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   Introduction 

1. INTRODUCTION 

Multiple sclerosis (MS) is the most common chronic disabling neurological disease of young 

adulthood. MS is a chronic disease of the central nervous system usually manifesting itself as 

discrete and recurrent attacks of visual impairment, motor, sensory and cognitive dysfunction. 

In the majority of cases these attacks are followed by remissions of symptoms or even 

recovery (relapsing-remitting multiple sclerosis, RRMS). Later, however, the relapsing-

remitting course often blends into a slow, but permanent progression (secondary progressive 

multiple sclerosis, SPMS). About 10% of the patients present with an insidious disease onset 

followed by steady progression (primary progressive multiple sclerosis, PPMS).  

The pathology underlying this disorder is the formation of multiple demyelinated plaques. 

Lesions are typically widely disseminated in the central nervous system (CNS), with the 

predilection of well myelinated areas: the optic nerve, periventricular white matter, corpus 

callosum, cerebellum and cervical cord (Carswell, 1838). The demyelinating process is 

associated with persistent inflammation (Babinski, 1885). Thus, MS has traditionally been 

considered of as an inflammatory demyelinating disease of the white matter. Therefore, our 

knowledge concerning the histopathology of MS is derived mainly from studying white 

matter plaques.  

1.1. Hallmarks of histopathology in multiple sclerosis  

The MS lesion is characterized by demyelination, inflammation, relative axonal preservation, 

and gliosis (Prineas, 1985; Lassmann, 1998; Allen, 1991). By definition, MS selectively 

affects the myelin sheaths and the myelin forming oligodendrocytes, but leaves the nerve cells 

and axons –at least in part- intact. During the disease course new lesions are formed and old 

lesions persist. Therefore, the inflammatory and demyelinating activity often varies between 

the plaques. 

New lesions typically evolve around small and medium sized vessels (Rindfleisch, 1863). In 

these early active lesions, the inflammatory process arises by mononuclear cells, which 

accumulate in the perivascular space and disperse in the adjacent parenchyma. Inflammatory 

cells in the lesion are composed of subpopulations of invading T-lymphocytes, monocytes, 

macrophages and resident microglial cells (Gay et al., 1997). Macrophages contain myelin 

degradation products due to recent myelin phagocytosis and show a foamy phenotype (Brück 

et al., 1994). B-lymphocytes may be present and may locally produce immunoglobulin 

(Prineas and Wright, 1978). The blood brain barrier (BBB) is permeable for serum proteins 
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(Miller et al., 1988; Grossman et al., 1988; Estes et al., 1990). Ramified microglia cells 

express major histocompatibility complex (MHC) antigens and surround actively 

demyelinating lesions (Powell et al., 1992). Activated macrophages and microglial cells 

secrete high amounts of cytotoxic mediators, which are directly responsible for demyelination 

and oligodendroglial and neuroaxonal injury (Hallpike et al., 1970; Anthony et al., 1997; 

Woodroofe and Cruzner 1993).  

Recent pioneer work classified four different pathomechanisms that lead to the formation of 

demyelinated MS plaques (Lucchinetti et al., 1996). All four immune patterns occur on the 

basis of T-cell and macrophage driven inflammation. The difference between the lesions rests 

upon the antibody deposition, the complement activation and the loss of oligodendrocytes. In 

pattern 1 lesions, T-cells and macrophages/microglia cells dominate in the lesion. 

Demyelination is mediated by the direct cytotoxicity of T-cells and toxic products released by 

the macrophages. Pattern 2 lesions are B-cell and antibody-mediated demyelinations. Myelin 

is coated by immunoglobulin and activated complement. The pathology of Pattern 3 lesions is 

reminiscent of hypoxia-like tissue injury, affecting initially the most distal processes of 

oligodendrocytes leading to loss of myelin associated glycoprotein (MAG) and to their 

apoptotic cell death. Pattern 4 lesions involve primary oligodendroglia dysfunction. Such a 

lesion is characterised by a pronounced loss of oligodendrocytes (Lassmann, 2004).  

In lesions without ongoing demyelination, i.e. in chronic inactive lesions demyelinated axons 

embedded in a dense glial scar transverse the plaque. Oligodendrocytes are scarce. 

Occasionally, few T-lymphocytes and plasma cells persist in the perivascular space around 

fibrotic vessels (Prineas and Wright, 1978). Acute exacerbations of chronic lesions (chronic 

active lesions) manifest themselves as inflammatory activity confined to the lesional edge.  

Axons are relatively preserved in MS plaques. However, the reduction of axonal density can 

reach 60% in chronic lesions (Lovas et al., 2000; Mews et al., 1988). Axonal integrity 

depends on the trophic support provided by the insulating myelin sheath. Axonal injury in MS 

lesions occurs first during active demyelination, when CD8+ T- cells and macrophages 

release their inflammatory cytokines and cytotoxic substances. This early insult results in 

massive axonal injury (Ferguson et al., 1997; Trapp et al., 1998). The damage is however 

variable, by remyelination of the axons may be reversible, lasts few days or weeks. However, 

axonal degeneration also occurs also later in chronic inactive plaques. This “slow burning”, 

low grade, invariable and steady axonal injury may account for much of the axonal loss and 
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explain the progression and cumulative disability in progressive phase of MS (Kornek et al., 

2000).  

Astrocytes are important cellular components of chronic MS plaques. In actively 

demyelinating lesions, astrocytes are large, often multinucleated and show strong 

immunreactivity for glial fibrillary acidic protein (GFAP). These reactive astrocytes may 

contain myelin debris (Marburg, 1906), may express histocompatibility complex antigens 

(Lee et al., 1990), and contain lysosomal enzymes (Allen et al., 1979). Reactive astrocytes 

also engage demyelinated axons, thus substituting in part for the lost myelin sheath (Soffer 

and Raine, 1980). Reactive changes in astrocytes finally result in the formation of the dense 

glial scar.  

1.2. Immunology of multiple sclerosis 

MS is considered to be a chronic inflammatory disease, where the immune system is reactive 

against self CNS antigens (Martin et al., 1992). The inflammatory process begins with an 

acute phase and blends into a chronic stage employing both T helper 1 (Th1)- and T helper 2 

(Th2)-type effector cells and cytokine patterns. According to a generally accepted concept, 

autoreactive CD4+ T-lymphocytes initiate the inflammatory process in the periphery and the 

inflammatory focus in the brain.  

Cross-reactive antigens, brain resident pathogens or CNS antigens are released and delivered 

into lymph nodes and the spleen. Presentation of the neural antigen on major 

histocompatibility complex II (MHC II) by antigen presenting cells, such as dendritic cells 

leads to activation, priming and clonal expansion of CD4+ T-cells in the blood. Primed CD4+ 

T-cells migrate through the blood brain barrier (BBB), enter the brain and accumulate at sites 

where they re-encounter their priming antigen. CD4+ T-cells become re-stimulated upon the 

secondary recognition of proper epitopes presented on MHCII by microglial and astroglial 

cells. They secrete the pro-inflammatory (Th 1) cytokines IL-2, TNF-α and INF-γ, which 

enhance the up-regulation of endothelial adhesions factors and attract inflammatory effector 

cells such as CD8+ T-lymphocytes, monocytes, macrophages and B-cells to the brain.   

CD8+ T-cells recognise antigens presented on MHC I molecules expressed by virtually all 

cells in the CNS, in particular by oligodendrocytes and neurons (Höftberger et al., 2004; 

Neumann et al., 1995). CD8+ T-cells can cause cytolysis of the antigen expressing cell by the 

release of cytotoxic granules (perforin, granzyme) (Jones et al., 1991 and Scolding et al., 

1990) or by Fas/Fas-ligand mediated interaction (Medana et al., 2000). Thus, 
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oligodendrocytes and neurons are direct targets of CD8+ cytotoxic T-lymphocytes 

(Höftberger et al., 2004).  

Monocytes mature into phagocytic macrophages. Activated macrophages release oxyradicals, 

matrix metalloproteinases (MMPs) and TNF-α, giving rise to a toxic environment. B-cells in 

the lesion mature to plasma cells and produce large quantities of immunoglobulin, in 

particular IgG. In addition, inflammation is associated with the focal BBB leakage (Miller et 

al., 1988; Grossman et al., 1988; Estes et al., 1990), which allows immunoglobulin and 

complement components to enter the CNS. Antibodies may bind to membrane bound myelin 

antigens and antigens on antigen expressing cells. Binding the specific antibody leads to (i) 

cellular cytotoxicity via Fc-receptors and phagocytosis by activated macrophages, (ii) 

activation of the complement cascade, formation of the membrane-attacking terminal 

complement complex and finally to cell death (the inflammatory process in MS is reviewed in 

detail by Hemmer et al., 2002).  

In resolution of the inflammatory process, the T-cell response becomes skewed from CD4+ 

Th1 to Th2 cells. Th2 cells produce anti-inflammatory cytokines such as IL-4, IL-5, IL-10, 

IL-13 and transforming growth factor-β (TGF-β), which silence the inflammatory reaction 

(Issazadeh et al., 1995). Th2 cytokines support B-lymphocyte differentiation and antibody 

production and suppress the Th1 response (Sewell and Jolles, 2002).  

1.3. Repair mechanisms 

MS initially runs a relapsing-remitting disease course. Repair mechanisms account for part of 

clinical remissions. The functional recovery is attributable to resolution of tissue oedema and 

inflammation, remyelination of axons and compensation of neuronal injury by adaptive 

reorganisation of the functional neuronal networks.  

1.3.1. Remyelination 

Remyelination has been reported in a large proportion of MS lesions (Barkhof et al. 2003; 

Bruck et al. 2003; Prineas and Connell 1979). Remyelination occurs early, even when 

demyelination is still ongoing (Prineas et al. 1993; Raine and Wu 1993; Lassmann et al. 

1997). Oligodendrocyte precursor cells (OPCs) enter the lesion, engage naked axons and 

while myelinating mature into adult oligodendrocytes (Carroll and Jennings, 1994). They 

form new myelin, which is thinner and forms shorter internodes than expected for the 

diamater of the axons (Morell et al., 2000; Sim et al., 2000; Capello et al., 1997; Ludwin et 

al., 1984). Remyelination leads to incomplete or complete repair (shadow plaque) of the 
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lesions. Remyelination provides trophic support, restores the conduction velocity and has 

been shown to prevent axons from “slow burning” axonal injury (Smith and McDonald, 

1999). 

Specific markers identify precursors, premature and mature oligodendrocytes. Premyelinating 

oligodendrocytes express high amount of proteolipid protein (PLP) mRNA. Premature 

myelinating and mature oligodendrocytes express the early differentiation antigen 2’3’cyclic 

nucleotide 3’phosphodiesterase (CNP), whereas only mature remyelinating oligodendrocytes 

are characterised by myelin basic protein (MBP) immunreactivity (Chang, 2003; Wolswijk, 

2000; Ozawa et al., 1994; Prineas, 1989).  

The most noteworthy difference between early and late MS is the propensity to remyelinate 

the lesions (Ozawa et al., 1994). Oligodendrocytes are preserved in a proportion of patients in 

early disease, however, in the chronic disease stage, only few oligodendrocytes are detected in 

the lesions (Ozawa et al. 1994; Lucchinetti et al. 1999). Remyelination of chronic lesions 

mostly remains incomplete and restricted to the lesional edge (Barkhof et al. 2003). Factors 

impairing remyelination may include gliosis, a lack of growth factors, a lack of 

oligodendrocyte progenitors, and axons not permissive for remyelination (Franklin, 2002).  

1.3.2. Adaptive plasticity 

Beside remyelination of axons, compensatory mechanisms may reduce the functional 

consequences of demyelinated plaques. Plasticity, the intrinsic capacity of the CNS to adapt to 

the structural damage (Jacobs and Donoghue, 1991), contributes to functional recovery after 

brain lesion and has been shown in MS (Morgen et al. 2004; Reddy et al., 2000; Pantano et 

al., 2002; Rocca et al., 2002). Recently, functional magnetic resonance imaging (fMRI) 

revealed adaptive changes in the connectivity pattern within the motor system in MS patients 

with mild motor impairment (Morgen et al. 2004). Similar changes have been observed in 

cerebellar-neocortical functional connectivity in the healthy brain during motor learning, 

suggesting that similar mechanisms may contribute to learning and adaptive changes after 

injury caused by MS (Saini et al., 2004).   

Reorganisation of synapses due to focal neuronal injury has been extensively studied in 

various experimental models. Any injury to axons, i.e. transection, reduction of axonal 

transport or a focal humoral or inflammatory process has anterograde and retrograde 

consequences for the neuron. However, reactive changes may also affect regions remote from 

the affected neuron. Anterograde (Wallerian) degeneration of the peripheral axon segment 

including all presynaptic elements transsynaptically affects the postsynaptic neurons. 
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Anterograde transsynaptic effects may vary from compensatory replacement of synaptic input 

to various forms of postsynaptic degeneration (Gray 1962; Colonnier and Gray 1962). In 

contrast, retrograde axotomy reactions adapt the input of the axotomized neuron to the no- or 

reduced output state (Aldskogius, 1974, Grant and Walberg, 1974). These reactions may lead 

to the complete compensation of the lost postsynaptic partners via transsynaptic and/or 

transneuronal synaptic reorganisation within the neuronal network (Cowan, 1970; Prof. Wolff 

- personal communication). Recent studies in an animal model of MS suggested a 

reorganisation of synapses that compensated for the affected functional circuit 

(Kerschensteiner et al., 2004). 

Chronic MS, however, leads to cumulative permanent disability in most cases. The chronic 

stage is often accompanied by cortical and spinal cord atrophy and substantial damage to 

axons, whose preservation correlates with the clinical outcome of the patients (Bjartmar, 

2000, De Stefano 1998). Motor cortex was shown to be frequently affected in SPMS (Sailer et 

al., 2003). Cerebellar ataxia is a prominent clinical symptom of the chronic diasease (Adams 

and Victor’s Neurology, 7th edition). The pons and cerebellum are known predilection sites 

for plaque formation (Carswell, 1838). The pontine nuclei and the cerebellar dentate nucleus 

are relay stations of the motor network providing the backfire loop of motor control. 

Therefore, we have chosen the dentate nucleus and the pontine nuclei to examine the local 

and remote neuronal response on focal demyelination in MS.  

1.4. Grey matter lesions  

The presence of MS lesions involving the grey matter has been shown in both pathologic 

(Brownell and Hughes 1962; Lumsden, 1970; Dawson, 1916; Dinkler, 1904; Sander, 1898; 

Rossolimo, 1897; Taylor, 1892; Schwab and McGeer 2002; Dawson, 1916) and imaging 

studies (Catalaa et al. 1999; Newcombe et al. 1991; Chen et al. 2004). However, primarily 

due to biased tissue sampling and insensitive staining techniques, the extent of cortical 

involvement has been largely underestimated. Recently, the studies of Kidd, Peterson, and Bo 

revealed an important involvement of the cerebral cortex in MS patients using 

immunohistochemistry for myelin proteins (Bo et al. 2003b; Peterson et al. 2001; Kidd et al. 

1999). Cortical demyelination was suggested to be a widespread phenomenon, involving all 

cerebral lobes roughly equally (Bo et al. 2003b). Different types of lesions were proposed 

according to lesional topography (Bo et al. 2003b; Kidd et al. 1999; Peterson et al. 2001). 

Extensive subpial demyelination involving many adjacent gyri was identified by Bo et al. (Bo 

et al. 2003b). Cortical lesions were found to be less inflammatory than white matter lesions 
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(Bo et al. 2003a). Peterson et al. identified axonal and dendritic transections as well as dying 

neurons as identified by DNA fragmentation in cortical MS lesions (Peterson et al. 2001).  

1.5. Aim of the study 

To date, only few histopathological studies are available on grey matter lesions in MS. The 

aim of this work was to study in detail demyelination, inflammation, remyelination and the 

pathology of neurons including dendrites and synapses in grey matter MS plaques. We asked 

whether inflammatory demyelination affects and if so, to which extent, the cortex of MS 

patients at early and late time points in the disease. We compared inflammatory and 

degenerative components of grey versus white matter plaques. Furthermore, we asked 

whether the localisation of demyelinated lesions in grey versus white matter influenced their 

propensity to remyelinate. Finally, we defined the local and remote effects of demyelination 

on neurons and their synaptic contacts in frontal cortex and in the cerebellar and pontine grey 

matter nuclei. 
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                                                                                                                   Materials and Methods 

2. MATERIALS AND METHODS 

All studies were carried out on human brain tissue material. Formalin-fixed and paraffin 

embedded tissue blocks from 183 MS patients and healthy control subjects were available for 

this research purpose at the Institute of Neuropathology, University of Goettingen, 

(Germany). Out of the 183 patients tissue from 33 patients with definite clinical diagnosis of 

MS was obtained at autopsy. Tissue from different parts of the brain was sampled on the basis 

of macroscopically visible white matter lesions. Brain tissue from the other 150 MS cases was 

taken at biopsy. The histological diagnosis of MS was in every case suggested by independent 

neuropathologists. Brain tissue suitably fixed (by in situ vascular perfusion- see below) for 

electron microscopical analysis was available from one MS patient and one healthy control 

person. All studies were approved by the ethics committee of the University of Goettingen, 

Germany.  

2.1. Materials and methods to study cortical de- and remyelination 

2.1.1. Brain tissue  

Brain autopsy samples of 33 MS patients and 10 healthy controls were evaluated. 33 MS 

patients with long-standing MS were studied to assess the frequency and extent of cortical de- 

and remyelination. A subset, i.e. 17 patients, was selected for the detailed morphological 

study of remyelination (i.e. oligodendrocyte pathology) on the basis of the availability of 

frontal lobe lesions (for clinical data see Table 1). The age of the 33 MS patients at the time of 

death ranged from 28 to 81 years (mean ± SD: 59.15 ± 11.54; median: 60 ys). The mean 

disease duration prior to autopsy was 17 years (mean ± SD: 17.17 ± 9.28, median: 15 ys). 

Two patients harboured MS lesions as an incidental finding at autopsy. No information on the 

disease duration was available for four patients; in one patient, it was uncertain. One patient 

was diagnosed with relapsing remitting MS, 11 patients had primary progressive MS, 14 

patients secondary progressive MS, and in 7 patients with chronic MS, the disease course was 

uncertain (Table 1). The age of the selected subset of 17 MS patients at time of death was 

between 49 and 71 years (mean ± SD: 60.35 ± 6.29; median: 60 ys; female to male ratio: 

7:10). Mean disease duration prior to autopsy was 18.79 years (SD: ± 8.89; median: 16 ys; 

range: 8-39 ys). Six patients had a primary progressive and seven patients secondary 

progressive disease course. In four chronic cases, the disease course could not be deduced 

from the clinical files. Each of the 17 MS cases had up to three frontal lobe blocks. The 10 
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controls were age matched and between 40 and 73 years old at the time of death (mean ± SD: 

59.3 ± 9.73 ys; female to male ratio: 3:7).  

2.1.2. Neuropathological techniques and immunohistochemistry 

3-5 µm paraffin sections were stained with haematoxylin-eosin (HE), luxol fast blue 

(LFB)/periodic-acid Schiff (LFB/PAS) and Bielschowsky’s silver impregnation for the 

assessment of inflammation, demyelination, and axonal density, respectively. 

Oligodendrocyte pathology was assessed by immunostaining with antibodies against myelin 

basic protein (MBP) and 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNP). An anti- 

activated caspase-3 antibody was applied to examine caspase-mediated cell death of 

oligodendrocytes (for antibodies used see Table 2). 

For immunohistochemistry, sections were deparaffinized, pretreated with microwaving (3x5 

minutes at 800 W) in citric acid buffer (10 mM, pH 6.0) and unspecific reactions blocked with 

10% FCS/PBS (Stadelmann at al., 2002). Primary antibodies were applied at the dilution 

indicated (in Table 2) and incubated over night at 4°C. After application of the biotynilated 

secondary antibody, avidin peroxydase (Dako, Glostrup, Denmark) was added and developed 

with, 3, 3’-diaminobenzidine hydrochloride (DAB, Sigma, St. Luis, Mo., USA). 

Alternatively, an alkaline phosphatase/anti-alkaline-phosphatase-based technique (APAAP, 

Dako) with Fast Red (Sigma) was used to visualise bound primary antibody. Sections 

obtained from controls and MS patients were handled identically and simultaneously. 

Negative controls were performed by omitting the primary antibody and applying non-

immune sera or isotype control antibodies. 

2.1.3. In situ hybridization 

In situ hybridization for PLP mRNA was performed as described in detail earlier (Lumsden 

1970; Dawson 1916; Dinkler 1904). Briefly, hybridization was performed using digoxigenin-

labeled riboprobes detected by AP-conjugated anti-digoxigenin Fab-fragments. NBT/BCIP 

was used as chromogen. For immunohistochemistry after in situ hybridization, sections were 

incubated with anti-PLP antibody and processed as described above. Sections were 

counterstained with haematoxylin.  

2.1.4. Electron microscopy  

Formalin fixed, paraffin embedded archival brain tissue was processed for electron 

microscopy. Areas identified on corresponding MBP-immunostained sections were cut out of 
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the paraffin blocks and post-fixed in glutaraldehyde followed by osmification and embedding 

in araldite. Quantitative analysis was performed on ultrathin sections of six MS patients and 

two controls. Fiber thickness was measured at the shortest diameter and the g-ratio calculated 

(g-ratio = diameter of axon/diameter of axon plus two times myelin sheath [axon/fibre ratio]). 

G-ratios of at least 100 myelinated axons per patient were obtained. The Kruskal-Wallis 

analysis of variance followed by Dunn’s multiple comparison tests was applied to compare g-

ratios between control cortex, remyelinated cortex, and normal appearing cortex. 

2.1.5. Morphometric image analysis  

To determine the extent of cortical demyelination, the cortical areas of a total of 91 MBP-

stained brain sections from the 29 MS patients with cortical lesions were scanned with a Color 

View digital camera (Soft Imaging System, Münster, Germany) mounted on an Olympus 

BX51 microcope (Olympus, Tokyo, Japan). The total cortical area and the area of cortical 

demyelination were measured using Analysis® software (Soft Imaging System GmbH, 

Münster, Germany). The nonparametric Mann-Whitney U-test was applied to compare the 

extent of demyelination in the frontal, temporal, parietal and occipital lobes.  

2.1.6. Quantitative morphometry of immuno-labelled cells 

Immunopositive oligodendrocytes were counted using an ocular morphometric grid at a 

magnification of 400x (area of the grid: 62 500 µm²). The grid was placed 10 times in the 

lesional centre and 10 times at the lesional border. In control sections and sections without 

apparent cortical demyelination (‘normal appearing cortex’), immunopositive 

oligodendrocytes were counted in 10 visual fields in cortical layers II-III and V-VI. Kruskal-

Wallis and Mann-Whitney U-tests were used to compare the density of immunolabelled 

oligodendrocytes between the different groups. 

2.1.7. Extent of remyelination 

The extent of remyelination of white matter and cortical MS lesions was assessed applying 

the following arbitrary score: (0) no remyelination, (1) little remyelination at the lesional 

border, (2) substantial remyelination, either confluent or patches of remyelination, and (3) 

nearly complete or complete remyelination (shadow plaque). The Mann-Whitney-U test was 

applied to compare scores of white matter and cortical remyelination. 
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2.2. Materials and methods to study inflammation, dendrites and synapses in cortical 

lesions  

2.2.1. Brain tissue  

Brain autopsy samples from 17 MS patients and from 10 control subjects (for details see 

2.1.1. and Table 1.) were included to study inflammation, density of dendrites and synapses in 

the frontal cortex of patients with long-standing MS. Brain biopsy samples from 4 MS 

patients were selected to study inflammation in detail in early MS. The age of 4 MS patients 

at the time of biopsy ranged from 28 to 52 years (mean ± SD: 37.7 ± 10.8 ys). The mean 

disease duration prior to biopsy was 6.7 weeks. All patients were female. 1 tissue block per 

patient was analysed. All 4 tissue blocks harboured lesions both, in cortex and the white 

matter.  

2.2.2. Neuropathological techniques and immunohistochemistry  

3-5 µm paraffin sections were prepared. All sections were stained with haematoxylin-eosin 

(HE), luxol fast blue (LFB)/periodic-acid Schiff (LFB/PAS) and Bielschowsky’s silver 

impregnation for formal investigation of inflammation, demyelination, and the axonal density. 

Demyelinated areas were identified on LFB/PAS and MBP-immunostained sections.  

Autopsy sections were additionally immunostained with antibodies against CD3, CD8 and 

CD20 for CD3+ T-lymphocytes, CD8+ T-lymphocytes and B-cells to assess the extent and 

composition of inflammatory cells in the cortical and white matter lesions. Antibodies against 

KiM1P (CD68 equivalent), MHCII were used to determine the density of 

microglia/macrophages and glial fibrillary acidic protein (GFAP) to determine the density of 

activated astrocytes. At least one tissue section with cortical lesions per case was 

immunostained for neurofilament (SMI31) to confirm axonal preservation in areas of cortical 

demyelination. Samples were immunolabelled against microtubulus associated protein II 

(MAPII) and synaptophysin to determine the density of dendrites and synapses in the cortical 

plaques.   

Biopsy sections were treated with antibodies against inflammatory cells; CD3, CD8 and 

CD20 for T-lymphocytes, CD8+ T-lymphocytes and B-cells, plasmacells; KiM1P, MRP14, 

MHCII for all, early active and antigen presenting microglia/macrophages; glial fibrillary 

acidic protein (GFAP) for activated astrocytes. Immunoglobulin and complement deposition 

was investigated by antibodies against IgG and C9neo. Acute axonal and neuronal injury was 
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determined by antibodies against amyloid precursor protein (APP) and neurofilament H (SMI 

35) (for antibodies used see Table 2; for the immunostaining procedures see 2.1.2). 

2.2.3. Quantitative morphometry of immuno-labelled structures 

In autopsy samples, density of KiM1P-positive microglia/macrophages and GFAP-positive 

astrocytes was determined using an ocular morphometric grid at a magnification of 400x (area 

of the grid: 62 500 µm²). To count KiM1P-positive cells, the grid was placed 10 times in the 

centre of cortical plaques and 10 times in the periplaque cortical area. To count GFAP-

positive cells, the grid was placed 10 times in the cortical plaques. In control sections and 

sections without apparent cortical demyelination (‘normal appearing cortex’), KiM1P and 

GFAP immunreactive cells were counted in 10 visual fields in cortical layers II-III and V-VI. 

Following the Kolmogorov-Smirnov test for normal distribution of data, ANOVA and T-tests 

were applied to compare the cell densities of cortical plaques with normal appearing cortex 

and with controls. Density of MAPII-positive dendrites was determined using an ocular 

morphometric grid with 25 intersections at a magnification of 1000x. Each dendrite that 

crossed one of the intersections was taken into the calculation. In this way, dendrites were 

counted in 3 visual fields in 3 cortical layers (cortical layer I-II, cortical layer III-IV, cortical 

layer V-VI), respectively. Following the Kolmogorov-Smirnov test for normal distribution of 

data, ANOVA and T-test and was applied to determine the difference in the dendritic density 

between cortical plaques, normal appearing cortex and control cortex.    

In biopsy samples, density of inflammatory cells was determined in parallel, in cortical and 

white matter lesions in the same sections. Immunopositive CD3+ and CD8+ lymphocytes 

were counted using the ocular morphometric grid at a magnification of 1000x (area of the 

grid: 10.000µm²). The grid was placed 3 times at the vessel wall and 3 times in a grid distance 

from the vessel wall in the perivascular parenchyma. KiM1P, MRP14-positive cells and APP-

positive axons were counted at a magnification 400x (area of the grid: 62 500 µm²). The grid 

was placed 5 times in the demyelinated parenchyma. To determine the anatomical difference 

in the axonal density between the white matter and the cortex, 5 control sections were stained 

using Bielschowsky’ silver impregnation method. The axons were counted using the 25 

intersection ocular grid, which were placed 10 times in lower cortical layers and 10 times in 

the subcortical white matter at a magnification of 1000x (area of the grid: 10 000 µm²). Each 

axon that crossed one of the intersections was taken into the calculation. Following the 

normality test, T-test or Mann-Whitney-U test was applied to compare the density of the 

various immunoreactive structures in lesions in the cortex and white matter.     
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2.2.4. Image analysis, densitometry 

To quantify synapses in the frontal cortex in MS, images were cuptured on synaptophysin-

stained sections under 200x using Color View digital camera (Soft Imaging System, Münster, 

Germany) mounted on an Olympus BX51 microcope (Olympus, Tokyo, Japan). The pictures 

were taken in 3 fields in 3 cortical layers (cortical layer I-II, cortical layer III-IV, cortical 

layer V-VI). Same light intensity and exposure time were applied to all photographs. All 

images were converted to the grey scale and analysed with ImageJ 1.31v. A fixed threshold 

value was kept. Following the normality test, ANOVA and T-test and was applied to 

determine the statistical difference in light intensity values between the control, cortical 

plaques and the normal appearing cortex.    

2.3. Materials and methods to study synaptic contacts in the cerebellar dentate nucleus 

and in the pontine nuclei 

2.3.1. Brain tissue prepared for histology 

Tissue blocks containing the cerebellar dentate nucleus and the pons were sampled for 

histology from 24 MS patients and 10 controls. The age of the 24 MS patients at the time of 

death ranged from 39 to 82 years (mean ± SD: 59.7 ± 9 years). Most of the patients had 

chronically suffered from MS (duration mean ± SD: 15.4 ± 8.7 years). One case was studied 

in acute stage of MS. No information on the disease duration was available for five other 

patients (for clinical data see Table 3.). The age of controls ranged from 36 to 85 (mean ± SD: 

62.7 ± 15.1 years).  

For the dentate nucleus, 18 MS patients were selected to compare the distribution pattern of 

synapses with that of controls and estimate their numerical densities by light microscopy. 

Nine of these MS patients had demyelinated plaques in the dentate nucleus, whereas the 

others did not show any focal demyelination either at gross autopsy or in serial sections from 

the respective cerebellum. Information obtained from the clinical files contained no evidence 

for cerebellar symptoms manifested during the disease course.  

For the pontine nuclei, synapses were studied in nine patients. All of these had demyelinated 

plaques in the brainstem at the level of the pons. Three MS patients had lesions in both, the 

dentate nucleus as well as the pons.  
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2.3.2. Brain tissue prepared for electron microscopy 

To identify structural changes of synapses in the dentate nucleus and in the pontine nuclei, 

brain tissue was fixed for electron microscopical analysis from one MS patient and one 

control. The tissue of the MS patient was kindly provided by John Prineas (University of 

Sydney, Australia), the tissue of the control subject was kindly provided by Miklos Palkovits 

(Semmelweis University Budapest; Hungary).   

The patient was a 39 year old woman with a 14 years history of MS. Initially the disease ran a 

relapsing and remitting course, but for the last three years of her life the disease was 

progressive with no periods of remission. During this phase of her illness she exhibited motor 

and sensory deficits and at the time of her death she had been confined to bed for two years. 

Immunmodulatory therapy was not received by the patient at any stage of her illness. Brain 

tissue was fixed in situ by vascular perfusion with 3% glutaraldehyde in 0.1 M cacodylate 

buffer within 20 minutes of death (Prineas, 1975). The tissue was post-fixed in Dalton’s 

solution, embedded in Spurr’s epoxy resin and sampled for electron microscopy using 1 µm 

thick sections stained with toluidine blue.  

As control served a 55 years old man, who did not show any neurological disease throughout 

his life. Tissue was fixed by vascular perfusion with Zamboni’s solution (4% 

paraformaldehyde, picric acid, 0.1M phosphate buffer, pH 7.4) within 1 hour after death.  The 

cerebellum with the dentate nucleus was post-fixed with 0.1% glutaraldehyde, whereas the 

pons was post-fixed with 0.5% glutaraldehyde. Tissues samples were embedded in araldite; 

1µm sections were prepared and stained with toluidine blue.   

2.3.3. Histological techniques  

Three micron thick paraffin sections were stained with haematoxylin-eosin (HE), luxol fast 

blue (LFB) /periodic-acid Schiff (LFB/PAS) and antibodies against the myelin basic protein 

(MBP), synaptophysin (SYN) and against glutamic acid decarboxylase 65/67 (GAD). 

Inflammatory activity was determined in LFB and MBP stained sections. All lesions were 

inactive regarding the demyelinating activity, according to the criteria of Brück et al. (Ann 

Neurol, 1994). The synaptic density and distribution of all and GABAergic synapses were 

assessed by immunostaining against SYN and GAD, respectively (for antibodies used see 

Table 2; for the immunostaining procedures see 2.1.2). 
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2.3.4. Electron microscopy 

Electron microscopy was performed on thin sections obtained from tissue samples of one 

patient with chronic MS and one control brain (see above). Samples were taken from the 

dentate nucleus and paramedian parts of pontine nuclei. Sections of the MS patient were 

selected to contain both demyelinated and myelinated regions. All images were captured at 

the transmission electron microscope (EM 10C, Zeiss) using MegaView III digital camera and 

the software Analysis® (Soft Imaging System, Münster, Germany).  

2.3.5. Statistical analysis 

The numerical density of axo-somatic synaptic boutons was estimated by counting SYN-

positive structures localised at the soma membrane of 5 adjacent neurons in the dentate 

nucleus of 18 MS patients and 10 controls. The extent of demyelination and pariplaque 

regions - available on the sections - did not allow for quantification of a larger area. Only 

neurons which were situated near the centre of the grey matter band were counted, in order to 

avoid a bias caused by quantifying SYN-positive structures on distinct neuronal 

subpopulations (e.g. neurons at the periphery of the grey matter band and “displaced neurons” 

in the surrounding white matter possessed on average fewer axo-somatic synapses in the 

control brains). SYN-positive structures were quantified under light microscope (Olympus 

BX41) with oil immersion and a final magnification of 1000x. Following the Kolmogorov-

Smirnov test for normal distribution of data, T-test was applied to compare the number of 

“synapses” on the neuronal soma membrane a) in the demyelinated areas of the dentate 

nucleus of 9 MS patients with the number of axo-somatic “synapses” of controls b) in areas 

beyond the plaque borders (periplaque areas) of the same 9 MS patients with the controls c) 

from the dentate nucleus of the other 9 MS patients, in which demyelination could not be 

detected with the controls.  

Statistica 6.0 (StatSoft, Inc., Tulsa, OK, USA) software was used for all statistical 

calculations.  
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Case Age/Sex Disease 
course 

Disease 
duration 
(years) 

Total 
cortical 
area (mm²)

Cortical 
lesional 
area 
(mm2) 

Cortical 
lesional 
area  
(%) 

1 74/F ? incidental 387,8 11,38 2,93 
2* 71/F ? 20 319,62 109,89 34,38 
3* 49/M ? ? 115,91 15,69 13,59 
4* 66/M ? ? 683,03 28,98 4,24 
5 38/M ? ? 152,73 3,06 2,0 
6 63/M ? incidental 395,46 117,1 29,61 
7* 66/F ? 30 148,81 11,86 7,97 
8 74/M PP 10 110,68 29,61 26,75 
9* 57/M PP 15 2335,42 171,51 7,38 
10 45/F PP 14 374,81 60,42 16,12 
11 70/F PP 7 713,05 40,51 5,68 
12 57/M PP 11 208,37 85,58 41,07 
13* 61/F PP 19 979,05 87,17 8,9 
14 51/M PP 8 390,87 31,3 8,01 
15* 60/F PP 14 459,67 130,62 28,42 
16* 59/F PP(?) 9 247,71 25,6 10,34 
17* 60/M PP(?) 10 664,51 148,2 22,3 
18* 52/F PP(?) 8 454,31 0 0 
19 35/F RR 23 567,3 0 0 
20 28/F SP 4 301,51 14,12 4,68 
21 69/M SP 7 911,37 0 0 
22* 54/M SP 11 359,64 1,74 0,48 
23* 70/M SP 22-32 601,4 199,39 33,15 
24* 52/M SP 16 310,1 16,71 5,39 
25* 63/M SP 19 715,14 308,53 43,14 
26 57/M SP 12 129,35 31,0 23,97 
27 53/F(?) SP 25(?) 91,65 7,94 8,66 
28 81/F SP 36 234,72 0 0 
29* 61/M SP(?) 21-36 668,45 222,82 33,31 
30* 66/M SP(?) 34-44 303,48 13,89 4,58 
31 71/M SP(?) ? 204,57 18,39 8,99 
32* 59/F SP(?) 16 279,74 56,18 20,08 
33 60/F SP(?) 25 291,73 163,14 55,92 

 
Table 1 Clinical data and extent of cortical demyelination of the 33 MS patients studied. 17 MS patients (*) 

were selected to study lesional topography, inflammation, dendritic and synaptic pathology in chronic cortical 

lesions and for the detailed morphological study of remyelination in the frontal lobe; n/a: not available; ?: 

questionable. 

Abbreviations: PP: primary progressive MS; SP: secondary progessive MS; F: female; M: male  
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Antigen 
Antibody 

type/clone 
Dilution Source 

MBP 

mAb  

(Cat. No. 1 118 

099)  

1:500 
Boehringer Mannheim GmbH, 

Mannheim, Germany 

PLP plpc1 1:500 Serotec, Oxford, England, UK 

CNPase SMI91 1:200 
Sternberger Monoclonals, Inc., 

Lutherville, MD, USA 

activated Caspase-3 rabbit pAb 1:500 
IDUN Pharmaceuticals, La Jolla, 

CA, USA 

Phosphorilated 

neurofilament 
SMI31 1:10000 Sternberger Monoclonals, Inc. 

MBP 
rabbit pAb 

 
1:2000 Dako, Glostrup, Denmark 

Synaptophysin  
mAb 

SY 38 
1:10-1:50 Dako, Glostrup, Denmark 

GAD rabbit pAb 1:2000 Sigma, St. Luis, MO, USA 

MAP II mAb 1:200 NeoMarkers, Labvision, CA, USA 

Table 2a Antibodies used for immunohistochemistry 

Abbreviations: mAb: monoclonal antibody; pAb: polyclonal antibody 
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Antigen 
Antibody 

type/clone 
Dilution Source 

CD 3 rat pAb 1:200 
Serotec, Oxford, England, UK 

(MCA 1477) 

CD 8 
mAb 

C8/1448 
1:50 

Dako, Glostrup, Denmark  

(M 7103) 

CD68 /KiM1P mAb 1:1500 
Gift of Heinz-Joachim Radzun, 

Goettingen, Germany 

CD 20 mAb 1:50 Dako, Glostrup, Denmark 

MHC II/ 

HLA-DP,DQ,DR 
mAb 1:100 

Dako, Glostrup, Denmark  

(M 0775) 

GFAP mAb (6 F2) 1:50 
Dako, Glostrup, Denmark  

(M 0761) 

MRP 14 mAb (S100A9) 1:1000 
BMA, Augst, Switzerland 

(T-1027) 

CD 163 mAb (10D6) 1:100 

Novo Castra, Dossenheim, 

Germany 

(NCL-CD 163) 

C9 neo mAb 1:50 
Gift of Miriam Vigar, Wales, 

Great Britain  

IgG mAb (A57H) 1:25 Dako, Glostrup, Denmark  

APP mAb (A4) 1:3000 
Chemicon International Inc. 

(MAB 348) 

Neurofilament H mAb (SMI35) 1:10000 
Sternberger Monoclonals, Inc., 

Lutherville, MD, USA 

Table 2b Antibodies used for immunohistochemistry 

Abbreviations: mAb: monoclonal antibody; pAb: polyclonal antibody 
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Case Age/Sex Disease 
course 

Disease 
duration 
(years) 

Region 
studied 

Presence of 
MS lesion  

Inflammato
ry activity 
of the 
lesions 

1 57/M SP 12 Dentate yes inactive 
2* 39/F n/a n/a Dentate/Pons yes inactive 
3 63/M SP 19 Dentate yes inactive 
4 52/F PP? 8 Dentate yes inactive 
5* 71/M SP? 14? Dentate/Pons yes inactive 
6 59/F SP? 16 Dentate yes inactive 
7* 54/M SP 11 Dentate/Pons yes inactive 
8 n/a n/a n/a Dentate yes inactive 
9 57/F SP? 9 Dentate yes inactive 
10 69/M SP 7 Dentate no no lesion 
11 49/F acute <1 Dentate no no lesion 
12 57/M PP 23 Dentate no no lesion 
13 60/M PP 26 Dentate no no lesion 
14 51/M PP 8 Dentate no no lesion 
15 59/F Devic 5 Dentate no no lesion 
16 66/F PP 30 Dentate no no lesion 
17 n/a n/a n/a Dentate no no lesion 
18 82/M n/a n/a Dentate no no lesion 
19 n/a/M PP 11 Pons yes inactive 
20 57/M SP 12 Pons yes inactive 
21 57/M SP? 29 Pons yes inactive 
22 61/F PP 31 Pons yes inactive 
23 70/F PP 7 Pons yes inactive 
24 63/M n/a n/a Pons yes inactive 

Table 3 Clinical data of 24 MS patients selected to study the synaptic contacts in the dentate nucleus and in the 

pons. 3 MS patients (*) had demyelination in both regions. 

Abbreviations: n/a: not available; ?: questionable 
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3. RESULTS 

3.1 PATHOLOGICAL HALLMARKS OF MULTIPLE SCLEROSIS IN THE GREY 

MATTER: DEMYELINATION, INFLAMMATION, GLIOSIS AND NEURONAL 

INJURY 

3.1.1. Demyelination in cortex of patients with chronic MS 

3.1.1.1. Demyelinated lesions on average cover 14% of cortical grey matter  

Demyelinated lesions located in the cortical grey matter were detected and evaluated by 

immunostaining with antibodies against MBP (Fig. 1A). In 180 tissue blocks of 33 chronic 

MS cases more than 200 cortical lesions were identified. 29/33 patients examined harboured 

cortical demyelination. On average, 14% of the total cortical grey matter areas examined were 

demyelinated (see Table 1). The extent of cortical demyelination was slightly larger in the 

frontal and temporal lobes (frontal lobe: 17% of cortex demyelinated; temporal lobe: 19%) 

compared to the parietal and occipital lobes (parietal lobe: 12%; occipital lobe: 8%). 26% of 

the insular cortex was found to be demyelinated. However, these differences did not reach 

statistical significance.  

3.1.1.2. Cortical demyelination is mostly located subpially 

Frontal lobe sections of 13 MS cases were selected to study the spatial distribution of lesions 

in the cortex in MS brains (see Table 1). The topography of cortical lesions was examined 

according to the classification used by Peterson et al. (Peterson et al., 2001). Lesions located 

at the leucocortical junction and extending into both the white and grey matter were 

designated type 1 lesions. Type 2 lesions were usually round shaped and resided entirely in 

the cortex. Type 3 lesions designated cortical demyelination extending from the subpial 

surface to the external pyramidal layer (cortical layer III) or even to the multiform layer 

(cortical layer IV) often extending over many gyri (Fig. 1A). Consistent with the finding of 

Peterson et al., type 3 lesions were by far the most common in the frontal lobe sections 

examined. 46/72 lesions (64%) were located immediately beneath the pial surface. The 

subpial lesions showed often concave shape with the basis on the cortical surface. In a subset 

of cases (3/13) general subpial demyelination was observed (Bo et al. 2003). These lesions 

extended vertically until cortical layer III or IV without a definite lesional border at the 

margins of the sections, thus involving ribbon-like large areas of the cortical surface. 19/72 
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lesions (26%) were type 2, and the remaining type 1 lesions accounted for 10% (7/72) of all 

cortical lesions identified.  

3.1.2. Inflammation in cortex of patients with chronic MS 

Inflammation is reduced in cortical lesions compared to white matter lesions 

The degree of inflammation in cortical lesions was studied on frontal lobe sections from 17 

chronic MS patients (see Table 1). 13/17 patients harboured cortical demyelination (see 

topography of cortical lesions above), while in the other 4 patients cortical lesions were not 

detected (‘normal appearing cortex’). Lymphocytes were visualised by immunohistochemistry 

for CD3, CD8 and CD20 (pan marker of T- cells, marker of cytotoxic CD8+ T-cells and B-

cells), while macrophages and microglial cells were detected using antibodies against the 

CD68 equivalent KiM1P (pan marker for macrophage/microglia cells) and MHCII (marker 

for antigen presenting cells).  

All white matter lesions were chronic MS plaques. In these lesions, few perivascular CD3-

positive T-lymphocytes, CD 20-positive plasma cells and KiM1P-positive macrophages were 

present (chronic inactive lesions) or hypercellular KiM1P/MHCII-immunreactive lesional 

edge bordered the hypocellular centre of the otherwise inactive white matter plaques (chronic 

active lesions) (Chang et al., 2002; Canella and Raine, 1995; Bö et al., 1994; Sanders et al., 

1993) (Fig 1B).  

In cortex of all control cases, T-cells and B-cells were essentially absent; KiM1P-positive 

cells were evenly distributed and showed morphology of resting microglial cells.  

In the majority of cortical lesions in 11/13 (85%) MS patients the number of CD3-positive T-

cells and CD20- positive B-cells was not increased compared to the control cases, the 

periplaque regions of the same sections and the ‘normal appearing cortex’ of MS brains. T-

cells and B-cells on the meninges above the superficial lesions (type 3 lesions) were not more 

than in control cases. In these intracortical plaques microglia appeared evenly distributed; 

demarcation of the cortical plaque by microglia was not observed. The density of KiM1P-

positive microglia cells was moreover reduced in the demyelinated cortex compared to the 

periplaque cortex; the ‘normal appearing cortex’ and the controls (controls: 61.7 ± 8.9; within 

the lesions (p): 26.3 ± 5.7; outside of the lesions/periplaque (pp): 69.8 ± 20.1; normal 

appearing cortex (NAC): 68.6 ± 22.2 [mean ± SD], control vs. plaque p<0,001; t-test). This 

result is consistent with what has been observed in the chronic inactive white matter plaques 

(Brück W, Stadelmann C, unpublished observation). The differences in densities of KiM1P-
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positive cells between control cortex, periplaque cortex and ‘normal appearing cortex’ were 

not statistically significant (Fig. 2).  

In the other 2/13 (15%) MS patients, KiM1P-positive macrophage/microglia cells with a 

subset of them immunreactive to MHCII marked a clear boundary between demyelinated and 

periplaque area (chronic active lesions) (Fig. 1C). These demyelinated lesions were located at 

the leucocortical junction (type 1), extending into both the white and grey matter. Thus, a 

direct comparison could be made with respect to the density of inflammatory cells in the 

cortical versus white matter part of the same lesion. The number of demarcating 

macrophages/microglia cells instantly decreased and remained constantly reduced in the 

cortical part compared to the white matter part of the lesions (Fig.1D). Moderate perivascular 

cuffs accompanied the microglia demarcation (Fig.1E-F). The number of perivascular CD3-

positive lymphocytes gradually decreased from the white matter towards to the cortex; i.e. 

most T-cells were found in the white matter, fewer T cells were present around the vessels at 

the white/grey matter junction, whereas the least T-cells were found in the cortical part of the 

lesions that extended through white and grey matter areas (Fig.1E-F). Apart from the 

perivascular positions, T-cells in the cortical parenchyma were not detected. In the meninges, 

CD3-immunreactive T-lymphocytes and CD20- positive plasma cells formed cellular 

aggregates above the chronic active leucocortical plaques (Fig.1G-H). These results suggest 

that inflammation in cortical lesions is reduced compared to white matter lesions in patients 

with long-standing MS.  

 

 

Figure 1 Demyelination is extensive but inflammation is sparse in cortical lesions of patients with chronic MS. 

(A) 3 types of cortical lesions can be recognised by low power microscopy: leucocortical lesions (type 1), small 

intracortical lesions (type 2) and the most common subpial, superficial lesions (type 3). (B) A hypercellular edge 

and hypocellular lesional centre characterise chronic active lesions in the white matter. The cellular infiltrate 

largely consists of macrophages/microglia that demarcates the plaque borders (arrows). (C) Demarcation of 

microglia is also present in the cortex. In case of leucocortical lesions (D) the density of microglia cells in cortex 

is substantially reduced (arrow on top, right inset) compared with the white matter part of the lesion (arrow at the 

bottom, left inset). This also holds true for the density of perivascular lymphocytes. (E) The number of CD3-

positive perivascular T-cells is apparently higher in the white matter part than (F) in the cortical part of chronic 

lesions. (G) T-lymphocytes (arrows) and (H) plasma cells (arrows) infiltrate the meninges above the chronic 

active cortical plaques. (A) immunohistochemistry for MBP; (B-D) immunohistochemistry for KiM1P; (E-G) 

immunohistochemistry for CD3; (H) immunohistochemistry for CD20.  

Scale bars: A, C = 2000µm; B = 200µm; D = 1000µm; D inset = 200µm; E-H = 100µm 
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Figure 1 
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Figure 2 Microglia cells are reduced in the demyelinated cortex (control vs. plaque p<0.001; t-test). The 

differences in the densities of KiM1P-immunreactive cells between control cortex, periplaque cortical grey 

matter and “normal appearing cortex” are not statistically significant.  

Abbreviations:  p: plaque; pp: periplaque; NAC: normal appearing cortex 

 

 

3.1.3. Reactive astrogliosis in chronic cortical plaques  

Diffuse, mild gliosis characterises the cortex with multiple sclerosis 

One of the main characteristics of chronic white matter plaques is the glial scar formed by 

fibrillary processes of reactive astrocytes. This dense scar that is typical for white matter 

plaques was however, not seen in the cortex of patients with chronic MS. Instead, mild and 

diffuse astrogliosis prevailed in all cortical plaques. The density of GFAP-expressing 

astrocytes was quantified in the frontal cortex of the 17 chronic MS brains. The number of 

GFAP-positive cells was higher in MS cortex compared to controls (controls: 8 ± 6.5; in the 

cortical plaques: 56.6 ± 29.1; in normal appearing cortex (NAC): 51.7 ± 19.8 [mean ± SD]; 

control vs. plaque: p<0.01; control vs. NAC: p<0.05, t-test). This mild gliosis was 

consistently found in all MS patients, i.e. in demyelinated cortical areas but in ‘normal 

appearing cortex’ as well (Fig. 3). This finding suggests that large proportions of ‘normal 

appearing cortex’ of MS brains have been affected by pathologic stimuli.   
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Figure 3 Mild, diffuse astrogliosis characterises the cortex of all patients with chronic MS. The density of 

GFAP-positive cells is higher in cortical lesions compared with cortex from control subjects (control vs. plaque: 

p<0.01; t-test). This mild gliosis is also seen in non-demyelinated cortex (‘normal appearing cortex’) from MS 

patients (control vs. NAC: p<0.05; t-test). 

NAC:  normal appearing cortex 

 

3.1.4. Inflammation in cortex of patients with early MS 

To investigate whether the cortex is affected by inflammatory demyelination in early MS, 

brain biopsy tissue from 150 MS cases was inspected. Samples from 35 patients had cortical 

tissue. 8 out of the 35 (23%) patients showed – asides from white matter lesions - cortical 

plaques. The composition and density of inflammatory cells and extent of the acute 

neuroaxonal injury was investigated and compared in active inflammatory grey versus white 

matter lesions. Thus, cortical and white matter lesions were studied in parallel in the brain 

sections of every MS patient concerned. Inflammatory cells were identified and quantified by 

CD3, CD8 immunhistochemistry for all and CD8+ T-lymphocytes;  Kim1P, MRP 14, MHCII  

for all, early active and MHC II–positive macrophages. Acute axonal damage was assessed by 

immunhistochemistry for APP. Neuronal injury was determined by immunhistochemistry to 

SMI 35 and morphological criteria (Nissl, 1892).  
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3.1.4.1. Topography of cortical plaques in early MS 

In acute MS two patterns of cortical lesions were identified. The majority, 6 out of 8 cases 

(75%) showed lesions situated at the transitional zone between the white matter and the cortex 

and were designated as ‘cortico-subcortical lesions’ (type 1 lesions). The other 2 patients 

(25%) represented distinct, multiple, ‘small perivascular lesions’ (type 2 lesions). Cortico-

subcortical lesions appeared as single but extensive demyelination involving both the white 

and the grey matter parenchyma (Fig. 4A). Small perivascular lesions appeared as scattered, 

small demyelinated areas in the cortex as well as in the white matter counterpart (Fig. 7A-B). 

The most frequent cortical lesion of late MS, which affects subpial, superficial cortical layers 

(type 3 lesions) was not encountered in the biopsy samples.  

3.1.4.2. Early cortico-subcortical lesions are highly inflammatory and destructive 

Cortico-subcortical lesions appeared as hypercellular, highly inflamed, destructive lesions 

(Fig. 4A). Mononuclear cells aligned in concentric rows filled the perivascular space in both 

the cortex and white matter (Fig. 4B-D). The density of perivascular CD 3-immunreactive T-

lymphocytes was similar in the cortical and in the white matter part of the lesions (Fig. 5A) 

(cell counts from a representative case: white matter (cells/mm²): 4500 ± 1666; cortex: 4711 ± 

1426 [mean ± SD]). It holds true for the density of infiltrating T-lymphocytes in the 

parenchyma (white matter (cells/mm²): 366.7 ± 206.2; cortex: 544.4 ± 250.6 [mean ± SD]) 

(Fig. 5A). The density of CD8+ cytotoxic T-cells shared this distribution in the perivascular 

space (white matter (cells/mm²): 2189 ± 730.5; cortex: 1644 ± 381.2 [mean ± SD]) and in the 

parenchyma (white matter (cells/mm²): 133.3 ± 132.3; cortex: 200 ± 173.2 [mean ± SD]) (Fig. 

5B). The proportion of the CD8+ T-cell, subpopulation of all T-cells in the perivascular space 

was slightly reduced in the cortex; however this reduction was not statistically significant 

(ratio of perivascular CD8+ and CD3+ lymphocytes in the white matter: ~0.5, in the cortex: 

~0.4).  

Apart from T-lymphocytes, foamy macrophages and large, pleiomorphic astrocytes populated 

the white matter parenchyma of the lesions. The cytoplasm of these macrophages contained 

myelin debris visualised by the lipophylic dye luxol fast blue (LFB). Few such activated, 

foamy macrophages were also present at the transition of white matter and cortex, however 

they were entirely absent from the intracortical grey matter. Instead, extensive and diffuse 

activation of microglia characterised the lesion in the cortical counterpart. The density of 

KiM1P-immunreactive microglia was slightly reduced in the cortex compared with KiM1P-

immunreactive macrophages/microglia cells in the white matter (KiM1P-positive cells, white 

   34



  Results 

matter (cells/mm²): 761.6 ± 89.51; cortex: 672.0 ± 109.1 [mean ± SD]) (Fig. 4E-F; Fig. 5C). 

This reduction was more pronounced when the density of MHCII positive cells was 

determined and compared (Fig. 6A-B). Both, macrophages and astrocytes were found 

expressing the MHC II antigen in the white matter, whereas in the cortex, MHC II was 

predominantly expressed by microglial cells. Furthermore, the proportion of activated 

MRP14-expressing macrophage/microglia was significantly reduced in the cortex compared 

with the white matter (MRP14-positive cells, white matter (cells/mm²): 352.0 ± 124.5; cortex: 

163.2 ± 39.84 [mean ± SD]; MRP14/KiM1P ratio: white matter: ~0.4; cortex: ~0.25) (Fig. 

4G-H, Fig. 5C).  

Acute axonal injury was characterised by immunhistochemistry for amyloid precursor protein 

(APP), a protein that is transported by fast axonal transport and accumulates at sites of axonal 

injury. Conspicuously less APP-positive structures were found in the cortical than in white 

matter part of the lesions (APP-positive structures/mm² white matter: 1174.4 ± 160.2; cortex: 

451.2 ± 94.25 [mean±SD] normalised to controls: white matter: 1174.4; cortex: 603.2; white 

matter vs. cortex p<0.0001, t-test) (Fig. 5D, Fig. 6C-D). However, neuronal cell bodies 

showed the morphology of apparent neuronal injury, characterised by swollen somata, central 

chromatolysis, peripherally displaced nucleus, pale cytoplasm, loss of nucleolus and finally 

immunreactivity to SMI 35 (Fig. 6E-F). Processes of ramified microglia embraced the 

perycarion of these neurons (Fig. 4F, Fig. 6E). 

The blood brain barrier appeared compromised in the white matter as shown by massive 

leakage for the immunoglobulin IgG (Fig. 6G). In contrast, it appeared largely intact in the 

cortex despite the severe inflammation by which white matter and cortex were equally 

affected (Fig. 6H).  
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Figure 4 Cortico-subcortical lesions are hypercellular inflammatory lesions of early MS. (A) A demyelinated 

lesion is situated in both, the grey (above the dashed line) and the white matter (below the dashed line). Due to 

the dense inflammatory cell infiltrates the cytoarchitecture is substantially distorted, which makes it difficult to 

discern the cortex from the white matter. (B) Inflammatory cells densely infiltrate the vessel walls, the 

perivascular space and the parenchyma in the cortex. (C) The perivascular inflammatory cells are mainly 

composed of T-lymphocytes in the white matter part (D) and in the cortical part of the lesion. Perivascular cell 

density (cells/surface of vessel wall) appears nearly identical in the white and the grey matter parts of the lesion. 

(E) In the white matter KiM1P-positive cells are predominantly foamy macrophages, while (F) in the cortex they 

are exclusively microglia cells. Note that microglia processes embrace the cell bodies of numerous neurons 

indicating substantial neuronal damage. (G) A subset of these macrophages expresses the MRP 14 antigen in the 

white matter and (H) microglia cells in the grey matter. (A-B) histological staining for LFB; (C-D) 

immunohistochemistry for CD3; (E-F) immunohistochemistry for KiM1P; (G-H) immunohistochemistry for 

MRP14 protein.  

Scale bars: A = 200µm; B-H = 100µm  
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Figure 4 
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A                   B 

 

        

 

C        D           

        

 

Figure 5 The cell density of T-lymphocytes is similar; however macrophages/microglia cells are reduced in the 

cortical compared with the white matter part in early cortico-subcortical lesions. (A) Densities of CD3+ and (B) 

CD8+ T-lymphocytes are similar in the perivascular position and in the parenchyma in the cortical and in the 

white matter part of the lesion. (C) There is a slight reduction in density of KiM1P-positive cells and a 

conspicuous reduction in density of MRP14-immunreactive cells in the cortex, compared to densities of these 

cells in the white matter. In addition, (D) the extent of acute axonal injury is significantly smaller in the cortex 

compared with the white matter in the same lesion. All graphs depict cell counts taken from a single 

representative early cortico-subcortical MS lesion.  

Abbreviations: PV: perivascular position; PAR: parenchyma; WM: white matter  
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Figure 6 Less MHC II-posistive cells, less acute axonal injury and an intact BBB but pronounced acute 

neuronal injury characterise the cortex in the early cortico-subcortical lesions. (A) Both macrophages with round 

morphology (more intensively stained cells) and astroglial cells with broad processes (less intensively stained 

cells) are involved in MHCII antigen expression. (B) In the cortex the density of antigen-presenting cells is 

greatly reduced compared with white matter part. It is predominantly the microglia cells that are immunreactive 

for MHC II. (C) Acute axonal injury in the white matter. Accumulation of APP in axons with impaired 

anterograde axonal transport (arrows). (D) The extent of acute axonal damage (arrows) is much lower in cortex. 

(E) Apparent injury to neurons indicated by disintegration of the nucleus and central chromatolysis (arrows). 

Note that microglia cells, wich contain LFB-positive myelin debris embrace the neuronal soma. (F) Neuronal 

injury is also detected by immunostaining for SMI 35. Arrows point at the immunreactive, injured cells. (G) 

While in the white matter BBB breakdown is apparent as indicated by the massive leakage of immunoglobulin 

into the tissue, (H) the BBB in cortex remains intact. Note, that there is no serum leakage around inflamed 

vessels in the cortex (arrow). (A-B) immunohistochemistry for MHC II; (C-D) immunohistochemistry for APP; 

(E) histological staining for LFB; (F) immunohistochemistry for SMI 35 and (G-H) immunhistochemistry for 

IgG. 

Scale bars: A-B, G-H = 200µm; C-D, F = 100µm; E = 20µm 
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Figure 6 
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3.1.4.3. Small perivascular cortical lesions are less destructive  

Small perivascular cortical lesions exhibited less destructive, predominantly demyelinating 

features (Fig. 7A-B). Although lesions typically arose around blood vessels, these 

demyelinated areas were not associated with significant perivascular lymphocyte infiltration. 

Only single CD3+ T-cells were situated at the rim of the cortical and white matter lesions 

(Fig. 7C-F).  

Foamy macrophages in the white matter and ramified microglia in the cortex appeared to be 

the predominant inflammatory cells of the lesions (Fig. 8A-B). In the white matter only 

macrophages but not astrocytes expressed the MHC II antigen, whereas in the cortex they 

were exclusively the microglia cells. Density of macrophage/microglia cells was lower in 

cortical than white matter lesions (Fig. 8A-B). Moreover, the proportion of MRP14-positive 

cells was substantially smaller in the cortex than the white matter (Single representative case: 

KiM1P-positive cells, white matter (cells/mm²): 620.8 ± 92.19; cortex: 192.0 ± 22.63 

[mean±SD]; MRP14-positive cells, white matter (cells/mm²): 307.2 ± 102.1; cortex: 70.40 ± 

29.07 [mean±SD] MRP14/KiM1P ratio: white matter: ~0.48; cortex: ~0.36) (Fig. 8C-D). B-

cells, plasma cells and complement deposition were not detected on the vessel walls or on 

myelin in any of the lesions.  

Acute axonal injury was less prominent in the cortex than in the white matter (Fig. 8E-F). The 

difference in the normalised values to axonal density in controls was statistically significant 

(APP-positive structures/mm², white matter: 220.8 ± 63.40; cortex: 121.6 ± 50.09 

[mean±SD]; normalised to controls: white matter: 220.8; cortex: 162.6; cortex vs. white 

matter p<0.025). Above all, neurons were negative to SMI 35 and appeared morphologically 

intact. While the BBB was apparently compromised in the white matter, BBB leakage was not 

observed in any of the small perivascular grey matter plaques.  

Taken together, the two patterns of early MS lesions identified in our material share similar 

characteristics, i.e. (i) identical T-cell infiltration but (ii) reduced macrophage/microglia 

activation and (iii) less acute axonal damage in cortical than white matter lesions; (iv) absence 

of haematogenous macrophages in the cortex and (v) largely intact cortical blood brain 

barrier. The difference between the two types of cortical lesions lies upon the extent of 

inflammatory cell infiltration, which is also reflected in neuronal and axonal injury in the 

more inflamed cortico-subcortical lesions (Table 4). 
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Figure 7 Small perivascular cortical demyelinated lesion in early MS. Lesions are distinct demyelinated areas, 

usually arising around small vessels in both (A, C, E) the white and (B, D, F) the grey matter. The 

demyelinations in the (A) white matter and (B) in the cortex are of similar appearance (white and grey matter 

lesions in the same section). Lymphocytic infiltration is entirely absent within both (C) white and (D) grey 

matter lesions. Instead, 1-2 T-lymphocytes (arrows) are situated at the border of the lesions of the (E) white and 

the (F) grey matter. (A-B) immunohistochemistry for MBP; (C-D) immunohistochemistry for CD3; (E-F) MBP 

and CD3 overlay images. 

Scale bars: A-F = 100µm 
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Figure 8 Relatively mild inflammation and little neuroaxonal damage characterise small perivascular lesions 

in the cortex. (A) Foamy macrophages populate the white matter lesions (C) with a subset expressing the early 

activation antigen MRP14. (B) In the cortical lesions, the macrophage/microglia cell density is lower than in the 

white matter lesions (D) with only few MRP14+ microglia cells that are mainly situated in the perivascular space 

(arrows). (E-F) The degree of acute axonal damage (arrows) is (F) lower in the cortex than (E) in lesions in the 

white matter. (A-B) immunohistochemistry for KiM1P; (C-D) immunohistochemistry for MRP14; (E-F) 

immunhistochemistry for APP.  

Scale bars: A-F = 100µm 
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Macrophage and 
microglia 

Case Disease 
duration Localisation 

T-cells 
CD3+ 
CD8+ 

Morpho- 

logy 
MRP14

+ 

Astroglia IgG 
leakage 

Compl/
B-cells 

Neuronal 
damage 

WM:1-2 
cells in par 

WM: 

MΦ 

WM: 

0 

WM: 

diffuse 
WM: + 

1 1 week 

Small 
perivascular 

lesions in 
WM&C C:1-2 cells 

in par 
C: 

Mglia 

C: 

0 

C: 

diffuse 
C: - 

- - 

WM:1-2 
cells in pv 

WM: 

MΦ 
WM: 
few 

WM: in 
plaque WM: + 

2 
3 

months 

Small 
perivascular 

lesions in 
WM&C C:1-2 cells 

in pv 
C:  

Mglia 
C: 1-2 
cells 

C: 

diffuse 
C: - 

- - 

WM: 
Massive 

infiltrate in 
pv & par 

WM: 

MΦ 

WM: 
many in 

par 

WM: 

diffuse 
WM: + 

3 2 weeks 
Cortico- 

subcortical C: Massive 
infiltrate in 
pv & par 

C: 

Mglia 
C: few 
in pv 

C: 

diffuse 
C: - 

- + 

WM: 
Massive 

infiltrate in 
pv & par 

WM: 

MΦ 

WM: 
many in 

par 
WM: + 

4 
3 

months 
Cortico- 

subcortical C: Massive 
infiltrate in 
pv & par 

C: 

Mglia 
C: no 

No section 

C: - 

- + 

Table 4 Characteristics of the two types of cortical lesions in early MS illustrated in two representative cases 

each with cortico/subcortical and small perivascular lesions.  

Abbreviations: WM: white matter; C: cortex; pv: perivascular position; par: parenchyma; Mglia: microglia; MΦ: 

macrophage; Compl: complement  
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3.1.5. Neuronal injury 

Neurons appear atrophied but largely preserved in chronic cortical lesions  

To define the long term consequences of inflammatory demyelination with regard to neuronal 

injury, the density of dendrites and synapses was determined in chronic cortical MS lesions. 

Autopsy brain samples from 17 MS patients (see Table 1) were immunostained for SMI 31, 

MAPII and synaptophysin. SMI 31 recognizes phosphorilated neurofilaments and is used as a 

marker of intact axons. MAPII is used to delineate the neuronal soma and the microtubulus 

containing dendritic tree. Synaptophysin labels synaptic vesicles, the signal clusters refer to 

presynaptic boutons. 

No difference in neuronal cell density was observed between MS cases and controls. 

However, a slight atrophy of most cortical neurons was noted when the diameter of the soma 

in the nuclear plane was measured (Fig. 9A-B). Axons appeared largely preserved in all 

chronic cortical plaques. However, there was a consistent reduction of dendrites per surface 

area in all cortical layers in all demyelinated MS plaques studied. Moreover, a similar 

reduction in dendritic density was found in the ‘normal appearing cortex’ of MS brains 

(MAPII structures/25 [Nr. of dendrites that intersect once any point of the 25 points ocular 

grid], control: 5.87 ± 0.25 in the cortical plaques: 4.56 ± 0.36; in normal appearing cortex 

(NAC): 4.58 ± 0.06 [Mean ± SD]; control vs. plaque p<0.0001; control vs. NAC p<0.0001) 

(Fig. 10). In contrast, the density of the synapses did not differ from controls and was similar 

in all cortical plaques and all MS cortices examined (light intensity through synaptophysin 

stained sections, control: 26886 ± 7067; in the cortical plaques: 28448 ± 7339.8; in normal 

appearing MS cortex: 30985 ± 13328 [Mean±SD], control vs. plaque and control vs. normal 

appearing cortex: not significant). These results imply that neurons and synaptic boutons are 

largely preserved in the cortex of patients with chronic MS. However, the consistent reduction 

of dendritic density in all MS brains suggest, that the demyelinated and ‘normal appearing 

cortex’ may be similarly affected.    
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Figure 9 Neurons are well preserved in chronic cortical MS lesions. (A) MAPII staining outlines the cell body 

and the microtubules containing dendrites in control cortex. (B) In chronic cortical plaques neurons are slightly 

atrophied. Dendrites are thinner, apical dendrites (arrows on the control image) are essentially lost (cortical layer 

III). (A-B) immunohistochemistry for MAPII.  

Scale bar: A-B: 200µm  

 

 

 

 

Figure 10 Reduction of dendrites per surface area in all cortical layers. This reduction was similar in the 

cortical plaques and in the normal appearing MS cortex (control vs. plaque p<0.0001; control vs. NAC 

p<0.0001; t-test).  

Abbreviations: NAC: normal appearing cortex 
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3.2. COMPENSATORY MECHANISMS IN THE GREY MATTER IN MULTIPLE 

SCLEROSIS: REMYELINATION AND ADAPTIVE REMODELLING OF 

SYNAPTIC CONTACTS 

3.2.1. Remyelination of cortical lesions in patients with chronic MS 

3.2.1.1. Remyelination is extensive in cortical MS lesions 

Frontal lobe sections of 17 MS (see Table 1) cases were used to study the remyelination and 

presence of oligodendrocytes in the cortex. 13/17 MS patients had cortical demyelination, the 

remaining 4 had no cortical lesions in the frontal lobe; however, they harboured cortical 

lesions in other brain regions. Control brains did not show any cortical lesions (Fig. 11A). 

Some demyelinated cortical lesions had sharply defined lesional borders (Fig. 11B), others 

rather showed a rim or patches of loosely arranged myelin in MBP immunohistochemistry 

(Fig. 11C). Myelinated cortical areas with seemingly thinner, irregular, punctuate, and less 

orderly arranged myelin were judged remyelinated by light microscopical appearance (Fig. 

11C). This light microscopical appearance may in part result from thinner myelin sheaths with 

shorter internodes (Gledhill et al. 1973; Bruck et al. 2003). Furthermore, in MS patients, 

cortical areas with a myelin appearance closely resembling control cortex but with slightly 

thinner and less dense myelin sheaths were observed (‘normal appearing cortex’) (Fig. 11D). 

The 17 MS patients were divided into three groups according to the presence or absence of 

remyelinated cortical fibres as assessed by light microscopy. The first group (demyelinated 

cases, DM; n=6) consisted of patients with demyelinated lesions without apparent 

remyelination (Fig. 11B). Patients with a rim of thinly myelinated fibres at the lesional border 

or patches of irregular myelin suggestive of incomplete remyelination were classified into the 

second group (patients with remyelination; RM, n=7) (Fig. 11C). The third group contained 

patients without apparent cortical lesions (‘normal appearing cortex’ (NAC), n=4) (Fig. 11D).  

3.2.1.2. Electron microscopy reveals thin myelin sheaths in remyelinated cortical lesions  

Electron microscopic examination is the gold standard for the detection of remyelination. 

Therefore, we performed ultrastructural investigations on two cases each in the above defined 

groups (2 DM, 2 RM, 2 NAC and 2 controls). The quotient axon/fibre diameter known as g–

ratio is relatively constant in the PNS and CNS within a certain species and considered to be 

around 0.7 for myelinated CNS fibres in humans (Schmitt and Bear, 1937; Friede and Beuche, 

1985a; Coetzee et al. 1996; Hildebrand et al. 1993). Demyelinated axons have a g-ratio of 

1.0, and remyelinated fibres yield g-ratios higher than normal. Most likely because of axon 
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shrinkage due to the fixation, embedding, and re-embedding procedures in our formalin-fixed 

material, the g-ratios in our study were lower in all tissue sections examined (Friede and 

Beuche, 1985b). 

In control cortex, myelin was abundant, intact, and the thickness of the myelin sheaths 

increased with the axon calibre (g-ratio control: mean ± SD: 0.65 ± 0.09; Fig. 12A, D; 

Fig.13). Cases from the demyelinated (DM) group had only single axons with myelin sheaths 

(g-ratio not calculated). Cases with remyelination (RM) showed thin myelin sheaths around 

axons of various calibres (g-ratio RM: mean ± SD: 0.76 ± 0.07; Fig. 12B, E; Fig. 13) 

indicating remyelination on the electron microscopical level. G-ratios between control cortex 

and RM MS lesions were significantly different (p<0.001). Unexpectedly, myelin sheaths in 

the NAC appeared rather thin (Fig. 12C, F) and g-ratios obtained from the NAC group were 

significantly higher than those of controls and almost as high as those of RM cases (g-ratio 

NAC: 0.72 ± 0.09; RM: 0.76 ± 0.07 [mean ± SD]; control vs. RM p<0.001; control vs. NAC 

p<0.001; Kruskal-Wallis; Fig. 13). This suggests that large proportions of NAC are in fact 

remyelinated.  

  

 

 

 

 

 

Figure 11 (A) Cortex of control brain with intact myelin. (B) Demyelinated cortical MS lesion. A sharp border 

separates well preserved myelin from the lesion, where myelin is entirely absent. (C) Cortical lesion with patches 

of irregular, dotted myelin that incompletely cover the lesional area. (D) Normal appearing MS cortex. The 

myelin forms a dense mesh and is undistinguishable from non-MS cortex. (E) Myelin basic protein (MBP)-

expressing oligodendrocytes at the border of a cortical lesion suggestive of remyelination (arrows). (F) 2’, 3’-

cyclic nucleotide 3’-phosphodiesterase (CNP)-expressing cells in the same lesion. (G-H) Proteolipid protein 

(PLP) mRNA expressing myelin-forming cells in NAC and around a remyelinated cortical lesion in the same 

patient. (G) In the normal appearing cortex, few PLP mRNA positive cells are detected (arrow). (H) Numerous 

PLP mRNA positive cells line the remyelinated border of a cortical MS lesion (arrow). (A-E) 

immunohistochemistry for MBP; (F) immunohistochemistry for CNP; (G-H) in situ hybridization for PLP 

mRNA with immunohistochemistry for PLP protein. 

Scale bars: A-F = 200µm; A-F inset = 20µm; G-H = 200µm; G-H inset = 100µm. 

   48



  Results 

 

Figure 11 
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Figure 12 Electron micrographs of (A, D) control cortex, (B, E) cortical lesion with remyelination and (C, F) 

normal appearing MS cortex. (A, D) In control cortex myelin sheaths of regular thickness enwrap the axons. (B, 

E) Thinner myelin sheaths indicative of remyelination are detected. (C, F) Myelin sheaths of cortical fibres in 

‘normal appearing cortex’ have a thickness similar to that observed in remyelinated lesions.  

Scale bars: A-F = 2µm 

 
p<0.001 

 

 

p<0.001 

 

 

 

 

 

 

Figure 13 Axon to fibre (= g-) ratios in partially remyelinated cortical lesions (RM) and normal appearing 

cortex (NAC) of 2 representative MS cases each compared with 2 controls. Remyelinated fibres had uniformly 

thin myelin sheaths, thereby yielding higher g-ratios (RM vs. control: p<0.001; NAC vs. control: p<0.001).  

Abbreviations: RM: remyelination; NAC: normal appearing cortex 
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3.2.1.3. Oligodendrocytes are abundant in remyelinated cortical lesions  

Myelin protein expression in oligodendrocytes was examined by immunohistochemistry for 

MBP and CNP and in situ hybridization for PLP mRNA (Fig. 11E-H). In healthy control 

cortex, the density of MBP positive oligodendrocytes was 22.8 ± 15 cells/mm2 and of CNP-

positive oligodendrocytes 38.52 ± 11.5 cells/mm2 [mean ± SD] (Fig. 14). Cortical lesions with 

remyelination at the border were characterized by a low oligodendrocyte density in the 

demyelinated plaque center (RM/dc) and a high number of oligodendrocytes at the 

remyelinated lesion border (RM/b) (Fig. 11E-F, Fig. 14A-B) (MBP: RM/dc: 15.4 ± 12.9; 

RM/b: 62.2 ± 37.5 cells/mm²; CNP: RM/dc: 26.4 ± 12.7 RM/b: 79.6 ± 29.3 cells/mm²). The 

density of MBP and CNP expressing oligodendrocytes in remyelinated cortical areas was 

significantly higher compared with control and normal appearing cortices (MBP: control vs. 

RM/b: p= 0.0097; NAC vs. RM/b: p=0.0424; CNP: control vs. RM/b: p= 0.0002; NAC vs. 

RM/b: p=0.0061). In situ hybridization for PLP mRNA confirmed higher numbers of 

oligodendrocytes at the border of remyelinating lesions (Fig. 11H) compared with NAC (Fig. 

11G). No significant differences in oligodendrocyte cell counts in the demyelinated centers 

(dc) of cortical lesions in RM and DM cases were found. In demyelinated cortical lesions, cell 

densities of MBP- and CNP-positive oligodendrocytes were significantly reduced compared 

with control cortex (MBP: control: 22.8 ± 15 cells/mm2 [mean ± SD]; DM/dc: 5.2 ± 6.4 

cells/mm²; p=0.0047; CNP: control: 38.5 ± 11.5; DM/dc: 4.4 ± 3.1 cells/mm²; p=0.0002). In 

contrast to remyelinating lesions, MBP positive oligodendrocytes were not present in higher 

numbers at the lesional border (DM/b). However, a considerable population of CNP positive 

oligodendrocytes were aligning around the sharply demarcated cortical plaques (MBP: 

control: 22.8 ± 15 cells/mm2 [mean ± SD]; DM/b: 12.8 ± 15.5 cells/mm²; CNP: control: 38.5 

± 11.5 cells/mm²; DM/b: 62.9 ± 21.9; CNP control vs. DM/b p=0.0312). Some of these CNP-

positive oligodendrocytes had a dark, condensed nucleus suggestive of apoptosis. However, 

the occurrence of caspase-mediated apoptotic cell death could no be confirmed by 

immunhistochemistry for activated caspase-3. No significant differences in cell densities were 

found between NAC and control cases (MBP: control: 22.8 ± 15 cells /mm2 [mean ± SD]; 

NAC: 20.8 ± 14.8 cells/mm²; CNP: control: 38.5 ± 11.5 cells/mm2 [mean ± SD]; NAC: 29 ± 

19.5 cells/mm²).  
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A 

 

B 

 

Figure 14 MBP- and CNP-positive cells (A) in the lesional centre and (B) at the lesional border. (A) Within 

demyelinated cortical lesions MBP- and CNP-positive cells were essentially absent (DM), whereas the 

oligodendroglial cell density within RM lesions and in the NAC was similar to controls. (B) The borders of 

demyelinated lesions mostly had a sharp edge with almost no MBP-positive cells, however, some cases had a 

large population of CNP-positive cells lining the lesional border (DM vs. control: p<0.05). Significant numbers 

of MBP- and CNP-positive cells accompanied cortical remyelination (control vs. lesional border: MBP: p<0.01, 

CNP: p<0.001). No difference in oligodendroglial cell density was observed between controls and normal 

appearing MS cortex.  

Abbreviations: cntr: control; RM dc: demyelinated lesional centre of cortical lesions with remyelination; DM dc: 

demyelinated lesional centre of cortical lesions without remyelination; RM b: lesional border of cortical lesions 

with remyelination; DM b: lesional border of cortical lesions without remyelination; NAC: normal appearing 

cortex 
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3.2.1.4. Remyelination of cortical lesions is more extensive than remyelination of white matter 

lesions 

The degree of remyelination of lesions in the cortical grey matter and the white matter was 

compared using the same arbitrary score for both grey and white matter lesions: (0) no 

remyelination: demyelinated cortical or white matter lesions with sharp lesional borders (Fig. 

15A, B); (1) remyelination at the border of the lesions (Fig. 15C, D); (2) substantial, but 

“patchy” remyelination throughout the lesion (Fig. 15E, F); (3) almost complete and complete 

remyelination (“shadow plaque”) (Fig. 15G, H). In total, 246 white matter and 217 cortical 

lesions were examined in 33 MS patients. A significantly higher degree of remyelination was 

observed in cortical as opposed to white matter lesions suggesting a higher propensity for 

remyelination in the grey matter (Fig. 16A; Table 5 (WM: 1.32 ± 1.07 [mean ± SD]; cortex: 

1.89 ± 0.97; p<0.0001). On a case per case basis, cortical remyelination was judged more 

extensive than white matter remyelination in 27/29 MS cases (Fig. 16B; Table 5). Given our 

electron microscopical results, some of the 50 blocks with NAC may in fact be completely 

remyelinated which further strengthens the results above.  

 

Table 5 Extent of remyelination in cortical and white matter lesions  

White matter Cortex 

RM 

Score 

Number of 

lesions 

% of lesions 

(100%=246) 

RM 

Score 

Number of 

lesions 

% of lesions 

(100%=217) 

0 68 27.6 0 23 10.6 

1 76 30.9 1 47 21.7 

2 57 23.2 2 79 36.4 

3 45 18.3 3 68 31.3 

 

Figure 15 Evaluation of remyelination in the white matter and in the cortical grey matter. (A,C,E,G) White 

matter lesions with (A) no remyelination, (C) a thin rim of remyelination at the lesional border; (E) substantial 

remyelination; (G) nearly complete remyelination. (B,D,F,H) Cortical grey matter with (B) complete 

demyelination; (D) thin remyelination at the edge of the cortical plaque; (F) substantial remyelination; (H) nearly 

complete remyelination. Scale bars: A-H = 500µm; A-H inset = 100µm 
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Figure 15 
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A 

 

p<0.001 

 

B 

 

 

 

Figure 16 (A) Degree of remyelination in the cortical grey and in the white matter using a semiquantitative 

score: (0) no remyelination, (1) little remyelination at the lesional border, (2) substantial remyelination, either 

confluent or patches of remyelination, and (3) nearly complete remyelination. 246 white and 217 grey matter 

lesions were examined. Remyelination was more extensive in cortical as compared with white matter lesions 

(p<0.0001). (B) Degree of remyelination in the cortex and in the white matter of the 33 MS patients examined. Y 

values refer to the average scores of remyelination assigned to all white matter and cortical lesions of an 

individual patient. Remyelination of cortical lesions was consistently more extensive in all patients examined 

(RM scores in WM vs. cortex per case, p<0.0001; paired t-test). Patient 7 had no white matter lesion, patients 18, 

19, and 21 had no apparent cortical lesions (NAC) and patient 28 with spinal cord involvement had no lesions in 

the brain tissue samples available.  

Abbreviations: RM: remyelination; WM: white matter; NAC: normal appearing cortex 
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3.2.2. Synaptic remodelling in the cerebellar dentate nucleus and in the pons in patients 

with chronic MS 

3.2.2.1. Regression and remodelling of synapses in the cerebellar dentate nucleus 

3.2.2.1.1. Elimination of synapses is synapse and neuron specific and occurs irrespective of 

demyelination  

The dentate nucleus consists of large, spherical neurons embedded in compact neuropil deep 

in white matter of the cerebellum (Fig. 17A). Except for very few small interneurons, most of 

these neurons receive a prominent synaptic input from glutamic acid decarboxylase (GAD)-

positive axons originate from the Purkinje cells of the cerebellar cortex (Fig. 17B1). These 

GABAergic axon terminals are relatively large and characteristically decorate the somata and 

stem dendrites of the neurons. Other axon terminals are evenly distributed throughout the 

neuropil. These are GAD-negative, react with synaptophysin (SYN)-antibodies and are 

relatively small (Fig. 17B2). According to the literature, the latter represent the glutamatergic 

(excitatory) afferents which originate from pontine nuclei and provide collateral input to the 

dentate nucleus, before terminating as mossy/climbing fibers in the cerebellar cortex.  

In demyelinated regions of the dentate nucleus, the characteristic arrangement of synapses on 

the soma and on stem dendrites as described above was found to be lost. In sections stained 

with antibodies against both antigens synaptophysin and GAD, the number of axo-somatic 

synapses was severely reduced on many, but not all neurons in demyelinated parts of the 

dentate nucleus (Fig. 17C, E). At stem-dendrites, the reduction in synaptic numbers was less 

pronounced but composed of smaller size of boutons (Fig. 17E). In contrast, synapses on the 

peripheral dendrites appeared well preserved and showed a small size similar to what was 

seen in controls (Fig. 17C). The density of the neuronal cell bodies seemed unaltered in the 

demyelinated zones, though the cell size of many neurons appeared smaller than in controls 

(Fig. 17C). If estimated in ‘central cell sections’ (i.e., planes including the cell nucleus), 

diameters were on average smaller, i.e. less than half of what is found in controls (Fig. 17C). 

Detachment of the axo-somatic synapses affected adjacent cells differently (Fig. 17C inset; 

Fig. 17E). Thus, synaptic density was different also on neurons, which appeared to be 

“similarly affected”.  

Beyond the borders of demyelinated plaques the reduction of axo-somatic synaptic contacts 

affected subpopulations of the nerve cells (Fig. 17D), which also showed atrophy (Fig. 17D, 

F). Neurons being almost devoid of axo-somatic synapses occurred in close vicinity to 

neurons with a substantial number of axo-somatic innervations. No gradual change in density 
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of the axo-somatic boutons on sequential neurons was observed. This indicates that neurons 

are affected individually, but not collectively within a certain region. Therefore, the density of 

axo-somatic synaptic boutons was quantified in demyelinated areas (plaque zones) beyond the 

plaque borders in the same sections (periplaque zones) and on neurons from patients whithout 

demyelination (no plaque) in the dentate nucleus, respectively. There was a significant 

reduction of synaptophysin-positive “boutons” in the demyelinated dentate nucleus of 9 MS 

patients (number of synaptophysin-positive boutons on the soma membrane, control: 32.5 ± 

2.5; in plaque zones: 4.6 ± 2.9 [mean±SD]; p<0.0001; t-test). The reduction was less 

consistent but significant in periplaque zones of the same cases (number of synaptophysin-

positive boutons on the soma membrane, control: 32.5 ± 2.5; periplaque (pp): 14.10 ± 8.1; 

[mean±SD]; p<0.0001; t-test). Interestingly, axo-somatic innervation was also reduced in the 

dentate nucleus of the other 9 MS patients in whom no demyelination was detected in the 

cerebellum (dentate nucleus without demyelination (no p):19.2 ± 6.2 [mean±SD]; p<0.0001; 

t-test) (Fig. 18). These findings suggest that the described type of synaptic regression is 

characteristic for the cerebellar dentate nucleus of patients suffering from MS, irrespectively 

of whether the postsynaptic neurons are located in demyelinated zones or not. 

 

 

Figure 17 Conspicuous loss of axo-somatic GAD-positive synapses on subpopulations of atrophied neurons, 

while GABAergic and non-GABAergic innervation of the dendrites is apparently preserved in the dentate 

nucleus of MS patients. (A) In the non-MS control, neuronal somata are densely covered by synaptic endings 

(axo-somatic synapses) as are the stem dendrites (axo-stem dendritic synapses), while on peripheral dendrites 

(peripheral-dendritic synapses) synapses are less crowded and diffusely distributed. (B1) Synapses are GAD-

positive predominantly on the soma and near the soma (B2) whereas the synaptophysin-positive boutons are 

evenly distributed along the whole surface membrane of the dendritic branches. (C) Rarefied synaptic contacts 

on neurons within the plaque in the dentate nucleus from an MS patient. Note that all neurons appear atrophied, 

though the degree of their axo-somatic denervation varies considerably (inset). (D) Synaptic contacts outside a 

demyelinated plaque. Note that the neurons are smaller, axo-somatic synaptic and axo-stemdendritic synaptic 

contacts are largely lost on a subpopulation of neurons (arrows). (E) Selective loss of axo-somatic and soma-near 

synaptic contacts on neurons located in a demyelinated plaque (white arrows). Synaptic contacts in the neuropil 

resemble the density found in periplaque zones and control brains (black arrows; compare it with F and B2). (F) 

Selective detachement of the axo-somatic synaptic from neurons outside of a plaque. Axo-somatic synapses are 

entirely lost, whereas synaptic boutons at the stem dentrites and in the surrounding neuropil are better preserved 

(arrows). (A, B2; C-F) immunohistochemistry for synaptophysin; (B1) immunohistochemistry for GAD.  

Scale bars: A, C-D = 100µm; B1-2, E-F = 20µm; D inset = 20µm  
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Figure 17  
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Figure 18 Regression of axosomatic synaptic contacts is region specific in the dentate nucleus in MS. The 

density of axo-somatic synapses is reduced on the majority of neurons independent of, whether the dentate 

nucleus is affected by demyelination. The density of SYN-positive “boutons” is clearly reduced in MS cases 

with demyelinated dentate nucleus within the plaque (p) (p<0.0001) and outside of the plaque (pp) (p<0.0001). 

The reduction of SYN-positive “boutons” is less pronounced in the dentate nucleus from MS cases where no 

cerebellar demyelination was detected (no p) (p<0.0001). Each point on the graph indicates the mean value of 

synaptic clusters of 5 neurons/patient quantified. Horizontal bars in the graph represent the mean. 

Abbreviations: cntr: non MS healthy subjects; p: plaque area of dentate nucleus from MS brain; pp: periplaque 

area of dentate nucleus from MS brain; no p: dentate nucleus from MS brain where no plaque was detected.   
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3.2.2.1.2. Dissociation of axo-somatic and axo-stem dendritic synapses 

Electron microscopy confirmed the absence of synaptic junctions on most cell bodies and on 

many stem dendrites in the demyelinated zones. The demyelinated region was identified in 

semithin sections in the dentate nucleus of an MS patient. Direct contacts between pre- and 

postsynaptic elements were largely missing on the neuronal somata (Fig. 19A). Instead, thin 

processes and lamellar extensions of fibrous astrocytes covered and insulated somata and 

large dendritic profiles from the surrounding neuropil (Fig. 19 F-G). Most presynaptic 

elements but all postsynaptic contact structures on the soma and on the stem dendrites were 

lost and replaced by the glial structures described above. Short and thin microglial extensions 

or lamelles of astrocytes engaged the boutons and intruded into the synaptic cleft separating 

the presynaptic endfeet from the active zone on the soma membrane (Fig. 19B-C). Rarely, 

synaptic boutons or axonal varicosities persisted, remained in perisomatic or peridendritic 

position and contained some synaptic vesicles. Nevertheless, active zones were usually absent 

and replaced by glial structures (Fig. 19E). In rare cases, axonal boutons containing synaptic 

vesicles and mitochondria (presynaptic-like structures) had remained in contact with the soma 

membrane of a neuron and were enclosed in the glial covering of the soma. Here, the 

intercellular clefts were characteristically widened (Fig. 19A-D). However, in the 

demyelinated zone of the dentate nucleus most synaptic boutons were separated from soma 

membranes by glial processes. The presence of bundled intermediate filaments (GFAP-type; 

see Fig. 19C) suggested that many of these processes originated from astrocytes, while some 

resembled microglial processes (Fig. 19B). These findings suggest the loss of axo-somatic 

and axo-stem dendritic synapses via dissociation of the contact structures by glial processes in 

the dentate nucleus of patients with MS. 

3.2.2.1.3. Lysosomal degradation of synapses  

In intact synapses, synaptic vesicles -independent of the transmitter type used- form a 

population with only small variations in size, while their packing density varies considerably 

and is highest near the synaptic junction (active zone). Applying the terminology of Gray 

(1959) to human dentate nucleus, type-I synapses showing the typical asymmetry of 

paramembraneous postsynaptic densities (PSD) are predominantly situated on peripheral 

dendritic branches (Fig. 20A-B), while type-II synapses with symmetrical contact structure 

and thin PSDs were mainly located on stem dendrites and cell bodies (Fig. 20B). In all 

positions, the majority of synapses showed synaptic vesicles that were accumulated near by 
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the active zone (Fig. 20A-C). These findings were identical in the dentate nucleus of our 

control case and the MS patient. 

In the MS patient, however, some synapses exhibited distinct synaptic morphology. In such 

boutons, synaptic vesicles appeared aggregated, closely abutted and dislocated from the active 

zone (Fig. 20D-E). More vesicles fused into one selectively at the periphery of the vesicle 

pool (Fig. 19C; 20D-E). Wealth of secondary lysosomes was seen in such neuronal structures 

and in processes of microglial and astroglial cells (Fig. 19B, D, G). Autophagosomes 

(cytolysosomes) were recognised in dendrites (Fig. 20G). These were loaded with degradation 

products that appeared as aggregates of synaptic vesicles and occasionally as remnants of 

postsynaptic elements. Residual bodies were observed in myelinated axons which otherwise 

appeared intact (see intact node of Ranvier in Fig. 20F). Such findings indicate that - in 

addition to local storage of degradation products in neurons and glial cells - axons with intact 

intracellular transport systems may remove residues of synaptic regression from demyelinated 

plaques and periplaque zones (Fig. 20F, H). These finding suggest lysosomal degradation of 

the presynaptic elements, e.g., phagolysosomes in microglia and astrocytes as well as the 

transport of residual bodies in intact and in part myelinated axons in the dentate nucleus in 

MS. The Type I and the type II synaptic contacts with largely normal structure were preserved 

particularly, which were situated on the peripheral dendrites.  
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Figure 19 Presynaptic elements are displaced from the neuronal soma membrane by glial processes in a 

demyelinated area of the dentate nucleus. (A) Somata with only few axo-somatic synaptic contacts (arrows). A 

large part of the soma membrane is entirely devoid of axo-somatic synapses. Intercellular spaces neighbour the 

synaptic boutons (asterisks). (B) Thin microglia processes (arrows) engage synaptic boutons (Sy) on the soma. 

Intercellular space detaches pre- and postsynaptic surface membranes (asterisks). (C) Wide intercellular space 

(asterisks) separates the synaptic junction. Large one-membrane coated features (arrows) indicate a process of 

vesicle reduction. (D) Glial process with lysosomal degradation of synaptic content (Ly) andjacent to an axo-

somatic synapse (Sy). An astroglial process (arrows) grows into the peri-synaptic intercellular space (asterisk). 

(E) Lamelles (AL) and filamentous processes (AF) of astrocytes separate synaptic boutons (Sy) from the soma 

membrane. (F) Stacks of astrocytic lamelles insulate the largely synapse-free soma from the surrounding 

neuropil. A subsurface cistern (Sc) firms the intercellular connections. Under the glial scar synaptic contact 

structures persist, such as a synapse without synaptic vesicles (Sy) and a free/vacant postsynaptic density (§) 

without presynaptic bouton. (G) Astrocytic lamelles (AL) separate the neuropil from the neuronal somata. Note 

that in contrast to the few axo-somatic synaptic features, synapses in the neuropil (Sy) appear considerably better 

preserved. In part, synapses of the neuropil undergo lysosomal degradation (arrows). Abbreviations: N: neuron; 

Sy: synapse; AF: astrocytic filaments; AL : astrocytic lamellae; Sc: subsurface cistern; Ly: lysosome; §: 

postsynaptic density. Magnifications: A: 9000x; B, D-E, G: 40000x; C: 60000x; F: 15000x 

 

Figure 20 Synaptic contacts on the dendrites are largely preserved and the majority of structures appear 

normal in the dentate nucleus in MS. In a population of synapses, presynaptic vesicles are reduced by lysosomal 

degradation and transported as autophagosomes in dendrites and as residual bodies in intact, myelinated axons in 

the plaque and in the periplaque region. (A) Intact divergent complex synapse with homogeneous vesicles that 

are located close to the active zone. (B) Normal appearing type I and type II synapse and (C) convergent 

complex synapse with heterogeneous vesicles (black arrows) and double membrane coated features (white 

arrows) that might represent spinules from the postsynaptic elements or fnger-like processes of astrocytes. 

Swollen glial processes surround the synapse and contain pools of glycogen granula. (D) Presynaptic bouton 

with accumulation (v) and selective fusion of the vesicles (arrows) at the periphery of the vesicle pool in a 

selected bouton. The bouton appears without any postsynaptic density, thus not forming synaptic contact. Note 

the glycogen pools in processes of surrounding astrocytes and a morphologically normal synapse (Sy) that is just 

situated beside. (E) Synaptic contact with presynaptic vesicles (v) that are focally accumulated and dislocated 

from the active zone (§). Vesicles are heterogenous indicative of fusion (arrows) and subsequent degradation at 

the periphery of the vesicle pool. (F) Secondary lysosomes (Ly) and a multivesicular body (MVB) transported in 

intact axons at the Node of Ranvier. (G) Remodelling process in a stem dendrite. Primary lysosomes (MVB) and 

secondary lysosomes (Ly) with recognisable cellular structure elements such as condensed lamellae of 

endoplasmic reticulum (inset) appear in a dendrite (D), which is surrounded by intact synapses (Sy). (H) 

Lysosome transported in myelinated axons in the periplaque region. Abbreviations: Sy: synapse; D: dendrite; v: 

synaptic vesicle; §: postsynaptic density; Ly: lysosome; MVB: multivesicular body; Ax: axon. Magnifications: 

A, H: 60000x; B: 50000x; C-F: 40000x; G: 15000x; G inset: 80000  
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Figure 20 
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3.2.2.2. Remodelling of synapses in the pontine nuclei 

3.2.2.2.1. Preserved density of the synapses in the demyelinated pons 

The density and spatial arrangement of synapses were compared between patients with 

demyelinated plaques and controls in the pons. Synaptic endings were identified by applying 

antibodies for SYN and GAD. The localisation and extent of demyelination was highly 

variable among the MS patients studied. Therefore, distribution patterns of synapses in 

demyelinated regions were compared with the contralateral nuclei in the same sections, if 

these were not affected by demyelination and with comparable sections of non MS control 

brains. In controls, the distribution of SYN-positive synapses was more or less diffuse and of 

moderate density. Axo-somatic and axo-stem synapses did not accumulate on any type of 

pontine neuron (indicative of axo-somatic synaptic contacts), especially not those made by 

GAD-positive boutons. The even distribution of synapses did not seem to change within or 

near demyelinated areas in the pontine nuclei of MS patients.  

3.2.2.2.2. Synaptic reorganisation in the demyelinated lesions of the pons 

In contrast to immunohistochemistry, electron microscopy revealed distinct morphological 

changes of synapses in demyelinated regions of the pontine nuclei. The overall density of 

synapses appeared smaller than in the pons of control brain. In numerous axonal boutons, 

synaptic vesicles appeared aggregated and dislocated from the active zone (Fig. 21A-D, G). 

At the periphery of the vesicle pools, vesicles often had a larger size (Fig. 21C-D). Beside the 

synaptic vesicles or profiles of smooth endoplasmic reticulum which were bounded by single 

membranes, there were profiles surrounded by double-membranes indicating coated 

lysosomes or finger-like protrusions of astroglia, which engulfed the boutons (Fig. 21G-H). 

These structures indicate that part of the synaptic vesicles might be enclosed in autophago-

(cytolyso)somes. Since numerous structures were found that had previously been designated 

in the literature as ‘free’, ‘vacant’ or ‘vacated postsynaptic densities’ (Fig. 21E-H), other 

synapses might have completely lost their presynaptic boutons. Multivesicular bodies - a form 

of primary lysosomes - were often seen in axonal processes and dendrites (Fig. 21A, E). 

Cytolysosomes - secundary lysosomes - and residual bodies containing remnants of 

presynaptic elements appeared to be transported in morphologically intact axons, which were 

seen in demyelinated zones but also beyond the borders of the plaques (Fig. 21A, H, K). 

Processes of filamentous astrocytes embraced the synaptic structures (Fig. 21E-H). Free 

postsynaptic densities appeared opposed to astrocytic processes (Fig. 21F). Degradation 

products accumulated in astroglial and microglial cells (Fig. 21H). Subsurface cistern 
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associations firmed the intercellular connections between neurons and astroglial cells (Fig. 

21H). Thus, despite the failure to detect structural changes by histology in the pons of MS 

patients, electron microscopy provided evidence that subpopulations of synapses may undergo 

regression and remodelling in demyelinated regions in the pons. Synaptic regression is 

suggested by (i) accumulation of primary lysosomes in presynaptic elements and in 

preterminal axons and dendrites; (ii) focal aggregation of vesicles and their incorporation in 

cytolysosomes; (iii) lysosomal degradation of presynaptic structures (from subpopulations of 

synaptic vesicles to whole boutons) and finally by (iv) the appearance of vacant postsynaptic 

densities. Additionally, removal of regressive synapses occurs as intraaxonal transport of 

residual bodies in intact, myelinated axons. Accumulation of residual bodies in glial processes 

suggests a contribution of astroglial (and rarely also microglial) cells to the remodelling of 

synaptic contacts.   

 

Figure 21 Regression and remodelling of synapses in the demyelinated pons. (A-B) Large amount of synaptic 

vesicles are accumulated (v) in the boutons. These focal accumulations are often accompanied by (A) 

multivesicular bodies (MVB) at the nerve endings and (B) are often seen without postsynaptic densities. (C-D) 

Other presynaptic endings exhibit heterogeneous vesicles that are focally accumulated (v) and selectively fused 

(arrows) at the periphery of the vesicle pool. The entire vesicle aggregate is dislocated from the active zone (§). 

(E-F) Postsynaptic contact structures are seen of which presynaptic partners are missing from all of the synaptic 

positions. (E) The free/vacant postsynaptic densitites (§) of a complex synapse is accompanied by processes of 

filamentous astrocytes (AF), which are situated in perisynaptic positions. (F) Filamentous astroglial process (AF) 

neighbours and covers a vacant postsynaptic density (§) of a dendrite. Note that the endoplasmic reticulum (ER) 

in the dendrite is anchored to the plasma membrane, which is an unusual position for this intracellular 

compartment. (G) At least 3 synaptic structures are seen in close vicinity. On the left top synaptic vesicles are 

focally accumulated (v) and dislocated from the active zone (§). On the bottom there is a selective fusion (white 

arrow) and lysosomal degradation (black arrow) of the synaptic vesicles. No postsynaptic contact structure, 

which could belong to that presynaptic ending is seen. Processes of the astrocytes in the perisynaptic positions 

show pools of glycogen grains. On the right a vacant postsynaptic density (§) is situated on a dendrite. H) A 

dissolved synaptic junction appears as a vacant postsynaptic density, the vesicles appear eliminated into 

phagosomes (arrow), which an astrocyte transports away from the active zone. J) An innervated dendrite is 

surrounded by glycogen grains containing astrocytic processes. Synaptic boutons show dense aggragation of 

vesicles. Middle part of the dendrite (outlined) undergoes formation of an autophagosome. K) Secondary 

lysosomes (Ly) are transported in an axon (Ax?) or a dendrite.  

Abbreviations: Ax: axon; Ly: lysosome; v: synaptic vesicle; §: postsynaptic density; MVB: multivesicular body 

Sy: synapse; m: mitochondria; D: dendrite; AF: astrocytic filaments; ER: endoplasmic reticulum; Sc: subsurface 

cistern   

Magnifications: A-D: 40000x; E: 60000x; F, G; K: 40000x; H-J:15000x  
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Figure 21 
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4. DISCUSSION 

The aim of our study was to delineate the fundamental histopathological characteristics of 

multiple sclerosis in the grey matter. Our work identified extensive cortical demyelination 

associated with marginal inflammation in the vast majority of patients with chronic MS. 

However, we found evidence for T-cell/macrophage-mediated active inflammatory 

demyelination in the cortex of patients with early MS. In these early cortical lesions, the 

density of infiltrating T-lymphocytes was similar, but the extent of acute axonal damage was 

substantially reduced compared with white matter lesions of the same patient. Furthermore, 

detailed microscopical analysis revealed remyelination in cortical lesions. Remyelination was 

observed more frequently and was found to be more extensive in cortical than white matter 

lesions. Neurons appeared, though atrophied, well preserved in number in all grey matter 

areas examined. Light microscopic and subsequent ultrastructural analysis provided evidence 

for disease specific synaptic changes in the dentate nucleus and remodelling of synaptic 

contacts in the pontine nuclei even in late stages of MS.   

4.1. Extensive demyelination and little inflammation in cortical lesions in chronic MS 

4.1.1. Humoral immunity may be responsible for subpial lesions  

Seven different types of cortical MS plaques have been identified according to their 

topography (Kidd et al., 1999). We used a modified system, where we distinguished subpial, 

intracortical and leucocortical demyelination in 33 chronic MS brains (Peterson et al., 2001). 

Cortical demyelination was extensive with the vast majority of lesions being situated directly 

beneath the pia mater. However, this type of cortical lesion was absent from biopsy tissues 

with early MS. The features of subpial lesions, i.e. ribbon-like demyelination, suggest a 

pathogenetic role for diffusible factors (e.g. immunglobulins or inflammatory mediators) 

derived from the meninges or the cerebrospinal fluid (CSF).  

In the CSF several discrete oligoclonal IgG bands can be visualized in about two third of MS 

patients (Adams and Victor’s Neurology, 7th edition). Clonal accumulation of B-cells and 

plasma cells in the CSF (Monson et al., 2005; Ritchie et al., 2004; Owens et al., 2003) and 

ectopic B-cell follicle-like structures with germinal centres have been confirmed in the 

meninges of patients with secondary progressive MS (Serafini et al., 2004). Centroblasts that 

are usually restricted to the lymph nodes were shown in the CSF of MS patients (Corcione et 

al., 2004). The CNS shows propensity to act as a B-cell fostering environment in numerous 

neurological disorders (Uccelli et al., 2005). Molecules regulating B-cell homing and survival 
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are produced in the CNS. As an example, B-cell activating factor of the TNF family (BAFF) 

was shown to play a substantial role in B-cell maturation, survival and production of 

immunoglobulin (reviewed in Kalled, 2005). Studies on BAFF transgenic mice indicated that 

overexpression of BAFF is associated with the development of autoimmune pathology 

(Mackay and Tandye, 2004). We showed diffuse reactive astrogliosis in cortex of chronic MS 

patients. Recent work identified astrocytes as a source of BAFF and suggests that local 

production of BAFF in the CNS promotes B-cell maintenance in MS (Krumbholz et al., 

2005).  

B-cells and immunoglobulins mediate inflammatory demyelination in a proportion of white 

matter lesions in early MS (Lucchinetti, 2000, Lucchinetti, 1996). The number of T-cells and 

macrophages infiltrating the lesions is gradually decreasing over time, whereas B-cells and 

plasma cells become prominent in white matter lesions in late MS (Rodriguez and Lennon, 

1990). Thus, the immune patterns may not remain constant during the disease course 

(Lassmann et al., 2001), but merge into a B-cell mediated final common pathway. Since 

subpial lesions are not present in early but frequent in late MS, subpial demyelination may be 

a late event occurring during disease evolution by accumulation of plasma cells and 

immunglobulins in the CSF and in the meninges.  

4.1.2. Minor inflammation may support repair mechanisms in cortical lesions 

We showed reduced inflammation and mild, diffuse astrogliosis in large number of chronic 

intracortical MS plaques. Inflammation and/or gliosis may be deleterious and/or beneficial. 

Pathological analysis of active MS lesions documented ongoing remyelination in the presence 

of inflammatory demyelination (Ozawa, 1994). Thus, the inflammatory response may 

contribute to both injury and repair (Brück et al., 2003b). On the one hand, cytokines and 

growth promoting factors released by reactive astrocytes and microglia as part of the acute 

inflammation were shown to promote endogenous remyelination (Compston, 2004). In an 

animal model of chronic demyelination, induction of acute inflammation resulted in 

myelination of chronically demyelinated axons by myelination competent precursor cells 

(Foot and Blakemore, 2005). On the other hand, inflammatory cells were also shown to create 

an environment in which surviving oligodendrocyte precursors fail to differentiate and 

remyelinate. Transforming growth factor beta1 (TGF-ß1), a cytokine produced by immune as 

well as other cell types can stimulate astrocytes to express a surface protein, Jagged 1. This 

protein binds to Notch receptors and in turn inhibits the maturation of the oligodendrocytes 

(John et al., 2002). We showed astrogliosis in demyelinated, remyelianted and in the normal 
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appearing cortex in MS. However, the dense glial scar that is typical for matter plaques was 

not observed in the cortex. The reason for the diffuse astrocytic reaction in MS cortex may be 

explained by axonal (Wallerian) degeneration secondary to subcortical MS plaques, 

transneuronal degeneration from certain demyelinated brain regions; persistence of astrocytes 

in the remyelinated lesions (Lassmann, 1983), general astrocytosis due to soluble 

inflammatory factors, such as tumor necrosis factor-α (TNF-α) (Fontana et al., 1980; Selmaj 

et al., 1990). In accordance with the good propensity for remyelination that we observed in 

cortical lesions, our results suggest that little inflammation with less tissue destruction and 

mild astrogliosis may be beneficial, providing a favourable milieu for tissue repair in the 

cortex of MS brains.  

4.2. Inflammatory demyelination in cortical lesions in early MS 

Cortical lesions are hardly detected by imaging methods in vivo, and inflammation is 

marginal in chronic cortical MS plaques. This raised the question, whether the cortex is at all 

affected by inflammatory demyelination in early MS. We investigated brain biopsy samples 

containing cortical tissue and found cortical demyelination in 8 (23%) out of 35 MS patients. 

The average disease duration from first symptom to biopsy was about 6 weeks. Hence, the 

cortical lesions were probably among the initial lesions in the disease of these patients. 

Despite the inflammatory intracortical lesions, only one patient showed purely cortical 

symptoms, i.e. symptomatic epilepsy and aphasia.  

4.2.1. Adaptive immune response and pathological heterogeneity in cortical lesions 

We could distinguish two types of early cortical lesions; cortico-subcortical (leucocortical) 

and small intracortical lesions. Only one lesion type was found in an individual patient. 

Cortico-subcortical lesions were identified as T-cell and macrophage-mediated demyelination 

(immune pattern 1). Small perivascular lesions were reminiscent of complement-mediated 

white matter lesions (immune pattern 2). Despite no complement deposition on the vessel 

walls and on the myelin, equally no B-cells or plasma cells were detected in these lesions; the 

concentric perivascular pattern of demyelination may suggest a pathogenetic role for soluble 

factors. Thus, heterogeneity of immunmechanisms (Lucchinetti, 2000, Lucchinetti, 1996) may 

lead to different types of cortical lesions in early MS.   

We could show cellular adaptive immunity, namely a pronounced T-cell response in the 

cortex of patients with early MS. The density and the composition of the T-cell infiltrates did 
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not vary between the early cortical and white matter lesions in a given patient. This suggests 

that the cortex is subjected to a similar destructive inflammatory process as the white matter. 

However, the extent of acute axonal damage was significantly lower in cortical compared 

with white matter lesions in all patients examined. Furthermore, the majority of early cortical 

lesions were “destructive” cortico/subcortical lesions. Acute injury to neurons was identified 

by chromatolysis/tigrolysis, swollen cytoplasm and displaced nucleus (Nissl, 1892). In 

chronic cortical plaques however, the neuronal density and tissue cytoarchitecture appeared 

largely preserved. Thus, the cortical microenvironment may suppress the inflammatory 

process and/or may be more resistant against the parenchymal damage caused by 

inflammation.  

4.2.2. Macrophages may convey axonal damage in the lesions 

We showed cells with microglia morphology in the cortex, whereas large number of foamy 

macrophages in the white matter in biopsy cases with early MS. Furthermore, the relative 

density of MRP 14-expressing macrophages/microglia was markedly reduced in cortical 

compared with white matter lesions. Since T-cell density and composition was nearly 

identical in cortical and white matter tissue, a substantial role for MRP 14-immunreactive 

macrophages in acute axonal damage must be assumed. The MRP 14 antigen is a calcium 

binding protein of the S-100 family (Goebeler et al., 1993; Roth et al. 1993). The expression 

of MRP 14 is restrained to the maturation stage of neutrophil granulocytes and monocytes. 

Monocytes express MRP 14 early in their activation and tissue invasion until their terminal 

differentiation to macrophages (Hessian et al., 1993). Numerous studies suggest a detrimental 

role for infiltrating macrophages in neurodegeneration. Macrophages produce pro-

inflammatory cytokines like tumor necrosis factor alpha (TNF-α), IL-1 and IL-6, which were 

found neurotoxic in vitro (Chao et al., 1995). Macrophages were shown to express inducible 

nitric oxid synthase (iNOS) and cyclo-oxygenase (COX-2) in MS lesions (Rose et al. 2004; 

Hill et al., 2004). Glutamate was shown to be secreted in large quantities by macrophages 

(Piani et al., 1993), thus leading to excitotoxic tissue damage. Macrophages were found 

immunreactive for glutaminase and co-localised with dystrophic axons in MS brain (Werner 

et al., 2001). Macrophages express matrix metalloproteinase-12 (MMP-12) that was shown to 

be selectively expressed during active demyelination in MS plaques (Vos et al., 2003). This 

proteinase was found to directly cause axonal transection and to facilitate leukocyte migration 

through the blood brain barrier (Newman et al., 2001). Therefore, absence of foamy 
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macrophages and minor population of early activated, MRP14-expressing cells may 

contribute to the little acute axonal injury in the MS cortex.   

4.2.3. Grey matter BBB prevent monocyte extravasation in cortical lesions 

We found no immune-histological evidence for blood brain barrier disruption in all cortical 

MS lesions studied. By contrast, we showed leakage for immunoglobulin in all white matter 

plaques. BBB breakdown is a known characteristic of the white matter MS lesions. 

Abnormalities of blood vessel tight junction were shown in active and chronic white matter 

lesions as well as in the normal appearing white matter (Kirk et al., 2003; Plumb et al., 2002). 

This suggests either structural and/or functional differences in BBB between the cortex and 

the white matter, which becomes apparent in early MS.  

According to our results, grey matter vessels may also provide a selective barrier to invasion 

of monocytes. What makes grey matter BBB impermeable for immunoglobulins and rather 

selectively for monocytes, when at the same time the BBB in the white matter gets 

compromised? No differences in structural characteristics of CNS vessels in grey versus white 

matter have been reported so far. However, even when the endothelial BBB becomes “leaky”, 

leukocyte recruitment into the CNS remains controlled (Greter et al., 2005; Engelhardt et al., 

1998; Zeine and Owens, 1992). Adhesion molecules, chemokines and chemokine receptors 

determine patterns of cell type and tissue-specific homing of lymphocytes. For a given 

leukocyte, extravasation is mediated by: a rolling determinant (selectin-selectin binding 

carbohydrate moiety), a leukointegrin-activator (chemokine-chemokine receptor), a mediator 

of arrest (leukointegrin-CAM pair) and chemokine-chemokine receptor interaction that drives 

diapedesis (Foxman, 1997; Campbell 2000). Any of these determinants may be differentially 

expressed in the grey matter, thus selectively preventing the transendothelial trafficking of 

monocytes. Mice that lacked either the chemokine CCR2 or one of its ligands CCL2 were 

shown to be relatively resistant to experimental autoimmune encephalomyelitis (EAE), the 

animal model of MS. These mice lacked monocytes, but had a T-cell response equivalent to 

wild type mice in the CNS lesions (Fife et al., 2000; Izikson et al., 2000; Huang et al., 2001). 

Similarly, mice that lacked CCL1 showed reduced monocytes in the spinal cord lesions and 

thus developed a milder EAE than controls (Rottman et al., 2000).  

Interestingly, during diapedesis across the inflamed BBB, leukocytes migrate via a 

transcellular pathway through the endothelial cells and leave the tight junctions intact 

(Engelhardt, 2004). Nevertheless, tight junction associated proteins might also be 

differentially expressed and provide a firmer physical barrier in the cortex than in the white 
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matter. This would explain why grey matter BBB is not leaky for serum proteins such as IgG. 

Such candidate proteins might be the platelet-endothelial cell adhesion molecule-1 (PECAM-

1). PECAM-1 deficient mice with EAE have increased CNS infiltrates with prolonged 

vascular permeability (Graesser et al., 2002). Blocking another tight junction associated 

molecule, the junctional adhesion molecule-A (JAM-A) inhibits leukocyte diapedesis in vitro, 

and prevents leukocyte entry during meningitis in vivo (Del Maschio et al., 1999; Lechner et 

al., 2000). At last, astrocytes - as a third BBB component beside the endothelial cell and the 

basal membrane - might “sense” the grey matter milieu and display another phenotype (e.g. 

characterised by expression of different glutamate transporters) and exert different functions. 

4.2.4. Neurons may provide an “immunosuppressive” milieu 

Factors that may downregulate the inflammatory response in the cortex may involve also 

neuronal properties. Recent work demonstrated that neuronal FasL induced cell death of 

CD8+ encephalitogenic T-lymphocytes in vivo and in vitro (Flugel et al., 2000). However, we 

have not seen apoptotic lymphocytes in our samples in any of the early cortical plaques. We 

found a diffuse activation of microglia and astroglia in early cortical lesions. Processes of 

activated microglia embraced neuronal cell bodies. Both glial cells are known to be potent 

MHC II antigen presenting cells (Hirsch et al., 1983; Frei et al. 1987). Recent reports have 

shown that neurons keep microglia in a quiescent state by local interaction between the 

microglia receptor CD200 and its ligand in the intact CNS (Neumann, 2001; Hoek, 2000). 

Moreover, neurons suppressed IFN-gamma mediated induction of MHC II expression in 

surrounding glial cells, in particular microglia and astrocytes (Neumann, 1996). Paralysis of 

neuronal electric activity by the neurotoxin tetrodotoxin (TTX) (Neumann, 1998), by 

lysolecithin induced focal demyelination, by axonal transsection (Prof. Komoly- personal 

communication) or the administration of glutamate receptor antagonist (Neumann, 1998) 

restored the induction of MHC II molecules on microglia and astrocytes. However, injury to 

neurons was also shown to result in a prompt change in their gene expression pattern, in this 

way stimulating the neighbouring microglia and astroglia for protection and repair (Minghetti 

and Levi, 1998). Moreover, neurons might secrete protective neurotrophins, anti-

inflammatory cytokines and chemokines, which downregulate MHC II expression on 

microglia cells (Neumann et al., 1998). Therefore, the physiological properties and the 

function of neurons may provide an “immunosuppressive” milieu and thus protect the cortex 

from potentially severe inflammatory damage. 
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4.3. Cortical lesions show a high propensity for remyelination 

4.3.1. Normal appearing cortical areas may in part be remyelinated 

We found cortical demyelinated lesions showing signs of remyelination in more than 95% 

(28/29) of patients with long standing MS. Remyelination was identified on the light 

microscopical level by MBP immunohistochemistry and visualization of thin, irregular myelin 

sheaths. However, the gold standard for the detection of remyelination is electron microscopy, 

where the thinner myelin sheath after remyelination is reflected in a higher g-ratio (axon/fiber 

diameter). Our results on the light microscopical level were confirmed by electron 

microscopy, where remyelinated cortical lesions showed a significantly higher g-ratio. 

Surprisingly, the g-ratio in areas of light microscopically normal appearing cortical grey 

matter was significantly higher than in control patients. This suggests that part of the normal 

appearing cortical grey matter in MS patients may in fact be remyelinated.  

4.3.2. Oligodendrocytes are present and express myelin proteins in the majority of cortical 

plaques  

In our sample, 23/28 patients (82%) with cortical remyelination showed increased numbers of 

MBP and CNP positive oligodendroglial cells at the lesional borders compared with normal 

appearing cortex and control cortex. MBP protein is normally not found in the perinuclear 

cytoplasm of adult, non myelinating oligodendrocytes, but is observed in early stages of 

myelination and remyelination (Ozawa et al., 1994). High numbers of CNP, but not MBP 

positive cells were observed at the border of demyelinated cortical lesions. This indicates that 

cells of the oligodendrocyte lineage are present, but apparently do not progress to remyelinate 

the plaque centre. Accordingly, only few CNP and MBP positive cells were observed in the 

centres of demyelinated cortical lesions, indicating a loss or lack of recruitment of 

oligodendroglial cells. PLP mRNA positive myelinating cells were predominantly found at 

the lesional borders of remyelinated cortical lesions.  

4.3.3. Cortical microenvironment is permissive for remyelination  

We studied more than 200 white matter and cortical lesions from 33 MS patients. We showed 

that the scores for remyelination are consistently higher in cortical grey matter. Remyelination 

as assessed by light microscopy was more extensive in the grey than in the white matter 

lesions. The reasons for the extensive cortical remyelination observed in our study are not 

clear so far. Around 40% of white matter lesions show signs of remyelination in a series of 

autopsy cases providing evidence for extensive endogenous remyelination (Barkhof et al., 
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2003). However, incomplete remyelination restricted to the lesional edge is frequent, and 

considered to be due to a multitude of inhibitory soluble and tissue factors: a lack of 

appropriate growth factors, exhaustion of oligodendrocyte progenitors by repeated waves of 

demyelination, impaired progenitor differentiation, extensive gliosis, and a lack of axonal 

permissiveness have been put forward (Chang et al., 2002; Charles et al., 2002, Franklin, 

2002).  

In the grey matter, the distinct microenvironment could modulate the response of 

oligodendrocyte progenitors to demyelination (Baracskay et al., 2002). Alternatively, 

oligodendrocytes with distinct physiological properties may reside in the cortex (Noble et al., 

2003). Neuronal activity has been reported to enhance oligodendrocyte precursor proliferation 

(Barres and Raff, 1993). The close neighbourhood to neurons might provide a different, 

favourable mixture of growth factors. Axons may be more permissive for remyelination close 

to the neuronal cell body. Furthermore, the less destructive tissue pathology observed in grey 

matter lesions could lead to better preserved axons, a higher number of preserved 

oligodendrocyte progenitors, and a greater propensity towards remyelination.  

4.4. Region specific remodelling of synaptic contacts in the dentate nucleus and in the 

pontine nuclei 

We found equal synaptophysin signal density in chronic cortical MS plaques and in cortex of 

non-MS control brains. This result suggests either preserved density of presynaptic boutons or 

reappeared boutons reinnervating the preserved postsynaptic partner neurons in the lesions. 

Furthermore, we extended our observation that frontal cortex is often involved in chronic MS 

by showing that remodelling of synaptic contacts may take place in motor relay stations, such 

as the dentate nucleus and the pontine nuclei. Rather than being induced by local (humoral) 

factors, MS-related forms of synaptic remodelling may – at least in part - be based on 

transsynaptic and transneuronal effects of focal demyelination (Blinzinger and Kreutzberg, 

1968). The structural changes observed suggest that at least two different mechanisms may be 

involved: (i) the so-called “synaptic stripping” (Blinzinger and Kreutzberg, 1968), that has 

been shown to be selective and reversible during ontogenetic development of spinal 

motorneurons (Conradi and Ronnevi, 1975) and as a retrograde reaction to experimental 

injury of axons (Moran and Graeber, 2004; Olmos et al.; 1989) and (ii) autophagy and 

lysosomal degradation of synaptic elements (Wolff et al. 1981; Gallyas et al., 1980) and 

subsequent transport of residual bodies in intact axons.  
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4.4.1. Region specific synaptic remodelling in the dentate nucleus 

Our immunhistochemical studies showed that the characteristic axo-somatic innervation 

pattern was eliminated selectively in patients with chronic MS; i.e. the population of large 

GAD-positive boutons forming axo-somatic synapses were lost from a subpopulation of 

neurons, while GABAergic and non-GABAergic innervation of their dendrites was apparently 

preserved. These observations indicate that in MS patients, neurons of the dentate nucleus 

may selectively lose input from the inhibitory feedback-loop provided by Purkinje cell axons. 

Other synapses are apparently preserved, especially those that are located on peripheral 

dendrites and are preferentially composed of small GABAergic and non-GABAergic boutons. 

The conditions, which might induce axo-somatic denervation remain obscure. The fact that 

we haven’t found cell death of Purkinje cells (not shown) fits to the concept that axo-somatic 

synapses in the dentate nucleus did not undergo anterograde (Wallerian) degeneration. Also, 

demyelination of the respective Purkinje cell axons is probably not the reason. Although 

dissociation of axo-somatic synapses (synaptic stripping) was regularly found in demyelinated 

parts of the dentate nucleus, it also occurred in periplaque regions and – most importantly - 

also developed in cases without recognizable demyelination in the cerebellum. Thus, synaptic 

regression in the dentate nucleus might be induced by other conditions, which are determined 

by the disease itself. Humoral agents are not very likely inducers, because adjacent neurons 

would react differently. However, suspension of the cerebellar function is more likely. 

Alterations in connectivity may take place due to damage to any part of the cortico-ponto-

cerebellar tracts. This may explain the consistent reduction of axo-somatic innervation in the 

dentate nucleus of every MS patients studied. On the other hand, many MS patients are 

immobilized for long periods of time, i.e. vestibular stimuli and cerebellar compensatory 

functions are reduced to a minimum. Unfortunately, there are no comparable studies available 

on effects of long-term immobilisation on cerebellar nuclei.  

4.4.2. Displacement of synapses upon postsynaptic induction in the dentate nucleus: synaptic 

stripping 

Four modes of synaptic regression have been reported so far. Two of them occur as an 

irreversible consequence of cell death of pre- and/or postsynaptic neurons and/or degeneration 

of cell processes. The other two mechanisms, i.e. synaptic stripping and lysosomal 

degradation of predominantly the presynaptic elements lead to reversible disconnection of 

synaptic junctions (Wolff et al.; 1995). By electron microscopy, we showed dissociation of 

the synaptic boutons from the soma membrane by processes of glial cells in the dentate 
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nucleus. Dissociation of the pre- and post-synaptic structures is accompanied by several 

structural changes, such as local impairment of membrane adhesion, expansion of the 

intercellular space and insulation of the soma membrane with stacks of compacted astrocytic 

lamellae. This way of synaptic regression is reminiscent of the process that has been initially 

described on the soma of developing motoneurons (Conradi and Ronnevi, 1975) and 

experimentally induced by axotomy (Blinzinger and Kreutzberg, 1968). According to the 

latter authors, facial nerve transection leads to proliferation and activation of microglial cells 

near the cell bodies of motorneurons in the facial nucleus. Microglia cells seem to be involved 

in separating the axonal boutons from the soma membrane of the regenerating motoneurons. 

Intercellular clefts dilate following activation of extracellular proteases (e.g. tissue 

plasminogen activator) in this way providing space for astrocytic processes that take over the 

perineuronal positions previously occupied by presynaptic elements of axo-somatic synapses 

and microglial cells. Interestingly, the disconnection of axo-somatic synapses is selective, i.e. 

it is restricted to excitatory synapses on motorneurons and reversible when neuronal function 

in circuits is restituted. This mode of synaptic disconnection is not confined to pathological 

conditions, but may occur during development of spinal motoneurons (Conradi and Ronnevi, 

1975) as well as on pyramidal neurons in the developing cerebral cortex (Bähr and Wolff, 

1985). Synaptic stripping was also shown in the arcuate nucleus, were detachment and 

reappearance of the axo-somatic boutons select for GABA-ergic synapses. Nevertheless, 

conditions responsible for the synaptic stripping are obviously different. In the arcuate 

nucleus it is inducible by oestrogen in a concentration-dependent manner (Cardona-Gomez et 

al., 2000; Naftolin et al., 1996; Parducz et al., 1993; Olmos et al.; 1989), while in the dentate 

nucleus humoral induction is improbable (see above). Considerable differences that exist 

among various experimental models do not help in answering the question, how the 

detachment of boutons from soma membranes is induced in the dentate nucleus in MS. If it 

occurred ‘on postsynaptic demand’ (as it seems to be the case in a retrograde axotomy 

reaction) projections from the dentate nucleus to the thalamus might be disturbed. 

Unfortunately, we did not have the necessary tissue material available to describe synaptic 

contacts in ventrolateral thalamic nuclei to examine this possibility.  

4.4.3. Displacement of synapses upon presynaptic induction in the dentate nucleus: 

autophagy and lysosomal degradation of synaptic components  

The fourth and also reversible way of structural modifications of synaptic junctions is 

autophagy and lysosomal degradation of predominantly presynaptic elements (Wolff et al.; 
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1989; Wolff et al.; 1981; Gallyas et al., 1980). We showed in the demyelinated dentate 

nucleus the selective fusion and autophagy of synaptic vesicles surrounded by voluminous 

astroglial processes that contained glycogen grains and bundles of astroglial intermediate 

filaments (GFAP-positive structures). Lysosomal degradation may be induced by invagination 

of parts of presynaptic elements, spinules from the postsynaptic dendrite or finger-like 

processes from astrocytes. This stage may be characterised by astrocytic swelling and increase 

in S100-immunreactivity. It is followed by the formation of autophagosomes including 

synaptic vesicles or mitochondria apparently leading to reduction in synaptic function. During 

this regressive process the surrounding glia is frequently characterised by increased GFAP 

immunreactivity and pools of glycogen grains (Wolff et al.; 1995). Lysosomal degradation 

may either reduce the transmitter content or the capacity of release by removing synaptic 

vesicles and/or parts of the presynaptic specialisations. It may lead to empty presynaptic 

elements, i.e. the transmitter release may be completely suspended. These changes are 

reversible as long as the interneuronal connection persists. However, lysosomal degradation 

may also include postsynaptic structures and, thus, can result in disconnection and removal of 

both, pre- and postsynaptic densities, thus elimination of whole synapses (Wolff et al.; 1995).  

4.4.4. Preserved synaptic density in the demyelinated pons 

Synaptic density was histologically characterised by the number of synaptophysin-

immunoreactive puncta per area of tissue section. This was largely unaltered in the 

demyelinated zones of pons, though some structural changes were observed. Occasionally, 

rarefied and/or focally aggregated synaptophysin-positive material indicated that synaptic 

vesicles might be redistributed in subpopulations of axonal boutons. Such changes were not 

only seen in demyelinated plaques. It was also seen in periplaque zones and in the 

contralateral parts of the respective nucleus but not in the control cases. Thus, we did not find 

any consistent histological change that could be attributed to demyelination in the pontine 

nuclei. Nevertheless, it is possible that the reduced synaptic density and focal accumulation of 

synaptic signals in the nuclei contralateral to the lesion resulted from transsynaptic changes 

mediated by communicating fibres that are crossing the midline of the pons.  

4.4.5. Multicellular dynamic synaptic reorganisation in the demyelinated pons 

Despite the scarce histological findings, electron microscopy provided evidence for structural 

changes by which synaptic remodelling could be identified in the demyelinated pons. 

Numerous synaptic boutons contained large aggregates of vesicles that were dislocated from 

the active zones of the synaptic junctions. Such vesicle aggregates probably can not 
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participate in synaptic transmission and reduce the probability of the quantal release in 

response to action potentials. In addition, numerous free/vacated postsynaptic densities were 

found in the demyelinated pons. Such vacant postsynaptic densities may either be formed, 

when pre-and postsynaptic elements of a synapse have been dissociated from each other or 

the presynaptic element underwent regression while the postsynaptic one persisted (synaptic 

regression ‘upon presynaptic demand'). Alternatively, there is postsynaptic demand for 

formation of new synapses; and in this latter case the free/vacant paramembraneous densities 

may serve as target sites for the formation of new synapses, when compatible presynaptic 

offers are available. Such a situation occurs during ontogenesis, when formation of synaptic 

contacts depends on the spatio-temporal matching of the potential pre- and postsynaptic 

elements. Pre- and postsynaptic elements, however, may be formed independently or each in 

different numbers. In this case, vacant postsynaptic densities appear and axon varicosities are 

found without synaptic contacts (Wolff et al. 1995; Dammasch et al., 1986; Wolff and 

Wagner 1983). Astrocytes play an active role to match the pre- and the postsynaptic contact 

offerings forming new intercellular connections. From static electron microscopic pictures 

one can thus suspect that synaptic reorganisation is going on in the pons in MS, which is 

orchestrated and accompanied by astroglial cells, as suggested (according to the Tripartite-

Synapse Concept) by Haydon et al. (2001). Correspondingly, voluminous processes of 

astrocytes appeared nearby axonal varicosities and opposite to free/vacant paramembranous 

densities. On the one hand, intermittent astrocytes may prevent reinnervation on adjacent 

vacant postsynaptic densities but on the other hand, astrocytes match axonal varicosities and 

free postsynaptic densities and assist in forming new synaptic relationships via connecting the 

pre- and postsynaptic partner neurons. The presence of abundant primary lysosomes (e.g. 

multivesicular bodies) in pre- and postsynaptic elements and in the perisynaptic astroglia, 

however, indicate that all three partners may be involved in regulating synaptic reorganisation 

upon the functional demand of the neuronal network.  
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5. SUMMARY 

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous 

system. MS has traditionally been considered a disease affecting the well myelinated white 

matter areas. Recent insights into axonal pathology in MS raised the attention to the 

significance of grey matter lesions, which have not been well characterised yet. Thus, the aim 

of our study was to delineate the fundamental histopathological aspects of MS lesions in the 

grey matter.  

Our work identified extensive cortical demyelination associated with marginal inflammation 

in autopsy brain tissue of patients with chronic MS. In addition, we found evidence for T-

cell/macrophage-mediated active inflammatory demyelination in cortex in biopsy brain tissue 

of patients with early MS. A direct comparison of the inflammatory activity in white matter 

and cortical lesions of the same patients revealed that the density and composition of T-

lymphocytes was similar in early grey and white matter lesions. Foamy macrophages were, 

however, essentially absent; the blood brain barrier appeared intact, acute axonal injury was 

less in the cortical in contrast to the white matter lesions. While acute neuronal injury was 

apparent in a proportion of early lesions, neurons with synaptic boutons were well preserved 

in the chronic grey matter plaques.   

We examined the frequency and extent of remyelination in cortical and white matter lesions 

of patients with chronic MS. Cortical remyelination was identified light microscopically by 

the presence of irregularly arranged and less densely packed myelin sheaths, and confirmed 

by electron microscopy. A direct comparison of the extent of remyelination in white matter 

and cortical lesions of the same patients revealed that remyelination of cortical lesions was 

consistently more extensive. In addition, g-ratios of fibers in the “normal appearing cortex” 

yielded values consistent with remyelination. 

Preserved neuronal cell bodies and synaptic boutons as well as the extensive remyelination in 

chronic MS cortex suggested efficient repair and adaptive mechanisms that may take place in 

the grey matter during the course of MS. Therefore, the density, topography and morphology 

of synapses were investigated in the cerebellar dentate nucleus and in the nuclei of the pons 

by light and electron microscopy. There was a substantial loss of axosomatic synaptic 

contacts in the dentate nucleus in all MS patients examined. Synapses on the stem and 

peripheral dendrites, however, appeared well preserved. Subpopulations of neurons were 

affected to a variable degree. Dissociation of boutons from the soma membrane occurred 
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irrespective of the lesional border; moreover, it could be found in sections, where no 

demyelinated lesions were recognised. In the pontine nuclei the density of synapses appeared 

largely preserved. The structural changes observed suggested the mechanisms that may be 

involved: (i) “synaptic stripping” that has been shown in various experimental models to be 

selective and reversible, (ii) autophagy and lysosomal degradation of synaptic elements and 

subsequent transport of residual bodies in intact axons, which has been shown during 

ontogenetic development to be a mode of reorganisation of synaptic contacts.     

Our data imply that inflammatory demyelination occurs in cortex even in early MS. Cortical 

de- and remyelination are frequent and the propensity to remyelinate is high in cortical MS 

lesions. Remodelling of synaptic contacts may take place even in late stages of the disease. 

Further studies are required to determine the conditions under which regeneration can be 

elicited and supported, thus providing functional improvement of patients suffering from MS.  
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