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Scaffolding

Reacting to criticism concerning the lack of
motivation in his writings, Carl Friedrich Gauss
remarked that the architects of great cathedrals do
not obscure the beauty of their work by leaving the
scaffolding in place after the construction has been
completed.

adapted from: Meyer, C. D. (2001). Matrix Analysis and Applied

Linear Algebra. SIAM, PA.
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Abstract

All models are wrong; only some are useful. (G. E. P. Box)

In this project, we have analyzed some useful models, based on an approximation intro-
duced by G. E. P. Box; hence, the next few chapters map an odyssey wherein Box and his
adage go hand in hand. In a nutshell, one- and two-sample test statistics are developed
for the analysis of repeated measures designs when the dimension, d, can be large com-
pared to the sample size, n (d > n).

The statistics do not depend on any specific structure of the covariance matrix and
can be used in a variety of situations: they are valid for testing any general linear hy-
pothesis, are equally applicable to the design set up of profile analysis and to the usual
multivariate structure, are invariant to an orthogonal linear transformation, and are also
valid when the data are not high dimensional.

The test statistics, a modification of the ANOVA-type statistic (Brunner, 2001), are
based on Box’s approximation (Box, 1954a), and follow a χ2

f -distribution. The estima-
tors, the building blocks of the test statistics, are composed of quadratic and symmetric
bilinear forms, and are proved to be unbiased, L2-consistent and uniformly bounded in
dimension, d. This last property of estimators helps us in the asymptotic derivations in
that we need not let both n and d approach infinity. We let n → ∞, while keep d fixed,
such that the approximation of the distribution of the test statistic to the χ2 distribution
remains accurate when d > n, or even d >> n.

The performance of the statistics is evaluated through simulations and it is shown
that, for n as small as 10 or 20, the approximation is quite accurate, whatever be d. The
statistic is also applied to a number of real data sets for numerical illustrations.
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Chapter 1

Introduction and Motivation

1.1 Introduction

Repeated Measures Designs (RMD) are one of the most frequently studied
and applied designs in a variety of applied fields. A design in which the same
experimental unit is repeatedly observed under multiple treatments is called
repeated measures design. This is but a broad concept and in practice a re-
peated measures design is laid out in a variety of ways, from a very simple
set up of one-way repeated measures design to a very complex framework of
longitudinal data or some other mixed model set up. There may be more
than one treatments(factors) in the design and the repeated measurements
may be observed on one or more of the factors. The treatments may be con-
ditions, occasions, time points and the units may be individuals, animals, cell
cultures etc.. Due to its wide application in the realm of applied research, a
repeated measures design is conceived of, and planned in a number of ways.
It is basically a set up that can be used to plan any standard experiment.
Mostly, any design with single observation can also be planned with repeated
observations (Crowder and Hand, 1990, Ch. 1). For example, a paired design
is a simple formulation of a repeated measures design where same unit is ob-
served twice. A cross-over design is another example of a repeated measures
design (Hinkelmann and Kempthorne, 2005, Ch. 19). Similarly, a factorial
experiment and a covariance experiment may be laid out in a repeated mea-
sures set up (Stuart et al, 1999, Ch. 31). A split-plot experiment is a typical
example of a repeated measures design wherein the main-plot factor contains
a set of repeated measurements taken on the sub-plot factor (Hinkelmann and
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2 CHAPTER 1. INTRODUCTION AND MOTIVATION

Kempthorne, 1994, Ch. 13). A comprehensive introduction to the analysis
and different plans of RMD is Crowder and Hand (1990) and applications to
several real-life, mostly medical, experiments is given by Hand and Taylor
(1987).

The most attractive feature of a repeated measures design is the potential
advantages it offers. For example,

(1) Maximum error control (Winer et al, 1991, Ch. 4)

(2) Economy of subjects

(3) Study of patterned behavior of individuals over different treatments,
conditions or time points, and

(4) Data more reliable than in a cross sectional study.

For details, see Davis (2002, Ch. 1). Although the advantages of an RMD
outweigh its disadvantages, there are some issues to be seriously taken care
of before planning an RMD. Since the data constitute repeated observa-
tions under essentially the same conditions, hence correlated observations,
the independence assumption is no longer viable. At times, the structure
of correlation matrix can be extremely complicated and the issue needs a
careful treatment and a good amount of knowledge. Second, the data may
not be complete due to one reason or another. An incomplete or unbalanced
repeated measures design is much more cumbersome to deal with than a
design which does not have repeated observations.

1.2 Classical Approaches of Analysis

Suppose Xk = (Xk1, . . . , Xkd)
′ i.i.d.∼ Nd(µ,Σ), Σ > 0, denotes a vector of

d repeated measurements on kth individual, where k = 1, . . . , n. A unique
feature of a repeated measures design is that the data obtained from such
a design can be analyzed in a variety of ways. Some comprehensive refer-
ences for the classical analysis of repeated measures designs are Crowder and
Hand (1990), Lindsey (1999), Stuart et al (1999, Ch. 31), Davis (2002) and
Maxwell and Delaney (2004). A special, detailed account of longitudinal
data analysis can be found in Diggle et al (2002) whereas more complicated
repeated measures models are discussed in Vonesh and Chinchilli (1996) and
Davidian and Giltinan (1995). Broadly, the analysis of a repeated measures
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design can be carried out using both univariate and multivariate techniques.
The two approaches basically differ on the assumption about the underly-
ing covariance matrix, Σ: univariate approach requires Σ to be compound
symmetric (Definition B.6) while multivariate approach only requires that
Σ > 0. This project basically addresses the problem of analyzing repeated
measures data when d > n, i.e, when the data are high dimensional. Both the
univariate and multivariate approaches have limitations in dealing with the
high dimensional data. Following is a brief review of these two approaches,
augmented with their shortcomings when the data are high dimensional.

1.2.1 Univariate Analysis

Let Xk be as defined above. If Σ is compound symmetry (see Definition B.6),
i.e. if all variances are equal and all covariances are equal, we call the model
to be univariate repeated measures model. Interestingly, the advantage the
assumption of compound symmetry offers and the problem it generates move
quite confluently in the univariate analysis: if the assumption is tenable, then
univariate analysis is more powerful than the multivariate approach (Stuart
et al, 1999, Ch. 31), but in practice it is very rare that this assumption is
met. Note that, in general, the univariate approach can be validly applied to
analyze high dimensional data (d > n), but it is this restrictive assumption,
put together with the sensitivity of univariate approach to the normality
assumption (Stuart et al, 1999, p 719), that hinders a wide spectrum of
application of this approach.

Huynh and Feldt (1970) showed that compound symmetry assumption is
sufficient but not necessary for the valid univariate analysis. The necessary
condition is that Σ is circular. A matrix Σ = (σij)

d
i,j=1 is circular if, ∀ i 6= j,

σ2
i +σ2

j−2σij = 2λ, where λ is any constant. The assumption of circularity is,
in practice, more frequently studied in the form of sphericity. Any circular
matrix can be transformed to a spherical matrix using the transformation
CΣC′ = Σy where C(d−1)×d is a matrix of constants with rank d − 1 and
y = Cx refers to the new transformed variables. Now, if Σ is circular, then
Σy = λI, where any matrix of the form λI is called spherical matrix (Winer
et al, 1991; Kirk, 1982). Since Σ is mostly unknown, we need to know if the
sphericity condition is satisfied. Mauchley (1940) derived a test of sphericity
for the one sample case which was extended to the multi-sample case by
Mendoza (1980). The inevitability of sphericity condition in the univariate
analysis has been extensively studied. For some very useful references, see
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Collier et al (1967), Mendoza et al (1976), Huynh and Mandeville (1979),
Keselman et al (1980), Keselman (1998) and Keselman et al (2000). Several
studies have shown that, by all practical means, the sphericity assumption is
met in practice only in the form of compound symmetry assumption (Maxwell
and Delaney, 2004, p 541).

In general, when the sphericity assumption is not satisfied, the probability
of type I error associated with the F test seriously inflates. Box (1954a,b)
introduced a correction for this bias, computed as

ε =

[
tr(Σy)

]2

(d− 1)tr(Σ2
y)

=
(
∑

i λi)
2

(d− 1)(
∑

i λ
2
i )

(1.1)

where Σy is as defined above and λis are the eigenvalues of Σy. Further,
1

d−1
≤ ε ≤ 1. Some estimators of ε are suggested by Geisser and Greenhouse

(1958), Greenhouse and Geisser (1959), and Huynh and Feldt (1976). Muller
and Barton (1989) study the power of the F test using these approximations
for n > d. For more details and applications of these estimators, see Kirk
(1982, p 259) and Winer et al (1991, pp 253-54).

The restrictive sphericity assumption of univariate approach is replaced
with reasonable flexibility on Σ by the recently developed linear mixed model
approach. Since the subjects in a repeated measures setting are usually
random, the repeated measures model can also be considered as a mixed
model with repeated measures factor as fixed. The mixed model approach
accommodates several structures of Σ, including compound symmetry. But
when d > n, only a limited number of these structures can be entertained
since, otherwise, Σ cannot be estimated (Davis, 2002, Ch. 6).

1.2.2 Multivariate Analysis

The main advantage of multivariate analysis is that we need not specify
any structure of Σ. The only assumption we need is that Σ > 0. There-
fore, for one sample analysis, we assume Xk ∼ N (µ,Σ), Σ > 0, where
Xk = (Xk1, . . . , Xkd)

′, k = 1, . . . , n, are independent, identically distributed
random vectors, each of d repeated measures on the same individual. Usu-
ally, we are interested to test the hypothesis H0 : Tµ = 0 where Tr×d is
a matrix of contrasts with rank r < d. The maximum likelihood estima-
tors of µ and Σ are X and n−1

n
Σ̂, respectively, where, X = 1

n

∑n
k=1 Xk and

Σ̂ = 1
n−1

∑n
k=1(Xk −X)(Xk −X)′. The hypothesis, H0, can be tested using



1.3. THE CASE OF HIGH DIMENSIONAL DATA 5

Hotelling’s T 2 statistic, usually expressed as F statistic as

F =
n− d + 1

(n− 1)(d− 1)
T 2 (1.2)

where T 2 = n(TX)′(TΣ̂T′)−1(TX). Further, (n − 1)CΣ̂C′ ∼ Wd−1(n −
1,CΣC′), where W denotes the Wishart distribution (Davis, 2002, Ch. 3).
This one sample problem can be extended to a ≥ 2 populations. For details,
see Stuart et al (1999, Ch. 31). Note that, the formulation of the hypoth-
esis matrix T covers a wide variety of general linear hypotheses. One such
formulation is to test profile hypothesis. There is a vast literature on the
multivariate analysis, including profile analysis. For more details, see John-
son and Wichern (2002), Rencher (1995) and Davis (2002). Timm (2002)
has discussed the profile analysis in detail under the set up of general linear
model based on Gauss-Markov theorem whereas Srivastava (2002, Chs. 6,
7) gives extensions of simple MANOVA to other designs including factorial
experiments. Davis (2002, Ch. 4) compares different multivariate techniques
regarding level control and power.

Clearly, for the one sample case above, Σ̂ > 0 ⇒ n−1 > d. This indicates
that the T 2 approach totally collapses when the data are high dimensional.
There are other multivariate approaches, for example Wald-type statistic,
which do not totally break down in this case but they suffer from other short-
comings. A comparison, based on simulation results, is given in Chapter 2 to
substantiate the idea that it is only the ANOVA-type statistic (see Section
2.1) that can be repaired to be used for the analysis of high dimensional data.

1.3 The Case of High Dimensional Data

Both the univariate and multivariate approaches have problems in dealing
with the data from a repeated measures design when d > n. The univari-
ate approach, as mentioned above, strongly depends on the assumption of
sphericity which is rarely satisfied in practice (Stuart et al, 1999, p 719-720).
The multivariate approach, although does not need specification of the co-
variance structure, is totaly unworkable when d > n, since the estimated
covariance estimator is no longer non-singular (Stuart et al, 1999, p 716 and
passim).

The present project addresses the problem of high dimensional data for
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the analysis of repeated measures designs. A modification to the ANOVA-
type statistic (Brunner, 2001), based on Box’s approximation (Box, 1954a),
is proposed. The statistics for one- and two-sample designs are derived. The
one sample statistic is derived in Chapter 2 and is extended for the two
sample case in Chapter 3. The statistics, in both cases, are evaluated us-
ing simulation studies, supplemented with numerical illustrations. The data
used for these illustrations are provided in Appendix C. Appendix A gives
the general results, mainly regarding quadratic and bilinear forms, which are
frequently used in the derivations of the statistics, whereas some other useful
results are collected in Appendix B.

1.4 Motivating Examples

Following are a few motivating examples depicting the need for some durable
and practical solution to deal with the high dimensional data. The data
and the experimental description for the first two examples are taken from
Brunner, Domhof and Langer (2002). The first example is a typical one
where the data are not high dimensional but is included to show that the
test statistics derived in this project are also applicable when the data are
not high dimensional. The experiment for the third example is reported in
Jordan et al (2004). The data sets are provided in Appendix C.

Time Curves of α −amylase in Saliva

Time Duration

α 
−

am
yl

as
e[

U
/m

l]

0

500

1000

1500

2000

8h 12h 17h 21h 8h 12h 17h 21h

Monday Thursday

Figure 1.1: Time Profiles for α-Amylase Study

Example 1.1 (α-Amylase in Saliva) The objective of this experiment
is to study the effect of time on the α-amylase activity in saliva. The α-
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amylase level in saliva is repeatedly measured for each of 14 individuals in
the experiment. The repeated measurements on each subject are taken at
four time points per day, 8 a.m., 12 a.m., 5 p.m. and 9 p.m., and the
experiment is repeated on two days, Monday and Thursday. Fig. 1.1 shows
the profiles of the subjects on all four time points for both days. The data
for this experiment is given in Section C.1 and the analysis is carried out in
Section 2.5.2. 4

Example 1.2 (Body Weight of Wistar Rats) The body weight of male

Body Weights of Wistar Rats

Time(Weeks)

W
ei

g
h

t[
g

]

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 1 3 5 7 9 11 13 15 17 19 21

Placebo Drug

Figure 1.2: Time Profiles for Body Weight Study

Wistar rats was observed over a period of 22 weeks to assess the toxicity of
a drug. A group of ten animals was given a placebo, while a second group of
ten was given a high dose of the drug. The time curves of the body weights
for both groups are shown in Fig. 1.3. The main question to be addressed is
whether the body-weights of the two test groups differ in their evolution over
time. The data for this experiment is given in Section C.2 and the analysis
is carried out in Section 3.5.2. 4

Example 1.3 (Sleep Disorder) The aim of this experiment was to investi-
gate the activity of Prostaglandin-D-synthase (β-trace) in relation to human
sleep. The variable of interest, serum concentration, was measured on each
of 10 men and 10 women at 18 time points. Measurements were taken every
4 hours for three consecutive nights classified as Normal Sleep(NS), Total
Sleep Deprivation(TSD) and Recovery Night(RN).

The data are given in Section C.3 and is shown in Fig. 1.4. Considering
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Serum Concentration
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Figure 1.3: Time Profiles for Sleep Disorder Study

only women group (one sample), the data are first analyzed in Section 2.5.1.
Then the complete data are analyzed in Section 3.5.1. 4

1.5 Review of Literature

Analysis of high dimensional data, be it for repeated measures designs or
otherwise, has long been an uncharted territory of research. It is relatively
recently that a systematic, target driven research has emerged significantly.
Recent advances in the analysis of proteomics and microarray data have gal-
vanized the need for techniques to analyze such data. Apart from a very
few examples, most of the research work has surfaced in the scientific body
of literature in the past decade or so. Numerous researchers have addressed
the problem and have meaningfully contributed to the development of the
theory. But this recent development typically addresses the problem of mul-
tivariate set up of the high dimensional data. Since, the mainstream effort in
this dissertation concerns the analysis of high dimensional repeated measures
data, therefore, these developments are not of direct interest for us. But, is
briefly discussed in Chapter 4, the statistics, developed in this project, can
be appropriately modified to test the multivariate hypothesis. It can also be
verified that our statistic, in this particular case, outperforms the available
competitors, in several aspects. Since we shall not deal with this multivariate
case in detail, therefore, the relevant references are only listed in the follow-
ing without giving any further details.
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A one sample statistic for high dimensional multivariate data is discussed
in Läuter et al (1998) and Läuter (2004), based on the idea of spherical dis-
tributions (Tai-Kai and Yao-Ting, 1990). Both one and two sample statistics
are discussed in Srivastava (2007) and Srivastava and Du (2008) whereas
only two sample statistics are considered by Depmster (1958) and Bai and
Saranadasa (1996). The multivariate general linear model for high dimen-
sional data is considered in Srivastava and Fujikoshi (2006) and a multivariate
extension for one-way MANOVA is given by Schott (2007).

It is stated above that the classical multivariate approach is unworkable
for high dimensional data since the estimated covariance matrix is singular.
An alternative approach to deal with high dimensional data is, therefore,
to find a reasonable, well-conditioned estimator of the large dimensional co-
variance matrix. Recently, there have been some attempts to address this
question. For example, see Ledoit and Wolf (2002), Ledoit and Wolf (2004),
Srivastava (2005), Birke and Dette (2005), and Schäfer and Strimmer (2005).

Attempts have also been made to study the classical ANOVA F test when
the number of treatments is large; two recent references include Bathke (2002)
and Akritas and Arnold (2000). Similarly, non-parametric analysis of high
dimensional data are discussed by Bathke and Harrar (2006a,b) and Har-
rar and Bathke (2006). A comprehensive review of a variety of methods for
the analysis of multivariate data, high dimensional or otherwise, is given in
Bathke et al (2008).
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Chapter 2

The One-sample Statistic

In this chapter, the modified ANOVA-type statistic for the one sample prob-
lem will be derived.

2.1 The ANOVA-type Statistic

Let Xk = (Xk1, . . . , Xkd)
′ be a vector of d repeated measurements taken on

kth subject/unit where k = 1, . . . , n. The data from such an experiment may
be arranged as shown in Table 2.1. We assume that

Xk
i.i.d.∼ N (µ,Σ) (2.1)

where µ = (µ1, . . . , µd)
′ is the population mean vector and

Σd =




σ2
1 σ12 . . . σ1d

σ21 σ2
2 . . . σ2d

...
...

. . .
...

σd1 σd2 . . . σ2
d




is the covariance matrix. For the derivation of the proposed test statistic,
no specific form of Σ is assumed. However, the results simplify immediately
in case some structure is imposed on Σ, e.g. compound symmetric structure
(Definition B.6).

For model Xk ∼ N (µ,Σ),Σ > 0, the null hypothesis to be tested is
H0 : Hµ = 0 where H is the hypothesis matrix. The matrix H can be for-
mulated in different settings depending on the objectives of the experiment.

11
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Table 2.1: The General Data Table: One-sample Case

1 . . . s . . . d

1 X11 . . . X1s . . . X1d
...

...
. . . . . .

...
k Xk1 . . .

¨
§

¥
¦Xks . . . Xkd

...
...

. . . . . .
...

n Xn1 . . . Xns . . . Xnd

Means X .1 . . . X .s . . . X .d

Specifically, we may set H = I to test the usual multivariate hypothesis
H0 : µ = 0. For a simple, unstructured repeated measures design, we have
H = Pd, where Pd = Id − 1

d
Jd, being the centering matrix, is symmetric

and idempotent, hence projection matrix, J is the matrix of 1s and I is the
identity matrix.

To give a unique representation to the null hypothesis, we can write
H0 : Tµ = 0 where T = H′(HH′)−H is the general hypothesis matrix with
(HH′)− denoting a g-inverse of HH′. We note that Hµ = 0 ⇔ Tµ = 0. The
matrix T can be formulated so as to represent any general linear hypothesis,
including, for example, any factorial structure of repeated measures. For
example, for the sleep lab experiment, discussed in Section 2.5.1, we have
T = P3 ⊗ 1

6
J6 and T = 1

3
J3 ⊗ P6, for the main effects and P3 ⊗ P6 for the

interaction effect.
As discussed in Section 1.2, when d < n, such data can be analyzed us-

ing multivariate approach without assuming any particularly structure of Σ
(Stuart et al, 1999, Ch. 31). But when d > n, the case of high dimensional
data, the multivariate approach, for example Hotelling’s T 2, totally collapses
since the estimated covariance matrix is singular (Rencher, 1995, p 135). For
n > d, there are several competing statistics to be used to test H0, including
Wald-type statistic, Hotelling’s T 2 statistic and ANOVA-type statistic which
are discussed in the following.

The Wald-type statistic (WTS) is defined as (Rao, 1973; Timm, 2002)

Wn = nX
′
H′

(
HΣ̂H′

)−
HX (2.2)
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where X and Σ̂ are the sample estimators of µ and Σ > 0, respectively.
Clearly, we can replace the g-inverse, (·)−, with the unique Moore-Penrose
inverse, (·)+. Then, Wn ∼ χ2

r, as n → ∞, where r = ρ(H) and ρ(·) denotes
the rank of a matrix (see Campbell and Meyer, 1979, Ch. 10).

Wn can be used to define the Hotelling’s T 2 statistic, usually transformed
to an F statistic, as (Davis, 2002)

Hn =
n− r

(n− 1)r
Wn (2.3)

where r and Wn are as defined above. Under H0, Hn ∼ F(r, n−r).
The ANOVA-type statistic (ATS), as considered by Box (1954a), Brun-

ner, Dette and Munk (1997), Brunner (2001), Brunner, Domhof and Langer
(2002), and Tian and Wilcox (2007), is based on the traces of products of
matrices involving the sample covariance matrix and is defined as

An =
nX

′
TX

tr(TΣ̂)
(2.4)

where tr(·) denotes the trace. Further, An ∼ χ2
f̂
/f̂ where

f̂ =
[tr(TΣ̂)]2

tr(TΣ̂)2

is the degrees of freedom estimated from the sample.
The rationale behind the ANOVA-type statistic stems from two main

shortcomings of the Wald-type statistic. Wn needs very large sample size
to yield a good approximation to the chi-square distribution and the ap-
proximation is still very bad if at least some of the diagonal entries in the
covariance matrix, Σ̂, are zero or near zero. The solution approached by An,
in this situation, is to take Σ̂ out of Wn and write H′(HH′)−H = T where T
is called the general hypothesis matrix. We know that Hµ = 0 ⇔ Tµ = 0.
Then, Wn reduces to

Qn = nX
′
TX. (2.5)

But it can be easily demonstrated that Qn is not asymptotically distributed
as a χ2 random variable. This problem, however, can be approached using
Box’s approximation (Box, 1954a). First, we need the following well-known
representation theorem for the quadratic form from the theory of linear mod-
els (Box, 1954a; Mathai and Provost, 1992, Ch. 3).
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Theorem 2.1 Let X ∼ Nd(0,Σ) and let T be any symmetric matrix. Then

Q = X′TX ∼
d∑

i=1

λiCi

where λi are the eigenvalues of TΣ, Ci ∼ χ2
1 and Ci are independent. ¤

The identity Q in Theorem 2.1 represents a quadratic form as a weighted
sum of independent single-degree-of-freedom chi-square random variables.
The idea is to replace the distribution of Q in Theorem 2.1 with that of gχ2

f

distribution, where g and f are chosen such that the first two moments of Q
and gχ2

f are same. Such an approximation is referred to as Box’s approxima-
tion although the idea was first proposed by Patnaik (1949); see Box (1954a)
and Mathai and Provost (1992, Ch. 4). Based on this approximation, we get
(Box, 1954a; Brunner, 2001; Mathai and Provost, 1992)

gf = E(gχ2
f ) = E

(∑
i

λiCi

)
=

∑
i

λi = tr(TΣ) (2.6)

2g2f = Var(gχ2
f ) = Var

(∑
i

λiCi

)
= 2

∑
i

λ2
i = 2tr(TΣ)2 (2.7)

and solving these equations, we have

f =
[tr(TΣ)]2

tr(TΣ)2
and g =

tr(TΣ)2

tr(TΣ)
.

The distribution of the quadratic form X′TX is then approximated as

X′TX

tr(TV)
∼ χ2

f

f
. (2.8)

First let us evaluate the performance of An when Σ is known. Table 2.2 re-
ports the simulation results for the test sizes for An for compound symmet-
ric(CS), autoregressive(AR(1)) and unstructured(UN) covariance patterns
(see Definitions B.6, B.7 and B.8). These are the results of 10,000 simulation
runs for n = 10, d ∈ {5, 10, 50, 100, 200} while assuming σ2 = 2, κ = 1 for
CS, σ2 = 1, ρ = 0.6 for AR(1) and σij = 1(1)d (i = j), ρij = (i−1)/d (i > j),
for UN.
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Table 2.2: An with True Covariance Structures

Covariance Structure/1− α
CS AR(0.6) UN

d 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

5 0.8952 0.9498 0.9888 0.8852 0.9404 0.9848 0.9215 0.9596 0.9907
10 0.9006 0.9480 0.9890 0.8966 0.9432 0.9856 0.9091 0.9536 0.9910
50 0.9016 0.9526 0.9918 0.9016 0.9448 0.9848 0.9003 0.9499 0.9895

100 0.8994 0.9454 0.9880 0.8978 0.9458 0.9874 0.8993 0.9486 0.9897
200 0.8918 0.9432 0.9884 0.8968 0.9428 0.9860 0.8990 0.9500 0.9897

From Table 2.2 we observe that the ANOVA-type statistic maintains the
pre-assigned level quite accurately when the population covariance is known,
even for n as small as 10. This performance is the same for all three types
of covariances and does not seem to depend on the dimension. The evidence
we get from these results is that, given the covariance matrix, the Box ap-
proximation is accurate whatever be the dimension, d.

But, in practice, of course, we need to estimate f and g; i.e. we need to
estimate Σ. Using the classical unbiased estimator,

Σ̂n =
1

n− 1

n∑

k=1

(Xk −X.)(Xk −X.)
′,

the estimator of the functional tr(TΣ) is unbiased but the estimators of the
functionals [tr(TΣ)]2 and tr(TΣ)2 are biased. Table 2.3 reports some results
to show this behavior. From this table, we also observe that the bias of

Table 2.3: Properties of Traces with Covariance Estimator, Σ̂n

n d
E[tr(TΣ̂n)]

tr(TΣ)
Var[tr(TΣ̂)]
[tr(TΣ)]2

E[tr(TΣ̂)]2

[tr(TΣ)]2
Var[tr(TΣ̂)]2

[tr(TΣ)]4
E[tr(TΣ̂)2]
tr(TΣ)2

Var[tr(TΣ̂)2][
tr(TΣ)2

]2
E(f̂)

f
Var(f̂)

f2

10 20 1.0008 0.0117 1.0134 0.0480 3.2320 0.5483 0.3151 0.0005
50 1.0002 0.0046 1.0050 0.0184 6.5574 0.8308 0.1534 0.0000

100 1.0002 0.0023 1.0026 0.0091 12.1155 1.3866 0.0828 0.0000
200 0.9999 0.0011 1.0010 0.0044 23.2152 2.4519 0.0431 0.0000
300 0.9997 0.0007 1.0002 0.0029 34.3139 3.5270 0.0291 0.0000

50 100 1.0003 0.0004 1.0009 0.0017 3.0428 0.0172 0.3290 0.0000
200 1.0002 0.0002 1.0006 0.0008 5.0840 0.0229 0.1968 0.0000
300 1.0001 0.0001 1.0003 0.0005 7.1234 0.0290 0.1404 0.0000

tr(TΣ)2 increases with increasing d, and this bad performance remains so
even if n is increased five times. Note that, since tr(TΣ)2 is the denominator
of f , therefore, f is also badly affected due to the biased estimation of trace.
Although the variance of f̂ reduces with increasing d, but this is an illusive
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Table 2.4: Comparison of An, Wn and Hn

(d = 5) Simulated Quantiles
Statistic Quantile n = 10 n = 15 n = 20 n = 30 n = 50

0.90 0.9042 0.9043 0.9035 0.9031 0.9004
An 0.95 0.9536 0.9519 0.9515 0.9526 0.9534

0.99 0.9913 0.9904 0.9889 0.9928 0.9921

0.90 0.6315 0.7377 0.7898 0.8302 0.8592
Wn 0.95 0.7062 0.8161 0.8573 0.8947 0.9179

0.99 0.8189 0.9074 0.9390 0.9618 0.9761

0.90 0.8963 0.9008 0.9020 0.9008 0.8995
Hn 0.95 0.9491 0.9506 0.9513 0.9503 0.9847

0.99 0.9906 0.9906 0.9905 0.9895 0.9911

(n = 10) Simulated Quantiles
Statistic Quantile d = 5 d = 10 d = 20 d = 30 d = 50

0.90 0.9014 0.9368 0.9719 0.9849 0.9966
An 0.95 0.9532 0.9774 0.9938 0.9979 0.9997

0.99 0.9902 0.9980 1.0000 1.0000 1.0000

0.90 0.6234 0.0435 0.9780 1.0000 1.0000
Wn 0.95 0.7005 0.0546 0.9836 1.0000 1.0000

0.99 0.8130 0.0840 0.9918 1.0000 1.0000

0.90 0.8949 0.8982 - - -
Hn 0.95 0.9440 0.9484 - - -

0.99 0.9881 0.9899 - - -

behavior since the ratio E(f̂)
f

also vanishes with increasing d while we expect
E(f̂)

f
= 1 whatever be d.

Now, Table 2.4 gives the simulation results for the type I error rates of
three test statistics, Wn, Hn and An, as discussed above. For the upper part
of the table, d = 5 is fixed and n ∈ {10, 15, 20, 30, 50} while for the lower
part, n = 10 is fixed and d ∈ {5, 10, 20, 30, 50}.

Note that both An and Hn keep the nominal level when d is fixed and n
increases, i.e. when n > d, but the Wald-type statistic is liberal. It tends
to be less and less liberal as n increases but still at n = 50 the gap is large
especially when compared to the other two statistics. On the other hand,
when n is fixed and d increases, Hotelling’s T 2 totally collapses for d > n and
Wn ranges from being very liberal to very conservative, while An is also con-
servative when d increases. Note once again that, both An and Hn keep the
nominal level when n ≥ d but the Wn fails even in this range. One can use
similar results to show that f , which is proportional to the Box’s ε (Equation
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1.1), is biased and the bias increases with increasing d. The results of Tables
2.3 and 2.4 hint at a possibility of improving An while Hotelling’s T 2 and Wn

are totally unworkable for the case of high dimensionality.
To improve the performance of An, we need to define the component es-

timators of the statistic such that they are consistent and the variances of
estimators are uniformly bounded with respect to the dimension, d. In other
words, the estimators must be consistent and dimensionally stable. To this
end, we need Definition 2.2 which extends the concept of consistency of a se-
quence of estimators to an array of estimators which depend, simultaneously,
on n and d. For the general theory of consistency of an array of estimators,
see Lehmann (1999, Ch. 2) and Serfling (1980, Ch. 1).

Definition 2.2 An array of estimators θ̂n,d of functional θd is consistent if

θ̂n,d − θd
P−→ 0 for fixed d. q

A straightforward calculation, based on Chebychev’s inequality (Theorem
B.4), shows that consistency follows if ∀ 1 ≤ d < ∞,

limn→∞{E(θ̂n,d)} = θd and limn→∞{Var(θ̂n,d)} = 0. In the sequel, we shall

show that for the estimators we define for the modified An, E(θ̂n,d) = θd,

for all n, and limn→∞
{

Var(θ̂n,d)

θ2
d

}
= 0, where these variances are uniformly

bounded with respect to d, so that the quality of the approximation depends
only on n. Finally, to settle the issue of dimensional stability, we shall ensure
that the estimators defined for the modified ANOVA-type statistic follow the
criteria given below.

Definition 2.3 An array of estimators θ̂n,d of functional θd is dimensionally
stable if, ∀ d ≥ 1, n ≥ 1,

1. E
(
θ̂n,d

)
= θd,

2. Var
(

θ̂n,d

θd

)
≤ B(n) < ∞,

where B(n) → 0, as n →∞ and is uniformly bounded with respect to d. q

Based on these results, we shall, in the next section, define the new estimators
such that they are unbiased, consistent and are uniformly bounded with
respect to d.
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2.2 The Estimators

We have Xk ∼ N (µ,Σ),Σ > 0, k = 1, . . . , n. For H0 : Tµ = 0, let
TXk = Yk. Under H0, E(Yk) = 0, Var(Yk) = Var(TXk) = TΣT = S.
Then, we define the covariance estimator as

Ŝn =
1

n

n∑

k=1

Sk =
1

n

n∑

k=1

YkY
′
k. (2.9)

It is straightforward to verify that Ŝn, under H0, is an unbiased estimator of
S. Let Ak = Y′

kYk and Akl = Y′
kYl, k 6= l, be, respectively, a quadratic and

a symmetric bilinear form. Let B0, B1 and B2 be the following estimators of
tr(TΣ), [tr(TΣ)]2 and tr(TΣ)2, respectively, where,

B0 = 1
n

n∑
k=1

Ak,

B1 = 1
n(n−1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

AkAl

B2 = 1
n(n−1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

A2
kl.





(2.10)

We prove the following theorem on the properties of these estimators.

Theorem 2.4 The estimators B0, B1 and B2, as defined in Equations (2.10),
are unbiased and consistent estimators of tr(TΣ), [tr(TΣ)]2 and tr(TΣ)2,
respectively. Further, the variances of the ratios of these estimators to the
traces that they estimate are of order O(1/n) and are unifromly bounded in
d. ¤

Proof The unbiasedness is quite straightforward using Lemmas A.11 and
A.19 and using the independence since k 6= l. Then we begin with Var(B0).

Var(B0) =
1

n2

n∑

k=1

Var(Ak) =
2

n
tr(TΣ)2,
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from Equations (A.5). Now, with k 6= l, r 6= s, we have

Var(B1) =
1

n2(n− 1)2




n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

Var(AkAl) +
n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

n∑

r=1

n∑

s=1︸ ︷︷ ︸
r 6= s︸ ︷︷ ︸

(k, r) 6= (l, s)

Cov(AkAl, ArAs)




=
1

n2(n− 1)2

[
2n(n− 1)

(
4
[
tr(TΣ)2

]2
+ 4tr(TΣ)2[tr(TΣ)]2

)

+ 4n(n− 1)(n− 2) · 2tr(TΣ)2[tr(TΣ)]2
]

=
8

n(n− 1)

[[
tr(TΣ)2

]2
+ (n− 1)tr(TΣ)2[tr(TΣ)]2

]

using again Equations (A.5). Similarly, from Equations (A.19), we get

Var(B2) =
1

n2(n− 1)2




n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

Var(A2
kl) +

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

n∑
r=1

n∑
s=1︸ ︷︷ ︸

r 6= s︸ ︷︷ ︸
(k, r) 6= (l, s)

Cov(A2
kl, A

2
rs)




=
1

n2(n− 1)2

[
2n(n− 1)

(
6tr(TΣ)4 + 2

[
tr(TΣ)2

]2
)

+ 4n(n− 1)(n− 2)
(
2tr(TΣ)4

) ]

=
4

n(n− 1)

[
(2n− 1)tr(TΣ)4 +

[
tr(TΣ)2

]2
]
.

Clearly, all three variances vanish when n → ∞, proving the estimators to
be consistent.
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Further, we observe that

Var

(
B0

tr(TΣ)

)
=

2

n

tr(TΣ)2

[tr(TΣ)]2
≤ 2

n

Var

(
B1

[tr(TΣ)]2

)
=

8

n(n− 1)

([
tr(TΣ)2

]2

[tr(TΣ)]4
+ (n− 1)

tr(TΣ)2

[tr(TΣ)]2

)
≤ 8

n− 1

Var

(
B2

tr(TΣ)2

)
=

4

n(n− 1)

(
(2n− 1)tr(TΣ)4

[
tr(TΣ)2

]2 + 1

)
≤ 8

n− 1
.

where the inequalities come immediately from Lemma B.11. ¥

2.3 The Approximating Distribution

Now, we re-write Qn in Equation (2.5) as

Qn = nX
′
TX =

1

n

n∑

k=1

n∑

l=1

Akl (2.11)

where Akl is the bilinear form as defined right after Equations (2.10). Then
the new test statistic is defined as

Ãn =
Qn

B0

(2.12)

with degrees of freedom f̃ = B1

B2
. Using the moments of quadratic and bilinear

forms (Sections A.1 and A.2), we get the following results.

Theorem 2.5 For Qn and B0, as defined above, we have

E(Qn) = tr(TΣ) (2.13)

Var(Qn) = 2tr(TΣ)2 (2.14)

Cov(Qn, B0) =
2

n
tr(TΣ)2. (2.15)

¤

Proof Here, Qn is the quadratic form of the test statistic and from Equation
(2.11) we have Qn = 1

n

∑n
k=1

∑n
l=1 Akl = nX

′
TX. Since, Var(X) = 1

n
Σ,

the first two identities come directly from the moments of a quadratic form
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(Equations (A.5)). Hence E(Qn) = tr(TΣ) and Var(Qn) = 2tr(TΣ)2. For
the covariance of Qn and B0, we write Qn as

Qn =
1

n




n∑

k=1

Ak +
n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

Akl




(2.16)

where Ak is the quadratic form when k = l and Akl is the bilinear form when

k 6= l. Since B0 = 1
n

n∑
k=1

Ak where Ak is again the quadratic form, therefore,

we have

Cov(Qn, B0) =
1

n2

[
Cov

(
n∑

k=1

n∑

l=1

Akl,

n∑
m=1

Am

)
+ Cov

(
n∑

k=1

Ak,

n∑
m=1

Am

)]

=
1

n2
Cov

(
n∑

k=1

Ak,

n∑
m=1

Am

)
=

1

n2
Var

(
n∑

k=1

Ak

)

= Var(B0) =
2

n
tr(TΣ)2

from Equations (A.22). This completes the proof. ¥

The statistic Ãn = Qn/B0 is the ratio of two random variables. Substitut-
ing the results from Theorems 2.4 and 2.5 into the approximation formulas,
Equations B.1 and B.2, we get the following moments of Ãn. Note that, in
the following theorem, the order of the remainder for the mean of the statis-
tic is at least O(n−2) and for the variance is at least o(n−2) (see Stuart and
Ord, 1994, p 350). We compute the moments ignoring these remainders for
approximation purposes (see Casella and Berger, 2002, p 245).

Theorem 2.6 The first two moments of Ãn are computed as

E(Ãn) ≈ 1

Var(Ãn) ≈ 2

f

(
1− 1

n

)

where f = [tr(TΣ)]2

tr(TΣ)2
. ¤



22 CHAPTER 2. THE ONE-SAMPLE STATISTIC

Note that the first two moments of the χ2
f/f -distribution are, respectively,

1 and 2/f . Comparing with the corresponding moments of Ãn, we observe

that the sampling distribution of Ãn is very closely approximated by the
χ2

f/f -distribution, especially when n → ∞. Moreover, the moments of Ãn

are uniformly bounded with respect to d.
For convenience, we can write

F̃n = Ãn · B1

B2

such that E(F̃n) ≈ f and Var(F̃n) ≈ 2f where the moments, now, correspond

to the first two moments of the χ2
f -distribution; hence F̃n ≈ χ2

f , as n →∞.

2.4 Simulation Results

2.4.1 Moments of Estimators

Table 2.5: Properties of Estimators

B0 B1 B2 f̃

n d
E(B0)
tr(TΣ)

Var(B0)
[tr(TΣ)]2

E(B1)
[tr(TΣ)]2

Var(B1)
[tr(TΣ)]4

E(B2)
tr(TΣ)2

Var(B2)[
tr(TΣ)2

]2
E(f̃)

f
Var(f̃)

f2

10 20 1.0004 0.0107 1.0011 0.0429 0.9994 0.0889 1.1628 0.0611
50 0.9997 0.0041 0.9994 0.0165 0.9973 0.0598 1.1639 0.0643

100 0.9995 0.0020 0.9990 0.0080 0.9979 0.0543 1.1652 0.0672
300 1.0000 0.0007 1.0001 0.0026 0.9999 0.0474 1.1631 0.0659
500 1.0001 0.0004 1.0003 0.0016 1.0008 0.0464 1.1617 0.0641

1000 1.0000 0.0002 1.0001 0.0008 0.9999 0.0465 1.1645 0.0683

20 30 0.9995 0.0033 0.9990 0.0133 0.9990 0.0244 1.0639 0.0120
50 0.9997 0.0021 0.9994 0.0082 0.9983 0.0186 1.0649 0.0121

100 1.0000 0.0010 1.0000 0.0041 1.0000 0.0145 1.0638 0.0119
300 1.0000 0.0003 1.0005 0.0013 0.9991 0.0121 1.0655 0.0124
500 1.0000 0.0002 0.9999 0.0008 0.9977 0.0113 1.0662 0.0122

1000 0.9998 0.0001 0.9996 0.0004 1.0007 0.0111 1.0627 0.0121

50 100 0.9999 0.0004 0.9999 0.0016 1.0005 0.0033 1.0215 0.0018
300 0.9999 0.0001 0.9999 0.0005 1.0000 0.0021 1.0223 0.0017
500 0.9998 0.0001 1.0000 0.0003 1.0000 0.0019 1.0221 0.0017

1000 1.0000 0.0000 0.9999 0.0002 1.0001 0.0018 1.0219 0.0017

First, the moments of the estimators, B0, B1 and B2, and of degrees of
freedom, f̃ , are studied. Table 2.5 reports the results where n ∈ {10, 20, 50},
d ∈ {20, 50, 100, 300, 500, 1000} and Σ is assumed to be compound symmet-
ric. But, as is clear from the theoretical results, the behavior of the estimators
is generally true for any covariance structure.
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Three points are important to note in Table 2.5. First, the estimators do
not need even moderately large sample size to be unbiased and consistent;
even n = 10 is sufficient. Second, the expectation of the degrees of freedom
vary very closely around the target value, 1, and gets closer and closer for
increasing sample size. The variance already vanishes even for n as small
as 10 or 20. Third, the relationships remain stable around the target values
irrespective of the number of dimensions. Note that even for d as large as
1000, the stability of the moments is quite evident.

Table 2.6: Estimated Quantiles of Ãn: Normal Distribution

CS AR(0.6) UN
n d 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

10 20 0.9008 0.9542 0.9944 0.8961 0.9480 0.9924 0.9017 0.9544 0.9925
50 0.9072 0.9491 0.9938 0.8965 0.9485 0.9900 0.8967 0.9480 0.9911

100 0.9084 0.9535 0.9949 0.8980 0.9482 0.9902 0.9012 0.9496 0.9915
200 0.9089 0.9540 0.9935 0.8950 0.9472 0.9902 0.8973 0.9485 0.9913

20 50 0.9006 0.9476 0.9913 0.8971 0.9442 0.9873 0.9050 0.9520 0.9911
100 0.9015 0.9522 0.9901 0.9025 0.9510 0.9892 0.8983 0.9491 0.9888
200 0.9038 0.9524 0.9921 0.8983 0.9469 0.9884 0.8989 0.9524 0.9911

2.4.2 Level

Table 2.6 reports the estimated quantiles (1− α) for the modified ANOVA-
type statistic for the same three covariance structures discussed in the context
of Table 2.2. These are the results of 10,000 simulation runs with n ∈ {10, 20}
and d ∈ {20, 50, 100, 200} where α ∈ {0.01, 0.05, 0.10}. The test statistic very
accurately estimates the nominal quantiles even for n as small as 10 and d as
large as 200. The accuracy is not affected by increasing the dimension and
by changing the covariance structure.

2.4.3 Power

Power of the statistic is also examined for n = 10, d ∈ {20, 50, 100} and the
same covariance structures, CS, AR(0.6) and UN. The corresponding power
curves are shown in Fig. 2.1. For these power computations, we define the
alternative as

µY = δid
−1 (2.17)
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Figure 2.1: Power Curves for Ãn: Normal Distribution

where µY = E(Yk) = E(TXk), d−1 = (1
d
, 2

d
, . . . , d

d
)′ and δi is the ith element

of the vector of constants, δ = 0(0.02)2.
We observe that the power of ATS is not only very high, even for n =

10, but also increases for increasing d, for all covariance structures. Note
that, when n > d, the statistic can also be compared with the Hotelling’s
T 2 statistic. Although the results are nor reported here, but it has been
examined that none of these statistics is uniformly better than the other and
one of them outperforms the other depending on the covariance structure
and the type of alternative. Further, both level and power computations
for ATS were also carried out for other covariance structures, for example,
Heterogeneous AR(1) structure or AR(1) structure with low correlation, and
the performance of the statistic was found to be similar to the one reported
above for CS, AR(0.6) and UN structures. This fact is also clear from the
analytical results where we do not assume any specific covariance structure
and derive the results under very general conditions.

2.5 Applications

2.5.1 Analysis of Sleep Lab Data

The test statistic is used to analyze the sleep lab example introduced in
Section 1.4 (Example 1.3). The complete data, produced in Section C.3,
consists of two independent groups, of men and women. Here only the data
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Figure 2.2: Bar Plot for Sleep Lab Data

on the group of women is analyzed. The analysis of complete data is given
in Section 6.4.2. The variable of interest is serum concentration measured
on each of n = 10 women at d = 18 time points. Fig 2.2 depicts the mean
profiles of the subjects for three consecutive nights.

Table 2.7: Analysis of Sleep Lab Data

Effect T-matrix F̃n f̃ p-value

Day P3 ⊗ 1
6J6 0.25 1.55 0.7200

Time 1
3J3 ⊗P6 4.04 3.86 0.0032

Day×Time P3 ⊗P6 2.66 9.24 0.0040

Time(NS-TSD) P2 ⊗P6 3.39 4.67 0.0057
Time(NS-RN) P2 ⊗P6 2.51 5.00 0.0279
Time(TSD-RN) P2 ⊗P6 1.54 7.60 0.1404

Time (NS) P6 4.54 2.98 0.0035
Time (TSD) P6 1.08 8.46 0.3709
Time (RN) P6 2.80 4.74 0.0175

Table 2.7 reports the results where the T-matrix represents the hypothesis
matrix for the corresponding effect being tested. For each effect, F̃n follows
a χ2

f̃
-distribution with f̃ degrees of freedom as reported in the penultimate

column of the table. We observe highly significant Time main effect and
Day×Time interaction effect. The significant interaction effect, shown in
Fig. 2.3, is further explored, in the middle panel of the table, to study the
effect for each pair of days. Note that, in this case, n = 10 and d = 12.
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We observe that the interaction is significant for the pairs wherein NS is
common, i.e. NS-TSD and NS-RN. The last panel of the table explores the
same interaction further by evaluating the simple effects of time for each
day level. Clearly, as expected, the contribution to the interaction from the
simple effects of NS and RN is highly significant.
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Figure 2.4: Bar Plot for Amylase Data

2.5.2 Analysis of Amylase Data

As stated in Section 1.4, the Amylase data (Example 1.1) is not high dimen-
sional but is included to show that the modified ATS is also applicable when
d < n. Table 2.8 reports the results for this two-factor factorial experiment
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wherein each of 14 probands is repeatedly observed at 8 time points, 4 on
each of two days (Monday and Thursday). The average treatment combina-
tion effects, shown in Fig. 2.4, already clue to a significant within-subject
variation.

Table 2.8: Analysis of Amylase Data

Effect T-matrix F̃n f̃ p-value

Day P2 ⊗ 1
4J4 0.02 1.08 0.9119

Time 1
2J2 ⊗P4 4.09 2.92 0.0070

Day×Time P2 ⊗P4 3.43 2.52 0.0226

Time(Monday) P4 1.65 4.88 0.1450
Time(Thursday) P4 5.39 1.36 0.0119

We observe, from Table 2.8, that the significant interaction effect masks
the significant time effect. This significant interaction effect (Fig. 2.5) is
further explored for simple effects for each day, presented in the lower panel
of Table 2.8. We observe a significant effect of Thursday on the α-amylase
in saliva, a fact also evident in the bar and interaction graphs.
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Figure 2.5: Day×Time Interaction Plot for Amylase Data
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Chapter 3

The Two-sample Statistic

Here we begin with the two sample extension to the modified ANOVA-type
statistic developed for the one sample case in Chapter 2.

3.1 The Statistical Model

3.1.1 Model and Assumptions

Suppose X1k = (X1k1, . . . , X1kd)
′ and X2l = (X2l1, . . . , X2ld)

′ be the vectors,
each of d repeated observations measured on kth subject in sample 1 and lth
subject in sample 2, respectively, where the samples are drawn independently
from two populations. The observations from such a design can be arranged
as shown in Table 3.1.

Table 3.1: The General Data Table: Two-sample Case

Sample 1 Sample 2

1 . . . s . . . d 1 . . . s . . . d

1 X111 . . . X11s . . . X11d 1 X211 . . . X21s . . . X21d

...
...

. . .
. . .

...
...

...
. . .

. . .
...

k X1k1 . . .
¤
£

¡
¢X1ks . . . X1kd l X2l1 . . .

¤
£

¡
¢X2ls . . . X2ld

..

.
..
.

. . .
. . .

..

.
..
.

..

.
. . .

. . .
..
.

n1 X1n11 . . . X1n1s . . . X1n1d n2 X2n21 . . . X2n2s . . . X2n2d

Means X1.1 . . . X1.s . . . X1.d X2.1 . . . X2.s . . . X2.d

29
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Let E(X1k) = µ1, E(X2l) = µ2, Cov(X1k) = Σ1 and Cov(X2l) = Σ2.
Then X = (X′

1k, X′
2l)

′ is the vector of all observations from kth subject
in sample 1 and lth subject in sample 2, k = 1, . . . n1, l = 1, . . . , n2, with
E(X) = µ = (µ′

1, µ′
2)
′ and Cov(X) = Σ = Σ1 ⊕ Σ2. The corresponding

sample estimators are X = (X
′
1., X

′
2.)
′
2d×1 and Σ̂ = Σ̂1 ⊕ Σ̂2, respectively,

where Xi. = (X i.1, . . . , X i.d)
′
d×1 is the vector of means of ith sample, i = 1, 2,

as shown at the bottom of Table 3.1.
Like in one sample case, we do not assume any structure of Σ to keep the

results valid in general, whereas for simulation studies, compound symmetric,
autoregressive and unstructured covariance patterns (Definitions B.6, B.7
and B.8) will be used to typically show the behavior of the test statistic.

3.1.2 Formulation of Hypotheses

Let 1d be a vector of 1s and Pd = Id − 1
d
Jd be the centering matrix, where

Id is the identity matrix and Jd = 1d1
′
d. For the data set up given above, we

are interested to test the following three hypotheses.

HAB
0 : (P2 ⊗Pd) µ = 0 (Interaction Hypothesis) (3.1)

HA
0 :

(
P2 ⊗ 1

d
1′d

)
µ = 0 (Group Hypothesis) (3.2)

HB
0 :

(
1
2
1′2 ⊗Pd

)
µ = 0 (Time Hypothesis) (3.3)

where ⊗ denotes the Kronecker product. Replacing 2 with a in Equations
(3.1)-(3.3) will give us the corresponding hypotheses for the general case with
a populations. We use T = H′ (HH′)−H to uniquely represent each of the
three hypotheses where T is a projection matrix and Hµ = 0 ⇐⇒ Tµ = 0.
The T matrices for Equations (3.1)-(3.3) are, respectively,

TAB = (P2 ⊗Pd)
TA =

(
P2 ⊗ 1

d
Jd

)
TB =

(
1
2
J2 ⊗Pd

)
.



 (3.4)

These T matrices will be used to define the estimators and the test statistic
in the sequel that follows. For convenience, it is sufficient to consider even the
simpler versions of the T matrices. For instance, for the interaction effect,
HAB

0 : (P2 ⊗Pd) µ ⇐⇒ HAB
0 : 1

2
(1 − 1)⊗Pd so that Pd can replace TAB as

the generating matrix without any loss of generality, where Pd is a projection
matrix. Similarly, Pd is also the generating matrix for HB

0 .
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Remark 3.1 It is clear from Equations (3.1)-(3.3) that the high dimension-
ality influences only HAB

0 and HB
0 whereas HA

0 is a univariate hypothesis and
does not depend on d. HA

0 , therefore, is not of our main interest. But to
keep the analysis complete and the notations coherent, the analysis of group
effect will be tangentially touched in Section 3.4. 4

3.1.3 Formulation of the Test Statistic

As is clear from Equations (3.1)-(3.3), the formulation of the test statistic
for the interaction effect involves differences while that for the time effect
involves sums of the vectors X1k and X2l. Therefore, here we give only a
general formulation of the test statistic which follows exactly the same lines
as used in Section 2.1 for the one sample case.

Let Zkl denote the vector of sums or differences of the vectors TX1k and
TX2l with Cov(Zkl) = T(Σ1 + Σ2)T. Note that Cov(Zkl) remains same
whether Zkl is composed of sums or differences. This fact will greatly help
us minimizing the computational burden since, as will also be discussed later
on, the final results for the interaction and time effects are same. Therefore,
the detailed derivations will be presented only for the interaction effect where
for the time effect the results follow the same pattern.

Using Zkl, the two-sample ANOVA-type statistic is given as

ÃN =
Z′klTZkl

tr[T(Σ1 + Σ2)T]
(3.5)

where ÃN ∼ χ2
f

f
with

f =

[
tr[T(Σ1 + Σ2)T]

]2

tr[T(Σ1 + Σ2)T]2

and N = n1 + n2.

3.2 The Interaction Effect

First, the test statistic for the interaction effect will be derived. From
Equation (3.1), HAB

0 : (P2 ⊗Pd) µ = 0, which can also be written as
HAB

0 : Pd(µ1 − µ2) = 0. As already mentioned, the generating matrix
for the interaction effect is T = Pd, although for convenience, the general
form of the hypothesis matrix, T, will be used.
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3.2.1 The Covariance Matrix

Let X1k and X2l be as defined in Section 3.1. Define the differences X1k−X2l,
∀ k = 1 . . . , n1, l = 1, . . . , n2, where E(X1k −X2l) = µ1−µ2 and Cov(X1k −
X2l) = Σ1 + Σ2. Let T(X1k − X2l) = Y1k − Y2l, with E(Y1k − Y2l) = 0
and Cov(Y1k − Y2l) = T(Σ1 + Σ2)T, under HAB

0 , where T(Σ1 + Σ2)T is
estimated as

Σ̂N =
1

n1n2

n1∑

k=1

n2∑

l=1

(Y1k −Y2l)(Y1k −Y2l)
′. (3.6)

As will be seen later, the identities involved in the statistic are conveniently
tractable when expressed in terms of matrices. To begin with, note that
X1k ∼ Nd(µ1,Σ1), X2l ∼ Nd(µ2,Σ2). Let TX1k = Y1k, TX2l = Y2l so that
Y1k ∼ Nd(Tµ1,TΣ1T), Y2l ∼ Nd(Tµ2,TΣ2T). Define Y = (Y′

1,Y
′
2)
′,

where Yi = (Y′
i1, . . . ,Y

′
ini

), i = 1, 2. Denote E(Y) = ξ, Cov(Y) = Ξ, with

ξ = (1′n1
⊗ µ1 1′n2

⊗ µ2)
′ (3.7)

Ξ = (In1 ⊗TΣ1T)⊕ (In2 ⊗TΣ2T). (3.8)

Further, define M = (In1 ⊗ 1n2 | − 1n1 ⊗ In2) ⊗ Id such that Z = MY
denotes the vector of differences, Zkl = Y1k − Y2l, ∀ k, l, with E(Zkl) = 0
and Cov(Zkl) = T(Σ1 + Σ2)T. Then

Σ̂N =
1

n1n2

n1∑

k=1

n2∑

l=1

ZklZ
′
kl. (3.9)

Under HAB
0 , Σ̂N is an unbiased estimator of T(Σ1 + Σ2)T, as proved in the

following theorem.

Theorem 3.2 The covariance estimator, Σ̂N , defined in Equation (5.4), is
an unbiased estimator of T(Σ1 + Σ2)T. ¤

Proof Clearly, Σ̂N is just the average of n1n2 matrices of the form ZklZ
′
kl,

each of order d× d, and we need the expectation of this sum. Since

E(ZklZ
′
kl) = E(Y1k −Y2l)(Y1k −Y2l)

′ = TE[(X1k −X2l)(X1k −X2l)
′]T,

therefore, by the independence of X1k and X2l, we get, after simplification,

E(X1k −X2l)(X1k −X2l)
′ = E[{(X1k − µ1)− (X2l − µ2) + (µ1 − µ2)}

{(X1k − µ1)− (X2l − µ2) + (µ1 − µ2)}′]
= Σ1 + Σ2 + (µ1 − µ2)(µ1 − µ2)

′
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where, E[(X1k − µ1)(X1k − µ1)
′] = Σ1 and E[(X2l − µ2)(X2l − µ2)

′] = Σ2.
Under H0 : T(µ1 − µ2) = 0,

E(Y1k −Y2l)(Y1k −Y2l)
′ = T(Σ1 + Σ2)T.

and the result follows immediately. ¥

3.2.2 Defining The Statistic

Following the general formulation of the ANOVA-type statistic, explained in
Section 3.1.3, we proceed as following. Define Y1.−Y2. = T(X1.−X2.) such

that, under HAB
0 , E(Y1.−Y2.) = 0 and Var(Y1.−Y2.) = T

(
1
n1

Σ1 + 1
n2

Σ2

)
T.

Then, with N = n1 + n2, Equation (4.5) gives

ÃAB
N =

2n1n2

N
(Y1. −Y2.)

′(Y1. −Y2.)

tr [T (Σ1 + Σ2)T]
(3.10)

where ÃAB
N ∼ χ2

fAB/fAB with

fAB =
[tr {T (Σ1 + Σ2)T}]2
tr [T (Σ1 + Σ2)T]2

. (3.11)

Denote B̃AB
0 , B̃AB

1 and B̃AB
2 as the estimators of tr [T (Σ1 + Σ2)T],

[tr {T (Σ1 + Σ2)T}]2 and tr [T (Σ1 + Σ2)T]2, respectively, where

B̃AB
0 =

1

n1n2

n1∑

k=1

n2∑

l=1

AAB
kl (3.12)

B̃AB
1 =

1

n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AAB
kl AAB

rs (3.13)

B̃AB
2 =

1

n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AAB2

klrs (3.14)

with AAB
kl = (Y1k − Y2l)

′(Y1k − Y2l) and AAB
rs = (Y1r − Y2s)

′(Y1r − Y2s)
as the quadratic forms, AAB

klrs = (Y1k − Y2l)
′(Y1r − Y2s) as the symmetric
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bilinear form (see Sections A.1 and A.2).
Note that n1, n2 and Σ1,Σ2, are implicitly coalesced with each other in

Var(Y1.−Y2.) which seems to be computationally tedious to deal with. For
convenience, we consider the following two cases.

Case I: n1 6= n2, Σ1 = Σ2

Case II: n1 = n2, Σ1 6= Σ2

The estimators, their properties and the asymptotic distribution of the
statistic will be discussed according to this bifurcation. But to avoid many
lengthy computations, we first give some general results in the following the-
orem, the special cases of which will then be extracted for cases I and II.

Denote QAB
N = (Y1. −Y2.)

′(Y1. −Y2.) in Equation (5.5). Then

QAB
N =

2

Nn1n2

Y′M′(Jn1 ⊗ Jn2 ⊗ Id)MY (3.15)

B̃AB
0 =

1

n1n2

Y′M′MY (3.16)

where M and Y are as defined in Section 3.2.1 and N = n1 + n2.

Theorem 3.3 Let QAB
N , B̃AB

0 , B̃AB
1 and B̃AB

2 be as defined above. Then,

E
(
B̃AB

0

)
= tr [T (Σ1 + Σ2)T] (3.17)

E
(
B̃AB

1

)
=

[
tr {T (Σ1 + Σ2)T}

]2 (3.18)

E
(
B̃AB

2

)
= tr [T (Σ1 + Σ2)T]2 (3.19)

E
(
QAB

N

)
=

2
N

[n2tr(TΣ1T) + n1tr(TΣ2T)] (3.20)

Var
(
B̃AB

0

)
= 2

n1n2

[
n2tr(TΣ1T)2 + 2tr(TΣ1TΣ2T) + n1tr(TΣ2T)2

] (3.21)

Var
(
QAB

N

)
=

8
N2

tr [n2(TΣ1T) + n1(TΣ2T)]2 (3.22)

Cov
(
QAB

N , B̃AB
0

)
=

4
Nn1n2

tr [n2(TΣ1T) + n1(TΣ2T)]2 . (3.23)

¤

Proof Let M′M = U in Equation (3.16). Then B̃AB
0 = 1

n1n2
Y′UY where

U =

(
n2In1 −Jn1×n2

−Jn2×n1 n1In2

)
⊗ Id. (3.24)
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Now, with Ξ = Cov(Y),

UΞ =




n2In1 ⊗TΣ1T −Jn1×n2 ⊗TΣ2T

−Jn2×n1 ⊗TΣ1T n1In2 ⊗TΣ2T




and (UΞ)2 =




K1 K2

K3 K4




where K1 = n2
2In1 ⊗ (TΣ1T)2 + n2Jn1 ⊗ (TΣ2TΣ1T)

K2 = −n2Jn1×n2 ⊗ (TΣ1TΣ2T)− n1Jn1×n2 ⊗ (TΣ2T)2

K3 = −n2Jn2×n1 ⊗ (TΣ1T)2 − n1Jn2×n1 ⊗ (TΣ2TΣ1T)

K4 = n1Jn2 ⊗ (TΣ1TΣ2T) + n2
1In2 ⊗ (TΣ2T)2.

Then, using the properties of Kronecker product and of trace,

tr(UΞ) = n1n2tr[T(Σ1 + Σ2)T)] (3.25)
tr(UΞ)2 = n1n2

[
n2tr(TΣ1T)2 + 2tr(TΣ1TΣ2T) + n1tr(TΣ2T)2

]
. (3.26)

Mean and variance of Y′UY are obtained from Equations (A.8) and (A.9).
Substitution of these two moments yields Equations (3.17) and (3.21).

Similarly, let M′(Jn1 ⊗ Jn2 ⊗ Id)M = W in Equation (3.15), so that

W =




n2
2Jn1 −n1n2Jn1×n2

−n1n2Jn2×n1 n2
1Jn2


⊗ Id (3.27)

and QAB
N = 2

Nn1n2
Y′WY. With Ξ = Cov(Y), we have

WΞ =




n2
2Jn1 ⊗TΣ1T −n1n2Jn1×n2 ⊗TΣ2T

−n1n2Jn2×n1 ⊗TΣ1T n2
1Jn2 ⊗TΣ2T




(WΞ)2 =




L1 L2

L3 L4




where L1 = n1n
4
2Jn1 ⊗ (TΣ1T)2 + n2

1n
3
2Jn1 ⊗ (TΣ2TΣ1T)

L2 = −n2
1n

3
2Jn1×n2 ⊗ (TΣ1TΣ2T)− n3

1n
2
2Jn1×n2 ⊗ (TΣ2T)2

L3 = −n2
1n

3
2Jn2×n1 ⊗ (TΣ1T)2 − n3

1n
2
2Jn2×n1 ⊗ ((TΣ2TΣ1T)

L4 = n3
1n

2
2Jn2 ⊗ (TΣ1TΣ2T) + n4

1n2Jn2 ⊗ (TΣ2T)2.
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so that

tr(WΞ) = n1n2 [n2tr(TΣ1T) + n1tr(TΣ2T)] (3.28)

tr(WΞ)2 = n2
1n

2
2tr [n2(TΣ1T) + n1(TΣ2T)]2 . (3.29)

Substituting these in Equations (A.8) and (A.9) give Equations (3.20) and
(3.22).

Equations (3.18) and (3.19) also come immediately from Equations (A.8)
and (A.19) and by noting the independence of the quadratic and bilinear
forms involved since k 6= r, l 6= s.

Finally, for Equation (3.23), we need tr(UΞWΞ), where it can be easily
verified that tr(UΞWΞ) = 1

n1n2
tr(WΞ)2. Hence,

tr(UΞWΞ) = n1n2tr [n2(TΣ1T) + n1(TΣ2T)]2 . (3.30)

Substitution of this result gives Equation (3.23) which completes the proof
of the theorem. ¥

Now, we partition the general result into cases I and II, as described
above, and derive the test statistic for each case separately.

3.2.3 Case I: n1 6= n2, Σ1 = Σ2

Here we assume that the covariance matrices are equal while the sample sizes
may be unequal.

3.2.3.1 The Estimators

First, the properties of the estimators are evaluated in the following theorem.

Theorem 3.4 For Σ1 = Σ2 = Σ, the estimators, B̃AB
0 , B̃AB

1 and B̃AB
2 ,

as defined in Equations (3.12)-(3.14), are unbiased and consistent estima-
tors of 2tr(TΣT), 4 [tr(TΣT)]2 and 4tr(TΣT)2, respectively. Further, the
variances of the ratios of the estimators to the traces that they estimate are
uniformly bounded with respect to d. ¤

Proof Substituting Σ1 = Σ2 = Σ in Equations (3.25) and (3.26), we have

tr(UΞ) = 2n1n2tr(TΣT)

tr(UΞ)2 = n1n2(N + 2)tr(TΣT)2
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where N = n1 + n2. Then from Equations (3.17) and (3.21) we get

E(B̃AB
0 ) = 2tr(TΣT)

Var(B̃AB
0 ) =

2(N + 2)

n1n2

tr(TΣT)2

which prove, respectively, the unbiasedness and consistency of B̃AB
0 . Further,

the dimensional stability is proved by Lemma B.11, since

Var

(
B̃AB

0

2tr(TΣT)

)
=

N + 2

2n1n2

tr(TΣT)2

[tr(TΣT)]2

= O

(
1

n1

+
1

n2

)
.

The unbiasedness of B̃AB
1 and B̃AB

2 follows directly from Equations (3.18)

and (3.19) by taking Σ1 = Σ2. For consistency of B̃AB
1 , we write

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AAB
kl AAB

rs =

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1

AAB
kl AAB

rs −
n1∑

k=1

n2∑

l=1

n2∑
s=1︸ ︷︷ ︸

k = r

AAB
kl AAB

ks

−
n1∑

k=1

n2∑

l=1

n1∑
r=1︸ ︷︷ ︸

l = s

AAB
kl AAB

rl +

n1∑

k=1

n2∑

l=1︸ ︷︷ ︸
k = r, l = s

AAB
kl AAB

kl

≈
(

n1∑

k=1

n2∑

l=1

AAB
kl

)2

,

where ≈ means ’approximately equal to’. Then

1

n2
1n

2
2

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AAB
kl AAB

rs ≈
(

1

n1n2

n1∑

k=1

n2∑

l=1

AAB
kl

)2

=
(
B̃AB

0

)2

,

using Equation (3.12). Since B̃AB
0 is consistent, hence the identity on the left
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hand side of the above expression is also consistent, and since

B̃AB
1 =

n1n2

(n1 − 1)(n2 − 1)




1

n2
1n

2
2

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AAB
kl AAB

rs




,

therefore, B̃AB
1 is also consistent. Now, by Theorem B.5,

Var
(
B̃AB

1

)
=

1
n2

1n
2
2(n1 − 1)2(n2 − 1)2

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

n1∑

k′=1

n2∑

l′=1

n1∑

r′=1

n2∑

s′=1︸ ︷︷ ︸
k′ 6= r′, l′ 6= s′

Cov
(
AAB

kl AAB
rs , AAB

k′l′A
AB
r′s′

)

¿ 4
([

tr(TΣT)2
]2

+ tr(TΣT)2 [tr(TΣT)]2
)

(1/n1 + 1/n2),

so that

Var

(
B̃AB

1

4 [tr(TΣT)]2

)
¿ 1

4

([
tr(TΣT)2

]2

[tr(TΣT)]4
+

tr(TΣT)2

[tr(TΣT)]2

)
(N/n1n2)

¿ N

n1n2

by Lemma B.11, which proves the dimensional stability of B̃AB
1 , as N/n1n2

is independent of d. Now, for consistency of B̃AB
2 , we write

Var
(
B̃AB

2

)
=

1
n2

1n
2
2(n1 − 1)2(n2 − 1)2

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

n1∑

k′=1

n2∑

l′=1

n1∑

r′=1

n2∑

s′=1︸ ︷︷ ︸
k′ 6= r′, l′ 6= s′

Cov
(
AAB2

klrs , AAB2

k′l′r′s′

)
. (3.31)

There are four possible pairs, (k, k′), (l, l′), (r, r′) and (s, s′), with 8 posi-
tions, to be permuted to cover all the covariance terms, including variances.
When all pairs are unequal, i.e., k 6= k′, l 6= l′, r 6= r′, s 6= s′, then the covari-
ance is zero, by independence, and the number of such covariances is of order
O(n4

1n
4
2), same as that of the denominator, on the right side of Equation

(5.26) above. For all other cases, we have a non-zero covariance.

Now, suppose Cov
(
AAB2

klrs , AAB2

k′l′r′s′

)
6= 0, so that ∃ at least one pair where
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indices are equal. The number of terms of all such covariances is of order no
more than O(n4

1n
3
2) or O(n3

1n
4
2), so that the order of the expression on the

right side of Equation (5.26) is O(1/n1) if n2 ≥ n1 or O(1/n2) if n1 ≥ n2,

which proves the consistency of B̃AB
2 .

Finally, Theorem B.5 gives the dimensional stability, since

Var
(
B̃AB

2

)
=

1
n2

1n
2
2(n1 − 1)2(n2 − 1)2

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

n1∑

k′=1

n2∑

l′=1

n1∑

r′=1

n2∑

s′=1︸ ︷︷ ︸
k′ 6= r′, l′ 6= s′

Cov
(
AAB2

klrs , AAB2

k′l′r′s′
)

¿ 2
(
3tr(TΣT)4 +

[
tr(TΣT)2

]2
)

O(1/n1 + 1/n2)

so that

Var

(
B̃AB

2

4tr(TΣT)2

)
¿ 1

8

(
3tr(TΣT)4

[tr(TΣT)2]2
+ 1

)
(N/n1n2)

¿ N

n1n2
.

This completes the proof of the theorem. ¥

3.2.3.2 The Approximating Distribution

Following lemma is needed to compute the moments of the statistic.

Lemma 3.5 Let QAB
N and B̃AB

0 be as defined in Equations (3.15) and (3.16),
respectively. Then, with Σ1 = Σ2, we have

E
(
QAB

N

)
= 2tr(TΣT) (3.32)

Var
(
QAB

N

)
= 8tr(TΣT)2 (3.33)

Cov
(
QAB

N , B̃AB
0

)
=

4N

n1n2

tr(TΣT)2. (3.34)

¤

Proof For Σ1 = Σ2, Equations (3.28), (3.29) and (5.25) reduce to

tr(WΞ) = n1n2Ntr(T(ΣT)

tr(WΞ)2 = n2
1n

2
2N

2tr(T(ΣT)2

tr(UΞWΞ) = n1n2N
2tr(T(ΣT)2
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where N = n1 + n2. Further, substitution of Σ1 = Σ2 in Equations (3.20),
(3.22) and (3.23) gives the required result. ¥

Now, define the statistic as ÃN = QAB/B̃AB
0 , where ÃN ∼ χ2

fAB/fAB. Equa-
tions (B.1) and (B.2) give the following moments of the statistic, where the
order of the remainder of the mean of the statistic is at least O(1/n1 +1/n2)
and that for the variance is at least o(1/n1 + 1/n2) (Stuart and Ord, 1994,
p 350). We compute the moments of the statistic ignoring these remainders
for approximation purposes (Casella and Berger, 2002, p 245).

Theorem 3.6 For Σ1 = Σ2, the first two moments of ÃAB
N are given as

following, where N = n1 + n2.

E
(
ÃAB

N

)
≈ 1

Var
(
ÃAB

N

)
≈ 2

fAB

(
1− 3N − 2

4n1n2

)
. ¤

Hence, we conclude that F̃AB
N = f̃ABÃAB

N ∼ χ2
fAB , asymptotically.

3.2.4 Case II: n1 = n2, Σ1 6= Σ2

Now we assume that the sample sizes are equal while the covariance matrices
may be unequal.

3.2.4.1 The Estimators

Following theorem gives the properties of the estimators.

Theorem 3.7 For n1 = n2 = n, the estimators, B̃AB
0 , B̃AB

1 and B̃AB
2 , as

defined in Equations (3.12)-(3.14), are unbiased and consistent estimators
of tr [T (Σ1 + Σ2)T], [tr {T (Σ1 + Σ2)T}]2 and tr [T (Σ1 + Σ2)T]2, respec-
tively. Further, the variances of the ratios of the estimators to the traces that
they estimate are uniformly bounded with respect to d. ¤

Proof For n1 = n2, Equation (3.16) reduces to

B̃AB
0 =

1

n2
Y′M′MY. (3.35)
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Similarly, from Equations (3.25) and (3.26), we have

tr(UΞ) = n2tr[T(Σ1 + Σ2)T)]

tr(UΞ)2 = n3
[
tr(TΣ1T)2 + 2

n
tr(TΣ1TΣ2T) + tr(TΣ2T)2

]

and Equations (3.17) and (3.21) give

E(B̃AB
0 ) = tr[T(Σ1 + Σ2)T)]

Var(B̃AB
0 ) =

2

n

[
tr(TΣ1T)2 + 2

n
tr(TΣ1TΣ2T) + tr(TΣ2T)2

]

which prove the unbiasedness and consistency of B̃AB
0 , respectively. Further

Var

(
B̃AB

0

tr[T(Σ1 + Σ2)T]

)
=

2
n

([
tr(TΣ1T)2 + 2

ntr(TΣ1TΣ2T) + tr(TΣ2T)2
]

[
tr[T(Σ1 + Σ2)T]

]2

)

≤ 2
n

(
2 +

2
n

)
= O

(
1
n

)

by Lemma B.11, which proves the dimensional stability of B̃AB
0 .

The unbiasedness of B̃AB
1 and B̃AB

2 follows directly from Equations (3.18)

and (3.19) by taking n1 = n2. For consistency of B̃AB
1 , we proceed as in

Case I, so that

1

n4

n∑

k=1

n∑

l=1

n∑
r=1

n∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AAB
kl AAB

rs ≈
(
B̃AB

0

)2

,

using Equation (3.12), where ≈ means ’approximately equal to’. It proves

that B̃AB
1 is also consistent, since

B̃AB
1 =

n4

n2(n− 1)2




1

n4

n∑

k=1

n∑

l=1

n∑
r=1

n∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AAB
kl AAB

rs




.

For uniform boundedness in d, we write

Var
(
B̃AB

1

)
=

1
n4(n− 1)4

n∑

k=1

n∑

l=1

n∑

r=1

n∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

n∑

k′=1

n∑

l′=1

n∑

r′=1

n∑

s′=1︸ ︷︷ ︸
k′ 6= r′, l′ 6= s′

Cov
(
AAB

kl AAB
rs , AAB

k′l′A
AB
r′s′

)
,
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and by Cauchy-Schwarz inequality (Theorem B.5), we have

Cov
(
AAB

kl AAB
rs , AAB

k′l′A
AB
r′s′

) ≤
√

Var (AAB
kl AAB

rs ) Var (AAB
k′l′A

AB
r′s′)

≤ 4
[
tr {T (Σ1 + Σ2)T}2]2

+ 4tr {T (Σ1 + Σ2)T}2 [tr {T (Σ1 + Σ2)T}]2

using Equations (A.14). Hence,

Var

(
B̃AB

1

[tr {T (Σ1 + Σ2)T}]2
)
¿ 4

([
tr {T (Σ1 + Σ2)T}2]2

[tr {T (Σ1 + Σ2)T}]4

+
tr {T (Σ1 + Σ2)T}2

[tr {T (Σ1 + Σ2)T}]2
)

(1/n)

¿ 1/n

by Lemma B.11, where the left-over expression on the right side of the last
inequality is independent of d. The consistency of B̃AB

2 can be proved using
the same arguments as in Case I, where, for n1 = n2, the order of convergence
is O(1/n5). For dimensional stability, write

Cov
(
AAB2

klrs , AAB2

k′l′r′s′

)
≤

√
Var

(
AAB2

klrs

)
Var

(
AAB2

k′l′r′s′
)

≤ 6tr {T (Σ1 + Σ2)T}4 + 2
[
tr {T (Σ1 + Σ2)T}2]2

by Theorem B.5, so that,

Var

(
B̃AB

2

tr {T (Σ1 + Σ2)T}2

)
¿


 6tr {T (Σ1 + Σ2)T}4

[
tr {T (Σ1 + Σ2)T}2

]2 + 2


 (1/n)

¿ 1/n

which completes the proof. ¥

3.2.4.2 The Approximating Distribution

We need the following lemma for the computation of the moments of the test
statistic, ÃAB

N .
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Lemma 3.8 For QAB
N and B̃AB

0 , as defined in Equations (3.15) and (3.16),
respectively, we have, with n1 = n2,

E
(
QAB

N

)
= tr [T (Σ1 + Σ2)T] (3.36)

Var
(
QAB

N

)
= 2tr [T (Σ1 + Σ2)T]2 (3.37)

Cov
(
QAB

N , B̃AB
0

)
=

2

n
tr [T (Σ1 + Σ2)T]2 . (3.38)

¤

Proof For n1 = n2, we have QAB
N = 1

n3Y
′M′(Jn2 ⊗ Id)MY and from

Equations (3.28), (3.29) and (5.25), we get

tr(WΞ) = n3tr[T(Σ1 + Σ2)T]

tr(WΞ)2 = n6tr[T(Σ1 + Σ2)T]2

tr(UΞWΞ) = n4tr[T(Σ1 + Σ2)T]2.

Finally, Equations (3.20), (3.22) and (3.23) give the required result. ¥

Now, it is just a matter of substituting the relevant identities into Equations
(B.1) and (B.2) and we get the following moments of ÃAB

N . Note that, in
Theorem 3.9, the order of the remainder for the mean of the statistic is at
least O(1/n) and for the variance of the statistic is at least o(1/n) (Stuart
and Ord, 1994, p 350). We compute the moments ignoring these remainders
for approximation purposes (Casella and Berger, 2002, p 245).

Theorem 3.9 For n1 = n2, the first two moments of the test statistic, ÃAB
N ,

are given as following.

E
(
ÃAB

N

)
≈ 1

Var
(
ÃAB

N

)
≈ 2

f̃AB

(
1 +

1
n

[
tr(TΣ1T)2 + 2

n tr(TΣ1TΣ2T) + tr(TΣ2T)2
]

tr[T(Σ1 + Σ2)T]2
− 2

n

)
.

¤

The moments of ÃAB
N closely approximate the moments of χ2

f/f -distribution,
which are 1 and 2/f , particularly when n →∞. Like in one sample case, we

can write F̃AB
N = f̃ABÃAB

N , so that F̃AB
N ∼ χ2

fAB .
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The middle term in Var
(
ÃAB

N

)
, consisting of traces, is exactly 1 for n = 1

and gets decreasing for increasing n. We need to estimate these traces. Since,

tr[T(Σ1 + Σ2)T]2 = tr(TΣ1T)2 + 2tr(TΣ1TΣ2T) + tr(TΣ2T)2,

therefore,

Var
(
ÃAB

N

)
=

2

fAB

(
1− 1

n

)(
1− 2η

n

)

where η = tr(TΣ1TΣ2T)
tr[T(Σ1+Σ2)T]2

. Note that η = 1
4

when Σ1 = Σ2. Otherwise, we
expect η vanishing since the numerator is a part of the denominator. We
plug in the classical estimator, Σ̂i =

∑n
k=1(Xik −Xi.)(Xik −Xi.)

′/(ni − 1),

i = 1, 2, so that η̂ = tr(TΣ̂1TΣ̂2T)

tr[T(Σ̂1+Σ̂2)T]2
replaces η in Var(F̃AB). It will be shown

in the simulation study in the next section that using Σ̂i, although leaves
η̂ biased, does not jeopardize the approximation which is still accurate for
moderate n and any d.

3.2.5 Simulation Results

3.2.5.1 Level

Table 3.2: Estimated Quantiles of ÃAB
N : Normal Distribution

n1 n2 d 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

(Σ1 = Σ2) CS AR(0.6) UN

10 20 20 0.9045 0.9526 0.9923 0.9005 0.9504 0.9918 0.9006 0.9543 0.9925
50 0.9042 0.9526 0.9913 0.8974 0.9445 0.9888 0.9004 0.9507 0.9923

100 0.9029 0.9631 0.9938 0.9029 0.9517 0.9909 0.9085 0.9581 0.9937
200 0.8992 0.9503 0.9918 0.9046 0.9531 0.9912 0.9069 0.9511 0.9913

20 30 30 0.9041 0.9502 0.9911 0.9084 0.9515 0.9868 0.9035 0.9502 0.9914
50 0.8981 0.9484 0.9912 0.9027 0.9494 0.9883 0.9058 0.9530 0.9917

100 0.9007 0.9509 0.9906 0.9022 0.9491 0.9892 0.9026 0.9482 0.9904
200 0.8986 0.9513 0.9900 0.9022 0.9489 0.9882 0.9016 0.9473 0.9914

(n1 = n2) CS-AR(0.6) CS-UN AR(0.6)-UN

10 10 20 0.9069 0.9509 0.9923 0.9069 0.9495 0.9877 0.8996 0.9501 0.9928
50 0.9033 0.9432 0.9848 0.8999 0.9505 0.9941 0.9004 0.9504 0.9928

100 0.9010 0.9423 0.9817 0.9003 0.9508 0.9912 0.9026 0.9536 0.9927
200 0.9007 0.9486 0.9896 0.8925 0.9501 0.9909 0.9067 0.9576 0.9933

20 20 30 0.9104 0.9490 0.9857 0.9058 0.9503 0.9902 0.9063 0.9521 0.9893
50 0.9044 0.9490 0.9914 0.9050 0.9498 0.9908 0.9079 0.9535 0.9898

100 0.9066 0.9505 0.9890 0.9082 0.9501 0.9892 0.9020 0.9513 0.9916
200 0.9065 0.9510 0.9891 0.9001 0.9504 0.9907 0.9006 0.9465 0.9893

Table 3.2 reports the results for the estimated quantiles for the ANOVA-
type statistic for the interaction effect. The upper panel of the table refers
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Figure 3.1: Power Curves for ÃAB
N : Normal Distribution

to Case I (Σ1 = Σ2) whereas the lower panel refers to Case II (n1 = n2). For
Case II, we evaluate the statistic for all pairs of the three covariance struc-
tures, CS, AR(0.6) and UN (Definitions B.6, B.7 and B.8). These results are
for 10,000 simulation runs with n ∈ {10, 20} and d ∈ {20, 30, 50, 100, 200}.

We observe a very accurate approximation of the ATS for all three co-
variance structures. Further, the stability of the estimated quantiles is well
maintained with increasing dimension, d. Particularly noticeable are the re-
sults for Case II, the so-called Behrens-Fisher case, where the accuracy is
evident even for n = 10, for all pairs of covariance matrices. Note that, like
for one sample case, we also investigated the behavior of two-sample statis-
tic for other covariance structures and found similar results. Likewise, for
Σ1 6= Σ2, we also got similar results for other pairs, for example AR(0.2)-
AR(0.6).
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3.2.5.2 Power

The power curves for ÃAB
N are shown in Fig. 5.1 with upper and lower panels

referring, respectively, to Cases I and II, as in Table 3.2. We observe a similar
performance as for the one sample case, particularly, that the power increases
for increasing d. The most important feature of Fig. 5.1 is that the power
curves for the two cases are similar, further substantiating the fact that the
statistic does not depend on any specific covariance structure. Note that, for
these power curves, the alternative is defined as in Equation (2.17) except
that now δ = 0(0.02)1.

A point worth mentioning is the behavior of the statistic under the two
cases, viz. Σ1 = Σ2 and n1 = n2. Although, theoretically, we have to
partition the general case into these two cases, but, as the simulation results
for the level and power indicate, the statistic can, by all practical means,
be used without distinguishing it into the two sub-cases. This feature is
further substantiated by the numerical illustrations, since in all applications,
we observed virtually the same result in both cases and, therefore, only the
results for Case II (Σ1 6= Σ2, n1 = n2) are presented (see Section 3.5).
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3.3 The Time Effect

The hypothesis for the main effect of time is HB
0 :

(
1
2
J2 ⊗Pd

)
µ = 0 which

can also be written as HB
0 : Pd(µ1 + µ2) = 0. The statistical model, data

set up and assumptions are as defined in Section 3.1. As for the interaction
effect, the generating matrix for the time effect is T = Pd, although for
convenience, the general form of the hypothesis matrix, T, will be used.

As mentioned in Section 3.1.3, the final results for all expressions involved
in the computations of the time effect are the same as those for the interaction
effect, since the covariance matrix for the differences Y1k−Y2l and the sums
Y1k +Y2l is same (see Sections A.1 and A.2). Therefore, in this section, only
the main results will be summarized, the proofs of which are similar to those
given in Section 3.2.

3.3.1 The Covariance Matrix

Let X1k and X2l, be as defined in Section 3.1. Define the sums X1k + X2l,
∀ k, l, where E(X1k + X2l) = µ1 + µ2 and Var(X1k + X2l) = Σ1 + Σ2. Let
T(X1k + X2l) = Y1k + Y2l, with E(Y1k + Y2l) = 0 and Cov(Y1k + Y2l) =

T(Σ1+Σ2)T, under HB
0 , where Σ̂N can now be defined by replacing Y1k−Y2l

with Y1k +Y2l in Equation (5.1). In matrix form, with Z as a vector of sums
Zkl = Y1k + Y2l,

Σ̂N =
1

n1n2

n1∑

k=1

n2∑

l=1

ZklZ
′
kl. (3.39)

We have the following theorem.

Theorem 3.10 Under HB
0 , Σ̂N , as defined in Equation (5.34), is an unbi-

ased estimator of T(Σ1 + Σ2)T. ¤

3.3.2 Defining The Statistic

Define Y1. +Y2. = T(X1. +X2.) such that, under HB
0 , E(Y1. +Y2.) = 0 and

Cov(Y1. + Y2.) = T
(

1
n1

Σ1 + 1
n2

Σ2

)
T. Then, from Equation (4.5),

ÃB
N =

2n1n2

N
(Y1. + Y2.)

′(Y1. + Y2.)

tr [T (Σ1 + Σ2)T]
(3.40)
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where ÃB
N ∼ χ2

fB/fB with

fB =
[tr {T (Σ1 + Σ2)T}]2
tr [T (Σ1 + Σ2)T]2

. (3.41)

The estimators, B̃B
0 , B̃B

1 and B̃B
2 , from Equations (3.12)-(3.14), now take

the following form.

B̃B
0 =

1

n1n2

n1∑

k=1

n2∑

l=1

AB
kl (3.42)

B̃B
1 =

1

n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AB
klA

B
rs (3.43)

B̃B
2 =

1

n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑
r=1

n2∑
s=1︸ ︷︷ ︸

k 6= r, l 6= s

AB2

klrs (3.44)

where AB
kl = (Y1k +Y2l)

′(Y1k +Y2l) and AB
rs = (Y1r +Y2s)

′(Y1r +Y2s) are
the quadratic forms and AB

klrs = (Y1k + Y2l)
′(Y1r + Y2s) is the symmetric

bilinear form, as defined in Sections A.1 and A.2.
To express QB

N and B̃B
0 in matrix form, let the random vectors Y, ξ and Ξ

be as defined in Section 3.3.1 where, now, M = (In1⊗1n2 | 1n1⊗In2)⊗Id such
that Z = MY denotes the vector of sums, Zkl = Y1k + Y2l, k = 1, . . . , n1

and l = 1, . . . , n2, with E(Zkl) = 0 and Cov(Zkl) = T(Σ1 + Σ2)T. Then

QB
N =

2

Nn1n2

Y′M′(Jn1 ⊗ Jn2 ⊗ Id)MY (3.45)

B̃B
0 =

1

n1n2

Y′M′MY (3.46)

where N = n1 + n2.
As for the interaction effect (Section 3.2), we shall derive the test statistic

for the two cases, Case I: Σ1 = Σ2 and Case II: n1 = n2, separately. The
general results for the moments, derived in Theorem 3.3, remain exactly the
same.
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3.3.3 Case I: n1 6= n2, Σ1 = Σ2

Following lemma summarizes the properties of estimators.

Theorem 3.11 For Σ1 = Σ2 = Σ, the estimators, B̃B
0 , B̃B

1 and B̃B
2 , as

defined in Equations (3.42)-(3.44), are the unbiased and consistent estima-
tors of 2tr(TΣT), 4 [tr(TΣT)]2 and 4tr(TΣT)2, respectively. Further, the
variances of the ratios of the estimators to the traces that they estimate are
uniformly bounded with respect to d. ¤

Following lemma summarizes the results needed for the moments of ÃB
N .

Lemma 3.12 Let QB
N and B̃B

0 be as defined in Equations (3.45) and (3.46),
respectively. Then, for Σ1 = Σ2, we have the following where N = n1 + n2.

E
(
QB

N

)
= 2tr(TΣT) (3.47)

Var
(
QB

N

)
= 8tr(TΣT)2 (3.48)

Cov
(
QB

N , B̃B
0

)
=

4N

n1n2

tr(TΣT)2. (3.49)

¤

Substitution of these results into Equations (B.1) and (B.2) gives the follow-
ing.

Theorem 3.13 For Σ1 = Σ2, the first two moments of ÃB
N are given as

following where N = n1 + n2.

E
(
ÃB

N

)
≈ 1

Var
(
ÃB

N

)
≈ 2

fB

(
1− 3N − 2

4n1n2

)
¤

3.3.4 Case II: n1 = n2, Σ1 6= Σ2

The proof of the following theorem is similar to that of Theorem 3.7.

Theorem 3.14 For n1 = n2, the estimators, B̃B
0 , B̃B

1 and B̃B
2 , as defined in

Equations (3.42)-(3.44), are unbiased and consistent estimators of
tr [T (Σ1 + Σ2)T], [tr {T (Σ1 + Σ2)T}]2 and tr [T (Σ1 + Σ2)T]2, respectively.
Further, the variances of the ratios of estimators to the traces that they esti-
mate are uniformly bounded with respect to d. ¤
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Further, we need the following lemma to compute the moments of the
test statistic.

Lemma 3.15 Let QB
N and B̃B

0 be as defined in Equations (3.45) and (3.46),
respectively. Then, with n1 = n2, we have

E
(
QB

N

)
= tr [T (Σ1 + Σ2)T] (3.50)

Var
(
QB

N

)
= 2tr [T (Σ1 + Σ2)T]2 (3.51)

Cov
(
QB

N , B̃B
0

)
=

2

n
tr [T (Σ1 + Σ2)T]2 . (3.52)

¤

Finally, Equations (B.1) and (B.2) give the following moments of ÃB
N .

Theorem 3.16 For n1 = n2, the first two moments of the test statistic, ÃB
N ,

are computed as following.

E
(
ÃB

N

)
≈ 1

Var
(
ÃB

N

)
≈ 2

fB

(
1 +

1
n

[
tr(TΣ1T)2 + 2

n tr(TΣ1TΣ2T) + tr(TΣ2T)2
]

tr[T(Σ1 + Σ2)T]2
− 2

n

)

¤

Since Var
(
ÃB

N

)
and Var

(
ÃAB

N

)
are same, we expect the same accuracy of

the statistic by estimating η using the plug in estimator, as discussed after
Theorem 3.9; see also the simulation results in the next section.

3.3.5 Simulation Results

Table 3.3 reports the estimated quantiles for the modified ANOVA-type
statistic for the time effect, ÃB

N , whereas the power curves are shown in
Fig. 5.2. These results are based on 10,000 simulation runs using exactly
the same parameter settings as explained for the interaction effect in Section
3.2.5, including the form of alternative. We observe precisely the same behav-
ior of the statistic as witnessed for the interaction effect, for both level and
power, as expected, based on the same theoretical moments of the statistic
for the two cases.
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Table 3.3: Estimated Quantiles of ÃB
N : Normal Distribution

n1 n2 d 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

(Σ1 = Σ2) CS AR(0.6) UN

10 20 20 0.9007 0.9518 0.9941 0.9033 0.9520 0.9903 0.9032 0.9528 0.9917
50 0.9054 0.9538 0.9928 0.9045 0.9526 0.9917 0.8987 0.9550 0.9927

100 0.8992 0.9485 0.9913 0.9028 0.9517 0.9906 0.8980 0.9496 0.9914
200 0.9022 0.9525 0.9918 0.9000 0.9502 0.9899 0.8993 0.9517 0.9930

20 30 30 0.8978 0.9503 0.9907 0.9014 0.9515 0.9881 0.9015 0.9485 0.9895
50 0.9010 0.9545 0.9920 0.9098 0.9541 0.9905 0.8959 0.9456 0.9899

100 0.9092 0.9553 0.9914 0.9043 0.9508 0.9884 0.8986 0.9482 0.9889
200 0.9018 0.9519 0.9903 0.8977 0.9501 0.9884 0.9007 0.9496 0.9901

(n1 = n2) CS-AR(0.6) CS-UN AR(0.6)-UN

10 10 20 0.9065 0.9553 0.9952 0.9091 0.9592 0.9930 0.9069 0.9561 0.9934
50 0.9059 0.9575 0.9938 0.9101 0.9576 0.9939 0.9069 0.9577 0.9943

100 0.9059 0.9564 0.9946 0.8998 0.9511 0.9932 0.9038 0.9545 0.9938
200 0.9066 0.9572 0.9940 0.9148 0.9594 0.9933 0.9100 0.9573 0.9936

20 20 30 0.9035 0.9524 0.9928 0.9042 0.9505 0.9906 0.9046 0.9535 0.9904
50 0.9039 0.9574 0.9927 0.9046 0.9475 0.9889 0.9032 0.9515 0.9907

100 0.9054 0.9542 0.9919 0.9084 0.9549 0.9901 0.9041 0.9500 0.9911
200 0.9046 0.9508 0.9917 0.9018 0.9498 0.9895 0.8960 0.9515 0.9898
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Figure 3.2: Power Curves for ÃB
N : Normal Distribution
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3.4 The Group Effect

As mentioned in Section 3.1.2 (see Remark 3.1), the group effect does not
involve the dimensionality of data since HA

0 is a univariate hypothesis of the
means of two independently sampled normal populations. Hence, HA

0 can
be tested using the usual t-test for two independent samples. But, to keep
the notations coherent for all model components and present the complete
analysis in a unified form, the analysis of group effect is very briefly sketched
in the following. For the classical analysis of the group effect, see Morrison
(1967, Ch. 4), Rencher (1995, Ch. 5), Johnson and Wichern (2002, Ch. 6)
and Timm (2002, Ch. 3).

The hypothesis for the group effect is HA
0 :

(
P2 ⊗ 1

d
J′d

)
µ = 0 which can

also be written as HA
0 : 1

d
1′d(µ1 − µ2) = 0 or simply as µ1. = µ2., where

µi = (µi1, . . . , µid)
′, i = 1, 2, is the vector of means for the ith population

and µi. is the overall mean of the ith population. The T matrix for HA
0

is TA = 1
d
Jd, where TA is a projection matrix. Then, with Y1 − Y2 =

T(X1 −X2), T = 1
d
Jd, QA

N = 2n1n2

N
(Y1 −Y2)

′(Y1 −Y2) is the quadratic
form of the test statistic. Note that the formulation of QA

N , and similarly
all other expressions, is the same as those for the interaction effect except
the different T matrices for the two effects. Since, the derivations for the
interaction effect (Section 3.2) are carried out using the general notation T,
hence, all the computations stand valid for the group effect as well. Therefore,
no explicit derivations will be carried out for the group effect. But, to show
how the quantities reduce to the scalar forms, we only summarize the main
results for the sake of record.

Let 1′Σi1 =
∑d

s=1 σis = σ2
i , i = 1, 2, and 1′(X1k − X2l) = X1k. − X2l..

Then, the estimators, B̃A
0 , B̃A

1 and B̃A
2 , are defined as

B̃A
0 =

1
n1n2

n1∑

k=1

n2∑

l=1

AA
kl (3.53)

B̃A
1 =

1
n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AA
klA

A
rs (3.54)

B̃A
2 =

1
n1n2(n1 − 1)(n2 − 1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AA2

klrs (3.55)
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where AA
kl = 1

d
(X1k. −X2l.)

2, AA
rs = 1

d
(X1r. −X2s.)

2 are the quadratic forms
and AA

klrs = 1
d
(X1k. −X2l.)(X1r. −X2s.) is the bilinear form.

Note that B̃A
1 = B̃A

2 , so that f̃A = 1. Then, the following theorem is
similar to Theorem 3.3.

Theorem 3.17 Let QA
N , B̃A

0 , B̃A
1 and B̃A

2 be as defined above. Then, we
have the following, where N = n1 + n2.

E
(
B̃A

0

)
= 1

d
(σ2

1 + σ2
2) (3.56)

E
(
B̃A

1

)
= 1

d2 (σ
2
1 + σ2

2)
2 (3.57)

E
(
B̃A

2

)
= 1

d2 (σ
2
1 + σ2

2)
2 (3.58)

E
(
QA

N

)
= 2

Nd
(n2σ

2
1 + n1σ

2
2) (3.59)

Var
(
B̃A

0

)
= 2

n1n2d2 (n2σ
4
1 + 2σ2

1σ
2
2 + n1σ

4
2) (3.60)

Var
(
QA

N

)
= 8

N2d2 (n2σ
2
1 + n1σ

2
2)

2 (3.61)

Cov
(
QA

N , B̃A
0

)
= 4

Nn1n2d2 (n2σ
2
1 + n1σ

2
2)

2. (3.62)

¤

The results of Theorem 3.17 can be partitioned for the cases, when σ2
1 =

σ2
2 = σ2 and when n1 = n2. We summarize the properties of the estimators,

for the two cases, in the following theorems.

Theorem 3.18 (Case I: σ2
1 = σ2

2) The estimators, B̃A
0 , B̃A

1 and B̃A
2 , as

defined in Equations (3.53)-(3.55) above, are unbiased and consistent esti-
mators of 2σ2/d, 4σ4/d2 and 4σ4/d2, respectively. ¤

Theorem 3.19 (Case II: n1 = n2) The estimators, B̃A
0 , B̃A

1 and B̃A
2 , as

defined in Equations (3.53)-(3.55) above, are unbiased and consistent esti-
mators of (σ2

1 + σ2
2)/d, (σ2

1 + σ2
2)

2/d2 and (σ2
1 + σ2

2)
2/d2, respectively. ¤

Remark 3.20 From Theorems 3.19 and 3.18, we deduce two interesting
features of the estimators for the group effect. First, both B̃A

1 and B̃A
2 esti-

mate the same quantity, since
[
tr[T(Σ1 +Σ2)T]

]2
= tr[T(Σ1 +Σ2)T]2 when

T = Jd/d. Further, the result of these traces is the square of the result of

the third trace, tr[T(Σ1 + Σ2)T], estimated by B̃A
0 . 4
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Now, let 1′(X1. −X2.) = X1.. − X2.., so that QA
N = 1

d
(X1.. − X2..)

2. Then,

the test statistic for the group effect is defined as ÃA
N =

QA
N

B̃A
0

, where, under

HA
0 , ÃN ∼ χ2

1 since fA = 1. Note that, with σ̂2 as the estimator of common
σ2 for Case I, we have

ÃA
N =

(X1.. −X2..)
2

σ̂2
(

1
n1

+ 1
n2

) =




X1.. −X2..√
σ̂2

(
1
n1

+ 1
n2

)




2

= t2

where t ∼ tn1+n2−2 is the usual t statistic. We state the following theorem
for the moments of the test statistic for both cases.

Theorem 3.21 With N = n1+n2, the first two moments of the test statistic,

ÃA
N =

QA
N

BA
0
, are given as following.

E
(
ÃA

N

)
≈ 1 (Case I/II) (3.63)

V ar
(
ÃA

N

)
≈ 2

(
1− 3N − 2

2n1n2

)
(Case I) (3.64)

≈ 2

(
1 +

1
n

(
σ4

1 + 2
n
σ2

1σ
2
2 + σ4

2

)

(σ2
1 + σ2

2)
2

− 2

n

)
(Case II) (3.65)

where ÃA
N ∼ χ2

1. ¤

Since, for the group effect, f̃A = 1, therefore, F̃A
N = ÃA

N .

Note that, like interaction and time effects, Var(ÃA
N) involves σi’s, i = 1, 2,

for Case II. Simplifying it as we did for interaction and time effects, we have

Var(ÃN) = 2

(
1− 1

n

) (
1− 2η

n

)

where η =
σ2
1σ2

2

(σ2
1+σ2

2)2
. Clearly, it is trivial for the group effect to replace σ2

i

with the usual estimator σ̂2
i , i = 1, 2, to estimate η.
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3.5 Applications

3.5.1 Analysis of Complete Sleep Lab Data
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Figure 3.3: Bar Plot for Complete Sleep Lab Data

Table 3.4: Analysis of Complete Sleep Lab Data

Effect T-matrix F̃N f̃ p-value

Gender P2 ⊗ 1
3J3 ⊗ 1

6J6 0.01 1.24 0.9561
Day 1

2J2 ⊗P3 ⊗ 1
6J6 0.66 2.59 0.5529

Time 1
2J2 ⊗ 1

3J3 ⊗P6 4.75 3.53 0.0014
Gender×Day P2 ⊗P3 ⊗ 1

6J6 0.01 2.39 0.9938
Gender×Time P2 ⊗ 1

3J3 ⊗P6 2.00 7.02 0.0515
Day×Time 1

2J2 ⊗P3 ⊗P6 2.82 9.49 0.0021
Gender×Day×Time P2 ⊗P3 ⊗P6 1.48 14.52 0.1067

Time(NS-TSD) P2 ⊗P6 3.73 4.38 0.0036
Time(NS-RN) P2 ⊗P6 0.73 5.98 0.6212
Time(TSD-RN) P2 ⊗P6 3.14 5.44 0.0061

Time (NS) P6 4.01 4.27 0.0023
Time (TSD) P6 1.84 6.78 0.0783
Time (RN) P6 4.33 4.32 0.0012

The analysis of women group of sleep lab example (Example 1.3) was
carried out in Section 2.5.1. Here we apply the two sample modified ANOVA-
type statistic to analyze the whole data given in Section C.3.
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We have analyzed the data for both cases I and II, as discussed above,
and found the results virtually same. Therefore, the results in Tables 3.4 and
3.5 refer to Case II (Σ1 6= Σ2). From Fig. 5.3, a statistically discernable
contribution of NS can be expected. We observe a significant Day×Time
interaction effect, shown in Fig. 5.4. This interaction is partitioned in the
middle panel of Table 3.4 and further, for simple effects, in the bottom panel
of the table. The final conclusion is the same as drawn for the women data
in Section 2.5.1, that RN and NS are the main contributors to the significant
interaction effect. This fact is also clear, to some extent, from the non-
significant group effect.
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Figure 3.4: Day×Time Interaction Plot for Complete Sleep Lab
Data

3.5.2 Analysis of Wistar Rats Data

The analysis of the Wistar rats experiment (Example 1.2) is reported in Table
3.5. We have d = 22 and ni = 10, i = 1, 2. We observe a highly significant
time effect but a non-significant interaction. The continuously increasing
time profiles of rats in Fig. 5.5 clue to the significant time effect whereas the
parallel lines for the drug and placebo groups in Fig. 5.6 clearly support the
conclusion that there is no interaction between the treatment and the time.
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Figure 3.5: Bar Plot for Wistar Rats Data

Table 3.5: Analysis of Rats Data

Effect T-matrix F̃N f̃ p-value

Group P2 ⊗P22 1.00 1.17 0.3293
Time 1

2J2 ⊗P22 9.56 1.21 0.0010
Group×Time P2 ⊗ 1

22J22 0.51 3.48 0.7015
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Figure 3.6: Group×Time Interaction Plot for Rats Data
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Chapter 4

The Multivariate Case

As mentioned in Section 2.1, the projection matrix T in H0 : Tµ = 0 can
be formulated so that H0 is any general linear hypothesis. Perhaps the most
commonly tested multivariate one-sample hypothesis is H0 : µ = 0. For
n > d, the most commonly used test statistic for this hypothesis is Hotelling’s
T 2, as discussed in Section 1.2.2, where it is also stated that T 2 statistic is
not applicable when d > n (Stuart et al, 1999, Ch. 31).

The hypothesis H0 : Tµ = 0 reduces to H0 : µ = 0 when T = I, and
I is a projection matrix. Similarly, in the two sample case, the hypotheses
can be reduced to the multivariate case by replacing T with I. For example,
the interaction hypothesis then becomes HAB

0 : µ1 = µ2. The Hotelling’s T 2

statistic can not be used to test this hypothesis when n1 + n2 − 2 < d. It is
quite straightforward to prove that the modified ANOVA-type statistic, for
both one and two sample cases, is also valid to test the multivariate hypothe-
ses when the matrix T is replaced with I in all the expressions involved. The
data structure remains the same as introduced in Section 2.1 except that the
d observations measured on each of n individuals, in the multivariate case,
can be any set of measurements taken on the same individual, for example,
observations taken under different conditions, or observations taken on dif-
ferent characteristics (variables). It is also easy to see that the properties of
the estimators and the statistics remain intact for the multivariate case. Due
to its triviality, this case will not be dealt with in detail here.

Some recent references which also address the testing of multivariate hy-
potheses for high dimensional data are reported in Section 1.5. A point that
deserves explicit treatment in the high dimensional multivariate case is in-
variance. The modified ANOVA-type statistic, both for one and two sample

59



60 CHAPTER 4. THE MULTIVARIATE CASE

cases, is not intrinsically invariant under affine transformation (Definition
B.9). It is, however, invariant to an orthogonal linear transformation (Def-
inition B.10). Here, not intrinsically invariant under affine transformation
means that the statistic, although not invariant by construction, remains
so when used for a repeated measures set up. It is because in a repeated
measures set up, the observations are measured on a commensurate scale.
It further implies that the statistic is also invariant when each component
undergoes the same linear transformation, even if the design set up is not of
repeated measurements.

It must be noted that, none of the statistics developed for the high di-
mensional data so far (see references in Section 1.5), is affine invariant. The
reason, all these statistics primarily share for not being affine invariant, is
that all are approximate statistics. Lehmann (1959, p 318) states that for
high dimensional data, only an exact α level test can be affine invariant.



Chapter 5

Summary and Outlook

5.1 Summary and Conclusions

Table 5.1: Summary ANOVA Table: One-sample Case

Effect T-matrix Identities F̃n ∼ χ2
f f̃

Time Pd Qn = nX
′
TX = nY

′
Y Qn

B0
· B1

B2

B1
B2

B0 = 1
n

n∑
k=1

Ak

B1 = 1
n(n−1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

AkAl

B2 = 1
n(n−1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6= l

A2
kl

Ak = Y′
kYk, Al = Y′

lYl, Akl = Y′
kYl

First, in Chapter 2, a one sample test statistic is derived for the analysis of
repeated measures data when the dimension, d, can (but not must) be large
compared to the sample size, n, and the underlying distribution is assumed
multivariate normal. This case is then extended to the two sample case in
Chapter 3. A small digression to the multivariate case is briefly sketched in
Chapter 4.

The statistic, the modified ANOVA-type statistic (Brunner, 2001), is
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Table 5.2: Summary ANOVA Table: Two-sample Case

Effect T-matrix Identities F̃n ∼ χ2
f f̃

Interaction P2 ⊗Pd QAB
N = 2n1n2

N
(Y1. −Y2.)′(Y1. −Y2.)

QAB
N

B̃AB
0

· B̃AB
1

B̃AB
2

B̃AB
1

B̃AB
2

B̃AB
0 = 1

n1n2

n1∑
k=1

n2∑
l=1

AAB
kl

B̃AB
1 = 1

n1n2(n1−1)(n2−1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AAB
kl AAB

rs

B̃AB
2 = 1

n1n2(n1−1)(n2−1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AAB2

klrs

AAB
kl = (Y1k −Y2l)

′(Y1k −Y2l), AAB
rs = (Y1r −Y2s)′(Y1r −Y2s), AAB

klrs = (Y1k −Y2l)
′(Y1r −Y2s)

Time 1
2
J2 ⊗Pd QB

N = 2n1n2
N

(Y1. + Y2.)′(Y1. + Y2.)
QB

N

B̃B
0
· B̃B

1
B̃B

2

B̃B
1

B̃B
2

B̃B
0 = 1

n1n2

n1∑
k=1

n2∑
l=1

AB
kl

B̃B
1 = 1

n1n2(n1−1)(n2−1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AB
klA

B
rs

B̃B
2 = 1

n1n2(n1−1)(n2−1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AB2

klrs

AB
kl = (Y1k + Y2l)

′(Y1k + Y2l), AB
rs = (Y1r + Y2s)′(Y1r + Y2s), AB

klrs = (Y1k + Y2l)
′(Y1r + Y2s)

Group P2 ⊗ 1
d
Jd QA

N = 2n1n2
N

(Y1. −Y2.)′(Y1. −Y2.)
QA

N

B̃A
0

B̃A
1

B̃A
2

= 1

B̃A
0 = 1

n1n2

n1∑
k=1

n2∑
l=1

AA
kl

B̃A
1 = 1

n1n2(n1−1)(n2−1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AA
klA

A
rs

B̃A
2 = 1

n1n2(n1−1)(n2−1)

n1∑

k=1

n2∑

l=1

n1∑

r=1

n2∑

s=1︸ ︷︷ ︸
k 6= r, l 6= s

AA2

klrs

AA
kl = 1

d
(X1k. −X2l.)

2, AA
rs = 1

d
(X1r. −X2s.)2, AA

klrs = 1
d
(X1k. −X2l.)(X1r. −X2s.), N = n1 + n2

based on Box’s approximation and follows a χ2
f distribution, asymptoti-

cally. The formulations of the statistic are summarized in Tables 5.1 and
5.2, respectively, for one and two sample cases. Following are the main
characteristics, shared by both one and two sample test statistics.

C-1 The statistics follow a χ2
f distribution, asymptotically.
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C-2 The statistics are composed of the unbiased, L2-consistent and uni-
formly bounded estimators. Although, unbiasedness and consistency
are two of the most desirable properties of an estimator, in the present
context, it is the uniform boundedness of the estimators with respect to
the dimension, d, which plays the most crucial role in determining the
accuracy of the approximating distribution of the statistics to the χ2

distribution. This property ensures that the asymptotic approximation
of the test statistics is achieved by letting only n →∞ where d is kept
finite and fixed, such that, the accuracy is not jeopardized by d > n,
or even by d >> n.

C-3 The statistics can be used to analyze any general linear hypothesis,
which further implies that they can be used to analyze unstructured,
or factorially structured repeated measures data.

C-4 The statistics can also be used when the data are not high dimen-
sional, i.e. when d < n. In this case, the statistics can be compared
with the most frequently used classical multivariate techniques, e.g.,
Hotelling’s T 2 statistic. There is no uniformly better statistic among
these competitors and the performance strongly depends on the under-
lying covariance matrix and the type of alternatives.

C-5 The statistics are invariant to an orthogonal transformation. As far
as the affine invariance (Definition B.9) is concerned, it is a windfall
for the statistics that the problem of invariance does not potentially
emerge. It is simply because the measurements in a repeated measures
set up are made on a commensurate scale. It implies that, intrinsically,
the statistics also remain invariant when each component undergoes
the same transformation, even if the data set up is not of repeated
measures.

C-6 The statistics do not depend on any specific covariance structure and
are derived under fairly general conditions. This advantage gives the
statistic a unique flavor and a potential appeal of application. As dis-
cussed in Chapter 1, repeated measures data can be analyzed using
both univariate and multivariate techniques. A univariate analysis re-
duces the computational burden by using the traces of the concerned
matrices but is limited by the almost inevitable sphericity assumption
on the covariance matrix. A multivariate analysis, on the other hand,
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enjoys the flexibility of not depending on a particular covariance struc-
ture, but totally collapses when the data are high dimensional. The
modified ANOVA-type statistic efficiently collects the positives of the
two approaches and shuns the negatives: it is computationally based
on the traces of the functions of the underlying covariance matrix but
does not call for imposing any particular structure on this covariance
matrix.

C-7 The statistics are subjected to the evaluation based on simulation stud-
ies which indicate that the approximation is accurate enough for mod-
erate sample size, usually n = 10, disregarding how large d is.

5.2 Future Outlook

Given the immense amount of applications of the repeated measures theory
and the rapidly emerging challenge of dealing with huge amounts of data
in a variety of applied research problems, be they in the biological sciences,
behavioral sciences, or even in engineering and astronomy, it is absolutely
fair to say that much more needs to be done than what is presented in this
manuscript. As mentioned in Section 1.5, the analysis of high dimensional
data has attracted a reasonable amount of researchers in the last couple of
decades and they have approached the problem from a variety of perspec-
tives. Although not limited to, but the analysis of proteomics and microarray
data has significantly galvanized the need to enhance the efficiency of sta-
tistical methods so that they can handle the large amounts of data. Add to
it the recent revolution of modern statistical softwares and highly efficient
algorithmic approach to tune the traditional statistical instruments so they
can play better when called for in the ever growing realm of target-driven,
application-oriented research environment. The following list of potential
extensions of the present work is, therefore, by no means exhaustive.

1. Extension to the general case of a > 2 populations.

2. Developing a sound methodology to deal with the multiple comparisons
problem in high dimensional data.

3. Constructing an affine invariant statistic for the analysis of high dimen-
sional data.
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4. As an alternative, but currently much sought after, approach is to
develop, as Ledoit and Wolf (2004) put it, a well-conditioned estimator
of the high dimensional covariance matrix that can be used as a plug-in
estimator for the classical test statistics.

5. A completely non-parametric test statistic is needed to deal with those
types of data sets and alternatives which are beyond the grasp of subtle
parametric statistical theory.
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Appendix A

Quadratic and Bilinear Forms

This chapter contains the main results on quadratic and bilinear forms and
their moments which are frequently used in the derivations of the test statis-
tics. There is an extensive literature on quadratic and bilinear forms contain-
ing most of the fundamental results we need; see, for example, Searle (1971),
Mathai and Provost (1992), Mathai et al (1995). The derivations of most of
the results for the present work are based on the transformation of the form
Y = TX. We, therefore, state the following result from the multivariate
theory for reference, the proof of which is quite trivial (see Rencher, 1995,
Ch. 3).

Theorem A.1 Let X be a vector of n observations with E(X) = µ and
Cov(X) = Σ. Define the transformation Y = AX, where Ak×n be any
matrix of constants. Then, E(Y) = Aµ and Cov(Y) = AΣA′. ¤

Corollary A.2 In our case, the matrix T in the transformation Y = TX is
symmetric (and idempotent). Hence, Cov(Y) = TΣT. ¤

Theorem A.1 is valid without any distributional assumption for X. Clearly,
from the properties of normal distribution, we have the following special
case (assuming again symmetric T, although the result holds in general).
For details, see Anderson (1984, Ch. 2).

Lemma A.3 If X ∼ N (µ,Σ), then Y = TX ∼ N (Tµ,TΣT). ¤
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A.1 Moments of Quadratic Forms

We begin with the following general representation of a quadratic form. For
details, see Mathai and Provost (1992, Ch. 3).

Lemma A.4 (Representation of a Quadratic Form) Let X be a ran-
dom vector with E(X) = µ and Cov(X) = Σ > 0 and A = A′ be any matrix.
Then the quadratic form X′AX can be represented as

Q(X) = X′AX =
d∑

j=1

λj (Uj + bj)
2 µ 6= 0 (A.1)

=
d∑

j=1

λjU
2
j µ = 0 (A.2)

where λ1, . . . , λd are the eigenvalues of Σ
1
2AΣ

1
2 , E(U) = 0, Cov(U) = Id with

U = (U1, . . . , Ud)
′, b = (b1, . . . , bd)

′ =
(
P′Σ− 1

2 µ
)′

and P be any orthogonal

matrix such that PP′ = I. ¤

Remark A.5 This representation does not assume normal, or any, distri-
bution for X except that the covariance matrix is positive definite. Hence,
it is the general representation and is valid for any underlying non-singular
distribution. Several variants of this representation, including those for the
singular case, are given in Mathai and Provost (1992, Ch. 3). 4

Remark A.6 When Uj ∼ N(0, 1), ∀ j, then U2
j ∼ χ2

1 and Lemma A.4 can
be replaced with Theorem 2.1. 4

Though, frequently we shall need the first two moments of the quadratic and
bilinear forms, in some cases the higher moments will also be required. Fol-
lowing theorem gives the general moment generating function of a quadratic
form under the assumption of normal distribution.

Theorem A.7 (Moment Generating Function) Let X ∼ Nd(µ, Σ),
Σ > 0 and A = A′ be any matrix of constants. Then the mgf of the quadratic
form X′AX is given as

MX′AX(t) = |I− 2tAΣ|− 1
2 e−

1
2
µ′[I−(I−2tAΣ)−1]Σ−1µ

= |I− 2tAΣ|− 1
2 µ = 0. ¤
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Proof See Searle (1971, p 55). ¥

Remark A.8 In Theorem A.7, we assume the covariance matrix to be non-
singular, which suffices our needs. For the more general case, with singular
covariance matrix, see Mathai and Provost (1992, Ch. 3). 4

As is obvious from Theorem A.7, it is not easy to deal with the mgf of a
quadratic form. Although, we can write |I− 2tAΣ|− 1

2 =
∏d

j=1(1− 2tλj)
− 1

2 ,
but even then it is much easier to deal with the cumulant generating function
which is the log of the mgf. The moment-cumulant relationships (Stuart and
Ord, 1994, Ch. 3) can then be used to compute the moments. The general
form of the cgf of a quadratic form is given in the following theorem.

Theorem A.9 (Cumulant Generating Function) Let X ∼ N (µ, Σ),
Σ > 0, and A = A′ be any matrix of constants. Then the rth cumulant of
the quadratic form X′AX is given as

κr(X
′AX) = 2r−1(r − 1)!

[
tr(AΣ)r + rµ′A(ΣA)r−1µ

]
, r = 1, 2, . . .

(A.3)
where tr denotes the trace. ¤

Proof See Searle (1971, Ch. 2) or Mathai et al (1995, Ch. 3). ¥

Clearly, when µ = 0, Equation (A.3) reduces to a the following simpler form.

Corollary A.10 When µ = 0, the rth cumulant of X′AX reduces to

κr(X
′AX) = 2r−1(r − 1)!tr(AΣ)r, r = 1, 2, . . . . (A.4) ¤

Since the computations of the test statistic are based on the moments of
quadratic forms for the transformed variables, therefore, we use Corollary
A.10 to deduce the first four moments. For the one sample case, Xk ∼
N (µ,Σ), such that Yk = TXk ∼ N (0,TΣT), k = 1, . . . , n, and the
quadratic form is defined as Ak = X′

kTXk = Y′
kYk, since T is idempotent.

Following lemma summarizes the final results for the one sample case.

Lemma A.11 Under H0 : Tµ = 0, the first four moments of the quadratic
form X′

kTXk are

µ′1 = tr(TΣ)

µ′2 = 2tr(TΣ)2 + [tr(TΣ)]2

µ′3 = [tr(TΣ)]3 + 6tr(TΣ)2tr(TΣ) + 8tr(TΣ)3

µ′4 = 48tr(TΣ)4 + 32tr(TΣ)3tr(TΣ) + 12tr(TΣ)2[tr(TΣ)]2

+ 12[tr(TΣ)2]2 + [tr(TΣ)]4





(A.5)
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where µ′i = E(X′
kTXk)

i, i = 1, . . . , 4. ¤

The mean and variance of a quadratic form, being most frequently needed
identities, are stated, again under H0 : Tµ = 0, in the following.

E(X′
kTXk) = tr(TΣ) (A.6)

Var(X′
kTXk) = 2tr(TΣ)2. (A.7)

Similarly, we can proceed for the two sample case. We have X1k
i.i.d.∼

N (µ1, Σ1) and X2l
i.i.d.∼ N (µ2, Σ2). Since, under HAB

0 : T(µ1 − µ2) = 0,

T(X1k −X2l) = (Y1k −Y2l) ∼ N (0, T(Σ1 + Σ2)T)

and under HB
0 : T(µ1 + µ2) = 0,

T(X1k + X2l) = (Y1k + Y2l) ∼ N (0, T(Σ1 + Σ2)T),

therefore, the final results for both interaction and time effects are same.
The moments of quadratic forms, AAB

kl = (Y1k−Y2l)
′(Y1k−Y2l) and AB

kl =
(Y1k + Y2l)

′(Y1k + Y2l), come directly from Lemma A.11. The mean and
variance of the quadratic form for the two sample case are collected in the
following, where Akl = AAB

kl or Akl = AB
kl.

E(Akl) = tr[T(Σ1 + Σ2)T] (A.8)

Var(Akl) = 2tr[T(Σ1 + Σ2)T]2. (A.9)

Due to the independence of the quadratic forms involved in most of the
expressions required for the derivations of the statistics, the proofs regarding
joint moments are quite simple. For more general and detailed treatment on
the joint moments, see Mathai and Provost (1992). In the following theorem,
we compute some useful joint moments of the quadratic form, for the one
sample case.

Theorem A.12 For Aj = Y′
jYj, j = k, l, r, s, as the quadratic forms for
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the one sample case, we have the following, under H0 : Tµ = 0.

Cov(Ak, Al) =

{
0 k 6= l
2tr(TΣT)2 k = l

(A.10)

Cov(A2
k, A

2
l ) =

{
0 k 6= l

48tr(TΣT)2 + 12 [tr(TΣT)2]
2

k = l
(A.11)

Cov(AkAl, ArAs) =





0 k 6= r, l 6= s
2tr(TΣT)2[tr(TΣT)]2 k 6= r, l = s or k = r, l 6= s

4 [tr(TΣT)2]
2

+4tr(TΣT)2[tr(TΣT)]2 k = r, l = s

(A.12)

where, for the last covariance, it is assumed that k 6= l, r 6= s. ¤

Proof The proofs of (A.11) and (A.12) are trivial. When k 6= l, covariances
vanish because of independence. When k = l, covariances reduce to variances
and the results come from Lemma A.11. For (A.13), the zero covariance is
again clear because of independence. Now, let k = l, r 6= s. Then

Cov(AkAl, AkAs) = E(AkAlAkAs)− E(AkAl)E(AkAs)

= E(A2
k)[E(Ak)]

2 − [E(Ak)]
4 = 2tr(TΣT)2[tr(TΣT)]2

using Equations (A.6).
When k = r, l = s, Cov(AkAl, AkAs) = Var(AkAl), where

Var(AkAl) = E(AkAl)
2 − [E(AkAl)]

2 =
[
E(A2

k)
]2 − [E(Ak)]

4

= 4
[
tr(TΣT)2

]2
+ 4tr(TΣT)2[tr(TΣT)]2

since k 6= l. Hence the result. ¥

For the two sample case, we need only one result, namely Var(AklArs), which
comes directly from the simple moments (Lemma A.11). Hence, we have
the following result, using the independence of the quadratic forms, since
k 6= r, l 6= s.

Var(AklArs) = 4
[
tr {T (Σ1 + Σ2)T}2

]2

+ 4tr {T (Σ1 + Σ2)T}2 [tr {T (Σ1 + Σ2)T}]2
(A.13)
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A.2 Moments of Bilinear Forms

Properties of bilinear forms can be conveniently studied using the properties
of quadratic forms since a bilinear form can be expressed as a quadratic
form. First, the following definition differentiates between a quadratic and a
bilinear form. For a comprehensive treatment of bilinear forms, see Mathai
et al (1995). A few results can also be found in Mathai (1992) and Searle
(1971, Ch. 2).

Definition A.13 Suppose Xk and Xl be two random vectors and A be any
symmetric matrix. Then

X′
kAXl =

{
Quadratic form if k = l
Bilinear form if k 6= l.

We present two representations of a bilinear form. The first form, based on
the eigenvalues of TΣ, is an extension of Lemma A.4.

Lemma A.14 (Representation of a Bilinear Form-I) Let Xk and Xl

be independent and identically distributed random vectors with E(Xk) =
E(Xl) = µ and Cov(Xk) = Cov(Xl) = Σ > 0. Let T be any symmetric
matrix. Then, the bilinear form X′

kTXl, k 6= l, can be represented as

X′
kTXl =

d∑
j=1

λj (Uj + bj) (Wj + bj) µ 6= 0 (A.14)

=
d∑

j=1

λjUjWj µ = 0 (A.15)

where λ1, . . . , λd are the eigenvalues of TΣ, and U = (U1, . . . , Ud)
′, V =

(V1, . . . , Vd)
′ are such that E(U) = 0 = E(V), Var(U) = I = Var(V) and

Cov(U,V) = 0. Further b = (b1, . . . , bd) = PΣ
1
2 µ with PP′ = I. ¤

Next we represent the bilinear form as a quadratic form. This representation
is extremely helpful when it is relatively easier to compute the moments of
a quadratic form so that they can be converted into those of a bilinear form.

Lemma A.15 (Representation of a Bilinear Form-II) Let Xk and Xl

be two random vectors with means µi and variances Σi, i = 1, 2, respectively.
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Let T be any matrix of constants. Then the bilinear form X′
kTXl, k 6= l,

can be represented as

X′
kTXl =

1

2

(
Xk Xl

) (
0 T
T 0

) (
Xk

Xl

)
= 1

2
X′

mT∗Xm (A.16)

where Xm =

(
Xk

Xl

)
, T∗ =

(
0 T
T 0

)
and T, T∗ are symmetric matrices.

The mean and variance of the transformed vector Xm are, respectively,

µ∗ =

(
µ1

µ2

)
, Σ∗ =

(
Σ1 0
0 Σ2

)
.

¤

Remark A.16 This representation of a bilinear form is not based on any
distributional assumption. For more on this representation, see Mathai et al
(1995, Ch. 2). The same representation under the assumption of normality
is given by Searle (1971, Ch. 2). Further, the general version of this rep-
resentation also involves a covariance between Xk and Xl, say Σ12 (Searle,
1971, Ch. 2). 4

All the results of quadratic form given above can now be written for the
bilinear form using Equation (A.17). The cumulant generating function of a
bilinear form is given in the following lemma using Theorem A.9.

Lemma A.17 (Cumulant Generating Function) For the bilinear form
X′

kTXl, as defined above, the rth cumulant is computed as

κr(X
′
kTXl) =

1

2
(r−1)!

[
tr(TΣ)r + rµ′T(ΣT)r−1µ

]
, r = 1, 2, . . . (A.17)

where T is the projection matrix, as defined above. ¤

Corollary A.18 For µ = 0, the cumulant generating function reduces to
the following simple form.

κr(X
′
kTXl) =

1

2
(r − 1)!tr(TΣ)r, r = 1, 2, . . . . (A.18) ¤

Now, using Corollary A.18, the first four moments of the bilinear form for
the one sample case, i.e., Akl = X′

kTXl = Y′
kYl, k 6= l, are computed as

following.
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Lemma A.19 Under H0 : Tµ = 0, the first four moments of the bilinear
form Akl = Y′

kYl are

µ′1 = 0

µ′2 = tr(TΣ)2 = Var(Akl)

µ′3 = 0

µ′4 = 6tr(TΣ)4 + 3[tr(TΣ)2]2.





(A.19)

¤

It is trivial to extend Lemma A.19 for the corresponding moments of
the two sample bilinear forms, i.e., AAB

klrs = (X1k − X2l)
′T(X1r − X2s) and

AB
klrs = (X1k + X2l)

′T(X1r + X2s). Clearly, the moments will again be same
for both interaction and time effects, as those of the quadratic forms.

The required results for the joint moments of the bilinear forms, for the
one sample case, are computed in the following theorem.

Theorem A.20 Suppose Akl, k 6= l, be the bilinear form for the one sample
case as defined above. Then, under H0 : Tµ = 0, we have the following
identities.

Cov(Akl, Ars) =

{
0 k 6= r, l 6= s; k = r, l 6= s; k 6= r, l = s
tr(TΣT)2 k = r, l = s

(A.20)

Cov(A2
kl, A

2
rs) =





0 k 6= r, l 6= s
2tr(TΣT)4 k = r, l 6= s; k 6= r, l = s

6tr(TΣT)4 + 2
[
tr(TΣT)2

]2
k = r, l = s

(A.21)

Cov(Akl, Am) = 0, k = m 6= l; l = m 6= k (A.22)

¤

Proof For the first two covariances, the case when k 6= r, l 6= s is trivial due
to the independence of the bilinear forms involved. Now, let k = r, l 6= s for
the first covariance. Then, with E(Akl) = 0, we have

Cov(Akl, Aks) = E(AklAks) = E(Y′
kYlY

′
kYs)

= E(Y′
kYlY

′
sYk) = E[tr(YkY

′
kYlY

′
s)] = 0

since k 6= l 6= s and E(Yk) = 0, under H0. We get the same result when
k 6= r, l = s. Finally, when k = r, l = s, Cov(Akl, Ars) = Var(Akl) and the
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result immediately follows from Lemma A.19.
The last part of the second covariance is also clear using the simple

moments, since Cov(A2
kl, A

2
rs) = Var(A2

kl). For the middle part, we use
Lemma A.14. We know that, under H0 : Tµ = 0, E(Yk) = 0 = E(Yl),
Var(Yk) = TΣT = Var(Yl) and Cov(Yk,Yl) = 0, k 6= l. Then we can

write X′
kTXl = Y′

kYl =
d∑

j=1

λjUjVj where the λj are the eigenvalues of TΣ,

and Uj and Vj are as defined in Lemma A.14. Further, E(U2
j ) = 1, and, with

Uj ∼ N(0, 1), E(U4
j ) = 3. Then, for k = r, l 6= s, we have

Cov(A2
kl, A

2
ks) = E(A2

klA
2
ks)− [E(A2

kl)]
2,

where E(A2
kl) = tr(TΣ)2, from Theorem A.19, and

E(A2
klA

2
ks) = E




(∑

l

λlUlVl

)2 (∑
m

λmUmWm

)2



= E




∑

l

λ4
l U

4
l V 2

l W 2
l +

∑

l

∑
m︸ ︷︷ ︸

l 6=m

λ2
l λ

2
mU2

l V 2
l U2

mW 2
m




= 3
∑

l

λ4
l +

∑

l

∑
m︸ ︷︷ ︸

l 6=m

λ2
l λ

2
m

= 2
∑

l

λ4
l +

∑

l

∑
m

λ2
l λ

2
m = 2tr(TΣ)4 +

[
tr(TΣ)2

]2
,

so that Cov(A2
kl, A

2
ks) = 2tr(TΣ)4.

The last identity is the covariance of a bilinear form and a quadratic form.
Let, for example, k = m 6= l. Then,

Cov(Akl, Ak) = E(AklAk) = E(Y′
kYlY

′
kYk)

= E(Y′
lYkY

′
kYk) = E(Y′

l)E(YkY
′
kYk) = 0

since E(Akl) = 0 and E(Y′
l) = 0.

This completes the proof of the theorem. ¥
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Finally, for the two sample case, we need only one result, namely Var(A2
klrs).

Using again the simple moments from Lemma A.19, we have

Var(A2
klrs) = 6tr {T (Σ1 + Σ2)T}4 + 2

[
tr {T (Σ1 + Σ2)T}2]2

, (A.23)

where k 6= r, l 6= s.



Appendix B

Some Miscellaneous Results

As mentioned in the introduction, the distribution of the modified ANOVA-
type statistics for both one- and two-sample cases is approximated with the
corresponding χ2

f/f -distribution. This approximation is approached by com-
paring the first two moments of the sampling distributions of the derived test
statistics with those of the χ2

f/f distribution (Lindsay and Basak, 2000).

Clearly, the first two moments of χ2
f/f distribution are 1 and 2

f
. The mo-

ments of the sampling distributions are derived using the approximation for-
mulas for the mean and variance of the function (here, ratio) of two random
dependent variables. The approximation formulas are based on the bivariate
Taylor series expansion (Finney et al, 2001, pp 965-967). In the following, we
state these formulas for the vector (U , V ), which can be used for both one
and two sample cases, using, for example U = Qn and V = B0. For details,
see Stuart and Ord (1994, Ch. 10), Casella and Berger (2002, Ch. 5) and
Rohatgi (1984, Ch. 5).

Theorem B.1 (Approximation Formulas) Let U and V be the random
variables with their means E(U), E(V ), variances Var(U), Var(V ), and the
covariance Cov(U, V ). Then, the first two moments of the ratio, U

V
, are

computed as following.

E

(
U

V

)
≈ E(U)

E(V )
(B.1)

Var

(
U

V

)
≈ [E(U)]2

[E(V )]2

(
Var(U)

[E(U)]2
+

Var(V )

[E(V )]2
− 2

Cov(U, V )

[E(U)][E(V )]

)
(B.2)

¤
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Remark B.2 Note that the expression within parentheses of Equation (B.2)
is the sum of the two coefficients of variation minus twice the joint coefficient
of variation of the two variables. 4

Remark B.3 The only condition for the use of Equations (B.1) and (B.2)
is that the variances and covariances of the random variables are of order
O(n−r), r > 0. Then, a remainder of order O(n−r) for Equation (B.1)
and of order o(n−r) for Equation (B.2) can be ignored, for large sample
approximation (Stuart and Ord, 1994, p 350); see also Casella and Berger
(2002, p 245). Stuart and Ord (1994) further point out that, in practice,
usually, r = 1. We have proved in the derivations of the modified ANOVA-
type statistic, that, for all cases, Var(Qn), Var(B0) and Cov(Qn, B0) tend to
zero, asymptotically. 4

For details and some interesting examples for the following, and other, in-
equalities, see Casella and Berger (2002, Ch. 5).

Theorem B.4 (Chebychev’s Inequality) Let X be a random variable
and let g(x) be a nonnegative function. Then,

P [g(X) ≥ r] ≤ E[g(X)]

r
(B.3)

where r > 0. ¤

Theorem B.5 (Cauchy-Schwarz’s Inequality) For any two random vari-
ables X and Y ,

|E(XY )| ≤ E|XY | ≤ (
E|X|2)1/2 (

E|Y |2)1/2
. (B.4)

If µX , µY , σ2
X and σ2

Y , are the means and variances of X and Y , respectively,
then using the above inequality, we have

|E(X − µX)(Y − µY )| ≤ {
E(X − µX)2

}1/2 {
E(Y − µY )2

}1/2
(B.5)

Squaring on both sides we get [Cov(X, Y )]2 ≤ σ2
Xσ2

Y . This result is usually
known as Covariance Inequality. ¤

In the following, we define the three covariance structures typically used for
the simulations to assess the small sample behavior of the test statistics in
both one and two sample cases.
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Definition B.6 (Compound Symmetry) Let X = (X1, ..., Xd)
′ be a vec-

tor of random variables. Then the covariance structure is called compound
symmetric if Var(Xk) = σ2 and Cov(Xk, Xl) = κ, k 6= l, ∀ k, l = 1, ..., d,
where σ2 > 0 and κ ∈ Rd.

In matrix form, we can write Σ = σ2I + κ(J− I), where I is the identity
matrix and J is the matrix of 1s. q

Definition B.7 (Autoregressive) Let X = (X1, ..., Xd)
′ be a vector of

random variables. Then the covariance structure is called autoregressive if
Cov(Xk, Xl) = σ2ρ|k−l|, ∀ k, l = 1, . . . , d, where σ2 > 0 and −1 ≤ ρ ≤ 1. q

Definition B.8 (Unstructured) The unstructured covariance matrix is
defined as Σ = (σij)

d
i,j=1 where σij = 1(1)d, i = j, and ρij = i−1

d
, i > j. q

Definition B.9 (Affine Transformation) Let A be a d× d matrix and c
be a d × 1 vector. A transformation g is an affine transformation of Rd if
g(x) = Ax + c. If c = 0, then g is the linear transformation. (Bickel and
Doksum, 2001, p 487) q

Definition B.10 (Orthogonal Transformation) Let g(x) be a linear trans-
formation, as defined in Definition B.9 and let A be a non-singular matrix.
Any such linear transformation is orthogonal if it preserves lengths, distances
and angles, and satisfies the condition that AA′ = I = A′A. The matrix A
is called the orthogonal matrix. (Timm, 2002, p 62) q

For the proof of the following lemma, see Zhang (1999, p 166).

Lemma B.11 (A Property of the Trace of PSD Matrices) Let A and
B be positive semi-definite matrices of the same order. Then,

tr(AB) ≤ tr(A)tr(B). (B.6) ¤

Remark B.12 Lemma B.11 has been extensively used to prove the uni-
form boundedness of the estimators. Note that, with B = A, Lemma B.11
immediately gives tr(A2) ≤ [tr(A)]2, which, replacing A with A2, further
gives tr(A4) ≤ [tr(A2)]2 and so on. Actually, the general inequality can be
expressed as 0 ≤ tr(AB)n ≤ tr(A)ntr(B)n, for any integer n. Now, since
tr(A)s =

∑
j λs

j , s = 1, 2, . . ., where λj ≥ 0 are the eigenvalues of A, there-
fore, the inequalities can also be expressed in terms of eigenvalues. 4
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Lemma B.13 Let X and Y be any two real vectors and A > 0. Then

(X′AY)2 ≤ (X′AX)(Y′AY). (B.7)

(Ravishanker and Dey, 2002, p 31) ¤



Appendix C

Data Sets

C.1 α-Amylase in Saliva

Table C.1: Measurements on α-Amylase in Saliva

Monday Thursday
Proband 8h 12h 17h 21h 8h 12h 17h 21h

1 146.8 167.0 107.2 161.8 90.8 151.6 123.0 142.8
2 818.2 1314.2 1578.8 932.5 378.8 759.5 1881.2 572.6
3 394.4 1157.4 585.2 629.2 171.0 538.4 729.8 412.1
4 100.2 140.4 234.4 244.8 121.6 154.6 221.8 170.6
5 169.8 99.9 184.2 168.8 103.0 170.0 342.0 162.2
6 107.2 262.8 198.4 465.1 178.8 312.6 261.6 450.5
7 272.0 551.2 265.2 453.2 133.4 560.4 977.9 402.0
8 51.8 144.4 125.4 203.8 122.2 71.4 434.9 191.2
9 273.6 351.6 510.0 354.0 403.0 665.4 420.4 566.0
10 367.2 435.6 783.3 523.1 221.8 601.2 1028.5 713.4
11 519.2 264.6 321.4 1433.8 137.2 345.6 884.9 331.8
12 88.6 135.0 88.6 86.2 164.2 190.4 301.0 173.2
13 218.0 109.2 167.6 179.4 162.8 185.6 193.6 183.2
14 117.2 151.0 150.0 218.0 178.2 151.0 165.2 170.0
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