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1. Introduction 

 

1.1 Secretory Vesicle Exocytosis 

 Intercellular communication between neurons or neuroendocrine cells is mediated by 

secretory vesicle exocytosis. Neurotransmitters can be released from two types of 

vesicles: Synaptic vesicles (SVs), which typically contain classical neurotransmitters 

such as glutamate or gamma-aminobutyric acid (GABA) and which mediate fast 

synaptic transmission, and large dense-core vesicles (LDCVs), which typically contain 

neuropeptides or monoamines and which usually mediate slower modulatory effects. 

Several characteristic similarities and differences exist between SVs and LDCVs. Both 

types of vesicles require a Ca2+ trigger in order to fuse, and they share many common 

proteins that are involved in the control and execution of their membrane fusion. On the 

other hand, the kinetics of their fusion and its physiological regulation are usually 

different, indicating the existence of distinct molecular mechanisms in SV- and LDCV- 

mediated secretion (Speese et al., 2007; Zhou et al., 2007). In the present study, I 

investigated the role of priming proteins of the Munc13 family in the regulation of 

LDCV-mediated exocytosis. Studies in C. elegans had indicated that the nematode 

Munc13-homlogue Unc-13 specifically regulates SV priming while the CAPS 

homologue Unc-31 mediates the corresponding regulatory effect in LDCV fusion 

(Speese et al. 2007), although Unc-13 may also be required in LDCV exocytosis under 

certain physiological conditions (Zhou et al., 2007). Similarly, a series of earlier studies 

in mammalian systems had led to the conclusion that CAPS proteins are selectively 

responsible only for LDCV-mediated exocytosis (e.g. Tandon et al., 1998; Rupnik et al., 

2000; Sadakata et al., 2004 and 2007; Speese et al., 2007). However, a recent study in 

CAPS deficient mice clearly showed that CAPS proteins are absolutely essential for 



Introduction 
 

 

 9 
 

SV-mediated exocytosis (Jockusch et al., 2007), indicating that a restriction of 

CASPS/Unc-31-dependent regulatory processes to LDCV-mediated secretion may not 

exist in mammals. The present study was conducted in order to complement these data 

by analyzing whether Munc13-function in mammals is specific to SVs, as would be 

indicated by the C. elegans data (Speese et al., 2007; Zhou et al., 2007) or whether they 

play a more general role in the control of both SV and LDCV fusion.  

 

 

1.1.1 SV Exocytosis  

 The exocytosis of SVs is part of a complex trafficking cycle consisting of multiple 

membrane fusion and fission steps and is restricted to so called active zones, where the 

final steps of vesicle fusion are tightly coordinated in space and time (Wojcik and 

Brose, 2007; Figure 1).  

 Transmitters are filled into SVs by dedicated vesicular carriers, whose activity is driven 

by a proton electrochemical gradient that is generated by a vacuolar-type ATPase. 

Transmitter-filled SVs in axon terminals dock to the active zone plasma membrane and 

undergo a biochemical modification called priming. Only these primed and fusion-

competent vesicles are able to fuse with the active zone plasma membrane in response 

to an action potential and the concomitant influx of Ca2+ through voltage-gated Ca2+ 

channels. P/Q- and N-type Ca2+ channels are thought to be the main mediators of action 

potential triggered Ca2+ influx in presynaptic terminals while R- and I-type Ca2+ 

channels play a modulatory role (Dietrich et al., 2003). Ca2+ influx triggers two different 

components of release: A fast component of release (synchronous, phasic) is rapidly 

induced in as little as 50 µs after a Ca2+ stimulus, and a second slow component 

(asynchronous, tonic) often continues for more than 1 s after the action potential 

(Südhof, 1995; Zucker, 1996). After fusion, SV membrane and protein components are 
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recycled for reuse. The main recycling pathway involves clathrin-mediated endocytosis. 

Under certain circumstances however, e.g. during phases of high presynaptic activity, 

SVs appear to be also recycled in part by a faster pathway, which is termed kiss-and-

run, and which is thought to involve direct fission of transiently fusing SVs without a 

full collapse of the SV into the presynaptic membrane. Endocytosed SVs are reused and 

refilled with neurotransmitter either directly or after passing through an early endosomal 

compartment (Wojcik and Brose, 2007; Figure 1). 

  

 
Figure 1. The SV Cycle (image from Brose et al., 2000). 

 

 Six large active zone specific proteins - Munc13s, RIMs, Piccolo, Bassoon, ERCs, and 

α-liprins- are involved in the regulation of active zone function. They engage in 

multiple protein-protein interactions with each other and thereby form a complex active 

zone protein network. Munc13s (mammalian Unc-13 proteins) and RIMs (Rab3-

interacting molecules) are multidomain proteins that bind to each other and also interact 

with multiple other presynaptic protein components (Brose et al., 1995; Wang et al., 

1997; Wang et al., 2002). Piccolo and Bassoon are very large homologous proteins of 
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the active zone cytomatrix and thought to act as presynaptic scaffold proteins (Cases-

Langhoff et al., 1996; tom Dieck et al., 1998). ERCs (ELKS/Rab3-interacting 

molecule/CAST) are coiled-coil proteins that bind to RIMs and to RIM-binding proteins 

(RIMBPs), which are SH2 (Src homology) domain proteins (Wang et al., 2002; Wang 

et al., 2000). Finally, α-liprins bind to ERCs, RIMs, and several receptor protein 

tyrosine phosphatases (Ko et al., 2003; Schoch et al., 2002; Serra-Pages et al., 1998).  

 

 

1.1.2 LDCV Exocytosis  

 As is the case with SVs, LDCV fusion is triggered by transient rises in the intracellular 

Ca2+ concentration. LDCV fusion has been studied in diverse cell types, including 

pancreatic exocrine, adrenal chromaffin, and hemopoietic cells, as well as platelets, 

neutrophils, and mast cells. It appears to share many characteristics and protein 

components with SV-mediated secretion (Burgoyne and Morgan, 2003; Martin, 1994). 

Like SV fusion, LDCV fusion is triggered by Ca2+, which typically enters secretory 

cells after depolarization through voltage-gated Ca2+ channels, and executed by 

SNAREs, which mediate the membrane merger (Figure 2). In addition, several SNARE 

regulatory proteins such as Munc18 are common to both vesicle systems. On the other 

hand, the biogenesis of LDCVs and their fate after fusion are different from the 

corresponding processes governing SV trafficking. Unlike SVs, LDCVs have to be 

assembled de novo at the Golgi apparatus owing to the fact that they need to contain 

enzymes and secreted peptides/proteins (Kim et al., 2006; Dikeakos and Reudelhuber, 

2007). In addition, although involving SNAREs, their cell biological mechanism of 

fusion (e.g. compound fusion vs. individual vesicle fusion), and their recycling may also 

be different from SV-related mechanisms (Rutter and Hill, 2006). 
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Figure 2. The SNARE Complex.  

Vesicular and plasma membrane SNARE proteins assemble into the trimeric SNARE complex. Assembly 

of this complex is thought to drive the membrane fusion reaction (top), possible via (stalk-like) 

hemifusion intermediates (bottom). Images are from R. Jahn, Göttingen. 

  

 LDCV secretion has been best characterized in adrenal chromaffin cells. These cells are 

part of the adrenal medulla, which contains three types of chromaffin cells, adranaline- 

(85 %), noradrenaline- (14-15 %), and dopamine-containing cells (<1 %) (Figure 3). All 

three types of hormone are synthesized from tyrosine in the adrenal medulla (Trifaro, 

2002). A single chromaffin cell contains about 30,000 vesicles or chromaffin granules 

(Carmichael and Winkler, 1985), which contain a mixture of hormones and 

neuropeptides.  

 Due to their spherical shape, chromaffin cells are nicely amenable to 

electrophysiological recordings of membrane capacitance, membrane characteristics, 

and ion fluxes. By combining flash-photolysis of caged Ca2+ or depolarizing stimuli 
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with patch-clamp recordings of membrane capacitance and amperometric recordings of 

released catecholamines, chromaffin cells can be used to study all aspects of LDCV 

fusion with very high temporal resolution and in highly reliable quantitative terms. This 

extraordinary experimental accessibility together with the fact that they are derived 

from the neural crest, i.e. from the same precursors that give rise to sympathetic 

neurons, have led to the widespread use of chromaffin cells as a model system for the 

analysis of regulated transmitter release.  

 

 
Figure 3. Chromaffin Cells From the Mouse Adrenal Medulla. 
(A) Organs in the mouse abdomen (from http://www3.niaid.nih.gov). 1. Salivary gland, 2. rib cage, 3. 

diaphragm, 4. liver, 5. spleen, 6. pancreas, 7. forestomach, 8. glandular stomach, 9. kidney, 10. ascending 

colon, 11. male urogenital system. (B-C) Adrenal glands lie above both kidneys. (D) Scanning electron 

micrograph of a chromaffin cell (from http://webpages.ull.es). 

 

 The LDCVs of adrenal chromaffin cells can be classified functionally into distinct 

pools. These are distinguished based on their release kinetics, which in turn can be 

deduced from the shape of the typical membrane capacitance traces measured after 
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depolarizations or Ca2+ release from a previously infused photolabile chelator using 

UV-flash photolysis (Figure 4). Within the first second after flash photolysis of caged 

Ca2+, a readily releasable pool (RRP) of vesicles fuses in an exocytotic burst, which 

consists of a fast and a slow component. The vesicles from the fast burst component of 

flash photolysis experiments correspond to the RRP released in response to a more 

physiological depolarization stimulus and fuse with a time constant of about 20-40 ms. 

Vesicles from the slow burst, which are also referred to as the slowly releasable pool 

(SRP), fuse with a time constant of about 200 ms (Becherer and Rettig, 2006). These 

slow burst vesicles are not released by depolarization, but they represent a precursor 

pool of the fast burst/RRP vesicles (Voets et al., 1999). In addition to these vesicle 

pools, depolarizing stimuli allow the detection of those vesicles situated closest to Ca2+ 

channels as an immediately releasable vesicle pool (IRP) (Schneggenburger and Neher, 

2005). The IRP vesicles are also released during flash photolysis, but due to the global 

increase in intracellular Ca2+ cannot be distinguished as a separate pool. 

 Unlike SVs, the readily releasable pools of LDCVs in adrenal chromaffin cells are not 

concentrated at active zones but rather docked and primed at the entire plasma 

membrane (Allersma et al., 2004; Olofsson et al., 2002; Parsons et al., 1995). 

Exocytotic delay times and release rates are typically slightly longer in LDCVs than in 

SVs (Voets et al., 1999 and 2000). The pool of release ready vesicles is refilled from 

vesicles of the unprimed pool (UPP), which are close to but morphologically detached 

from the plasma membrane by some 200 nm. The sustained component is the final 

phase of the capacitance trace after flash photolysis. It is due to docking and priming of 

vesicles from the UPP and subsequent fusion. Vesicles in the UPP are replenished from 

a depot pool (DP), which represents the largest pool of LDCVs in adrenal chromaffin 

cells. The DP is composed of the vesicles that are more than 200 n away from the 

plasma membrane (Becherer and Rettig, 2006). 
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Figure 4. Measuring LDCV Fusion and Exocytosis in Chromaffin Cells. 
By UV-flash photolysis of the photolabile Ca2+ chelator NP-EGTA-Ca2+ in the cell, the intracellular Ca2+ 

concentration can be increased in a step-wise fashion to 15-20 µM (bottom right panel, top trace). Fusion 

of LDCVs can be measured by a patch-clamp electrode as an increase in the cell membrane capacitance 

(bottom right panel, bottom trace). Images are modified from J. Rettig and J. Sørensen, Göttingen. 

 

 

1.1.3 The SNARE Core Complex and SNARE-Regulating Proteins 

 SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) are 

localized to the various intracellular organelles. They comprise a family of mostly 

membrane-tethered proteins containing a coiled-coil SNARE motif, and they regulate 

fusion reactions and target specificity in vesicle trafficking. Based on their localization, 

SNAREs can be classified into vesicle associated v-SNAREs and target-membrane-

associated t-SNAREs. The SNARE motifs are homologous 70-amino acid sequences 

that can be segregated into four distinct classes, R-, Qa-, Qb-, and Qc-SNARE motifs. 

Four such motifs, typically one of each type, form a stable trans SNARE complex, a 
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four helical bundle that drives the fusion of the resident membranes. Fusion of SVs is 

mediated by three SNARE core complex component proteins: Syntaxin and SNAP-25 

(synaptosome-associated protein of 25 kDa) on the presynaptic plasma membrane, and 

Synaptobrevin (also called vesicle-associated membrane protein; VAMP) on the vesicle 

membrane (Söllner et al., 1993). The core of this complex is formed by the R-SNARE 

motif of Synaptobrevin, the Qa-SNARE motif of Syntainx 1, and the Qb- and Qc-motifs 

of SNAP-25. Their association drives the fusion of the SV membrane with the active 

zone plasma membrane (Figure 2). After fusion, the trimeric complex binds to a 

complex of the ATPase N-ethylmaleimide-sensitive factor (NSF) and soluble NSF 

attachment proteins (SNAPs), which disassemble the SNARE complex and make the 

individual components available for subsequent reuse (Hayashi et al., 1995).  

 SNARE complexes are essential for fusion of SVs and LDCVs - genetic ablation of 

synaptic SNAREs in Drosophila, C. elegans, and M. Musculus abolishes evoked 

neurotransmission (Nonet et al., 1998; Schoch et al., 2001; Schulze et al., 1995; 

Washbourne et al., 2002). Several proteins are critically involved in the control of 

SNARE core complex assembly and function. (i) SNARE complex formation is 

controlled by proteins of the Sec1/Munc18-like (SM) family (Jahn et al., 2003). SM 

proteins bind to Syntaxin-like SNAREs. Munc18-1, a key SM protein of mammalian 

that controls synaptic fusion, interacts with a conformation of Syntaxin that is closed 

and prevented from SNARE complex formation. In addition, Munc18 can bind the 

Syntaxin N-terminus. One role of Munc18 in neurotransmitter release from SVs and in 

LDCVs is that of a docking factor that acts prior to SNARE complex assembly. The 

number of membrane-proximal LDCVs is reduced in chromaffin cells of Munc18-1 

deletion mutant mice (Voets et al., 2001). Likewise, docking of SVs at the C. elegans 

neuromuscular junction is impaired in mutants lacking the Munc18-1 orthologue Unc-

18 (Weimer et al., 2003). On the other hand, docking of SVs is not altered in 
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mammalian Munc18-1 deficient central synapses, although these synapses do not 

release neurotransmitter (Verhage et al., 2000). (ii) Munc13 and CAPS proteins are 

essential for SV priming (Varoqueaux et al., 2002; Jockusch et al., 2007). Their role 

will be discussed in further detail below. (iii) The function of Munc13s is counteracted 

by Tomosyn, which can act as a scavenger of SNAREs, thus limiting SNARE complex 

assembly (Wojcik and Brose, 2007). (iv) Complexins bind to the assembled SNARE 

complex and maintain it in a highly fusogenic state (Brose, 2008). (v) Synaptotagmins 

act as the Ca2+ sensors of regulated SV and LDCV secretion (Südhof, 2004). 

Synaptotagmins form a large family of proteins (Craxton, 2004), which contain an N-

terminal transmembrane domain, followed by a linker region and two C-terminal C2 

domains that are referred to as C2A and C2B. Synaptotagmin 1 is the family member 

best characterized. Its C2A and C2B domains bind Ca2+ and interact with phospholipid 

membranes in a Ca2+-dependent manner (Bai et al., 2004; Bai and Chapman, 2004; 

Brose et al., 1992). Synaptotagmin 1 likely acts as a Ca2+-sensor and trigger of fusion by 

simultaneously binding in a Ca2+-dependent manner to the assembled SNARE complex 

and the phospholipids of the fusing membranes (Chapman et al., 1995; Kee and 

Scheller, 1996; Li et al., 1995; Rickman et al., 2003; Wojcik and Brose, 2007), at the 

same time displacing Complexin from the complex.  

 

 

1.2 The Mammalian Unc-13 Protein Family  

 Munc13 proteins are homologues of C. elegans Unc-13, which was initially identified 

as the product of a gene whose mutation causes unccordinated movements and reduced 

transmitter release (Brenner, 1974; Hosono and Kamiya, 1991; Brose et al., 1995). 

Mammals express three closely related Unc-13 homologues, Munc13-1, -2, -3. (Brose et 
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al., 1995) and a distantly related variant called Munc13-4 (Koch et al., 2000) (Figure 5). 

Munc13-1, -2, and -3 are mainly expressed in neurons. In mice and rats, Munc13 

expression starts around birth and increases to reach plateau at postnatal days 20-30, 

when synapse formation is largely complete. Munc13s 1-3 are localized to presynaptic 

active zones, while Munc13-4 is present mainly in lung and lymphocytes.  

 Munc13s 1-3 have a complex domain structure with divergent N-termini and conserved 

C-terminal regions, which contain a C1 domain that binds diacylglycerol and 

phorbolesters, two C2 domains one of which (C2B) binds Ca2+ (Dai et al., 2005; Guan 

et al., 2008; Lu et al., 2006; Rizo and Rosenmund, 2008), and two Munc13-homology 

domains that are important for protein function (Stevens et al., 2005; Basu et al., 2005).  

 

 

 
 

 

Figure 5. Domain Structure of Munc13s and Baiap3.  
Munc13s contain a C1 domain, two or three C2 domains and two Munc13-homology domains (MHDs). 

Baiap3 also contains two C2 domains and two MHDs, but lacks the variable N-terminal region found in 

Munc13-1, -2, and -3. Based on its sequence, Baiap3 is most similar to Munc13-4. 
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 Munc13-1 is expressed in almost all neurons of the CNS, Munc13-2 is mainly 

expressed in cortex and hippocampus, and Munc13-3 is mainly found in cerebellum and 

brainstem (Augustin et al., 1999a). One splice variant of Munc13-2, b-Munc13-2, is 

brain specific, while a second one, ubMunc13-2, is also found in other tissues (Betz et 

al., 2001).  

 Loss of Munc13-1 in mutant mice does not affect synapse, neuron, or brain 

morphology but causes an almost complete block (90 %) of SV priming in hippocampal 

glutamatergic neurons and a concomitant almost complete arrest of SV fusion in these 

cells, while GABAergic neurons are not affected by Munc13-1 deletion (Augustin et al., 

1999b). The remaining release in glutamatergic and GABAergic cells of Munc13-1 

deficient mice is due to the presence of Munc13-2 and totally eliminated upon the 

additional deletion of Munc13-2 (Varoqueaux et al., 2002). Similarly, evoked release at 

cholinergic neuromuscular synapses is almost shut down upon deletion of all three 

Munc13 genes in mice (Varoqueaux et al., 2005), as is GABAergic and cholinergic 

transmission at the neuromuscular synapse of unc-13 null-mutant C. elegans (Richmond 

et al., 1999). Loss of the Drosophila homologue Dunc-13 completely abolishes synaptic 

transmission at the fly glutamatergic neuromuscular junction (Aravamudan et al., 1999).  

 Munc13s are thought to mediate vesicle priming by binding to the N-terminus of 

Syntaxin, thereby keeping it in its open conformation which is able to enter SNARE 

complex formation (Betz et al., 1997; Brose et al., 2000; Richmond et al., 2001). 

Munc13s are regulated by diacylglycerol through their C1 domains (Betz et al., 1998; 

Rhee et al., 2002) and by Calmodulin (Junge et al., 2004), and the presynaptic targeting 

of Munc13-1 and ubMunc13-2 is controlled by the interactions of their respective N-

termini with RIM (Betz et al., 2001; Andrews-Zwilling et al., 2006). As mentioned 

above, the MHDs of Munc13s and their flanking sequences are essential for the 

Munc13-mediated priming function (Stevens et al., 2005; Basu et al., 2005). The 



Introduction 
 

 

 20 
 

corresponding minimal priming region, called MUN domain, domain binds to 

membrane-anchored SNARE complexes and to Syntaxin 1-SNAP-25 heterodimers 

(Guan et al., 2008).  

 The role of Munc13 proteins in LDCV secretion is less well understood. 

Overexpression of Munc13-1 in mouse chromaffin cells leads to an increase in secretion 

as compared with wild type cells. More specifically, the size of the exocytotic burst is 

increased 3-4 fold, and the sustained component of release is strongly augmented upon 

Munc13-1 overexpression. Importantly, the overexpression of Munc13-1 does not affect 

the rate constants of fusion from releasable pools, indicating that Munc13-1 can drive 

priming of chromaffin secretory granules from a docked to a fusion competent state, 

which is apparently rate limiting in adrenal chromaffin cells (Ashery et al., 2000). This 

gain-of-function effect of Munc13-1 overexpression in chromaffin cells requires the two 

MHDs with the flanking C2C domain and its ability to bind Syntaxin (Stevens et al., 

2005). Munc13 deletion mutant chromaffin cells have not been studied so far. However, 

in C. elegans, Unc-13 does not appear to be necessary for LDCV secretion. Rather, a 

distant relative of Munc13s, Unc-31/CAPS is necessary for LDCV secretion in C. 

elegans (Speese et al., 2007; Zhou et al., 2007).  

 

 

1.3 Munc13-4 and Baiap3/Bap3  

 Munc13-4 was identified as a distant Munc13 homologue in protein profile searches for 

proteins with MHDs (Koch et al., 2000). Together with Baiap3/Bap3, which was 

identified in the same profile search, it forms a subfamily of Munc13-like molecules, in 

which the typical Munc13-like domain structure is conserved (Figure 5). Munc13-4 is 

mainly expressed in lung where it is localized to goblet cells of the bronchial epithelium 
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and to alveolar type II cells, which are both cell types with a secretory function, and in 

lymphocytes (Koch et al., 2000).  

 Loss-of-function mutations in the human Munc13-4 gene cause familial 

hemophagocytic lymphohistiocytosis type 3 (FHL3). At the functional level, these 

mutations appear to cause defective cytolytic granule exocytosis. Further analyses 

showed that human Munc13-4 is involved in a late step of the cytolytic granule 

exocytosis pathway, downstream of Rab27a (Feldman et al., 2003). Indeed, Munc13-4 

binds directly to Rab27a, whose mutation causes Griscelli Syndrome type 2 (GS2), a 

genetic disorder involving life-threatening defects of cytotoxic T lymphocytes. 

 Munc13-4 and Rab27a are highly expressed in cytotoxic T lymphocytes and mast cells, 

where they colocalize at secretory lysosomes. Overexpression of Munc13-4 enhances 

degranulation of secretory lysosomes in mast cells, which indicates that it has a positive 

regulatory role in secretory lysosome fusion (Neeft et al., 2005). Thus, Munc13-4 

appears to be essential for the priming of cytolytic granules, much like Munc13s 1-3 

mediate priming of SVs. 

 Baiap3/Bap3 (Brain-specific Angiogenesis Inhibitor 1-Associated Protein 3) is 34% 

identical to Munc13-4 (Koch et al., 2000). Baiap3/Bap3 was first identified as an 

interactor of the cytoplasmic region of BAI 1 (Brain-specific Angiogenesis Inhibitor 1), 

which is the product of a p53 target-gene, which encodes a seven span transmembrane 

protein, and which is specifically expressed in brain (Shiratsuchi et al., 1998).  

 The function of Baiap3/Bap3 is currently unknown. It is expressed predominantly in 

hypothalamus, amygdala, periaqueductal grey, septum and several brainstem nuclei. 

Analyses of deletion mutant fragments of Baiap3 showed that the interaction between 

Baiap3/Bap3 and BAI1 is dependent on the MHDs of Baiap3/Bap3 but not on the 

flanking C2 domains (Shiratsuchi et al., 1998). Interestingly, the Baiap3/Bap3 interactor 

BAI1 is distantly related to the Ca2+-independent receptor for α-latrotoxin, CIRL) 
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which regulates synaptic neurotransmitter release (Krasnoperov et al., 1997; Lelianova 

et al., 1997).  

 So far, Baiap3/Bap3 has mostly been studied in the context of cancer development. The 

Baiap3/Bap3 promoter specifically binds the transcription factor EWS (Ewing’s 

sarcoma)-WT1 (Wilms’ tumor suppressor 1), which can transactivate a number of genes 

implicated in cellular differentiation. Baiap3/Bap3 is expressed in secretory 

syncytiotrophoblast cells of the placenta and in epithelial cells of the breast and 

prostate, and it is colocalized with a secreted growth factor within cytoplasmic 

organelles. Ectopic expression of Baiap3/Bap3 in tumor cells dramatically enhances 

growth in low serum and colony formation in soft agar assays. Interestingly, the 

Baiap3/Bap3 gene encodes a transcriptional target of an oncogenic fusion protein and 

regulates the exocytotic pathway in cancer cell proliferation (Palmer et al., 2002). In 

summary, the role of Baiap3 may be rate limiting for selected steps in the secretory  

pathway of specific cell types (Chan and Weber, 2002). However, the exact role of 

Baiap3/Bap3 in the control of SV or LDCV secretion and its relationship with other 

members of the Munc13 protein family are unknown.  
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1.4 The Aim of the Present Study: An Analysis of the Role of 

Munc13 Proteins and Baiap3/Bap3 in LDCV Exocytosis 

 The present study was performed with the aim to examine the role of Munc13 proteins 

and their relative Baiap3 in LDCV exocytosis. More specifically, my plan was to study 

LDCV secretion in mouse chromaffin cells in order to address the following two 

questions: 

1. Do Munc13s regulate LDCV priming? Studies in C. elegans indicated that the 

nematode Munc13-homlogue Unc-13 specifically regulates SV priming while the CAPS 

homologue Unc-31 mediates the corresponding priming effect in LDCV fusion (Zhou et 

al., 2007). These findings supported earlier studies in mammalian systems, which led to 

the conclusion that CAPS proteins are selectively responsible only for LDCV-mediated 

exocytosis (e.g. Tandon et al., 1998; Rupnik et al., 2000; Sadakata et al., 2004 and 

2007; Speese et al., 2007). However, a recent study in CAPS deficient mice clearly 

showed that CAPS proteins are absolutely essential for SV-mediated exocytosis 

(Jockusch et al., 2007), indicating that a restriction of CASPS/Unc-31-dependent 

regulatory processes to LDCV-mediated secretion may not exist in mammals. In order 

to complement these findings, my first aim was to test systematically whether in 

mammals the SV priming proteins Munc13-1, 2, and -3 are also important for LDCV 

priming.  

2. Does Baiap3/Bap3 play a Munc13-related role in LDCV priming? Baiap3/Bap3 is a 

distant Munc13 homologue of unknown function. In view of its homology with 

Munc13s and the published literature indicating that Munc13s may not be involved in 

LDCV secretion, I set out to examine whether Baiap3/Bap3, instead of Munc13s, 

controls LDCV priming in chromaffin cells. 
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2. Materials and Methods 
 

 

 

 

 2.1 Knock Out Mice 

 
 

 

 2.1.1 Munc13-1, Munc13-2 and Munc13-3 KO Mice 
 

 The Munc13-1, Munc13-2 and Munc13-3 deficient mice used in this study have been 

described previously (Augustin et al., 1999b; Varoqueaux et al., 2002; Augustin et al., 

2001). Chromaffin cells used in this study were cultured from pups on postnatal day 0 

(P0) if the mice were deficient for only one Munc13 isoform, whereas in the case of 

double and triple Munc13-1, -2 and -3 KO mice, cells were cultured on embryonic day 

18 (E18). For each experiment WT or heterozygous littermates were used as controls.  

 

PCR Genotyping for Munc13-1 

Primer 1 (#544): 5′-CTTACCCATCTGAGAGCCGGAATTCCA-3′  

Primer 2 (#5216): 5′-CTCCGAGGGGAATGCGCTTCCGTTTCCTG-3′ 

Primer 3 (#428): 5′-GAGCGCGCGCGGCGGAGTTGTTGAC-3′ 

Munc13-1 WT allele; 250 bp and Munc13-1 KO allele; 230 bp 

 

#: Primer number as designated by the AGCT DNA Core Facility, Max Planck Institute 

for Experimental Medicine, Germany.  
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Reaction Mixture   PCR Program   
 10X Buffer 2 µl  94 °C for 3 min  1 cycle 
 dNTPs 1 µl  94 °C for 30 sec 
 

Primer 1 2 µl  60 °C for 30 sec  

 Primer 2 1 µl  72 °C for 1 min 
 

30 cycles 

 Primer 3 1 µl  72 °C for 10 min 
 

1 cycle 
 Red Taq 1 µl  10 °C for forever 
 

1 cycle 

dH2O 11 µl     

Total 19 µl     

Template DNA 1 µl     

 

 

 

PCR Genotyping for Munc13-2 

Primer 4 (#1125): 5′-TCTCCACTGCCCCCTTTTACTGT-3′  

Primer 5 (#1124): 5′-TCAAGGGACTGTTCTAGCAATGTT-3′ 

Primer 6 (#428): 5′-GAGCGCGCGCGGCGGAGTTGTTGAC-3′ 

Munc13-2 WT allele; 322 bp and Munc13-2 KO allele; 349 bp 

 

 
Reaction Mixture   PCR Program   

 10X Buffer 2 µl  94 °C for 3 min  1 cycle 
 dNTPs 1 µl  94 °C for 30 sec 
 

Primer 4 2 µl  60 °C for 30 sec  

 Primer 5 1 µl  72 °C for 1 min 
 

30 cycles 

 Primer 6 1 µl  72 °C for 10 min 
 

1 cycle 
 Red Taq 1 µl  10 °C for forever 
 

1 cycle 

dH2O 11 µl     

Total 19 µl     

Template DANN 1 µl     
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PCR Genotyping for Munc13-3 

Primer 7 (#776): 5′-GGCTAGGAAGCAGGTAGTGATGGCTG-3′  

Primer 8 (#775): 5′-GCTTAACTGGAACTCACTGGATGTCAGAG-3′ 

Primer 9 (#495): 5′-GACGAGTTCTTCTGAGGGGATCGGC-3′ 

Primer 10 (#494): 5′-TACATTAGAGATGATAATTATCACACCCCAAAG-3′ 

Munc13-3 WT allele; 395 bp, and Munc13-3 KO allele; 410 bp 

 
Reaction Mixture   PCR Program   

 10X Buffer 2 µl  94 °C for 3 min  1 cycle 
 dNTPs 1 µl  94 °C for 30 sec 
 

Primer 7 2 µl  60 °C for 30 sec  

 Primer 8 1 µl  72 °C for 1min 
 

30 cycles 

 Primer 9 1 µl  72 °C for 10 min 
 

1 cycle 
 Primer 10 1 µl  10 °C for forever 
 

1 cycle 

Red Taq 1 µl     

dH2O 11 µl     

Total 19 µl     

Template DNA 1 µl     

 

 

 

2.1.2 Baiap3/Bap3 KO Mice 
 

 Baiap3 deficient mice were generated by Dr. Iris Augustin by homologous 

recombination in embryonic stem cells. Briefly, genomic sequences of Baiap3 were 

subcloned into the pTK-Neo vector. In the targeting vector a 500 bp genomic fragment 

containing exon 1-3 was replaced by a neomycin resistance gene. The vector also 

contained two copied of the herpes simplex virus thymide kinase for negative selection. 

Recombinant stem cell clones were identified by Southern blotting. Two positive clones 

were injected into mouse blastocytes to obtain highly chimeric mice that transmitted the 
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mutant gene through the germ line. Germ line transmission of the mutant gene was 

confirmed by southern blotting. Subsequent routine genotyping was performed by PCR. 

Western blot analyses of adult mouse brain homogenates with a Baiap3 specific 

antiserum directed against the N-terminus (a.a 9-181) or C-terminus (a.a 330-1150) of 

Baiap3, demonstrated the total absence of Baiap3 in homozygous mutant brain. 

Chromaffin cells from Baiap3 KO mice were cultured form P0 pups and WT littermates 

were used as controls. 

 

 

PCR Genotyping for Baiap3 

Primer 11 (#2862): 5′- CCAGAAATCCGCAGGCAGTCGTCA-3′  

Primer 12 (#2863): 5′- CAAGGCAACCACCAGCCGCATCTA-3′ 

Primer 13 (#2935): 5′- GAACACGGCGGCATCAGAGCAG-3′ 

Baiap3 WT allele; 546 bp and Baiap3 KO allele; 636 bp 

 

Reaction Mixture   PCR Program   
 10X Buffer 2 µl  94 °C for 1 min  1 cycle 
 dNTPs 1 µl  94 °C for 1 sec 
 

Primer 11 2 µl  60 °C for 30 sec  

 Primer 12 1 µl  72 °C for 30 sec 
 

33 cycles 

 Primer 13 1 µl  72 °C for 10 min 
 

1 cycle 
 Red Taq 1 µl  10 °C for forever 
 

1 cycle 

dH2O 11 µl     

Total 19 µl     

Template DNA 1 µl     
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2.2 In Vivo Assays 

 

 
2.2.1 Cell Culture and Transfection 
 

 

2.2.1.1 Cell Line Culture and Transfection 
 

 The HEK (Human Embryonic Kidney) 293FT cell line, an epithelial line derived from 

human embryonic kidney cells transformed with the large T-antigen, was used for both 

in vivo and in vitro binding assays. The cell line was maintained in plastic tissue culture 

dishes with high-glucose Dulbecco′s Modified Eagle′s Medium (DMEM) supplemented 

with 10 % fetal calf serum (FCS) in a 37 °C humid incubator with 5 % ambient CO2. 

The selection agent G418 (Geneticin) was added to complete DMEM medium of 

HEK293FT cells at a concentration of 500 µg/ml. Passaging was performed using 

standard procedures of trypsin mediated dislodgment of confluent cultures.  

1. For thawing cells, pre-warm the complete DMEM medium without G418 

2. Frozen vial from Liquid Nitrogen Tank, thaw the vial by gently shaking in a 

37°C water-bath 

3. Transfer the cells into 10 ml pre-warmed complete DMEM medium without 

Geneticin in a 50 ml falcon tube and mix slowly 

4. Centrifuge for 3 min at 800 rpm 

5. Carefully discard supernatant 

6. Wash the pellet with PBS and centrifuge a second time 

7. Resuspend the cells in 10ml of pre-warmed medium 

8. Transfer the suspended cells into T75 flask and incubate at 37 °C 
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9. One day before cells reach 90 % confluency, discard the medium from the T75 

flask 

10. Add 5 ml 0.05 % Trypsin and incubate for 5 min at 37°C 

11. Add 10 ml complete DMEM medium and triturate cells thoroughly 

12. Centrifuge for 3 min at 800 rpm 

13. Carefully discard supernatant 

14. Wash the pellet with PBS and centrifuge again 

15. Resuspend cells in 10 ml of pre-warmed medium 

16. Transfer suspended cells into 3 X T75 flask and incubate at 37 °C 

  

Transfections were performed using Lipofectamine 2000 by following standard 

procedures. 

1. For transfection of HEK293FT cells with either pMYC-Baiap3 full-length or 

pCDNA3-Munc13-1 full-length constructs, plate 6-7 X 105 cells in 15 ml of 

complete DMEM medium (for 15 cm dish format). Cells will be 85-90 % 

confluent at the time of transfection 

2. For transfection samples, dilute 30 µg of DNA (each construct) in 1.5 ml of 

Opti-MEM I without serum and gently mix.  

3. Mix Lipofectamine 2000 gently before use, dilute 60 µl of Lipofectamine 2000 

in 1.5 ml Opti-MEM I and incubate for 5min at RT 

4. Combine the diluted DNA with the diluted Lipofectamine 2000. Mix gently and 

incubate for 20 min at RT 

5. Add the DNA-Lipofectamine complexes to each dish  

6. Incubate the cells at 37 °C in a CO2 incubator for 30 hr prior to testing for co-

sedimentation 
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Complete DMEM medium: DMEM  

 10 % FCS 

 0.1 mM Non-Essential Amino Acids  

 2 mM L-glutamine 

 500 µg/ml G418 

 1 % Penicillin/Streptomycin 

  

 

 

2.2.1.2 Mouse Chromaffin Cells Culture 
 

 Embryonic (E18) and/or postnatal (P0) adrenal glands were dissected and chromaffin 

cells prepared by digestion with Papain solution. The adrenal glands were incubated 

with 400 µl papain solution at 37 °C for 30 min in Eppendorf Thermocycler (500 rpm), 

followed by addition of 400 µl stop solution and incubation for 15 min. The solution 

was then replaced by 500 µl complete NBA (Neurobasal-A) medium. The adrenal 

glands were gently opened before digestion, and triturated gently through a 10 µl pipette 

tip. The entire cell suspension obtained from two glands (one animal) was plated on a 

sterile coverslip in a 6-well plate. The cells were incubated at 37 °C and 5 % CO2 and 

used within 2 days after plating. 

Complete NBA medium: 500 ml NBA medium 

 10 ml B27 

 5 ml Glutamax 

 1 ml Penicillin/Streptomycin 

Papain Solution: 250 ml DMEM medium 

 50 mg L-Cystein 

 2.5 ml 0.1M CaCl2 

 2.5 ml 50mM EDTA 

 20 units/ml papain 

Stop Solution: 225 ml DMEM medium 

 25 ml heat inactivated FCS 

 625 mg Albumin 

 625 mg Trypsin inhibitor 



Materials and Methods 
 

 
 

    31 

2.2.2 SFV Preparation and Infection 
 

 SFV1 constructs expressing a Munc13-1-EGFP fusion protein have been described 

previously (Ashery et al., 2000). A Baiap3-IRES-EGFP construct was sub-cloned blunt-

ended into the SmaI site of the pSFV1 polylinker. Following linearization with SpeI, 

cDNAs of pSFV-Baiap3-IRES-EGFP, pSFV-Munc13-1-EGFP, and pSFV-helper1 were 

transcribed in vitro with SP6 RNA polymerase. BHK21 cells, derived from hamster 

kidney, were then transfected by electroporation (400 V, 975 µF) with a combination of 

10 µg of each constructs and incubated at 37 °C, 5 % CO2 for 24 hr. Following this 

incubation, the supernatant was collected and clarified from cell debris by low speed 

centrifugation. The supernatant containing the inactivated virus was snap-frozen in 450 

µl aliquots and stored at -80 °C. To test the virus titer, an aliquot was thawed and 

activated. BHK21 cells were then infected with various dilutions of the activated virus, 

and the infection efficiency was determined by assessing EGFP fluorescence. Four 

hundred and fifty microliters of frozen virus were thawed and diluted 1:1 with opti-

MEM medium with 2.5 % FCS. To activate the virus, 110 µl Chymotrypsin was added 

and incubated for 35 min at RT. In order to inactivate the chymotrypsin, 110 µl 

Aprotinin was added, incubation continued for an additional 5 min at RT. Infection was 

performed on cultured cells 24 hr after preparation according to published protocols 

(Ashery et al., 1999).  

 

To generate viral RNA for electroporation of BHK21 cells: 

1. Linearize DNA with SpeI enzyme 

2. Linearized DNA purification using phenol-chloroform extraction 

3. Precipitate DNA using 3M sodium acetate after purification 

4. In vitro transcription using SP6 trancription Kit  
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5. RNA purification using phenol-chloroform extraction 

6. Precipitate RNA using 3M sodium acetate after purification 

7. Check RNA on formaldehyde-agarose gel 

8. Quantification of RNA concentration 

9. Transfection with BHK21 cells using electroporation 

10. Culture BHK21 cells for 2 days and then harvest the inactive virus 

11. Make 450 µl aliquots into cryotubes and freeze in liquid nitrogen 

12. Store at -80 °C until use 

 

To activate the SFV: 

1. Take one 450 µl virus aliquot and thaw 

2. Add 450 µl BHK21 cell medium  

3. Add 110 µl Chymotrypsin and mix and incubate for 35 min at RT 

4. Add 110 µl Aprotinin and mix and incubate for 5 min at RT 

5. Store at 4 °C 

 

 
DEPC-treated distilled water : 0.1 % DEPC (under hood) in dH2O 

 Stir for 2hr under hood and autoclave 

5X MOPS Buffer: 0.1 M MOPS 

 40 mM sodium-acetate 

 5 mM EDTA (pH 8.0) 

3M Sodium Acetate: 20.4 g of Sodium acetate trihydrate  

 Adjust to pH 5.8 

RNA gel loading buffer : 1X MOPS 

 6.5 % Formaldehyde 

 50 % Formamide 

 5 % Glycerin 

 0.1 mM EDTA 

 0.025 % Bromophenol Blue 
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BHK Cell Medium : 500 ml DMEM medium 

(for growth) 12.5 % FCS 

 1 ml Penicillin/Streptomycin 

BHK Cell Medium : 500 ml NBA medium 

(for electroporation) 10 ml B27 

 1 ml Penicillin/Streptomycin 

 1 ml Glutamax 

Chymotrypsin: 2 mg/ml  

Aprotinin: 6 mg/ml 

 

 

 

2.2.3 Protein Extraction from Whole Brain and Adrenal Gland  
 

 Both whole brain and adrenal gland were taken from WT and Baiap3 KO mice and 

homogenized with a Glass-Teflon-Homogenizer in 4 °C in Lysis buffer. Total protein 

concentration was determined by a BCA protein assay and adjusted to 1-2 mg/ml in 

Sample Buffer (1x Laemmli Buffer). Prepare the samples for loading by heating them to 

100 °C for 5 min in Sample Buffer to denature the proteins. 

 

 
Lysis Buffer: 320 mM Sucrose 

 150 mM NaCl 

 1 mM EGTA (pH 8.0) 

 0.2 mM PMSF 

 1 µg/ml Aprotinin 

 1 µg/ml Leupeptin 

3X Sample Buffer: 10 % SDS 

 140 mM Tris/HCl (pH 6.8) 

 3 mM EDTA 

 30 % Glycerol 

 0.1 % Bromophenol Blue 

 150 mM DTT before use 

 



Materials and Methods 
 

 
 

    34 

2.3 In Vitro Assays 

 

 

 

2.3.1 Construct Subcloning 

 
 
2.3.1.1 Restriction Enzyme and Purification 

 For the construction of some constructs the gene of interest was amplified by PCR and 

subsequently digested with the appropriate restriction enzymes. Digested DNA 

fragments were purified by using phenol-chloroform extraction before subcloning using 

the following procedures: 

1. Amplify DNA and digest with the appropriate restriction enzymes 

2. To purify of the DNA, add 200 µl Phenol-chloroform-isoamylalcohol (25:24:1) 

(pH 7.5-8 for DNA; pH 4-6 for RNA). Mix by pipetting up and down 

3. Add 200 µl Chloroform and vortex thoroughly 

4. Centrifuge at 15000 rpm for 5 min (DNA is in upper phase) 

5. Transfer the supernatant into new eppendorf tube 

6. Add 200 µl chloroform and mix with vortexer 

7. Centrifuge at 15000 rpm for 2 min  

8. Transfer the supernatant into new eppendorf tube 

9. Add 1/10 volume of 3M Ammonium-acetate  

10. Add 2.5 volume of 100 % cooled EtOH and mix 

11. Incubate at -20 °C for ON 

12. Centrifuge at 15000 rpm for 30 min 

13. Wash the pellet with -70 % cooled EtOH 

14. Centrifuge at 15000 rpm for 10 min 
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15. Carefully remove supernatant and dry the pellet 

16. Add 50 µl dH2O to resuspend and quantify 

 

 

2.3.1.2 Dephosphorylation, Ligation and DNA-sequencing 

 Prior to ligation of insert DNA and vector DNA, the 5' ends of the vector were 

dephosphorlyated by Shrimp Alkaline Phosphatase. Ligation was performed using T4 

DNA ligase. After transformation, plasmid DNA was prepared from cultures grown 

from colonies, analyzed by restriction digests and plasmid DNA from selected clones 

was sequenced by the Applied Biosystems 373 DNA sequencer by the DNA core 

facility. 

 

1. For dephosphorylation, add 2.5 µl dephosphorylation buffer and 2 µl 

phosphatase in 20.5 µl purified DNA 

2. Incubate for 10 min (for sticky ended) or 1 hr (for blunt ended) at 37 °C 

3. Inactivate the Shrimp Alkaline Phosphatase for 15 min at 65 °C 

4. For the ligation reaction, a 1:5 to 3:8 (vector: insert) ratio is usually used and 

ligations are placed in 4 °C water-bath that warms up to 15°C ON 

5. Transformation into E.coli 

 

 
2.3.2 Western Blotting  

 
2.3.2.1 SDS gel Electrophoresis of Proteins  

 In order to investigate subunit compositions and to verify homogeneity of protein 

samples, electrophoresis is used to separate complex mixtures of proteins. Proteins 
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migrate in response to an electrical field through pores in the gel matrix. The 

combination of gel pore size and protein size and charge determines the migration rate 

of the proteins. SDS-PAGE is an anionic system due to the negatively charged SDS. 

 

1. Pour gel of appropriate polyacrylamide concentration, depending on molecular 

weight of the protein of interest 

2. Mount the gel in the electrophoresis apparatus and fill with running buffer (1X 

RB) 

3. Load the prepared samples into the wells  

4. Attach the electrophoresis apparatus to an electric power supply. Apply a current 

of 25 mA and 50 mA for one and two gels, respectively 

5. After running the gel, place the polyacrylamide gel in a plastic container for 

either coomassie staining or blot transfer to membranes 

 
Stacking gel: 1 M Tris-HCl (pH 6.8)  Separating gels 

Separating gel: 1.5 M Tris-Hcl (pH 8.8)  7.5 % gel: > 100 kDa 

Acrylamide/Bisacrylaminde: 30 % Acrylamid/Bis (37.5:1)  10 % gel: 60~130 kDa 

SDS: 10 % Stock solution  13 % gel: 20~80 kDa 

APS 10 % Stock solution  15 % gel: < 50 kDa 

TEMED: Solution from SERVA   

10X RB: 250 mM Tris   

 2.5 M Glycine (pH 8.3)   

 1 % SDA   

 

 

 

2.3.2.2 Coomassie Blue Staining 

 An easy and rapid detection method for proteins in gel is to perform a coomassie blue 

staining of the polyacrylamide gel. It is based on nonspecific binding of the dye 

coomassie brilliant blue R250 to proteins. The detection limit is 0.3 to 1µg/protein band.  
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1. Place the polyacrylamide gel in a plastic container and cover it with 5 volumes 

of Coomassie staining solution A. 

2.  Incubate for 1 min at 100 °C using Microwave 

3. Remove solution A and add Coomassie staining solution B. Incubate for 1 min 

at 100 °C using Microwave 

4. Remove solution B and add Coomassie staining solution C. Incubate for 1 min 

at 100 °C using Microwave 

5. Remove solution C and add Coomassie staining solution D. Incubate for 1 min 

at 100 °C using Microwave  

6. Pour out Coomassie staining solution D. Keep the gel at RT 

 

Coomassie staining solution A: 0.15 % Coomassie Brillant Blue R25 

 25 % Isopropanol 

 10 % Acetic Acid 

Coomassie staining solution B: 0.015 % Coomassie Brillant Blue R25 

 10 % Isopropanol 

 10 % Acetic Acid 

Coomassie staining solution C: 0.006 % Coomassie Brillant Blue R25 

 10 % Acetic Acid 

Coomassie staining solution D: 10 % Acetic Acid 

 

 

 

 

2.3.2.3 Blot Transfer of Protein Gels to Membranes 

 The membranes used for the electrophoretic transfer were manufactured from 

nitrocellulose. In this procedure, blotting is performed in a tank of buffer with the gel in 

a vertical orientation, completely submerged between two large electrode panels as 

follows: 
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1. Assemble transfer sandwich; one plastic support, one porous pad, two pieces of 

Whatman paper, nitrocellulose, gel, two pieces of Whatman paper, one porous 

pad, and a plastic support. The transfer cassette should be assembled under 

buffer to avoid trapping of air bubbles 

2. Fill tank with transfer buffer and place the sandwich into electroblotting 

apparatus. Transfer is achieved by applying a current of 40 mA for 16 hr at 4°C 

in a cold room 

 

Transfer Buffer: 25 mM tris-HCl (pH 8.3) 

 190 mM Glycine 

 20 % Methanol 

 

 

 

2.3.2.4 Immunoblotting with ECL (Enhanced Chemiluminescence) 

 ECL uses the HRP (hydrogen peroxide) catalyzed oxidation of luminol in alkaline 

conditions. Immediately following oxidation, the luminol is in an excited state which 

then decays to ground state via a light emitting pathway. ECL is achieved by 

performing the oxidation of luminol by the HRP in the presence of chemical enhancers 

such as phenols. This increases the light output approximately 1000 fold and extends 

the time of light emission. The maximum light emission is at a wavelength of 428 nm, 

which can be detected by a short exposure to blue-light sensitive autoradiography film. 

The detection limit of the ECL system is less than 1 picogram (pg) of antigen 

Procedures used were as follows: 

 

1. Pour 10 ml of Buffer A onto membrane and incubate for 1 hr at RT or for ON at 

4 ºC on an orbital shaker to block non-specific binding 
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2. Dilute the primary antibody in Buffer A and incubate the membrane for 1 hr at 

RT 

3. Wash the membrane three times for 15 min in Buffer B at RT 

4. Dilute the secondary antibody in Buffer A and incubate the membrane for 1 hr at 

RT 

5. Wash the membrane three times for 15 min in Buffer B at RT 

6. Wash the membrane three times for 15 min in Buffer C at RT 

7. Wash the membrane three times for 15 min in Buffer D at RT 

8. Mix an equal volume of ECL detection solution 1 with detection solution 2 to 

give sufficient volume in order to cover the membrane 

9. Incubate for 1 min at RT with mixed ECL solution 

10. Drain off excess detection reagent and cover the filter with a copier transparency 

11. Check the signal by exposing the membrane to an autoradiography film in a dark 

room 

 

10X Transfer Buffer: 1.92 M Glycine 

 250 mM Tris 

10X TBS: 1.37 M NaCl 

 200 mM Tris-HCl, pH 7.6 

Tween 20 stock solution: 10 % Tween 20 

Buffer A: 5 % goat serum 

 5 % milk powder 

 0.1 % Tween 20 

 1X TBS 

Buffer B: 5 % milk powder 

 0.1 % Tween 20 

 1X TBS 

Buffer C: 0.1 % Tween 20 

 1X TBS 

Buffer D: 1X TBS 



Materials and Methods 
 

 
 

    40 

2.3.3 Northern Blotting 

 
2.3.3.1 RNA Extraction 

 To check the expression level of Baiap3 RNA in WT and Baiap3 KO mice, total RNA 

was isolated from littermates as follows: 

1. Homogenize whole brain from WT and Baiap3 KO mice in Trizol reagent using 

a Glass-teflon homogenizer 

2. Store the homogenate for 10 min at RT 

3. Add chloroform and shake vigorously 

4. Store the mixture at RT for 15 min and centrifuge at 15000 rpm for 15 min at 

4°C 

5. RNA remains exclusively in the aqueous phase and is transferred into a new 

tube 

6. Add isopropanol and mix vigorously 

7. Store the mixture at RT for 10 min and centrifuge at 15000 rpm for 10 min at 

4°C 

8. Remove the supernatant and wash the RNA pellet with 75 % EtOH 

9. Centrifuge at 15000 rpm for 5 min at 4 °C 

10. Briefly dry and resuspend RNA pellet with DEPC-water 

  

 

 

2.3.3.2 Blotting 

 The RNA extracted from whole brain of WT and Baiap3 KO littermates was used to 

detect Baiap3 RNA using a specific probe corresponding to a region of the gene that is 

not deleted in the Baiap3 KO (a.a 330-1150). RNA is transferred from an agarose gel to 
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a Hybond+ (nucleic acid transfer) membrane by capillary transfer. The blots are 

analyzed by hybridization analysis with a radioactively labeled DNA probe as follows: 

 

1. Prepare RNA samples with 10X MOPS, 12.3 M formaldehyde, and formamide 

2. Incubate for 15 min at 55 °C and add formaldehyde loading buffer 

3. Load the prepared RNA samples onto a formaldehyde agarose gel 

4. Run the gel at 80 V for 4 hr in 1X MOPS 

5. Transfer the gel into a new plastic container with 1L 20X SSC and soak for 

45min 

6. For blot, Cut three pieces of 3 M paper and the Hybond+ (nucleic acid transfer) 

membrane to cover the exposed surface of the gel 

7. Incubate for overnight in 0.4 N NaOH 

8. Wash the membrane with 1X SSC until the pH reaches 7.5 and dry the 

membrane 

9. Cross link the RNA to the membrane with UV light (1 J/Cm2) 

10. Pre-wet the membrane with 2XSSC and place in hybridization bottle, add 

hybridization solution and incubate at 65 °C for 30 min 

11. Prepare labeled probe with 32PdCTP 

                   25 ng of DNA          1 µl 

                   dH2O                     23 µl 

                   Random primer      10 µl  

12. Incubate for 5 min at 100 °C 

13. Add 10 µl 5 X buffer and 5 µl 32PdCTP and 1ul Exo-Klenow and incubate for 10 

min at 37 °C 
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14.  Add 2 µl Stop mix and purify the labeled probe with Bio-Spin 6 column and 

Incubate for 6 min at 100 °C 

15. Store the probe on ice for 10 min 

16. Add labeled probe to the membrane and incubate ON at 65 °C 

17. Wash the membrane with 2X SSC + 0.1 % SDS at RT for 20 min 

18. Wash the membrane with 1X SSC + 0.1 % SDS at 65 °C for 20 min 

19. Wash the membrane with 0.5X SSC + 0.1 % SDS at 68 °C for 30 min 

20. Check the radioisotope activity and wash until counts are below 100 

21. Expose the membrane with film at -80 °C for 3 days  

 
10X MOPS: 0.4 M MOPS (pH7.0) 

 0.1 M sodium acetate 

 0.01 M EDTA 

20X SSC: (pH7.0) 3 M NaCl 

 0.3 M Na3citrate.2H2O 

Formaldehyde loading buffer: 1 mM EDTA (pH8.0) 

 0.25 % bromophenol blue 

 0.25 % xylene cyanol 

 50 % glycerol 

Formaldehyde gel (100ml): 1 g Agarose in 72ml dH2O 
 10 ml 10XMOPS 
 18 ml 12.3M formaldehyde 

 

 

 

2.3.4 Expression of GST Fusion Proteins 
 

 In order to express with either Munc13-1 or Sytaxin 1A (a.a 1-256) or Baiap3-MHDs 

(a.a 330-1150) fusion proteins with GST, BL21DE3 E.coli was subjected to 

electroporation-mediated plasmid transformation with the respective constructs in 

pGEX-KG. GST-fusion proteins were prepared by follows; 
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1. Inoculate one colony from LB- ampicillin plates with either GST-Munc13-1 or 

GST-Syntaxin 1A (a.a 1-256) or Baiap3-MHDs (a.a 330-1150) into individual 5 

ml of LB broth containing ampicillin and grow ON at 37 °C with shaking. 

2. Inoculate 1 L of LB with 5ml from step 1 

3. Grow at 37 °C with shaking for 4 hr 

4. Induce expression of the protein by adding 0.3 mM IPTG and incubate for 4 hr 

at 25 °C with shaking 

5. Centrifuge the culture at 3500 g for 20 min at 4 °C 

6. Discard the supernatant and resuspend the pellet in 20 ml PBS with protease 

inhibitors 

7. Add Lysozyme and incubate for 10 min at RT 

8. Sonicate the bacterial suspension on ice, three times in short 30 sec bursts  

9. Add 1 % Sodium cholate and incubate for 10 min at 4 °C with shaking 

10. Centrifuge the lysate at 15000 g for 15 min at 4 °C 

11. Transfer the supernatant to a fresh tube 

12. Add 1 ml of a 50:50 slurry of Glutathione-Sepharose 4B beads in lysis buffer 

and incubate for ON at 4 °C 

13. Centrifuge at 750 g for 5 min at 4 °C to pellet the beads 

14. Wash the beads four times in 5 ml of cold wash buffer 

15. The fusion protein should be stored on the beads at 4 °C  

 
Ampicillin Solution: 20  mg/ml 

Kanamycin Solution: 10  mg/ml 

LB-Medium: 10 g NaCl 

 10 g Bacto-Trypton 

 5 g Bacto-Yeast-Extract 

 In 1 L dH2O and Autoclave 



Materials and Methods 
 

 
 

    44 

LB-Plate: 15 g Bacto-Agar 
 In 1 L LB Medium 

 appropriate antibiotic selection 

50X TAE: 242 g Tris Base 

 57.1 ml Acetic acid 

 100 ml 0.5M EDTA (pH 8.0) 

 

 

 

 

2.3.5 Co-sedimentation Assays  
  

 Recombinant fusion proteins consisting of glutathione S-transferase fused to syntaxin 

1A (a.a 1-256), Munc13-1-176/178 (a.a 517-1735), Munc13-1-N1/N2 (a.a 3-317), 

Munc13-1-13'1 (a.a 1032-1345), or Munc13-1-3'13A (a.a 1399-1622) (Betz et al., 1997) 

were produced in E. coli using the pGEX-KG expression vector. Recombinant proteins 

were purified on glutathione-sepharose 4B, and immobilized on the resin for co-

sedimentation assays. Cell lysate from HEK293FT cells co-transfected with pEGFP-

Munc13-1 (full-length) and pMYC-Baiap3 (full-length) or crude whole brain extract 

from adult WT mice was solubilized at a concentration of 2 mg/ml in lysis buffer. After 

stirring on ice for 10 min, insoluble material were removed by centrifugation at 15000 

rpm for 30 min at 4 °C. The equivalent of 3 mg of total protein was incubated with 50 

µg immobilized GST-fusion protein ON at 4 °C on a rotating wheel. Beads were 

washed 4 times with lysis buffer, resuspended in SDS-PAGE sample buffer, and 

analyzed by SDS-PAGE and immunoblotting using standard procedures. 

Immunoreactive proteins were visualized with ECL. The following primary antibodies 

were used for immunodetection: two monoclonal antibodies to MYC for Baiap3, to 

Syntaxin 1A/B, and a polyclonal antibody to Munc13-1. 
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2.3.6 Production of Anti-Baiap3 Antisera 
  
 Polyclonal antibodies directed against Baiap3 were generated with a GST fusion 

protein as the antigen. Recombinant GST-Baiap3-MHDs fusion protein was generated 

by using the expression plasmid pGEX-Baiap3-MHDs, which expresses the residues 

330-1150 of Baiap3 in the pGEX-KG vector. A polyclonal antibody that recognizes the 

N-terminus of Baiap3 (a.a 9-181) had previously been generated by Dr. Iris Augustin. 

Since the antibody produces a rather high background in immunofluorescence staining, 

we generate an antibody to a.a 330-1150 of Baiap3. We subcloned the regions spanning 

the MHDs to up to C2C domain of Baiap3 into the pGEX-KG construct. The host 

immunization and bleeding of rabbits and guinea pigs was performed by Eurogentec. 

The antisera were derived from the final bleeding of the rabbits SA5990 and SA5991 

and of the guinea pigs SAC106 and SAC107. Since the recombinant Baiap3 protein 

proved to be insoluble and furthermore stuck to the beads, the following purification 

procedures were used: 

 

Subcloning of the Baiap3 MHDs 

Primer 14 (#11742): 5′-CCGGAATTCTAATGAACTTAGAGGTGGCCTCGG-3′  

Primer 15 (#3417): 5′-TACGCGTCGACTCACCGGTTCTGCTCCAG-3′ 

 
Reaction Mixture   PCR Program   

 10X Buffer 10 µl  94 °C for 3 min  1 cycle 
 dNTPs 5 µl  94 °C for 30 sec 
 

Primer 14 4 µl  55 °C for 30 sec  

 Primer 15 4 µl  72 °C for 1min 
 

35 cycles 

 Pfu Taq 1 µl  72 °C for 10 min 
 

1 cycle 
 dH2O 25 µl  10 °C for forever 
 

1 cycle 

Total 50 µl     

Template DNA 1 µl     
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1. Inoculate one colony from LB-ampicillin plates with GST-Baiap3-MHDs into 

individual 5 ml of LB broth containing ampicillin and grow ON at 37 °C with 

shaking incubator 

2. Inoculate 1 L of LB with 5 ml from step 1 

3. Grow at 37 °C with shaking for 4 hr 

4. Induce expression of the protein by adding 0.3 mM IPTG and incubate for 4 hr 

at 25 °C with shaking 

5. Centrifuge the culture at 3500 g for 20 min at 4 °C 

6. Discard the supernatant and resuspend the pellet in 20 ml PBS with protease 

inhibitors 

7. Add Lysozyme and incubate for 10 min at RT 

8. Sonicate the bacterial suspension on ice, three times in short 30 sec bursts  

9. Add 1 % sodium cholate and incubate for 10 min at 4 °C with shaking 

10. Centrifuge the lysate at 15000 g for 15min at 4 °C 

11. Transfer the supernatant to a fresh tube 

12. Add 1 ml of a 50:50 slurry of Glutathione-Sepharose 4B beads in lysis buffer 

and incubate for ON at 4 °C 

13. Centrifuge at 750 g for 5 min at 4 °C to pellet the beads 

14. Wash the beads four times in 5 ml of cold wash buffer 

15. Cleave between GST and Baiap3 fragment by thrombin digestion for 2 hr at RT 

16. Protein purification from the beads by Electro-HPLC (high performance liquid 

chromatography) 

17. The denatured purified Baiap3 fragment was sent to Eurogentec for 

immunization 
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2.3.7 Antibodies, Chemicals, Kits and Reagents 

 
Antibodies   

Primary monoclonal Source Dilution  

Anti-ChromograninA  BD Biosciences 1:1000 

Anti-MYC Abcam 1:3000 

Anti-NMDA R1 Synaptic Systems 1:1000 

Anti-NSF Abcam 1:2000 

Anti-SNAP 25  Synaptic Systems 1:2000 

Anti-Synaptobrevin2  Synaptic Systems 1:2000 

Anti-Synaptophysin Synaptic Systems 1:2000 

Anti-Syntaxin1  Synaptic Systems 1:2000 

Anti-Tubulin Sigma 1:10.000 

   

Primary polyclonal Source Dilution  

Anti-BAI 1 Abcam 1:1000 

Anti-Baiap3   Shin et al. 1:500 

Anti-Munc13-1 (40.1) Varoqueaux et al. 1:1000 

Anti-bMunc13-2 (44.1) Varoqueaux et al. 1:1000 

Anti-ubMunc13-2 (48.1) Varoqueaux et al. 1:1000 

Anti-Munc13-3 (52.1)  Varoqueaux et al. 1:1000 

Anti-Munc18-1 Synaptic Systems 1:2000 

Anti-VMAT2 Weihe et al. 1:2000 
   

Secondary Source Dilution  

Anti-Mouse, 

HRP-conjugate 
Bio-Rad 1:10.000 

Anti-Rabbit, 

HRP- conjugate 
Bio-Rad 1:10.000 

 
 

Chemicals  
Product Company 
Agarose Gibco-BRL 
Ammoniumpersulfate Sigma-Aldrich 
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Ampicillin Sigma-Aldrich 
Aprotinin Roche 
Bacto-Yeast-Extract DIFCO Laboratories 
Bacto-Trypton DIFCO Laboratories 
Bacto-Pepton DIFCO Laboratories 
Bacto-Agar DIFCO Laboratories 
BAPTA Signa-Aldrich 

BCA (Protein Assay) Bio-Rad 
Bromophenol Blue Sigma-Aldrich  
Coomassie Blue R250 BIOMOL 
Chymotrypsin Sigma-Aldrich  

[α
32

P]dCTP Amersham  

DEPC Sigma-Aldrich  
DMSO  Sigma-Aldrich 
dNTP´s Pharmacia Biotech 
DTT Sigma-Aldrich  
ECL-Reagents Amersham-Buchler 
Films Kodak  
Ethanol JT Baker 

Ethidiumbromide Sigma-Aldrich 
Ficoll 400 Pharmacia Biotech 
Fura-4F Invitrogen 

Glutathion Sepharose 4B Sigma-Aldrich 
Glutathion-Agarose Matrix Sigma-Aldrich 
Glycin Bio-Rad Laboratories 
IPTG BioMol Feinchemikalien 
Isopropanol Merck 

Kanamycin Sigma-Aldrich 
Klenow-Fragment Roche 
Leupeptin Roche 
Lysozym Sigma-Aldrich 
Ni-NTA-Agarose-Matrix Qiagen  
NP-EGTA Synaptic Systems 

Mg2+-Fura-2 Invitrogen 

Paraformaldehyde BIOMOL 
PBS Sigma-Aldrich 
Pfu-Polymerase Stratagene 
Phenol-Chloroform ROTH 
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PMSF Roche 
Ponceau S Sigma-Aldrich 
Protein Assay Bio-Rad Laboratories 
Proteinase K Boehringer Mannheim  
Rapid-hyb. Buffer Amersham pharmacia 
Rat Quick Clone cDNA, MouseBrain Clontech 
SDS Roche 
Standard Molecular weight marker Prestained Standards, Bio-Rad 
T4-DNA-Ligase Roche 
T4-DNA-Polymerase Roche 
Taq-Polymerase ABI 
Temed Sigma-Aldrich 
2,2,2-Tribromethanol Sigma-Aldrich 
Tris Base Sigma-Aldrich 
Triton X-100 Roche 
Dry Milk Nestle 
Tween 20 Sigma-Aldrich 
X-Gal BIOMOL 

 

Kits  
Product Company 
Centricon 10 Amicon GmbH 
ECL-film Amersham 
Electroporation Cuvettes Bio-Rad Laboratories 

Hybond-N+-Membrane Amersham 

Plasmid-Purification Kit Qiagen 
Prime-It II-Random Primer Labelling Kit Stratagene  
Protran (nitrocellulose transfer membrane) Whatman International 

Shrimp Alkaline Phosphatase Roche 

SP6 in vitro transcription Kit Roche 

Topo T/A und Topo XL Cloning Kit Invitrogen 
Qiafilter Plasmid Kit Qiagen 
Qiaquick Gel-Extraction Kit Qiagen 
Qiaquick PCR-Purification Kit Qiagen 
Whatman 3MM paper Whatman International 
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Reagents   
Product Company 
β-Mercaptoethanol "cell culture tested" Sigma-Aldrich  

DMEM Gibco-BRL 

Knockout DMEM  Gibco-BRL 
Fetal Calf Serum Hyclone 

Fetal Bovine Serum Hyclone 

G418 Invitrogen 

L-Cysteine Gibco-BRL 

L-Glutamine (100 x) Gibco-BRL 
Lipofectamin 200 Invitrogen 

NEAA (100 x) Gibco-BRL 
Neurobasal Medium Gibco-BRL 

Papain Worthington 

Penicillin/Streptomycin  Gibco-BRL 
Opti-MEM Gibco-BRL 
Trypsin-EDTA (0.05x) Gibco-BRL 
Trypsin-EDTA (0.25%) Gibco-BRL 

 

 

 

 

2.4 Electrophysiological Analysis 
 

 

2.4.1 Whole Cell Capacitance Measurements 
  
 Conventional whole-cell recordings were performed at 30 °C with 3-5 MΩ pipettes 

(Kimax-51; Kimble/Kontes, Vineland, NJ) (Voets et al., 2000). An EPC-9 patch-clamp 

amplifier was used together with the Pulse software package (HEKA Electronics, 

Lambrecht, Germany). Capacitance measurements were performed by using the Lindau-

Neher technique implemented as the “sine+ dc” mode of the software lock-in extension 
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of pulse, which allowed long-duration capacitance measurements in a single sweep. A 

1000 Hz, 70 mV peak-to-peak sinusoid voltage stimulus was superimposed onto a DC 

holding potential of -70 mV. Currents were filtered at 3 kHz and sampled at 12 kHz.  

 The capacitance traces were exported to Axograph (Axograph Scientific, Sydney, 

Australia) for analysis. Displayed traces are averages for each condition, with the 

number of cells given in the figure legends. To control for variation between 

preparations, we always compared WT or heterozygous and KO chromaffin cells 

obtained from the same preparation. Kinetic data were obtained by fitting individual 

capacitance recordings with a sum of three exponential functions. 

 

10X External Solution: 1.4 M NaCl (pH 7.6) 

 (pH 7.2, 310-320 mOsm) 24 mM KCl 

 100 mM HEPES 

 100 mM Glucose 

 40 mM CaCl2 

 40 mM MgCl2 

  

Intracellular Solution 1:  120 mM CsCl 
For trains of short depolarizations 20 mM TEA-Cl 

(pH 7.2, mOsm:310) 1 mM CaCl2 

 2 mM MgCl2 

 11 mM EGTA 

 10 mM HEPES 

 2 mM Mg-ATP 

 0.5 mM Na-GTP 

Intracellular Solution 2:  110 mM Cs-glutamate 
For Flash photolysis 8 mM NaCl 

(pH 7.2, mOsm:310) 2 mM Mg-ATP 

 0.3 mM Na-GTP 

 20 mM Cs-HEPES 

 4.5 mM CaCl2 

 5 mM NP-EGTA 

 0.3 mM Mg2+-Fura-2 

 0.2 mM Fura-4F 
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2.4.2 Flash Photolysis of Caged Ca2+ and Measurements of [Ca2+] i  

  

 Flashes of UV light were generated by a flash lamp (Rapp Optoelektronik, Hamburg, 

Germany), and fluorescence excitation light was generated by a monochromator (TILL 

Photonics, Planegg, Germany) as described previously (Gillis et al., 1996; Xu et al., 

1998); these were coupled into the epifluorescence port of an inverted Axiovert 100 

microscope with a 40X Fluorobjective (Zeiss, Oberkochen, Germany). Mg2+-Fura-2 was 

excited at 380/340 nm, and the illumination area was reduced to cover only the diameter 

of the cell. Emitted light was attenuated with a neutral density filter, detected with an 

avalanche photodiode (TILL Photonics, Planegg, Germany), filtered at 3 kHz and 

sampled at 12 kHz by Pulse software (Ashery et al., 2000). The basal [Ca2+]i was 

measured to be 220 nM by fura-2 in vivo using calibration solution 1 (Rmin), solution 2 

(Rmax), solution 3 (Keff), and solution 4 (α-coefficient). The flash photolysis efficiency 

was also measured as described (Xu et al., 1998). The photolysis efficiency of a 350 V 

discharge flash for NP-EGTA was determined to be 30 %. Fluorescence excitation light 

was used to measure [Ca2+]i and simultaneously photorelease Ca2+ after the flashes in 

order to keep [Ca2+]i approximately constant. [Ca2+]i was calculated from the 

fluorescence ratio (R) according to Grynkiewiez et al (1985) and the flash photolysis 

efficiency was calculated as according to published protocols (Xu et al., 1998). 

Fluorescent excitation light was used not only to measure but also to adjust before and 

after flash. The basal Ca2+ concentration before the flash was 500-900 nM. 

 

 Each cell was patched under conditions as follows; 

1. Access resistance is low, preferably < 7 MOhm 

2. Leak current is low, preferably < 20 pA 
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3. Fluorescence ratio is stable before the flash 

4. Loading with dye saturates, indicating the cell is not swelling excessively 

 
2X Pipette Solution: 250 mM Cs-glutamate 

  80 mM Cs-HEPES (pH 7.2) 

10X Nucleotide: 20 mM Mg-ATP 

 3 mM Na-GTP 

 10 mM HEPES (pH 7.2) 

Solution 1: 20 mM BAPTA 

 1X Pipette solution 

 1X Nucleotide 

 0.5 mM Fura-2 

Solution 2: 10 mM CaCl2 

 1X Pipette solution 

 1X Nucleotide 

 0.5 mM Fura-2 

Solution 3: 20 mM BAPTA 

 13.33 mM CaCl2 

 1X Pipette solution 

 1X Nucleotide 

 0.5 mM Fura-2 

Solution 4: 1X Pipette solution 

 1X Nucleotide 

 0.2 mM Fura-2 

 

 

 

2.4.3 Data Analysis and Statistics 

 
 Data were analyzed offline using AxoGraph 4.9 or AxoGraph X 1.0 (AxoGraph 

Scientific, Sydney, Australia) and Kaleidagraph 4.0 (Synergy Software, PA, USA). 

Statistical significance was tested using Student′s t-test. 
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3. Results 
 

 

 

3.1 Analysis of the Role of the Munc13 Protein Family in LDCV 

Exocytosis  

 

3.1.1 Reduced Exocytosis in Chromaffin Cells from Munc13-1 KO Mice  

 Munc13-1 is expressed in bovine chromaffin cells, which are used as a model for 

LDCV secretion (Ashery et al., 2000) and is also present in mouse adrenal gland 

(Figure 16A). The role of Munc13-1 in SV exocytosis has been investigated in 

individual hippocampal primary neurons cultured on astrocyte feeder islands 

(microisland culture) (Augustin et al., 1999b). Munc13-1 deficient neurons showed a 

striking deficit in evoked and spontaneous neurotransmitter release. In present study, we 

investigated whether the absence of Munc13-1 affects exocytosis of LDCVs in mouse 

adrenal chromaffin cells (Figure 6F). We performed whole-cell patch clamp recordings 

combined with flash photolysis of caged Ca2+ on chromaffin cells cultured from P0 

adrenal glands. Flash photolysis of caged Ca2+ typically causes a biphasic increase in 

membrane capacitance. Upon photolysis of caged Ca2+, release was undetectable at Ca2+ 

concentration of < 1 µM, became measurable at 1-2 µM Ca2+, and resembled the release 

observed during a normal action potential at > 5 µM Ca2+, and saturated at > 20 µM 

Ca2+ (Bollmann et al., 2000). 

 We found that, in chromaffin cell from Munc13-1 KO mice, both the exocytotic burst 

and the sustained component were significantly reduced (Burst: by ∼40 %, and 

Sustained: by ∼50 %; Figure 6A-C; Table 1).  
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Figure 6. Reduced exocytosis in chromaffin cells from Munc13-1 deficient mice. 
(A) Average ∆Cm in response to flash photolysis of NP-EGTA in chromaffin cells cultured at P0 from 

WT (28 cells from 5 mice, black line) and Munc13-1 KO mice (32 cells from 5 mice, orange line). The 

intracellular Ca2+ concentration following the flash is shown in the upper trace. (A′) The Munc13-1 KO 

trace was normalized to the WT amplitude at 4 s after the flash. (B-C) Comparison of the exocytotic burst 

(P=0.0007) and sustained release (P=0.0005) in WT control and Munc13-1 KO cells. The exocytotic 

burst and sustained release were determined as the ∆Cm 1 s and 2 s to 5 s after the flash, respectively. (D-

E) Kinetic analysis of the capacitance traces revealed that the two burst components, fast (P=0.032) and 

slow (P=0.035), are both reduced in amplitude, without any change in the time constant. Error bars 

indicate standard error of the mean. (F) Representative mouse chromaffin cell with attached glass pipette. 

*, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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 In order to investigate the release kinetics of exocytosis, we fitted individual 

capacitance traces with a sum of exponentials within the first second after the flash. The 

amplitudes of the capacitance traces represent the vesicle pool sizes, whereas the time 

constants identify their fusion kinetics. The first phase, the exocytotic burst, can be 

further subdivided into a fast burst (fusion with a time constant of ∼20 ms at 20 µM 

Ca2+) and a slow burst (fusion with a time constant of > 200 ms at 20 µM Ca2+) 

components (Sørensen et al., 2003). These phases represent fusion of two distinct pools 

of docked and primed vesicles, the RRP and the SRP. The slow component or SRP 

represents a precursor state to the fast component or RRP and the sustained phase of 

secretion, which persists for several seconds, is thought to represent refilling of the 

primed vesicle pools (Voets et al., 1999). 

 

 In chromaffin cell from Munc13-1 deficient mice, we found that both the fast and the 

slow burst components were significantly smaller than in WT chromaffin cells, but that 

vesicle fusion kinetics were not affected (Figure 6D-E, Table 1). To examine whether 

the reduction in Munc13-1 KO exocytosis obscures a difference in the kinetics of the 

sustained phase, we normalized the traces to the sustained phase of release at 4 s (Figure 

6A′). However, no change in the kinetics of the sustained phase or the relative 

amplitudes of burst and sustained component were detected, indicating that the 

Munc13-1 deficiency impairs the docking/priming reactions necessary for the release of 

all vesicles, rather than affecting the burst phase or sustained phase selectively. 

Postflash [Ca2+]i was closely matched between KO and WT cells (Figure 6A, top), 

which shows that the release deficit in Munc13-1 KO chromaffin cells is not due to 

altered Ca2+ levels. These findings demonstrate that loss of Munc13-1 leads to a 

reduction of both the pool of fusion-competent LDCVs and to a reduction of 
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recruitment of new LDCVs into this pool, without affecting the kinetics of the fusion 

step. 

   

 

 

3.1.2 Reduced Exocytosis in Chromaffin Cells from Munc13-2 KO Mice  

 Munc13-2 is expressed in bovine chromaffin cells (Zikich et al., 2008) and also in 

mouse adrenal gland (Figure 17A). To test whether Munc13-2 is required for exocytosis 

of LDCVs, we stimulated chromaffin cells obtained from P0 WT and Munc13-2 KO 

littermates using flash photolysis of caged Ca2+. We found that in chromaffin cells from 

Munc13-2 deficient mice, both the exocytotic burst and the sustained component were 

reduced (Burst: by ∼30 %, and Sustained: by ∼40 %; Figure 7A-C; Table 1), however, 

the reduction was statistically not significant (Figure 7). 

  

 When we investigated the release kinetics of exocytosis by fitting individual 

capacitance traces within the first 1 s after the flash with a sum of exponentials, we 

found that in chromaffin cell from Munc13-2 KO mice, both the fast and slow burst 

were reduced, but the reduction was statistically not significant (Figure 7D-E, Table 1). 

Like the loss of Munc13-1, loss of Munc13-2 also had no effect on the vesicular release 

kinetics during the exocytotic burst (Figure 7D-E, Table 1), nor did normalization of the 

traces to the sustained component reveal a selective alteration of the kinetics of the 

sustained component (Figure 7A′). Postflash [Ca2+]i was closely matched between KO 

and WT cells (Figure 7A, top). In cultured hippocampal neurons obtained from 

Munc13-2 KO mice, SV exocytosis was not affected, suggesting a compensatory effect 

of Munc13-1 in Munc13-2 KO neurons (Varoqueaux et al., 2002).  
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Figure 7. Reduced exocytosis in chromaffin cells from Munc13-2 deficient mice. 
(A) Average ∆Cm in response to flash photolysis of NP-EGTA in P0 WT control (21 cells from 4 mice, 

black line) and Munc13-2 KO (22 cells from 4 mice, vanilla line). The intracellular Ca2+ concentration 

following the flash is shown in the upper trace. (A′) The Munc13-2 KO trace was normalized to the WT 

amplitude at 4 s after the flash. (B-C) Comparison of the exocytotic burst (P=0.096) and sustained release 

(P=0.080) in WT control and Munc13-2 KO cells. The exocytotic burst and sustained release were 

determined as the ∆Cm 1 s and 2 s to 5 s after the flash, respectively. (D-E) Kinetic analysis of the 

capacitance traces revealed that the two burst components, fast (P=0.13) and slow (P=0.95), are both 

reduced in amplitude, without any change in the time constant. Error bars indicate standard error of the 

mean. *, P < 0.05; **, P  < 0.01; ***, P < 0.001. 
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 Although the release deficit in Munc13-2 KO LDCV exocytosis was statistically not 

significant, our data indicate that in the regulation of LDCV exocytosis in mouse 

chromaffin cells, Munc13-1 may not be able to fully compensate for the loss of 

Munc13-2. 

 

 

 

3.1.3 Reduced Exocytosis in Chromaffin Cells from Munc13-1/2DKO 

Mice  

 In this study, we found that both the exocytotic burst and the sustained phase 

component were reduced in chromaffin cells deficient for either Munc13-1 or Munc13-

2 (Figure 6A-E, 7A-E). Next, we investigated LDCV secretion in chromaffin cells 

lacking both Munc13-1 and -2. Munc13-1/2 DKO mice are completely paralyzed, die 

immediately after birth and neurotransmitter secretion from both GABAergic and 

glutamatergic hippocampal neurons is completely abolished in Munc13-1/2 DKO mice 

(Varoqueaux et al., 2002). Thus we expected that LDCV exocytosis (both the exocytotic 

burst and the sustained component) might be abolished in Munc13-1/2 deficient 

chromaffin cells. We analyzed adrenal chromaffin cells from E18 (Embryonic day 18) 

embryos that were obtained by caesarean section of pregnant females from Munc13-1 

heterozygous and Munc13-2 homozygous KO background matings. Munc13-2 KO 

chromaffin cells were used as controls and compared with Munc13-1/2 DKO 

chromaffin cells. Interestingly, we found that the adrenal glands from Munc13-1/2 DKO 

mice were about 50% smaller than those of Munc13-2 KOs, which were 

indistinguishable from WT adrenal glands (data not shown). 
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Figure 8. Reduced exocytosis in chromaffin cells from Munc13-1/2 DKO mice. 
(A) Exocytosis in mouse chromaffin cells from Munc13-2 KO and Munc13-1/2 DKO mice after flash 

photolysis of caged Ca2+. Average ∆Cm in response to flash photolysis of NP-EGTA in Munc13-2 KO 

(12 cells from 3 mice) and Munc13-1/2 DKO (14 cells from 3 mice). The intracellular Ca2+ concentration 

following the flash is shown in the upper trace. (A′) The Munc13-1/2 DKO trace was normalized to the 

Munc13-2 KO amplitude at 4 s after the flash. (B-C) Comparison of the exocytotic burst (P=0.0014) and 

sustained release (P=0.024) in control and Munc13-1/2 DKO cells. The exocytotic burst and sustained 

release were determined as the ∆Cm 1 s and 2 s to 5 s after the flash, respectively. (D-E) Kinetic analysis 

of the capacitance traces revealed that the two burst components, fast (P=0.040) and slow (P=0.011), are 

both changed.  Error bars indicate standard error of the mean. *, P<0.05; **, P <0.01; ***, P <0.001. 
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 To test whether secretion is completely abolished in Munc13-1/2 DKO cells, we 

stimulated the chromaffin cells obtained from Munc13-2 KO and Munc13-1/2 DKO 

littermates using flash photolysis of caged Ca2+. We found that in chromaffin cell from 

the Munc13-1/2 DKO mice, both the exocytotic burst (by ~40%, Figure 8B, Table 1) 

and the sustained component (by ~70%, Figure 8C, Table 1) were reduced significantly 

compared to Munc13-2 KO cells (Figure 8A). 

 However, in contrast to the complete shutdown of SV exocytosis from Munc13-1/2 

DKO hippocampal neurons (Varoqueaux et al., 2002), exocytosis from chromaffin 

cells, although drastically reduced, was not abolished entirely in the absence of both 

Munc13-1 and -2. 

 

 In order to investigate the release kinetics of exocytosis we fitted individual 

capacitance traces within the first 1 s after the flash with a sum of exponentials. We 

found that compared to chromaffin cells from Munc13-2 KO littermates, cells from 

Munc13-1/2 DKO mice showed a reduction of 40% in the fast and of 75% in the slow 

burst amplitude (Figure 8D-E, Table 1). Taking into account that, compared to WT, 

Munc13-2 KO cells already have a 30%-40% reduction of exocytosis, both the 

exocytotic burst and the sustained component were reduced more drastically in the 

Munc13-1/2 DKOs than in either single KO (Figure 20). Furthermore, like the loss of 

Munc13-1 or Munc13-2 alone, the absence of both isoforms had no effect on the 

vesicular release kinetics during the exocytotic burst (Figure 8D-E, Table 1), nor did 

normalization of the traces to the sustained component reveal a selective alteration of 

the kinetics of the sustained component (Figure 8A′). Taken together, these findings 

indicate that the presence of Munc13-1 suffices for the establishment of an almost WT-

sized pool of LDCVs released in the initial burst, but recruitment of new vesicles into 
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the releasable pool during ongoing release is severely impaired in the absence of both 

isoforms. As in the previous experiments, no effect on [Ca2+]i was detected in the 

absence of Munc13-1 and Munc13-2 (Figure 8A, top). Thus, both Munc13-1 and -2 are 

positive regulators in LDCV exocytosis in mouse chromaffin cells. 

 

 

  

 

 

Figure 9. Rescue of exocytosis in Munc13-1/2DKO chromaffin cells by 

overexpression of Munc13-1 
(A) Average ∆Cm in response to flash photolysis of NP-EGTA in E18 Munc13-1/2 DKO cells 
overexpressing either EGFP (9 cells from 3 mice) or Munc13-1 (7 cells from 3 mice). The intracellular 

Ca2+ concentration following the flash is shown in the upper trace. (A′) The Munc13-1-SFV trace was 

normalized to the EGFP-SFV amplitude at 4 s after the flash. (B-C) Comparison of the exocytotic burst 
(P=0.019) and sustained release (P=0.0009) in cells overexpressing EGFP and cells overexpressing 

Munc13-1. The exocytotic burst and sustained release were determined as the ∆Cm 1 s and 2 s to 5 s after 

the flash, respectively. Error bars indicate standard error of the mean. *, P<0.05; **, P <0.01; ***, P 

<0.001. 
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 To confirm these results, we tested whether Munc13-1-SFV overexpression in 

Munc13-1/2 DKO chromaffin cells would rescue secretion. Using the SFV expression 

system, we infected mouse chromaffin cells obtained from Munc13-1/2 DKO mice with 

the RNA coding for Munc13-1 tagged with EGFP (Enhanced Green Fluorescent 

Protein) (Ashery et al., 1999). The average capacitance after flash photolysis of caged 

Ca2+ was larger in Munc13-1 overexpressing cells than in EGFP overexpressing cells 

(Figure 9A). Both the exocytotic burst (Figure 9B, 633.72 ± 121.3 fF, P=0.019) and the 

sustained component (Figure 9C, 372.57 ± 88.56 fF, P=0.0009) were increased 

significantly. Normalization of the Munc13-1-SFV trace to the trace of EGFP-SFV 

control cells revealed no significant changes in the kinetics of the sustained component 

(Figure 9A′). Thus, in agreement with previous studies that showed that overexpression 

of Munc13-1 in WT chromaffin cells boosted LDCV release (Ashery et al., 2000), 

overexpression of Munc13-1 in Munc13-1/2 DKO chromaffin cells leads to both a 

larger amount of fusion-competent vesicles and a more rapid vesicle supply. 

 

 

 

3.1.4 Exocytosis in Chromaffin Cells from Munc13-3 KO and Munc13-

1/2/3 TKO Mice  

 In addition to Munc13-1 and -2, a third Munc13 isoform, Munc13-3, is also expressed 

in bovine chromaffin cells (Ashery et al., 2000) and mouse adrenal gland (Figure 17A). 

To test whether Munc13-3 also contributes to the regulation of LDCV exocytosis, we 

stimulated chromaffin cells obtained from P0 WT and Munc13-3 KO littermate mice 

using flash photolysis of caged Ca2+.  
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Figure 10. Exocytosis in chromaffin cells from Munc13-3KO and Munc13-1/2/3 

Triple knockout (TKO) mice. 
(A) Average ∆Cm in response to flash photolysis of NP-EGTA in chromaffin cells cultured at P0 from 

WT (15 cells from 3 mice, black line) and Munc13-3 KO mice (12 cells from 3 mice, magenta line). The 

intracellular Ca2+ concentration following the flash is shown in the upper trace. (A′) The Munc13-3 KO 

trace was normalized to the WT amplitude at 4 s after the flash. (B-C) Comparison of the exocytotic burst 

and sustained release in WT control and Munc13-3 KO cells. The exocytotic burst and sustained release 

were determined as the ∆Cm 1 s and 2 s to 5 s after the flash, respectively. (D) Average ∆Cm in response 

to flash photolysis of NP-EGTA in chromaffin cells cultured at E18 from Munc13-2/3 DKO (17 cells 

from 3 mice, blue line) and Munc13-1/2/3 TKO mice (13 cells from 3 mice, purple-red line). The 

intracellular Ca2+ concentration following the flash is shown in the upper trace. (D′) The Munc13-1/2/3 

TKO trace was normalized to Munc13-2/3 DKO amplitude at 4 s after the flash.  (E-F) Comparison of the 

exocytotic burst and sustained release in Munc13-2/3 DKO and Munc13-1/2/3 TKO cells. The exocytotic 

burst and sustained release were determined as the ∆Cm 1 s and 2 s to 5 s after the flash, respectively. 

Error bars indicate standard error of the mean.  
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 We found that the exocytotic burst and the sustained component were not reduced 

compared to WT, nor were the release kinetics altered (Figure 10A-C, Table 1), most 

likely because Munc13-1 and Munc13-2 are able to compensate for the absence of 

Munc13-3. The postflash [Ca2+]i did not differ between WT and Munc13-3 KO cells 

(Figure 10A, top). 

 Lastly, to investigate whether the secretion is completely abolished in cells lacking all 

three Munc13 isoforms (Munc13-1, -2, and -3), we obtained chromaffin cells from 

Munc13-1 heterozygous and Munc13-2/3 double homozygous KO background matings. 

Munc13-1/2/3 TKOs are completely paralyzed, die immediately after birth and look 

rather similar to Munc13-1/2 DKO mice (Varoqueaux et al., 2002). For the Munc13-

1/2/3 TKO experiments control chromaffin cells were cultured from Munc13-2/3 DKO 

littermates, which were viable and fertile. We analyzed adrenal chromaffin cells from 

E18 embryos that were obtained by caesarean section of pregnant females. Compared to 

Munc13-2/3 double deficient cells, Munc13-1/2/3 triple deficient chromaffin cells 

showed no significant changes in the exocytotic burst, the sustained component, or in 

the kinetics of release (Figure 10D-F, Table 1, Figure 10A′). 

 Based on our data, the sustained component in both the Munc13-2/3 DKO and 

Munc13-1/2/3 TKO cells was reduced by at least 50 % (Figure 20, Figure 10F). Since it 

is not possible to obtain WT and Munc13-1/2/3 triple deficient mice in the same litter at 

a frequency that is experimentally feasible, we were unable to accurately assess the 

contribution of Munc13-3 to LDCV exocytosis. However, taken together, the our data 

imply that the absence of Munc13-3 seemed to have the smallest effect on LDCV 

exocytosis, and furthermore, that residual LDCV exocytosis persists in the absence of 

the three Munc13 isoforms known to regulate neuronal SV exocytosis. 
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3.1.5 Enhanced Exocytosis in Chromaffin Cells from Baiap3 KO Mice  

 We first investigated basic properties of exocytosis in mouse adrenal chromaffin cells 

obtained from P0 Baiap3 KO and WT littermates.  

 
 

Figure 11. Increased exocytosis in chromaffin cells from Baiap3 deficient mice. 
(A) Average ∆Cm in response to flash photolysis of NP-EGTA in WT control (27 cells from 6 mice) and 

Baiap3 KO (28 cells from 6 mice). The intracellular Ca2+ concentration following the flash is shown in 

the upper trace. (A′) The Baiap3 KO trace was normalized to WT amplitude at 4 s after the flash. (B-C) 

Comparison of the exocytosis burst and sustained release (P=0.031) in control and Baiap3 KO cells. The 

exocytotic burst and sustained release were determined as the ∆Cm 1 s and 2 s to 5 s after the flash, 

respectively. (D-E) Kinetic analysis of the capacitance traces revealed that the two burst components, fast 

and slow components, are unchanged. Error bars indicate standard error of the mean. *, P < 0.05; **, P < 

0.01; ***, P < 0.001.  
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 To test whether LDCV exocytosis is regulated by Baiap3, we stimulated chromaffin 

cells obtained from Baiap3 KO mice by flash photolysis of caged Ca2+. We found that 

the sustained component of release was significantly increased by 30% in Baiap3 

deficient cells (P=0.031, Figure 11C), whereas the exocytotic burst was unchanged 

(Figure 11B,D-E). However, normalization of the traces to the sustained component 

revealed no significant differences in the kinetics of the sustained phase (Figure 11A′), 

which argues against an effect that is specific to the sustained phase. Postflash [Ca2+]i 

values were similar in WT and KO cells, indicating that the increase in sustained 

exocytosis was not due to differences in [Ca2+]i (Figure 11A, top).  

 

 

 

 

 

Table 1. Comparison of LDCV exocytosis in all KO mouse lines analyzed 

 



Results 
 

 
 

    68 

3.1.6 Depolarization Induced LDCV Exocytosis in Chromaffin Cells from 

Munc13-1/2 DKO and Baiap3 KO Mice 

 We have shown that LDCV exocytosis induced by uncaging Ca2+ in Munc13-1/2 DKO 

cells was drastically reduced in both the exocytotic burst and the sustained component 

of release. To investigate the effect of Munc13-1 and -2 deletion on LDCV exocytosis 

in response to a more physiological stimulus, chromaffin cells were stimulated with a 

voltage protocol consisting of six 10 ms depolarizations followed by four 100 ms 

depolarizations (Figure 12A top). The 10 ms depolarizations cause the fusion of the 

IRP, which corresponds to the fraction of the readily releasable vesicles that are closely 

associated with Ca2+ channels. The subsequent 100ms depolarizations elicit fusion of 

the remainder of the readily releasable pool (RRP), and the IRP and RRP together 

correspond to the fast component of flash photolysis experiments (Voets et al., 1999). 

Munc13-2 KO chromaffin cells responded the train of depolarizing stimuli with robust 

increases in membrane capacitance. In contrast to this, the secretory response was 

drastically reduced in chromaffin cells from Munc13-1/2 DKO cells. In chromaffin cells 

deficient for Munc13-1, and -2, exocytosis in response depolarization was significantly 

reduced. Both the IRP (Figure 12B, 7.7 ± 2 fF, P=0.0009) and the RRP (Figure 12C, 

55.9 ± 7 fF, P=0.0005) in Munc13-1/2 DKO cells were reduced compared to Munc13-2 

KO cells (Figure 12B, IRP: 33.8 ± 7 fF; Figure 12C, RRP: 108.7 ± 11 fF). Measurement 

of Ca2+ currents did not reveal significant differences between the Munc13-1/2 DKO 

and Munc13-2 KO chromaffin cells (Figure 12D). The reduction in both the IRP and the 

RRP is consistent with the reduction in the fast component seen in flash photolysis 

experiments (Figure 8D).  
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Figure 12. Depolarization induced exocytosis in chromaffin cells from Munc13-1/2 

DKO and Baiap3 KO mice. 
(A) Voltage protocol (top) and the resulting average capacitance increase in E18 chromaffin cells from 

Munc13-2 KO (15 cells from 3 mice, black line) and Munc13-1/2 DKO mice (17 cells from 3 mice, red 

line). Chromaffin cells were stimulated with trains of short depolarizations, and the Ca2+ current and 

membrane capacitance were monitored simultaneously before and after stimulation. (B) IRP (P=0.0009), 

determined as the average capacitance during the time period indicated by the left dashed rectangle in A. 

(C) RRP (P=0.0005), determined as the average capacitance during the time period indicated by the right 

dashed rectangle in A. (D) The average Ca2+ current was identical in the Munc13-2 KO and Munc13-1/2 

DKO cells shown in A. (E) Voltage protocol (top) and resulting average capacitance increase in P0 

chromaffin cells from WT (20 cells from 4 mice, Black line) and Baiap3 KO (32 cells from 4 mice, lime 

line) mice. Chromaffin cells were stimulated with trains of short depolarizations, and the Ca2+ current and 

membrane capacitance were monitored simultaneously before and after stimulation. (F) IRP, determined 

as the average capacitance during the time period indicated by the left dashed rectangle in E. (G) RRP, 

determined as the average capacitance during the time period indicated by the right dashed rectangle in E. 

(H) The average Ca2+ current was identical in the WT and Baiap3 KO cells shown in A. Error bars 

indicate standard error of the mean. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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 Since there was no selective reduction of the IRP, Munc13-1 and -2 do not appear to 

control the docking and priming of vesicles near Ca2+, and our data consistently point to 

a general role for Munc13-1 and -2 in the docking/priming of vesicles in all release 

pools. 

 We also analyzed the response of Baiap3 KO cells to the depolarization protocol 

(Figure 12E top). Consistent with the previous finding that after flash photolysis the 

sustained component, but not the exocytotic burst was increased in Baiap3 KO cells 

(Figure 11), the voltage protocol consisting of six 10 ms depolarizations followed by 

four 100 ms depolarizations did not reveal any significant differences in the IRP (Figure 

12F, 62.4 ± 7 fF) and RRP (Figure 12G, 167.9 ± 14 fF) of Baiap3 KO cells compared to 

WT cells (IRP; 55.6 ± 7 fF, RRP; 164.5 ± 14 fF). The Ca2+ currents of Baiap3 KO cells 

did not differ from those of WT cells (Figure 12E-H). 

 

 

 

3.1.7 Reduced Exocytosis in Chromaffin Cells Overexpressing Baiap3 

 To confirm the finding that loss of Baiap3 leads to an increase in the sustained 

component of release, we examined whether the opposite situation, overexpression of 

Baiap3, would reduce the LDCV exocytosis. We overexpressed either EGFP or Baiap3 

as an IRES (internal ribosome entry site)-EGFP construct with SFV in WT chromaffin 

cells. Expression of Baiap3 from the viral construct was confirmed by Western blot 

analysis of Baiap3-SFV infected BHK cells (Figure 13A). Complementary to the 

increase in exocytosis seen in the absence of Baiap3 (Figure 11), overexpression of 

Baiap3 resulted in a smaller capacitance change after flash photolysis of caged Ca2+ than 

overexpression of the EGFP control construct (Figure 13B).   
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Figure 13. Reduced exocytosis in chromaffin cells overexpressing Baiap3.  
(A) Overexpression of Baiap3-SFV in BHK cells. (B) Average ∆Cm in response to flash photolysis of 

NP-EGTA in P0 EGFP overexpressing WT cells (23 cells from 5 mice) and Baiap3 overexpressing WT 

cells (24 cells from 5 mice). The intracellular Ca2+ concentration following the flash is shown in the upper 

trace. (B′) The Baiap3 KO trace was normalized to the WT amplitude at 4 s after the flash. (C-D) 

Comparison of the exocytotic burst (P=0.008) and sustained release (P=0.0004) in cells overexpressing 

EGFP and cells overexpressing Baiap3. The exocytotic burst and sustained release were determined as 

the ∆Cm 1 s and 2 s to 5 s after the flash, respectively. (E-F) Kinetic analysis of the capacitance traces 

revealed that the two burst components, fast (P=0.014) and slow (P=0.025), are both changed. Error bars 
indicate standard error of the mean. *, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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 Overexpression of Baiap3 significantly depressed both the exocytotic burst (Figure 

13C, 293.3 ± 34.17 fF, P=0.008) and the sustained component (Figure 13D, 51.1 ± 12.8 

fF, P=0.0004) in comparison to EGFP overexpressing cells (Figure 13C-D, 500.23 ± 51 

fF (Burst), 165.1 ± 27.2 fF (Sustained)). We found that in the exocytotic burst of Baiap3 

overexpressing cells both the fast (Figure 13E, 109.2 ± 12.1 fF, P=0.014) and the slow 

burst (Figure 13F, 209 ± 34 fF, P=0.025) were significantly smaller than in EGFP 

overexpressing cells (Figure 13E-F, 143.4 ± 16 fF (fast), 463.1 ± 40 fF (slow)).  

 The overpexpression of Baiap3 thus has the opposite effect of overexpressing Munc13-

1 (Figure 9). However, like Munc13-1, Baiap3 does not appear to affect the kinetics of 

the exocytotic burst (Figure 13E-F) or the kinetics of the sustained component (Figure 

13B′). Postflash [Ca2+]i was also closely matched between EGFP- and Baiap3 

overexpressing cells (Figure 13B, top).  

 In summary, our data indicate that Baiap3 reduces the number of fusion-competent 

vesicles and inhibits vesicle recruitment and priming during ongoing release while Ca2+ 

levels remain high. 
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3.2 Functional Characterizations of Baiap3  

 

 

3.2.1 Basic Characterization of Baiap3 KO Mice 

 Baiap3 deficient mice were generated by homologous recombination in mouse 

embryonic stem cell (Figure 14A). Targeting vector construction and gene targeting in 

ES cells was done by Dr. Iris Augustin. 

 

 

Figure 14. Gene targeting strategy to generate Baiap3 KO mice. 
(A) Targeting vector and Baiap3 locus before and after homologous recombination. (B) Genomic 

Southern blot with an external 5′ probe after BamHI digestion of stem cell DNA. Homologous 
recombination of the Baiap3 targeting vector results in a shift of a WT 5.5 kb BamHI fragment to 4.2 kb. 

(C) Genomic PCR used for genotyping Baiap3 litters with 546 bp for WT and 636 bp for the KO. (D) 

Northern blot analysis with a 3′ probe that lies outside the deleted region shows that Baiap3 mRNA is not 

expressed from the targeted locus. 
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Figure 15. Specificity of Baiap3 antisera. 
Specificity of Baiap3 antisera in mouse whole brain from WT and Baiap3 KO mice. SA5990 and SA5991 

were generated in rabbit against the MHD to C-terminal region of Baiap3. The antibody against the N-

terminus (Dr. Iris Augustin) was also generated in rabbit. All of antisera recognize Baiap3 in WT mice. 

 

 

 Baiap3 KO mice were obtained at the predicted Mendelian frequency. The respective 

genotypes were initially detected by Southern blotting (Figure 14B), by PCR for routine 

genotyping (Figure 14C), and by Northern blotting to check for mRNA expression 

(Figure 14D). Baiap3 KO mice are viable and fertile and show no obvious phenotypic 

changes in the cage environment. Litter sizes resulting from interbreeding of 

homozygous Baiap3 deficient animals were indistinguishable from those obtained with 

WT controls. 

 To verify Baiap3 protein expression level in WT and Baiap3 KO mice, we generated 

three polyclonal anti-Baiap3 antisera, which were raised to either the N-terminus or a 

region of Baiap3 encompassing the MHDs and C-terminus (Figure 15). Western blot 

analysis of homogenates from whole brain and other tissues showed that Baiap3 protein 

expression was completely abolished in homozygous Baiap3 KOs (Figure 16B). 
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Figure 16. Protein Expression of Baiap3. 
(A) Expression of Baiap3 in sub-regions of the brain and (B) brain, lung and adrenal gland. Baiap3 is not 

expressed in the pancreas and, in contrast to Munc13-4, is absent from spleen. Tissues were 

homogenized, and the proteins were separated by SDS-PAGE and analyzed by immunoblotting with 

antibodies to the indicated proteins. (C) Panels on the left show the distribution of Baiap3 in subcellular 

fractions of brain homogenate. Fractions (10 µg protein per lane) were analyzed by SDS-PAGE and 

immunoblotting with antibodies to the indicated proteins. Hom, Homogenate; P1, nuclear pellet; P2, 
crude synaptosomal pellet; P3, light membrane pellet; LP1, lyzed synaptosomal membranes; LP2, crude 

synaptic vesicle fraction; SPM, synaptic plasma membranes; S1, supernatant after synaptosome 

sedimentation; S3, cytosolic fraction; LS1, supernatant after LP1 sedimentation; LS2, cytosolic 

synaptosomal fraction. Panels on the right show the expression of Baiap3 during development from E18 

to P90 (Dr. Iris Augustin). Immunoblotting was done with antibodies to the indicated proteins.  

 

 

 The absence of Baiap3 expression did not affect the protein levels of any of the 

proteins involved in vesicle exocytosis that we investigated (Figure 17A). These 

included other members of the Munc13 protein family (Munc13-1, -2, and -3), SNARE 
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core complex components (Syntaxin, SNAP-25, and Synaptobrevin), and the SNARE 

regulatory protein Munc18 (Figure 17A). In order to determine where in the brain 

Baiap3 is expressed, we performed Western blot analysis on sub-regions of the brain. 

Baiap3 expression is most prominent in the hypothalamus, thalamus, colliculi, septum 

and in the brain stem. Unlike Munc13-1 and Munc13-2, Baiap3 is not strongly 

expressed in hippocampus (Figure 16A). To study developmental regulation and 

subcellular distribution of Baiap3 protein in WT mice, we analyzed the expression level 

by Western blotting. The expression level of Baiap3 was very low at E18 and increased 

during postnatal development to reach a plateau at P12-P18 (Figure 16C). In the 

subcellular fractionation, Baiap3 was enriched in the crude synaptic vesicle fraction 

(LP2). However, unlike Munc13-1 and NMDA R1 (the postsynaptic density component 

marker), Baiap3 is not enriched in synaptic plasma membrane (SPM) (Figure 16C). 

 Among the Munc13 family members, Munc13-4 is the isoform most closely related to 

Baiap3 (Koch et al., 2000). However, unlike the other Munc13s and Baiap3, Munc13-4 

is not expressed in neurons. Like Munc13-4, Baiap3 is also expressed in lung and 

adrenal gland (Figure 16B). Furthermore, we found that Munc13-1, -2, -3 and Baiap3 

are expressed in mouse adrenal gland (Figure 17A). We did not detect any alterations in 

the expression levels of Munc13 isoforms and SNARE core complex components in 

Baiap3 deficient adrenal glands. The expression level of Chromogranin A, an LDCV 

marker, was also not changed (Figure 17A). Baiap3 was initially identified as a binding 

partner BAI1 in a yeast two-hybrid screen (Shiratsuchi et al., 1998). The significance of 

this interaction has not been determined and we found no alteration of the BAI1 protein 

expression level in Baiap3 KO brain homogenate (Figure 17A).  
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Figure 17. Immunoblot analysis of adult whole brain and adrenal gland. 
(A) Expression of SNARE complex components and SNARE regulatory proteins in whole brain and  

adrenal gland from WT and Baiap3 KO mice. (B) Expression of Baiap3 protein in whole brain of 

Munc13 DKO and WT mice. Whole brain and adrenal glands from mice were homogenized, and protein 

(10 µg for brain, and 20 µg for adrenal gland per lane) was analyzed by SDS-PAGE and immunoblotting 

with antibodies to the indicated proteins. 
  

 

 We also checked whether Baiap3 expression might be altered in the absence of 

Munc13-1 and -2, but found not differences of Baiap3 protein levels between WT and 

Munc13-1/2 DKO brains (Figure 17B). While Baiap3 shows a more restricted 

expression level in the brain than Munc13-1 and Munc13-2, Baiap3 and Munc13-1, -2, 

and -3 are coexpressed in mouse adrenal gland, and, based on the electrophysiological 

analysis of the adrenal chromaffin cells, all serve to regulate LDCV exocytosis. 
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3.2.2 Baiap3 Binds to Both Munc13-1 and Syntaxin 1 

 Munc13s are essential regulators of SNARE-mediated exocytosis of SVs. Munc13-1 

binds not only Syntaxin 1 but also other SNARE core components (Betz et al., 1997). In 

order to determine whether Baiap3 also bound to SNARE core complex components we 

performed co-sedimentation assays by using recombinant GST fusion protein 

constructs. GST-Syntaxin-1A was able to bind not only Munc13-1, but also bound 

Baiap3 in co-sedimentation assays performed with recombinant Munc13-1 or Baiap3 

expressed in HEK 293FT cells (Figure 18A).  

 

 
 

Figure 18. Baiap3 binds to Syntaxin and the MHDs of Munc13-1. 
(A) Representative co-sedimentation assays of GST-fused-Syntaxin 1A (a.a.1-276) and of GST alone 

with Baiap3 or Munc13-1 produced in HEK293FT cells. Munc13-1 was used as a positive control for 

Syntaxin binding and HEK 293FT cells were transfected with either MYC-Baiap3 or EGFP-Munc13-1. 
(B) Representative co-sedimentation assays of several GST-fused Mun13-1 fragments and of GST alone 

with Baiap3 produced in HEK293FT cells. (C) Domain structure of Munc13-1 and representation of 

GST-Munc13-1 fusion constructs; pGEX-Munc13-1-176/178 (a.a 517-1735), pGEX-Munc13-1-N1/N2 

(a.a 3-317), pGEX-Munc13-1-13'1 (a.a 1032-1345), and pGEX-Munc13-1-3'13A (a.a 1399-1622). 
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Figure 19. Binding of SNARE complex core components and Munc13-1 to a 

recombinant Baiap3 fragment encompassing the MHDs. 
GST-Baiap3-MHDs-fusion protein and GST alone as a control were used for cosedimentation assays. 

Binding of Syntaxin 1A/B, SNAP-25, Synaptobrevin 2 and Munc13-1 was assayed by SDS-PAGE, and 

immunoblotting. 
 

 

 To determine whether Baiap3 also interacts with Munc13-1, we used recombinant 

protein fragments of Munc13-1. Recombinant GST-Munc13-1 fusion fragments (Betz 

et al., 1997; Figure 18C) were used in co-sedimentation assays with cell lysate from 

HEK293FT cells expressing Baiap3, and bound material was assayed for by 

immunoblotting. Two Munc13-1 constructs, pGEX-Munc13-1-176/178 (a.a 517-1735) 

and pGEX-Munc13-1-13'1 (a.a 1032-1345), were capable of binding to Baiap3 (Figure 

18B). The overlapping regions of the two constructs contain the MHDs of Munc13-1, a 

region that is also involved in binding Syntaxin 1A.  
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 To test whether Baiap3 is also able to bind Syntaxin and Munc13-1 in a more native 

context, we used a GST-Baiap3-MHDs fusion protein in a co-sedimentation assay with 

mouse whole brain homogenate. The GST-Baiap3-MHDs construct pulled down not 

only Munc13-1 but also SNARE core complex components (Syntaxin 1A/B, SNAP-25 

and Synaptobrevin 2) (Figure 19). 

 

 These data indicate that Baiap3 interacts with Syntaxin 1 and Munc13-1, and may be 

associated with the SNARE core complex by binding to Syntaxin 1 and/or Munc13-1. 

In these experiments, we attempted to use recombinant soluble Baiap3. However, 

Baiap3 fragments containing the MHD domains are highly insoluble when expressed in 

E. coli, and Baiap3 expressed in HEK293FT cells was mostly recovered in the detergent 

insoluble membrane fraction and we could not obtained a soluble sample of Baiap3. We 

do not know whether the detergent insolubility of Baiap3 overexpressed in cells was 

due to the formation of insoluble aggregates or its association with cytoskeletal 

elements. 
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4. Discussion 

 

 This is the first study to systematically investigate the role of the Munc13 protein 

family in LDCV exocytosis. We found that Munc13-1, Munc13-2, which were known 

to be essential positive regulators of SNARE-mediated exocytosis of neuronal SVs, also 

control LDCV exocytosis in chromaffin cells. Remarkably, one member of this protein 

family, Baiap3, seems to suppress LDCV exocytosis in chromaffin cells, making 

Baiap3 the first Munc13 homologue for which a negative regulatory function in 

exocytosis has been described. 

 

 

4.1 Munc13s are Positive Regulators of LDCV Exocytosis 

 Munc13s are essential for the exocytosis of neuronal SVs in invertebrates as well as in 

mammals (Augustin et al., 1999b; Varoqueaux et al., 2002; Richmond et al., 1999; 

Aravamudan et al., 1999). However, their physiological role in mammalian LDCV 

exocytosis had previously only been examined by overexpression of either Munc13-1 or 

Munc13-2 in WT chromaffin cells (Ashery et al., 2000; Stevens et al., 2005; Zikich et 

al., 2008). The three Munc13 isoforms whose role in neuronal SV exocytosis has been 

established, Munc13-1, -2 and -3, are also found in bovine chromaffin cells (Ashery et 

al., 2000; Zikich et al., 2008) and in mouse adrenal gland (Figure 17). To examine the 

role of endogenous Munc13s in Ca2+ triggered LDCV exocytosis, we studied exocytosis 

in chromaffin cells taken from Munc13-1, -2, -3 and Baiap 3 deficient mice, using flash 

photolysis of caged Ca2+. Flash photolysis protocols cause a sudden uniform increase in 

the concentration of intracellular Ca2+ throughout the cell, triggering an exocytotic burst 

of LDCV release that is followed by a slower, sustained component of release. The 
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burst component consists of those vesicles that were already in a fusion competent, i.e. 

docked and primed state, at the time of the stimulus, whereas the sustained component 

consists of vesicles that undergo Ca2+-dependent docking, priming and release while 

Ca2+ levels remain high (Neher, 2006). However, the pool of vesicles released in the 

burst phase and those released during the sustained phase are a continuous pool of 

vesicles in the sense that they need to go through the same maturations steps, i.e. 

docking and priming prior to release. 

 

 Among the four mouse lines studied, the most drastic reduction of release seen in the 

absence of a single Munc13 isoform, was detected in the Munc13-1 deficient 

chromaffin cells. Without Munc13-1, the secretory burst was reduced by 40% and the 

sustained component by 50% (Figure 6, Figure 20). In Munc13-2 deficient chromaffin 

cells, the reduction of the burst phase and the sustained phase was only 30% and 40%, 

respectively, which was statistically not significant (Figure 7, Figure 20). However, in 

chromaffin cells lacking both Munc13-1 and -2, the reduction in burst and sustained 

release was greater than in both single knockouts, indicating that Munc13-2 also 

functions to regulate LDCV exocytosis (Figure 8, Figure 20). The absence of Munc13-3 

on the other hand, had no significant effect on either the burst or sustained phase of 

release (Figure 10, Figure 20). In addition to the distinction between the burst phase of 

release and the sustained phase, analysis of the kinetics of release during the burst phase 

reveals the presence of a slow and a fast burst components, which is thought to 

represent different states of the fusion machinery that translate into differences in the 

“readiness” of docked and primed vesicles to fuse (Neher, 2006). The state of the fusion 

machinery that is responsible for the slow burst seems to be a precursor of the 

configuration that mediates the fast burst (Voets et al. 1999). Since Munc13s are 

thought to function in the docking/priming of vesicles, their absence should affect both 
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the fast and the slow burst components, as is the case for most manipulations of the size 

of the burst pool (Neher 2006). In line with this assumption, in Munc13-1 and Munc13-

1/2 DKO cells, i.e. those genotypes with a significant reduction in the exocytotic burst, 

both the slow and the fast burst component were reduced, without any significant 

change in the time constants (Figure 6D,E and Figure 8D,E).  

 

 Our study is the first report of a deficit in LDCV exocytosis from chromaffin cells in 

Munc13 deficient animals, and establishes that endogenous Munc13-1 and Munc13-2 

regulate LDCV exocytosis in chromaffin cells. Since both the burst and the sustained 

component of release were reduced, without any change in their kinetics (Figures 6-8) 

our data are best explained by a model in which Munc13-1 and -2, in principle, have 

equivalent roles as docking/priming factors in establishing the pool of release ready 

vesicles (vesicles released during the burst phase) and in the Ca2+-dependent 

docking/priming of new LDCVs during the sustained phase of release. Munc13-1 may 

be more efficient in mediating the docking/priming process, its absence thus having the 

greatest effect. However, the apparent differences in priming efficiency between 

Munc13-1, -2 and -3 could of course also be due to differences in the level of protein 

present in chromaffin cells. Unfortunately, we were not able to compare proteins levels 

directly, because the amount of protein that could be obtained from cultured chromaffin 

cells was too low, and whole adrenal glands also contain synapses, presumably with 

unknown amounts of different Munc13 isoforms. Somewhat surprisingly, while deletion 

of Munc13-1 and -2 completely eliminates SV exocytosis in cultured hippocampal 

neurons (Augustin et al., 1999b; Varoqueaux et al., 2002), LDCV exocytosis was not 

completely abolished even in the absence of Munc13-1 -2 and -3 (Figure 10D-F). 

Munc13-independent neurotransmitter release has however been described for the 

neuromuscular junction (Varoqueaux et al., 2005). In chromaffin cells, docking and 
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priming of LDCVs therefore appears to involve other regulatory proteins, whose 

identity and function of remains to be investigated. Potentially Caps proteins, which are 

involved in SVs exocytosis in mammalian neurons (Jockusch et al., 2007) as well in 

LDCV exocytosis in chromaffin cells (Elhamadani et al., 1999; Liu et al., 2008) and in 

C. elegans (Speese et al., 2007, Zhou et al., 2007) could be responsible for the residual 

LDCV release in the absence of Munc13s. Yet, Caps and Munc13 do not perform the 

same function in the docking/priming reaction, since overexpression of one does not 

rescue the phenotype seen in the absence of the other (Jockusch et al., 2007), which 

argues against this theory. Two other obvious candidates that might be responsible for 

LDCV exocytosis in the Munc13-1, -2, -3 TKOs, would be the two remaining members 

of the Munc13 protein family, Munc13-4 and Baiap3. However, we were unable to 

detect Munc13-4 in adrenal gland by Western blotting (data not shown), and based on 

our analysis of the role of Baiap3 in chromaffin cells, Baiap3 is a negative rather than a 

positive regulator of LDCV exocytosis. 

 

Figure 20. Relative amplitude sizes of the burst and sustained phases of LDCV 

exocytosis in the absence of Munc13-1, Munc13-2, Munc13-1/2, Munc13-3 and 

Baiap3. 
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4.2 Baiap3/Bap3 is a Negative Regulator of LDCV Exocytosis.     

  

 Baiap3 was first identified and named as a binding partner of the brain specific 

angiogenesis inhibitor I (BAI1), which encodes a seven span transmembrane protein, 

which belongs to the adhesion-type G-protein-coupled receptor family (Shiratsuchi et 

al., 1998). Evolutionarily, Baiap3 appears the be related to Munc13s, its domain 

structure is homologous to the Munc13 C-terminal half which features two Munc-

homology-domains (MHDs) flanked by C2 domains (Shiratsuchi et al., 1998; Koch et 

al., 2000). Based on sequence similarity, the closest relative of Baiap3 is the non-

neuronal isoform Munc13-4 (Figure 21; Table 2; Koch et al., 2000), which is essential 

for exocytosis of secretory granules from cells of the hematopoietic lineage (Feldmann 

et al., 2003; Neeft et al., 2005). 

  

 Because all Munc13 isoform whose function had been analyzed previously were found 

to be positive regulators of SNARE-mediated exocytosis, we were surprised to discover 

that LDCV exocytosis was in fact enhanced, rather than reduced in the absence of 

Baiap3 (Figure 11). Conversely, when we overexpressed Baiap3 in WT chromaffin 

cells, LDCV exocytosis was dampened, indicating that Baiap3 negatively regulates 

LDCV exocytosis (Figure 13). In flash photolysis experiments using Baiap3 KO 

chromaffin cells, only the sustained component was increased, whereas overexpression 

suppressed both the burst and the sustained component of release. This suggests that 

Baiap3 suppresses both the pre-burst docking/priming of vesicles and the recruitment of 

new vesicles at elevated Ca2+ levels.  
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Figure 21. Protein Sequence Comparison of the C2 domains and the MHDs of 

Munc13 isoforms and Baiap3.  
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Table 2. Percent identity of the domain structure of Munc13s and Baiap3. 

 

 

 To further analyze the effect of Munc13-1/2 and Baiap3 on the release-ready vesicle 

pool, we also stimulated Munc13-1/2 DKO and Baiap3 KO cells by depolarization. 

Depolarization protocols do not lead to the sudden uniform increase in the intracellular 

Ca2+ concentration achieved by flash photolysis, because the Ca2+ enters the cell via 

voltage gated Ca2+ channels, allowing the experimental distinction between vesicles 

docked in the vicinity of Ca2+ channels and those docked at a greater distance based on 

their release kinetics (Schneggenburger and Neher, 2005). The immediately releasable 

pool (IRP) seen with depolarization is thought to represent those vesicles 

docked/primed closest to the Ca2+ channels, they are also released during the fast burst 

in flash photolysis experiments, but due to the uniform increase in intracellular Ca2+ do 

not show up as a separate pool (Voets et al., 1999). According to the model of LDCV 

exocytosis refined by Voets and colleagues (1999), the relationship between the vesicle 

pools mobilized by depolarization and by those release after flash photolysis is as 

follows: The IRP and the readily releasable pool (RRP) of vesicles released by 

depolarization together correspond to the fast burst pool of flash photolysis experiments 
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(Figure 22), whereas the vesicles of the slow burst component and those of the sustained 

component are not released in response to our depolarization protocol.  

 

 Baiap3 KO cells, which showed no reduction in the fast or slow burst component after 

flash photolysis, also showed no deficit in the IRP or RRP released in response to 

depolarization (Figure 12E-H). Munc13-1/2 deficient cells on the other hand, which did 

have a deficit in the slow and the fast burst phase in responses to flash photolysis, also 

showed a deficit in the IRP and RRP exocytosis elicited by depolarization (Figure 12A-

D). Thus, neither Baiap3 nor Munc13-1 and Munc13-2 appear to be essential for 

selective docking/priming of vesicles in close vicinity of Ca2+ channels.  

 

 Taken together, our analyses of Munc13 and Baiap3 deficient chromaffin cells suggest 

that Baiap3 functions as a negative regulator of the same steps in LDCV exocytosis that 

are facilitated by Munc13-1 and Munc13-2. The fact that the exocytotic burst was not 

affected in Baiap3 KO cells, but suppressed when Baiap3 was overexpressed, can be 

explained if endogenous Baiap3 levels are not high enough to interfere with the 

establishment, i.e. docking and priming, of a WT-sized pool of vesicles when the cell 

has not been stimulated, but sufficiently high to impair the recruitment of new vesicles 

at times of high demand, i.e. during ongoing release. We therefore propose a model in 

which Baiap3 acts as an antagonist in the docking/priming reaction that requires 

Munc13-1 and Munc13-2 and is necessary to establish the release ready pool of vesicles 

as well as their Ca2+ stimulated re-supply (Figure 22). 
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Figure 22. Munc13s and Baiap3 control LDCV exocytosis. Munc13s are positive 

regulators and Baiap3 a negative regulator in recruiting LDCVs for release and 

thus function upstream of both the slow and the fast pool of release-ready vesicles. 

 

 

 

4.3 Munc13s and Baiap3 as Regulators of SNARE-Mediated 

Exocytosis 

 The docking and priming reactions that occur before a vesicle reaches fusion 

competence require SNARE proteins and SNARE regulatory proteins like Munc13 and 

Munc18 (Augustin et al., 1999b; Jahn and Scheller, 2006; Varoqueaux et al., 2002; 

Verhage et al., 2000; Voets et al., 2001; Weimer et al., 2003). Munc13s are thought to 

facilitate SNARE complex formation by keeping Syntaxin in an open conformation 

(Betz et al., 1997; Brose et al., 2000; Richmond et al., 2001). Although SNARE 

complex formation was originally thought occur downstream of a separate vesicle 
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docking step (Broadie et al., 1995; Hunt et al., 1994; Sørensen et al., 2003; Voets et al. 

2001; Washbourne et al., 2002), more recent evidence indicates that at least in C. 

elegans both Syntaxin and Unc-13 are required for vesicle docking. Docking defects in 

unc-13 mutant worms are rescued by the open form of Syntaxin, which indicates that 

SNARE complex formation may equal vesicle docking, with Unc-13 acting upstream of 

SNARE assembly (Hammerlund et al., 2007). In C.elegans, docking and exocytosis of 

SVs appears to require Unc-13 and Syntaxin, whereas docking and exocytosis of large 

dense core vesicles involves Caps and Syntaxin (Hammarlund et al., 2007; Hammarlund 

et al., 2008; Speese et al., 2007; Zhou et al., 2007), with Unc-13 playing a potential 

auxiliary role (Zhou et al., 2007; Hammarlund et al., 2008). By contrast, a clear division 

of labor between Munc-13 and Caps proteins in the regulation of SV and LDCV 

exocytosis does not appear to be a feature of the mammalian system. In mouse neurons, 

effective excitation-secretion coupling of SVs requires both Munc13 and Caps proteins 

(Jockusch et al. 2007), and our study shows that LDCV exocytosis, which has 

previously been shown to require Caps (Elhamadani et al., 1999; Liu et al., 2008), is 

also regulated by Munc13-1 and -2. Since physical docking of LDCVs in chromaffin 

cells also requires Syntaxin (de Wit et al., 2006), we propose that Munc13-1 and 

Munc13-2 regulate LDCV exocytosis by acting upstream of SNARE complex 

assembly, which does however not exclude the possibility that they have additional 

functions within the fusion machinery. 

 

 Our electrophysiological analysis of the role of Baiap3 in LDCV exocytosis suggests 

that Baiap3 acts as a negative regulator at the same step that requires Munc13-1 and -2. 

This notion is also supported by our biochemical data, which show that Baiap3 can bind 

to Syntaxin1 as well as to Munc13-1. It is therefore conceivable that Baiap3 and other 

Munc13 isoforms compete for binding to Syntaxin and other SNARE complex 
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components. Although we were unable to show that Baiap3 interferes with the binding 

of Munc13-1 to Syntaxin1, this may be an experimental limitation due to the fact that 

Munc13 does not interact with purified Syntaxin in solution (Basu et al., 2005) and the 

interaction therefore most likely requires additional factors. Because of the limited 

sequence similarity of Munc13-1 and Baiap3 (Table 2), they are unlikely to share all 

interaction partners, and binding of Baiap3 to Syntaxin may thus result in a 

configuration that is unfavorable to SNARE complex assembly 

 

 

 Other components of the fusion machinery for which a negative regulatory function in 

LDCV exocytosis has been reported are Amysin, Tomosyn (Yizhar et al., 2004; 

Constable et al., 2005) and Complexins (Archer et al., 2002; Itakura et al., 1999). 

Amysin and Tomosyn are a Syntaxin binding proteins with a C-terminal SNARE motif 

able form a fusion-incompetent SNARE complex with Syntaxin and SNAP-25 (Fujita et 

al., 1998; Scales et al., 2002; Pobbati et al., 2004; Groffen et al., 2005;). In C. elegans, 

Tomosyn antagonizes Unc-13-dependent release (Gracheva et al., 2006; McEwen et al., 

2006) and also negatively regulates CAPS-dependent peptide release from dense core 

vesicles (Gracheva et al., 2007). By comparison, the evidence that Complexins are 

negative regulators of exocytosis is weak, because although overexpression impairs 

exocytosis (Archer et al., 2002; Itakura et al., 1999), their deletion does the same (Reim 

et al., 2001), suggesting that their in vivo function is not an inhibitory one. In our case, 

the overexpression and deletion of Baiap3 resulted in compatible data sets, i.e. 

overexpression reduced LDCV exocytosis and deletion enhanced it. Since the effect of 

overexpression was greater than the effect of deletion, the efficacy of Baiap3 in 

interfering with Munc13-dependent docking/priming appears to be sensitive to the 

relative protein levels of Baiap3 and the other Munc13s. High levels of Baiap3 could 
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potentially sequester Syntaxin or Munc13, or both, thereby lowering the rate at which 

productive SNARE complexes are formed. However, the question remains, whether 

inhibition of LDCV exocytosis is the “true” function of Baiap3, or whether it is also a 

docking/priming factor, albeit a less efficient one. 

 

 To answer the open questions with respect to the mechanism of Baiap3 function it will 

also be necessary to determine its function in neurons. In the brain, Baiap3 has a more 

restricted expression pattern than Munc13-1 and Munc13-2, with prominent expression 

seen in hypothalamus, amygdala, periaqueductal grey, septum and several brainstem 

nuclei. We did not find obvious alterations in synaptic release of glutamate or GABA 

from cultured hypothalamic neurons, arguing against a function of Baiap3 in 

suppressing SV exocytosis. However, we were unable to reliably detect Baiap3 

expression by staining cultured neurons (data not shown), and it remains to be 

investigated whether those neurons that express Baiap3 in the intact brain survived in 

our cultures. Potentially, Baiap3 could also function as a regulator of LDCV exocytosis 

in neurons, and/or be involved in the vesicular release of neurotransmitters other than 

GABA and glutamate.  

 

 

 

4.4 Conclusions 

 I set out to determine whether mammalian LDCV exocytosis requires the same 

Munc13 isoforms that are essential for SV exocytosis, or whether the Munc13 relative 

Baiap3 might be more important for LDCV release. Two of the three neuronal Munc13 

isoforms, Munc13-1 and Munc13-2, do indeed regulate LDCV exocytosis from mouse 
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chromaffin cells, and thus play a more significant role in LDCV exocytosis than their 

C.elegans counterpart Unc-13. I found that Baiap3 is also a regulator of LDCV 

exocytosis, but against all expectations, it functions to suppress LDCV exocytosis, 

making it the first member of the Munc13 protein family for which a negative 

regulation of SNARE-mediated exocytosis has been described. 

 

 

 

4.5 Future Studies 

 Future experiments to further delineate the role of Munc13s and Baiap3 in mammalian 

LDCV exocytosis will include ultrastructural analysis of possible LDCV docking 

defects in Munc13-1/2 and Baiap3 deficient chromaffin cells by electron microscopy. 

Docking defects in the in Munc13 deficient neurons have not been described 

(Varoqueaux et al. 2002), however, it is possible that such docking defects were missed 

due to fixation artifacts (Hammerlund et al. 2008). In C.elegans, the Unc-13 docking 

deficit, as well as the functional release deficit was rescued if Tomosyn was deleted as 

well, implying that Unc-13 and Tomosyn are true functional antagonists (Gracheva et 

al., 2006; McEwen et al., 2006). Comparison of the number of docked vesicles in 

Munc13-1/2 KO and Baiap3 KO cells, combined with functional analysis of LDCV 

exocytosis in Munc13-1/2/Baiap3 triple deficient cells, may thus answer the question 

whether the same is true for Baiap3 and Munc13s.  
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6. Summary 

 Members of mammalian uncoordinated 13 protein family (Munc13s) are essential for 

SV exocytosis in neurons and have also been implicated in LDCV exocytosis in 

chromaffin cells. However, the C.elegans ortholog Unc-13 appears to be dispensable for 

LDCV exocytosis, raising the question whether SNARE-mediated exocytosis of SVs 

and LDCVs is controlled by distinct regulatory proteins. We therefore analyzed LDCV 

exocytosis in cultured chromaffin cells taken from knockout mouse lines of four 

members of the Munc13 protein family, Munc13-1, Munc13-2, Munc13-3 and Baiap3. 

Baiap3/Bap3 (brain specific angiogenesis inhibitor 1 associated protein 3), was 

identified and named as an interaction partner of BAI 1 (brain specific angiogenesis 

inhibitor-1), and is a Munc13 homologue of unknown function. Its closet known 

relative, the non-neuronal Munc13-4, has been shown to be essential for the secretion of 

lymphocyte cytolytic granule content. Unlike Munc13-4, Baiap3 expression is largely 

restricted to brain and adrenal gland, with low levels also present in lung. To determine 

whether LDCV exocytosis is impaired in the absence of Munc13-1, Munc13-2, 

Munc13-3 or Baiap3, we combined flash photolysis of caged Ca2+ and membrane 

capacitance measurements in cultured chromaffin cells. Our analysis of exocytosis in 

chromaffin cells shows that Munc13-1 and Munc13-2 act as positive regulators of 

LDCV exocytosis and play a more critical role in the release of this vesicle type than 

their C.elegans ortholog Unc-13. Based on sequence similarity, Baiap3 is a member of 

the Munc13 protein family. However, unlike Munc13-1, -2, -3 and -4, which function as 

essential positive regulators of SNARE-mediated exocytosis, our data indicate that 

Baiap3 negatively regulators exocytosis, at least in chromaffin cells. In this study, we 

found that exocytosis in chromaffin cells from Munc13-1 deficient mice and mice 

lacking both Munc13-1 and Munc13-2, showed a dramatic reduction in LDCV 
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exocytosis. In contrast to this, chromaffin cells deficient for Baiap3 showed increased 

exocytosis and Baiap3 overexpression in WT cells suppressed LDCV release. The exact 

molecular mechanism by which Munc13s regulate SNARE-mediated exocytosis 

remains to be elucidated. However, we found that Baiap3 interacted with both Munc13-

1 and Syntaxin in co-sedimentation assays, which indicates that competition for binding 

to SNARE complex components is a possible explanation for the opposing functions of 

Munc13-1/2 and Baiap3 LDCV exocytosis. 
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