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Summary 

 

The design of liposomal carriers for gene or drug delivery is an active field in current 

biomedical research. An important issue is the targeting of the carriers to specific cell types 

for which the therapeutical approach is intended.  

The combination of liposomes and imaging probes such as Quantum Dots (QDs) in a 

single nanoparticle offers an excellent tool for increasing the understanding of the 

mechanisms of liposome uptake thereby increasing the efficiency of gene or drug delivery. 

In the research developed in this thesis, biotinylated lipid particles (BLP) were loaded with 

plasmid DNA and labeled on the surface with QDs functionalized with the ligand EGF 

(Epidermal Growth Factor). In a second and novel approach, BLP were loaded with a red 

emitting QD655 and surface coated with a green emitting QD525 tagged with the EGF ligand. 

This latter approach was intended to monitor the specificity of BLP binding and uptake in live 

cells by fluorescence confocal microscopy. Both types of BLP were targeted to A431 cells, a 

cancer cell line that overexpresses the EGF receptor (EGFR). Furthermore, BLP formulations 

differing in the content of the protective polymer PEG (polyethylene glycol) were tested in 

order to optimize the intracellular delivery of plasmid DNA or QDs. 

The colocalization of green emitting QD525 and red emitting QD655, allowed the immediate 

discrimination of the targeted BLP from the untargeted counterparts, as well as the presence 

of free EGF-QD525 complexes during live cell imaging. EGFR-targeted BLP showed increased 

binding and accelerated uptake as compared to EGF-free BLP. Cellular binding of targeted 

BLP was further associated with the perinuclear localization of QDs in clusters which persisted 

over days, indicating the difficulty in releasing the encapsulated nanoparticles from endo-

lysosomal vesicles. On the other hand, targeted BLP with encapsulated plasmid carrying the 

reporter gene for the Green Fluorescent Protein (GFP) showed enhanced transfection of 

A431 cells compared to that exhibited by non-targeted particles for all lipid formulations 

tested, indicating the occurrence of plasmid release in the cytoplasm. No targeting effect, 

however, was evident in cells devoid of EGF receptor or in the receptor occupied by 

competing free ligand, indicating that enhanced EGFR-targeted delivery is primarily 

mediated via a ligand/receptor interaction. 

From a therapeutic point of view, the specificity displayed by the BLP labeled with two 

colors of QDs and targeted to tumor cells overexpressing the EGF receptor may provide a 

platform for testing the specific delivery of tumorigenic drugs. This approach was also 

intended to elucidate the fate of lipid particles in real time, taking advantages of the 

photostability and bright fluorescence of QDs.  

The designed BLP will provide refined information about the still poorly understood 

trafficking processes and the subcellular barriers to gene or drug delivery via liposomal 

carriers. 
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Abbreviations  

AFM Atomic Force Microscopy 

a.u. arbitrary units 

BLP Biotinylated Lipid Particles 

bp base pair 

BP Band pass filter (optics) 

BSA Bovine serum albumin 

CCD Charged-coupled device 

CHO Chinese hamster ovary cell line 

CLSM Confocal Laser Scanning Microscopy 

cmc critical micellar concentration 

DIC Differential interference contrast  

DLS Dynamic Light Scattering 

DMEM Dulbecco modified Eagle medium 

DNA Deoxyribonucleic acid 

DOPE Dioleoyl-L-a-phosphatidylethanolamine 

DOTAP 1,2-Dioleoyloxy-3-(trimethylammonio)-propane 

DSPE Distearoyl-L-a-phosphatidylethanolamine 

EDTA Ethylenediamine tetraacetic acid 

EGF Epidermal growth factor  

EGFR Epidermal growth factor receptor 

ex./em. excitation/emission wavelengths 

FCS Fetal calf serum 

g gravitational field centrifugation unit 

GFP Green fluorescent protein 

HBS HEPES buffered saline 

HEPES N-(2-hydroxyethyl)piperazine-N´-(2-ethanesulfonic acid) 

kDa kilodalton 

LB Luria Bertani growth medium 

LP Long pass filter (optics) 

mM, μM, nM millimolar, micromolar, nanomolar 

min, h minute, hour 

MWCO Molecular Weight Cut-off 

NA Numerical aperture 

OGP Octylglucopyranoside 

PBS Phosphate buffered saline 

pdi Polydispersity index 

PEG Polyethyleneglycol 
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PEG-Cer-C20 PEG-Ceramide bioconjugate with an arachidoyl acyl group 

PEG-Cer-C8 PEG-Ceramide bioconjugate with an octanoyl acyl group 

PEG-DSGS PEG-[succinoyl]-1,2-distearoyl-sn-glycerol 

pH Negative decadic logarithm of the hydrogen ion (H+) 

concentration 

PNA Peptide nucleic acid 

QD Quantum dot 

RT Room temperature 

SPLP Stabilized Plasmid Lipid Particles 

StAv Streptavidin 

t time 

TEM Transmission Electron Microscopy 

UV Ultraviolet 
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1.1. Molecular therapy 

The genomic information obtained through the Human Genome Project has accelerated 

enormously the analysis of the functions of various disease relevant genes as well as the 

design of therapeutic molecules and delivery systems (Hicks, 2003; Austin, 2004). 

Biomolecules, such as sense and antisense oligonucleotides, small interference RNAs and 

peptides, as well as entire genes (cDNA) and proteins are essential tools in the development 

of molecular therapies (Shi and Hoekstra, 2004; Wagner, 2007). However, the potential of 

such information-rich macromolecules for therapeutic use has been limited by the difficulties 

in delivering them specifically to target tissues in vivo and in discriminating between disease-

affected and normal cells.   

A variety of viral and non-viral vehicles have been conceived to effect the encapsulation, 

in vivo cell targeting and intracellular delivery of therapeutic macromolecules (Maurer et al., 

1999; Gupta et al., 2005; Torchilin, 2006). However, the hostile extracellular environment 

constitutes a primary challenge in the systemic delivery of gene or drug carriers to 

intracellular targets. This presents a number of barriers, such as extreme pH, proteases and 

nucleases and the immune defence and scavenger systems (Figure 1.1). Once the carrier 

reaches the target tissue, the efficient cell binding, uptake and delivery of the cargo into 

and within subcellular compartments is critical for gaining the desired therapeutic effect. At 

this stage, the cell membrane is the main physical barrier due to the poor permeability of the 

lipid bilayer, where the diffusion rate is highly dependent on the size and hydrophobicity of 

the molecular carrier. Therefore, the rational design of intracellular gene/drug delivery 

vehicles requires a better understanding of the cell membrane barrier (Belting et al., 2005).  

1.1.1. Gene delivery 

The realization that nucleic acids could be used as therapeutic agents to alter the 

expression and function of proteins in the body has given an immense boost to transfection 

biology. Gene therapy is a part of the growing field of molecular medicine gaining 

significance in the treatment of human diseases. By delivering genes into cells to regulate or 

supplement defective genetic loci, the morbidity of inherited and acquired diseases can be 

alleviated (Civin, 2000; Edelstein et al., 2007). 

In most procedures to date, nucleic acids have been encapsulated in vehicles that both 

protect the therapeutic gene and allow its extracellular and intracellular trafficking. Most 

DNA delivery systems operate at one of three general levels: DNA condensation and 

complexation, endocytosis, and nuclear membrane translocation (Luo and Saltzman, 2000). 

Negatively charged DNA molecules are usually condensed and/or complexed with cationic 

lipids or polymers before the delivery into cells. These complexes are taken up by cells usually 
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through an endocytic mechanism, which determines subsequent DNA release, trafficking, 

lifetime and function in the cell (Guy et al., 1995). 

 

Figure 1.1: Illustration of barriers for systemic gene delivery. DNA-containing nanoparticles are 

injected intravenously into human body. Serum proteins may bind to the particles, crosslink them and 

increase the particle size. This can result in rapid particle elimination (Insert 1). The Kupffer cells (RES) 

may take up particles, leading to rapid nanoparticles elimination from circulation and decrease their 

access to the hepatocytes (Insert 2). Circulating nanoparticles may extravasate in tumor tissue through 

the leaky tumor vessels (Insert 3). Particles then need to pass through the crowded extracellular matrix 

to contact the cell surface (Insert 4). When the particles are internalized into cells, DNA must escape 

from the endosome and find its way into the nucleus (Insert 5). Adapted from (Weijun Li, 2007). 

1.2. Viral and non-viral gene delivery systems  

1.2.1. Viral vectors 

Viruses in nature have evolved an exceptional ability for delivering their genome into cells, 

responding to changes in the cellular environment and gaining access to their desired 

intracellular compartments (Vives et al., 2006). 

A number of different viruses, such as retrovirus, adenovirus, adeno-associated virus and 

herpes virus have been widely studied in gene transfer systems attracting the most attention 

in the field of transduction (Zhang and Godbey, 2006). Retroviral vectors were the first viral 
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vectors to enter clinical trials and continue to be attractive candidates for applications 

where integration of the transgene is required (Cornetta K, 2008).  

Virus-based vectors are modified by removing certain viral genes associated with 

pathogenic function. Other approaches mimic the viral machinery required for cell binding 

and internalization by coupling modified proteins from the viral capside to the surface of 

therapeutic carriers (Boeckle and Wagner, 2006). In fact, more than 70% of recent clinical 

protocols involving gene therapy use recombinant virus-based vectors for DNA delivery 

(Cornetta K, 2008). However, these delivery systems are restricted by their limited DNA 

carrying capacity, toxicity and potential oncogenicity, factors that hamper their routine use 

in basic research laboratories (Anderson, 1998; Boeckle and Wagner, 2006).  

1.2.2. Non-viral vectors 

Synthetic non-viral vectors have many potential advantages over viral ones, including a 

size-independent delivery of nucleic acids ranging from oligonucleotides to artificial 

chromosomes, significantly reduced toxicity and immunogenicity, and lower potential for 

oncogenicity (Luo and Saltzman, 2000). Additionally, they involve less demanding quality 

controls, and less complex pharmaceutical and regulatory requirements. However, these 

reagents still demonstrate reduced transfection efficiencies and transient levels of gene 

expression compared to the viral vehicles (Lechardeur et al., 2005; Mehier-Humbert and Guy, 

2005).  

Non-viral approaches include physical methods for introducing naked DNA directly into 

the cell, such as particle bombardement, microinjection and electroporation (Chou et al., 

2004; Mehier-Humbert and Guy, 2005). The drawbacks of these systems are the limited 

number of cells that can be treated and the possible physical damage to the cell 

membrane.  

Widespread approaches involve chemical methods to enable the cellular uptake of 

insoluble or highly charged macromolecules. Chemical carriers are based on peptides, lipids 

and phospholipids mixtures as well as polymers (Kramer et al., 2004; Kneuer et al., 2006) which 

form complexes with the cargo molecules such as drugs or DNA. In these delivery systems, 

the cargo does not get into contact with the cell surface molecules, so that unspecific 

interactions are omitted. Chemical carriers enhance the uptake of macromolecules by 

facilitating either direct cell translocation (Merkleb, 2004) or endocytosis (Hoekstra et al., 

2007). Lipid or polymer-based delivery systems have now become the major tools to 

introduce not only nucleic acids but also proteins, peptides and nanoparticles into cultured 

cells. 

The scope of non-viral delivery systems have been expanded by the incorporation of 

environment-sensitive polymers, carefully designed to take advantage of intracellular 

changes in pH and temperature in order to achieve a controlled release of the therapeutic 
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molecule (Heath et al., 2007). Furthermore, to achieve active transport of DNA through the 

nuclear pore complex, nuclear localizing signal (NLS) peptides have been widely used 

(Branden et al., 2001; Simonson et al., 2005). In most cases, NLS is conjugated with a gene 

carrier such as polyethylenimine (PEI) or with DNA directly. 

1.3. Lipid-based delivery systems 

The most studied and widespread non-viral approaches for deliverying DNA have been 

those based on lipids. A breakthrough was achieved when Felgner reported for the first time 

that complexes of plasmid DNA and the cationic lipid dioleyl-trimethylammmonium chloride 

(DOTMA) at a 1:1 molar ratio with dioleoylphosphatidylethanolamine (DOPE), were avidly 

internalized by cells and caused profound expression of the plasmid (Felgner et al., 1987). 

Cationic lipid/nucleic acid complexes or lipoplexes have been the subject of intensive 

investigation in recent years. The main focus has been the characterization of the molecular 

mechanisms of lipid-vector and cell membrane interaction, essential for overcoming 

intracellular barriers (Felgner and Ringold, 1989; Simoes et al., 2005; Wasungu and Hoekstra, 

2006; Hoekstra et al., 2007). 

Originally developed for the transfection of DNA, lipid vectors have become the major 

tools for introducing not only a variety of nucleic acids but also proteins, peptides and 

nanoparticles into cells in vitro and in vivo (Maurer et al., 1999; Audouy and Hoekstra, 2001; 

Torchilin et al., 2003). 

The other major field of lipid-based delivery systems arose from the observation that 

phospholipids in aqueous systems can form closed bilayered structures, known as liposomes 

(Lasic and Papahadjopoulos, 1995). These particles comprising an outer lipid layer 

membrane surrounding and internal aqueous space can be loaded with therapeutic 

biomolecules (Mayer et al., 1989). Liposomes can encapsulate and facilitate the delivery of 

plasmid DNA containing therapeutic genes with sizes of several kilobases (Fenske and Cullis, 

2005).  

Liposomes represent a flexible platform for encapsulation since they can range from 

multilamellar vesicles (MLVs) with diameters of several microns to small unilamellar vesicles 

(SUV) of about 20 nm. For biomedical applications, particles with the greatest utility have 

diameters of ~100 nm, large enough to carry a significant payload but small enough to ‘slip’ 

between leaky endothelial junctions escaping the immune system surveillance (Szoka and 

Papahadjopoulos, 1980).  

1.3.1. Components of lipid-based nanoparticles 

Usually, the nanosized lipid particles are constructed from a combination of synthetic and 

natural lipids, lipopolymers and pH or reduction-sensitive components. For most of these lipid-

based particles, cationic lipids are the key elements used to package the DNA (Zuidam and 
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Barenholz, 1999). An added advantage of the cationic lipids is that they can bind to 

negatively charged mammalian cell membranes inducing the uptake of the associated 

nucleic acid into cells. Neutral lipids such as the fusogenic lipid 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) and cholesterol are usually used as helper lipids which may 

increase transfection activity of the DNA-containing lipid-based carrier (Hafez and Cullis, 

2001). For example, DOPE has a phosphoethanolamine head group whose size is smaller 

than its hydrophobic diacyl chain facilitating membrane fusion and disruption, and 

consequently the DNA release (Zuhorn et al., 2005). 

1.3.2. Sterically Stabilized Liposomes 

The fast and efficient clearance of conventional liposomes from the circulation by 

macrophages has seriously compromised their application for the treatment of a wide range 

of diseases involving other organs. The incorporation of the hydrophilic and biocompatible 

polymer polyethylene glycol (PEG) improved the lifespan of liposomes in the bloodstream 

and reduced cell toxicity, leading to a renewed interest in liposomal carriers during the 90’ 

(Lasic et al., 1991). PEG has been covalently linked to natural and synthetic lipids, which were 

subsequently incorporated into liposome formulations (Bhadra et al., 2002). The PEG polymer 

acts like a shield protecting the encapsulated therapeutic agent from enzymatic 

degradation, rapid renal clearance and interactions with cell surface proteins, thereby 

minimizing adverse immunological effects (Woodle and Lasic, 1992). Figure 1.2 schematically 

depicts a conventional liposome and the advanced sterically stabilized liposome surface- 

coated with PEG.  

 
Figure 1.2: Schematic representation of a conventional liposome and a sterically stabilized PEG-

liposome. Adapted from Encyclopedia Britannica (online). 

 

‘Pegylation’ is now established as the method of choice for improving the 

pharmacokinetics and pharmacodynamics of liposomes. However, once the liposomal 

carrier reaches the cell surface, pegylation may interfere for instance with the endocytic 

mechanism of uptake by either lowering the binding affinity to cell receptors or by 

preventing the intermembrane contact between liposomal surface and endosomal 
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membranes, required to release the cargo in the cytoplasm (Shi et al., 2002; Song et al., 

2002). Therefore, PEG-lipids included in liposomal formulations should dissociate from the 

complex, once the liposome is in close contact with endosomes upon internalization. This has 

been accomplished by incorporating a short acyl chain lipid-PEG to the liposome 

formulation with the ability to promote within minutes the lipid transfer from the liposome 

bilayer (Harvie et al., 2000). Alternatively, by adding a cleavable, pH-sensitive PEG analogue 

in which the polymer moiety is cleaved off upon exposure to the acidic environment of 

certain endosomal compartments (Kirpotin et al., 1996; Guo and Szoka, 2001; Shi et al., 2002; 

Choi et al., 2003; Guo et al., 2003). 

Current development is focused on combining long-term circulating (Lasic et al., 1999) 

and targeted liposomes (Sofou and Sgouros, 2008). The later feature, achieved by 

incorporating a suitable ligand or antibody to the liposome surface, is essential for improving 

the specificity for target cells. 

1.3.3. Stabilized Plasmid-Lipid Particles (SPLP) 

Employing a detergent dialysis technique (Hofland et al., 1996), plasmid DNA has been 

encapsulated with a 50-70% efficiency in small particles (~70 nm) stabilized by PEG-Ceramide 

lipids (Wheeler et al., 1999). These nanocarriers, known as a Stabilized Plasmid Lipid Particles 

(SPLP), have been further improved by several groups by adding pH-sensitive lipids and 

ceramides with shorter carbon chains to confer endosamal escape capabilities (Mok et al., 

1999; Wheeler et al., 1999; Fenske et al., 2002; Li et al., 2005).  

The first generation SPLP developed by Wheeler et al. contained a high percentage of 

the helper lipid DOPE (84 mol%), low levels of cationic lipid dioleyl-dimethylammonium 

chloride DODAC (6 mol%) and quite high levels (10 mol%) of PEG-Ceramide with an 

arachidoyl acyl group (PEG-Cer-C20). The release half-life (t1/2) of PEG-Cer-C20 from SPLP 

was 13 days, becoming an intractable steric barrier to transfection. The length of the 

ceramide lipid anchor determined the time that the PEG conjugate remained associated 

with the bilayer. When PEG-Cer-C20 was replaced by PEG-Cer-C8  with an octanoyl acyl 

group, the t1/2 was reduced to 1.2 min, considerably increasing the transfection of cells in 

vitro (Mok et al., 1999). This first generation of SPLP was improved by Szoka and coworkers 

(Choi et al., 2003; Li et al., 2005) by adding a pH sensitive PEG-lipid to trigger plasmid release 

in the acidic endosomal environment. The key design feature of such PEG-lipids is that the pH 

triggerable PEG-linker should be completely stable at pH 7 and sufficiently destabilized at pH 

5.5, as to irreversibly dissociate within at least 1 hour, essential requirement to ensure 

quantitative release of nucleic acid from the lipid particle. 

As mentioned above, entrapment of plasmid DNA in SPLP was accomplished by a 

detergent dialysis procedure (Hofland et al., 1996) by which reconstituted liposomes consist 

of unilamellar vesicles regardless of the rate of detergent removal (Figure 1.3). As the 
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detergent is being removed, a series of micelle-micelle interactions are initiated to minimize 

the unfavourable energy resulting from the exposure of lipids to the aqueous medium (Figure 

1.3 I). At a critical micelle size, the amplitude of the bending is sufficient to cause bilayer 

closure (Figure 1.3 II) and plasmid encapsulation (Figure 1.3 III). One of the most important 

aspects of SPLP is their great structural integrity with negligible variation in size or DNA 

encapsulation after 5 months at 4 °C. 

 
 

Figure 1.3: Schematic representation of SPLP formation during detergent dialysis. Detergent removal 

from lipid-detergent micelles causes the transformation of small micelles into larger ones (I), which bend 

upon further detergent removal to form curved mixed micelles and trapp the plasmid DNA (II). The 

bilayer becomes continuous forming the stable plasmid-lipid particles (III). Adapted from (Jean-Louis 

Rigaud, 1998). 
 

SPLP have been designed for long-term circulation in vivo but given the severity of the 

extracellular environment, only a modest detectable transfection in animals post i.v.-

administration has been reported (Monck et al., 2000). SPLP systems are now under 

evaluation in Phase I clinical trials (Protiva, unpublished data). 

1.4.  Cell mechanisms of liposome uptake 

The cellular uptake of liposomes is generally believed to be mediated by adsorption of 

liposomes onto the cell surface and subsequent endocytosis. As previously described, the 
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rate limiting steps in this process are the efficiency of cell surface association, internalization, 

release of loaded drug/genes from intracellular compartments such as endosomes, transfer 

to the cytosol and eventually, translocation into the nucleus. 

Liposomal carriers can adsorb specifically and non-specifically to the cell surface (Figure 

1.4 a, b), in some cases promoting a direct delivery of the therapeutic agent into the 

cytoplasm (Figure 1.4 c, d). Additionally, in order to increase the initial cell binding, delivery 

carriers have been modified with cationic moieties to increase the electrostatic interaction 

of the vehicle with the negatively charged cell membrane (Figure 1.4 e, c). Constructs that 

are more sophisticated involve the covalent binding of a ligand or antibody to the liposome 

carrier to promote the specific receptor-mediated or antigen-mediated endocytosis, 

respectively (Figure 1.4 a). If uptake occurs via endocytosis (Figure 1.4 f), receptor or non-

receptor mediated, the liposomes end up in endosomal compartments.  

In the case of receptor-mediated endocytosis, internalized vesicles and their content are 

sorted mainly to the lysosomal compartment for degradation of the ligands and the loaded 

cargo (Figure 1.4 f, g). This also accomplishes the downregulation of activated receptors 

(Shepherd, 1989). However, the majority of targeted deliveries aim to avoid lysosomal 

trafficking in an effort to protect the drug molecule or biomolecules from enzymatic 

degradation. 

Lysosomes, as well as the endoplasmatic reticulum (ER), Golgi apparatus, and endosomes 

are, to a variable degree topologically continuous with the exterior of the cell, i.e. the exit of 

macromolecules from any of these compartments requires passage through a lipid bilayer.  

In general, the endocytosis mechanisms can be divided into clathrin-dependent and 

clathrin-independent. There is a close relation between particle size and the preferred 

internalization pathway, although the correlation is not absolute. Rejman et al. proposed that 

particles <200 nm are taken up via the clathrin-dependent mechanism whereas larger 

particles (250-500 nm) enter the cell through caveolin 1-rich vesicles (Rejman et al., 2004). This 

correlation, between particle size and uptake pathway, is indeed plausible since some of 

these pathways are constrained to the size of their vesicles – e. g. clathrin-coated and 

caveolae-derived vesicles (Pelkmans et al., 2004).  
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Drug or 
DNA 

 
Figure 1.4: Liposome uptake and intracellular fate: DNA or drug loaded liposomes can specifically 

(a) or nonspecifically (b) adsorb onto the cell surface. Liposomes can also fuse with the cell membrane 

(c), and release their content into the cytoplasm, or can be destabilized by certain cell membrane 

components when adsorbed on the surface (d) so that the released drug can enter the cell via 

micropinocytosis. Liposomes can undergo the direct transfer or protein-mediated exchange of lipid 

components with the cell membrane (e) or be subjected to a specific or nonspecific endocytosis (f). In 

the case of endocytosis, liposomes can be directed into lysosomes (g) or, in route to the lysosome, they 

can provoke endosome destabilization (h), which results in the liberation of the therapeutic agent into 

the cell cytoplasm (Adapted from (Torchilin, 2005). 

 

Clathrin-mediated endocytosis serves as the main mechanism of internalization for 

macromolecules and plasma membrane constituents for most cell types and it is the most 

investigated vesicular pathway for targeted drug delivery. This is initiated by the formation of 

clathrin-coated pits, which are subsequently pinched off and internalized. The clathrin coat is 

removed and multiple vesicles fuse originating the early and late endosomes that ultimately 

fuse with lysosomes (Mousavi et al., 2004). 

1.4.1. Receptor-mediated endocytosis as a route for targeted liposomal delivery 

Targeting is usually achieved by conjugating a high affinity ligand to the carrier that 

provides preferential accumulation of the latter for instance, in a tumor-bearing organ, in the 

tumor itself, in individual cancer cells or intracellular organelles. In most cases the targeting 

moieties (ligands or antibodies) are directed toward specific receptors or antigens exposed 
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on the plasma membrane (Kato and Sugiyama, 1997). The overexpression of receptors or 

antigens in many human cancers lends itself to efficient drug uptake via receptor-mediated 

endocytosis. Folate and Transferrin are widely applied ligands for liposome targeting 

because their cognate receptors are frequently overexpressed in a range of tumour cells  

(Kakudo et al., 2004; Hilgenbrink and Low, 2005). Liposomes tagged with various monoclonal 

antibodies have been delivered to many targets (Park et al., 2001).  

The performance of non-viral vector could be certainly optimized by targeting them into 

distinct cellular internalization pathways, considering that not every pathway may be equally 

effective in releasing a therapeutic biomolecule in the cytosol. This step is critical for nucleic 

acid delivery to increase the possibility of nuclear transport and the ultimate expression of the 

delivered genes (Bareford and Swaan, 2007). 

1.4.2. EGF receptor targeted delivery systems  

The epidermal growth factor receptor (EGFR, ErbB) is a 170 kDa protein that is distributed 

randomly on the surface of cells, excluding hematopoietic cells. Its ligand, EGF, is a 53 

aminoacid-peptide that mediates cellular signal events regulating cell proliferation, 

differentiation, cell cycle progression, adhesion, invasion, angiogenesis and inhibition of 

apoptosis. Following binding of the EGF, the EGFR functions either as a homodimer through 

the complexation of two identical EGFR molecules or as an heterodimer by associating with 

one of the three other ErbB family members; in either case the resulting dimerization then 

initiates the cellular internalization (Bublil and Yarden, 2007). 

The EGFR is a tempting target for gene delivery since it is overexpressed in a wide variety 

of human tumors found in cancers of head and neck, breast, colon, ovary, lung, prostate 

and liver (Johnston et al., 2006). Enhanced EGFR expression is associated with tumor 

invasiveness, resistance to chemotherapy and radiation therapy and clinically correlates with 

poor prognosis and lower patient survival (Rubin Grandis and V. A.; Wagener, 1998). 

Squamous cell carcinoma of the head and neck is a cancer commonly associated with 

EGFR overexpression (>90%), which appears to play a role in the unregulated growth of these 

cells (Cohen, 2006). EGFR has been used to target drugs and toxins loaded in therapeutic 

liposomes (Kullberg et al., 2003; Mamot et al., 2005) and lipoplexes (Shir et al., 2006). 

1.5. Fluorescent nanoparticles in live-cell imaging 

1.5.1. Applications for lipid-based delivery systems  

The use of multifunctional nanoprobes for molecular and cellular imaging is already 

showing great promise, providing new insights into approaches such as gene therapy and 

drug delivery. 



1. Introduction and aims of the thesis 

 15 

 Underlying the rational design of gene or drug loaded delivery vectors is the recognition 

of the individual steps of a particular internalization pathway. Live-cell imaging and single-

particle tracking using confocal fluorescence microscopy have shed light on the intracellular 

dynamics and bottlenecks of the drug/gene delivery process (Payne, 2007; Zhang et al., 

2007).  

1.5.2. Long-term imaging using Quantum Dots 

Continuous cell imaging has been dramatically improved with the introduction in the last 

decade of fluorescent probes such as Quantum Dots (QDs), colloidal nanocrystals with 

unique optical properties that make them outstanding fluorescent labels for long-term and 

multicolor imaging (Alivisatos et al., 2005; Michalet et al., 2005).  

QDs commonly consist of a cadmiumselenide (CdSe) or cadmiumtelluride (CdTe) core 

enclosed within a zincsulfide (ZnS) passivation shell. The cadmium-based core is toxic to cells, 

but the ZnS shell isolates it from the cell rendering the core non-toxic at functionally useful 

concentrations. Peptides, polyethylene glycol (PEG) or other biocompatible polymers, also 

provide protection and specific sites for bioconjugation (Figure 1.5, left top panel).  

The main advantages of QDs over organic fluorophores are the greater photostability and 

the excitation wavelengths range that extends above 500 nm. This latter feature reduces cell 

phototoxicity, essential for long-term fluorescence imaging. Because the molar extinction 

coefficients (0.5–2 × 106 M–1cm–1) of QDs are about 10–50 times larger than those of organic 

dyes, the QDs absorption rates will be 10–50 times greater than those of organic dyes at the 

same excitation photon flux. Because of the corresponding increased rate of light emission, 

single QDs appear 10–20 times brighter than organic dyes (Li et al., 2007). Furthermore, the 

emission wavelengths of QDs are size-tunable (Figure 1.5, left bottom panel). For example, 

QDs of approximately 2 nm in the core diameter produce a blue emission, whereas QDs of 

approximately 7 nm in diameter emit red light. Therefore, multiple colors QDs can be 

generated by controlling the size of the nanoparticle during the synthesis. Although QDs 

absorption spectra are broad, emission spectra are narrow (Figure 1.5, right panel) without 

the extension to the red characteristic of organic dyes. This feature allows for simultaneous 

detection of multiple color QDs upon illumination with single light source (Smith et al., 2004). 

Despite these features, QDs biocompatibility remains a critical issue to use in humans and 

a possible limitation to their in vivo applications (C. Kirchner and H.E. Gaub, 2005). 
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Figure 1.5: Scheme of Quantum Dots nanoparticles. Left top panel: QDs of CdSe core are 

surrounded by a ZnS shell and coated with biocompatible polymers. Left bottom panel: Size-tunable 

fluorescence emission. Right panel: Absorption (upper curves) and emission (lower curves) spectra of 

four CdSe/ZnS QDs samples. The blue vertical line indicates the 488-nm line of an argon-ion laser, which 

can be used to efficiently excite all four types of QDs simultaneously. Adapted from (Daniele Gerion, 

2001). 

1.5.3. Ligand tagged Quantum Dots 

 QDs have to be functionalized to act as useful, specific fluorescent labels. The targeting 

moiety attached to the QD surface determines the mode of entry into cells and their 

intracellular localization. Selective staining of plasma membrane and intracellular organelles 

was achieved using QD-labeled antibodies, receptor ligands or targeting peptides (Figure 

1.5, left top)(Michalet et al., 2005; Al-Jamal and Kostarelos, 2007). Dynamic processes such as 

diffusion of membrane receptors (Dahan et al., 2003) or antigen uptake by cells (Cambi et 

al., 2007) have been tracked with ligand and antigen tagged QDs, respectively. 

The cell binding of EGF tagged QDs has been extensively investigated in the laboratory in 

which this thesis work was carried out. It has been demonstrated that complexes of 

streptavidin-conjugated quantum dots (QDs) with biotinylated EGF are biochemically 

competent ligands for erbB1, the EGF receptor (Lidke et al., 2004). The application of 

multicolor EGF-QDs allowed tracking endocytosis of the receptor-ligand complex to follow 

subsequent steps in time. Figure 1.6 (A,B) shows two different colors of ligand-QDs delivered 

sequentially to identify early and late endosomes (Lidke et al., 2007). In addition, a previously 

unreported retrograde transport of activated erbB1 receptors on cellular filopodia was 
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detected at the single molecule level (Lidke et al., 2005). QDs allowed the visualization of the 

displacement of EGF-EGFR complexes on filopodia towards the surface and the interior of 

living A431 cells (Figure 1.6 (C,D). 

 

 
Figure 1.6: Tracking of endosomes with two different color QD-EGF complexes. A: QD605-EGF added 

to A431 cells, incubated RT for 3 min, washed and incubated for 5 min at 37° C, then QD525-EGF  were 

added and images acquired for 8 min at 37° C. Early endosomes: red only whereas QD525-EGF is 

predominantly external. B: QD525-EGF washed and observed 20 min later at 37° C. Several classes of 

endosomes containing red only, green only or both QD colors (see inset). Early, sorting and late 

endosomes are loaded (Lidke et al., 2007). Retrograde transport visualized with single EGF tagged QD. 

C: Selected frames of an A431-erbB1-GFP cell (green) from a time series after binding 5 pM EGF-QD 

(red) followed by addition of free EGF (50 ng/ml) at 300 s. Wide field image, scale bar is 5 μm. Images 

arecontrast enhanced. D: Trajectory of the indicated monomer erbB1-EGF-QD complex (yellow arrow) 

on a filopodium that exhibits random diffusional movement (black) until the addition of unlabeled EGF 

(green box), after which the complex exhibits active retrograde transport (red). Adapted from (Lidke et 

al., 2005). 

 

The recent advances in the chemistry of QD coating permit the simultaneous conjugation 

of two or more different molecules, and thus, the simultaneous stimulation of several 

receptors, further broadening the potential applications of these fluorescent probes for 

dynamic studies of cellular processes (Xiaohu Gao, 2004). However, the existence of multiple 

groups on the surface of QDs can be considered a disadvantage in comparison to single 

attachment sites or reactive entities. In fact, a high number of molecules contributing with 

multiples sites of conjugation leads to a distribution of QDs subpopulations differing in 



1. Introduction and aims of the thesis 

 18 

particle-label stoichiometries and undesirable cross-linking. Procedures for achieving precise 

control of the number of sites have been developed (Sperling, 2006; Lidke et al., 2007). 
Multiple sites can be advantageous for multifunctionality, for instance, the combination of 

targeted QDs and lipid carriers in a single nanoparticle can serve to elucidate the 

internalization route, fate of carriers and processing of therapeutic drugs. The attractiveness 

of such hybrid nanoparticles are: 

 Lipid carrier and QDs can be surface functionalized with a ligand for specific 

targeting 

 Complexes of drug-QDs can be encapsulated in the lipid carriers improving QDs 

biocompatibility and providing a therapeutic effect 

 The fluorescent lipid vehicle can be tracked continuously 

 Combining two colors QDs on the surface and inside the lipid vesicle, the fate of 

the carrier and the loaded drug could be followed independently 

1.6. Aims and organization of the thesis  

A new emerging field in targeted delivery is the multi-modality carrier, in which a 

therapeutic molecule, an imaging agent or a fluorescent probe and a targeting entity are 

assembled in a single nanometer-scaled scaffold for simultaneous imaging and therapy.  

The aim of this thesis was to develop a QD labeled and EGFR targeted delivery system 

mediated by Biotinylated Lipid Particles (BLP). 

The human epidermoid carcinoma cell line A431 was chosen because of its large 

overexpression of EGFR, approximately 106 receptors per cell. 

The original approach proposed here was not only the specific targeting but the novel 

encapsulation of QDs in these lipid particles by a detergent dialysis technique. A dual-color 

labeling strategy with loaded and surface bound QDs was introduced to follow the 

intracellular localization of the cargo and carrier by confocal microscopy. 

EGFR targeted and QD labeled BLP were loaded with plasmid DNA and cell specificity 

and transfection efficiency of the delivery system were evaluated according to the 

expression of the GFP reporter gene.  

Finally, a DNA labeling strategy was conceived to achieve sequence specific and non-

covalent labeling of DNA using a single QD and bis-peptide nucleic acids (bis-PNA). The 

objective was to obtain a transfection competent and labeled DNA cargo for the 

developed BLP. 

The specific objectives were: 

 Create a functional ligand-QDs labeled BLP 

 Demonstrate enhanced receptor-mediated uptake of the complex and gene 

expression 
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 Develop the imaging methodology to follow intracellular localization of lipid particles 

and cargo by confocal microscopy 

 Design a  QD-PNA-DNA complex for cellular imaging of DNA in delivery systems 

The results obtained in this study are divided in three sections. The first one describes the 

preparation of biotinylated liposomes (BLP) with encapsulated DNA or Quantum Dots, and 

the physicochemical characterization of the particles according to size, biotinylation and 

DNA or QDs encapsulation efficiency. 

The second section presents the EGF-based targeting strategy of the BLP either loaded 

with DNA or QDs and then focuses on the cell binding experiments. A two-color BLP labeling 

strategy usign QDs was designed, where colocalization of green emitting QD525 and red 

emitting QD655, allowed the immediate recognition of targeted BLP during live cell imaging 

by confocal microscopy. 

 The specificity for the EGF receptor was examined in a competitive binding assay in the 

presence of excess ligand EGF and after incubation of BLP with cell lines devoid of the 

receptor. 

Transfection competencies of EGFR-targeted and DNA loaded BLP particles were 

evaluated as the percentage of cells expressing GFP compared to cells incubated with non-

targeted particles. 

The third section presents the non-covalent DNA labeling strategy using bis-PNA and a 

single QD per plasmid and describes the characterization of the labeled complexes by gel 

electrophoresis and Atomic Force Microscopy. The data, although preliminary, are 

complementary to the main results of this thesis and represent the first steps towards a QD-

labeled plasmid that could be monitored along the pathway to the nucleus. Such a labeled 

plasmid appears as an attractive cargo for the BLP. 
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2.1. Reagents 

2.1.1. Lipids 

Lipids were purchased from Avanti Polar Lipids (Alabaster, USA) and from Northern Lipids 

(Vancouver, Canada) as lyophilized powders or dissolved in chloroform. Chemical structure 

and nomenclature are depicted in Table 2.1. Lipids were stored under argon in a desiccator 

at -20 °C. 

 

Description Nomenclature Chemical structure 

Phospholipid 

DOPE 

1,2-Dioleoyl-sn-Glycero-3-

Phosphoethanolamine 

 

Cationic lipid 

DOTAP 

1,2-Dioleoyloxy-3-

trimethylammoniumpropane 

chloride 
 

Biotinylated 

lipid 

Biotin-PEG-DSPE 

1,2-Distearoyl-sn-Glycero-3-

Phosphoethanolamine-N-

[Biotinyl (Polyethylene 

Glycol) 2000] (Ammonium 

Salt) 

 

PEG-

modified 

ceramide 

PEG-Cer-C20 

N-Arachidoyl-Sphingosine-1-

[Succinyl (Methoxy 

(Polyethylene Glycol) 2000)] 
 

PEG-

modified 

ceramide 

PEG-Cer-C8 

N-Octanoyl-Sphingosine-1-

[Succinyl (Methoxy 

(Polyethylene Glycol) 750)] 
 

pH-sensitive 

lipid 

PEG-DSGS 

3-O-[2’-(omega-

monomethoxy (Polyethylene 

Glycol) 2000) succinoyl]-1,2-

Distearoyl-sn-Glycerol 

 

 

Table 2.1: Synthetic lipids used in the formulation of lipid particles. 

 



2. Materials and methods 

 24 

Chloroform, Ethanol, Methanol, Isopropanol and Water HPLC quality were purchased from 

Merck. 

Buffers were prepared with analytical grade chemicals. Detergent, Triton X-100 was 

purchased from Fluka, detergent 1-o-n-octyl-β-D-glucopyranoside (OGP), sucrose, HABA 4-

Hydroxyazobenzene-2-carboxylic acid) and kanamycin from Sigma and nonpolar 

polystyrene adsorbents Bio-Beads SM-2 from BioRad.  

UltraPure™ Agarose was purchased from Invitrogen. 

Luria Bertani (LB) medium in powder form was obtained from Difco. 

2.1.2. Biotin and biotin-related reagents 

Biotin and Biocytin were purchased from Sigma, Ez link Sulfo NHS-LC-LC-Biotin and EZ-Link 

PEO-Biotin Dimer (+)-Biotinyl-hexaethyleneglycol dimmer from Pierce.  

Biotin-EGF and EGF (human recombinant) were obtained from Molecular Probes. 

2.1.3. Buffers 

Hepes buffered saline (HBS): 10 mM HEPES (2-hydroxyethyl)-1-piperazine ethanesulphonic 

acid, 150 mM NaCl (sodium chloride), pH 7.4. 

Hepes-Mg buffer: 10 mM HEPES (2-hydroxyethyl)-1-piperazine ethanesulphonic acid, 5 mM 

MgAc2 (Magnesium Acetate), 10 mM KCl pH 7.4 prepared with Ultrapure Water HPLC quality 

and filtered through 0.02 µm pore size.  

Phosphate buffered saline (PBS): 137 mM NaCl, 2.7 mM KCl, 7.9 mM Na2HPO4,1.5 mM 

KH2PO4, pH 7.3. 

Tyrode’s buffer: 135 mM NaCl, 10 mM KCl, 0.4 mM MgCl2, 1 mM, CaCl2, 10 mM HEPES, pH 

7.2.  

20 mM Glucose and 0.1% BSA were added before use. 

10 mM Sodium Acetate buffer pH 5.2: 1g/l Sodium acetate tri-hydrate and 0.16 g/l acetic 

acid (glacial). 

50X TAE: 242 g Tris base, 57.1 g glacial acetic acid, 100 ml of 0.5 M EDTA, pH 8.0. 

2.1.4. Quantum Dots 

Streptavidin-coated QDs (StAv-QDs) with maximum fluorescence emission peaks at 525 

nm (StAv-QD525), 605 nm (StAv-QD605) and 655 nm (StAv-QD655) and ITK-carboxyl QD655 were 

purchased from Invitrogen. 

2.1.5. Labeled proteins  and organic fluorophores 

Streptavidin Alexa Fluor488 (ex. 488 nm/em. 519 nm), Transferrin Alexa Fluor488 , Sybr Green 

(ex. 495 nm/em. 521 nm), Cy5 NHS ester (ex. 650 nm/ em. 670 nm) and Hoechst 33342 (exc. 

365 nm/ em. 455 nm) were purchased from Molecular Probes. 
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2.1.6. Plasmid DNA  

Plasmid pEGFP-C1, 4.7 Kb encoding the Enhanced Green Fluorescent Protein (EGFP: ex. 

488 nm/em. 507 nm), was bought from Clontech Laboratories (Heidelberg, Germany). This 

encodes a red-shifted variant of the wild-type green fluorescence protein. 

2.1.7. bis-PNA (bis Peptide Nucleic Acid) 

bis-PNA (bis- Peptide Nucleic Acid) MW: 5655 (ε260 nm= 107840 M-1cm-1) was acquired from 

Oswel, Southampton, UK.  

bis-PNA sequence: NH2-LL-TCCCCCTTT-LLL-TTTCCCCCT-LL, where L represents 8-amino-3,6-

dioxaoctanoic acid. 

bis-PNA anchoring sequence in p-EGFP C1 plasmid: AGGGGGAAA at base pair position 

4515-4523.  

2.1.8. Restriction endonucleases and DNA standards 

Restriction endonucleases Apa LI, Ava II and Ase I and the corresponding buffers were 

obtained from New England Biolabs. DNA markers of 100 bp and 1 Kb were from Invitrogen. 

2.2. Cell lines, media and labware 

Human epidermoid carcinoma cell line A431 and CHO (Chinese hamster ovary) cell line 

were obtained from the American Tissue Culture Collection, while the melanoma cell line 

WM983A, was kindly provided by Prof. Meenhard Herlyn (Wistar Institute, Philadelphia, PA). 

Dulbecco’s Minimal Essential Medium was obtained from Gibco. Leibovitz’s L15 medium 

was from Mediatech, Inc. FBS was bought from PAN. Penicillin and Streptomycin and Trypsin 

were purchased from Gibco. EDTA, BSA and glucose were from Sigma.  

Paraformaldehyde (PFA) of analytical grade was freshly prepared as a 4% solution in PBS 

for cell fixation. 

Glass coverslips 12 mm were acid washed and sterilized. LabTek 8-well or 2-well glass 

chambers, plastic cell culture dishes and flasks were purchased from Nunc or Sarstedt. 

2.3. Miscellaneous 

 Ultraconcentrators 3 kDa and 10 kDa cut-off, Amicon (Millipore), Vivaspin (Viva Science 

Sartorius, Göttingen)  

 Gel filtration columns Sephacryl-HR 200 and HR-400 and Superdex™ 75 /Superdex™ 200 

(GE Healthcare) 

 Native 3-8 % Polyacrylamide precasted gels (Invitrogen) 

 Dialysis Cassettes, Slide-A-Lyzer, 10 kDa cut-off for 0.5-3 ml sample, (Pierce) 

 Streptavidin-coated magnetic beads Dynabeads M-280, (Dynal Biotech) 

 Thin-wall polypropylene centrifuge tubes 2.5 ml (Beckman) 
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 Filters set for fluorescence microscopy (Chroma and Omega) 

 Silicon Nitride ultrasharp cantilevers for AFM (Veeco and Mikromarsch) 

2.4. Equipments and softwares 

Bench top centrifuge Mini spin plus (Eppendorf) 

Centrifuge Beckman Avanti J-25 

Ultracentrifuge/rotor with swinging 

buckets 
TL-100/TLS 55 Beckman 

Chromatographic system 
SMART, Pharmacia Biotech, GE Healthcare Life 

Sciences 

Laser-based scanning system for 

fluorescence detection 
Typhoon, Amersham Biosciences 

UV-Vis spectrophotometer Cary 100 Scan 

Fluorescence spectrophotometer Varian Cary Eclipse 

Particle analyzer Zeta Sizer Nano ( Malvern Instruments) 

Atomic Force Microscope  Nanoscope IIIa Multimode AFM (Veeco) 

Electron microscope Philips CM 12 

Optical microscopes  
Axiovert 100 (Zeiss, Göttingen, Germany) 

 Olympus IX71 

iXon CCD camera for microscopy Andor technology 

Laser Scan Confocal Microscope LSM 510 Meta (Zeiss, Göttingen, Germany) 

Flow cytometer Coulter Epics 

Software for Image analysis and data 

handling: 

AFM analysis: Vision 700  

Image analysis:  

Image J free software for microscopy 

DIPImage toolbox in Matlab 7.01 

Flow cytometry analysis: Reflex software 

 

 

Nanoscope v. 7.00. (Veeco) 

 

(http://rsb.info.nih.gov) 

(http://www.ph.tn.tudelft.nl/DIPlib/index.html) 

(http:// www.freewebs.com/cytoflex) 
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2.5. Preparation of Biotinylated Lipid Particles (BLP) 

As depicted in the diagram below (Figure 2.1), to prepare 1 ml of BLP formulation, 8.4 

µmols DOPE (neutral lipid), 0.6 µmols DOTAP (cationic lipid) and 0.024 µmols Biotin-DSPE were 

initially mixed in 2 ml glass vials.  In individual vials containing this lipid mixture, different 

micromolar amounts of PEG-lipids (Table 2.1) were added to obtain 1.4, 2.7 and 10 (mol%) 

PEG content and a final lipid concentration of ~10 mg/ml in the BLP formulation. These 

solutions were dried with a stream of argon and residual chloroform was removed under 

vacuum overnight.  

 

 
 

Figure 2.1: Flow diagram of BLP preparation with encapsulated plasmid DNA or QDs.  

2.5.1. Detergent dialysis technique  

The resulting lipid film was hydrated in 0.5 ml of HBS containing 100 µl of 1M OGP 

detergent with continuous magnetic stirring at 60 °C to favour complete dissolution. For the 

preparation of BLP with encapsulated DNA (BLP-DNA), the detergent dialysis technique 

described by (Hofland et al., 1996) was applied with modifications. In this approach, 100 µg 

or 200 µg peGFP-C1 plasmid (purified as described in 2.10.1) were diluted in 0.5 ml HBS and 

added with stirring to the solubilized lipids-detergent solution (0.5 ml). The mixture was kept at 
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RT for 30 min and followed by a dialysis at RT against HBS using a 10 kDa MWCO membrane 

for 2-3 h or until turbidity was noticeable. Then, the dialysis was continued in a cold room (~4 

°C) overnight and after two buffer changes of 1 l HBS, residual detergent OGP was removed 

by adding polyestyrene SM2 Biobeads (adsorbent capacity ~117 mg OGP/g beads). Control 

BLP samples without plasmid were prepared in parallel. 

In order to prepare BLP with encapsulated QDs (BLP-QDs), ITK-carboxyl QD655 were added 

to the corresponding lipid-detergent mixture in HBS (50 nM final QDs concentration). Samples 

were immediately dialysed as described for BLP-DNA particles. 

2.5.2. Ultracentrifugation in sucrose density gradient 

In order to separate and recover DNA and QDs loaded BLP from less dense empty BLP 

and non encapsulated material, the samples obtained after the detergent dialysis were 

loaded on top of a discontinuous sucrose density gradient. 

The sucrose gradient was prepared in 2.5 ml Beckman ultraclear thin-wall centrifuge tubes 

by carefully applying with a tip or syringe, layers of 0.6 ml 2.5 %, 10%, and 20% (w/v) sucrose in 

HBS (Mok et al., 1999). The BLP samples recovered from the detergent dialysis were adjusted 

to 1% (w/v) sucrose density and were added on top of the gradient. Ultracentrifugation was 

carried out for 5 h at 160,000 g at 10 °C in a TLS-55 rotor with swinging buckets.  

The resolved turbid bands from BLP-DNA samples were carefully recovered and, together 

with aliquots of the gradient, were analyzed for particle size, biotin content and DNA 

encapsulation efficiency. 

Centrifuge tubes containing BLP-QDs samples were briefly illuminated with UV light to 

detect QD655 fluorescence, and consequently the location of QDs containing bands. 

Fluorescent bands were analyzed by TEM at the Electron Microscopy Department of the 

institute. 

2.5.3. Particle size analysis by Dynamic Light Scattering 

The mean hydrodynamic diameter of the obtained BLP was measured by Dynamic light 

scattering (DLS) which involves the determination of how the intensity of the light scattered 

by a solution of moving particles varies with time. This variation is correlated with the speed at 

which particles move, which can be characterized by their diffusion coefficients (Pecora 

and Aragon, 1974). The hydrodynamic diameter d of particles is obtained from the diffusion 

coefficients D, according to: 

 d = 
kT 

3π η D 
 

where, k is the Boltzman constant, T is the temperature and η is the solvent viscosity. 

DLS measurements were performed with a NanoZetasizer from Malvern Instruments, 

detecting the back scattered light from a 633 nm laser at a fixed angle of 173°. 
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Samples were diluted in PBS and the measurements performed at RT. The PBS used to 

dilute the samples was previously filtered through 0.02 µm pore size to eliminate potential 

interfering impurities. 

The operating protocol was chosen for spherical particles, applying 12 to15 runs per 

measurement, which were automatically selected according to the concentration of 

particles in the sample, and three measurements were performed on each sample. The 

autocorrelation function for size distribution was calculated using the CONTIN mathematical 

approach for heterodisperse, polydisperse and multimodal systems (Provencher, 1982). 

The mean hydrodynamic diameter obtained represents only an intensity-based average 

value and does not give any information on the prevailing size distribution. For this reason, the 

polydispersity index (pdi) is also stated to give information about the actual distortion of a 

monomodal distribution. The pdi can have values between 0-1 and is equivalent to the 

variance σ2 of the size distribution. Samples with pdi <0.25 are considered as monodisperse 

solutions. 

2.5.4. DNA quantitation 

The amount of plasmid recovered and encapsulated after dialysis and ultracentrifugation 

in sucrose density gradient was quantitated using the Sybr Green fluorescence assay (Zhang 

et al., 1999). In the presence of DNA, the dye binds specifically to double-stranded DNA and 

emits at 522 nm. Briefly, 25 μl aliquots of standard solutions varying from 0-5 µg/ml plasmid 

DNA or dilutions of BLP were mixed with 25 μl of HBS buffer containing 0.5 μg/μl Sybr Green 

solution. Sybr Green fluorescence was excited at 495 nm and emission spectra were 

collected from 505 to 700 nm with a slits width of 10 nm for both excitation and emission. 

The plasmid DNA content in BLP formulations was calculated from the linear curve fitting 

obtained after plotting the maximum fluorescence intensity (a.u.) of Sybr Green at 522 nm as 

a function of DNA concentration in µg/ml plasmid (Figure 2.2). 

 

 
 

Figure 2.2: Representative DNA calibration curve using Sybr Green dye. Sybr Green excited at 495 

nm and emission recorded from 505-700 nm. Maximum fluorescence intensity (a.u.) at 522 nm was 

plotted as a function of plasmid DNA concentration. Data correspond to three curves obtained in 
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independent experiments. Each point is an average of duplicates. Free Sybr Green is non-fluorescent in 

HBS (0 µg/ml plasmid DNA). The presence of 0.1% Triton-X100 did not change the maximum 

fluorescence intensity at 522 nm of Sybr Green upon DNA binding (not shown). 

 

Free or exposed plasmid DNA was quantitated directly in BLP solutions. Then, lipid particles 

were solubilized with 0.1% Triton X-100 and total DNA content was measured. The obtained 

value was related to the initial amount added to compute DNA encapsulation efficiency. 

2.5.5. Biotin quantitation  

The biotin content of BLP was determined on samples recovered after detergent dialysis 

and ultracentrifugation in sucrose gradient.  

The fluorometric assay used is based on Foster resonance energy transfer (FRET) (Batchelor 

et al., 2007), providing high sensitivity to detect nanomolar concentrations of biotin linked to 

proteins or nucleic acids. In this assay (Figure 2.3A), the Alexa Fluor488-streptavidin conjugate 

(StAv-Alexa488) acts as FRET donor and the dye HABA as a quencher, occupying the biotin 

binding sites of the dye-labeled streptavidin. In the absence of biotin, HABA quenches the 

fluorescence emission of the Alexa Fluor488 dye via FRET. When biotin or a biotinylated 

molecule is added, HABA is displaced from the biotin binding sites resulting in an increase in 

the donor fluorescence intensity proportional to the amount of biotin present in the sample.  

The standard curve of biocytin, a water-soluble biotin analogue, was obtained by titrating 

a solution containing 25 nM StAv-Alexa488 and 125 μM HABA in HBS. Biocytin was added from 

an aqueous stock solution to give final concentrations of 0–200 nM in 50 μl samples. 

Fluorescence of standards and samples was measured in a spectrofluorometer, Alexa Fluor488 

dye was excited at 485 nm and emission spectra were collected between 500-700 nm.  

The fluorescence intensity at the emission maximum (519) nm was plotted as a function of 

biocytin concentration (nM) and the data were fitted to a sigmoid curve to obtain the 

corresponding values for the unknown samples (Figure 2.3B). In the conditions assayed a ~6-

fold increase in fluorescence signal upon complete displacement of HABA was observed 

with a detection limit of approximately 3 nM biocytin (Figure 2.3C). 
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Figure 2.3: Fluorometric assay for biotin quantitation. A: General scheme of the assay adapted from 

(Batchelor et al., 2007). HABA acts as acceptor of Alexa Fluor488 fluorescence while bound to biotin 

binding sites. When biotin or biocytin is added, HABA is displaced and the fluorescence signal of Alexa 

Fluor488 increases. B: Biocytin standard curve obtained by titrating a solution containing 25 nM StAv-

Alexa488 and 125 μM HABA in HBS. At least 8 values were obtained to plot the data within a biocytin 

range of 0-200 nM. Excitation of Alexa488 at 485 nm and emission collected from 500 to 700 nm. The 

data illustrate a ~6-fold increase in fluorescence signal upon complete displacement of HABA. 

According to manufacturers, three biotin-binding sites are available per streptavidin molecule 

corresponding to 75 nM biotin binding sites C: The detection limit achieved was approximately 3 nM 

biocytin. 

2.5.6. Transmission Electron Microscopy  

The size and morphology of BLP and encapsulated QDs were analyzed by TEM by Dr. 

Dietmar Riedel in the Electron Microscopy department at the MPIbpc.  
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2.6. Labeling and targeting of BLP 

2.6.1. EGF-QDs preformed complexes  

The formulation of the streptavidin conjugated QDs includes a polyethylene glycol 2000 

(PEG) outer layer to which 6-8 streptavidin molecules per QDs are covalently linked. This 

allows variations in the stoichiometry of the ligand-QD complexes. Procedures for binding 

biotinylated ligands to commercial streptavidin conjugated quantum dots were optimized in 

our lab and detailed protocols are described in (Lidke et al., 2007).  

Biotin-EGF were coupled to StAv-QD525 (or QD605) at ratio 2:1 or 4:1 in HBS with 0.2% BSA at 

50 nM QDs final concentration. Solutions were incubated at 15 °C for at least 30 min with 

gentle agitation before coupling to BLP. 

2.6.2.  EGF-QDs coupling to BLP 

BLP loaded with QD655 or plasmid DNA were incubated with preformed complexes of EGF-

QD525 (1:1 v/v) in HBS suplemented with 0.2% BSA. Final concentration of QD525 was 25 nM 

whereas final biotin concentrations on BLP varied from 0.2-10 µM biotin. This mixture was 

incubated for at least 2 h at 15 °C with continuous shaking. 

Separation of EGF-QDs-BLP from EGF-QDs could not be achieved by size exclusion 

chromatography or sucrose gradient (data not shown) and resulted in considerable sample 

loss. Therefore, upon incubation with cells, residual free preformed complexes (EGF-QDs) 

were expected to bind to EGF receptors (Lidke et al., 2004) being indistinguishable from the 

targeted particles (EGF-QD–BLP). In order to solve this problem, two-color BLP labeling 

strategies were designed for BLP either loaded with QDs (Figure 2.4A) or plasmid DNA (Figure 

2.4B).  

 

 
 

Figure 2.4: EGF tagged and two-color labeled BLP. A: with encapsulated carboxyl-QD655. B: with 

encapsulated plasmid DNA. 

 

In the case of BLP-DNA (Figure 2.4B), particles were incubated first with EGF-QD525 in HBS 

supplemented with 0.2% BSA for 30 min at 10 °C. Then, the non-targeted StAv-QD655 were 

added to the EGF-QD525-BLP particles, and incubation proceeded for at least 2 h at 10 °C 
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before in vitro cells experiments. The final concentration of both StAv-QDs was 25 nM 

whereas the final concentration of encapsulated DNA varied among preparations and is 

stated in each experiment.  

In both approaches, the green emitting StAv-QD525 are the ones targeted to the EGFR in 

A431 cells, whereas the red emitting QD655 without the ligand, serve to track the BLP 

themselves. 

2.7. Live-cell experiments 

2.7.1.  Cell culture  

A431 and CHO cell lines were cultured in Dulbecco’s Minimal Essential Medium (D-MEM) 

supplemented with 10% fetal calf serum (FCS), 50 U/ml of penicillin and 50 U/ml of 

streptomycin. WM983A cells were grown in three parts DMEM and one part Leibovitz’s L15 

medium supplemented with 10% heat inactivated (56 °C for 20 min) FCS and Pen-Strep. All 

cells were grown as a monolayer at 37 °C in a humidified atmosphere containing 5% CO2. For 

microscopy experiments, cells were seeded one or two days in advance onto 12-mm-

diameter glass coverslips and employed at a 40-50% confluence. For binding experiments, 

cells were starved in serum free DMEM for 4 h prior to the incubation with BLP to reduce 

signaling induced by growth factors present in the serum. 

2.7.2. Experimental conditions for the incubation of A431 cells with BLP 

Two-color QDs labeled, EGFR-targeted and non-targeted BLP-DNA or BLP-QDs were 

diluted in 200 or 500 µl Tyrode buffer with 0.5% BSA, to obtain 0.5 nM QD525 and 2 nM EGF final 

concentration. Preincubation of targeted and non-targeted BLP with starved A431 cells was 

carried out first at 15 °C, a temperature non-permissive for endocytosis. This preincubation 

time was varied from 5 to 30 min, then cells were warmed at 37 °C and were incubated from 

10 min to 2 h. Finally, unbound BLP were removed and cells washed with Tyrode’s buffer. 

Confocal fluorescence microscopy was performed on live cells immediately after 

removing the complexes and after 30 min and 1, 2, 4, 12, 24 and 48 h incubation at 37 °C. 

When incubation was extended for more than 1h after removing the BLP, Tyrode’s buffer was 

replaced by complete DMEM. 

2.7.3.  Incubation of EGF-QDs and Transferrin-Alexa488 complexes with A431 cells  

A431 cells were grown on glass coverslips at a density 40-50 % and serum-starved before 

experiments. Transferrin-Alexa Fluor488 (60 nM) and EGF-QD605 complexes (2 nM) were added 

to the cells to allow simultaneous internalization. Incubation with the complexes at 37 °C 

proceeded for 10 and 30 min.  

In a second experiment, EGF-QDs complexes were added first to the cells and after 2 h 

incubation at 37 °C, Transferrin-Alexa Fluor488 complexes were added for 5 min. Then, 
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complexes were removed and the cells rinsed and fixed in 4% paraformaldehyde for 15 min 

on ice to prevent redistribution of the QDs. After fixation, coverslips were mounted in PBS for 

confocal microscopy.  

QD605 and Alexa Fluor488 were excited with the 488 nm laser line and the emission collected 

with 565-615 nm and 520-30 nm BP filters, respectively. When QD655 were employed, they were 

excited with the 532 nm line and the emission was collected through a 650 nm LP filter.  

2.7.4.  Competitive binding assay 

Free ligand EGF (recombinant human) was added to starved A431 cells at 200 ng/ml (33 

nM) final concentration and cells were incubated for 10 min at 10 °C to prevent 

internalization. Then, the EGFR targeted BLP (EGF-QD605-BLP-QD655) were added to the cells at 

a final concentration of 2 nM EGF at 10 °C and incubation proceeded at 37 °C for 10 min. 

Cells were rinsed with Tyrode’s buffer and confocal microscopy images were acquired 

immediately in live cells during 60 min at RT. 

The same protocol for applied for binding experiments with excess ligand was carried out 

to test for unspecific binding of EGFR targeted BLP in CHO cell line and WM983A melanoma 

cell line, both devoid of EGF receptor. 

2.7.5. Experimental conditions for targeted gene delivery by BLP 

Cells were seeded in 6-well plates at a density of 0.8-1 x 105 cells per well 24 h prior to 

incubation with BLP-DNA. Starved and non-starved A431 cells were incubated with EGFR- 

targeted and non-targeted BLP-DNA. Since lipid particles with multiple biotins can cause 

aggregation of EGF-QDs, the following two-step protocol was applied to decrease the 

possible cross-linking of BLP and maximize the binding of BLP-DNA to A431 cells: 

1. Preformed complexes of EGF-QD655 (molar ratio 1:4) were added to A431 cells at final 

concentration 0.5 and 2 nM QDs and incubated on ice for 5 min. 

2. Cold BLP-DNA solution containing 1µg plasmid DNA was added for 15-30 min at 15 °C 

to allow binding but not endocytosis. 

Control of non-targeted delivery was carried out by adding cold BLP-DNA (1µg plasmid) 

for 15-30 min at 15 °C to A431 cells without the preincubation with EGF-QD655 complexes. 

After incubation at 37 °C for 10, 30 or 60 min, complexes were removed and the cells 

were washed with Tyrode’s buffer. Incubation proceeded for up to 48 h at 37 °C in complete 

DMEM before analyzing GFP expression by fluorescence microscopy or flow cytometry (see 

section 2.9). 
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2.8. Confocal fluorescence microscopy 

2.8.1. Simultaneous detection of two different colors of QDs 

Scanning confocal fluorescence microscopy is a powerful technique for studying 

dynamic processes in specific intracellular compartments. It is particularly suitable to report 

whether two different probes of interest are physically located in the same compartment. 

Colocalization of labeled molecules can be analyzed by scanning single focal planes along 

the z-axis inside a cell without interference of the out of focus light from other focal planes 

(Chen et al., 2004). Multiple x-y focal planes can be stacked to reconstruct a 3D- image of 

the subcellular region under study. 

Confocal fluorescence microscopy was performed with a Zeiss 510 Confocal Laser 

Scanning microscope using a water immersion objective C-Apochromat 63x/1.2 NA 

(numerical aperture).  

In order to localize the two-color QDs labeled BLP, the simultaneous excitation of QD525 

and QD655 was achieved with the 488 nm laser line, or in some experiments with the 458 nm 

line to increase the fluorescence intensity. QDs signals were simultaneously detected and 

collected in separated channels with appropriate filters, in this case, 520/20 BP for QD525 and 

585 LP for QD655. When QD525 was replaced by QD6o5 in preformed complexes with biotin EGF, 

the QD605 and QD655 were detected using 585-615 BP and a 650 LP filters, respectively. To 

eliminate possible cross-talk when using the same excitation wavelength, single color EGF-

QDs controls were tested for optimization of the gain settings. Time series with single and 

multiple focal planes were acquired with a pinhole set to 1 Airy disc. With the given settings, 

channel cross-talk was negligible as determined using single-labeled samples. For qualitative 

analysis, images were background-corrected before performing brightness and contrast 

enhancement. The same modifications were applied to all samples and controls. Digital 

image analysis was carried out with the free software Image J (http://rsb.info.nih.gov) and 

orthogonal sections were reconstructed using the software provided with the microscope. 

2.8.2. Colocalization analysis 

For quantitative colocalization analysis of QDs in targeted and labeled BLP during binding 

experiments, background was substracted from both QDs channels. The degree of 

colocalization was evaluated by the Pearson’s correlation coefficients estimated according 

to specialized algorithms applied to the images (Costes et al., 2004; Kreft et al., 2004). 

Pearson’s correlation coefficient 

Pearson’s correlation coefficient Rr, is one of the standard measures in pattern 

recognition. In the equation displayed below, S1 represents signal intensity of pixels in the 

channel 1 and S2 represents signal intensity of pixels in the channel 2; S1aver and S2aver reflect 

the average intensities of these respective channels.  
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Rr is used for describing the correlation of the intensity distributions between channels. It 

takes into consideration only similarity between shapes, while ignoring the intensities of 

signals. Its values range between −1.0 and 1.0, where 1.0 indicates significant correlation, 0 

indicates no correlation and −1.0 indicates negative correlation. Negative values of Rr, 

however, should be interpreted very cautiously. 

Colocalization of QD525 and QD655 in dual-labeled BLP was demonstrated by presenting a 

plate of three images, two corresponding to the red (QD655) and green (QD525) channels, 

and a third image where the channels are merged and the overlapping pixels displayed in 

yellow. The distribution of pixels according to channels can be visualized in a two-

dimensional scattergram or correlation plots where the degree of colocalization is described 

by Rr.  

2.9. Quantitative GFP expression analysis 

2.9.1. Epi-fluorescence microscopy 

Conventional epifluorescence microscopy was performed with an Olympus IX71 

microscope equipped with a Plan-Fluor 10X objective and a CCD camera (Andor). The 

following filter sets were applied: 

i. For Hoechst H33342 (ex. 350/50 BP, 400 DM, em. 460/50 BP) 

ii. For GFP (ex. 480/30 BP, 505 DM, em. 535/40 BP) 

iii.  For QD655 (ex. 560/55 BP, 595 DM, em. 655/40 BP) 

Quantitative GFP expression analysis was performed with the DIPimage toolbox for Matlab 

7.01 (http://www.ph.tn.tudelft.nl/DIPlib/index.html). The percentage of cells expressing GFP 

was calculated relative to the total number of cells analized in 20 random microscopic fields. 

These were detected by staining the nuclei with the fluorescent dye bisbenzimidazole 

Hoechst H33342 (1 mM) for 20 min at RT in PBS-BSA buffer.  

The number of cells per field was determined automatically based on the number of 

Hoechst stained cell nuclei (blue). This was carried out by measuring the total blue area (in 

pixels), corresponding to nuclear staining divided by the average nucleus area calculated 

independently for each field. The number of GFP expressing cells was calculated by 

counting the number of blue nuclei colocalized with green cytoplasm and visually inspected 

for control.  
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The input to the algorithm is two images: one with Hoechst-stained cell nuclei and one 

with GFP protein fluorescence. The images were processed as follows: 

In images with Hoescht stained nuclei: 

1. Correction of uneven illumination  

2. Thresholding the blue Hoechst image  

3. Labeling of all spots using connected component analysis 

4. Filtering out spots with an area less than 100 pixels and not round 

5. Finding the mean area of the spots: this will serve as the average area of a single 

nucleus 

6. Division of the total amount of pixels above the threshold (step 2) by the average 

nucleus area to get the total number of cells in the image 

In images with GFP expressing green fluorescent cells: 

1. Suppression of spot-like negatives using elliptic gray-value erosion of width 4 

2. Thresholding the image, marking 10% as passed pixels 

3. Binary erosion of width 4 to suppress poisson noise 

4. Labeling of all spots using connected component analysis 

5. Filtering out of spots with area smaller than twice the average area of the nucleus 

In combined images: 

1.  Finding pixels that are both part of a nucleus (blue) and labeled with GFP (green). 

2. Division of the number of pixels obtained in step 1 by the average area of a single 

nucleus to obtain the number of GFP-expressing cells 

3. Division of the number of GFP-expressing cells by the total number of cells in each 

field analyzed to get the percentage of GFP-expressing cells. 

2.9.2. Flow cytometry 

A431 cells incubated with BLP-DNA (following protocol in 2.7.5) were resuspended with 

Trypsin-EDTA in PBS, fixed in 4% PFA/PBS and the percentage of cells expressing GFP was 

analyzed in a Coulter Epics Elite flow cytometer equipped with a 488 nm argon ion laser.  

GFP fluorescence was excited at 488 nm and emission detected using a 525/40 nm BP 

filter. To discriminate between viable and dead cells and to exclude doublets, cells were 

appropiately gated by forward/side scatter and 10.000 events per sample were collected. 

Further data analysis, subpopulation gating and statistic calculations were performed 

using the software Reflex. 
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2.10. bis-PNA:DNA Hybrids 

2.10.1. Plasmid DNA amplification and purification 

Competent bacterial strain E. coli DH5 was transformed with the pEGFP-C1 plasmid. The 

transformation mix was plated onto a selection agar containing kanamycin 30 μg/ml and 

incubated at 37 °C overnight. A single bacterial colony was picked and inoculated in 2 ml 

LB/kanamycin medium then, incubation proceeded at 37 °C with vigorous shaking for 8 h. 

This culture was afterwards, inoculated into 500 ml of LB/kanamycin and incubated overnight 

at 37 °C with shaking. The bacterial culture was harvested by centrifugation and plasmid 

DNA purified by ion excahnge chromatography using the QiaFilter Plasmid Maxi Kit, 

according to the manufacturer´s instructions.  

2.10.2. Biotinylation of bis-PNA  

bis-PNA sequence, NH2-LL-TCCCCCTTT-LLL-TTTCCCCCT-LL L=8-amino-3,6-dioxaoctanoic 

acid, was biotinylated at the terminal amino group by adding a 20 molar excess of Sulfo 

NHS-LC-LC-Biotin reagent in PBS and incubating for 90 min at RT without removing the excess 

of reagent. Biotin incorporation was 80-90% for three independent preparations measured 

indirectly as the amount of free non-modified amino groups. This was calculated upon 

reacting the free amino groups with the fluorophore fluorescamine (Udenfriend et al., 1972), 

the fluorescence obtained was proportional to the percentage of available amino groups. 

2.10.3. Cy5 labeling of bis-PNA 

Labeling reaction with Cy5 was performed by mixing 5 µM bis-PNA and 50 µM NHS-Cy5 in 

Carbonate buffer 0.1 M pH 8.3, the reaction mix was incubated for 2 h at RT followed by 2 h 

at 4 °C. 

Purification of labeled PNA was performed in a chromatographic system (Smart) using a 

gel filtration column with matrix of dextran Superdex 75 and eluted in 10 mM Acetate buffer 

pH 5. The concentration of the recovered Cy5-bis-PNA was calculated using the extinction 

coefficient of Cy5 at 650 nm, ε650 nm = 250,000 M-1cm-1. 

2.10.4. Hybridization of bis-PNA to pEGFP-C1 plasmid 

Biotin-bis-PNA or Cy5-bis-PNA were hybridized to the anchoring site in pEGFP-C1 plasmid 

at position 4515-4523 (sequence AGGGGGAAA). Biotin-bis-PNA or Cy5-bis-PNA were added 

to 2 µg plasmid in 10 mM Sodium Acetate buffer pH 5 at molar ratios of bis-PNA to plasmid, 

2:1, 4:1, 8:1, 20:1 and 40:1. The mixtures were incubated for 3 h at 37 ºC and hybrids were 

purified from excess labeled or biotinylated bis-PNA using Sephacryl HR-400 spin columns pre-

equilibrated with 10 mM Sodium Acetate buffer pH 5. After sample addition, a centrifugation 

step was carried out for 2 min at 800 g to recover the purified hybrids. Biotin-bis-PNA-plasmid 
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DNA will be referred as biotinylated Hybrids. Purity and quality of the recovered plasmid were 

determined by enzymatic digestion with restriction endonucleases. 

2.10.5. QD labeling of Hybrids  

QD labeled Hybrids were obtained by reacting biotinylated Hybrids (2 nM biotin) with 

StAv-QD655 (2 nM streptavidin) in 50 mM Sodium Borate buffer pH 8.5 for 4h at 4 °C under 

agitation. These complexes will be referred as QD-Hybrids. 

2.10.6. Restriction fragment analysis by gel electrophoresis 

Hybrids were analyzed by digestion of pEGFP-C1 plasmid with the following 

endonucleases: 

Apa LI: Restriction site at position 4360  

Ava II: Restriction sites at positions 1270, 3272, 3717 

Ase I: Restriction site at position 4731 

PNA target site in plasmid: 4515-4523 bp 

Plasmid digestion with Apa LI and Ava II generates restriction fragments of 445 bp, 643 bp, 

1641 bp and 2002 bp. The PNA target site is located in the 1641bp fragment. 

Digestion with Apa LI and Ase I produces two fragments of 379 bp and 4352 bp. The PNA 

target site is located in the 379 bp fragment. 

 

Reaction mix for plasmid digestion 

Plasmid DNA (0.5-1 µg) was incubated with 2 µl 10X buffer NB4**, 1-2 U (Units*) restriction 

enzyme and 1 µg/µl BSA. Milli Q water was added to a final volume of 20 µl and the reaction 

mixture incubated at 37 °C for 1 h. Restriction fragments were analyzed in 1% agarose gels. 
*One unit of restriction enzyme is the amount of enzyme required to completely digest 1 μg substrate 

DNA in 1 hr. 

**NEB 4: 20 mM Tris-acetate (pH 7.9), 10 mM Magnesium acetate, 1 mM DTT, 50 mM Potassium acetate 

 

Agarose gel electrophoresis  

Biotinylated, Cy5 labeled and QDs labeled Hybrids, and restriction fragments were 

electrophoresed in 0.8 or 2% agarose gels in 1X TAE buffer. Electrophoresis was carried out at 

RT under constant voltage (60 V) and gels were protected from direct light exposure. After 

electrophoresis, gels were stained with 0.5 µg/µl Sybr Green solution in 1X TAE to visualize total 

DNA content. Sybr Green, Cy5 and QDs fluorescence were detected in gels with a laser-

based scanner (Typhoon instrument). The laser lines were selected according to the 

corresponding excitation wavelengths of the dyes and fluorescence emission detected using 

a 520/30 nm BP filter for Sybr Green, and a 670 nm LP filter for Cy5 and QD655.  

 

Band shift assay in polyacrylamide gels 
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DNA restriction fragments containing the hybridized biotin-bis-PNA were analyzed in a 

band shift assay in native polyacrylamide gels with a concentration gradient varying from 3-

8% polyacrylamide in 1X TAE buffer. Gels were stained with 0.5 µg/µl Sybr Green solution after 

electrophoresis. 

2.10.7. Conjugation of QD-Hybrids to biotin coated magnetic beads  

QDs-Hybrids were vizualized in biotin coated magnetic beads prepared as follows: 

i. Biotin-coated magnetic beads were obtained by conjugating a biotin dimer, EZ link PEO-

Biotin dimer (200 µM) to streptavidin coated magnetic beads (76 nM streptavidin) in 50 

mM Borate buffer pH 8.0 for 2 h at 4 °C 

ii. Biotinylated Hybrids (20 mM biotin) were conjugated to StAv-QD655 (2 nM QDs and 6-8 

StAv per QD) in 50 mM Sodium Borate buffer pH 8.5 and incubated ON at 4ºC 

iii. QD655-Hybrid complexes were incubated with biotinylated beads for 2 h at RT with 

shaking and protected from light 

iv. Samples were placed in a magnetic stand and beads washed with 50 mM Sodium 

Borate pH 8.5 and incubated with 0.5 µg/µl Sybr Green solution for 5 min 

v. Control samples of biotinylated Hybrids, free QD and free plasmid were incubated with 

streptavidin or biotin coated magnetic beads and then stained with Sybr Green 

vi. Treated beads were washed and resuspended in 50 mM Sodium Borate buffer pH 8.5 

and were deposited on glass coverslips for fluorescence microscopy analysis 

The coupling of Hybrids on magnetic beads was visualized in an inverted microscope Zeiss 

Axiovert 100 equipped with a CCD camera. Sybr Green fluorescence was detected with 

excitation filter 480/30 BP, 505 DM (dichroic mirror) and emission filter 535/40 BP, QD655 

detection: excitation filter 560/55 BP, 595 DM and an emission filter 655/40 BP. The acquired 

images were processed using the DipImage Toolbox from Matlab 7.01. 

2.11. Atomic Force Microscopy analysis 

The Atomic Force Microscope, also called scanned-proximity probe microscopy works by 

measuring a local property of a sample, such as height, with a probe or “tip” placed very 

close to the sample. This results in a three-dimensional profile of the surface that can reach 

atomic resolution on hard flat surfaces. 

Unlike traditional microscopes, scanned-probe systems do not use lenses. Therefore, the 

size of the probe rather than the diffraction effects, generally limits their resolution. Lateral 

resolution of 5 nm and a <0.1 nm resolution in height can be achieved. 

The ’Tapping mode’ of scanning overcomes problems associated with friction, adhesion 

and electrostatic forces by shortly placing the tip in contact with the surface to provide high 

resolution and then lifting the tip off the surface to avoid dragging the tip across the sample 

surface. This mode inherently prevents the tip from sticking to the surface and causing 
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damage during scanning. The AFM can scan the sample under air, vacuum or in a variety of 

fluids where the sample must be previously deposited on a flat substrate, such as mica or 

glass.  

Images of BLP or DNA were obtained with a NanoScope III MultiMode AFM (Veeco 

Instruments Inc., Santa Barbara, CA) operating in tapping mode in air using silicon 

cantilevers. Height and amplitude images were recorded simultaneously and section analysis 

performed using the software available with the instrument. 

2.11.1. Sample preparation for scanning 

For the analysis of BLP morphology, a droplet of lipid particles solution purified from 

sucrose density gradient was deposited on a mica surface and was air-dried before 

scanning. For the QD-Hybrids analysis, samples containing 2 µg/ml plasmid were applied on 

the mica surface pretreated with 2.5 mM MgCl2. After 30 seconds, the mica surface was 

rinsed with water and was gently dried with a flow of nitrogen before AFM scanning. 
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The spontaneous formation of DNA-lipid particles in the neutral detergent octyl-β-D-

glucopiranoside (OGP) was initially described by (Zhang et al., 1997). This method was 

optimized to encapsulate single plasmid molecules with a 50-70% efficiency in particles of 

~70 nm size (Wheeler et al., 1999). The physical characteristics of these particles known as 

SPLP (Stable Plasmid Lipid Particles) appear ideal for in vivo application. However, the 

transfection potency of SPLP is quite limited due to the PEG coating which decrease the cell 

association of SPLP and subsequent uptake. The length of the carbon chain in the PEG-lipid 

directly affects the rate of DNA released from SPLP. For, instance, short acyl chain (C8) in 

PEG-lipids have transfer rates from SPLP in the order of minutes and are referred as to 

exchangeable lipids, whereas PEG-lipids with acyl carbon chain longer than C20 have 

transfer rates of hours or days and are referred as to non-exchangeable lipids (Mok et al., 

1999). 

The approach explored in this thesis involved the addition of a biotinylated lipid (biotin- 

PEG-DSPE) to enhance cell targeting ability by subsequently coupling the EGF ligand via 

streptavidin-biotin interaction. These new liposomes were named BLP (Biotinylated Lipid 

Particles). 

This chapter focuses on the preparation of three different BLP formulations containing 

exchangeable and non-exchangeable PEG-lipids and a pH-sensitive PEG-lipid followed by 

the characterization of the particles according to size, biotin content and DNA/QDs 

encapsulation efficiency.  

3.1. Encapsulation of plasmid DNA and QDs in BLP 

3.1.1. BLP formulations  

Various BLP batches were prepared by mixing DOPE (8.4 mM), DOTAP (0.6 mM) with 

different amounts of the PEGylated lipids. In Table 3.1 are shown the main differences 

between BLP and the original SPLP formulations such as the inclusion of a biotinylated lipid 

(Biotin-PEG-DSGS), a PEGylated pH-sensitive lipid (PEG-DSGS) and ≤10% PEG-lipid content. 

 

PEG-lipid PEG content (mol %) 

 BLP SPLP 

PEG-Cer-C20 10 10 

PEG-Cer-C8 1.4 ; 2.7 ; 10 10-20 

PEG-DSGS 1.4 ; 2.7 - 

Biotin-PEG-DSPE 0.24 - 
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Table 3.1: PEG-lipids composition of BLP compared to SPLP. PEG-Cer-C20 (non-exchangeable PEG-

lipid); PEG-Cer-C8 (exchangeable PEG-lipid); PEG-DSGS (pH sensitive PEG-lipid) and Biotin-PEG-DSGS 

(biotinylated lipid). The final lipid concentration was ~10 mM. 

 

Lipid recovery was estimated from the amount of incorporated biotin-PEG-DSGS after 

detergent dialysis. Biotin content was quantified using a fluorometric assay with nanomolar 

sensitivity. The estimated values of lipid recovery obtained from three independent BLP 

preparations were, 58 ±14 % for BLP loaded with DNA and 65 ±7 % for BLP loaded with QDs.  

3.1.2. Time course formation of BLP during detergent dialysis 

Lipids-detergent solutions prepared with plasmid DNA and control samples without 

plasmid were dialyzed. In the presence of DNA, visible turbidity was detected within the first 

hour of dialysis, suggesting the formation of self-assembled lipid-DNA particles (Zhang et al., 

1997).  

The hydrodynamic diameter of such particles during the course of detergent dialysis was 

measured by DLS. As shown in Figure 3.1A, after 45 min regardless of the presence of DNA, 

particles with a mean hydrodynamic diameter of ~30 nm were detected. This value was 

consistent with the size of mixed micelles of lipids and detergent (Zumbuehl and Weder, 

1981). At this time point, the polydispersity index (pdi) was greater than 0.25, indicating that 

more than one lipid particles population contributed to the intensity of scattered light (see 

below).  After 180 min, control BLP without plasmid achieved their final size with a mean 

diameter of ~50 nm and appeared homogeneous in size (pdi<0.25). On the other hand, in 

the presence of DNA, particles continuosly grew in size up to ∼300 nm during the initial 3 h 

followed by a slight size increase upon vesiculation. 

As stated by pdi values greater than 0.25, the heterogeneity of the samples was 

examined from the size distribution profiles for empty BLP (Figure 3.1B) and DNA loaded BLP 

(Figure 3.1C). In the absence of DNA, the two peaks in the size distribution profile observed 

after 45 min were attributed to mixed micelles and empty BLP. After 360 min, the mixture was 

enriched in particles of homogeneous size of ∼50 nm (Figure 3.1B). 

In the case of lipid-DNA mixtures (Figure 3.1C), the two peaks in the initial bimodal size 

distribution observed after 45 min, probably represent mixed micelles and lipid-DNA particles 

(>1µm). After 360 min dialysis, the bimodal size distribution still persisted but the two peaks 

were centered on ∼60 nm and ~400 nm, indicating the formation of empy BLP and DNA 

loaded particles (BLP-DNA) respectively.   
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     A 

 
 

    B         C 

 
Figure 3.1: BLP formation during detergent dialysis. A: Mean hydrodynamic diameter measured by 

DLS after 45, 180, 360 and 600 min of detergent removal. Mixed micelles of detergent and lipids 

coexisted after 45 min dialysis for BLP prepared without plasmid DNA (—) and with 200 µg plasmid DNA 

(—), respectively. Empty BLP achieved their final size after 3 h whereas vesiculation and growth of lipid-

DNA particles continued for up to 6 h. B: Intensity based size distribution of control BLP showing the 

evolution of the initial bimodal distribution into an homogeneous in size BLP population. C: Intensity 

based size distribution of lipid-DNA particles showing the likely coexistence of mixed micelles and lipids-

DNA aggregates after 45 min dialysis. After vesiculation and growth (360 min), the bimodal distribution 

likely represents empty and DNA loaded BLP. Formulation containing 10% PEG-Cer-C20. 

3.1.3. BLP-DNA purification from non-encapsulated DNA 

The detergent dialysis procedure resulted in the formation of a turbid suspension due to 

vesicle formation. However, it was likely that empty vesicles (as shown in Figure 3.1) as well as 

non-encapsulated plasmid were also present. A first attempt to separate BLP-DNA particles 

from free plasmid using anionic exchange chromatography resulted in a significant sample 

loss due to the interaction of BLP with the column matrix (data not shown). As empty vesicles 
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were expected to be less dense than BLP-DNA particles, an alternative method of 

purification employing a discontinuous sucrose gradient was adopted (Mok et al., 1999). 

Samples recovered after dialysis were loaded in a gradient of 2.5, 10 and 20% sucrose and 

centrifuged at 160.000 g for 5 h at 10 °C in swinging buckets. A control sample of 50 µg 

plasmid was centrifuged in identical conditions as used for BLP. The distribution of empty and 

DNA loaded BLP, as well as free DNA along the gradient was determined by DNA 

quantitation using the Sybr Green assay and size analysis by DLS. 

Figure 3.2 shows the relative amount of DNA recovered in each sucrose fraction, for free 

plasmid (panel A), and for three different lipid formulations of BLP-DNA (panels B-D). The free 

plasmid in control sample without BLP, concentrated in the 20% sucrose fraction. In the case 

of samples containing BLP-DNA, nearly 90% of the plasmid loaded on the gradient was 

recovered in the 10% sucrose fraction whereas less than 2% of the total DNA loaded was 

located in the 20% sucrose fraction.  

In order to correlate the presence of DNA with the presence of lipid particles, size 

measurements were carried out on each sucrose fraction by DLS (Left panel). The 2.5% 

sucrose fraction was enriched in particles with a mean size of ~60 nm, correlating with the 

size of empty BLP, whereas the 10% sucrose fraction contained particles larger than 200 nm, 

most likely corresponding to DNA loaded BLP.   

 
           A                    B            C                    D  

 
Figure 3.2: DNA distribution across the sucrose density gradient. A: control of free plasmid recovered 

in the 20% sucrose fraction. B: BLP-DNA formulated with 2.7% PEG-Cer-C8. C: BLP-DNA formulated with 

10% PEG-Cer-C8. D: BLP-DNA formulated with 2.7% PEG-DSGS. The left panel shows the size analysis by 

DLS. The 2.5% sucrose fractions containing less than the 5% of loaded DNA concentrated vesicles of 50-

60 nm in size, whereas the 10% sucrose fraction with 90% of the loaded DNA contained particles bigger 

than 200 nm. Total DNA was quantitated by Sybr Green assay after dissolution of BLP with 0.1% Triton X-

100 to release encapsulated DNA. Free plasmid amount in samples without BLP was also calculated in 

the presence of 0.1% Triton X-100.  
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These results demonstrated that ultracentrifugation in a sucrose densitiy gradient 

constitutes a useful and convenient technique for BLP-DNA purification. 

3.1.4.  Effect of PEG content in DNA encapsulation efficiency and particle size 

One objective of the characterization of BLP was to determine whether the PEG content 

in the formulation had a direct effect on BLP size, plasmid DNA encapsulation efficiency and 

plasmid DNA protection. 

DNA was considered to be encapsulated in BLP, if it was able to interact with Sybr Green 

only after solubilization of the lipid particles with 0.1% Triton X-100. Therefore, the DNA 

encapsulation efficiency in BLP samples recovered after detergent dialysis was estimated by 

measuring Sybr Green fluorescence before and after addition of 0.1% Triton X-100 and was 

defined as: 

 
 µg of DNA (+) Triton X100 - µg of DNA (-) Triton X100

DNA encapsulation efficiency (%) =
 µg of DNA added

x 100
 

 
For successful gene delivery and expression, the encapsulated plasmid DNA has to be 

protected from the extracellular environment. Therefore, DNA protection was measured in 

samples purified from sucrose density gradient by measuring Sybr Green fluorescence before 

and after addition of 0.1% Triton X-100 but, in this case, related to the total DNA recovered in 

the purified fraction: 

 

DNA protection (%) =
 µg of DNA (+) Triton X100 - µg of DNA (-) Triton X100 x 100

µg of DNA (+) Triton X100  

 

Encapsulation efficiency after the detergent dialysis and DNA protection after the sucrose 

gradient were compared among four formulations with differences in PEG content and PEG-

lipids composition and were related to the BLP size as determined by DLS.  

As shown in Table 3.2, neither the efficiency of encapsulation (40-70%) nor DNA protection 

(65-70%) were sensibly affected by the PEG percentage, PEG-lipids or initial plasmid 

concentration.  

The effect of different PEG content demonstrated a deeper impact in the final size than in 

the encapsulation efficiency of DNA in BLP. Only BLP formulated with 10% PEG-Cer-C20, 

formed particles of discrete sizes between 50 nm and 350 after detergent dialysis in line with 

previous observations on SPLP (Wheeler et al., 1999). 

After sucrose density gradient, BLP populations with discrete sizes between 70 nm and 340 

nm were resolved for all formulations except for BLP with 2.7% PEG-Cer-C8 that tended to 

form aggregates. This observation was expected and it could be attributed to the effect of 
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both, low PEG content and short acyl chain ceramide (C8) generating less sterically 

stabilized BLP than those containing 10% PEG-Cer-C20. 

 

 After detergent dialysis After sucrose density gradient 

% PEGylated lipid Size (nm) 

DNA 
encapsulation 
efficiency (%) 

 

Size (nm) DNA protection (%) 

10% PEG-Cer-C20 50-350 10, 66 70, 90, 160, 110, 340 72 

10% PEG-Cer-C8 50-1000 57 ± 4 80, 140, 160, 190, 220 64 

2.7% PEG-Cer-C8 50-1000 42 ± 10 > 500 nm 68 

2.7% PEG-DSGS 50-1000 62 ± 12 90, 150, 150, 220 66 

 

Table 3.2: Plasmid DNA encapsulation efficiency and protection in BLP. DNA encapsulation and 

protection were measured in samples recovered after dialysis and purified from sucrose density 

gradient, respectively. DNA was quantified using Sybr Green in the presence and absence of 0.1% 

Triton X-100. The differences in PEG content in the BLP formulations showed more impact in the final size 

of the particle than in the DNA encapsulation efficiency or protection in BLP. Data obtained from 3-5 

independent BLP preparations for each formulation. DNA encapsulation efficiency was expressed as 

average ± SD whereas DNA protection was expressed as median values. 

3.1.5.  BLP size analysis by AFM 

The morphology of the BLP-DNA was explored by Atomic Force Microscopy (Ruozi et al., 

2005). Droplets of constant volume of BLP were deposited on a mica surface and scanning 

was carried out in air using tapping mode. This operation mode was selected because the 

contact between the tip and the sample is minimized and therefore, is more suitable for the 

study of soft and deformable samples, such as liposomes. Sample tilt was removed by 

flattening the AFM image using second-order fitting. 

In Figure 3.3A, a 3-D topographical image of BLP-DNA formulated with 10% PEG-Cer-C20 

shows a population of spherical particles as expected for liposome based delivery systems 

(Lasic and Papahadjopoulos, 1995). Three lipid particles were selected from the top view of 

the image in Fig.3.3A and their diameter estimated along the line profiles shown in Figure 

3.3C, i.e. as the vertical distance between the mica surface and the top of the particles. Size 

values between 180-350 nm were obtained, in agreement with the mean hydrodynamic 

diameters calculated by DLS for this formulation (Table 3.2). The major drawback of this 

technique is the possible deformation of the soft liposomal sample due to solvent 

evaporation and the vertical force applied with the tip. 
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A 

 
B         C 

 
 
Figure 3.3: Representative AFM images of BLP-DNA on mica surface performed on tapping mode in 

air. A: 3-D topographical view from the height image. B: 2-D height image, top view from A. C: Height 

profiles along the lines shown in B. BLP-DNA with 10% PEG-Cer-C20 recovered from sucrose density 

gradient. 

 

3.1.6. Encapsulation of QDs in BLP by the detergent dialysis method 

BLP particles prepared by the detergent dialysis method were initially conceived for DNA 

encapsulation. However, to address the specificity of BLP binding to cells after tagging the 

particles with the EGF ligand, a fluorescent BLP was required. Therefore, the detergent dialysis 

technique was explored for the encapsulation of red emitting QD655 with a mean core size of 

10 nm in formulations containing 1.4 and 2.7% PEG-Cer-C8 and 1.4 % PEG-DSGS. 

During detergent dialysis of lipids-QD655 mixtures, the typical turbidity observed during BLP-

DNA formation was not noticeable. In order to determine whether QDs were indeed 

encapsulated in lipid particles, samples were loaded directly in the sucrose density gradient 

337 nm 

187 nm 

275 nm 
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using the same conditions as those employed for BLP-DNA and QDs fluorescence intensity 

distribution was examined under UV light excitation. 

3.1.7. Characterization of fluorescent BLP-QDs 

After ultracentrifugation in the sucrose gradient, three well-defined fluorescent fractions 

were observed (Figure 3.4A): a less dense bright fluorescent band on top (fraction I), a 

broader and less intense fluorescent band underneath (fraction II) and a fluorescent pellet 

(fraction III). The different densities of the particles concentrated in the two upper bands 

(fractions I and II) could be the result of a variable number of QDs encapsulated per particle. 

On the other hand, the pellet was enriched in free QDs and no biotin was detected in this 

fraction indicating the absence of lipid particles.  As the brightest band may also contain 

free lipids and empty vesicles, this fraction was not further characterized. 

Electron dense QD cores allow their detection by electron microscopy. TEM performed on 

particles recovered from fraction II (Figure 3.4B), revealed BLP containing on average of 2 to 

5 encapsulated QDs. The diameter of the BLP varied from 100 to 130 nm, depending on the 

number of loaded QDs.  Empty BLP or those containing only one QD were generally smaller 

than 100 nm. These values were in agreement with those obtained by DLS measurements for 

BLP-QD (Figure 3.4 C). The mean hydrodynamic diameter for BLP in fraction II, determined for 

two independent preparations and three different formulations was 109 ±16 nm (pdi <0.25). 

This fraction was recovered for coupling the EGF ligand to target the BLP to A431 cells. 
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Figure 3.4: Purification and size characterization of BLP-QD. A: Fluorescent fractions corresponding to 

particles associated with QDs were found on the top layers of the gradient (fractions I and II) whereas 

free QDs were found mainly in the pellet (fraction III). B: TEM image of BLP showing particles of 100-180 

nm in diameter containing 2-5 encapsulated QDs. Empty liposomes smaller than 100 nm. Scale bar 500 

nm. C: Representative size distribution of BLP formulations with encapsulated QDs measured by DLS 

after dialysis and after purification in sucrose density gradient.  
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In summary, the size analysis of BLP-DNA particles by DLS indicated that their final size 

could be modulated by varying the percentage of PEG content. For BLP-DNA, formulations 

containing 10% PEG-Cer-C20, 10% PEG-Cer-C8 or 2.7% PEG-DSGS showed that particles with 

a size ranging from 150 to 350 nm could be recovered from sucrose density gradients. 

In a novel application of the detergent dialysis technique, QDs were successfully 

encapsulated in BLP, showing a monomodal size distribution within a range of 100-130 nm. In 

contrast to BLP-DNA, BLP-QDs remained stabilized and did not aggregate even when PEG-

lipid content was < 2.7%. In addition, ultracentrifugation in sucrose density gradient allowed 

the purification of BLP-DNA and BLP-QDs particles from non-encapsulated material and 

empty vesicles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Results: “Characterization of Biotinylated Lipid Particles” 

 54 

 

 

 

 



4. Results: “Cell uptake of EGFR targeted and QDs-labeled BLP” 

 55 

 

 

 

 

 

4. Results: “Cell uptake of EGFR targeted and QDs-labeled BLP”



4. Results: “Cell uptake of EGFR targeted and QDs-labeled BLP” 

 56 



4. Results: “Cell uptake of EGFR targeted and QDs-labeled BLP” 

 57 

The epidermal growth factor receptor (EGFR, erbB1, HER1) is overexpressed in a broad 

spectrum of malignant tumors and, as discussed in the introduction, represents an interesting 

target for delivery of therapeutic liposomes (Kullberg et al., 2005; Mamot et al., 2005). 

Biotinylated EGF ligand conjugated to streptavidin-coated QDs binds to EGFR leading to the 

receptor activation and internalization (Lidke et al., 2004; Lidke et al., 2005). The attachment 

of the fluorescent nanoparticle did not impair the binding capacity and biological functions 

of this growth factor (Lidke et al., 2007).  

The aim of the work presented in this chapter was to target the purified BLP carrying either 

DNA or QDs to A431 cells overexpressing the EGFR by tagging the particles with the EGF 

ligand. The first concern to be addressed, was whether the internalization of EGF tagged BLP 

could be impaired, as the large size of the lipid carrier may interfere with the dimerization of 

the EGFR necessary for the subsequent activation and internalization by endocytosis. 

The targeted delivery system was evaluated regarding: 

 binding ability 

 intracellular fate of targeted BLP 

 delivery of encapsulated QDs 

 transfection efficiency of the encapsulated DNA  

  The effect of PEG content and the presence of a pH sensitive lipid or PEG-ceramides with 

variable carbon-chain lengths in the efficiency of cargo delivery were investigated. 

The specificity for the EGFR was examined in a competitive binding assay in the presence 

of free EGF ligand. In addition, EGFR targeted BLP were incubated with two different cell lines 

that do not express the EGF receptor. 

Labeling and targeting of BLP were achieved by coupling preformed EGF-QD complexes 

providing a monitoring tool for the specificity of BLP uptake and cargo release in live cells by 

confocal laser scan microscopy (CLSM).  

4.1. Targeting and labeling of BLP 

In order to target the BLP to the EGFR, particles loaded with QD655 (red) were coupled via 

biotin-streptavidin linkage to preformed complexes of EGF-QD525 (green) as depicted in 

Figure 4.1. These particles were detected by CLSM in live cells, using a single excitation 

wavelength for both QDs colors. With this approach, colocalized red-green dots would be 

indicative of specific uptake, whereas red fluorescence would reveal unspecific binding of 

non-targeted BLP-QD655. Free unconjugated EGF-QD525 can be clearly distinguished as single 

green dots. 
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Figure 4.1: Scheme depicting the targeting and labeling strategy of BLP with encapsulated QD655. 

Preformed complexes of EGF-QD525, (molar ratio 4:1) were conjugated to biotin molecules on the BLP 

surface. Specific uptake would be evidenced as colocalized dots by confocal fluorescence 

microscopy. Red fluorescence would indicate unspecific binding of non-targeted BLP-QD655. Free 

unconjugated EGF-QD525, when present, would be detected as green dots.  

 

The strategy of adding the EGF ligand as a preformed complex with QDs instead of direct 

binding to BLP was adopted in order to take advantage of the multiple streptavidins coating 

the nanoparticle. The QDs used in this study carried 6-8 streptavidins (according to the 

manufacturer). Therefore, the amount of biotinylated EGF ligands per QD particle was 

selected to enhance binding while still leaving unoccupied streptavidins for coupling to BLP. 

The two-color BLP labeling strategy was designed to evaluate whether specific uptake of 

BLP and the cytoplasmic delivery of the cargo took place. Intracellular colocalization of both 

nanoparticles would indicate not only the specific uptake but the presence of QD655 still 

trapped inside the lipid particle and poor release. If the BLP were able to fuse with 

endosomal membranes and release the QDs, colocalization was expected be lost and the 

characteristic blinking of individual QDs be observed. 

4.1.1.  Cell uptake of targeted BLP-QDs  

The interaction of BLP with A431 cells was evaluated by fluorescence confocal 

microscopy with EGF-tagged and dual-labeled BLP containing 1.4% and 2.7% PEG-Cer-C8 

and 1.4% PEG-DSGS upon incubation for 1 h at 37 °C. As shown in Figure 4.2, both QDs 

extensively colocalized after 1 h, indicating that targeted EGF-QD525-BLP-QD655 particles were 

internalized. Non-targeted BLP-QD655 were not taken up by cells or were observed as a faint 

fluorescence for all lipid formulations examined (Figure 4.2 panels A, B, C). The cell uptake of 

BLP was associated with a dot-pattern distribution, which could be attributed to the 

clustering of the lipid particles in endosomal compartments.  
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Figure 4.2: Intracellular localization of targeted EGF-QD525-BLP-QD655 and non-targeted BLP-QD655 . 

A431 cells were incubated with EGFR targeted and non-targeted BLP for 1 h at 37 °C. Unbound 

complexes were removed and live imaging performed by confocal fluorescence microscopy at RT in 

Tyrode’s buffer. A: BLP-QDs 1.4% PEG-Cer-C8. B: BLP-QDs 2.7% PEG-Cer-C8. C: BLP-QDs 1.4% PEG-DSGS. 

Colocalization of QD525 and QD655 showing BLP distributed in presumably endosomal compartments. 

Scale bar: 10 µm. 

 

4.1.2. Intracellular distribution of internalized BLP 

Figure 4.3 (Panels A-C) shows a reconstructed three-dimensional image of two A431 cells 

that had internalized many targeted BLP-QDs during a 10 min pulse followed by 1h 

incubation (chase) at 37 °C. Interestingly, most of the internalized EGF-QD525-BLP-QD655 

complexes accumulated in the perinuclear region of the cell (Panel A), although a large 

fraction was still visible in small structures underneath the cell membrane (Panel B). Close 

observation of single vesicles inside the cells (Panel D) showed that colocalized QDs had 

variable intensities for each QD color as evidenced by the heterogenous yellow-orange 

pseudocolor. This could be explained as a distribution in the number of encapsulated QDs in 

BLP (1-5 QDs) as showed by TEM (Fig. 3.4), and presumably the presence of a variable 

number of EGF-QD525 bound per lipid particle. In addition, and possibly most important, fusion 

of vesicles ocurring during endosomal sorting (Maxfield and Yamashiro, 1987) could have 

brought several particles together.  

Single green dots (Figure 4.3D and E) indicating free EGF-QD525, were expected, as they 

were not eliminated from the initial incubation mixture with BLP. 
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Figure 4.3: Intracellular fate of EGFR targeted and QDs labeled BLP. A: 3-D reconstruction of two A431 

cells with internalized BLP after 10 min pulse incubation and 1 h chase at 37 °C. B: y-z plane showing 

colocalized QDs inside cells and underneath the cell membrane. C: Overlay of image A with DIC 

image. D: Line-profile across endosomal vesicles. E: Fluorescence intensity along the line-profile in D 

revealing different intensity levels for colocalized QDs as well as size variations among vesicles. 

Internalized two-color QDs labeled and targeted BLP were distinguished from independently 

internalized green EGF-QD525 complexes (arrowheads in panels D and E). Scale bar 2 µm. 

4.1.3. Time course of  BLP internalization 

Quantitative binding and endocytosis analysis of preformed complexes of EGF-QDs in 

A431 cells has shown that ~50% of the QD ligands accumulated intracellularly in 

approximately 20 min (Lidke et al., 2004). To get insight into the time course of binding and 

endocytosis of BLP tagged with preformed EGF-QD525 complexes, confocal microscopy was 

performed on live A431 cells for 1 h in the presence of the targeted particles. Figure 4.4 shows 

that visible accumulation of dual-labeled and targeted BLP on the cell membrane occurred 

during the first 10 min of incubation. After 20 min, targeted BLP were identified as colocalized 

yellow dots internalized and close to the cell membrane in a pattern similar to that described 

for single EGF-QDs.  
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Figure 4.4: Real time uptake of targeted BLP in A431 cells. Targeted BLP were present during the 

acquisition of confocal images. After 10 min BLP were already bound to the cell membrane and small 

dots were distinguished. After 20 min, an increase in fluorescence intensity indicated a clustering of the 

particles. The size of vesicles increased during the process, probably as the result of vesicles fusion. After 

1 h, particles were still binding to the cell membrane. Final concentrations in the binding reaction: 4 nM 

EGF, 1 nM QD525. Scale bar 10 µm. 

 

This result suggests that the size of the BLP did not delay the uptake mediated by EGF. 

After 60 min a shift of the colocalized dots toward the perinuclear region was accompanied 

with a clustering of fused endosomal vesicles as evidenced by the increasing fluorescent 

intensity. These observations are in agreement with those reported for ligand induced 

activation of the EGFR by preformed complexes of EGF-QDs (Lidke et al., 2004). 
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4.1.4. EGFR targeted BLP follow the route of EGF-QDs complexes 

In order to determine whether the targeted BLP followed the same route as EGF-QDs 

complexes and indeed were sorted from early endosomes, the uptake of EGF tagged BLP 

was compared to that of free EGF-QDs complexes and labeled ligand Transferrin. Although 

the endocytosis of EGFR and Transferrin receptor share the same clathrin-dependent 

pathway in A431 cells, they are differentially sorted from early endosomes (Hanover et al., 

1984; Lamaze et al., 1993). Whereas Transferrin receptor is constitutively recycled back to the 

cell membrane, EGFR internalization is ligand-induced and EGF-EGFR complexes are mainly 

sorted to mature lysosomes as a general downregulation mechanism for growth factors 

receptors (Hanover et al., 1984) (Hopkins et al., 1985). Therefore, binding and uptake of 

targeted BLP were examined in the presence of Transferrin-Alexa488 (TA) after 10, 30 and 120 

min incubation with A431 cells (Figure 4.5). 

EGF-QD605-BLP-QD655 and TA were added simultaneously to cells and incubated for 15 min 

at 4 °C to allow binding while avoiding endocytosis, followed by 10 min or 30 min incubation 

at 37 °C. Cells were rinsed to remove the unbound complexes and were fixed immediately 

for confocal microscopy analysis. In a second experiment, cells were incubated with EGF-

QD605-BLP-QD655 for 120 min at 37 °C and TA was added for 10 min before removing the 

unbound complexes.  

As shown in Figure 4.5A, after 10 min of incubation EGF-QD605-BLP-QD655 extensively 

colocalized with TA at the cell membrane [r= 0.59]. After 30 min, targeted BLP partially 

colocalized with Transferrin [r= 0.37] and colocalization completely disappeared after 120 

min [r= 0.14]. At this time, targeted BLP clustered around the perinuclear zone were likely 

sorted from early endosomes.  

Control samples of EGF-QD605 and TA simultaneously incubated with A431 cells for 30 min 

at 37 °C (Figure 4.5B), still showed partial colocalization of both ligands [r= 0.5] but barely 

colocalized after 2 h [r= 0.3]. 

 

Figure 4.5 A: Sorting pathway of EGF-QD605-BLP-QD655 in A431 cells: Targeted BLP and TA added 

simultaneously extensively colocalized at the cell membrane after 10 min (r=0.59) and partially 

colocalized after 30 min (r=0.37). After 120 min targeted BLP appeared in clusters around the 

perinuclear region and no colocalization with TA was observed (r=0.14). Triple-color colocalization of 

QD605, QD655 and TA is highlighted in white. 
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Figure 4.5 B: Control experiments without BLP. EGF-QD605 and TA added simultaneously and 

incubated for 30 min showed partial colocalization (r= 0.51) and after 2 h, they were partially 

colocalized (r= 0.3). Correlation plots on the right show the corresponding Pearson’s coefficients (r). 

Confocal images were acquired in fixed cells. BLP formulations: 2.7% PEG-Cer-C8, 1.4 % PEG-DSGS and 

0.5 nM EGF, 2 nM QD605. Scale bars 10 µm.   

 
These observations support the idea that EGF tagged BLP followed the route of free EGF 

mediated endocytosis, sorting out from early endosomes after 20-30 min diverging from 

Transferrin ligand in the internalization pathway. 

4.1.5.  Intracellular fate of QDs encapsulated in targeted BLP 

It is well described that trafficking from early to late endosomes in clathrin mediated 

endocytosis takes place within 20 min (Vonderheit and Helenius, 2005). According to the 

results observed with Transferrin, if targeted BLP were sorted from early endosomes after 30 

min, BLP bearing pH sensitive or exchangeable lipids would be in principle able to fuse more 

readily with the endosomal membranes, thereby releasing the QDs. Therefore, for the dual-

labeled EGF-QD525-BLP-QD655 complexes, the initial colocalization observed within 30 min was 

expected to decrease with time. 

Targeted and non-targeted BLP-QD655 were incubated with cells for 10 min (pulse) at 37 

°C, unbound complexes were washed  and the QD labels chased for 4 h (Figure 4.6A) and 

12 h (Figure 4.6B). Even after after 12 h, dissociation of the two QD signals was not apparent, 

indicating that the encapsulated QDs were not able to escape from the endosomes. 
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Figure 4.6: Fate of encapsulated QD655 delivered by EGF-QD525-BLP-QD655. After 10 min of incubation 

at 37 °C with A431 cells, unbound EGF-QD525-BLPQD655 were removed and cells imaged for up to 12 h. 

Colocalization of EGF-QD525 tagged BLP with encapsulated QD655 was visualized on live cells by 

confocal microscopy.  Both QDs remained extensively colocalized after 4 h (A) and after 12 h (B), 

showing no evidence of QDs release in the cytoplasm. C: Non-targeted BLP-QD655.  Scale bar 10 µm. 

 

4.2.  Receptor specificity of targeted BLP   

4.2.1. Competitive assay 

To evaluate whether the EGFR was involved in the endocytic uptake of targeted BLP, a 

competition assay was carried out by adding the EGF-QD525-BLP-QD655 complexes to A431 

cells in the presence of a 66-fold molar excess of free ligand EGF. Under these conditions, the 

binding of the targeted BLP was substantially diminished (Figure 4.7B), as compared to the 

positive controls in absence of free ligand (Figure 4.7A). 
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4.2.2. Interaction of BLP with EGFR-negative cells 

In order to confirm that the EGFR was essential for the improved uptake, additional 

experiments with EGFR-negative cells were performed. Neither CHO cells nor WM983A cells 

internalized the EGFR targeted BLP as observed in Figure 4.7C and D. 

 

 
 

Figure 4.7: Binding specificity of targeted BLP for EGFR. A: A431 cells incubated with EGF-QD605-BLP-

QD655. B: Cells coincubated with EGF-QD605-BLP-QD655 and a 66-fold molar excess of free competing 

ligand EGF. C: CHO cells devoid of EGFR incubated with targeted BLP. D: WM983A cells devoid of EGFR 

incubated with targeted BLP. Scale bar 10 µm. 

 

Taken together, these results indicated that the enhanced uptake of targeted BLP was 

due to the specific interaction with EGFR.  
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4.3. Delivery and transfection abilities of targeted and QDs labeled BLP-DNA 

The results obtained with BLP loaded with QDs indicated that although receptor- 

mediated uptake was taking place, the release of QDs from endosomal compartments was 

not Demonstrated. Additionally, because encapsulated QDs are coated with carboxyl 

groups could be speculated that they are neutralized in the acidic environment of 

endosomes forming aggregates before being released. Therefore, the delivery ability was 

further explored with EGFR targeted BLP carrying encapsulated DNA containing the GFP as 

reporter gene. The efficiency of the targeted gene delivery was estimated as the 

percentage of GFP positive cells, compared to that obtained with the non-targeted BLP.  

4.3.1.  Intracellular fate of dual-labeled and targeted BLP-DNA 

In order to monitor the initial binding and uptake of BLP with encapsulated DNA, these 

particles were also labeled with two colors of QDs with a modified strategy as depicted in 

Figure 4.8. In order to assess the specificity of binding and track the particles, BLP-DNA were 

first coupled to preformed EGF-QD525 complexes, followed by a second color labeling using 

QD655 without EGF.  

Targeted particles are denoted as (EGF-QD525/QD655)-BLP-DNA. As free QD655 does not 

internalize in the absence of ligand, the uptake of QD655 is dependent on previous binding to 

targeted EGF-QD525-BLP-DNA. Similar to the BLP-QDs labeling strategy, colocalized QD525 and 

QD655 in this case would be indicative of the presence of EGF targeted particles. The 

monocolor non-targeted particles labeled with QD655   are denoted as (QD655)-BLP-DNA.  

 

 
Figure 4.8: Diagram depicting the targeting and labeling strategy of BLP with encapsulated DNA. 

Preformed complexes of EGF-QD525, containing 2-4 EGF molecules per QD particle, were conjugated to 

biotins on BLP. In a subsequent step, the second color QD655 was added at equimolar amounts as 

QD525. Specific uptake would be evidenced as colocalized dots, while unspecific uptake as red 
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fluorescence of non-targeted BLP-DNA labeled only with QD655. BLP formulations employed: 10% PEG-

Cer-C20, 10 % PEG-Cer-C8 and 2.7 % PEG-DSGS.  

 

The binding was performed as already described for BLP-QDs. For BLP-DNA formulations, 

PEG content was increased to 10% of PEG-Cer-C8 and C20. 

 First, (EGF-QD525/QD655)-BLP-DNA were prepared with 10% PEG-Cer-C20. This formulation 

showed an average size of 70 nm, DNA encapsulation efficiency of <50% and was the 

targeted analogue of described SPLP (Wheeler et al., 1999). Due to their homegeneous and 

small size compared to the other formulations tested, they were examined for binding and 

targeting ability in A431 cells. Upon incubation with cells for 3 h at 37 °C unbound complexes 

were removed and uptake was analyzed in live cells by confocal fluorescence microscopy.  

As shown in Figure 4.9A, targeted (EGF-QD525/QD655)-BLP-DNA were identified as 

colocalized QD525 and QD655, (yellow pseudocolor in the overlay). The distribution in a dot 

pattern was consistent with endosomal localization, as previously observed for QDs loaded 

BLP. No uptake was detected for the non-targeted BLP for the same incubation conditions 

(Figure 4.9B). Control experiments with EGF-QD525 and free QD655 showed that non-targeted 

QD655 were not internalized (Figure 4.9B).  

 

 
 
Figure 4.9: Binding and uptake of EGF-QD525-QD655 BLP-DNA. A: A431 cells were incubated with 

targeted particles for 3 h at 37 °C. Live imaging performed in Tyrode’s buffer with 1% glucose. The dot 

pattern suggested endosomal localization. B: Control experiments with QD655 (left panels) and EGF-

QD525, showing that non-targeted particles were not internalized. BLP formulation: 10% PEG-Cer-C20. 

Scale bar 10 µm. 

 

These results indicated that binding was not impaired for targeted BLP-DNA despite the 

high PEG content (10%PEG-Cer-C20).  
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4.3.2. Transfection competency of dual-labeled and targeted BLP-DNA 

The transfection activity of dual-labeled and targeted BLP-DNA was explored in 

formulations containing lower PEG content (2.7%) and pH sensitive lipids. Starved A431 cells 

were incubated with (EGF-QD605/QD655)-BLP-DNA for 10 min at 37 °C cells, then unbound 

complexes were removed and BLP distribution and GFP expression in A431 cells were 

analyzed after 48 h. 

Figure 4.10 (A,B), demonstrates that EGFR-targeted BLP loaded with DNA behaved 

similarly to BLP-QDs regarding the binding and cellular distribution upon internalization of the 

particles. The presence of colocalized dots in non-transfected cells (Figure 4.10A), may 

reflect a difficulty of BLP to destabilize the endosomes or, alternatively, may indicate the 

presence of targeted but empty particles, as expected for the 70% DNA encapsulation 

efficiency obtained. In Figure 4.10C a 3D-reconstruction of confocal planes shows the 

perinuclear localization of targeted BLP in cells expressing GFP. 

 

 
Figure 4.10: GFP expression upon plasmid delivery with dual-labeled and EGFR targeted BLP-DNA. 

(EGF-QD525/QD655)-BLP-DNA were incubated for 10 min at 37 °C in Tyrode’s buffer ph 7.4, then unbound 

complexes were removed and cells were incubated in complete DMEM for 48 h before imaging. A: 

Merged images corresponding to colocalized QDs (overlay of QD605/655 channels) with the green 
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channel corresponding to GFP fluorescence (pseudo color, white). B: Image on A merged with the DIC 

image. C: Three-dimensional reconstruction. The x-y section, as indicated by the blue lines in the x-z and 

y-z projections, showed the internalized BLP. BLP formulation: 2.7% PEG DSGS, 1μg plasmid /well, BLP-

DNA particle size ~200 nm. Scale bar 10 µm. 

 

The two-color BLP labeling strategy allowed to associate the presence of internalized 

targeted particles with their transfection ability as indicated by the expression of GFP. 

4.3.3. BLP targeting in a two-step procedure 

In order to improve the access of EGF to the cell surface and decrease the formation of 

possible crosslinked species, the coupling of preformed complexes of EGF-QDs to BLP was 

performed in two steps. The advantage of using this procedure has been also described by 

(Lidke et al., 2007). 

In a first step, to accomplish the targeted delivery, preformed complexes of EGF-QDs 

were added to target A431 cells at 4 °C to prevent early internalization. In a second step, 

BLP-DNA samples recovered after detergent dialysis (non-purified fractions) or purified in 

sucrose gradient (purified fractions) were added to the cells at 10 °C for 15 min and then 

incubated at 37 °C during 30 or 60 min before removing the BLP. A431 cells incubated 

directly with non-purified and purified fractions BLP-DNA (only Step 2) were employed as 

control of non-targeted delivery.  

The percentage of transfected cells were quantified after 48 h by FACS or fluorescence 

microscopy. Although a smaller number of cells were evaluated by microscopy as 

compared to flow cytometry, the sensitivity for fluorescence detection was improved using a 

CCD camera to allow the detection of the onset of GFP expression at later times (Figure 

4.11A,B, red arrows).  

 

 
 

A                    B 
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Figure 4.11: GFP expression analysis in A431cells by a two-step targeting procedure. A: Control cells 

incubated with unmodified BLP-DNA (non-targeted delivery). B: Cells preincubated with EGF-QD655 

complexes followed by the addition of BLP-DNA (targeted delivery). After 48 h A431 cells with late onset 

of GFP expression, indicated by low levels of GFP were also detected. Green fluorescence: GFP positive 

cells. Blue fluorescence: Nuclear staining with Hoechst. 

 

As described in the previous chapter, fractions recovered after detergent dialysis and 

after sucrose densitiy gradient differ in the size homegeneity of the BLP particles, which can 

affect directly the binding, internalization efficiency and consequently the transfection ability 

of the targeted BLP. Therefore, it was of interest to evaluate the effect of non-purified and 

purified BLP-DNA fractions in the transfection efficiency of targeted particles containing 1 

and 2 µg plasmid DNA in each well. The percentage of cells expressing GFP following the 

two-step incubation procedure was determined by fluorescence microscopy and flow 

cytometry (Table 4.1). 

 

GFP expressing cells 

(%) by flow cytometry 
GFP expressing cells 
(%) by microscopy 

BLP Fraction and 
size range 

(-) EGF (+) EGF (-) EGF (+) EGF 

Non-purified   
50-1000 nm 3 3.9   

10% PEG-Cer-C8 
Purified        

80-220 nm 1.4 4.8 0 2.4 

Non-purified   
50-1000 nm 2.9 3.2   

2.7% PEG PEG-DSGS 
Purified        

90-220 nm 1.4 3.9 0.8 1.9 

 

Table 4.1: GFP expression levels obtained with purified and non-purified BLP-DNA. Samples 

recovered after detergent dialysis (Non-purified) and after sucrose density gradient (Purified) for two 

BLP formulations. Preformed complexes of EGF-QDs (2-4 nM EGF) were added to starved A431 cells at 

10 °C. Then, cells were incubated with BLP-DNA (1 or 2 µg plasmid) for 30 min at 37 °C (for flow 

cytometry measurements) or 60 min at 37 °C (for quantitative fluorescence microscopy). Non-purified 

fractions: Fractions of BLP recovered after detergent dialysis composed of non encapsulated plasmid 

(~40%), empty BLP and aggregates. Purified fractions: Fractions of BLP recovered after sucrose density 

gradient composed of BLP with encapsulated DNA. Values are median of 3-5 measurements with each 

method performed in three independent experiments. 
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As shown in Table 4.1 treatment with non-purified fractions (containing free plasmid and 

aggregates) produced similar number of GFP expressing cells for targeted and non-targeted 

delivery of BLP-DNA (3-4 %), indicating that non-targeted particles were equally efficient for 

transfection as targeted particles. Since equal amounts of free plasmid added did not show 

any transfection activity, the GFP expression observed for non-purified fractions was 

attributed to DNA-loaded BLP and aggregates of lipid-DNA, the later presumably entering 

through a non-receptor mediated route. 

When purified fractions were tested, targeted BLP-DNA showed 2-3-fold increase in GFP 

expression as compared to the non-targeted particles for both formulations analysed. 

Despite the very low total transfection efficiency of the BLP, this finding suggested that after 

removing the aggregates the transfection levels observed were presumably accomplished 

by smaller and targeted BLP-DNA (< 250 nm).  
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In the previous chapter, BLP tagged with QDs were used to monitor the specificity of the 

binding and receptor-mediated uptake of the carriers by fluorescence microscopy. The 

transfection efficiency of the targeted BLP-DNA was assessed by measuring the number  of 

GFP expressing cells. However, the intracellular localization of the plasmid at any time during 

the delivery process could not be determined and related to the fate of the BLP. At this 

point, the use of a fluorescently labeled plasmid is critical to shed light on the mechanism by 

which DNA is released from the lipid carrier. Coupling multiple fluorescent tags may involve 

covalent modifications of the plasmid DNA, which may interfere with the expression of the 

reporter gene. In this regard, the present chapter deals with the labeling of plasmids 

mediated by peptide nucleic acids (PNA) for non-covalent and sequence specific binding 

of a single QD to plasmid DNA. 

5.1. bis-PNA strand invasion of supercoiled plasmids  

The ability of bis-PNAs to form (PNA)2–DNA triplexes has been used for effective strand 

invasion of linear DNA duplexes, where the two bis-PNA strands are designed as a single 

molecule connected by flexible linkers (Cherny et al., 1998). Figure 5.1 depicts such a 

strategy, where bis-PNA, in this work modified with a single biotin, binds by Hoogsteen 

interactions to a unique target site in the pEGFP-C1 plasmid. The binding site in the plasmid is 

located far away from the transcription initiation site, in order to avoid any interference with 

the expression of the GFP reporter gene. One disadvantage of this strategy is that bis-PNAs 

are restricted to bind purine sequences due to steric hindrance of the Hoogsteen binding 

with target sites containing pyrimidine bases (Demidov et al., 2001). Therefore, hybridization 

takes place only under acidic conditions (~pH 5) to maintain the citosines protonated for 

Hydrogen-bond formation. 

 
Figure 5.1: Schemematic representation of hybridization of biotin-bis-PNA to a specific sequence in 

plasmid pEGFP-C1. 

 

In the strategy applied a biotynilated bis-PNA was employed for subsequent conjugation 

to streptavidin coated QDs (StAv-QDs).  
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Hybrids were prepared at 2:1, 4:1, 8:1, 20:1 and 40:1 biotin-bis-PNA to plasmid molar ratios 

and digested with the restriction enzymes Apa LI and Ase I to generate a short 379 bp DNA 

fragment containing the bis-PNA binding site and an additional 4352 bp fragment. 

Fragments were electrophoresed in a 3-8% gradient native polyacrylamide gel. The binding 

of biotin-bis-PNA is expected to retard the migration of the 379 bp fragment. As shown in 

Figure 5.2A, the Sybr Green stained gel revealed a retarded DNA band running behind the 

fragment containing the target sequence for biotin-bis-PNA. The amount of the retarded 

fragment notably increased at higher biotin-bis-PNA to plasmid molar ratio (20:1). In spite of 

the excess of biotin-bis-PNAs, less than 50 % Hybrid yield was estimated from the Sybr Green 

intensity of the retarded band. As the remaining larger restriction fragment (4352 bp) did not 

migrate in the gel due to the high percentage of polyacrylamide, a non-specific interaction 

between biotin-bis-PNA and this fragment could not be assessed. To address this problem, 

additional hybridization experiments were performed using a fluorescently labeled Cy5-bis-

PNA that could be detected independently of the size of the fragments. Similarly as before, 

hybrids were formed at Cy5-bis-PNA to plasmid molar ratios of 2:1, 4:1, 8:1, 20:1 and 40:1. In 

this case, the pEGFP-C1 plasmid was digested with Apa LI and Ava II to obtain DNA 

fragments of 2002 bp, 1641 bp (containing the target site), 445 bp and 643 bp. Hybrids were 

analyzed in a 2% agarose gel in 1X TAE and Cy5 fluorescence was detected before staining 

with Sybr Green. The left panel in Figure 5.2B shows a single band Cy5-labeled corresponding 

to the fragment of 1641 bp bearing the bis-PNA binding site. Cy5 fluorescence was not 

detected in the remaining restriction fragments, shown in the right panel of Figure 5.2B, 

representing the total DNA, as determined by Sybr Green stainning. These results indicated 

that unspecific hybridization is not taking place in the presence of 40-fold excess of bis-PNA 

to plamid DNA. 
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Figure 5.2: Hybrid formation between bis-PNA and pEGFP-C1 plasmid by restriction fragment 

analysis in gel electrophoresis. A: Retarded band migration in polyacrylamide gel 3-8 % in 1X TAE.  Sybr 

Green stained gel showing digested fragments obtained with Apa LI and Ase I. The 379 bp fragment 

contains the target sequence B: Restriction fragments obtained with Apa LI and Ava II and analyzed in 

2% agarose gel in 1X TAE. Left panel, Cy5 labeling; right panel, Sybr Green stainning. The 1641 bp 

fragment contains the PNA target sequence.  Biotin-bis-PNA (or Cy5-bis-PNA):plasmid molar ratios were 

2:1, 4:1, 8:1, 20:1, and 40:1. 

5.2. Quantum Dot labeling of biotin-bis-PNA: plasmid DNA Hybrids 

QD-Hybrid complexes (Figure 5.3) were formed by adding streptavidin coated QD655 to 

biotinylated Hybrids at 1:1 molar ratio.  

 

 
 

Figure 5.3: Diagram of a single StAv-QD-labeled plasmid mediated by biotin-bis-PNA hybridization 

 

The resulting mixture was analyzed by agarose gel electrophoresis along with control 

samples consisting of QDs alone or in the presence of plasmid. QD-Hybrids were scanned 

under UV light and the emission of QD655 was collected using a LP 580 filter. In addition, the 

gel was stained with Sybr Green to visualize total DNA (Figure 5.4). The band shift observed 

was the result of binding StAv-QDs to biotinylated Hybrids. This retarded migration was 

expected considering that QDs are slightly negative as compared to plasmid DNA and ran 

behind the plasmid when loaded alone (third lane). Furthermore, the StAvQD655 retarded the 

migration of both, supercoiled and the open-relaxed circular conformations of the plasmid, 

as evidenced by comparing QD labeled bands with Sybr Green stained bands (right panel). 

This also implied that Hybrids were stable in both conformations. The presence of faint 

retarded bands (red arrows) could be due to the binding of multiple biotin-bis-PNA:plasmid 

to a single QD, since the nanoparticles are coated by 6-8  streptavidins. This observation may 

also explain the presence of free StAv-QDs, although the reaction was carried out at 

equimolar amounts of QD particles and Hybrids. Controls of unbound QDs and plasmid DNA 

ran as the corresponding free molecules confirming the absence of non-specific interaction. 

As expected, DNA staining showed that hybridization was not complete, in good agreement 

with previous results obtained with restriction enzymes (Figure 5.2).  
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Attemps to purify the QD-labeled Hybrids by electroelution resulted in a very low sample 

recovery. 

 
Figure 5.4: Visualization of QD-labeled Hybrids. Gel electrophoresis performed in 0.8% agarose gel in 

1X TAE. Left panel, QD655 fluorescence. Right panel, Sybr green staining. StAv-QD655 to biotinylated 

Hybrids molar ratio was 1:1. 

5.2.1. Specificity of single QD labeling revealed by AFM  

Taking advantage of the rough and size of QD particles, direct visualization of the degree 

of labeling, as well as the specificity of bis-PNA for its target sequence was accomplished by 

AFM measurements.  

QD-Hybrids and the corresponding control plasmids were deposited on a mica surface in 

5 mM Mg+2 and imaged in tapping mode in air. Figure 5.5A displays representative amplitude 

images of supercoiled (top) and linear Hybrids (bottom). It is clearly visible from these images 

that a single QD was attached per DNA molecule, for both supercoiled and linear 

conformation of the plasmid. 

As a direct control for the specificity of the biotin-bis-PNA recognition, the position of the 

QDs was estimated in linearized Hybrids (Figure 5.5B, top panels). The length of the short 

protruding fragment measured from the center of the QD particle (segment between blue 

crosses) was estimated in ~63 nm (5.5B, bottom panel). Considering that the length of one 

base pair in the B-form of DNA is 0.34 nm, the protruding fragment would be ∼185 bp. This 

was considered a good approximation to the 208 bp-distance measured from the end of the 

target site (position 4523 bp) to the end of the fragment at position 4731 bp in pEGFP-C1. 

Thus, the experimentally determined binding location correlated well with the expected 

binding domain of bis-PNA. 
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Figure 5.5: Site specific QD labeling of Hybrids as revealed by AFM. A: Amplitud images of QD:Hybrid 

complexes showing a single QD attached per DNA molecule. B: Procedure applied to estimate the 

location of the bis-PNA binding site from the height images. The right image is a zoomed view of the 

box selected in the left image. The distance measured from the center of the QD particle to the end of 

the restriction fragment (double-headed arrow in the bottom panel) suggested that QD is positioned at 

the expected PNA binding site. 

 

In summary, AFM images clearly showed that a single QD was located at the target 

position in the Hybrid. This fact highlights the specificity of bis-PNA for its target sequence, as 

already demonstrated by gel electrophoresis.  

5.2.2.  Visualization of Hybrids and QD:Hybrids complexes on magnetic beads  

In order to explore whether QD labeling was suitable for tracking plasmids by 

fluorescence microscopy, QD:Hybrid complexes were coupled to magnetic beads. This 

approach was intended to imitate the conditions required for live cell imaging.  

Biotinylated Hybrids and QD-Hybrids were coupled to streptavidin or biotin coated 

magnetic beads, respectively. After incubation, beads were washed to remove unbound 

material and were stained with Sybr Green to reveal attached plasmid DNA. The samples 

were deposited on glass coverslips and Sybr Green and QD655 fluorescence were then 

visualized in a wide field inverted microscope equipped with a CCD camera. The results are 

summarized in Figure 5.6. In a first set of experiments, biotinylated Hybrids were incubated 

with streptavidin-coated magnetic beads. This preparation showed positive DNA staining 

revealing the presence of Hybrids (Figure 5.6A). Neither Syber Green nor StAv-QD655 signal 

were detected in control experiments performed with unmodified plasmid (Figure 5.6B). 
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In a second set of experiments, the QD-Hybrid complexes were incubated with biotin-

coated magnetic beads and then DNA was stained with Sybr Green. In this case, 

colocalization of Sybr Green and QD655 fluorescence was observed only when the StAv-QDs 

were preincubated with the biotinylated Hybrid before the addition to the beads (Figure 

5.6C). As expected, StAv-QDs were also bound to biotinylated magnetic beads (Figure 5.6D).  

 

 
 

Figure 5.6: Visualization of QD labeled Hybrids coupled to magnetic beads by fluorescence 

microscopy. A: Biotinylated Hybrids incubated with streptavidin-coated magnetic beads. B: Control of 

unmodified pEGFP-C1 plasmid incubated with streptavidin-coated magnetic beads.  C: QD-Hybrids 

incubated with biotin-coated magnetic beads. 20 nM biotinylated Hybrids were preincubated with 

StAv QD655 (2 nM QDs) in Sodium Borate buffer pH 8.5 before addition to the magnetic beads. D: StAv-

QD655 incubated with biotin-coated magnetic beads.  Ex/Em filters: for Sybr Green: ex. 480/30 BP, 505 

DM (dichroic mirror), em. 535/40 BP, QD655 ex. 560/55 BP, 595 DM , em. 655/40 BP. 

 

In summary, although Hybrids yield and purification of labeled complexes need further 

optimization, the results presented in this chapter point out the potential of peptide nucleic 

acids as useful tools for the site specific non-covalent labeling of plasmids. In addition, the 
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sensitivity provided by the highly fluorescent and photostable QDs would allow single 

molecule tracking of the Hybrids in live cells by fluorescence microscopy. 
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The new era of PEGylated liposomes has greatly improved the systemic delivery of 

therapeutic agents into tumor or disease-affected tissues in distal locations of the body 

(Woodle and Lasic, 1992; Harris and Chess, 2003). To introduce cell specificity receptor-

mediated endocytic pathways are being exploited for nonviral gene/drug delivery. For this 

purpose, targeting molecules have been incorporated into liposomal carriers. For instance, 

coupling of suitable ligands and antibodies to these synthetic vehicles, particularly to target 

cell receptors overexpressed in certain tumors, has enhanced enormously the specificity of 

delivery, reducing toxic side effects in normal surrounding tissues (Hofland et al., 2002; Wei et 

al., 2003).  

Stabilized Plasmid Lipid Particles (SPLP) are a new generation of liposomes, stabilized by 

PEG-Ceramide lipids. SPLP are able to encapsulate plasmid DNA with high efficiency (50-

70%) in particles smaller than 100 nm (Fenske et al., 2002). An unwanted side effect of PEG-

Ceramide coating on SPLP, necessary to engender the long circulation lifetimes, is the 

putative inhibition of liposome-cell association and uptake required for an efficient 

transfection. Therefore, the dissociation rate of PEG-Ceramides from SPLP has been 

modulated by varying the acyl chain length of the ceramide anchor. The transfection 

efficiency of these particles have proven superior after replacing PEG-Cer-C20 by a shorter 

acyl chain PEG-Cer-C8 (Mok et al., 1999). 

An essential improvement can be expected from the inclusion of cell-specific targeting 

ligands on SPLP. However, this possibility had not been explored prior to this thesis. A single 

application was recently reported for lactoferrin tagged SPLP aimed to specifically transfect 

hepatocytes in vivo (Weeke-Klimp et al., 2007). This approach, despite showing efficient cell 

targeting and transfection capacity in vitro, was unable to accomplish the expression of the 

reporter gene in vivo. 

The epidermal growth factor receptor (EGFR, erbB1, HER1) is an attractive target for drug 

and gene delivery since it is overexpressed in a wide variety of human tumors, including lung, 

liver and breast cancer (Yarden, 2001). Deep knowledge into the dynamics of EGF-EGFR 

interactions has been achieved with the application of targeted Quantum Dots (QDs). 

Fluorescent QDs conjugated with EGF ligand have enabled the recognition of multiple 

targets and elucidation of cellular dynamic processes such as activation and signal 

transduction mediated by the receptor tyrosin kinase erbB1 (Lidke et al., 2004) as well as a  

mechanism of retrograde transport in filopodia (Lidke et al., 2005). Their exceptional 

photostability is the essential feature for long-term fluorescence imaging (Smith et al., 2004). 

Prior to this thesis, the application of EGF tagged QD for targeting and labeling of SPLP-like 

carriers had not been explored. Therefore, a combined strategy of EGFR targeting and QD 

labeling was developed for modified SPLP. Biotinylated and stabilized lipid particles (BLP) 

were loaded with plasmid DNA or QDs and modified with preformed complexes of EGF-QDs 
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in order to accomplish targeted delivery into A431cells overexpressing the EGF receptor 

(EGFR). 

6.1. PEGylated and Biotinylated Lipid Particles 

Biotinylated liposomes stabilized with PEG were prepared using a detergent dialysis 

technique described for the preparation of SPLP (Wheeler et al., 1999). This method was 

adapted for the encapsulation of small QD655 (~10 nm) in a novel approach for delivering this 

fluorescent nanoparticles into cells.  

Three different BLP formulations were investigated for their receptor-mediated uptake, 

these including PEG-Ceramides (carbon chains lengths C20 and C8) and a pH sensitive lipid 

PEG-DSGS at percentages ranging from 1.4 to 10 mol% PEG. 

Two main lipid particles populations were recovered after detergent dialysis, consisting of 

empty BLP and particles loaded with DNA (BLP-DNA) or QDs (BLP-QDs). As determined by 

DLS, BLP-DNA particles were far more heterogeneous in size than BLP-QDs for the same BLP 

formulation. This heterogeneity was evidenced by the presence of sedimenting particles 

when the PEG-lipid content in the formulation decreased from 10 to 2.7 mol% or when 

Ceramide C20 was replaced by Ceramide C8. These findings were not surprising and 

indicated that the amount of PEG-lipid was insufficient to effect steric stabilization of DNA 

loaded particles. The observed aggregates were probably the result of strong electrostatic 

interactions between negatively charged DNA with the cationic lipid DOTAP present at 6 

mol% in all formulations, after the detergent monomers were removed from the initial DNA-

lipid-detergent mixture during the dialysis process (Zuidam and Barenholz, 1999). Furthermore, 

only BLP-DNA formulated with 10% PEG-Cer-C20 showed particles of discrete sizes after 

detergent dialysis (Figure 3.1 and Table 3.2). These findings are in line with the reported 

behavior of SPLP stabilized with 10% PEG-Cer-C20 (Wheeler et al., 1999; Zhang et al., 1999). 

Interestingly, although the variations in PEG content directly affected the particle size and 

homogeneity of plasmid DNA loaded BLP, no differences were observed regarding plasmid 

DNA encapsulation efficiency or protection (Table 3.2). 

On the other hand, BLP with encapsulated QDs showed discrete sizes (100-130 nm) even 

for the BLP formulations containing the lowest PEG-lipid content (1.4% mol% PEG-DSGS and 

PEG-Cer-C8)(Fig 3.4). This supports the idea that electrostatic interactions between DNA and 

DOTAP are stronger than between carboxyl groups in QDs and amino groups in DOTAP, 

driving the aggregation of the DNA loaded particles. 

Non-encapsulated DNA or QDs, as well as empty BLP likely present after dialysis, were 

removed by ultracentrifugation in a sucrose density gradient. This technique has proven 

suitable for purification of DNA loaded (Fig. 3.2) and QD loaded particles (Fig. 3.4). An 

additional advantage was that BLP-DNA particles smaller than 350 nm were clearly 

separated from aggregates also containig DNA and lipids (Table 3.2). For BLP-QDs, the 
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sucrose density gradient allowed the purification of QD-loaded particles from free QDs (Fig. 

3.4A).  

Sucrose fractions analyzed by TEM revealed an average of 2 to 5 QDs successfully 

encapsulated in BLP ranging from 100 to 130 nm in size (Fig. 3.4B). Particle dimensions 

estimated from TEM were in excellent agreement with the mean hydrodynamic diameter of 

~110 nm as determined by DLS for BLP-QDs (Fig. 3.4C). The encapsulation of QDs in stabilized 

lipid particles by the detergent dialysis method was presented as a novel approach, without 

deleterious effect in the fluorescence of QDs. Additionally, the spherical morphology of BLP 

shown by TEM was confirmed by Atomic Force Microscopy. 

6.2. Single step conjugation for targeting and labeling of BLP 

The characterized BLP were surface modified with preformed complexes of EGF-QDs to 

target the delivery system to cells overexpresssing the EGFR. As monocolor complexes of 

EGF-QD525-BLP would not be distinguishable from free EGF-QD525 upon incubation with cells, 

two-color tagging approaches were designed to clearly identify the EGFR targeted particles 

(Fig. 4.1 and 4.8).  

In the approach presented in Fig. 4.1, QDs play a dual rol acting as surface tag on the BLP 

carrier (QD525) and as encapsulated cargo (QD655). The rationale behind this two-color 

labeling strategy was that only QD525 and QD655 that are colocalized would indicate the 

intracellular distribution of the targeted BLP and the fate of loaded QDs. In a continuous 

monitoring of the delivery process by confocal microscopy, colocalization of both QDs can 

be interpreted as the persistence of the cargo in the delivery carrier, whereas a gradual loss 

of colocalization would indicate that QDs are being released. 

The first observation was, that targeted EGF-QD525-BLP-QD655 were internalized by the A431 

cells, whereas non-targeted BLP-QD655 were not even bound to the membrane, suggesting 

that uptake of the particles was mediated by the EGFR (Fig. 4.2).  

The labeled and targeted BLP were continuously monitored using confocal microscopy 

during cell binding and uptake for periods longer than 1h without significant photobleaching 

(Fig. 4.4), highlighting the convenience of QDs as labeling probes for long-term imaging of 

dynamic processes.  

Upon internalization of EGF-QD525-BLP-QD655, the variations in the relative levels of 

colocalized intensities found for both QDs (Fig. 4.3 D-E) could have been due to an uneven 

distribution in the number of encapsulated QD655 and EGF-QD525 associated with individual 

BLP. Additionally, QDs intensity variation could be the result of endosomes fusion bringing 

several BLP together (Gruenberg et al., 1989).  

The colocalization of both QDs allowed a clear distinction between the targeted and 

QD655 loaded BLP (yellow-orange pseudocolors) and the independently internalized green 
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EGF-QD525 complexes (Fig. 4.3), avoiding the tedious purification of targeted BLP from free 

EGF-QDs. 

When internalization was continuously monitored during 60 min, colocalized dots clustered 

around the perinuclear region of the cell (Fig. 4.4) indicating that they were sorted from early 

endosomes (Hopkins et al., 1990). This observation was supported by cell uptake experiments 

and colocalization analysis in the presence of labeled Transferrin used as an early-endosome 

marker (Hanover et al., 1984; Lamaze et al., 1993). After 30 min only partial colocalization was 

observed and after 2 h no colocalization at all was evident between EGF and Transferrin (Fig. 
4.5), indicating that EGF tagged BLP as well as EGF-QDs preformed complexes were likely 

sorted from early endosomes (Hanover et al., 1984). 

The specificity of EGF-QD525-BLP-QD655 for the EGF receptor was supported by a 

competitive binding assay performed in the presence of 66-fold molar excess of free ligand 

EGF. Under these conditions, binding of EGF-QD525-BLP-QD655 to A431 cells was completely 

abolished (Fig. 4.7A and B). In line with these observations, CHO cells and WM983A 

melanoma cells that do not express the EGFR showed no binding of the targeted particles 

(Fig. 4.7C and D). 

As mentioned above the observed colocalization of both QDs after 2 h was interpreted as 

the persistence of the cargo in the delivery carrier. Therefore, the delivery ability of targeted 

BLP was examined after 4 and 12 h. Formulations of BLP-QDs containing a pH sensitive PEG-

lipid were expected to promote BLP-endosome bilayers contact and destabilization by 

protonation during the acidification experienced in the endocytic process (Li et al., 2005), 

whereas PEG-ceramides with short acyl carbon chains (Shi et al., 2002) were expected to 

promote destabilization of BLP by lipid exchange. However, even for the lowest PEG content 

(1.4%) in BLP formulations, the presence of colocalizated QDs at 12 h after EGFR targeted 

delivery indicated that QDs remained encapsulated and presumably trapped in endo-

lysosomal compartments (Fig.4.6). This finding could be explained by the shielding effect of 

PEG, which does not hinder the accesibilitiy of EGF, but presumably prevents the contact 

between BLP-endosome bilayers required for cargo release. These results obtained with QDs 

loaded particles suggested that DNA release could also be hampered assuming that 

encapsulated DNA would follow a similar route as the encapsulated QDs with identical 

formulation and similar size. Therefore, the following aim was to study the behavior of 

targeted and labeled BLP with encapsulated DNA by colocalization analysis employing the 

two-color labeling approach presented in Fig. 4.8. In this case, both QDs were surface-

coupled to the BLP, while the encapsulated DNA was unlabeled. One of the QDs was 

carrying the ligand (EGF-QD525) whereas the second color QD655 remained untargeted. As 

free QDs do not internalize into cells in the absence of ligand, the rationale behind this 

strategy was that only QD655 particles bound to EGF-QD525-BLP-DNA would be endocytosed. 

Therefore, the intracellular fate of BLP-DNA was monitored by colocalization of both QDs and 
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the ability to release the plasmid was examined quantifying the GFP expression from the 

reporter gene encapsulated in these targeted BLP.  A remarkable observation was that only 

10 min incubation with A431 cells was sufficient to promote receptor-mediated uptake of the 

targeted particles (Fig. 4.10) showing a similar time response as observed for BLP-QDs. After 

48 h treated cells showed improved GFP expression demonstrating that, although at a very 

low efficiency, endosomal escape of plasmid was indeed taking place. The presence of 

targeted BLP (colocalized QDs) in cells that do not express GFP suggested that the low 

transfection levels reflect more a difficulty to achieve endosomal escape rather than a 

hindered binding or internalization. Consequently, the two-color labeling strategy proposed 

for BLP-DNA particles provided information about the efficiency of the gene delivery system 

as well as the potential barriers that BLP may encounter during the uptake process. 

It was demonstrated by different approaches that the size of the carrier determines the 

internalization pathway as well as the processing of the gene carrier thus, directly affecting 

the transfection efficiency (Rejman et al., 2004). In this connection, it was of interest to 

compare the targeting effect between non-purified BLP after detergent dialysis, still 

containing aggregates (>1 µm), and purified particles of discrete sizes <350 nm recovered 

from sucrose density gradient. 

Due to the low levels of GFP expression obtained with the dual-labeled and targeted 

particles, a two-step targeting procedure was employed in order to decrease possible 

crosslinked aggregates between BLP and EGF-QDs and to improve the initial binding of BLP-

DNA to cell receptors. First, A431cells were incubated with preformed complexes of EGF-QDs 

and, in a second step, incubated with BLP containing the same total amount of plasmid 

DNA. In the case of non-purified fractions, the total amount of DNA added included a 40% of 

free non-encapsulated plasmid, DNA loaded BLP and DNA containing aggregates and for 

purified fractions the total DNA plasmid added was considered to be encapsulated.  

For non-purified fractions, a similar percentage of GFP expressing cells were determined 

for targeted and non-targeted delivery of BLP-DNA, evidencing that non-targeted particles 

were equally efficient to transfect cells as targeted particles. Since free plasmid added at 

equal amounts as the encapsulated DNA did not lead to GFP expression in cells, the 

transfection activity observed for non-purified fractions could have been generated by DNA-

loaded BLP and aggregates of lipid-DNA, the later probably entering through another non-

receptor mediated route. 

Not surprisingly, targeted BLP showed a 3-fold increase in GFP expression after purification 

as compared to the purified but non-targeted particles (Table 4.1), indicating that after 

removing aggregates the contribution to the transfection activity by unspecific uptake was 

minimized.  

The low (5%) overall efficiency of the targeted system was expected, considering that 

targeted BLP are formed by multivalent components. On one hand, the biotinylated 
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particles contain, at least, two available biotins as has been demonstrated by colocalized 

dots upon surface tagging BLP with QD525 and QD655 (Fig. 4.10). The second multivalent 

component is the streptavidin-coated QD, which acts as a bridge to couple BLP and EGF in 

a single particle. Although the stoichiometry of EGF:QD ratio has been carefully controlled in 

cell binding experiments previously described in our lab (Lidke et al., 2007), it was not evident 

that the addition of BLP, variable in size, to the remaining free streptavidins in EGF-QDs 

preformed complexes could have been equally controlled. Furthermore, due to this size 

variation within BLP, the number of biotin molecules per BLP could not be determined. 

Although increasing the number of EGF ligands per particle should in principle improve the 

binding to cells and increase the number of internalized particles, the larger size of the carrier 

would probably interfere with the receptor-mediated endocytosis. After ligand-induced 

receptor dimerization, autophosphorylation of the cytoplasmic domain of the tyrosine kinase 

receptor erbB1 (EGFR) is known to be essential for internalization through the rapid clathrin 

dependent route (Marmor et al., 2004). The EGF induced stimulation and activation of the 

signalling cascade by targeted BLP is part of the ongoing work, relevant since EGFR activity 

controls a wide variety of biological responses (Bublil and Yarden, 2007). 

6.3. Non-covalent Quantum Dot labeling of plasmid DNA 

Elucidating the intracellular transport mechanisms of delivered genes has been a 

challenging task because of the difficulties in labeling DNA without affecting its biological 

activity. Labeling strategies to attach QDs to plasmids while maintaining a functional DNA 

are still required. A more recently approach is to bind non-covalently any label or biological 

entitiy to DNA by employing molecular beacons such as bis-PNA (Svahn et al., 2004). PNA 

specifically hybridizes by strand invasion into a target sequence in supercoiled plasmid DNA 

providing a controlled and sequence specific tagging of DNA (Nielsen and Egholm, 1999).  

Therefore, as a final aim, the idea of obtaining a QD labeled DNA as a potential cargo for 

the targeted BLP was appealing, since a labeled plasmid would provide information about 

the physical barriers encountered by the encapsulated plasmid and the efficiency of 

nuclear translocation upon DNA release. 

In principle, a single QD per plasmid can provide enough signal for the detection at the 

single molecule level (Crut et al., 2005). This is relevant since a single QD can be 2 to 10 fold 

larger than conventional organic fluorophores (Michalet et al., 2005) and multiple QDs may 

affect the biological activity or nuclear translocation of the labeled plasmid. Consequently, 

the first task was to achieve the specific hybridization of a single biotin-bis-PNA entity 

synthetized to recognize a 12 bp target sequence in the plasmid pEGFP-C1. Once, the biotin-

bis-PNA sequence specificity was demonstrated by band shift assay in gel electrophoresis 

(Fig. 5.2), the biotinylated Hybrids were labeled with StAv-QDs. Scanning by AFM indeed 

confirmed the presence of a single QD attached to the biotin-bis-PNA binding site in the 
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plasmid (Fig. 5.5) and the labeled QD-Hybrids were clearly detected by fluorescence 

microscopy (Fig. 5.6). Although preliminary and still limited by the low yield of biotinylated 

Hybrids obtained, these QD-DNA particles appear as an attractive cargo for targeted BLP. 

6.4.  Rational liposome design 

The increasing requirements of lipid-based delivery systems to accomplish their 

therapeutic activity have propelled multiple designs in which liposomes are viewed as a 

‘ready to use’ toolbox able to open the route into the cells, increasing the efficacy while 

reducing the side effects (Torchilin, 2005; Dos Santos et al., 2007).  In the schema of Fig. 6.1 a 

new-generation liposome is presented that can be modified either on its surface or by 

loading molecular entities in order to modulate stability, specificity, labeling and function. 

Among the chemical modifications that account for this versatility are: 

a. surface coating with a protective polymer to favor long-term circulation and 

prevent  unspecific interactions before reaching the target tissue. 

b. inclusion of a positively charged lipid or polymer to condense and complex the 

loaded DNA. 

c. addition of stimuli-sensitive lipids to promote the endosomal escape. 

d. conjugation of a ligand to target a specific cell receptor. 

e. coating with cell penetrating peptides to favour membrane translocation.  

f. inclusion of a lipophilic drug to act as a therapeutic agent. 

 

According to the results obtained during this thesis, the contribution proposed to the 

rational design involves: 

g. labeling with two colors of QDs on the surface and in the internal space of the 

carrier for the real-time monitoring of cell binding, uptake and cargo release 

processes. 

h. incorporation of plasmid labeled with a single StAv-QD that can be further modified, 

for instance with a biotinylated nuclear localization signal to drive the plasmid 

vector into the nucleus. 
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Figure 6.1: Schematic representation of a new-generation of BLP. See text for details. Adapted from 

(Torchilin, 2005). 

 

In this thesis, I contributed by developing a multifunctional delivery system with sensitive 

detection. The addition of Quantum Dots into liposomal carriers with a dual rol, as cargo and 

as a surface tag will provide a flexible system for targeting and monitoring lipid-mediated 

delivery processes. The system will also contribute to a better understanding of the uptake 

mechanisms of liposomes by cells as well as the physical barriers to the effective gene or 

drug release and therapeutics.  
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The major outcome of this thesis was the design of a versatile lipid-based carrier, able to 

encapsulate small nanoparticles such as the fluorescent QDs for live-cell imaging and 

macromolecules with a potential therapeutic application such as plasmid DNA. 

The targeting strategies applied combine the flexibility of the biotin-streptavidin linkage for 

ligand coupling, the photostability and bright fluorescence of QDs and the pharmacokinetic 

and drug delivery capabilities of sterically stabilized liposomes. 

The optimization of the BLP formulation with other available pH-sensitive lipids and 

exchangeable lipids with high rate transfer to promote endosomal escape within minutes 

may certainly improve the gene delivery efficiency of the developed BLP system.  

The knowledge of the average number of biotins per BLP will allow controlling the 

stoichiometry of ligand-QD preformed complexes that can be added to rationally improve 

cell binding conditions, particularly necessary in the case of certain tumor cells with 

overexpressed receptors that are rapidly cleared from the cell surface by ligand-induced 

endocytosis. 

The bicolor QD labeling strategy for the BLP was designed for monitoring the specificity of 

BLP binding and uptake in live cells by fluorescence confocal microscopy. Despite the 

multivalency of the BLP and QDs, that prevents controlled stoichiometry of ligand-carrier,    

the overall specificity of the BLP system was not affected. The colocalization of green 

emitting QD525 and red emitting QD655, allowed the immediate recognition of the targeted 

particles from the untargeted counterparts, as well as the presence of free EGF-QD525 

complexes during live-cell imaging. A purification procedure, otherwise unavoidable in 

monocolor labeling, is by-passed.  

The targeted and labeled BLP can serve as gene or QD delivery platform for targeting 

different tumor cells, providing a long-term probe for imaging and diagnosis. Any 

biotinylated ligand can be in principle conjugated to streptavidin-coated QDs whenever the 

size of the final complex does not interfere with its receptor recognition, internalization and 

intracellular function. This approach can be used to elucidate the fate of lipid particles in real 

time, providing more refined information on the still poorly understood trafficking process and 

subcellular barriers encountered by lipid-based carriers. 

The non-covalent labeling of plasmid DNA using a single QD and a bis-PNA anchor 

directed to a specific target sequence is being conducted to further characterize the 

process involved in EGFR-targeted and non-targeted gene delivery. The preliminary results 

obtained open an interesting possibility for loading labeled DNA in BLP that can be tracked 

in real time to follow the route into the nucleus. 
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