? The key to understanding this 

seeming contradiction is the differentiation between a pure feed-forward network, for 

achieving the desired transformation, compared to a network with top-down feedback. 

Brozovic et al. (Brozovic et al., 2007) showed that with both network architectures one 

can perform context-specific visuomotor transformations via gain-modulation. But the 

feed-forward network developed gain-modulated visual tuning in the ‘hidden’ 

sensorimotor layer, while the top-down network produced the same output with gain-

modulated motor-goal tuning in the sensorimotor layer. The latter architecture was 

considered more physiological in the sense that PRR and PMd had been shown to be 

tuned for the motor-goal during instructed-delay periods (Crammond and Kalaska, 

1994;Gail and Andersen, 2006) and connectivity between the posterior parietal cortex 

and premotor areas is known to be reciprocal. 

 

One can assume a certain delay before the top-down motor-goal projections exert their 

influence on the spatial tuning in the sensorimotor part of the network. Hence, the 

predominant motor-goal tuning during the instructed-delay is preceded by a short period 

of ‘visual’ tuning (or default motor-goal tuning for the pro-target) during spatial cue 
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presentation, both in the model (Brozovic et al., 2007), and in corresponding 

physiological data (Gail and Andersen, 2006;Zhang et al., 1997;Zhang and Barash, 

2000;Zhang and Barash, 2004). Once the transformation is achieved and the output stage 

of the sensorimotor network shows motor-goal tuning, this motor-goal tuning will be fed 

back to the intermediate sensorimotor stages and replace the predominant visual tuning 

quickly with predominant motor-goal tuning, as has been found. The observed gain-

modulation of the motor-goal tuning in this view is a reflectance of the general context-

induced gain-modulation at this processing stage, which has its major functional 

relevance during the transformation process itself, i.e. when visual tuning dynamically 

changes to motor-goal tuning, but is still visible in the resulting motor-goal tuning itself. 

Importantly, if the motor-goal tuning constitutes the outcome of a transformation process 

based on gain-modulation of visual cue representations then we should expect the short-

term visual tuning during cue presentations to be gain-modulated. This was the case in 

the model (Brozovic et al., 2007). It is technically very difficult to test this prediction in a 

physiological experiment like our current study. This is because of the following 

potential confounds: Since the emergence of a motor goal is a dynamic process which is 

influenced by the sensory input, it is difficult to find a time window that only accounts 

for visual tuning – gain-modulated or not – and does not also include those dynamical 

processes which ultimately lead to a motor goal representation. For example, a neurons 

early response might have smaller amplitude in anti-reaches because the instruction cue 

was in its response field (e.g., right) but the motor-goal is on the opposite side, i.e. 

outside the response field. Hence, we have to expect down-regulation of this neurons’ 

response as soon as the transformation process is initiated (Supplementary Fig. 3). The 
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exact timing of this is hard to identify (Supplementary Fig. 3 top and bottom), which 

makes it impossible to judge if any early difference in response amplitude is an 

expression of a gain-modulated ‘visual’ response or the consequence of the 

transformation process itself. Albeit desirable, we could not achieve a readily 

interpretable analysis of this early trial period equivalently to the more stationary late 

memory period. 
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The Cortical Timeline for Deciding on Reach Motor Goals

Stephanie Westendorff, Christian Klaes, and Alexander Gail
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Flexible sensorimotor planning is the basis for goal-directed behavior. We investigated the integration of visuospatial information with
context-specific transformation rules during reach planning. We were especially interested in the relative timing of motor-goal decisions
in monkey dorsal premotor cortex (PMd) and parietal reach region (PRR). We used a rule-based mapping task with different cueing
conditions to compare task-dependent motor-goal latencies. The task allowed us a separation of cue-related from motor-related activity,
and a separation of activity related to motor planning from activity related to motor initiation or execution. The results show that
selectivity for the visuospatial goal of a pending movement occurred earlier in PMd than PRR whenever the task required spatial
remapping. Such remapping was needed if the spatial representation of a cue or of a default motor plan had to be transformed into a
spatially incongruent representation of the motor goal. In contrast, we did not find frontoparietal latency differences if the spatial
representation of the cue or the default plan was spatially congruent with the motor goal. The fact that frontoparietal latency differences
occurred only in conditions with spatial remapping was independent of the subjects’ partial a priori knowledge about the pending goal.
Importantly, frontoparietal latency differences existed for motor-goal representations during movement planning, without immediate
motor execution. We interpret our findings as being in support of the hypothesis that latency differences reflect a dynamic reorganization
of network activity in PRR, and suggest that the reorganization is contingent on frontoparietal projections from PMd.

Introduction
Goal-directed behavior is guided by spatial sensory input in com-
bination with context-specific rules. This way, the same sensory
input can lead to a wide variety of motor outputs. The recipro-
cally connected posterior parietal cortex (PPC) and dorsal pre-
motor cortex (PMd) are believed to mediate such space– context
integration (Mitz et al., 1991; Kalaska, 1996; Wise et al., 1996;
1997; Kalaska et al., 1997; Passingham et al., 2000; Eliassen et al.,
2003; Wallis and Miller, 2003; Stoet and Snyder, 2004; Buneo and
Andersen, 2006; Cisek, 2007; Pesaran et al., 2008). For example,
neurons in the parietal reach region (PRR) (Gail and Andersen,
2006; Gail et al., 2009) and PMd (Boussaoud and Wise, 1993; di
Pellegrino and Wise, 1993; Crammond and Kalaska, 1994, 2000)
show sustained motor-goal tuning when the reach goal has to be
inferred from a spatial cue by applying a context-specific trans-
formation rule.

How is such space– context integration accomplished, and
what is the functional role of reciprocal frontoparietal projec-
tions? Network models of space– context integration have sug-
gested frontoparietal projections to help sustain motor-goal
memory (Cisek, 2006) or to mediate context-specific visuomotor
transformations via gain modulation (Brozović et al., 2007; Gail
et al., 2009). Also, frontoparietal neural latency differences (LDs)
were shown for motor-related activity around the time of move-
ment initiation (Kalaska et al., 1983; Johnson et al., 1996), which

nourished the ideas that frontoparietal LDs could reflect corol-
lary discharge signals (Mountcastle et al., 1975; Bioulac and
Lamarre, 1979; Kalaska et al., 1983; Seal and Commenges, 1985;
Johnson et al., 1996) and parietal cortex might be involved in
internal forward modeling for current state estimation during
motor control (Mulliken et al., 2008; Shadmehr and Krakauer,
2008). Finally, for motor planning activity before movement
initiation frontoparietal LDs and transient bidirectional fronto-
parietal interactions are pronounced specifically during decision-
making tasks, but not for tasks with direct cueing (Pesaran et al.,
2008). This suggests that the functional interdependencies be-
tween frontal and parietal areas are task dependent (Kalaska and
Crammond, 1992; Cisek, 2006; 2007).

We tested how compatible frontoparietal LDs are with the
above ideas. We asked specifically whether frontoparietal LDs
are the consequence of a corollary discharge signal, and in
which way they depend on cognitive decision processes. Different
from previous studies, we explicitly isolated the latencies of mo-
tor planning activity from cue- or movement-related activity by
using a pro-reach/anti-reach task (Crammond and Kalaska,
1994; Zhang et al., 1997; Gail and Andersen, 2006) in combina-
tion with partial precueing (Lecas et al., 1986; Riehle and Requin,
1989; Riehle, 1991; Hoshi and Tanji, 2000; Nakayama et al.,
2008).

The pattern of frontoparietal LDs that we found in our study
suggests that slower motor-goal representations in PRR than
PMd reflect a need for the buildup or reorganization of spatial
representations in PRR during spatial remapping tasks, indepen-
dent of corollary discharge or decision signals. We will discuss
how far the results could indicate the existence of prospective
internal forward model predictions triggered by motor planning
rather than by motor execution.
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Materials and Methods
Tasks and control of behavior. With our task, we wanted to test how the
dynamics of motor-goal decisions and their cortical representations de-
pend on whether the subjects had to perform a memory or reaction-time
(RT) task. Further, we aimed to test how partial advance information
(precueing) about the to-be-performed reach influences the dynamics of
motor-goal decisions.

To separate neural motor-goal representations from other neural sig-
nals, we used an anti-reach task design (Gail and Andersen, 2006). The
anti-reach task required the subjects to map a spatial instruction cue onto
one of two reach goals, either at the location of the cue (pro) or opposite
to it (anti). The spatial transformation rule was instructed with a colored
context cue (Fig. 1A) (see below for details). The motor goal could only
be defined uniquely by the combination of both cues. The eight reach
conditions (two context conditions � four cue directions) were ran-
domly interleaved.

Different cueing conditions were realized by presenting the cues either
before (precue period) or after (go-cue period) an instructed delay. The
precue consisted of the contextual and the spatial cue together [rule and
spatial condition (RS)], only the spatial cue [spatial-only condition (S)],
only the contextual cue [rule-only condition (R)], or nothing [null con-

dition (N)]. The four cueing conditions were
randomly mixed in small blocks of 10 –20 trials
(Fig. 1 B).

Stimuli were presented on an LCD screen
(19 inch ViewSonic LCD VX922; onset laten-
cies corrected). The contextual cue consisted of
a colored frame around the small, central red
eye and white hand fixation points, and in-
structed the subject to reach toward (green �
pro) or diametrically opposite (blue � anti) of
the spatial cue. The peripheral and color-
neutral spatial cue was located left, right,
above, or below the central fixation points at 9
cm eccentricity [14.5° visual angle (VA)].

The exact timeline of the trials was as follows
(Fig. 1 A): Monkeys initiated the trials by ac-
quiring central eye fixation (tolerance:
2.5– 4.0° VA; 224 Hz CCD camera, ET-49B,
Thomas Recording) and hand fixation at a
touch screen (tolerance: 4.0° VA; IntelliTouch
screen, ELO Systems). A variable-length fixa-
tion period (500 –1000 ms) was followed by
the brief precue period (200 ms). The mon-
keys had to keep eye and hand fixation for
the memory period (800 –2000 ms), before
the hand fixation stimulus disappeared (go-
signal). In non-RS trials, a simultaneous go-
cue was flashed (170 ms) and completed the
missing information to uniquely specify the
reach goal. Monkeys had to reach toward
the instructed goal within a maximum of
700 –1000 ms (movement period; reach tol-
erance: 5.7° VA) and hold the goal position
for 300 – 400 ms (feedback period). Visual
feedback indicated the correct movement
goal (filled circle of the same color as the
contextual cue at the goal location) during
the last 300 ms of the feedback period, i.e.,
only once the monkey had finished the reach.
Eye fixation had to be kept throughout the
trial. Liquid reward and acoustic feedback
indicated correct (high pitch tone, reward)
or incorrect (low pitch tone, no reward)
behavior.

Animal preparation and neural recordings.
Two male rhesus monkeys (Macaca mulatta;
monkey S and monkey A) were trained to per-
form the anti-reach task with partial precueing.

The recording procedure was as in previous experiments (Gail et al.,
2009). In brief, monkeys were implanted with a titanium head holder and
two magnetic resonance imaging (MRI)-compatible recording cham-
bers, custom-fit to the monkeys’ heads (3di). Chamber positioning above
PRR [Horsley Clarke coordinates: 6 mm/8.5 mm (monkey S/monkey A)
contralateral; 10 mm/9.5 mm posterior], and PMd (13 mm/13.5 mm
contralateral; 17 mm/19.8 mm anterior) was guided by presurgical struc-
tural MRI and confirmed by postsurgical MRI. Sustained direction-
selective neural responses during center-out reach planning (memory
period) were used as a physiological signature in both areas to confirm
the region of interest. Both chambers were implanted contralaterally to the
handedness of the monkey (monkey A, left hemisphere; monkey S, right
hemisphere). All surgical and imaging procedures were conducted under
general anesthesia.

We used two five-channel microdrives (“mini-matrix”; Thomas Re-
cording) for extracellular recordings, mostly simultaneously in each
chamber. The raw signals of the electrodes were preamplified (20�;
Thomas Recording), bandpass filtered, and amplified (154 Hz to 8.8 kHz;
400 – 800�; Plexon) before online spike sorting was conducted (Sort
Client; Plexon). Spike times and spike waveforms were recorded and later
subjected to additional offline sorting (Offline Sorter; Plexon).

Figure 1. Anti-reach task with different cueing conditions and visuomotor tuning in PMd and PRR. A, Memory-guided anti-
reach task. The left sequence shows an example of a pro-trial, the right an example of an anti-trial in the RS condition. Black and
white central squares represent the eye- and hand-fixation stimuli. The central colored frame represents the contextual cue
instructing the transformation rule pro or anti, and the peripheral white circle represents the spatial cue. The target position is
indicated by the dotted circle. Arrows and dotted circles are for demonstration purpose only and were not shown to the subjects.
Note that a go-cue period of 170 ms is only relevant for other cueing conditions, as in B. B, In four cueing conditions, the contextual
and spatial cue could be presented simultaneously or separately either before or after a variable memory period: transformation
rule and spatial cue presented as precue (RS condition), no precue (N; rule and spatial cue as go-cue), only rule as precue (R; spatial
cue as go-cue), or only spatial cue as precue (S; rule as go-cue). C, PSTHs and raster plots of a PRR example neuron. This example
motor-goal neuron shows a dynamic switching for cue- to motor-related tuning in response to the precue (shaded area) in the RS
condition. Neuronal activities are shown for spatial cues presented at 270° (left panel; MD) and 90° (right panel; NP). Polar plots
show the directional tuning of the neuron between 100 and 200 ms (cue period), and 400 and 700 ms (memory period) relative to
the cue position separately for pro- and anti-trials. D, Visuomotor dynamics in the population of PMd and PRR neurons. The
percentage of spatially tuned neurons of all recorded neurons is plotted for PMd (top) and PRR (bottom) for the first 450 ms after
onset of the precue in the RS condition. Blue bars reflect the percentage of neurons with cue-related tuning, green bars reflect
motor-related tuning, and red bars reflect spatially undefined tuning (see Materials and Methods).
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Animal care and all experimental procedures were conducted in ac-
cordance with German laws governing animal care.

Time-resolved directional and rule selectivity in individual neurons.
Time-resolved analysis of directional and rule selectivity was conducted
to reveal the cortical dynamics of motor-goal decisions. The analysis time
window was between 200 ms before onset of the relevant cue and 450 ms
after cue onset. In the RS condition, the time around the precue was
analyzed. In the N, R, and S conditions, the time around the go-cue was
analyzed. All recorded and sufficiently well isolated units were included
in the analysis, regardless of their tuning properties, unless explicitly
stated otherwise.

For time-continuous analyses, we used spike densities, which were
computed by convolving each spike with a causal kernel, which was
defined as follows:

R�t� �
�g � �d

�d
2 � �1 � e

�t

�g � � e

�t

�d ,

where R(t) is the spike density at time point t. The rise time constant �g

was set to 2 ms, and the decay time constant �d was set to 20 ms (Thomp-
son et al., 1996; Monosov et al., 2008). Average spike densities across
trials with identical conditions (9 –15 repetitions per condition) were
sampled at 1 ms resolution and aligned to the onset of either the precue or
the go-cue. To reduce variability in the time-resolved tuning analyses of
individual neurons (see below), we additionally used a sliding window of
20 ms length, within which the spike densities were averaged and which
was shifted in steps of 1 ms.

Time-resolved rule selectivity (context tuning) was defined by a sig-
nificant difference (rank sum test) between the average spike densities in
pro- and anti-trials in the memory period of the R condition. The anal-
ysis was conducted in each time bin.

Time-resolved directional selectivity was quantified with a directional
tuning vector (DTV). It is defined as the vector average across all center-
out cue directions u� i (unit vectors) weighted with the corresponding
mean spike rates rij of neuron j as follows:

DTVj�t� � �
i�1

4

rij�t�u� i.

The direction � of the DTV can take any value between 0° and 360°. The
DTV was defined relative to the location of the spatial cue, i.e., 0° corre-
sponds to a rightward cue. The significance of directional tuning was
tested with a nonparametric one-way ANOVA (Kruskal–Wallis, � �
0.05, unless stated otherwise) plus an additional criterion. The criterion
required that the length of the DTV had to be �0.2, after the DTV was
normalized to the spike density at the direction with the maximal re-
sponse in that time bin. The fixed criterion of 0.2 was arbitrary, but
varying it between 0.15 and 0.25 did not change our conclusions. With
this criterion, we excluded neurons with a bimodal tuning close to sym-
metric. Such symmetric bimodal tuning could represent two potential
motor goals instead of one selected motor goal and would be character-
ized by a significant ANOVA but a DTV length close to zero (see S-4,
available at www.jneurosci.org as supplemental material). The DTV was
computed in every time bin, separately for pro- and anti-trials, and sep-
arately within each cueing condition.

Cue-related versus motor-related tuning. The anti-reach task design
allowed separating cue-related from motor-related tuning by comparing
the directional selectivity in pro- and anti-reaches (Gail and Andersen,
2006). A neuron’s instantaneous (bin-to-bin) directional tuning was cat-
egorized according to the absolute difference in DTV direction between
pro- and anti-trials in each time bin: cue-related tuning (���� � 45°),
motor-related tuning (���� � 135°), or spatially undefined tuning (else).
This definition of instantaneous tuning depended on a direct bin-wise
comparison of spatial tuning between pro- and anti-trials in each cueing
condition.

As known from previous studies (Crammond and Kalaska, 1994; Gail
and Andersen, 2006), spatiotemporal tuning profiles of individual neu-
rons in PMd and PRR can change over time from cue related to motor
related (Fig. 1C), whereas other neurons may show motor-related tuning
from the earliest onset of their response. The activity profile of the exam-

ple neuron in Figure 1C shows the changing tuning properties of the
neuron between the time windows 100 –200 ms (cue period) and 400 –
700 ms (memory period). Figure 1 D shows the number of cue- and
motor-related neurons as a fraction of all recorded neurons over the time
of the trial in PMd and PRR.

We characterized the neurons according to their spatiotemporal re-
sponse profiles. We considered neurons to have a significant cue-related
response when the instantaneous cue-related tuning in the RS condition
persisted in at least 90% of 30 consecutive time bins within 200 ms after
the onset of the precue (an equivalent definition of cue-related response
could be achieved for responses following the go-cue in the N condition,
which did not change our results). We defined neurons as motor-goal
neurons when they showed significant movement planning activity. Mo-
tor planning activity was defined as motor-related tuning for at least 90%
of 50 consecutive time bins within 450 ms after precue onset in the RS
condition. The different number of time bins for a cue-related response
and motor planning activity was set because the cue response is transient,
whereas the motor-related response is more sustained. We defined neu-
rons as perimovement neurons that did not show motor planning activ-
ity but that at some point in time after the go-cue were motor tuned.

Finally, we defined a time-invariant, motor-related preferred direction
(PD) for each neuron. The PD was computed by averaging the tuning
vectors in pro-reaches over all time bins of the analysis time window in
which the neuron showed significant instantaneous motor-related tun-
ing. The PD was computed separately within each cueing condition.

Determination of motor-goal latencies separately in pro- and anti-trials.
If motor-goal latencies in a cortical area were different in pro- and anti-
trials, then the analysis of instantaneous motor-related tuning would
reveal the time course of the motor-goal tuning in the slower of two
conditions (pro or anti), since instantaneous tuning is based on an bin-
to-bin comparison between pro- and anti-trials.

To analyze motor-goal latencies separately in pro- and anti-trials, we
needed to extract the time courses of cue- versus motor-related tuning in
pro- and anti-trials separately. We accomplished this with two measures.
First, we restricted our data set to neurons that did not show cue-related
responses. Cue-related responses are indistinguishable from motor-
related responses in pro-reaches, since cue and motor goals are spatially
identical in this case. Hence, cue-related responses would confound mea-
surements of motor-goal latencies in pro-trials. Second, we compared
the instantaneous tuning direction of a neuron in the currently consid-
ered context (pro or anti) with the time-invariant PD of this neuron (see
definition in the previous section) to decide on the time-resolved cue
versus motor relatedness within this context.

Determination of motor-goal latencies in reaction-time conditions.
Motor-related tuning could result either from motor planning activity or
from perimovement activity (corollary discharge or sensory feedback
about the movement). In the RT conditions (N, R, S), the isolation of
motor-goal latencies (planning activity) from motor feedback (peri-
movement activity) was not guaranteed without further precautions.
(Only the motor-related tuning in the memory period of the RS condi-
tion could be directly considered motor-goal tuning, since movements in
these trials were initiated much later.) To isolate motor-goal latencies from
latencies of perimovement activity in RT conditions, we separately con-
ducted our latency analyses within either a population of exclusive motor-
goal neurons, i.e., neurons that showed significant motor planning activity,
or within the complementary population of perimovement neurons.

Population analyses of motor-related tuning. We characterized the
motor-related tuning in neural populations in two ways. First, we com-
puted average peristimulus time histograms (PSTHs) across neurons of
each cortical area and within each different cueing condition. We did this
to illustrate general neural response properties as a function of time.
Second, we computed the time-resolved fraction of motor-tuned neu-
rons (recruitment curves) in each cortical area and cueing condition for
statistical analyses. We excluded neurons with cue-related responses to
show the motor-related time courses.

PSTHs across neurons were computed as the average response in the
direction of each neuron’s maximal response [PSTH for maximum di-
rection (MD)] and, separately, in the opposite direction [nonpreferred
direction (NP)]. The maximum direction for each neuron was defined as
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the direction with the maximal average response across time and trials in
pro-trials within the time window of 200 –350 ms after cue onset (precue
in RS; go-cue in N, R, and S conditions). A time window shorter than the
analysis time window was chosen because in PMd the activity of the
neurons starts to decrease around 300 ms after the go-cue (see Fig. 2C,D).
Note that the MD and NP directions are restricted to the discrete cue
directions left, right, up, and down, since only for these directions PSTHs
can be computed. The response of each neuron was normalized to its
maximal response within the 200 –350 ms time window and within each
task condition before averaging across neurons. Average PSTHs across
neurons were calculated separately for pro- and anti-trials in MD and NP
for each cueing condition. Neurons that did not show significant direc-
tional selectivity in any time bin during the analysis time window in
either pro- or anti-trials were excluded from this analysis. Because of the
necessary normalization, random fluctuations in such nontuned neu-
rons would be inappropriately amplified, and would contribute to the
average PSTH with similar weight as strongly tuned neurons.

Recruitment curves denote the fraction of neurons that were motor
tuned in a specific time bin relative to the total number of neurons that
were motor tuned in any time bin of the analysis time window (see Fig.
2 B). Recruitment curves in our experiment have two advantages over
PSTH comparisons. First, normalization and averaging of neural re-
sponses were not needed for computing recruitment curves. Averaging
across neurons, as done for population PSTHs, typically cannot account
for the different response profiles of the individual neurons. For example,
many neurons have very low baseline firing and show brisk response
onsets after cue presentation, whereas others have high baseline levels
and might exhibit their directional selectivity by small excitatory re-
sponses to one cue direction and strong inhibitory responses to other
directions. Also, normalization tends to boost weak, noisy responses.
Second, the recruitment curves are based on tuning functions that inter-
polate between all four measured directions. The comparison between
MD and NP in PSTHs is restricted to two of the four measured direc-
tions. As a consequence, PSTHs are less sensitive for neurons with
oblique PDs and broad tuning, which is not the case for recruitment
curves. For these reasons, we based our statistical analyses on the recruit-
ment curves and use PSTHs only for illustration purposes.

Quantification of neural LDs. We determined motor-goal latencies by a
threshold criterion for the neuronal recruitment curves (for controls and
alternatives, see S1–S3, available at www.jneurosci.org as supplemental
material). Latency of motor tuning within each condition was defined as
the average time relative to cue onset at which the fraction of motor-
tuned neurons exceeded each of seven threshold levels for at least 100 ms.
Seven equidistant threshold levels were defined relative to the following
baseline: Th( p) � baseline 	 ( p � (1 � baseline)), where “baseline”
refers to the average fraction of tuned neurons in the 200 ms before cue
onset. The p value was set to 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 to
characterize the early tuning onset of the fastest 
35% of neurons. The
average across seven thresholds was built to become less sensitive to
minor random fluctuations. Note that absolute latencies depend on the
choice of thresholds, and hence are of limited conclusiveness. We statis-
tically analyzed only latency differences between conditions or neural
populations.

Pairwise neural LDs between task conditions or cortical areas were
computed and tested for being different from zero. Averaging across
absolute latencies measured with multiple threshold levels would induce
artificial variance and compromise statistical power. Therefore, we com-
puted the LDs separately for each threshold level and only then com-
puted the average LD across thresholds. Permutation tests (N � 10,000
samples) were used to estimate the probability that the original sample
indicates a significant difference from zero. In each permutation, each
neuron’s tuning data were randomly assigned to one of the two task
conditions or cortical areas in consideration, such that the numbers of
neurons in both populations were the same as in the original sample. The
resulting p value represents the percentage of random permutations lead-
ing to an LD larger or equal to the original sample. A difference was
considered significant if the p value was �5%.

Neural response latencies and behavioral reaction times. Behavioral RTs
were defined as the median time from onset of the go-cue until the release

of the touch screen within each recording session and task condition.
Average RTs were computed across recording sessions. RT differences
between pro- and anti-trials were tested with a paired t test across ses-
sions and within each task condition.

To relate motor-goal latencies of individual neurons to behavioral
RTs, we analyzed motor-goal latencies after the go-cue in all RT condi-
tions (N, R, and S) on a trial-by-trial basis. We used a threshold criterion
to define latencies in those trials where the neurons showed a good-
enough response to the pending motor goal: post-go-cue, single-trial
activity needed to exceed baseline activity (� mean spike density of the
last 200 ms of the N condition memory period) by at least three times its
SD for at least 100 ms within the analysis time window. To cope with the
sparse spike events in low-firing neurons, we estimated spike densities in
single trials with a Gaussian kernel of width � � 50 ms, as follows:

R�t� �
1

�2��2
� e

�t2

2�2

.

The Gaussian kernel resulted in stronger smoothing than the EPSP kernel
used for the trial-average data above. In the RS condition, the onset of
motor-goal tuning (after the precue) is not related to the RT (after the go-
cue); therefore, single-trial latencies in the RS condition were not taken into
account. Nontuned neurons and neurons with a cue-related response (see
above) were excluded from the analysis to avoid confounds.

We removed RT and single-trial neural latency outliers for the trial-
to-trial regression analysis between RTs and neural latencies. A value was
classified as an outlier if its distance from the median was �1.5 times the
interquartile range (distance between the 75th and 25th percentiles).
Since only a small fraction of trials allowed determination of neural
response latencies, data from all RT conditions were merged, and linear
regression curves were calculated for all neurons in which single trial
latencies could be estimated in at least 10 trials.

Results
Extracellular single-neuron spiking activities were recorded from
258 neurons in PRR (monkey S, 99; monkey A, 159) and 192
neurons in PMd (monkey S, 74; monkey A, 118) while the mon-
keys performed the anti-reach task with partial precueing (Fig. 1).
The average performance of monkey S was 77%/77% (pro/anti) in
the RS condition, 80%/79% in the N condition, 75%/75% in the R
condition, and 79%/79% in the S condition. The average perfor-
mance of monkey A was 86%/86% in the RS condition, 86%/85% in
the N condition, 85%/83% in the R condition, and 85%/84% in the
S condition for pro- and anti-reaches, respectively. Errors were
mainly caused by ocular fixation breaks and not by incorrect target
choices. The choice of the monkey for a reach target was correct in
97% for monkey S, and in 99% for monkey A.

Motor-goal latencies after simultaneous cueing of
transformation rule and spatial information
Is motor planning activity represented earlier in either PMd or PRR?
If there is an LD, do the LDs depend on a motor command or motor
execution, or do they also exist for planning activity proper? To
answer these questions, we first analyzed motor-goal tuning laten-
cies in PMd and PRR, when the monkeys were instructed simulta-
neously with both the transformation rule (pro/anti) and the spatial
cue. We compared motor-goal latencies in response to the simulta-
neous cues in instructed-delay trials (precue in the RS condition)
and in reaction-time trials (go-cue in the N condition). If motor-
goal latency differences exist in both conditions—especially if they
exist after the precue at the beginning of an instructed delay—then
they must be independent of motor execution and represent dynam-
ics of motor planning. If latency differences only existed after a go-
cue immediately before or during motor execution, then they should
be related to corollary discharge or motor-related sensory feedback.
The anti-reach task allowed us to separate cue- from motor-related
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responses (Fig. 1C,D) and to extract motor-goal latencies separately
in each context (pro and anti). For analyses of motor-goal latencies
separately within each context we had to restrict the neurons to those
that did not show cue-related responses (see Materials and Meth-
ods). In PMd, 175 of 192 neurons (91%) fulfilled this criterion. In
PRR, this was the case for 215 of 258 neurons (83%, RS condition).
Because of this necessary constraint, our conclusions—strictly
speaking—are limited to neurons without a cue-related response.
However, since the fraction of neurons with a cue-related response is
small, and only a subpopulation of these would qualify for our anal-
yses because of additional selection criteria, we do not expect that
these few neurons would change the results in any significant way.

Figure 2 shows the population PSTHs and fraction of signifi-
cantly motor-tuned neurons (recruitment curves) in PMd and
PRR for pro- and anti-reaches in the RS condition (Fig. 2A,B)

and N condition (Fig. 2C,D). In the pro-trials of the RS condi-
tion, the population PSTHs in PMd and PRR were practically
identical (Fig. 2A, left). In the anti-trials, on the other hand, the
average PRR response to the MD had a higher latency than the
PMd response (Fig. 2A, right). Correspondingly, there was no
significant LD between PMd and PRR for pro-reaches ( p � 0.05,
randomization test), but there was for anti-reaches (LDPRR—PMd �
41 ms, p � 0.0022) in the memory period of the RS condition (Fig.
2B). In the movement period of the N condition, the results look
similar (for a more in-depth discussion of potential differences,
see supplemental Fig. S4, available at www.jneurosci.org as sup-
plemental material). There was no LD between PMd and PRR
for pro-reaches, whereas in anti-reaches the motor tuning
emerged earlier in PMd than in PRR (LDPRR—PMd � 22 ms,
p � 0.0037). The fact, that the LD is present at the beginning of
motor-goal memory trials (RS condition), at a time when the
corresponding motor command will be issued at earliest 
1–1.5
s later, suggests that the LD is related to the decision process
about the motor goal or movement planning, rather than to
movement execution.

Spatial remapping induces differences in motor-goal latencies
between PMd and PRR
In the N as well as the RS condition, spatial and rule information
were presented together, and in both conditions motor-goal tun-
ing was earlier in PMd than PRR, but only for anti-reaches. What
factors determine the time course of motor-goal decisions in the
frontoparietal network? Is it possible to influence the LDs be-
tween PMd and PRR by changing the temporal sequence in which
spatial and rule information are provided? We tested the influ-
ence of presenting rule information before spatial information (R
condition) and of presenting spatial information before rule in-
formation (S condition). The results are shown in Figure 3. In the
R condition (Fig. 3A), there was no frontoparietal LD for pro-
goals ( p � 0.05), but for anti-goals motor tuning occurred earlier

Figure 2. Dynamics of motor-related tuning in PMd and PRR in memory and reaction-time
conditions. A, B, Data for pro-trials (left column, green) and anti-trials (right column, blue)
aligned to the onset of the precue in the RS condition (memory). Shaded areas indicate the time
of cue visibility. C, D, Equivalent data aligned to the onset of the go-cue in the N condition
(reaction time). Gray arrows in D indicate mean RT across 176 recording sessions. A, C, PSTHs:
Mean � SE (shaded) of PMd (dark colors) and PRR (light colors) normalized population activity
in MD (solid) and NP (dotted). B, D, Recruitment curves: fraction of neurons tuned in PMd (red)
and PRR (yellow) in each time bin relative to the number of neurons tuned for the pro- or
anti-goal in any time bin of the analysis time window (numbers in legend). Latencies in each
condition were determined via a threshold criterion. Frontoparietal LDs between PMd and PRR
were tested with a randomization test (see Materials and Methods). The histogram insets show
the distribution of LDs with randomized data compared with the LD of the original sample (red
arrow). The p values indicate the significance of the LDs. PMd showed earlier motor-related
tuning than PRR in anti-reaches but not in pro-reaches, both in the RS and N condition.

Figure 3. Dynamics of motor-related tuning in conditions with partial precueing. All the
conventions for the recruitment curves are as in Figure 2 D. A, Recruitment curves for the R
condition. B, Recruitment curves for the S condition. Conditions that required spatial remapping
(R-anti, S-pro) showed earlier motor-related tuning in PMd than PRR, whereas conditions with-
out remapping (R-pro, S-anti) showed no LDs. See Results and Figure 5 for details on why S-pro,
and not S-anti, required spatial remapping from the monkeys. Note that the LD in S-pro was
significant when selecting neurons according to a stricter criterion (supplemental Fig. S1, avail-
able at www.jneurosci.org as supplemental material).
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in PMd than PRR (LDPMd—PRR � 27 ms, p � 0.0026). In contrast,
in the S condition (Fig. 3B) there was a trend for earlier motor
tuning in PMd than PRR in pro-reaches. The LD was close to
significant when we selected the neurons according to the stan-
dard criterion for spatial tuning, as defined in Materials and
Methods (LDPRR—PMd � 19 ms, p � 0.057) (Fig. 3B). It was
significant (LDPRR—PMd � 25 ms, p � 0.026) when neurons were
selected according to a stricter tuning criterion, which we did as a
control (supplemental Fig. S1, available at www.jneurosci.org as
supplemental material). There was no significant LD in anti-
reaches in the S condition (LDPRR—PMd � 3 ms, p � 0.05) for
either selection criterion (Fig. 3B; supplemental Fig. S1, available
at www.jneurosci.org as supplemental material). Note that the
higher baseline level in the S anti-trials can be explained by the
spatial tuning during the S condition memory period, as will be
discussed below.

The results of the RS, N, and R conditions, which showed LDs
only for anti-goals but not for pro-goals, suggest that the fronto-
parietal LDs could reflect the process of spatial remapping re-
quired in anti- but not pro-reaches. The LDs that we found in the
S condition during pro- but not anti-reaches seem to be at odds
with this remapping hypothesis. In the following, we will demon-
strate that the seemingly counterintuitive results of the S condi-
tion are consistent with the idea that spatial remapping is the
relevant factor for inducing motor-goal LDs between PRR and
PMd. For this, we analyzed the neural encoding and putative
cognitive strategy of the monkeys in the memory periods of the R
and S conditions, first with respect to the context encoding, and
second—and more importantly—with respect to the spatial
encoding.

Figure 4 shows the comparative dynamics of context tuning in
PMd and PRR. The context was represented earlier and more
prevalently in PMd than PRR. Toward the end of the R condition
memory period, the fraction of rule-tuned cells was only slightly
higher in PMd than PRR, consistent with earlier reports (Gail et
al., 2009). This finding does not imply any specific effect on the
relative time courses of motor-goal encoding in PMd versus PRR
after the spatial go-cue at the end of the R condition memory
period.

The situation is different in the S condition. The S condition
leaves some ambiguity as to what the animals memorize during
the memory period of these trials: (1) a memory of the spatial
precue; (2) the two potential motor goals (pro/anti), which are

associated with each spatial cue as long as the context is not
known; and (3) a preliminary default movement plan to either
the pro- or anti-goal. If the monkeys memorized the spatial pre-
cue or by default planned a pro-reach during the memory period
of the S condition, then a spatial remapping would have been
required after the contextual go-cue during anti- but not pro-
reaches, as was the case in the other cueing conditions. If, on the
other hand, the monkeys by default planned an anti-reach during
the memory period of the S condition, then a spatial remapping
would have been required after the contextual go-cue during pro-
but not anti-reaches. To test whether such a need for spatial
remapping during S condition pro-reaches can explain the ob-
served LDs in this condition, we analyzed the population tuning
during the memory period of the S condition before the contex-
tual go-cue was shown. Only the population of motor-goal neu-
rons (see Materials and Methods) was used for this analysis,
because for other neurons we could not expect a sustained re-
sponse during the memory period. In PMd, two of the motor-
goal neurons dropped out of the analysis because of a lack of
activity at the end of the S condition memory period (spike den-
sity at MD, �1 Hz).

Importantly, and against intuition, in both monkeys neurons
in PMd and PRR in this experiment almost exclusively encoded
the anti-goal during the memory period of the S condition. Fig-
ure 5 shows the population tuning of motor-goal neurons for
PMd and PRR in the last 200 ms of the memory period in the RS

Figure 4. Dynamics of contextual tuning after precueing of the transformation rule. Recruitment
curves show that the fraction of neurons with significantly different spike densities between pro- and
anti-trials was higher in PMd (red) than PRR (yellow). This was the case especially early in the memory
period after the R condition precue. Other conventions are the same as in Figure 2 D.

Figure 5. Predominant spatial tuning preference for the anti-goal in the memory period of
the S condition. A, B, The normalized population tuning in pro-trials (green) and anti-trials
(blue) is shown relative to the preferred spatial cue position in PMd (A) and PRR (B). Tuning
curves of each neuron were aligned such that their MD in pro-reaches corresponded to 0° before
averaging across neurons. The population tuning in the RS memory periods (left) confirms the
typical expected motor-goal tuning in PMd and PRR. The population tuning in the S conditions
(right) indicates preference for the anti-goal. Note that the memory period of the S condition
precedes the go-cue. Since the transformation rule (pro or anti) could not be known by the
monkeys, the tuning curves for pro- and anti-trials are practically identical. Only motor-goal
neurons were used for this analysis (see Materials and Methods).
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and the S conditions (the baseline period for the recruitment
curves). The time window was chosen to analyze the activity in
the S condition immediately before the contextual information
was given to the monkey. The tuning curves of all motor-goal
neurons were aligned and normalized with respect to their max-
imal response (plotted at 0°), which was calculated as the average
spike density in the 200 ms across pro-trials in the RS condition.
The motor-goal tuning in the RS condition was taken as a refer-
ence to be able to differentiate in the S condition between tuning
to the pro- and to the anti-goal. Neurons in PMd and PRR in the
RS condition (Fig. 5A,B, left column) on average show the typical
opposing tuning curves between pro- and anti-trials, reflecting
their motor-goal encoding (Fig. 1C). The right columns of Figure
5, A and B, show that the same neurons in the memory period of
the S condition are spatially tuned toward the anti-reach direc-
tion. We interpret this tuning as a preliminary default movement
plan of both monkeys to the anti-goal. It suggests that after the
contextual go-cue in the S condition a remapping is indeed re-
quired in pro- but not in anti-reaches, consistent with the neural
LD data above.

Figure 6, A and B, summarizes the latency results for PMd and
PRR in all conditions. There was a significant difference between
PMd and PRR motor-related latencies in only those conditions
where a spatial remapping was required (RS-anti, N-anti, R-anti,
S-pro). There was no LD in conditions without remapping (RS-
pro, N-pro, R-pro, S-anti).

Motor planning versus motor feedback in reaction-time trials
Sensorimotor areas, especially in the posterior parietal cortex, are
activated by movement-induced somatosensory or visual feed-
back (Sakata et al., 1973; Mountcastle et al., 1975; Kalaska et al.,
1983; Colby and Duhamel, 1991), not only by sensory cues or
motor planning activity. The motor-goal LDs between PMd and
PRR in the three RT conditions (N, R, and S) could be con-
founded by such motor feedback, including corollary discharge
signals, if, for example, PRR was more strongly driven by
movement-induced feedback signals, whereas PMd was more
strongly driven by motor planning signals. To test whether dur-
ing movement initiation in RT conditions the LDs between PMd
and PRR were related to motor planning rather than motor feed-
back, we split our data set into motor-goal neurons (N_PMd/
PRR � 65/75) and a complementary group of perimovement
neurons (N_PMd/PRR � 127/183). Motor-goal neurons were
characterized by motor-related tuning during the memory pe-
riod of the RS condition and perimovement neurons by motor-
related tuning in the movement period, but not during the
memory period (see Materials and Methods). Figure 6C shows
the LDs between PRR and PMd averaged across all RT conditions
without spatial remapping (N-pro, R-pro, S-anti) and with spa-
tial remapping (N-anti, R-anti, S-pro). The average LDs were
computed separately for the population of all neurons, the pop-
ulation of motor-goal neurons, and the population of perimove-
ment neurons. In the conditions without remapping, there were
no significant LDs for either group. In the conditions with
remapping, there were significant LDs between PMd and PRR for
the population of all neurons (23 ms, p � 0.017) and the motor-
goal neurons (21 ms, p � 0.03). For the perimovement neurons,
there was only a nonsignificant trend (21 ms, p � 0.084), despite
the fact that the number of eligible neurons in this category was
higher than that for the motor-goal neurons. The absolute laten-
cies for the motor-goal tuning were shorter in the group of
motor-goal neurons than the perimovement neurons (average
across all three RT conditions and both contexts: � � 30 ms;

p � 0.00049) (Fig. 6D). This difference in absolute latency con-
firmed that the splitting of the two groups of neurons according
to their tuning properties in the RS condition memory period was
meaningful with respect to the differentiation between motor-
goal and motor-feedback latencies.

Effects of remapping on motor-goal latencies within PMd
and PRR
We also compared motor-goal latencies between pro- and anti-
reaches within each cortical area, rather than latencies between
cortical areas (Fig. 7). Note that these are the same data as in the
above analyses, just rearranged for different statistical compari-
sons. Pro-goal tuning emerged earlier than anti-goal tuning in

Figure 6. Summary of frontoparietal latencies and split analysis for different neuron populations.
A, B, Summary of average absolute latencies (A) and LDs (B) between PRR and PMd for motor-related
tuning for pro-trials (left) and anti-trials (right) for all cueing conditions (RS, N, R, S). C, Comparison of
remapping conditions with other conditions. LDs between PRR and PMd (PRR � PMd) averaged
across all RT conditions with no required remapping (N-pro, R-pro, S-anti) and with required remap-
ping (N-anti, R-anti, S-pro) for either all neurons or separately for motor-goal (MG) and perimove-
ment (PeM) neurons. Asterisks indicate the level of significance (*p � 0.05; **p � 0.01,
randomization test). See Results and supplemental material (available at www.jneurosci.org as sup-
plemental material) for the significance of the S-pro condition. Only remapping conditions induce
significant frontoparietal LDs. These differences are visible mainly in motor-goal neurons, less so in
perimovement neurons. D, Average tuning latencies are smaller in motor-goal compared with peri-
movement neurons. The bar shows LDs (PeM � MG) across all RT conditions and both cortical areas.
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PRR whenever the motor-goal decision was immediately pre-
ceded by a spatial cue: pro–anti-LDs were significant after the
precue in the RS condition (LDA—P � 40 ms, p � 0.0021), after
the go-cue in the N condition (LDA—P � 54 ms, p � 0), and after
the go-cue in the R condition (LDA—P � 71 ms, p � 0). There was
no pro–anti-LD in response to the go-cue in the S condition ( p �
0.32). In PMd, we found faster representation of pro-goals com-
pared with anti-goals only in response to the go-cue in the R
condition (LDP—A � 56 ms, p � 10�4). In PMd, none of the
other conditions showed a significant difference between pro-
and anti-goals (RS: p � 0.27; N: p � 0.054; S: p � 0.42). Note that

for the S condition in either area the LD analysis between pro-
and anti-trials is confounded by the default anti-tuning in the
preceding memory period, which makes interpretation in this
case difficult.

Motor-goal latencies and behavioral reaction times
If motor-goal latencies in PMd and PRR reflect decisions on arm
movements, a correlation between motor-goal latencies and RTs
should be expected. Figure 8A shows the median RTs in pro-
reaches (light gray) and anti-reaches (dark gray) for the different
cueing conditions averaged across all recording sessions (N �
176). The RTs for pro-reaches were 240 � 2 ms (RS), 227 � 2 ms
(N), 221 � 2 ms (R), and 240 � 2 ms (S). The RTs in anti-reaches
were 246 � 2 (RS), 242 � 2 ms (N), 245 � 2 ms (R), and 244 �
2 ms (S). The RT differences between pro- and anti-reaches were
significant in each cueing condition (RS: 6 � 1 ms, p � 10�6; N:
15 � 1 ms, p � 10�6; R: 24 � 1 ms, p � 10�6; S: 4 � 1 ms; p � 4.6
10�5; data not shown). The RT differences between pro- and
anti-reaches in the RS condition cannot be explained by motor-
goal latencies, since motor-goal tuning in these conditions was
already present during the memory period. To compensate for
RT differences between pro- and anti-trials for the nonspecific
effects of SR congruency observed in the RS condition, we also
computed RT differences that were corrected for this nonspecific
effect by subtracting the RT difference in the RS condition from
the original RT differences (Fig. 8B). The corrected RT differ-
ences were 9 � 1 ms (N condition, p � 10�6), 18 � 1 ms (R, p �
10�6), and �2 � 1 ms (S, p � 0.015).

We tested whether the neuronal motor-goal latencies better
correlated with the time of the cue presentation or with the be-
havioral response onset (reaction time). The top left panel of
Figure 8C shows as an example the slopes of the linear regression
between single-trial RTs and neuronal onset latencies (relative to
cue presentation; see Materials and Methods) for the motor-goal
neurons in PRR. In a complementary manner, the slopes of the
regression between (negative) single-trial RTs and neuronal lead
times (onset of neuronal response relative to movement onset)
were also analyzed (Fig. 8C, top right). Note that these two ways
of quantifying the relationship between neural latencies and be-
havioral responses are not mutually independent, but help to
illustrate the results. For the regression analysis, we only included
trials of the RT conditions (N, R, and S) from neurons that did
not show cue responses (see Materials and Methods). A slope
close to 1 in the comparison between RTs and neuronal onset
latencies (top left) indicates that the onset of activity in PRR
motor-goal neurons was correlated to the movement onset. A
slope close to 1 in the comparison between RTs and neuronal lead
times (top right) would have indicated that the onset of activity
was related to the cue onset. Overlap of the regression lines with
the upper gray-shaded area indicates neural latencies larger than
the RT, which only occurred in a small fraction of the motor-goal
neurons. The pattern of slopes showed better correlation of the
neural latencies with the movement onset compared with the cue
onset for PRR motor-goal neurons, and also for perimovement
neurons (Fig. 8C, bottom right). For motor-goal neurons in PRR,
the median slope for relatedness to RT was 0.76, and for related-
ness to cue onset 0.14 ( p � 0.00026, rank sum test). For peri-
movement neurons in PRR, the median slope for RT was 0.62,
and for cue onset 0.20 ( p � 10�5, rank sum test). In PMd, we
could not find a significant bias in either neural population. For
motor-goal neurons in PMd, the median slope for RT was 0.60,
and for cue onset 0.25 ( p � 0.05). For perimovement neurons,
the median slope for RT was 0.47 and for cue onset 0.39 ( p �

Figure 7. Comparison of motor-tuning latencies between pro- and anti-trials. A–D, Recruit-
ment curves for all four cueing conditions in pro-trials (green) and anti-trials (blue), separately
for PMd (left) and PRR (right). Other conventions are as in Figures 2 and 3. Note that the data are
the same as in Figures 2 and 3, but are grouped differently to emphasize and quantify the
differences between pro- and anti-trials rather than PMd and PRR. E, Summary of LDs between
pro- and anti-trials (anti � pro). Brackets for the S condition indicate that the conclusiveness of
LDs is questionable because of the different baseline levels in this condition.
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0.05). The distribution of slopes for both
neural populations was unimodal and did
not suggest that the moderate correlation
with either cue onset or RT is the result of
an averaging effect across an inhomoge-
neous distribution of neurons (data not
shown). In summary, in PRR neural
motor-goal latencies were best correlated
with the time of the behavioral response;
in PMd, there was no bias, which would
indicate stronger correlation of the neuro-
nal latencies with either the cue onset or
the reaction time.

Statistical controls
Latency measures depend on method-
ological procedures. For example, any sta-
tistical significance level (here, � � 5%)
for motor-related tuning (significant spa-
tial tuning in pro- and anti-reaches with
opposite tuning vectors) marks an arbi-
trary threshold criterion. To avoid con-
founds caused by potential differences of
the effect size in PMd and PRR, we per-
formed our analysis using different
threshold criteria for spatial tuning (sup-
plemental Fig. S1, available at www.
jneurosci.org as supplemental material).
Also, we balanced the number of neurons
between PMd and PRR by random sub-
sampling (supplemental Fig. S2, available
at www.jneurosci.org as supplemental material). Finally, we used
alternative latency measures based on cumulative sums, as were
used in previous studies from other groups (supplemental Fig.
S3, available at www.jneurosci.org as supplemental material).
None of the control measurements or alternative methods led to
conclusions different from those presented in the main text.

Discussion
We compared motor-goal latencies in PMd and PRR during a
nonstandard visuomotor association task. Neurons in PMd
were tuned earlier for the pending motor goal than neurons in
PRR, whenever the task required spatial visuomotor remap-
ping. Frontoparietal LDs existed for motor goals during movement
planning, independent of movement execution. We interpret our
findings in support of the hypothesis that spatial reorganization of
network activity in PRR causes frontoparietal LDs. We suggest that
the initiation of the remapping process in PRR is contingent on
frontoparietal projections from PMd.

Shorter motor-goal latencies in PMd than PRR in
remapping conditions
We expected the relative timing of motor-goal decision processes
between reach planning areas to change with precueing, as spec-
ulated previously (Kalaska and Crammond, 1992; Cisek, 2006;
2007). Against our expectation, PMd–PRR latency differences
depended on the required visuospatial mapping instead. Vari-
ation of the precue did not change this basic dependency. Our
results showed earlier motor-goal tuning in PMd than PRR
whenever the reach goal had to be spatially remapped from the
position of the preceding incongruent spatial cue (anti-trials in
RS, N, and R conditions) or the incongruent preliminary move-
ment plan (pro-trials in S condition).

Different reasons could account for the dependency of fron-
toparietal LDs on spatial remapping. It was previously suggested
that frontoparietal interactions and corresponding LDs are the
consequences of a decision-making process (Pesaran et al., 2008).
In line with this view, one could emphasize the inherent differ-
ence in cognitive strategy required to perform either a pro-reach
or an anti-reach task. To be consistent with our data, we would
have to assume that all conditions that include a remapping re-
quire an active decision, whereas conditions without remapping
do not. The function of such a decision could be the active up-
dating of the preliminary motor goal, which was induced by the
spatial cue or preliminary movement planning.

Alternatively, PRR motor-goal representations could depend
on frontoparietal projections from PMd in any case, while be-
coming visible as interareal LDs only under specific circum-
stances. LDs of several tens of milliseconds, as seen here and also
in previous studies (Riehle, 1991; Kalaska and Crammond, 1992;
Johnson et al., 1996; Pesaran et al., 2008), seem rather long to be
attributable to transmission delays between the monosynaptically
connected areas PMd and PRR (Pandya and Kuypers, 1969; Jones
and Powell, 1970; Kurata, 1991; Johnson et al., 1996; Caminiti et al.,
1999; Marconi et al., 2001; Tanné-Gariépy et al., 2002; Battaglia-
Mayer et al., 2003). Instead, we prefer to attribute the observed
large frontoparietal LDs to the dynamic reorganization of net-
work activity, which is required in visuospatially organized areas
like PRR in the case of spatial remapping. According to this view,
the dynamic reorganization is only started in PRR, once the mo-
tor goal has been selected in PMd. The dependency of PRR on
PMd output would only become detectable as a frontoparietal LD
in cases of spatially incongruent mapping, when an isolated spa-
tial motor-goal representation is not directly induced by the spa-
tial cue, but has to build up first. We predict that tasks with

Figure 8. Correlation between neuronal latencies and behavioral reaction times. A, Average RTs in pro- (light) and anti-trials
(dark) in the four different cueing conditions. B, RT differences between anti- and pro-reaches corrected for the nonspecific
difference in the RS condition (see Results). C, Regression analysis. Regression lines between neuronal latencies and RTs for each
motor-goal neuron in PRR when aligned to the go-cue onset (top left). The equivalent regression data are shown (top right)
between the “lead time” of neural tuning (� time of tuning onset before movement onset) and negative RTs (� time of cue onset
before movement onset). Shaded areas indicate neuronal tuning latencies larger than RT (upper shaded areas in upper left and
upper right) or neuronal tuning before cue onset (lower right shaded area in upper right). The slopes close to the unity line (upper
left) and close to zero (upper right) indicate correlations of the neural latency with the movement onset, rather than with the cue
onset. The boxplots in the lower panel shows the statistical analysis of the slope distributions for cue-onset alignment (CUE) and
movement alignment (MOV) in both areas separately for motor-goal and perimovement neurons. In both groups of neurons,
neural latencies in PRR but not PMd were correlated with behavioral response latencies.
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nonspatial symbolic cueing could also induce frontoparietal LDs,
similar to tasks with a spatially balanced distribution of cues
(visual search task, Pesaran et al., 2008). What is common to all
three tasks is the need for the buildup of a spatial goal represen-
tation in PRR that is not induced directly by a spatial cue. Spa-
tially congruent mapping conditions, on the other hand, do not
require dynamic remapping or buildup. The seamless and imme-
diate transition from cue- to motor-goal-related tuning, even if
its “initiation” in PRR might depend on PMd output, would
render frontoparietal LDs invisible in this case.

The latter interpretation fits our and previous data, and ex-
plains long frontoparietal motor-goal LDs independently of in-
terareal transmission delays. It is parsimonious since it requires
neither an assumption that PMd-to-PRR projections become ac-
tive only during decision tasks nor that remapping trials involve a
decision process, whereas other trials do not. Note that we cannot
exclude the alternative, but similar, possibility that both areas,
PMd and PRR, receive a motor-goal decision signal from an in-
dependent third area, and that PRR in the case of remapping
needs longer than PMd to converge onto a new dynamic state to
represent the spatial motor goal.

Latency differences between PMd and PRR for motor
planning activity
Previous physiological studies suggested that frontoparietal
LDs between reach-related areas in premotor and parietal cor-
tices exist for perimovement activity immediately preceding
or accompanying motor execution (Bioulac and Lamarre, 1979;
Georgopoulos et al., 1982; Kalaska et al., 1983; Riehle and Requin,
1989; Riehle, 1991; Johnson et al., 1996), in line with a previously
stated corollary discharge hypothesis (Mountcastle et al., 1975;
Bioulac and Lamarre, 1979; Kalaska et al., 1983; Seal and Com-
menges, 1985; Johnson et al., 1996). A previous study (Pesaran et
al., 2008) showed that latency differences between PMd and PRR
also exist for motor-goal representations during movement plan-
ning, i.e., independent of movement execution, whereas another
study did not show such differences (Johnson et al., 1996). The
fact that frontoparietal LDs depend on the type of task rather than
the movement execution can explain these different results. We
found shorter latencies in PMd than PRR for motor-goal activity
in response to a preparatory stimulus (RS condition) and in re-
sponse to a go-instruction (N, R, and S conditions). Even in the
RT conditions, we could attribute the frontoparietal LDs to dif-
ferences in the latencies of motor-goal signals, rather than motor
feedback signals. Our findings contradict a corollary discharge
hypothesis in its strict sense (see alternative suggestion below), in
which PMd–PRR latency differences would be the consequence of a
frontoparietal efference copy signal, i.e., would be dependent on
explicit motor commands (Kalaska et al., 1983; Johnson et al., 1996).

Motor-goal latencies in relation to behavioral reaction times
To discuss the neural dynamics of sensorimotor integration in
the context of behavioral performance, it is important to distin-
guish between general neural response onset latencies (Kalaska et
al., 1983; Riehle, 1991; Kalaska and Crammond, 1992; Johnson et
al., 1996; Pesaran et al., 2008) and latencies of neural activities
that are more specifically related to the cue, the motor-goal deci-
sion, or motor execution.

First, with the anti-reach task design we separated cue- from
motor-related tuning (Crammond and Kalaska, 1994; Zhang et al.,
1997; Gail and Andersen, 2006). Neurons in PMd (Crammond and
Kalaska, 1994) and PRR (Gail and Andersen, 2006) can dynami-
cally switch from cue- to motor-related encoding, whereas others

are motor related as soon as they become active. Population anal-
ysis of neural onset latencies including all neurons would lead to
confounded motor latencies. Especially, frontoparietal LDs could
be obscured because of the simultaneity of the fastest responding
neurons (Johnson et al., 1996), which respond to the cue. We
avoided this confound by analyzing neurons without cue-related
responses.

Second, using different partial precueing conditions (Lecas et al.,
1986; Riehle and Requin, 1989; Riehle, 1991; Hoshi and Tanji, 2000;
Nakayama et al., 2008), we additionally separated motor-goal laten-
cies related to motor planning (Riehle, 1991; Johnson et al., 1996)
from latencies of perimovement activity related to motor-execution
(Riehle and Requin, 1989; Crammond and Kalaska, 2000). Peri-
movement activities could comprise movement-induced corollary
discharge, somatosensory, or visual signals, especially in parietal ar-
eas (Sakata et al., 1973; Mountcastle et al., 1975; Kalaska et al., 1983;
Colby and Duhamel, 1991; Nakayama et al., 2008). Average response
latencies from mixed motor-goal and perimovement activity
(Kalaska et al., 1983; Riehle and Requin, 1989; Johnson et al., 1996;
Pesaran et al., 2008) would overestimate motor-goal latencies in ar-
eas with strong motor-feedback signals. We avoided this confound
by differentiating motor-goal from perimovement neurons.

The trial-by-trial motor-goal latencies in PRR were better cor-
related with manual RTs than those of PMd. This could mean
that manual responses are triggered only once the motor-goal
decision (which becomes visible in PMd before PRR) leads to the
required (and slower) evolution of the proper motor-goal repre-
sentations in PRR.

Frontoparietal projections for prospective forward
model estimates?
Parietal cortex function is important for proper online correction
of movements (Desmurget et al., 1999) and is suspected to use
forward model predictions for this purpose (Wolpert et al., 1998;
Desmurget et al., 1999; Mulliken et al., 2008; Shadmehr and
Krakauer, 2008). We suggest that such a forward estimate is gen-
erated not only during movements, but prospectively, before a
motor command is issued, as an integral part of the planning
process. In visuomotor tasks, movement planning then would
equal the process of analyzing the difference between the current
sensory state and the prospective sensory state, which is predicted
to result from the currently imagined movement in the future,
once it is executed (Salinas, 2004; Shadmehr and Wise, 2005).
This view is consistent with our data and previous studies, which
showed activation of PPC during motor imagery (Decety et al.,
1994; Stephan et al., 1995; Sirigu et al., 1996; Gerardin et al., 2000;
Naito et al., 2002), and the fact that parietal electrical stimulation
can trigger subjective movement intentions without actual move-
ments being performed (Desmurget et al., 2009).
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Supplemental Material 

 

 

Supplemental Material 1 – Control of latency results for effect size 

 

Inhomogeneity of average spike rate or effect size, e.g. differences in the neural 

response selectivity, could bias latency measures between different cortical areas. 

First, since our recruitment curves focused on only the significant neurons, different 

firing rates in both area could lead to a higher number of significantly tuned neurons 

in the area with higher firing rates due to statistical power. We analyzed firing rates in 

PMd and PRR on average across those neurons, which contributed to the analyses in 

the main text, i.e. neurons with motor-related tuning and no cue-response. For each 

neuron the average firing rate was determined in the same time window as was used 

for computing the maximum direction (MD), which was 200 to 350 ms after onset of 

the cue (precue in RS, go-cue in N, R, S). Firing rates in PMd during anti-trials were 

not significantly different from those in PRR in either cueing condition. Second, the 

effect size in each area was quantified with the maximum p-value for directional 

selectivity within the analysis time window averaged across all neurons (The negative 

logarithm of the p value to the basis of ten was used for statistical comparisons; p 

values smaller than 10-6 were set to 10-6). There was either no significant difference in 

effect size between PMd and PRR (RS-pro, R-anti, S-pro) or the effect size was 

significantly higher (p<0.05, t-test) in PRR compared to PMd (RS-anti, N-pro, N-anti, 

R-pro and S-anti). Only in RS-anti the effect size in PMd was higher than in PRR. If 

at all, higher effect size in PRR should lead to opposite latency differences between 

both areas in most cueing conditions than the ones we found. Taken together, neither 

differences in average firing rate nor in average tuning strength could explain the 

observed LDs between PMd and PRR.  

 

In the standard analysis neurons were included if they showed motor-related tuning at 

some point in time during the analysis time window. The significance criterion of 

being tuned (p<0.05 in Kruskal-Wallis test) implies an artificial threshold. As 

additional control we ran our analysis with different thresholds for the significance of 

an individual neuron’s tuning (α = 0.01, 0.1, or 0.2). In the S-pro condition the effect 
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of LD(PRR-PMd), which only showed a non-significant trend (p = 0.057) in the 

standard analysis with tuning threshold α = 0.05 (Fig. 3B and 6A), was significant (p 

= 0.026) when neurons were selected with a stricter significance criterion for tuning 

(α = 0.01). In all other conditions the significances did not change (Fig. S-1). These 

findings corroborate our conclusions of the main manuscript, especially they provide 

evidence for earlier motor-goal representations in PMd than PRR in the S-pro 

condition.  

 

 

Supplemental Material 2 – Control of latency results for sampling bias 

 

Similar to effect size (Supplemental Material 1) differences in the size of the neuron 

sample between the two areas could affect latency measures based on recruitment 

curves. We randomly subsampled the same number of neurons in PMd and PRR 

(Pesaran et al. 2008), to balance the number of neurons analyzed in each area (Fig. S-

2). The distributions of LDs in the different task conditions obtained from repeated 

random sampling of neurons were not different from the original values (p>0.4, 

confidence interval), which means the results were independent of the specific neuron 

samples. In summary, section 1 and 2 of Supplementary Material suggest that 

population size, effect size, or average spike rate differences did not confound our 

latency measures. 

 

 

Supplemental Material 3 – Alternative latency measures 

 

As an alternative latency measurement we compared the cumulative sums over all 

single-unit motor-related tuning onset latencies (Fig. S-3). Within each cueing 

condition and for each neuron the onset latency was defined as the first time point at 

which the tuning became motor-related and continued to do so for at least 90% of 50 

consecutive time bins (equivalent to the definition of motor planning activity in the 

memory period of the RS condition; see Material and Methods).  The time window of 

analysis for each cueing condition was identical to the standard analysis in the main 

manuscript, which was -200 ms to + 450 ms relative to the onset of the pre-cue (RS) 

 
 

48



Cortical Motor-Goal Latencies 

or go-cue (N, R, S). The number of neurons which fulfilled the criterion for motor-

tuning is provided in the legend of Fig. S-3. Median onset latencies for motor-tuning 

were lower in PMd than PRR (p<0.01, Wilcoxon signed rank test) in all four cueing 

conditions which required spatial remapping (RS-anti, N-anti, R-anti, S-pro) These 

results confirm the results in the main text.  

 

 

Supplemental Material 4 – Temporary bimodal tuning properties 

 

Population PSTHs around the time of the go-cue in the N condition (Fig. 2C) suggest 

that for a brief period of time, between approx. 100-250 ms after cue onset, neural 

activity in PMd did not only increase for reaches to the maximum direction (MD), but 

also for reaches to the non-preferred direction (NP). As a consequence, the separation 

between MD and NP PSTH curves occurred later in PMd than PRR during pro-

reaches, while the recruitment curves and statistical tests indicated synchronous onset 

of motor-goal tuning in PMd and PRR. Here we explain this seeming contradiction by 

showing that in PMd in response to the go-cue in the N condition a small fraction of 

neurons temporarily showed bimodal tuning, i.e. they briefly reflect both potential 

motor goals, the pro- and the anti-goal.  

 

To test the significance of directional tuning in our standard analysis in the main text 

we used a non-parametric 1-way ANOVA with the additional criterion that the length 

of the normalized DTV had to be larger than 0.2. With this criterion we excluded 

neurons with a bipolar tuning close to symmetric (ANOVA significant, |DTV| < 0.2) 

from the recruitment curves and statistical analysis, but not from the population 

PSTHs. Such symmetric bipolar tuning could represent two potential motor goals 

instead of one selected motor goal and would be characterized by a significant 

ANOVA while the DTV has a length close to zero (see Material and Methods). The 

test for bimodality was conducted separately in pro- and anti-trials for all neurons 

which did not have a cue-related response. Figures S-4 A and B show the time-

resolved number of bimodal neurons in PMd and PRR for the RS and N conditions. 

Especially in the N condition in PMd there was a clear increase in the number of 

bimodal neurons between 100-250 ms after cue onset, most pronounced for pro-

reaches. Figure S4 C shows the tuning between 100-250 ms for PMd neurons in the 
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N-pro condition (normalized within each neuron and averaged across neurons), which 

showed bimodal tuning for at least 10 time bins in this time window. The fact, that the 

average tuning shows opposing local maxima at 0 and 180 deg is consistent with the 

interpretation that the tuning reflects the encoding of two potential motor goals.  

 

We speculate that bimodal tuning was stronger in the N condition than in the RS 

condition because of the time pressure for the monkey in the N condition. It takes 

longer to process the rule information than the spatial information (compare RTs for R 

and S conditions in pro-reaches, Fig. 6A). Evaluation of the spatial cue before the rule 

is known narrows down the choices to two out of four remaining spatial targets, the 

pro- and the anti-goal. Once the rule information was processed, one of the two 

putative activity peaks had to be suppressed (resulting in the motor-goal tuning of 

which we analyzed the latencies with our recruitment curves). This strategy might 

have been faster for the monkey than building up a new activity peak after the delayed 

evaluation of the transformation rule. In the RS condition after the pre-cue, there was 

no time pressure for the monkey and therefore no need to build up potential motor-

goal tuning.  
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Figure S-1: Control for the effect of tuning significance thresholds on LD measures. Frontoparietal LDs 
are shown for pro- (top row) and anti-trials (bottom row) in the different cueing conditions. A-C: LD 
results when different significance thresholds were applied to the spatial tuning of each neuron in pro- 
and anti-reaches. A: LDs if significance of spatial tuning in single neurons and time windows was 
defined by p<0.2 (Kruskal-Wallis). B and C: Same as A but significance defined with p < 0.1 and 0.01, 
respectively.
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 Equalization of  number of neurons in PMd and PRR

cueing condition

Figure S-2
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Figure S-2: Control for the effect of sample sizes in PMd and PRR on LD measures. Mean and standard 
deviation (1000 randomizations) of frontoparietal LDs for pro- (left panel) and anti-trials (right panel) in the 
different cueing conditions. In each randomization run a random sub-sample of the same number of neurons in 
PRR and PMd were taken. Asterisks indicate the level of significance (*: p<0.05, **: p<0.01). The dots indicate 
the original value with unequal number of neurons in PMd and PRR. The original LDs were not different from 
the LDs derived from balanced sample sizes (p >0.4).   
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Figure S-3: Alternative neural latency measure. The curves show cumulative sums over the 
onset latencies of motor-related tuning. PMd (dark) and PRR (light) data are shown separately 
for pro- (left) and anti-trials (right) in the different cueing conditions (A-D). The motor-tuning 
onset latencies are derived for each single neuron within each condition. Additional to the 
cumulative sums the median onset latency and the p-value (ranksum-test) for the comparison 
between PMd and PRR onset latency distribution are provided. Also, the numbers of neurons in 
each area are provided, for which an onset latency could be computed.
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Figure S-4: Analysis of temporary bimodal tuning after cue 
presentation. A: Number of putatively bimodal neurons in PMd (dark) 
and PRR (light) and separate for pro- (left) and anti-trials (right) in the 
RS-condition after onset of the precue. B: Same as in A, but in the N 
condition after onset of the go-cue. C: Average normalized tuning of 
putatively bimodal PMd neurons in pro-trials in the N condition (the 
condition with the strongest indication for bimodal tuning). The tuning 
curve is bi-lobed, indicating bimodal tuning, even though not fully 
symmetrically. The time window, which was used for computing the 
directional tuning, is indicated by the black bar in B. Data are aligned 
and normalized to the average maximal response in pro-trials in the 
time window of analysis.
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SUMMARY

In natural situations, movements are often directed
toward locations different from that of the evoking
sensory stimulus. Movement goals must then be in-
ferred from the sensory cue based on rules. When
there is uncertainty about the rule that applies for
a given cue, planning a movement involves both
choosing the relevant rule and computing the move-
ment goal based on that rule. Under these condi-
tions, it is not clear whether primates compute
multiple movement goals based on all possible rules
before choosing an action, or whether they first
choose a rule and then only represent the movement
goal associated with that rule. Supporting the former
hypothesis, we show that neurons in the frontoparie-
tal reach areas of monkeys simultaneously represent
two different rule-based movement goals, which are
biased by the monkeys’ choice preferences. Appar-
ently, primates choose between multiple behavioral
options by weighing against each other the move-
ment goals associated with each option.

INTRODUCTION

When passing the ball to a player of his team, a soccer player can

identify and select the proper target among many potential

targets by the color of the jerseys. In this situation the physical

targets are identical to potential targets of action (Figure 1A,

left). However, when a striker is approaching the opponent

goal, multiple alternative action goals have to be inferred from

a single physical target (the goal keeper) via spatial transforma-

tion rules (Figure 1A, right). The striker might want to aim for the

goal keeper, speculating that he or she will jump away, or for the

opposite corner of the goal, hoping that the keeper stays.

Recently, a lot has been learned on how primates represent

and decide between multiple physical targets in target-selection

tasks, and how different frontal and parietal cortical areas

contribute to target valuation and selection (Sugrue et al.,

2005; Gold and Shadlen, 2007; Churchland et al., 2008; Rangel

et al., 2008; Andersen and Cui, 2009; Kable and Glimcher,

2009; Kim and Basso, 2010; Bisley and Goldberg, 2010; Cisek

and Kalaska, 2010). Little is known, however, about decision

processes in rule-selection tasks, which require choosing

among goals based on a spatial transformation rule (Tremblay

et al., 2002), and in which alternative goals might not be physi-

cally present as target stimuli, but have to be spatially inferred,

like in the example of the striker.

In rule-selection experiments, alternative movements are con-

ducted under identical spatial sensory conditions, but according

to different context-defined transformation rules (Wise et al.,

1996; Wallis and Miller, 2003). In antisaccade or antireach tasks

(Figure 1A, right) a single visuospatial input is associated with

two alternative movement goals: one that is directly cued by

the sensory input (aim at the keeper), and another that has to

be inferred from a spatial cue by applying a remapping rule

(aim at the corner of the soccer goal opposite to the keeper)

(Crammond and Kalaska, 1994; Shen and Alexander, 1997;

Schlag-Rey et al., 1997; Everling et al., 1999; Zhang and Barash,

2004; Medendorp et al., 2005; Gail and Andersen, 2006). Two

alternative decision processes are conceivable in such rule-

selection tasks. The sensorimotor system could first choose

among the alternative rules, and then only compute one senso-

rimotor transformation to encode the single motor goal that is

associated with the selected rule (rule-selection hypothesis).

Alternatively, the system could first compute all potential senso-

rimotor transformations, and then select among the multiple

resulting motor-goal options (goal-selection hypothesis).

The difference between the rule- and goal-selection hypoth-

eses should become obvious in areas of the brain that have

‘‘spatial competence’’ for movement planning, i.e., areas that

exhibit spatially selective neural encoding of motor goal informa-

tion. This is the case, for example, in the premotor cortex

(Weinrich and Wise, 1982; Snyder et al., 1997; Crammond and

Kalaska, 2000) and the posterior parietal cortex (Mountcastle

et al., 1975; Snyder et al., 1997; Batista et al., 1999; Gail and

Andersen, 2006). The rule-selection hypothesis predicts that

such areas only encode one goal at a time, according to the

preliminarily selected rule, but not multiple rule-based potential

goals simultaneously (Figure 1B, left). The goal-selection hypoth-

esis predicts that they simultaneously encode all alternative

potential movement goals prior to the decision (Figure 1B, right).

Therefore, the two hypotheses are distinguishable only at prede-

cision stages, where the simultaneous existence of multiple,

alternative, potential motor goals in a rule-selection task would

favor the goal-selection hypothesis.

Evidence for potential motor goal encoding in spatial rule

selection tasks, i.e., in situations like in the example of the

striker, is lacking. Several areas of the brain have been thought
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to encode multiple potential motor goals in space, but only in

experiments involving selection among multiple physical

targets (Basso and Wurtz, 1998; Cisek and Kalaska, 2005;

Lau and Glimcher, 2008). However, in such tasks, multiple

alternative spatial representations in the neural activity could

be associated with multiple physical targets rather than motor

goals. Therefore, target selection tasks are unsuitable for distin-

A

B

Figure 1. Target-Selection versus Rule-

Selection Task

(A) In a target-selection task (left) two distinguish-

able (e.g. colored) spatial cues (targets) are pre-

sented, of which one should be chosen as move-

ment goal according to a selection rule. Both

potential targets have been spatially specified

before the selection. In our rule-selection task only

one spatial cue is provided, while the goal of the

movement can be the position of the spatial cue

(direct rule) or diametrically opposite to it (inferred

rule).

(B) Neural rule- or goal-selection encoding in

a rule-selection task. Decisions in ambiguous rule-

selection tasks might follow a ‘‘rule selection’’

hypothesis (left columns). The rule will first be

selected, and then be applied to the spatial cue to

compute the single associated spatial motor goal.

In spatial planning areas there will be either no

spatial information encoded (solid red), or a

memory of the spatial cue location (dotted orange)

prior to the final selection. The ‘‘motor-goal

selection’’ hypothesis (right columns) states that

both alternative rules are applied to the spatial cue

to create two competing spatial representations

for the direct and the inferred motor goal, which

may (dotted orange) or may not (solid red) be

modulated by choice preferences of the subject.

Note that the initial spatial encoding during the

spatial cue presentation and the postdecision

encoding of the final motor goal are identical in

both hypotheses.

Figure 2. Rule-SelectionTaskwith Instructed

Delay

In our potential motor-goal (PMG) task a single

spatial cuewas presented at one of the four cardinal

directions prior to a memory period. 60%–80% of

the trials were context-instruction trials (PMG-CI) in

which a contextual cue was shown in a second cue

period (‘‘GO’’). This contextual cue instructed

a direct reach toward the position of the preceding

spatial cue (green) or an inferred reach toward the

diametrically opposite direction (blue). In 20%–40%

of the trialsnocontextual cuewas shown (PMG-NC),

and themonkeyswere free to choose the goal either

according to the direct or inferred transformation

rule.

guishing between the rule- and the goal-

selection hypotheses. We measured the

spatial selectivity of neurons in monkey

parietal and premotor cortex during

reach planning in a novel rule-selection task (Figure 2). We

show that two spatial, rule-based potential motor goals can

be simultaneously encoded, supporting the goal-selection

hypothesis.

Potential motor goals can encode all alternative choices as

defined by the task (options), or biased representations of all

choices based on previous reward experience (preferences),
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depending on which stage of the decision process they repre-

sent. So far, empirical evidence for preference encoding has

been lacking for skeletomotor tasks, even in target selection

experiments. Many previous oculomotor studies showed modu-

lation of neural target responses by choice probability or some

form of value assignment (preference encoding) in different brain

areas of monkey (Basso and Wurtz, 1998; Dorris and Munoz,

1998; Platt and Glimcher, 1999; Sugrue et al., 2004; Dorris and

Glimcher, 2004; Yang and Shadlen, 2007; Lau and Glimcher,

2008; Kim and Basso, 2010; Louie and Glimcher, 2010) and

human (Hampton et al., 2006; Kable and Glimcher, 2007; Yanai

et al., 2008; Wunderlich et al., 2009). Target-selection experi-

ments using skeletomotor behavior, like reaching, showed en-

coding of freely selected targets in the parietal reach region

(PRR) (Scherberger and Andersen, 2007; Pesaran et al., 2008),

and potential motor goal encoding in the dorsal premotor cortex

(PMd) of monkeys (Cisek and Kalaska, 2005), but the task

designs in these studies did not allow dissociation of option

versus preference encoding. We tested for the encoding of

options versus preferences by using a mixture of instructed and

free-choice trials in combination with different probabilistic

reward schemes. We show that potential motor goal signals in

monkey parietal and premotor cortex during reach planning

represent mostly choice preferences, rather than options or

preliminary selections.

RESULTS

Balanced Choices between Alternative Rule-Based
Motor Goals
To distinguish between the rule- and goal-selection hypotheses

we first tested if two potential rule-based motor goals can be en-

coded simultaneously, since this would provide evidence for the

goal-selection hypothesis (Figure 1B, right). We designed

a potential motor goal (PMG) task, in which subjects had to

choose between two rule-based motor goals in each trial, and

characterized the spatial selectivity of neural activity as a function

of the spatial motor goal(s) during ambiguous reach planning.

Twomale rhesus monkeys were trained to perform amemory-

guided antireach task with instructed delay (Figure 2). A single

spatial cue was combined with an optional contextual color

cue. The contextual cue defined one of two spatial transforma-

tion rules according to which the spatial cue had to be mapped

onto the associated motor goal. The reach goal could either be

identical to the spatial cue (direct reach) or opposite to it (inferred

reach). In each trial of this PMG task, both options were available

in parallel to the subjects during reach planning, since the

contextual cue was presented only at the end of the instructed

delay, while the spatial cue was presented prior to the delay.

The PMG task consisted of two randomly interleaved trial

types, either with context instruction at the end of the delay

period (PMG-CI, 60%–80%), or without context instruction (no

context, PMG-NC, 20%–40%). We used the ‘‘free-choice’’

PMG-NC trials to probe the subjects’ behavioral choice prefer-

ences, and manipulated the subject’s choice preferences by

varying the reward schedules (see below).

The performance in PMG-CI trials was high for both monkeys

(PMG-CI: 88 ± 1% [monkey A], 80 ± 1.4% [monkey S]). Most

errors could be attributed to ocular fixation breaks, while

improper choices in instructed trials, i.e., confusions of the direct

and inferred reach goal, were rare in both monkeys (<2%). In the

PMG-NC trials, both direct- and inferred-goal choices with

proper ocular fixation and timing were considered correct, while

reaches to any other directions were considered incorrect. In the

first data set we are going to present, correct PMG-NC trials

were rewarded according to a bias minimizing reward schedule

(BMRS).

The BMRS was designed to reinforce balanced choice

behavior, by taking the reward history of the monkey into

account and reducing the reward probability if the behavior

was biased. In the BMRS, random behavior with an equal

amount of choices for either motor goal (on a short-term average

across few trials) leads to 50% reward probability, while any

consistent bias in choices leads to lower reward probabilities

(see Experimental Procedures). With the BMRS, the direct

choices (40 ± 0.1%, monkey A; 39.4 ± 2.5%, monkey S) and in-

ferred choices (48.7 ± 0.1%, monkey A; 44.9 ± 2.6%, monkey S)

were mostly balanced, with only a small bias in favor of inferred

choices (Figure 3A). The overall balance between direct and in-

ferred reach choices in PMG-NC trials suggests that the

monkeys had close-to-equal preference for the two potential

motor goals in BMRS sessions (= balanced data set).

Rule Selection versus Goal Selection—Potential Motor
Goal Encoding
According to the goal-selection hypothesis, the planning of two

equipotent alternative actions should lead to the neural encoding

of both corresponding motor goal representations simulta-

neously. According to the rule-selection hypothesis, we would

have to expect only one motor goal representation at a time

despite balanced behavioral choices on average (Figure 1B). In

the balanced choice condition, we recorded 145 (66 [A], 79 [S])

neurons in PRR, of which 97 (67%; 49 [A], 48 [S]) fulfilled the

criteria to be tested for the encoding of potential motor goals

(see Experimental Procedures). For the purpose of separating

the rule-selection from the goal-selection hypothesis PMG-CI

and PMG-NC trials were analyzed jointly, since the trial types

are indistinguishable and unpredictable to the subjects prior to

the optional contextual cue at the time of the GO signal.

Figure 3B shows an example neuron from PRR with a bimodal

spatial selectivity profile from the balanced data set in the PMG

task. We first tested the neurons spatial selectivity in two refer-

ence conditions. In the definite motor goal (DMG) task the

monkeys were unambiguously instructed about the pending

motor goal prior to memory period, i.e., the spatial and the

contextual cue were shown at the beginning of the memory

period (see Experimental Procedures). During such unambig-

uous planning in the DMG task, the neuron’s responses reflected

the unique downward motor goal in the ‘‘direct’’ (Figure 3B, left)

and ‘‘inferred’’ (Figure 3B, center) context. This is indicated by

the selectivity profiles for direct and inferred reaches that show

the neural response as a function of the cue position, and that

are shifted by 180� relative to each other (Figure 3B, bottom).

Such motor-goal selectivity is characteristic for PRR (Gail and

Andersen, 2006; Gail et al., 2009), and common to most direc-

tionally selective neurons of the current study (>80% across
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A

C

B

Figure 3. Neural Encoding of Potential Motor Goals in a Data Set with Balanced Choice Behavior

(A) Balanced percentage of direct (green) and inferred (blue) choices in PMG-NC trials with a bias minimizing reward schedule (BMRS; n = total number of

behavioral testing days for both monkeys; error bars denote SEM).

(B) Response of an example PRR neuron. The top panels show the spike rasters in the definite motor goal (DMG) task with the direct rule (left column), the inferred

rule (center) and in the PMG task (right), with average responses for each spatial cue position (0�, 90�, 180�, and 270�) below. Trials were aligned to the GO signal,

while ‘‘cue’’ marks the average onset time of the spatial cue. Pictograms at the side of the spike rasters illustrate the spatial cue positions (filled squares) and the

corresponding motor goal positions (open squares) according to the task. The bottom panels show the selectivity profiles of the neuron (average rate) as

a function of cue position in the late memory period (shaded time window). Selectivity profiles were interpolated for illustrative purposes only. The shaded curves

denote the SEM.

(C) Population results for the balanced data set in PRR. The average normalized activity of all eligible PRR neurons during the PMG-CI task is shown aligned to the

spatial cue onset, the GO signal, and the movement onset (dotted red lines). Selectivity profiles were aligned to the neurons’ preferred directions in DMG trials

before averaging (PD, preferred direction; OD, opposite-to-preferred direction). Direct-cued and inferred-cued PMG-CI trials physically differ only at the time of

the context instruction, hence, data are plotted jointly for the cue and memory periods. The inset shows the distribution of direction modality contrast (DMC)

values for all eligible neurons in the late memory period.
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data sets). Importantly, in the ambiguous PMG task (Figure 3B,

right), the neuron was always most active if the previous spatial

cue in a PMG task potentially indicated a downward (270�) reach,
i.e., when it had appeared either at the upper (90�) or lower (270�)
position. Since the spatial selectivity profile is plotted as a func-

tion of cue location, the bimodal activity profile with a peak sepa-

ration of 180� indicates encoding of a single motor-goal direction

in two different cue conditions, not two different motor-goal

directions. Notably, the neuron was not active in trials with

right-side (0�) or left-side (180�) cues, but only for those two

directions (up and down) that were equally probable to instruct

a downward motor goal.

The bimodal response profile of the example neuron in Fig-

ure 3B in the PMG taskmatched the prediction of the goal-selec-

tion hypothesis, and contradicts the rule-selection hypothesis.

The bimodal profile mimicked the response pattern one would

expect when averaging (not summing) the two response profiles

in the DMG task. This means, the response pattern during plan-

ning of two equipotent alternative potential motor goals was an

equally weighted linear combination of the response patterns

during unambiguous planning of the two respective unique

motor goals. In a model-based analysis we quantitatively

confirmed this view (see Figures S1 and S4 available online).

Bimodal selectivity profiles dominated the balanced data set

in PRR. The average population activity in the balanced data

set shows two stable ridges of activity during the memory period

(Figure 3C). Since the cue-position axis marks the location of the

spatial cue relative to the preferred direction (PD) of each neuron

(as measured in the DMG task), the two ridges indicate that on

the population level the direct and inferred goals are represented

simultaneously during ambiguous reach planning. For quantita-

tive analysis we characterized the bimodal versus unimodal

selectivity of each neuron with a direction modality contrast

(DMC). Positive DMC indices indicate selectivity for the direct

motor goal; negative values indicate selectivity for the inferred

motor goal. Indices close to zero indicate symmetric bimodal

tuning (not lack of tuning) since only directionally selective

neurons were considered (see Experimental Procedures). The

mean DMC of the balanced data set did not significantly deviate

from zero (m = 0.001; standard error of the mean [SEM] = 0.021,

p > 0.05), indicating that in the balanced data set most neurons

had bimodal selectivity profiles (Figure 3C, inset).

Potential Motor Goals or Preliminary Selections?
Choice-Selective Analysis in PRR
The existence of a bimodal neural selectivity pattern in the

balanced data set is not sufficient to demonstrate potential

motor goal encoding. The monkeys could have preliminarily

selected one of the two potential motor goals during the memory

period in every trial, and randomly switched their selection from

trial to trial. Such switching would be obscured in PMG-CI trials

due to the explicit context instruction at the time of the GO cue.

The bimodal selectivity pattern revealed by the above analyses

would denote an artifact of averaging across inhomogeneous

sets of trials in this case (Figure 4A, bottom).

With a choice-selective analysis of the free-choice (PMG-NC)

trials we can rule out this possibility. We can instead show that

both potential motor goals were encoded independently of the

monkey’s later choices (Figure 4A, top). If the monkeys made

preliminary selections in every trial then this selection should

A B

Figure 4. Encoding of Potential Motor Goals versus Preliminary Selections

(A) Schematic description of how to test the two alternative hypotheses with a choice-selective analysis of the free-choice trials (PMG-NC). Bimodal selectivity in

the PMG trials could be the result of averaging across trials with alternating preliminary selection of either of the two potential motor goals (lower row), or reflect

potential motor-goal encoding proper, independent of the later choice (top row). The similarity of the absolute DMC values, computed separately for direct-choice

(green) and inferred-choice (blue) trials, with the choice-indifferent absolute DMC values, computed for all trials, allows to differentiate the two possibilities (see

Figure S2 for a control).

(B) Choice-selective versus choice-indifferent absolute DMC values. The difference histogram shows that there is no significant deviation from the unity line,

indicating encoding of two potential motor goals, and contradicting preliminary selection encoding.
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be reflected in an unambiguous neural encoding of this prelimi-

nary selection in the late memory period immediately prior to

the monkeys decision (preliminary selection encoding). We

sorted PMG-NC trials according to the choice of the monkey,

and computed DMC values of the neural activity in the late

memory period separately for the trials in which the monkeys

freely chose the direct and inferred goals. If the low DMC of

a neuron with bimodal selectivity was the averaging result of

two opposite unimodal selectivity profiles, one for direct-choice

trials and the other for the inferred-choice trials, then a low abso-

lute value of the original DMCwould be attended with high abso-

lute values of the two choice-selective DMC values for this

neuron. This means, preliminary selection encoding would be

indicated by a low similarity between the original and the

choice-selective DMC values across neurons (Figure 4A,

bottom). Vice versa, we can reject the selection hypothesis if

a neuron in both choice-selective subsets of trials shows

a bimodal selectivity pattern, i.e., when low absolute values of

the original DMC is attended with low absolute choice-selective

DMC values, resulting in a high similarity between original and

choice-selective DMC across neurons (Figure 4A, top).

The balanced data set in PRR yielded bimodal selectivity in

PMG-NC trials separately within direct-choice and within in-

ferred-choice trials. The absolute choice-selective DMC values

for direct- and inferred-choice trials were highly similar to the

absolute original DMC values (Figure 4B). This can be seen by

the fact that the average distance of the data points from the

unity line did not significantly differ from zero neither for direct-

(pd > 0.05) nor inferred-choice (pi > 0.05) trials. When—as

a control—themethodwas applied to theDMGdata set, in which

we know that the monkeys had selected the motor goal already

during the memory period, then the choice-selective and original

DMCs were highly and significantly dissimilar (pd = 0.0012, pi =

0.00067; see Figure S2). Additional variance tests indicated

that it is unlikely that the bimodal selectivity profiles were the

consequence of rapid switching between two alternative prelim-

inary selections within the time of a trial (Figure S2).

Taken together, the results from the choice-selective analysis

of the balanced data set indicated genuine encoding of potential

motor goals rather than alternating preliminary selections in

PRR. This supports the motor-goal selection hypothesis and

argues against the rule-selection hypothesis.

Manipulating Behavioral Choice Preferences
Depending on which stage of the decision process a brain area

belongs to, encoding of multiple potential motor goals in that

area could represent the multiple options offered to the subject

(the ‘‘menu’’), or the competing behavioral goals associated

with these options and weighted with the subject’s preference

for either choice. Motor-goal options were defined solely by

the task. In any PMG trial two motor-goal options (the direct

and inferred motor goal) were valid during the memory period.

Encoding of motor-goal options should lead to the representa-

tions of two potential motor goals during the memory period of

all PMG trials, irrespective of any choice preferences of the

monkeys.Motor-goal preferences were defined by themonkeys’

average choice behavior in PMG-NC trials. Since the monkeys

had close-to-equal choice preferences for direct and inferred

motor goals in the balanced data set, the bimodal selectivity

profiles are not suited to dissociate encoding of motor-goal

options versus motor-goal preferences. If, on the other hand,

the monkeys had a bias in favor of one of the two options, then

encoding of motor-goal preferences should lead to neural activ-

ities in the memory period of PMG trials that reflect the relative

probability of selecting either potential goal in the PMG-NC trials.

By using different reward schedules we recorded two data sets,

one with balanced choice behavior (see above), and one with

strong behavioral choice bias, to dissociate the options and pref-

erence encoding hypotheses.

In the second data set, correct PMG-NC trials were rewarded

according to an equal probability reward schedule (EPRS). With

the EPRS, in which a 50% reward probability independent of the

choice history was guaranteed (reward probability: 52 ± 5%; p >

0.05 [A], 50 ± 4%; p > 0.05 [S]), both monkeys showed a strong

bias in favor of the inferred reach goal (Figure 5A), i.e., most rea-

ches in PMG-NC trials were directed toward the inferred motor

goal (85 ± 4.0% monkey A, 63 ± 4.1% monkey S), and only

a small fraction toward the direct goal (2.4 ± 0.8% monkey A,

17.8 ± 3.4% monkey S). In the remaining PMG-NC trials

(12.6% monkey A, 19.2% monkey S) the monkeys aborted the

trial without reaching, or reached toward one of the orthogonal

goals (<1%). This means that both monkeys had a preference

for the inferred goal when the transformation rule was unknown,

and when either goal selection was rewarded with equal proba-

bility in EPRS sessions (= biased data set).

We can only speculate about the reason for the intrinsic bias of

both monkeys during the EPRS (Figure S3). The reason behind

this behavior is not immediately relevant for the purpose of

dissociating options encoding from preference encoding at the

neural population level, though. It is sufficient to note that both

monkeys consistently had a similarly strong bias over an

extended period of time in the EPRS sessions, and little to no

bias in the BMRS sessions.

Options versus Preference Encoding in PRR
If neurons encoded behavioral choice preferences then we

would expect encoding of only the inferred motor goal in the

PMG trials of the biased data set, in contrast to the encoding

of both potential motor goals simultaneously as seen in the

balanced data set. This should be true in the late memory period

of all PMG trials, since PMG-CI trials are indistinguishable from

the PMG-NC trials prior to the GO signal, and were randomly

interleaved.

In PRR, the biased data set contained a total of 258 (159 [A], 99

[S]) recorded neurons. A total of 148 (57%) neurons (96 [A], 52 [S])

of the biased data set fulfilled the criterion for the analysis of

potential motor-goal encoding.

The PRR example neuron in Figure 5B was recorded in the

biased data set and was most active during planning of leftward

(180�) reaches in direct-cued or inferred-cued DMG trials. In

PMG trials the neuron was only highly active if the spatial cue

was presented at the right side (0�), i.e., as if an inferred instruc-

tion had been given externally or had been selected internally.

Such unimodal selectivity for the inferred goal dominated the

biased data set in PRR. The average normalized population

activity showed only a brief response increase when the cue
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matched the preferred direction (PD) of the neurons. This was

followed by a high level of activity when the cue was opposite

to the PD, corresponding to an encoding of the inferred goal

throughout the memory period (Figure 5C). The mean DMC

during the memory period of the biased data set was negative

(m = �0.31; SEM = 0.028) and significantly different from zero

(rank-sum test, p < 0.001) (Figure 5C, inset). This means that

the behavioral preference was reflected in a significant bias of
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Figure 5. Neural Encoding of Motor Goal Preference in a Data Set with Biased Choice Behavior

(A) Biased percentage of direct (green) and inferred (blue) choices in PMG-NC trials with an equal probability reward schedule (EPRS). Same conventions apply as

in Figure 3.

(B) Example PRR neuron from the biased data set. It showed motor-goal selectivity in the DMG task, as did the example in Figure 3. But in the PMG task it is only

active if the spatial cue appears opposite to the neurons PD.

(C) Correspondingly, PRR population activity shows a strong representation at the opposite-to-cue position (OD) during thememory period. The DMCdistribution

is significantly biased for the inferred goal (mean DMC = �0.31; ***p < 0.001; rank-sum test).
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the neural directional selectivity in the population of PRR

neurons. The inferred-goal neural preference is neither consis-

tent with an unbiased equipotent encoding of the two task-

defined motor goal options (options hypothesis), nor with an

encoding of the previous instruction cue (visual memory), but it

is consistent with the preference hypothesis.

Based on the observed inferred-goal selectivity in the biased

data set alone, one could not dissociate preference encoding

from preliminary selection encoding. But we can argue against

the latter possibility based on the choice-independent bimodal

response profiles in the choice-selective analysis of the

balanced data set. Preliminary selection encoding would have

had to reveal direct-goal neural selectivity in direct-choice trials,

and inferred-goal selectivity in inferred-choice trials, which was

not the case (see above).

Motor-Goal Encoding in Dorsal Premotor Cortex (PMd)
Another objective of our study was to compare parietal and pre-

motor sensorimotor areas, which are well known to be involved

in reach planning, while their role in reaching decisions is less

clear (Cisek and Kalaska, 2005; Scherberger and Andersen,

2007). We conducted the same analyses for PMd as for PRR

neurons. The biased data set contained 193 PMd neurons (118

monkey A, 75 monkey S), and the balanced data set 112 PMd

neurons (monkey S). Of those, 46% fulfilled the criteria for the

DMC analysis in the biased data set, and 40% in the balanced

data set, which denote smaller fractions of neurons than in

PRR (see above).

The analyses of potential motor-goal encoding in PMd re-

vealed overall very similar results to PRR, but there were also

differences. The distribution of DMC values in the biased data

set of PMd (Figure 6B) revealed a significant bias in favor of

the inferred motor goal (m = �0.298; SEM = 0.038, p < 10�10, t

test), as it was the case in PRR (Figure 5C, inset). In contrast to

PRR (Figure 3C, inset), the DMC distribution in PMd (Figure 6A)

also showed a significant remaining bias for inferred goals

(m = �0.11; SEM = 0.05, p = 0.004) in the balanced data set.

Note, though, that this bias in DMC values was significantly

smaller (p = 0.002) than in the biased data set, which indicates

that most neurons exhibited bimodal response profiles, while

few had a weak bias for the inferred goal. Since the monkeys

also had a small residual choice preference for the inferred

goal (Figure 3A) this could mean that PMd is more strongly

modulated by small choice preferences than PRR. The choice-

selective analyses of the PMG-NC trials showed a high DMC

similarity (Figure 6C), equivalent to PRR (Figure 4B). This, like

in PRR, indicated that the bimodal directional selectivity was

mostly not the consequence of preliminary selection encoding

in combination with trial-by-trial switching of the behavioral

choice. In summary, the PMd results are qualitatively very similar

to PRR, suggesting similar encoding schemes in both areas. For

a discussion of additional smaller differences between PRR and

PMd as revealed by our model-based analyses and variance

analyses see Figures S1 and S2.

Normalization of Multiple Motor-Goal Representations
Models of decision making often involve mutual competition

between the neural representations of multiple coexisting alter-

native choices (Platt and Glimcher, 1999; Cisek, 2006). Such

competition implies that the response of a neuron should be

reduced when its preferred motor goal marks only one out of

two equally valid behavioral options, compared to when the

motor goal is unambiguously selected. The responses of the

example neurons and the population activity plots in Figures 3

and 5 suggest that this is the case. The results indicate a halving

of the neural response strength to each potential motor goal in

the balanced PMG task compared to the corresponding unam-

biguous motor goal in the DMG task or biased PMG task. A

quantitative analysis of the weight coefficients (scaling factors)

in the model-based analysis confirmed this view (Figure S4).

The reduced neural response strengths during the simultaneous

presence of two alternative motor goals compared to a single

A B C

Figure 6. Potential Motor Goals in PMd

(A and B) Distribution of DMC values and the monkeys’ choice-behavior (insets) of the balanced (A) and biased (B) data sets. Same conventions apply as in

Figures 3 and 5 (***p < 0.001, **p < 0.01, rank-sum test).

(C) The choice-selective analysis of the DMC similarity in PMd. Same conventions apply as in Figure 4.
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goal argues in favor of a competition between alternative motor

goal representations.

DISCUSSION

The ability to plan multiple upcoming actions and decide among

them is vital to an organism acting within a complex environ-

ment.We investigated how parietal and premotor reach planning

areas encode the decision between different possible sensori-

motor transformation rules that could be applied to a single

visuospatial object. When monkeys were faced with two alterna-

tive spatial transformations, and chose them with equal prefer-

ence, then two separate spatial motor goal representations

coexisted in the frontoparietal reach network. This was the

case despite the fact that only one goal was directly visually

cued and the other had to be inferred from the visual cue by

applying a remapping rule. Additionally, the parietal reach region

(PRR) and the dorsal premotor cortex (PMd) predominantly en-

coded the variable choice preference between two potential

motor goals. By using free-choice probe trials and two distinct

reward schedules, we could rule out encoding of the monkeys’

preliminary behavioral selections, as well as encoding of the

task-defined choice options, during movement planning. Our

results suggest that in rule-selection experiments the sensori-

motor system first computes all potential motor goals associated

with a currently valid set of potential transformation rules, weighs

them according to the subject’s choice preference, and then

selects among these goals.

Deciding among Alternative Action Plans Rather
than Transformation Rules or Targets
We showed that during movement planning two alternative

potential reach goals can be represented simultaneously in

PRR and PMd in a rule-selection task. In this task only one visuo-

spatial target was presented at a time, allowing two alternative

motor goals by applying two different mapping rules. Our results

suggest that with preexisting knowledge about the visuospatial

constraints of the task (knowing the spatial cue), and uncertainty

about the to-be-applied rule (not knowing the context cue), the

sensorimotor system constructs all remaining motor goal

options, which are defined by the general context of the task,

and are of subjective value to the monkey (see biased versus

balanced condition below). We can reject the alternative rule-

selection hypothesis according to which the monkeys in general

would first select a rule, and then only compute the single

associated motor plan. It is as if the sensorimotor system in

a rule-selection task first creates all potential motor-goal repre-

sentations and then applies the same computational decision

algorithms as in a target-selection task.

The view that multiple spatial motor goal options can be simul-

taneously encoded prior to the decision in parietal and premotor

areas is reminiscent of earlier saccadic target-selection experi-

ments in the superior colliculus (Basso and Wurtz, 1998) and

the lateral intraparietal area LIP (Platt and Glimcher, 1999;

Sugrue et al., 2004; Dorris and Glimcher, 2004; Yang and Shad-

len, 2007; Louie andGlimcher, 2010). They showed probabilistic,

graded neural responses for preferred and nonpreferred targets,

depending on saccadic choice probabilities or subjective values.

Also, a study in PMd showed bimodal response profiles in

a manual two-target selection task (Cisek and Kalaska, 2005).

Our conclusions go beyond the previous findings, since these

studies showed the coexistence of multiple spatial representa-

tions associated with alternative choices, but used target-selec-

tion tasks. We show that the simultaneous representation of

mutually exclusive spatial motor goals in sensorimotor areas

does not require the presentation of multiple alternative spatial

physical target stimuli.

This simultaneous encoding of alternative competing motor

goals is also fundamentally different from the representation of

two sequential movement goals. Previous experiments showed

that in theparietal cortex, during theplanningof amulticomponent

(double-step) movement, two neural populations were activated,

each of which was selective for one of the single movement

components (Medendorp et al., 2006; Baldauf et al., 2008).

Double-step experiments do not induce a decision process

between mutually exclusive action goals, and rather suggest

thatmultiplecomponents of a complexmovement canbeplanned

at once. Our finding of simultaneous encoding of alternative

competing motor goals does complement previous observations

in effector-selection experiments, which showed that alternative

eyeorhandmovements to thesamespatial target, instructed (Cal-

ton et al., 2002) or freely chosen (Cui and Andersen, 2007), can

elicit simultaneous movement planning activity in LIP and PRR.

The advantage of the goal-selection scheme over the rule-

selection scheme for decision making could be that—by

computing all associatedmotor goal alternatives and their implicit

action plans during the ambiguous state of planning—a more

comprehensive cost-benefit calculation of each choice can be

achieved. When the striker in our introductory example has to

decide between aiming for the position of the goal keeper versus

theopposite corner, then it is not enough toconsider the likelihood

of the keeper to jump or stay. Also the costs associated with the

striker’s action alternatives are relevant, e.g., the striker might

be poor at aiming for right-side goals, or the ball might be in an

immediate position that eases aiming for one corner but not the

other.Our results imply that thedecisionprocess inour rule-selec-

tion experiment selected between competingmotor-goal alterna-

tives, not between different transformation rules or target stimuli,

and that this competition likely happened in the sensorimotor

areas that are involved in planning the respective movements.

Note, we do note rule out the possibility that in parallel

a competition between the two potential rules takes place in

rule-encoding frontal cortical areas (White and Wise, 1999;

Wallis et al., 2001; Wallis and Miller, 2003; Genovesio et al.,

2005). The rule-competition could then, in the extreme case,

just be mirrored by probabilistic motor goal representations in

downstream sensorimotor areas. Because of the observed

response normalization in our data (see below), we believe that

if at all there was a rule-competition in our task then it was paral-

leled by a goal-competition in the sensorimotor areas, which

would make sense for economical reasons, as discussed in

the previous paragraph (Cisek and Kalaska, 2010).

Preference versus Options Encoding
Potential motor-goal representations in our experiment de-

pended on the preference of the monkeys, as defined by the
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probability of behavioral choice of either action alternative. In our

task design we cannot differentiate between choice probabilities

and assigned subjective value (Sugrue et al., 2004; Samejima

et al., 2005; Hampton et al., 2006; Kable and Glimcher, 2007;

Lau and Glimcher, 2008; Wunderlich et al., 2009), as was at-

tempted in a recent discounting experiment (Louie andGlimcher,

2010). Consequently, we speak more generally of preferences,

as quantified by choice probabilities.

Simultaneous potential motor-goal encoding during reach

planning had previously only been shown in PMd (Cisek and Ka-

laska, 2005). Since a dependence on the monkeys’ choice pref-

erences was not tested, it is unclear if this previous PMd data

reflected preferences or task-defined motor-goal options (the

menu, Padoa-Schioppa and Assad, 2006). The biased popula-

tion tuning in the memory period of our biased data set contra-

dicts options encoding, and suggests that potential motor-goal

encoding predominantly reflected choice preferences in PMd.

In posterior parietal cortex, preference encoding between

competing options has previously been shown in saccadic

target-selection tasks (Platt and Glimcher, 1999; Sugrue et al.,

2004; Dorris and Glimcher, 2004; Yang and Shadlen, 2007;

Kable and Glimcher, 2007; Wunderlich et al., 2009; Louie and

Glimcher, 2010). Corresponding data for skeletomotor move-

ments, like reaching, and for rule-selection tasks in general is

lacking. Previous target-selection tasks with reaching revealed

post-GO-cue selection signals in PRR (Scherberger and

Andersen, 2007; Pesaran et al., 2008), but no neural response

modulations by choice preference was shown. Previous tasks

with deterministic targets showed reward- or value-dependent

modulations of the neural responses (Musallam et al., 2004;

Iyer et al., 2010), but relative weighing of alternative options

against each other was not tested.

Taken together, the principle of weighing alternative motor

goal representations with behavioral choice preferences is not

restricted to the saccade planning system, but can be found in

the skeletomotor system as well, and neural implementations

of this principle include not only parietal movement planning

areas, but also areas in the frontal cortex, like PMd.

Competing Goal Representations
Models of decision making often imply mutual competition

between the neural representations of multiple coexisting alter-

native choices (Platt and Glimcher, 1999; Cisek, 2006). In our

experiment, this competition likely happened in the sensorimotor

areas that we recorded from and that are involved in planning the

respectivemovements, since we found reduced neural response

strengths during the simultaneous representation of two alterna-

tive motor goals compared to a single goal (Cisek and Kalaska,

2005).

Conclusions
Our findings support the idea that reach decision making and

movement planning, in tasks that require the selection of a spatial

transformation rule, are integrative rather than sequential

processes, mediated by overlapping action-specific neural pop-

ulations in PRR and PMd (Scherberger and Andersen, 2007;

Cisek, 2007; Andersen and Cui, 2009). The results provide

evidence for competitive encoding of alternative potential reach

plans in PRR and PMd, reflecting the monkeys’ average choice

preferences, but being independent of the immediate behavioral

choice of the monkey. This is consistent with the idea that the

brain utilizes probabilistic representations throughout all stages

of the decision process until an action is finally required (Knill

and Pouget, 2004). Importantly, our results suggest that

in situations of uncertain choice of which transformation rule to

apply, the sensorimotor system can construct all potential motor

goal alternatives, and then select among these alternatives, once

enough evidence for a proper choice is available, rather than

preliminarily betting on one of the transformation rules and

computing only the single corresponding motor plan. This

strategy could denote a valuable and general principle in deci-

sion making, allowing a more comprehensive cost-benefit anal-

ysis that includes the consequential costs of the movements

associated with each choice.

EXPERIMENTAL PROCEDURES

Potential Motor Goal Task with Context Instruction

In PMG-CI trials (Figure 2), one spatial and one contextual visual cue were pre-

sented to the subjects at different times during the trial (ViewSonic VX922 LCD

screen; 5 ms off-on-off response time). The peripheral spatial cue was located

at one of four possible positions (0�, 90�, 180�, and 270�) with an eccentricity of

9 cm (14.5� visual angle, VA) relative to the fixation point. The contextual cue

consisted of a green (direct-cued) or blue (inferred-cued) frame around the

central eye and hand fixation points. It instructed the subject to reach toward

(direct, proreach) or to the position diametrically opposite of the spatial cue

(inferred, antireach).

A trial was initiated by themonkey by fixating a small red square in the center

of the screen (eye fixation tolerance: 2.0-3.0� VA; 224HzCCDcamera, ET-49B,

ThomasRecording, Giessen, Germany) and touching an adjacentwhite square

of the same size (hand fixation tolerance: 4.0� VA, touch screen mounted

directly in front of the video screen; IntelliTouch, ELO Systems, Menlo Park,

CA). After a random period of 500–1000 ms (fixation period) the spatial cue

was shown briefly for 200 ms. During the following 800–2000 ms (memory

period) only the fixation squares were visible. The contextual cue was shown

for 170ms at the end of thememory period and the hand fixation square disap-

peared (GOsignal). Themonkeyhad tomakea reach toward the instructedgoal

within amaximumof 700–1000ms (movement period, 4.9� VA reach tolerance)

and hold the goal position for 300–400 ms (feedback period). The monkey

received visual feedback about the correct movement goal (filled circle of the

samecolor as thecontextual cueat thegoal location) at the endof a correct trial.

Eye fixation had to be kept throughout the trial. Liquid reward and acoustic

feedback indicated correct (high pitch tone, reward) or incorrect (low pitch

tone, no reward) behavior. Correct choice of the instructed motor goal and

fixation behavior were required for a PMG-CI trial to be considered correct.

Only correct trials were used for the analysis.

Potential Motor Goal Task without Context Information

PMG-NC trials were similar to the PMG-CI trials, except that no contextual cue

was shown at the end of the memory period. In those trials the monkey had to

choosewhether to reach to the direct or to the inferred goal. Until the end of the

memory period PMG-CI and PMG-NC trials were indistinguishable. Only

PMG-NC trials in which the monkey either reached for the direct or the inferred

position were considered correct and were used for the analysis. Note that not

all of the correct trials were rewarded. Reward depended on the used reward

schedule (see below).

Definite Motor Goal Task

The DMG task differed from the PMG-CI trials only in the timing of the contex-

tual cue. In the DMG task the spatial and the contextual cue were shown simul-

taneously at the beginning of the memory period. Only DMG trials with correct

choices and ocular fixation were rewarded and analyzed.
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Block Design and Randomization

The PMG and DMG tasks were presented in separate blocks. The DMG block

consisted of typically �100 trials, the PMG block of a minimum of �300 trials.

The order of the two tasks was variable across days.

PMG-NC and PMG-CI trials were randomly interleaved during PMG blocks.

A PMG block contained 60%–80% (mean = 76%) PMG-CI trials and

20%–40% (mean = 24%) PMG-NC trials. In each task the four spatial cuing

directions were randomly interleaved with equal probability. In PMG-CI trials

and in the DMG task the direct-cued and inferred-cued trials were also

randomly interleaved with equal probability.

Reward Schedules in PMG-NC Trials

We implemented two different reward schedules for PMG-NC trials.

One was the bias-minimizing reward schedule (BMRS). With a BMRS

balanced behavior, i.e., 50% direct and 50% inferred reaches, leads to

a 50% reward probability, while any biased choice behavior leads to lower

reward probabilities. The BMRS algorithm takes the reward history of the

monkeys into account and changes the probabilities for rewarding a direct

or inferred reach in favor of the alternative that was chosen less often so far:

pðRdÞ=Fðni � ndÞ
pðRiÞ=Fðnd � niÞ ;

where ni is the total number of rewarded inferred reaches and nd is the total

number of rewarded direct reaches. F was defined as

FðxÞ : =

8>>>><
>>>>:

1 x>1
2=3 x = 1
1=2 x = 0
1=3 x = � 1
0 x<� 1

:

The second reward schedule was the equal-probability reward schedule

(EPRS). In EPRS trials the monkeys were rewarded with 50% probability, no

matter whether they reached for the direct or inferred goal, and regardless

of the reward history. The reward probabilities for direct (Rd) or inferred (Ri)

choices were

pðRdÞ=pðRiÞ= 0:5:

With the EPRS, the reward probability is independent of the behavioral

strategy of the monkeys, as long as they chose between the two potential

goals (see Figure S5 for data with 100% reward probability).

Biased and Balanced Condition

The recorded data was split into two distinct data sets. One data set contains

only units that were recorded with the EPRS, before we trained the respective

monkey with the BMRS. Since both monkeys showed a very similar choice

bias during EPRS sessions (see Results), we refer to this data as the biased

data set. The second data set contains only units recorded after we used

BMRS and is referred to as balanced data set. Behavioral tests with the

PMG-NC trials were conducted at the end of the neuronal recording period

in the biased data set. Control experiments with simultaneous behavioral

and neural recording of biased PMG-NC trials confirmed that results and

conclusions are unaffected by this (see Figure S5).

Animal Preparation, Neural Recordings

Surgical procedures and neural recordings were described previously (Gail

et al., 2009). Animal care and all experimental procedures were conducted

in accordance with German laws governing animal care.

Neural Data Selection and Tuning Analyses

Extracellular recordings were conducted with up to five microelectrodes in

parallel (‘‘mini-matrix’’; Thomas Recording, Giessen, Germany) on each

chamber. Spike times and waveforms were recorded and subjected to addi-

tional offline sorting (Offline Sorter; Plexon).

All isolated units were tested for their directional selectivity (Kruskal-Wallis

test; four groups of different spatial cue positions; sample sizes defined by

the number of identical trial repetitions). Selectivity was tested independently

for direct-cued and inferred-cued trials during the late memory period in the

DMG task (average spike rate during the last 300 ms of the memory period,

i.e., activity succeeding the precue with a time-lag of at least 500 ms, and

immediately preceding the GO cue). The late memory period was chosen to

extract movement planning activity without confounding effects of (1) imme-

diate visual input from the cue stimuli; (2) transition phases from visual to

motor-goal tuning (Gail and Andersen, 2006); or (3) visual and somatosensory

input and motor-control signals related to movement initiation.

Only neurons that were significantly selective in direct-cued trials of the

DMG task were used in the following analyses (Figure S6). For all analyses

that involved PMG-CI or PMG-NC trials, we additionally required the neurons

to be significantly directionally selective in the late memory period of PMG

trials (Kruskal-Wallis, see above).

Population Activity

To visualize the temporal dynamics of spatial representations on a population

level, we averaged the time-resolved spiking activity across all neurons that

were directionally selective during the memory period of PMG trials. Before

averaging, the directional selectivity profiles for each neuron were aligned

relative to the interpolated preferred direction in the late memory period of

the DMG task and normalized to the baseline level (average spike density in

the 300 ms before spatial cue onset). The population activity was only used

for illustrative purposes (see Figures 3C and 5C), not for quantitative statistical

analyses.

Analysis of Bimodal Selectivity Profiles

We used a direction modality contrast (DMC) to quantify the bimodality of indi-

vidual neuronal responses:

DMC=
RMD � ROD

RMD +ROD

:

RMD is the mean firing rate of a neuron during the last 300 ms of the memory

period of all PMG trials (PMG-CI and PMG-NC) at the same direction that

evoked the maximum response (MD) in the DMG task. ROD is the firing rate

for trials in the opposite-to-maximumdirection (OD). Since theMD ismeasured

relative to the direction of the spatial cue in direct-cued trials of the DMG task,

positive DMC indices indicate preferred selectivity for the direct motor goal (at

the spatial cue location), whereas negative values indicate preferred selectivity

for the inferred motor goal (opposite the spatial cue). Values around zero indi-

cate symmetric bimodal selectivity, not lack of selectivity, since neurons

without directional selectivity were removed from this analysis.

Choice-Selective Analyses

To differentiate between the selection and the preference hypotheses, we

sorted the PMG-NC trials in the balanced data set according to the free choice

of the monkey, and calculated the DMC separately for direct-choice and in-

ferred-choice trials. That means if in a PMG-NC task the monkey reached

toward a goal position as if the contextual instruction had been direct, the trial

was labeled ‘‘direct choice’’ and if he reached toward a goal position as if the

contextual instruction had been inferred, the trial was labeled ‘‘inferred

choice.’’ The absolute choice-selective DMC values were then compared to

the absolute original, choice-indifferent DMC values (average over all trials

without sorting them according to the choice) in a similarity analysis (illustrated

in Figure 4A). The DMG condition was used as a control for this similarity anal-

ysis (see Figure S2). To quantify the similarity between the choice-selective

DMC values and the choice-indifferent DMC values, we calculated the

distance from the unity line of the correlation plot, which is equivalent of calcu-

lating the difference between the choice-selective and choice-indifferent DMC

values. We then used a t test to determine if the distribution of these differ-

ences was significantly deviating from zero.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and can be found with this

article online at doi:10.1016/j.neuron.2011.02.053.
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Supplemental information S1 – Model-based tuning analysis (related to Figures 

3-6) 

 

The analysis of the direction modality contrast (DMC) only addresses the spike rate 

difference between the direction with the maximum response (MD) and the opposite 

direction (OD) for each neuron. Other characteristics of spatial selectivity are not 

considered, like the exact preferred direction, which can lie between the probed 

directions, and gain-modulation effects between direct and inferred reaches, which 

have been shown to occur in both PRR and PMd (Gail et al. 2009). For example, a 

neuron which is tuned for the same reach direction in direct-cued and inferred-cued 

trials, but due to gain-modulation has a substantially different overall spike rate in the 

two contexts (e.g. 15 Hz in the direct context and 30 Hz in the inferred context), could 

show an asymmetric bimodal selectivity profile in the balanced PMG data. The DMC 

index in this case would be negative, indistinguishable from the DMC of a unimodal 

selectivity profile, and erroneously suggesting the representation of only a single 

spatial motor goal at the inferred position.  

Therefore, as an alternative to the DMC, we modeled the to-be-expected 

selectivity profile in the PMG task (TPMG) as a linear combination of the selectivity 

profiles in the direct-cued (d) and inferred-cued (i) DMG trials: 

 

 )( DMG
ii

DMG
dd

PMG TTAT αα +=  

 

Each selectivity profile T consists of a 4-element vector with the neuron’s responses 

to the four probed cue locations (left, right, up, down). With the model profiles we 

tested three discrete alternative coding hypotheses. We fixed the linear coefficients 
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and αi to different preset values for each hypothesis and fitted A as the only free 

parameter on a least square basis. When both motor goals are encoded with equal 

strength, then the tuning in the PMG task should combine direct and inferred tuning 

of the DMG task with equal weights (αd=αI=0.5; mean model). When a unique goal is 

encoded, then the PMG selectivity profile should either reflect the DMG selectivity 

profile of direct reach trials (αd=1, αι =0; direct model), or the inferred reach trials 

(αd=0, αi=1; inferred model), depending on which of these two alternatives was 

preferred or selected. We predicted the PMG selectivity profiles from the DMG 

profiles for these three models, and compared the mean square error (MSE) between 

the predicted and the measured profiles. We computed spike densities (Szucs, 1998) 

for a time-continuous representation of the neural response by convolving each spike 

train with a Gaussian kernel (σ=50 ms) and averaging across trials. We then 

determined the best-fitting model for each neuron as a function of time. In each time 

bin the three models were fitted to the tuning profiles, separately in the PMG-CI and 

PMG-NC task. In the PMG-CI task the trials were sorted according to direct- and 

inferred-goal instruction. In the PMG-NC task, trials were sorted according to direct- 

and inferred-goal choice of the monkeys. 

To quantify preference and selection encoding we defined a 'preference signal' 

and a 'selection signal' (Fig. S1b bottom). The preference signal was determined by 

the total number of neurons in the PMG-NC task of the balanced dataset, which best 

fit the mean model, irrespective of the choice of the monkey. That means if a neuron 

fits best with the mean model in direct- and inferred-choice trials for a particular point 

in time it contributed to the preference signal for that point in time. The selection 

signal was likewise determined by the total number of neurons in the PMG-NC task 
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of the balanced dataset, which best fit the direct model in direct-choice trials and the 

inferred model in inferred-choice trials.    

Note that in the instructed PMG-CI trials we cannot determine the selection 

encoding during the memory period, since any preliminary selection signals would 

have to be overruled, and hence obscured, by the context instruction at the time of the 

'GO'-cue. In non-instructed PMG-NC trials, on the other hand, preliminary selection 

signals could be detectable prior to the 'GO'-signal and would be predictive about the 

pending choice. This is why we only computed the preference and selection signals 

for the PMG-NC trials. After the 'GO'-signal we expect the selection signal to become 

dominant irrespective of the strength of the signal in the previous memory period, 

because the situation then is similar to a DMG task. 

Note also that in the biased dataset the preference and selection signal can not 

be distinguished since the strong behavioral bias for inferred goals makes direct-goal 

choices extremely rare. This is why we analyzed the preference and selection signals 

only in the balanced dataset. 

 

Model-based PRR results 

In the PMG-CI task, most PRR neurons in the balanced condition (Fig. S1a; top left) 

were best fitted with the mean model (66.0 %), while inferred model (26.8 %) and 

direct model (7.2 %) were less prominent during the late memory period. In the biased 

dataset, the inferred model provided the best fit for most neurons (84.5 %), followed 

by the mean (12.8 %) and direct (2.7 %) models (Fig. S1a; bottom left). In Figure S1b 

(left) PMG-NC trials were analyzed accordingly. Dominance of the mean model in 

the balanced dataset and dominance of the inferred model in the biased dataset 
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together suggest predominant encoding of motor-goal preferences in PRR during 

movement planning.  

In the balanced dataset preference and options encoding can not be 

distinguished. Similarly, we can not distinguish preference and selection encoding in 

the biased dataset. Our conclusion that the neural populations in our experiment 

mainly encode preferences are derived from the fact that the unimodal selectivity 

(inferred model) in the biased dataset rules out general options encoding, and the 

predominant bimodal selectivity in the balanced dataset (mean model) rules out 

general selection encoding. The latter dissociation can be best made with a choice-

selective analysis of the PMG-NC trials. If the selection hypothesis was true, then the 

mean model (red curves) would always have to be less likely than the direct model in 

the trials with direct choices (green solid curve) or the inferred model in trials with 

inferred choices (blue dotted curve). The two curves at the bottom of the panels in 

Fig. S1b denote the fraction of neurons at each point in time which, according to the 

neuron’s model fit, complied best with the preference or with the selection hypothesis. 

For the late memory period (shaded area) the percentage of neurons showing a 

selection signal was 2.9 %. For the neurons to be considered they had to best fit the 

direct model in direct-choice trials and the inferred model in the inferred-choice trials. 

The percentage of neurons that showed a preference signal in the same time window 

was 36.8 %. In this case to be considered the neurons had to best fit the mean model 

in direct- and inferred-choice trials. The preference signal was higher than the 

selection signal during the memory period, while selection encoding became 

dominant after the 'GO'-cue.  

The fact that the direct model more often than the inferred model was the best 

fitting model in direct-choice trials, and the inferred model more often was the best 
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model in inferred-choice trials, points to partial selection encoding. Yet, in hardly any 

neuron both conditions were simultaneously met, leading to the negligible fraction of 

truly selection encoding neurons during the memory period.  

 

 

Model-based PMd results 

PMd neurons in the balanced condition (Fig. S1a; top right) show a qualitatively 

similar result as those in PRR (mean model: 51.1 %; inferred model: 40.0 %; direct 

model: 8.9 %), when PMG-CI trials are considered. The same is true for the biased 

condition (inferred model: 67.4 %; mean model: 31.5 %; direct model: 1.1 %). 

Overall, the results suggest a predominant encoding of motor-goal preferences, like in 

PRR. Quantitatively, the difference in the fractions of neurons for which the mean or 

the inferred model provided the best fits was smaller in PMd than PRR. Also, in the 

PMG-NC trials (Fig. S1b, right), the monkeys’ preliminary selections modulated a 

larger fraction of neurons in PMd, as can be seen from the stronger separation of the 

direct- (solid) and inferred-choice (dotted) curves and a reduced preference signal 

(21.1 %) compared to PRR. The percentage of neurons showing a selection signal 

during the late memory period was 7.6 %, which is more than double the amount 

compared to PRR. We did not observe such large differences between PMd and PRR 

in the similarity analyses presented in the main text (cp. Fig. 4b and Fig. 6c). 

Assuming that PMd neurons are only slightly more modulated by a preliminary 

selection than PRR neurons the different results could be the consequence of the 

analysis method. The model based analysis classifies neurons by utilizing a winner-

take-all mechanism, e.g. even if a model fit is only slightly better than another fit the 

assignment to a class is absolute. Therefore small modulatory differences between 
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PMd and PRR can result in large differences in the number of neurons assigned to a 

particular class. The similarity analysis, on the other hand, does not enhance small 

differences, which explains why we cannot observe a similar difference between PMd 

and PRR in the similarity analyses presented in the main text (cp. Fig. 4 and Fig. 6c). 
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Fig. S1: Results of the model-based analysis for PRR (left) and PMd (right). (a) 

Model fits for the balanced (top) and biased (bottom) condition in the PMG-CI task. 
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Curves depict the percentage of neurons which fitted best with the direct model 

(green), inferred model (blue), or mean model (red). Direct-instructed (solid) and 

inferred-instructed (dotted) trials are analyzed separately. The spike densities were 

aligned to the 'GO'-signal. The late memory period (shaded area) was used to 

calculate the mean percentages of neurons listed in the text (SI 1). (b) Same analysis 

for the PMG-NC task. The smaller graphs (bottom) show the selection (solid black) 

and preference (dotted grey) signals, as defined in the text.  
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Supplemental Information S2 – Control analyses for ruling out the selection 

hypothesis (related to figures 4b and 6c) 

 

Sensitivity of choice-selective DMC similarity analysis 

The DMC similarity analysis was used to determine if the monkeys used a trial-to-

trial guess-and-switch behavioral strategy (4b and 6c), i.e. to test if the bimodal 

motor-goal representations could be an averaging effect across trials in which the 

monkeys randomly switched between planning a direct or inferred reach. To test the 

sensitivity of the DMC similarity analysis, we applied it to neuronal data of the DMG 

task. First, the mean firing rates for each reach direction in DMG without distinction 

between direct-cued and inferred-cued trials were used to calculate mean DMC 

values. The idea of this was to simulate a scenario in which a bimodal selectivity 

profile is artificially created as an artifact of averaging across direct- and inferred-

choice trials. Second, all correct DMG trials were sorted according to the choice of 

the monkey (as instructed by the context cue prior to the memory period in DMG 

trials) to compute choice-selective DMC values. Since neurons in PRR and PMd 

typically showed motor-goal selectivity in the DMG task, choice-selective profiles 

were unimodal with high absolute values of the DMC (Fig. S2). As expected, the 

differences between the choice-selective and choice-indifferent DMC values (see 

Methods) are significantly different from zero for PRR (pdirect=0.0012; 

pinferred=0.0007) and PMd (pdirect=0.0032; pinferred=0.0018). This shows that our DMC 

correlation method is a sensitive measure, which would detect trial-to-trial guess-and-

switch strategies if present.  

 

Within-trial motor-goal switching 
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A bimodal selectivity profile of a neuron could also be the consequence of a rapid 

behavioral switching between the two possible motor goals during single trials. To 

rule this out, we computed the variance of the spike densities in trials with reaches to 

the direction of maximum response (MD) and to the opposite direction (OD) in the 

PMG task, and compared it with the variance in the MD and OD trials in the DMG 

task. The variance was computed across time (within the memory period) and across 

trials, without differentiating between direct-cued and inferred-cued trials. The 

variances in the DMG task was expected to be high, since MD and OD by definition 

induce different spike rate levels. If the switching hypothesis was true, then the 

variance in the PMG trials should be similarly high. If genuine potential motor goal 

encoding was true, then the variance in PMG trials should be smaller than in the 

DMG task, since MD and OD trials in PMG would induce similar spike rate levels. 

We tested our prediction by analyzing the normalized variance  

))log(mean(
))log(var(

tyspikedensi

tyspikedensi
Varnorm =  

during the last 600 ms of the memory period. With the normalization we compensated 

for the fact that the variance in our data increased with increasing mean spike rate, 

like it has been shown for V1 and MT neurons (Snowden and Hess, 1992). We 

extended the analysis period to 600 ms, compared to the 300 ms for all other analyses, 

to take into account possible longer switch periods and to improve the statistical 

power.  

For the balanced dataset in PRR we found that the variance in PMG was on 

average smaller than in DMG (p=1.84 x 10-7, paired Wilcoxon signed rank test; Fig. 

S2b). This difference in the spike rate variance argues against the hypothesis that the 

bimodal selectivity profiles in PRR are mostly a consequence of averaging across 

short-term alternating choice-selective responses within or across trials. Instead it 
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suggests that in PRR both potential motor goals are represented simultaneously within 

in each trial in the balanced dataset.  

In PMd the variance in PMG trials was not lower than in DMG trials (p>0.05; 

Fig. S2d). This could be caused by slightly stronger trial-to-trial choice-selective 

signals, which the model-based analysis suggested to be present in PMd (see also 

Supplemental Information S1; Fig. S1b right). The stronger the choice-selective signal 

the higher the variance. This makes the variance measures in PMG and DMG more 

similar and reduces the distance to the unity line.  
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Figure S2: Control measures to rule out the selection encoding hypothesis. (a) DMC 

similarity analysis for the balanced dataset in the DMG task. The scatter of the data 

along the vertical axis demonstrates the sensitivity of this measure (see text for 

explanation). Same conventions as in Fig. 4b and 6c apply. (b) Within-trial motor-

goal switching analysis. The normalized variances for each neuron in MD and OD 

trials are compared between the DMG and PMG task (see text). Top right shows the 
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distribution of the variance differences between DMG and PMG for all neurons. The 

p-value denotes the result of a paired Wilcoxon sign rank test. 
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Supplemental Information S3 – Source of the behavioral bias in the biased 

dataset (related to Fig. 5a) 

Even though direct or inferred context instructions were equally likely in PMG-CI 

trials, and both choices were rewarded with equal amount and probability in PMG-NC 

trials, the monkeys' choice behavior and neuronal selectivity profiles showed a strong 

preference for the inferred reach goal in the biased dataset. At first glance, the 

preference for inferred reaches seems counter intuitive. In natural environments direct 

reaches are more common, and are easier to perform, since they do not require a 

spatial transformation.  

 

One advantage of planning the less intuitive inferred reaches by default might be the 

preparation of the more difficult response alternative in order to comply with any 

constraint on reaction times after the 'GO'-signal. Alternatively, the more intensive 

training of the inferred task could have initially biased the monkeys. In the Bayesian 

sense, the frequency of exposure to inferred trials during training might have acted as 

prior probability which biased the decision (Körding and Wolpert, 2004; Diedrichsen 

et al., 2010). Since in the EPRS any choice strategy yields the same average reward, 

the monkeys did not have an incentive to deviate from any pre-existing behavioral 

bias. Even worse, any pre-existing bias should become enhanced since the monkeys, 

due to their bias, make the experience that more trials of the type for which they have 

a bias are being rewarded (simply because the monkey makes more of these trials).  

 

Note, that our conclusions in the main manuscript are independent of the origin of the 

behavioral bias. Nevertheless, we believe that a combination of two of the above 

effects can be seen in our experiment. When, after several month of showing balanced 
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behavior in the BMRS, one or our monkeys returned to the EPRS, he quickly 

developed a strong inferred-choice bias again (Fig. S3). This can hardly be explained 

with an imbalance between direct-cued and inferred-cued trials in the initial training 

stages. Rather, we interpret this as indication for a strategic advantage of planning 

inferred reaches in PMG trials. An initial small bias induced by this asymmetry might 

be self-enhanced via the Bayesian prior probability effect.  

 

Figure S3: Re-occurrence of the inferred-choice bias in behavior when returning to 

the EPRS after several months of BMRS. The bars show the percentage of direct 

choices over six consecutive training days with an EPRS. Starting from a balanced 

behavior the monkey quickly developed a strong inferred-choice bias, even though 

direct-choices and inferred-choices were rewarded equally. 
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Supplemental Information S4 – Normalization and scaling factors (related to 

figures 3b and 5b) 

The example neurons in Figures 3b and 5b, and the activity plots in Figures 3c and 5c 

show that the activity during the memory period is lower for two equally preferred 

motor goals than for a single preferred goal. To quantify this, we analyzed the 

distribution of the scaling factors A that were used for the model based analysis (see 

SI 1). The scaling factor was the fitted parameter in this analysis, and it quantifies the 

relative response strength of each neuron between the DMG and PMG tasks. For the 

inferred model (and also the direct model, which was never the dominant model, and 

therefore is not further considered) a scaling factor of 1 (one) means that the activity 

in the PMG task is not different from the DMG task. Instead, a scaling factor of 1 

(one) in the mean model indicates halving of the activity in the DMG compared to the 

PMG task (see Experimental Procedures).  

Figure S4 shows the distribution of scaling factors for the inferred model (S4a; 

biased dataset) and the mean model (S4b; balanced dataset). The mean scaling factors 

did not significantly deviate from 1 in either case, which indicates that the neural 

response strength on average is only half as strong when two equally preferred motor-

goals are present, compared to a single one. This argues in favor of a mutual 

competition between multiple motor goals, as implemented in dynamic field models 

(Erlhagen and Schoner, 2002; Cisek, 2006) or other models of decision making 

(Averbeck and Seo, 2008; Eliades and Wang, 2008). This competition seems to be 

active even during reach planning, well before the final decision is enforced after the 

'GO'-signal.  
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Figure S4: Scaling factors for model fit. (a) Distribution of the best-fit scaling factors 

(A in the linear model) of the inferred model for the biased dataset in PRR (grey; 

black outline) and PMd (blank; red outline). (b) Distribution of scaling factors A of 

the mean model for the balanced dataset (see Methods). The dotted lines indicate the 

mean values of the distributions, none of which significantly deviated from 1. This 

means that the neural response strengths to either of the two potential motor goals in 

the balanced data set were on average half as strong as the responses to a unique 

single motor goal in the biased dataset.  

84



Potential motor goal 
 

 

Supplemental Information S5 – Simultaneous behavioral and neural data 

collection with biased dataset (related to Figure 5) 

 

In the main manuscript, behavioral testing of choice preferences with PMG-NC trials 

in the dataset with equal probability reward strategy (EPRS) was introduced at the end 

of the corresponding neural collection period. To ensure that independent behavioral 

and neural data collection causes no confounds on our interpretation, we also 

collected one biased dataset with the EPRS and strictly parallel neuronal and 

behavioral recordings (monkey A). This EPRS had a 100 % reward probability for 

direct and inferred reaches, and showed a strong behavioral bias for inferred choices 

(Fig. S2a), i.e. most reaches were directed towards the inferred motor goal (80 ± 4.6 

%) and only a small fraction towards the direct goal (1.6 ± 1 %), as in the EPRS-50 

dataset of the main manuscript. The equivalent choice bias between the EPRS-50 and 

EPRS-100 datasets is not surprising. Neither EPRS pushes a monkey to change its 

choice behavior, since the reward is independent of the pursued behavior. The 

distribution of direction modality contrast (DMC) values in the control experiment 

(m=-0.27; p=8.9 x 10-4; Fig. S2b) was qualitatively the same as in the biased dataset 

of the main manuscript (Fig. 4d). The model based analysis also yielded equivalent 

results between the main and control data (cp. Figs. S5c and S1a). This control 

experiment shows that simultaneous behavioral testing and neural recording in PMG-

NC and PMD-CI trials yields identical results to subsequent testing and recording, 

and that the overall reward probability in an EPRS does not affect the results.  

 

85



Potential motor goal 
 

 

 

Figure S5: Preference encoding for a dataset with simultaneous recording of 

behavioral and neural recording during an EPRS in PRR of monkey A. Same 

conventions as in Figs. 5 and S1 apply. (a) The behavioral bias was the same when 

100 % reward for either the direct or inferred motor goal was applied compared to 

when the 50 % EPRS was used (5a). The DMC values (b) and the model-based 

analysis (c) derived from neurons recorded in parallel with behavioral testing yielded 

the same results as for the subsequent testing (Fig. 5c). 
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Supplemental Information S6 – Alternative definitions of selection and options 

encoding (related to Methods) 

For our analyses we had two distinct criteria that neurons had to fulfill to be included. 

First neurons had to be directional selective in the DMG task. This criterion was 

necessary because we only wanted to analyze neurons which were related to the reach 

task. Also, we needed a defined preferred direction to calculate the DMC values and 

selectivity profiles for the model based analyses, which we could only determine from 

neurons which were directionally selective in the DMG task. Second, neurons also 

had to be directionally selective in the PMG task. This restriction ensured that non-

selective neurons were separated from bimodal neurons, which would both have a 

DMC value close to zero. 

 

We also used two alternative neuron selection criteria. We did this in order not to 

exclude neurons which could have counted for the selection or option hypotheses, if 

these hypotheses were defined less strictly. First, we analyzed all neurons which were 

directionally selective in the memory period of DMG trials and after the 'GO'-signal 

in PMG trials, but not in the PMG memory period. These cells were only active when 

a definite motor goal was defined, but not when a preliminary (potential) motor goal 

existed, which could be interpreted as definite selection encoding (as opposed to a 

preliminary selection signal during the memory period of the PMG task). These 

criteria applied to only a small fraction of neurons in PRR (9 % biased; 4 % balanced) 

and PMd (3 % biased; 10 % balanced), which does not change our interpretations. 

Second, we analyzed all neurons which were not directionally selective in the DMG 

task and also not in the PMG task after the 'GO'-signal, but in the PMG task during 

the memory period. These cells were only active when preliminary options existed, 
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but not when a definite motor goal was defined, which could be interpreted as pure 

options encoding, which would only come into effect when more than one motor goal 

option is available. These criteria, too, applied only to small fractions of neurons in 

PRR (5 % biased; 2 % balanced) and PMd (10 % biased; 2 % balanced), which also 

does not change our interpretations of the main manuscript.   
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II. Reference frames 

II.I. Reach planning in different reference frames 

To perform a reach movement one has to move the hand from the current position to 

the desired target position. To perform this movement the brain has, first, to encode 

both the position of the hand and of the target, and second, the difference vector 

between both positions. This motor error, i.e. the vector that points from the hand to 

the target position, can be described in intrinsic coordinates. In this sense it would be 

encoded in the specific pattern of muscle activation or changes of joint angles, which 

would be required to reach to the target. However, if we plan a reach we normally do 

not think about muscle activation or changing of joint angles, but we think in extrinsic 

coordinates about moving the hand from one position to the other. There is evidence 

that movement plans in the parietal and premotor cortex are also encoded in extrinsic 

space. A position in extrinsic space can be encoded with respect to different reference 

points. For example hand and target could be represented in relation to the gaze 

direction (eye-centered reference frame) or in relation to some body part as the 

shoulder (body-centered reference frame). In both reference frames the target position 

is encoded independent of the hand position. To achieve the motor error, an 

inseparable combination of hand and target representation is necessary. Once this is 

achieved the motor error itself is coded with respect to the hand position (hand-

centered reference frame). 

Tuning properties of neurons in the posterior parietal cortex seem to be ideal for 

mediating the transformation from a separate representation of hand and target 

position (in eye-centered reference frame) to a representation of the motor error (in 

hand-centered reference frame). In PRR most cells encode the target position in an 

eye-centered reference frame (Batista et al., 1999;  but see also Chang and Snyder, 

2010). The activity of those cells is gain modulated by the initial hand position. Thus, 

the tuning of a neuron does not change with initial hand position (i.e. it will always 

respond best at a certain target position relative to the gaze) but the overall activity of 

the neuron does (i.e. the neuron is less active if the hand is for example on the right 

side compared to the left side). This leads to separate coding of eye and hand 

positions. In the adjacent area 5, the activity of the cells is best described by a 

combination of the hand- and eye-position and – in its extreme case – the coding of 
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the target position in a hand-centered reference frame. The intermediate neurons 

likely play a critical role in the transformation from an eye- to a hand-centered 

representation. Their tuning properties are consistent with those of neurons in 

intermediate layers of artificial neural networks which perform such a transformation 

(Zipser and Andersen, 1988; Burnod et al., 1999). Neurons in PMd have been shown 

to mostly encode a combination of eye- hand- and target- position, but there are also 

neurons which are eye-centered and others, which are hand-centered.  

Behavioral parameters in a reaching task reflect more or less strongly the one or other 

part of the movement process. Reaction times e.g. are closer to the planning stage 

since they are measured before movement execution. Movement times or reach 

precision, in contrast, although influenced by the movement planning, are also 

strongly affected by movement execution. How reach goal encoding in different 

reference frames in different brain areas transfer to behavioral parameters is not 

obvious. Several studies investigated influences of reference frames on reach end-

points and systematic reach errors. Depending on their tasks and analyses, the 

reference frames which influenced the reach parameters were different. Some studies 

suggest that the remembered target location for reaches is coded in an eye-centered 

reference frame (Henriques et al., 1998; Beurze et al., 2006; Sorrento and Henriques, 

2008) Other experiments demonstrate influence of a hand-centered reference frame 

(Bock and Eckmiller, 1986) or indicate that reach planning can be achieved using a 

combination of multiple reference frames (McGuire and Sabes, 2009). These different 

results may be explained by the different manipulations in each task, which affect 

different stages of the processing pathway. Previous studies mostly compared two or 

more reference frame by analyzing one behavioural parameter. To see how different 

reference frames affect different behavioural parameters, we did a psychophysical 

study in which the influence of an eye-centered and hand-centered reference frame on 

reaction times, movement times and reach precision was compared. 
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Abstract Reach movement planning involves the repre-
sentation of spatial target information in diVerent reference
frames. Neurons at parietal and premotor stages of the corti-
cal sensorimotor system represent target information in eye-
or hand-centered reference frames, respectively. How the
diVerent neuronal representations aVect behavioral parame-
ters of motor planning and control, i.e. which stage of neural
representation is relevant for which aspect of behavior, is not
obvious from the physiology. Here, we test with a behavioral
experiment if diVerent kinematic movement parameters are
aVected to a diVerent degree by either an eye- or hand-refer-
ence frame. We used a generalized anti-reach task to test the
inXuence of stimulus-response compatibility (SRC) in eye-
and hand-reference frames on reach reaction times, move-
ment times, and endpoint variability. While in a standard
anti-reach task, the SRC is identical in the eye- and hand-ref-
erence frames, we could separate SRC for the two reference
frames. We found that reaction times were inXuenced by the
SRC in eye- and hand-reference frame. In contrast, move-
ment times were only inXuenced by the SRC in hand-refer-
ence frame, and endpoint variability was only inXuenced by
the SRC in eye-reference frame. Since movement time and
endpoint variability are the result of planning and control
processes, while reaction times are consequences of only the
planning process, we suggest that SRC eVects on reaction
times are highly suited to investigate reference frames of
movement planning, and that eye- and hand-reference frames
have distinct eVects on diVerent phases of motor action and
diVerent kinematic movement parameters.

Keywords Reach planning · Stimulus-response 
compatibility · Reference frames · Sensorimotor 
transformation · Eye–hand coordination

Introduction

To successfully plan and control goal-directed reach move-
ments, one has to estimate the motor error between the cur-
rent hand position and the target position. One assumption
is that in order to compute the diVerence vector, the hand
and target positions have to be represented in a common
reference frame (Buneo and Andersen 2006). This might be
a representation in eye-, shoulder- or some other body-cen-
tered reference frame. A lesion study (Khan et al. 2005) and
imaging data (Medendorp et al. 2003) from humans and
electrophysiological studies in monkeys (Batista et al.
1999; Buneo et al. 2002; Pesaran et al. 2006) showed that
the parietal reach region (PRR) of the posterior parietal cor-
tex encodes planned reach target locations predominantly
relative to the direction of the gaze. This suggests that PRR
represents a stage of reach planning prior to the deWnition
of the motor error in a hand-reference frame. In parietal
area 5 (Buneo et al. 2002) and the dorsal premotor cortex
(Batista et al. 2007; Pesaran et al. 2006), the reach target
location in a hand-reference frame contributes stronger to
the spatial representations, often resulting in a combined
encoding of eye, hand and target position.

Which level of processing Wnally is responsible for
which aspect of behavioral performance is not clear from
these neurophysiological observations. There is psycho-
physical support for the encoding of remembered reach
target locations in an eye-reference frame (Beurze et al.
2006; Henriques et al. 1998; Sorrento and Henriques
2008), while other experiments showed an inXuence of
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hand-reference frame (Bock and Eckmiller 1986), or indi-
cate that reach planning can be achieved in a combination
of multiple reference frames (McGuire and Sabes 2009).
The latter result suggests that the contribution of each refer-
ence frame depends on the available information in that ref-
erence frame. If the reach target was deWned visually, the
eye-centered representation was weighted stronger than a
body-centered representation, and vice versa, if the reach
target was deWned by a proprioceptive target, the body-
centered representation gained more weight. These previ-
ous psychophysical studies used systematic reach endpoint
errors for determining the reference frame of movement
planning. Endpoint errors not only depend on movement
planning, but also motor control. Similarly, movement times
(MTs) and endpoint variability (EVs) reXect both planning
and control processes of the movement. Reaction times
(RTs), in contrast, cannot be inXuenced by motor control
processes, since they are measured before onset of the
movement and thereby allow isolating the inXuence of
reference frames during the planning process.

We tested the hypothesis that diVerent movement
parameters are diVerently inXuenced by an eye- and hand-
centered reference frames. Alternatively, a single reference
frames could aVect multiple parameters of movement
planning and control in the same way, e.g. resulting from a
task-speciWc cognitive strategy or selective availability of
diVerent sensory input signals (McGuire and Sabes 2009).
Going beyond previous studies, we designed an experiment
in which we could compare the inXuence of eye- and hand-
centered reference frames on RTs, MTs and EVs within the
same behavioral task.

We designed a new pro-/anti-reach task with which we
could modify spatial stimulus-response compatibility (SRC)
separately in an eye- and hand-reference frame (Lamberts
et al. 1992; Nicoletti and Umilta 1989; Umilta and Liotti
1987). The idea is that SRC in a certain reference frame (e.g.
eye-reference frame) only should have an eVect on a certain
parameter (e.g. RT) if this reference frame is functionally
relevant for the respective movement parameter. Further-
more, the idea is that the reference frame which contributes
to SRC eVects in a certain movement parameter is also the
reference frame of the neuronal representations underlying
this movement parameter. In this sense, an inXuence of a
certain reference frame on a behavioral parameter could help
to relate behavioral parameters to brain areas with activity
pattern in the same reference frame.

Spatial compatibility between the instruction stimulus
(cue) and the associated behavioral response is known to
inXuence RTs in various types of tasks. Subjects are in gen-
eral faster if the spatial information contained in a visual
cue matches spatial response parameters, independent of
the exact type of movement to be performed (Duncan 1977;
Fitts and Deininger 1954; Fitts and Seeger 1953; Georgop-

oulos et al. 1989; Hommel 1996; Lamberts et al. 1992;
Morin and Grant 1955; Nicoletti and Umilta 1984; Proctor
and Vu 2002; ShaVer 1965). In pro-/anti-paradigms (Cram-
mond and Kalaska 1994; Everling et al. 1998; Fischer and
Weber 1992; Gail and Andersen 2006; Hallett 1978; Zhang
and Barash 2000), a pro-response is directed toward a spa-
tial stimulus, whereas an anti-response is directed opposite
to the spatial stimulus. In contrast to button-presses or joy-
stick experiments, subjects in pro-/anti-reach tasks execute
reach movements in the same workspace as the visual
instructions are given, which makes eye- and hand-visuo-
spatial reference frames more comparable.

In a standard pro-/anti-reach task, the SRC is identical in
the eye- and hand-reference frame. We developed a gener-
alized pro-/anti-reach task to dissociate the inXuence of
eye- and hand-reference frame on SRC eVects. With the
task design, we could deWne reaches that were compatible
in one reference frame, but not the other, and vice versa.
Viewed from a slightly diVerent perspective, the general-
ized pro-/anti-reach task allows answering the question of
what makes an anti-reach incompatible, the incompatibility
of cue and response in the eye- or hand-reference frame.
We found that SRC in eye- and hand-reference frames
aVected RTs, MTs and EVs in a distinct manner, indicating
that diVerent aspects of movement planning and control are
inXuenced by the two reference frames to a diVerent degree.

Methods

Subjects

Sixteen right-handed subjects (7 females, 22–38 years)
with normal or corrected-to-normal vision participated in
the main experiment, 15 (8 females, 21–27 years) in a con-
trol experiment. All were naïve with respect to the objec-
tive of the study. Detailed written instructions were given
to the subjects before the experiment. Subjects had the
opportunity to get familiar with the setup and practice the
task for about 15 min. All subjects had a success rate higher
than 70% during training, which was a prerequisite for par-
ticipation in the recording session. Experiments were in
accordance with institutional guidelines for experiments
with humans and adhered to the principles of the Declara-
tion of Helsinki. All subjects gave their informed consent
prior to their inclusion in the study.

Generalized pro- and anti-reach task

In a choice reaction-time task subjects had to perform
reaches with their preferred hand on a touch screen.
Reaches were instructed by two visual cues: A colored con-
text cue (green or blue square frame around eye-Wxation
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point, »3° visual angle (VA) edge length) indicated
whether the subjects had to make a reach into the same
(pro-reach, green) or opposite (anti-reach, blue) direction of
a spatial cue. The spatial cue (white circular patch, diameter
of »3° VA) instructed the movement direction in an eye-
centered reference frame.

Eye- and hand-Wxation stimuli were presented at §5 cm
(7° VA) relative to the screen center, spatial cues at 0 cm
(screen center) or §10 cm. Over the whole experiment, the
three potential spatial cue positions were also potential
reach target positions. But in each individual trial only the
two cue positions at §5 cm to the eye stimulus served as
potential cue positions. Therefore, the spatial cue appeared
always at the same visual eccentricity. Similarly, in each
trial only the two target positions at 5 cm to the left or right
of the hand-Wxation position served as potential reach
goals, such that all reaches had the same reach amplitude
of 5 cm, and a 50% probability of leftward or rightward
direction.

Half of the trials were standard pro-/anti-trials. In stan-
dard pro-/anti-trials, the eye- and hand-Wxation points were
identical, either at the +5 cm (right Wxation) or at the
¡5 cm (left Wxation) screen position. A spatial cue
appeared either left or right of the Wxation points, and sub-
jects had to make a movement in the same (pro) or opposite

(anti) direction. A standard pro-reach is compatible in
eye- and hand-reference frame, since cue and target are
identical. A standard anti-reach is incompatible in eye- and
hand-reference frame, since cue and target lie in opposite
directions with respect to gaze and hand starting position.

The other half of the trials were generalized pro-/anti-
trials in which the compatibility in an eye-reference frame
can be dissociated from compatibility in a hand-reference
frame. In the generalized pro-/anti-reach, eye- and hand-
Wxation points were separated. Subjects had to eye-Wxate at
the ¡5 cm and hand-Wxate at the +5 cm screen position, or
vice versa. The instruction for the generalized pro-/anti-
reach was the same as for the standard pro-/anti-reach:
Subjects had to reach in the same or opposite direction of
the cue. Note, for the purpose of instructing the subjects,
the spatial cue direction was deWned relative to the eye-
Wxation position (solid black arrow; Fig. 1a), and the reach
direction was deWned relative the to hand-Wxation position
(open gray arrow). For the purpose of analyzing the data,
and diVerent from the task instruction, a trial was deWned as
compatible/incompatible in eye-reference frame if the
direction of the spatial cue and the reach goal both were the
same/opposite in relation to the eye-Wxation stimulus (black
arrows, Fig. 1b). And a trial was deWned as compatible/
incompatible in hand-reference frame if the direction of the

Fig. 1 Spatial layout of the generalized pro-/anti-reach task.
a General task design in standard and generalized trials. Squares depict
positions where eye- and/or hand-Wxation points (F) were presented.
Gray circles depict the positions where the spatial cue (C) was pre-
sented. Dotted circles depict the positions of the reach goal (G). In the
lower right panel, the 5 cm raster is illustrated at which the Wxation
points, cues, and goals could be positioned. For simplicity, each panel
only shows one out of four possible spatial conWgurations (Wxation left/
right, cue left/right) for each of the four task conditions (pro/
anti £ standard/generalized). The task design consists of a total of 16

conditions. In a, black arrows indicate the direction of the spatial cue
relative to eye Wxation, and the gray arrows the direction of the reach
goal relative to hand Wxation. In pro-trials (per deWnition) both arrows
point in the same direction, whereas in anti-trials, they point in oppo-
site directions. b Four example trials in the generalized task condition,
which illustrate the 2 £ 2 variations of the SR compatibility in the
eye-reference frame (black arrows) and in the hand-reference frame
(gray arrows). The open arrows show the direction of the spatial cue,
the solid arrows show the direction of the reach goal
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spatial cue and the reach goal were the same/opposite in
relation to the hand-Wxation stimulus (gray arrows). The
separation of eye Wxation from hand Wxation in the general-
ized conditions, in combination with the pro-/anti-rule,
leads to reaches, which were compatible in eye-reference
frame, but incompatible in hand-reference frame (CEIH;
Fig. 1b), and reaches, which were compatible in hand-refer-
ence frame, but incompatible in eye-reference frame (IECH).
There were also reaches, which were compatible in eye-
and hand-reference frame (CECH) and reaches, which were
incompatible in eye- and hand-reference frame (IEIH), like
in the standard pro-/anti-task. Note that the compatibility of
cue and reach goal in either reference frame refers only to
compatibility with respect to the direction of cue and reach
goal. The distance of the cue from the eye-/hand-Wxation
point can be diVerent than the distance of the reach goal from
the respective Wxation point (see arrow length in Fig. 1b).

The timeline of the reaction-time task is shown in Fig. 2.
The subject initiated a trial by Wxating a small, red Wxation
spot and touching a white hand target (Wxation period).
After a random delay (0.5–1.0 s), the context cue was
brieXy Xashed (pre-cue period, 0.2 s). The context cue was
presented early to induce the eVects of compatibility even
in a paradigm in which compatible and incompatible condi-
tions were interleaved randomly (de Jong 1995; Proctor and

Vu 2002; ShaVer 1965). For a variable duration, the subject
had to keep the hand Wxation (memory period, 0.5–1.5 s)
until the hand target turned oV (go-signal) and simulta-
neously the spatial cue was Xashed (go-cue period, 0.17 s).
After the go-signal, the subject had to reach toward the
cued reach goal location (movement period, max. 1.0 s,
including reaction and movement time). The hand had to be
kept at the reach goal location (feedback period, 0.3 s) to
successfully Wnish the trial. The subject received visual
feedback about the correct reach goal, consisting of a circu-
lar patch stimulus at the reach goal location presented
immediately after acquiring the desired position. If the sub-
ject did not reach the goal location before the maximum
movement period expired, then the trial was aborted imme-
diately. An auditory feedback (high/low pitch tone) indi-
cated whether the trial was correct or not.

All parameters of the task (standard/generalized, pro/anti,
cue left/cue right, Wxation left/ Wxation right) were randomly
interleaved. Only correct trials were analysed, and each
subject performed about 20 correct trials per condition.

Visual display and behavioral control

Visual instruction stimuli were presented on a LCD screen
(19� ViewSonic VX922) mounted behind a touch screen
(IntelliTouch, ELO Systems, CA, USA). Custom-written
display software (C++) was controlled via a real-time
LabView control program running on a PXI computer
(National Instruments). The display of the stimuli was syn-
chronized with the vertical synchronization of the screen to
avoid latency jitter. Visual display latencies were recorded
with a photodiode and corrected for in the data analysis. All
visual instruction stimuli had high contrast and were readily
visible. Subjects were seated in front of a fronto-parallel
touch screen (40 cm distance from eye, screen center at eye
level) with a chinrest to minimize head movements. Reaches
were not constrained in any speciWc manner other than the
touch positions on the touch screen.

Hand position was registered with the touch screen and
monitored within the real-time control software. The hand
Wxation and reach targets had to be continuously touched
within a tolerance window of typically 3 cm (4.0° VA)
radius. Otherwise the trial was immediately aborted. Reac-
tion time (RT) was deWned as the time between the go-sig-
nal and the subject’s release of the touch screen from the
Wxation position. Movement time (MT) was deWned as the
time between the release and re-acquisition of the touch
screen at a target position. Endpoint variability (EV) was
deWned as variable reach error, i.e. the distance of reach
endpoint in each trial to the mean reach endpoint to the
same reach target. EVs within each subject were calculated
separately for the x- and y-dimension. RTs, MTs and EVs
were calculated separately for each task condition.

Fig. 2 Timeline of the generalized pro-/anti-reach task. The subject
had to direct gaze to a small red square throughout the trial. A Xashed
context cue (C-CUE, frame around the eye-Wxation) instructed whether
to prepare a pro- or anti- reach. In the experiment, a green frame
instructed a pro-reach and a blue frame instructed an anti-reach. The
reach goal (dotted circle, not visible to the subject) was deWned by the
combination of the context cue and a spatial cue (S-CUE, white circle),
which was Xashed left or right of the eye Wxation after a variable mem-
ory period (MEM). Visual feedback (FDB) appeared only after the sub-
ject touched the correct reach goal on the screen. Pro- and anti-reaches
were deWned as a reaches relative to hand Wxation (symbolized by
white arrow, not shown to subjects) in the same (pro) or opposite (anti)
direction as the spatial cue was relative to eye Wxation (symbolized by
black arrow, not shown to subjects). The example shows a generalized
pro-trial
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To control for possible eVects of eye movements in the
main dataset, a second group of 15 subjects was recorded in
the same task but with eye movements being constrained.
With this control experiment, we wanted to exclude the
possibility that compatibility eVects could be explained by
reXexive saccades of the subjects toward the spatial cue
location before executing the reach toward the reach goal.
Such behavior would cause a delay in reach responses,
since eye movements often lead and predict hand move-
ments (AriV et al. 2002), and reaction times in incompatible
trials would be artiWcially prolonged, if the subjects exe-
cuted two saccades (one reXexive to the spatial cue position
and one corrective to the reach goal) before the start of the
reach. In the control experiment, gaze direction was con-
strained to a tolerance window of 2 cm (»2.8° VA) radius,
otherwise the trial was immediately aborted (500 Hz IR
camera, SMI, Teltow, Germany).

Data analysis

In the standard pro-/anti-task, compatibility and incompati-
bility in eye- and hand-reference frames covary. We tested
for the compatibility eVects in eye- and hand-reference
frames by comparing RTs, MTs and EVs in all compatible
against all incompatible trials, independent of the direction
of cue and reach (left/right) and laterality of Wxation (left/
right), using a t test. The main research question of our
experiment regards the separation of compatibility eVects
in an eye-centered from compatibility eVects in a hand-cen-
tered reference frame. For this, we tested RTs, MTs, and
EVs with a repeated-measurement two-way ANOVA with
the factors eye- and hand-reference frame in the general-
ized pro-/anti-task. Figure 1b illustrates the 2 £ 2 design of
the ANOVA. The columns depict the conditions, which are
compatible (left column) and incompatible (right column)
in an eye-centered reference frame, whereas the rows depict
conditions, which are compatible (upper row) and incom-
patible (lower row) in a hand-centered reference frame.
Direction of cue and reach (left/right) and laterality of eye
and hand Wxation (left/right) were not treated as factors.
Note, since in the standard task the compatibility in eye-
and hand-reference frame always covary, we cannot simply
expand the ANOVA to a third factor “standard/general-
ized”, but instead have to analyse both data sets separately.

Results

The average success rate of the subjects in standard trials
was 88 § 2% in pro and 88 § 1% in anti-reaches
(mean § SEM). First, we tested standard pro- and anti-
reaches for SRC eVects across all sample subjects (Fig. 3a,
dashed line). RTs in standard pro-trials were on average

faster than in standard anti-trials (pro: 326 § 11 ms, anti:
355 § 11 ms, mean § SEM, N = 16, P = 0.00016, paired
t test). In the standard conditions, compatibility in eye- and
hand-reference frame was always the same. To test compat-
ibility eVects in eye- or hand-reference frame, we analysed
the generalized pro-/anti-conditions. In generalized trials,
cue and reach goal were compatible in either eye- or hand-
reference frame, but not in the other (CEIH or IECH), or they
were compatible in both reference frames (CECH), or they
were incompatible in both reference frames (IEIH). The
average success rate was similar in those conditions (CECH:
87 § 2%; CEIH: 84 § 2%; IECH: 89 § 2%; IEIH: 87 § 2%).
Figure 3 shows the RT results across all sample subjects.
RTs were fastest if spatial cue and reach goal were compat-
ible in both reference frames (CECH: 367 § 18 ms), inter-
mediate if cue and goal were compatible in one reference
frame but incompatible in the other reference frame (IECH:
415 § 13 ms; CEIH: 414 § 16 ms), and slowest if cue and
goal were incompatible in both reference frames (IEIH:
447 § 16 ms). A repeated-measurement two-way ANOVA
with factors eye compatibility and hand compatibility
revealed a main eVect for both, eye (F(1,15) = 22.558,
MSE = 1,163, P = 0.0003) and hand (F(1,15) = 19.46,
MSE = 1,263, P = 0.0005) reference frame, with no inter-
action (F = 0.57, MSE = 1,545, P = 0.46) in generalized tri-
als. Standard trials were faster than generalized trials
(P < 10¡8, paired t test).

Figure 3b shows the average diVerences of all paired
group comparisons. We conducted post hoc comparisons
between all groups using paired t tests (�corr = 0.0083 for
n = 6 multiple comparisons). The signiWcances are indi-
cated in Fig. 3b. Additionally, one can take from these post
hoc comparisons that (a) the hand-compatibility eVect, i.e.
the RT diVerence between trials, which were compatible
and trials, which were incompatible in a hand-centered ref-
erence frame, in eye-compatible trials (CECH vs. CEIH;
47 § 14 ms) is about equal to the eye-compatibility eVect,
i.e. the RT diVerence between trials which were compatible
and trials which were incompatible in an eye-centered ref-
erence frame, in hand-compatible trials (CECH vs. IECH;
48 § 15 ms), and (b) the hand-compatibility eVect in eye-
incompatible trials (IECH vs. IEIH; 32 § 13 ms) is about
equal to the eye-compatibility eVect in hand-incompatible
trials (CEIH vs. IEIH; 33 § 10 ms; Fig. 3b). The Wrst and the
second bar of Fig. 3b show that the diVerence between IEIH

and CECH trials is less for standard (29 § 6 ms) then for
generalized (80 § 14 ms) trials (P = 0.0023, paired t test).
In summary, this means that RTs increase due to incompat-
ibility in eye-reference frame and due to incompatibility in
hand-reference frame and that both eVects were about
equally large.

Figure 4 shows the inXuences of diVerent reference
frames on SRC eVects in MTs. The analysis is equivalent to
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RTs in Fig. 3. MTs in standard pro-reaches (162 § 11 ms)
were faster than in standard anti-reaches (168 § 10 ms;
P = 0.042, paired t test; Fig. 4a, dashed line; Fig. 4b, left
bar). In generalized trials, the repeated-measurement two-
way ANOVA with factors eye- and hand-reference frame
revealed a main eVect for hand-reference frame (F(1,15) =
69.00, MSE = 248, P < 10¡4), but no eVect for eye-reference
frame (F(1,15) = 0.25, MSE = 201, P = 0.62), and no inter-
action (F(1,15) = 1.48, MSE = 288, P = 0.24). Post hoc tests
revealed that there was a hand-compatibility eVect in both
eye-compatible (P < 10¡5, �corr = 0.0083) and eye-incompat-
ible trials (P = 0.0003), while there was an eye-compatibility
eVect neither in hand-compatible (P = 0.14,) nor in hand-
incompatible trials (P = 0.61).

The inXuence of SRC in eye- and hand-reference frame
on EVs in the relevant horizontal x-dimension is shown
in Fig. 5. Standard pro-trials show smaller EVs (0.47 §
0.02 cm than standard anti-trials (0.58 § 0.04 cm, P =
0.0017, paired t test; Fig. 5a, dashed line; Fig. 5b, left bar).
In generalized trials, the repeated-measurement two-way
ANOVA showed a signiWcant main eVect of eye-reference
frame (F(1,15) = 48.8, MSE = 0.003, P < 10¡4), but no
eVect of hand-reference frame (F(1,15) = 1.19, MSE = 0.022,

P = 0.29), and no interaction (F(1,15) = 1.34, MSE =
0.009, P = 0.27). Post hoc tests revealed that there was no
hand-compatibility eVect in either eye-compatible (P = 0.077,
�corr = 0.0083) or eye-incompatible trials (P = 0.84). There
was an eye-compatibility eVect in hand-compatible
(P = 0.0005) but not hand-incompatible trials (P = 0.027).
In our task design reach goal position varied only in the
x-dimension. Accordingly, we did not see any eVect of eye-
or hand-reference frame on the EV in the y-dimension (data
not shown).

Constraint of eye movements

The results described earlier were obtained while subjects
were instructed to keep ocular Wxation on the Wxation spot,
but without registering the actual eye movements. If sub-
jects could not reliably follow the instruction of keeping
their gaze Wxed, but, for example, made many unvoluntary
saccades toward the Xashed spatial cue, then such saccades
could have interfered with the reach initialization, and
could thereby have confounded RT data.

We recorded 15 additional subjects (14 new, 1 from the
previous sample) in the same task while constraining their

Fig. 3 InXuence of SR compatibility in eye- and hand-reference
frames on reach reaction times (RTs). a Average (mean § SEM) RTs
for the diVerent combinations of compatibility/incompatibility in the
hand-reference frame (CH (triangles)/IH (circles)) and compatibility/
incompatibility in the eye-reference frame (CE (light gray)/IE (black)).
RTs in the standard trials are plotted separately (dashed, dark gray

curve). Note that for the standard trials eye and hand compatibility are
identical. b Average inter-subject diVerence between the compatible
and incompatible trials in the standard condition (1st bar) and between
all possible combination of compatibility conditions in generalized tri-
als. *P < 0.05; **P < 0.01, paired t test, Bonferroni corrected
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gaze in real time (see “Methods”). The control experiment
turned out to be challenging to the subjects. On average
across subjects, the success rate was 79 § 3% in standard
pro-trials and 80 § 3% in standard anti-trials. The average
success rate in the standard trials of the control experiment
was lower than in the main experiment (P = 0.0055, t test,
N = 16 subjects (no constraint) and N = 15 (with con-
straint)). The average RTs in the control experiment
(438 § 18 ms) were higher by about 100 ms compared to
the main experiment (341 § 11 ms; P < 10¡4, t test). The
success rates in the generalized trials of the control experi-
ment were 67 § 4% (CECH), 67 § 3% (CEIH), 80 § 2%
(IECH) and 71 § 3% (IEIH). This means that the task perfor-
mance for the generalized conditions dropped signiWcantly
compared to the main experiment (P < 10¡5, t test, N = 16
subjects (no constraint) and N = 15 (with constraint)).
Whereas in the main dataset there was no signiWcant suc-
cess rate diVerence between standard and generalized con-
ditions (88 § 1 vs. 86 § 1%, P > 0.05, paired t test), the
success rate in generalized conditions of the control experi-
ment was signiWcantly lower (69 § 3%) than in the stan-
dard conditions (80 § 2%; P < 10¡5, paired t test). This
means that performance diYculties in the control experi-
ment mainly aVected the generalized conditions.

The poor overall performance in the control experiment
did not allow systematic comparisons between the results
of the control and main experiments (data not shown). We
attribute the idiosyncratic and non-conclusive results of the
control experiment to the overall increased task diYculty,
as indicated by a signiWcant drop in performance and strong
increase in average RTs (cf. “Discussion”).

Discussion

We tested how reach RTs, MTs and EVs are inXuenced by
the spatial compatibility between a visual cue and the asso-
ciated motor-goal in an eye- and/or hand-centered frame of
reference. Our results show that there was not a global con-
sistent inXuence of one single reference frame on multiple
movement parameters, but diVerent reference frames

aVected diVerent behavioral parameters in a speciWc way.
RTs were inXuenced by both, SRC in eye- and hand-refer-
ence frame, whereas MTs were inXuenced only by SRC in
the hand-reference frame, and EVs were inXuenced only by
SRC in the eye-reference frame.

Spatial reference frames for reach planning

Previous neurophysiology studies showed diVerent pre-
dominant frames of reference for reach targets in diVerent
brain areas. Spatial tuning properties of most neurons in the
parietal reach region (PRR; Batista et al. 1999; Buneo et al.
2002; Pesaran et al. 2006) as well as human imaging data
from the posterior parietal cortex (Medendorp et al. 2003)
Wt best with a representation of the reach target in an eye-
reference frame. Neurons in parietal area 5 as well as a sub-
population of neurons in PRR showed hand-centered tuning
(Buneo et al. 2002; Chang and Snyder 2010). In premotor
areas, tuning properties of most neurons are driven by a
combination of eye, hand and target position for reaching,
whereas some are purely hand-centered, and others are
purely eye-centered (Batista et al. 2007; Pesaran et al.
2006). How the coding of neurons in diVerent reference
frames translates into overt behavior is not obvious and
might depend on the speciWc task.

Previous psychophysical experiments analysed system-
atic reach errors suggesting reach goal encoding in an eye-
centered reference frame (Beurze et al. 2006; Henriques
et al. 1998; Sorrento and Henriques 2008). Other experi-
ments, which also analysed systematic reach errors, pro-
vided evidence for a hand-centered representation of reach
goals (Bock and Eckmiller 1986; Gordon et al. 1994), or a
combination of diVerent reference frames (McGuire and
Sabes 2009). This means, previous studies based on system-
atic reach errors showed idiosyncratic results. The diversity
of Wndings could be due to the fact that reach errors can be
expected to be inXuenced by diVerent processes of motor
planning and control or diVerent sources of sensory input
were diVerently weighted (McGuire and Sabes 2009).

Other studies have investigated the inXuence of refer-
ence frames on SR compatibility eVects in reaction time

Fig. 5 InXuence of eye- and 
hand-reference frames on reach 
endpoint variability (EV). Con-
ventions are the same as in Fig. 3
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(Lamberts et al. 1992; Nicoletti and Umilta 1989; Umilta
and Liotti 1987). Lamberts et al. (1992) found joint com-
patibility eVects of visual hemiWeld and relative position of
two stimuli, in a task in which the response required button-
presses of either the ipsi- or contralateral hand. In contrast
to our study, this previous study could not compare the dis-
sociated eVects of an eye- and hand-reference frame, which
was mostly investigated in neurophysiological studies. The
reason for the inaccessibility of the hand-reference frame in
the Lamberts study was the use of a dissociated workspace
for visual cue and bimanual button-press responses (Lam-
berts et al. 1992), which is known to inXuence compatibil-
ity eVects (Stins and Michaels 2000). Our results conWrmed
the inXuence of an eye-reference frame on RTs, and addi-
tionally show an inXuence of the hand-reference frame.
Moreover, we could show distinct eVects on other move-
ment parameters, as discussed in the following paragraph.

Kinematic reach parameters

In contrast to RTs, MTs in our experiment were only inXu-
enced by compatibility in the hand-reference frame. The
fact that MTs reXect parameters of movement planning and
control might account for this, and is consistent with the
notion, that hand-reference frames gain increasing impor-
tance the closer a brain structure is to the motor output
(Batista et al. 2007; Pesaran et al. 2006).

EVs showed a signiWcant eVect of eye- but not of hand-
reference frame. This eVect was mainly induced by a reduced
EV in trials with SR compatibility in both eye and hand-ref-
erence frame (Fig. 5a). Eye- and hand-compatible trials are
characterized by the fact that cue and motor-goal were physi-
cally identical (same screen position). Despite the spatial cue
being only brieXy Xashed (s. Methods), this might have led to
a certain degree of visual guidance with reduced variability
in movement trajectories, whereas in the other generalized
task conditions the reach goal had to be spatially inferred,
without the possibility of direct visual guidance.

Spatial stimulus-response compatibility

In the previous section, we interpreted and discussed our
results in terms of eye- and hand-reference frames and their
inXuence on SR compatibility eVects. SR compatibility was
deWned as left/right compatibility of cue and motor-goal
directions. However, there might be a more parsimonious
explanation for the observed RT diVerences. RTs in the
main experiment can be grouped to three diVerent levels
(Fig. 3). There was no diVerence between CEIH reaches and
IECH reaches (P = 0.9, paired t test, �corr = 0.0083). These
three levels of RTs correlate with the distance between
spatial cue and reach goal. A previous study (Stins and
Michaels 2000) showed that the distance between cue and

target can indeed inXuence RTs. Subjects are faster the
closer the cue and target were together. In our task design,
we cannot diVerentiate between the possibilities that RTs
are explained by the combined compatibility in eye- and
hand-reference frame, or by the distance between cue and
reach goal.

Unlike RTs, MTs and EVs cannot be explained by the
same dependency of absolute distance between cue and
reach goal, since neither movement parameter scaled with
this absolute distance. But the MT and EV results could
possibly be explained by the compatibility of cue and goal
eccentricity, i.e. the distance of the cue and the reach goal
from the eye- or hand-Wxation position (as depicted by the
length of the arrows in Fig. 1b). According to this alterna-
tive view, compatibility of the direction of cue and reach
goal would be irrelevant. Instead, reaches which are faster
and more precise if cue and reach goal are compatible in
eye eccentricity, i.e. if cue and goal are at the same distance
from the eye-Wxation, would indicate an inXuence of the
eye-reference frame, Correspondingly, a compatibility eVect
of hand eccentricity would be taken as indication for an
inXuence of the hand-reference frame. With this interpreta-
tion, RTs would have been determined by the compatibility
of cue and goal eccentricity in an eye- and hand-reference
frame. MTs would have been determined by the compati-
bility of cue and goal eccentricity in an eye-centered refer-
ence frame only. The latter means that reaches were faster
if the reach goal position had the same distance from eye
Wxation as the cue compared to conditions in which the
reach goal had a larger distance from eye Wxation, despite
identical hand eccentricity of the goal (=reach amplitude) in
both conditions. EVs would have been determined by cue
and reach goal eccentricity in a hand-centered reference
frame. EVs were smaller if the cue had the same distance to
the hand-Wxation stimulus as the reach goal compared to
conditions in which the cue had a larger distance from the
hand-Wxation stimulus, despite identical eye eccentricity of
the cue in both conditions. We consider the possibility that
MTs and EVs are explained by the compatibility of cue and
goal eccentricities less plausible, since at least for the EVs
it seems counter intuitive that they should be inXuenced by
the distance of the cue from the hand-Wxation stimulus
independent of reach amplitude.

EVect of eye movements

In the control experiment, we wanted to test in how far
involuntary saccades in the main experiment could have
confounded our results. In standard trials of the control
experiment, subjects performed similarly well as in the main
experiment, and we found qualitatively the same results.
However, results across subjects in the generalized condi-
tions of the control experiment were rather idiosyncratic. We
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rule out that the RT results of the main experiment are
explained by involuntary saccades aimed at the Xashed spa-
tial cue (or a following reorientation saccade toward the
goal). If this was the case then we would have to expect that
ocular Wxation breaks mostly happened during or brieXy
after the presentation of the spatial cue, which was only the
case for less than 19% of all ocular Wxation breaks (3.7% of
all trials). Also, the standard pro-reaches and generalized
anti-reaches denote trials with physically identical reaches,
in which the cue was identical to the reach goal position and
at the same distance from the Wxation position. Yet, RTs in
the main experiment were signiWcantly diVerent between
these two conditions (P = 0.0054, paired t test), again argu-
ing against an eVect induced by involuntary eye movements.
Instead, we attribute the idiosyncratic results of the control
experiment to the overall increased task diYculty, as indi-
cated by signiWcant drop in task performance and strongly
increased overall reaction times (see “Results”).

Conclusions

DiVerent movement parameters, like reaction times, move-
ment times, and endpoint variability, each reXect the stages of
planning and control of a motor act to a diVerent degree. We
could show that eye- and hand-frames of reference have selec-
tive eVects on the diVerent movement parameters during goal-
directed reaching. Hence, our results imply that eye- and
hand-reference frames have distinct eVects on the diVerent
stages of planning and control. In this sense, our results denote
a psychophysical manifestation of the diVerent observed refer-
ence frames at the diVerent stages of neuronal processing,
which putatively underlie diVerent phases of overt motor
behavior. During the planning stage, which we argue should
be best reXected in the SRC eVects on RTs, we found a two-
fold inXuence of eye- and hand-reference frame, without inter-
action, reminiscent of mixed reference frames of neurons in
the parietal and frontal reach related sensorimotor areas.
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Motor learning and adaptation 
 

 

III. Motor learning and motor adaptation 

III.I. Motor learning 

To survive in an environment which is constantly changing during their lifetime it is 

not sufficient for animals and humans to rely on pre-defined motor programs or 

reflexes. To be able to deal with changes in the world they have to expand their motor 

repertoire to develop new motor programs. Additionally those motor programs have 

to be constantly adapted and changed in such a way that the original –best- motor 

performance can be maintained. The two versions of motor learning, namely skill 

acquisition and motor adaptation differ in the following points. In skill acquisition the 

motor system learns a new skill and therefore extends the performance of its borders. 

For example, if one learns to ride a bicycle one has, after some practice, accomplished 

the ability of a new form of locomotion without loosing the ability to walk. Skill 

acquisition seems to depend on the given circumstances of the task and the way how 

one accomplishes these tasks can vary largely between individuals. In motor 

adaptation, in contrast, one does not expand the capabilities of the motor system. 

Motor adaptation becomes important after changes in the environment, which reduces 

one’s original motor performance. Motor adaptation allows the system to react to 

those changes and brings back the performance of the motor system to its original 

level. If, for example, somebody changes the speed settings of ones computer mouse, 

in the beginning one will not be able to use the cursor precisely and it will miss the 

target one aimed at. After a while, however, one adapts to the new settings and can 

handle the mouse with the new settings as precisely as before. In contrast to skill 

acquisition in this case one has not expanded one’s motor program but overwritten an 

existing program. This becomes obvious if one switches back the settings of the 

computer mouse to the old settings. In this case one will not be precise anymore and 

again miss the targets, even though one had been able to handle the same settings 

before. But this old motor program got overwritten during the adaptation to the new 

settings. This requirement for a de-adaptation, after the adaptation, in order to go back 

to the original settings, is the main difference to skill acquisition. In experiments, 

which study motor adaptation, this property manifests itself in so called after-effects, 

which causes an error in performance which is in the opposite direction to the error 

cause by the original distortion.  
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III.II. Reach adaptation 

In reach adaptation experiments, adaptation usually was elicited in three different 

ways. First, experimenters induced a mismatch between different sensory modalities 

e.g. with prisms, which distort the visual input. Second, in so-called visuomotor 

rotation tasks the trajectory of a given motor command is distorted. Normally in these 

experiments the visual feedback of one’s hand is replaced by a computer cursor. In 

the baseline condition the cursor represents the original hand trajectory. However, 

during the distortion the mapping between the hand and the cursor changed e.g. if one 

moves its hand straight up, the cursor on the screen would move to the right. Third, 

adaptation can be elicited by applying an unexpected force to ones hand during the 

movement, which then causes a deviation of the hand from its normal trajectory. In all 

three cases, one adapts to the perturbations and subjects, after a while, are able to 

perform precise, straight reaches again.  

Lesion studies (Weiner et al., 1983; Martin et al., 1996; Baizer et al., 1999; Kurata 

and Hoshi, 1999) as well as imaging studies (Clower et al., 1996; Desmurget et al., 

1998; Diedrichsen et al., 2005) showed an involvement of the cerebellum, the 

premotor cortex and the posterior parietal cortex during adaptation. Other studies with 

electrophysiological studies in monkeys show changes in tuning properties of neurons 

in M1, which is the main output to the spinal cord for movement generation (Wise et 

al., 1998; Li et al., 2001; Paz et al., 2003; Mandelblat-Cerf et al., 2009; Arce et al., 

2010b). 

Behaviorally, the strength of the effect of reach adaptation can be influenced by the 

form of the given feedback. Adaptation effects are stronger if the feedback is provided 

by one’s own hand in contrast to a cursor feedback (Clower and Boussaoud, 2000; 

Norris et al., 2001). Another study showed that the size of prism-adaptation effects 

decreases if the feedback signal of the hand is delayed after reaching the target 

position (Kitazawa et al., 1995). Also, implicit strategies of the subjects do not 

prevent adaptation. Even if subjects use cognitive strategies to counterbalance the 

distortion (in a visuomotor rotation task) the motor system still adapts to the mismatch 

between visual input/feedback and the expected visual output of the issued motor 

command, which in the given situation causes a decrease in performance due to 

adaptation effects (Mazzoni and Krakauer, 2006).  
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III.III. Generalization  

If one adapts to a certain distortion in a specific situation, how does this transfer to 

other situations? Are there still adaptation effects if the arm is moved to a different 

position or if the reach aims at a different target? Several studies dealt with the 

question of generalization in reach adaptation, since the pattern of generalization 

allows conclusions about the properties of the underlying neuronal units. In tasks 

which induce a rotational distortion, the adaptation effect is maximal for the direction 

in which the subject performed reaches during the exposure of the distortion. 

However for targets near the adapted direction subjects still showed an adaptation 

effect but the size of this effect decreased with increasing distance from the target 

(Imamizu et al., 1995; Pine et al., 1996; Krakauer et al., 2000; Donchin et al., 2003; 

Thoroughman and Taylor, 2005; Mattar and Ostry, 2007; Mattar and Ostry, 2010). In 

contrast to this partial generalization to different target directions there seems to be a 

more complete generalization to different gains. If subjects were adapted with a 

distortion in which the translation of the arm movement to a respective cursor 

movement had a altered gain factor, i.e. the cursor moved faster/further or 

slower/nearer, this adaptation transferred to different target distances as well as to 

different directions (Bock, 1992; Krakauer et al., 2000). It was shown that reach 

adaptation generalizes partly to different postures of the arm (Baraduc and Wolpert, 

2002) and to different positions in workspace as long as the target vector (difference 

between starting position and the target) and movement vector (starting position and 

the reach endpoint) are kept constant (Wang and Sainburg, 2005). It seems that at 

least partly, the broadness of the generalization function depends on whether there is a 

simple rule which can be learned in one situation and then easily transferred to other 

situations. For example for gain adaptation there is a linear relationship between peak 

velocity and target distance, which is approximately constant for the whole 

workspace. In contrast, the relationship for directional generalization can not be 

estimated from a single input-output coupling (Krakauer et al., 2000). 

In a psychophysical experiment, we used a generalization paradigm to, first, examine 

whether the adaptation is coded in a Cartesian or a polar reference frame and, second, 

test if the direction of the adaptation effect causes an asymmetry in the generalization.  
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Abstract 

Adaptation is crucial for the sensorimotor system to compensate systematic changes 

in the environment. In visuomotor tasks, artificially perturbed visual feedback about 

hand position leads to movement adaptation, which could be driven by prediction 

errors about sensory hand representations or the induced target error. While the first is 

mostly believed to be decisive for adaptation, we here demonstrate and characterize 

reach adaptation in a novel visuomotor task based on target error alone. A sudden 

target displacement (‘jump’) induced reach errors, when perception of the jump was 

suppressed by a simultaneous saccade to a separate target, while hand perception was 

unperturbed. Generalization was characterized by two findings. First, reach endpoints 

to unperturbed targets were off-set in a direction parallel to the jump, indicating 

adaptation of endpoint position rather than reach direction. Second, generalization 

was asymmetric, with larger adaptation for targets in the direction of the target jump. 

Our results demonstrate that reach adaptation can be driven by target error alone. The 

asymmetric generalization pattern suggests neural adaptation mechanisms different 

from visuomotor rotation tasks, which typically generalize symmetrically. A recurrent 

neural network model which we previously used for simulating context-specific 

sensorimotor transformations reproduces the asymmetry observed in the human 

behavioral data, but only under specific conditions. The model thereby puts 

constraints on the possible underlying neural mechanisms of adaptation in our 

paradigm and makes testable predictions about selective widening and narrowing of 

the tuning in sensorimotor neurons which are tuned for positions near the adapted 

target position. 
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Introduction  

Our sensorimotor system needs to adapt to environmental changes to sustain proper 

performance. Depending on which aspect of a movement is perturbed, adaptation may 

serve the purpose of reducing the offset between reach endpoint and target (‘target 

error’, (Diedrichsen et al., 2005; Magescas et al., 2009; Cameron et al., 2011), 

readjusting forward model predictions which no longer match the actual sensory 

feedback (Shadmehr and Krakauer, 2008), or both. To understand the sensorimotor 

system, it is essential to know how different functional perturbations map onto 

changes at different levels of the sensorimotor process. 

 

In the widely used visuomotor rotation task (Bedford, 1989; Bock, 1992; Kitazawa et 

al., 1995; Imamizu et al., 1995; Pine et al., 1996; Martin et al., 1996; Ghahramani et 

al., 1996; Wise et al., 1998; Vetter et al., 1999; Krakauer et al., 2000; Paz et al., 2003; 

Krakauer et al., 2004; Redding and Wallace, 2006) kinematic adaptation is elicited by 

a perturbed visual feedback (cursor) about hand position. This perturbation leads to a 

mismatch between the learned visual and proprioceptive feedback of hand position, 

and to prediction errors in the sense that a familiar motor command leads to 

unexpected sensory consequences. When the perturbation can not be compensated 

during the course of the movement then also target errors occur. Unless one can 

isolate a single source of adaptation, it is difficult to attribute adaptive behavioral 

changes to an individual cause. While sensory prediction error alone has been shown 

to induce adaptation (Mazzoni and Krakauer, 2006), consistent noticeable target error 

alone failed to induce adaptation in previous studies (Diedrichsen et al., 2005). In an 

attempt to isolate target error as an effective source of adaptation, we tested if clearly 

noticeable target errors despite unimpaired hand localization can induce implicit 

adaptation in reaching. 

 

In our novel target-jump paradigm subjects directly saw their own hand, and therefore 

knew that perturbation of the seen hand position was impossible. Saccadic 

suppression rendered a peri-movement target jump invisible, while the resulting target 

error was obvious to the subjects. We tested if adaptation to target error alone would 

show similar transfer of adaptation to neutral target positions (generalization) as other 

forms of visuomotor adaptation, or if generalization characteristics suggested 

adaptation at a different level of sensorimotor processing or with a different 
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underlying neural mechanisms. We tested if reach directions (Bock, 1992; Krakauer 

et al., 2000) or reach endpoints (Ghahramani et al., 1996) would be adapted, and if 

generalization patterns were symmetric, as observed in previous visuomotor rotation 

tasks (Pine et al., 1996; Krakauer et al., 2000). With a recurrent neural network, which 

was previously built to simulate context-specific visuomotor associations (Brozovic et 

al., 2007), we could simulate the target-jump adaptation of our experiment and 

reproduce our observed asymmetry in generalization. Our psychophysical and 

modelling results suggest that target jump induces implicit adaptation of visuospatial 

motor goal representations, and, complementary to the case of symmetric 

generalization (Tanaka et al., 2009), that neurons in visuomotor layers should change 

their tuning properties during adaptation.  
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Methods  

Subjects 

In total, 47 subjects (36 females, 20 to 58 years) participated in the experiment. 

Detailed written instructions were given to the subjects before the experiment. In a 

training session, a few minutes before the recording session, subjects could practice 

the control task without target jump and ask any question not resolved by the written 

instructions. All subjects were right handed with normal or corrected-to-normal vision 

and were naïve with respect to the objective of the study. Subjects were not informed 

about the target jump that would be introduced. Experiments adhered to the principles 

of the Declaration of Helsinki. 

 

 

Task design 

Subjects simultaneously had to reach and saccade to two separate targets in the 

opposite hemifield on a frontoparallel screen. Subjects did free reaches towards the 

touch screen and could see their own hand during the whole experiment, i.e. they had 

direct visual feedback about the hand position during the reach. Saccadic suppression 

allowed repositioning of the reach target (target jump), without subjects noticing. 

Saccade targets were chosen to be opposite to the reach target, i.e. spatially separate 

to avoid interference of saccadic and reach adaptation (Bekkering et al., 1995; De 

Graaf et al., 1995). When interviewed after completion of the experiment, most 

subjects (32/46) reported not to have noticed any target perturbation (see below for 

subject selection). 

 

The task consisted of three different trial types: standard, jump, and probe trials (Fig. 

1A, B). In all three trial types subjects had to perform center-out reaches and 

saccades. In all trial types the peripheral saccade target remained visible and 

stationary. In standard trials the peripheral reach target remained visible and 

stationary until the trial was finished. In jump trials the reach target remained visible 

but was re-located to a new position during saccade execution. In probe trials the 

reach target disappeared during saccade execution and reaches had to be executed to 

the remembered target position.  

 

109



Target jump adaptation for reaches 
 

 

Saccade and reach targets were only varied in their direction relative to central eye 

and hand fixation, and appeared at a fixed eccentricity of 12 cm (= 17.2° visual angle 

(VA) at 40 cm screen distance), unless stated otherwise. In all trial types the direction 

of the saccade target randomly alternated between two fixed positions at 195° and 

285° from trial to trial. In standard and jump trials the initial peripheral reach target 

appeared at a fixed direction of 60° (adapted direction, AD). In probe trials the reach 

target position varied (see below) in order to measure the generalization of adaptation 

and to establish a baseline performance before adaptation. To balance potential 

asymmetries of the workspace, we tested a counter-clockwise jump (CCW; N=30 

subjects) and a clockwise jump (CW; N=17; 4 subjects in both conditions). The CW 

and CCW experiments partially differ in the number of trials in the different 

experimental periods (see below) to optimize parameter settings in the CW 

experiment, which was conducted after the CCW experiment. The differences in trial 

numbers did not affect the results or the conclusions. 

 

 

 

Task conditions 

For each subject the experiment consisted of a sequence of task conditions (Fig. 1C). 

The control task was used to measure baseline performance. Subjects first conducted 

10 standard trials to the AD. The standard trials were followed by 100(120) probe 

trials to 10(12) screen positions in the CCW(CW) experiment. Seven directional 

targets were located at 15, 35, 50, 60, 70, 85 and 105°, i.e.  at -45, -25, -10, 0, 10, 25, 

and 45° relative to AD (Fig. 1D). An additional 3(5) radial targets were tested at the 

direction of the AD in the CCW(CW) experiment, which had an eccentricity of 7, 10, 

14, 17 and 20.5 cm, i.e. -5, -2, 2, 5, and 7.5 cm relative to the adapted target. The 

order of appearance of the target positions was randomized and different for each 

subject. On average each target appeared 10 times.  
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The generalization task started with 10 standard trials to the AD (pre-exposure period) 

and ended with 15(20) standard trials to the AD in the CCW(CW) experiment (post-

exposure period). Between these trials, 40 jump trials were conducted in which the 

reach target was re-positioned to 75° (CCW jump of 15°) or to 45° (CW jump of 15°), 

Figure 1  Target jump task with saccadic suppression. A: Trial types. The presentation of 

reach (black) and saccade (red) targets for standard, target jump and probe trials are shown during 

the time of movement. Filled symbols depict visible targets, black open symbols depict previous 

reach target positions, gray symbols depict alternative probe target positions in probe trials. For 

saccade targets only one of the two alternative positions is shown. B: Example behavior during 

standard, target jump and probe trials. Black lines represent duration and position of eye and hand 

targets. Red lines depict eye and blue lines hand positions. Note that positions are shown only in 

the horizontal dimension to be able to show the tangential target jump as well as the radial center-

out movements of hand and eye within one dimension as a function of time. C: Sequence of task 

conditions. Red encodes standard trials, green target jump trials and blue probe trials. Hatching 

indicates randomly interleaved trial types. D: Spatial layout of the generalization task. Eye and 

hand fixation stimuli are shown as black and white squares, possible probe target positions are 

shown as gray open circles, possible saccade targets are shown as red circles. The target for the 

adapted direction (AD) is shown as open black circle. Target positions after the clockwise (CW) 

and counter-clockwise (CCW) jump of the target from the position at the adapted direction (AD) 

are shown as black filled circles.  
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while keeping the eccentricity constant (exposure period). Jumps of 15° direction 

change corresponded to a 3.1 cm target offset on the screen.  

 

To test generalization, subjects conducted probe trials to all target positions 

(generalization period) in between the exposure and post-exposure periods. The probe 

target positions matched the positions in the control condition and were presented in a 

random order. In the generalization period, probe trials appeared with a probability of 

60% (average 108/180 trials) in the CCW experiment, and with 40% (120/300) in the 

CW experiment. The remaining trials of the generalization period were jump trials, 

which served as refresher to maintain adaptation.  

 

Behavioral control and recording 

Visual instruction stimuli were presented on a LCD screen (19” ViewSonic VX922) 

in the frontoparallel plane. Subjects initiated a trial by fixating a small, red fixation 

spot (0.5 cm square) and touching an adjacent, gray hand fixation spot (0.5 cm 

square) in the center of the screen (fixation period). After a variable delay (0.5 to 1.0 

s) the fixation stimuli disappeared (‘go-signal’), while simultaneously the reach target 

(gray, 0.5 cm radius) and the saccade target (red, 0.5cm radius) appeared. Hand 

fixation had to be continuously touched within 2.5cm (3.6º VA) and reach targets had 

to be continuously touched within 5 cm (7° VA) tolerance radius. Reach target 

tolerance was chosen to be relatively large such that it would not impose constraints 

onto adaptation or generalization effects. Eye fixation and saccade targets had to be 

continuously fixated within a tolerance window of 3 cm (4.3° VA) radius. Fixation 

breaks of either hand or eye immediately aborted the trial. Subjects had 700 ms to 

react to the appearance of the eye and hand targets by initiating a saccade. Saccade 

initiation was defined as the time when the gaze signal exited the eye-tolerance 

window. The eye had to leave the tolerance window in a direction of ± 45° of the 

direction of the saccade target, otherwise the trial was aborted. The target jump was 

triggered 24-40 ms after saccade initiation (depending on when the saccade occurred 

relative to the refresh cycle of the screen). After saccade initiation subjects had to 

position gaze and hand within the tolerance window of the respective targets within 

500 ms. Gaze and hand had to stay within the tolerance windows for additional 500 

ms to successfully finish the trial. 
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Custom-written visual display software (C++) was controlled via a real-time LabView 

control program running on a PXI real-time computer (National Instruments). Eye and 

hand movements were monitored in real-time. Reach endpoints were registered on a 

touch screen (IntelliTouch, ELO Systems, CA, USA) mounted in front of the visual 

display. In 10 subjects of the CW experiment, we additionally measured hand 

trajectories at 200Hz with a 3D optical motion tracking device (4300 Visualeyez, PTI 

Systems). One marker was attached to the nail of the index finger of the preferred 

hand, which was used by all subjects to touch the screen. Motion tracking data were 

smoothed with a 6th-order Butterworth filter (10 Hz cut-off frequency). Gaze 

positions were registered with an infrared eye tracking device at 500 Hz (SMI 

Sensomotoric Instruments, Germany). Subjects used a chinrest to minimize head 

movements. 

 

BEHAVIOR ANALYSIS 

Time course of adaptation 

We fitted the directional reach errors during the exposure and post-exposure with an 

exponential function over successive trials t to quantify incremental changes in the 

reach endpoint positions due to adaptation or re-adaptation (Fig. 2): 

aaeoffsettdev ε−+=)(               (1) 

were ε defines the learning rate, offset defines the asymptotic reach error and a defines 

the scale. Directional reach errors were defined as the angular deviation of the 

direction of the reach from the direction of the target. Directions were defined as 

center-out direction from the fixation stimulus to the target/reach endpoint. To 

compensate idiosyncratic biases, we subtracted the mean directional reach error in the 

pre-exposure period from the directional reach error in each trial for each individual 

subject before averaging across subjects. 

 

Translational versus rotational generalization 

To quantify the amount of generalization properly, we first needed to test in which 

way adaptation transferred to neutral probe targets. For this we analyzed the 2D reach 

endpoint positions, not only the reach directions as above. We compared the error 

vector at the AD to the error vectors at the different directional probe targets. The 

error vector for each target was defined as the difference vector between the mean 
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reach endpoints in the probe trials of the control condition and the probe trials in the 

generalization period of the test condition. This means, the direction of error vectors 

is measured relative to the baseline reach endpoints which correspond to each probe 

target. Error vectors were measured separately for each subject.  

 

Two hypotheses concerning the directional aspect of the generalization were tested. 

According to the translation hypothesis, the direction of the error vector is 

independent of the probe target position (red arrows in Fig. 3). Any spatial profile of 

the generalization pattern across the work space would affect only the length of the 

error vector, not its direction. Such generalization would suggest a transfer of the 2D 

shift in the Cartesian endpoint position due to adaptation. According to the rotation 

hypothesis, the error vector is always tangential to the probe target direction (blue 

arrows, Fig. 3). The generalization pattern across the work space would affect the 

length and direction of the error vector simultaneously in a specific way. Such 

generalization would suggest a transfer of only the 1D direction of the adapted reach 

endpoints. Note, the task design does not constrain the subjects. The jump can be 

either interpreted as a positional shift or a directional change of the target, hence 

either generalization pattern is possible. We included only the directional probe 

targets, not the radial probe targets, in this analysis, since only targets with different 

reach direction than the AD allowed us to differentiate between the translation and the 

rotation hypothesis. 

 

The measured error vector at the adapted target in individual subjects might not 

perfectly match the physical displacement of the target (the size and direction of the 

jump). We accounted for inter-individual differences in adaptation when testing for 

the alternative translation and rotation hypotheses. We used the error vector at the 

adapted target (Fig. 3A, e
r

AD) as reference for predicting the error vectors at the probe 

targets according to the translation and the rotation hypotheses. The predicted error 

vectors for the translation hypothesis (Tt
v

) and for the rotation hypothesis (Tr
v

) at each 

probe target T were defined as: 

ADT et
vv

=                     (2) 

TTADTT tReRr
vvr

)()( δδ ==        (3) 
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were R is a 2-D rotation matrix, and δT equals the angular difference between the 

mean reach endpoint at the AD and the mean reach endpoint at the respective probe 

target in the control condition (Fig. 3A).  

 

We compared the direction of the measured error vector at each target (e
r

T) with the 

vectors predicted by the two hypotheses. The residual errors were computed as  

TTTT tangleeangle δτ /))()((
vv −=       (4) 

TTTT eanglerangle δρ /))()((
vv −=       (5) 

for the translation and rotation hypothesis, respectively. Note that δT denotes the 

maximal angular difference that the alternative predictions according to the two 

hypotheses would differ for each probe target. The residual errors were normalized by 

δT to take the different size of the expected difference for the different probe targets 

into account. The residual error will be close to 0 if the data fit the tested hypothesis 

and close to 1 if the data fit the alternative hypothesis.  

 

Testing the translation against the rotation hypothesis requires an effect of adaptation 

at the respective probe target in the respective subject. If endpoints do not 

significantly deviate from the target position, the error vector and the residual errors 

become random. This would likely affect especially probe targets with large distance 

from the adapted target. Therefore, we computed the average residual errors across 

subjects at each probe target position only for subjects in which reach directions in the 

control and test conditions were significantly different (ranksum test). 

  

Asymmetry of generalization 

We tested whether the generalization showed an asymmetry between probe targets 

which lie in the direction of the target jump (relative target position > 0, per 

definition) compared to probe targets in the opposite direction (<0). Note that this 

definition for the sign of the probe targets allows us the averaging of the data of the 

CCW and CW adaptation to extract effects which are specific for the direction of 

jump, and independent of the absolute direction in the workspace. We quantified the 

amount of transfer of adaptation to probe target positions in three different ways. First 

we analyzed the directional reach error (as used for the time course of adaptation 

above). Second and third the amount was defined by projecting the measured error 
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vector onto the direction of the error vector as predicted by the translation hypothesis 

and the rotation hypothesis, respectively. This means, the relative adaptation for each 

probe target T was for the translation hypothesis defined as: 

))()(cos(
 · T

TT
T

T

T

T tangleeangle
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And for the rotation hypothesis defined as 
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with <·> being the dot product. Note that the below results on the 

symmetry/asymmetry of generalization did not depend on this optimized 

quantification of the adaptation transfer. The results would hold equally true if 

symmetry/asymmetry were tested with the simple directional reach error, an 

observation which will be important for the comparison with the model data (see 

Results).     

 

The resulting generalization function (= RA(T)) was fitted with a skewed t-distribution 

(Azzalini and Capitanio, 2003): 
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µ defines the center of the distribution (not the mean), σ the width, and λ the 

skewness. α defines a scaling factor and df the degrees of freedom. λ was used to 

quantify the asymmetry of the generalization function. This function was fitted to the 

mean behavioral data across subjects on a least-mean-square basis. Individual data 
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points were weighted with the inverse of their standard error (Matlab Curve fitting 

toolbox). 

 

Only correct trials were included in the analysis. Yet, adaptation effects might occur 

in trials which were not finished correctly, but nevertheless provided some kind of 

feedback to the subjects. This could be trials with fixation breaks during the target-

hold time after the reach, or trials in which the target position was acquired, but not 

fast enough. We ran the same analyses including such trials. The results led to the 

same conclusions as when excluding these trials. 

 

Exclusion of subject  

Only subjects were analyzed who performed the task without difficulties. First, 

subjects with a success rate of < 40% in the initial test condition were excluded from 

the analysis (1 subject each in the CW and CCW experiment). This did not exclude 

several subjects whose scores were low due to eye fixation breaks, but whose 

performance otherwise was satisfactory. Second, subjects who reported that they had 

noticed the target jump were also excluded from the analysis (11 in CCW, 4 in CW). 

We choose to exclude subjects who noticed the target jump as a conservative 

approach, even though they show similar results in several aspects (see Results). 

Third, subjects who did not show significant adaptation at the AD during the 

generalization period (directional reach error at AD not significant larger than zero, 

Wilcoxon signed rank test) were not included in the analysis (1 in CCW, 2 in CW). 

The reduced dataset consisted of 16 (CCW) plus 13 (CW) subjects.  

 

Model simulations 

Neural network model 

We used a three-layer recurrent neural network model to simulate our target-jump 

adaptation experiment. The idea was to test the changes of the neuronal 

representations in the network as a result of re-training the network from an initially 

congruent 1-to-1 mapping between sensory input and motor output to a locally 

perturbed input-output mapping. The model was nearly identical to a model, 

developed in a previous study, which had successfully performed flexible, context-

specific sensory-motor transformations (Brozovic et al., 2007).  
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In brief, the model includes topographically organized input and output layer neurons 

which represent the one-dimensional workspace of the sensory input and the motor 

output, here the circular space of reach directions. Input layer neurons have Gaussian 

tuning profiles and tile the workspace evenly. Output layer neurons developed such 

tuning profiles after the network was trained from an initially random connectivity to 

a state in which it produces population tuning with a circular Gaussian profile (von 

Mises function) in response to local input (see below). The intermediate (hidden) 

layer with recurrent connections receives direct information from the input layer and 

is reciprocally connected with the output layer (Fig. 5A; Network II in (Brozovic et 

al., 2007)). All connection weights were updated according to a supervised 

backpropagation-through-time (BPTT) learning algorithm. The detailed 

implementation of the network and algorithm can be found in Brozovic et al. 

(Brozovic et al., 2007).  

 

Only one modification to the original model was necessary to simulate the current 

experiment. The network was trained to only one mapping rule at a time (see training 

procedure below), whereas the original model learned four mapping rules in parallel. 

Importantly, no context input existed in the current version and the network had no 

explicit information about the exposure or non-exposure to the target jump. This 

network design mimics the consequences of the saccadic suppression in our 

experiment, namely, the fact that subjects did not explicitly know about the 

perturbation trials. The only source for driving learning is the target error at the end of 

the trial.  

 

Additional minor modifications were made for ‘aesthetic’ reasons, namely to get 

smooth tuning functions and incremental adaptation with a learning rate similar to the 

experiments. The number of input/output neurons was increased to 180 and the 

number of hidden layer unit was increased to 50. This allowed simulations with a 

wide range of tuning widths (see below), while still covering the full workspace 

densely. We used a population vector algorithm to quantify the model’s motor output, 

i.e. the ‘reach’ direction was decoded via the sum of vectors defined by the preferred 

direction of each output neuron weighted with its activation level (Georgopoulos et 

al., 1986).   
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Simulation procedure  

We trained the model in the following steps to simulate the target jump adaptation 

paradigm: (1) Standard mapping: Starting from a random–weights initialization, the 

network was trained to perform a 1-to-1 mapping of the visual input to a congruent 

motor output across the full workspace. Standard mapping mimics standard trials of 

our experiment. A circular Gaussian population response across output layer neurons 

with a predefined width and centered on the desired reach direction served as teaching 

signal. Training was continued until the mean square error between the desired and 

actual activity profile across output layer neurons dropped below 0.001.  (2) Target 

jump: Starting from the model which performed the standard mapping, the model then 

was trained to perform a rotated mapping (15°) for a single input direction (adapted 

direction, AD). The training algorithm was identical to the standard mapping. These 

trials simulated the exposure phase with target jumps in our experiment. (3) 

Generalization: After the model learned the rotated mapping in one direction, the 

synaptic weights were kept fixed to mimic probe trials without feedback, i.e. without 

an error signal. We then probed the model across the workspace to test how 

adaptation at one location generalizes to other untrained targets, i.e., to assess post-

adaptation generalization.  

 

Note, the workspace of the model is inherently 1-dimensional. For comparison with 

human generalization data, the model reach error was defined as the angular deviation 

of the model reach direction in the generalization (phase 3) from the model reach 

direction after learning the initial standard mapping (end of phase 1), normalized to 

the size of the target jump. The quantitative differences between translational and 

rotational generalization can not be addressed with this 1-D model, but the qualitative 

testing for symmetry/asymmetry in generalization is independent of this.  

 

The tuning width within input and within output neurons was constant (see Brozovic 

et al. 2007 for definition of tuning width). The motor tuning width was always equal 

or larger than the visual tuning width. Both tuning widths were varied in the range 

between σ=15° and 75° in steps of 10° to find the combination which best matched 

the human data (see Results).  
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We ran all simulations with 30 different sets of random initialization. The 30 seeds in 

the analysis of the model data were treated equivalently to the different subjects of the 

experimental data.  

 

Model-neuron tuning analyses 

Directional selectivity and preferred direction (PD) of output and hidden layer 

neurons was quantified with a directional tuning vector (DTV), which is defined as 

the vector average across all spatial input directions iu
v

 (unit vectors) weighted with 

the response ijr  of neuron j to input at direction i, normalized to the average response 

of neuron j: 
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         (8) 

For defining peak activity and tuning width the tuning curves of the neurons were 

interpolated by a factor of 5 (‘ideal’ low-passing via fast Fourier-transform; 

MATLAB function interpft) leading to a nominal 1º resolution. Peak activity was 

defined as the activity at the PD of the neuron. Tuning width was defined as full width 

at half maximum (FWHM). Changes in PD, tuning width and activity are analyzed as 

difference: 

StandardtionGeneraliza ParameterParameterParameter −=∆
 
                                                (9) 
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Results: 

 

Subjects followed the instructions and conducted the saccade and reach 

simultaneously. In the generalization task the reach reaction times were 226 ± 29 ms 

(mean ± standard deviation) and the saccadic reaction times 215 ± 24 ms. In the 

control task reach reaction times were 239 ± 34 ms and the saccadic reaction times 

225 ± 32 ms.  

 

Target jump adaptation 

 

 

 

 

Our target jump paradigm reliably induced reach adaptation. This is shown by an 

incremental reduction of the reach error during exposure and the negative aftereffect 

in the post-exposure period (Fig. 2 and Table 1). The learning rates in the exposure 

were -0.33° and -0.43° per trial and the initial directional reach errors in the post-

exposure were 7.0° and 9.8° for the CCW and CW experiments. All values are 

significantly different from zero (95% confidence limits, see Table 1). Adaptation was 

incomplete and the size of the initial reach error during post-exposure approximately 

matched the difference between the initial reach error during exposure and the 

Figure 2  Learning curves. The average directional reach error (mean±s.e.m., baseline 

corrected) across N = 16 and N = 12 subjects is shown for CCW (left) and CW (right) adaptation 

and fitted with an exponential (gray curves) in exposure and post-exposure periods. The bar in the 

generalization period reflects the mean directional reach error (± s.e.m.) for the target jump trials 

presented during this period.  
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asymptotic remaining reach error (‘offset’) at the end of the exposure period. This 

difference is also the level of adaptation that was sustained during the generalization 

period. 

 

  Initial reach error [°] Learning rate [°/trial] Offset [°] 

CCW Exposure -12.3 [-10.7 -13.6] -0.33 [-0.22 -0.43] -4.1 [-3.7 -4.4] 

 Post-Exp 7.0 [   3.3 11.5] -0.22 [-0.04 -0.38] 1.2 [-0.3 2.7] 

CW Exposure 13.2 [ 11.1 15.7] -0.43 [-0.34 -0.51] 4.8 [ 4.6 5.0] 

 Post-Exp -9.3 [  -7.3 -11.0] -0.19 [-0.10 -0.28] -1.8 [-0.9 -2.8] 

           

 

 

Since the results from the CCW and CW generalization were not qualitatively 

different they will be presented jointly in the following. 

 

As a control experiment, we tried to induce reach adaptation with a target jump 

paradigm, but without the accompanying saccade. In this case subjects (N=4) did not 

show incremental improvement or a negative aftereffect. Reach endpoints were only 

significantly different from the displaced target position in the first trial after 

beginning of the exposure period or the first trial after beginning of the post-exposure, 

but then performance immediately returned to baseline in the second trials (data not 

shown). Since these results are consistent with previous studies (Diedrichsen et al., 

2005), we did not further investigate this condition. This control confirms the existing 

view that a consistent and noticeable target jump due to its predictability leads to a 

strategic updating of the intended reach goal, rather than an implicit adaptation, in 

otherwise identical task conditions. 

 

The main results of human psychophysics contain only data from subjects who 

reported not to have seen the target jump (see Methods). As a second control, we also 

analyzed the subpopulation of subjects who reported to occasionally have seen the 

target jump. The fraction of subjects who did show significant adaptation within the 

group with only partial suppression of target jump visibility (13 out of 15) was not 

Table 1:  Initial directional reach error, learning rate and asymptotic reach error 

(offset) as derived from an exponential fit for the exposure and post-exposure period in the 

CCW and CW experiment. Values in brackets give the 95% confidence intervals. 
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smaller than the fraction in the group of subjects who reported fully successful 

suppression (29 out of 32, p = 0.92, Pearson’s Χ
2 – test with Yates’ correction for 

continuity). Since we did not probe and quantify the subjects’ abilities of detecting 

jumps, we were not able to correlate the degree of subjective suppression of the jump 

with the degree of adaptation. Subjects never reported to have seen the jump 

consistently in every exposure trial, which is probably the reason why the general 

adaptation effects were not abolished (see generalization results below for differences 

between both subpopulations). 

 

In summary, the incremental improvement in reach performance and significant 

negative aftereffects confirm that implicit adaptation can be induced by noticeable 

target errors alone, without peri-movement prediction errors or cross-modal 

mismatch, as long as the target jump as the source of the target error is rendered 

invisible and the target believed to be stationary by the subjects.  

 

 

Generalization of endpoint position 

After establishing the adaptation to target jump, our second main goal was to 

characterize this form of adaptation in terms of its generalization. Our paradigm is 

different from previously tested paradigms and we tested generalization of reach 

endpoints (2D), rather than initial reach direction (1D). Therefore, we needed to 

establish in which way the learning effect transfers to other directions before we could 

precisely quantify the amount of generalization. In the individual example subject 

(Fig. 3A), the average reach endpoints largely coincide with the predicted direction of 

reach errors according to the translation hypothesis (t
v

, red arrows) but not according 

to the rotation hypothesis (r
r

, blue arrows) (Fig. 3B, see Methods). In the example 

data and across the population of subjects (Fig. 3C), the generalization pattern fits the 

translation hypothesis and rejects the rotation hypothesis. The average residual error 

for the translation hypothesis across all subject and all targets is -0.031, which is not 

significantly different from 0 (p = 0.77, t-test). The average residual error for the 

rotation hypothesis is 1.075, which is significantly larger than 0 (p<10-7, t-test). Note 

that values around zero for one hypothesis automatically lead to values around 1 for 

the other hypothesis. But the fact that the average residual error for the rotation 
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hypothesis is significantly larger than 0, contains the important information that the 

non-significant result of the translation hypothesis is not due to a lack of statistical 

power.  

 

The observed translational generalization of reach endpoints suggests that target jump 

adaptation happens at the task level of motor goal representations in a visuospatial 

reference frame, rather than at an implementation level with independent encoding of 

reach direction and amplitude.  

 

 

 

 

Figure 3  Translational versus rotational generalization.  A: Average reach endpoints (RE) in 

the control condition (ctr, open circles) and the test condition (tst, green circles) for one example 

subject in CCW generalization. Red and blue arrows depict the predictions for the translation (Tt
v

) 

and rotation (Tr
v

) hypothesis at each probe target position. Black arrows depict the subject’s actual 

reach error (Te
v

). B: Enlarged illustration of the error vector with the predictions for translation and 

rotation hypothesis at one probe target. The angular difference between Te
v

 and Tt
v

 divided by the 

maximum to-be-expected angular difference Tδ  between both hypotheses defines the residual 

error Tτ . The angular difference between Tr
v

 and Te
v

 divided by Tδ  defines the residual errorTρ .  

C: Residual error for rotation (Tρ , blue) and translation (Tτ , red) hypothesis at different probe 

targets for pooled data from the CW and CCW experiment. Probe target positions (x-axis) are labeled 

relative to the AD at 60°. At each probe target only those subjects are included with show a 

significant difference in direction between the test and the control condition (see numbers within 

figure). 
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Asymmetry of generalization 

After establishing the direction along which adaptation transfers, we quantified the 

amount of transfer as a function of distance from the AD. Average reach trajectories 

in the adapted condition are shifted into the direction of the target jump (Fig. 4A), 

especially for probe targets neighboring the AD, and less so for probe targets further 

away from the AD. The transfer of adaptation in this example subject was stronger for 

probe targets on the side of the jump target (clockwise to AD), compared to probe 

targets on the opposite side. In the previous section we show that adaptation to the 

target jump paradigm follows a translational hypothesis. Therefore, for the population 

analysis, we quantify the relative amount of adaptation in the following as projection 

on the predicted translation vector (see methods). According to the example subject, 

the relative adaptation on average across subjects (Fig. 4B) decreased with increasing 

distance from the AD, which results in significant differences in the size of the 

adaptation effect for the different target positions (p<10-9, repeated measurement 

ANOVA).  

 

 

 

Figure 4  Generalization pattern of target jump adaptation. A: Average reach trajectories for 

the different probe target positions during the control (solid) and test (dashed) condition for an 

example subject in the CW generalization. Trajectories are corrected for an initial offset during 

central fixation. B: Average relative adaptation (mean ± s.e.m.) for pooled data from the CW and 

CCW experiment, fitted with a skewed t-distribution. Probe target positions are defined relative to 

the AD at 60°. Positive deviations are defined as probe targets into the direction of the target jump, 

negative deviations are probe targets in the direction opposite to the jump. 
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Besides the drop-off with distance, the generalization showed an asymmetry. Probe 

targets in the direction of the jump (relative target direction >0) showed larger relative 

adaptation than probe targets in the opposite direction of the jump. We quantified this 

asymmetry by fitting a skew t-distribution to the average generalization data. The 

positive λ of 1.91 (95% confidence interval [0.65 3.17]) indicated a rightwards 

skewness, i.e., larger adaptation effect in the direction of the jump. We found a trend 

towards the same generalization pattern, but the skewness was smaller and not 

significantly different from zero, when subjects reported that they had noticed the 

jump occasionally (λ = 1.02, CI [-1.67 3.7], N=13). 

  

The results show that in our target jump paradigm the adaptation generalizes 

asymmetrically and more strongly towards the side of the perturbation. This is 

different to visuomotor rotation experiments, which show symmetric generalization. 

While the results suggest that a skewed generalization could depend on a fully 

successful suppression of jump visibility, we can not rule out that a lack of statistical 

power (N=13 compared to N=29) is partly responsible for the non-significant 

skewness in the subgroup of subjects who occasionally noticed the target jump. 

 

Neural network simulations 

We used a recurrent multi-layer neuronal network model (Fig. 5A) to simulate the 

adaptation learning in our task and investigated the associated changes in the 

underlying neuronal network structure (see Methods). We first established that the 

model’s motor output in generalization trials was consistent with human behavior. 

The transfer of adaptation to non-adapted probe targets significantly decreased with 

increasing distance from the AD (p < 10-10, repeated measurement ANOVA). 

Importantly, the model produced significant asymmetric generalization (λ = 1.32, CI 

[1.06 1.58]) within the range of the confidence limits of the experimental data (Fig. 

5B). Note that the model was not trained to produce asymmetry. The motor layer 

output during initial training and exposure was trained to produce symmetric 

population responses, which for the AD during adaptation where shifted relative to 

the control task.  
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We tested the asymmetry in generalization with various combinations of tuning width 

for the input (visual tuning V) and output layer neurons (motor tuning M), which are 

the free parameters of the model (σ = 25° to 75° in steps of 10° for input and output 

units, with σV ≤ σM). The model produced asymmetric generalization which 

overlapped in strength with the confidence limits of the human data for a wide range 

of the tested tuning widths (all but V25M35, V25M65, V35M35, V35M75, V45V45, 

V55M75; data not shown). Note that the model did not match the shift in center (µ) of 

the experimental generalization curve (µ=-15.6 [-20.2 -11.0]) for a wide range of 

tuning widths. We quantified the tuning parameters of the model which best fit the 

shape of the human data independent of the center shift on the basis of the mean 

square error (MSE). The best fit between model and human data was achieved with a 

Figure 5  Simulation of target jump adaptation with a recurrent neural network model. A: 

Network architecture. The input (sensory) layer encodes the position of the visual stimulus. The 

hidden layer receives direct input from the sensory layer and input via feedback connection from the 

output layer. Additionally, the hidden layer units are recurrently connected. The total input into the 

hidden layer is defined as )1()1()()( −+−+= koWkuWkxWks ohx , with W defining weight 

matrices and k defining time steps. The output of the hidden layer is defined as ))(()( ksku ϕ= , 

with φ being a sigmoid transfer function. The output (motor) layer receives the hidden layer 

activation as input ))(()( kuWko uϕ= . Reach direction is decoded with a population vector based 

on the output layer activities. For details see (Brozovic et al., 2007) and Methods. B: Asymmetric 

generalization curve of the model for an example simulation with tuning width of 25° for visual 

units (V25) and 45° for motor units (M45). Data points show the average normalized directional 

error (mean ± s.e.m.) over 30 model simulations with independent random initialization. The red 

colored data points highlight probe target positions which were also used in the behavioral 

experiment. Other conventions are the same as in figure 4B. C: Symmetric generalization curve of a 

variation of the model in which fixed tuning properties in the hidden layer were enforced (see text). 

Conventions are the same as for B.  

 

127



Target jump adaptation for reaches 
 

 

tuning width of 25° for the input neurons and of 45° for the output neurons. The 

discrepancy of µ between human and model data was 11° for this parameter setting.  

 

Previous computational studies simulated adaptation with symmetric generalization 

and suggested that the tuning in visuomotor areas should not change during 

visuomotor rotation (Tanaka et al., 2009). We tested whether the asymmetric 

generalization in our model depends on tuning property changes in the hidden 

(=visuomotor) layer, or if changes in the projections from the hidden to motor layer 

are sufficient to reproduce the behavioral data. We ran a model simulation in which 

the weights from the input to the hidden layer, as well as the weights of the recurrent 

connections within the hidden layer were fixed after learning the standard mapping. 

Additionally, the network architecture was changed such that the feedback 

connections from output to hidden layer were removed during all phases. All three 

measures in combination were necessary to create a situation in which the tuning in 

the hidden layer could be kept unchanged. With the fixed tuning properties of the 

hidden layer, the model was still able to learn the target jump, but the generalization 

no longer showed a positive skewness (λ = -1.14, CI [-2.41 0.13]) (Fig. 5C).  

 

These simulations suggest that without changes of the tuning properties in the hidden 

layer of the model (the putative visuomotor areas of the brain) asymmetric 

generalization can not be explained. The fact that in the model changes of motor goals 

lead to a skewed generalization, suggests that the skewed generalization in the human 

data is also based on changes of motor goals in response to adaptation to target jump. 

 

 

We analyzed the tuning changes of units in the hidden and the output layer of the 

network to learn how adaptation to the target jump was achieved. Figure 6A shows 

for all neurons of the network across 30 different random initializations how preferred 

direction (PD), tuning width, and peak activity changed after adaptation to target jump 

(see Methods). Several observations can be made. First, changes in the output and 

hidden layer are qualitatively very similar, where tuning changes in the hidden layer 

show more variability than changes in the output layer. Second, model units with a 

PD identical to the AD (PD=0º) and with a PD opposite to the AD (PD=180º) are 

least affected by tuning changes. Units with PDs at -45º±5º (opposite to the side of the 
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jump) and +65º±5º (same side as jump) relative to AD showed the maximal changes 

in their PDs. These are units for which the flanks of the tuning curves overlap well 

with the AD.  Third, additional to the asymmetry in the PDs at which there is a 

maximum effect on tuning, we also quantified whether there is an asymmetry in the 

amount of change to the tuning for the neurons with a PD at the same or opposite side 

of the jump. The maximal change of PD and tuning width was stronger on the side of 

the target jump. In the output layer PD decreased by 4.40º at the side of the jump 

compared to a decrease of 4.27º at the opposite side (p = 0.045, rank sum test).  The 

tuning width increased by 17.2º on the side of the target jump compared to a decrease 

of 18.0º at the opposite side (p=0.0026).  The change in peak activity was stronger on 

the side opposite to the target jump. In the output layer the peak activity increased by 

0.004 on the side of the target jump compared to a decrease of 0.009 at the opposite 

side (p< 10-7). For the hidden layer the asymmetry in the strengths of the effects 

(independent of sign) were not significant due to the large variability in the hidden 

layer tuning. Note, the observed differences between the directions in and opposite to 

the jump direction increase in absolute size when teaching the network to larger 

jumps of 45º and 90º, compared to the 15º jump shown here (data not shown). 

 

The combination of changes in PD and tuning width can be explained by specific 

changes to the shape of the tuning curves of the affected units. Figure 6B shows 

average tuning curves of maximally affected hidden and output layer units with PDs 

at the AD and at -45º±5º and +65º±5º from the AD before and after the adaptation. 

The tuning changes mainly the activity at only one flank of the tuning curve. This 

results in a combination of changes in PD and tuning width, but less so in changes of 

peak height.. Units with a PD opposite to the target jump showed a decrease of their 

activity at the flank overlapping the AD (falling flank), whereas units with a PD in the 

direction of the target jump showed an increase at the flank overlapping the AD 

(rising flank). This opposing change in the tuning width caused the PD of both types 

of units to move away from the direction of the target jump. Units with their PD close 

to 180º apart from the AD show comparably small effects and shift their whole tuning 

curve instead of changing the activity at one flank only (Fig. 6C).  
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Figure 6  Tuning changes (after adaptation-before adaptation) in hidden and output layer of 

the model due to adaptation. A: Adaptation-induced change of PD (left), tuning width (middle), and 

peak activity (right) in each of the 180 units of the output layer (top row) and 50 units of the hidden 

layer (bottom row), sampled across 30 independent random network initializations. The units are 

sorted according to the PD before adaptation (x-axis). The blue curve plots the mean ± s.e.m. for 10º 

bins. Units in gray depict those whose average is plotted in B and C. B: Average tuning curves for 

units in hidden (bottom) and output (top) layer, which have a PD of -45 ± 5° (dotted), 0 ± 5° (solid) 

and +65 ± 5° (dashed). PDs were chosen to be at the 10º bins where adaptation-induced PD changes 

in the output layer were strongest (see Figure 6A left). Tuning curves before adaptation (Std) are 

shown in blue, tuning curves after adaptation (Gen) are shown in red. C: Same as B but for units 

which have a PD of -170º± 5° (dotted) and +170º± 5° (dashed). Note the shifted x-axis.  
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Discussion 

 

Adaptation behavior can reveal important insights into the nervous system function, 

where different types of perturbation seem to engage adaptation at different levels of 

the sensorimotor system (Shadmehr and Wise, 2005). We developed a perturbed 

reaching paradigm in which we displaced the reach target during saccadic suppression 

early in the reaching movements, and which induced implicit adaptation by target 

error alone. We found generalization patterns different to those reported in kinematic 

adaptation paradigms with visual feedback perturbation. With a neural network model 

we were able to simulate the behavioral adaptation and make predictions about neural 

tuning changes in visuomotor areas putatively underlying this adaptation. 

  

Adaptation to target jump  

Perturbing feedback during reaching movements often leads to sensorimotor 

adaptation (Shadmehr and Mussa-Ivaldi, 1994; Kitazawa et al., 1995; Martin et al., 

1996; Vetter et al., 1999; Thoroughman and Shadmehr, 1999; Krakauer et al., 2000; 

Paz et al., 2003; Redding and Wallace, 2006). In most experiments adaptation could 

be driven by a combination of prediction and target error. It has been shown, though, 

that prediction error alone can drive adaptation (Mazzoni and Krakauer, 2006; Tseng 

et al., 2007). Here we show adaptation to target error alone, which so far was believed 

to trigger adaptation if at all then only under highly restricted conditions, since 

previous efforts to generate adaptation in response to target jump had faced serious 

difficulties. When a target jump is noticeable to subjects as a sudden displacement, no 

negative aftereffects are observed during post-exposure. This has been shown 

previously (Diedrichsen et al., 2005; Cameron et al., 2010) and confirmed here. This 

suggested that noticeable target jumps engage explicit changes in strategy rather than 

implicit adaptation mechanisms. Tasks in which the target jump was perceptually 

suppressed by a simultaneous saccade to the reach target itself lead to saccadic 

adaptation (Bekkering et al., 1995). Such task design makes it difficult to distinguish 

reach adaptation from changes in motor goals secondary to saccade adaptation, since 

it has been shown that the error signal of the saccade system (also independently of 

adaptation) can be used by the reach system to generate online corrections to reaching 

movements (Pelisson et al., 1986; Prablanc and Martin, 1992; Bekkering et al., 1995; 

De Graaf et al., 1995). Other studies attempted to address this confound by 
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introducing unperturbed saccade trials to prevent saccadic adaptation. In this case, 

shifts of reach endpoints could only be gradually induced with successive and 

unnoticeably small target displacements, while the view of the hand was blocked 

during the movement (Magescas and Prablanc, 2006; Magescas et al., 2009; Cameron 

et al., 2010), Thus, it has been the consensus of the field that reach adaptation is 

possible in target jump only if the hand-to-target error is small enough to be 

interpreted as “natural” planning error (Magescas et al., 2009). Very recently, target 

jump adaptation could also be shown for noticeably large jumps without saccadic co-

adaptation, but generalization was not analyzed (Cameron et al., 2011).  

In summary, our study shows that target jump adaptation is also possible for large and 

clearly noticeable target errors during unperturbed and unblocked direct vision of 

one’s own hand. When saccadic suppression lets subjects perceive the peripheral 

target as stable despite the target jump, then their sensorimotor system seems to 

attribute the resulting target error to errors in the agents sensorimotor processing, 

rather than an update of the movement target in the distal world, and thereby allow 

adaptation. 

 

Adapting visuospatial motor goals  

Different adaptation paradigms should affect different parts of the sensorimotor 

system (Shadmehr and Wise, 2005). Visuomotor rotation tasks, as used, for example, 

in the experiments of Krakauer et al. (Krakauer et al., 2000), alter the mapping 

between where the actual hand moves and where the representing cursor moves. 

Adaptation in these experiments affected direction and extend of the reach separately 

(when perturbed individually), suggesting changes to reach-related neuronal 

representations at the level of movement implementation. The translational 

generalization pattern in our data suggests that target jump adaptation affects a part of 

the sensorimotor system in which motor goals are represented 

in visuospatial coordinates at the task level (see also discussion of model data in next 

section). Similar to our results, an experiment in which only the visual feedback about 

the hand endpoint position was perturbed showed translational generalization 

(Ghahramani et al., 1996). Yet, such visual feedback perturbation experiments are 

thought to affect the alignment of the visually and proprioceptively sensed locations 

of the hand (Ghahramani et al., 1996; Shadmehr and Wise, 2005). This might be a 

plausible explanation for cursor tasks which are characterized by an a priori artificial 
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alignment of visual and proprioceptive inputs, and in which visuomotor rotation leads 

to a large misalignment in the localization of the exposed compared to the unexposed 

hand, but less to a mislocalization of the visual target (Simani et al., 2007). In 

contrast, it is not plausible that in our target jump a visuo-proprioceptive miss-

alignment is induced, since the experimental setup leaves no doubt about hand 

position in either sensory modality.  

 

Changes in visuomotor tuning during target jump adaptation – a prediction  

The generalization pattern of adaptation can help to identify different forms of 

adaptation and reveal constraints for possible underlying neural mechanisms 

(Imamizu et al., 1995; Pine et al., 1996; Krakauer et al., 2000; Donchin et al., 2003; 

Shadmehr and Wise, 2005; Thoroughman and Taylor, 2005; Mattar and Ostry, 2007; 

Tanaka et al., 2009; Magescas et al., 2009; Mattar and Ostry, 2010). Generalization in 

kinematic visuomotor reach adaptation has mostly been reported to be symmetric 

(Pine et al., 1996; Krakauer et al., 2000; Tanaka et al., 2009).  In two kinematic 

adaptation studies where asymmetry might have been observed it was neither 

quantified nor discussed (Ghahramani et al., 1996). Gonzalez Castro and colleagues 

(Gonzalez Castro et al., 2011) measured and quantified generalization in a force-field 

adaptation paradigm with blockwise alternating adaptation to CW and CCW force 

fields. They showed ‘asymmetry’ in the sense that a symmetric generalization pattern 

was shifted relatively to a fixed reference point, but there was no skewness in 

generalization, like in our data.  

 

This means, the skewed generalization corroborates the idea that we observed a type 

of adaptation different to the phenomena previously reported, for which we wanted to 

understand how it could be achieved. We were able to simulate our human behavioral 

data using a recurrent three layer neural network. The model was originally designed 

to flexibly remap visual targets onto motor goals according to an explicit context 

input (Brozovic et al., 2007). The resulting tuning of the hidden layer model units 

closely matched neural tuning in parietal and premotor cortices of monkeys (Gail et 

al., 2009). We predict that, in an analog fashion, the observed tuning changes in our 

simulation of the target jump task could happen in visuospatial motor goal areas of the 

brain. Obviously, such model can only be a cartoon of the real neural system. But the 

observed skewed generalization in the target jump task gives our model some 
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credibility, since it preexisted and was not modified in any way to account for such 

asymmetry. Our model robustly produced skewed generalization using a wide range 

of different parameter sets, but only when tuning changes in the hidden layer were 

allowed. When only changes of the mapping from the hidden layer to the output were 

allowed, the model produces symmetric generalization. Symmetric generalization was 

also shown in a previous computational study and has been associated with adaptation 

of visual-to-motor transformations (Tanaka et al., 2009) or visuo-proprioceptive 

realignment (Ghahramani et al., 1996), rather than with adaptation of visuospatial 

motor goals. In this sense the findings of the previous computational studies and our 

study are complementary. Our model tuning changes are also different from what has 

been observed in monkey primary motor cortex during adaptation to visumotor 

rotation, where only neurons with PDs close to the adapted movement increase their 

activity at their PD (Paz et al., 2003). 

 

The results of our model are suggestive. The model mostly modified the relative 

representations between sensory input and hidden layer, while the changes between 

hidden and output layer where consistent. Effectively, this would correspond to a 

change in the transformation from sensory input to visuospatial motor goal 

representations in task space. Based on our simulations, we speculate that neurons in 

sensorimotor areas, e.g. the parietal reach region (PRR), change their tuning 

properties during adaptation to target jump in the specific manner described in our 

model.  

 

 

Conclusions 

Our novel target jump paradigm induced reach adaptation effects in response to target 

errors only. The observed generalization patterns suggest adaptation at the level of 

motor goal representations in a visual task space. Adaptation effects generalized 

asymmetrically and stronger in the direction of the target jump. Simulation of this 

asymmetry in a recurrent neuronal network model is contingent on tuning property 

changes in the hidden layer, suggesting adaptation based on neural tuning changes at 

early levels of visuospatial reach goal representations. 
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Summary 

Every day we execute hundreds of reaches. Those reaches are done in different 

situations and driven by different purposes. This PhD thesis investigates how the 

neuronal representation and behavioral parameter of reach plans might be influenced 

by those different contexts. One electrophysiological study in monkeys showed that 

spatial tuning properties of neurons, that encode the reach plan of the monkey, are 

gain-modulated in their spatial tuning by a current valid task rule. We suggest that this 

gain modulation serves as a mechanism to flexibly remap spatial activity to achieve 

representations of the reach goal. Differences in the strength of this modulation 

between the investigated brain areas, PMd and PRR, suggest different functionalities 

for those areas within the cortical circuit for reach planning. The second 

electrophysiology study further investigated properties of this network by comparing 

latencies for the emergence of tuning for the reach goal. It rebuts a strict feed-forward 

network in which PRR first send reach goal information to PMd but rather suggests 

that this information is fed back from PMd to PRR. We interpret reach goal activity in 

PRR to be contingent on the projections from PMd and interareal latency differences 

as being dependent on visuospatial remapping processes in PRR. Furthermore task 

rules influenced the latencies within an area such that tuning for the reach goal was 

accomplished earlier if a spatial cue directly indicated a reach goal compared to 

situations in which the reach goal had to be spatially inferred. However, even though 

we suggest that PRR inherits reach goal activity from PMd we can not rule out an 

alternative interpretation in which a third brain region provides the input to PMd and 

PRR in parallel. To distinguish between those possibilities further studies could for 

example inactivate PMd. If an inactivation abolishes reach goal tuning in PRR that 

would provide strong evidence that the reach goal tuning in PRR is indeed contingent 

on the input from PMd.   

To plan goal directed reaches it is important to know about the spatial position of the 

target object as well as about the position of the hand. This spatial information always 

has to be coded with respect to a reference point. A psychophysical study showed that 

overt behavioral parameters of the reach, as reaction time, movement time and reach 

endpoint variability, are influenced in a different way by reference frames. Reaction 

times, which are closer to the planning process, are affected by an eye- as well as a 

hand-centered reference frame. Movement times in contrast are influenced only by a 
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hand-reference frame and endpoint variability only by an eye-reference frame. Those 

different reference frames might reflect the influences of different brain areas, which 

code target information in eye-, hand- or intermediate reference frames.  

Changes in our environment might influence our reach precision. Motor adaptation is 

a mechanism to deal with those changes and re-gain former precision. In a 

psychophysical experiment, subjects adapted to an unconscious target displacement. 

For an angular displacement the adaptation effect transfers to directional neighboring 

target positions in such a way that the error vector just scales but does not rotate with 

different target directions. We interpret this result as in interdependent adaptation of 

direction and amplitude. The adaptation effect decreases with increasing distance 

from the adapted target. The decrease followed an asymmetric pattern. The adaptation 

effect was larger in the direction of the previous target displacement. The results of 

this study can be taken as psychophysical basis to investigate changes in neuronal 

activity under motor adaptation. Previous electrophysiological studies on reach 

adaptation focused mainly on the motor and premotor cortex (Paz et al., 2003; Paz et 

al., 2005; Mandelblat-Cerf et al., 2009; Arce et al., 2010a). Little is known about the 

influence of adaptation on response properties of neurons in the parietal cortex, even 

though an involvement of parietal cortex for reach adaptation had been shown 

(Clower et al., 1996; Diedrichsen et al., 2005). There are theoretical models (Donchin 

et al., 2003; Thoroughman and Taylor, 2005; Shadmehr and Krakauer, 2008; Tanaka 

et al., 2009) which provide suggestions for mechanisms underlying reach adaptation, 

which also include the parietal cortex. Further studies investigating changes in spatial 

tuning properties of neurons in brain areas of the frontoparietal reach network could 

test predictions of these theoretical models.  

Taken together the results of the studies within this thesis show that a given context in 

which a reach is executed can influence how the plan for this movement is cortically 

represented. They help for a more detailed understanding of the cortical network 

underlying reaching behavior. In future the understanding of interactions of the given 

context with spatial constraints for goal directed movements might help for the further 

development of neuroprostheses. The idea of such devices is that cortical signals 

representing movement plan are used to program prostheses that can replace lost 

limbs. Next to technical challenges it would be important to understand how those 

cortical signals are influenced by the given situation in which the movement is 
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executed. To successfully decode a movement plan and make it available for the 

prostheses one would have to take such factor into account. 
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