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ABSTRACT 

Following the dramatic qualitative and quantitative developments of remote sensing 

systems and digital imaging technologies, numerous kinds of images have been 

captured, processed and analyzed in several aspects of earth applications. Almost all 

of image sensors are designed for specific purposes therefore the utilization of 

remotely sensed data is very diverse. While these datasets are highly useful for some 

applications, for some others are incomplete, imprecise, and redundant. For example 

the information contained in hyperspectral and multispectral datasets provide a 

valuable basis for environmental studies while the low spatial resolution 

characteristics of these datasets reduce their performances in many applications. For 

several remote sensing applications, data fusion is the process of alleviating the 

shortages of data sources. Data fusion is a formal framework that provides means and 

tools for the alliance of data originating from different sources. It aims at obtaining 

information of greater quality; the exact definition of greater quality will depend 

upon the application. Data fusion is usually carried out in three levels of processing: 

pixel, feature and decision. In an ideal data fusion framework the level of process will 

be adapted based on data characteristics and the user requirements. 

This PhD. work explores the concepts and techniques of multi-source remotely 

sensed data fusion for the purpose of visual spatial resolution enhancement and 

improvement the accuracy of land cover classification. The investigation datasets 

were selected from the Earth Observation-One satellite imager which has Hyperion, 

hyperspectral, ALI, multispectral, and ALI, panchromatic sensors.     

For the first part of work, 10 of the most common pixel level DF techniques and two 

innovated ones, named Radon and fanbeam, were investigated and obtained results 

were compared. Results showed that these two innovated techniques have good 

abilities in spectral preservation but their ability in spatial quality of fused images 

was weak.  More than the spectral quality of fused images a new technique in spatial 

quality assessment called coefficient of variance of image autocorrelation was 

developed. The qualities of fused images were evaluated using this new methodology 

and its ability was efficient and informative in fused imagery quality assessment. For 
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hyperspectral feature (i.e. spectral band) reduction an innovative methodology called 

Maximum Spectral and Spatial Information Indicator (MSSI) was introduced and its 

ability evaluated in comparison to two common feature reduction techniques i.e. 

Transformed Divergence (TD) and Bhattacharyya Distances (BD). Outcome results 

showed that MSSI has almost the same ability as for TD and BD. Another evaluated 

aspect was the comparison of hyperspectral and multispectral datasets fused with 

panchromatic image. Using the investigated datasets, the measured qualities of fused 

images showed that in pixel level data fusion MS has higher ability then HS datasets.    

For the second part of this work, decision level data fusion, two procedures for 

decision level fusion were innovated. These methodologies called hyperspectral 

Wavelength Based Decision Fusion (WBDF) and Class Based Decision Fusion 

(CBDF). The ability of these two new procedures was evaluated for hyperspectral 

data fusion in land cover mapping accuracy improvement. Final produced maps 

showed an about 4 % overall accuracy improvement. Also another methodology for 

decision level data fusion called Multi Classifier Decision Fusion (MCDF) was 

evaluated which could improve the accuracy of results to about 8%.  

More than these experimental and technical investigations and innovations the 

literature of DF and its usability for several applications like environmental, 

agriculture, mining, urban, medicine studies, etc was studied. Finally, some 

experimental recommendations for future works in data fusion are drawn.  
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INTRODUCTION 

Remote Sensing (RS) is the acquisition of information of an object or phenomenon, 

by the use of some device(s) that are not in physical or intimate contact with the 

object or phenomenon [Campbell, 2002]. In the last four decades a high number of 

earth remote sensing systems have been used, assessed and contemplated for 

detection and evaluation of land surface materials and objects. The applications of 

remotely sensed imagery are very diverse and also most of the image sensors are 

designed for specific purposes; therefore, for some applications they are incomplete 

while for some others are redundant or complementary. For example the information 

contained in hyperspectral and multispectral datasets provide a valuable basis for 

environmental studies while the low spatial resolution characteristics of these datasets 

reduce their performances in many applications. Data Fusion (DF) is a formal 

framework in which the means and tools for the alliance of data originating from 

different sources are summarized. It aims at obtaining information of enhanced 

quality where the exact definition of the term “quality” will depend upon the 

application of fused datasets [Wald, 1999]. The RS instruments provide a huge 

number of diverse datasets that can not be studied in such a work thus we limited the 

objectives of this research on the evaluation of datasets obtained by optical passive 

remote sensing satellite imager (i.e. EO-1/Hyperion and ALI). The developed 

methodologies are multi-sensor frameworks of data fusion using three modalities of 

datasets: Panchromatic (Pan), Multispectral (MS) and Hyperspectral (HS). Due to the 

nature of RS imagery it could be denoted that diverse physical properties of materials 

are measured by different sensors from different points of view. For instance 

panchromatic images produce data at higher spatial resolution while they suffer from 

the lack of high spectral quality and on the contrary MS and HS sensors are providing 

images with lower spatial resolution but they have the advantages of higher spectral 

resolution. In such circumstances, multi-sensor data fusion to make beneficiary from 

all available datasets is supposed to be an effective paradigm for increasing the 

usability of remotely sensed imagery.  
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In the literature, the most common forms of fusion is putting various sensors together 

in order to detect and parametrically evaluate a sensed object, therefore as synergetic 

fused dataset is more useful then the original individual datasets for a specific 

application. As stated by several authors (see chapter one, literature review and data 

fusion applications), data fusion is useful for several purposes such as land surface 

objects and phenomena detection, recognition, identification, tracking, classification, 

etc. These objectives maybe encountered in many fields of study like remote sensing, 

defense systems, robotics, medicine, space, environmental, urban, agricultural 

studies, etc. Based on Dasarthy [1994]; Pohl and Van Genderen [1998] and Hall et al.  

[2004] data fusion processes are formally categorized into three levels of processing: 

pixel, feature and decision. Notwithstanding the fact that this triple categorization 

does not perfectly cover all possible fusions, we have adapted 2 levels (i.e. pixel and 

decision) of fusion as the subject of this thesis. Of course in the literature several 

hybrid fusion methodologies are introduced and strict borders of this categorization 

are not always obeyed. 

 

The nature of remote sensing images  

During the last four decades, remote sensing image acquisition systems have offered 

a huge amount of information to the community of geo-scientists, environmentalists, 

geographers, etc to identify and characterize the properties of entities, objects and 

phenomena of the Earth. For example agricultural resources monitoring, natural 

resources management, man-made and natural disasters monitoring and predicting, 

etc are very common examples of the applications of these images.  

From the technical point of view remotely sensed energy which emitted or reflected 

from the Earth’s surface is measured using a sensor mounted on an airborne or space-

borne platform. The measured energies are used to produce an image from the 

landscape beneath the platform [Richards, 2006]. Remote sensing images can be 

categorized by their spatial, spectral, radiometric, and temporal resolutions and also 

coverage characteristics. Spatial resolution is described by the pixel size [Richards, 
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2006] or the size of smallest detectable (or sensible) object from the under 

investigation area. Spectral resolution or the number of bands in a dataset is 

expressed as sensor’s bandwidth over which a sensor collects information from the 

understudy scene. Radiometric resolution is expressed in terms of the number of 

binary digits or bits which are necessary to represent the range of available brightness 

values. For example data with 8 bit radiometric resolution has 256 levels of 

brightness. The temporal resolution refers to the time elapsed between consecutive 

images of the same ground location taken by a sensor. Finally coverage characteristic 

of a sensor (i.e. swath width) refers to the extent of the Earth’s surface from which 

data are collected that expressed as the length and width of one scan line of a remote 

sensing imager. E.g. the swath width of EO-1/Hyperion is 7.7 km, whereas for EO-

1/ALI it is 37 km. Because of these magnificent possible kinds of satellite image 

resolutions, they are in the interest of the community of scientists and users of these 

datasets. Consequently the optimized application and exploitation of such data 

sources is due to the development of appropriate data fusion techniques.  

 

Image resolution and data fusion 

From the technical and economical viewpoints, any incensement in any kinds of 

resolutions will result in an increase of the volume and costs of the collected datasets. 

As a general rule, in any remote sensing system data properties must be a trade off 

between next parameters: transmission rate, the capacity of instrument, archiving and 

storage largeness, and the data handler and image processing capabilities. 

Consequently, an increase in one type of resolution usually has to be counterbalanced 

by a decrease in other ones.  

Two important resolutions that are concerned in this work are the spatial and spectral. 

The relationship between these two properties of datasets mostly is a function of the 

sensor specific Signal to Noise Ratio (SNR). To achieve a specific level of SNR, the 

emitted or reflected energy from object must has enough power to stimulate the 

sensor’s detectors. Due to the size of the Instantaneous Field Of View (IFOV) of a 
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sensor the power of reflected energy will decrease over a wider IFOV [Richards, 

2006] therefore the spectral coverage of a band (bandwidth) must be increased to 

compensate the shortage of energy and vice versa. Therefore, with a fixed SNR for a 

sensor, spatial and spectral resolutions are in balance. In this regard, from one hand 

the simultaneous improvement of sensor’s spatial and spectral resolutions is bounded 

by the mentioned limitations (e.g. data volume and signal to noise ratio) and in other 

hand users of these data want both, high spatial and spectral resolutions. In order to 

alleviate this problem, remote sensing systems which simultaneously carry two or 

more sensors (e.g. Landsat/ETM+ with multispectral and panchromatic sensors and 

EO-1 with hyperspectral, multispectral and panchromatic sensors) are very rapidly 

developing. However, the appropriate data fusion techniques which are robust for the 

exploitation of such multi-modality datasets still needed to be investigated.  

Based on the definition of Wald [1999] the main goal of data fusion is to obtain 

greater quality. Consequently and expectedly the fused datasets will have a higher 

information content compared to any individual imagery. As the number of data 

fusion applications concerning the combination of multi-sensor images is 

dramatically high, therefore a high number of data fusion techniques and 

methodologies can be found in the literature, for example, Van Genderen et al.  

[1994]; Pohl et al.  [1998] and Wald [1999 and 2002].  

Based on the intended applications, the fusion process can be carried out at three 

levels of processing: pixel, feature and decision. Pixel Level Data Fusion (PLDF) 

techniques which combine the spatial information from a lower spectral but higher 

spatial resolution image (e.g. ALI-Pan) with the higher spectral but lower spatial 

resolution image (e.g. ALI-MS) in order to produce a high spatial and spectral 

resolution image [Sunar and Musaoglu, 1998 and Chavez, 1996]. Feature Level Data 

Fusion (FLDF) is the process of fusing the extracted features from pre-processed 

input datasets and merging them based on some mechanisms in which the final 

results will have the highest possible accuracy. In this level of process features 

correspond to obtained properties which are highly related to their circumstances in 

the data source like texture, extent, shape and neighborhood [Mangolini, 1994]. 
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Decision Level Data Fusion (DLDF) methods work based on post classification or 

post analysis fusion of classified data or information (i.e. decisions or class labels 

which can be hard or soft labels) by a proper fusion algorithm.  

 

Research background  

Prior to this PhD work an almost in-depth literature study on methodologies, 

applications, limitations and abilities of data fusion, especially in PLDF, was 

performed. Some experimental researches were carried out and the obtained results 

were discussed and published (Appendix II). From the studied literature and the 

obtained experiences from “primary testing phase” some limitations became visible 

which underlined the goals of this work: 

 

1. The need for a comprehensive comparison of PLDF techniques.  

2. The limited evaluation techniques where most of the common quality 

measurements were based on image spectral quality. 

3.  The lack of comparison between hyperspectral and multispectral in fusion 

with panchromatic datasets. 

4.  The ability of EO-1 datasets in the framework of DF.  

5. The problematic phenomenon of high dimensional hyperspectral images for 

fusion process.   

 

In order to fulfill these necessities and shortages, the main topic of this work was 

defined as “Remotely sensed data fusion as a basis for environmental studies: 

concepts, techniques and applications”. 

  

Research motivations  

The three mentioned levels of data fusion constitute the fundamentals of remotely 

sensed DF.  Within this thesis two of the three levels were investigated, namely 

PLDF and DLDF. These two levels of data fusion are related to two main groups of 
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remote sensing data analysis and applications: Visual interpretation by means of 

PLDF and image classification by means of DLDF.   

Following the performed investigations in DF, some experimental works were carried 

out which motivated the objectives of this work. For instance, from preceding 

experimental works in Darvishi Boloorani et al.  [20061] the synergetic fusion of 

spectral information from multispectral dataset and spatial information from 

panchromatic imagery in urban land cover and land use mapping using Ikonos 

imagery were investigated; in Darvishi Boloorani et al.  [20062] the ability of 

combined multi-temporal ENVISAT/ASAR satellite Synthetic Aperture Radar (SAR) 

images for monitoring and temporal discrimination of fields under different rice 

cropping systems (Palolo valley, Central Sulawesi, Indonesia) were investigated; in 

Darvishi Boloorani et al.  [20051] the quality of fused images using Principal 

Component Transform (PCT) and Gram-Schmidt Transformation (GST) fusion 

techniques in the spectral domain were investigated. Accordingly, three datasets were 

evaluated as EO1- Hyperion, Quickbird-MS and SPOT-panchromatic; and in 

Darvishi Boloorani et al.  [20052] the usability of fused Landsat ETM+ multispectral 

and panchromatic images was evaluated for urban road network extraction (Tehran, 

Iran). In this work three different kinds of PLDF techniques were verified and 

evaluated (see appendix II).     

Therefore in order to fulfill the above-mentioned limitations and based on these 

experiments the main objectives of this study were:  

 

1. Making comprehensive investigations into the concepts, techniques, 

limitations, strengths and applications of data fusion. 

2. Investigate the quality of pixel level fused images from spectral and spatial 

points of view. 

3. Introducing new methodologies for hyperspectral dimension reduction for 

the purpose of data fusion. 

4. Comparing hyperspectral with multispectral datasets in fusion with 

panchromatic imagery. 
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5. Investigating the potentials of EO-1 datasets at pixel and decision levels of 

fusion. 

 

Since the Earth Observation-One (EO-1) sensors offer three modalities of spectral 

resolutions and two different spatial resolutions (Hyperion-hyperspectral with 242 

spectral bands and 30 m spatial resolution; ALI-multispectral, with 9 spectral bands 

and 30 m spatial resolution and ALI-panchromatic with 10 m spatial resolution) 

therefore, it was found to be an ideal remote sensing dataset for the purposes of this 

work.  

Two different study areas in different parts of the world were selected for the 

evaluation intentions. The first study area is located in Palolo valley, central 

Sulawesi, Indonesia which covers a variety of land surface classes. Therefore this 

very heterogynous area is ideal for the evaluation of PLDF techniques. The second 

area is in Ahmadabad, south Tehran, Iran which is an almost homogenous 

agricultural area. This area is an almost ideal study area for post classification DLDF 

techniques evaluation. 

 

Thesis outline 

This thesis demonstrates how data fusion techniques were used for remotely sensed 

datasets. The thesis is organized in six chapters; beginning with introduction and 

background discussions followed by exploitation and investigations and development 

of data fusion techniques. Finally the accuracy of methodologies is assessed and 

some conclusions and recommendations are addressed. 

Chapter 1 presents the general background and applications of data fusion. In this 

chapter various data fusion methodologies found in literature are described. The 

definitions and categorizations of DFs are introduced. The referenced scientific 

documents provide invaluable sources for scientists interested in data fusion and 

more specifically remotely sensed image fusion. Non-military applications of DF in 
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several aspects of remotely sensed image analysis are explained. Also military and 

none remotely sensed data fusion techniques like medicine imagery are mentioned.    

Chapter 2 describes the details of pixel level data fusion as a tool for increasing the 

spatial resolution of datasets (i.e. hyperspectral and multispectral image which have 

higher spectral resolution) by combining with a higher spatial resolution (i.e. 

panchromatic image). A pixel level data fusion categorization has been adapted. The 

most common techniques have been explained. Two novel fusion procedures as 

fanbeam and Radon fusions are introduced. Feature reduction is explained. An 

innovative feature selection methodology named Maximum Spectral and Spatial 

Information Indicator (MSSI) is offered. As the numbers of Pan-sharpening (or 

PLDF) techniques is dramatically high therefore, we just tried to explore the most 

common ones. The metrics used for quantitative assessment of the Pan-sharpened 

images are described in details. 

Chapter 3 gives details of decision level data fusion. As this kind of fusion relies on 

the information or decisions provided by classifiers, therefore, some of the most 

powerful soft classifiers i.e. Fuzzy, Bayes and Dempster-Shafer were explored. Two 

new developed decision level data fusion techniques named Wavelength Based 

Decision Fusion (WBDF) and Class Based Decision Fusion (CBDF) are explained.  

Chapter 4 describes the data sources and test areas. The Earth Observation One (EO-

1) Hyperion hyperspectral, ALI multispectral and ALI panchromatic datasets are 

explained. The needed pre-processing procedures are outlined. Finally, the test areas 

that are located in Iran and Indonesia are introduced.  

Chapter 5 examines the results obtained from the mentioned different fusion 

techniques. Also the accuracy of feature reduction procedures is evaluated.   

In chapter 6 conclusions are drawn. Based on the accuracy of the obtained results and 

the purposes of the work some conclusions are drawn. The benefits and limitations of 

present data fusion techniques are illustrated. Finally some suggestions for future 

works are mentioned.    
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In appendix I some useful data fusion organizations are addressed and some useful 

web-based addresses are mentioned; in appendix II the author’s publications in data 

fusion during the four years of study in data fusion are listed. 
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CHPTER ONE 

 

1 Literature review and data fusion applications 

Data Fusion, as a general term, has different definitions, categorizations and 

applications. Before going into the contexts of Remote Sensing Data Fusion (RSDF), 

having a closer look to the exploitation of data fusion in biological systems can make 

better clarification on the topic. Human sensors acquire information on sight, smell, 

touch, hearing and taste. In the brain all collected information will be processed in 

combination with other sources of information that is called a priori knowledge e.g. 

memory and earlier experiences. Based on reasoning abilities of the mind, fusion of 

all input data and information will produce a representation of the sensed object in 

the mind and a proper order of action will be issued [Wald, 2002] (Figure 1-1). These 

sensing, fusion and action procedure is a perfect biological model that can be 

simulated for data collection, fusion and decision making to solve specific problems 

in earth phenological applications using remotely sensed images. 

   

 
Figure  1-1. The human brain and perception system: a biological fusion process. 

After Wald [2002].  
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Fusing remote sensing datasets is like a framework in which in one hand the higher 

spectral satellite like hyperspectral sensors supply enough spectral bands which are 

good for spectrally object discrimination and identification and in another hand high 

spatial resolution panchromatic satellite sensors provide finer spatial resolution for 

spatially object separation.  From the application point of view the combination of 

these data sources can provide more information than that could be achieved by the 

use of a single sensor alone [Wang et al.  2005]. Some of the most important 

techniques have been summarized in table (1-1). As will be discussed in next sections 

of this chapter there are almost three main levels of data fusion algorithms: pixel, 

feature, and decision. Here pixel and decision levels are chosen for the purpose of 

spatial resolution enhancement and classification accuracy improvement.  

The following section explains data fusion definitions from the viewpoint of most 

famous authors in this field of study. Second section introduces the main 

categorization of DF in the literature. Categorization based on processing level will 

be discussed in more details. Finally the most applications of DF are drawn.  

 

Table  1-1. Summary: techniques in data fusion literature. Modified based on Zeng 

[2006].  

Pixel level Feature level Decision level 

Intensity, Hue, Saturation   Logical templates Logical templates 

Principal component 

transformation  

Expert systems Expert systems 

Brovey transformation  Dempster-Shafer 

theory  

Dempster-Shafer 

theory  

Wavelet transformation Neural network  Neural network  

Gram-Schmidt 

transformation 

Bayesian inference Bayesian inference 

High frequency 

modulation  

Cluster analysis Contextual fusion 
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High Pass Filter   Fuzzy logic 

Color normalization   Voting strategies 

ARSIS concept   Syntactic fusion 

  Classical inference 

 

1.1 Data fusion definitions 

The exact meaning of data fusion varied from one scientist to another and from one 

application to another. Indeed, DF is inter – and multidisciplinary by essence and is at 

the crossing of several sciences. Consequently making an exact definition is not so 

easy [Wald, 2002].  Here a short review to the literature of data fusion definitions is 

introduced and, finally, Wald’s definition [1999] as the accepted and most popular 

one will be discussed in more details. 

   

• Data fusion as a group of methods and approaches using multi-sources data of 

different nature to increase the quality of information contained in the data 

[Mangolini, 1994]  

• Labeling pixels by drawing inferences from several available sources of data is 

referred to as data fusion [Richards and Jia, 1999]. 

• Data fusion techniques combine data from multiple sensors and related 

information from associated databases, to achieve improved accuracy and 

more specific inferences that could be achieved by the use of a single sensor 

alone [Hall et al.  1997]. 

• Image fusion is the combination of two or more different images to form a new 

image by using a certain algorithm [Genderen et al.  1994]. 

• Data fusion is a process dealing with data and information from multiple 

sources to achieve refined/improved information for decision making [Hall, 

1992]. 
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Wald [1996] criticized most of these definitions that they are focusing too much on 

methods while paying little attention to quality. He also added that there is no 

reference to concept in them, while the need for a conceptual framework is clearly 

expressed by scientists and practitioners. Finally in [1996] after several meeting and 

discussions a European working group for data fusion in association with the French 

Society for Electricity and Electronics (SEE, French affiliate of the Institute of 

Electric and Electronic Engineers (IEEE)), the European Association of Remote 

Sensing Laboratories (EARSeL) and the European affiliate of the International 

Society for Photogrammetry and Remote Sensing (ISPRS) has been committed. 

Following to this symposium and based upon the works of Buchroithner [1998] and 

Wald [1997], the next definition was adapted “Data fusion is a formal framework in 

which are expressed the means and tools for the alliance of data originating from 

different sources. It aims at obtaining information of greater quality; the exact 

definition of greater quality will depend upon the application”. In this delineation in 

compare to earlier ones there is strong emphasis on framework and fundamentals 

underlying data fusion instead of on tools and means. The word “data” is used as a 

general word and can be replaced by information. In this delineation “quality” does 

not have very specific meaning and its satisfactory depends to “customer”. “Different 

sources” implies that spectral channels of a same sensor (e.g. Visible, VNIR, SWIR 

in hyperspectral imagers) are to be considered as different sources and also images 

taken by the same sensor at different times. This definition was adapted in this work 

and has been followed across the whole document. Also some other definitions based 

on principals, methods and tools of DF can be found in Van Genderen et al.  [1994]; 

Pohl et al.  [1998]; Wald [1999 and 2002]. 

 

1.2 Data fusion categorizations 

In data fusion writings and literature and from the remote sensing community 

viewpoint, there are several assortments that four important ones are presented in this 

work. There are no hard lines to separate these categorizations because they are 
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categorized from some common aspects of remote sensing data fusions. These 

categorizations always have similarities and overlap with each other, for example 

based on Ricahrds and Jia, [1999] consensus theory is one of the statistical 

approaches while it is categorized in decision fusion category by Pohl and Van 

Genderen [1998]. In this work the Schowengerdt assortment [1997], military 

categorization of Joint Directors of Laboratories (JDL), and categorization based on 

classification accuracy improvement are briefly mentioned. The levels-based 

categorization that is basis in this work is discussed in more details.  

 

1.2.1 Schowengerdt categorization [Schowengerdt, 1997] 

1. Spatial domain fusion in which mostly higher resolution image transfer into lower 

resolution image. E.g. High Frequency Modulation (HFM) was used by 

Munechika et al.  [1993] over Landsat-TM and SPOT-panchromatic images for 

classification accuracy improvement. 

2. Spectral domain fusion that is based on the original data spectral coordinates 

transformation into another spectral coordinate. E.g. Gram-Schmidt data fusion 

[Lanben and Brower, 2000] and Principal Component Analysis (PCA) [Chavez, 

1991]. 

3. Scale space techniques which work based on the spatial information extraction in 

different range of scales. The techniques generally behave as filters but are 

applied repeatedly on scaled versions of the image (resolution pyramids). One of 

the most famous and popular method is wavelet transformation [Yocky, 1995 

and Gauguet-Duport et al.  1996]. 

 

1.2.2 Categorization based on classification accuracy improvement [Richards 

and Jia, 1999]  

1. The Stacked Vector Approach (SVA) in which different datasets will be overlaid 

(stacked) as one vector that will be treated in next steps of data processing like 

classification. 
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2. Statistical approaches that work mostly based on some statistical decision 

makers like posterior probability derived from Bayes theorem. For instance Shi 

et al.  [2007] used the Bayes theorem to update prior estimates of changes in land 

cover maps. Consensus theory is another procedure in this category which 

implemented by Benediktsson et al.  [1992] over four different datasets: Landsat-

MSS, DEM, Slop and Aspect for land cover classification in mountainous area of 

Colorado, USA. 

3. The theory of evidence in which data sources will separately be treated and 

combined based on their contribution. More details of implementations and 

sophisticated knowledge behind can be found in Richards and Jia [1999]. 

4. Knowledge-based approaches which deal with different datasets as separate 

sources of knowledge and try to combine this knowledge in a proper way based 

on some sophisticated rules. For example Richards and Jia [1999] used a 

knowledge based data fusion procedure over Landsat-MSS and L band SIR-B 

SAR images for urban area in Sydney, Australia. 

 

1.2.3 Military based categorization of Joint Directors of Laboratories (JDL) 

Level 1: object refinement is an iterative process of fusing data to determine the 

identity and other attributes of entities and also to build tracks to represent their 

behavior. The term entity refers here to a distinct object. A track is usually directly 

based on detections of an entity, but can also be indirectly based on detecting its 

actions.  

Level 2: situation refinement is an iterative process of fusing spatial and temporal 

relationships between entities in order to bring them together and form an 

abstracted interpretation of the patterns in a battle data. The product from this 

level is called situation assessment. 

Level 3: threat refinement is an iterative process of fusing the combined activity 

and capability of enemy forces to infer their intentions and assess the threat that 

they pose. The product from this level is called threat assessment.  
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Level 4: process refinement is an ongoing monitoring and assessment of the fusion 

process to refine the process itself and to regulate the acquisition of data to 

achieve optimal results (Klein, 1993). 

 

The above mentioned categorizations have their properties and limitations that more 

insight and discussions can be found in Richards and Jia [1999]; Schowengerdt 

[1997]; Gross and Schott [1998]: Benediktsson [1992 and 1997]; Hall [1992]; and 

Klein [1993].   

  

1.2.4 Categorization based on processing level  

1. Pixel (Measurement) level data fusion. 

2. Feature level data fusion. 

3. Decision (information) level data fusion. 

 

This categorization is the basis to outline in this thesis. Wald [1999] highlighted two 

drawbacks for level-based data fusion categorization. He mentioned that pixel is only 

a support of information and it does not carry any semantic significance. Therefore, 

pixel can not carry the true means of data fusion. In this level also this categorization 

may wrongly imply that DF can not be lunched simultaneously within all levels. For 

the first problem Wald [2002] proposed measurement, signal, or observation as 

appropriate words than pixel. In addition, for the second drawback he mentioned that 

several papers and works are found which use a combination of three levels as the 

possible crossing between levels can be easily done. Despite the mentioned 

drawbacks this categorization is still one of the most popular categorization of data 

fusion. Thus it has been adapted in this work and the rest of this document will 

follows this framework. 
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1.2.4.1 Pixel (measurement) Level Data Fusion (PLDF) 

Image fusion at pixel level means fusion at the lowest processing level, referring to 

merging of measured physical parameters (e.g. pixels) [Pohl et al.  1994]. From the 

literature of PLDF there are a large number of techniques used over an indefinite 

number of datasets each of which is for a specific application. As here this whole 

cannot punctually be reviewed consequently we looked over mostly common PLDF 

techniques: Intensity–Hue–Saturation (IHS), Brovey transform, principal component 

transformation, wavelength and Gram-Schmidt techniques, which are used and 

evaluated by our team group in the Stability of Rainforest Margins in Indonesia 

(STORMA) project. In addition to these techniques two innovative fusion procedures 

named fanbeam and Radon are introduced and evaluated.  For getting an overhead 

view to a detailed literature, see reviews by Pohl and Van Genderen [1998] and Wald 

[1999 and 2002]. Figure (1-2) shows general flow diagram of PLDF which is 

followed by mentioned techniques in this level of fusion.  

 

 
Figure  1-2. Block diagram of pixel level data fusion procedure. 

   

1.2.4.2 Feature Level Data Fusion (FLDF) 

In order to fuse at feature level first features from different data sources are extracted, 

than they will be fused in a common framework. In this level of process features 

correspond to obtained properties are highly related to their circumstances in the data 

sources like extent, shape and feature neighborhood properties [Mangolini, 1994]. 
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Therefore, similar objects (e.g. regions) [Pohl and Van Genderen, 1998] from 

multiple sources will be fused using a framework that can be parametric like 

Bayesian theorem or non-parametric like artificial neural networks. Figure (1-3) 

illustrates the general routine of FLDF process. 

 

Figure  1-3. Block diagram of data fusion at feature level. 

 

1.2.4.3 Decision Level Data Fusion (DLDF) 

DLDF like other levels of data fusion has some different definitions in the literature. 

For example Pohl and Van Genderen [1998] defined decision fusion (adapted from 

Shen [1990]): “Decision or interpretation level fusion represents a method that uses 

value-added data where the input images are processed individually for information 

extraction”. The obtained information is then combined applying decision rules to 

reinforce common interpretation and resolve differences and furnish a better 

understanding of the observed objects. Benediktsson and Kanellopoulos [1999] made 

an explanation that “Decision-level data fusion is the process of fusing information 

from several individual data sources after each data source has undergone a 

preliminary classification” (Figure 1- 4). In the DLDF writings several methods are 

discussed and evaluated. If the techniques based on their abundance of application be 

listed probably Bayesian theorem is the first that followed by Dempster-Shafer 

Theory (DST), Fuzzy Set Theory (FST), Neural Network (NN), etc. in this work DST 
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has been carried out and evaluated for comparison the two new procedures in this 

level of fusion (i.e. WBDF and CBDF). For more explanation see chapter 4.   

 

Figure  1-4. Block diagram of data fusion at decision level of processing. 

 

1.3 Why more and new data fusion algorithms? 

From the launch of the first Landsat (23/07/1972) a huge number of data fusion 

algorithms and techniques have been developed, adapted, evaluated and documented. 

But this field of study is still fresh and there is more room for work, research and 

improvement. The reason is return to dynamic nature of remote sensing and data 

fusion as well. As a general rule next parameters are the most important reasons to 

make new algorithms and developments. 

 

1. Increasing demands of the users for data with higher and higher spectral, 

spatial, radiometric and temporal resolutions. 

2. Availability of new and divers satellite images with better and better 

resolutions 

3. Diversity of the fused data applications is getting higher and higher. 

4. Development the new software and hardware facilities for remotely sensed 

data analysis is facilitating the usage of data more and more.   

5. More than the usage of DF in satellite imagery combination, the applicability 

of these techniques in other data sources for environmental applications e.g. 

GIS, urban planning and utility, traffic, etc are fast growing up. 
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6. None-remotely sensed applications like medicine and military activities are 

other very fast growing domains of DF. 

 

1.4 Data fusion applications 

Data fusion has been the objective of very many researches from the beginning of 

remote sensing. In this regard, many works have recognized the benefits of fusion 

high spectral and spatial resolution images.  For instance, DF has been used in many 

aspects of RS image analysis: multi sensor fusion [Pohl and Van Genderen, 1998]; 

image processing and analysis [Mascle et al.  1998]; classification [Chen et al.  

2005];  image sharpen [Chavez et al.  1991]; improve geometric corrections [Strobl et 

al.  1990]; provide stereo-viewing capabilities for stereophotogrammetry [Bloom et 

al.  1988]; land mapping applications [Wald et al.  1997]; enhance certain features 

not visible in either of the single data alone [Leckie, 1990]; complement datasets for 

improving classification accuracy [Schistad-Solberg et al.  1994]; etc. Single data 

sources usually offer limited information due to their limited maneuver abilities in the 

data collection. 

The ideal of data fusion is getting the highest potential of the fused images; the 

highest potential can be defined as any properties of dataset. Nevertheless, in reality 

despite developing new techniques and algorithms, fused data eventually losses some 

useful information. The literature of data fusion covers high variety of data, 

techniques, and applications. Therefore no rule of thumb exists for making borders of 

data fusion’s applications and objectives. For example some methods are useful for 

visual interpretation [Gross and Schott, 1997] and some others are needed for 

classification and spectral information analysis. For instance Liu [2000] used 

Smoothing Filter-based Intensity Modulation (SFIM) over TM and SPOT-Pan 

images of south-east Spain for  improving spatial details for soil and lithology 

studies; Yocky [1995] discussed the theoretical framework of IHS and also 

mentioned that this transform technique distorts colors (especially red color), as he 

compared DWT with IHS for fusion of panchromatic and MS images. He mentioned 
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that the wavelet merger performing better and preserving spectral–spatial information 

for the test images. Chavez et al.  [1991] compared three different methods including 

PCT, IHS and High-Pass Filter (HPF) over Landsat-MS and SPOT-Pan images, they 

made insight these techniques based on spectral characteristics using statistical, 

visual and geographical properties of fused images and finally mentioned that HPF 

gives better results than other techniques, PCT and IHS. Zhou et al.  [1998] 

performed a quantitative comparison between wavelet transformations of WVL4 and 

WVL8, IHS, PCT and Brovey for the sake of merging Landsat-TM and SPOT-Pan 

images; they concluded, in compare to other techniques, WVL4 achieves the best 

spectral quality in all bands except in band 4, whereas WVL8 achieves the best 

spatial quality in all bands. PCT works in a similar way as the IHS method, but with 

the main superiority that an infinite number of bands can be used [Zhou et al.  1998]. 

In another example Bradley [2003] stated that in comparison with other techniques 

the spectral fidelity of the Pan-sharpened images obtained with the discrete wavelet 

transform is excellent. The DWT is not “shift invariant” [Bradley, 2003] which 

means small spatial displacements in the input array can cause major variations in the 

wavelet coefficients; at their various scales. This technique has no effect on perfect 

reconstruction and simply lossless inverts transformation can be carried out. However 

a small misalignment can occur when the multispectral bands are "injected" into the 

panchromatic image pyramid.  This sometimes leads to spatial artifacts (blurring, 

shadowing, and staircase effect) in the sharpened image [Yocky, 1996]. Another 

matter of fact is about IHS, in compare to color related techniques like CN and 

Brovey, that it has the ability to vary IHS component independently, without 

affecting other components [Lillesand et al.  2004]. This property causes very good 

results than the CN and Brovey.  

Thanks to the high numbers of sensors and availability of multi-sensor images in 

many domains of applications like remote sensing, computer vision, military 

applications and medical imaging data fusion has become an attractive and effective 

field of research in recent years. For managing and surveying the environmental 

phenomena caused by the unprecedented pressure on all over the glob, more than any 
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other application the use of data fusion in environmental studies is crucially needed. 

Due to the complexity of the Earth phenomena mostly the obtained information by 

single sources of data are insufficient, incomplete and incompatible.  In this regard a 

multi-sensor data source is expected to alleviate the shortages and problems. Hall and 

Llinas, [2001] mainly categorized DF applications into military and non-military 

which are summarized in table (1-2). 

 

Table  1-2. General categorization of multisensor data fusion. After Hall and 

Llinas, [2001]. 
 

Application 

 

Inferences 

Sought 

 

Primary Observable 

Data 

 

Surveillance 

Volume 

 

Sensor Platform

Ocean 

surveillance 

 

Detection, track-

ing and identifi-

cation of targets 

and events. 

 

Acoustics; 

Electromagnetic 

radiation and 

Evidence of nuclear 

radiation. 

Hundreds of 

nautical miles; 

Air, surface and 

subsurface. 

 

Ships;  

Aircraft;  

Submarines;  

Ground-based and 

Ocean-based. 

Strategic 

warning and 

defense 

 

 

Detection of 

indications of 

impending 

strategic actions 

and 

Detection and 

tracking of 

ballistic missiles 

and warheads. 

Electromagnetic 

radiation. 

Nuclear particles. 

 

Global 

surveillance. 

 

Satellites; 

Aircraft. 

 

Law 

enforcement 

 

Transportation 

and location of 

drug shipments 

Electromagnetic 

radiation; 

Acoustics. 

 

Country and 

state borders. 

Tethered balloons;

Aircraft and  

Ground-based. 
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Remote sensing 

 

Identification, 

location of min-

eral deposits, 

crop and forest 

conditions. 

Electromagnetic 

radiation; 

Human reports and 

observations. 

Hundreds of 

miles. 

 

Aircraft;  

Satellites and  

Ground-based. 

Automated 

monitoring of 

equipment 

 

Status and health 

of  equipment; 

Identification of 

impending fault 

conditions. 

 

Electromagnetic 

radiation; 

Acoustic emissions; 

Vibrations; 

Temperature and 

pressure and 

Human observations. 

Volume of the 

monitored 

machine or 

factory. 

 

Organic sensors 

associated with the 

machine or 

factory. 

Medical 

diagnosis 

 

Diagnosis of 

disease, tumors 

and physical 

condition. 

 

Electromagnetic 

radiation;  

Nuclear magnetic 

resonance;  

Chemical reactions;  

Biological data and  

Human observations. 

Volume of the 

human body or 

observed 

component. 

 

Sensors placed in. 

on and around the 

body. 

 

Robotics 

 

Identification 

and location of 

obstacles 

Electromagnetic 

radiation 

Near-location 

about the robot 

Robot platform 

 

1.4.1 Non-military Applications 

The applications of data fusion for civil purposes have a long history as the 

availability of the remotely sensed data. The reality of remotely sensed imagery is the 

robustness for some applications and shortage in some others. For example 

hyperspectral imagers like EO-1/Hyperion have good spectral presentation but 

suffering from low spatial resolution and on the contrary the Quickbird/panchromatic 

satellite imager suffering from the lack of high spectral resolution. For this reason, In 

any case of application if the different characteristics of images like high spectral and 

high spatial resolutions are simultaneously needed, data fusion is a suggested and 
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recommended procedure. As a general rule there is not a fixed recipe for using data 

fusion and it depends to very many parameters like data sources, applications, user 

needs, techniques, etc. Based on this background here is tried to give some tips in 

table (1-3) to make a short insight into the concept. 

 

Table  1-3.  Civil applications of data fusion. 
Application Data* 

Agricultural purposes  MTI, MS, HypI, HSpatRI, 

VLSpatRI    

Natural resource management MS, Pan 

Forestry MS, Pan 

Water management MS, HSpatRI,  

Land use and land cover mapping MS, HSRI, HypI,  

Weather and climatology LSpatRI, MS, VLSpatRI 

Environmental monitoring MTI, MS, Pan 

Urban planning HSpatRI, HypI 

Transportation HSpatRI, MTI 

Traffic controlling VHMTI, VHSpatRI  

Change detection MTI, MS, HSpatRI, HypI 

Geology and exploration HypI, RSI,  

Marin and Coastal RSI, MS  

Cartography HSpatRI, LSpatRI 

 

*Multi-Temporal Images (MTI), High Spatial Resolution Images (HSpatRI), Panchromatic (Pan), 

Hyperspectral Image (HypI),Very Low Spatial Resoluion Image (VLSpatRI), Low Spatial 

Resolution Image (LSpatRI), Very High Spatial Resolution Image (VHSpatRI), Very High Multi 

Temporal Image (VHMTI), Radar and Sar Image (RSI). The mentioned categorization is very 

general thus some data in some conditions may perform better than others. 

 

1.4.1.1 Remote Sensing 

In resent years, the resolution of earth observation satellite images in all aspects: 

spatial, spectral, radiometric and temporal have been increased. For example the 

spatial resolution is available from a few centimeters to few kilometers, spectral 
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resolutions from 3 bands to some hundred bands, etc. These overwhelming data 

sources, in one hand makes new horizons in the applications of remotely sensed data 

and in the other hand the new and state-of-art hardware and software felicities are 

much needed then any time before. In this regard the most fruitful scenario will be 

synergetic fusion of the available datasets in the most efficient way. 

As an example, in a city several objects like buildings, streets and vehicles can be 

easily characterized using the panchromatic in combination with multi-spectral 

datasets. Another aspect is return to the environmental applications of data fusion e.g. 

vegetation monitoring, studies on marine or air pollution, thematic mapping, 

precision farming, etc which are easily achievable using fused dataset. The visual 

improvement of data using color composition is another applicability of RSDF.  

If we defined the optimal situation of remote sensing data exploration as the 

obtaining a better result than the one obtained by a separate data source, therefore the 

exploitation of satellite images and more generally of observations of the earth and 

our environment are presently the most productive in data fusion. Observation of the 

Earth is perforated by means of satellites, planes, ships and ground-based 

instruments. It results to a great variety of measurements, partly redundant, partly 

complementary. These measurements can be simultaneous or time-integrated, bi-

dimensional or three-dimensional for instance oceanic and atmospheric profiler, 

sounder at ground level, or satellite-borne, or ship-borne measurements. Data fusion 

is a subject becoming increasingly relevant because it efficiently helps scientists to 

extract increasingly precise and relevant knowledge from the available information. 

The operation of data fusion by itself is not new in environment. For example, 

meteorologists predict weather for several tens of years. In remote sensing (i.e. Earth 

observation from spacecraft or aircraft) classification procedures are performed since 

long times and are obviously related to data fusion. Data fusion allows formalizing 

the combination of these measurements, as well as to monitoring the quality of 

information in the course of the fusion process [Hall and Llinas, 2001]. As the DF 

related motivations are high and can not be described here just some examples are 

mentioned: classification improvements [Haak and Bechdol, 1999], spatial resolution 
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enhancement [Ehlers, 1991], visual interpretation enhancement, and defected image 

reconstruction are the main ones that can be found in several DF related publications. 

Sometimes remotely sensed images are influenced by a number of malfunctioning 

that causes the final products can not provide the needed qualities and completeness.  

This imagery shortage is return to gaped (e.g. missed area in an image) and damaged 

(e.g. noisy dataset) areas in an image. Here all of these data drawbacks called image 

defection. As image defections could have dynamic and diverse characteristics thus 

there are a variety of techniques that could be applied for the reconstruction process. 

Reconstruction of gapped areas from satellite imagery is of high interest for visual 

image interpretation and digital image classification purposes. Image gaps can have 

several reasons e.g. cloud coverage for optical imagery, shadowed area for SAR 

datasets, or instrumentation problems e.g. SLC-off problem for Landsat-7/ETM+ 

[Scramuzza, 2004] and line striping in a dataset [Richards and Jia, 1999]. Gap areas 

can have different sizes, dimensions and locations. For instance the striping problem 

may affect just one column and/or row of pixels while the cloudy area in an image 

could be more than 50% of a satellite imagery scene [Kittler and Pairman, 1985]. 

From the literature there are several techniques that have been evaluated to solve 

these problems. For example [Haefner et al.  1993] used Optimal Resolution 

Approach using ERS-1 SAR data for snow cover determination and Darvishi 

Boloorani et al.  [2008 1,2] used PCT for filling gapped parts of Landsat image using 

earlier obtained images. 

 

1.4.1.2 Spatial information extraction   

As explained above we just evaluated the satellite imagery fusion. But data fusion as 

a general frame can be extended outside the limitations of RS imagery. For example 

geographic information system spatial datasets including digital terrain data, 

demographic data, land-based spatial data etc can be fused in proper ways.  Non-

imagery data fusion (e.g. DLDF) could be one of the most sophisticated applications 

of data fusion. In this regard the most active area of research and development are 



28 

related to the development of geographic information systems by combining earth 

imagery, maps, demographic and infrastructure or facilities mapping (geospatial) data 

into a common spatially-referenced database [Hall and Llinas, 2001]. As seen in 

figure (1-5) data fusion can be extended to several domains of geo-based datasets 

which will open new horizons in spatial data and information analysis and several 

applications can be defined in this framework. More can be found in Star [1991] and 

Mesev [2007].  

 

 

 

Figure  1-5. Spatial data fusion flow diagram. After Hall and Llinas [2001].  

 

Stereoscopic information extraction is another useful aspect of data fusion. Diversity 

of remote sensing systems provides opportunities for collecting images of the earth’s 

surface in different stereoscopic views. This technological advancement has 

facilitated the generation of Digital Elevation Models (DEMs). For example SPOT as 

one of the earliest optical land imagers has provided stereo abilities for several years. 

And also several other sensors nowadays are providing such facilities to extract 3D 

stereo data. Sensors like LIDAR and SAR in combination with optical datasets are 

also offering opportunities for generating 3D data sources for visualization of 

environmental and land surface monitoring. DEM extraction using data fusion has 

been explored in several publications e.g. Cheng [1999] and Toutin [2001].  
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1.4.1.3 Environmental studies 

The increasing human-based pressures that are the main causes to the environmental 

changes during two last centuries have introduced a couple of new needs for knowing 

and understanding of environmental phenomena [Parr et al.  2003]. The principal 

aspects of environmental investigations  like biodiversity loss, atmospheric pollution, 

desertification, fire burning, land use changes, sustainable development and climate 

changes have been studied for several reasons and using several facilities of 

combined  remotely sensed datasets [Oldfield and Dearing, 2003]. As stated by 

Shengli Huang [2005] approximately 320 remotely sensors are available for studying 

the Earth including land, ocean, atmosphere, etc. This high numbers of sensors will 

provide a tremendous volume of data; the combination of them in a proper way will 

cause a lot of advantages. Of course they will include some few disadvantages as 

well.  The high dimensionality of multi-sensor datasets will introduce more complete 

view of the environmental phenomena. For example Haak and Bechdol [1999] 

offered a good insight in the multi-sensor data fusion. Also some very useful recipes 

in the environmental applications of DF can be found in Simone et al.  [2002] and 

Kalluri et al.  [2003]. 

The environmental pollution is a multi-face phenomenon which contains water, soil 

and air contaminations. As these polluters could have divers sources with different 

characteristics accordingly a variety of data sources is needed to handle such 

circumstances. As a very common example Pujadas et al.  [1997] offered a DF 

technique to study air pollution in cities. They investigated Madrid plume in winter, 

as one of the most important cases of urban pollution taking place in southern 

Europe. Another example is the study of Schäfer et al.  [2004] using the fusion 

procedure that the data from the ground-based monitoring network and from satellite 

retrievals are fused in the ICAROS NET (Integrated Computational Assessment of 

Air Quality Via Remote Observation System) platform to the Munich region, 

Germany. 

Desertification as the process of land degradation in arid, semi-arid and dry 

environments could be caused by climatic variations and human activities. With 
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reference to this fact that desertification is one of the most pressing environmental 

issues affecting human life, therefore studding this phenomenon on local, regional 

and global scales is one of the most important aspects for environmental studies 

[Collado et al.  2002]. The fusion of remotely sensed data providing a framework that 

we can extend the obtained results of field investigations to higher levels of regional 

and probably global scales. The fused data has enough spatial information needed for 

local scale analysis of the relationships between climate change, land degradation and 

desertification processes. Too many fusion procedures for combining the remotely 

sensed and the field collected data have been developed that mostly are in multi-

temporal data combination. This multi-temporality characteristic of RS data is more 

useful than other aspects like multi-resolution, multi-frequency, etc for the 

monitoring desertification procedures.  [Verbyla, 1995; Tucker et al.  1994]. Another 

aspect of data fusion is return to the vegetation monitoring in the dry environments 

that is very crucial. Sellers [1989] and Bannari et al.  [1995] studied these phenomena 

using the combination red and infrared reflectance of vegetation land covers. 

 

1.4.1.4 Agricultural studies 

The application of DF in agricultural is a very broad filed of study that can be 

roughly categorized into two dynamic or real-time multi-sensor DF and static or 

delay-time multi-sensor DF. The first one is mostly categorized in the field of 

precision farming in which the data from several sources like GPS, machine-based 

fertilization sensors, office-based previously provided maps, etc will be fused 

instantaneously with the movement of tractor or other vehicles in the field. The fused 

data will guide the vehicle to act based on the wishes of farmers. As an example Guo 

and Zhang [2005] adapted a wireless data fusion system to automatically collect and 

process operational data from agricultural machinery in order to provide real-time 

support for precision farming. The second aspect of DF in agricultural is return to the 

static face of field monitoring or surveying in which the collected data including 

remotely sensed data and ground-based information will be fused a time later and the 
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results will be explored for the next steps of farming. This kind of DF can have a 

temporal range from one day to one year or more. For example combination of multi-

temporal satellite images helps to predict the amount of serials production for one 

year, or time to time information for the health situation of plants. Ostermeier [2007] 

developed a DF methodology that high resolution SPOT-XS is used to provide spatial 

information at the parcels level and very low spatial resolution NOAA-AVHRR 

which outputs images of large areas every day. Both datasets were fused to make the 

possibility to daily estimate reflectance of main cultivations at the parcels level.  

 

1.4.1.5 Natural disasters studies 

Due to the high number of sensors most of the natural disastrous phenomena like 

flood can be monitored and probably predict. Like other aspects of DF applications 

this field also contains a lot of instances. Here we just shortly introduce two cases and 

readers are referred to the mentioned references.  Singh [2007] introduced a multi 

sensor remote sensing data fusion procedure after the Sumatra tsunami and 

earthquake of 26 December 2004. In this work multi-sensors datasets were analyzed 

to study the changes in ocean, land, meteorological and atmospheric parameters. 

Based on the prior and after phenomenon comparison using a DF framework it has 

been cleared that changes in ocean, atmospheric and meteorological parameters, as 

useful signs for disaster monitoring, are detectable. Another example is about the 

Geometric modeling of buildings in urban areas, which helps to detecting and 

interpreting their changes to obtain fast damage information after earthquakes. This 

information is valuable inputs for a disaster management system. For instance in 

Vögtle and Steinle [2005] airborne laserscanning data fusion was carried out for 

earthquake studies.  

Flood forecasting and monitoring is of very important in evaluation all aspects of 

damages from the human and non-human viewpoints. Almost due to the large size, 

remoteness and dynamic nature of the flood phenomenon, this procedure can mostly 

be carried out using remote sensing. As an example Temimi et al.  [2005] introduced 
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an approach that a combination of microwave data and discharge observations 

presents a high potential in flood and discharge prediction.  Toyra et al.  [2002] 

evaluated the usefulness of radar and visible/infrared satellite imagery for mapping 

the extent of flooded wetland areas. In their work the extent of standing water in the 

Peace–Athabasca Delta, Canada, during May 1996 and May 1998 was mapped using 

RADARSAT and SPOT imagery. The RADARSAT scenes and the SPOT scenes 

separately and in a combination mode of the two were classified. Using the fused 

datasets the results of classification has increased about 15%.  Therefore they showed 

that the information from radar and visible/infrared satellite imagery are 

complementary and that flood mapping can be achieved with higher accuracy if the 

two image types are used in combination.  

 

1.4.1.6 Mineral exploration  

From the literature the remotely sensed images for the purpose of mineral exploration 

are mostly categorized into two domains of applications [Sabins, 1999]: geology 

mapping and the faults and fractures that localize and recognize hydro thermally 

altered rocks by their spectral signatures. Due to the fact that different materials have 

different behaviors in different parts of electromagnetic spectrum therefore a 

diversity of sensors needed to reach the mineral exploration goals.  For example, as 

mentioned by Sabins [1999] the digitally processed TM ratio images can identify two 

assemblages of hydrothermal alteration minerals; iron and clays.  Hyperspectral 

imaging systems can identify individual types of iron and clay minerals, which can 

provide details of hydrothermal zoning.  In this regard a proper fusion framework 

will provide a valuable source of data in mineral exploration. The usage of RS data 

can be ranged from a very simple band rationing to a complicated hyperspectral and 

ground data fusions tasks. For example clay minerals have a diagnostic absorption 

around ~2200 nm (ASTER SWIR band 3) while the reflectance maximum for clays 

is at around 1600 - 1700 nm (ASTER SWIR band 1). Therefore a simple band ration 
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of these two bands will provide good information about the abundant of clay 

minerals.  

 

1.4.1.7 Urban studies 

Data fusion application in urban areas is one of the most practical and common cases 

of DF. The fusion of spatial and spectral complementary datasets can facilitate 

human-based visual and machine-based automatic image interpretation. Numerous 

studies have demonstrated the usefulness of fused data for the study of urban areas e. 

g. Couloigner et al.  [1998]. As the urban objects are always heterogeneous thus the 

high-quality of the fused spectral content of the MS images, when increasing the 

spatial resolution, allows further processing such as classification and image 

interpretation. Aiazzi et al.  [2001] used the generalized Laplacian pyramid for 

PLDF. They also offered a fruitful discussion on simulated SPOT 5 data of an urban 

area obtained from the MIVIS airborne imaging spectrometer. 

Traffic-based multi-source data fusion supplies a basis in which the network 

efficiency is high, the road safety is improved and also the transportation is more 

adapted to the environmental conditions.  

Implementing systems like the Intelligent Transport Systems (ITS) and Regional 

Traffic Control Centers (RTCC) in order to implement the traffic information 

systems and traffic management systems are new aspects of data fusion. In order to 

make proper decisions, precise information is needed. Having this kind of 

information is relying on usage of several sources of data. But in other hand having 

stationary sensors is very expensive. Therefore using few but synergistically 

combined data sources is one of the best applicable strategies for traffic managing. El 

Faouzi [2004] evaluated the most recent applications of data fusion in road traffic 

engineering: traffic monitoring, automatic incident detection, traffic forecasting and 

intelligent transportation systems. Sroka [2004] compared five different data fusion 

methods in process of vehicle classification. The models of vehicle classes have been 

defined by using fuzzy measures with triangular and Gaussian shapes. 
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Irrespective to the levels of fusion the earliest publications in different aspects of data 

fusion are summarized in table (1-5).  

 

Table  1-4. Mostly first publications in DF. 
Data Application Author 

GEOSAT and SPOT Petroleum and mineral 

exploration 

Baker and Henderson, 

1988 

Airborne-SAR and Landsat-

MSS 

Geological hazard 

mapping 

Koopmansa and Forero, 

1993 

Landsat-TM and digitized 

NHAP 

Land surface mapping Chavez, 1987 

MSS and VISSR  Change detection Chavez and Mackinnond, 

1994 

TM,  TIMS and airborne 

SAR 

Classification of 

sedimentary rocks 

Evans, 1988 

Landsat and SEASAT Land Use Classification Clark, 1981 

SEASTA and SPOT Geologic structures 

extraction 

Yesou H. Merging, 1993 

Landsat MSS and SIR-A 

Images 

Lithology and Surface 

Deposit  

Chavez et al.  1983 

Landsat and RADAR Crop Classification Li, 1980 

Airborne Radar and Landsat Crop Classification  Ulaby, 1982 

Landsat and HCMM Thermal Mapping Schowengerdt, 1992 

SPOT and Landsat TM Mapping Tanaka, 1989 

SIR-B and Landsat Cartography Welth and Ehlers, 1988 

SPOT and SAR Urban studies Houzelle and Glraudon, 

1991 

Multi temporal Landsat 

ETM+  

Imagery Gap fill Darvishi Boloorani et al.  

2008 

SIR-A, SEASAT and 

Landsat 

 Rebillard and Nguyen, 

1982 

RADAR and geophysical 

data 

 Harris and Murray, 1989 
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LARSEN LIDAR and CASI   Borstad and Osburgh, 

1993 

Acronym note: Thermal Infrared Multispectral Scanner (TIMS) and airborne Synthetic Aperture 

Radar (SAR). Landsat Multispectral Scanner (MSS). Visible-Infrared Spin-Scan Radiometer 

(VISSR). 

 

1.4.1.8 Medical Applications 

Medical imaging is the most important sources of anatomical and functional 

information, which is indispensable for today’s clinical research, diagnosis and 

treatment which is an integral part of modern health care [Patias, 2002]. Multimodal 

imaging plays an increasingly important role in clinical use of medical imaging 

systems. Therefore to make these images more useful and applicable medical image 

fusion being a fast-expanding field and appears more and more as a key element for 

the optimal use of images in medical treatments. Medical image fusion is mostly 

concerns in improving the interpretation of 3D brain images, providing extra 

elements for the diagnosis and patient follow up [Colin and Boire, 1999]. 

Barillot et al.  [1993] applied image fusion to make a 3D display for epilepsy surgery 

where multimodal images like CT, MRI and DSA were used to understand the 

anatomical environment upon which physicians map physiology by priori knowledge, 

atlas and functional data (EEG, SEEG, MEG).  

Barra and Boire [2001] used the fuzziness to manage the uncertainty and imprecision 

inherent to the images followed by the fusion process in two clinical cases: study of 

Alzheimer’s disease by MR/SPECT fusion and study of epilepsy by MR/SPECT/PET 

fusion. Other applications like 3D face simulation for beauties operation and denary 

images fusion and also medical image fusion for educational psychology. 

Characteristics, advantages, and shortcomings of medical image fusion have been 

discussed by several authors like Colin and Boire, [1995]; Barra and Boire, [2001]; 

Patias, [2002]; Malandain et al.  [2005] and Zhu and Cochoff, [2006]. 
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1.4.2 Military applications 

As the accessibility to military literature was limited, this section is mostly based on 

Hall and Llinas [2001] and Koch [2005]. One of the earliest and more common 

usages of DF is in military and defense operation systems. On the contrary to civil 

DF, the military DF mainly focuses on specific object detection that can only be 

obtained with a certain image resolution [Wald, 1999]. The main stresses on military 

applications, from the imagery viewpoint, are developing the techniques that can give 

out some information about the characterization and identification of dynamic entities 

such as emitters, platforms, weapons, high-level inferences for enemy situation and 

military units. For the mentioned cases the data fusion has an important role for 

combination different sensors like radar, sonar, electronic intelligence, observation of 

communications traffic, infrared, passive electronic support measures, infrared 

identification friend foe sensors, electro-optic image sensors and visual (human) 

sightings and Synthetic Aperture Radar (SAR) observations. One of the main 

properties for this kind of DF is the dynamic nature of targets and fast changes and 

also the need for rapid decision making and potentially large combinations of target-

sensor pairings.  

Battlefield intelligence, surveillance and target acquisition systems attempt to detect 

and identify potential ground targets. Examples include the location of land mines 

and automatic target recognition. Sensors include airborne surveillance via SAR, 

passive electronic support measures, photo reconnaissance, ground-based acoustic 

sensors, remotely piloted vehicles, electro-optic sensors and infrared sensors. The 

mentioned high numbers of data resources and the complexity of defense systems 

make high needs for using very sophisticated DF techniques. The military DF is 

mostly at PLDF but other levels also have their applications.  

Multi-sensor measurement which independently senses the physical properties of an 

object can be fused in a data fusion framework. In such circumstances the 

weaknesses of one sensor are alleviated by strengths of others. Consequently, a good 

performance of the complementary sensors is available for a wide variety of 

landmine detections. As an example, there are several landmine detector sensors 
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which measure different physical properties of an object. These sensors all have their 

own strengths and weaknesses that the data fusion is a mechanism to weakness 

alleviation and strength enhancement. For instance, Sanjeev et al.  [1999] introduced 

a framework for multi-sensor data fusion for the detection and identification of anti-

personnel mines. They have developed hybrid architecture in order to integrate non-

homogeneous and dissimilar datasets from various sensors. 
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CHAPTER TWO 

 

2 Pixel Level Data Fusion (PLDF) 

A panchromatic image covers broadest possible wavelength of the electromagnetic 

spectrum (e.g. EO-1/ALI-Pan, 480-690 nm). The spectral bandwidth decreases from 

panchromatic to multispectral (e.g. EO-1/ALI band-3, 450-515 nm) and narrowest 

bandwidth is for hyperspectral sensors (e.g. EO-1/Hyperion band-50, ≈ 849-859 nm). 

Consequently in order to collect and record the same amount of electromagnetic 

radiation, the size of a panchromatic detector (i.e. pixel size) can be smaller than that 

of MS and HS. From the application point of view, synergetic combination of all 

mentioned datasets in a proper basis (i.e. data fusion) is the ideal scenario to put data 

into application. In this regard, the fusion of low resolution hyper/multispectral and 

high resolution panchromatic remotely sensed images is a very challenging subject 

for the remote sensing community.  

As having high spatial and spectral information in one captured image is almost 

unobtainable therefore the new generation of earth surface imagers, such as EO-1, 

Landsat/ETM+, SPOT-HRG, IRS-P6, OrbView-3, QuickBird-2, IKONOS, ALOS, 

etc are capturing panchromatic and multispectral images simultaneously but with 

different spatial and spectral resolutions. As a consequence, techniques that can 

productively fuse these images are demanded. From the published works and 

developed techniques numerous methodologies and software tools have been 

developed. For instance Cliche et al.  [1985], Price [1987], Welch and Ehlers [1987], 

Albertz et al.  [1988], Chavez et al.  [1991], Ehlers [1991], Shettigara [1992], Yesou 

et al.  [1993], Munechika et al.  [1993], Garguet-Duport et al.  [1996], Yocky [1996], 

Wald et al.  [1997], Zhou et al.  [1998], Pohl and Van Genderen [1998], Zhang and 

Albertz [1998], Zhang [1999], Ranchin and Wald [2000], Li et al.  [2002], Cakir and 

Khorram [2003], Chen et al.  [2005] and Zhang and Hong [2005], reviews are given 
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by Pohl and Van Genderen [1998] and Wald [1999 and 2002] are a very rich 

literature in PLDF. 

Image fusion at pixel level means fusion at the lowest processing level referring to 

the merging of measured physical parameters (i.e. pixel) [Pohl et al.  1994]. The 

literature of PLDF shows that there are a large number of techniques used over an 

indefinite number of datasets, each of which for specific applications. Among the 

numerous methodologies the more effective fusion techniques that have 

demonstrated the best results in the literature are presented. Here the pixel level data 

fusion techniques, main concepts, essential qualities, their problems and advantages 

are reviewed and all methodologies have been evaluated using EO-1 hyperspectral, 

multispectral and panchromatic datasets. 

Hyperspectral (HS) and multispectral (MS) datasets, hereafter both refer to as MS. 

 

2.1 PLDF categorization  

In order to make more clarity in borders of the investigated techniques, Hill et al.  

[1999] categorization of PLDF is adapted. In this categorization three groups of 

procedures are specified which work based on how panchromatic information is used 

in fusion procedure.  

 

1. Fusion procedures using all panchromatic band frequencies. 

2. Fusion procedures using selected panchromatic band frequencies.  

3. Fusion procedures using panchromatic band indirectly. 

 

2.1.1 PLDF using all panchromatic band frequencies   

This group of techniques referred to the mostly common and known component 

substitution techniques. For instance PCA and IHS; the arithmetic techniques like 

band addition and multiplication and the Brovey or color normalizing algorithms are 

categorized in this category. 
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2.1.1.1 Principal Component Transformation (PCT)  

Principal component transformation, originally known as the Karhunen-Loeve 

transformation,  is a linear transformation and rotation which transfers a correlated 

multivariate dataset to a new de-correlated multivariate dataset (i.e. components) 

[Loeve, 1955 and Richards, 1986]. In this procedure MS dataset is transformed into 

the same number of uncorrelated principal components. In this new dataset the first 

Principal Components (PC-1) contains the common information from all input bands 

and other uncommon spectral information of the input are transferred to other 

components [Richards and Jia, 2006]. Therefore first principal component can be 

replaced by Pan image which is the spectral average of all MS bands. Finally the 

inverse PCT will produce a high resolution multispectral dataset. In order to 

illustration, a very brief mathematical explanation of procedure is outlined and more 

can be found in the literature. The transformation matrix which contains the 

eigenvectors which is an orthogonal matrix can be calculated based on either from 

the covariance or the correlation matrixes of MS dataset. [Schowengerdt, 1997 and 

Richards and Jia, 1999]. When PCT is carried out using the covariance matrix, it 

referred to as non-standardized, while transformation using the correlation matrix 

referred to as standardized transformation [Wang et al.  2005].  

By way of illustration, let n be the number of bands in a multispectral image as the 

vector X 

 

[ ] T
n321 xx,x,xX   ,...,  =  ( 2-1)

 

And the covariance of two different bands is expressed as 

 

n1,2,3,...,ji,     =−−−=δ ),mx()mx(E jjii
2
ij  ( 2-2)

 

In which mi and mj are the mean values of the bands i and j. For a multi-spectral 

dataset the symmetric covariance matrix is Σ 
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In this regard the covariance matrix Σ of a dataset will be diagonalized.  

The eigenvectors )  ...,  ,3  ,2  ,1( nrr ==ϕ  are calculated according to the corresponding 

Eigenvalues from the Σ. The Eeigenvectors are given by 

 

[ ] T
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n bands of multispectral images are mapped onto the eigenvector 

 

X*Y nφ=  ( 2-5)

 

After this short explanation, let PC1 to PCn be the obtained results of MS to PCT 

domain transformation. Therefore the transformation will be as 
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Finally and after PC1 to Pan replacing, the inverse transformation is carried out by 
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Where  'H
PanDN is H

PanDN that statistically adapted to PC1; the generalized form of PCT 

can be expressed as  
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Where I is the transformation matrix; L
PanDN could be 

 

[ ]L
MSn

L
2MS

L
1MS

L
Pan DN,...,DNDN*)n1(DN +++=  

Or  
1PCDNL

Pan =  

( 2-10)

( 2-11)

 

The first case (Equation 2-10) needs more time for calculations and causes a decrease 

in color distortion because an average of MS bands are added to Pan image before 

fusion process. The second scenario (Equation 2-11) is faster because the Pan image 

is directly injected into the fusion process. L and H superscripts are the signs of 

Lower and Higher resolution pixel sizes, for example ALI/MS with 30 and ALI/Pan 

with 10 meter spatial resolutions, respectively. In this technique, in a practical sense, 

the next steps are almost followed.  

 

1. HL MSMS n  1,
resolution  spatialPan to Resampled

n  1, …… ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ . 
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2. n  1,
 tiontransforma componenet Principal

n  1, …… ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ PCMSH . 

3. n  2,
PC1 the  withion substitutand adaptionlly Statistica

…+⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ PCPanPan . 

4. H
FMSPCPan ⎯⎯⎯⎯ →⎯+ …

PCT Inverse
n  2, . 

 

Statistically adaptation means Pan is stretched to have the same mean and variance as 

PC1. Consequently the obtained results H
FMS  will be a high resolution multispectral 

image that contains high spatial resolution from panchromatic and high spectral 

properties from MS images. For a fuller discussion on PCT readers are referred to 

Schowengerdt, [1997]; Richards and Jia, [1999]; Chavez and Kwarteng, [1989] and 

also good discussions can be found in De Béthune, [1998]. 

As a general rule in almost all PLDF techniques there is band statistically adaptation 

procedure that can be done in several ways. In this work the adaptation process is 

based on Welch and Ehlers [1987]. For example in PCT fusion Pan image must be 

adapted to PC1 which is carried out using the next equation (2-12). For illustration 

purpose let A and B be two images where B must be adapted to A thus 

  

MinA)MinBMaxB(
)MinAMaxA)(MinBB(B'

+−
−−

=  
( 2-12)

 

Where 'B  is the adapted B to A and Min and Max are minimum and maximum values 

in both datasets, respectively. 

 

2.1.1.2 Intensity, Hue, Saturation (IHS) 

The intensity, hue and saturation as a color coordinate transformation is almost a 

standard technique in image fusion. One of the main limitations is that only three 

bands are involved [Daily, 1983]. This specific color space transformation is often 

chosen because the visual cognitive system of human tends to treat these three 

components as roughly orthogonal perceptual axes [Wang, 2005]. In this color 

representation system Intensity component (I) presents brightness variation and has 
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high correlation with spatial variation of data sources, therefore it considered as 

spatial information and no color properties are associated with [Albertz et al.  1988 

and Ehlers, 1991]. Due to high correlativity between intensity and panchromatic 

image, it can be replaced with panchromatic image that contains spatial information. 

The mathematical rational of IHS is based on the transformation matrix of the IHS 

which is an orthogonal transformation. 
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Where Hue, H= tan-1 [ ]1V/2V and Saturation, S= 22 2V1V +  
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Since the forward and backward transformations are both linear, replacing V1 and V2 

in equation (2-14) by V1 and V2 from equation (2-15) yields the mathematical model 

of the generalized IHS method. 
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Where [ ]L
MS

L
MS

L
MS

L
Pan DNDNDNDN 321*)31( ++=  and 'H

PanDN is the H
PanDN that statistically 

adapted using equation (2-12) to having the same mean and variance as L
PanDN . 

In IHS it assumed that all color characteristics of RGB data are represented in Hue 

(H) and Saturation (S) components [Zhang, 1999] while Intensity component (I) just 

contains spatial information. As a general workflow IHS fusion process comprises 

the next steps. 
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1. IHS)RGB(MS ⎯⎯⎯⎯⎯⎯⎯ →⎯ tiontransforma Color . 

2. HSPanPan +⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ (I)Intencity  the  withed substitutand adaptionlly Statistica . 

3. H
F)RGB(MSHSPan  tiontransforma color  Inverse ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯+ . 

 

After MS to IHS transformation, panchromatic high resolution image, PanH 

statistically adapted and substituted with Intensity component (I). Following an 

inverse transformation from Pan+HS to RGB results a fused MS dataset, H
FMS  that 

inherited the spectral properties from MS while earned higher spatial resolution from 

Pan image [Williams, 1995]. As stated in equation (2-15) more than a simple I 

substitution the average of MS bands can be added to Pan before fusion process. This 

extra process will increase the spectral preservation ability of the fusion process. 

 

2.1.1.3 Gram-Schmidt Transformation (GST) 

Gram-Schmidt orthogonalization, or Gram-Schmidt transformation, is a sophisticated 

statistical coordinate transformation. Similar to PCT the GST is a procedure to 

produce a set of uncorrelated or orthogonal variables from a set of correlated and 

unorthogonal random variables [O’Connell, 1974 and Gong et al.  2001]. The 

mathematical rational behind is explained in several references. Here I just briefly 

outline the introductory concepts.  

Let { }kuuu ...,, 21   be any basis of a k-dimensional subspace W of Rn then by Gram-

Schmidt orthogonalisation process, we get an orthonormal set { } n
k Rvvv ⊂...,, 21  

with )...,,( 21 kvvvLW = and for ki ≤≤1 , as  )...,,,()...,,,( 2121 ii uuuLvvvL = . 
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Suppose we are given a set of n vectors, { }nuuu ...,, 21  of V that are linearly 

dependent, where exists a smallest nkk ≤≤2,    such that 

)...,,,()...,,,( 12121 −= kk uuuLuuuL  Here it is claimed that in this case, wk =0.  

Since, we have chosen the smallest k satisfying 

 

)...,,,()...,,,( 12121 −= ii uuuLuuuL  ( 2-16)

 

For ni ≤≤2  the set { }121 ...,, −kuuu  is linearly independent. So, there exists an 

orthonormal set { }1k21 v...,v,v −  such that )...,,,()...,,,( 121121 −− = kk vvvLuuuL . 

As ),...,,,( 121 −∈ kk vvvLu  where 112211 ,...,, −−+++= nkkkkk vvuvvuvvuu . 

Therefore, in this case, we can continue with Gram-Schmidt process by replacing uk 

by uk+1. Let S be a countable infinite set of linearly independent vectors. Then one 

can apply the Gram-Schmidt process to get a countable infinite orthonormal set. Let 

{ }kvvv ...,,, 21 be an orthonormal subset of Rn. Let )  ...,  ,  ,( 11 neeeB =  be the 

standard ordered basis of Rn. Then there exist real numbers njkiij ≤≤≤≤ 1,1,α  such 

that t
niiii Bv )...,,,(][ 21 ααα= . Let ]...,,,[ 21 kVVVA = . Then in the ordered basis B, we 

have A that is an n*k matrix  
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Also, observe that the conditions 1=iv  and 0, =ji vv for nji ≤≠≤1 , implies that 

  

∑
=
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2
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( 2-18)
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Note that,  
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Or in the language of matrices, we get 
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Therefore this transformation can be applied for any number of bands in fusion 

process. Perhaps readers must have noticed that the inverse of A is its transpose. Such 

matrices are called orthogonal matrices and they have a special role to play [Golub et 

al.  1996]. GST can easily be extended to an arbitrary number of random variables 

[Gong et al.  2001; Craig et al.  2000 and Zang, 2004]. As a practical matter, the GST 

procedure always follows next steps: 

1. )SPan(PanSimulatedPan LLH ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ resolution L to resampling and process Simulation . 

2. 
)GSC(Components

SchmidtGramdTransformeMSSPan

1nj

L
ni

L

+=

= −⎯⎯ →⎯+
 

GST

. 

3. 'HH PanPan ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ GSC1   withadaptionlly Statistica . 

4. 'H
n,..,2j

'H PanGSCPan +⎯⎯⎯⎯⎯⎯⎯ →⎯ =
GSC1  withed substitut . 

5. H
F

'H
n,..,2j MSPanGSC ⎯⎯⎯⎯ →⎯+=

 GS Inverse  . 
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2.1.1.4 Brovey Transformation (BT) 

This method assumes that the spectral range of high resolution panchromatic image 

covers the spectral range of low resolution bands summation which can be written as 

equation (2-22) [Oguro et al.  2003 and Chavez, 1991]. 

  

∑
=

= N

1k

H

HH
kH

Fk
MS

Pan*MSMS  ( 2-22)

 

Where H
FKMS  is the kth fused multispectral band at the resolution of Pan image; the 

superscript H denotes the high resolution and HMS  is resampled low resolution MS 

image to the resolution of Pan; N is the number of bands; k is the band under 

consideration.  

From the practical point of view the Brovey transformation is as follows. 

 

1. L
n,...,1i

L
N MSMS =⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯   image Pan  withbands  MSoverlaiedy  spectrallthe  Selection . 

2. H
n,...,1i

L
n MSMS =⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ resolution Pan to Resampling . 

3. H
F

H
n MSMS ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ ncalculatio andn nsformatioBrovey tra . 

 

Where N is a dataset with n subset that covers the spectral range of Pan image. 

 

2.1.1.5 Color Normalized (CN)  

CN image fusion or Energy Subdivision Transform (EST) was mainly developed to 

fuse hyperspectral dataset with high resolution Pan image [Vrabel et al.  20021,2]. 

This technique while retain the spatial properties from Pan the spectral properties of 

MS dataset are also protected. As this technique just work based on spectral 

correspondence between datasets therefore bands from a MS dataset can be 

sharpened only if they fall within the spectral range of Pan image. For illustration let 

have an N band dataset in which there is an n band subset that spectrally 
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corresponding with Pan image. Thus only this subset can be fused using this 

procedure. In practice the next steps is followed. 

 

1.    Pan      checking encecorrespond range Spectral L
n

L
N MSSelectedandMS ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ . 

2. H
n

L
n SMSSMS ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ resolution Pan to Resampling . 

3. 
∑

= n

k

kH
Fk

MS

Pan*SMSMS . 

As this technique is the extended version of Brovey, therefore final form is 

normalized to the summation of all input bands in the spectral range. Thus datasets 

must be in the same units of pixel value quantization, for example both datasets must 

be in the same units of radiance (μW/cm²-sr- μm) and if not they must be converted. 

 

2.1.1.6 Fanbeam (FB)  

The fanbeam transformation computes projections of an image matrix along specify 

directions. An obtained projection of an image f(x, y) is a set of line integrals. The 

fanbeam function computes the line integrals along paths that radiate from a single 

source, forming a fan shape (Figure 2-1). To represent an image, the FB takes 

multiple projections of the image from different angles by rotating the source around 

the center of the image [Matlab help, 2008].  

The Fan Sensor Geometry (FSG) is a parameter that specifies how sensors are 

aligned. Based on the selected FSG, it positions the sensors along an arc or line of 

sensors which spaced at a specific degree intervals. The distance between sensors is 

controlled by specifying the angle between each beam. In an image projection the 

distance between sensors can be in pixels along x axis which is a new axis orthogonal 

to the central beam (Figure 2-1). 
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 (a) (b) 

 

 

 
 

 

Figure  2-1. Single fanbeam projection at rotation angle theta. (a) the 

geometry of fanbeam function when FSG is set to arc; (b) fanbeam 

function when FSG is set to line. From Matlab help, [2008].  

 

The original image can be reconstructed by the help of inverse fanbeam 

transformation; fanbeam projection data; the distance between the vertex of the 

fanbeam projections, and the center of rotation. For obtaining the best results, the 

same values for these parameters that were used when the projection data was 

created, are needed. In order to carry out FB procedure for data fusion next steps are 

followed.   

 

1. H
n 1,...,i

Pan to resample and onRegistratiL
n 1,...,i MS MS == ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ . 

2. Htiontransforma  FanbeamH
i MS MS

iPr⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ . 

3. PranP Pan tiontransforma  fanbeam and  MSto  adaptation Spectral H
i ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ . 

4. PrNew⎯⎯⎯⎯⎯⎯⎯ →⎯ sprojection of Fusion
Pr

H
Pr  Pan and MS

i . 

5. H
F

tiontransforma fanbeam Inverse MS Pr ew ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯N . 
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Where Pr is the converted projections obtained by FB transformations and  the 

abovementioned steps are routines almost similar to all other image fusion 

procedures. The fanbeam and inverse fanbeam transformations also follow the 

explained procedures. The most important one is step four that the fusion of 

projections happens. This step in the simplest case could be the arithmetic mean of 

projections )/2Pan and (MS Pr
H
Pri  which both inputs will have equal influence to the final 

fused dataset. Consequently the results of such a fusion will be a fused dataset that 

spatial information from Pan and spectral information from MS images are equally 

combined. As this transformation is a loosy therefore some unwanted distortions are 

unavoidable. 

 

2.1.1.7 Radon Transform (RT) 

Comparable to fanbeam, the Radon transformation computes projections of an image 

matrix along specified directions. In this transformation the projection of an image as 

a two-dimensional function f(x, y) is a set of line integrals. On the contrary to 

fanbeam in which the source of beams is single, Radon transformation computes the 

line integrals from multiple sources along parallel beams, in a certain direction 

(Figure 2-2(a)). The beams are spaced 1 pixel unit apart. To represent an image, the 

Radon function takes multiple, parallel-beam projections of the image from different 

angles by rotating the source around the center of the image. 
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(a) (b) 

 
 

 

Figure  2-2.  (a) Single Radon projection at a specified rotation angle with 

parallel-beam projection at rotation angle theta; (b) The Radon transform 

for one beam across an image. After Toft [1996]. 

 

The Radon transform has several applications in image analysis: feature detection; 

liner objects extraction; data compression; etc. For a function F(x, y), the Radon 

transform describes the integral along a line s through an image (Equation 2-23 and 

Figure 2-2 (b)). 

 

ds  cos sin , sincos ∫
∞
∞−

θ+θρθ−θρ=ρθ )ss(F),(R  
( 2-23)

 

Where ρ  is the distance of line from the origin and θ  is the angle from horizontal 

axis. In the Radon domain each point ) ,( ρθR  is called a ray-sum, while the resulting 

projection image called shadowgram. Using an inverse projection (Equation 2-24) a 

new image ) ,(' yxF can be reconstructed based on the ray-sums from the ) ,( yxF . 

 

θθ+θθ= ∫
π d   sin   cos x  0 )y,(R)y,x('F  ( 2-24)

  

Similar to fanbeam the Radon transform is not a perfect invertible transform, 

therefore the output, ) ,(' yxF , is an image of ) ,( yxF  which blurred by transformation 
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[Toft, 1996]. Due to the fact that Radon follows the same transformation routine as 

the fanbeam therefore the practical implementation is similar.  

 

2.1.2 PLDF using selected panchromatic band frequencies 

Following the assumption that Pan images have some spatial information (i.e. high 

frequencies) that are missing in MS datasets, the second category of PLDF 

techniques are categorized. The most common techniques in this group are the 

procedures that additional high resolution spatial information (i.e. high frequencies) 

of the panchromatic band is injected into the MS datasets. The most famous 

procedures in this category are those working base on filtering techniques in spatial 

domain, wavelet transform, and ARSIS concept.  

 

2.1.2.1 Wavelet Transformation (WT) 

Wavelets are mathematical functions that cut up data into different frequency 

components and then study each component with a resolution matched to its scale, 

therefore the fundamental idea behind wavelets is to analyze according to scale 

[Graps, 1995]. Wavelet transform as a mathematical tool developed in the field of 

signal processing [Zhang, 2002]. It widely used for processing and fusion of remotely 

sensed images. It is an image decomposition algorithm that based on its local 

frequency contents decomposes image into multiple new layers each of which has a 

different resolution degree. Since it is isotropic and shift-invariant thus does not 

create artifacts when used in image fusion procedures [Wang et al.  2005 and Zhou et 

al.  1998]. 

 

2.1.2.1.1 Discrete Wavelet Transformation (DWT)  

Discrete wavelet transform which was introduced by Haar [1910] is defined as any 

kind of wavelet transformation in which the wavelets are discretely sampled [Zhang, 

2002]. The DWT has a high number of applications in mathematics, science, 
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engineering, image processing, computer science, etc. DWT applications in image 

and signal processing in general and specifically in image fusion are dramatically 

increasing. Data fusion using wavelet transformation permits to introducing the 

concept of details between successive levels of scales or resolutions. For this purpose 

first we need define a mother function; this function is mainly concentrated near 0 

and is characterized by a rapid decrease when  t increases [Garguet-Dupor, 1996]. In 

order to provide a good localization in both frequency and space domains [Núñez, 

1997] the wavelet transformation of a distribution (t)f can be expressed as dt 

(Equation 2-25). 

 

. )
a

b-t( (t)1),)(( dtf
a

bafW ∫= ψ  
( 2-25)

 

Where a, b are scaling and translational factors respectively; )
a
b-t(ψ   is a base 

function that is a scaled and translated version of a ψ  function and ψ  is mother 

wavelet. 

Based on equation (2-25), equation (2-26) can be derived as  

  

0 (t) )( 1 ==Ψ ∫∫
+∞

∞−

−
+∞

∞−

dttdtt m ψL  
( 2-26)

 

Thus the loss of information will be 0 and this means it is a lossless transformation 

that can be applied for a variety of data. In order to decompose image into wavelet 

planes [Núñez, 1997] the discrete Two-Dimensional Wavelet Transform (2DWT) 

which is an extension of the One-Dimensional Wavelet Transform (1DWT) [Yocky, 

1995] has been used. In this process the decomposition applied over an image which 

will produce a set of multi-resolution images supplemented with wavelet coefficients 

for each resolution scale. Obtained wavelet coefficients for each scale contains the 

spatial differences between two successive resolution scales [Wald et al.  1997]. In 
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general the wavelet-based image fusion is carried out in the following steps (Figure 

2-3): 
 

1. H
n,...,1i

L
n,...,1i MSMS == ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ resolution Pan to Resampling . 

2. α⎯⎯⎯⎯⎯⎯⎯ →⎯ ,d,v,h
H
i scoeficientwaveletMSMS    decompose  DWT    . 

3. α⎯⎯⎯⎯⎯⎯ →⎯ ,d,v,hscoeficientwaveletPanPan     decompose  DWT . 

4. MSofthattoionnormalizatcomponentfrequencyhighPan         . 

5.        
   Fusion 

d,v,hPanmsscoeficientwaveletFusedscoeficientWavelet +α⎯⎯⎯ →⎯ .  

6. H
d,v,hPanms MSFusedscoeficientwaveletFused        DWT Inverse 

 ⎯⎯⎯⎯⎯ →⎯+α . 

 

Where ms is one band from MS. α, h, d, and v are overall, horizontal, diagonal, and 

vertical wavelet coefficients, respectively.   

In order to normalize the high frequency components (i.e. d,v,hz,Cz
3n =−   ), they are 

sampled to estimate radiometric normalization coefficients az and bz for each ms band 

[Canty, 2007]. z
pan

z
ms

z ˆ/ˆa δδ=  and z
pan

zz
ms

z m̂a/m̂b =  where δ̂  and m̂  are the estimated 

standard deviation and mean of the ms and Pan datasets, respectively. These 

coefficients are then used to normalize the wavelet coefficients for the panchromatic 

image to those of each multispectral band at the n-2 and n-1 scales [Canty, 2007 and 

Ranchin and Wald, 2000] (Equation 2-27). 

 

1  ,2    ,  ,  ,    ,),(),( −−==+→ nnkdvhzbjiCajiC zz
k

zz
k  ( 2-27)

 

As illustrated in figure (2-3), in this process the replacement and inverse 

transformation will be carried out in an equal number as the number of MS bands 

[Garguet-Duport et al.  1996 and Zhou et al.  1998]. In the used method all the 

spectral information of the MS image is preserved. Thus, the main advantage of the 

additive method is that the detailed information from both sensors is used and 

preserved [Núñez, 1997]; Yocky [1995]; and Ranchin and Wald [2000].  
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Figure  2-3.  Block diagram of the DWT image fusion scheme. 

 

As shown in figure (2-3), the first stage of wavelet fusion is to perform two-

dimensional (2D) DWT on Pan and MS datasets separately. By the help of a two-

channel filter bank which contains a lowpass and a highpass filters. The 2D DWT is 

carried out as the extension of a one-dimensional 1D DWT. In this procedure first 

along the horizontal direction 1D DWT is carried out in which each row being treated 

as a 1D signal. By sequential execution of lowpass and highpass filters on each row 

which followed by a 2-to-1 down-sampling operation. In this stage from the first 1D 

DWT produces the horizontal lowpass output and the horizontal highpass output will 

be obtained. The same as the first step, the second 1D DWT filters is carried out at 

vertical direction of the outputs produced by the first1D DWT. As these operations 

are sequential and can be carried out till the whole image be decomposed therefore in 

some levels of decomposition we have to stop the procedure. Two levels of 

decomposition were carried out over each image separately. With 4 outputs for each 

one namely: overall wavelet coefficient, α; horizontal wavelet coefficient, h; diagonal 

wavelet coefficient, d; and vertical wavelet coefficient, v. As overall wavelet 

coefficient α from the MS dataset is expected to have the most informative spectral 
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information, therefore it has been fused with other coefficients from Pan image. 

Finally an inverse DWT will results a fused MS dataset that has the high resolution 

properties from Pan, while the spectral information of MS data is highly preserved. 

As the wavelets mostly are described in terms of wavelet functions and scaling 

functions, it is also common to refer to them as families: the wavelet function is the 

mother wavelet, the scaling function is the father wavelet and transformations of the 

parent wavelets are daughter and son wavelets [Amolins, 2007]. In this work two 

common families as Haar and Symlet were evaluated. 

 

2.1.2.2 High Pass Filter (HPF) 

The high pass filter methodology was used by Chavez and Bowell [1988] and Chavez 

[1986] to fuse the TM data with digitized national high altitude program and SPOT-

Pan dataset. This technique is a kind of weighted addition of higher resolution image 

with the lower resolution one. The rational behind is that the high spatial frequency 

information from Pan must be inserted into the MS dataset using the HPF procedure 

which developed by Schowengerdt [1980]. The practical implementation of 

methodology follows the next steps. 

 

1. H
n,...,1i

L
n,...,1i MSMS == ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ resolution Pan to Resampling . 

2. HFIPanPan ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯   windowmoving n*n using extraction detailsfrequency  High . 

3. H
n,...,1LFIi

H
n,...,1i MSMS == ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯   windowmoving n*n using extraction detailsfrequency  Low . 

4. H
n,...,1iHFD

H
n,...,1LFIi MSPanandMS == =⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯   base bandby  band a in adding and of adaptation Spectral   . 

 

The High Frequency Information (HFI) of the Pan is extracted by subtracting a 

lowpass version of the Pan from itself. The lowpass filtering is obtained by a n× n 

sliding window.  
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2.1.2.3 ARSIS concept data fusion 

This concept is called ARSIS, after the acronym of (French) Amelioration de la 

Resolution Spatiale par Injection de Structures, (English) improvement of spatial 

resolution by structure injection. Main philosophy behind the ARSIS concept is 

return to this assumption that the missing spatial information in the lower resolution 

datasets is linked to the high frequencies information [Wald, 2002]. Therefore the 

function of ARSIS is to find and model this relationship between high frequency 

component of two or more datasets e.g. multispectral and panchromatic images.  Any 

method which works based on the ARSIS concept typically follows the next steps 

[Ranchin et al.  2003]: 

 

1. Extracting a set of information from Pan image. 

2. Inference the information that is missing in MS images using the extracted 

information. 

3. Construction the fused images H
FMS  based on the obtained information. 

 

In order to put ARSIS concept into practice, modeling the missing high frequencies 

information can be handled more sensibly by Fourier or wavelet coefficients or other 

similar transformations. For example Ranchin and Wald [2000] carried out the 

Multiscale Model (MSM) as a hierarchical description of the information content 

relative to spatial structures in an image. In consequent ARSIS concept was 

addressed which makes use of a multi-scale method for description and modeling of 

missing information between the multispectral and panchromatic images.  Ranchin 

and Wald [2000] used wavelet transformation for multi-scale ARSIS method over 

SPOT-XS and Pan images.  

Due to the generality of this concept several procedures based on ARSIS can be 

carried out. For instance the High-Pass Filtering (HPF) [Chavez et al.  1991]; wavelet 

based methodologies like Model-1, Model-2 and RWM (after the names of Ranchin, 

Wald, and Mangolini), [Ranchin and Wald, 2000 and Ranchin et al.  1994] are all 

procedures that are developed under this concept. In this work two data fusion 
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techniques based on ARSIS concept as ‘a-trous’ wavelet transform [Aiazzi et al.  

2002] and the discrete wavelet transform [Ranchin and Wald, 2000] are investigated. 

 

2.1.2.3.1 A Trous Wavelet Transform (ATWT) 

A Trous (French: hole) Wavelet Transform (ATWT) [Dulilleux, 1987] is one of the 

most common wavelet-based image fusion procedures. It is a non-orthogonal wavelet 

which is a kind of discrete approachs of wavelet transform. After Mallat’s algorithm, 

this technique is the second popular procedure used in the DWT. ‘A` Trous’ 

algorithm has been carried out by several authors e.g. Nunez et al.  [1999], 

Gonza´lez-Audıcana [2002] and Ranchin et al.  [2003]. Due to the appeared problems 

with DWT, the ATWT as an alternative was proposed for image fusion [Aiazzi et al.  

2002]. The ATWT is a multi-scale decomposition defined formally by a low-pass 

filtor L = {l(0), l(l) …} and a high-pass filter H=δ-L, where δ denotes an all-pass 

filter. The high frequency part is then just the difference between the original image 

and low-pass filtered image. This transformation does not allow perfect 

reconstruction if the output is downsampled. Therefore downsampling is not 

performed at all. Rather, at the kth iteration of the low-pass filter, 2k-1 zeroes are 

inserted between the elements of H. This means every other pixel is interpolated 

(averaged) on the first iteration: L={l(0), 0, l(1), 0, …}, While on the second iteration 

L={l(0), 0, 0, l(1), 0, 0, …}, and so on. The name "A Trous" (with holes) is return to 

the added 0s which makes holes, (0 value) pixels. The low-pass filter is usually 

chosen to be symmetric. Cubic B-spline filter [Nunez et al.  1999] with L = {1/16, 

1/4, 3/8, 1/4, 1/16} as a good choice has been used in this work. The carried out 

procedure (with the assumption that difference in spatial resolution is a factor of two) 

is similar to the DWT. The main steps of implementations are briefly outlined as 

 

1. H
n,...,1i

L
n,...,1i MSMS == ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ resolution Pan to Resampling . 

2. α⎯⎯⎯⎯⎯⎯ →⎯ ,d,v,h
H
i scoeficientTrousmMS   s  transform Trous A . 
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3. α⎯⎯⎯⎯⎯⎯ →⎯ ,d,v,hscoeficientTrousPanPan    transform Trous A . 

4. msofthattoionnormalizat
componentfrequencyhighPan

    
    

. 

5.   

    

 

   Fusion 

d,v,hPanmsscoeficient

waveletFusedscoeficientWavelet

+α

⎯⎯⎯ →⎯
. 

6. H
Fid,v,hPanms MSFusedscoeficientwaveletFused        ATWT Inverse 

 ⎯⎯⎯⎯⎯ →⎯+α . 

 

2.1.3 PLDF using panchromatic band indirectly 

In this group of techniques, panchromatic band information is not directly used in the 

fusion process and it just forms the basis for band specific transformations or 

estimating procedures [Hill et al.  1999]. The mostly used techniques are those that 

the radiometric similarity of datasets is minimal and input datasets can be called 

“spectrally inconsistent” e.g. thermal IR bands in fusion with panchromatic band. As 

an example Price [1987] in order to make a Look Up-Table (LUT) used a 

crosstabulation between panchromatic and thermal IR datasets after fitting grey 

values using the High Frequency Modulation (HFM) algorithm [Vrabel, 1996]; the 

spatial resolution of the IR dataset is increased while their spectral properties are 

highly smoothed. Tom [1986] developed a technique based on local correlation 

properties of the input datasets. These techniques showed a good performance to the 

cases which works based on a single high resolution panchromatic band. Zhukov et 

al.  [1995] developed a methodology named MMT after the full name Multi-sensor, 

Multi-resolution Technique. In this work none of techniques in this category are 

investigated. 

 

2.2 Pixel level data fusion quality assessment 

Ideally, the goal of data fusion is to represent the information contained in input 

images into a fused image without introducing distortion or information losses. Due 

to the nature of data fusion and the principals of information theory, it is almost 

impossible to represent and preserve all input information in a single fused image. 
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With regard to these facts, the main achievable purpose is to minimize the 

information loss and distortions in fused images. As a general rule, fused datasets 

should be suitable for human visual perception and also suitable for machine-based 

information extraction techniques like object segmentation, data classification, 

feature extraction, object detection, etc. 

Generally, evaluation the quality of a fused image depends on DF application for 

example when the purpose is enhancing visual properties of data, therefore the 

definition of the quality maybe different from the case that data are fused for 

classification purposes. In this regard, as we are looking for the fusion techniques that 

work for enhancing all aspects of the fused data, therefore the used evaluations are 

general and global indices that will cover all properties of fused data. From the 

literature, evaluation procedures in PLDF can be mainly divided into three groups: 

objective, subjective and Human Vision System (HVS) indicators. The first groups 

comprise the mathematical and statistical procedures that provide measures to 

evaluate the accuracy of fused image compare to a reference image. The second 

group of evaluation are refers to Mean Opinion Score (MOS) that is obtained by 

averaging some subjective tests where the numbers are ranked based on the visual 

quality of fused images compare with references. Finally the HVS evaluation 

techniques are based on the precipitations of human vision systems.  

  

2.2.1 Objective PLDF quality assessment indices 

Due to the kind of distortions and the used datasets all properties of fused data must 

be measured. As the spectral and spatial properties of Pan and MS datasets always do 

not obey the likeness rules therefore both spectral and spatial resolutions of the fused 

images must be evaluated. Accordingly, using some quantitative indicators the 

performance of the used techniques with respect to the spectral and spatial 

information contents of the fused image in compare to the reference datasets are 

measured. These indicators are providing measures of the closeness between fused 
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and reference datasets by utilizing the differences in spectral and spatial statistical 

distributions of DNs.   

With reference to this fact that the number of objective image quality assessment 

metrics are dramatically high and according to the availability of reference dataset 

(which the fused dataset is to be compared with [Wang et al.  2004]) the developed 

and applied objective indices are categorized into three main groups. 

  

1. Full-reference image quality assessment techniques that use an available 

complete reference image.  

2.  No-reference or blind quality assessment approaches are desirable in cases 

which reference image is unavailable.   

3. Reduced-reference in which the reference image is only partially available. In 

such a procedure a set of extracted features made available as side information to 

help in evaluation the quality of fused image. 

 

As in this work the main objective is to evaluate the kind and amount of distortion 

due to the fusion process accordingly a quality assessment that can offer the whole 

information is desirable. Therefore here the focus is on full-reference quality 

assessments. As the reference datasets were not available for second property of 

Wald, therefore the needed reference datasets are produced. 

 

2.2.1.1 Wald’s property indicators 

Due to the main rational behind the PLDF procedures that aims at injecting the higher 

spatial resolution properties of Pan into the MS images while their original spectral 

content are preserved. Therefore the importance of spectral consistency is very high 

for almost all applications of satellite imagery especially those that are depend on the 

spectral properties of data e.g. classification and visual image interpretation. As 

mentioned above the number of indicators is high and very diverse that make the 

quality assessment be complicated. In order to make a thorough and global 
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measurement Wald et al.  [1997] offered a standard protocol for evaluating quality of 

fused images. This protocol is formulated by three “properties” of fused images as: 

 

1. Any MS fused image once downsampled to its original spatial resolution should 

be as identical as possible to the original image; 

2. Any MS fused image band should be as identical as possible to the image band 

that a corresponding sensor would observe with the same high spatial 

resolution (if available); 

3. The fused dataset should be as identical as possible to the dataset that a 

corresponding sensor would observe with the same high spatial resolution (if 

available). 

4. Any fused image band must be as spatially informative as possible in compare to 

original panchromatic image.  

 

As three first properties are mostly based on the spectral fidelity of the fused dataset 

and the spatial fidelity has a minority of importance therefore we added the last 

property as the complementary to Wald’s protocol. The last added property is return 

to the spatial homo- or heterogeneity of the fused image which is evaluated in 

compare to the original Pan image. This parameter helps to know the spatial 

information contents of the Pan and helps to know “are spatial information properly 

transferred into the fused dataset? 

   

2.2.1.2 Wald’s requirements 

In order to put the above-mentioned measurements into practice, an indicator must be 

used that can offer a measurement of similarity between fused image and a proper 

reference (if available). In this regard as a general framework Wald [2002] numbered 

three main “requirements” for any image quality assessment indicator. 
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1. It should be independent of data units, calibration coefficients and instrument 

gains. Consequently it must be applicable to unitless quantities of DNs or 

radiances and any other forms of data values.  

2. This quantity should be independent from the number of spectral bands under 

consideration. This is a sine qua non condition to compare results obtained in 

various conditions. 

3. This quantity should be independent of Sharpening Factor (SF) or the scales of 

Pan and MS datasets. This permits to compare results obtained in different 

scales and for different image resolutions. 

 

2.2.1.3 Reference image creation 

From the literature several methods have been proposed to make a reference image. 

The routine for reference image creation is adapted from is based on image scale 

changing. In this procedure it is assumed that an artificially-made reference image 

quality evaluation can offer the needed quality measurements for assessing the real 

images: 

 

1. Lresolution Pan⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯
 MSto downsample and RegisterH  Pan . 

2. VLresolution lowvery  to  Downsample L MS MS ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ . 

3. HF
k

fusion data level PixelL
k

H MS  MSPan ⎯⎯⎯⎯⎯⎯⎯ →⎯, . 

4. LF
k

fusion data level PixelVL
k

L MS  MSPan ⎯⎯⎯⎯⎯⎯⎯ →⎯, . 

5. tmeasuremen Q   MS,MS comparison visual and al StatisticLF
k

L
k ulality⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ . 

6. Artificial quality measurement generalized as real quality measurement of the 

PLDF technique. 

 

Where H, L and VL are the High (e.g. Pan, 10 m), Low (e.g. MS, 30 m) and Very 

Low (Downsampled MS, 90 m) spatial resolutions of real and downsampled datasets, 

respectively. The mentioned routine for making a reference image and generalize the 
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quality of the fabricated reference image ( VF
kMS ) to the real image ( L

kMS ) is based on 

the assumption that the error should increase with the enhancing of spatial resolution. 

Since the complexities of a scene usually increase as the resolution is getting higher, 

therefore the above assumption can be reliable. As the amount of sharpening factor 

for VL to L datasets is the same as for L to H therefore the obtained accuracies using 

these routines are reliable and can be generalized to the real fused datasets. Regarding 

to the relationship between object and pixel sizes that will change based on resolution 

changes therefore it seems the assumption of scale changing is not a comprehensive 

assumption. But from the literature this procedure is the most acceptable one and has 

been adapted in this work.  

 

2.2.2 Spectral indices 

These indices are mostly concerning the spectral valuates of individual pixels and not 

about the neighboring pixels. Therefore they are referred to as spectral indices.  

 

1. Correlation between Fused (F) and Reference (R) images 

 

∑
∑

μ−μ−

μ−μ−
=

2
F

2
R

FR

)f()r(

)f()r()F,R(Corr  
( 2-28)

 

Where r and f are the pixel values of the reference R and fused F images; Rμ  and 

Fμ are the means of R and F, respectively. 

 

2. Relative Difference of Means (RDM) 

 

R

RFFRRDM
μ
μμ )(),( −

=  
( 2-29)

 

3. Relative Difference of Variances (RDV) 
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R

RFFRRDV 2

22 )(),(
δ

δδ −
=  ( 2-30)

 

Where 2
Fδ and 2

Rδ denote the variances of the F and R, respectively. 

 

4. Peak Signal to Noise Ratio (PSNR) [Winkler, 2005] 

 

 )(20 10 MSE
PeakLogPSNR =  

( 2-31)

 

Where peak is the maximum possible radiometric values for dataset, as it is 255 for 8 

bit radiometric resolution and 2084 for 11 bit images, and so on. Mean Square Error 

(MSE) is the measure of radiometric distortion of the fused pixels as  
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( 2-32)

 

5. Relative dimensionless global error in synthesis (ERGAS) 

Based on the three mentioned “requirements”, Wald [1999] introduced a quality 

assessment called ERGAS, after its name in French: erreur relative globale 

adimensionnelle de synthèse, English: relative dimensionless global error in 

synthesis. 
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Where H and L are the resolutions of the Pan and MS bands; M is the mean of the 

under investigation band, F; and RMSE is the Root Mean Squire Error as the 

indicator of difference between fused and reference images. 

With respect to calibration and changes of units it is reliable. It also obeys the second 

requirement. The ratio H/L takes into account the various resolutions. For the same 

error ERGAS, the mean value of the relative RMSE (Fk) increases as the ratio H/L 

decreases, and it is equal to: 
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Where N is the number of pixels in the fused band, F. 

 

6. Universal Image Quality Index (UIQI)  
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Where FRδ ; 2
Fδ ; and 2

Rδ  are the covariance and variances of F and R, respectively. This 

index is developed by modeling all possible distortions of an image. It is a 

combination of three important factors of image impairments including loss of 

correlation, luminance distortion, and contrast distortion [Wang, 2002]. Where the 

first component is the correlation coefficient between F and R; the second component 

is the measure of how close the mean luminance; and the third one is the measure of 

how similar the contrasts of two images are. 

  

7. Structural Similarity (SSIM) 

As the mentioned indicators consider the spectral and spatial properties of the fused 

datasets in almost separate ways therefore the need for a hybrid index that combine 
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these two are noticeable. The SSIM is the generalized and developed version of the 

UIQI which has offered promising results on image quality assessment. The 

philosophy behind is that the luminance of the surface of an object being observed is 

the product of the illumination and the reflectance, but the structures of objects in the 

scene are independent from illumination [Wang et al.  2004]. In SSIM the structural 

information of image independently from the influence of the illumination has been 

calculated. Therefore it is expected that SSIM is one of the best ones which in 

addition to spectral properties considers some aspects of spatial properties of fused 

datasets.  In order to do that SSIM separates the task of similarity measurement into 

three comparisons: Luminance L, Contrast C and Structure S. 
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And the combination of the three comparisons provides a general image quality 

indicator named structural similarity (SSIM). 
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Where  )DK(C 11 =  in which D is the dynamic range of the pixel value (e.g. 255 for 8-

bit) and 1K1 ≤ is a small constant. Similar considerations C2 and 3 also apply to contrast 

and structure comparisons.  

All abovementioned measuring indicators are individual and global indices which 

supply statistics of similarity between two images. These measures are calculated by 

utilizing the differences in statistical distortions of pixel values [Eskicioglu, 1995]. In 
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this work all mentioned spectral indices were evaluated and finally the SSIM has 

been selected. After statistically evaluation of all techniques and comparing the 

obtained statistics with the visual appearance of fused images it was realized that 

SSIM can better shows the amount of distortions. More detailed information can be 

found in Karathanassi et al.  [2007]. 

 

2.2.3 Spatial indices 

As the abovementioned indicators work based on comparing pixel values of the fused 

and reference images with no care about the pixel neighbors therefore some probable 

drawbacks are sensible. These problems return to the fact that, it is probable for two 

compared images with the same statistical parameters (like mean and variance) to 

have different spatial arraignments of pixels. For example, assume a 5*5 window 

from an image (Figure 2-4(a)); after fusion process, several possible outputs could be 

appeared while in all cases statistical properties are the same. 

 

 
Figure  2-4. 5*5 window from an image: (a) original image and (b-f) 

different probable results from a pixel level data fusion process.  

 

With reference to figure (2-4(a)) after an assumptive pixel level fusion about five 

possible spatial arrangements of pixels and consequently different spatial 

characteristics will be appeared: 
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1. First (i.e. the best) is the case which pixel values and their spatial arraignments 

are the same (b); 

2. Second (i.e. the worst) is the case where no pixel values and no spatial 

arraignments are the same (c); 

3. Third is the case when one of the data properties i.e. spatial arraignment (d) or 

spectral pixel values (e) is exactly the same while another property is different.  

4. Fourth case could be any possible situation in which the pixel values and their 

spatial arraignments could partly be the same (f). 

 

With reference to the mentioned possibilities the weakness of spectral based 

parameters is more sensible. On the other hand the spatial based calculations lonely 

will also mislead the evaluation process. For example in the case (d) the spatial 

indicators will show the same value while it is definitely different from the reference 

data (a). Thus we do believe two spectral and spatial properties must be evaluated 

and used in a complementary fashion for image quality assessments. Based on the 

number four property (added property to Wald’s properties) which considers the 

spatial similarity of fused dataset to compare with Pan image the next two indices are 

evaluated as two considerable spatial indicators.  

 

2.2.3.1 Normalized Difference of Entropies (NDE) 

Entropy, as a measure of texture, has been applied in several domains of image 

processing.  The texture-based entropy filter in the form of co-occurrence measure 

uses a gray-tone spatial dependence matrix to calculate texture values. This is a 

matrix of relative frequencies with which pixel values occur in two neighboring 

processing windows separated by a specified distance and direction. It shows the 

number of occurrences of the relationship between a pixel and its specified neighbor 

[Anys, 1994]. Thus the normalized differences of the entropy will show the amount 

of spatial similarity of the fused image in compare to its reference image. 
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( 2-40) 

 

Where FiE and RE denotes the entropy of a single fused band from dataset (F) and R is 

the reference band that here is referred to as Pan image; N is the number of bands of 

the fused dataset. The NDE as a normalized measurement can get any value between 

0 and 1. Therefore NDE=0 is the maximum spatial similarity between fused and Pan 

image. And with the increment of this value the amount of similarity will get lower. 

As another possibility the difference of entropies can be measured in absolute 

difference value.   

 

2.2.3.2  Normalized Difference of Autocorrelations (NDA) 

Another robust indicator that can offer some spatial information about an image is 

autocorrelation. This measurement looks for an overall pattern between contiguous 

pixels and their similarity in an image.  This measurement can be calculated globally 

across the whole image or locally throughout local filters. Consequently it provides a 

single global value that describes the spatial dependency of dataset as a whole or can 

offer an image in which every pixel has a value which shows its spatial dependency 

in relation to its neighbors. Irrespective of the global or locality of the measurement 

there are several indicators that calculate autocorrelation e.g.  Moran’s I, Geary’s C 

and semivariance [Curran, 1988 and Woodcock and Strahler, 1987]. The same as 

NDE, the amount of NDA is calculated based on the normalized differences of 

autocorrelation of fused image and reference. 
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Where FiA  denotes the autocorrelation of a single fused band from dataset (F) and R 

is the reference band that here is referred to Pan image; N is the number of bands of 

the fused dataset. The same as NDE this indicator can be calculated as the absolute 

differences of two datasets.  

Here the local Moran’s I and Geary’s C of Anselin’s LISAs [Anselin, 1995] [adapted 

from Yee Leung et al.  2002] are briefly explained and for more dialed discussions 

readers are referred to related references.   

  

1. Local Moran’s I  

For illustration purposes let xi (x1, x2… xn)T be the vector of observations on 

random variable X at n locations and W=(wij)n*n be a symmetric spatial link matrix 

which is defined by the underlying spatial structure of the geographical units where 

the observations are made. Based on Moran’s I for pixel i, the local Moran’s Ii in its 

standardized form is [Anselin, 1995]. 
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x is the ith row of the symmetric spatial link matrix W and wii =0 by convention. A 

large positive value of Ii indicates spatial clustering of similar values (either high or 

low) around location i and a large negative value indicates a clustering of  dissimilar 

values that is a location with a high value which surrounded by neighbors with low 

values and vice versa. 

 

2. Local Geary’s C 
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The local Geary’s Ci at a reference location i is defined by Anselin [1995]  
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With this assumption that, without loss of generality, Wii =0.  A small value of Ci 

suggests a positive spatial association (similarity) of observation i with its 

surrounding observations, whereas a large value of Ci suggests a negative association 

(dissimilarity) of observation i with its surrounding observations. 

In this work the two mentioned spatial evaluations are calculated and the absolute 

value of differences has been adapted and used for image evaluation purposes. 

  

2.2.4 Subjective image distortion indicators 

Mean Opinion Score (MOS) which is calculated by averaging some subjective tests 

where the numbers are ranked based on the visual quality of fused image in compare 

to reference. In these techniques subjects or viewer selected from image 

interpretation professional and amateurs. A viewer is required to give each fused 

image a score based on the appearance of fused image in compare with reference 

image (Table 2-1). 

 

Table  2-1. Scores for a fused image subjective quality 

assessment 

Score Quality Image distortion 

5 Excellent Undistorted 

4 Good Perceptible but not irritate 

3 Fair Slightly irritate 

2 Poor Irritating 

1 Bad Very irritating 
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Finally the MOS score for a fused image is the arithmetic mean of all individual 

scores and can range from 5 (excellent) to 1 (worst). From the literature, none of 

these complicated and costly subjective metrics do provide a recognizable superiority 

over mathematical measures such as SSIM and ERGAS. Because the objective 

indicators are easy to calculate and need low computational process and also are 

independent from viewing conditions and individual observers [Wang and Bovik, 

2002] therefore here we neglected the subject evaluation and readers for more 

detailed discussions are referred to Martens and Meesters [1998] and Eskicioglu and 

Fisher [1995].   

 

2.3 Feature Reduction (FR) 

All Earth surface materials have specific spectral behaviors which are related to their 

physiochemical compositions and temporal and environmental characteristics.  For 

instance vegetation are generally determined and discriminated according to their 

absorption and reflection properties (spectrally detectable features) which are related 

to liquid water and chlorophyll contents, respectively [Jensen, 2007]. Also for other 

surface materials these features are remarkably detectable in the optical remotely 

sensible portions of Electromagnetic (EM) spectrum (i.e. the regions between 400-

2500 nm which covering reflectance spectrum from visible to shortwave infrared) 

[Bannari et al.  2000; Champagne, 2002 and Pacheco, 2004].  The HS imagers which 

are able to collect a pseudo-continuous reflectance spectrum in the form of narrow 

channels (almost 10 nm) have high abilities to discriminate surface materials because 

they provide detectable features for different parts of EM in more details. This 

beneficial ability of HS image is linked to the data redundancy problem [Motta et al.  

2006]. Therefore FR is a necessary processing step in some data analysis procedures 

that DF is one of them.     

One of the earliest definitions of feature given by Swain and Davis [1978] “a subset 

of the original dataset based on an optimal trade-off between probability of error and 

classification costs”. As this definition is a compromise between classification 
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accuracy and the data volume, therefore it is imperfect because it does not cover all 

other applications of image processing. In this regard a broader definition of FR can 

be “Extraction and/or selection the best representative subset from a dataset”. This 

subset must have maximum information; the exact definition of maximum 

information is application and user dependent procedure. For example maximum 

information for a pixel-based classification is maximum homogeneity of pixels in 

different bands of spectrum while for a segment-based classification maximum 

homogeneity of a group of pixels in one band that make a segment is important.   

Here, feature is applied to a spectral subset obtained from original dataset. These 

subsets could be original bands or secondary derivatives of them that are calculated 

using a data conversion process (e.g. PCT). Therefore a feature must, in one hand, 

contain the highest amount of information and in another hand has dimension as 

small as possible. In order to obtain a proper feature two groups of techniques can be 

carried out: Feature Selection (FS) and Feature Extraction (FE). In the first category 

the original bands which do not represent important information and can be defined 

as redundant bands [Lee and Landgrebe, 1992] will be removed by some measures. 

For example the class distinction criterion which can be calculated using several 

statistical methods like divergence [Kailath, 1967]; transformed-divergence [Swain 

and Davis, 1978] and Bhattacharyya distance [Fukunaga, 1990 and Richards and Jia, 

1999] are procedures to remove unwanted bands. The second category that is based 

on the  transformation of original dataset into a new data presentation system 

followed by a procedure that extract a subset which can represent the most 

informative contents of original dataset while the dimensionality is reduced 

[Heydorn, 1971 and Lee, 1992]. For example PCT [Keinosuke, 1990] and MNF 

transformations [Green et al.  1988] are mostly linear conversions that are widely 

used in remotely sensed data analysis. Another aspect of FR which is developed 

in this work is return to the basis that the FR procedure will be carried out, which 

named “block based” and “class based” FRs.  

 



77 

2.3.1 Feature reduction levels 

In Data Based Feature Reduction (DBFR): the original dataset e.g. EO-1/Hyperion 

is investigated as a whole and the purpose is finding a subset of features that is the 

best representative of the dataset. In this regard any used procedure can be called 

feature reduction. The second level of FR is named Block Based Feature Reduction 

(BBFR) that, on the contrary to DBFR, which is based on the whole dataset, in this 

methodology the feature obtaining procedure is limited to some smaller dimensions 

blocks of bands. The DBFR is a common procedure in remote sensing FR that has 

been carried out in several works. 

 

2.3.1.1 Block Based Feature Reduction (BBFR)  

In hyperspectral datasets due to the narrowness of bandwidths and pseudo-continuity 

property of datasets, it is assumed that between-neighboring-band correlations are 

high enough which some bands can be clustered as separate blocks. As can be seen in 

figure (2-5) the square blocks across the diagonal axis have clearly recognizable 

values that show the blocks of bands with inter-correlations more than 90 percent. 

In a hyperspectral imagery the correlation between adjacent bands are higher than for 

bands further apart and highly correlated bands appear into separable groups or 

blocks (Figure 2-5); this statistics can be visualized  as an image entitled statistic 

image [Kim and Swain, 1990]. Based on this assumption, let N denote an n-

dimensional dataset representing the n spectral channels. In block based feature 

reduction procedure the adjacent bands will come together in a block if their 

correlation is higher than a specific threshold, τ. 

 

  ...m  2, 1,k            n ...  2, 1,i        1  R0    ,B   R     then     R  If 1i i,k1i i,1i i, ==<<∈τ> +++  ( 2-45) 

 

Where Ri, i+1 is the correlation between band i and its neighboring band i+1. Bk is the 

block with a inter-correlation higher than τ. k subscript denotes the block number. 

Thus we will have m blocks that each of them will contain a number of highly 
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correlated bands. τ  is a measurement to control the dimension and number of blocks; 

as the highest amount of τ (i.e. one) will result maximum block numbers as n=m and 

in contrary the lowest amount (i.e. zero) will allocate all channels to one block. This 

new feature reduction procedure was performed over EO-1/Hyperion, Indonesia, 

2004 dataset. And the obtained results are very effective.  

    

 
Figure  2-5. Statistic image for EO-1/Hyperion, with 133 spectral bands, 

Indonesia, 2004. 

 

2.3.2 Feature selection techniques 

In this work a new feature selection methodology named Maximum Spectral and 

Spatial Information Indicator (MSSI) was invented, performed and evaluated in 

compare to two common feature selection algorithms i.e. Bhattacharyya distance 

and transformed divergence.  

 

2.3.2.1 Bhattacharyya Distance (BD) 

Bhattacharyya distance is a numerical approach that works as a separation factor for 

two classes in a dataset [Kailath, 1967 and Fukunaga, 1990]. The Bhattacharyya 

distance is mathematically defined as 
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Where iμ  and jμ  are mean values and i∑ and j∑ are the covariance matrices of i and j 

classes, respectively.  In this measurement the first term is the account of separation 

due to the class means which is normalized due to the class covariance and the 

second term measures the class separation based on class covariance [Richards and 

Jia, 1999]. This FS procedure is documented in Tadjudin and Landgrebe [1998].  

 

2.3.2.2 Transformed Divergence (TD) 

In order to understand transformed divergence first divergence that is an operator 

which measures the separation of two or more spectral classes must be explained. 

The explored distribution functions of classes are spectral probable at position x 

(pixel in a multidimensional vector space based on a column and row coordinate 

system of an image) [Richards and Jia, 1999]. 
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Where )Cx(p i and )Cx(p j are the values of the ith and jth spectral class probability 

distributions at position x. Therefore the overall divergence in a dataset is calculated 

using the summation operator as 
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Where N denotes the number of variables in a multidimensional spectral space e.g. 

number of bands.  
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From the literature the divergence is suffering from two drawbacks: (i) it is a 

summing operator; therefore with increase the number of spectral variables it will 

never get smaller values. But in reality it is not true and the increased number of 

bands sometimes will not increase the amount of separation [Richards and Jia, 1999]. 

(ii) another point is about the somehow nonlinear behavior of divergence as a 

function of distance between class means. A small distance incensement will sharply 

grow divergence which in reality is not true. These problems with divergence and 

also the high ability of Bhattacharyya operator caused to its modification entitled 

“transformed divergence” which works in a similar way as the Bhattacharyya 

distance [Swain and Davis, 1978]. 
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ij

ij−−=  
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Where T
ijd  denotes the transformed divergence for i and j classes. Therefore because 

of the exponential properties it will saturate with increasing class separation [Mausel 

et al.  1990].  

Based on two abovementioned distance-based feature selection algorithms a wanted 

number of features can be selected. Thus the obtained features are the best bands that 

can separate land cover classes in a dataset. 

 

2.3.2.3 Maximum Spectral and Spatial Information Indicator (MSSI) 

Autocorrelation as a geostatistic methodology is applied to a variable if its value in a 

specific place or time is correlated with its values in other places or times. Based on 

this definition and from the remote sensing perspective autocorrelation can be 

measured in spatial [Goodchild, 1986 and Griffith, 1987]; temporal [Georgiou, 

2007]; and spectral domains. In this work the spectral and spatial autocorrelations for 

the intention of hyperspectral feature selection have been developed and evaluated. 
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MSSI is a mathematical methodology for measuring the similarity or dissimilarity 

“between” and “within” components of a dataset. For a n-dimensional (component or 

band) hypothetical dataset this methodology is composed of two parts. 

  

• Within components or spatial autocorrelation and 

• Between components or spectral autocorrelation. 

 

Spatial autocorrelation is a statistical measurement of the degree of dependency 

among observations of a variable in spatial domain. For example DN values in a 

remotely sensed image (Figure 2-6) have almost similar behavior till specific distance 

which called “homogeneity distance”. Using this joint property the behavior of a 

pixel can be predicted using some other ones. In order to calculate these 

measurements it is considered that if the values of the variable are interrelated and if 

so, there is a spatial pattern to calculate, therefore there is spatial autocorrelation 

[Griffith, 1987]. Spatial autocorrelation in an image is mostly computed in a moving 

window (kernel with different sizes: 3*3, 5*5, etc). It can be computed in global and 

local scales [Getis and Ord, 1992]. 

 

 
                                             

Figure  2-6. Spatial autocorrelation. (a) a monochrome image; (b) spatial 

domain of a pixel; and (c) adjacency rules. 

 

Similar to spatial definition of autocorrelation, spectral autocorrelation is defined as 

the degree of dependency or similarity among observations of a variable in spectral 
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domain. For illustration let assume a hyperspectral dataset with N spectral bands, if 

we want to find a subset with n members (where Nn ⊂ ) consequently the amount of 

spectral autocorrelation is a statistic which measures the spectral similarity (i.e. 

homogeneity) between these n spectral bands. Therefore spectral autocorrelation 

based on the rational behind is a statistical measurement of the degree of dependency 

among observations (e.g. spectral bands) of a variable (e.g. object reflectance in 

electromagnetic spectrum) which is calculated at the level of pixels (Figure 2-7). In 

order to make differences clearer, let say spatial is within a band correlation while 

spectral is between bands correlation. 

 

 
 

Figure  2-7. Spectral autocorrelation. (a) 3D cube of a hyperspectral 

dataset with N bands; (b) the spectral respond (reflectance) of a pixel as a 

function of the wavelength; and (c) spectral dimension of a pixel in a 

selected subset with n bands. 

 

MSSI which is the combination of these two measurements is a comprehensive and 

informative indicator that can be used as a selection criterion to obtaining the best 

representative n-bands subset from an N-bands dataset. In order to find the most 

informative subset from a dataset two scenarios can be carried out. 

  

• Finding the most spectrally and spatially similar components. 
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• Finding the most spectrally and spatially dissimilar components.  

 

In the first scenario the components with the highest amount of similarity are 

considered as redundant, therefore the less similar ones are most informative. On the 

contrary in the second scenario the components with lowest similarity which assumed 

having the highest amount of information will be selected. These two mentioned 

scenarios can be carried out based on the purpose of FR procedure; for example in 

feature selection and classification procedures the second procedure (i.e. spectral and 

spatial dissimilarity) is needed while on the contrary for the purpose of feature 

extraction e.g. PCT the similarity procedure (first scenario) is required.  

From this background MSSI is a framework which tries to simultaneously combine 

maximum spectral and spatial information from a subset. Consequently the obtained 

subset expectedly will contain the highest possible spatial and spectral information. 

In this regard a robust framework is needed that ideally have next characteristics: 

 

1. Able to calculate spectral and spatial information contents as precise as 

possible. 

2. Able to combine spectral and spatial information contents in the simplest 

possible way. 

3. Measurable as simple as possible. 

4. Independent of unite and scale of datasets.  

 

With reference to the abovementioned restrictions, MSSI can be handled by using 

two separate measurements, each for one characteristic of the subset (spatial and 

spectral information contents) and finally combine these two measurements. As this 

will be an expensive calculation thus we looked for an index which can be considered 

as the combination of both. In this regard the image quality indices which work based 

on the spectral and spatial similarities of two images have been evaluated. With 

exploration of these indices in a proper way they will garnet these restrictions and can 

provide the needed spectral and spatial information for the purpose of MSSI feature 
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selection. Therefore three of the most famous image quality assessment indices have 

been evaluated. It should be noted that the MSSI is a general framework and can be 

calculated by any other measurements. In the framework of MSSI the relative 

dimensionless global error in synthesis (ERGAS) [Wald, 2002]; Universal Image 

Quality Index (UIQI) [Wang, 2002] and Structural Similarity (SSIM) [Wang et al.  

2004] were investigated. The SSIM is the generalized and developed version of UIQI 

which has offered promising results on image quality assessment. In this indicator the 

structural information of the image independently from the influence of illumination 

are calculated. Therefore SSIM could somewhat provide the needed conditions for 

MSSI.   

  As in this work the second scenario (Finding the most dissimilar spectrally and 

spatially components) explored therefore in the practical viewpoint MSSI is carried 

out in the next steps. 

  

1. Finding two most dissimilar bands using SSIM-1; 

2. Finding third most dissimilar band to the two earlier selected bands; 

3. Finding fourth most dissimilar band to the three earlier selected bands 

and so on; 

4. Stopping searching procedure when the number of selected bands is 

enough or the dissimilarity is lower than or equal to a specific threshold.  

 

2.3.3 Feature reduction  

In a hyperspectral dataset with more than 100 spectral bands or features which are 

from different parts of electromagnetic spectrum (e.g. visible; near infrared; and 

shortwave infrared) in an almost continues form (with a bandwidth about 10 nm). In 

almost all PLDF this high number of bands can not be fused. Therefore based on 

some statistical and transformational routines a subset with smaller dimension can be 

selected [Lee and Landgrebe, 1992] or extracted [Heydorn, 1971 and Lee, 1992]. In 
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obtaining the best possible bands for fusion purposes three possible scenarios can be 

carried out: sufficient, under-sufficient and over-sufficient number of bands. 

The three mentioned categories are due to data fusion applications, algorithm 

limitations, logical relationship between input and output and soft- and hardware 

costs. For example in an IHS transformation for the purpose of visual interpretation, 

the optimal band number is three MS bands in combination with one panchromatic 

image. But any three-band subset could not be optimal. In this regard, a mechanism 

that can offer an optimal three-band subset from a higher dimensional datasets is 

considered here as the feature selection for data fusion. For the case of over-sufficient 

as an example using the Brovey transformation any number of bands (let say 100 or 

more) can be fused with no technical limitations but this over-sufficient number of 

bands will cause a high rate of spectral distortions. Also using two-band dataset in 

combination with Pan image using for example PCT is somewhat under-sufficient. 

Due to the fact that the number of bands in MS is almost higher than the wanted 

number of bands and especially this problem is more sensible in the HS datasets, 

therefore in order to overcome these problems a number of band selection strategies 

can be considered. In this work the new innovated feature selection procedure (i.e. 

MSSI) is adapted. 
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CHAPTER THREE 

 

3 Decision Level Data Fusion (DLDF) 

DLDF like other levels of fusion has been contemplated from different points of 

view. Therefore definitions in the literature are somewhat different. For example Pohl 

and Van Genderen [1998] modified the Shen [1990] definition as: “Decision or 

interpretation level fusion represents a method that uses value-added data where the 

input images are processed individually for information extraction. The obtained 

information is then combined applying decision rules to reinforce common 

interpretation and resolve differences and furnish a better understanding of the 

observed objects”. While based on Benediktsson and Kanellopoulos [1999] 

“Decision fusion is defined as the process of fusing information from several 

individual data sources after each data source has undergone a preliminary 

classification”. Another explanation was offered by Hall and Llinas [2001] that 

“Decision level combines the decisions of independent sensor detection/classification 

paths by Boolean (e.g. AND, OR) operators or by a heuristic score (e.g. maximum 

vote and weighted sum)”.  The main important and common point in these definitions 

is return to the individually processing of different datasets prior to the fusion 

process. These pre-fusion individual classifications could be a remarkable strength 

point in fusion process and weakness as well. This property is strength because the 

maximum ability of different classifiers is explored e.g. parametric and non-

parametric classifiers combination provides such a robust fusion frame. And on the 

contrary it is weakness for the cases for example in the Logarithmic Opinion Pool 

(LOP) a single zero of membership function or posterior probability (and also very 

small numbers) can potentially veto decisions from the remaining classifiers 

[Benediktsson et al.  2003]. Benediktsson and Kanellopoulos [1999] used AVIRIS 

(Airborne Visible Infrared Imaging Spectrometer) dataset in the Volcano Hekla in 

Iceland with 15 land cover classes; they tried to classify data based on combination of 
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neural network and statistical classifiers. There are several other works in this field of 

study which have used fuzzy set as a framework for DLDF. For example Jeon and 

Landgrebe [1999] used two decision fusion rules to classify multi-temporal TM data. 

Tupin et al.  [1999] fused several structure detectors to classify SAR images and 

Lisini et al.  [2005] used the combination of several sources according to their class 

accuracies. 

A high number of decision level data fusion (also called post-decision, post-detection 

or post-classification fusion [Hall and Llinas, 2001]) methods have been proposed in 

the data fusion literature. These methods are based on the fusion of classifier results 

by a proper fusion algorithm.  

The classifiers can be categorized from different points of view. One of the very 

elementary categorizations of classifiers is return to the statistical hypothesizes of 

classifier in which parametric such as Maximum Likelihood Classifiers (MLC) 

[Richards, 2007] and non-parametric classifiers such as Neural Network Classifier 

(NNC) [Benedickson, 1990] and Support Vector Machine (SVM) [Varshney and 

Arora (Ed.), 2004] are remarkable. In all classifiers the final results will be obtained 

based on a decision to allocate a pixel to a class, therefore the obtained results are 

called decisions. From the literature there are two general methodologies to decision 

producing: (i) hard decisions in which the belonging of a pixel to a class is unique 

e.g. the Boolean logic with 0 and 1 values, where 1 is for pixel belongs to a class and 

0 when it does not and (ii) soft decisions which the belonging of a pixel to a class is a 

value between 0 and 1 e.g. fuzzy logic. With regard to these two different kinds of 

decisions, decision level fusion can be carried out at class label level (hard fusion), or 

at the posterior probability or membership levels (soft fusion). Irrespective of the 

fusion methodology, from the applicability viewpoint DLDF can be applied in next 

cases. 

 

1. In cases which a classifier has differentiated some classes while others 

have not. 

2. When border of classes is not sharply clear. 
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3. When priori knowledge about dataset reliability is incomplete. 

4. In the cases that intention is in introducing some priori knowledge to 

the fusion process. 

5. When classifier(s) offers precise information concerning some classes 

and on the contrary other classifier(s) does for other classes. 

  

In such circumstances using a diversity of approaches a fusion framework will take 

advantages and strengths of each individual classifier therefore a new concept in data 

processing entitled post-classification decision fusion are introduced.  

 

3.1 Data fusion for classification   

As a practical matter, it is striking to note that DF techniques for mapping purposes 

can be heading into two main groups:  Fusion-Then-Classification (FTC) 

[Schackelford, 2003] and Classification-Then-Fusion (CTF) [Foody, 1998]. FTC is 

based on PLDF and CTF is obtainable by DLDF. These procedures have their 

characteristics and limitations that studied and evaluated by several authors, for 

example Robinson et al.  [2000] evaluated two approaches by a linear mixing model 

and they came to this conclusion that classification-then-fusion is preferable in term 

of accuracy. In this regard and in order to get true land cover maps using different 

classifiers, they must be flexibly comparable and combinable. As mentioned by 

Foody et al.  [2002] the comparability of measurements requires some common 

understanding of their accuracy, some way of measuring and expressing the 

uncertainty in their values and the inferential statements derived from them [Stigler, 

1986]. Concerning the inputs of fusion process i.e. decisions and their accuracy or 

performance two main aspects must be measured: (i) global precision (the accuracy 

of the classifier) and (ii) local precision e.g. the accuracies of class in the form of 

spectral and spatial characteristics of dataset [Benediktsson et al.  2006]. Because of 

the variety of data sources, applications, and different properties of classifiers, the 
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most robust fusion methodology is the procedures which can model and measure 

these two aspects as precise as possible.  

Due to the fact that in a high number of DLDF techniques the main emphasis is in 

after classification fusion process therefore one of main aspects that are less 

concerned is return to how chose data and classifier. As in this work these aspects are 

more concerned and the used dataset is a hyperspectral image thus we have 

developed our procedures in the frame of hperspectral DLDF. 

 

3.1.1 DLDF for image classification 

In the literature numerous researches and studies over hyperspectral data 

classification has been undertaken that predominantly are in visible to infrared (400-

2500 nm) parts of electromagnetic spectrum. As an example Jensen [2007] 

mentioned that majority properties of land surface materials can be investigated by 

the help of high dimension remotely sensed imagery which use mostly the spectrum 

in visible and NIR regions of EM. For instance the vegetation properties like 

variation in vegetation species, community distribution patterns, alteration in 

vegetation phenological (growth) cycles, modifications in plant physiology and 

morphology are easily obtainable. Also for other materials of the land surface and the 

related aspects of hyperspectral exploitation Harsanyi [1994]; Varshney and Arora 

[2004]; Chang [2006]; and Liang [2004] have offered good discussions. 

The collected data by remote sensors are functions of the interaction of 

electromagnetic radiation with earth surface materials, which is evidently 

fundamental to remote sensing [Ress, 2001]. Based on very elementary principals of 

physics the reflected energy from any object is equal to the incident radiance flux 

minus the absorbed and transmitted fluxes. 
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)(i τλαλλρλ Φ+Φ−Φ=Φ  ( 3-1) 

                                                      

Where ρλΦ  is the flux reflected from the object and quantized by the sensor to make a 

pixel in an image; λiΦ  is the flux radiant incident come from the sun or diffused from 

the neighboring objects; αλΦ  the absorbed energy by the object; and τλΦ is the 

transmitted flux through the object to the underneath parts and layers. Therefore 

based on these properties of reflected parts of the EM spectrum, different types and 

identities of objects can be detected. For instance the spectral response characteristics 

of a green vegetation (Figure 3-1) is depicted which is mainly due to three important 

parameters: leaf pigments in Visible (Vis) from 0.4 to 0.7 µm; cell structure in Near 

Infrared (NIR) from 0.7 to 1.3 µm; and vegetation water contents in Short-Wave 

Infrared (SWIR) from 1.3 to 2.6 µm. 

 

 
Figure  3-1. Spectral response characteristics of green vegetation, as 

resultant of absorption, reflection and transmittance of light. After 

Hoffer [1978].  

 

Based on these parameters, it is clear that the chlorophyll absorptions are located 

about 0.43-0.45 and 0.65-0.66 µm in the visible region and water absorptions occur at 

0.97, 1.19, 1.45, 1.94 and 2.7 µm in the SWIR.  
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Therefore, the hyperspectral imagery can be investigated as a simultaneous multi-

source dataset for the purposes of image classification and fusion.  Accordingly we 

have developed two DLDF strategies for hyperspectral image classification.  

 

1. Wavelength Based Decision Fusion (WBDF). and 

2. Class Based Decision Fusion (CBDF). 

     

Both procedures work based on breaking down source hyperspectral dataset into 

smaller subsets which followed by classification processes for any subset 

individually. Finally a decision level fusion over the obtained decisions from 

classifiers will be carried out, while the difference of techniques returns to different 

mechanisms that can be used to selecting subsets. In the first methodology which is 

depicted in figure (3-2) input dataset is divided into some distinct parts of 

electromagnetic. The basis for separation is the material’s spectral response to the 

incident solar flux. As for all objects in a scene there is a spectral curve therefore 

based on the purpose of classification and the land surface classes, different subsets 

are extractable.  

As in this work the main land covers are agricultural fields therefore based on the 

behavior of vegetations the Hyperion dataset is divided into independent subsets 

including (i) visible (400-700 nm); (ii) Near Infra Red (NIR) (700-1000 nm); and (iii) 

Middle Infra Red (MIR) (1000 – 2500 nm). After individual classification of subsets, 

using the explored DLDF algorithms obtained decisions fused to making the final 

land cover map.      
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Figure  3-2. Block diagram of Wavelength Based Decision Fusion (WBDF) 

Where EM is the Electromagnetic spectrum.   

 

In the second routine (Figure 3-3) subsets are selected based on the rule of maximum 

spectral and spatial information contents of dataset. Irrespective of the band location 

in the EM and based on the assumption that each class can precisely be classified 

using a specific subset therefore in this procedure the goal is finding the most 

comprehensive subset for each class. In the following and after classification 

procedure the obtained decisions will be fused in a DLDF framework. In order to 

obtain these class-based subsets the MSSI feature selection procedure is adapted.  

 

Figure  3-3. Block diagram of Class Based Decision Fusion (CBDF). 

 

The two abovementioned procedures work based on one classifier and different 

subsets (Figure 3-2 and 3-3). In order to make a comparison and evaluation, a 
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common decision fusion methodology as Multi Classifier Decision Fusion (MCDF) 

is carried out.  This procedure works based on combination of several classifiers over 

the original dataset or one selected subset (Figure 3-4). 

 

 

Figure  3-4. Block diagram of Multi Classifier Decision Fusion (MCDF). 

 

All three introduced mechanisms for DLDF have their strengths and weaknesses. For 

example WBDF works based on the behavior of material in the electromagnetic 

spectrum which will offer good results for the areas with more similar land cover 

classes. And also for CBDF it can be mentioned that this procedure is powerful for 

the cases which classes can be separated with few bands. The weakness of these two 

procedures is their limitations to explore just one classifier, which is not the case in 

MCDF procedure. 

 

3.2 DLDF techniques 

In order to put any procedure of DLDF into practice a mathematical statistical frame 

is needed. From the literature several techniques are discussed and evaluated. If the 

techniques based on their abundance of application be listed probably Bayesian 

Theorem (BT) is the first which followed by Dempster-Shafer Theory (DST); Fuzzy 

Set Theory (FST) and Neural Network (NN). In this work DST has been adapted to 

evaluate the WBDF, CBDF and MCDF procedures. 
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3.2.1 Dempster-Shafer Theory (DST) 

The Dempster-Shafer theory owns its name to work by Dempster [1968] and Shafer 

[1976]. In the early 1980s, when experts wanted to adapt probability theory to expert 

systems, the theory came to the attention of researchers [Shafer, 2002]. The DST, as a 

generalization of Bayesian theory, is a mathematical theory of evidence which works 

on the basis of belief function and plausible reasoning which are used to combine 

separate pieces of information (evidences) to calculate the probability of an event.  

Unlike Bayesian probability theory, in DST the lack of evidence for a hypothesis will 

not be the evidence against that hypothesis. DST measures the uncertain situations by 

Belief (Bel.) and Plausibility (Pls.) definitions. Therefore, uncertainty (θ) represents 

both imprecision and uncertainty. Based on DST, the degree to which evidence 

provides concrete support for a hypothesis is known as belief and the degree to which 

the evidence does not refute that hypothesis is known as plausibility. The difference 

between these two is then known as a “belief interval”, which acts as a measure of 

uncertainty about a specific hypothesis. In addition to the concepts of belief and 

plausibility, the logic of Dempster-Shafer theory expresses the degree to which the 

state of one’s knowledge does not distinguish between the hypotheses. This is known 

as “ignorance”. Ignorance expresses the incompleteness of one’s knowledge as a 

measure of the degree to which we cannot distinguish between any of the hypotheses 

(i.e., land cover classes) [IDRISI Manual version 15, 2006]. In addition to the high 

strength of DST in soft classification procedure, it also has shown good ability to 

combine several kinds of data sources in DLDF. For instance Le Hégarat et al.  

[2000] mentioned good results for fused ERS multi-temporal and Landsat-MS images 

for two consecutive agricultural years (1995–96 and 1996–97). One of the main 

advantages of DST is return to the ability of evidence theory which represents both 

uncertainty and imprecision with two functions: plausibility and credibility (or belief) 

[Shafer, 2002]. The mentioned property results to a flexible modeling ability to fit a 

high number of almost incomplete and inconsistence datasets. Based on the rational 
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behind the decision level data fusion which trays to combine final results of several 

classifications, DST is a proper technique to carry out this procedure. The 

applicability of this technique in data fusion has been explained in more details in 

Pearl [1990]. 

 

3.3 Image classifiers  

As in DLDF any dataset must be classified priory to the fusion process and also the 

most power of DLDF is based on the flexibility of classified results, therefore in this 

work three of the most powerful soft classifiers are introduced. On contrary to hard 

classifiers, the results for any pixel are a degree of membership with regards to all 

possible classes. Another different is that in hard classifiers the final result is a single 

classified map, but in soft classifications the results are a set of images (one per class) 

which express for each pixel the degree of membership based on all under 

investigation classes. In this work three of the most famous soft classifiers for DLDF 

procedure evaluations are carried out and Spectral Angle Mapper (SAM) as a non-

fusion hard classifier was explored for evaluation the results. 

 

3.3.1 Fuzzy classification 

Fuzzy sets theory whose elements defined based on the degrees of membership is the 

extension of the works of Zadeh [1965]. In the classical set theory, the membership 

of elements in a set is in the form of binary values that an element either belongs will 

get the value of [1] or does not belong  that gets the value of [0]. On the contrary, 

fuzzy set theory makes a gradual assessment of the memberships of elements in a set 

therefore a set of memberships will be introduced that have a value in between [0-1] 

[Zadeh, 1965]. Similar to classical sets, the fuzzy sets also take advantages of logical 

and mathematical operators. For example the fuzzy intersection, fuzzy union and 

fuzzy complement operators, etc. It is remarkable to note that because of fuzzy 

flexibility and its operators it can make an appropriate framework to fuse the output 

of several classifiers for supplementary processing.  
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In order to make a general outline of fuzzy classification a very short mathematical 

description is adapted from Fauvel et al.  [2006].  

 

Definitions: 

Fuzzy subset: A fuzzy subset F of a reference set U is a set of ordered pairs F = {(x, 

μF (x))|x ≍  U}; where μF : U → [0, 1] is the membership function of F in U. 

Normality: A normal fuzzy set is a set, which if and only if max μF (x) = 1. 

Support: The support of a fuzzy set F is Supp(F) = {x ≍  U|μF (x) > 0}. 

Core: The core of a fuzzy set is the (crisp) set containing the points with the largest 

membership value (μF (x) = 1). It is empty if the set is nonnormal. 

 

Logical operations:  

Union: The union of two fuzzy sets is defined by the maximum of their membership 

functions, i.e., ≅  x ≍  U, (μF ≯  μG)(x) = max {μF (x), μG(x)}.  

Intersection: The intersection of two fuzzy sets is defined by the minimum of their 

membership functions, i.e., ≅ !x ≍  U, (μF ∩ μG)(x) = min {μF (x), μG(x)}. 

Complement: The complement of a fuzzy set F is defined by ≅  x ≯  U, μF (x) = 1 − 

μF (x). 

 

Measures of fuzziness:  

Fuzziness is an intrinsic property of fuzzy sets. To measure how fuzzy a fuzzy set is, 

and thus estimate the ambiguity of the fuzzy set, Ebanks [1983] proposed to define 

the degree of fuzziness as a function f with the following properties. ≅ F ⋇  U, if 

f(μF) = 0, then F is a crisp set. 

f(μF ) is maximum if and only if ≅ x ≍  U, μF (x) = 0.5. 

≅  (μF , μG) ≍  U2, f(μF ) ≥ f(μG) if 
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complement have the same degree of fuzziness. ≅  (μF , μG) ≍  U2,   f(μF ≯  μG) + 

f(μF ∩ μG) = f(μF) + f(μG). 

For the classification purpose after training data selection, the fuzzy membership is 

calculated based on the mechanism of supervised classifier. The fuzzy set 

membership is based on the standard distance of each pixel to the mean reflectance 

on each band for a signature. Therefore based the number of classes for any pixel 

there are membership values. These membership values will be treated with the same 

procedures like MLC hard classifiers for obtaining the final classification map.  

 

3.3.2 Bayesian Theorem (BT) classification 

Bayes theorem (also known as Bayes’ rule) introduced by Thomas Bayes [1763] is a 

result in probability theory, which relates the conditional and marginal probability 

distributions of random variables [Sivia, 1996]. In probability theory with a few strict 

hypotheses the Bayesian probabilistic theory can be used as a modeling and 

reasoning tool to dealing with uncertainty of the real world phenomena. This theorem 

is a tool for transforming prior probability into posterior probability. Equation (3-2) 

gives the Bayes theorem that relates the conditional probabilities of random events M 

and D. 

  

)M(P
)D(P

)M|D(P)D|M(P =          
 

( 3-2)

                                                                   

Where P(M|D) is the conditional probability of M, given D. It is also called the 

posterior probability because is derived from or depends upon the specified value of 

D; P(D|M) is the conditional probability of D, given M; P(D) is the prior or marginal 

probability of D and acts as a normalizing constant and P (M) is the prior probability 
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of M, it is prior in the sense that it does not take into account any information about 

D.  

In remotely sensed imagery analysis, Bayes’ theorem is used to allocate a pixel in an 

image to a spectral class; therefore if x  is a pixel vector, )(xP is the probability that 

the pixel can be found at position x  in multispectral space [Richards and Jia, 1999]. 

Characteristics and advantages of this procedure have been described by several 

authors [Sivia, 1996; Box et al, 1992; and Bernardo et al.  1994].  

The same as fuzzy classifier, Bayes works similar to maximum likelihood hard 

classifier. Based on Bayes’ theorem the posterior probability for every pixel will be 

calculated with the number of classes. Using the training data, the 

variance/covariance matrix is derived which is a basis for the multivariate conditional 

probability p(e|h) assessment. This quantity is then modified by the prior probability 

of the hypothesis being true and then normalized by the sum of such considerations 

over all classes. This latter step is important because it makes the assumption that the 

classes considered are the only classes that are possible as interpretations for the pixel 

under investigation. Thus even weak support for a specific interpretation may appear 

to be strong if it is the strongest of the possible choices given [DRISI Manual version 

15, 2006]. 

 

3.3.3 Spectral Angle Mapper (SAM) classifier 

The spectral angle mapper algorithm works based on the assumption that data have 

been correctly calibrated to apparent reflectance with dark current and path radiance 

removal. SAM determines the similarity between two spectra by calculating the 

spectral angle between them, treating them as vectors in a space with dimensionality 

equal to the band numbers [Kruse et al.  1993]. The amount of spectral similarity is 

expressed in term of average angle (Ω) between Image Spectrum (IS) and Library 

Spectrum (LS) (Equation 3-3 and 3-4). 
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SAM uses only the direction of the spectra, not their length, this method is insensitive 

to the unknown gain factor and all possible illuminations are treated equally. Poorly 

illuminated pixels will fall closer to the origin. The length of the vector relates only to 

how fully the pixel is illuminated. For each library spectrum chosen in the analysis of 

a hyperspectral image, the spectral angle is determined for every image spectrum 

(pixel). After making spectral angle maps gray-level threshold is typically used to 

empirically determine those areas that most closely match the library spectrum while 

retaining spatial coherence. Thus based on the measured distances any pixel will be 

allocated to a specific prior-defined class. 

 

3.4 DLDF accuracy assessment  

On the contrary to the PLDF which the accuracy is mostly evaluated based on the 

comparison of fused image with reference, the accuracy in DLDF is considered in the 

form of final obtained map accuracy. Thus the used evaluation parameters are the 

classification accuracy indicators e.g. overall accuracy, user accuracy, producer 

accuracy and kappa coefficient [Russell and Congalton, 1999]. Confusion or error 

matrix and its derivatives e.g. commission and omission are the frame to calculate 

these accuracy indicators.   
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Overall Accuracy (OA) or the percent of correct allocation is calculated by summing 

the number of pixels classified correctly and dividing by the total number of pixels 

(Equation 3-5). The pixels classified correctly are found along the diagonal of the 

confusion matrix which lists the number of pixels that are classified into the correct 

ground truth class. The total number of pixels is sum of all pixels in all ground truth 

classes.  

 

   sampleof number Total
   samplesclassifiedcorrectly  of number TotalOA =  

 

( 3-5)

                        

User’s Accuracy (UA) is the probability (Equation 3-6) that the ground truth class is 

x given a pixel is put into class x in the classification image. 

 

class that as classified  samplesof Number
class a of  samplesclassifiedcorrectly  of NumberUA =  

           ( 3-6)

 

Producer’s Accuracy (PA) is the probability (Equation 3-7) that a pixel in the 

classification image is put into class x given the ground truth class is x. 

 

class  a of   samplesof  Number
class a of   samplesclassified correctly  of NumberPA =  

( 3-7)

 

Respective of the fact that the OA, UA and PA are offering an overestimation of 

classification accuracy. Because the agreement between classified and reference 

datasets which is due to chance, has not been taken into account. In this regard some 

other indicators must be carried out. For example Kappa coefficient of agreement can 

bring the chance agreement into account. The proportion of chance agreement that is 

due to the misclassification represented by off-diagonal elements of the error matrix. 

[Russell and Congalton, 1999]. Kappa Coefficient (KC) orκ  (Equation 3-8) is a 
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discrete multivariate technique of use in accuracy assessment that shows the 

agreement of classified with reference data [Jensen, 2005]. 
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Where k is the number of rows (e.g. land cover classes) in the matrix; iix  is the 

number of observations in row i  and column i ; +ix and ix+  are the marginal total for 

row i and column i , respectively; and N is the total number of observations. 



103 

 



104 

 

CHAPTER FOUR 

 

4 Data sources and test areas 

This PhD work is performed based on the evaluation of different DF techniques for 

all possible kinds of optical remotely sensed images. Therefore the Earth Observing-

One (EO-1) was selected as a proper satellite imager that collects all needed data for 

the purposes of this work. As the investigated and developed techniques are data-

independent and also the assessment and validation of fused EO-1/Hyperion and ALI 

for land cover mapping is one of purposes of this work therefore, we have selected 

two EO-1 datasets from two different parts of the world: Iran and Indonesia. The first 

dataset is covering an area in Ahmadabad village, south Tehran, Iran (21st May, 

2005) where the land cover classes are mainly agricultural fields. The second test 

area is located at the Palolo Valley, Sulawesi, Indonesia (20th September, 2005) in a 

humid tropical environment. 

NASA New Millennium Program’s Earth Observing-1 Mission (NMP/EO-1) started 

on 21st November 2000. The central point of EO-1 mission is to assess the space-

validate advanced technologies [Ungar et al.  2003]. The mounted sensors are 

Advanced Land Imager (ALI) with a multispectral sensor with 9 spectral bands at 30 

meter spatial resolution fashion and a panchromatic band with 10 meter spatial 

resolution and Hyperion hyperspectral sensor, with 242 spectral bands in the Visible 

(Vis); Near Infrared (NIR); and Short-Wave Infrared (SWIR) wavelengths with 30 

meter spatial resolution. 

As a general rule in remote sensing making any use of satellite images is related to 

some preprocessing steps: noise reduction, radiance to reflectance conversion, 

geometric correction and image orthorectification. 
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4.1 Satellite imagery 

EO-1 is a very sophisticated multi-sensor land imager which is equipped by Hyperion 

hyperspectral imager; Advanced Land Imager multispectral and panchromatic 

(ALI/MS and Pan); and the Linear Etalon Imaging Spectral Array (LEISA) 

Atmospheric Corrector (LAC) [Ungar et al.  2003]. EO-1 has opened a new 

perspective for remote sensing and subsequently for data fusion research and 

applications. Therefore, the temporal integration between datasets which was an 

inevitable restriction in multi-source data fusion is going to be eliminated or 

moderated in the future. The EO-1 is in altitude 705 km has a sun-synchronous orbit 

and a 10:01 AM descending mode. The orbit inclination is 98.2 degree; the orbital 

period is 98.9 minutes and its equatorial crossing time is one minute behind Landsat-

7. The velocity of the EO-1 nadir point is 6.74 km/sec. [EO-1/ Hyperion science data 

user’s guide, 2001] (Figure 4-1). Table (4-1) lists the spectral and spatial resolutions 

of the EO-1 satellite imager. 

 

 

Figure  4-1.  EO-1 land sensing mode. After Shaw and Burke [2003].  

 

Table  4-1. EO-1 sensor characteristics. After Richards [2006]  
 Instrument  Spectral Bands  IFOV  Swath  Dynamic Range  

 (μm)  (m)  (km)  (bits)  
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Hyperion  0.4–2.4 30 × 30 (220 bands 

@ 10 nm bandwidth)  

7.7  12  

ALI/Multispectral 0.433–0.453 30 × 30  37  12  

 0.450–0.515 30 × 30  37  12  

 0.525–0.606 30 × 30  37  12  

 0.639–0.690 30 × 30  37  12  

 0.775–0.805 30 × 30  37  12  

 0.845–0.890 30 × 30  37  12  

 1.200–1.300 30 × 30  37  12  

 1.550–1.750 30 × 30  37  12  

 2.080–2.350 30 × 30  37  12  

ALI/panchromatic 0.480–0.690 10 × 10  37  12  

 

4.1.1 Hyperion 

The Hyperion sensor was designed as a technology demonstration which provides 

high-quality calibrated data for hyperspectral application evaluation [Pearlman et al.  

2003 and Ungar et al.  2003]. As the first hyperspectral space-born imager acquires 

images in visible (400-700 nm), near infra red (700-1000 nm) and shortwave infrared 

(1000-2500 nm) spectra [Datt et al.  2003]. Hyperion, which acquires data by VNIR 

sensor in 70 bands and SWIR in 172 bands that provides images in 242 bands with 10 

nanometer bandwidth from 0.4 to 2.6 micrometers. 44 bands of 242 bands are 

intentionally not illuminated by TRW. The 198 rest bands are illuminated and deliver 

to customers. The 44 non-illuminated bands includes: 1-7, 58-76 and 225-242 that 

have been set to null in the pre-delivery pre-processing step by TRW [EO-1/ 

Hyperion science data user’s guide, level 1_B, 2001]. 

 

4.1.1.1 Pre-processing 

An almost cloud free and clear EO-1/Hyperion scene was acquired over the Palolo 

Valley, study site, Indonesia on the 20th September 2005. The delivered data are 
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already radiometrically calibrated into Level-1A product at Thompson Ramo 

Woolridge (TRW). Despite the performed radiometric correction there are still rooms 

to do some more preprocessing. In this part of work two main preprocessing includes 

noise reduction and radiance to reflectance conversion were carried out. 

In the delivered data there are 20 almost overlap bands between VNIR (from 50-70) 

and SWIR (71-91) sensors; the spectral overlap between them is about 80% (Table 4-

2). As 58-76 bands of VNIR has been set to null only band numbers from 50 to 57 

are overlapped with 71 to 79 from SWIR. To eliminate these 8 remained overlapped 

bands we used Signal to Noise ratio (SNR) [Van der Meer, 2001] and visual 

inspection as well. 

 

Table  4-2.  Spectral overlap bands between VNIR (50-57) and 

SWIR (71-78). 
Average 

Wavelength 

(nm) 

Overlap 

Hyperion Band 

Average 

Wavelength 

(nm) 

Overlap 

Hyperion Band 

892.2800 B75 851.9200 B71 

894.8800 B54 854.1800 B50 

902.3600 B76 862.0100 B72 

905.0500 B55 864.3500 B51 

912.4500 B77 872.1000 B73 

915.2300 B56 874.5300 B52 

922.5400 B78 882.1900 B74 

925.4100 B57 884.7000 B53 

 

In the statistical properties comparison of Signal-to-Noise Ratio (SNR) for 4 

overlapped bands no meaningful differences were observed (Table 4-3). Therefore, in 

visual inspection bands 56 and 77 were eliminated (Figure 4-2). 

 

Table  4-3.  Statistic: Signal-to-noise ratios for four overlap bands. 
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Overlap Band Min Max Mean St. dev. 

Band 56 23 255 124.3379 54.56559 

Band 57 13 255 124.596 55.97276 

Band 77 0 255 124.6024 55.73756 

Band 78 0 255 124.5716 55.60398 

 

 
(a)                         (b)                           (c)                            (d) 

Figure  4-2.  Visual inspection of bands where (a) band 56 and (c) 

band 77 were eliminated; (b) band 57 and (d) band 78 were 

selected. 

 

4.1.1.1.1 De-striping 

Striping in Hyperion dataset is apparent, especially in the first 12 visible and near 

Infrared bands and many SWIR bands. For pushbroom [Jensen, 2007] characteristic 

of Hyperion which has a separate detector for each column of each band any 

improper calibrated detector in both VNIR and SWIR sensors can cause an 

undeniable striping artifacts.  

Based on the sources of stripping phenomenon the bands with striped columns are 

separated and ratified in which abnormal or striping pixels are classified into four 

categories (1) continuous with atypical DN values; (2) continuous with constant DN 

values; (3) intermittent with atypical DN values; and (4) intermittent with lower DN 

values [Goodenough et al.  2003]. Based on this ratification 30 band with strip 
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problem have been chosen. A band de-striping algorithm using a local averaging 

algorithm was carried out (Equation 4-1). After the de-striping process over these 

bands they were visually inspected and 13 bands of them were chosen and the rest 

were leaved out (Table 4-4). 

Local averaging de-striping algorithms alleviate striping phenomenon without 

causing any unwanted effects on the image [Datt, 2003]. Therefore local averaging 

algorithm was carried out using right and left columns. For example figure (4-3) 

shows band 94 before and after de-striping by equation (4-1). 
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Where iDN is defined as abnormal pixel and newDN  is calculated using DNs of left and 

right neighbors. 

 

Table  4-4.  Bands with defected columns. 
Column Band 

6, 114, 199 10,11 

114 12, 13, 14, 15, 16, 17, 18 

47 27, 28 

92 94 

156 116 
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 (a)                                   (b)                                  (c) 

Figure  4-3. (a) Stripped band 94 continuous with constant zero 

DN value; (b) Stripped column 92; and (c) De-stripped band. 

 

4.1.1.1.2 Radiometric transformation 

As the purchased dataset are in Level 1Gst (L1Gst) that radiometrically corrected and 

resampled for geometric correction and registered to a geographic map projection. 

The images are ortho-corrected using digital elevation models (DEM) by the Shuttle 

Radar Topography Mission-Two (SRTM-2) [Rodriguez et al.  2005] to correct 

parallax error due to local topographic relieves.  

The amount of reflected solar energy by the earth surface materials provides 

information about the objects in the earth surface through the spectral material 

property measurements by satellite imagers. The measured radiance also contains 

three main unwanted mixtures caused by atmospheric aerosols such as absorption and 

scattering [Pat and Chavez, 1996]; topographic effects; and the solar wavelength 

based illumination effects [Jensen, 2005]. 

 In order to get the real object reflectance that is free from the atmospheric effects 

[Chander and Markham, 2003] and solar illumination causes, the calculated spectral 

radiances λL  was transferred by equation (4-2) to effective at-satellite 

exoatmospheric reflectance [Markham et al.  1987] or at-sensor reflectivity [Griffin, 

2005]. 
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Where Pρ  is unitless planetary reflectance or at-sensor reflectance; λL is spectral 

radiance at the sensor’s aperture; d is earth-sun distance ( SunEarthd − ) in astronomical 

units [Landsat-7 handbook, 2007]; λESUN is mean solar exoatmospheric irradiances 

[Griffin, 2007]; and Sθ  is the solar zenith angle in degrees. 

The solar zenith angle for EO-1 that have been used for both sensors, ALI and 

Hyperion, were calculated from the site geographical location measurement date by 

the help of NASA solar position calculator. In equation (4-2) the earth-sun distance 

measure (d) is for the mean solar flux correction caused by orbital radius changes. 

The used incident solar flux, as a function of wavelength, was calculated in 

Massachusetts Institute of Technology (MIT)-Lincoln laboratory [Griffin et al.  

2005] using the MODTRAN Radiative Transfer Model (RTM) [Berk et al.  1988]. 

For the purpose of making the same set of reflectance images for each band, at-

satellite reflectance was calculated. As the Hyperion radiances are delivered in W/m²-

sr-μm units, therefore to make a popular unit of radiance, the at-satellite reflectance 

( Pρ ) were converted to μflick (μW/cm²-sr- μm) through multiplying by 100. 

More than the mentioned pre-processing steps, visual inspection was also adapted for 

bands with high amount of atmospheric water vapor absorptions and also bands with 

very high levels of noise. 

 

4.1.2 Advanced Land Imager (ALI) 

ALI, as the primary land imager instrument for NASA’s NMP was designed and 

developed by Lincoln laboratory [Mendenhall et al.  2002]. ALI’s operation is in 

pushbroom fashion that provides Landsat type panchromatic and multispectral bands 

[Forman, 2005]. ALI bands have been designed as the continuation of Landsat 

multispectral. It also furnished with three additional bands covering 0.433-0.453, 
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0.845-0.890 and 1.20-1.30 µm (Table 4-5). The wide-angle optics provides a 

continuous 15° * 1.625° field of view for focal plane [Lencioni et al.  2005]. 
 

Table  4-5.  Spectral and spatial resolutions of ALI. After USGS, EO-1 user’s guide 

[2007].  

Band 
Wavelength  

(µm) 

Ground Sample 

Distance 

(m) 

Spectral 

Irradiance  

(W/m ² *μm) 

Pan 0.48 - 0.69 10 1747.8600 

MS - 1’ 0.433 - 0.453 30 1851.8000 

MS - 1* 0.45 - 0.515 30 1967.6000 

MS - 2 0.525 - 0.605 30 1837.2000 

MS - 3 0.63 - 0.69 30 1551.4700 

MS - 4 0.775 - 0.805 30 1164.5300 

MS - 4’ 0.845 - 0.89 30 957.4600 

MS - 5’ 1.2 - 1.3 30 451.3700 

MS - 5 1.55 - 1.75 30 230.0300 

MS - 7 2.08 - 2.35 30 79.6100 
* Highlighted bands are those used in PLDF. 

 

The same as for Hyperion, ALI dataset at-sensor reflectance were achieved through 

normalization for solar irradiance by converting spectral radiance to planetary 

reflectance using equation (4-2). 

  

4.1.3 Explored EO-1/ALI and Hyperion datasets 

As in different parts of this work we have explored different datasets for different 

purposes therefore after general pre-possessing routines the used and explored 

hyperspectral datasets are listed in table (4-6). 
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• EO-1/Hyperion, Palolo, Indonesia, 2004. 

• EO-1/Hyperion and ALI, Palolo, Indonesia, 2005. 

• EO-1/Hyperion, Ahmadabad south Tehran, Iran, 2002. 

 

Table  4-6.  Selected bands from three Hyperion datasets after pre-

processing. 
Palolo, Sulawesi, 

Indonesia, 2004. 

Palolo, Sulawesi, 

Indonesia, 2005. 

Ahmadabad south 

Tehran, Iran, 2002. 

Band Wavelength (nm) Band Wavelength  Band Wavelength  

11-93 455-1073 14 – 26 487 – 610 8 – 57  427 – 926 

95-96 1093-1103 28 – 55 630 – 905 83 –119  973 – 1336 

101-119 1153-1335 83 – 96 972 – 1104 130 – 164 1447 – 1790 

135-163 1497-1780 102 – 118 1164 – 1326 181 – 184 1962 – 1992 

191-213 2062-2284 136 – 162 1507 – 1770 187 – 220 2022 – 2355 

 

4.2 Test areas 

4.2.1 Palolo valley, Indonesia 

The study area was chosen as one of the main important agricultural areas in 

Sulawesi, Indonesia.  Palolo valley is located within the Sunda islands where still 

60.6% of the area are forested land (4.1 million ha), whereby 32% of this area are 

under a special level of protection and 4% are officially opened to conversion. The 

Lore-Lindu National Park, covering an area of 229.000 hectares is placed in the 

centre of the study region of the STORMA project. The Palolo valley which 

comprises the study area for this investigation is situated at the northeastern border of 

the Lore Lindu National park, Central Sulawesi, Indonesia (1° 8’ 31.68" S, 120° 3’ 

53.78" E and 1° 11’ 16.75" S, 120° 6’ 21.63" E). Land cover classes for the research 

area comprise closed tropical rain forest, open tropical rain forest, cacao and coffee 

plantations, paddy rice, maize, river vegetation, mosaic of crops, trees and natural 

vegetation, bare soil, river, and urban areas [Rohwer, 2006] (Figure 4-4).  
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(a)                                           (b)                                                           (c) 

Figure  4-4. Study area 1: (a) Indonesia; (b) Solawesi province; and (c) 

RGB 210, 60 and 20 bands for the study area, Palolo valley. 

 

4.2.2 Ahmadabad, south Tehran, Iran 

Hyperion data were acquired over an agricultural area in Ahmadabad village, south 

of Tehran, Iran on May 21, 2002 at 06:57:56 GMT (Figure 4-5). The dataset is at 1B1 

level of preprocessing. More preprocessing was performed by Fahimnejad et al.  

[2007] includes correction for bad lines, striping pixels and smile, atmospheric 

correction. Finally a subset for the purpose of this work has been selected (Table 4-

6). 

 (a) (b) (c) 

Figure  4-5. Study area 2: (a) Iran; (b) Tehran province; and (c) the RGB 

110, 43 and 11 bands, Ahmadabad village. 
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CHAPTER FIVE 

 

5 Results  

As the whole thesis is composed of two main aspects of remotely sensed data fusion, 

thus the obtained results follows this structure and this chapter is mainly divided into 

pixel and decision level DF results. In addition, some other aspects like developed 

feature reduction algorithm for DF purposes and spatial evaluation of PLDF results 

have been discussed.   

 

5.1 PLDF results (EO-1 Hyperion and ALI datasets, Indonesia, 2005) 

The effect of pansharpening on spectral and spatial qualities of the fused datasets was 

investigated by Wald’s protocol and full-reference image quality assessment (Chapter 

3). As the number of bands was high, thus using the developed feature selection 

algorithm, MSSI, three bands that as the most informative ones were selected for 

evaluation purposes. The evaluated bands of the ALI/MS (Bands 4, 3, 2 RGB) and 

Hyperion (30, 21, 14 RGB) which have been selected based on spectral overlap with 

Pan and maximum amount of information in which MSSI feature selection was 

adapted. Therefore the selected bands are the most informative representative of the 

original datasets. In some cases there is conflict between evaluated properties (for 

example between Wald’s spectral properties 1 and 2 and also between spatial and 

spectral properties).  Therefore in such conflict situations for some applications the 

spatial accuracy is important while in some others the spectral fidelity is important. In 

this work both are considered and evaluated.  
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5.1.1 Objective evaluation 

From the mentioned evaluation indices the SSIM (which models almost all possible 

aspects of image distortions) was selected as the basis for full-reference data quality 

evaluation. The quality measurements of the fused images are given in tables (5-1, 5-

2 and 5-3). 

 

5.1.1.1 Spectral distortion evaluation 

In the following the spectral fidelity of the fused images were calculated by SSIM. 

The measured properties are referred to as Wald’s protocol properties 1 and 2. 

Wald’s property 1 measures how similar the fused image is to the original low spatial 

resolution MS image, while properties 2 and 3 measure how similar the fused image 

is to the assumptive high spatial resolution MS image. 

After evaluation of the fused images it was found that in some cases there is a 

conflict between first property with second and third ones. And as the third one is 

return to the subjective properties of fused images thus is not measured in this 

research and the fused images are showed for illustration of visual evaluation 

purposes (for subjective evaluation as complementary for objective evaluations). As a 

matter of fact good results for a technique based on property 2 will also offer good 

results for property 3 [Lemeshewsky, 1999]; thus the third property was not 

calculated. Tables (5-1 and 5-2) show the Wald’s properties 1 and 2 metrics for 

different fused images. The values in each cell are the values of spectral fidelity of 

bands which calculated for ALI-MS bands 2, 3, 4 and Hyperion bands 14, 21, 30. 

 

Table  5-1.   Spectral quality metrics. Wald’s properties 1 and 2 

for MS dataset. 
 Wald’s Property 1 Wald’s Property 2 

Band/Technique B. 1 B. 2 B. 3 ALL B. 1 B. 2 B. 3 ALL 

PCT 0.75 0.75 0.77 2.57 0.85 0.85 0.87 2.27 

IHS 0.65 0.65 0.80 2.11 0.67 0.65 0.79 2.1 

Brov. 0.050 0.038 0.028 0.12 0.05 0.04 0.03 0.11 
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ARSIS_DWT 0.72 0.73 0.69 2.31 0.71 0.79 0.81 2.14 

ARSIS_ATWT 0.80 0.81 0.80 2.22 0.74 0.73 0.75 2.41 

FB 0.73 0.71 0.78 2.15 0.71 0.71 0.73 2.22 

RT 0.81 0.83 0.79 2.43 0.82 0.80 0.81 2.43 

GST 0.75 0.75 0.77 2.58 0.86 0.85 0.87 2.27 

DWT_Haar 0.83 0.86 0.86 2.49 0.82 0.84 0.83 2.55 

DWT_Symlet 0.83 0.86 0.86 2.49 0.82 0.84 0.83 2.55 

HPF 0.78 0.81 0.80 2.59 0.86 0.87 0.86 2.39 

CN 0.53 0.74 0.84 1.94 0.51 0.71 0.72 2.11 

 

Table  5-2. Spectral quality metrics. Wald’s properties 1 and 2 for 

HS dataset) 
 Wald’s Property 1 Wald’s Property 2 

Technique/Band 14 21 30 ALL 14 21 30 ALL 

PCT 0.64 0.70 0.71 2 0.66 0.62 0.72 2.05 

HIS 0.33 0.49 0.70 1.49 0.35 0.48 0.66 1.52 

Brov. 0.00 0.00 0.00 0 0.00 0.00 0.00 0 

ARSIS_DWT 0.74 0.78 0.79 2.15 0.71 0.73 0.71 2.31 

ARSIS_ATWT 0.77 0.79 0.80 2.16 0.71 0.71 0.74 2.36 

FB 0.71 0.77 0.79 2.17 0.71 0.72 0.74 2.27 

RT 0.78 0.81 0.80 2.16 0.73 0.72 0.71 2.39 

GST 0.65 0.69 0.71 2 0.66 0.63 0.71 2.05 

DWT_Haar 0.67 0.74 0.83 2.23 0.68 0.73 0.82 2.24 

DWT_Symlet 0.67 0.74 0.83 2.23 0.68 0.73 0.82 2.24 

HPF 0.75 0.81 0.78 2.41 0.78 0.80 0.83 2.34 

CN 0.54 0.64 0.72 1.78 0.52 0.61 0.65 1.9 

 

As can be seen from above tables these two properties almost do not offer the same 

results. For example based on first property HPF is the best one while based on the 

second property the RT is the best. As a consequence, for measuring the spectral 

constancy of a fused image, one of these properties must be used. In the literature 

also this matter has been proved by some authors. For example Li et al.  [2002] and 

Shi et al.  [2003] used first property while Aiazzi et al.  [1999]; Lemeshewsky 
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[1999]; and Wald et al.  [1997] preferred the second one for evaluate their works and 

techniques. 

  

5.1.1.2 Spatial distortion evaluation 

The same as spectral properties, the spatial quality of the fused images is also 

important. In the literature there are few papers that offered the spatial quality of the 

Pan sharpened imagery. Here we evaluated the spatial properties based on the spatial 

autocorrelation of fused images. After some elementary investigations and 

comparisons the Moran’s I (indicator of spatial clustering of similar values) and 

Geary’s C (indicator of spatial dissimilarity of observations) local autocorrelations 

were selected for spatial distortion evaluation. As can be seen in table (5-3) the image 

comparisons were performed based on the Coefficient of Variances (C.V.) of 

autocorrelations. C.V. is the ratio of the standard deviation to the mean. C.V. is a 

useful statistic for comparing the degree of variation from one image to another, even 

if the means are drastically different from each other. After comparing the obtained 

results with the visual properties of fused data it was clear that these developed 

indictors are almost reliable for spatially fused image evaluation. For example RT 

and FB are the most weak fusion techniques based on Geary’s C while PCT is the 

best one that is provable in compare to visual comparisons of fused images (Figure 5-

1). From these two spatial evaluation techniques Geary’s C offered reliable results 

while the ability of Mora’s I was not acceptable. For example for Radon and 

Fanbeam that the spatial properties of fused images are very dissimilar to Pan 

therefore Geary’s C has measured this dissimilarity very precisely, therefore the 

absolute different between pan and fused bands is the highest (Table 5-3). On the 

contrary, based on the Moran’s I the Fanbeam and Radon have gotten the same 

scores as other fused images that, in reality, is not true.   

 

Table  5-3.  Spatial quality metrics.*  
                             Gearry’s C                                      Moran’s I 
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Technique 

Band C.V.  

ABS(Pan-

Fused) C.V. 

ABS(Pan-

Fused) 

 Pan 7,56         2,96   

PCT 14 7,19 0,37 3,25  0,29 

 21 6,96 0,60 2,67  0,29 

 30 7,47 0,09 2,88  0,08 

HIS 14 2,47 5,09 2,18  0,78 

 21 2,20 5,36 1,92  1,03 

 30 2,93 4,63 2,62  0,34 

Brov. 14 8,00 0,44 3,29  0,33 

 21 7,00 0,56 2,67  0,29 

 30 9,00 1,44 2,71  0,24 

ARSIS_DWT 14 8,23 0,67 3,23  0,27 

 21 7,74 0,18 2,53  0,43 

 30 7,23 0,33 2,62  0,34 

ARSIS_ATWT 14 7,11 0,45 2,99  0,03 

 21 7,10 0,46 2,48  0,47 

 30 6,82 0,74 2,57  0,38 

FB 14 2,97 4,59 2,86  0,09 

 21 2,89 4,67 2,36  0,60 

 30 2,71 4,84 2,46  0,49 

Rad 14 3,21 4,35 2,82  0,14 

 21 4,00 3,56 2,33  0,63 

 30 3,04 4,52 2,52  0,44 

GST 14 7,23 0,32 3,22  0,26 

 21 7,03 0,53 2,67  0,29 

 30 7,42 0,14 2,84  0,12 

DWT_Haar 14 6,85 0,71 3,78  0,82 

 21 6,51 1,04 2,92  0,04 

 30 5,00 2,56 2,54  0,42 

DWT_Symlet 14 6,85 0,71 3,78  0,82 

 21 6,51 1,04 2,92  0,04 

 30 5,00 2,56 2,54  0,42 

HPF 14 7,07 0,49 3,34  0,38 
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*C.V. is the Coefficient of Variation. ABS (Pan-Fused) is the absolute value of differences which is 

the measure of similarity of two datasets. The smaller value the more similar images the more 

spatially property preservation.   

 

5.1.2 Subjective evaluation 

In order to make the fused images be more familiar for subjective evaluator (person 

who visually evaluate the quality of fused image in compare to reference) the original 

EO-1/ALI-multispectral bands 4, 3, 2 RGB; ALI/ panchromatic; and Hyperion bands 

30, 21, 14 RGB datasets and the fused images are showed in figure (5-1). After visual 

inspection it was concluded that visual properties of results are almost in agreement 

with spectral and spatial objective evaluations. As these subjective evaluations are 

very expensive and time consuming therefore must be carefully and effectively 

carried out. Also as these evaluations are depend to several other parameters than the 

fused image itself e.g. visual ability of subjective, used colors, illumination 

conditions, etc therefore they can be used as complementary for objective evaluators. 

For example using the subjective investigation for RT while spatial properties is not 

good but the spectral fidelity is high and based on the results of objectives these 

results are clearly provable. The visual comparison of fused images carried out and 

the results were almost in agreement with mostly the first measured spectral property 

of Wald (Table 5-1 and 5-2).  

 

 21 6,99 0,57 2,80  0,16 

 30 7,07 0,49 2,89  0,07 

CN 14 5,90 1,65 3,87  0,91 

 21 5,93 1,63 3,36  0,40 

 30 5,72 1,84 2,64  0,32 
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Figure  5-1. EO-1/Hyperion (HS), ALI-Multispectral (MS) and ALI-

Pan images of Palolo valley, Indonesia. First row: ALI-Pan image; 

second row: left column HS and right column MS images. The rest are 

fused images which named based on fusion techniques (see acronym 

list).  

 

5.1.3 Histogram comparison 

Histogram comparison could be evaluated subjective or objectively. The histogram 

describes the statistical distribution of pixels in terms of the number of pixels at each 

DN [Schowengerdt, 1997]. The histograms of the original MS or HS and the fused 

bands were evaluated separately. In this regard if the spectral information of one band 



127 

of a fused image is preserved, thus its histogram will closely resemble the histogram 

of its original band. As an evaluation factor, it has been used subjectively (visually) 

by Vijayaraj et al.  [2004] and also objectively by the help of mean shift computation 

[Parcharidis, 2000]. As the mean shift is a comparison that is covered by MSSI 

objective evaluation thus here we just consider histogram comparison in visual 

appearance.  Due to limitation of space just the histogram of two techniques: Brovey 

and DWT-Haar are shown (Figure 5-2). Brovey’s results in compare with the original 

ones have shown the highest amount of differences (as proved by spectral evaluations 

(Tables 5-1 and 5-2)). On the contrary the DWT-Haar has offered results that are 

more similar to their original therefore the histogram comparison is in agreement 

with image spectral quality evaluation. As a general conclusion, irrespective to the 

amount of shifts and concerning to the shape of histograms it is clear that the results 

of the DWT-Haar methodology are more similar to the original than the Brovey.  

After several datasets comparisons and as stated by Wald [2002] the behavior of the 

histogram depends upon the observed type of landscape and the sharpening factor 

(SF). Therefore the higher the SF will cause the more dissimilar statistics of fused 

bands to the reference. Thus this evaluator must be carefully carried out where 

datasets have different SFs. As the evaluated datasets (i.e. EO-1/Hyperion and ALI-

MS) have the same spatial resolution (30 meter) thus it is a reliable indicator for our 

datasets.     
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Figure  5-2. Histograms comparison. (a) Hyperion bands 14, 21, 30; (b) ALI bands 2, 

3, 4; (c) Hyperion fused by DWT-Haar; (d) ALI fused by DWT-Haar; (e) Hyperion 

fused by Brovey; (f) ALI fused by Brovey.  

 

5.2 DLDF results (EO-1- Hyperion, Iran dataset, 2005)  

The accuracy in DLDF is measured in the form of final obtained map accuracies. 

Thus the used evaluation parameters are the classification accuracy indicators 

including Overall Accuracy (OA) and Kappa Coefficient (KC) [Russell and 

Congalton, 1999]. The mentioned indicators are calculated based on confusion or 

error matrix. 

As mentioned before, three procedures i.e. WBDF; CBDF and MCDF for 

hyperspectral DLDF has been adapted. All of these procedures are carried out using 

Dempster-Shafer theory. In order to perform these procedures first subsets were 

selected, followed by classification processes and finally Dempster-Shafer decision 
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fusion was carried out. The results have been evaluated based on overall accuracy 

and kappa coefficient.     

In the WBDF and CBDF procedures all selected subsets were classified by 

Dempster-Shafer classifier. But in the MCDF procedure three soft classifiers: Bayes; 

Dempster-Shafer; and Fuzzy were performed. 

As seen in table (5-4) the triple used bands for CBDF were selected using MSSI 

feature selection procedure. And for WBDF, the listed bands were selected based on 

their location in electromagnetic spectrum. In WBDF the three selected band for e.g. 

Red (400-500 nm) are bands 8, 12 and 15 which are the most informative bands from 

that spectrum which are located at first, middle and end of red spectrum of 

electromagnetic. Also for the rest spectrums the same procedure as for the red 

spectrum was carried out.   

 

Table  5-4. Selected bands based on two explored feature selection 

procedures.  
WBDF CBDF 

Wavelength (nm) Selected bands Spectral class Selected bans 

Red    400-500 

Green 500-600 

Blue   600-700 

NIR   700-1000 

MIR 1000-1300 

SWIR1300-2500 

8, 12, 15 

16, 20, 25 

26, 31, 35 

36, 49, 85 

86, 101, 115 

116, 199, 220 

1 

2 

3 

4 

5 

6 

8, 36, 117 

10, 98, 211 

113, 182, 214 

93, 101, 149 

8, 90, 220 

8, 56, 96 

 

Table  5-5.  Accuracy of DLDF techniques in compare to SAM 

classifier*. 
Procedure OA (%) KC 

Wavelength-based decision fusion  72.7 64.0 

Class-based decision fusion 73.5 65.5 

Multi classifier decision fusion 76.0 70.2 
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Spectral angle mapper classifier 69.7 61.3 
 *Overall Accuracy (OA) and Kappa Coefficient (KC). 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure  5-3.  Final maps of DLDF procedures and SAM classification. 

(a) WBDF; (b) CBDF; (c) MCDF and (d) SAM.    

 

Despite differences in the measured accuracies are almost imperceptible, but the 

general performance of all procedures is higher than SAM, while MCDF has offered 

the best results. As the new developed procedures in this work WBDF and CBDF are 

still under investigation and need to be improved and more evaluated by several other 

data sources thus definitely it can not be clarify which of them is preferable over 

other (Figure 5-3 and Table 5-5).  
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5.3 MSSI feature reduction evaluation 

To assess the ability of MSSI methodology a post classification accuracy assessment 

procedure was carried out. For this purpose the Iran Hyperion dataset was evaluated 

in the next steps.  First a 5-band subset for the under investigation area were selected 

(Table 5-6). As the selected features must contain maximum spectral and spatial 

information and also the best visual characteristics, therefore two aspects of obtained 

subsets are calculated and compared: spatial image entropy and spectral classification 

accuracy. The Support Vector Machine (SVM) classification methodology was 

performed and using a confusion matrix the accuracies of land cover maps were 

evaluated (Table 5-7). The spatial properties calculated by image entropy 

comparison. Entropy is a convenient measure of information content of remotely 

sensed imagery that has been used in several works [Malila, 1985 and Masek, 2001]. 

This indicator could have any value which entropy = 0 is the lowest possible 

information content and the higher values the higher information contents. The 

obtained results from MSSI are compared to the results from two common techniques 

includes:  Transformed Divergence (TD) and Bhattacharyya Distances (BD) (Table 

5-7). From these evaluated aspects and using this dataset the obtained results show 

not noticeable superiority of one feature selection algorithm over others. The ability 

of MSSI most be investigated with more different datasets and for different 

applications in the future.    

 

Table  5-6.   Selected bands using three different feature selection 

methodologies (Iran dataset). 

 MSSI 8, 56, 90, 149, 214  

 BD 8, 38, 87, 154, 212  

 TD 8, 37, 84, 196, 197  

 

 

Table  5-7. The spatial and spectral accuracies of selected subsets*.  
MSSI BD TD 
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Post classification 

accuracies 

Post classification 

accuracies 

Post classification 

accuracies 

Overall 

Entropy 

Overall 

Accuracy

Overall 

Kappa 

Overall 

Entropy

Overall 

Accuracy

Overall 

Kappa 

Overall 

Entropy

Overall 

Accuracy 

Overall 

Kappa 

1.9 0.87 0.83 1.9 0.88 0.85 1.9 0.88 0.85 

*Maximum Spectral and Spatial Information Indicator (MSSI); Bhattacharyya Distances (BD) and 

Transformed Divergence (TD). 

 

5.4 Block based feature selection evaluation 

In order to evaluate the block based feature reduction Hyperion dataset, Indonesia, 

2004 was used. As stated in (Chapter 3) the amount of τ (as a measurement to control 

the dimension and number of blocks) is due to several parameters includes data 

dimension; desired band numbers in blocks; purpose of data processing; etc. The 

specification of τ could be any calculation that can help to find homogeny blocks as 

high as possible. In this work amount of τ was investigated based on standard 

deviation of Ri, i+1. Consequently, as shown in table (5-8) the dimensions of the 

blocks are fluctuating across the whole dataset and do not follow a specific pattern. 

As here the statistic image is obtained from the whole dataset therefore the dimension 

of blocks are from 1 to 20. One-dimension blocks are single uncorrelated bands and 

20 is a group of bands with highest correlations.  

After obtaining blocks with maximum spectral homogeneity the within-block bands 

can be treated using any feature extraction or selection procedure. In this work we 

used PCA feature extraction over all blocks and PC1s from every block were picked 

up as the representative with maximum information content from any block. 

Consequently a new dataset with 16 bands which contains first PCs from all blocks is 

selected. This 16-component subset has more than 90 percent of the information from 

the whole dataset with 133 bands (Table 5-8). As can be seen this technique is very 

effective to reduce the dimension of images while the main information contents is 

still high and comparable with the original image. The obtained blocks and included 

bands can be used for any further processing like PCT feature extraction or MSSI 

feature selection. 
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Table  5-8. Block based feature reduction. Selected bands and their 

statistical properties. Hyperion dataset, Palolo valley, Indonesia, 2004. 

Block 

Number 

Band 

number 

in blocks 

The number 

of bands per 

block 

Blocks 

spectral 

range (nm)

Mean 

correlation 

Per block 

Std.Div of 

blocks 

1 11-17 7 455-516 0.98 0.0087 

2 18-25 8 526-597 0.98 0.0113 

3 26-34 9 607-689 0.99 0.0055 

4 35-38 4 699-729 0.64  

5 39-56 18 740-913 0.99 0.0085 

6 57, 82 2 923, 962 0.96  

7 83-93, 

95-96 
13 

972-1073, 

1093-1103
 0.0142 

8 96, 97, 

101 
1 (3) 1114   

9 101-117 17 1153-1315 0.99 0.0089 

10 118-119 2 1325-1335   

11 135-142 8 1497-1568 0.98 0.0114 

12 143-162 20 1577-1769 0.99 0.0090 

13 163, 191-

192 
3 

1780, 2062-

2072 
  

14 193-207 15 2082-2224 0.96 0.0091 

15 208-210 3 2234-2254 0.97  

16 211-213 3 2264-2284 0.97  
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CHAPTER SIX 

 

6 Conclusions, recommendations and future works  

Here, conclusions are drawn based on experiments performed in this PhD. work and 

also several other works (Appendix II) that have been done during these four years of 

PhD study in relation to data fusion. Also, some comments that are very useful for 

data fusion implementation are drawn. Finally some recommendations and further 

investigations are suggested. To better understanding this part of work, chapter 2 and 

3 shall be studied before. Also this chapter is almost written briefly because in some 

other parts of the work some conclusions and recommendations are mentioned and 

discussed. Based on the main objectives of this work that were image spatial 

enhancement by PLDF and classification accuracy improvement by DLDF the 

conclusions and recommendations are put into two separate parts as pixel and 

decisions levels.  

 

6.1 Comparing the evaluated techniques  

6.1.1 Pixel level data fusion  

Ten of the most common PLDF techniques and two new ones (i.e. Fanbeam and 

Radon fusions) were evaluated and it was found that in general the techniques that 

use high frequencies (e.g. Wavelet-based techniques) from the panchromatic image 

have done better than those that use the whole Pan image information (e.g. IHS). 

While techniques that work based on color normalization (e.g. Brovey) offered the 

weakest results. It also must be noted that one of the main objectives of this work was 

the investigating the spatial enhancements properties by objective fused image 

evaluation. Therefore the subjective evaluations were performed as complementary 

and compared with objective quality measurements.   
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In order to make more detailed illustrations based on the earlier mentioned spectral 

and spatial accuracy assessments the evaluated PLDF techniques have been ranked in 

table (6-1). This ranking is from 1 to 11 which 1 is the best and 11 is the worst.  

  

Table  6-1. PLDF techniques ranked based on the ability of techniques 

to preserve the spatial and spectral properties of fused images. 
Ranking Wald’s 

property 1 

for MS 

Wald’s 

property 2 

for MS 

Wald’s 

property 1 

for  HS 

Wald’s 

property 2 

for HS 

Geary’s 

C for 

HS 

Moran’s 

I for 

HS 

1 HPF Haar and 

Symlet 

HPF RT GST HPF 

2 GST RT Haar and 

Symlet 

ARSIS-

ATWT 

PCT PCT 

3 PCT ARSIS-

ATWT 

FB HPF ARSIS-

DWT 

GST 

4 Haar and 

Symlet 

HPF ARSIS-

ATWT and 

RT 

ARSIS-

DWT 

HPF Brov. 

5 RT PCT and 

GST 

ARSIS-

DWT 

FB ARSIS-

ATWT 

ARSIS-

ATWT 

6 FB FB PCT and 

GST 

Haar and 

Symlet 

Brov. ARSIS-

DWT 

7 ARSIS-

DWT 

ARSIS-

DWT 

CN PCT and 

GST 

Haar and 

Symlet 

FB 

8 ARSIS-

ATWT 

IHS IHS CN CN RT 

9 IHS CN Brov. IHS RT Haar and 

Symlet 

10 CN Brov.  Brov. FB CN 

11 Brov.    IHS IHS 

 

Based on the above ranking and from this overview, some remarkable conclusions 

are drawn. 

1. From the first introduced spatial property evaluator (NDA based on Geary’s C) 

it can be concluded that in techniques which work based on the whole Pan 
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injection into the fusion process Like PCT and GST, the influence of Pan is 

completely clear in compare to the techniques which work base on high 

frequencies of Pan injection into the fusion process for instance DWT-Haar and 

Symlet. Therefore the spatial evaluation helps to understand the influence of 

Pan in the fusion process.  

2. Techniques that work based on selected panchromatic band frequencies (see 

chapter 3) e.g. DWT and HPF offered better results in the spectral fidelity point 

of view.   

3. Techniques that work based on color transformations and normalization like 

IHS and CN offered weak results almost in both spectral and spatial evaluation 

accuracies. 

4. The novel PLDF techniques i.e. FB and RT, despite almost good spectral results 

but they have gotten lower positions in spatial properties evaluation due to their 

poor spatial preservation abilities. 

5. Different behavior of techniques over multispectral and hyperspectral imagery 

is also noticeable. In general the obtained results for MS are better than for HS 

dataset. This phenomenon returns to the fact that MS bandwidths are wider than 

HS bands (for example ALI band 3 has a bandwidth about 80 nm while 

Hyperion band 30 is about 10 nm) therefore the amount of energy for 

illumination a MS band is more similar to Pan than HS bands.    

6. The obtained results from measured spectral properties of fused images 

sometimes are incompatible for example in Wald’s property 1 the HPF has 

gotten the best rank while based on the Wald’s property 2 it has gotten ranking 

4 (Table 6-1). Therefore these properties must be carefully selected and 

interpreted. 

7. The measured spectral and spatial properties in some cases are incompatible and 

in some others are complementary as well. For example Brovey has gotten the 

lowest rank in the spectral properties while based on its spatial properties it has 

gotten the ranks of 4 and 5. Consequently these properties are complete 

frameworks which help to know all facts about a fused image.  
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8. For some techniques e.g. CN and Brovey, notwithstanding the weak results for 

spatial and spectral objective quality measurements, the visual appearance of 

them is fine. On the contrary for example DWT-Haar or Symlet the visual 

appearance of fused images may not be fine but the measured qualities show 

better results. Therefore due to the application of data fusion different quality 

assessments can be applied. For instance while CN and Brovey are better for 

visual image interpretation (with consideration for color distortion and probable 

misleading), the DWT-Haar and Symlet are more better for other applications of 

image analysis e.g. classification. In this regard subjective and objective image 

accuracy evaluations are complementary and one can not be replaced by 

another. 

9. The histogram comparison is also a good image quality measurement and the 

obtained results are in the direction of spectral assessments of fused images.  

10. It is noticeable that for the new introduced spatial evaluation measurements, the 

autocorrelation comparison based on Geray’s C offered acceptable 

measurements while the comparison based on Moran’s I was not reliable.  

 

6.1.2 Decision level data fusion 

Of course this level is a classification based DF therefore the comparison is 

meaningful when the objective is data classification. Therefore the next remakes are 

partly based on earlier experiments in Darvishi Boloorani et al.  [20051].  Based on 

the evaluated and introduced algorithms for this level of fusion the following 

conclusions can be drawn. 

   

1. Referencing to the evaluated hyperspectral dataset e.g. Iran dataset, both 

developed DLDF techniques i.e. WBDF and CBDF offered the same 

classification accuracies, While MCDF obtained the highest accuracy.  

2. The evaluated procedures offered higher accuracies than classification 

procedures without fusion. 



139 

 

6.1.3 Feature selection  

Feature selection has a very crucial importance in almost all data fusion procedures. 

This importance is higher when the dimension of data is higher such as for 

hyperspectral datasets. In this work a novel feature selection technique i.e. MSSI has 

been evaluated and compared to two common feature selection techniques i.e. BD 

and TD. Despite the fact that MSSI did not offer better results than other feature 

selection algorithms, but the rational behind is strong and needed to be more 

evaluated and improved. Also the evaluated block level feature reduction procedure 

had a good ability to reduce the dimension of datasets.  

 

6.2 Strengths and limitations of data fusion 

6.2.1 Data fusion strengths 

The ideal of data fusion is getting the highest possible information content from raw 

or pre-processed datasets. The highest possible information potentially could be 

spectral, spatial, radiometric, and temporal resolutions, highest possible classification 

accuracy, etc. The literature of data fusion covers a high variety of data, techniques 

and applications; therefore no rule of thumb exists for discrete description of data 

fusion strengths. Data fusion, like any other procedure is composed of (i) information 

sources; (ii) means of information acquisition; (iii) information exchange 

communication; and (iv) intelligence for information processing into higher content 

of presentation [Wald, 2002]. Therefore, any categorization concerning the pros and 

cons of DF should consider it as a whole process. Based on the obtained experiences 

from this work and other related studies (see appendix II) as well as from the 

literature, strengths are illustrated at pixel and decision levels of fusion.  
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6.2.1.1 Pixel level  

1. Improvement image resolutions: Indeed the ideal of DF is obtaining the highest 

possible resolution from input datasets. For example in our dataset the spatial 

resolution improvement was the main objective. More than this, other kinds of 

resolution can be improved. For example in Darvishi Boloorani et al.  [20062] the 

temporal resolution was improved using the combination of multi-temporal 

ENVISAT/ASAR satellite Synthetic Aperture Radar (SAR) images and also in 

Darvishi Boloorani et al.  [20052] the spatial resolution improved the ability of 

Landsat/ETM+ datasets to extract urban road networks. 

2. Data volume, storage and transformation: Data volume is a very important aspect 

of RS datasets. Using a good sophisticated fusion, raw images (e.g. HS and Pan) 

can be separately stored and just according to requirement be fused. For example 

the volume of a Hyperion-hyperspectral image with 242 spectral bands and 30 

meter spatial resolution and an ALI-panchromatic image with 10 meter spatial 

resolution is about 9 times lesser than an assumptive Hyperion-hyperspectral 

image with 242 spectral bands and 10 meter spatial resolution. Therefore storage 

raw datasets and fuse them and according to requirement is an effective policy 

which facilitates data storage and transformation. 

3. Very high number of applications: On the contrary to DLDF which mostly limited 

to data classification, but in the PLDF there is not limitation for applications. For 

example the fused datasets can been used to a variety of applications e.g. Zhang 

[1999], Ranchin and Wald [2000], Li et al.  [2002], Cakir and Khorram [2003], 

Chen et al.  [2005] and Zhang and Hong [2005] used fused images for a variety of 

applications. 

     

6.2.1.2 Decision level  

1. Complementary of different classifiers: In this level the advantages of different 

classifiers are exploited while their weaknesses are mostly compensated. The 

obtained results from DLDF proved that the MCDF offered better results than 
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WBDF and CBDF. Therefore combination of several classifiers is still a 

powerful tool in DLDF.  

2. Eliminating the effects of data resampling: Almost all PLDF techniques 

include at least one resampling process that causes spectral distortions in fused 

datasets. But in DLDF which datasets are processed separately the problems 

related to resampling are avoided. 

3. Avoiding the contrast differences in fused images: The contrast of high 

resolution Pan image is mostly different and higher than the contrast in the 

lower resolution MS image, consequently direct combination of images makes 

the contrast modification unavoidable. This extra process will cause 

information distortion. As the DLDF will fuse data after classification 

performance, therefore the contrast modification problem is avoided. 

4. No spectral, radiometric and temporal limitations: In the decision level as the 

data sources analyzed independently therefore on the contrary to pixel level 

fusion techniques, the spectral, spatial and radiometric resolutions of images 

do not have high and strict influences over the fusion process. 

5. No limitation of sharpening factor: In DLDF any dataset with any spatial 

resolution can be fused and the problem of SF has no crucial role in fusion 

process.   

 

6.2.2 Data fusion limitations 

Despite the fast developments in methodologies, techniques, and algorithms for all 

levels of fusion, but the final results almost eventually loss some useful information. 

It should be considered that no rule of thumb exists for the right number of 

parameters that can be considered as limitations in data fusion. Based on the results 

of the presented research and extensive literature search some important restrictions 

are categorized on both levels of fusion.  
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6.2.2.1 Pixel level  

1. Sharpening Factor (SF): Due to the different spatial resolutions of data sources 

the SF (ratio of low spatial resolution pixel size to high spatial resolution pixel 

size) plays an important role in pixel level data fusion. Based on Darvishi 

Boloorani et al.  [20051] an SF less than 7 offers more precise results. 

2.  Image registration: Generally data registration is one of the major elements in 

data fusion; specifically the pixel level techniques are very sensitive to miss-

registration phenomenon. 

3.  Spectral Overlap (SO): As a practical matter the spectral overlap of data must 

be considered in pixel level. In decision level spectral overlap is not necessity 

[Ranchin and Wald, 2000].  

4. Technique limitations: Some techniques like Brovey are based on a simple ratio 

of input images that will change the spectral properties of the data sources if the 

number of bands gets higher. But for some others like wavelet these limitations 

are minimal. 

5. Temporal limitation: The used data must be recorded simultaneously as much as 

posible. Experimentally the higher temporal and seasonal shifts the lower the 

accuracy Darvishi Boloorani et al.  [20082].  

6. Artifacts because of low correlation between datasets: In the techniques which 

work using all panchromatic band frequencies when correlation between the 

replacing component (e.g. I from IHS and PC1 from PCT) with Pan is low 

consequently the results of these procedures are generally weak. 

7. Limited numbers of bands for fusion: The IHS just can handle only three input 

images while the PCT and wavelet procedures can be applied to any number of 

bands. 

8. Over-influence of Pan in fusion process: In some techniques, like PCT and GST, 

all the details of Pan are introduced into the fused dataset. For that reason the 

fused images are nicely spatially enhanced while the spectral distortion is high. 

The Ehler’s procedure [Ling et al.  2006] is one of the alternative procedures 

that alleviate this problem. 
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9. Spectral and spatial losses due to transformations:  In some techniques prior to 

the fusion process data transformation is performed. If the transformations are 

non-lossy such as PCT the only source of distortion is the fusion process. But in 

some techniques like fanbeam which is a lossy transformation in addition to the 

distortions from the fusion process the transformation itself also introduces some 

distortions.  

10. Resampling artifacts: Almost all PLDF techniques have at least one resampling 

process that is from the lower resolution to the higher resolution and 

consequently these procedures will cause spectral distortions.  

11. Blocky appearance: This is an important phenomenon in pixel level data fusion. 

The blocky appearance of fused data caused by the amount of SF can be treated 

by smoothing filter. 

12. Filter size: Some techniques that work based on a moving filter like HPF are 

very sensitive to the filter size over which the high frequency details are 

computed. Thus due to the data properties and the relationship between object 

areas and pixel sizes a good filter size must be adapted.  

 

6.2.2.2 Decision level  

Due to the fact that this level of fusion was investigated over some few techniques 

therefore just the next limitation are clarified and extensive discussions can be found 

in [Benediktsson et al.  1992; Benediktsson et al.  2003]. 

 

Limited exploitation of data properties: Because data are primary classified thus 

synergetic combination of data properties (in comparison with PLDF) is not explored. 

In some applications the usability of dataset will be appeared when the individual 

images are fused. For example in Darvishi Boloorani et al.  [20062] the positive 

synergism of multi-temporal SAR datasets helped to discriminate the rice fields in 

central Sulawesi, Indonesia.  
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6.3 Recommendations and future works 

Finally, some recommendations and topics for future research projects that could not 

be performed because of time limitations are: 

 

1. Using the Iran dataset, the DLDF algorithms i.e. WBDF and CBDF show their 

ability for data fusion. But the ability of the innovated techniques must be 

evaluated with several other datasets and specifically with diverse dataset for 

different purposes. 

2. More sophisticated and flexible fusion algorithms needed to be implemented in 

the commercial RS and GIS software. For example Ehler’s methodology in 

ERDAS Imagine 9.1 and Dempster-Shafer theory in IDRISI-Andes are good 

examples for two levels of fusion. 

3. Fusing datasets with different characteristics like SAR, optical imagery, GIS 

information and field-collected information is a very crucial aspect of DF. For 

example GIS information and object models in combination with satellite 

imagery are very emerging tasks of data fusion. These kinds of fusions have 

been used for several years but still there is more room to performance. 

4. In addition to visual, spectral, and spatial evaluations that were carried out, 

other techniques for assessing the quality of fused images are needed. For 

example the comparison of land surface maps obtained by classification 

procedures or the results from target detection and object recognition could be 

very informative for a PLDF procedure. 

5. In the decision levels of fusion, the low results of WBDF and CBDF techniques 

in compare with MCDF could be related to the use of just one classifier. 

Therefore adapting the mentioned methodologies to multi-classifier will 

probably increase the accuracy of results. 

6. A conceptual framework allowing the fusion of datasets in all levels is required. 

7. Regarding the fact that the real world objects are 3-Dimentional, therefore data 

fusers which enable us to model and build fused data in 3-D are required for 
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future. With 3-D-based fusion abilities the real world phenomena can be better 

modeled and understood.  

8. The usage of data fusion in telecommunication services like mobile is also 

important. In mobile phone technology and other similar devises the 

information must be optimally compatible. Therefore DF is a proper basis to 

make such data compatibility. 

9. Based on the definitions of precision farming, forestry, mining, etc that the 

needed information must be very complete and precise DF can play a very 

important role. For example for a precision farming system several layers of 

information like soil types, amount of humidity, type of fertilizer, etc must be 

simultaneously analyzed. As DLDF has good abilities to fuse multivariate 

dataset therefore decision fusion is an ideal basis to combine all of these 

datasets. 

10. Extreme weather conditions such as hurricanes and floods and man-made 

disasters such as war and the consequences such as a huge refugee population, 

shortage of water and food supply etc are very necessary research areas for 

implementing state-of-art and real-time data fusion systems.  
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Appendix I 

Data fusion organizations, journals and useful websites 

1. Data fusion server which includes four main subsections: International 

Conferences of earth data fusion; fundamentals in data fusion including data fusion 

methods, tools, properties; general information about the portal; and the EARSel 

special interest group (SIG). This online website offering very useful information 

almost about all aspects of remote sensing data fusion. http://www.data-

fusion.org/topics.php. 

 

2. The Special Interest Group (SIG) as a part of data fusion server was created 

in 1996 uneder the umbrella of the European Association of Remote Sensing 

Laboratories (EARSeL), the Data Fusion group contributes to a better understanding 

and use of data fusion in the field of Earth observation by organizing regular 

meetings of its members and tackling fundamentals of Data Fusion in remote sensing.  

http://www.data-fusion.org/search.php?query=&topic=32. 

 

3. IEEE-GRSS Data Fusion Technical Committee. The DFC committee serves 

as a global, multidisciplinary, network for geospatial data fusion, connecting people 

and resources. It aims at educating students and professionals and at promoting best 

practice in data fusion applications. http://150.145.84.68/index.php/Main_Pag. 

 

4. International Journal on Multi-Sensor, Multi-Source Information Fusion. 

This journal is intended to present within a single forum all of the developments in 

the field of multi-sensor, multi-source information fusion and thereby promote the 

synergism among the many disciplines that are contributing to its growth. The journal 

is the premier vehicle for disseminating information on all aspects of research and 

development in the field of information fusion. 

http://www.elsevier.com/wps/find/journaldescription.cws_home/620862/description#

description. 
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http://asrt.cad.gatech.edu/Mission-control/simon/paper1/intro.html 

http://cma.cma.fr/PersonneI/Monget/cours/page34.htm 

http://cmp.felk.cvut.cz/~kraus/Mirrors/iris.usc.eduNision-

Notes/bibliography/kwic/fus.html 

http://cns-web.bu.edu/pub/dorman/sensor_fusion 

http://ic-www.arc.nasa.gov/ic/projects/condition-based-

maintenance/bibliography.html 

http://imagets10.univ.trieste.it/ipl/research.html 

http://roger.ucsd.edu/search/dMultisensor+data+fusion+%2D%2D+Congresses/-5,- 

1/browse 

http://sabre.afit.af.mil/MARION?S=MULTISENSOR+DATA+FUSION 

http://systeng.gmu.edu/InSERT/credits/PACHO~1. HTM 
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Appendix II 

Author’s publication in data fusion  

1. Darvishi Boloorani, Ali; Erasmi, Stefan; and Kappas, Martin, Multi-Source 

Remotely Sensed ata Combination: Projection Transformation Gap-Fill 

Procedure, Journal of SENSORS, 8, 4429-4440; DOI: 10.3390/s8074429, 

20081. 

 

2. Darvishi Boloorani, Ali; Erasmi, Stefan; and Kappas, Martin, Multi-source 

image reconstruction: exploitation of EO-1/ALI in Landsat-7/ETM+ SLC-off 

gap filling, Proceeding of IS&SPIE’s 20th Annual Symposium, Electronic 

Imaging Science and technology, California, USA, 20082. 

 

3. Darvishi Boloorani, Ali; Erasmi, Stefan; and Kappas, Martin, Urban Land 

Cover Mapping Using Object/Pixel-Based Data Fusion and Ikonos Images, 

Remote Sensing: From Pixels to Processes (ISPRS), Enschede, Netherlands, 

20061. 

 

4. Darvishi Boloorani, Ali; Erasmi, Stefan; and Kappas, Martin, Rice Field 

Discrimination and classification with Multitemporal SAR Imagery, Second 

Goettingen GIS & Remote Sensing Days Conference (GGRS2006), 

Environmental Studies,  Goettingen, Germany, 20062. 

 

5. Riyahi B., Hamid Reza; Darvishi Boloorani, Ali; and Abasi, Mozhgan, 

Comparing Spectral and Object Based Hyperspectral Image Analysis for Palm 

Cover Mapping Using EO-1/Hyperion Imager, Map and Spatial Information 

For Disaster Management Conferemce (Geomatic 85), Tehran ,Iran, 20063. 
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6. Darvishi Boloorani, Ali; Kappas, Martin; and Erasmi, Stefan, Hyper-

Spectral/High- Resolution Data fusion: Assessing the Quality of EO1-

Hyperion/Spot-Pan & Quickbird-MS Fusion in Spectral Domain Models. 

High-Resolution Earth Imaging For Geospatial Information (ISPRS), 

Hannover, Germany, 20051. 

 

7. Darvishi Boloorani, Ali; Hamid Reza Riyahi B.;  and Mehran Shaygan, Multi 

Spectral/Panchromatic-Based Data Fusion: Analysis of Techniques to Road 

Network Extraction, In Urban Area, Using ETM+ Images, Geospatial 

Information for Knowledge Based Development conference (Geomatics 84), 

Tehran, Iran, 20052. 
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